
The Transient Tolerant
Time-Triggered System-on-Chip

(4TSoC)
DISSERTATION

zur Erlangung des akademischen Grades

Doktor/in der technischen Wissenschaften

eingereicht von

Mikel Azkarate-askasua Blazquez
Matrikelnummer 0928311

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Priv.Doz. Dipl.-Ing. Dr.techn. Roman Obermaisser

Diese Dissertation haben begutachtet:

(Priv.Doz. Dipl.-Ing. Dr.techn.
Roman Obermaisser)

(Prof. Dr. Kees G.W.
Goossens)

Wien, 15.10.2012
(Mikel Azkarate-askasua

Blazquez)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

The Transient Tolerant
Time-Triggered System-on-Chip

(4TSoC)
DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor/in der technischen Wissenschaften

by

Mikel Azkarate-askasua Blazquez
Registration Number 0928311

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Priv.Doz. Dipl.-Ing. Dr.techn. Roman Obermaisser

The dissertation has been reviewed by:

(Priv.Doz. Dipl.-Ing. Dr.techn.
Roman Obermaisser)

(Prof. Dr. Kees G.W.
Goossens)

Wien, 15.10.2012
(Mikel Azkarate-askasua

Blazquez)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Mikel Azkarate-askasua Blazquez
Arizmendiarrieta 2, 20500 Arrasate (Baskenland)

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

The Transient Tolerant Time-Triggered
System-on-Chip (4TSoC)

Embedded systems of different application domains (offshore windmills,
railway, avionic, etc.) can benefit from integrated architectures. The func-
tionality that required several chips in the past can now be integrated in
a single chip due to the recent advances on silicon technology miniatur-
ization. This approach carries interesting economical benefits due to the
reduction on cost of electronic components and interconnection.

Most of the current integrated architectures have been implemented us-
ing a software approach (e.g., a hypervisor) in order to build the illusion of
having several execution environments on monolithic processor chips. How-
ever, building integrated architectures using a hardware approach, upon a
Multi-Processor System-on-Chip (MPSoC), the system not only achieves
a better performance, but also increased power efficiency, and significantly
higher reliability. In fact, high integration enables small transistor tech-
nologies, but causes more sensitivity w.r.t. energy variations which re-
quires new fault tolerance measures to overcome the transient fault rates
(e.g., soft-errors) that have significantly increased.

This dissertation presents a Transient Tolerant Time-Triggered System-
on-Chip (4TSoC), an integrated architecture for safety-related embed-
ded systems. The 4TSoC architecture introuduces fault-tolerance mecha-
nisms for application components, communication interfaces and the Time-
Triggered Network-on-Chip. As a prerequisite for replication we introduce
on-chip fault-containment mechanisms along with design methods to ad-
dress fault containment during synthesis.

A Fault Injection for System-on-Chip (FI4SoC) has been developed to
test state-of-the-art integrated architectures (e.g., XtratuM, TTSoC) and
validate 4TSoC hardening configurations. The experiments have provided
experimental evidence for reliability of the 4TSoC architecture in the pres-
ence of soft-errors.

i

ii

The Transient Tolerant Time-Triggered
System-on-Chip (4TSoC)

Integrierte Architekturen stellen einen signifikanten Nutzen für einge-
bettete Systeme aus verschiedenen Anwendungsdomänen (z. B. Windener-
gie, Eisenbahn, Luftfahrtelektronik, etc.). Die Funktionalität, die bisher
durch mehrere Einzelchips erreicht wurde, kann nun durch die Fortschritte
der Silikonindustrie in einen einzigen Chip integriert werden. Dieser neue
Ansatz bringt Kostenreduktion sowohl bezüglich der Anzahl der Kompo-
nenten als auch deren Verkabelung.

Viele gängige integrierten Systeme benutzen einen Softwareansatz (i.e.
einen Hypervisor), um mehrere virtuelle Ausführungsumgebungen auf ei-
nem Chip zu emulieren. Im Gegensatz dazu basiert die vorliegende Arbeit
auf einem Hardwareansatz, genauer einem “Multi-Processor System-on-
Chip (MPSoC)”. Diese Hardwarelösung bietet Vorteile hinsichtlich Perfor-
manz, Energieeffizienz und Zuverlässigkeit gegenüber dem Softwareansatz.

Diese Dissertation behandelt eine “Flüchtige Fehler tolerierende zeitge-
steuerte System-on-Chip Architektur”, die als integrierte Architektur für
sicherheitskritische eingebettete Systeme konzipiert ist. Als Teil der Archi-
tektur wird eine Replikation der Applikationskomponenten und die dazuge-
hörige Systemkomponente vorgestellt. Im Weiteren wird ein Fehlermodell
für MPSoCs erarbeitet, das die Architektur durch Gliederung in Fehler-
begrenzungen (“Fault Containment Regions (FCR)”) und deren Replikati-
on beherrscht. Zum Testen der Architektur wurde ein Fehlereinstreuungs-
system (“Fault Injection for System-on-Chip (FI4SoC)”) entwickelt, um
aktuelle integrierte Architekturen zu testen (z.B. XtratuM, TTSoC) und
Maßnahmen zur Härtung zu validieren.

Die Arbeit schließt mit einer Betrachtung verschiedener Maßnahmen
zur Verbesserung der Fehlertoleranz in einem zeitgesteuerten System-on-
Chip und deren Anwendbarkeit in verschiedenen Anwendungsdomänen.

iii

iv

The Transient Tolerant Time-Triggered
System-on-Chip (4TSoC)

Aplikazio domeinu ezberdinetako sistema txertatuak (itsasoko haizer-
rotak, trengintza, hegazkingintza, etab.) txip bakarrean integratutako ar-
kitekturez profita daitezke. Aurrez txip anitzetan inplementatutako funt-
zionalitateak txip bakar batean sar daitezke orain azken urteotan silizio
teknologiak jazo duen izugarrizko miniaturizazioari esker. Honek ekonomi-
koki oso interesgarria den txip eta interkonexio murrizketa dakar.

Sistema txertatuentzako integratutako arkitekturek software mekanis-
moak erabili dituzte prozesadore bakarreko txipetan exekuzio ingurune ez-
berdinen ilusioak sortzeko (adb., hiperbisoreak). Aldiz, integratutako ar-
kitektura berberak hardware mekanismoak erabiliz eraikiz gero, txipean
txertatutako prozesadore anitzeko sistema (ingelesez MPSoC) bat erabilita,
errendimendu hobea lortzeaz gain, energetikoki, eta batez ere, segurtasuna-
ri dagokioenean abantail ugari lor litezke. Izan ere, aipatutako integrazioa
ahalbidetzen duen transistore teknologia nimiñoak, energia bariazioetara
sentikorragoak diren txipak ekarri ditu, eta honek mekanismo berriak es-
katzen ditu falta iragankorren maiztasun igoera nabarmenari (soft-error
deitutakoak bereziki) aurre egiteko.

Tesi honek falta iragankorrekiko indartutako MPSoC bat (4TSoC) aur-
kezten du, segurtasunarekin lotutako sistema txertatuentzako integratuta-
ko arkitektura bat. Txip barnean erreplikatutako konponenteen erabilera
proposatzen du horretarako, bai aplikazioaren menpe dauden konponenteak
inplementatzeko, baita arkitekturako sistema-konponenteak berak indart-
zeko ere. Konfigurazio guztiekin MPSoCak fidagarriago egiteko aukeren
modelo bat sortu da. Gainera, erreplikazio hauek baliagarri suertatzeko
beharrezkoa den falta-kontentzioa aurkezten du eta berau nola bermatu
hardwarea sintetizatzeko orduan.

Txipean txertatutako sistemak frogatzeko falta injekzio erraminta bat
(FI4SoC) garatu da, eta akademiak aurkeztutako beste integratutako ar-
kitektura batzuk (XtratuM, TTSoC) ikertzeaz gain proposatutako 4TSoC
konfigurazioen liburutegia baliozkotzat eman da. Azkenik, konfigurazio in-
teresgarrienak aplikazio domeinu ezberdinetan duten balioa neurtu da.

v

vi

Acknowledgments

This dissertation has been developed in collaboration among the Electronics
division of Ikerlan Research Center (Basque Country, Spain), the Real-Time
System group of Vienna University of Technology (TU Wien, Austria) and the
Embedded Systems group of the University of Siegen (Germany).

I would like to give very special thanks to six extraordinary professionals. First,
to Prof. Roman Obermaisser for his full support in these 3 years, his great ideas
and our passionate discussions in Vienna and Siegen. To Prof. Hermann Kopetz
and Antonio Perez for giving me the opportunity to do this work between TU
Wien and Ikerlan. To Prof. Kees Goossens for his reviews and contribution
from Eindhoven as co-examiner of this thesis. And to Dr. Imanol Martinez
and Dr. Jon Perez for their support from Ikerlan Research Center.

I would like to mention my colleges in Ikerlan (Iban, Niko and Xabi), TU
Wien (Albrecht, Armin, Bekim, Benedikt, Christian E. S., Christian P., Ekarin,
Harald, Michael, Roland, Oliver, Sven, Vaçlav and Wolfgang), Siegen (Rubaiyat
and Zaher), all with whom I have discussed several points of my thesis and, of
course, the rest of the friends and staff within the three institutions.

Finally, to all the people I crossed and enjoyed (I hope for long time) during
these last years in Arrasate (Ander, Imanol, Jon and Vero), Vienna (Aaron,
Ainhoa, Eirini, Iñaki, Irene, Jarek, Jonathan, Ju, Mikel G., Rocio, Sara and
Virginia) and Siegen (Imad and Mohan).

vii

viii

Contents

Abstract i

Contents ix

List of Figures xiii

List of Acronyms xvii

1 Introduction 1

1.1 Problem Statement . 2

1.2 Proposed Solution . 2

1.3 Contributions . 3

1.4 Thesis Organization . 3

2 Background and Basic Concepts 7

2.1 The Notion of Time . 7

2.1.1 Time Flow and Models 7

2.1.2 State . 10

2.1.3 Determinism . 10

2.1.4 Behavior and Service . 11

2.2 Job, Partition and Component 11

2.2.1 Job . 11

2.2.2 Partition . 11

2.2.3 Component . 12

2.3 Integrated Architectures . 13

2.3.1 Implementation . 13

2.3.2 Technologies . 16

2.4 Dependability Concepts . 18

ix

2.4.1 Physical Faults in Semiconductors 19

2.4.2 Fault Containment Regions (FCRs) 21

2.4.3 Fault Tolerance . 21

2.4.4 Fault Injection . 22

2.5 Cognitive Complexity . 24

3 Analysis of the State-of-the-Art 27

3.1 XtratuM Hypervisor . 27

3.1.1 Communications and Timeliness 28

3.1.2 Fault Handling . 29

3.2 Cell Multi-Processor . 29

3.2.1 Communications and Timeliness 30

3.2.2 Fault Handling . 30

3.3 CoMPSoC . 30

3.3.1 Communications and Timeliness 31

3.3.2 Fault Handling . 31

3.4 TTSoC . 31

3.4.1 Communications and Timeliness 32

3.4.2 Fault Handling . 33

3.5 IEC 61508 On-Chip Replication 33

3.5.1 Fault Handling . 34

3.6 Analysis . 35

3.6.1 Timeliness . 35

3.6.2 On-Chip Design Fault Containment 36

3.6.3 On-Chip Physical Fault Containment and Fault Tolerance 37

3.7 Conclusion . 37

4 The 4TSoC 41

4.1 Description . 42

4.1.1 Application-Specific Subsystem 42

4.1.2 Trusted Subsystem . 43

4.2 Fault Hypothesis . 43

4.2.1 Fault Containment Regions 44

4.2.2 Failure Modes and Rates Assumptions 44

4.3 4T Core Services . 45

4.3.1 4T Time Services . 45

x

4.3.2 4T Communication Services 47

4.3.3 4T Configuration Services 49

4.3.4 4T Execution Services 52

4.4 4TSoC Fault Tolerance Model 52

4.4.1 On-chip TMR . 53

4.4.2 On-chip TMR Upon Replicated Channels 54

4.4.3 Recovery upon TMR . 54

4.5 4TSoC Synthesis Model . 55

4.5.1 ASIC and FPGA End-Devices 55

4.5.2 Xilinx Implementation Patterns 58

4.5.3 An IEC-61508 Compliant FPGA 60

5 Evaluation Tools 63

5.1 FI4SoC: Fault Injection Framework 63

5.1.1 Fault Injector Requirements 63

5.1.2 FI4SoC Description . 65

5.1.3 Injection of Supported Faults 67

5.1.4 Injection Process . 69

5.1.5 Framework Tools . 70

5.1.6 Discussion . 71

5.2 The Möbius Tool . 74

5.2.1 The Möbius Tool and FI4SoC Framework 74

5.3 Evaluated Architectures . 75

5.3.1 XtratuM LEON3 Implementation 75

5.3.2 TTSoC Implementation 75

5.3.3 4TSoC Implementation 76

6 Experiment Campaigns 79

6.1 MPSoC approach evaluation . 81

6.1.1 Fault Containment Evaluation 81

6.1.2 Comparison with Hypervisor 82

6.2 TTSoC architecture evaluation 83

6.2.1 Evaluation of Component, TISS and Switch Reliability . 84

6.2.2 TISS Refined . 85

6.2.3 Component TMR . 87

6.3 4TSoC implementation evaluation 88

xi

6.3.1 Message Level Error Correcting Codes 89

6.3.2 Network Interface Replication 91

6.3.3 NoC Replication . 93

6.3.4 Component TMR upon TISS Replication 93

6.3.5 Recovery . 95

7 Results 99

7.1 MPSoC vs. Hypervisor . 99

7.1.1 Fault Containment Evaluation 99

7.1.2 Comparison to a Hypervisor Approach 100

7.2 TTSoC Evaluation . 100

7.2.1 Component, TISS and Switch Evaluation 101

7.2.2 TISS Refinement . 101

7.2.3 Component TMR . 103

7.3 4TSoC Evaluation . 103

7.3.1 Message Level Error Correcting Codes 103

7.3.2 4T Communication Services 104

7.3.3 Component Replication 105

7.3.4 Recovery . 109

7.4 Summary of the Results . 112

8 Conclusion 115

8.1 Summary . 115

8.2 Future Research . 116

Bibliography 119

Publications 131

Curriculum Vitae 133

xii

List of Figures

1.1 Thesis Organization . 5

2.1 Time representation . 7

2.2 The dense and discrete models of time. 8

2.3 Distributed models of time. 8

2.4 Cyclic representation of an embedded control system process. . . 9

2.5 Interfaces of a component. 12

2.6 (Bare-metal) Embedded hypervisor architecture 14

2.7 A NoC based MPSoC . 16

2.8 Actel antifuze technology cross section 18

2.9 Memory cells technologies . 18

2.10 Fundamental chain of dependability threats 18

3.1 XtratuM architecture . 28

3.2 The Cell processor . 29

3.3 The CoMPSoC architecture . 31

3.4 The TTSoC architecture. The gray area denotes the TSS 32

3.5 IEC 61508 on-chip block replication 33

3.6 Applying IEC 61508 boundaries for integrated architecture . . . 38

3.7 Solutions mapped on physical and design fault containment axes 39

4.1 The 4TSoC architecture . 41

4.2 TISS Replication for 4TSoC . 48

4.3 NoC Replication for 4TSoC . 49

4.4 Error Correcting Codes for 4TSoC 50

4.5 TMRed configuration services 51

4.6 Application component TMR 54

4.7 TMR configuration with two TISSes 55

xiii

4.8 4TSoC layout on a Virtex-4 LX160 FPGA (FPGA Editor) . . . 59

5.1 The FI4SoC architecture . 66

5.2 Simplified representation of a Virtex-4 CLB slice 68

5.3 Fault injection period . 70

5.4 Tool work-flow in the framework 71

6.1 Experiment campaings . 80

6.2 A two component MPSoC for fault containment assessment . . . 81

6.3 NoC scheduling for fault containment evaluation 82

6.4 Hypervisor assessment setup . 83

6.5 Uneven partition durations on the processor frame 84

6.6 Experiment configuration for the TTSoC assessment 85

6.7 Experiment schedule for the TTSoC assessment 86

6.8 Mapping of the TISS entities on the FPGA layout 88

6.9 Experiment configuration for the TMR configuration assessment 89

6.10 Experiment schedule for TMR assessment 89

6.11 Experiment configuration for the message-level ECC assessment 90

6.12 Experiment schedule for ECC assessment 91

6.13 Experiment configuration for the TISS replication assessment . . 91

6.14 Experiment schedule for dual TISS 92

6.15 Experiment configuration for the NoC replication assessment . . 93

6.16 Experiment schedule for dual NoC assessment 94

6.17 Experiment configuration for the TMR-dual TISS assessment . . 95

6.18 Experiment schedule for Dual TMR assessment 96

6.19 Möbius model of component TMR 96

7.1 Trusted system component hardening results 104

7.2 Application components hardening results 105

7.3 4TSoC Reliability into different application domains 108

7.4 Mission where dual TISS configurations are clearly more reliable 109

7.5 TMR and recovery reliability 110

xiv

List of Tables

2.1 ITRS prediction for soft errors and MBUs 20

3.1 Techniques that increase and decrease the β-factor 35

3.2 Comparison of integrated architecture implementation features . 40

4.1 Comparison for end-device candidates 58

5.1 Information of a fault vector . 69

5.2 LEON3 resources on Xilinx Virtex-4 75

5.3 4TSoC IP resource on Xilinx Virtex-4 76

7.1 Common-independent failures in XtratuM Hypervisor 100

7.2 Mean Fault to Fail and number of partitions 100

7.3 Results for the TTSoCA blocks 101

7.4 TISS reliability for different cycle length 101

7.5 TISS reliability per building instance 102

7.6 Normal TISS, internally TMRed TISS, and dual TISS reliability 102

7.7 Results for the TMR experiment 103

7.8 ECC contribution in the different blocks 104

7.9 Mission times by application domain 108

7.10 Results for 4TSoC hardening mechanism 111

7.11 Summary of MPSoC Apporach Evaluation 112

7.12 Summary of the TTSoC Evaluation 113

7.13 Summary of the 4TSoC Evaluation 114

xv

xvi

List of Acronyms

4TSoC Transient Tolerant Time-Triggered System-on-Chip

ASIC Application Specific Integrated Circuit

AUTOSAR Automotive Open System Architecture

CF Compact Flash

COTS Commercial Off-The-Shelf

CPS Cyber-Physical System

CRCR Capture-Readback-Controlled Reset

DAS Distributed Application Subsystem

DMA Direct Memory Access

ECC Error Correcting Codes

EDC Error Detection Code

EMI Electromagnetic Interference

FCR Fault Containment Region

FI4SoC Fault Injection for System-on-Chip

FIT Failure in Time

FPGA Field Programmable Gate Array

GPIO General Purpose Input Output

HWIFI Hardware Implemented Fault Injection

IMA Integrated Modular Avionics

xvii

IP Intellectual Property

LI Local Interface

LIF Linking Interface

LRM Local Resource Manager

NoC Network-on-Chip

MBD Model Based Design

MBU Multiple Bit Upset

MFTF Mean Faults To Failure

MMU Memory Management Unit

MTTF Mean Time To Failure

MTTR Mean Time To Recover

MPSoC Multi-Processor System-on-Chip

NoTA Network on Terminal Architecture

NI Network Interface

OS Operating System

RTL Register Transfer Level

RTOS Real-Time Operating System

PLB Peripheral Local Bus

PIM Platform Independent Model

PSM Platform Specific Model

SEE Single Event Effect

SET Single Event Transient

SEU Single Event Upset

SOI Silicon On Insulator

SWIFI Software Implemented Fault Injection

xviii

TDI Technology-Dependant Interface

TDM Time Division Multiplexing

TID Total Ionizing Dose

TII Technology-Independent Interface

TISS Trusted Interface Subsystem

TMR Triple Modular Redundancy

TRM Trusted Resource Manager

TSS Trusted Subsystem

TTNoC Time-Triggered Network-on-Chip

TTSoC Time-Triggered System-on-Chip

URM Untrusted Resource Manager

VDSM Very Deep Sub-Micron

VMM Virtual Machine Monitor

List of Abbreviations

a.k.a. also known as

e.g. exempli gratia (for example)

i.e. id est (that is)

vs. versus (against)

w.r.t. with respect to

xix

xx

Ama, aitxa, arreba zein betiko lagunei
urrin ta hurbil dien honei

maitasunakin

The quotes at the beginning of each chapter are traditional Basque sayings,
property of the Basque people for hundreds of years.

xxi

xxii

"Eroa da hasten düana

ürrent ez dirokean lana",

It is crazy the one who begins

the work that cannot finish

Chapter 1

Introduction

The tremendous advances of the semiconductor technology enables more pow-
erful chips with more transistors using less silicon area. Current chips can
integrate more than one billion 28 nanometer transistors switching faster than
1 GHz. Multi-core chips offer an interesting abstraction that eases the under-
standing of such complex and highly integrated chips, by partitioning the chip
in several cores. They also offer a way to overcome the performance limits of
monolithic processors [Gel01] and they are shown to be more energy efficient
[PPB+07]. Furthermore, the parallel computation of multi-core chips offers
means to deal with concurrency.

These interesting features have already penetrated the embedded market with
the name of Multi-Processor System-on-Chips (MPSoCs) where, depending
on the application, the energy efficiency or dealing with concurrency are usu-
ally mandatory requirements. According to predictions, by the year 2015 the
use of MPSoCs in multimedia (e.g., smart-phones [K.11]) and mixed-criticality
[Ern10] embedded systems will share between 30% and 90% of the embedded
market.

Focusing on mixed-criticality embedded systems, where the safety of the imple-
mented functions and the reliability of the integrated chips play a crucial role,
MPSoCs can also provide interesting features [KOESH07]. The integration
of several functions of different application systems and criticalities has typi-
cally been done using a software approach where a monolithic processor was
partitioned by hypervisors and other virtualization mechanisms. However, a
hardware approach using MPSoCs provides intrinsic design fault containment
by dedicated processors with some containment coverage for physical faults
that cannot be achieved by software approaches. Due to the spatial separation
of the hardware resources within the MPSoC, physical faults can damage some
processing elements but not all of them in some degree or coverage.

1

1.1 Problem Statement 1 Introduction

1.1 Problem Statement

Highly integrated silicon technologies show increasing rates of transient physical
fault due to process variations, shrinking geometries, and lower power voltages
[Con02]. These physical faults require rigorous function isolation (e.g., specified
by the IEC-61508 safety standard [IEC09]) if a reliability increase is obtained
by the replication of on-chip components. This rigorous on-chip replication
cannot be achieved on any software approach upon monolithic processors due
to the resource sharing of the software replicas. In contrast, the computation
blocks of an MPSoC can provide certain fault containment coverage to host
the replicas. Anyway, even in an MPSoC hardware approach, independent
chips are necessary if safety-critical reliability is pursued by the replication
of components and those component should communicate using distributed
networks.

The reliability of the critical infrastructure is another technical problem of
hardware-based integrated architectures at the chip-level compared to dis-
tributed systems. The shared resources and core services of the MPSoC (the
communication service, the clock, etc.) could lead to single points of failures
within the chip because the rest of the on-chip components rely on them.

1.2 Proposed Solution

This dissertation introduces the Transient Tolerant Time-Triggered System-
on-Chip (4TSoC), an MPSoC based integrated architecture at the chip-level
with system-level fault tolerance mechanism against soft-errors. These soft-
errors are spontaneous bit-flips in flip-flops and memory elements and they are
considered the most common type of transient fault. The MPSoC approach
provides superior physical fault-containment coverage compared to software
approaches and fault tolerance is provided not only for the application subsys-
tem, but also for the critical infrastructure (e.g., NoC and core services) of the
architecture.

In contrast to other low-level approaches such as redundancy [Gai06] [Xil06],
Error Correcting Codes (ECCs) [PKCC06] or circuit level hardening [MSZ+05],
reliability increase for chip against transient fault can benefit from system-level
management of an MPSoC based integrated architecture. This architecture of-
fers fault containment features that enable the incorporation of system-level
fault tolerance mechanism from distributed systems (component TMR, com-
munication channel duplication, etc.) by analogy. System-level mechanisms
enable a higher abstraction level, higher resilience against proximity faults and

2

1 Introduction 1.3 Contributions

ease the chip development (e.g., ability to use standard libraries, reduce the
complexity, early validation).

1.3 Contributions

The contribution or partial objectives of this dissertation consists of:

• The 4TSoC model: an MPSoC model with support for fault contain-
ment and fault masking based in a transient fault hypothesis for mixed-
criticality systems, an extension of the TTSoC architecture. A synthesis
model for such an MPSoC is also introduced inspired by the isolation
requirements of the IEC-61508 standard.

• Fault tolerance mechanisms library for MPSoCs: an adaptation
of fault tolerance mechanisms from distributed systems for on-chip multi-
processors, i.e., component TMR, network interface replication, the use
of multiple NoCs and message-level ECCs.

• The FI4SoC fault injection framework: an FPGA based fault in-
jection framework for integrated architectures supporting transient fault
emulation at RTL level using dynamic partial reconfiguration.

• Reliability Assessment of the TTSoC: an evaluation of the reliabil-
ity of the TTSoC components (network interfaces, NoC, etc.) and the
effectiveness of its fault containment and on-chip replication mechanisms.

• Comparison of fault tolerance mechanisms: a comparison of the
previously introduced fault tolerance mechanisms using a specificic soft-
error (Single Event Transients, SETs) transient fault model.

1.4 Thesis Organization

This thesis is organized as described below:

• Chapter 2 describes the background and basic concepts on which the
work of this thesis is based. It follows three main paths: the notion of
time, integrated architectures and dependability.

• Chapter 3 analyzes state-of-the-art of integrated architectures with re-
spect to timeliness, design fault containment and physical fault handling.

3

1.4 Thesis Organization 1 Introduction

The scope of the analysis covers the XtratuM hypervisor, the Cell multi-
processor, the CoMPoC MPSoC template and the TTSoC architecture.
The on-chip replication recommended by the IEC-61508 standard is also
studied. The reasons for the selection are described in the chapter.

• Chapter 4 introduces the 4TSoC architecture, an MPSoC model to in-
crease the reliability of single chips against the transient faults within
the fault hypothesis. It offers a fault containment model and a collection
fault tolerance mechanisms.

• Chapter 5 describes the evaluation platform for the validation of the
4TSoC approach.

• Chapter 6 describes the experiments assessing the MPSoC approach for
on-chip fault-containment, the TTSoC architecture and the new features
of the 4TSoC model.

• Chapter 7 reviews the evaluation results and provides a comparative
overview of the different integrated architecture approaches and fault
tolerance mechanisms.

• Finally, Chapter 8 shows the conclusion and future work.

4

1 Introduction 1.4 Thesis Organization

Chapter 2: Background and Concepts

Chapter 3: State-of-the-Art

Chapter 4: The 4TSoC

Chapter 5: Evaluation Tools

Chapter 6: Experiment Campaigns

Chapter 7: Results

Figure 1.1: Thesis Organization

5

1.4 Thesis Organization 1 Introduction

6

"Zaldirik seguruena, nork bere zangoak",

The safest horse, one’s own legs

Chapter 2

Background and Basic Concepts

This chapter gives the background and the basic concepts on which this thesis
is based.

2.1 The Notion of Time

Incorporating the notion of time into embedded systems is a key requirement
[Per11]. In fact, embedded systems are also known as Cyber-Physical Systems
(CPSs) to emphasize this integration with time and physical environment. The
notion of time generically used in embedded systems is the Newtonian physics
concept of time, dismissing relativistic effects.

2.1.1 Time Flow and Models

Time

p
r
e
s
e
n

t
in

s
ta

n
t

in
s
ta

n
t

in
s
ta

n
t

duration

past future

Figure 2.1: Time representation

The flow of time is represented as a straight line going from the past (on the
left) to the future (on the right) as shown in Figure 2.1. A cut on this line is
an instant and the present instant, now, decouples the past from the future.
A relevant happening occurring on a particular instant is an event and the
interval between two instants is named a duration [Kop06].

