
Inconsistency in
Multi-Context Systems:

Analysis and Efficient Evaluation
DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht von

Peter Schüller
Matrikelnummer 0125596

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: O. Univ. Prof. Dipl.-Ing. Dr. techn. Thomas Eiter
Dipl.-Ing. Dr. techn. Michael Fink

Diese Dissertation haben begutachtet:

(O. Univ. Prof. Dipl.-Ing.
Dr. techn. Thomas Eiter)

(Prof. Dr. Giovambattista Ianni)

Wien, 8.8.2012
(Peter Schüller)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Peter Schüller
Wehlistraße 326/609, 1020 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit—
einschließlich Tabellen, Karten und Abbildungen—die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

To my parents, Monika and Werner.
To my sisters and brothers,

Michael, Elisabeth, Katharina, and Andreas.

Acknowledgments

First of all I want to thank my dissertation advisors, Thomas Eiter and Michael Fink, for making
this thesis project possible through funding and a lot of their individual personal effort. Thomas
Eiter was a great and very efficient advisor. He has as much time as every other person has,
but much more responsibilities than most other persons; nevertheless he often took the effort
to explain the content and form of his contributions in papers to me, which gave me a great
possibility to improve my skills. Michael Fink taught me a lot about considering a research
problem or a solution to a research problem from many different perspectives and in much
detail. Furthermore he did a great job teaching me the fine art of scientific political correctness,
both with respect to reviews and with respect to authoring publications. Finally this thesis would
not exist without Michael’s successful acquisition of the project grant which funded my studies
and conference visits.

Next I want to thank Antonius Weinzierl, who was a very likable and supportive colleague
during the course of this project. In particular he always listened to my ideas, understood them
fast, often rightfully questioned them, and he allowed me to do the same with his ideas.

Major thanks go to the Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF)
who funded the research that is reflected in this thesis under project grant ICT08-020.

It is impossible to name all persons who inspired me during my PhD, so I will thank some of
them specifically and in alphabetical order. Esra Erdem did a great job of asking me the right—
often tough—questions to challenge me and push my mind forward to look for even tougher
questions. I am thankful to Georg Gottlob who is a very helpful and kind personality; he held
a lecture on research and career planning, which was one of the most useful lectures I ever
attended. Giovambattista Ianni was very supportive of my ideas, which were often immature and
unstructured; he contributed a lot to transforming these ideas into a more understandable format.
Yuliya Lierler collaborated with me over a great distance and time difference, working with her
was a great pleasure and she became more than a collaborator to me, she became a friend, a
person I truly appreciate, and I want to thank her very much for that. Thomas Krennwallner was
a great person to work with during my PhD studies, he never got tired of creating, discussing,
and re-discussing various scientific as well as nonscientific topics. Torsten Schaub and his team
in Potsdam provide great open source software and supported me during my thesis by reacting
promptly to bug reports and other inquiries. I want to thank the Knowledge Based Systems
group at TU Wien, and several people not belonging to that group, for being a bright and very
friendly community which made my PhD a very enjoyable experience. Many thanks also go to
our secretary Eva Nedoma and to our technician Matthias Schlögel, for smoothly assisting with
every administrative issue I encountered.

I thank my friends for distracting me and showing me that life is more than work, particular
thanks go to Anna, Brumma, Carmen, Dagmar, Edda, Kathi, Peter, Phlo, Sabine, and Vali.

Last but not least I am deeply grateful to my parents and to my family, who always had an
open ear when I talked about my work and my worries, and who always were supportive of my
career choice even though it meant that I sacrificed a lot of time and effort for that career, time
and effort I could have spent on them.

v

Abstract

Multi-Context Systems are a formalism for representing systems that consist of multiple know-
ledge-based systems (contexts). Knowledge exchange between contexts is represented in the
form of bridge rules, which are rules that add formulas to knowledge bases if certain beliefs
are accepted (or not accepted) at certain contexts. As an example, we consider a hospital in-
formation system that links patient and laboratory databases with a decision support system
for suggesting therapies. Inconsistency of such a system can easily arise due to unexpected
interactions caused by bridge rules and contexts, for example a wrong birth date could make
the lab database inconsistent, and a patient allergy might eliminate all treatment options for a
patient, making the global system inconsistent. As a consequence, the system can no longer
provide meaningful answers to requests. Existing approaches for dealing with inconsistency
mostly ignore or remove inconsistency or they regard inconsistency as a special truth value in
the system.

In this thesis, we aim at a new approach that allows for analyzing inconsistency and reason-
ing about it, and eventually allows for repairing inconsistency with or without support from a
human operator. To facilitate practical applicability, we put a particular emphasis on efficiency.
We use formal methods of computer science, in particular from logic programming, to inves-
tigate these problems on a theoretical level. We realize formal results in a software prototype,
conduct empirical experiments to validate efficiency, and investigate potential optimizations.

As a main theoretical result we obtain two novel formal notions for analyzing inconsistency
in multi-context systems: diagnoses and inconsistency explanation. These notions character-
ize inconsistency in terms of sets of bridge rules that cause inconsistency. Diagnoses provide
possible repairs of the system, while inconsistency explanations separate independent reasons
for inconsistency in one system. We establish formal relationships between these notions, and
show how they can be approximated if parts of the system are hidden from our observations.
Furthermore we describe a novel policy language for managing inconsistency in multi-context
systems (IMPL) which allows for analyzing inconsistencies and for specifying in a declarative
way which inconsistencies shall be repaired automatically (e.g., by ignoring a slightly differing
birth date) and which shall be presented to a human user (e.g., a doctor, in case of the allergy
mentioned above) for deciding how to deal with them.

A main empirical result of this thesis is the realization of our inconsistency analysis notions
in the MCS-IE prototype software, which uses HEX programs—a formalism that extends logic
programming with external computations—as underlying formalism. To improve scalability of
MCS-IE and of HEX, we introduce a novel flexible evaluation framework for HEX programs,
formally show its correctness, and describe an empirical study on the performance benefits
compared to the previous state-of-the-art in HEX evaluation.

Using our inconsistency management methods it is possible to make operation of distributed
knowledge-based systems more robust. Our improved HEX evaluation formalism widens appli-
cability of HEX for practical reasoning tasks and prompts additional research on the subject of
efficient evaluation of logic programs.

vii

Kurzfassung

Multi-Kontext-Systeme sind ein Formalismus zur Repräsentation von Systemen, die aus meh-
reren wissensbasierten Systemen (Kontexten) bestehen. Wissensaustausch zwischen Kontexten
wird in Form von Regeln (Bridge Rules) modelliert; diese Regeln fügen Formeln zur Wissensba-
sis eines Kontexts hinzu, wenn bestimmte Aussagen von anderen Wissensbasen akzeptiert wer-
den (oder nicht akzeptiert werden). Als Beispiel betrachten wir ein Spitalsinformationssystem,
welches Patienten- und Labordatenbanken sowie ein Expertensystem für Behandlungsvorschlä-
ge vernetzt. In einem derartigen wissensverarbeitenden System kommt es durch unerwartete
Interaktionen zwischen Kontexten und Regeln leicht zu einer Inkonsistenz des Gesamtsystems.
Beispielsweise kann ein PatientInnendaten-Import dem Inhalt der Labordatenbank widerspre-
chen, oder eine PatientInnenallergie kann sämtliche Behandlungsmöglichkeiten ausschließen.
Globale Inkonsistenz eines Systems hat zur Folge, dass keine sinnvollen Informationsabfragen
an das System mehr möglich sind. Bestehende Verfahren zur Inkonsistenzbehandlung ignorie-
ren oder entfernen Inkonsistenz oder sie betrachten Inkonsistenz als spezifischen Wahrheitswert
im System.

In dieser Arbeit erörtern wir einen neuen Ansatz, der Inkonsistenzen analysiert, automati-
sches Schlussfolgern über dieser Analyse zulässt, und letztendlich die Möglichkeit bietet, au-
tomatische oder benutzergestützte Systemreparaturen durchzuführen. Vor dem Hintergrund der
praktische Anwendbarkeit unserer Verfahren betrachten und bewerten wir stets deren Effizienz.
Wir untersuchen unsere Ansätze auf theoretischer Ebene mithilfe von formalen Methoden der
Informatik, im Speziellen aus dem Gebiet der Logikorientierten Programmierung. Wir realisie-
ren unsere Verfahren in Software Prototypen, führen empirische Untersuchungen durch um die
Effizienz dieser Prototypen zu messen, und untersuchen mögliche Optimierungen.

Auf theoretischer Ebene ist das Hauptergebnis dieser Arbeit die Einführung von zwei neuen
formalen Begriffen für die Analyse von Inkonsistenzen in Multi-Kontext-Systemen: Diagno-
se und Inkonsistenzerklärung. Diese Begriffe charakterisieren Inkonsistenz über Mengen von
Bridge Rules, welche die Inkonsistenz verursachen. Diagnosen zeigen mögliche Reparaturen
des Systems auf, während Inkonsistenzerklärungen unabhängige Inkonsistenzen in einem Sys-
tem voneinander abgrenzen. Wir zeigen formale Eigenschaften dieser neu eingeführten Begriffe
und stellen ein Verfahren vor, das es ermöglicht, sogar bei unvollständiger Information über
ein System dessen Inkonsistenz zu analysieren. Weiters beschreiben wir die neue Sprache IM-
PL zur Spezifikation von Strategien für Inkonsistenzmanagement von Multi-Kontext-Systemen.
Diese Sprache erlaubt zu spezifizieren, welche Inkonsistenzen auf Basis einer Inkonsistenz-
analyse automatisch repariert werden sollen (beispielsweise durch Ignorieren eines geringfügig
abweichenden Geburtsdatums) und welche Inkonsistenzen einem menschlichen Benutzer (bei-
spielsweise einem Arzt) vorgelegt werden müssen, um über deren Reparatur zu entscheiden.

Ein wichtiges empirisches Ergebnis dieser Arbeit ist die Realisierung der Inkonsistenzana-
lysebegriffe im MCS-IE Software Prototypen, der Diagnosen und Inkonsistenzerklärungen auf
der Basis von HEX-Programmen—ein Formalismus der logische Programmierung mit exter-
nen Berechnungen erweitert—berechnet. Um die Skalierbarkeit von MCS-IE und HEX zu ver-
bessern, erstellen wir ein neuartiges Berechnungsframework für HEX-Programme. Wir führen
dieses Framework formal ein, beweisen dessen Korrektheit, und beschreiben eine empirische

ix

Untersuchung, die zeigt, dass unser neuen Berechnungsframework Effizienzvorteile gegenüber
dem vorher existierenden Verfahren aufweist.

Die Inkonsistenz-Management-Methoden, welche wir in dieser Arbeit vorstellen, ermögli-
chen es, den Betrieb von verteilten wissensbasierten Systemen robuster zu machen. Unser ver-
bessertes Verfahren zur Evaluierung von HEX-Programmen erweitert die Anwendbarkeit von
HEX in der Praxis und wirft neue wissenschaftliche Fragestellungen im Bereich der effizienten
Auswertung von logischen Programmen auf.

x

Contents

Contents

1 Introduction 1
1.1 Goals and Methods . 2
1.2 State-of-the-Art . 3
1.3 Evolution of this Work . 6
1.4 Results and Thesis Outline . 8

2 Preliminaries 9
2.1 Multi-Context Systems . 9
2.2 HEX: Answer Set Programs with External Computations 15

2.2.1 Restrictions . 18
2.3 Computational Complexity . 18

3 Analyzing Inconsistency in Multi-Context Systems 21
3.1 Diagnoses . 23
3.2 Inconsistency Explanations . 24

3.2.1 Deletion-Diagnoses / Deletion-Explanations 26
3.3 Properties . 26

3.3.1 Converting between Diagnoses and Explanations 27
3.3.2 Duality . 29
3.3.3 Non-overlap in Minimal Diagnoses 31

3.4 Computational Complexity . 31
3.4.1 Output-projected Equilibria . 31
3.4.2 Context Complexity . 33
3.4.3 Overview of Results . 34
3.4.4 Proof Outline . 36
3.4.5 Detailed Results . 36

3.5 Approximating Inconsistency Analyses . 44
3.5.1 Information Hiding . 46
3.5.2 Approximations for Diagnoses . 48
3.5.3 Approximations for Inconsistency Explanations 50
3.5.4 Limited Querying . 51
3.5.5 Computational Complexity . 54

3.6 Discussion and Related Work . 54
3.6.1 Related Work . 55

4 Realizing Inconsistency Analysis in MCSs with HEX 61
4.1 Computing Diagnoses by Rewriting to HEX 61

4.1.1 Generic Approach . 61
4.1.2 Consistency Checking . 63
4.1.3 Combining Diagnosis Guess and Consistency Checking 64
4.1.4 Explanations . 66

xi

CONTENTS

4.2 Implementation: MCS-IE System . 67
4.3 Discussion . 69

5 Modular Evaluation Framework for HEX-Programs 73
5.1 Preliminaries . 74

5.1.1 Restriction to Extensional Semantics for HEX External Atoms 74
5.1.2 Atom Dependencies . 75
5.1.3 Rule Unfolding for External Atom Input Grounding 77
5.1.4 Safety Restrictions . 78

5.2 Rule Dependencies and Generalized Rule Splitting Theorem 80
5.2.1 Rule Dependencies . 80
5.2.2 Splitting Sets and Theorems . 81

5.3 Evaluating HEX by Rewriting to ASP . 85
5.3.1 Pre-Groundable HEX Fragment . 85
5.3.2 Extended Pre-Groundable Fragment and Evaluation Algorithm 86

5.4 Decomposition and Evaluation Techniques . 87
5.4.1 Evaluation Graph . 87
5.4.2 Interpretation Graph . 92
5.4.3 Answer Set Graph . 96
5.4.4 Answer Set Enumeration . 99

5.5 Implementation and Experimental Evaluation 102
5.5.1 Heuristics . 102
5.5.2 Benchmarks . 102
5.5.3 Results . 103

5.6 Discussion and Related Work . 109
5.6.1 Related Work . 109

6 Policy Language for Inconsistency Management 111
6.1 Policy Language IMPL . 112

6.1.1 Syntax . 112
6.1.2 Semantics . 118

6.2 Methodologies of Applying IMPL and Realization 121
6.2.1 Reasoning Modes . 121
6.2.2 Properties and Extensions . 123

6.3 Realizing IMPL in acthex . 124
6.3.1 Preliminaries on acthex . 124
6.3.2 Rewriting the IMPL Core Fragment to ACTHEX 127

6.4 Rewriting IMPL to the IMPL Core Fragment 129
6.5 Discussion and Related Work . 135

6.5.1 Related Work . 135

7 Summary and Conclusion 137

Bibliography 139

xii

1 Introduction

Combining different sources of knowledge is an important ability of human beings. We regularly
use this ability to solve our day-to-day problems, and interdisciplinary science is even based on
the idea of reusing knowledge from one area of expertise and applying it to another area to solve
challenging problems.

In this thesis we consider the combination of different sources of knowledge in computer
systems. At least since the common availability of the internet, such combination of digital
knowledge has been of great interest and nowadays the interlinking of knowledge is a permanent
reality in our highly digital culture.

In 2007, Brewka and Eiter introduced the formalism called heterogeneous nonmonotonic
multi-context systems (in short MCSs) [BE07]. The MCS formalism mathematically describes
a collection of knowledge based systems, called contexts, and a collection of rules which trans-
mit knowledge between contexts, called bridge rules. This formalism has three very important
properties which, put together, distinguish MCSs from other approaches of interlinking knowl-
edge:

1. each context in an MCS may use a different mathematical formalism for representing its
internal knowledge, i.e., MCSs represent heterogeneous systems and can combine knowl-
edge from heterogeneous systems,

2. gaining additional knowledge may invalidate existing inferences, i.e., MCSs represent
nonmonotonic systems.1 Nonmonotonicity is supported both in context and in bridge
rules. Furthermore,

3. MCSs support information hiding, i.e., not all knowledge in one context is exposed to
another context.

These features make MCSs a powerful tool for real-world applications. At the same time, the
power of this framework creates difficult mathematical and computational challenges, which
will be the recurring theme of this thesis.

As an example, consider the following hospital information MCS which comprises the fol-
lowing contexts: (i) a patient database, (ii) a database of the medical laboratory, (iii) an ontology
which represents knowledge about diseases and how they are related to symptoms and laboratory
results, and (iv) a decision support system which suggests therapies to a medical practitioner.
The MCS links information from the patient and laboratory database to classify the diseases
of patients. The disease classifications and information from the patient database is used by
the decision support system to suggest treatment options for the patient. The contexts in this
system are heterogeneous, as they are typically realized in different knowledge representation
formalisms. Furthermore they are hiding information, as not all knowledge stored in one system

1The standard example for nonmonotonic reasoning is that, given the information that Tweedy is a bird, we infer
that Tweedy can fly. However, as soon as we learn that Tweedy is a penguin, we can no longer infer that, because
Penguins do not obey the default assumption that birds can fly.

1

1. INTRODUCTION

part should be transmitted to other system parts. Finally it should be nonmonotonic, for exam-
ple adding new information about a patient’s allergy into the patient database might suppress
certain therapy suggestions by the decision support system.

The flexibility of the MCS formalism incurs two omnipresent challenges:

1. a high potential for inconsistency in the system, and

2. high computational complexity of reasoning in the system.

We define inconsistency in a MCS based on model-based equilibrium semantics of MCSs: a
MCS is inconsistent if it has no equilibrium model. This implies that an inconsistent MCS
cannot provide useful answers to queries; in our example the system would not provide any
output and give no justification why there is no output.

Inconsistencies can appear without an obvious reason. Even if we make only a small change
to the system and this is the obvious cause for inconsistency, the inconsistency might manifest
in a different place than the change which caused it. In our example, additional knowledge in
the patient database (e.g., about an allergy) can make the MCS inconsistent because suddenly
the decision support system can no longer identify any possible therapy option. A doctor then
would not gain any information from the system, except probably for the fact that it ‘does not
work’ because it does not provide any output.

Computational complexity of reasoning describes the relationship between the size of a MCS
plus a query to the MCS, and the resources in terms of computation time or storage space that
are required to compute an answer to this query. Systems must be reasonably fast, otherwise
they simply will not be used in practice. Therefore every idea in this thesis will be evaluated
not only with respect to its usefulness and correctness, but also with respect to its computational
complexity. In fact a large part of this work is about improving the efficiency of an algorithm
for heterogeneous reasoning.

Most existing approaches for dealing with inconsistency repair a system in order to restore
consistency, where repairing means to ignore just as much knowledge in the system as is re-
quired to restore consistency.2 In our example, such an approach can be dangerous in several
ways: ignoring the allergy might cause harm to the patient by treatment with a drug that trig-
gers the allergy, ignoring the illness might cause harm by not treating the patient at all, or by
treating them in the wrong way. Because they can be dangerous, we consider purely automatic
approaches for restoring consistency to be undesirable.

In this thesis we will pursue the idea of managing inconsistency. A system shall first analyze
inconsistency in order to gain knowledge about the nature of this inconsistency. The system can
then automatically classify the inconsistency and if required ask a human user to make a decision
that cannot be made by the system. (For example if no treatment is possible, then the potential
solutions could be displayed to a doctor.) If desired, the user can then specify how to repair
inconsistency in the system.

Most importantly we see inconsistency as part of the knowledge in a system, we attribute
inconsistency to the knowledge exchange in a system (i.e., to bridge rules), we reject the idea
of restoring consistency at any cost, and we aim at computationally efficient solutions. In cases
where inconsistency must be repaired, the methods we develop in this work allow to analyze
inconsistency and to repair the MCS, i.e., make it consistent.

1.1 Goals and Methods

Analyzing Inconsistency The first aim in this thesis is to develop methods for analyzing in-
consistency in MCSs. This will provide information about the structure of each inconsistency

2We can distinguish between approaches related to Consistent Query Answering which in some sense make use
of temporary repairs, and approaches related to Belief Revision, which create permanent repairs.

2

1.2. State-of-the-Art

that occurs, it will show which parts of the system are involved in an inconsistency, and it will
provide possibilities for restoring consistency.

We will formulate our analysis methods as a mathematical framework, show how much
computational effort we need to analyze inconsistency, and prove useful properties of the frame-
work. The outcome is an approach for getting information about the inconsistency in a MCS,
even though the classical effect of inconsistency is that reasoning in an inconsistent system no
longer provides useful information. A very nice property of our framework will be that it sepa-
rates independent reasons for inconsistency in a MCS, therefore we can obtain partial repairs of
the system that deal with a single inconsistency only. This feature will become important next,
because it allows for repairing certain inconsistencies automatically and others manually.

Managing Inconsistency Contexts and bridge rules usually cannot cope with inconsistency
on their own. Therefore our next goal is to manage inconsistency using the information gained
from inconsistency analysis. As we have seen, automatic repair of an inconsistency can be
dangerous and is not a universal solution. Neither is it feasible to display all analyzed in-
consistencies to the user and let the user repair everything manually, because many different
inconsistencies might exist in a MCS, and usually multiple possibilities exist for repairing each
inconsistency.

Therefore we need a way to find out which inconsistencies shall be repaired automatically,
and which manually. This decision cannot be made on a general level, because it depends on the
concrete application scenario. As a consequence, we will create a universally applicable method
for specifying a policy for managing inconsistency in an MCS. Such a policy configures how a
concrete MCS deals with inconsistencies, which inconsistencies are repaired automatically and
in which ways, and which inconsistencies must be displayed to a human user for a decision
whether and how to repair them.

Efficient Realization To achieve practical relevance, an important aspect of this thesis is the
efficient realization of inconsistency analysis and management methods in algorithms and ac-
tual software prototypes. We will provide algorithms for realizing inconsistency analysis and
management in computational logic. As foundation we use the Answer Set Programming (ASP)
formalism which is a model-based formalism for knowledge representation with logic program-
ming rules. In particular we will use HEX, an extension of ASP, which allows to interleave
reasoning over rules with other ‘external’ reasoning methods. Furthermore we will describe a
software prototype that implements these algorithms and provides reasoning about inconsistency
using the theoretical notions developed before.

The goal of efficiency had an important impact on the progress of this thesis, because it
made us investigate the efficiency of evaluating HEX programs, a logic programming formalism
which we use to realize inconsistency analysis and management. This investigation led to the
insight that the state-of-the-art implementation of HEX can be improved significantly, which
furthermore led to a digression of this thesis from inconsistency in MCSs to HEX evaluation.
During this digression, which we describe in Chapter 5, we make a general improvement to the
HEX evaluation framework, which can be counted as central and significant result of this work.
Therefore this thesis not only contributs to inconsistency in MCSs, but to the HEX formalism
and to logic programming in general.

1.2 State-of-the-Art

This section gives an overview of the state-of-the-art of the central topics in this work: combin-
ing knowledge sources, dealing with inconsistency, and answer set programming with external
evaluations. We describe why we decided to develop an approach different from existing ap-
proaches, and how our approach differs from those approaches.

3

1. INTRODUCTION

Detailed literature reviews are given in the respective chapters. Readers who are not inter-
ested in the scientific context of this work, and do not want to know why we went along a certain
path of research among multiple other possibilities, can safely jump to Section 1.3.

Combining Knowledge-Based Systems Combining data and knowledge sources has been in-
tensively researched in several areas of computer science, see the following survey articles about
data and information integration in databases [HRO06,BN08,FKMP05], and in description log-
ics and ontologies [BS03, CSH06]. Common to most existing approaches is the focus on an
underlying logic that does not permit nonmonotonicity, e.g., data exchange operates on mono-
tonic relational databases. Furthermore, most existing approaches combine information from
systems which use the same underlying formalism for all contexts, e.g., information integration
and ontology merging. In knowledge representation, we are deeply interested in formalisms
that can capture nonmonotonicity, therefore purely monotonic approaches can provide ideas but
cannot directly serve as frameworks. Furthermore, combining homogeneous systems is not the
situation one typically encounters; if we combine knowledge from existing systems, every sys-
tem usually uses a different formalism. Finding a unifying formalism that can capture all system
parts might be impossible, and if possible it might be a huge amount of effort to transform all
system parts into that formalism.

In this work we cope with nonmonotonicity as well as with heterogeneity by using the
formalisms of heterogeneous nonmonotonic multi-context systems (MCSs) [BE07]. This for-
malism is the result of a line of research that goes back to important initial papers by Mc-
Carthy [McC87, McC93] and was further developed in [GS94, RS05, BRS07] to finally culmi-
nate in the development of MCSs as used in this thesis [BE07].

Unlike other formalisms, MCSs support full nonmonotonicity and heterogeneity of contex-
tual reasoning, and MCSs can be applied in real application scenarios without changing existing
contexts. (MCSs interface with the reasoning of a context and do not require to convert context
knowledge bases.) Therefore we chose MCS as the basic framework for the work described in
this thesis.

Dealing with Inconsistency Similar to the topic of combining information and knowledge,
there exist many formalisms for dealing with inconsistency, and most focus on monotonic and/or
homogeneous settings.

Existing approaches like data integration [HRO06], MCSs with defeasible rules [BA08],
and consistent query answering in databases [BC03, LGI+05, EFGL08] and description log-
ics [LR07] solve the problem of inconsistency by automatically restoring consistency, and in
the process ignoring a minimal amount of information in the system. All these approaches hide
inconsistency, they create a consistent system and do not provide information about the reason
of a repaired inconsistency.

Especially when representing nonmonotonic knowledge, automatically ignoring a small part
of the system can introduce counter-intuitive and unwanted behavior into a system. Therefore
we here follow the idea of explaining inconsistency before, or even instead of, counteracting it,
and we cannot use the above methods.

The importance of explaining inconsistency and treating inconsistency as information has
been emphasized, e.g., in the area of paraconsistency [GH91,dAP07], in formalisms for debug-
ging logic programs [BV05, Syr06, PC88], and in the area of model-based diagnosis [Rei87].

In this work, we use ideas from ASP debugging and model-based diagnosis and we borrow
the name diagnosis for one of two very important notions in this thesis. Traditional diagnosis
in the style of Reiter [Rei87] aims at analyzing faulty operation of system components and
identifying which components operate differently from its specification. In contrast to that,
our approach aims at analyzing the potentially faulty design of a system, and our concept of
a faulty component is a component which operates as intended, but by its normal mode of

4

1.2. State-of-the-Art

operation causes inconsistency. Therefore our approach can identify errors that arise due to
the unexpected interaction of several components which operate normally, i.e., we can identify
knowledge representation errors introduced into the system by humans.

As mentioned above, there exist many methods for dealing with inconsistency within a
particular context. Therefore we do not consider to repair context knowledge bases in this work,
and we assume they are consistent if no knowledge is added by a bridge rule. As a result of
these considerations, the focus of this thesis is on the information flow between contexts in a
MCS, and we analyze which bridge rules are problematic and cause inconsistency.

Besides analyzing inconsistency, an important topic in this thesis is the management of
inconsistency, and we propose to do this by means of a declarative policy language. There are
several languages related to this approach; here we mention a few of them.

Active integrity constraints (AICs) [CGZ09,CT08a] and inconsistency management policies
(IMPs) [MPP+08] are approaches that repair data to make it conform with constraints on that
data. This would correspond to modifying contexts such that the overall system is consistent,
and to leaving bridge rules as they are. As we want to do the exact opposite, i.e., leave contexts
unmodified and identify problematic bridge rules, AIC and IMP are orthogonal to our work.

Two policy language formalisms that are related to what we want to do in this work are
the language IMPACT [SBD+00] which is a declarative formalism for actions in distributed
and heterogeneous multi-agent systems, and the policy description language PDL [CLN00]
which is used for resolving conflicts in a communication network. Compared to the language
we develop in this work, IMPACT and PDL have much simpler actions, but these actions may
have much more complex conditions. The declarative policy language we develop in this thesis
has comparatively simple rules and conditions, while individual actions are complex and suited
to the application domain. Furthermore user interaction is a core part of our language, while it
is not directly supported by IMPACT and PDL.

The approach we develop here is not as general as IMPACT and PDL, however this gives us
the advantage of making our approach simpler and easier to understand. Furthermore simplicity
potentially allows for a more efficient implementation of our approach.

Answer Set Programming with External Knowledge Sources Both MCSs and the HEX

formalism combine declarative reasoning with external sources of knowledge. We next point to
other formalisms in Answer Set Programming and in related areas which provide such capabil-
ities. For an overview article about that topic, see [EBDT+09].

The gringo tool [GST07, GKKS11] is a grounder for answer set programs which can using
LUA scripts to access external knowledge during grounding. External computations in gringo
operate ‘syntactically’ and cannot access information of the model building process, because
they are executed during grounding. Different from that, MCSs (resp., HEX programs) evaluate
context semantics (resp., external atoms) during the model building process and therefore can
use their external knowledge sources ‘semantically’.

The clasp software is a state-of-the-art ASP solver [GKNS07] which contains an ‘ASP
modulo theories’ (ASP-MT) interface for external reasoning interleaved with the ASP model
building process. This interface is, e.g., used by clingcon [GOS09] which combines ASP with
the constraint satisfaction solver GECODE [Gec08]. Compared to HEX external computations,
ASP-MT operates on ground programs and requires implementation of propagators within the
conflict-driven clause learning (CDCL) [Mit05] framework underlying clasp, while HEX exter-
nal computations operate on nonground programs and implementing an external atom in the
HEX framework does not require knowledge about the implementation of the HEX model build-
ing process. As for MCSs, both MCSs and ASP-MT combine declarative reasoning with other
types of reasoning (theories, resp., contexts), however these formalisms have very different
goals: ASP-MT tightly integrates everything in one place, while MCS aims at loosely integrat-
ing distributed knowledge sources.

5

1. INTRODUCTION

Therefore the HEX framework is more general than the kinds of external reasoning possible
with ASP-MT and in gringo. On the other hand, the current implementation of HEX (i.e., dlvhex)
does not use the state-of-the-art CDCL methodology for model building, which makes it slower
than clasp and gringo.3

Beyond the ASP community, satisfiability modulo theories (SMT) [BSST09] is an approach
for combining SAT solving and additional theories. This approach inspired ASP-MT and can
be regarded external reasoning with respect to SAT problems. There exists also an approach for
rewriting ASP to SMT with difference logic as external theory [Nie08].

1.3 Evolution of this Work

In this section we give an account on the process of gaining knowledge in the years 2009 to
2012, we summarize the most important work done during the creation of this thesis and give
references to relevant publications. As one would expect when doing scientific work, this history
contains some unexpected twists and turns, and we will here give an account of them.

In the beginning we classified inconsistency into two cases: inconsistency within a context,
caused by the same context, and inconsistency within a context or within bridge rules, caused
by interaction of contexts and bridge rules.

The first class of problems can be solved within the formalism of one context, therefore a
multitude of approaches for homogeneous systems (e.g., belief revision [AGM85], repair and
consistent query answering [BC03, Ber11], and information integration [LGI+05,HRO06]) can
be used to solve such problems. For that reason we decided to disregard the first class of prob-
lems, and made the following assumption: a context without bridge rule input is consistent, i.e.,
it contains no immanent inconsistencies or conflicts.

The second class of problems are inconsistencies that are always at least partially caused
by the exchange of knowledge via bridge rules, i.e., at least one bridge rule is involved in an
inconsistency of the second class. We decided to focus our work on this class of inconsistencies.

In the following, we developed theoretical notions that allow for repairing inconsistency
in a system, and equally important giving reasons for different inconsistencies and separating
multiple inconsistencies. Due to the importance of bridge rules for existence of inconsistency,
we created two characterizations for inconsistency, and both characterizations consist of sets of
bridge rules:

(i) diagnoses point out bridge rules that must be changed to restore consistency, while

(ii) explanations point out bridge rules that trigger inconsistency independently from other
bridge rules in the system.

We published preliminary versions of these two notions [EFSW09], and showed that a use-
ful duality relationship holds between them: both notions point out the same bridge rules as
responsible for inconsistency.

Soon it became apparent, that the initially proposed notions of inconsistency explanations
can be replaced by a formulation which is more informative and intuitive in practice. Moreover,
this new formulation not only preserves the original duality property, but makes it possible to
obtain the set of explanations (the new notion) in a MCS if we know just the set of diagnoses
in that MCS.4 Moreover, the converse, i.e., deriving diagnoses from explanations in the same
MCS, is also possible, although only in a limited form5 which nicely completes the picture of
the relationship between both notions.

3A CDCL-based implementation of HEX evaluation is subject of ongoing work but is out of scope of this thesis.
4This is shown in Theorem 1 on page 27.
5This is shown in Theorem 2 on page 28.

6

1.3. Evolution of this Work

Our first conference publication in the course of this thesis [EFSW10] introduces the notion
of diagnosis and the revised notion of inconsistency explanation and conducts a more compre-
hensive theoretical analysis of diagnoses and explanations: we describe simplified diagnosis and
explanation notions, analyze modularity properties and preference orderings over bridge rules,
provide computational complexity results for our notions and their subset-minimal refined no-
tions, and give a method for computing diagnoses by rewriting to HEX programs. In that work,
the main responsibility of the author of this thesis was computational complexity and the HEX

rewriting. During the complexity analysis, the author’s attempt to prove a wrong hardness re-
sult for explanations was a very insightful process, which yielded an interesting property of
explanations and a completeness result for a lower complexity class.6

After introducing diagnoses and explanations for inconsistency in MCSs, our work contin-
ued along different paths. The paths followed by the author of this thesis are: approximations
for cases where the system is partially hidden, and the realization of the theoretical results in a
software prototype, and implementation of a policy language for managing inconsistency.7

In typical application scenarios, not all system parts expose all their information to each
other, typical examples are credit card systems and authentication systems. For dealing with
such systems, we lifted the MCSs formalism from fully known contexts to partially known
contexts [SEF10]. In [EFS10, EFS11] we (i) describe the partially known MCS formalism,
(ii) lift the concepts of diagnoses and explanations to partially known MCSs, (iii) show how to
obtain approximations of diagnoses and explanations in such systems, and (iv) provide a method
for identifying the most informative queries we can pose to a partially known context such that
the information gained from the query answer will improve the precision of our approximation.

In parallel to the theoretical work on approximations, we created the prototype software
tool MCS-IE [BEFS10,MIE12a] which uses the HEX rewriting previously developed to actually
compute diagnoses and explanations for inconsistency in MCSs. MCS-IE is implemented as a
plugin to the dlvhex solver software [DHX12]; we also developed a web front end [MIE12b]
which received very positive feedback from the community during the JELIA 2010 systems
demonstration session.

An important insight from using and testing the MCS-IE system was that the dlvhex evalua-
tion at that time had scalability problems, and that these problems could be solved by a different
evaluation strategy. Therefore, at a research visit in Calabria, we started work on a novel theo-
retical framework for evaluating HEX programs that did not suffer from these scalability issues.
The resulting framework was implemented in a new version of dlvhex8 and published together
with empirical experiments on the performance of the result [EFI+11]. The paper showed a
significant efficiency improvement and was selected for presentation in the ‘Best Papers Sister
Conferences Track’ of IJCAI 2011.

The final result in this thesis is a combination of the work on inconsistency in MCSs and
on HEX: the Inconsistency Management Policy Language (IMPL) for managing inconsistency
in MCSs [EFIS11, EFIS12a, EFIS12b] with the goal as described in Section 1.1: IMPL uses
the analysis of inconsistencies in MCSs and the power of nonmonotonic reasoning in order to
deal with inconsistencies in MCSs in a semi-automated manner. In an IMPL policy, a system
designer can specify that certain inconsistencies shall be repaired automatically, while other
inconsistencies must be resolved with user interaction, or left untouched. The IMPL language is
inspired by the ACTHEX language which is an extension of HEX by actions. We describe how
IMPL can be implemented on top of ACTHEX (which can be implemented on top of HEX).

IMPL combines two lines of research that were followed during this thesis: it draws its
strengths from theoretical and practical advances in the analysis of inconsistencies in MCSs, as

6All complexity results are summarized in Table 3.1 on page 32.
7Other investigations which are out of scope of this thesis were conducted by Antonius Weinzierl, for exam-

ple a framework for preferences on diagnoses and inconsistency explanations, and several extensions of the MCS
formalism that directly or indirectly make use of these notions.

8Version 2.0.0 of dlvhex was released on March 11, 2012.

7

1. INTRODUCTION

well as from performance improvements achieved for the HEX formalism.

1.4 Results and Thesis Outline

We now give an overview of the structure of this thesis and point out the most important results
of each section.

Section 2 introduces notation and the formalisms we use throughout this thesis. In particu-
lar we describe Answer Set Programming (ASP), HEX programs, Multi-Context Systems
(MCSs), and some complexity theoretical notions. This section also contains a formal de-
scription of our running example from the medical domain, which will be used throughout
this work. (We informally sketched the example on page 1.)

Section 3 describes our formal framework for analyzing inconsistency in MCSs, and shows a
comprehensive analysis of these notions. Major results in this section are the notions of
diagnosis and inconsistency explanation and the theoretical analysis of their properties, in
particular duality, conversions between the notions, and analysis of their computational
complexity. Furthermore we give a possibility for performing inconsistency analysis un-
der incomplete information, i.e., if a part of the MCS at hand is not fully known.

Section 4 shows how notions of diagnoses and explanations can be computed by rewriting the
problems to computational logic, in particular we use HEX programs as logical formalism.
Major results are the rewriting of an MCS to a HEX program for computing diagnoses,
the implementation of the rewriting in a software prototype, including a web front end to
the software, and results of empirical experiments with that software prototype.

Section 5 explains the drawbacks of the previous HEX evaluation framework and introduces a
new evaluation method for HEX programs that does not have these drawbacks. We give
formal proofs of the soundness and completeness of this new framework, and describe
benchmark experiments done with a prototype implementation of this framework. Major
results are the novel theoretical evaluation framework for HEX programs, the implementa-
tion within the dlvhex software, and an account of the empirical experiments we conducted
to verify the advantage of this new framework.

Section 6 introduces the policy language IMPL for managing inconsistency in MCSs. IMPL

achieves central goals we described in Section 1.1, it uses diagnoses and explanations
introduced in Section 3 to manage inconsistency, it is inspired by ACTHEX and can be
realized using ACTHEX. Major contributions of this section are the definition of syntax
and semantics of IMPL, a rewriting from IMPL to ACTHEX which can be used for realizing
IMPL, and methodologies for applying IMPL in practical application scenarios.

Section 7 concludes the thesis with a summary and an outlook on future research.

8

2 Preliminaries

In this section we introduce formal notions that are used in multiple parts of this thesis.
We first introduce heterogeneous nonmonotonic multi-context systems (MCSs), which are

the foundation for most work done in this thesis. At that point we also give a formal account of
our running example in the medical domain.

We furthermore describe the HEX formalism which is an extension of Answer Set Pro-
grams [GL91]. Answer Set Programming (ASP) is a foundational formalism for knowledge
representation and reasoning, HEX programs additionally are capable of using external compu-
tations as knowledge. We use HEX programs for implementing parts of the software described
in this thesis, and HEX is related to the IMPL policy language described in Chapter 6.

Finally we introduce some relevant notions of formal complexity theory.
As we will often encounter sets that contain logic programming rules, we will separate

elements in such sets using ‘;’. For instance we write ‘{d; a ← b, c; e ← f, not c, not d}’ to
denote the program consisting of fact ‘d’, and rules ‘a← b, c’ and ‘e← f, not c, not d’.

Given a family of sets A and a set B, we denote by A|B the projection of A to B, formally
A|B = {X ∩B | X ∈ A}.

2.1 Multi-Context Systems

A heterogeneous nonmonotonic multi-context system (MCS) [BE07] is a formalism for repre-
senting knowledge based systems which consist of interlinked smaller knowledge based sys-
tems. The individual smaller systems are called contexts, each composed of a knowledge base
with an underlying abstract logic, while the information flow between contexts is controlled and
described by a set of bridge rules.

Contexts and Logics. For each context, we use a an abstract Logic, which is a tool that pro-
vides a uniform and minimalistic interface to various KR formalisms.

Definition 1 (Logic). A logic L = (KBL,BSL,ACCL) consists, in an abstract view, of the
following components:

• KBL is the set of well-formed knowledge bases of L. We assume each element of KBL

is a set (of “formulas”).

• BSL is the set of possible belief sets, where the elements of a belief set are statements
that possibly hold given a knowledge base.

• ACCL : KBL → 2BSL is a function describing the “semantics” of the logic by assign-
ing to each knowledge base a set of acceptable belief sets.

This concept of a logic captures many monotonic and nonmonotonic logics, e.g., classical
logic, description logics, modal, default, and autoepistemic logics, circumscription, and logic
programs under the answer set semantics.

9

2. PRELIMINARIES

The following examples shall illustrate how this abstraction captures some well-known KR
formalisms. They all introduce logics we will use to formalize our running example.

Example 1. To capture logical relational databases with inclusion constraints and equality
constraints over a signature Σ = Σr ∪Σc ∪Σv of relation, constant, and variable symbols Σr,
Σc, and Σv respectively. A formula p(t1, . . . , tk) with p ∈ Σr, t1, . . . , tk ∈ Σc ∪Σv is an atom;
it is ground if t1, . . . , tk ∈ Σc, nonground otherwise. A literal is either an atom a or its negation
¬a. We have that

• KB = KBp ∪KBf ∪KBu contains

– the set KBp of ground literals over Σ,

– the set KBf of inclusion constraints (these can express foreign key constraints) of
the form a1∧· · ·∧ak → ∃X1, . . . , Xm a where a, a1, . . . , ak are nonground literals
over Σ,X1, . . . , Xm ∈ Σv are variables, and all variables in a appear in a1, . . . , ak
or in X1, . . . , Xm. Furthermore we have

– the set KBu of equality constraints (these can express unique key constraints) of the
form a1 ∧ · · · ∧ ak → X = Y where a1, . . . , ak are nonground literals over Σ, and
X,Y ∈ Σv are variables which appear in a1, . . . , ak.

• BS is the collection of deductively closed sets of literals over Σ; and

• ACC(kb) returns for each set kb ∈ KB

– a singleton set containing the set Λ of facts that are consequences of kb under the
closed world assumption [Rei78], i.e., ACC(kb) = {Λ} where Λ = CWA(kb);

– the empty set ∅ if some constraint is not satisfied by the ground literals in kb.

Note that we often omit negative consequences of a knowledge base in the following. The re-
sulting logic over Σ then is LdbΣ = (KB,BS,ACC).

Our running example contains two contexts Cdb and Clab that employ this logic. We omit
the variable signature and assume that variables start with capital letters. Cdb uses signa-
ture Σdb = Σdb,p ∪Σdb,c with Σdb,p⊇{person, allergy} and Σdb,c⊇{sue, ab1 , 02/03/1985 ,
03/02/1985}. Clab uses signature Σlab = Σlab,p ∪Σlab,c with Σlab,p⊇{customer , test} and
Σlab,c⊇{sue, 02/03/1985 , 03/02/1985 , xray , bloodtest , pneum, lmark , cmark}. The corres-
ponding logics are LdbΣdb

and LdbΣlab
. Knowledge bases for these contexts are as follows:

kbdb = {person(sue, 02/03/1985); allergy(sue, ab1)},
kb lab = {customer(sue, 02/03/1985);

test(sue, xray , pneum);¬test(sue, bloodtest , cmark);
test(ID, X, Y)→ ∃D : customer(ID, D);
customer(ID, X) ∧ customer(ID, Y)→ X = Y }.

Knowledge base kbdb provides the information that the patient identified as ‘Sue’ is allergic to
a certain antibiotic ab1 , while kb lab tells us that the blood marker cmark was not present in a
blood test, and that pneumonia was detected in an X-ray examination. Both contexts also store
Sue’s birth date (in different relations). Constraints in kb lab enforce that each test result must
be linked to a customer record, and that each customer has a unique birth date.

The corresponding accepted belief sets (we omit negated beliefs) are

ACC(kbdb) =
{
{person(sue, 02/03/1985), allergy(sue, ab1)}

}
and

ACC(kb lab) =
{
{customer(sue, 02/03/1985), test(sue, xray , pneum)}

}
.

10

2.1. Multi-Context Systems

Example 2. For ontologies with syntax and semantics of the description logicALC [BCM+03]
we use the abstract logic LA. It is composed of

• KB, being the collection of sets of ALC axioms. Basic entities of ALC are concepts,
roles, and individuals. An atomic concept is an ALC concept, and starting from (atomic)
concepts C, D and roles R, we can inductively build ALC concepts C uD, C tD, ¬C,
∀R.C, and ∃R.C. ALC axioms are formulas of the form C v D, called terminological
(T-Box) axioms, and formulas of the form a:C, resp. (a, b):R (given individual names a
and b), called assertional (A-Box) axioms. In bridge rules where we have multiple ‘:’
symbols in one expression, we write brackets also around individual symbols, such that
a:C is written as (a):C.

• BS, being the set of possibly believed assertions, i.e., BS is the powerset of the set of
A-Box axioms, and

• ACC, being a mapping from knowledge bases to the set of assertions entailed by the
knowledge base. As ALC amounts to a fragment of first-order logic, the semantics of
an ALC knowledge base kb can be given by a rewriting π to first-order logic. For our
purpose, ACC(kb) = {S} where S is the set of classically entailed atomic assertions of
the first-order rewriting π(kb) of kb.

Note that we will show only positive A-Box axioms in belief sets.
For a running example we use an ontology about diseases, given by context Conto using the

above logic LA. Its knowledge base, kbonto , is as follows:

kbonto = {Pneum v BacterialDisease;
∃hasDisease.Pneum u ∃hasMarker .APMark v ∃hasDisease.AtypPneum;
mmark :APMark ; cmark :APMark}

This knowledge base consists of two axioms, where the first states that pneumonia is a bacterial
disease1 and the second states that pneumonia, if it occurs with an associated class of blood-
markers, implies atypical pneumonia (a severe form of pneumonia treatable only by certain
antibiotics). Furthermore the knowledge base contains assertions about two blood markers
which indicate atypical pneumonia. From kbonto , only assertions already within the knowledge
base follow, therefore

ACC(kbonto) =
{
{mmark :APMark , cmark :APMark}

}
.

Adding the assertion that there is a disease d classified as pneumonia, results in the conclusion
that d also is a bacterial disease, formally

ACC
(
kbonto ∪ {d:Pneum}

)
={

{d:Pneum, d:BacterialDisease,mmark :APMark , cmark :APMark}
}
.

Example 3. For extended disjunctive logic programs under answer set semantics over a non-
ground signature Σ [GL91] (see also Section 2.2),

• KB is the set of normal disjunctive logic programs over Σ, i.e., each kb ∈ KB is a set of
rules of the form

a1 ∨ . . . ∨ an ← b1, . . . , bi, not bi+1, . . . , not bm,

where all ai, bj , are atoms over Σ, and n+m > 0.
1For the purpose of this thesis, we assume that pneumonia can only be caused by bacteria.

11

2. PRELIMINARIES

• BS is the set of Herbrand interpretations over Σ, i.e, each bs ∈ BS is a set of ground
atoms from Σ, and

• ACC(kb) returns the set of kb’s answer sets: for P ∈ KB and T ∈ BS let P T =
{r ∈ grnd(P) | T models the body of r} be the FLP-reduct of P wrt. T , where grnd(P)
returns the ground version of all rules in P . Then bs ∈ BS is an answer set, i.e., bs ∈
ACC(kb), iff bs is the minimal model of kbbs .

The resulting abstract logic for answer set programs finally is LaspΣ = (KB,BS,ACC). We
employ this logic for the decision support system context, Cdss , where the signature Σdss satis-
fies Σdss ⊇ {give,need , allow , sue,nothing , ab, ab1 , ab2} and we assume that variables start
with capital letters.

The knowledge base for Cdss is:

kbdss = {give(ID, ab1) ∨ give(ID, ab2)← need(ID, ab);
give(ID, ab1)← need(ID, ab1);
¬give(ID, ab1)← not allow(ID, ab1),need(ID,MED)}.

If antibiotics are required, Cdss suggests a treatment with one of two possible antibiotics, an-
tibiotic ab1 is explicitly ruled out if there is no information that indicates to allow giving this
antibiotic to the patient. Without further information, kbdss thus concludes that nothing is re-
quired:

ACC(kbdss) =
{
∅
}
.

If need(sue, ab) is added, however, kbdss results in one answer sets:

ACC
(
kbdss ∪ {need(sue, ab)←}

)
=
{
{¬give(ID, ab1), give(ID, ab2),need(sue, ab)}

}
We now have seen several examples for abstract ‘Logics’ in the sense of MCSs, and how we

can use Logics to represent various knowledge representation formalisms.

Bridge Rules. Bridge rules are the second important ingredient of MCSs. A bridge rule can
add information to a context, depending on the belief sets which are accepted at other contexts.
Let L = (L1, . . . , Ln) be a sequence of logics with Li as above. An Lk-bridge rule r over L is
of the form

(k : s) ← (c1 : p1), . . . , (cj : pj), not (cj+1 : pj+1), . . . , not (cm : pm). (2.1)

where 1 ≤ ci ≤ n, pi is an element of some belief set of Lci , k refers to the context receiving
information s. We denote by hb (r) the belief formula s in the head of r and by hc (r) the
context k where r belongs to. The literals in the body of r are referred to by body(r), body+(r),
body−(r) which denotes the set {(c1 : p1), . . . , (cm : pm)}, {(c1 : p1), . . . , (cj : pj)}, {(cj+1 :
pj+1), . . . , (cm : pm)}, respectively. Furthermore, by cf (r) we denote the condition-free bridge
rule stemming from r by removing all elements in its body, i.e., cf (r) is ‘(k : s)←’ and for any
set of bridge rules R, we let cf (R) =

⋃
r∈R cf (r).

Multi-Context System. We now have introduced all components of multi-context systems
and can define them formally.

Definition 2 (Multi-Context System). A multi-context systemM = (C1, . . . , Cn) is a collection
of contexts Ci = (Li, kbi, br i), 1 ≤ i ≤ n, where Li = (KBi,BSi,ACCi) is a logic, kbi ∈
KBi a knowledge base, and br i is a set of Li-bridge rules over (L1, . . . , Ln). Furthermore,
for each H ⊆ {hb (r) | r ∈ br i} it holds that kbi ∪H ∈ KBLi , i.e., bridge rule heads can be
added to knowledge bases.

12

2.1. Multi-Context Systems

Patient DB
Cdb

Decision Support System

Cdss

Disease Ontology
Conto

Laboratory
Clab

r3r2
r4

r5

r6

r1

Figure 2.1: Knowledge bases and bridge rules of the Medical Example MCS M .

By brM =
⋃n
i=1 br i and c(M) = {C1, . . . , Cn} we denote the set of all bridge rules, resp.

the set of all contexts of M . We write br i(M) to denote the set of bridge rules of context i of
M , i.e., br i(M) = {r ∈ brM | hc (r) = i}.

In the following we introduce the Medical Example which was already sketched in the
introduction. This example it is an extended version of the running examples in [EFSW10]
and [EFIS11] and will be the main running example in this thesis. For ease of reading we use
the subscripts db, lab, onto, dss to denote, respectively, the patient database, the laboratory
database, the disease ontology, and the decision support system, in place of the integer sub-
scripts.

Example 4. Consider a health care decision support system that contains the following con-
texts: a patient history database (Cdb), a blood and X-Ray analysis database (Clab), a disease
ontology (Conto), and an expert system (Cdss) which suggests proper treatments. The corre-
sponding abstract logics and knowledge bases are those in Example 1, 2, and 3. A layout of the
information exchange in this MCS is depicted in Figure 2.1 where contexts are shown as ellipses
and bridge rules as arrows. We next give schemas for bridge rules, where ID, BIRTHDAY, and
MARKER are schema variables.

r1: (lab : customer(ID,BIRTHDAY))← (db : person(ID,BIRTHDAY)).

r2: (onto : (ID):∃hasDisease.Pneum)← (lab : test(ID, xray , pneum)).

r3: (onto : (ID,MARKER):hasMarker)← (lab : test(ID, bloodtest ,MARKER)).

r4: (dss : need(ID, ab))← (onto : (ID):∃hasDisease.BacterialDisease).

r5: (dss : need(ID, ab1))← (onto : (ID):∃hasDisease.AtypPneum).

r6: (dss : allow(ID, ab1))←not (db : allergy(ID, ab1).

Rule r1 links the patient records with the lab database (so patients do not need to enter their
data twice). Rules r2 and r3 provide test results from the lab to the ontology. Rules r4 and
r5 link disease information with medication requirements, and r6 associates acceptance of the
particular antibiotic ‘ab1 ’ with a negative allergy check on the patient database.

Intuitively our example MCS should suggest to give antibiotic ab2 to Sue, because she
needs an antibiotic due to her having pneumonia, however she is allergic to ab1 , so ab2 is the
only treatment option within the knowledge represented in the system.

We next formally define semantics of MCSs.

Semantics. The semantics of MCSs is defined in terms of accepted belief states.
A belief state of an MCS M = (C1, . . . , Cn) is a sequence S = (S1, . . . , Sn) of belief sets

Si ∈ BSi, 1 ≤ i ≤ n. A bridge rule r of form (2.1) is applicable in S, denoted S |= r, iff for
all (c : p) ∈ body+(r) it holds that p ∈ Sc, and for all (c : p) ∈ body−(r) it holds that p /∈ Sc.
For a set R of bridge rules, app(R,S) = {r ∈ R | S |= r} denotes applicable bridge rules with
respect to S.

13

2. PRELIMINARIES

Equilibrium semantics selects certain belief states of an MCS M as acceptable. Intuitively,
an equilibrium is a belief state S where each context Ci takes the heads of all bridge rules that
are applicable in S into account, and accepts Si.

Definition 3. A belief state S = (S1, . . . , Sn) of M is an equilibrium iff for all 1 ≤ i ≤ n,
Si ∈ ACCi(kbi ∪ {hb (r) | r ∈ app(br i, S)}).

Given a MCS M , we denote by EQ(M) the set of equilibria of M . For reasons of bet-
ter readability, and as the semantics of MCSs is defined on ground systems, we now repeat
the whole running example MCS (contexts and bridge rules) and we ground bridge rules such
that they keep their names. (This is possible, as every bridge rule creates exactly one ground
instance, and other ground instances are irrelevant for the purposes of this work).

Example 5 (Medical Example). Our running example MCS is formally defined as M1 =
(Cdb , Clab , Conto , Cdss), where Cdb and Clab use logics Ldb

Σdb
and Ldb

Σlab
, Conto uses logic LA,

and Cdss uses logic Lasp
Σdss

. The knowledge bases are as follows:

kbdb = {person(sue, 02/03/1985), allergy(sue, ab1)},
kb lab = {customer(sue, 02/03/1985);

test(sue, xray , pneum);¬test(sue, bloodtest , cmark);
test(ID, X, Y)→ ∃D : customer(ID, D);
customer(ID, X) ∧ customer(ID, Y)→ X = Y },

kbonto = {Pneum v BacterialDisease;
∃hasDisease.Pneum u ∃hasMarker .APMark v ∃hasDisease.AtypPneum;
(mmark):APMark , (cmark):APMark}, and

kbdss = {give(ID, ab1) ∨ give(ID, ab2)← need(ID, ab);
give(ID, ab1)← need(ID, ab1);
¬give(ID, ab1)← not allow(ID, ab1),need(ID,MED)}.

M1 has the following set of ground bridge rules:

r1: (lab : customer(sue, 02/03/1985))← (db : person(sue, 02/03/1985)).

r2: (onto : (sue):∃hasDisease.Pneum)← (lab : test(sue, xray , pneum)).

r3: (onto : (sue, cmark):hasMarker)← (lab : test(sue, bloodtest , cmark)).

r4: (dss : need(sue, ab))← (onto : (sue):∃hasDisease.BacterialDisease).

r5: (dss : need(sue, ab1))← (onto : (sue):∃hasDisease.AtypPneum).

r6: (dss : allow(sue, ab1))←not (db : allergy(sue, ab1).

Applying equilibrium semantics yields the following result.

Example 6. The Medical Example M1 has a single equilibrium S = (Sdb , Slab , Sonto , Sdss),
where

Sdb = {person(sue, 02/03/1985), allergy(sue, ab1)},
Slab = {customer(sue, 02/03/1985), test(sue, xray , pneum)},
Sonto = {(mmark):APMark , (cmark):APMark ,

(sue):∃hasDisease.Pneum, (sue):∃hasDisease.BacterialDisease}, and
Sdss = {need(sue, ab),¬give(ID, ab1), give(ID, ab2)}.

Rules r1, r2, and r4 are applicable in S. Note that ¬give(ID, ab1) is a belief accepted by Cdss ,
because allow(ID, ab1) is not added to kbdss , which is because bridge rule r6 is not acceptable,
which is because Sue has an allergy to ab1 .

Background information about MCSs, extensions of the formalism, and related work, can
be found in [BEF11]. For a comparison of MCSs with other formalisms, see [EBDT+09].

14

2.2. HEX: Answer Set Programs with External Computations

2.2 HEX: Answer Set Programs with External Computations

Answer Set Programming (ASP), based on Answer Set Semantics [GL91], is a widely used
knowledge representation and reasoning formalism. ASP uses logic programming rules in the
style of Prolog, however semantics of ASP is defined in a purely declarative way (unlike Prolog,
whose semantics is defined in procedural terms).

In this thesis we mainly use the HEX formalism, which is a conservative extension of
the original ASP formalism. HEX was introduced in [EIST05] and described in more detail
in [Sch06]. HEX adds higher order features and external computations to ASP.

As this thesis is mainly concerned with HEX, we directly introduce HEX, and then show
which fragment of HEX corresponds to the original definition of ASP.

Syntax Let C, X , and G be mutually disjoint sets whose elements are called constant names,
variable names, and external predicate names, respectively. Unless explicitly specified, ele-
ments from X (resp., C) are denoted with first letter in upper case (resp., lower case), while
elements from G are prefixed with “ & ”. Note that constant names serve both as individual and
predicate names.

Elements from C∪X are called terms. An atom is a tuple (Y0, Y1, . . . , Yn), where Y0, . . . , Yn
are terms; n ≥ 0 is the arity of the atom. Intuitively, Y0 is the predicate name, and we thus also
use the more familiar notation Y0(Y1, . . . , Yn). The atom is ordinary (higher-order), if Y0 is a
constant (variable).

An external atom is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm), (2.2)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input and output lists, respec-
tively), and &g ∈ G is an external predicate name. We assume that &g has fixed lengths
in(&g) = n and out(&g) = m for input and output lists, respectively.

Intuitively, an external atom provides a way for deciding the truth value of an output tuple
depending on the input tuple and the interpretation.

Example 7. (a, b, c), a(b, c), node(X), and D(a, b) are atoms. The first two are the same, the
first three are ordinary, the last one is higher-order.

The external atom &reach[edge, a](X) may be devised for computing the nodes which are
reachable in the graph edge from the node a. We have in(&reach) = 2 and out(&reach) = 1.
Intuitively, &reach[edge, a](X) will be true for all ground substitutions X 7→ b such that b is a
node in the graph given by edge, and there is a path from a to b in that graph.

A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn, not βn+1, . . . , not βm, (2.3)

where m, k ≥ 0, α1, . . . , αk are atoms, and β1, . . . , βm are either atoms or external atoms. We
define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪ B−(r), where B+(r) = {β1, . . . , βn} and
B−(r) = {βn+1, . . . , βm}. If H(r) = ∅ and B(r) 6= ∅, then r is a constraint, if B(r) = ∅
and H(r) 6= ∅, then r is a fact, r is ordinary if it contains only ordinary atoms, and r is
nondisjunctive if H(r) contains no more than one atom.

A HEX-program is a finite set P of rules. A program is ordinary (resp., nondisjunctive) if all
rules are ordinary (resp., nondisjunctive). We denote by const(P) the set of constant symbols
in HEX program P .

Example 8 (Swimming Example). Imagine Alice wants to go for a swim in Vienna. She knows
two indoor pools called Margarethenbad and Amalienbad (denoted mpool and apool, respec-
tively), and she knows that outdoor swimming is possible in the river Danube at two locations

15

2. PRELIMINARIES

called Gänsehäufel and Neue Donau (denoted gdanube and ndanube, respectively).2 She looks
up on the web whether she needs to pay an entrance fee, and what additional equipment she will
need. Finally she has the constraint that she does not want to pay for swimming.

