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Abstract

Interaction nets are a formal model of computation. They use graphs and graph replacement
(or rewriting) rules to describe computation. Compared to prominent models such as Turing
machines or the λ-calculus, interaction nets offer two main differences “out of the box”: vi-
sualization and parallel evaluation. Rewriting rules and input graphs are given in a graphical
notation, visualizing an algorithm. Due to strong restrictions on the shape of these rewriting
rules, any interaction nets program can be evaluated in parallel.

The above properties indicate that interaction nets could be a useful foundation for a pro-
gramming language. To ensure correctness of parallel programs, a formal model that features
parallel evaluation as a “first-class citizen” could be indispensable. Unfortunately, interaction
nets are a very basic and restricted model of computation: similar to the λ-calculus, it is not
feasible to specify practical, real-world applications with the basic model. Interaction nets lack
many features of a practical programming language needed to conveniently express complex
functions.

The goal of this thesis is to bring interaction nets closer to real-world usability. In order to
tackle computational side effects (I/O, state manipulation,. . . ), we define monads in interaction
nets, which are based on generic interaction rules. In combination with nested patterns, these
rules allow us to conveniently define higher-order functions directly in interaction nets. We show
that these extensions are conservative: under reasonable constraints, they preserve the beneficial
properties of the base model. In addition to these theoretical results, we discuss the implemen-
tation of these features and present an approach to realize parallel evaluation of interaction nets
on graphics processing units (GPUs).
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Abstract

Interaction nets sind ein formales Berechnungsmodell: Sie verwenden Graphen und Regeln zur
Graphersetzung (“rewriting”), um Berechnung zu beschreiben. Im Vergleich zu etablierten Mod-
ellen wie Turingmaschinen oder dem λ-Kalkül bieten interaction nets zwei besondere Eigen-
schaften: Visualisierung und parallele Evaluierung. Rewriting-Regeln werden in einer grafi-
schen Notation definiert, wodurch Algorithmen visualisiert werden. Durch starke Beschränkun-
gen dieser Regeln kann jedes interaction nets Programm parallel evaluiert werden.

Diese Eigenschaften machen interaction nets zu einer vielversprechenden Basis für eine
zukünftige Programmiersprache. Um Korrektheit von parallelen Programmen zu zeigen, wäre
ein formales Modell mit paralleler Evaluierung als “first-class citizen” von großem Vorteil.
Unglücklickerweise sind interaction nets ein sehr einfaches und eingeschränktes Berechnungs-
modell: Ähnlich dem λ-Kalkül ist es nicht praktikabel, ein Programm für reale Anwendungen
zu spezifizieren. Interaction nets mangelt es an vielen Features von Programmiersprachen, die
zum Erstellen komplexer Funktionen notwendig sind.

Das Ziel dieser Dissertation ist es, interaction nets näher an die Verwendbarkeit als praktik-
able Programmiersprache zu bringen. Um Seiteneffekte (I/O, State manipulation, exception han-
dling,. . . ) zu bewältigen, definieren wir Monaden in interaction nets, die auf generic interaction
rules basieren. In Kombination mit nested patterns erlauben diese die komfortable Definition
von Funktionen höherer Ordnung direkt in interaction nets. Diese Erweiterungen sind konser-
vativ: Mit annehmbaren Einschränkungen erhalten diese die günstigen Eigenschaften des Ba-
sismodells. Zusätzlich zu diesen theoretischen Resultaten behandeln wir die Implementierung
dieser Features und präsentieren einen Ansatz, um parallele Evaluierung von interaction nets
mittels Grafikprozessoren (GPUs) zu realisieren.
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CHAPTER 1
Introduction and Motivation

1.1 Motivation and Background

You are a very fine person, Mr.
Baggins, and I am very fond of you;
but you are only quite a little fellow
in a wide world after all!

J.R.R. Tolkien, The Hobbit

In Tolkien’s book The Hobbit, the titular character Bilbo Baggins embarks on an adventure
which takes him through many regions of the world he lives in. The result of his interaction with
the world is two-fold: not only does he change the world with his actions (such as defeating
monsters and stealing treasure), but the world also changes him. His journey transforms Mr.
Baggins from an average citizen into an adventurer and master thief. The quote above summa-
rizes a message of the book: The outside world is vast and unpredictable, and interacting with it
may change you in unexpected ways.

What holds for Mr. Baggins, also holds for computer programs. Modern software frequently
interacts with the real world. Programs receive input from a multitude of sensors and devices,
output results to displays or communicate over networks. These interactions have a strong,
hardly predictable impact on the results of programs, making it difficult to reason about their
correctness or guarantee that they are free from errors. Indeed, formal verification of software
has become increasingly important in the last years. The possibility to show that a program
will never crash or perform any unwanted side effects is not restricted to software systems with
a direct impact on life or death (e.g., in medicine). Nowadays, more mundane programs such
as drivers for end consumer computer hardware are subject to formal verification. Hence, pro-
gramming languages based on rigorous formal models are indispensable. A prominent example
is Haskell, a functional programming language based on the λ-calculus.

Interaction nets are a programming paradigm based on graph rewriting. The idea behind
interaction nets is to represent programs as graphs (nets). Program execution is modeled by
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rewriting the graph based on specific node (agent) replacement rules. This simple system is
able to model both high- and low-level aspects of computation. Interaction nets enjoy several
useful properties such as strong confluence and locality of reduction. These ensure that single
computational steps in a net do not interfere with each other, and thus may be executed in paral-
lel. Another important aspect is that interaction nets share computations: reducible expressions
cannot be duplicated, which is beneficial for efficiency in computations.

While the reasons above demonstrate great potential for interaction nets, the existing proto-
type languages based on interaction nets lack important features for practical use: these include
means of interaction with the “real world”: input/output functionality, state manipulation or ex-
ception handling. Such features of a program changing the outside world (and vice versa) are
referred to as computational side effects or impure functions. In contrast, pure (mathematical)
functions do not incorporate side effects. Interaction nets can be considered a pure language:
the reduction of a net is not influenced by anything but its initial state, and no side effects are
performed. Since impure functions are considered a vital part of today’s programs, pure lan-
guages need to incorporate them. However, computational side effects may generally destroy
the beneficial properties of interaction nets. Hence, we require an appropriate interface to deal
with impure functions.

Moreover, the existing implementations of interaction nets hardly offer any means for paral-
lel evaluation. This is a striking shortcoming: one of the most compelling features of interaction
nets is that parallel evaluation of programs comes “for free”. Any program expressed in inter-
action nets and rules can be executed in parallel. This makes an implementation of interaction
nets on a multicore architecture attractive.

However, this potential for parallelism cannot be trivially leveraged in an implementation.
The potential for parallelism in an interaction net is highly dynamic, and depends on the partic-
ular program and even runtime values. At any point during a computation, the number of ex-
pressions that can be evaluated in parallel can vary between dozens and hundreds of thousands.
There is currently no implementation of interaction nets that leverages their full parallelism po-
tential.

1.2 Contributions / Aim of the Work

In this thesis, we aim to bring interaction nets closer to “real world” applications: we add new
features to the computational model that allow more powerful and convenient rule definitions.
These enable impure functions and computational side effects without sacrificing its formal
properties. In addition, we provide an implementation of this extension and introduce a proto-
type for parallel evaluation of interaction nets.

To combine pure functions and the outside world, we extend interaction nets by introducing
a framework to handle side effects. This framework is based on monads, a model to structure
computations that has been used in Haskell with great success. However, there are two main
obstacles when adapting monads to interaction nets: first, interaction nets need to support ab-
stract datatypes in order to implement monads. Existing type systems ( [8, 30]) for interaction
nets are currently lacking this feature. Second, monadic functions have a distinct higher-order
character. Even though interaction nets seem well-suited to incorporate higher-order functions
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(both data and computation are represented as nets and treated equally), it is not possible to con-
veniently express well-known higher-order functions such as map or fold/reduce. We address
this shortcoming by introducing generic rules. These extend ordinary interaction rules and add
a form of higher-order functions to the base formalism, thus enabling the definition of monads.
Furthermore, we combine generic rules with nested patterns, another extension that allows for
more complex and practically usable rule definitions.

Improving the formal model of interaction nets is only one side of the coin that buys you
practicality. Existing prototype languages need to be improved with regard to language features
and performance. We address the former by implementing our theoretical advances in the in-
teraction nets based language inets. In order to leverage the potential for parallel evaluation
of interaction nets, we provide the prototype implementation ingpu. This prototype performs
almost all computation on the graphics processing unit (GPU) as opposed to the CPU: in re-
cent years, a trend towards using GPUs for general purpose computations has emerged. Due
to the increasing programmability of GPUs and general purpose APIs (CUDA, OpenCL), the
parallel processing power of graphics cards may be used for many kinds of problems. While
the GPU model of parallelism seems to be well-suited for interaction nets, several factors make
an implementation a non-trivial task. We argue that these factors can be overcome, thus en-
abling an efficient evaluation of interaction nets, provided that a computation can be sufficiently
parallelized.

Our main contributions can be summarized as:

1. We introduce generic rules for interaction nets. These rules allow us to define higher-
order functions directly in the formal model. This extension is conservative. We impose
constraints on generic rules that restrict their usage in some cases, but retain most of
their power and - most importantly - preserve the beneficial properties of interaction nets.
We define generic rules in the graphical formalism of interaction nets as well as in the
textual interaction calculus. The latter provides important foundations for both prototype
implementations inets and ingpu.

2. We introduce the concept of monads to interaction nets. We show how monads can be
used to model computational side effects directly in interaction nets while preserving the
purity of the system. We realize monads by using generic rules and a type system powerful
enough to express monadic operators.

3. Using our formal results on the interaction calculus, we describe the implementation of
generic rules in inets. All theoretical aspects of our rule extension are realized in practice.

4. We show how interaction rules with nested patterns can be implemented to allow for more
complex rule definitions. We discuss the formal algorithm to translate nested rules to sets
of ordinary ones and its implementation in inets. In addition, we show that generic rules
and nested patterns can be combined elegantly.

5. We describe the ongoing implementation of the maximally parallel interaction nets eval-
uator ingpu. This evaluator runs almost entirely on the GPU and uses recent insights
on the efficient implementation of dynamic parallel computation. We describe several
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approaches to the implementation, discuss their pros and cons, and present benchmark
results that compare ingpu to existing interaction nets systems.

We see our work as a considerable step towards turning interaction nets into a practically us-
able programming paradigm. Future language extensions can be built upon our results, further
extending the power and usability of interaction nets.

1.3 Structure of the Thesis

The remainder of this document consists of six chapters. We begin with an introduction to the
state of the art in Chapter 2. First, we familiarize the reader with the basic definition of (abstract)
rewriting systems. We then use these notions to introduce the main formalism of the thesis,
interaction nets (INs for short). We discuss their basic properties as well as advantages and
disadvantages of the model. The second part of Chapter 2 deals with computational side effects
in pure functional programming languages. We describe the notion of a monad in functional
programming, which will later be adapted to INs.

Chapter 3 contains the foundations and theoretical results of our work. We begin with the
introduction of generic interaction rules, which allow for a form of higher-order functions in
interaction nets. The power of these rules can potentially destroy the beneficial properties of
interaction nets. Therefore, we impose constraints on generic rules to preserve these properties,
most importantly uniform confluence. Our discussion of generic rules is split into two parts: we
first define generic rules in the graphical setting of interaction nets. Second, we add them to the
textual interaction calculus, which is the basis for the implementations of INs. We show the cor-
rectness of the extension and preservation of uniform confluence separately for both formalisms.
We continue with the definition of a type system for interaction nets that is as simple as possible,
yet complex enough to support monadic datatypes and operators.

We conclude Chapter 3 by defining interaction rules with nested patterns and discuss their
relation to ordinary rules. We show that both interaction rule extensions - generic rules and
nested patterns - can be combined to allow for even more powerful and convenient rules.

In Chapter 4, we show how the results of the previous chapter can be applied to handle side
effects and impure functions in interaction nets. We adapt the notion of monads to the interaction
net setting and give several examples of concrete IN monads, each of which handles a particular
type of side effect. We show that each monad is correct in the sense of being a proper monad
and that the set of rules it consists of satisfies the constraints imposed by generic rules.

We turn towards the implementation of interaction nets based programming languages in
Chapter 5. The first part discusses the implementation of our extensions in the language inets:
we add both nested patterns and generic rules to the language. In addition, we show that the con-
straints and formal properties of interaction nets as well as of the extensions in general still hold
in the implementation. In the second half of the chapter, we discuss the development of ingpu,
an experimental GPU-based interaction nets evaluator. The tool fully realizes the theoretical par-
allelism potential of interaction nets by leveraging the computing power of modern many-core
graphics cards. We discuss an initial approach to the implementation and subsequent design
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optimizations which allow ingpu to strongly outperform existing interaction nets languages on
highly parallel problems.

Chapter 6 presents a conclusion and critical reflection on our results. Both theory and im-
plementation of our extensions have shortcomings and room for improvement, which can be
addressed in future work. Furthermore, we discuss related work and its pros and cons as com-
pared to our approach.

This thesis is based on the following publications:

• Abubakar Hassan, Eugen Jiresch, and Shinya Sato. An Implementation of Nested Pattern
Matching in Interaction Nets. Electronic Proceedings in Theoretical Computer Science
(EPTCS), 21:13-25, 2010.

• Eugen Jiresch. Realizing Impure Functions in Interaction Nets. Electronic Communi-
cations of the European Association of Software Science and Technology (ECEASST),
Volume 38. 2011.

• Eugen Jiresch. Extending the IN Calculus with Generic Rules. Sandra Alves and Ian
Mackie (eds.): Proceedings of the Second International Workshop on Linearity (LINEAR-
ITY 2012). Electronic Proceedings in Theoretical Computer Science (EPTCS), to appear.
ETAPS 2012, Tallinn, Estonia.

• Eugen Jiresch and Bernhard Gramlich. Realizing Monads in Interaction Nets via Generic
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CHAPTER 2
State of the Art

This chapter details the foundations of our work. We begin with an introduction to interaction
nets (and rewriting systems in general). We discuss both the graphical formalism of interaction
nets as well as the textual interaction calculus. Afterwards, we familiarize the reader with the
notion of computational side effects and show how they can be handled in pure (functional)
languages. Finally, we conclude the chapter with a discussion of the relation between interaction
nets and linear logic.

2.1 Rewriting Systems

In this section, we introduce rewriting systems and some core notions that are the basis for
interaction nets. We also briefly discuss term rewriting systems, which are one of the most
prominent rewriting formalisms.

2.1.1 Abstract Reduction Systems

We define an abstract reduction system (ARS) as a pair (A,→): The reduction→ is a binary
relation on the set A. An ARS can model a step by step activity like a transformation of some
object (e.g., a term or a graph) or some other computation. For (a, b) ∈→, we simply write
a→ b. The following definitions are within in the context of some arbitrary ARS (A,→).

We now introduce some important forms of reduction which are built by composition: For
two relations R ⊆ A×B and S ⊆ B × C, their composition is defined by

R ◦ S := {(x, z) ∈ A× C|∃y ∈ B(x, y) ∈ R ∧ (y, z) ∈ S}

Definition 2.1.1.1. We define the following symbols by composing a reduction with itself:

Based on these symbols, we introduce some additional notations:
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0→ := {(x, x)|x ∈ A} identity
i+1→ :=

i→ ◦ → (i+1)-fold composition, i ≥ 0
+→ :=

⋃
i>0

i→ transitive closure
∗→ :=

+→ ∪ 0→ reflexive transitive closure
=→ := → ∪ 0→ reflexive closure
−1→ := {(y, x)|x→ y} inverse
← :=

−1→ inverse
↔ := → ∪ ← symmetric closure
+↔ := (↔)+ transitive symmetric closure
∗↔ := (↔)∗ reflexive transitive symmetric closure

1. x is reducible if there is a y such that x→ y.

2. x is in normal form (irreducible) if it is not reducible.

3. y is a normal form of x if x ∗→ y and y is in normal form. If x has a uniquely determined
normal form, the latter is denoted by x ↓.

4. y is a direct successor of x if x→ y.

5. y is a successor of x if x +→ y.

6. x and y are joinable if there is a z such that x ∗→ z
∗← y, which is also written as x ↓ y.

We can now define two core properties of ARSs:

Definition 2.1.1.2. (confluence and termination) A reduction relation→ is called
confluent if y1

∗← x
∗→ y2 ⇒ y1 ↓ y2 (see Fig. 2.1).

Church-Rosser if x ∗↔ y ⇒ x ↓ y (see Fig. 2.1).
terminating if there is no infinite reduction sequence a0 → a1 → ...

normalizing if every element has a normal form.
convergent if it is both confluent and terminating.

x y

z

*

**

x y1

y2 z

*

* *

*

Figure 2.1: The Church-Rosser property and confluence
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The intuition behind confluence is the following: If some object x can be reduced to two
different objects, these objects have a common successor, i.e., both can be reduced to the same
object.

It turns out that the Church-Rosser property and confluence are equivalent. The fact that any
Church-Rosser relation is confluent is almost immediate. The reverse implication can be shown
by observing that any equivalence x ∗↔ y can be seen as a series of peaks between x and y . We
can now use confluence to close each of the peaks from the top to the bottom and thus join x
and y.

Uniform confluence

Confluence considers divergences of arbitrary length y1
∗← x

∗→ y2. This means that it takes an
arbitrary number of steps from x to reach y1 and y2. Moreover, it may take an arbitrary number
of steps from both y1 and y2 to reach a common successor z. Intuitively, reducing an object in
a confluent ARS means that if there are multiple reduction paths, then we can eventually reach
a common successor from any path. The emphasis is on “eventually”, as these reduction paths
may be arbitrarily long. Uniform confluence restricts this arbitrary length of reduction paths to
exactly 1:

Definition 2.1.1.3 (Uniform confluence). A reduction relation→ is uniformly confluent if the
following holds: if y1 ← x→ y2 where y1 6= y2, then there exists a z such that y1 → z ← y2.

In other words, if x has two distinct one-step successors in a uniformly confluent ARS, then
a common successor to these two objects can be reached by exactly one step from each object.
Uniform confluence not only implies confluence, but is strictly stronger. It guarantees a common
successor after exactly one step on each side, as opposed to arbitrarily many.

In the following section, we will show that this property is crucial to interaction nets, as it
ensures that single computation steps are independent of each other.

2.1.2 Term Rewriting Systems

A term rewriting system (TRS) [28] is an abstract reduction system where the set A is built from
terms over a given signature Σ containing function symbols of a fixed arity and a set of variables
X . We then denote the set of terms built from these objects by T (Σ, X).

Terms can be seen as trees where each node is labeled by a function symbol or a variable,
and each non-variable node has a number of child nodes corresponding to its arity. We can
then specify positions of subterms by strings of integers: the subterm of t at some position p is
denoted by t|p. For example, let t = f(x, g(f(b, c))). Then, t|21 refers to f(b, c) and t|212 refers
to c. For replacing a term t|p with u in t at position p, we write t[u]p. Furthermore, we define
substitutions as mappings from variables to terms.

Definition 2.1.2.1. Let Σ be a signature and X a set of variables. A Term Rewriting System
(TRS) is a set of rewrite rules R = li → ri, where li, ri ∈ T (Σ, X), li /∈ X and all variables
that occur in ri also occur in li.
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A term t is rewritten to a term u by a rule l → r at position p with substitution σ if t|p = lσ
and u = t[rσ]p.

Example 2.1.2.2. The addition of symbolic natural numbers (modeled by 0 and a successor
symbol S) can be defined by a TRS based on the signature Σ = {00, S1,+2} and the following
rewrite rules:

+(0, y)→ y

+(S(x), y)→ S(+(x, y))

As an example reduction, consider 1 + 1→∗ 2:

+(S(0), S(0))→ S(+(0, S(0)))→ S(S(0))

2.2 Interaction Nets

Interaction nets are a formal model of computation introduced by Yves Lafont in 1990 [30].
They are a form of graph rewriting, which is essentially a specific form of ARS: Programs and
data are specified as graphs, and execution or evaluation is modeled by rewriting parts of the
graph according to reduction rules. If no more rules are applicable to the graph, a normal form
is reached, which corresponds to the result of the computation.

Interaction nets consist of the following components:

• A set of agents, labeled by a set Σ of symbols. Each agent is associated with an arity n,
describing the number of ports connected to the agent. An agent α with arity n has n+ 1
ports, one of which is denoted the principal port whereas all others are auxiliary ports.
x1 . . . xn

α

In this example, the agent labeled α has the principal port x0 (indicated by the port’s
arrow) and the auxiliary ports x0 . . . xn .

We can also represent this agent textually as α[x1, . . . , xn] or simply α.

• A net built on Σ is an undirected graph with agents at the vertices. The edges of the net
connect agents at the ports such that there is only one edge at every port. A port which is
not connected is called a free port. A set of free ports is called an interface.

• An active pair or redex consists of two agents (α, β) ∈ Σ×Σ that are connected via their
principal port. Active pairs are the parts of a net that can be rewritten, similar to a redex
(reducible expression) in other models of computation. The two nodes of an active pair
are also called active agents.
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• Interaction rules replace an active pair by some net N . Interaction rules preserve the
interface of the net: no auxiliary ports are added or removed.

x1 y1

... α β ...

xn ym

./ ⇒

x1 y1

... N

xn ym

...

We will represent interaction rules textually as A ./ B ⇒ N , where A ./ B represents the
active pair on the left-hand side (LHS), and N the net on the right-hand side (RHS). If the RHS
is not of importance for an argument, we may just write A ./ B. We write A ∼ B to denote a
specific active pair/redex (which is part of some net).1 A net containing A ∼ B as a subnet can
be rewritten by a rule A ./ B.

Definition 2.2.1 (Interaction Net System (INS)). An interaction net system (INS) is a pair
R = (Σ, R) where Σ is a signature, i.e., a set of agents, and R is a set of interaction rules,
where for every rule A ./ B ⇒ N ∈ R we have A,B ∈ Σ. There is at most one rule for every
such active pair.
We will often write R instead ofR, thus leaving the signature implicit.

Definition 2.2.2 (Reduction Relation). Let (Σ, R) be an INS. The reduction relation ⇒R in-
duced by this system is defined as follows: N ⇒R M if an active pair A ∼ B is a subnet of N ,
(A ./ B ⇒ P ) ∈ R and M can be obtained from N by replacing A ∼ B with P .
If the set of rules is clear from the context, we simply write⇒ instead of⇒R.

We now give a simple example modelling the addition of natural numbers. Numbers are
represented by the agents 0 (zero) and S (successor). For example, we can express 2 as the
successor of the successor of zero, or as a net:

S S 0

. .

Addition can be specified with the interaction rules displayed in Figure 2.2. They correspond
to the following function definition:

add(0, y) = y

add(s(x), y) = s(add(x, y))

Figure 2.3 shows the reduction of a net representing the term 1 + (0 + 1).
As we see, interaction rules work in a quite simple and restricted way. Only active pairs can

be rewritten, and all auxiliary ports connected to the active pair are preserved. This leads to two
key properties of interaction nets, uniform confluence and locality of reductions.