7

2.1 The Notion of Time 2 Background and Basic Concepts

A suitable model for time in the real world is a continuous or dense time-line
(Figure 2.2), whereas in digital systems a discretized model of time is used. In
a dense model, time advances continuously with infinitesimal steps. A discrete
model consists of time steps of a fixed duration adapting the dense model to
the computational environment.

t
0.8[sec] 2.71828[sec] 5.99[sec]

(a) Continuous Time

t
0 1 2 3 4 5 6 7

(b) Discrete Time

Figure 2.2: The dense and discrete models of time.

In distributed systems (Figure 2.3), a discrete global time (with a sparse time
model) is established to provide a consistent temporal order of events based on
their time-stamps. This global time is approximated by generating a macrotick
clock using the local microtick clock of the distributed computers and a clock
synchronization algorithm [Kop11]. Through this approach a maximal diver-
gence of one tick is achieved among the local microtick clocks, which is known
as the reasonableness condition.

A sparse time model [Kop07] restricts the occurrence of events (e.g., the sending
of a message) that are in the sphere of control of the computer system to the
activity intervals of a sparse-time base and the distributed parts share the same
global time using a clock synchronization algorithm. Real-time is partitioned
into a sequence of alternating intervals of activity of duration π and silence of
duration ∆. All the events that happen within the same activity interval are
considered simultaneous.

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) Global Time

t
π ∆ π ∆ π ∆ π ∆

(b) Sparse Time

Figure 2.3: Distributed models of time.

The global time as well as the sparse time model can be applied at chip-level
and distributed systems [KOESH07]. Focusing at chip level, the global time
can be used to synchronize multiple clock domains and avoid undesired effects.
These effects include:

8

2 Background and Basic Concepts 2.1 The Notion of Time

• Clock skew: it is the maximum delay from the clock input of one flip-
flop to the clock input of another flip-flop. It is also knows as phase noise.
The skew is mainly caused by the differences among clock sources and
the clock distribution network.

• Clock jitter: it refers to differences between actual output position and
the ideal output position of the clock edge. There are two contributions,
fixed and random, to the total clock jitter. The fixed jitter has more
timing offset and it is caused by specific sources such as crosstalk, sig-
nal noise, etc. The random jitter is derived from environmental factors
(temperature, radiation, etc.).

The time margin for the synthesis of a chip is too narrow for future on-chip
distributed systems with a single clock source at a negligible skew [BDM02],
therefore, the chip must use several clock domains. In these cases, a global time
is an option to overcome skew effects due to the technology constrains and to
provide synchronization of multiple clocks within the reasonableness condition.
This on-chip global time can be implemented using a slow clock line distributed
along the chip or using clock synchronization algorithms analogously to classic
off-chip distributed networks (e.g., TTP).

Despite the linear representation of time models, embedded control systems
typically exhibit a cyclic temporal structure with a set of steps that are repeated
each cycle (Figure 2.4) [OSHK08]. This cyclic description fits better the human
cognitive nature of time [Win01]. The time-diagrams of this thesis prefer this
circular representation.

5

6
E

45
D

3

4

C

2

3
B

1 2

A

1: Start of control cycle
A: Observation of sensor input
2: Start of transmission of sensor data
B: Transmission of input data
3: Start of processing of control algorithm
C: Processing of control algorithm
4: Termination of processing
D: Transmission of control value
5: Start of output to actuators
E: Output operation at the actuators
6: Termination of output operation

Figure 2.4: Cyclic representation of an embedded control system process.

9

2.1 The Notion of Time 2 Background and Basic Concepts

2.1.2 State

Once a precise concept of time is introduced in a system a precise concept of
state can be established. State decouples past from the future, in such a way
that in a deterministic system, a future output can be determined by the future
inputs and this system state [Mes89].

One can distinguish three types of system states, the initialization-state (i-
state), the history-state (h-state) and the ground-state (g-state) [Kop11]:

• i-state: this is the state that can be loaded off-line, the static data struc-
tures (e.g., application program code, initialization data).

• h-state: it comprises the information required to start an "empty" com-
posed function task at a given point in time. It is defined by the dynamic
data structures at given instant that contain information about the cur-
rent and past computations.

• g-state: it is the minimal h-state, when tasks are inactive and the channels
are flushed. This g-state is ideally periodic.

A consistent notion of state is a prerequisite for fault masking through voting
where the replicated subsystems must be replica determinate. This condition
is only full-filled if each of the replicated nodes contains the same externally
visible h-state at its ground state, and produces the same output messages at
points in time at bounded time intervals [Pol95].

The instant when a system reaches the ground state is also called reintegration
point. This minimal h-state is the optimal point in time for a subsystem to
recover from a faulty-state by recreating it or copying [XR96] the g-state from
a replicated node.

2.1.3 Determinism

A given item (e.g, property, output) is deterministic if it is completely pre-
dictable and does not depend on randomness for a given set of conditions
[Kop08b]. For instance, an output is deterministic for a given set of relevant
conditions, if given the same set of initial conditions then the system always
generates the same outputs at the same time when given the same inputs at
the same time.

As time is part of the definition of determinism, it must be consistent (w.r.t.
an external observer) at the system level of the design. For instance, in the
case of a distributed embedded system the notion of time should be based on
the sparse time.

10

2 Background and Basic Concepts 2.2 Job, Partition and Component

2.1.4 Behavior and Service

The behavior of a system can be defined as its activity (e.g., message sequence)
during the progression of time. A system’s service is the behavior according to
the specification, whereas a failure is the opposite, a deviation of the system
behavior from the specification.

2.2 Job, Partition and Component

In Model Based Design (MBD) the system services are first designed in a Plat-
form Independent Model (PIM) and then mapped to a given platform using a
Platform Specific Model (PSM). Job, partition and component concepts are
introduced during this PIM to PSM refinement process.

2.2.1 Job

A job is the basic unit of work [KOESH07] which provides a service to other
jobs across the linking interfaces and to the environment via the local interfaces
into a PIM. A distributed application consist on more than one Distributed
Application Subsystem (DAS). A DAS is a nearly autonomous application
system that performs a composite of services. For example, a train has up to
dozens of DASes, such as, traction control, signaling, infotainment, etc. On its
behalf, each DAS comprises several jobs, the unit of distribution. Therefore, a
DAS is a composition of jobs and services.

2.2.2 Partition

A partition is the physical execution environment for a job. Originally, the term
partition referred to the allocation on time domain of a monolithic processor
to multiple operating systems [Rus99], but in this dissertation it also refers to
the spatial and physical decoupling of the execution environment. A partition
can be a classical node (e.g., an ECU in the automotive domain), a virtual
processor (e.g., in an hypervisor), a dedicated processor of a multi-core chip
or a silicon fabric (e.g., an FPGA implementing a finite state-machine). The
purpose of partitioning is fault containment: a failure in one partition must
not propagate to cause failure in another partition. A partition should provide
spatial and temporal partitioning with respect to other partitions [Rus99]:

• Spatial Partitioning: a partition ensures that the job in one partition
cannot change the software or private data of another job, nor command
the private devices of another partition.

11

2.2 Job, Partition and Component 2 Background and Basic Concepts

• Temporal Partitioning: ensures that the service received from shared re-
sources by a job in one partition cannot be affected by a job in another
partition, including performance, rate, latency or jitter.

Partitioning is a prerequisite for the composability of jobs from different sources
and criticalities.

2.2.3 Component

The mapping of a job into a partition results in a component. These hardware-
software components, which are self contained subsystems, can be used as build-
ing blocks in the design of a larger system [KOESH07] [RE06] of a component-
based design. A large proportion of complex systems in nature evolve from
the hierarchical composition of simple components [Sim62]. The building of
complex embedded systems can benefit from the easier understanding of hier-
archical component-based design.

The definition of component interfaces is of utmost importance in order to avoid
undesired interactions and facilitate the desired ones. Components interact
using four basic types of interfaces (Figure 2.5) [OKP10]:

• Local Interface (LI): it establishes a connection between a component
and its local environment.

• Linking Interface (LIF): the services of a component are offered to other
components through this interface.

• Technology-Independent Interface (TII): this interface is used by the sys-
tem to perform operations without the involvement of the application.

• Technology-Dependant Interface (TDI): it provides the means to look
inside a component and to observe internal variables.

Component

L
o
ca

l

TII

TDI

LIF

Figure 2.5: Interfaces of a component.

12

2 Background and Basic Concepts 2.3 Integrated Architectures

From the point of view of service provision, there are two types of components:
system components and application components. System components provide
an architectural service and they conform to the “style” of an architecture
(the services and constraints that condition the implementation of a system).
Application components implement the specified application functionality, the
application service, and use the services of the available system components to
reduce the effort required to implement the application functionality. Hence,
an integrated architecture provides system components to integrate several ap-
plication components that map jobs of multiple DASes on a single node.

2.3 Integrated Architectures

An architecture is a framework for the construction of systems for a chosen
application domain that provides generic architectural services and imposes
and architectural style for constraining an implementation in such a way that
the ensuing system is understandable, maintainable, extensible, and can be
built cost effectively [OK09]. The architectural style describes the principles,
accepted statements about some fundamental insight in a domain, and struc-
turing rules that characterize an architecture [Kop11].

An integrated architecture [OK09] provides multiple partitions for the mapping
of jobs of different DASes into a single node. Whereas in federated architectures
[KOPS04] each node provided a single partition for a single job, the high inte-
gration of transistors in semiconductors makes possible to integrate several jobs
in a single chip. This integration enables the reduction of hardware and con-
nection wires and the subsequent decrease of the amount of power used, weight,
space and the number of computation chips. Several integrated architectures
were created for specific application domains, for example: Automotive Open
System Architecture (AUTOSAR) [GbR06], Integrated Modular Avionics (IMA)
[ARI91] or Network on Terminal Architecture (NoTA) [KKOE07].

2.3.1 Implementation

The implementation of an integrated architecture can be done following two
main approaches: a software approach or a hardware approach. On the first
approach, the communication services are implemented in software (e.g., hy-
pervisor queues) offering virtual processors as partitions for the execution of
jobs. In the second option, the communication is implemented in hardware
(e.g., a Network-on-Chip (NoC)) and dedicated processors or silicon fabric (e.g.,
FPGA) are provided as a partition for each job.

13

2.3 Integrated Architectures 2 Background and Basic Concepts

Software Approach

Several software architectures address temporal and spatial partitioning on a
monolithic processor approach, from which the most populars are microkernels
[Lie95] and hypervisors [CRM+09]. Whereas hypervisors provide partitions
for operating systems (e.g., jobs), microkernels perform a context switch per
thread where the system software itself acts as an operating system. Hence, the
microkernel approach is not the most suitable for the integration of distributed
jobs (with potentially heterogenous operating systems), but for non-distributed
homogeneous threads. In this section the scope of the software approach will
be put on embedded hypervisors.

Hypervisors, also known as Virtual Machine Monitors (VMMs), are programs
that run on hardware or a host Operating System (OS) using the highest priv-
ilege level, governing and separating multiple partitions (Figure 2.6). They
enable the software implementation of jobs that can be assisted by a general-
purpose OS or a Real-Time Operating System (RTOS).

OS RTOS main()

Embedded Hypervisor

Embedded Processor

Partition-1 Partition-2 Partition-3

Figure 2.6: (Bare-metal) Embedded hypervisor architecture

Hypervisors are classified by the layer that executes them and the virtualiza-
tion level. In the first category, type-1 hypervisors (also named bare-metal)
run directly on the native hardware, whereas type-2 lay upon a host OS. The
bare-metal approach reduces the virtualization overhead making it more effi-
cient for embedded systems. Anyway, this approach can require specific hard-
ware features of the processor, such as: additional privileged modes for each
partition, direct interrupts or extended page table for the memories of each
partition [Neu06]. In the second category, full-virtualized and para-virtualized
architectures are distinguished. Full-virtualization offers a virtual image of all
the resources and therefore support any kind of program or OS in the parti-
tions. Para-virtualization replaces the critical or conflicting instructions that
may break the isolation by hypervisor services or hypercalls. It minimizes hy-
pervisor overhead, but it requires customization of the guest program or OS in
order to support those hypercalls. The source code of the OS is frequently avail-

14

2 Background and Basic Concepts 2.3 Integrated Architectures

able in embedded system and, as it requires less overhead, the para-virtualized
approach is often preferred.

The implementation of partitioning in hypervisors requires the following fea-
tures: (1) spatial partitioning, achieved by a hardware mediation (e.g., a Mem-
ory Management Unit (MMU)) that prevents any job to write in the memory
locations of other jobs or the hypervisor.(2) A fixed cyclic scheduling of the
partitions, providing temporal partitioning for the integrated jobs.

Hardware Approach

The hardware approach aims at providing dedicated cores of a Multi-Processor
System-on-Chip (MPSoC) as partitions for jobs. MPSoC architectures differ at
the way the on-chip cores communicate among themselves, e.g., shared memo-
ries (e.g., caches [CS99], FIFOs [NTS+08]), buses, or through NoCs [HGBH09]
[OSHK08]. The explicit timing of message based communication is preferred
in order to enhance temporal partitioning for integrated architectures (e.g., us-
ing a deterministic schedule). Among message based communication options,
NoCs scale better than buses when the number of cores increases [BDM02].

A NoC based integrated architecture approach provides message-based ser-
vices to a set of hardware partitions (Figure 2.7) that constitute the MPSoC.
These hardware partitions permit the heterogeneous (software or hardware)
implementation of jobs. The software implementation of a job executes upon
a dedicated core that can be assisted by an OS. The hardware implementa-
tion of a job upon a silicon fabric (e.g., FPGA) is also called an Intellectual
Property (IP) core. Anyway, this term is controversial because many of these
cores are not claimed for intelectual property and they are publicly available
(e.g., opencores.org). This dissertation uses the term core to refer to the hard-
ware implementation of jobs.

First of all, the NoC and Network Interfaces (NIs) are responsible for the in-
formation exchange among components, but also for the spatial and temporal
partitioning of the chip. Spatial partitioning is ensured by limiting the inter-
action of components to the exchange of messages. The NIs of each partition
(e.g., a time-triggered NoC) can contain the predefined points in time that
each job can transmits messages and this information can not modified by the
job. Hence, the temporal behavior of a job cannot be interfered (e.g, message
collision) by other jobs.

Mixed Approach

There are multiple solutions using a software partitioning approach (e.g., hy-
pervisor) upon a multi-core chip [RTS10]. Anyway, these works do not con-

15

2.3 Integrated Architectures 2 Background and Basic Concepts

Processor Processor
FPGA
fabric

Processor Processor
FPGA
fabric

Partition-1 Partition-2 Partition-3

Partition-4 Partition-5 Partition-6

Network-on-Chip

NI NI NI

NI NI NI

Figure 2.7: A NoC based MPSoC

sider both, the hardware and the software, in a single architectural style. The
hardware is a predefined multiple-purpose multi-processor chip and the parti-
tioning software must adapt to those limited resources that do not match all
the requirements (e.g., memory independence) and constraints (e.g., physical
fault containment coverage) of the integrated architecture style. Moreover, this
mixed approach often address data-server applications more than embedded
systems.

There are new projects such as the European FP-7 MULTI-PARTES project
[Mul11] targeting a mixed integrated architecture approach addressing embed-
ded systems and their use in safety-related applications.

2.3.2 Technologies

Integrated architectures are synthesized into a final end-device technology.
Both the single processor behind the software approach and the MPSoC for
the hardware approach can be implemented using ASIC or FPGA technology.

Application Specific Integrated Circuit (ASIC)

Application Specific Integrated Circuit (ASIC) devices are integrated circuits
for a particular application that consist of a large number of primitive logic
elements (e.g., NAND, NOR, AND), Flip Flops and interconnections. Current
shrinking technology allows the integration of over 100 million gates on a single
chip. Nowadays, it is also possible to mix analog primitives in digital ASIC
fabric. Moreover, ASICs offer different levels of customization, like standard
cell, structured, full custom, etc.

16

2 Background and Basic Concepts 2.3 Integrated Architectures

ASIC technologies are usually programmed using photo-lithographic masks
which are too expensive (e.g., 1 billion dollars) to produce for low produc-
tion volumes. Nevertheless, the largest number of embedded systems make use
of generic processors chips built in this technology because they are produced
in large volumes that make this approach economically profitable.

Field Programmable Gate Array (FPGA)

An FPGA is a device that can be reconfigured after manufacturing by storing a
circuit diagram synthesized from a hardware description language (HDL) into
its configuration memory. It is considered an alternative to ASICs for smaller
design and lower production volumes. The configuration memory holds the
setup of the FPGA configurable structures after a synthesis, placement and
routing process.

Logic is implemented using Look Up Tables (LUTs) which store truth tables
in the configuration memory. Sequential functions are implemented thanks to
flip-flops and routing is performed using switching matrix structures and multi-
plexers. The LUTs, flip-flops and routing elements compose the programmable
elements or Configurable Logic Blocks (CLBs). Custom clock frequencies and
noise reduction are obtained with Digital Clock Managers (DCMs) and PLLs.
The resulting clock signals are distributed by dedicated clock nets. Memories,
buffers and registers can be implemented using the aforementioned LUT or
flip-flop structures or with dedicated embedded block memories (e.g., Block
RAMs). New application oriented FPGAs include DSP blocks or even silicon
implemented processors (hard cores).

FPGAs can be classified by the memory technology used to store the circuit in-
formation: antifuze, flash (e.g., EPROM, EEPROM) and Static-RAM (SRAM)
FPGAs.

• Antifuze FPGAs: the antifuze technology is based in the following prin-
ciple: in the open stage there is an insulator between two hardly doped
semiconductors (Figure 2.8b) and the close stage is obtained by applying
an important voltage (e.g., 16V) which causes the break of the insula-
tor and makes the antifuze conducting (Figure 2.8a). This technology is
programmable only once.

• Flash FPGAs: the flash FPGA configuration memory is based on a non
volatile memory where two MOS transistors are used per bit cell (Figure
2.9a), similarly to other EPROM/EEPROM memories. It is the cheapest
technology as it only uses two transistors per bit cell.

17

2.4 Dependability Concepts 2 Background and Basic Concepts

(a) Programmed (b) Unprogrammed

Figure 2.8: Actel antifuze technology cross section

• SRAM FPGAs: Nowadays, most of scommercial FPGAs are manufac-
tured in SRAM technology. It is based on the well know six transistor
(6T) SRAM technology (Figure 2.9b). It provides the highest integration
capacity (e.g., 45nm) compare with previous technologies and it is the
most extended technology.

Floating Gate

Switch In

Sensing Switching

Switch Out

(a) Flash

VDD

GND

(b) SRAM

Figure 2.9: Memory cells technologies

2.4 Dependability Concepts

... Fault Error Failure ...
Causation Activation Propagation

Figure 2.10: Fundamental chain of dependability threats

A fault is the first link of the fundamental chain of dependability threats (Figure
2.10) [ALR01]. A fault is defined as the hypothesized cause of an error, which
consists on an incorrect state. Subsequently, an error can cause a failure, a
deviation not only of the state but of the actual behavior with respect to the
service specification.

The notion of dependability covers several meta-functional attributes of a com-
puter system that relate to the quality of service (e.g., occurrence of failures) a

18

2 Background and Basic Concepts 2.4 Dependability Concepts

system delivers to its users during an interval of time [Kop11] [ALR01]. From
those attributes we explain three that will be extensively used in this disserta-
tion:

• Availability: it is a measure of the delivery of correct service with respect
to the alternation of correct (Mean Time To Failure (MTTF)) and in-
correct service (Mean Time To Recover (MTTR)). It is measured by the
fraction of time that the system is ready to provide the service (Equation
2.1).

Availability =
MTTF

MTTF + MTTR
(2.1)

• Reliability: the Reliability R(t) of a system is the probability that a sys-
tem will provide the specified service until time t, given that the system
was operational at the beginning, i.e., t = t0. When the failure rate
(λ) of a system has an exponential distribution reliability at any mission
time follows Equation 2.2. This reliability can be modeled within several
configurations using mathematics [DS01a]. The standard measure for
reliability is the Failure in Time (FIT) which provides the expected fail-
ures that a hardware component will suffer during 109 hours of operation
(about 115000 years).

R(t) = e−λt (2.2)

• Safety: it is the reliability regarding critical failure modes. In case of a
detection of a fail safe system, it is possible to perform some corrective
action, or to bring the system to a safe state, where the outputs of the
local interfaces are set to a non dangerous value (e.g., the barriers are set
down in a level crossing of a train).

2.4.1 Physical Faults in Semiconductors

There are several works on the taxonomy of faults [ALRL04] [ALR01]. In the
scope of the physical faults experienced by integrated semiconductor devices,
faults are basically classified as permanent or transient based on their persis-
tence in the system [Con02].

Physical permanent faults are originated by underlying hardware irreversible
damages [MSK+08] [GAM+02] (development imperfections, wear-out, etc.).
For instance, cosmic rays can also cause permanent faults in few cases, i.e.,
with high ionizing doses, but they will be treated later as transient fault causes

19

2.4 Dependability Concepts 2 Background and Basic Concepts

due to the higher probability. The dependability means of the last decades
have addressed permanent faults, but during the last years the research atten-
tion have switched to transient faults. Whereas permanent fault rates remain
stable with technological improvements, the increasing sensitivity to voltage,
frequency and energy variations due to transistor shrinking has resulted in
higher transient fault rates [Con02]. Besides the well known Electromagnetic
Interferences (EMIs) that remain in the system for limited periods (e.g., a max-
imal duration of 50 ms was tolerated in automotive applications [HT98]) and
then disappear, new transient faults in the form of Single Event Effects (SEEs)
have emerged.

These SEEs are spontaneous events of electronic systems caused when energized
particles (cosmic neutrons, alpha particles, etc.) collide with integrated devices.
Contrary to the aforementioned permanent faults and EMIs, SEEs do not affect
nodes or integrated chips as a whole. The cross section of a single event is about
hundreds of micrometers [CMFC+98] which is just a small fraction of current
integrated chips that have silicon fabrics of some dozens of millimeters.

SEEs are classified based on the induced effect and severity as listed below:

• Single Event Upset (SEU): a bit-flip induced in a memory cell by a single
energetic particle.

• Multiple Bit Upset (MBU): an event induced by a single energetic par-
ticle that causes multiple upsets (SEUs) during its passage through an
electronic device. They are also called MCU (Multiple Cell Upset) when
affecting bits of different memory words.

• Single Event Transient (SET): one or more voltage pulses (e.g., glitches)
caused by a single event which propagate through the circuit.

The associated fault rate is expected to grow according to the International
Technology Road-map for Semiconductors (ITRS) shown in Table 2.1. It must
be also considered that the particle flux causing SEEs increases with altitude
and is not equal at different longitudes and latitudes of the world.

Table 2.1: ITRS prediction for soft errors and MBUs
2010 2013 2016 2019

Soft Error Rate (FIT/Mb) 1200 1250 1300 1350
Percentage of MBU 32% 64% 100% 100%

20

2 Background and Basic Concepts 2.4 Dependability Concepts

2.4.2 Fault Containment Regions (FCRs)

A Fault Containment Region (FCR) is a set of subsystems that share one or
more common resources that one single fault may affect [Kop11]. To form
a fault containment boundary around a collection of hardware elements, one
must provide independent power and clock sources and additionally electrical
isolation and spatial separation [LH94]. These requirements make it impractical
to provide more than one FCR within a single semiconductor chip at a safety-
critical rigor (at a probability of failure of 10−9 failures per hours).

If one distinguishes design and physical faults [Obe08], integrated architectures
can provide FCRs for design faults. The spatial and temporal partitioning tech-
niques [Rus99] for the components of an integrated architecture can provide de-
sign fault containment. For physical faults, the hardware approach can provide
certain containment coverage by providing spatial separation of the partitions
and multiple clock domains and pin-out (e.g., grounding) on the chip layout
(e.g., for SEEs [CMFC+98]). These on-chip FCRs for physical faults work only
at single chip failure probabilities (e.g., around 10−5 to 10−6 failures per hours
[PMH98]).

Physical fault containment and design fault containment are orthogonal prop-
erties. Physical fault containment does not assure design fault containment and
vice-versa. For instance, one may use two separated chip processors (two FCRs
for physical faults) to implement a function but both can fail simultaneously
due to a single design fault on the software. In the same way, a hypervisor can
assure design fault containment for two independent operating systems within
the same chip and a single physical fault can make both fail.

2.4.3 Fault Tolerance

Fault tolerance is a mechanism to deliver a correct service despite the occur-
rence of faults [Kop11]. The masking of a fault in order to hide it from the
application, is always based on redundancy. One can distinguish temporal,
information and hardware redundancies.

• Temporal Redundancy: it involves the repetition (rollback) of instruc-
tions, segments of jobs or entire jobs. The re-execution of these pieces
of software must consider the duration of the fault and the handling of
the state. For instance, temporal redundancy is not valid for permanent
faults or transient faults of longer duration than the execution time.

• Information Redundancy: digital systems process, transmit and store
data in the form of groups of bits and to avoid that any of these bits could

21

2.4 Dependability Concepts 2 Background and Basic Concepts

flip due to physical factors during processing, transmission or storage.
Detection (Error Detection Code (EDC)) or correction (Error Correcting
Codes (ECC)) codes are appended to the original binary bits by encoding
part of the original information in order to detect or recover from those
bit-flips.

• Hardware Redundancy: It is based on the replication of blocks (e.g., a
component). These blocks perform the same job and faults can be de-
tected (two replicas) or even tolerated (three or more replicas) by com-
paring the outputs of the replicas. Each of the replicated components
must be an FCR in order to avoid common cause failures that would
undermine the reliability increase, and they must be replica determinate
to support exact voting [Pol95]. Triple Modular Redundancy (TMR) is
one of the most used hardware redundancy mechanism where faults are
masked based on a majority voting. The duplication of components is
also an option when the replicated components show fail-silent behavior
[Kop11].

2.4.4 Fault Injection

Fault injection can be defined as the artificial insertion of faults for the accel-
eration of their occurrence (normally) at the development phase of a system
[Kop11]. This deliberate insertion of upsets (fault or errors) in computer sys-
tems is used for the evaluation of its behavior in the presence of faults or the
validation of specific fault tolerance mechanisms [Ade03].

Injection techniques are classified by the mechanism used to insert the fault
into hardware, software or simulator based fault injection.

• Hardware Implemented Fault Injection (HWIFI): is performed in a hard-
ware model of the system (e.g., an early prototype of the final product) by
inserting different physical perturbations, such as, electro-magnetic, ther-
mal or radiation. One can identify two HWIFI categories: with contact
(e.g., pin-level injection) and without contact (e.g., radiation beams).

• Software Implemented Fault Injection (SWIFI): it consists of reproducing
at software level the errors that would have been produced upon faults
occurring in the hardware or the software.

• Simulator Based Fault Injection: it allows to experimentally evaluate the
dependability by using a model of the system before its final conception
(e.g., design phase). Usually, this type of faults are performed by CAD
tools at different abstraction layers (electrical level, gate level, RTL level,
etc.) and using Field Programmable Gate Array (FPGA) emulation.

22

2 Background and Basic Concepts 2.4 Dependability Concepts

When emulating faults using FPGAs, two abstraction levels can be distin-
guished: (1) gate level (also called physical) and (2) Register Transfer Level
(RTL) (also called logical).

• At gate level: the fault injection emulates a technology-dependent fault
model. For instance, authors of [ACD+07][SATGM08] directly inject bit-
flips (SEUs) at any position of the FPGA configuration memory. The
results of such an injection campaign are only valid for a concrete FPGA
technology, but an accurate measurement of the actual reliability is per-
formed. One can correlate the SEU sensitivity of a specific FPGA tech-
nology (e.g., from vendor reliability data [Xil11]) with the fault injection
results and give an approximate reliability in FIT of the tested FPGA
design.

