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“Now I think hydrodynamics is to be the root of all physical science,

and is at present second to none in the beauty of its mathematics.”

William Thomas (Lord Kelvin) to George G. Stokes, 1857.



Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit der dreidimensionalen Stabilitätsanalyse von

der zweidimensionalen, inkompressiblen Grundströmung in ebenen Kanalgeometrien, die

eine abrupte Erweiterung/Verengung in Form von einer Stufe aufweisen. Die damit ver-

bundene Singularität der Geometrien führt zu starken Gradienten in den Strömungsgrö-

ßen und zu einer Strömungsablösung, sogar bei kleinen Reynolds Zahlen.

Die Geometrien der untersuchten Systeme, die rückwärtsgerichtete Stufe, vorwärts-

gerichtete Stufe und die ebene abrupte Erweiterung, werden systematisch variiert, wo-

durch ein großer Bereich des Parameterraums abgedeckt wird. Eine globale, zeitliche

lineare Stabilitätsanalyse zeigt, dass die Stabilitätsgrenzen kontinuierliche Funktionen

bezüglich der systematisch variierten Geometrieparameter sind. Bei geeigneter Skalie-

rung der kritischen Reynolds- bzw. Wellenzahlen nähern sich die Stabilitätsgrenzen im

Limes sehr großer und kleiner Stufenhöhen einer Asymptote an.

Des Weiteren wird gezeigt, dass die kritische Störströmung begrenzt in dem Rezir-

kulationsgebiet hinter den Stufen ausgeprägt ist. Die physikalischen Mechanismen, die

die Instabilitäten antreiben, werden mit Hilfe einer kinetischen Energieanalyse unter-

sucht und an ausgewählten Geometrien erörtert. Darüber hinaus wird die physikalische

Relevanz der Instabilitätsmoden gezeigt, indem die Konsistenz mit den Resultaten aus

früheren Experimenten demonstriert wird.



Abstract

The three-dimensional linear stability of the two-dimensional, incompressible flow is

studied numerically in plane channels, exhibiting sudden expansions/constrictions in

the form of steps. The corner singularities of the geometries lead to steep gradients in

the flow quantities in the vicinity of the steps, where the flow separates immediately,

even at low Reynolds numbers.

The geometries of the systems considered, i.e. the backward-facing-step, forward-

facing-step and plane sudden-expansion problems, are varied in a systematic way such

that a wide range of the parameter space is covered. A global, temporal linear stability

analysis shows that the resulting stability boundaries are continuous functions of the ge-

ometry parameters. If the critical Reynolds and wave numbers are scaled appropriately,

they approach a linear asymptotic behaviour in the limit of very large as well as small

step heights.

All critical modes are found to be confined to the region behind the steps extending

downstream up to the reattachment point of the separated vortex. An energy-transfer

analysis is used to understand the physical nature of the instabilities. This analysis

reveals that the basic flow becomes unstable due to different instability mechanisms,

which are studied in detail for representative geometries. The physical relevance of the

global instability modes detected is established by demonstrating the consistency with

previous experimental results.
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1. Motivation and Introduction

The separation of the flow as it passes over a sharp corner is of practical as well as

theoretical interest. Separated/reattached flows appear in many industrial applications

such as diffusers, aerofoils or turbine blades. The phenomenon of flow separation often

leads to drastic losses in aerodynamic performances of aerofoils or automotive vehicles.

Many aspects of such flows can be studied in ideal geometries such as the backward-facing

step, forward-facing step and plane sudden expansion. These geometries are simple as

there are only a few geometric parameters, but not necessarily simple in terms of flow

phenomena. The systems in question consist of plane channels, which exhibit sudden

expansions/constrictions in the form of steps. Figure 1.1 shows as an example the

visualization of the experimental flow of the sudden-expansion problem. The geometries

consist of a plane inlet channel, followed by a suddenly expanded (constricted) channel.

The direction of the bulk flow is the x direction and the steps are vertically aligned in

the y direction, perpendicular to the x axes.

Regardless of the step heights, the flow is characterized by regions of separated flow

in the form of more or less strained vortices immediately behind the steps. They are

referred to as primary vortices because they are the first ones to appear as the Reynolds

number Re is increased. For higher Reynolds numbers, secondary and higher-order

regions of separation arise further downstream, alternatingly located on both walls of the

channel. The experimental investigations of the two-dimensional flow reveal that within

Figure 1.1.: Experimental flow visualization of the sudden-expansion problem
(Fearn et al., 1990).
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the laminar regime the length of the primary vortices increases linearly with Re. For very

large step heights, a thin plane jet emerges from the opening of the inlet channel and the

streamlines of the primary vortices are almost circular near its centre. When the step

heights are reduced, these vortices are getting more and more strained and elongated in

the streamwise direction. For very small step heights, the bulk flow is almost parallel and

a relatively high Reynolds number is required to destabilize the flow. The experimental

findings show that the characteristics of the vortices immediately behind the steps are of

key importance for the flow instabilities as the recirculation bubbles provide a feedback

for the perturbations. Near the outflow region, a plane Poiseuille flow is realized again if

the Reynolds number is sufficiently small and the outflow channel is long enough. Also

the inlet channel has to be sufficiently long such that a plane Poiseuille flow is realized

in the experiments.

In fluid mechanics, one is, amongst other things, interested in the question which flow

structure will be realized for certain initial and boundary conditions. Any persistent

flow pattern, being observed in the experiments, corresponds to a stable solution of the

Navier–Stokes equations. Here stability refers to a reference state, which is called the

basic flow. In order to understand the above-mentioned flow patterns and phenomenolo-

gies, in the present work the basic flows are studied under idealized conditions, where

a fully developed laminar plane Poiseuille flow is prescribed within the inlet channel.

Moreover, the basic flows are time-independent, two-dimensional and are assumed to be

infinitely extended in the homogeneous spanwise (z) direction. This translation symme-

try allows one to study intrinsic effects, unmasked by sidewall perturbations. Thus it is

interesting to know when the basic flow loses its symmetry and gets three-dimensional

by increasing the Reynolds number Re. For the purpose of hydrodynamic stability, cer-

tain perturbations are added to the steady basic flow at the time t = 0. The temporal

evolution of the perturbations determines, whether the basic state is stable or unstable.

For small Reynolds numbers, all perturbations, independent of their amplitudes, decay

in an exponential and monotonic way for t → ∞. The basic flow is asymptotically

monotonically stable for Re < Ree, where Ree defines the energy stability limit according

to Joseph (1976). For Ree < Re < Rea, the perturbation amplitudes might grow initially

t > 0, until they tend to zero for t → ∞. In this scenario, the basic flow is only

asymptotically stable as the disturbances exhibit transient growth (see figure 1.2). The

amplification of the perturbations due to transient growth can be quite strong as it is the

case in the plane Poiseuille flow (Trefethen et al., 1992, 1993), where the conservative

energy stability limit accounts for Ree = 49.6 (Carmi, 1969). In the plane Poiseuille flow,
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Figure 1.2.: The kinetic energy of an initial perturbation E(t = 0) as measure for the
amplitude of the perturbation. A basic flow is asymptotically monotonically stable for
Re < Ree, asymptotically stable for Re < Rea and conditionally or linearly stable for
Re < Rec. The green zone denotes the range of infinitesimal initial disturbances.

the transition to turbulence can be observed experimentally at Re ≈ 1000, even though

the critical Reynolds number is Rec = 5772. For Re < Rec, the basic flow is conditionally

or linearly stable, which means that the initial perturbations will decay for t → ∞ only

if they are infinitely small. Thus, the critical Reynolds number defines the bifurcation

point, at which the basic flow loses for sure its stability, even for infinitesimal initial

disturbances. For Rea < Rec, the bifurcation is subcritical like in the plane channel

flow, whereas for Rea = Rec, the bifurcation is supercritical. In that case, the basic

state is the only stable solution for Re < Rec.

In the prevailing study, a global linear stability analysis is conducted, where the tem-

poral behaviour of small perturbations is considered for t → ∞. Large-amplitude dis-

turbances, which could destabilize the basic flow for Re < Rec, are not considered.

Here, global refers to the fact that the perturbations are three-dimensional. It is worth

mentioning that other approaches are possible, focusing on the spatial growth of distur-

bances. This ansatz is suitable for open systems, where no resonance and feedback due

to closed streamlines is expected (Huerre & Rossi, 1998).

The temporal linear stability analysis is able to capture absolute as well as convective

instabilities (depending on the boundary conditions). If an infinitesimal perturbation,

which is initially localized in space, grows downstream as well as upstream at that
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fixed spatial location, then the instability is absolute. If on the other hand, the dis-

turbance propagates as it grows in magnitude such that the perturbation ultimately

decays at that fixed point in space, then the basic flow is convectively unstable, see

Huerre & Monkewitz (1985). Deissler (1987) showed by considering the temporal as

well as the spatial evolution of the disturbances that the instability in plane Poiseuille

flow is convective in nature with the same stability boundary as obtained by Thomas

(1953) and Orszag (1971), respectively. Nevertheless, in section 3.6 it is demonstrated

that the critical Reynolds number Rec = 5772 can be determined accurately by a tem-

poral linear stability analysis by using periodic boundary conditions in the streamwise

direction.

One objective of the present work is to provide accurate reference data on the pri-

mary instabilities and its associated linear stability boundaries of the two-dimensional

basic flow. These stability boundaries of great interest, as they have a severe impact on

the transport and mixing properties of flows if a symmetry-breaking three-dimensional

flow sets in. To date, almost all linear stability analyses for the backward-facing-

step, forward-facing-step and sudden-expansion problems dealt with two-dimensional

perturbations. If three-dimensional disturbances were considered (Barkley et al., 2002;

Marino & Luchini, 2009), the analyses were conducted only for a few geometric param-

eters (step-to-main-channel heights) and for very short inlet channel lengths. In the

current doctoral thesis, the three-dimensional stability analysis is carried out for a sys-

tematic variation of the geometric parameters to cover a wide range of the parameter

space. Besides of that, great care is taken in order to obtain entrance-channel-length

independent results.

The prevailing approach of a global stability analysis only requires to solve numeri-

cally a two-dimensional problem, as the homogeneous spanwise direction can be treated

analytically. Such extensive geometric parameter variations would not be possible via a

full three-dimensional simulation. Apart from the substantially increased cost of a full

three-dimensional simulation, one has to bear in mind that a determination of the critical

Reynolds number by simulation is prohibitively expensive, because the time-dependent

simulation must be carried out for a very long time, which even diverges at the critical

Reynolds number. This phenomenon, known as critical slowing down, brings about that

the time scale required to obtain a saturated state tends to infinity at the critical point.

Therefore, the linear stability analysis is the method of choice for accurately calculating

the critical Reynolds number (if it exists).
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Another objective of the present study is to shed light on the underlying physical

instability mechanisms on the basis of a kinetic-energy analysis. Thereby, a relation-

ship should be established to known instability mechanisms from simplified models. A

kinetic-energy analysis provides also valuable information regarding the flow regions,

where the instabilities are localized in space. These flow regions could be modified if

the onset of the three-dimensional flow is to be delayed (flow control aspects (see e.g.

Theofilis & Colonius, 2011)). Moreover, the numerical results are compared with previ-

ous experimental findings in order to demonstrate the physical relevance of the global

instability modes found.

This work is organized in such a way that the mathematical formulations and govern-

ing equations are presented in section 2. The numerical implementations and solution

strategies are described in section 3. The main part of the thesis, section 4, is dedicated

to the numerical results obtained for the backward-facing step, forward-facing step and

plane sudden-expansion problems. Each topic is introduced with a literature review, the

problem is defined and the results are discussed, followed by a problem-specific conclu-

sion. The appendix rounds off the present study, where details of the energy analysis

and the Jacobian-free Newton–Krylov approach are described.

The results of this doctoral thesis have already been published in the Journal of Fluid

Mechanics.

• LANZERSTORFER, D. & KUHLMANN, H. C. 2012a Global stability of the two-

dimensional flow over a backward-facing step. J. Fluid Mech. 693, 1–27.

• LANZERSTORFER, D. & KUHLMANN, H. C. 2012b Three-dimensional insta-

bility of the flow over a forward-facing step. J. Fluid Mech. 695, 390–404.

• LANZERSTORFER, D. & KUHLMANN, H. C. 2012c Global stability of

multiple solutions in plane sudden-expansion flow. J. Fluid Mech., DOI:

10.1017/JFM.2012.184.
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2. Mathematical Formulation

2.1. Basic-Flow Equations

The basic flow represents a solution of the Navier–Stokes equations, whose stability will

be analysed later on. In the case of the plane channel flow, the Poiseuille flow describes

the basic state. All systems treated in the present work feature a translation symmetry

with respect to the homogeneous spanwise (z) direction. Therefore, the two-dimensional

basic flow is considered in the (x, y) plane.

The flow of an incompressible and Newtonian fluid is governed by the Navier–Stokes

and continuity equations

∂∗
t u∗

0 + u∗
0 · ∇∗u∗

0 = −1

ρ
∇∗p∗

0 + ν∆∗u∗
0, (2.1.1a)

∇∗ · u∗
0 = 0, (2.1.1b)

where the density ρ and viscosity ν are considered constant. Viscous heating does

not play an important role in the present dynamics and thus a coupling between the

energy and momentum equations is not incorporated. Note that the assumption of

incompressibility is valid for many fundamental fluids, such as water, air, gas, or liquid

metals. A fluid is regarded as incompressible, if its density does not change with pressure

variations (see e.g. Spurk, 1997). In (2.1.1a) ν = µ/ρ represents the kinematic viscosity,

where µ stands for the dynamic viscosity.

For the dimensionless formulation of (2.1.1), the scales

t =
t∗U

L
, x =

x∗

L
, u0 =

u∗
0

U
, p0 =

p∗
0

ρU2
(2.1.2)

are used, where U and L describe the typical velocity and length scales of the problem to

be defined later depending on the system considered. Then the unsteady, incompressible

Navier–Stokes and continuity equations can be expressed in non-dimensional form as
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∂tu0 + u0 · ∇u0 = −∇p0 +
1

Re
∇2u0, (2.1.3a)

∇ · u0 = 0, (2.1.3b)

with the dimensionless Reynolds number

Re =
UL

ν
. (2.1.4)

In the case of time-independent boundary conditions, a stationary basic flow (∂tu0 = 0)

exists, which is governed by

u0 · ∇u0 = −∇p0 +
1

Re
∇2u0, (2.1.5a)

∇ · u0 = 0. (2.1.5b)

The steady, incompressible Navier–Stokes and continuity equations for a two-

dimensional flow in the (x, y) plane can be written by components as

∂x(u0u0) + ∂y(v0u0) + ∂xp0 − 1

Re
(∂xxu0 + ∂yyu0) = 0, (2.1.6a)

∂x(u0v0) + ∂y(v0v0) + ∂yp0 − 1

Re
(∂xxv0 + ∂yyv0) = 0, (2.1.6b)

∂xu0 + ∂yv0 = 0. (2.1.6c)

In the above equations, the nonlinear convective term of (2.1.5a) u0 · ∇u0 has been

written in conservative form ∇ · (u0u0), which guarantees conservation of momentum

on a discrete mesh (Gresho, 1991).
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2.2. Linear Stability Analysis

Considering any initial conditions utot(x, t = 0) and ptot(x, t = 0), which satisfy the

same boundary conditions as the basic state, a total flow utot(x, t) and ptot(x, t) exists

for t > 0, being a solution of

∂tutot + utot · ∇utot = −∇ptot +
1

Re
∇2utot, (2.2.1a)

∇ · utot = 0. (2.2.1b)

If the difference between the total flow and the basic flow ũ = utot −u0 and p̃ = ptot −p0

is decaying for t → ∞, the basic flow will be realized. In this case, the basic state is

stable, otherwise (|(ũ, p̃)| 6= 0 for t → ∞) unstable, see Chandrasekhar (1961).

Therefore it is interesting to analyse the temporal evolution of small perturbations

|(ũ, p̃)| ≪ 1 (Drazin & Reid, 1981). Substituting utot = u0 + ũ and ptot = p0 + p̃ into

(2.2.1) yields the nonlinear perturbation equations

∂tũ + u0 · ∇ũ + ũ · ∇u0 + ũ · ∇ũ = −∇p̃ +
1

Re
∇2ũ, (2.2.2a)

∇ · ũ = 0. (2.2.2b)

Owing to the assumption of infinitesimal perturbations, the quadratic term ũ · ∇ũ is

neglected in the linear perturbation equations

∂tũ + u0 · ∇ũ + ũ · ∇u0 = −∇p̃+
1

Re
∇2ũ, (2.2.3a)

∇ · ũ = 0. (2.2.3b)

The limitation of the above linearization is the fact that the amplitudes of the per-

turbations are indefinite. Moreover, the analysis is restricted to small disturbances.

However, there exist basic states, which are stable with respect to small perturbations,

but unstable to larger ones (Criminale et al., 2003).

The computational domain D (for details confer the sections 4.1.1, 4.2.1 and 4.3.1)

is in principle a plane channel with solid walls at the bottom and the top. The inlet

boundary is located at the left, and the outlet at the right-hand side of the computational

8



domain D. The three-dimensional perturbation flow ũ = (ũ, ṽ, w̃)T and p̃ satisfy the

following boundary conditions

ũ = 0 at the inlet and channel walls, (2.2.4a)

∂xũ = 0, p̃ = 0 at the outlet channel, (2.2.4b)

which are the same for all the systems considered in the chapter 4. These inflow and

outflow boundary conditions are latest state of the art for the linear instability analysis

of open systems (Theofilis, 2011). Note that setting the pressure perturbation to zero

at the outlet merely serves to fix the pressure perturbation level to a constant, but does

not affect the stability results.

Owing to the infinite extension in the spanwise (z) direction of the systems considered,

the general solution of (2.2.3) can be written as a superposition of normal modes




ũ

p̃



 (x, y, z, t) =




û

p̂



 (x, y) e−γt+ikz + c.c., (2.2.5)

where the complex conjugate (c.c.) renders the perturbations real. Here, k ∈ R is a real,

positive and continuous wave number in the spanwise direction. The temporal decay

rate γ = σ + iω ∈ C of (2.2.5) comprises the real decay rate σ ∈ R and the oscillation

frequency ω ∈ R. Here û and p̂ represent the complex amplitude/shape functions of the

perturbations, which are normalized by setting the maximum norm to 1,

‖û‖∞ := max
x,y∈D

{|û|, |v̂|, |ŵ|} = 1 (2.2.6)

over the computational domain D.

Substituting the normal-mode ansatz (2.2.5) into the perturbation equations (2.2.3)

yields

2∂x(u0û) + ∂y(v0û) + ∂y(u0v̂) + ik(u0ŵ) + ∂xp̂− 1

Re
(∂xx + ∂yy − k2)û = γû

∂x(u0v̂) + 2∂y(v0v̂) + ∂x(v0û) + ik(v0ŵ) + ∂yp̂− 1

Re
(∂xx + ∂yy − k2)v̂ = γv̂

∂x(u0ŵ) + ∂y(v0ŵ) + ikp̂− 1

Re
(∂xx + ∂yy − k2)ŵ = γŵ

∂xû+ ∂y v̂ + ikŵ = 0.

(2.2.7)
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Note that the above equations are already in conservation form by writing u0 · ∇ũ + ũ ·
∇u0 of (2.2.3a) as ∇ · (u0ũ) + ∇ · (ũu0) using ∇ · ũ = ∇ · u0 = 0.

Equation (2.2.7) constitutes a complex, singular and generalized eigenvalue problem.

The eigenvalue γ = σ + iω represents the temporal decay rate and the corresponding

eigenvector x̂ = (û, p̂)T describes the amplitude function of the perturbations of (2.2.5).

Following the ideas of Theofilis (2003), it is possible to deduce a real eigenvalue prob-

lem as the basic flow u0 = (u0, v0, 0)T is two-dimensional. Redefining the spanwise

component ŵ by iw̆ converts the complex eigenvalue problem into a real one

2∂x(u0û) + ∂y(v0û) + ∂y(u0v̂) − k(u0w̆) + ∂xp̂− 1

Re
(∂xx + ∂yy − k2)û = γû

∂x(u0v̂) + 2∂y(v0v̂) + ∂x(v0û) − k(v0w̆) + ∂yp̂− 1

Re
(∂xx + ∂yy − k2)v̂ = γv̂

∂x(u0w̆) + ∂y(v0w̆) + kp̂ − 1

Re
(∂xx + ∂yy − k2)w̆ = γw̆

∂xû+ ∂y v̂ − kw̆ = 0.

(2.2.8)

With the real eigenvalue problem (2.2.8) only half of the storage is required, which allows

flow instabilities to be addressed at substantially higher grid resolutions as in the general

complex case (2.2.7).

In the continuous system, infinite eigenmodes (ũ, p̃) exist, whereas in the numerical

discrete case, there are only a finite number of eigenmodes, depending on the dimension

of the eigenvalue problem (2.2.8). For σ > 0 and σ < 0, the basic flow is linearly stable

and unstable, respectively. The neutral Reynolds number Ren is defined by the fact

that σ = 0 for a certain wave number k. The critical Reynolds number Rec, however,

is defined by the vanishing of the minimum possible real decay rate σ. Consequently

the decay rate σ must be minimized over all discrete eigenvectors x̂ = (û, p̂)T and

all continuous wave numbers k for a certain Reynolds number Re and for the set of

geometric parameters. The definition of the optimization problem is given by

σmin = min
k∈R

σ (k,Re, x̂) . (2.2.9)

In order to obtain the critical parameters, one has to find that Reynolds and wave

numbers, for which (2.2.9) evaluates to zero, i.e. σmin (k = kc,Re = Rec, x̂) = 0.
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2.3. Energy Analysis

For a physical understanding of the instability mechanism, it has proven useful to cal-

culate the kinetic energy transferred between the basic flow and the critical mode (see

Albensoeder et al., 2001; Kuhlmann et al., 1997). The spatial distribution of the local

energy transfer may provide an insight into the physical instability mechanism. The

kinetic energy per unit mass of the perturbation flow is defined as Ekin =
∫

V ũ2 dV/2,

where the integration is carried out over the volume V = [0, 2π/k] × D covering a span-

wise period 2π/k of the perturbations times the computational domain D. The rate of

change of the kinetic energy dEkin/dt is governed by the Reynolds–Orr equation (the

derivation is given in the appendix A)

1

D

dEkin

dt
= −1 +

4∑

i=1

∫

V
Ii dV − 1

2

∫

So

I5 dS = −1 +
4∑

i=1

∫

V
I ′

i dV − 1

2

∫

So

I5 dS, (2.3.1)

which is normalized by the total dissipation rate (Johnson, 1998)

D =
1

2Re

∫

V

[

∇ũ + (∇ũ)T
]

:
[

∇ũ + (∇ũ)T
]

dV

=
1

Re

∫

V
2(∂xũ)2 + 2(∂y ṽ)

2 + 2(∂zw̃)2 + (∂yw̃ + ∂z ṽ)
2

+ (∂zũ+ ∂xw̃)2 + (∂xṽ + ∂yũ)2 dV.

(2.3.2)

The surface integral

− 1

2

∫

So

I5 dS = −1

2

∫

So

ũ2u0

D
dS (2.3.3)

represents the rate of change of the kinetic energy due to convective transport of per-

turbation energy through the surface of the outlet denoted by So, which results from

− ∫

V ũ · (u0 · ∇ũ)dV by integration by parts. Since ũ = 0 at the inlet, no perturba-

tion energy is advected into the system from upstream. Work done by pressure forces
∫

V ũ · ∇p̃dV does not arise, since we assume a constant pressure perturbation at the

outlet p̃ = const., see appendix A.

The local energy-transfer rates −ũ · (ũ ·∇u0) can be decomposed into different terms,

depending on the coordinate system, either Cartesian (Ii) or streamline coordinates (I ′
i).
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In Cartesian coordinates, the local energy production rates −ũ · (ũ · ∇u0) normalized

by the total dissipation D read

I1 = − 1

D
ũ2∂xu0,

I2 = − 1

D
ũṽ∂yu0,

I3 = − 1

D
ṽũ∂xv0,

I4 = − 1

D
ṽ2∂yv0.

(2.3.4)

The perturbation field can also be decomposed into components parallel and perpendic-

ular to the basic flow

ũ‖ =
(ũ · u0)u0

u0 · u0

, ũ⊥ = ũ − ũ‖. (2.3.5)

In this case the local normalized energy-transfer terms are given by

I ′
1 = − 1

D
ũ⊥ · (ũ⊥ · ∇u0),

I ′
2 = − 1

D
ũ‖ · (ũ⊥ · ∇u0),

I ′
3 = − 1

D
ũ⊥ · (ũ‖ · ∇u0),

I ′
4 = − 1

D
ũ‖ · (ũ‖ · ∇u0).

(2.3.6)

The individual terms read as

I ′
1 = − 1

D

(

ũ2
⊥∂xu0 + ũ⊥ṽ⊥∂yu0 + ṽ⊥ũ⊥∂xv0 + ṽ2

⊥∂yv0

)

,

I ′
2 = − 1

D

(

ũ‖ũ⊥∂xu0 + ũ‖ṽ⊥∂yu0 + ṽ‖ũ⊥∂xv0 + ṽ‖ṽ⊥∂yv0

)

,

I ′
3 = − 1

D

(

ũ‖ũ⊥∂xu0 + ũ⊥ṽ‖∂yu0 + ṽ⊥ũ‖∂xv0 + ṽ‖ṽ⊥∂yv0

)

,

I ′
4 = − 1

D

(

ũ2
‖∂xu0 + ũ‖ṽ‖∂yu0 + ṽ‖ũ‖∂xv0 + ṽ2

‖∂yv0

)

.

(2.3.7)

If Ii ≷ 0 then the local energy transfer associated with the particular term acts as

destabilizing or stabilizing. The total local energy production is independent of the

decomposition
∑4

i=1 Ii =
∑4

i=1 I
′
i.

If the rate of change of the kinetic energy of the disturbance flow dEkin/dt is positive,

the basic flow is unstable, and vice versa. Hence, the energy analysis can also be used as
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a consistency check with the linear stability results because on the margin of stability,

the rate of change of the kinetic energy has to vanish for the critical mode, i.e.

dEkin

dt
|σ=0= 0. (2.3.8)

2.4. Adjoint Analysis

The adjoint of a linear operator is a very important and useful concept in the field of

functional analysis. In fluid mechanics, a continuous adjoint formulation has been widely

used to tackle problems in receptivity, transition and flow control (Bottaro et al., 2003;

Chomaz, 2005; Hill, 1995).

