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Abstract

The behavior of drosophila can be linked to the activity of a set of neurons. These neurons ex-
press different genes whereby their manipulation and effects on neurons are subjects of current
research. The automatic identification of similar neurons in different brains give biologists an
opportunity to analyze a set of brain volumes without manual annotation. In this thesis, a sim-
ilarity measure was developed to compare small, segmented neuronal structures. This measure
can be used to build mappings of fly brains, based on the similarity in sub-regions. The map-
ping is performed by a non-linear dimension reduction method called Diffusionmaps. Fly brain
images have varying quality regarding noise and location stability, so this method is well suited
for use due to its robustness. The resulting mapping can be applied to provide biologists with an
overview of the data and visualize differences and similarities between mutations. Additionally,
a method for identifying similar regions of brains with different mutations is introduced. For
this, a multi-modal genetic algorithm is applied to find brain areas which maximize the similar-
ity measure between flies. In conclusion, the methods perform non-linear mapping of fly brain
regions, based on similarity measures, which compare local appearance in confocal microscopy
images. The maps reflect groups of flies that exhibit similar structure in local brain areas. On the
other hand, also regions in fly brains can be detected that have structures regarding to specific
genetic variations. In addition, the similarity measure can be used for image retrieval.
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Kurzfassung

Das Verhalten von Fruchtfliegen (Drosophila) und dessen Abhängigkeit von Genen ist Gegen-
stand aktueller Forschung. Änderungen im Erbgut führen zu unterschiedlichen neuronalen Struk-
turen, die wiederum das Verhalten der Fliegen determinieren. Werden nun ähnliche Neuronen
von verschiedenen Genalterationen gebildet, können Rückschlüsse zwischen Verhalten und Er-
bgut gezogen werden. Mithilfe automatischer Identifikation von ähnlichen Neuronen in unter-
schiedlichen Gehirnen können Biologen eine große Anzahl von Gehirnen analysieren, ohne
diese einzeln betrachten zu müssen. Im Rahmen der Diplomarbeit wurde ein Ähnlichkeitsmaß
entwickelt, welches es erlaubt segmentierte, neuronale Strukturen von 3D-Konfokalmikroskop
Aufnahmen zu vergleichen. Damit ist es möglich, in Fliegenpopulationen nach ähnlichen Neu-
ronen zu suchen, und somit Abfragen nach bestimmt Neuronen zu starten. Des Weiteren kann
das Ähnlichkeitsmaß dazu verwendet werden, um mittels Diffusion Maps (eine Methode zur
nicht-linearen Dimensionreduktion) Mappings von Fliegengehirnen zu erstellen, die die Rela-
tion der Fliegengehirne für Subregionen wiedergeben. Eine weitere Anwendung ist die Iden-
tifikation von ähnlichen Gehirnregionen von Fliegen mit unterschiedlichen Genalterationen.
Dafür wird ein multi-modaler genetischer Algorithmus verwendet, der Regionen findet, die die
Ähnlichkeit zwischen Fliegen maximieren. Als Resultat dieser Diplomarbeit wurden Method-
en entwickelt, die nicht-lineare Mappings dazu verwenden, lokale Bereiche von Fliegengehir-
nen zu vergleichen. Die generierten Mappings stellen Gruppen von Fliegen dar, die die selbe
Struktur in den gleichen Gehirnregion aufweisen. Andererseits ist es auch möglich Regionen
von Fliegengehirnen zu bestimmen, die eine ähnliche Struktur für unterschiedliche genetis-
che Variationen aufweisen. Schlussendlich ermöglichen die vorgestellten Methoden nach Gen-
abhängigen Strukturen in Fliegenpopulationen zu suchen, welches eine schnelle Alternative zur
manuellen Datenanalyse darstellt.
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CHAPTER 1
Introduction

This chapter provides an overview of this thesis. In Section 1.1, the biological background is
explained. Based on this, Section 1.2 describes the motivation of this thesis and the primary
problem. The research aims are described in Section 1.3, and Section 1.4 lists a short outline of
the thesis.

1.1 Biological Background

Aspects of the behavior of Drosophila can be linked to the activity of neurons [65]. For ex-
ample, the male courtship behavior is based on 1500 neurons which express the fruitless gene
[66] [37] [76]. The manipulation of this gene and the effect on the neurons is the subject of
current research [19]. The search for relevant neurons and their organization gives biologists an
opportunity to understand the neuronal basis of behavior [76]. To visualize neurons, transgenic
systems (GAL4-UAS) [9] and genetically encoded fluorescent proteins (e.g. the membrane
bound mCD8-GFP [48]) are used. They highlight neuronal structure in laser scanning confocal
microscopes images.

For generation of the Vienna Tiles (VT) library [34] [47] the Drosophila genome was virtually
cut into 2000 base pair long pieces that overlap by approximately 300 bases. Pieces (tiles)
which were likely to be active in the nervous system were used to generate transgenic fly lines.
Each of these transgenic fly lines contains one unique tile which can be considered as a genetic
alteration. In the context of this thesis, such alterations are referred to as mutation. The usage of
VT-lines allows to assign observed changes in the neuronal structure specifically to one particular
mutation.

Laser scanning confocal microscope images are 3D volumes that capture the morphology of
drosophila brains. An example of a fly brain is shown in Figure 1.1. The volumes show brain
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tissue and specific traced neurons [9]. A neuron consists of a cell body (white round spots in
Figure 1.1), dendrites (branching structures in Figure 1.1) and axons (tubular structures in Figure
1.1). Dendrites, also referred to as arborisation are afferent fibers, while the axon or projection
is efferent relative to the cell body. The cerebral cortex is an area, which is surrounded by a
connective tissue sheet (noisy area, brighter than the background in Figure 1.1). It includes the
cell bodies of neurons, while the majority of projections and arborisations lies outside.

Figure 1.1: Example drosophila brain of [D1] dataset (Section 6.1) with a labeled set of neurons.
The brain is visualized by a Maximum Intensity Projection (MIP) computed over the z-axis
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1.2 Motivation

Automatic identification of corresponding neurons across a population with known genetic char-
acteristics gives biologists an opportunity to analyze substantial numbers of cases in an ex-
ploratory fashion [36]. By computing a similarity measure of local parts such as projections
or arborisations, computer-aided population analysis of neuronal structures regarding to their
genes is possible [46]. Content based image retrieval enhances the systematically identification
of sets of neurons that contribute to drosophila behavior compared to manual analysis.

Although the volumes are registered based on the neuropils (the major part of gray matter of the
brain), which are a stable morphological reference [56], the neurons still exhibit inter-individual
variability in location and shape. This is caused by genes (different genes can lead to different
morphology [65]) and the limited accuracy of a non-rigid registration based on (compared to
single neurons) large structures (neurophils) [56]. The resulting lack of overlap renders local
similarity measurements challenging. Another factor contributing to similarity inaccuration is
the noise level in some volumes which depends on the quality of experiments [76]. Noise can
affect the precision of the search (proof in Section 6.2). Therefore, this influence should be
minimized. Similarity measures have to take possible misalignment and variability into account,
while at the same time capturing similarities of narrow structures such as projections.

The measure can be used to build embeddings of fly brains, based on the similarity in sub-
regions. The created embeddings can also be used as a lookup table for a search in fly brains,
with regard to a specified region. Because they are based on similarities, a search of neurons can
be performed on the map instead of the data. This is a faster alternative compared to an adhoc
computation of a similarity-based ranking. The results can be applied to provide biologists with
an overview of the data, visualize differences and similarities between mutations, and analyze
the variability of the brains.

1.3 Aim of this Thesis

The aim of this thesis is to develop a method to analyze and visualize the variability of fly brains
and their relationship to different alterations of genes. This task can be split into four different
goals which represent the main contribution of this thesis:

• A similarity measure to compare small, segmented neuronal structures like axons and
dendrites. It shall take possible misalignments and variability into account.

• Image retrieval of neuronal structures. By using them as query patterns, brains which also
contains these structures shall be top-ranked in the retrieval results retrieval results

• A mapping which represents the similarity of local brain areas in a set of flys with dif-
ferent mutations. Brains, which show the same neuronal structures will be mapped close
together, while brains with different structures will exhibit a higher distance. The principle
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idea behind this method is, that clusters of different mutations indicate that they express
the same neuronal structures.

• A visualization of similar regions for brains with different mutations. Brains, which ex-
hibit a low variability of structures for specific mutations, lead to a high similarity measure
to each other. As a consequence, similar regions have a high mean inter-individual sim-
ilarity (compared to dissimilar regions). Its visualization reveals corresponding neuronal
structures of different mutations.

1.4 Synopsis

This thesis consists of 5 main parts: A state of the art analysis of the central methods used in this
thesis, a description of the structure based similarity measure, the mapping of neuronal structure,
the visualization of brain similarities and a validation of the results of this novel method.

Chapter 1 gives an introduction about the biological background, the motivation, as well as the
aims of this thesis. It offers basic knowledge about neuronal structures, their dependency on
genetic mutations and the need of their computer-aided analysis. In the last part of the chapter,
the aims of this thesis are formulated.

In Chapter 2, state of the art methods related to the main contribution of this thesis are explained.
Every section consists of description and the discussion of the field. Section 2.1 outlines ap-
proaches for comparing neurons in different ways, such as model- or branching-based methods
as well as the entire field of computational drosophila brain analysis. Section 2.2 is related to
non-linear mapping method which forms the core of the embedding method discussed in this
thesis. Different methods for linear and non-linear methods are described. Section 2.3 describes
the gradient vector flow which is used in Chapter 3. Measures for cluster stability to investi-
gate the structure of the data are shown in Section 2.4. The last section of this chapter explains
methods for multi-modal optimization for genetic algorithms which are used in Chapter 5 for
similarity visualization.

Similarity of neuronal structures is introduced in Chapter 3. It explains the pre-processing
of the volume data before it comes to the principle steps of the method. At first, local neuron
orientation is estimated via structure tensors in Section 3.1 and expressed as a vector field. In
Section 3.2, a query pattern is selected by automatic segmentation, which corresponds to the
neuronal structure that will be compared. By dissolving the vector field into the surrounding
area, location shifts and different shapes are taken into consideration. This process is described
in Section 3.3. The last step is the calculation of the similarity by computing the Sum-of-Squares
of Differences between the vector field of the query pattern and the other fly brains in Section
3.4. The process of sorting fly brains by their similarity to a query pattern represents the image
retrieval.

Non-linear mapping of neuronal structure for population analysis is explained in Chapter 4.
Non-linear dimension reduction on fly brain volume data is described in Section 4.1. This is
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the basis of the similarity visualization in Chapter 5. Embedding-based clustering is used for
investigation of the structure of the data. This is discussed in Section 4.2. Methods for image
retrieval on embedded data are introduced in Section 4.3.

Similarity visualization is introduced in Chapter 5 which is a new method for identification and
visualization of brain regions that are similar within subgroups of a study population. Section
5.1 and 5.2 describe a process multi-modal optimization via genetic algorithms to maximize a
similarity criterion. The visualization of this criterion and its discussion can be found in Section
5.3.

The validation, experiments and results are reported in Chapter 6. The similarity measure is
validated by using it as a classifier between similar fly brains and not-similar fly brains. The
validation of the mapping is done by quantitative measures while the similarity visualization
compares the results to expert-annotated brains. The results of the experiments and their discus-
sion are also part of this chapter.

The Chapter 7 contains the conclusion and outlook. The Appendix consists of the parameter
optimization (Appendix A) for the results (Chapter 6), additional results in Appendix B, and a
glossary (Appendix C).

At the publication date of this thesis, it is planed to submit the method for computing the simi-
larity measure (Chapter 3) to the Journal Neuroinformatics, by the name Structure-based neuron
retrieval across drosophila brains. Further publications of the mapping is also in prospect.

5





CHAPTER 2
State of the Art

This chapter outlines the state of the art of methods either related to the thesis or used as part
of the algorithm described in the next sections. Section 2.1 gives an overview of Drosophila
brain related analysis and retrieval methods as well as similarity or distance metrics between
neurons. Linear and non-linear dimensionality reduction methods are compared in Section 2.2.
Gradient Vector Flow, which is used in Chapter 3, is explained in Section 2.3. Cluster Stability
methods, such as those used for the validation of the non-linear mapping are outlined in Section
2.4. State-of-the-art evolutionary multi-modal optimization techniques, such as the ones used in
Chapter 5 are subject of Section 2.5.

2.1 Related Work in Computational Drosophila Brain Analysis

This section is an overview of related work regarding to computational analysis of Drosophila
brains. It includes approaches for detection of neuronal structures, their segmentation and regis-
tration, as well as their storage and retrieval.

According to Masse et al. [46], the mapping (labeling of neurons by tracers for visualization
and analysis) of neuronal circuits in Drosophila brain is divided into two major parts: The
labeling of many neural structures in a single brain (not topic of this thesis) by using electron
microscopy [10] and sparse labeling of brains by light microscopy. The advantage of sparse
labeling is the (relative to an entire brain) easier full automated segmentation. The labeled
neurons can be investigated individually and piece-wise stitched together to a plan of neuronal
circuits (like Yu et al.l [76]). The following methods are focused on sparse labeling and are
closely related to this thesis, since they also focus on specific structures of interest.
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Model based representation of neurons: The representation of a neuron can be model- or
feature-based. Model-based approaches use image segmentation to build tree like skeletons of
axons and dendrites [61]. Creating models of artificial neurons can be done by using parameters,
such as the distribution of branching points, measured by “real“ neurons and simulateing neurons
by stochastic processes [58]. Neuronal growth can be simulated via diffusion limited aggregation
[74] [44]. A method for modeling “real“ neurons are compartment models which consist of
snakes with cylinders that represent the tubular structure of neurons [61]. In such simulations
branching points and their connectivity need to be selected by the user to generate an initial
coarse representation of the neuron [61]. An automated method is the use of principal curves [31]
as skeletons on tubular objects [4]. This approach traces the principle curve of the data through
neuronal trees and is able to detect branches non supervised [4].