• At RTL level: one can raise the abstraction to a level where the end
technology is still unknown. At this level, the previous configuration
memory bit-flip fault model is not directly applicable. Therefore, one
injects faults specifically in those flip-flops and registers of the FPGA
that are also defined at the RTL level. Physical faults affecting other el-
ements (e.g., configuration memory) are modeled indirectly through the
failure rates and failure modes at the RTL level. For example, similarly
to bit-flips in the configuration memory of an FPGA, transient pulses
(e.g., SETs [ATM+07]) on the combinatory hardware of a VLSI chip can
provoke register level changes (e.g., bit flips in registers or memory ele-
ments). One injects only those logical faults (i.e., bit-flip on actual RTL
registers and memories) in the FPGA design. Although, the probability
of a SET or a SEU to leak to RTL is unknown, one can compare fault
tolerance mechanisms and give relative figures about which of them ac-
complishes its function better. In addition, the fault injection can already
be performed earlier in the development process, because RTL models are
available at an earlier development stage.

Fault injection at RTL using FPGAs has been mainly implemented using the
simulation of modified HDL code. For instance, one can find fault simulation
tools for system models designed in Verilog at RTL level addressing perma-
nent (e.g, stuck-at) faults [MG96] or in VHDL addressing wider fault mod-
els (e.g., transient faults) [BGB+08]. Other approaches, like FT-UNSHADES
[ATM+07], use other fault injection technologies, such as partial reconfiguration
on Xilinx Virtex II FPGA technology to inject bit-flips in flip-flops and latches
to emulate the effects of SETs at RTL level. The use of actual FPGAs for the
emulation of faults significantly accelerates the injection compared to the use
of simulation platforms. However, the above fault injection frameworks do not

23

2.5 Cognitive Complexity 2 Background and Basic Concepts

target MPSoCs or integrated architectures. Aside from fault injection at RTL,
there is only few work addressing NoCs, i.e., with a focus on on-chip routers
and switches [FCCK06]. Other approaches include an additional wrapper to
stimulate the IPs of the DUT at a higher abstraction level (i.e., the IEEE-1500
standard [IEE05]).

2.5 Cognitive Complexity

Integrated architectures must deal with the current complexity of embedded
systems. Such architectures should not penalize the human comprehension, on
the contrary, they should use representations and techniques fitting the human
cognition and ease the work of integrated system engineers. In previous works,
authors have identified three main simplification strategies tackling with this
cognitive complexity that can be applied to embedded system architectures
[Kop08b] [Per11]:

• Abstraction: it refers to the focusing on the relevant information to a
particular purpose and ignoring the remaining information.

• Separation of concerns: the spatial decomposition of a problem (or a
system) into smaller parts enables the isolated analysis of the parts.

• Segmentation: the temporal decomposition of a problem reduces the
amount of parallel information to consider simultaneously.

Integrated architectures provide a powerful abstraction to cope with a chip con-
sisting of more than a billion transistors running at more that 1GHz by only
taking care of components and their interactions. Moreover, the partitioning
into separate components fits the separation of concerns principle. The explicit
notion of time into an integrated architecture permits the segmentation of se-
quential tasks and the easy understanding of component interaction through
cognitively simple concepts, such as messages.

Introducing fault tolerance should not damage the aforementioned simplicity
principles. In fact, the easy removal of redundancies is a claim for simplic-
ity in many inter-disciplinary fields (e.g., cognitive linguistics [Cho11]). The
use of component redundancy to implement fault tolerance enables the sep-
aration of concerns between fault tolerance and “normal” service. Therefore
component replication could be preferred against more complicated ways of
increasing the reliability that are merged with the application specific behavior
of an embedded system (e.g., low level redundancy, state recovery strategies).

24

2 Background and Basic Concepts 2.5 Cognitive Complexity

Specifically TMR is an example of an easily removable or transparent fault tol-
erance [BK00], and moreover, the number of interactions of a TMR subsystem
is below the limit of 4 chunks of informations [Cow01] that an average human
being can process at the same time due to the short-time memory.

25

2.5 Cognitive Complexity 2 Background and Basic Concepts

26

"Beharra nola, izana hola",

Which needs you have, that way you are

Chapter 3

Analysis of the State-of-the-Art

This chapter analyzes integrated architectures and their suitability for embed-
ded systems.

One of the challenges of the integrated architectures is reliability, for instance,
the increasing rates of transient faults are more significant in highly integrated
chips. The raise of mixed-criticality embedded systems, chips that share func-
tionalities of different safety requirements, demands services enhancing on-chip
fault-containment and fault tolerance.

In this section four software-hardware implementations of integrated architec-
tures are surveyed. They are selected in order to cover a wide range of features.
(1) XtratuM hypervisor, from the Universidad Politécnica de Valencia, is se-
lected to analyze the current implementation of mixed-criticality architectures
oriented to embedded and safety-critical systems market. (2) The Cell proces-
sor, an example of most commercial MPSoCs jointly developed by IBM, Sony
and Toshiba, and (3) CoMPSoC MPSoC template, jointly implemented by
the Eindhoven University of Technology and NXP semiconductors, besides be-
ing oriented to multimedia, this approaches show different aspects of MPSoCs
(real-time, composability, etc.). Finally, (4) the TTSoC, created by the Vienna
University of Technology, combines safety orientation and an MPSoC archi-
tecture with several key properties (e.g., fault and error containment, on-chip
replication) that are detailed. Additionally, the on-chip replication proposed
by the IEC-61508 international safety standard is analyzed as an additional
contribution for integrated architectures.

3.1 XtratuM Hypervisor

XtratuM is a bare-metal and para-virtualized hypervisor designed for real-
time embedded systems and oriented to safety-critical applications [CRM+09]

27

3.1 XtratuM Hypervisor 3 Analysis of the State-of-the-Art

[MRCP10](Figure 3.1). XtratuM executes on top of an embedded processor and
provides temporally and spatially partitioned virtual execution environments.
The temporal partitioning is achieved by the use of a fixed cyclic scheduler
to establish the execution time of each partition on the host processor. The
spatial partitioning deals with the partition execution in processor user mode
and the memory independence among the partitions. XtratuM distinguishes
two types of environments: system and user partitions. System partitions are
allowed to handle and monitor the state of other system and user partitions.

Hypercall InterfaceP
ro

ce
ss

o
r

u
se

r
m

o
d

e
sy

st
em

m
o
d

e

System Partitions User Partitions

XtratuM

RTOS RTOS RTOS

Para-virt. Serv. Para-virt. Serv. Para-virt. Serv. Para-virt. Serv.

Part. Ctr. Tab. Part. Ctr. Tab. Part. Ctr. Tab. Part. Ctr. Tab.

Memory Manag. Scheduler IP Comms. Health Monior

Clk. and Timer Mgnt. Interrupt Mgnt.

Figure 3.1: XtratuM architecture

The internal XtratuM architecture includes: memory management, scheduling,
interrupt management, clock and timers management, interruption manage-
ment, partition communication management and health monitoring. Moreover,
like every para-virtualized hypervisor, conflicting instructions are replaced by
explicit hypervisor instructions, namely the hypercalls. Xtratum claims to have
deterministic and fast hypercalls. The resource allocation (partition duration,
memories, peripherals, etc.) is done via an XML configuration file.

XtratuM supports x86 general purpose processors and the LEON (2 and 3)
embedded processor based on the SPARC-v8 architectures. The supported
operating systems include PartiKle and RTEMS.

3.1.1 Communications and Timeliness

The inter-partition communication implements the ARINC-653 avionic domain
standard [Tok03]. The communication is based on shared memory sampling
and queuing port communication model. The communication latency as in
message based communication does not exist, but the minimal time from the
send operation in one partition to the reception in another one is a function
of the context time switch and the virtual partition execution window. The

28

3 Analysis of the State-of-the-Art 3.2 Cell Multi-Processor

partition context switch shows an average value of 110 microseconds and a
maximum value of 116 microseconds (LEON3 version at 50 MHz [MRCP10]).

3.1.2 Fault Handling

Spatial separation among the partitions is achieved using a MMU (in the
LEON3 version) that prevents any partition to write in any other partition’s
memory section. Fault management is the responsibility of the health monitor
(HM) (also based in ARINC-653). It handles non-expected behaviors of the
system, such as not considered design faults (e.g., the null return of a malloc
allocation) namely HM_events. In case of HM_events, the health monitor can
stop the faulty partition and log the event, or resume an alternate dormant
partition.

3.2 Cell Multi-Processor

The cell multi-processor contains one PowerPC Element (PPE) microprocessor,
8 Synergistic Processor Elements (SPEs) and memory (MIC) and input-output
interfaces (IOIFs) around a four channel ring shaped NoC (Figure 3.2) [KPP06].
Its initial target was the Play Station 3, but its capabilities makes it suitable
for other visualization, signal processing or big workload task applications. The
PPE runs the operating system and coordinates the SPEs. In fact, the goal
of this multi-processor is to run a single application and parallelize it for best
performance. The interconnect and DMA arbitration is optimized for average-
case performance.

PPE SPE1 SPE3 SPE5 SPE7 IOIF1

Data bus arbiter

MIC SPE0 SPE2 SPE4 SPE6 IOIF0

Data network

Figure 3.2: The Cell processor

29

3.3 CoMPSoC 3 Analysis of the State-of-the-Art

3.2.1 Communications and Timeliness

Processing units cooperate through Direct Memory Access (DMA) coordinated
by a central arbiter and an end-to-end command bus. The data arbiter imple-
ments round-robin bus arbitration.

The clock speed of the multi-processor, 3.2 GHz, allows a theoretical inter-
connect peak bandwidth of 204.8 GB/s for intra-chip communication. But,
the command bus is severily limited in the number of bus requests it can con-
currently process (one per bus cycle) and the coherent data rate is limited to
102.4 GB/s. This command bus limitation increases the packet latency by
long sending and command phases [AP07]. Moreover, these latencies are not
deterministic and vary depending on the load of the interconnection.

3.2.2 Fault Handling

The specification of the Cell processor [IBM07] shows that the architecture pro-
vides memory protection (e.g., segment fault, a mapping fault, or a protection
violation) with a configurable range of interrupt actions. However, the works
addressing fault handling using the Cell architecture do it at a software layer
[TU08] and with a hardware supported flow controller. Nevertheless, the exist-
ing hardware primitives are not the optimal ones for fault handling: end-to-end
commands ease the error propagation, there is not multicast for the NoC (e.g.,
to implemented TMR) and the central arbiter acts as a single point of failure.

3.3 CoMPSoC

CoMPSoC (Figure 3.3) [HGBH09] is a template MPSoC architecture that com-
bines customizable processors and memory tiles around the Æthereal NoC.
Originally designed for high computational performance demanded by con-
sumer electronics, it emphasizes on performance guarantees, composability,
verification and run-time reconfiguration for multiple application domains.

The processor and memory tiles are connected to the NoC by means of the
NIs. The memory tiles include also a shell that connects the slave memory
tile to the master (e.g., a processor tile) using a TDM arbitration to assure
composability. The processor tiles are implemented using Silicon Hive VLIW
processor cores.

30

3 Analysis of the State-of-the-Art 3.4 TTSoC

Host CPU VLIW

Æthereal NoC

Peripheral SRAM

Figure 3.3: The CoMPSoC architecture

3.3.1 Communications and Timeliness

The Æthereal NoC [GH10] is composed by Network Interfaces (NIs), routers
which are connected together by links. It supports guaranteed services (with
bounded latency) which assures an amount of bandwidth for a given commu-
nication channel using Time Division Multiplexing (TDM) arbitration, and
optional best effort services that take the remnant bandwidth. The type of
routers changes for communication channels with different traffic types. The
latency of the messages is equal to the addition of the duration of the guaran-
teed slot and the length of the path (measured in hops equal to a slot). There
is also an additional flow control which complicates de calculation.

3.3.2 Fault Handling

A central host tile (e.g., an ARM processor) is responsible for all the admin-
istration of the processor tiles and the control registers of the communication
infrastructure. Only this central host has the ability to configure the NIs and
the memory arbiters. Hence, CoMPSoC claims to contain software errors occur-
ring in the rest of the tiles, as they cannot propagate by faulty NIs or memory
arbiter configurations. The configuration data coming from the central host is
carried by the NoC using the concept of channel trees with the same isolation
of the normal application traffic.

3.4 TTSoC

The Time-Triggered System-on-Chip architecture is a component based MP-
SoC platform [KOESH07]. It is the integrated execution environment for the
TTA architecture. It distinguishes two subsystems: the Trusted Subsystem
(TSS) and the application subsystem (Figure 3.4). The former consists of a

31

3.4 TTSoC 3 Analysis of the State-of-the-Art

time-triggered NoC and other architectural cores that provide services to the
application subsystem. The application subsystem integrates heterogeneous
cores of diverse origin and criticalities.

TISS

Host-1

TISS

Host-2

TISS

Host-3

TISS

DU

TISS

RMA

TISS

TNA

Time-Triggered Network-on-Chip

Trusted

Subsystem (TSS)

Figure 3.4: The TTSoC architecture. The gray area denotes the TSS

The TTSoC supports integrated resource management. This provides flexibility
at the top level of the architecture which is interesting not only for many multi-
media applications, but also for other domains where the application can benefit
from a different resource allocation. Dedicated elements such as the Trusted
Resource Manager (TRM) and the Untrusted Resource Manager (URM) pro-
cess resource allocation requested by cores and reconfigure the SoC. Finally,
diagnosis is part of the SoC by means of the Diagnostic Unit (DU). It monitors
messages and stores diagnostic information for maintenance purposes using the
TTSoC native multicast primitive.

The TSS of the TTSoC implements four main core services: time services, com-
munication services, configuration services and execution services. The time
services provide local clocks which are globally synchronized within the MP-
SoC. The communication service is message based and supports periodic and
sporadic message exchange and multicast streaming primitive. The configura-
tion service loads the software to the available hardware units. The execution
control services are used to control the execution of a component.

3.4.1 Communications and Timeliness

The TTSoC follows a time-triggered schedule which configures off-line the
transmission instants of the messages. It supports three message types: peri-
odic exchange of messages, sporadic exchange of messages and primitive multi-
cast streaming. The TTSoC provides temporal guarantees (bandwidth and
latencies) to all classes of these classes of services.

32

3 Analysis of the State-of-the-Art 3.5 IEC 61508 On-Chip Replication

The current implementation of the TTSoC architecture implemented on an
FPGA [PK08] supports a throughput of 11.2 GB/s per encapsulated channel.
The global time allows to minimize the end-to-end latencies through temporal
alignment.

3.4.2 Fault Handling

Spatial and temporal partitioning for the cores is achieved using the TISSes as
temporal firewalls [KN97] that prevent errors from propagating through faulty
messages. Regarding fault tolerance the TTSoC supports on-chip TMR based
on fault containment, replica determinism and predictability [OKS08]. The
component replication of the TTSoC mainly addresses transient faults that
affect specific locations of the chip (i.e., soft-errors).

3.5 IEC 61508 On-Chip Replication

The IEC-61508 international standard, which certifies electric, electronic and
programmable electronic safety-related systems for multiple domains, intro-
duced an on-chip replication section within its last edition [IEC09]. It defines
the requirements, techniques and measures to increase the integrity level of a
system by using on-chip replicated blocks. The implementation of these tech-
niques can be found on FPGA [GHB10] and CPLD [GMSW09] even if they
were originally intended for ASICs.

Block-1 Block-2 Block-3

Figure 3.5: IEC 61508 on-chip block replication

This integration approach does not provide on-chip communication for the
replicated component as a requirement for an increased fault containment (as
shown in Figure 3.5) and the timeliness of the systems is out of its scope.
Furthermore, there is no integration of multiple jobs, but just a single replicated
job. Therefore, it cannot be considered an integrated architecture, because it
does not provide system services further than fault-containment and there are

33

3.5 IEC 61508 On-Chip Replication 3 Analysis of the State-of-the-Art

no jobs of different DASes. However, many of the requirements and techniques
can be applied to existing integrated architectures.

3.5.1 Fault Handling

Due to the increasing use of Integrated Circuits (ICs) on current embedded
systems the second edition of the IEC-61508 standard includes multiple ref-
erences and two annexes to regulate their use into safety-related applications.
For example, the new edition considers the increasing soft-error rates. However,
the on-chip blocks of the IEC-61508 mainly address the isolation of permanent
faults (shortcuts, hot-spots, etc.).

Annex-E, "Special architecture requirements for integrated circuits (ICs) with
on-chip redundancy" [IEC09], supports that "the highest safety integrity level
that can be claimed for a safety function using an IC as described above is
limited to SIL-3". Moreover, in this case up to 14 requirements must be ac-
complished in order to claim for SIL-3 integrity using on-chip redundancy. The
most challenging requirements are listed bellow.

1. The effects of increasing temperature shall be considered to avoid common
cause failures.

2. Separate physical blocks on substrate of the IC for each channel and each
monitoring element shall be established.

3. The minimum distance between boundaries of different physical blocks
shall be sufficient to avoid short circuit and crosstalk between these
blocks.

4. The susceptibility of an IC with on-chip redundancy to common cause
failures shall be estimated by determining a β-factor. The factor, starting
with a basic 33%, must not exceed 25% after increasing and decreasing the
Delta percentage contribution (in Table 3.1) of the implemented negative
and positive techniques and measures regarding common-cause failure
implication.

5. The minimum diagnostic coverage of each channel shall be at least 60%.

Annex-F, "Techniques and measures for ASICs: avoidance of systematic fail-
ures" [IEC09], shows the guidelines to follow during the development of safety-
related embedded systems in order to use ICs. The most substantial measures
are listed here:

34

3 Analysis of the State-of-the-Art 3.6 Analysis

Table 3.1: Techniques that increase and decrease the β-factor
Negative Measure (increases) Delta Positive Measure (decreases) Delta

On-chip watchdog/monitoring 5-10 Diverse control in different channels 4
Internal connection between blocks 2-4 EMC testing 6

Own power supply per block 5
Structure that isolate and decouple 2-4

Ground pins between pin-out 2
Temperature sensor or high DC 2-9

• All tools, libraries and production procedures should be proven in use.

• The use of soft and hard cores is highly recommended.

• All activities and their results should be verified.

• Automation of the design implementation process should be used.

Finally, the IEC-61508 standard regarding ASIC development specifies that
"Only ICs with mature design and implementation processes should be used".
The use of a generic integrated architecture for safety-critical applications
should be preceded by its use in the non-safety-critical market in order to
assure a maturity degree. Another option considers that chips using inter-
nal redundancy should be first combined with monolithic chips using off-chip
redundancy until the required maturity is obtained.

3.6 Analysis

In this section, the integrated architectures are compared with respect to time-
liness, design fault containment and physical fault handling.

3.6.1 Timeliness

For a variety of applications, ranging from safety-critical to multimedia appli-
cations passing through industrial control, real-time is a key requirement. The
correctness of an embedded system does not only depend on the correct logical
results of jobs but also on the bounded instants it produces these results and
it exchanges this information with other jobs. Real-time must be considered
in the execution of tasks but also in hardware implemented state machines, for
instance, in the exchange of data among several components of an integrated
architecture. Timeliness is present on the values transferred on a steer-by-wire
application of a car, as it is on the encoding of a MPEG video or on managing

35

3.6 Analysis 3 Analysis of the State-of-the-Art

the IOs of a machine tool at precise instants. Furthermore, when addressing
safety-critical applications, predictability becomes essential. It eases the detec-
tion and masking of faulty behaviors, as well as eases the certification process.

In the XtratuM hypervisor, event and communications latencies are a function
of the context switch time and the number of partitions to switch before the
handling partition executes. The Cell multiprocessor has end-to-end arbitration
for the synchronization which increases the latencies. Moreover, the round-
robin arbitration makes the throughput of a communication channel dependent
of the overall communication traffic.

CoMPSoC and TTSoC architecture provide guaranteed throughput and la-
tencies. CoMPSoC has a reserved bandwidth for each communication channel
using a Time Division Multiplexing (TDM) communication access and bounded
end-to-end latencies. In the TTSoC there is no arbitration due to the notion
of global time which reduces the latencies for phase-aligned transactions (e.g.,
communication setup). Each message has a period and a phase that are es-
tablished off-line which makes the architecture predictable. In contrast to the
CoMPSoC architecture, the TTSoC is based on a sparse based time model,
which provides determinism by handling simultaneity by design. Additionally,
on the CoMPSoC not only the NoC is predictable, but also the processor and
memory tiles.

3.6.2 On-Chip Design Fault Containment

An integrated architecture could host jobs of different criticality and suppliers.
Partitioning among the jobs of the integrated architecture must be provided to
assure composability and fault containment for design faults.

XtratuM has spatial and temporal partitioning which prevents design faults to
affect several partitions at the same time. But, as the same hardware processor
hosts all the partitions, it does not provide containment for physical faults. The
cell multiprocessor has hardware flow control for temporal partitioning but it
does not have any architectural means for spatial partitioning.

The CoMPSoC and the TTSoC architectures provide temporal and spatial par-
titioning by predictable communication channels. The communication schedule
is stored in the network interfaces. This schedule can be only modified by a
central resource manager (the central host and the TRM). Anyway, whereas the
TTSoC minimizes the size of the trusted manager, CoMPSoC suggests a big
embedded processor core to implement the central host (e.g., an ARM). The
small size of the agent responsible for the resource management would reduce
the probability of transient fault and the low complexity of the agent would
ease the certification of the resource management service. In fact, CoMPSoC

36

3 Analysis of the State-of-the-Art 3.7 Conclusion

focusses on composability, the mechanisms for the independent application de-
sign, verification and deployment, more that for fault tolerance.

3.6.3 On-Chip Physical Fault Containment and Fault
Tolerance

Fault tolerance mechanisms need redundancy, of time, information or hardware,
to provide a correct service in the presence of faults. The redundant artifacts
should be fault containment regions in such a way that a single fault cannot
affect multiple replicas at once, then causing a common failure.

XtratuM considers the use of a dormant partition to take over the functions of
the faulty partitions. This approach only works for the containment of design
faults due to the lack of fault containment for physical faults. Each of the
partitions can contain diverse job implementations which provides design fault
containment. The work using the Cell multiprocessor for fault tolerance imple-
ments this mechanisms at software level [TU08]. In fact, there are no physical
fault containment or fault tolerance means on the Cell architecture. Moreover,
the end-to-end arbitration is not desirable because it eases error propagation
and the central arbiter constitutes a single point of failure. Anyway, the cell
processor is presumably about 10000 times faster than the XtratuM approach
due to the processor frequency and its flow controller could guarantee these
communication.

The TTSoC supports on-chip TMR of application components. Fault contain-
ment, replica determinism and predictability are required to provide this on-
chip replication that could be also theoretically implemented on the CoMPSoC
chip. However, the trusted subsystem of the architecture shows a single point
of failure [OKS08] and additional solutions should be taken in this subsystem
to increase physical fault containment and reliability.

The patterns described in the IEC-61508 can be partially implemented on MP-
SoC architectures to increase the physical fault containment among the com-
ponents. Another option to apply IEC-61508 in an integrated architecture is to
implement a complete MPSoC or Hypervisor in each isolated block as shown
in Figure 3.6.

3.7 Conclusion

The comparison (Table 3.2) among software and hardware implemented inte-
grated architectures shows that the MPSoC approach with message based NoC

37

3.7 Conclusion 3 Analysis of the State-of-the-Art

C1 C2

C3 C4

C5 C6

N
o
C

C1 C2

C3 C4

C5 C6

N
o
C

C1 C2

C3 C4

C5 C6

N
o
C

Figure 3.6: Applying IEC 61508 boundaries for integrated architecture

provides superior features regarding timeliness, fault containment and fault tol-
erance. If the analyzed architectures are mapped on a graph upon the axes of
design and physical fault containment (Figure 3.7), one can notice that there
is room for improvement on physical fault containment in order to approach
the level of formerly federated (e.g., ECUs) architectures. From left to right,
one can find approaches with high physical fault containment without design
(software) fault containment (e.g., IEC-61508), MPSoC approaches that do not
consider design fault containment and MPSoC approaches that provide mixed-
criticality through a trusted NoC that avoids the propagation of design errors.
The gap between a federated node and an MPSoC with a predictable commu-
nication infrastructure is explained by the use of independent chips for each
component in the federated approach. Safety-critical physical fault contain-
ment requires components with independent chips for fault tolerance based on
replication. The hardware flow controller of the cell processor enables tempo-
ral partitioning which can make the Cell processor valid for mixed-critically if
implemented. Finally, the XtratuM hypervisor is directed to mixed-criticality
by design, but as the whole set of partitions are executed in the same processor
the architecture does not provide physical fault containment.

The notion of a global time of the partitions of an MPSoC guarantees, for
periodic communication services, shorter latencies than end-to-end arbitration.
Moreover, the explicit timing of the NoCs enhances fault containment against
non-timely messages.

The handling of faults in integrated architectures, specially for physical faults,
is still an active field of research where few implementations take reliability and
fault tolerance in consideration (e.g., the TTSoC). Besides on-chip replication
of application components, the fault tolerance of the system components consti-
tuting the integrated architecture is an issue that has not been addressed. The
techniques recommended by the IEC-61508 standard for on-chip replication
can be partially adopted to work in this direction.

38

3 Analysis of the State-of-the-Art 3.7 Conclusion

Design Fault Containment

P
hy

si
ca

l
Fa

ul
t

C
on

ta
in

m
en

t

Mixed-Criticality

F
a

u
lt

T
o

le
ra

n
c
e

Federated node

with predictable network

(e.g., ECU)

On-chip isolated blocks

(e.g., IEC-61508)

MPSoC with predictable NoC

(e.g., TTSoC, CoMPSoC)MPSoC without predictable NoC

(e.g., Cell)
Trusted hypervisor

(e.g., XtratuM)

Figure 3.7: Solutions mapped on physical and design fault containment axes

39

3
.7

C
o
n
clu

sio
n

3
A

n
a
ly

sis
o
f

th
e

S
ta

te-o
f-th

e-A
rt

Table 3.2: Comparison of integrated architecture implementation features
XtratuM Cell processor CoMPSoC TTSoC IEC 61508

Partitions
Virtual proces-
sors

Processor ele-
ments

Processor and
memory tiles

Heterogeneous
components

Isolated blocks

Communication
ARINC-653
shared memories

DMA upon NoC Shared memo-
ries upon NoC

Messages upon
NoC

None

Arbitration
None End-to-end TDM Time-triggered

periodic control
None

Services
Fixed cyclic-
schedule

Best perfor-
mance arbitra-
tion

Mixed criticality Time-triggered
services (pe-
riodic and
sporadic)

None

Design Fault Cont.
Memory (e.g.,
MMU) and
Time separation

None Separated memories and tempo-
ral firewalls on the NIs

None

Physical Fault Cont.
None Separated processors SIL3 fault con-

tainment

Fault tolerance
Dormant parti-
tion

None None On-chip TMR On-chip replica-
tion and diagno-
sis

40

"Errota ongi da dabillen bitartiño,

ez geldirik dagolikan",

The mill is fine while working,

not when it remains stopped

Chapter 4

The 4TSoC

The Transient Tolerant Time-Triggered System-on-Chip (4TSoC) (pronounced
/fO:t - s6k/, as "fort-soc") is the fault-tolerant implementation of the Time-
Triggered System-on-Chip (TTSoC) architecture. It is an MPSoC architecture
that interconnects multiple, possibly heterogeneous components from diverse
origin and criticalities. The 4TSoC introduces a transient tolerant TSS, which
offers core services to the application components (e.g., global time, message
transportation, resource management, etc.) and ensures that a fault within
a component cannot disrupt other components through spatial and temporal
partitioning. In addition, it can operate despite the occurrence of transient SET
faults within the fault hypothesis. Figure 4.1 shows the 4TSoC architecture
supporting fault-tolerant core services (e.g., dual TISS) and a new naming
convention compared to the TTSoC shown in Figure 3.4 (Chapter 3).

TISS TISS

App.Comp.

TISS

App.Comp.

TISS

App.Comp.

TISS TISS

App.Comp.