The linear perturbation equations (2.2.3) can be written compactly as L · q = 0 with

q = (ũ, p̃)T. The continuous adjoint operator of L is denoted by L† and is defined

implicitly by
〈

L† · q†, q
〉

=
〈

q†,L · q
〉

, (2.4.1)

where the adjoint field is denoted by q† = (ũ, p̃)T and the inner product is given by

〈

q†, q
〉

:=
∫

D
q† · q dD. (2.4.2)

Integration by parts yields the adjoint linear perturbation equations (Blackburn et al.,

2008; Cantwell et al., 2010)

−∂tũ − u0 · ∇ũ + ũ · (∇u0)T = −∇p̃ +
1

Re
∇2

ũ, (2.4.3a)

∇ · ũ = 0, (2.4.3b)

with the adjoint normal mode ansatz




ũ

p̃



 (x, y, z, t) =




û

p̂



 (x, y) e+γ̄t+ikz + c.c. (2.4.4)

As the adjoint system is only well posed in the negative time direction, it is sometimes

referred to as the backward system.
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The eigenvalue problem (2.2.8) can be written compactly as A · x̂ = γB · x̂ with

x̂ = (û, v̂, w̆, p̂)T. Since the operators A and B are real and linear, the adjoint modes

can be easily computed by taking the transpose of these operators

AT · X = γ̄BT · X (2.4.5)

with X = (û, v̂, w̆, p̂)T, where the correct boundary conditions for the adjoint fields are

automatically taken into account. The direct and adjoint eigenvectors are normalized

by imposing the conditions

‖û‖ :=
√

〈û, û〉,
∫

D
û · û dD = 1 (2.4.6a)

〈û, û〉 =
∫

D
û · û dD = 1 (2.4.6b)

over the computational domain D. Note that the adjoint eigenvector is not scaled

according to the naturally defined norm based upon the inner product of the space itself

‖û‖, because the normalization (2.4.6b) simplifies (2.4.8).

The adjoint velocity fields |û| = |(û, v̂, ŵ)T| determine the flow regions, which are

most receptive to initial conditions and to momentum forcing, whereas |p̂| describes

the receptivity to mass injection. Moreover, an adjoint analysis allows us to identify

the sensitivity of the eigenvalue spectrum of the original problem to spatially localized

perturbations. Giannetti & Luchini (2007) have shown that the drift ∆γ due to a per-

turbation localized at (x0, y0) of the eigenvalue γ associated with the eigenvector û is

bounded by

|∆γ| ≤ c0Υ(x0, y0) (2.4.7)

with

Υ(x, y) =
|û(x, y)| |û(x, y)|

〈û, û〉
︸ ︷︷ ︸

=1

, (2.4.8)

where c0 > 0 of (2.4.7) is a measure for the strength of the localized forcing. Hence, the

scaled product Υ(x, y) between the direct and adjoint velocity eigenmodes represents a

measure for the sensitivity of the temporal growth rates to local perturbations.
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3. Numerical Implementation

3.1. Newton’s Method

The nonlinear system of equations (2.1.5) for the steady two-dimensional basic state is

solved with Newton’s method, also known as Newton–Raphson method. This scheme

converges, in the ideal case, quadratically to the final solution (Kelley, 2003). Newton’s

method is given by

J(xn) · δx = −f (xn) (3.1.1a)

xn+1 = xn + δx (3.1.1b)

with x = (u0, v0, p0)T. J(xn) represents the Jacobian evaluated at the actual solution

vector xn and f (xn) is a vector-valued function, representing the nonlinear residual of

(2.1.5). Inserting (3.1.1b) into (2.1.5) yields

un
0 · ∇δu + δu · ∇un

0 + un
0 · ∇un

0 + δu · ∇δu + ∇(pn
0 + δp) − 1

Re
∇2(un

0 + δu) = 0

∇ · (un
0 + δu) = 0.

(3.1.2)

With Newton’s linearization the quadratic term δu · ∇δu is neglected, see

ur Rehman et al. (2006). All terms being linear in δ of (3.1.2) are moved to the left-hand

side, leading to

un
0 · ∇δu + δu · ∇un

0 + ∇δp− 1

Re
∇2δu = −

(

un
0 · ∇un

0 + ∇pn
0 − 1

Re
∇2un

0

)

∇ · δu = − (∇ · un
0 ) . (3.1.3)

The above equation represents the linear system (3.1.1a), which is solved for the un-

knowns δx = (δu, δp)T.

If Newton’s iteration converges, i.e. xn → x, the correction vector δx = 0 and the

right-hand side of (3.1.3) evaluates to zero (−f (x) = 0). The Jacobian J(x) of the
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stationary Navier–Stokes equations can be readily obtained by applying Newton’s lin-

earization on the convective terms, yielding

∇ · (u0u0) ≈ ∇ · (ū0u0) + ∇ · (u0ū0) . (3.1.4)

Here linearization takes place around ū0, representing the solution vector from the pre-

vious iteration step. Note the similarities to the linear perturbation equations (2.2.3).

The major drawback of Newton’s method is its local convergence, which means that

the scheme only converges, if the initial guess does not differ too much from the final

solution. In order to obtain a good initial guess, a few Picard iteration steps are con-

ducted. Within Picard’s linearization, the velocity vector of the previous iteration step

ū0 is substituted in the convective term

∇ · (u0u0) ≈ ∇ · (ū0u0), (3.1.5)

leading to

∂x(ū0u0) + ∂y(v̄0u0) + ∂xp0 − 1

Re
(∂xxu0 + ∂yyu0) = 0,

∂x(ū0v0) + ∂y(v̄0v0) + ∂yp0 − 1

Re
(∂xxv0 + ∂yyv0) = 0,

∂xu0 + ∂yv0 = 0.

(3.1.6)

Picard’s method is terminated if either 5 iteration steps are reached or alternatively the

residual is below 10−2. The residual at the nth iteration step is defined as

res(xn) = max

{

|f(xn)|
|xn| ,

|f (xn)|√
N

}

, (3.1.7)

where N is the number of unknowns. For reasons of safety, the residual is the maximum

between the scaled Euclidean and the root-mean-square (RMS) norm, which is defined

by |f(xn)|/
√
N . Taking simply the Euclidean norm |f (x)| without scaling is not a good

choice as it depends on the number of unknowns N .

Moreover, a polynomial line search strategy for globalizing Newton’s method is incor-

porated, following the ideas of Kelley (1995). In the line search approach, the direction

of the correction vector δx of (3.1.1) is used, but the step size is reduced, if necessary.
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This globalization strategy is implemented between (3.1.1a) and (3.1.1b). It is activated,

if the new residual is larger than the previous one, namely

res(xn + β
︸︷︷︸

=1

δx) > res(xn). (3.1.8)

If the above relation is satisfied, 10 discrete values of β are taken in the interval βi ∈
]0.1, 1[ and the residuals are computed. Then a parabola is fitted to the 3 residuals

for the values βi−1, βi+1 and βi, at which the residual takes its minimum within the

10 discrete values. The parabola gives a better estimate of the optimum value of βopt,

which is then used in the actual iteration for reducing the step size in the correction

vector

xn+1 = xn + βoptδx. (3.1.9)

Finally, Newton’s method is terminated when the residual (3.1.7) is below the square

root of the machine accuracy
√
ǫmach ≈ 10−8 or a similar accuracy level.

In addition to some Picard iterations and the polynomial line search strategy, a natural

continuation method is implemented, providing good initial guesses for the next parame-

ter combination by following the solution path (Howell, 2009). In simple or classical con-

tinuation, the converged solution of f (x) =: f(x(Reold)) = 0 serves as an initial guess for

the solution to be computed with a different Reynolds number, i.e. x0(Renew) = x(Reold).

This approach may be inefficient for small slopes ∂x(Reold)/∂Reold on the solution

branch, where there is only a moderate change in x for a significant range of Re. Sim-

ple continuation may encounter difficulties if the solution manifold in the (x,Re)-space

exhibits large changes in x for only moderate changes in Re (high slopes). The method

can be improved by incorporating the slope ∂x(Reold)/∂Reold of the solution path at

x(Reold), known as natural or tangent continuation, see Howell (2009). Hereby, the

initial guess is formed by the equation of a tangent

x0(Renew) = x(Reold) + |Renew − Reold|∂x(Reold)

∂Reold

. (3.1.10)

In contrast to simple continuation, natural continuation represents a method of second

order. In Haselgrove (1961) it is also shown that (3.1.10) may be improved to third

order accuracy by incorporating two tangential gradients, which requires, however, the

storage of two previous solution vectors.

The linear system of equations (3.1.1) is solved directly with an efficient solver for

sparse matrices, provided by MATLAB’s backslash (’�’) operator. A different approach,
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called the Jacobian-free Newton–Krylov method, is presented in the appendix B, which,

however, did not turn out to be superior, at least for 2D and 3D problems, where one

direction is treated analytically as in the present stability analysis.

In numerical algebra it proved to be very useful to reorder sparse matrices prior to

LU or Cholesky factorizations, which are performed by MATLAB’s backslash (’�’) and

eigs (eigensolver) operators, depending on the input matrix. Two widely used reorder-

ing algorithms can be found in the literature, namely the approximate minimum degree

(AMD) and the reverse Cuthill-McKee (RCM) permutations, see Amestoy et al. (1996)

and Gilbert et al. (1992), respectively. While AMD produces a structure with large

blocks of connected zeros, RCM reduces the bandwidth of the resulting matrix. MAT-

LAB’s implementation of the column AMD colamd is slightly faster than the symmetric

RCM symrcm. Moreover, it takes slightly less time to solve the linear system and to

compute the eigenvalues with colamd than with symrcm.

Figure 3.1 shows the matrices of coefficients of the linearized Navier–Stokes equations

(2.1.6) with Picard’s (3.1.5) and Newton’s (3.1.4) linearization. The system matrix

3.1(b) is then reordered with the symrcm and colamd algorithm, respectively.
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(a) Picard’s linearization (b) Newton’s linearization

(c) reverse Cuthill-McKee (d) approximate minimum degree

Figure 3.1.: Sparsity pattern of the matrices of coefficients of the linearized Navier–
Stokes equations (2.1.6) ((a) and (b)). The RCM and AMD reordering schemes were
applied to the matrix (b).
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3.2. Finite-Volume Discretization

The conservative form of the Navier–Stokes equations, guaranteeing conservation of

momentum on a discrete mesh (Gresho, 1991), is discretized by finite volumes on a

staggered rectangular grid using primitive variables. Derivatives and intermediate values

are approximated by central differences and linear interpolation, leading to a method

of second order. The advantage of a finite-volume approach is that it works well at

singularities from, e.g., sharp corners of the geometry.

Before discretization, the nonlinear term of (2.1.5) is linearized using Newton’s ap-

proach. Inserting (3.1.4) into (2.1.5) gives

2∂x(ū0u0) + ∂y(v̄0u0) + ∂y(ū0v0) + ∂xp0 − 1

Re
(∂xxu0 + ∂yyu0) = 0, (3.2.1a)

∂x(v̄0u0) + ∂x(ū0v0) + 2∂y(v̄0v0) + ∂yp0 − 1

Re
(∂xxv0 + ∂yyv0) = 0, (3.2.1b)

∂xu0 + ∂yv0 = 0. (3.2.1c)

Note the differences (in blue colour) to the equations (3.1.6), which were obtained using

Picard’s linearization. Equation (3.2.1) can be expressed in compact form (see (3.1.1))

J(x̄) · x = J(x̄) · x̄ − f(x̄)
︸ ︷︷ ︸

=0

= 0. (3.2.2)

Spatial discretization will be carried out on a staggered grid, which remains the method

of choice for orthogonal grids, as the pressure gradient can be formed without interpola-

tion (Wesseling, 2001). Within a staggered grid, the pressure resides at the cell centres

and the normal velocity components are placed at the cell faces, thus representing a

combination of vertex-centred and cell-centred discretization. The control volume with

centre at xj,k is denoted Ωj,k = hx
j,kh

y
j,k with horizontal and vertical lengths hx

j,k and hy
j,k,

respectively. Thus there are (J + 1) ×K u-cells, J × (K + 1) v and J ×K p-nodes.

The continuity equation is discretized by integrating over Ωj,k, resulting in

∫

Ωj,k

∇ · u dΩ ∼= hy
j,ku|j+1/2,k

j−1/2,k + hx
j,kv|j,k+1/2

j,k−1/2 = 0

⇒ 1

hx
j,k

u|j+1/2,k
j−1/2,k +

1

hy
j,k

v|j,k+1/2

j,k−1/2 = 0.
(3.2.3)
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Note that for convenience of notation the subscript 0 in the flow quantities has been

dropped. In the prevailing subsection, a subscript will denote a derivative, e.g. ∂xu =:

ux.

The control volume for the u-component of (3.2.1a) consists of the union of half of

Ωj,k and half of Ωj+1,k. It will be denoted as Ωj+1/2,k with a length in the x direction of

hx
j+1/2,k. Finite volume integration over the u-component of (3.2.1a) gives

∫

Ωj+1/2,k

[

(2ūu+ p− 1

Re
ux)x + (v̄u+ ūv − 1

Re
uy)y

]

dΩ ∼=

∼= hy
j,k(2ūu+ p− 1

Re
ux)j+1,k

j,k + hx
j+1/2,k(v̄u+ ūv − 1

Re
uy)

j+1/2,k+1/2

j+1/2,k−1/2 = 0

⇒ 1

hx
j+1/2,k

(2ūu+ p− 1

Re
ux)j+1,k

j,k +
1

hy
j,k

(v̄u+ ūv − 1

Re
uy)

j+1/2,k+1/2

j+1/2,k−1/2 = 0.

(3.2.4)

Integration over the v-component of (3.2.1b) yields

∫

Ωj,k+1/2

[

(v̄u+ ūv − 1

Re
vx)x + (2v̄v + p− 1

Re
vy)y

]

dΩ ∼=

∼= hy
j,k+1/2(v̄u+ ūv − 1

Re
vx)

j+1/2,k+1/2

j−1/2,k+1/2 + hx
j,k(2v̄v + p− 1

Re
vy)j,k+1

j,k = 0

⇒ 1

hx
j,k

(v̄u+ ūv − 1

Re
vx)

j+1/2,k+1/2

j−1/2,k+1/2 +
1

hy
j,k+1/2

(2v̄v + p− 1

Re
vy)j,k+1

j,k = 0.

(3.2.5)

Derivatives are approximated by a second order central difference scheme

ux|j,k
∼= (uj+1/2,k − uj−1/2,k)/hx

j,k,

uy|j+1/2,k−1/2
∼= (uj+1/2,k − uj+1/2,k−1)/

[

(hy
j+1/2,k + hy

j+1/2,k−1)/2
]

,

vx|j−1/2,k+1/2
∼= (vj,k+1/2 − vj−1,k+1/2)/

[

(hx
j,k+1/2 + hx

j−1,k+1/2)/2
]

,

vy|j,k
∼= (vj,k+1/2 − vj,k−1/2)/h

y
j,k.

(3.2.6)
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For the inertia terms no derivatives are required. But the unknowns must be evaluated

at points, which do not occur on the grid (inter-grid points). Linear interpolation, which

is referred to as the central scheme, is also of second order and results in

(ūu)j,k
∼=
ūj+1/2,kh

x
j−1/2,k + ūj−1/2,kh

x
j+1/2,k

hx
j−1/2,k + hx

j+1/2,k

uj+1/2,kh
x
j−1/2,k + uj−1/2,kh

x
j+1/2,k

hx
j−1/2,k + hx

j+1/2,k

,

(v̄u)j+1/2,k−1/2
∼=
v̄j+1,k−1/2h

x
j,k−1/2 + v̄j,k−1/2h

x
j+1,k−1/2

hx
j+1,k−1/2 + hx

j,k−1/2

uj+1/2,k−1h
y
j+1/2,k + uj+1/2,kh

y
j+1/2,k−1

hy
j+1/2,k + hy

j+1/2,k−1

,

(ūv)j+1/2,k−1/2
∼=
ūj+1/2,k−1h

y
j+1/2,k + ūj+1/2,kh

y
j+1/2,k−1

hy
j+1/2,k + hy

j+1/2,k−1

vj+1,k−1/2h
x
j,k−1/2 + vj,k−1/2h

x
j+1,k−1/2

hx
j+1,k−1/2 + hx

j,k−1/2

,

(v̄u)j−1/2,k+1/2
∼=
v̄j−1,k+1/2h

x
j,k+1/2 + v̄j,k+1/2h

x
j−1,k+1/2

hx
j−1,k+1/2 + hx

j,k+1/2

uj−1/2,k+1h
y
j−1/2,k + uj−1/2,kh

y
j−1/2,k+1

hy
j−1/2,k+1 + hy

j−1/2,k

,

(ūv)j−1/2,k+1/2
∼=
ūj−1/2,k+1h

y
j−1/2,k + ūj−1/2,kh

y
j−1/2,k+1

hy
j−1/2,k+1 + hy

j−1/2,k

vj−1,k+1/2h
x
j,k+1/2 + vj,k+1/2h

x
j−1,k+1/2

hx
j−1,k+1/2 + hx

j,k+1/2

,

(v̄v)j,k
∼=
v̄j,k+1/2h

y
j,k−1/2 + v̄j,k−1/2h

y
j,k+1/2

hy
j,k−1/2 + hy

j,k+1/2

vj,k+1/2h
y
j,k−1/2 + vj,k−1/2h

y
j,k+1/2

hy
j,k−1/2 + hy

j,k+1/2

.

(3.2.7)

Since no interpolation is needed for the pressure p on a staggered grid, spurious modes

unlike in the case of a collocated grid (at least for second order discretization) will not

arise (see Ferziger & Perić, 2002).

Equations (3.2.4), (3.2.5), (3.2.6) and (3.2.7) are valid for the interior control volumes.

The equations for the boundary cells have to be adjusted according to the prescribed

boundary conditions. If a cell occurs outside of the domain (ghost variable), it will be

eliminated by taking into account the relevant boundary condition. Therefore no explicit

ghost variables are needed in the present implementation. Thereby it is assumed that

the outer cell has the same size as the adjacent one inside the domain. Thus taking the

arithmetic mean for the central scheme/linear interpolation is justified at the boundaries,

even on a non-uniform grid.

The geometries considered in the chapter 4 can be modelled everywhere with Dirichlet

boundary conditions (prescribed velocities), except for the outlet, where a homogeneous

Neumann condition, i.e ux = 0, is prescribed. This boundary condition is recommended

by Versteeg & Malalasekera (2007) in order to avoid spurious numerical oscillations at

the outlet. ux = 0 is also physically justified by assuming that the base flow is fully de-

veloped at the outlet. Owing to the staggered grid, the Dirichlet boundary conditions are

easy to implement for the variables, which are located exactly at the physical boundaries,

namely for the u-component in the x direction and for the v-component in the y direc-
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tion. For the u-equation in the viscous term, a derivative in the y direction uy is needed.

For the bottom-wall (y = 0) cell, for instance, uy|j+1/2,1/2
∼= (uj+1/2,1 − uj+1/2,0)/h

y
j+1/2,k

is needed. uj+1/2,0 is located outside of the domain, but can be eliminated by the relation

uj+1/2,1 + uj+1/2,0

2
= 0, (3.2.8)

where the right-hand side of (3.2.8) represents the wall velocity. With the above re-

lation, one obtains uy|j+1/2,1/2
∼= 2uj+1/2,1/h

y
j+1/2,k. At the outlet, for vx|J+1/2,k+1/2 ∼=

(vJ+1,k+1/2 − vJ,k+1/2)/hx
J,k+1/2 the ghost variable vJ+1,k+1/2 occurs, which can be elimi-

nated by the homogeneous Neumann condition

vJ+1,k+1/2 − vJ,k+1/2

hx
J,k+1/2

= 0, (3.2.9)

yielding vx|J+1/2,k+1/2 ∼= (vJ+1,k+1/2 − vJ+1,k+1/2)/hx
J,k+1/2 = 0. In (3.2.4) the pressure is

needed at the outlet at the position pJ+1,K. Likewise an explicit ghost cell is not required

due to
pJ+1,K + pJ,K

2
= p∞, (3.2.10)

where p∞ represents the ambient pressure at the outlet. Owing to the staggered grid,

the pressure equations for the cells boundaries do not have to be adjusted at Dirichlet

boundary conditions.

Once the basic state is obtained, it is inserted into the linear perturbation equations

(2.2.8), which are discretized on the same grid. Finite volumes are used in the (x, y)

plane, where the third component of the perturbation field w̆ resides with the pressure

nodes.

3.3. Grid Generation

While the truncation error of the central-difference quotient is of second order on an

equidistant grid, it decreases formally to first order on an inhomogeneous computational

domain. The discretization error of, for instance, the first derivative with central differ-

encing is defined by the leading term of the Taylor series expansion around the point

xi

φi+1 − φi−1 = (∆xi+1 + ∆xi)φx|i +
∆x2

i+1 − ∆x2
i

2
φxx|i +

∆x3
i+1 + ∆x3

i

3!
φxxx|i + h.o.t.,

(3.3.1)
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which results in

φx|i =
φi+1 − φi−1

∆xi+1 + ∆xi

− ∆xi+1 − ∆xi

2
φxx|i − ∆x3

i+1 + ∆x3
i

3!(∆xi+1 + ∆xi)
φxxx|i + h.o.t.. (3.3.2)

Therefore the central difference quotient is of second order only on a homogeneous

grid ∆xi+1 = ∆xi. If, however, an inhomogeneous grid is refined systematically, the

discretization error converges asymptotically to second order (Ferziger & Perić, 2002).

To minimize the first-order error, the size of neighbouring cells should not differ too

much. The leading-order error can be written as

∆xi+1 − ∆xi

2
φxx|i =

∆xi(δ − 1)

2
φxx|i , (3.3.3)

with the stretching factor δ = ∆xi+1/∆xi. According to Fletcher (1988) the grid stretch-

ing factor should be within 0.8 < δ < 1.2, whereby δ depends on the number of cells and

the gradients to be resolved. In times of high computing power, the stretching factors

are getting smaller and I personally used 0.95 ≤ δ ≤ 1.05.

For distributing the grid points along a segment line with length ∆s, several one-

dimensional distribution function exist in the literature. The geometrical stretching

function is defined as

s = ∆s1

δn − 1

δ − 1
, (3.3.4)

where s represents the position of the nodes and ∆s1 the size of the first cell. For

n = 0 . . .N , the nodes are put on the edges of the segment line, which is needed for u in

the x direction and for v in the y direction on a staggered grid. For the interior points,

such as the pressure nodes, n = (0 . . . N − 1) + 0.5.

Equation (3.3.4) is getting singular, if δ = 1. Setting ε = |δ − 1| and expanding s in

a Taylor series for ε ≪ 1 gives

s = ∆s1N
[

1 +
N − 1

2
(δ − 1) +

1

6
(N − 1)(N − 2)(δ − 1)2 +O(δ − 1)3

]

. (3.3.5)

Another very popular distribution function is the hyperbolic tangent stretching func-

tion, which dates back to Vinokur (1983). The one-sided refinement is defined as

s = ∆s

[

1 +
tanh (b/2 {n/N − 1})

tanh (b/2)

]

. (3.3.6)
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The parameter b determines the maximum allowable rate of change of adjacent cells in

percent (i.e. b ≤ 5) and can either be specified or determined by solving the transcen-

dental equation
sinh b

b
− ∆s

N∆s1

= 0. (3.3.7)

For a double-sided refinement the grid spacing on the left ∆s1 and on the right side ∆s2

have to be specified. Now the hyperbolic tangent stretching function is defined as

s0 =
1

2

[

1 +
tanh (b {n/N − 0.5})

tanh (b/2)

]

s = ∆s
s0

√

∆s2/∆s1 + (1 −
√

∆s2/∆s1)s0

. (3.3.8)

b can be computed from the solution of

sinh b

b
− ∆s

N
√

∆s2∆s1

= 0, (3.3.9)

where the following condition has to be fulfilled

N <

√

∆s(1 − 10−6)
√

∆s2∆s1

. (3.3.10)

In Thompson et al. (1985) an error analysis of several distribution functions (expo-

nential, hyperbolic sine, error function,...) can be found and the hyperbolic tangent

performed best in the global sense. The geometrical stretching function (3.3.4) was not

covered by this analysis. The main difference between the hyperbolic tangent and the

geometrical distribution function is the fact that in the latter case the rate of change

among adjacent cells is constant, whereas it changes smoothly for the hyperbolic tan-

gent refinement. Moreover, if one applies grid refinement on, for instance, the outflow

boundary, the rate of change among adjacent cells is biggest near the boundary and

decreases smoothly for the next cells for the hyperbolic tangent distribution function

(3.3.6). Therefore, the geometrical stretching function (3.3.4) with δ = 1.03 was used

for the systems addressed in the chapter 4. As a rule of thumb, approximately the same

number of grid points are obtained, if the stretching factor is set to δ = 1.03 in (3.3.4)

and b = 5 in (3.3.6).
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3.4. Eigenvalue-Detection Strategies

Equation (2.2.8) constitutes a real, singular and generalized eigenvalue problem

A · x̂ = γB · x̂, (3.4.1)

where x̂ = (û, v̂, w̆, p̂)T and A and B are linear and real operators. Computing the

whole spectrum of (3.4.1) is infeasible because the size of the problem is too large in

real applications. Computing only selected eigenvalues by an iterative eigensolver is

challenging, because A is nonsymmetric and, more important, B is singular. Owing to

this singularity, (3.4.1) has infinite eigenvalues, which are physically irrelevant and cause

numerical difficulties.

The eigenvalue problem is solved with an implicitly restarted Arnoldi algorithm

as provided in the ARPACK software library and MATLAB’s eigs command

(Lehoucq & Sorensen, 1996). Because of the normal mode ansatz (2.2.5), the eigenvalues

with smallest real part are of interest. However, they cannot be computed directly with

Arnoldi’s method due to the singularity. Therefore, a transformation is needed, which

also serves as a preconditioner for the eigenvalue problem. In a first step, a shift-invert

transformation with zero shift is applied, which is defined as

TSI(ς1) := (A − ς1B) · x̂ = (γ − ς1)B · x̂

⇒ θx̂ = (A − ς1B)−1 · B · x̂

⇒ θx̂ = A−1 · B · x̂ for ς1 = 0

(3.4.2)

with θ = (γ − ς1)−1. With the shift-invert transformation, the spurious eigenvalues are

mapped to ℜ(θ) → 0 and the eigenvalues close to the shift ς1 = 0 are detected, thus

giving the eigenvalues with smallest absolute value (see Bai et al. (2000)). According to

Lehoucq & Scott (1997), this step also acts as a purification process, in which undesired

null spaces from Arnoldi vectors are removed. The null space is that eigenspace, which

corresponds to the infinite eigenvalues.

