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ABSTRACT 

 

Aluminum foams are being increasingly used as alternatives for conventional 

materials primarily because of their high strength, specific stiffness, light weight, and 

adjustable properties. However, before using this type of material with confidence in 

industrial applications a thorough characterization of the material properties is needed. 

Because of the number and the inherent variability of the constitutive properties of 

aluminum foam materials, the experimental characterization is quite cumbersome and 

requires a large number of specimens to be tested. An elegant way to circumvent this 

lack consists in using mixed numerical-experimental methods which constitute a 

powerful tool for estimating unknown constitutive coefficients. In this work, a mixed 

numerical-experimental identification technique based on the modal response of 

aluminum foam is presented. This technique is based on the minimization of the 

discrepancies between the eigenvalues and eigen mode shapes computed with a finite 

element model and the corresponding experimental quantities. 

In order to maximize the quality of identification, optimal experimental conditions 

are selected for experimental determination of modal parameters. The specimens 

suspended by elastic soft bands are excited by a mini shaker, while the dynamic 

response is measured with a scanning laser vibrometer. The measured frequency 

response functions are then treated in modal analysis software package LMS Test.Lab 

to obtain modal data. 

As accuracy of the identification technique directly depends on precision of the 

finite element model, a special procedure called density mapping method, has been 

applied to approximate the aluminum foam structure with continuum. The 

transformation of a discretely heterogeneous structure of aluminum foam to an 

approximated continuum was one of the major challenges. The microscopical density 

distribution of aluminum foam recorded by X-ray computed tomography has been 

averaged over a certain domain and is used as input to the finite element model of 

corresponding specimen. Gibson and Ashby model is implemented in FE model to 

present the elastic behavior. Numerical modal analysis is performed in ANSYS. 



 

 

Levenberg-Marquardt nonlinear least squares minimization algorithm is used to 

solve the inverse problem of finding elastic constitutive parameters, which are best 

matching the experimental modal data. For comparing the computed and measured 

values, the implemented objective functions are based upon relative differences between 

the eigen frequencies, modal damping ratio, diagonal and off-diagonal terms of modal 

assurance criteria, and upon geometrical properties of the mode shapes such as nodal 

lines. The identification procedure is explained with the help of block diagrams. Some 

numerical investigations are presented to study the variable density distribution effect 

on modal behavior of aluminum foam. 

Dynamic behavior of closed cell material ALPORAS is investigated 

experimentally and numerically. Modal test on four ALPORAS specimens shows that 

inhomogeneties in the mass distribution are a key factor in evaluating dynamic behavior 

of cellular materials. A comprehensive methodology for the identification of dynamic 

and elastic behavior of cellular materials has been proposed. In the context of materials 

engineering, the present approach can be very useful for designing cellular materials. 

Indeed, it enables the prediction of best way of combining the mechanical properties of 

solid material with feasible microstructures, in order to obtain expected mechanical 

properties. 

 

 

 

 

 

 

 

 



 

 

KURZFASSUNG 

 

Geschäumtes Aluminium wird zunehmend als Alternative für herkömmliche 

Materialien eingesetzt, vor allem wegen der hohen Festigkeit, spezifischen Steifigkeit, 

geringen Masse sowie der anpassbaren Eigenschaften. Bevor jedoch dieses 

vielversprechende Material in industriellen Anwendungen eingesetzt werden kann, ist 

eine vollständige Charakterisierung der Materialeigenschaften erforderlich. Aufgrund 

der Vielzahl und der damit einhergehenden Variabilität der Materialeigenschaften von 

Aluminium Schaumstoffen ist eine experimentelle Charakterisierung sehr aufwändig, da 

entsprechend viele Proben untersucht werden müssten. Dieser Problematik kann durch 

den gemeinsamen Einsatz von numerischen und experimentellen Methoden, die in 

Kombination ein sehr leistungsfähiges Werkzeug für die Abschätzung unbekannter 

Materialkoeffizienten darstellen, entgegengewirkt werden. In dieser Arbeit wird eine 

Methode zur numerisch-experimentellen Identifikation, basierend auf der modalen 

Strukturantwort von Aluminiumschaum, vorgestellt. Dieses Verfahren basiert auf der 

Minimierung der Abweichungen der Eigenwerte und Eigenschwingungsformen 

zwischen einem numerischen Finite-Elemente-Modell und den entsprechenden 

experimentell ermittelten modalen Größen. 

Um eine möglichst hohe Qualität zur Identifikation der Materialparameter zu 

erreichen wird die experimentelle Bestimmung der modalen Parameter unter optimalen 

experimentellen Bedingungen durchgeführt. Die Proben, mit elastischen weichen 

Bändern aufgehängt, werden mit einem Shaker breitbandig angeregt, während die 

dynamische Strukturantwort mit einem Laser Scanning Vibrometer gemessen wird. 

Anschließend werden die erfassten Übertragungsfunktionen mit dem Modalanalyse 

Software-Paket LMS Test.Lab zu modalen Daten weiterverarbeitet. 

Da die Genauigkeit der Identifikation unmittelbar von der Präzision des FE-

Modells abhängt, wurde zur Annäherung der Aluminiumschaumstruktur an eine 

kontinuierliche Größe ein spezielles Verfahren, die sogenannte Density Mapping 

Method, eingesetzt. Die Transformation von Aluminiumschaum, eine diskret heterogene 

Struktur, in eine annähernd homogene Struktur war eine der großen Herausforderungen. 



 

 

Die mikroskopische Dichteverteilung des Aluminiumschaums wurde mit Hilfe der 

Computer Tomographie erfasst, über bestimmte Bereiche gemittelt und als 

Eingangsgröße für das FE-Modell der entsprechenden Probe verwendet. Das elastische 

Verhalten wird durch das in das FE-Modell implementierte Gibson- und Ashby- Modell 

repräsentiert. Die numerische Modalanalyse erfolgt in ANSYS. 

Die Lösung des inversen Problems zur Bestimmung der grundlegenden elastischen 

Paremeter, die den experimentell ermittelten modalen Daten am besten entsprechen, 

wird nach dem nichtlinearen Levenberg-Marquardt Algorithmus zur Minimierung der 

kleinsten Fehlerquadrate ermittelt. Als Basis für den Vergleich zwischen den 

berechneten und den gemessenen Werten werden die relativen Unterschiede zwischen 

den Eigenfrequenzen, modale Dämpfung, Diagonal- und Nichtdiagonal-Termen 

hinsichtlich der modalen Qualitätssicherung sowie geometrische Eigenschaften der 

Schwingungsformen wie Knotenlinien verwendet. Der Ablauf der Identifizierung wird 

an Hand von Blockdiagrammen erläutert. Einige numerische Untersuchungen werden 

vorgestellt, um die variable Dichteverteilung hinsichtlich des modalen Verhaltens von 

Aluminium-Schaum zu prüfen. 

Das dynamische Verhalten von ALPORAS, ein Material mit geschlossenen Zellen, 

wurde experimentell und numerisch untersucht. Modale Untersuchungen von vier 

ALPORAS Proben zeigen, dass Inhomogenitäten in der Massenverteilung ein 

entscheidender Faktor bei der Beurteilung des dynamischen Verhaltens zellularer 

Werkstoffe sind. Eine umfassende Methode für die Identifizierung des dynamischen 

und elastischen Verhaltens zellularer Werkstoffe wurde vorgeschlagen. Im Rahmen der 

Werkstofftechnik, kann der vorliegende Ansatz für die Gestaltung von zellularen 

Werkstoffen sehr nützlich sein. Er ermöglicht die Vorhersage der besten Kombination 

aus mechanischen Eigenschaften des festen Materials und realisierbaren 

Mikrostrukturen, um die gewünschten mechanischen Eigenschaften zu erhalten. 
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CHAPTER  1. INTRODUCTION 

1.1 MOTIVATION 

Metallic foam structures represent a fast developing area of new materials, which 

are still at the beginning of commercial production and industrial applications. A 

number of promising characteristics and applications may be realized in the future by 

metal foam and metal foam sandwich structures as, for example, light weight 

applications combined with high structural stiffness, high structural damping and high 

ultimate strength, high acoustic absorption capabilities, high crash worthiness for 

automotive applications, compatibility with common materials, and easy materials 

recycling properties. Aluminum foams are used increasingly as alternatives for 

conventional materials primarily because of favourable combination of good 

mechanical and physical properties, while maintaining very low weight. However, 

before using this material with confidence in industrial applications such as automotive 

or aerospace structural components, a thorough characterization of the material 

properties is required.  

Numerical simulations have become an indispensable tool in the process that leads 

to the development of an engineering structure. Although these simulations have 

replaced a substantial amount of experimental tests, they have not rendered testing 

obsolete. A successful simulation requires an accurate knowledge of the material 

parameters that are used in the numerical model. These parameters can be only obtained 

with an actual experiment. To improve the performance, durability or efficiency of 

mechanical equipment, material scientists are continuously developing new materials. 

Unfortunately, the mechanical behavior of these novel materials is becoming 

increasingly more complex. Cellular materials are one class of new materials that are 

becoming increasingly important for the production of high performance components. 

During design calculations, their stiffness properties are crucial. Mechanical properties 

of metallic foam structure depend on the relative density of the structure. Various 

constitutive laws have been suggested for the characterization and modelling of this 

relationship. Knowledge of the relationship between the micro structure and the 

macroscopic mechanical properties of a material is a prerequisite for modern material 
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design. The experimental validation of a constitutive model is an important issue in 

computational mechanics. The combined use of sophisticated measurement techniques, 

computational simulations and a numerical identification tool for the model parameters 

is necessary for proper material characterization. The aim of this work is to develop and 

validate realistic models of the investigated foam specimens based both on the foam 

microstructure and on the behavior of the bulk material. The material primary used is an 

alloy supplied by Shinko wire, with the trade name ALPORAS [1]. The density 

mapping method is used to approximate the Aluminum Foam (AF) by a continuous, 3-

D density distribution. A continuum model is implemented using the Finite Element 

(FE) method to simulate the effect of local mass distribution on the modal behavior of 

metallic foam sample. A mixed numerical-experimental identification technique is used 

to identify elastic behavior of AF. 

In this research work, a new mixed numerical-experimental identification 

technique based on the modal response of aluminum foam is developed. This technique 

is founded on the minimization of the discrepancies between the eigen values and eigen 

modes, computed with an accurate parametric FE model and the corresponding 

experimental quantities. One of the objectives of this research is to explore the 

possibility of solving such mixed numerical-experimental identification problems 

accurately using two powerful software packages ANSYS and MATLAB, which are 

available at most universities. This is achieved by developing a suitable automation 

code in MATLAB that incorporates a FE analysis tool ANSYS and experimental results 

from modal analysis software package LMS Test.Lab, with a suitable optimization 

algorithm. 

1.2 MIXED NUMERICAL-EXPERIMENTAL TECHNIQUE 

(MNET) 

1.2.1 Introduction 

Some physical properties are difficult or even impossible to measure in a direct 

way. Sometimes, the physical property can be measured with an indirect measurement 

procedure. Instead of measuring directly the property of interest, indirect procedures 

measure a number of related quantities and derive the unknown property from the 
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experimental values of these measured quantities. Traditional indirect measurement 

techniques use analytical expressions to relate the physical property of interest to the 

measured quantities. This approach can only be used when there is a simple relation 

between the measured quantities and the physical property of interest. If this relation 

becomes too complex to be expressed analytically, the physical properties of interest 

have to be related to the measured quantities by means of a numerical model, and the 

properties of interest have to be identified by the MNET. Figure 1.1 illustrates the 

general concept of the mixed numerical-experimental approach. 

Numerical models are usually formulated in such a way that they compute the 

response of a system using the applied inputs and system properties. The problem of 

determining the response from the input and system properties is called the direct 

problem and is illustrated in Figure 1.2. 

However, the direct problem is not the problem that has to be solved by MNET 

(Figure 1.1). In an MNET, a number of model parameters have to be derived from the 

system's response to a particular input. This problem is called the inverse problem and is 

sketched in Figure 1.3. Most numerical models cannot be reformulated in the form that 

complies with the inverse problem. The inverse problem has to be solved in an iterative 

 

Figure 1.1 The general concept of MNET 
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way by 'fine-tuning' the model parameters in such a way that the calculated response 

equals the measured response. 

Incorporating the concept of inverse problems into the scheme of Figure 1.1 

provides the general MNET flowchart as shown in 1.4. In the first phase, an experiment 

is performed and the applied inputs and resulting responses are recorded. In a second 

phase, a numerical model of this experiment is constructed. The responses are computed 

with this simulation model using a set of trial values of the unknown model parameters, 

i.e. the physical properties that have to be identified. The simulation responses are 

compared with the experimental responses and an improved set of model parameters is 

obtained by minimising the response differences. The improved model parameters are 

inserted into the numerical model and a new iteration cycle is performed. The iterative 

procedure is aborted once the solution has converged, and the model parameters can be 

extracted from the database of the numerical model. Note that vibration-based 

identification routines use resonant frequencies and mode shapes as response quantities. 

The MNET approach might look like a quite complicated concept to measure 

physical parameters. However, if looked at from a modelling point of view, it is actually 

a very logical approach. For mechanical engineering applications, the identified material 

parameters will eventually be used in numerical simulations. An MNET routine will use 

this simulation code to identify the unknown values of the model parameters. It 

therefore creates a perfect synergy between the worlds of modelling and testing, since 

Figure 1.2 The direct problem 

Figure 1.3 The inverse problem 
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the numerical simulation code is used to both determine the values of the model 

parameters and predict the behavior of a real structure. Note that the MNET approach is 

a generic concept allowing the identification of any parameter that is used in a 

numerical simulation code. 

 MNETs also have a number of other interesting advantages over traditional 

measurement techniques. For example, it is possible to extract more than one physical 

parameter from a single experiment or to extract a set of parameters from a combination 

of different experiments. Unlike conventional measurement approaches, MNETs can 

also handle more complex types of experimental data and this might become an 

important issue in the future. Due to recent technological advances, optical 

measurement devices like scanning laser vibrometers and CCD cameras are becoming 

more and more affordable. Although these systems provide a wealth of information, the 

information is only becoming useful when there are techniques to process the measured 

 

Figure 1.4 The general flow chart of MNET
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data in an efficient way. MNETs could play an important role in this process. 

1.2.2 MNET approach for identification of material characteristics 

In MNETs, the response of a numerical model of a structure is correlated with 

experimental observations of the real structural behavior. A set of selected parameters in 

the numerical model is tuned in such a way that the numerically computed structural 

behavior matches the experimental observations as closely as possible. If the structure 

under consideration is a relatively simple test specimen, the method can be used for 

material identification. The unknown material properties are then the parameters in the 

numerical model of the test specimen. The identification of the elastic constants of a 

material is an inverse problem that can be formulated and resolved as an optimization 

problem. 

The flow chart of a solution procedure is shown in Figure 1.4. Starting from a 

random initial trial set (initial solution), the set of elastic constants is updated iteratively 

(new solution) and this is given as input to an analytical or numerical model simulating 

the behavior of the structure until its output (calculated response) fits the experimental 

data (measured response). The last set of constants (the best solution) identifies the 

elastic properties of the material. In particular, the process attempts to minimize an error 

function based on the difference between the calculated and measured response of the 

structure under examination and stops when this becomes less than a specified 

tolerance. The optimizing technique to be used to generate new guess solutions must be 

selected on the basis of the number of unknown parameters and the shape of the error 

function. 

The MNETs have proven to be very versatile and flexible tools for identification of 

material parameters. MNET-based identification routines have been introduced in a 

wide range of disciplines to estimate a broad variety of material parameters. Various 

MNETs have been developed till now. They are distinguished primarily by the 

techniques used for optimization of parameters, the definition of the functional error, the 

kind of experiments, by the type of experimental data used or the modelling and its 

numerical solution implementation. The accuracy and convergence properties of these 

methods depend mainly on the correlation between the experimental conditions and 
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their numerical simulations (consistency of the model and experiment), the sensitivity 

of numerical solutions of the model parameters to identify,   the sensitivity of the error 

functional measuring the numerical-experimental correlation and the performance of the 

adopted optimization technique. Great effort has been devoted to emerging 

methodologies for the elastic characterization of materials. Such developing 

methodologies are usually classified into approaches based on static tests and 

approaches based on dynamic tests.  

The static approaches are generally based on the stresses calculated from direct 

measurement of strains undergone by suitable specimens, during certain mechanical 

tests (tensile, compression, bending, torsion etc.). ASTM [2] and ISO [3] provide many 

standards for determining the elastic properties of isotropic as well as composite 

materials. These norms recommend the use of standard sized and shaped specimens. In 

the case of composite materials, they involve the analysis of a large number of 

specimens and consequently tedious and time-consuming procedures [4].  

The above-mentioned methodologies usually require a significant range of stress-

strain data to determine useful averaged values of the moduli. This necessarily involves 

destructive tests, as the deformation of the specimen must be measured until it fails, that 

is, until it deforms plastically or fractures. In either event, the sample is destroyed, and 

then is unavailable for further testing or other purposes. 

In comparison with static approaches, dynamic approaches have the advantage of 

allowing the use of specimens with a greater variety of shapes and dimensions, and 

supplying, non-destructively, very precise measurements at a wide range of 

temperatures. Dynamic approaches can be classified into two groups: wave propagation 

based methods and modal vibration (or resonant) testing. 

Much research has been dedicated to evaluating the possibility of measuring the 

material elastic properties by the methods belonging to the first group. Among these, the 

more commonly used is based on the measurement of the ultrasonic speed of wave 

propagation through the material or, in particular, the measurement of the transit time; 

i.e. the time that an ultrasonic impulse takes to cross a sample from the emitting 

transducer to the receiving transducer. Knowing the dimensions and the density of the 
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specimen and the transit time of the transversal and longitudinal waves it is possible to 

calculate the Young’s modulus and the shear modulus of the material. Although these 

techniques are robust and quick to perform, they suffer the disadvantage of being 

sensitive to possible local inhomogeneities of the material between the transducers [5].  

Ease of use and inexpensive equipment has recently increased the use of modal 

vibration testing in both research laboratories and industrial contexts. Such tests consist 

of making a specimen vibrate mechanically, at one or more vibration resonant modes. 

Knowledge of the resonant modal shapes and/or the values of the associated frequencies 

together with the sizes and mass of the sample allow the determination of the elastic 

constants of the material. ASTM had provided standardized procedures for testing 

isotropic materials [6, 7]. 

Independently of the approach followed (static or dynamic) an ideal methodology 

for determining the material elastic properties is a methodology, which allows the 

simultaneous measurement of all the unknown elastic parameters by testing a single 

specimen non-destructively. It would be even better if the methodology is also suitable 

for characterizing specimens of various shapes. This would be very useful when the 

production of proper bulk specimens is not feasible or when, the object to be analysed 

must not be damaged and reduced in a conventional testing geometry and, therefore, 

should be tested as it is. The review of developed identification methods based on static 

and dynamic tests are summarised below. 

1.2.2.1 Identification based on static tests 

 The knowledge of the elastic properties of materials is very important for both 

structural design and engineering applications. Because of such importance, it is not 

surprising the great number of methodologies developed and presented in the scientific 

literature, hence, still today, the argument gives rise to a wide interest among the 

researchers, especially in the context of the development of new and more complex 

materials, for which the classical methods of characterization appear slow, expensive 

and not always suitable. When a body is loaded, each point undergoes a displacement 

whose amplitude depends on: the load, the coordinates of the point, the constraints and 

the geometry of the body and, obviously, the elastic properties of the material. If the 
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analytical solution of the adopted loading configuration is available, the elastic 

properties of the material could be determined by measuring the displacement fields, if 

the applied loads are previously measured or properly imposed. On the contrary, if a 

reliable theoretical solution does not exist, a numerical solution becomes necessary. 

Inverse procedures based on the updating of numerical models could be suitable for this 

purpose. 

The idea of determining the elastic constants of a material from the surface 

displacement fields of specimens subjected to a static load has been exploited by many 

researchers [8-22]. Recently, inverse procedures based on FE model updating have been 

proposed for both point wise by F. Hild and S. Roux [22] and full-field measurements. 

In the last case, experimental data (usually strain or displacement fields) are measured 

on the surface of the testing specimen with an optical method, for example, an 

interferometric technique that measured the full-field surface displacement of an object 

with a very high resolution without any contact with the investigated surface [23]. 

Different tests and optical techniques have been used: in-plane loaded rectangular plate 

with speckle interferometry by K. Genovese, et al. [24], open-hole uniaxial tensile tests 

with Moire interferometry by J. Molimard, et al  [25], and cruciform specimens under 

biaxial tests with digital image correlation technique by D. Lecompte, et al. [26]. 

In addition, a method that combines FE analysis and genetic algorithms in order to 

identify the elastic constants of materials from the full-field measurement of the surface 

displacements of plates under flexural loads was developed and presented by L. 

Pagnotta [27]. The method was tested on a thin square plate subjected to an out-of-plane 

loading condition but it is also suitable for characterizing either thin or moderately thick 

any-shaped anisotropic plates subjected to in-plane or out-of-plane loading and 

constraining configurations. In the paper, the feasibility of using the displacement 

component normal to the surface detected by speckle interferometry was investigated. 

Theoretical aspects of the methodology, numerical simulations for testing the accuracy 

and sensitivity of the method and an application to characterize metallic plates were 

presented. 

It is worth pointing out that the amount of data provided by an optical whole-field 

technique is generally in excess of the data strictly necessary for identifying all the 
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unknown elastic properties. It follows that any material characterization using this 

approach becomes an over-posed inverse problem. Obviously, an accurate solution can 

only be obtained if the problem is well-posed. For this reason, great care needs to be 

taken in choosing the geometry and the way of loading and constraining the specimen in 

order to obtain displacement fields containing sufficient information for determining all 

the unknown parameters quickly and unambiguously. In addition, to reduce the effect of 

the measurement uncertainties on the solution, the displacement must also be 

sufficiently sensitive to the variation in each elastic parameter. 

A numerical procedure for optimising the loading and constraining conditions of 

the specimen is proposed by L. Pagnotta in [27]. The procedure consists in determining 

the conditions, which minimize the ''correlation index''. This index represents the degree 

of statistical correlation between the variation in the displacement fields due to a 

variation in the elastic constants and its absolute value is, by definition, less than or 

equal to unity. In the case of isotropic plates, the correlation index is the same as the 

well-known correlation coefficient, while for orthotropic plates the correlation index is 

the mean of the absolute values of the correlation coefficients. 

Such a procedure can be used to identify loading and constraining configurations 

that are practical and simple to replicate in the laboratory and also optimized with a 

view to obtaining faster and more stable solutions. Applications of the procedure are 

presented by L. Pagnotta and G. Stigliano [28] in which it was used to finding a suitable 

configuration for testing a square plate, and by L. Bruno, et al in [29] and [30] for 

testing any-shaped plates. In [30], an experimental set up and the feasibility of testing 

isotropic plates of generic form and orthotropic square plates was investigated and the  

results  of the  experimental assessment are reported and discussed. The components of 

the experimental apparatus for measuring the displacements are described with detail by 

L. Bruno, et al  [30]. The apparatus was placed on an optical table supported by 

pneumatic vibration isolators. The laser beam is filtered and expanded and the resulting 

spherical wavefront is divided by a beam splitter into two equal intensity beams. The 

specimen and the reference surfaces are horizontal and are illuminated and observed by 

a 45° oriented mirror with respect to the propagation direction of the beams. The 

scattered speckle wavefronts interfere at the image plane of the CCD of the TV camera. 
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The camera is interfaced with a general purpose computer image processing system 

where the real time fringe patterns are generated by the subtraction of digitalized 

images. Essentially, the optical setup constitutes a speckle interferometer, based on the 

Michelson design, for measuring the out-of-plane component of displacements. The 

applicability and the robustness of the procedure were proved with success on 

aluminum and unidirectional Graphite laminate specimens. The results obtained for 

both the materials have shown a high repeatability and a good agreement with the 

reference values obtained with other measuring techniques [30].  

1.2.2.2 Approaches based on dynamic tests 

Unlike the static properties of structures, which are often dominated by local 

phenomena, dynamic properties such as natural frequencies and mode shapes are 

generally representative of the overall behavior of the materials used, making this 

information highly attractive for identification of elastic properties of a component. The 

measurement of natural frequencies of specimens vibrating in a single mode has been 

used for many years and is still used today for determining the elastic properties of 

materials. A typical methodology consists in subjecting the specimen to a vibration test 

to measure a single modal frequency (usually, the first or fundamental mode frequency) 

and then substituting the measured value into a "frequency equation". Such equations 

relate the fundamental resonant frequency to the sizes and the mass of the specimen and 

generally to only one elastic constant of the material. The latter can then be calculated in 

a direct way if the other quantities are known. Unfortunately, the frequency equations 

are known only for some simple specimen geometries and boundary conditions. Free-

edge specimens such as bars or rods [31] and cantilever beam [32] are commonly used 

for the characterization of homogenous and isotropic materials. ASTM E1875-00e1 [33] 

establishes the application procedures for determining Young's modulus, shear modulus 

and Poisson's ratio of free bars or rods from the fundamental flexural and torsional 

resonant vibrations. The test consists in forcing the specimen to vibrate at a single but 

variable frequency by means of a suitable exciter system, while the dynamic response is 

detected by a proper receiving transducer and transformed into an electrical signal, 

which is analysed with a suitable system for extracting the fundamental resonant 

frequencies. Finally, the elastic constants are calculated with some recommended 
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numerical procedures based on the frequency equations. Even if the test procedures can 

be carried out automatically by computerized systems [34], they are typically slow and 

cumbersome. However, the advent of computers has made it possible to fast Fourier 

transform (FFT) a signal in real time and this has made impulsive excitation more 

attractive to use. This technique is fast and inexpensive and can be used on either small 

specimens or full-scale structural components. It is recommended in ASTM E1876-01 

[35] for characterizing free-edge bars and rods following procedures similar to those 

indicated in ASTM E1875-00e1 [33]. 

It is worth noting that ASTM standards cover the determination of resonance 

frequencies and elastic properties of specific materials providing test methods that differ 

one from the other in several ways (for example; sample size, dimensional tolerances, 

sample preparation). Moreover, nowadays, systems for the elastic characterization of 

materials based on the standards mentioned above are available commercially (see, for 

example, [36, 37]). These test methods are particularly appropriate for materials that are 

elastic, homogeneous, and isotropic and specimens or structures must have specific 

geometries. Sometimes, the measurement of elastic properties is carried out directly 

during manufacturing on end products constituted of various materials with geometries 

different from those mentioned above and in conditions different from the 

environmental conditions. As a result, there have been a certain number of international 

patents [38-42]. 

All the direct methods mentioned above involve beam specimens and resonant 

frequency measurements. It is worth noting that some direct methods based on single 

modal testing involving both resonant frequencies measurements and mode shapes 

measurements have been developed for characterizing rectangular plates. In these 

methods, estimated analytical solutions providing explicit parameter dependencies are 

proposed (e.g., solutions obtained applying the Rayleigh method by J. L. Leveque, et al 

[40] or the concept of sinusoidal equivalent length by M. E. McIntyre and J. 

Woodhouse [43]). These methodologies have, unfortunately, the disadvantage of 

requiring sophisticated techniques to measure the mode shapes but, in compensation, 

they are also suitable for the elastic characterization of anisotropic plates. 
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As highlighted above, direct methods based on single modal testing are easy to 

apply to simple structures such as beams or rods, but generally, it is difficult to apply 

them to more complex structures such as plates and shells. More precisely, they are not 

applicable when the frequency equations are known but modal frequencies depend on 

more than one elastic constant or when the frequency equations are unknown in a closed 

form. In these cases, direct or indirect methods based on multiple mode testing must be 

used. 

ASTM Standards [33, 35]  provide procedures for isotropic circular thick plates 

with free edges by which Young's modulus and Poisson's ratio are obtained directly 

from the first two resonant frequencies of vibration excited by forced continuous wave 

and impulse, respectively. The shear modulus is then calculated exploiting the well-

known relationship for isotropic materials relating it to Young's modulus and Poisson's 

ratio. Recently, Nieves et al. [44] reported a direct methodology for characterizing free 

short cylindrical isotropic specimens by using only two of the first resonant frequencies. 

More recently, Alfano and Pagnotta [45] have proposed a direct method for testing thin 

isotropic rectangular plate with free edges. Such method is based on suitable 

approximated frequency equations obtained by correcting the Warburton formulas [46] 

with proper factors obtained from FE analysis. The procedure requires the measurement 

of at least two of the first four natural frequencies in order to determine the Young’s 

modulus and Poisson's ratio of the material sample. The experimental assessment of the 

method was carried out on square plates made with a variety of different materials by 

M. Alfano and L. Pagnotta  [47, 48] and on aluminum rectangular plates by M. Alfano, 

et al [49]. In these papers, tables and formulas for practical use are reported. 

It is worth noting that Grediac et al. [50, 51] treated the more general case of 

anisotropic plate specimens of any shape. In these cases, the frequency equations are not 

known but they proposed an original approach based on the Virtual Field Method. This 

method without requiring initial estimates of the stiffness or iterative computations 

allows the direct determination of the flexural stiffness from natural frequencies and 

mode shape measurements. When the frequency equations are not available, the inverse 

problem can also be solved indirectly using iterative optimization procedures. Ohno 

[52] first introduced a technique using such a kind of identifying procedure. This 
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technique, known now as RUS (acronym of Resonant Ultrasound Spectroscopy) [53-

56], identified the elastic constants through a process minimizing the difference between 

the calculated and the measured frequency spectrum of parallelepiped-shaped samples. 

The values of the material elastic constants were updated iteratively in a numerical 

model able to calculate the resonance frequencies of the sample, until the calculated 

frequencies approximated as closely as possible to the measured frequencies. The 

resonance measuring system for very low dissipation materials consisted in a little 

rectangular parallelepiped specimen lightly held between two piezoelectric transducers. 

One transducer was used to generate an elastic wave of constant amplitude and varying 

frequency, whereas the other was used to detect the resonances. The identification of all 

the elastic constants took place simultaneously without damaging the specimen. 

Consecutively, Migliori invented a resonance spectrometer which can also be used with 

high dissipation materials [57] and developed software dedicated to derive the elastic 

constants from natural resonant response data using the subroutine implemented by 

Ohno. Today, the RUS technique allows small anisotropic cubic, spherical or 

cylindrical specimens to be characterized and appropriate instrumentation packages are 

commercially available. 

Successively, numerous different dynamic approaches, the so-called MNETs, for 

characterizing square or rectangular plates of large dimensions have been introduced in 

the literature. These approaches require the measurement, in the sonic field, of a small 

number of natural frequencies of the free plate. W.P. De Wilde et al. [58, 59] and L.R. 

Deobald and R.F. Gibson [60] almost simultaneously proposed two similar approaches 

for determining the elastic constants of composite plates with free edges. L.R. Deobald 

and R.F. Gibson [60] investigated a thin plate with different boundary conditions and 

discovered that a plate with free-free boundary conditions can obtain better results than 

that with one or more fixed edges. Dynamic measurements were carried out using the 

impulse technique. Excitation was induced by impact hammer and a noncontact eddy 

current proximity probe was used for measurement the response of the plate, while the 

free-free boundary conditions are approximated by placing the specimen on a soft foam 

rubber and cotton pads. E. O. Ayorinde and R. F. Gibson [61] obtained the four 

independent elastic constants of a freely supported rectangular thin plate made from 

orthotropic materials with orthotropy ratio from one to thirteen, using the classical 
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lamination theory and an optimized three-mode Rayleigh formulation with a suitably 

formed least-squares objective function. T. C. Lai and T. C. Lau [62] extended the 

approach to deal with a generally orthotropic plate. The authors describes a method of 

finding the elastic constants of a generally orthotropic composite thin plate through 

modal analysis based on a Rayleigh-Ritz formulation. The natural frequencies and mode 

shapes for a plate with free-free boundary conditions are obtained with chirp excitation. 

Based on the eigenvalue equation and the constitutive equations of the plate, an iteration 

scheme is derived using the experimentally determined natural frequencies to arrive at a 

set of converged values for the elastic constants.  

Gibson and Ayorinde [63], in particular, obtained a patent for a method and 

apparatus that allow the determination of the four independent elastic constants 

(longitudinal and transverse Young's moduli, in plane shear modulus and major 

Poisson's ratio) of a composite material from the modal resonance data of freely-

supported rectangular thin plate. The impulse excitation technique together with 

dedicated software for calculating properties from the vibration data, still today, 

constitute one of the most popular vibration systems for determining composite elastic 

constants. Meanwhile, M. E. McIntyre and J. Woodhouse [43] identified both elastic 

and damping constants of thin orthotropic plates by measuring and analysing the low 

modes of vibration. The authors used time-honoured method of Chladni patterns for 

measuring mode. A loudspeaker is mounted beneath a sufficiently large flat surface, and 

the plate is supported over it on the softest and smallest feasible blocks of foam. These 

blocks are adjusted to lie accurately under nodal lines of the mode under observation. 

The loudspeaker is driven by a sine wave generator, and the frequency is adjusted until 

the plate resonates in the desired mode, as revealed by a suitable powder sprinkled on 

the surface. Having tuned to the peak response as carefully as possible, the frequency is 

determined from a standard counter. The main advantages of this method are; one can 

be sure which mode corresponds to which measured frequency (unlike a method based 

solely on response function peaks, where identification of which mode corresponds to 

which peak is harder); the free boundary conditions assumed by the theory are realized 

quite accurately since, provided the foam  blocks are carefully adjusted, the plate 

vibration is essentially unconstrained by the method of support; and no transducer is 

attached to the plate, which might perturb the results by adding mass. H. Sol [64] is the 
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first to use the Bayesian estimation theory in  MNET and applied the method to the 

vibration behavior of anisotropic plates. The MNET he presented identifies the four in-

plane engineering constants of an orthotropic material, from the resonant frequencies of 

the fundamental flexural modes of two beam-shaped specimens, and the first three 

resonant frequencies of a plate shaped specimen. The analytical approaches based on 

the Rayleigh-Ritz [58-60, 62-65] or Rayleigh [66-69] methods and the numerical 

approaches based on the FE method [70-84] have been adopted for determining the 

elastic constants of materials. 