For model based representations, similarity metrics like TED or DIADEM exist. The Tree Edit
Distance (TED) is the amount of nodes which need to be added/removed from one tree to create
a second one [78]. TED as well as standard morphometrics like diameter/length/surface have
the disadvantage, that they are not spatial specific [26]. This can be avoided by the DIADEM
metric [26]. It is able to compare morphological changes or errors by scoring corresponding
nodes and branches by their connectivity to local regions.

Feature based representation of neurons: A feature based neuronal representation has the
advantage, that a segmentation of the neuron and a bifurcation detection (for the branching) is
not necessary because local image features such as structure tensors [59] are used. An example
for this is multi-scale vessel detection [25] was developed for tubular structures. A similar
approach is used in Masse et al. [46]. This paper is strongly related to this work.

As for this thesis, structure tensors [25] are used after a smoothing of the image data to de-
tect tubular structures on GAL4-UAS [9] labeled neurons in Drosophila brains. The similarity
between axons of different brains is calculated by first reducing the dimensionality from three
dimensions (because of the 3D tangential vector) to one dimension by the dimensionality re-
duction algorithm developed by Chigirev and Bialek [12], and finally computing the mutual
information between two brains. The purpose of this measure is to identify neuroblast1 clones
which are neurons that originate from neuronal stem cells with the same genome. Therefore a
classifier is trained that needs a small set of manual annotated data. The work in this thesis is
related to those approaches, but the focus is an retrieval of similar structures and the exploratory
analysis of large population. Another difference is, that no vector field spreading (Section 3.3)
is used to consider small differences in the shape and location shifts in Masse et al. [46].

In the context of structure tensors, tensor-based similarity measures are also relevant. A method
for comparing neurons derived by Diffusion Tensor Imaging (DTI) was introduced in Durrleman
[22]. It is based on vector fields generated by diffusion tensors. The vector fields of near neuronal
bundles of two different individuals were smoothed by a Gaussian kernel to generate an overlap.
The similarity metric is simplified an integral of inner products of the vector fields. In Verma

1cell which will develop into a neuron
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et al [71], tensors are used as feature vectors and mapped by Isomaps [67] to determine low
dimensional subspaces. This sets corresponding tensors in relation, which would also depend
on the overlap and is therefore not for shifted neurons or neurons with different shapes.

Alignment of brains: For the development and application of those methods, aligned sets of
Drosophila brains are needed. A tool for aligning Drosophila brains to atlases is BrainAligner
[51]. It is designed to align GAL4 labeled Drosophila brains to an atlas by identifying cor-
responding landmarks on a reference labeling. For this, a nc82 antibody2 [73] was used to
label the entire neuropils. Two brains are then registered by a non-regid local 3D alignment by
matching corresponding 3D feature points via RANSAC [23]. A similar approach is used in
BrainGazer [11]. The registration method is in principle the same as for Brain Aligner. Ad-
ditionally it supports rendering of the brains and retrieval by visual queries (selection of the
queries on the image data). This is closely related to this thesis, because all image data and
segmentations are registered and generated by BrainGazer.

2.2 Dimensionality Reduction

The methods which are proposed in this thesis make intensive use of dimensionality reduction
methods for the mapping of the fly brain data (Chapter 4 and 5). Due to the exploratory nature
of this work, linear and non linear methods will be compared (Chapter 6). Basic linear methods
are Principle Component Analysis (PCA) [1] and Multidimensional Scaling (MDS) [68]. While
PCA preserves the variance of the data, MDS is based on the inter point distances. It can be
proven, that these two methods (Classic metric MDS and PCA) minimize the same criterion and
therefore lead to the same result [41]. Because the relations between fly brain areas are defined
by distance matrices (Section 4.1), MDS is used.

In contrast to linear methods which are based on euclidean distances, non linear methods use
different metrics like geodesic (Isomaps [67]) or kernel-based (Kernel PCA [60]) to reveal the
underlying structure of the data. If this structure is non-linearly embedded, PCA and MDS would
fail [70]. There are several methods of non linear dimensionality reduction methods which differ
in the distance metric used and their parameters [70]. Fly brain images have varying quality
regarding to noise and contrast, which depend on the quality of the experiments [11]. Therefore,
Diffusion maps are well suited for use due to its robustness [13] compared to other methods [70].

Multidimensional Scaling

The name spans a variety of related methods. Classic metric MDS introduced by [68] is based on
euclidean distances between data points, while non metric MDS [38] can use rank information
of the data. A generalization of the classic metric, Sammon’s mapping [57] allows a non-linear

2a large Y-shaped protein
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mapping. Because MDS is used in this thesis as a linear comparison to Diffusion maps, classic
metric MDS is described in this section. To increase readability, from now on classic metric
MDS is referred to as MDS. In the following, the classic metric is explained.

The aim of MDS is to scale data X = {x1, x2, ...., xN} ∈ Rh with distances d(xi, xj) from a
high dimensional space Rh while a low dimensional space Rl (with l � h) by preserving the
original distances. The coordinates of the points in both spaces are unknown. Actually, MDS
does not preserve distances but pairwise scalar products. Therefore, the distance matrix needs to
be converted to a matrix of pairwise scalar products, called the Gram matrix S, by the following
equation [41]:

s(xi, xj) = −1

2
(d2(xi, xj)− 〈xi · xi〉 − 〈xj · xi〉) (2.1)

Because the data points are unknown, the Gram matrix can also obtained by double centering of
the N ×N distance matrix D [41]:

S = −1

2
(D− 1

N
D1N1TN −

1

N
1N1TND +

1

N2
1N1TND1N1TN ) (2.2)

The coordinates of the data in an l dimensional space can then calculated by an eigenvalue
decomposition of S [41]:

S = UΛUT (2.3)

S = (VΛ1/2)(Λ(1/2)VT ) (2.4)

S = (Λ1/2VT )T (Λ1/2VT ) (2.5)

Ŷ = Il×NΛ1/2VT (2.6)

V ∈ RN×N holdes eigenvectors and Λ ∈ RN×N a diagonal matrix with the eigenvalues of S.
The resulting coordinates Y = {y1, y2, ...., yN} ∈ Rl are a e low dimensional representation of
X.

Diffusion Maps

Diffusion maps are a non linear embedding method which can find a lower dimensional repre-
sentation of the data. The dimensionality reduction is based on local distances that are used in
a diffusion process to describe the global structure of the data [13]. In principle, the diffusion
process is a Markow random walk on a graph given by the distance matrix D. The random
walk is processed for several time steps t, therefore the diffusion metric is time depended. As a
result of the random walk, it is more likely to go to nearby data points while the probability to
walk to a point far away tends to zero [13]. This connectivity is modeled by a Gaussian kernel
function [13]

k(xi, xj) = e−
(Dxi,xj )

2

σ (2.7)

which is applied on the distance matrix D. The kernel scale σ controls the size of the neigh-
borhood where the random walk is applied. The diffusion kernel needs to satisfy following
constraints:

k(xi, xj) = k(xj , xi) (2.8)
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k(xi, xj) ≥ 0 (2.9)

For this reason, the distance matrix has to be symmetric (or an other kernel function must be
used). The entries in the diffusion kernel can be interpreted as the probabilities to walk from one
point to another point. This includes, that the sum of the probabilities to walk from one point to
all other points is 1 [18]. This can be achieved by normalizing the rows of the K by its sums.

m
(1)
i,j =

k(xi, xj)∑
k

k(xi, xk)
(2.10)

This can be also formulated as
M(1) = Z−1K (2.11)

where Z is a diagonal matrix of the row sums. The result is the diffusion matrix M(1) which
defines the probability p(1)(xi, xj) of a walk from one point xi to another point xj in a single
timestep. The probability of a walk after t timesteps is then

p(t)(xj , t|xi = Mt (2.12)

which can also be written as M(t). Similar to MDS, a low-dimensional mapping Y of the data
can be calculated by using eigenvector decomposition of M(t) [13].

M(t) = UΛUT (2.13)

which can be solved in similar to Equation 2.6

Ŷ = Il×NΛ1/2VT (2.14)

Ŷ = {y1, y2, ...., yN} represents the data points embedded in a l dimensional diffusion space.

2.3 Gradient Vector Flow

Originally, Gradient Vector Flow (GVF) is an extension for active contours [35]. Active contours
are defined as curves on an image which can be moved by an internal force field induced by the
curve itself and an external force field caused by the image data [35]. In this context, GVF can
be seen as an external force field which pushes the curve onto the contours of objects even when
the initialized position is bad [75]. Therefore GVF is used for automatic initialization of active
contours for image segmentation [24] or motion tracking [55]. Another possilbe application is
the generation of curve skeletons from 3D shapes [30].

GVF is a technique that diffuses the original contour [75]. Only a few iterations lead to a
vector field that is close to the original with less spatial variance. This reduces noise while the
initial vector field is mostly preserved [75]. A high amount of iterations spreads the contour
information into the surrounding area. For this reason, GVF is used in this thesis to smooth
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neuronal structures and expand them for a better comparison to other neurons (explained in
Section 3.3).

GVF minimizes an energy function of a gradient field V ∈ R2 of the image x ∈ R2 by

E =

∫ ∫
µ(u2x + u2y + v2x + v2y) + |V|2|VGV F − V|2dxdy (2.15)

to generate a vector flow field VGV F (x, y) = [u(x, y), v(x, y)]. In homogeneous areas (and
therefore weak gradients), |V| is small. This leads to a domination of the sum of squares term.
Therefore VGV F will be a slowly varying field. In areas with strong gradients (areas with con-
tours), |VGV F − V|2 will dominate, which results in a field that is nearly equal to V. µ is a
parameter that regulates the trade-off between those two terms.

Without proof [75], E can be minimized by an iterative numerical approximation

ut(x, y, t) = µ∇2u(x, y, t)− (u(x, y, t)− Vx(x, y, z))(Vx(x, y)2 + Vy(x, y)2) (2.16)

vt(x, y, t) = µ∇2v(x, y, t)− (v(x, y, t)− Vx(x, y, z))(Vx(x, y)2 + Vy(x, y)2) (2.17)

which converges if

∆t ≤ ∆x∆y

4µ
(2.18)

whereas t is the iteration step. It converges faster on coarse images with large ∆x and ∆y, while
large µ results in a slower convergence but smoother field [75].

To use the GVF on higher dimensional data (like on 3D vector fields which are used in this
thesis), Equation 2.15 is defined for n dimensional data as

E =

∫
Rn
µ|∇ν|2 + |∇f |2|ν −∇f |2dx (2.19)

where ∇ needs to be applied individual for every component of ν. Also the iterative Equations
2.16 and 2.17 can be expressed for higher dimensions by

νt = µ∇2VGV F − (VGV F − V)|V|2 (2.20)

As a result, GVF can now applied on 3D vector fields which is shown in Section 3.3.

2.4 Cluster Stability

Cluster stability is a measure for validating the performance of clustering. There are three dif-
ferent types of clustering: Partitioning clustering assigns every object to a specific cluster. Hier-
archical clustering divides the data stepwise into disjunct classes (divisive) or joins every object
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successive into bigger groups (agglomerative). The third type assigns each object a member-
ship probability. This is called fuzzy clustering. Different cluster stability measures focus on
different clustering types [50]. This thesis is focused on disjoint groups of fly brains. Hence,
this section outlines stability measures for partitioning clustering. Therefore it is necessary to
identify the “best“ amount of clusters k in terms of compactness or stability measures.

Compactness: An example for compactness is the DUNN index [21], which selects the amount
of clusters that minimizes the ratio between the minimum distance within a cluster and the max-
imum distance between clusters. Another method is the David-Bouldin index [16] where the
within cluster scatter in proportion to the cluster separation is measured.

Stability of k-means: Other methods investigates the data by their behavior regarding to the
variability of the clustering [50]. They choose the amount of clusters which shows the lowest
variation of subsets and therefore stable for input randomization. They reject cluster solutions
were the data is randomly split for too large ks or randomly merged for too small ks. Ben-
David [54] comes to the conclusion, that cluster stability measures depend on the function that
is minimized, like the quadratic intra-cluster error for k-means, and is therefor influenced by the
cluster algorithm. For this reason, and for simplification, the following measures are discussed
in relation to the algorithm which is used in this thesis (k-means), although other clustering
methods would be possible.

It has been shown by Rakhlin and Caponetto [54], that the stability of k-means is defined by the
geometry and underlying distribution of every class. They proved, that the clustering is stable
for unique minimization. In this context, a minimization is defined as the sum of the inter-class
scatter of all cluster:

W (C) =

k∑
i=1

∑
xj∈Ci

‖xj − ci‖2 (2.21)

where C are disjunct subsets of the data X with the centers c̄i. This infers, that the clustering is
stable if the cluster centers c are too. For this reason, the stability depends on k with respect to
the underlying distribution of the data if the amount of data points is large enough to cover the
structure (if present) of the data for stable estimation of the centers.
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Statistical tests for determining cluster stability: A method proposed by Bertrand and Mufti
[7] uses statistical tests to determine cluster stability. Therefore the data set is sampled into
subsets. For every subset, several parameters for the clustering are computed, like the cluster
isolation [43] and the cluster validity [43]. The cluster stability is defined as the difference (in
terms of a statistical test) of the distribution of the computed parameters and a random clustering
[7].

Cluster Stability Index: Ben Hur et al. [6] proposed a method which defines the stability of a
clustering by its ability to handle perturbed data. The data is sampled multiple times to generate
in each case two sub samples with a sampling ration f (f ≥ 0.5), then the paired-wise similarity
between the cluster labels are computed. The distribution of the similarities gives information
about the inherent structure of the data (depending on the cluster algorithm [5]).

The problem of the method proposed by Ben Hur et al. [6] is that the stability is not normalized
by a random clustering and therefore not comparable between different sets. Although this
is done by Bertrand and Mufti [7], it was not tested in the scope of this thesis. Instead, an
approached by Lange et al. [40] was used due to its simplicity.

