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Abstract

A key-challenge in wireless sensor networks is the development of de-
centralized signal processing and algorithms, i.e. without the central
fusion center. More specific, in my dissertation I have contributed to
the localization of acoustic sources in acoustic wave fields. It contains
three elements:

The physical model in terms of the acoustic wave equation is contin-
uous and has to be discretized and decentralized. I utilize a stochastic
model to incorporate noise and the lack of knowledge.

On top of this model, I use a decentralized maximum a-posteriori
particle filter as an estimator. It supports the non-Gaussianity and
non-linearity of my model. For the final global consensus of the
source location, I additionally present a consensus algorithm.

Non-Gaussian and discrete distributions with finite support de-
mand for general analytic Bayesian performance bounds to bench-
mark estimators. Thus, I derive the analytic sequential Weiss-Weinstein
lower bound on the error variance of any estimator for a linear model
and probability distributions: Gaussian distributions, discrete / con-
tinuous uniform distributions, exponential distributions, Laplace dis-
tributions, and discrete distributions with finite alphabet.

Eventually, I join these elements and, moreover, consider the per-
turbed communication between sensors. On that account, I generalize
the sequential Weiss-Weinstein bound for my non-linear model.





Zusammenfassung

Zukünftige Funksensornetze lassen darauf hoffen, durch Denzen-
tralisierung der Signalverarbeitung die Verwaltung und damit die
Rechenleistung auf die Sensoren verteilen zu können. Dies hat zur
Folge, dass Algorithmen und Verfahren auf ihre Dezentralisierbarkeit
untersucht werden müssen. In meiner Dissertation erforsche ich die
dezentrale Lokalisierung akustischer Quellen unter Zuhilfenahme der
zugrunde liegenden Physik. Dies lässt sich in drei Bereiche gliedern:

Das physikalische Modell in Form der akustischen Wellengleichung
muss zunächst diskretisiert und zerlegt werden. Rauschen und man-
gelnde Kenntnis des Raumes führen zu einem dezentralen probabilis-
tischen Modell.

Für die Lokalisierung verwendet ein Schätzer nun dieses Modell.
Da dem Modell eine Nichtlinearität innewohnt und die Zustandsvek-
toren kontinuierliche und diskrete Zufallsvariablen beinhalten, en-
twickle ich einen dezentralen Particle-Filter als lokalen Maximum
A-posteriori Schätzer. Darauf aufbauend, sichert ein Konsensus-
Algorithmus den globalen Konsensus zwischen den einzelnen Sen-
soren.

Zur Untersuchung der Performance eines Schätzers verwende ich
Bayessche untere Schranken für die Fehlervarianz. Die Bayessche
Beschreibung und diskrete/kontinuierliche Wahrscheinlichkeitsver-
teilungen verlangen nach Sequentiellen Weiss-Weinstein-Schranken.
Unter Vorraussetzung einer linearen Zustandsraumdarstellung gebe
ich analytische Lösungen für Gauß-Verteilungen, Gleichverteilungen,
Exponentialverteilungen, Laplace-Verteilungen und diskrete Verteilun-
gen mit endlichem Alphabet an.

Schlussendlich führe ich alle drei Bereiche zusammen und gehe
auch auf die gestörte Kommunikation zwischen den Sensoren ein. Für
mein nichtlineares Modell leite ich die Sequentielle Weiss-Weinstein-
Schranke her.
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1
Preface

In the recent past, decentralization of algorithms has become pop-
ular1 due to the increased availability of (wireless) sensor networks 1 Coates 2004; Dokmanic et al. 2012;

Farahmand et al. 2010; Hlinka et al. 2013;
Liu et al. 2009; Lu et al. 2009; Oreshkin
et al. 2010; Waterschoot et al. 2012.

(SNs)2. The estimation3 of parameters and states in SNs is the key

2 Akyildiz et al. 2002; Patwari et al. 2005;
Raghavendra et al. 2006; Zhao et al. 2004.
3 Boukerche et al. 2007; Sheng et al. 2005;
Veeravalli et al. 2012.

challenge that I address in my dissertation.
Before I go into details, I have to concrete three frequently men-

tioned terms which are often sloppily used. My nomenclature classi-
fies three non-central types of systems (e.g. estimators):

• In control theory, models stemming from the numerical approxi-
mation of partial differential equations (PDEs) are called distributed
if quantities of the PDEs depend on their location. This character-
ization passes on to systems (estimators) that are based on such
models.

• In contrast, a system that has several dependent computational
units without fusion center, is decentralized.

• If a system (or a part of it) consists of several independent compu-
tational units, then they work in parallel.

The localization scenario I am presenting in the following is dis-
tributed due to the model, decentralized due to the absence of a fusion
center, and some parts even work in parallel. More specifically, I fo-
cus on decentralized localization based on the underlying physical
field. Knowledge about the physics has mainly been exploit in ocean
acoustics and geophysics4. 4 Candy et al. 1992, 1996, 2002; Jovanovic

et al. 2009; Yardim et al. 2009.Throughout my dissertation I consider the in-door localization sce-
nario in Figure 1.1. I consider a hallway with microphones aligned
along the walls. An acoustic source occurs somewhere in this hall-
way and emits propagating acoustic waves. Some acoustic rays are
received directly by the microphones. Other rays are reflected at the
walls and cause interference. The microphones observe the instan-
taneous acoustic pressure. The evolving field, i.e. the pressure, is a
state. Since source position and starting time typically vary over time,
they are also states. In contrast, parameters are quantities which are
constant over time, e.g. the speed of sound in the hallway. My aim
is designing a decentralized estimator inferring the source positions
and occurrence time utilizing the observed signals.
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Figure 1.1: Acoustic source localization
in a hallway. Microphones are aligned
along the walls.
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Generally, there are two classes of inference approaches:

1. Deterministic methods5,6,7,5 Jensen et al. 2011.
6 Mattheij et al. 2005.
7 Zhdanov 2002. 2. Probabilistic methods8,9

8 Chow 2007.
9 Dalang et al. 1998. In the former case, a deterministic model description maps current

states of sources to field observations of the microphones. This map-
ping is called the forward model. In an ideal case, a one-to-one mapping
exists and the states can be computed. In the latter case, there are two
probabilistic inference methods:

• The Frequentist approach posits that the prior states are deterministic.
In other words, it ignores any available additional knowledge about
source occurrence. Only the observation is modeled as random.

• The Bayesian approach also incorporates the statistics/knowledge of
the source occurrence: the knowledge about the source is modeled
by a probability distribution called prior. The inference utilizes the
Bayesian rule.

In the remainder, I follow the Bayesian approach and seek for an
underlying stochastic discrete-time model. I show how it derives from
the acoustic-wave model described by a partial differential equation1010 Sawo 2009; Florian Xaver et al. 2011.

(cf. a static formulation11). The final discrete-time model features11 Reise et al. 2012.

loosely coupled state variables. Due to the loose coupling, these
models are interpreted as reduced-order models12.12 Mohammadi et al. 2012.

Furthermore, I am seeking for a Bayesian lower bound for above’s
estimators. Sequential Cramér-Rao (SCR) bounds were developed1313 Khan et al. 2008; Tichavsky et al. 1998.

for continuous random states. However, the Bayesian bound shall be
applicable jointly to discrete and continuous random state variables.
Additionally, the bound shall support the corresponding probability
densities with finite alphabet. It turns out that the regularity con-
ditions for the applicability of the Bayesian SCR bound are too re-
strictive for discrete (quantized) states [cf. Duan et al. 2008b for the
non-sequential Cramér-Rao (CR) bound].
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This requirement guides us first to the Weiss-Weinstein (WW)
bound14. The temporal evolution of states is described by a state-space 14 Duy Tran et al. 2011; Renaux et al. 2008;

Tran et al. 2012; Vu et al. 2011; Weiss et
al. 1988.

model and motivates the extension of the WW bound to a sequential15

15 Rapoport et al. 2004b; Reece et al. 2005.formulation [sequential Weiss-Weinstein (SWW)]. My approach dif-
fers from earlier hybrid state-estimation formulations16, which eval- 16 Ristic et al. 2004; Washburn et al. 1985.

uate the SCR bound for continuous states depending on the discrete
states. Apart from the underlying theory of SWW bounds17 and the 17 Rapoport et al. 2007a; Reece et al. 2005.

application to fault-prone systems18, I am not aware of any explicit 18 Rapoport et al. 2004a, 2007b.

analytic results for specific probability densities nor their rigorous
derivations.

1.1 Contribution

I demonstrate a decentralized localization approach of an acoustic
source in an acoustic field. I address particle filtering which leads
to a decentralized algorithm utilizing a consensus approach. Since
my model contains discrete and non-Gaussian distributions, I use a
generalization of the Bayesian SCR bound as performance bound for
my estimator. The communication load demands for source coding
of the exchanged signals inducing quantization noise. Finally, I join
these issues to analyze my decentralized estimation approach.

Previous work on decentralized distributed estimation is summa-
rized by Sawo 2009, Starting point

Sawo, F. (2009). “Nonlinear state and parameter estimation of spatially
distributed systems”. PhD thesis. Universität Karlsruhe (see pp. 2,
3).

and on SWW bounds by Rapoport et al. 2004b,

Rapoport, I. and Y. Oshman (Dec. 2004b). “Recursive Weiss-Weinstein
lower bounds for discrete-time nonlinear filtering”. In: 43rd IEEE
Conf. on Decision and Control. Vol. 3, pp. 2662–2667 (see pp. 3, 49, 52,
92).

The latter paper provides a general integral-formulation of SWW
bounds. My thesis is based on the following contributions I pub-
lished (submitted): Papers that directly contribute to my dis-

sertation
Xaver, Florian, Christoph F. Mecklenbräuker, Peter Gerstoft, and Ger-

ald Matz (Nov. 2010). “Distributed state and field estimation using
a particle filter”. In: Proc. 44th Asilomar Conf. Signals, Syst., Comput.
Pacific Grove, CA, pp. 1447–1451.

Xaver, Florian, Gerald Matz, Peter Gerstoft, and Christoph F. Meck-
lenbräuker (2011). “Localization of acoustic sources using a decen-
tralized particle filter”. In: EURASIP JWCN 2011.1, 94ff (see pp. 2,
13, 21, 63).

Xaver, F., G. Matz, P. Gerstoft, and N. Görtz (Nov. 2012a). “Localization
of acoustic sources utilizing a decentralized particle filter”. In: Proc.
46th Asilomar Conf. Signals, Syst., Comput. Pacific Grove, CA (see
p. 71).
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Xaver, F., G. Matz, P. Gerstoft, and C. F. Mecklenbräuker (Mar. 2012b).
“Predictive state vector encoding for decentralized field estimation
in sensor networks”. In: Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP). Kyoto, JP, pp. 2661–2664 (see pp. 37, 72).

– (2013). “Analytic sequential Weiss-Weinstein bounds”. submitted
to IEEE Trans. Signal Proc. at 2013-01-29 (see pp. 45, 73).

1.2 Organization of My Thesis

Preliminaries & models In Chapter 2, I summarize results of the measure theory in the prob-
abilistic context, the Bayesian estimation, and particle filtering. In
Chapter 3, I describe the stochastic wave equation and its approxi-
mation by finite differences. The subsequent chapters contribute to
following three research areas (cf. Fig. 1.2):

Sequential Bayesian estimators I present a particle filter (PF) on top of decentralized model, termed
the decentralized distributed particle filter (DDPF), in Chapter 4 (2nd
branch of Fig. 1.2).

Bayesian performance bounds I derive analytic solutions of the linear SWW bound on the error
covariance of any Bayesian filter in Chapter 6. The partly non-linear
decentralized model and estimator demands for a generalization in
Chapter 7 (2nd branch of Fig. 1.2). Some proofs depend on Lemmas
from Appendix A. In Appendix B I prove that the CR bound is a spe-
cial case of the WW and Bobrovsky-Zakai (BZ) bound.

Communication Chapter 5 presents the whitening of the transmitted signals whereas
Chapter 7 analyzes the influence of the whitening error on the global
SWW bound. The definition of the error is derived in Appendix C.

Physical model (continuous) § 3 Bayesian estimators § 2 Bayesian bounds § 6, § B

Discrete model § 3, § 4 PF § 4 SWW § 6

Linear SWW § 6, § ADecentralized model § 4 DDPF § 4 Nonlinear SWW § 7

Communication § 5, § 7

Manifolds of power spectral densities (PSDs) § C

The WW bound in the limit § B

Figure 1.2: Topics and organization
(three main branches).



2
Preliminaries

The purpose of this chapter is introducing notations, definitions,
and theory.

2.1 Probability Theory

Let us assume a probability space (RN,B,Px) with the sample space
R

N, the Borel algebra B and the measure Px : B → [0, 1].
The expectation of a function g(x) is defined using the probability

measure Px(B) = P{x ∈ B} by

Exg(x) ,
∫
RN

g(x)dPx(x) . (2.1)

Let us assume a probability measure consisting1 of a continuous Pc
x

1 I neglect the singular continuous mea-
sure.and a discrete Pd

x part2, i.e.,
2 Billingsley 2012; Burk 2007; Meintrup
et al. 2004.

Px = c1Pc
x + c2Pd

x , (2.2)

with c1 + c2 = 1, c1 ∈ [0, 1]. Inserting (2.2) into (2.1), the latter one splits
into one integral with Lebesgue measure λc([a1, b1] × · · · × [aN, bN]) =

(b1 − a1) · · · (bN − aN) and another one with counting measure λd
C

(A) =∑
`∈C 1`(A) where C ∈ B and 1 is the indicator function. We arrive at∫

RN
c1g(x) fx(x)dPc(x) +

∫
RN

c2g(x)px(x)dλd
C

(x)

=

∫
RN

c1g(x) fx(x)dx +
∑
x∈C

c2g(x)px(x) (2.3)

with the probability density function (PDF) fx(x) = dPc
x(x)/dλc(x)

and the probability mass function (PMF) px(x) = dPd
x (x)/dλd

C
(x). The

derivative denotes the Radon-Nikodym derivative .
Furthermore, an adapted random process {x(t) : t ∈ R+} or {xk =

x[k] : k ∈ N0} is defined on an filtered probability space (RN,B,Px)
with a filtration Ft (or Fk) contained in B. If t1, t2 ∈ R+ with t1 < t2

then Ft1 ⊂ Ft2 . Similar for discrete-time processes.
In the following, we denote a hybrid continuous/discrete probabil-

ity density by

vx = c1 fx(x) + c2px(x), c1 ∈ [0, 1], c1 + c2 = 1 (2.4)
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and call it simply probability density (PD). Especially when no mea-
sure is specified this notation allows the consideration of continuous
and discrete random variables. We use the notation dλx whenever
we assume the existence of a density for the random variable x. To
simplify notation, we use E {·} , Ex,y {·}, f (x) , fx(x), p(x) , px(x)
and v(x) , vx(x). The expectation operator defines an inner product
〈x1, x2〉 = E

{
x1xT

2

}
which in turn induces a norm ‖x‖ =

√
E

{
xxT}. Both

satisfy the Cauchy-Schwarz inequality.

2.2 Bayesian Estimation

To perform Bayesian estimation (e.g. maximum a-posteriori (MAP) or
minimum mean-squared error (MMSE)) of the state vector xk given

the past observations y1:k =
[
yT

1 . . . yk
T
]T

, the posterior distribution
f (xk|y1:k) is computed sequentially.

Using the Bayesian theorem and the fact that yk+1 and y1:k are con-
ditionally independent (due to the Markov chain assumption) given
xk+1, we have

f (xk+1|y1:k+1) = f (xk+1|yk+1, y1:k)

=
f (yk+1|xk+1, y1:k) f (xk+1|y1:k)

f (yk+1|y1:k)

=
f (yk+1|xk+1) f (xk+1|y1:k)∫

f (yk+1|xk+1) f (xk+1|y1:k)dxk+1
, (2.5)

which is known as the update step (cf. Fig. 2.1). While the mea-
surement PDF f (yk+1|xk+1) in (2.5) is known, f (xk+1|y1:k) needs to be
computed via the so-called prediction step,

f (xk+1|y1:k) =

∫
f (xk+1|xk) f (xk|y1:k)dxk . (2.6)

Here, the transition PDF f (xk+1|xk) is known and f (xk|y1:k) has been
computed in the previous time step k − 1.

Figure 2.1: Bayesian estimation.

x̂k|k

x̂k+1|k+1

x̂k+1|k

correction
prediction state spaceRN

trajectory

estimate

f (yk+1|xk+1)
f (xk+1|xk)

f (xk|y1:k)

The MMSE estimate is defined by

x̂MMSE,k(y1:k) , E
{
xk|y1:k

}
(2.7)

whereas the MAP estimate is

x̂MAP,k(y1:k) , arg max
xk

f (xk|y1:k) . (2.8)

Since the integral in (2.6) is intractable , it is approximated using a
Monte-Carlo technique known as importance sampling.
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2.3 Importance Sampling and Monte-Carlo integration

Consider the expectation of a function g(xk) of a random vector xk

under the measure P(xk) . Then the expectation is defined by

I , Exk

{
g(xk)

}
,

∫
g(xk)dP(xk) . (2.1)

It is convenient to integrate over another measure Q(xk). Rewriting
(2.1) gives ∫

g(xk)
dP(xk)
dQ(xk)

dQ(xk) =

∫
g(xk)w̃(xk)dQ(xk) (2.9)

where the density

ω̃(xk) ,
dP(xk)
dQ(xk)

=
f (xk)
q(xk)

(2.10)

is the Radon-Nikodym derivative and hence a PD. density q(xk) is
termed the importance function. Observe that the support of f (xk)
must contain the support of q(xk). In other words, the Radon-Nikodym
derivative has to exist. The Integral (2.9) can be integrated by a Monte-
Carlo approach, i.e.

I =

∫
g(xk)ω̃(xk)dQ(xk) ≈

1
L

L∑
l=1

g(x[l]
k )ω̃(x[l]

k ) = Î (2.11)

where Î is the Monte-Carlo estimate. Vectors x[l]
k are drawn from q(xk).

Estimate Î is unbiased, i.e.

E
{
Î
}

= E

1
L

L∑
l=1

g(x[l]
k )ω̃(x[l]

k )


=

1
L

L∑
l=1

E
{
g(x[l]

k )ω̃(x[l]
k )

}
= E

{
g(xk)ω̃(xk)

}
= I . (2.12)

The variance is

Var
{
Î
}

=
1
L2

L∑
l=1

Var
{
g(x[l]

k )ω̃(x[l]
k )

}
=

1
L

Var
{
g(xk)ω̃(xk)

}
(2.13)

and goes to zero if L tends to infinite.

2.4 Sample-Importance-Resample Particle Filtering

A continuous posterior density f (xk|y1:k) is approximated by a PMF
with L weights ω[l]

k and L particles x[l]
k , i.e.

f (xk|y1:k) ≈ p(xk|y1:k) =

L∑
l=1

ω[l]
k 1xk−x[l]

k
(2.14)

for all time k. Function 1· indicates the indicator function. The nor-
malized weights

ω[l]
k =

ω̃[l]
k

L
=

1
L

f (xk|y1:k)
q(xk|y1:k)

(2.15)
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whereas the vectors x[l]
k drawn from an importance function that is

addressed later [cf. (2.11)]. Next, let us substitute (2.14) into (2.6),

f (xk+1|y1:k) =

∫
f (xk+1|xk) f (xk|y1:k)dxk

≈

∫
f (xk+1|xk)

 L∑
l=1

ω[l]
k 1xk−x[l]

k

 dxk

=

L∑
l=1

f (xk+1|x
[l]
k )ω[l]

k (2.16)

I now apply the importance sampling (2.9) and Monte-Carlo integra-
tion to the prediction step (2.6),

f (xk+1|y1:k) =

∫
f (xk+1|xk)

f (xk|y1:k)
q(xk|y1:k)

q(xk|y1:k)dxk

=

∫
f (xk+1|xk)ω̃k(xk|y1:k)q(xk|y1:k)dxk

≈

L∑
l=1

f (xk+1|x
[l]
k )ω[l]

k , (2.17)

where x[l]
k are drawn from q(xk|y1:k). Observe the similarity of (2.16)

and (2.17). Hence, the particle filter (PF) is an importance sampling
filter. The update step (2.5) becomes

f (xk+1|y1:k+1) ∝ f (yk+1|xk+1) f (xk+1|y1:k)

= f (yk+1|xk+1)
L∑

l=1

f (xk+1|x
[l]
k )ω[l]

k . (2.18)

The PDF f (yk+1|y1:k) does not depend on the state vector and thus is a
constant. A popular importance function (2.16)

q(xk+1|y1:k+1) :=
L∑

l=1

f (xk+1|x
[l]
k )ω[l]

k (2.19)

This leads to

ω[l]
k+1 ∝

f (yk+1|x
[l]
k+1) 1

L
∑L

l′=1 f (x[l]
k+1|x

[l′]
k )ω[l′]

k
1
L
∑L

l′=1 f (x[l]
k+1|x

[l′]
k )w[l′]

k

= f (y[l]
k+1|x

[l]
k+1) (2.20)

with the approximated posterior density

f (xk+1|y1:k+1) ≈ p(xk+1|y1:k+1) =

L∑
l=1

ω[l]
k+11xk+1−x[l]

k+1
(2.21)

where w[l]
k+1 is the normalized right side of (2.20). The particles x[l]

k+1 are
drawn from the importance function q(xk+1|y1:k+1).

With (2.21), the result for the MMSE PF is

x̂MMSE,k+1(y1:k+1) =

∫
xk+1 f (xk+1|y1:k+1)dxk+1

≈

L∑
l=1

x[l]
k+1ω

[l]
k+1 (2.22)
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and for MAP PF

x̂MAP,k+1(y1:k+1) = arg max
xk+1

w[l]
k+11xk+1−x[l]

k+1
. (2.23)

In theory, particles x[l]
k+1 and weights could be used for the subse-

quent prediction step. In practice, degeneration of particles arises:
After some time most particles have weights close to zero. To forestall
degeneration, the predict and update step is followed by a re-sample
step. This step ensures that particles x[l]

k+1 with low weight ω[l]
k+1 are

dropped and that the probability that a particle survives is equal to its
weight.

Fig. 2.2 plots the algorithm of one iteration of the sampling-importance-
resampling (SIR) PF. Sets Wk+1 and Xk are the set of weights and
particles.

input : Xk, yk+1

output: Xk+1,Wk+1, x̂k+1

for i = 1 to L do
Draw x[l]

k+1 ∼ f (xk+1|xk);
ω̄[l]

k+1 ← f (yk+1|x
[l]
k+1);

normalization of ω̄[l]
k+1;

end
x̂k+1 computed by Equation (2.22) or (2.23);
Xk+1,Wk+1 ← resample(Xk+1,Wk+1);

Figure 2.2: One iteration of the sample-
importance-resample particle filter.

2.5 Bayesian Bounds

In the sequel, I show the derivation of the Bayesian lower bound for
the mean-squared error (MSE) of any unbiased Bayesian estimator3. 3 Weiss et al. 1988.

Vector x is the N-dimensional parameter vector to be inferred from
the perturbed measurements

y = C(x) + v , x ∼ v(x) , v ∼ v(v) , (2.24)

with a mapping C and measurement noise v. The extension to stochas-
tic processes xk is the subject of Chapter 6. With the estimation x̂(y),
the estimation error is defined by

ε , x̂(y) − x . (2.25)

Let α(y) and β(x) be real-valued functions, and ε̃ = α(y) − β(x)
a generalization of (2.25). Furthermore, g(x, y) being a measurable
function satisfying Ex

{
g(x, y)

}
= 0, the inner-product

Ex,y
{
α(y)g(x, y)

}
=

∫
α(y)

∫
g(x, y)v(x, y)dλx dλy = 0 . (2.26)

Subtracting Ex,y
{
β(x)g(x, y)

}
we obtain

Ex,y
{
ε̃g(x, y)

}
= −Ex,y

{
βxg(x, y)

}
, (2.27)
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and it follows

Ex,y
{
|ε̃||g(x, y)|

}
≥

∣∣∣Ex,y
{
β(x)g(x, y)

}∣∣∣ . (2.28)

Next, let us utilize the Hölder’s inequality,

E
{
|xy|

}
≤ (E {|x|p})1/p (E {

|y|q
})1/q (2.29)

with p, q ∈ (1,∞), 1/p + 1/q = 1, on the left side of (2.28):

(E {|ε̃|p})
1/p

(
E

{
|g(x, y)|1−1/p

}) 1
1−1/p
≥

∣∣∣Ex,y
{
β(x)g(x, y)

}∣∣∣ . (2.30)

Taking the inequality to the power of p gives

E {|ε̃|p} ≥

∣∣∣Ex,y
{
β(x)g(x, y)

}∣∣∣p(
E

{
|g(x, y)|1−1/p

})p−1 . (2.31)

For p = 2, a scalar x = x, α(y) = x̂(y), and β(x) = x, (2.31) is a lower
bound on the error covariance matrix E

{
|ε|2

}
.