A new method for identifying elastic and damping properties of composite 

materials has been developed by J. De Visscher, H. Sol, W. P. De Wilde and J. 

Vantomme [85]. This technique seeks to determine the complex moduli of elasticity by 

comparison between the measured modal parameters and the results of a numerical 

model. The damping properties are obtained by comparing experimental modal 

parameters and the corresponding results from a numerical model in combination with 

the modal strain energy method. A link between the complex elastic moduli and modal 

parameters is derived for the case of a thin plate. It is concluded that measurement of 

modal damping ratio of at least four eigen modes allows for the determination of the 

four independent loss tangents of the complex moduli. An exclusively non contacting 

measurement method of high quality based on an acoustic excitation and response 

measurement by laser Doppler interferometer, suspending the specimen by thin wires 

attached at the nodal lines of the considered eigen mode is used. The parameters of 

damping, however, were identified with an error of about 2-15%, which is still a good 

value. Guan-Liang Qian, Suong V. Hoa and Xinran Xiao [78] presents a method for 

identifying elastic and damping properties of composite laminates by using vibration 

test data. The analysis model is established based on a FE model, which considers the 

effect of transverse shear deformation and hysteretic damping. The reduced elastic 

constants and material loss factors are selected as the updated parameters. Since the 

damping mainly causes a change of the imaginary part in eigenvalues and eigenvectors, 

the complex modal parameters are measured. The selected parameters are identified by 

minimizing an error function containing the difference of eigenvalues and responses 

between experiment and analysis. The numerical study shows that satisfactory results 

including transverse shear moduli can be obtained by designing a suitable plate 
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specimen. This allows all elastic constants and damping factors to be determined 

simultaneously. 

Thick rectangular plates were used to determine all five of the engineering elastic 

constants of transversely isotropic materials. In this case, the transverse properties, such 

as transverse shear modulus, are determined by including not only the effects of 

bending, but also transverse shear and rotary inertia effects in describing the vibration 

behavior of the plates [71, 79-81, 83, 86-88]. 

It has been shown that Poisson's ratio and the transverse shear modulus are not as 

sensitive, with regard to the eigen frequencies, as the other parameters. A way to avoid 

this low sensitivity and identify the material properties correctly consists in using a 

specific size of the plate [43, 65, 87] and/or processing either the natural frequencies or 

the mode shapes of the plate [61, 66, 67, 69]. The optimal design of the plate has to be 

determined in advance by preliminary tests. A method was presented in [89] whereby 

the Poisson's ratio and the other in-plane elastic properties were determined by 

matching the experimental modal testing results with theoretical modal analysis 

calculations for a set of plate bending modes and one in-plane compression mode. A 

great part of these techniques involves the measurement of natural frequencies of 

samples or structures while only a few of them also involve mode shape observation. 

whatever the method employed, the apparatus for testing a material must always be 

constituted by the same components: a device to induce the solid to vibrate, a device for 

detecting the vibration of the specimen and, a system for extracting the modal 

parameters from the vibration and calculating the elastic constants. 

Continuous variable excitation (generally, forced sinusoidal or random stationary 

excitation) is commonly obtained by loudspeakers or piezoelectric actuators fed by a 

variable frequency oscillator, while impulse excitation is produced striking the object 

with a suitable impulser (e.g., a hammer). Vibrations are generally detected by means of 

a signal pickup transducer that can be in direct contact with the specimen or not. 

Contact transducers are commonly accelerometers using piezoelectric or strain gauges, 

while non-contact transducers are commonly acoustic microphones, but laser, magnetic, 

or capacitance methods are also used. Pickup transducers transform the mechanical 

vibration into an electric signal that is successively analysed in order to determine the 
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resonant frequencies by a system consisting in a conditioner/amplifier, signal analyser, 

and a frequency readout device. More inexpensively, the electrical signal can be 

addressed to an ordinary personal computer provided with a sound card and then 

analysed and processed by a suitable virtual instrument. This latter must operate as a 

spectrum analyser and then it must transform the sampled time function into a 

frequency spectrum by a fast Fourier transform algorithm and identify the values of the 

natural frequencies of vibration. The observation of the mode shapes is generally more 

difficult than frequency measurements and requires specific and more complex 

equipment [43, 50, 61, 66, 67, 69, 90]. 

It should be pointed out that many procedures for the elastic identification involve 

iterative optimization processes requiring a starting point. Sometimes the solution 

depends on the starting point (especially when the error function presents more than one 

minimum) in such cases particular attention must be paid to the choice of the initial 

guess point. A suitable way to overcome this disadvantage is to use Genetic Algorithms 

(GAs). Due to the way the GA explores the region of interest, it avoids getting trapped 

at a particular local minimum and is able to locate the global optimum [91]. GAs does 

not require initial estimates, but instead work within a suitable set of bounds, which can 

often be rather broad. For these reasons, during the past few years, GAs have been used, 

by many researchers, for determining the elastic constants with static approaches [27-

30], wave propagation based methods [92-95] and resonant tests [71, 83]. Reference 

[71], in particular, describes a method combining FE analysis, genetic algorithms and 

vibration test data. The effectiveness of such a method was successfully verified on thin 

and thick laminate plates of materials such as carbon/epoxy, glass/epoxy and aluminum. 

One disadvantage of GAs is their high computational cost. 

It has been shown in references [43, 65, 96, 97] that Poisson's ratio is well-

determined when aspect ratio a/b = (E1/E2)
1/4. If the aspect ratio is not near to the value 

provided by this formula the accuracy of Poisson's ratio can be very poor, even making 

the estimated values completely inaccurate [63]. The considerations reported above hold 

qualitatively also for moderately thick plates, but in this case, due to the transverse 

shear effects, the aspect ratio a/b obtained from the formula applies only approximately 

[97]. Moreover, it must be observed that, when dealing with relatively thin plates, the 
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dynamic response of the material is rather insensitive to the transverse shear modulus. It 

is well known that the transverse shear modulus can only be safely predicted from 

experiments with thick plates [88, 98]. It is important that the specimen be thick enough 

that the effects of transverse shear become significant. In contrast, it is also essential 

that the specimen is not so thick as to produce in-plane modes (at least for the number 

of natural frequencies required for solving the inverse problem) that are much more 

difficult to detect experimentally than out-of-plane modes. It was found that in any case, 

plates with material axes parallel to the plate axes appear more advantageous compared 

to plates having other material directions. 

Fällström et al. [66, 67] used a real-time TV-holography system to obtain the 

modes of vibration. In addition to the Rayleigh-Ritz technique for modelling the 

vibration of plates, the superposition method was applied by Moussu and Nivoit [99] 

and FE analysis was used by Fällström and Jonsson [67]. Although, the mixed 

numerical-experimental approaches have mainly been developed for the 

characterization of anisotropic materials, they can also be applied to the simplest 

isotropic materials. Applications of this kind are reported in most of the papers cited 

above in which they were always carried out with the aim of testing the methodologies 

proposed. The current greater availability of commercial FE codes for carrying out, 

quickly and accurately, the dynamic analysis of complex structures, and the low-cost 

accessibility to large calculation resources, has opened up the possibility of extending 

the application of the mixed numerical-experimental methods to specimens of various 

shapes. 

An optimizing procedure generates trial solutions (couples of E and v) and 

identifies from among them the solution with the lowest error function value. It is worth 

noting that in the case of isotropic material, each resonant frequency only depends on 

two elastic properties and, as a consequence, the error function is a function of two 

variables. The minimization process is obviously simpler than the case of composite 

materials and will be very fast and accurate if the minimum of the error function is 

unique and easy to find inside its existence domain. The error function assumed 

influences the choice of the optimization procedure and, so it is crucial in terms of 

solution times and accuracy. Different optimization methods and error functions were 
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compared in [75], in order to select the combination that provides the best compromise 

in terms of solution time, accuracy and stability of the results. The best performance 

was obtained combining the square root of the sum of the squares error function with 

the simplex method. In the same paper, the effectiveness of the procedure has been 

shown by means of numerical simulations executed on a series of typical and atypical 

shaped plate models. Moreover, the robustness of the procedure with respect to the 

effects of measurement noise was assessed. It was observed that the shape of the plate 

negligibly affects the sensitivity to the experimental errors of the Young’s modulus, 

while the sensitivity of the Poisson's ratio is highly dependent on it. Thus, to avoid 

incorrect estimations of the Poisson's ratio of plates with particularly complex shapes, 

before starting the characterization process, a numerical check on the sensitivity of the 

error function to Poisson's ratio is always recommended. The experimental assessment 

of such a methodology was carried out with success on thin rectangular plate [70], thin 

and thick plates of various shapes [73, 76] and irregular drilled plates [74].  

This thesis will only consider the resonant-based approach, since it is a very 

attractive option from both an experimental and a numerical point of view. Resonant 

based testing is standardised by an ASTM standard [100] which presents a number of 

analytical formulas to estimate the elastic material properties of homogeneous, isotropic 

materials. The use of analytical formulas to describe the vibratory behavior of test 

specimens is, however, the main obstacle for extending the vibration-based methods to 

more complex materials. 

1.2.3 Difference between MNETs and FE model updating 

The reader with a background in mechanical engineering might have the im-

pression that MNET is just another name for FE model-updating. Both techniques are 

based on the same mathematical tools: numerical modelling, correlation analysis, 

sensitivity analysis and optimization theory. In spite of these important similarities, 

there is a significant difference. Both methods differentiate themselves from each other 

based on their main objective. To be more specific, model updating focuses on the 

mathematical model, while MNETs focus on the model parameters. All other 

differences between model updating and MNETs are the outcome of this fundamental 

difference. 
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The quality of a numerical model can be assessed by determining its conformance 

to the responses of the real structure. However, every mathematical model is based on a 

number of assumptions and has therefore a limited accuracy. In the case of FE models, 

the incorrectness of the model can be caused by approximating the geometry of the 

considered structure with a limited number of elements, the type of elements and 

element formulation, uncertainties on the material properties or any other simplification 

made during the construction of the numerical model. Because of these assumptions and 

simplifications, the results of the numerical model will not exactly match the 

experimental responses of the real structure. The objective of model updating is to 

improve the reliability of a mathematical model by fine-tuning a number of model 

parameters, in order to obtain an optimal correlation between the numerical results and a 

set of experimental data. 

An MNET aims to identify the values of a set of physical parameters by min-

imising the differences between a data set measured during an experiment and the 

results of a numerical simulation of this experiment. Like model-updating routines, 

MNETs minimise the differences between experimental and numerical results by fine-

tuning a set of model parameters. However, the goal of MNETs is not to compensate the 

shortcomings of the model, but to measure a set of physical properties. This leads to the 

following practical differences between model updating and MNETs: 

1.2.3.1 Precision and accuracy of the numerical model  

In model updating, the model parameters are fine-tuned to improve the reliability 

of the model. In some cases, the simulation model was even deliberately simplified, e.g. 

to obtain a shorter computation time. This is not a serious problem, since the optimised 

parameter values can compensate the inaccuracies of the model. However, the 

optimised parameter values will only compensate the inaccuracies of that particular 

model. The optimised parameters are thus model-dependent and meaningless, if they are 

not used in combination with the associated model. MNETs aim at identifying the 

values of physical parameters, which are by definition model-independent. The 

inaccuracy of the simulation model of a certain MNET will have a negative effect on 

the quality of the identified parameters. Therefore, the mathematical model of any 
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MNET should be as accurate as possible. This can only be achieved by combining a 

rather simple experiment with a detailed simulation model. 

1.2.3.2 Selection of the variable parameters  

The proper selection of the updating parameters is a key step for the successful 

updating of a FE model. If the selected model parameters are indeed the ones with 

incorrect values, the procedure should converge and yield an updated model that is 

reliable. On the contrary, if the model parameters with correct values are selected, the 

updating process might not converge or might yield a model that is not very reliable or 

contains parameters with unrealistic values. Usually, the selection of the proper 

updating parameters is a difficult process, however in the case of an MNET this process 

is very straightforward. The updating parameters are simply the ones that represent the 

physical quantities that have to be identified. 

1.3 FOCUS OF THE THESIS 

The main objective of this thesis was to develop a vibration-based identification 

procedure to determine the elastic properties of the foam materials. In order to achieve 

this objective, a lot of intermediate steps had to be taken, some of which provided better 

insight in vibration-based material identification or resulted in new identification 

procedures for foam materials. More specifically, the original contributions of this 

thesis are: 

 To develop a FE model based on inhomogeneous mass distribution in aluminum 

foam using the density data measured by X-ray computer tomography. 

 To extract the experimental modal characteristics of aluminum foam using a 

precise measurement setup. 

 To develop a mixed numerical experimental identification technique based on 

modal characteristics, for extraction of elastic properties of the said material. 

 To investigate the influence of inhomogeneous density distribution on the 

mechanical behavior of aluminum foam. 
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 To investigate the influence of mesoscopic inhomogeneous density distribution 

on the modal characteristics of aluminum foam. 

1.4 STRUCTURE OF THE THESIS 

Due to the multidisciplinary approach of the proposed development, the structure 

of this thesis is reported into six chapters, each chapter (from chapter 1-4) corresponds 

to the different research areas addressed. This chapter (Chapter 1) lists the State of 

current knowledge in the field of MNETs for identification and objectives of this 

research study. The experimental setup for modal testing and analysis is explained in 

Chapter 2. The material to be investigated and details of the developed FE model based 

on inhomogeneous density distribution will be explained in Chapter 3. Chapter 4 is 

dedicated to the developments of new mixed numerical experimental identification 

technique. This section constitutes the heart of the thesis. Finally in chapter 5 the 

obtained results are compared with each other and the applicability of the developed 

model will be discussed. A summary of each chapter is given here. 

Chapter 2 describes the experimental modal testing and analysis setup. The 

developed process of the vibration measurement technique aims to measure the 

vibration response of the test specimen by maximum mastering the experimental 

boundary conditions. Indeed, any model error in mixed numerical-experimental 

identification process would be based on accurate measurements, so a high correlation 

between the experimental measurement conditions and FE modelling is necessary. This 

is done by selecting and carefully controlling the boundary conditions of the test 

specimen under investigation. The boundary conditions include the support of the 

specimen, the technique of dynamic excitation, effect of the vibration response 

measurement system and the effect of vibrations from surroundings (environmental 

conditions). The main purpose of experimental modal testing setup developed for this 

work is to measure a large number of modes (eigen frequencies and mode shapes) of 

aluminum foam  specimens, as precisely as possible. The objective is to obtain a wide 

range of experimental values that serve as targets for the mixed numerical experimental 

identification method. Thus, a well controlled and reproducible measurement setup is 

developed for measurement of modal characteristics of aluminum foam specimens.  
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Chapters 3 summarize the FE modelling of aluminum foam. Literature on porous 

metals and metallic foams is increasing at a fast pace, supported by conferences, 

symposia, seminars, books and web sites. Most of the recent R&D activities on closed-

cell metallic foams have focused on the development of aluminum based foams. 

Inhomogeneous mass distribution within the aluminum foam is obtained by X-ray 

Computer Tomography (CT). The distribution of local relative density is calculated 

using density mapping method based on CT data. Heterogeneous microstructure of 

aluminum foam is transformed to an approximated continuum. The obtained continuum 

body is then implemented in FE method. A 3D FE model is describe to simulate the 

effect of local mass distribution on modal properties of the aluminum foam specimen. 

The specifications of investigated specimen of aluminum foam and details of their 

density mapping are presented in this chapter. 

Chapter 4 is completely devoted to the implementation of the proposed mixed 

numerical experimental identification technique. The different routines developed for 

parametric study are explained with the help of block diagrams. The modal error norms 

used for identification are explained in details. Parametric study of large-scale FE 

analysis on aluminum foam plate to identify the robustness and sensitivity of the 

proposed modal error norms is presented. Analysis, selection and implementation of 

optimization algorithm corresponding to needs are explained in detail. The Levenberg-

Marquardt algorithm with assessment of gradients by finite difference method is used for 

optimization and is implemented in mixed-numerical experimental identification 

technique for minimization of modal error norms. 

Chapter 5 is focused on the description of the results obtained from the modal 

testing and the developed identification technique. Four aluminum foam specimens are 

investigated, their modal properties are explained in detail. Identification of variable 

parameters of aluminum foam FE model is presented to illustrate the application of the 

developed identification technique. 

Chapter 6 include summary of the research work. In addition, suggestions for the 

advancement of research in future developments are given.  
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CHAPTER  2. EXPERIMENTAL MODAL TESTING AND 

ANALYSIS 

2.1 OBJECTIVE 

For the prediction of the global properties in materials, dynamic tests have shown 

important advantages over static tests. Despite the superiority of dynamic tests, a high 

level of precision is required on the measured modal information.  The accuracy of the 

constitutive properties estimated with mixed numerical-experimental identification 

technique depends directly on the quality of the experimental measurements and on 

modelling the actual test conditions. To characterize aluminum foam by MNET, use of 

measured modal information as a basis of comparison seems a wise choice in terms of 

accuracy and representativeness. The purpose of this section is to develop a technique to 

measure the eigen frequencies and modes shapes of aluminum foam specimens, 

accurately. Free boundary conditions have been chosen for the specimens tested, in 

order to improve the correlation between the experimental test setup and the numerical 

model. 

2.2 THEORETICAL BACKGROUND 

In linear vibration theory the deformations of a mechanical structure can be 

simulated either by discrete or continuous models or by a mixture of both. In general, 

for the reason of computational effort, the number of degrees of freedom (DOF) of a 

given structure is limited to a certain number of translational and angular displacements 

at given structural mesh points. The generalized displacement vector 

ܙ  ൌ ሼܙଵ, ,ଶܙ ,ଷܙ qସ … . . ௡ሽT (2.1)ܙ

contains these n (number of DOFs) independent displacements, which are assumed 

quite small as compared to the dimensions of the structure. The experimental study of 

the dynamic behavior of a structure is traditionally based on discretization of the 

structure into a set of measuring points, thus forming an experimental mesh. 
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Subsequently, all necessary measurements and analysis are based only on these mesh 

points. An example of a discrete model of the structure is shown in Figure 2.1. 

 

 

Figure 2.1 Measurement grid points 

 

The experimental modal analysis of a structure usually assumes that the dynamic 

behavior described by the equations of motion of the system can be represented by a 

system of linear differential equations with constant coefficients as a function of time. 

The equations of motion for the displacement vector q of a vibrating structure have the 

usual form  

ሷܙۻ  ሺݐሻ ൅ ሶܙ۲ ሺݐሻ ൅ ሻݐሺܙ۹ ൌ ሻ (2.2)ݐሺ܎

With M, D, K being constant (n x n) – dimensional mass-, damping-, and stiffness- matrices, 

respectively. The vectors  ܙሺݐሻ and ܎ሺݐሻ represents the field of displacements and 

external excitation forces acting on the degrees of freedom of the mesh points, 

respectively. 

Considering first the damped harmonic system (2.2) in its homogeneous form (free 

vibration response, ܎ሺݐሻ = 0), from differential equation theory the solution can be 

assumed to be of the form 

 ሻݐ௥ሺܙ

 ሻݐ௦ሺ܎
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ሻݐሺܙ ൌ ૎௞݁ିఒೖ௧     where   ߣ௞ ൌ െߜ௞ േ ݆߱௞ (2.3)

Where ߣ௞ is the ݇-th complex eigenvalue (whose real and imaginary parts represent the 

modal damping coefficient δ୩ and the angular frequency ߱௞ ) and ૎௞ is the 

corresponding eigenvector. 

As ݁ିఒೖ௧ ് 0 for any instant of time t, so taking appropriate derivatives and 

substituting the solution (2.3) in the homogeneous form of equation (2.2), the 

generalized eigenvalue problem from the equation of motion of the system is obtained. 

 ൫െߣ௞
ଶۻ െ ௞۲ߣ ൅ ۹൯૎௞ ൌ 0 (2.4)

The solution of equation (2.4) is composed of k-th eigenvalues ߣ௞
ଶ and corresponding 

eigenvectors ૎௞ (݇ = 1, 2, 3 ..., n). The square roots of these eigenvalues are the natural 

frequencies of the system and the eigen vectors its mode shape. From linear algebra it is 

known that, if the natural frequencies are non-zero and distinct, then all the mode shapes 

are independent. Therefore, ‘n’ eigenvectors ૎௞ (݇ = 1, 2, 3 ..., n), due to their 

orthognality properties, are linearly independent (no vector in the set can be obtained by 

a linear combination of the remaining ones) and therefore ‘n’ mode shapes collectively 

form a basis in the ‘n’ vector space. Thus, mode shapes are able to ‘diagonalize’ the 

matrix equation of motion (2.2) and decouple the ‘n’ intertwined equations into ‘n’ 

independent equations.  

By transforming the system (2.2) in the modal coordinates, it is possible to 

decouple the differential equations of the system. The relation corresponding to this 

projection is written as, 

ሻܜሺܙ  ൌ ෍ ܺ௞ሺݐሻ૎௞

௡

௞ୀଵ

ൌ ઴܆ሺݐሻ (2.5)

Where ܺ௞ (k = 1, 2, 3 ... n) denotes the modal or principal coordinate of mode k. The 

vector ܆ assemble all the modal coordinates of the vector space q, while the matrix ઴ is 

the modal matrix built up from all mode shape vectors ૎ܓ (k = 1, 2, 3, ...  n) of the 

system. Pre-multiplying the equation (2.4) by ઴T, and using the principal of 
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orthognality, this equation can transform into an uncoupled equation of motion. Thus 

through a simple coordinate transformation, the system has been transformed into ‘n’ 

uncoupled equations of motion. This equation (2.6) is the foundation of vibration 

analysis for multiple degree of freedom systems. 

 ݉௞ ሷܺ௞ሺݐሻ ൅ ܿ௞ ሶܺ௞ሺݐሻ ൅ ݇௞ܺ௞ሺݐሻ ൌ ૎௞
T ሺtሻ܎ ൌ ሻ   (2.6)ݐ௞ሺܨ

for (݇ = 1, 2, 3, ... n). Where ݉௞, ܿ௞ and ݇௞  are called the modal mass, modal damping, 

and modal stiffness of the k-th mode respectively, but they do not have the same units as 

mass and stiffness. In equation (2.6);  

 ݉௞ ൌ ૎௞
Tۻ૎௞ , ܿ௞ ൌ ૎௞

T۲૎௞ and ݇௞ ൌ ૎௞
T۹૎௞ (2.7)

Note also that the force term f (t) is transformed by projection into the modal 

coordinate, the modal excitation force ܨ௞ሺݐሻ  ൌ ૎௞
T ܎ሺtሻ. 

By applying Fourier transformation to equation (2.6) and isolating certain terms, an 

expression for the contribution of k-th mode to the system response is obtained. This 

transformation has the advantage of converting a differential equation into algebraic 

equation. Thus, equation (2.6) can be written as: 

 ܺ௞ሺ݆߱ሻ ൌ
௞ሺ݆߱ሻܨ

݉௞ሺ߱௞
ଶ ൅ ௞߱௞߱ߞ2݆ െ ߱ଶሻ

 (2.8)
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Figure 2.2 Experimental mesh and transfer functions 

 

Where ߞ௞ is the modal damping (damping ratio) and ߱ is the angular frequency. The 

denominator of equation (2.8) is known as characteristic equation of the system.  

Summing the contributions of each mode, the expression for the transfer functions of 

discrete system can be written as; 

 ݄௥௦ሺ݆߱ሻ ൌ
ܺ௥ሺ݆߱ሻ
௦ሺ݆߱ሻܨ

ൌ ෍
߮௥

௞߮௦
௞

݉௞ሺ߱௞
ଶ ൅ ௞߱௞߱ߞ2݆ െ ߱ଶሻ

௡

௞ୀଵ

 (2.9)

Where ݄௥௦ሺ݆߱ሻ is known as frequency response function of the system. The frequency 

response function relates the Fourier transform of the system input to the Fourier 

transform of the system response. The transfer function ݄௥௦ሺ݆߱ሻ represents, in the 

frequency domain, the response in degree of freedom r due to single harmonic excitation 

force of unit magnitude and frequency ߱ applied in degree of freedom s or, in other words, 

the Fourier transform of the impulse response. Thus, the system of differential equations of 

the spatial formulation of the problem (2.2) turns into a matrix of transfer functions ۶ሺ݆߱ሻ  

which completely describes the dynamics of the system. By reworking expression 2.9, it is 

possible to write transfer functions matrix ۶ሺ݆߱ሻ as follows; 

 ۶ሺ݆߱ሻ ൌ ෍
1

݉௞ሺ߱௞
ଶ ൅ ௞߱௞߱ߞ2݆ െ ߱ଶሻ

௡

௞ୀଵ

ሺ߮௞ ٔ ߮௞ሻ (2.10)

ሻܜሺܚܙ ՜  ሻ࣓࢐ሺܚ܆

ሻܜሺܛ܎ ՜  ሻ࣓࢐ሺܛ۴

ሻ࣓࢐ሺ࢙࢘ࢎ ൌ ሻ࣓࢐ሺ࢘ࢄ ⁄ሻ࣓࢐ሺ࢙ࡲ  
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Figure 2.3 Dynamic model interrelation 
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In this equation, the transfer function matrix have sum of all modes k (k = 1, 2, 3, ..., n) 

of frequency factors (the fraction ݆߱) and spatial (dyadic product of eigen vectors). As 

this matrix is derived from the dyadic product of a vector with n components, it is 

enough to know n distinct components in order to determine the matrix n × n. 

It has been seen that the dynamic properties of a system with n DOF may be 

describe by three types of models: the spatial model, the modal model and the response 

model. Each spatial model of a structure is characterized by the matrices K, C, M and 

the vectors ܙሺܜሻ and ܎ሺܜሻ, it correspond to a frequency response model defined by the 

matrix ۶ሺ݆߱ሻ and the spectra ܆ሺ݆߱ሻ and ۴ሺ݆߱ሻ, and also to a modal model consisting 

of the modal vector ߮௞ and scalar ߱௞ , ߞ௞ , ݉௞ , ܺ௞ሺݐሻ and ܨ௞ሺݐሻ for (k = 1, 2, 3, ..., n). 

Modal analysis, as an experimental or numerical technique is designed to identify the 

parameters of modal model from spatial or frequency response model. In the 

experimental area, modal analysis approach is generally as follows:  
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Figure 2.4 Experimental modal analysis stages 

Frequency model  

Modal model  ,   ,   Structure meshing 

Spatial model    ,  

2.2.1 Establishment of temporal model  

The structure under study is positioned with the representative support conditions 

and is discretized into a set of measuring points. It is then excited at one point s with a 

force ܛ܎ሺtሻ. Simultaneously responses ܚܙሺtሻ at each point r of the structure and the 

excitation force ܛ܎ሺtሻ is recorded. The temporal model (time domain) of the structure is 

then completely determined by the functions ܚܙሺtሻ and ܛ܎ሺtሻ measured during the 

experiment. 

 

2.2.2 Transformation of the temporal model in frequency model 

The temporal model characterized by measured functions ݍ௥ሺݐሻ and ௦݂ሺݐሻ  is 

converted into a set of complex spectra ܺ௥ሺ݆߱ሻ and ܨ௦ሺ݆߱ሻ with a Fourier-transform 

(generally discrete Fourier transform and Fast Fourier Transform or FFT). Transfer 
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Figure 2.5 Identification of the third mode from the transfer function of the structure 

functions (also called frequency response functions) ݄௥௦ሺ݆߱ሻ are then calculated using 

the quotient ݄௥௦ሺ݆߱ሻ ൌ ܺ௥ሺ݆߱ሻ ⁄௦ሺ݆߱ሻܨ  of frequency response spectra ܺ௥ሺ݆߱ሻ and 

excitation ܨ௦ሺ݆߱ሻ. The frequency model is then completely defined when a row or 

column of the matrix ۶ሺ݆߱ሻ is determined.  

2.2.3 Estimation of modal parameters 

The modal model is created by identifying the set of modal parameters  ૎௞ , ߱௞ , 

 ௞ and  ݉௞ for all modes k (k = 1, 2, 3... n) from the frequency model ۶ሺ݆߱ሻ. Becauseߞ

of inertial effects, the dynamic response of the structure is, however, usually dominated 

by the influence of the modes of lowest eigen frequencies, so it is possible to address 

only a limited number of modes without losing information on the dynamics of whole 

structure under investigation. Each mode requires the determination of eigen vector ૎௞ 

with n components and at least two modal parameters (߱௞ and ߞ௞), the identification 

problem to be solved become rather complicated at given the large number of 

parameters to be extracted. However, thanks to the local characteristics of the resonance 

peaks, the identification of modal parameters can usually be done independently for 

each mode or each group of modes (Figure 2.5). 
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2.3 NON-CONTACT VIBRATION MEASUREMENTS 

TECHNOLOGY 

The main purpose of experimental modal setup developed for this work is to 

measure eigen frequencies and mode shapes of aluminum foam samples, as precisely as 

possible and noninvasive. The objective is to obtain a wide range of experimental 

values that serve as targets for the mixed numerical experimental identification 

technique. The experimental measurement conditions should ensure optimal correlation 

with the numerical simulating model. Thus, the experimental method must be well 

controlled and reproducible and should be very accurately simulated in a FE model.  

A high correlation between the experimental conditions and FE modelling can be 

ensured by selecting and carefully controlling the boundary conditions of the test 

specimen under investigation. The boundary conditions include the support of the 

specimen, the dynamic excitation technique, effect of the vibration response 

measurement system and the effect of vibrations from surroundings (environmental 

conditions). 

The development process of the vibration measurement technique aims to measure 

the vibration response of the test specimen by maximum mastering the experimental 

boundary conditions. In the field of modal analysis, this objective is the minimization of 

any effects of added mass to specimen, or additional external rigidities and external 

damping effects, which are more difficult to control. The optical measurement methods 

can minimize the effects of added mass and stiffness and external damping, in this 

category, the method of laser Doppler interferometry is the only one to provide an 

excellent frequency resolution and high dynamic in a frequency range sufficient to 

measure aluminum foam specimens. Thus, in order to minimize these undesirable 

effects, the commercial optical measurement system, Polytec Scanning Vibrometer is 

used for response measurements. Moreover, as this method can be automated by 

redirecting the laser beam to change the point of measurement, it is easy to perform 

measurements of mode shapes with a spatial resolution sufficient for identification 

purposes. 
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2.3.1 Polytec Laser Doppler Vibrometer 

Commercial Laser Doppler Vibrometer (LDV) systems consist of two major 

components: the optical sensor and the data acquisition system. The optical sensor 

contains the actual laser, the optical elements, and electrical components needed to 

spatially position the laser beam. The controller processor, containing the electronic 

components needed to process the velocity information provided by the optical sensor, 

constitutes the interface between the interferometer and the data acquisition computer. 

The data acquisition system consists of the equipment and software needed to 

manipulate the scan mirrors and to acquire the velocity data.  

Commercial system Polytec Scanning Vibrometer (PSV) a product of Polytec is 

available at institute (Institute of Mechanics and Mechatronics, TU Wien). The Polytec 

system is a modified Mach-Zehnder interferometer, which allows the laser beam to exit 

from the "inner" interferometer cell and to hit the external target. A linearly polarised 

He-Ne laser is employed as a light source, which has polarisation orientated at 45° to 

the horizontal plane. 

Polytec uses as coherent light source a multi-mode (in the longitudinal direction) 

Helium-Neon laser, linearly polarised with an output power between 2.2 and 3.0 mW. 

This fact means that there are several modes of oscillation, with different wavelengths, 

in the laser length (longitudinal axis), while only a transverse mode is dominant in the 

distribution of light across the beam and this is the uniphase mode TEM00 (characterised 

by its Gaussian profile and circular symmetry). It is important that in the transverse 

direction only one mode occurs, since other transverse modes have frequencies slightly 

different from the TEM00 mode and their beating may be then confused with the 

Doppler signal. On the contrary the occurrence of multi-modes in the longitudinal 

direction is not so critical, because they can be distinguished by their distinct numbers 

of wavelengths within the laser length. In order to privilege one mode (say the one with 

wavelength l) the optical path length travelled by the wave that is twice the cavity 

length (distance between the mirrors placed in the laser oscillator system) must equal a 

whole number of wavelengths: 
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Figure 2.6 Polytec LDV arrangement 
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 2Lୡ ൌ ŋλ (2.11)

Where Lୡ  is the cavity length and ŋ = 1, 2, 3... . In this case the wave passing 

backwards and forwards between the mirrors reinforces itself each time around because 

each successive passage is in phase. The cavity length in the Polytec laser head is 205 

mm [101]. In order to assure that the same longitudinal mode will be emphasized during 

the travel of the laser beam towards to and backwards from the object tested the path 

followed (L୮) must be an integer multiple of the cavity length: 
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Figure 2.7 Quarter wave plate working principle 
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 2L୮ ൌ ŋLୡ  (2.12)

Where now ŋ = 2, 3... Since the minimum optical path of the beam must be at least 

twice the cavity length. Lp can be seen as a sort of 'coherence repeat distance' because it 

is the length where the Doppler interference is maximum and the signal output from the 

laser is also maximum. Therefore, if during the operation, a signal level minima is 

encountered, i.e. fluctuations of signal level occur mostly in the course of the laser 

warm-up, a change of the operating distance of half cavity length should resolve the 

problem. 

The Polytec system is a modified Mach-Zehnder interferometer [102]. A third 

polarising beam splitter with a quarter wave plate is introduced at the place of the actual 

moving target (in Mach-Zehnder interferometer) in order to realise a directional 

coupling: the light coming from the laser is directed straight through the object, while 

the reflected beam is deflected downwards to the second beamsplitter. The quarter wave 

plate is used as optical insulator, in order to avoid that the light reflected by the target 

can return towards the laser source. This optical element, also called retardation plate, 

has the main characteristic to modify the polarisation of the wave incident. In the case 

of quarter wave plate the polarisation direction is deviated of 1/4, i.e. 45°. The entry 

beam, coming from the polariser beam splitter, see Figure 2.7, owns a polarisation of 

45° with respect to the plate axis, then it is transformed in a circularly polarised beam 

inside the plate. Being reflected back by the target surface the rotation is inverted and 
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the travel across the plate will transmit to the beam a polarisation of 45° but on the 

opposite direction. Owing this polarisation the light cannot pass again inside the beam 

splitter and it is deviated downwards. 