The shift-invert strategy with zero shift will detect the critical eigenvalue for stationary

and oscillatory modes with small absolute values. To ensure that no eigenvalue with

smallest real part is missed, a Cayley transformation is performed in a second step,
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where the eigenvector, corresponding to the eigenvalue with smallest absolute value, of

the shift-invert step serves as a starting vector. The Cayley transformation is given by

TC(ς1, ς2) := (A − ς2B) · x̂ = θ(A − ς1B) · x̂

⇒ (A − ς1B)−1 · (A − ς2B) · x̂ = θx̂.
(3.4.3)

Now the eigenvalues at infinity are transformed to ℜ(θ) → 1 and the original eigenvalues

are obtained by γ = (ς1θ − ς2)/(θ − 1). According to Lehoucq & Salinger (2001), the

Cayley system (3.4.3) has a smaller condition number (ratio of largest-to-smallest eigen-

value in magnitude) than the shift-invert one (3.4.2). Thus, the Cayley transformation

results in a better conditioned set of linear equations. The Cayley transformation serves

as a verification process for the shift-invert mapping and guarantees that no eigenvalues

with smallest real part are missed.

A common approach for choosing the two free Cayley parameters is ς1 + ς2 = 2γref , see

Cliffe et al. (1993), Seydel (1994), Meerbergen et al. (1994) and Lehoucq & Scott (1997),

which is also adopted here. However, a second equation is needed to determine ς1 and ς2,

and γref has to be specified. Several choices for the two Cayley parameters as suggested

in the literature have been tested. The best results with respect to the robustness and

convergence rate were obtained by the recommendation of Meerbergen et al. (1994).

Assume that we want to computed p eigenvalues of the system (3.4.3) and we have

at least p + 1 eigenvalues at hand from a previous shift-invert transformation. These

eigenvalues are sorted by their real part in ascending order, i.e. ℜ(γ1) < ℜ(γp+1). Then

the eigenvalues of (3.4.2) are used to select the Cayley parameters by solving

|ℜ(γ1) − ς2|
|ℜ(γ1) − ς1| = ρemp (3.4.4a)

ς1 + ς2 = 2 ℜ(γp+1)
︸ ︷︷ ︸

γref

. (3.4.4b)

Solving (3.4.4a), for instance, for ς1 satisfying ς1 < ℜ(γ1), as we are interested in the

eigenvalue with smallest real part, the shift is obtained as

ς1 =
ℜ(γ1) − 2ℜ(γp+1) + ρempℜ(γ1)

ρemp − 1
, (3.4.5)

where the empirical parameter is typically set to ρemp ∈ {1.2, 1.5} (Meerbergen et al.,

1994). For the present type of problems, the value ρemp = 1.5 has proven to be a good

choice. Note that for the Arnoldi method the Krylov-subspace dimension K has to be
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at least K > 2p, if one wants to compute p eigenvalues. A higher Krylov-subspace

dimension should guarantee that no dangerous, especially critical, eigenvalue is missed

in the approximation of the spectrum.

3.5. Algorithms for Root-Finding and Minimization

The optimization problem (2.2.9) evaluates to zero at the critical conditions, i.e.

min
k∈R

σ (kc,Rec, x̂) = 0. (3.5.1)

Determining the critical parameters constitutes a root-finding problem (Rec) in combi-

nation with a minimization problem (kc). (3.5.1) can be reformulated to

g (Rec, kc) = 0. (3.5.2)

Here it is assumed that the eigenvalue-detection algorithm, as described in the previous

section, returns the most dangerous eigenvalue over all discrete eigenvectors x̂ = (û, p̂)T.

Therefore, the parameter x̂ has been dropped in (3.5.2). The parameter kc is determined

by the minimization problem kc = mink∈R σ(k), which gives the most dangerous eigen-

value over all positive wave numbers k ∈ R. By neglecting the minimization problem,

(3.5.2) can be regarded as a single root-finding task h(Rec) = 0.

Brent’s method (Brent (1973)) constitutes a very robust root-finding algorithm, com-

bining the bisection method, the secant method and inverse quadratic interpolation. The

bisection method converges for sure to the root, but only linearly. On the other hand,

the secant method and the inverse quadratic interpolation converge faster with an order

of convergence of about 1.62 and 1.84, respectively. However, there is no guarantee that

both of them will converge, if the initial iterates are not very close to the actual root.

This does not pose any problem as long as the increment in the Reynolds number Reinc

is not too big. Brent’s method is very conservative in accepting the value of inverse

quadratic interpolation and often calls the bisection method.

In this work, the roots are sought by means of a secant method in conjunction with

inverse quadratic interpolation, representing a modification to Brent’s method. The pro-

cedure is given in the algorithm 3.1, where Rebeg represents a start value corresponding

to a stable flow condition (σ > 0) and Reinc is a relative increment in the Reynolds

number, such as Reinc = 1.2.
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Algorithm 3.1 Finding the roots of h(Rec) = 0

a = Rebeg; ha = h(a); b = a ∗ Reinc; hb = h(b);
while ha ∗ hb > 0 do

a = b; ha = hb; b = a ∗ Reinc; hb = h(b);
end while

{// Root is between a and b → secant method}
c = b− (b− a) ∗ hb/(hb − ha); hc = h(c);
for i = 1 . . .maxiter do

{// inverse quadratic interpolation}
d = a ∗ hb ∗ hc/[(ha− hb) ∗ (ha− hc)] + b ∗ ha ∗ hc/[(hb− ha) ∗ (hb− hc)] . . .

+c ∗ hb ∗ ha/[(hc− hb) ∗ (hc− ha)];
hd = h(d);
if |d− c|/c < tolRe and |hd| < tolσ then

Rec = d; σc = hd;
return Rec, σc

end if

if d < c then

b = c; hb = hc; c = d; hc = hd;
else

a = c; ha = hc; c = d; hc = hd;
end if

end for

The minimization problem kc = mink∈R σ(k) is solved by a combination of golden-

section search and successive parabolic interpolation. Basic algorithms for the above-

mentioned schemes can be found in Brent (1973). The golden-section search is very

robust and converges linearly, but slightly faster than the bisection method. The golden-

section search divides the interval proportionally to the golden ratio-conjugate φ =

ϕ−1 = ϕ − 1 ≈ 0.618, where ϕ = (1 +
√

5)/2 ≈ 1.618 defines the golden ratio. Within

successive parabolic interpolation (polynomial interpolation of degree two), the minimum

of a parabola, which is fitted through three points, is taken. Also its error bounds are

calculated in the algorithm 3.2, see Seydel (1994). Successive parabolic interpolation

features a superlinear rate of convergence of approximately 1.324.

The procedure for solving the minimization problem is given in the algorithm 3.2,

which needs, for a given Reynolds number, a search interval k ∈ [a; b] as input, in which

the minimum lies.
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Algorithm 3.2 Minimizing kc = mink∈R σ(k) within k ∈ [a; b]

fa = f(a); fb = f(b); φ = (1 +
√

5)/2 − 1;
{// golden section search}
c = a ∗ φ+ b ∗ (1 − φ); fc = f(c);
d = b ∗ φ+ a ∗ (1 − φ); fd = f(d);
if fc < fd then

b = d; fb = fd;
else

a = c; fa = fc; c = d; fc = fd;
end if

{// actual minimum is saved in the variable c (fc < fa ∧ fc < fb)}
for i = 1 . . .maxiter do

{// successive parabolic interpolation d0 with error bounds d1,2}
d0 = b− 0.5 ∗ {[(b− a)2 ∗ (fb− fc) − (b− c)2 ∗ (fb− fa)] . . .

/[(b− a) ∗ (fb− fc) − (b− c) ∗ (fb− fa)]};
ξ1 = (fb− fc)/(b− c); ξ2 = [(fa− fc)/(a− c) − ξ1]/(a− b);

d1,2 = c +
{

−ξ1 − ξ2 ∗ (c− b) ±
√

[ξ1 + ξ2 ∗ (c− b)]2 − 4 ∗ ξ2 ∗ fc
}

/(2 ∗ ξ2);

d ∈ {d0, d1, d2};
if d /∈ [(3a+ c)/4; (3b+ c)/4] then

{// golden section search}
if fa < fb then

d = c ∗ φ+ a ∗ (1 − φ);
else

d = c ∗ φ+ b ∗ (1 − φ);
end if

end if

fd = f(d);
if |d− c|/c < tolk then

k = d;
return k

end if

if d < c then

b = c; fb = fc; c = d; fc = fd;
else

a = c; fa = fc; c = d; fc = fd;
end if

end for
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3.6. Plane Poiseuille Flow

As a test case of the numerical implementations, the two-dimensional plane channel

flow is considered with periodic boundary conditions in the streamwise (x) direction

u0(x = 0, y) = u0(x = L, y). The flow is driven by a pressure gradient over the channel

length L
dp

dL
= − 4U2

∞

HRe
= − 2

Re
, (3.6.1)

where the Reynolds number Re is based on the centreline velocity (U∞ = 1) and half

the channel height (H = 2). The numerical solution converges to the analytical plane

Poiseuille profile

u0(y) =
4U∞

H2
y(H − y). (3.6.2)

Considering two-dimensional perturbations








ũ

ṽ

p̃








(x, y, t) =








û

v̂

p̂








(x, y) e−γt + c.c. (3.6.3)

with periodic boundary conditions (also for p̃) in the streamwise direction, Tollmien–

Schlichting waves were obtained at the same critical parameters as in Thomas (1953)

and Orszag (1971), see table 3.1. These two authors did not solve the two-dimensional

Navier–Stokes, but the Orr–Sommerfeld equation and applied an exponential ansatz for

the x direction.

authors Rec kc |ωc|
Thomas (1953) 5780 1.026 0.265

Orszag (1971) 5772 1.021 0.264

present 5779 1.021 0.269

Table 3.1.: Comparison of critical Reynolds numbers Rec, wave numbers kc and oscilla-
tory frequencies ωc with previous numerical results.

Figure 3.2 shows the streamlines of the perturbations and the total local energy trans-

fer at critical conditions, i.e. Rec = 5779 and Lc = 2π/1.021 with ωc = 0.269. From

figure 3.3 it can be noticed that ũ and p̃ are antisymmetric (odd), whereas ṽ is symmetric

(even) with respect to x = π/kc.
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Figure 3.2.: Streamlines of the critical mode, perturbation flow (arrows) and the total
local energy production
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2 at critical conditions. The Tollmien–Schlichting wave
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Figure 3.3.: The perturbation components, integrated up to half the channel height
H/2 = 1, as functions of the x direction. The red solid, the blue dashed and the
black dash-dotted line represent

∫ 1
0 ũ dy,

∫ 1
0 ṽ dy and

∫ 1
0 p̃dy, respectively. The black

dotted line denotes x = π/kc.
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4. Results

It is worth mentioning that the results of the sections 4.1, 4.2 and 4.3 have al-

ready been published in the Journal of Fluid Mechanics. The papers in ques-

tion are Lanzerstorfer & Kuhlmann (2012a), Lanzerstorfer & Kuhlmann (2012b) and

Lanzerstorfer & Kuhlmann (2012c), respectively.

4.1. The Backward-Facing-Step Problem

4.1.1. Problem Formulation

The incompressible flow of a Newtonian fluid over a backward-facing step in the (x, y)

plane is considered. The geometry is sketched in figure 4.1. It consists of an inlet

channel of height hi and length Li, followed by a suddenly enlarged channel of height

H and length Lo. The origin of the Cartesian coordinate system is located at the

bottom of the step, which has a height hs = H − hi. The geometry is characterized

by the non-dimensional expansion ratio Γb = hs/H . The system is assumed to be

homogeneous and infinitely extended in the spanwise (z) direction. This assumption

simplifies the numerical analysis and allows one to study intrinsic effects, unmasked by

sidewall perturbations.

H = 2L

x

y

h

h

L L

s

i

i o

Figure 4.1.: Sketch of the flow geometry for the backward-facing-step problem.

33



The Reynolds number

Re =
LU∞

ν
(4.1.1)

is based on half of the outlet channel height L = H/2 and the centreline (maximum) ve-

locity U∞ of the plane Poiseuille flow, which is imposed at the inflow boundary. Length,

velocity and pressure of the steady Navier–Stokes equations (2.1.5) have been made

dimensionless with respect to L, U∞ and ρU2
∞.

At the inlet boundary, plane Poiseuille flow is prescribed as u0 = 4(y−hs)(H − y)/h2
i

and v0 = 0 for y ∈ [hs; H ]. Along the step and all channel walls no-slip and no-

penetration boundary conditions u0 = 0 are imposed. At the outlet, the standard

outflow boundary condition ∂xu0 = 0 and p0 = 0 is employed (see e.g. Gartling, 1990).

These outflow boundary conditions are of absorbing and non-reflecting type in the case

of stationary simulations (Ol’shanskii & Staroverov, 2000).

4.1.2. Scientific Background

The two-dimensional flow over a backward-facing step has been subject to several numer-

ical investigations (e.g. Kim & Moin (1985), Sohn (1988), Gartling (1990), Gresho et al.

(1993)) and often serves as a benchmark problem for numerical codes (see e.g.

Blackwell & Pepper (1992)). However, like in many other studies, a plane Poiseuille

flow is prescribed right at the step without including an inlet channel. Such a compu-

tational domain does not have any step corner and the solution deviates from the one

observed in the experiments. Without an upstream channel, the sharp corner singu-

larities do not arise, which may otherwise have a significant effect on the flow in the

vicinity of the step. Moffatt (1964) developed a local asymptotic expansion for the flow

around a right-angled corner, but his creeping-flow solution is only valid in the imme-

diate vicinity of the corner. Hawa & Rusak (2002) showed that several levels of local

mesh refinement are required to accurately reproduce the asymptotic solution of Moffatt

(1964) by numerical simulation in the vicinity of the corner.

Cruchaga (1998) solved the two-dimensional backward-facing-step problem with and

without using an inlet channel and found that the two solutions differ substantially in

the vertical velocity component and the pressure. Moreover, Erturk (2008) compared the

two-dimensional basic flow (u0, v0) obtained for a long inlet channel with the benchmark

solution of Gartling (1990) that did not include any upstream channel. As a result, it was

found that the flow quantities v0, ∂xv0 and ∂xu0 are very sensitive to the presence/absence

of an upstream channel, in particular, in the vicinity of the step.
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Based on numerical simulations for a spanwise-periodic domain with an expansion

ratio Γb = 0.5, i.e. the ratio of the step height to the channel height downstream,

Kaiktsis et al. (1991) reported both two- and three-dimensional instabilities at Re ≈ 525

in contradiction to the experimental data of Armaly et al. (1983) and the numeri-

cal results of Gartling (1990). This discrepancy caused a great controversy and led

Gresho et al. (1993) to publish a study applying four different methods: time-marching

finite-element, finite-difference and spectral-element methods and a steady finite-element

method followed by a two-dimensional linear stability analysis. They concluded that the

steady flow is stable at Re = 600 and that the results of Kaiktsis et al. (1991) were false

owing to inaccuracy of their numerical scheme. Kaiktsis et al. (1996) admitted the in-

correctness of their former simulations and showed that the steady flow is linearly stable

against two-dimensional perturbations at least up to Re = 1875, the maximum value

covered. Moreover, they argued that the flow is convectively unstable for Re ≥ 525.

Fortin et al. (1997) confirmed that the basic two-dimensional flow is linearly stable with

respect to two-dimensional perturbations up to Re = 1200, the maximum Reynolds

number covered.

More recently, Yanase et al. (2001) performed direct numerical simulations for a ge-

ometry without an inlet channel and for an expansion ratio of Γb = 0.5, assuming

periodic boundary conditions in the spanwise direction. Computations were carried out

for moderate Reynolds numbers Re ≤ 700. For 525 ≤ Re ≤ 700, transient growth of the

perturbations was detected, which, however, decayed for t > 70 convective time units.

They argued that the three-dimensional vortical structures, triggered by imposing small

inlet disturbances, are directly related to the high shear stresses between the bulk flow

and the primary vortex behind the step, which might be traced back to the Kelvin–

Helmholtz instability. Convective instabilities were also studied by Blackburn et al.

(2008) for an expansion ratio of Γb = 0.5 by a transient-growth analysis. They stated

that for Re < 57.7 there exists no energy growth over any time interval. Besides that,

optimal three-dimensional disturbances, resulting in the highest growth rate, were iden-

tified with a spanwise wavelength of the order of 10 step heights.

Barkley et al. (2002) performed a three-dimensional linear stability analysis of the

two-dimensional flow for a geometry with an expansion ratio Γb = 0.5 and an entrance

length of one step height. They claimed that the base flow is linearly stable up to

a critical Reynolds number of 748 and that the centrifugal-instability mechanism is

responsible for generating the three-dimensional flow.
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The convective and two-dimensional, temporal linear stability of a flow over a

backward-facing step has been studied extensively in the literature. To the best of the au-

thors’ knowledge, Barkley et al. (2002) were the only authors to perform a global (three-

dimensional) stability analysis, but merely for the single expansion ratio of Γb = 0.5. In

the present work also a global linear stability analysis of the two-dimensional basic flow is

carried out with the objective to systematically vary the geometry, where the expansion

ratio is covered from Γb = 0.25 to Γb = 0.975. It will be shown that the stability bound-

ary of Barkley et al. (2002) does not apply to the ideal case of an infinitely long entrance

channel, since the entrance channel used was too short. Since a spanwise-periodic com-

putational domain is addressed, extrinsic, three-dimensional effects induced by no-slip

sidewalls are excluded and the fundamental hydrodynamic instability mechanism can be

studied. As it will turn out, the physical nature of the instability is neither a centrifugal,

as argued by Barkley et al. (2002), nor a Taylor–Görtler instability mechanism as pro-

posed by Ghia et al. (1989). The instability is rather a combination of flow deceleration,

lift-up process and streamline convergence for an expansion ratio of Γb = 0.5. For other

geometries the lift-up mechanism, pure elliptical and centrifugal amplification processes

will be identified. All these elementary processes will be explained later in the text.

4.1.3. Results

Parameter dependence

To verify the results of the three-dimensional linear stability and energy analyses, the

code is employed to compute the critical Reynolds number and its associated energy-

transfer rates for the lid-driven square cavity. The results obtained, Rec = 786.1 (786.3),

kc = 15.42 (15.43),
∫

V I
′
1dV = 0.04 (0.04),

∫

V I
′
2dV = 0.68 (0.68),

∫

V I
′
3dV = 0.18

(0.18) and
∫

V I
′
4dV = 0.1 (0.1) agree with the data of Albensoeder et al. (2001) given

in parentheses. Also the calculations of Theofilis (2000) (Rec = 783, kc = 15.4) are

consistent with our results.

Another check is provided by a comparison of the critical Reynolds and wave number

with the results of Barkley et al. (2002) for the backward-facing-step problem, where

three-dimensional perturbations were considered. Using a spectral-element code they

obtained, for Γb = 0.5 and an inlet channel of length 1L, Rec = 748 and kc = 0.91.

These data fit well to the present results given in table 4.1. From table 4.1 it is also

clearly evident that the entrance length used by Barkley et al. (2002) is too short if

entrance-length-independent results are desired. Note that Barkley et al. (2002) utilized
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Li 1L 2L 4L 5L 10L 20L

Rec 748.3 717.8 713.7 713.9 714.05 714.1

kc 0.9155 0.8852 0.8754 0.8758 0.8778 0.8767

Table 4.1.: Critical values as functions of the entrance length for multiples of the length
scale L and for Γb = 0.5 with Lo = 60L.

an outflow-channel length of LBar
o = 35L, which is long enough for not influencing the

stability boundaries.

To complete the verification of the discretization of the bulk equations, extensive grid-

convergence studies have been carried out. The highest possible resolution was 2800×200

finite volumes in the (x, y) plane, corresponding to approximately 2.24 million unknowns.

On this uniform grid with a spacing of ∆x = 0.025 and ∆y = 0.01, the benchmark

solution Rec = 714.55 and kc = 0.8787 is obtained for Γb = 0.5 with Li = 10L and

Lo = 60L. On a geometrically refined grid only about one-third of the cells is required.

The same results as the benchmark solution with a deviation of less than 0.2 % are

obtained with three different grids and their parameters are summarized in table 4.2.

Here N i
x and N i

y represent the number of cells in the inlet channel in the x and y

directions and No
x and No

y those in the outlet channel, respectively.

∆xmin ∆ymin ∆xmax ∆ymax N i
x N i

y No
x No

y

G1 0.015 0.005 0.06 0.02 188 94 1019 188

G2 0.0112 0.0037 0.09 0.03 153 110 714 220

G3 0.0187 0.0063 0.075 0.025 155 84 820 168

Table 4.2.: Three different grids with constant stretching factor of 1.03 for Γb = 0.5 with
Lo = 60L.

A detail around the corner of grid G3 of table 4.2 is depicted in figure 4.2 for Γb = 0.5.

As this grid (G3) is the most efficient one, it is used in almost all the calculations, except

for Γb = 0.975, where the grid G2 is utilized as it features more control volumes in the

y direction. The grid convergence presented here for Γb = 0.5 similarly holds for all the

other expansion ratios covered in this work.

For the generation of the various grids for different expansion ratios Γb, the minimum

grid spacing at the walls ∆xmin and ∆ymin was kept fixed. The cell size is then increased

with a constant stretching factor of 1.03 until a maximum value ∆xmax or ∆ymax, respec-

tively, is obtained, or the end of the computational domain is reached. If the maximum
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Figure 4.2.: Sketch of the grid G3.

cell size is reached it is kept constant up to the boundaries of the geometry. The grid

parameters are given in table 4.3, apart from N i
x, which can be found in table 4.2.

The entrance length Li and the length of the channel Lo should be large enough such

that the results are independent of these two parameters. The required outflow length

Lo depends on the Reynolds number and it has to be sufficiently long so that a plane

Poiseuille flow is achieved at the outlet. Here the outflow length Lo is chosen in such

a way that the maximum relative deviation of the numerical solution from the fully

developed plane Poiseuille flow is less than 3 %. With this choice Lo = 60L for Γb = 0.5,

which is almost twice the length of Barkley et al. (2002)’s geometry with LBar
o = 35L.

For Γb = 0.5, Mateescu & Venditti (2001) concluded that an inlet channel of length

4L is sufficient to obtain entrance-length-independent basic flows. As this thesis is

concerned with a linear stability analysis, it is important that the critical Reynolds

Rec and wave numbers kc are independent of the entrance length. The dependence of

these critical values on the length of the inlet channel Li is provided in table 4.1. The

results are given for Γb = 0.5, but a similar convergence, as Li is increased, holds for all

expansion ratios covered here. An inlet channel with length Li = 10L is sufficient, given

that the algorithm by itself has a tolerance level of about 0.2 % for each critical data. A

sufficiently long inlet channel is required because the critical modes extend upstream of

the step. The relative amplitudes of the perturbation components in the inlet channel

averaged over the spanwise direction meanz maxy |ũ(x, y, z)| are depicted in figure 4.3

for Γb = 0.5. Note that the amplitudes are normalized to sum up to one.
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Figure 4.3.: The relative amplitudes of the perturbations in the inlet channel averaged
over the spanwise direction meanz maxy |ũ(x, y, z)| for Γb = 0.5. The solid, the dotted
and the dashed line represent the ũ, the ṽ and the w̃ component, respectively.

To sum up, all the results presented in this work are computed with an entrance length

Li = 10L and a channel length Lo ∈ [35; 400] depending on the Reynolds number (see

table 4.3). All the calculations are performed on the grid G3, except for Γb = 0.975,

where the grid G2 is used. The maximum stretching factor is not larger than 1.03 which

ensures a nearly second-order discretization.

Stability boundaries

Representative numerical critical Reynolds and wave numbers are collected in table 4.3

for selected expansion ratios. Also the outflow lengths and the number of grid points

used are indicated.

Γb Rec kc ±ωc Lo N i
y No

x No
y

0.25 4912.8 1.2477 0 400 104 5339 158

0.3 2948.0 1.0156 0 300 100 4010 162

0.4 1288.1 0.8611 0 90 92 1218 166

0.5 714.05 0.8778 0 60 84 820 168

0.6 488.05 0.9952 0 40 74 554 166

0.7 402.37 1.3062 0 35 62 487 162

0.8 362.67 1.3883 0.0279 35 46 487 154

0.9 404.67 1.4770 0.0483 35 28 487 144

0.95 543.73 1.6675 0.0506 40 16 554 136

0.975 819.08 1.8446 0.0441 40 14 490 162

Table 4.3.: Critical parameters for selected expansion ratios Γb, the outflow length Lo

and the number of grid points (Nx, Ny) in the (x, y) plane.
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Figure 4.4.: Critical Reynolds number Rec (dots) and wave number kc (squares) as func-
tions of the expansion ratio Γb.

Critical Reynolds and wave numbers are shown in figure 4.4 as functions of the ex-

pansion ratio Γb for Γb ≤ 0.5. In the range shown, the instability is stationary and the

critical curves vary smoothly with Γb.

When the step height is reduced to small expansion ratios, the critical Reynolds

number increases monotonically. For the smallest step height considered here, i.e. for

Γb = 0.25, the critical wave and Reynolds numbers are Rec = 4912.8 and kc = 1.2477,

respectively. This corresponds to a Reynolds number in the inlet channel (maximum

velocity and half the height of the inlet channel) of Reinlet = 3684.6, which is below the

linear stability boundary of plane Poiseuille flow.

Additional calculations with a Krylov-subspace dimension of 500 were performed to

ensure that no eigenmodes are missed. For all expansion ratios covered, a Krylov-

subspace dimension of 500 yields the same results as a Krylov-subspace dimension of

200. An example is given in figure 4.5 for Γb = 0.25.

The critical curves for higher expansion ratios Γb ≥ 0.5 are shown in figure 4.6. At

Γb
co = 0.7090 the critical mode changes from stationary (for Γ ≤ Γb

co) to oscillatory

(for Γb > Γb
co). At the crossover point Γb

co two real eigenvalues are annihilated and a

pair of complex conjugate ones emerges. The critical wave number does not change

very much. The merger of the complex conjugate eigenvalues occurs along a line on

the two-dimensional neutral surface in the (k,Γb) space. At Γb
co this line is close to the
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Figure 4.5.: Part of the eigenspectrum showing the six most dangerous eigenvalues for a
Krylov-subspace dimension of 200 (open circles) and 500 (dots) for Γb = 0.25 at critical
conditions.

minimum with respect to k of the neutral hypersurface. The behaviour is illustrated in

figure 4.7 where the two most dangerous eigenvalues are shown along a ray (Γ,Re) =

(0.7090, 401.09) in the three-dimensional parameter space spanned by Γ, Re and k.