Suppose that p > 2,

g(x, y) :=
N∑

n=1

angn(x, y) , (2.32)

β(x) :=
N∑

n=1

bnβn(x) =

N∑
n=1

bn[x]n , (2.33)

with scalars an and bn. Again Ex
{
gn(x, y)

}
= 0. Substituting (2.33) into

(2.31) gives

bT E
{
εεT

}
b ≥

(
bT E

{
ygT

}
a
)2

aT E
{
ggT} a

(2.34)

where E
{
ggT

}
is a non-singular matrix, a , [a1, · · · , aN]T, g , [g1, · · · , gN]T,

and b , [b1, · · · , bN]T. Since a is arbitrary, we seek for the optimal vec-

tor that maximizes the right sight of (2.34). Let us define a′ = E
{
ggT

}1/2

so that

(
bT E

{
ygT

}
a
)2

aT E
{
ggT} a

=

(
bT E

{
ygT

}
E

{
ggT

}−1/2
a′

)2

(a′)Ta′

=

(
bT E

{
ygT

}
E

{
ggT

}−1/2
E

{
ggT

}−1/2
E

{
ygT

}T
b
) (

(a′)Ta′
)

(a′)Ta′
. (2.35)

For the last equality, I have used the Cauchy - Schwarz inequality with
equality if

a′ = E
{
ggT

}−1/2
E

{
ygT

}
b (2.36)

or, respectively,

a = E
{
ggT

}−1
E

{
ygT

}
b . (2.37)
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Combining (2.34) and (2.35) gives the lower bound of the error covari-
ance, i.e.

E
{
εεT

}
< E

{
ygT

}
E

{
ggT

}−1
E

{
ygT

}T
(2.38)

The elements of all matrices must be finite. The relational operator
< indicates that the difference between left and right hand sides is
a positive semi-definite matrix. The function g(x, y) is a sensitivity
function termed score which defines specific Bayesian bounds.





3
Models

The aim of this chapter is to define a source localization problem for
which, subsequently, I develop a model. Most parts were published
in Florian Xaver et al. 2011. “The best model of a cat is an-

other cat, or better yet, the cat
itself.”
— Norbert Wiener

There are two approaches. In the first, I describe the wave field
deterministically by a partial differential equation (PDE) and turn
the resulting discrete-time model into a stochastic one. This has the
advantage that we are able to specify any type of noise and prior. In
the second, I describe the wave field probabilistically by a stochastic
partial differential equation (SPDE) and assume a particular Wiener
noise process. Then I approximate it by finite differences to get a
discrete-time model where the continuous noise induces the discrete-
time noise.

In the following, I address both approaches. They lead to the same
discrete-time model which is used in the subsequent chapters. I first
present the acoustic PDE closely followed by the acoustic SPDE and
their numerical approximations. Note that every (stochastic) PDE
system can be approximated by a discrete system, but that a discrete
system is not necessarily a (stochastic) PDE system in the limit. The
remainder is devoted to source and measurement models.

3.1 Forward Model of the Spatio-Temporal Field

A Deterministic Forward Model

In the following, let us consider an acoustic problem characterized by
the hyperbolic PDE1,2,3,4 (scalar wave equation): 1 Jensen et al. 2011.

2 Mattheij et al. 2005.
3 Zhdanov 2002.
4 Tarantola 2005.

1
c2 ∂

2
t p(r, t) − ∇2p(r, t) = s(r, t), r = [x, y]T

∈ Ω, (3.1)

Here, p(r, t) denotes pressure, ∂t is the partial derivative with respect
to time, ∇2 the Laplace operator, c the speed of sound, s(r, t) is the
source, and Ω ⊂ R2 is the 2-D region of interest.

Given a point in time and space, the light cone5 demonstrates the 5 Minkowski 1909.

temporal and spatial dependency (see Fig. 3.1). A point at the present
is influenced by the region indicated by the cone below the hyper-
surface of the present. Moreover, this point influences the region
indicated by the cone at the top. When we discretize the wave equation
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by a numerical method with sample period ∆t, we approximate the
cones by cylinders. Here, variable d denotes the diameter of influence
and the time t2 = t1 + ∆t.

y

t

x

d(t2)

Hyper
su

rfa
ce

of

Pres
en

t

d(t1)

d(t)
Future Light Cone

Past Light Cone

Figure 3.1: Light cone in two spatial di-
mensions. The cylinders shows a dis-
crete approximation of the light cone at
discrete time tk.

The solution of (3.1) at location r` and time t is given by

yt,` , p(r`, t)

=

∫
Ω

∫ t

0
G(r`, r, t − t′)s(r, t′)dt′dr , (3.2)

where G(r`, r, t) is the Green function to the problem (3.1). If Ω = R2

then

G(r`, r, t) =


2c√

c2(t−t0)2−|r`−r|2
, |r` − r| < c(t − t0) ,

0 , else ,
(3.3)

and for Ω = R, i.e. r = x,

G(r`, r, t) =

2πc
[
1 − ε

(
|x−x` |

c − (t − t0)
)]
, |x − x0| < c(t − t0) ,

0 , else .
(3.4)

Distribution ε denotes the Heaviside step.66 Morse et al. 1953, p. 842ff.

B Stochastic Forward Model

This part is devoted to the stochastic counterpart of (3.1) for the
Wiener noise process with covariance function Q. Let H , L2(Ω)
and (RN,B,F ,Px) be the probability space with a filtration Ft defined
in Section 2.1. The stochastic wave equation is given by

1
c2 ∂

2
t p(r, t) − ∇2p(r, t) = s(r, t) + s̃(r, t)∂tW(r, t) , r ∈ Ω, (3.5)

with a deterministic source s(r, t) and noise s̃(r, t)∂tW(r, t) (cf. Fig. 1.1).
Process W = {W(r, t) : r ∈ R2, t ∈ R+} is aH-valued Wiener process77 Gardner 1990 provides a general in-

troduction on processes. The spatio-
temporal extension for diffusion and
wave equations has been published in
Chow 2007; Dalang et al. 1998; Jentzen
et al. 2009, and Hausenblas 2010.

with covariance function Q(r1, r2) so that

E {W(r1, t1)} = 0 , (3.6)

Covar {W(r1, t1),W(r2, t2)} = min(t1, t2)Q(r1, r2) . (3.7)

with finite trace ∫
Ω

Q(r, r)dr < ∞ . (3.8)

In the sequel, let 0 ≤ t0 < t1 < t2 < t3 < t4. Then the variance

Var {W(r, t)} = tQ(r, r) . (3.9a)

The mean of the spatio-temporal increments is

E {W(r2, t2) −W(r1, t1)} = 0 (3.9b)

and its variance

E
{
(W(r2, t2) −W(r1, t1))2

}
= t2Q(r2, r2) + t2Q(r1, r1) − 2t1Q(r1, r2) . (3.9c)
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The covariance of the increments is

E {(W(r4, t4) −W(r3, t3)) (W(r2, t2) −W(r1, t1))}

= t2 (Q(r2, r4) −Q(r2, r3)) + t1 (Q(r1, r3) −Q(r1, r4)) (3.9d)

which equals to zero if r1 = r2 = r3 = r4.
The weak solution at location r` and time t is given by the Itō process

yt,` , p(r`, t)

=

∫
Ω

∫ t

0
G(r`, r, t − t′)s(r, t′)dt′dr

+

∫
Ω

∫ t

0
G(r`, r, t − t′)s̃(r, t′)W(dt′dr) . (3.10)

The first two lines are similar to the solution of the deterministic wave
equation. The integral in the fourth line is a stochastic Itō8 integral9. 8 The use of the Stratonovich integral

would give an additional term in (3.10).
9 Burk 2007; Kloeden et al. 2011;
Øksendal 2010.

Current research avoids the Itō formula and goes beyond this standard
case as summarized in Jentzen et al. 2009.

3.2 Numerical Solutions

Equations (3.2) and (3.10) represent the so called measurement model.
It has one important disadvantage: The integral

∫ t

0 dt has to be com-
puted with an increasing computational effort over time.

Some authors10 circumvent this problem and approximate (3.10) 10 Hlinka et al. 2012.

for one source by

yt,` ≈
s′(rs, t − (1/c)|r` − rs(t)|)

|r` − rs(t)|
+ noise , (3.11)

with source function s′ and its location rs. They use a discretized
version as measurement equation and a time-evolution model of the
source location rs as transition equation. This approach ignores wave
phenomenons.

Instead, I use the forward model describing the evolution of the
wave field in the sequel. Each time step a sensor measures the field,
only a snapshot at the sensor’s position is taken. Both, the forward
model and the measurement model form a state-space model. Until
now, I have only considered continuous-time problems. In the re-
mainder of this subsection, I summarize the finite-difference method
(FDM) to get a discrete representation.

To obtain a space-time discrete model, the differential operators
are approximated by finite differences (FDM), see Figure 3.2. We as-
sume a rectangular region in two dimensions (i.e., r = (x, y)) and use
a spatial sampling set given by the finite square latticeL = {(i∆r, j∆r) :
i = 1, . . . , I, j = 1, . . . , J}, where ∆r is the spatial sampling interval.

For simplicity, we assume identical sampling intervals in both coor-
dinates, but using different sampling intervals for each coordinate is
straightforward (Different sampling intervals influence the accuracy
of the field approximation only but not the principal features of the
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Figure 3.2: Lattice due to the FDM with
boundaries, sources, and sensors. Set L
is the sampling lattice while Ω denotes
the area.

L and Ωj

i

∆r

∆r

boundary

sensor

source

decentralized estimator). For simplicity, we assume that there are R
sensors whose locations form a subset R of the lattice L.

First, we introduce the auxiliary function q(r, t). Then we recast
(3.5) to

1
c2 ∂tq(r, t) − ∇2p(r, t) = s(r, t) + s̃(r, t)∂tW(r, t) , r ∈ Ω, (3.12a)

∂tp(r, t) = q(r, t) . (3.12b)

For the Laplace operator, we then obtain the discrete approximation

∇
2p(i∆r, j∆r, t) ≈

2
∆

∆r,∆r
x,yp(i∆r, j∆r, t)

,
1

∆2
r

(
p
(
(i−1)∆r, j∆r, t

)
+ p

(
(i+1)∆r, j∆r, t

)
+ p

(
i∆r, ( j−1)∆r, t

)
+ p

(
i∆r, ( j+1)∆r, t

)
− 4p(i∆r, j∆r, t)

)
. (3.13)

For the first-order temporal derivative we have

∂tp(i∆r, j∆r, t) ≈
1
∆
∆t

tp(i∆r, j∆r, t)

,
1
∆t

(
p(i∆r, j∆r, (k+1)∆t) − p(i∆r, j∆r, k∆t)

)
, (3.14)

similar for q. Here, k is the discrete time index, and ∆t is the temporal
sampling period. It is upper bounded by ∆r/c to ensure numerical
stability. The right choice of ∆t is beyond the scope of our paper, so
that we refer our reader to Jensen et al. 2011.

The finite difference approach is also applicable to SPDEs11. Equa-11 Jentzen et al. 2009; Kloeden et al. 2011;
McDonald 2007; Walsh 2006. tion (3.12) with (3.13) and (3.14) gives the discrete model

q[i, j, k + 1] = q[i, j, k]

+
∆tc2

∆r

(
p[i + 1, j, k] + p[i − 1, j, k]

+ p[i, j + 1, k] + p[i, j − 1, k] − 4p[i, j, k]
)

+ ∆tc2s[i, j, k] + c2s̃[i, j, k](W[i, j, k + 1] −W[i, j, k]) , (3.15a)

p[i, j, k + 1] = p[i, j, k] + ∆tq[i, j, k] . (3.15b)
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The main difference to the ordinary FDM is that we only need to
analyze the random temporal increments

∆tW(r, t) = W(r,∆tk + ∆t) −W(r,∆tk) (3.16)

in the last term of (3.15a). Due to (3.9) the mean of the temporal
increments is

E {∆tW(r, t)} = E
{
∆xW(x, y, t)

}
= E

{
∆yW(x, y, t)

}
= 0 (3.17)

and the variance is

E
{
(∆tW(r, t))2

}
= ∆tQ(r, r) , (3.18a)

E
{
(∆xW(x, y, t))2

}
= tQ((x + ∆x, y), (x + ∆x, y)) + tQ((x, y), (x, y))

− 2tQ((x + ∆x, y), (x, y)) (3.18b)

E
{
(∆yW(x, y, t))2

}
= tQ((x, y + ∆y), (x, y + ∆y)) + tQ((x, y), (x, y))

− 2tQ((x, y + ∆y), (x, y)) (3.18c)

In my thesis, I only use the FDM, which is a fast numerical approxi-
mation. Another more advanced method is the finite-element method
(FEM)12 or the promising spectral-element method (SEM)13. 12 Hausenblas 2010; Kovacs et al. 2010.

13 Komatitsch et al. 2005.

3.3 Initial and Boundary Conditions

Hereafter, let the initial conditions be

p(r, t) = 0, r ∈ Ω, t = 0, (3.19)

∂tp(r, t) = 0, r ∈ Ω, t = 0. (3.20)

I address two boundary conditions (cf. Fig. 1.1)

1
c
∂tp(r, t) − ∇p(r, t) · n = 0, r ∈ ∂Ω1, (3.21)

∂tp(r, t) = 0, r ∈ ∂Ω2, (3.22)

to model a hallway. I denote the inner-product by · and the gradient
by ∇. Notation ∂Ω1 is the transparent part of the boundary of Ω

(with normal vector n) modeling an infinite domain for the behind
uncovered area. Boundary ∂Ω2 (disjoint from ∂Ω1) models walls.
The choice14 of these boundary conditions indeed affects the resulting 14 Another boundary condition

p(r, t) = 0, r ∈ ∂Ω3 ,

models windows.

state-space model but does not change the general formulation of the
decentralized approach.

3.4 Discrete Transition Equation

We introduce the pressure vector pk = vec{Pk}with [Pk]i, j = p(i∆r, j∆r, k∆t).
The source vector sk and the pressure derivative vector qk are defined
similarly. Then the vector formulation of (3.15) is given by[

qk+1

pk+1

]
=

[
Φ11 Φ12

Φ21 I

]
︸        ︷︷        ︸

ΦFDM

[
qk

pk

]
+ ∆tc2

[
sk

0

]
+ wk . (3.23)
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The diagonal matrix Φ11 results from the boundary condition (3.21).
Its diagonal elements are

[Φ11]ii =

1−2κ for nodes on the boundary ∂Ω1,

1, else,

where κ = c/∆r. Also the diagonal matrix

[Φ21]ii =

1 for inner nodes and nodes on the boundary ∂Ω1,

0 nodes on the boundary ∂Ω3

depends on the boundary condition (3.22). Similarly, the sparse matrix
Φ12 stems from (3.1) and is given by

[Φ12]i, j =


−4κ2, i = j,

2κ2, |i − j| = 1 for nodes on ∂Ω1,

κ2, |i − j| = 1 ∨ |i − j| = I for inner nodes,

0, else.

The vector sk is the sampled source modeled in the following section.
In case of an approximated SPDE,

wk =

[
wq

k
0

]
=


W[1, 1, k + 1] −W[1, 1, k]

· · ·

W[I, J, k + 1] −W[I, J, k]
0

 , (3.24)

where wq
k models noise on top of the source and the lack of knowledge

of the field. In case of an approximated PDE, we are free to model the
noise. I generalize (3.24) to

wk ,

[
wq

k
wp

k

]
, (3.25)

with wp
k only modeling the lack of knowledge and use this in the

sequel. The lack of knowledge of the field may have different causes:

• Inhomogeneous material (e.g. air),

• Unknown boundary conditions,

• Approximation errors,

• Neglect sources

Furthermore, an additional noise term enables the use of Bayesian
performance bounds (see Sections 6.9 and 7.4).

3.5 Source and Location Models

We assume that there are S sources whose positions form a subset Tk

of the discretization lattice L, i.e.,

s[i, j, k] =

S∑
l=1

s0[k − k`] δ(i − i`, j − j`) , (3.26)
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where δ is the Delta distribution. Function s0[k] is known, but the
positions (i`, j`) and the activation/occurrence times k` are unknown.
In the remainder of my thesis I use two different models: Source Model
I gives rise to a decentralized estimator in Chapter 4 whereas Source
Model II is more convenient for the performance bound of estimators
in Chapter 7. If the number of sources S = 1, both models are similar.
Both models implicitly assume that S does not change with time.

A Source Model I

I use Model I in Chapter 4 for the algorithm of a decentralized esti-
mator. It features a distributed state n[i, j, k] and is suitable for small
S.

Here, the unknowns i`, j` and k` are captured via the integer vari-
ables n[i, j, k] that describe, for a lattice point (i, j), the time between
the source occurrence and the current time instant k, i.e., for the lth
source there is n[i`, j`, k] = max{k − k`, 0}. If there is no source at po-
sition (i, j), then n[i, j, k] = 0. Clearly, the source life span satisfies the
state transition equation

n[i, j, k + 1] =

n[i, j, k] + 1, (i, j) ∈ Tk,

0, else,

where Tk = {(i`, j`)|k ≥ kl} is the set of sources active at time k. Arrang-
ing the variables n[i, j, k] into a vector nk similarly to pk, qk, and sk, we
obtain

nk+1 = nk + 1Tk , (3.27)

where the elements of 1Tk are zero or one depending on whether a
source is active at the corresponding position and at time instant k,
i.e.,

[
1Tk

]
i+( j−1)I ,

1, (i, j) ∈ Tk,

0, else.
(3.28)

Function 1· is the vector valued indicator function. Note that the
state vector nk has at most S non-zero elements. Using the convention
s0[0] = 0, the source vector sk in (3.23) is rewritten as

sk , s0[nk], (3.29)

thereby linking the state-equation (3.27) and the forward model (3.23).
Since the source function depends on time and space, these quanti-

ties suffer from noise and are modeled in the following: The temporal
noise models the perturbation of a source’s lifespan by an additional
term in (3.27) while this is not possible for the spatial perturbation.
This is due to the fact that the position of sources are coded into the
sub-vector nk by placing its elements. From a practical perspective
this is done by a time dependent matrix Dk which displaces the ele-
ments of a vector to other positions (jitter) according to the mapping
between grid and sub-vector nk.
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Equation (3.27) becomes

nk+1 = Dk

(
nk + 1Tk + 1Tk � n′). (3.30)

Here, n′ is a random integer perturbation,� is the Hadamard (element-
wise) product, and the lth column of the displacement matrix Dk is
given by el+d(l), with the canonical column unit vector

[el]n ,

1, l = n,

0, else,

and a random integer jitter d(l) whose probability mass is concentrated
about zero.

Because of linearity, (3.30) is rewritten as

nk+1 = Dknk + Dk1Tk + Dkdiag
(
1Tk

)
n′. (3.31)

B Source Model II

I use Model II in Chapter 7 to analyze the algorithm of the estimator
introduced in Chapter 4.

Here, the positions (i`, j`) and the lifespan n` of S sources are stacked
into a discrete vector xd

k . Then

sk , s0(xd
k ) ,

[
s0[i1, j1,n1], · · · , s0[iS, jS,nS]

]T . (3.32)

Random vector xd
k evolves over time modeled by following transition

equation

xd
k+1 = xd

k + wd
k , (3.33)

similar to (3.31). The distributions of the prior xd
0 and the noise wd

k
are discrete. The noise describes the spatial and temporal jitter of the
sources.

3.6 Measurement Model

Since the evolution of the field is governed by the forward model, the
measurement model picks the pressure at the location of the sensors.
The actual measurements yk are given by noisy samples of the pres-
sure field at the sensor positions (i′l , j′l ) ∈ R. Thus the measurement
equation is

yk = C̃xk + vk = Cpk + vk , (3.34)

where vk denotes measurement noise and

C̃ =
[
0 C 0

]
, C =


eT

i′1+( j′1−1)I
...

eT
i′R+( j′R−1)I

 , (3.35)

with el denoting the lth unit vector.



4
Decentralized Particle Filtering

This chapter is devoted to the decentralized and distributed par-
ticle filter (PF) published in Florian Xaver et al. 2011. My approach
features the use of the discretized wave equation. I open with a cen-
tral augmented state-space model followed by a decentralization step.
This provides a basis for a decentralized maximum a-posteriori (MAP)
PF that uses a consensus algorithm. Finally, I present the overall al-
gorithm and some simulation results.

4.1 Augmented State-Space Model

Model I from Section 3.5 offers a spatially distributed location vector
that is convenient for the following decentralized PF. For that reason,
I first combine the state-space model (3.23) with (3.29) and (3.31) to
obtain an augmented state-space model for the extended state vector

xk =


qk

pk

nk

 ,
i.e.,

xk+1 = Φkxk + Γkuk + Gkn′k ,

yk = Cpk + vk

(4.1)

(3.34)

with

Φk =


Φ11 Φ12 0
∆tI I 0
0 0 Dk

 , Γk =


∆tc2I 0 0

0 0 0
0 0 Dk

 , (4.2)

and

Gk =


0
0

Dkdiag
(
1Tk

)
 , uk =


s0[nk]

0
1Tk

 . (4.3)

Note that non-linearity is inherent in (4.1).

4.2 Bayesian Estimation

In this section, I recall some important facts of Bayesian estimation
and particle filtering primarily introduced in Sections 2.2 and 2.4.
Furthermore, this section addresses the implementation of a PF.
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A Particle Filter

The approximate sequential computation of the posterior distribution
f (xk|y1:k) based on importance sampling using the transition proba-
bility density function (PDF) f (xk|xk−1) as importance (or, proposal)
distribution q(xk) leads to the particle filter. Here, the desired proba-
bility mass functions (PMFs) are approximated in terms of particles,
i.e., samples x[l]

k and associated weights ω[l]
k , hence

f (xk|y1:k) ≈
L∑

l=1

ω[l]
k 1xk−x[l]

k
, (4.4)

where L is the number of particles. The new samples for the subse-
quent time instant are generated using the proposal distribution11 Also known as importance function

q(xk+1) = f (xk+1|xk = x[l]
k ),

where for the generation of each new particle x[l]
k+1 the previous particle

x[l]
k is chosen randomly with probability ω[l]

k . Sampling from q(xk+1)
can be achieved by generating a noise realization w[l]

k and invoking
the state transition equation (4.1), i.e.,

x[l]
k+1 = Φ[l]

k x[l]
k + Γ[l]

k u[l]
k + G[l]

k n′[l]k . (4.5)

Vector u[l]
k can be computed from the particle x[l]

k according to (4.3).
The dependency of the matrices on k issues from spatial noise.

The unnormalized weight for each new particle is

ω̃[l]
k+1 = ω[l]

k f (yk+1|x
[l]
k+1) = ω[l]

k fv(yk+1 − C̃x[l]
k+1), (4.6)

where fv(vk) is the distribution of the measurement noise and we used
the measurement equation (3.34). For i.i.d. Gaussian measurement
noise with variance σ2

v

ω̃[l]
k+1 = ω[l]

k exp
(
−

1
2σ2

v

∥∥∥yk+1 − C̃x[l]
k+1

∥∥∥2

2

)
. (4.7)

Once all unnormalized weights have been obtained, the actual weights
are computed via the normalization ω[l]

k+1 = ω̃[l]
k+1/

∑M
l′=1 ω̃

[l′]
k+1. Parti-

cle filters suffer from a general problem termed sample degeneracy,
i.e., after some time only few particles have non-negligible weights.
This problem is circumvented using resampling2. With sampling-2 Hol et al. 2006.

importance-resampling (SIR), new samples are drawn from the distri-
bution

∑L
l=1 ω

[l]
k 1xk−x[l]

k
and all weights are identical, i.e., ω[l]

k = 1/L (cf.
Fig. 2.2.).