Therefore, a second difference with the Mach-Zehnder configuration is the 

insertion of a Bragg cell as a device to discriminate the target velocity direction. The 

frequency shift introduced is 40 MHz. The light intensities ܫଵሺݐሻ and ܫଶሺݐሻ seen by the 

photodetectors have the following relationships. 

 Ιଵ ൌ
1
2

KଵAଶ ൜1 ൅ cos ൤2π ൬ƒୠ േ
2υ
λ

൰ ൨ൠ (2.13)ݐ

 

 Ιଶ ൌ
1
2

KଶAଶ ൜1 െ cos ൤2π ൬ƒୠ േ
2υ
λ

൰ t൨ൠ (2.14)

Where A is the amplitude of the optical signal of the laser, ƒୠ denotes the frequency 

shift (controlled) of the Bragg cell and υ represents the speed of the vibrating object, λ 

is the wavelength of the beam provided by the laser. Both output signals from the 

photodetectors, which actually are photodiodes, are converted to electrical signals. 

Combining them together using a differential pre-amplifier stage the resulting output 

voltage V௢௨௧ is given:  

 V௢௨௧ ൌ ܭ cos ൤2π ൬ƒb ൅
2υ
λ

൰ ൨ (2.15)ݐ

Where K indicated the conversion efficiency. The voltage V௢௨௧  constitutes the output 

signal of the interferometer and it is transmitted to the processor controller where the 

Doppler signal is frequency demodulated to extract the velocity information. To 

improve the signal quality, affected by velocity drop-outs, the Polytec system has 

introduced in the controller an optional device, which is the tracking filter2. The 

continuous nature of the Doppler signal from a solid surface measurement allows 

frequency tracking demodulation. To obtain real time demodulation of photodetector 

signal giving voltage proportional to instantaneous velocity component a tracking filter 

is activated instead of using a conventional spectrum analyzer. The tracking scheme is 

applying the principle of  Phase Locked Loop (PLL), where a Voltage-Controlled 

Oscillator (VCO), controlled via the feedback loop, tracks the incoming Doppler signal 
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Figure 2.8 Polytec system components, work station, controller OFV-3001-S,  junction box 

PSV-Z-040 

[103]. A mixer at the input stage produces an "error" signal between the Doppler and 

VCO frequencies which is band-pass filtered and weighted before being integrated and 

used to control the oscillator to drive the error to a minimum. The feedback loop has an 

associated "slew rate" which limits the frequency response of the processor. The overall 

effect of the tracker is to act as a low pass filter, which output the VCO voltage as a 

time, resolved voltage analogue of the changing frequency. The frequency range of 

interest for most vibration measurements is well within the range of this form of 

frequency demodulation. The tracker incorporates weighting networks, which tailor the 

control of the VCO according to the signal to noise ratios of the incoming signal. The 

network will hold the last value of Doppler frequency being tracked if the amplitude of 

the signal drops below a pre-set level. In this way the Doppler signal effectively drops 

out and careful consideration must be given to the statistics of what is essentially a 

sampled output, especially when high frequency information of the order of a dropout 

period is required. Fortunately for most practical applications this period, typically 0.2 

μs, is negligible. Another option provided within the Polytec LDV is the auxiliary filter, 

which is applied to the force-signal to compensate for filter gain and phase-shifts.  
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Figure 2.9 Polytec scanning head 

A measurement system Polytec PSV 300-F scanning laser Doppler vibrometer is 

available at institute (Institute of Mechanics and Mechatronics, TU Wien), keeping in 

view the advantages of this measurement technique, it is decided to use this 

measurement tool for modal characteristics of the structures. The Polytec Scanning 

Vibrometer measures the two-dimensional distribution of vibration velocities on the 

basis of laser interferometry. The system components are shown in Figure 2.8 and 

Figure 2.9. 

The interferometer signal is decoded in the controller with the velocity decoder. An 

analog voltage signal is thus generated which is proportional to the vibration velocity. 

The junction box is the central connection point between the system components and 

provides the interfaces for peripheral devices. The scanning head (Figure 2.9) consists 

of the interferometer, the scanners to deflect the laser beam and a video camera to 

visualize the measurement object. The measurement data is digitally recorded in the 

workstation. The software controls the data acquisition and offers user-friendly 

functions to evaluate the measurement data. 

The heart of the system is the optical sensor head (OFV-056) which consists of a 

single-point interferometer which focuses the laser beam towards the x-y scanner 

mirrors driven by the scanner driver electronics. Further, a compact video camera is 

installed in the case of the head for the visual observation of the test item and the 

scanning procedure. In fact, by means of a video control box settled on the PSV 

computer, the grid of measurement points to be followed over the structure surface is 

defined on top of the video image displayed on the computer monitor. In order to 
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perform a correct measurement, the laser beam must be aligned to the video image and 

this is done by a calibration routine included in the Polytec software (PSV-200, version 

7.2). This routine automatically corrects parallax errors and distortions to allow accurate 

positioning of the beam. In conjunction with the optical head there is the electronic 

signal processor/controller unit (OFV-3001-S) which controls the measuring parameters 

and processes the output of the laser sensor in order to derive the velocity information. 

This dynamic test system allows to measure vibration velocity ranging from a few 

µm/s to several m/s over a frequencies range from 10 Hz to 250 kHz. The software 

controlling the acquisition system allows easy measurement of transfer function on 

grids of points up to more than 300 × 300 points and provides intuitive function of post-

processing and visualization of Spectra, frequency response functions and measured 

modes.  

2.4 SUPPORT OF THE STRUCTURE 

In the measurements encountered in solid mechanics and structures, the support 

conditions of a test specimen generally represent an important source of side effects 

often not repeatable or easily quantifiable, making it very difficult analytical or 

numerical modelling of actual experiment. The boundary conditions of the plates in the 

static tests are usually common type clamping fixture or simply supported. Although 

this kind of support conditions seem easy to model using FE and appears to provide a 

good correlation between numerical model and measurement technique, it is not the 

case in practice. Indeed, it is almost impossible to achieve a perfect stiffness (fitting 

rigidity) and attempts to achieve a good approximation of these boundary conditions do 

not generally provide repeatable results close to few percent. For example, in the case of 

a simple clamping fixture, the torque of fixing clamping screw can strongly influence 

contact pressure used to hold the specimen and thereby introduce significant variation in 

local stiffness of the fixture. Similarly, the conditions for simple supports in the 

analytical models or FE are not feasible in practice due to the significant thickness of 

actual specimens and local effects of friction and detachment. 



Chapter 2                                                                                         Experimental modal testing and analysis 

(2.17) 

 

Figure 2.11 Free-Free support condition for testing structure 

Consideration of the support of the structure under test is an important part of the 

test set-up. The support conditions should be well defined and experimentally 

repeatable if the results of the dynamic measurements are to reflect the properties of the 

structure without undue influence from the support. Unlike static measurement 

methods, experimental modal analysis can fortunately be achieved even in cases where 

the structure is not constrained and is completely free to carry out rigid body motions. 

Using this advantage, it is possible to consider natural homogeneous boundary 

conditions, known as generally free-free boundary conditions. 

The first decision, which has to be taken, is whether the structure is to be tested in 

free-free boundary condition or grounded. It is almost impossible for either of these two 

conditions to be achieved in practice; a grounded structure will have movements at the 

grounding point (usually rotation) and there will be some small restraint of a, nominally, 

free structure. For a structure to be really free, it should be suspended in the air, free in 

space with no holding points whatever. Such a situation is commonly designated as 

‘free-free’ or freely supported and is clearly impossible. However simulation of free-

free condition is very easy to achieve. Although free-free experimental conditions are 
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unrealizable without weightlessness, they can be approached in practice with a high 

accuracy and repeatability while minimizing any effects of added mass as well as 

stiffness and damping of support. The technique used (and probably the most accurate 

too) is that suspend the structure to be measured using thin elastic bands of negligible 

mass and practically contributing almost no stiffness in the transverse direction. Thus 

the test plate is very weakly constrained in this direction, which is ideal for measuring 

the elastic modes of interest. However, adjusting the position of elastic wire on the test 

plate has an influence on the measured modal values, but in general these effects are 

mainly dissipative and essentially change the modal damping ratios. It has actually been 

observed that the position of elastic bands has no significant effect on the measured 

eigen frequencies and the mode shapes. The test plates are suspended with thin elastic 

bands from the top edge of the plate and on the nodal line of the first bending mode, as 

shown in Figure 2.11.  

2.5 EXCITATION OF THE STRUCTURE 

To develop a dynamic model of the structure, it is obviously necessary to excite it 

with a set of forces fୱሺtሻ depending on time. To satisfy the criteria for consistency and 

reliability of the numerical modelling of actual experiments, it is necessary to minimize 

any external effect in particular influence of rigidity and masses that can account for any 

system of dynamic excitation. Among all known dynamic excitation methods, only a 

small number requires no direct contact with the tested specimen, almost all 

conventional methods make additional mass and/or rigidity for excitation of structures. 

At first glance, only impact excitation can be considered the best one, but because of its 

impulse nature, this technique proved incompatible with a measure of dynamic response 

in completely free conditions. Indeed, the impact is not a symmetrical signal; it 

generates significant rigid body motions which completely drown the vibration response 

the test plate. 

The excitation system can affect the dynamic behavior of a structure in just the 

same way as force or response transducer. The size of the excitation system is generally 

much larger than a force or response transducer and, hence, the influence will be 

greater. Various devices are available for exciting the structure and several of these are 



Chapter 2                                                                                         Experimental modal testing and analysis 

(2.19) 

in widespread use. Basically they can be divided into two types: contacting and non-

contacting. The first of these involves the connection of an exciter of some form which 

remains attached to the structure throughout the test. Whether the excitation type is 

continuous (sinusoidal, random etc.) or transient (pulse, chirp). The second type 

includes devices which are either out of contact throughout the vibration (such as 

provided by a non-contacting electromagnet) or which are only in a contact for a short 

period, while the excitation is being applied (such as a hammer blow). 

Perhaps the most common type of exciter is the electromagnetic shaker in which 

supplied input signal is converted to an alternating magnet field. A coil is placed inside 

the electromagnetic shaker which is attached the drive part of the device, and to the 

structure. In this case, the frequency and amplitude of excitation are controlled 

independently of each other, giving more operational flexibility – especially useful as it 

is generally found that it is better to vary the level of the excitation as resonance are 

passed through. However, it must be noted that the electrical impedance of these 

devices varies with the amplitude of motion of the moving coil and so it is not possible 

to deduce the excitation force by measuring the current passing through the shaker 

because this measures the force applied not to the structure itself, but to the assembly of 

structure and shaker drive. Although it may appear that the difference between this force 

(generated within the shaker) and that applied to the structure is likely to be small, it 

must be noted that just near resonance very little force is required to produce a large 

response and what usually happens is that without altering the settings on the power 

amplifier or signal generator, there is a marked reduction in the force level at 

frequencies adjacent to the structure’s natural frequencies. As a result the true force 

applied to the structure becomes the (small) difference between the force generated in 

the exciter and the inertia force required to move the drive rod and shaker table and is, 

in fact, much smaller than either [104].  

2.6 SUPPORT OF THE EXCITATION SYSTEM 

The support of the excitation system is not quite so important as the support of the 

structure under test, but it should still be considered [105]. Rigid mounting of shaker on 
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the floor or stands is simple and straight forward, but care should be taken to avoid any 

ground transmission between the shaker. 

The other common method of supporting a shaker is by suspension on some kind 

of hoist. Although this is a most convenient arrangement for positioning and aligning 

the shaker, it is important to remember that the shaker on the hoist is now a dynamic 

system in its own right. The shaker will move as a result of the internal force generated. 

The degree of movement will be related to the inertial mass of the shaker, the larger the 

mass, the smaller the movement. This movement of the shaker can cause problems as 

low frequencies when modes of the shaker suspension can be excited. This results in 

excessive motion and can lead to damage of the shaker, push-rod and force transducer. 

A fixture is designed for positioning and aligning shaker, which allowed free 

movement of shaker along x, y, and z axis. When the shaker is positioned and aligns at 

right place for excitation, it is clamped tightly with the nut and bolts. The second 

problem of ground or external vibration transmission to the shaker is avoided by placing 

the whole arrangement of the excitation system on optical table (vibration isolation 

table).  

2.7 ATTACHMENT TO THE STRUCTURE 

The majority of structural excitation techniques in common usage require some 

physical contact with the structure. The objective is to transmit controlled excitation to 

the structure in a given direction and, simultaneously, to impose as little restraint on the 

structure as possible in all other directions. However, to achieve this purpose, the shaker 

must be rigidly attached to the structure and this connection is bound to introduce 

constraints that will affect the force transducer signal. In fact and except in particular 

cases of symmetry, the structure responds to the excitation by both translating and 

rotating, and therefore the shaker (and force transducer) will be affected by a torque that 

will distort the force signal and introduce errors in the measurements. To avoid this, a 

flexible push-rod, or stinger, or drive rod, usually forms some part of the link between a 

shaker ad the structure under test. Ideally, the stinger should have high axial stiffness 

but low lateral or bending stiffness so as to excite the structure axially and to minimise 

excitations in all the other DOFs. However, forces and moments other than the axial 
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Figure 2.12 Shaker and structure attachment (Stinger assembly) 

excitation force component may also be introduced and act on the test structure and 

influence the force and/or response measurements. This will cause a systematic error in 

the measurement. 

Some cares must be taken while designing a stinger, like, if the stinger is made too 

long, or too flexible, then it begins to introduce the effects of its own resonances into 

the measurements and these can be very difficult to extricate from the genuine data. For 

most general structures, an exposed length of some 5-10 mm of 1 mm diameter wire is 
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found to be satisfactory [104]. Keeping these precautions in mind a stinger is designed 

so that it is relatively flexible to lateral and rotational motions between its ends, but very 

stiff axially. The designed stinger and other parts of assembly of the structure-shaker 

attachment fixture are shown in Figure 2.12. The locking screw bush fixtures at each 

end allow for simple adjustment of the stinger length, which simplifies the positioning 

of the shaker along the excitation direction of the free-free structure under investigation. 

The washer headed screw is bounded with the stiff glue, impedance head is installed on 

this washer headed screw and in attached to the shaker through the designed stinger 

assembly, as shown in Figure 2.12. Once set up, the push-rod linkage is then easily 

positioned, removed or replaced, thereby avoiding damage to the shaker or structure 

either overnight, or while transducers are being repositioned. 

2.8 MEASUREMENTS BY SCANNING LASER VIBROMETER 

Two-dimensional vibration Operating Deflection Shapes (ODSs) of structures can 

be derived by measuring FRFs on a grid of points selected over the test structure. The 

measurement philosophy is the same as that which uses accelerometers moved across 

the grid. The evident advantage is the use of a non-contact transducer, as in a laser 

sensor, and the automation of the measurement technique together with the time saving 

that can be achieved. The experiments were performed on four simple aluminum foam 

rectangular plates, in free-free condition and excited in a range of frequencies between 0 

and 5 kHz, using a pseudo-random excitation via an electromagnetic shaker attached to 

the structure, as shown in Figure 2.13. 

The laser was made to scan step by step over a grid of 1044 points (the big plate 

case) as shown in Figure 2.14. The velocity range set for the velocity decoder was 125 

mm/s/V which represents the scale factor between the actual point velocity and the 

vibrometer output voltage. The acquisition was performed by activating the tracking 

filter and the 'Signal Enhancement' routine to improve the signal quality. Furthermore, a 

third option was selected via software: the so-called 'Remeasure' option whose purpose 

is to reject measurement points which do not have a valid status (i.e. during the 

acquisition there was an over-range or the signal level was low) and to remeasure again 

in the same location until the signal quality is acceptable. 
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Figure 2.13 Experimental configuration 
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 'Signal Enhancement' and 'Remeasure' routines have the sole disadvantage of 

increasing the acquisition time of the test but it is worth using them to achieve good 

output signals for most of the points on the grid. In order to minimise the noise level, 

averages were also performed; in the experiment included here thirty averaging were 

found to be sufficient to obtain the optimal measuring response. Vibrometer output 

signals and reference signals, acquired from a force transducer attached to the plate, 

were measured at each point with an antialiasing (low-pass) filter activated. The 

analogue signal had to be sampled for a certain amount of time with a suitable sampling 

frequency, namely 2.56 times bigger than the frequency bandwidth chosen for the 

measurement (5 kHz). The numbers of samples which the analogue signal will be cut 

into are defined, again, as 2.56 times the FFT lines set in the PSV data acquisition (6400 

lines in the actual experiment). From these data the time required to measure the 

velocity at one point could be calculated as: 
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ݓ݋݀݊݅ݓ ݁݉݅ݐ ൌ

ݎܾ݁݉ݑ݊ ݂݋ ݏ݈݁݌݉ܽݏ
ݕܿ݊݁ݑݍ݁ݎ݂ ݈݁݌݉ܽݏ

ൌ
6400 ൈ 2.56
5000 ൈ 2.56

ൌ 1.28 s 
(2.16)

For an area scan, the total measurement time can be derived as the following product: 

݁݉݅ݐ ݈ܽݐ݋ݐ ൌ ݓ݋݀݊݅ݓ ݁݉݅ݐ ൈ ݋݊ ݂݋ ݏݐ݊݁݉݁ݎݑݏܽ݁݉ ݐ݊݅݋݌

ൈ ݃݊݅݃ܽݎ݁ݒܽ ݂݋ ݋݊ ൌ 1.28 ൈ 1044 ൈ 30

ൌ ݏ 40889.6 ൌ  ݏݎ݄ 11.136
(2.17)

In reality, together with this ideal quantity, additional times must be considered: 

 time required for remeasuring measurement points which do not have a valid 

status; 

 time necessary for waiting until the scanner mirror is at rest, which is set by 

default at 10 ms. The so-called settling time must be greatly emphasised as the 

mirrors should be in a stable position before the measurement starts, otherwise 

the laser spot on the structure will not be steady on the selected measurement 

point and the relative motion between laser beam and tested surface will produce 

speckle pattern motions with consequential dropouts. 

The measurement time will increase further if additional facilities for signal quality 

improvement (i.e. signal enhancement) are selected. The total acquisition time for the 

actual test (1044 points) was in excess of 12 hours. 
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Figure 2.14 Grid of measurement points on testing structure. 

During the acquisition, an on-line processing of the data could be carried out. In the 

PSV software FRFs were stored for each point on the grid. They were derived at each 

measurement point by dividing the Fourier spectrum of the vibrometer output, at the 

actual acquisition point, by the reference signal, taking into account the averages. Since 

the quantity measured by the laser is a velocity, the resulting FRF will be mobility, 

estimated with averaged measurement values (H1 estimator), i.e. output noise on 

vibrometer channel is suppressed. The transfer mobility between the measurement point 

A and the excitation point B, illustrated in Figure 2.14, is shown in Figure 2.16. 

After the area scan had taken place, FRFs for all valid measurement points would 

be saved in order to be post-processed by using the standard PSV200 presentation 

module. Velocity maps for each resonance frequency chosen within the average 

spectrum of all grid points could be displayed. These patterns could be seen as ODSs at 

the selected frequency. Modal analysis was not performed on the data acquired, and 

therefore it is not appropriate to use the expression of "mode shapes". 

Point B 

Point A 
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Figure 2.16 Transfer mobility at point 37 

Two frequencies were selected: 282 Hz (2nd resonance) and 1524 Hz (12th 

resonance). Values of velocity/force at each measurement point are shown in Figure 

2.15, plotted against the x and y coordinates of the points in a 3-D reference system. 

 

2.9 EXTRACTION OF MODAL PARAMETERS (MODAL 

ANALYSIS) 

Once the experimental conditions are under control, dynamic measurement of the 

test specimen is carried out under ideal excitation and measurement conditions. The 

Figure 2.15 ODS @ 282Hz and 1524 Hz 
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transfer functions of the structure type velocity/force is calculated by the internal 

software system PSV200 and an average of several measurements is performed to 

further increase the quality of the experimental frequency model. 

The frequency model is established, it is now necessary to extract the different 

modal parameters in the measured frequency range. Conventional techniques for 

extracting modal parameters are all based on the same principle that consists of 

identifying, from the frequency model ۶ሺ݆߱ሻ (or time in some cases), all the modal 

parameters  ૎௞ , ߱௞ , ߞ௞ and ݉௞  for all modes k (k = 1, 2, 3... n) in the measuring 

range. This identification is generally performed using an optimization method (e.g. 

least squares type) trying to minimize the overall difference between the measured 

transfer functions (considered as the actual transfer functions) and theoretical transfer 

functions synthesized from modal parameters identification. 
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(2.18)

Among all modal extraction methods, the most common is based on the assumption 

that in the vicinity of the k-th resonance peak, the transfer function can be approximated 

by a frequency response function of a simple oscillator type single degree of freedom. 

Algebraically, this means that the magnitude of FRF is effectively controlled by one of 

the terms in the series that being the one relating to the mode whose resonance is being 

observed.  This technique, commonly known as SDOF (Single-Degree-Of-Freedom) 

modal extraction method, allows to retrieve correctly and relatively simple modal 

parameters of modes whose resonance peaks are clearly separated and the modal 

damping is low. It is based on identification of measured transfer functions h୰ୱሺjωሻ 

using the following simplified approximation. 
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Figure 2.17 Polytec PSV 200 for parameter extraction using SDOF. 
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(2.19)

For ω in the vicinity of the natural frequency ω୩ and where R୰ୱ
୫  and R୰ୱ

୩ represent the 

inertial and elastic residues respectively, whose sum  R୰ୱ is generally ignored in 

identification. This simple technique has the advantage of almost directly identify the 

eigen frequencies based on the resonant frequency amplitude and easily reconstruct the 

shape of the eigen modes by extracting the imaginary component of the transfer 

function displacement/force at the same frequency. 
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PSV200 system automates this task and requires the user select a frequency band in 

which the software will seek mode to extract. For this technique to work properly, 

however, requires that the residues of the neighboring modes of identified mode k are 

negligible, which is not always the case. The unexpected side effects that can occur with 

this extraction method are as follows: 

 The eigen frequency can be distorted in a large proportion if close modes perturb 

the resonance peak of desired mode. This effect is also present to a lesser extent 

if desired mode, even though isolated from others, is highly damped. 

 The extracted mode shapes are even more perturbed by the presence of modes 

near the eigen frequencies, so it is sometimes difficult to reconstruct precisely 

shape of an isolated eigen mode. The use of a SDOF method based on the 

adjustment of a circle in the Nyquist diagram (Circle Fitting) allows obtaining 

better results, but generally requires manual processing to be really effective. 

The source of the most commonly observed error comes from the fact that the 

desired mode k identified by SDOF method is often a complex superposition of 

the desired mode and one or more close modes. It should be noted however that 

contributions from neighboring modes have usually slightly different phase, so 

that it is sometimes possible to distinguish the approximate shape of each of the 

contributions in a temporal animation of identified mode. 

The purpose of the modal measurement technique developed here is to measure 

precisely a large number of modal quantities, the density of modes in the measured 

frequency response functions is generally very high (approximately 10 to 20 modes in 

the measured frequency range). This high modal density introduces coupling effects 

such that it is not possible to extract the eigen frequencies and especially the eigen 

modes with a SDOF modal extraction method. Indeed, even under ideal measurement 

conditions, a significant number of modes are often too close, even with low structural 

damping, considered to be decoupled. It is then necessary to use a modal analysis 

method based on simultaneous identification of multiple modes k (k = k0, k0 + 1, ..., k0 

+ m) based on a minimization problem in the sense of least squared deviation between 

the measured transfer functions ݄௥௦ሺ݆߱ሻ and synthetic  frequency response functions of 

the form ത݄
௥௦ሺ݆߱ሻ:  
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 ത݄
௥௦ሺ݆߱ሻ ൌ ܴ௥௦

௠ ൅ ෍
߮௥

௞߮௦
௞

݉௞ሺ߱௞
ଶ ൅ ௞߱௞߱ߞ2݆ െ ߱ଶሻ

௄బା௠

௞ୀ௄బ

൅ ܴ௥௦
௞  (2.20)

For ߱ ߳ ൣ߱௄బ
െ ∆߱ ,   ߱௄బశ೘

൅ ∆߱൧ included in the vicinity of േ∆߱ of desired eigen 

frequency and where ܴ௥௦
௠ and ܴ௥௦

௞  again represent the inertial and elastic residues of 

identification. 

By analogy with the SDOF method, this class of techniques is called MDOF 

(Multiple-Degree-Of-Freedom). MDOF curve fitting algorithms developed for fitting 

FRFs can be grouped into three classes: 

Local MDOF curve fitting: These methods operate on one measurement at a time, 

but they can simultaneously estimate the parameters of multiple modes at a time. If a set 

of FRFs contains modes which are heavily coupled (resulting from the combined effect 

of heavy damping and small modal frequency separation), then an MDOF fitter is 

usually required to adequately identify the modal parameters. These fitters typically 

apply expression (2.18) to the data in a least squared error sense. That is, a set of 

parameters for two or more modes is found which minimizes the squared difference 

between the FRF data and the model, with modes > 1. 

Global curve fitting: Expression (2.18) makes it clear that all of the FRFs of a 

structure contain the same denominator, hence the same modal pole locations. Only the 

numerators, or residues, are different from measurement to measurement. Global curve 

fitting take advantage of this fact and use all, or a large number of, the FRFs to estimate 

the poles first, and then estimate the residues during a second pass through the data. 

This process yields one global estimate of frequency and damping for each mode, and 

usually provides better mode shape estimates, especially near nodal points where a 

mode’s residues are small and not well defined. 

PolyReference curve fitting: This class of curve fitting extends the idea of a global 

fitter to include multiple references, or multiple rows or columns, of the FRF matrix. 

PolyReference curve fitting method obtains additional estimates of the mode shape by 

curve fitting multiple rows or columns of data from the FRF matrix. These multiple 
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estimates are then combined in a manner which favors the references where each mode 

is more strongly represented, (i.e. its modal participation is greater), to yield a better 

estimate of each mode shape. Repeated roots, (i.e. two or more modes at approximately 

the same frequency but with different mode shapes), can also be found from multiple 

rows or columns of FRF data. A single row or column is not sufficient for this.  

As these processes for modal analysis are relatively complex to properly implement 

from numerical point of view and they require a user-friendly interface to be effective, 

given the available time, to develop internally such methods are not tried. In the market 

of modal analysis software packages, there are indeed a large number of programs that 

implement various versions of these modal parameters extraction methods and generally 

allow direct import of the measurement data from PSV200 system into the universal 

(UNV) file format. 

After a comparison of these programs, LMS Test.Lab software that combines 

benefits of fast computing, friendly user and import data of wide variety of file formats 

is selected. In addition, the curve fitting technique implanted in this software is based on 

an approach called "PolyMAX". This technique is regarded today as being more 

accurate and robust MDOF modal analysis method. 

The new LMS PolyMAX is part of the LMS Test.Lab Structures solution for 

Modal testing and analysis and LMS PolyMAX provides a state-of-the-art modal 

parameter estimation [106]. LMS Test.Lab Structures is an integrated suite of 

applications covering the range of structural dynamic engineering completely. A 

dedicated modal analysis module automatically accesses the measurements taken by 

PSV 200, to compute the modal parameters: mode shape vector, resonant frequency, 

damping factor and modal mass. The new LMS PolyMAX method brings a 

revolutionary modal parameter estimation technique that is easy to use, quick to 

perform, substantially reduces operator-dependant judgment, and that delivers high 

quality modal parameter estimations, even on complex data.  

The LMS PolyMAX method is a further evolution of the least-squares complex 

frequency-domain (LSCF) estimation method. That method was first introduced to find 

initial values for the iterative maximum likelihood method [107]. The method estimates 
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a so-called common-denominator transfer function model [108]. It was found that these 

“initial values” yielded already very accurate modal parameters with a very small 

computational effort [107, 109, 110]. The most important advantage of the LSCF 

estimator over the available and widely applied parameter estimation techniques [111] 

is the fact that very clear stabilization diagrams are obtained. A thorough analysis of 

different variants of the common-denominator LSCF method can be found in [110]. A 

complete background on frequency-domain system identification can be found in [112]. 

 It was found that the identified common denominator model closely fitted the 

measured frequency response function (FRF) data. However, when converting this 

model to a modal model by reducing the residues to a rank-one matrix using the 

singular value decomposition (SVD), the quality of the fit decreased [109]. Another 

feature of the common denominator implementation is that the stabilization diagram can 

only be constructed using pole information (eigen frequencies and damping ratios). 

Neither participation factors nor mode shapes are available at first instance [113]. The 

theoretically associated drawback is that closely spaced poles will erroneously show up 

 

Figure 2.18 Stabilization diagram by applying PolyMAX estimation method. 
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as a single pole. 

These two reasons provided the motivation for a polyreference version of the LSCF 

method, using a so-called right matrix-fraction model. In this approach, also the 

participation factors are available when constructing the stabilization diagram. The main 

benefits of the polyreference method are the facts that the SVD step to decompose the 

residues can be avoided and that closely spaced poles can be separated. The method was 

introduced in [106, 113].  

2.9.1 Steps of applied technique for modal extraction  

Finally, the steps of a typical modal extraction process are described. The various 

stages of this procedure are as follows: 

1. Export of the transfer functions measured from the PSV200 into a UNV file 

format. 

2. Import of the data into LMS Test.Lab and making some small modification to the 

data, to make it compatible with the LMS Test.Lab software for modal analysis. 

3. Modal analysis of experimental data in LMS Test.Lab using LMS PolyMAX 

estimation method. 

a. The first step is to establish the stabilization diagram to determine the true 

modal frequency, damping and participation factors. The values of rank 

(order), freq, damp and type (pole, vector or stable etc.) at the bottom of the 

stabilization diagram can be seen by placing the mouse cursor on the pole in 

stabilization diagram. 

b. A modal indication function (MIF) measuring the probability of a mode as 

function of frequency is then calculated relying preferably on the amplitude 

of the measured transfer functions (Figure 2.17). This step generally helps to 

identify the number of modes present globally in the selected frequency 

range, but can sometimes provide an inaccurate estimate. The user must 

manually check the number of phase jumps and the peaks present. 
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c. Visually inspecting the symbols in the stabilization diagrams, which are 

based on similarity in frequency, damping ratio and/or mode vector between 

poles belonging to subsequent model order: o-type represents unstable 

poles; f-type represents frequency within a given precision is stable, v-type 

represents frequency and modal  participation factors is stable , s-type 

means the pole’s frequency, damping and pole vector are stable within the 

tolerances, d-type means the pole’s frequency and damping do not change 

within the tolerance. Search for a vertical column of poles, especially the 

column, which contain lot of s-type and d-type poles. It is not important that 

this column should exist at the lower model orders, nor that it is a straight 

column at the lower orders. 

d. Checking the s-type and d-type poles in the selected column and search for 

the pole in the column that is most stable in frequency and which stabilizes 

in damping. 

e. Based on the user-interpretation of the stabilization diagram, computation of 

the mode shapes and the lower and upper residuals in a least-squares sense 

is performed. 

4. Evaluation of the quality of identified modes and selection of modes. 

a. The auto Modal Assurance Criterion (MAC) is used to investigate the 

validity of the estimated modes within the same mode set. If mode shape 

vectors are estimates of the same physical mode shape, the modal assurance 

criterion should approach unity (100%). If mode shape vectors are estimates 

of the different physical mode shapes, the modal assurance criterion should 

be low. A high quality mode set must correspond to a MAC matrix close to 

identity matrix. In this case, the non-diagonal terms are also of interest, each 

of these terms symbolizes some sort of coupling of mode pair.  

b. For proportionally damped systems, each modal coefficient for a specific 

mode of vibration should differ by 0° or 180 °. The Modal Phase Colinearity 

(MPC) is an index expressing the consistency of the linear relationship 

between the real and imaginary parts of each modal coefficient. This 
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concept is essentially the same as the ordinary coherence function with 

respect to the linear relationship of the frequency response function for 

different averages or the modal assurance criterion (MAC) with respect to 

the modal scale factor between modal vectors. The MPC should be 1.0 (100 

percent) for a mode that is essentially a normal mode. A low value of MPC 

indicates a mode that is complex (after normalization) and is an indication 

of a non-proportionally damped system or errors in the measured data 

and/or modal parameter estimation. 

c. Another indicator that defines whether a modal vector is essentially a 

normal mode is the Mean Phase Deviation (MPD). This index is the 

statistical variance of the phase angles for each mode shape coefficient for a 

specific modal vector from the mean value of the phase angle. The MPD is 

an indication of the phase scatter of a modal vector and should be near 0 ° 

for a real, normal mode. 

d. The eigen modes that do not meet the MAC, MPC or MPD criteria are 

either removed from the table of modal vectors, or identified again by curve 

fitting by changing slightly the frequency range of extraction or the number 

of identified modes simultaneously. 

5. For further procedure of mixed numerical experimental identification of 

constituent properties, the modal data (mesh, frequencies, damping and mode 

shapes) are exported into a UNV file format.  

Finally, using the proposed modal testing and analysis technique, it is possible to 

extract a large number of eigen modes (average between 10 and 20) with an excellent 

quality of mode shapes, even when the modes are relatively close and the internal 

damping becomes important. In general, approximately 80% of found modes in the 

selected frequency range can be extracted with sufficient accuracy for further use in 

mixed numerical-experimental identification process.  
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CHAPTER  3. MATERIAL AND MODELLING 

3.1 OBJECTIVE 

An accurate and efficient numerical model is of prime importance for developing a 

powerful mixed numerical experimental identification technique. In the context of 

mixed numerical experimental identification technique, the role of the simulation model 

is to provide an assessment to the response of the tested specimen for variable identified 

parameters. During the iterative solution of the inverse problem of mixed identification, 

consistency and accuracy of numerical model directly influence the accuracy of 

identified parameters. In order to ensure their determination with a good degree of 

precision, numerical solution of the problem needs to be as sensitive as possible to all 

the identified parameters. The FE method is the most attractive method for dealing with 

such problems. It is possible to incorporate various FE models which improve the 

accuracy of the solution, simplify the formulation, introduce numerical stability and 

guarantee convergence, and cost-effectiveness of computation. In addition, because of 

the iterative nature of mixed identification procedures, computational efficiency of the 

software solving numerical directly determines inevitable productivity and performance 

of mixed identification technique.  