1Note that both notations A ./ B and A ∼ B are interpreted modulo commutativity.
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(1) r

+

0 y

./ ⇒

r

y

(2) r

+

S y

x

./ ⇒

r

S

+

x y

Figure 2.2: Interaction rules for addition

r

+ +

S 0 S ⇒

0 0

./

.

./ .

.

r

S

+ +

0 0 S ⇒

0

.

./ ./ .

.

r

S

+

0 S ⇒

0

.

./ .

.

r

S

S

0

.
.

.

Figure 2.3: Reduction of 1+(0+1) (the active pair reduced in each step is bold).
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Proposition 2.2.3 (Uniform Confluence, Lafont [30]). The reduction relation ⇒ induced by
any INS satisfies the uniform confluence property: let N be an interaction net. If N ⇒ P and
N ⇒ Q where P 6= Q, then there exists a net R such that P ⇒ R⇐ Q.

Three properties of interaction nets are sufficient for uniform confluence [32]:

1) Linearity: Ports cannot be erased or duplicated via interaction rules.

2) Binary interaction: Agents can only be rewritten if they form an active pair, i.e., if they are
connected via their principal ports.

3) No ambiguity: For each pair S, T , of agents there is at most one rule that can rewrite S ∼ T .
If S = T , the rewriting S ∼ T must yield the same net as rewriting T ∼ S (symmetry).

The last condition is of particular interest if a rule LHS consists of two identical agents,
also known as self-interaction. In this case, the RHS must be symmetric in the sense that the
orientation of the active pair is irrelevant (see [32] for details on this condition).

The linearity and binary interaction properties also ensure locality of reduction, which states
the aforementioned preservation of interfaces of active pairs: no replacement of an active pair
can influence another one. The consequence of these properties is that there is no required order
in which active pairs have to be reduced. The result of the computation is always the same,
independently of the order of evaluation.

Parallel Evaluation

Due to uniform confluence and locality of reduction, active pairs may be reduced in parallel.
Figure 2.4 shows a reduction of our initial example, where all concurrent active pairs are reduced
at the same time in every step. Note that the number of concurrent active pairs varies during the
course of the reduction, which will be of major importance in Section 5.7.

r

+ +

S 0 S ⇒

0 0

./

.

./ .

.

r

S

+

0 S ⇒

0

.

./

.

.

r

S

S

0

.
.

.

Figure 2.4: Parallel reduction of 1+0+1: In the first step, the net has two active pairs, which can
be rewritten at the same time.

Parallel evaluation is an enormous advantage for a programming language based on inter-
action nets: The current hardware developments show a strong trend towards multi-processor
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systems. Computers with four CPUs are common nowadays, and the number of processors
seems to increase rapidly. Moreover, graphics processing units (GPUs) with hundreds of paral-
lel processors are widely used for compute-intensive applications. With this evolution comes the
challenge of using the provided resources efficiently. However, many existing programming lan-
guages are tedious to use with respect to concurrency: Computations that may occur in parallel
have to be explicitly defined to do so. Precautions have to be taken that concurrent computations
do not interfere with each other in unintended ways. In contrast to this, interaction nets pro-
vide a way to use parallelism “for free”: When defining a program as a net, one does not have
to worry about which parts of the algorithm can be done in parallel. One could even imagine
the translation of a single-threaded program into the interaction nets paradigm to allow for its
parallel evaluation.

Explicit Duplication and Deletion

Another important aspect of interaction nets is that they capture low-level aspects of computa-
tion. Duplication, deletion or substitution of values are explicitly performed. Other prominent
models such as λ-calculus or term rewriting systems do not cover these aspects. To illustrate
this, we give an interaction net encoding of multiplication, similar to the one of addition be-
fore. We also introduce an agent ε, which removes all other interacting agents, and an agent δ,
which duplicates all other agents. Figure 2.5 shows the rules for multiplication, ε and δ. When
expressed as a function, they would correspond to:

mult(0, y) = 0

mult(s(x), y) = add(y,mult(x, y))

On the right-hand side of the first equation, y no longer occurs. Its removal is explicitly modeled
by the ε agent. On the right hand side of the second equation, y is used twice. This duplication
is modeled by the δ agent.

Furthermore, interaction nets are efficient. Only nets in normal form can be duplicated,
which means that computation is naturally shared (i.e., expressions are only computed once, no
matter how often they are used). This has lead to interaction net encodings of the λ-calculus that
are more efficient than its implementation in many current functional programming languages.
More details and performance results can be found in [39]. We can even use the graphical nota-
tion of interaction nets to show properties of programs. In [38], Mackie shows that interaction
rules can be used to straightforwardly reason on memory consumption of programs.

Even though interaction nets are very simple, their good properties and modeling capabilities
show great potential for a programming language based on this model. Still, the development of
such a language stands at the very beginning. To draw an analogy to functional programming
again, interaction nets are comparable to the basic λ-calculus, lacking any advanced program-
ming language features or syntactic sugar. The goal of this thesis is to improve this deficiency.
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r

∗

0 y

./ ⇒

r

0

ε

y

r

∗

S y

x

./ ⇒

r

+

∗ δ

x y
.

(ε1)

ε

0

⇒./

(δ2) d1 d2 d1 d2

δ ⇒ 0 0

0
./

(ε2)

ε

S ε

x x

⇒./

(δ2) d1 d2 d1 d2

δ ⇒ S S

S δ

x x

./

Figure 2.5: Rules for multiplication

2.2.1 Interaction Nets vs. Term Rewriting Systems

As both INs and TRSs are rewriting systems, one might ask the question of the relation between
the two formalisms. Indeed, the initial examples in each paradigm we have given so far seem
quite similar. However, the main differences lie in the properties of INs discussed above. First,
every INS satisfies the uniform confluence property. Hence, any net can be evaluated in parallel
(cf. Figure 2.4. The same does not hold for TRSs. Term rewriting rules are far less constrained
and generally might not satisfy any form of confluence. Thus, TRSs model some aspects of
computation that INs do not (e.g., non-determinism). On the other hand, TRSs do not model low-
level aspects of computation like INs do, leaving duplication and deletion of variables implicit.

TRSs have been extensively studied for decades. There are numerous results on confluence
and termination of various subclasses of TRSs. Indeed, it might be interesting to show if certain
forms of TRSs correspond to INSs. Then, one could apply the TRS techniques to show termina-
tion and other properties to INSs. It turns out that some forms of interaction nets (non-dependent
semi-simple nets) can be subsumed by certain classes of TRSs [10]. However, general interac-
tion nets cannot be modeled in (first-order) TRSs, as this requires a notion of bound variables.
This issue and other relations between INs and TRSs are discussed in detail in [10]. The au-
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thors propose a way to model general interaction nets via combinatory reduction systems, which
incorporate bound variables similarly as in the λ-calculus.

2.3 Type Systems for Interaction Nets

Several type systems have been proposed for interaction nets. In [30], Lafont defines a simple
system that assigns a base type (int, char, . . . ) to every port of an agent. Additionally, a polarity
(+/−) is assigned to each port. Agents may only be connected via ports of the same type, but
opposite polarity. Intuitively, polarities divide ports into input and output ports. For example,
the list and concatenation agents may be typed as follows:

list+ list− list+

Cons Nil ++

nat− list− list− list−

This system is not expressive enough for generic rules and agents that model abstract data-
types (which are a part of monads). For example, there are no type variables, which are essential
for expressing monadic data types such as Maybe a.

In [8], Fernandez extends Lafont’s type system by adding type variables and constructs
for more complex types (arrows, intersections). While this intersection type system is more
expressive, it is also more difficult to handle: for example, type assignment of intersection types
is undecidable for interaction nets.

A different approach to types in interaction nets is to extend agents and rules with externally
defined programs and data [13]. For example, instead of a symbolic representation of natural
numbers as in Figure 2.2, one could add a natural number as a sort of attachment to a Num agent:

Num[1]

We can then define interaction rules that manipulate the external data values when the active
pair is rewritten. Consider an agent Inc that increments a number:

Num[n] Inc r ⇒./
Num[n+ 1] r

Of course, more complex external data and programs can be added to INs. As long as the
external programs are confluent, the uniform confluence property of INs is preserved [13].

2.4 Lightweight Interaction Calculus

In this section, we recall the main notions of the lightweight interaction calculus [19]. This
textual formalism provides a precise semantics of interaction nets and is the basis for our pro-
gramming language implementations.
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2.4.1 The Lightweight Interaction Calculus

The lightweight calculus handles application of rules as well as rewiring and connecting of ports
and agents. It uses the following ingredients:

Symbols Σ representing agents, denoted by α, β, γ.

Names N representing ports, denoted by x, y, z, x1, y1, z1, . . . . We denote sequences of names
by x, y, z.

Terms T being either names or symbols with a number of subterms, corresponding to the
agent’s arity: t = x | α(t1, . . . , tn) . s, t, u denote terms, s, t, u denote sequences of
terms.

Equations E denoted by t = s where t, s are terms, representing connections in a net. Note
that t = s is equivalent to s = t. ∆,Θ denote multisets of equations.

Configurations C representing a net by 〈t | ∆〉. t is the interface of the net, i.e., its ports that
are not connected to an agent. All names in a configuration occur at most twice. Names
that occur twice are called bound.

Interaction Rules R denoted by α(x) = β(y) −→ Θ. α, β is the active pair of the left-hand
side (LHS) of the rule and the set of equations Θ represents the right-hand side (RHS).

The no ambiguity constraint of Section 2.2 corresponds to the following definition for the
lightweight calculus.

Definition 2.4.1.1 (No Ambiguity). We say that a set of interaction calculus rules R is non-
ambiguous if the following holds:

• for all pairs of symbols (α, β), there is at most one rule α(x) = β(y) −→ Θ or
β(y) = α(x) −→ Θ ∈ R.

• if an agent interacts with itself, i.e., α(x) = α(y) −→ Θ ∈ R, then Θ equals ∆ (as
multisets, modulo orientation of equations), where ∆ is obtained from Θ by swapping all
occurrences of x and y.

Rewriting a net is modeled by applying four reduction rules to a configuration with respect to a
given set of interaction rules R:

Definition 2.4.1.2 (Reduction Rules). The four reduction rules of the lightweight calculus are
defined as follows:

Communication: 〈 t | x = t, x = u,∆〉 com−→ 〈 t | t = u,∆〉

Substitution: 〈 t | x = t, u = s,∆〉 sub−→ 〈 t | u[t/x] = s,∆〉, where u is not a name.

Collect 〈 t | x = t,∆〉 col−→ 〈 t[t/x] | ∆〉, where x occurs in t.
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Interaction 〈 t | α(t1) = β(t2),∆〉
int−→ 〈 t | Θ′,∆〉, where α(x) = β(y) −→ Θ ∈ R.

Θ′ denotes Θ where all bound names in Θ receive fresh names and x, y are replaced by
t1, t2.

The reduction rules com−→ and sub−→ replace names by terms: this explicitly resolves connections
between agents which are generated by interaction rules. col−→ also replaces names, but only
for the interface. Naturally, int−→ models the application of interaction rules: an equation corre-
sponding to a LHS is replaced by the equations of the RHS.

Example 2.4.1.3. The rules for addition of symbolic natural numbers are expressed in the
lightweight calculus as follows:

+(y, r) = S(x) −→ +(y, w) = x, r = S(w)

+(y, r) = Z −→ r = y

The following reduction calculates 1 + 0:

〈 r | + (r, 0) = S(0) 〉 int−→ 〈 r | r = S(x),+(x, 0) = 0 〉
col−→ 〈 S(x) | + (x, 0) = 0 〉
int−→ 〈 S(x) | x = 0 〉
col−→ 〈 S(0) | 〉

Proposition 2.4.1.4 (Uniform Confluence for the Lightweight Calculus). Let −→ be the re-
duction relation induced by the four reduction rules and a set of interaction rules R. If R is
non-ambiguous, then −→ satisfies uniform confluence.

Proof (sketch). In [11], uniform confluence is shown for the interaction calculus, which is the
predecessor of the lightweight calculus. The main difference of the lightweight calculus to the
previous one is that the indirection rule of the standard interaction calculus is now split into
com−→ and sub−→ . However, this does not affect the property shown in [11]: all critical pairs (i.e.,
critical one-step divergences in the reduction of a configuration) can be joined in one step.
It is necessary that R is non-ambiguous in order to prevent non-determinism in the application
of the int−→ rule, which could lead to non-joinable divergences.

2.5 Pure Languages and Impure Features

We now take a look at functions with computational side effects, also referred to as impure
functions. Extending interaction nets with such functions is one of the main goals of this thesis.

A pure (mathematical) function computes its result solely based on the value of its argu-
ments, which is also known as referential transparency. This definition is not as trivial as it
may look like at first glance: Computer programs frequently incorporate side effects such as
input/output (I/O) and change of a mutable state. These effects can influence the result of a
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function independently of its original arguments. Therefore, I/O, state manipulation, exception
handling and other important features of imperative programming languages are, while being
highly useful and crucial, considered to be impure.

To counter this possible source of errors and introduce functions in a more mathematical
sense to programming, (declarative) functional languages have been developed. One of the
ideas behind functional programming is to promote the purity of functions and to minimize or
eliminate side effects. This allows for equational reasoning on programs. Equations can be used
to construct a formal specification of a program, which has several benefits: On one hand, the
implicitly intended behaviour of the program is made explicit. Furthermore, the specification
can be used to verify properties of algorithms such as termination or the correctness of their
results. Indeed, formal verification of programs can be used to greatly improve the software
engineering process.

Interaction nets can be considered a pure language. The reduction of a net is not influenced
by anything but its initial state. This forms a solid base for reasoning on properties of programs.
For more details on these results, we refer to [34] [9] [10,35–37]. Yet, apart from the benefits of
purity, there are also some disadvantages: Nowadays, software frequently interacts with the real
world. Impure functions are considered a vital part of programs, hence pure languages need to
incorporate them. This poses problems for pure functions and their good properties, which we
will illustrate by an example:

Example 2.5.1. In functional languages such as Haskell, the evaluation order is non-strict, i.e.,
there is no fixed order in which certain expressions in a function are evaluated. Consider a
function in such a non-strict language:

f(x,y) = a - b
where
a = x + 1
b = y - 1

When computing the function f(2,3), it is not specified whether the term a=(2+1) or b=(2-1)
is evaluated first. Since f is a pure function, the order of evaluation has no impact on the result.

In contrast to this, consider a function g which uses the impure function readInt to read
an integer from the input.

g = a - b
where
a = readInt
b = readInt

Suppose the input consists of the list of numbers [2,3] and readInt always takes the first
element from that list. Now the order of evaluation effects the result. Depending on whether a
or b is computed first, g evaluates to -1 or 1. Thus, referential transparency is lost.

We see that interaction between computer programs and the real world is a non-trivial topic.
Hence, programming languages require an appropriate interface to deal with impure effects.
This is especially important for pure languages, as their desired properties are endangered by
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side effects. Thus, a model of real world interaction that preserves purity of functions and
equational reasoning as much as possible is needed. Interaction nets currently lack a formal
model for real world extensions. In the following subsection, we discuss a solution approach for
this task called monads.

2.5.2 Monads

Monads were originally conceived in category theory. Moggi [42] introduced them as a formal-
ism to structure the semantics of programming language features such as state, exceptions or
continuations. By adapting monads to the λ-calculus, he created a framework to model these
and many more features. Wadler extended Moggi’s work by developing a monad model for
functional programming languages [50]. This resulted in the implementation of a monad frame-
work in Haskell to realize monadic versions of I/O, state manipulation, array update, exception
handling and many more [26].

Essentially, monads provide the means to structure pure functions in order to mimic impure
features. By doing so, referential transparency and the possibility for equational reasoning are
conserved. To illustrate this, we provide a short formal definition of monads and an example
of their use in Haskell. A monad is a triple of an abstract datatype M a and two (higher-order)
functions operating on this type:

return :: a -> M a
>>= (bind) :: M a -> (a -> M b) -> M b

M adds a sort of wrapper to some value x of type a, potentially containing additional data or
functions. return x wraps a value x without any additional computations. bind handles
sequentialization of function applications and their potential side effects. A monad needs to
satisfy the following laws:

(1) return a >>= f = f a
(2) m >>= return = m
(3) (m >>= f) >>= g = m >>= (\x -> (f x >>= g))

Intuitively, return acts as a left and right neutral element for >>= due to laws (1) and (2).
The third law forces a form of associativity property for >>=. As an example, we introduce the
Maybe monad, which will serve as a running example through the following chapters.

Example 2.5.2.1. The Maybe monad is used in Haskell to model exception handling. It is
defined as follows:

data Maybe a = Just a | Nothing
(1) return x = Just x
(2) (Just x) >>= f = f x
(3) Nothing >>= f = Nothing

Values of the Maybe data type are either a plain value (Just a) or the error value Nothing
denoting an exception. Plain values are simply forwarded to a function f by >>=, whereas
Nothing is returned by >>= without using f.
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Two aspects of this example cannot be modeled with regular interaction rules. First, the
symbol f is a variable that represents an arbitrary function. Interaction rules consist of concrete
agents only. Second, Maybe is a parametrized type with a type variable a.

Example 2.5.2.1. (monadic I/O) An expression in a pure function denotes a value, whereas an
I/O command should perform some action (e.g., write a character to the output). In Haskell, I/O
actions are defined via the monadic type IO. A type IO a denotes an action that, if it is ever
performed, does some I/O and then returns a value of type a. Simple I/O operations are provided
the by following functions, where () represents a trivial dummy type whose only member is also
called ():

getcIO :: IO Char
putcIO :: Char -> IO ()

getcIO is the action which, when performed, reads a character from the input and returns that
character. Similarly, putcIO – when performed – writes a character to the output.

To combine these basic commands to more advanced functions, we use the IO versions of
return and >>=:

return :: a -> IO a
>>= :: IO a -> (a -> IO b) -> IO b

When performed, m >>= n first performs m, yielding a result IO a, and then performs
n a, yielding a result IO b. We can now define a function echo: (\x -> e denotes lambda
abstraction, \\_ -> e discards the argument)

echo :: IO ()
echo = getcIO >>= \c ->

if (c == eof) then
return ()

else
putcIO c >>= \_ -> echo

>>= controls the order of evaluation by ensuring that its first argument is performed first
and its result is used as input of the second argument. This way, I/O commands are issued in
the correct order. Note that other parts of a Haskell program are still evaluated non-strictly: For
example, if the argument of putcIO is specified by a pure function, it can be evaluated lazily.

In the above example, we put a special emphasis on the semantics of the IO type, which
denotes a command that does some I/O if it is ever performed. This is roughly comparable to
a “script” that is performed by executing it. The point at which actions are actually performed
is Haskell’s main function, which acts as the link to the real world. A major advantage of this
approach is that it preserves simple equational reasoning: Equal actions can be substituted by
one another. This is not possible in side-effect based I/O (see [51] for an example comparison
between Haskell and SML).

It is clear that the monad framework in Haskell offers several properties that a real world
extension for interaction nets should have. It preserves referential transparency to a large extent
and is highly extensible: Haskell uses monads to model exception handling, state manipulation,
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random generation and many more. Additionally, the programmer can define custom monads
for specific purposes. However, the monad model is built on a specific infrastructure, which
demands additional tasks when adapting them to interaction nets.

2.6 Logical Foundations of Interaction Nets

While interaction nets can be seen as an instance of an abstract rewriting systen, they have origins
in logic. We will only give an overview here, and refer the interested reader to [31] for details.
Linear logic was introduced by Girard in 1987 [15]. It is a refinement of both classical and
intuitionistic logic, of which the latter has a strong correspondence to functional programming
languages. In general, (classical) logic deals with the truth of propositions. One characteristic
of truth is that it is not consumed when stated. For instance, using the proposition A “I live
in Vienna” and A → B “If I live in Vienna, I live in Europe”, one can deduce B “I live in
Europe” using classical logic. Furthermore, A is still valid, hence A,A → B ` A,B is a valid
judgement.

Consider a different example: Let A be the proposition “Alice has 10 Euros”, and B be
“Alice has (bought) a pizza (for 10 Euros)”. If we want to model the fact that for 10 eu-
ros, one can buy a pizza, the rules of classical logic are not sufficient: Indeed, the judgement
A,A → B ` A,B is no longer correct in this sense, as buying a pizza would require to spend
the 10 euros, hence Alice would have no money left, i.e., A would not be true any more. Linear
logic was designed to address this shortcoming. While classical logic allows for the reckless du-
plication and discarding of propositions, linear logic treats propositions as expendable resources
that may be used only once in a proof unless explicitly stated otherwise. For example, the classi-
cal implication A→ B is replaced by A( B, read “consuming A yields B”. This corresponds
exactly to our example of spending 10 euros to purchase a pizza.

In traditional logic, the grammar of propositions using the common connectives and, or and
implies can be specified as follows: (X ranges over propositional variables)

A,B := X | A ∧B | A ∨B | A→ B

In linear logic, the conjunction A ∧ B is split in two: We use A ⊗ B (“both A and B”) to
denote the simultaneous availability of both resources and A & B (“choose from A and B”)
the availability of either A or B, where the choice is free. The disjunction A ∨ B is replaced
by A ⊕ B, denoting either A or B where one does not have the choice which proposition is
available. Together with the linear implication( mentioned above, these connectives specify
the grammar of linear propositions:

A,B := X | A⊗B | A&B | A⊕B | A( B

The possibility to duplicate and discard traditional propositions is defined by the logical rules
of contraction and weakening: (presented in natural deduction style)

Γ, A,A ` B
Contraction

Γ, A ` B
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Γ ` B Weakening
Γ, A ` B

To capture the essence of propositions as expendable resources, linear logic needs to restrict
these rules. While it is not advisable to get rid of contraction and weakening completely, their
application is limited to specific propositions: If A is a linear proposition that can only be used
once, we denote by !A a proposition that is usable an arbitrary number of times in a proof.
Hence, only propositions preceded by ! may be duplicated and discarded. For example, we can
define the classical implication A→ B (which does not consume A) by !A( B.

2.6.1 Proof Nets and the Relation to Interaction Nets

In his work on linear logic [15], Girard also addressed the issue of equality between proofs:
In the sequent calculus, proofs for some proposition can differ only in the (sequential) order
of inference rules applied. To give a more unique representation of a proof, Girard introduced
proof nets, a graphical representation of proofs. Here, we will only consider the multiplicative
fragment of linear logic, i.e., the ⊗ and & connectives. Together with the linear negation ⊥, the
following laws can be established:

p⊥⊥ = p

(A⊗B)⊥ = A⊥&B⊥

(A&B)⊥ = A⊥ ⊗B⊥

A multiset of formulae is then denoted by the sequent ` A1, . . . , An, leading to the four
reduction rules axiom, cut, times and par:

axiom
` A,A⊥

` A,Γ ` A⊥,∆
cut` Γ,∆

` A,Γ ` B,∆
times` A⊗B,Γ,∆

` A,B,Γ par
` A&B,Γ

The cut rule is of particular interest: the sequent calculus satisfies the cut-elimination prop-
erty, that is, any proof of some sequent ` Γ can be reduced to one without the use of cut. Specific
reduction rules for cut-elimination in the sequent calculus can be given.