To obtain initial particles x[l]
0 samples of the state vector is needed.

S random realizations of source positions and activation times are
generated according to the prior distributions. Then we apply the
noise-free version of the state-space model (4.1) kstart times, i.e.,

x[l]
0 = Φkstart


0
0

n[l]
0

 +

kstart−1∑
`=0

Φkstart−1−`Γu[l]
` , (4.8)
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where n[l]
0 and u[l]

` are determined by the realizations of the source
parameters [cf. (4.3) and Subsection 3.5.A]. The random variable kstart

denotes the time duration between source occurrence and activation
of the estimator.

B Source Localization

Using (4.4), the posterior PDF of nk (i.e., the last IJ elements of xk) is
approximated as

f (nk|y1:k) ≈
L∑

l=1

ω[l]
k 1nk−n[l]

k
. (4.9)

(Note that nk contains all information about position and activation
time of the sources.) The probability P{Tk|y1:k} for sources to be active
at the coordinate set Tk at time k is obtained via marginalization:

P{Tk|y1:k} =
∑
l∈Λk

ω[l]
k , Λk =

{
l : Q

(
n[l]

k

)
= 1Tk

}
. (4.10)

Here, the function Q : RIJ
→ {0, 1} sets all entries of n[l]

k to 1 which are
unequal to 0. In the case of one source and a SIR PF with w[l]

k = 1/L,
the probability for a source at position (i, j) at time k is approximately
obtained as

Ps(i, j, k) = P{source at (i, j, k)|y1:k} =
Li, j,k

L
, (4.11)

where Li, j,k is the number of particles for which [n[l]
k ]i+( j−1)I > 0.

4.3 Decentralized Scheme

The particle filter developed in the previous section is centralized in
nature since it requires all pressure measurements, the observation
modalities described by the globally assembled likelihood function
and operates on the full state vector xk in a fusion center. Addition-
ally, the computed estimates are inherently unknown on the individ-
ual sensor nodes. In a sensor network (SN) context, such constraints
are undesirable since they imply a large communication overhead to
collect the measured data, a high computational effort due to the high-
dimensional state vector, a feedback to the sensors nodes to spread the
estimates and a central knowledge of measurement noise. Therefore,
a decentralized scheme that distributes the data collection and com-
putational costs among several clusters of sensor nodes is developed.
This is achieved by splitting the state-space model (4.1), (3.34) into
lower-dimensional sub-models (each corresponding to a cluster), cf.
Sawo et al. 2006 and Sawo et al. 2008. Due to the sparsity of the state-
space matrices Φ and Γ, these sub-models are only loosely coupled,
thus a decentralized PF that requires little communication between
the clusters can be developed.
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Figure 4.1: Vertices collected in 2 clus-
ters L(·), their boundary sets ∂L(·) and
neighbor setsN (·).

L
(1)

L
(2)

∂L(1)

N
(1)
⊂ ∂L(2)

j

i

source

A Clusters and Partitioned State-Space Model

I start with partitioning the region of interest Ω into M disjoint subre-
gions Ω(m). The sampling lattice corresponding to each subregion
is given by L(m) = L ∩ Ω(m) with its boundary nodes ∂L(m), see
Fig. 4.1. The sensors within each subregion form clusters, denoted
by R(m) = R ∩Ω(m)

⊂ L
(m). To each subregion let us associate a subset

of elements of the state vector xk given by

x(m)
k =


q(m)

k
p(m)

k
n(m)

k

 (4.12)

where
p(m)

k =
[
p(i∆r, j∆r, k∆t)

]
(i, j)∈L(m)

and the superscript (m) refers to region m.
Except for Φ12, all of the blocks in the state-space matrices Φk

and Γk are diagonal or zero [cf. (4.2)]. Thus there is no coupling
between the sub-vectors p(m)

k from different subregions and similarly
for the sub-vector q(m)

k . Coupling between state vectors from different
regions, induced by the non-diagonal structure of Φ12, is between
the sub-vectors q(m)

k in one subregion and the sub-vectors p(m)
k in the

adjacent subregions (in fact, this coupling is limited to samples at the
boundaries of the subregions). The same applies for the sub-vectors
n(m)

k due to the spatial noise. This gives

x(m)
k+1 = Φ

(m)
k x(m)

k + ξ(m)
k

+ Γ
(m)
k u(m)

k + γ(m)
k

+ G(m)
k n′(m)

k ,

y(m)
k = C(m)p(m)

k + v(m)
k .

(4.13)

This coupling Equation (4.13) is only possible for the time-independent
part of these matrices. However for uncorrelated noise between clus-
ters, the time-dependent part, i.e. Dk, is calculated separately accord-
ing to Subsection 3.5.A on every cluster at each time step, see below.

The coupling terms between neighboring subregions are given by

ξ(m)
k =

∑
m′∈N (m)

T(m,m′)
k x(m′)

k , (4.14)
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with

T(m,m′)
k =


0 Φ

(m,m′)
12 0

0 0 0
0 0 D(m,m′)

k

, (4.15)

and, analogously,

γ(m)
k =

∑
m′∈N (m)

R(m,m′)
k u(m′)

k , (4.16)

with

R(m,m′)
k =


0 0 0
0 0 0
0 0 D(m,m′)

k

 . (4.17)

Here, N (m) is the set of subregions adjacent to Ω(m) and Φ
(m,m′)
12 is ob-

tained from Φ12 by extracting the rows and columns corresponding to
L

(m) andL(m′). The off-diagonals of Φ12 are extremely sparsely popu-
lated; in fact, (4.14) contains only few non-zero terms corresponding
to adjacent pressure samples and the change of sources from one to
another cluster. D(m,m′)

k is generated from every cluster m′ such that
the composition of all sub-matrices D(m)

k and D(m,m′)
k equals Dk. From

a practical perspective, elements of D(m)
k are calculated separately on

every cluster by means of spatial noise with additional triggering a
message to neighbor clusters whenever a source hop (migration) from
one cluster to another is detected [this takes over the purpose of D(m,m′)

k

and supersedes (4.16)]. Furthermore, the coupling term ξ(m)
k means

that pressure samples at subregion boundaries are exchanged between
neighboring clusters in order to compute the finite differences.

Boundary conditions do not play a role in the decomposition step
as long as (i) they do not depend on adjacent neighbors and (ii) their
numerical solution fits into (3.23). In the first situation, an additional
term Φ

(m,m′)
11 or Φ

(m,m′)
21 arises in matrix T(m,m′)

k .

B Decentralized Particle Filter

For the decentralized PF, we need to distribute the sampling (particle
generation) step and the weight computation step. Based on the local
particles and weights, each cluster can then compute posterior source
probabilities in a similar manner as in Subsection 4.3.B.

Sub-particles x[l,m]
k within cluster R(m) are generated according to

(4.13), cf. also (4.5), Particle Generation

x[l,m]
k+1 = Φ

(m)
k x[l,m]

k + ξ[l,m]
k

+ Γ
(m)
k u[l,m]

k + γ[l,m]
k

+ G[l,m]
k n′[l,m]

k .

(4.18)

Here, x[l,m]
k is a randomly chosen previous particle and n′[l,m]

k is a (local)
noise vector realization. Furthermore, ξ[l,m]

k =
∑

m′∈N (m) T(m,m′)
k x[l,m′]

k and



26

ξ[l,m]
k =

∑
m′∈N (m) R(m,m′)

k u[l,m′]
k , respectively. In order to compute the latter,

only elements of x[l,m′]
k that correspond to pressure samples from the

boundaries of adjacent subregions are exchanged and in the event of
source hopping from one to another cluster a message is sent.

Assuming independent measurement noise in the individual sub-
regions, i.e., fv(vk) =

∏M
m=1 fv(m)

(
v(m)

k

)
, the weight update (4.6) is com-

puted in each cluster asWeights

ω̃[l]
k+1 = ω[l]

k

M∏
m=1

ω̄[l,m]
k , (4.19)

where the partial weight

ω̄[l,m]
k = fv(m) (y(m)

k+1 − C̃(m)x[l,m]
k+1 )

is computed within each cluster and then are shared among all clusters
to obtain the final unnormalized weight. Farahmand et al. 2010 and
Oreshkin et al. 2010 are treating the issue of computation of the global
factorizable likelihood by means of distributed protocols. If these
take longer than the time-span between two estimator iterations, the
particle filter converts to a particle predictor.

A remaining problem with the decentralized PF is that the sam-
pling (particle generation) step (4.18) requires that the clusters pick
local particles x[l,m]

k , m = 1, . . . ,M, that correspond to the same global
particle x[l]

k . This choice is made at random according to the weights
ω[l]

k . The same problem occurs for the resampling procedure. Since(Re)sampling

a central random number generator whose output is distributed to
each cluster incurs a large communication overhead, we propose to
use identical pseudo-number generators in all clusters and initialize
those with the same seed, thereby ensuring that all clusters perform
the same (re)sampling.3,43 Farahmand et al. 2010.

4 Coates 2004.

4.4 Decentralized Source Localization

The PF yields the posterior PDF of the sources’ position and lifespan.
To obtain the current MAP position estimates

(îk, ĵk) = arg max
(i, j)∈L

Ps(i, j, k), (4.20)

the maximum and the maximizing state of the posterior PDF Ps(i, j, k)
in (4.11) must be found. In the decentralized scheme, each cluster
disposes only of the local posterior PDF for the state sub-vector x(m)

k .
To find the global maximizing state, each cluster determines the local
maximizing state and afterwards the clusters use a distributed con-
sensus protocol to determine the global maximum. For simplicity, this
procedure is here developed for one source.

For the centralized PF, the posterior probability for a source to be
active at time k at position (i, j) is given by (4.11). In the decentralized
case, each cluster determines a similar probability according to

P(m)
s (i, j, k) =


L(m)

i, j,k

L , (i, j) ∈ L(m),

0, else,
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where L(m)
i, j,k denotes the number of particles x[l,m]

k for which [n[l,m]
k ]i+( j−1)I >

0. Since the probabilities P(m)
s (i, j, k) have disjoint support, the maxi-

mization underlying the MAP estimates (4.20) is

Pk,max = max
(i, j)∈L

Ps(i, j, k) = max
m

P(m)
k,max

with

P(m)
k,max = max

(i, j)∈L(m)
P(m)

s (i, j, k). (4.21)

While the local maxima with regard toL(m) can be determined within
each cluster, the global maximization with regard to m requires com-
munication between the clusters. Since sharing the local maxima
among all clusters via broadcast transmissions requires a large coor-
dinated transmission, we compute the global maximum via the max-
imum consensus (MC) algorithm5. For the MC algorithm we assume 5 Bauso et al. 2006.

that only neighboring clusters communicate with each other. Thus
each cluster sends to the adjacent clusters a message which contains
the local maximum and the position for which the local maximum is
achieved. In the subsequent steps, each cluster compare the incoming
“maximum” messages with their current estimate of the global posi-
tion and retain the most likely and its associated position. In the next
iteration this message will be sent to the neighboring clusters.

Denote the current estimate of the maximum Pk,max for cluster m by
P̂(m)

k,max and let (î(m)
k , ĵ(m)

k ) be the associated position estimate (initially,

P̂(m)
k,max = P(m)

k,max). In our MC algorithm, termed argumentum-maximi
consensus (AMC), at time instant k each cluster performs the following
steps:

1. Send a message containing the estimates P̂(m)
k,max and (î(m)

k , ĵ(m)
k ) to the

neighbor clustersN (m).

2. Receive corresponding messages from the neighbor cluster; if a
neighbor m′ ∈ N (m) remains silent, then P̂(m′)

k,max = P̂(m′)
k−1,max.

3. Update the maximum probability and position as

P̂(m)
k+1,max = P̂(m0)

k,max, (î(m)
k+1, ĵ(m)

k+1) = (î(m0)
k , ĵ(m0)

k ),

with m0 = arg maxm′∈{m}∩N (m) P(m′)
k,max.

4. If P̂(m)
k+1,max , P̂(m)

k,max goto 1), otherwise goto 2).

When the maximum is fixed, all clusters converges to the true maxi-
mum after some iterations (depending on the diameter of the cluster
communication graph). Here, the position of the maximum moves as
the distributed PF evolves and the AMC will then allow the clusters
to jointly track the maximum.
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4.5 Algorithm Summary

A Dimensions and Trade-offs

Since we are estimating the two-dimensional position and activation
time for each of the S sources, the number of unknowns equals 3S. This
is relevant for the choice of the number of particles, cf. Leeuwen 2009.
For the calculation of the forward model (state transition), however,
the dimension of the state vector xk is relevant which equals 3IJ. In
the decentralized case, the computational complexity of the forward
model is distributed across all clusters.

We now face the behavior of a high number of clusters. Generally,
the volume of a polytope (cluster) L(m) with edge lengths ei(m) in a
d-dimensional lattice L ⊂ Zd is given by |L(m)

| =
∏d

i=1 e(m)
i while its

(d − 1)-dimensional surface equals |∂L(m)
| = 2

∑d
j=1 ∂ j

∏d
i=1 e(m)

i .
Generally, the dimension per cluster of the equation system to be

calculated is 3|L(m)
| which, in comparison, equals in the centralized

case 3|L|.
In our 2-D problem, let the lattice L be partitioned into M = MiMj

clusters of same size, Mi clusters in i-direction and Mj clusters in j-
direction. Then e1 = I/Mi and e2 = J/Mj. Furthermore, the volume
|L

(m)
| = IJ/MiMj. When M → ∞ then the dimension of the equa-

tion system, which specifies the amount of computation, becomes66 Knuth 1976.

in O(1/M). Thus the computational effort per cluster decreases when
the number of clusters increases. On the other hand, an increasing
number of clusters leads to a larger number of boundaries and hence
to a larger communication overhead (i.e., message exchange between
adjacent clusters).

Figure 4.2: Global initialization generate priors X0 ; // Equation (4.8)
decompose X0 to {X(m)

0 } ; // Equation (4.12)
choose seed (Section B);
for m = 1 to M parallel do
DD-SIR-PF(X

(m)
0 , seed) of cluster m;

end

B Communication Between Clusters

The variables which are broadcast by cluster m are summarized by
the set {

W̄
(m)
k ,P(m)

k , µ(i,m)
k , P̂(m)

k,max, T̂
(m)
k

}
. (4.22)

The first subset W̄(m)
k =

{
ω̄[1,m]

k , · · · , ω̄[L,m]
k

}
collects the local PF weights

while P(m)
k =

{
[p[1,m]

k ]i+( j−1)I | (i, j) ∈ ∂L(m)
}L

l=1
collects all pressure sub-

state particles on the boundary. The third, µ(i,m)
k , signifies a message

about sources which migrate across boundaries from one cluster to
another. Every message includes the new location and the current
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input : X(m)
0 ,seed

k← 1;
wait while no signal sensed and no wake-up call;
send wake-up call to other clusters;
while estimating do

observe: y(m)
k{

W̄
(m)
k ,X(m)

k

}
← SI(X

(m)
k−1, y

(m)
k );

transmit
{
W̄

(m)
k ,P(m)

k , P̂(m)
k−1,max, T̂

(m)
k−1

}
;

wait until reception from other clusters;{
Wk,X

(m)
k

}
← modify(W̄1

k , · · · ,W̄
M
k ,X

(m)
k ,P(N (m))

k )

calculate
{
P̂(m)

k,max, T̂
(m)
k

}
; // Equation (4.21)

X
(m)
k ← resampling(Wk, X(m)

k , seed) ;
W

(m)
k ← {1/L}L`=1;

k← k + 1;
end

Figure 4.3: DD-SIR-PF(): Decentralized
distributed SIR particle filter of cluster
m.

time duration since the occurrence of the sources. The last two terms
stem from the AMC algorithm where T̂ (m)

k = (î(m)
k , ĵ(m)

k ).
Note that the cardinality of (4.22) which is a measure of the amount

of transmission per cluster is given by the sum

L (W̄(m)
k to all clusters)

+|∂L(m)
|L (P(m)

k to adjacent clusters)

+2M (P̂(m)
k,max and T̂ (m)

k to adjacent clusters)

Here, the µ(i,m)
k messages are disregarded. The amount of transmission

in the decentralized case to adjacent neighbors for Mi →∞ and Mj →

∞ is inO(1/Mi) andO(1/Mj), respectively. The transmission of weights
is in O(M) for M → ∞ while the overall communication load is in
O(M2).

Note, that there is no approximation compared to the centralized
method and thus, neither source coding nor approximations reducing
the weight communication have been considered. For the communi-
cation of the weights the graph needs to be either fully connected or
the clusters needs to act as relay. A summary is drawn in Table 4.1.

neighbor not neighbor

pk boundary elements
nk source migration
ω[l,m]

k all (all if not relaying/forwarding)
T̂

(m)
k all

P(m)
k,max all

Table 4.1: Necessary message exchange.
Source migration denotes the informa-
tion that a source changes from one clus-
ter to another.
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C Algorithm

The algorithm of the decentralized and distributed SIR PF together
with the AMC is drawn in Figs. 4.2 to 4.5. Compare it with that one in
Arulampalam et al. 2002 and note that the for-loop can be parallelized.

The joint setup of the computational nodes is shown in Fig. 4.2
which consists of the calculation of the priors and the synchronization
of the pseudo-random generator. Subsequently, each individual PF
is launched (see Fig. 4.3). Two important sub-routines are plotted in
their own tableaus:

• Fig. 4.4 calculates particles and sends messages when a source
jumps over to another cluster.

• Fig. 4.5 adds states from the neighbor clusters according to (4.13)
and calculates the overall weight (4.19).

Figure 4.4: SI(): sample importance
part

input : X(m)
k−1, y

(m)
k

output:
{
W̄

(m)
k ,X(m)

k

}
for i = 1 to L do

Draw x[l,m]
k ∼ f (x(m)

k |x
(m)
k−1);

if source(s) cross(es) boundary then
send message to adjacent cluster

end
ω̄[l,m]

k ← f (y(m)
k |x

[l,m]
k );

end

Figure 4.5: modify(): contribution of
the neighbors. T(m) is a mapping from
neighbors’ pressure sub-states to the
own sub-states with T(m)

P
(N (m))

k assem-
bles to {ξ[l,m]

k }
L
l=1.

input :
{
W̄

1
k , · · · ,W̄

M
k ,X

(m)
k ,P(N (m))

k

}
output:

{
Wk,X

(m)
k

}
X

(m)
k ← X

(m)
k + T(m)

P
(N (m))
k ; // Equation (4.15)

Ŵk ← W̄
1
k · · · W̄

M
k ; // Equation (4.19)

normalize Ŵk;

4.6 Simulations

In this section we present simulations illustrating the performance
of the proposed algorithms 4.2 to 4.5. The configuration used in the
simulations is shown in Fig. 4.6 with parameters in Table 4.2 (N

{
µ, σ2

}
denotes the Gaussian distribution with mean µ and variance σ2). In
particular, we used M = 5 subregions Ω(m) corresponding to 5 clusters
each with 2 sensors. We considered a single source located in Ω(3) at
the lattice point (i0, j0) = (25, 25); it is modeled by choosing the source
function as s0[n] = s0(n∆t) where s0(t) is a time-shifted Ricker wavelet.
A Ricker wavelet7 is defined by the negative second derivative of a7 Ryan 1994.

Gaussian function such that

ricker(t) =
(
1 − 2π2ν2t2

)
exp

(
− π2ν2t2

)
. (4.23)
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Here, ν is approximately the peak frequency. A Ricker wavelet shifted
by 16.7 ms with ν = 60 Hz is used, i.e. s0(t) = ricker(t − 16.7 ms),
see Fig. 4.7. The acoustic pressure field is simulated using the finite-
difference method (FDM) introduced in Section 3.2. A snapshot of the
field at time k = 160 is shown in Fig. 4.8.

10

10

source
sensor of cluster 1

sensor of cluster 2sensor of cluster 2sensor of cluster 2

sensor of cluster 3

sensor of cluster 4sensor of clustersensor of cluster

sensor of cluster 5sensor of clustersensor of cluster

j

i
boundary

Figure 4.6: Simulation setup comprising
sensors, a single source, and SN cluster
structure.
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Figure 4.7: Ricker wavelet shifted by
16.7 ms with ν = 60 Hz (a) in the time-
domain and (b) its Fourier transform.

The parameters used in the decentralized PF are summarized in
Table 4.3 (Unif {a, b} represents a discrete uniform PDF with support
[a, b]). For the fixed source position, we used a discrete uniform
distribution on the 50 × 50 lattice. The spatio-temporal noise and
the observation noise are drawn from a Gaussian distribution. The PF
is initialized at time k = 0 and the source is assumed to become active
at time instant k < 0. The maximum value of the random variable kstart

is a prior and is proportional to the maximal possible time duration
between source arise and first detection [cf. (4.8)]. Larger values of
kstart necessitate a larger number of particles to cover the time interval
[−kstart, 0] and thus to achieve the same approximation accuracy.

A Estimation of Posterior PDF

For the centralized PF, Fig. 4.9a shows an example of the posterior
PDF Ps(i, j, k) for the source position obtained with the centralized
particle filter at time instant k = 160 [cf. (4.11)]. For comparison,
Fig. 4.9b shows the result obtained with the decentralized PF, i.e., the
composition

∑5
m=1 P(m)

s (i, j, k) of the local posterior PDF obtained by
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Table 4.2: Hallway simulation: settings
of the model.

FDM ∆t 371 ns
∆r 12.24 cm
I × J 50 × 50

speed c 340 m/s
noise w i.i.d. N

{
0, 100 pPa/s2

}
v i.i.d. N

{
0, 100 pPa

}
source s0(t) ricker(t − 16.7 ms)

(i0, j0) (25, 25)
sensors setup Fig. 4.6

Table 4.3: Hallway simulation: settings
of the PF.

particles L 20000
space/time jitter x, y N

{
0,∆2

r/82
}

t N
{
0,∆2

t /8
2
}

v i.i.d. N {0, 5 mPa}
priors kstart Unif {0, 41345}

i, j Unif {0, 50}

Figure 4.8: Pressure field from finite
difference modeling after 41750 time
steps (corresponding to estimation time
k=160).
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Figure 4.9: Posterior source position
PDF Ps(i, j, k) at time k = 160 obtained
with (a) centralized and (b) decentral-
ized PF.
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each cluster. It is seen that the centralized and the decentralized PF
obtain similar results and both yield a posterior PDF which is well-
concentrated about the true position (i0, j0) = (25, 25) of the source.

Figs. 4.13a and 4.13b show the MAP and MMSE of the source’s i co-
ordinate and j coordinate, respectively. The MAP estimates (îk, ĵk) are
given by (4.20); the minimum mean-squared error (MMSE) estimates
(îMMSE

k , ĵsMMSE
k ) are obtained as conditional means of the source coordi-

nates obtained with the conditional posterior PMF Ps(i, j, k) for given k.
Since the prior of the source location is a discrete uniform distribution,
MMSE estimates at k = 0 equal (îMMSE

k , ĵsMMSE
k ) = (I/2, J/2) = (25, 25).

Hence, in this specific case the MMSE estimates outperform the MAP
estimates for small k. After a certain number of PF iterations (around
k > 6), however, the MAP estimates match the true source position
better than the MMSE estimates. The variance of Ps(i, j, k) for any
given k (which can be interpreted as MMSE) is shown in Fig. 4.10 and
corroborates that for small-to-medium k the i coordinate estimate is
more reliable; this can be attributed to the specific sensor arrange-
ments which favors better i-resolution (cf. Fig. 4.6).
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Figure 4.10: Variance of the posterior
distribution Ps(i, j, k) with respect to i
and j coordinates.