The following HEX program Pswim = PEDB
swim ∪P IDB

swim represents Alice’s reasoning problem.
The extensional part PEDB

swim contains a set of facts about possible swimming locations (note that
in and out are short for indoor and outdoor , respectively):

PEDB
swim = {location(in,mpool), location(in, apool),

location(out , gdanube), location(out , ndanube)}.

The intensional part P IDB
swim represents the web research of Alice in an external computation, i.e.,

an external atom of the form &rq〈choice〉〈resource〉. P IDB
swim is as follows.

r1: swim(in) ∨ swim(out)← .
r2: need(inout , C)← &rq [swim](C).
r3: goto(X) ∨ ngoto(X)← swim(P), location(P,X).
r4: go ← goto(X).
r5: need(loc, C)← &rq [goto](C).
c6: ← goto(X), goto(Y), X 6= Y.
c7: ← not go.
c8: ← need(X,money).

Assume Alice finds out that indoor pools general cost money, and that you also have to pay at
Gänsehäufel, but not at Neue Donau. Furthermore Alice reads some reviews about swimming
locations and finds out that she will need her Yoga mat for Neue Donau because the ground is
so hard, and she will need goggles for Amalienbad because they use so much chlorine.

We next explain the intuition behind the rules in Pswim : r1 chooses indoor vs. outdoor swim-
ming locations, and r2 collects requirements that are caused by this choice. Rule r3 chooses one
of the indoor vs. outdoor locations, depending on the choice in r1, and r5 collects requirements
caused by this choice. By r4 and c7 we ensure that some location is chosen, and by c6 that only
a single location is chosen. Finally c8 rules out all choices that require money.

The external predicate &rq has in(&rq) = out(&rq) = 1; intuitively &rq [α](β) is true if a
resource β is required when swimming in a place in the extension of predicate α. For example,
&rq [swim](money) is true if swim(in) is true, because indoor swimming pool charge money
for swimming. Note that this only gives an intuitive account of the semantics of &rq which will
formally be defined in the following examples.

Semantics The semantics of HEX-programs [EIST06, Sch06] generalizes the answer-set se-
mantics [GL91]. Let P be a HEX-program. Then the Herbrand base of P , denoted HBP , is
the set of all possible ground versions of atoms and external atoms occurring in P obtained
by replacing variables with constants from C. The grounding of a rule r, grnd(r), is defined
accordingly, and the grounding of program P is given by grnd(P) =

⋃
r∈P grnd(r). Unless

specified otherwise, X and G are implicitly given by P . Different from ‘usual’ ASP evaluation,
the set of constants C used for grounding a program is only partially given by the program it-
self; in HEX, external computations may introduce new constants that are relevant for semantics
of the program. Section 5.3.1 identifies fragments of HEX which can be evaluated using the
‘usual’ grounding with constants from P , while Section 5.4 deals with the more general case
and shows how to decompose a program and interleave semantic evaluation and grounding in
order to evaluate programs where external atoms invent new constants.

2To keep the example simple, we assume Alice does not know about other possibilities to go swimming in
Vienna.

16

2.2. HEX: Answer Set Programs with External Computations

Example 9 (ctd). In Pswim the external atom &rq can introduce constants yogamat and goggles
which are not contained in Pswim , but they are relevant for computing answer sets of Pswim .

An interpretation relative to P is any subset I ⊆ HBP containing only atoms. We say that I
is a model of atom a ∈ HBP , denoted I |= a, if a ∈ I .

With every external predicate name &g ∈ G we associate an (n+m+1)-ary Boolean func-
tion f&g assigning each tuple (I, y1 . . . , yn, x1, . . . , xm) either 0 or 1, where n = in(&g),
m = out(&g), I ⊆ HBP , and xi, yj ∈ C. We say that I ⊆ HBP is a model of a ground
external atom a = &g [y1, . . . , yn](x1, . . . , xm), denoted I |= a, if and only if f&g(I, y1 . . ., yn,
x1, . . . , xm) = 1.

Note that this definition of external atom semantics is very general, indeed an external atom
may depend on every part of the interpretation. Therefore we will later (Section 5) formally
restrict external computations such that they depend only on the extension of those predicates in
I which are given in the input list. All examples and encodings in this thesis obey this restriction.

Example 10 (ctd.). The external predicate &rq in Pswim represents Alice’s knowledge about
swimming locations as follows: for any interpretation I and some predicate (i.e., constant) α,

&rq [α](money) iff f&rq(I, α,money) = 1 iff α(in) ∈ I or α(gdanube) ∈ I,
&rq [α](yogamat) iff f&rq(I, α, yogamat) = 1 iff α(ndanube) ∈ I , and
&rq [α](goggles) iff f&rq(I, α, goggles) = 1 iff α(apool) ∈ I.

Due to this definition of f&rq , it holds e.g. that {swim(in)} |= &rq [swim](money). This
matches the intuition about &rq indicated in the previous example.

Let r be a ground rule. We define

(i) I |= H(r) iff there is some a ∈ H(r) such that I |= a,

(ii) I |=B(r) iff I |= a for all a ∈ B+(r) and I 6|= a for all a ∈ B−(r), and

(iii) I |= r iff I |=H(r) whenever I |=B(r).

We say that I is a model of a HEX-program P , denoted I |= P , iff I |= r for all r ∈ grnd(P).
We call P satisfiable, if it has some model.

Given a HEX-program P , the FLP-reduct of P with respect to I ⊆ HBP , denoted fP I , is
the set of all r ∈ grnd(P) such that I |= B(r). Then I ⊆ HBP is an answer set of P iff I is a
minimal model of fP I .

Example 11 (ctd.). The HEX program Pswim with external semantics as given in the previous
example has a single answer set

I = {swim(out), goto(ndanube),ngoto(gdanube), go,need(loc, yogamat)}.

(Here, and in following examples, we omit PEDB
swim from all interpretations and answer sets.)

Under I , the external atom &rq [goto](yogamat) is true, all others (e.g., &rq [swim](money),
&rq [goto](money), &rq [swim](yogamat), . . .) are false. Intuitively, answer set I tells Alice to
take her Yoga mat and go for a swim to Neue Donau.

HEX programs are a conservative extension of disjunctive (resp., normal) logic programs
under the answer set semantics [EIST05]: answer sets of ordinary nondisjunctive HEX pro-
grams coincide with stable models of logic programs as originally proposed by Gelfond and
Lifschitz [GL88], and answer sets of ordinary HEX programs coincide with stable models of
disjunctive logic programs [Prz91, GL91].

17

2. PRELIMINARIES

2.2.1 Restrictions

To make reasoning tasks on HEX programs decidable (or more efficiently computable), we here
use the following restrictions. We informally introduce them here as they are relevant for all
HEX programs in this thesis. A formal account and discussion of these restrictions is given in
Chapter 5.

Rule safety. This is a restriction well-known in logic programming, and it is required to ensure
finite grounding of a nonground program. A rule is safe if all its variables are safe, and a variable
is safe if it is contained in a positive body literal. Formally a rule r is safe iff variables in
H(r) ∪B−(r) are a subset of variables in B+(r).

Domain-expansion safety. In an ordinary logic program P , we usually assume that the set of
constants C is implicitly given by P . In a HEX program, external atoms may invent new constant
values in their output tuples. We therefore must relax this to ‘C is countable and partially given
by P ’, as shown by the following example.

Example 12. The Swimming Example does not specify all necessary constants in Pswim : the
atom need(loc, yogamat) is part of answer set I , however constant yogamat /∈ const(Pswim).
Grounding Pswim with const(Pswim) is insufficient, as such a grounding would not generate the
rule

need(loc, yogamat)← &rq [goto](yogamat),

which means that I |= &rq [goto](yogamat); however there is no nonground rule corresponding
to rule r5 which should fire if this external atom is true in I .

Therefore grounding P with const(P) can lead to incorrect results. Hence we want to
obtain new constants during evaluation of external atoms, and we must use these constants to
evaluate the remainder of a given HEX program. However, to ensure decidability, this process
of obtaining new constants must always terminate.

Hence, we require programs to be domain-expansion safe [EIST06]: there must not be a
cyclic dependency between rules and external atoms such that an input predicate of an external
atom depends on a variable output of that same external atom, if the variable is not guarded
by a domain predicate. Domain expansion safety must be kept in mind when developing HEX

programs, therefore we introduce it already here. We will formally define and use this notion in
Chapter 5.

Extensional Semantics for External Atoms. For efficiency reasons it is useful to restrict
external atoms such that their semantics depends only on extensions of predicates given in the
input tuple [EIST06]. This restriction is relevant for all chapters, the formal definition becomes
relevant only in Chapter 5 where we will defined and discuss it in detail.

2.3 Computational Complexity

We recall the concept of a complexity class, membership and hardness properties for problems
in such classes, and then recall complexity classes present in typical monotonic and nonmono-
tonic KR formalisms. For further background and more examples on computational complexity
see [Pap94].

18

2.3. Computational Complexity

Complexity Classes. A complexity class measures resources needed to solve a computational
problem, where resources can be time and/or memory usage.

The computational problems we will deal with are called decision problems and they can
abstractly be described as membership of words in a language as follows. Given an alphabet Σ
of symbols, and Σ? the set of all expressions that can be formed using Σ, we call a subset of Σ?

a language L ⊆ Σ?, and an element w ∈ Σ? a word. Then the check whether w is an element
of L is equivalent to a concrete decision problems we can encounter in practice.

Complexity classes are typically characterized using Turing machines, with a bound on the
number of steps of the machine, or a bound on the number of memory cells on the tape that
was used by the machine. For example P is the class of problems decidable by a deterministic
Turing machine in a polynomial number of steps.

Membership, Hardness, and Completeness. A decision problem is member of some com-
plexity class, only if there is an algorithm that solves the problem within the resource bounds
of the class. In complexity classes that are closed under polynomial-time reductions, a problem
is member of some class only if it is possible to create a polynomial-time reduction from the
problem to a problem in that class.

A problem is hard for some class only if all problems in the class can be reduced to an
instance of the problem, using a polynomial-time reduction Hardness of a problem intuitively
means that no other problem in that class requires more resources, and that every problem in
that class can be solved by reducing it to the hard problem.

A problem is complete for some class C, if it is both member of class C and hard for class
C. Complete problems can solve every problem in their complexity class modulo reductions,
and every problem in their class can be solved by reducing it to a complete problem.

For our purposes we use polynomial-time reductions, which means that a reduction must
be in the class P. (Without that restriction the reduction could solve the problem and thereby
‘hide’ complexity of the problem in the reduction.)

A complexity class C is closed under conjunctions if and only if the following holds: given
a problem L in C, it holds that the problem Ln (the n-fold Cartesian product of L, where
I = (I1, . . . , In) is a ‘yes’ instance of Ln iff every instances Ij , 1 ≤ j ≤ n is a ‘yes’ instances
of L) is also a problem in C.

A decision problemL ⊆ Σ?×Σ? is polynomially balanced, if some polynomial p exists such
that |I ′| ≤ p(|I|) for all (I, I ′) ∈ L. Moreover, L is a polynomial projection of L′ ⊆ Σ?×Σ? if
L = {I | there exists an I ′ such that (I, I ′) ∈ L′} and L′ is polynomially balanced. (Intuitively,
I ′ is a witness of polynomial size for I .) Given a complexity class C, let π(C) contain all
problems which are a polynomial projection of a problem L′ in C. Then a complexity class
C is closed under projection if and only if π(C) ⊆ C. For example, classes with an ‘outer
existential quantifier’ such as NP, ΣP

i are closed under projection, while P or classes with an
‘outer universal quantifier’ such as coNP, ΠP

i are not (under common complexity hypotheses).

Typical Complexity Classes. P, EXPTIME, and PSPACE are the classes of problems
that can be decided using a deterministic Turing machine in polynomial time, exponential time,
and polynomial space, respectively. P is considered to be the class of problems that are ef-
ficiently solvable, also called tractable. Typical examples for P problems are evaluation of
Boolean circuits (circuit value problem), linear programming (in continuous domains), and sat-
isfiability of a set of Horn clauses (Horn-SAT). EXPTIME and PSPACE are classes en-
countered in description logics, in fact concept satisfiability in the description logic ALC with
a TBox (see our running example) is complete for EXPTIME. Under common assumptions,
the class P is not closed under projection, while EXPTIME and PSPACE are. All three
classes are closed under conjunction.

19

2. PRELIMINARIES

NP (resp., coNP) is the class of problems that can be decided on a nondeterministic Turing
machine in polynomial time, where one (resp., all) execution paths accept. Problems complete
for NP are deciding whether a Boolean formula without quantifiers is satisfiable (the SAT
problem), and deciding whether an ordinary ground Answer Set Program has an answer set.
Conversely, the problem whether a SAT instance is unsatisfiable is complete for coNP. Both
NP and coNP are closed under conjunction, however only NP is closed under projection,
while coNP is not.

The polynomial hierarchy is a hierarchy of complexity classes, defined recursively as fol-
lows:

ΣP
0 = ΠP

0 = P,

ΣP
i = NP with a ΣP

i−1 oracle, and

ΠP
i = coNP with a ΣP

i−1 oracle.

Note that ΣP
1 = NP and ΠP

1 = coNP.
A typical knowledge representation task with ΣP

2 complexity is the check whether a ground
disjunctive logic program has an answer set, or the check whether an atom is part of some
answer set (i.e., brave query answering [DEGV01]).

All classes in the polynomial hierarchy are closed under conjunction. The ΣP
i classes with

i ≥ 1 are closed under projection; while the class ΣP
0 = P and the classes ΠP

i are not.

The family of classes DP
i . In this thesis we will also use a less commonly known complexity

class, DP
i , which denotes the complexity class of decision problems which are the “conjunction”

of a ΣP
i and an independent ΠP

i decision problem, formally DP
i = {L1×L2 | L1 ∈ ΣP

i , L2 ∈
ΠP

i }. Deciding whether a pair (F1, F2) of a SAT instance F1 and an independent UNSAT
instance F2 is a prototypical problem complete for DP

1 .
We also use a generalized version of this family of classes: given complexity class C,

we denote by D(C) the “difference class” of C, i.e., D(C) = {L1 × L2 | L1 ∈ C, L2 ∈
co-C} denotes the complexity class of decision problems that are the conjunction of a C de-
cision problem L1 and an independent co-C decision problem L2. For example, D(ΣP

i) =
DP

i , and D(NP) = DP
1 . Note in particular that D(PSPACE) = PSPACE and that

D(EXPTIME) = EXPTIME.

20

3 Analyzing Inconsistency in
Multi-Context Systems

MCSs enable knowledge integration at a general level, like, e.g., interlinking ontologies, data-
bases, and logic programs. Due to their decentralized nature, information exchange can have
unforeseen effects, and in particular cause an MCS to be inconsistent. In this chapter we elabo-
rate on the problem of inconsistency in MCSs, and discuss ways to analyze such inconsistencies
on a theoretical level.

Inconsistency in an MCS is the lack of an equilibrium. Suppose that, in our Medical Exam-
ple, the expert system concludes that Sue must be given a special drug, but her patient record
states that she is allergic to that drug, thus counter-indicating its use.

Example 13 (Inconsistent Medical Example). Consider the MCS M2 which is a slightly mod-
ified version of MCS M1 in Example 5. We modify kb lab such that the blood analysis shows
presence of a particular blood marker, and such that it stores a different birth date for Sue:

kb lab = {customer(sue, 03/02/1985);
test(sue, xray , pneum), test(sue, bloodtest , cmark);
test(ID, X, Y)→ ∃D : customer(ID, D));
customer(ID, X) ∧ customer(ID, Y)→ X = Y }.

We call M2 the Inconsistent Medical Example; M2 is inconsistent for two reasons:

• Cdb and Clab are inconsistent in conjunction with r1, as this bridge rule is applicable
under any accepted belief set ofCdb and adds to kb lab a belief that violates the uniqueness
constraint of the birth date.

• Even if we remove r1 from the system (which fixes the above inconsistency), the remaining
system is inconsistent because r2 and r3 become applicable due to Clab , which causes
Conto to classify the illness as atypical pneumonia; as a consequence r4 and r5 become
applicable which leads Cdss to conclude that ab1 is required for Sue; however due to
Sue’s allergy, r6 does not become applicable, and Cdss infers that ab1 must not be given
to Sue; therefore Cdss does not accept any belief state and the MCS is inconsistent.

In this system we can observe two independent inconsistencies: an inconsistency due to wrong
data entry, and an inconsistency because the only viable treatment option is in conflict with the
patient’s allergy. Note that applicability of r6 would resolve this inconsistency by activating
allow(sue, ab1). However, the presence of belief allergy(sue, ab1) in Sdb together with body
literal ‘not (db : allergy(sue, ab1))’ in r6 prevents the applicability of r6 (due to negation as
failure).

Inconsistency in an MCS makes inferences trivial, therefore an inconsistent MCS is useless.
In real world applications, system complexity tends to increase, both in terms of contexts

and in terms of inter-connectivity. Anticipating all possible states of a system is unfeasible,
therefore we need inconsistency handling methods to make such systems more robust.

21

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

The approach we introduce in this chapter is an extended elaboration on work published
in [EFSW09, EFSW10, EFS10, EFS11] and aims at analyzing inconsistencies in MCSs in order
to understand where and why such inconsistencies occur, and how they can be removed. This
will allow to specify how to handle inconsistencies and to extend systems with inconsistency
management mechanisms in later chapters of this thesis.

While the task reminds of a traditional data integration problem, an important point is that
we focus on the exchange of information, i.e., adjusting bridge rules instead of modifying data
in the contexts; in loose integrations (e.g., if companies link their business logics), changing
contexts or their data to restore consistency may not be an option.

Therefore, we identify bridge rules as the source of inconsistency, and their modification
as a possibility of counteracting. We assume, that every context is consistent if no bridge rules
apply, therefore we can fully characterize the reason for an inconsistency in terms of bridge
rules.

We make the following contributions.

• Inspired by debugging approaches used in the nonmonotonic reasoning community, espe-
cially in answer set programming [Syr06,BGP+07], we introduce two notions of explain-
ing inconsistency in MCSs: a consistency-based notion, which characterizes inconsis-
tency in terms of altered sets of bridge rules that are consistent, and an entailment-based
notion which derives inconsistency in a given system. Possible nonmonotonicity makes
intuitive and sound notions challenging; that our notions have appealing properties may
be taken as some evidence for their suitability.

• We establish useful properties of our notions. First, we identify a way to convert between
the consistency- and entailment-based notion, which is possible in many cases, although
not in all cases. We discuss why such a conversion is not possible in general. From the
conversion result, we obtain another useful property we call Duality: both notions identify
the same bridge rules as relevant for inconsistency. This result in fact generalizes a similar
result by Reiter [Rei87].

• We sharply characterize the computational complexity of identifying explanations for in-
consistency, under varying assumptions for the complexity of contexts (note that explana-
tions always do exist). It turns out that this problem has for a range of context complexities
no (or only mildly) higher complexity than the contexts themselves. As a consequence,
computing explanations is in some cases not harder than consistency checking.

• Finally, we investigate how it is possible to analyze inconsistency if only a part of the
contexts of the inconsistent system are known. This information hiding scenario is a
practically relevant application scenario, which occurs whenever a system does not re-
veal all internal information to the outside. Typical applications are credit card or access
control systems.

Our results provide a basis for building enhanced MCS systems which are capable of ana-
lyzing and reasoning about emerging inconsistencies. Rather than automatically resolving in-
consistency, as suggested e.g. in [BA08, BA10, BAH11], the results of this chapter set the stage
for the subsequent chapters, where we show how to realize inconsistency analysis using HEX

programs, and finally realize a (semi-)automatic approach with user support for locating and
resolving inconsistency in MCSs.

In the following, we consider two possibilities for explaining inconsistency in MCSs: first,
a consistency-based formulation, which identifies a part of the bridge rules which need to be
changed to restore consistency. Second, an entailment-based formulation, which identifies a
part of the bridge rules which is required to make the MCS inconsistent. Following common
terminology, we call the first formulation diagnosis (cf. [Rei87]) and the second inconsistency
explanation.

22

3.1. Diagnoses

3.1 Diagnoses

We will use the following notation. Given an MCS M and a set R of bridge rules (compatible
with M), by M [R] we denote the MCS obtained from M by replacing its set of bridge rules
brM with R (e.g., M [brM] = M and M [∅] is M with no bridge rules). By M |= ⊥ we denote
that M has no equilibrium, i.e., is inconsistent, and by M 6|= ⊥ the opposite.

As well-known, adding knowledge in nonmonotonic reasoning can both cause and prevent
inconsistency; the same is true for removing knowledge.

For our consistency-based explanation of inconsistency, we therefore consider pairs of sets
of bridge rules, s.t. if we deactivate the rules in the first set, and add the rules in the second set
in unconditional form, the MCS becomes consistent (i.e., admits an equilibrium).

Definition 4. Given an MCS M , a diagnosis of M is a pair (D1, D2), D1, D2 ⊆ brM , s.t.
M [brM \D1 ∪ cf (D2)] 6|= ⊥. We denote by D±(M) the set of all such diagnoses.

To obtain a more relevant set of diagnoses, we prefer pointwise subset-minimal diagnoses.
For pairs A = (A1, A2) and B = (B1, B2) of sets, the pointwise subset relation A ⊆ B holds
iff A1 ⊆ B1 and A2 ⊆ B2.

Definition 5. Given an MCS M , D±m(M) is the set of all pointwise subset-minimal diagnoses
of an MCS M .

Example 14 (ctd). In our running example,

D±m(M2) =
{

({r1, r2} , ∅) , ({r1, r3} , ∅) , ({r1, r5} , ∅) , ({r1} , {r6})
}
.

Accordingly, we always need to deactivate r1, and we can choose whether to additionally deac-
tivate r2, or r3, or r5, or whether to make r6 unconditional, to obtain a consistent MCS.

Removing bridge rule r1 simply removes the import of the different birth date into Clab , but
as this information is not used in bridge rules or other rules that infer additional information,
the effect of removing r1 is local to Clab .

Diagnosis ({r1, r2} , ∅) removes bridge rules r1 and r2. This way we ignore the X-Ray
finding and obtain the following equilibrium:

S=
(
{person(sue, 02/03/1985), allergy(sue, ab1)},
{customer(sue, 03/02/1985), test(sue, xray , pneum), test(sue, bloodtest , cmark)},
{(mmark):APMark , (cmark):APMark , (sue, cmark):hasMarker},
∅
)
.

This equilibrium represents that we do not treat the patient as no illness is detected in the
equilibrium.

Diagnosis ({r1, r5} , ∅) removes bridge rules r1 and r5. This ignores the information that
treating the illness requires a special antibiotic. The equilibrium is as follows:

S=
(
{person(sue, 02/03/1985), allergy(sue, ab1)},
{customer(sue, 03/02/1985), test(sue, xray , pneum), test(sue, bloodtest , cmark)},
{(mmark):APMark , (cmark):APMark ,
(sue):∃hasDisease.Pneum, (sue):∃hasDisease.AtypPneum,
(sue, cmark):hasMarker},
{need(sue, ab),¬give(ID, ab1), give(ID, ab2)}

)
.

(Diagnosis ({r1, r3} , ∅) creates the same accepted belief set atCdb , Clab and atCdss : it ignores
information about the blood marker and therefore does not detect the atypical pneumonia in
Conto .)

23

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

Diagnosis ({r1} , {r6}) removes r1 and adds an unconditional copy of bridge rule r6. This
forces strong antibiotics to be allowed as a treatment. The modified system has the following
equilibrium:

S=
(
{person(sue, 02/03/1985), allergy(sue, ab1)},
{customer(sue, 03/02/1985), test(sue, xray , pneum), test(sue, bloodtest , cmark)},
{(mmark):APMark , (cmark):APMark ,
(sue):∃hasDisease.Pneum, (sue):∃hasDisease.AtypPneum,
(sue, cmark):hasMarker},
{allow(sue, ab1),need(sue, ab),need(sue, ab1), give(ID, ab1)}

)
.

Any or none of the above possibilities might be the right thing to do: such decisions ought
to be taken by a domain specialist (e.g., a doctor) and cannot be done automatically. Therefore
analysis of inconsistency is important to identify reasons for it.

3.2 Inconsistency Explanations

In the spirit of abductive reasoning, we also propose an entailment-based notion of explaining
inconsistency: an inconsistency explanation (in short, an explanation) is a pair of sets of bridge
rules, such that their presence or absence entails a relevant (cf. below) inconsistency in the given
MCS.

Definition 6. Given an MCS M , an inconsistency explanation of M is a pair (E1, E2) of sets
E1, E2 ⊆ brM of bridge rules such that for all (R1, R2) where E1 ⊆ R1 ⊆ brM and R2 ⊆
brM \E2, it holds thatM [R1∪cf (R2)] |= ⊥. By E±(M) we denote the set of all inconsistency
explanations of M , and by E±m(M) the set of all pointwise subset-minimal ones.

Example 15 (ctd). In M2 we have two minimal inconsistency explanations, namely

E±m(M2) =
{

({r1} , ∅) , ({r2, r3, r5} , {r6})
}
.

To trigger the inconsistency in Clab , r1 and its addition of customer(sue, 02/03/1985) to
kb lab is sufficient. For the inconsistency in Cdss , we need to import need(sue, ab1) by r5 and
we must not import allow(sue, ab1) by r6. Furthermore, r5 can only fire if Conto accepts
(sue):∃hasDisease.AtypPneum , which is only possible if r2 and r3 fire. Therefore, for the
second inconsistency, r2, r3, and r5 must be present to get inconsistency, and the head of r6

must not be present.

The intuition about E1 is as follows: bridge rules in E1 create an inconsistency in M
(M [E1] |= ⊥), and this inconsistency is relevant for M . By relevance we mean that adding
some bridge rules from brM (the set of original bridge rules) to M [E1] never yields a consistent
system.

This condition is necessary; for example the program P = {a← not a} is inconsistent
under the answer set semantics, but its superset P ′ = {a← not a; a} is consistent. The incon-
sistency of P does not matter for P ′. In terms of MCSs, a set of bridge rules may create an
inconsistency in M , but this inconsistency is irrelevant, as it does not occur if more or all bridge
rules are present.

Intuition about E2 regards inconsistency wrt. the addition of unconditional bridge rules:
M [E1] cannot be made consistent by adding bridge rules unconditionally, unless we use at least
one bridge rule from E2. In summary, bridge rules E1 create a relevant inconsistency, and at
least one bridge rule in E2 must be added unconditionally to repair that inconsistency.

From Definition 6 we obtain the following Corollary.

24

3.2. Inconsistency Explanations

kba1 = ∅Ca1

kba2 = ∅Ca2 kba3 = {z}

Ca3

kba4 = {u; ⊥ ← w}Ca4

kba5 = {⊥ ← t}Ca5

not y

x
ra1

not x

w
ra2

z

w
ra3

u

t

ra4

(a) Example MCS Ma

kbb1 = ∅Cb1

kbb2 = ∅Cb2

kbb3 = ∅Cb3

kbb4 = {⊥ ← p}Cb4

not s

r
rb1

not r

q
rb2

q

p
rb4

r

p

rb3

(b) Example MCS Mb

Figure 3.1: Example MCS topologies for illustrating properties and the usefulness of inconsis-
tency explanations. Dotted areas indicate individual inconsistency explanations.

Corollary 1. Given an explanation E = (E1, E2) of an MCS M , every E′ such that E ⊆ E′ ⊆
brM × brM is an explanation as well.

We now give further examples of inconsistency explanations and their properties.

Example 16 (ctd). Consider a modification of our Medical Example, where bridge rules are
added for the administration of anti-allergenics. Bridge rule r7 encodes that an allergy blocking
(anti-allergenic) medication is given, if there is the need to apply strong antibiotics, the patient
is allergic to it and nothing was done to block the allergic reaction; r8 encodes that the patient
database is informed if an anti-allergenic is applied:

r7: (dss : give(sue, antiAllergenic))← (dss : need(sue, ab1)),
(db : allergy(sue, ab1),
not (db : allergyBlocked(sue, ab1)).

r8: (db : allergyBlocked(sue, ab1))← (dss : give(sue, antiAllergenic)).

At first sight, this looks like a good idea for solving the allergy problem. However the resulting
system now has three minimal inconsistency explanations, because we added a third inconsis-
tency, namely we get the additional explanation(

{r2, r3, r5, r7, r8}, {r7, r8}
)
.

This illustrates how an inconsistency due to an odd cycle is reported by inconsistency expla-
nations: the odd cycle through r7 and r8 causes both rules to be present in both components
of the minimal explanation. This is because the instability of the cycle can be broken by either
removing one rule in the cycle or by founding the loop (i.e., forcing one belief in the loop to
be true) using an unconditional bridge rule. Minimal diagnoses for this modified system are
({r1, r2}, ∅), ({r1, r3}, ∅) ({r1, r5}, ∅), ({r1, r7}, {r6}), ({r1}, {r6, r8}), ({r1, r8}, {r6}), and
({r1}, {r6, r7}).

Example 17. To show how explanations separate independent reasons for inconsistency, and to
illustrate the fact that they point out only those inconsistencies that are relevant for inconsistency
of the overall system, consider Ma = (Cb1, Ca2, Ca3, Ca4, Ca5) depicted in Figure 3.1a. All

25

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

contexts use logic Lasp
Σ from Example 3 with Σ = {a, b, . . . , z}. This system is inconsistent,

because u is a fact in Ca4 and therefore ra4 adds fact t to Ca5 which makes Ca5 inconsistent.
Furthermore the system is inconsistent, because z is a fact in Ca3 and therefore ra3 adds fact
w to Ca4 which makes Ca4 inconsistent. The corresponding minimal explanations separate
these inconsistencies, we have E±m(Ma) =

{
({ra3} , ∅) , ({ra4} , ∅)

}
. The important property

is that Ma[{ra2}] is an inconsistent system as well, because ra2 adds fact w to Ca4, making that
context inconsistent. However, this inconsistency is not relevant for Ma and it is not reported
as relevant by E±m(Ma), because Ma[{ra1, ra2}] is a consistent system, i.e., adding bridge rule
ra1 from the original Ma, allows for repairing the inconsistency. This shows that inconsistency
explanations characterize only relevant reasons for inconsistency.

Example 18. To show how mutually exclusive bridge rules can be part of the same expla-
nation, and to illustrate the advantage of subset-minimality over cardinality-minimality, con-
sider MCS Mb = (Cb1, Cb2, Cb3, Cb4) depicted in Figure 3.1b. Again, all contexts use logic
Lasp

Σ from Example 3 with Σ = {a, b, . . . , z}. This MCS is inconsistent, as p causes incon-
sistency in Cb4 and p is always true by bridge rule rb3 which is always applicable because
r is always true by bridge rule rb1. This inconsistency cannot be repaired by using origi-
nal bridge rules or original bridge rules without conditions. Therefore one minimal incon-
sistency explanation of Mb is ({rb1, rb3}, ∅). However, there is another minimal explanation
of Mb, it is ({rb2, rb3, rb4}, ∅): this explanation contains bridge rules rb2 and rb3 which are
mutually exclusive wrt. their body conditions. However only both of them together ensure
that Cb4 becomes inconsistent, regardless of whether rb1 is in the system or not and whether
fact r is accepted at Cb2 or not. This example shows that cardinality-minimal explanations
are inadequate for resolving inconsistency: removing rb1 from the only cardinality-minimal
explanation does not make the system consistent. Note that the set of minimal diagnoses is
D±m(Mb) =

{
({rb1, rb2} , ∅) , ({rb3} , ∅) , ({rb1, rb4} , ∅)

}
.

3.2.1 Deletion-Diagnoses / Deletion-Explanations

For domains where removal of bridge rules is preferred to unconditional addition of rules, we
specialize D± to obtain diagnoses of the form (D1, ∅) only. We again prefer subset-minimal
diagnoses.

Definition 7. Given an MCS M , an s-diagnosis of M is a set D⊆ brM s.t. M [brM \D] 6|= ⊥.
The set of all s-diagnoses (resp., ⊆-minimal s-diagnoses) is D−(M) (resp., D−m(M)).

Example 19. In our example, D−m(M) =
{
{r1}, {r2}, {r4}

}
.

We also specialize the inconsistency explanation to the first component, i.e., we do not
consider adding rules unconditionally, so all explanations are of the form (E1, brM).

Definition 8. Given an MCS M , an s-inconsistency explanation of M is a set E ⊆ brM s.t.
each R where E ⊆ R ⊆ brM , satisfies M [R] |= ⊥. The set of s-inconsistency explanations is
denoted by E+(M), and the set of ⊆-minimal s-inconsistency explanations of M is denoted by
E+
m(M).

Example 20 (ctd). The only minimal s-inconsistency explanation in our running example is
{r1, r2, r4}.

3.3 Properties

In this section we first show that our notions of diagnoses and explanations are related in a
special way, as it is possible to compute one from the other in certain cases. We then use this

26

3.3. Properties

result to obtain that minimal diagnoses and minimal explanations point out the same bridge
rules, a property we call duality. Finally we prove a useful non-intersection property of minimal
diagnoses.

3.3.1 Converting between Diagnoses and Explanations

In the following we show that it is possible to characterize explanations in terms of diagnoses,
and vice versa minimal diagnoses in terms of minimal explanations.

For the following theorem we generalize the notion of a hitting set from sets [Rei87] to pairs
of sets. Given a collection C = {(A1, B1), . . . , (An, Bn)} of pairs of sets (Ai, Bi), Ai, Bi ⊆ U
over a set U , a hitting set of C is a pair of sets (X,Y), X,Y ⊆ U such that for every pair
(Ai, Bi) ∈ C, (i) Ai ∩ X 6= ∅ or (ii) Bi ∩ Y 6= ∅. A hitting set (X,Y) of C is minimal, if no
(X ′, Y ′) ⊂ (X,Y) is a hitting set of C.

We consider hitting sets over pairs of sets of bridge rules, and denote by HSM (C) (respec-
tively, minHSM (C)) the set of all (respectively, all minimal) hitting sets of C over brM . Note
that in particular HSM (∅) = {(∅, ∅)}, and HSM ({(∅, ∅)}) = ∅.

Theorem 1. For every MCS M ,

(a) a pair (E1, E2) with E1, E2 ⊆ brM is an inconsistency explanation of M
iff (E1, E2) ∈ HSM (D±(M)), i.e., (E1, E2) is a hitting set of D±(M); and

(b) a pair (E1, E2) with E1, E2 ⊆ brM is a minimal inconsistency explanation of M
iff (E1, E2) ∈ minHSM (D±(M)), i.e., (E1, E2) is a minimal hitting set of D±(M).

Proof. For convenience we assume in this proof for variables Ei, Di, and Ri with i ∈ {1, 2}
that Ei, Di, Ri ⊆ brM . Furthermore, we denote by X the complement of set X wrt. brM , i.e.,
X = brM \X .

(a) We transform the condition. Given a pair (E1, E2). For all diagnoses (D1, D2) ∈
D±(M), D1 ∩ E1 or D2 ∩ E2 or both are nonempty iff

for all (D1, D2) we have that M [D1 ∪ cf (D2)] 6|= ⊥ implies D1 ∩ E1 6= ∅ or D2 ∩ E2 6= ∅

which (by reversing the implication and simplifying) is equivalent to

for all (D1, D2) we have that (D1 ∩ E1 = ∅ and D2 ∩ E2 = ∅)
implies M [D1 ∪ cf (D2)] |= ⊥.

As A ∩B = ∅ with A,B ⊆ brM is equivalent to A ⊆ B we next obtain

for all (D1, D2) we have that (E1 ⊆ D1 and D2 ⊆ E2) implies M [D1 ∪ cf (D2)] |= ⊥.

If we let D1 = R1 and D2 = R2 this amounts to

for all (R1, R2) we have that (E1 ⊆ R1 and R2 ⊆ E2) implies M [R1 ∪ cf (R2)] |= ⊥.

This proves the result (a) as this last condition is the one of an explanation (E1, E2) in Def-
inition 6. Note that, if (∅, ∅) ∈ D±(M), then no explanation exists; this is intentional and
corresponds to the definitions of diagnosis and explanation for consistent systems.

(b) As minHSM (X) contains the ⊆-minimal elements in HSM (X), and E±m(M) contains
the ⊆-minimal elements in E±(M), (b) follows from (a).

Clearly, a hitting set of a collection X is the same as a hitting set of the collection of ⊆-
minimal elements in X; from Theorem 1. we therefore immediately obtain the following.

27

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

Corollary 2. For every MCS M ,

(a) a pair (E1, E2) with E1, E2 ⊆ brM is an inconsistency explanation of M
iff (E1, E2) ∈ HSM (D±m(M)); and

(b) a pair (E1, E2) with E1, E2 ⊆ brM is a minimal inconsistency explanation of M
iff (E1, E2) ∈ minHSM (D±m(M)).

Proof. Let min(X) be the set of ⊆-minimal elements in a collection X of sets. Then for
every (A,B) ∈ X \ min(X) there is a pair (A′, B′) ∈ min(X) with (A′, B′) ⊆ (A,B).
Given HSM (min(X)), every pair (A,B) ∈ X \ min(X) is hit by every pair (C,D) ∈
HSM (min(X)). Therefore HSM (min(X)) = HSM (X). Then (a) immediately follows from
Theorem 1 (a), and (b) immediately follows from Theorem 1 (b).

We obtain the following generalization of a well-known result for minimal hitting sets [Ber89].

Lemma 1. For every collectionX = {X1, . . . , Xn} of pairsXi = (Xi
1, X

i
2) of sets, 1 ≤ i ≤ n,

such that X is an antichain wrt. ⊆, i.e., elements in X are pairwise incomparable (Xi ⊆ Xj

with 1 ≤ i, j ≤ n implies Xi = Xj) it holds that minHSM (minHSM (X)) = X .

Proof. A collection of sets C = {C1, . . . , Cn} over a universe, i.e., Ci ⊆ U , 1 ≤ i ≤ n, can
be seen as a hypergraph H = (U,C) with vertices U and hyperedges Ci ∈ C. If no hyperedge
Ci is contained in any hyperedge Cj , i 6= j, it is called simple. A hitting set on C is called
transversal, and the hypergraph (U,C ′) containing as hyperedges C ′ all minimal hitting sets of
the hypergraphH is called transversal hypergraph Tr(H).

We can map a collection X = {X1, . . . , Xn} of pairs Xi = (Xi
1, X

i
2) of sets, Xi

1,Xi
2 ⊆

U bijectively to a collection µ(X) = {µ(X1), . . . , µ(Xn)} over U ∪ {u′ | u ∈ U} where
µ(Xi

1, X
i
2) = Xi

1 ∪ {u′ | u ∈ Xi
2}. Then, (A,B) is a hitting set of X iff µ(A,B) is a hitting

set of µ(X), and well-known results for transversal hypergraphs [Ber89] carry over to minimal
hitting sets over pairs.

In particular, given a simple hypergraph H = µ(X), it holds that Tr(Tr(µ(X))) = µ(X).
This directly translates into the lemma, because µ(X) is a simple hypergraph due to incom-
parability (also called the antichain property) of X , and µ is bijective, therefore transversal
hypergraphs can be mapped back to minimal hitting sets.

Combined with Corollary 2 (b) we thus obtain.

Theorem 2. A pair (D1, D2) with D1, D2 ⊆ brM is a minimal diagnosis of M iff (D1, D2) is
a minimal hitting set of E±m(M), formally D±m(M) = minHSM (E±m(M)).

Proof. From Corollary 2 (b) we have that E±m(M) = minHSM (D±m(M)). Applying minHSM
on both sides of this formula and then using Lemma 1 yields minHSM (E±m(M)) = minHSM (
minHSM (D±m(M))) = D±m(M).

As for computation, Theorem 1 provides a way to compute the set of explanations E±(M)
from the set of diagnoses D±(M), while Theorem 2 allows us to compute the set of minimal
diagnoses D±m(M) from the set of minimal explanations E±m(M). Corollary 2 shows that, for
computing E±(M) and E±m(M), it is sufficient to know the set of minimal diagnoses D±m(M).

Note that Theorem 2 describes relationships between minimal hitting sets, similar to the
relationship between diagnoses and conflict sets in Reiter’s approach to diagnosis [Rei87]. In
contrast, note that Theorem 1 (a) uses hitting sets without the requirement of ⊆-minimality.

Example 21 (ctd). In our running example, we had

E±m(M2) =
{

({r1} , ∅) , ({r2, r3, r5} , {r6})
}

, and

D±m(M2) =
{

({r1, r2} , ∅) , ({r1, r3} , ∅) , ({r1, r5} , ∅) , ({r1} , {r6})
}
.

28

3.3. Properties

For illustrating Corollary 2, we consider all minimal diagnoses (D1, D2). An explanation
(E1, E2) has a nonempty intersection E1 ∩ D1 6= ∅ or E2 ∩ D2 6= ∅ with every minimal
diagnosis. This is easily achieved by using r1 in the first component E1, i.e., by ({r1}, ∅), which
is indeed a minimal explanation. If we do not use r1 inE1, we can still hit all minimal diagnoses,
which yields the second minimal explanation ({r2, r3, r5}, {r6}). Furthermore, all component-
wise supersets of these explanations are explanations, as they hit every minimal diagnosis as
well.

For illustrating Theorem 2, consider the set of minimal explanations; every minimal diag-
nosis (D1, D2) must fulfill E1 ∩D1 6= ∅ or E2 ∩D2 6= ∅, and there is no smaller pair (D1, D2)
with that property. This condition is true for all minimal diagnoses in D±m(M), and as they hit
r1 in the first component (which is the only way to hit the first explanation), and as they also hit
exactly one of the rules in the other explanation.

Asymmetry

We now investigate why it is possible to obtain the set of explanations from the set of diagnoses,
while the other direction only works under ⊆-minimality. The following example illustrates
this.

Example 22. Consider the MCS M with one ASP context C1 = {← a}, and the bridge
rules r1 = (1 : a) ← (1 : a) and r2 = (1 : a) ← not (1 : b). Then D±(M) =

{
({r2}, ∅),

({r1, r2}, ∅)
}

, while E±m(M) =
{

({r2}, ∅)
}

, because only r2 is relevant for inconsistency.
E±(M) contains all pointwise supersets of ({r2}, ∅), i.e., ({r2}, ∅), ({r1, r2}, ∅), ({r2}, {r1}),
({r2}, {r2}), ({r1, r2}, {r1}), ({r1, r2}, {r2}), and ({r1, r2}, {r1, r2}). Now the (nonminimal)
hitting set of the set E±(M) of explanations is the set E±(M) itself, while the set D±(M) of
diagnoses only contains two elements.

The reason behind this asymmetry is that the notion of explanation is an order-increasing
concept, i.e., all supersets of an explanation are also explanations, while the notion of diagnosis
is not, i.e., a superset of a diagnosis is not necessarily a diagnosis.

This difference is due to the fact that explanations characterize only relevant inconsistencies
(as discussed in Section 3.2) and by its definition, all supersets of an explanation are explana-
tions. Therefore the set of minimal explanations characterizes the set of explanations. For the
notion of diagnosis this is not the case: a system might contain inconsistent bridge rule config-
urations which do not appear in explanations because they are irrelevant in the original system.
Non-minimal diagnoses provide modifications of the system which might cause and at the same
time suppress such an irrelevant inconsistency in order to achieve overall consistency. Mini-
mal explanations, non-minimal explanations, and minimal diagnoses will never contain such
irrelevant inconsistencies.

In summary, a minimal hitting set of the set of diagnoses characterizes the set of minimal ex-
planations (Corollary 2 (b)) and a minimal hitting set of the set of explanations characterizes the
set of minimal diagnoses (Theorem 2). With non-minimality it looks different: the non-minimal
hitting sets of D±(M) characterize the set E±(M) of explanations (see Theorem 1 (a)), how-
ever the non-minimal hitting sets of E±(M) do not characterize the set D±(M) of diagnoses
(see Example 22 for a counterexample).

3.3.2 Duality

While the previous section showed a fine-grained and detailed relationship between diagnoses
and explanations, we next investigate a more coarse relationship between minimal notions: min-
imal diagnoses and minimal explanations point out the same set of bridge rules as relevant for
inconsistency in an MCS.

29

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

Intuitively, adding rules E1 for an explanation (E1, E2) to contexts causes inconsistency,
while removing rules D1 for a diagnosis (D1, D2) from an MCS can cause consistency; analo-
gous for the second component, i.e., adding rules to E2 may prevent consistency while adding
rules toD2 may prevent inconsistency; hence explanations and diagnoses represent dual aspects.

Both notions, point out rules that are erroneous in the way that those rules contribute to
inconsistency. This naturally gives rise to the question whether diagnoses and explanations point
out the same rules of an MCS as erroneous, or if those notions characterize different aspects.

To formalize this question, we introduce relevancy for inconsistency. Let M be an MCS
with bridge rules brM . We call a bridge rule r ∈ brM relevant for diagnosis (d-relevant) iff
there exists a diagnosis (D1, D2) ∈ D±m(M) with r ∈ D1 ∪D2. Analogously r is relevant for
explanation (e-relevant) iff there exists an explanation (E1, E2) ∈ E±m(M) with r ∈ E1 ∪ E2.
To avoid superfluous rules, both relevance criteria are defined with respect to minimality of the
underlying notion.

Example 23 (ctd). In Example 21 we can see that D±m(M2) and E±m(M2) both point out the
set {r1, r2, r3, r5} of bridge rules in their first component, and the set {r6} in their second
component.

Formalizing this, for any set X of pairs (A,B) of sets A and B (e.g., for some set of
diagnoses), we write

⋃
X for (

⋃
{A | (A,B) ∈ X},

⋃
{B | (A,B) ∈ X}).

Proposition 1. For every inconsistent MCS M ,
⋃
D±m(M) =

⋃
E±m(M), i.e., the unions of all

minimal diagnoses and all minimal inconsistency explanations coincide.

Proof. This is a direct specialization of Theorems 1 and 2.

This strengthens our view that both notions capture exactly those parts of an MCS that are
relevant for inconsistency as duality shows that, in total, two very different perspectives on
inconsistency state exactly the same parts of the MCS as erroneous.

In practice this allows one to compute the set of all bridge rules which are relevant for
making an MCS consistent (i.e., appear in at least one diagnosis) in two ways: either compute
all minimal explanations, or compute all minimal diagnoses. In other terms the duality result
allows to exclude all bridge rules that are not part of any diagnosis (or explanation) from further
investigation as they can be skipped safely.

Our running example suggests that duality also holds for simplified diagnoses and explana-
tions, which indeed is true:

Theorem 3. Given an inconsistent MCS M ,
⋃
D−m(M) =

⋃
E+
m(M), i.e., the unions of all

minimal s-diagnoses and all minimal s-inconsistency explanations coincide.

Proof. This is a direct consequence of Proposition 1: set in its proof the second components of
diagnoses and explanations to ∅.

The result of this theorem is similar to the proof of Theorem 4.4 in Reiter’s seminal pa-
per [Rei87], which states that diagnoses are minimal hitting sets on the set of conflict sets, where
a conflict set is similar to what we call s-inconsistency explanation. The main difference is that
Reiter’s conflict sets are defined on monotonic (first-order) logic, while our explanations are
defined on possibly nonmonotonic logics. However, the condition that an explanation must not
be repairable by adding bridge rules of the original system, effectively ensures that explanations
become monotonic.

30

3.4. Computational Complexity

3.3.3 Non-overlap in Minimal Diagnoses

We mention a simple yet useful property of minimal diagnoses. According to Definition 4,
given (D1, D2) such that r ∈ D2, whether (D1, D2) is a diagnosis is independent from whether
r ∈ D1. Therefore,

Proposition 2. In a minimal diagnosis (D1, D2) of an MCS M , D1 ∩ D2 = ∅, i.e., no rule
occurs in both components.

Proof. Let (D1, D2) ∈ D±m(M) and let S be a witnessing belief state for it, i.e., S is an equilib-
rium of M [brM \D1 ∪ cf (D2)]. For contradiction we assume D1 ∩D2 6= ∅. Consider any rule
r ∈ D1 ∩D2 and let hc (r) = i and hb (r) = p. Let r′ = cf (r) = (i:p)← ., then body(r′) = ∅
and r′ is applicable in any belief state. Therefore r′ ∈ app(br i(M [brM \ D1 ∪ cf (D2)]), S).
(Recall that app(R,S,) is the set of bridge rules from R that are applicable wrt. belief state S.)
For (D′1, D

′
2) = (D1 \ {r}, D2) we thus obtain that r′ ∈ app(br i(M [brM \D′1 ∪ cf (D′2)]), S).

As all other bridge rules are as before, we conclude app(br i(M [brM \ D′1 ∪ cf (D′2)]), S) =
app(br i(M [brM \ D1 ∪ cf (D2)]), S) for all i ∈ c (M). Consequently S is an equilibrium
of M [brM \ D′1 ∪ cf (D′2)] and (D′1, D

′
2) ∈ D±(M). But (D′1, D

′
2) ⊆ (D1, D2) contradicts

(D1, D2) being minimal, thus our assumption was wrong and D1 ∩D2 = ∅ for minimal diag-
noses.

This is not true for inconsistency explanations: consider Example 16 where the inconsis-
tency caused by an odd loop yields an explanation (E1, E2) with {r7, r8} being a subset of E1

as well as of E2.

3.4 Computational Complexity

We next consider the complexity of consistency checking, and of diagnosis and explanation
recognition in MCSs in a parametric fashion. To this end, we first show that we can abstract an
MCS to beliefs used in bridge rules. We use context complexity as a parameter to characterize
the overall complexity of these decision problems. For hardness we establish generic results for
all complexity classes that are closed under conjunction and projection. Table 3.1 summarizes
our results for complexity classes that are typically used in knowledge representation.

3.4.1 Output-projected Equilibria

Computing equilibria by guessing and verifying so-called “kernels of context belief sets” has
been outlined in [EBDT+09]. For the purpose of recognizing diagnoses and explanations, it
suffices to check for consistency, i.e., for existence of an arbitrary equilibrium in an MCS.

Here we first define output beliefs, which are the beliefs used in bodies of bridge rules.
Then we show that, for checking consistency of an MCS, it is sufficient to consider equilibria
projected to output beliefs.

Definition 9. Given an MCS M = (C1, . . . , Cn), the set of inputs of Ci, denoted IN i, is the
set of bridge rule heads that can be added by bridge rules in br i, and the set of output beliefs
of Ci, denoted OUT i, is the set of beliefs p of Ci which occur in the body of some bridge rule
r ∈ brM . Formally,

IN i = {hb (r) | r ∈ br i}, and

OUT i = {p | there exists a bridge rule r ∈ brM with (i : p) ∈ body(r)}.

31

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

Context Consistency (A,B)
?
∈

complexity checking D±(M) D±
m(M) E±(M) E±

m(M)

CC(M) MCSEQ MCSD MCSDm MCSE MCSEm

P NP NP DP
1 coNP DP

1

NP NP NP DP
1 coNP DP

1

ΣP
i , i ≥ 1 ΣP

i ΣP
i DP

i ΠP
i DP

i

PSPACE PSPACE

EXPTIME EXPTIME

Proposition 3 4 5 6 7

Table 3.1: Complexity of consistency checking and recognizing (minimal) diagnoses and ex-
planations, given (A,B) and an MCS M for complexity classes of typical KR formalisms.
Membership holds for all cases, completeness holds if at least one context is complete for the
respective context complexity.

Example 24 (ctd). In our running example M2, we have the following sets of output beliefs:

OUT db = {person(sue, 02/03/1985), allergy(sue, ab1)},
OUT lab = {test(sue, xray , pneum), test(sue, bloodtest , cmark)},
OUT onto = {(sue):∃hasDisease.BacterialDisease,

(sue):∃hasDisease.AtypPneum}, and
OUT dss = ∅.

Note that OUT dss = ∅ because no bridge rule contains in its body a belief of context Cdss .

Using the notion of output beliefs, we let S′i = Si ∩ OUT i be the projection of Si to OUT i,
and for S = (S1, . . . , Sn) we let S′ = (S′1, . . . , S

′
n) be the output-projected belief state S′ of S.

An output-projected belief state provides sufficient information for evaluating the applica-
bility of bridge rules. We next show how to obtain witnesses for equilibria using this projection.

Definition 10. An output-projected belief state S′ = (S′1, . . . , S
′
n) of an MCS M is an output-

projected equilibrium iff for all 1 ≤ i ≤ n,

S′i ∈ ACCi(kbi ∪ {hb (r) | r ∈ app(br i, S
′)})
∣∣
OUT i

(Recall that A|B denotes the projection of the family of sets A to the set B.) S′ contains
information about all (and only about) output beliefs. As these are the beliefs that determine
bridge rule applicability, app(R,S) = app(R,S′); thus we obtain:

Lemma 2. For each equilibrium S of an MCS M , S′ is an output-projected equilibrium. Con-
versely, for each output-projected equilibrium S′ of M , there exists some equilibrium T of M
such that T ′ = S′.

Given MCS M , we denote by EQ′(M) the set of output-projected equilibria of M .

Proof. (⇒) Let S= (S1, . . . , Sn), then Si ∈ ACC(kbi ∪H), where the set H of active bridge
rule heads at each context is app(br i, S). Bridge rule applicability depends on output beliefs

32

3.4. Computational Complexity

only, therefore app(br i, S) = app(br i, S
′). Thus S′ = (S′1, . . . , S

′
n) with S′i = Si ∩ OUT i is

an output-projected equilibrium of M .
(⇐) The proof is similar to (⇒). Let S′ = (S′1, . . . , S

′
n), then, as S′ is an output-projected

equilibrium, for each i, 1 ≤ i ≤ n, S′i ∈ ACCi(kbi ∪ {hb (r) | r ∈ app(br i, S
′)})
∣∣
OUT i

,
and therefore for each S′i there exists a belief set Si such that Si ∈ ACCi(kbi ∪ {hb (r) |
r ∈ app(br i, S

′)}) and S′i = Si ∩ OUT i. If we take for each i some Si satisfying the above
condition, we obtain T = (S1, . . . , Sn). As S′ and T agree on all ouput beliefs of all contexts,
we have that app(br i, S

′) = app(br i, T) and obtain that T is an equilibrium of M . By our
construction of T , it also holds that T ′ = S′.

Example 25 (ctd). In the consistent Medical Example M1, the equilibrium

S= ({person(sue, 02/03/1985), allergy(sue, ab1)},
{customer(sue, 02/03/1985), test(sue, xray , pneum),¬test(sue, bloodtest , cmark)},
{(mmark):APMark , (cmark):APMark ,
(sue):∃hasDisease.Pneum, (sue):∃hasDisease.BacterialDisease},
{need(sue, ab),¬give(ID, ab1), give(ID, ab2)}).

is witnessed by the output-projected equilibrium

S= ({person(sue, 02/03/1985), allergy(sue, ab1)},
{test(sue, xray , pneum)},
{(sue):∃hasDisease.BacterialDisease},
∅).

Observe that, for consistency of the overall system, it is not relevant which belief set is accepted
at Cdss , only that some belief set is accepted (as OUT dss = ∅, all projected belief sets at Cdss

are empty).

Therefore each equilibrium is witnessed by a single output-projected equilibrium, and each
output-projected equilibrium witnesses at least one equilibrium. For consistency checking (i.e.,
equilibrium existence) in MCSs it is therefore sufficient to consider output-projected equilibria.

3.4.2 Context Complexity

The complexity of consistency checking for an MCS clearly depends on the complexity of its
contexts. We next define a notion of context complexity by considering the roles which contexts
play in the problem of consistency checking.

For all complexity considerations, we represent logics Li of contexts Ci implicitly; they
are fixed and we do not consider these (possibly infinite) objects to be part of the input of the
decision problems we investigate. Accordingly, the instance size of a given MCS M will be
denoted by |M | = |kbM | + |brM | where |kbM | denotes the size of knowledge bases in M and
|brM | denotes the size of its bridge rules.

Consistency of an MCS M can be decided by a Turing machine with input M which
(a) guesses an output-projected belief state S′ ∈ OUT 1 × · · · × OUTn, (b) evaluates the
bridge rules on S′, yielding for each context Ci a set of active bridge rule heads Hi wrt. S′, and
(c) checks for each context whether it accepts the guessed S′i wrt. Hi. We call the complexity
of step (c) context complexity, formalized as follows.

Definition 11. Given a context Ci = (kbi, br i, Li) and a pair (H,S′), with H ⊆ IN i and
S′ ⊆ OUT i, the context complexity CC(Ci) of Ci is the computational complexity of deciding
whether there exists an Si ∈ ACCi(kbi ∪H) such that Si ∩OUT i = S′i.

33

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

Example 26. In a context which uses a logical relational database without constraints (i.e.,
a simplification of Example 1), acceptability checking amounts to looking up a belief in the
knowledge base, therefore such a context has complexity O(n) (in the general case). With
constraints the check becomes more expensive in general. A relational database with a fixed set
of constraints can be captured by knowledge bases and belief sets which are sets of tuples in
relations. Acceptability of a belief set computes whether a belief set is the closure of a knowledge
base wrt. a fixed set of (possibly recursive) Datalog view definitions. Such a context is complete
for P [DEGV01, Theorem 4.4, data complexity].

A propositional answer set program can be captured by a context where knowledge bases
are sets of rules and belief sets are sets of propositional atoms. Acceptability of such a context
then checks whether a set of propositions is the projection of some answer set of the knowledge
base of that context to the output beliefs of that context. Such an acceptability check is complete
for NP [DEGV01, Theorem 5.7]. Similarly, satisfiability checking of Boolean formulas can be
captured by NP contexts. In default Logic programs and in disjunctive logic programs (such
as introduced in Example 3), the recognition of a projected model is complete for ΣP

2 [Got92,
Theorem 5.2 (a)], therefore a context using one of these logics is complete for ΣP

2 .
An agent using one of the widely-known modal logics Kn, Tn, or S4n with n knowledge op-

erators and n ≥ 1 can be represented as a context. Assuming that such a context has knowledge
bases and belief sets consisting of formulas, and the context accepts the closure CX of a set of
formulas X in the knowledge base, this context is complete for PSPACE [HM92, Theorem
6.17].

For contexts hosting ontological reasoning in the Description LogicALC (as in Example 2)
we have that acceptability checking corresponds to a set of instance checks. As individual in-
stance checking is EXPTIME-complete [BCM+03, Section 3.5.1] and EXPTIME is closed
under conjunction, such a context is in EXPTIME. For |OUT i|= 1 we see that such a con-
text is also EXPTIME-hard. Therefore a context using logic LA has context complexity
EXPTIME.

Given an MCS M , we say that M has upper context complexity C, denoted CC+(M) = C,
if CC(Ci) ⊆ C for every context Ci of M . We say M has lower context complexity C, denoted
CC−(M) = C, ifC ⊆ CC(Ci) for some contextCi ofM . We say thatM has context complexity
C, denoted CC(M), iff C = CC+(M) = CC−(M). Accordingly, an MCS contains no context
that cannot be decided in CC+(M), and an MCS with context complexity CC(M) contains some
context complete for CC(M) if CC(M) has complete problems.

Example 27 (ctd). In the Medical Example, we have CC(Cdb) = CC(Clab) = P, CC(Conto) =
EXPTIME, and CC(Cdss) = ΣP

2 . Overall, we have CC−(M2) = CC+(M2) = CC(M2) =
EXPTIME. (This complexity is due to Conto).

3.4.3 Overview of Results

We now give an overview of complexity results, and brief intuition about the proofs.
We study the decision problem for

• consistency of MCSs (MCSEQ);

• recognition of a diagnosis of a MCS (MCSD);

• recognition of a minimal diagnosis of a MCS (MCSDm);

• recognition of an inconsistency explanation of a MCS (MCSE); and

• recognition of a minimal inconsistency explanation of a MCS (MCSEm).