TISS

URM

TISS

TRM

Time-Triggered Network-on-Chip

Application

Subsystem

Trusted

Subsystem (TSS)

Figure 4.1: The 4TSoC architecture

Whereas the TTSoC supports fault tolerance for the application-specific sub-
system by on-chip TMR of components [OKS08], the 4TSoC also supports fault

41

4.1 Description 4 The 4TSoC

tolerance for the TSS. In fact, the TSS represents a single point of failure for
the whole MPSoC. Although, the probability of such a failure, calculated by
the consumed chip area, was estimated small, the simulation and fault injection
results show that the TSS reliability plays a dominant role on the overall MP-
SoC reliability [OKS08]. The goal of the 4TSoC architecture is to increase the
reliability of single chips that may later be part of a distributed safety-critical
system. In fact, safety-critical levels of integrity (futher than SIL3 [IEC09])
cannot be achieved within a single chip.

This chapter describes the 4TSoC architecture and provides the fault hypoth-
esis for the new core services and introduces the fault masking mechanisms.
The details of the 4TSoC FPGA implementation patterns are also given.

4.1 Description

The 4TSoC distinguishes between the application-specific subsystem and the
TSS. The first subsystem consist of application components and optional sys-
tem components implemented according to the application specification. The
second constitute the system architecture and provide the core services to the
application-specific subsystem.

4.1.1 Application-Specific Subsystem

The components of the application-specific subsystem result from mapping the
application jobs to the hardware partitions offered by the 4TSoC architecture.
These components are potentially heterogeneous, they can execute software
jobs through processor cores or the jobs can be directly implemented in hard-
ware on silicon fabric (e.g., FPGA) by means of dedicated cores.

The application-specific subsystem supports mixed-criticality components.
Safety-critical and non safety-critical application components can share the
4TSoC thanks to the spatial and temporal partitioning offered by TSS. There-
fore, the TSS must be certified to the same integrity level of the most safety-
critical application component.

Within this subsystem the 4TSoC distinguishes between application-specific
components and system components. System components are shared among
applications, but they are not mandatory as the elements of the trusted sub-
system. An example of a system component is the URM for the resource
management of the MPSoC [Hub08].

42

4 The 4TSoC 4.2 Fault Hypothesis

4.1.2 Trusted Subsystem

The TSS provides the core services and consists of three architectural ele-
ments, the Time-Triggered Network-on-Chip (TTNoC), the Trusted Interface
Subsystems (TISSs) and the TRM. These three elements are trusted because
the rest of the components relies upon them.

• The Time-Triggered Network-on-Chip (TTNoC): the TTNoC supports
message-exchange based communication with determinism and inherent
fault isolation. It is formed by fragment switches that can be connected
south, north, west or east through lanes to other fragment switches and
TISSes. This exchange of messages is performed at predefined points in
time according to a time-triggered communication schedule, which avoids
the need for end-to-end arbitration. Therefore, the communication in-
stants and message latencies are known a priori. It supports bus [Eng07],
mesh [KOESH07] or ring [Sch07] implementations.

• The Trusted Interface Subsystem (TISS): the TISS provides the interface
between the TTNoC and each of the application components and acts as
a guardian of the respective component. The TISS stores the knowledge
about the permitted temporal behavior of the components and prevent
temporal interferences. This knowledge can only be modified by the TRM
and not by the component itself in order to preserve fault containment in
the presence of a faulty component. The TISSes act as temporal firewalls
[KN97].

• The Trusted Resource Manager (TRM): the TRM besides configuring
each TISS, verifies that any new communication schedule does not corrupt
the static schedule of safety-critical components. The reliability of the
TRM is based on its simplicity and rigorous design (including formal
verification), as well as its small footprint that reduces the occurrence of
physical faults [OKS08].

4.2 Fault Hypothesis

The fault hypothesis is a mandatory analysis of a system as a prerequisite for
the design and validation of fault tolerance mechanisms. This section states
what types of faults must be tolerated by the fault tolerance mechanism, the
definition of FCRs and the failure types.

Beside other kinds of permanent and transient faults, the scope of the 4TSoC
architecture focuses on SET faults of integrated chips. Whereas, other transient

43

4.2 Fault Hypothesis 4 The 4TSoC

faults (e.g., SEUs) have been extensively researched, SETs are still a matter of
research for all integrated chip technologies. In fact, even rad-tolerant devices
exhibit susceptibility to SET faults [BWL+06].

4.2.1 Fault Containment Regions

The 4TSoC distinguishes FCRs based on design and physical faults.

Each component of the architecture is a fault containment region for design
faults. Strategies like the absence of a common piece of a design in multi-
ple components and the potential diversification of each component’s software
and hardware due to different providers can avoid common design faults. In
the time domain the TISS, which a priori knows the global times of message
transmissions and receptions, prevents the component from sending untimely
messages. In value domain, since the value failures are tightly related to the
application, their detection relies on the application level (e.g. replication of
application components).

Considering the multi-core nature of the 4TSoC architecture, each application
component of the 4TSoC has a better fault containment coverage (e.g., physi-
cal separation, fewer shared resources) for physical faults than software-based
integrated architecture approaches (e.g., hypervisors). Therefore, each compo-
nents in the 4TSoC architecture is an FCR for physical faults at single chip
containment coverage (e.g., the probability of a correlated failure for a chip is
around 10−5 to 10−6 failures per hour [PMH98]). Anyway, fault containment
for physical faults is not achievable within a single chip at a safety-critical rigor
(at a probability for correlated failures of 10−9 per hour), shared resources (e.g.,
substrate, manufacture process) and spatial proximity make it statistically un-
feasible.

The TSS itself is considered an FCR for design faults, but in a deeper refinement
each elements of the TSS can be considered an independent on-chip FCR for
single event faults. In fact, the technology mapping (e.g., FPGA type, ASIC)
of the 4TSoC is of utmost importance for the validity of these on-chip FCRs
for physical faults. In Section 4.5 (Page 55) these technology constraints are
further discussed.

4.2.2 Failure Modes and Rates Assumptions

The 4TSoC model distinguishes two types of failures at NoC message level
depending on the message arrival to the TISS (simplified from the DSoS model
[Jon02][Cri91]):

44

4 The 4TSoC 4.3 4T Core Services

• Message omission failure: no message has arrived at the network interface
within the specified receive window.

• Value-incorrect message: a message has arrived at the network interface
within the specified time windows but the data is corrupted.

Regarding failure rates, the occurrence of transient has been shown to be 100
to 1000 times more likely than permanent faults in integrated architectures
[OP06]. For instance, a raw 65nm FPGA (smallest Virtex-5 LX30) has a FIT
(failures per 109 hours of operation) of 1192.8 for transient faults and only 12
for permanent faults per device [Xil11]. However, the leakage of a transient
fault to a message level failure must overcome several technology barriers. For
instance, in the case of SETs, logical, electrical and temporal masking can pre-
vent a SET from being captured by a sequential element [SKK+02]. And then,
the probability of an erroneous flip-flop to propagate to message level provides
another barrier to propagation. Anyway, the effect of these technological mask-
ing effects on flip-flops is smaller with technology shrinking and it is believed
that SETs in combinatory logic and SEUs in memory elements are reaching the
same failure-rate [SKK+02]. Finally, the soft-error failure rate varies with alti-
tude as it is proportional to the neutron flux in the atmosphere. Experimental
data shows that the neutron flux increases an average of 2.2 times every 1000
meters (1.3 times every 1000 feets) [ST11].

4.3 4T Core Services

The 4TSoC core services are based on the basic services of the GENESYS MP-
SoC [OKP10]. These four core services are important for many cross-domains
application and they are extended with a fault tolerance orientation.

4.3.1 4T Time Services

In the 4TSoC each component and the NoC can work on their own (local)
clock domain. In the time-triggered NoC multiple clock domains can co-exist
upon a common time notion. Common time is the base for the provision of
a deterministic communication infrastructure for distributed components. For
instance, the time-triggered NoC requires a common notion of time among
all the components, and this reduces end-to-end latencies through temporal
alignment of components for the communication activities at the NoC.

When establishing a global time in an on-chip distributed system, there are
two approaches depending on the means to distribute this global notion of

45

4.3 4T Core Services 4 The 4TSoC

time: (1) It can be obtained through the message arrival instants using clock
synchronization algorithms or (2) by routing a physical clock line with the
global time macrotick frequency to all the components.

Clock Synchronization Approach

Clock synchronization for the establishment of a global time among distributed
computers has been extensively used for off-chip networks. In time-triggered
systems, this clock synchronization is processed by all the components of the
distributed systems by comparing the actual arrival instant against the ex-
pected arrival time. There are many techniques that implement this clock
synchronization.

The Central Master algorithm is one option [Kop11]. The central master
node periodically sends synchronization messages with the value of its inter-
nal counter to the rest of participants. The slaves then adjust the local clock
counter according to the difference between the master’s time, contained in the
synchronization message, and the time-stamp of message arrival is recorded by
the slave, corrected by the known latency of the message transport.

Fault Tolerant Synchronization algorithms [PS03] [RSB90] can protect the
global time from byzantine faults. These algorithms consists of a control sys-
tem with a feedback loop in order to regulate the global clock with three phases
that differ with the application and the specific algorithm. (1) Monitoring the
exchange of messages in the system, each node acquires knowledge about the
state of the global time counters in the rest of the nodes. (2) The nodes locally
analyze these messages and compute a convergence function that provides the
correction for the local clock. And (3) the local clock is adjusted.

Clock synchronization can be processed in different clock domains at the TISSes
of the components that cohabit the same NoC based MPSoC. Nevertheless, in
contrast to the buses used in distributed systems, not all the messages of the
system arrive at all the components. A significant number of messages must
arrive at all the components of the MPSoC in order to establish a consistent
global time.

Global Clock Line

Even if a single high frequency clock cannot be provided in current integrated
chips due to technological limits (e.g., clock skew), a slower global time clock
can be physically routed though all the components of an MPSoC. In this way,
components can be mapped into multiple clock domains that are synchronized
to that global time. In contrast to the clock synchronization approach where

46

4 The 4TSoC 4.3 4T Core Services

the reasonableness condition was obtained by approximating the global time
macrotick, in this approach this requirement is fulfilled off-line by temporal con-
straints at chip synthesis phase. Alternatively, a faster centralized synchronous
clock can be implemented with combinations of techniques such as waterfall
clock distribution and synchronous latency insensitive design [ES04].

Regarding fault tolerance, this physical global line represents a single point-
of failure for the whole chip. Additional clock distribution lines or topologies
should be provided in order to harden this shared resource.

4.3.2 4T Communication Services

The fault tolerance implementation of the TTSoC also provides a message-
passing based communication service among components with: periodic mes-
sages, sporadic messages and streaming, all of them with multi-cast support.
The innovation of the 4TSoC architecture is the support of replicated channels.

First of all, the message-passing paradigm implies several superior properties:

• Explicit timing: the timing of message exchanges is explicitly defined
(e.g., period and phase) and this avoids the use of separate synchroniza-
tion such as in shared memory communication.

• Fault Containment: the uni-directional nature of messages (one sender,
one or multiple receivers), provides the identification of the sender (e.g.,
if it is faulty). The explicit timing provides the basis for the containment
of temporal faults in the form of messages sent outside the specification.

• Universality: message-passing is an universal and basic model. It per-
mits the implementation of other communication paradigms (e.g., shared
memory) on top of it. For instance, on an Internet mail-list, the users
can create a shared table (cf. virtual shared memory) by updating the
contents and broadcasting them.

As in the TTSoC, the 4TSoC provides three basic message primitives:

• Periodic Exchange of Messages: the architecture supports the exchange
of state messages within a predefined period and phase from one sending
component to one or more receiving components.

• Sporadic Exchange of Messages: the 4TSoC can send event information
at arbitrary instants only constrained by a minimum interarrival time of
events. Otherwise, out of these pre-reserved slots, collision could occur.

47

4.3 4T Core Services 4 The 4TSoC

• Primitive Multi-cast Streaming: this primitive serves the transmission of
a sequence of variable size data elements (e.g., multimedia streaming)
with corresponding temporal properties.

The 4TSoC supports replicated channels through the same or through repli-
cated NoCs. The TISS has been found specially vulnerable to transients com-
pared to the rest of the components of the TTSoC. Therefore, it is useful to use
multiple TISSes for each of the application components and compare their out-
puts in order to provide a more reliabile communication service. The 4TSoC
implementation prefers the use of dual TISSes upon a fail-silent hypothesis,
because it reduces the amount of hardware resources compared to other ap-
proaches (e.g., TMR with majority voting). These duplicated TISSes can be
connected even to the same NoC, or to replicated NoCs. Despite the goal
of these duplicated TISS architectures for the increase of reliability, they can
also be used to duplicated the throughput of a given component. The 4TSoC
also support the option to attach ECCs to the message in order to detect and
correct possible bit-flips.

Network Interface Replication

This approach provides two network interfaces or TISSes to every component
of the MPSoC that requires an enhanced reliable communication. The whole
TISS is replicated. Each of them has its own input and output buffers and
the component needs to read and write twice every message at their respective
memory addresses. The replicas connect to different lanes of the NoC (Figure
4.2) and they can need different routing information according to the route of
the messages within the NoC.

Comp-1

TISS TISS

TSS

Figure 4.2: TISS Replication for 4TSoC

48

4 The 4TSoC 4.3 4T Core Services

NoC Replication

Replicated NoCs can also be provided to the components of the 4TSoC in
addition to TISS replication. The whole NoC replication can be understood
as a special case of the NI replication mechanism. In this case, there is no
communication between the switches of both NoCs and the component is the
unique connection among them. Figure 4.3 shows mesh-based symmetric NoCs,
but asymmetric NoCs are equally valid. Rings are also an alternative layout
to the mesh formation in the figure, e.g., an internal and external ring to the
cores can avoid the crossing of lanes increasing the spatial separation of the
replicated NoCs when the number of cores scales.

Comp-1

TISS TISS

TSS-1

TSS-0

Figure 4.3: NoC Replication for 4TSoC

Message-Level Error Correcting Codes (ECCs)

An ECC can be computed upon a data-flit before NoC transmission and at-
tached to the flit of the 4TSoC architecture. It permits at reception the de-
tection and even correction of possible errors (bit-flips). For instance, a code
with a hamming distance of 3 can detect and correct any single bit-flip on the
data-stream (including the ECC code itself). The 4TSoC architecture (Figure
4.4) computes ECCs twice, first in the source core from the original data-bits
to generate them, and then in the destination core from the received data-bits.
A comparison between the received and locally computed ECC bits denotes
the position of the inverted bit (if any).

4.3.3 4T Configuration Services

The configuration services of the 4TSoC implementation provide the means
to load the software jobs to the partitions implemented by processor cores.
The configuration of purely hardware-implemented jobs (e.g., state-machine

49

4.3 4T Core Services 4 The 4TSoC

Comp-1

TISS

TSS

Figure 4.4: Error Correcting Codes for 4TSoC

implementations) is out of the scope of this service. The configuration services
are needed for a dynamic reconfiguration of the resources (e.g. reassigning a
software-implemented job to another hardware partition). In mixed-criticality
systems where safety-critical and non safety-critical components cohabit the
same integrated chip, the safety-critical part is often restricted by safety stan-
dards (e.g., IEC 61508, DO-178B) to static configurations.

Hence, configuration services must be established, which do not preclude certi-
fication of safety-critical components, and permit to build more complex con-
figuration services for non safety-critical components upon these basic services.
The 4TSoC implementation identifies three core services:

• The boot service : this primitive assigns a software job to a hardware
partition of the 4TSoC.

• The identification service: it provides a single identifier to each partition
within the MPSoC.

• The inter-component channel configurator : it supports the allocation,
modification and removal of communication channels.

There are two dedicated system components to provide subsequently the gen-
eration of resource allocations and the verification/adoption of these resource
allocations. As safety-critical components require support for static resource
guarantees, the TRM verifies that any new allocation of the non-safety crit-
ical subsystem has no adverse effects on the behavior of the safety-critical
component. The flexibility demands from non safety-critical components are
supported by the URM that computes these resource allocations that later
can be acepted or rejected by the TRM. The current research on flexible and
trusted resource management on avionic domain is an application example for
this technology [And08].

50

4 The 4TSoC 4.3 4T Core Services

Thanks to the splitting of trusted and untrusted resource manager agents, the
complexity and the size of the TRM is reduced, thus lowering the probability
of design and physical faults that could affect this critical part. The separation
also eases the certification process which is only required for the TRM.

The 4TSoC presents fault-tolerant versions of the configuration services using
hardware and temporal replication or the merging of the TRM notion into the
TISSes of the architecture.

Replicated Resource Managers

An option to harden the configuration service against physical faults is to repli-
cate the untrusted and trusted resource managers. For instance, triple modular
redundancy can be applied (Figure 4.5). In such a configuration, the schedule
generation is generated at the same time by three URMs and verified inde-
pendently by the three TRMs. Finally, each component votes on the received
information locally.

URM

URM

URM

TRM

TRM

TRM

Comp.

Comp.

Comp.

Figure 4.5: TMRed configuration services

Re-execution Based Resource Managers

The hardware overhead introduced by the replication of the resource managers
can be avoided by a temporal redundancy approach where the new schedule
computation and its verification is re-executed several times in the URM and
TRM respectively. To apply this approach both resource managers, the URM
and the TRM, should have a ground state that is visited after every execution.
This requirement is very restrictive and application-dependent. This approach
is valid to mask transient faults affecting the resource manager state, that
can be recovered by returning to the ground state (e.g., a reset). Hence, the

51

4.4 4TSoC Fault Tolerance Model 4 The 4TSoC

transient faults affecting the technological layer (e.g., the configuration memory
of a SRAM FPGA) are not tolerated, and the URM and the TRM should be
implemented in rad-tolerant technology (e.g., ASIC or specific FPGA).

Distributed TRM

The functionality of the TRM can be merged into the TISS in the cases that the
safety-critical part of the MPSoC does not change at all during the mission time
of the system due to application requirements. In such a static configuration,
the memory contents of the TISSes hosting the message routing and instants
can be hard wired in order to intrinsically avoid the possibility of non-safety
critical components to interfere with safety critical ones. For instance, the
non-safety critical traffic is not allowed by design during the communication
time of safety critical components. This approach does not support the change
to pre-compiled and certified schedules during mission time, which can be a
limitation for some kind of applications.

4.3.4 4T Execution Services

These services control the execution of a component through its TII interface.
The basic execution control considers three commands: execution request, ter-
mination request and reset request. These commands are computed by the
Local Resource Manager (LRM) assumed to be implemented in every compo-
nent.

The trust on the messages carrying the execution services (as well as the con-
figuration messages) can be provided by an error detecting code and a time
stamp only computable at the origin. Hence, fragment switches of the TTNoC
are not able to modify these features.

Fault Tolerance on Execution Services

This execution services can be demanded by a system component (e.g., the
RCU [OKS08]) that can be replicated in hardware or time domains and the
TRM should agree on the execution of the services upon the possible fault-
tolerant architectures for the resource manager previously introduced.

4.4 4TSoC Fault Tolerance Model

The 4TSoC architecture includes fault tolerance mechanisms addressing tran-
sient faults at system level by using on-chip replication of components and ele-

52

4 The 4TSoC 4.4 4TSoC Fault Tolerance Model

ments of the TSS. The physical fault removal strategies are not a choice for soft-
error transients: shielding would require approximately 3 meters of concrete
and technology solutions such as hardened cells and Silicon On Insulator (SOI)
introduce a big penalty or are not feasible on current technology sizes [MER05].
Other approaches tried to overcome the impact of transients faults by the ap-
plication of low-level Error Correcting Codes (ECCs) [PKCC06], low-level re-
dundancy [Gai06] [Xil06] or circuit level hardening [MSZ+05]. Component level
redundancy provides superior time and energy efficiency, the ability to use stan-
dard libraries, higher resilience against spatial proximity faults, foundation for
design diversity and heterogeneity, simplicity and early validation.

• Reduced voting and recovery hardware overhead: when one pursues fault
tolerance, the use of component level redundancy and recovery services,
such as voting or state recovery, are implemented once for all the cores
reducing the overhead that such approaches require at lower abstraction
layers (e.g., at flip-flop level).

• Ability to use standard libraries: the modification of standard and proven
core libraries is not needed.

• Resilience against spatial proximity: this provides superior resilience
against correlated faults (i.e., MBUs) and the components can be sep-
arated without proximity-timing constraints.

• Diversity and heterogeneity: replicated components can be implemented
in different technologies or using software implemented by several pro-
gramming teams.

• Simplicity: component replication enables the easy removal of the redun-
dancy for a better understanding of the system.

• Early validation: hardening at component level permits the reliability as-
sessment of the architecture and the design space exploration of different
solutions at an earlier development stage.

4.4.1 On-chip TMR

The replication of cores (Figure 4.6) increases the chip reliability in the presence
of transient faults. Even though the probability (cross-section) of a transient
fault to affect more than one replica at the same time is small, the single point
of failure at the trusted element could undermine the overall reliability of the
SoC. A voting system on the end-component provides a majority based decision
about the correctness of the messages.

53

4.4 4TSoC Fault Tolerance Model 4 The 4TSoC

Comp-1 Comp-2

Comp-3

TISS TISS

TISS

TSS

Figure 4.6: Application component TMR

4.4.2 On-chip TMR Upon Replicated Channels

The combination of the replication of TISSes and application components sig-
nificantly decreases the occurrence of failures due to single faults (Figure 4.7).
Upon a dual channel and fail silent communication network, this approach trip-
licates application components. A dual channel configuration with fail silent
behavior carries less overhead than other replication approaches (e.g., TMR).
While it is possible to have a fail silent TISS, an application component it-
self cannot be considered fail silent. Therefore, TMR is necessary to avoid
application component failures.

4.4.3 Recovery upon TMR

On-chip TMR provides a limited reliability for long mission-times or when
the use-case scenario is fault-prone [DS01b]. Therefore, if the behavior of one
replica deviates from the other two replicas (a failure occurs), one can perform a
repairing action (e.g., a restart-request message). After the restart, the replica
must be able to recover from transient faults because this failure-mode does
not damage the hardware. The recovery process goes through obtaining a
correct state from one of the other replicas. This approach has been previously
presented for multiprocessor systems [GSVP03].

The 4TSoC approach considers a restart only for application components and
this restart is commanded by a system component part of the TSS (i.e., the
RCU [OKS08]). The repair-rate and the common-cause mode failures can un-
dermine the reliability increase of the recovery approach.

54

4 The 4TSoC 4.5 4TSoC Synthesis Model

Comp-1

C
o
m

p
-2

C
o
m

p
-3

TISS TISS

T
IS

S
T

IS
S

T
IS

S
T

IS
S

TSS

Figure 4.7: TMR configuration with two TISSes

The use of recovery is not currently recommended by safety-critical certification
standards because it introduces uncertainty to the system. In fact, the valida-
tion of recovery mechanisms is a tedious work that requires the analysis of a
large number of states and the interaction among all the state combinations.

4.5 4TSoC Synthesis Model

The technological synthesis of the 4TSoC is of utmost importance for the relia-
bility of the final chip. Fault containment regions and failure rate assumptions
are determined by the technology below its RTL or VHDL models. In this
section, the suitability of ASIC and FPGA technologies is discussed and the
example of the prototype 4TSoC is described with optional synthesis patterns
for a higher reliability on a Xilinx FPGA.

4.5.1 ASIC and FPGA End-Devices

The same VHDL code (with few modifications) can be used to implement
4TSoC on different FPGA technologies (e.g., flash-based, antifuze) and even as
an ASIC (these technologies are introduced in Chapter 2, Page 16). The fault
containment capabilities and the radiation immunity degree of each technology
is analyzed against different development constraints and commercial options.

55

4.5 4TSoC Synthesis Model 4 The 4TSoC

Fault Containment

A specific ASIC device is the best choice to accurately position the cores on an
integrated MPSoC as spatially separated regions and provide dedicated routing
lines for each one. For instance, the IEC-61508 standard revision for on-chip
developments highly recommends the use of dedicated power lines and input-
output routing [IEC09]. Also substrate engineering techniques (e.g., triple-
well, doping level) could be used on ASICs. For example, guard-rings for
radio-frequencies are used in [BLY02] where an important noise containment is
obtained adding physical separation.

FPGAs cannot provide these specific measures. Programmable technology ar-
rives to allocate logic resources on specific areas through synthesis constraints,
but allocating routing is not possible for all manufacturers (e.g., Xilinx). More-
over, configuration logic is normally shared by all the resources of the FPGA
chip which can lead to the whole chip failing like a single unit [GHB10]. Nev-
ertheless, it is possible to work on spatial separation by providing guard bands
on the FPGA layout between the elements. For instance, areas where no logic
resources are used could be constrained before synthesis in order to minimize
the common effects of physical faults (e.g., wide cross-sectioned MBUs).

Radiation Immunity

SRAM memory based FPGAs are highly susceptible to SEU like faults, with
fatal consequences. A bit-flip in this configuration memory could change the
implemented circuit and can lead to a functional failure or Single Event Func-
tional Interrupt (SEFI). According to the Xilinx Reliability Report they present
a Failure In Time (failures per 109 hours) of 158 FIT per megabit on a 45nm
technology. Vendors include fabric information redundancy codes for these
memories: Altera includes a CRC per frame [Alt07] and Xilinx a 12 bit ECC
for each frame or configuration word and a CRC for the complete memory for
their Virtex-5 devices [Xil08]. Specific for FPGAs supporting dynamic par-
tial reconfiguration (e.g. Xilinx), the configuration memory could be modified
online which opens the doors to new and interesting recovery and fault injec-
tion strategies. For instance, Xilinx supports the periodic re-writing of the
static values into the configuration memory from a golden hardened memory
[BPP+08].

For Flash FPGAs, the sensitivity to radiation, is far lower from volatile memory
sensitiveness (e.g., SRAM) [SNJ97]. Antifuse FPGAs and ASIC technologies
are programmed only once using high energy techniques, therefore, they are the
most robust technologies. Both exhibit similar failure rates if the Total Ionizing
Dose (TID) parameter, only interesting for space applications and which is not

56

4 The 4TSoC 4.5 4TSoC Synthesis Model

considered. Anyway, all the technologies are equally sensitive to pulse-like SET
faults on routing and combinatory logic.

Flexibility

FPGA technologies permit to specifically define the resources of a given appli-
cation during development phase, while ASIC technology cannot. For example,
if a given application requires n cores, FPGA technology permits to synthesize
these n cores once the application is analyzed. ASIC technology need to work
upon a known amount of resources, which makes it harder to optimally fit to
the actual application requirements, except if you create a new ASIC which
carries long development times and big amounts of money. Within the FPGA
family, re-programmable technologies (SRAM and Flash) allows to redefine the
functionality of the chip as many times as necessary.

Time-to-Market and Price

The development of ASIC chips requires a very long process and it requires a
big amount of money (e.g., few million dollars per design, hundreds of million
dollars for large ASICs) that can only be afforded by big production quantities
and large markets. Therefore, without a standard integrated embedded system
architecture ASICs are not feasible for generic embedded applications. FPGAs
offer a good trade-off between time-to-market and price. Furthermore, the
designer could make use of existing dependable VHDL defined cores (e.g., soft-
core) that could shorten even more the development time.

Conclusion

Certainly, optimized ASIC chips are the best solution to build a safe integrated
embedded system. ASICs show the best fault containment and radiation im-
munity (and other desirable properties, such as power and energy efficiency).
However, if we consider other parameters like flexibility or time-to-market the
FPGA technology is preferred. Inside the different configuration memory tech-
nologies of FPGAs, antifuse and flash technologies show the best trade-off be-
tween safety and feasibility. Table 4.1 sums up the comparison.

More considerations could be taken by ASIC (e.g., processor designers) and
FPGA manufacturers to make possible the development of, respectively, more
competitive (e.g., time-to-market) and more reliable (e.g., fault containment)
solutions. ASIC manufacturers could provide a safety optimized standard ar-
chitecture with a range of possible resources (e.g., number of cores). FPGA

57

4.5 4TSoC Synthesis Model 4 The 4TSoC

Table 4.1: Comparison for end-device candidates
ASIC FPGA

Antifuse Flash SRAM

Fault Containment + -
Radiation Immunity ++ + + -
Flexibility - + ++
Time-to-market and Price - +

manufacturers could provide better isolated programmable regions within the
same FPGA die.

4.5.2 Xilinx Implementation Patterns

This section shows the implementation patterns of the 4TSoC model on a Xilinx
FPGA. They are inspired by the IEC 61508 specification for on-chip replication
and related work on FPGA certification.