B Decentralized MAP Source Localization

This subsection illustrates the decentralized source localization using
the AMC algorithm proposed in Section 4.4 (simulation setup un-
changed). Recall that with AMC, each cluster has estimates P̂(m)

k,max of

the MAP probability and (î(m)
k , ĵ(m)

k ) of the associated position. Fig. 4.11
shows the local MAP probabilities P(m)

k,max [cf. (4.21)] for all five clusters;
clearly, only the third cluster builds up a distinguished maximum over
time, which indicates that the source is located within Ω(3).

All clusters track the global MAP probability, Figs. 4.11 and 4.12,
and eventually agree on the source position provided by cluster 3
whose behavior over time resembles the global estimates using the
centralized PF (cf. Figs. 4.13).

After about 6 iterations, the PF achieves a localization accuracy
on the order of the lattice spacing ∆r. These estimates could be fur-
ther improved (with higher computational complexity) by refining
the discretization lattice and increasing the number of particles.
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Figure 4.11: Local (a) MAP probabilities
P(m)

k,max in contrast to (b) MAP probability

estimates P̂(m)
k,max obtained by the individ-

ual clusters using the AMC algorithm.
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Figure 4.12: Source coordinate estimates
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k of the individual clus-

ters.
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4.7 Conclusions of this Chapter

I proposed a scheme for the localization of multiple acoustic sources
in a SN. The method uses an augmented non-linear non-Gaussian
state-space model for the acoustic field and on a PF for sequential
Bayesian estimation of source positions. This state-space representa-
tion for the wave equation gives additional prior physical knowledge
and incorporates perturbations and distortion like echoes, thereby re-
sulting in improved estimation accuracy. In addition to the source
positions, my PF implicitly provides an estimate of the acoustic field
itself. I further developed a decentralized PF in which the computa-
tional complexity is distributed over several clusters of the SN. The
decentralized PF exploits the sparsity of the matrices involved in the
state-space model. In fact, the loose coupling between the components
of the state vector allows separate and parallel computation of equa-
tion sub-systems of much smaller dimension in each cluster heads.
To determine the global MAP estimate of the position of a source, I
proposed an argumentum-maximi-consensus algorithm in which the
clusters exchange their best MAP probability and source position.
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Figure 4.13: MAP and MMSE estimate of
the i and j coordinate of the source (note
that the lines of the centralized and de-
centralized MMSE estimations are close
together).





5
Communication

This chapter was previously published in F. Xaver et al. 2012b. I
address the communication overhead of particles of the decentralized
distributed particle filter (DDPF) introduced in Chapter 4. Again, I
use the illustrative example of a 2D acoustic field in a hallway along
with an estimator for the position of an acoustic source (see Fig. 1.1
on p. 2) but use Source Model II from Section 3.5.

In the sequel, I propose to use differential encoding based on a
Kalman predictor that exploits the spatio-temporal field correlation
via the underlying state space model. The correlation stems from the
wave equation and is illustrated by the light cone in Fig. 3.1 of Sec-
tion 3.1. With differential encoding1, only the difference between the 1 For details on linear prediction

of discrete-time vector processes see
Vaidyanathan 2008, and Anderson et al.
1979.

predicted signal and the measurement is transmitted and the receiver
reconstructs the original signal using the prediction error. Ideally,
the prediction error is a white innovation signal and hence has a flat
power spectrum.

Due to the discretized partial differential equation (PDE), the global
field is modeled by an autoregressive process of order one and thus
is predictable. However, using the state space model to this end is
not trivial in the context of decentralized estimation. In this case,
the hyperbolic structure of the PDE becomes relevant and the order
increases with the iteration of the sequential estimator. The white
innovations/prediction error signal has a smaller dynamic range and
hence can be sent using less transmit power. This is particularly de-
sirable in battery-operated wireless sensor networks (SNs). However,
the actual source encoding (i.e., quantization and bit allocation) of the
innovations signal is beyond the scope of my thesis.

5.1 Problem Definition

In the remainder of this chapter, I use the deterministic forward model
of Chapter 3. The two-dimensional acoustic field in a hallway is
described by following scalar wave equation2, i.e. 2 Jensen et al. 2011.

1
c2 ∂

2
t p(r, t) − ∇2p(r, t) = s(r, t), r ∈ Ω. (3.1)

This is a linear hyperbolic second-order PDE, where p(r, t) denotes
pressure dependent on location r and time t, ∂t is the partial derivative
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with respect to time, ∇2 is the Laplace operator, c is the sound speed,
s(r, t) is a (random) source, and Ω ⊂ R2 is the 2-dimensional region of
interest. For the boundary and initial conditions I refer to Section 5.3.

I define q(r, t) = ∂tp(r, t) and approximate the wave equation via a
finite-difference method (FDM)3. This results in the state transition3 Jensen et al. 2011.

model [cf. (3.23)][
qk+1

pk+1

]
=

[
Φ11 Φ12

∆tI I

]
︸        ︷︷        ︸

Φk

[
qk

pk

]
+ ∆t c2

[
sk

0

]
, (5.1)

where the pressure vector is defined as pk = vec{Pk} with [Pk]i j =

p(i∆r, j∆r, k∆t); i = 0, · · · , I, j = 0, · · · , J; k ∈ N0 and similar for qk and
source sk. The set of tuples (i, j), termed nodes, is denoted by L =

{(i, j) ∈ N2 : (i∆r, j∆r) ∈ Ω} (cf. Figure 5.1a).
The model (5.1) consists of two parts:

• The matrix Φk maps the state [qT
k pT

k ]T deterministically to its predic-
tion [qT

k+1|k pT
k+1|k]T in the following time step. (Note that an optimal

predictor additionally considers the redundancy of the source.)

• The second term on the right-hand side involving sk perturbs the
state vectors, is assumed to be random, and thus represents the
innovations process.

We now partition the nodesL into two4 disjoint clustersL(1),L(2)
⊂4 Our discussion extends straightfor-

wardly to the case of more than two clus-
ters.

L. The symbol ·̄ will be used to denote the elements of a vector that
correspond to nodes along the boundary between both the clusters
and ·̌ signifies that second-order boundary nodes, i.e., neighbors of
boundary nodes, are also included in the respective sub-vector. Fig-
ure 5.1b specifies the various neighborhood sets used in what follows.

Due to the sparse structure of the global matrix Φ12 (nodes depend
only on their neighbors), only the elements of p̄k need to be exchanged
between the clusters for the decentralized estimation of the field (cf.
Chapter 4). For this state sub-vector, (5.1) implies

p̄k+1 = p̄k + ∆tΦ̄11q̄k−1 + ∆tΦ̌12p̌k−1 (5.2)

where the source term cancels due to the assumption of sources far
away from the boundary. Here sk does not denote the source of
innovation as in the central case, but rather the unknown pressure in
the neighborhood Ň \ N̄ . Note that no approximation is performed.

The main idea of this paper is to signal only the innovations vector

ιk+1 = p̄k+1 − p̄k+1|k (5.3)

rather than the actual state vector p̄k+1. This is advantageous since ιk+1

can be better compressed because it is white and has smaller power.
The receiving cluster reverts the differential encoding by adding the
received innovation vector to the local prediction, i.e.

p̄k+1 = ιk+1 + p̄k+1|k . (5.4)
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Figure 5.1: The discretized area L with
disjoint boundary ∂L =

⋃4
`=1 ∂L` is

shown in (a). The nodes correspond to
sample points of the field. In (b) the
area is decomposed into two clusters
corresponding to L(1) and L(2). Various
neighbor sets are defined in this sketch.

5.2 Prediction by the Kalman Filter

Linear prediction theory exploits the statistical structure of the source
which in our context corresponds to the stochastic transition model
(5.1). But due to (5.2) it does not seem feasible without high prediction
order and with the unknown second order neighbor states5. Instead 5 Anderson et al. 1979.

we use the computationally efficient Kalman filter (KF).
The KF6 falls within the scope of Bayesian estimators and is a com- 6 Anderson et al. 1979; Kalman 1960; Kay

1993; Simon 2006; Yardim et al. 2011.bination of a sequential linear minimum mean square error estimator
combined with a state space model, i.e. a state transition model of
random states as in (5.1) with additive noise and a observation model,
respectively. It estimates the states through observations yk and is
optimum if and only if the priors and noise are Gaussian.

A Model of the Decentralized System

We now propose the use of the KF to predict the states p̄k+1. For this,
let the states of the KF be [q̄T

k p̌T
k ]T with the associated transition model

[
q̄k+1

p̌k+1

]
=

[
Φ̄11 Φ̌12

∆tĪ Ǐ

] [
q̄k

p̌k

]
+ Gwk , (5.5a)

where wk is the driving noise. The matrix G : R|Ň\N̄ | → R
|Ň | ensures

that the driving noise is only added to pressure states in the second-
order cluster boundary Ň \N̄ . These states are modeled as unknowns
and are estimated by the KF in both clusters in the same way. We note
that the linear approach underlying the KF is optimal only if wk is
Gaussian.

The aim of matrix G combined with an observation model is to
maintain correct state sub-vectors p̄k. This in turn improves the esti-
mates of their neighbors Ň \ N̄ . With this in mind, let the observation
model of cluster m be

y(m)
k+1 = p̄k+1

(
p̄(m)

k+1, ε
(m)
k+1, p̄

(m)
k+1|k

)
. (5.5b)

where cluster m is the neighbor of cluster m. Here p̄k+1(·) is viewed as
a vector-valued linear function depending on the own pressure states
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p̄(m)
k+1 at the boundary and the sum ε(m)

k+1 + p̄(m)
k+1|k (received signal plus

prediction). Its sole purpose is to shift the elements of the vectors
appropriately. As a direct consequence of the measurement model,
the correction step of the KF adjusts p̄k+1|k to the exact values.

B Decentralized Predictive Encoding Algorithm

In the following, the subscript k|k emphasizes that estimates at time
k are based on observations up to time k. The complete state vector
[qT

1 pT
1 ]T and p0 with q1 = q1(p0) are assumed to be known as prior

for the KF and the covariance matrices are estimated via the empirical
covariance function. The latter allows the computation of the Kalman
gain matrix Kk for every iteration k > 1.

With our method, cluster m performs the following steps starting
at time k = 1 (decompositions and compositions of vectors are not
stated explicitly):

1. Compute the prediction[
q̄k+1|k

p̌k+1|k

]
=

[
Φ̄11 Φ̌12

∆tĪ Ǐ

] [
q̄k|k

p̌k|k

]
. (5.6a)

2. Determine the innovation vector

ε(m)
k+1 = p̄(m)

k+1 − p̄(m)
k+1|k. (5.6b)

3. Send ε(m)
k+1 to cluster m and receive ε(m)

k+1 from cluster m.

4. Correct the prediction via[
q̄k+1|k+1

p̌k+1|k+1

]
=

[
q̄k+1|k

p̌k+1|k

]
+ Kkε

(m)
k+1. (5.6c)

5. Use p̄k+1 = p̄k+1|k+1 for the decentralized estimation of the field
[p(m)T

k+2 p(m)T
k+2 ]T.

6. Increase k by one and go to step 1.

The predictor (5.6) scales straightforwardly with the number Ň of
the neighboring clusters. A larger number of neighborhoods entails a
larger number of unknown pressure states which have to be estimated
in each time step. This increases the dimension of the state vector
[q̄T

k p̌T
k ]T in (5.5a) but still exploits the structure of the global Φ12.

5.3 Numerical Results

The level of redundancy in a random signal is specified by the auto-
correlation and, equivalently, the power spectral density (PSD). For a
white signal, the former equals the delta function while the latter is a
constant. Beyond that, several methods are used to show the flatness
of a PSD and to define a distance between two of them. We recall
briefly those definitions.

Let S(θ) denote the PSD of a discrete time process defined on
[−π, π). In the sequel we use the notion of the distance between
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two PSDs S1 and S2 from Georgiou 2007 (see Appendix C). There,
Georgiou’s distance %(S1,S2) is defined by

ln
((

1
2π

∫ π

−π

S1(θ)
S2(θ)

dθ
) (

1
2π

∫ π

−π

S2(θ)
S1(θ)

dθ
))
. (5.7a)

It induces a metric tensor in a manifold P of PSDs (up to scaling
factors). Integration of the metric tensor over a geodesic line between
two PSDs gives the path length between them in the manifold,

d(S1,S2) = Var {ln S1(θ) − ln S2(θ)} . (5.7b)

To measure the whiteness of a signal we choose one of the PSDs to
be constant. In addition, we consider a traditional metric used to
measure the flatness of a PSD7, 7 Vaidyanathan 2008.

fl(S1) =
e

1
2π

∫ π
−π

ln S1(θ)dθ

1
2π

∫ π
−π

S1(θ)dθ
. (5.8)

As illustrative example, a 2-D rectangular hallway from Chapter
4 is simulated using the FDM from above. This hallway and thus
the nodes are portioned into two clusters in common with Fig. 5.1.
The source sk is modeled by a Ricker wavelet with additive white
Gaussian noise (see Section 4.6). All parameter values are summarized
in Tab.5.1.

In this example, 104 time steps were simulated with the goal of com-
paring the statistics of the original signal p̄(1)

k and the whitened signal
ε(1)

k , k = 1, . . . , 104. Figure 5.2 presents the temporal and spatial em-
pirical autocorrelation function (ACF) averaged over space and time,
respectively for the actual state vector and the innovations vector (in
the temporal case, the source ACF is also shown). The (small) residual
noise in Figure 5.2a corresponds to estimation errors of the KF and is
neglected in the following. Clearly, our KF-based predictor succeeds
in decorrelating the state vector both temporally and spatially. At
time lag k = ±1 there are two minima that stem from the structure of
the state transition model (5.1).

The distance and flatness metrics introduced above are applied
to the original state vector and to the innovations vector, averaged
over all boundary nodes in cluster 1. The results are summarized
in Figure 5.3. In particular, Si is the discrete-time Fourier transform
of a modified innovation ACF where the amplitudes between ±0.1
are truncated. Hence the high-frequency component in Fig. 5.2a are
removed. S0 = constant denotes the reference PSD of a perfect white
signal while Sp is the PSD of the actual state vector.

Furthermore, the improvement achieved by our approach strongly
impacts the error resulting from the subsequent quantization. Con-
sider an 8-bit quantizer whose dynamic range is matched to minimum
and maximum of the corresponding signals. In the example consid-
ered, the quantization mean-squared error (MSE) incurred with the
innovations approach is −100 dB. In comparison, the MSE resulting
from quantization of the original state equals −13.5 dB.
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Table 5.1: Settings of the simulated hall-
way

quantity notation value

rectangular area I × J 50 × 50
∆t 371 ns
∆r 12.24 cm

rectangular area I × J 50 × 50
acoustic speed c 340 m/s
source shape s0(t) ricker(t − 16.7 ms)
source location (i0, j0) (25, 25)
Gaussian noise σs 0.001/(∆tc2)
8 sensors {(i, j) : i = 1, · · · , 4; j = 1, 4}
cluster boundary betw. i = 10 and 11

rigid walls r ∈ ∂Lw ∂tp(r, t) = 0
open doors r ∈ ∂Ld

1
c∂tp(r, t) − ∇p(r, t) · n = 0

initial conditions ∂tp(r, 0) = 0, p(r, 0) = 0
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Figure 5.2: Empirical ACFs normalized
to unit power. The temporal ACF (a) is
averaged over nodes ∂L(1). The spatial
ACF (b) is a function of nodes ∂L(1) and
is averaged over time.

Figure 5.3: Geodesic distance d(·, ·) in a
manifold P of PSDs (left) vs. flatness
(right) related to the empirical ACF over
time (cf. with Fig. 5.2a). S0 = constant is
the PSD of a perfect white signal, Sp is
the PSD of the pressure states and Si is
the modified PSD of the innovation. 1.817
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5.4 Conclusions of this Chapter

Exploiting the spatio-temporal field dependencies of the field reduces
the communication overhead in a clustered sensor network. The dif-
ferential field-state-vector encoding builds on a Kalman prediction
step governing the field’s spatio-temporal evolution. Only the inno-
vations/prediction error vector needs to be exchanged among clusters.
The resulting decentralized sequential algorithm uses the empirical
covariances and Kalman gain matrix Kk which are pre-computed and
stored in a look-up table. As verified for the example of an acoustic
field, our method succeeds in decorrelating the relevant state sub-
vector. The approach reduces transmit power and quantization errors
in clustered sensor networks for physics-based field estimation.





6
The Weiss-Weinstein Lower Bound

Although my proposed estimator of Chapter 4 utilizes a particle fil-
ter, this Monte-Carlo approach does not obtain any analytic result of
the Bayesian estimation problem. Furthermore, the state-space model
of Section 4.1 induces continuous and discrete probability densities
(PDs) so that the famous sequential Cramér-Rao (SCR) bound is not
applicable to get a performance bound on the error variance. This
leads to the sequential Weiss-Weinstein (SWW) bound. I have devel-
oped the SWW bound in my recently submitted paper1 which is the 1 F. Xaver et al. 2013.

basis of this chapter. The results are applicable to a general estima-
tion scenario and are used in Chapter 7 for the localization scenario
presented in Chapter 3 and 4.

In Section 6.1, the use of the Weiss-Weinstein (WW) bound is in-
troduced leading to the general formulation of the SWW bound. In
addition to the referred literature, I motivate the use of the SWW
bound for hybrid continuous/discrete distributions and densities of
finite alphabet. I provide a general description of the bound utiliz-
ing the expectation operator. Furthermore, I emphasize foundations,
which I need for the proofs in the subsequent sections. Section 6.2
introduces the definitions of quantized and hybrid models. Sections
6.3 – 6.8 give analytic solutions for the continuous, the discrete, and
the hybrid models. I study the models for Gaussian, uniform, expo-
nential, Laplace, and categorical distributions and priors as well as a
mixed scenario. Section 6.9 develops and discusses several practical
issues. Supporting simulations complete the analysis in Section 6.10.
Several lemmas are summarized and proved in Appendix A.

6.1 Bayesian Lower Bounds

This section uses the notation of the Bayesian lower bound introduced
in Section 2.2.5, i.e. the inequality

E
{
εεT

}
< E

{
ygT

}
E

{
ggT

}−1
E

{
ygT

}T
, (6.1)

with the estimation error ε defined in (2.25), measurements y, and the
score g. Furthermore, I utilize the hybrid PD vx, which is defined in
(2.4).
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For the Cramér-Rao (CR) the score of a continuous random param-
eter y is defined by

g(x, y) = ∂x ln v(x, y) =
∂xv(x, y)
v(x, y)

. (6.2)

with the assumption that lim[x]`→±∞[x]`v(x|y) = 0 for all ` = 1, · · · ,N
and y. The `th element of x is denoted by [x]`. Furthermore, the first
and second derivatives of v(x, y) with respect to x must exist and be
absolutely integrable2. Inserting (6.2) into (2.38) gives32 Thus, v(x, y) = f (x, y).

3 Weiss et al. 1988.

E
{
εεT

}
< E

{
g(x, y)g(x, y)T

}−1
, (J)−1 (6.3)

with J being the Fisher information matrix.
For discrete x, the ∂x in (6.2) is approximated by the difference

quotient
1
∆
h

x, i.e.

1
∆
h

xv(x) ,
(

1
∆
h1

x1 v(x), · · · ,
1
∆
hN

xN v(x)
)T

(6.4)

where
1
∆
h`

x`v(x) , (v(x + h`e`) − v(x))/h`, and only the `th elements of

the unit vector e` is unity. Variables h` specify the sample period if
the densities are discrete approximations of continuous ones. This
allows the use of hybrid continuous/discrete densities v(x,y). One
alternative4 to the score (6.2) is4 A more natural approximation would

use the chain rule for the difference quo-
tient (Milne-Thomson 1933), i.e.[

1
∆
h

x ln v(x,y)
]
`

= ln
(
1 +

v(x, y)
h`

)
1
∆
h`

xv(x, y) (6.5)

but is not valuable for our problem.

∂x ln v(x, y) ≈
1

v(x, y)

1
∆
h

xv(x, y) = g(x, y) (6.6)

with h = [h1, · · · , hN]T
∈ R

N. This score is a special case of Bobrovsky
and Zakai’s5 choice of score,

5 Bobrovsky et al. 1975.
gu = L(x + hu, x, y) − 1 u = 1, · · · ,N , (6.7)

Here, L is the likelihood ratio66 We note that the common notation
f (x) =

∑
x′ p(x′)δ(x − x′) for discrete dis-

tributions is wrong.
L(x1, x2, y) ,

v(x1, y)
v(x2, y)

=
v(x1, y)
ṽ(x1, y)

=
dP(1)

x,y

dP(2)
x,y

(6.8)

which is equivalent to the Radon-Nikodym derivative of probability
measure P(1) with respect to P(2). The Bobrovsky-Zakai (BZ) lower
bound is77 Bobrovsky et al. 1975.

E
{
εεT

}
< HJ−1HT (6.9)

where

[J]ab := E
{
L(x + ha, x, y)L(x + hb, x, y)

}
− 1 , (6.10)

H , [h1, · · · ,hN] , a, b = 1, · · ·N . (6.11)

The specific choices of ha and hb influence the lower bound on the
error co-variance of elements a and b.

The Radon-Nikodym derivative (6.8) exists if and only if P(1) is
absolutely continuous with respect to P(2). This means that the support
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of ṽ is part of the support of v. This is not the case for truncated
densities such as the uniform density. Thus a more general bound is
necessary.

The WW lower bound is a generalization of the BZ bound. In the
sequel, we use the score

gu(x, y) =
√

L(x + hu, x, y) −
√

L(x − hu, x, y) (6.12)

where u = 1, · · · ,N (cf. Bell et al. 2006; Vu et al. 2011; Weiss et al. 1988
with s1 = s2 = 1/2). Inserting (6.12) into (2.38), the WW bound is given
by

E
{
εεT

}
< HJ−1HT (6.13)

where

[J]a,b := 2
eµ(ha,−hb)

− eµ(ha,hb)

eµ(ha,0)eµ(0,hb)
, (6.14)

with the negative non-metric Bhattacharyya distance (BD) between
v(x + ha, y) and v(x − hb, y),8, 8 Basseville 1989; Bhattacharyya 1943;

Kailath 1967.

µ(ha,hb) = ln E


√

v(x + ha, y)v(x − hb, y)
v(x, y)

 . (6.15)

The corresponding Bhattacharyya coefficient ρ = exp(µ(ha,hb)) lies
between zero and unity. The more uniform the density v(x, y) is, the
closer is ρ to unity. The more general WW score in9 is linked to the 9 Weiss et al. 1988.

more general α-Chernoff divergence and its coefficient10. 10 Basseville 1989; Chernoff 1952.

In Appendix B I prove that the BZ bound (Theorem 31) and the CR
(Theorems 32 and 33) are limits of the WW bound.

A Sequential Weiss-Weinstein Bound

The sequential Weiss-Weinstein bound is the extension of the WW
bound to a process x = {xk} with discrete time k ∈ N. The evolution
over time is described by a state-space model

xk+1 = Φ(xk) + wk , wk ∼ v(wk) , (6.16a)

yk = C(xk) + vk , vk ∼ v(vk) , (6.16b)

with a mapping Φ and state noise wk. We first consider the joint WW
bound for the prior and history of states x0:k = [x0, · · · , xk]T for deriving
a recursive algorithm to iteratively compute the WW bound of every
time step k. A block-diagonal matrix defines the kN × kN parameter
matrix

Hk ,


H0

. . .

Hk

 = [h0, · · · , hkN] . (6.17)

The matrix H` = [h`,1, · · · ,h`,N] corresponds to H in (6.13) at time `.
Using the error vector ε0:k = x̂0:k(y1:k)−x0:k, the error covariance matrix

E
{
ε0:kε

T
0:k

}
< HkJ

−1
k H

T
k . (6.18)
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The overall matrix Jk can be partitioned into

Jk =

 Ak−1
o

B01
k

o B10
k B11

k

 . (6.19)

with Ak−1 = blockdiag (A0, · · · ,Ak−1). Matrix Ak−1 captures informa-
tion from the times [0, k− 1], B11

k the time k and B01
k = (B10

k )T the transi-
tion between them. The omatrices in (6.19) are due to the Markovian
property, i.e.

v(x0:k, y1:k) = v(yk|xk)v(xk|xk−1)v(x0:k−1, y1:k−1) .