34

3.4. Computational Complexity

CgenU

CevalF

CgenV

CevalGCcheck

ru,i rv,j

rα

(rβ)

rγ

MCSEQ, MCSD, and MCSE hardness

MCSDm and MCSEm hardness

(a) Structures for lower context complexity CC−(M) = P

Ca ′ Cb′Ccheck

rα

(rβ)

rγ

ren

MCSEQ, MCSD, and MCSE hardness

MCSDm and MCSEm hardness

(b) Structures for generic lower context complexity CC−(M)

Figure 3.2: MCS structures for hardness reductions, where dotted areas indicate parts of the
MCS used for respective reductions.

Note that existence of diagnoses and explanations is trivial by our basic assumptions that M is
inconsistent and that M [∅] is consistent.

Table 3.1 summarizes our results for context complexities that are present in typical mono-
tonic and nonmonotonic KR formalisms. Corresponding theorems are given in Section 3.4.5,
which are more general than the results shown in Table 3.1.

For a given context complexity CC(M) of an MCSM , MCSEQ has the same computational
complexity as MCSD. If the context complexity is NP or above, this complexity is equal to
context complexity; for context complexity P, it is NP. Intuitively, this is explained as follows:
for context complexity NP and above, guessing a belief state and checking whether it is an
equilibrium can be incorporated into the complexity of the contexts without exceeding checking
cost; if the context complexity is P, this complexity is NP.

Recognizing minimal diagnoses MCSDm is complete for the complexity of MCSD, which
captures diagnosis recognition, and an additional complementary problem of refuting MCSD,
which captures diagnosis minimality recognition. For context complexity P we have that the
problem MCSDm is complete for DP

1 .

The complexity of MCSE is in the complementary class of the corresponding problem
MCSD. Intuitively this is because diagnosis involves existential quantification, while explana-
tion involves universal quantification. Accordingly, complexity of MCSEm is complementary
to MCSDm. As the complexity classes of MCSDm are closed under complement, MCSEm and
MCSDm have the same complexity.

These results show that minimal diagnosis and minimal explanation recognition are harder
than checking consistency (under usual complexity assumptions), while they are polynomially
reducible to each other.

35

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

3.4.4 Proof Outline

We treat context complexity of NP and above uniformly and the case of P separately. For
hardness results we use MCS structures depicted in Figure 3.2.

For context complexity P we use reductions from SAT, UNSAT or SAT-UNSAT instances
F and/or G to MCSs with context complexity P. These reductions use the structure shown in
Figure 3.2a, where contextsCgenU andCgenV generate a set of possible truth assignments to sets
of variables, CevalF and CevalG evaluate formulas F andG under these assignments, and Ccheck

checks whether the formulas are satisfiable and/or unsatisfiable. We obtain the hardness via
the nondeterministic guess that arises from the different belief sets accepted by contexts CgenU
and CgenV . (See also the description of logic LGUESS in the following.) Our reductions use
an acyclic system topology without negation as failure in bridge rules. Note that hardness can
also be obtained using a nonmonotonic guess in cyclic bridge rules which contain negation as
failure; in that case all contexts of the reduction can be deterministic, i.e., every context accepts
at most one belief set for any input. We give such an alternative hardness reduction in the proof
of Proposition 3, where we prove NP hardness of MCSEQ in an MCS of context complexity
P.

Hardness results for context complexity NP and above are established by a generic reduc-
tion: we reduce the problem of acceptability checking of contexts Ca (resp., Cb) with context
complexity X to decision problems in an MCS M with complexity X . These reductions use
the scheme shown in Figure 3.2b, where Ca ′ (resp., Cb′) evaluates the acceptability checking
problem of Ca (resp., Cb), and Ccheck tests whether the original problems are “yes” or “no”
instances.

For hardness reductions we use the following context logics.

• LASP is a logic for contexts that contain stratified propositional ASPs with constraints.
More in detail, if LASP = (BS,KB,ACC), then BS is the collection of sets of atoms
over a propositional alphabet Σ, KB is a set of logic programming rules over Σ, and
given a knowledge base kb ∈ KB, we define ACC(kb) = AS(kb), i.e., the context
accepts the set of answer sets of the logic program kb. If clear, Σ is omitted. In case
of stratified propositional ASPs with constraints, a program has at most one answer set.
From [DEGV01, Theorem 4.2] it follows that whether an atom A is part of this model is
P-complete. Thus, deciding given OUT i whether S′i ⊆ OUT i is a projected accepted
belief set, is P-complete; therefore context complexity is P.

• LGUESS(B) is a trivial logic over the set B that accepts all subsets of its knowledge base.
In detail, if logic LGUESS(B) = (BS,KB,ACC) then BS = KB = 2B is the powerset
of B, and ACC(kb) = 2kb for kb ∈ KB. If clear, B is omitted. The check whether
belief set S′i is accepted by knowledge base kbi can be done in time O(|kbi|+ |S′i|).

3.4.5 Detailed Results

We first formally define the decision problems we consider and then report the complexity re-
sults.

Definition 12. Given a MCS M , MCSEQ is the problem of deciding whether M has an equi-
librium.

Definition 13. Given a MCS M and a pair (A,B) with A,B ⊆ brM ,

• MCSD decides whether (A,B) ∈ D±(M), i.e., whether (A,B) is a diagnosis of M ;

• MCSDm decides whether (A,B) ∈ D±m(M), i.e., whether (A,B) is a minimal diagnosis
of M ;

36

3.4. Computational Complexity

• MCSE decides whether (A,B) ∈ E±(M), i.e., whether (A,B) is an inconsistency ex-
planation of M ; and

• MCSEm decides whether (A,B)∈E±m(M), i.e., whether (A,B) is a minimal inconsis-
tency explanation of M .

We next formulate the complexity results.

Proposition 3. The problem MCSEQ, given MCS M , is
• NP-complete if CC(M) = P, and
• CC(M)-complete if CC(M) is a class with complete problems that is closed under con-

junction and projection.

Proof. (Membership) Given a MCS M = (C1, . . . , Cn) we compute OUT i for all Ci in
O(|brM |), then we guess output projected belief sets S′i ⊆ OUT i, 1 ≤ i ≤ n, yielding
an output-projected belief state S′. We evaluate bridge rule applicability of all rules in S′

in time O(|brM |) and thereby obtain a set of active bridge rule heads Hi for each context
Ci, 1 ≤ i ≤ n. Finally we check acceptability of S′i for all contexts Ci, i.e., whether S′i ∈
ACCi(kbi ∪Hi)|OUT i . We accept if all contexts accept, otherwise we reject. This check is a
conjunction of n independent acceptability checks of maximum complexity equal to the small-
est upper bound on context complexities (i.e., upper context complexity) CC+(M). If CC+(M)
is closed under conjunction we can unite these checks into one check of complexity CC+(M)
over an instance of size O(|M |). Then the overall acceptability check is in CC+(M) as well.
This way we check the output-projected equilibrium property for all possible output-projected
equilibria. Therefore if no computation path accepts, then the MCSM is inconsistent. If there is
one path that accepts, then the output-projected belief state S′ corresponding to the guesses on
this path is an output-projected equilibrium which fulfills all conditions of Definition 10. There-
fore M is consistent iff at least one path accepts. Hence if CC+(M) is closed under conjunction
and projection, then the guess of size O(|brM |) can be projected away (i.e., incorporated into
I ′, see Section 2.3) and the complexity of MCSEQ is in CC+(M). For CC+(M) = P (which is
not closed under projection) the complexity of MCSEQ is in NP.

(NP-hardness for CC−(M) = P) We show that consistency checking in an MCS M with
lower context complexity CC−(M) = P is NP-hard. We use the part of the MCS struc-
ture in Figure 3.2a labeled with MCSEQ. We reduce a 3-SAT instance F = c1 ∧ . . . ∧ cn
on variables X = {x1, . . . , xk} and clauses ci = ci,1 ∨ ci,2 ∨ ci,3 with ci,j ∈ X ∪ {¬x |
x ∈ X} to consistency checking in an MCS M = (CgenU , CevalF , Ccheck). Context CgenU =
(LGUESS , kbgenU , brgenU) with kbgenU = X and brgenU = ∅ has linear context complexity,
while CevalF = (LASP , kbevalF , brevalF) and Ccheck = (LASP , kbcheck , brcheck) have context
complexity P. M contains the following bridge rules:

ru,i: (evalF : xi)← (genU : xi). ∀i : 1 ≤ i ≤ k (3.1)

rα: (check : nsat)← not (evalF : sat). (3.2)

Hence brevalF = {ru,i | ∀i : 1 ≤ i ≤ k} and brcheck = {rα}. The knowledge base kbevalF is
as follows:

sat i ← li,1. sat i ← li,2. sat i ← li,3. ∀i : 1 ≤ i ≤ n (3.3)

sat ← sat1, . . . , satn. (3.4)

where li,j is
{

xv if ci,j = xv
not xv if ci,j = ¬xv

The knowledge base kbcheck is as follows:

⊥ ← nsat . (3.5)

37

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

Context CgenU accepts all possible subsets of X , representing all possible truth assignments for
the variables X . (3.1) imports the truth assignment into CevalF , which evaluates F under that
truth assignment using rules (3.3) and (3.4). Then CevalF puts the belief sat in its belief set iff
F is satisfied given the truth assignment accepted by CgenU . Finally Ccheck imports the belief
nsat iff sat is not accepted at CevalF . Therefore constraint (3.5) makes Ccheck inconsistent, i.e.,
accepts no belief set, iff sat is not true in CevalF iff there is no satisfying truth assignment for
F . Therefore, if F has a satisfying assignment with variables T ⊆ X set to t and variables
X \ T set to f , then M has an equilibrium S = (SgenU , SevalF , Scheck) where SgenU = T ,
SevalF = T ∪{sat i | 1 ≤ i ≤ n}∪{sat}, and Scheck = ∅. Conversely, if M has an equilibrium
S = (SgenU , SevalF , Scheck), then Scheck does not contain nsat due to constraint (3.5). Hence
SevalF must contain sat , thus SevalF contains {sat}∪{sat i | 1 ≤ i ≤ n} due to (3.4). It follows
that the set of bridge rule heads active at CevalF corresponds to a satisfying assignment of F .
This shows that MCS M is consistent iff F is a satisfiable 3-SAT instance. As the size of M is
linear in the size of the formula F and 3-SAT is an NP-hard problem, hardness for equilibrium
existence follows.

(CC−(M)-hardness) We show that consistency checking in an MCS M with lower context
complexity CC−(M) is CC−(M)-hard if CC−(M) is a class with complete problems that is
closed under conjunction and projection. For that we use part of the MCS structure labeled with
MCSEQ in Figure 3.2b. We reduce context acceptability checking, i.e., an instance (Ha, Sa),
Ca = (kba, bra, La) with IN a, OUT a and context complexity CC(Ca) to consistency check-
ing in an MCS M = (Ca ′ , Ccheck) such that the context complexity CC(Ca ′) = CC(Ca) and
CC(Ccheck) = P. Intuitively, Ca ′ gets input Ha, bridge rule rα is applicable only if Sa is ac-
cepted by Ha, and Ccheck verifies whether rα is applicable. Then M is consistent iff (Ha, Sa),
Ca is a ‘yes’ instance. Formally, Ca ′ = (kba ∪H, ∅, La) uses knowledge base and logic from
Ca, while Ccheck = (kbcheck , brcheck , LASP) use the specific logic LASP that can be decided in
P. Bridge rules of M are as follows:

rα: (check : equalS′a)←l1, . . . , lj , . . . l|OUTa|.

where lj is
{

sj if sj ∈ OUT a ∧ sj ∈ Sa
not sj if sj ∈ OUT a ∧ sj /∈ Sa

(3.6)

ren : (check : en)←. (3.7)

The knowledge base kbcheck is as follows:

⊥ ← not equalS′a , en. (3.8)

Bridge rule ren ensures that Ccheck fulfills our assumption that a context without input is con-
sistent. Wlog. we assume that Ca accepts some belief set given input Ha. Ca ′ contains the logic
of Ca and its knowledge base already contains bridge rule heads Ha. Therefore Ca ′ accepts a
belief set Sfull

a , such that Sfull
a ∪ OUT a = Sa, iff (Ha, Sa), Ca is a ‘yes’ instance. Therefore,

belief state S = (Sfull
a , {equalS′a , en}) is an equilibrium iff (Ha, Sa), Ca is a ‘yes’ instance.

All belief states where Ca ′ accepts a belief set T with T ∩OUT a 6= Sa trigger constraint (3.8)
and therefore lead to an inconsistency. Therefore M has an equilibrium, and this equilibrium is
S iff context (Ha, Sa), Ca is a ‘yes’ instance for context acceptability checking. We thus have
reduced context acceptability checking to consistency checking in M and hardness follows.

(Alternative reduction for NP-hardness with P-contexts) Note that the above reduction for
P-contexts uses an acyclic MCS with stratified negation in bridge rules. Furthermore the context
CgenU accepts 2|X | belief sets and the contexts CevalF and Ccheck accept at most one belief set
for any input. In the above reduction NP-hardness arises from the nondeterminism of CgenU ,
i.e., from the number of belief sets potentially accepted by contextCgenU . It is possible to obtain
the hardness not from nondeterminism of a context but from nondeterminism of bridge rules. To
illustrate this, we next give an alternative hardness reduction. (In subsequent proofs we only give

38

3.4. Computational Complexity

one reduction, and there hardness arises from nondeterminism of contexts.) We reduce the same
3-SAT instance F to an MCS M = (C1) consisting of one context C1 = (LASP , kb1, br1). It
contains the following bridge rules br1:

(1 : xi)← not (1 : x̄i). ∀i : 1 ≤ i ≤ k (3.9)

(1 : x̄i)← not (1 : xi). ∀i : 1 ≤ i ≤ k (3.10)

(1 : en)←. (3.11)

The knowledge base kb1 is as follows:

sat i ← li,1. sat i ← li,2. sat i ← li,3. ∀i : 1 ≤ i ≤ n (3.12)

sat ← sat1, . . . , satn. (3.13)

⊥ ← en, not sat . (3.14)

where li,j is
{
xv if ci,j = xv
x̄v if ci,j = ¬xv

Without bridge rules, en is not true in the knowledge base, hence the body of constraint (3.14)
is never satisfied. Therefore C1 satisfies our assumption that a context without bridge rules is
consistent. The facts xi and x̄i are contained only in heads of bridge rules (3.9) and (3.10) and
not in heads of rules in kb1. Furthermore bridge rules (3.9) and (3.10) are mutually exclusive
in their applicability for each 1 ≤ i ≤ n. Therefore these bridge rules guess for each xi
whether xi or x̄i is part of the set of facts added to kb1. (3.12) and (3.13) evaluate F wrt.
the guess for xi: if xi is added by a bridge rule, then xi = t in F , otherwise xi = f . The
value of F wrt. the guess for xi and x̄i is represented as sat in kb1. The constraint (3.14)
makes the context inconsistent if en is true and sat is not true. Therefore if F is satisfied with
variables T ⊆ X set to t and variables X \ T set to f , then M has an equilibrium (S1) where
S1 = {xi | xi ∈ T } ∪ {x̄i | xi ∈ X \ T } ∪ {sat i | 1 ≤ i ≤ n} ∪ {sat , en}. Conversely,
if M has an equilibrium (S1), then S1 contains en due to the unconditional bridge rule (3.11).
Hence S1 must contain sat due to constraint (3.14), and thus S1 contains {sat i | 1 ≤ i ≤ n}
due to (3.13). Therefore the guess of bridge rules (3.9) and (3.10) corresponds to a satisfying
assignment of F . This shows that M is consistent iff F is satisfiable. Context C1 uses logic
LASP , therefore CC−(M) = CC(C1) = P. As the size of M is linear in the size of the formula
F and 3-SAT is an NP-hard problem, hardness for equilibrium existence follows.

Diagnosis recognition can be done by transforming the MCS using the given diagnosis can-
didate and deciding MCSEQ. On the other hand, MCSEQ can be reduced to diagnosis recog-
nition of the empty diagnosis candidate (∅, ∅). Therefore, diagnosis recognition has the same
complexity as consistency checking.

Proposition 4. The problem MCSD, given MCS M , is
• NP-complete if CC(M) = P, and
• CC(M)-complete if CC(M) is a class with complete problems that is closed under con-

junction and projection.

Proof. (Membership) Given MCS M and D1, D2 ⊆ brM , we compute M ′ = M [brM \ D1 ∪
cf (D2)] and return the result of deciding MCSEQ on M ′. By Definition 4, this returns ‘yes’ iff
(D1, D2) ∈ D±(M). The transformation can be done in time O(|M |) therefore MCSD is in
the same complexity class as MCSEQ.

(Hardness) Deciding whether (∅, ∅) is a diagnosis of M can be decided by checking con-
sistency of M , because (∅, ∅) ∈ D±(M) iff M is consistent. Therefore MCSD is as hard as
MCSEQ for respective context complexity.

39

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

Deciding whether a pair (A,B) is a ⊆-minimal diagnosis of an MCS M requires two
checks: (a) whether (A,B) is a diagnosis, and (b) whether no pair (A′, B′) ⊂ (A,B) is a
diagnosis. The pair (A,B) is a minimal diagnosis iff both checks succeed. This intuitively
leads to the following complexity result.

Proposition 5. The problem MCSDm, given MCS M , is
• DP

1 -complete if CC(M) = P,
• D(CC(M))-complete if CC(M) is a class with complete problems that is closed under

conjunction and projection.

Note that, as shown in Table 3.1, the second item implies that MCSDm is DP
i -complete if

CC(M) is complete for ΣP
i with i ≥ 1.

Proof. (Membership) Given MCS M and D1, D2 ⊆ brM , we solve two independent decision
problems: (a) we decide whether (D1, D2) is a diagnosis of M , and (b) we check whether a
smaller diagnosis (D′, D′′) ⊂ (D1, D2) exists in M . We return ‘yes’ if (a) returns ‘yes’ and
(b) returns ‘no’. Thus, this procedure returns ‘yes’ iff (a) (D1, D2) is a diagnosis and (b) no
⊆-smaller diagnosis exists. Therefore the computation yields the correct result. For (a) we
decide MCSD on M and (D1, D2). For (b) we guess for each bridge rule in D1 whether it
is contained in D′, and for each bridge rule in D2 whether it is contained in D′′. Then we
continue with the decision procedure MCSD on M and (D′, D′′), i.e., we guess presence of
output belief sets, evaluate bridge rule applicability, and check acceptability for each context.
Consequently for deciding (b) we decide the complement of a polynomial projection of MCSD.
Therefore MCSDm is in the complexity class of solving the MCSD problem and independently
solving the complement of a polynomially projected MCSD problem. Hence if CC+(M) is
closed under conjunction and projection, then the complexity of MCSDm is in D(CC+(M)).
For CC+(M) = P (which is not closed under projection) the complexity of MCSDm is in DP

1 .
(DP

1 -hardness for CC−(M) = P) We reuse ideas from the MCSEQ hardness proof for
3-SAT, but we now use the complete topology shown in Figure 3.2a. We reduce two 3-SAT
instances F and G on variables X and Y , respectively, to minimal diagnosis recognition on
MCS M = (CgenV , CevalF , CgenU , CevalG , Ccheck). Intuitively, CgenU and CevalF provide
NP-hardness for satisfiability of F , while CgenV and CevalG provide coNP-hardness for un-
satisfiability ofG. CgenU and CevalF are constructed from F exactly as for the proof of MCSEQ

hardness. Similarly,CgenV andCevalG are constructed fromGwith bridge rules rv,j transferring
a guessed set V ⊆ Y from CgenV to CevalG . The bridge rules in M are as follows:

ru,i: (evalF : xi)← (genU : xi). ∀i : 1 ≤ i ≤ |X | (3.15)

rv,j : (evalG : yj)← (genV : yj). ∀j : 1 ≤ j ≤ |Y| (3.16)

rα: (check : nsatF)← not (evalF : sat). (3.17)

rγ : (check : nsatG)← not (evalG : sat). (3.18)

Context Ccheck has the following knowledge base kbcheck :

⊥ ← nsatF . (3.19)

⊥ ← nsatG. (3.20)

If F and G are both satisfiable, M is consistent so (∅, ∅) ∈ D±m(M). If F is satisfiable and
G is unsatisfiable, M is inconsistent and a minimal diagnosis for M is ({rγ}, ∅). If F and G
are both unsatisfiable, M is inconsistent and a minimal diagnosis is ({rα, rγ}, ∅) ∈ D±m(M).
If F is unsatisfiable and G is satisfiable, M is inconsistent; ({rγ}, ∅) is no minimal diagnosis,
because every diagnosis containing rγ inD1 must also contain rα inD1 to restore consistency in
M . Therefore ({rγ}, ∅) is a minimal diagnosis of M iff F is satisfiable and G is unsatisfiable.
Therefore recognizing a minimal diagnosis in an MCS with CC−(M) = P is hard for DP

1 .

40

3.4. Computational Complexity

Note that it is possible to do this reduction with one context that evaluates F and G and checks
the result, using bridge rules that guess U and V and bridge rules that individually activate
satisfiability checking for F and G. However this would make the reduction less readable.

(D(CC−(M))-hardness) We show that recognizing minimal diagnoses in an MCS M with
lower context complexity CC−(M) is hard for D(CC−(M)) if CC−(M) is a class with com-
plete problems that is closed under conjunction and projection. We reduce two context com-
plexity check instances (Ha, Sa), Ca with IN a, OUT a and (Hb, Sb), Cb with IN b, OUT b

to an MCS M = (Ca ′ , Cb′ , Ccheck) with the topology shown in Figure 3.2b. Similar to the
generic hardness reduction for MCSEQ, we reduce Ha and Ca = (kba, bra, La) to the context
Ca ′ = (kba, bra ′ , La) with bra ′ = ∅ and we reduce Hb and Cb = (kbb, br b, Lb) to the context
Cb′ = (kbb, brb′ , Lb) with brb′ = ∅. Then CC(Ca ′) = CC(Ca) and CC(Cb′) = CC(Cb). Fur-
thermore Ca ′ accepts a belief set Sfull

a with Sfull
a ∩ OUT a = Sa iff (Ha, Sa), Ca is a ‘yes’

instance. Similarly Cb′ accepts a belief set Sfull
b with Sfull

b ∩ OUT b = Sb iff (Hb, Sb), Cb is a
‘yes’ instance. The bridge rules brcheck are as follows.

rα: (check : equalS′a)←l1, . . . , lj , . . . l|OUTa|.

where lj is
{

sj if sj ∈ OUT a ∧ sj ∈ Sa
not sj if sj ∈ OUT a ∧ sj /∈ Sa

(3.21)

rγ : (check : equalS′b
)←l1, . . . , lj , . . . l|OUT b|.

where lj is
{

sj if sj ∈ OUT b ∧ sj ∈ Sb
not sj if sj ∈ OUT b ∧ sj /∈ Sb

(3.22)

ren : (check : en)←. (3.23)

The knowledge base kbcheck is as follows:

n_equal ← not equalS′a . (3.24)

n_equal ← not equalS′b
. (3.25)

⊥ ← notn_equal , en. (3.26)

Bridge rule ren ensures that Ccheck fulfills our assumption that a context without input is con-
sistent. Wlog. we assume that Ca and Cb accept some belief set given input Ha and Hb, respec-
tively. Bridge rule rα adds equalS′a to Ccheck iff the first instance (Ha, Sa), Ca we reduce from
is a ‘yes’ instance. The same is true for rγ , equalS′b

and the second instance. Therefore there

exists an equilibrium S = (Sfull
a , Sfull

b , {equalS′a , equalS′b
, en}) inM , i.e., (∅, ∅) ∈ D±m(M), iff

both instances are ‘yes’ instances. Moreover, if the first instance is a ‘yes’ instance and the sec-
ond instance is a ‘no’ instance, then the system is inconsistent and there is a minimal diagnosis
(∅, {equalS′b

}) ∈ D±m(M). If both instances are ‘no’ instances, activating equalS′b
is not suffi-

cient for restoring consistency, and a minimal diagnosis for M is then (∅, {equalS′a , equalS′b
}).

Therefore (∅, {equalS′b
}) is a minimal diagnosis for M iff (Ha, Sa), Ca is a ‘yes’ instance and

(Hb, Sb), Cb is a ‘no’ instance of context acceptability checking. Therefore we have established
that MCSDm is hard for D(CC−(M)). Note that by nesting contexts Ca ′ and Cb′ into a new
context it is possible, although more complicated, to obtain a reduction with just one context
that is hard for D(CC−(M)).

Refuting a candidate (A,B) as an explanation of M can be done by guessing a pair of sets
(R1, R2) from Definition 6 and checking that M [R1 ∪ cf (R2)] is inconsistent. Then (A,B) is
a yes instance iff all guesses succeed, which leads to complementary complexity of consistency
checking for that problem. Hardness for context complexity classes C that are closed under
conjunction and projection is established via reducing two contexts of complexity C to an MCS
which (a) is consistent if both instances are ‘yes’ instances, (b) has a minimal diagnosis D if

41

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

both instances are ‘no’ instances, and (c) has a nonempty minimal diagnosis which is a subset
of D if one is a ‘yes’ and the other a ‘no’ instance. For context complexity P a similar approach
is used with two SAT instances.

Proposition 6. The problem MCSE, given MCS M , is

• coNP-complete if CC(M) = P, and
• co-CC(M)-complete if CC(M) is a class with complete problems that is closed under

conjunction and projection.

Note that, as shown in Table 3.1, the second item implies that MCSE is ΠP
i -complete if

CC(M) is complete for ΣP
i with i ≥ 1.

Proof. (Membership) For deciding (E1, E2) ∈ E±(M), we guess R1, R2 ⊆ brM and check
whether E1 ⊆ R2 and R2 ⊆ brM \ E2. If not, we immediately reject, otherwise we decide
MCSEQ of M [R1 ∪ cf (R2)]. Then all execution paths reject iff (E1, E2) is an explanation.
Therefore, if CC+(M) is a class with complete problems that is closed under conjunction and
projection, the complexity is in co-CC+(M). For CC+(M) = P (which is not closed under
projection) we obtain that MCSE is in coNP.

(coNP-hardness for CC−(M) = P) We reuse the MCSEQ hardness proof where a 3-SAT
instance F was reduced to MCS M = (CgenU , CevalF , Ccheck). Then satisfiability of F implies
consistency, therefore E±(M) = ∅, i.e., no inconsistency explanations exist. Unsatisfiabil-
ity of F implies inconsistency, and in that case, ({rα}, ∅) is an inconsistency explanation of
M . Therefore ({rα}, ∅) is recognized as inconsistency explanation of M iff F is unsatisfiable.
Therefore the problem MCSE in an MCS with CC−(M) = P is hard for coNP.

(co-CC−(M)-hardness) We reuse the MCSEQ hardness proof where we reduced an instance
I = (Ha, Sa), Ca to a MCS MI = (Ca ′ , Ccheck). If I is a ‘yes’ instance, then MI is consistent
so no inconsistency explanation exists. If I is a ‘no’ instance, an inconsistency explanation of
MI is ({ren}, {rγ}) ∈ E±(MI). Therefore the problem MCSE in an MCS M with lower con-
text complexity CC−(M) is hard for co-CC−(M) if CC(M) is a class with complete problems
that is closed under conjunction and projection.

For complexity results of recognizing minimal explanations we need the following Lemma
which limits the number of explanations that need to be checked to verify subset-minimality.

Lemma 3. An explanation Q = (Q1, Q2) is ⊆-minimal iff no pair (Q1, Q2 \ {r}) with r ∈ Q2

is an explanation and no pair (Q1 \ {r}, Q2) with r ∈ Q1 is an explanation.

Proof. We write (A1, A2) ⊂ (B1, B2) iff (A1, A2) ⊆ (B1, B2) and (A1, A2) 6= (B1, B2).
(⇒) AssumeQ = (Q1, Q2) is a minimal explanation. Contrary to the Lemma, assume there

exists another explanationQ′, such thatQ′ = (Q1, Q2\{r}) with r ∈ Q2 orQ′ = (Q1\{r}, Q2)
with r ∈ Q1. Then Q′ ⊂ Q, therefore Q is not minimal, contradicting the assumption.

(⇐) Assume an explanation Q = (Q1, Q2), and no pair (Q1, Q2 \ {r}) with r ∈ Q2

or (Q1 \ {r}, Q2) with r ∈ Q1 is an explanation. Contrary to the Lemma, assume another
explanation P = (P1, P2) exists with P ⊂ Q. By P ⊂ Q, either a) P1 ⊂ Q1 and P2 ⊆ Q2 or
b) P1 ⊆ Q1 and P2 ⊂ Q2. For a) we create T ′ = (Q1 \ {r}, Q2) for some r ∈ Q1 \ P1. Then
P ⊆ T ′ ⊂ Q. Due to Corollary 1, T ′ is an explanation, contradicting the initial assumption.
The case b) is similar.

Hence, we can check subset-minimality of explanations by deciding whether for linearly
many subsets of the candidate (A,B), none is an explanation, i.e., whether for each subset,
some (R1, R2) exists s.t. M [R1 ∪ cf (R2)] is consistent. As NP (resp., ΣP

i) is closed under
conjunction and projection, this check is in NP (resp., ΣP

i). In combination with checking
whether the candidate is an explanation, this leads to a complexity of DP

1 (resp., DP
i). For

42

3.4. Computational Complexity

context complexity C ∈ PSPACE (resp., C ∈ EXPTIME), D(C) = C. The hardness
reduction for MCSEm is very similar to the one for MCSDm.

Proposition 7. The problem MCSEm, given MCS M , is
• DP

1 -complete if CC(M) = P,
• complete for D(CC(M)) if CC(M) is a class with complete problems that is closed under

conjunction and projection.

Proof. (Membership) We can decide (E1, E2) ∈ E±m(M) using Lemma 3, i.e., we decide
(1) whether (E1, E2) ∈ E±(M), and (2) whether all of (E1, E2 \ {r | r ∈ E2}) /∈ E±(M)
and (E1 \ {r | r ∈ E1, E2}) /∈ E±(M) are true. Note that the number of E±-checks in (2) is
linear in the size of the instance, hence we obtain the following membership results: if the upper
context complexity CC+(M) is a class with complete problems that is closed under conjunc-
tion and projection, deciding (1) is in co-CC+(M) and deciding (2) is in CC+(M), therefore
MCSEm is in D(CC+(M)). For upper context complexity CC+(M) = P (which is not closed
under projection) deciding (1) is in coNP and deciding (2) is in NP and therefore MCSEm is
in DP

1 .
(DP

1 -hardness for CC−(M) = P) We use the same topology as for the MCSDm hard-
ness proof, i.e., the complete topology shown in Figure 3.2a. We reduce two 3-SAT instances
F and G on variables X and Y , respectively, to minimal explanation recognition on MCS
M = (CgenV , CevalF , CgenU , CevalG , Ccheck). Again, CgenU and CevalF provide NP-hardness
for satisfiability of F , while CgenV and CevalG provide coNP-hardness for unsatisfiability of
G. All contexts except for Ccheck are constructed from F and G exactly as in the MCSDm
hardness proof. Wlog. we assume that F is not valid. The bridge rules in M are as follows:

ru,i: (evalF : xi)← (genU : xi). ∀i : 1 ≤ i ≤ |X | (3.27)

rv,j : (evalG : yj)← (genV : yj). ∀j : 1 ≤ j ≤ |Y| (3.28)

rα: (check : sat_or_nsatF)←(evalF : sat). (3.29)

rβ: (check : sat_or_nsatF)← not (evalF : sat). (3.30)

rγ : (check : nsatG)← not (evalG : sat). (3.31)

Context Ccheck has the following knowledge base kbcheck :

⊥ ← sat_or_nsatF , notnsatG. (3.32)

If G is satisfiable, M is consistent, so E±m(M) = ∅. If F and G are unsatisfiable, the belief sat
is never accepted at CevalF ; therefore the bridge rule rβ is sufficient for creating inconsistency
in M (i.e., M [{rβ}] |= ⊥) and forcing rγ to become applicable is the only way to restore
consistency. Therefore if F and G are unsatisfiable, ({rβ}, {rγ}) ∈ E±(M). If F is satisfiable
and G is unsatisfiable, the belief sat may or may not be accepted at CevalF , depending on the
input CevalF gets from CgenU . Therefore both bridge rules rα and rβ are required for ensuring
inconsistency in M , and they are also sufficient. Again, forcing rγ to become applicable is
the only way to restore consistency. Therefore if F is satisfiable and G is unsatisfiable, then
({rα, rβ}, {rγ}) ∈ E±(M). Thus ({rα, rβ}, {rγ}) is a minimal inconsistency explanation for
M iff F is satisfiable and G is unsatisfiable. Note that if G is satisfiable, no explanations exist,
while if F is unsatisfiable, the above explanation exists but is no longer minimal. Therefore
recognizing a minimal inconsistency explanation in an MCS with CC−(M) = P is hard for
DP

1 .
(D(CC−(M))-hardness) We use the same topology as for the MCSDm hardness proof,

i.e., the complete topology shown in Figure 3.2b. We also use a very similar reduction. The
only change is in the checking context Ccheck . We reduce two context complexity check

43

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

instances (Ha, Sa), Ca with IN a, OUT a and (Hb, Sb), Cb with IN b, OUT b to an MCS
M = (Ca ′ , Cb′ , Ccheck). The bridge rules brcheck are as follows.

rα: (check : equalS′a)←l1, . . . , lj , . . . l|OUTa|.

where lj is
{

sj if sj ∈ OUT a ∧ sj ∈ Sa
not sj if sj ∈ OUT a ∧ sj /∈ Sa

(3.33)

rβ: (check : make_inc)←l1, . . . , lj , . . . l|OUTa|.

where lj is
{

sj if sj ∈ OUT a ∧ sj ∈ Sa
not sj if sj ∈ OUT a ∧ sj /∈ Sa

(3.34)

rγ : (check : equalS′b
)←l1, . . . , lj , . . . l|OUT b|.

where lj is
{

sj if sj ∈ OUT b ∧ sj ∈ Sb
not sj if sj ∈ OUT b ∧ sj /∈ Sb

(3.35)

ren : (check : en)←. (3.36)

Note that rα and rβ have the same body but different heads, moreover only rβ differs from the
MCSDm-reduction. The knowledge base kbcheck is as follows:

n_equala ← not equalS′a . (3.37)

n_equala ← make_inc. (3.38)

⊥ ← en,n_equala, not equalS′b
. (3.39)

The bridge rule ren ensures that Ccheck fulfills our assumption that a context without input is
consistent. Wlog. we assume that Ca and Cb accept some belief set given input Ha and Hb,
respectively. The bridge rule rα adds equalS′a to Ccheck iff the first instance (Ha, Sa), Ca is a
‘yes’ instance. Under the same condition, rβ adds make_inc. The bridge rule rγ adds equalS′b
to Ccheck iff the second instance (Hb, Sb), Cb is a ‘yes’ instance. In that case, M is consistent,
i.e., E±m(M) = ∅, because rγ becomes applicable and this deactivates constraint (3.39) such
that Ccheck can no longer become inconsistent. If both instances are ‘no’ instances, M is in-
consistent and for explaining this inconsistency it is sufficient to have ren present and the heads
of the bridge rules rα and rγ absent. Therefore, in that case, ({ren}, {rα, rγ}) is a minimal
inconsistency explanation for M . Finally, if (Ha, Sa),Ca is a ‘yes’ instance and (Hb, Sb),Cb is
a ‘no’ instance, M is inconsistent and for this inconsistency it is sufficient to have ren and rβ
present and heads of bridge rules rα and rγ absent, so ({ren , rβ}, {rα, rγ}) ∈ E±m(M). There-
fore ({ren , rβ}, {rα, rγ}) ∈ E±m(M) iff the first instance is a ‘yes’ instance and the second
instance is a ‘no’ instance. Note that if the second instance is a ‘yes’ instance, no explanations
exist, while if the first instance is a ‘no’ instance, the above explanation exists but is no longer
minimal. Therefore we have established that MCSEm is hard for D(CC−(M)) if CC(M) is a
class with complete problems that is closed under conjunction and projection.

3.5 Approximating Inconsistency Analyses

So far, we assumed an omniscient view of the system, where the user has full information about
all contexts including their knowledge bases and semantics. However, in many real world sce-
narios full information is not available [BO07], and some contexts are black boxes with internal
knowledge bases or semantics that are not disclosed due to intellectual property or privacy issues
(e.g., banks will not disclose their full databases to credit card companies). Partial behavior of
such contexts may be known, however querying the contexts might be limited, e.g., by contracts
or costs. In such scenarios, inconsistencies can only be explained given the knowledge of the
system one has, and since this is partial, the explanations obtained just approximate the actual
situation, i.e., those explanations one would obtain if one would have full insight.

44

3.5. Approximating Inconsistency Analyses

In other words, this calls for explaining inconsistency in an MCS with partial knowledge
about contexts, which raises the following technical challenges:

• how to represent partial knowledge about the system, and

• how to obtain reasonable approximations for diagnoses and inconsistency explanations in
the actual system (under full knowledge), ideally in an efficient way.

The first issue depends on the nature of this knowledge, and a range of possibilities exists. The
second issue requires an assessment method to determine such approximations. We tackle both
issues and make the following contributions (published in [SEF10, EFS10, EFS11]).

• We develop a representation of partially known contexts, which is based on context ab-
straction with Boolean functions. Partially defined Boolean functions [Val84, CHI88] are
then used to capture partially known behavior of a context.

• We exploit these representations to define over- and underapproximations of diagnoses
and explanations for inconsistency in the presence of partially known contexts. The ap-
proximations target either the whole set of diagnoses, or one diagnosis at a time; analo-
gously for explanations.

• For scenarios where partially known contexts can be asked a limited number of queries,
we consider query selection strategies.

• Finally, we discuss computational complexity of recognizing approximate explanations.
In contrast to semantic approximations for efficient evaluation [SC95], our approxima-
tions handle incompleteness, which usually increases complexity. Fortunately, our ap-
proach does not incur higher computational cost than in the case of full information.

Our results extend methods for inconsistency handling in MCSs to more realistic settings. This
allows us to identify reasons for inconsistency even if it is impossible to obtain full system
knowledge, and without increasing computational cost.

The following running example involves an access control system which uses a separate
credit card validity checking system for granting permissions to certain users. This scenario
involves policies and trust information which are often non-public and distributed [BO07]. It
demonstrates the necessity of reasoning under incomplete information.

Example 28 (Credit Card Example). Consider a MCS which consists of a permission database
Cperm , a credit card clearing context Ccc , and the following bridge rules schemas:

ra: (perm : person(PERSON))← >.
rb: (cc : card(CREDITCARD))← (perm : person(PERSON)),

not (perm : grant(PERSON)),
(perm : ccard(PERSON,CREDITCARD)).

rc: (perm : ccValid(CREDITCARD))← (cc : valid(CREDITCARD)).

Here ra defines a set of persons which is relevant for permission evaluation in Cperm ; rb spec-
ifies that, if some person is not granted access, credit cards of that person have to be checked;
and rc translates validation results to Cperm .

We next describe the context internals: Cperm is a Datalog program over signature Σperm =
{group, ccard , igrant , grant , ccValid} and hence uses Lasp

Σperm
as introduced in Example 3. The

knowledge base kbperm is as follows:

kbperm = {group(nina, vip); ccard(nina, cnr1); ccard(moe, cnr2);
igrant(PERSON)← person(PERSON), group(PERSON, vip);
grant(PERSON)← igrant(PERSON);
grant(PERSON)← ccValid(CREDITCARD), ccard(PERSON,CREDITCARD)}.

45

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

Context Ccc is a credit card clearing facility, which typically is neither fully disclosed to the
operator, nor can it be queried without significant cost. Hence, one obviously has to deal with
partial knowledge: Ccc accepts valid(X) iff card X is valid and validation is requested by
card(X). Without full insight or a history of past requests, we only know the behavior of Ccc

when no bridge rules are applicable: ACCcc(kbcc ∪ ∅) = {∅}.
The MCS formalism is defined on ground bridge rules. We next give the set of relevant

groundings of bridge rules.

r1: (perm : person(nina))← >.
r2: (perm : person(moe))← >.
r3: (cc : card(cnr1))← (perm : person(nina)),

not (perm : grant(nina)),
(perm : ccard(nina, cnr1)).

r4: (cc : card(cnr2))← (perm : person(moe)),
not (perm : grant(moe)),
(perm : ccard(moe, cnr2)).

r5: (perm : ccValid(cnr1))← (cc : valid(cnr1)).
r6: (perm : ccValid(cnr2))← (cc : valid(cnr2)).

Assume that MCS M cc
1 contains the above contexts and the following bridge rules: r1, r3, r4,

r5, r6, i.e., we want to check permissions of nina . As nina is in the vip group, there is no need
to verify a credit card, and M1 has the following equilibrium (we omit facts in kbperm):

({person(nina), igrant(nina), grant(nina)}, ∅).

For an example of inconsistency, consider M cc
2 which contains both contexts and bridge

rules r2, r3, r4, r5, r6, i.e., we want to check permissions of moe. Furthermore assume the
following full knowledge about Ccc: all credit cards are valid.

Observe that M cc
2 is inconsistent: moe is not in the vip group, card verification is required

by r4, and Ccc accepts valid(cnr2). This allows Cperm to derive grant(moe), which blocks
applicability of r4. This inconsistency is due to an unstable cycle inM cc

2 . Under full knowledge,
the set of ⊆-minimal diagnoses of M cc

2 is as follows:

D±m(M cc
2) =

{
({r2}, ∅), ({r4}, ∅), (∅, {r4}), ({r6}, ∅), (∅, {r6})

}
The first points out that the reason for inconsistency is our request. The second (resp., third)
diagnosis suggests to never (resp., always) check the credit card of moe. Finally the fourth
(resp., fifth) diagnosis suggests to never (resp., always) use the output of the credit card check.
As we obviously want to use the system, we will not remove the request. Furthermore, as we need
to use the output of the credit card check, the interesting diagnoses are those that point out r4 as
the reason for inconsistency. Indeed, schema rb should intuitively contain igrant(PERSON) in
its body instead of grant(PERSON). This would make the system behave as expected and grant
access, because moe has a valid credit card.

In the remainder of this section, we develop an approach which is able to point out a problem
in r4 without requiring complete knowledge.

3.5.1 Information Hiding

We first introduce an abstraction of contexts which allows us to calculate diagnoses and expla-
nations. We then generalize this abstraction to represent partial knowledge, i.e., contexts Ci
where either kbi, or ACCi is only partially known.

46

3.5. Approximating Inconsistency Analyses

Context Abstraction

We abstract from a context’s knowledge base kbi and logic Li by a Boolean function over the
context’s inputs IN i and output beliefs OUT i (see Definition 9).

Recall that a Boolean function (BF) is a map f : Bk → B where k ∈ N and B = {0, 1}.
Such a BF can also be characterized either by its true points T (f) = {~X | f(~X) = 1}, or by its
false points F (f) = {~X | f(~X) = 0}.

Given a set X ⊆U = {u1, . . . , uk}, we denote by ~XU the characteristic vector of X wrt.
some universe U (i.e. ~XU = (b1, . . . , bk), where bi = 1 if ui ∈X , 0 otherwise). We write ~X if U
is implicitly clear. Using this notation, we characterize sets of bridge rule heads I ⊆ IN i and
sets of output beliefs O ⊆ OUT i by vectors~IIN i and ~OOUT i , respectively. For example, given
O = {a, c}, and OUT i = {a, b, c}, we have ~O = (1, 0, 1).

Example 29 (ctd). We use the following (ordered) sets for inputs and output beliefs of Ccc:
IN cc = {card(cnr1), card(cnr2)}, and OUT cc = {valid(cnr1), valid(cnr2)}.

Definition 14. The unique BF fCi : B|IN i|+|OUT i| → B corresponds to the semantics of context
Ci in an MCS M as follows:

for all I ⊆ IN i, O ⊆ OUT i it holds that fCi(~I, ~O) = 1 iff O ∈ ACCi(kbi ∪ I)
∣∣
OUT i

.

Example 30 (ctd). With full knowledge (see Example 28), Ccc has as corresponding BF the
function fCcc (X,Y,X, Y) = 1 for all X,Y ∈ B, 0 otherwise.

If a context accepts a belief set O′ for a given input I , we obtain the true point (~I, ~O) of f
with O = O′ ∩OUT i. Similarly, each non-accepted belief set yields a false point of f . Due to
projection, different accepted belief sets can characterize the same true point.

In the following, we show that this context abstraction provides sufficient information to
calculate output-projected equilibria of the given MCS. Due to Lemma 2 we know that checking
consistency is possible using output-projected equilibria only. Hence, the abstraction also allows
for checking consistency and calculating diagnoses and explanations.

Intuitively, the representation of a context by a BF provides an input/output oracle, projected
to output beliefs. Therefore, the BF is sufficient for deciding whether an output-projected belief
state is an output-projected equilibrium as well.

To provide this result, and towards a representation of an MCS with partial knowledge of
certain contexts, we next provide a notation for an MCS M where the knowledge of a context
Ci is given by BF f , rather than kbi.

Definition 15. For every MCS M = (C1, . . . , Cn), BF f and index 1 ≤ i ≤ n, we denote
by M [i/f] the MCS M where context Ci is replaced by some context C(f) which contains the
set br i of bridge rules, a logic with a signature that contains INi ∪OUTi, and kbC(f) and
ACCC(f) are such that fC(f) = fCi .

For instance, C(f) could be based on classical logic or logic programming, with kbC(f)

over IN ∪OUT as atoms encoding f by clauses (rules) that realize the correspondence.
We now show that a BF representation of a context is sufficient for calculating output-

projected equilibria. We denote byM [i1, . . . , ik/f1, . . . , fk] the substitution of pairwise distinct
contexts Ci1 , . . . , Cik by C(f1), . . . , C(fk), respectively.

Theorem 4. Let M = (C1, . . . , Cn) be an MCS, and let fi1 , . . . , fik be BFs that correspond to
Ci1 , . . ., Cik . Then, EQ′(M) = EQ′(M [i1, . . . , ik/fi1 , . . . , fik]).

Proof. Let M? = M [i1, . . . , ik/fi1 , . . . , fik]. By construction M? = (C?1 , . . ., C
?
n), such that

Ci = C?i for non-substituted contexts, and br i = br?i for 1 ≤ i ≤ n. The latter also im-
plies IN i = IN ?

i and OUT i = OUT ?
i , for 1 ≤ i ≤ n. By Definition 10, EQ′(M) =

47

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

EQ′(M?) if the following condition (i) holds: for each pair (Ci, C
?
i) of contexts with Ci =

((KBi,BSi,ACCi), kbi, br i) and C?i = ((KB?
i ,BS?i ,ACC?

i), kb?i , br?i), and for all H ⊆
IN i: ACCi(kbi ∪H)|OUT i = ACC?

i (kb?i ∪H)|OUT i .
This trivially holds for non-substituted contexts. So let C?i = C(fi) be an arbitrary sub-

stituted context. By construction it holds that fC
?
i = fi. Furthermore, each fi corresponds to

its respective Ci, so fi = fCi . Thus, fC
?
i = fCi . Since fCi is defined in a 1–1 relationship

to ACCi(kbi ∪ H)|OUT i for all H ⊆ IN i (see Definition 14), we obtain that (i) holds for all
substituted contexts.

Partially Known Contexts. As the BF representation concerns only output beliefs, it already
hides part of the context, while we are still able to analyze inconsistency. Now we generalize
the BF representation to partially defined Boolean functions (pdBFs) (cf. [Val84, CHI88]), to
represent contexts where we have only partial knowledge about their output-projected behavior.

In applications, existence of such partial knowledge is realistic: for some bridge rule firings
one may know an accepted belief set of a context, but not whether other accepted belief sets
exist. Similarly one may know that a context is inconsistent for some input combination, but not
whether it accepts some belief set for other input combinations.

Formally, a pdBF pf is a function from Bk to B ∪ {?}, where ? stands for undefined (cf.
[Val84]). It is equivalently characterized by two sets [CHI88]: its true points T (pf) = {~X |
pf (~X) = 1} and its false points F (pf) = {~X | pf (~X) = 0}. We denote by U(pf) = {~X |
pf (~X) = ?} the unknown points of pf . A BF f is an extension of a pdBF pf , formally pf ≤ f ,
iff T (pf)⊆T (f) and F (pf)⊆F (f).

We connect partial knowledge of context semantics and pdBFs as follows.

Definition 16. A pdBF pf : Bk → B ∪ {?} is compatible with a context Ci in an MCS M iff
pf ≤ fCi (where fCi is as in Definition 14).

Therefore, if a pdBF is compatible with a context, one extension of this pdBF is exactly fCi ,
which corresponds to the context’s exact semantics.

Example 31 (ctd). Partial knowledge as given in Example 28 can be expressed by the pdBF
pf cc with T (pf cc) = {(0, 0, 0, 0)} and F (pf cc) = {(0, 0, A,B) | A,B ∈ B, (A,B) 6= (0, 0)}.
(See Example 29 for the variable ordering.)

In the following, a partially known MCS (M, i, pf) consists of an MCS M , where the con-
text Ci is partially known, given by pdBF pf which is compatible with Ci.

3.5.2 Approximations for Diagnoses

In this section, we develop a method for calculating under- and overapproximations of diag-
noses and explanations, using the pdBF representation for a partially known context Ci. For
simplicity, we only consider the case that a single context in the system is partially known (the
generalization is straightforward).

Each diagnosis is defined in terms of consistency, which is witnessed by an output-projected
equilibrium. Such an equilibrium requires a certain set of output beliefs O to be accepted by
the context Ci, in the presence of certain bridge rule heads I . This means that fCi has true
point (~I, ~O). For existence of an equilibrium where Ci gets I as input and accepts O, no more
information is required from fCi than this single true point. We thus can approximate the set of
diagnoses of M as follows:

• Completing pf with false points, we obtain the extension pf with T (pf) = T (pf). The
set of diagnoses witnessed by T (pf) contains a subset of the diagnoses which actually
occur in M , therefore we obtain an underapproximation.

48

3.5. Approximating Inconsistency Analyses

• Completing pf with true points, we obtain the extension pf as the extension of pf with
the largest set of true points. The set of diagnoses witnessed by pf contains a superset of
the diagnoses which actually occur in M , providing an overapproximation. Formally,

Theorem 5. Given a partially known MCS (M, i, pf), the following holds:

D±(M [i/pf]) ⊆ D±(M) ⊆ D±(M [i/pf]).

Proof. We prove the directionD±(M [i/pf]) ⊆ D±(M) as follows: each diagnosis (D1, D2) ∈
D±(M [i/pf]) induces a consistent MCS M? by removing bridge rules D1 and making bridge
rules D2 unconditional. Since (D1, D2) is a diagnosis, M? has at least one witnessing output-
projected equilibrium S′. At context Ci, S′ contains a certain set of output beliefs Oi = S′i,
furthermore the set of active bridge rule heads at Ci is Hi = app(br i, S

′).
Because S′ is an output-projected equilibrium, we have that Oi ∈ ACCi(kbi ∪Hi)|OUT i ,

so pf has a true point at (~I, ~O). Since pf is compatible with Ci, some extension of pf is equal
to fCi . Moreover, every true point of pf is a true point of pf , therefore every true point of pf

is a true point of fCi . Consequently, Ci accepts some Si for input Hi where Oi = Si ∩OUT i,
which proves that (D1, D2) is a diagnosis of M .

D±(M) ⊆ D±(M [i/pf]) is proved similarly: no true point of fCi is a false point of pf ,
and thus neither of pf . Consequently, all true points of fCi are true points of pf . Hence, all
accepted input–output “behaviors” of context Ci are accepted in the overapproximation, and
therefore each diagnosis in D±(M) is in D±(M [i/pf]) as well.

Example 32 (ctd). The extensions pf cc and pf
cc

are as follows:

T (pf cc) = B4 \ F (pf cc), F (pf cc) = F (pf cc),
T (pf

cc
) = T (pf cc), and F (pf

cc
) = B4 \ T (pf cc).

The underapproximation D±(M cc
2 [cc/pf

cc
]) yields several diagnoses, for instance

Dα = ({r2}, ∅), Dβ = ({r4}, ∅), and Dγ = (∅, {r6}).

The overapproximation D±(M cc
2 [cc/pf cc]) contains the empty diagnosis, i.e., Dδ = (∅, ∅),

because M cc
2 [cc/pf cc] is consistent with the following two equilibria:

({person(moe)}, ∅), and ({person(moe)}, {valid(cnr1)}).

Subset-minimality. If we approximate ⊆-minimal diagnoses, the situation is different. Ob-
taining additional diagnoses (due to overapproximation) may cause an approximated diagnosis
to be subset-minimal while that diagnosis is not necessarily a ⊆-minimal diagnosis under full
knowledge. However, at least one minimal diagnosis under full knowledge is a superset of ev-
ery approximated diagnosis. Vice versa, missing certain diagnoses (due to underapproximation)
can yield an approximated ⊆-minimal diagnosis which is a superset of (at least one) minimal
diagnosis.

In any case, if a diagnosis is⊆-minimal under both over- and underapproximation, then it is
also a minimal diagnosis under full knowledge.

Theorem 6. Given a partially known MCS (M, i, pf), the following hold:

for all D ∈ D±m(M [i/pf]) there exists D′ ∈ D±m(M) such that D′ ⊆ D (3.40)

for all D ∈ D±m(M) there exists D′ ∈ D±m(M [i/pf]) such that D′ ⊆ D (3.41)

D±m(M [i/pf])∩D±m(M [i/pf])⊆D±m(M) (3.42)

49

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

Proof. (3.40) For every diagnosis D ∈ D±m(M [i/pf]) by definition of D±m we know that D ∈
D±(M [i/pf]). From Theorem 5 we infer that D ∈ D±(M). If D is ⊆-minimal in D±(M),
then (3.40) follows for D′ = D, otherwise there exists a D′ ∈ D±m(M), such that D′ ⊆ D,
which also implies (3.40).

(3.41) The proof is similar, again using Theorem 5.
(3.42) D ∈ D±m(M [i/pf]) implies D ∈ D±(M). From D ∈ D±m(M [i/pf]), we infer

that there is no D′ ⊂ D such that D′ ∈ D±(M [i/pf]). Since by Theorem 5, D±(M) ⊆
D±(M [i/pf]), it follows that there is no D′ ⊂ D such that D′ ∈ D±(M). As D ∈ D±(M),
this proves D ∈ D±m(M).

Example 33 (ctd). Note that the diagnoses in Example 32 are in fact the ⊆-minimal diagnoses
of the under- and overapproximation, and they are actual ⊆-minimal diagnoses. Under com-
plete knowledge, additional ⊆-diagnoses exist which are not obtained by underapproximation.
Overapproximation, on the other hand, yields consistency and therefore an empty ⊆-minimal
diagnosis Dδ. In Section 3.5.4 we develop a strategy for improving this approximation if limited
querying of the context is possible.

We can use the overapproximation to reason about the necessity of bridge rules in actual
diagnoses: a bridge rule is necessary, if it is present in all diagnoses.1

Definition 17. For a set of diagnoses D, the set of necessary bridge rules is nec(D) = {r |
∀(D1, D2) ∈ D : r ∈ D1 ∪D2}.

Proposition 8. Given a partially known MCS (M, i, pf), the set of necessary bridge rules for
the overapproximation is necessary in the actual set of diagnoses. This is true for both arbitrary
and ⊆-minimal diagnoses, i.e.,

nec(D±(M [i/pf])) ⊆ nec(D±(M)), and nec(D±m(M [i/pf])) ⊆ nec(D±m(M)).

Proof. We first prove nec(D±(M [i/pf])) ⊆ nec(D±(M)): by Theorem 5, we have that
D±(M) ⊆ D±(M [i/pf]). Thus, if a bridge rule is contained in all diagnoses of the latter
set, it must also be contained in all diagnoses of the former.

Next, we prove nec(D±m(M [i/pf])) ⊆ nec(D±m(M)): towards a contradiction, assume
r ∈ nec(D±m(M [i/pf])) and r 6∈ nec(D±m(M)). Then, there exists some D ∈ D±m(M),
D = (D1, D2), such that r 6∈ D1 ∪ D2. By Theorem 6 (3.41), we have that there exists
D′ ∈ D±m(M [i/pf]), D′ = (D′1, D

′
2), such that D′ ⊆ D. Consequently, r 6∈ D′1 ∪ D′2, a

contradiction to r ∈ nec(D±m(M [i/pf])).

While simple, this property is useful in practice: in a repair of an MCS according to a
diagnosis, necessary bridge rules need to be fixed in any case.

3.5.3 Approximations for Inconsistency Explanations

So far we have only described approximations for diagnoses.

Example 34. In our examples, with complete knowledge there is one subset-minimal inconsis-
tency explanation:

E±m(M cc
2) =

{
({r2, r4, r6}, {r4, r6})

}
.

1Note that we do not consider the dual notion of relevance, as it is trivial in our definition of diagnosis: all bridge
rules are relevant in any D±(M).

50

3.5. Approximating Inconsistency Analyses

As we have seen in Theorem 1, we can characterize the set of explanations from the set of di-
agnoses. Intuitively, explanations are defined in terms of non-existing equilibria, and witnessing
equilibria of diagnoses are counterexamples for the existence of certain explanations.

Using this characterization of explanations, we can infer the following: a subset of the actual
set of diagnoses characterizes a superset of the actual set of explanations. This is true since a
subset of diagnoses will rule out a subset of explanations, allowing more candidates to become
explanations. Conversely, a superset of diagnoses characterizes a subset of the explanations.
From this insight and from Theorem 5, we obtain the following:

Theorem 7. Given a partially known MCS (M, i, pf), the following hold:

E±(M [i/pf]) ⊆ E±(M) ⊆ E±(M [i/pf]) (3.43)

for all E ∈ E±m(M [i/pf]) there exists E′ ∈ E±m(M) such that E′ ⊆ E (3.44)

for all E ∈ E±m(M) there exists E′ ∈ E±m(M [i/pf]) such that E′ ⊆ E (3.45)

E±m(M [i/pf]) ∩ E±m(M [i/pf]) ⊆ E±m(M) (3.46)

Proof. By Theorem 1 we have that E±(M) = HSM (D±(M)) and that E±(M [i/pf]) =
HSM (D±(M [i/pf])). By Theorem 5 we have that D±(M) ⊆ D±(M [i/pf]), and therefore
the overapproximation imposes a superset of constraints on the members of the hitting set
HSM (D±(M)) and therefore imposes a superset of constraints on E±(M). Hence a subset
of pairs (E1, E2) ∈ HSM (D±(M)) are elements of HSM (D±(M [i/pf])), therefore we have
that E±(M [i/pf]) ⊆ E±(M). By Theorem 5 we also have that D±(M [i/pf]) ⊆ D±(M),
hence the underapproximation imposes a subset of constraints on the members of the hit-
ting set E±(M) = HSM (D±(M)) and by similar argumentation as above we obtain that
E±(M) ⊆ E±(M [i/pf]).

The results (3.44), (3.45), and (3.46) directly follow from (3.43) and can be proved analo-
gously to the proofs of (3.40), (3.41), and (3.42) in Theorem 6.

Therefore, the extensions pf and pf allow to underapproximate and overapproximate diag-
noses as well as inconsistency explanations.

Example 35 (ctd). From pf
cc

as in Example 32, we obtain one ⊆-minimal explanation Eµ =
({r2, r4}, {r6}), which is a subset of the actual minimal explanation in Example 34.

3.5.4 Limited Querying

Up to now we used existing partial knowledge to approximate diagnoses, assuming that more
information is simply not available. However, in practical scenarios like our running example,
one can imagine that a (small) limited number of queries to a partially known context can be
made. Therefore we next aim at identifying queries to contexts, such that incorporating their
answers into the pdBF will yield the best guarantee of improvement in approximation accuracy.