A proof net [31] is a graph built from cells labeled with the connectives ⊗ and & and wires
between them:
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A B A B

⊗ & A A⊥

A⊗B A&B

These cells have one principal and two auxiliary ports each, and are obviously similar to
agents. All ports are assigned types corresponding to a logical formula. This way, proof nets
represent proofs of sequents, where the sequent is the multiset of all interface types of a net. In
addition, proof nets have a single reduction rule:

A D

⊗ & ⇒
B C

./

A D

B C

The interaction of⊗ and & cells simply removes both cells and connects their corresponding
auxiliary ports. Interestingly, this rule corresponds to cut-elimination, i.e., transforming a proof
(net) with cuts to a cut-free one. For example, the following nets represent proofs of the sequent
` p⊥, p⊗ (q ⊗ r), r⊥&q⊥, where the left net reduces to the (cut-free) right one:

⊗ &

⊗ ⇒

⊗ &

p⊥ p⊗ (q ⊗ r) r⊥&q⊥
.

.

./

⊗ &

⊗

p⊥ p⊗ (q ⊗ r) r⊥&q⊥
.

Interaction nets have been defined by Lafont [30, 31] as a generalization of proof nets. In-
stead of just⊗ and &, we have an alphabet Σ of agents (cells) with corresponding arities. Reduc-
tion rules are defined between pairs of these agents as introduced in Section 2.2. Computation in
INs then corresponds to cut-elimination in proof-nets. This is an example of the Curry-Howard
Isomorphism which relates programs and proofs (here, nets) and formulas and types (here, in-
terfaces).

2.6.2 Linear Logic and Side Effects

Interestingly, linear logic also relates to our goal of connecting a pure programming language
to the real world. A practical example is given by the implementation of I/O in the functional
language Clean [1].

Example 2.6.2.1. (Linear Logic I/O) In the lazy functional language Clean, I/O functionality is
realised in an environment passing style: All I/O commands accept and return an argument of
type *World, which models the state of the outside world (environment). The important part is
that this state of the world has the “uniqueness” attribute (indicated by *), which is a refinement
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of the constraints of linear logic. An object that is unique may only be used once in a program
and never be duplicated. I/O functions interact with the world and return it in an updated state:

putChar :: Char -> *World -> *World
getChar :: *World -> *(Char, *World)

putChar takes a character and the state of the world and returns an updated state. getChar
takes a state of the world and returns a pair of the input character and the updated state. Note
that *(Char, *World) contains 2 uniqueness operators. As mentioned before, the state of
the world must be used only once. To ensure this, the pair of the input character and the state
must be unique as well. Otherwise, duplication of the state would be possible via duplication of
the pair. In contrast to this, the input character alone can be extracted from the pair and used
without any restrictions.

Using these basic functions, we can again define echo:

echo :: *World -> *World
echo c world =

if (c == eof) then
world2

else
echo world2

where
(c,world1) = getChar world
world2 = putChar c world1

While a linear logic type approach to side effects is viable, we have decided to focus on using
monads for our side effect extension in interaction nets: As we will show in the later chapters,
monads allow for a concise implementation of impure functions that fits well with the style of
interaction nets.
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CHAPTER 3
Foundations and Theoretical Results

In this chapter, we present the theoretical results of our work. The main topic is the notion
of generic interaction rules, which is based on joint work with Bernhard Gramlich. We first
introduce generic rules in the standard graphical setting of INs. We discuss their properties and
define a type system that will enable us to define our side effect extension in Chapter 4. We also
extend the lightweight interaction calculus with generic rules, and show that the same properties
as in the graphical setting hold. Finally, we introduce interaction rules with nested patterns, a
conservative extension for more complex rule patterns. We show that nested patterns and generic
rules can be fruitfully combined.

3.1 Generic Rules and Imposed Constraints

An ordinary interaction rule matches one specific pair of (distinct) agents only. However, several
papers ( [8, 9, 34]) on interaction nets feature agents that interact with any (arbitrary) agent. In-
formally, these variable or generic agents assume the role of functional variables. We will refer
to such rules as generic rules. Typical examples are the agents δ and ε, which we already intro-
duced in Chapter 2. These agents duplicate and erase, respectively, any other agent (including
agents without any auxiliary ports):

(ε)

ε

α ε . . . ε

x1 . . . xn x . . . xn

⇒./

(δ) d1 d2 d1 d2

δ ⇒ α
. . .

α
. . .

α δ . . . δ

x1 . . . xn x1 . . . xn

./

In a system with generic rules, a given active pair may be matched by more than one rule.
In fact, this is the case for any system that contains the δ and ε rules: the active pair (δ ∼ ε) can
be reduced using either rule. This violates the no ambiguity property mentioned in Section 2.2
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and generally destroys uniform confluence (although in this case, it does not: both rules yield
the same net). Therefore, it is important to give a formal definition of how generic rules in INS
are interpreted and restricted in a way that uniform confluence is preserved.

Generic agents can be classified into two kinds. They may either have a fixed arity or have
a non-fixed, arbitrary number of auxiliary ports (such as δ or ε). We call the latter variadic
or arbitrary-arity agents. Note that generic agents may only appear in interaction rules, not in
concrete instances of nets.

3.1.1 Generic Rules

We use upper-case letters (A,B,..) to denote specific (i.e., arbitrary, but fixed) agents, and lower
case Greek letters (α, β, φ, ψ, . . .) to denote generic agents. A generic interaction rule is an
interaction rule α ./ B ⇒ N whose LHS consists of one generic agent α and one ordinary
agent B. The RHS N may contain one or more occurrences of α. We use INSG for INS with
generic rules.

Definition 3.1.1.1 (Generic Rules). A generic interaction rule is an interaction rule α ./ B ⇒
N whose LHS consists of one generic agent α and one ordinary agent B. The RHS N may
contain one or more occurrences of α.

Definition 3.1.1.2 (Rule Matching). An ordinary rule A ./ B is applicable to (or matches)
an active pair if the latter is of the shape A ∼ B. A generic rule α ./ B is applicable to (or
matches) an active pair if the latter is of shape A ∼ B (with A 6= B) and if α and A have the
same number of ports. In this case, we also say that α matches A. Note that active pairs are not
ordered: A ∼ B is equivalent to B ∼ A, i.e., both are matched by a rule A ./ B.

Restriction of Self-Interaction Note that generic rules do not match active pairs where both
agents are the same (e.g., B ∼ B for the rule α ./ B). The reason for this is that some generic
rules inherently do not satisfy the “symmetry” condition of Lafont’s no ambiguity property (see
Section 2.2). However, we can instead add an additional ordinary rule for B ./ B to our set
of rules, particularly under the constraints defined in the remainder of this section, provided it
satisfies the aforementioned symmetry constraint for self-overlaps.

In the presence of generic rules, more than one rule may match a given active pair. We
now classify these overlaps according to the rules involved. Note that we are only interested in
overlaps on the level of a single active pair/redex: Due to the binary interaction property, the
reduction of one active pair cannot influence another one (e.g., erase or duplicate it). Therefore,
we define overlaps as the matching of more than one rule on a single active pair.

Definition 3.1.1.3 (Overlaps). Two (distinct) rules in an INSG overlap if there exists a single
active pair (w.r.t. some INS) which is matched by both rules and can also be rewritten by them.1

1This requirement ensures that reducing subnets in different ways by overlapping rules is indeed possible. Later
on we will prevent such overlaps by restricting the reduction relation.
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Let (Σ, R) be an INSG. Let O(R) ⊆ R be the ordinary rules of R and G(R) ⊆ R be the generic
rules of R. We say that two rules A ./ B and α ./ B in an INSG form an ordinary-generic-
overlap (OG-overlap for short) if both match an active pair A ∼ B. Two generic rules α ./ B
and A ./ β form a generic-generic-overlap (GG-overlap for short) if α matches A and β
matches B, i.e., both rules match the active pair A ∼ B.

We now define our constraints for generic rules, first for agents with fixed arity. Afterwards,
we extend these constraints to generic agents with arbitrary arity (e.g., δ and ε).

We can prevent OG-overlaps by giving priority to ordinary rules. If for an active pair an
INSG has no matching ordinary rule, only then may a generic rule be applied.

Definition 3.1.1.1 (Default Priority Constraint (DPC)). LetR = (Σ, R) be an INSG. ThenR
satisfies the Default Priority Constraint (DPC) if the induced reduction relation is restricted as
follows: A generic rule α ./ B ∈ R is only applicable to an active pair A ∼ B if A ./ B is not
the LHS of any rule in R.
In this case we write⇒RDPC

for the restricted reduction relation.

The DPC ensures that “exceptions” to generic rules assume priority. One can easily see that
this completely prevents OG-overlaps. Adding a generic rule α ./ B ⇒ N ∈ R to an INS
(Σ, R) is equivalent to adding an ordinary version A ./ B ⇒ N [α/A] of the rule for each
symbol A in Σ (distinct from B). From now on we assume that Σ is finite.

As the DPC prevents OG-overlaps, we now focus on preventing GG-overlaps, i.e., over-
laps between multiple generic rules. Our approach is straightforward: We disallow overlapping
generic rules or enforce a higher-priority ordinary rule.

Definition 3.1.1.2 (Generic Rule Constraint (GRC)). LetR = (Σ, R) be an INSG. R satisfies
the Generic Rule Constraint (GRC) if for all α ./ B ⇒ N , A ./ β ⇒ M ∈ G(R), one of the
following conditions holds:

(1) α does not match A or β does not match B.

(2) A ./ B ∈ O(R).

While DPC restricts the reduction relation, GRC is a constraint on the set of interaction rules.
The combination of GRC and DPC prevents any rule overlaps.

Proposition 3.1.1.3 (Uniform Confluence). Let I = (Σ, R) be an INSG that satisfies GRC.
Then⇒RDPC

has the uniform confluence property.

Proof. It is sufficient to show that the no ambiguity property of Section 2.2 is preserved by the
constraints. Clearly, ⇒RDPC

prevents all OG-overlaps. This means that if there is an overlap,
it must be a GG-overlap. We then make a case distinction based on the conditions satisfied by
GRC:

1. Condition (1) holds: In this case, there are no GG-overlaps.

29



2. Condition (2) holds: There is a rule A ./ B ∈ O(R) that matches the active pair causing
a GG-overlap. This overlap is prevented in⇒RDPC

, as the ordinary rule has priority over
all generic ones.

Example 3.1.1.4. Recall Haskell’s Maybe monad from Example 2.5.2.1:

data Maybe a = Just a | Nothing
(1) return x = Just x
(2) (Just x) >>= f = f x
(3) Nothing >>= f = Nothing

The Maybe monad’s return and >>= functions for natural numbers can be modeled in inter-
action nets by the following INS:

(1a) 0 ret r ⇒ 0 Jst r

(1b) x S ret r ⇒ x S Jst r

(2) x Jst >>= r ⇒ x r

(3a) No >>= r ⇒ aux r (3b) aux φ r ⇒ No r

./ .

./ .

./

./ ./

The rule labels correspond to the textual definition of the monadic functions. In rule (3b), we
use a generic agent to model the higher-order parameter f of >>=. We use unary agents for both
return and >>=. This choice has some advantages that we will discuss in detail in Chapter 4.

Even though we employ a generic agent to model higher-order parameters, the above INS is
not quite as powerful as Haskell’s Maybe monad. It is only defined for natural numbers (i.e., the
agents S and 0) instead of arbitrary datatypes. This means that return should also be defined
as a generic rule. In addition, ret should interact with an agent of arbitrary arity, similar to δ and
ε. Likewise, rule (3b) only defines interaction with a generic agent of arity 1. To improve this
issue, we now focus on generic agents with arbitrary arity.

3.1.2 Generic Rules with Variadic Agents

Consider again the δ and ε rules. These rules match any active pair that consists of δ/ε and an
agent of arity between 0 and n (where n is considered the maximum arity of all agents in the
signature).

Definition 3.1.2.1 (Variadic Rule Matching). Let r = α ./ B be a generic rule, where α is of
arbitrary arity (denoted by the dot-notation “. . . ”). Then, r matches an active pair A ∼ B.

Note that this definition of rule matching with a generic rule includes the degenerate case of
0 auxiliary ports.

30



Variadic Rule Application As indicated by the δ/ε rules on page 27, rules with variadic
agents may have an arbitrary number of identical agents (or subnets) in their RHS (denoted by
“. . . ”). Such a ruleα ./ B ⇒ N is applied to an active pairA ∼ B as follows: let n = arity(A).
A ∼ B is replaced by a net N ′, such that N ′ contains n copies of all agents, wires and ports in
N that are marked with the dot-notation and one copy of the remaining parts of N (which are
not marked with the dot-notation). For example, consider the δ-rule on page 27: the δ agents,
the ports xi and all wires between δ and α agents are copied n times. Both α agents and the
ports d1, d2 only appear once in N ′.

The constraints and properties of fixed-arity generic rules can be extended to the arbitrary
arity case. For this, we define the notion of arity unfolding.

Definition 3.1.2.2 (Arity Unfolding). Let I = (Σ, R) be an INS. Let O(R) be the set of or-
dinary rules, G(R) the set of fixed-arity generic rules and AG(R) the set of arbitrary-arity
generic rules of R. Let Ar(Σ) be the set of arities of all agents of Σ. We define the arity unfold-
ing AU(R) as follows: AU(R) = O(R) ∪ G(R) ∪ {A ./ αi ⇒ N [α/αi] | (A ./ α ⇒ N) ∈
AG(R), arity(αi) ∈ Ar(Σ)}.

Informally, the arity unfolding adds a single fixed-arity generic rule for all possible arities
of the generic agent (i.e., all arities of agents in Σ) in an arbitrary-arity generic rule. If Σ is
finite, then AU(R) has finitely many rules. Note that N [α/αi] is a RHS that contains arity(αi)
identical subnets (as mentioned above).

Theorem 3.1.2.3. Let I = (Σ, R) be an INSG, where R contains at least one generic rule with
a variadic agent. If AU(R) satisfies GRC, then⇒RDPC

satisfies the no ambiguity property.

Proof. If AU(R) satisfies GRC, then it has no GG-overlaps, except those that are prevented by
DPC. Since N ⇒R M if and only if N ⇒AU(R) M , R has no additional GG-overlaps either.
Hence,⇒RDPC

has no overlaps.

3.1.3 Non-Uniform Port Handling

In the RHS of a variadic rule, all (arbitrarily many) ports of the generic agent are handled in the
same, uniform way. However, we can define generic rules where a few selected ports of a generic
agent receive a different, non-uniform treatment and the remaining, arbitrarily many ports are
handled uniformly. Such rules can be used to support curried functions or partial applications
(e.g., (1+) in Haskell)

We now give an example for non-uniform port handling. First consider the following INS
that allows us to concatenate lists of natural numbers: R = (Σ, R) where Σ = {00, S1, Cons2, Nil0,
++2} and R is defined as follows:

r

(+ + 1) ++

Cons z ⇒

x y

./

r

Cons

x ++

y z

.

r

++ ⇒

Nil x

(+ + 2)

./

r

x
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It is straightforward to see a net consisting of the agents ++ and Nil as the interaction net
equivalent of the partially evaluated function (++ Nil). Unfortunately, the interaction rules
of the Maybe monad from Example 3.1.1.4 are not applicable here. Consider the following
reduction:

No >>= ++ r ⇒

Nil

./ .

.

aux ++ r

Nil

./

.

Even though the second net has an active pair, it cannot be reduced any further. The ++
agent has two auxiliary ports and hence does not match the generic rule (3b). However, we can
model the desired behavior of the aux agent with the following arbitrary-arity generic rule:

aux φ r ⇒

an ... a1

./ ε ... ε No r

an ... a1

The port r corresponds to the output of ++ in the previous example. This updated generic
rule is applicable to the net above: rule matching for the non-uniform case works almost identi-
cally to Definition 3.1.2.1. However, the respective agent of the active pair needs to have at least
the number of non-uniformly handled auxiliary ports.

Definition 3.1.3.1 (Non-Uniform Variadic Rule Matching). Let r = α ./ B be a generic rule,
where α is of arbitrary arity, but contains n auxiliary ports that are handled non-uniformly. r
matches an active pair A ∼ B if arity(A) ≥ n.

Generic Rule Constraints and Non-Uniform Port Handling The generic rule constraints
and their properties are almost the same for uniform and non-uniform variadic agents: in the lat-
ter case, the arity unfolding only creates fixed-arity generic agents (and rules) with arity greater
or equal to the number of non-uniform ports. This is analogous to the arity restriction of the
previous definition. It does not affect Theorem 3.1.2.3 and its result on uniform confluence.

3.2 A Simple Typing Approach

In the previous section, we introduced generic rules and suitable constraints on them to preserve
uniform confluence. However, even if we satisfy these constraints, the matching capabilities of
generic rules are too powerful, matching any agent with the arity of the generic agent. Naturally,
this problem is solved by a type system for interaction nets. In this section, we will define a type
system that is suitable for expressing monadic rules in interaction nets.

3.2.1 Our Typing Approach

The main goal of our type system is to restrict the matching power of generic rules. We decided
to keep the system as simple as possible. However, our system needs to be expressive enough to
model types of the monadic operators:
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return :: a -> M a
>>= :: M a -> (a -> M b) -> M b

This means that a suitable type system needs to feature type variables, and a form of arrow
(i.e., functional) types. While the intersection type system of [8] offers arrow types for ports,
we feel that this system is overly complex for our needs. Therefore, we take the following
approach: We restrict types for ports to base types and type variables. Base types may either be
type constants (like int) or have type parameters (e.g., list(int)). More complex types are only
defined implicitly via the set of all port types of an agent, also referred to as its environment.
When matching a rule with an active pair, we compare the environment of the active pair’s
agents with the rule LHS.

Definition 3.2.1.1 (Port Types). Let S be a set of base types (or sorts). Let each sort have an
arity, denoting the number of type parameters. Let V be a set of type variables and P = {+,−}
be the set of polarities. The set of port types PT is defined as:

• vp ∈ PT , where v ∈ V, p ∈ P

• sp ∈ PT , where s ∈ S, p ∈ P , and arity(s) = 0

• s(t1, . . . , tn)p ∈ PT , where s ∈ S, p ∈ P, ti ∈ PT (1 ≤ i ≤ n), arity(s) = n

All types of an agent’s ports form its environment. This notion was already introduced in [8].
However, we define it in a slightly different way, ordering the types by their port positions,
starting counter-clockwise from the principal port.

Definition 3.2.1.2 (Environment). Let A be an agent of arity n. The environment ε(A) is
defined as {tp, t1, . . . , tn}, where tp is the type of the principal port, and ti is the type of the ith
auxiliary port (viewed counter-clockwise from the principal port).

For example, ε(Cons) = {list(τ)+, τ−, list(τ)−}. Within the environment, multiple occur-
rences of the same variable (here: τ ) refer to the same type. I.e., the environment is the scope of
port variables.

Considering only type constants (i.e., sorts with arity 0), a net is well-typed if all connections
are between ports of different polarity, but with the same type. When adding type variables and
parametrized types, we have to adapt this notion slightly:

Definition 3.2.1.3 (Well-Typed Nets). Given the a set of agents and the types of their ports, an
interaction net N is well-typed if the following conditions hold:

• all connected ports are of opposite polarity.

• for all pairs of types of connected ports (t1, r1), . . . , (tn, rn), there is a solution to the
unification problem {t1 ≈ r1, . . . , tn ≈ rn}.

A well-typed net can be seen as the equivalent of a well-typed program. The definition
ensures that the environments of each individual agent remain consistent: after applying the

33



substitution resulting from the substitution problem above, the same variables within the scope
of an environment are replaced by the same type.

Based on the environment, we define a rule type that will be used for matching. In addition,
we need to formalise whether specific port type variables of the agents of a rule LHS correspond
to each other. For this, we will use substitutions from type variables to types, referred to as type
substitutions.

Definition 3.2.1.4 (Rule Type). Let r = (A ./ B ⇒ N) be an interaction rule. Let the type
variables of the ports of A and B be disjoint. The rule type RT (r) is a triple (ε(A), ε(B), S),
where S is a type substitution {τ1 7→ t1, . . . , τn 7→ tn} consisting of types of either ε(A) or
ε(B).

The idea behind S is to ensure that the net of the rule is well-typed and specific interface
ports of both agents share the same type. Think of a rule LHS where one auxiliary port of each
active agent needs to have the same variable type as the other. Since the scope of the variable
is the environment of a single agent, we need additional information to declare two port type
variables of different agents as equal. This is the purpose of S, as is shown in the following
example:

Example 3.2.1.5. Consider rule (2) of the Maybe monad in Example 3.1.1.4:
let ε(Jst) = {maybe(τ)+, τ−} and ε(>>=) = {maybe(ρ)−, ρ−}, where maybe is a base
type of arity 1 and τ, ρ are type variables. Then, RT ((2)) = (ε(Jst), ε(>>=), {τ 7→ ρ}). Both
auxiliary ports share the same type: The auxiliary port of bind must be connected to an agent
that matches the auxiliary port type of Jst.

Definition 3.2.1.6 (Well-Typed Rules). A rule is well-typed if both nets of the LHS and RHS
are well-typed and the types of all free ports are the same in the LHS and RHS.
We say that a set of rules R is well-typed if all rules in R are well-typed. We will use the
abbreviation INSGT for an INSG with typed rules.

We now define matching of generic typed rules and active pairs, which is the main pur-
pose of our type system. Informally, we match the environment of the generic agent and the
corresponding agent of the active pair.

Definition 3.2.1.7 (Typed Rule Matching). Let r = α ./ B be a well-typed interaction rule
where α is a generic agent. Let N a well-typed net containing an active pair A ∼ B. We say
that r matches A ∼ B if r matches A ∼ B w.r.t. Definition 3.1.1.2 and there exists a type
substitution σ s.t. σ(S(ε(α))) = ε(A), where S is the substitution of RT (r).

3.2.2 Typing for the Variadic Agent Case

So far, our type system can describe and match rules that consist of ordinary and fixed-arity
generic rules. Since we want to model the environment of generic agents with arbitrary arity, we
introduce a special symbol ∗ that may match any number of port types. This corresponds to the
generic agents’ capability to match agents with any number of ports of any type.
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Definition 3.2.2.1 (Type Wildcard). Let α be a generic agent that has an arbitrary number of
auxiliary ports. We then model its environment as ε(α) = {tp, ∗} where tp is the type of the
principal port of α and ∗ is called the type wildcard.

Intuitively, ∗ may be replaced by any number of port types. Typed rule matching can be
extended with variadic agents as follows: when matching a rule with an active pair, we treat a
variadic agent as a fixed arity agent: this agent has the arity of the corresponding agent of the
active pair. The auxiliary ports covered by the type wildcard * are fresh type variables with
suitable polarities.