For the time k = 0, we have B11
0 = J0 = J0, i.e. the bound of the prior.

In the remainder of this section, we derive a recursive update for
the WW bound at time k, i.e.

E
{
εkε

T
k

}
<Wk , Hk(Jk)−1HT

k . (6.20)

In addition to (6.19), we consider the time interval [0, k + 1] and
partition the overall matrix

Jk+1 =


Ak−1

o

D01
k+1

o

0
o

o

D10
k+1

0
D11

k+1

D21
k+1

D12
k+1

D22
k+1

 . (6.21)

Matrix D11
k+1 captures the time k, D22

k+1 the time k + 1 and the others the
transition between the time instances. Using the Schur complement,
the right lowest part of J−1

k+1 is given by the inverse of

Jk+1 =D22
k+1 −


0
0

D21
k+1


T  Ak−1

o

D01
k

o D10
k D11

k


−1 

0
0

D12
k+1


=D22

k+1−D21
k+1

(
D11

k+1−D10
k+1A−1

k−1D01
k+1︸                   ︷︷                   ︸

≡Ak

)−1
D12

k+1 . (6.22)

We compare it with

Jk = D22
k −D21

k A−1
k−1D12

k , (6.23)

The sequential update becomes

Ak = D11
k+1 −D10

k+1A−1
k−1D01

k+1 , (6.24a)

Jk+1 = D22
k+1 −D21

k+1A−1
k D12

k+1 , (6.24b)

for all k = 0, 1, · · · . Matrix A−1
−1 := 0 whereas J−1

0 is set to the co-variance
of the prior. According to (6.15) and (6.21),

[Di j
k+1]m,n =2

eµ1 − eµ2

eµ3 eµ4
, i, j ∈{0, 1, 2} , (6.24c)
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with

µ1 = µ(h(k−2+i)N+m,−h(k−2+ j)N+n) , (6.24d)

µ2 = µ(h(k−2+i)N+m, h(k−2+ j)N+n) , (6.24e)

µ3 = µ(h(k−2+i)N+m, ) , (6.24f)

µ4 = µ(, h(k−2+ j)N+n) , (6.24g)

the initial conditions

v(y0|x0)v(x0|x−1) := v(y0)v(x0) , (6.24h)

and (6.24i) in Fig. 6.1.

µ(ha, hb) = ln E


∏k+1

`=0 v(y` |x` + h`,a)1/2v(x` + h`,a|x`−1 + h`−1,a)1/2v(y` |x` − h`,b)1/2v(x` − h`,b|x`−1 − h`−1,b)1/2

v(x0:k+1, y1:k+1)

 (6.24i)

Figure 6.1: Negative BD of the SWW
bound.Inspecting (6.24i) and (6.21) leads to

Proposition 1

Given a time-invariant state space model with time-invariant
noise distributions and sub-matrices Hk := H0. Then D10

k = D21
k

and D01
k = D12

k = (D21
k )T for k > 2.

B Linear Models

For a linear transition and/or measurement equation, (6.24) can be
further simplified. In addition to11, we will provide and stress impor- 11 Rapoport et al. 2004b.

tant facts that will be used in the subsequent sections for the proofs.

Lemma 2

If the expectation in (6.24i) can be factored into independent
expectations, i.e.

µ(ha, hb) = ln(E0 · · ·Ek+1) (6.25)

where

E` , E
{v(y`|x` + h`,a)1/2v(y`|x` − h`,b)1/2

v(y`|x`)

×
v(x` + h`,a|x`−1 + h`−1,a)1/2

v(x`|x`−1)

× v(x` − h`,b|x`−1 − h`−1,b)1/2
}

(6.26)
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then

D01
k+1 = (D10

k+1)T = B01
k = (B10

k )T . (6.27)

Proof. Let us focus on (6.24i). We first recast (6.24i) as in Fig. 6.2
and omit all zero vectors h`,a and h`,b. To compute Bk, Part (6.28a)
and (6.28b) are separable. Part (6.28a) is an expectation Ek+1(hk,a) =

Ek+1(0) = 1. To compute D10
k+1 and D01

k+1 we assume independent expec-
tations (6.25). Thus, Part (6.28a) and Part (6.28b) are also separable.
Part (6.28a) is an expectation Ek+1(hk,a). For µ(, hb) in (6.24c), the expec-
tation Ek+1(hk,a) = Ek+1(0) = 1 . For µ(ha,−hb), µ(ha, hb), and µ(ha, ), the
expectations Ek+1(hk,a) are equal. Thus the Ek+1(hk,a) cancels in (6.24c).
What raises is identical to B01

k . �

µ(ha, hb) = ln E
{ v(xk+1 |xk+hk,a)1/2v(xk+1 |xk)1/2

v(xk+1 |xk)

×
v(yk |xk+hk,a)1/2v(yk |xk)1/2v(xk+hk,a |xk−1)1/2v(xk |xk−1−hk−1,b)1/2

v(yk |xk)v(xk |xk−1)

×
v(yk−1 |xk−1)1/2v(yk−1 |xk−1−hk−1,b)1/2v(xk−1 |xk−2)1/2v(xk−1−hk−1,b |xk−2)1/2

v(yk−1 |xk−1)v(xk−1 |xk−2)
v(x0:k−2,y1:k−2)
v(x0:k−2,y1:k−2)

}
(6.28a)

(6.28b)

Figure 6.2: Negative BD with separated
densities.

Lemma 3: Linear transition equation

Given a linear state-transition equation

xk+1 = Φkxk + wk , wk ∼ v(wk) . (6.29)

Then the conditions for (6.25) are fulfilled.

Proof. Integrating over the transition densities (as in (2.1))∫
v(x` + h`,a|x`−1 + h`−1,a)1/2

v(x`|x`−1)

× v(x` − h`,b|x`−1 − h`−1,b)1/2dPx` |x`−1

=

∫
vw` (w` + h`,a −Φ`h`−1,a)1/2

vw` (w`)

× vw` (w` − h`,b + Φ`h`−1,b)1/2dPw` (6.30)

with w` = x` −Φkx`−1 and the conditional probability measure Px` |x`−1 .
Observe that (6.30) is independent of time ` − 1. �

Additionally to the transition equation in Lemma 3, we address the
measurement equation.
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Corollary 4: Linear measurement equation

Given the linear transition equation (6.29) and the measurement
equation

yk = Cxk + vk , vk ∼ v(vk) . (6.31)

Let the state and measurement noise be independent.
Then

µ(ha, hb) = ln(E0 · · ·Ek+1E′0 · · ·E
′

k+1) , (6.32)

with

E` , E
{v(x` + h`,a|x`−1 + h`−1,a)1/2

v(x`|x`−1)

× v(x` − h`,b|x`−1 − h`−1,b)1/2
}
, (6.33a)

E′` , E
{v(y`|x` + h`,a)1/2v(y`|x` − h`,b)1/2

v(y`|x`)

}
, (6.33b)

i.e. the expectation over x0:k+1, y1:k+1 splits into expectations w.r.t.
x`, y`.

Proof. The factorization corresponding to the transition densities have
been proved with Lemma 2. Dually, the factorization of the integrals
concerning the measurement noise are proved in the following.

Due to the additivity of the measurement function,∫
v(y`|x` + h`,a)1/2v(y`|x` − h`,b)1/2

v(y`|x`)
dPy` |x`

=

∫
vv` (v` − C`h`,a)1/2vv` (v` + C`h`,b)1/2

vv` (v`)
dPv` (6.34)

with v` = y` − Ckx`.
Due to the independence of v` and w` and their independence

from time ` − 1, the equation in Fig. 6.2 is separable into factors due
to innovation and measurement noise. �

Next we assume independence between continuous and discrete
random sub-vectors of the innovation noise vector, say

v(wc
k,w

d
k ) = f (wc

k)p(wd
k ) . (6.35)

Corollary 5

With (6.29), (6.31), and (6.35), Equation (6.32) factorizes further
into

µ(ha, hb) = ln(Ec
0 · · ·E

c
k+1Ed

0 · · ·E
d
k+1E′0 · · ·E

′

k+1) , (6.36)
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where Ec
· denotes the expectation over continuous probability

distributions whereas Ed
· denotes the expectation over discrete

ones.

In the remainder of our paper, we compute the expectations in (6.36)
for different noise and priors.

C Sequential WW Bound for the Linear Transition Model

Recursion (6.24) simplifies if the system function Φk = Φk is linear.
Applying the matrix inversion lemma to (6.19) gives

Jk = B11
k − B10

k A−1
k B01

k . (6.37)

Substitution of (6.37) and (6.27) into (6.22) leads12 to12 Rapoport et al. 2004b.

Jk+1 = D22
k+1 −D21

k+1(D11
k+1 + Jk − B11

k )−1D12
k+1 (6.38)

with B11
0 = J0 and B11

k = D22
k , k = 1, 2, · · · .

6.2 Models

In the remainder, we use Corollary 4 and 5 to derive analytic SWW
bounds for different noise and prior. The solutions are general in
the sense that the structure are the same for different distributions.
Furthermore, we investigate the SWW bound for the case of states and
noise quantized uniformly from continuous distributions. We prove
that SWW bounds of continuous and uniformly quantized states are
equal for suitable choices ofHk. We assume uniform quantization with
step size ∆x, i.e. the probability densities are sampled and normalized.

Derived from the linear state-space model (6.29) and (6.31), we
define the quantized model

xd
k+1 = Φkxd

k + wd
k , xd

k ∈ Z
N , (6.39a)

yk = ∆xCxd
k + vk , (6.39b)

wd
k ∼

1
c′′

fwk (w
d
k ∆x) , xd

0 ∼
1

c′′′
fx0 (xd

0 ∆x) , (6.39c)

and the hybrid model

xc
k+1 = Φcxc

k + Φcdxd
k + wc

k , xc
k ∈ R

Nd
,

xd
k+1 = Φdxd

k + wd
k , xd

k ∈ Z
Nc
,

yk = C(1)xc
k + Cdxd

k + vk , (6.40)

wc
k ∼ f (wc

k) , xc
0 ∼ f (xc

k) , vk ∼ fvk (vk) ,

wd
k ∼

1
c′′

fwc
k
(wd

k ∆x) , xd
0 ∼

1
c′′′

fxc
0
(xd

0 ∆x) ,

where fxc
0
, fwc

k
and fvk are probability density functions (PDFs) of in-

terest. Factors c′′ and c′′′ normalize the densities. Without loss of
generality, we set N = Nc + Nd.
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6.3 Analytic Solution for Gaussian Noise / Prior

In this section we derive lower bounds for Gaussian13 noise and priors13 Leemis et al. 2008.

N
{
mxk ,Cxk

}
, i.e.

f (xk) ,
1

(2π)N/2
(
det Cxk

)1/2
e
−

1
2‖xk−mxk‖

2
C

x−1
k . (6.41)

It is convenient to use the definition

ρG
x (h) , e

−
1
8 ‖h‖

2
C−1

x , (6.42)

with the co-variance matrix Cx and the weighted norm ‖h‖C−1
x
,

(hTC−1
x h)1/2. The weighted norm is induce by the weighted inner-

product 〈x1, x2〉C−1
x
, xT

1 C−1
x x2. We make extensive use of Lemmas

formulated in Appendix A.1.

Theorem 6: SWW bound / Gaussian distributions

Consider a linear continuous, quantized, or hybrid state-space
model. Let the prior, the innovation noise, and the likelihood
function be Gaussian (6.41) and statistically independent.

Then the SWW lower bound (6.20) for k ∈ N0 is computed by
(6.38) and (6.43) in Fig. 6.3 with ρ(h) := ρG(h).

For the initial k = 0, matrix D11
1 for (6.38) is given by (6.43d)

with the Bhattacharyya coefficient ρx0 (h) := ρG
x0

(h).

[
D11

k+1

]
a,b

= 2
ρwk (Φhk,a −Φhk,b)ρvk (Chk,a − Chk,b)ρwk−1 (hk,a − hk,b)

ρwk (Φhk,a)ρvk (Chk,a)ρwk−1 (hk,a)ρwk (Φhk,b)ρvk (Chk,b)ρwk−1 (hk,b)

− 2
ρwk (Φhk,a + Φhk,b)ρvk (Chk,a + Chk,b)ρwk−1 (hk,a + hk,b)

ρwk (Φhk,a)ρvk (Chk,a)ρwk−1 (hk,a)ρwk (Φhk,b)ρvk (Chk,b)ρwk−1 (hk,b)[
D12

k+1

]
a,b

= [D21
k+1]b,a = 2

ρwk (Φhk,a + hk+1,b) − ρwk (Φhk,a − hk+1,b)
ρwk (Φhk,a)ρwk (hk+1,b)[

D22
k+1

]
a,b

= 2
ρvk+1 (Chk+1,a − Chk+1,b)ρwk (hk+1,a − hk+1,b) − ρvk+1 (Chk+1,a + Chk+1,b)ρwk (hk+1,a + hk+1,b)

ρvk+1 (Chk+1,a)ρwk (hk+1,a)ρvk+1 (Chk+1,b)ρwk (hk+1,b)

[D11
1 ]a,b = 2

ρw0 (Φh0,a −Φh0,b)ρx0 (h0,a − h0,b) − ρw0 (Φh0,a + Φh0,b)ρx0 (h0,a + h0,b)
ρw0 (Φh0,a)ρx0 (h0,a)ρw0 (Φh0,b)ρx0 (h0,b)

(6.43a)

(6.43b)

(6.43c)

(6.43d)

Figure 6.3: General structure of the
SWW’s solution.Proof. First, the negative BD (6.24c) is re-cast into (6.24i). According

to (6.17), h`,a = 0 if a < `N and a > (` + 1)N. Thus we may remove
them from (6.24i). Due to linearity we invoke Corollary 4. We apply
successively Lemmas 19, 20, and 21. Together with Definition 6.42, we
get the analytic solution of the negative BD. Inserting this four-times
into (6.24c) gives us one element of D12

k+1.
Further details for k > 0 are given in (6.44) in Fig. 6.4. There the

negative BD for the elements of D12
k+1 is derived. From the beginning
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D12
k+1 : µ(ha, hb) = ln

"
v(yk+1|xk+1)1/2v(xk+1|xk + hk,a)1/2v(yk|xk + hk,a)1/2v(xk + hk,a|xk−1)1/2

× v(yk+1|xk+1 − hk+1,b)1/2v(xk+1 − hk+1,b|xx)1/2v(yk|xk)1/2v(xk|xk−1)1/2dPxk:k+1 dPyk:k+1

Corollary 4
= ln

$
fvk+1 (yk+1 − Cxk+1)1/2 fvk+1 (yk+1 − C(xk+1 − hk+1,b))1/2dPyk+1

× fwk (xk+1 −Φ(xk + hk,a))1/2 fwk (xk+1 − hk+1,b −Φxk)1/2dPxk+1

× fvk (yk − C(xk + hk,a))1/2 fvk (yk − Cxk)1/2dPyk

× fwk−1 (xk + hk,a −Φxk−1)1/2 fwk−1 (xk −Φxk−1)1/2dPxk

Lemma 19 & 21
= lnρvk+1 (Chk+1,b)ρwk (Φhk,a − hk+1,b)ρvk (Chk,a)ρwk−1 (hk,a) (6.44)

Figure 6.4: Derivation of the negative
BD for the elements of D12

k+1.

we consider the existence of a PD, either PDF or probability mass
function (PMF). It remains the enumerator integral over states and
measurements [first line in (6.44)]. Finally, we insert the last line four
times into (6.24c).

The negative BDs for elements of the other matrices are attained
similarly [see Figs. 6.5 and 6.6].

For k = 0 we use the fact that v(y0|x0) := vy0
(y0), and v(x0|x−1) :=

v(x0). The main difference to k > 0 is the equality∫
vx0 (x0 + h0,a)1/2vx0 (x0 − h0,b)1/2dPx0 = ρG

x0
(h0,a + h0,b) . (6.47)

The derivation is demonstrated in (6.46).
�

Observe that the hybrid and quantized models assume that c1, c2 ∈

{0, 1} in (2.2), i.e. the densities are either continuous or discrete. For
hybrid densities with c1, c2 ∈ (0, 1) and due to (2.3), the integrals would
split into discrete and continuous parts.

In the next sections, we observe that the structure of (6.38), (6.43)
and (6.43d) is similar for other distributions. Hence, (6.43) is discussed
in detail.

Let us compare ρG with (8) and (60) in Kailath 1967, where we
set p1(x) to Gaussian N {0,Cx} and p2(x) to N {h,Cx}. This shows that
Function ρG is the Bhattacharyya coefficient ρ ∈ [0, 1]. In (6.43), ρ
quantifies the non-constancy of the densities. The sharper a density
is, the lower ρ is.

We observe that the structure of (6.43) stems from (6.24c). Matrix
D11

k+1 reflects the influence of innovation and measurement noise at
time k on k + 1. Therefore, system matrix Φ and measurement matrix
C arise. Matrix D12

k+1 = (D21
k+1)T addresses the transition between k and

k + 1. Thus, it is independent of the measurements and there is no
function ρvk . Matrix D22

k+1 addresses only time k + 1. The structure is
the same as of D11

k+1 except that no ρwk+1 occurs due to causality.
Under one condition, the SWW bound for the continuous, the quan-

tized and the hybrid models are equal:
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D11
k+1 : µ(ha, hb) = ln

"
vxk+1 |xk (xk+1|xk + hk,a)1/2vyk |xk (yk|xk + hk,a)1/2vxk |xk−1 (xk + hk,a|xk−1)1/2

× vxk+1 |xk (xk+1|xk − hk,b)1/2vyk |xk (yk|xk − hk,b)1/2vxk |xk−1 (xk − hk,b|xk−1)1/2dλxk:k+1 dλyk

Corollary 4
= ln

∫
vwk (xk+1 −Φ(xk + hk,a) − Γuk)1/2vwk (xk+1 −Φ(xk − hk,b) − Γuk)1/2dλwk+1

×

∫
vvk (yk − C(xk + hk,a))1/2vvk (yk − C(xk − hk,b))1/2dλvk

×

∫
vwk−1 (xk + hk,a −Φxk−1 − Γuk−1)1/2vwk−1 (xk − hk,b −Φxk−1 − Γuk−1)1/2dλwk

Lemmas 19 & 21
= lnρCwk

(Φhk,a + Φhk,b)ρCvk+1
(Chk,a + Chk,b)ρCwk−1

(hk,a + hk,b) (6.45a)

D21
k+1 : µ(ha, hb) = ln

"
vyk+1 |xk+1 (yk+1|xk+1 + hk+1,a)1/2vxk+1 |xk (xk+1 + hk+1,a|xk)1/2

× vyk |xk (yk|xk)1/2vxk |xk−1 (xk|xk−1)1/2

× vyk+1 |xk+1 (yk+1|xk+1)1/2vxk+1 |xk (xk+1|xx − hk,b)1/2

× vyk |xk (yk|xk − hk,b)1/2vxk |xk−1 (xk − hk,b|xk−1)1/2dλxk:k+1 dλyk:k+1

Corollary 4
= ln

∫
vvk+1 (yk+1 − C(xk+1 + hk+1,a))1/2vvk+1 (yk+1 − Cxk+1)1/2dλvk+1

×

∫
vwk (xk+1 + hk+1,a −Φxk − Γuk)1/2vwk (xk+1 −Φ(xk − hk,b) − Γuk)1/2dλwk+1

×

∫
vvk (yk − Cxk)1/2vvk (yk − C(xk − hk,b))1/2dλvk

×

∫
vwk−1 (xk −Φxk−1 − Γuk)1/2vwk−1 (xk − hk,b −Φxk−1)1/2dλwk

Lemmas 19 & 21
= lnρCvk+1

(Chk+1,a)ρCwk
(hk+1,a −Φhk,b)ρCvk

(Chk,b)ρCwk−1
(hk,b) (6.45b)

D22
k+1 : µ(ha, hb) = ln

"
vyk+1 |xk+1 (yk+1|xk+1 + hk+1,a)1/2vxk+1 |xk (xk+1 + hk+1,a|xk)1/2

× vyk+1 |xk+1 (yk+1|xk+1 − hk+1,b)1/2vxk+1 |xk (xk+1 − hk+1,b|xk)1/2dλxk+1 dλyk+1

Corollary 4
= ln

∫
vvk+1 (yk+1 − C(xk+1 + hk+1,a))1/2vvk+1 (yk+1 − C(xk+1 − hk+1,b))1/2dλvk+1

×

∫
vwk (xk+1 + hk+1,a −Φxk)1/2vwk (xk+1 − hk+1,b −Φxk)1/2dλwk+1

Lemmas 19 & 21
= lnρCvk+1

(Chk+1,a + Chk+1,b)ρCwk
(hk+1,a + hk+1,b) (6.45c)

Figure 6.5: Negative Bhattacharyya dis-
tance for k > 0.
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D11
1 : µ(ha, hb) = ln

"
vx1 |x0 (x1|x0 + h0,a)1/2vy0 |x0 (y0|x0 + h0,a)1/2vx0 (x0 + h0,a)1/2

× vx1 |x0 (x1|x0 − h0,b)1/2vy0 |x0 (y0|x0 − h0,b)1/2vx0 (x0 − h0,b)1/2dλx0:1 dλy0

Corollary 4
=

ln
∫

vw1 (x1 −Φ(x0 + h0,a) − Γu0)1/2vw1 (x1 −Φ(x0 − h0,b) − Γu0)1/2dλw1

×

∫
vx0 (x0 + h0,a)1/2vx0 (x0 − h0,b)1/2dλx0

Lemma 19
= lnρCw1

(Φh0,a + Φh0,b)ρCx0
(h0,a + h0,b) (6.46)

Figure 6.6: Negative Bhattacharyya dis-
tance for k = 0.

Proposition 7: Equality of bounds

Given the continuous model (6.29), the quantized model (6.39),
and the hybrid model (6.40). Let all distributions be either con-
tinuous or quantized Gaussian. If

Hc
k = ∆xH

d
k (6.48)

then the SWW bound of all three models are equal.

Proof. Consider the proof of Theorem 6. First, we address the prior.
We compare the integral with respect to the Lebesque measure for
the continuous model with the integral with respect to the counting
measure for quantized and hybrid models. If

Hc
0 = ∆xH

d
0 (6.49)

then

ρG
x0

(hc
0,a + hc

0,b) = ρG
x0

(∆xhd
0,a + ∆xhd

0,b)

Next we consider the innovation noise. Inspecting Lemma 19 gives

ρG
wc

k
(hc

k+1,a −Φhc
k,a + hc

k+1,b −Φhc
k,b)

= ρG
wd

k

(
∆x(hd

k+1,a −Φhd
k,a + hd

k+1,b −Φhd
k,b)

)
. (6.50)

and this leads to D11,c
1 = D11,d

1 [cf. (6.43d)]. Additionally, inspecting
Lemma 21 gives

ρG
vk

(−Chc
k+1,a − Chc

k+1,b) = ρG
vk

(∆x(−Chd
k+1,a − Chd

k+1,b)) . (6.51)

The Di j
k -matrices become equal for all three models. �

6.4 Analytic Solution for Uniform Distributions

Similar to previous section, we now provide the analytic SWW bound
for multivariate, independent, uniform densities14,15 Unif {rk, sk}, i.e.14 Leemis et al. 2008.

15 Either continuous or discrete.
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v(xk) ,
N∏
`=1

1
[sk − rk]`

1[xk]`≥[rk]` ,[xk]`≤[sk]` . (6.52)

We utilize

ρU
x (h) ,

N∏
`=1


[
1 − |[h]` |

[ςxk
]`

]
, |[h]`| ≤ [ςxk

]` ,

0 , else .
(6.53)

The width of the support is

ςxk
,

sk − rk , v(xk) cont. ,

sk − rk + 1 , v(xk) disc.
(6.54)

For the i.i.d. continuous uniform distribution

rk = mxk −
1/2

√
12diag

(
Cxk

)
,

sk = mxk + 1/2

√
12diag

(
Cxk

)
.