Given a partially known MCS (M, i, pf), letD±∆(M, i, pf) =D±(M [i/pf])\D±(M [i/pf])

(in short: D±∆(pf) or D±∆) be the set of potential diagnoses, which are possible from the over-
approximation but unconfirmed by the underapproximation. A large set of potential diagnoses
provides less information than a smaller set. Hence, we aim at identifying unknown points of
pf which remove from D±∆ as many potential diagnoses as possible. To this end we introduce
the concept of a witness as an unknown point and a potential diagnosis that is supported by this
point if it is a true point.

Definition 18. Given a partially known MCS (M, i, pf), a witness is a pair (~X, D) s.t. ~X ∈
U(pf) and D ∈ D±(M [i/f~X]) ∩ D±∆, where f~X is the BF with the single true point T (f~X) =
{~X}. We denote by W(M,i,pf) the set of all witnesses wrt. (M, i, pf). If clear from the context,
we omit the subscript (M, i, pf).

51

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

Based on W we define the set wnd(~X) = {D | (~X, D) ∈ W} of potential diagnoses
witnessed by unknown point ~X, and the set ewnd(~X) = wnd(~X) \ {D | (~X′, D) ∈ W, ~X′ 6= ~X}
of potential diagnoses exclusively witnessed by ~X. These sets are used to investigate how much
the set of potential diagnoses is reduced when adding information about the value of an unknown
point ~X to pf .

Lemma 4. Given a partially known MCS (M, i, pf) and ~X ∈ U(pf), let pf ~X:0 (resp., pf ~X:1)
be the pdBF that results from pf by making ~X a false (resp., true) point. Then D±∆(pf ~X:1) =
D±∆(pf) \ wnd(~X), and D±∆(pf ~X:0) = D±∆(pf) \ ewnd(~X).

Proof of Lemma 4. We first prove D±∆(pf ~X:1) = D±∆(pf) \ wnd(~X). Intuitively, diagnoses in
wnd(~X) leave the set of potential diagnoses and enter the underapproximation.

Changing ~X from an unknown point into a true point has no effect on the result of the over-
approximation: in D±(M [i/pf]) all unknown points are transformed into true points, therefore
D±(M [i/pf ~X:1]) = D±(M [i/pf]). Each potential diagnosis requires some unknown point of
pf to be a true point, therefore from the definition of wnd we get that (a) wnd(~X) is the sub-
set of potential diagnoses, where each diagnosis is witnessed by an equilibrium with context
Ci accepting the input-output state ~X, and (b) wnd(~X) is not contained in the underapprox-
imation but is contained in the overapproximation. Adding a known true point ~X creates a
new known accepted input-output state on the partially known context. From (a) follows that
wnd(~X) ⊆ D±(M [i/pf

~X:1
]. From (b) we get that D±∆(pf ~X:1) = D±∆(pf) \ wnd(~X).

We now prove D±∆(pf ~X:0) = D±∆(pf) \ ewnd(~X). Intuitively, diagnoses in ewnd(~X) leave
the set of potential diagnoses and also leave the overapproximation.

Changing ~X from an unknown point into a false point has no effect on the result of the un-
derapproximation: in D±(M [i/pf]) all unknown points are transformed into false points, and
as a consequence, D±(M [i/pf

~X:0
]) = D±(M [i/pf]). From the definition of ewnd , we get that

(a) ewnd(~X) is the subset of potential diagnoses, where each diagnosis is witnessed by an equi-
librium with context Ci accepting the input-output state ~X, that requires ~X to be a true point, and
(b) no other unknown point ~X induces a witness for any diagnosis in ewnd(~X), and (c) ewnd(~X)
is not contained in the underapproximation and is contained in the overapproximation. Adding
a known false point ~X removes a potentially accepted input-output state on the partially known
context. From (a) and (b) it follows that ewnd(~X) ∩ D±(M [i/pf ~X:0]) = ∅. From (c) we get,
that D±∆(pf ~X:0) = D±∆(pf) \ ewnd(~X).

Note that ewnd(~X) ⊆ wnd(~X) ⊆ D±∆. If ~X is a true point, |wnd(~X)| many potential diag-
noses become part of the underapproximation; otherwise |ewnd(~X)| many potential diagnoses
are no longer part of the overapproximation. Knowing the value of ~X therefore guarantees a
reduction of D±∆ by |ewnd(~X)| diagnoses.

Proposition 9. Given a partially known MCS (M, i, pf), for all ~X ∈ U(pf) such that the
cardinality of ewnd(~X) is maximal, the following holds:

max
u∈B

∣∣D±∆ (pf ~X:u)
∣∣ ≤ min

~Y∈U(pf)
max
v∈B

∣∣D±∆ (pf ~Y:v)
∣∣ . (3.47)

Proof of Proposition 9. Given (M, i, pf) and ~X such that |ewnd(~X)| is maximal among ~X ∈
U(pf), (3.47) expresses the following: regardless of whether we obtain that ~X is a true or a false
point of context Ci, we have a guaranteed reduction of the set of potential diagnoses, and no
other ~X′ ∈ U(pf) can guarantee a greater reduction. The reason for this guaranteed reduction
is that getting information about an additional point either adds at least one diagnosis to the
underapproximation D±(M [i/pf]) or it removes at least one diagnosis from the overapproxi-
mation D±(M [i/pf]). In both cases at least one diagnosis is removed from the set of potential
diagnoses which is defined as D±(M [i/pf]) \D±(M [i/pf]).

52

3.5. Approximating Inconsistency Analyses

Quantitatively, acquiring information about unknown point ~X has two possible outcomes:
(i) ~X ∈ T (pf) and the reduction is wnd(~X) ; or (ii) ~X ∈ F (pf) and the reduction is ewnd(~X)
(see Lemma 4). As ewnd(~X) ⊆ wnd(~X) (Definition 18), the guaranteed reduction in size is
|ewnd(~X)|. The proposition follows, since ~X is chosen s.t. |ewnd(~X)| is maximal.

Proposition 9 suggests to query unknown points ~X where |ewnd(~X)| is maximum.
If there are more false points than true points (e.g., for contexts that accept only one belief

set for each input), using ewnd instead of wnd is even more suggestive. If the primary interest
are necessary bridge rules (cf. previous section), we can base query selection on the number of
bridge rules which become necessary if a certain unknown point is a false point. Let nwnd(~X) =
nec(D±\ewnd(~X))\nec(D±), where D± = D±(M [i/pf]), then |nwnd(~X)|many bridge rules
become necessary if ~X is identified as a false point.

Another possible criterion for selecting queries can be based on the likelihood of errors,
similar to the idea of leading diagnoses [dK91]. Although a different notion of diagnosis is
used there, the basic idea is applicable to our setting: if multiple problematic bridge rules are
less likely than single ones, or if we have confidence values for bridge rules (e.g., some were
designed by an expert, others by a less experienced administrator), then we can focus confirming
or discarding diagnoses that have a high probability. If we have equal confidence in all bridge
rules, this amounts to using cardinality-minimal potential diagnoses for determining witnesses
and guiding the selection of queries.

Example 36 (ctd). In our example, the set of potential diagnoses is large, but the cardinality-
minimal diagnosis is the empty diagnosis, which has the following property: at Ccc the bridge
rules add heads {card(cnr2)}, and Ccc either accepts ∅ or {valid(cnr1)} (the unrelated credit
card). Therefore, points (0, 1, 0, 0) and (0, 1, 1, 0) are the only witnesses for Dδ, and querying
these two unknown points is sufficient for verifying or falsifying Dδ. (Note that pf cc has 12
unknown points, the four known points (one true and three false points) are (0, 0, X, Y) s.t.
X,Y ∈ B.) After updating pf with these points (false points, if all credit cards are valid), the
overapproximation yields the ⊆-minimal diagnoses; this result is optimal.

Estimating Approximation Quality. The previously defined notation wnd and ewnd relates
unknown points to sets of potential diagnoses.

This correspondence allows to obtain an estimate for the quality of an approximation, sim-
ply by calculating the ratio between known and potential true (resp., false) points: a high value
of |T (pf)|
|T (pf)|+|U(pf)| indicates a high underapproximation quality, while a low value indicates an

underapproximation distant from the actual system. The same can be done for the overapproxi-
mation, by exchanging T (pf) with F (pf).

These estimates can be calculated efficiently and prior to calculating an approximation. A
decision between calculating an under- vs. an overapproximation could be based on this heuris-
tics.

Stronger Queries. Instead of membership queries which check whether O ∈ ACC(kb ∪ I)
for given (~I, ~O), one could use stronger queries that provide the value of ACC(kb ∪ I) for a
given ~I. On the one hand this allows for a better query selection, roughly speaking because
combinations of unknown points witness more diagnoses exclusively than they do individually.
On the other hand, considering such combinations increases computational cost. Another ex-
tension of limited querying is the usage of meta-information, e.g., monotonicity, or consistency
properties, of a partially known context.

53

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

3.5.5 Computational Complexity

As our approximation methods deal with incomplete knowledge, it is important how their com-
putational complexity compares to the full knowledge case which is shown in Table 3.1 on
page 32. With context complexity in P (resp., NP, ΣP

i), recognizing correct diagnoses under
full knowledge is in NP (resp., NP, ΣP

i) while recognizing minimal diagnoses and minimal
explanations under full knowledge is in DP

1 (resp., DP
1 , DP

i); completeness holds in all cases.
Let us first consider the case where some contexts Ci are given by their corresponding

BF fi (such that fi(~I, ~O) can be evaluated efficiently). As we know that context Ci accepts only
input/output combinations which are true points of f , we simply guess all possible output beliefs
Oi of all contexts and evaluate bridge rules to obtain Ii; if for some Ci as above, fi(~Ii, ~Oi)=0
we reject, otherwise we continue checking context acceptance for other contexts. Overall, this
method leads to the same complexity as if all contexts were total. Thus, detecting explanations
of inconsistency for an MCS M , where some contexts of M are given as BFs, has the same
worst case complexity as if M were given regularly.

Consider now the case of approximation. Given a MCS, where a pdBF pf is given instead of
a BF in a representation such that the value of pf (~I, ~O) can be computed efficiently. This implies
that the extensions pf and pf can be computed efficiently as well. Hence, approximations of
diagnoses and explanations have the same complexity as the exact concepts.

Dealing with incomplete information usually increases complexity, as customary for many
nonmonotonic reasoning methods. Our approach, however, exhibits no such increase in com-
plexity, even though it provides faithful under- and overapproximations.

3.6 Discussion and Related Work

We presented the notions of diagnosis and inconsistency explanation for explaining inconsis-
tencies in multi-context systems, showed relationships between these notions, analyzed their
computational complexity, and studied possibilities to approximate these notions in partially
known MCSs.

Due to presence of nonmonotonic contexts (witnessed by the decision support system in our
example) and the possibility of negation in bridge rules, the problem we deal with in this chapter
is more general than many other approaches for dealing with inconsistency in the literature.

Moreover, a decision for repair may need to take domain knowledge into account, as illus-
trated by our example, where it is not obvious how to resolve the dilemma. Therefore the work
in this chapter is the foundation for the subsequent work in this thesis, which ultimately culmi-
nates in the final chapter, where we apply the notions introduced in this chapter for specifying
a declarative policy language for (semi-)automatic inconsistency management in multi-context
systems.

Regarding our approach for approximating explanations of inconsistency, note that even if
nothing is known about the behavior of some context C, the overapproximation accurately char-
acterizes inconsistencies that do not involveC. Further work on approximations could use meta-
information about context properties to improve approximation accuracy. In particular learning
a BF seems suggestive for our setting of incomplete information. However, explaining inconsis-
tency requires correct information, therefore pac-learning methods [Val84] are not applicable.
On the other hand, exact methods [Ang88, HPRW96] require properties of the contexts which
are beneficial to learning and might not be present.2 Moreover, contexts may only allow mem-
bership queries, which are insufficient for efficient learning of many concept domains [Ang88].
Furthermore, partially known contexts may not allow many, even less a polynomial number of
queries (which is the target for learnability). Most likely it will thus not be possible to learn the

2Note that even if a context’s logic is monotonic (resp., positive), this does not imply that the BF corresponding
to the context is monotonic (resp., positive).

54

3.6. Discussion and Related Work

complete function. Hence learning cannot replace our approach, but it can be useful as a pre-
processing step to increase the amount of partial information. The incorporation of probabilistic
information into the pdBF representation is another interesting topic for future research.

Consecutive and Orthogonal Work. In conjunction with diagnoses and inconsistency expla-
nations, modularity properties for diagnoses and inconsistency explanations, refined notions of
diagnoses and explanations (i.e., bridge rule bodies are modified instead of removing them or
making them completely unconditional), and possibilities for using ceteris paribus orders for
selecting preferred diagnoses are described in [EFSW10], This work is continued in [EFW10]
with additional filter and preference notions over diagnoses, and the usage of conditional pref-
erence networks for selecting preferred diagnoses from the set of all diagnoses. Quantitative
assessment of diagnoses using inconsistency measures, and preference orders over categories
of bridge rules is described in [Wei10].

3.6.1 Related Work

We first discuss scientific literature that is tightly related to the work of this chapter. Then we
give a broader overview of related work about analyzing and/or repairing inconsistency.

Managing inconsistency in a homogeneous MCS setting is addressed in [BAH11, BA08].
The authors manage inconsistency by making bridge rules defeasible for inconsistency removal,
i.e., a rule is applicable only if its conclusion does not cause inconsistency. This concept is
described in terms of an argumentation semantics in [BA10]. The decision which bridge rules to
ignore is based, for every context, on a strict total order of all contexts. This set of ignored rules
then corresponds to a unique deletion-diagnosis whose declarative description is more involved
than our notion, but which is polynomially computable. However, the second component of
diagnoses, i.e., rules that are forced to be applicable, have no counterpart in the defeasible MCS
inconsistency management approach. Furthermore, the strict total order over contexts forces the
user to make (perhaps unwanted) decisions at design time; alternative orders require redesigns
and separate runs. Our approach does not require this, yet it has be combined with preference
orders [EFW10].

Debugging answer set programs, i.e., finding out why some program has no answer set, is
a task similar to computing diagnoses. Practical and theoretical work on this topic is described
in [Syr06,BGP+07]. Both approaches are similar to removal-based diagnoses. These results can
be used to compute (possibly constrained) diagnoses of an MCS, given that it has ASP contexts
and uses the more restrictive grounded equilibria semantics (cf. [BE07]).

Abduction was used in [IS95] to repair theories in (nonmonotonic) autoepistemic logics,
knowledge bases, and extended logic programs, by means of two notions of ‘explanation’ and
‘anti-explanation’. Given a theory K and abducibles Γ, an explanation (anti-explanation) in the
sense of [IS95] removes O⊆Γ and adds I ⊆Γ to entail (resp. not entail) an observation F . I.e.,
(K ∪ I) \ O |= F (explanation), resp. (K ∪ I) \ O 6|= F (anti-explanation). A repair of an
inconsistent K is given by an anti-explanation of F = ⊥. Our notion of diagnosis amounts
to a 2-sorted variant of such anti-explanations, where O ⊆ ΓO and I ⊆ ΓI ; under suitable
conditions, it is reducible to ordinary anti-explanations. However, the notion of explanation
introduced in this thesis has no counterpart in [IS95].

Model-based diagnosis is a method for detecting faulty components given a logical model
for correct and faulty behavior of system components, a logical model of the system, and a set of
observations (i.e., measurements) of a concrete system at hand where a problem shall be found.
This approach was introduced by Reiter in [Rei87]; a nice introduction and overview about
diagnosis and probing, including some criticism of the approach, can be found in [dKK03].
Model-based diagnosis of nonmonotonic systems is discussed in [PEB94], where the authors
point out that with a nonmonotonic modeling language, consistency-based and abductive diag-

55

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

nosis can no longer be regarded as separate techniques, and show how to integrate both types of
diagnosis into an abductive framework.

Related to our work on approximating diagnoses is [tTvH96], who aimed at approximat-
ing abductive diagnoses of a single knowledge base. They replaced classical entailment with
approximate entailment of [SC95], motivated by computational efficiency. However, there is
no lack of information about the knowledge base as in our case, moreover they approximate
semantics to gain efficiency, different from our approach that uses unmodified semantics of the
system. Model-based diagnosis for systems where no complete model is available has been de-
scribed in [CDT89], here some causal dependencies are “may-dependencies” and they are used
as abducibles in the diagnosis process, leading to strongly (resp. weakly) confirmed diagnoses,
where all (resp. some) may-dependencies lead to a certain diagnosis.

Lower and upper bounds of classical theories (viewed as sets of models [SK96]), known
as cores and envelopes, are related to our over- and underapproximations of D± and E±. En-
velopes also were used for (fast) sound, resp. complete, reasoning from classical theories.

The limited querying approach is related to optimal probing strategies [BRMO03]. How-
ever, we do not require probing to localize faults in the system, but to obtain information about
the behavior of system parts, which have a much more fine grained inner structure and more
intricate dependencies than the systems in [BRMO03]. (Those system parts have as possible
states ‘up’, and ‘down’, while in MCSs each partially known context possibly accepts certain
belief sets for certain inputs.)

Dealing with Inconsistency in Knowledge-based Systems

Inconsistency in knowledge-based systems and database systems follows three main approaches
in the literature: (a) repairing modifies the content of knowledge bases which are combined into
one system, (b) consistent query answering ignores a minimal subset of beliefs or subsystems
and operating on the resulting consistent system (no knowledge is permanently removed), and
(c) paraconsistent reasoning where no knowledge is ignored but instead there are at least parts
of an overall solution which use inconsistency as an additional information and reason using
inconsistent information

Different from all these approaches, the primary aim of this chapter is to provide a solid
and useful theoretical framework for analyzing inconsistency. We do not aim at automatically
restoring consistency, although our notions can be used to achieve that.

Repair Approaches. A lot of work about dealing with inconsistency has focused on the re-
pair of data, i.e., to change knowledge bases in order to restore consistency. In case of multiple
knowledge bases, these approaches regard the mappings (or similar concepts) between knowl-
edge bases as fixed. We here also include approaches that do not modify original data but copy
them and operate on the copy (belief merging and information integration).

Belief revision [AGM85,Pep08] and belief merging [KP05] are two approaches for combin-
ing beliefs [GRP09]. In belief revision, an existing knowledge base is updated with new beliefs,
therefore it might be necessary to remove some beliefs before adding new ones. In contrast
to that, belief merging is an approach for combining possibly conflicting beliefs from several
knowledge bases into one resulting consistent knowledge base without the notions of prior and
new beliefs. In that respect, our approach is related more to belief merging than to belief revi-
sion. Belief merging combines homogeneous knowledge bases using expressive mappings and
a simple topology, and removes conflicting beliefs by modifying knowledge bases. Different
from that, MCSs are decentralized systems with more complex topologies and heterogeneous
components, and our work concentrates on the mappings between these components. Overall,
belief merging is weakly related to our notion of deletion diagnosis.

Information integration approaches like Infomix [LGI+05] wrap several sources, material-
ize that information in one schema and combine it in a Global-as-View approach; inconsisten-

56

3.6. Discussion and Related Work

cies are resolved by modifying the materialized information. This can be regarded similar to
this work’s approach of modifying the mapping between information systems, as the source is
not modified. Different from MCSs, information integration approaches use hierarchical system
topologies which are acyclic (usually only a star topology) and semantics that can be evaluated
using fixpoint algorithms. On the other hand they contain a more expressive mapping formalism
than bridge rules in MCSs. Therefore inconsistency management in information integration sys-
tems can be seen as implicit suppression of mappings and implicit generation of missing tuples
which corresponds to deactivating bridge rules and forcing bridge rules to become applicable,
respectively.

Federated Databases are a distributed formalism for linked databases [HM85]. Objects
can be exported and imported using a decentralized negotiation between two databases. The
architecture can be described as a MCS with stratified (mostly monotonic) contexts including
constraints, and positive bridge rules. Instability is rarely possible and not addressed, incoher-
ence is handled in a database-typical manner of cascading or rejecting local or distributed con-
straints. [SL90] is a survey from 1990 focusing on the issues of heterogeneity (mostly referring
to the integration of different query languages) and autonomy (access granting and revoking).
Several protocols for global integrity constraint enforcement are presented in [GW96]. These
protocols define the quiescent state of the system — when it is at rest — and ensure that no con-
straints are violated in such states. Consistency is defined as consistency during certain points
in time, whereas this work is not specific to a certain evaluation protocol and does not consider
transient states of the system. Even though SQL and stratified Datalog allows for nonmono-
tonicity, the possibility of instability in a distributed database system — due to a cycle going
through such a construct — has not been addressed by the literature.

Ontology mapping [CSH06] and the related fields ontology merging, alignment, and inte-
gration, aim at the reuse of ontologies by combining them and identifying mappings between
concepts, roles, and individuals that denote the same entity in different ontologies. This is usu-
ally done by automatic statistical methods which ‘discover’ mappings. Such mappings may
introduce inconsistency in the (global or local) view on the resulting ontology, even though all
individual ontologies are consistent. Consistency is achieved by not adding a mapping in case
it would add an inconsistency. Ontology mapping considers heterogeneous ontologies, however
heterogeneity there often refers to different nomenclatures expressed in different ontologies, dif-
ferent from MCSs where heterogeneity refers to combining systems based on different logical
formalisms. Due to the integration of knowledge from different sources and the treatment of in-
consistencies arising from that integration, ontology mapping is related to our work. However,
in MCSs, mappings are initially given and not automatically discovered by statistical methods.
Furthermore our approach does not avoid but it explains inconsistency.

Consistent Query Answering. In this section, we relate to approaches that do not remove
information but ignore it temporarily to reason on a consistent system.

Consistent query answering [ABC03, Ber11] is related to this work because it can be seen
as an approach that automatically applies deletion-diagnoses (and sometimes even adds missing
tuples) to suppress inconsistencies for answering queries over inconsistent relational databases.
In contrast, diagnoses and explanations aim at making inconsistencies visible, as they can hint
at problems that should be investigated.

Consistent query answering over description logic ontologies is described in [LR07], where
the TBox is considered as correct, while the ABox as possibly inconsistent, and queries are
answered on maximal consistent subsets of the ABox wrt. the TBox.

Peer-to-peer data integration [CGL+08] is an automatic approach for repairing inconsis-
tency by ignoring inconsistent components, or by ignoring beliefs held by a minority of peers in
the system to deal with inconsistency. Different from that, our approach explains inconsistency
by pointing out mappings that must be changed to achieve consistency; we do not automatically

57

3. ANALYZING INCONSISTENCY IN MULTI-CONTEXT SYSTEMS

fix the system, in particular we do not ignore contexts or minorities. Different from MCSs,
peer-to-peer data integration deals with systems that have a dynamically changing architecture,
i.e., peers may enter or leave the system anytime.

Modular Ontologies are a framework where consistent description logic modules utilize and
realize a set of interfaces [ED08]. These interfaces are connected by Distributed Description
Logic (DDL) bridge rules [BS03]. Consistent query answering in a module is achieved by using
the maximum consistent set of interfaces utilized by this module only, therefore whole interfaces
will be ignored if they would cause any inconsistency in the module. Similarly, a peer-to-peer
approach for propositional knowledge bases [BM08] answers queries over a maximal consistent
subset of knowledge bases. In terms of MCSs, both approaches correspond to ignoring all
beliefs of certain contexts from all bridge rules in the system to fix inconsistency. Contrary to
that, our approach allows heterogeneous systems and a much more fine-grained modification of
bridge rules.

Paraconsistent Approaches. This section considers related approaches that do not eliminate
inconsistency but use it for reasoning. For that reason, paraconsistent approaches are related to
the approach of this work more than data cleaning and consistent query answering.

Gabbay and Hunter argue strongly for managing inconsistency, in contrast to avoiding, re-
moving, or ignoring it [GH91]. They give various real life examples where humans deal with
inconsistency without problems, in particular because there is no need to restore consistency at
all, or because it is advantageous to postpone restoring consistency to a later point in time. In
general they argue that “inconsistency implies action” and consider as important issues (a) to
allow for contradictions, (b) to use relevance information, (c) to provide meta-inference (rules
about rules), (d) to not completely reject information (it might become useful again), (e) to
connect learning with inconsistency (“Learning is a process that is directed by inconsistency.”),
(f) to consider argumentation, and (g) to consider several possibilities as solution without de-
ciding immediately which one to prefer. They propose a framework of a database together with
a supplementary database, that can act on the database using an action language. Proposed ac-
tions are (a) learning, (b) information acquisition, (c) inconsistency removal (belief revision,
truth maintenance), (d) inference preference (applying inference strategies and nonmonotonic
reasoning), and (e) argumentation (directing a dialogue). They propose to use Labeled Deduc-
tive Systems (LDS) [Gab93] as underlying logical formalism. LDSs are a formalism which
captures different kinds of monotonic and nonmonotonic logics, similar as the MCS logic ab-
straction. However LDSs are calculus-based while MCS logics are model-based.

The Data and Action formalism [GH93] is a more concrete realization of the initial ideas
in [GH91]. This formalism uses an ‘object level’ logic (Da Costa’s paraconsistent logic Cω
[DCC86]) and a ‘meta level’ logic (temporal logic). The main principle is that the meta-level
reflects the state of the object level over time. The meta level is always consistent, and it may
modify an inconsistent object level (which would in turn create a feedback into the meta-level).
Gabbay and Hunter describe their goal as a generalization of several approaches to deal with
inconsistency, namely paraconsistency (which localizes inconsistency), truth maintenance sys-
tems (which force consistency on data by removing/adding certain beliefs), and integrity con-
straints (which fully prevent inconsistent data from entering a database).

Many-valued logics and paraconsistent logic programming are two further approaches for
dealing with inconsistency. Early work in this field was done by Blair and Subrahmanian [BS89]
and by Kifer and Lozinskii [KL92]. They define annotated predicate calculus (APC) for rea-
soning in the presence of inconsistency, based on a lattice-valued logic where values correspond
with degrees of beliefs and each atomic formula is annotated with such a value. Recent work
that focusses on multi-valued logic is due to Schenk, who models the trust on different infor-
mation sources in the semantic web as an extension of the four-valued logic FOUR [Sch08].
He uses external predicates which lead to bridge-rule like constructions, to model information

58

3.6. Discussion and Related Work

flow between trusted (direct access) and less trusted (cache) information sources. This frame-
work is then generalized to a finite number of trust levels, along with a definition of stable and
well-founded semantics. The truth values in extended FOUR are>i,j , ti,j , fi,j and⊥i,j , with i
and j designating the information source. Inconsistency is the assignment of >i,j ; the source of
an inconsistency can be detected from the indices which indicate single-module inconsistency
(>i,i) or a module-interaction inconsistency (>i,j , i 6= j). Recent work on paraconsistency is by
de Amo and Sakuray Pais who use the paraconsistent logic LFI1 to define P-Datalog as query
language for inconsistent databases [dAP07]. They assume that data is labeled either as “sure”
or as “controversial”, their truth values are true, false, inconsistent, and unknown. They present
an evaluation method based on an alternating fixed-point operator.

59

4 Realizing Inconsistency Analysis in
MCSs with HEX

In this chapter, we describe a method for computing the notions introduced in the previous
chapter and also describe an implementation of that method.

We first show how diagnoses and equilibria of MCSs can be computed by rewriting the
MCS at hand into a formalism of computational logic, in particular into HEX-programs. For the
rewriting we establish how diagnoses and equilibria correspond to answer sets of the rewritten
HEX-program.

We then describe the architecture and functionality of the tool MCS-IE [MIE12a], which is
an open source prototype realized in the framework of the dlvhex [DHX12] software. MCS-IE

supports various analyses of inconsistency in MCSs using the the HEX-rewritings discussed in
this chapter. We discuss experiences about performance of the MCS-IE tool and describe how
these experiences prompted the research described in the subsequent chapter.

Our contributions, which have been published in less detail than here in [EFSW10,BEFS10]
are as follows.

• We give a (naive) rewriting from an MCS M to a HEX program PD(M) such that answer
sets of PD(M) correspond 1-1 to diagnoses of M .

• We give a rewriting from an MCS M to a HEX program Pp(M) such that answer sets of
Pp(M) correspond 1-1 to output-projected equilibria of M .

• We combine the previous two rewritings which yields a more efficient rewriting PDp (M)

such that answer sets of PDp (M) correspond 1-1 to the set of diagnoses plus witnessing
output-projected equilibria of M .

• We describe the architecture of MCS-IE, show examples for input and output files cor-
responding to our Inconsistent Medical Example, and briefly show how the tool is used
from the command line.

• Finally we discuss experiences of using the tool, in particular experiences regarding eval-
uation performance and scalability.

4.1 Computing Diagnoses by Rewriting to HEX

We next use HEX programs to describe a generic approach for computing diagnoses, and a
way for checking consistency of MCS. In order to compute diagnoses more efficiently, we then
integrate both approaches into one HEX encoding.

4.1.1 Generic Approach

We can compute diagnoses for some MCS M by guessing a candidate diagnosis and checking
whether it yields a consistent system.

61

4. REALIZING INCONSISTENCY ANALYSIS IN MCSS WITH HEX

Due to Proposition 2, we only consider diagnoses (D1, D2) where D1 ∩D2 = ∅; diagnoses
with D1 ∩D2 6= ∅ can always trivially be reconstructed from such diagnoses. Furthermore the
omitted diagnoses are never minimal, and we are often interested only in the latter.

Given an MCS M , we assemble a HEX-program PD(M) as follows. For each bridge rule
r ∈ brM , we add the following guessing rule (here and in the following, we use constant r as a
name for rule r):

norm(r) ∨ d1 (r) ∨ d2 (r). (4.1)

Intuitively, predicates d1 and d2 hold bridge rules that are removed fromM , respectively bridge
rules that are added to M in unconditional form; norm denotes unmodified bridge rules.

Furthermore we create a check for the diagnosis property, which is ‘outsourced’ to an exter-
nal atom &eqM [d1 , d2]() with the following evaluation function:

f&eqM (I, d1 , d2) = 1 iff M [brM \ {r | d1 (r) ∈ I} ∪ cf ({r | d2 (r) ∈ I})] 6|= ⊥. (4.2)

Using this external atom, the following constraint eliminates all answer sets that do not corre-
spond to diagnoses:

← not&eqM [d1 , d2](). (4.3)

The program PD(M) comprising (4.1) and (4.3) properly captures diagnoses. The answer sets
I of PD(M) correspond to the diagnoses (DI,1, DI,2) of an MCS M as follows.

Theorem 8. Let M be an MCS and let PD(M) be as above. Then (i) for each answer set I
of PD(M), the pair (DI,1, DI,2) = ({r ∈ brM | d1 (r) ∈ I}, {r ∈ brM | d2 (r) ∈ I}) is a
diagnosis of M , and (ii) for each diagnosis (D1, D2) ∈ D±(M) with D1 ∩D2 = ∅, there is an
answer set I of PD(M) such that (DI,1, DI,2) = (D1, D2).

For proving the correctness of our HEX encodings, we use some lemmas.

Lemma 5. Let P = R ∪ C be a HEX program consisting of an ordinary HEX-program R and
a set of constraints C which contain external atoms. Then for every I ∈ AS(P) it holds that
I ∈ AS(R) and I does not satisfy the body of any constraint in C.

Proof. From I ∈ AS(P) we know that I |= P and therefore I |= R and I |= C. From the latter
we infer that I does not satisfy the body of any constraint in C (i.e., the second claim). Thus
the reduct fP I does not contain any constraint from C. Hence fP I = fRI and I is a minimal
model of fRI as it is a minimal model of fP I .

Lemma 6. Let P be a HEX program, and let I ∈ AS(P) be an answer set of P . Then for every
atom a ∈ I it holds that there is a rule r ∈ P of form (2.3) with a ∈ {a1, . . . , ak} and I satisfies
the body of r.

Proof. Assume towards a contradiction that I ∈ AS(P), a ∈ I and no rule r ∈ P is such that a
is in the head of r and I satisfies the body of r. Due to the latter assumption, no rule that contains
a in the head is contained in fP I . Since I is an answer set of P , I |= fP I , therefore the bodies
of all rules in fP I are satisfied by I . Hence every rule in fP I has a nonempty intersection of
its head with I (otherwise I 6|= fP I). Because no rule in fP I contains a in the head, it follows
that I \ {a} |= fP I , therefore I is no minimal model of fP I and no answer set, which is a
contradiction.

Proof of Theorem 8. (⇒) Given I ∈ AS(PD(M)), due to Lemma 5 we have (a) I ∈ AS(R)
where R contains rules (4.1), and (b) constraint (4.3) has an unsatisfied body. Due to (a) the
pair (DI,1, DI,2) is such that DI,1, DI,2 ⊆ br(M). From (b) we know that the external atoms
in (4.3) evaluate to true, therefore from (4.2) we knowM [br(M)\DI,1∪cf (DI,2)] 6|= ⊥, hence
(DI,1, DI,2) ∈ D±(M).

62

4.1. Computing Diagnoses by Rewriting to HEX

(⇐) Given (D1, D2) ∈ D±(M) with D1 ∩ D2 = ∅, the corresponding Q = {norm(r) |
r ∈ brM \ (D1 ∪ D2)} ∪ {d1 (r) | r ∈ D1} ∪ {d2 (r) | r ∈ D2} satisfies rules (4.1), further-
more PD(M) contains only constraint (4.3) apart from (4.1), and this constraint, per definition
of f&eqM

, has an unsatisfied body if (D1, D2) ∈ D±(M). Therefore the reduct fPD(M)Q con-
tains only the rules (4.1). For each rule r ∈ br(M), Q contains exactly one atom from the set
{norm(r), d1 (r), d2 (r)}. Hence Q satisfies the reduct fPD(M)Q, furthermore for each atom
we remove from Q, Q no longer satisfy one rule in (4.1). Therefore Q is a minimal model of
fPD(M)Q and hence Q ∈ AS(PD(M)).

Note that to compute all answer sets of PD(M), the function feqM , which amounts to con-
sistency checking in an MCS, will be called 3|br(M)| times. The approach we develop in the
following can drastically reduce the computational effort by performing large parts of the MCS
consistency checking within the HEX encoding, with external atoms used only for evaluating
ACC of each context in M .

4.1.2 Consistency Checking

Consistency of an MCS can be checked by computing output-projected equilibria. For that, we
assemble a program Pp(M) as follows.

We guess presence or absence of each output belief of each context in M , where we repre-
sent each belief p using a constant p:

pres i(p) ∨ abs i(p). for all p ∈ OUT i, 1 ≤ i ≤ n. (4.4)

Given an interpretation I of Pp(M), we use Ai(I) = {p | pres i(p) ∈ I}, 1 ≤ i ≤ n, to denote
the set of output beliefs at context Ci, corresponding to the guess in (4.4).

We evaluate each bridge rule (2.1) by two corresponding HEX rules, depending on output
beliefs guessed in (4.4):

bi(s)←not d1 (r), presc1(p1), . . . , prescj (pj),

not prescj+1
(pj+1), . . . , not prescm(pm). (4.5)

bi(s)←d2 (r). (4.6)

Given an interpretation I of Pp(M), we use Bi(I) = {s | bi(s) ∈ I} to denote the set of bridge
rule heads at context Ci, activated by the output-projected belief state A(I) = (A1(I), . . .,
An(I)). Note that atoms d2 (r) and d1 (r) will become useful in the next step (Theorem 9), when
we integrate Pp(M) with PD(M). For now, they do not occur in any rule head in the program,
therefore (4.5) will never be deactivated by d1 (r) and (4.6) will never become applicable.

Finally, we ensure that answer sets of the program correspond to output-projected equilibria
by checking whether each context Ci accepts the guessedAi(I) wrt. the setBi(I) of bridge rule
heads activated by bridge rules. For that we create an external atom

&con_outi [pres i, bi]()

which realizes ACCi in an external computation. This external atom returns true iff context
Ci, when given Bi(I), accepts a belief set Si such that Si projected to output-beliefs OUT i is
equal to Ai(I). Formally,

f&con_outi(I, pres i, bi) = 1 iff Ai(I) ∈ ACCi(kbi ∪Bi(I))|OUT i . (4.7)

We complete Pp(M) by adding the following constraints:

← not&con_outi [pres i, bi](). for all i with 1 ≤ i ≤ n. (4.8)

Let the program Pp(M) comprise the rules (4.4), (4.5), (4.6), and (4.8). Then the answer sets I
of Pp(M) correspond to output-projected equilibria of M as follows.

63

4. REALIZING INCONSISTENCY ANALYSIS IN MCSS WITH HEX

Proposition 10. Let M be an MCS, and let Pp(M) as above. Then (i) for each answer set I ,
the belief stateA(I) is an output-projected equilibrium of M , and (ii) for each output-projected
equilibrium S ′ of M there is an answer set I of Pp(M) such that A(I) = S ′.

As existence of output-projected equilibria characterizes consistency of MCSs (Theorem 2),
we obtain the following.

Corollary 3. Given an MCS M , Pp(M) has some answer set iff M is consistent.

Proof of Proposition 10. (i) Given I ∈ AS(Pp(M)), due to Lemma 5 we have (a) I ∈ AS(R)
where R contains rules (4.4), (4.5), and (4.6); and (b) no constraint (4.8) has a satisfied body.
In R, (4.4) are the only rules with pres i and abs i atoms in the head, therefore Ai(I) ⊆ OUT i

for each context Ci ∈ c(M). Hence A(I) is an output-projected belief state of M . Due to
Lemma 6, I does not contain d1(r) or d2(r) for any r ∈ br(M), as no rule contains these atoms
in the head; therefore (4.6) never has a satisfied body and I always satisfies not d1(r) in (4.5).
Due to Lemma 6, I contains bi(s) iff there is at least one bridge rule r ∈ br(M) such that in
the corresponding rule (4.5), for all i, 1 ≤ i ≤ j, presci(pi) ∈ I , and for all l, j < l ≤ m,
prescl(pl) /∈ I . This in turn is the case iff for all (ci : pi) in the body of r, pi ∈ Aci(I), and for
all not (cl : pl) in the body of r, pl /∈ Acl(I). The same is true iff bridge rule r is applicable
in A(I), therefore we have Bi(I) = {hb (r) | r ∈ app(br i,A(I))} for each Ci ∈ c(M). From
(b) we can infer that for every context Ci ∈ c(M), constraint (4.8) has an unsatisfied body,
therefore the external atom returns false, hence Ai(I) ∈ ACCi(kbi ∪Bi(I))|OUT i . We further
obtainAi(I) ∈ ACCi(kbi∪{hb (r) | r ∈ app(br i,A(I))})|OUT i for every Ci ∈ c(M), which
exactly satisfies Definition 10. Therefore A(I) is an output-projected equilibrium of MCS M .

(ii) Given an output-projected equilibrium S′ = (S′1, . . . , S
′
n) of M , we assemble an inter-

pretation I of Pp(M) as follows: I = {ai(p) | p∈S′i, 1 ≤ i ≤ n}∪{āi(p) | p∈OUT i \S′i, 1 ≤
i ≤ n} ∪ {bi(s) | s∈Hi, 1 ≤ i ≤ n}, with Hi = app(br i, S

′). Facts (4.4) are contained in
the reduct fPp(M)I . By construction of I and by the definition of bridge rule applicability,
and because d1 has an empty extension in I , all bodies of rules (4.5) which correspond to
an applicable bridge rule in S′ are satisfied, therefore these rules are part of fPp(M)I . Be-
cause d2 has an empty extension in I , no rule from (4.6) is part of fPp(M)I . Since S′ is an
output-projected equilibrium, for each Ci there exists some S′i ∈ ACCi(kbi ∪ Hi)|OUT i . As
Bi(I) = Hi and Ai(I) = S′i, we obtain that Ai(I) ∈ ACCi(kbi ∪ Bi(I))|OUT i , therefore
f&con_outi(I, ai, bi) = 1 for all Ci, and I does not satisfy the body of any constraint (4.8).
Hence none of the constraints (4.8) is part of fPp(M)I . I satisfies all rules of Pp(M) and
all rules of fPp(M)I . Pp(M) does not contain loops, neither does fPp(M)I , hence I is a
⊆-minimal model of fPp(M)I and therefore I ∈ AS(Pp(M)).

4.1.3 Combining Diagnosis Guess and Consistency Checking

To implement f&eqM in the program PD(M), we could use Pp(M): given a candidate diagnosis
(D1, D2), we simply add a representation of this candidate using facts d1 (X) and d2 (X) to
Pp(M). The resulting program is equivalent to Pp(M [brM \D1 ∪ cf (D2)]). By returning 1 iff
that program has some answer set, we obtain a faithful implementation of f&eqM .

However, it is possible (and moreover more efficient) to directly integrate the programs
Pp(M) and PD(M): let PDp (M) be the program comprising Pp(M) and the rules (4.1). In
PDp (M) the diagnosis guess in predicates d1 and d2 directly activates or deactivates bridge rule
evaluation in (4.5) and (4.6). The answer sets I of PDp (M) then correspond to the diagnoses
(DI,1, DI,2) and to the output-projected equilibria (S′1(I), . . . , S′n(I)) of the MCS M [brM \
DI,1 ∪ cf (DI,2)] as follows.

Theorem 9. Let M be an MCS, and let PDp (M) be as above. Then

64

4.1. Computing Diagnoses by Rewriting to HEX

(i) for each answer set I of PDp (M), the pair (DI,1, DI,2) = ({r ∈ brM | d1 (r) ∈ I}, {r ∈
brM | d2 (r) ∈ I}) is a diagnosis of M and the tuple A(I) = (A1(I), . . . , An(I)) (see
above) is an output-projected equilibrium of M [brM \DI,1 ∪ cf (DI,2)]; and

(ii) for each diagnosis (D1, D2) ∈ D±(M) whereD1∩D2 = ∅, and for each output-projected
equilibrium S′ of M [brM \ D1 ∪ cf (D2)], there exists an answer set I of PDp (M) such
that (D1, D2) = (DI,1, DI,2) and S′ = A(I).

Proof. (i) Given I ∈ AS(PDp (M)), due to Lemma 5 we have (a) I ∈ AS(R) where R contains
rules (4.1), (4.4), (4.5), and (4.6); and (b) no constraint (4.8) has a satisfied body. As in Pp(M),
every I corresponds to a unique belief stateA(I) of M , and as in PD(M), every I corresponds
to a unique pair (DI,1, DI,2), DI,1, DI,2 ⊆ brM . Due to Lemma 6, I contains bi(s) iff at least
one of the following is true: d2(r) ∈ I and accordingly r ∈ DI,2, or there is at least one bridge
rule r ∈ br(M) such that d1(r) /∈ I and in the corresponding rule (4.5) we have that for all i,
1 ≤ i ≤ j, presci(pi) ∈ I , and for all l, j < l ≤ m, prescl(pl) /∈ I; this holds iff r /∈ DI,1

and r ∈ app(br i(M),A(I)), which holds iff r ∈ app(br i(M) \ DI,1,A(I)). Therefore, for
each context Ci ∈ c(M) we have Bi(I) = {hb (r) | r ∈ app(br i(M) \ DI,1,A(I))} ∪
{hb (r) | r ∈ DI,2}. The condition-free bridge rules are always applicable, therefore Bi(I) =
{hb (r) | r ∈ app(br i(M [brM \ DI,1 ∪ cf (DI,2)]),A(I))}. Note that in this expression,
first all bridge rules of M are modified using DI,1 and DI,2, then the bridge rules of context
Ci of the result are extracted using br i(·). From (b) we know that for every context Ci ∈
c(M), the external atom in (4.8) returns false, therefore Ai(I) ∈ ACCi(kbi ∪ Bi(I))|OUT i

for every Ci ∈ c(M). Substituting Bi(I) we obtain Ai(I) ∈ ACCi(kbi ∪ {hb (r) | r ∈
app(br i(M [brM \ DI,1 ∪ cf (DI,2)]),A(I))})|OUT i . Therefore A(I) is an output-projected
equilibrium of MCS M [brM \DI,1 ∪ cf (DI,2)] and (DI,1, DI,2) ∈ D±(M).

(ii) Given a diagnosis (D1, D2) ∈ D±(M) and given an output-projected equilibrium
S′= (S′1, . . . , S

′
n) of M ′ = M [brM \D1 ∪ cf (D2)] we assemble the interpretation

I = {d1 (r) | r ∈ D1}∪ {d2 (r) | r ∈ D2}∪ {norm(r) | r /∈ (D1 ∪D2)}∪
{ai(p) | p ∈ S′i}∪ {āi(p) | p ∈ OUT i \ S′i}∪ {bi(s) | s ∈ Hi}

where Hi = app(br i(M
′), S′). Since S′ is an output-projected equilibrium, I satisfies con-

straints (4.8), therefore they are not part of the reduct fPDp (M)
I . By construction of I , those

rules in (4.5) where r ∈ D1 or r is not applicable in A(I) have an unsatisfied rule body, so
these rules are not part of the reduct. Those rules in (4.6) where r ∈ D2 have a satisfied rule
body, so these rules are always part of the reduct. Other rules in (4.5) or (4.6) are satisfied by I
as their body is not satisfied. For each applicable bridge rule r, the according head atom bi(s)
is part of I , and PDp (M) contains no cyclic dependencies between rules (hence neither does

the reduct fPDp (M)
I). Therefore I is a minimal model of rules (4.5) and (4.6) in the reduct.

Rules (4.1) and (4.4) are contained in the reduct, and I by construction is a minimal model of
these rules. Therefore I is a model of PDp (M) and a minimal model of fPDp (M)

I , and we have
that I ∈ AS(PDp (M)).

Creating one HEX-program that contains both guessing of diagnosis candidates and evalu-
ation of bridge rule semantics has the advantage of one level less of HEX indirection than the
naive approach of using Pp(M) in f&eqM . This allows to reduce the number of external com-
putations, e.g., if the inconsistency of one context makes acceptability checks on other contexts
unnecessary.

In Section 4.2 we discuss an implementation of PDp (M) and practical results on scalability.

65

4. REALIZING INCONSISTENCY ANALYSIS IN MCSS WITH HEX

4.1.4 Explanations

So far we only discussed how to compute diagnoses. For obtaining explanations there are two
ways: either compute them from the set of diagnoses using Theorem 1, or compute them via an
encoding directly in HEX. Such an encoding uses the saturation technique (see, e.g., [EIK09]) to
do a check over all subsets, resp., subsets of rules in an explanation candidate, as per definition
of explanation (Definition 6).

An appropriate rewriting has been developed, primarily by Antonius Weinzierl. As we dis-
cuss this rewriting in subsequent sections, for completeness’ sake we here give the full encoding.
We also give some intuition why the encoding works but we omit the formal proof of correctness
which can be found in the PhD thesis of Weinzierl.

The encoding PE(M) is as follows. We guess an explanation candidate (E1, E2), where
we represent E1, resp., E2 by predicates e1 , resp., e2 :

e1 (r) ∨ ne1 (r). e2 (r) ∨ ne2 (r).

We guess a pair (R1, R2) with E1 ⊆ R1 ⊆ brM and R2 ⊆ brM \ E2 as follows:

r1 (R)← e1 (R).

r1 (R) ∨ nr1 (R)← ne1 (R).

nr2 (R)← e2 (R).

r2 (R) ∨ nr2 (R)← ne2 (R).

We further guess a belief state of M ; to this end we add for every a ∈ OUT i with 1 ≤ i ≤
|c (M) | the following rule:

pres i(a) ∨ abs i(a).

Saturation invalidates an answer set if some classical model of the reduct is smaller than the
saturated model of the program. Therefore we need to encode bridge rules in a special way,
such that a bridge rule head is in the classical model iff at least one bridge rule body of a bridge
rule with that head is satisfied. For each bridge rule r of the form

(i : b)← (i1 : b1), . . . , (ik−1 : bk−1), not(ik : bk), . . . , not(im : bm)

we add the following rules:

body(r)← r1 (r), pres i1(b1), . . . , pres ik−1
(bk−1),

abs ik(bk), . . . , abs im(bm).
r1 (r)← body(r).

pres i1(b1)← body(r). abs ik(bk)← body(r).
...

...
pres ik−1

(bk−1)← body(r). abs im(bm)← body(r).

Next, if a body of a rule is satisfied, the head is active at the respective context Ci (indicated by
predicate ini). We thus add for each bridge rule r the rules

ini(b)←body(r).

ini(b)←r2 (r).

Furthermore, if the head is added to the context, either one of the bridge rules has a satisfied
body, or one of the bridge rules is unconditionally added (i.e., in R2). Therefore, for the set
{r1, . . . , rk} of bridge rules with head (i : b), we have the following rules:

body(r1) ∨ . . . ∨ body(rk) ∨ r2(r1) ∨ . . . ∨ r2(rk)← ini(b).

66

4.2. Implementation: MCS-IE System

We derive spoil whenever the guess for R1, R2, or the belief state is invalid:

spoil ←r1 (r),nr1 (r).

spoil ←r2 (r),nr2 (r).

spoil ←pres i(a), abs i(a).

We also derive spoil if some context does not accept its belief state given its bridge rule inputs:

spoil ←&con_out ′i [spoil , pres i, ini, out i]().

For that we create the external atom &con_out ′i which is true iff the respective context would
not accept or if spoil is in the answer set: formally it has the following semantics:

f&con_out′i
(I, pres i, bi) = 1 iff f&con_outi(I, pres i, bi) = 0 or spoil ∈ I. (4.9)

To saturate all guesses, we add the following rules for all r ∈ brM , i ∈ c (M) , a ∈ OUT i, and
b ∈ INi:

r1 (r)←spoil . r2 (r)←spoil .

nr1 (r)←spoil . nr2 (r)←spoil .

abs i(a)←spoil . pres i(a)←spoil .

ini(b)←spoil . body(r)←spoil .

Finally, we require that only spoiled answer sets survive.

← not spoil .

As an interpretation I of PE(M) is an answer set if and only if it is a minimal model of
fPE(M)I , I can not be an answer set if there exists some I ′ ⊂ I with I ′ being a model of
fPE(M)I . Therefore, if the guess forR1, R2 and the belief state is not acceptable at some con-
text, then spoil is derived and saturation takes place. On the other hand, if any such guess yields
an equilibrium of M , all contexts accept. Therefore 4.9 yields 0 for all external atoms, spoil is
not in the answer set, and the corresponding interpretation I ′ is a subset of the spoiled answer
set. This means an answer set is eliminated if and only if the guessed explanation candidate is
not an explanation. Therefore, intuitively, answer sets of program PE(M) correspond 1-1 to
explanations of MCS M .

4.2 Implementation: MCS-IE System

We have implemented the rewriting PDp and Pp and the saturation encoding for computing
explanations in the MCS-IE [MIE12a] tool, the MCS Inconsistency Explainer [BEFS10], which
is an experimental prototype based on the dlvhex [DHX12] solver. MCS-IE solves the reasoning
tasks of enumerating output-projected equilibria, diagnoses, minimal diagnoses, explanations,
and minimal explanations of a given MCS.

Figure 4.1 shows the architecture of the MCS-IE system, which is implemented as a plugin
to the dlvhex solver. The MCS M at hand is described by the user in a master input file, which
specifies all bridge rules and contexts (it may refer to context knowledge base files). Depending
on the configuration of MCS-IE, the desired reasoning tasks are solved using one of the three
rewritings Pp(M), PDp (M), resp. PE(M), on the input MCS M . MCS-IE enumerates answer
sets of the rewritten program, and potentially uses a ⊆-minimization module, and a module
which realizes the conversions between diagnosis and explanation notions as described in The-
orem 2 and Corollary 2. As a consequence of the asymmetry of duality (see Section 3.3.1),

67

4. REALIZING INCONSISTENCY ANALYSIS IN MCSS WITH HEX

extract
D±/E±/EQ ′

⊆-min

convert to
dual notion

⊆-min

D±/E±/EQ ′

D±m/E±m

E±/-

E±m/D±m

HEX

evaluation

answer
sets

rewrite using
PDp /PE /Pp

HEX

program

MCS-IE

input file

user
defined
contexts

builtin
contexts

context input files
(kbi)

refers
to

dlvhex Output Rewriter

dlvhex external
atom API

data flow
control flow

external
atoms:

Figure 4.1: Architecture of the MCS-IE system.

master.hex
#context(1,"dlv_asp_context_acc", "db.dlv").
#context(2,"dlv_asp_context_acc", "lab.dlv").
#context(3,"ontology_context3_acc", "").
#context(4,"dlv_asp_context_acc", "dss.dlv").

r1: (2:customer02031985) :- (1:person02031985).
r2: (3:pneumonia) :- (2:xray_pneumonia).
r3: (3:marker) :- (2:blood_marker).
r4: (4:need_ab) :- (3:bacterial_disease).
r5: (4:need_strong) :- (3:atyppneumonia).
r6: (4:allow_strong_ab) :- not (1:allergy_strong_ab).

db.dlv
allergy_strong_ab.
person02031985.

lab.dlv
customer03021985.
xray_pneumonia.
blood_marker.
:- customer03021985, customer02031985.

dss.dlv
give_strong v give_weak :- need_ab.
give_strong :- need_strong.
ngive_strong :- need_strong, not allow_strong_ab.
:- give_strong, ngive_strong.

Figure 4.2: Examples for MCS topology and knowledge base input files of the MCS-IE tool,
encoding our running example (except for Conto which is realized in C++, see Figure 4.3).

68

4.3. Discussion

there are two distinct possibilities for obtaining the set of explanations, minimal explanations,
and minimal diagnoses, while there is only one possibility for obtaining the set of diagnoses and
output-projected equilibria.

Contexts can be realized in MCS-IE as ASP programs, or by writing a context reasoning
module using a C++ interface which allows for implementing arbitrary formalisms that can be
captured by MCS contexts.

Example 37 (ctd). Figure 4.2 shows files which encode the Medical Example MCS M2 in the
MCS-IE input format. ContextsCdb ,Clab , andCdss are formalized in ASP, with knowledge bases
db.dlv, lab.dlv, and dss.dlv, these contexts are evaluated using the DLVsolver. On the
other hand, ontology reasoning in Conto is implemented as a user-defined MCS-IE context in
C++: the source code in Figure 4.3 can be compiled to yield a dlvhex plugin which realizes
semantics of Conto . For more details about the format and the interface we refer to [BEFS10]
and to the source code documentation of MCS-IE. Inconsistency in our running example can be
explained by calling the MCS-IE plugin for dlvhex with the following command line (assuming
the plugin in the current directory):

$ dlvhex2 --plugindir=./ --ieenable --ieexplain=Dm,Em master.hex

MCS-IE calculates the following output, containing minimal diagnoses plus witnessing equilib-
ria (Dm:EQ:), and minimal inconsistency explanations (Em):

Dm:EQ:({r1,r5},{}):({allergy_strong_ab,person02031985},{blood_mark
er,xray_pneumonia},{atyppneumonia,bacterial_disease},{})

Dm:EQ:({r1},{r6}):({allergy_strong_ab,person02031985},{blood_marke
r,xray_pneumonia},{atyppneumonia,bacterial_disease},{})

Dm:EQ:({r1,r3},{}):({allergy_strong_ab,person02031985},{blood_mark
er,xray_pneumonia},{bacterial_disease},{})

Dm:EQ:({r1,r2},{}):({allergy_strong_ab,person02031985},{blood_mark
er,xray_pneumonia},{},{})

Em:({r2,r3,r5},{r6})
Em:({r1},{})

For researching notions of inconsistency analysis in MCSs without the need of building and
installing the software, an online version [MIE12b] of MCS-IE is available. Figure 4.4 shows a
screenshot of this web interface.

4.3 Discussion

We discuss scalability then other possibilities for computing diagnosis and explanations.

Scalability

Even though it is not primarily geared towards efficiency, MCS-IE is a useful research tool for the
notions introduced in this work. As expected, MCS-IE shows the following behavior wrt. effi-
ciency: rewriting PDp (M), which uses guess-and-check, shows better performance than rewrit-
ing PE(M), which expresses the coNP task of recognizing explanations in the ΣP

2 formalism
of full-fledged disjunctive HEX programs.

However, experiments with MCS-IE showed that even PDp (M) does not scale well with
reasonably sized systems. We looked for alternative rewritings, and soon found out that our
rewriting is not the problem; instead, the HEX evaluation algorithm itself was the main reason
for lack of scalability, and we also identified possibilities to improve the algorithm.

69

4. REALIZING INCONSISTENCY ANALYSIS IN MCSS WITH HEX

#include "ContextInterfaceAtom.h"
#include "ContextInterfacePlugin.h"

DLVHEX_MCSEQUILIBRIUM_PLUGIN(7,0,0,MedExamplePluginContext3,0,1,0)

namespace
{

DLVHEX_MCSEQUILIBRIUM_CONTEXT(Context3,"ontology_context3_acc")

std::set<std::set<std::string> >
Context3::acc(

const std::string& param,
const std::set<std::string>& input)

{
std::set<std::set<std::string> > ret;
// accept all input
std::set<std::string> s(input.begin(),input.end());
if(input.count("pneumonia") == 1

&& input.count("marker") == 1)
{

// additionally accept atyppneumonia
s.insert("atyppneumonia");

}
if(input.count("pneumonia") == 1)
{

// additionally accept bacterial_disease
s.insert("bacterial_disease");

}
ret.insert(s);
return ret;

}

void MedExamplePluginContext3::registerAtoms(
ProgramCtxData& pcd) const

{
registerAtom<Context3>(pcd);

}
}

Figure 4.3: Examples for C++ implementation of context semantics for context Conto . This file
can be compiled into a MCS-IE context plugin.

70

4.3. Discussion

This led to the work of the next chapter, where we develop a better HEX evaluation for-
malism, which divides and conquers the guessing space more efficiently [EFI+11]. In terms
of performance, the evaluation of PDp (M) previously scaled exponentially in the total number
of output beliefs and bridge rules, while the improved method scales exponentially only in the
number of output beliefs and bridge rules of the largest context of M . Formally, the previ-
ous method processedO(2Σi|OUT i|+|br i|) guesses, while the improved method needs to process
onlyO(max i(2

|OUT i+br i|)) guesses when enumerating all diagnoses in PDp (M). Section 5.5.3
on page 104 and Figures 5.9 and 5.10 show the difference between the original performance of
dlvhex (and therefore MCS-IE) and the performance of the new evaluation algorithm of dlvhex
which was developed due to the insights gained with MCS-IE.

Other Approaches for Realizing Inconsistency Analysis

Apart from rewriting the computation of diagnoses and inconsistency explanations to a formal-
ism of computational logic, there exist other possibilities for obtaining these notions.

Most prominently we want to mention the DMCS algorithm [DTEFK10, BDTE+10a] and
its research prototype [BDTE+10b], which allows to compute equilibria of MCSs in a truly
distributed way. The integration of diagnosis computation into the DMCS algorithm, and a cor-
responding implementation, is currently investigated in a masters thesis project, co-supervised
by the author of this thesis.

In the field of model-based/consistency-based diagnosis [Rei87], numerous approaches for
computation exist. We here focus on the discussion of distributed approaches for consistency-
based diagnosis (these approaches are more closely related to our work as most other approaches
in the field of model-based diagnosis). As discussed in Chapter 3, both approaches are only
remotely related, as they focus on detecting correct or faulty operation of system parts, based
on observations on the system, whereas our approach focuses on finding bridge rules that cause
inconsistency (and they cause inconsistency by operating as specified, not by faulty behavior).

An algorithm for decentralized computation of consistency-based diagnosis is described
in [CPD07]; the algorithm uses a global supervisor module and local diagnoser modules which
communicate using a distributed algorithm. This work is motivated similarly as multi-context
systems, i.e., the combination of existing components yields an overall system where we want to
find problems. Furthermore the authors stress the privacy of each local diagnoser’s information
about the component it is responsible for, which is a similar argument as we gave for information
hiding in Section 3.5.

Another algorithm for distributed consistency-based diagnosis is described in [ADS08]; this
approach no longer requires a centralized supervisor and works with a true peer-to-peer archi-
tecture, which is, architecturally, very similar to the approach taken in the DMCS algorithm
mentioned above. Furthermore, that approach operates on prime implicants of disjunctive nor-
mal form representations of the knowledge of each peer, while DMCS operates on partial models
and does not require to convert each context knowledge base into a specific formalism.