3.2 MATERIAL SPECIFICATION 

The specifications of test specimen are listed in Table 3.1 below. Specimens are named 

in the present work as follow. 

Alporas _ X X 

                            Sample number ൜
2: with low density    
3: with high density  

                              Size ൜
B:  Big  plate  
S: Small plate 

                    Material name 
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Table 3.1 Specification of aluminum foam specimen 

Material Size (cm3) 
Average density 

(g/cm3) 

Experemental 

response mesh 

Density mesh 

measured by 

CT 

Alporas_B2  49.6×40×3.02  0.247  36×29 55×40×5 

Alporas_B3  49.7×40×3.09  0.466  36×29 55×40×5 

Alporas_S2  40×31.2×3  0.246  32×26 40×35×5 

Alporas_S3  40×31×3.02  0.443  32×26 40×35×5 

Alporas foams were supplied as large plate, 2000 × 400 × 30 mm3, without skin on 

the outer surface which cut into smaller panels with the dimensions mentioned in Table 

3.1. The density of individual specimens was calculated by weighting the specimens on 

a balance and measuring their dimensions using a digital calliper. Dimensions, relative 

densities, experimental response mesh (measured by scanning laser vibrometer) and the 

density mapping mesh measured by CT are summarised in Table 3.1. 

3.3 VISCOELASTIC CONSTITUTIVE MODELLING 

In general, the constitutive behavior of viscoelastic materials might be said to 

depend upon the frequency, working temperature, amplitude and type of excitation 

[114-117]. A mathematical model considering all these effects simultaneously has not 

yet been developed, is very difficult to conceive and in practice has somewhat limited 

interest and applicability. Thus, for simplicity, since the amplitude and type of 

excitation effects have been reported to be of reduced importance, these parameters are 

often overlooked. However, the temperature and frequency dependent mechanical 

properties of the viscoelastic materials still introduce serious difficulties in the 

definition of an accurate mathematical model able to simulate properly the dynamic 

behavior of the damped structure. Therefore, for practical reasons, isothermal conditions 

are usually assumed in the simulation conditions and merely the frequency dependent 

constitutive behavior is directly taken into account upon the constitutive mathematical 

model. Following this assumption, the design of passive viscoelastic damping 
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treatments, for broad temperature range applications, is usually conduced at several 

constant temperature levels, selected within the temperature range, considering 

isothermal conditions. 

The three primary mechanisms of damping which are important in the study of 

mechanical systems are: namely internal (or material) damping, structural damping (at 

joints and interfaces) and fluid damping (through fluid-structure interaction). In current 

work, interests are in modelling material damping. Material damping, referred to as 

internal damping, is the phenomenon within the material in which energy is dissipated 

[118]. Damping plays an important role in attenuating the response of system at 

resonance. Understanding material damping is an important step in the development of 

the analytical tool that is needed by design engineers.  Since the first experimental 

observation of material (or internal) damping performed by Coulomb [119], where he 

not only hypothesized regarding the microstructural mechanisms of damping but also 

undertook experiments which proved that the damping of torsional oscillations is not 

caused by air friction but by internal losses in the material, over the following centuries 

different methods to characterize frequency dependent damping, in general, and the 

viscoelastic material’s constitutive behavior (viscoelastic damping), in particular, were 

proposed [120]. 

The integration of the damping properties in a modal identification process needs 

to have a numerical modelling tool that can provide the modal properties of a damped 

structure. To incorporate the material damping character in mixed numerical-

experimental identification technique for determination of materials elastic properties, it 

is necessary to adopt FE code which is capable to extract the damped modal properties. 

The desire to include damping effects in a simulation of the dynamic behavior of a 

structure using the FE method is to pose an eigenvalue problem arising from a model of 

dissipative physical behavior. In order to integrate these aspects in simulation model, 

the FE software should have the capabilities to solve the corresponding complex 

eigenvalue problem. 
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3.4 DAMPING MODELLING AND SOLUTION APPROACHES 

In engineering practice, the quality of a vibration model of a mechanical system is 

essential for a wide range of applications such as, the prediction of system dynamic 

behavior, damage detection, system design and optimization. Most mechanical systems 

exhibit damped dynamic behaviors, which may prevent the systems from being 

accurately identified since understanding of damping mechanisms is still quite 

primitive. Therefore, the estimation or identification of damping models is always the 

central topic in experimental modal analysis. By far the most common damping model 

employed in practice is the so-called 'proportional damping' or 'Rayleigh damping' 

introduced by Rayleigh [121], which is linear and supposed to be determined only by 

the instantaneous generalized velocity. And the damping matrix is assumed to be a 

linear combination of system's mass and stiffness matrices and hence real normal modes 

as those of the undamped case can be preserved. Caughey [122] presented the general 

conditions on the form of proportional damping matrix, under which a damped system 

processes classic real normal modes. A series expression for damping matrix in terms of 

mass and stiffness matrices was proposed by Caughey and O'Kelly [123] so that a 

damped system can be decoupled by real normal modes. And it was also shown that the 

Rayleigh damping is just a special case of this general expression. Since the 

proportional damping matrix can be diagonalized simultaneously with the mass and 

stiffness matrices using real normal modes, a proportionally damped system can be 

decoupled into a set of principal single-degree-of-freedom (SDOF) systems. Based on 

the decoupled damped system, for majority modal analysis applications  [104, 124], 

general expression of frequency response function (FRF) in the form of real normal 

modes can be derived. Then the damping parameters can be easily estimated using 

measured FRFs and the modal damping matrix (viscous or hysteretic) can be 

established by using the normal mode theory. 

However, most practical structural systems under modal testing possess general 

non-proportional damping and hence exhibit complex mode behavior. For a non-

proportionally damped system, the equations of motion cannot be decoupled in the 

modal coordinates due to the non-diagonal nature of the modal damping matrix. And 

consequently the system possesses complex modes instead of real normal modes. From 
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the viewpoint of mathematics, complex modes refer to the complex solution of the 

eigenproblem of a general damped system, which can be transformed into the 

vibrational characteristics of the system. For complex modes, each natural frequency 

and mode shape of the system is described in terms of complex quantities. In spite of 

lots of research efforts, understanding and identification of complex modes is not as 

well developed as those for real normal modes. To overcome the difficulties induced by 

the existence of complex modes in the identification of a mechanical system, real 

normal modes are usually required in experimental modal analysis. Ibrahim [125], Lin 

and Ibrahim  [126] and Chen et al. [127] proposed methods to obtain the best real 

normal modes from identified complex modes. The extracted normal modes were then 

used to construct a proportional damping model together with modal damping matrix. 

Proportional damping is well understood and commonly accepted in the description 

of damped dynamic behavior of a system. Based on a generalized proportional damping 

model, Adhikari [128] presented a method for identification of damping matrix using 

experimental modal analysis in the case where the system to be identified is effectively 

proportionally damped and the modes almost complex. In view of identification of 

damping in time domain, Gaylard [129] presented an improved weighted matrix integral 

of system response functions to identify proportional damping model by introducing a 

state-space approach. Angeles and Ostrovskaya [130] proposed a method to extract 

proportional damping component of an arbitrary damping matrix, which approximates 

optimally the original damping matrix in the least-square sense. However, even results 

drawn from the best proportional-damping approximation can be practically misleading 

in most cases. 

In 1990s, a large number of literatures were devoted to the investigation of non-

proportional damping of a mechanical system [131-134], which still remains an issue in 

modal parameter estimation. A few effective methods have been developed to identify 

non-proportional damping matrix from experimentally measured complex modes in 

case of lightly damped structures [135-137]. Woodhouse [135] discussed linear 

damping models: the familiar dissipation-matrix model and the general linear model and 

presented simple expressions for complex modal data and transfer functions. Following 

this idea, Adhikari and Woodhouse [136] presented a first order perturbation method to 
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obtain a full viscous (non-proportional) damping matrix from complex modal data in 

the case of sufficiently light damping. This method constructs the physical damping 

matrix using the inverse transformation of the modal damping matrix from the 

decoupling of the damped system. The two authors [137] further developed the first 

perturbation method to identify a non-viscous (non-proportional) damping model by 

using experimentally identified complex modal data together with the system mass 

matrix. Prells and Friswell [138] considered to determine symmetric non-proportional 

modal damping matrix using real normal modes and undamped natural frequencies 

based on a generalized modal model of a system. In this case the modal damping matrix 

is symmetric but non-diagonal due to non-proportional damping. Kasai and Link [139] 

presented a measure of non-proportional damping in terms of damping ratio based on 

the investigation of the difference between proportional and general viscous damping 

models. 

To date, most proposed methods to identify or estimate damping whether it is 

proportional or non-proportional [128-139]  are based on a viscous damping model, 

whose mechanism is well understood. In fact, for simplicity in engineering calculation 

and analysis, both viscous damping and hysteretic damping models are generally 

adopted to describe damping properties in linear vibratory mechanical systems  [104, 

124]. They are also the most often encountered damping types in practice. Although 

other damping models have been proposed from time to time, it has become common 

practice in modal analysis that either a hysteretic or viscous damping model can be 

readily used in the interpretation of measured vibration data. However, no verification 

has been made as to show whether or not this kind of arbitrary interpretation is 

physically reasonable. Due to the uncertainty of the type of damping model in practical 

complex structural systems, it is important to demonstrate theoretically whether this 

arbitrary choice of damping model will cause large errors in the estimation of modal 

parameters. Because these parameters are regarded as accurate ones once estimated and 

they are to be used with confidence to establish the system's mass and stiffness matrices 

or modify these matrices of the analytical model which are modeled using FE Method. 

A large number of studies [125-139] have ignored this topic, which may have an effect 

on the identified results of the modal analysis for a damped system. The primary 

research work on the issue was conducted by Balmes in Ref. [140], where an 
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identification procedure was proposed to extract the normal modes from the 

experimental complex modes. Meanwhile, the relation between normal modes 

(hysteretic damping case) and complex modes (viscous damping case) was investigated 

in details. It was found that the normal modes are clearly associated with the complex 

modes in terms of modal damping model and eigenvectors in the case of a 

proportionally damped system. In fact, for the general mechanical systems with same 

mass and stiffness matrices and different damping properties (such as viscous damping 

or hysteretic damping), there may exist a relationship between the modal models of 

these two systems since they have the similar FRF models, which may also represent 

systems' dynamic characteristics in nature. If this relationship can be shown, it may help 

to understand the difference between the same systems with various damping models 

and choose a suitable damping model for a mechanical system when modal analysis is 

performed. 

The relationship between viscous and hysteretic damping models in proportional 

case and general non-proportional case are explained by R.M. Lin [141]. Based on the 

identified results of seven simulated numerical examples and an experimental test, the 

author shows that the error for the estimation of modal parameters due to the wrong 

interpretation of damping model (data from viscous damping model have been 

interpreted as hysteretic one or vice versa) is really very small. And in the case that the 

damping is distributed, for either types of damping, there exists a physically sensible 

(positive-definite or semi-positive definite) equivalent damping matrix on the basis that 

these two systems (in fact, only the damping matrix is different) have the same response 

model. On the other hand, however, if the damping is localized in the system, the 

correct interpretation of damping model becomes greatly important. Because if the 

mathematical model of damping is sought (damping matrix of the system), in this case 

there are no physically sensible equivalent damping matrices on that basis. 

Several models with dissipative behavior are described in the literature, some are 

available in the commercial FE codes. Among the most common models in mechanical 

vibration include: viscous damping, proportional viscous damping or Rayleigh and 

hysteretic or structural damping. 
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3.4.1 Viscous damping model 

The model with a viscous damping is assumed that the dissipative effects are 

proportional to the velocity. The mechanical analog that best fits this model is a 

dashpot. The simple constitutive relationship for a dashpot indicates that the force in the 

fluid depends on the rate the dashpot is displaced, or equivalently the velocity of the 

dashpot. The derivation of equation of motion, the eigenvalue problem and the 

frequency response functions for this type of model is presented here.  

3.4.1.1 Derivation of the equations of motion 

The general equation of equilibrium of elastodynamics is simply the equilibrium 

equation of elastostatics with an additional inertial term. It can be written as [104, 124, 

142, 143], 

સ܂ોሺܠ, ሻݐ ൅ ,ܠሺ܎ ሻݐ െ ሷܝሻܠሺߩ ሺܠ, ሻݐ ൌ 0 ܠ׊ א  Ω  (3.1)  

where ો denotes the vector associated with the stress tensor, ܎ is the body force per 

unit volume, ܝ is the displacement vector of a point in x-coordinate, ߩ is the mass 

density, ሺ ሻ܂represents a transpose, સ represents the derivative operator and ݐ is time. 

Consider a model where the viscous dissipative effects are assumed to be 

proportional to the velocity and material strain rate. In this case, the damping has a 

component related to deformation that take place in the material constitutive law thus 

defining ોሺܠ, ,ܠሺܝ ሻ and a component related to displacementݐ  .ሻݐ

One of the elementary model is the ideal elastic element characterized by Hooke’s 

law. 

 ોሺܠ, ሻݐ ൌ ۱′ሺܠሻઽሺܠ,   ሻ  (3.2)ݐ

Where ۱′ሺܠሻ is the matrix of elasticity. The hookean solid reflects only one 

property of a body, i.e. its elasticity. It does not reveal other rhelogical effects such as 

stress and strain relaxation.  
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Figure 3.1 Kelvin-Vogit Model 

 

Another elementary element is posed by a linear viscous damper filled with a 

Newtonian fluid. When the piston moves, the fluid flows through the gaps and thus 

generates a resistive force which results from the viscosity of the fluid. A constitutive 

formula has the form: 

 ોሺܠ, ሻݐ ൌ ۱′′ሺܠሻઽሶ ሺܠ,   ሻ (3.3)ݐ

Where ۱′′ denotes the viscosity. The stress is directly propotional to the strain rate. 

The connection of the spring and the damper is parallel creates the so called 

Kelvin-Vogit model (Figure 3.1). It is a very often used model for linear viscoelastic 

solid. The resistive force opposing external loading is posed by the sum of the spring 

and the damper resistive forces. With damping proportional to the strain rate, the 

constitutive law can be written as: 

 
ોሺܠ, ሻݐ ൌ ۱′ሺܠሻઽሺܠ, ሻݐ ൅ ۱′′ሺܠሻઽሶ ሺܠ,   ሻ (3.4)ݐ

Where ઽ is the strain tensor, ۱′ is the matrix of elasticity and ۱′′ is the damping matrix. 

The above equation illustrates an important characteristic of viscoelastic materials, 
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namely that the stress in the material depends not only on the strain, but also on the 

strain rate.  

The part of damping associated with displacement, proportional to the velocity 

ሶܝ ሺܠ,  ሻ can be written in the form of vector of dissipative forcesݐ

,ܠሺ܉܎  ሻݐ ൌ ۱′′′ሺܠሻܝሶ ሺܠ,   ሻ (3.5)ݐ

With ۱′′′ the matrix describing viscous behavior and is widely accepted as a basic 

measure of the damping. 

 The equilibrium equation (3.1) becomes, 

 સ܂ોሺܠ, ሻݐ ൅ ,ܠሺ܎ ሻݐ ൌ ሷܝሻܠሺߩ ሺܠ, ሻݐ ൅ ۱′′′ሺܠሻܝሶ ሺܠ,   ሻ  (3.6)ݐ

By inserting the equation (2.4) in the expression (2.6), while neglecting the volume 

forces, the following expression is obtained, 

 સ܂ሾ۱′ሺܠሻઽሺܠ, ሻݐ ൅ ۱′′ሺܠሻઽሶ ሺܠ, ሻሿݐ ൌ ሷܝሻܠሺߩ ሺܠ, ሻݐ ൅ ۱′′′ሺܠሻܝሶ ሺܠ,   ሻ  (3.7)ݐ

Under the assumption of linearity in geometry, the strain and strain rate can be written 

as; 

 ઽሺܠ, ሻݐ ൌ સܝሺܠ,   ሻ (3.8)ݐ

 ઽሶ ሺܠ, ሻݐ ൌ સܝሶ ሺܠ,   ሻ (3.9)ݐ

So the relationship (3.7) becomes 

 સ܂ሾ۱′ሺܠሻસܝሺܠ, ሻݐ ൅ ۱′′ሺܠሻસܝሶ ሺܠ, ሻሿݐ െ ሷܝሻܠሺߩ ሺܠ, ሻݐ െ ۱′′′ሺܠሻܝሶ ሺܠ, ሻݐ ൌ 0 (3.10)

To obtain the weak form of the dynamic equilibrium equations multiply both sides by 

an arbitrary test function ܂ܝߜ and integrate over the entire space Ω by parts. This 

produces 
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 න ܝሾ۱′સ܂ሼસ܂ܝߜ ൅ ۱′′સܝሶ ሿ െ ሷܝߩ െ ሶܝ۱′′′ ሽ dΩ ൌ 0
ஐ

(3.11) ܝߜ׊              

Where ܝߜ is the virtuel displacement vector (to ease the writing, the coordinates x and 

the time t will now be omitted if not necessary for understanding). Integrating by parts, 

the formulation (3.11) becomes in the weak form as 

 

െ න સ܂ܝߜሾ۱′સ ൅ ۱′′સܝሶ ሿdΩ ൅ න ܝሾ۱′સ܂ۼ܂ܝߜ ൅ ۱′′સܝሶ ሿd ∂Ω
డஐஐ

െ න ሷܝ܂ܝߜߩ
ஐ

 dΩ െ න ሶܝ′′′۱܂ܝߜ  dΩ
ஐ

ൌ  ܝߜ׊                0

(3.12)

Where N is the operator of the direction cosines of the outer normal to the surface ∂Ω of 

the body Ω. By inserting the matrix of shape functions H to approach the real and 

virtual displacements 

 

ܝ ؆ ,ܠ௛ሺܝ ሻݐ ൌ ۶ሺܠሻܙሺݐሻ 

ܝߜ ؆ ,ܠ௛ሺܝߜ ሻݐ ൌ ۶ሺܠሻܙߜሺݐሻ 

(3.13)

Where ܙ and ܙߜ are the vectors of discrete real and virtual displacements and the index 

h represents the character approached, assuming the boundary ∂Ω free of constraints 

(free-free boundary condition type) 

ܝሾ۱′સ܂ۼ  ൅ ۱′′સܝሶ ሿ ൌ 0 (3.14)

The following equation is obtained 
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නሺસ۶ܙߜሻ܂ሾ۱′સ ൅ ۱′′સܝሶ ሿdΩ ൅ න ሷܙ۶܂ሻܙߜሺ۶ߩ
ஐ

 dΩ
ஐ

൅ නሺ۶ܙߜሻܙ۶′′′۱܂ሶ  dΩ
ஐ

ൌ  ܙߜ׊                0

(3.15)

For the identification of virtual displacements, this equation becomes 

 

 

δ܂ܙ ቐන સ۶܂

ஐ

ሾ۱′સ۶ܙ ൅  ۱′′સ۶ܙሶ ሿ dΩ ൅ න ૉ۶ܙ۶܂ሷ
ஐ

 dΩ

൅ න ሶܙ۶′′′۱܂۶  dΩ
ஐ

ቑ ൌ  ܙࢾ׊                0

(3.16)

As this equality must be checked regardless of the discrete virtual displacements, the 

discrete weak form is written as; 

 

න સ۶܂

ஐ

ሾ۱′સ۶ܙ ൅  ۱′′સ۶ܙሶ ሿ dΩ ൅ න ૉ۶ܙ۶܂ሷ
ஐ

 dΩ

൅ න ሶܙ۶′′′۱܂۶  dΩ
ஐ

ൌ  ܙߜ׊                0

(3.17)

By identifying the global matrix of stiffness, damping and mass as  

 ۹ ൌ  න સ۶܂

Ω

۱′સ۶ dΩ (3.18)
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 ۲ ൌ  න સ۶܂

Ω

۱′′સ۶ dΩ ൅ න ܂۶

Ω

۱′′′۶ dΩ   (3.19)

ۻ  ൌ  න ૉ۶۶܂
Ω

 dΩ (3.20)

Finally the semi-discrete matrix form relating the dynamic behavior in free condition to 

viscous damping of the structure is achieved. 

ሷܙۻ  ሺݐሻ ൅ ሶܙ۲ ሺݐሻ ൅ ሻݐሺܙ۹ ൌ 0 (3.21)

 If it is assumed that damping is only due to the deformation of the structure, which has 

set aside C"', the structural damping matrix is written as, 

 ۲ ൌ  න સ۶܂

Ω

۱′′સ۶ dΩ ൌ න ܂۰

Ω

۱′′۰ dΩ   (3.22)

With B the deformation matrix ሺ۰ ൌ  સ۶ሻ . 

viscous Model in continuous harmonic system 

Assuming a deformation of the form 

ሻݐሺ̃ߝ  ൌ ௝ఠ௧ (3.23)݁ߝ

With ࢿ෤ the complex strain of amplitude  ࢿ and of frequency ߱, The constitutive law 

taking into account a viscous damping system for one-dimensional vibrations in a 

continues harmonic system (considering the expression 3.4 ) can be written as, 

 σ෥ሺtሻ ൌ C′̃ߝሺݐሻ ൅ ݆߱C′′̃ߝሺݐሻ (3.24)
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3.4.1.2 Eigenvalue Equation 

In formulating the discrete displacements q in the form 

ሻݐሺܙ  ൌ ఒ௧ (3.25)݁ܘ

Where ߣ is a scalar and p is a vector of constants, and introducing this expression in the 

relation (3.21), the following eigenvalue problem is obtained, 

 ሺ۹ ൅ ۲ߣ ൅ ܘሻۻଶߣ ൌ 0 (3.26)

Where ߣ and p are both the eigenvalue and eigenvector. To be able to easily solve this 

quadratic eigenvalue problem of dimension n, it is best to turn it into a classic linear 

form of size 2n. Implementation of classical linearization, as featured in many vibration 

texts and papers, for example [144-149], requires the transformation of square matrices 

of size n to 2n, by adding another set of equations in M or K to obtain, 

ܝۯ  ൌ (3.27) ܝ۰ߣ

Where, for K augmentation,  

 

ۯ ൌ ቂ ૙ ۹
െ۹ െ۲

ቃ 

۰ ൌ  ቂ۹ ૙
૙ ۻ

ቃ 

ܝ ൌ  ሼࢗ, ሶࢗ ሽࢀ 

 

(3.28)

 

or using M 

ۯ ൌ ቂ ૙ ۻ
െ۹ െ۲

ቃ 

(3.29)
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۰ ൌ ቂۻ ૙
૙ ۻ

ቃ 

ܝ ൌ ሼࢗ, ሶࢗ ሽࢀ 

Where the matrices ۯ and ۰ of order 2n are symmetrical but not strictly positive 

definite and the magnitude ܝ is the state vector of the system. One advantage in using 

equation (3.29) is that the matrix B remains symmetric and positive definite, if M is 

already symmetric and positive definite. In equation (3.28), the symmetric form is 

preserved in B, but in some K may be not positive definite.  

Inserting the general solution, based on (3.25), 

ሻݐሺܝ  ൌ ൛݁ܘఒ௧, ఒ௧ൟ݁ܘߣ
ࢀ

ൌ ݁ఒ௧ሼܘ, (3.30) ࢀሽܘߣ

The linearized form of the generalized eigenvalue problem corresponding to the non-

rotating dissipative structures can be written as, 

 ሺۯ െ ܝ۰ሻߣ ൌ 0 (3.31)

 With 

ܝ  ൌ ሼܘ, (3.32) ࢀሽܘߣ

Where ߣ and u form the eigen pair the problem increased to size 2n, the eigenvalue ߣ 

and the sub-vector p of dimension n is identical to the grandeur of the quadratic eigen 

problem (3.26). 

Since the matrices A and B are real symmetric but not strictly positive definite, it 

shows that for under-damped systems eigen solutions to the homogeneous matrix 

equation (3.31) consist of n pairs of complex conjugate eigenvalues 

௜ߣ  ൌ  െߙ௜  േ ݆߱௜ ሺ݅ ൌ 1, 2, … , ݊ሻ (3.33)
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Where the positive quantities ߙ௜  and ߱௜ ሺ݅ ൌ 1, 2, … , ݊ሻ are the modal damping 

coefficients and the eigen frequency of the structure, and n conjugate pairs of complex 

eigenvectors ࢏ܝ and ܝഥ࢏ ሺ݅ ൌ 1, 2, … , ݊ሻ of dimension 2n, whose first n components 

constitute the eigen form ࢏ܘ  and ܘഥ࢏ ሺ݅ ൌ 1, 2, … , ݊ሻ of the studied system, 

 

                  ሺۯ െ ࢏ܝ௜۰ሻߣ ൌ ሾሺۯ െ ௜۰ሻߙ െ ݆߱௜۰ሿ࢏ܝ ൌ 0 

             ൫ۯ െ ҧߣ
௜۰൯ܝഥ࢏ ൌ ሾሺۯ െ ௜۰ሻߙ െ ݆߱௜۰ሿܝഥ࢏ ൌ 0      

(3.34)

Note that the characteristic ߱௜ and ߙ௜ ሺ݅ ൌ 1, 2, … , ݊ሻ are conventionally related as; 

 
ા࢏ ൌ ࢏ࢻ

ඥ࢏ࢻ
૛ା࣓࢏

૛
ሺ݅ ൌ 1, 2, … , ݊ሻ                    (3.35)

Where the ા࢏ሺ݅ ൌ 1, 2, … , ݊ሻ are the modal damping factors or damping relation of the 

modal structure. 

3.4.1.3 Special case: the proportional model 

The model of proportional damping is a special case of the model where the 

viscous damping matrix is a linear combination of mass and stiffness matrices. To 

achieve this model, with the damping proportional to the velocity of the structure, 

simple forms for C''  and C''' are selected, 

 ۱′′ ൌ (3.36) ۱′ߚ

 ۱′′′ ൌ (3.37) ߛ

Where ߚ and  ߛ are the constants. In this case, the damping matrix is 

 ۲ ൌ න ߚ સ۶܂

Ω

۱′સ۶ dΩ ൅ ߛ න ܂۶

Ω

۶ dΩ  ൌ ۹ߚ ൅ (3.38) ۻࢻ 



Chapter 3                                                                                                                    Material and modelling 

3.17 

       With 
ߙ ൌ

ߛ
ߩ

 (3.39)

This particular form of damping is also known as Rayleigh damping. With this model, 

the condition known as Caughey [8] is achieved. 

૚۲ିۻ۹  ൌ ૚۹ (3.40)ିۻ۲

Ensuring that the damped vibrational modes are real (classical normal modes), which 

allows to solves the problem without the need for a complex eigenvalue solver. This 

advantage explains why this type of damping is often included in codes of modal 

analysis by commercial FE packages, despite its low realism. 

With these assumptions, it is easy to establish the relation between ߙ and ߚ, and the 

modal damping ܿ࢏ of mode ݅ 

 

࢏ܿ ൌ ௜ܘ
௜ܘ۲܂ ൌ ௜ܘ

۹ߚሺ܂ ൅  ௜ܘሻۻߙ

݅ܘߚ =
݅ܘ۹܂ ൅ ݅ܘߙ

݅ܘۻ܂ ൌ ݅݇ߚ ൅  ݅݉ߙ

(3.41)

Where ݇௜ and ݉௜ are respectively the modal stiffness and mass of mode ݅ and p௜ 

denotes the eigenvector of mode ݅. 

Therefore, the modal damping factor ζ௞ of mode k is a function of eigen frequency 

ω௞ of mode ݇ 

 

ζ௞ ൌ
௞ܥ

2݉௞߱௞
ൌ

௞݉ߙ

2݉௞߱௞
൅

௞݇ߚ

2݉௞߱௞
 

ൌ ఈ

ଶఠೖ
൅ ఉఠೖ

ଶ
ൌ ζఈ ൅ ζఉ  

(3.42)

With  ߱௞
ଶ ൌ ݇௞ ߱௞⁄  



Chapter 3                                                                                                                    Material and modelling 

3.18 

Note that with Rayleigh damping, the changes in the frequency function of the 

modal damping factor is independent of mass and modal stiffness. This gives indeed a 

factor ζ௞ composed of a proportional term ߱௞  and a term inversely proportional to ߱௞. 

The modal damping factor is defined solely by ߙ,  .and the eigen frequency ߱௞, e.g ߚ

geometry do not influence this factor.  

It is possible to extend this approach to proportional damping said generalized, or 

damping matrix (D) takes the form [128] 

 ۲ ൌ ۻ૚۹ሻିۻሺߙ ൅ ሻ۹ (3.43)ۻሺ۹ି૚ߚ

With ߙሺିۻ૚۹ሻ  and ߚሺ۹ି૚ۻሻ as the functions of frequency. Modal damping factors 

are then given by 

 ζ௞ ൌ
ሺ߱௞ߙ

ଶሻ
2߱௞

൅
߱௞ߚሺ߱௞

ଶሻ
2

 (3.44)

 Given the first equality in expression (3.42), taking ߚ ൌ 0,  

ሺ߱௞ߙ  
ଶሻ ൌ 2߱௞ζ௞ ൌ

ܿ௞

݉௞
 (3.45)

This makes it possible to find functions α and β that allow to better correlate the modal 

damping factors of experimental and theoretical in the case strictly proportional. 

3.4.1.4 Frequency response function 

Resuming eigenvalue system presented in equation (3.31) 

 ሺۯ െ ௜ܝ௜۰ሻߣ ൌ 0 ሺ݅ ൌ 1,2, … ,2݊ሻ (3.46)

The eigenvectors of this system have the characteristics of the following orthogonality 
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܃ۯ܂܃ ൌ diagሾαଵ, … , α௜, … , α௡, αതଵ, αത௜, … , αത௡ሿ 

܃۰܂܃ ൌ diagൣܾଵ, … , ܾ௜, … , ܾ௡, തܾ
ଵ, തܾ

௜, … , തܾ
௡൧ 

(3.47)

With ܃ ൌ ሾuଵ, … , u௜, … , u௡, uതଵ, uത௜, … , uത௡ሿ and where α௜ and ܾ௜ are complex constants, 

while the eigen values can be written as; 

௜ߣ  ൌ
α௜

ܾ௜
 (3.48)

The vector of forces is written as; 

ܚ  ൌ ቄ܎
0

ቅ (3.49)

Where ܎ is the vector of external excitation. Therefore, for a harmonic excitation of 

frequency ω, the expression become 

 ሺെۯ ൅ eఠ௧ܠሻ࡮݆߱ ൌ e௝ఠ௧ (3.50)ܚ

and ܠ ൌ ሺെۯ ൅ ݆߱۰ሻି૚ܚ ൌ ۶ሺωሻ(3.51) ܚ

Where ۶ሺωሻ is the matrix of the transfer functions and x the amplitude of the 

oscillations. Pre-and post-multiplying this matrix by U and its transpose 

 

܃۶ሺωሻ܂܃ ൌ ۯሺെ܂܃ ൅ ݆߱۰ሻି૚܃  

ൌ diag ቈ
1

െαଵ ൅ ଵܾ߱࢐
, … ,

1

െαത௡ ൅ തܾ߱࢐
௡

቉ 

ൌ diag ቈ
1

ܾଵሺെߣଵ ൅ ሻ߱࢐
, … ,

1
തܾ

௡൫െߣҧ
௡ ൅ ൯߱࢐

቉ 

(3.52)

It follows 
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۶ሺωሻ ൌ diag܃ ቈ
1

ܾଵሺെߣଵ ൅ ݆߱ሻ
, … ,

1
തܾ

௡൫െߣҧ
௡ ൅ ݆߱൯

቉  ܂܃

ൌ ෍ ቈ
௜ܝ௜ܝ

T

ܾ௜ሺെߣ௜ ൅ ݆߱ሻ
, … ,

௜ܝഥ௜ܝ
H

തܾ
௜൫െߣҧ

௜ ൅ ݆߱൯
቉

௡

௜ୀଵ

 

(3.53)

The frequency response function between two points r and s of the structure can be 

written as; 

 

݄௥௦ሺ߱ሻ ൌ ෍

ۏ
ێ
ێ
ێ
ێ
ۍ

u௥
୧ . u௦

୧

ܾ௜ ൭߱௜ζ௜ ൅ ݆ ቆ߱ െ ߱௜ට1 െ ζ௜
ଶቇ൱

௡

௜ୀଵ

൅
uത௥

୧ . uത௦
୧

തܾ
௜ ൭߱௜ζ௜ ൅ ݆ ቆ߱ ൅ ߱௜ට1 െ ζ௜

ଶቇ൱
൪
 

(3.54)

By using the fact ߣ௜ ൌ ߱௜ ቆെζ௜ ൅ ݆ට1 െ ζ௜
ଶቇ , this equation can be further reduced as 

 ݄௥௦ሺ߱ሻ ൌ ෍

u௥
୧ . u௦

୧

ܾ௜
R௜ሺ߱ሻ ൅

uത௥
୧ . uത௦

୧

തܾ
௜

S௜ሺ߱ሻ

߱௜
ଶ െ ߱ଶ ൅ 2݆ζ௜߱߱௜

௡

௜ୀଵ

 (3.55)

Where the coefficients R௜ሺ߱ሻand S௜ሺ߱ሻdefined as 

 

R௜ሺ߱ሻ ൌ ߱௜ζ௜ ൅ ݆ ቆ߱ ൅ ߱௜ට1 െ ζ௜
ଶቇ 

S௜ሺ߱ሻ ൌ ߱௜ζ௜ ൅ ݆ ቆ߱ െ ߱௜ට1 െ ζ௜
ଶቇ 

(3.56)
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Particular case of  proportional damping 

Consider a proportional damping, the equation of the transfer function reduces to a 

much more simple form. Indeed, in case of proportional damping 

࢏ܘ 
࢏ܘ۲܂ ൌ

ܿ௜

݉௜
ሺ݅ ൌ 1, 2, 3, … , ݊ሻ (3.57)

With ݉௜ ܽ݊݀ ܿ௜ the mass and modal damping of mode ࢏ and ࢏ܘ is the ݅-th eigenvector of 

the system, normalized with respect to the mass matrix M. 