The critical Reynolds number of the oscillatory mode takes a minimum value at Γb =

0.8291 with Rec = 359.06 and kc = 1.3919. In the limit Γ → 1 the step height approaches

the width of the outlet channel. In this limit the basic flow becomes similar to a wall

jet and the length scale L = (hi + hs)/2 may not be the best choice. If the width of

the inlet channel hi is used as a length scale, the Reynolds number, wave number and

frequency must be rescaled according to

Re∗ = 2(1 − Γ)Re, k∗ = 2(1 − Γ)k, and ω∗ = 2(1 − Γ)ω. (4.1.2)

For the largest expansion ratio Γb = 0.975 considered, the critical data Re∗
c = 40.954

with k∗
c = 0.0922 and ω∗

c = 0.0022 are obtained. As can be seen from figure 4.8, Re∗
c

shows a linear behaviour, which is estimated, for (1−Γ) ≪ 1, as Re∗
c ≈ 27−500(Γb −1).

The critical wave number k∗
c for Γb → 1 becomes very small and can be approximated

by k∗
c ≈ 2.9051 − 2.8842Γ. The frequencies ωc and ω∗

c of the critical mode for large

expansion ratio (Γb ≥ 0.7) are depicted in figure 4.9 with an estimate of the asymptote

of ω∗
c ≈ −0.0882(Γ − 1).
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Figure 4.6.: Critical Reynolds number Rec (dots) and wave number kc (squares) as func-
tions of the expansion ratio Γb. Data for the stationary instability are indicated by full
symbols and full lines; those for the oscillatory instability are shown as open symbols
and dashed lines. The open diamond and open triangle represent the critical Reynolds
number and wave number, respectively, of Barkley et al. (2002).
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Figure 4.7.: Real and imaginary parts of the two most dangerous eigenvalues as functions
of k for Γb = 0.7090 ≈ Γb

co and Re = 401.09 ≈ Rec. The real parts of the leading
eigenvalues for the stationary and the oscillatory modes are represented by dots and
circles, respectively. Plus signs indicate the real part of the second eigenvalue, which
merges with the first one. The absolute values of the imaginary parts of the oscillatory
modes are depicted as asterisks.
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c (squares) as functions of the expansion ratio Γb. Data for the stationary insta-

bility are indicated by full symbols connected by full lines; those for the oscillatory
instability are shown as open symbols and dashed lines. The straight lines indicate the
asymptotic behaviour for Γb → 1 as mentioned in the text.
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Figure 4.9.: Critical oscillation frequencies ωc based on U∞/L (stars, full lines) and ω∗
c

based on U∞/hi (diamonds, dashed lines) as functions of the expansion ratio Γb.
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Γb = 0.25 Γb = 0.5 Γb = 0.709

i
∫

V IidV
∫

V I
′
idV

∫

V IidV
∫

V I
′
idV

∫

V IidV
∫

V I
′
idV

1 −2.7154 0.3237 −2.5177 0.2670 −1.0081 0.3230

2 3.7858 0.4423 3.5612 0.2992 1.9968 0.5940

3 −0.0045 0.0798 −0.0543 0.0768 −0.0971 0.0146

4 0.0024 0.2226 0.0249 0.3711 0.1114 0.0654
∫

So
−0.0682 −0.0141 −0.0031

Γb = 0.8 Γb = 0.975

i
∫

V IidV
∫

V I
′
idV

∫

V IidV
∫

V I
′
idV

1 −0.2886 0.1946 0.0729 0.2024

2 1.2514 0.5933 0.6133 0.4915

3 −0.0637 0.0485 0.1311 0.1407

4 0.1039 0.1639 0.1828 0.1654
∫

So
−0.0001 0.0000

Table 4.4.: Global normalized energy production rates for several expansion ratios.

The stationary and the oscillatory critical modes are continuous functions of the ex-

pansion ratio Γb. Even at the crossover point Γb
co the two critical Reynolds numbers are

very similar because they are closely connected to each other in the parameter space.

Nevertheless, the structure of the critical mode and, hence, the instability mechanism

changes. For that reason, representative expansion ratios are considered and the critical

modes are analysed towards a physical interpretation of the instability mechanisms. In

this regard the kinetic energy exchanged between the basic state and the perturbation

field can provide useful information. For an overview, the normalized energy production

terms integrated over the whole domain of the flow are shown in table 4.4 for selected

expansion ratios. Note that the sum of all normalized energy production terms equals

one up to 4 to 5 significant digits. The last row
∫

So
in table 4.4 constitutes the surface

integral at the outlet −0.5
∫

So
I5dS.

For Γb = 0.25 the perturbations are not fully decayed at the outlet owing to the finite

length of the channel. Performing the same calculation on a coarser grid with a much

longer outlet channel indicates that the surface integral vanishes for Lo → ∞.

The instability mechanisms discussed further below will be denoted centrifugal, el-

liptic and lift-up instability, which have been introduced for simple, elementary basic

flows. A rigorous classification of the instabilities is difficult, because no exact criteria

exist for general viscous flows in complex geometries. Moreover, the instability charac-

teristics may change continuously upon variation of the expansion ratio. Thus several
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of the elementary instability mechanisms may be at work simultaneously. Therefore,

the instability mechanism will be characterized here by a qualitative and quantitative

comparison of the basic flow, the critical mode and its energy-transfer rates with the

instabilities arising in elementary idealized systems.

Regardless of the step height the basic flow behind the backward-facing step is char-

acterized by a region of separated flow in the form of a more or less strained vortex

immediately behind the step. This vortex will be called the primary vortex. Depending

on the Reynolds number, secondary and higher-order regions of separation arise further

downstream, alternatingly located on both walls of the channel. The energy transfer be-

tween the basic flow and the critical modes is most pronounced near the primary vortex.

Hence, the characteristics of the primary separation region is of key importance for the

flow instability. Therefore, the flow characteristics shall be discussed within the region

of the primary vortex, even though the computational domain is much more extended

in the downstream (x) direction.

Oscillatory instability for large expansion ratios Γb > Γb
co

Centrifugal instability for very large expansion ratios When the expansion ratio is

large a thin plane jet attached to the upper wall emerges from the opening of the inlet

channel at x = 0. Immediately behind this location the jet resembles a classical wall

jet (Batchelor, 1967). It widens downstream and, after a short distance, it separates

from the upper wall and is deflected downwards to the lower wall. After being deflected

by the lower wall the jet continues to widen. The S-shaped jet is located between the

primary and secondary separation eddies. For very large expansion ratios there appears

another recirculation bubble which resides at the bottom of the channel.

As a representative example for a large expansion ratio Γb = 0.975 is considered. The

primary vortex has nearly circular streamlines in its centre and it is only slightly strained.

The basic state and the oscillatory critical mode are shown in figure 4.10 in a cross-

section z = const. in which the total local energy-transfer rate takes its maximum. The

critical mode in that plane arises in the form of a vortex, which appears slightly displaced

downstream from the primary vortex and centred near the separating streamline. Hence,

a finite-amplitude disturbance would be a spanwise travelling wave that periodically

displaces the primary eddy and the jet. The total local energy transfer from the basic

state to the perturbation flow is sharply peaked at (x, y) = (3.1230, 1.1141) on the

downstream side of the jet slightly above the stagnation point on the lower wall.
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Figure 4.10.: Basic state (streamlines), critical velocity fields (arrows) and the total local
energy production
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Figure 4.11.: Basic state (streamlines) and grey regions where (4.1.3) holds for Γb =
0.975

It is worth mentioning that Chun & Schwarz (1967) examined the temporal linear

stability of an incompressible wall jet subject to small disturbances by solving the Orr–

Sommerfeld equation. The critical Reynolds number, based on the local boundary layer

thickness and the local maximum velocity, for the wall jet is ReWJ
c ≈ 57. This value is

of the same order of magnitude as the present extrapolated critical Reynolds number

Re∗
c(Γ → 1) ≈ 27. As the local boundary layer thickness depends on the distance from

the inlet channel, the x-positions were determined, where ReWJ ≈ 57 for Γb = 0.975.

This condition is fulfilled at x = 1.1337 and x = 3.0854. These are approximately the

positions where the total local energy production takes its maxima (figure 4.10).

In the region of maximum energy transfer the basic streamlines are curved and the

separation of the equidistantly plotted streamlines increases radially outwards from the

curved streamlines. Hence, this region is prone to centrifugal effects. This is confirmed
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by figure 4.11, which shows the generalized Rayleigh criterion

|u0|ζ
R

< 0 (4.1.3)

as grey regions. Here ζ represents the vorticity of the steady two-dimensional basic flow

u0 = (u0, v0, 0)T and R the local algebraic radius of curvature which can be expressed

as

R =
|u0|3

(∇ψ) · (u0 · ∇u0)
. (4.1.4)

The criterion is a reformulation of Bayly (1988)’s sufficient condition for centrifugal in-

stability for two-dimensional inviscid flows due to Sipp & Jacquin (2000). If (4.1.3) is

satisfied all along a closed streamline ψ = const., an inviscid basic flow u0 would be cen-

trifugally unstable. Here, the criterion is only used as an indicator for centrifugal effects,

because the basic flow is viscous and (4.1.3) is only satisfied along certain segments of

the streamlines.

Since the most prominent energy-transfer rate I ′
2 (table 4.4) is compatible with this

interpretation, the instability is centrifugal in nature. In the region of large energy

transfer the cross-stream component ũ⊥ is relatively weak compared to ũ‖ (figure 4.10).

Nevertheless, a high energy-transfer rate I ′
2 is achieved due to the high shear rate present

at the edge of the curved jet.

Owing to the periodicity in z the regions of positive (acceleration) and negative (de-

celeration) perturbations ũ‖ is connected by a return flow in the z direction, which is

visible in the plane x = 3.1230 shown in figure 4.12. Owing to the relatively low criti-
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Figure 4.12.: Critical velocity fields (arrows) and the total local energy production
∑

i Ii

for Γb = 0.975 at x = 3.1230. The wave propagates to the left.
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cal oscillation frequency ωc, the obliqueness of the perturbation-flow pattern is weak in

figure 4.12.

It is interesting to mention that a similar centrifugal instability occurs in deep lid-

driven cavities for cavity aspect ratios Γcav > 1.207 (Albensoeder et al., 2001). In deep

cavities the wall jet emerging from the downstream corner of the moving wall also sepa-

rates from the solid wall and the energy-transfer rate I ′
2 is peaked in the same region of

the jet as in the present case (see e.g. figure 20 of Albensoeder et al., 2001). Moreover,

both modes have a relatively long wavelength, kc = 1.845 as compared to the cavity

mode kcav
c = 1.715 for Γcav = 2. The two critical modes differ, however, slightly in shape

and in their time dependence: the cavity mode is stationary.

Elliptical instability for moderately large expansion ratios As the expansion ratio is

reduced the critical mode changes gradually and the centrifugal instability mechanism is

replaced by an elliptic instability mechanism. The elliptic mechanism becomes dominant

at about Γb ≈ 0.9 and it remains the most dominant mechanism even beyond the critical

expansion ratio Γb
co < 0.7108.

The elliptic instability arises in strained vortices (Bayly, 1986; Pierrehumbert, 1986).

It is due to an amplification of a pair of Kelvin waves that resonate due to a coupling

provided by the strain field (Eloy & Le Dizès, 2001; Kerswell, 2002). The hallmark of the

elliptic instability is a peak of the energy-transfer rate in the centre of the basic elliptic

vortex (Sipp & Jacquin, 1998) and a perturbation flow in the vortex centre which is

aligned with the principal direction of the strain (Waleffe, 1990).

As an example, Γb = 0.8 is considered. At the margin of stability the basic flow has a

jet-like structure similar to that for Γb = 0.975. For Γb = 0.8 the jet is wider, however,

and it separates from the wall further downstream. Thus the primary vortex extends

down to x ≈ 7. Hence, it is much more strained than for Γb = 0.975. Moreover, inertia

effects displace the centre of the primary eddy downstream to x ≈ 5.5.

The basic flow at criticality, the critical mode and the total local energy-transfer rate

are shown in figure 4.13 in a cut, where the total local energy transfer takes its maximum

value at (x, y) = (5.3032, 0.5795). It is clearly seen that the energy transfer from the

basic flow to the critical mode is entirely located in the core region of the primary eddy.

Moreover, the perturbation flow is strongest in the core region of the primary vortex

and aligned with the principal direction of strain.

In an (x, y) plane displaced by a quarter of the critical wavelength ∆z = π/(2k), the

spanwise perturbation velocity takes its maximum amplitude, which is shown in figure

48



0.5

1

1.5

y

0 1 2 3 4 5 6 7 8
x

0

0.2

0.4

Figure 4.13.: Basic-flow streamlines for Γb = 0.8, critical velocity fields (arrows) and the
total local energy production
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Figure 4.14.: Basic-flow streamlines for Γb = 0.8, critical velocity fields (arrows) and its
spanwise component w̃ in a plane in which it takes its maximum amplitude.

4.14. The two extrema of w̃ with different signs arise outside of the vortex core and they

are aligned with the compressional strain axis. The resulting perturbation flow should

arise as a sequence of counter-rotating vortices with vorticity perpendicular to the z

axis and aligned with the dilatational strain axis. These vortices are not that clearly

seen in figure 4.15, because the perturbation flow component ũ strongly depends on x

apparently resulting in sinks and sources in the projection of the perturbation flow onto

a plane x = const. Figure 4.16 shows that the perturbation flow extends upstream up

to the backward-facing step at x = 0, but no significant amplification is acting in that

region.

The modal structure and the peak of the energy transfer in the centre of the strained

primary vortex suggest that the instability is of elliptic type. Contrary to the usual sta-

tionary elliptic instability (see e.g. Kuhlmann et al., 1997; Pierrehumbert, 1986; Waleffe,

1990), the present instability is oscillatory (see e.g. Kerswell, 2002), which may be due

to the asymmetric structure of the basic flow, which is not perfectly elliptic.
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Figure 4.15.: Critical velocity fields (arrows) and the total local energy production
∑

i Ii

for Γb = 0.8 at x = 5.3032. The wave propagates to the left.
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Figure 4.16.: Critical velocity fields (arrows) and the total local energy production
∑

i Ii

for Γb = 0.8 at y = 0.5795. The wave propagates from top to bottom.

Both the centrifugal and the elliptical instability mechanisms are operative within the

expansion ratio range 0.9 <
∼ Γb <

∼ 0.95. The energy production associated with the

two distinct local production extrema is of comparable magnitude for expansion ratios

near Γb ≈ 0.94 for which the critical frequency ωc takes its maximum value (cf. figure

4.9). The elliptic instability mechanism is still dominating at the lowest expansion ratio

Γ − Γb
co ≪ 1 for which the critical mode is oscillatory.

50



Stationary instability for expansion ratios Γb < Γb
co

Instability near the codimension-two point |Γ − Γb
co| ≪ 1 The stationary critical

mode for Γb ↑ Γb
co and the oscillatory critical mode for Γb ↓ Γb

co, and the respective

energy-transfer rates, are very similar. This is illustrated in figure 4.17 for (a) the

stationary (Γb = 0.709 < Γb
co) and (b) the oscillatory critical mode (Γb = 0.7108 > Γb

co),

respectively. The differences are minute because the two critical modes are closely

connected with each other in the parameter space (see figure 4.7).

In figures 4.17a and 4.17b the main energy transfer takes place within the centre of

the primary vortex. The second weaker region of positive energy production is located

between the primary and secondary vortices. This latter local maximum of I is more

pronounced for the stationary mode at Γb = 0.709 and almost vanishes in the oscillatory

case Γb = 0.7108. For I2 the energy transfer takes place only in the centre of the primary

vortex whereas I1 is responsible for the second region of positive energy production. Both

I1 and I2 are considered in planes where they take their local maxima.
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Figure 4.17.: Basic state (streamlines), critical velocity fields (arrows) and the total local
energy production

∑

i Ii in a z plane in which the total local production takes its absolute
maximum: (a) stationary mode for for Γb = 0.709 < Γb

co; (b) oscillatory mode for
Γb = 0.7108 > Γb

co.
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Instability mechanisms for 0.4 <
∼ Γb < 0.709 In the parameter range 0.4 <

∼ Γb <

0.709 different mechanisms are present which makes the physical interpretation difficult.

Throughout all computations the integral energy production
∫

I ′
idV for i = 1, 2, 3, 4 are

positive. Hence, all physical processes associated with these terms contribute to the

destabilization process, albeit with different importance.

The most important terms in the range 0.4 <
∼ Γb < 0.709 are I ′

1 and I ′
2. The term

I ′
1 describes an energy amplification by a cross-stream displacement ũ⊥ · ∇u0 of the

basic flow momentum. In order that this quantity feeds back on the perpendicular

perturbation ũ⊥, the orientation of u0 must change perpendicular to itself. This implies

that this energy term is associated with converging basic-flow streamlines. For Γb = 0.5

this is the case near the downstream end of the primary eddy just after the turning of

the separated flow in the upstream direction (figure 4.18). The term I ′
2 describes the

usual lift-up mechanism by which basic flow momentum is transported in cross-stream

direction (ũ⊥ · ∇u0) and this feeds back on the parallel component of the perturbation

flow ũ‖. The requirement here is a strong shear flow.

From the integral budgets in table 4.4 the two processes associated with I ′
1 and I ′

2

are the dominant contribution for Γb ≈ 0.7. As Γ is further reduced, the process I ′
4

becomes more and more important. It is the largest destabilizing factor in the integral

energy budget for Γb = 0.5. The term I ′
4 describes the streamwise transport of basic

flow momentum ũ‖ · ∇u0, which feeds back on the streamwise perturbation flow. The

requirement for this process to be energy-producing is significant deceleration of the

basic flow.

Figure 4.18 showns the total local energy production (figure 4.18a) and the local

production associated with the above-mentioned terms (figure 4.18b–d). All terms attain

their local extrema in the same planes z = const. Even though the integral contribution

of I ′
4 dominates, the maximum production being located near the separation streamline

where the flow is strongly decelerated upon approaching the reattachment point, this

term does not leave its fingerprint in the total local budget, because the term I ′
2 is locally

strongly stabilizing in the same region (figs. 4.18c,d). The process I ′
1 does not provide

the largest integral contribution to the energy budget, but it exhibits the strongest local

extrema, which is reflected in the total local production 4.18a.

To conclude, the flow instability for Γb = 0.5 is due to a combination of flow de-

celeration near the reattachment point (I ′
4), a lift-up process (I ′

2) on both sides of the

jet (near the primary and the secondary eddy), and an amplification due to streamline

convergence near and in the separated flow regions. The perturbation flow in the plane

52



0.5

1

1.5

y

0 2 4 6 8 10 12 14 16
x

−0.15

−0.1

−0.05

0

0.1

0.05

PSfrag replacemen

0.5

1

1.5

y

0 2 4 6 8 10 12 14 16
x

−0.1

0

0.1

0.5

1

1.5

y

0 2 4 6 8 10 12 14 16
x

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.5

1

1.5

y

0 2 4 6 8 10 12 14 16
x

0

0.05

Figure 4.18.: Critical velocity fields (arrows) and local energy production rates for Γb =
0.5 in a plane z = const. in which all production terms shown exhibit their local extrema:
(a) total local production

∑

i Ii for Γb = 0.5 at z = 0, (b) I ′
1, (c) I ′

2 and (d) I ′
4. The axes

are not to scale.
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Figure 4.19.: Critical velocity fields (arrows) and the (total) local energy production
I ′

2 ≈ ∑

i Ii for Γb = 0.5 at x = 13.2728. The total local maximum energy transfer,
however, takes place at x = 10.5662.

shown in figure 4.18 is nearly parallel to the basic flow, except for the region between

the primary and the secondary eddies. Here, sizeable cross-stream perturbation-flow

components exist, which can be clearly seen in the plane x = 13.2728 (location of the

second maximum of the energy production rate) shown in figure 4.19.

Instability by lift-up and flow acceleration for 0.25 ≤ Γb <
∼ 0.4 When the expansion

ratio is small the Reynolds number must be relatively high in order to destabilize the

flow. In this situation the primary recirculation zone of the basic flow becomes strongly

elongated in the x direction. This can be seen from figure 4.20, where the primary vortex

of the basic flow is extremely stretched (note the scaling of the x and y axes). For that

reason the local basic flow at a downstream position is almost parallel. Thus one might

expect some kind of Kelvin–Helmholtz instability. This is, however, not observed. The

reason is that, despite the elongation of the primary vortex, the flow behind the step

is characterized by the recirculation. The residence time of a fluid element in the pure

shear layer that forms downstream from the step is too short to enable a significant
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Figure 4.20.: Critical velocity fields (arrows) and the total local energy production
∑

i Ii

for Γb = 0.25 at z = 0.
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Figure 4.21.: Critical velocity fields in the form of streaks (arrows) and total local energy
production

∑

i Ii for Γb = 0.25 at y = 0.4737.
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Figure 4.22.: Critical velocity fields (arrows) and the streamwise perturbation velocity
ũ (grey shading) for Γb = 0.25 at x = 10.4632. As in figure 4.15 the streamwise vortices
are somewhat obscured due to the strong variation ∂xũ.

growth of typical Kelvin–Helmholtz vortices. Besides of that, the Kelvin–Helmholtz

instability is two-dimensional in nature.

A different instability is found, which is steady and three-dimensional from the outset.

For Γb = 0.25 the critical mode at Rec = 4912.8 with kc = 1.2477 is confined to the

region of the primary vortex. From figure 4.20 it is seen that the perturbation flow is

amplified in the shear layer around the separating streamline.

The critical mode takes the form of alternating slow and fast streaks, which are shown

in figure 4.21. Figure 4.22 shows a cross section through the streaks and the connecting

lateral flow in the z direction.

It is well known that such streaks are produced by the lift-up mechanism. Landahl

(1980) showed that a wide class of localized initial three-dimensional disturbances evolve

into longitudinal streaks for any inviscid shear flow. This streaky structure is physically

explained by the lift-up mechanism where fluid with low velocity is lifted up from the
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Figure 4.23.: Critical velocity fields (arrows) and the local energy production I ′
2 for Γb =

0.25 at z = 0.
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Figure 4.24.: Critical velocity fields (arrows) and the local energy production I ′
1 for Γb =

0.25 at z = 0.

wall and interacts with high-speed regions (Landahl (1975)). This leads to low- and

high-speed streaks alternating in the spanwise direction. Different from open parallel

flows, these streaks are self-sustained here owing to the feedback provided by the pri-

mary eddy recirculation. From figure 4.20 and 4.21 it can be seen that the streamwise

perturbation component ũ clearly dominates ṽ and w̃. The lift-up effect creates large

streamwise perturbations via transport of the base-flow momentum by cross-stream ve-

locity perturbations −ṽ∂yu0. In fact, this product is part of I2 which is by far the most

dominant term for Γb = 0.25.

The most dominant term in the energy production for the streamline decomposition

is I ′
2 (figure 4.23). This term describes the classical lift-up mechanism and acts just

above the separating streamline. The energy transfer term I ′
1 (shown in figure 4.24) also

contributes substantially to the destabilization. This term describes an energy transfer

due to basic-flow convergence. Such conditions are met near the upstream end of the

primary eddy where the flow accelerates the streamlines being non-parallel and slightly

converging.
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To conclude, the instability in the expansion ratio range 0.25 ≤ Γb <
∼ 0.4 is due to the

lift-up mechanism and streamline convergence of the flow near the separating streamline

of the primary eddy recirculation, which provides a feedback for the perturbations to be

self-sustained.

Comparison with experimental results

It is desirable to compare the critical data and the numerically obtained basic and

perturbation flows with experimental results. Such a comparison is made difficult for

several reasons. In some experiments the spanwise aspect ratio Λ = Lz/H where Lz

is the width of the channel, has been selected to be very small such that the no-slip

conditions on the side walls induce a significant three-dimensionality of the flow for

Reynolds numbers much lower than the critical ones. Other experiments with relatively

large spanwise aspect ratio were not aimed at a precise determination of the critical

conditions and the structure of the flow at onset. Nevertheless, a comparison is made

here with the available experimental data.

Beaudoin et al. (2004) experimentally studied the flow over a backward-facing step in

a geometry with small expansion ratios Γb = 0.05 and Γb = 0.1, which are not covered in

the present study. The spanwise aspect ratio of their system was only Λ = 1.5. Hence,

they observed three-dimensional flows at rather low Reynolds numbers, an effect they

traced back to strong sidewall effects. Clearly, such sidewall effects would obscure any

of the bulk flow instabilities considered above. Nevertheless, the stationary, counter-

rotating longitudinal vortices observed experimentally are qualitatively similar to our

findings for small expansion ratios.

The experiments of Armaly et al. (1983) (Λ = 17.82) and Lee & Mateescu (1998)

(Λ = 20) were devoted to the study of two-dimensional flows over a backward-facing

step. Therefore, much larger spanwise aspect ratios were realized in these investigations

in order to minimize three-dimensional sidewall-induced flows. Table 4.5 shows measured

separation and reattachment positions on the upper and lower walls in comparison with

two-dimensional computations. The data match very well. Also the simulations of

Erturk (2008) and Mateescu & Venditti (2001) are shown, since these authors used an

inlet channel upstream of the step, as it was done here.

Laser Doppler measurements of Armaly et al. (1983) were carried out using an exper-

imental setup with expansion ratio Γb = 0.4851. They found a sizeable deviation from a

pure two-dimensional flow for Reynolds numbers exceeding Re ≈ 300. Williams & Baker

(1997) performed three-dimensional numerical simulations for a geometry exactly match-
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Γb Re authors xl
r xu

s xu
r

0.4851 600 Armaly et al. (1983) (exp.) 14 11.4 20.0
present 11.73 9.25 20.0

0.5 603.75 Lee & Mateescu (1998) (exp.) 12.9 10.3 20.5
present 11.82 9.41 20.8

0.5 600 Erturk (2008) 11.83 9.48 20.55
Mateescu & Venditti (2001) 11.8 9.32 20.62

present 11.81 9.4 20.53

Table 4.5.: Comparison of separation and reattachment positions on the upper (xu
s , x

u
r )

and lower wall (xl
r) with previous experimental and numerical results.

ing the nominal geometry of the apparatus used by Armaly et al. (1983). By Lagrangian

particle tracking it was demonstrated that the lateral sidewalls were responsible for the

three-dimensionality of the flow when Re ≥ 300. Apart from these sidewall-induced per-

turbations of the two-dimensional flow, Armaly et al. (1983) observed that the laminar

flow regime extends up to Re = 874 (according to the definition of Re). Beyond this

value the locations of the measured detachment and reattachment lines feature a sharp

kink. This jump has been identified as an indication for the onset of the transitional

Reynolds number range. This observation is in accordance with our critical Reynolds

number Rec(Γ
b = 0.4851) = 768.74. It can thus be concluded that the marked changes

of the detachment and reattachment lines are due to the bulk-flow instability. The find-

ings of Armaly et al. (1983) confirm that the properties of the experiments are fully

consistent with our linear stability analysis. According to Armaly et al. (1983) fully

developed turbulent flows arise only for Re ≥ 4807.