71

4. REALIZING INCONSISTENCY ANALYSIS IN MCSS WITH HEX

Figure 4.4: Screenshot of the MCS-IE web interface.

72

5 Modular Evaluation Framework for
HEX-Programs

As we have seen in the previous chapter, the HEX language is a useful tool for representing and
reasoning with knowledge that is present in a non-monolithic form, i.e., part of the knowledge
is represented as logic programming rules, while other parts are abstracted away as external
computations.

While developing the MCS-IE tool in the previous chapter was useful for investigating the
notions of diagnoses and explanations, we found out that MCS-IE does not scale with the size of
the MCS at hand. We looked into the reason of this scalability problem and tried to solve it by
creating alternative HEX rewritings.

However, we soon came to the conclusion that the scalability problem had its roots deep
within the way dlvhex evaluates semantics of HEX programs. At that time, dlvhex evaluated
HEX programs roughly as follows [EIST06]: the non-ground program is split into subprograms
(strongly connected components (SCCs)) with and without external access, where the former
are as large and the latter as small as possible. Subprograms with external atoms are evaluated
with various specific techniques, depending on their structure [EIST06, Sch06].

The problem we identified was as follows: because the subprograms which are evaluated
together are as large as possible, answer sets of such subprograms can contain products of many
independent guesses in the program. In real-world applications such as the one described in
the previous chapter, these independent guesses can independently cause a global constraint to
fire and to invalidates the whole model candidate. Ideally, every program component that can
trigger a global constraint is evaluated independently from other program components, and if a
guess triggers a global constraint then no more (pointless) computation that depends on such a
guess is performed.

Therefore the HEX evaluation approach had severe scalability limitations compared to an
ideal behavior, and we decided to develop a new approach for evaluating HEX programs which
is described in this chapter.

We make the following theoretical and practical contributions to the HEX formalism, which
we published in [EFI+11] in slightly different form and in less detail than presented here.

• We present a new notion of dependencies between rules of a HEX program and use this
notion to reformulate the original HEX splitting theorem, and to formulate a generalization
of the splitting theorem. Our Generalized HEX Splitting Theorem allows a new decompo-
sition approach where program parts may overlap by sharing constraints which can prune
away irrelevant partial answer set candidates earlier than in previous approaches.

• We present a novel evaluation framework for HEX-programs, which allows for more flex-
ible decomposition of the nonground program than was previously possible. The new
framework comprises an evaluation graph, which captures a modular decomposition and
has a tight correspondence with the Generalized Splitting Theorem. This graph allows us
to realize customized divide-and-conquer evaluation strategies which are a generalization
of the former HEX decomposition and evaluation approach.

73

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

• Based on the evaluation graph, we describe an answer set graph which comprises for each
node sets of partial input interpretations that are evaluated with the program of the node,
and sets of output interpretations that are passed on to subsequent nodes where they are
combined into new input interpretations. We show that a complete answer set graph can
easily be transformed into the set of all answer sets of the program that gave rise to the
evaluation graph. Furthermore we describe an algorithm for building a complete answer
set graph, given an evaluation graph of a HEX program.

• We describe a prototype of the evaluation framework in the dlvhex solver engine. This
implementation is generic and can be instantiated with different ASP solvers (in our case,
with DLVand clasp + gringo). It features also model streaming, i.e., computing one an-
swer set at a time.

• We present results of an experimental evaluation which shows that our new framework
considerably reduces memory consumption and avoids timeouts in a larger number of
settings compared to the previous approach. In some cases, the new approach uses expo-
nentially less memory (which can be explained by the difference in evaluation strategies).
In particular, the MCS-IE tool described in the previous chapter can now feasibly be used
on considerably larger instances.

5.1 Preliminaries

In the following we repeat several important concepts connected to HEX programs. For some
notions we adjust existing definitions to make them more precise, or more suitable for our
subsequent formal work. In particular we revise definitions of atom dependencies and safety
restrictions.

5.1.1 Restriction to Extensional Semantics for HEX External Atoms

To make HEX programs computable in practice, it is useful to restrict external atoms, such that
their semantics depends only on extensions of predicates given in the input tuple [EIST06]. This
restriction is relevant for all subsequent considerations.

Syntax Each &g is associated with an input type signature t1, . . . , tn such that every ti is the
type of input Yi at position i in the input list of &g . A type is either const or a non-negative
integer.

Consider &g , its type signature t1, . . . , tn, and a ground external atom &g [y1, . . . , yn](x1,
. . . , xm). Then, in this setting, the signature of &g enforces certain constraints on f&g(I, y1, . . . ,
yn, x1, . . . , xm) such that its truth value depends only on (a) the constant value of yi whenever
ti = const, and (b) the extension of predicate yi, of arity ti, in I whenever ti ∈ N.

Example 38 (ctd). Continuing Example 7, for &reach[edge, a](x), we have t1 = 2 and t2 =
const. Therefore the truth value of &reach[edge, a](x) depends on the extension of binary
predicate edge, on the constant a, and on x.

Continuing Example 10, the external predicate &rq has t1 = 1, therefore the truth value
of &rq [swim](x) for various x wrt. an interpretation I depends on the extension of the unary
predicate swim in the input list.

Note that the truth value of an external atom with only constant input terms, i.e., ti = const,
1 ≤ i ≤ n, does not depend on I at all.

Semantic constraints enforced by signatures are formalized next.

74

5.1. Preliminaries

Semantics Let a be a type, let I be an interpretation and p ∈ C. We define the projection
function Πa as the following binary function: for a = const, Πconst(I, p) = p; for a ∈ N,
Πa(I, p) = {(x1, . . . , xa) | p(x1, . . . , xa) ∈ I}. For Ca the a-th cartesian power of C, let Da be
the family of sets of tuples with arity a+ 1, i.e., Da = 2C

a+1
(we use this for the family of sets

of atoms with arity a). As a special case, we conventionally set: Dconst = C. (Note that, e.g.,
atom p(u, v) is of arity 2 and therefore its tuple representation (p, u, v) is of arity 3. Hence the
powerset of all possible atoms of arity 2 is D2 = 2C

3
.)

Let &g be an external predicate with oracle function f&g , in(&g) = n, out(&g) = m, and
type signature t1, . . . , tn, then the extensional evaluation function function F&g : Dt1 × · · · ×
Dtn → 2Cm of &g is defined such that

(a1, . . . , am) ∈ F&g(Πt1(I, p1), . . . ,Πtn(I, pn)) iff f&g(I, p1, . . . , pn, a1, . . . , am) = 1.

Note that F&g makes the possibility of new constants invented by external atoms more explicit:
tuples returned by F&g may contain constants that are not contained in P .

Example 39 (ctd). Consider I from Example 11, then we have

Π1(I, swim) = {(swim, out)} and

Π1(I, goto) = {(goto, ndanube)}.

The extensional evaluation function of &rq then is as follows:

F&rq(U) ={(money) | (X, in) ∈ U or (X, gdanube) ∈ U}∪
{(yogamat) | (X,ndanube) ∈ U}∪
{(goggles) | (X, apool) ∈ U}

Observe that neither of the constants yogamat and goggles is contained in P (we have that
const(P) = {swim, goto, ngoto, need , go, inout , loc, in, out , apool, gdanube, ndanube,
mpool,money , location}). The constants yogamat and goggles are invented by external atom
semantics. Note that (money) is a unary tuple, as &rq has a unary output list.

5.1.2 Atom Dependencies

To account for dependencies between heads and bodies of rules is a common approach for
realizing semantics of ordinary logic programs, as done, e.g., by means of the notions of strat-
ification and its refinements like local [Prz88] or modular stratification [Ros94], or by split-
ting sets [LT94]. In HEX programs, head-body dependencies are not the only possible source
of predicate interaction. Therefore new types of (nonground) dependencies were considered
in [EIST06, Sch06]. In the following we recall these definitions. We also slightly reformulate
and extend them, to prepare for the following sections where we lift atom dependencies to rule
dependencies.

In contrast to the traditional notion of dependency that in essence hinges on propositional
programs, we need to consider relationships between non-ground atoms. Two nonground atoms
a and b may inter-depend when they unify, which we denote by a ∼ b.

For analyzing program properties it is relevant whether a dependency is positive or negative.
With an external atom a, it depends on the semantic evaluation function whether the truth value
of the external evaluation function f&a depends on the presence or absence of an atom b in
interpretation I . Depending on other atoms in I , in some cases the presence of b might make
a true, in some cases its absence. Therefore we will in the following not speak of positive
and negative dependencies (as in [EFI+11]); instead we use the more adequate wording of
monotonic and nonmonotonic dependencies.1

1Note that antimonotonicity (i.e., a larger input of an external atom can only make the external atom false,
but never true) could be a third useful distinction which has been exploited in [EFKR12]. We here only require
the distinction between monotonic vs. nonmonotonic external atoms and therefore classify antimonotonic external
atoms as nonmonotonic.

75

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

Definition 19. An external predicate &g is called monotonic iff for all interpretations I, I ′, and
all tuples of constants ~X , f&g(I, ~X) = 1 and I ⊆ I ′ implies f&g(I

′, ~X) = 1, otherwise it is
called nonmonotonic.

Example 40 (ctd). Consider F&rq(U) in Example 39: adding tuples to U cannot remove tuples
from F&rq(U), therefore &rq is a monotonic external predicate.

Next we define relations for dependencies from external atoms to other atoms.

Definition 20 (External Atom Dependencies). Let P be a HEX program, let a be an external
atom of the form &g [X1, . . . , Xn](~Y) in P with the type signature t1, . . . , tn and let b be an
atom in the head of a rule in P such that b is of the form p(~Z) or b is a higher order atom of the
form U(~Z). Then a depends external monotonically (resp., nonmonotonically) on b, formally
a→e

m b (resp., a→e
nm b) iff &g is monotonic (resp., nonmonotonic), ti ∈ N, ~Z has arity ti, and

either (i) b is of form p(~Z) and Xi = p; or (ii) b is of form U(~Z). We define a→e b iff a→e
m b

or a→e
nm b.

Example 41 (ctd). In our running example, we have external dependencies &rq [swim](C)→e
m

swim(in), &rq [swim](C)→e
m swim(out), and &rq [goto](C)→e

m goto(X).

As in ordinary ASP, atoms in HEX programs are interdependent because of rules in the
program.

Definition 21. For a HEX-program P and atoms α, β occurring in P , we say that

(a) α depends monotonically on β (α→m β), if one of the following holds:

(i) some rule r ∈ P has α ∈ H(r) and β ∈ B+(r);
(ii) there are rules r1, r2 ∈ P such that α ∈ B(r1) and β ∈ H(r2) and α ∼ β; or

(iii) some rule r ∈ P has α ∈ H(r) and β ∈ H(r).

(b) α depends nonmonotonically on β (α →n β), if there is some rule r ∈ P such that α ∈
H(r) and β ∈ B−(r).

Note that combinations of Definitions 20 and 21 were already introduced in [Sch06,EFK09],
however these works represent nonmonotonicity of external atoms in rule body dependencies
and use a single ‘external dependency’ relation. On the contrary, we represent nonmonotonic-
ity of external atoms where it really happens, namely in dependencies from external atoms to
ordinary atoms. Therefore we obtain a simpler dependency relation between rule bodies and
heads.

We say that atom α depends on atom β (α → β) where → is the union of →m, →n, and
→e.

We next define the atom dependency graph.

Definition 22. For a HEX-program P , the atom dependency graph ADG(P) = (VA, EA) of
P has as vertices VA the (nonground) atoms occurring in non-facts of P and as edges EA the
dependency relations→m,→n,→e

m, and→e
nm between these atoms in P .

Example 42 (ctd). Figure 5.1 depicts the atom dependency graph of Pswim . Note that the
nonmonotonic body literal in c7 does not show up as a nonmonotonic dependency, as c7 has
no head atoms. (The rule dependency graph we introduce later in Section 5.2 will make this
negation apparent.)

Next we use the dependency notions to define safety conditions on HEX programs.

76

5.1. Preliminaries

swim(in) swim(out)

&rq [swim](C) swim(P)

need(inout , C) goto(X) ngoto(X)

goto(Y)go

&rq [goto](C)

need(goto, C)

need(X,money)

m

m

e
m

e
m mm

m m m

m

m

m

e
m

m

mm

m

m

Figure 5.1: Atom dependency graph of running example Pswim .

5.1.3 Rule Unfolding for External Atom Input Grounding

As in previous work about HEX evaluation, we perform a process reminiscent of rule unfolding
whenever an external atom input tuple contains a variable that is contained in the output of
another external atoms in the same rule body. This is necessary for grounding external atom
inputs. We here briefly repeat the definition and give an example.

Definition 23. (Definition 4.6.11 from [Sch06].) Let P be a HEX-program and let &g [~Y](~X) be
some external atom with input list ~Y occuring in a rule r ∈ P . Then, for each such atom, a rule
r&g

inp is composed as follows:

• The head H(r&g
inp) contains an atom ginp(~Y) with a fresh predicate symbol ginp .

• The body B(r&g
inp) of the auxiliary rule contains all body literals of r other than &g [~Y](~X)

that have at least one variable in its arguments (resp., in its output list if b is another
external atom) that occurs also in ~Y.

For each external atom in P we can create such a rule. We denote the set of all such rules with
Pinp .

Example 43. Consider the HEX program P consisting of one rule

foo(X)← &concat [a, Y](X),&concat [b, c](Y)

where &concat performs string concatenation of the input arguments to the output. Intuitively
AS(P) =

{
{foo(abc)}

}
. The following auxiliary program Pinp is created for evaluating P :

g&concat
inp (Y)← &concat [b, c](Y).

Intuitively, for evaluating P we first evaluate Pinp , use the answer set {g&concat
inp (bc)} of Pinp for

grounding P , and then evaluate P .

Note that the process of creating auxiliary rules sometimes must be iterated, i.e., we need to
create auxiliary rules for auxiliary rules. For example consider the program

foo(X)← &concat [a, Y](X),&concat [b, Z](Y),&concat [c, d](Z)

77

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

which intuitively yields the single answer set {foo(abcd)} and requires two iterations of rule
unfolding for grounding external atom inputs.

5.1.4 Safety Restrictions

With HEX we need the usual notion of rule safety, i.e., a syntactic restriction which ensures that
each variable in a rule only has a finite set of relevant constants for grounding. As external
computations can introduce new constants in their output lists, ensuring safety in HEX is not as
straightforward as in ordinary ASP.

We first recall the definition of safe variables and a safe rule for HEX.

Definition 24 (Def. 5 in [EIST06]). Given a rule r, the set of safe variables in r is the smallest
set X of variables such that

(i) X appears in a positive ordinary atom in the body of r, or

(ii) X appears in the output list of an external atom &g [Y1, . . . , Yn](X1, . . . , Xm) in the pos-
itive body of r and Y1, . . . , Yn are safe.

A rule r is safe iff each variable in r is safe.2

However, safety alone does not guarantee finite grounding of HEX programs, because an
external atom might create new constants, i.e., constants not part of the program itself (see
Example 39), in its output list. These constants can become part of the extension of an atom in
the rule head, and by grounding and evaluation of semantics of other rules become part of the
extension of a predicate which is an input to the very same external atom.

Example 44 (adapted from [Sch06]). The following HEX program is safe according to Defini-
tion 24 and nevertheless cannot be finitely grounded:

source(”http : //some_url”)← .
url(X)←&rdf [source](X, ”rdf :subClassOf ”, C).

source(X)← url(X).

Suppose the &rdf [source](S, P,O) atom retrieves all triples (S, P,O) from all RDF triplestores
specified in the extension of source, and suppose that every triplestore contains a triple with S
being a URL that is not contained in another triplestore. As a result, all these URLs are collected
in the extension of source which leads to even more URLs being retrieved and a potentially
infinite grounding.

However, we could change the rule with the external atom to

url(X)← &rdf [source](X, ”rdf :subClassOf ”, C), limit(X) (5.1)

and add an appropriate set of limit facts. This addition of a range predicate limit(X) which
does not depend on the external atom output ensures a finite grounding.

To obtain a syntactic restriction that ensures finite grounding for HEX, a stronger notion of
safety called strong safety has been proposed. We next give a definition which is different from
existing ones [EIST06, Sch06] as those definitions have limitations.3

2This is stated in [EIST06] as ‘if each variable appearing in a negated atom and in any input list is safe, and
variables appearing in H(r) are safe’. However, if all variables in H(r) are safe, and all variables in all input lists
are safe, and all variables in negated body atoms are safe, then all variables in r are safe because then atoms in all
positive body atoms are safe. Therefore we can simplify the definition.

3The definition in [EIST06, Def. 7] is too strict because it does not allow variables in output lists of ex-
ternal atoms which are not contained in positive ordinary atoms. This rules out cases like command(X) ←

78

5.1. Preliminaries

Definition 25. An external atom b in a rule r in a HEX program P is strongly safe wrt. r and P
iff

(a) b 6→+ b, i.e., there is no cyclic dependency over b;4 or

(b) for each variable X in the output list of b, there exists a positive ordinary atom a ∈ B+(r)
containing X such that a 6→+ b, i.e., a does not depend on b.

Strong safety of a HEX external atom is a non-local property which is defined wrt. a program.
Two rules that are strongly safe in isolation might not be strongly safe if they are put into one
program P . Therefore it can be misleading to define the strong safety property for a rule without
mentioning P (as done in [EIST06, Sch06]) and we here define strong safety in terms of the
safety of an external atom wrt. a rule in a program.

Using this definition we now obtain the following notion of domain-expansion safety, which
characterizes a class of HEX programs that has a finite grounding.

Definition 26. A HEX program P is domain-expansion safe if each rule in P is safe, and each
external atom in each rule r ∈ P is strongly safe wrt. r and P .

In the following we consider only domain-expansion safe HEX programs. Note that every
ordinary HEX program that is safe is also domain-expansion safe.

Example 45 (ctd). Our running example Pswim is domain-expansion safe as every rule is safe
and no external atom is contained in a cyclic dependency to itself (see Figure 5.1). Therefore
condition (a) in Definition 25 is satisfied for all external atoms.

Because we changed the definition of domain-expansion safety, we now prove that every
domain-expansion safe program indeed has a finite grounding that is sufficient for evaluating its
semantics. We denote by grndX(P) the grounding of HEX program P with ground atoms X .

Proposition 11. (Adapted from [Sch06, Theorem 4.6.1].) For any domain-expansion safe HEX-
program P , there exists a finite set D ⊆ C such that AS(grndD(P)) = AS(grndC(P)).

Proof. (Adapted from the proof of Theorem 4.6.1 in [Sch06].) A program that incrementally
builds D can be sketched as follows: we repeatedly update a set A of active atoms by means of
a function ins(r,A) which is repeatedly invoked over all rules r ∈ P . We start from the set A
of ground atoms present in the program P , and D is the least fixpoint of this iteration, i.e., the
least fixpoint where A = ins(r,A). The function ins(r,A) is such that, given a safe rule r and
a setA of ground atoms, it returns a set that containsA and the following atoms: (a) all ordinary
ground atoms that are created by grounding r with A, and (b) all ground external atoms that are
created by grounding r with A, and (c) for each nonground external atom &g [~Y](~Z) that obtains
a ground input tuple ~Y = (y1, . . . , yn) by grounding r with A, the set of ground external atoms

{&g [~Y](~X) | ~X ∈ F&g(Πt1(J, y1), . . . ,Πtn(J, y1)) for some J ⊆ A}.

Iterating ins(r,A) yields a finite fixpoint for A, because

(i) a ground external atoms a yielded by (c) cannot cyclically cause more atoms to be added
by (c), as each a either is not part of a cyclic dependency over itself (condition (a) in
Definition 25) or the range of output variable grounding of a is limited by an ordinary
atom that does not depend on a (condition (b) in Definition 25) which means that a will
not be processed by step (c) of ins(r,A) but by step (b); furthermore

&concat [”cat ”,Filename](X), showFile(Filename), where &concat has only constant inputs and therefore the
rule can be finitely grounded as long as showFile(X) does not depend on command(X). The definition in [Sch06,
Def. 4.6.7] is more strict in another way: it does not detect cases as (5.1) as finitely groundable because it rules out
any cycles over external atoms, i.e., it is not possible to ‘save’ the cycle over url(X) by adding a range predicate
limit(X) as shown in (5.1). The implementation in dlvhex is less strict than both definitions.

4This implies that b does not depend on any head atom of r.

79

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

(ii) steps (a) and (b) yield a finite amount of new atoms for each atom generated by step (c) (as
we do not have function symbols, (a) and (b) can be reduced to ordinary ASP grounding
which is finite).

We have shown that D = A = ins(r,A) is a finite fixpoint that exists. This fixpoint provides
a finite set of atoms that can be used for grounding P , hence it remains to show that indeed
AS(grndD(P)) = AS(grndC(P)). We split grndC(P) into N1 = grndD(P) and N2 =
grndC(P) \ grndD(P). As the above fixpoint iteration terminated, N2 contains no rules that
depend on N1 and vice versa N1 contains no rules that depend on N2. Therefore AS(P) is the
cross product of answer setsAS(N1) andAS(N2). As every rule in P is safe, no rule in N2 can
be applicable due to an atom within N2, as N2 does not depend on N1, no rule in N2 can be
applicable and AS(N2) = {∅}. Therefore AS(P) = AS(N1) = AS(grndD(P)) and the result
follows.

5.2 Rule Dependencies and Generalized Rule Splitting Theorem

So far we just recalled and slightly adapted existing definitions. Next we introduce a new notion
of dependencies in HEX programs, namely between rules in a program. Then we lift the exist-
ing HEX splitting theorem [EIST06, Global Splitting Theorem] to this new dependency notion,
and we will generalize and improve it. This will help us to obtain a more efficient evaluation
algorithm in Section 5.4.

The former HEX evaluation algorithm [EIST06] is based on the atom dependency graph
consisting of non-ground atoms and dependencies; based on this graph, gradual evaluation is
carried out on appropriate selections of sets of rules (the ‘bottoms’ of a program). In contrast
with that, we consider dependencies between rules of the program at hand. This simplifies the
view on dependencies and corresponding theoretical results considerably.

5.2.1 Rule Dependencies

We define rule dependencies as follows.

Definition 27 (Rule dependencies). Let P be a program with rules r, s ∈ P , r 6= s, and a, b
atoms. Then r depends on s according to the following cases:

(i) if a ∈ B+(r) and b ∈ H(s), and a ∼ b: then r →m s;
(ii) if a ∈ B−(r), b ∈ H(s), and a ∼ b: then r →n s;

(iii) if a ∈ H(r), b ∈ H(s), and a ∼ b: then both r →m s and s→m r;
(iv) if a ∈ B(r) is an external atom, b ∈ H(s), and a→e b, then

• r →m s if a ∈ B+(r) and a→e
m b, and

• r →n s otherwise.

Intuitively, conditions (i) and (ii) reflect the fact that the applicability of a rule r depends
on the applicability of a rule s with a head that unifies with a literal in the body of rule r;
condition (iii) exists because rules r and s cannot be evaluated independently if they share a
common head atom (e.g., u ∨ v ← cannot be evaluated independently from v ∨ w ←); and (iv)
defines dependencies due to predicate inputs of external atoms.

In the following we denote by→m,n = →m ∪ →n the union of monotonic and nonmono-
tonic rule dependencies.

We next define graphs of rule dependencies.

Definition 28. Given a HEX-program P , the rule dependency graph DG(P) = (VD, ED) of P
is the labeled graph with vertex set VD = P and edge set ED = →m,n.

80

5.2. Rule Dependencies and Generalized Rule Splitting Theorem

r1: swim(in)∨ swim(out)←

r2: need(inout , C)←
&rq [swim](C)

r3: goto(X)∨ngoto(X)←
swim(P), location(P,X)

r4: go← goto(X)
r5: need(loc, C)←

&rq [goto](C)

c6: ← goto(X), goto(Y), X 6=Y c7: ← not goc8: ←need(X,money)

m m

m
m

m

nm

m

m

Figure 5.2: Rule dependency graph of running example Pswim .

Example 46 (ctd.). Figure 5.2 depicts the rule dependency graph of our running example. Ac-
cording to Definition 27 we have the following rule dependencies in P IDB

swim :
• due to (i) we have r3 →m r1, r4 →m r3, c6 →m r3, c8 →m r2, and c8 →m r5;
• due to (ii) we have c7 →n r4;
• due to (iii) we have no dependencies; and
• due to (iv) we have r2 →m r1 and r5 →m r3.

Note that &rq is monotonic (see Example 40).

5.2.2 Splitting Sets and Theorems

Splitting sets are a notion that allows for describing how a program can be decomposed into
parts and how semantics of the overall program can be obtained from semantics of these parts
in a divide-and-conquer manner.

We lift the original HEX splitting theorem [EIST06, Theorem 2] and the according defini-
tions of global splitting set, global bottom, and global residual [EIST06, Definitions 8 and 9] to
our new definition of dependencies among rules.

A rule splitting set is a subset of the original program that does not depend on the rest of the
program. This has a correspondence with global splitting sets in [EIST06].

Definition 29 (Rule Splitting Set). A rule splitting set R for a HEX-program P is a set R ⊆ P
of rules such that whenever r ∈ R, s ∈ P , and r →m,n s then s ∈ R.

Example 47 (ctd). The following are some rule splitting sets of Pswim : {r1}, {r1, r2}, {r1, r3},
{r1, r2, r3}, {r1, r2, r3, r5, c8}. The set {r1, r2, c8} is not a rule splitting set, because c8 →m r5

but r5 is not part of the set.

In the HEX evaluation algorithm described in [EIST06], a constraint can only kill models
once all its dependencies to rules (that might make the constraint body become applicable) are
fulfilled. Our framework increases evaluation efficiency by duplicating nonground constraints,
allowing them to kill models earlier than possible in the former approach. A constraint can
only be shared among units, if all its nonmonotonic dependencies are fulfilled, otherwise the
constraint could kill partial models too early.

Because of constraint duplication, we no longer partition the input program, and the cus-
tomary notion of splitting set, bottom, and residual, is not appropriate for sharing constraints
between bottom and residual. Instead, we next define a generalized bottom of a program, which
splits a program into two parts with a nonempty intersection that may contain certain constraints.

Definition 30 (Generalized Bottom). Given a rule splitting set R of a HEX-program P , a gen-
eralized bottom B of P wrt. R is a set B with R ⊆ B ⊆ P such that all rules in B \ R are
constraints that do not depend nonmonotonically on any rule in P \B.

81

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

Example 48 (ctd). A rule splitting set R of Pswim (e.g., those given in Example 47) is also a
generalized bottom of Pswim wrt. R. The set {r1, r2, c8} is not a rule splitting set, but it is a
generalized bottom of Pswim wrt. rule splitting set {r1, r2}, as c8 is a constraint that depends
only monotonically on rules in Pswim \ {r1, r2, c8}.

Next, we describe how interpretations of a generalized bottom B of a program P lead to
interpretations of P without re-evaluating rules in B. This is a generalization of the Splitting
Set Theorem [LT94], of a modularity result for disjunctive logic programs [EGM97, Lemma
5.1] and of the splitting theorem for (nonground) HEX-programs in [Sch06, Theorem 4.6.2]
and [EIST06, Global Splitting Theorem].

Intuitively, this is a relaxation of the previous nonground HEX splitting theorem regarding
constraints: a constraint may be put both into the bottom and into the residual if it has no
nonmonotonic dependencies to the residual. The benefit of sharing such constraints between
bottom and residual is a reduced number of answer sets of the bottom and therefore fewer
evaluations of the residual program.

Given a set of ground ordinary atoms I , we denote by facts(I) the corresponding set of
ground facts. Given a set of rules P , we denote by gh(P) the set of ground head atoms appearing
in grnd(P).

Theorem 10 (Splitting Theorem). Given a HEX-program P and a rule splitting set R of P ,
M ∈ AS(P) iff M ∈ AS(P \R ∪ facts(X)) with X ∈ AS(R).

Proof. Given a set of ground atoms M and a set of rules R we denote by M |R = M ∩ gh(R)
the projection of M to ground heads of rules in R.

(⇒) Let M ∈ AS(P). We first show that M |R ∈ AS(R) and then that M ∈ AS(P \ R ∪
facts(M |R)).

We first show that M |R satisfies the reduct fRM |R , and then that it is indeed a minimal
model of the reduct. M satisfies fPM and R ⊆ P . Observe that, by definition of FLP reduct,
fRM ⊆ fPM . By definition of rule splitting set, satisfiability of rules in R does not depend on
heads of rules in P \ R (due to the restriction of external atoms to extensional semantics, this
is in particular true for external atoms in rules in R). Therefore fRM |R = fRM , M satisfies
fRM |R , and M |R satisfies fRM |R . For showing M |R ∈ AS(R) it remains to show that M |R is
a minimal model of fRM |R .

Assume towards a contradiction that some S ⊂ M |R is a model of fRM |R . Then there is
a nonempty set A = M |R \ S of atoms with A ⊆ gh(R). Let M? = M \ A. We next show
that M? is a model of fPM , which implies that M /∈ AS(P). Assume on the contrary that M?

is not a model of fPM . Hence there exists some rule r ∈ fPM such that H(r) ∩M? = ∅,
B+(r) ⊆M?, and B−(r) ∩M? = ∅. S agrees with M? on atoms from gh(R), and S satisfies
fRM |R . Therefore r /∈ fRM |R and r ∈ f(P \ R)M . Since r ∈ P \ R, H(r) ⊆ gh(P \R),
and because M and M? agree on atoms from gh(P \R), H(r) ∩M? = ∅ from above implies
that H(r) ∩M = ∅. Because r ∈ fPM , its body is satisfied in M , and since its head has no
intersection with M , we get that fPM is not satisfied by M which is a contradiction. Therefore
M? is a model of fPM . As M?⊂M , this contradicts our assumption that M ∈ AS(P).
Therefore S = M |R = X is a minimal model of fRM .

We next show thatM satisfies the reduct f(P \R∪facts(M |R))M , and then that it is indeed
a minimal model of the reduct. By definition of reduct, f(P \R∪facts(M |R))M = f(P \R)M∪
facts(M |R). M satisfies facts(M |R) because M |R ⊆ M . Furthermore f(P \ R)M ⊆ fPM ,
hence M satisfies f(P \R)M . Therefore M satisfies f(P \R ∪ facts(M |R))M .

To show that M is a minimal model of f(P \R∪ facts(M |R))M , assume towards a contra-
diction that some S⊂M is a model of f(P \R ∪ facts(M |R))M . Since facts(M |R) is part of
the reduct, M |R ⊆ S, therefore S|gh(R) = M |R. By definition of rule splitting set, satisfiability
of rules in R does not depend on heads of rules in P \ R, hence S satisfies fRM . Because S

82

5.2. Rule Dependencies and Generalized Rule Splitting Theorem

satisfies f(P \ R ∪ facts(M |R))M = f(P \ R)M ∪ facts(M |R), it also satisfies f(P \ R)M .
Since S satisfies both fRM , S satisfies fPM = f(P \R)M ∪ fRM . This is a contradiction to
M ∈ AS(P). Therefore S = M is a minimal model of f(P \R ∪ facts(M |R))M .

(⇐) Let M ∈ AS(P \ R ∪ facts(X)) and let X ∈ AS(R). We first show that M satisfies
fPM , and then that it is a minimal model of fPM .

As facts X are part of the program P \ R ∪ facts(X), and by definition of rule splitting
set, P \R contains no rule heads unifying with gh(R), hence we have X = M |R. Furthermore
f(P \R∪ facts(X))M \ facts(X)∪ fRM = fPM , and as M satisfies the left side, it satisfies
the right side. To show that M is a minimal model of fPM , assume S⊂M is a smaller model
of fPM . By definition of reduct, S also satisfies f(P \ R)M and fRM . Since R is a splitting
set, satisfiability of rules in R does not depend on heads of rules in P \ R, therefore fRM =
fRM |R = fRX and S|gh(R) satisfies fRX . Since S ⊂ M , we have S|gh(R) ⊆ X . Because
X is a minimal model of fRX , S|gh(R) ⊂ X is impossible and S|gh(R) = X . Therefore
S|gh(P\R) ⊂ M |gh(P\R). Because S satisfies f(P \ R)M and S|gh(R) = X , S also satisfies
f(P \ R ∪ facts(X))M . Since S ⊂ M , this contradicts the fact that M is a minimal model of
P \R ∪ facts(X). Therefore S = M is a minimal model of fPM .

Using the definition of generalized bottom, we generalize the above theorem.

Theorem 11 (Generalized Splitting Theorem). Let P be a HEX-program, let R be a rule split-
ting set of P , and let B be a generalized bottom of P wrt. R. Then

M ∈AS(P) iff M ∈AS(P \R∪ facts(X)) where X ∈AS(B).

Proof. By definition of generalized bottom, the set C = B \R contains only constraints, there-
fore gh(B) = gh(R) and M |gh(B) = M |gh(R). As R ⊆ B and B \R contains only constraints,
AS(B) ⊆ AS(R). The only difference between Theorem 10 and Theorem 11 is, that for ob-
taining X , the latter takes additional constraints into regard.

(⇒) It is sufficient to show that M |gh(B) does not satisfy the body of any constraint in
C ⊆ P if M does not satisfy the body of any constraint in P . Since B is a generalized bottom,
no negative dependencies of constraints C to rules in P \ B exist; therefore if the body of a
constraint c ∈ C is not satisfied by M , the body of c is not satisfied by M |gh(B). M satisfies all
rules in P , therefore it does not satisfy any constraint body in P , hence the projection M |gh(B)

does not satisfy any constraint body in B \R.
(⇐) It is sufficient to show that an answer set of R that satisfies a constraint body in C

would also satisfy that constraint body in P . As constraints in C have no negative dependencies
to rules in P \ B, a constraint with a satisfied body in M |gh(R) also has a satisfied body in M ,
therefore the result follows.

Note that B \ R contains shareable constraints which are used twice in the Generalized
Splitting Theorem: they are used to compute X and to compute M .

The Generalized Splitting Theorem is useful for early elimination of answer sets of the bot-
tom, caused by these constraints which depend on the bottom but also depend on rule heads not
in the bottom. Such constraints can be shared between the bottom and the remaining program.

Example 49 (ctd). We apply Theorems 10 and 11 to Pswim and compare them. Using the rule
splitting set {r1, r2} we can obtain answer sets of Pswim by first computing the answer sets
AS({r1, r2}) =

{
{swim(in),need(inout ,money)}, {swim(out)}

}
and then using Theorem

10: X is an answer set of Pswim iff X ∈ AS({r3, r4, r5, c6, c7, c8} ∪ {swim(out) ←}) or
X ∈ AS({r3, r4, r5, c6, c7, c8} ∪ {swim(in) ←; need(inout , money) ←}). Note that the
computation with need(inout ,money) in the input does not yield any answer set, because the
body of c8 is always satisfied, which kills the model. On the contrary, if we use the generalized
bottom {r1, r2, c8} we haveAS({r1, r2, c8}) =

{
{swim(out)}

}
and we can use Theorem 11 to

83

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

obtain answer sets of Pswim without only one further answer set computation: X is an answer
set of Pswim iff X ∈ AS({r3, r4, r5, c6, c7, c8} ∪ {swim(out) ←}). Note that we use c8 in
both computations, i.e., c8 is shared between the generalized bottom and the overall answer set
computation.

Comparison of Splitting Theorems

As there exist quite a number of related splitting theorems, we now give reasons for differences
between this theorem and related splitting theorems and show advantages of the theorems in this
work.

Our theorem is similar to [Sch06, Theorem 4.6.2] however we do not use splitting sets
defined on atoms, but splitting sets defined on rules.

The Splitting Set Theorem in [LT94] splits the interpretation of P into disjoint sets X and
Y , where X is an answer set of the ‘bottom’ gbA(P) ⊆ P and Y is an answer set of a ‘residual’
program obtained from P \gbA(P) andX . In the residual program, all references to atoms inX
are removed, in a way that the residual program semantically behaves as if facts X were added
to P \ gbA(P), while the answer sets of the residual do not contain any atom in X . This works
nicely for answer set programs, but it is problematic when applied to HEX programs, because
external atoms may depend on the bottom and on atoms in heads of the residual program, and
therefore they cannot be eliminated from rule bodies. The only way to eliminate bottom facts
from the residual program would be to split semantics of external atoms into the part depending
on the bottom and the remaining part, and by replacing external atoms in rules by external atoms
that have been partially evaluated wrt. a bottom answer set. Therefore formulating a splitting
theorem for HEX programs with two disjoint interpretations X and Y is not straightforward.
This fact may very well be the reason that led to the third splitting theorem, which we compare
next.

Compared to the above two splitting theorems, the Global Splitting Theorem in [EIST06]
does not split the interpretation of the program P into two disjoint interpretationsX and Y . The
same is true for the theorem in this work. However, the Global Splitting Theorem in [EIST06]
involves the definition of a residual program which specifies how external atoms are evaluated
via ‘replacement atoms’. These replacement atoms create superfluous facts D in the resid-
ual program, which then need to be removed from the answer sets of the residual program.
Both the specification of replacement atoms and the superfluous facts make the Global Splitting
Theorem in [EIST06] cumbersome to work with when proving correctness of HEX encodings.
Furthermore these replacement atoms hint at a certain implementation technique which is not
mandatory and can be avoided.

Lemma 5.1 in [EGM97] does not consider external atoms but it is structurally similar to our
theorem: answer sets of the bottom program are evaluated together with the program depending
on the bottom (here called the residual), hence answer sets of the residual are answer sets of the
original program.

Some advantages of our new Theorems 10 and 11 over other HEX splitting theorems in the
literature are:

• our theorems rely on the semantics definition of HEX only, and not on implementation
details like replacement atoms;

• the residual program is simply a subset of the original program plus facts; and

• our theorems do not introduce superfluous facts in the residual program or in the bottom.

The only (rather negligible) disadvantage of our theorems is that answer sets of the bottom
and the residual program are no longer disjoint. (The residual answer set is always a superset of
some bottom answer set.)

84

5.3. Evaluating HEX by Rewriting to ASP

5.3 Evaluating HEX by Rewriting to ASP

In this section we describe how to evaluate a fragment of HEX programs where the search for an
answer set and the grounding process need not be interleaved, i.e., the program can be grounded
prior to semantic evaluation of HEX rules. We describe this fragment of HEX and provide an
algorithm that evaluates the fragment by rewriting to an ordinary answer set program and veri-
fying external predicate semantics after evaluating answer sets of that program.

In the subsequent section we extend this to a more interesting class of HEX programs where
external computations may introduce new constant values. Evaluation of external computations
with value invention is more involved, because the set of constants that are relevant for ground-
ing may grow during evaluation.

5.3.1 Pre-Groundable HEX Fragment

The property that makes a HEX program groundable prior to external atom evaluation is closely
related to strong safety and to domain-expansion safety (see Def. 25 and 26). It can be captured
by the following definition. (Note that we here consider atom-atom dependencies, different from
the previous section where we considered mainly rule-rule dependencies.)

Definition 31. An external atom b in a rule r in a HEX program P is pre-groundable wrt. r and
P iff for each variable X in the output list of b there exists a positive ordinary atom a ∈ B+(r)
containing X such that a 6→+ b, i.e., a does not transitively depend on b. A HEX program P is
pre-groundable iff all external atoms in all rules r ∈ P are pre-groundable wrt. r and P .

Note that the definition of a ‘pre-groundable’ external atom exactly reflects condition (b) in
Definition 25.

Example 50 (ctd). If we look at some subsets of Pswim , we have that {r1}, {r1, r3}, and
{r1, r3, r4, c7} are pre-groundable, however {r1, r2} and {r1, r2, c8} are not pre-groundable.
This is clear, because C in r2 must be grounded with a constant that is not contained in Pswim

but relevant for the evaluation of the semantics of Pswim .

We have the following proposition which shows acyclicity for non-pregroundable external
atoms in a domain-expansion safe program.

Proposition 12. Let P be a domain-expansion safe HEX program which contains an external
atom b in a rule r ∈ P such that b is not pre-groundable. Then b 6→+ b, i.e., b is not contained
in a dependency cycle.

Proof. As P is domain-expansion safe, b is strongly safe wrt. r and P . As b is not pre-
groundable, condition (b) in Def. 25 is not satisfied, therefore condition (a) is satisfied, therefore
b 6→+ b and the result holds.

This result will be useful in Section 5.4, where we show that our new evaluation algorithm
can evaluate the semantics of every domain-expansion safe HEX program. (Wlog. it might be
necessary to perform rule unfolding as a preprocessing step, as described in Section 5.1.3.)

In the following we first extend the pre-groundable fragment and recall a method for eval-
uating this fragment. In Section 5.4 we then introduce a HEX decomposition and evaluation
formalism which can evaluate all domain-expansion safe HEX programs independent of whether
they are pre-groundable or not.

85

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

Algorithm 5.1: EVALUATEUNIT(P : HEX program, I: HEX interpretation)

Output: answer sets of P ∪ facts(I) without I
// determine non-disjunctive facts in P and I

F := I ∪{a | r ∈ P such that H(r) = {a} and B(r) = ∅
}

// determine external atoms that get input only from F

Ain :=
{

&g [~x](~y) ∈ r | r ∈ P and for every r′ ∈ P such that &g [~x](~y)→e b
it holds that b ∈ F

}
// evaluate external atom semantics and create corresponding ground replacement atoms

Iaux :=
{
d&g(~x, ~z) | &g [~x](~y) ∈ Ain with ~x = (x1, . . . , xk), signature ti,

1 ≤ i ≤ k, ~z ∈ F&g(Πt1(F), . . . ,Πtk(F)), and ~z ∼ ~y
}

P ′ := P with external atoms &g [~x](~y) ∈ Ain replaced by auxiliaries d&g(~x, ~y)
return {I ′ \ (I ∪ Iaux) | I ′ ∈ EVALUATEPREGROUNDABLE(P ′, I ∪ Iaux)}

5.3.2 Extended Pre-Groundable Fragment and Evaluation Algorithm

If we have a pregroundable HEX program, we can ground it, guessing the truth value of each
external atom, and evaluate the grounded program over each guess. As a result, we can evaluate
pre-groundable HEX programs by rewriting them to plain answer set programs, evaluating plain
ASP semantics and evaluating external semantics.

Furthermore we can also evaluate a slightly extended fragment of HEX programs which
is not pre-groundable, but apart from pre-groundable external atoms it only contains external
atoms that depend on non-disjunctive facts. We define this fragment in the following.

Definition 32. A HEX program P is extended pre-groundable iff for each external atom b in a
rule r ∈ P it holds that either b is pre-groundable wrt. r and P , or every atom a that b depends
on is the head of a non-disjunctive fact in P . (I.e., if atom a occurs in a rule head in P , this rule
must be of the form a← .)

Note that this is a weakening of Definition 31.

Example 51 (ctd). We have previously seen, that {r1, r2} and {r1, r2, c8} are not pre-ground-
able while {r1} is pre-groundable. Using the Generalized Splitting Theorem, we can split
{r1, r2, c8} into {r1} and {r2, c8}. The result are two programs P1 = {r2, c8}∪{swim(in)←}
and P2 = {r2, c8}∪ {swim(out)←}. Both are not pre-groundable, however they are extended
pre-groundable because the external atom depends only on nondisjunctive facts. Therefore we
can first evaluate the external atoms, thereby obtain the new constant ‘money’, hence we have
all constants required to ground and evaluate these programs.

Algorithm 5.1 evaluates an extended pre-groundable HEX program P as follows: it (a) com-
putes the set F of non-disjunctive facts in P and I , (b) computes the set of external atoms Ain

which only depend on atoms in F , (c) evaluates these external atoms wrt. F , (d) replaces these
atoms in P by corresponding replacement atoms, and (e) obtains a pre-groundable program P ′

which can be evaluated together with auxiliary atoms that correspond to truth values of external
atoms that were evaluated in (c).

This algorithm, together with EVALUATEPREGROUNDABLE, was introduced in [Sch06,
Sec. 4.6.4, Algorithm eval(comp, I)]. These algorithms are not the focus of this thesis, therefore
we limit ourselves to the informal description above and next define the behavior of these algo-
rithms. Intuitively, EVALUATEPREGROUNDABLE(P, I) returnsAS(P ∪ I). For our subsequent
considerations we assume input and output of EVALUATEUNIT as follows.

Proposition 13. Given an extended pre-groundable HEX program P , and a set of ground atoms
I , EVALUATEUNIT(P, I) returns {I ′ \ I | I ′ ∈ AS(P ∪ facts(I))}.

86

5.4. Decomposition and Evaluation Techniques

Example 52 (ctd). Continuing Example 51, calling EVALUATEUNIT({r2, c8}, {swim(in)})
first computes F = {swim(in)}; then gets Ain = {&rq [swim](C)}; next obtains that Iaux =
{d&rq(swim,money)} from evaluating &rq on F . Then the algorithm creates the pre-ground-
able HEX program

P ′ = {need(inout , C)← d&rq(swim, C);← need(X,money)}

and finally calls EVALUATEPREGROUNDABLE(P ′, {swim(in), d&rq(swim,money)}) which
returns ∅ as the constraint body is satisfied because need(inout ,money) is true.

Calling EVALUATEUNIT({r2, c8}, {swim(out)}) computes F = {swim(out)}, thenAin =
{&rq [swim](C)}, next obtains Iaux = ∅ (the external atom is not true for any output tuple on
input swim(out)), creates the same pre-groundable HEX program P ′ as before, and finally calls
EVALUATEPREGROUNDABLE(P ′, {swim(out)}) which returns

{
∅
}

, i.e., {r1, r2, c8}, has one
answer set which is {swim(out)}.

5.4 Decomposition and Evaluation Techniques

This section introduces our new HEX evaluation framework, which is based on selections of sets
of rules of the original program. We call such groups of rules evaluation units (in short: units).
Compared to the former evaluation approach, units are not necessarily maximal. Instead, we
require that partial models of units, i.e., atoms in heads of their rules, do not interfere with those
of other units. This allows for independence, efficient storage, and easy composition of partial
models of distinct units. Furthermore, in certain cases this allows to share constraints among
several units, leading to performance benefits.

5.4.1 Evaluation Graph

Using our notion of rule dependencies, we next define the evaluation graph which consists of
evaluation units that depend on one another. We then relate evaluation graphs to the well-known
notion of splitting sets [LT94] and show how evaluation graphs permit to evaluate semantics of
HEX-programs by evaluating semantics of evaluation units and combining the results.

Definition 33. Every evaluation unit (in short ‘unit’) is an extended pre-groundable HEX pro-
gram P .

We say a unit u depends on another unit v, if there is an edge from u to v. An important
point of the following evaluation graph definition is, that we impose different conditions for
dependencies between rules, depending on whether a rule is a constraint or not: constraints
cannot (directly) make atoms true, hence they can be shared between evaluation units in certain
cases, while sharing non-constraints could violate modularity conditions.

Given a rule r ∈ P and a setU of evaluation units, we denote byU |r the set {u ∈ U | r ∈ u}
of units that contain rule r.

Definition 34 (Evaluation graph). An evaluation graph E = (U,E) of a program P is a directed
acyclic graph; vertices U are evaluation units and E has the following properties:

(a) P =
⋃
u∈U u, i.e., every rule r ∈ P is contained in at least one unit;

(b) for every non-constraint r ∈ P , it holds that
∣∣U |r∣∣ = 1, i.e., r is contained in exactly one

unit;

(c) for each nonmonotonic dependency r →n s between rules r, s ∈ P and for all u ∈ U |r,
v ∈ U |s, u 6= v, there exists an edge (u, v) ∈ E (intuitively, nonmonotonic dependencies
between rules have corresponding edges everywhere in E); and

87

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

r1: swim(in)∨ swim(out)← .
r3: goto(X)∨ngoto(X)← swim(P), location(P,X).
r4: go← goto(X).
c6:← goto(X), goto(Y), X 6= Y.
c7:← not go.
derives: swim(X), goto(X), ngoto(X), go

r2: need(inout , C)←&rq [swim](C).
r5: need(loc, C)←&rq [goto](C).
derives: need(A,B)

c8:←need(X,money).
derives nothing

u1

u2

u3

Figure 5.3: Evaluation graph E1 for running example HEX program Pswim .

(d) for each monotonic dependency r →m s between rules r, s ∈ P , there exists one u ∈ U |r
such that E contains all edges (u, v) with v ∈ U |s, v 6= u (intuitively, for each rule r
there is (at least) one unit in E where all monotonic dependencies from r to other rules have
corresponding outgoing edges in E).

As a non-constraint can only be contained in a single unit, the above definition implies that
all dependencies of non-constraints have corresponding edges in E , which is formally expressed
in the following proposition.

Proposition 14. Let E = (U,E) be an evaluation graph of a program P , then for every depen-
dency r →m,n s between a non-constraint r ∈ P and a rule s ∈ P and for all u ∈ U |r, v ∈ U |s
there exists an edge (u, v) ∈ E.

Proof of Proposition 14. Assume towards a contradiction that there exists a non-constraint r ∈
P , a rule s ∈ P with r →m,n s, and there exist units u′ ∈ U |r, v′ ∈ U |s such that (u′, v′) /∈ E.
Due to Definition 27, r →m,n s implies that s has H(s) 6= ∅ and therefore that s is a non-
constraint. Definition 34 (b) then implies that U |r = {u′} and U |s = {v′} (non-constraints are
present in exactly one unit).

Case (i): for r →n s, Definition 34 (c) specifies that for all u ∈ U |r, v ∈ U |s there exists an
edge (u, v) ∈ E, therefore also (u′, v′) ∈ E, which is a contradiction.

Case (ii): for r →m s, Definition 34 (d) specifies that there exists some u ∈ U |r such that
for all v ∈ U |s there exists an edge (u, v) ∈ E, and since U |r = {u′} and U |s = {v′} it must
hold that (u′, v′) ∈ E, which is a contradiction.

Example 53 (ctd). Figures 5.3 and 5.4 show two possible evaluation graphs for our running
example. E1 is an evaluation graph which contains every rule of Pswim in exactly one unit.
In contrast, E2 contains constraint c8 both in u2 and in u4. Condition (d) of Definition 34 is
particularly interesting in these two graphs; it is fulfilled as follows. In E1 each rule is contained
in exactly one unit, and at that unit all rule dependencies have corresponding unit dependencies.
In E2 the constraint c8 is part of u2 and of u4. The dependencies of c8, i.e., c8 →m r2 and
c8 →m r5, have corresponding unit dependencies at u4, but not at u2. As condition (d) only
requires that rule dependencies have corresponding unit dependencies at a single unit, u4 in E2

fulfills this condition for dependencies of c8.

Evaluation graphs have the important property that partial models of evaluation units do
not intersect, i.e., evaluation units do not mutually depend on each other. This is achieved by
requiring acyclicity, and that rule dependencies are covered in the graph.

88

5.4. Decomposition and Evaluation Techniques

r1: swim(in)∨ swim(out)←.
derives: swim(X)

r2: need(inout , C)←&rq [swim](C).
c8:←need(X,money).
derives: need(inout , C)

r3: goto(X)∨ngoto(X)←
swim(P), location(P,X).

r4: go← goto(X).
c6:← goto(X), goto(Y), X 6=Y.
c7:← not go.
derives: goto(X), ngoto(X), go

r5: need(loc, C)←&rq [goto](C).
c8:←need(X,money).
derives: need(loc, C)

u1

u2 u3

u4

Figure 5.4: Evaluation graph E2 for running example HEX program Pswim .

Due to acyclicity of an evaluation graph, mutually dependent rules of a program are con-
tained in the same unit, therefore each strongly connected component of the program’s depen-
dency graph is fully contained in a single evaluation unit. Furthermore, a unit can have in the
heads of its rules only atoms that do not unify with atoms in heads of rules in other units, as
rules which have unifiable heads mutually depend on one another. This ensures that under any
grounding, the set of heads of rules in one evaluation unit is disjoint from the set of heads of
rules in all other evaluation units. We call this the property of disjoint unit outputs.

Proposition 15 (Disjoint unit outputs). Given an evaluation graph E = (U,E) of a program P ,
then for each pair of distinct units u1 ∈U , u2 ∈U , u1 6=u2, it holds that gh(u1)∩ gh(u2) = ∅.5

Proof. Given two units u1 ∈ U , u2 ∈ U , u1 6= u2, assume towards a contradiction that there
exists γ ∈ gh(u1) ∩ gh(u2). Then there exists some r ∈ u1 with α ∈ H(r) and α ∼ γ, and
there exists some s ∈ u2 with β ∈ H(s) and β ∼ γ. As α ∼ γ and β ∼ γ and γ is ground,
we obtain α ∼ β, therefore, due to Def. 27 (iii) we have r →m s and s →m r. As r and
s have nonempty heads, they are non-constraints, therefore, due to Prop. 14, there is an edge
(u1, u2) ∈ E and an edge (u2, u1) ∈ E. As an evaluation graph is an acyclic graph, u1 = u2

which is a contradiction.

Example 54 (ctd). Figures 5.3 and 5.4 show for each unit which atoms can become true due to
rule heads in the respective units, denoted as ‘derived’ atoms. Observe, that both graphs have
strictly non-intersecting atoms in rule heads of distinct units.

As the evaluation graph will be central for our evaluation algorithm, we now show that every
domain-expansion safe HEX program has at least one corresponding evaluation graph.

As we have seen, splitting a HEX program is possible if there are no cyclic dependen-
cies. Due to Proposition 12 we know that all non-pregroundable external atoms in a domain-
expansion safe program are not contained in a cycle. Therefore we can split a domain-expansion
safe program at all points where non-pregroundable external atoms occur. The result is a set of
extended pre-groundable HEX programs which inter-depend acyclically and therefore can be
represented as an evaluation graph.

Proposition 16. Every domain-expansion safe HEX program P has some evaluation graph of
P .

Proof of Proposition 16. The strongly connected components (SCCs) of the rule dependency
graph of P partition the program P into sets of rules. External atoms in such a partition are either

5See page 82 for the definition of notation gh(P).

89

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

pre-groundable, or they are not contained in a dependency cycle within P (Proposition 12).
Therefore each SCC is an extended pregroundable HEX program, and the SCCs inter-depend
acyclically (by definition of SCC). Therefore we can create an evaluation graph where each unit
is an SCC and unit dependencies are dependencies between rules in each SCC. Note that such
an evaluation graph contains no shared constraints.

Therefore a HEX evaluation approach which is based on the notion of evaluation graph is
applicable to all domain-expansion safe HEX programs.

Evaluation Graph Splitting

We next show that evaluation units and their predecessors in an evaluation graph correspond to
generalized bottoms. We then use these properties to formulate an algorithm for piece-wise and
efficient evaluation of HEX-programs using evaluation graphs.

Given an evaluation graph E = (U,E), we write u < w iff there exists a path from u to w
in E , and u ≤ w iff either u < w or u = w.

For a unit u ∈ U , let u< =
⋃
w∈U,u<w w be the set of rules in ‘preceding’ units of u, i.e.,

units which u transitively depends on, and let u≤ = u< ∪ u. Note, that for a leaf unit u (i.e., u
has no predecessors) we have u< = ∅ and u≤ = u.

Theorem 12. Given an evaluation graph E = (U,E) of a HEX-program Q and an evaluation
unit u ∈ U , it holds that u< is a generalized bottom of u≤ wrt. the rule splitting setR comprising
all non-constraints in u<.

Proof. Given a HEX program S, we write constr(S) to denote the subset of constraints in a set
of rules S. We say that the dependencies of r ∈ Q are covered at unit u ∈ U iff for all rules
s ∈ Q with r →m,n s and s /∈ u, it holds that r has an edge to all units containing s, formally
(u, u′) ∈ E for all u′ ∈ U |s.

To prove that B = u< is a generalized bottom of P = u≤ wrt. the rule splitting set R =
u< \ constr(u<) as by Definition 30, we prove that (a) R ⊆ B ⊆ P , (b) B \ R contains only
constraints, (c) no constraint in B \ R has nonmonotonic dependencies to rules in P \ B, and
(d) R is a rule splitting set of P .

Statement (a) corresponds to u< \ constr(u<) ⊆ u< ⊆ u≤ and u≤ is defined as u≤ =
u< ∪ u, therefore the relations all hold. For (b), B \ R = u< \ (u< \ constr(u<)), and as
A \ (A \ B) = A ∩ B. We easily see that B \ R = u< ∩ constr(u<) and thus B \ R only
contains constraints. For (c), we show a stronger property, namely that no rule (constraint or
non-constraint) in B has nonmonotonic dependencies to rules in P \ B. B = u< is the union
of evaluation units V = {v ∈ U | v < u}. By Definition 34 (c) all nonmonotonic dependencies
are covered at all units. Therefore a rule r ∈ w, w ∈ V with r →n s, s ∈ V implies that either
s ∈ w, or that s is contained in a predecessor unit ofw and therefore in V . As P \B = u≤\u< it
contains exactly those rules at units u such that u /∈ V . Hence no nonmonotonic dependencies
from B to P \ B exist and (c) holds. For (d) we know that R = u< \ constr(u<) contains
no constraints, and by Prop. 14 all dependencies of non-constraints in R are covered by E .
Therefore r ∈ R, r →m,n s, and s ∈ P implies that s ∈ R. Consequently, (d) holds which
proves the theorem.

Example 55 (ctd). According to Theorem 12, in E1 we have that u<2 = u1 = {r1, r3, r4, c6, c7}
is a generalized bottom of u≤2 = u1 ∪u2 = {r1, r2, r3, r4, r5, c6, c7} wrt. rule splitting set R =
{r1, r3, r4}. This is intuitively true because we can split the rule dependency graph (Figure 5.2)
into two disconnected parts by cutting through r2 →m r1 and through r5 →m r3 and both cut
arrows have the same direction. Also, in E1, u<3 = u1 ∪u2 and u≤3 = Pswim ; Theorem 12 says
that u<3 is a generalized bottom of Pswim wrt. rule splitting set R = {r1, r2, r3, r4, r5}. (We can
again verify this in the rule dependency graph.)

90

5.4. Decomposition and Evaluation Techniques

In E2, we have u<4 = u1 ∪u2 ∪u3 and u≤4 = Pswim and Theorem 12 says that u<4 is a
generalized bottom of Pswim wrt. rule splitting set R = {r1, r2, r3, r4}. We can verify this on
Definition 30: we have P = Pswim , B = u<4 = {r1, r2, r3, r4, c6, c7, c8}, andR as above. Then
indeed R⊆B⊆P ; furthermore all rules in B \ R = {c6, c7, c8} are constraints and none of
these constraints depends nonmonotonically on any rule in P \B = {r5}. (Note that c7 →n r4

but this is not a problem as r4 ∈ B.)

Theorem 13. Given an evaluation graph E = (U,E) of a HEX-program Q, an evaluation unit
u ∈ U , and an evaluation unit u′ ∈ predsE(u), it holds that u′≤ is a generalized bottom of the
subprogram u< wrt. the rule splitting set R comprising all non-constraints in u′≤.

Proof. Similar to the proof of Theorem 12, we show this in four steps; given P = u<, R =
u′≤ \ constr(u′≤), and B = u′≤ = u′ ∪ u′<, we show that (a) R ⊆ B ⊆ P , (b) B \R contains
only constraints, (c) no constraint in B \ R has nonmonotonic dependencies to rules in P \ B,
and (d) R is a rule splitting set of P . Predecessors of u are {u1, . . . , uk} = predsE(u). Let
V = {v ∈ U | v < u′} be the set of evaluation units which u′ transitively depends on. (Note
that V ⊂ predsE(u) and u /∈ V .) As u′< contains all units u′ transitively depends on, we have
B = u′ ∪

⋃
w∈V w.

For (a), R ⊆ B holds trivially, and B ⊆ P holds by definition of u< and u′≤ and because
u′ ∈ predsE(u). Statement (b) holds, because B \ R removes R from B, i.e., it removes
everything that is not a constraint in B from B, therefore only constraints remain. For (c) we
show that no rule in B has a nonmonotonic dependency to rules in P \B. By Definition 34 (c),
all nonmonotonic dependencies are covered at all units. Therefore a rule r ∈ w, w ∈ {u′} ∪ V
with r →n s, s ∈ U implies that either s ∈ w, or that s is contained in a predecessor unit of
w and therefore in u′ or in V . Hence there are no nonmonotonic dependencies from rules in
B to any rules not in B, and hence also not to rules in P \ B and (c) holds. For (d) we know
that R contains no constraints and by Proposition 14 all dependencies of non-constraints in R
are covered by E . Therefore r ∈ R, r →m,n s, s ∈ P implies that s ∈ R and the theorem
holds.