Starting from the equation (3.21) and performing the following transformation 

 

ܙ ൌ  ௝ఠ௧݁ܠ

ሶܙ ൌ  ௝ఠ௧݁ܠ݆߱

ሷܙ ൌ െ߱ଶ݁ܠ௝ఠ௧ 

(3.58)

the equation becomes 

 ሾെ߱ۻଶ ൅ ݆߱۲ ൅ ۹ሿ݁ܠ௝ఠ௧ ൌ ௝ఠ௧݁܎  (3.59)

with ܎ representing the force excitation. Therefore, the transfer function Hሺωሻ can be 

obtained directly from the following relationship 

ܠ  ൌ ሾെ߱ۻଶ ൅ ݆߱۲ ൅ ۹ሿି૚܎ ൌ ۶ሺωሻ(3.60) ܎

Pre-and post-multiplying ۶ሺωሻ by the matrix of mode shape (normalized to mass) and 

its transpose  

 

۾۶ሺωሻ܂۾ ൌ ଶ߱ۻሾെ܂۾ ൅ ݆߱۲ ൅ ۹ሿି૚۾ 

ൌ diag ൦
1

െ߱ଶ ൅ ݆߱ ܿଵ
݉ଵ

൅ ݇ଵ
݉ଵ

, … ,
1

െ߱ଶ ൅ ݆߱
ܿ௡
݉௡

൅
݇௡
݉௡

൪ 

(3.61)
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With  ۾ ൌ ሾܘ૚, … ,  ሿ , it becomesܖܘ

 

۶ሺωሻ ൌ diag۾ ൦
1

െ߱ଶ ൅ ݆߱ ܿଵ
݉ଵ

൅ ݇ଵ
݉ଵ

, … ,
1

െ߱ଶ ൅ ݆߱
ܿ௡
݉௡

൅
݇௡
݉௡

൪  ܂۾

ൌ ෍
࢏۾࢏۾

܂

െ߱ଶ ൅ ݆߱
ܿ௜
݉௜

൅
݇௜
݉௜

࢔

ୀ૚࢏

 

(3.62)

Element of the matrix  ۶ሺωሻ has than expression 

 ݄௥௦ሺ߱ሻ ൌ ෍
p௥

௜ p௦
௜

߱௜
ଶ െ ߱ଶ ൅ 2݆ζ௜߱߱௜

௡

௜ୀଵ

 (3.63)

With recall, 

 ߱௜
ଶ ൌ

݇௜

݉௜
 (3.64)

and ζ௜ ൌ
ܿ௜

2߱௜݉௜
 (3.65)

  

3.4.2 Hysteretic damping Model 

3.4.2.1  Derivation of the equations of motion 

The hysteretic model - also known as structural [104] - provides a realistic 

description where the structure is subject to harmonic vibration-type. According  to this 

model, the constitutive law is written 

 ો ൌ ۱෨ሺܠሻઽሺܠ, ሻݐ ൌ ሾ۱′ሺܠሻ ൅ ,ܠሻሿઽሺܠ۱′′ሺ࢐ ሻ (3.66)ݐ

with ۱෨ the complex elasticity matrix defined as 
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Figure 3.2 Representation of complex Young modulus in complex plane 

Imaginary

Real

Ẽ

E′

E′′

 ۱෨ ൌ ۱′ ൅ (3.67) ۱′′࢐

The matrix of elasticity ۱′  and the matrix of dissipation ۱′′forming the real and 

imaginary parts of complex elasticity matrix. The matrix of dissipation of the hysteretic 

case is not identical to that of the viscous case; its elements also have not the same unit 

as in the case of viscous (viscosity units), whereas in hysteretic dissipating matrix 

elements are expressed in units of stress. 

 

 

  

Consider one-dimensional problem, the hysteretic model state that when imposing 

a harmonic stress σ, the strain ε has a frequency identical to the stress but will be out of 

phase by an angle δ. For one-dimensional case, the constitutive law is reduced then 

ߪ  ൌ .෨ܧ ߝ ൌ ሺܧ′ ൅ ߝሻ′′ܧ݆ ൌ ′ܧ ቀ1 ൅ ݆tanδ൫ܧ෨൯ቁ (3.68) ߝ

with complex Young's modulus ࡱ෩, consisting of its real part or storage module ܧ′ and 

its imaginary part or loss modulus ܧ′′. The loss tangent Young's modulus tanδ൫ܧ෨൯ 

defined as the following ratio. 
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 tanδ൫ܧ෨൯ ൌ
′′ܧ

′ܧ  
(3.69)

is a measure of the damping of material, as shown in Figure 3.2 complex, Young's 

modulus is represented in the complex plane. 

In a similar approach, that is developed in paragraph 3.4.1.1, the semi-discrete 

matrix form, governing the dynamic behavior in free system of the hysteretic damping 

structure is written as, 

ሷܙۻ  ሺݐሻ ൅ ሺ۹′ ൅ ሻݐሺܙ۹′′ሻ࢐ ൌ 0 (3.70)

Where the mass matrix is identical to that of the relation (3.20), but where the stiffness 

matrices of storage ۹′ and loss ۹′′ is written as 

  ۹′ ൌ න સ۶܂

Ω

۱′સ۶ dΩ  (3.71)

 ۹′′ ൌ න સ۶܂

Ω

۱′′સ۶ dΩ  (3.72)

3.4.2.2 Eigenvalue equation 

The solution for the discrete displacement vector q is of the form 

ሻܜሺܙ  ൌ  ௝ఒ௧݁ܘ
(3.73)

The eigenvalue problem associated with free vibrations of the structure with internal 

damping is expressed as 

 ሺെߣଶۻ ൅ ۹′ ൅ ܘ۹′′ሻ࢐ ൌ ൫െߣଶۻ ൅ ۹෩൯ܘ ൌ 0 (3.74)
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In this equation, the complex stiffness matrix ۹෩ consists of real ۹′ and imaginary ۹′′ 

parts. According to the nature of depreciation, solutions are complex and consist of n 

pairs of complex conjugate eigenvalues  ߣ௜ሺ݅ ൌ 1, 2, … , ݊ሻ  and n pairs of complex 

conjugate eigenvectors p௜ሺ݅ ൌ 1, 2, … , ݊ሻ  of dimension ݊. Each eigenvalue takes the 

form 

௜ߣ 
ଶ ൌ   ߱௜

ଶሺ1 ൅ ௜ሻߟ݆ ሺ݅ ൌ 1, 2, … , ݊ሻ (3.75)

Where ߱௜ and ߟ௜ are eigen frequency and modal damping factor for the ݅-th mode. The 

comparison of eigenvalues expression for two damping types is presented here. For the 

hysteretic model, solution of the form (3.73) is assumed, which allows to explain the 

values of the form (3.75). It was seen that for a problem of viscous, it is common to 

choose the solutions of the form (3.25) to achieve the shape (3.33) of the eigenvalues. In 

both cases, the eigenvalue obtained is complex and, by comparing the shapes of the 

exponential part of (3.25) and (3.73) with the index ݅ omitted, equality 

௖ߣ݆   ൌ ௩ (3.76)ߣ

should be respected, the index v and c representing the viscous and hysteretic damping. 

This comparison is justified by the fact that it should be possible to seek solutions of the 

form (3.75) to the equation of the dynamic behavior with a viscous damping (3.21) or, 

conversely, the solutions of the form (3.25) to equation (3.70). It follows that 

 െߣ௖
ଶ ൌ ௩ߣ

ଶ (3.77)

However, according to the equalities (3.33) and (3.75), it becomes 

௩ߣ 
ଶ ൌ ሺെߙ ൅ ݆߱ሻଶ ൌ ଶߙ െ ߱ଶ െ (3.78) ߱ߙ2݆

௖ߣ 
ଶ ൌ ߱ଶሺ1 ൅ ሻߟ݆ ൌ ߱ଶ ൅ ଶ (3.79)߱ߟ݆

Assuming ߙ small against ߱, the relation (3.35) becomes 
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 ζ ൌ
ߙ

ଶߙ√ ൅ ߱ଶ
؆

ߙ
߱

 (3.80)

so that the expression (3.78) takes the form 

௩ߣ 
ଶ ؆ െ߱ଶ െ 2݆ζ߱ଶ (3.81)

Therefore, comparing the forms of (3.79) and (3.81) to suggest that, for low damping, 

equality (3.76) is verified with 

ߟ  ൌ 2ζ (3.82)

3.4.2.3 Hysteretic model in continues harmonic system 

Assuming deformation of the form 

 ε෤ሺݐሻ ൌ ε݁௝ఠ௧ (3.83)

With ઽ෤  the complex deformation of amplitude ε and of frequency ߱, The constitutive 

law taking into account hysteric type damping for one-dimensional continues harmonic 

vibration system (considering relation 3.66)becomes 

 σ෥ሺtሻ ൌ C′ε෤ሺݐሻ ൅ ݆C′′ε෤ሺݐሻ (3.84)

3.4.2.4  Frequency response function 

According to hysteresis model, starting from the equation (3.70) with second term 

and performing the following transformation 

 

ܙ ൌ  ௝ఠ௧݁ܠ

ሷܙ ൌ െ߱ଶ݁ܠ௝ఠ௧ 

(3.85)

the equation becomes 
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 ሺെ߱ଶۻ ൅ ۹′ ൅ ௝ఠ௧݁ܠ۹′′ሻ࢐ ൌ ௝ఠ௧ (3.86)݁܎

With ܎ representing the excitation force. The transfer function ۶ሺωሻ can be directly 

derived from the expression  

ܠ  ൌ ሾെ߱ۻଶ ൅ ۹′ ൅ ܎۹′′ሿି૚࢐ ൌ ۶ሺωሻ(3.87) ܎

Pre-and post-multiplying the transfer function matrix by the mode shape normalized to 

the mass and by its transpose 

۾۶ሺωሻ܂۾  ൌ ଶ߱ۻሾെ܂۾ ൅ ۹′ ൅ (3.88) ۾۹′′ሿି૚࢐

 

 

 

۶ሺωሻ ൌ diag۾ ቈ
1

െ߱ଶ ൅ ଵߣ
ଶ , … ,

1
െ߱ଶ ൅ ௡ߣ

ଶ ቉ ܂۾

ൌ ෍
࢏۾࢏۾

܂

െ߱ଶ ൅ ௜ߣ
ଶ

࢔

ୀ૚࢏

 
(3.89)

The transfer function between points r and s using equation (3.75) becomes; 

 ݄௥௦ሺ߱ሻ ൌ ෍
p௥

௜ p௦
௜

߱௜
ଶ െ ߱ଶ ൅ ௜߱௜ߟ݆

ଶ

௡

௜ୀଵ

 (3.90)

3.5 COMPLEX MATRIX OF ELASTICITY 

The global stiffness matrix ۹ and damping ۲ for the case viscous as well as the 

complex stiffness matrix ۹෩ for the hysteresis cases are constructed from the complex 

matrix of elasticity expressed in the global coordinate system. It is necessary to 

formulate this complex matrix of elasticity from the constitutive properties of complex 

material. This complex matrix for isotropic constitutive law is based on the formulation 
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of the elasticity matrix for the conservative case, and can be used for an internal 

damping of hysteresis or viscous type.  

Case hysteretic 

In agreement with the viscoelastic correspondence principle, it is assume that the 

shape of the complex matrix of elasticity for a given type of FE is similar to the 

configuration of the matrix of elasticity of the corresponding conservative case, but with 

complex components. The complex elasticity matrix for a linear isotropic material is 

defined as 

 
۱෨ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
۱෨૚૚ۍ

۱෨૚૛

۱෨૚૛

۱෨૚૛

۱෨૚૚

۱෨૚૛

۱෨૚૛

۱෨૚૛

۱෨૚૚۱෨૚૚ െ ۱෨૚૛

૛ ۱෨૚૚ െ ۱෨૚૛

૛ ۱෨૚૚ െ ۱෨૚૛

૛ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (3.91)

With the components written according to the complex constitutive properties of the 

material 

෩૚૚࡯  ൌ
෩ሺ૚ࡱ െ ෥ሻ࢜

ሺ૚ ൅ ෥ሻሺ૚࢜ െ ૛࢜෥ሻ
 

(3.92)

 
෩૚૛࡯ ൌ

෩ࡱ෥࢜

ሺ૚ ൅ ෥ሻሺ૚࢜ െ ૛࢜෥ሻ
 (3.93)

 

۱෨૚૚ െ ۱෨૚૛

૛
ൌ

෩ࡱ

૛ሺ૚ ൅ ෥ሻ࢜
 (3.94)

The above equations provides the following relation between the three engineering 

constants of an isotropic material 

 
෩ࡳ ൌ

෩ࡱ

૛ሺ૚ ൅ ෥ሻ࢜
 (3.95)
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Note that for isotropic materials, every plane is a plane of symmetry. Therefore, the 

properties of isotropic materials cannot vary in function of the material orientation. 

Where  ۱෨ܑܒ is the ij-th component of the complex elasticity matrix, and ࡱ෩,  ෩ࡳ ෥ and࢜

are respectively, Young's modulus, Poisson's ratio and shear modulus. The latter are 

defined as complex quantities 

 
෩ࡱ ൌ ሾ1ܧ ൅ ݆tanδሺܧሻሿ (3.96)

 
෥࢜ ൌ ሾ1ݒ ൅ ݆tanδሺݒሻሿ (3.97)

 
෩ࡳ ൌ ሾ1ܩ ൅ ݆tanδሺܩሻሿ (3.98)

 

Where tanδሺ·ሻ is the dimensionless factor loss associated with the complex quantity ሺ·̃ሻ 
and phase δ.  

 
Viscous case 

In the viscous case, it is possible to keep the same architecture of the complex 

matrix of elasticity, but by constructing the elemental matrices of stiffness and damping 

from the real and imaginary parts of ۱෨ܑܒ 

ࢋ۹  ൌ න ۰௘ ব൫۱෨൯܂ ۰௘ dߗ
ఆ೐

 (3.99)

 

ࢋ۲  ൌ න ۰௘ ণ൫۱෨൯܂ ۰௘ dߗ
ఆ೐

 (3.100)

In addition, if engineering constants are keep similar to the case (3.96) to (3.98), it is 

important to note that in the case of a viscous damping, tanδ is the size over a 

dimensionless loss factor, but it takes a time dimension (usually in seconds), so that the 
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elements of the damping matrix D have a unit of viscosity. It is therefore not possible to 

directly compare the values of loss tangent for the two models. 

3.6 CELLULAR MATERIALS MODELLING 

Porous metals, metallic foams and cellular materials are materials with pores 

deliberately integrated in their structure. Porous metals refer to the metals with a large 

volume fraction of porosity, whereas the term foamed metal or metallic foams applies to 

porous metals fabricated through the foaming process [150]. Metallic foams have 

become the new trend materials due to their low densities, good mechanical properties 

and some specialized functions like air and water permeability, high-energy absorption, 

novel physical, mechanical, thermal, electrical and acoustic properties.  

Metallic foams possess a favourable combination of good mechanical and physical 

properties, while maintaining very low weight. They are excellent candidates for 

innovative future designs, in which high strength and low weight are design parameters. 

Special interest in this type of materials is currently devoted to investigating the 

potential use of metallic and non-metallic cellular materials to enhance vehicle 

crashworthiness. To characterize and model foam materials a large number of 

experimental and numerical investigations appeared in the literature.  

Most of the mechanical properties of foam materials can be achieved with other 

materials, sometimes more effectively, but foams can offer a unique combination of 

several properties that cannot be obtained in one conventional material at the same time, 

like ultra-low density, high stiffness, the capability to absorb crash energy, low thermal 

conductivity, low magnetic permeability, and good vibration damping. Metal foams are 

thus promising in applications where several of these functions can be combined. These 

properties depend significantly on the porosity, so that a desired portfolio of properties 

can be tailored by changing the foam density [151]. This is one of the most attractive 

features of these remarkable materials. 

Mechanical properties of metallic foam structure depend on the relative density of 

the structure. Relative density is the density of the foam material divide by that of the 

solid from which the cell walls are made. This influence, imperfectly understood at 
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present, is a topic of intense study. Various constitutive relations have been suggested 

for the characterization and modelling of this relationship. These laws, originally 

developed for polymeric foams, are usually based on the relative density of the foam, 

and therefore suppose uniform cellular structure, at least at a macroscopic level. 

However, metallic foams are dramatically different from polymeric foams: polymeric 

foams generally have a regular microstructure, whereas metallic foams may be highly 

disordered with a wide dispersion of cell size and shape. Moreover, many imperfections 

exist in a cell structure, such as cracks or holes in the cell walls, corrugated cells etc. 

These effects are inevitable due to manufacturing at significantly higher temperatures 

than in the case of polymers. If these features are not taken into account and the 

properties of the foam are characterized only in relation to average density, a higher 

scatter of properties is to be expected [151].  

The design of mechanically efficient metallic foams is the paramount aspect of 

foam modelling and simulation, the aim being the development of "optimum" foam 

structures. Design engineers who use components made of metallic foams are interested 

in easy-to-use methods of describing the constitutive behavior of these materials, for 

example in the form of constitutive material laws for use with general-purpose FE 

codes. For such purposes, it is neither possible nor desirable to account for details of the 

foams micro geometry at each position in the component. Instead, the material behavior 

of the foam is described in terms of equivalent homogeneous material. Such constitutive 

models may be derived from micromechanical studies by homogenization, or they may 

take the form of phenomenological macroscopic descriptions that employ material 

parameters, which have to be obtained from experiments [152].  

For some purposes full constitutive descriptions are not required and material 

characterization can provide the necessary information. This can take the form of 

experimentally based relations, for example in the form of stress-strain relations 

parameterized by the effective density of the foam. Alternatively, micromechanical 

reasoning may be used to derive generic mathematical relationships, which can then be 

fitted to experimental results and provide physically based regression formulae. Some 

approaches in modelling the inhomogeneties of foam exist in the literature: Daxenr et al. 

[153] and Gradinger and Rammerstorfer [154] have studied spring-mass models, while 
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Meguid et al. [155] modeled 3D foam with shell elements and let the thickness of the 

element vary with a Gausian distribution. Several constitutive models for foam exist in 

literature, some of them are quite simple; others are more complicated with several 

material parameters. There are also few or no recommendations on how to include the 

uneven distribution of pores and fracture in the models [156]. 

Design calculations in mechanical engineering require some reliable constitutive 

description of the mechanical behavior of metallic foam. Such constitutive descriptions 

are usually extrapolated from bulk material including hydrostatic pressure influence and 

are implemented in FE software packages [157, 158], the material parameters are then 

obtained by means of calibration procedures in relation with experimental data normally 

compression test without any reference to the microstructure. However, the mechanical 

properties of metallic foams are mainly related to those of solid material and to the foam 

microstructure [159, 160]. In that sense, cellular materials can be themselves considered 

as structures at the micro scale. Then, the structure relationship issue includes two 

different aspects depending on the practical application point of view. In the mechanical 

context, the purpose is to quantitatively connect the macroscopic properties of the 

cellular material to those of the solid one and the microstructure. For this purpose, 

various mechanical models able to reproduce the deformation mechanisms observed in 

cellular materials can be used. Gibson and Ashby [161], Zhu [162] and Ko [163] 

proposed different approaches based on a regular cell. They assume scaling laws to link 

the elastic moduli, the elastic collapse stress and the plastic collapse stress of the 

cellular material to the elastic modulus and the yield stress of the solid material and to 

the relative density of the foam. The relative density is the only parameter available for 

the description of the microstructure [164]. Some approaches assume that the structure 

can be represented by a strut pattern that is either regular [165, 166] or irregular [166, 

167]. The structures described in this way are more regular than the ones observed in 

reality. These models are also most of the time devoted to small density cellular 

materials. Another improvement in the mechanical description of the problem has been 

proposed by Roberts and Garboczi [168]. These authors use a voxel description of the 

solid volume as an input for the generation of a FE model of the material. This approach 

enables the complete description of the actual structure, numerically generated [168] or 

obtained by means of X-ray tomography images [169]. 
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Several constitutive material laws describing the overall behavior of cellular metals 

have been proposed and applied in the simulation of components consisting of or 

containing metallic foams. Obviously, the selection of a particular material law is 

governed by the required material parameters and by the effort necessary for calibrating 

them by experiments or via micromechanical studies. Because they are based on the use 

of an equivalent homogeneous continuum, macroscopic material laws should only be 

used for studying components or samples that are considerably larger and thicker than 

the typical cell size of the foam.  

The most basic aspect of the mechanical material characteristics of inhomogeneous 

material is their linear elastic behavior, which can be describe in term of overall 

elasticity tensor or appropriate effective moduli. Linear dependence of plateau stress, 

Young’s modulus and energy absorption capacity with relative density is reported in 

[170-172]. Aluminum foam is one of the common metallic foam, many researcher have 

investigated the mechanical properties of various aluminum foams e.g. Alporas  [159, 

173] and Alulight [174]. All the results show that Young’s modulus and yield stress are 

related to the relative density. The general equation for the plateau stress of regular 

hexagonal closed-cell foam is suggested by Gibson and Ashby [161] and is given by; 

 

σ୮୪
כ

σ୷ୱ
ൌ ׎0.3

ଷ
ଶൗ ൬

ρכ

ρୱ
൰

ଷ
ଶൗ

൅ ሺ1 െ ሻ׎
ρכ

ρୱ
 (3.101)

The equation for the theoretical elastic modulus of a closed-cell foam is expressed as 

[161]; 

 

Eכ

Eୱ
ൌ ଶ׎ ൬

ρכ

ρୱ
൰

ଶ

൅ ሺ1 െ ሻ׎
ρכ

ρୱ
 (3.102)

Where ׎ (Phi) is the volume fraction of solid contained in the cell edges, the remaining 

fraction ሺ1 െ σ୮୪ , כሻ is in the cell faces.  E׎
כ  , ρכ are the Young’s modulus, yield stress 

and density of metallic foam and Eୱ , σ୷ୱ , ρୱ of matrix material respectively.   
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3.6.1 Finite element modelling 

A large number of available software packages like COMSOL, ABAQUS, and 

ANSYS etc. incorporate finite elements based analysis. In this research work an attempt 

has been made with ANSYS (version 13.0) software package to bring into focus the 

versatility and powerful analytical capabilities of finite elements technique by 

objectively modeling the complete response of test specimens. ANSYS parametric 

design language (APDL) is used to compute the vibratory behavior of AF specimens. 

The proposed FE model partitioned foam specimen in to an arrangement of regions. The 

foam material is represented by an array of relative densities assigned to each region. 

Each foam region is represented by a sub-domain, the Young’s modulus relationship of 

which is defined as function of the apparent density by (3.102). The parameter ׎ in 

(3.102) for Young’s modulus, Poisson's ratio and damping are considered as variable 

parameters of the FE model. Density mapping measured with X-ray computer 

tomography is given as input to this model. 

In FE method the continuous model is reduced to discrete model with finite number 

of degrees of freedom. This is done by dividing the volume of the specimen into a 

number of elements. The AF specimens are modeled by using three-dimensional brick 

elements, also referred as hexahedron element. From finite element theory point of view 

[175], the formulation of this element is simple, efficient and reliable. The element is 

defined by eight nodes having three degrees of freedom at each node: translations in the 

nodal x, y, and z directions. The element has plasticity, creep, swelling, stress stiffening, 

large deflection, and large strain capabilities. For this type of element a reduced 

integration option with hourglass control is also available in ANSYS. The analysis with 

uniformly reduce integration method is not as accurate as with the full integration 

method [176]. So, despite the advantage of less CPU time and disk-space consumed by 

uniformly reduce integration method, full integration method is selected.  

In case of 3D elements, the unknowns are the values of the displacement field at 

the nodes of the elements. The displacements of the point between the nodes are 

obtained from nodal displacements by interpolation. In FE terminology, the 

interpolation functions are called shape functions. Shape function matrix of an element 

is obtained by grouping the shape functions of all the degrees of freedom of that 
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element. Shape function matrix is used for relating the continuous displacement, strain, 

and acceleration to the nodal displacement, strain, and acceleration respectively. For the 

discrete model, the integral of the system equations can be expressed as a sum of 

integrals over elements. Discrete model equations (2.2) can be obtained by grouping the 

nodal displacements of the whole model into one global displacement vector. 

A special procedure called density mapping method is applied to approximate the 

cellular structure of aluminum foam with continuum. The microscopical density 

distributions of the AF, recorded by X-ray computed tomography are averaged over a 

certain domain. The local average density represented by a mean density forms a so 

called ‘sub-domain’. All finite elements in the sub-domain behave mechanically in the 

same way. Each sub-domain is assumed to be homogeneous and isotropic. Density 

distributions of AF measured by X-ray computer tomography are used as input to the 

corresponding FE model of investigated specimen. Its mechanical properties are 

modeled using Gibson and Ashby scaling law (3.102) for regular foams. In this scaling 

law, the microstructure of cellular materials is homogenized over a scale infinitely 

larger than the typical microstructure. In other words these relations predict the behavior 

of a material that is assumed to be a homogeneous continuum. The input mechanical 

properties of the bulk material used in scaling law (3.102) for AF specimens are 

Young’s modulus of 69 GPa and density of 2700 Kg/m3.  

It is already noted that the major difference between the two models, viscous 

damping and hysteresis, lies in the evolution of modal damping factor with frequency. 

The choice of the type of solver to use in the identification of damping properties of 

materials will depend on the realism of the underlying model. Therefore, it is interesting 

to compare the two models viscous and hysteresis to reality. Modal damping factors 

measured at each mode of several plates, including: Alporas_B2, Alporas_B3, 

Alporas_S2 and Alporas_S3 are shown in Figure 3.3. 
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Looking at the scatter plot of experimental modal damping ratios in Figure 3.3, it is 

difficult to see a clear dependence with frequency. None shows clearly taking damping 

effects in importance with the frequency. It is known that viscous damping model 

behavior of modal damping factors is clearly frequency dependent. Looking at the 

available models, material dependent damping is chosen in simulation although the 

hysteresis model type is preferred for use as part of the modal identification. Complex 

modal analysis is performed using QR Damped method. This method is faster and more 

stable than the existing damped solver. It combines the best features of the real 

eigensolution method (Block Lanczos) and the Complex Hessenberg method (QR 

Algorithm). Outputs are complex eigenvalues (frequency and stability) and damping 

ratio of each mode.  

 

Figure 3.3 Comparison of damping ratios of aluminum foam specimen 
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All numerical investigations are carried out by means of the FE package ANSYS 

that defines the preprocessor (parametric model of the AF specimen), solution and 

postprocessor phase of the finite element analysis. In the preprocessor phase, the 

geometry and the boundary conditions of the model are defined using a set of APDL 

commands. QR damped method is used in solution phase to solve the model, build in 

preprocessor phase. In the postprocessor phase the results from the analysis was 

gathered and saved in a suitable format (file) for further use. ANSYS FE model of 

Alporas_B2 is shown in Figure 3.4. 

 

 

 

 

 

 

 

 

 

Figure 3.4 FE modelling of Alporas_B2 
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CHAPTER  4. MIXED NUMERICAL-EXPERIMENTAL 

IDENTIFICATION TECHNIQUE 

4.1 BACKGROUND AND OBJECTIVES 

The identification procedure can be considered as the key point of the process of 

mixed numerical-experimental identification technique. From a reference experimental 

modal model, this method evolved a parameterized numerical model (Figure 4.1) by 

changing a set of input parameters to identify at each iteration until a solution as close 

as the desired experimental modal model. The convergence of the numerical model to 

the experimental model is obtained by minimizing an error function which is 

representative of the difference between the two models, this difference is quantified 

from the various modal data. Thus, the identification routine is complete when standard 

error of this function - also called objective function - falls below a specified threshold 

value. During the last iteration, the input parameters of numerical model are the 

identified parameters. 

In mixed numerical-experimental identification procedure, it is necessary to use an 

optimization method in order to identify the parameters of a numerical model, not 

invertible, to the target values that represent the experimental data. Thus, the 

optimization method is of prime importance in the parameter identification. However, 

the properties of error norms (or objective functions) to minimize also play an important 

role in the accuracy and robustness of the mixed numerical-experimental identification 

method, since these functions represent the extent of difference between numerical 

model of the current iteration and the experimental target values that the algorithm 

seeks to minimize. If these error norms are not sufficiently effective and does not 

capture all the physical effects of desired parameters, it is likely that a number of these 

parameters would ultimately find very poorly identified.  

Thus in order to minimize the residual error in identification, while ensuring 

robustness and high rate of convergence, it is essential to develop a set of objective 
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functions suitable for available experimental and numerical data that meet the following 

conditions. 

 Sensitivity to parameters: the objective functions must be sufficiently sensitive 

to identify all the parameters to ensure an excellent accuracy of identification. In 

addition, a high sensitivity but balanced error norms reduces the effects on the 

identified parameters of measurement uncertainties and possible experimental 

errors. 

 

Figure 4.1 Flow diagram of mixed numerical-experimental technique. 
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 Robustness: the error norms used must be convex and having only a single local 

minimum over a wide range of parameters to ensure the smooth running of the 

optimization procedure regardless of the initial estimate of parameters to identify . 

 Precision: the objective functions must converge towards zero near the actual 

parameters and the residual error in identification must not come from effects of 

numeric truncation or approximation in the calculation of these functions.  

The approach to develop the error functions and to develop the optimization 

algorithm is characterized by the following points: 

1. Defining a set of functions possible based on the error norms commonly used in 

modal analysis and on original ideas. 

2. Parametric study of large-scale FE on various types of aluminum foam plates to 

identify the robustness and sensitivity of the proposed error norms. The definition of 

the error norms function as a combination of selected elementary error functions. 

3. Analysis, selection and implementation of a type of optimization algorithm 

corresponding to the needs.  

4.2 MODAL ERROR NORMS 

As the role of error norms is to measure the difference between all measured 

experimental and numerical modal data, thus error functions should not be based only 

on the measured and numerical eigen frequencies ωk (k = 1, 2, .. ., m), but also on the 

experimental and numerical mode shapes φk (k = 1, 2, ..., m). Finally, by analogy, the 

error norms required are the same as those used for years in the field of experimental 

modal analysis and identification of structures (i.e. [76, 104, 105, 124, 177, 178]). Thus, 

based on modal error norms proven in these areas, it is assured of obtaining high quality 

error functions.  

The modal data that will be available for optimization algorithm for each mode k (k = 1, 

2,…., m) at iteration i (i = 1, 2, ..., q) are as follows: 
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 The measured eigen frequencies (target) ωk ( k = 1, 2,..., m ) and the numerical at 

iteration ݅  ω෥௞
௜ ൌ ω෥௞

௜  ሺݔ௜ ሻ  (k=1, 2, ..., m), where ݔ௜  represents the identification 

parameters vector at iteration ݅.  

 The measured eigen modes (target) φk (k = 1, 2, ..., m) and numerical at iteration ݅    

૎෥ ௞
௜ ൌ ૎෥ ௞

௜ ሺݔ௜ ሻ  (k = 1, 2, ..., m), where ݔ௜  represents the identification parameters 

vector at iteration ݅. 

However, the numerical and experimental meshes are not necessarily identical, these 

two modal vectors are not defined on the same mesh grids. In addition, it should be 

noted that only normal components of the displacement of the specimen are measured 

whereas numeric modal vector contains all the components. For the sake of simplicity 

and clarity, it is consider in this chapter that the measured and numerical eigen modes 

are already processed on a same reference mesh and only the degrees of freedom 

corresponding to the transverse displacements are retained.  

The most conventional modal error norm is obviously based on the difference of 

measured eigen frequencies ω௞ and numerical ω෥௞
௜  for each mode k (k = 1, 2, ..., m) as 

the basis for identification. However, it is important to identify that the experimental 

mode shapes and the numerical  modes must absolutely match before making any 

comparison of frequencies.  Also, a method to precisely define pairs of numerical mode 

and corresponding experimental is applied before calculations of any error norms. It is 

assumed here that the numerical and experimental modes index k actually forms a pair 

of corresponding modes. Thus, the conventional error norm based on relative difference 

in eigen frequencies can be written: 

௞ܨ 
௙௥௤൫ݔ௜൯ ൌ

ω෥௞
௜ െ ω௞

߱௞
 (4.1)  

Where ݔ௜  is the vector of estimates of parameters stored to identify constitutive 

properties at iteration i and k denotes the total number of mode considered. It is 

important to note here that the numerical predictions ω෥௞
௜  (k = 1, 2, ..., ݉) are functions 

of the parameter vector ݔ௜ and are updated at each iteration of the optimization process. 
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Similarly, another objective function that quantifies the difference between the 

dissipative behavior of models is based on experimental and numerical modal damping 

factors. Measured modal damping factors ζ are obtained from the measured transfer 

functions and can be compared to numerical modal damping factors in the same way 

that the experimental and numerical eigen frequencies. This error norm can be written 

as  

௞ܦ 
௠ௗ௥൫ݔ௜൯ ൌ

ζ෨௞
௜ െ ζ୩

ζ୩
 (4.2)  

where ݔ௜ is again the vector of estimates of parameters stored to identify constitutive 

properties at iteration i and k denotes the total number of modes considered. 

In modal analysis, the most commonly used method to evaluate the quality of 

measured eigen modes or the correlation between two sets of eigen modes is called 

MAC (Modal Assurance Criterion) method.  The MAC method is based on the principle 

of theoretical orthogonality of specific ways to calculate projections of a set of eigen 

modes on the base formed by a second set of eigen modes. The MAC method thus 

provides a matrix ܯ௝௟ ൌ ൫૎௝ܥܣܯ
௔, ૎௟

௕൯, scalar product between two sets of modes 

૎௝
௔ሺ݆ ൌ 1,2, … . . ݉௔ሻ and  ૎௟

௕ሺ݆ ൌ 1,2, … . . ݉௕), which can be define as follow 

 
௝௟ܯ ൌ ൫૎௝ܥܣܯ

௔, ૎௟
௕൯ ൌ

൫૎௝
௔. ૎௟

௕൯
ଶ

൫૎௝
௔. ૎௝

௔൯൫૎௟
௕. ૎௟

௕൯
 (4.3)  

Thus, if both set of modes ૎୨
௔  and ૎௟

௕ are identical, the MAC matrix M௝௟ is 

equal to an identity matrix, which corresponds to the case of a perfect correlation. In 

the field of modal analysis, it is generally considered that two modes ૎௝
௔  and ૎௟

௕ are 

similar or close if M௝௟ > 0.7 or 0.8 depending on the tolerance used for the intended 

application. Using the properties of the MAC matrix thus defined, first modal error 

norm can be written in the following form; 
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௞ܨ 
௠௔௖_ௗ൫ݔ௜൯ ൌ 1 െ ൫૎෥ܥܣܯ ௞

௜ , ૎௞൯ 
(4.4)  

for each mode pair, k = 1, 2,..., ݉.  