Hot-film sensor measurements were presented by Lee & Mateescu (1998) for Re ≤
2250 and an expansion ratio Γb = 0.5. Their results agree with those of Armaly et al.

(1983) for an expansion ratio Γb = 0.4851 with a typical discrepancy of about 8 %.

Lee & Mateescu (1998) reported that the transitional flow regime starts at Re ≥ 862.5,

which is consistent with our calculations yielding Rec(Γ
b = 0.5) = 714.05.

The systematic deviation of the observed loss of stability of the two-dimensional flow in

the experiments from our computed critical Reynolds numbers, which are lower by about

14% and 20%, is most likely due to a stabilizing effect of the sidewalls. This stabilization

may be due to the flow or to the fact that the optimum (critical) wavelength is not an

integer multiple of the spanwise aspect ratio. Another possible reason could be the finite

amplitude that is required for a measurable signal in the case of a forward bifurcation.
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In summary, the present modal stability boundaries qualitatively fit the experimental

results. In contrast, the critical Reynolds number ReB
c (Γb = 0.5) = 57.7 determined

by Blackburn et al. (2008) via a transient-growth analysis is one order of magnitude

smaller.

4.1.4. Conclusion

The global temporal linear stability of the two-dimensional flow over a backward-facing

step has been investigated numerically. The inlet and outlet channel lengths have been

carefully selected to ensure channel-length-independent results. Stability boundaries

have been computed for a quasi-continuous variation of the channel expansion ratio

Γb. An a posteriori energy-transfer analysis revealed that the flow becomes unstable to

three-dimensional perturbations due to different mechanisms.

Even though the basic flow at criticality and for very large expansion ratios (1−Γ) ≪ 1

resembles a wall jet immediately behind the step, the typical two-dimensional wall-jet

instability was not found (see e.g. Chun & Schwarz, 1967). The reason is that the jet

emerging from the inlet separates from the top wall, turns downwards and impinges

nearly perpendicularly on the bottom wall. Most of the kinetic perturbation energy is

produced on the downstream side of the jet in a region in which centrifugal forces are

significant. The spatial structure of the critical mode, which is oscillatory, is similar to

the one found in deep one-sided lid-driven cavities (see figure 20 of Albensoeder et al.,

2001) where all instabilities are of centrifugal type.

When the step height is decreased moderately, the separation of the jet from the

upper wall is delayed and the primary separated vortex becomes increasingly strained

at the critical Reynolds number. The oscillatory critical mode and the energy-transfer

characteristics change continuously until, at Γb ≈ 0.8, the entire perturbation-energy

production takes place in the centre of the elliptically strained primary vortex. This is

also the locus of highest perturbation-flow amplitude. The energy-transfer characteristics

and the structure of the critical mode suggest that the instability is of elliptic type. The

nature of the instability does not change on a further decrease of Γb down to Γb
co ≈ 0.71

where the critical mode changes from oscillatory to stationary. Even though the temporal

character of the instability changes at Γb
co the respective energy production rates are very

similar to each other in magnitude and spatial distribution, since the two critical modes

are closely connected with each other in the parameter space.

As the step height is further reduced the primary vortex at criticality becomes even

more strained and its extension grows downstream. The perturbation energy production
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pattern now features two well-separated and pronounced maxima. It is argued that the

instability cannot be attributed to any classical instability mechanism. Rather, the flow

instability is caused by a combined effect of flow deceleration near the reattachment

point of the separating streamline of the primary vortex, a lift-up process on both sides

of the jet emerging from the step, and streamline convergence in the regions of separated

flow. No indications were found for a centrifugal instability for Γb = 0.5 as proposed by

Barkley et al. (2002).

For small step heights (0.25 ≤ Γb <
∼ 0.4) the separated vortex is strained even more and

the basic flow at criticality becomes nearly parallel. In this situation the perturbation

amplification is entirely located near the separating streamline within the shear layer.

Moreover, the critical mode exhibits alternating slow and fast streaks connected by

streamwise vortices in and near the separated primary vortex. The energy-transfer

analysis shows that the perturbation streaks are fed by the lift-up mechanism. Other

than in plane Couette and Poiseuille flow, the streaks and streamwise vortices are self-

sustained, in the present case, because of the feedback provided by the primary vortex.

The lift-up mechanism is supported by a cross-stream momentum-transfer mechanism

ũ⊥ · ∇u0, which yields an energy growth (I ′
1) in the region of converging basic flow near

the upstream end of the primary vortex.

The critical data computed are consistent with previous experimental findings. There-

fore, the physical relevance of the global stability modes is confirmed. The prevailing

results of the global linear stability analysis will thus provide useful reference data for

further investigations. It was shown that previous experiments suffered from a too small

spanwise aspect ratio. Thus a distinction between sidewall effects and bulk-flow instabil-

ities is made difficult. Hence, it would be very interesting to study more systematically

finite-size effects, caused by the presence of rigid walls that limit the spanwise extent of

the system. Of interest are the structures of pure sidewall-induced flows and the influ-

ence of these on the stability boundaries and associated modifications of the instability

mechanism.
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4.2. The Forward-Facing-Step Problem

4.2.1. Problem Definition

The analysis is concerned with an incompressible flow of a Newtonian fluid over a rectan-

gular forward-facing step in the (x, y) plane. The flow domain is assumed to be infinitely

extended in the spanwise (z) direction. The geometry is depicted in figure 4.25, con-

sisting of an inlet channel of height H and length Li followed by a suddenly constricted

channel of height ho and length Lo. The origin of the coordinate system is located at

the bottom of the step of height hs = H − ho.

H

hs

Li Lo

ho

Figure 4.25.: Sketch of the flow domain for the forward-facing step problem.

Here, the ideal case is considered, in which both Li and Lo tend to infinity. For the

numerical treatment, however, both channels must be truncated. The corresponding

finite lengths will be selected sufficiently large such that the flow near the step is in-

dependent of Li and Lo. The problem is then governed only by two parameters: the

Reynolds number Re and the constriction ratio Γf defined as

Re =
HŪ

ν
and Γf =

hs

H
. (4.2.1)

Here the mean velocity Ū of the inlet flow, the height H of the inlet channel and the

kinematic viscosity ν of a Newtonian fluid have been used for the scaling.

At the inlet x = −Li/H , plane Poiseuille flow u0(y) = 6y(1 − y) and v0 = 0 is

assumed for y ∈ [0; 1]. Along the step and all channel walls, no-slip and no-penetration

boundary conditions u0 = 0 are adopted. At the outlet x = Lo/H , homogeneous

Neumann conditions ∂xu0 = 0 are used for all velocity components, and the pressure

level is specified by p0 = 0.
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4.2.2. Scientific Background

The flow over a forward-facing step in a plane channel is a prototype example for flow

separation at a sharp edge near the front of a bluff body. The forward-facing-step

configuration often represents the entrance geometry for polymer processes like fibre

spinning, film blowing and extrusion (Chiba et al., 1995) and is important for the de-

sign of heat-transfer devices, such as combustion chambers, cooling systems and heat

exchangers. Apart from its technical applications, forward-facing-step flows are also ob-

served in rivers and lakes and might be responsible for erosional grooves (Pollard et al.,

1996).

Earlier publications (see e.g. Dennis & Smith, 1980; Plotkin & Mei, 1986) on the

forward-facing-step flow focused on the pure two-dimensional flow and on the depen-

dence of the length of the separation zone on the Reynolds number. The topology of

the two-dimensional flow is characterized by two separation zones: a first recirculation

bubble ahead of the step even for low Reynolds numbers and, for larger Reynolds num-

bers, a second recirculation zone arises past the step which separates immediately at the

sharp corner.

In many experiments (Chiba et al., 1995; Pollard et al., 1996; Stüer, 1999; Stüer et al.,

1999), it was reported that the streamlines in front of the step are not closed but rather

open and three-dimensional in nature which enables an entrainment into the recirculation

bubble. This three-dimensionality, giving rise to the formation of streaky structures

downstream of the step corner, was observed even at low Reynolds numbers. The work

of Stüer et al. (1999) considered mainly the issue of whether the separation bubble in

front of the step is closed or open by studying the local three-dimensionality, but did

not pay particular attention to the matter when the flow gets unstable and consequently

globally three-dimensional. Nevertheless, the hydrogen bubble visualization technique

revealed that the flow is turbulent at a Reynolds number (according to (4.2.1)) of around

4800.

Wilhelm et al. (2003) revealed in their numerical simulations that the three-

dimensionality in front of the step is a sensitive reaction of the flow to minute dis-

turbances present in the oncoming flow. Perturbation amplitudes of less than 1 % of the

mean flow, which are most likely present in the laboratory, can grow to sizeable ampli-

tudes just ahead of the step. Moreover, it was demonstrated that there exists no signif-

icant difference between the two-dimensional and spatially averaged three-dimensional

flow fields. Recently, Marino & Luchini (2009) confirmed via an adjoint analysis the

findings of Wilhelm et al. (2003) that the flow is highly sensitive to oncoming distur-
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bances and showed that this significant receptivity is independent of the presence of a

hydrodynamic instability. Therefore, the three-dimensionality as observed in the exper-

iments cannot be attributed to a global instability.

Stüer (1999) investigated also numerically the flow over a forward-facing step with

constriction ratios of Γf = 0.5 and Γf = 0.25. By a global linear stability analysis, it

was shown that the critical Reynolds numbers are Rec(Γ
f = 0.5) ≈ 150 and Rec(Γ

f =

0.25) ∈ [300; 400]. The latter result is in contradiction with the findings of Wilhelm

(2000) and Wilhelm et al. (2003), who showed that the flow for Γf = 0.25 subjected

to three-dimensional perturbations is absolutely stable for Re = 1320, representing a

lower bound to the stability boundary. Recently, Marino & Luchini (2009) computed

the stability boundaries for the constriction ratios Γf = 0.5 and Γf = 0.25. They obtained

critical Reynolds numbers of Rec(Γ
f = 0.5) ≈ 997 and Rec(Γ

f = 0.25) ≈ 3440, which are

approximately 10 times higher than the ones of Stüer (1999).

The present study is conducted on the one hand to clarify the discrepancy between

the critical Reynolds numbers of Stüer (1999) and Marino & Luchini (2009) and on the

other hand to understand the physical nature of the instability, which has never been

examined for the forward-facing-step problem. Hence, a global stability analysis of the

two-dimensional basic flow is carried out with a systematic variation of the geometry,

covering a wide range of constriction ratios from Γf = 0.23 to Γf = 0.965. It will be

shown that the critical data obtained by Marino & Luchini (2009) are not fully grid

independent and clearly depend on the length of the inlet channel. The grid- and

entrance-length-independent critical Reynolds numbers are up to 1.7 times larger than

those obtained by Marino & Luchini (2009). In addition, the instability mechanism of

the global modes will be elucidated by analysing the kinetic energy transferred from

the basic flow to the critical mode. The prevailing work also comprises a structural

sensitivity analysis in order to assess the results of the linear stability analysis.

4.2.3. Results

Code verification

The critical data for the forward-facing-step flow are computed for the same geometric

parameters as Marino & Luchini (2009). Using Li = 1H and Lo(Γ
f = 0.5) = 6ho

and Lo(Γ
f = 0.25) = 5.3̇ho, respectively, Rec = 1037.8 (997) and kc = 6.0975 (6.2) are

obtained for Γf = 0.5 and Rec = 3469.7 (3440) and kc = 5.9124 (6.4) for Γf = 0.25, where
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Figure 4.26.: Pressure distribution of the basic state at y = 0.2505 for Re = 1320 in
the vicinity of the step corner for Γf = 0.25. Dashed lines depict the present result and
dotted curves the solution of ANSYS FLUENT 13.0.

the values of Marino & Luchini (2009) are given in parentheses. Both sets of data agree

well. However, the results of the above-mentioned authors are not fully grid converged.

Grid convergence was obtained by using the minimum cell size of ∆xmin = ∆ymin =

10−3 (in units of H) along the walls and around the step. The cell width is increased

smoothly using a stretching factor of 1.03 until the maximum grid spacings ∆xmax = 0.02

and ∆ymax = 0.01 are reached. The number of grid points used are shown in table 4.7

for representative constriction ratios. N i
x and N i

y represent the number of grid points

in the x and y directions, respectively, in the inflow channel, while No
x and No

y are the

number of grid points in the outflow channel.

As a final verification, the pressure distribution is compared to the one obtained by

ANSYS FLUENT 13.0. The grid is built with the same number of grid points and the

same grid resolution where a hyperbolic tangent stretching function is used to distribute

the grid points. The pressure and the gradients are resolved with methods of second order

and for the convective terms the QUICK scheme is applied. In figure 4.26 the pressure

distribution of the two-dimensional basic state p0 is shown slightly above the step at

y = 0.2505 for Re = 1320 and Γf = 0.25. Dashed lines represent the present solution

and dotted ones the result of ANSYS FLUENT 13.0. Both curves are indistinguishable

on the scale shown. The pressure has steep gradients in the vicinity of the step due

to the corner singularity and features a minimum of −0.7532 at x = 0.0005 with the

present code. ANSYS FLUENT 13.0 yields a minimum of −0.7519, where the pressure

level is set to zero at the outlet.
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Figure 4.27.: Streamlines of the base flow for Γf = 0.25, Re = 3518.4 and Lo = 32ho for
different inflow channel lengths: (a) Li = 8H and (b) Li = 1H .

Parameter dependence

To obtain critical Reynolds and wave numbers for infinitely long in- and outlet channels,

the influence of Li and Lo on Rec and kc was studied. The length of the entrance channel

Li turns out to be of utmost importance. If the inflow channel is too short, the basic

flow in the vicinity of the step is not fully developed to the basic flow for Li → ∞. This

is shown in figure 4.27, where the basic flow is depicted for Li = 8H and Li = 1H for

Re = 3518.4 and Γf = 0.25, using the same outflow-channel length Lo = 32ho. It can be

seen that for Li = 1H the length of the first separation bubble is too short and the one

of the secondary vortex is too long.

The entrance-channel-length effect on the stability boundaries is shown in table 4.6.

Results are given for Γf ∈ {0.25, 0.5, 0.75}, but a similar convergence of the critical

data, as Li is increased, is obtained for all constriction ratios covered here. As can be

seen from table 4.6, the length of the inlet channel should be at least Li = 6H to restrict

the inlet-channel-length effect on Rec to below ≈ 0.03%.

The influence of the outlet-channel length Lo on the stability boundaries was also

scrutinized (not shown here). It is found that Lo = 32ho was more than sufficient to keep

the effect on Rec and kc below ≈ 0.01%. Figure 4.28 shows for Γf = 0.5, Re = 1423.9

and Li = 8H the basic velocity profiles u0(y) at the outlet for two different outflow

channel lengths, Lo = 32ho and Lo = 6ho (the choice of Marino & Luchini, 2009). It can

be noticed that the velocity profile for Lo = 6ho deviates substantially from the fully
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Li 1H 2H 3H 6H 8H 12H Γf

Rec 3518.4 5290.6 5741.9 5886.7 5888.4 5888.4 0.25

kc 5.9424 7.2459 7.6341 7.7601 7.7621 7.7622 0.25

Rec 1048.1 1366.5 1413.1 1423.8 1423.9 1423.9 0.5

kc 6.1240 6.7581 6.8615 6.8831 6.8833 6.8833 0.5

Rec 771.89 843.16 846.89 848.50 848.51 848.51 0.75

kc 11.075 11.459 11.4998 11.507 11.508 11.508 0.75

Table 4.6.: Critical values Rec and kc as functions of the entrance length Li for multiples
of the characteristic length scale H for three different constriction ratios and Lo = 32ho.
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Figure 4.28.: Velocity profiles u0(y) at the outlet for Γf = 0.5, Re = 1423.9 and Li = 8H
shown for Lo = 6ho (squares) and for Lo = 32ho (dots). The solid line represents the
fully developed plane Poiseuille flow.

developed plane Poiseuille flow; it is not even symmetric with respect to the mid-channel

height.

To sum up, all results reported in the present study are computed by using an entrance

length of Li = 8H and an outflow length of Lo = 32ho to minimize deviations from the

asymptotic limit (Li, Lo) → ∞. For this configuration and using more than twice the

number of grid points in the y direction as Marino & Luchini (2009), stability boundaries

up to 70 % higher than the ones of these authors are obtained.

Stability boundaries

Representative numerical critical Reynolds and wave numbers are collected in table 4.7

for selected expansion ratios. Also, the number of grid points used is indicated.
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Γf Rec kc N i
y No

y No
x

0.23 7135.0 8.2324 276 174 1314

0.25 5888.4 7.7621 278 172 1282

0.3 3902.6 7.0462 282 166 1201

0.4 2135.4 6.6002 288 156 1039

0.5 1423.9 6.8833 292 146 878

0.6 1083.3 7.8358 288 132 716

0.7 904.41 9.8126 282 116 554

0.8 807.38 14.120 270 94 393

0.9 751.02 27.434 248 62 231

0.95 706.21 53.838 228 38 150

Table 4.7.: Critical data for selected constriction ratios Γf . The number of grid points
(Nx, Ny) in the (x, y) plane is also given. For all calculations N i

x = 473 is used.
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Figure 4.29.: Critical Reynolds number Rec (dots and full line) and wave number kc

(squares and dashed line) as functions of the constriction ratio Γf . The dotted line
represents the extrapolated value for Γf → 1 with Rec ≈ 680.

Figure 4.29 shows critical values as functions of the constriction ratio Γf . The stability

boundary varies smoothly with the constriction ratio. All critical modes are stationary.

The smallest constriction ratio considered was Γf = 0.23 with a critical Reynolds number

of Rec = 7135. This Reynolds number is below the linear stability boundary of the plane

Poiseuille flow, which is RePPF
c ≈ 7700 for the present scaling. For larger constriction

ratios (increasing step heights) Rec decreases continuously and seems to approach an

asymptotic limit Rec ≈ 680 for Γf → 1.
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Figure 4.30.: Critical Reynolds number Re∗
c (dots and full line) and wave number k∗

c

(squares and dashed line) as functions of the constriction ratio Γf . The data are scaled
according to (4.2.2). The dash-dotted and dotted lines represent the best estimate for
an asymptotic behaviour for Γf → 1 as mentioned in the text.

In the limit Γf → 1, the height of the outlet channel ho remains the only geometrical

length scale. The correspondingly defined Reynolds and wave numbers are, respectively,

Re∗ = Re
ho

H
, k∗ = k

ho

H
, for Γf ∈ [0.5; → 1[. (4.2.2)

Using the above scaling, the critical data are depicted in figure 4.30. The critical

Reynolds number suggests a linear asymptotic scaling as Γf → 1. The linear scaling

is estimated by a linear fit through the three discrete data points for the largest values

of Γf , resulting in Re∗
c ≈ 711.94(1 − Γf). A linear scaling of k∗

c for Γf → 1 is not as

obvious. Nevertheless, the dotted line in figure 4.30, being obtained in the same way as

for Re∗
c , corresponds to k∗

c ≈ 4.0272 − 1.4115Γf.

Regardless of the constriction ratio Γf , the two-dimensional basic flow over a forward-

facing step features a region of separated flow in the 90◦ corner in front of the step.

This vortex is called the primary vortex, as it is the first one to appear as Re is in-

creased. For higher Reynolds numbers, a secondary recirculation bubble arises which

separates immediately downstream of the sharp corner of the step. This secondary vor-

tex is of key importance for the flow instability, as the critical modes and their associated

energy-production rates are most pronounced near this region. Therefore, the flow char-
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i 1 2 3 4
∫

So
I5dS

∫

V I
′
idV 0.0508 0.2166 0.0869 0.7246 −0.0788

∫

V |I ′
i|dV 0.1211 0.5404 0.0879 0.2506

Table 4.8.: Global normalized energy-production rates for Γf = 0.25.

acteristics shall be discussed near the secondary vortex, although the computational

domain is much more extended in the x direction.

Instability by lift-up and flow deceleration

The analysis shows that the physical instability mechanism is independent of the con-

striction ratio. As a representative case, the instability for Γf = 0.25 is discussed, because

this constriction ratio was also analysed by Wilhelm et al. (2003). For this purpose, it

proved useful to compute the kinetic energy-transfer rates between the basic and the

perturbation flows. The normalized energy-production rates in streamline coordinates

I ′ integrated over the whole flow domain are summarized in table 4.8 for Γf = 0.25.

Note that all normalized energy-production terms sum up to unity with accuracy better

than 10−4.

The critical mode at Rec = 5888.4 and kc = 7.7621 is confined to the region of the

secondary separation bubble, which arises for Re >
∼ 770 if Γf = 0.25. From figure 4.31a,

it can be seen that the disturbances gain most of the energy in the shear layer around

the separating streamline.

The critical mode appears as slow and fast streaks alternating in the spanwise direc-

tion, which are shown in figure 4.32 for two periods 2λc = 4π/kc. The critical wave-

length is approximately three times the step height, which agrees well with the findings

of Wilhelm et al. (2003) and the observations in the experiments of Stüer et al. (1999).

The streaky structure can be explained by the classical lift-up mechanism (Landahl,

1975, 1980). As already mentioned in §4.1.3, this effect generates large-amplitude ve-

locity perturbations in the streamwise direction by the weak lift-up of fluid particles in

wall-normal direction in the presence of a strong shear flow. Figures 4.31a–d indicate

that the streamwise perturbation velocity ũ prevails over the wall-normal component ṽ.

The streamwise vortices creating the streaks, are clearly localized in the immediate vicin-

ity of the step. This is confirmed in figure 4.33, which shows the maximum over y of the

absolute amplitudes |v̂(x, y)| and |ŵ(x, y)|. The amplitudes are monotonically decaying

in the streamwise direction, which is shown in the inset of figure 4.33 for x ∈ [3; 24].
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Figure 4.31.: Critical velocity fields (arrows) and local energy-production rates for Γf =
0.25 in a plane z = 0 in which all production terms shown exhibit their local extrema:
(a) total local production

∑

i Ii, (b) I ′
2 + I ′

4, (c) I ′
2 and (d) I ′

4. The y axes are stretched
by a factor of two.
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Figure 4.32.: Critical velocity fields (arrows) and streamwise perturbation velocity ũ
(colour) for Γf = 0.25 at x = 0.8342, where the energy production features its local
maximum.

The streamwise streaks, however, do not decay in a monotonic way like the stream-

wise vortices. Figure 4.34 shows the modulus of |û(x, y)| as function of the streamwise

coordinate x. It can be seen that the amplitudes of the streaks start to increase at

around x ≈ 3.6, where the sign of û changes as function of x (the direction of the streaks

is revised). The strength of the streaks is compatible with the strength of the weak

streamwise vortices. As the streamwise vortices seem to decay, it is expected that also

the streaks will decay ultimately further downstream (beyond the present computing

power).

Schmid & Henningson (2001) demonstrated that the lift-up mechanism can give rise to

transient growth for parallel shear flows. By contrast, the disturbances are localized near

the step and self-sustained here on account of the feedback provided by the secondary

recirculating bubble. I ′
4 represents the largest destabilizing factor in the integral energy

budget which describes an amplification process due to basic-flow deceleration (cf. table

4.8). However, its importance is qualified because I ′
2 is strongly stabilizing in the same

region where I ′
4 features its maximum production (figures 4.31c,d). By integrating over

the absolute value of the local energy-production rates
∫

V |I ′
i|dV , one can see that the

globally most important effect is represented by I ′
2 (last row of table 4.8). The term

I ′
2 describes the classical lift-up effect by which basic-flow momentum is transported by

the cross-stream perturbation velocity ũ⊥ ·∇u0, feeding back on the parallel component

ũ‖. By comparing figure 4.31a with figure 4.31b, one can hardly notice any difference

between the sum of all energy-production rates
∑
I ′

i and the sum of I ′
2 + I ′

4.
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Figure 4.33.: Relative magnitude of the streamwise vortices expressed by max
y

|v̂(x, y)|
(dashed) and max

y
|ŵ(x, y)| as functions of the streamwise coordinate x for Γf = 0.25 at

Rec = 5888.4. The inset shows the decay of the amplitudes for x ∈ [3; 24].
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Figure 4.34.: Amplitudes of the streamwise streaks expressed by max
y

|û(x, y)| as func-

tions of the streamwise coordinate x for Γf = 0.25 at Rec = 5888.4.
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To sum up, the physical nature of the instability is a combination of the lift-up mecha-

nism and flow deceleration near the separating streamline of the secondary recirculating

vortex, providing a feedback for the disturbances to be self-sustained.

Sensitivity results

A sensitivity analysis was also performed for Γf = 0.25 at critical conditions. From figure

4.35, it can be seen that the flow is most sensitive to initial conditions and momentum

forcing just at the entrance of the channel extending forward to the step front. A certain

receptivity is also found after the step within the secondary separation zone.

The product between the direct and the adjoint fields Υ = |û| |û| (2.4.8) is evaluated

in figure 4.36, showing the regions where the leading eigenvalue and, consequently, the

stability boundary is most sensitive to local perturbations. It can be seen that the highest

effect on the growth rate and thus the stability boundary is provided by perturbations

localized in the region of the secondary recirculating vortex. This result is consistent with

the above energy analysis, which has also shown that the instability is caused by quite

localized processes after the step and within the region of the secondary recirculating

bubble.

Stüer et al. (1999) observed by hydrogen-bubble visualisation that the turbulent

regime for Γf = 0.25 sets in at around Re ≈ 4800. This difference of about −20 %

with respect to the global stability boundary may be related to sidewall effects and/or

to the sensitivity of the flow to oncoming perturbations, which both cannot be avoided

in laboratory experiments.
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Figure 4.35.: Receptivity to initial conditions and momentum forcing |û| for the most
dangerous mode for Γf = 0.25 at Rec = 5888.4.
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Figure 4.36.: Receptivity Υ to spatially localized feedback (2.4.8) for the most dangerous
mode for Γf = 0.25 at Rec = 5888.4.

4.2.4. Conclusion

The global linear stability of the flow past a forward-facing step has been carried out

for a quasi-continuous variation of the constriction ratio Γf . The influence of the grid

resolution and of the in- and outlet-channel lengths on the stability boundaries has been

analysed to ensure independent results. The critical Reynolds number Rec takes its

maximum value for the smallest constriction ratio considered. Rec decreases gradually

as the step height is increased. By using a proper length scale, the scaled critical values

Re∗
c and k∗

c approach a linear asymptotic regime for large step heights (1 − Γf) ≪ 1. All

three-dimensional critical modes are stationary and locally confined to the secondary

recirculation bubble, which is thus identified as the main source of the instability. An a

posteriori energy-transfer analysis showed that all instabilities can be explained in terms

of the combined action of lift-up and flow deceleration.