Local Clocks and Global Time

Xilinx FPGAs have multiple independent clock regions that can host the com-
ponents of the 4TSoC. It also permits both implementations of global time
through clock synchronization or using a slower global clock signal. This sec-
ond option was adopted for the prototype implementation, and the global time
signal makes use of the global clocking resources that arrive to all the clock
regions of the FPGA. In fact, current FPGA limitations do not enable higher
frequencies than some hundreds of megahertz (e.g., <500MHz), and forces to
distribute the global time line across the whole chip with a low frequency global
time.

Spatial Separation and Common-Failures

Spatial separation and other decoupling techniques prevent the chip to fail due
to common physical faults. This fault containment is interesting when higher
reliability chips are obtained using on-chip redundancy, or when one requires
higher safety, thus separating the diagnostic units from the supervised logic.

The components of the 4TSoC architecture can be separated in order to avoid
common cause failures due to spatial proximity. This separation can avoid
multiple resources to fail due to permanent or transient faults. On the one
hand, in [GHB10] a minimal distance of 7 CLBs is proposed to avoid the
connection of two separated blocks and prevent the propagation of high voltage

58

4 The 4TSoC 4.5 4TSoC Synthesis Model

or high current caused failures. On the other hand, protection against multiple
single events can be achieved with further separation (e.g., 300µm) that avoids
correlated errors due to single energized particle grazing [CMFC+98]. Figure
4.8 shows an example of a layout with three spatially separated microblaze
processors with TISSes and four fragment switches. The placing constraints
are highly simplified using the Planahead tool of Xilinx. The figure shows how
in Xilinx the logic primitives (LUTs, flip-flops, BRAMs, etc) can be constrained
to specific areas, but the routes are out of the control of the designer and may
cross paths.

Component-1 Component-2 Component-3

Sw-1
Sw-2

Sw-3
Sw-4

(a) No routes considered.

Component-1 Component-2 Component-3

Sw-1
Sw-2

Sw-3
Sw-4

(b) With routes.

Figure 4.8: 4TSoC layout on a Virtex-4 LX160 FPGA (FPGA Editor)

Other techniques, such as separated pinout (e.g., ground and power supply) are
recomended by the IEC-61508 safety standard [IEC09]. In the case of Xilinx
FPGA the configuration lines (GCAPTURE, GRESTORE, etc.) constitute
single points of failure [GHB10].

59

4.5 4TSoC Synthesis Model 4 The 4TSoC

Scrubbing and ECC Memories

In the specific case of Xilinx technology, it is possible to rewrite in runtime the
configuration memory of the FPGA in order to avoid undesired bit-flips. This
technique is called scrubbing [GT04]. It can be done using an external or an
internal configuration port [BPP+08]. The original version of the configura-
tion memory (the bitstream) is stored on a rad-hardened memory (e.g., flash
memory) and this information is periodically rewritten. Scrubbing is limited to
the static configuration information of the memory, and Xilinx tools provides
masking files to avoid the alteration of dynamic bits. Furthermore, this mech-
anism is transparent for the on-chip architecture, enabling scrubbing does not
increase the synthesis constraints (e.g., timinig effort) as it is a mechanism out
of the HDL design. Anyway, the certification of scrubbing and partial reconfig-
uration techniques is still controversial and an open field of research [SAS+04]
[RMG+07].

Additionally Xilinx Virtex configuration memories contain ECC protections
for each frame, which can be used to trigger a sporadic scrubbing. These ECC
codes can also be found in block RAM primitives to protect not only static
configuration memory, but also user dynamic information.

Temperature Sensor

The IEC-61508 standard highly recommends the use of temperature sensors in
conjunction with on-chip TMR. The rise of temperature is often a sign of short-
circuits and other problems that can propagate through the shared substrate
of components replicated within the same chip.

Virtex-4 technology contains the interface for a temperature sensing diode (in-
cluded on the System Monitor in newer Xilinx technologies) that can control
an interrupt to turn off the clock, turn on a fan, or perform another operation
to reduce heat [Xil]. Another option is to implement temperature sensors on
configurable logic using ring-oscillators [BLbG01]. These oscillators are built
upon FPGA resources and can be distributed along the chip which enables
more specific actions. Anyway, the low precision and temperature sensitivity
of ring-oscillators may be not enough for safety related use.

4.5.3 An IEC-61508 Compliant FPGA

The ideal technology implementation for the 4TSoC chip would be an IEC-
61508 compliant FPGA. It could provide the trade-off between the superior

60

4 The 4TSoC 4.5 4TSoC Synthesis Model

flexibility-price feature of FPGAs and the physical fault containment require-
ments demanded by safety applications (specified in the IEC-61508 standard
[IEC09]).

Such an IEC-61508 FPGA, would provide several FPGA blocks or islands
within a single chip, that do not share power supply, grounding, clock source
or configuration port (e.g., JTAG) and would be spatially separated to avoid
the common-cause failure of inner faults (e.g., hotspots) or external physical
threats (e.g., soft-errors). It would consist of independent FPGAs within a sin-
gle chip. Additional containment measures among the FPGA islands such as
guard-rings [BLY02] or other microelectronics techniques could be implemented
by design. Temperature sensing could also be merged into the chip. The unique
connection among the on-chip FPGA blocks would be a hard-wired data bus
that would implement the lanes to the components of the 4TSoC architecture.

The IEC-61508 compliant FPGA would not only target the 4TSoC architecture
and other MPSoC architectures, there are many applications where the fact of
distinguishing several IEC-61508 blocks in a single chip can reduce the number
of chips used for an embedded system and reduce the complexity of the PCB.

61

4.5 4TSoC Synthesis Model 4 The 4TSoC

62

"Egiteak egiten derakuske",

The done is shown by doing

Chapter 5

Evaluation Tools

This chapter introduces the framework and methods for the evaluation of the
4TSoC implementation.

The FI4SoC evaluation framework provides the means to assess the reliability
of integrated architectures (e.g., MPSoCs) against single event transient faults.
Faults are injected on an FPGA prototype by means of dynamic partial re-
configuration. As mentioned in Chapter 4 the main focus is put on SET like
faults. Into a SET or soft-error fault model, if faults are injected at RTL,
the end-device (FPGA or ASIC) can be abstracted, in such a way that the
fault-injection results are valid for any RTL implementing technology. Addi-
tionally, the framework supports the modeling of the assessed architecture on
the Möbius simulation tool.

Finally, the details of the FPGA implementations of the XtratuM hypervisor,
the TTSoC architecture and 4TSoC model are given to complete the tools used
for the evaluation.

5.1 FI4SoC: Fault Injection Framework

The Fault Injection for System-on-Chip (FI4SoC) is a framework for the as-
sessment of integrated architectures in the presence of transient faults. In the
following sections, first the requirements for the framework are given, and then
the resulting FI4SoC implementation is described.

5.1.1 Fault Injector Requirements

The requirements for a fault injection framework for integrated architectures
are:

63

5.1 FI4SoC: Fault Injection Framework 5 Evaluation Tools

Req. A: The set of covered faults must be representative for MPSoCs
and support most frequent fault types at an early development stage

In Very Deep Sub-Micron (VDSM) technology, transient faults represent a ma-
jor concern compared to permanent faults. This fact motivates the focus on
the effects of radiation particles, cross-talk and electromagnetic noise [Con02]
in the covered fault set. The impact of the injected faults must be relevant on
higher abstraction levels. The injection of faults that do not have an effect on
the behavior of the MPSoC would not be interesting to evaluate fault tolerance
mechanisms. For instance, [SV07] considers two fault kinds, critical and non-
critical, are distinguished depending on the severity of the functional effects of
a bit-flip into the configuration memory of the FPGA. On a platform indepen-
dent fashion, one can distinguish RTL-relevant and non-RTL-relevant faults.
If one considers a transient faulty pulse (a SET) at gate level, caused e.g., by a
radiation particle, this fault becomes interesting only when it is captured by a
register (overcoming logical, electrical or latching-windows masking [SKK+02])
and rises to RTL. Thus, for example, faults can be directly injected bit-flips in
registers assuming the effects of SETs.

One can distinguish different abstraction levels ranging from RTL level to on-
chip message exchange level. The lower abstraction bound (RTL) is generic
enough not to be technologically dependent. Thus, it is possible to perform
fault injection without attaching the results to a concrete technology (a spe-
cific FPGA or ASIC). The injection results can still be valid at different VLSI
end-devices if the synthesis process guarantees netlist equivalence to the RTL
source code (e.g., using formal equivalence checking). Fault injection at higher
abstraction levels (e.g., message-level) can be executed using system level lan-
guages such as SystemC [Per09] without using FPGAs. Nevertheless, the ac-
curacy of the results of such a simulation depends on the level of detail of the
system level model. Therefore, emulating such faults of high abstraction level
in FPGAs still makes sense for detailed results. For instance, the refinement
of a model of a processor in SystemC is lower than the one in an FPGA.

Req. B: The failure detection and classification of MPSoCs must pro-
cess the data and cope with limited resources (e.g., higher abstraction
monitoring)

The failure detection at gate output level of an MPSoC comprising a billion
transistors switching at 1 GHz frequency leads to complexity. It implies an
overhead to enable fault injection and monitoring for every gate and the subse-
quent long time to execute and analyze such a platform. Moreover, the resulting
accuracy is not required for the assessment of the fault tolerance mechanisms,
because these measures are applied at a higher abstraction level of MPSoCs.
Therefore, by raising the abstraction level of the failure detection one would

64

5 Evaluation Tools 5.1 FI4SoC: Fault Injection Framework

benefit from the reduction of the amount of data to be analyzed and the sim-
plification of the observation logic. An option is to consider an MPSoC where
cores communicate through a message-based NoC. A monitor connected to the
NoC can detect the failures of the cores at the NoC interfaces. The classifica-
tion of failures can be adapted from the classification of messages in distributed
systems (e.g., [Jon02, Cri91]).

The performance of an FPGA emulated fault injector is orders of magnitude
higher than simulation based HDL approaches. In the case of MPSoCs, the
performance advantage of using FPGAs is evident, because processors working
in parallel are more efficiently emulated in a natively parallel device like an
FPGA than on a sequential simulator. But, when using FPGA technology to
emulate faults on an MPSoC, the instrumentation overhead must be minimal
and should not scale with the number of cores. Otherwise, the hardware over-
head and frequency penalties can undermine the performance of the injector.

Req. C: The injection of faults must be controllable in space and time
domains

The framework should support the fault injection in specific components of the
MPSoC. For example, in order to validate on-chip Triple Modular Redundancy
(TMR) the injector should be able to inject faults into one of the replicas of
the TMR configuration. In the same way, the instants of the fault injection
should be under control. The shared resources of the MPSoC (the NoC, a
gateway to an off-chip network, etc.) are used by different cores at different
times. By controlling the injection instant, the injector will also know which is
the processor affected by a specific fault at that precise moment.

Req. D: The fault injection logic must not afflict itself

The framework should assure that the effects of an injected fault in the design
under test do not propagate to the injector. In other words, fault containment
must be assured between the fault injector and the design under test. This point
has particular importance when the injector and the tested design share the
same FPGA chip. When performing the place-and-route of both blocks into
the same chip, some routes belonging to the injector could cross the design
under test (even if the logic resources are placed separately). This possible
hidden channel of error propagation must be considered.

5.1.2 FI4SoC Description

FI4SoC aims to accomplish the aforementioned requirements by introducing an
FPGA-implemented and MPSoC-oriented fault injection framework. It uses

65

5.1 FI4SoC: Fault Injection Framework 5 Evaluation Tools

partial reconfiguration to inject faults w.r.t. an RTL model into memories and
flip-flops of the MPSoC design. A single FPGA integrates the necessary in-
jection logic (the monitor, the injector, etc.) into the same FPGA chip of the
MPSoC design (Figure 5.1). This technology is implemented in Xilinx Virtex-4
FPGAs.

T
im

e
C

o
n

tr
o
l

Injector

HWICAP

U
A

R
T

C
F

MonitorN
I

C1 C2

C3 C4

C5 C6

N
o
C

Design Under Text

(DUT)

DUT Clock

DUT I/O

Experiment Data

Computed Output

Figure 5.1: The FI4SoC architecture

The implementation of the FI4SoC framework consist of these basic blocks:

• Design Under Test (DUT): this block contains the target of the fault
injection, namely the MPSoC or a part of the MPSoC (e.g., a specific
core or NoC element). Its extension limits the area where the framework
injects faults. The input-output nets, which connect the DUT to the
monitor through a network interface, are the only logical connection to
the rest of the framework.

• Network Interface and Monitor : the network interface provides to the
monitor a message-based communication with the MPSoC. The monitor
(in this work a Xilinx Microblaze processor) serves as the emitter and
recipient for the messages of the MPSoC. It provides the functional ex-
periment data to the DUT and it receives the computed outputs. It also
executes the error detection mechanism and alerts the injector in case of
a failure in the DUT.

• Fault Injector : it is the key component of the framework (also imple-
mented by a Microblaze processor). It inserts faults in the FPGA’s RTL-
mapped memories through the internal configuration port according to
the positions and instants obtained from the fault vectors stored in a

66

5 Evaluation Tools 5.1 FI4SoC: Fault Injection Framework

Compact Flash (CF) memory. The Fault Injector controls the stop time
of the DUT by programming the counter registers of the Time Control
unit. The injector is also responsible for storing in the CF the failures
detected by the monitor. The UART port is used to print status messages
for the user.

• ICAP: it is the internal configuration port of Xilinx FPGAs which gives
read and write access to the configuration memory of the FPGA and
enables injecting faults modifying it. Xilinx offers hardware (HWICAP)
and software drivers to manage this port from the cores. There are other
ways to access the FPGA configuration memory (e.g., JTAG, SelectMap)
but those ways require and external access to the chip what would increase
the development time and cost of the platform.

5.1.3 Injection of Supported Faults

FI4SoC emulates two main physical faults at logical level in Xilinx Virtex-4
FPGAs: (1) SEUs in memory elements and (2) SETs in combinatory hard-
ware. These two specific fault types have been selected these because they
are frequently mentioned as the major concerns regarding transient faults
[ME02][Kop08a]. The SEUs in memory elements are directly mapped into
bit-flip injections into FPGA memories (distributed or Block-RAMs) at RTL
level. SETs are glitches or transient pulses in the combinatory logic, which
cannot be directly modeled in FPGAs or RTL. Therefore, FI4SoC emulates
their effects when they are captured by flip-flops as spontaneous bit-flips.

Injection in Distributed RAM and Block-RAM

Even if there is no difference at RTL level, the injection of bit-flips in dis-
tributed RAM (LUT implemented memory) and Block-RAM (dedicated RAM
memories) of Xilinx devices shows some differences. One can select which of
both types of memories needs to instantiate for use in the FPGA at place-and-
route time. After this step, the positions of used distributed and block-RAM
positions are listed in an automatically generated file (a.k.a logic allocation or
“.LL” file). While it is straightforward to modify a LUT implemented memory,
Block-RAMs are protected and one needs to take care of writing the proper
write-enable bits (save-data bits) every time the injector wants to inject a fault.
Those save-data bits must be written to ’0’ every time a new modification is
wanted to be stored in a Block-RAM [LBN10]. The last difference resides on
the API that Xilinx provides to access both technologies: distributed RAM is
accessed by slice coordinates, while access to Block-RAMs uses the frame offset

67

5.1 FI4SoC: Fault Injection Framework 5 Evaluation Tools

in the configuration memory. The slice coordinate and frame offset information
of each instantiated memory is listed in the “.LL file”.

Injection in Flip-Flops

Whereas some FPGA resources are directly mapped in the configuration mem-
ory (e.g., the aforementioned RAM contents), the values of the flip-flops, as
sequential elements with dedicated set and reset signals, are not. One needs to
capture them in the configuration memory and restore their values using tricky
options of Xilinx Virtex technology. The values of the flip-flops can be cap-
tured at any moment and then they can be readback through ICAP. Once one
knows flip-flop contents, one can change the reset value consequently and pro-
voke a reset to inject the fault. The reset type and the reset signal are shared
by every two FFs (see Figure 5.2). This process has been named Capture-
Readback-Controlled Reset (CRCR). CRCR requires the following steps for
every injection:

Set/Reset

Clock FFx

FFySRINV

Value

SR.HIGH

SR.LOW

Value

SR.HIGH

SR.LOW ASYNC

SYNC

Figure 5.2: Simplified representation of a Virtex-4 CLB slice

1. Stop the clock of the design part that is under test.

2. Assert a “Capture” signal to copy the values of all the FFs of the FPGA
into the correspondent places of the configuration memory.

3. Readback the current value of the specific FF and its pair from the up-
dated configuration memory.

4. Set the reset type of the slice to asynchronous.

5. Set the reset value of the target FF to its opposite and its FF pair to the
same value.

6. Provoke a local reset by toggling “SRINV” multiplexer.

7. Rewrite original reset values and reset type of both FFs.

68

5 Evaluation Tools 5.1 FI4SoC: Fault Injection Framework

8. Resume the clock.

For both cases (SEU and SET), the FI4SoC also considers multiple upsets
caused by a single event. By simultaneously flipping several bits into contiguous
RAM memory cells or related flip-flops one can emulate Multiple Bit Upsets
(MBUs), while the clock is stopped. The coordinates of the used flip-flops of a
given design are also provided by the aforementioned “.LL file”.

5.1.4 Injection Process

The injector insert faults at instants and positions according to the information
contained in the CF, until a message-level failure is detected by the monitor.
Then, it stores the failure and reconfigures itself. The injector repeats the
process with a new fault vector set.

Table 5.1 shows the information of each fault vector. It provides the fault
type (SETs in flip-flops or SEUs in memories) and the amount of locations, if
multiple upsets are desired, and the subsequent area coordinates. In the time
domain, the period of the next fault and the phase of the fault injection for this
period are provided. The clock of the DUT is stopped during the reading of
the vector and the fault injection. As illustrated in Figure 5.3, during a waiting
time the monitor checks the possible propagation of the injected faults to the
message-level.

Table 5.1: Information of a fault vector
Parameter Description

Type: SET or SEU fault
Multiple: Single or multiple fault locations
Location: Slice or Frame coordinates of the fault
Phase: Offset of the fault in the time domain
Period: Period to next fault vector read

The failure detection and classification is performed by the monitor checking
the message arrival at its network interface. An input assertion classifies the
messages using a-priori knowledge of the application running on the MPSoC.
The application can be a synthetic application designed for the fault injection
(e.g., a counter) or an actual embedded application. In the same way, the
monitor can get the messages serving as recipient or using multi-casting to
diagnose all the messages among the cores. The evaluation of input assertions
serves for the identification of two types of failures:

• Message omission failure: no message has arrived at the network interface
within the specified receive window (e.g., a give number of microticks).

69

5.1 FI4SoC: Fault Injection Framework 5 Evaluation Tools

Period

Read Vector

Phase

Injection

Propagation Waiting Time

Figure 5.3: Fault injection period

This failure mode includes fail-silent failures and untimely messages (such
as babbling idiot, delayed, etc.).

• Value-incorrect message: a message has arrived at the network interface
within the specified time windows but the data is corrupted.

Finally, after the failure is detected, the injector stores in the CF the number of
the fault causing the failure and its type (no message, incorrect, etc.). Then, it
provokes a general FPGA reset and the whole chip is automatically reconfigured
to the same initial fault free state using the bit-stream stored on a flash memory.

5.1.5 Framework Tools

Several tools assist the steps to perform a fault injection experiment using the
framework (Figure 5.4). Planahead1 simplifies the assignment of specific regions
of the FPGA to the hardware instances. In this way, it is possible to generate
fault patterns filtered by the occupied areas (or coordinates). The generation
of fault vectors for statistical fault injection parses the “.LL” file and uses
a pseudo-random generator to choose positions and time instants (e.g., with
Matlab). The interaction of the input vectors and the output results is done
using a CF. The fault injector reads the fault vectors and writes the observed
results to the CF. At the end, a parser or a spreedsheet analyzes the outputs
and gives the average numbers of faults to cause a failure and the failure mode
statistics (e.g., percentage of no message failures).

1Planahead: http://www.xilinx.com/tools/planahead.htm

70

5 Evaluation Tools 5.1 FI4SoC: Fault Injection Framework

FPGA Design Details (.LL files)

E.g., Matlab

E.g., FMEA

Random Fault Vectors

Focused Fault Vectors

Compact Flash

Injection Results Results Analysis

Virtex-4 FPGA

Figure 5.4: Tool work-flow in the framework

5.1.6 Discussion

This section discusses the relationship between the FI4SoC framework and the
requirements described in Section 5.1.1 (Page 63).

Covered Faults

FI4SoC has modeled two generic VLSI fault types at RTL level: SEUs and
SETs. Both faults are transients and can be caused by several sources: radiation
particles, cross-talk, electromagnetic noise, etc. The use of an RTL abstraction
level permits the early evaluation of the architectural FT-mechanisms of an
MPSoC without having to consider the technological implementation and its
related specific faults.

Failure Detection and Classification

The fault detection and classification have been performed by monitoring the
messages of the NoC at the MPSoC. This approach reduces the data to be
analyzed, but requires a waiting time to permit the propagation of faults from
RTL to message-level. The FI4SoC monitor distinguishes between message
omission and incorrect-value message failures using assertions that classify the
messages according to a priori knowledge of the application running on the
MPSoC. Beyond the quantity of failures per injected fault, the identification
of incorrect-value message failures is very helpful to determine the type of FT-
mechanism (e.g., double or triple modular redundancy) required by the specific
MPSoC application.

71

5.1 FI4SoC: Fault Injection Framework 5 Evaluation Tools

Fault Controllability

The 4TSoC approach obtains controllability in the spatial domain. On the one
hand, one can associate a particular logical resource with its functionality using
the “.LL” file. On the other hand, the validation engineer can place specific
blocks of the DUT in specific areas of the FPGA (e.g., the Planahead tool), and
these positions can be directly associated with those blocks. In time domain,
the injector can be synchronized with the NoC by means of the Time Control
block. This Time Block contains two registers that are programmed with the
microtick and macrotick values on which fault must be injected. When the
instant is reached the Time Block stops the DUT clock. This is particularly
interesting when the NoC is driven by the global time: faults can be injected
in synchrony with the global time and, for instance, failures can be correlated
with the load of the network at any time.

Independence of observation and fault injection logic

In Xilinx technology, one can assure the allocation of logic resources (LUTs,
flip-flops, etc.) into specific positions of the FPGA. Thus, the framework can
separate the injector and the DUT along the FPGA layout. However, the con-
nection routes among those logic resources cannot be constrained to any area,
and consequently, routes of the injector could cross the DUT. One can solve this
problem by raising the abstraction level to RTL. Faults are only injected on logic
elements which are defined at RTL. For instance, the works where faults were
injected in any position of the configuration memory [ACD+07][SATGM08]
also have to deal with the corruption of routing resources. For this reason, that
works use a second FPGA for the injector to assure fault containment with
respect to the DUT.

Overhead and Performance

The partial reconfiguration approach does not use any extra logic for every
flip-flop to perform fault injection. Low level primitives accessed for capture,
readback and local-reset are hard-wired resources on the FPGA. Only the ac-
cess logic to the configuration memory and the failure checking blocks require
additional logic in our approach and this overhead maintains stable even if the
MPSoC becomes bigger (e.g., more cores).

The monitor and the injector need slices and block RAMs and they consume
6% of the combinatory resources and 30% of the structured memories of a
Virtex-4 LX160 FPGA. On-chip RAM, mostly used to store the program code

72

5 Evaluation Tools 5.1 FI4SoC: Fault Injection Framework

of the injector can be loaded to an external RAM. Safety standards (e.g., DO-
254) recommend to inject faults under the same constraints that will be used
in the final end device. As our approach follows a dependability assessment at
logical level, it is independent of area and frequency constraints. This approach
proposes the use of a (big) dedicated FPGA just for fault injection.

Regarding the performance, the injection process is short compared to the
time the monitor waits for possible failures after every flip-flop fault. It takes
201500 clock cycles to execute the flip-flop value inversion process. At 125MHz
this requires 1.612ms. The initialization of the framework, done once per set,
takes 69072779 clock cycles (0.522s at 125MHz). In one of our experiments
[AaOMI11], the framework waits 0.49152s per fault. One can choose this time
(i.e., 150 communication cycles2) in order to let the fault in the flip-flop prop-
agate to the outputs. In the experiment with 1024 sets of 100 faults (102400
faults), if all the faults were injected, the total time spent in injection would
be 165.068 seconds (2.7 minutes), the initialization times 565.844s (9.4 min-
utes) and the accumulated waiting time 50331 seconds (14 hours). The waiting
time to let the possible errors propagate dominates the performance of the
experiments.

Upgrade to Newer Xilinx Technologies

As mentioned before, the FI4SoC have been implemented using Xilinx Virtex-
4 technology. Whereas the injection in Distributed RAM and Block-RAM
memories is directly portable to new Xilinx technologies, the fault injection
in flip-flops using the previously introduced CRCR strategy is no more imple-
mentable beyond Xilinx Virtex-4 series. From Virtex-5 onwards the FPGA
slice has been redesigned and the inverter-multiplexer (SRINV) enabling the
flip-flop reset through ICAP has disappeared.

An alternative to the CRCR is the use of the “Capture and Restore” primitives
of Xilinx FPGAs [Xil]. The Capture command updates specific reserved mem-
ory bits with the current state of all the flip-flops of the FPGA at the instant
the command is submitted. In the contrary, the Restore command atomically
writes into all the actual flip-flops of the FPGA the values stored in those re-
served memory bits. Therefore, it is possible to inject faults by intentionally
modifying these intermediate memory bits after Capture and before Restore.
It is important to highlight that both commands are applied to all the flip-flops
of the FPGA at the same time and it is not possible to do it locally, to a spe-
cific flip-flop or group of flip-flops, only globally to the entire set of the chip.
The limitation of the “Capture and Restore” approach is that it requires two

2each of the TDMA rounds of a time-triggered network

73

5.2 The Möbius Tool 5 Evaluation Tools

FPGAs. If FI4SoC is implemented on a single FPGA, both, the DUT and the
injection logic (the Fault Injector in the FI4SoC framework), share the same
configuration logic, therefore, the Capture for the whole FPGA occurs while
the DUT remains stopped but the Fault Injector continues working, and later,
the state of this injection logic is “corrupted” when the previously captured
bits are restored for the entire FPGA.

It would be possible to build a kind of “state-less” injector that, for instance,
is reset just after the restore, which would enable the “Capture and Restore”
approach on a single chip. Anyway, during the development of this thesis,
and working close to Xilinx experts, many issues have been found in order to
implement this approach (e.g., capture set-times, readback corruptions), and
it was finally discarded.

5.2 The Möbius Tool

Möbius is a software tool for modeling performance and dependability of com-
plex systems. It uses an integrated multi-formalism, multi-solution approach
[DCC+02]. The first step in the model construction process is to generate
a model using a suitable formalism (e.g., stochastic petri-nets), which is also
called an atomic model. Then, the measures of interest are specified by generat-
ing a reward model. If the model is complex, a composed model can be built up
by replicating or associating sub-models at different abstraction levels. Finally,
a solution is computed by generating the solved model where the calculation
method could be exact, approximate, or statistical.

The atomic model enables to model failure and repair rates by different prob-
ability distributions which avoids the use of purely mathematical and complex
models [DS01b].

5.2.1 The Möbius Tool and FI4SoC Framework

In this work the Möbius tool complements the FI4SoC framework for the eval-
uation of recovery services. FI4SoC injects faults periodically and the distri-
bution of faults is simplified. In that scenario, it is not possible to assess the
actual influence of recovery services upon the overall reliability. For instance, if
one takes the example of a fault injection campaign into a TMR system where
faults are injected periodically, one can determine the average number of faults
to provoke the TMR system fail. But, if one adds an ideal recovery mechanism
that resets a block faster than the arrival of a new fault, the system would
never fail.