Lange et al. [40] introduced the Cluster Stability Index (CSI), which is used in this thesis. For
this approach, k-means (or other clustering algorithms) is used as a classifier trained by one half
of data, to predict the clustering on the other half of the data. In detail, the data X is divided
randomly into two halves X1 and X2, then the clustering kmeans() is applied on X1. The result
of kmeans(X) is then used to train the classifier φ() to predict the clustering on X2. φ(X2)
assigns the data points of X2 to the cluster centers of kmeans(X)1. The Hamming distance [28]
between the cluster labels computed on X2 and the labels φ(X1) defines the stability value ςk.
Because there is no unique representation of the cluster labels (cluster labels can be randomly
permuted), the [39] is used to reassign the labels to maximize the agreement of X2 and φ(X1)
and therefore minimize the Hamming distance to get the stability value ςk(kmeans(X)) . This
process is repeated multiple (s) times to compute the empirical average of the similarity measures
ς̂k(kmeans(X)). Because the stability value depends on k (the number of possible mismatches
increases [40]), ς̂k(kmeans(X)) is normalized by computing the empirical stability value for
random labeling ς̂k(random(X))

ς̄k(kmeans(X)) =
ς̂k(kmeans(X))

ς̂k(random(X))
(2.22)

which defines the CSI ς̄k. The best amount of clusters can be selected by choosing the lowest
stability index. The procedure explained is shown in Algorithm 2.1 [40].
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Data: Data X , sampling amount s, and the amount of clusters k

Result: Cluster Stability Index ς̄k

1 for s times do

2 Split the data set into to equal halves X1 and X2

3 Use kmeans(X1) to train the classifier φ

4 Calculate the distance between φ(X2) and kmeans(X2)

5 end

6 Sample s random k-labelings to calculate their average stability value
ς̂k(random(X))

7 Normalize ς̂k(kmeans(X)) by ς̂k(random(X)) to get ς̄k()

Algorithm 2.1: Algorithm for calculating the cluster stability

2.5 Multi-modal Optimization using Genetic Algorithms

Genetic algorithms, introduced by Holland [32] address the problem of optimization by sim-
ulating natural evolution. The basic idea is to express parameters of the function which shall
be optimized as bit-strings similar (in fact, the genome is encoded in 4 different bases) to the
chromosomes of living beings. One single bit-string represents one solution candidate, or in the
context of evolution, individual. A fitness function is maximized by the individual that represents
the parameter settings of the global optimum.

This can be found by generating a population P of the size #P and let the individuals “compete“
against each other in terms of selecting the best f individuals. This principle is called “ survival
of the fittest“ or selection. The next step of evolution is reproduction by crossover and mutation.
Crossover selects pairs of “parents“ whose bit-strings are recombined. The new children are
inserted into the population until the population size #P is reached. By repeating this multiple
times, individuals with high fitness can pair, while individuals with low fitness are removed
from the population. In addition, mutation is used, to increase the diversity of the population.
With certain probability, every bit of an individual is changed to the opposite. This keeps the
individuals different, which can avoid local minima. The iterative process selection - crossover
- mutation - repeat enables a convergence of the population to a a global optimum (but it can
still fall in local optima [53]).
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Multi-modal3 optimization is a domain of techniques to optimize a function with multiple opti-
mum solutions. In this case, the task is not only to find one global optimum, but many or local
optima [64]. Although in the field of multi-modal optimization are more techniques like differ-
ential evolution [77], particle swarm optimization [3] or evolution strategy [33], the scope of this
section is on genetic algorithms because the problem which is given in this thesis can expressed
as bitstrings 5.2.

The first approach for finding multi-modal distinct solutions with genetic algorithms was intro-
duced by Goldberg and Richardson [27]. A niching4 method was proposed to reduce the genetic
drift5 of the selection. A slower drift allows more diversity in the population and therefore a
parallel convergence of different solutions to an optimum. This can be achieved by sharing,
where every individual in the population “shares“ its resources with individuals that are similar
(for example in terms of the Hamming distance of the bit-string). Therefore, large niches have
reduced fitness which allows a separate development of characteristics without domination.

Another niching approach is crowding [17] used by Davidor [15] for multi-modal optimization.
In the normal selection process, the #P − f individuals are replaced by new children. This can
remove potential useful genotypes from the population [69]. Crowding alters this in a way, that
a new child replaces the individual with the most similar bit-string (if the fitness is better). A
parent has usually at least 50% of the genome of the child (depended on the kind of crossover)
and is therefore most likely to be removed from the population.

Spatial Selection [14] adds a spatial component to the selection of parents. The population is
placed on an n-dimensional grid to mimic isolation by distance. The population is separated
on this map, and only individuals close together can produce offspring. So it is possible that
niches develop in different regions of the map. This is done by choosing a random location on
the grid. From this point, two r-step random walks are performed over the grid. The fittest
individuals on this walk are chosen to be the parents. The produced child is then inserted on the
original location if it is fitter than it. According to Turner [69], spatial selection can be used to
enhance crowding and sharing. He came to the conclusion, that spatial sharing performs very
badly compared to spatial crowding.

3Multiple aims
4Niche = similar individuals which lead to one optimum
5Convergence of the population to one specific solution, which would not be multi-modal
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Li et al. [42] proposed a species conserving genetic algorithm which divides the population into
species according to their similarity. Only individuals within a specie can be produce children.
After every reproduction cycle, the species of the population a determined by their similarity to
the species seed. The species seed is fittest individual of every specie from the previous cycle.
Other approaches which are not investigated in this section (because they are simple not in the
scope of this thesis) like clearing [52], restricted tournament selection [29] are compared by
Singh et al. [64].

For this thesis, spatial selection [14] in combination with crowding [17] was used due to its
simplicity and efficiency for higher population sizes [69] and because the spatial grid can be
exploited for the initialization of the problem in Section 5.2. The exact application of these
methods is described in Section 5.2.

2.6 Summary

This chapter outlined state of the art methods related to the main contribution of this thesis. At
first, related work in computational drosophila brain analysis was described. Therefore, model
based representation of neurons was compared to feature based representation. Feature based
approaches provide the advantage, that segmentation or bifurcation detection is not necessary
because local image features are used. Also the alignment of brains was explained because it is
the pre-processing step for the brain images which are used in this thesis.

Dimensionality reduction is a main topic of this thesis, so linear and non-linear methods are
outlined. The focus of this chapter was on Multidimensional scaling and Diffusion maps because
they are used in the methods.

For vector field spreading, Gradient Vector Flow was described as state-of-the-art method. As
an extension for active contours, a energy function is minimized to provide a smooth spread field
in contrast to the initial vector field.

Another topic of this thesis is cluster stability. Measures for cluster validation were outlined,
such as compactness and stability. Cluster stability is used in the methods for investigating the
structure of the data, therefore the focus was on cluster stability measures. The two groups of
measures were described, statistical tests for determining cluster stability and cluster stability
index.

The last section of this chapter was about multi-modal optimization using genetic algorithms.
The field of genetic algorithms was outlined with focus on niching for multi-modal optimization.
Several methods such as spatial selection and crowding were explained and compared, whereby
spatial selection and crowding was chosen for this thesis due to its simplicity and efficiency for
higher population sizes.
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CHAPTER 3
Structure-based Similarity Measure of

Neurons

A set of 3D images I1, . . . , IN ∈ Rm×n×h, each showing a drosophila brain, is given. They
are registered based on their neuropil structure [11]. In a query case IQ a user marks a query
region in the form of a binary mask R ∈ {0, 1}m×n×h. Let IRQ = 〈IRQ,R〉 denote the query,
i.e., the query volume together with the query region definition. The objective is to define a
distance function d(IRQ, I

R
i ) between the query and all volumes in the index. In the following it

is described how to derive this distance function in a way that allows for spatial variability of
the neural structures. The distance is basis for the ranking that constitutes the retrieval result
(Section 3.4) and the distance matrix for the creation of the embeddings in Chapter 4 and 5.

To compare structures like projections and arborizations, a vector based approach is used as an
alternative to voxel based methods (Section 6.2). Vectors along the neurons provide the advan-
tage, that they model the structure and are simple to propagate to surrounding area. To compute
the vectors, an eigenvalue decomposition of structure tensors is used [25] (Figure 3.1,(1)), while
a Gradient Vector Flow (GVF) [75] spreads them into surrounding area (Figure 3.1,(3)). This
can compensate variability of shape and location, because the spreading generates a bigger over-
lap even if the query-neuron is sligthly displaced . The Sum-Of-Squared-Differences of the
resulting vector fields is used as a similarity measure (Figure 3.1,(4)) which allows to generate
a similarity ranking concerning to the query pattern. This represents the image retrieval.
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Figure 3.1: Principle steps of the retrieval process: (1) Estimate vectors along structures, (2)
Choosing the query pattern (using of pre-segmented areas or an automated segmentation of the
largest topology), (3) Propagation of the vector field into the surrounding area, (4) Compute
similarity
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3.1 Vector estimation

Due to noisy data and registration errors, projections and arborizations show slightly different
shape on the surface of their tubular structure when comparing images of different drosophila.
These different shapes can influence the vectors along the structure in a later step. To provide
stable vectors, the data is smoothed by a 3D gaussian filter. Another effect is, that small in-
dividual differences between fibers disappear which enhances the comparability. In addition
fine fibers of arborizations merge together to build a larger topology. As it will be shown in
Chapter 6, this leads to a better comparison. The result of the smoothing are N filtered images
IFi ∈ Rm×n×h. An example for smoothing a neuron is shown in Figure 3.2. Noise and small
structures are reduced in Figure 3.2 (b) compared to Figure 3.2 (b).

(a) (b)

Figure 3.2: A random neuron of the testset [Testset1] (introduced in Section 6.1 with (a) and
without (b) smoothing. The neuron is visualized by the Matlab visualisation tool-kit [8]

Vectors that represeent the orientation of a tubular structure, are calculated by eigenvalue de-
composition of structure tensors. A structure tensor is a second-moment matrix which describes
points by gradients in their neighborhood. Compared to a gradient estimation method like the
first order derivative, which computes vectors orthogonal to a structure (because of the highest
change of intensity), eigenvalue decomposition of structure tensors generates also vectors along
a structure. Sato [59] describes a structure tensor as a Hessian matrix based on local partial
second order derivatives of the original volume.
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(a) (b)

Figure 3.3: The eigenvectors of a structure tensor near a flat, surface-like neighbourhood (a)/on
a round/tubular structure (b).
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· · · ∂2f
∂xn∂xn

 (3.1)

Additional information from the surrounding area can be used to enhance the detection of a
tubular structure. In [25], the second order derivative from a Gaussian kernel measures the con-
trast between regions inside and outside the range [−σ, σ]. This can be achieved by calculating
the partial derivatives Ix, Iy and Iz for the neighbourhood of every voxel and convolute these
volumes with a Gaussian kernel. So, the structure tensor Sx,y,z for every voxel in the filtered
image IFi is

Sx,y,z =

 I2x IxIy IxIz
IxIy I2y IyIz
IxIz IyIz I2z

 (3.2)

The eigenvalues of the structure tensor, λ1, λ2 and λ3, indicate topological structures in the 3D
image IFi . If

λ1 >> λ2 ≈ λ3 (3.3)

is true for a voxel Ix,y,z , a flat, surface-like neighborhood is found. The largest eigenvector v1
stands normal on the surface, while v2 and v3 point along the surface. Figure 3.3 (a) shows the
direction of the vectors on a flat surface.
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(a) (b)

Figure 3.4: Normalised structure tensors of a neuron represented by elispoids (a) and the largest
eigenvector (red arrows) after normalisation (b).

A tubular or round structure, is found when

λ1 ≈ λ2 >> λ3 (3.4)

This means that two orthogonal vectors v2 and v3 are normal to the surface and v1 shows along
the structure. The orthogonal vectors on a tubular structure are shown in Figure 3.3 (b). The
eigenvector v3 with the smallest eigenvalue (v3) is the vector with the smallest gradient which
is orthogonal to v1 and v2. To use the structure tensors as description of a tubular structure, a
normalization, described in [20], is applied.

λ′i = e(−γ|λ|) + ε for i=1,2,3 (3.5)

λ′1 ≤ λ′2 ≤ λ′3, λi∗ =
λ′i

(λ′2λ
′
3)

2
for i=1,2,3 (3.6)

In principle, the tensors are transformed from a gradient orientation to a structure orientation.
The structure tensors of a neuron and their orientation (largest eigenvector) are visualized in
Figure 3.4 (for the visualization of the volume data, the Matlab visualization tool-kit was used
[8]). The ratio λ3

λ2
indicates how tubular and delimited to the surrounding area a structure is.

A topology value t, defined as 1 − λ3
λ2

for every voxel, can be used to differentiate axon and
arborizations from noise and background.

For further computation (Section 3.2), only v3 and the topology value is needed to describe
topologies. Therefore, v3 is stored in a vector matrix Vi ∈ Rm×n×h×3 and t in the topology
matrix Ti ∈ Rm×n×h. The vector estimation is performed for every image Ii.
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3.2 Selection of the query pattern

Structures like other projections/arborizations near the query pattern, can have negative effects
on the vector spreading, so they have to be removed from the vector matrix V. This can be
done by using either manual selection of the query pattern or an automatic segmentation within
a bounding box.

In a previous step, the topology matrix T was introduced, which contains a topology value be-
tween 0 and 1 for every voxel. projections are usually large connected structures in the topology
matrix T, also arborizations are merged to one as a result of the smoothing in Section 3.1. The
window segmentation can be performed on the binary thresholded topology matrix Tr which
can be achieved by thresholding the topology values in T. To find the optimal threshold, Otsu’s
method [49] is used because it is a fast standard method. It minimises the weighted sum of
intra-class variances

σ2w(r) = ω1(r)σ
2
1(r) + ω2(r)σ

2
2(r) (3.7)

where ωi are the probabilities of the separated classes by a threshold r, and σ their variances.

Within a bound box, the largest topology can be determined by using a standard connected
component labelling algorithm [62] for binary images. The algorithm is simple straight-forward
implementation: Search for the next unlabelled pixel and use a flood-fill algorithm to label all
connected pixels. This is done as long as there are unlabelled pixels. Figure 3.5 shows, that the
segmentation of an axon reduces the amount of structures which would be compared because
only the big axon in the middle is selected.

For either manual selection or automatic segmentation, the query region is denoted as R ∈
Rm×n×h which is a binary mask that is 1 for voxels that are part of the query region and 0 if
they are not. R = Tr for automatic segmentation.