The critical mode and its associated energy-production rates were visualized for Γf =

0.25. The critical wavelength is approximately three times the step height, in agreement

with the experimental and numerical results of Stüer et al. (1999) and Wilhelm et al.

(2003). Almost all of the kinetic perturbation energy is produced near the separating

streamline of the secondary vortex of the basic flow. The critical mode appears as steady,

streaky structures downstream of the step. This streak formation has also been observed

in the experiments of Pollard et al. (1996) and Stüer et al. (1999). The alternating slow

and fast streaks of the perturbations are self-sustained here due to the feedback provided

by the recirculating bubble. The sensitivity analysis for spatially localized perturbations

likewise identified the secondary recirculating bubble to be extremely important for the

temporal growth rate and thus for the stability boundary. It is worth mentioning that

the topology of the critical mode is very similar to the one detected in the backward-

facing-step problem for small step heights.
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A problem for the experimental observability of the global instability of the forward-

facing-step problem is the sensitivity of the flow with respect to oncoming disturbances,

which was revealed by the absolute value of the adjoint of the critical mode. An open

question is the existence of convective instabilities below the absolute stability bound-

aries as presented in the current work. Transient-growth analyses in a global framework

to be conducted in future studies may contribute to answer this question. Also, di-

rect numerical simulations and experiments focusing on the global three-dimensionality

would be of interest to assess the physical relevance of the global instability modes.
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4.3. The Plane Sudden-Expansion Problem

4.3.1. Problem Formulation

An incompressible, Newtonian fluid is considered in a plane channel with a sudden ex-

pansion. The system is considered to be infinitely extended in the spanwise (z) direction.

The geometry is sketched in figure 4.37, consisting of an inlet channel of length Li and

height hi, followed by a suddenly expanded channel of height H and length Lo. The

lower step height is denoted by hl and the upper one by hu. The origin of the Cartesian

coordinate system is located at the bottom of the outlet channel and at the sudden

expansion.

H

x

y

Li Lo

hl

hi

hu

Figure 4.37.: Sketch of the channel geometry with a asymmetric sudden expansion and

separating streamlines.

The geometry is characterized by the expansion ratio

Γe =
hl + hu

H
= 1 − hi

H
(4.3.1)

and the asymmetry ratio

α =
|hl − hu|

hs
, (4.3.2)

where hs = (hl + hu)/2 denotes the average step height (symmetric case).

To conform with previous investigations and for computational economy, it is useful

to define the Reynolds number as

Re =
LU∞

ν
. (4.3.3)
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It is based on half of the downstream channel height L = H/2 and the maximum

(centreline) velocity U∞ of the inlet profile. With this definition of Re, the generation

of the various grids is convenient because the outlet channel can be kept constant and

only the inlet channel must be varied.

No-slip and no-penetration boundary conditions u0 = 0 are imposed at the channel

walls. At the inlet x = −Li/L, a fully developed laminar plane Poiseuille flow u0(y) =

4(y − hl)(hi − y + hl)/h
2
i and v0 = 0 is assumed for y = hi. At the outflow boundary

x = Lo/L, the normal derivatives of all velocity components are set to zero, i.e. ∂xu0 = 0,

and the pressure is specified as p0 = 0.

Assuming that the inlet Li as well as the outlet channel lengths Lo are sufficiently

large such that the results are independent of Li and Lo, the problem is governed by

three parameters: the Reynolds number Re (4.3.3), the expansion ratio Γe (4.3.1) and

the asymmetry α (4.3.2) of the geometry. The dependence of the stability boundaries

on the channel lengths will be considered in more detail in §4.3.3.

4.3.2. Scientific Background

The steady laminar two-dimensional flow of an incompressible Newtonian fluid though a

channel with a symmetric sudden expansion can either be symmetric or asymmetric with

respect to the plane of symmetry, depending on the Reynolds number. Experiments of

Durst et al. (1974), Cherdron et al. (1978), Sobey & Drazin (1986), Fearn et al. (1990)

and Durst et al. (1993) have shown that the primary flow is steady, two-dimensional

and symmetric, with two recirculation zones of equal size near the expansion corners

if the expansion ratio is moderate and the Reynolds number Re is sufficiently small.

The length of the separation zones increases linearly with the Reynolds number. At

higher Re, however, the flow loses its symmetry with respect to the mid-plane and a

pair of stable, steady, two-dimensional asymmetric flow states evolves gradually with

recirculation zones of various lengths.

Using experimental and numerical techniques, Fearn et al. (1990) demonstrated that

the symmetric solution (primary flow) becomes unstable at a primary critical Reynolds

number, and a pair of stable, asymmetric solutions (secondary flow) bifurcates super-

critically. The slightly imperfect bifurcation found experimentally by Fearn et al. (1990)

was modelled numerically by introducing a slightly asymmetric expansion in the com-

putational geometry.

The linear stability analyses of Shapira & Degani (1990) and Alleborn et al. (1997)

for a symmetric channel geometry revealed that the symmetric primary flow is stable for
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Re ≤ Rec with respect to two-dimensional perturbations. At higher Reynolds numbers,

however, it loses its stability via a symmetric pitchfork bifurcation, and two stable,

asymmetric secondary flow states evolve. This result was confirmed by Rusak & Hawa

(1999) by use of a weakly nonlinear analysis of the unsteady Navier–Stokes equations for

|Re−Rec|/Re ≪ 1. The two-dimensional, time-dependent simulations of Hawa & Rusak

(2001) established the relationship between the neutral modes of the linear stability

analysis and the nonlinear time-asymptotic secondary flow. The asymptotic analysis of

Rusak & Hawa (1999) was extended by Hawa & Rusak (2000) by considering a slightly

asymmetric expansion. Above a certain threshold Reynolds number, three asymmetric

solutions were found to exist: a stable solution branch continuously evolving out of the

primary flow and two disconnected solutions, one stable and the other unstable, which

are created through a saddle-node bifurcation. The contiguous smooth solution branch

of the imperfect pitchfork bifurcation showed close agreement with the experimental

data of Fearn et al. (1990), whereas the stable saddle-node branch did not agree well

with the corresponding unperturbed secondary flow. These results were confirmed by

Mizushima & Shiotani (2000) in their weakly nonlinear stability analysis for a slightly

imperfect channel geometry.

Three-dimensional, time-dependent simulations were performed by Schreck & Schäfer

(2000), Chiang et al. (2000), Chiang et al. (2001) and Tsui & Wang (2008), taking into

account the finite spanwise extent of the channel. Schreck & Schäfer (2000) reported

that narrower channel depths, i.e. smaller spanwise aspect ratios, decrease the lengths

of the recirculation zones and stabilise the primary symmetric and nominally two-

dimensional flow, which was also observed experimentally by Cherdron et al. (1978).

Chiang et al. (2000) also studied the sidewall effects on the structure of the laminar

flow for various spanwise aspect ratios Λ = d/hi, i.e. depth-to-height of the inflow chan-

nel. They reported that the two-dimensional results differ considerably from the three-

dimensional ones for Λ ≤ 12. Recently, Tsui & Wang (2008) confirmed the findings of

Chiang et al. (2000), and noted that for Λ ≥ 24 the flow structure can be regarded as

two-dimensional as the sidewall effects are negligible in the central part of the channel.

In addition to the symmetry breaking of the two-dimensional flow, the simulations of

Chiang et al. (2001) revealed the existence of a spanwise modulated three-dimensional

flow for certain initial conditions. The flow with spanwise modulation was found to be

symmetric with respect to the mid-span plane as well as with respect to the mid-channel

plane. Since the corresponding two-dimensional solution, which is symmetric with re-
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spect to the mid-channel plane, is unstable, the modulated three-dimensional flow is

difficult to obtain numerically and could only be observed for Λ ≥ 30.

To date, all linear stability analyses have dealt with the first bifurcation of the primary

flow to the stationary secondary flow. No results are available on the stability of the

asymmetric two-dimensional secondary flows. Fearn et al. (1990) and Battaglia et al.

(1997) anticipated that the asymmetric solutions would become unstable to three-

dimensional perturbations. An alternative was suggested by Cherdron et al. (1978) and

Durst et al. (1993), in which a Hopf bifurcation may result in a time-periodic two-

dimensional state. To answer this open question, a three-dimensional global linear sta-

bility analysis is carried out. In doing so the geometry is varied in a quasi-continuous

way, covering expansion ratios (step-to-outlet height ratios) from 0.25 to 0.95. It is

shown that, within this parameter range, the primary instability of the symmetric basic

flow is two-dimensional. Moreover, the asymmetric two-dimensional solutions become

unstable to three-dimensional and not to two-dimensional perturbations. In case of

an asymmetric geometry the disconnected saddle-node-bifurcation point for the discon-

nected steady two-dimensional solution branches is shifted to higher Reynolds numbers

as the channel asymmetry is increased (see figure 4.40). Hence, even for a slight asym-

metry, only the non-symmetric solution of the contiguous branch is relevant for the

three-dimensional stability analysis. Its stability boundaries are found to be similar to

those of the asymmetric solutions for the symmetric channel flow.

4.3.3. Results

Grid independence and code verification

The results were found to be grid-independent if the grid resolution is at least ∆xmin =

∆ymin = 0.005 (in units of L) along the walls and around the step. The cell width is

increased smoothly with a constant stretching factor of 1.03 until the maximum grid

spacings ∆xmax = 0.075 or ∆ymax = 0.025 are reached. This meshing strategy maintains

a relatively constant cell density across the inflow channel. Relevant grid parameters for

representative expansion ratios can be found in table 4.10.

For verifying the numerical code, the two-dimensional stability boundaries for the

symmetric solution are compared with those obtained by Shapira & Degani (1990),

Alleborn et al. (1997), Battaglia et al. (1997) and Drikakis (1997). The result is de-

picted in figure 4.38. The data, computed with an outflow-channel length of Lo = 25L,

are consistent and show a very good agreement.
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Figure 4.38.: Critical Reynolds number for the two-dimensional instability of the sym-
metric flow for α = 0 (line and plus signs) as function of the expansion ratio with Lo =
25L. Also shown are the results of Shapira & Degani (1990) (diamonds), Alleborn et al.
(1997) (circles), Battaglia et al. (1997) (stars) and Drikakis (1997) (squares).

Dependence on channel lengths

The influence of the entrance length Li and the length of the outflow channel Lo on the

stability boundaries was analysed in order to ensure that the critical data are indepen-

dent of these two geometry parameters. Different critical Reynolds numbers arise. For

clarity, the critical Reynolds numbers (as well as wave numbers) for the two-dimensional

instability of the symmetric two-dimensional basic flow in the symmetric geometry (pri-

mary instability for α = 0) will be denoted by Re2D
c , the three-dimensional critical

Reynolds number of the asymmetric two-dimensional basic flow in the symmetric ge-

ometry (secondary instability for α = 0) is denoted by Re0
c , and the critical Reynolds

number for the continuous two-dimensional basic flow in the perturbed (asymmetric,

α 6= 0) geometry is called Reα
c .

The effect of the inlet-channel length Li on the stability boundaries is shown in table

4.9. Results are reported for Γe = 0.5 for the asymmetric solution of the symmetric

channel Re0
c , but a similar convergence of the critical data, as Li is increased, holds true

Li 1hi 2hi 3hi 4hi 6hi 8hi 15hi

Re0
c 806.47 797.17 793.25 791.63 790.98 790.94 790.94

k0
c 0.6615 0.6490 0.6387 0.6340 0.6318 0.6317 0.6317

Table 4.9.: Critical values Re0
c and k0

c as functions of the entrance length Li for multiples
of the inlet-channel height hi for Γe = 0.5 with Lo = 65.
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Figure 4.39.: Maxima of the velocity-perturbation components in the inlet channel for
Γe = 0.5 at Re0

c = 790.94 and k0
c = 0.6317. The solid, dotted and dashed lines represent

maxy |û(x, y)|, maxy |v̂(x, y)| and maxy |ŵ(x, y)|, respectively, in units of (2.2.6).

for all expansion ratios covered here, and also for the asymmetric channel geometry. As

can be observed from table 4.9, the entrance length should be at least Li = 6hi. In the

current study the inlet-channel length was set to Li = 8hi to keep its effect on the critical

data below ≈ 0.02%. Such a long entrance length is necessary because the critical mode

extends well upstream of the expansion, which is shown in figure 4.39.

The influence of the outflow length Lo on the results was also investigated. The

required outflow channel length Lo depends on the Reynolds number (see table 4.10).

It must be long enough for a plane Poiseuille flow to be developed at the outlet. The

outlet length is selected such that the maximum relative deviation of the x-component

of the outlet velocity profile from a plane Poiseuille flow is less than 2 %. Note that if Lo

is too short, unphysical modes may arise for high Krylov-subspace dimensions (≥ 150),

being artefacts of the outlet boundary conditions.

Stability boundaries

Since the basic two-dimensional flow beyond the primary instability threshold Re2D
c is

not unique, care must be taken to find the symmetric and asymmetric basic flows by

Newton iteration. To stay on the basic symmetric-flow solution branch for α = 0 and

Re > Re2D
c it suffices to increase the Reynolds number stepwise by less than 10 % using

the previously computed solution as the initial guess. To find and track one of the two

asymmetric solutions u0 ≡ v0 ≡ 1 and p0 ≡ 0 is utilized as the initial guess for the
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Γ Re2D
c Lo No

x N i
x N i

y No
y

0.25 1657.7 126 1771 223 116 192

0.3 934.83 78 1119 212 112 200

0.4 394.87 34 522 190 104 212

0.5 216.76 25 399 169 94 218

0.6 144.96 20 331 147 82 222

0.6̇ 121.74 20 331 132 74 222

0.7 114.59 10 196 125 70 222

0.8 107.11 10 196 103 54 218

0.9 130.17 10 196 80 32 208

0.95 188.47 10 196 59 18 202

Γ Re0
c k0

c |ω0
c | Reα

c kα
c |ωα

c | Lo No
x N i

x N i
y No

y

0.25 6434.2 0.1292 0 6319.5 0.1294 0 400 5491 223 116 192

0.3 3789.5 0.1421 0 3728.4 0.1427 0 320 4405 212 112 200

0.4 1569.5 0.4766 0 1542.1 0.5301 0 130 1825 190 104 212

0.5 790.95 0.6339 0 774.43 0.6715 0 65 943 169 94 218

0.6 513.31 0.8064 0 503.91 0.8249 0 40 603 147 82 222

0.6̇ 454.83 0.9683 0 447.81 0.9713 0 40 603 132 74 222

0.7 445.80 1.1726 0 441.13 1.1571 0 35 535 125 70 222

0.8 375.98 1.3262 0.0253 374.16 1.3413 0.0259 25 399 103 54 218

0.9 370.53 1.3066 0.0456 373.65 1.3492 0.0470 15 264 80 32 208

0.95 423.48 1.3031 0.0485 430.85 1.3582 0.0509 15 264 59 18 202

Table 4.10.: Critical parameters for the scaling (4.3.3) for selected expansion ratios Γe,
the outflow length Lo and the number of grid points (Nx, Ny) in the (x, y) plane.

82



Re

50 100 150 250200 300 350

Ξ

8

6

4

2

0

−8

−6

−4

−2

Figure 4.40.: The measure of asymmetry (4.3.4) for various basic-flow solutions. Crosses
and dots represent the symmetric flow, and cricles and solid lines indicate the asymmetric
flow solutions for the symmetric channel α = 0. Plus signs and dash-dotted lines denote
the flow solutions of the slightly asymmetric geometry α = 0.01, whereas squares and
dashed lines represent those for α = 0.15.

Newton iteration, and the Reynolds number is selected as Re > 1.2 × Re2D
c , using the

same step size in Re as for the symmetric-solution tracking.

Figure 4.40 shows for Γe = 0.6̇ the topological change of the pitchfork-bifurcation dia-

gram upon an asymmetric geometry perturbation as described in §4.3.2. The following

measure of asymmetry is chosen to be

Ξ = sgn(xl − xu)

√
∫

(∂yu0|y=H + ∂yu0|y=0)2dx, (4.3.4)

where xl and xu denote the lengths of the lower and the upper primary recirculation

bubbles, respectively, and the wall shear stresses are evaluated at the upper and lower

walls of the outlet channel. For a symmetric geometry (α = 0) the basic symmetric-flow

solution, depicted by crosses and dots, becomes unstable at Re2D
c = 121.74. At this

83



critical Reynolds number two stable and asymmetric flow solutions (circles and solid

lines) bifurcate via a perfect pitchfork bifurcation. If the expansion is slightly asymmetric

(α 6= 0), the bifurcation becomes imperfect (plus signs and dash-dotted lines) and a

saddle-node bifurcation arises at ReSN(α = 0.01) ≈ 127. The disconnected saddle-node-

bifurcation point is shifted to higher Reynolds numbers as the channel asymmetry is

increased. This is shown for α = 0.15 by squares and dashed lines, where the saddle-

node-bifurcation point is located at ReSN(α = 0.15) ≈ 161.5. In this case, the connected

solution branch deviates substantially from the flow solutions corresponding to α = 0

in the vicinity of Re2D
c = 121.74. However, the differences are getting smaller as the

Reynolds number is increased. The upper solution branch emerging from the saddle-

node-bifurcation point is unstable from the beginning, which is indicated by red colour.

The substantial deviation of Ξ from zero for the unstable supercritical solution for

α = 0.01 at Reynolds numbers Re ≈> 250 is due to the creation of a third recirculation

bubble.

In the present study, the attention is restricted to the connected solution branch

with α = 0.15. In fact, this solution for α = 0.15 is very similar to the corresponding

asymmetric solution for α = 0, i.e. for the symmetric geometry (see figures 4.41 and

4.42).

Representative numerical critical Reynolds numbers, wave numbers and oscillation

frequencies can be found in table 4.10. Data are provided for selected expansion ratios for

the primary instability (Re2D
c ) and the secondary instability (Re0

c), both in the symmetric

channel, and also for the instability of the asymmetric flow of the connected solution

branch (Reα
c ) in the asymmetric geometry (α = 0.15). Moreover, the outflow lengths Lo

and the number of grid points are specified.

For an overview of the critical data, they are rescaled in the prevailing subsection 4.3.3

using the inlet velocity U∞ and inlet length scale hi/2, yielding

Re∗ = Re
hi

H
, k∗ = k

hi

H
, ω∗ = ω

hi

H
. (4.3.5)

The inlet Reynolds number Re∗ = U inlet
∞ hi/(2ν) = Uoutlet

∞ H/(2ν) is equivalent to the one

at the outlet.

Figure 4.41 shows various critical inlet Reynolds numbers (Re2D∗
c , Re0∗

c and Reα∗
c ,

respectively) on a logarithmic scale as functions of the expansion ratio for Γe ≤ 0.5.

In the range shown, all critical modes are stationary and the stability boundaries scale

nearly exponentially with Γe. The stability boundaries of the asymmetric flow in the
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Figure 4.41.: Scaled critical inlet Reynolds numbers Re∗
c as functions of the expansion

ratio Γe. Crosses and the dash-dotted line represent Re2D∗
c , open circles and the full line

indicate Re0∗
c , and open squares and the dashed line denote Reα∗

c for α = 0.15. The
dotted line indicates the critical Reynolds number of plane Poiseuille flow. All Reynolds
numbers are shown on a logarithmic scale.

symmetric channel Re0∗
c are very similar to those of the solution in the asymmetric

channel Reα∗
c for α = 0.15, which can be seen by the two overlapping curves in the

figures 4.41 and 4.42. Note that the gap between the curves at Γe ∈ [0.337; 0.35] should

indicate that the critical modes and their underlying instability mechanisms change (see

also figure 4.43). Moreover, the critical Reynolds number for the symmetric flow Re2D∗
c

is smaller than Re0∗
c and Reα∗

c by approximately a factor of 1/4. Even for the smallest

step height considered, i.e. Γe = 0.25, all critical Reynolds numbers are below the linear

stability boundary RePoiseuille
c = 5772 of plane Poiseuille flow, which is indicated by a

dotted line in figure 4.41.

As the step height is increased, the critical inlet Reynolds number decreases con-

tinuously and scales linearly for very large expansion ratios (1 − Γe) ≪ 1, as shown

in figure 4.42. The linear asymptotic behaviour for (1 − Γe) ≪ 1 is estimated as

Re2D∗
c ≈ 77.60 − 71.75 × Γe and Re0∗

c ≈ Reα∗
c ≈ 331.64 − 326.43 × Γe, respectively.

As can be seen from figure 4.42, the difference in the critical Reynolds numbers between

the symmetric (Re2D∗
c ) and asymmetric solutions (Re0∗

c and Reα∗
c ) decreases continuously

(also relatively) as Γe is increased.

It is found that the critical modes corresponding to Re0∗
c and Reα∗

c change twice in the

range of expansion ratios considered. Since the slopes of the intersecting neutral curves

are nearly the same, the modal change is more easily seen in the jump of the critical wave
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Figure 4.42.: Scaled critical inlet Reynolds numbers Re∗
c as functions of the expansion

ratio Γe. Crosses and the dash-dotted line represent Re2D∗
c , circles and the full line

indicate Re0∗
c , and squares and the dashed line denote Reα∗

c for α = 0.15. Open symbols
stand for stationary modes, full ones for oscillatory modes. The dotted lines indicate
the linear behaviour for Γe → 1 as mentioned in the text.
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Figure 4.43.: Scaled critical wave numbers k∗
c as functions of the expansion ratio Γe.

Crosses represent k2D∗
c , circles and the full line k0∗

c and squares and the dashed line kα∗
c

for α = 0.15. Open symbols stand for stationary modes, full ones for oscillatory modes.
The dotted line indicates the linear behaviour as mentioned in the text.
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Figure 4.44.: Scaled critical frequencies ω∗
c as functions of the expansion ratio Γe. Circles

and the full line represent ω0∗
c , squares and the dashed line ωα∗

c for α = 0.15. The dotted
lines indicate the asymptotes for Γe → 1 as mentioned in the text.

numbers which are shown in figure 4.43. The first modal change is among stationary

modes and it arises in the interval Γe ∈ [0.337; 0.35]. The second modal change is from a

steady to an oscillatory mode and occurs within Γe ∈ [0.7; 0.713]. From figure 4.43 it is

also observable that the two wave numbers k0∗
c and kα∗

c remain approximately constant

(≈ 0.1) for small step heights and scale linearly for large expansion ratios, which is

estimated as k0∗
c ≈ kα∗

c ≈ 1.33 − 1.32 × Γe. The scaled frequencies ω∗
c of the critical

modes are shown in figure 4.44 for large expansion ratios Γe > 0.7. The asymptotes are

estimated by ω0∗
c ≈ 0.05 × (1 − Γe) (red dots) and ωα∗

c ≈ 0.051 × (1 − Γe) (blue dots),

respectively.

Regardless of the expansion ratio Γe, the two-dimensional basic flow immediately

behind the expansion is characterized by two separated recirculation zones which are

symmetric for α = 0 and Re ≤ Re2D
c . They are referred to as primary vortices. For

the asymmetric basic flows at higher Reynolds numbers three recirculation bubbles are

present. Two of them separate immediately downstream of the sharp corners. The

stronger and larger of theses vortices will be called primary, the weaker and smaller

vortex on the opposite side of the channel the secondary vortex. On the same side of

the weaker vortex further downstream, a third separated vortex arises. Even though the

computational domain is much more extended in the streamwise (x) direction, the flow

characteristics shall be discussed only near the separated vortices, because these regions
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are found to be of key importance for the flow instabilities. It is these regions where the

critical modes and the associated energy-transfer rates are most pronounced.

Symmetry-breaking bifurcation in the symmetric expansion

The physical nature of the two-dimensional instability of the primary, symmetric flow for

α = 0 is nearly independent of the expansion ratio. As a representative case for a strong

expansion, the primary, symmetry-breaking instability for Γe = 0.9 is considered. The

critical Reynolds number is Re2D
c = 130.17. As can be seen from figure 4.45, the basic

flow is symmetric and represents a jet into a laterally bounded domain. The counter-

rotating recirculation zones are approximately three times as long as the step height.

The critical mode appears as a single vortex centred at the axis of symmetry y = 1 and

spanning the full width of the outlet channel.

From figure 4.45a it can be noticed that most of the kinetic energy is transferred from

the basic state to the perturbations in the shear-layers near the separating streamlines.

The total local energy transfer peaks at around x ≈ 1.

The largest integral contribution to the energy transfer is due to I ′
4 (see table 4.11),

which describes the streamwise transport of basic flow momentum ũ‖ ·∇u0, feeding back

on the streamwise perturbation flow ũ‖. In order for this process to have a destabilizing

effect, the basic flow must decelerate, i.e. e‖ · ∇u0 < 0. The term I ′
4 is most pronounced

within the separation zones with maximum energy production near x ≈ 1.5. Its impor-

tance, however, is quantified, because the process I ′
2 is locally stabilising in the same

region (see figure 4.45b, c). The term I ′
2 exhibits the strongest local maxima, which

are reflected in the total local production (figure 4.45a). The amplification process I ′
2

requires a high shear rate, which is present in the shear-layers between the separation

zones and the bulk flow.

Table 4.11 shows the global normalized energy production rates for the symmetry-

breaking bifurcation. The integrals are also evaluated over the flow domain D restricted

to positive values of the integrands I ′+
i . This yields their relative contribution to the

destabilising energy transfer. It can be noticed that the terms I ′+
2 and I ′+

4 are indeed

of comparable importance. Thus the two-dimensional symmetry-breaking instability at

Γe = 0.9 is based on the combined effects of flow deceleration and shear-layer instability.

It is worth mentioning that Shtern & Hussain (2003) found similar instabilities for

conical jets. They showed via a non-parallel analysis that flow deceleration plays a

major role for swirl-free jets, triggering non-axisymmetric instabilities.
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Figure 4.45.: Basic-state streamlines, critical velocity fields (arrows) and local energy
production rates for Γe = 0.9 and Re2D

c = 130.17: (a) total local production
∑

i I
′
i, (b)

I ′
2 and (c) I ′

4.
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i 1 2 3 4 Γe

∫

D I
′
idD −0.1480 0.3577 0.0316 0.7587 0.9

∫

D I
′+
i dD 0.0355 0.4322 0.0625 0.4699 0.9

∫

D I
′
idD −0.0474 −0.1418 0.0441 1.1451 0.25

∫

D I
′+
i dD 0.0149 0.8057 0.0067 0.1727 0.25

Table 4.11.: Global normalized energy production rates for the symmetry-breaking bi-
furcation.

∫

So
I5dS = 0 for all cases considered.

y

0.5

1

1.5

x
0 5 10 15

0

0.5

1

1.5

−0.5

−1

Figure 4.46.: Basic-state streamlines, critical velocity fields (arrows) and the total local
energy production

∑

i I
′
i ≈ I ′

2 for Γe = 0.25 at Re2D
c = 1657.7. Note that the scaling of

the y axis is 2.5 times larger than that of x.