Definition 3.2.2.2 (Typed Rule Matching with Variadic Agents). Let r = α ./ B, where α is
a variadic agent. Let ε(α) = (tp, ∗, t1q1 , . . . , tmqm), where ti are the types of the non-uniformly
handled ports (and qi the respective polarities). α ./ B matches an active pair A ∼ B if the
following holds:

• Let α′ be a fixed-arity generic agent s.t.
ε(α′) = (tp, x1

p1 , . . . , xn
pn , t1

q1 , . . . , tm
qm), where n = arity(B) −m (m is the num-

ber of non-uniformly handled ports), xi are fresh variables and the polarities pi are the
polarities of B’s auxiliary ports.

• α′ ./ B matches A ∼ B w.r.t. Definition 3.2.1.7.

The simplicity of the type system makes it quite easy to handle. For example, well-typedness
of nets is decidable in linear time.

3.2.3 Properties of the Type System

The presented type system combines well with the generic rule constraints of Section 3.1: The
respective properties to preserve uniform confluence need not be changed in the typed setting.
The type system only restricts the notion of matching used in the definition of the constraints.
The constraints still imply the no ambiguity property. To conclude this section, we show that
well-typedness of nets is decidable in linear time, as it can be reduced to unification.

Proposition 3.2.3.1. Let N be a typed net without generic agents. Given the environments of all
agents, well-typedness of N can be decided in linear time (i.e., linear in the number of agents
and ports of the net).

Proof. Both properties of Definition 3.2.1.3 can be shown in linear time. In particular, the
second property is a unification problem which can be solved in linear time [5]. By Definition
3.2.1.3, two properties need to hold:

• all connected ports are of opposite polarity.

• for all pairs of types of connected ports (t1, r1), . . . , (tn, rn), there is a solution to the
unification problem {t1 ≈ r1, . . . , tn ≈ rn}.
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The first property can be checked in linear time by traversing the net. The second property
is a unification problem, which can be solved in linear time [5]. Therefore, the overall time
complexity of deciding well-typedness of a net is linear in the number of agents and ports of the
net.

3.3 Generic Rules: Summary

We have defined generic rules for interaction nets, which are substantially more powerful than
ordinary interaction rules. Generic rules allow us to conveniently express higher-order functions
in interaction nets, in particular monads, which we will show in Chapter 4. Generic rules are a
conservative extension: Under appropriate constraints (DPC and GRC), the uniform confluence
property of interaction nets is preserved.

The matching power of generic rules can be further restricted by a type system. We defined
a system that is expressive enough for generic rules and monads, but still offers nice properties
due to its simplicity.

3.4 Generic Rules for the Lightweight Calculus

In the previous subsections, we introduced generic rules in the graphical setting of interaction
nets. Now, we extend the lightweight interaction calculus (see Section 2.4.1) in order to express
the semantics of generic rules. In particular, this will provide us with a precise definition of
variadic rule matching and application.

3.4.1 Fixed and Variadic Generic Rules

As we discussed in the previous part of this chapter, we distinguish two types of generic agents
and rules based on the arity of the agent:

fixed generic agents have a specific arity. They correspond to an arbitrary agent of exactly this
number of ports.

variadic agents are of arbitrary arity. They correspond to any agent with any number of ports.

Recall the rules for deletion and duplication via the agents ε and δ, where α is a variadic
agent:

(ε)

ε

α ε . . . ε

x1 . . . xn x . . . xn

⇒./

(δ) d1 d2 d1 d2

δ ⇒ α
. . .

α
. . .

α δ . . . δ

x1 . . . xn x1 . . . xn

./
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Informally, ε deletes any agent α and propagates itself to α’s ports, deleting connected agents
in subsequent steps. Similarly, δ duplicates an arbitrary agent and the net connected to it.

The dots at the ports of the variadic agent α indicate that its arity is arbitrary, i.e., any active
pair (δ, A) matches this rule (where A may be any agent). While this notation is intuitive, it
does not give a precise definition of the semantics of generic rule application. In particular, the
RHS of the δ rule has multiple sets of arbitrarily many ports and agents, which may make it
more difficult to comprehend. Hence, we provide a definition of generic rule application in the
lightweight calculus, clarifying the mechanics that are associated with the graphical dot notation.

3.4.2 Fixed Generic Rules for the Lightweight Calculus

We first extend the calculus by fixed generic rules. The more complex variadic rules are defined
in the following subsection. Essentially, we introduce additional symbols for generic agents. We
then modify the int−→ reduction rule to support generic agents.

Generic Names V representing generic agents, denoted by φ, ψ, ρ. Generic names may only
occur in generic interaction rules.

Generic Rules GR denoted by α(x) = φ(y) −→ Θ. Θ contains no generic names other than
φ.

The reduction rule for interaction is extended to support matching and application of generic
rules.

Definition 3.4.2.1 (Generic Interaction). 〈 t | α(t1) = β(t2),∆〉
int−→ 〈 t | Θ′,∆〉, where

α(x) = β(y) −→ Θ ∈ R or α(x) = φ(y) −→ Θ ∈ GR if β and φ have the same arity
(number of ports). In the latter case, Θ′ equals Θ where all occurrences of φ are replaced by β
(in addition to using fresh names and replacing x, y).

The above definition gives a precise semantics for the application of generic rules with generic
agents of fixed arity. Our approach is extended to generic rules with variadic agents in Section
3.4.4.

Note that the definition of generic interaction only modifies the behaviour of the int−→ rule.
The other three reduction rules are not affected by this change: they only operate on configura-
tions, which do not feature generic names.

3.4.3 Generic Rule Constraints

Just as in the graphical setting, generic rules introduce ambiguity or overlaps to rule applica-
tion: one equation could possibly be reduced by more than one interaction rule. As mentioned
in Proposition 2.4.1.4, no ambiguity is one of the required properties for uniform confluence.
Hence, overlaps may destroy the nice properties of interaction nets (including parallel evalua-
tion). Therefore, overlaps caused by generic rules need to be prevented.

In [25], we defined generic rule constraints to preserve uniform confluence in the graphical
setting of interaction nets. These constraints can be translated to the lightweight calculus in a
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straightforward manner. The Default Priority Constraint (DPC) corresponds to a modification
of the int−→ reduction rule, just as it restricts the reduction relation in the graphical setting (see
Definition 3.1.1.1).

Definition 3.4.3.1. We define the following constraints for the generic lightweight calculus:

Default Priority Constraint (DPC) An equation α(t1) = β(t2) can only be reduced using a
generic rule if no matching ordinary rule exists, i.e., if α(x) = β(y) −→ Θ /∈ R.

Generic Rule Constraint (GRC) If there is more than one generic rule that can be applied to
a given equation α(t1) = β(t2), there must exist an ordinary rule that can be applied as
well.

The DPC restricts the behavior of int−→: ordinary rules always have priority over generic
rules. The GRC restricts the set of generic rules GR. The combination of these constraints
prevents overlaps:

Proposition 3.4.3.2. Let R be a set of interaction rules (including generic rules) that satisfies
the GRC. If int−→ satisfies the DPC, then there is at most one rule that can reduce an arbitrary
equation α(s) = β(u).

Proof. We distinguish two possible cases of overlaps:

1. One ordinary and one generic rule can be applied to the same equation (as defined in
Definition 3.4.2.1). Then, the ordinary rule is chosen due to the DPC.

2. There are two generic rules that can be applied to the same equation. Then, by the GRC
there must also be an ordinary equation that can be applied. This rule is again prioritized
by the DPC.

In both cases, there is only one possible rule that can be applied. As with ordinary interaction
rules, the case of two ordinary rules with the same active pair is ruled out.

With the DPC, a generic rule corresponds to a set of non-ambiguous ordinary rules. The
GRC eliminates a few obvious cases of rule overlaps. Analogously to Proposition 3.1.1.3, we
can now show uniform confluence of the lightweight calculus with generic rules.

Proposition 3.4.3.3 (Uniform Confluence ). Let −→ be the reduction relation induced by the
four reduction rules and a set of interaction rules (including generic rules) R that satisfies the
GRC. If int−→ satisfies the DPC, then −→ satisfies the uniform confluence property.

Proof (sketch). The main argument is similar to the one used in Proposition 2.4.1.4: all critical
pairs can be joined in one step. Generic interaction rules do not affect the reduction rules col−→ ,
com−→ , sub−→ . Proposition 3.4.3.2 shows that the generic rule constraints prevent any ambiguity
that might arise from the application of the int−→ rule.
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3.4.4 Variadic Rules for the Lightweight Calculus

We now extend the lightweight calculus with variadic rules. First, we define additional symbols
to denote variadic agents and rules. We exploit the fact that all ports of a variadic agent are
handled in the same, uniform way when applying a rule.

Clearly, the lightweight calculus needs to capture the feature of arbitrary arity (visualized by
the dot notation) in a precise way. Intuitively, arbitrary arity boils down to two mechanisms, as
can be seen in the variadic rules for δ/ε in (cf. Section 3.4.1):

1. A single agent may have arbitrarily many ports connected to it, like α in the LHS of both
rules.

2. A net may be connected to each of the arbitrarily many ports, resulting in arbitrarily many
agents. This can be seen in the RHS of the ε-rule, which contains one epsilon for each
port.

Note that in case 2), the net connected to each port is the same, i.e., the ports are handled
uniformly.
These two aspects of variadic rules are captured in the notions of variadic ranges and names:

Variadic Ranges denoted by [x], [y], [z], . . ., where x, y, z are names. A variadic range corre-
sponds to the set of (arbitrarily many) ports of a variadic agent.

Variadic Names VN denoted by x′, y′, z′, . . . . x′ stands for an arbitrary single port of the
variadic range [x]. A variadic name may only appear in the RHS of a rule.

Variadic Rules VR are generic rules α(y) = φ([x]) −→ Θ where Θ may contain:

• ordinary equations

• equations with variadic ranges

• equations with variadic names

An equation in Θ must not have a variadic range and a variadic name at the same time.

Intuitively, ranges denote the full set of ports of a variadic agent. Variadic names refer to a
single port of the variadic agent. All ports of a variadic agent are handled in the same way when
applying a rule. Therefore, an equation containing a variadic name specifies how to treat each
individual port of the variadic range. As with regular names, variadic ranges and names may
appear at most twice in a rule RHS.

Variadic rules capture the two mechanisms mentioned above: the manipulation of a single,
arbitrary port and the manipulation of the set of all ports. These two operations are sufficient to
provide the expressive power of variadic rules in the graphical setting.

The application of the int−→ reduction rule gets a bit more complicated in the presence of
variadic rules: we have to take the arity of the agent corresponding to the variadic agent into
account when replacing an equation.
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Definition 3.4.4.1 (Variadic Interaction). A variadic interaction step is defined as 〈 r | α(tα) =

β(u),∆〉 int−→ 〈 r | Θ′,∆〉, where α(z) = φ([x]) −→ Θ ∈ VR and Θ′ is instantiated from Θ
as follows: (let arity(β) = n)

• if t = γ([x]) ∈ Θ, then t = γ(u) ∈ Θ′.

• if t = γ([y]) ∈ Θ with y 6= x, then t = γ(y1, . . . , yn) ∈ Θ′.

• t = s ∈ Θ such that t and s contain one or more variadic names x′, y′, . . .. We then add
n equations t1 = s1, . . . , tn = sn to Θ′: ti = si (1 ≤ i ≤ n) equals t = s where all
occurrences of a variadic name x′ are replaced by ui (where u = u1, . . . , un) if the range
[x] occurs in the LHS or by the name xi otherwise.

• equations without variadic ranges or names are added to Θ′ without change.

• all occurrences of φ in Θ are replaced by β and all occurrences of z by tα.

Informally, a variadic range in Θ is replaced by β’s arguments if it occurs in the rule LHS:
for example, [x] is replaced by u in the above definition. Otherwise, the range is replaced by
n fresh names, where n = arity(β). An equation with a variadic name is copied to Θ′ n
times: if a variadic name corresponds to the variadic range in the LHS, it is replaced by one
of β’s arguments in each copy. Otherwise, it is replaced by one of the fresh names of the
corresponding variadic range: for example, t = y′ is replaced by t = y1, . . . , t = yn, where the
names y1, . . . , yn are the result of instantiating the range [y].

Example 3.4.4.2. The variadic rule for deletion via the agent ε can be defined as follows:
ε = φ([x]) −→ ε = x′. Applying the rule to the equation ε = A(u, v, t) yields {ε = u, ε =
v, ε = t}: the name x occurs in the LHS (via [x]), hence e = x′ is instantiated three times for
each of A’s arguments u, v, t.

Example 3.4.4.3. The variadic rule for duplication via the agent δ can be defined as follows:
δ(d1, d2) = φ([x]) −→ d1 = φ([y]), d2 = φ([z]), x′ = δ(y′, z′). Applying the rule to the
equation δ = A(u, v, t) yields {d1 = A(y1, y2, y3), d2 = A(z1, z2, z3), u = δ(y1, z1), v =
δ(y2, z2), t = δ(y3, z3)}: replacing the RHS-only variadic ranges [y], [z] yields the fresh names
y1, y2, y3, z1, z2, z3, which are used in the 3 instances of the equation x′ = δ(y′, z′).

These examples show that the textual definition of variadic rules is very concise. It clearly
expresses the semantics of variadic rules in the graphical setting. Variadic ranges and names
formalize the mechanics expressed by the graphical dot notation.

3.4.5 Variadic rules with non-uniform port handling

The main characteristic of variadic rules is that every port of a variadic agent is handled in the
same way, i.e., connected to the same agent or identical nets. This is strongly connected to the
notion of arbitrarily many ports, making them in a sense indistinguishable. For fixed generic
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agents, we can of course distinguish between their ports and handle them in different ways
during rule application.

Both of these aspects of generic rules can be combined in the form of non-uniform port-
handling (see Section 3.1.3). In addition to their arbitrarily many ports, variadic agents may
have a fixed, finite number of ports which may be handled specifically, or non-uniformly. Such
a variadic agent matches all agents with an arity greater or equal to the number of fixed ports.

This feature translates well to the lightweight calculus. Handling the fixed ports of the
variadic agent is expressed with ordinary equations. Definition 3.4.4.1 in the previous subsection
states that only equations with variadic ranges or names are treated in a special way. Ordinary
equations are handled the same way as in the ordinary int−→ rule. This means that the fixed ports
are independent of the set of arbitrarily many ports. As an example, we recall the rules of the
Maybe monad from Example 2.5.2.1.

Example 3.4.5.1. The Maybe monad in Haskell is defined as follows:

data Maybe a = Just a | Nothing
(1) return x = Just x
(2) (Just x) >>= f = f x
(3) Nothing >>= f = Nothing

In the lightweight calculus, the Maybe monad is expressed by these rules (ε is defined in Example
3.4.4):

Ret(r) = φ([x]) −→ {r = Jst(φ([x]))} (1)

Jst(a) = >>=(b) −→ {a = b} (2)

No = >>=(b) −→ {Aux = b} (3a)

Aux = φ(r, [x]) −→ {ε = x′, No = r} (3b)

Aux = Ret(r) −→ {No = r} (GRC)

The rules are labeled in correspondence with the lines of Haskell’s Maybe monad definition.
The (GRC) rule is added to satisfy the generic rule constraint, eliminating ambiguity between
rules (1) and (3b). In rule (3b), φ has both a variadic range [x] and a single port r which
is handled non-uniformly. Just like f in the Haskell definition, this rule accepts an arbitrary
function, including partially applied (curried) functions, e.g., (+1).

Example 3.4.5.2. Consider a function pick, which picks the nth element of a list or returns
Nothing if that element does not exist:

pick :: [a] -> Int -> Maybe a
pick n [] = Nothing
pick 0 (x:xs) = Just x
pick n (x:xs) = pick (n-1) xs
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The corresponding interaction rules can be defined as follows (the arguments are swapped for
better readability of the rules):

pick(r, n) = Nil −→ {r = No, ε = n} (1)

pick(r, n) = Cons(x, xs) −→ {pickH(r, x, xs) = n} (2)

pickH(r, x, xs) = Z −→ {r = Jst(x), ε = xs} (3)

pickH(r, x, xs) = S(n) −→ {pick(r, n) = xs, ε = x} (4)

Using the rules for the Maybe monad from the previous example, we can evaluate the expression
Nothing >>= (pick 0) :

〈 r | No = >>=(f), f = pick(r, Z) 〉 int
−→ 〈 r | Aux = f, f = pick(r, Z) 〉

com−→ 〈 r | Aux = pick(r, Z) 〉 int−→ 〈 r | No = r, ε = Z 〉
int−→ 〈 r | No = r 〉 col−→ 〈 No | 〉

3.5 Generic Rules and the Interaction Calculus: Summary

In the previous section, we have defined generic rules in the lightweight calculus. This is a
worthwhile addition to our investigation in the graphical setting for two reasons. First, the
lightweight calculus provides an alternative, precise semantics of generic rules. In particular, we
provide a semantics of variadic rules that concretizes the intuitive dot-notation of the graphical
interaction rules. Second, the lightweight calculus is the foundation of the interaction nets based
programming language inets, which supports generic rules (we will discuss inets in detail in
Chapter 5).

3.6 Interaction rules with nested patterns - INP

The definition of interaction rules constrains pattern matching to exactly two agents at a time.
Consequently, we have to introduce auxiliary agents and rules to perform deep pattern matching.
Despite their increased matching power, even generic rules are subject to this restriction.

In this section, we take a step towards developing a richer language for interaction nets
which facilitates nested pattern matching. Consider the following definition of a function that
computes the last element of a list:

last (x:[]) = x
last (x:(y:ys)) = last (y:ys)

The definitions above contain three non-variable symbols on each LHS: last, the list construc-
tor : and the empty list [] or a second :, respectively. As the LHS of an ordinary interaction
rule consists of exactly two symbols, additional auxiliary rules have to be introduced, as shown
in Figure 3.1. This would correspond to the following textual definition:

last (x:xs) = aux x xs
aux x [] = x
aux x (y:ys) = last (y:ys)
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r

last

: ⇒

x xs

./

r

aux

x xs

.

r

aux ⇒

x Nil

./

r

x

aux

x : ⇒

y ys

./

r

ε last

x :

y ys

./.

Figure 3.1: computing the last element of a list with auxiliary rules

An interaction rule may contain a nested active pair with more than two agents on it’s LHS.

Definition 3.6.1 (Nested Active Pair). A nested active pair is defined inductively as follows:

• Every active pair in ordinary interaction rules (ORN) is a nested active pair e.g.
P = 〈α(x1, . . . , xn) ./ β(y1, . . . , ym)〉

• A net obtained as a result of connecting the principal port of some agent γ to a free port
yj in a nested active pair P is also a nested active pair e.g. 〈P, yj ∼ γ(z1, . . . , zl)〉

A nested interaction rule matches a nested active pair that is identical to its LHS.

As an example, Figure 3.2 gives a set of INP rules that will compute the last element of a list.
In this Figure both rules contain a nested active pair on the LHS. The (non interacting) agents
Nil and : on the LHS of the rules are nested agents. In comparison, the respective set of ORN
rules is given in Figure 3.1.

The framework of interaction rules with nested active pairs is called INP (Interaction nets
with Nested Patterns). Rules in INP may overlap due to the more complex LHS patterns. To
ensure that INP preserves the uniform confluence property of interaction nets, rules in INP must
satisfy the following constraints:

Definition 3.6.2 (Sequential set property [20]). A set of nested active pairs N is sequential if
and only if, when 〈P, yj − γ(z1, . . . , zn)〉 ∈ N , then

• for the nested pair P , P ∈ N

• for all free ports y in P except yj and for all agents α, 〈P, y − α(z1, . . . , zn)〉 /∈ N

Intuitively, nested pairs in a sequential set do not overlap unless one is a subnet of another.
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r

last

: ⇒

x Nil

./

.

r

x

r

last

: ⇒

x :

y ys

./

.

r

ε last

x :

y ys

./

Figure 3.2: example INP rules to compute the last element of a list

Definition 3.6.3 (Well-Formedness [20]). A set of rules R is well-formed if and only if

• there is a sequential set which contains every nested active pair of all LHSs in R

• for every rule P ⇒ N ∈ R, there is no rule P ′ ⇒ N ′ ∈ R such that P ′ is a subnet of P .

Well-formedness of a set of rules is sufficient for strong confluence: 2

Proposition 3.6.4 ( [20]). If a set of rules R in INP is well-formed, then the reduction relation
induced by R is strongly confluent.

Intuitively, the Sequentiality property avoids overlaps between rules: a set of INP rules
containing nested patterns that violate condition 2 of Definition 3.6.2 can give rise to critical
pairs, which potentially destroys the uniform confluence property of interaction nets. Note that
the definition of Sequentiality allows a nested active pair to be a subnet of another nested active
pair (in the same sequential set) which may also give rise to critical pairs. Definition 3.6.3
ensures that there is at most one nested active pair in any given set of rules.

3.6.1 Translating Nested Patterns to Ordinary Rules

Any well-formed set of INP rules can be translated to a set of ORN rules [20]. We discuss a
concrete algorithm and its implementation in Chapter 5. The idea is to introduce auxiliary agents
and rules, one of each for every nested agent. As an example, consider the following INP rule:

A B r ⇒ N r

C s

s D

./

.

.

2 More precisely, by strong confluence we here mean the property: Whenever M ⇐ N ⇒ P with M 6= P ,
then there exists a net Q s.t. M ⇒ Q⇐ P
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This INP rule is transformed into a set of three ordinary interaction rules:

A B r ⇒ AB r

s s

./

AB r ⇒ ABC r

C s t

s t

./

ABC r ⇒ N r

s D s

./

Auxiliary agents AB, ABC are added to model the (sequential) matching of the nested
agents. This translation is important for our implementation of nested patterns in the interac-
tion nets based language inets (again, see Chapter 5).

3.7 Combining Generic Rules and Nested Patterns

In this section, we show that nested patterns and generic rules can be combined to allow for even
more powerful interaction rules.

A nested active pair can be seen as a tree, where the pair of active agents forms the root.
Nested agents may be connected to this pair or other nested agents’ auxiliary ports, forming a
tree-like structure.

Definition 3.7.1 (Nested Pattern Tree). Let r be an INP rule. The nested pattern tree of r is a
tree where the root consists of the active pair of r and each nested agent is a node (connected to
the tree through its principal port).

As an example, the following nested pattern can be seen as a tree with the pair A ./ B as
the root node and D as a leaf node:

A B r

C

s D

./

.

.