However, under the orthogonality property of modes, a perfect correlation between 

two sets of eigen modes also implies that all non-diagonal terms in corresponding MAC 

matrix are zero. By exploiting this property, a second error function based on the modal 

matrix MAC can be defined by  

௞ܨ 
௠௔௖_௡ௗ൫ݔ௜൯ ൌ ෍ ൫૎෥ܥܣܯ ௝

௜ , ૎௞൯

௠

௝ୀଵ,௝ஷ௞

 (4.5)  

for each mode pair k = 1, 2,..., ݉ . 

Alongside the principle of modal projection used by the MAC method, it is also 

possible to measure the difference between the two sets of mode shapes simply by 

calculating a sum of absolute differences between components of the modal vectors. 

However, it is absolutely necessary in this case that the sets of modes are normalized 

and assigned in the same manner, for example by setting the maximum component to 

unity. An error function based on the components of modal vectors can be defined as: 

௞ܨ 
௠௦௩൫ݔ௜൯ ൌ ෍ ൭

൫૎෥ ௞
௜ ൯

௝

max
௟

ሺሺ૎௞ሻ௟ሻ
െ

ሺ૎௞ሻ௝

max
௟

ሺሺ૎௞ሻ௟ሻ
൱

௥

௝ୀଵ

 (4.6)

for each mode pair k = 1, 2,..., ݉  

Where ൫૎෥ ௞
௜ ൯

௝
and ሺ૎௞ሻ௝ represent the j-th components of the vectors ૎෥ ௞

௜  and ૎௞  while 

 .symbolizes the number of components of the modal vectors ݎ

Finally, a last correlation method commonly used in modal analysis, certainely 

more visual and quantitative, is based on comparing the shape and nodal lines position 

of each mode pair. The advantage of this method of comparison is mainly to be 

potentially less sensitive to noise and measurement errors than other error norm based 

on mode shapes, due to the intrinsic nature of the nodal lines. To automate and 
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rigorously quantify this measurement error, principle of image correlation is used. The 

process of modes pairing ૎௞ and ૎෥ ௞
௜  begins first by a bicubic interpolation of mode 

shapes on a grid of relatively fine dimension approximately 256 × 256 points. The two 

tables of amplitudes  ܣ௥௦
௜௞  and ܣሚ௥௦

௜௞  thus obtained are normalized absolute value so that 

each item is included in the interval [0,1], allowing then to assimilate these tables to 

bitmap images of grayscale ܫ௥௦
௜௞  and ܫሚ௥௦

௜௞  . These images are then filtered to show the 

nodal lines in grayscale on a black background, producing the images ܬ௥௦
௞ ൌ g൫ ௥௦ܬ

௞ ൯  

and ܬሚ௥௦
௞ ൌ g൫ ሚ௥௦ܬ

௞ ൯. The filter function g൫ ௥௦ܬ
௞ ൯ linear interpolation of grayscale used 

during this treatment is defined as: 

g൫ ௥௦ܬ
௞ ൯ ൌ  ൞

0             if    rs
k I ൐ δ

1 െ
௥௦ܫ

௞

δ
  if    ܫ௥௦

௞ ൑ δ
 

Where δ  symbolizes the tolerance relative amplitude defining the nodal lines 

(typical value of 10% for example).  

Figure 4.2 Eigen mode shape and grayscale image representing nodal lines (Alporas_B3, grid 

size 256×256,  = 0.1) 

 

Finally, the error norm between the nodal lines of the two modes ૎୩ and ૎෥ ୩
୧  is 

calculated by the sum of the squares of the differences between the two images:  
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௞ܨ 
௡௢ௗ൫ݔ௜൯ ൌ

1
ܽଶ ෍ ෍൫ ሚ௥௦ܬ

௜௞ െ ௥௦ܬ
௞ ൯

ଶ
௔

௦ୀଵ

௔

௥ୀଵ

 
(4.7)  

For each mode pair of index k = 1, 2,...,m. Table 4.1 summarizes the error norm and 

nomenclature used in this work. 

Table 4.1 list of the modal error norms 

Analytical error norms Nomenclature 

௞ܨ
௙௥௤൫ݔ௜൯ ൌ

ω෥௞
௜ െ ω௞

߱௞
 RFreqD 

௞ܦ
௠ௗ௥൫ݔ௜൯ ൌ

ζ෨௞
௜ െ ζ୩

ζ୩
 MDRD 

௞ܨ
௠௔௖_ௗ൫ݔ௜൯ ൌ 1 െ ൫૎෥௞ܥܣܯ

௜ , ૎௞൯ 

 
MAC_d 

௞ܨ
௠௔௖_௡ௗ൫ݔ௜൯ ൌ ෍ ܥܣܯ ቀ૎෥௝

௜ , ૎௞ቁ

௠

௝ୀଵ,௝ஷ௞

 

 

MAC_nd 

௞ܨ
௠௦௩൫ݔ௜൯ ൌ ෍ ቌ

൫૎෥௞
௜ ൯

௝

max
௟

ቀ൫૎௞൯
௟
ቁ

െ
൫૎௞൯

௝

max
௟

ቀ൫૎௞൯
௟
ቁ

ቍ

௥

௝ୀଵ

 

 

SumMSD 

௞ܨ
௡௢ௗ൫ݔ௜൯ ൌ

1
ܽଶ ෍ ෍൫ ሚ௥௦ܬ

௜௞ െ ௥௦ܬ
௞ ൯

ଶ
௔

௦ୀଵ

௔

௥ୀଵ

 NLD 

 

4.3 PARAMETRIC STUDY  

To investigate the robustness and sensitivity of error norms, as well as to study the 

influence of variable parameters on the modal quantities, a parametric FE model study 

of AF specimens is conducted. The parameter Phi in (3.102) for Young’s modulus, 
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Poisson's ratio and damping are considered as variable parameters in FE analysis. For 

each parameter thirty values "disturbed" at most ± 30% around of the nominal value are 

defined. These parameters are distributed as follow; ± 0.09%,  ± 0.18% , ± 0.36%,  ± 

0.8% , ± 1.6%,  ± 3%,  ± 6%,  ± 9%, ± 12%,  ± 15%,  ± 18%,  ± 21%,  ± 24%,  ± 27 % 

and ± 30%.  In this study, only one parameter varies from the nominal values, the 

complete parametric study in the parameter space representing a cross, centered on the 

reference values. Thus, for each plate considered in the study, 3 combinations of 

parameters are evaluated, which make the entire study in 12 simulated cases. For each 

case, a FE model is generated for free boundary conditions and first 15 eigenvalues 

(excluding rigid body modes) are extracted by the developed MATLAB code which 

execute ANSYS for modal analysis. Finally, the results of each case of FE analysis are 

stored and modal error norms are calculated between the reference case (nominal 

parameters) and each perturbed case.  

  
4.3.1 Implementation of parametric study in MATLAB  

To complete this parametric study, a program is developed in the MATLAB 

environment. This program is based on two data sources: on one hand, the FE model 

and the problem to be solved are described in the traditional format of an APDL file of 

ANSYS, on the other hand, the parametric study itself is described in an executable 

MATLAB file, defining a data structure containing the specifications for all the 

parameters needed to study. The program developed for the parametric study consists of 

MATLAB functions that can be classified into three main categories:  

1. Functions for performing calculations on all the case studies, including the 

functions of defining the parameter space, routines to merge the parametric FE 

model with a vector of parameters to generate a FE model (APDL) for ANSYS 

classic, procedures to execute and control the FE solver ANSYS and functions 

for reading the output files.  

2. Functions performing the post-processing of FE data, including routines that 

ensure  the conducting error norm calculations and synthesis of information from 

the parametric study, or which allow to load studies, search specific cases in the 

parameter space and load the corresponding modal data. 



Chapter 4                                                                 Mixed numerical-experimental identification technique 

4.10 

3. The functions for calculating modal error norm that implements the error 

functions presented in section 4.2.  These functions are standardized and all use 

the same arguments, namely a pair of data structure storing the modal data to 

compare as well as sorted a list of numbers of modes to treat each case (defining 

pairs of modes).  

The overall workflow execution of parametric study program is divided into two 

main stages: first, compute all FE models that are used in the study and store the modal 

data in a hierarchical file structure, then in a second step, run a large number of 

calculations based on post processing of the data created. The workflow of these two 

phases of processing is detailed below (Figure 4.3 and Figure 4.4). 

The error norms, presented in Section 4.2, were implemented in the MATLAB 

program that calculates error vectors by comparing two data structures containing all 

modal information of a numerical "perturbed" case and the reference case. As in this 

study the mesh size of numerical models to be compared are always the same, as 

derived from the same parametric FE model, the development of modal error functions 

is very simple, because it is not necessary to project meshes on each other to calculate 

 

Figure 4.3 Block diagram of parametric study developed with MATLAB 

Parametric finite element modelling in 
ANSYS classic; APDL file

Reading parameters values from file 
created in MATLAB by ANSYS 

Modal solution, storage of finite 
element results of the i-th case of 
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MATLAB.

Parametric study routine; definition of 
case, calculation at each iteration and 
saving data in specified folder.

Reading mesh data, eigen values, mode 
shapes and modal damping from 
ANSYS result file.

Storage of data files in MATLAB data 
structure
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the error norm. However, the order of the modes can change significantly depending on 

the variable parameters, it is absolutely necessary to define (automatically) pairs of 

corresponding modes before performing the comparison of two models. The method of 

sorting and creation of pairs of modes used here is based again on the MAC matrix of 

two sets of modes (in full), in which each column and each row correspond respectively 

to a mode of reference model and a perturbed model. For each mode of the reference 

model specified in the list of modes to be studied (user input), the maximum component 

of the corresponding column of the matrix MAC is desired, thereby determining how 

that (perturbed) is best correlated with the reference mode. If this component exceeds a 

maximum limit (classical tolerance 0.7), the mode pair is then validated.  

The study of the evolution of error functions over a range of parameters is 

investigated. A variable parameter is selected and a range of values of this parameter is 

specified by the user. A search is then performed on the entire database to select 

corresponding cases and calculate their error norms. The results are finally presented as 

2D graphs. This study is achieved by using a macro-procedure automating this task.  

  

 

Figure 4.4 Block diagram of post-processing of parametric studies with the developed 

MATLAB program. 

 
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4.3.2 Robustness of error functions  

To ensure efficient identification, modal error norms must not only be sensitive to 

all parameters to be identified, but having only a single minimum over a wide range of 

parameters, thus ensuring the robustness of the method. In fact, during the first iteration 

of the identification method, a set of variable parameter estimated roughly is used to 

initialize the algorithm, resulting in generally significant deviations from the actual 

parameters. The robustness of the identification procedure is therefore conditioned 

partly by the evolution of different modal error norms over a wide range of variable 

parameters. These error functions are eventually intended to be incorporated into a 

modal error norms of hybrid weighted least squares type. Convexity of the functions or 

the sign of these have no impact on the convexity of the final hybrid error norm; only 

the presence of multiple extreme and possible inflection points in the error functions are 

really important for the robustness of identification method. 

Using the database of parametric studies conducted in this work, each error norm 

on a large number of parameter vectors (4 cases over 10 modes and 6 error norms) can 

be analyzed. A post-processing procedure has been created specifically for this purpose 

and to generate graphs evolving error norms in the range of a parameter. As this 

analysis generates a large number of figures only results of Alporas_B2 for example are 

shown in the following figures. 

Figure 4.5 illustrates the evolution of modal error norms on a range of ± 30% of 

variable parameters for Alporas_B2 plate. It shows expected behavior of  quasi-linear 

nature of each parameter in the error norm frequency (EcRelFreq). Norms based on the 

MAC (MAC_d and MAC_nd) matrix were a quadratic character directly resulting from 

the definition of this modal correlation matrix. Nodal lines difference (NLD) also has 

this quadratic character and its evolution proved to be very close to those of norms 

based on the MAC matrix.  
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Figure 4.5 Evolution of modal error norms  (sum all modes) on a range of ± 30% of each 

variable parameter (Alporas_B2) 
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Finally, the norm of the sum of the absolute modal components (SumMSD) 

differentials reveals very clearly a character "absolute" highlighted by very sharp at the 

minimum point slope discontinuity measurement which may cause difficulties at the 

level of identification algorithm if the error norm is used alone or too heavily weighted. 

Graphs of evolving error norm based on the parameters slopes can regain the 

sensibilities of error functions and of course lead to the same conclusions as presented 

sensitivity study previously. 

The evolution of MAC norm off-diagonal (Figure 4.6) is not only zero at reference 

case, but more often tends to decline in absolute values when it moves away from the 

reference case. This curious behavior comes presumably that eigen modes calculated by 

FE are read from a file created by the ANSYS, introducing some rounding errors from 

text to binary mode conversion performed by the transfer of data between ANSYS and 

 

Figure 4.6 MAC_nd based on non diagonal terms of MAC (Alporas_B2) matrix norm 

digital issue 
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MATLAB. These slight truncation errors then make numerical modes imported into 

MATLAB slightly non-orthogonal between them, which leads to off diagonal terms 

non-zero in the base case MAC matrix. This edge effect can unfortunately severely 

disrupt method for minimizing subsequently used in mixed identification procedure due 

to incorrect error gradients from occasionally opposite to the direction of minimization. 

Thus, to correct this effect, the MAC norm off-diagonal MAC_nd is modified by 

MAC_nd2 (Figure 4.7) as follows; 

 
௞ܨ

௠௔௖_௡ௗଶ൫ݔ௜൯ ൌ ෍ หܥܣܯ൫ ෤߮௝
௜ , ߮௞൯ െ ,൫߮௝ܥܣܯ ߮௞൯ห

௠

௜ୀଵ ௝ஷ௞

 (4.8)  

 

 

Figure 4.7 New norm MAC_nd2 based on differences in non-diagonal matrix MAC 

(Alporas_B2) 



Chapter 4                                                                 Mixed numerical-experimental identification technique 

4.16 

4.4 ALGORITHM FOR MIXED NUMERICAL-EXPERIMENTAL 

TECHNIQUE 

4.4.1 Modal optimization problem  

In an approach of mixed numerical-experimental technique, progressive 

convergence of numerical modal data of FE model, whose parameters are unknown to 

the target values that represent the experimental data is usually performed iteratively 

with the aid of a minimization algorithm seeking to minimize the overall difference 

between these two data sets. The identification method is then reduced to a problem of 

minimizing a global error functional ݂൫ݔ௜൯ with respect to the vector of unknown 

parameters ݔ௜. This problem can arise in the following manner: 

      Search ݔ௜ א  Ը୬  such that ݔ௜ minimizes the norm of error  ݂൫ݔ௜൯  

where ݔ௜ is the vector of identification parameters at iteration ݅. In this case, the 

unknown variable parameters ݔ௜ must satisfy inequality constraints to ensure that the 

law identified is physically qualified. From a practical point of view, it is also possible 

to search the variable parameters in a range of reasonable values, so that variation limits 

are imposed on parameters 

 
൫ݔ௠௜௡൯

௝
൏ ൫ݔ௜൯

௝
൏ ሺݔ௠௔௫ሻ௝  (4.9)

However, as by definition experimental data are physically admissible (with errors 

of measurement), minimizing the difference between the numerical model and 

measurement tends automatically to enforce physical constraints imposed on parameter 

 ௜. Thus, it is possible to consider this minimization problem with strong explicitݔ

constraints or without constraints, they are implicit in the experimental values "targets". 

In a sense the least squares minimization, the overall error functional ݂൫ݔ௜൯  can be 

written as a function of the vector error norms previously developed as follows; 

 ݂൫ݔ௜൯  ൌ
1
2

ฮF୲୭୲൫x୧൯ฮ
ଶ

ൌ
1
2

෍ൣF୩
୲୭୲൫x୧൯൧

ଶ
୯

୩ୀଵ

 (4.10)
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with, 

 F୲୭୲ ൌ ቈ
, ௙௥௤F௙௥௤ߙ ௗ௔௠௣Fௗ௔௠௣ߙ , ,௠௔௖ଵF௠௔௖ଵߙ ,௠௔௖ଶF௠௔௖ଶߙ …

… ,௡௢ௗF௡௢ௗߙ ,௘௖௠F௘௖௠ߙ ௦௧௔௕൫x௜ߙ െ x଴൯
቉

T

 (4.11)

Where ߙ௦௧௔௕ represents the weight optional terms of stabilization. 

A direct benefit of a global least squares error function is to guarantee the 

convexity and the sign of the functional error, irrespective of the properties of 

components of the vector error F୲୭୲൫x୧൯, thus making identification method particularly 

stable when the number of components q of the error vector is much greater than the 

number n of parameters to identify. In current cases, the number of measured modes are 

in the order of 10, to ensure both the over determination of the problem of least-squares 

minimization while ensuring a variety of methods to obtain sufficient balanced 

sensitivity to all parameters ݔ௜. 

In order to avoid direct numerical packaging problems associated with highly 

variable magnitude of the parameters to identify (1010 difference between ν  and E  for 

example), the vector of parameters ݔ௜ is defined relative to the initial values. In 

summary, the problem of minimization with or without constraint can be defined as; 

 

ݎ݁ݏ݅݉݅݊݅݉
௫೔א Ը౤

݂൫ݔ௜൯ ݄ݐ݅ݓ ݂൫ݔ௜൯ ൌ
1
2

ฮF୲୭୲൫x୧൯ฮ
ଶ

ൌ
1
2

෍ൣF୩
୲୭୲൫x୧൯൧

ଶ
୯

୩ୀଵ

 
(4.12)

With optional constraints 

 ൫ݔ௠௜௡൯
௝

൏ ൫ݔ௜൯
௝

൏ ሺݔ௠௔௫ሻ௝ (4.13)

Where the error function can be written as;  

 F୲୭୲ ൌ ቈ
, ௙௥௤F௙௥௤ߙ ௗ௔௠௣Fௗ௔௠௣ߙ , ,௠௔௖ଵF௠௔௖ଵߙ ,௠௔௖ଶF௠௔௖ଶߙ …

… ,௡௢ௗF௡௢ௗߙ ,௘௖௠F௘௖௠ߙ ௦௧௔௕൫x௜ߙ െ x଴൯
቉

T

 (4.14)

 
4.4.2 Minimization algorithms  

By adopting a pragmatic development approach with regard to the identification 

algorithm, it is decided to base this work on an existing library of optimization routines 
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that have already been proven in many applications. An important set of MATLAB 

routines for solving problems with parametric FE software ANSYS has already been 

developed (section 4.3.2). As a part of minimization problem, the number n of 

parameters to identify (n = 3) and the number of components of error q (q = 6 × m, 

where m ≈ 10 is the number of measured modes) can be considered relatively low, thus 

classifying this problem in the category of small and medium-scale optimizations (low 

number of parameters, the small number of error norm not decoupled).  

The main algorithms used in this field are either nonlinear least squares (Gauss-

Newton, the maximum gradient or Levenberg-Marquardt methods) for unconstrained 

problems [179, 180] or type sequential quadratic programming (SQP, Sequential 

Quadratic Programming) for constrained problems. Optimization by Nonlinear least 

squares method is used in the procedure for mixed numerical-experimental developed in 

this work. 

Let's start by defining the matrices gradients (slopes) and Hessian (curvature) of the 

overall error norm ݂൫ݔ௜൯ . Thanks to the particular shape of the functional error total 

least squares type, these matrices can be connected to the Jacobian matrices ܬ൫ݔ௜൯ and 

Hessian of the error vector F୲୭୲൫ݔ௜൯ . The Jacobian matrix ܬ൫ݔ௜൯  of the error vector 

F୲୭୲൫ݔ௜൯ and the gradient vector  ܩ൫ݔ௜൯  of the global error functional ݂൫ݔ௜൯ can then be 

formed into, 

௜൯ݔ൫ܬ  ൌ
∂F୲୭୲൫ݔ௜൯

௜ݔ∂  (4.15)

and 

௜൯ݔ൫ܩ  ൌ સ݂൫ݔ௜൯ ൌ ௜൯ݔ൫ܬ
்

F୲୭୲൫ݔ௜൯ (4.16)

Hessian matrix ܪ௝൫ݔ௜൯  of the second derivatives of the j-th component of the error 

vector F୲୭୲൫ݔ௜൯ and the Hessian matrix ܪ൫ݔ௜൯ of the global error functional ݂൫ݔ௜൯ are 

linked by relationships; 

௜൯ݔ௝൫ܪ   ൌ
∂ଶF୨

୲୭୲൫ݔ௜൯
ሺ∂ݔ௜ሻଶ  (4.17)

and  
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௜൯ݔ൫ܪ   ൌ ௜൯ݔ൫ܬ

்
௜൯ݔ൫ܬ ൅ ܳ൫ݔ௜൯ , with 

ܳ൫ݔ௜൯ ൌ ∑ F୨
୲୭୲൫ݔ௜൯.௤

௝ୀଵ  ௜൯ݔ௝൫ܪ
(4.18)

From these definitions, consider now the overall functional ݂൫ݔ௜൯. If it is sufficiently 

regular in the vicinity of ݔ௜, this functional can be approximated by the following 

Taylor expansion 

 ݂൫ݔ௜ ൅  ݄൯   ൌ ݂൫ݔ௜൯ ൅ ௜൯ݔ൫ܩ்݄ ൅ ଵ

ଶ
௜൯݄ݔ൫ܪ்݄ ൅ ܱሺԡ݄ԡଷሻ  (4.19)

where the vector h denotes a local perturbation parameters around ݔ௜  .  

The necessary and sufficient conditions to ensure that כݔ is a local minimum, the 

error functional ݂ሺݔሻ can be defined by 

 

ሻכݔሺܩ ሻ  ifݔis a local minimum of ݂ሺ כݔ ൌ 0 and ܪሺכݔሻ  is 

positive definite. 
(4.20)

Most methods for nonlinear least square type minimization are based on an iterative 

method for "descent", designed to look at each iteration i a direction of descent h (vector 

space parameters) such as h is a descent direction for the overall error norm ݂ሺݔሻ 

around ݔ௜ if: 

 ݂൫ݔ௜ ൅ ൯݄ߙ   ൏ ݂൫ݔ௜൯ ሺfor small values of αሻ ֞ ௜൯ݔ൫ܩ்݄ ൏ 0  (4.21)

The most well known technique for determining a descent direction based on the 

gradient of the total error functional to calculate the descent direction of ݄ௌ஽  

"maximum slope" 

 ݄ௌ஽൫ݔ௜൯ ൌ െ ݂ ′൫ݔ௜൯ ൌ ௜൯ (4.22)ݔ൫ܩ

 In summary, Table 4.2 presents the overall flow of an optimization algorithm for 

nonlinear least squares. 
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Table 4.2 Algorithm for General optimization based on the principles of descent direction 

Definition of a vector of initial parameter x0. 

Iteration until the convergence is reached or the maximum number of iterations are 

exceeded; 

1. Calculate descent direction ݄൫ݔ௜൯ such that ݂൫ݔ௜ ൅ ൯݄ߙ    ൏ ݂൫ݔ௜൯. 

2. Search along the descent direction ݄൫ݔ௜൯  the factor α minimizing the function α: 

݂൫ݔ௜ ൅  ൯݄ߙ 

3. Update the parameters vector: ݔ௜ାଵ ൌ ௜ݔ ൅   .௜൯ݔ൫݄ߙ

In the case of non-linear least squares method, the Hessian matrix ܪሺݔሻ of the total 

error functional ݂ሺݔሻ has a particular property. Indeed, as the matrix ܳ൫ݔ௜൯ tends to 

zero as soon as the residual error ฮF୲୭୲൫ݔ௜൯ฮ itself tends to zero, the Hessian matrix 

takes the following specific form when the residue error ฮF୲୭୲൫ݔ௜൯ฮ is zero or very low 

 :(௜ close to the minimumݔ)

௜൯ݔ൫ܪ  ؆ ௜൯ݔ൫ܬ
்

௜൯ (4.23)ݔ൫ܬ

This implies that for ݔ௜ close to the minimum x*, the second order approximation of the 

total error functional ݂ሺݔሻ is written as 

 
݂൫ݔ௜ ൅ ݄൯   ൌ ݂൫ݔ௜൯ ൅ ௜൯ݔ௜൯F୲୭୲൫ݔ൫ܬ்݄ ൅

1
2

௜൯ݔ൫ܬ்݄
்

௜൯݄ݔ൫ܬ

൅ ܱሺԡ݄ԡଷሻ 
(4.24)

This development limited the total error function corresponds perfectly to the 

approximate form of ݂ሺݔሻ that would be obtained by a linear approximation of each 

component of the error vector F୲୭୲൫ݔ௜൯ around ݔ௜ 

 

௜ݔ௧௢௧൫ܨ  ൅  ݄൯ ؆ ௜൯ݔ௧௢௧൫ܨ ൅ ௜൯hݔ൫ܬ ൅ ܱሺԡ݄ԡଶሻ (4.25)

Which leads to 
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݂൫ݔ௜ ൅  ݄൯  ൌ ૚

૛
ቀܨ௧௢௧൫ݔ௜ ൅ ݄൯ቁ

்
௜ݔ௧௢௧൫ܨ ൅ ݄൯ ؆

૚

૛
ቀܨ௧௢௧൫ݔ௜൯ቁ

்
௜൯ݔ௧௢௧൫ܨ ൅ ଵ

ଶ
൫ܬ൫ݔ௜൯h൯

்
௜൯ݔ௧௢௧൫ܨ ൅

ଵ

ଶ
ቀܨ௧௢௧൫ݔ௜൯ቁ

்
௜൯hݔ൫ܬ ൅  ଵ

ଶ
௜൯ݔ൫ܬ்݄

்
௜൯hݔ൫ܬ ൌ

݂൫ݔ௜൯ ൅ ௜൯ݔ൫ܬ்݄
்

௜൯ݔ௧௢௧൫ܨ ൅ ଵ

ଶ
௜൯ݔ൫ܬ்݄

்
௜൯hݔ൫ܬ   

(4.26)

This observation is the basis of the Gauss-Newton optimization method, based on a 

linear approximation of the components of the error vector ܨ௧௢௧൫ݔ௜൯ at each iteration, 

thus forming a quadratic approximation of the total functional error ݂൫ݔ௜൯. This method 

has quadratic convergence properties when the final residual error is small or zero, or 

otherwise linear. The descent direction ݄ீே calculated by Gauss – Newton method at 

each iteration is the solution of the following system: 

 ൬ܬ൫ݔ௜൯
்

௜൯൰ݔ൫ܬ hGN ൌ െܬ൫ݔ௜൯
்

௜൯ (4.27)ݔ௧௢௧൫ܨ

The primary advantage of the Gauss-Newton is of course its quadratic convergence 

in the final iterations if the minimum residual error is small. However, during the early 

iterations, the Hessian matrix ܪሺݔሻ of  ݂ሺݔሻ can be indefinite or even negative definite, 

completely disrupting the procedure, so that hGN may not be a descent direction for 

݂ሺݔሻ. Therefore, during the early iterations, the use of a descent direction of maximum 

slope hSD may be more appropriate. The idea of a hybrid between the maximum descent 

and Gauss-Newton method has motivated a series of algorithms, the best known (and 

perhaps most effecient) is the Levenberg-Marquardt [179, 180]. The difficulty of any 

hybrid algorithm is mainly to choose when and under what conditions switch from the 

method of maximum descent to Gauss-Newton and vice versa. To do this, the method 

of Levenberg-Marquardt introduced a parameter ߣ௜ varying in the interval [0, ∞]. The 

descent direction hLM  is then calculated by solving 

 ቀܬ൫ݔ௜൯
்

௜൯ݔ൫ܬ ൅ ܫ௜ߣ ቁ hLM൫ݔ௜൯ ൌ െܬ൫ݔ௜൯
்

௜൯ (4.28)ݔ௧௢௧൫ܨ

If ߣ௜ is close to zero, the descent direction hLM tends toward the descent direction 

hGN of Gauss-Newton type, whereas when ߣ௜ becomes relatively large descent direction 
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hLM approaches to െ 1 ⁄௜ߣ hSD representing a small "step" in the direction of maximum 

descent. It should be noted that ߣ௜  influence both the direction of lowering the 

amplitude of the step performed at iteration i, allowing to pass from a line search 

method. However, any performance of this method lies in fact how to evolve ߣ௜ during 

the iterations. The idea used here is to reduce ߣ௜ when the linear approximation of the 

components of the error vector provides good results (insignificant quadratic terms) to 

approximate the descent direction of Gauss-Newton (super linear convergence if the 

residue is low), and ߣ௜ increase when the terms of the second order component of the 

error vector ܨ௧௢௧ are important, so that the algorithm tends towards a maximum descent 

method.  

 

Table 4.3 Minimization of Levenberg-Marquardt algorithm 

Definition of a vector of initial parameter x0. 

Iteration until the convergence is not reached (tolerance) or the maximum number of 

iterations is not exceeded; 

1. Calculate the vector error ܨ௧௢௧൫ݔ௜൯ and its derivatives ܬ൫ݔ௜൯ 

2. Evaluate the depreciation factor ߣ௜ of the current iteration  

a. linear extrapolation of the error function: ௅݂൫ݔ௜ ൅ ݄௜൯ 

b. cubic interpolation ௖݂ሺݔሻ of ݂൫ݔ௜ିଵ൯ and ݂൫ݔ௜൯ and search for the 

minimum of interpolation leading to  ௖݂ሺכݔሻ and כߙ 

c. calculation of ߣ௜  

i. ݂݅ ௅݂൫ݔ௜ ൅  ݄௜൯ ൏ ௖݂ሺכݔሻ  then ߣ௜ାଵ ൌ ఒ೔ 

ଵାఈכ 

ii. ݂݅ ௅݂൫ݔ௜ ൅  ݄௜൯ ൐ ௖݂ሺכݔሻ  then ߣ௜ାଵ ൌ ௜ߣ ൅
௙೎ሺ௫כሻି௙ಽ൫௫೔ା ௛೔൯ 

ఈכ   

3. Search for a descent direction ݄௜ ൌ ݄൫ݔ௜൯ by solving 

ቀܬ൫ݔ௜൯
்

௜൯ݔ൫ܬ ൅ ቁ ܫ௜ߣ ݄௜൫ݔ௜൯ ൌ െܬ൫ݔ௜൯
்

 ௜൯ݔ௧௢௧൫ܨ

4. Find along the descent direction ݄௜൫ݔ௜൯ the factor ߙ minimizing ݂൫ݔ௜ ൅

 ௜ሻ using a quadratic interpolation procedure/cubic ֜ calculation error݄ߙ 

vectors intermediate ܨ௧௢௧൫ݔ௜ ൅ ߙ௞݄௜൯ ሺfor ݇ א ሾ1,3ሿሻ .  

5. Update the parameter vector ݔ௜ାଵ ൌ ௜ݔ ൅  . ௜݄ߙ
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Although a search line is not applied directly in the Levenberg-Marquardt method, 

implementation carried out in the MATLAB Optimization Toolbox library [180] 

determines still line search by a factor כߙ used for measuring the nonlinearity of the 

components of the vector error. The step length כߙ is evaluated by searching a 

minimum כݔ on a cubic interpolation ௖݂ሺݔሻ of the error function (based on the values of 

errors and gradients computed in iterations i and i-1). The effectiveness of the local 

linear approximation ௅݂൫ݔ௜ ൅  ݄௜൯ of Gauss-Newton is then compared with the cubic 

approximation ௖݂ሺכݔሻ, in order to decide whether to increase or decrease ߣ௜ାଵ. The 

updated value of ߣ௜ାଵ of the current step is based ultimately on the step length of the 

cubic interpolation כߙ. Table 4.3 summarizes the final minimization algorithm 

Levenberg-Marquardt. 

In conclusion, the method of optimization by least squares Levenberg-Marquardt is 

recognized as being very robust and generally perform well in a wide variety of cases. 

Although theoretically converges slower than the Gauss-Newton in some very specific 

cases, this algorithm is most efficient on the majority of cases encountered. Moreover, 

the very rapid convergence of the algorithm, combined with the fact that it does not 

require systematic evaluation of gradients of error functions during the line search, this 

procedure is one of the least demanding in computing error norm and gradient. 

 
4.4.3 Calculation error functional gradients  

As it is observed in the explanation of minimization algorithm that it is necessary to 

compute at each iteration of the main process not only the vector of modal error 

functions between the numerical and experimental models, but also the gradient of this 

vector with respect to the identification parameters. Gradients (or Jacobians) modal 

error norms obviously depend on modal solutions of numerical model, but also the 

gradient of these solutions with respect to variable parameters. Thus, it is necessary to 

build on each major iteration of the identification method, both modal solutions of 

parametric FE model but also their derivatives with respect to each identification 

parameter. The derivatives of the eigen frequencies are relatively simple to calculate, it 

does not hold true for the derivatives of the modes, which require much more 

computational effort to be evaluated. For the sake of clarity and concision, abandon here 



Chapter 4                                                                 Mixed numerical-experimental identification technique 

4.24 

the index i representing the iterations. Recall that the problem of modal extraction can 

be stated as follows,  

 ൫۹ሺxሻ െ λ୨ۻ൯૎୨ ൌ 0 ֜ λ୨ሺxሻ, ૎୨ሺxሻ for j ൌ 1, 2, … , m (4.29)

where K and M are global stiffness and mass matrices, and where λ୨ and ૎୨ represent 

respectively the j-th eigenvalue (the square of the j-th angular eigen frequency ωj ) and 

j-th eigen vector of the system, m is indicating the number of considered modes pairs. In 

current case of identification, the mass matrix M does not depend on the parameter 

vector x because the density and geometric dimensions are not part of the parameters 

vector and therefore remain constant.  