When the step height is decreased, the primary vortices become very much elongated

downstream. For Γe = 0.25, for instance, the recirculating zones are approximately

34 times as long as the step height and the bulk flow is almost parallel (see figure

4.46). Again, the critical mode arises as a single stationary vortex centred at the line of

symmetry, but this vortex is much more elongated than in the case of Γe = 0.9.

As can be seen from table 4.11, the term I ′+
2 is clearly dominating and I ′+

4 plays

only a subordinate role. For that reason the total local energy production
∑

i I
′
i is

qualitatively the same as I ′
2. The former is displayed in figure 4.46. Therefore, the

symmetric basic flow becomes unstable for Γe = 0.25 due to the high shear between

the recirculating bubbles and the almost parallel jet in the bulk. The two-dimensional

nature of the instability for this nearly parallel flow is consistent with Squire’s theorem

(Squire, 1933). Moreover, the velocity profile of the basic flow has a turning point,

consistent with Rayleigh’s theorem for inviscid flows.
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Three-dimensional oscillatory instability for large expansion ratios Γe ≥ 0.713

In the following, the linear stability of the asymmetric two-dimensional basic flow is

considered.

Centrifugal instability for very large expansion ratios For very large expansion ratios,

the basic state streamlines of the primary eddy are almost circular near its centre and

they are only slightly strained. This can be seen in figure 4.47 for Γe = 0.95 at critical

conditions, i.e. Re0
c = 423.48 and k0

c = 1.3031.

In figure 4.47, the basic flow and the critical mode are shown in a cross-section z =

const., in which the total local energy-transfer rate has its global maximum. The local

flow is qualitatively the same near the two reattachment points (xt, yt) ≈ (1.69, 2) and

(xb, yb) ≈ (4.20, 0) of the two separating streamlines, which originate near the sharp

edges of the expansion. Also the local structure of the critical mode is similar near

these points and consists of a vortex each, centred on the separating streamline slightly

upstream of the reattachment point. There are also two regions of local energy transfer

to the perturbation flow, which are stretched and located on the convex side of the

jet, which is formed between the two separating streamlines of the basic flow. The

local flow has curved streamlines and the velocity is rapidly decreasing outwards. Such

flow conditions are prone to centrifugal effects and thus it is argued that the instability

mechanism is of centrifugal type. This interpretation is supported by the criterion

proposed by Sipp & Jacquin (2000), which is a reformulation of Bayly (1988)’s sufficient
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Figure 4.47.: Basic-state streamlines, critical velocity fields (arrows) and total local en-
ergy production

∑

i I
′
i for Γe = 0.95 and Re0

c = 423.48 at z = const.
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Figure 4.48.: Basic-state streamlines and grey regions where (4.3.6) is satisfied for Γe =
0.95 and Re0

c = 423.48.

condition for centrifugal instability for two-dimensional, inviscid flows. Accordingly, the

inviscid flow is centrifugally unstable if

|u0|ζ
R

< 0 (4.3.6)

is satisfied all along a closed streamline ψ = const. Here ζ stands for the vorticity of the

basic flow and R for the local algebraic radius of curvature, given by

R =
|u0|3

(∇ψ) · (u0 · ∇u0)
. (4.3.7)

Figure 4.48 shows in grey regions where (4.3.6) holds true. By comparing figure 4.47

with 4.48, it can be observed that the total local energy transfer is peaked and stretched

parallel to the streamlines in just the grey regions where (4.3.6) is satisfied.

Moreover, one can hardly notice any difference between
∑

i I
′
i and I ′

2 (not shown), as

the term I ′
2 is the most significant one in the integral sense (table 4.12). This observation

is compatible with the interpretation that the flow becomes centrifugally unstable for

very large expansion ratios (1 − Γe) ≪ 1.

It is interesting that the critical mode has a comparatively long wavelength of λ0
c =

2π/k0
c = 4.8217. Moreover, owing to the relatively low critical oscillation frequency

|ω0
c | = 0.0485, the propagating wave travels only slowly in the spanwise direction with

a phase velocity of c0 = |ω0
c |/k0

c = 0.0372.

Note that the critical mode and the type of instability are the same as thoes detected

in the backward-facing-step problem for Γb > 0.9 because the base flows are locally quite

similar (see figures 4.10 and 4.11 for Γb = 0.975).
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Γe = 0.25 Γe = 0.5 Γe = 0.8 Γe = 0.95
i

∫

V I
′
idV

∫

V I
′+
i dV

∫

V I
′
idV

∫

V I
′+
i dV

∫

V I
′
idV

∫

V I
′+
i dV

∫

V I
′
idV

∫

V I
′+
i dV

1 −0.0518 0.0201 0.0947 0.0997 0.0586 0.1082 −0.0194 0.0981

2 −0.1925 0.8744 0.2843 0.5507 0.6856 0.5452 0.6382 0.4827

3 0.0801 0.0095 0.0545 0.0683 0.0178 0.0957 0.0748 0.1459

4 1.1756 0.0960 0.5752 0.2813 0.2406 0.2626 0.3067 0.2747
∫

So
−0.0114 −0.0087 −0.0002 0.0000

Table 4.12.: Global normalized energy production rates for selected expansion ratios for
the asymmetric flow solutions Re0

c .

Elliptic instability for large expansion ratios As the expansion ratio is decreased, the

critical mode changes continuously in a progressive manner and the centrifugal instability

mechanism is phased out by an elliptic type of instability. The elliptic mechanism

becomes dominant at around Γe <
∼ 0.9 and it also remains operative for smaller expansion

ratios down to Γe = 0.713.

As a representative example, the flow structure is discussed for Γe = 0.8, where the

asymmetric basic flow becomes unstable at Re0
c = 375.98 with k0

c = 1.3262. In contrast

to very large expansion ratios (1−Γe) ≪ 1, the primary vortex of the basic flow extends

further downstream being quite elongated (see figure 4.49). The critical mode is confined

within the primary eddy and is strongest in its centre. Figure 4.49 shows the spanwise

plane z = const., in which the total local energy-transfer takes its maximum. In that

plane, almost all the kinetic energy is produced in the centre of the elliptic vortex

of the basic flow, which is a hallmark of an elliptic instability (Pierrehumbert, 1986;

Sipp & Jacquin, 1998).
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Figure 4.49.: Basic-state streamlines, critical velocity fields (arrows) and the total local
energy production

∑

i I
′
i for Γe = 0.8 and Re0

c = 375.98 at z = const.
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Figure 4.50.: Basic-state streamlines, vorticity of the critical mode (arrows) and w̃
(colour) for Γe = 0.8 and Re0

c = 375.98 at z = zamp + λ0
c/4.
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Figure 4.51.: Critical perturbation flow (arrows) and total local energy production
∑

i I
′
i

for Γe = 0.8 and Re0
c = 375.98 at x = 6.0082. The wave propagates to the right.

Figure 4.50 depicts the spanwise perturbation component w̃ in a plane zamp, in which

it has its maximum amplitude. This zamp plane is shifted by a quarter of the critical

wavelength ∆z = π/(2k0
c ). Figure 4.50 also shows the vorticity of the perturbation flow.

The vorticity makes an angle of approximately 45◦ with respect to the major and minor

axes of the elliptic streamlines, and is therefore aligned with the principal direction of

strain. Such behaviour is another distinctive feature of the critical mode due to an

elliptic instability (Waleffe, 1990).

At the margin of stability, the critical flow appears in the form of cellular structures,

where the spanwise perturbation component w̃ vanishes periodically on equally spaced

planes separated by ∆z = λ0
c/2. The cellular pattern is visible from one wavelength λ0

c

in figure 4.51. The cut was taken at x = 6.0082 at the peak of the total local energy

production. The absence of mirror symmetry planes at z = const. + λ0
c/2 indicates
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that the pattern is a travelling wave with the phase velocity c0 = |ω0
c |/k0

c = 0.0191 and

angular frequency |ω0
c | = 0.0253. The critical wavelength λ0

c = 4.7377 is approximately

the same as for the centrifugal type of instability.

It is interesting to note that the instability mechanism in the range of Γe considered

resembles that of the backward-facing-step flow for 0.709 <
∼ Γb <

∼ 0.9.

Stationary instability for expansion ratios Γe ≤ 0.7

Instability for 0.35 ≤ Γe ≤ 0.7 In the parameter range 0.35 ≤ Γe ≤ 0.7, all integral

energy-production rates I ′
i for i = 1, 2, 3, 4, are positive (see table 4.12 for Γe = 0.5) and

thus contribute to the instability. The terms I ′+
2 and I ′+

4 are responsible for almost 83 %

of all the positive energy production. However, the process I ′
1 exhibits the strongest

maximum in the total local energy production, which makes the physical interpretation

difficult.
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Figure 4.52.: Basic-state streamlines, spanwise vorticity of the critical mode (arrows)
and |û| (colour) for Γe = 0.5 and Re0

c = 790.95.

Figure 4.52 shows the streamlines of the base flow and the amplitude function of the

critical mode |û| (colour) for Γe = 0.5 at critical conditions, i.e. Re0
c = 790.95 with

kc = 0.6339. It also depicts the spanwise vorticity of the critical mode (arrows) in a

plane, in which the spanwise perturbation component w̃ takes its maximum amplitude.

It can be noticed that the amplitude of the perturbations as well as their vorticity are

strongest on the downstream side of the primary vortex of the basic flow.

Figure 4.53 shows the critical flow pattern consisting of alternating streamwise streaks.

It illustrates, moreover, that the total local energy-transfer, shown at its peak y = 0.4147,

is strongly localized at around x ≈ 12.34 and does not extend further upstream.

In figure 4.54, the total local energy-transfer rate
∑

i I
′
i and the above-mentioned

amplification processes I ′
1, I

′
2 and I ′

4 are shown. All terms attain their extrema in the
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Figure 4.53.: Basic-state streamlines, perturbation flow (arrows) and the total local en-
ergy production

∑

i I
′
i at y = 0.4147 for Γe = 0.5 and Re0

c = 790.95.

same planes z = const. It can be seen from figure 4.54d that the critical mode gains

most of its energy from I ′
4 near the separating streamline where the flow is strongly

decelerated. In the same region, the flow is significantly stabilised through the process

I ′
2 (figure 4.54c). Therefore, the term I ′

1 (figure 4.54b) contributes most to the maximum

in the total local energy production
∑

i I
′
i (figure 4.54a). The process I ′

1 describes a cross-

stream displacement of base flow momentum ũ⊥ ·∇u0, feeding back on the perpendicular

perturbation ũ⊥. In order for this process to have a destabilizing effect, the orientation

of u0 must change perpendicular to it, which is satisfied for the converging streamlines

of the basic state.

In light of the above, it is argued that in the parameter range 0.35 ≤ Γe ≤ 0.7 the

flow becomes unstable due to streamline convergence within the downstream side of the

primary vortex (I ′
1), in combination with flow deceleration near the reattachment point

(I ′
4) and an amplification process due to shear stresses near and between the primary

and tertiary vortex (I ′
2).

The critical mode and the mechanisms of instability for this instability are again very

similar to the instability of the backward-facing-step flow for 0.4 <
∼ Γb < 0.709. In fact,

the basic flow topology near the reattachment point of the separating streamline is the

same.
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Figure 4.54.: Basic-state streamlines, critical velocity fields (arrows) and local energy
production rates for Γe = 0.5 and Re0

c = 790.95: (a) total local production
∑

i I
′
i, (b) I ′

1,
(c) I ′

2 and (d) I ′
4.
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Shear instability for Γe < 0.35 For small expansion ratios, a relatively high Reynolds

number is required to destabilise the flow. Under critical conditions the primary vortex

of the basic flow is extremely stretched in the streamwise direction (figure 4.55). The

steady and three-dimensional critical mode at Re0
c = 6434.2 with k0

c = 0.1292 for Γe =

0.25 is confined between the primary and the tertiary vortex of the basic state. The

perturbation flow emerges in the form of a single vortex, which is centred at the channel

centerline y = 1 and spanning the full outlet-channel width. The effect of a corresponding

finite-amplitude perturbation would be an elongation and contraction of the primary and

tertiary vortex, periodic in the z direction, which is accompanied by a straightening or

bending of the jet between both separated vortices.
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Figure 4.55.: Basic-state streamlines, perturbation flow (arrows) and the local energy
production I ′

2 ≈ ∑
I ′

i for Γe = 0.25 and Re0
c = 6434.2. Note the scaling of the x and y

axes.

From figure 4.55 it can be observed that the disturbances gain most of their energy in

two regions, being located around x ≈ 23.31. The peak value of the production in the

region near the separation point of the tertiary vortex is marginally larger than the one

near the reattachment point of the primary vortex. By inspection of I ′+
i (table 4.12),

one finds that I ′+
2 is responsible for about 87.44 % of all the positive energy production.

Therefore, I ′
2 and

∑
I ′

i are qualitatively the same. The same behaviour was found for

the symmetry-breaking instability of the symmetric flow for Γe = 0.25 (section 4.3.3).

To demonstrate the streamwise distribution of the strength of the perturbation flow,

figure 4.56 shows the amplitudes of the critical velocity field by components, integrated

over y and averaged over z, i.e. meanz

∫ |ũ(x, y, z)|dy. It can be seen that the spanwise

perturbation velocity component w̃ is rather weak. This result is consistent with the

fact that the critical wavelength λ0
c = 48.63 is extremely long.
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Figure 4.56.: Amplitudes of the perturbations, integrated over the y and averaged over
the z direction meanz

∫ |ũ(x, y, z)|dy for Γe = 0.25 and Re0
c = 6434.2. The solid, the

dashed and the dash-dotted (red) line represent the ũ, the ṽ and the w̃ component,
respectively. The outlet is located at x = 400.

Owing to the similarities of the critical modes and its associated energy-transfer rates

for the symmetric and the asymmetric basic flows (compare figures 4.55 and 4.46), the

role of shear is mainly responsible for the instability for Γe < 0.35.

Comparison with experiments

The flow in a symmetric duct with an expansion ratio of Γe = 0.5 and a spanwise as-

pect ratio of Λ = d/hi = 8 (depth-to-height of the inflow channel) was analysed by

Cherdron et al. (1978) using flow visualizations and laser-Doppler anemometry mea-

surements. Their experiments revealed that the flow was symmetric for Re = 150, but

asymmetric for Re = 185. Moreover, it was reported that, for Re ≥ 800 onwards, the

flow became very disturbed with large longitudinal velocity fluctuations. The experi-

ments of Durst et al. (1993) for Γe = 0.5 and Λ = 16 predicted the symmetry-breaking

bifurcation to occur at around Re2D
c ≈ 125. Additionally, it was reported that the fully

laminar regime reaches up to Re ≤ 610, which was the highest Reynolds number con-

sidered. Our global, temporal linear stability results predicted the symmetry-breaking

bifurcation to occur at Re2D
c = 216.76. The discrepancy with the aforementioned ex-

perimental results of Cherdron et al. (1978) and Durst et al. (1993) might be due to the

finite spanwise aspect ratios Λ. Apparently, Λ was too small to sufficiently prevent end
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effects in the experiments. This explanation is also supported by Tsui & Wang (2008)

who showed that for a spanwise aspect ratio of Λ ≥ 24 side-wall effects can be neglected

and the flow can be regarded as two-dimensional at the centreline z = 0. Nevertheless,

the stability boundary for the asymmetric flow solution Re0
c = 790.94 is consistent with

the experiments of Cherdron et al. (1978) with ReCh
c ≈ 800.

The flow visualizations and laser-Doppler anemometry measurements of Durst et al.

(1974) revealed that the flow is symmetric for Re = 84, but asymmetric for Re = 171

for Γe = 0.6̇ and Λ = 27.5. They also reported that the flow became very disturbed

within the separation zones for Re ≥ 439.5. For approximately the same geometry, i.e.

Γe = 0.6̇ and Λ = 24, experiments were carried out by Fearn et al. (1990). They could

not detect any symmetric solution for Re ≥ 105. It was shown, moreover, that the

flow remained steady up to Re ≤ 453 and the flow became unsteady as a consequence

of three-dimensional effects for higher Reynolds number. These experimental results of

Durst et al. (1974) and Fearn et al. (1990) agree quite well with our findings, yielding

an exchange of stability at Re2D
c = 121.74 and a loss of stability of the asymmetric flow

for Re0
c ≥ 454.83.

4.3.4. Conclusion

The global, temporal linear stability of the two-dimensional, incompressible flow in a

plane sudden expansion has been analysed for a quasi-continuous variation of the ex-

pansion ratio Γe. The influence of the in- and outlet-channel lengths on the stability

boundaries has been analysed to obtain results, independent of these two external pa-

rameters. In addition, the flow stability for an asymmetric expansion with α = 0.15 has

been investigated. It turned out that the flow structure in the slightly non-symmetric

geometry resembles the asymmetric flow solution in the symmetric geometry. Also the

stability boundaries of these two basic flows are almost identical. Therefore, the main

effect for a slightly asymmetric expansion is to shift the disconnected branches to higher

Reynolds numbers.

The analysis has shown that the critical Reynolds numbers Rec are monotonically

decaying functions of the expansion ratio Γe. By using a definition of the Reynolds

number based on a scaling, which depends only on the upstream conditions, Re∗
c scales

linearly for very large step heights (1 − Γe) ≪ 1. It is shown that the critical Reynolds

number for the primary symmetric flow is significantly below that for the secondary

asymmetric flow solution.
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Our results confirm previous works showing that the primary instability is two-

dimensional, stationary, and breaks the mirror symmetry with respect to the channel

mid-plane. Using an a posteriori energy-transfer analysis it is demonstrated that the

primary instability is due to a combination of flow deceleration and shear for large ex-

pansion ratios. For small expansion ratios, the role of flow deceleration diminishes and

the instability is due to shear.

In addition to the primary instability, the secondary instability has been computed

for the first time. The instability of the asymmetric flow solution is generally three-

dimensional. Even though two-dimensional and time-dependent neutral modes exist

(as anticipated by Cherdron et al. (1978) and Durst et al. (1993)), they are never the

most dangerous ones. Typically, the neutral Reynolds number for two-dimensional time-

dependent perturbations is at least twice the (three-dimensional) critical Reynolds num-

ber. For Γe = 0.93, for example, Re0
n(k = 0) = 1167 is obtained with ω0

n(k = 0) = 0.476

and for Γe = 0.95, Re0
n(k = 0) = 1023 with ω0

n(k = 0) = 0.393, respectively.

The three-dimensional instabilities are due to different physical mechanisms, depend-

ing on the expansion ratio. For small expansion ratios Γe ≤ 0.35, the instability of

the finite-amplitude two-dimensional asymmetric flow is stationary and similar to the

primary instability. The critical three-dimensional, long-wave mode is almost mirror

symmetric with respect to the mid-plane and it is caused by shear stresses. For moder-

ate step heights 0.35 ≤ Γe ≤ 0.7, the critical mode is still stationary, but the instability

cannot be attributed to a particular type of energy-transfer process, because different

mechanisms work together. In particular, the combined effects of flow deceleration near

the reattachment point, an amplification process due to shear on both edges of the plane

jet, and streamline convergence within the downstream region of the separated flow has

a destabilizing effect. As the expansion is further increased, i.e. for Γe ≥ 0.713, the

critical mode changes from stationary to oscillatory. At Γe ≈ 0.8 the disturbances gain

their entire energy from the central region of the strained primary vortex. The energy-

transfer characteristics and the structure of the critical perturbation flow indicate that

the nature of the instability is of elliptic type. For even higher expansion ratios, the

oscillatory critical mode and the energy-transfer characteristics change continuously un-

til centrifugal forces prevail for very large step heights (1 − Γe) ≪ 1. In this situation

the local energy production and the perturbations are most pronounced in those regions

where the plane jet of the basic flow is curved, just before its oblique impingement on

the walls. There exist two zones with equivalent flow structures and energy-production

zones on the concave side of the curved jet. The first zone is located in the curved jet just
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before its first impingement and the second zone is located in the curved separated jet

just before the second impingement. These local flow conditions, and also the criterion

of Sipp & Jacquin (2000), suggest that the flow becomes centrifugally unstable.

It is worth mentioning that the topology of the asymmetric critical modes (Γe >
∼ 0.4)

and their associated instability mechanisms are very similar to those studied in the

backward-facing-step problem. These analogies seem to be due to the basic flows which

are locally very similar in both systems.

The physical relevance of the global instability modes found is established by demon-

strating the consistency with previous experimental findings. The numerical results are

consistent with the experimental data regarding the primary symmetry-breaking bifur-

cation. Moreover, qualitative agreement is obtained for critical data of the secondary

instability. In view of the remaining differences between numerical and experimental

threshold data it would be worthwhile to carry out more accurate experiments in which

the perturbing influence of the end walls is substantially minimized.
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5. Summary and Outlook

The present study dealt with the primary instabilities in the backward-facing-step,

forward-facing-step and plane sudden-expansion problems, respectively. The critical

Reynolds and wave numbers were predicted numerically, at which the steady, incom-

pressible and two-dimensional basic flow gets intrinsically three-dimensional. Great care

was taken in obtaining stability boundaries independent of the lengths of the inlet and

outlet channels. The geometric parameters of the above-mentioned systems were varied

in a systematic way in order to cover a wide range of the parameter space, spanned by

the Reynolds number Re and the geometric parameter Γ. Besides of that, the underly-

ing instability mechanisms were clarified and characterized by means of an a posteriori

kinetic energy-transfer analysis.

All the required numerical simulations were performed with a software package, which

has been developed specifically for this doctoral thesis in MATLAB. The underlying

equations were discretized using a finite-volume method being second-order accurate in

space. The eigenvalues were computed with Arnoldi’s method by applying shift-invert

and Cayley transformations, respectively. All simulations run on a parallel computer for

reasons of computing time and memory requirements.

A variety of new and interesting problems and open questions arise as a result of the

current analysis. First of all, experimental results for validation are lacking for almost

all the findings presented here. This study shows that a large spanwise aspect ratio

is required for an accurate investigation of the primary instabilities, which should be

taken into account in future experiments. But also fully three-dimensional numerical

simulations including end walls in the spanwise direction would be of interest to study

more systematically finite-size effects, caused by the presence of rigid walls. This could

help to distinguish between sidewall effects and bulk-flow instabilities. Moreover, one

could perform time-dependent simulations with the same boundary conditions as im-

posed here. It would be interesting to know which magnitude of the perturbations is

required to destabilize the flow at the critical conditions. Thus the nonlinear dynamics

of the bifurcation characteristics could be analysed and the total flow could be visual-
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ized. Future studies might also examine the transitional process from laminar to fully

turbulent flow on the basis of Direct Numerical Simulations (DNS) and/or Large-Eddy

Simulations (LES).

The present approach to the hydrodynamic stability analysis could also be applied

to related geometries, such as the plane sudden-constriction or the periodically grooved

channel problems. The later system represents a combination of the backward-facing-

step and forward-facing-step problems and the interactions of the vortices after and in

front of the steps could be studied. Additionally, owing to the nature of this geometry,

periodic boundary conditions could be used in the streamwise direction. Thus, if the step

heights tend to zero, Tollmien–Schlichting waves should be recovered. In addition to the

periodically grooved channel as studied by Ghaddar et al. (1986) and Amon & Patera

(1989), one could combine the geometries of the plane sudden expansion and constriction

as done by Takaoka et al. (2009).

In the current ansatz small perturbations were considered for investigating the pri-

mary instabilities. Alternatively, one could address higher Reynolds numbers and study

the secondary flow. The flow, which arises after the primary instability of the basic

flow is called the secondary flow, which might become unstable because of a secondary

instability. Furthermore, a systematic perturbation analysis under the assumption of

small disturbances could be carried out for the amplitudes of the perturbations to study

the dominant nonlinear effects of higher orders.

Another open question is the existence of convective instabilities below the absolute

stability boundaries as presented in the current work. Three-dimensional transient-

growth analyses could be conducted in future studies in order to answer this question.

To conclude, one can state that the current study laid the foundation for the under-

standing of these fundamental model systems, i.e. the backward-facing-step, forward-

facing-step and plane sudden-expansion problems. However, much more work has to be

done in future studies to solve the fully nonlinear flow problem and to understand the

above-mentioned open issues.
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A. Derivation of the Reynolds–Orr

Equation

Scalar multiplication of the linear perturbation equations (2.2.3) by ũ from the left-

hand side followed by an integration over the volume V = [0, 2π/k] × D yields (see e.g.

Kuhlmann, 1999)

1

2
∂t

〈

ũ2
〉

=
1

Re

〈

ũ · ∇2ũ
〉

− 〈ũ · (u0 · ∇ũ)〉 − 〈ũ · (ũ · ∇u0)〉 − 〈ũ · ∇p̃〉 , (A.1)

where 〈. . . 〉 :=
∫

V . . .dV . The first term 1/2 ∂t

〈

ũ2
〉

= dEkin/dt describes the rate of

change of the total kinetic energy of the perturbations. In what follows the boundary

conditions and the continuity equation are used to cast (A.1) into the Reynolds–Orr

equation as given in (2.3.1).

The dissipation in the volume can be rewritten as

1

Re

∫

V
ũ · ∇2ũ dV =

1

Re






∫

S
ũ · [(n · ∇)ũ]
︸ ︷︷ ︸

=0

dS −
∫

V
(∇ũ)2 dV






= − 1

Re

[∫

V
(∇ × ũ)2 dV +

∫

So

(ũ · ∇)(ũ · nSo) dS
]

= − 1

Re





∫

V
(∇ × ũ)2 dV +

∫

So

ũ ∂xũ
︸︷︷︸

=0

+ṽ∂yũ+ w̃∂zũ dS





︸ ︷︷ ︸

=:D

,

(A.2)

where So denotes the surface at the outlet and the normal vector n is defined in such

a way that it points out of the computational domain D. At the outlet boundary, it

is defined by nSo = (1, 0, 0)T. The other surface integrals at the inlet and at the solid

walls vanish owing to the boundary conditions ũ = 0. Note that the above formulation

of the dissipation rate D is equivalent to the right-hand side of (2.3.2).
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The surface integral (2.3.3) is obtained from − 〈ũ · (u0 · ∇ũ)〉 as follows

−
∫

V
ũ · (u0 · ∇ũ) dV = −

∫

S
ũ2(u0 · n) dS +

∫

V
ũ · ∇ · (ũu0) dV

= −
∫

So

ũ2u0 dS +
∫

V
ũ · (u0 · ∇ũ) dV +

∫

V
ũ2 (∇ · u0)

︸ ︷︷ ︸

=0

dV

= −1

2

∫

So

ũ2u0 dS.

(A.3)

Here the line of argumentation is the same as in equation (A.2).