To preserve uniform confluence, we introduced constraints for a given set R of INP rules in
Definition 3.6.3. Intuitively they are:

1. No LHS in R may be a subnet of (or equal to) another.
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2. No two LHSes N, M may overlap, in the sense that there is no concrete net P that matches
both N and M. (aka sequential set property)

3.7.2 Generic Nested Rule Patterns (GINP)

The motivation for nested patterns with generic agents comes from the definition of higher-order
functions, in particular monads: the bind (>>=) rule (cf. Section 2.5.2) has two arguments
( M >>= f ), where f is an arbitrary function. In Example 3.1.1.4, we used two rule with an
auxiliary agent to model >>=. The corresponding generic interaction rule would be

x Jst >>= φ r ⇒ x φ r./ .

where φ is the generic agent. In this case, φ represents the nested part of the LHS, it is
not part of the active pair. For simplicity, we will restrict ourselves to nested patterns with one
generic agent only, though our results can be extended to multiple generic agents in a straight-
forward way.

Definition 3.7.2.1 (Generic Nested Rules). A generic nested interaction rule (GINP rule for
short) is an interaction rule with a nested active pair on its LHS. The nested active pair contains
exactly one generic agent, with the following constraints:

• a variadic agent without non-uniformly handled ports may only appear at the leaves of
nested pattern tree.

• a variadic agent with non-uniformly handled ports may appear at any position, but no
agents may be connected to its uniformly handled ports.

• a fixed generic agent may appear at any position in the nested pattern.

The constraints to variadic agents restrict the matching power of generic nested patterns.
Without them, a single pattern with a variadic agent could match a variety of nets that do not
share the same nested tree structure.

Definition 3.7.2.2 (GINP Rule Matching). A GINP rule r matches a nested active pair α if its
LHS and α are the same except for r’s generic agent, and the agent in α corresponding to the
generic agent has a suitable number of ports w.r.t. Definitions 3.1.1.2, 3.1.2.1 and 3.1.3.1.

We can extend the notion of GINP matching to our type system of Section 3.2. First, we slightly
adapt our definition of rule types:

Definition 3.7.2.3 (GINP Rule Type). Let r be an GINP rule whose LHS consists of the agents
A1, . . . , An and the type variables of all agents’ ports are disjoint. The rule type RT (r) is a
tuple (ε(A1), . . . , ε(An), S), where S is a type substitution {τ1 7→ t1, . . . , τn 7→ tn} consisting
of types of the nested agents’ environments.
The rule r is well-typed if both nets of the LHS and RHS are well-typed and the types of all free
ports are the same in the LHS and RHS.
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Definition 3.7.2.4 (GINP Typed Rule Matching). Let r be a well-typed GINP rule where α
is a generic agent. Let N be a well-typed net containing a nested active pair α. We say that
r matches α if r matches α w.r.t. Definition 3.7.2.2 and there exists a type substitution σ s.t.
σ(S(ε(φ))) = ε(A), where S is the substitution of RT (r), φ is the generic agent in r’s LHS and
A is the agent in α corresponding to φ.

Intuitively, GINP rule matching works analogously to generic rule matching without nested
patterns. We simply extend our previous definitions to account for the nested pattern.

3.7.3 GINP Constraints

Interestingly, for the purpose of preserving uniform confluence, it is not needed to distinguish
whether the generic agent is part of the active pair or the nested pattern. However, this distinction
will be important for the transformation of INP to ORN rules (see next subsection).

The extension of the INP constraints (see Section 3.6) is straightforward: it is merely needed
to interpret equality between nested patterns in the sense of generic rule overlaps. We adapt the
notion of a well-formed set of rules in Definition 3.6.3 by changing the subnet constraint: A net
P is a generic subnet of Q if we can replace all generic agents in P and Q by ordinary agents of
suitable arity such that the resulting nets have the subnet relation. The sequential set constraint
Definition 3.6.3 does not need to be changed, since it is about overlapping tree structures of
nested patterns and not about concrete agents.

The generic rule constraints DPC and GRC can easily be adapted to GINP rules. Both
Definition 3.1.1.1 and 3.1.1.2 (and hence, Proposition 3.1.1.3) hold if we simply replace generic
rules by GINP rules and ordinary rules by INP rules. Thus, uniform confluence is preserved in
the presence of GINP rules.

3.7.4 Extending the INP to ORN Translation

Unfortunately, potential problems arise during the translation of GINP rules to ordinary (generic)
rules: auxiliary agents are concrete agents and cannot carry information about the current (con-
crete) instance of a generic agent. However, this information needs to be propagated through all
auxiliary rules, as the generic agent may appear in the final RHS net N. Consider the previous
example. Suppose we replace B by the generic agent β, then the first auxiliary rule could look
like this:

A β r ⇒ Aβ r

s s

./

The LHS is a standard non-nested generic rule. However, the agent Aβ in the RHS is some-
how neither concrete nor generic: it is not generic, as it contains information about the concrete
agent A. At the same time, its not supposed to be concrete as it contains β, which represents
any agent (of suitable arity). This is an issue for the final rule of the translation, let us call it
AβC ./ D ⇒ N . N may contain β, but there is no information about the concrete instanti-
ation of β when the rule is applied. Of course, one could add rules for every concrete agent,
AAC ./ D, ABC ./ D, ACC ./ D,. . . , but that is hardly a good solution. Therefore, the
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transformation needs to be extended in order to propagate information about generic agents (or
rather, their concrete instances).

3.7.5 An Unproblematic Case

Interestingly, the original transformation may still work in the following case. If the generic
agent is the last nested agent to be matched, then it does not need to be propagated through
auxiliary rules. Interaction of the final nested agent and a previous auxiliary agent does not yield
another auxiliary agent, but the original RHS net (as in the ruleABC ./ D above). For example,
the nested generic rule

x Jst >>= φ r ⇒ x φ r./ .

translates to:

x Jst >>= r ⇒ x >> J r./

x >> J φ r ⇒ x φ r./

The second rule is a non-nested generic rule. Of course, this translation only works if the
single generic agent is at one of the leaves of the nested pattern tree (i.e., it is matched last).

Proposition 3.7.5.1. Let r be a GINP rule that contains one generic agent at a leaf of the nested
pattern tree of r’s RHS. Then, the nested pattern transformation of [20] can be applied if the
generic agent is translated last.

3.7.6 Extending the Translation

If the generic agent is part of the active pair (or nested, but not at a leaf of the nested pattern tree),
then the translation fails. It is clear that auxiliary RHSes need to carry additional information:
the name of the concrete instance of the generic agent, and possibly the arity in the variadic case.
This could be achieved by adding external datatypes to auxiliary RHSes.

Agents with externally defined datatypes [13,38] (see Section 2.3) hold values of some type
in addition to their symbol. Auxiliary agents could hold the symbol of the concrete instance of
the generic agent as a string value. In the final RHS N , the generic agent could be renamed
using this string value. For example, the rule above could be translated as follows, where s is the
external data representing the symbol of the concrete instance of the generic agent and N [s/β]
denotes substitution of β agents by s agents.

A β r ⇒ Aβ {s} r

s s

./

48



Aβ {s} r ⇒ AβC {s} r

C s t

s t

./

AβC {s} r ⇒ N [s/β] r

s D s

./

This approach is interesting for several reasons:

• There are theoretical results on agents with external datatypes, e.g., preservation of uni-
form confluence [13].

• It would combine two previously unconnected features of INs, nested patterns and external
datatypes.

• External datatypes are implemented in inets, hence the implementation of the translation
seems viable.

3.7.7 Extension to Multiple Generic Agents

After a more detailed discussion of the single generic agent case, it seems likely that the case
of multiple generic agents in a nested pattern can be also be solved in this way (at least for the
fixed arity case). For example, we can extend the “external datatypes” approach by having a
map of generic agents and concrete instance symbols as external data, which is built up during
the application of the auxiliary rules.

If the nested pattern contains more than one generic agent, it still seems straightforward
to ensure uniform confluence with the above constraints (a simple extension of generic rule
matching is needed).

3.7.8 Generic Nested Patterns: Summary

Combining nested patterns with generic agents is generally unproblematic. The nested pattern
constraints can be extended straightforwardly, preserving uniform confluence. There are more
subtleties than at first glance, though. Generic agents can be at different positions in the nested
pattern tree, and there can be more than one. The original transformation to ORN rules does not
work in the presence of generic agents and needs to be extended. This is an important issue, as
the inets implementation of nested patterns uses this transformation. The GINP to ORN transla-
tion can be extended with externally defined datatypes, which propagate additional information
about the generic agents through the auxiliary rules. This yields a useful combination of three
different interaction nets extensions: generic rules, nested patterns and external datatypes.
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CHAPTER 4
Applications

In this chapter, we show how our theoretical results can be used to realize side effects in INs.
Generic typed rules are used to realize monads as INSes. We give examples for different monads
and show their correctness.

4.1 Monads in Interaction Nets

Our theoretical efforts of extending interaction nets were aimed at one main purpose: to handle
side effects directly in interaction nets while preserving the overall purity of IN computation as
well as uniform confluence. We do this by adapting monads - which we introduced in Section
2.5.2 - to interaction nets. Recall that a monad (in the sense of functional programming) is a
triple of a parametric datatype M and two functions:

return :: a -> M a
>>= (bind) :: M a -> (a -> M b) -> M b

These three objects need to satisfy some constraints expressed by the following three laws:

(1) return a >>= f = f a
(2) m >>= return = m
(3) (m >>= f) >>= g = m >>= (\x -> (f x >>= g))

Hence, an interaction net version of a monad needs to feature the three mentioned objects
as well as constraints between these objects. Naturally, return and >>= can be represented as
agents that interact with agents of type M a. We represent the monad laws as “observational”
equalities between nets:

Definition 4.1.1 (Interaction Net Monad). An interaction net monad is an INS whose signature
contains two unary agents >>= and ret. The rules of the INS need to satisfy the following equalities:

(1) ret >>= α =/ .

α
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(2) >>= ret =.

The agent α corresponds to an arbitrary agent, similar to the arbitrary function f in the textual definition
(1). Equality is interpreted as observational equivalence [12]: If arbitrary nets are connected to the free
ports of both nets of an equation (enabling reduction), then they can be reduced to a common successor.

The equalities (1) and (2) correspond to the first two monad laws. Equivalence can be shown
by giving reduction sequences of nets that yield the aforementioned common successors.

While >>= may be modeled differently (e.g., with more auxiliary ports), our approach
captures the essence of monadic side effect handling in a natural and intuitive way. In addition,
the third monad law automatically holds due to this representation:

Proposition 4.1.2. If an agent with only one auxiliary port is used to encode>>= in interaction
nets, then the monad law (3) (m >>= f) >>= g = m >>= (\x -> (f x >>= g))
holds.

Proof. We use an agent with one auxiliary port to model >>=. This way, the interaction net
representation of each side of the above equation is the same, namely (the arbitrary net M is
denoted by a dashed square):

M >>= f >>= g./ . . .

Therefore, it is trivially true.

4.2 Application: Monads in Interaction Nets

We now present interaction nets versions of several monads, starting with a revised version of
the Maybe monad from Example 3.1.1.4. All of these INSs in this chapter are monads in the
sense of Definition 4.1.1. This can be shown by a reduction of nets, such that both sides of each
equation have a common reduct (similar as in [24]).

4.2.1 The Maybe Monad Revisited

Recall Haskell’s Maybe monad from Section 2.5.2:

data Maybe a = Just a | Nothing
(1) return x = Just x
(2) (Just x) >>= f = f x
(3) Nothing >>= f = Nothing

Using generic rules, we can express the interaction rules of the Maybe monad in a way that
closely models Haskell’s definition. The INSGT Maybe is defined as
({Jst1, No1, ret1, bind1, aux1},M) where M consists of the rules in Figure 4.1.

The rule labels correspond to the lines of the definition in Example 2.5.2.1. Lines (2) and (3)
are split into two rules each, for two reasons. First, this is due to the standard restriction of two
agents per interaction rule LHS. Second, the auxiliary agents >> J and >> N interact with the
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x1 x1

(1) ... α ret r ⇒ ... α Jst r

xn xn

./ .

(2a) x Jst >>= r ⇒ x >> J r./

(2b) x >> J φ r ⇒

an ... a1

./ x φ r

an ... a1

(3a) No >>= r⇒ >> N r./

(3b) >> N φ r ⇒

an ... a1

./ ε ... ε No r

an ... a1

(GRC1) >> N ret r ⇒./ No r

(GRC2) s >> J ret r ⇒./ s ret r

Figure 4.1: The Maybe IN monad

generic agent φ and thus ensure its correct type. To ensure that the set of rules satisfies the GRC,
we add the auxiliary rules (GRC1) and (GRC2).

Proposition 4.2.1. ⇒MDPC
satisfies the uniform confluence property.

Proof. The arity unfolding AU(M) satisfies GRC: There is a GG-overlap between the (un-
folded) rules (1) and (3b). Both rules match the active pair (aux ∼ ret). Since M contains
an ordinary rule with this active pair as LHS, M satisfies GRC. Hence, by Proposition 3.1.2.3
⇒MDPC

satisfies the uniform confluence property.

We assign the environments in Figure 4.2 to the agents of the Maybe monad, where maybe
is a sort of arity 1 and τ, ρ are type variables. The rule types are given in the right column.

Recall that the scope of port type variables is the agent’s environment. We add subscripts to
the variables in the rule types to denote which agent they belong to: τ1 belongs to the first agent
of the rule LHS and τ2 to the second one. Note that in rule type RT (2), the type substitution S
requires that both auxiliary ports of the active agents have the same type.

We see that the rule set of the Maybe monad is just as expressive as its textual definition
in Haskell: it allows any agent as a basic value of the corresponding monad type. Thanks to
non-uniform port handling of generic rules, any agent with matching port types can be used as
second argument of bind.
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ε(Jst) = {maybe(τ)+, τ−}
ε(No) = {maybe(τ)+}

ε(ret) = {τ−,maybe(τ)+}
ε(>>=) = {maybe(τ)−, (τ)+}

ε(>> J) = {τ+, τ−}
ε(>> N) = { τ+}, ε(α) = {τ+, ∗}

ε(φ) = {τ−, ∗,maybe(ρ)+}

RT (1) = {ε(α), ε(ret), {}}
RT (2a) = {ε(Jst), ε(>>=), {τ1 7→ τ2}
RT (2b) = {ε(>> J), ε(φ), {τ1 7→ τ2}}

RT (3a) = {ε(No), ε(>>=), {}}
RT (3b) = {ε(aux), ε(φ), {}}

RT (GRC1) = {ε(>> N), ε(ret), {}}
RT (GRC2) = {ε(>> J), ε(ret), {}}

Figure 4.2: The Typing of the Maybe IN monad

4.2.2 Correctness of the Maybe Monad

We now show that the rules for the Maybe IN monad satisfy the equalities in Definition 4.1.1.
The following reduction sequence shows equality (1), where N is an arbitrary net such that
reduction is possible (i.e., there is an active pair connection between N and ret). We omit the
variadic ports of α to simplify the graphical representation.

N ret >>= α r ⇒ N Jst >>= α r

⇒ N >> J α r ⇒ N α r

./ . . . ./ .

. ./ ./

Equality (2) is proved by the following sequence:

N Jst >>= ret r ⇒2 N >> J ret r ⇒

N ret r ⇒ N Jst r

. ./ . . ./

./ .

4.3 The Writer Monad

The Writer Monad is used to add an optional, secondary output to a function and to collect these
additional results of all functions in a log. Essentially, this can be modeled by maintaining a list
of secondary results and appending the output of each function during evaluation. The Writer
monad can be defined textually as:

data Log a = (a, S)
(1) return x = (x,e)
(2) (x,s) >>= f = (y,s:s’)

where (y,s’) = f x

S is the type of the secondary output. Together with a value e of type S and a binary function
’:’ , S forms a monoid. This property is necessary to ensure the correctness of the Writer
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monad. The Log datatype is a pair of a values of types a and S. The operator return simply
returns a pair of its argument and the identity element e. bind applies f to x and returns a pair
of the primary result of f and a combination of f’s secondary and previous outputs.

In interaction nets, we will model the log as a list where each element represents the sec-
ondary output of one function. The INSGT Writer is defined as (log2, ret1, bind1, aux2, ext2},W ),
where W consists of the rules in Figure 4.3.

x1

(1) r ret α ... ⇒
xn

./

x1

α ...
r log xn

Nil

.

.

x

(2a) log >>= r ⇒
s

./

x

aux r

s

.

y1 . . . yn

x

(2b) aux φ r ⇒

s

./

y1 . . . yn

x φ ext log r

s ++

.

.

x

(GRC) aux ret r ⇒
s

./

x

log r

s

.

x r1

(ext) log ext ⇒
s r2

./

x r1

s r2

Figure 4.3: The rules of the Writer monad

Proposition 4.3.1. ⇒WriterDPC
satisfies the uniform confluence property.

Proof. Same as Proposition 4.2.1

Port and Rule Types

The environments in Figure 4.4 type the agents of the Writer monad. In the interaction net
setting, the Log datatype translates to an agent that has two distinct type variables, one for the
primary return value of a function, and the other for the log value. We use the sorts log2 and
list1 and the type variables τ, ρ. The Writer rules can be typed as follows. Again, we use
subscripts to distinguish the type variables of both agents.
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ε(log) = {log(τ, ρ)+, τ−, list(ρ)−}
ε(ret) = {τ−, log(τ, ρ)+}

ε(>>=) = {log(τ, ρ)−, τ+}
ε(aux) = {τ+, τ−, list(ρ)+}

ε(ext) = {log(τ, ρ)−, τ+, list(ρ)+}
ε(α) = {τ+, ∗}

ε(φ) = {τ−, log(τ, ρ)+, ∗}

RT (1) = {ε(ret), ε(α), {}}
RT (2a) = {ε(log), ε(>>=), {τ1 7→ τ2}}

RT (2b) = {ε(aux), ε(φ), {ρ1 7→ ρ2}}
RT (GRC) = {ε(aux), ε(ret), {ρ1 7→ ρ2}}

RT (ext) = {ε(log), ε(ext), {τ1 7→ τ2, ρ1 7→ ρ2}}

Figure 4.4: The Typing of the Writer monad

4.3.1 Correctness of the Writer Monad

Similar to the Maybe monad, we can show the correctness of the Writer monad by reduction
sequences of the terms on each side of the respective monad law. We begin with IN monad
equality (1), which corresponds to the textual law return a >>= f = f a. Let a, b be arbitrary but
fixed natural numbers such that f a = (b,s) (where s is the log information of f ). We can then
show that the interaction net encoding of return a >>= f reduces to the one of (b,s), namely

b log r

s

.

.

(the arbitrary nets a, b and s are represented by dashed squares). Again, we omit variadic
ports for the sake of simplicity. The following reduction sequence shows equality (1):

a ret >>= φ r ⇒1./ . .

a log >>= φ r

nil
⇒2a

.

.

./ .
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a aux φ r

nil
⇒2b

.

.

./ a φ ext log r ⇒++

nil ++

./

./

.

a φ ext log r ⇒φ./ .

b log ext log r ⇒ext

s

.

.

./

b log r

s

.

.

The first step uses rule (1) or (2) depending on the concrete instance of a ( 0 or S(x) ).
The following reduction sequence shows equality (2), which corresponds to (m>>= return)

= m (where m = (a,s)):

a log >>= ret r ⇒2a

s

.

.

./ . a aux ret r ⇒2b

s

.

.

./

a ret ext log r ⇒1

s ++

./

./
. a log ext log r ⇒ext

nil s ++

.

./

.
./

a log r ⇒∗

nil s ++

.

./

.

a log r

s

.

.

In the last step, the concatenation rule is applied multiple times (denoted by ⇒∗) until a
normal form is reached. It follows from the definition of the (++) rules that s ++ [ ] reduces
to s.

As we use the same modeling approach as with the Maybe monad, the third monad law
holds due to Proposition 4.1.2.

4.4 The State Transformer Monad

The State Transformer monad is another well-known monad in Haskell that essentially general-
izes the writer monad. It models the application of a program w.r.t. a mutable state. It is defined
as follows:
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data State s a = s -> (a,s)
(1) return x = \s -> (x,s)
(2) m >>= f = \r -> (\let (x,s) = m r in (f x) s)

A state transformer is a function that takes a state s as input and returns a pair of a return
value t and a possibly changed state. In (1), return x is the function that returns a value
x and the unchanged input state. In (2), m >>= f first applies the state transformer m to the
input state and then f to the value and state of the resulting pair.

When realizing this monad as an INS, the main difference to the Maybe monad lies in the
monadic datatype State s a, which is a function itself. To account for this, we use agents
for lambda terms and function application to “encapsulate” the state transformer function. Such
agents have already been used in several papers (e.g., [34, 40]). Here, the λ agent acts as a con-
structor for State function objects. The application agent @ takes a role similar to Haskell’s
runState function. The drawback of this approach is that the INS is complicated with ad-
ditional agents and rules 1. The State Transformer INS, including rules for explicit function
application and handling of pairs, is shown in Figure 4.5.

x1

(1) r ret α ... ⇒
xn

./

x1

r λ p α ...
xn

/

.

in

(2a) λ >>= r ⇒
out

./

in

aux r

out

.

y1 . . . yn
in

(2b) aux φ r ⇒
out

./

y1 . . . yn

in λ r

out ext φ @/ .

in

(GRC) aux ret r ⇒
out

./

in

λ r

out

.

s r1

(ext) p ext ⇒
x r2

./

s r1

x r2

in r

(λ-abs) λ @ ⇒
out x

./

in r

out x

Figure 4.5: The State Transformer IN Monad

1We conjecture that the rule archetypes of [40] can be used to improve this - cf. Section 6

58



Like the INS for the Maybe monad, it is straightforward to show that the set of rules satisfies
uniform confluence.

We type the State Transformer monad with the following environment. We use the sorts
state2 and pair2 and the type variables τ, ρ. The corresponding rule types are shown on the
right. Again, we use subscripts to distinguish the type variables of both agents.

ε(λ) = {state(τ, ρ)+, τ+, pair(ρ, τ)−}
ε(ret) = {τ−, state(ρ, τ)+}

ε(>>=) = {state(τ, ρ)−, τ+}
ε(aux) = {τ+, τ+, pair(τ, ρ)−}
ε(ext) = {pair(τ, ρ)−, τ+, ρ+}
ε(p) = {pair(τ, ρ)+, τ−, ρ−}

ε(@) = {state(τ, ρ)−, τ−, pair(ρ, τ)+}
ε(α) = {τ+, ∗}

ε(φ) = {τ−, state(τ, ρ)+, ∗}

RT (1) = {ε(ret), ε(α), {}}
RT (2a) = {ε(state), ε(>>=),

{τ1 7→ τ2}}
RT (2b) = {ε(aux), ε(φ),

{ρ1 7→ ρ2}}
RT (GRC) = {ε(aux), ε(ret),

{ρ1 7→ ρ2}}
RT (ext) = {ε(p), ε(ext),
{τ1 7→ τ2, ρ1 7→ ρ2}}

RT (λ− abs) = {ε(λ), ε(@),

{τ1 7→ τ2, ρ1 7→ ρ2}}

Figure 4.6: The Typing of the State Transfomer IN monad

Due to the restriction on interaction rule LHSs, both monad rulesets feature auxiliary agents
and rules. This can be improved by using rules with nested patterns: nested patterns are a
conservative extension of interaction nets. They allow for more complex rule patterns while
preserving uniform confluence. For more information, we refer to [17, 20].