(6.55)

whereas for the i.i.d. discrete uniform distribution

rk = mxk −
1/21 − 1/2

√
1 + 12diag

(
Cxk

)
,

sk = mxk −
1/21 + 1/2

√
1 + 12diag

(
Cxk

)
.

(6.56)

Vector mxk denotes the mean of xk and 1 the one-vector. This leads to

ςxk
=


√

12diag
(
Cxk

)
, v(xk) cont. ,√

1 + 12diag
(
Cxk

)
, v(xk) disc. .

(6.57)

Theorem 8: SWW bound / uniform distributions

Consider a linear continuous, quantized, or hybrid state-space
model. Let the innovation noise, the measurement noise and the
prior be uniform (6.52) and independent. Furthermore, let the
elements of the vectors be statistically independent. Then the
SWW bound (6.20) is given by (6.38), (6.43), and (6.43d) on Page
53 where all ρ := ρU.

Proof. The derivation proceeds as in the proof of Theorem 6 but uses
Lemmas 22, 23, and 24 from the appendices. �
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Corollary 9: Uniform prior, Gaussian noise

Consider a linear continuous, quantized, or hybrid state-transition
equation. Let v(x0|x−1) := v(x0) be uniform, and both the mea-
surement and the innovation noise be Gaussian.

Then

ρx0 := ρU
x0
, ρw0 := ρG

w0
(6.58)

in (6.43d).

Proof. The derivation proceeds as in the proof of Theorem 6 but uses
Lemma 23. �

The finite support of the uniform distribution induces bounds on the
parameter matrix Hk:

Proposition 10: Box conditions

Given a linear state-space model with multivariate independent
uniform noise and prior. Then for all k ≥ 0

−ςwk
4 hk,a ± hk,b 4 ςwk

, (6.59a)

−ςwk
4Φhk,a ±Φhk,b 4 ςwk

, (6.59b)

−ςwk
4Φhk,a ± hk,b 4 ςwk

, (6.59c)

−ςvk
4 Chk,a ± Chk,b 4 ςvk

. (6.59d)

Furthermore,

hk,a , 0, hk,b , 0 . (6.59e)

Proof. Bounds (6.59a) to (6.59c) stem from (A.15) in Lemma 22. Bound
(6.59b) and (6.59c) stem in a similar way from (A.20) in Lemma 24.

If both hk,a → 0 and hk,b → 0, the SWW bound collapses to the SCR
bound16. For uniform distributions, the SCR bound does not exist16 Rapoport et al. 2007a; Weiss et al. 1988.

because of the finite support and this leads to (6.59e). �

The upper bounds are important constraints on Hk. Assume that
v(wk), k ∈ N0, has a much larger support than the support of all other
v(wk′ ), k′ ∈ N0 \ {k}. Then the maximum possible Hk′ is defined by the
minimum Hk through (6.59).

Proposition 11: Equality of bounds

Given the continuous model (6.29), the quantized model (6.39),
and the hybrid model (6.40). Let the PDs be independently



the weiss-weinstein lower bound 59

uniformly distributed. If

Hc
k = ∆xH

d
k , ςc

xk
= ∆x(ςd

xk
− 1) , (6.60)

then the SWW bound of the discrete, the continuous, and the
hybrid models are equal.

Proof. The proof proceeds as that of Proposition 7 but uses Lemmas
22 to 24 instead of Lemmas 19 to 21. �

Further note that the area of the support of v(x) increases with
increasing time.

6.5 Analytic Solution for Exponential Distributions

This section is devoted to the analytic SWW bound for models with
multivariate independent exponential17 densities Exp {αk}, i.e. 17 Leemis et al. 2008.

f (xk) ,
N∏
`=1

e−[αk ]`/2[xk]` , [xk]` ≥ 0 ,

0, else .
(6.61)

It is convenient to define

ρE
x (h) ,

N∏
`=1

e−α`/2[h]` , [h]` ≥ 0 ,

eα`/2[h]` , [h]` < 0 ,
(6.62)

with parameter α` , [α]` ≥ 0. Note that α` is the inverse of the mean
and standard deviation of [x]`.

Theorem 12: SWW bound / exponential distributions

Consider a linear continuous, quantized, or hybrid model. Let
the noise and the prior be defined by a multivariate independent
exponential distribution (6.61).

Then the SWW bound (6.20) and (6.38) for the state vector xk

is given by (6.43) and (6.43d) on Page 53 where

ρ := ρE . (6.63)

Proof. The derivation of the SWW lower bound for Gaussian noise
and prior (Theorem 6) leads to the proof: Starting with (6.24c), the BD
(6.24i) is computed for the noise under consideration. A re-cast of the
latter one is derived in Fig. (6.2) on Page 50. Next we use Corollary 5
and get multiplications of expectations. They compute as in Lemmas
25 and 26. Finally, we get (6.43) on Page 53 whereby ρx = ρE

x . �

Corollary 13: Prior

Consider a linear continuous, quantized, or hybrid state-transition
equation. Let v(y0|x0) := vy0

(y0) and v(x0|x−1) := v(x0) be inde-
pendently exponentially distributed. Then the SWW bound is
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given by Theorem 12 except that we utilize D11
1 in (6.43d) with

ρx0 (h) := ρE
x0

(h) . (6.64)

Additionally, Proposition 7 for Gaussian distributions is also appli-
cable for exponential distributions.

6.6 Analytic Solution for Laplace Distributions

Here we present the analytic SWW bound for models with multivari-
ate independent Laplace densities18 La

{
mxk , bk

}
, i.e.18 Leemis et al. 2008.

f (xk) ,
N∏
`=1

1
2[bk]`

e−|[xk−mxk ]`|/2[bk ]` . (6.65)

In the sequel, we utilize

ρL
x (h) ,

N∏
`=1


(
1 + [h]`

2[b]`

)
e−

[h]`
2[b]` , [h]` > 0 ,(

1 − [h]`
2[b]`

)
e

[h]`
2[b]` , [h]` ≤ 0 .

(6.66)

with parameter b � 0.

Theorem 14: SWW bound / Laplace distributions

Consider a linear model. Let the noise and the prior be defined
by a multivariate independent Laplace distribution (6.65).

Then the SWW bound (6.20) and (6.38) for the state vector xk

is given by (6.43) and (6.43d) on Page 53 where

ρ := ρL . (6.67)

Proof. The derivation of the WW lower bound for Gaussian noise and
prior (Theorem 6) leads to the proof: Starting with (6.24c), the BD
(6.24i) is computed for the noise under consideration. A re-cast of the
latter one is derived in Fig. 6.2 on Page 50. Next we use Corollary 5
and get multiplications of expectations. They compute as in Lemmas
27 and 28. Finally, we get (6.43) on Page 53 whereby ρx = ρL

x . �

6.7 Categorical Distributions

Multivariate discrete distributions of finite support [0,N1]×· · ·×[0,N′N]
with corresponding probability masses {p`,0, · · · , p`,N′` }

N
`=1 are termed

categorical distributions, i.e. discrete random vector xk has the PMF

p(xk) ,
N∏
`=1


N′∑̀
`′=0

p`,`′1[xk]`=`′

 . (6.68)

Here, I neglected the time index k. The sum of the masses

N′∑̀
`′=0

p`,`′ = 1 . (6.69)
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The computation of (6.33a) and (6.33b) uses the counting measure
which is computable due to the finite support of the density. With
definition

ρC
x (h) ,

N∏
`=1


N′∑̀
`′=0

p1/2

`′ p1/2

`′+[h]`

 (6.70)

we formulate

Theorem 15: SWW bound / categorical distributions

Consider a linear model. Let the noise and the prior be defined
by a multivariate independent categorical distribution (6.68).

Then the SWW bound (6.20) and (6.38) for the state vector xk

is given by (6.43) on Page 53 where

ρ := ρC . (6.71)

Proof. The derivation of the WW lower bound for Gaussian noise and
prior (Theorem 6) leads to the proof: Starting with (6.24c), the BD
(6.24i) is computed for the noise under consideration. A re-cast of the
latter one is derived in Fig. (6.2) on Page 50. Next we use Corollary 5
and get multiplications of expectations. They compute as in Lemmas
29 and 30. Finally, we get (6.43) on Page 53 whereby ρx = ρC

x . �

Discrete uniform distributions with support [0,N1] × · · · × [0,N′N]
are categorical distributions with p`,`′ = p`,`′′∀`′, `′′ ∈ {0, · · · ,N′`}. Due
to the same finite support, the box conditions in Proposition 10 apply
for categorical distributions. Note that the support of the state xk

increases with increasing k. Due to the common definition (6.68), the
PMF p(xk) is greater than zero if and only if x < 0. Thus, in practical
applications, it may be convenient to shift the categorical distribution
by its mean.

6.8 Bernoulli Distributions

The Bernoulli distribution {p`,0, p`,1 = 1−p`,0}N`=1 is a special case of the
categorical distribution and thus their features are equal. We get

ρC
x (h) = ρB

x (h) ,
N∏
`=1


1 , [h]` = 0

p1/2

`,0p1/2

`,1 , [h]` = 1
0 , else

 ∈ [0, 1] . (6.72)

This implies that the non-zero elements of parameter matrix Hk may
only be 1.

6.9 Practical Issues

In the sequel, I address practical problems arising. Note that the pa-
rameter matrix Hk defines a specific SWW bound of the SWW family.
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A Computational Effort

The non-sequential WW bound (6.18) computes KN × KN elements
of Jk, where K ∈ N+ is the discrete time duration. This bound is
quadratic in time whereas the SWW is constant, linear, or quadratic:

Consider the sequential WW bound (6.20) for a linear state-space
model with an analytic solution (6.43). With (6.38), it requires the
computation of N ×N elements in each of the 3K matrices D11

k+1, D12
k+1,

and D22
k+1. The number of operations to compute each element is

independent of K. Hence, 3KN2 elements are computed and the effort
is linear in time.

Moreover, if v(yk|xk), v(xk+1|xk), and the parameter matrix Hk is
constant for k > 1, then Di j

k+1 = Di j
k , i, j ∈ {1, 2}. The computational

effort is constant over time.
Consider the general SWW bound (6.20) with (6.24), without closed-

form solution ρ, and a state-space model with discrete multivariate
distributions of finite support [r1, s1]. The expectation (6.24i) then
simplifies to K + 1 sums each Nς = N(s − r + 1) summands. At each
k = 1, · · · ,K, Equation (6.24i) is computed for 4 matrices D01

k+1, D11
k+1,

D12
k+1, and D22

k+1 of size N × N. Thus, we obtain 4KN2
× (K + 1)Nς, i.e.

the effort is quadratic in time (cf. Section 6.7 and Chapter 7).

Figure 6.7: Impact of h1,k on the
SWW bound for the state xk (6.73a)
for Gaussian prior/noise (G/G), uni-
form prior (U/G) / Gaussian noise,
uniform prior/noise (U/U), exponen-
tial prior/noise (E/E), and Laplace
prior/noise (L/L). For small h1,k, the
G/G SWW bounds approach the SCR
bounds. Markers indicate the optimal
h1,k for maximum SWW.
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B Impact of the Parameter Matrix

The optimal choice of the parameter matrix Hk maximizes the WW
bound. Even without a general optimal solution to this maximization,
we provide some useful guidelines. To keep the discussion simple, an
one-dimensional linear transition model is considered with Gaussian,
uniform, exponential, and Laplace distributions, i.e.

xk+1 = xk + wk , (6.73a)

yk = xk + vk , (6.73b)

with σ2
x0

= 0.4, σ2
wk

= 0.4, σ2
vk

= 0.4. For Gaussian and uniform dis-
tributions µx0 = µwk = 0 whereas for the exponential distributions
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µx0 = 1/σx0 , µwk = 1/σwk , and µvk = 1/σvk and for the Laplace distribu-
tions b2

x0
= σ2

x0
/2, b2

wk
= σ2

wk
/2, and b2

vk
= σ2

vk
/2. Fig. 6.7 plots the SWW

bounds and SCR19 bounds vs. h1,k at two time steps k = 1 and k = 19. 19 Ristic et al. 2004.

The SCR bounds only exists for the twice differentiable Gaussian
density. In that case, when h1,k → 0, the SWW bound approaches
the SCR bound which is the optimum. For uniform distributions, the
parameter h1,k is box constrained by (6.59). Fig. 6.7 shows only the
positive part of this allowed interval (0, s] and the point of maximum
SWW bound is close to (s− r)/4. Notice that at k = 19, where the influ-
ence of the prior is small, that the uniform prior / Gaussian noise case
approaches the all-Gaussian case, i.e. the influence of the prior fades
with time. The markers in Fig. 6.7 show the optimal parameters h1,k

obtained numerically. Observe that the high mode of the exponential
density at wk = vk = x0 = 0+ lowers its bound.

For dimensions greater than one, it is more difficult to obtain opti-
mal matrices Hk, k ∈ N+. The `th row of the system matrix Φ specifies
its dependency on all states. Similarly, the `th column of the Hk speci-
fies, which states are considered for the computation of the `th-state’s
SWW bound. This suggests that the positions of non-zero elements in
Hk should agree with ΦT.
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Figure 6.8: SWW lower bounds for
different h1,k in (a) for the Gaussian
prior/noise case and in (b) for the Uni-
form prior/noise case (cf. Fig. 6.7).

Another simulation shows the corresponding recursive WW lower
bound in the G/G, U/U, E/E, and L/L case for different h1,k in Figs. 6.8
and 6.9.

C Computation of the Prior

Consider a hybrid model (6.40) where the state xc
0 is modeled by

xc
0 =

−1∑
`=−K

(Φc)1−`Φcd(xd
` ) + w` . (6.74)

with time horizon K. Function Φcd might be a source20 in an acoustic 20 Florian Xaver et al. 2011.

field with the sum representing the evolution of the corresponding



64

1 5 10 15 19

0

1

2

3

·10−2

10−7 10−4

193 × 10−3
387 × 10−3

580 × 10−3

775 × 10−3

Time k

SW
W

bo
un

d
W

k

(a)

1 5 10 15 19
0

1

2

3

·10−2

10−7 10−4

193 × 10−3

387 × 10−3

580 × 10−3

775 × 10−3

Time k

SW
W

bo
un

d
W

k

(b)
Figure 6.9: SWW lower bounds for
different h1,k for (a) the exponen-
tial prior/noise and (b) the Laplace
prior/noise case. acoustic field during K time steps. The prior v(xc

0, x
d
0 ) is computed by

marginalizing the joint probability density

v(x−K:0) = v(x−K)
−1∏
`=−K

v(x`+1|x`) . (6.75)

Fortunately, the explicit computation of the marginal v(x0) is not nec-
essary in our context since we are only interested in the lower bound
of the error variance and not in the PD itself. Therefore we assume
a known PD at time −K, i.e. it carries over the role of the prior. The
SWW bound (6.20) recursively computes the WW bound until time 0.
Clearly, in this time interval no measurements influence the bound,
i.e.

v(y`|x`) = v(y`) , ∀` ≤ 0 . (6.76)

Due to the existence of a density and the independence of the states,
the expectations (6.33b) reduces to

∫
v(y`)dPy` = 1 for ` = −K, · · · , 0.

This causes ρv` = 1 in (6.43). Briefly speaking, our approach uses a
simplified version of the SWW recursion instead of the explicit com-
putation of the prior at time zero.

D Partly-deterministic Transition Equations

An interesting problem occurs when some parts of the transition equa-
tion [e.g. (6.16a)] are deterministic, i.e. no noise is added. This results
in a singular matrix E

{
xkxT

k

}
. This causes the Bayesian bounds to be-

come singular (cf. Section 2.5). For SCR bounds, Tichavsky et al. 1998
perform regularization by assuming additive noise with small vari-
ance. This may meet most physical problems, so does a discretized
physical field.

E Linear Approximation of a Non-linearity

If the state-transition model is non-linear, Lemma 3 does not hold
in general. If no closed-form solution is possible, a linear approxi-
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mation of the system matrix gains importance. I emphasize that the
approximation of the system matrix gives a non-approximated SWW.

Consider following state-space model,[
xc

k+1
xd

k+1

]
=

[
Φcxc

k +φcd(xk
d)

Φdxd
k

]
+ wk , (6.77)

yk = Cxc
k + vk , (6.78)

where φcd is a vector-valued non-linear continuous mapping which
will be approximated by means of Taylor, i.e.

[φcd(xk)]i ≈ [φcd]i(a) + (xk − a)T
∇[φcd(a)]i . (6.79)

We set a = xk, such that

vx` |x`−1 (x` + h`,a|x`−1 + h`−1,a) ≈

vwc
`
(xc
` + h`,a −Φcxc

`−1 −Φchc
`−1 −φ

cd(xd
`−1) − ])×

vwd
`
(xd
` + hd

`,a −Φdxd
k −Φdhd

`−1,a) =

vwc
`
(wc

` + hc
`,a −Φchc

`−1 − ])×

vwd
`
(xd
` + hd

`,a −Φdhd
`−1,a)

(6.80)

where for ]we use either

[]max]i = max
xk

[hd,T
`−1,aφ

cd(xd
k )]i , (6.81)

[]min]i = min
xk

[hd,T
`−1,aφ

cd(xd
k )]i , (6.82)

and h`−1,a = [hc,T
`−1,a ,h

d,T
`−1,a]T. What we need are strict bounds for the

discrete and continuous state vectors using the approximation above.

Theorem 16

Consider Model (6.78) with the Taylor approximation (6.79).
Then ] := ]max gives a SWW lower bound for the discrete state
vector xd

k and ] := ]min that for the continuous state vector xc
k.

Proof. Let us focus on the second part of the state-space model, i.e. the
part corresponding to xd

k . Consider the worst case, ] := 0. Then there
is no coupling, and the measurements do not influence the inference.
Therefore the lower bound for xd

k is not corrected. On the other hand
xc

k is independent of xd
k and therefore its ambiguity is not increased.

Let ] := ]max. Here the measurements correct the bound of xd
k

because of the strong coupling to xc
k: the lower bound of xd

k reduces.
Otherwise the ambiguity of xd

k causes the lower bound of xc
k to be

higher. �

Fig. 6.10 illustrates the impact of different vectors ] using settings
in Table 6.1 where the noise and prior are zero-mean Gaussian. With
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Table 6.1: Settings for Fig. 6.10. Φc,Φd,C = 1 ] = 0.1, · · · , 0.7
Cxk = diag (0.4, 0.4) Cwk = diag (0.2, 0.2)
Cvk = diag (0.4, 0.4) hk = 0.01I

increasing ], Fig. 6.10a illustrates the decreasing bound for xd
k whereas

the bound for xc
k increases conversely in Fig. 6.10b. Notice that al-
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Figure 6.10: SWW bound for corre-
sponding (a) discrete and (b) continuous
decoupled states and Gaussian distribu-
tions.

though Theorem 16 gives lower bounds there is no statement on the
quality of the bounds. The better the approximation the tighter the
bound. Beyond the analytic solution, the approximation avoids the
computation of D10

k+1, D01
k+1.

6.10 Simulation

In this section, the following linear state-space model demonstrates
the bounds derived for different distributions:

xk+1 =


1 1 0
0 1 0
0 0 1

 xk + wk , (6.83a)

yk =

[
1 0 0
0 0 1

]
xk + vk . (6.83b)

The first state [xc
k]1 depends on itself and the second [xc

k]2 whereas the
others depend only on themselves. Equation (6.83b) measures [xc

k]1

and [xc
k]3.

We plot the diagonals of the SWW bound Wk with the parameter
matrix

Hk =
[
hk,1 hk,2 hk,3

]
:=


hopt 0 0

hopt/10 hopt 0
0 0 hopt

 . (6.84)

The computation of Element [Wk]a,b utilizes vectors hk,a and hk,b for
a, b ∈ {1, 2, 3}. Although Fig. 6.11 show only the diagonals of Wk,
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i.e. the bound on the error variances, Update (6.38) demands for the
non-diagonal elements of Wk.

We discuss four settings for continuous distributions in Fig. 6.11:
the all-Gaussian, the uniform prior / Gaussian noise, the all-uniform,
and the all-exponential case. Their covariance matrices are Cx0 =

Cwk = 0.4I and Cvk = 0.4I. The Gaussian and uniform distributions
have zero-mean. The means of the exponential distributions equal
their standard deviations. According to Fig. 6.7, the optimal hopt =

hc
opt = 0.55 for the all-uniform case.

The all-Gaussian case is plotted in Fig. 6.11a. The SCR bound exists
and is shown as reference21. If hopt → 0, the SWW bound approaches 21 Ristic et al. 2004.

the SCR bound. The SCR bound is achievable using a Kalman filter.
State ` = 3 is observed and has the lowest bound. State ` = 1 depends
additionally on state ` = 2 and hence has a higher bound. State ` = 2
is not directly observed and thus has the highest bound.

The all-uniform case, Fig. 6.11b, is similar to the all-Gaussian case
except that the observed states are close together. The parameter hopt

is the value of the highest SWW bound. The all-exponential case is
demonstrated in Fig. 6.11c shows the same behavior. Fig. 6.11d shows
the SWW bound for uniform prior and Gaussian noise. Compared
with the all-Gaussian case we only see a difference at time k = 1 (initial
phase).

We use model (6.83) and parameter matrix (6.84) again for quan-
tized Gaussian, quantized (discrete) uniform, and quantized exponen-
tial densities. We seek for settings leading to the same SWW bounds
for quantized and continuous distributions.

The width (6.57) of the continuous uniform density computes to
ςc

xk
= 2.19 × 1. Let the discrete uniform density have a width of

the support ςd
xk

= 20 × 1. Then with (6.60), the quantization step
size is ∆x = 0.9 and the covariance matrix of the discrete uniform
distributions are Cx0 = Cwk = 1/12(ςd,2

xk
−1)I and Cvk = 1/12(ςd,2

xk
−1)I. With

(6.60), the discrete hopt := hd
opt = hc

opt/∆x = 5. Now the SWW bound for
the discrete (quantized) uniform distribution Unif

{
−ς

d
xk/2, ςd

xk/2
}

equals
that of the continuous case.

Since Gaussian and exponential densities have infinite support, us-
ing their quantized versions with quantization step size ∆x = 0.9 and
hd

opt = 5 give the same SWWs as the continuous cases (see Fig. 6.11).

6.11 Conclusions of this Chapter

The family of Weiss-Weinstein bounds enables the use of hybrid dis-
crete and continuous state-vectors. The use of the Chernoff or Bhat-
tacharyya distance allows to give a general recursion for the sequen-
tial bound. If there is a closed-form solution of the distance for par-
ticular probability densities, analytic solutions of the SWW bound
exists. Solutions of the continuous Gaussian, uniform, exponential,
and Laplace distributions and of the discrete uniform, categorical
(Bernoulli), quantized Gaussian, and quantized exponential distribu-
tions are summarized in Tab. 8.1.
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Figure 6.11: The SWW lower bounds
for corresponding [xk]` [cf. (6.83)] for
(a) Gaussian prior/noise, (b) uniform
prior/noise, (c) exponential prior/noise,
and (d) uniform prior / Gaussian noise.
Time k = 0 shows the prior error vari-
ance.
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The optimal elements ofHk for uniform distributions are in contrast
to small values for Gaussian distributions. The finite support of uni-
form densities causes box constrains on Hk. The shape of the system
matrix describes the dependency between states. Thus, it influences
the choice of Hk that describes the influence of noise on these states.
The SWW bounds for continuous and quantized states are equal for
specific choices of the bound’s parameter Hk. I highlight that the
derivations concerning quantized states are applicable for quantized
measurements as well.

Further results are related to practical issues. For linear state-space
models with analytic solutions the computational effort is linear in
time. Additionally, if the statistics are constant, then the effort is
constant. If the prior density stems from a recursion, it is possible to
compute the SWW bound without explicit prior. Regularization of
deterministic sub-state equations is applicable in this framework.





7
Bounds on States of the Localization
Model

This chapter is devoted to the sequential Weiss-Weinstein (SWW)
bound for my state-space model including the non-linear source func-
tion (Chapter 3). Despite the possibility of the approximation of non-
linearities (see Section 6.9.E), I am interested in a far tighter bound.