Directly deriving the equation (4.23) with respect to parameter ݔ௞  and using the 

normalization property of modes in the metric of the mass matrix, one can easily make 

the calculation of the derivatives of eigenvalues ሾ178, 181‐184ሿ.  

 
∂λ୨

∂x୩
ൌ ૎୨

T ∂۹ሺxሻ
∂x୩

૎୨ for j ൌ 1, 2, … . . , m (4.30)

The derivatives of the eigen modes are the solutions of the following system:  

 ൫۹ሺxሻ െ λ୨ۻ൯
ப૎ౠ  

ப୶ౡ
 = 

பλౠ

ப୶ౡ
૎୨ۻ െ ப۹ሺ୶ሻ

ப୶ౡ
૎୨ for j ൌ 1, 2, … . , m (4.31)

The classical technique of finite differences can be implemented very easily in this 

case, either for the calculation of derivative of frequencies and eigen modes, or for the 

calculation of the derivative of modal error norms directly.  

Modal derivatives calculated by finite differences require calculation of a "reference" 

case of parametric FE model as well as the calculation of n "perturbed" cases.  

Let ߣ௝
଴

 and ࣐௝
଴ is the modal solutions of the reference case (the parameters vector x = 

x0) and ߣ௝
௞

 and ࣐௝
௞

  is the modal solutions according to the perturbed k-th parameter ݔ௞ 

with a step ∆ݔ௞ than modal derivative can be approximated by  
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డఒೕ

డ௫ೖ
؆ ଵ

∆௫ೖ
ሺߣ௝

௞ െ ௝ߣ
଴ሻ and  

డ࣐ೕ

డ௫ೖ
؆ ଵ

∆௫ೖ
ሺ࣐௝

௞ െ ௝࣐
଴ሻ      for j=1, 2,…m (4.32)

Obviously, resolution of n+1 large scale eigenvalue problems is not very economical in 

terms of computing time, but simplicity and accuracy of this method provide very good 

evaluation of the Jacobiens error J (x).  

Thus, the identification method developed here will use derivation by finite 

differences method. As in the resolution by nonlinear least squares algorithm for 

MATLAB, an option enables the automatic calculation of error gradients by finite 

difference.  

4.4.4 Implementation of identification technique in MATLAB  

The identification method developed here is based on Levenberg-Marquardt 

algorithm with assessment of gradients by finite difference. The majority of the 

development of the method focused on modal error functional calculation and therefore 

on the comparison of numerical and experimental modal values.  

Before the calculation of modal norms, experimental modal data, previously 

processed in the LMS software, must be imported into the MATLAB environment and 

the experimental mesh must be converted into the same coordinate system of the 

numerical model used subsequently for identification. A routine treatment to load the 

experimental modal model from a UNV file and interactively define the geometry data 

necessary to correct coordinates on the basis of an experimental image of the mesh 

exported from the LMS Software. The experimental modal model is stored in a data 

structure of MATLAB in the same way as numerical modal models. 

A set of routines for parametric definition and execution of ANSYS FE models are 

already presented in the operating procedure of the parametric study in section 4.3. 

However, as the mesh used for the measurement and the numerical model are 

dissimilar in principle, a strategy of projecting modal data on a reference mesh was 

necessary to calculate the error norms based on the shape of the eigen modes. Therefore, 

each routine based on error norm calculation of modes (MAC_d, MAC_nd, NLD, and 
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SumMSD) uses a version of "interpolated" procedures for determining MAC matrices 

or sums modal components differences. 

Thus a reference mesh of variable size is generated and the cubic interpolation of  

normal components of deformed mode shapes are calculated. Since the eigen modes 

numerically extracted are generally more numerous than the measured modes and it is 

not necessary that they may appear in the same order as the previous, so numbering of 

the modes must be corrected before the calculation of error norm. A strategy for the 

automatic creation of pairs of numerical and experimental methods, based on the 

maximum terms of the correlation matrix MAC is used to ensure mode shapes 

compatibility. In addition, the rigid body modes are also filtered not to disturb the 

identification procedure. Modal vectors interpolated are defined on the same mesh and 

numbered in the same way, modal norms can be estimated easily as in their theoretical 

definition. The Algorithm 1 and Algorithm 2 will explain implementation of proposed 

mixed numerical-experimental technique and objective function respectively in detail. 

 

 

Figure 4.8 Block diagram of loading experimental modal model for mixed numerical 

experimental identification technique 
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Synopsis of Algorithm 1: 

This algorithm load experimental modal data, extract the required data and 

executes optimize algorithm to solve the mixed numerical-experimental problem. It 

calls several MATLAB routines, which include;  

readuff.m, this routine read the experimental modal data from universal file format. 

LMFnlsq.m, Solve a set of nonlinear equations in least squares sense. A solution is 

obtained by a Fletcher's version of the Levenberg-Maquardt algorithm for minimization 

of a sum of squares of equation residuals. 

Objective_function.m, output of this routine is optimized by Levenberg-Maquardt 

algorithm. 

 

Algorithm 1: Computing FE model parametric variable by optimizing the objective 

function. 

Input: 

Objective function, Experimental modal data (UNV. file format), Initial 

parametric variables, Options for optimization algorithm. i.e. Max no of 

iteration, tolerance, etc. 

Output: 

Optimized parametric variable, experimental modal data in MATLAB format 

(mode shape matrix, eigen frequency vector and modal damping ratios vector). 

Body script: 

1. Read experimental modal data which is saved in UNV. file format (see Fig 4.8) by 

MATLAB. 

2. Extract the required data; 
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for i = 1: max; 

  Experimental mode shapes (i) 

end 

Output = contains mode shapes data matrix, with rows consisting of degrees of 

freedom and each column representing a mode. 

for i = 1: max; 

  Experimental eigen frequency (i) 

end 

Output = contains frequency vector, listing the eigenvalues (resonant frequencies 

in Hz).  The size of the frequency vector is (modes) x (1). 

for i = 1: max; 

  Experimental modal damping ratios (i) 

end 

Output = contains damping ratio vector.  The size of the vector is (modes) x (1). 

3. Optimizing the objective function using Fletcher's version of the Levenberg-

Marquardt algorithm for minimization of a sum of squares of equation residuals.  

 

Synopsis of Algorithm 2: 

This algorithm computes the objective function for optimization. It reads the output 

variable parameters from Algorithm 1, invokes ANSYS to solve the FE problem using 

these parameters, read the FE solution results, load the experimental results, compare 

them and make mode pairs. It also computes the six objective functions of modal error 

norms. Assembling and weighting of these error norms in term of stabilization is also 

performed in this algorithm. It calls the following subroutines.  

FE_mode_specimenl.mac is ANSYS input file (in APDL format) that builds the FE 

model of AF, calculates eigenvalues and eigenvectors, outputs the frequency listing, 
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damping ratios and eigenvectors, plots the mode shapes.  This script consists of several 

sub macros for reading and writing of MATLAB data format.  

Readansysarray_mode.m read ANSYS eigenvector results and converts them to 

MATLAB format. 

Readansysarray_Freq.m read ANSYS eigenvalues results and converts them to 

MATLAB format. 

Readansysarray_Damp.m converts ANSYS file of damping ratios into MATLAB 

format. 

 

Algorithm 2: Compute the objective function (modal error norm vector). 

Input: 

Optimized parametric variable and experimental modal data in MATLAB format 

(Output of Algorithm 1), ANSYS FE model of specimen (APDL). 

Output: 

Error (r) for MATLAB optimization, MAC matrix plot (paired and non paired).  

Body script: 

4. Read optimized parametric variables (output of Algorithm 1). 

5. Execute ANSYS to solve FE model of specified specimen (see section 3.6.1, 

Figure 3.4, and Figure 4.10 for details). 

6. Read required mode shapes values from ANSYS result files using 

Readansysarray_Mode.m. 

7. Read required eigen frequency values from ANSYS result files using 

Readansysarray_Freq.m. 

8. Read required modal damping ratios from ANSYS result files using 

Readansysarray_Damp.m. 

9. Read experimental modal data (output of Algorithm 1). 
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10. Interpolate experimental and numerical data on same mesh for first fifteen mode 

shapes. 

for i = 1: 15; 

  Interpolate numerical mode shapes (i) 

end 

Output: contains mode shapes data matrix, with rows consisting of degrees of 

freedom and each column representing a mode. 

11. Calculate MAC matrix for mode pairing. 

for j,l = 1: number of modes;  

௝௟ܯ   ൌ ൫૎௝ܥܣܯ
௔, ૎௟

௕൯ ൌ  
ቀ૎ೕ

ೌ.૎೗
್ቁ

మ

ቀ૎ೕ
ೌ.૎ೕ

ೌቁ൫૎೗
್.૎೗

್൯
 

end 

 Plot non-paired MAC matrix (see for example in Figure 5.8, 5.11, 5.14, 

5.18). 

 Select first mode pairs whose MAC > 0.7 (these mode pairs will be used in 

further calculations). 

 Plot paired MAC matrix (see for example in Figure 5.8, 5.11, 5.14, 5.18). 

 Rearrange numerical and experimental data according to sleeted mode pairs. 

 

12. Calculate modal error norms. 

 

Note: Read section 4.2 for details of modal error norms equation used in this 

algorithm.  

 

 Relative difference of the eigen frequencies. 
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for k = 1: number of modes; 

௞ܨ 
௙௥௤൫ݔ௜൯ ൌ  ω෥ೖ

೔ ି ωೖ 

 ఠೖ 
 

end  

Output = Error1 

 Relative difference of modal damping ratio. 

for k = 1: number of modes; 

௞ܦ  
௠ௗ௥൫ݔ௜൯ ൌ  

஖෨ೖ
೔ ି ஖ౡ 

 ஖ౡ 
 

end  

Output = Error2 

 Error norm based on non-diagonal terms of MAC matrix. 

for  j,k = 1: number of modes; 

௞ܨ 
௠௔௖_௡ௗ൫ݔ௜൯ ൌ ∑ ൫૎෥ܥܣܯ ௝

௜ , ૎௞൯௠
௝ୀଵ,௝ஷ௞  

end  

Output = Error3 

 Error norm based on diagonal terms of MAC matrix. 

 for  k = 1: number of modes; 

௞ܨ
௠௔௖_ௗ൫ݔ௜൯ ൌ 1 െ ൫૎෥ܥܣܯ ௞

௜ , ૎௞൯ 

end  

Output = Error4 

 Error norm based on components of interpolated mode shape difference. 
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for  j = 1 : r (component of mode shape) 

for  k = 1: number of modes; 

௞ܨ
௠௦௩൫ݔ௜൯ ൌ ෍ ൭

൫૎෥ ௞
௜ ൯

௝

max
௟

ሺሺ૎௞ሻ௟ሻ
െ

ሺ૎௞ሻ௝

max
௟

ሺሺ૎௞ሻ௟ሻ
൱

௥

௝ୀଵ

 

end  

end 

Output = Error5 

 Error norm based on nodal line difference. 

for  k = 1: number of modes; 

௞ܨ
௡௢ௗ൫ݔ௜൯ ൌ

1
ܽଶ ෍ ෍൫ ሚ௥௦ܬ

௜௞ െ ௥௦ܬ
௞  ൯

ଶ
௔

௦ୀଵ

௔

௥ୀଵ

 

end  

Output = Error6 

13. Assembling and weighting modal error norm. 

The mixed numerical-experimental identification procedure takes place according to 

the following steps: 

1. Loading the experimental data (Figure 4.8). 

2. Solving objective function by invoking ANSYS to work out FE model of AF 

(Figure 4.9). 

3. FE modelling of aluminum foam specimens in APDL (Figure 4.10). 

4. Calculating error norms (Figure 4.11). 

5. Solving the problem of mixed numerical-experimental identification using 

Levenberg-Marquardt algorithm (Figure 4.12). 
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Figure 4.10 FE modelling of AF. 

FE modelling of AF in ANSYS classic 

Preprocessor

Define geometry, element type, sub-domains etc.
Read density distribution file of CT data.
Read the parametric variables from ascii file.
Implementation of Gibson and Ashby formulation of Young’s modulus and ralative density.
Assign material properties to sub-domains.

Solution

Postprocessing

Complex modal solution with QRDAMP method.

Write out eigenvectors in ascii format.
A macro which export frequencies array to a file.
A macro which export damping ratios array to a file.

 

Figure 4.9 Matlab routine summary of objective function (Algorithm 2) 

 



Chapter 4                                                                 Mixed numerical-experimental identification technique 

4.34 

 

 

 

Figure 4.11 Block diagram of the evaluation of modal error norms 

Evaluation of modal error norms

Calculating error norms functions

Creation of mode pairs

Calculation of the MAC matrix between numerical and experimental modal models. Identification of 
maximum correlation and filtering modes in the XY plane.

Function MAC_d

Error norm based on the diagonal terms of 
the  MAC matrix.

Error norm based on the relative difference 
of the eigen Frequencies.

Function RFreqD

Function MAC_nd

Error norm based on the non-diagonal terms 
of MAC Matrix.

Function MDRD

Function SumMSD

Error norm based on the components of
interpolated mode shapes difference.

Function NLD

Error norm based on the nodal lines 
difference (image correlation).

Assembling and weighting modal  error norm vector  

Combination of modal error vectors and weighting in terms of stabilization

Experimental modal testing results

Reading experimental results of modal testing.

FE model results

ANSYS modal analysis results of AF.

Error norm based on the relative 
difference of the modal damping ratios
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Figure 4.12 General block diagram for solution of mixed numerical-experimental 

identification problem (Algorithm 1) 

Loading output file of Fig. 4.8.

Extracting and saving modeshapes in a matlab data file; This file contains mode shape data 

matrix, with rows consisting of degrees of freedom and each column representing a mode.

Extracting and saving eigen frequencies in a matlab data file; This file contains frequency 

vector, listing the eigenvalues (resonant frequencies in Hz).  The size of the frequency vector is 

(modes) x (1).

Extracting and saving damping ratios  in a matlab data file; This file contains damping ratio 

vector.  The size of the vector is (modes) x (1).

Note: Details of aquiring experimental data is explained in Fig. 4.8.

Start

Loading experimental data.

Assigning initial values to variable parameters for optimization algorithm.  x03×1

This algorithm solve a set of nonlinear equations in least squares sense. A solution is obtained 

by a Fletcher's version of the Levenberg-Marquardt algorithm for minimization of a sum of 

squares of equation residuals.

Use of finite difference method for derivatives.

Set maximum number of iterations, tolerence etc.

Specify the objective function (see details in Fig. 4.9).

Save required parameters after covergence.

Note: Details of minimization algorithm is explained in Table 4.3.

Executing optimization algorithm.

End
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CHAPTER  5. RESULTS AND DISCUSSION 

In this last chapter, experimental modal analysis results of four aluminum foam 

specimens are presented. The developed MNET is implemented to identify the variable 

parameters in the FE model of these specimens. 

5.1 SUMMARY OF THE PROPOSED MIXED IDENTIFICATION 

METHOD  

Before the description of results, first summon up the actual approach of the proposed 

mixed numerical-experimental identification process: 

5.1.1 Modal measurements of test specimens  

a. Selection of the specimen  

b. preparation of the experimental test setup  

c. dynamic measurements on test specimens  

d. modal parameters extraction  
 

5.1.2 Mixed numerical-experimental identification  

e. import of the experimental modal model in MATLAB 

f. initial estimation of the variable parameters  

g. parametric FE model of test specimens  

h. definition of the identification problem  

i. execution of the optimization algorithm  

5.2 OBJECTIVES AND APPROACH  

At this stage of development, the mixed numerical-experimental identification 

method based on natural frequencies and mode shapes of AF specimens, is fully 

developed in terms of theory and implementation. However, before implementation of 

the proposed technique it is necessary to check the accuracy of dynamic measurements 

and validation of the estimated modal parameters. Section 5.3 is devoted to this task. 
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After validation of experimental modal analysis results the proposed MNET is 

implemented on these specimens and results of each specimen is discussed.  

5.3 MODAL MEASUREMENTS  

Modal analysis of four aluminum specimens are conducted on a range of frequency 

from 10 Hz to 3 kHz on experimental mesh of 36×29 and 32×26 measuring points for 

specimen of size B and S respectively. The spectral lines measured are set to 3200 lines 

and an average of 30 measurements per point is made to increase the signal-noise ratio.  

5.3.1  Measurement estimation and validation 

There are a couple of estimators used to calculate the FRF. For noise at the output, a 

useful estimator is ܪଵ. The function ܪଵ is derived by using least squares method, and is 

the cross spectrum divided by the autospectrum of the force F see equation 5.1. If 

averaging the FRFs measured with ܪଵ, the random noise will suppress and ܪଵ will 

converge towards the true H [185]. 

ଵሺ߱ሻܪ  ൌ
ி௑ሺ߱ሻܩ
ிிሺ߱ሻܩ

 (5.1)  

For noise at the input ܪଶ is a useful estimator for the FRF. It is derived from the 

same principle as the ܪଵ estimator, and is defined as the autospectrum of the response 

divided by the cross spectrum. The noise at the input is removed more and more from 

the cross spectrum with increased averages. 

ଶሺ߱ሻܪ  ൌ
௑௑ሺ߱ሻܩ
௑ிሺ߱ሻܩ

 (5.2)  

 ଵ estimator for the FRF’s calculations is used in this work. The average spectrum ofܪ

measured transfer functions is shown in Figure 5.1. Measured transfer function quality 

is excellent with a large number of close peaks, thus providing the effectiveness of the 

laser scanning (non contact) measurement method.  Very strong mutual influence of 

some resonance peaks is evident here and the LMS PolyMAX extraction procedure is 

essential to accurately determine the close eigen frequencies and mode shapes. On 

average, between 12-15 modes are  identified for small plates while between 18-20 

modes are identified for big plates in a frequency range of  10 Hz to 3 kHz  The eigen 



Chapter 5                                                                                                                      Results and discussion 

5.3 

modes which have been identified with sufficient quality are shown in Figure 5.3, 5.4, 

5.5 and 5.6 for Alporas_S2, Alporas_B2, Alporas_B3, and Alporas_S3  specimen 

respectively. 

A way to validate the measurements is to observe the coherence function, shown in 

equation 5.4. It is derived from the cross spectrum inequality (equation 5.3) which states 

that if the autospectrum contains non-coherent noise, the magnitude of the squared cross 

spectrum is smaller than the product of the autospectrum. 

The coherence functions have the boundaries described in equation 5.5. For the value 

1, the measurement contains no noise, and for the value 0, there is pure noise in the 

measurement. The coherence function also indicates the linearity between the input and 

Figure 5.1 Average measured frequency response function of testing specimens 
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output signal. When the coherence is 1, estimator Hଵ and Hଶ will yield the same result, 

therefore the estimators are overcompensated, and the true FRF will be somewhere in 

between. 

 |ܳ௑ிሺ߱ሻ|ଶ ൑ .௑௑ሺ߱ሻܩ   ிிሺ߱ሻ (5.3)ܩ

 

 
ሺ߱ሻଶߛ ؠ

|ܳி௑ሺ߱ሻ|ଶ

.௑௑ሺ߱ሻܩ ிிሺ߱ሻܩ
 (5.4)  

  0 ൑ ሺ߱ሻଶߛ ൑ 1 (5.5)  

 

To calculate the autospectrum, the spectrum is multiplied with its complex conjugate. 

The complex conjugate is the same spectrum but with opposite sign for the imaginary 

part. The autospectrum is always real. 

The cross spectrum is calculated by multiplying a spectrum with the complex 

conjugate of a different spectrum. For instance the spectrum of the force and the 

response. Cross spectrum is a complex entity which describes the phase shift between 

the different spectrums. The magnitude of the cross spectrum describes the coherent 

product of power in the spectrums [185]. Coherence function of all four AF specimens 

is shown in Figure 5.2. 

After verifying the quality of measurements, FRF’s are saved in UNV file format and 

are imported in LMS Test.Lab. The LMS PolyMAX method is used to estimate the 

modal parameters precisely. Experimental modal results of all four testing specimen are 

shown below in Table 5.1, 5.2, 5.3, and 5.4 for Alporas_S2, Alporas_B2, Alporas_B3, 

and Alporas_S3  specimen respectively. Since some measured eigen modes are highly 

complex and identification procedure requires real reference modes, these complex 

modes are normalised by keeping the amplitude with its sign, corresponding to the 

average phase of the measured complex mode. 
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Figure 5.2 Coherence function of testing specimens 
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Figure 5.3 Experimental Mode shapes of Alporas_S2 
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Table 5.1 Experimental modal parameters of Alporas_S2 

Mode No. 1 2 3 4 5 6 7 8 

Frequency(HZ) 339.536 411.748 744.493 796.497 963.683 1170.93 1486.4 1541.01 

Damping (%) 0. 33 0. 25 0. 603 0. 090 0. 148 0. 364 0. 346 0. 379 

         

Mode No. 9 10 11 12 13 14   

Frequency(HZ) 1877.11 2104.23 2226.53 2310.23 2464.3 2708.14   

Damping (%) 0. 56 0. 516 0. 452 0. 461 0. 512 0. 329   

 

 

 

  

   

To be continued on next page. 
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Figure 5.4 Experimental mode shapes of Alporas_B2 
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Table 5.2 Experimental modal parameters of Alporas_B2 

Mode No. 1 2 3 4 5 6 7 8 

Frequency(HZ) 219.84 281.33 462.616 525.82 597.41 797.26 993.59 1168.32 

Damping (%) 0.153  0.00132 0. 885  0. 237  0.0778  0. 393  0. 203  0.513 

         

Mode No. 9 10 11 12 13 14 15 16 

Frequency(HZ) 1313.01 1521.79 1537.19 1654.81 1796.64 2208.56 2244.39 2352.23 

Damping (%) 1.20  0. 611  0.628  0.787  0.8101  0. 505  0. 54  0.735 

         

Mode No. 17 18 19      

Frequency(HZ) 2463.35 2614.45 2765.79      

Damping (%) 0. 447  0. 44  0. 240       

 

Table 5.3 Experimental modal parameters of Alporas_B3 

Mode No. 1 2 3 4 5 6 7 8 

Frequency(HZ) 280.4 331.65 597.36 635.61 727.4 929.99 1160.89 1445.59 

Damping (%) 0. 092 0. 101 0. 161 0. 102 0. 087 0. 288 0. 197 0. 352 

         

Mode No. 9 10 11 12 13 14 15 16 

Frequency(HZ) 1608.12 1738.66 1770.32 1894.64 2077.2 2528.06 2597.04 2690.680 

Damping (%) 0. 422 0. 491 0. 64 0. 372 0. 217 0. 216 0.243 0. 137 

         

Mode No. 17 18 19      

Frequency(HZ) 2704.39 2832.08 2888.6      

Damping (%) 0. 166 0. 196 0. 225      
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To be continued on next page. 
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Table 5.4 Experimental modal parameters of Alporas_S3 

Mode No. 1 2 3 4 5 6 7 8 

Frequency(HZ) 412.059 535.27 829.99 1084.5 1365.14 1705.07 1728.16 2104.12 

Damping (%) 0. 073 0. 905 0. 248 0. 683 0. 305 0. 395 0. 280 0. 341 

         

Mode No. 9 10 11 12     

Frequency(HZ) 2346.69 2531.96 2575.94 2811.96     

Damping (%) 0.386 0.358 0.243 0.23     

 

 

 

  

 
Figure 5.5 Experimental mode shapes of Alporas_B3 
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Figure 5.6 Experimental mode shapes of Alporas_S3 

 

Mode shapes extracted using LMS PloyMax estimation technique are also verified 

using the modal assurance criteria (MAC) to evaluate the orthogonality of experimental 
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modes. The Modal Assurance Criterion (MAC) matrix is a mathematical tool to 

compare two vectors to each other. It is used to investigate the validity of estimated 

modes (see details in section 4.2).  

The MAC matrix of all four testing specimen is shown in Figure 5.7. The MAC matrix 

non diagonal terms in Alporas_B2 and Alporas_B3 indicates some coupling (or non-

orthognality) while in Alporas_S2 and Alporas_S3 they are really negligible, which 

demonstrates the excellent orthogonality of measured modes. These mode shapes can be 

used with confident in the identification process. 

MAC Aplporas_B2 MAC Aplporas_B3 

MAC Aplporas_S2 MAC Aplporas_S3 

Figure 5.7 Measured Auto-MAC matrix of Alporas Specimens. 
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5.4 MIXED NUMERICAL-EXPERIMENTAL IDENTIFICATION  

5.4.1 ALPORAS_B2 

Identification of variable parameters in parametric FE model is performed by 

choosing following initial values: 0.6 = ׎, ν = 0.20 and damping = 5.0E-05. The 

formulation for calculation of Young’s modulus (3.102) and density pattern of the 

material is specified in the parametric FE model. The measured density array of 11000 

components is given as input to the FE model of Alporas_B2, based on this density 

array 11000 materials are defined in this FE model. This measured density distributed 

model (MDDM) is used further for identification process.  Automatic creation of 

numerical and experimental mode pairs based on the maximum terms of MAC, 

correlation matrix is used to ensure the compatibility of the eigen modes. Numerical 

mode shapes are interpolated on the same mesh size as that of experimental mesh 

(36×29). The mixed identification process is executed and after every optimization step 

each time a correlation is performed to choose the eigenvectors from the numerical 

eigen solution to be matched with the experimental ones, writing the Mode Pair Table 

(MPT). Due to change of the variable parameters, at each optimization step in the 

identification process, the numerical eigen modes related to the experimental ones might 

be shifted and interchanged in the sequence, which brings to a new evaluation of the 

MPT. An automatic routine has been developed to provide at each optimization step the 

Figure 5.8 MAC matrix of experimental and numerical modes of Alporas_B2 (paired and 

non-paired) 
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updated MPT before executing the norm error function in the identification process. 

This step consists of computing the MAC values between the numerical mode shapes 

and the experimental mode shapes stored in the reference database. The combinations 

that result in the highest MAC-values are the mode shape pairs. The non-paired MAC 

matrix (modal correlation between all measured mode shapes and first 15 numerical 

mode shapes) and paired MAC matrix (modal correlation between first 10 experimental 

and corresponding numerical modes whose MAC values exceed 0.7) of Alporas_B2 is 

shown in Figure 5.8. The first ten mode shape pairs having MAC values greater than 0.7 

are further used in identification process.  

 

 

Figure 5.9 Graphs of convergence of identifying parameters (Alporas_B2) 
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Table 5.6 Relative frequency error, Alporas_B2  

Mode No. 1 2 3 4 5 

Experimental Frequency (Hz) 219.85  281.33  462.62  525.82  597.41 

Numerical Frequency (Hz) 220.75  279.21  463.95  523.31  601.07 

Error (%) 0.41  ‐0.75  0.29  ‐0.48  0.61 

 

Mode No. 6 7 8 9 10 

Experimental Frequency (Hz) 797.26  993.60  1168.32  1313.01  1521.79 

Numerical Frequency (Hz) 794.04  983.29  1185.00  1331.10  1502.30 

Error (%) ‐0.40  ‐1.04  1.43  1.38  ‐1.28 

Table 5.5 Convergence of identifying parameters (Alporas_B2) 

Parameter  Iter.1  Iter.2  Iter.3  Iter.4  Iter.5  Iter. 6  Iter. 7  Iter. 8 

Phi 
0.6  0.782  0.858  0.871  0.873  0.872  0.873  0.873 

Poisson's 
ratio  0.2  0.228  0.213  0.279  0.282  0.294  0.295  0.295 

Damping  5.0E‐5  1.0E‐05  1.8E‐06  7.9E‐07  7.6E‐07  7.6E‐07  7.6E‐07  7.6E‐07 

The progress of the algorithm and evolution of variable parameters during the 

identification procedure are presented in Table 5.5. The convergence of the parameters 

is also presented graphically in Figure 5.9 and identified numerical eigen frequencies 

along with corresponding experimental eigen frequencies are illustrated in Table 5.6. 

The convergence of the Phi parameter and damping is fast while Poisson's ratio 

converges slightly slower and is less stable than others. 

The measured eigen frequencies and identified eigen frequencies for Alporas_B2 at 

the end of optimization process are shown in Table 5.6. Quality of the identified mode 

shapes are excellent because the maximum error of the measured eigen frequencies and 

identified is  1.5 %.  Diagonal terms of paired MAC matix shows the correlation 
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between the first ten experimental and numerical modes, which is quite good as 

minimum component remains greater than 0.7, with an average of 0.9. The off diagonal 

terms of paired MAC matrix are very negligible which shows a good correlation 

between experimental and numerical mode shapes. 

The measured density distribution of Alporas_B2 is shown in Figure 5.10. This 

density mapping is measured by computer tomography and the values are saved in an 

array of size 55×40×5 in x, y and z direction respectively. The density distribution 

shown in Figure 5.10 is the average distribution in z direction. Some numerical 

investigations are performed to analyse the behavior of aluminum foam due to variable 

density distribution. In first case a coarse sub-domain density model (CSDM) is used in 

collaboration with the identified parameters of MDDM. Array of size 11×8×1 in x, y 

and z respectively, in which each component is average of 5 components in each 

direction (average of total 125 components as MDDM is of size 55×40×5) is assigned to 

CSDM. In second case a uniform average density model (UADM) is used in which 

density assigned is a single uniform value.  

 

Figure 5.10 Density distribution of Alporas_B2 
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Table 5.7 Frequencies (Hz) predicted from FE models based on densities distribution mapping 

(Alporas_B2) 

Mode No MDDM CSDM UADM RDDM_1 RDDM_2 RDDM_3 

1 220.75  220.30  214.33  214.12  213.96  213.71 

2 279.21  285.14  277.97  277.58  277.39  277.38 

3 463.95  459.37  447.32  446.90  446.86  446.19 

4 523.31  533.63  510.29  509.62  509.80  509.15 

5 601.07  617.23  595.53  594.88  594.37  594.48 

6 794.04  838.97  786.78  785.26  785.14  785.55 

7 983.29  1032.00  975.91  974.08  974.44  973.72 

8 990.44  1051.30  986.25  985.01  984.84  985.26 

9 1185.00  1277.40  1177.20  1176.00  1174.80  1175.90 

10 1331.10  1443.00  1324.20  1322.40  1322.40  1323.30 

11 1492.90  1613.50  1482.60  1480.70  1480.20  1480.00 

12 1502.30  1644.40  1508.70  1506.60  1506.30  1507.20 

13 1637.80  1794.50  1626.90  1623.90  1624.90  1623.10 

14 1747.90  1803.10  1742.70  1739.90  1740.50  1740.70 

15 1749.90  1930.40  1765.10  1763.40  1761.60  1763.60 

 

In 3rd, 4th and 5th cases random distributed density model (RDDM) is used. In these 

cases different random distributions of measured density are assigned to the FE models. 

Numerical modal analysis is performed for all cases with the identified variable 

parameters of MDDM. The results of all cases are shown in Table 5.7. It is observed 

that the difference between the corresponding eigen frequencies of UADM and 

RDDM’s for Alporas_B2 is very small. It is also observed that corresponding eigen 

frequencies of all these models (UADM and RDDM’s) are less than the MDDM. The 
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Table 5.8 Relative frequency error, Alporas_B3 

Mode No. 1 2 3 4 5 

Experimental Frequency (Hz) 280.41  331.65  597.36  635.61  727.4 

Numerical Frequency (Hz) 275.02  328.2  595.94  637.17  732.28 

Error (%) ‐1.92  ‐1.04  ‐0.24  0.25  0.67 

 

Mode No. 6 7 8 9 10 

Experimental Frequency (Hz) 929.99  1160.89  1445.59  1608.12  1770.32 

Numerical Frequency (Hz) 942.32  1173.9  1444.7  1612.6  1760.9 

Error (%) 1.33  1.12  ‐0.06  0.28  ‐0.53 

difference in corresponding eigen frequencies of RDDM’s is negligible among 

themselves while lower than the MDDM. Similarly in case of UADM the corresponding 

eigen frequencies are lower than the MDDM while slightly higher than the RDDM’s. In 

case of CSDM the first torsion (mode # 1) and bending (mode # 3) modes have lower 

while all other have higher frequencies than MDDM. 

 

5.4.2 ALPORAS_B3 

Identification of variable parameters of FE model Alporas_B3 is performed by 

choosing the following initial values of the parameters:  0.7 = ׎, ν = 0.20 and damping 

= 0.00006. The paired and non-paired MAC matrix of Alporas_B3 is shown in Figure 

5.11. The measured eigen frequencies and identified eigen frequencies for Alporas_B3 at 

the end of optimization process are shown in Table 5.8.  

The progress of the algorithm and the evolution of variable parameters during the 

identification procedure are presented in table 5.9. The convergence of the parameters is 



Chapter 5                                                                                                                      Results and discussion 

5.20 

also presented graphically in Figure 5.12 and identified numerical eigen frequencies 

along with corresponding experimental eigen frequencies are illustrated in Table 5.8. 

The convergence of the Phi and damping parameters needed only five iterations  to 

determine these parameters, while Poisson's ratio converge slightly slower 

 The measured density distribution of Alporas_B3 is shown in Figure 5.13. This density 

mapping is measured by computer tomography and the calculated values of sub-

domains are saved in an array of size 55×40×5 in x, y and z direction respectively. The 

density distribution shown in Figure 5.13 is the average distribution in z direction. It can 

be observed that Alporas_B3 specimen is roughly divided in to five areas based on the 

average density values. Looking at Figure 5.13 and starting from the top edge, the first 

uniform density area (UDA) is with blue color than second thin UDA with aqua and 

third UDA comparatively wide, with android green having some sub-domains with 

yellow color, fourth UDA again with aqua color and fifth UDA with blue color having 

yellow and red color sub-domains. The color bar is also shown along Figure 5.13. 