4.4.1 Correctness of the State Transformer Monad

We now show that the monad laws hold for the State Transformer IN monad. For equality (1) of
Definition 4.1.1, we assume f a = \s -> (b,t), or in IN form:

N φ r ⇒

x1 . . . xn

./ M λ r

x1 . . . xn

N ret >>= φ r ⇒

x1 . . . xn

./ . . N p λ >>= φ r ⇒

x1 . . . xn

.

.

./ .
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N p aux φ r ⇒

x1 . . . xn

.

.

./ N p ext φ @ λ r ⇒

x1 . . . xn

. . ./ .

| N φ @ λ r ⇒

x1 . . . xn

./ .

x1

| ... M λ @ λ r ⇒

xn

.

x1

... M λ r

xn

To show the second equality, we represent the monad object m by the following net:

M p λ r.

/
We then show law 2 by the following reduction sequence:

M p λ >>= ret r ⇒.

/

./ . M p aux ret r ⇒.

/

./

M p ext ret @ λ r ⇒./ .
/

.. M ret @ λ r ⇒../ .

p λ

M @ λ r ⇒./

/ ./

M p λ r.

/
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4.5 The List Monad

The List monad is used to sequentialize functions that take a single value as input and return an
ordered sequence of values as output. For example, consider two functions f :: a -> [b]
and g :: b -> [c], where [t] denotes a list of type t. As each function takes just a single
argument but returns a list, the operators of the list monad operators are used to concatenate
them. In essence, the function g is simply applied to all results of f, combining all results of g’s
applications in a single list.

In Haskell, the List monad is defined as follows:

data List a = [a]
(1) return x = [x]
(2) xs >>= f = concat (map f xs)

Here, return does nothing but wrapping a value in a singleton list. Furthermore, >>=
applies the function f to every element of the input list and concatenates all resulting lists into
a single list. concat and map are two well-known operators in functional programming: concat
simply merges a list of lists into a single list; map has two arguments, a function and a list; map
applies the function to every element of the list and returns the list of results.

4.5.1 Adaptation to Interaction Nets using Nested Patterns

We use the same agents to represent lists as we did for the Writer monad. The rules for the
List IN monad are shown in Figure 4.7. To give an example of GINP rules (see Section 3.7),
we use nested patterns for the List monad. This results in the absence of auxiliary rules and a
more concise representation. Interestingly, we do not need any GRC rules, as the generic nested
patterns do not overlap.

x1

(1) r ret α ... ⇒

xn

./

x1

r cons α ...

nil xn

.

.

x

(2) cons >>= φ r ⇒

s x1 . . . xn

../

x

cons map φ cat r

s x1 . . . xn

. ../

(3) nil >>= φ r ⇒

x1 . . . xn

../ ε ... ε nil r

x1 . . . xn

Figure 4.7: The List IN monad
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Note that the GINP rules of the List monad only have one generic agent at a leaf position of
the nested pattern tree and can hence be translated to non-nested rules (see Proposition 3.7.5.1).

The rule for return is obviously similar to the corresponding rule of the Writer monad.
Instead of a pair of a value and an empty list, a singleton list is returned. The interaction rule for
>>= behaves analogously to the function definition in Haskell. Rule (3) models the behavior
of bind when connected to an empty list. In this case, the empty list is simply propagated and
the agent α is discarded. Rule (2) uses the auxiliary agents map and cat. Their corresponding
interaction rules are defined as follows:

x
(map1) cons map φ r ⇒

xs . . .

../

x φ

. . .

xs map φ

. . .
cons r

δ . . . δ

. . .

.

(map2) nil map φ r ⇒

. . .

../ ε ... ε nil r

. . .

(cat1) nil cat r ⇒./ nil r

nil

(cat2) cons cat r ⇒
xs

.
./

xs cat r

y

(cat3) cons

ys cons cat r ⇒

xs

.

./

y

ys cons r

cons cat

xs

./

The interaction rules for map have a very similar shape as the ones for bind. The second
argument of map (an arbitrary function represented by the agent α) is connected to its auxiliary
port. α is applied to the first element of the list and map is connected to the remainder of the
list. The concat function, represented by cat, flattens a list of lists. The elements of each list
are appended to a single list one by one.

Proposition 4.5.1. Let R be the set of interaction rules consisting of the List IN monad, map
and cat rules. The reduction relation induced by R is uniformly confluent.

Proof. R is well-formed: First, no LHS is a subnet of another. Second, all LHSs can be added
to a sequential set. Note that only two rules share the same active pair (the second and third rule

62



of (cat). However, these LHSs can be added to a sequential set as the respective nested agent
(nil and cons) is connected to the same port. This satisfies the sequential set condition. Hence,
by Proposition 2.1.1.1, the reduction relation induced by R is uniformly confluent.

4.5.2 Typing the List Monad

When typing the list monad, we encounter an issue with our previous definition of the map rules.
Unfortunately, the rule (map1) cannot be well-typed (as in Definition 3.2.1.6): The interface port
r has a different on the LHS than on the RHS. While r is type list(ρ)+ on the RHS (the principal
port of cons is connected to it), it has φ’s type ρ+ on the LHS. The same issue occurs in (map2).
In contrast to bind, the functional argument of map does not have the same output type as the
function itself. As a quick solution to this problem, we add an auxiliary agent mAux to the nested
patterns of map such that it can be well-typed (see Figure 4.8).

x

(map1t) cons map ψ mAux r ⇒
xs

x1 . . . xn

. ../

x ψ

. . .

xs map ψ

. . .
mAux cons r

δ . . . δ

x1 . . . xn

..

(map2t) nil map ψ mAux r ⇒

x1 . . . xn

.. ../ ε ... ε nil r

x1 . . . xn

Figure 4.8: A well-typed version of map

The typing of the List features nested rule types as introduced in Section 3.7.

4.5.3 Correctness of the List Monad

We show the correctness of the List monad laws analogously to the previous examples. As for
the Writer monad, we use arbitrary but fixed nets (denoted by dashed squares) in the reduction
sequences showing the monad laws. Let a,b,bs be arbitrary nets such that f a = Cons b bs. The
following reduction shows equality (1). As before, we omit variadic ports on φ.
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ε(cons) = {list(τ)+, τ−, list(τ)−}
ε(nil) = {list(τ)+}

ε(ret) = {τ−, list(τ)+}
ε(>>=) = {list(τ)−, τ+}
ε(map) = {list(τ)−, τ+}

ε(mAux) = {τ−, list(τ)+}
ε(cat) = {list(list(τ))−, list(τ)+}

ε(α) = {τ+, ∗}
ε(φ) = {τ−, list(ρ)+, ∗}

ε(ψ) = {τ−, ρ+, ∗}

RT (1) = {ε(ret), ε(α), {}}
RT (2) = {ε(cons), ε(>>=), ε(φ), {τ1 7→ τ2, τ2 7→ τ3}}
RT (3) = {ε(nil), ε(>>=), ε(φ), {τ1 7→ τ2, τ2 7→ τ3}}

RT (map1t) = {ε(cons), ε(map), ε(ψ), ε(mAux), {τ1 7→ τ2, τ2 7→ τ3, ρ3 7→ τ4}}
RT (map2t) = {ε(nil), ε(map), ε(ψ), ε(mAux), {τ1 7→ τ2, τ2 7→ τ3, ρ3 7→ τ4}}

RT (cat1) = {ε(nil), ε(cat), {τ1 7→ τ2, }}
RT (cat2) = {ε(cons), ε(cat), ε(nil), {τ1 7→ τ2, τ1 7→ τ3}}
RT (cat3) = {ε(cons), ε(cat), ε(nil), {τ1 7→ τ2, τ1 7→ τ3}}

Figure 4.9: The Typing of the List IN monad

a ret >>= φ r ⇒1./ . . a cons >>= φ r ⇒2

Nil

.

.

./ .

a cons map φ cat r⇒map1t

Nil

.

.

./ . . a φ cons cat r

Nil map φ mAux

./

./ . .

./

⇒map2t a φ cons cat r ⇒

Nil

./

.

./ b cons cons cat r ⇒cat3

bs Nil

.

.

.

.

./
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bs b cons r ⇒∗

Nil cons cat

.

.

. ./

b cons r

bs

.

.

The last step is achieved by multiple applications of the (cat) rules (one for each element in
bs). Equality (2 can be shown by the following reduction:

a cons >>= ret r ⇒2

as

.

.

./ . a cons map ret cat r⇒map1

as

.

.

./ . .

a ret cons cat r ⇒1

as map ret mAux

./

./ . .

./ a cons cons cat r ⇒cat3

Nil as map ret mAux

.

.

.

./ . .

./

Nil a cons r ⇒cat2

as map ret cons cat

.

./ .

.

./

a cons r ⇒∗

as map ret cat

.

./ . .

a cons r

as

.

.

Again, the final step consists of several reductions. It follows from the definition of map, cat
and return that cat (map return as) = as. In essence, every element in as is put in a singleton
list. The resulting nested list is flattened again by cat.

As with the previous monads, law 3 holds due to Proposition 4.1.2.

4.6 Combining the IN monads

Finally, we show that all IN monads can be added to a single ruleset without losing uniform
confluence.

Proposition 4.6.1. Let R be the set of interaction rules consisting of the Maybe, Writer and
List monad including auxiliary agents. The reduction relation induced by R is uniformly con-
fluent.

Proof. R is well-formed: No LHS is a subnet of another. In addition, all LHSs can be added to
a sequential set: As shown before, the rules of the List monad can be added to a sequential set.
The Maybe, Writer and State Transformer monad satisfy uniform confluence as they consist
of ordinary rules only. Therefore, R satisfies the sequential set condition. While some of the
rules of the monads have the same active pair (e.g. ret rules), there are no overlaps if we use
typed nets and typed rule matching. By Proposition 3.6.4, the reduction relation induced R is
uniformly confluent.

65



Note that if the system consisting of these monads is added to other interaction rule sets, it
is again required to verify well-formedness w.r.t. nested patterns for the resulting set of rules.

4.7 Monads in Interaction Nets: Summary

We have shown how to define a notion of monad in interaction nets that is conceptually very
close to the their usage in functional programming. The described IN monads handle typical side
effects such as exception handling, state manipulation and logging. Our previously introduced
extensions generic rules, nested patterns and the updated type system have been employed. The
careful reader might wonder why we have given no example of the most prominent side effect,
namely input/output. The I/O monad can be seen as a special case of the state transformer
monad. Indeed, Haskell’s IO monad is implemented by sequentially manipulating an object
representing the state of the world (also compare Section 2.6.2). A similar I/O IN monad can be
defined in a straightforward way.
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CHAPTER 5
Implementation and Evaluation

In this chapter, we describe our efforts to implement our theoretical results in prototype pro-
gramming languages. We introduce two systems, inets [23] and ingpu [16]. The first part of
the chapter deals with inets with a focus on the implementation of nested patterns and generic
rules. The sections on nested patterns are based on joint work with Abubakar Hassan and Shinya
Sato [17].

The second part of the chapter discusses ingpu, an experimental GPU-based implementation
of INs with a focus on maximally parallel evaluation.

5.1 The inets Language

The inets system consists of two components: the inets language and compiler, and the runtime
system. The inets language is based on the interaction calculus, and is compiled to C code, which
is executed by the runtime system. The runtime holds data structures for managing interaction
rules as well as agents and connections between them. For example, the interaction rules for
addition of natural numbers are implemented by the following piece of code (We use the syntax
of the inets language, where equations are denoted by >< on the LHS (i.e., the active pair), and
by ∼ on the RHS):

Add(r, y) >< Z => r∼z;
Add(r, y) >< S(x) => r∼S(w), x∼Add(w, y);

We represent nets as a comma separated list of agents pairs. Obviously, this is based on the
textual definition of interaction nets in the lightweight calculus. For example, recall the rules for
computing the last element of a list in Figure 3.2. The LHS net of the first rule can be expressed
as follows:

p∼Lst(r),p∼Cons(x,xs),x∼1,xs∼Nil

The symbol ‘∼’ denotes the principal port of the agent (’=’ in the lightweight calculus). The
variables p, x and xs are used to model the connection between two ports. As in the lightweight
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calculus, all variable names occur at most twice: this limitation corresponds to the requirement
that it is not possible to have two edges connected to the same port in the graphical setting. If a
name occurs once, then it corresponds to the free ports of the net (r is free in the above net). If a
name occurs twice, then it represents an edge between two ports. In this latter case, we say that
a variable is bound.

The syntax above can be simplified by replacing equals for equals:

Lst(r)∼Cons(1,Nil)

In this notation the general form of an active pair is α(. . .) ∼ β(. . .).
We represent rules by writing l =⇒ r, where l is the net on the left of the rule, and r is the

resulting net. In particular, we note that l will always consist of two agents connected at their
principal ports. As an example, the rules in Figure 3.1 are written as:

Lst(r) >< Cons(x,xs) =⇒ xs∼Aux(x,r)
Aux(x,r) >< Nil =⇒ x∼r
Aux(x,r) >< Cons(y,ys) =⇒ Lst(r)∼Cons(y,ys), ε ∼x

The names of the bound variables in the two nets must be disjoint, and the free variables must
coincide, which corresponds to the condition that the free variables must be preserved under
reduction.

In order to represent INP rules, we allow the LHS of a rule to contain more than two agents.
As an example, the set of INP rules in Figure 3.2 can be written as:

Lst(r) >< Cons(x,xs), xs∼Nil =⇒ r∼x
Lst(r) >< Cons(x,xs),xs∼Cons(y,ys) =⇒ x∼ ε,p∼Lst(r),p∼Cons(y,ys)

or in a simplified form:

Lst(r) >< Cons(x,Nil)=⇒ r∼x
Lst(r) >< Cons(x,Cons(y,ys))=⇒ x∼ ε,Lst(r)∼Cons(y,ys)

Other language constructs The inets system provides other language constructs, including
modules, built-in operations on agent values and a basic version of I/O (with side effects). These
constructs remain unaffected by our extension and will hence not be discussed here. For a
detailed description of the additional language features, we refer to [18, 39].

5.2 Nested Pattern Translation

The runtime of inets handles ordinary interaction (ORN) rules only. Therefore, all INP rules
need to be translated into sets of ORN rules during compilation. In this section, we give an
overview of this translation. In general, the inets compiler reads programs in our source language
and builds the corresponding abstract syntax tree (AST). On the basis of the AST, the compiler
generates byte code which can be executed by an abstract machine or be further compiled into
C source code.

Our translation function rewrites subtrees of the AST that represent INP rules into sets of
subtrees that represent ordinary interaction rules. Overall, our translation function is similar to
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the compilation schemes defined in the original paper [20]. The main objective of the algorithm
is to check the set of rules for the well-formedness property of INP rules (Definition 3.6.3). We
summarise the translation algorithm in the following steps:

1. A rule is found in the AST. This rule can be either ORN or INP. All other nodes of the
AST that are not rules (imports, variable declarations,. . . ) are ignored.

2. Check if the LHS is not a subnet of a previously translated LHS (and vice versa if the rule
is INP). This is the first part of verifying the well-formedness property. We discuss this
verification in Section 5.3.1.

3. If the rule is not INP, return.

4. If the rule is INP: check if the current and all previous nested active pairs can be added
to a sequential set. This is the second part of verifying the well-formedness property
(Section 5.3.2).

5. If both checks are passed, translate the rule (else, exit with an error message):

a) Resolve the first nested agent of the rule’s active pair.

b) Add an auxiliary rule to the AST.

c) The remaining nested agents are not (yet) translated. They are resolved by translating
the auxiliary rule.

We describe the translation algorithm in Section 5.4.

6. traverse the AST until the next (unprocessed) rule is found.

This algorithm allows for an arbitrary number of nested patterns (i.e., the number of nested
agents in the LHS of an INP rule) and an arbitrary pattern depth.

5.3 Verifying the Well-Formedness Property

Our verification algorithm (see below) consists of two parts which correspond to the two con-
straints of the well-formedness property. We verify that the set of nested active pairs in a given
inets program are both disjoint and sequential.

We need a precise notion of the position of an agent in a nested active pair in order to show
the well-formedness property. This will be done by computing lists of positions of each symbol
in a net. We use the notation [] for the empty list, [1, . . . , n] for a list of n elements and
ps1@ps2 to append two lists.

Definition 5.3.0.1 (Position Set). Let l =⇒ r be a rule in inets. We define the function
PosSym(l) that, given a nested active pair, will return a set of pairs (ps, u) where ps is a
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list that represents the position of a symbol u in l.

PosSym(α(t1, . . .,tn) >< β(s1, . . .,sm)) = PosSymt([1, 1], t1)
∪ ... ∪ PosSymt([1, n], tn)
∪ PosSymt([2, 1], s1)
∪ . . . ∪ PosSymt([2,m], sm)

PosSymt(ps, x) = ∅
PosSymt(ps, α(x̄)) = {(ps, α)}
PosSymt(ps, α(t1, . . .,tn)) = PosSymt(ps @[1], t1)

∪ ... ∪ PosSymt(ps @[n], tn)

where the sequence of terms t1, . . . , tn in PosSymt(ps, α(t1, . . .,tn)) contain at least one
term which is not a variable; and x̄ is a sequence of zero or more variables.
The function Pos(l) returns a set of lists that represent the position of each nested agent in a
nested active pair:

Pos(l) = π1(PosSym(l))
π1(∅) = ∅,
π1({(ps, s)} ∪ A) = {ps} ∪ π1(A− {(ps, s)}).

We extend these operations into the sequence l1, ..., lk of LHS of rules as follows:

PosSym(l1, . . . , lk) = PosSym(l1) ∪ . . . ∪ PosSym(lk),
Pos(l1, . . . , lk) = Pos(l1) ∪ ... ∪ Pos(lk)

Example 5.3.0.2. For each rule in Figure 3.2, the sets of positions of nested agent pairs are as
follows:

• PosSym(Lst(r) >< Cons(x,Nil))

= PosSymt([1, 1],r) ∪ PosSymt([2, 1],x) ∪ PosSymt([2, 2],Nil)
= {([2, 2],Nil)}

• Pos(Lst(r) >< Cons(x,Nil)) = {[2, 2]}

• PosSym(Lst(r) >< Cons(x,Cons(y,ys)))

= PosSymt([1, 1],r) ∪ PosSymt([2, 1],y) ∪ PosSymt([2, 2],Cons(y,ys))
= {([2, 2],Cons)}

• Pos(Lst(r) >< Cons(x,Cons(y,ys))) = {[2, 2]}

5.3.1 Verifying the Subnet Property

Verifying the subnet property is straightforward. Since rules are represented as trees (subtrees
of the AST), it is easy to verify if one rule’s LHS is a subtree of another. We compute the LHS
subtree relation of the current rule P (to be translated) against all the rulesQ which have already
been translated. If P is in ORN, we verify the subtree relation in one direction only: the LHS
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of an INP rule cannot be a subnet of the LHS of an ORN rule. Otherwise we verify the subtree
relation in both directions: P against Q and Q against P . The case of two ORN rules with the
same active agents is handled by the compiler at an earlier stage. If the current rule’s LHS is not
a subnet of any previous rules’ LHS’s, we add it to the set of previous rules.

Note that we consider a tree to be a subtree of another tree up to alpha conversion, i.e.,
variable names are not considered.

5.3.2 Verifying the Sequential Set Property

The check for the sequential set property is a bit more complicated than the subnet one. Ac-
cording to the definition of the well-formedness property, there must exist a sequential set that
contains all nested active pairs in a given set of INP rules. Rather than attempting to construct
such a sequential set, the algorithm tries to falsify this condition: it searches (exhaustively) for
two nested patterns that cannot be in the same sequential set. This is done as follows:

For the current nested pattern P and all previously verified patterns Q with the same active
agents:

1. Compare the sets Pos(P ) and Pos(Q). We only consider the positions of agents at this
point, not the agents themselves.

2. If one set is a subset of another, P and Q can be added to a sequential set 1. P is added to
the set of previous nested patterns.

3. Else, we compare the actual nested agents at the common positions CP = Pos(P ) ∩
Pos(Q).

4. If for each element p ∈ CP , α and β are the same where (p, α) ∈ PosSym(P ) and
(p, β) ∈ PosSym(Q), no sequential set can contain P andQ, as P ≡ 〈M,x ∼ α(. . .), a〉,
Q ≡ 〈M,y ∼ β(. . .),b〉 with x 6= y.

5. Else, P andQ can be added to a sequential set. P is added to the set of previously verified
nested patterns.

It is straightforward to see that after the full traversal of the AST, all possible pairs of nested
patterns are considered. Hence, the search for a pair that violates the sequential set property is
exhaustive.

Proposition 5.3.2.1. Let R be a set of INP rules. R is well-formed⇔ R is correctly verified to
be well-formed using our verification algorithm.

Proof. ⇐:

Assume R is not well-formed and passes the well-formedness checks. We proceed by a
complete case distinction (according to the definition of well-formedness):

1Note that P and Q have already passed the subnet check at this point. This means that (some of) the nested
agents at the common positions are different. Hence, P and Q cannot give rise to a critical pair.
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Case 1. There exist two rules P =⇒ N,Q =⇒ M ∈ R where P is a subnet of Q. But then,
the pair (P,Q) is tested for the subnet relation (Section 5.3.1). Hence, R does not pass
the well-formedness check.

Case 2. There exist two rules A =⇒ N,B =⇒ M ∈ R where A ≡ 〈P, x ∼ α(. . .)〉, B ≡
〈P, y ∼ β(. . .)〉 for x 6= y. But since all pairs of nested patterns are checked for the
sequential set property (Section 5.3.2), (A,B) will be detected. Hence, R does not pass
the check.

In both cases, we reach a contradiction to the assumption above, hence it cannot be true.

⇒:
Assume R does not pass the well-formedness check, but is well-formed. Again, there are

only two cases:

Case 1. R does not pass the check because ∃P =⇒ N,Q =⇒ N ′ ∈ R where P is a subnet of
Q. But then, R is not well-formed (by the definition of well-formedness).

Case 2. R does not pass because are two rules A =⇒ N,B =⇒ M ∈ R where A ≡ 〈P, x ∼
α(. . .)〉, B ≡ 〈P, y ∼ β(. . .)〉 for x 6= y. Then, there is no sequential set that contains
both A and B. Hence, R is not well-formed.

Again, we reach a contradiction to the assumption above in either case.

5.4 Nested Rule Translation

We now describe the translation algorithm from nested to ordinary rules in more detail. As
mentioned earlier, we translate INP rules to ORN rules by rewriting the AST. We perform a pre-
order traversal of the AST and identify nodes that represent INP rules. Once we find an INP rule,
we replace its nested agents with a fresh (variable) node n and replace the subtree that represents
the RHS of the rule with a new tree Nt. The nested agents and the RHS of the rule are stored for
later processing. The tree Nt represents an active pair between n and a newly created auxiliary
agent Aux. This auxiliary agent holds all the agents and attributes of the original active pair,
with the exception of the former variable agent.