I address following issues formerly published in F. Xaver et al.
2012a:

1. Conditions for the existence of analytic SWW solutions.

2. Behavior of the SWW bound on pressure states and sensor location
(cf. Section 3).

3. Sensitivity of the SWW bound to the distortion of the channel (cf.
Section 5).

In Section 7.1, I recap and concretize the state-space model. The
imperfect channel is specified in Section 7.2. Next, I give an analytic
SWW bound (Section 7.3) and numerical results (Section 7.4). This
chapter makes heavily use of the SWW’s integral formulation and the
Bhattacharyya coefficients computed in Chapter 6.

7.1 Model

In this section, I reformulate the state-space model of an acoustic
source in a hallway (3.23), (3.33), and (3.34) with source Model II
(3.32). Here, I denote the model of the acoustic wave field by Φc, the
non-linear vector-valued source byφcd, the path of one source by Φd,
and the measurements by C. This emphasizes the general solution of
the SWW bounds beyond my illustrative application (see Fig. 1.1) and
the way of looking at the problem. We get[

xc
k+1

xd
k+1

]
=

[
Φk

cxc
k +φcd(xd

k )
Φdxd

k

]
+

[
wc

k
wd

k

]
, (7.1a)

yk = Cxc
k + vk , (7.1b)

with the continuous N-dimensional state vector xc
k = [qT

k ,pk
T]T and

the discrete source position vector xd
k (cf. Model II in Section 3.4).
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The vector xc
k captures the pressure on a grid by pk whereas its time

derivative is denoted by qk. Both are distributed over space and pk

represents the sampled wave field. The measurements are denoted
by yk. The continuous random vector wc

k models the process noise
of the acoustic wave, vector wd

k the discrete position jitter, and vk the
continuous measurement noise.

In the decentralized case, Φc is decomposed into sub-matrices.
Every sensor m has an estimator using following sub-state space model
(cf. Section 4.B):xc,(m)

k+1
xd,(m)

k+1

 =

Φc,(m)xc,(m)
k + x̄c,(m)

k +φcd(xd,(m)
k )

Φdxd,(m)
k


+

wc,(m)
k

wd,(m)
k

 , (7.2a)

y(m)
k =C(m)xc,(m)

k + v(m)
k . (7.2b)

Vectors xc,(m)
k ,m = 1, · · · ,M are disjoint sub-vectors of xc

k whereas x̄c,(m)
k

is the coupling term between the different sub-state space models (see
Fig. 7.1 for the one-dimensional case). Similar for vector y(m)

k .

Figure 7.1: Decentralized model captur-
ing an 1-D acoustic wave equation. The
sample points of the wave model are as-
signed to two sensors. Arrows denote
message exchange. The weights W(m)

k

of the PF and the local belief xd,(m)
k are

not exchanged at every time k. The radii
of the filled circles denote different noise
variance.
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Sensor 1 Sensor 2

W
(1)
k W

(2)
k

xd,(1)
k argumentum-maximi consensus

xd,(2)
k

Every sensor m has its own copy xc,(m)
k of the global source position

vector xd
k . Thus the local maximum a-posteriori (MAP) estimator of

sensor m has a local estimate of the position. A final argumentum-
maximi consensus algorithm ensures a joint belief of the position (cf.
Chapter 4). Observe that the linear sub-structures of (7.1) and (7.2)
allow the use of the very efficient marginalized particle filter1.1 Schön et al. 2005.

Chapters 4 and 5 assume perfect channels between the sensors, i.e.
the coupling term x̄c,(m)

k in (7.2) is not perturbed. In the sequel we relax
this assumption and analyze the impact of imperfect channels.

7.2 Imperfect Channels Between Sensors

Per se, there are no approximation errors inherent in the decentralized
model (7.2) compared to (7.1). Thus, I use the global model (7.1) for the
following analysis of the estimation error. Additionally, I assume an
imperfect channel in the decentralized model which adds distortion
to x̄c,(m)

k in (7.2). This corresponds to additional noise in the centralized
model (7.1), i.e. the imperfect channel perturbs some elements of xc

k.
On that account, let us assume2 that decorrelated signals ιk =2 F. Xaver et al. 2012b.
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decorr x̄c,(m)
k are exchanged instead of x̄c,(m)

k . At the sensor’s bound-
ary, noise ∼ N {0,D} is added to wc

k.
Ie use following worst-case assumptions:

• Elements of vector ιk are Gaussian distributed and are transmitted
over an additive Gaussian channel with noise variance σ2

channel.

• The channel can be used once per ιk.

• The average channel input power Pchannel is limited.

Then the distortion3 3 Goertz 2007.

D =
σ2
ιk

1 + Pchannel/σ2
channel

. (7.3)

7.3 Sequential Weiss-Weinstein Bound

The hybrid continuous/discrete probability densities and the finite
support of the source-position density demand for a more general
Bayesian bound than the sequential Cramér-Rao bound: the sequen-
tial Weiss-Weinstein bound (Chapter 6). Additionally, I must use a
general definition of the expectation operator (2.1) with some measur-
able function g(x, y) and the continuous/discrete probability measure
Px,y. I define the N-dimensional vector xk , [xc,T

k , xd,T
k ]T. The sequen-

tial WW bound

Wk = HkJ−1
k HT

k (7.4)

of the estimation error εk = x̂k(yk) − xk lower bounds the error co-
variance4 4 Rapoport et al. 2007a; F. Xaver et al.

2013.

E
{
εkεk

T
}
<Wk . (7.5)

Symbol < denotes that the right side subtracted from the left gives a
positive semi-definite matrix. Matrix Wk correspond to the inverse
Fisher information matrices of the sequential Cramér-Rao bound. Ma-
trix Hk = [hk,1, · · · ,hk,N] are parameters of the SWW bound at time k.
Optimal matrices Hk give the maximum lower bound of all possible
lower bounds of the SWW family.

Matrix Jk is sequentially computed by equations (6.24) on Page 48.
My aim is to derive the analytic solution of the negative Bhattacharyya
distance5 µ for (7.1). 5 Kailath 1967.

Theorem 17: SWW of non-linear transition model

Given the non-linear state-space model (7.1) where xc
k ∼ f (xc

0),
xd

0 ∼ p(xd
0 ), wc

k ∼ f (wc
k), wd

k ∼ p(wd
k ) and vk ∼ f (vk).

Then the negative Bhattacharyya distances for the elements
of all matrices Di j

k+1 are given in Figs. 7.2 and 7.3 using the
Bhattacharyya coefficient

ρx(h) = ρG
x (h) = e−

1
8 ‖h‖

2
Cx ∈ [0, 1] (7.6)



74

and the initial conditions

v(y0|x0)v(x0|x−1) := v(y0)v(x0) . (7.7)

D11
1 : µ(ha, hb) = ln

∑
xd

1

∑
xd

0

ρwc
0

(
−Φchc

0,a −Φchc
0,b −Φcd(xd

0 + hd
0,a) + Φcd(xd

0 − hd
0,b)

)
ρxc

0
(hc

0,a + hc
0,b)

×p(xd
1 |x

d
0 + hd

0,a)1/2p(xd
1 |x

d
0 − hd

0,b)1/2p(xd
0 + hd

0,a)1/2p(xd
0 − hd

0,b)1/2

D11
2 : µ(ha, hb) = lnρvc

1
(Ch1,a + Ch1,b)

×

∑
xd

2

· · ·

∑
xd

0

ρwc
1

(
−Φchc

1,a −Φchc
1,b −Φcd(xd

1 + hd
1,a) + Φcd(xd

1 − hd
1,b)

)
ρwc

0
(hc

1,a + hc
1,b)

×p(xd
2 |x

d
1 + hd

1,a)1/2p(xd
2 |x

d
1 − hd

1,b)1/2

×p(xd
1 + hd

1,a|x
d
0 )1/2p(xd

1 − hd
1,b|x

d
0 )1/2p(xd

0 )

D11
k+1 : µ(ha, hb) = lnρvc

k
(Chk,a + Chk,b)

×

∑
xd

k+1

· · ·

∑
xd

0

ρwc
k

(
−Φchc

k,a −Φchc
k,b −Φcd(xd

k + hd
k,a) + Φcd(xd

k − hd
k,b)

)
ρwc

k−1
(hc

k,a + hc
k,b)

×p(xd
k+1|x

d
k + hd

k,a)1/2p(xd
k+1|x

d
k − hd

k,b)1/2

×p(xd
k + hd

k,a|x
d
k−1)1/2p(xd

k − hd
k,a|x

d
k−1)1/2

×

k−2∏
`=0

p(xd
`+1|x

d
` ) fxd

0
(xd

0 )

D22
1 : µ(ha, hb) = lnρvc

1
(Ch1,a + Ch1,b)

∑
xd

1

∑
xd

0

ρwc
0
(hc

1,a + hc
1,b)

×p(xd
1 + hd

1,a|x
d
0 )1/2p(xd

1 − hd
1,a|x

d
0 )1/2p(xd

0 )

D22
k+1 : µ(ha, hb) = lnρvc

k+1
(Chk+1,a + Chk+1,b)

∑
xd

k+1

· · ·

∑
xd

0

ρwc
k
(hc

2,a + hc
2,b)

×p(xd
k+1 + hd

k+1,a|x
d
k )1/2p(xd

k+1 − hd
k+1,a|x

d
k )1/2

×

k−1∏
`=0

p(xd
`+1|x

d
` )p(xd

0 )

(7.8a)

(7.8b)

(7.8c)

(7.8d)

(7.8e)

Figure 7.2: The negative Bhattacharyya
distance for the elements of matrices
Di j

k+1 (part 1).
Proof. Due to (6.17), many h vectors in (6.24i) are zero and thus we
omit them. For any time `, the pairs of densities with h`,a = h`,b = 0
and h`−1,a = h`−1,b = 0 are separable from the rest. They cancel.

If either h`,a, h`,b, h`−1,a, or h`−1,b has elements unequal zero, the
product

v(x` + h`,a|x`−1 + h`−1,a)v(x` − h`,b|x`−1 − h`−1,b)

= f (xc
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Figure 7.3: The negative Bhattacharyya
distance for the elements of matrices
Di j

k+1 (part 2).
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Inserting the definitions of the Gaussian distribution and the discrete
uniform distribution gives the result. �

We get an analytic result if the sums in Figs. 7.2 and 7.3 are finite.
They are finite if and only if the transition probability mass function
has finite support.

Corollary 18: Categorical distribution

Given a mixed continuous/discrete state space model with a non-
linearity as in (7.1). If the probability density p(xd

k ) of the discrete
random states is categorical, then an analytic sequential SWW
bound exists.

7.4 Numerical Results

The SWW bound (7.4) of state-space model (7.1) with additional noise
(7.3) from an imperfect channel is analyzed in the following.

Fig. 7.1 shows the setup for our analysis: Two sensors are in an one-
dimensional grid of 11 nodes. The grid is partitioned into two similar
sub-grids associated with the nearest sensors. On the left side, we
assume a transparent boundary. On the right side, a wall is modeled.
One source occurs at time k = 1. The settings are summarized in Tab.
7.1. Function Q (A) replaces every non-zero element in A by 1 and e`
is a zero vector except the `th entry which is one.

Fig. 7.4a shows the bound on the pressure states for one instant
of time. It features low values at sensor positions and an error floor
in-between. At the boundary between sensors, additional noise from
the channel’s distortion has a low influence on the neighborhood.
Observe that the bound depends linearly on the additional distortion.
The noise diffuses over several time steps.

The bound on the q-states is plotted in Fig. 7.4b. Observe that the
bound depends non-linearly on the additional distortion.

The bound on the localization-error variance is plotted in Fig. 7.4c.
According to the equations in Figs. 7.2 and 7.3, the parameters Hk at
time k also influence the computation at time k ± 1. The minimum
at time k = 2 is caused by different support of prior and transition
density whereas H0 = H1.

7.5 Conclusions of this Chapter

Hybrid continuous/categorical distributions of prior and noise de-
mand for a more general sequential Bayesian bound than the se-
quential Cramér-Rao (SCR) bound: the SWW bound. Although a
non-linearity is inherent in the state space model, there exist analytic
solutions of the SWW bound. At a specific time step, the SWW bound
of the pressure states stays approximately constant over location. The
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Figure 7.4: SWW bound on the error
variance of (a) pressure states p2, (b) q2
states, and (c) the xd

k state. Due to an im-
perfect channel, states q2,5 and q2,6 are
added by Gaussian noise Unif {0,D}.
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Table 7.1: Simulation settings (cf.
Fig. 7.1)

Densities
f (q0) ∼ N {0, 0.0001I} p(xd

0 ) ∼ Unif {4, 8}
f (p0) ∼ N {0, 0.01I} f (wc,p

k ) ∼ N {0, 0.01I}
f (wc,q

k ) ∼ N {0, 0.25I} f (vk) ∼ N {0, 0.01I}
Symmetric triangular density as transition density

p(xd
k |x

d
k−1) =



0.9 , xd
k = xd

k−1

0.05 , xd
k = xd

k−1 ± 1 ,

0.95 , xd
k = xd

k−1 ∈ {1, 11} ,

0.1 , xd
k = 10, xd

k−1 = 11 ,

0.1 , xd
k = 2, xd

k−1 = 1 ,

0 , else

State-space model
φcd: source function, Φc: discretized 1-D field, Φd = 1

φcd : xd
k 7→ 0.68e6+xd

k
C picks pressure state at 2 & 9

[Φc]1,1 = 0.98 [Φc]i,i = 1, i ∈ [2, 22]
[Φc]i+11,i = 5.8 × 10−5, i ∈ [1, 11]
[Φc]i,i+11 = −3.4, i ∈ [1, 11]
[Φc]i,i+12 = 1.7, i ∈ [2, 10] [Φc]1,13 = 3.4
[Φc]i+1,i+11 = 1.7, i ∈ [1, 10]

Parameters of the SWW for k = 1, 2, · · ·
H0 = Hk = blockdiag

(
0.01Q

(
ΦcT

)
, 1

)
SWW bound of the source location is insensitive to noise introduced
by the imperfect channel between sensors.
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Conclusion

To close my thesis, I present the most important conclusions and
give an outlook towards possible further research.

8.1 Conclusions

The discrete model stemming from the wave equation incorporates
wave phenomenons (e.g. echoes) into the Bayesian estimation. The
decentralized model exploits the sparsity of the system matrices. In
fact, the loose coupling between the components of the state vector
allows separate and parallel computation of equation sub-systems of
much smaller dimension in each cluster heads. Due to the decom-
position of the system matrix, decentralization distributes the com-
putational effort over several clusters (sensors) which is very useful
for large systems. If the finite difference method is replaced by an-
other numerical method, the sparseness of the system matrix has to
be ensured. The non-linear source couples the linear physical model
with the linear model of the source’s states. The spatio-temporal
field dependencies are demonstrated by the light cone (Fig. 3.1). Ex-
ploiting these dependencies highly reduces the communication effort
between clusters (sensors), transmit power, and quantization errors.
My approach in Chapter 5 does a whitening of this spatio-temporal
correlated signal up to some small noise.

The sequential Cramér-Rao (SCR) bound cannot be used as per-
formance bound for the decentralized distributed estimation, due to
hybrid discrete and continuous distributions of finite support. Se-
quential Weiss-Weinstein (SWW) bounds support those distributions.
The recursion of the SWW bound uses Chernoff or Bhattacharyya
coefficients. If there is a linear state-space model with closed-form
solutions of the coefficients for particular probability densities, ana-
lytic solutions of the SWW bound exists. Table 8.1 summarizes the
Bhattacharyya coefficients. For specific parameter matrices Hk, the
SWW bound of quantized1 and original continuous distributions are 1 Quantized densities are discrete ap-

proximations of continuous densities.equal. Probability densities (PDs) with finite support induce box con-
strains on the parameter matrix Hk. An analytic solution of the SWW
bound for non-linear systems only exists for specific non-linear state-
space models [cf. (7.1)]. The computational effort depends on the
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state-space model and the statistics:

• Consider the non-linear model (7.1). The computational effort is
quadratic in time.

• For linear state-space models with analytic solutions, the compu-
tational effort is linear in time.

• Additionally, if the statistics are constant, then the effort is constant.

Consider the pressure-state vector. The SWW bound at one time step
is approximately constant for every entry. This means that the bound
is constant in space. The impact of noise due to imperfect communi-
cation mainly influences the bound of the exchanged pressure states.
The SWW bound of the source location is insensitive to noise intro-
duced by the imperfect channel between sensors.

8.2 Outlook

Based on my work, I present different interesting issues that are worth
to follow.

Decentralized estimation

The finite-difference method (FDM) is a simple and fast numerical
method obtaining a discrete model. There are quite a number of oth-
ers, e.g. finite-element method (FEM). The decentralization approach,
which I followed, demands for a very sparse system matrix of the dis-
crete model. This is offered by the spectral-element method (SEM)22 Komatitsch et al. 2005; Tromp et al.

2008. due to the clever use of basis functions associated with Gauss-Lobatto
points and a matched Gaussian numerical integration.

Numerical approximation of stochastic partial differential equa-
tions (SPDEs) depends on the specific choice of the noise process. The
theory of SPDEs need to be further developed together with numeri-
cal approximations3. More specifically, the stochastic wave equation3 Dalang et al. 1998; Hausenblas 2010;

Jentzen et al. 2009; Walsh 2006. beyond generalized Wiener processes needs attention.
For decentralized distributed particle filter (DDPF), the gain of di-

mension reduction and the increase of communication are in oppo-
sition to each other. The use of marginalized particle filter (MPF)44 Schön et al. 2005.

would reduce both the computational effort and the communication
load in each sensor (cluster):

• The MPF uses Kalman filters (KFs) for the linear and Gaussian part
of state-transition model. This demands for fewer particles and,
hence, less communication costs.

• Additionally, the accuracy of the estimate improves due to the
analytic recursion of the KFs.

• The implementation of the KF is computationally more efficient
than of the particle filter (PF).

The communication load could be further reduced if the weights of
the DDPF are quantized. This leads to a different importance function
used for the particle filtering.



conclusion 81

M
ul

ti
va

ri
at

e
di

st
ri

bu
ti

on
D

efi
ni

ti
on

Bh
at

ta
ch

ar
yy

a
co

eff
.ρ

(h
)f

or
(6

.4
3)

Pa
ra

m
et

er
h
,

0
C

om
m

en
ts

G
au

ss
ia

n
N
{m

x,
C

x}
f(

x)
,

1
(2
π

)N
/2

( d
et

C
x)

1 /
2
e−

1 2
‖
x−

m
x‖

2 C
−

1
x

ρ
G x

(h
),

e−
1 8
‖
h ‖

2 C
−

1
x

(6
.4

2)
h

sm
al

l
h
→

0
:C

ra
m

ér
-R

ao
bo

un
d

C
on

t.
un

if
or

m
U

ni
f {

r,
s }

f(
x)
,

N ∏ `=
1

1
[s
−

r]
`
1

[x
] `
≥

[r
] `
,[x

] `
≤

[s
] `

ρ
U x

(h
),

N ∏ `=
1

[ 1
−
|[h

] `
|

[s
−

r]
`

]
(6

.5
3)

|[h
] `
|
≤

[s
−

r]
`

x,
h,

r,
s
∈
R

N
,r
≤

s

D
is

cr
et

e
un

if
or

m
U

ni
f {

r,
s }

p(
x)
,

N ∏ `=
1

1
[s
−

r]
`
1

[x
] `
≥

[r
] `
,[x

] `
≤

[s
] `

ρ
U x

(h
),

N ∏ `=
1

[ 1
−
|[h

] `
|

[s
−

r]
`

]
(6

.5
3)

|[h
] `
|
≤

[s
−

r]
`

x,
h,

r,
s
∈
Z

N
,r
≤

s

Ex
po

ne
nt

ia
lE

xp
{α
}

f(
x)
,

N ∏ `=
1

      e−
[α

] `
/2

[x
] `
,

[x
] `
≥

0

0,
el

se
ρ

E x
(h

),
N ∏ `=

1

      e−
[α

] `
/2

[h
] `
,

[h
] `
≥

0

e[α
] `
/2

[h
] `
,

[h
] `
<

0
(6

.6
2)

α
�

0

La
pl

ac
e

La
{m

x,
b }

f(
x)
,

N ∏ `=
1

1
2[

b]
`
e−
|[

x−
m

x]
`
| /2

[b
] `

ρ
L x
(h

),
N ∏ `=

1

( 1
+
|[h

] `
|

2[
b]
`

) e−
|[h

] `
|

2[
b]
`
,

(6
.6

6)
b
�

0

C
at

eg
or

ic
al
{p
`,

0,
·
·
·
,p
`,

N
′ `
}N `=

1
p(

x)
,

N ∏ `=
1

       N
′ ∑̀ `′

=
0

p `
,`
′
1

[x
] `

=
`′

       
ρ

C x
(h

),
N ∏ `=

1

       N
′ ∑̀ `′

=
0

p1 /
2

`,
`′

p1 /
2

`,
`′

+
[h

] `

       
(6

.7
0)

|[h
] `
|
∈
{0
,·
·
·
,N
′ `}

m
as

se
s

p `
,`
′
=

P
{[

x]
`

=
`′
}

Be
rn

ou
lli
{p
`,

0,
p `
,1

=
1
−

p `
,0
}N `=

1
(6

.7
2)

|[h
] `
|
∈
{0
,1
}

su
pp

or
t[

0,
N
′ 1]×
·
·
·
×

[0
,N
′ N

]

M
ix

ed
di

st
ri

bu
ti

on
s

v
=

v(
[x

] 1
)·
·
·
v(

[x
] N

)
ρ

=
( c 1
ρ

c 1
+

c 2
ρ

d 1

) ···( c 1
ρ

c N
+

c 2
ρ

d N

)
v(

x)
=

c 1
f(

x)
+

c 2
p(

x)

c 1
+

c 2
=

1

Table 8.1: Summary of Bhattacharyya
coefficients the SWW bound. The lower
bound (6.20) is computed by (6.38) and
(6.43) in Fig. 6.3 with the Bhattacharyya
coefficients ρ(h) presented in this ta-
ble. [The underlying Bayesian score is
(6.12).]
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The boundary conditions of the forward model (wave equation)
have been deterministic throughout my thesis. A stochastic approach
allows a statement on the robustness of the localization regarding
inaccurate boundary conditions.

SWW bounds

Scheduling of decentralized estimators in sensor networks (SNs)
might depend on decentralized SWW bounds:

• Mohammadi et al. 2012 presented an approach for the decentralized
Cramér-Rao (CR) bound.

• Conditional sequential Bayesian bounds for

E
{
εkε

T
k | y1:k−1

}
(8.1)

are often more desired than unconditioned bounds due to their
dependency on particular realizations. The conditional SCR bound
was published by Zuo et al. 2011.

Multiple-switching dynamic models (hybrid models) for linear
models depend non-linearly on a state which evolves over time5. This5 Ristic et al. 2004; Washburn et al. 1985.

is called the regime sequence. The conditional CR bound depends on
a specific sequence. The unconditional CR bound is defined as the
expectation of the conditional CR bound over the regime sequences.
Since the SWW bound supports both discrete and continuous ran-
dom states, it is a natural application for multiple-switching dynamic
models.

The general structure for the linear SWW bound utilizes the Bhat-
tacharyya coefficients of the corresponding PDs. Both, the non-
sequential Weiss-Weinstein (WW) bound and the SWW bound would
profit by closed-form solutions for different distributions.

Furthermore, the SWW bound could be used to analyze models
with quantized measurements6.6 Duan et al. 2008a.



A
Lemmas

In this chapter, I present Lemmas utilized in Chapter 6.

A.1 Gaussian Densities

The following Lemmas are independent of the discrete or continu-
ous nature of the densities. The densities are either Gaussian densi-
ties or quantized Gaussian densities p(wd

k ) = 1
c′′ fwk (w

d
k ∆x) or p(vd

k ) =
1
c′′ fvk (v

d
k ∆x). The factor c′′ normalizes the probability mass function

(PMF).