3.3 Vector field spreading

To spread the vector into the surrounding area, Gradient Vector Flow ( [75] and [30]) is used.
By applying this on the query pattern VQ, the structures are expanded and diffused, so it is
more likely to match them in related volumes. Another property of GVF is the smoothness of
the produced gradient vector flow field VGV F = [u(x, y, z), v(x, y, z), w(x, y, z)]. This field is
defined by the minimization of the energy function

E =

∫ ∫ ∫
µ(u2x+u2y +u2z + v2x+ v2y + v2z +w2

x+w2
y +w2

z) + |VQ|2|VQGV F −VQ|2dxdydz
(3.8)

If |VQ| is small (no/less structure), the first term dominates, which leads to a slowly varying
field. If |VQ| is large, the term |VGVF

Q − VQ| is minimized, resulting in vectors near VQ, but
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(a) (b)

Figure 3.5: Axon without segmentation (a) and with largest topology segmentation (b). The red
arrows represents the vectors along the structure.

forced to be smoothed in homogeneous regions. The trade-off between these two terms can be
controlled by the parameter µ.

In [30], it can be shown that Equation 3.8 can be numerical approximated in an iterative way by

ut(x, y, z, t) = µ∇2u(x, y, z, t)− (u(x, y, z)− VQx(x, y, z))|VQ(x, y, z)|2 (3.9)

vt(x, y, z, t) = µ∇2v(x, y, z, t)− (v(x, y, z)− VQy(x, y, z))|VQ(x, y, z)|2 (3.10)

wt(x, y, z, t) = µ∇2w(x, y, z, t)− (w(x, y, z)− VQz(x, y, z))|VQ(x, y, z)|2 (3.11)
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which converges if

∆t ≤ ∆x∆y∆z

6µ
(3.12)

whereas t is the iteration step. This iterative solution converges faster on large vectors, while
large µ results in a slower convergence but smoother field.

The gradient vector flow field depends on the quality of the data. Noisy data and additional
structures in the query area can deform the field in a negative way. Therefore Figure 3.6 shows
synthetic 2D data. The red lines represent the vector along the structures, spread by GVF. As
one can see, the vector field of the largest topology (b) is smoother than the vector field from the
whole image (a).

(a) (b)

Figure 3.6: GVF (a) of synthetic, 2D data, compared to GVF of the largest topology (b). Red
lines represents the vectors along structures, spread by GVF
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3.4 Similarity measure and retrieval

The measure of similarity is based on the vector fields in the query area R. Due to the compu-
tational intensity the GVF is only used on the query pattern VR

Q. Therefore, the GVF is applied
on the unit vectors of the structures VR

Q, so the structure itself has a vector norm of 1, while the
norm is decreasing with the distance. This presents the probability of finding the structure at a
location. The resulting vector field VRGV F

Q can be compared within the query area R in other
volumes V1..N by the Sum-of-Squares of Differences between two vector fields [22].

distance(VRGV F

Q ,VR
i )2 =

∑
x∈R

||VRGV F

Qx VRGV F

Qx ||+
∑
x∈R

||VR
ixVR

ix || − 2
∑
x∈R

||VRGV F

Qx VR
ix ||

(3.13)

Then, for two images Ii and Ij , the distance function d(Ii, Ij) can be defined as

d(IRi , I
R
j ) =

{
distance(VRGV F

i ,VR
j ) if i 6= j

0 if i = j
(3.14)

where IRi is the query image with the corresponding (spreaded) vector field VRGV F

Q and VR
j is

the vector field of IRj . The distance is than calculated for the region R.

The result is a distance function d(IRi , IRj ) that can be used for image retrieval within a query
region. This is done by ording the the vector fields Vi(i = 1..N) of the images Ii(i = 1..N)
ascending by their distance to the vector field VGV F

Q of the query case IRQ.

3.5 Summary

This section introduced a similarity measure for drosophila brain images I in the query area R.
Spatial variability and variability in the shape of the neural structures are taken into consideration
by the usage of GVF. The method defines a distance function d(IRi , IRj ) which can be used for
image retrieval. In addition, the distances can be used for the creation of distance matrices for
the generation of embeddings. This is described in Chapter 4.
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CHAPTER 4
Non-linear Mapping of Neuronal

Structure

This chapter will describe a method for non-linear mapping of drosophila populations for spe-
cific brain regions. A binary matrix R ∈ Rm×n×h defines a brain region of interest. The simi-
larity measure d(IRi , IRj ) of Chapter 3 is applied for the region R to define the relations between
drosophilas. Then, dimensionality reduction is used to generate a low dimensional mapping of
the population to reveal the inherent structure of the data. The concept of this process is shown
in Figure 4.1. A drosophila population consists of two different groups (red and green) for a spe-
cific region (rectangle) which is not known. The plot shows the structure of the data by mapping
similar brains close together.

Diffusion maps are used to generate embeddings of the data. They are based on a diffusion
matrix which is created by using the similarity measure of Chapter 3. The diffusion process and
the mapping of the data is described in Section 4.1. A method for analyzing the mapping for
structure is shown in Section 4.2. Therefore the clustering behavior on the data is investigated
by several measures that are also explained in this section. Retrieval based on the embedded
data is described in Section 4.3. Section 4.4 summarizes the chapter.
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Figure 4.1: The distance function d(IRi , IRj ) is used to define the relations between a drosophila
population to generate a low dimensional representation of the data which reveals the underlying
structure of the data (two different groups, red and green).

4.1 Mapping

For non-linear mapping techniques like Diffusion maps, a distance metric for data points is
needed [13]. For local brain areas, a similarity measure was introduced in Section 3.

For every brain volume Ii(i = 1..N), the distance to every other brain volume Ij(i = 1..N) can
be computed within a sub area (defined by the superscript R) which corresponds to the query
pattern used in the last chapter. If d(IRi , IRi ) is this distance from Equation 3.14, the distance
matrix can be defined as

DR
i,j = d(IRi , I

R
j ) (4.1)

DR ∈ RN×N captures the structure of the population, focusing on the region R. Hence, it can
be used to map the brains to a l dimensional diffusion space by adapting the basic Diffusion
Map Algorithm [18]. Algorithm 4.1 uses the distance matrix DR to generate a l-dimensional
embedding of the data points (brain volumes). The principles of Diffusion maps are explained in
Section 2.2. The distance matrix defines a graph of volumes Ii, and the diffusion map represents
transition probabilities of a random walk in this graph.

As one can see in Equation 3.14 (Section 3.4), the distance function is not symmetric (because
the GVF is only computed on the query pattern). Because a condition for the Diffusion map
algorithm is that the kernel matrix k is symmetric [18] (k(x, y) = k(y, x)), the distance matrix
D needs to be symmetrized before the kernel function is applied.

DR
i,j =

DR
i,j +DR

j,i

2
(4.2)

For the purpose of simplification, the symmetrized distance matrix is denoted as “distance ma-
trix“ in this thesis.
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The probability for walking between to data points IRi and IRj is calculated by using the kernel
function

k(IRi , I
R
i ) = e−

(DRi,j)
2

σ (4.3)

which transforms values in the distance matrix by an exponential function to values between 0
and 1. k(IRi , I

R
i ) represents the local similarity measure within a neighborhood. The size of the

neighborhood is defined by the kernel scale σ (distance of a walk on the graph) which is based
on the structure and density of the data [18]. In the context of the distance measure which is
used in this thesis, using the maximal distance between two points as σ transforms the data to
the total space between 0 and 1. This can be seen in Figure 4.2 where (a) is the distribution of
the distances of a set of 110 fly brains1 accumulated over the entire brain (R = entire brain) and
(b) is the distribution transformed by k(IRi , I

R
i ).

(a) Distribution of the distances (b) Distribution of the scaled distances

Figure 4.2: Distributions of the distances (a) and the transformed distribution (b) of a set of 110
fly brains

The resulting Kernel matrix K is then normalized by their row sums given by the diagonal matrix
Z of to generate the probability matrix M

M = Z−1K (4.4)

The diffusion process on the graph is represented by calculating the diffusion matrix for diffusion
time t

M(t) = Mt. (4.5)

It represents the probability of walks along the graph edges geometry. An increasing value of
t maps brains with low similarity closer together. The mapping itself is then computed by an
eigenvector decomposition of M(t). The first l-eigenvectors represents a l-dimensional diffusion
space.

1[D1] set given in Section 6.1
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Data: Distance matrix DR for brain area R, Kernel scale σ, timesteps t
in the diffusion process, dimension of diffusion space l

Result: Lower dimensional mapping YR

1 Calculate the probability for walking between two data points IRi and
IRj by using the kernel function k(IRi , I

R
i ). The result is a kernel

matrix K

2 Compute the probability matrix M by normalizing by the row sums D
of the Kernel matrix K, so M = D−1K

3 The diffusion matrix at the timestep t is defined as M(t) = Mt

4 Calculate the eigenvectors of the diffusion matrix

5 Use the first l-eigenvectors normalized by their eigenvalues to get the
l-dimensional diffusion space

Algorithm 4.1: Adapted Basic Diffusion Mapping Algorithm [18]

The result of Algorithm 4.1 is a mapped drosophila population YR in an l-dimensional space.

An example for the mapping of a population for an area R can be seen in Figure 4.4. For this, a
set of 110 fly brains2 is used, where 35 contain the pIP10 neuron [76]. The segmented neuron is
shown in Figure 4.3.

The purple segmentation defines the pattern R which was used to map the population mapped
to a 2D space by Diffusion maps in Figure 4.4 (b). The circles represent brains with pIP10, the
crosses brains without pIP10. Figure 4.4 (a) shows a mapping by the linear dimensionality re-
duction method Multidimensional Scaling (MDS) [1]. While MDS can not separate the dataset,
the Diffusion maps algorithm divides the dataset into two distinct groups. This maps the true
relation (two groups, which are not similar to each other) better than the MDS.

4.2 Embedding-based clustering

Applying clustering algorithms on the embedded data is a way of investigating the structure of
a drosophila population for a specific brain region R. Clusters in the data represents different
groups of flies with similar neuronal structures (proof in Section 6.6). The purpose of this
section is to introduce a method for finding a clustering of the data that maximizes several
quality criteria.

As clustering algorithm, k-means clustering (Section 2.4) is used due to its simplicity. Addition-
ally, it has been shown by Rakhlin and Caponetto [54], that the stability of k-means is defined

2[D1] set given in Section 6.1
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Figure 4.3: Fly brain with segmented pIP10 neuron (purple)

by the geometry and underlying distribution of every class. Therefore it is appropriate to explore
the data for structure. To perform k-means clustering, the amount of clusters k, the dimensional-
ity of the embedding l and the diffusion time t needs to be estimated. For this, three quantitative
evaluation functions are used.

Nearest Neighbor Mutation: To estimate the diffusion time t and the dimensionality of the
embedding l, the mutation labels (VT-Lines) of brains are used to act as a ground truth. Fly brains
with the same genetic mutation are samples of the same genotype (like clones), so fly brains of
the same mutation are more similar to each other than to brains of an other mutation. If brains of
the same mutation are not mapped close together (but close to a different mutation), information
about the similarity is lost. A Nearest Neighbor Mutations (NNM) is defined as a mutation where
all of its brains mapped closest together (brains of the same VT-Line are their nearest neighbors).
The dimensionality of the embedding and the diffusion time can be determined, by maximizing
the amount of NNMs.
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(a) Mapping of the segmented area to a 2D space by MDS, The circles represent brains with
pIP10, the crosses brains without pIP10

(b) Mapping of the segmented area to a 2D space by Diffusionmaps

Figure 4.4: Comparison between Diffusionmaps and MDS mapping methods. Both figures show
the first two dimensions of the mapping The circles represent brains with pIP10, the crosses
brains without pIP10.
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Intra vs inter VT-line distance: In addition to the number of NNM, the distances within the
brains of a VT-line (intra) and the distances between VT-lines (inter) can be compared. The
mapping is more confident, if the brains of a VT-line are closer together in relation to the overall
distance between the lines for the reason that brains of the same VT-line are samples of the same
genotype (analog to NNM). By comparing the distribution of the intra and inter VT-line distance,
and maximizing their difference, the dimensionality of the embedding and the diffusion time can
be estimated.

Cluster Stability Index: The Cluster Stability Index (CSI) [40] which is described in Section
2.4 is used to investigate the structure of the data. The stability is calculated for k-means clus-
tering for different k. A low (close to 0) CSI means high stability of the clustering, therefore
structure in the data can be expected. The CSI is normalized to random labels, therefore a high
(close to 1) CSI indicates a random clustering and in conclusion no structure.

The three measures can be used to evaluate clusterings on embeddings with different parameters.
Clusterings that maximize the amount of NNM and the Intra vs inter VT-line distance while min-
imizing the CSI are considered to represent meaningful structures that can further investigated
by a biologist. The application of those methods are shown in Section 6.3 and 6.6.

4.3 Embedding-based Retrieval

This section describes two methods of image retrieval on the mapped data for the purpose of a
potential improvement. This is evaluated in Section 6.5. The retrieval can be either performed
based on the distance on the mapping or by clustering. For both methods, the mapping YR needs
to calculated first.

Distance on the mapping: The euclidean distance for every data point YR
i of the mapped data

to the query pattern YR
Q is calculated.

d(YR
Q,Y

R
i ) = ||YR

Q − YR
i ||2 (4.6)

The order of the data points ascending by their distance to the query image represents the re-
trieval result.

Hierarchical distance: Another method is the use of the hierarchical distance on the map-
ping. The clustering behavior of the data is exploited for retrieval. Points that are more likely
to be in the same cluster are specified to be more similar than points that are unlikely to cluster
together. Therefore, a hierarchical distance is defined as the maximum tree depth in a complete
linkage clustering dendrogram [63] that connects two points YR

Q and YR
j of the mapped data

d(YR
Q,Y

R
i ) = min depth(CRQ ∩ CRi ) (4.7)
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where CRQ is the set of clusters that contains brain Q and Ci the set of clusters that contains i.
The basic idea of this metric is shown in Figure 4.5. The minimum tree depth of the path that
connects (1) and (2) is 2, while the minimum tree depth of the path between (2) and (3) is 1.
Therefore, (1) and (2) are closer together.