For the pressure term 〈ũ · ∇p̃〉 in (A.1), partial integration yields

∫

V
ũ · ∇p̃ dV =

∫

S
p̃ (ũ · n) dS −

∫

V
p̃ (∇ · ũ)

︸ ︷︷ ︸

=0

dV

=
∫

So

p̃ũ dS =: p̃
∫

So

ũ dS
︸ ︷︷ ︸

=0

for p̃ = const.
(A.4)

The above surface integral at the outlet vanishes because of the boundary conditions

∫

V
∇ · ũ dV =

∫

S
ũ · n dS =

∫

So

ũ dS −
∫

Sin

ũ dS
︸ ︷︷ ︸

=0

+
∫

Sw

ũ · nw dS
︸ ︷︷ ︸

=0

= 0.
(A.5)

Since the surface integrals at the inlet and at the solid walls evaluate to zero due to the

boundary conditions ũ = 0, also the integral at the outlet must vanish so that the mass

conservation is satisfied.

For the streamline coordinates, the perturbation flow ũ is decomposed into com-

ponents parallel and perpendicular to the basic state u0. The decomposition (2.3.5)

becomes numerically error-prone near stagnation points and shear layers, where u0 ≈ 0.

To avoid large errors associated with these regions, a small parameter ǫ̌ is introduced

ũ‖ =
(ũ · u0)u0

(u0 · u0 + ǫ̌)
, ũ⊥ = ũ − ũ‖. (A.6)

If ǫ̌ is selected as ǫ̌ ≤ 10−2, the unphysical energy production peaks are smoothed. This

regularization did not effect the integral energy budget.

106



B. Jacobian-Free Newton–Krylov

Approach

In the section 3.1 the Jacobian J(x) of the stationary Navier–Stokes equations has

been considered analytically. Building the Jacobian numerically is very time consuming

and computationally unfeasible for large scale problems. By applying Krylov-subspace

iteration, the Jacobian does not have to be formed explicitly, which is often referred to

as the Jacobian-free Newton–Krylov (JFNK) method (Knoll & Keyes, 2004).

A wide variety of iterative schemes fall within the Krylov-subspace taxonomy. GMRES

(generalized minimal residuals) and Bi-CGSTAB (stabilized bi-conjugate gradients) are

two most frequently used types of Krylov-subspace methods, which are also applicable

for solving nonsymmetric systems of equations and they have become quite popular

recently in computational fluid dynamics. For details of GMRES and Bi-CGSTAB

see Saad & Schultz (1986) and van der Vorst (1992), respectively. As these iterative

schemes require the action of the Jacobian only in the form of matrix-vector products,

the left-hand side of (3.1.1a) may be approximated by (Kelley, 2003)

J(x) · δx ≈ f (x + ǫ δx/|δx|) − f (x)

ǫ
|δx|. (B.1)

Note that scaling the direction in the forward-difference directional derivative (blue

colour) is important to maintain superlinear convergence. Various options for choosing

the perturbation parameter ǫ ≪ 1 are proposed in Knoll & Keyes (2004). Best results are

obtained by setting ǫ =
√

(1 + |x|)ǫmach, where ǫmach denotes the floating-point machine

accuracy (typically ≈ 10−16 for 64-bit double precision). Equation (B.1) represents a

first-order approximation to the Jacobian-vector product. Higher-order approximations

are not frequently used in the JFNK approach, as at least one more function evaluation

is required per matrix-vector product.

By applying an iterative scheme such as GMRES or Bi-CGSTAB for solving (B.1),

a preconditioner is required because otherwise the method will not converge. There-
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fore, preconditioning plays a crucial role and is more important than the method itself.

Finding a good preconditioner is not a trivial task as it depends on the problem and/or

its generation may take longer than solving the system by itself. Generally speaking, a

good preconditioner M should be better conditioned, more narrowly banded, and less

expensive to build than A for the specific linear system A · x = b. A left preconditioner

is applied in the following way

M−1 · A · x = M−1 · b, (B.2)

whereas right-preconditioning is defined as

A · M−1 · y = b with y = M · x. (B.3)

There is no general rule for choosing between a left and a right preconditioner, but one

has to keep in mind that the iterations are terminated in a slightly different way as

left-preconditioning changes the norm of the residual. Therefore, right-preconditioning

is sometimes preferred by fitting better to the physical problem.

In the present work three different preconditioners have been analysed and tested:

Stokes, SIMPLE and ILU (incomplete lower-upper) preconditioning. The first two of

them are derived from the Navier–Stokes equations and are examples of the so called

physics-based approach (Knoll & Keyes, 2004). The ILU preconditioner is independent

of the underlying equations and represents a general preconditioner. The Stokes pre-

conditioning as proposed by Edwards et al. (1994) considers only the diffusion term but

did not work well, as the convection term plays a crucial role in the systems studied

here. SIMPLE preconditioning as suggested by Vuik et al. (2000) was computationally

feasible, but could not compete with the ILU preconditioner.

In the literature, there exits a great variety of ILU factorizations. The modified

(MILU) and the Crout (ILUC) ILU decomposition turned out to be less effective than

ILU(τ). Here the non-negative threshold τ specifies the drop tolerance, where all entries

smaller than τ are set to zero. For τ = 0 the complete LU factorization is computed

(Saad, 2003). The time-critical parameter τ is mainly determined by the accuracy level,

to which the underlying equations should be solved. Thus it should be of the same order

of magnitude as the residual level (3.1.7), such as τ ≈ √
ǫmach. It is very important that

the tolerance level of the iterative Krylov-subspace method (inner iteration) is at least

two orders smaller than τ because otherwise the Jacobian-free Newton–Krylov scheme

will not exhibit superlinear convergence. Note that reordering the system matrix A, as
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described in the section 3.1, is an key element before applying any ILU factorization as

it can speed up the calculations drastically.

To sum up, the terms A and b of the linear system A · x = b, which originate

from Picard’s linearization (3.1.5), are reordered according to the approximate minimum

degree (AMD) algorithm. For the preconditioner, an ILU factorization is performed

with a threshold level of τ ≈ √
ǫmach. Generating the preconditioner needed as much

memory as solving directly the linear system with an efficient solver for sparse matrices,

which converged, additionally, much faster than the iterative Krylov-subspace schemes.

Therefore, the whole procedure as described in the appendix B was not used ultimately.

109



Bibliography

Albensoeder, S., Kuhlmann, H. C. & Rath, H. J. 2001 Three-dimensional

centrifugal-flow instabilities in the lid-driven cavity problem. Phys. Fluids 13, 121–

135.

Alleborn, N., Nandakumar, K., Raszillier, H. & Durst, F. 1997 Further

contributions on the two-dimensional flow in a sudden expansion. J. Fluid Mech. 330,

169–188.

Amestoy, P. R., Davis, T. A. & Duff, I. S. 1996 An approximate minimum degree

ordering algorithm. SIAM J. on Matrix Analysis and Applications 17, 886–905.

Amon, C. H. & Patera, A. T. 1989 Numerical calculation of stable three-dimensional

tertiary states in grooved-channel flow. Phys. Fluids 1, 2005.

Armaly, B. F., Durst, F., Pereira, J. C. F. & Schönung, B. 1983 Experimental

and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127, 473–

496.

Bai, Z., Demmel, J., Dongarra, J., Ruhe, A. & van der Vorst, H. 2000 Tem-

plates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM.

Barkley, D., Gomes, M. G. M. & Henderson, R. D. 2002 Three-dimensional

instability in flow over a backward-facing step. J. Fluid Mech. 473, 167–190.

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University

Press.

Battaglia, F., Tavener, S. J., Kulkarni, A. K. & Merkle, C. L. 1997 Bifur-

cation of low Reynolds number flows in symmetric channels. AIAA 35 (1).

Bayly, B. J. 1986 Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57,

2160–2163.

110



Bayly, B. J. 1988 Three-dimensional centrifugal-type instabilities in inviscid two-

dimensional flows. Phys. Fluids 31, 56–64.

Beaudoin, J.-F., Cadot, O., Aider, J.-L. & Wesfreid, J. E. 2004 Three-

dimensional stationary flow over a backward-facing step. Eur. J.Mech. B/Fluids 23,

147–155.

Blackburn, H. M., Barkley, D. & Sherwin, S. J. 2008 Convective instability and

transient growth in flow over a backward-facing step. J. Fluid Mech. 603, 271–304.

Blackwell, B. F. & Pepper, D. W. 1992 Benchmark problems for heat transfer

codes. In Winter Annual Meeting of the American Society of Mechanical Engineers,

HTD, vol. 222. ASME.

Bottaro, A., Corbett, P. & Luchini, P. 2003 The effect of base flow variation on

flow stability. J. Fluid Mech. 476, 293–302.

Brent, R. P. 1973 Algorithms for Minimization without Derivatives. Prentice-Hall.

Cantwell, C. D., Barkley, D. & Blackburn, H. M. 2010 Transient growth anal-

ysis of flow through a sudden expansion in a circular pipe. Phys. Fluids 22, 034101–

1–034101–15.

Carmi, S. 1969 Energy stability of channel flows. Z. Angew. Math. Phys. 20 (4), 487–

500.

Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford Uni-

versity Press.

Cherdron, W., Durst, F. & Whitelaw, J. H. 1978 Asymmetric flows and insta-

bilities in symmetric ducts with sudden expansions. J. Fluid Mech. 84 (1), 13–31.

Chiang, T. P., Sheu, T. W. H., Hwang, R. R. & Sau, A. 2001 Spanwise bifur-

cation in plane-symmetric sudden-expansion flows. Phys. Rev. E 65, 1–16.

Chiang, T. P., Sheu, T. W. H. & Wang, S. K. 2000 Side wall effects on the

structure of laminar flow over a plane-symmetric sudden expansion. Computers &

Fluids 29, 467–492.

Chiba, K., Ishida, R. & Nakamura, K. 1995 Mechanism for entry flow instability

through a forward-facing step channel. J. Non-Newtonian Fluid Mech. 57, 271–282.

111



Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: Non-normality

and nonlinearity. Annu. Rev. Fluid Mech. 37, 357–392.

Chun, D. H. & Schwarz, W. H. 1967 Stability of the plane incompressible viscous

wall jet subjected to small disturbances. Phys. Fluids 10, 911–915.

Cliffe, K. A., Garratt, T. J. & Spence, A. 1993 Eigenvalues of the discretized

Navier–Stokes equation with application to the detection of Hopf bifurcations. Adv.

Comput. Math. 1, 337–356.

Criminale, W. O., Jackson, T. L. & Joslin, R. D. 2003 Theory and Computation

in Hydrodynamic Stability. Cambridge University Press.

Cruchaga, M. A. 1998 A study of the backward-facing step problem using a general-

ized streamline formulation. Commun. Numer. Methods Eng. 14, 697–708.

Deissler, R. J. 1987 The convective nature of instability in plane Poiseuille flow. Phys.

Fluids 30 (8), 2303–2305.

Dennis, S. C. R. & Smith, F. T. 1980 Steady flow through a channel with a sym-

metrical constriction in the form of a step. Proc. R. Soc. Lond. A 372, 393–414.

Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University

Press.

Drikakis, D. 1997 Bifurcation phenomena in incompressible sudden expansion flows.

Phys. Fluids 9 (1).

Durst, F., Melling, A. & Whitelaw, J. H. 1974 Low Reynolds number flow over

a plane symmetric sudden expansion. J. Fluid Mech. 64 (1), 111–128.

Durst, F., Pereira, J. C. F. & Tropea, C. 1993 The plane symmetric sudden-

expansion flow at low Reynolds numbers. J. Fluid Mech. 249, 567–581.

Edwards, W. S., Tuckerman, L. S., Friesner, R. A. & Sorensen, D. C. 1994

Krylov methods for the incompressible Navier–Stokes equations. J. Comput. Phys.

110, 82–102.

Eloy, C. & Le Dizès, S. 2001 Stability of the Rankine vortex in a multipolar strain

field. Phys. Fluids 13, 660–676.

112



Erturk, E. 2008 Numerical solutions of 2-D steady incompressible flow over a

backward-facing step, Part I: High Reynolds number solutions. Computers & Fluids

37, 633–655.

Fearn, R. M., Mullin, T. & Cliffe, K. A. 1990 Nonlinear flow phenomena in a

symmetric sudden expansion. J. Fluid Mech. 211, 595–608.

Ferziger, J. H. & Perić, M. 2002 Computational Methods for Fluid Dynamics.

Springer.

Fletcher, C. A. J. 1988 Computational Techniques for Fluid Dynamics, Springer

Series in Computational Physics, vol. I. Springer.

Fortin, A., Jardak, M., Gervais, J. J. & Pierre, R. 1997 Localization of Hopf

bifurcations in fluid flow problems. Int. J. Num. Meth. Fluids 24, 1185–1210.

Gartling, D. K. 1990 A test problem for outflow boundary conditions - flow over a

bachward-facing step. Int. J. Num. Meth. Fluids 11, 953–967.

Ghaddar, N. K., Korczak, K. Z., Mikic, B. B. & Patera, A. T. 1986 Numerical

investigation of incompressible flow in grooved channels. Part 1. Stability of self-

sustained oscillations. J. Fluid Mech. 163, 99–127.

Ghia, K. N., Osswald, G. A. & Ghia, U. 1989 Analysis of incompressible massively

separated viscous flows using unsteady Navier–Stokes equations. Int. J. Num. Meth.

Fluids 9, 1025–1050.

Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the

cylinder wake. J. Fluid Mech. 581, 167–197.

Gilbert, J. R., Moler, C. & Schreiber, R. 1992 Sparse Matrices in MATLAB:

Design and Implementation. SIAM J. Matrix Anal. Appl 13, 333–356.

Gresho, P. M. 1991 Incompressible fluid dynamics: Some fundamental formulation

issues. Annu. Rev. Fluid Mech. 23, 413–453.

Gresho, P. M., Gartling, D. K., Torczynski, J. R., Cliffe, K. A., Winters,

K. H., Garratt, T. J., Spence, A. & Goodrich, J. W. 1993 Is the steady

viscous incompressible two-dimensional flow over a backward-facing step at Re=800

stable? Int. J. Num. Meth. Fluids 17, 501–541.

113



Haselgrove, C. B. 1961 The solution of nonlinear equations and of differential equa-

tions with two-point boundary conditions. The Computer Journal 4, 255–259.

Hawa, T. & Rusak, Z. 2000 Viscous flow in a slightly asymmetric channel with a

sudden expansion. Phys. Fluids 12 (9).

Hawa, T. & Rusak, Z. 2001 The dynamics of a laminar flow in a symmetric channel

with a sudden expansion. J. Fluid Mech. 436, 283–320.

Hawa, T. & Rusak, Z. 2002 Numerical-asymptotic expansion matching for computing

a viscous flow around a sharp expansion corner. Theor. Comput. Fluid Dyn. 15, 265–

281.

Hill, D. C. 1995 Adjoint systems and their role in the receptivity problem for boundary

layers. J. Fluid Mech. 292, 183–204.

Howell, J. S. 2009 Computation of viscoelastic fluid flows using continuation methods.

J. Comput. Appl. Math. 225, 187–201.

Huerre, P. & Monkewitz, P. A. 1985 Absolute and convective instabilities in shear

layers. J. Fluid Mech. 159, 151–168.

Huerre, P. & Rossi, M. 1998 Hydrodynamic instabilities in open flows. In Hydrody-

namics and Nonlinear Instabilities (ed. C. Godréche & P. Manneville), chap. 2, pp.

81–294. Cambridge University Press.

Johnson, R. W. 1998 The handbook of fluid dynamics. CRC Press.

Joseph, D. D. 1976 Stability of Fluid motions I , Springer Tracts in Natural Philosophy,

vol. 27. Springer.

Kaiktsis, L., Karniadakis, G. E. & Orszag, S. A. 1991 Onset of three-

dimensionality, equilibria and early transition in flow over a backward-facing step.

J. Fluid Mech. 231, 501–528.

Kaiktsis, L., Karniadakis, G. E. & Orszag, S. A. 1996 Unsteadiness and convec-

tive instabilities in two-dimensional flow over a backward-facing step. J. Fluid Mech.

321, 157–187.

Kelley, C. T. 1995 Iterative Methods for Linear and Nonlinear Equations. SIAM.

114



Kelley, C. T. 2003 Solving nonlinear equations with Newton’s method. SIAM.

Kerswell, R. R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83–113.

Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible

Navier–Stokes equations. J. Comput. Phys. 59, 308–323.

Knoll, D. A. & Keyes, D. E. 2004 Jacobian-free Newton–Krylov methods: a survey

of approaches and applications. Journal of Computational Physics 193 (2), 357–397.

Kuhlmann, H. C. 1999 Thermocapillary Convection in Models of Crystal Growth,

Springer Tracts in Modern Physics, vol. 152. Springer.

Kuhlmann, H. C., Wanschura, M. & Rath, H. J. 1997 Flow in two-sided lid-

driven cavities: Non-uniqueness, instabilities, and cellular structures. J. Fluid Mech.

336, 267–299.

Landahl, M. T. 1975 Wave breakdown and turbulence. SIAM J. Appl. Math. 28,

735–756.

Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows.

J. Fluid Mech. 98, 243–251.

Lanzerstorfer, D. & Kuhlmann, H. C. 2012a Global stability of the two-

dimensional flow over a backward-facing step. J. Fluid Mech. 693, 1–27.

Lanzerstorfer, D. & Kuhlmann, H. C. 2012b Three-dimensional instability of the

flow over a forward-facing step. J. Fluid Mech. 695, 390–404.

Lanzerstorfer, D. & Kuhlmann, H. C. 2012c Global stability of multiple solutions

in plane sudden-expansion flow. J. Fluid Mech. DOI: 10.1017/JFM.2012.184.

Lee, T. & Mateescu, D. 1998 Experimental and numerical investigation of 2-D

backward-facing step flow. J. Fluids and Structures 12, 703–716.

Lehoucq, R. B. & Salinger, A. G. 2001 Large-scale eigenvalue calculations for

stability analysis of steady flows on massively parallel computers. Int. J. Num. Meth.

Fluids 36, 309–327.

Lehoucq, R. B. & Scott, J. A. 1997 Implicitly restarted Arnoldi methods and

eigenvalues of the discretized Navier–Stokes equations. SIAM J. Matrix Anal. Appl.

23, 551–562.

115



Lehoucq, R. B. & Sorensen, D. C. 1996 Deflation techniques for an implicitly

restarted Arnoldi iteration. SIAM J. Matrix Anal. Appl. 17, 789–821.

Marino, L. & Luchini, P. 2009 Adjoint analysis of the flow over a forward-facing

step. Theor. Comput. Fluid Dyn. 23, 37–54.

Mateescu, D. & Venditti, D. A. 2001 Unsteady confined viscous flows with oscil-

lating walls and multiple separation regions over a downstream-facing step. J. Fluids

and Structures 15, 1187–1205.

Meerbergen, K., Spence, A. & Roose, D. 1994 Shift-invert and Cayley transforms

for detection of eigenvalues with largest real part of nonsymmetric matrices. BIT

Numerical Mathematics 34, 409–423.

Mizushima, J. & Shiotani, Y. 2000 Structural instability of the bifurcation diagram

for two-dimensional flow in a channel with a sudden expansion. J. Fluid Mech. 420,

131–145.

Moffatt, H. K. 1964 Viscous and resistive eddies near a sharp corner. J. Fluid Mech.

18, 1–18.

Ol’shanskii, M. A. & Staroverov, V. M. 2000 On simulation of outflow boundary

conditions in finite difference calculations for incompressible fluid. Int. J. Num. Meth.

Fluids 33, 499–534.

Orszag, S. A. 1971 Accurate solution of the Orr–Sommerfeld equation. J. Fluid Mech.

50 (4), 689–703.

Pierrehumbert, R. T. 1986 Universal short-wave instability of two-dimensional ed-

dies in an inviscid fluid. Phys. Rev. Lett. 57, 2157–2159.

Plotkin, A. & Mei, R. W. 1986 Navier–Stokes solutions for laminar incompressible

flows in forward-facing step geometries. AIAA J. 24 (7), 1106–1111.

Pollard, A., Wakarani, N. & Shaw, J. 1996 Genesis and morphology of erosional

shapes associated with turbulent flow over a forward-facing step. In Coherent Flow

Structures in Open Channels, pp. 249–265. Wiley.

ur Rehman, M., Vuik, C. & Segal, G. 2006 Solution of the incompressible Navier–

Stokes equations with preconditioned Krylov subspace methods. Tech. Rep.. Delft

University of Technology, Delft Institute of Applied Mathematics.

116



Rusak, Z. & Hawa, T. 1999 A weakly nonlinear analysis of the dynamics of a viscous

flow in a symmetric channel with a sudden expansion. Phys. Fluids 11 (12).

Saad, Y. 2003 Iterative methods for sparse linear systems, 2nd edn. SIAM.

Saad, Y. & Schultz, M. H. 1986 GMRES: A Generalized Minimal Residual algorithm

for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical

Computing 7 (3), 856–869.

Schmid, P. J. & Henningson, D. S. 2001 Stability and transition in shear flows.

Springer.

Schreck, E. & Schäfer, M. 2000 Numerical study of bifurcation in three-dimensional

sudden channel expansions. Computers & Fluids 29 (5), 583–593.

Seydel, R. 1994 Practical Bifurcation and Stability Analysis: From Equilibrium to

Choas, 2nd edn. Springer.

Shapira, M. & Degani, D. 1990 Stability and existence of multiple solutions for

viscous flow in suddenly enlarged channels. Computers & Fluids 18 (3), 239–258.

Shtern, V. & Hussain, F. 2003 Effect of deceleration on jet instability. J. Fluid Mech.

480, 283–309.

Sipp, D. & Jacquin, L. 1998 Elliptic instability in two-dimensional flattened Taylor-

Green vortices. Phys. Fluids 10, 839–849.

Sipp, D. & Jacquin, L. 2000 Three-dimensional centrifugal-type instabilities of two-

dimensional flows in rotating systems. Phys. Fluids 12, 1740–1748.

Sobey, I. J. & Drazin, P. G. 1986 Bifurcations of two-dimensional channel flows. J.

Fluid Mech. 171, 263–287.

Sohn, J. L. 1988 Evaluation of FIDAP on some classical laminar and turbulent bench-

marks. Int. J. Num. Meth. Fluids 8, 1469–1490.

Spurk, J. H. 1997 Fluid Mechanics. Springer.

Squire, H. B. 1933 On the stability of three-dimensional disturbances of viscous flow

between parallel walls. Proc. Roy. Soc. London A 142, 621–628.

117



Stüer, H. 1999 Investigation of separation on a forward facing step. PhD thesis, ETH

Zürich.

Stüer, H., Gyr, A. & Kinzelbach, W. 1999 Laminar separation on a forward facing

step. Eur. J. Mech. B/Fluids 18, 675–692.

Takaoka, M., Sano, T., Yamamoto, H. & Mizushima, J. 2009 Convective insta-

bility of flow in a symmetric channel with spatially periodic structures. Phys. Fluids

21, 024105–1–024105–10.

Theofilis, V. 2000 Globally unstable basic flows in open cavities. In 6th AIAA/CEAS

Aeroacoustics Conference. AIAA 2000-1965.

Theofilis, V. 2003 Advances in global linear instability analysis of nonparallel and

three-dimensional flows. Prog. Aerospace Sci. 39, 249–315.

Theofilis, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43, 319–352.

Theofilis, V. & Colonius, T. 2011 Special issue on global flow instability and

control. Theor. Comput. Fluid Dyn. 25, 1–6.

Thomas, L. H. 1953 The stability of plane Poiseuille flow. Phys. Rev. 91 (4), 780–783.

Thompson, J. F., Warsi, Z. U. A. & Mastin, C. W. 1985 Numerical Grid Gen-

eration: Foundations and Applications. Elsevier North-Holland.

Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1992

A new direction in hydrodynamic stability: Beyond eigenvalues. Tech. Rep. 92-71.

ICASE, NASA contractor report 191411.

Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993

Hydrodynamic stability without eigenvalues. Science 261, 578–584.

Tsui, Y.-Y. & Wang, H.-W. 2008 Side-wall effects on the bifurcation of the flow

through a sudden expansion. Int. J. Num. Meth. Fluids 56, 167–184.

Versteeg, H. K. & Malalasekera, W. 2007 An Introduction to Computational

Fluid Dynamics: The Finite Volume Method , 2nd edn. Pearson.

Vinokur, M. 1983 On one-dimensional stretching functions for finite-difference calcu-

lations. J. Comput. Phys. 50, 215–234.

118



van der Vorst, H. A. 1992 Bi-CGSTAB: A fast and smoothly converging variant of

Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific

and Statistical Computing 13 (2), 631–644.

Vuik, C., Saghir, A. & Boerstoel, G. 2000 The Krylov accelerated SIMPLE(R)

method for flow problems in industrial furnaces. Int. J. for Num. Meth. Fluids 33,

1027–1040.

Waleffe, F. 1990 On the three-dimensional instability of strained vortices. Phys. Flu-

ids 2, 76–80.

Wesseling, P. 2001 Principles of Computational Fluid Dynamics. Springer Series in

Computational Mathematics.

Wilhelm, D. 2000 Numerical investigation of three-dimensional separation in a

forward-facing step flow using a spectral element method. PhD thesis, ETH Zürich.

Wilhelm, D., Härtel, C. & Kleiser, L. 2003 Computational analysis of the two-

dimensional–three-dimensional transition in forward-facing step flow. J. Fluid Mech.

489, 1–27.

Williams, P. T. & Baker, A. J. 1997 Numerical simulations of laminar flow over a

3D backward-facing step. Int. J. Num. Meth. Fluids 24, 1159–1183.

Yanase, S., Kawahara, G. & Kiyama, H. 2001 Three-dimensional vortical struc-

tures of a backward-facing step flow at moderate Reynolds numbers. J. Phys. Soc.

Jap. 70, 3550–3555.

119


	Motivation and Introduction
	Mathematical Formulation
	Basic-Flow Equations
	Linear Stability Analysis
	Energy Analysis
	Adjoint Analysis

	Numerical Implementation
	Newton's Method
	Finite-Volume Discretization
	Grid Generation
	Eigenvalue-Detection Strategies
	Algorithms for Root-Finding and Minimization
	Plane Poiseuille Flow

	Results
	The Backward-Facing-Step Problem
	Problem Formulation
	Scientific Background
	Results
	Conclusion

	The Forward-Facing-Step Problem
	Problem Definition
	Scientific Background
	Results
	Conclusion

	The Plane Sudden-Expansion Problem
	Problem Formulation
	Scientific Background
	Results
	Conclusion


	Summary and Outlook
	Derivation of the Reynolds–Orr Equation
	Jacobian-Free Newton–Krylov Approach
	Bibliography