Example 56 (ctd). Compared to Example 55, Theorem 13 states similar relationships in E1: we
have that u1 ∈ predsE1(u2), hence Theorem 13 says that u≤1 = u1 is a generalized bottom of
u<2 = u1 wrt. rule splitting set R = {r1, r3, r4}. Furthermore, u2 ∈ predsE1(u3), hence u≤2 =
u1 ∪u2 is a generalized bottom of u<3 = u1 ∪u2 wrt. rule splitting set R = {r1, r2, r3, r4, r5}.

Less straightforward is the case of E2 and u4. Unit u2 is a predecessor of u4, i.e., u2 ∈
predsE2(u4), therefore Theorem 13 states that u≤2 = u1 ∪u2 = {r1, r2, c8} is a generalized
bottom of u<4 = u1 ∪u2 ∪u3 wrt. rule splitting set R = {r1, r2}. If we compare with Defini-
tion 30, we have P = u1 ∪u2 ∪u3 and B = u1 ∪u2, therefore indeed R⊆B ⊆ P and the set
B \ R = {c8} contains only constraints that do not depend nonmonotonically on any rule in
P \B = {r3, r4, c6, c7}.

First Ancestor Intersection Units

An evaluation graph is a directed acyclic graph, and from a unit in such a graph there may exist
multiple paths reaching another unit. We will use the evaluation graph for model building, and
as unit dependencies reflect semantic dependencies between units, units where multiple paths of
unit dependencies meet are of special importance. We call such units first ancestor intersection
units; these are units where distinct paths from the dependency relation of some other unit have
their first intersection.

Definition 35. Given an evaluation graph E = (U,E), and distinct units v, w ∈ U , we say that
unit w is a first ancestor intersection unit (FAI) of v iff there exist paths p1, p2, p1 6= p2, from v
to w in E such that p1 and p2 overlap only in vertices v and w. We denote by fai(v) the set of
all FAIs of a unit v.

91

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

a

b

c d

e

f g

fai(b) = {e}

fai(a) = {d, e}

Figure 5.5: First Ancestor Intersection units (FAIs) in an evaluation graph.

Note that for evaluation graphs that are trees, no distinct paths from one to another unit exist,
therefore no unit is a FAI of any other unit.

Example 57. Figure 5.5 sketches an evaluation graph with dependencies (edges) a → b →
c → e → f , a → d → e → g, and b → d. We have that fai(a) = {d, e} and fai(b) = {e}
and all other units have an empty set of FAIs. In particular, note that f and g are not FAIs of b,
because all pairs of distinct paths from b to f or g overlap in more than two units.

Example 58 (ctd). The evaluation graph E1 (see Fig. 5.3) of Pswim is trivially a tree, therefore
fai(u) = ∅ for u ∈ {u1, u2, u3}. On the other hand, evaluation graph E2 (see Fig. 5.4) is not a
tree; we have that fai(u4) = {u1} and no other unit in E2 has FAIs.

5.4.2 Interpretation Graph

We now define the Interpretation Graph (short i-graph), which is the foundation of our model
building algorithm. An i-graph is a labeled directed graph which is defined with respect to an
evaluation graph: each vertex is associated with a specific evaluation unit, has a type which
makes it either an input or an output interpretation, and has an associated set of ground atoms.

We do not use the content of interpretations directly as vertices, because we need distinct
vertices to be associated with the same interpretation. Nevertheless we will call vertices of the
i-graph interpretations.

We first define the auxiliary Interpretation Structure, then formulate conditions on that struc-
ture, and define the i-graph using these conditions. Given an evaluation graph E = (U,E) and a
unit v ∈ U , we define the set of units that v depends on as predsE(v) = {w ∈ U | (v, w) ∈ E}.

Definition 36. Let E = (U,E) be an evaluation graph for a program P . An interpretation
structure I for E is a directed acyclic graph I = (M,F, unit , type, int) where M ⊆ Iid is
from a countable set Iid of identifiers, e.g., from N, and unit : M → U , type : M → {I, O},
and int : M → 2HBP are total node labeling functions.

On interpretation structures we introduce additional notation. Given unit u ∈ U in the eval-
uation graph associated with an i-graph I, we denote by i -intsI(u) = {m∈M | unit(m) =u
and type(m) = I}, respectively, o-intsI(u) = {m∈M | unit(m) =u and type(m) = O}, the
input (i-)interpretations respectively, output (o-)interpretations of I at unit u. Given vertex
m ∈M , we denote by

int+(m) = int(m) ∪
⋃
{int(m′) | m′ ∈M and m′ is reachable from m in I}

the expanded interpretation of m.
Given an interpretation structure I = (M,F, unit , type, int) for E = (U,E) and a unit

u ∈ U we define the following conditions:

92

5.4. Decomposition and Evaluation Techniques

unit

unit dependency

i-interpretation

o-interpretation

dependency

Violation! OK!

Figure 5.6: Interpretation Graphs: violation of the FAI condition on the left, correct situation on
the right.

(IG-I) I-connectedness: for every m∈ o-intsI(u) the structure contains exactly one outgoing
edge (m,m′) ∈ F and m′ ∈ i -intsI(u) is an i-interpretation at unit u;

(IG-O) O-connectedness: for every m ∈ i -intsI(u) and for every predecessor unit ui ∈
predsE(u) of u, there is exactly one outgoing edge (m,mi) ∈ F and mi ∈ o-intsI(ui)
(every mi is an o-interpretation at the respective unit ui);

(IG-F) FAI intersection: for every m ∈ i -intsI(u), let I ′ be the subgraph of I reachable from
m, and let E ′ be the subgraph of E reachable from u. Then I ′ contains exactly one o-inter-
pretation at each evaluation unit of E ′. (Note that both graphs are acyclic, therefore I ′ does
not include m and E ′ does not include u.)

(IG-U) Uniqueness: for every pair of distinct verticesm1,m2 ∈M,m1 6=m2, with unit(m1) =
unit(m2) = u, the expanded interpretation of m1 and m2 differs, formally int+(m1) 6=
int+(m2).

Definition 37 (Interpretation Graph). Let E = (U,E) be an evaluation graph for a program P ,
then an interpretation graph I = (M,F, unit , type, int) for E is an interpretation structure that
fulfills for every unit u ∈ U the conditions (IG-I), (IG-O), (IG-F), and (IG-U).

Intuitively, the conditions make every i-graph ‘live’ on its associated evaluation graph: an
i-interpretation must conform to all dependencies of the unit it belongs to, by depending on
exactly one o-interpretation at that unit’s predecessor units (IG-I); moreover an o-interpretation
must depend on exactly one i-interpretation at the same unit (IG-O). Furthermore, every i-inter-
pretation depends directly or indirectly on exactly one o-interpretation at each unit it can reach
in the i-graph (IG-F); this ensures that no expanded interpretation int+(m) ‘mixes’ two or
more i-interpretations or two or more o-interpretations from one evaluation unit. (The effect of
condition (IG-F) is visualized in Figure 5.6.) Finally, redundancies in an i-graph are ruled out
by the uniqueness condition (IG-U).

Example 59 (ctd.). Figures 5.7 and 5.8 show two interpretation graphs: I1 is an i-graph for
E1, and I2 is a i-graph for E2. (We will later see that I1 and I2 are two very special i-graphs,
namely they are answer set graphs; the symbol E will be explained in Example 64.)

The unit label is depicted as rectangle labeled with the respective unit. The type label
is indicated after interpretation names, i.e., m1/I denotes that interpretation m1 is an input
interpretation. For I1, the set Iid of identifiers is {m1, . . . ,m18} and for I2 it is {m1, . . . ,m15}.

Dependencies are shown as arrows between interpretations. Observe that in both graphs
I-connectedness is fulfilled, as every o-interpretation depends on exactly one i-interpretation at
the same unit. O-connectedness is similarly fulfilled, in particular consider i-interpretations of

93

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

∅
m1/I

{swim(in), go,
ngoto(apool),
goto(mpool)}

m2/O

{swim(in), go,
ngoto(mpool),
goto(apool)}

m3/O

{swim(out), go,
ngoto(gdanube),
goto(ndanube)}

m4/O

{swim(out), go,
ngoto(ndanube),
goto(gdanube)}

m5/O

int(m2)

m6/I

int(m3)

m7/I

int(m4)

m8/I

int(m9)

m9/I

{need(inout ,money)}
m10/O

{need(inout ,money),
need(loc, goggles)}

m11/O

{need(loc, yogamat)}
m12/O

{need(loc,money)}
m13/O

int(m10)

m14/I

int(m11)

m15/I

int(m12)

m16/I

int(m13)

m17/I

E E ∅m18/O E

at
un

it
u
1

at
un

it
u
2

at
un

it
u
3

Figure 5.7: Interpretation graph I1 for E1

∅
m1/I

{swim(in)}
m2/O

{swim(out)}
m3/O

int(m2)

m4/I

int(m3)

m5/I

E ∅
m6/O

int(m2)

m7/I

int(m3)

m8/I

{go,
ngoto(mpool),
goto(apool)}

m9/O

{go,
ngoto(apool),
goto(mpool)}

m10/O

{go,
ngoto(gdanube),
goto(ndanube)}

m11/O

{go,
ngoto(ndanube),
goto(gdanube)}

m12/O

{go, goto(ndanube),ngoto(gdanube)}
m13/I

{go, goto(gdanube),ngoto(ndanube)}
m14/I

{need(loc, yogamat)}
m15/O

E

at
un

it
u
1

at unit u2
at unit u3

at
un

it
u
4

Figure 5.8: Interpretation graph I2 for E2

u4 in I2: u4 has two predecessor units (u2 and u3) and every i-interpretation at u4 depends on
exactly one o-interpretation at u2 and exactly one o-interpretation at u3. The condition on FAI
intersection is trivially fulfilled in I1, as E1 is a tree. In I2 the only i-interpretations where FAI
intersection could be violated are i-interpretations at u4. We can verify that from m13 and from
m14 we can reach exactly one o-interpretation at each evaluation unit, therefore the condition
is fulfilled. Note that if we had an i-interpretation at u4 with dependencies to m6 and to m9 (or
m10), the FAI intersection condition would be violated, because we could reach both m2 and

94

5.4. Decomposition and Evaluation Techniques

m3 at u1. Uniqueness is satisfied, as in both graphs no unit has two output models with the
same content.

Note that the empty graph is an i-graph. This is by intent, as our model building algorithm
will progress from an empty i-graph to a graph with interpretations at every unit (if and only if
the program has an answer set).

Join

We will build i-graphs by adding one vertex at a time, always preserving the i-graph conditions.
Adding an o-interpretation requires to add a dependency to one i-interpretation at the same unit.
Adding an i-interpretation similarly requires addition of dependencies. However this is more
involved because condition (IG-F) could be violated by such additions. Therefore, we next
define an operation that captures all necessary conditions.

We call the combination of o-interpretations which yields an i-interpretation a ‘join’. For-
mally, the join operation ‘ ./ ’ is defined as follows.

Definition 38. Let I = (M,F) be an i-graph for an evaluation graph E = (V,E) of a program
P . Let u ∈ V be a unit, let {u1, . . . , uk} = predsE(u) be the predecessor units of u, and
let mi ∈ o-intsI(ui), 1 ≤ i ≤ k be o-interpretations at respective units ui. Then the join
m1 ./ · · · ./ mk =

⋃
1≤i≤k int(mi) at u is defined iff for each u′ ∈ fai(u) the set of o-inter-

pretations at u′ that are reachable (in F) from some o-interpretation mi, 1 ≤ i ≤ k contains
exactly one o-interpretation m′ ∈ o-intsI(u

′).

Intuitively, a set of interpretations can only be joined if all interpretations depend on the
same (and on a single) interpretation at every unit.

Example 60 (ctd). In I1, m1 is created by a trivial join operation with no predecessor units,
therefore the join is trivially defined and results in ∅. Every other i-interpretation in I1 is
created by a trivial join operation with one predecessor unit: such a join is always defined and
the interpretation is simply copied. As there are no FAIs in E1, every join is defined, e.g., m6 is
an i-interpretation created from joining m2 (with no other interpretation).

In I2, i-interpretations m1, m4, m5, m7, and m8 are created by trivial join operations
with none or one predecessor unit. For m13 and m14 we have a nontrivial join: int(m13) =
int(m6) ∪ int(m11) and the join is defined because fai(u4) = {u1} and it holds that from m6

and m11 we can reach in I2 exactly one o-interpretation at u1. Observe that the join m6 ./ m9

is not defined, as we can reach (in I2) from {m6,m9} the set of o-interpretations {m2,m3}
at u1, which means we can reach more than exactly one o-interpretation at each FAI of u4.
Similarly, the join m6 ./ m10 is undefined, as we can reach {m2,m3} at u1.

The result of a join is the union of predecessor interpretations; this becomes important next
where we introduce answer set graphs and investigate the join operation wrt. them. Note that a
leaf unit (i.e., a unit without predecessors) has exactly one well-defined join result ∅.

If we use the result of a join operation to add a new i-interpretation to the i-graph, and add
dependencies to all o-interpretations that were part of that join, then the resulting graph is again
an i-graph (i.e., the join is sound operation wrt. the i-graph conditions). Conversely, the join
operation creates all i-interpretations that can be added to the i-graph (i.e., the join is a complete
operation wrt. the i-graph conditions).

Proposition 17. Let I = (M,F, unit , type, int) be an i-graph for an evaluation graph E = (V,
E), a unit u ∈ V with {u1, . . . , uk}= predsE(u), a set {m1, . . . ,mk} with mi ∈ o-intsI(ui),
1 ≤ i ≤ k, and provided that there is no vertex m ∈ i -intsI(u) such that {(m,m1), . . . ,
(m,mk)} ⊆ F . Then the join J = m1 ./ · · · ./ mk is defined at u iff I ′ = (M ′, F ′, unit ′,
type ′, int ′) is an i-graph for E where (a) M ′ = M ∪ {m′} for some new vertex m′ ∈Iid \M ,

95

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

(b) F ′ = F∪{(m′,mi) | 1 ≤ i ≤ k}, (c) unit ′ = unit∪{(m′, u)}, (d) type ′ = type∪{(m′, I)},
and (e) int ′ = int ∪ {(m′, J)}.

Proof. (⇒) The added vertex m′ is assigned to one unit and gets assigned a type, furthermore
the graph stays acyclic as only outgoing edges from m′ are added. I-connectedness is satisfied,
as it is satisfied in I and we add no o-interpretation. O-connectedness is satisfied, as m′ gets
appropriate edges to o-interpretations at its predecessor units, and for other i-interpretations the
condition is already satisfied in I.

For FAI intersection, observe that, if we add an edge (m′,mi) to I, and mi ∈ o-intsI(ui),
then m′ reaches in I only one o-interpretation at ui, and due to O-connectedness that o-inter-
pretation is connected to exactly one i-interpretation at ui, which is part of the original graph I
and therefore satisfies FAI intersection. Therefore it remains to show that the union of subgraphs
of I reachable in I from m1,. . . ,mk, contains one o-interpretation at each unit in the subgraph
of E reachable in E from u1,. . . ,uk. We make a case distinction.

Case (I): two o-interpretations mi ∈ o-intsI(ui), mj ∈ o-intsI(uj) in the join, with
1 ≤ i < j ≤ k, have no common unit that is reachable in E from ui and from uj : then the
condition is trivially satisfied, as the subgraphs of I reachable in I from mi and mj do not
intersect at any unit.

Case (II): two o-interpretations mi ∈ o-intsI(ui), mj ∈ o-intsI(uj) in the join, with
1 ≤ i < j ≤ k, have at least one common unit that is reachable from ui and from uj in E .
Let uf be a unit reachable from in E both ui and uj on two paths that do not intersect before
reaching uf . From ui to uf , and from uj to uf , exactly one o-interpretation is reachable in I
from mi and mj , respectively, as these paths do not intersect. uf is a FAI of u, and as the join
is defined, we reach in E exactly one o-interpretation at unit uf from mi and mj . Due to O-
connectedness, we also reach in I exactly one i-interpretation m′′ at uf from mi and mj . Now
m′′ is common to subgraphs of I that are reachable in I from mi and mj , and already satisfies
FAI intersection in I.

Therefore FAI intersection is satisfied inM′ for all pairs of predecessors of m′ and there-
fore in all cases. As no vertex m with {(m,m1), . . . , (m,mk)} ⊆ F exists, and M satisfies
Uniqueness,M′ also satisfies Uniqueness.

(⇐) I-connectedness, O-connectedness, and Uniqueness are satisfied if we add m′ as spec-
ified, as they are satisfied in I and due to the way we add m′ to I. It remains to show that,
whenever FAI intersection is satisfied in I ′, then the join is defined. Assume on the contrary
that I ′ is an i-graph but the join is not defined. As the join is not defined, there exists a FAI
u′ ∈ fai(u) such that none or more than one o-interpretation from o-intsI(u) is reachable in
I from mi, 1 ≤ i ≤ k. Due to I-connectedness and O-connectedness, if a unit u′ is a FAI and
therefore u′ is reachable in E from ui, then at least one i-interpretation and one o-interpretation
at u′ is reachable in I from mi. If more than one o-interpretation is reachable in I from mi,
1 ≤ i ≤ k, this means that more than one o-interpretation at u′ is reachable in I from the
newly added i-interpretation m. This violates FAI intersection in I ′, therefore we reached a
contradiction and the result follows.

Note that the i-graph definition specifies topological properties of an i-graph wrt. an evalu-
ation graph. In the following we extend this specification to the contents of interpretations.

5.4.3 Answer Set Graph

We next restrict the notion of i-graph to the notion of answer set graph, such that interpretations
correspond with answer sets of certain HEX programs, which are induced by the evaluation
graph.

Definition 39 (Answer Set Graph). Given an evaluation graph E = (U,E), an answer set graph
A = (M,F, unit , type, int) for E is an i-graph for E such that for each unit u ∈ U it holds that

96

5.4. Decomposition and Evaluation Techniques

(a) every expanded i-interpretation at u is an answer set of u<, formally for each i-inter-
pretation m∈ i -intsI(u) it holds that int+(m) ∈ AS(u<);

(b) every expanded o-interpretation at u is an answer set of u≤, formally for each o-inter-
pretation m∈ o-intsI(u) it holds that int+(m) ∈ AS(u≤); and

(c) every i-interpretation at u is the union of o-interpretations it depends on, formally for each
i-interpretation m ∈ i -intsI(u) it holds that int(m) =

⋃
(m,mi)∈F int(mi).

Note that for a leaf unit u, we have u< = ∅ and therefore the only possible i-interpretation
is ∅ (which coincides with the only possible join result for a leaf unit). Moreover, condition (c)
is necessary to ensure that an i-interpretation at unit u contains all atoms of answer sets of
predecessor units that are relevant for evaluating u. Furthermore, note that the empty graph is
an answer set graph.

Example 61 (ctd). Both example i-graphs we have discussed so far are in fact answer set
graphs. In I2, int+(m1) = ∅ and u<1 = ∅ and indeed ∅ ∈ AS(∅) which satisfies condi-
tion (a). Less trivial is the case of o-interpretation m6 in I2: int+(m6) = {swim(out)} and
u≤2 = {r1, r2, c8}; as c8 kills all answer sets where money is required, AS({r1, r2, c8}) =
{{swim(out)}} which means that the expanded interpretation of m6 is the only possible ex-
panded interpretation of an o-interpretation at u2. The condition (IG-U) on i-graphs (unique-
ness) furthermore implies that m6 is the only possible o-interpretation at u2. Consider next
m13:

u<4 = {r1, r2, r3, r4, c6, c7, c8} and

int+(m13) = {go, goto(ndanube),ngoto(gdanube), swim(out)}.

The answer sets of u<4 are

AS(u<4) =
{
{go, goto(ndanube),ngoto(gdanube), swim(out)},
{go, goto(gdanube),ngoto(ndanube), swim(out)}

}
and int+(m13) is one of them, the other one is int+(m14). Finally

int+(m15) = {swim(out), goto(ndanube), go,ngoto(gdanube),need(loc, yogamat)},

which is the single answer set of u≤4 = Pswim .

The join operation has a useful property with respect to answer set graphs: adding a join
result as i-interpretation to an answer set graph again yields an answer set graph (soundness),
and all possible answer sets can be created this way (completeness).

Proposition 18. Given an answer set graph A = (M,F, unit , type, int) for an evaluation
graph E = (V,E), a unit u ∈ V with {u1, . . . , uk} = predsE(u), a set {m1, . . . ,mk} with
mi ∈ o-intsA(ui), 1 ≤ i ≤ k and provided that there is no vertex m ∈ i -intsA(u) such that
{(m,m1), . . . , (m,mk)} ⊆ F . Then the join J = m1 ./ · · · ./ mk is defined at u iff A′ =
(M ′, F ′, unit ′, type ′, int ′) is an answer set graph for E where (a) M ′ = M ∪ {m′} for some
new vertex m′ ∈Iid \M , (b) F ′ = F ∪ {(m′,mi) | 1≤ i≤ k}, (c) unit ′ = unit ∪ {(m′, u)},
(d) type ′ = type ∪ {(m′, I)}, and (e) int ′ = int ∪ {(m′, J)}.

Proof of Proposition 18. (⇒) Whenever the join is defined, due to Proposition 17 A′ is an i-
graph. It remains to show that int(m′)+ ∈ AS(u<). By Theorem 13 we know that for each ui,
u≤i is a generalized bottom of u< wrt. a set Ri comprising all non-constraints in u≤i . For each
ui, therefore Y ∈ AS(u<) iff Y ∈ AS(u< \ Ri ∪ facts(X)) for some X ∈ AS(u≤i). As A′ is
an answer set graph, for each mi we know that int(mi)

+ ∈ AS(u≤i). Therefore Y ∈ AS(u<)

97

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

iff Y ∈ AS(u< \ Ri ∪ int(mi)
+) is an answer set of u< that contains int(mi)

+. This is true
for all i, 1 ≤ i ≤ k, from the evaluation graph properties we know that u< = u≤1 ∪ · · · ∪ u

≤
k ,

and from the construction of int(m′) and its dependencies in A′ we obtain that int(m′)+ =
int(m1)+ ∪ · · · ∪ int(mk)

+. Therefore int(m′)+ ∈ AS(u<) which satisfies condition (a). Due
to the definition of join, condition (c) is also satisfied and A′ is indeed an answer set graph.

(⇐) AsM′ is an answer set graph it is also a model graph, therefore the join is defined. As
condition (c) holds inM′, J is the union of the o-interpretations it depends on, therefore this
direction also holds.

Example 62 (ctd). Proposition 18 states that, given an answer set graph, the ‘syntactic’ con-
ditions of the join operation are sufficient to ensure that an i-interpretation which is the result
of a join can be added to the graph and the result is again an answer set graph. In I2, imagine
that there are no interpretations at u4. The following candidate pairs of o-interpretations exist
for creating i-interpretations at u4: m6 ./ m9, m6 ./ m10, m6 ./ m11, andm6 ./ m12. We have
already seen in Example 60 that m13 = m6 ./ m11 and m14 = m6 ./ m12 are the only joins
at u4 that are defined. In Example 61 we have seen that AS(u<4) = {int+(m13), int+(m14)},
and due to uniqueness (IG-U) of i-graphs we cannot have additional i-interpretations with the
same content.

Complete Answer Set Graphs

We next introduce a notion of completeness for answer set graphs.

Definition 40. LetA = (M,F, unit , type, int) be an answer set graph for an evaluation graph
E = (U,E) and let u ∈ U be a unit in U . Then

• A is input-complete for u iff {int+(m) | m ∈ i -intsA(u)} = AS(u<), and

• A is output-complete for u iff {int+(m) | m ∈ o-intsA(u)} = AS(u≤).

If an answer set graph is complete for all units of its corresponding evaluation graph, answer
sets of the program can be obtained as follows.

Theorem 14. Let E = (U,E) be an evaluation graph of a program P , with U = {u1, . . . , un};
and letA = (M,F, unit , type, int) be an answer set graph that is output-complete for all units
u ∈ U . Then

AS(P) =
{

int(m1) ∪ · · · ∪ int(mn) | mi ∈ o-intsA(ui), 1 ≤ i ≤ n, and

|o-intsA′(ui)| = 1
}
, (5.2)

whereA′ is the subgraph ofA which consists of all interpretations that are reachable inA from
some interpretation mi, 1 ≤ i ≤ n.

Note that the condition implies that, for an answer set, the subgraphA′ contains exactly one
o-interpretation at each unit.

To avoid repetition of large parts of this proof in another proof, we delay the proof of Theo-
rem 14 until we have proved Proposition 19.

Example 63 (ctd). In I2 we first choose m15 ∈ o-ints(u4) which is the only o-interpretation at
u4. The subgraph reachable from m15 must contain exactly one o-interpretation at each unit;
therefore we have to choose all o-interpretations m such that m15 →+ m. Hence we obtain{

int(m3) ∪ int(m6) ∪ int(m11) ∪ int(m15)
}

=
{
{swim(out)} ∪ ∅ ∪ {goto(ndanube),ngoto(gdanube), go}∪ {need(loc, yogamat)}

}
=
{
{swim(out), goto(ndanube),ngoto(gdanube), go,need(loc, yogamat)}

}
which is indeed the set of answer sets of Pswim .

98

5.4. Decomposition and Evaluation Techniques

The rather involved set construction in (5.2) establishes a relationship between answer sets
of a program and complete answer set graphs and resembles condition (IG-F) of i-graphs. To
obtain a more straightforward way to enumerate answer sets (and a simpler theorem), we next
describe how to extend an evaluation graph with a single evaluation unit ufinal that depends on
all other units in the graph. Answer sets of P then directly correspond to i-interpretations at
ufinal .

Proposition 19. Given an evaluation graph E = (U,E) of a program P , where E contains a
final unit ufinal = ∅ with dependencies to all other units in U , formally ufinal ∈ U , {(ufinal , u) |
u ∈ U, u 6= ufinal} ⊆ E; and given an answer set graph A = (M,F, unit , type, int) for E
that is input-complete for U and output-complete for U \ {ufinal}, then

AS(P) = {int(m) | m ∈ i -intsA(ufinal)}. (5.3)

Proof. As ufinal depends on all units in U \ {ufinal}, due to O-connectedness an i-interpretation
m ∈ i -intsA(ufinal) depends on one o-interpretation at every unit in U \ {ufinal}. Given an i-
interpretation m ∈ i -ints(ufinal), let {u1, . . ., uk} denote the set of units U \{ufinal}, and {m1,
. . ., mk} denote the set of o-interpretations with (m,mi) ∈ F , and mi ∈ o-intsA(ui). Then,
due to FAI intersection, the set {m1, . . ., mk} contains all o-interpretations that are reachable
from m in A, and it contains only those interpretations. Therefore int(m)+ = int(m1) ∪
· · · ∪ int(mk), and due to condition (c) in Definition 39 we have int(m) = int(m)+. By
the dependencies of ufinal , we have u<final = P , and as ufinal is input-complete we have that
AS(P) = AS(u<final) = {int(m)+ | m ∈ i -intsA(ufinal)}. Using the above intermediate result
that int(m) = int(m)+ for all i-interpretations m at ufinal , we obtain the result.

Proof of Theorem 14. We prove this theorem here because we make use of Proposition 19. We
construct E ′′ = (U ′′, E′′) with U ′′ = U ∪ {ufinal}, ufinal = ∅, and E′′ = E ∪ {(ufinal , u) | u ∈
U}. As ufinal contains no rules, and E ′′ is acyclic, no evaluation graph properties are violated
and E ′′ is an evaluation graph. AsA contains no interpretations at ufinal , and dependencies from
units in U are the same in E and E ′′, A is an answer set graph for E ′′. We now modify A and
yield A′′: we add the set Mnew = {m | the join m = m1 ./ · · · ./ mn is defined at ufinal} as
i-interpretations of ufinal and add according dependencies (from eachm to its respective o-inter-
pretations mi, 1 ≤ i ≤ n). Due to Proposition 18 this makes ufinal input-complete andA′′ is an
answer set graph for E ′′. Due to Proposition 19 we haveAS(P) = i -intsA(ufinal) = Mnew . As
the result of a join is the union of its joined interpretations, for showing the theorem it remains
to show that the join between m1,. . . ,mn is defined at ufinal iff the subgraph A′ of A reachable
from o-interpretations mi in F contains exactly one o-interpretation m ∈ o-intsA(ui) for each
unit ui ∈ U . Due to Proposition 17, adding a joined i-interpretation preserves the i-graph
properties, and all i-interpretations we can add have a corresponding join that is defined. FAI
intersection states that exactly one o-interpretation at each unit is reachable from an i-inter-
pretation, therefore the result follows.

Note that it is not necessary to expand i-interpretations at ufinal because ufinal depends on
all other units, therefore for every m ∈ i -intsA(ufinal) it holds that int+(m) = int(m).

We will use the technique with ufinal for our model enumeration algorithm; as the join con-
dition must be checked anyways, this technique is an efficient and simple method for obtaining
all answer sets of a program using an answer set graph.

5.4.4 Answer Set Enumeration

We build answer set graphs as follows: we start with an empty graph, create o-interpretations by
evaluating a unit on an i-interpretation, and create i-interpretations by joining o-interpretations
of predecessor units.

99

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

Algorithm 5.2: BUILDANSWERSETS

Input: E = (V,E): evaluation graph for HEX program P , which contains a unit ufinal

that depends on all other units in V
Output: a set of all answer sets of P
M := ∅, F := ∅, unit := ∅, type := ∅, int := ∅, U := V

(a) while U 6= ∅ do
choose u ∈ U s.t. predsE(u) ∩ U = ∅
let {u1, . . . , uk} = predsE(u)
if k = 0 then

(b) m := max (M) + 1
M := M ∪ {m}
unit(m) := u, type(m) := I, int(m) := ∅

else
(c) for m1 ∈ o-ints(u1), . . . ,mk ∈ o-ints(uk) do

if J = m1 ./ · · · ./ mk is defined then
m := max (M) + 1
M := M ∪ {m}, F := F ∪ {(m,mi) | 1 ≤ i ≤ k}
unit(m) := u, type(m) := I, int(m) := J

(d) if u = ufinal then
return i -ints(ufinal)

(e) for m′ ∈ i -ints(u) do
O := EVALUATEUNIT(u, int(m′))
for o ∈ O do

m := max (M) + 1
M := M ∪ {m}, F := F ∪ {(m,m′)}
unit(m) := u, type(m) := O, int(m) := o

(f) U := U \ {u}

Top-down Algorithm

We are now equipped to formulate an algorithm for evaluating HEX programs that have been
decomposed into an evaluation graph. Roughly speaking, answer sets can be built by first ob-
taining an evaluation graph and then computing an answer set graph accordingly.

Algorithm 5.2 shows our model building algorithm, which creates an answer set graphA =
(M,F, unit , type, int) for an evaluation graph E and returns all answer sets. Intuitively the
algorithm operates as follows. U contains units for which A is not yet output-complete (see
Definition 40), and we start with an empty answer set graph A, therefore we start with U = V .
In each iteration of the while loop (a), one unit u that is not output-complete and depends only on
output-complete units is selected, the first for loop (c) makes u input-complete, if u is the final
unit we return the answer sets in (d), otherwise the second for loop (e) makes u output-complete,
we remove u from U . Each iteration makes one unit input- and output-complete, therefore once
the algorithm reaches ufinal and makes it input-complete all answer sets can directly be returned
in (d).

Theorem 15. Given an evaluation graph E = (V,E) of a HEX program P , BUILDANSWER-
SETS(E) returns AS(P).

Proof. We show by induction that the graphM = (M,F, unit , type) is an answer set graph for
E , and that at the beginning of the while loopM is input- and output-complete for V \ U .

(Base)M is initially empty and V = U , therefore the base case trivially holds.

100

5.4. Decomposition and Evaluation Techniques

(Step) Assuming M is input- and output-complete for V \ U , the chosen u is such that
it only depends on units in V \ U , i.e., only on output-complete units. For a leaf unit, (b)
creates an empty i-interpretation and therefore makes u input-complete. For a non-leaf unit,
the first for loop (c) builds all possible joins of interpretations at predecessors of u, and adds
them as i-interpretations to M. As all predecessors of u are output-complete, this makes
u input-complete. Condition (d) is true only if we just made ufinal input-complete, which
means that all predecessors of ufinal are output-complete. As ufinal depends on all other units,
this means that U = {ufinal} and, the algorithm returns i -intsA(u) and according to Propo-
sition 19 this is equal to AS(P). For all other units, the second for loop (e) evaluates u
wrt. every i-interpretation at u and adds the result to u as an o-interpretation. Due to Propo-
sition 13, EVALUATEUNIT(u, int(m′)) returns all o such that o ∈ {X \ int(m′) | X ∈
AS(u∪ facts(int(m))}. (As u depends on all units its rules depend on, and as i-interpretations
contain all atoms from o-interpretations of predecessor units (due to condition (c) of Defini-
tion 39), we have EVALUATEUNIT(u, int(m′)) = EVALUATEUNIT(u, int(m′)+) and it is suffi-
cient to call EVALUATEUNIT(u, int(m′)) to obtain O. Due to Theorem 12, u< is a generalized
bottom of u≤. Therefore, due to the generalized splitting theorem, as int(m′)+ ∈ AS(u<) we
have that int(m′)+ ∪ o ∈ AS(u≤). Therefore adding a new o-interpretation m with interpreta-
tion int(m) = o and dependency to m′ to the graphM makes int(m)+ ∈ AS(u≤), and adding
all of them makesM output-complete for u. Finally, in (f) we remove u from U , therefore at
the end of the while loopM is again input- and output-complete for V \ U .

Hence, in the |V |-th iteration of the while loop, condition (d) returns true and the algorithm
terminates by returning AS(P).

Example 64 (ctd.). Consider an evaluation graph E ′2 which is E2 plus ufinal = ∅, which de-
pends on all other units. Algorithm 5.2 first chooses u = u1, and as u1 has no predeces-
sor units, step (b) creates the i-interpretation m1 with int(m1) = ∅. As u1 6= ufinal we
continue and in loop (e) obtain O = AS(u1) =

{
{swim(in)}, {swim(out)}

}
. We add

both answer sets as o-interpretations m2 and m3 and then finish the outer loop with U =
{u2, u3, u4, ufinal}. In the next iteration we could choose u = u2 or u = u3, assume we choose
u2, then predsE(u2) = {u1} and k = 1. Therefore we enter loop (c) and build all joins that
are possible with o-interpretations at u1 (all joins are trivial and all are possible), i.e., we copy
the interpretations and store them at u2 as new i-interpretations m4 and m5. In loop (e) we
obtainO = EVALUATEUNIT(u2, {swim(in)}) = ∅, as indoor swimming requires money which
is forbidden by c8 ∈ u2. Therefore i-interpretation {swim(in)} yields no o-interpretation, in-
dicated by E. However, we obtain O = EVALUATEUNIT(u2, {swim(out)}) = {∅}, as outdoor
swimming does not require money and does not require anything else, therefore i-interpretation
{swim(out)} derives no additional atoms and yields the empty answer set which we store as
o-interpretation m6 at u2. The iteration ends with U = {u3, u4, ufinal}. The next iteration
chooses u = u3, in loop (c) we add i-interpretations m7 and m8 to u3, in loop (e) we add
o-interpretations m9, . . . , m12 to u3, and the iteration ends with U = {u4, ufinal}. The next
iteration chooses u = u4, this time we have multiple predecessors, and in loop (c) we check
join candidates m6 ./ m9 and m6 ./ m10 which are both not defined. The other join candi-
dates are m6 ./ m11 and m6 ./ m12 which are both defined, and we add these join results as
i-interpretations m13 and m14 to u4. Loop (e) then computes one o-interpretation m15 for
i-interpretation m13 and no o-interpretation for m14. The iteration ends with U = {ufinal},
therefore the next iteration has predsE(ufinal) = {u1, u2, u3, u4} and loop (c) checks all com-
binations of one o-interpretation at each unit in predsE(ufinal). Only one such join candidate
is defined: this is m = m3 ./ m6 ./ m11 ./ m15, which we store as a new i-interpretation at
ufinal . The check (d) now succeeds, and we return all i-interpretations at ufinal , i.e., we return
{m} =

{
{swim(out), goto(ndanube),ngoto(gdanube), go,need(loc, yogamat)}

}
which is

indeed the set of answer sets of Pswim .

101

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

5.5 Implementation and Experimental Evaluation

The presented framework has been implemented and released as version 2.0 of the dlvhex
solver [DHX12]. The current implementation supports DLV [DLV12] and (for the aggregate-
free subset of HEX) clasp+gringo [PAS12].

In addition to the framework described in this thesis, a ‘model streaming’ algorithm has
been implemented which computes interpretations in an answer set graph in a bottom-up order
rather than a top-down order. This means that units are not made complete one after the other,
but instead the algorithm attempts to find complete answer sets as soon as possible. This is very
useful if only the first answer set is required, e.g., for the query support of dlvhex.

5.5.1 Heuristics

As for creating evaluation graphs, several heuristics have been implemented:

• the former dlvhex evaluation heuristics H1 , which makes units as large as possible and
has several drawbacks as discussed above;

• a ‘trivial’ heuristics which makes units as small as possible and is useful for debugging.
However this heuristics has the drawback of a large overhead in the model graph manage-
ment because it creates the largest possible number of units in the evaluation graph;

• a simple evaluation heuristics H2 which has the goal of finding a compromise between
the trivial heuristics and H1 . It places rules into units as follows:

(i) it puts rules r1, r2 into the same unit whenever r1 →m,n s and r2 →m,n s and there
is no rule t such that exactly one of r1, r2 depends on t;

(ii) it puts rules r1, r2 into the same unit whenever s→m,n r1 and s→m,n r2 and there
is no rule t such that t depends on exactly one of r1, r2; but

(iii) it never puts rules r, s into the same unit if r contains external atoms and r →m,n s.

Intuitively, this heuristics builds an evaluation graph that puts all rules with external atoms
and their successors into one unit, while separating rules creating input for distinct exter-
nal atoms. This avoids redundant computation and joining unrelated interpretations.

In our experimental evaluation we compare H1 , which is exactly the strategy of dlvhex 1.x, with
H2 , which turns out to be a fairly good heuristics for our benchmark instances. We here do
not claim that H2 is a universally good heuristics, as the problem which heuristics is generally
better than another one is an open research topic.

5.5.2 Benchmarks

For our experiments we use the following benchmark instances.

Multi-context systems. The first kind of benchmark instances, which also motivated this re-
search, are HEX programs Pp(M) that compute output-projected equilibria of a given MCS M
(see Section 4.1.2). Each instance consists of 5–10 guessed atoms of input and output interpre-
tations for each of 7–9 knowledge sources, which are realized by external atoms in constraints.
Most guesses are eliminated by these constraints; the remaining guesses are then linked by HEX

rules which represent bridge rules of the MCS.
The MCSs used for these benchmarks were generated using the instance generator of the

DMCS project [DMC11, BDTE+10b]. In particular we use the diamond (D), house (H), ring
(R), and zig-zag (Z) topologies of the DMCS instance generator. To obtain a variety of different

102

5.5. Implementation and Experimental Evaluation

instances, we generated different instance groups with different configurations and system sizes
for each of the above topologies. Each instance group contains 10 randomized instances. The
identifier of the instance group contains first the topology, then the number of contexts, the local
alphabet size for each context, the maximum number of beliefs used as output beliefs of each
context, and finally the maximum number of rules importing knowledge into each context. For
example, ‘D-7-7-4-4’ denotes a diamond topology with 7 contexts where each context has an
alphabet of 7 symbols, exports a maximum of 4 symbols to be used in bridge rules by other
contexts, and contains a maximum of 4 bridge rules.

The MCS instances have an average of 400 output-projected equilibria, with values ranging
from 4 to around 20000, which corresponds to an equal number of answer sets of the HEX

rewriting Pp(M).

Reviewer Selection. The second class of benchmark instances are synthetic instances that
have been crafted to show the effect of our new evaluation framework. These instances encode
the selection of reviewers for conference papers—taking conflicts into account, some of which
are encoded by external atoms. For these instances, we vary the number T of conference tracks
and the number P of papers per track. The number of reviewers available for each track equals P
and there is one reviewer who is assigned to all tracks (this establishes a dependency between
conference track assignments). Each paper must have 2 reviews and no reviewer gets more than
2 papers assigned. We generated conflicts between reviewers and papers such that we limit the
number of overall models, as well as the number of candidate models per conference track,
before checking conflicts modeled via external atoms.

For our experiments, we consider two special classes of reviewer selection. In REVSEL 1,
we first compared evaluation heuristics H1 and H2 and created our instances such that all con-
ference tracks have two solutions before evaluating constraints with external atoms, and there
is one overall answer set of the program. For that we used P = 20 papers per conference track
and varied the number of tracks T . Intuitively this experiment creates one evaluation unit for
guessing and one for checking with H1 , and the size of that guess is exponential in T . On the
other hand, H2 creates one unit for guessing and one unit for evaluating external atoms and
checking conflicts per conference track, and one unit to combine the results. This means that
H2 scales linearly with T , which demonstrates that our new evaluation formalism can in some
cases provide an exponential speedup.

The other experiment with reviewer selection, REVSEL 2, involved no external atoms. We
used T = 5 conference tracks and varied the number of papers per track. Conflicts are generated
such that there are 1-2 solutions per conference track, with a shared reviewer such that each
program Q has 9 answer sets in total. Heuristic H1 creates one unit in that case, and evaluates
it at once in an external solver. In contrast, H2 keeps each conference track in a separate
unit and creates one unit for combining the tracks. This experiment shows first the potential of
parallelization that could be applied to the separate conference track units, before combining the
results in the final unit. Second, it turned out as a surprise that even with sequential computation,
H2 has better performance than H1 . In the following, we give detailed results of our evaluation
and explain this surprising result.

5.5.3 Results

A series of six concurrent tests were run on a Linux machine with two quad-core Intel Xeon
3GHz CPUs and 32GB RAM. The system resources were limited to a maximum of 3GB mem-
ory usage and 600 secs execution time for each run. The computation task for all experiments
was to compute all answer sets of the benchmark instances described previously.

103

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

 1

 10

 100

 600

D-7-7-3-3

D-7-7-4-4

D-7-7-5-5

H-9-9-3-3

H-9-9-4-4

R-7-7-4-4

R-7-7-5-5

R-7-8-5-5

R-7-9-5-5

R-8-7-5-5

R-8-8-5-5

Z-7-7-3-3

Z-7-7-4-4

Z-7-7-5-5

A
ve

ra
ge

 e
va

lu
at

io
n

tim
e

(s
ec

/lo
g)

Benchmark Instance Groups

 H1
 H2

Average time (sec) Minimum time (sec) Maximum time (sec)
Instance group H1 H2 H1 H2 H1 H2

D-7-7-3-3 94.7 0.3 1.9 0.2 — 0.4
D-7-7-4-4 463.5 0.9 7.0 0.3 — 2.2
D-7-7-5-5 — 3.1 — 0.9 — 11.1
H-9-9-3-3 — 0.9 — 0.4 — 2.0
H-9-9-4-4 — 16.2 — 0.6 — 132.0
R-7-7-4-4 — 0.9 — 0.4 — 2.4
R-7-7-5-5 — 1.8 — 0.5 — 2.6
R-7-8-5-5 569.5 2.2 295.2 0.3 — 4.9
R-7-9-5-5 — 2.0 — 0.5 — 4.1
R-8-7-5-5 — 2.7 — 0.6 — 6.9
R-8-8-5-5 — 2.3 — 0.4 — 4.7
Z-7-7-3-3 176.5 1.2 4.1 0.2 — 6.8
Z-7-7-4-4 513.5 1.5 69.9 0.5 — 3.1
Z-7-7-5-5 — 8.5 — 1.8 — 44.6

Figure 5.9: Time comparison for enumerating output-projected equilibria of MCS instances.
Each instance group contains 10 instances, maximum time/memory was 600 sec/3000 MB,
time/memory exhaustion is indicated by ‘—’.

Multi-context systems

Our application benchmark, the enumeration of output-projected equilibria of a given MCS,
shows that the new evaluation approach makes this application feasible for a variety of system
topologies.

Figure 5.9 shows the result of time measurements, where H1 stands for dlvhex 1.x which
has heuristics H1 hard-coded into its evaluation algorithm, and H2 stands for dlvhex 2.x using
heuristics H2 . Whereas the computations with H1 very often exhaust time or memory and
are not able to finish enumeration of equilibria, H2 manages to enumerate all equilibria of all
instances within the time and memory bounds, and as seen in the table also within reasonable
time bounds.

Figure 5.10 shows the memory measurement results of the same experiments. The maxi-
mum memory required with heuristic H1 is always 3000 MB, i.e., computation terminated due
to memory exhaustion, while with H2 the maximum memory required is a modest 332.4 MB.
This shows the beneficial effect of our decomposition which keeps separate guesses in separate
evaluation units and only combines those guesses which survive a check by external atoms.

104

5.5. Implementation and Experimental Evaluation

 10

 100

 1000

 3000

D-7-7-3-3

D-7-7-4-4

D-7-7-5-5

H-9-9-3-3

H-9-9-4-4

R-7-7-4-4

R-7-7-5-5

R-7-8-5-5

R-7-9-5-5

R-8-7-5-5

R-8-8-5-5

Z-7-7-3-3

Z-7-7-4-4

Z-7-7-5-5

A
ve

ra
ge

 m
em

or
y

us
ag

e
(M

B
/lo

g)

Benchmark Instance Groups

 H1
 H2

Average memory (MB) Minimum memory (MB) Maximum memory (MB)
Instance group H1 H2 H1 H2 H1 H2

D-7-7-3-3 612.3 7.0 11.1 4.5 — 9.9
D-7-7-4-4 1579.2 15.1 198.9 6.0 — 32.0
D-7-7-5-5 1714.1 41.2 413.4 11.3 — 90.1
H-9-9-3-3 1673.1 22.2 398.5 7.0 — 59.6
H-9-9-4-4 — 110.5 — 10.8 — 332.4
R-7-7-4-4 1908.2 18.0 494.0 7.1 — 42.6
R-7-7-5-5 — 42.5 — 10.2 — 74.9
R-7-8-5-5 2885.8 36.5 1910.9 6.9 — 120.8
R-7-9-5-5 — 34.8 — 7.2 — 74.2
R-8-7-5-5 2921.9 43.8 2219.2 10.1 — 85.1
R-8-8-5-5 — 38.4 — 14.1 — 80.7
Z-7-7-3-3 925.6 34.6 42.9 6.8 — 260.5
Z-7-7-4-4 1161.8 31.8 251.3 8.5 — 89.8
Z-7-7-5-5 2276.9 83.3 495.3 29.4 — 291.8

Figure 5.10: Memory usage comparison for enumerating output-projected equilibria of MCS
instances. Each instance group contains 10 instances, maximum time/memory was 600 sec/3000
MB, time/memory exhaustion is indicated by ‘—’.

Reviewer Selection

This benchmark was used in two ways: to demonstrate the effect of our new approach on evalu-
ation with external sources (REVSEL 1), and to show that this decomposition can improve over
existing ASP solvers for ordinary programs (REVSEL 2).

REVSEL 1. With the MCS benchmarks, we compared the former dlvhex implementation
(which implicitly uses H1) to the new dlvhex implementation with heuristics H2 . This gave
us a view on the difference between the former and the new state-of-the-art. Opposed to the
MCS experiments, for the REVSEL 1 experiments we use evaluation heuristics H1 and H2 ,
both with the new implementation of the dlvhex solver. We make this kind of comparison in
order to show the ‘raw effect’ of the difference between the evaluation heuristics.

Figure 5.11 shows the results of using H1 and H2 with the reviewer selection benchmark.
In these experiments, we fixed the number of papers per conference track to 20 and varied the
number of conference tracks. The former state-of-the-art heuristics H1 quickly uses too much
memory, hence it cannot solve instances with more than 11 conference tracks. Heuristics H2 ,

105

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

 1

 10

 100

 1000

1 10 20 30 40 50

E
va

lu
at

io
n

tim
e

(s
ec

/lo
g)

Number of conference tracks T

 H1
 H2

 30

 300

 3000

1 10 20 30 40 50

R
eq

ui
re

d
m

em
or

y
(M

B
/lo

g)

Number of conference tracks T

 H1
 H2

Memory usage (MB) Time usage (sec)
T H1 H2 H1 H2
1 31.7 31.5 1.45 1.36
2 72.7 56.2 2.65 2.11
3 112.1 82.0 4.17 3.15
4 142.4 106.3 5.82 4.02
5 180.2 131.3 8.21 5.25
6 239.6 165.2 11.92 6.17
7 258.5 164.5 16.31 7.17
8 309.4 213.7 28.08 7.92
9 422.4 250.1 51.74 9.58

10 588.3 242.2 100.26 10.87
11 1413.7 262.4 206.24 12.01
12 — 294.3 — 21.00
20 — 444.4 — 33.45
30 — 761.2 — 46.23
40 — 1118.2 — 62.61
50 — 1408.2 — 65.00

Figure 5.11: REVSEL 1 benchmark results: H1 always exhausts 3000 MB memory (indicated
by ‘—’) before it times out; H2 always terminates successfully within the 600 sec time limit.

106

5.5. Implementation and Experimental Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

1 10 20 30 40 50
 0

 500

 1000

 1500

E
va

lu
at

io
n

tim
e

(s
ec

)

U
se

d
m

em
or

y
(M

B
)

Number of conference tracks T

 H2 time
 H2 memory

Figure 5.12: Linear plot of time and memory usage of H2 with REVSEL 1: this shows that H2
scales linearly in both time and space, as opposed to H1 which scales exponentially or worse.

which can only be applied within the new evaluation framework introduced in this thesis, easily
handles up to 50 conference tracks.

We can observe in Figure 5.12 that heuristics H2 scales linearly both in time and space wrt.
the number of conference tracks, as opposed to exponential growth with H1 .

REVSEL 2. This benchmark is an experiment that uses HEX programs without external atoms.
This serves to investigate the effect of decomposing a program with H2 and evaluating it using
an (external) ASP solver, compared to directly evaluating the program (without decomposition)
using that same ASP solver.

Instances of REVSEL 2 consist of 5 conference tracks with a varied number of papers per
each conference track. Conflicts have been generated such that every instance, regardless of its
size, has 9 answer sets. These instances have few dependencies between conference tracks, as
there are only two reviewers that are shared between all conference tracks.

Figure 5.13 shows the results of these benchmarks, which were conducted using DLVand
clingo as external ASP solvers. (The graphs in that figure show all measurements, while the
table gives measured values for multiples of ten.) It is clearly visible that both solvers exhaust
the memory limit of 3000 MB above a certain instance size. Using the HEX decomposition with
heuristics H2 , both DLVand clingo are able to solve all instances up to 60 papers per conference
track. The reason is evident from the memory measurements: the decomposition makes the
external solvers use less memory than in the case when they are given the whole program at
once for evaluation.

The benchmark instances have a property that might occur rarely in practice: they are com-
posed of several large program parts that have very few points of interaction. Nevertheless, this
experiment shows that decomposition can improve on existing solver technology, and we could
improve even more by running the external solvers in parallel and then combining the results.
Note that this ‘parallelization from the outside’ is even possible if the external ASP solver used
by dlvhex is not capable of parallelization.

107

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

 0

 300

 600

10 20 30 40 50 60
 0

 1000

 2000

 3000

E
va

lu
at

io
n

tim
e

(s
ec

)

U
se

d
m

em
or

y
(M

B
)

Number of papers at conference track P

dlv time
dlv mem

dlv+H2 time
 dlv+H2 mem

 0

 300

 600

10 20 30 40 50 60
 0

 1000

 2000

 3000

E
va

lu
at

io
n

tim
e

(s
ec

)

U
se

d
m

em
or

y
(M

B
)

Number of papers at conference track P

clingo time
clingo mem

clingo+H2 time
 clingo+H2 mem

DLV clingo H2 + DLV H2 + clingo
P time memory time memory time memory time memory
10 0.45 9.8 0.20 6.4 0.47 8.8 0.28 5.3
20 8.57 230.8 3.92 80.6 5.48 112.8 2.99 18.7
30 36.62 914.9 23.93 380.8 26.79 398.0 14.61 70.6
40 — — 90.33 1134.8 83.50 855.4 65.25 210.1
50 — — 262.91 2890.7 206.17 2061.6 193.36 497.9
60 — — — — 437.47 2074.8 411.15 1002.4

Figure 5.13: REVSEL 2 benchmark results (top DLV, bottom clingo): both solvers do not man-
age to solve instances above a certain size, however if we use H2 to decompose the computation,
it uses less memory and time.

108

5.6. Discussion and Related Work

5.6 Discussion and Related Work

We have assessed our new approach by a series of experiments which clearly demonstrate its
usefulness. As it is possible to create evaluation graphs that correspond to the previous eval-
uation strategy, we could directly compare the former and the new approach within the same
implementation and show benefits of the new approach. The new approach outperforms the pre-
vious one significantly, using (sometimes exponentially) less memory and therefore runs much
faster.

The new evaluation framework is able to simulate the previous evaluation method, therefore
it can always perform equally good or better. However, the evaluation graph must be configured
in an appropriate way to ensure that the new framework really performs favorably. For the
examples in this work, the heuristics H2 ensures that the framework always performs better
than the former evaluation method.

Interestingly, also on some ordinary test programs the new method compared well to state-
of-the-art ASP solvers: apart from some overhead on fast solved instances, our decomposition
approach showed a speed up on top of DLVand clasp. The results indicate a potential for widen-
ing the optimization techniques of ordinary logic programs, and possibly also other formalisms
like multi-context systems.

The work presented here can be continued and extended in different directions, as the
generic notions of evaluation graph and answer set graph allow to specialize and improve our
framework in different respects:

• evaluation units (which may contain duplicated constraints) can be chosen according to a
proper estimate of the number of answer sets (the fewer, the better);

• evaluation graphs can be built by ad-hoc optimization modules, which may give prefer-
ence to time, space, or parallelization requirements, or to combinations of these criteria;
furthermore

• the data flow (constituted by intermediate answer sets) between evaluation units can be op-
timized using proper notions of model projection, such as in [GKS09]. Model projections
would tailor input data of evaluation units to necessary parts of intermediate answer sets;
however, given that different units might need different parts of the same intermediate
input answer set, a efficient projection technique that saves space is not straightforward.

Apart from performance in sequential processing mode, our framework can build the base of
a coarse-grained distributed computation at the level of evaluation units (in the style of [PRS10]).
Evaluation graphs naturally encode parallel evaluation plans, because they make the coupling
between evaluation units explicit. We have not yet investigated the potential benefits of this
feature in practice, but this property allows to do parallel solving based on solver software that
does not have parallel computing capabilities itself (“parallelize from outside”). This applies
both to programs with external atoms, as well as to normal ASP programs.

5.6.1 Related Work

HEX programs [Sch06, EIST06, EIST05] have been introduced as a generalization of DL-pro-
grams [Sch06, EIP+06, EIST04, EIL+08], which combine Description Logic reasoning with
answer set programming. The HEX formalism has been extended to include actions and an
environment which gave rise to the ACTHEX formalism [BEFI10]. Modular Nonmonotonic
Logic Programs (MLPs) [DTEFK09] do not contain external computations, but instead focus on
a modularization approach, including mutually recursive references between program modules.

Our work on decomposition is clearly related to work on program modularity under stable
model semantics, including, e.g., the seminal paper [LT94] on the notion of splitting sets, modu-
larity properties of and splitting theorems for disjunctive datalog [EGM97, in particular Lemma

109

5. MODULAR EVALUATION FRAMEWORK FOR HEX-PROGRAMS

5.1] and more recent works on modularity [OJ08, JOTW09], which lift the concept to modular
programs with choice rules and disjunctive rules and allow for “symmetric splitting.”

An important difference is that our decomposition approach works for nonground programs
and explicitly considers the possibility that modules overlap. It is tailored to efficient eval-
uation of arbitrary programs, rather than to facilitate module-style logic programming with
declarative specifications. In this regard, it is in line with previous work on HEX program
evaluation [EIST06] and decomposition techniques for efficient grounding of ordinary pro-
grams [CCIL08]. Improving reasoning performance by decomposition has furthermore been
investigated in [AM05], however, only wrt. monotonic logics.

Improving HEX evaluation efficiency by using knowledge about domain restrictions of ex-
ternal atoms has been discussed in [EFK09]. These rewriting methods yield partially grounded
sets of rules which can easily be distributed into distinct evaluation units by an optimizer. This
directly provides efficiency gains as described in the above work.

Evaluating HEX with Conflict-Driven Clause Learning. The decomposition we introduced
this chapter aims at separating program parts that can be evaluated independently, in order to re-
duce redundant evaluation. Furthermore, decomposing the program is necessary for evaluating
domain-expansion safe programs that are not pre-groundable.

Recently, a new integration of HEX evaluation with conflict-driven clause learning (CDCL)
has been introduced [EFKR12] which extends respective works by Gebser et al. [GKS12] from
ordinary programs to the HEX setting.

CDCL successively guesses truth values of atoms and handles conflicts (i.e., unsatisfiability
of the program) as soon as they can be detected in a partial truth assignment: a conflict is reduced
to a (preferrably small) clause that is added to the program (i.e., ‘learned’) and rules out certain
combinations of truth assigments for future guesses. Learned clauses often considerably prune
the search space and the CDCL technique was a major breakthrough for ASP and SAT solver
efficiency.

The CDCL approach for HEX [EFKR12] integrates external computations and evaluation
of programs in external solvers much more tightly, and is able to reduce redundant evaluation
even if program parts that could be evaluated independently are evaluated as one big set of
rules. The CDCL approach is orthogonal to the decomposition approach described here, and it
requires the decomposition to provide pre-groundable HEX programs to the CDCL engine. The
combination of both approaches improves evaluation efficiency beyond the results shown in this
chapter [EFKR12, EFK+12b, EFK+12a, EFK+12c].

110

6 Policy Language for Inconsistency
Management

In this chapter, we propose the declarative Inconsistency Management Policy Language IMPL,
which provides means to specify inconsistency management strategies for MCSs.

Remember our inconsistent Medical Example, where someone swapped the digits of Sue’s
birth date, causing an inconsistency. If such an inconsistency cannot cause harm, e.g., because
it only changes the age of Sue by a small amount, or in a case where the inconsistency is due to
a mismatch in an address field, then it can be automatically ignored. Such an automatic repair
would increase usability of the system as the system stays responsive and gives an answer as
unimportant inconsistencies have been recovered automatically.

An entirely different story is the other inconsistency, where we have a patient who needs
treatment, but all options conflict with some allergy of the patient. Here attempting an automatic
repair may not be a viable option: a doctor should inspect the situation and make a decision.

In the light of such scenarios, tackling inconsistency requires individual strategies and tar-
geted (re)actions, depending on the type of inconsistency and on the application.

Our contributions, presented in [EFIS11, EFIS12a, EFIS12b] in preliminary form, are as
follows.

• We define the syntax of IMPL, inspired by Answer Set Programming (ASP) [GL91]. In
particular, we specify input for policy reasoning in terms of reserved predicates. These
predicates encode inconsistency analysis results as introduced in [EFSW10]. Further-
more, we specify action predicates that can be derived by rules. Actions provide a means
to counteract inconsistency by modifying the MCS, and may involve interaction with a
human user.

• We define the semantics of IMPL as a three-step process which first calculates models of a
policy, then determines effects of actions which are present in such a model (this possibly
involves user interaction), and finally applies these effects to the MCS.

• We provide methodologies for integrating IMPL into application scenarios, and discuss
possible modes of reasoning and language extensions that could be useful in practical
applications.