74

5 Evaluation Tools 5.3 Evaluated Architectures

By using Möbius realistic distributions of faults (e.g., exponential) can be ap-
plied, as well as the recovery rates. In this work fault injection results are
used to feed the Möbius simulation model with actual failure-rates per compo-
nent. For instance, a TMR Möbius model is elaborated and failure transitions
are fired according to the failure probabilities obtained through FI4SoC fault
injection experiments.

5.3 Evaluated Architectures

The experiments on this chapter use the implementation of three integrated
architecture on a Xilinx Virtex-4 LX160 FPGA. The details of these imple-
mentations are given in the following subsections.

5.3.1 XtratuM LEON3 Implementation

The Xtratum hypevisor (introduced in Chapter 3, Page 27) has been imple-
mented upon a LEON3 processor on a Xilinx Virtex-4 FPGA. The LEON3
soft-core has been downloaded from Gaisler page from which the ML403 ver-
sion can be executed on the LX160 board with almost no modification. The
XtratuM hypervisor and the code for the partitions is compiled in Ubuntu and
the uploaded from a PC through Ethernet to the FPGA implemented LEON3
processor. The code is stored on the external DDR RAM memory because it
is too big for the FPGA internal RAM memory.

The LEON3 processor and the surrounding logic required to implement the
XtratuM hypervisor make use of the FPGA resources described on Table 5.2.

Table 5.2: LEON3 resources on Xilinx Virtex-4
LUTs FFs Block RAMs

Core 7707 2561 22
APB0 bus 624 89 0
AHB0 bus 371 46 0

DDR interface 965 536 4
GPTTimer 879 162 0
MCTRL 247 244 0

5.3.2 TTSoC Implementation

The TTSoC implentation used for evaluation has been ported from the Altera
TTSoC-NG implementation described in [Pau08]. The porting to Xilinx only

75

5.3 Evaluated Architectures 5 Evaluation Tools

required few changes:

• Reserved words: some of the signal names of the Altera TTSoC used
names that were reserved for the Xilinx XST synthesizer and they have
been re-named.

• Memory primitives: the dual-RAM memories of the Altera TISS has
been adapted to Xilinx primitives. For instance, the off-line initialization
of these memories is done from raw binary data files in Xilinx, whereas
Altera allows the use of hexadecimal files.

• TISS and Component interfacing: the Altera Avalon bus has been
changed to the Peripheral Local Bus (PLB) of Xilinx to interface the
Microblaze processor.

Table 5.3 shows the resource occupation of each basic component of the Xilinx
TTSoC.

Table 5.3: 4TSoC IP resource on Xilinx Virtex-4
LUTs FFs Block RAMs

Microblaze Component 2528 1700 8
TISS 1088 1170 14

Switch 347 438 0

5.3.3 4TSoC Implementation

The 4TSoC architecture takes the Xilinx implementation of the TTSoC [Pau08]
as a baseline for the fault tolerance improvements. The 4TSoC integrates the
implementation model introduced in Chapter 4 (Page 16):

• Global Time: a global clock line 100 times slower than the local microtick
is distributed along the whole chip.

• Spatial Separation: the application components (e.g., the microblazes)
and the elements of the TSS have been located on different configuration
regions of the FPGA.

• Scrubbing and ECC memories: the static part of the configuration mem-
ory of the Xilinx FPGAs can be protected with a continuous rewriting
of the contents from a rad-hardened (e.g., flash) memory, what is known
as scrubbing. The dynamic memories (e.g., BRAM) can be implemented
using ECC protected RAMs which are available on the Xilinx Virtex-4
device.

76

5 Evaluation Tools 5.3 Evaluated Architectures

Nevertheless, none of these technology patterns can be evaluated at RTL level.
The evaluation deals with the use of multiples TISSes, NoCs and components.
The software driver (e.g., configuration and message handling API) has been
modified to support multiple TISSes.

77

5.3 Evaluated Architectures 5 Evaluation Tools

78

"Saiatzen danak bilatzen du",

The one who tries finds

Chapter 6

Experiment Campaigns

This Chapter describes the experiments for the validation of the 4TSoC im-
plementation. It is divided in three basic campaigns, two of them focus on
reference architectures: the evaluation of a software approach (XtratuM) and
the TTSoC architecture; and the third validating the 4TSoC extension (Figure
6.1).

1. MPSoC approach evaluation: the experiment evaluating the MPSoC
hardware approach will assess the partitioning and the fault containment
property through a TTSoC implementation comparing it to a hypervisor
based software approach of an integrated architecture (XtratuM).

2. TTSoC architecture evaluation: the 4TSoC is an extension of the TTSoC
architecture, therefore, its original reliability will be evaluated. The fail-
ure rates of component, TISS and switch entities of the TTSoC, as well
as the component TMR are assessed. The TISS analysis is refined due to
its critical impact on the overall TTSoC architecture reliability.

3. 4TSoC implementation evaluation: finally, the new features of the 4TSoC
are evaluated. The limits of ECCs, TISS and NoC duplication, and the
application component TMR upon duplicated TISSes are analyzed. Re-
covery upon application component TMR will be also analyzed.

All these experiments (except recovery on the 4TSoC evaluation that is sim-
ulated in Möbius) are executed by the FI4SoC framework using a statistical
approach. Based on the equation on [BKH01], an error of 3% at a confidence
level of 95% using 1024 injection sets is established. The results are almost inde-
pendent from the application running in the components and the network load.
The injection sets are generated off-line using Matlab and a pseudo-random al-
gorithm. The back-annotation file of Xilinx development tools denotes the

79

6 Experiment Campaigns

exact positions of the flip-flops. Each injection set comprises the random po-
sition and macrotick instants of injections of single bit-flip faults (100 or 200
fault vectors per injection set, depending on the size of the DUT). The injector
sequentially injects faults (every 150 communication cycles) in a way that one
can determine the mean faults needed to make a particular design fail or the
DUT reliability despite the occurrence of faults. While FI4SoC is injecting
faults, the system runs a synthetic application for all experiments in order to
detect errors. This synthetic application is a mirror application that returns a
counter value generated on the FI4SoC monitor.

1. MPSoC approach evaluation

2. TTSoC architecture evaluation

3. 4TSoC implementation evaluation

Fault Containment Evaluation

Comparison with Hypervisor

Evaluation of Component, TISS and Switch

TISS Refined

Component TMR

Message Level Error Correcting Codes

Network Interface Replication

NoC Replication

Component TMR upon TISS Replication

Recovery

Figure 6.1: Experiment campaings

80

6 Experiment Campaigns 6.1 MPSoC approach evaluation

6.1 MPSoC approach evaluation

This experiment campaign wants to compare the intrinsic fault containment
of the hardware (MPSoC) and software (hypervisor) approaches to implement
an integrated architecture. The TTSoC architecture is used as an example of
an MPSoC approach and the Xtratum hypervisor as the software partitioned
approach.

6.1.1 Fault Containment Evaluation

This experiment aims at assessing the fault containment among the components
of an MPSoC thanks to the mediation of the TISSes as a temporal firewall.
The MPSoC is implemented using the TTSoC architecture. Two components
communicate independently with the monitor (Figure 6.2), but only the second
component is subject to faults. Any error of the first component due to the
communication of the second component would go against the fault contain-
ment statement.

Host-1 Host-2

TISS TISS

TSS

Figure 6.2: A two component MPSoC for fault containment assessment

Hypothesis for Experimental Validation

Hypothesis 1 “The TISSes avoid the propagation of any error between
two independently encapsulated components”

The TISS limits the sending of messages by the component to specific instants
of time that the component cannot change at runtime. Therefore, the TISS acts
as a guardian for the temporal behavior, and avoids the presence of untimely
messages in the NoC.

81

6.1 MPSoC approach evaluation 6 Experiment Campaigns

Experiment Settings

Figure 6.3 shows the network message configuration for the evaluation of
this hypothesis, the sending instant of each message w.r.t the global time
(macrotick) and the nature (periodic or sporadic) and size of the message.
Each macrotick is divided in 100 microticks and the microtick frequency is
equal to the frequency of the hardware clock (100 MHz in all the experiments).

te
st

_
d

a
ta

_
in

_
1

P
e
ri

o
d

ic
M

sg

P
h

a
se

=
2

5
6

M
T

S
iz

e
=

4
b

y
te

s

te
st

_
data

_
in

_
2

P
er

io
dic

M
sg

P
hase

=
512

M
T

Siz
e

=
4

byte
s

test_data_out_1
Periodic Msg

Phase = 1024 MT
Size = 4 bytes

test_data_out_2

Periodic Msg

Phase =
1280 MT

Size =
4 bytes

Period = 4096 MT

{

{

{
{

Figure 6.3: NoC scheduling for fault containment evaluation

6.1.2 Comparison with Hypervisor

The NoC based MPSoCs exhibit better fault containment features than em-
bedded monolithic hypervisors. Using the Xtratum upon a LEON3 processor
this experiment aims at showing the vulnerability of this software approach
against common-cause failures.

The LEON3 processor is implemented on the same Virtex-4 board that hosts
the FI4SoC framework. Instead of connecting both using a TISS, the FI4SoC
monitor and the LEON processor are connected using General Purpose Input
Outputs (GPIOs). Specific pins of the GPIOs are controlled by each of the
partitions implemented on the XtratuM hypervisor executing on the LEON3
processor (see Figure 6.4). The failure detection is not done by message arrival,
but periodically checking the state of the GPIOs by the FI4SoC monitor. These
GPIOs show the state of an internal software counter implemented in each of
the hypervisor partitions.

82

6 Experiment Campaigns 6.2 TTSoC architecture evaluation

P 1 P 2

GPIOsXtratuM

LEON3 Processor

Figure 6.4: Hypervisor assessment setup

Hypothesis for Experimental Validation

Hypothesis 2 “The number of common failures will be significantly
higher than the independent partition failures”

The partitions of the XtratuM hypervisor share the main hardware resource,
the processor, of the integrated system. In any case, certain containment cov-
erage is expected because the context switch between partitions can act as a
state recovery service for the next partition.

Experiment Setting

XtratuM hypervisor settings are configured offline using an XML file (Listing
1), with two partitions, their respective memory space and the GPIOs. For
these experiments two setups will be used. In the first one, the durations of
the partitions will be the same (50% of the processor time). In the second,
partition-1 will use three times more processor time than partition-2 (75% and
25%) as shown in Figure 6.5.

After every injection set, the FPGA is reconfigured, and the Xtratum code is
reloaded into the LEON3 from a PC using ethernet. The PC acknowledges by
UART when the LEON3 is ready to receive the code after reconfiguration.

6.2 TTSoC architecture evaluation

The reliability assessment of the TTSoC architecture is done by means of three
experiments. The first experiment measures the reliability of the application
components, the TISSes and the switches are measured by independently in-
jecting fault in each component. The second experiment analyzes the TISS in

83

6.2 TTSoC architecture evaluation 6 Experiment Campaigns

...

<Plan id="0" majorFrame="500ms">

<Slot id="0" start="0ms" duration="375ms" partitionId="0"/>

<Slot id="1" start="375ms" duration="125ms" partitionId="1"/>

</Plan>

...

<Devices>

<MemoryBlock name="gpios" start="0x80000000" size="64KB"/>

</Devices>

...

Listing 1: Excerpt of a XtratuM configuration file

Partition-0

Partition-1

Frame = 500 ms

Figure 6.5: Uneven partition durations on the processor frame

depth as the most sensitive component. The third experiment measures the
reliability increase by TMR of application components in the TTSoC architec-
ture.

6.2.1 Evaluation of Component, TISS and Switch Reli-
ability

This experiment evaluates the reliability of each of the blocks of the TTSoC
architecture using a single channel configuration (Figure 6.6). The component
is implemented using a Xilinx Microblaze soft core, hence, the reliability results
on the component are dependent on this specific soft-core. The component
receives and transmits messages that cross the TISS and the two switches. The
fault injection framework injects faults in each element of the TTSoC (e.g., the
component, the TISS and the NoC switches) and any failure is detected by the
monitor.

84

6 Experiment Campaigns 6.2 TTSoC architecture evaluation

Host-1

TISS

TSS

Figure 6.6: Experiment configuration for the TTSoC assessment

Hypothesis for Experimental Validation

Hypothesis 3 “The elements of the TSS (the TISSes and the TTNoC)
can exhibit value-incorrect failures behavior in the presence of physical
faults”

The TSS of the current version of the TTSoC architecture does not provide
fault tolerance mechanisms that would offer protection against faults affecting
the TSS itself. The assumption of the low impact of TSS failures on the overall
chip reliability is based on the small size of the TSS [OKS08]. Therefore, one
expects to find value-incorrect messages at the TISSes or the switches forming
the TTNoC under fault scenarios.

Experiment Setting

Figure 6.7 illustrates the communication instants of the component and the
parameters of the messages. The period denotes the time in macroticks (global
time ticks) between two consecutive transmissions of a message. In this exper-
iment, it is equal to the length of the communication cycle (each message has
a single slot in the cycle). The phase shows the offset of the message from the
beginning of the communication cycle.

6.2.2 TISS Refined

This particular evaluation aims at refining the behavior of the TISS in the
presence of faults. For that, two experiments are described: (1) for the behav-
ior of the TISS under several network load conditions and (2) for measuring

85

6.2 TTSoC architecture evaluation 6 Experiment Campaigns

te
st

_
d

a
ta

_
in

P
e
ri

o
d

ic
M

sg

P
h

a
se

=
2

5
6

M
T

S
iz

e
=

4
b

y
te

s

test_data_out

Periodic Msg

Phase =
1024 MT

Size =
4 bytes

Period = 4096 MT

{
{

Figure 6.7: Experiment schedule for the TTSoC assessment

the contribution of each of the entities forming the TISS to the overall TISS
reliability. An independent experiment is performed injecting 1000 faults into
each of the entities.

Hypothesis for Experimental Validation

Hypothesis 4 “The communication load of the TTNoC does not have
a significant influence on the TISS reliability against SET faults”

The communication load should affect the sensitivity of the TISS to transient
faults. A more intensive use of the hardware resources of the TTSoC should
result on a higher probability of a SET affecting a functional resource. Anyway,
the message exchange subsystem of the TTSoC is only a small part of the TISS
and the biggest fraction of the subsystem load is working at the same pace
independently of the communication load.

Hypothesis 5 “A low number of internal entities can dominate the re-
liability of the overall TISS”

86

6 Experiment Campaigns 6.2 TTSoC architecture evaluation

The TISS contains about a dozen internal blocks, accurately described in
[Pau08], from which a few ones could play a dominant role among the rest
of the entities. In fact, a fault in some registers (e.g., the current microtick reg-
ister) can directly induce a failure due to an erroneous scheduling instant and
a violation of the time specification, whereas other faults can remain dormant
without affecting the normal operation.

Experiment Setting

First, to increase the load of the TTNoC three communication schedules with
different cycle periods are proposed. The previous experiments have a period
of 4096 macroticks, now shorter periods of 256 (28) and 16 (24) macroticks are
also evaluated. This means that with two messages per cycle the original load
of 0.04% is increased subsequently to a bandwidth of 0.78% and 12.5%.

Then, for the evaluation of the entities forming the TISS, the schedule is the
same with a period of 4096 macroticks, but these entities are mapped separately
into the DUT of the FI4SoC framework. Figure 6.8 illustrates the layout in
PlanAhead.

6.2.3 Component TMR

The TMR implementation of three components is performed by the triplication
of a Xilinx Microblaze processor with the same application code (no hardware-
software diversity is applied). The TISSes and the NoC are not hardened in
this configuration (see Figure 6.9).

Hypothesis for Experimental Validation

Hypothesis 6 “Simple TMR improves the reliability of the channel, but
TTSoC failures due to a single fault on the TSS can still occur”

The replication of components should increase the chip reliability under tran-
sient faults. In fact, the usual probability (e.g., cross-section) of a transient
fault is small to affect more than one replica at the same time. Anyway, the
single point of failure at the TSS could undermine the overall reliability of the
SoC. The current TSS implementation does not include any fault tolerance
measure, hence, it should fail non-silently as stated in the hypothesis.

87

6.3 4TSoC implementation evaluation 6 Experiment Campaigns

Figure 6.8: Mapping of the TISS entities on the FPGA layout

Experiment Setting

This experiment aims at measuring the native TTSoC reliability using applica-
tion component TMR, while faults are injected in all the blocks of the TTSoC
(components, TISSes and switches). The scheduling of the NoC is shown in
Figure 6.10.

6.3 4TSoC implementation evaluation

This campaign evaluates the fault tolerance mechanism for MPSoC introduced
by the 4TSoC model. The message level ECCs and the experiments assessing
the dual TISS and dual NoC approaches for the hardening of the 4TSoC com-
munication service are introduced. Then, the component TMR upon the dual
TISS channel experiment is described.

88

6 Experiment Campaigns 6.3 4TSoC implementation evaluation

Host-1 Host-2

Host-3

TISS TISS

TISS

TSS

Figure 6.9: Experiment configuration for the TMR configuration assessment

te
st

_
d

a
ta

_
in

_
1

P
e
ri

o
d

ic
M

sg

P
h

a
se

=
2

5
6

M
T

S
iz

e
=

4
b

y
te

s

te
st

_
data

_
in

_
2

P
er

io
dic

M
sg

P
hase

=
512

M
T

Siz
e

=
4

byte
s

test_data_in_3

Periodic
Msg

Phase =
768 MT

Size =
4 bytes

test_data_out_1
Periodic Msg

Phase = 1024 MT
Size = 4 bytes

test_data_out_2

Periodic Msg

Phase =
1280 MT

Size =
4 bytes

test_
data_

out_
3

P
eriodic

M
sg

P
hase

=
1536

M
T

Size
=

4
bytes

Period = 4096 MT

{

{
{
{

{
{

Figure 6.10: Experiment schedule for TMR assessment

6.3.1 Message Level Error Correcting Codes

Through this experiment the hardening of ECC protected messages for the
4TSoC is evaluated. As the 4TSoC has flit positions of 32 data bits, an ECC
of 6 parity bits is used. They are sent in the last position of the flit (grouped

89

6.3 4TSoC implementation evaluation 6 Experiment Campaigns

if necessary). Figure 6.11 shows the configuration of the experiment.

Comp-1

TISS

TSS

Figure 6.11: Experiment configuration for the message-level ECC assessment

Hypothesis for Experimental Validation

Hypothesis 7 “ECCs increase the reliability of the channel”

The ECC only protects the data-path of the communication infrastructure, this
hardening mechanism does not cover other failure types, such as failures on the
TISS that lead to message omission behaviors.

Experiment Settings

The experiment consists of injecting faults into the 4TSoC blocks: a compo-
nent, a TISS and two fragment switches (together and separately). They are
connected to the FI4SoC framework, which provides computation data and re-
ceives the output in order to supervise the behavior of the DUT. Figure 6.12
shows the message scheduling of the NoC.

As mentioned before, each flit has two parts: the first with the field data and
the second with the ECC code. In this experiment the ECCs are computed
in software. The messages, test_data_in and test_data_out, are named from
the perspective of the component under test and their offset or phase into the
communication cycle is given in global time ticks or macroticks.

90

6 Experiment Campaigns 6.3 4TSoC implementation evaluation

te
st

_
d

a
ta

_
in

P
e
ri

o
d

ic
M

sg

P
h

a
se

=
2

5
6

M
T

S
iz

e
=

2
x

4
b

y
te

s

test_data_out

Periodic Msg

Phase =
1024 MT

Size =
2 x 4 bytes

Period = 4096 MT

{
{

Figure 6.12: Experiment schedule for ECC assessment

6.3.2 Network Interface Replication

This section describes the evaluation procedure of the replicated TISSes of
4TSoC approach (Figure 6.13 and Figure 6.14). Faults are injected all over the
component, both TISSes and the four switches.

Comp-1

TISS TISS

TSS

Figure 6.13: Experiment configuration for the TISS replication assessment

Hypothesis for Experimental Validation

Hypothesis 8 “A single fault in one of the replicated TISSes cannot
corrupt the communication of the component”

91

6.3 4TSoC implementation evaluation 6 Experiment Campaigns

At the beginning of the transmission process, the component writes the message
to the output buffer of each interface at a different instant, minimizing the
probability of a transient corrupting both channels at this first stage even if
the component is affected by a transient fault. A crucial requirement for this
configuration is the fail silent behavior of the channels: it either produces
correct results or no results at all, i.e., it is silent in case it cannot deliver the
correct service [Kop11]. From previous work, it is known that the the switches
fail in a silent manner, but the TISSes fail mainly non-silently [AaOMI11].
Therefore, both assumptions will be evaluated: the first, considering the non-
silent behavior of the TISSes, and the second, emulating an ideal fail silent
behavior of the NIs.

Experiment Settings

The FI4SoC framework is used to inject faults in the component, the two
TISSes and the two pairs of fragment switches of the NoC. All the messages
through both channels are included in a single communication cycle. In Figure
6.14, one can see in light gray the messages associated with the first channel,
and in dark gray the time allocated to the second communication link.

te
st

_
d

a
ta

_
in

_
1

1

P
e
ri

o
d

ic
M

sg

P
h

a
se

=
2

3
0

4
M

T

S
iz

e
=

4
b

y
te

s

test_data_out_11
Periodic Msg

Phase = 3072 MT
Size = 4 bytes

te
st

_
d

a
ta

_
in

_
0

1

P
e
ri

o
d

ic
M

sg

P
h

a
se

=
2

5
6

M
T

S
iz

e
=

4
b

y
te

s

test_data_out_01
Periodic Msg

Phase = 1024 MT
Size = 4 bytes

Period = 4096 MT

{

{

{

{

Figure 6.14: Experiment schedule for dual TISS

92

6 Experiment Campaigns 6.3 4TSoC implementation evaluation

6.3.3 NoC Replication

This experiment evaluates the validity of NoC replication for the 4TSoC hard-
ening (Figure 6.15). For the assessment, both NoCs have the same topology
and communication schedule.

Comp-1

TISS TISS

TSS-1

TSS-0

Figure 6.15: Experiment configuration for the NoC replication assessment

Hypothesis for Experimental Validation

Hypothesis 9 “A single fault in one of the replicated TSSes (TISSes or
NoCs) cannot corrupt the communication of the component”

The flits use independent NoC paths (switches and lanes) which avoids the cor-
ruption of the redundant messages due to a single switch fault. The destination
component reads the input buffers of each channel and makes a comparison
among the received values.

Experiment Setting

Figure 6.16 illustrates the experiment settings for the NoC replication archi-
tecture, there is an identical network schedule for each NoC. The injection area
includes the component, two TISSes and two instances of the NoC.

6.3.4 Component TMR upon TISS Replication

In the same way as the application component TMR experiment for the TTSoC
evaluation, a Xilinx Microblaze processor is TMRed without diversity, but upon
replicated TISSes (Figure 6.17).

93

6.3 4TSoC implementation evaluation 6 Experiment Campaigns

te
st

_
d

a
ta

_
in

_
0

1

P
e
ri

o
d

ic
M

sg

P
h

a
se

=
2

5
6

M
T

S
iz

e
=

4
b

y
te

s

test_data_out_01
Periodic Msg

Phase = 1024 MT
Size = 4 bytes

Period = 4096 MT

{
{

te
st

_
d

a
ta

_
in

_
1

1

P
e
ri

o
d

ic
M

sg

P
h

a
se

=
2

5
6

M
T

S
iz

e
=

4
b

y
te

s

test_data_out_11
Periodic Msg

Phase = 1024 MT
Size = 4 bytes

Period = 4096 MT

{

{

Figure 6.16: Experiment schedule for dual NoC assessment

Hypothesis for Experimental Validation

Hypothesis 10 “Dual TMR improves the reliability of the dual channel,
the probability of failures due to a single fault is decreased”

94

6 Experiment Campaigns 6.3 4TSoC implementation evaluation

Comp-1

C
o
m

p
-2

C
o
m

p
-3

TISS TISS

T
IS

S
T

IS
S

T
IS

S
T

IS
S

TSS

Figure 6.17: Experiment configuration for the TMR-dual TISS assessment

Experiment Setting

Faults are injected in all the elements of the dual-TMR architecture. The
diagram of Figure 6.18 shows the scheduling used by the TTNoC for the fault
injection experiment.

6.3.5 Recovery

On-line repair of faulty replicas is needed to increase the availability of repli-
cated components on the 4TSoC. These effects are shown using Möbius with
the data obtained from the fault injection campaigns. The development of the
equations considering recovery becomes a complex and tedious work [DS01b].
For that, one can use the Möbius tool which substantially simplifies the analysis
by automatically solving the petri net representation.

Hypothesis for Experimental Validation

Hypothesis 11 “Recovery applied to an on-chip TMRed MPSoC in-
crease the availability of the system with the appropriate repair-rate and
common-mode failure-rate”

95

6.3 4TSoC implementation evaluation 6 Experiment Campaigns

te
st

_
d

a
ta

_
in

_
0

1

P
e
ri

o
d

ic
M

sg

P
h

a
se

=
2

5
6

M
T

S
iz

e
=

4
b

y
te

s

te
st

_
data

_
in

_
02

P
er

io
dic

M
sg

P
hase

=
512

M
T

Siz
e

=
4

byte
s

test_data_in_03

Periodic
Msg

Phase =
768 MT

Size =
4 bytes

test_data_out_01
Periodic Msg

Phase = 1024 MT
Size = 4 bytes

test_data_out_02

Periodic Msg

Phase =
1280 MT

Size =
4 bytes

test_
data_

out_
03

P
eriodic

M
sg

P
hase

=
1536

M
T

Size
=

4
bytes

te
st

_
d

a
ta

_
in

_
1

1

P
e
ri

o
d

ic
M

sg

P
h

a
se

=
2

3
0

4
M

T

S
iz

e
=

4
b

y
te

ste
st

_
data

_
in

_
12

P
er

io
dic

M
sg

P
hase

=
2560

M
T

Siz
e

=
4

byte
s

test_data_in_13

Periodic
Msg

Phase =
2816 MT

Size =
4 bytes

test_data_out_11
Periodic Msg

Phase = 3072 MT
Size = 4 bytes

test_data_out_12

Periodic Msg

Phase =
3328 MT

Size =
4 bytes

test_
data_

out_
13

P
eriodic

M
sg

P
hase

=
3584

M
T

Size
=

4
bytes

Period = 4096 MT

{

{
{
{

{
{{

{

{
{

{

{

Figure 6.18: Experiment schedule for Dual TMR assessment

Experiment Setting

system_working

channel_failure

system_failure

channel_corretaled_failure

channel_fail channel_fail_2

repair

Figure 6.19: Möbius model of component TMR

Figure 6.19 shows the petri-net based Stochastic Activity Network (SAN) de-
signed in Möbius to emulate a TMR system with recovery considering common-
cause failures and recovery. The failure rate is applied by channel, and not by
component, thus, simplifying the model. The circles in the figure (e.g., sys-
tem_working) represent places that contain tokens and these tokens pass to the
next place (e.g., channel_failure) when the vertical bars (e.g., channel_fail),
timed activities, match a certain probability distribution. The triangles (e.g.,

96

6 Experiment Campaigns 6.3 4TSoC implementation evaluation

channel_correlated_failure) are output gates that, under a condition, can apply
an equation upon the tokens of a place (e.g., they can remove two tokens when
a common cause failure occurs). More details about Möbius SAN language can
be found in [DCC+02].

In our example, system_working starts with 3 tokens, each for channel, and
the system fails when 2 tokens arrive to the system_failure place. In every
channel_fail the tokens are subtracted from system_working and distributed
to channel_fail and system_failure according to the percentage of common
mode failures. If only one channel fails the repair activity can bring back a
token to system_working and repair a channel.

The fault injection results are given on technology agnostic parameters (e.g.,
fault rate per 1000 flip-flop), therefore, to give a taste of the actual reliability
one can provide an arbitrary (and pessimistic) fault rate, 100FIT per channel,
which will be used to evaluate the effects of different repair-rates and common-
cause percentages on our TMR architectures. The simulations are launched at
a confidence level of 99% and a confidence interval of 0.01%.

97

6.3 4TSoC implementation evaluation 6 Experiment Campaigns

98

"Besteren eskuekin ezta uztarik biltzen",

Cannot harvest with the hands of others

Chapter 7

Results

The results of the fault injection experiments and Möbius simulations on the
XtratuM, TTSoC and 4TSoC FPGA implementation are given in this chapter.