Figure 4.5: Example dendrogram to visualize the idea of a hierarchical cluster metric. Red and
blue shows the path in the tree that connects the points (1) and (2), and (2) and (3)

Retrieval algorithm: The process of the two retrieval methods is described in Algorithm 4.2.
The retrieval result is represented by ordering the brains by their hierarchical distance/euclidean
distance in the embedding to the query brain.

Data: Binary mask R which locate the structure

Result: Classification error

1 Generate the distance matrix DR

2 Compute the mapping Y R of DR

3 (Perform a hierarchical clustering on the mapping)

4 Order the brains by their hierarchical/euclidean distance to the
query brain

Algorithm 4.2: Algorithm for embedding enhanced retrieval
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4.4 Summary

Based on the distance function of Section 3.4 a method for non-linear mapping of drosophila
populations for specific brain areas is introduced. The mapped data YR can be used for visualiz-
ing the relations between brains, as well as for investigation of the data by clustering algorithms.
In addition, embedding-based retrieval methods are described.
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CHAPTER 5
Similarity Visualization

In addition to finding structure in the data, the embedding can be used to detect regions in
the drosophila brain that exhibit similar neuronal structures for a subset of the population. This
means that non-linear mapping is used to identify similar regions within a set of brains S. There-
fore, these regions need to be distinguished from regions with a high inter-individual variability.
This is done by using the similarity criterion for brain areas which is described in Section 5.1.
Because the computation of every possible region and their criterions is to expensive, the se-
lection of areas is modeled as a multi-modal optimization problem. The method, which uses
genetic algorithms for solving, is explained in Section 5.2. The visualization of the outcome is
then defined in Section 5.3.

5.1 Similarity Criterion

A simple criterion can be created by applying the similarity measure of Chapter 3 between each
drosophila brain Ii(i ∈ S) in the subset S of the population Ij(j = 1..N).

S ⊂ P (5.1)

Regions with similar structures for all brains in the set have a lower mean distance compared to
regions with a high variability (proof in Section 6). It will be shown in Chapter 6, that distances
on the embedding represents the true geometric structure of the data better than the similarity
measure only.

Let YR
1..N be the embedded data of a drosophila population for a region R, and DY R

1..N the distance
matrix of YR

1..N based on the euclidean distances of the mapping. Therefore, on embedded data
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YR
1..N , the mean distance within a subset S of the population is defined as

D̄Y R

S =

∑
i∈S

∑
j∈S

DY R
i,j

#S2
(5.2)

where #S is the amount of drosophila brains in the subset. A calculation of the distance matrix
for every possible area is too expensive, therefore, the drosophila brains can be divided into a set
of non-overlapping cubic windows1 W of equal size by a grid (window grid). For every window,
a distance matrix DWi

1..N of the Ij(j = 1..N) is created. Due to the additivity of Sum-of-Squared
differences, the distance matrix DWi+Wj of a region which consists of the windows Wi and Wj

is equal to the sum of their particular distance matrices DWi and DWj . The effect of GVF and the
differences in the structure tensors on the edges of the windows are ignored for simplification.

DWi+Wj = DWi + DWj (5.3)

The mapping YWi+Wj

1..N can than generated by applying Algorithm 4.1 on DWi+Wj . Hence, the
criterion can be computed for every subset (every combination of windows) of W. Subsets
which minimize the criterion correspond to the similar regions. These subsets can be identified
by the usage multi-modal optimization techniques.

5.2 Multimodal Optimization

The criterion can be computed for every single window. The disadvantage of this method is, that
it captures only local similarity. Structures which cover more than one window are split and not
treated as one structure. Therefore, windows can be combined (Equation 5.3) and recombined.
Finding combinations that minimize the criterion D̄Y R

S (Equation 5.2), where R represents a
region of combined windows, can be seen as optimization problem.

The principle idea is to find all (or at least a representative subset of) possible solutions. A
solution is defined as an individual2 Pi (of a population P ) which represents a connected set of
windows (a region) that minimizes the criterion D̄Y R

S . For the usage of genetic algorithms, the
region R of an individual can be expressed as a binary string RB to act as the genome.

RB = {0, 1}#W . (5.4)

RB is a bit-string of length #W , where #W is the amount of non-overlapping windows that
split the brain. If the ith element of RB is 1, Wi is part of the region that is represented by the
individual. The criterion (Section 5.1) is defined as fitness. In this case, the genetic algorithm
needs to minimize the fitness function. Therefore, a “better“ fitness is denoted as smaller.

fitness(Pi) = D̄Y RB
S (5.5)

13D bounding box
2connected set of windows
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The process of the calculation of the fitness is also described in detail in Algorithm 5.1.

Data: Distance matrix DWi
1..N for every window Wi(i = 1..N),

genome RB of the individual Pi, subset of interest S

Result: fitness of Pi

1 Calculate DRB
1..N according to Equation 5.3 (summarize the distance

matrices of all windows that are in the genome RB .

2 Generate the embedded data YRB
1..N by applying Algorithm 4.1 on

DRB
1..N

3 Calculate the euclidean distance matrix of the subset DY RB
S on the

embedded data YRB
1..N

4 fitness(Pi) =
Y RB
S

Algorithm 5.1: Calculation of the fitness of an individual

The fitness of regions found indicates the similarity of the covered area which can be used to
visualize the variability by a heatmap (Section 5.3). Because basic genetic algorithms are only
capable of finding one possible solution [45], spatial selection [14] and crowding [17] is adapted
for multi-modal optimization. The principle parts of the optimization are:

• Spatial Selection [14] places individuals of a population randomly on a two dimensional
map to establish spatial isolation between them. Only parents which are close together (i.e.
they can reach each other by a r steps) can perform a crossover and make children. This
simulated environment allows a separate development of subpopulations and therefore a
convergence in distinct solutions [14]. The selection process is performed by choosing a
random individual Prandom an perform two r-step random walks to get two parents. The
crossover of the parents Pnew will replace the individual Prandom if

fitness(pnew) > fitness(Prandom) (5.6)

• Crossover merges two individuals of the population P to a new child and computes its
fitness. For this, the child consists of a subset of the parent windows. An example for
this can be seen in Figure 5.1 (a) and (b). Because a region is a connected area (otherwise
it would not be a region but more than one) also a connectivity constraint is used which
means, that only connected components are valid solutions. This includes that only parents
that lie next to each other can produce these components. Figure 5.1 (c) and (d) visualize
this concept. The constraint also reduces the amount of possible solution.
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(a) (b)

(c) (d)

Figure 5.1: (a) Two parents (red and orange windows) without connectivity constraint, (b) Pro-
duced child (green windows) by a uniform crossover of (a), (c) Two parents (red and orange
windows) with connectivity constraint, (d) Produced child (green windows) by a connectivity
constrained crossover of (c)
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Figure 5.2: Concept of Crowding and Spatial Selection. The arrows form random walks on the
spatial grid, Prandom is a random initial point, PParent1 and PParent2 are the parents and Pnew
is the child.

• Crowding [17] is an extension of Spatial Selection which effects the insertion into the
population. Spatial Selection would always replace individuals with lower fitness than the
new individual Pnew, and removes thereby potential useful information from the popula-
tion [69]. The use of crowding avoids this by only replacing individuals with a similar
genome (=windows) to Pnew. This is performed by computing a r-step random walk
from a random individual Prandom, and replacing the individual which has the highest
window-overlap to Pnew on the walk. An illustration of this process can be seen in Figure
5.2.

• Mutation To increase diversity of the population, a random window is added to or re-
moved from the new individual Pnew to generate Pmutated. If it is still a connected com-
ponent, use Pmutated as new individual, otherwise use Pnew.

The combination of these techniques are used in Algorithm 5.2. The parameters of the algorithm
are the population size #P and the random walk steps r. A high population size increases
the diversity, but is computationally expensive [69]. A low amount of random steps leads to
a higher amount of distinct solutions (compared to a high amount of random steps [69]), but
a slower convergence [69]. A constraint of the search space is the connectivity of a region.
A region consists of connected windows, otherwise it would not be a single region but more
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than one.Another point is that connected regions allow a more directed evolution compared
to uniform crossover since uniform crossover selects a random subset, which can also be a
disconnected solution, while the result of the crossover method in Algorithm 5.2 is already valid
(as connected region). This concept is shown in Figure 5.1. Figure 5.1 (a) shows two parents
(red and orange windows) without connected regions which make a child by a uniform crossover
(Figure 5.1 (b)). The connectivity-constrained crossover selects a connected random subset of
two parents (red and orange windows in Figure 5.1 (c)) which leads to a child that is also a
connected region (green window in Figure 5.1 (d)).

The initialization of the algorithm can exploit the spatial selection in combination with the con-
nectivity constraint. Giving the spatial selection map the same aspect ratios as the window grid
of the windows, the individuals can be placed on the map according to their window locations.
This means that individuals that are able to perform a crossover due to the connectivity con-
straint are close together and different brain areas can develop a optima separately from each
other.

The output of Algorithm 5.2 is a set of solutions (the final population) which minimize the
mean distance of all brains to each other in distinct regions. The algorithm is finished when the
maximum amount of epochs e is reached. The visualization of the solutions by a heat map is
described in Section 5.3.
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Data: Distance matrix DWi
1..N for every window Wi,

population size #P , amount of random steps
r, amount of epochs e

Result: A set of distinct solutions (final population)
P consisting of their areas fitness

1 Generate a random population P with #P
individuals (=connected area)

2 (Spatial Selection) Place every individual on a√
#P ×

√
#P 2D spatial grid according to their

location of the windows

3 for 1− e do
4 (Spatial Selection) For every point on the

spatial grid (in a random order), perform two
r-step random walks to get the parents

5 (Crossover) If the parents form a connected
area, choose a random sub-area to form the
child Pnew

6 (Crowding) Perform a r-step random walk.
Take the individual Pi,j on the way, which has
the highest overlap to the child Pnew

7 (Mutation) Choose a random window. Add it or
remove it from Pnew to generate Pmutated. If it
is still a connected area, Pnew = pmutated

8 If the fitness of the child Pnew is better than the
fitness of individual Pi,j , replace Pi,j with the
Pnew

9 end

Algorithm 5.2: Multimodal optimization of the search for similar regions

5.3 Visualization

The visualization of similar regions is based on the output population of Algorithm 5.2. As
example for the visualization, respectively as input data, serves [D2], the similarity is visualized
for [SVGT2] subset (part of [D2-EXT-VIS]) of Section 6.1. The maximum intensity projections
(MIP) of two representative brains are shown in Figure 5.3 with labeled areas (yellow, part of the
mushroom body) which are annotated to be similar. The MIPs include only slices which contain
the annotated regions to allow visual determination.
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(a) (b)

Figure 5.3: Maximum intensity projections of two example brains of two different mutations
with labeled ground truth (area which is annotated to be similar)

By computing the fitness only for single windows (an individual PWi consists of only one win-
dow Wi), and hence without optimization, the fitness/ similarity-heatmap captures only local
similarity. Structures which cover more than one window are not treated as one structure. This
means, that the different windows show different similarities although they cover the same struc-
ture. This can be seen in Figure 5.4 (a) especially for the vertical middle structure in Figure 5.3.
Dark blue represents high similarity, while dark red and brown indicates low similarity. For 2D
visualization, only the layers (on the z-axis) which contains the mushroom body are used, and
the fitness of the windows is summed over the z-axis.

After using Algorithm 5.2, the result looks different (see Figure 5.3 (b)). The visualization is
done by plotting for each window Wi the mean fitness of all solutions that contains Wi. The
image looks more smooth compared to Figure 5.4 and homogenious in the regions that contain
similar regions. Also the overlap with the annotated similar regions is increased compared to
the single-window visualization. As one can see, also a long vertical area is blue-colored. This
is not in contradiction with the ground truth, because the annotations are only covering the
mushroom-body (more details in Section 6.1).

Another method for visualization is not only to use the mean of the mapped distances D̄Y RB
S ,

but comparing the mapped distances of the subset of interest DY RB
S with the mapped distances

of the remaining dataset D̄Y RB
N\S by an one-sided U-Test (utest(x1, x2)). The resulting p-values

are then used as fitness.

fitnessU (Pi) = utest(D̄Y RB
S , D̄Y RB

N\S ) (5.7)
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(a) (b)

Figure 5.4: Fitness of every single window (fitness(PWi)) (a) and the mean fitness
(fitness(Pi)) (b) of every window of the optimized solutions. Both figures show only win-
dows within the layer (z-axis) of the mushroom body. Blue means high fitness (high similarity),
red low fitness (low similarity).

The result of this approach is visualized in Figure 5.5 (b). The results similar to the mean fitness
5.5 (a), but less smooth and stronger distinction between similar and not-similar.

5.4 Summary

This chapter introduced a method for finding similar neuronal structures for a subset S of

drosophila brains. A criterion D̄Y RB
S was defined for a region RB that consists of a set of cu-

bic windows. By using multi-modal optimization techniques, combinations of windows can be
found that minimize the criterion. The resulting solutions can be visualized by a heatmap to
show neuronal structures that are similar for the subset S.
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(a) (b)

Figure 5.5: Mean fitness (fitness(Pi)) (a) and mean p-value (fitnessU (Pi)) (b) of every win-
dow of the optimized solutions in the layer (z-axis) of the mushroom body. Blue means high
fitness (high similarity), red low fitness (low similarity).

48



CHAPTER 6
Validation and Results

This chapter is about the validation of the methods introduced. Section 6.1 gives details about
the experiment datasets which are used for the the images and experiments of this thesis. To
facilitate reading, the section is subdivided into experiments, each evaluating a particular aspect
of the methodology. Each experiment-sections consist of the formulation of the aim, the corre-
sponding evaluation function, the used dataset as well as the results and the discussion. Section
6.2 describes the evaluation of the similarity measure by image retrieval. Section 6.3 describes
the validation of the non-linear mapping and how the structure of a population can be summa-
rized. The similarity visualization on brains is the subject of Section 6.4. The embedding can
be also used for enhancing the image retrieval of Section 6.2. This is described in Section 6.5.
In addition, a completely exploratory analysis of data is performed and discussed in Section 6.6.
All results of the performed experiments were computed by using optimized parameters which
are estimated and explained in Appendix A.