• We identify a fragment of IMPL, called Core IMPL , which is sufficient for realizing func-
tionality of the full IMPL language. We give a rewriting from Core IMPL to the ACTHEX

formalism [BEFI10], which extends the HEX formalism with actions.

• Finally we provide a method of rewriting IMPL to the Core IMPL fragment. This allows
for using the ACTHEX rewriting as an implementation for the full IMPL language.

111

6. POLICY LANGUAGE FOR INCONSISTENCY MANAGEMENT

6.1 Policy Language IMPL

Dealing with inconsistency in an application scenario is difficult, because, even if inconsistency
analysis provides information how to restore consistency, it is not obvious which choice of
system repair is rational. It may not even be clear whether it is wise at all to repair the system
by changing bridge rules.

Example 65 (ctd). In the Medical Example, repairing explanation e1 = ({r1}, ∅) by removing
r1 from M2 and thereby ignoring the birth date (which differs at the granularity of months) may
be the desired reaction and could very well be done automatically. On the contrary, repairing
explanation e2 = ({r2, r3, r5}, {r6}) by ignoring either the allergy or the illness is a decision
that should be left to a doctor, as every possible repair could cause serious harm to Sue.

Therefore, managing inconsistency in a controlled way is crucial. To address these issues,
we propose the declarative Inconsistency Management Policy Language (IMPL), which provides
a means to create policies for dealing with inconsistency in MCSs. Intuitively, an IMPL policy
specifies (i) which inconsistencies are repaired automatically and how this shall be done, and
(ii) which inconsistencies require further external input, e.g., by a human operator, to make
a decision on how and whether to repair the system. Note that we do not rule out automatic
repairs, but in contrast to previous approaches, automatic repairs are made only if a given policy
specifies to do so, and only to the extent specified by the policy.

Since a major point of MCSs is to abstract away context internals, IMPL treats inconsistency
by modifying bridge rules. For the scope of this work we delegate any potential repair by mod-
ifying the kb of a context to the user. The effect of applying an IMPL policy to an inconsistent
MCS M is a modification which is a pair (A,R) of sets of bridge rules which are syntactically
compatible with M . Intuitively, a modification specifies bridge rules A to be added to M and
bridge rulesR to be removed fromM , similar as for diagnoses without restriction to the original
rules of M .

An IMPL policy P for a MCS M is intended to be evaluated on a set of system and incon-
sistency analysis facts, denoted EDBM , which represents information about M , in particular
EDBM contains atoms which describe bridge rules, minimal diagnoses, and minimal explana-
tions of M .

The evaluation of P yields certain actions to be taken, which potentially interact with a
human operator, and modify the MCS at hand. This modification has the potential to restore
consistency of M .

In the following we formally define syntax and semantics of IMPL.

6.1.1 Syntax

We assume disjoint sets C, V , Built , and Act , of constants, variables, built-in predicate names,
and action names, respectively, and a set of ordinary predicate names Ord ⊆ C. Constants start
with lowercase letters, variables with uppercase letters, built-in predicate names with #, and
action names with @. The set of terms T is defined as T =C ∪V .

An atom is of the form p(t1, . . . , tk), 0 ≤ k, ti ∈T , where p ∈ Ord ∪ Built ∪ Act is an
ordinary predicate name, built-in predicate name, or action name. An atom is ground if ti ∈ C
for 0 ≤ i ≤ k. The sets AAct , AOrd , and ABuilt , called sets of action atoms, ordinary atoms,
and built-in atoms, consist of all atoms over T with p∈Act , p∈Ord , respectively p∈Built .

Definition 41. An IMPL policy is a finite set of rules of the form

h← a1, . . . , aj , not aj+1, . . . , not ak. (6.1)

where h is an atom from AOrd ∪AAct , every ai, 1 ≤ i ≤ k, is from AOrd ∪ABuilt , and ‘not‘ is
negation as failure.

112

6.1. Policy Language IMPL

Given a rule r, we denote by H(r) its head, by B+(r) = {a1, . . . , aj} its positive body
atoms, and by B−(r) = {aj+1, . . . , ak} its negative body atoms. A rule is ground if it contains
ground atoms only. A ground rule with k = 0 is a fact. As customary in ASP solvers, we assume
that rules are safe, i.e., variables in H(r) or in B−(r) must also occur in B+(r). For a set of
rules R, we use cons(R) to denote the set of constants from C appearing in R, and pred(R) for
the set of ordinary predicate names and action names (elements from Ord ∪Act) in R.

We next describe how a policy represents information about the MCS M under considera-
tion.

System and Inconsistency Analysis Predicates.

Entities, diagnoses, and explanations of the MCS M at hand are represented by a suitable finite
set CM ⊆ C of constants which uniquely identify contexts, bridge rules, beliefs, rule heads,
diagnoses, and explanations. For convenience, when referring to an element represented by a
constant c, we identify it with the constant, e.g., we write ‘bridge rule r’ instead of ‘bridge rule
of M represented by constant r’.

Reserved atoms use predicates from the set Cres ⊆Ord of reserved predicates, we have
Cres = {ruleHead , ruleBody+, ruleBody−, context , modAdd , modDel , diag , explNeed ,
explForbid}. They represent the following information.

• context(c) states that c is a context.

• ruleHead(r, c, s) states that bridge rule r is at context c with head formula s.

• ruleBody+(r, c, b) (resp., ruleBody−(r, c, b)) states that bridge rule r contains body lit-
eral ‘(c : b)’ (resp., ‘not (c : b)’).

• modAdd(m, r) (resp., modDel(m, r)) states that modification m adds (resp., deletes)
bridge rule r. Note that r is represented using ruleHead and ruleBody .

• diag(m) states that modification m is a minimal diagnosis in M .

• explNeed(e, r) (resp., explForbid(e, r)) states that the minimal explanation (E1, E2)
identified by constant e contains bridge rule r ∈ E1 (resp., r ∈ E2).

• modset(ms,m) states that modification m belongs to the set of modifications identified
by ms .

Example 66 (ctd). We can represent r1, r5 (see Example 5) and the diagnosis ({r1, r5}, ∅) as
the following set of reserved atoms:

Iex = {modDel(d, r1),modDel(d, r5), diag(d),
ruleHead(r1, clab , ‘customer(sue, 02/03/1985)′),
ruleBody+(r1, cdb , ‘person(sue, 02/03/1985)′),
ruleHead(r5, cdss , ‘need(sue, ab1)′),
ruleBody+(r5, conto , ‘(sue):∃hasDisease.AtypPneum ′)},

where constant d identifies the diagnosis.

Further knowledge used as input for policy reasoning can easily be defined using addi-
tional (supplementary) predicates. Note that predicates over all explanations or bridge rules
can easily be defined by projecting from reserved atoms. Moreover, to encode preference
relations (e.g., as in [EFW10]) between system parts, diagnoses, or explanations, an atom
preferredContext(c1, c2) could denote that context c1 is considered more reliable than context
c2. The extensions of such auxiliary predicates need to be defined by the rules of the policy or as

113

6. POLICY LANGUAGE FOR INCONSISTENCY MANAGEMENT

additional input facts (ordinary predicates), or they are provided by the implementation (built-in
predicates), i.e., the ‘solver’ used to evaluate the policy. The rewriting to ACTHEX given in Sec-
tion 6.3.2 provides a good foundation for adding supplementary predicates as built-ins, because
the ACTHEX language has generic support for calls to external computational sources. A possi-
ble application would be to use a preference relation between bridge rules that is defined by an
external predicate and can be used for reasoning in the policy.

Towards a more formal definition of a policy input, we distinguish the following sets.

Definition 42. Given a MCS M ,

• the MCS input base BM is the set of ground atoms built from reserved predicates Cres

and terms from CM ;

• the auxiliary input base BAux is the set of ground atoms built from predicates over
Ord \Cres and terms from C; and

• the policy input base BAux ,M is defined as BAux ,M = BAux ∪BM .

For a set I ⊆ BAux ,M , by I|BM and I|BAux
we denote the restriction of I to predicates from the

respective bases.

Now, given an MCS M , we say that a set S ⊆ BM is a faithful representation of M wrt. a
reserved predicate p ∈ Cres \ {modset} iff the extension of p in S exactly characterizes the
respective entity or property of M (according to a unique naming assignment associated with
CM as mentioned). For instance, context(c) ∈ S iff c is a context of M , and correspondingly
for the other predicates. Consequently, S is a faithful representation of M iff it is a faithful
representation wrt. all p in Cres \ {modset} and the extension of modset in S is empty.

A finite set of facts I ⊆ BAux ,M containing a faithful representation of all relevant entities
and properties of an MCS qualifies as input of a policy, as defined next.

Definition 43. A policy input I wrt. MCS M is a finite subset of the policy input base BAux ,M ,
such that I|BM is a faithful representation of M .

In the following, we denote by EDBM a policy input wrt. a MCS M . Note that reserved
predicate modset has an empty extension in a policy input (but corresponding atoms will be of
use later in combination with actions).

Given a set of reserved atoms I , let c be a constant that appears as a bridge rule identi-
fier in I . Then ruleI (c) denotes the corresponding bridge rule represented by reserved atoms
ruleHead , ruleBody+, and ruleBody− in I with c as their first argument. Similarly we denote
by mod I (m) = (A,R) (resp., by modset I (m) = {(A1, R1), . . .}) the modification (resp., set of
modifications) represented in I by the respective predicates and identified by constant m.

Subsequently, we call a modification m that is projected to rules located at a certain context
c ‘the projection of m to context c’. (We use the same notation for sets of modifications.)
Formally we denote by mod I (m)|c (resp., modset I (m)|c) the projection of modification (resp.,
set of modifications) m in I to context c.

Example 67 (ctd). In the previous example Iex , by ruleIex (r1) we refer to bridge rule r1; more-
over mod Iex (d) = ({r1, r5}, ∅) and the projection of modification d to cdss is mod Iex (d)|cdss

=
({r5}, ∅).

114

6.1. Policy Language IMPL

Example 68 (ctd). A proper EDBM2 of our running example is, e.g., as follows:

{context(cdb), context(clab), context(conto), context(cdss),
ruleHead(r1, clab , ‘customer(sue, 02/03/1985)′),
ruleBody+(r1, cdb , ‘person(sue, 02/03/1985)′),
ruleHead(r2, conto , ‘(sue):∃hasDisease.Pneum ′),
ruleBody+(r2, clab , ‘test(sue, xray , pneum)′),
ruleHead(r3, conto , ‘(sue, cmark):hasMarker ′),
ruleBody+(r3, clab , ‘test(sue, bloodtest , cmark)′),
ruleHead(r4, cdss , ‘(sue):∃hasDisease.BacterialDisease ′),
ruleBody+(r4, conto , ‘Pneum(sue)′),
ruleHead(r5, cdss , ‘need(sue, ab1)′),
ruleBody+(r5, conto , ‘(sue):∃hasDisease.AtypPneum ′),
ruleHead(r6, cdss , ‘allow(sue, ab1)′),
ruleBody−(r6, clab , ‘allergy(sue, ab1)′),
diag(d1),modDel(d1, r1),modDel(d1, r2),
diag(d2),modDel(d2, r1),modDel(d2, r3),
diag(d3),modDel(d3, r1),modDel(d3, r5),
diag(d4),modDel(d4, r1),modAdd(d4, r6),
explNeed(e1, r1),
explNeed(e2, r2), explNeed(e2, r3), explNeed(e2, r5), explForbid(e2, r6)}.

Here, the two explanations and four diagnoses given in Examples 14 and 15 are identified by
constants e1, e2, d1, . . . , d4, respectively.

A policy can create representations of new rules, modifications, and sets of modifications,
because reserved atoms are allowed to occur in heads of policy rules. However such new entities
require new constants identifying them. To tackle this issue, we next introduce a facility for
value invention.

Value Invention via Built-in Predicates ‘#idk’.

Whenever a policy specifies a new rule and uses it in some action, the rule must be identi-
fied with a constant. The same is true for modifications and sets of modifications. Therefore,
IMPL contains a family of special built-in predicates which provide policy writers a means to
comfortably create new constants from existing ones.

For this purpose, built-in predicates of the form #idk(c
′, c1, . . . , ck) may occur in rule bod-

ies (only). Their intended usage is to uniquely (and thus reproducibly) associate a new constant
c′ with a tuple c1, . . . , ck of constants (for a formal semantics see the definitions for action
determination in Section 6.1.2).

Note that this value invention feature is not strictly necessary, as new constants can be ob-
tained via defining an order relation over all constants, a pool of unused constants, and a guess
over an assignment between used and unused constants. However, a dedicated value invention
built-in, as introduced here, simplifies policy writing and improves policy readability.

115

6. POLICY LANGUAGE FOR INCONSISTENCY MANAGEMENT

Example 69. Assume one wants to consider projections of modifications to contexts as specified
by the extension of an auxiliary predicate projectMod(M,C). The following policy fragment
achieves this using a value invention built-in to assign a unique identifier with every projection
(recorded in the extension of another auxiliary predicate projectedModId(M ′, M , C)).

projectedModId(M ′,M,C)← projectMod(M,C),
#id3(M ′, pm id ,M,C).

modAdd(M ′, R)←modAdd(M,R), ruleHead(R,C, S),
projectedModId(M ′,M,C).

modDel(M ′, R)←modDel(M,R), ruleHead(R,C, S),
projectedModId(M ′,M,C).

(6.2)

Intuitively, we identify new modifications by new ids cpmid ,M,C which are obtained via #id3

from M , C, and an auxiliary constant pm id /∈ CM . The latter simply serves the purpose of
disambiguating constants used for projections of modifications. This links new identifiers to
constant pm id , therefore we can easily combine (6.2) with other policy fragments that use #id3

on modifications and contexts, and values invented in these fragments will not interfere with one
another as long as every fragments uses its own auxiliary constant. (We therefore can think of
pm id as being ‘reserved for value-invention in the projection of modifications’.)

Besides representing modifications of a MCS and reasoning about them, an important fea-
ture of IMPL is to actually apply them. Actions serve this purpose.

Actions.

Actions alter the MCS at hand and may interact with a human operator. According to the
change that an action performs, we distinguish system actions which modify the MCS in terms of
entire bridge rules that are added and/or deleted, and rule actions which modify a single bridge
rule. Moreover, the changes can depend on external input, e.g., obtained by user interaction.
In the latter case, the action is called interactive. Accumulating the changes of all actions
yields an overall modification of the MCS. We formally define this intuition when addressing
the semantics in Section 6.1.2.

Syntactically, we use @ to prefix action names from Act . The predefined actions listed
below are reserved action names. Let M be the MCS under consideration, then the following
predefined actions are (non-interactive) system actions:

• @delRule(r) removes bridge rule r from M .

• @addRule(r) adds bridge rule r to M .

• @applyMod(m) applies modification m to M .

• @applyModAtContext(m, c) applies those changes in m to the MCS that add or delete
bridge rules at context c (i.e., applies the projection of m to c).

Note that a policy might specify conflicting effects, i.e., the removal and the addition of a bridge
rule at the same time. In this case the semantics gives preference to addition.

The predefined actions listed next are rule actions:

• @addRuleCondition+(r, c, b) (resp., @addRuleCondition−(r, c, b)) adds body literal
(c : b) (respectively, not (c : b)) to bridge rule r.

• @delRuleCondition+(r, c, b) (resp., @delRuleCondition−(r, c, b)) removes body literal
(c : b) (resp., not (c : b)) from bridge rule r.

• @makeRuleUnconditional(r) makes bridge rule r unconditional.

116

6.1. Policy Language IMPL

Since these actions can modify the same rule, this may also result in conflicting effects, where
again addition is given preference over removal by the semantics. (Moreover, rule modifications
are given preference over addition or removal of the entire rule.)

Eventually, the subsequent predefined actions are interactive (system) actions, i.e., they in-
volve a human user:

• @guiSelectMod(ms) displays a GUI for choosing from the set of modifications ms . The
modification chosen by the user is applied to M .

• @guiEditMod(m) displays a GUI for editing modificationm. The resulting modification
is applied to M .1

• @guiSelectModAtContext(ms, c) projects modifications in ms to c, displays a GUI for
choosing among them and applies the chosen modification to M .

• @guiEditModAtContext(m, c) projects modification m to context c, displays a GUI for
editing it, and applies the resulting modification to M .

As we define formally in Section 6.1.2, changes of individual actions are not applied directly,
but collected into an overall modification which is then applied to M (respecting preferences
in case of conflicts as stated above). Before turning to a formal definition of the semantics, we
give example policies.

Example 70 (ctd). Figure 6.1 shows three policies that can be useful for managing inconsis-
tency in our running example. Their intended behavior is as follows. P1 deals with inconsis-
tencies at Clab: if an explanation concerns only bridge rules at Clab , an arbitrary diagnosis is
applied at Clab , other inconsistencies are not handled. Applying P1 to M2 removes r1 at Clab ,
the resulting MCS is still inconsistent with inconsistency explanation e2, as only e1 has been
automatically fixed. P2 extends P1 by adding an ‘inconsistency alert formula’ to Clab if an in-
consistency was automatically repaired at that context. Finally, P3 is a fully manual approach
which displays a choice of all minimal diagnoses to the user and applies the user’s choice. Note,
that we did not combine automatic actions and user-interactions here since this would result in
more involved policies (and/or require an iterative methodology; cf. Section 6.2).

We refer to the predefined IMPL actions @delRule , @addRule , @guiSelectMod , and @gui -
EditMod as core actions, and to the remaining ones as comfort actions. Comfort actions exist for
convenience, providing means for projection and for rule modifications. They can be rewritten
to core actions as sketched in the following example.

Example 71. To realize @applyMod(M) and @applyModAtContext(M,C) using the core
language, we replace them by applyMod(M) and applyModAtContext(M,C), respectively,
use rules (6.2) from Example 69, and add the following set of rules.

@addRule(R)← applyMod(M), modAdd(M,R).
@delRule(R)← applyMod(M), modDel(M,R).

projectMod(M,C)← applyModAtContext(M,C).
applyMod(M ′)← applyModAtContext(M,C),

projectedModId(M ′,M,C).

(6.3)

This concludes our introduction of the syntax of IMPL. We move on to a formal development
of its semantics which so far has only been intuitively conveyed.

1It is suggestive to also give the human operator a possibility to abort, causing no modification at all to be made,
however we do not specify this here because a useful design choice depends on the concrete application scenario.

117

6. POLICY LANGUAGE FOR INCONSISTENCY MANAGEMENT

Policies (sets of IMPL rules) Intuitive meaning of rules in each set

P1 ={expl(E)← explNeed(E,R); Define domain predicate
expl(E)← explForbid(E,R); for explanations.
incNotLab(E)← explNeed(E,R), Find out whether one explanation

ruleHead(R,C, F), C 6= clab ; only concerns bridge rules at clab .
incNotLab(E)← explForbid(E,R),

ruleHead(R,C, F), C 6= clab ;
incLab← expl(E), not incNotLab(E);
in(D)← not out(D), diag(D), incLab; Guess exactly one diagnosis
out(D)← not in(D′), if there is a local inconsistency at clab .

diag(D), D 6=D′, incLab;
@applyModAtContext(D, clab)← Apply the guessed diagnosis after

useDiag(D)} projecting it to context clab .

P2 ={ruleHead(ralert , clab , alert)← ; Define new inconsistency alert rule ralert .
@addRule(ralert)← incLab} Add that new rule to clab .

∪ P1 Reuse policy P1.

P3 ={modset(md , X)← diag(X); Create modification set with all diagnoses.
@guiSelectMod(md)←} Let the user choose from that set.

Figure 6.1: Sample IMPL policies for our running example.

6.1.2 Semantics

The semantics of applying an IMPL policy P to a MCS M is defined in three steps:

• Actions to be executed are determined by computing a policy answer set of P wrt. policy
input EDBM .

• Effects of actions are determined by executing actions. This yields modifications (A,R)
ofM for each action. Action effects can be nondeterministic and thus only be determined
by executing respective actions (which is particularly true for user interactions).

• Effects of actions are materialized by building the component-wise union over individual
action effects and applying the resulting modification to M .

In the remainder of this section, we introduce the necessary definitions for a precise formal
account of these steps.

Action Determination.

We define IMPL policy answer sets similar to the stable model semantics [GL91]. Given a policy
P and a policy input EDBM , let idk be a fixed (built-in) family of one-to-one mappings from
k-tuples c1, . . . , ck, where ci ∈ cons(P ∪ EDBM) for 1 ≤ i ≤ k, to a set Cid ⊆C of ‘fresh’
constants, i.e., disjoint from cons(P ∪ EDBM).2 Then the policy base BP,M of P wrt. EDBM
is the set of ground IMPL atoms and actions, that can be built using predicate symbols from
pred(P ∪EDBM) and terms from UP,M = cons(P ∪EDBM)∪Cid , called the policy universe.

The grounding of P , denoted by grnd(P), is given by grounding its rules wrt. UP,M as
usual. Note that since cons(P ∪EDBM) is finite, only finitely many mapping functions idk are

2Disjointness ensures finite groundings; without this restriction, for instance the program {p(C); p(C′) ←
#id1(C

′, C)} would not have finite grounding.

118

6.1. Policy Language IMPL

used in P . Hence only finitely many constants Cid are required, and therefore UP,M , BP,M , and
grnd(P) are finite as well.

An interpretation is a set of ground atoms I ⊆ BP,M . We say that

• I satisfies an atom a ∈ BP,M , denoted I |= a, iff (i) a is not a built-in atom and a∈ I , or
(ii) a is a built-in atom of the form #idk(c, c1, . . . , ck) and c = idk(c1, . . . , ck);

• I satisfies a set of atoms A ⊆ BP,M , denoted I |=A, iff I |= a for all a ∈ A;

• I satisfies the body of rule r, denoted I |=B(r), iff I |= a for every a∈B+(r) and I 6|= a
for all a∈B−(r); and

• I satisfies a ground rule r, denoted I |= r, iff I |=H(r) or I 6|=B(r).

Eventually, I is a model of P , denoted I |=P , iff I |= r for all r∈ grnd(P). The FLP-reduct
of P wrt. an interpretation I , denoted fP I , is the set of all r ∈ grnd(P) such that I |= B(r).3

Definition 44 (Policy Answer Set). Let M be an MCS, let P be an IMPL policy, and let EDBM
be a policy input wrt. M . Then an interpretation I ⊆BP,M is a policy answer set of P for
EDBM iff I is a ⊆-minimal model of fP I ∪ EDBM .

We denote by AS(P ∪ EDBM) the set of all policy answer sets of P for EDBM .

Effect Determination.

We define the effects of action predicates @a∈Act by nondeterministic functions f@a. Nonde-
terminism is required for interactive actions. An action is evaluated wrt. an interpretation of the
policy and yields an effect according to its type: the effect of a system action is a modification
(A,R) of the MCS, in the following sometimes denoted system modification, while the effect
of a rule action is a rule modification (A,R)r wrt. a bridge rule r of M , i.e., in this case A is a
set of bridge rule body literals to be added to r, and R is a set of bridge rule body literals to be
removed from r.

Definition 45. Given an interpretation I , and a ground action α of form @a(t1, . . . , tk), the ef-
fect of α wrt. I is given by effI(α) = f@a(I, t1, . . . , tk), where effI(α) is a system modification
if α is a system action, and a rule modification if α is a rule action.

Action predicates of the IMPL core fragment have the following semantic functions.

• f@delRule(I, r) = (∅, {ruleI (r)}).

• f@addRule(I, r) = ({ruleI (r)}, ∅).

• f@guiSelectMod (I,ms) = (A,R) where (A,R) ∈ modset I (ms) = {(A1, R1), . . .} is the
user’s selection after being displayed a choice among all possible modifications.

• f@guiEditMod (I,m) = (A′, R′), where (A′, R′) is the result of user interaction with a
modification editor that is pre-loaded with modification (A,R) = mod I (m).

Note that the effect of any core action in I can be determined independently from the presence
of other core actions in I , and rule modifications are not required to define the semantics of
core actions. However, rule modifications are needed to capture the effect of comfort actions.
Moreover, adding and deleting rule conditions, and making a rule unconditional can modify the
same rule, therefore such action effects yield accumulated rule modifications.

More specifically, the semantics of IMPL comfort actions is defined as follows:
3We use the FLP reduct [FPL11] for compliance with ACTHEX (used for realization in Section 6.3), but for the

language considered, the Gelfond-Lifschitz reduct would yield an equivalent definition.

119

6. POLICY LANGUAGE FOR INCONSISTENCY MANAGEMENT

• f@delRuleCondition+(I, r, c, b) = (∅, {(c : b)})r.

• f@delRuleCondition−(I, r, c, b) = (∅, {not (c : b)})r.

• f@addRuleCondition+(I, r, c, b) = ({(c : b)}, ∅)r.

• f@addRuleCondition−(I, r, c, b) = ({not (c : b)}, ∅)r.

• f@makeRuleUnconditional (I, r) = (∅, {(c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,
not (cm : pm)})r for r of the form (2.1).

• f@applyMod (I,m) = mod I (m).

• f@applyModAtContext(I,m, c) = mod I (m)|c.

• f@guiSelectModAtContext(I,ms, c) = (A′, R′) where (A′, R′) is the user’s selection after
being displayed a choice among all modifications in {(A′1, R′1), . . .} = modset I (ms)|c.

• f@guiEditModAtContext(I,m, c) = (A′, R′), where (A′, R′) is the result of user interaction
with a modification editor that is pre-loaded with modification mod I (m)c.

In practice, however, it is not necessary to implement action functions on the level of rule mod-
ifications, since a policy in the comfort fragment can equivalently be rewritten to the core frag-
ment (which does not rely on rule modifications). Example 71 already sketched a rewriting for
@applyMod and @applyModAtContext . In Section 6.4 we provide a rewriting from IMPL to
the IMPL core fragment.

The effects of user-defined actions have to comply to Definition 45.

Effect Materialization.

Once the effects of all actions in a selected policy answer set have been determined, an overall
modification is computed by the component-wise union over all individual modifications. This
overall modification is then materialized in the MCS.

Given a MCS M and a policy answer set I (for a policy P and a corresponding policy
input EDBM), let IM , respectively IR, denote the set of ground system actions, respectively
rule actions, in I . Then, Meff = {effI(α)|α ∈ IM} is the set of effects of system action atoms
in I , and Reff = {effI(α)|α ∈ IR} is the set of effects of rule actions in I . Furthermore,
Rules(Reff) = {r | (A,R)r ∈ Reff } is the set of bridge rules modified by Reff , and for
every r ∈ Rules(Reff), let Rr =

⋃
(A,R)r∈Reff

R, respectively Ar =
⋃

(A,R)r∈Reff
A, denote

the union of rule body removals, respectively body additions, wrt. r in Reff .

Definition 46. Let M be a MCS, let P be an IMPL policy, and let I be a policy answer set of P
for a policy input EDBM wrt. M . Then the materialization of I in M is the MCS M ′ = M [br ′]
obtained from M by replacing its set of bridge rules brM by the set

br ′ = (brM \R∪A) \Rules(Reff)∪M,

where

R =
⋃

(A,R)∈Meff

R, A =
⋃

(A,R)∈Meff

A, and

M = {(k:s)← Body | r ∈ Rules(Reff), r ∈ brk, hb (r) = s,Body = B(r) \ Rr ∪ Ar}.

120

6.2. Methodologies of Applying IMPL and Realization

Note that, by definition, the addition of bridge rules has precedence over removal, and the
addition of body literals similarly has precedence over removal. There is no particular reason
for this choice; one just has to be aware of it when specifying a policy. Apart from that, no order
for evaluating individual actions is specified or required.

Eventually, we can define modifications of a MCS that are accepted by a corresponding
IMPL policy.

Definition 47. Given a MCS M , an IMPL policy P , and a policy input EDBM wrt. M , a
modified MCS M ′ is admissible wrt. M , P and EDBM iff M ′ is the materialization of some
policy answer set I ∈AS(P ∪EDBM).

Example 72 (ctd). Evaluating P2 ∪EDBM2 yields four policy answer sets; one is

I1 = {expl(e1), expl(e2), incNotLab(e2), incLab, in(d1), out(d2), out(d3), out(d4), useOne,
ruleHead(ralert , clab , alert),@addRule(ralert),@applyModAtContext(d1, clab)}.

(Note that we omitted EDBM2 which is obviously contained in every answer set.) From I1 we
obtain a single admissible modification of M2 wrt. P2: add bridge rule ralert and remove r1.

The other policy answer sets are

{expl(e1), expl(e2), incNotLab(e2), incLab, out(d1), in(d2), out(d3), out(d4), useOne,
ruleHead(ralert , clab , alert),@addRule(ralert),@applyModAtContext(d2, clab)},
{expl(e1), expl(e2), incNotLab(e2), incLab, out(d1), out(d2), in(d3), out(d4), useOne,
ruleHead(ralert , clab , alert),@addRule(ralert),@applyModAtContext(d3, clab)}, and

{expl(e1), expl(e2), incNotLab(e2), incLab, out(d1), out(d2), out(d3), in(d4), useOne,
ruleHead(ralert , clab , alert),@addRule(ralert),@applyModAtContext(d4, clab)}.

Evaluating P3∪EDBM2 yields one policy answer set, which is I2 = EDBM2∪{modset(md ,
d1), modset(md , d2), modset(md , d3), modset(md , d4), @guiSelect-Mod(md)}. Determin-
ing the effect of I2 involves user interaction; thus multiple materializations of I2 exist. For
instance, if the user chooses to ignore Sue’s allergy and birth date (and probably imposes ad-
ditional monitoring on Sue), then we obtain an admissible modification of M which adds the
unconditional version of r6 and removes r1.

6.2 Methodologies of Applying IMPL and Realization

Based on the simple system design shown in Figure 6.2, we next briefly discuss elementary
methodologies of applying IMPL for the purpose of integrating MCS reasoning with potential
user interaction in case of inconsistency.

We maintain a representation of the MCS together with a store of modifications. The seman-
tics evaluation component performs reasoning tasks on the MCS and invokes the inconsistency
manager in case of an inconsistency. This inconsistency manager uses the inconsistency anal-
ysis component4 to provide input for the policy engine which computes policy answer sets of
a given IMPL policy wrt. the MCS and its inconsistency analysis result. This policy evaluation
step results in action executions potentially involving user interactions and causes changes to the
store of modifications, which are subsequently materialized. Finally the inconsistency manager
hands control back to the semantics evaluation component.

6.2.1 Reasoning Modes

Principal modes of operation, and their merits, are the following.
4For realizations of this component we refer to [BEFS10, EFSW10].

121

6. POLICY LANGUAGE FOR INCONSISTENCY MANAGEMENT

Multi-
Context
System

Store of
Modifi -
cations

Semantics
Evaluation

Inconsistency
Analysis

Inconsistency
Manager

Policy
Engine

User
Interaction

Policy

control flow data flow

Figure 6.2: Policy integration data flow and control flow block diagram.

Reason and Manage Once. This mode of operation evaluates the policy once, if the effect
materialization does not repair inconsistency in the MCS, no further attempts are made and the
MCS stays inconsistent. While simple, this mode may not be satisfactory in practice.

Manage Once with Ranked Repair Attempts. In this strategy, the result of evaluating a
policy wrt. an inconsistency does not yield a single attempt for restoring consistency; instead it
yields multiple attempts, each with a separate set of actions.

This requires to augment actions of the policy language by an attempt ranking which speci-
fies an order of actions to be applied: first only the highest-ranked modifications are used; if this
repairs the system the process finishes. Otherwise the highest-ranked modifications are removed
and the process restarts, looking for the set of actions with the second-best rank and so on. This
is repeated until either the system becomes consistent (success), or until no lower rank exists
(failure).

Example 73. An inconsistency management strategy generates some sophisticated policy-gene-
rated set of modifications which is attempted first. If this first attempt fails to restore consistency,
the policy uses an element of the set of minimal diagnoses as a fallback modification. This
guarantees to restore inconsistency. Additionally, this second attempt adds a bridge rule to
some context, to notify contexts (and thus users and operators of the MCS). This way reasoning
with the system is never impossible due to inconsistency, however consistency may come at the
cost of being a “fallback consistency”.

User interaction in this strategy demands special considerations: (i) user modifications could
be the same for all attempt ranks, such that the user does not need to care about ranks, or (ii) the
user can produce sets of modifications for multiple ranks. The first option seems easier to use,
while the second provides more possibilities to the user and to inconsistency management as a
whole.

Overall this mode of using IMPL requires only one reasoning step and easily guarantees
termination of the inconsistency management process.

Reason and Manage Iteratively. Another way to deal with failure to restore consistency is
to simply invoke policy evaluation again on the modified but still inconsistent system. This
is useful if user interaction may involve trial-and-error, especially if multiple inconsistencies
occur: some might be more difficult to counteract than others.

Another positive aspect of iterative policy evaluation is, that it allows for policies to be struc-
tured, e.g., as follows: (a) classify inconsistencies into automatically versus manually repairable;
(b) apply actions to repair one of the automatically repairable inconsistencies; (c) if such incon-
sistencies do not exist: perform user interaction actions to repair one (or all) of the manually

122

6.2. Methodologies of Applying IMPL and Realization

repairable inconsistencies. Such policy structuring follows a divide-and-conquer approach, try-
ing to focus on individual sources of inconsistency and to disregard interactions between incon-
sistencies as much as possible. If user interaction consists of trial-and-error bug-fixing, fewer
components of the system are changed in each iteration, and the user starts from a situation
where only critical (i.e. not automatically repairable) inconsistencies are present in the MCS.
Moreover, such policies may be easier to write and maintain. On the other hand, termination of
iterative methodologies is not guaranteed, and neither is consistency of the MCS. However, one
can enforce termination by limiting the number of iterations, possibly by extending IMPL with
a control action that configures this limit. Consistency of the MCS can be ensured by apply-
ing a ‘fallback diagnosis’; hence making the system consistent under all circumstances (system
consistency then also implies that the iteration terminates).

Manage Iteratively first Automatic then User. This is a specialization of the above ‘Manage
Iteratively’ strategy, with the goal of adding more structure to the inconsistency management
process. We accomplish this by deliberately using iterations as a procedural aspect controlled
by the declarative policy language. As the name suggests, a policy following this strategy emits
either only modification actions, or only user interactions.

This suggests to use the following structure for a policy: detected inconsistencies are cate-
gorized as automatically repairable or not, if there exist automatically repairable ones, actions to
repair them are emitted, otherwise user interactions for the remaining inconsistencies are emit-
ted. (Additionally, the policy could only emit repair actions for single automatically repairable
inconsistencies in one iteration.)

This kind of a policy has the benefit of doing one thing at a time instead of doing everything
at once. Therefore, identifying problems (i.e., debugging policies or the whole inconsistency
management process) is more easily captured than in the more general case.

Furthermore, if the user interaction consists of trial-and-error bug-fixing, fewer components
of the system are changed in each iteration. This should have favorable effects on the perfor-
mance and maintainability of inconsistency management.

6.2.2 Properties and Extensions

Here we discuss additional properties and features that could be advantageous in practical ap-
plications. (And could easily be added to IMPL.)

Iteration-persistent Storage. In iterative mode it may be useful to access information from
previous iterations. We call this persistent storage. For instance, a persistent storage (rem-
iniscent of an RDF triplestore) can be added to IMPL as follows: (a) we add a (persistent)
triplestore to the policy engine, (b) define actions @kbAdd(S, P,O) and @kbDel(S, P,O) s.t.
@kbAdd stores and @kbDel removes triples, and finally (c) define a new ternary predicate
kbTriple(S, P,O) that is added to EDBM for each stored triple.

Stable Identifiers. When an IMPL policy is applied to an MCS, it might remove, add, or
change bridge rules. In an iterative mode of operation, it would be useful if changing a bridge
rule did not change its identifier.

For example, the bridge rule ralert might be added to M2 by our example policy P2 (see
Example 72), which yields a new MCS M ′2. If we apply IMPL to M ′2, the subsequent EDBM ′2
should then use again ralert to identify that bridge rule. If this is the case, we can reason about
the existence of that rule in our policy.

When using iteration-persistent storage, we can store rule-identifiers across iterations; how-
ever this only makes sense if identifiers remain the same across iterations.

123

6. POLICY LANGUAGE FOR INCONSISTENCY MANAGEMENT

Therefore stable identifiers are a desirable property. This property can be added to IMPL

as a simple condition on added and modified rules, namely that they have an associated iden-
tifier which remains the same for subsequently created EDBM ’s. (In Section 6.4 we will take
particular care to provide stable identifiers.)

Automatic Modifications vs User Interactions. In the current declarative semantics defini-
tion, a rule might be ‘simultaneously’ modified both by a user interaction and by another action.
However, this means that a modification done by a user can be undone by another action that
was triggered by the policy. Therefore, to achieve a system with intuitively clear effects of a
user’s actions, user interaction actions should be limited to rules that are not modified by other
actions.

6.3 Realizing IMPL in acthex

In this section, we demonstrate how IMPL can be realized using ACTHEX. First we give pre-
liminaries about ACTHEX, which is a logic programming formalism that extends HEX programs
with executable actions. We then show how to implement the core IMPL fragment by rewriting
it to ACTHEX in Section 6.3.2.

6.3.1 Preliminaries on acthex

The ACTHEX formalism [BEFI10] generalizes HEX programs [EIST05] by adding an environ-
ment and dedicated action atoms to heads of rules.

An ACTHEX program operates on an environment; this environment can influence external
sources in ACTHEX, and it can be modified by the execution of actions. The internal structure
of an environment is not specified by ACTHEX, it depends on the concrete application scenario.

Example 74. In a robotics application the environment represents the state of the world, in-
cluding the state of the robot and its location in the world. External atoms use the environment
to represent sensor readings. Actions modify the environment by controlling the robot.

In a belief revision scenario, the environment represents the knowledge base that shall be
revised. External atoms import information from the knowledge base into the program, while
actions modify the knowledge base by adding or retracting knowledge.

Syntax.

As ACTHEX is an extension of HEX, we here only give syntactic elements that ACTHEX adds
to HEX. We assume that the set of constants C contains a finite subset of consecutive integers
{0, . . . , nmax}. ByA we denote the set of action predicate names. We assume thatA is disjoint
with the sets C, X , and G; and we prefix action predicate names with ‘#’.

An action atom is of the form

#g [Y1, . . . , Yn]{o, r}[w : l]

where #g is an action predicate name, Y1, . . . , Yn is a list of terms (called input list), and each
action predicate #g has fixed length in(#g) = n for its input list. Attribute o ∈ {b, c, cp} is
called the action option; depending on o the action atom is called brave, cautious, and preferred
cautious, respectively. Attributes r, w, and l are called precedence, weight,5 and level5 of #g ,
denoted by prec(a), weight(a), and level(a), respectively. They are optional and range over
variables and positive integers.

5Weight and level have a similar intuition as the corresponding attributes of weak constraints in ASP [BLR97].

124

6.3. Realizing IMPL in acthex

A rule r is of the form α1∨. . .∨αk ← β1, . . . , βn, not βn+1, . . . , not βm, wherem, n, k ≥
0, m ≥ n, α1, . . . , αk are atoms or action atoms, and β1, . . . βm are atoms or external atoms.
We define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪ B−(r), where B+(r) = {β1, . . . , βn}
and B−(r) = {βn+1, . . . , βm}. An ACTHEX program is a finite set P of rules.

Example 75. The ACTHEX program

{night ∨ day← ;
#robot [goto, charger]{b, 1}←&sensor [bat](low);
#robot [clean, kitchen]{c, 2}←night ;
#robot [clean, bedroom]{c, 2}← day}

uses action atom #robot to command a robot, and an external atom &sensor to obtain sensor
information. Precedence 1 of action atom #robot [goto, charger]{b, 1}makes the robot recharge
its battery before executing cleaning actions, if necessary.

Semantics.

We here first give an intuitive overview of the semantics and then precise formal definitions.
Note that our presentation of the influence of an environment on external atom semantics and
execution schedule selection is slightly different than in [BEFI10].

Intuitively, an ACTHEX program P is evaluated wrt. an external environment E using the
following steps: (i) answer sets of P are determined wrt. E, the set of best models is a subset
of the answer sets determined by an objective function; (ii) one best model is selected, and one
execution schedule S is generated for that model (although a model may give rise to multiple
execution schedules); (iii) the effects of action atoms in S are applied to E in the order defined
by S, yielding an updated environment E′; and finally (iv) the process may be iterated starting
at (i), unless no actions were executed in (iii) which terminates an iterative evaluation process.
Importantly, the environment can only be changed by action execution, i.e., in step (iii), and
we assume it remains constant throughout the other steps. Formally the ACTHEX semantics is
defined as follows.

Given an ACTHEX program P the Herbrand base HBP of P is the set of all possible ground
versions of atoms, external atoms, and action atoms occurring in P obtained by replacing vari-
ables with constants from C. Given a rule r ∈ P , the grounding grnd(r) of r is defined accord-
ingly; the grounding of P is given as the grounding of all its rules. Unless specified otherwise,
C, X , G, and A are implicitly given by P .

An interpretation I relative to P is any subset I ⊆ HBP containing ordinary atoms and
action atoms. We say that I is a model of an ordinary or action atom a ∈ HBP , denoted by
I |= a, iff a ∈ I . With every external predicate name &g ∈ G, we associate an (n+m+2)-ary
Boolean function f&g, assigning each tuple (E, I, y1, . . . , yn, x1, . . ., xm) either 0 or 1, where
n = in(&g), m = out(&g), xi, yj ∈ C, I ⊆ HBP , and environment E. Note that this
slightly generalizes the external atom semantics such that their truth value may depend on the
environment E. This was left implicit in [BEFI10].

We say that an interpretation I is a model of a ground external atom a = &g [y1, . . . , yn](x1,
. . . , xm) wrt. environment E, denoted I, E |= a, iff f&g(E, I, y1 . . . , yn, x1, . . . , xm) = 1. Let
r be a ground rule. We define

• I, E |= H(r) iff there is some a ∈ H(r) such that I, E |= a,

• I, E |= B(r) iff I, E |= a for all a ∈ B+(r) and I, E 6|= a for all a ∈ B−(r), moreover

• I, E |= r iff I, E |= H(r) or I, E 6|= B(r).

125

6. POLICY LANGUAGE FOR INCONSISTENCY MANAGEMENT

We say that I is a model of P wrt. E, denoted by I, E |= P , iff I, E |= r for all r ∈ grnd(P).
The FLP-reduct of P wrt. I and E, denoted as fP I,E , is the set of all r ∈ grnd(P) such that
I, E |= B(r). Eventually we can define ACTHEX answer sets as follows.

Definition 48. Let P be an ACTHEX program and let E be an environment. Then I ⊆ HBP is
an answer set of P wrt. E iff I is a ⊆-minimal model of fP I,E .

Note that, as for HEX programs we need the FLP-reduct [FPL11], which is equivalent to the
traditional Gelfond-Lifschitz reduct for ordinary programs, and in ACTHEX ensures answer-set
minimality in the presence of external atoms (see [EIST06] for details). We denote byAS(P,E)
the collection of all answer sets of P wrt. E.

The set of best models of P contains those answer sets that minimize an objective function
which we define in the following. Let P be an ACTHEX program, then AAgw(P) denotes the set
of action atoms in grnd(P) with explicit weight and level values. An auxiliary function fP is
recursively defined as follows:

fP (1) = 1,

fP (n) = fP (n− 1) · (|AAgw(P)|) · wPmax + 1, for n > 1.

Given an answer set I , the objective function HP (I) is then defined as

HP (I) =

lPmax∑
i=1

(fP (i) ·
∑

a∈MP
i (I)

weight(a))

where

wPmax = max
a∈AAgw(P)

weight(a) and lPmax = max
a∈AAgw(P)

level(a)

denote the maximum weight and maximum level over weighted action atoms in grnd(P), re-
spectively; and

MP
i (I) = {#b[~Y]{o, r}[w:i] ∈ I}

denotes the set of action atoms with level i that appear in I .

Definition 49. Let P be an ACTHEX program and let E be an environment. Then the set of best
models of P wrt. E, denoted BM(P,E), contains all answer sets I ∈ AS(P,E) that minimize
the objective function HP (I).

Intuitively, an answer set I will be among the best models if no other answer set contains
only actions with a lower level, and if no other answer set I ′ that contains only actions with the
same level as I has a smaller weight of all contained actions. (See also a similar definition for
weak constraint semantics for disjunctive datalog in [BLR97].)

An action a = #g [y1, . . . , yn]{o, r}[w : l] with option o and precedence r is executable in I
wrt. P andE iff (i) a is brave and a ∈ I , or (ii) a is cautious and a ∈ B for everyB ∈ AS(P,E),
or (iii) a is preferred cautious and a ∈ B for every B ∈ BM(P,E). An execution schedule of a
best model I is a sequence of all actions executable in I , such that for all action atoms a, b ∈ I ,
if prec(a) < prec(b) then a has a lower index in the sequence than b. We denote by ESP,E(I)
the set of all execution schedules of a best model I wrt. ACTHEX program P and environment
E; formally

ESP,E(I) =
{

[a1, . . . , an] | prec(ai) ≤ prec(aj), for all 1 ≤ i < j ≤ n
}

where {a1, . . . , an} is the set of action atoms that are executable in I wrt. P and E.

126

6.3. Realizing IMPL in acthex

Example 76. In Example 75, if the robot has low battery, thenAS(P,E) = BM(P,E) contains
models

I1 = {night , #robot [clean, kitchen]{c, 2}, #robot [goto, charger]{b, 1}}, and

I2 = {day , #robot [clean, bedroom]{c, 2}, #robot [goto, charger]{b, 1}}.

We have ESP,E(I1) = {#robot [goto, charger]{b, 1}, #robot [clean, bedroom]{c, 2}}.

Given a model I , the effect of executing a ground action #g [y1, . . . , ym]{o, p}[w : l] on an
environment E wrt. I is defined for each action predicate name #g by an associated (m+2)-
ary function f#g which returns an updated environment E′ = f#g(E, I, y1, . . . , ym). Corre-
spondingly, given an execution schedule S = [a1, . . . , an] of a model I , the execution out-
come of S in environment E wrt. I is defined as EX(S, I, E) = En, where E0 = E, and
Ei+1 = f#g(Ei, I, y1, . . . , ym), given that ai is of the form #g [y1, . . . , ym]{o, p}[w : l]. Intu-
itively the initial environment E0 = E is updated by each action in S in the given order. The set
of possible execution outcomes of a program P on an environment E is denoted as EX (P,E),
and formally defined as

EX (P,E) = {EX(S, I, E) | S ∈ ESP,E(I) where I ∈ BM(P,E)}.

In practice, one usually wants to consider a single execution schedule. This requires the
following decisions during evaluation: (i) to select one best model I ∈ BM(P,E), and (ii) to
select one execution schedule S ∈ ESP,E(I). Finally, one can then execute S and obtain the
new environment E′ = EX(S, I, E).

6.3.2 Rewriting the IMPL Core Fragment to ACTHEX

Using ACTHEX for realizing IMPL is a natural and reasonable choice, because ACTHEX already
natively provides several features necessary for IMPL: external atoms can be used to access in-
formation from a MCS, and ACTHEX actions come with weights for creating ordered execution
schedules for actions that occur in the same answer set of an ACTHEX program. Based on this,
IMPL can be implemented by a rewriting to ACTHEX, such that ACTHEX actions realize IMPL

actions; ACTHEX external predicates provide information about the MCS to the IMPL policy;
and ACTHEX external predicates realize the value invention built-in predicates.

We next describe a rewriting from the IMPL core language fragment to ACTHEX. We assume
that the environment E contains a pair (A,R) of sets of bridge rules, and an encoding of the
MCS M (suitable for an implementation of the external atoms introduced below6). A given
IMPL policy P wrt. the MCS M is then rewritten to an ACTHEX program P act as follows.

1. Each core IMPL action @a(t) in the head of a rule of P is replaced by a brave ACTHEX

action #a[t]{b, 2} with precedence 2. These ACTHEX actions implement semantics of the
respective IMPL actions according to Def. 45: the interpretation I and the original action’s
argument t are used as input, the effects are accumulated as (A,R) in E.

2. Each IMPL built-in #idk(C, c1, . . . , ck) in P is replaced by an ACTHEX external
atom &idk [c1, . . . , ck](C). The family of external atoms &idk [c1, . . . , ck](C) realizes
value invention and has the associated semantics function f&idk such that
f&idk(E, I, c1, . . . , ck, C) = 1 for one constant C = auxc_c1_ . . . _ck created from the
constants in tuple c1, . . . , ck.

6E.g., in the syntax used by the MCS-IE system, see Chapter 4 and [BEFS10], which provide the corresponding
policy input.

127

6. POLICY LANGUAGE FOR INCONSISTENCY MANAGEMENT

3. We add to P act a set Pin of ACTHEX rules containing (i) rules that use, for every p ∈
Cres \ {modset}, a corresponding external atom to ‘import’ a faithful representation of
M and its inconsistency analysis (recall that M is encoded in E), and (ii) a preparatory
action #reset with precedence 1, and a final action #materialize with precedence 3:

Pin = {p(~t)← &p[](~t) | p ∈ Cres \ {modset}}∪
{#reset []{b, 1}; #materialize[]{b, 3}},

where ~t is a vector of distinct variables of length equal to the arity a of p (i.e., 1 ≤ a ≤ 3).

The first two steps transform IMPL actions into ACTHEX actions and #idk-value invention
into external atom calls. The third step essentially creates policy input facts from ACTHEX

external sources. External atoms in Pin return a representation of M and analyze inconsistency
in M , providing minimal diagnoses and minimal explanations. Thus, the respective rules in Pin

yield an extension of the corresponding reserved predicates which is a faithful representation
of M . Moreover, action #reset resets the modification (A,R) stored in E to (∅, ∅).7 Action
#materialize materializes the modification (A,R) (as accumulated by actions of precedence 2)
in the MCS M (which is part of E).

Example 77 (ctd). The translation of policy P3 from Ex. 70 to ACTHEX contains the following
rules:

P act
3 = Pin ∪

{
modset(md , X)← diag(X); #guiSelectMod [md]{b, 2}

}
where

Pin =
{

ruleHead(R,C, S)← &ruleHead [](R,C, S);
ruleBody+(R,C, S)← &ruleBody+[](R,C, S);
ruleBody−(R,C, S)← &ruleBody−[](R,C, S);
. . .
#reset []{b, 1}; #materialize[]{b, 3}

}
.

Note that actions in the rewriting have no weights; and thus all answer sets are best mod-
els. For obtaining an admissible modification, any policy answer set can be chosen, and any
execution schedule can be used.

Proposition 20. Let M be a MCS, let P be a core IMPL policy, let EDBM be a policy input
wrt.M , let P act be as given above, and let E be an environment containingM and (∅, ∅). Then
every execution outcome E′ ∈ EX (P act ∪EDBM |BAux

, E) contains an admissible modification
M ′ of M wrt. P and EDBM .

Proof. In this proof we denote by ASI the IMPL policy answer set function, and by ASA the
ACTHEX answer set function. Admissible modifications of IMPL are defined using ASI , and
execution outcomes of ACTHEX are defined usingASA, therefore we first establish a relationship
between answer sets

II ∈ ASI(P ∪ EDBM) and IA ∈ ASA(P act ∪ EDBM |BAux
, E).

Let Pin
′ = {p(~t) ← &p[](~t) | p ∈ Cres \ {modset}} (recall that Cres denotes reserved

policy input predicate names which we reuse in our transformation to define external atoms for
inconsistency analysis onM which is part ofE). The semantics of the external atoms &p[](~t) of

7This reset is necessary if a policy is applied repeatedly, as discussed in Section 6.2.1, i.e., in iterative reasoning
modes.

128

6.4. Rewriting IMPL to the IMPL Core Fragment

our translation are independent from the answer set; they depend only on inconsistency analysis
results on MCS M which is encoded in E. Thus, and by the definition of the semantics of these
atoms in our transformation,ASA(Pin

′, E) = {EDBM |BM }. Therefore, and since Pin
′ ⊆ P act ,

every IA ∈ ASA(P act ∪ EDBM |BAux
, E) is such that EDBM |BM ⊆ IA. Because EDBM =

EDBM |BM ∪EDBM |BAux
we get thatASA(P act ∪EDBM |BAux

, E) = ASA(P act ∪EDBM , E)
and therefore

IA ∈ ASA(P act ∪ EDBM , E).

We next show the following relationship between IMPL answer sets and ACTHEX answer sets on
the rewritten program: given a set A of action atoms @α(t) where @α ∈ Act , t ∈ C, we show
that II ∈ ASI(P ∪ EDBM) iff IA ∈ ASA(P act ∪ EDBM , E) where II = I ∪A and

IA = I ∪ {#α[t]{b, 2} | @α(t) ∈ A} ∪ {#reset []{b, 1}, #materialize[]{b, 3}}

and I is a set of ground ordinary atoms (i.e., I neither contains IMPL actions nor ACTHEX

actions) with EDBM ⊆ I . The transformation (in particular item 2. on page 127) replaces
all built-ins by an external computation that exactly realizes semantics of the replaced built-in
(wlog. we assume that idk(c1, . . . , ck) = auxc_c1_ . . . _ck; if this is not the case, the answer
sets coincide modulo auxiliary constant replacement). Rules in Pin are always satisfied by IA
as it contains the #reset and #materialize actions and as it contains EDBM . Everything else
(i.e., rule bodies and rule heads) in P act is equal to P , modulo action renaming, and satisfaction
of rules is defined equally in IMPL and ACTHEX. Furthermore, both semantics define answer
sets to be minimal models of the reduct, and (in the definition of IMPL policy answer sets) II |=
fP II ∪ EDBM iff II |= f(P ∪ EDBM)II . Therefore the following intermediate result holds:
II ∈ ASI(P ∪ EDBM) iff IA ∈ ASA(P act ∪ EDBM , E), with II and IA as introduced above.
As actions in P act have no weight and no level, all answer sets are best models. An execution
schedule of an answer set IA first executes #reset , then executes actions that originated in IMPL

actions, and finally executes #materialize. The reset action sets (A,R) in E to (∅, ∅). The
ACTHEX actions, which are created by the transformation from IMPL actions, realize by their
definition the semantics of their corresponding IMPL actions and they accumulate the resulting
sets of added and removed bridge rules in (A,R). Before executing #materialize, we have that
(A,R) = Meff (for Meff see Section 6.1.2). Then #materialize modifies M in E to yield a
materialization M ′ of II in M and therefore an admissible modification of M .

The results of this section can be used to realize the full IMPL language, using the rewriting
technique described in the next section.

6.4 Rewriting IMPL to the IMPL Core Fragment

In this section we provide a rewriting from the full IMPL language to the IMPL core fragment.
This allows us to realize the whole IMPL language using the ACTHEX rewriting for the IMPL

core fragment.
Our rewriting will be ‘identifier-neutral’ in the sense that if the original policy would have

created a rule with identifier r, the rewritten policy creates the rule exactly with the same iden-
tifier. Furthermore rule modifications are realized by removing the original rule and adding a
modified version. Here, again, the rewritten policy uses the original identifier to create the mod-
ified rule. As a consequence, our rewriting can be used if stable identifiers are required (see
Section 6.2.2 for this property and its benefits).

For our rewriting, it is furthermore important that user interactions are limited to rules that
are not modified by other actions. This restriction is useful in practice and has been discussed
in Section 6.2.2.

For this purpose we introduce auxiliary predicates and constants which do not occur any-
where in a policy before rewriting. Given an IMPL policy P and a policy input EDBM , we first

129

6. POLICY LANGUAGE FOR INCONSISTENCY MANAGEMENT

define the set of critical constants which cannot be freely used by the rewriting: critical(P ∪
EDBM) = CM ∪ Cres ∪ cons(P ∪ EDBM).

Example 78 (ctd.). We have critical(P1 ∪EDBM2) = Cres ∪ {cdb , conto , clab , cdss , r1, . . . , r6,
d1, . . . , d4, e1, e2, expl , incNotLab, incLab, in, out , useOne}. (See Example 68 and Figure 70
for EDBM2 and P1.)

Without loss of generality we assume that the following sets of ‘fresh’ constants are disjoint
with critical(P ∪ EDBM):

{c′ | c ∈ CM}∪ {raα | α ∈ Act}∪ {map,modifiedRule, add+, add−, del+,

del−, cm id , csm id , pm id , psm id , cleanMod , cleanedModId , cleanModSet ,

cleanedModSetId , projectMod , projectedModId , projectModSet , projectedModSetId}.

Given a set P of IMPL rules, we define the replacement function tr repl (P) which replaces
every constant c ∈ CM in every rule in P by its corresponding constant c′ and returns the
resulting set of rules. Note that facts are also translated by tr repl . The replacement of all
constants with fresh constants is required to obtain an identifier-stable rewriting.

Given a set P of IMPL rules, we define the replacement function tract(P) which replaces
every action atom α(~t) in every rule in P by an ordinary atom raα(~t) and returns the resulting
set of rules. (Again, facts are translated.)

Given an IMPL policy P and a policy input EDBM , then

P ′ = tr repl (tract(P ∪ EDBM))

is an IMPL policy which does not contain any actions (therefore it is in the IMPL Core fragment),
furthermore P ′ does not contain constants from CM . The policy answer sets of P ′ correspond
1-1 to policy answer sets of P ∪EDBM such that the former contain a replacement atom raα iff
the latter contain a corresponding action α.

We next describe the IMPL code fragment PAux which realizes semantics of IMPL actions
by translating replacement atoms to IMPL core actions.

For mapping replaced constants back to their original value (to achieve stable identifiers),
PAux contains the following facts:

map(c, c′). for every constant c ∈ CM (6.4)

We collect all rules which are modified in modifiedRule:

modifiedRule(R)← raaddRuleCondition+(R,C,B).
modifiedRule(R)← raaddRuleCondition−(R,C,B).
modifiedRule(R)← radelRuleCondition+(R,C,B).
modifiedRule(R)← radelRuleCondition−(R,C,B).
modifiedRule(R)← ramakeRuleUnconditional (R).

(6.5)

We accumulate effects of rule modification actions in add+, add−, del+, and del−:

add+(R,C,B)← raaddRuleCondition+(R,C,B).
add−(R,C,B)← raaddRuleCondition−(R,C,B).
del+(R,C,B)← radelRuleCondition+(R,C,B).
del+(R,C,B)← ramakeRuleUnconditional (R), ruleBody+(R,C,B).
del−(R,C,B)← radelRuleCondition−(R,C,B).
del−(R,C,B)← ramakeRuleUnconditional (R), ruleBody−(R,C,B).

(6.6)

130

6.4. Rewriting IMPL to the IMPL Core Fragment

We represent rule bodies for modified rules in reserved predicates, using original rule, con-
text, and belief identifiers. (We use primed variable names where primed identifiers will be
grounded.)

ruleBody+(R,C,B)← add+(R′, C ′, B′),
modifiedRule(R′), map(R,R′), map(C,C ′), map(B,B′).

ruleBody+(R,C,B)← ruleBody+(R′, C ′, B′), not del+(R′, C ′, B′),
modifiedRule(R′), map(R,R′), map(C,C ′), map(B,B′).

ruleBody−(R,C,B)← add−(R′, C ′, B′),
modifiedRule(R′), map(R,R′), map(C,C ′), map(B,B′).

ruleBody−(R,C,B)← ruleBody−(R′, C ′, B′), not del−(R′, C ′, B′),
modifiedRule(R′), map(R,R′), map(C,C ′), map(B,B′).

ruleHead(R,C,B)← ruleHead(R′, C ′, B′),
modifiedRule(R′), map(R,R′), map(C,C ′), map(B,B′).

(6.7)

We represent new rule bodies for unmodified rules in reserved predicates, using original
identifiers.

ruleBody+(R,C,B)← ruleBody+(R′, C ′, B′), notmodifiedRule(R′),
map(R,R′), map(C,C ′), map(B,B′).

ruleBody−(R,C,B)← ruleBody−(R′, C ′, B′), notmodifiedRule(R′),
map(R,R′), map(C,C ′), map(B,B′).

ruleHead(R,C,B)← ruleHead(R′, C ′, B′), notmodifiedRule(R′),
map(R,R′), map(C,C ′), map(B,B′).