Now, we create an auxiliary rule with an active pair between Aux and the current nested
agent (initially connected to the interacting agent). We set the RHS of the auxiliary rule to be
the RHS of the original INP rule. Finally, we add this auxiliary rule to the system.

Note that the auxiliary agent in the new rule may still contain additional nested agents,
i.e., the auxiliary rule may be INP. Hence, the translation algorithm recursively translates the
generated rules until the LHS of each of the generated rules contains exactly two agents. The
idea behind this is to resolve one nested agent per translation pass. Further nested agents are
processed when the translation function reaches the respective auxiliary rule(s).

We can formalise the translation algorithm as a function translate(R, U, S), where R de-
notes the input set of interaction rules and U and S are stores. Intuitively, the components U and
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S are used to store previously processed rule patterns in order to verify the subnet and sequen-
tial set properties respectively. The function translate is defined in Figure 5.1 (in pseudo-code
notation), where FAIL denotes termination of the program due to non well-formedness ofR:

translate([],U,S) = []
translate((P =⇒ N):R,U,S) =
if (P is a subnet of any Q ∈ U or vice versa)

FAIL
else if (P is ORN)

(P=⇒N):translate(R,P:U,S)
else

if (P cannot be added to a sequential set with
any Q ∈ S)

FAIL
else
(P’=⇒(PX∼p)):translate((PX >< A =⇒ N):R,P:U,P:S)

where
p = position of the first nested agent of P
A = the nested agents at position p
P’ = P with all nested agents replaced by variable

ports
PX = auxiliary agent that contains all ports of P

except p

Figure 5.1: The INP to ORN translation algorithm

Example 5.4.0.1. Consider the interaction rules from Figure 3.2. R consists of two rules:

1. Lst(r) >< Cons(x,Nil) =⇒ r∼x
2. Lst(r) >< Cons(x,Cons(y,ys)) =⇒ x∼ ε,Lst(r)∼Cons(y,ys)

The translation works as follows:

• Rule 1 is INP (due to the Nil agent).
Its LHS is checked for the subnet property. As there are no previous rules in U , the check
is passed.

• As the rule is INP, it is checked for the sequential set property. Again, there are no previous
rules in S, hence it passes the check.

• The rule is transformed, introducing the auxiliary agent Lst_Cons

1. Lst(r) >< Cons(x,var0) =⇒ Lst_Cons(r,x)∼var0

• A new auxiliary rule is added toR:
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3. Lst_Cons(r,x) >< Nil =⇒ r∼x

The LHS pattern of rule 1 is added to U and S.

• Rule 2 is INP (due to the nested Cons agents).
Its LHS is checked for the subnet property. The only LHS pattern in U is Lst(r)
>< Cons(x,Nil). Due to different agents at the second auxiliary port of Cons, the
LHSes cannot be subnets of one another. The check is passed.

• Rule 2 is checked for the sequential set property. First, the positions of nested agents of
Rule 1 and 2 are compared. Since they are the same (both have their nested agent at the
second auxiliary port of Cons), they can be added to a sequential set. There are no
further rules in S, hence the check is passed.

• The rule is transformed and another auxiliary rule is added toR:

2. Lst(r) >< Cons(x,var1) =⇒ Lst_Cons(r,x)∼var1
4. Lst_Cons(r,x) >< Cons(y,ys) =⇒ x∼ ε,Lst(r)∼Cons(y,ys)

• Rule 3 is ORN.
Its LHS is checked for the subnet property. As there are no with the same active agents in
U , the check is passed. The LHS pattern of Rule 3 is added to U .

• Rule 4 is ORN.
Its LHS is checked for the subnet property. Again, there are no rules with the same active
agents in S. The check is passed and the LHS pattern is added to U .

This yields the translated set of rules

1. Lst(r) >< Cons(x,var0) =⇒ Lst_Cons(r,x)∼var0
2. Lst(r) >< Cons(x,var1) =⇒ Lst_Cons(r,x)∼var1
3. Lst_Cons(r,x) >< Nil =⇒ r∼x
4. Lst_Cons(r,x) >< Cons(y,ys) =⇒ x∼ ε,Lst(r)∼Cons(y,ys)

Note that the rules 1 and 2 are identical (save variable names). Since only one of them is needed,
rule 2 is discarded. As expected, we get the set of ORN rules given in Figure 3.1.

Proposition 5.4.0.2. (Termination) For a finiteR, translate terminates.

Proof. Let n be the number of rules in R and p be the sum of all nested agents of these rules.
By a complete case distinction, we show that with each recursive call, (n+ p) decreases:

Case 1 The current rule is ORN. At the recursive call, it is removed fromR, hence n decreases
by 1.

Case 2 The current rule has i nested agents (i > 0). The rule is removed from R and an
auxiliary rule with exactly i − 1 nested agents is added to R. Hence, with the recursive
call p decreases by 1.
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translate terminates if n = 0. n only decreases if we encounter an ORN rule. Yet, since the
number of nested agents for each rule is finite, all rules in R will be ORN after finitely many
decreases of p.

5.4.1 Time and Space Complexity of translate

Time complexity To determine the time complexity of translate, we analyze the three main
parts of the algorithm: the check for the subnet property, the check for the sequential set property
and the actual rule translation. As a measurement of the input size, we consider the sum n =
r + a, where r is the number of rules and a is the number of nested agents in the input set R.
The idea behind this notion of size is that translate is invoked once for every interaction rule
in the input. Additionally, each elimination of a nested agent yields a new auxiliary rule to be
translated. Hence, translate is called n = r + a times.

The subnet property check compares all pairs of rule patterns. For an input set of size n,
n(n−1)

2 checks are performed. Therefore, the verification of the subnet property is quadratic to
the input size, or O(n2).

At first glance, the check for the sequential set property is similar to the one for the subnet
property: all pairs of rule patterns need to be compared, resulting in a (worst-case) complexity
of O(n2). However, the verification algorithm only considers pairs of patterns with the same
active agents (see Section 5.3.2), which is usually only a fraction of all pairs of rule patterns. On
average, this results in a less than quadratic complexity for the verification of the sequential set
property.

The actual translation is executed once for each nested agent in the input set. The elimination
of a single nested agent is not influenced by the total number of nested agents or rules. The rule
translation is thus linear to the number of nested agents r.

This results in an overall time complexity of O(n2) for translate, which is mostly deter-
mined by the verification of the subnet property. Extended profiling on the implementation of the
algorithm (including input sets with up to several thousand nested agents and rules) shows that
also on practical cases the performance is bounded by a quadratic curve (with small constants
involved).

Space complexity To analyze the space complexity of translate, we consider the population
of the stores U and S. Every rule pattern of the input set is stored in U , whereas only nested
patterns are stored in S. At the worst case, U and S will contain 2n rule patterns. This implies
that space complexity is linear to the number of rules in the input. Again, this result is reflected
by several profiling tests using practical examples.

5.4.2 Additional Language Features

The inets language offers some features that are not considered in the original definition of the
nested pattern translation function. Some important examples are data values of agents (integers,
floats, strings,. . . ) realized via external datatypes (see Section 2.3)s, side effects (declaration and
manipulation of variables, I/O) and conditions. These features are not involved in the process
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of nested pattern matching. Therefore, they do not need to be processed or changed by the
translation function:

• with regard to nested pattern matching, data values can be considered as variable ports
(they do not contain nested agents). Hence, they are unaffected by the translation.

• conditionals and side effects only occur in the RHS of a rule. Since the original RHS of
an INP rule is propagated to the final auxiliary rule without a change, these features are
not affected either.

• all auxiliary rules but the last one are responsible for pattern matching only, they do not
do the “actual work” of the original rule. All special language features are simply passed
to the next auxiliary rule.

5.4.3 The Implementation

The current version of inets can be obtained from the project’s web page [23]. We have thor-
oughly tested the prototype implementation and developed several example modules. These
examples include rule systems with a large number and depth of nested patterns as well as heavy
use of state, conditionals and I/O. Additionally, we have designed several non well-formed sys-
tems in order to improve error handling.

5.5 Nested Patterns in inets: Summary

We have presented an implementation for nested pattern matching of interaction rules. The
implementation closely follows the definition of nested patterns and their translation to ordinary
rules. We have shown correctness, termination and complexity of the algorithm.

The resulting system allows programs to be expressed in a more convenient way rather than
introducing auxiliary agents and rules to pattern match nested agents. We see this as a positive
step for further extensions to interaction nets: future implementations of high-level language
constructs can be built upon these more expressive rules.

5.6 Implementation of Generic Rules

In this section, we discuss the implementation of generic rules in inets. We can show that our
implementation satisfies the generic rule constraints defined in Section 3.4.3. We will focus on
the implementation of fixed generic rules and discuss which additions enable variadic rules.

The implementation of generic rules allows us to define interaction net systems similar to
the Maybe monad in Example 3.4.5.1 (the keyword ANY denotes a generic agent):

Return(r) >< ANY(x) => r∼Just(ANY(x))
Bind(r) >< Just(x) => r∼x;
Bind(r) >< Nothing => r∼Aux;
Aux >< ANY(r) => r∼Nothing;
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In contrast to the mentioned example, this code only shows fixed generic agents instead of
variadic agents. We will later discuss how the notion of arity unfolding (see Definition 3.1.2.2)
can help us to implement variadic rules as a set of fixed generic rules.

5.6.1 Generic Rule Constraints

Individual interaction rules (both ordinary and generic) are represented as C functions that take
references of the two agents of an active pair as arguments. These functions replace an active
pair by the corresponding RHS net and connect it to the rest of the net accordingly. The runtime
maintains a table that maps a pair of agent symbols to an interaction rule function. This table
also contains entries for fixed generic rules, with a special symbol for generic agents of a spe-
cific arity. The following pseudocode describes the matching and reduction function, where φn
denotes the generic agent of arity n:

void reduce(agent1, agent2) {
// is there an ordinary rule for the active pair?
rulePtr rule = ruleTable[agent1][agent2]
if (rulePtr == null) {

// is there a fixed generic rule matching the pair?
bool success = reduceGeneric(agent1, agent2)
if (!success)
error("no matching rule!")

}
else {

rule(agent1, agent2) //apply the ordinary rule
}

}

bool reduceGeneric(agent1, agent2) {
//is there a fixed generic rule with matching arity?
n = arity(agent1)
m = arity(agent2)
rulePtr rule = ruleTable[φn][agent2]
if (rule == 0) {

rule = ruleTable[φm][agent1]
if (rule == 0)

return false // no matching generic rule
}
// apply the generic rule
rule(agent1, agent2)
return true

}

The Generic Rule Constraint (GRC) is a property of the set of interaction rules, and can
thus be verified at compile time. We check each generic rule for overlaps with already compiled
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generic rules, as shown by the following pseudocode:

void checkGRC(Rule r) {
if (r is a generic rule) {

let A be the ordinary agent of r′s LHS
let φm be the generic agent of r′s LHS
n = arity(A)
if (a generic rule with LHS B >< φn exists
and arity(B) = m ) {
// we have two overlapping generic rules
if (no ordinary rule with LHS A >< B exists)

error("generic rule overlap!")
}
add r to the existing rules

}
}

Clearly, the implementation needs to satisfy the generic rule constraints of Section 3.4.3.
Otherwise, multiple generic rules may overlap, resulting in non-determinism in the evaluation
of the program. It is straightforward to see that the pseudocode above satisfies the generic rule
constraints:

Proposition 5.6.1.1. The implementation of generic interaction rules in inets satisfies the DPC
and GRC.

Proof. Consider the function reduce. The application of a generic rule via
reduceGeneric is only attempted if no ordinary interaction rule exists. Hence, the DPC
is satisfied. For the GRC, consider checkGRC: if the generic rule currently being checked
overlaps with a previous generic rule and no matching ordinary rule exists (i.e., the GRC is
violated), an error is reported.

Implementation of variadic rules The current version of inets also supports variadic rules.
During compilation, a variadic rule is translated into a set of fixed generic rules, one for each
possible arity. While variadic rules are theoretically defined for agents with arbitrarily large
arities, we can easily identify the maximum arity n of all agents in the current program. Hence,
we only add n fixed versions of the variadic rule. After this step, the set of rules only contains
fixed generic rules, which are handled as described above. As an example of a variadic rule in
inets, consider the δ-rule:

Delta(d1,d2) >< ANY(Agents r) =>
d1 ~ ANY(Agents s), d2 ~ ANY(Agents t),
’r ~ Delta(’s, ’t);

The keyword Agents denotes a variadic range, whereas ’r denotes the variadic name corre-
sponding to the variadic range r.
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5.7 Parallel Evaluation of Interaction Nets in CUDA/Thrust

In this section, we discuss the ongoing implementation of our GPU-based interaction nets eval-
uator ingpu. First, we give a quick introduction to CUDA/Thrust and motivate a GPU-based
approach. We then describe the main components of the evaluator, the interaction and the com-
munication phase. We discuss the performance drawbacks of our initial approach and describe
measures to improve its efficiency.

5.7.1 CUDA and Thrust

The tool ingpu is written in C++ and CUDA. The latter is a language for GPU-based, general-
purpose computation on NVIDIA graphics cards. The general flow of a program using the GPU
for data-parallel computation is as follows: an array of input data sets is copied from the main
memory (known as host memory) to the memory of the GPU (also referred to as device). A
function (the kernel) is executed on the GPU in parallel on each individual data set. Finally, the
array of results is copied back to main memory.

In general, implementing an algorithm on a GPU efficiently requires a considerable amount
of low-level decisions: factors such as size of data structures, number of threads and thread
block size can greatly influence performance. Fortunately, version 4.0 of CUDA introduced
the Thrust library [21], which features high-level constructs for efficiently performing parallel
computations. For example, Thrust provides the transform() function, which is similar to
map in functional programming:

// allocate three device_vectors with 10 elements
thrust::device_vector<int> X(10), Y(10);
// compute Y = -X
thrust::transform(X.begin(), X.end(), Y.begin(),

thrust::negate<int>());

Thrust is obviously inspired by the C++ STL: device_vector is a generic, resizable con-
tainer residing in GPU memory. The arguments of transform are an input vector X, an output
vector Y and a function object, here a built-in function that negates integers.

Other functions supplied by Thrust include parallel sorting, filtering and reduction. Reduc-
tions compute a single value based on an input list, e.g., the sum of its elements:

//sum the vector X, with initial fold value 0
s = thrust::reduce(X.begin(), X.end(), 0, thrust::plus<int>());

These functions are a convenient way to write parallel programs without the need for low-
level tweaking. Our interaction nets evaluator ingpu is completely based on the Thrust library.

5.7.2 Motivation and Challenges

Why does a GPU-based implementation of interaction nets make sense in the first place? Several
reasons can be given: first, the SIMD (Single Instruction, Multiple Data) model of GPUs is
similar to the idea behind interaction nets. Several independent data sets are processed in parallel
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using the same instructions/program. This is analogous to reducing several active pairs with a
common set of interaction rules. Second, the reduction of a single active pair is a fairly small
computation, consisting only of a few lines of code. GPUs are optimized for running thousands
of threads executing such small programs. Additionally, the number of active pairs existing at the
same time may vary greatly through the execution of a program. An interaction nets evaluator
should be able to dynamically and transparently scale this potential parallelism to the manycore
hardware. Again, GPUs are a promising platform to achieve this.

However, the implementation of interaction nets on a GPU is a non-trivial task. In particular,
it poses the following challenges:

Maintaining the net structure While active pairs can be reduced in parallel, they are not com-
pletely independent: they are connected in a net, and resolving these connections (via
com−→ ) is needed to generate further active pairs. Unfortunately, the choice of data struc-
tures in GPU memory is very limited (essentially just arrays). Moreover, typical GPU
programs are most efficient for algorithms with regular data access (for example, dense
matrix multiplication). This means that it is difficult to efficiently represent the irregular
graph structure of an interaction net.

Varying output size of a reduction In general, the RHS of an interaction rule may be an arbi-
trarily large net. This implies that the result of a reduction of an active pair may vary in
size, depending on the rule being used. Analogously, the number of new equations gen-
erated by one interaction rule in the lightweight calculus varies. Reducing one active pair
may yield an arbitrarily large net, or any number of equations in the lightweight calculus.
GPU-based algorithms usually have a fixed output size for every input.

Solving these challenges is by far not completed. In fact, we will see that dealing with these
issues results in the performance deficits of the current implementation, cf. Section 5.8.

5.7.3 Overview of the Implementation

In this subsection, we describe the basic concept behind ingpu. As with inets, we base ingpu on
the lightweight calculus. We represent agents and variables by a unique id, a name, an arity and
a list of ids of the agents connected to an agent’s auxiliary ports. Currently, agents and variables
are simply distinguished by upper and lower case names. In fact, the name of a variable is not
important: its identification by the unique id is sufficient for all computations. Naturally, we
represent equations as pairs of agents. A configuration is simply a vector of equations - we leave
the interface of the net implicit.

Control Flow

The basic control flow of our evaluator is simple. Specifically, our approach relies on a property
of the reduction rules of the lightweight calculus (see Definition 2.4.1.2): substitutions done by
sub−→ and col−→ never yield a new active pair/equation. This means that we can reach a normal
form of a net (i.e., free of active pairs) by using only int−→ and com−→ rules.
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Theorem 5.7.3.1 ( [19]). If C1 −→∗ C2 then there is a configuration C such that C1 −→∗

C
sub−→
∗
.
col−→
∗
C2, and C1 is reduced to C applying only communication and interaction rules.

In the lightweight calculus, the lion’s share of the computation is done by int−→ and com−→ .
The former reduces expressions (i.e., equations/active pairs) by replacing them with the RHS of
the corresponding interaction rule. The latter generates new active equations that can be reduced
by int−→ . The collect and substitution steps are in a sense cosmetic: both resolve variables in
order to provide a better readable form of the result net. They perform no “actual” computation,
i.e., rewriting of the graph represented by the set of equations. Hence, all sub−→ and col−→ steps
can be pushed to the end of the computation. Therefore, ingpu performs parallel interaction
and parallel communication in a loop until no more active pairs exist. For the remainder of this
section, we will describe the implementation of the data-parallel versions of int−→ and com−→ .

5.7.4 Parallel Interaction

The interaction step int−→ can be parallelized in a straightforward way. Clearly, int−→ fits the
SIMD model very well: the same program (i.e., the set of interaction rules) is applied to each
active pair, and replacing a pair is completely independent of all others.

The problematic part about the int−→ step is the varying output size of an active pair reduc-
tion, which we mentioned in Section 5.7.2. In general, a rule RHS may contain an arbitrary
number of equations. Unfortunately, Thrust’s algorithms can only return a fixed number of re-
sults per individual input. This means that it is not feasible to return a dynamically-sized list of
equations as the result of an interaction. For the time being, we have solved this problem in a
pragmatic way by setting a maximum number n of equations per RHS. Applying any interaction
rule must then yield exactly n equations. Between zero and m ≤ n equations represent the
actual result. The remaining n −m equations are dummies, resulting in a fixed result size for
each application of the kernel.

Obviously, the dummy equations must be filtered in a subsequent computation step. For-
tunately, Thrust provides the remove() function, which is a parallel version of Haskell’s
filter. Figure 5.2 illustrates the full interaction step: every equation in the input array that
represents an active pair is reduced, i.e., the n result slots (n = 3 in the figure) are filled with the
equations of the RHS of the corresponding rule and dummy equations (empty slot). Afterwards,
the dummy equations are removed and the resulting equations are merged into a single array.

This approach is straightforward, but has performance drawbacks. The filter and merge
operations on the result arrays are up to several hundred times slower than the actual parallel
interaction step. This contributes to the current inefficiency of ingpu, which we will discuss in
detail in Section 5.8.

5.7.5 Parallel Communication

After the interaction phase above has completed, we apply an algorithm corresponding to the
communication rule to generate new active pairs. Recall the mechanics of com−→ : communi-
cation needs to find two equations {x = t, x = s} where x is a variable and s, t are terms
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Figure 5.2: The interaction step

and merge them to a single equation {s = t}. Let us call two such equations sharing a variable
communication-eligible. This is harder to parallelize than int−→ : we need to find eligible pairs of
equations first before we reduce them. Unfortunately, this is where we run into a problem men-
tioned in Section 5.7.2: our net is only represented as an array of independent equations. There
is no additional pointer structure between them to represent connections (cf. the Agent struc-
ture in Section 5.7.3). Therefore, we currently perform the following (inefficient) procedure to
find communication-eligible pairs of equations: we sort all equations of the pattern x = t by the
id of the variable x. This places communication-eligible pairs of equations next to each other in
the array (since the same variable occurs in them). We can now proceed to merge these pairs into
single equations. We do this by using Thrust’s reduce_by_key(): this function essentially
works like Haskell’s fold with an added predicate function. Only adjacent array elements that
satisfy the predicate are folded. For example, consider a list of numbers {2, 0, 3, 3, 3, 7, 5, 5}:
calling reduce_by_key() on this list with addition as folding function and equality as pred-
icate yields the result {2, 0, 9, 7, 10}.

Hence, we consider two equations that share a common variable as equal. This way, we
merge communication-eligible pairs and leave all other equations untouched. The communica-
tion step can be summed up by the following pseudo-code:

let E be the array of all equations of shape x=t
sort E by the id of left part of each equation
reduce_by_key(E) with predicate p and reduce functor r

where
p (x,t) (y,s) = x==y
r (x,t) (y,s) = (s,t)

Thrust provides efficient implementations of parallel sorting algorithms, but sorting and re-
ducing the equations still represents a major performance bottleneck for large inputs. We will
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discuss this issue in detail in Section 5.8. For the remainder of this section, we will show that
our algorithm is correct.

5.7.6 Correctness of the Algorithm

The communication algorithm seems fairly straightforward, but we have not discussed one im-
portant point: what if an equation consists of two variables, e.g. x = t where t is a variable?
Which one is used for comparison in the sorting of the equations? Surprisingly, it does not mat-
ter for our algorithm. We will now show that it is correct in the sense that any possible active
pair that can be generated by com−→ in the lightweight calculus will also be generated by ingpu.

First however, we highlight that some active pairs cannot be generated by the communica-
tion algorithm described above. Consider a set of equations {A = x, x = y, y = B}. Clearly,
both x and y can be resolved, yielding the active pair A = B. However, we need to perform two
consecutive com−→ steps, first eliminating x and then y or the other way round.2 The communica-
tion algorithm above would only perform one of these communications, depending on whether
x or y was used for sorting. The result would be {A = y, y = B} (if x was reduced), which
cannot be used in the interaction phase. A second pass of the communication algorithm would
be necessary to yield the active equation A = B. The following pseudo-code of the evaluation
function reflects this:

equation_list evaluate(equation_list L) {
transfer L to device (GPU) memory
do {

perform interaction as in Section 5.7.4
perform communication as in Section 5.7.5

}
while (at least one interaction or one communication

has occurred in the previous loop)
transfer L back to host (CPU) memory
return L

}

This way, if the communication algorithm does not yield any active pairs, it is performed
again until it either generates new active pairs or no longer performs any com−→ steps. In the
latter case, the program terminates. We can show that the algorithm is correct in the sense that it
generates all possible active pairs and evaluates them.