7.1 MPSoC vs. Hypervisor

This section provides the results that sustain that a hardware implementation
(e.g., TTSoC) of an integrated architecture is better w.r.t. fault containment
than purely software approaches (e.g., XtratuM).

7.1.1 Fault Containment Evaluation

From the injected 1024 sets of 200 faults each (204800 faults), there was no
propagation of an error originated within one host of the 4TSoC to another.
This fact provides arguments for the assessment of the fault containment at
logical level, without considering physical substrate related faults. The effec-
tiveness of the logical fault containment at physical level depends to a large
extent on the layout, the implementation technology of the chip and the TSS
contribution. The layout should provide spatial separation among the compo-
nents in order to avoid correlated events (e.g., MBUs). The implementation
technology of the components could introduce additional error propagation
channels (e.g., JTAG, clock). To avoid this, a custom ASIC implementation
can provide the desired containment measures (e.g., guard bands, independent
pin-outs). Finally, an error in the TSS can leak to an overall failure of the
chip, therefore, the number of errors in the TSS causing common-failure must
be reduced (e.g., using fault tolerance mechanisms).

99

7.2 TTSoC Evaluation 7 Results

7.1.2 Comparison to a Hypervisor Approach

These results show how the XtratuM hypervisor approach suffers from more
common failures than independent failure of each partition. A hypervisor pro-
vides temporal separation, but not spatial and hardware separation of the
partitions. According to the experiment results for each partition scheduling
(50-50% and 75-25%) shown in Table 7.1 only the 30.57-33.01% of the fail-
ures occurred independently on one of the partitions, and they are distributed
according to scheduled intervals of each partition. The rest of the failures,
66.99-69.43% (2 out of 3), are making the entire integrated system fail.

Table 7.1: Common-independent failures in XtratuM Hypervisor

Common Indep. Partition-1 Partition-2
P1-P2 50-50% 686 (66.99%) 338 (33.01%) 171 (50.59%) 167 (49.41%)
P1-P2 75-25% 711 (69.43%) 313 (30.57%) 240 (76.68%) 73 (23.32%)

Hypervisors show a positive side-effect when the number of partitions scales.
Upon an increase of the number of partitions brings a reduction of the common
failures due to the recovery effect introduced by every context switch. Table
7.2 illustrates this effect for the Xtratum hypervisor with 1, 2 and 4 parti-
tions. An analogy to MPSoCs can be found: when the number of processor
cores increases the percentage represented by the shared resources (e.g., NoC)
decreases, which leads to the same tendency. More partitions lead to fewer
common mode failures. However, this tendency shows an asymptotic limit,
beyond which the benefits may not be substantial.

Table 7.2: Mean Fault to Fail and number of partitions
Partitions 1 2 4

Mean Fault to Common Fail 8.47 10.15 11.08

7.2 TTSoC Evaluation

In this section, the reliability results of the TTSoC architecture are given from
the FI4SoC SET like fault injection campaigns. Additional results on the re-
liability of the TTSoC network interface, the TISS, are given as it has been
found to be the most fault-sensitive block of the architecture. The reliability
increase by on-chip replication of components on the TTSoC is also assessed.

100

7 Results 7.2 TTSoC Evaluation

7.2.1 Component, TISS and Switch Evaluation

A fault injection campaign has been performed in each of the elements of the
TTSoC architecture. First, only in the application component, then in the
TISS, and third and last, in one of the switches. Table 7.3 illustrates the
sensitiveness to SET like faults of the different elements of the TTSoC archi-
tecture. A conservative scenario have been selected where the component is
more sensitive to faults than the TSS. In fact, the TISS fails in average every
9.09 faults compared to the injected 20.70 faults to make an application com-
ponent fail, where both, the TISS and the component have a similar number of
flip-flops. It has been confirmed that the elements of the TSS fail in other ways
than message-omission and one can see that the TISS only exhibits message-
omission behaviors in 10.16% of the cases. The switch is found to be more
robust to transient faults, probably due to the state recovery with every new
message. Contrary to other approaches, the reliability concerns of the TTSoC
architecture should be directed to the TISSes more than to the switches.

Table 7.3: Results for the TTSoCA blocks
Component TISS Switch

Mean Faults to Failure 20.70 9.09 >100
Message-omission Failures - 10.16% 100%
No Failure 95.22% 89.05% 99.98%
Number of FFs 1377 1190 290

7.2.2 TISS Refinement

The results of focused fault injection on the TISS block are divided into two
aspects. With respect to the network load (see Table 7.4), the TISS is not
significantly influenced by the load of the TTNoC. Only a decrease from 9.09 to
8.00 fault per failure (1.47%) can be observed when the network load increases
256 times.

Table 7.4: TISS reliability for different cycle length
Cycle Length 4096 256 16
Comms. Load 0.04% 0.78% 12.5%

Mean Faults to Failure 9.09 8.38 8.00
No Failure (%) 89.05 88.08 87.42

Failures with 1 Fault 98 108 124
Failures with 2 Faults 101 100 100
Failures with 3 Faults 94 113 103

101

7.2 TTSoC Evaluation 7 Results

This low impact of network load can be explained by the most sensitive entities
of the TISS to SET like faults. These entities seems to follow the Pareto
principle where the 20% of the resources are causing the 80% of the failures. In
fact, as shown in Table 7.5, three of the entities (the Register File, the Clock
Module and the Address Decode) out of twelve (25%), are causing the 84.70%
of the single fault failures (736 out of 869 failures). If the focus is restricted to
these three entities one can see that they are not directly related with network
load and this explains the previous results.

Table 7.5: TISS reliability per building instance
No Failure (%) 1 F. 2 F. 3 F. FFs

Register File 61.768 390 237 141 227
Clock Module 76.226 232 180 143 69

Address Decode 90.679 114 124 92 129
Subtotal 736 541 376 425

Rx. Window Det. 92.414 61 88 68 14
Port Sync. 99.949 27 25 23 15

Memory Digger 99.980 21 11 14 39
Burst Dispat. 99.989 11 10 16 206
Configurator 99.991 5 7 3 190
Connectivity 99.998 8 3 5 175

Dissem. Control 99.999 0 1 0 19
Routing Proc. 100 0 0 0 8
Time Stamper 100 0 0 0 79

Total 869 686 505 1170

At first, it seems that by hardening only these three most sensitive entities
the reliability increase must be substantial. Hence, two prototypes have been
tested applying entity-level TMR respectively to the most two and four sensitive
entities. Table 7.6 illustrates that the reliability increase, the decrease of the
mean fault to failure, is substantial, but the size (e.g., in flip-flops) and this
benefit are similar to duplicating the whole TISS.

Table 7.6: Normal TISS, internally TMRed TISS, and dual TISS reliability
TISS 2xTMRed 4xTMRed 2xTISS

Mean Faults to Failure 9.09 11.48 16.19 16.53
No Failure (%) 89.05 91.33 93.71 93.94

Failures with 1 fault 98 14 3 44
Failures with 2 faults 101 38 13 46
Failures with 3 faults 94 45 21 43

Number of FFs 1190 1861 2309 2380

102

7 Results 7.3 4TSoC Evaluation

7.2.3 Component TMR

This experiment explores the reliability increase of application component trip-
lication. Table 7.7 shows the comparison between the TMR configuration of
components and the single component reliability of the TTSoC evaluation. The
table shows in its last column that the Mean Faults To Failure (MFTF) figure
does not improve significantly (1.98 times), and the observation that the fault
probability increases linearly with the size of the required hardware (6.44 times
bigger), bringing to the conclusion that the TSS contribution undermines chip
reliability in fault prone scenarios as expected in [OKS08]. Anyway, the TMR
reduces the number of failures with few faults (e.g., the absence of single-fault
failures with TMR compared to 51 failures without TMR), on the basis of fault
containment. This fact combined with scheduled maintenance actions can in-
crease the reliability of the redundant system. Alternatively, non repairable
redundant on-chip systems can be deployed if the mission time is short.

Table 7.7: Results for the TMR experiment
1 Component TMR TMR/Component

Mean Faults to Fail 20.70 41.05 x1.98
No Failure 95.22% 97.57%

Failures with 1 fault 51 out of 1024 0 out of 1024 -
Failures with 2 faults 29 out of 1024 1 out of 1024 x29
Failures with 3 faults 40 out of 1024 2 out of 1024 x20

Number of FFs 1377 8861 x6.44

7.3 4TSoC Evaluation

This last section reviews the results for the evaluation of the hardening tech-
niques of the 4TSoC transient-tolerant model. The effectiveness of ECCs, dual
TISS, dual NoC and recovery mechanisms is given according to the FI4SoC
SET-like fault injections. A summary of the results is given in Table 7.10.

7.3.1 Message Level Error Correcting Codes

The ECC coding only protects the data-path of the 4TSoC channel as predicted
by the hypothesis, but not other critical entities of the architecture. Table 7.8
shows that it is much more effective for application component hardening (an
improvement of 25%) than to protect the trusted system components.

103

7.3 4TSoC Evaluation 7 Results

Table 7.8: ECC contribution in the different blocks
Block MFTF MFTF with ECC Enhancement

Component 20.70 25.88 x1.250
TISS 8.69 8.73 x1.005

Switch 195.09 195.09 x1.000
Channel 15.36 16.68 x1.086

7.3.2 4T Communication Services

The 4T communication services based on dual TISS and dual NoC topologies
is explored through the fault injection results. These results, out of the 1024
repetitions, are shown in Figure 7.1. The vertical axis gives the number of
experiments without failure for the number of faults indicated in the x axes.
The number of injected faults is normalized per 1000 flip flops to consider also
the size of the architecture as a penalty. It shows that the use of dual TISS is
much more effective for channel hardening than ECC codes. The improvement
of the ECC approach is minimal compared to a non-protected version. The
actual dual TISS has a limited fail silent behavior, but there is margin for
improvement.

10
0

10
1

0

100

200

300

400

500

600

700

800

900

1000

1100

Faults per 1000 Flip−Flops

R
e

lia
b

ili
ty

 (
o

u
t

o
f

1
0

2
4

 e
xp

.)

Non Hardened
Non Hardened w. ECC
2 TISS (not fail silent)
2 TISS (fail silent)
2 NoC

Figure 7.1: Trusted system component hardening results

Figure 7.1 illustrates that the evaluation hypotheses are confirmed and the dual
TISS architecture increases channel reliability by an important factor. The
actual dual TISS configuration does not fully fail silently and this reduces the
reliability improvement compared to a fully fail-silent channel implementation.
The interrupt service of the TISS has been found as the main source for non-
silent failures: the TISS interrupt service fails and the application component

104

7 Results 7.3 4TSoC Evaluation

does not update the out buffers continuously sending the same message. This
problem can be solved by a redesign of the hardware requiring an update of a
bit of the buffers by the component to send any message, or by software with
the use of time-stamps in the sender and discarding consecutive messages with
the same time-stamp on the receiver.

According to the fault injection experiments, the replication of the whole NoC
does not provide any reliability benefit compared to a single NoC with repli-
cated TISSes. This is due to the low failure rate of the switches that do not
disrupt the function of the NoC from single failures and the bigger size of the
whole NoC replication approach. Moreover, no correlated faults (e.g., MBUs)
have been injected that would affect the switches of the same NoC with more
probability than in the version with replicated NoCs.

7.3.3 Component Replication

1 4.7 10
0

425

750

1.000

Faults per 1000 Flip−Flops

R
e

lia
b

ili
ty

 (
o

u
t

o
f

1
0

2
4

 e
xp

.)

Non Hardened
TMR
2 TISS
2 TISS + TMR

Figure 7.2: Application components hardening results

Regarding the application subsystem of the MPSoC architecture, the fault
injection results ploted in Figure 7.2 show the dual TISS approach as the most
reliable in terms of MFTF. In fact, TMR upon a simple or dual channel
provides limited reliability improvement in extremely fault-prone scenarios or
long mission times. Moreover, the resource occupation of TMRed solutions is
substantially bigger than the dual TISS approach, for instance, simple TMR

105

7.3 4TSoC Evaluation 7 Results

requires 1.48 times more flip flops and 1.16 times more LUTs than the dual
TISS architecture.

Regarding the dual TISS architecture, the number of failures with few faults
is reduced, but due to its big size, the reliability improvement in MTTF is not
that significant when the number of faults increases.

Mathematical Model

From the results on Table 7.10 a mathematical model of the 4TSoC can be
completed with the assumption of no failure correlation among the replicated
blocks, inspired in [DS01a]. It is possible to deduce the failure rate (λ) of a
component in function of the MFTF from the fault injection results and the
occupied area. This relation is shown in Equations 7.1 and 7.2.

MTTF =
109 · MFTF

FIT · A
(7.1)

λ = 1/MTTF (7.2)

SET caused failures show a negative exponential distribution on reliability
(RComp(t)). Using the previous failure-rate this reliability is described with
Equation 7.3.

RComp(t) = e−λt (7.3)

With the reliability of a channel (one component, one TISS and two switches) a
TMR mathematical model can be described (Equation 7.4 and Equation 7.5).

RTMR(t) = 3 · R2
Ch − 2 · R3

Ch (7.4)

RTMR(t) = 3 · e−2λCht − 2e−3λCht (7.5)

The same can be done for a dual TISS mathematical model using one compo-
nent reliability and NoC reliability (one TISS and two switches), described in
Equation 7.6 and Equation 7.7.

RDual(t) = RComp · (2 · RNoC − R2
NoC) (7.6)

RDual(t) = e−λCompt · (2 · e−λNoCt − e−2λNoCt) (7.7)

106

7 Results 7.3 4TSoC Evaluation

Finally, the previous two approaches can be merged into a dual TISS TMR
mathematical model (Equation 7.8).

RDualTMR(t) = 3·(RComp·(2·RNoC−R2
NoC))2−2(RComp·(2·RNoC−R2

NoC))3 (7.8)

From these results, the MTTF of each configuration can be obtained backwards
by the integration of the reliability, as shown in Equation 7.9.

MTTF =
∫ MT

0
R(t) dt (7.9)

Actual Missions

In order to provide field results for different application domain, mission times
and failure-rates of avionics, railway, offshore windmills and spatial domains
are shown in Table 7.9. From these data the MTTF of each mission can be
plotted.

For that, a SET error-rate must be estimated which requires several assump-
tions due to the lack of actual data. It is estimated that the SEU-rate and
SET-rate may be currently comparable [SKK+02]. Therefore, one can do the
assumption stating that the number of SEUs that an FPGA would suffer due
to soft-errors is comparable to the number of SETs of a chip. From the Xil-
inx documentation we can estimate that the slices to implement 1000 flip-flops
require around 400Kb of configuration memory in Virtex-4 technology (each
CLB column contains 64 slices that are defined within 22 frame of 1312 bits
each on the configuration memory). According to the Xilinx Reliability Re-
port the failure-rate of the Virtex-4 configuration memory due to soft-errors is
around 250 FIT/Mb [Xil11]. Therefore we can estimate, following the previous
assumptions, that the SET error-rate is about 100 FIT per 1000 flip-flop on
sea level.

The soft-error rates are also altitude dependent which affect the application
domains at high altitude (e.g., avionics) or outside the atmosphere (e.g., spa-
tial). An average incremental factor of 2.2 will be used to every 1000 meters of
additional altitude [ST11].

The results on the four mission times under evaluation, the non hardened ver-
sion and the dual TISS architectures are the ones with shorter MTTF and
the dual TISS and the TMR and the dual TISS TMR are subsequently the
next more reliable solutions for the Microblaze (Comp. MFTF = 20.70). It is
also shown that the dual TMR configuration does not provide any significant

107

7.3 4TSoC Evaluation 7 Results

10
0

10
1

10
2

18.8297

18.8297

18.8298

18.8299

18.8299

18.8299

18.83

Host Reliability (MFTF)

M
T

T
F

Non Hardened
TMR
2 TISS
2 TISS + TMR

(a) Avionic mission.

10
0

10
1

10
2

177.9988

177.999

177.9992

177.9994

177.9996

177.9998

Host Reliability (MFTF)

M
T

T
F

Non Hardened
TMR
2 TISS
2 TISS + TMR

(b) Railway mission.

10
0

10
1

10
2

3599.55

3599.6

3599.65

3599.7

3599.75

3599.8

3599.85

3599.9

3599.95

3600

Host Reliability (MFTF)

M
T

T
F

Non Hardened
TMR
2 TISS
2 TISS + TMR

(c) Offshore windmill mission.

10
0

10
1

10
2

5

5.2

5.4

5.6

5.8

6

6.2
x 10

4

Host Reliability (MFTF)

M
T

T
F

Non Hardened
TMR
2 TISS
2 TISS + TMR

(d) Spatial mission.

Figure 7.3: 4TSoC Reliability into different application domains

Table 7.9: Mission times by application domain

Application Domain Mission Time Estimated FIT per 1000 FF
Avionics 1 18 h 50 min 2200
Railway 2 178 h (aprox. 7.5 days) 100

Offshore Windmill 3 3600 h (5 months) 100
Spatial 4 61320 h (aprox. 7 years) 10000

improvements and the dual TISS option can be used on the cases that the
application component is reliable by itself.

In order to find a mission where the dual TISS configurations are clearly more
interesting, a very faulty environment must be envisioned with a long mission

1Current longest scheduled flight: Newark Liberty International Airport (New Jersey,
USA) to Singapore Changi Airport, operated by an Airbus A340-500

2Longest non-stop train service: Moscow - Vladivostok(Russia)
3Inaccessible winter period in the North See wind farms
4Mercury’s MESSENGER space probe estimated mission time: 6.5 years to arrive to

Mercury and several months of capturing data

108

7 Results 7.3 4TSoC Evaluation

10
0

10
1

10
2

0

1

2

3

4

5

6
x 10

4

Host Reliability (MFTF)

M
T

T
F

Non Hardened
TMR
Dual TISS
Dualt TISS TMR

Figure 7.4: Mission where dual TISS configurations are clearly more reliable

time. Figure 7.4 shows the MTTF for the four fault-tolerant configurations
for a mission time of 7 years and a FIT of 1000000 failures per 109 hours.
In this case the dual TISS configuration has a longer MTTF than the other
configurations for non very sensitive components. These failure rate would be
only possible on very faulty environment using extremely sensitive technology.

7.3.4 Recovery

The Möbius tool supports the reliability model with exponential distribution
of faults over time, using the introduced 4TSoC model and a failure rate of λ =
6.51 · 10−9 per channel which corresponds to the non-hardened channel Mean
Faults To Failures (MFTF) of 15.36 from fault injection results (from Table
7.10) with a hypothetical raw SET probability of 100FIT per channel. From
that, it can be concluded that common-mode failures dominate the performance
of the on-line recovery approach (Figure 7.5b). The improvement provided by
the increase of the repair-rate becomes negligible, as it is 100 times higher
than the failure-rate (Figure 7.5a), an easily achievable rate. Therefore, the
performance of the on-line recovery resides on the common-mode failure of our
design and the probability of failure of the recovery mechanism itself that is
out of the scope of this study.

109

7.3 4TSoC Evaluation 7 Results

10
4

10
6

10
8

0

0.2

0.4

0.6

0.8

1

Time (hours)

R
(t

)

x1
x10
x100

(a) W.r.t. repair-rates.

10
4

10
6

10
8

0.5

0.6

0.7

0.8

0.9

1

Time (hours)

R
(t

)

CC=0%
CC=1%
CC=5%

(b) W.r.t. common-cause.

Figure 7.5: TMR and recovery reliability

110

7
R

esu
lts

7
.3

4
T

S
o
C

E
v
a
lu

a
tio

n

Table 7.10: Results for 4TSoC hardening mechanism
Sing. Chan. ECC 2TISS (not FS) 2TISS (FS) 2NoC TMR 2NI+TMR

Flip-Flops 3123 3123 5490 5490 6666 9912 15326
LUTs 3920 3920 9164 9124 10552 12236 16316

BRAMs 352Kbit 352Kbit 792Kbits 792Kbits 792Kbits 1188Kbit 1944Kbits
MFTF 15.36 16.68 33.07 52.10 58.62 41.05 102.80

Normalized MFTF, 1000 FFs 4.92 5.34 6.02 9.49 8.79 4.14 6.71
Failures with 1 fault 77 62 17 8 3 0 0
Failures with 2 faults 58 60 19 6 14 1 0
Failures with 3 faults 61 56 22 7 14 2 0
Failures with 4 faults 53 43 27 10 7 9 0

111

7.4 Summary of the Results 7 Results

7.4 Summary of the Results

This section reviews the hypotheses formulated with each experiment. Table
7.11, Table 7.12 and Table 7.13 give the hypotheses of the experiments and the
results of the subsequent MPSoC approach, TTSoC and 4TSoC evaluations.
The tables extract the acceptance criteria (Pass/Fail or a Continous Value)
from the hypothesis.

Table 7.11: Summary of MPSoC Apporach Evaluation
Experiment Hypothesis Criteria Result
Fault
Contain-
ment
Section
6.1.1

Hyp.1 “The TISSes avoid
the propagation of any error
between two independently
encapsulated components”

Pass/Fail Pass: No error propa-
gation for 204800 faults
within the 4TSoC

Hypervisor
Section
6.1.2

Hyp.2 “The number of
common failures will be sig-
nificantly higher than the
independent partition fail-
ures”

Cont.Value The 67-70% of the Xtra-
tuM hypervisor failures
are common to all the
partitions

112

7 Results 7.4 Summary of the Results

Table 7.12: Summary of the TTSoC Evaluation
Experiment Hypothesis Criteria Result
TTSoC
Section
6.2.1

Hyp.3 “The elements of the
TSS (the TISSes and the
TTNoC) can exhibit value-
incorrect failures behavior
in the presence of physical
faults”

Pass/Fail Pass: The TISS exhibits
value-incorrect failures in
89.84% of the failures

TISS Re-
fined
Section
6.2.2

Hyp.4 “The communica-
tion load of the TTNoC
does not have a significant
influence on the TISS relia-
bility against SET faults”

Cont.Value 1.47% more failures
when the load increases
256 times

Hyp.5 “A low number of
internal entities can domi-
nate the reliability of the
overall TISS”

Cont.Value The 25% of the entities
causes the 84.7% of the
TISS failures

TMR
Section
6.2.3

Hyp.6 “Simple TMR im-
proves the reliability of the
channel, but TTSoC fail-
ures due to a single fault on
the TSS can still occur”

Cont.Value Out of 1024 experiments:
no single fault failures, 1
failure with one fault, 2
failures with three faults.
Normalized MTTF: 4.14

113

7.4 Summary of the Results 7 Results

Table 7.13: Summary of the 4TSoC Evaluation
Experiment Hypothesis Criteria Result
ECCs
Section
6.3.1

Hyp.7 “ECCs increase the
reliability of the channel”

Cont.Value The ECC protected
channel needs 8.6%
more faults to fail.
Normalized MTTF: 5.34

TISS
Replica-
tion
Section
6.3.2

Hyp.8 “A single fault in
one of the replicated TISSes
cannot corrupt the commu-
nication of the component”

Pass/Fail Pass: No single fault
failures. Normalized
MTTF: 9.49

NoC
Replica-
tion
Section
6.3.3

Hyp.9 “A single fault in
one of the replicated TSSes
(TISSes or NoCs) cannot
corrupt the communication
of the component”

Pass/Fail Pass: No single fault
failures. Normalized
MTTF: 8.79

TMR
and dual
TISS
Section
6.3.4

Hyp.10 “Dual TMR im-
proves the reliability of the
dual channel, the probabil-
ity of failures due to a single
fault is decreased”

Cont.Value Normalized MTTF: 6.71

Recovery
Section
6.3.5

Hyp.11 “Recovery applied
to an on-chip TMRed MP-
SoC increase the availabil-
ity of the system with the
appropriate repair-rate and
common-mode failure-rate”

Pass/Fail Pass: Reliability in-
creased. The common-
cause failure-rate domi-
nates the recovery relia-
bility

114

"Begia noraino, gogoa haraino",

The ambition goes as far as the eyes do

Chapter 8

Conclusion

This chapter reviews the Transient Tolerant Time-Triggered System-on-Chip
(4TSoC) model, discusses the resutls and suggests further areas of research.

8.1 Summary

This thesis presents the Transient Tolerant Time-Triggered System-on-Chip
(4TSoC) model, an MPSoC approach to increase the reliability of integrated
architectures by a system-level approach.

This MPSoC model is described in Chapter 4 by means of a description of the
architecture and the 4T core services, a set of hardened services that support
the integration of jobs with an enhanced reliability. Fault tolerance mecha-
nisms based on the replication of components and message level Error Cor-
recting Codes (ECCs) are also introduced upon the 4TSoC model. The actual
effectiveness of the fault tolerance mechanisms strongly depends on the tech-
nological synthesis of the model. Synthesis patterns of the 4TSoC model are
discussed on the basis of spatial separation and rigorous sharing of critical
resources (clock, pinout, routes, etc.).

Chapter 5 presents the evaluation tools to assess the features introduced by the
4TSoC model. The Fault Injection for System-on-Chip (FI4SoC) framework
is described as the means to perform the reliability assessment though FPGA
prototypes at RTL model. A SET-fault model is selected as a generic and inter-
esting fault-model for integrated architecture. The experiments are described
on chapter 6. First, analyzing the MPSoC approach versus software based
integrated architectures (e.g., hypervisors). Second, evaluating the TTSoC re-
liability as a reference for the evaluation on 4TSoC, that is also an extension
of this architecture. And third, the fault tolerance mechanisms, and indirectly

115

8.2 Future Research 8 Conclusion

the 4T communication service, are evaluated to measure the improvement of
the 4TSoC model.

Finally, Chapter 7 shows the results on the fault injection campaigns using the
FI4SoC framework. These results are classified in the three campaigns:

1. A purely software based integrated architecture (XtratuM hypervisor)
approach shows more common mode failures that a hardware MPSoC
approach (the TTSoC).

2. The dependability assessment of the TTSoC identifies the TISS, the net-
work interface of the architecture, as the most sensitive element. Further
refinements pinpoint the register file, the clock module and the address
decode as the critical entities of the TISSes. Regarding the application
component TMR, the results show that the central and trusted subsystem
of the TTSoC undermine the potential reliability increase by providing a
single point of failure.

3. The 4TSoC addresses the reliability increase of MPSoC systems. The
use of a fault-tolerant communication service (with duplicated network
interface or NoC) achieves this goal by reducing the mean faults needed
to make the MPSoC chip fail (i.e., reduce the failure-rate) and the fail-
ures with few accumulated faults are reduced. Among the evaluated
fault-tolerant configurations for the critical parts of the architecture, the
network interface replication shows the most promising results. It shows
superior normalized results (considering mean fault to failure and flip-
flop size) when applied upon a single channel or a TMR configuration.
Nevertheless, the TMR approach with a single TISS is the best option
for most of the analyzed application domains due to their short mission
time.

8.2 Future Research

This dissertation leaves some open paths for research, in brief:

• The validation of the 4T resource management and recovery services by
fault injection. So far, only the fault tolerance mechanisms and the com-
munication service of the 4TSoC model have been assessed. The vali-
dation of the resource management will require a synthetic application
with a change of scheduling for the TTNoC and the submission of the
executable program of a component through the network while faults are
injected. The recovery services could be tested, for instance, by continu-
ous requests.

116

8 Conclusion 8.2 Future Research

• The on-chip implementation of clock synchronization services, such as,
FT clock synchronization or Central Master mechanisms. FT clock
synchronization implementation carries challenges like the provision of
enough synchronization messages to every component of the MPSoC.
Otherwise, the MPSoC can host several masters and the components
could locally synchronize to them.

• The assessment of the technology synthesis model of the 4TSoC by hard-
ware transient fault injection (e.g., radiation beamer). Measure the reli-
ability benefits of the spatial separation of components, the hardening of
the clock resources and the impact of other shared resources (e.g., pinout,
configuration memory) of the MPSoC that can make the whole integrated
system fail as a single unit. They are not evaluable through RTL models.

• The update of the FI4SoC Xilinx Virtex-4 for technology to other Xilinx
families (e.g., Spartan 6). The way to implement the SET fault model
flipping the state of the flip-flops is not portable to newer Xilinx series
due to the FPGA slice simplification.