(6.8)

For actions that operate on modifications or sets of modifications, we must not use rules that
have been changed by rule modifying actions. Therefore we next introduce an IMPL fragment
that removes such rules from modifications specified by the extension of cleanMod . Identifiers
for the changed modifications are created using auxiliary constant cm id .

cleanedModId(M ′,M)← cleanMod(M), #id2(M ′, cm id ,M).
modAdd(M ′, R)←modAdd(M,R′), cleanedModId(M ′,M), map(R,R′),

notmodifiedRule(R′).
modDel(M ′, R)←modDel(M,R′), cleanedModId(M ′,M), map(R,R′).

(6.9)

We trigger cleaning for every modification that is used by @guiEditMod or @applyMod .

cleanMod(M)← raguiEditMod (M).
cleanMod(M)← raapplyMod (M).

(6.10)

The following fragment cleans sets of modifications similarly as (6.9):

cleanedModSetId(MS ′,MS)← cleanModSet(MS), #id2(MS ′, csm id ,MS).
cleanMod(M)←modset(MS ,M), cleanModSet(MS).

modset(MS ′,M ′)← cleanedModId(M ′,M),modset(MS ,M),
cleanedModSetId(MS ′,MS).

(6.11)

We trigger this cleaning for all sets of modifications used by @guiSelectMod :

cleanModSet(MS)← raguiSelectMod (MS). (6.12)

For comfort actions that project modifications and sets of modifications, we need a projec-
tion feature in the rewriting. Additionally we must remove rules that have been changed by rule
modifications.8

8Examples 69 and 71 already hinted at how to realize @applyMod and @applyModAtContext . However they
do not guarantee stable identifiers; we therefore give here extended rewritings.

131

6. POLICY LANGUAGE FOR INCONSISTENCY MANAGEMENT

The following IMPL fragment projects modifications specified by the extension of predi-
cate projectMod , removes all bridge rules that have been modified from these modifications
and maps rule identifier constants back to their original identifiers. We trigger this by actions
@guiEditModAtContext and @applyModAtContext .

projectedModId(M ′,M,C)← projectMod(M,C), #id3(M ′, pm id ,M,C).
modAdd(M ′, R)←modAdd(M,R′), ruleHead(R′, C, S),

projectedModId(M ′,M,C), map(R,R′),
notmodifiedRule(R′).

modDel(M ′, R)←modDel(M,R′), ruleHead(R′, C, S),
projectedModId(M ′,M,C),map(R,R′).

projectMod(M,C)← raguiEditModAtContext(M,C).
projectMod(M,C)← raapplyModAtContext(M,C).

(6.13)

The next IMPL fragment achieves the same for sets of modifications, triggered by @gui -
SelectModAtContext :

projectedModSetId(MS ′,MS , C)← projectModSet(MS , C),
#id3(MS ′, psm id ,MS , C).

projectMod(M,C)←modset(MS ,M), projectModSet(MS , C).
modset(MS ′,M ′)← projectedModId(M ′,M,C),modset(MS ,M),

projectedModSetId(MS ′,MS , C).
projectModSet(MS , C)← raguiSelectModAtContext(MS , C).

(6.14)

Program fragments (6.4) to (6.14) prepared everything for executing core actions which
realize the original comfort actions.

We trigger action @delRule for every rule that was removed by @delRule in the original
program, for every rule that was removed by a cleaned @applyMod , for every rule that was
removed by a projected @applyModAtContext , and for every rule that was modified by a rule
modifying action; we use the primed rule identifiers to remove the original rules:

@delRule(R′)← radelRule(R′).
@delRule(R′)← raapplyMod (M ′), modDel(M ′, R′).
@delRule(R′)← raapplyModAtContext(M

′, C ′),
projectedModId(M ′′,M ′, C ′), modDel(M ′′, R′).

@delRule(R′)←modifiedRule(R′).

(6.15)

We trigger the action @addRule for every rule that was added and not modified, for every
rule of an applied and cleaned modification, for every rule of an applied and projected modifi-
cation, and for every rule that was modified. We map to the original rule identifiers to obtain an
identifier stable rewriting. (This is achieved, because rules that are modified are removed with
their primed identifiers, while their modified form is added using the original identifiers.)

@addRule(R)← raaddRule(R′), map(R,R′), notmodifiedRule(R′).
@addRule(R)← raapplyMod (M ′), cleanedModId(M ′′,M ′), modAdd(M ′′, R).
@addRule(R)← raapplyModAtContext(M

′, C ′),
projectedModId(M ′′,M ′, C ′), modAdd(M ′′, R).

@addRule(R)←modifiedRule(R′), map(R,R′).

(6.16)

132

6.4. Rewriting IMPL to the IMPL Core Fragment

Finally we realize cleaned and projected GUI actions by activating core GUI actions.9

@guiSelectMod(M ′)← cleanedModSetId(M ′,M), raguiSelectMod (M).
@guiSelectMod(MS ′)← raguiSelectModAtContext(MS , C),

projectedModSetId(MS ′,MS , C).
@guiEditMod(M ′)← cleanedModId(M ′,M), raguiEditMod (M).
@guiEditMod(M ′)← raguiEditModAtContext(M,C), projectedModId(M ′,M,C).

(6.17)

This completes PAux (which consists of (6.4) to (6.17)). We formally define our rewriting
as follows.

Definition 50. Given an IMPL policy P and a policy input EDBM the rewritten policy tr(P ∪
EDBM) is defined as

tr(P ∪ EDBM) = tr repl (tract(P ∪ EDBM)) ∪ PAux .

Using this rewriting, we can realize IMPL by implementing the IMPL core fragment.

Proposition 21. Let M be an MCS, let P be an IMPL policy, and let EDBM be a policy input
wrt. M . Then a MCS M ′ is an admissible modification of M wrt. P and EDBM iff M ′ is an
admissible modification of M wrt. tr(P ∪ EDBM).

Proof. We first investigate the internal structure of policy tr(P ∪EDBM) = Ptr ∪ PAux where
Ptr = tr repl (tract(P ∪ EDBM)). Ptr contains no constants from CM (they all have been
replaced). PAux contains in its rule heads either action atoms, or atoms with predicates that are
disjoint with predicates in Ptr , or atoms with reserved predicates and constants from CM ∪Cid .
PAux contains no constraints and no cyclic dependencies (neither positive nor including default
negation). Therefore Ptr does not depend on PAux , and we can intuitively split the policy
(similar as with the Splitting Theorem which can be adapted from HEX to apply to ACTHEX)
and obtain Itr∪IAux ∈ AS(tr(P∪EDBM)) iff Itr ∈ AS(Ptr) and Itr∪IAux ∈ AS(PAux∪Itr).
Due to the definition of tr repl and tract which only renames constants and replaces actions by
atoms, we can see that Itr ∈ AS(Ptr) iff tr−1

repl (tr
−1
act(Itr)) ∈ AS(P ∪ EDBM). I.e., answer

sets of the translation of P (without PAux) directly correspond with an inverse translation of an
answer sets of P . Itr contains no actions, because Ptr contains no actions (only replacements).
To show the result, it remains to show the following:

M ′ is a materialization of an answer set IC ∈ AS(P ∪EDBM) iff M ′ is a materialization of
an answer set IAux ∪ tr repl (tract(IC)) ∈ AS(PAux ∪ tr repl (tract(IC))), where IAux contains
auxiliary atoms derived by PAux from tr repl (tract(IC)).

As the translation removes actions, this amounts to showing that a materialization of actions
in IC is a materialization of actions in IAux . Therefore we must show that (brM \ R ∪ A) \
Rules ∪M (see Definition 46) yields the same result for IC and for IAux . In the next equation
we add subscripts to sets of Definition 46 to indicate from which policy answer set the respective
sets were derived. Using this new notation, we need to show that

(brM \ RIAux
∪ AIAux

) \ RulesIAux
∪MIAux

= (brM \ RIC ∪ AIC) \ RulesIC ∪MIC .

As PAux contains only core actions, IAux contains only core actions; accordingly RulesIAux
=

MIAux
= ∅ and we need to show thatRIAux

= RIC ∪ RulesIC and AIAux
= AIC \ RulesIC ∪

MIC .
We next show properties of answer sets of PAux . Given IC , as PAux is stratified and contains

no constraints, an answer set IAux ∪ tr repl (tract(IC)) ∈ AS(PAux ∪ tr repl (tract(IC))) always
exists, is unique, and IAux has the following properties.

9The IMPL core actions @guiEditMod and @guiSelectMod cannot be realized by the simple rule @α(~t) ←
raα(~t), because our usage of @addRule and @delRule for realizing rule modifying actions would lead to incorrect
semantics.

133

6. POLICY LANGUAGE FOR INCONSISTENCY MANAGEMENT

(i) Due to (6.5), modifiedRule(r′) ∈ IAux iff r ∈ RulesIC .
(ii) Due to (6.6), add+(r′, c′, b′) ∈ IAux iff (c : b) ∈ AIC ,r; add−(r′, c′, b′) ∈ IAux iff

not (c : b) ∈ AIC ,r; del+(r′, c′, b′) ∈ IAux iff (c : b) ∈ RIC ,r; and del−(r′, c′, b′) ∈ IAux

iff not (c : b) ∈ RIC ,r.
(iii) Due to (ii) and (6.7), for every bridge rule q ∈ MIC identified by r in IC , we have

q = ruleIAux
(r), i.e., the modified bridge rule q is represented in IAux and identified by

its original constant r.
(iv) Due to (6.8), for every bridge rule q ∈ AIC \ RulesIC we have q = ruleIAux

(r), i.e., q is
represented in IAux and identified by constant r.

(v) Due to (6.9) and (6.10), for every modification (A,R) = mod IC (m) such that @guiEdit-
Mod(m) ∈ IC or @applyMod(m) ∈ IC , we have (A \RulesIC , R) = mod IAux

(ccmid ,m)
with ccmid ,m ∈ Iid and cleanedModId(ccmid ,m,m) ∈ IAux .

(vi) Due to (6.9), (6.11), and (6.12), for every set of modifications {(A1, R1), . . . , (Ak, Rk)} =
modsetIC (ms) such that @guiSelectMod(ms) ∈ IC , and modsetIAux

(ccsmid ,ms) =
{(A1 \ RulesIC , R1), . . . , (Ak \ RulesIC , Rk)} with ccsmid ,ms ∈ Iid , furthermore we
have that cleanedModSetId(ccsmid ,ms ,ms) ∈ IAux .

(vii) Due to (6.13), for every modification mod IC (m) and context identifier c s.t. (A,R) =
mod IC (m)|c and @guiEditModAtContext(m, c) ∈ IC or @applyModAtContext(m,
c) ∈ IC , we have that (A \RulesIC , R)|c = mod IAux

(cpmid ,m,c) with cpmid ,m,c ∈ Iid

and projectedModId(cpmid ,m,c,m, c) ∈ IAux .
(viii) Due to (6.14), for every modification set modsetIC (ms) and context identifier c such that

{(A1, R1), . . . , (Ak, Rk)} = modsetIC (ms)|c and @guiSelectModAtContext(ms, c) ∈
IC , we have {(A1\RulesIC , R1)|c, . . . , (Ak\RulesIC , Rk)|c} = modsetIAux

(cpsmid ,ms,c)
with cpsmid ,ms,c ∈ Iid and projectedModSetId(cpsmid ,ms,c,ms, c) ∈ IAux .

As the order of evaluating action effects is irrelevant, we can next split the proof into proving
correctness for non-GUI actions (indicated by superscript ng), and then proving correctness for
GUI actions (indicated by superscript gui).

Due to (6.15), all rules in Rng
IC

(from @delRule , @applyMod , and @applyModAtContext ,
see (v) and (vii)) and all rules in RulesIC (see (i)) are deleted in IAux using @delRule , and no
other rules are deleted due to (6.15). Therefore, Rng

IAux
= Rng

IC
∪ RulesIC . Due to (6.16), those

rules in Ang
IC

which are not in RulesIC (from @addRule , @applyMod , and @applyModAt-
Context , see (v) and (vii)) and all rules in MIC (see (ii) and (iii)) are added in IAux using
@addRule , and no other rules are added due to (6.16). Therefore, Ang

IAux
= Ang

IC
\ RulesIC ∪

MIC . Note that these rules are added using their original identifiers (see (iii) and (iv)) which
makes our rewriting identifier-neutral wrt. created rules.

It remains to show, that also GUI actions are realized correctly by the rewriting, i.e., that
Rgui
IAux

= Rgui
IC

and that Agui
IAux

= Agui
IC
\ RulesIC . As semantics of user interaction is nondeter-

ministic, it is not possible (and makes no sense) to directly prove the above equalities. Instead,
we split the rest of the proof into two directions: we prove that, given policy answer set IC and
a certain sequence S of user decisions which determine the effects of executing GUI actions
in IC , it is possible to achieve the same effects from executing another sequence Str of user
decisions on the GUI actions in IAux , and vice versa.

(⇒) Given policy answer set IC ∈ AS(P ∪EDBM), and given the accumulated effectRgui
IC

and Agui
IC

of GUI actions arising from a sequence S of user decisions on GUI actions in IC , the
corresponding IAux (with IAux ∪ tr repl (tract(IC)) ∈ AS(PAux ∪ tr repl (tract(IC))) as above)
contains due to (6.17) a set of GUI actions that corresponds to GUI actions in IC as follows:
@guiEditMod(m) ∈ IC is mapped to a modification editor over (A \ RulesIC , R) (see (v));
@guiSelectMod(ms) ∈ IC is mapped to a modification selection over {(A1\RulesIC , R1), . . . ,
(Ak \ RulesIC , Rk)} (see (vi)); @guiEditModAtContext(m, c) and @guiSelectModAtCon-
text(ms, c) are mapped analogously, always removing RulesIC from the first component of all
modifications at hand. As GUI actions in IAux correspond to GUI actions in IC with all rules

134

6.5. Discussion and Related Work

from RulesIC removed, it is clearly possible to obtain a sequence Str of user decisions on these
GUI actions such that their accumulated effect isRgui

IAux
= Rgui

IC
and Agui

IAux
= Agui

IC
\ RulesIC .

(⇐) For every GUI action in IAux there is a corresponding GUI action in IC which contains
the same modification(s) as the action in IAux and in some cases contains more rules from
RulesIC . However, as GUI actions accumulate in RIC and in AIC and because RulesIC is
always subtracted from RIC and from AIC to obtain an admissible modification, a rule from
RulesIC which is added by an effect of a GUI action in IC is not added in the materialization
of the overall accumulated action effects. Therefore, from a sequence Str of user decisions on
GUI actions in IAux , we can again always create a sequence S of user decisions on GUI actions
in IC such thatRgui

IAux
= Rgui

IC
and Agui

IAux
= Agui

IC
\ RulesIC and therefore the result holds.

6.5 Discussion and Related Work

In the design of IMPL we so far just considered bridge rule modifications for repairing the
system. An interesting issue for further research is to drop this convention. A promising way to
proceed in this direction is to integrate IMPL with recent work on managed MCSs [BEFW11],
where bridge rules are extended such that they can arbitrarily modify the knowledge base of a
context and even its semantics. Accordingly, IMPL could be extended with the possibility of
using management operations on contexts in system modifications.

Realize IMPL in ACTHEX requires a usable and working ACTHEX implementation. No full-
fledged ACTHEX implementation exists at the moment, therefore we are working on such an
implementation and on improvements of ACTHEX which support a realization of IMPL using the
rewriting technique described in Section 6.3.2. In particular, we work on realizing the gener-
alization of taking into account the environment in external atom evaluation, and possibilities
for explicitly implementing model and execution schedule selection functions in an ACTHEX

plugin.
A notable feature of IMPL is a user interface for selecting or editing modifications. An

interesting aspect for future research is the usability of that interface, and the possibility of
reducing their number by grouping them according to nonground bridge rules. We conjecture
that this could lead to a considerable improvement of usability.

6.5.1 Related Work

Related to IMPL is the action language IMPACT [SBD+00], which is a declarative formalism
for actions in distributed and heterogeneous multi-agent systems. IMPACT is a very rich general
purpose formalism, which however is more difficult to manage compared to the special purpose
language IMPL. Furthermore, user interaction as in IMPL is not directly supported in IMPACT;
nevertheless most parts of IMPL could be embedded in IMPACT.

In the fields of access control, e.g., surveyed in [BCOS09], and privacy restrictions [DHS07],
policy languages have also been studied in detail. As a notable example, PDL [CLN00] is a
declarative policy language based on logic programming which maps events in a system to ac-
tions. PDL is richer than IMPL concerning action inter-dependencies, whereas actions in IMPL

have a richer internal structure than PDL actions. Moreover, actions in IMPL depend on the
content of a policy answer set. Similarly, inconsistency analysis input in IMPL has a deeper
structure than events in PDL.

In the context of relational databases, logic programs have been used for specifying repairs
for databases that are inconsistent wrt. a set of integrity constraints [GGZ03, EFGL08, MB10].
These approaches may be considered fixed policies without user interaction, like an IMPL policy
simply applying diagnoses in a homogeneous MCS. Note however, that an important motivation
for developing IMPL is the fact that automatic repair approaches are not always a viable option
for dealing with inconsistency in a MCS.

135

6. POLICY LANGUAGE FOR INCONSISTENCY MANAGEMENT

Active integrity constraints (AICs) [CGZ09, CT08a,CT08b] and inconsistency management
policies (IMPs) [MPP+08] have been proposed for specifying repair strategies for inconsistent
databases in a flexible way. AICs extend integrity constraints by introducing update actions,
for inserting and deleting tuples, to be performed if the constraint is not satisfied. On the other
hand, an IMP is a function which is defined wrt. a set of functional dependencies mapping a
given relation R to a ‘modified’ relation R′ obeying some basic axioms.

Although suitable IMPL policy encodings can mimic database repair programs—AICs and
(certain) IMPs—for specific classes of integrity constraints, there are fundamental conceptual
differences between IMPL and the above approaches to database repair. Most notably, IMPL

policies aim at restoring consistency by modifying bridge rules, which leaves knowledge bases
unchanged; opposed to that, IMPs and AICs consider a set of fixed constraints and repair the
database. Another difference is that IMPL policies are able to operate on heterogeneous knowl-
edge bases and may involve user interaction.

136

7 Summary and Conclusion

The recurring topic of this thesis is inconsistency in multi-context systems, which are a for-
malism for building distributed knowledge-based applications by interlinking smaller existing
knowledge-based systems. Pursuing research in the topic of multi-context systems led us to
closely investigate the related area of HEX programs, which are a formalism for integrating
declarative reasoning with external computations in procedural languages. We conducted work
on a theoretical level by formal analysis of mathematical properties, and on an empirical level by
implementing research software and experimentally evaluating the efficiency of our algorithms.

At the beginning of this work, not even the notion of inconsistency in MCSs was clearly
defined. We hence looked at various ways a MCS can become inconsistent. As a result of that
research, we were able to define the formal concepts of diagnosis and inconsistency explanation,
which cleanly characterize inconsistencies in MCSs in terms of bridge rules.

We investigated properties of these notions, in particular the relationship between diag-
noses and explanations and the respective minimal notions, and the computational complexity
of computing these notions. An important result of this research was the insight that diagnoses
and explanations are in a duality relationship, and that our notions do not exhibit unreasonably
high computational complexity.

We also developed a method of computing diagnoses and inconsistency explanations: first
we theoretically described a rewriting which uses the HEX formalism as underlying knowledge
representation framework, then we implemented this rewriting in the dlvhex research prototype
and conducted empirical experiments with the resulting tool, called MCS-IE.

The experience gained with MCS-IE showed a major scalability problem, and after an inves-
tigation we identified the dlvhex engine and its approach of evaluating HEX programs as culprit.
This prompted further research, this time not into MCS but into the related HEX formalism, and
into new methods for evaluating HEX programs.

Evaluating HEX is an interleaved computation which consists of (i) grounding HEX program
fragments, (ii) evaluating semantics of normal answer set programs, and (iii) evaluating seman-
tics of external atoms. Our research on an improved HEX evaluation yielded a novel evaluation
framework, which changes the way a HEX program is decomposed for evaluation, i.e., it al-
lows for dividing and conquering steps (i)-(iii) mentioned above more efficiently than previous
methods for evaluating HEX. We described this novel HEX evaluation framework, mathemati-
cally showed its correctness, implemented it in a new version of the dlvhex research prototype,
and conducted empirical experiments that show the superior performance of the new framework
over the previous state of the art.

Finally we introduced the policy language IMPL for managing inconsistency in MCSs; we
defined syntax and semantics of this language, discussed possible scenarios for applying IMPL

in practical applications, and showed how IMPL can be realized by rewriting it to the ACTHEX

formalism (which is an extension of the HEX formalism).
Our novel notions for analyzing inconsistency in MCSs and the policy language IMPL have

the potential to make future knowledge-based applications more robust. By making inconsis-
tency more manageable, and avoiding that systems become unresponsive in case of inconsis-
tency, this could also extend the usage of knowledge-based systems in applications. The work

137

7. SUMMARY AND CONCLUSION

on improving efficiency of HEX evaluation makes the HEX formalism applicable to a broader
range of practical applications. Moreover this work furthered our understanding of the HEX

formalism by making more of its intrinsic properties explicit, thereby improving its foundations
for further research.

Outlook

Our approach of analyzing and managing inconsistency in MCSs has the potential to improve
robustness of current and future knowledge-based systems. However these methods have not yet
been applied to a real-world application. Therefore such an application would be the next logical
step which would strengthen our approach beyond theoretical considerations and synthetically
generated benchmark instances.

For practical applicability, it might be necessary to realize inconsistency analysis and man-
agement in a distributed algorithm. A particular suggestive way to do this would be to integrate
our method into the DMCS [BDTE+10b] algorithm and solver [DMC10] which already com-
putes MCS semantics in a distributed fashion. Such an integration is currently investigated in a
masters thesis project, co-supervised by the author of this thesis.

The novel HEX evaluation framework introduced in this thesis is a step towards making
HEX evaluation more efficient, however it is only the first step: our framework provides the
possibility to efficiently decompose a HEX program, but we did not yet formally investigate how
an ideal evaluation heuristics should look like, i.e., how the framework must be configured to
yield optimal evaluation efficiency. However it is likely that no universal solution exists to such
a heuristics, therefore real use cases where HEX is applied in practice will provide worthwhile
opportunities to investigate evaluation heuristics.

Orthogonal to the framework introduced in this thesis are conflict-driven approaches for
HEX evaluation [EFKR12]. These approaches integrate clause learning into HEX evaluation and
promise to improve efficiency of HEX even more in the future (see [EFK+12b]).

In real applications, it will be necessary to combine good evaluation heuristics and conflict-
driven approaches to make HEX an efficient tool for reasoning with external computations.

In summary, both for inconsistency management in MCSs and for HEX programs there are
many possibilities to extend the work of this thesis in the future. Such future work, application-
centered or theoretical, can have a substantial impact on applicability, performance, and usage of
the MCS and HEX formalism in practical applications. This in turn will influence the acceptance
of the MCS and HEX formalisms within the research community and their uptake as generic
tools for reasoning in other disciplines.

138

Bibliography

Bibliography

[ABC03] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Answer sets for con-
sistent query answering in inconsistent databases. Theory and Practice of Logic
Programming, 3(4-5):393–424, 2003.

[ADS08] Vincent Armant, Philippe Dague, and Laurent Simon. Distributed consistency-
based diagnosis. In Iliano Cervesato, Helmut Veith, and Andrei Voronkov, edi-
tors, International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR), volume 5330 of Lecture Notes in Computer Science,
pages 113–127, 2008.

[AGM85] Carlos A. Alchourrón, Peter Gärdenfors, and David Makinson. On the logic
of theory change: partial meet contraction and revision functions. Journal of
Symbolic Logic, 50:510–530, 1985.

[AM05] Eyal Amir and Sheila A. McIlraith. Partition-based logical reasoning for first-
order and propositional theories. Artificial Intelligence, 162(1-2):49–88, 2005.

[Ang88] Dana Angluin. Queries and concept learning. Machine Learning, 2:319–342,
1988.

[BA08] Antonis Bikakis and Grigoris Antoniou. Ambient Intelligence, chapter Dis-
tributed Defeasible Contextual Reasoning in Ambient Computing, pages 308–
325. Springer, 2008.

[BA10] Antonis Bikakis and Grigoris Antoniou. Defeasible contextual reasoning with
arguments in ambient intelligence. IEEE Transactions on Knowledge and Data
Engineering, 22(11):1492–1506, 2010.

[BAH11] Antonis Bikakis, Grigoris Antoniou, and Panayiotis Hassapis. Strategies for con-
textual reasoning with conflicts in ambient intelligence. Knowledge and Infor-
mation Systems, 27(1):45–84, 2011.

[BC03] Leopoldo E. Bertossi and Jan Chomicki. Query answering in inconsistent
databases. In Jan Chomicki, Ron van der Meyden, and Gunter Saake, editors,
Logics for Emerging Applications of Databases, pages 43–83. Springer, 2003.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implemen-
tation and Applications. Cambridge University Press, Cambridge, 2003.

[BCOS09] Piero A. Bonatti, Juri Luca De Coi, Daniel Olmedilla, and Luigi Sauro. Rule-
based policy representations and reasoning. In François Bry and Jan Maluszyn-
ski, editors, Semantic Techniques for the Web, The REWERSE Perspective, vol-
ume 5500 of Lecture Notes in Computer Science, pages 201–232. Springer, 2009.

139

BIBLIOGRAPHY

[BDTE+10a] Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas
Krennwallner. Decomposition of Distributed Nonmonotonic Multi-Context Sys-
tems. In Tommie Meyer and Eugenia Ternovska, editors, International Workshop
on Non-Monotonic Reasoning (NMR), CEUR Workshop Proceedings, pages 24–
37. CEUR-WS.org, May 2010.

[BDTE+10b] Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas
Krennwallner. The DMCS solver for distributed nonmonotonic multi-context
systems. In Tomi Janhunen and Ilkka Niemelä, editors, European Conference
on Logics in Artificial Intelligence (JELIA), volume 6341 of Lecture Notes in
Artificial Intelligence, pages 352–355. Springer, 2010.

[BE07] Gerhard Brewka and Thomas Eiter. Equilibria in heterogeneous nonmonotonic
multi-context systems. In AAAI Conference on Artificial Intelligence (AAAI),
pages 385–390. AAAI Press, 2007.

[BEF11] Gerhard Brewka, Thomas Eiter, and Michael Fink. Nonmonotonic multi-context
systems: A flexible approach for integrating heterogeneous knowledge sources.
In Marcello Balduccini and Tran Cao Son, editors, Logic Programming, Knowl-
edge Representation, and Nonmonotonic Reasoning, volume 6565 of Lecture
Notes in Computer Science, pages 233–258. Springer, 2011.

[BEFI10] Selen Basol, Ozan Erdem, Michael Fink, and Giovambattista Ianni. HEX pro-
grams with action atoms. In Manuel V. Hermenegildo and Torsten Schaub, ed-
itors, Technical Communications of the 26th International Conference on Logic
Programming (ICLP) 2010, pages 24–33, 2010.

[BEFS10] Markus Bögl, Thomas Eiter, Michael Fink, and Peter Schüller. The MCS-IE sys-
tem for explaining inconsistency in multi-context systems. In Tomi Janhunen and
Ilkka Niemelä, editors, European Conference on Logics in Artificial Intelligence
(JELIA), Lecture Notes in Artificial Intelligence, pages 356–359. Springer, 2010.

[BEFW11] Gerhard Brewka, Thomas Eiter, Michael Fink, and Antonius Weinzierl. Managed
multi-context systems. In Toby Walsh, editor, International Joint Conference
on Artificial Intelligence (IJCAI), Lecture Notes in Artificial Intelligence, pages
786–791. Springer, 2011.

[Ber89] Claude Berge. Hypergraphs. Elsevier Science Publishers B.V. (North-Holland),
Amsterdam, 1989.

[Ber11] Leopoldo E. Bertossi. Database Repairing and Consistent Query Answering.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011.

[BGP+07] Martin Brain, Martin Gebser, Jörg Pührer, Torsten Schaub, Hans Tompits, and
Stefan Woltran. Debugging ASP programs by means of ASP. In Chitta Baral,
Gerhard Brewka, and John S. Schlipf, editors, International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR), pages 31–43, 2007.

[BLR97] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Strong and weak con-
straints in disjunctive datalog. In Jürgen Dix, Ulrich Furbach, and Anil Nerode,
editors, International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR), volume 1265 of Lecture Notes in Computer Science, pages
2–17. Springer, 1997.

140

Bibliography

[BM08] Arnold Binas and Sheila A. McIlraith. Peer-to-peer query answering with in-
consistent knowledge. In Gerhard Brewka and Jérôme Lang, editors, Interna-
tional Conference on Principles of Knowledge Representation and Reasoning
(KR), pages 329–339, Sydney, Australia, September 16–19 2008.

[BN08] Jens Bleiholder and Felix Naumann. Data fusion. ACM Computing Surveys,
41(1):1–41, 2008.

[BO07] Piero A. Bonatti and Daniel Olmedilla. Rule-based policy representation and
reasoning for the semantic web. In Grigoris Antoniou, Uwe Aßmann, Cristina
Baroglio, Stefan Decker, Nicola Henze, Paula-Lavinia Patranjan, and Robert
Tolksdorf, editors, Reasoning Web Summer School, Lecture Notes in Computer
Science, pages 240–268, 2007.

[BRMO03] Mark Brodie, Irina Rish, Sheng Ma, and Natalia Odintsova. Active probing
strategies for problem diagnosis in distributed systems. In Georg Gottlob and
Toby Walsh, editors, International Joint Conference on Artificial Intelligence (IJ-
CAI), pages 1337–1338. Morgan Kaufmann, 2003.

[BRS07] Gerhard Brewka, Floris Roelofsen, and Luciano Serafini. Contextual default
reasoning. In Manuela M. Veloso, editor, International Joint Conference on Ar-
tificial Intelligence (IJCAI), pages 268–273, 2007.

[BS89] Howard A. Blair and V.S. Subrahmanian. Paraconsistent logic programming.
Theoretical Computer Science, 68(2):135–154, 1989.

[BS03] A. Borgida and L. Serafini. Distributed description logics: Assimilating infor-
mation from peer sources. Journal on Data Semantics I, pages 153–184, 2003.

[BSST09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Sat-
isfiability modulo theories. In Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, pages 825–885. IOS Press, 2009.

[BV05] Martin Brain and Marina De Vos. Debugging Logic Programs under the Answer
Set Semantics. In Marina De Vos and Alessandro Provetti, editors, International
Workshop on Answer Set Programming, 2005.

[CCIL08] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola Leone.
Computable functions in ASP: Theory and implementation. In Maria Garcia
de la Banda and Enrico Pontelli, editors, International Conference on Logic Pro-
gramming (ICLP), Lecture Notes in Computer Science, pages 407–424. Springer,
2008.

[CDT89] Luca Console, Daniele Theseider Dupré, and Pietro Torasso. A theory of diagno-
sis for incomplete causal models. In N. S. Sridharan, editor, International Joint
Conference on Artificial Intelligence (IJCAI), pages 1311–1317, 1989.

[CGL+08] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenz-
erini, and Riccardo Rosati. Inconsistency tolerance in P2P data integration: An
epistemic logic approach. Information Systems, 33(4-5):360–384, 2008.

[CGZ09] Luciano Caroprese, Sergio Greco, and Ester Zumpano. Active integrity con-
straints for database consistency maintenance. IEEE Transactions on Knowledge
and Data Engineering, 21(7):1042–1058, 2009.

141

BIBLIOGRAPHY

[CHI88] Yves Crama, Peter L. Hammer, and Toshihide Ibaraki. Cause-effect relationships
and partially defined Boolean functions. Annals of Operations Research, 16:299–
326, 1988.

[CLN00] Jan Chomicki, Jorge Lobo, and Shamim A. Naqvi. A logic programming ap-
proach to conflict resolution in policy management. In Anthony G. Cohn, Fausto
Giunchiglia, and Bart Selman, editors, International Conference on the Princi-
ples of Knowledge Representation and Reasoning (KR), pages 121–132, 2000.

[CPD07] Luca Console, Claudia Picardi, and Daniele Theseider Dupré. A framework for
decentralized qualitative model-based diagnosis. In Manuela M. Veloso, editor,
International Joint Conference on Artificial Intelligence (IJCAI), pages 286–291,
2007.

[CSH06] Namyoun Choi, Il-Yeol Song, and Hyoil Han. A survey on ontology mapping.
SIGMOD Record, 35:34–41, September 2006.

[CT08a] Luciano Caroprese and Miroslaw Truszczynski. Declarative semantics for active
integrity constraints. In Maria Garcia de la Banda and Enrico Pontelli, editors, In-
ternational Conference on Logic Programming (ICLP), volume 5366 of Lecture
Notes in Computer Science, pages 269–283. Springer, 2008.

[CT08b] Luciano Caroprese and Miroslaw Truszczynski. Declarative semantics for re-
vision programming and connections to active integrity constraints. In Steffen
Hölldobler, Carsten Lutz, and Heinrich Wansing, editors, European Conference
on Logics in Artificial Intelligence (JELIA), volume 5293 of Lecture Notes in
Computer Science, pages 100–112. Springer, 2008.

[dAP07] Sandra de Amo and Mônica Sakuray Pais. A paraconsistent logic programming
approach for querying inconsistent databases. International Journal of Approxi-
mate Reasoning, 46(2):366–386, 2007.

[DCC86] Newton Da Costa and Walter Carnielli. On paraconsistent deontic logic.
Philosophia, 16:293–305, 1986.

[DEGV01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Com-
plexity and expressive power of logic programming. ACM Computing Surveys,
33(3):374–425, 2001.

[DHS07] Claudiu Duma, Almut Herzog, and Nahid Shahmehri. Privacy in the semantic
web: What policy languages have to offer. In IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY), pages 109–118, 2007.

[DHX12] dlvhex, 2012. http://www.kr.tuwien.ac.at/research/systems/
dlvhex/.

[dK91] Johan de Kleer. Focusing on probable diagnoses. In Thomas L. Dean and
Kathleen McKeown, editors, AAAI Conference on Artificial Intelligence (AAAI),
pages 842–848. AAAI Press, 1991.

[dKK03] Johan de Kleer and James Kurien. Fundamentals of model-based diagnosis. In
IFAC Fault Detection, Supervision and Safety of Technical Processes (SafePro-
cess), 2003.

[DLV12] DLVSYSTEM s.r.l., 2012. http://www.dlvsystem.com/.

142

http://www.kr.tuwien.ac.at/research/systems/dlvhex/
http://www.kr.tuwien.ac.at/research/systems/dlvhex/
http://www.dlvsystem.com/

Bibliography

[DMC10] DMCS - The DMCS solver, 2010. http://www.kr.tuwien.ac.at/
research/systems/dmcs/.

[DMC11] DMCS Experiments, 2011. http://www.kr.tuwien.ac.at/
research/systems/dmcs/experiments.html.

[DTEFK09] Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. Mod-
ular Nonmonotonic Logic Programming Revisited. In Patricia M. Hill and
David S. Warren, editors, International Conference on Logic Programming
(ICLP), volume 5649 of Lecture Notes in Computer Science, pages 145–159.
Springer, July 2009.

[DTEFK10] Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. Dis-
tributed Nonmonotonic Multi-Context Systems. In Fangzhen Lin and Uli Sattler,
editors, International Conference on the Principles of Knowledge Representation
and Reasoning (KR), pages 60–70. AAAI Press, May 2010.

[EBDT+09] Thomas Eiter, Gerhard Brewka, Minh Dao-Tran, Michael Fink, Giovambattista
Ianni, and Thomas Krennwallner. Combining nonmonotonic knowledge bases
with external sources. In Silvio Ghilardi and Roberto Sebastiani, editors, Inter-
national Symposium on Frontiers of Combining Systems (FroCoS), volume 5749
of Lecture Notes in Computer Science, pages 18–42. Springer, 2009.

[ED08] Faezeh Ensan and Weichang Du. Aspects of inconsistency resolution in modular
ontologies. In Sabine Bergler, editor, Canadian Conference on AI, volume 5032
of Lecture Notes in Computer Science, pages 84–95. Springer, 2008.

[EFGL08] Thomas Eiter, Michael Fink, Gianluigi Greco, and Domenico Lembo. Repair
localization for query answering from inconsistent databases. ACM Transactions
on Database Systems, 33(2), 2008.

[EFI+11] Thomas Eiter, Michael Fink, Giovambattista Ianni, Thomas Krennwallner, and
Peter Schüller. Pushing efficient evaluation of HEX programs by modular decom-
position. In James Delgrande and Wolfgang Faber, editors, International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR), Lecture
Notes in Artificial Intelligence, pages 93–106, May 2011.

[EFIS11] Thomas Eiter, Michael Fink, Giovambattista Ianni, and Peter Schüller. To-
wards a policy language for managing inconsistency in multi-context systems. In
Alessandra Mileo and Michael Fink, editors, International Workshop on Logic-
based Interpretation of Context: Modelling and Applications (Log-IC), volume
738 of CEUR Workshop Proceedings, pages 23–35. CEUR-WS.org, May 2011.

[EFIS12a] Thomas Eiter, Michael Fink, Giovambattista Ianni, and Peter Schüller. The
IMPL policy language for managing inconsistency in multi-context systems. In
Alessandra Mileo and Michael Fink, editors, Postproceedings of the Interna-
tional Conference on Applications of Declarative Programming and Knowledge
Management (INAP) and the Workshop on Logic Programming (WLP), Lecture
Notes in Artificial Intelligence. Springer, 2012.

[EFIS12b] Thomas Eiter, Michael Fink, Giovambattista Ianni, and Peter Schüller. Managing
inconsistency in multi-context systems using the IMPL policy language. Techni-
cal Report INFSYS RR-1843-12-05, Vienna University of Technology, Institute
for Information Systems, 2012.

143

http://www.kr.tuwien.ac.at/research/systems/dmcs/
http://www.kr.tuwien.ac.at/research/systems/dmcs/
http://www.kr.tuwien.ac.at/research/systems/dmcs/experiments.html
http://www.kr.tuwien.ac.at/research/systems/dmcs/experiments.html

BIBLIOGRAPHY

[EFK09] Thomas Eiter, Michael Fink, and Thomas Krennwallner. Decomposition of
Declarative Knowledge Bases with External Functions. In Craig Boutilier, editor,
International Joint Conference on Artificial Intelligence (IJCAI), pages 752–758.
AAAI Press, July 2009.

[EFK+12a] Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl, and Peter
Schüller. Eliminating unfounded set checking for HEX-programs. In Michael
Fink and Yuliya Lierler, editors, Workshop on Answer Set Programming and
Other Computing Paradigms (ASPOCP), 2012. To appear.

[EFK+12b] Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl, and Peter
Schüller. Exploiting unfounded sets for HEX-program evaluation. In European
Conference on Logics in Artificial Intelligence (JELIA), 2012. To appear.

[EFK+12c] Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl, and Peter
Schüller. Improving hex-program evaluation based on unfounded sets. Technical
Report INFSYS RR-1843-12-08, Vienna University of Technology, Institute for
Information Systems, 2012. To appear.

[EFKR12] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl.
Conflict-driven ASP solving with external sources. In Technical Communica-
tions of the International Conference on Logic Programming (ICLP), 2012. To
appear.

[EFS10] Thomas Eiter, Michael Fink, and Peter Schüller. Approximations for explana-
tions of inconsistency in partially known multi-context systems. In Gerhard
Brewka, Viktor Marek, and Mirek Truszczynski, editors, Thirty Years of Non-
monotonic Reasoning, Lecture Notes in Artificial Intelligence, October 2010. 15
pages.

[EFS11] Thomas Eiter, Michael Fink, and Peter Schüller. Approximations for expla-
nations of inconsistency in partially known multi-context systems. In James
Delgrande and Wolfgang Faber, editors, International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR), Lecture Notes in Artificial
Intelligence, pages 107–119, May 2011.

[EFSW09] Thomas Eiter, Michael Fink, Peter Schüller, and Antonius Weinzierl. Towards
diagnosing inconsistency in nonmonotonic multi-context systems. In Alessandra
Mileo and James P. Delgrande, editors, International Workshop on Logic-based
Interpretation of Context: Modelling and Applications (Log-IC), volume 550 of
CEUR Workshop Proceedings. CEUR-WS.org, 2009. 4 pages (no page numbers).

[EFSW10] Thomas Eiter, Michael Fink, Peter Schüller, and Antonius Weinzierl. Finding ex-
planations of inconsistency in nonmonotonic multi-context systems. In Fangzhen
Lin and Uli Sattler, editors, International Conference on the Principles of Knowl-
edge Representation and Reasoning (KR), pages 329–339. AAAI Press, 2010.

[EFW10] Thomas Eiter, Michael Fink, and Antonius Weinzierl. Preference-based inconsis-
tency assessment in multi-context systems. In Tomi Janhunen and Ilkka Niemelä,
editors, European Conference on Logics in Artificial Intelligence (JELIA), Lec-
ture Notes in Artificial Intelligence, pages 143–155, 2010.

[EGM97] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive datalog. ACM
Transactions on Database Systems, 22(3):364–418, 1997.

144

Bibliography

[EIK09] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer Set Pro-
gramming: A Primer. In Sergio Tessaris, Enrico Franconi, Thomas Eiter, Clau-
dio Gutierrez, Siegfried Handschuh, Marie-Christine Rousset, and Renate A.
Schmidt, editors, Reasoning Web Summer School, volume 5689 of Lecture Notes
in Computer Science, pages 40–110. Springer, September 2009.

[EIL+08] Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer,
and Hans Tompits. Combining answer set programming with description logics
for the semantic web. Artificial Intelligence, 172(12-13):1495–1539, 2008.

[EIP+06] Thomas Eiter, Giovambattista Ianni, Axel Polleres, Roman Schindlauer, and
Hans Tompits. Reasoning with rules and ontologies. In Pedro Barahona, François
Bry, Enrico Franconi, Nicola Henze, and Ulrike Sattler, editors, Reasoning Web
Summer School, pages 93–127, 2006.

[EIST04] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits.
Nonmonotonic description logic programs: Implementation and experiments. In
Franz Baader and Andrei Voronkov, editors, International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR), volume 3452 of
Lecture Notes in Computer Science, pages 511–527. Springer, 2004.

[EIST05] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits.
A Uniform Integration of Higher-Order Reasoning and External Evaluations in
Answer-Set Programming. In L. P. Kaelbling and A. Saffiotti, editors, Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 90–96, Denver,
USA, 2005. Professional Book Center.

[EIST06] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. Ef-
fective integration of declarative rules with external evaluations for semantic-web
reasoning. In York Sure and John Domingue, editors, European Semantic Web
Conference (ESWC), Lecture Notes in Computer Science, pages 273–287, 2006.

[FKMP05] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data
exchange: semantics and query answering. Theoretical Computer Science,
336(1):89–124, 2005.

[FPL11] Wolfgang Faber, Gerald Pfeifer, and Nicola Leone. Semantics and complex-
ity of recursive aggregates in answer set programming. Artificial Intelligence,
175(1):278–298, 2011.

[Gab93] Dov M. Gabbay. Labelled deductive systems: A position paper. In J. Oikkonen
and J. Väänänen, editors, Logic Colloquium ’90, volume 2 of Lecture Notes in
Logic, pages 66–88. Springer, 1993.

[Gec08] Gecode: An open constraint solving library. In Workshop on Open-Source Soft-
ware for Integer and Constraint Programming (OSSICP), Paris, France, May
2008. Presentation (40 slides).

[GGZ03] Gianluigi Greco, Sergio Greco, and Ester Zumpano. A logical framework for
querying and repairing inconsistent databases. IEEE Transactions on Knowledge
and Data Engineering, 15(6):1389–1408, 2003.

[GH91] Dov Gabbay and Anthony Hunter. Making inconsistency respectable 1: A log-
ical framework for inconsistency in reasoning. In Foundations of Artificial In-
telligence Research, volume 535 of Lecture Notes in Computer Science, pages
19–32, 1991.

145

BIBLIOGRAPHY

[GH93] Dov M. Gabbay and Anthony Hunter. Making inconsistency respectable: Part
2 - Meta-level handling of inconsistency. In Michael Clarke, Rudolf Kruse,
and Serafín Moral, editors, European Conference on Symbolic and Quantitative
Approaches to Reasoning and Uncertainty (ECSQARU), volume 747 of Lecture
Notes in Computer Science, pages 129–136. Springer, 1993.

[GKKS11] Martin Gebser, Roland Kaminski, Arne König, and Torsten Schaub. Advances in
gringo series 3. In James Delgrande and Wolfgang Faber, editors, International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR),
volume 6645 of Lecture Notes in Computer Science, pages 345–351. Springer,
2011.

[GKNS07] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub.
clasp: A conflict-driven answer set solver. In Chitta Baral, Gerhard Brewka,
and John S. Schlipf, editors, International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR), volume 4483 of Lecture Notes in Com-
puter Science, pages 260–265. Springer, 2007.

[GKS09] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Solution enumeration
for projected Boolean search problems. In Willem Jan van Hoeve and John N.
Hooker, editors, International Conference on Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Problems
(CPAIOR), volume 5547 of Lecture Notes in Computer Science, pages 71–86.
Springer, 2009.

[GKS12] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven an-
swer set solving: From theory to practice. Artificial Intelligence, 187–188(0):52–
89, 2012.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Robert A. Kowalski and Kenneth A. Bowen, editors, Interna-
tional Conference and Symposium on Logic Programming (ICLP), pages 1070–
1080, 1988.

[GL91] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs
and disjunctive databases. New Generation Computing, 9(3/4):365–386, 1991.

[GOS09] Martin Gebser, Max Ostrowski, and Torsten Schaub. Constraint answer set solv-
ing. In Patricia M. Hill and David Scott Warren, editors, International Confer-
ence on Logic Programming (ICLP), volume 5649 of Lecture Notes in Computer
Science, pages 235–249. Springer, 2009.

[Got92] Georg Gottlob. Complexity results for nonmonotonic logics. Journal of Logic
and Computation, 2:397–425, 1992.

[GRP09] Dov M. Gabbay, Odinaldo Rodrigues, and Gabriella Pigozzi. Connections be-
tween belief revision, belief merging and social choice. Journal of Logic and
Computation, 19(3):445–446, 2009.

[GS94] Fausto Giunchiglia and Luciano Serafini. Multilanguage hierarchical logics, or:
How we can do without modal logics. Artificial Intelligence, 65(1):29–70, 1994.

[GST07] Martin Gebser, Torsten Schaub, and Sven Thiele. GrinGo: A new grounder
for answer set programming. In Chitta Baral, Gerhard Brewka, and John S.

146

Bibliography

Schlipf, editors, International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR), volume 4483 of Lecture Notes in Computer Science,
pages 266–271. Springer, 2007.

[GW96] Paul W. P. J. Grefen and Jennifer Widom. Integrity constraint checking in feder-
ated databases. In IFCIS International Conference on Cooperative Information
Systems (CoopIS), pages 38–47, 1996.

[HM85] Dennis Heimbigner and Dennis McLeod. A federated architecture for informa-
tion management. ACM Transactions on Information Systems, 3(3):253–278,
1985.

[HM92] Joseph Y. Halpern and Yoram Moses. A guide to completeness and complexity
for modal logics of knowledge and belief. Artificial Intelligence, 54(3):319–379,
1992.

[HPRW96] Lisa Hellerstein, Krishnan Pillaipakkamnatt, Vijay Raghavan, and Dawn
Wilkins. How many queries are needed to learn? Journal of the ACM, 43(5):840–
862, 1996.

[HRO06] Alon Y. Halevy, Anand Rajaraman, and Joann J. Ordille. Data integration: The
teenage years. In Umeshwar Dayal, Kyu-Young Whang, David B. Lomet, Gus-
tavo Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun Cha, and Young-
Kuk Kim, editors, International Conference on Very Large Data Bases (VLDB),
pages 9–16. ACM, 2006.

[IS95] Katsumi Inoue and Chiaki Sakama. Abductive framework for nonmonotonic the-
ory change. In International Joint Conference on Artificial Intelligence (IJCAI),
pages 204–210, 1995.

[JOTW09] Tomi Janhunen, Emilia Oikarinen, Hans Tompits, and Stefan Woltran. Modu-
larity Aspects of Disjunctive Stable Models. Journal of Artificial Intelligence
Research, 35:813–857, 2009.

[KL92] Michael Kifer and Eliezer L. Lozinskii. A logic for reasoning with inconsistency.
Journal of Automated Reasoning, 9(2):179–215, October 1992.

[KP05] Sébastien Konieczny and Ramón Pino Pérez. Propositional belief base merging
or how to merge beliefs/goals coming from several sources and some links with
social choice theory. European Journal of Operational Research, 160(3):785–
802, 2005.

[LGI+05] Nicola Leone, Gianluigi Greco, Giovambattista Ianni, Vincenzino Lio, Giorgio
Terracina, Thomas Eiter, Wolfgang Faber, Michael Fink, Georg Gottlob, Ric-
cardo Rosati, Domenico Lembo, Maurizio Lenzerini, Marco Ruzzi, Edyta Kalka,
Bartosz Nowicki, and Witold Staniszkis. The INFOMIX system for advanced in-
tegration of incomplete and inconsistent data. In Fatma Özcan, editor, ACM SIG-
MOD International Conference on Management of Data, pages 915–917. ACM,
2005.

[LR07] Domenico Lembo and Marco Ruzzi. Consistent query answering over de-
scription logic ontologies. In Massimo Marchiori, Jeff Z. Pan, and Christian
de Sainte Marie, editors, Web Reasoning and Rule Systems, volume 4524 of Lec-
ture Notes in Computer Science, pages 194–208. Springer, 2007.

147

BIBLIOGRAPHY

[LS11] Yuliya Lierler and Peter Schüller. Parsing Combinatory Categorial Grammar with
Answer Set Programming: Preliminary report. In Workshop on Logic Program-
ming (WLP), September 2011. CoRR 1108.5567, 12 pages (no page numbers).

[LS12] Yuliya Lierler and Peter Schüller. Parsing combinatory categorial grammar via
planning in answer set programming. In Esra Erdem, Joohyung Lee, Yuliya
Lierler, and David Pearce, editors, Correct Reasoning - Essays on Logic-Based
AI in Honour of Vladimir Lifschitz, pages 436–453. Springer, 2012.

[LT94] Vladimir Lifschitz and Hudson Turner. Splitting a logic program. In Pascal Van
Hentenryck, editor, International Conference on Logic Programming (ICLP),
pages 23–38, Santa Margherita Ligure, Italy, June 1994. MIT-Press.

[MB10] Mónica Caniupán Marileo and Leopoldo E. Bertossi. The consistency extractor
system: Answer set programs for consistent query answering in databases. Data
& Knowledge Engineering, 69(6):545–572, 2010.

[McC87] John McCarthy. Generality in artificial intelligence. Communications of the
ACM, 30(12):1030–1035, 1987.

[McC93] John McCarthy. Notes on formalizing context. In Ruzena Bajcsy, editor, In-
ternational Joint Conference on Artificial Intelligence (IJCAI), pages 555–562,
1993.

[MIE12a] MCS-IE: Multi-context systems inconsistency explainer, 2012. http://www.
kr.tuwien.ac.at/research/systems/mcsie/.

[MIE12b] MCS-IE Example Workbench, 2012. http://www.kr.tuwien.ac.at/
research/systems/mcsie/tut/.

[Mit05] David G. Mitchell. A SAT solver primer. Bulletin of the EATCS, 85:112–132,
2005.

[MPP+08] Maria Vanina Martinez, Francesco Parisi, Andrea Pugliese, Gerardo I. Simari,
and V. S. Subrahmanian. Inconsistency management policies. In Gerhard Brewka
and Jérôme Lang, editors, International Conference on the Principles of Knowl-
edge Representation and Reasoning (KR), pages 367–377. AAAI Press, 2008.

[Nie08] Ilkka Niemelä. Stable models and difference logic. In International Symposium
on Artificial Intelligence and Mathematics (ISAIM), 2008. 5 pages (no page
numbers).

[OJ08] Emilia Oikarinen and Tomi Janhunen. Achieving compositionality of the stable
model semantics for smodels programs. Theory and Practice of Logic Program-
ming, 8(5-6):717–761, 2008.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[PAS12] Potassco, the Potsdam Answer Set Solving Collection, 2012. http://
potassco.sourceforge.net/.

[PC88] Luís Moniz Pereira and Miguel Calejo. A framework for prolog debugging. In
Robert A. Kowalski and Kenneth A. Bowen, editors, International Conference
and Symposium on Logic Programming (ICLP), pages 481–495, 1988.

148

http://www.kr.tuwien.ac.at/research/systems/mcsie/
http://www.kr.tuwien.ac.at/research/systems/mcsie/
http://www.kr.tuwien.ac.at/research/systems/mcsie/tut/
http://www.kr.tuwien.ac.at/research/systems/mcsie/tut/
http://potassco.sourceforge.net/
http://potassco.sourceforge.net/

Bibliography

[PEB94] Chris Preist, Kave Eshghi, and Bruno Bertolino. Consistency-based and abduc-
tive diagnoses as generalized stable models. Annals of Mathematics and Artificial
Intelligence, 11(1-4):51–74, 1994.

[Pep08] Pavlos Peppas. Belief revision. In Handbook of Knowledge Representation,
pages 317–360. Elsevier, 2008.

[PRS10] Simona Perri, Francesco Ricca, and Marco Sirianni. A parallel ASP instantiator
based on DLV. In Leaf Petersen and Enrico Pontelli, editors, Declarative Aspects
of Multicore Programming (DAMP), Lecture Notes in Computer Science, pages
73–82. Springer, 2010.

[Prz88] Theodor C. Przymusinski. On the Declarative Semantics of Deductive Databases
and Logic Programs. In J. Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 193–216. Morgan Kaufman, Washington DC,
1988.

[Prz91] T.C. Przymusinski. Stable semantics for disjunctive programs. New Generation
Computing, 9(3):401–424, 1991.

[Rei78] Raymond Reiter. On closed world data bases. In H. Gallaire and J. Minker,
editors, Logic and Data Bases, pages 55–76. Plenum, New York / London, 1978.

[Rei87] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32:57–95, 1987.

[Ros94] K.A. Ross. Modular Stratification and Magic Sets for Datalog Programs with
Negation. Journal of the ACM, 41(6):1216–1267, 1994.

[RS05] Floris Roelofsen and Luciano Serafini. Minimal and absent information in con-
texts. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, International
Joint Conference on Artificial Intelligence (IJCAI), pages 558–563. Professional
Book Center, 2005.

[SBD+00] V.S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan, and R. Ross.
Heterogeneous Agent Systems: Theory and Implementation. MIT Press, 2000.

[SC95] Marco Schaerf and Marco Cadoli. Tractable reasoning via approximation. Arti-
ficial Intelligence, 74(2):249–310, 1995.

[Sch06] Roman Schindlauer. Answer-Set Programming for the Semantic Web. PhD thesis,
Vienna University of Technology, 2006.

[Sch08] Simon Schenk. On the semantics of trust and caching in the semantic web. In
Amit P. Sheth, Steffen Staab, Mike Dean, Massimo Paolucci, Diana Maynard,
Timothy W. Finin, and Krishnaprasad Thirunarayan, editors, International Se-
mantic Web Conference (ISWC), Lecture Notes in Computer Science, pages 533–
549. Springer, 2008.

[Sch10] Peter Schüller. Methods and algorithms for managing inconsistency in multi-
context systems. International Conference on the Principles of Knowledge Rep-
resentation and Reasoning, Doctoral Consortium (KR-DC), May 2010. Poster.

[SEF10] Peter Schüller, Thomas Eiter, and Michael Fink. Towards approximating output-
projected equilibria in partially known multi-context systems. In Hans K. Kaiser
and Raimund Kirner, editors, Proceedings of the Junior Scientist Conference
2010, pages 315–316. Vienna University of Technology, April 2010.

149

BIBLIOGRAPHY

[SK96] B. Selman and H. Kautz. Knowledge Compilation and Theory Approximation.
Journal of the ACM, 43(2):193–224, 1996.

[SL90] Amit P. Sheth and James A. Larson. Federated database systems for managing
distributed, heterogeneous, and autonomous databases. ACM Computing Sur-
veys, 22(3):183–236, 1990.

[SW11] Peter Schüller and Antonius Weinzierl. Semantic reasoning with SPARQL in
heterogeneous multi-context systems. In Camille Salinesi and Oscar Pastor, edi-
tors, Advanced Information Systems Engineering Workshops (CAiSE), volume 83
of Lecture Notes in Business Information Processing, pages 575–585. Springer,
June 2011. (1st International Workshop on Semantic Search (SSW)).

[Syr06] Tommi Syrjänen. Debugging inconsistent answer set programs. In International
Workshop on Nonmonotonic Reasoning (NMR), pages 77–83, 2006.

[tTvH96] Annette ten Teije and Frank van Harmelen. Computing approximate diagnoses
by using approximate entailment. In Luigia Carlucci Aiello, Jon Doyle, and Stu-
art C. Shapiro, editors, International Conference on the Principles of Knowledge
Representation and Reasoning (KR), pages 256–265, 1996.

[Val84] L. G. Valiant. A Theory of the Learnable. Communications of the ACM, 27:1134–
1142, 1984.

[Wei10] Antonius Weinzierl. Comparing inconsistency resolutions in multi-context sys-
tems. In Marija Slavkovik, editor, Proceedings of the 15th Student Session of the
European Summer School for Logic, Language and Information (ESSLLI), pages
17–24, August 2010.

150

	Introduction
	Goals and Methods
	State-of-the-Art
	Evolution of this Work
	Results and Thesis Outline

	Preliminaries
	Multi-Context Systems
	HEX: Answer Set Programs with External Computations
	Restrictions

	Computational Complexity

	Analyzing Inconsistency in Multi-Context Systems
	Diagnoses
	Inconsistency Explanations
	Deletion-Diagnoses / Deletion-Explanations

	Properties
	Converting between Diagnoses and Explanations
	Duality
	Non-overlap in Minimal Diagnoses

	Computational Complexity
	Output-projected Equilibria
	Context Complexity
	Overview of Results
	Proof Outline
	Detailed Results

	Approximating Inconsistency Analyses
	Information Hiding
	Approximations for Diagnoses
	Approximations for Inconsistency Explanations
	Limited Querying
	Computational Complexity

	Discussion and Related Work
	Related Work

	Realizing Inconsistency Analysis in MCSs with HEX
	Computing Diagnoses by Rewriting to HEX
	Generic Approach
	Consistency Checking
	Combining Diagnosis Guess and Consistency Checking
	Explanations

	Implementation: MCS-IE System
	Discussion

	Modular Evaluation Framework for HEX-Programs
	Preliminaries
	Restriction to Extensional Semantics for hex External Atoms
	Atom Dependencies
	Rule Unfolding for External Atom Input Grounding
	Safety Restrictions

	Rule Dependencies and Generalized Rule Splitting Theorem
	Rule Dependencies
	Splitting Sets and Theorems

	Evaluating HEX by Rewriting to ASP
	Pre-Groundable hex Fragment
	Extended Pre-Groundable Fragment and Evaluation Algorithm

	Decomposition and Evaluation Techniques
	Evaluation Graph
	Interpretation Graph
	Answer Set Graph
	Answer Set Enumeration

	Implementation and Experimental Evaluation
	Heuristics
	Benchmarks
	Results

	Discussion and Related Work
	Related Work

	Policy Language for Inconsistency Management
	Policy Language impl
	Syntax
	Semantics

	Methodologies of Applying impl and Realization
	Reasoning Modes
	Properties and Extensions

	Realizing IMPL in acthex
	Preliminaries on acthex
	Rewriting the impl Core Fragment to acthex

	Rewriting impl to the impl Core Fragment
	Discussion and Related Work
	Related Work

	Summary and Conclusion
	Bibliography