6.1 Experiment Data

The set-up is based on expert labeled data which consists of 1151 3D drosophila brain volumes
acquired by a Zeiss LSM 510 confocal microscope, that can visualize traced neurons. The
volume data is stored as 100MB Amira files [2]. The last 97.320.960 bytes of a file are a
768× 768× 165 matrix, which express the brain-volume by intensity values between 0 and 255
(Figure 1.1). The data was exported by BrainGazer [11] and provided by the Barry Dickson
Lab [19].

The testset can be divided into four parts:

• Data set 1 [D1] consists of 110 3D volumes, which are related to the pIP10 neuron [72].
35 brains show the pIP10 neuron, so they are similar to each other, while the remaining 75
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brains are negative for this neuron. Figure 6.1 shows two fly brains with 2 segmented pro-
jections and 3 segmented arborizations of this neuron. projection L_pIP10, arborization
A,B and C belongs to the same neuron (L_pIP10), while R_pIP10 is the corresponding
neuron in the other hemisphere of the brain. These five structures are the test cases for the
retrieval evaluation which is described in Section 6.2 and the enhanced retrieval in Section
6.5.

Figure 6.1: Segmented structures: projection L_pIP10 (green), projection R_pIP10 (cyan), ar-
borization A (orange), arborization B (red), arborization C (blue). The colours correspond to
Figure 6.6 and 4.3 (the purple structure in Figure 6.6 and 4.3 is the combination of L_pIP10,
arborization A,B and C)

• Data set 2 [D2] consists of 1041 various drosophila brains without a priori known pre-
defined appearance characteristics. For each brain the corresponding VT-line is known.
The 1041 brains contain overall 350 VT-lines, with each VT-line being represented by 2-6
(on average 3) example brains. This set is used for the evaluation of the embedding and
summarizing the structure of a population 6.3.

• Data set 3 [D2-EXT] is a sub set of [D2] with 62 brain. It is named EXT (“external
neuron“) after the neuron which can be found in the Mushroom-body and the Central
complex region. The regions are annotated and shown in Figure 6.2.

• Data set 4 [D2-DPM] is also sub set of [D2] and consists of 24 brains with expressed
DPM (“dorsal paired medial“) neuron in the Mushroom-body region (Figure 6.2).
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(a) Mushroom Body (b) Central complex

Figure 6.2: Two example brains of the testset where Mushroom-body is yellow colored and the
Central complex is pink. The white border marks the area which is shown in Figure 6.3

• Data set 5 [D2-EXT-VIS] is identical to [D2-EXT]. However, for a sub set of [D2-EXT],
labels of 9 different structures of 6-12 images each (each containing 2 VT lines) for which
the morphological structure in the Mushroom body is particularly similar. Figure 6.3
shows one example brain of every subset with labeled annotations.

6.2 Evaluation of retrieval based on distance function

This section describes the verification of the distance function of Chapter 3. No rankings or
other measures are available as ground truth. Instead manual annotations of the volumes by an
expert who classified each volume if it contains the pIP10 neuron (projection + corresponding
arborization) or not are available. The annotated volumes represents 110 images of the experi-
ment data [D1] which were mentioned in Section 6.1.

Research Question

Can the distance function (Section 3.4) be used for content based image retrieval, to retrieve
cases that contain a specific query structure? Given 6 query structures (Figure 6.1), can cases
that contain the same structures be retrieved?
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(a) SVGT1: Crossing the middle
of horizontal lobes

(b) SVGT2: Heel (c) SVGT3: Heeltip

(d) SVGT4: Heeltip + vertical
lobe

(e) SVGT5: Lower horizontal
neuron

(f) SVGT6: Medial heeltip

(g) SVGT7: Medium horizontal
lobes

(h) SVGT8: Vertical lobes (i) SVGT9: Medial Uppertip

Figure 6.3: Example brain of every Similarity Visualization Ground Truth (SVGT) with labeled
annotations (yellow) [D2-EXT-VIS]

Validation method

The retrieval is performed on datset [D1]. By using the measure as a discriminator for pIP10 and
not pIP10 labels, the classification error indicates the performance and quality of the method.
The theoretical decision boundary is the amount of equal volumes. pIP10 volumes with a sim-
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ilarity to a query pattern below the boundary, and pIP10 volumes above the boundary are false
classified. An example of this concept can be seen in Figure 6.4. It shows the density of the dis-
tribution of not pIP10 and pIP10 volumes over the rank and the theoretical decision boundary.
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Figure 6.4: The Figure shows the distribution (y-axis) of pIP10 (green)/not pIP10 (red) volumes
over their search rank (x-axis) (the blue line is theoretical decision boundary) for all 6 testruns
(row-wise order: L_pIP10 proj, R_pIP10 proj, arbA, arbB, arbC and L_pIP10

To validate the search algorithm, three different query region definitions for each search-structure
(L_pIP10, R_pIP10, arborization A,B and C) were applied and the classification error calculated.
For the experiments, the optimized parameters (Appendix A) were used.

1. Manual query region segmentation: The pre-segmented structures of Figure 6.1 were
used as query pattern. The segmentations are given as binary masks. The query area (area
which is compared between the images) is defined by the (morphological) dilation of the
binary masks.

2. Automatic segmentation within a bounding box: To evaluate query region selection via
bounding box, we artificially created a bounding box around the query region. The query
region was then automatically determined as described in Section 3.2. The selected struc-
tures are shown in Figure 6.5. As one can see, it is not possible to select only projections
due to their direct connection to arborizations. This could be solved by split the projec-
tion into smaller sub-regions. In this case it is not necessary because the arborizations
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and projections of the same neuron are usually present simultaneously (so they have the
same ground truth). The query area can be derived by a (morphological) dilation of the
segmentations.

(a) (b) (c)

(d) (e) (f)

Figure 6.5: Structures segmented by largest topology within a window (white): projection
L_pIP10(projection,green), projection R_pIP10 (projection,cyan), arborization A (orange), ar-
borization B (red), arborization C (blue), L_pIP10 (projections + arborization A,B and C, pur-
ple). The colors are corresponding to Figure 6.6 and 6.1

3. No segmentation within a bounding box: To see the effect of the automatic segmentation
of the query pattern, also a retrieval within a window without segmentation is computed.
The query area corresponds to the windows of the automatic segmentation in Figure 6.5.

To validate the methods, the results shall be also compared to a voxel-based method. The method
is straight forward: The query pattern and the volumes are thresholded via Otsu’s method [49]
within the query area (defined by the windows which are also used for the automatic/no seg-
mentation methods) shown in Figure 6.1). Then, the resulting binary images are compared by
the DICE coefficient.
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Results and Discussion

The results of the three test cases of this section are shown and discussed in the following.

Table 6.1 shows that the manual query region segmentation approach performs with a mean
classification error of 8% better than the other methods on average. This is caused by the accurate
selection of the structure compared to the automatic segmentation. In relation to the manual
selection, the segmentation of the largest topology (automatic segmented), which is described
in Section 3.2, increases the classification error for neurons to 9.3% because the form of the
neuron and the rectangular window leads to a selection of more structures than necessary. If
these structures do not correlate with the ground truth, the classification error increases. The
classification error is higher or at least equal to the automatic segmentation method (on average
13.2%) . This allows to conclude, that the segmentation improves the results of the retrieval.
The voxel-based method is faster than the other methods because it does not need to preprocess
structure tensors. However, Table 6.1 shows, that the mean classification error is with 26.3%
worse compared to the other two methods.

The algorithms were also tested on the whole L_pIP10 neuron (L_pIP10 + arbA + arbB + arbC).
The additional information improved the result for the pre-segmented method but also increased
the error for the automatic segmentation.

Figure 6.6 gives an example for the outcome of a ranking based on the similarity to a query
pattern. Pre-segmented test-cases (first image of every row, the colors are corresponding to
Figure 6.6 and 6.1) are (are used to compute a similarity to the other brains of the testset. The
top rankings can be seen on the left side of the black line, while the least ranked are on the right
side.

pre-segmented automatic segmented no-segmentation voxel
proj. L_pIP10 0.09 0.07 0.14 0.29
proj. R_pIP10 0.03 0.05 0.14 0.09
arbA 0.07 0.09 0.10 0.25
arbB 0.16 0.12 0.18 0.30
arbC 0.10 0.14 0.14 0.36
L_pIP10 0.03 0.09 0.09 0.29

Table 6.1: Classification error of the pre-segmented method and the method with largest topol-
ogy segmentation compared to a voxel based method. The top rankings for the pre-segmented
method can be seen in Figure 6.6

55



Figure 6.6: Top retrieval ranking of 6 testruns on the left side, least ranked on the right side of
the black line (row wise, first image is the query pattern)
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6.3 Evaluation of embedding and summarizing the structure of a
population

Non-linear mapping is a central part of this thesis, therefore this section describes the validation
of embeddings of large datasets like [D2]. In this experiment, the mapped data of [D2] is inves-
tigated Mushroom body area (Figure 6.2) by quantitative methods that allow to draw conclusions
regarding the structure of the population.

Research Question

Is it possible to find relevant structure in the population by clustering in an embedding space that
is based on local appearance similarity?

Validation method

The principle question of this experiment is how the mapped data tells something about the
characteristics of a population. Multidimensional scaling (as example for a linear method) and
Diffusion maps (as example for a non-linear method) shall be compared on the [D2] dataset for
the Mushroom body area (Figure 6.2) regarding to their performance and clustering behavior. For
the validation of the mapping techniques quantitative evaluation functions are used: Amount of
Nearest Neighbor Mutations, Intra vs. inter VT-line distance and the Cluster Stability Index.
The methods are explained in Section 4.2.

The parameters of Diffusion maps (Diffusion time, σ and dimensionality) are varied and com-
pared to MDS regarding to their quantitative performance (NNM and Cluster Stability) on the
[D2] data.

Results and Discussion

Figure 6.7 (a) shows the amount of NNM in relation to the dimensions of the generated em-
beddings for MDS and Diffusion maps at different diffusion times. The performance of both
methods, Diffusion maps and MDS, are equal for dimensions above 20, and better for MDS
below. There is no significant difference for low diffusion times (t ≤ 3), so t = 1, 2, 3) are
possible. This suggests that intra-individual variability (relation between brains of the same mu-
tation) can also mapped in a linear way. The relation between the distance between VT-lines and
the distance within VT-lines is shown in Figure 6.7 (b) for Diffusion maps, and in (c) for MDS.
The bold lines correspond to the mean distances within VT-lines (blue) and between VT-lines
(red). The blue and red areas mark the standard deviation, therefore an overlap conforms to
a not significant difference. A closer mapping of brains of the same VT-line compared to the
overall distance between the lines corresponds to an approximation of the ground truth. Both
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(a) Nearest Neighbor Mutations vs dimension of the embedding

(b) Diffusion maps: Distribution (given by the mean and the standard deviation) of the Intra
VT-line distance (red) and the Inter VT-line distance. The dimensions of the embedding is
indicated on the x-axis

(c) MDS: Distribution (given by the mean and the standard deviation) of the Intra VT-line
distance (red) and the Inter VT-line distance

Figure 6.7: Performance of the mapping depending on the dimension of the embedding

methods exhibit the best mapping below 20, whereby MDS performs better for higher dimen-
sions. This complies to the outcome of the NNMs.

Figure 6.8 (a) and (b) describe the relation between the dimension of the embedding, the number
of clusters k and the cluster stability in two heatmaps. The CSI was computed for different k
(2-20). The colors of the heatmaps correspond to the stability. Dark blue means a high stability
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(a) Diffusion maps: Cluster Stability Index vs dimension of the embedding

(b) MDS: Cluster Stability Index vs dimension of the embedding

Figure 6.8: Performance of k-means clustering depending on the dimension of the embedding

of the clustering, red means low stability. A high stability indicates clusters, even if data points
are randomly sub-sampled, and therefore structure in the data. MDS shows low stability for all
dimension for k > 4. For k ≤ 4, there is a high stability for all dimensions. This means, that
additional dimensions do not add additional structure to the data. Therefore it can be inferred
that the clusters are artifacts from the first dimensions. Diffusion maps shows stable clusters
until a 15 dimensional space. The amount of stable clusters increases with the dimensionality
of the embedding, so it can be concluded that additional dimensions contribute to the structure.
Because one can infer from Figure 6.8 (a) and (b), that a minimum amount of 15−20 dimensions
is needed, only Diffusion maps can identify structure that consists of more than 4 groups.

In conclusion, Diffusion maps can identify more structure in the data than MDS because of
a more stable clustering and the contribution of additional dimensions to the structure. A 15
dimensional embedding allows a mapping of local similarity measures according to the ground
truth as well as an investigation of the structure of the dataset.
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6.4 Evaluation of similarity visualization

For the visualization of similar brain areas, 9 annotations of the EXT neuron of the [D2-EXT-
VIS] data are available. The sets consist of 6-12 images with at least two VT-lines. The an-
notations are given as selected regions within the mushroom body which are similar for each
subset. The evaluation is based on the overlap of the annotation and the heatmaps generated
by the method of Chapter 5. They are visually compared if the annotations correspond to the
similarity visualization.

Research Question

Is it possible to identify local structures that exhibit strong grouping behavior? Do these struc-
tures correspond to knowledge about genetic characteristics of the individuals? In particular, can
a structure that exhibits specific differences in the population be identified?

Validation method

The method is validated by either using Diffusion maps for the embedding or Multidimensional
Scaling, and compare them to the ground truth. The visualization is based on a heatmap of the
average distance of the mapped data, which was introduced in Section 5.3. Therefore the brain
is split into 2200 windows according to Chapter 5. The amount of windows is chosen as a trade
of between performance and accuracy. To set the distances in relation to the entire [D2] dataset,
also a U-test is performed on the data and also visualized in a heatmap (according to Section
5.3).

The mapping is computed for the [D2] while the validation is performed on the 9 subjects of the
[D2-EXT-VIS] dataset. To improve the readability, only a selection of 3 sets ([SVGT2],[SVGT3]
and [SVGT9]) in this experiment.