• The study of the combination of virtualization approaches and MPSoCs.
In this dissertation hardware and software approaches to implement inte-
grated architectures have been treated as ends of non mixable technolo-
gies. However, virtualization has been already applied to multi-core tech-
nologies in order to partition Commercial Off-The-Shelf (COTS) chips.
For instance the European FP7 project MULTI-PARTES explores this
combination of hypervisors and MPSoC on embedded systems.

117

8.2 Future Research 8 Conclusion

118

Bibliography

[AaOMI11] M. Azkarate-askasua, R. Obermaisser, I. Martinez, and X. Iturbe.
Dependability assessment of the time-triggered SoC prototype us-
ing FPGA fault injection. Proc. of the 37th Annual Conference of
the IEEE Industrial Electronics Society, IECON, 2011.

[ACD+07] M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, S. Pastore,
and G. R. Sechi. Evaluation of single event upset mitigation
schemes for SRAM based FPGAs using the FLIPPER fault injec-
tion platform. In 22nd IEEE International Symposium on Defect
and Fault-Tolerance in VLSI Systems, DFT, pages 105–113, 2007.

[Ade03] A. Ademaj. Assessment of the error detection mechanisms of the
time-triggered architecture using fault injection. PhD Disertation.
TU Wien, 2003.

[ALR01] A. Avizienis, J. C. Laprie, and B. Randell. Fundamental concepts
of dependability. Research Report, 2001.

[ALRL04] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr. Ba-
sic concepts and taxonomy of dependable and secure comput-
ing. IEEE Transactions on Dependable and Secure Computing,
1(1):11–33, 2004.

[Alt07] Altera. Robust SEU mitigation with stratix III FPGAs. White
Paper, 2007.

[And08] B. Andrillon. Contribution of integrated modular avionics of sec-
ond generation for business aviation. SCARLETT PROJECT,
2008.

[AP07] T.W. Ainsworth and T.M. Pinkston. On characterizing perfor-
mance of the Cell broadband engine element interconnect bus.
In First International Symposium on Networks-on-Chip, NOCS,
pages 18 –29, 2007.

119

BIBLIOGRAPHY BIBLIOGRAPHY

[ARI91] ARINC. ARINC specification 651: Design guide for integrated
modular avionics. Aeronautical Radio, Inc, 1991.

[ATM+07] M. A. Aguirre, J. N. Tombs, F. MuÃśoz, V. Baena, H. Guzman,
J. Napoles, A. Torralba, A. Fernandez-Leon, F. Tortosa-Lopez,
and D. Merodio. Selective protection analysis using a SEU emu-
lator: Testing protocol and case study over the Leon2 processor.
IEEE Transactions on Nuclear Science, 54(4):951–956, 2007.

[BDM02] L. Benini and G. De Micheli. Networks on chips: A new SoC
paradigm. Computer, 35(1):70–78, 2002.

[BGB+08] J. C. Baraza, J. Gracia, S. Blanc, D. Gil, and P. J. Gil. Enhance-
ment of fault injection techniques based on the modification of
VHDL code. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 16(6):693–706, 2008.

[BK00] G. Bauer and H. Kopetz. Transparent redundancy in the time-
triggered architecture. International Conference on Dependable
Systems and Networks, DSN, pages 5–13, 2000.

[BKH01] J. E. Bartlett, J. W. Kotrlik, and C. C. Higgins. Organiza-
tional research: Determining appropriate sample size in survey
research. Information Technology, Learning, and Performance
Journal, 19(1):43–50, 2001.

[BLbG01] E. Boemo, S. Lopez-buedo, and J. Garrido. Measurement of
FPGA die temperature using run-time reconfiguration. in Pro-
ceedings of the 7th International Workshop on Thermal Investiga-
tions of ICs and Systems, 2001.

[BLY02] T. Blalack, Y. Leclercq, and C. P. Yue. On-chip RF isolation
techniques. In Proceedings of the IEEE Bipolar/BiCMOS Circuits
and Technology Meeting, pages 205–211, 2002.

[BPP+08] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K.A. LaBel,
M. Friendlich, H. Kim, and A. Phan. Effectiveness of internal
versus external SEU scrubbing mitigation strategies in a Xilinx
FPGA: Design, test, and analysis. IEEE Transactions on Nuclear
Science, 55(4):2259–2266, 2008.

[BWL+06] M. Berg, J.-J. Wang, R. Ladbury, S. Buchner, H. Kim, J. Howard,
K. LaBel, A. Phan, T. Irwin, and M. Friendlich. An analysis of sin-
gle event upset dependencies on high frequency and architectural
implementations within Actel RTAX-S family field programmable

120

BIBLIOGRAPHY BIBLIOGRAPHY

gate arrays. Nuclear Science, IEEE Transactions on, 53(6):3569
–3574, dec. 2006.

[Cho11] N. Chomsky. Language and other cognitive systems: What is
special about language. Talk in University of Cologne, 2011.

[CMFC+98] A. B. Campbell, O. Musseau, V. Ferlet-Cavrois, W. J. Stapor, and
P. T. McDonald. Analysis of single event effects at grazing angle.
IEEE Transactions on Nuclear Science, 45:1603–1611, 1998.

[Con02] C. Constantinescu. Impact of deep submicron technology on de-
pendability of VLSI circuits. In Proceedings of the International
Conference on Dependable Systems and Networks, pages 205–209,
Washington, DC, 2002.

[Cow01] N. Cowan. The magical number 4 in short-term memory: A re-
consideration of mental storage capacity. Behavioral and Brain
Sciences, pages 87–114, 2001.

[Cri91] F. Cristian. Understanding fault-tolerant distributed systems.
Communications of the ACM, 34(2):56–78, 1991.

[CRM+09] A. Crespo, I. Ripoll, M. Masmano, P. Arberet, and J.J. Metge.
XtratuM: An open source hypervisor for TSP embedded systems
in aerospace. European Space Agency, (Special Publication) ESA
SP, 669 SP, 2009.

[CS99] C. H. Chen and A. K. Somani. Fault-containment in cache mem-
ories for tmr redundant processor systems. IEEE Transactions on
Computers, 48(4):386–397, 1999.

[DCC+02] D.D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J.M.
Doyle, W.H. Sanders, and P.G. Webster. The mobius framework
and its implementation. IEEE Transactions on Software Engi-
neering, 28(10):956–969, 2002.

[DS01a] B. S. Dhillon and P. Subramanian. Reliability analysis of triple
modular computer systems with redundant voters and restricted
maintenance. Journal of Quality in Maintenance Engineering.,
2001.

[DS01b] B.S. Dhillon and P. Subramanian. Reliability analysis of triple
modular computer systems with redundant voters and restricted
maintenance. Journal of Quality in Maintenance Engineering,
7(2):151–164, 2001.

121

BIBLIOGRAPHY BIBLIOGRAPHY

[Eng07] G. Engleder. Time-triggered network-on-a-chip. Master thesis,
Vienna University of Technology, Faculty of Computer Science,
Real-Time Systems Group, 2007.

[Ern10] R. Ernst. Certification of trusted MPSoC platforms. MPSoC,
2010.

[ES04] A. Edman and C. Svensson. Timing closure through a globally
synchronous, timing partitioned design methodology. In Proceed-
ings of the 41st annual Design Automation Conference, pages 71–
74, 2004.

[FCCK06] A.P. Frantz, L. Carro, ÃĽ. Cota, and F.L. Kastensmidt. Evalu-
ating SEU and crosstalk effects in network-on-chip routers. Pro-
ceedings - 12th IEEE International On-Line Testing Symposium,
IOLTS, 2006:191–192, 2006.

[Gai06] J. Gaisler. The Leon3FT-RTAX processor family and SEU test
results. Proc. of the 9th Annual Military and Aerospace Pro-
grammable Logic Devices International Conference, 2006.

[GAM+02] P. Gil, J. Arlat, H. Madeira, Y. Crouzet, T. Jarboui, K. Kanoun,
T. Marteau, J. Duraes, M. Vieira, D. Gil, J. C. Baraza, and J. Gra-
cia. Fault representativeness. Deliverable (ETIE2) of the European
Project Dependability Benchmarking DBench (IST-2000-25425),
2002.

[GbR06] AUTOSAR GbR. Autosar. Technical Overview V2.0.1, 2006.

[Gel01] P. Gelsinger. Microprocessors for the new millenium, challenges.
opportunities, and new frontiers. Proc. of the Solid State Circuit
Conference, 2001.

[GH10] K. Goossens and Hansson. The aEthereal Network-on-Chip after
ten years, evolution, lessons, and future. Proc. Design Automation
Conference, DAC, 2010.

[GHB10] R. Girardey, M. Hubner, and J. Becker. Safety aware place and
route for on-chip redundancy in safety critical applications. Pro-
ceedings - IEEE Annual Symposium on VLSI, ISVLSI, pages 74–
79, 2010.

[GMSW09] G. Griessnig, R. Mader, C. Steger, and R. Weiß. Fault insertion
testing of a novel CPLD-based fail-safe system. In Proceedings of
the Conference on Design, Automation and Test in Europe, pages
214–219, 2009.

122

BIBLIOGRAPHY BIBLIOGRAPHY

[GSVP03] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz.
Transient-fault recovery for chip multiprocessors. Conference Pro-
ceedings - Annual International Symposium on Computer Archi-
tecture, ISCA, pages 98–109, 2003.

[GT04] M. Garvie and A. Thompson. Scrubbing away transients and
jiggling around the permanent: Long survival of FPGA sys-
tems through evolutionary self-repair. In C. Metra, R. Leveu-
gle, M. Nicolaidis, and J. P. Teixeira, editors, Proceedings - 10th
IEEE International On-Line Testing Symposium, IOLTS, pages
155–160, 2004.

[HGBH09] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken. CoMPSoC:
A template for composable and predictable multi-processor system
on chips. ACM Transactions on Design Automation of Electronic
Systems, 14(1), 2009.

[HT98] G. Heiner and T. Thurner. Time-triggered architecture for
safety-related distributed real-time systems in transportation sys-
tems. Twenty-Eighth Annual International Symposium on Fault-
Tolerant Computing, pages 402 –407, 1998.

[Hub08] B. Huber. Resource management in an integrated time-triggered
architecture. PhD Thesis, Vienna University of Technology, Fac-
ulty of Computer Science, Real-Time Systems Group, 2008.

[IBM07] IBM. Cell broadband engine architecture. Version 1.02, 2007.

[IEC09] IEC. Special architecture requirements for integrated circuits
(ICs) with on-chip redundancy. IEC-61508-2, Annex E, 2009.

[IEE05] IEEE. IEEE standard testability method for embedded core-based
integrated circuits. IEEE Std 1500-2005, 2005.

[Jon02] C. et al. Jones. Final version of the DSoS conceptual model. DSoS
Project (IST-1999-11585), 2002.

[K.11] Sravan K. Multi-core processor penetration in smartphones will
hit 15 percent in 2011. White Paper, Strategy Analytics, 2011.

[KKOE07] K. KronlÃűf, S. Kontinen, I. Oliver, and T. Eriksson. A method
for mobile terminal platform architecture development. Advances
in Design and Specification Languages for Embedded Systems,
pages 285–300, 2007.

123

BIBLIOGRAPHY BIBLIOGRAPHY

[KN97] H. Kopetz and R. Nossal. Temporal firewalls in large distributed
real-time systems. In Distributed Computing Systems, 1997., Pro-
ceedings of the Sixth IEEE Computer Society Workshop on Future
Trends of, pages 310–315, 1997.

[KOESH07] H. Kopetz, R. Obermaisser, C. El Salloum, and B. Huber. Auto-
motive software development for a multi-core system-on-a-chip. In
Fourth International Workshop on Software Engineering for Au-
tomotive Systems, SEAS, 2007.

[Kop06] H. Kopetz. Mitigation of transient faults at the system level-the
TTA approach. Proc. 2nd Workshop on System Effects of Logic
Soft Errors, 2006.

[Kop07] H. Kopetz. Why do we need a sparse global time-base in de-
pendable real-time systems? In IEEE International Symposium
on Precision Clock Synchronization for Measurement, Control and
Communication, ISPCS, 2007.

[Kop08a] H. Kopetz. The ARTEMIS technology platform. IST Conference,
2008.

[Kop08b] H. Kopetz. The complexity challenge in embedded system de-
sign. Invited paper. In Proceedings - 11th IEEE Symposium on
Object/Component/Service-Oriented Real-Time Distributed Com-
puting, ISORC, pages 3–12, 2008.

[Kop11] H. Kopetz. Real-time systems, design principles for distributed
embedded applications. Springer Book, 2nd Edition, 2011.

[KOPS04] H. Kopetz, R. Obermaisser, P. Peti, and N. Suri. From a federated
to an integrated architecture for dependable real-time embedded
systems. Research Report, 2004.

[KPP06] M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor com-
munication network: Built for speed. IEEE Micro, 26(3):10–23,
2006.

[LBN10] U. Legat, A. Biasizzo, and F. Novak. Automated SEU fault emula-
tion using partial FPGA reconfiguration. IEEE 13th International
Symposium on Design and Diagnostics of Electronic Circuits and
Systems, DDECS, pages 24 –27, 2010.

[LH94] J. H. Lala and R. E. Harper. Architectural principles for safety-
critical real-time applications. Proceedings of the IEEE, 82(1):25–
40, 1994.

124

BIBLIOGRAPHY BIBLIOGRAPHY

[Lie95] J. Liedtke. On microkernel construction. Proceedings of the 15th
ACM Symposium on Operating System Principles, SOSP, 1995.

[ME02] D.G. Mavis and P.H. Eaton. Soft error rate mitigation techniques
for modern microcircuits. Annual Proceedings - Reliability Physics
Symposium, pages 216–225, 2002.

[MER05] S. S. Mukherjee, J. Emer, and S. K. Reinhardt. The soft error
problem: An architectural perspective. In Proceedings of the 11th
International Symposium on High-Performance Computer Archi-
tecture, pages 243–247, 2005.

[Mes89] M.D. Mesarovic. Abstract system theory. Lecture Notes in Control
and Information Science. Springer Verlag, 1989.

[MG96] Weiwei Mao and Ravi K. Gulati. Improving gate level fault cov-
erage by RTL fault grading. IEEE International Test Conference
(TC), pages 150–159, 1996.

[MRCP10] M. Masmano, I. Ripoll, A. Crespo, and S. Peiro. XtratuM for
LEON3 : an open source hypervisor for high integrity systems.
ERTS, 2010.

[MSK+08] P. Mangalagiri, Bae Sungmin, R. Krishnan, Xie Yuan, and
V. Narayanan. Thermal-aware reliability analysis for platform
FPGAs. In IEEE/ACM International Conference on Computer-
Aided Design, ICCAD, pages 722–727, 2008.

[MSZ+05] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim. Robust sys-
tem design with built-in soft-error resilience. Computer, 38(2):43–
52, 2005.

[Mul11] MultiPARTES. Multicores partitioning for trusted embedded sys-
tems. Factsheeet, 2011.

[Neu06] D. Neumann. Intel virtualization technology in embedded and
communications infrastructure applications. Intel Technology
Journal, 10(3):217–226, 2006.

[NTS+08] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra,
R. Bose, C. Zissulescu, and E. Deprettere. Daedalus: toward
composable multimedia MP-SoC design. In Proceedings of the
45th annual Design Automation Conference, pages 574–579, 2008.

125

BIBLIOGRAPHY BIBLIOGRAPHY

[Obe08] R. Obermaisser. Temporal partitioning of communication re-
sources in an integrated architecture. IEEE Transactions on De-
pendable and Secure Computing, 5(2):99–114, 2008.

[OK09] R. Obermaisser and H. Kopetz. A candidate for an ARTEMIS
cross-domain reference architecture for embedded systems. Sud-
westdeutscher Verlag, 2009.

[OKP10] R. Obermaisser, H. Kopetz, and C. Paukovits. A cross-domain
multiprocessor system-on-a-chip for embedded real-time systems.
IEEE Transactions on Industrial Informatics, 2010.

[OKS08] R. Obermaisser, H. Kraut, and C. Salloum. A transient-resilient
system-on-a-chip architecture with support for on-chip and off-
chip tmr. In Proceedings - 7th European Dependable Computing
Conference, EDCC, pages 120–134, Kaunas, 2008.

[OP06] R. Obermaisser and P. Piti. A fault hypothesis for integrated ar-
chitectures. In Proceedings of the Fourth Workshop on Intelligent
Solutions in Embedded Systems, WISES, pages 47–64, 2006.

[OSHK08] R. Obermaisser, C. E. Salloum, B. Huber, and H. Kopetz. The
time-triggered system-on-a-chip architecture. In IEEE Interna-
tional Symposium on Industrial Electronics, pages 1941–1947,
2008.

[Pau08] C. Paukovits. The time-triggered system-on-chip architecture.
PhD Dissertation, 2008.

[Per09] J. Perez. Codesign and simulated fault injection of safety-critical
embedded systems using systemc. European Dependable Comput-
ing Conference, EDCC, 2009.

[Per11] J. Perez. Executable Time-Triggered Model (E-TTM) for the de-
velopment of safety-critical embedded systems. PhD Dissertation.
TU Wien, 2011.

[PK08] C. Paukovits and H. Kopetz. Concepts of switching in the time-
triggered network-on-chip. In Proceedings - 14th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Sys-
tems and Applications, RTCSA, pages 120–129, Kaohsiung, 2008.

[PKCC06] F. A Pereira, F. L. Kastensmidt, L. Carro, and E. Cota. Depend-
able network-on-chip router able to simultaneously tolerate soft
errors and crosstalk. IEEE International Test Conference., pages
1–9, 2006.

126

BIBLIOGRAPHY BIBLIOGRAPHY

[PMH98] B. Pauli, A. Meyna, and P. Heitmann. Reliability of electronic
components and control units in motor vehicle applications. VDI
Berichte, pages 1009–1024, 1998.

[Pol95] S. Poledna. Fault-tolerant real-time systems, the problem of
replica determinism. Springer Verlag, 1995.

[PPB+07] F. Poletti, A. Poggiali, D. Bertozzi, L. Benini, P. Marchal,
M. Loghi, and M. Poncino. Energy-efficient multiprocessor
systems-on-chip for embedded computing: Exploring program-
ming models and their architectural support. IEEE Transactions
on Computers, 56(5):606–621, 2007.

[PS03] M. Paulitsch and W. Steiner. Fault-tolerant clock synchronization
for embedded distributed multi-cluster systems. 15th Euromicro
Conference on Real-Time Systems, 2003.

[RE06] B. Rumpler and W. Elmenreich. Considerations on the complexity
of embedded real-time system design tasks. In IEEE International
Conference on Computational Cybernetics, ICCC, 2006.

[RMG+07] B. Rousseau, Ph Manet, D. Galerin, D. Merkenbreack, J. D. Legat,
F. Dedeken, and Y. Gabriel. Enabling certification for dynamic
partial reconfiguration using a minimal flow. In Proceedings -
Design, Automation and Test in Europe, DATE, pages 983–988,
Nice Acropolis, 2007.

[RSB90] P. Ramanathan, K. G Shin, and R. W Butler. Fault-tolerant
clock synchronization in distributed systems. Computer, pages
1106–1112, 1990.

[RTS10] Real-Time-Systems. RTS real-time embedded hypervisor.
http://www.real-time-systems.com/, 2010.

[Rus99] J. Rushby. Partitioning in avionics architectures: Requirements,
mechanisms, and assurance. NASA Langley Technical Report
Server, 1999.

[SAS+04] E. Schoitsch, E. Althammer, G. Sonneck, H. Eriksson, and J. Vin-
ter. Support for modular certification of safety-critical embedded
systems in DECOS - the generic safety case. IEEE International
Conference on Industrial Informatics, INDIN, 2004.

[SATGM08] L. Sterpone, M. Aguirre, J. Tombs, and H. Guzman-Miranda. On
the design of tunable fault tolerant circuits on sram-based fpgas

127

BIBLIOGRAPHY BIBLIOGRAPHY

for safety critical applications. In Proceedings -Design, Automa-
tion and Test in Europe, DATE, Design, Automation and Test in
Europe, DATE, pages 336–341, Munich, 2008.

[Sch07] M. Schoeberl. A time-triggered network-on-chip. In Proceedings
- International Conference on Field Programmable Logic and Ap-
plications, FPL, pages 377–382, Amsterdam, 2007.

[Sim62] H. A. Simon. The architecture of complexity. In Proceedings of
the American Philosophical Society, pages 467–482, 1962.

[SKK+02] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and
L. Alvisi. Modeling the effect of technology trends on the soft
error rate of combinational logic. In Proceedings of the Interna-
tional Conference on Dependable Systems and Networks, pages
389–398, 2002.

[SNJ97] H. R. Schwartz, D. K. Nichols, and A. H. Johnston. Single-event
upset in flash memories. IEEE Transactions on Nuclear Science,
44(6 PART 1):2315–2324, 1997.

[ST11] SEU-TEST. Soft-error testing resources @ONLINE.
http://www.seutest.com/, 2011.

[SV07] L. Sterpone and M. Violante. A new partial reconfiguration-based
fault-injection system to evaluate SEU effects in SRAM-based FP-
GAs. IEEE Transactions on Nuclear Science, 54(4):965–970, 2007.

[Tok03] J. L. Tokar. Space & time partitioning with ARINC 653 and
pragma profile. Ada Lett., XXIII:52–54, 2003.

[TU08] J.S. Teller and The Ohio State University. Scheduling tasks on
heterogeneous chip multiprocessors with reconfigurable hardware.
The Ohio State University, 2008.

[Win01] A. T. Winfree. The geometry of biological time. Springer Verlag.,
2001.

[Xil] Xilinx. Virtex-4 User Guide.

[Xil06] Xilinx. Xilinx tmrtool user guide. TMRTool Software Version
8.2i, 2006.

[Xil08] Xilinx. Virtex-5 FPGA. User Guide, 2008.

[Xil11] Xilinx. Device reliability report. Third Quarter 2011, 2011.

128

BIBLIOGRAPHY BIBLIOGRAPHY

[XR96] J. Xu and B. Randell. Roll-forward error recovery in embedded
real-time systems. Parallel and Distributed Systems, 1996. Pro-
ceedings., 1996 International Conference on, pages 414 –421, 1996.

129

BIBLIOGRAPHY BIBLIOGRAPHY

130

Selected Publications

• Mikel Azkarate-askasua, Roman Obermaisser, Imanol Martinez, Xabier
Iturbe Dependability Assessment of the Time-Triggered SoC
Prototype using FPGA Fault Injection. The 37th Annual Confer-
ence of the IEEE Industrial Electronics Society, IECON, 2011, Australia.

• Mikel Azkarate-askasua, Roman Obermaisser, Xabier Iturbe, Imanol
Martinez FI4SoC: A Fault Injection Framework for Transient
Fault Effects in Embedded MPSoCs. 9th IEEE Workshop on In-
telligent Solutions in Embedded Systems, WISES, 2011, Germany.

• Mikel Azkarate-askasua, Roman Obermaisser, Imanol Martinez, Xabier
Iturbe Suitability of hypervisor and MPSoC architectures for the
execution environment of an integrated embedded system. 14th
IEEE International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing Workshops, ISORCW, 2011, USA.

• Jon Perez, Mikel Azkarare-askasua, Antonio Perez. Codesign and sim-
ulated fault injection of safety-critical embedded systems us-
ing SystemC. 8th European Dependable Computing Conference, EDCC,
2010, Spain.

• Xabier Iturbe, Mikel Azkarate-askasua, Imanol Martinez, Jon Perez, and
Armando Astarloa. A novel SEU, MBU and SHE handling strat-
egy for Xilinx Virtex-4 FPGAs. 19th International Conference on
Field Programmable Logic and applications, FPL, 2009, Czech Republic.

131

BIBLIOGRAPHY BIBLIOGRAPHY

132

Curriculum Vitae

Details

Name: Mikel, Azkarate-askasua (azkarate - gmail - com)
Birth: 1984-06-24

Education

2009 - present Teschnische Universität Wien (TU Wien, Austria)
Institute of Computer Engineering, Real-Time Systems Group
PhD: The Transient Tolerant Time-Triggered System-on-Chip (4TSoC)

2011 - 2011 Stage in Universität Siegen (Uni-Siegen, Germany)
Embedded Systems Group

2006 - 2008 École Nationale Superieur of Bordeaux (ENSEIRB, France)
M.Sc. in Embedded Systems

2002 - 2006 Mondragon Unibertsitatea (MU, Spain)
B.Eng. in Industrial Electronics

Professional Experience

2008 - present Ikerlan Research Center (Mondragon, Spain)
Research focus on safety-critical embedded systems (IEC-61508, etc.),
MPSoCs and FPGAs

2008 - 2008 Master Thesis in the Technische Universiteit Delft (The Netherlands)
JPEG2000 image compression in MPSoC

2004 - 2006 Ikerlan Research Center (Mondragon, Spain)
Bachelor Thesis: Time-Triggered Embedded Systems
Student Collaborator with FAGOR S.COOP

133

	The Transient Tolerant Time-Triggered System-on-Chip (4TSoC)
	Abstract
	Contents
	List of Figures
	List of Acronyms
	Introduction
	Problem Statement
	Proposed Solution
	Contributions
	Thesis Organization

	Background and Basic Concepts
	The Notion of Time
	Time Flow and Models
	State
	Determinism
	Behavior and Service

	Job, Partition and Component
	Job
	Partition
	Component

	Integrated Architectures
	Implementation
	Technologies

	Dependability Concepts
	Physical Faults in Semiconductors
	Fault Containment Regions (FCRs)
	Fault Tolerance
	Fault Injection

	Cognitive Complexity

	Analysis of the State-of-the-Art
	XtratuM Hypervisor
	Communications and Timeliness
	Fault Handling

	Cell Multi-Processor
	Communications and Timeliness
	Fault Handling

	CoMPSoC
	Communications and Timeliness
	Fault Handling

	TTSoC
	Communications and Timeliness
	Fault Handling

	IEC 61508 On-Chip Replication
	Fault Handling

	Analysis
	Timeliness
	On-Chip Design Fault Containment
	On-Chip Physical Fault Containment and Fault Tolerance

	Conclusion

	The 4TSoC
	Description
	Application-Specific Subsystem
	Trusted Subsystem

	Fault Hypothesis
	Fault Containment Regions
	Failure Modes and Rates Assumptions

	4T Core Services
	4T Time Services
	4T Communication Services
	4T Configuration Services
	4T Execution Services

	4TSoC Fault Tolerance Model
	On-chip TMR
	On-chip TMR Upon Replicated Channels
	Recovery upon TMR

	4TSoC Synthesis Model
	ASIC and FPGA End-Devices
	Xilinx Implementation Patterns
	An IEC-61508 Compliant FPGA

	Evaluation Tools
	FI4SoC: Fault Injection Framework
	Fault Injector Requirements
	FI4SoC Description
	Injection of Supported Faults
	Injection Process
	Framework Tools
	Discussion

	The Möbius Tool
	The Möbius Tool and FI4SoC Framework

	Evaluated Architectures
	XtratuM LEON3 Implementation
	TTSoC Implementation
	4TSoC Implementation

	Experiment Campaigns
	MPSoC approach evaluation
	Fault Containment Evaluation
	Comparison with Hypervisor

	TTSoC architecture evaluation
	Evaluation of Component, TISS and Switch Reliability
	TISS Refined
	Component TMR

	4TSoC implementation evaluation
	Message Level Error Correcting Codes
	Network Interface Replication
	NoC Replication
	Component TMR upon TISS Replication
	Recovery

	Results
	MPSoC vs. Hypervisor
	Fault Containment Evaluation
	Comparison to a Hypervisor Approach

	TTSoC Evaluation
	Component, TISS and Switch Evaluation
	TISS Refinement
	Component TMR

	4TSoC Evaluation
	Message Level Error Correcting Codes
	4T Communication Services
	Component Replication
	Recovery

	Summary of the Results

	Conclusion
	Summary
	Future Research

	Bibliography
	Publications
	Curriculum Vitae