Proposition 5.7.7 (Correctness of evaluate()). Let E be a set of equations. Then, R =
evaluate(E) contains no active pairs, and no further active pairs can be generated by ap-
plying com−→ in R.

Proof. We show that for any set of equations that can potentially yield an active pair, evaluate()
will generate this active pair. Such a set of equations has the general form {A = x1, x1 =

2Recall that the order of reduction steps in the lightweight calculus does not influence the final result due to
uniform confluence (see Proposition 2.4.1.4).
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x2, x2 = x3, . . . , xi−1 = xi, xi = B}. Applying the communication algorithm will result
in at least one com−→ step, no matter which of the variables of each two-variable equation is used
for sorting. Hence, the size of the set of equations decreases by at least 1 in each iteration of the
loop in evaluate(). After at most i loops, the communication algorithm will yield {A = B},
which can then be reduced in the subsequent interaction phase of evaluate().

Remark Note that the algorithm may not be able to apply all com−→ steps to sets of equa-
tions that potentially do not yield an active pair. For example, {A = x1, x1 = x2, x2 =
x3, . . . , xi−1 = xi, xi = y} may not reduce to {A = y} depending on the choice of compari-
son variables for sorting. However, these com−→ steps do not yield any active pairs and hence are
of secondary importance, much like col−→ and sub−→ (c.f. Theorem 5.7.3.1).

5.8 Benchmarks and Future Improvements

In this section, we present some benchmark results and discuss possible performance improve-
ments. First, we compare ingpu to existing, sequential interaction nets evaluators. Second, we
identify performance bottlenecks and discuss potential solutions.

5.8.1 Performance Comparison

Our implementation is still considered experimental. Unfortunately, ingpu currently performs
slower than the more mature sequential evaluators inets [23] and amineLight [19] in most cases.
However, we can identify which parts of ingpu are slow and which ones are fast. Consider the
benchmark comparison in Figure 5.3. We ran our tests on a machine with an Intel Core Duo
2.2Ghz CPU, 2GB of RAM and a Geforce GTX 460 graphics card.

time in seconds amineLight inets ingpu
Ackermann(3,7) 0.4 0.59 30.4
Fibonacci(20) 0.03 0.043 10.5
L-System(27) 1.13 1.49 1.28

Figure 5.3: Benchmark results

The code for the rule definitions of the benchmarks can be found in the appendix. On
standard benchmark functions like Ackermann or Fibonacci, ingpu performs very poorly. The
sequential implementations are much faster here. However, the result on the third benchmark
L-System is much more competitive, at least outperforming inets. This set of rules computes the
nth iteration of a basic L-System that models the growth of Algae [52], given by the following
rewrite System:

A→ AB B → A
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So why is ingpu so much faster for the L-System ruleset than for Ackermann and Fibonacci?
Two main reasons can be given, which at the same time highlight the most glaring performance
problems:

Inefficient communication Profiling shows that for Ackermann, almost all of the execution
time of ingpu is spent in the communication phase and the merging part of the interaction phase.
The actual interaction kernel (replacing equations) runs very fast, taking less than 0.1 percent of
the total time.

Available parallelism The term available parallelism was coined in [41], and refers to the
number of expressions that can be evaluated in parallel at a given time during the execution of
a program. In our case, this is simply the number of active pairs that exist at the same time at a
certain iteration of ingpu’s main loop. A high number of active pairs fits the GPU programming
model well, as GPUs are optimized to handle hundreds of thousands of data-parallel inputs.
Conversely, a low amount of parallelism is not sufficient to leverage the full computing power
of the GPU. Figure 5.4 shows the number of parallel interactions per loop for Ackermann and
L-System. While Ackerman has less than 200 concurrent active pairs for the majority of its
execution time, L-System performs several hundreds of thousands of parallel interactions towards
the end of the computation. Moreover, L-System performs much fewer loop iterations overall
(50 vs. 11000). This means that much less time is spent in the slow communication phase in
proportion to the total number of interactions.

Figure 5.4 also gives some insight on the dynamics of available parallelism in our bench-
marks. Interestingly, the number of concurrent active pairs for Ackermann repeatedly decreases
and increases in a quasi oscillating fashion. This results in the rather low average number of
active pairs per loop. In contrast, the available parallelism in the execution of L-System strongly
increases, as is expected considering the exponential growth of the L-System. The slight drops
in parallelism are the result of duplicating the parameter for the number of iterations in every
loop.

5.9 Performance Improvements

Our initial design of ingpu can be considered experimental. Various small and big improve-
ments can be made to increase its overall performance. In particular, we have identified a few
optimizations that have the potential for a considerable performance increase. In this section,
we describe these performance improvements to ingpu.

5.9.1 Improved Net Representation

Both interaction and communication can benefit from a better net representation in the GPU
memory. While the “array of equations” approach closely follows the theoretical definition of
the interaction nets calculus, it is quite slow: the lack of a more sophisticated pointer structure
makes a sorting pass in the communication phase necessary.
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Figure 5.4: Available Parallelism of Ackermann and L-System: the x-axis shows the loop num-
ber, the y-axis the number of parallel interactions.
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Instead of an array of equations, an interaction net can be represented more efficiently in the
device memory. We store all agents and variables of the net in an array called the agent table.
The unique id of each agent/variable determines the position in the array (i.e., the agent with id
n is stored at array position n). The agent table also stores all non-active pair connections in the
net, i.e., all connections/equations that include a variable. Active pairs are stored in a different
array as a pair of the unique ids of the respective agents.

This representation has two main advantages. First, any agent or variable can be accessed in
constant time via their id. This makes a sorting pass in the communication phase unnecessary.
In addition, the interaction phase can also be improved by constant-time agent access. Second,
the size of the data-parallel input for both phases is reduced considerably. Previously, the whole
array of equations (i.e., the complete net) was passed to the kernels. Now, we simply pass the
list of active pair ids as well as a pointer to the agent table to the interaction kernels. Similarly,
the communication kernels only process the equations that were newly created by the preceding
interaction.

5.9.2 Interaction: Efficient Handling of Dynamic Output Size

As we discussed in Section 5.8, one performance bottleneck is the merging of result arrays,
which comes from the varying output size (the number of equations) of interaction rules. The
arbitrary size of a rule RHS is a crucial property of interaction nets and cannot be removed.
However, we can handle output of dynamic size more efficiently by exploiting information about
each interaction rule: the RHS size of each rule is known and constant. Therefore, we can adapt
a so-called scan-based approach. A scan is a function that takes an array of values [a1, . . . , an]
and an associative function ∗ and returns an array [a1, a1 ∗ a2, . . . , a1 ∗ a2 ∗ . . . ∗ an]. The
nth element of the result is the *-product of the first n elements of the input array. A scan
can be parallelized very well on the GPU and is the key to handling dynamic output size more
efficiently.

In [33], the authors describe an efficient way to compute and render L-systems (a particular
kind of rewriting system) on the GPU. The problem of dynamic output size is solved by splitting
the parallel rewriting step in three passes:

count for each input, the size of the output is computed in parallel.

scan perform a scan on the result array of the count pass. This yields an index for each of the
original inputs that can be used to allocate the individual outputs on a single output array.

rewrite perform the actual computation on the original input, and store the output at the output
array index determined by the scan pass.

Initial tests show that the count and scan passes are considerably faster than the original way
of removing duplicates. The rewrite pass modifies the agent table by adding the new agents of
the rule RHS. Due to the uniform confluence property of interaction nets, all changes from all
active pairs can be applied to the agent table at the same time: each active pair affects a different
part of the table.

87



5.9.3 Improved Communication

The previously discussed communication algorithm is very slow. Due to the fact that an inter-
action net is represented as a list of independent equations, we have to sort the complete list re-
peatedly to find communication-eligible equations. However, it is possible to reduce this search
space: only equations that are directly connected to a given active pair(i.e., its interface) are
potentially communication-eligible. We gain a speedup by considering this subset of equations
only.

As with the interaction phase, the improved net representation allows for constant-time
lookup of variables. This makes the sorting of equations in the original communication phase
obsolete.

While active pairs are the inputs of the interaction phase, the communication phase evaluates
the equations resulting from the active pair reduction. The main challenge is now to determine
which equations yield a new active pair (in combination with the net stored in the agent table)
and which merely update the agent table. In particular, an active pair could result from com-
municating several variables (see Section 5.7.6). Therefore, we also split communication into
several passes, again employing a scan approach. First, we determine which variables/equations
give rise to a new active pair and store this information in an array. Second, we again scan the
array to compute the number of new active pairs and their positions in the final output array. Fi-
nally, we perform the actual communication for the determined variables. This multi-pass scan
approach can again yield a better performance than the original implementation.

Updated Benchmark Results

Unfortunately, even with these improvements ingpu currently fails to match the performance of
existing implementations on the benchmarks with low parallelism (Ackermann and Fibonacci).
However, for the L-system ruleset, ingpu now performs faster than the other systems. The
following benchmarks were conducted on a machine with a Intel i5 3.1Ghz CPU, 8GB of RAM
and a Geforce GTX 670 GPU.

time in seconds amineLight inets ingpu
Ackermann(3,7) 0.2 0.29 11.5
Fibonacci(20) 0.02 0.03 2.48
L-System(27) 0.48 0.66 0.19

Figure 5.5: Updated Benchmarks

Ackermann and Fibonacci do get a decent speedup, but are still 20-100 times slower than the
sequential implementations. The L-System benchmark manages to beat the sequential systems
by a factor of 2.5. This result can be explained by looking at the average available parallelism
for each test:

Note the direct correlation between the average number of concurrent active pairs and the
slowdown of ingpu. It seems that the available parallelism (see Section 5.8) is indeed a decisive
factor for the viability of a GPU-based implementation.
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avg. active pairs per loop ingpu vs amineLight slowdown
Ackermann(3,7) 200 60
Ackermann(3,8) 400 30
Fibonacci(20) 30 134
L-System(27) 67000 0.39

Figure 5.6: Available Parallelism vs. ingpu Performance

5.10 Parallel Evaluation with ingpu: Summary

We have presented a novel approach for implementing interaction nets evaluation: By using
graphics cards (GPUs) as target platform, we can realize the full theoretical parallelism potential
of interaction nets: all concurrent active pairs are evaluated at the same time, in parallel. While
the current state of the work does not outperform existing systems for examples with compar-
atively low parallelism, we have shown that our approach is a promising one if the degree of
parallelism is high.
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CHAPTER 6
Conclusion

In this chapter we conclude the thesis. We summarize our results and discuss open problems as
well as future research directions. In addition, we compare our achievements with related work.

6.1 Related Work

6.1.1 Generic Rules and the Lightweight Calculus

The textual calculus for interaction nets was initially defined in [11]. We based our extensions on
the improved lightweight calculus, which was introduced in [19]. A different approach to higher-
order computation in the interaction calculus inspired by combinatory reduction systems [29]
can be found in [14].

Besides inets, several implementations of interaction nets evaluators exist. Examples are
amineLight [19] or INblobs [2]. To the best of our knowledge, none of these systems support
generic interaction rules.

The extension of interaction nets to a practically usable programming language has been
the topic of several publications. For example, in [40] the authors propose a way to represent
higher-order recursive functions like fold or unfold. A different approach to more complex rule
patterns can be found in [48].

6.1.2 Graph Reduction Systems

Portgraph systems [4] provide an alternative semantics for interaction nets. They define a re-
duction rule as a single graph where the LHS and RHS are connected by a special reduction
node (representing the arrow⇒). Interaction nets can be seen as a restricted form of portgraph
systems satisfying uniform confluence. General portgraph systems may be non-confluent or
non-deterministic. For example, they have been used to model biological systems with prob-
abilistic rewriting rules. A recent implementation of portgraph systems is PORGY [3], which
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can be used to analyse and evaluate graph reduction systems (including interaction nets) with a
focus on evaluation strategies.

Besides interaction nets, there are several formal models based on graph rewriting (or reduc-
tion). One example is Graph Programs (GP) [45], a graph based programming language with a
graphical notation for reduction rules, quite similar to interaction nets. However, the reduction
rules of GP are less constrained, allowing for a large variety of graphs on the LHS. As a conse-
quence, functions in the GP language can be non-deterministic, and may hence not satisfy any
form of confluence. Graph Programs have been applied to different problems such as defining
algorithms on graphs [46] and minimizing finite automata [47].

6.1.3 Irregular Algorithms and ingpu

Evaluation of interaction nets can be considered an irregular algorithm, in the sense that it
operates on a pointer structure (a graph) rather than a dense array. Bridging the conceptual gap
between the irregular nature of interaction nets and the dense structure of typical GPU programs
(e.g., dense matrix operations) is strongly related to the implementation challenges discussed in
this paper. We have been inspired by the insights of parallelizing irregular algorithms in [41]
when implementing ingpu. We also borrowed the term available parallelism from this work.

The efficient parallelization of general graph algorithms using GPUs has been the topic of
several publications (for example, [22]). As part of future work, we plan to use these insights to
achieve a better representation of interaction nets on the GPU.

The previous subsection mentioned several implementations of interaction nets. However,
only few works (for example, [43]) on parallel evaluation of interaction nets exist. This is sur-
prising, considering their potential for parallelism. To the best of our knowledge, there is no
previous work on a GPU-based implementation.

With regard to functional programming on the GPU in general, two recent systems are Ob-
sidian [49] and Accelerate [6], both being extensions of Haskell.

6.1.4 Monads and Side Effects

Our notion of IN monads is based on their application to functional programming [26, 42, 51].
However, it might be interesting to try a more categorial approach to monads in interaction
nets. In [7], the author uses notions from category theory to explicitly define interaction rule
application and rewriting of nets. Besides in functional programming, monads have been used
in several other domains. A recent application can be found in [27], where monads serve for
structuring mechanisms in interactive theorem provers.

As we mentioned in Section 2.6.2, monads are not the only approach to side effects. In par-
ticular, approaches based on linear logic [1, 30] could be employed to handle impure functions
in interaction nets: there is a strong relation between both formalisms (cf. Section 2.6.1).

6.2 Open Problems

As part of future work, we plan to define an abstract, unified interface for monads, similar to
type classes in Haskell. The agent archetype approach of [40] may be a possible direction to
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achieve this. In particular, this could help us to more conveniently define monads that are based
on other monads, such as Monad Transformers and Tracing of Computation [44].

As we discussed in Section 5.8, the performance of ingpu is not satisfying, in particular for
examples with a low degree of parallelism. While the design changes of Section 5.9 yield consid-
erable improvements for benchmarks with high parallelism, the former still perform worse than
existing sequential implementations. It remains to be seen whether low-parallelism programs
on the GPU can outperform sequential evaluators. It would be interesting to identify minimal
degrees of parallelism in irregular algorithms that make a GPU implementation worthwhile.

The most recent hardware generation of NVIDIA GPUs directly supports dynamic paral-
lelism: kernels can launch other kernels themselves, independently of the CPU. This could be
an interesting feature for ingpu, and will be investigated as part of future work. At the time of
writing, the API support for dynamic parallelism is still experimental.

6.2.1 Generic Rules and Self-Interaction

In Section 3.1.1, we emphasized that generic rules do not allow self-interaction: a generic rule
α ./ B does not match the active pair B ∼ B. The reason for this is that the RHS of a generic
rule may not satisfy Lafont’s symmetry property of the no ambiguity constraint (see Section 2.2).
Consider the ret-rules in the IN monads of Chapter 4. Each ret-rule is inherently asymmetric:
the active pair ret ∼ ret is ambiguous as interaction nets are not oriented. In contrast, the valid
Haskell expression return return contains a distinction between the calling function (the
first return) and its argument (the second return).

On the other hand, the generic rules for δ and ε have symmetric RHSes, which makes self-
interaction feasible. Intuitively, this makes sense as there is no orientation: two ε-agents erase
each other, there is no distinction or hierarchy between them.

Instead of completely forbidding self-interaction for generic rules, one could allow self-
interaction for rules whose RHSes satisfy the symmetry constraint (e.g, the rules for δ and ε)
and forbid it for all others (ret, >>=). However, this seems like a less clean solution than
simply ruling out self-interaction. Similarly, it does not make sense to enforce RHS symmetry
for generic rules if we consider the IN monad rules for ret and >>=. In summary, it seems that
the problem of generic rules and self-interaction cannot be easily solved, except by forbidding
self-interaction and adding ordinary self-interacting rules (under the DPC).

6.3 Summary

In this thesis, we set out to extend the formal model of computation interaction nets. Our goal
was to bring interaction nets closer to a practically usable programming language that could
benefit from their formal properties.

While several open questions and problems remain (as discussed in the previous subsection),
we have made substantial progress in two aspects. First, our extension of the formal model
towards practical usability, and second, the implementation of these extensions, including an
investigation of maximally parallel evaluation of interaction nets. Our results are an important
step towards “real world interaction nets programming”. However, many further improvements
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need to be be made to achieve this goal (e.g., providing a more efficient implementation of
parallel evaluation).

6.3.1 Generic Rules and their Application to Side Effects

As the main theoretical result, we presented generic rules for interaction nets (Chapter 3). These
rules are substantially more powerful than ordinary interaction rules and allow for a more gen-
eral pattern matching. This adds a higher-order character to interaction rules, including a way
to model partially evaluated functions. This extension is conservative: using appropriate con-
straints, we ensure that the reduction relation satisfies uniform confluence. Our theoretical re-
sults are a substantial step towards promoting interaction nets to a practically usable program-
ming language. In combination with nested patterns, generic rules shift interaction nets away
from their strongly constrained, assembly-like programming style towards practical usability.
Our rule type system ensures that the matching of generic rules is consistent with the type re-
strictions of the monadic operators. While being sufficient for this task, the system is fairly
simple and can of course be refined. This will be subject of future work.

We have shown that individual monads can be defined using generic rules, realizing various
computational side effects directly in interaction nets. Several examples can be found in the IN
Monads of Chapter 4. Generic rules allow for elegant and concise rule definitions that are very
similar to corresponding functional programs. In particular, there is no need for encodings of
the lambda calculus and explicit function application [36] or externally defined programs [13].
However, the former may of course be combined with our approach, as in the example in Section
4.4.

In addition, we extended inets with interaction rules with nested patterns. Nested patterns,
particularly in combination with generic rules, allow for a concise definition of complex func-
tions. We presented an algorithm for the translation of nested patterns to ordinary ones, showed
its correctness and discussed its performance.

6.3.2 The Lightweight Calculus: Theory and Implementation

We extended the interaction nets calculus by generic rules. This extension provides an alternative
precise semantics to the graphical notation of generic interaction rules. This is particularly
important for variadic rules, which use an intuitive dot notation to express an arbitrary number
of ports in the graphical setting. Our approach using variadic names and ranges is concise and
precisely formulates the mechanics of the dot notation of the graphical rewrite rules.

The lightweight calculus is an important foundation of interaction nets based programming
languages. We discussed the ongoing implementation of generic rules in inets. This implementa-
tion satisfies the generic rule constraints DPC and GRC and hence preserves uniform confluence.

6.3.3 Parallel Evaluation with ingpu

In Chapter 4, we have presented ongoing work on ingpu, a GPU-based evaluator for interaction
nets. This is a novel approach that heavily utilizes their potential for parallelism: all active pairs
that are available at the same time are evaluated in parallel. Previous evaluators are sequential

94



or only allow a fixed number of concurrent interactions (e.g., capped by the number of cores
of the CPU). A GPU with hundreds of cores is better suited to perform a high number of small
computations (i.e., reductions of active pairs). Still, the implementation poses a challenge due
to the dynamic nature of interaction nets evaluation and the restrictions of the GPU computing
model.

The work-in-progress status of ingpu is clearly visible in the benchmark results of Section
5.8. While parallel evaluation is generally expected to be faster than a sequential one, our current
implementation mostly performs weaker than existing evaluators. However, we argue that the
potential of ingpu can be seen in the difference between the individual results. In our L-System
test, ingpu performs more than 50 times faster than for Ackermann, in terms of interactions per
second. The major part of the slowdown is caused by the communication phase, which should
be seen as an intermediate solution. In contrast to this, the interaction phase (parallel reduction
of the active pairs) is very fast and shows that interaction nets and GPU are a promising match.

For current and future work, we plan to optimize the system to improve the obvious per-
formance bottlenecks. Initial tests show that with a more efficient net representation in GPU
memory and the removal of result array merging (see Section 5.9), ingpu outperforms CPU-
based systems at least for highly parallel benchmarks.

6.3.4 Outlook

Despite the recent advances of interaction nets, it remains to be seen if the model can provide a
revolutionary new approach to programming languages in practice. At the very least, the current
trend towards massive parallel and concurrent programming calls for new models of computation
that focus on these properties. The future will show if and when inherently sequential models
like the Turing machine may be replaced by newer approaches. Interaction nets could be a
suitable candidate.
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APPENDIX A
Appendix

A.1 Benchmark Rulesets of Section 5.8

The following rulesets have been used in the benchmarks in Section 5.8:
Ackermann:

A1(y,r)>< Z => r~S(y);
A1(y,r)>< S(x) => A2(S(x),r)~y;
A2(x,r)>< Z => Pred(A1(S(Z),r))~x;
A2(x,r)>< S(y) => x~Dup(Pred(A1(w2,r)),A1(y,w2));
Dup(a1,a2)>< Z => a1~Z, a2~Z;
Dup(a1,a2)>< S(x) => a1~S(w1), a2~S(w2), x~Dup(w1,w2);
Pred(a1)>< S(x) => a1~x;

Fibonacci:

Fib(r) >< Z => r~Z;
Fib(r) >< S(x) => FibH(r)~x;
FibH(r) >< Z => r~S(Z);
FibH(r) >< S(x) => Add(r, s) ~ t, Fib(s)~S(d1), Fib(t)~d2, Dup(d1,d2) ~ x;
Add(r,x) >< Z => r~x;
Add(r,x) >< S(y) => r~S(w), Add(w,x)~y;
Dup(d1, d2) >< Z => d1~Z, d2~Z;
Dup(d1, d2) >< S(x) => d1~S(a), d2~S(b), Dup(a,b)~x;

L-System:

L(r,i) >< A(s) => La(r,s)~i;
L(r,i) >< B(s) => Lb(r,s)~i;
La(r,s) >< Z => r~A(s);
Lb(r,s) >< Z => r~B(s);
La(r,s) >< S(x) => L(r,d)~A(y), L(y,e)~B(s), Dup(d,e)~x;
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Lb(r,s) >< S(x) => L(r,x)~A(s);
Dup(d1, d2) >< Z => d1~Z, d2~Z;
Dup(d1, d2) >< S(x) => d1~S(a), d2~S(b), Dup(a,b)~x;
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