Lemma 19: Gaussian innovation noise

For a Gaussian innovation noise, the solution of (6.33a) is

Ek+1 = ρG
wk

(hk+1,a −Φhk,a + hk+1,b −Φhk,b) (A.1)

which is independent of xk (cf. Lemma 3).

Proof. Let us insert the Gaussian density into (6.33a), i.e.

Exk+1 |xk

{
e
−

1
4‖xk+1+hk+1,a−Φ(xk+hk,a)‖

2
C−1

wk

e
−

1
2 ‖xk+1−Φxk‖

2
C−1

wk

× e
−

1
4‖xk+1−hk+1,b−Φ(xk−hk,b)‖

2
C−1

wk

}
. (A.2)

This simplifies to

c′w

∫
∞

−∞

e
−1/2‖xk+1−Φxk‖C−1

wk

×e
−1/4‖hk+1,a−Φhk,a‖Cwk

−1/4‖−hk+1,b+Φhk,b‖C−1
wk

×e
−1/2〈xk+1−Φxk ,hk+1,a−Φhk,a−hk+1,b+Φhk,b〉C−1

wk dPxk+1 (A.3)

where

c′w ,

(2π)−N/2 det
(
Cwk

)−1/2 , continuous ,

(2π)−N/2 det
(
Cwk

)−1/2 c′′ , quantized .
(A.4)
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We substitute

‖t‖2Cwk
:= ‖xk+1 −Φxk‖

2
C−1

wk

+
〈
xk+1 −Φxk,hk+1,a −Φhk,a − hk+1,b + Φhk,b

〉
C−1

wk

+
1
4

∥∥∥hk+1,a −Φhk,a − hk+1,b + Φhk,b

∥∥∥2

C−1
wk

and utilize

c′w

∫
∞

−∞

e
−1/2‖t‖2

C−1
wk dPt = 1 (A.5)

to obtain the final result. �

Lemma 20: Gaussian prior

For a Gaussian prior, the solution of (6.33a) is

E1 = ρG
x0

(h0,a + h0,b) . (A.6)

Proof. The results follows from Lemma 19 where v(x0|x−1) = vx0 (x0)
and h−1,a + h−1,b = 0. �

Lemma 21: Gaussian measurement noise

For a Gaussian measurement noise the solution of (6.33b) is

E′k+1 = ρG
vk+1

(Chk+1,a + Chk+1,b) (A.7)

which is independently of xk+1 (cf. Corollary 4).

Proof. Let us insert the Gaussian density into (6.33b), i.e.

Eyk+1 |xk+1

{
e
−

1
4‖yk+1−C(xk+1+hk+1,a)‖

2
C−1

vk+1

e
−

1
2‖yk+1−Cxk+1‖C−1

vk+1

× e
−

1
4‖yk+1−C(xk+1−hk+1,b)‖

2
C−1

vk+1

}
. (A.8)

This simplifies to

c′v

∫
∞

−∞

e
−1/2‖yk+1−Cxk+1‖C−1

vk+1
−1/4‖Chk,a‖C−1

vk+1
−1/4‖Chk,b‖C−1

vk+1

×e
−1/2〈yk+1−Cxk+1,Chk,a−Chk,b〉C−1

vk+1 dPyk+1
(A.9)

where

c′v ,

(2π)−N/2 det
(
Cvk+1

)−1/2 , continuous ,

(2π)−N/2 det
(
Cvk+1

)−1/2 c′′ , quantized .
(A.10)



lemmas 85

We substitute

‖t‖2Cvk+1
:=

∥∥∥yk+1 − Cxk+1

∥∥∥2

C−1
vk+1

−

〈
yk+1 − Cxk+1,Chk+1,a − Chk+1,b

〉
C−1

vk+1

+
1
4

∥∥∥Chk+1,a − Chk+1,b

∥∥∥2

C−1
vk+1

and utilize

c′v

∫
∞

−∞

e
−1/2‖t‖2

C−1
vk+1 dPt = 1 (A.11)

to obtain the final result. �

A.2 Uniform Densities

The following Lemmas are independent of the discrete or continuous
nature of the densities. The densities are either continuous or discrete
uniform densities.

Lemma 22: Uniform innovation noise

For an independent uniform density v(wk), the solution of (6.33a)
is

Ek+1 = ρU
wk

(hk+1,a −Φhk,a + hk+1,b −Φhk,b) (A.12)

which is independent of xk.

Proof. Let us insert the uniform density into (6.33a), i.e.

Exk+1 |xk

{vwk (xk+1 + hk+1,a −Φ(xk + hk,a))1/2

vwk (xk+1 −Φxk)

× vwk (xk+1 − hk+1,b −Φ(xk − hk,b))1/2
}

(A.13)

Due to the existence of a density, we have∫
∞

−∞

vwk (xk+1 + hk+1,a −Φ(xk + hk,a))1/2

× vwk (xk+1 − hk+1,b −Φ(xk − hk,b))1/2dPxk+1

=

∫ sk

rk

N∏
`=1

1xk+1+hk+1,a−Φ(xk+hk,a)∈[rk ,sk]

[ςwk
]`

× 1xk+1−hk+1,b−Φ(xk−hk,b)∈[r,s]dPxk

=

N∏
`=1

[
1 −
|[hk+1,a −Φhk,a + hk+1,b −Φhk,b]`|

[ςwk
]`

]
(A.14)

if

|[hk+1,a −Φhk,a + hk+1,b −Φhk,b]`| ≤ [ςwk
]` . (A.15)

else zero. �
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Lemma 23: Uniform prior

For an independent uniform density v(w0), the solution of (6.33a)
is

E1 = ρU
wk

(h0,a + h0,b) . (A.16)

Proof. The results follows from Lemma 22 where v(x0|x−1) = vx0 (x0)
and h−1,a + h−1,b = 0. �

Lemma 24: Uniform measurement noise

For an independent uniform density v(vk), the solution of (6.33b)
is

E′k+1 = ρU
vk

(−Chk+1,a − Chk+1,b) (A.17)

which is independent of xk+1.

Proof. We insert the uniform density into (6.33b) , i.e.

Eyk+1 |xk+1

{vvk (yk+1 − C(xk+1 + hk+1,a))1/2

vvk (yk+1 − Cxk+1)
(A.18)

× vvk (yk+1 − C(xk+1 − hk+1,b))1/2
}
,

Due to the existence of a density, we have∫
∞

−∞

vvk+1 (yk+1 − C(xk+1 + hk+1,a))1/2

× vvk+1 (yk+1 − C(xk+1 − hk+1,b))1/2dPyk+1

=

∫ sk+1

rk+1

N∏
`=1

1yk+1−C(xk+hk+1,a)∈[rk+1,sk+1]

[ςvk
]`

× 1yk+1−C(xk+1−hk+1,b)∈[rk+1,sk+1]dPyk+1

=

N∏
`=1

[
1 −
|[Chk+1,a + Chk+1,b]`|

[ςvk
]`

]
(A.19)

if

|[Chk+1,a + Chk+1,b]`| ≤ [ςvk
]` (A.20)

else zero. �

A.3 Exponential Densities

We assume both exponential densities and quantized exponential
densities p(wd

k ) = 1
c′′ fwk (w

d
k ∆x) and p(vd

k ) = 1
c′′ fvk (v

d
k ∆x). The factor

c′′ = c′′1 · · · c
′′

N normalizes the PMF.
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Lemma 25: Innovation noise

Given a multivariate independent exponential density v(wk), the
solution of (6.33a) is

Ek+1 = ρE
wk

(hk+1,a −Φhk,a + hk+1,b −Φhk,b) (A.21)

which is independent of xk.

Proof. Let us insert the density into (6.33a) and substitute w := xk+1 −

hk+1,b −Φ(xk − hk,b), i.e.∫
∞

−∞

vwk (xk+1 + hk+1,a −Φ(xk + hk,a))1/2

× vwk (xk+1 − hk+1,b −Φ(xk − hk,b))1/2dPxk+1

=

N∏
`=1

∫
∞

−∞

c′`e
−α`/2(w+hk+1,a−Φhk,a+hk+1,b−Φhk,a)−α`/2(w)

× 1w+hk+1,a−Φhk,a+hk+1,b−Φhk,a∈[0,∞)1wk∈[0,∞)dPw (A.22)

where

c′` =

α` , v(wk) cont. ,

α`c′′` , v(wk) discr. ,
(A.23)

normalizes the densities. With

c′`

∫
∞

0
e−α`[w]l dP[w]l = 1 (A.24)

we get

N∏
`=1

e−α`/2(hk+1,a−Φhk,a+hk+1,b−Φhk,a) (A.25)

if

[hk+1,a −Φhk,a + hk+1,b −Φhk,b]` ≥ 0 (A.26)

else

N∏
`=1

eα`/2(hk+1,a−Φhk,a+hk+1,b−Φhk,a) . (A.27)

�
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Lemma 26: Measurement noise

Given a multivariate independent exponential measurement noise
v(vk), the solution of (6.33b) is

E′k+1 = ρE
vk

(−Chk+1,a − Chk+1,b) (A.28)

which is independent of xk+1.

Proof. The proof is similar to that of Lemma 25 except hk+1,a = hk+1,b :=
0 and the substitution of Φhk,a by Chk+1,a, Φhk,b by Chk+1,b and wk by
vk+1. �

A.4 Laplace Densities

Lemma 27: Innovation noise

Given multivariate independent exponential density v(wk), the
solution of (6.33a) is

Ek+1 = ρL
wk

(hk+1,a −Φhk,a + hk+1,b −Φhk,b) (A.29)

which is independent of xk.

Proof. Let us insert the density into (6.33a), substitute w := xk+1 −

hk+1,b −Φ(xk − hk,b), and substitute h = hk+1,a −Φhk,a + hk+1,b −Φhk,a,
i.e. ∫

∞

−∞

vwk (xk+1 + hk+1,a −Φ(xk + hk,a))1/2

× vwk (xk+1 − hk+1,b −Φ(xk − hk,b))1/2dPxk+1

=

N∏
`=1

∫
∞

−∞

1
2[bk]`

e−|[w]` |/2b−|[w+h]` |/2bdw (A.30)

where normalizes the densities. If h < 0 we get

N∏
`=1


1

2[bk]`
e−

[h]`
2[bk ]` , [w]` ≥ 0, [w + h]` ≥ 0

1
2[bk]`

e−
[h]`

2[bk ]` , [w]` < 0, [w + h]` < 0
h`

2[bk]`
e−

[h]`
2[bk ]` , [w]` < 0, [w + h]` ≥ 0

 =

N∏
`=1

(
1 +

[h]`
2[bk]`

)
e−

[h]`
2[bk ]`

(A.31)

If h ≺ 0 we get

N∏
`=1


1

2[bk]`
e

[h]`
2[bk ]` , [w]` ≥ 0, [w + h]` ≥ 0

1
2[bk]`

e
[h]`

2[bk ]` , [w]` < 0, [w + h]` < 0

−
h`

2[bk]`
e

[h]`
2[bk ]` , [w]` ≥ 0, [w + h]` < 0

 =

N∏
`=1

(
1 −

[h]`
2[bk]`

)
e

[h]`
2[bk ]`

(A.32)
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For arbitrary h , 0 we get

ρL
w(h) =

N∏
`=1


(
1 + [h]`

2[bk]`

)
e−

[h]`
2[bk ]` , [h]` > 0 ,(

1 − [h]`
2[bk]`

)
e

[h]`
2[bk ]` , [h]` ≤ 0 .

(A.33)

�

Lemma 28: Measurement noise

Given multivariate independent exponential measurement noise
v(vk), the solution of (6.33b) is

E′k+1 = ρL
vk

(−Chk+1,a − Chk+1,b) (A.34)

which is independent of xk+1.

Proof. The proof is similar to that of Lemma 27 except hk+1,a = hk+1,b :=
0 and the substitution of Φhk,a by Chk+1,a, Φhk,b by Chk+1,b, and wk by
vk+1.

�

A.5 Categorical Densities

Lemma 29: Innovation noise

Given a multivariate independent categorical density v(wk), the
solution of (6.33a) is

Ek+1 = ρC
wk

(hk+1,a −Φhk,a + hk+1,b −Φhk,b) (A.35)

which is independent of xk.

Proof. Let us insert the categorical density into (6.33a), substitute w :=
xk+1−hk+1,b−Φ(xk−hk,b), and substitute h = hk+1,a−Φhk,a+hk+1,b−Φhk,a,
i.e. ∫

∞

−∞

vwk (xk+1 + hk+1,a −Φ(xk + hk,a))1/2

× vwk (xk+1 − hk+1,b −Φ(xk − hk,b))1/2dPxk+1

=

N∏
`=1


N′∑̀
`′=0

p1/2

`,`′+[h]`
p1/2

`,`′1[x]`=`′

 (A.36)

= ρC
w(h) . (A.37)

Notice that |[h]`| ∈ {0, · · · ,N′`}. �

Lemma 30: Measurement noise
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Given a multivariate independent exponential measurement den-
sity v(vk), the solution of (6.33b) is

E′k+1 = ρC
vk

(−Chk+1,a − Chk+1,b) (A.38)

which is independent of xk+1.

Proof. The proof is similar to that of Lemma 29 except hk+1,a = hk+1,b :=
0 and the substitution of Φhk,a by Chk+1,a, Φhk,b by Chk+1,b, and wk by
vk+1. �



B
The Weiss-Weinstein Bound in the
Limit

Although the following facts are known I have not been able
to find any publication of following proofs. Thus, I prove that the
Weiss-Weinstein (WW) and Bobrovsky-Zakai (BZ) bounds approach
the Cramér-Rao (CR) bound if h→ 0 and that the WW approaches the
BZ bound if s→ 0, or s→ 1.

The error variance of the unbiased estimator g(y) = x̂ is bounded
according to Weiss et al. 1988 by

E
{
(x̂ − x)2

}
≥

h2 E
{
L(x + h, x, y)s}2

E
{[

L(x + h, x, y)s − L(x − h, x, y)1−s]2
} (B.1)

with the likelihood ratio

L(x1, x2, y) ,
v(x1, y)
v(x2, y)

. (B.2)

Here the expectation is with respect to x and y.

Theorem 31: Limit case I of the scalar WW bound

For s → 0 and s → 1 the Weiss-Weinstein lower bound reduces
to the BZ lower bound.

Proof. If s→ 0, the right side of the WW bound follows to

h2

E
{[

1 − L(x − h, x, y)
]2
} (B.3)

while for s→ 1

h2

E
{[

L(x + h, x, y) − 1
]2
} . (B.4)

In both cases, the argument of the expectation equals[
1

v(x, y)

1
∆
h

xv(x, y)
]2

(B.5)

which indeed is the BZ lower bound. �



92

The same arguments yield for the limits of the multivariate WW
bound.

Rapoport et al. 2004b, (Theorem 3) proved the relation between
sequential Weiss-Weinstein (SWW) and sequential Cramér-Rao (SCR).
Although this includes the non-sequential version as a special case,
the following proof is different and shorter.

Theorem 32: Limit case II of the scalar WW bound

Let exist a joint probability density function f (x, y) of measure-
ment y and parameter x with following properties:

1. limx→±∞ x f (x|y) = 0 for all x and y

2. ∂x ln f (x, y) exists

Then for h→ 0 the Weiss-Weinstein lower bound reduces to the
Cramér-Rao lower bound.

Proof. In the limit h→ 0, the expectation

lim
h→0

E
{
L(x + h, x, y)s} = 1 . (B.6)

Rewriting

1
h

[
L(x + h, x, y)s

− L(x − h, x, y)1−s
]

(B.7)

gives

1
hv(x, y)

[
v(x + h, y)sv(x, y)1−s

− v(x − h, y)1−sv(x, y)s
]
. (B.8)

Furthermore, this is equivalent to

v(x, y)1−s
1
∆
h

xv(x, y)s + v(x, y)s
1
∆
h

xv(x, y)1−s . (B.9)

With the chain rule and h → 0, above term becomes the score of the
Cramér-Rao bound ∂x ln f (x, y) which is independent of the parameter
s. The result becomes

E
{
(x̂ − x)2

}
≥

1
E

{
∂x ln f (x, y)∂x ln f (x, y)

} (B.10)

�

Theorem 33: Limit II of the multivariate WW bound

The multivariate WW bound is defined by

Ex,y

{
εεT

}
< TJ−1TT . (B.11)
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with

[J]u,v =

E
{[

L(x + hu, x, y)su − L(x − hu, x, y)1−su
]

E
{
L(x + hu, x, y)su

}[
L(x + hv, x, y)sv − L(x − hv, x, y)1−sv

]}
E

{
L(x + hv, x, y)sv

} . (B.12)

and

T = [h1,h2, · · · ] . (B.13)

In the case of T = hI, letting h → 0, the multivariate CR bound
is obtained.

Proof. With the diagonal matrix T, the vectors h` = he`. This causes

Ex,y

{
εεT

}
= h2IJ−1 . (B.14)

The arguments are the same for every [J]u,v as in Lemma 32. Further-
more, the partial difference quotients are with respect to [x]u and [x]v,
respectively. The result gives the information matrix of the CR bound,
i.e.

[J]u,v = Ex,y
{
∂[x]u ln f (x, y)∂[x]v ln f (x, y)

}
(B.15)

The constrains of the CR bound have to be satisfied.
�





C
Manifolds of Power Spectral Densi-
ties

I start with a problem statement which leads to a manifold of
power spectral densities (PSDs) and the geodesic distance between
two PSDs.1 1 Georgiou 2007.

Consider a time-discrete correlated second-order stationary ran-
dom process (signal) uk with assumed PSD S(θ) and a predictor

ûk =

∞∑
n=1

an, f uk−n .

The aim is to generate a white signal (innovation) uk − ûk with flat
PSD, i.e. whitening of uk.

Two questions arise:

• How shall the mismatch between assumed and true PSD be speci-
fied?

• How shall the whiteness of a signal uk be defined?

In the literature there are three different possibilities:

• The flatness of a PSD does not allow to compare two different PSDs.

• The Itakura-Saito2 (spectrum) distance between PSDs is only correct 2 Basseville 1989.

if both ly in a local neighborhood.

• Georgiou’s distance is a geodesic distance of PSDs in a manifold. In
the remainder, I summarize its derivation by Georgiou3. 3 Georgiou 2007.

Let u(1)
k denote a random process with underlying PSD S1. Consider

a situation where a distinct PSD S2 is used for filtering. Then the
degradation of the prediction-error variance is defined by

%a/g(S1,S2) ,
E
{∣∣∣u(1)

0 −
∑
∞

n=1 an,S2 u(1)
−n

∣∣∣2}
E
{∣∣∣u(1)

0 −
∑
∞

n=1 an,S1 u(1)
−n

∣∣∣2} (C.1)

Function %a/g(S1,S2) may serve as mismatch between the two PSDs.
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Furthermore

%a/g(S1,S2) =

1
2π

∫ π
−π

S1(θ)
S2(θ) dθ

e
1

2π

∫ π
−π

ln
(

S1(θ)
S2(θ)

)
dθ
≥ 1 . (C.2)

Its logarithm

%a/g(S1,S2) , ln %a/g(S1,S2) ≥ 0 (C.3)

is termed the Itakura distance. Since %a/g(S1,S2) , %a/g(S2,S1) it is
symmetrized, i.e.

%(S1,S2) , %a/g(S1,S2) + %a/g(S2,S1) (C.4)

= ln
(

1
2π

∫ π

−π

S1(θ)
S2(θ)

dθ
1

2π

∫ π

−π

S2(θ)
S1(θ)

dθ
)
. (C.5)

It has two important properties:

1. %(S1,S2) ∈ R+ ∪ {∞}.

2. %(S1,S2) = 0 if and only if S1(θ)/S2(θ) is constant.

S1

∆
τ︷︸︸︷

S
′

S
′′

S2

τ P

(a)

Sτ2

S0

S
τ

1

S1

SτS2

S τ
+
εS
′ τ

P

(b)

Figure C.1: Geodesic paths in the man-
ifold P. (a) arbitrary path and (b)
geodesic path Sτ between S1, S2 and the
white PSD S0.

Next a geometry and a natural metric is developed by collecting all
PSDs into a manifoldPwhere %(S1,S2) induces a pseudo-Riemannian
metric in P. In this manifold we are interested in the length of the
shortest path between two PSDs called geodesic distance.

The differentiable manifold (P, 2P) is defined by

P = {S : S differentiable on (−π, π],S(θ) > 0, (C.6)

S,
dS
dθ
,S−1 bounded} (C.7)

Since %(S1,S2) = 0 if and only if S1(θ)/S2(θ) is constant those are in a
equivalence class

[S] = {S1 ∈ P : S1 = c f , c ∈ R+} . (C.8)

The Taylor approximation of %(S1,S2) in (C.5) gives44

Var {·} =
1

2π

∫ π

−π
(·)2dθ −

(
1

2π

∫ π

−π
·dθ

)2

(C.9)
gS : D→ R+ : ∆ 7→ gS(∆) = Var

{
∆

S

}1/2

(C.10)

which is a pseudo-Riemannian metric tensor with natural tangent
spaceD = {∆ : ∆, (d∆/dθ) bounded} and ∆/S < 1.

A small sub-interval of the path Sτ, τ ∈ [0, 1], between PSDs S1 and
S2 is

∆` =

√
gSτ (Ṡτ∆τ) (C.11)

and hence the length

` =

∫ 1

0

√
gSτ (Ṡτdτ) . (C.12)

The geodesic distance demands for the extremum (minimum) of (C.12),
see Fig. C.1. The calculus of variations gives the geodesic distance

d(S1,S2) = Var {ln S1 − ln S2}
1/2 . (C.13)

Fig. C.1 illustrates the distances between both PSDs and a white signal.
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ald Matz (Nov. 2010). “Distributed state and field estimation using
a particle filter”. In: Proc. 44th Asilomar Conf. Signals, Syst., Comput.
Pacific Grove, CA, pp. 1447–1451.

Yardim, C., P. Gerstoft, and W. S. Hodgkiss (2009). “Tracking of geoa-
coustic parameters using Kalman and particle filters”. In: The Jour-
nal of the Acoust. Soc. of Am. 125, p. 746 (see p. 1).

Yardim, C., Z. H. Michalopoulou, and P. Gerstoft (2011). “An overview
of sequential Bayesian filtering in ocean acoustics”. In: IEEE Oceanic
Eng 36(1), pp. 73–91 (see p. 39).

Zhao, F. and L. Guibas (2004). Wireless sensor networks: An information
processing approach. Morgan Kaufmann (see p. 1).

Zhdanov, M. S. (2002). Geophysical inverse theory and regularization prob-
lems. Vol. 36. Amsterdam: Elsevier Science Ltd (see pp. 2, 13).

Zuo, Long, Ruixin Niu, and P.K. Varshney (Jan. 2011). “Conditional
posterior Cramer-Rao lower bounds for nonlinear sequential Bayesian
estimation”. In: IEEE Trans. on Signal Proc. 59.1, pp. 1–14 (see p. 82).



Index

Bayesian Estimation, 6, 7, 21,
45

Bhattacharyya coefficient, 47,
53, 54, 57, 59–61, 73, 81

Gaussian distributions, 53
Bhattacharyya distance, 47, 49
Borel algebra, 5
bound

approximated SWW, 64
Bayesian, 11
Bobrovsky-Zakai, 46
Cramér-Rao, 46
sequential Cramér-Rao, 58,

63, 64, 67
sequential Weiss-Weinstein,

47, 73
Weiss-Weinstein, 47

Brownian motion, 14

consensus
argumentum-maximi, 27, 33
maximum, 27

decentralized, 1
density

hybrid, 5
difference quotient, 46
distance

Bhattacharyya, 47, 49
Georgiou, 95
Itakura, 96
Itakura-Saito, 95

distributed, 1

estimation error, 9, 31, 45, 73
expectation, 5

finite-difference method, 15,
30, 38, 76

deterministic, 16
stochastic, 16

flatness, 95

Georgiou distance, 95
Green function, 14, 15

importance samling, 22, 26
importance sampling, 7, 8
innovation, 95
integral
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