The performance of the similarity visualization is tested by a qualitative comparison of the auto-
matic identified similarity regions by Algorithm 5.2 and the a priori annotation of the expected
similar morphology/neuron annotated by an expert.

Results and Discussion

Figure 6.9 shows the similarity heatmap of the diffusion map based method in the left column
(a,d,g), the annotated Maximum Intensity Projections (MIP) for visual comparison in the middle
(b,e,h) and the MDS based method in the right column (c,f,i). The MIPS include only slices
which contain the annotated, similar regions (yellow). To compare them to the ground truth, the
heatmaps are also limited to the slices of the ground truth. The entire results of this experiments
can be found in Appendix B.
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In the first row of Figure 6.9, the results for [SVGT2] can be seen. The ground truth specifies
the heel of the mushroom body as similar region. The visualization of the Diffusion map based
method (a) has dark blue areas which overlap with the yellow annotations. As one can see, also
a big triangular area is blue-colored. This is not in contradiction with the ground truth because it
is not available for this region too. The MDS method indicates the annotated region to, but with
less contrast and not as smooth compared to (a).

To obtain statistical reliability for Diffusion maps, also a one-sided U-Test was computed. The
blue areas are significant (p-value≤ 0.1) similar for the set in contrast to the rest of the entire
dataset. Figure 6.10 leads to the conclusion, that the annotated areas are significant different to
the other brains.

The next test case, [SVGT3] consists of two round structures on the edges of the cut. Both of
them can be seen in the Diffusion maps visualization in Figure 6.9 (d). MDS performs worse,
only a part of the left structure is considered to be similar. The U-Test heatmap in Figure 6.10
proves the similarity visualization regarding to the annotation.

[SVGT9] can be detected via Diffusion maps and MDS, but in different ways. While Diffusion
maps can detect two lobes as similar and a separated dissimilar region between them, MDS
merges them two one similar region. Also the U-Test identifies the region between the lobes as
different to the population.

In conclusion, both methods are able to visualize similarities of the testsets but MDS performs
worse compared to Diffusion maps. For [SVGT2], the similarity was detected stronger for
Diffusion maps. MDS was only able to identify the left annotation on [SVGT3]. On testset
[SVGT9], both methods detected the ground truth, but MDS merged them to one similar region.

6.5 Evaluation of embedding-based retrieval

This experiment is about performing an retrieval not based on the distance function, but on the
mapped data of [D1]. For the the mapping, a ground truth of similar structures is necessary
to evaluate if they develop a clustering. Since a manual annotation of similar substructures is
an extensive task, only the small set [D1] with one annotated structure (pIP10 neuron with the
substructures L_pIP10, R_pIP10, arborization A,B and C) is available. Like in Section 6.2 these
structures are used as query patterns. Therefore brains which also contains pIP10 are expected
to be in the top-ranked retrieval results.

Research Question

Can embedded data or clustering used for content based image retrieval? Is it better than the
distance function based retrieval?
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(a) SVGT2: Diffusion maps (b) SVGT2: MIP (c) SVGT2: MDS

(d) SVGT3: Diffusion maps (e) SVGT3: MIP (f) SVGT3: MDS

(g) SVGT9: Diffusion maps (h) SVGT9: MIP (i) SVGT9: MDS

Figure 6.9: Similarity visualization via Diffusion maps and Multidimensional Scaling: Mean
fitness of every window of the optimized solutions in the layer (z-axis) of the mushroom body.
Blue means high fitness (high similarity), red low fitness (low similarity).

Validation method

Retrievals based on the distance on the mapping and hierarchical distance are performed ac-
cording to Algorithm 4.2. To compare the results to the distance function based retrieval of Sec-
tion 6.2, the distance matrix is calculated for the areas defined by the segmentations L_pIP10,
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(a) SVGT2 (b) SVGT3 (c) SVGT9

Figure 6.10: Similarity visualization via Diffusion maps: p-values of every window of the op-
timized solutions in the layer (z-axis) of the mushroom body. Blue means low p-value (high
similarity), red high-pvalue (low similarity).

R_pIP10, arborization A,B and C for the dataset [D1]. The resulting classification error is then
used for validation.

Results and Discussion

Table 6.2 shows the results of the retrieval. In the first column (distance matrix), the retrieval
was computed by choosing the query-row (the row that corresponds to the query brain) of the
distance matrix. As one can see, the classification error is for all test cases above 50%. This is
caused by the symmetrization of the distance matrix (see Equation 4.2), which is necessary for
the diffusion map algorithm. Without this step, the row of the distance matrix is analog to the
distance function. The results for using the row of the not-symmetrized matrix is shown in the
second column (distance function).

Column distance on mapping contains the best classification error for all possible dimensions.
The relation between the dimensions of the underlying embedding and the classification error
can be inferred from Figure 6.11 (a) were the error is minimized for low dimensions between 3
and 10. This concludes, that the mapping can represent the true relationship between the pIP10
and the not pIP10 group of [D1] depending on the dimension. The last column (hierarchical dis-
tance) includes the classification error of the hierarchical clustering based approach. While the
mean classification error for the distance function is 0.08%, both mapping based methods have
mean classification error of 0.09%. The mapping based distance minimizes the classification
error for all cases between 4 and 5 dimensions, the error increases with the amount of dimen-
sions. The clustering approach also increases the classification error at higher dimensions, the
minimum is between 5 and 13 dimensions.

In conclusion, one can say that the retrieval works on the embedded data (mean classification
error 9%) for distances (mean classification error 9%) and for the clustering, but it does not
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distance matrix distance function distance on mapping hierarchical distance
proj. L_pIP10 0.51 0.09 0.09 0.10
proj. R_pIP10 0.56 0.03 0.12 0.05
arbA 0.54 0.07 0.05 0.07
arbB 0.51 0.16 0.09 0.12
arbC 0.52 0.10 0.12 0.12
L_pIP10 0.50 0.03 0.05 0.05

Table 6.2: Classification error of the classification by the distance function, the distance matrix,
the distance on the mapping and the hierarchical distance (for minimal mean classification error)

improve the results compared to the distance function (mean classification error 8%).

(a)

(b)

Figure 6.11: Relation between dimensions of the underlying embedding and the error of the
distance based classification (a) and the hierarchical clustering based classification (b)
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6.6 Evaluation exploratory analysis of data

In a final experiment this embedding approach is applied for an exploratory analysis of the [D2-
DPM] and the [D2-EXT] test data. In the focus of interest is the structure of the data, more
precisely groups of brains with different mutations. It is investigated, if clusters in the data
reflect true relations of VT-lines for the test cases.

Except for the VT-line labels, no a priori information is known about the structure of the set,
therefore this experiment represents a completely exploratory analysis of the data. Similar to
the experiment of Section 6.3, the embedding is generated for the [D2] dataset, but but only
the subsets [D2-DPM] and [D2-EXT] are analyzed. The maps are quantitatively investigated
for clusters/groups by k-means clustering. The smaller datasets enables a the qualitative eval-
uation by visual verification of the clusters. This represents an exploratory investigation of the
population given by [D2].

Research Question

Is it possible to find meaningful clusters in the data for which no a–priori information is given?

Validation method

The exploratory analysis consists on two parts: A cluster analysis and a 2D plot of the dataset.
The first part is a k-means clustering which depends the amount of classes k and the dimen-
sionality of the embedding. They can be estimated by using a combination of NNM, Inter/Intra
VT-line distances and Cluster Stability Index for the subset of interesst. The methods are ex-
plained in Section 4.2. At First, the NNMs and Inter/Intra VT-line distances are computed for
the data set. They give an idea about the minimal amount of dimensions needed. The CSI is ap-
plied for different k and dimensions (analog to Section 6.3). The parameters can then be chosen
by using a k/dimensionality combination which maximizes the NNM and minimizes the CSI for
dimension with significant differences between the Inter VT-line distances and the Intra VT-line
distances. The data is then visualized by the usage of MDS on the mapped data and plotting the
first 2 two embedding dimensions in a 2D plot. This method is described in Section resulting
split of the data is interpreted by an expert regarding to structure and clustering.
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2D 3D 4D 5D 10D 15D 20D total
[D2-EXT] Mushroom Body 5 9 11 14 17 19 20 21
[D2-EXT] Central complex 4 6 13 16 18 20 20 21
[D2-DPM] Mushroom body 3 4 4 3 4 4 5 7

Table 6.3: Amount of nearest neighbor mutations for the 3 test cases at different dimensionality
(maximum amount of NNM for t = 1, 2, 3

Results and Discussion

Three test cases are investigated:

1. [D2-EXT] in the Mushroom body area For the [D2-EXT] data set, the dimensionality
of the embedding and the amount of clusters are estimated by calculating the amount of
NNMs, the Inter VT-line distances, the Intra VT-line distances and the CSI for different
parameter variations. Table 6.3 infers, that at least 5− 10 dimensions are needed to cover
the most NNMs (14-17 of a total amount would be 21). A significant difference in the
distances between VT-lines and within VT-lines can be already achieved for 3 dimensions
according to 6.12 (a). In Figure 6.12 (b), the stablest clustering for dimensions ≥ 5 is at
k = 4 for 8 dimensions.

The clustering can be seen in Figure 6.13. Because it is a 2D plot of a 8 dimensional
clustering, some clusters are overlapping in the plot (like cluster 1 and 4. Obviously, the
relations within this cluster lie in a higher dimension. 19 out of 21 VT-liness are not split
between two or more clusters, which can be interpreted as a good sign that the clustering
represents the true structure. To get more evidence about the relation between VT-lines,
one brain per VT-lines is displayed for every cluster in Figure 6.14. As one can see, the
cluster do not represent a special structure. The reason for this is, that the data set is
inhomogeneous: The Mushroom body area is large enough (in relation to the total brain,
see Figure 6.2) to contain more than one neuronal structure but there is only one distance
function. So the neuronal structures compete. For example, if there is a high similarity
for one neuronal structure in two VT-lines (low distance), but two structures which are
completely different (high distance), the two structures would overrule the similar one.
There are two possible solutions for this problem. On the one hand, one can reduce
the size of the area which is compared and therefore the amount of competing neuronal
structures. This is done in the [D2-EXT] - Central complex test case. On the other hand,
one can choose a set, which is known to be different in only one or two characteristics.
The [D2-DPM] - Mushroom body test case is an example for that.
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(a) Distribution (given by the mean and the standard deviation) of the Intra VT-line
distance (red) and the Inter VT-line distance

(b) Cluster Stability Index vs dimension of the embedding

Figure 6.12: Performance of the mapping and the clustering of the EXT neuron (in the Mushroom
body area) depending on the dimension of the embedding

2. [D2-EXT] in the Central complex area Due to the issues of the first test case, the ex-
periment on the [D2-EXT] was also computed for a smaller area, the Central complex.
As it can be seen in Figure 6.2, the Central complex overlaps with the Mushroom body.
Because the area is smaller, less neuronal structures, and therefore a better clustering is
expected. As for the other test cases, the parameter is done by calculating the amount of
NNMs and the CSI. A minimum of 5 − 10 dimensions can be concluded from Table 6.3
and Figure 6.15 (a). For this range, the best amount of clusters according to the cluster
stability (Figure 6.15 (b)) can be identified as k = 5 for 6 dimensions.

Figure 6.16 shows the first two embedding dimensions derived by MDS of the mapped
data. As one can see, 5 clusters can be visualized also in two dimension, although the
clustering was performed on 6 dimensional data. To investigate the data one brain per VT-
lines is displayed for every cluster in Figure 6.17 in a similar way as for the first testcase.
Cluster 1 shows to vertical projections in the middle of the complex. Cluster 2 shows a
round structure in the center which is particular strong in the third and the fifth VT-line.
The third cluster contains only one VT-line. At a closer look, the lower two horizontal
structures can be also found in the brains of Cluster 4. In Figure 6.16, Cluster 3 is also
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Figure 6.13: First 2 embedding dimensions of the [D2-EXT] (Mushroom body) set

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Figure 6.14: Clustering of the [D2-EXT] dataset (Mushroom body area). For every VT-line
which is not split between clusters, one representative brain is shown (so every image represents
one VT-line)
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(a) Distribution (given by the mean and the standard deviation) of the Intra VT-line
distance (red) and the Inter VT-line distance

(b) Cluster Stability Index vs dimension of the embedding

Figure 6.15: Performance of the mapping of the EXT neuron (in the Central complex area)
depending on the dimension of the embedding

mapped close to Cluster 4. The reason for the separate cluster are the upper two round
structures, which can not be found in Cluster 4. The special characteristic of Cluster 4 is
the semi-circled projection in the middle, and the two horizontal structures which are also
in Cluster 3. Cluster 5 represents the rest but also some similarities: The second, third and
fourth VT-lines have two vertical projections, which explains the mapping close to Cluster
1. The first, second and fourth show two round structures in the middle.

In conclusion, a smaller area with less characteristics (compared to the first test case) is
better suited for a clustering on the mapping.

3. [D2-DPM] in the Mushroom body area

For the DPM neuron, 4 out of 7 NNM can be found for at least a 3 dimensional space
according to Table 6.3. Figure 6.18 (a) shows, that the only significant difference between
the Inter VT-line Distances and the Intra VT-line Distance can be found between 11 and
18 dimensions. For this range, two stable groups are identified in Figure 6.18(b) with the
stablest clustering for 11 dimensions. Figure 6.19 reveals the structure of the data in a
2D plot. Three separated groups can be identified visually although the clustering defines
only two groups in a higher dimensional space. To investigate the plot, one brain per
VT-line is visualized according to their cluster membership in Figure 6.20. All VT-lines
except one are not split by the clustering. In principle, Cluster 1 shows the Mushroom
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Figure 6.16: First 2 embedding dimensions of the [D2-EXT] (Central complex) set

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Figure 6.17: Clustering of the [D2-EXT] dataset (Central Complex area) . For every VT-line,
one representative brain is shown (so every image represents one VT-line
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(a) Distribution (given by the mean and the standard deviation) of the Intra VT-line distance
(red) and the Inter VT-line distance

(b) Cluster Stability Index vs dimensionality of the embedding

Figure 6.18: Performance of the mapping of the DPM neuron depending on the dimension of
the embedding

body with two separated parts. The first 3 VT-lines corresponds to the points above the
blue line in Figure 6.19, while the last two are below the blue line. The difference between
these sub groups are the two vertical neurons between the two parts. Cluster 2 consists
also of two sub groups. The first two VT-lines show the two parts of the Mushroom body
merged together (above blue line), the third one is not merged and below the line. All
brains of Cluster 2 have a projection on the left and right region outside the body. These
are common in Cluster 2, but not in Cluster 1 and are therefore the separating feature.
In conclusion, the clustering is driven by those external neurons. Because there are less
characteristics compared to the first testcase, the clustering resulted in separated groups
although the mapping is also based on the Mushroom body area.
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Figure 6.19: First 2 embedding dimensions of the [D2-DPM] (Mushroom body) set. The blue
line is for exploratory reasons in this section.

Cluster 1

Cluster 2

Figure 6.20: Clustering of the [D2-DPM] dataset. For every VT-line, one representative brain is
shown (so every image represents one VT-line

6.7 Summary

This Chapter described the experiment data, experiments and their results. The experiment data
was divided into 5 datasets which have different characteristics to use it for different experi-
ments.
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The similarity measure was validated by using it as a classifier between similar fly brains and
not-similar fly brains. Therefore, two groups were annotated by an expert. Different methods
for selection of the query pattern were used, such as manual query selection and with or without
automatic segmentation within a bounding box. The results were also compared to a voxel-based
method. The pre- and automatic segmented method performed best.

The validation of the mapping was done by quantitative measures in two experiments. One
experiment investigated the mapping for structure on an entire fly brain population and compared
Diffusion maps with MDS. By using Diffusion maps it was possible to identify stable clusters,
whereby the amount of clusters increased with the dimensionality. In a second experiment,
subpopulations were used for an exploratory analysis of the data. Groups of fly brains were
found by quantitative methods such as the CSI and also visualized in MIP for visual verification.

It was also tested, if image retrieval can be performed on embedded data. The results were
evaluated in a similar way as for the similarity measure based approach. In conclusion, both
approaches show equal results, so the mapping does not improve the retrieval.

The similarity visualization was validated in an experiment by comparing the results with expert-
annotated brains. The visualizations were computed by either a Diffusion maps or MDS based
approaches. The results were verified by the overlap of the heatmaps to the ground truths which
were given as MIPs with labeled, similar areas. For this experiment, both methods were able to
visualize similarities, but MDS performed worse compared to Diffusion maps.
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CHAPTER 7
Conclusion and Outlook

The aim of this thesis was to develop a method to analyze and visualize variability of drosophila
brains. Therefore a similarity measure for neuronal structures was needed to set the brains in
relation to each other.

A 3D structure tensor based similarity measure was developed, which was able to compensate
shifts in the location and different shapes. Therefore, gradient vector flow was used which
smooths the query pattern and diffuses it into the surrounding area. To work with large datasets,
computational intensive parts like gradient estimation were put into a pre-processing step to
allow a fast on-the-fly computation of the similarity. It has been shown, that the measure can be
used for image retrieval. It performs on an annotated data set with a mean error rate of 8% (for
pre-segmented data) better than a voxel based method (26.3%). The validation showed, that the
performance on tubular structures like projections is better than for arborizations. In addition,
the similarity measure was adapted to work within various rectangular windows to use it for the
visualization of variations in small populations.

Another challenge was to develop a mapping that represents the similarity of local brain areas.
Therefore a distance matrix for the area of interest was generated and mapped by a dimension-
ality reduction method. It has been proven, that the non-linear method Diffusion maps is able
to find more structure in the data set than the linear Multidimensional Scaling. The methods
were evaluated by quantitative measures like the amount of Nearest Neighbor Mutations and
the Cluster Stability Index, which revealed stable structures in data for low dimensional spaces.
Also examples for the clusterings were shown, but they have only limited evidence for biology
without annotations.

The third contribution of this thesis was the visualization of similar regions for a set of brains
with different mutations. Brains were split into corresponding windows to compute their sim-
ilarity for the area within. For the reason, that neuronal structures can cover more regions, the
windows were merged by multi-modal optimization. The mean similarity for a window, which
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was defined by the mean distance of the brains mapped by Diffusion maps or Multidimensional
Scaling, was then visualized by a heat map. It has been shown, that the detected similarities
overlap with expert annotations, especially for the Diffusion maps based mapping. Therefore it
can be suggested that biological relevant structures can be found with this method.

The experiments which were performed in this thesis showed, that the similarity measure can
be used for image retrieval and for the visualization of similar regions of a set of fly brains.
These methods were proofed by expert annotated data. The mapping shows clusters which can
be verified by quantitative methods. In addition, it was qualitative validated for the reason that
it is inherent in the similarity visualization.

For future research, it is planned to use the mapping on areas of biological relevance. Biologists
can use the proposed method to investigate data were they expect structures. This would generate
biological evidence of the mapping method in addition to the quantitative measures. Another
focus of interest is to use the methods on different scales. So far, the similarity visualization
was used with 2200 windows as a trade of between the visualization of the entire brain and the
computational complexity due to the multi-modal optimization. By reducing the area of interest
to specific areas like the Mushroom body, the same amount of windows can be used to detect
smaller structures.
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APPENDIX A
Parameter Optimization

To optimize the results of the algorithms, which are used in this thesis, several parameters can
be varied. In this section, the parameters are divided into two groups: Parameter which are
responsible for the outcome of the similarity calculation, and parameters which influence the
genetic algorithm for multi-modal optimization.

A.1 Calculation of Similarity

The optimization is done by trying possible (and likely) values on the test-set. The parameters
which lead to a minimum of the classification error are the optimum. The following parameters
were optimized for downscaled images by the factor 4 (due to faster computation):

1. Parameter for Gaussian smoothing:

Table A.1 shows the classification error of different smooth ranges (size of Gaussian ker-
nel) and σ. As one can see, the best results can be achieved for σ = 2 for a kernel size of
5.

range=3 range=5 range=7 range=9
sigma = 0.1 0.1061 0.1030 0.1030 0.1030
sigma = 0.5 0.0939 0.0939 0.0939 0.0939
sigma = 1 0.0909 0.0939 0.0939 0.0939
sigma = 2 0.0909 0.0848 0.0909 0.1030

Table A.1: Mean classification error of different kernels on the classification error
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2. Window of the partial derivatives for tensor estimation: Two window sizes were tested.
For a 3x3 window, the mean classification error for the test-runs is 0.084 while the error
for a 5x5 window was 0.087. So the difference is negligible. Because the computation of
partial derivatives of a 3x3 window is faster than for a 5x5, a 3x3 window should be used.

3. γ for tensor normalisation: The γ values 0.01, 0.001, 0.0001 and 0.00001 were tried. A γ
value below 0.001 and above 0.0001 leads to the best results.

L_pIP10 proj R_pIP10 proj arb A arb B arb C L_pIP10
γ = 0.01 0.09 0.07 0.12 0.16 0.14 0.05
γ = 0.001 0.09 0.03 0.07 0.16 0.10 0.05
γ = 0.0001 0.09 0.03 0.07 0.16 0.10 0.05
γ = 0.00001 0.11 0.03 0.07 0.16 0.10 0.05

Table A.2: Classification error of test-runs at different γ values

4. Amount of iterations and µ for gradient vector flow: The amount of iterations is a crucial
point of the gradient vector flow because the computation time increases. Figure A.1
shows the effect of the iteration amount on the classification for 5 different µ. For more
then one configuration, the mean classification error is minimal at 0.0848. For the reason
of computation time, the optimal iteration amount is set to 20. µ = 0.04 or but also
µ = 0.05 would be possible.

Figure A.1: Effect of µ and the amount of iterations on the mean of the classification error for
all 6 testsets
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A.2 Multi-modal Optimization

The parameters of the multi-modal optimization are investigated by using [SVGT2] as example.
In Figure A.2 the amount of window changes of the similiarity visualization after e iterations
(epoches) for different population sizes are shown. As one can see, the changes in the windows
(total window amount is 2200) start to converge for populations ≤ 2000 after 150 iterations,
while the population with 3000 individuals converges earlier. The results for the different popu-
lations can be seen in A.3. The dark brown windows of represent windows that are not present in
the population. This is caused by a too small initial population or too many iterations (depending
on the population size). Their amount increases with the iterations because the fitness is opti-
mized. After an infinite amount of muations, all windows except the windows which maximum
fitness would be removed from the population. For all populations, the contrast between similar
and not similar regions increases with the amount of mutations. Similar regions become more
blue, while not similar regions become more red. In conclusion, a population size ≥ 2000 with
an iteration amount between 50 and 100 should be chosen to achieve the best results with all
windows present in the population.

Figure A.2: The amount of window changes after e iterations (epochs) for different population
sizes
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0 Iterations 50 Iterations 100 Iterations 300 Iterations

P = 500

P = 1000

P = 2000

P = 3000

Figure A.3: Ouptut of multimodal optimization for [SVGT2] for different population sizes and
iterations
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APPENDIX B
Similarity Visualization Results

Figure B.1 - B.9 show the best fitness (a) and best p-value (c) of every window of the optimized
solutions in the layer (z-axis) of the mushroom body. Blue means high fitness (high similarity),
red low fitness (low similarity). The annotations can be seen in the middle (b). P-values of
[SVGT4], [SVGT5],[SVGT6], [SVGT7] and [SVGT8] are log scaled, because all windows
were significant.

(a) (b) (c)

Figure B.1: [SVGT1]
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(a) (b) (c)

Figure B.2: [SVGT2]

(a) (b) (c)

Figure B.3: [SVGT3]

(a) (b) (c)

Figure B.4: [SVGT4]: The p-values of (c) are log scaled because every window was significant.
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(a) (b) (c)

Figure B.5: [SVGT5]: The p-values of (c) are log scaled because every window was significant.

(a) (b) (c)

Figure B.6: [SVGT6]: The p-values of (c) are log scaled because every window was significant.

(a) (b) (c)

Figure B.7: [SVGT7]
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(a) (b) (c)

Figure B.8: [SVGT8]: The p-values of (c) are log scaled because every window was significant.

(a) (b) (c)

Figure B.9: [SVGT9]
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(a) SVGT1 (b) SVGT2 (c) SVGT3

(d) SVGT4 (e) SVGT5 (f) SVGT6

(g) SVGT7 (h) SVGT8 (i) SVGT9

Figure B.10: Fitness of every single window in the layer (z-axis) of the mushroom body. Blue
means high fitness (high similarity), red low fitness (low similarity).
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(a) SVGT1 (b) SVGT2 (c) SVGT3

(d) SVGT4 (e) SVGT5 (f) SVGT6

(g) SVGT7 (h) SVGT8 (i) SVGT9

Figure B.11: Similarity visualization via Multidimensional Scaling: Best fitness of every win-
dow of the optimized solutions in the layer (z-axis) of the mushroom body. Blue means high
fitness (high similarity), red low fitness (low similarity).

86



APPENDIX C
Glossary

Antibody: A large Y-shaped protein.

Arborization: Efferent fibers of a neuron. Branched. Technical description of Dendrites.

Axon: Afferent fibers of a neuron. Biological description of projection.

Cell body: Bulbous end of a neuron. Connected with axons (afferent) and dendrites (efferent).

Central Complex: Special brain area in the center of the brain. Can be seen in Figure 6.2 (b).

CSI: Cluster Stability Index [40]. Low CSI indicates high stability.

Dendrites: Efferent fibers of a neuron. Branched. Biological description of arborization.

DPM neuron: “dorsal paired medial“ neuron. Can be found in the Mushroom body

Drosophila melanogaster: Fruit fly.

DTI: Diffusion Tensor Imaging

EXT neuron: “external neuron“. Can be found in the Mushroom body

Genotype: Genetic configuration of a cell.

GVF: Gradient Vector Flow. Used for smoothing and vector spreading of a query pattern. State
of the art methods are explained in Section 2.3 and the usage in this thesis in Section 3.3.

Hierarchical distance: The hierarchical distance is defined as the lowest level in a complete
linkage clustering dendrogram [63] that connects two points.

Inter VT-line distance: Sum of the distances between the brains of different VT-lines.
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Intra VT-line distance: Sum of the distances between the brains of the same VT-lines.

MDS: Multidimensional Scaling: Linear dimensionality reduction method.

MIP: Maximum Intensity Projection.

Mushroom body: Special brain area which is shaped like a mushroom. Can be seen in Figure
6.2 (a).

Mutation: Alteration of a gene. In the context of this thesis, such alterations are referred to as
VT-line.

Nearest Neighbor Mutations: Fly brains with the same genetic mutation (so they are from the
same VT-Line) are samples of the same genotype (like clones), so they are more similar to
each other than to brains of an other mutation. A NNM is a mutation, all of its brains are
mapped closest together (brains of the same mutation are their nearest neighbors).

Neuroblast: A cell which will develop into a neuron.

Neuropil: The major part of gray matter of the brain. Surrounds the cell bodies.

Niche: Similar individuals which lead to one optimum in the context of multi-modal optimiza-
tion.

NNM: Abbreviation of Nearest Neighbor Mutations.

Query area: Area for which the similarity measure will be computed.

PCA: Principle Component Analysis. Linear dimensionality reduction method.

pIP10: A special neuron that is related to Drosophila courtship behavior [72]. Segmentations
and annotations are available in Section 6.1.

Projection: Afferent fibers of a neuron. Technical description of Axon.

Spatial grid: Grid that enables development of distinct solutions (spatial selection).

TEP: Tree Edit Distance is the amount of nodes which need to be added/removed from one
tree to create a second one [78].

Transgene: A gene or genetic material that has been transfered from one organism to another.

VT-line: Pieces (tiles) which were likely to be active in the nervous system were used to gen-
erate transgenic fly lines. Each of these transgenic fly lines contains one unique tile which
can be considered as a genetic alteration. In the context of this thesis, such alterations are
referred to as mutation.

Window grid: Divides fly brains in non-overlapping cubic windows of equal size.
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