 

 

 

Figure 5.11 MAC matrix of experimental and numerical modes of Alporas_B3 (paired and non-

paired) 
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Table 5.9 Convergence of identifying parameters (Alporas_B3) 

Parameter  Iter.1  Iter.2  Iter.3  Iter.4  Iter.5  Iter. 6  Iter. 7  Iter. 8 

Phi 
0.7  0.79  0.84  0.85  0.85  0.85  0.85  0.85 

Poisson’s 
ratio  0.2  0.21  0.25  0.31  0.3  0.31  0.31  0.31 

Damping  6E‐5  6.23E‐6  9.47E‐7  6.16E‐7  6.22E‐7  6.22E‐7  6.22E‐7  6.22E‐7 

 

 

 

 

Figure 5.12 Graphs of convergence of identifying parameter (Alporas_B3) 
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Some numerical investigations are performed in the same way as in case of 

Alporas_B2. The eigen frequencies as a results of modal analysis solution for all cases 

are shown in Table 5.10. The eigen frequency of corresponding mode shapes of Alporas 

_B3 are higher than Alporas_B2 obviously due to high density of the specimen. The 

experimental mode shapes of Alporas_B2 and Alporas_B3 are shown in Figure 5.4 and 

Figure 5.5 respectively. In case of Alporas_B3 the corresponding eigen frequencies 

difference among the RDDM’s is very minor but UADM has slightly higher 

corresponding values than RDDM’s. Similarly like Alporas_B2, the corresponding 

eigen frequencies of UADM and RDDM’s are less than MDDM. In case of CSDM, the 

corresponding eigen frequencies are higher than the MDDM for Alporas_B2 except the 

first torsional (mode #1) and bending mode (mode # 3). 

 

 

 

 

Figure 5.13 Density distribution of Alporas_B3 
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Table 5.10 Frequencies (Hz) predicted from FE model based on densities distribution mapping 

(Alporas_B3) 

Mode No MDDM CSDM UADM RDDM_1 RDDM_2 RDDM_3 

1  275.02  259.87  250.03  248.31  248.46  247.69 

2  328.20  339.44  325.45  323.87  323.38  323.94 

3  595.94  541.59  528.55  524.51  526.81  526.16 

4  637.17  637.78  596.10  591.88  592.77  591.11 

5  732.28  724.90  696.82  691.53  694.42  693.20 

6  942.32  1012.60  925.03  919.84  919.81  919.58 

7  1163.50  1205.50  1140.40  1133.30  1135.20  1133.60 

8  1173.90  1264.40  1153.10  1142.10  1146.80  1148.50 

9  1444.70  1501.00  1386.30  1374.30  1380.30  1381.10 

10  1612.60  1696.00  1556.10  1545.40  1549.20  1547.80 

11  1744.00  1874.50  1738.40  1727.20  1730.60  1727.60 

12  1760.90  1946.50  1762.80  1748.30  1751.80  1753.60 

13  1904.10  2083.70  1901.00  1887.30  1891.60  1890.00 

14  1970.80  2124.10  2022.30  2021.80  2012.70  2008.10 

15  2067.00  2221.10  2043.60  2026.40  2030.00  2030.50 

 

5.4.3 ALPORAS_S3 

Identification of variable parameters of FE model Alporas_S3 is performed by 

choosing the following initial values of the parameters; 0.7 = ׎, ν = 0.25 and damping = 

0.00005. Measured density array of 7000 component is given as input to the FE of 

Alporas_S3. 
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Table 5.11 Relative frequency error Alporas_S3 

Mode No. 1 2 3 4 5 

Experimental Frequency (Hz) 412.06  535.27  829.99  1365.13  1705.06 

Numerical Frequency (Hz) 415.87  531.84  845.11  1381.80  1671.70 

Error (%) 0.93  ‐0.64  1.82  1.22  ‐1.96 

 

Mode No. 6 7 8   

Experimental Frequency (Hz) 2104.12  2346.69  2531.96    

Numerical Frequency (Hz) 2136.70  2325.90  2494.00    

Error (%) 1.55  ‐0.89  ‐1.50    

 

Automatic creation of numerical and experimental modes pairs based on the 

maximum terms of MAC, correlation matrix is used to ensure the compatibility of the 

eigen modes. The paired and non-paired MAC matrix of Alporas_S3 is shown in Figure 

5.14. 

Figure 5.14 MAC matrix of experimental and numerical modes of Alporas_S3 (paired 

and non-paired) 
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The progress of the algorithm and the evolution of variable parameters during the 

identification procedure are presented in table 5.12. The convergence of the parameters 

is also presented graphically in Figure 5.15. The Poisson's ratio converge slightly slower 

and is less stable than other parameters. Identified numerical eigen frequencies along 

with corresponding experimental eigen frequencies are illustrated in Table 5.11.  

 

Figure 5.16 Density distribution of Alporas _S3 

 

Figure 5.15 Graphs of convergence of identifying parameters (Alporas_S3) 

Table 5.12 Convergence of identifying parameters (Alporas_S3) 

Parameter  Iter.1  Iter.2  Iter.3  Iter.4  Iter.5  Iter. 6  Iter. 7  Iter. 8 

Phi 
0.7  0.88  0.89  0.88  0.88  0.88  0.88  0.88 

Poisson’s 
ratio  0.25  0.26  0.29  0.33  0.33  0.33  0.33  0.32 

Damping  5E‐5  9.7E‐6  5.8E‐7  4.9E‐7  5.8E‐7  5.8E‐7  5.8E‐7  5.8E‐7 
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The density distribution shown in Figure 5.16 is the average distribution in z 

direction. The results of numerical modal solution of all cases (as explained in section 

5.4.1) are shown in Table 5.13. In case of Alporas_S2 and Alporas_S3 the CSDM used 

array of size 8×7×1 in x, y and z respectively. In this array each component is average 

of 125components (5 components in each direction), as in MDDM the input density 

array is of size 40×35×5.  

The difference in corresponding eigen frequencies of RDDM’s is negligible among 

themselves while lower than the MDDM. Similarly in case of UADM the corresponding 

eigen frequencies are lower than the MDDM while slightly higher than the RDDM’s. In 

case of CSDM the first torsion (mode # 1) and bending (mode # 2) modes have lower 

while all other have higher frequencies than MDDM. 

 

 

 

Figure 5.17 Density distribution of Alporas _S3 
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Table 5.13 Frequencies (Hz) predicted from FE model based on densities distribution mapping 

(Alporas_S3) 

Mode No MDDM CSDM UADM RDDM_1 RDDM_2 RDDM_3 

1  415.87  391.91  373.35  369.81  370.25  370.29 

2  531.84  490.87  473.68  469.68  470.57  471.98 

3  845.11  856.23  822.92  819.50  816.45  815.64 

4  912.54  931.87  877.54  871.95  869.87  871.78 

5  1085.60  1113.90  1050.00  1043.40  1039.60  1044.20 

6  1381.80  1473.70  1339.80  1331.20  1328.20  1331.50 

7  1671.70  1815.40  1651.30  1639.50  1638.50  1640.90 

8  1701.50  1841.50  1704.40  1693.20  1689.20  1689.70 

9  2136.70  2382.90  2120.80  2109.10  2102.30  2109.40 

10  2325.90  2439.20  2349.30  2339.40  2327.20  2336.20 

11  2494.00  2647.80  2403.10  2385.30  2388.70  2404.10 

12  2525.90  2764.10  2476.40  2461.20  2457.40  2459.20 

13  2537.30  2846.50  2559.60  2538.30  2536.20  2542.10 

14  2746.70  2958.80  2734.30  2718.00  2716.40  2710.30 

15  2985.70  3031.20  2745.60  2729.10  2732.20  2728.80 

 

5.4.4 ALPORAS_S2 

The following initial values of variable parameters; 0.6 = ׎, ν = 0.20 and damping 

= 0.00005 are assigned to FE model Alporas_S2. The paired and non-paired MAC 

matrix of Alporas_S2 is shown in Figure 5.17. 
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Table 5.14 Relative frequency error, Alporas_S2 

Mode No. 1 2 3 4 5 

Experimental Frequency (Hz) 339.53  411.75  744.49  796.49  963.68 

Numerical Frequency (Hz) 340.7  435.9  736.22  780.79  936.98 

Error (%) 0.34  5.86  ‐1.11  ‐1.97  ‐2.77 

 

Mode No. 6 7 8 9 10 

Experimental Frequency (Hz) 1170.93  1486.4  1541.01  1877.11  2104.23 

Numerical Frequency (Hz) 1210.8  1468.2  1504.2  1877.5  2082.1 

Error (%) 3.40  ‐1.22  ‐2.38  0.02  ‐1.05 

 The progress of the algorithm and the evolution of variable parameters during the 

identification procedure are presented in table 5.15. The convergence of the parameters 

is also presented graphically in Figure 5.18 and identified numerical eigen frequencies 

along with corresponding experimental eigen frequencies are illustrated in Table 5.14.  

 

Figure 5.18 MAC matrix of experimental and numerical modes of Alporas_S2 (paired and 

non-paired) 
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Table 5.15 Convergence of identifying parameters (Alporas_S2) 

Parameter  Iter.0  Iter.1  Iter.2  Iter.3  Iter.4  Iter. 5  Iter. 6  Iter. 7 

Phi 
0.6  0.81  0.87  0.87  0.87  0.87  0.87  0.87 

Poisson’s 
ratio  0.2  0.24  0.36  0.34  0.34  0.34  0.34  0.34 

Damping  5E‐5  1.2E‐5  1.9E‐6  6.4E‐7  6.3E‐7  6.3E‐7  6.3E‐7  6.3E‐7 

 

 

 

Figure 5.19  Graphs of convergence of identifying parameters (Alporas_S2) 
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The measured average density distribution (in z direction) of Alporas_S2 is shown in 

Figure 5.19. The results of numerical investigations of Alporas_S2 are shown in Table 

5.16. The eigen frequency of corresponding mode shapes of Alporas _S2 are lower than 

Alporas_S3 apparently due to lower relative density of the specimen. The experimental 

mode shapes of Alporas_S2 and Alporas_S3 are shown in Figure 5.3 and Figure 5.6 

respectively. It is observed that the difference between the corresponding eigen 

frequencies of UADM and RDDM’s for Alporas_S2 is very minute. It is also observed 

that corresponding eigen frequencies in all these cases (UADM and RDDM’s) are less 

than the MDDM. Similarly in CSDM, the first torsion (mode # 1) and bending (mode # 

2) modes have lower while all other modes have higher corresponding eigen frequencies 

than MDDM. 

 

 

 

Figure 5.20 Density distribution of Alporas _S2 
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Table 5.16 Frequencies (Hz) predicted from FE model based on densities distribution mapping 

(Alporas_S2) 

Mode No MDDM CSDM UADM RDDM_1 RDDM_2 RDDM_3 

1 340.70  336.97  326.68  326.52  326.37  325.83 

2 435.90  428.96  419.08  419.39  418.68  418.49 

3 736.22  755.25  724.52  724.33  722.80  723.28 

4 780.79  811.40  771.31  770.19  769.40  769.52 

5 936.98  964.69  919.50  919.03  917.92  916.94 

6 1210.80  1302.10  1192.50  1192.30  1190.50  1190.20 

7 1468.20  1594.40  1456.90  1456.30  1453.20  1453.40 

8 1504.20  1610.10  1497.40  1497.70  1492.70  1494.10 

9 1877.50  2081.40  1864.30  1863.20  1859.80  1859.30 

10 2082.10  2176.20  2065.80  2065.30  2061.10  2060.40 

11 2197.20  2317.20  2143.20  2141.60  2144.70  2140.30 

12 2218.00  2484.40  2202.90  2201.40  2196.70  2197.50 

13 2262.10  2507.00  2255.00  2252.90  2247.80  2249.90 

14 2425.30  2615.80  2416.20  2415.50  2411.40  2410.70 

15 2527.50  2658.00  2423.90  2421.10  2422.60  2421.70 

 

The identified parameters of four AF specimens are specified in the Table 5.17. 

 

Table 5.17 Identified parameters of AF specimens. 

AF specimen 
Damping 
constant 

Poisson's 
ratio 

Phi (׎) 
Young’s modulus 

(GPa) 

Alporas_S2 6.3E-7 0.34 0.87 1.25 

Alporas_B2 7.6E-07 0.295 0.873 1.24 

Alporas_S3 5.8E-7 0.32 0.88 2.80 

Alporas_B3 6.22E-7 0.31 0.85 3.27 
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CHAPTER  6. SUMMARY AND CONCLUSIONS 

The first task of the research work described in this thesis was to develop an 

experimental setup to evaluate modal parameters, precisely. To achieve precision, an 

experimental setup of non contact vibration measurement using scanning laser 

vibrometer has been developed to serve as a base for mixed numerical-experimental 

identification technique. A laser Doppler vibrometer was used to perform a continuous 

point-by-point scan over a particular test piece, the AF structure. The front surface of 

the AF specimen was scanned by the LDV and the excitation was applied from behind. 

The experiments were performed on four simple aluminum foam rectangular plates. 

These specimens were hung down with soft elastic cords to make them in free-free 

condition and excited using a pseudo-random excitation via an electromagnetic shaker 

attached to the structure, as shown in Figure 2.13. In the experimental set-up the LDV 

could be directed at any point on the test specimen almost perpendicularly to measure 

its z-axis vibration. The whole setup was placed on vibration isolated table to prevent 

the surrounding vibrations. Response measurements were obtained with the LDV 

scanning over the testing specimen at specified mesh grid points, see for example 

Figure 2.14. The transfer functions of the test specimen, velocity/force type was 

calculated by the internal software system PSV200 and an average of several 

measurements was performed to further increase the quality of the experimental 

frequency model. The FRFs from PSV200 were imported in LMS Test.Lab. The state of 

the art LMS PolyMAX parameter estimation technique was used to determine the eigen 

frequencies and corresponding mode shapes in range of 10 Hz to 3 KHz. The MAC, 

MPC and MPD criteria were used to investigate the validity of the estimated modes.  

The second specific task of this research was to develop an FE model of AF 

material based both on the cellular microstructure and behavior of the bulk material. 

Computational modelling and simulation of materials with a cellular microstructure is a 

broad field of research that has drawn considerable interest for engineers. Simulations 

give the possibility of investigating several aspects of the relations between the 

parameters of the microstructure and the overall mechanical properties of cellular 

materials. Computed tomography as a non-destructive testing method has the potential 
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to study the internal configuration of the structure, in which density changes over a 

sufficient volume. Aluminum foams are composite consisting of metal and air can fulfill 

this condition very well. These metals can be analyzed in two ways; (i) reconstruction 

of the microstructure to analyze the 3D distribution of solid (ii) transformation of 

heterogeneous microstructure to an approximated continuum. To reconstruct the 

microstructure high resolution CT-data is required. Only micro-CT can provide this 

high resolution data, required for this purpose. Then a FE model of this  reconstructed 

microstructure can be generated as described in [151, 186].  Such a model would have a 

high number of elements which makes the model too complex to easily handle in FE 

packages and computing time would be high as well. One of the most important feature 

of a cellular solid is its relative density; כߩ ⁄௦ߩ  where כߩ is the density of the cellular 

material and ߩ௦ is the density of the solid from which the cell walls are made.  

A special procedure called density mapping method, has been applied to 

approximate the cellular structure of aluminum foam with continuum. The 

transformation of a discretely heterogeneous structure of aluminum foam to an 

approximated continuum was one of the major challenges in this work. The 

microscopical density distribution of the aluminum foam recorded by X-ray computed 

tomography has been averaged over a certain domain. The obtained continuum body 

was implemented in FE package ANSYS. The finite elements were used for 

discretization of density fields. The local average density represented by a mean density 

forms a so called ‘sub-domain’. All finite elements in the sub-domain behave 

mechanically in the same way. Each sub-domain was assumed to be homogeneous and 

isotropic. Its mechanical properties were modeled using Gibson and Ashby scaling laws 

for regular foams scaled by experimental results. In this scaling laws, the microstructure 

of cellular materials was homogenized over a scale infinitely larger than the typical 

microstructure. In other words these relations predict the behavior of a material that was 

assumed to be a homogeneous continuum. Density distribution of aluminum foam 

measured by X-ray computer tomography was used as input to the corresponding FE 

model of investigated specimen. All numerical investigations were carried out by means 

of the FE package ANSYS. The ANSYS APDL file was developed such that it could 

handle multiple sets of input variables at a time during each call by MATLAB. 

Furthermore ANSYS APDL files of all AF specimens were generated that defines the 
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preprocessor (parametric model of the AF specimen), solution and postprocessor phase 

of the finite element analysis. In the preprocessor phase, the geometry and the boundary 

conditions of the model were defined using a set of APDL commands. The model, that 

has been defined in the preprocessor phase was then solved in the solution phase using a 

suitable modal solution process such as QR damped method. In the postprocessor phase 

the results from the analysis was gathered and saved in a suitable format (file). This file 

was then read by MATLAB for further optimization process. This APDL file thus 

created was used by ANSYS running in batch mode, during each system call command 

from MATLAB.  

Another task in this work was to develop a mixed numerical-experimental 

identification technique which is based on experimental modal model, measured CT 

density distribution data and FE model of specimen under investigation. To achieve this 

task an automation code in MATLAB was developed that incorporates ANSYS the 

finite element solver, experimental modal analysis results from LMS Test.Lab and a 

suitable optimization tool. A system call command in MATLAB was employed to call 

ANSYS for each simulation run that involved calculation of the modal responses to the 

input variable parameters. Modal results file of each FE simulation was saved for 

further process. Several MATLAB routines were developed to read these FE results 

files and extract the required data in matrix form. The experimental modal data was 

exported from LMS Test.Lab in a universal file format. This universal file was read by a 

MATLAB routine which extracts the required data in matrix form. A set of error 

functions based on measured and numerical eigen frequencies and corresponding mode 

shapes was developed in MATLAB. These error functions have been combined to form 

a total functional error for optimization of the FE model input variable parameters. 

Levenberg-Marquardt algorithm with assessment of gradients by finite difference 

method was used for optimization. Proposed optimization method has proved very 

effective, since on average, all variable parameters converged at 5th iteration. All these 

routines were incorporated together to develop the proposed mixed numerical-

experimental identification technique.  

After identifying the variable parameters numerical investigations were performed 

to observe the behavior of aluminum foam due to the variable density distribution. In 
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first case a coarse sub-domain (which is 5 times greater in each direction than the 

previously modeled) was used in the FE model. The density assigned to elements in 

each sub-domain was the average density of that sub-domain. In second case a uniform 

average density was assigned to the whole FE model instead of measured one. In 3rd, 

4th and 5th cases different random distribution of measured density was assigned to the 

FE model. MATLAB routines were developed to do these tasks of different density 

distributions. Numerical modal analysis was performed for all cases with the identified 

variable parameters from MDDM. It was observed that the corresponding eigen 

frequencies of the models with uniform and random density distribution are lower than 

the MDDM. Similarly in case of coarse sub-domain model the first torsional and 

bending (Alporas_B2 and Alporas_B3 in y-axis while in case of Alporas_S2 and 

Alporas_S3 in x-axis) mode have lower while other modes have higher corresponding 

eigen frequencies than MDDM. These observations show that density distribution 

should not be ignored in FE modelling of these cellular materials. It was therefore 

concluded from these investigations that FE modelling of specimen and non contact 

measurements method for modal analysis extend the scope of mixed numerical 

experimental technique. 

Dynamic behavior of closed cell material ALPORAS was investigated 

experimentally and numerically. Modal test on four ALPORAS specimens shows that 

inhomogeneties in the mass distribution are a key factor in evaluating dynamic behavior 

of cellular materials. A comprehensive methodology for identification of dynamic and 

elastic behavior of cellular materials has been proposed. The actual mass distribution of 

ALPORAS foam has been obtained by processing of X-ray tomographic data. In the 

context of materials engineering, the present approach can be very useful for designing 

cellular materials. Indeed, it enables the prediction of the best way of combining the 

mechanical properties of the solid material with feasible microstructures, in order to 

obtain expected mechanical properties. 

The effect of inhomogeneous distribution on the modal behavior of ALPORAS was 

investigated. Experimental results of modal testing show high scatter in the modal 

properties of investigated specimens. This phenomenon can be well described by the 

effect of inhomogeneous mass distribution. FE simulations of continuum model 
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confirmed the inhomogeneous mass distribution effect on modal properties of AF 

specimens. Gibson and Ashby model was implemented in FE model to provide the 

elastic behavior. Furthermore the model used in the present work was an isotropic 

model. It means that the model was unable to account for the anisotropy.  The proposed 

approach distinguished from traditional finite element approaches of cellular metals 

[161-166], in respect that it is not based only on the cellular microstructure of the AF 

but also incorporate dynamic behavior of the bulk material. 

One important aspect of the model was the bulk material properties. The computed 

behavior of the foam was very sensitive to these input parameters. The model can be 

adjusted by introducing a correction on the mechanical properties parameters of the 

bulky material. Modification can also concern the constitutive relation itself. The aim of 

this work was to develop and validate a realistic mechanical model of cellular materials 

based both on the cellular microstructure and on the behavior of the bulk material. The 

effect of more sophisticated material behavior and the influence of the input parameters 

will be exposed in future works. 

6.1 FUTURE DEVELOPMENTS AND PERSPECTIVES 

The performance of the developed method can be improved and extended for further 

future development using the following steps: 

 In current study ALPORAS foam specimens with two different average densities 

are investigated. Thus, the issue of further studies will be to investigate other 

densities and types of foam. 

 The dynamic behavior of specimens with specific density distribution (i.e. higher 

density distribution at corners, higher density distribution at center etc.) will be 

appealing to explore.  

 Specimens with predefined limits of controlled density distribution (i.e. from 250-

300 kg/m3, 300-400 kg/m3, 200-500 kg/m3 etc.) can be used to evaluate the 

consequence on variable parameters and dynamic behavior of the specimen.  

 In this work Gibson and Ashby model was used in FE formulation. Other well 

known foam models can be implemented in this technique for their comparative 

study.   
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 Dimensional optimization of the test specimen and excitation technique can be 

performed to ensure ideal dynamic measurement quality (clearly decoupled 

modes) and high number of modes in the measured frequency range. 

 Four AF specimens of two different sizes of rectangular shape were considered in 

this research study. It was observed that the geometry of the specimen has 

influence on the sensitivities of the error function. More investigations are needed 

to determine the ideal size of specimen for such identification technique. It will 

also be interesting to explore the behavior of such material for different 

geometrical shapes (like circular, square, rectangular etc.). 



References                                                                                

I 

REFERENCES 

[1] S. Akiyama, et al., "Foamed metal and method of producing same," ed: Google 
Patents, 1987. 

[2] American Society for Testing and Materials, ASTM International Standards 
Worldwide, 100 Barr Harbor Drive, West Conshohocken, Pennsylvania, USA. 
Available: http://www.astm.org/. 

[3] International Organization for Standardization, ISO, 1, ch. de la Voie- Creuse,   
DCase   postale   56DCH-1211   Geneva   20,   Switzerland. Available: 
http://www.iso.org/ 

[4] L. Pipes, et al., "Experimental Characterization of Advanced Composite 
Materials," ed: Technomic Publishing Co. Inc, 1997. 

[5] L. Pagnotta, "Recent progress in identification methods for the elastic 
characterization of materials," International Journal of Mechanics, vol. 2, pp. 
129-140, 2008. 

[6] "ASTM Standard E1876-07, Standard test method for dynamic Young's 
modulus, shear modulus, and Poisson's ratio by impulse excitation of vibration," 
in Book of Standards, Volume 03.01, ed. 

[7] "ASTM Standard E1875-08, Standard test method for dynamic Young's 
modulus, shear modulus, and Poisson's ratio by sonic resonance " in Book of 
Standards, Volume 03.01, ed. 

[8] S. P. Timoshenko and J. N. Goodier, "Theory of elasticity. 1970," McGraw, New 
York. 

[9] R. Jones and D. Bijl, "A holographic interferometric study of the end effects 
associated with the four-point bending technique for measuring Poisson's ratio," 
Journal of Physics E: Scientific Instruments, vol. 7, p. 357, 1974. 

[10] E. Archbold, et al., "The deformation of steel bars in a four-point bending 
machine, measured by holographic interferometry," 1977. 

[11] A. R. Ganesan, "Measurement of poisson's ratio using real-time digital speckle 
pattern interferometry," Optics and Lasers in Engineering, vol. 11, pp. 265-269, 
1989. 

[12] F. Gascon and F. Salazar, "A procedure for calculating through laser speckle 
interferometry the elastic constants of isotropic materials," Optics 
Communications, vol. 123, pp. 734-742, 1996. 



References                                                                                

II 

[13] F. M. Furgiuele, et al., "A full-field procedure for evaluating the elastic 
properties of advanced ceramics," Experimental Mechanics, vol. 37, pp. 285-
291, 1997. 

[14] I. N. Odintsev, et al., "Implementation of compensation speckle interferometry 
for high-precision determination of material mechanical properties," 1999, p. 
169. 

[15] L. Bruno, et al., "Determination of elastic constants of anisotropic plates by 
phase stepping speckle interferometry," Key Engineering Materials, vol. 221, 
pp. 363-374, 2001. 

[16] L. Bruno, et al., "A full-field approach for the elastic characterization of 
anisotropic materials," Optics and Lasers in Engineering, vol. 37, pp. 417-431, 
2002. 

[17] L. Bruno and A. Poggialini, "Elastic characterization of anisotropic materials by 
speckle interferometry," Experimental Mechanics, vol. 45, pp. 205-212, 2005. 

[18] L. Bruno, et al., "Elastic characterization of CVD diamond by static and 
dynamic measurements," Journal of the European Ceramic Society, vol. 26, pp. 
2419-2425, 2006. 

[19] M. Grédiac, et al., "The Virtual Fields Method for Extracting Constitutive 
Parameters From Full Field Measurements: a Review," Strain, vol. 42, pp. 233-
253, 2006. 

[20] Z. Wang, et al., "Inverse method to determine elastic constants using a circular 
disk and moiré interferometry," Experimental Mechanics, vol. 45, pp. 27-34, 
2005. 

[21] J. F. Cárdenas-García, et al., "Non-linear least-squares solution to the moiré hole 
method problem in orthotropic materials. Part II: Material elastic constants," 
Experimental Mechanics, vol. 45, pp. 314-324, 2005. 

[22] F. Hild and S. Roux, "Digital image correlation: from displacement 
measurement to identification of elastic properties–a review," Strain, vol. 42, pp. 
69-80, 2006. 

[23] G. L. Cloud, Optical methods of engineering analysis: Cambridge Univ Pr, 
1998. 

[24] K. Genovese, et al., "A new hybrid technique for in-plane characterization of 
orthotropic materials," Experimental Mechanics, vol. 44, pp. 584-592, 2004. 

[25] J. Molimard, et al., "Identification of the four orthotropic plate stiffnesses using 
a single open-hole tensile test," Experimental Mechanics, vol. 45, pp. 404-411, 
2005. 



References                                                                                

III 

[26] D. Lecompte, et al., "Mixed numerical-experimental technique for orthotropic 
parameter identification using biaxial tensile tests on cruciform specimens," 
International Journal of Solids and Structures, vol. 44, pp. 1643-1656, 2007. 

[27] L. Pagnotta, "Determining elastic constants of materials with interferometric 
techniques," Inverse Problems in Science and Engineering, vol. 14, pp. 801-818, 
2006. 

[28] L. Pagnotta and G. Stigliano, "A numerical-experimental approach for 
identification of material constants of composite laminates by displacement field 
measurement," WSEAS Transactions on Applied and Theoretical Mechanics, 
vol. 1, p. 39, 2006. 

[29] L. Bruno, et al., "A mixed numerical-experimental methodology for determining 
the elastic constants of orthotropic materials," 2006, p. 63410J. 

[30] L. Bruno, et al., "Elastic characterization of orthotropic plates of any shape via 
static testing," International Journal of Solids and Structures, vol. 45, pp. 908-
920, 2008. 

[31] S. Spinner and W. E. Tefft, "A method for determining mechanical resonance 
frequencies and for calculating elastic moduli from these frequencies," 1961, pp. 
1221-1238. 

[32] R. F. Gibson, Principles of composite material mechanics: McGraw-Hill New 
York, 1994. 

[33] "ASTM Standard E1875-00e1, Standard Test Method for Dynamic Young's 
Modulus, Shear Modulus, and Poisson's Ratio by Sonic Resonance," in Book of 
Standards Volume 03.01, ed: ASTM International, West Conshohocken, PA. 

[34] F. M. Furgiuele and L. Pagnotta, "Misura delle costanti elastiche: un sistema 
computerizzato," Automazione e Strumentazione, vol. 46, pp. 147-152, 1998. 

[35] "ASTM Standard E1876-01, Standard test method for dynamic Young's 
modulus, shear modulus, and Poisson's ratio by impulse excitation of vibration," 
in Book of Standards Volume 03.01, ed: ASTM International, West 
Conshohocken, PA. 

[36] Gridosonic, . Available: http://www.grindosonic.com/en/ 

[37] BuzzMac Available: http://www.buzzmac.com 

[38] D. Larsson, et al., "Method and arrangement for non-destructive determination 
of the properties of an object," ed: Google Patents, 2002. 

[39] R. F. Gibson, et al., "Apparatus and process for measuring mechanical 
properties of fibers," ed: Google Patents, 1993. 



References                                                                                

IV 

[40] J. L. Leveque, et al., "Method of and apparatus for the measurement of at least 
one mechanical property of an elastic material," ed: Google Patents, 1981. 

[41] M. A. Biot and W. L. Medlin, "Harmonic oscillator for measuring dynamic 
elastic constants of rock materials," ed: Google Patents, 1983. 

[42] R. J. Dill, et al., "Methods and apparatus for measuring elastic modulus of non-
solid ceramic materials by resonance," ed: Google Patents, 2007. 

[43] M. E. McIntyre and J. Woodhouse, "On measuring the elastic and damping 
constants of orthotropic sheet materials," Acta Metallurgica, vol. 36, pp. 1397-
1416, 1988. 

[44] F. J. Nieves, et al., "Measurement of the dynamic elastic constants of short 
isotropic cylinders," Journal of Sound and Vibration, vol. 265, pp. 917-933, 
2003. 

[45] M. Alfano and L. Pagnotta, "Determining the elastic constants of isotropic 
materials by modal vibration testing of rectangular thin plates," Journal of 
Sound and Vibration, vol. 293, pp. 426-439, 2006. 

[46] G. B. Warburton, "The vibration of rectangular plates," ARCHIVE: Proceedings 
of the Institution of Mechanical Engineers 1847-1982 (vols 1-196), vol. 168, pp. 
371-384, 1954. 

[47] M. Alfano and L. Pagnotta, "Measurement of the dynamic elastic properties of a 
thin coating," Review of Scientific Instruments, vol. 77, p. 056107, 2009. 

[48] M. Alfano and L. Pagnotta, "An inverse procedure for determining the material 
constants of isotropic square plates by impulse excitation of vibration," Applied 
Mechanics and Materials, vol. 3, pp. 287-292, 2005. 

[49] M. Alfano, et al., "Experimental assessment of a non-destructive method for 
measuring the elastic properties of thin isotropic plates," pp. 2033-2040. 

[50] M. Grédiac, et al., "Direct identification of elastic constants of anisotropic plates 
by modal analysis: experimental results," Journal of Sound and Vibration, vol. 
210, pp. 643-659, 1998. 

[51] M. Grediac and P. A. Paris, "Direct identification of elastic constants of 
anisotropic plates by modal analysis: theoretical and numerical aspects," Journal 
of Sound and Vibration, vol. 195, pp. 401-415, 1996. 

[52] I. Ohno, "Free vibration of a rectangular parallelepiped crystal and its 
application to determination of elastic constants of orthorhombic crystals," J. 
Phys. Earth, vol. 24, pp. 355–379, 1976. 

[53] R. G. Leisure and F. A. Willis, "Resonant ultrasound spectroscopy," Journal of 
Physics: Condensed Matter, vol. 9, p. 6001, 1997. 



References                                                                                

V 

[54] A. Migliori, "Resonant ultrasound spectroscopy," ed: Google Patents, 1991. 

[55] A. Migliori and T. W. Darling, "Resonant ultrasound spectroscopy for materials 
studies and non-destructive testing," Ultrasonics, vol. 34, pp. 473-476, 1996. 

[56] A. Yaoita, et al., "Determination of elastic moduli for a spherical specimen by 
resonant ultrasound spectroscopy," NDT & E International, vol. 38, pp. 554-
560, 2005. 

[57] A. Migliori, et al., "Resonant ultrasound spectrometer," ed: Google Patents, 
1990. 

[58] W. P. De Wilde, et al., "Determination of the material constants of an 
anisotropic lamina by free vibration analysis," 1984, pp. 44–49. 

[59] W. P. De Wilde, et al., "Coupling of Lagrange interpolation, modal analysis and 
sensitivity analysis in the determination of anisotropic plate rigidities," 1986, pp. 
1058–1063. 

[60] L. R. Deobald and R. F. Gibson, "Determination of elastic constants of 
orthotropic plates by a modal analysis/Rayleigh-Ritz technique," Journal of 
Sound and Vibration, vol. 124, pp. 269-283, 1988. 

[61] E. O. Ayorinde and R. F. Gibson, "Elastic constants of orthotropic composite 
materials using plate resonance frequencies, classical lamination theory and an 
optimized three-mode rayleigh formulation," Composites Engineering, vol. 3, 
pp. 395-407, 1993. 

[62] T. C. Lai and T. C. Lau, "Determination of elastic constants of a generally 
orthotropic plate by modal analysis," International Journal of Analytical and 
Experimental Modal Analysis, vol. 8, pp. 15-33, 1993. 

[63] R. F. Gibson and E. O. Ayorinde, "Method and apparatus for non-destructive 
measurement of elastic properties of structural materials," ed: Google Patents, 
1996. 

[64] H. Sol, "Identification of anisotropic plate rigidities using free vibration data," 
Doctoral Thesis, Vrije Universiteit, Brussels, Belgium, 1986. 

[65] P. Pedersen and P. S. Frederiksen, "Identification of orthotropic material moduli 
by a combined experimental/numerical method," Measurement, vol. 10, pp. 113-
118, 1992. 

[66] K. E. Fällström, "Deterrmining material properties in anisotropic plates using 
Rayleigh's method," Polymer Composites, vol. 12, pp. 306-314, 1991. 

[67] K. E. Fällström and M. Jonsson, "A nondestructive method to determine 
material properties in anisotropic plates," Polymer Composites, vol. 12, pp. 293-
305, 1991. 



References                                                                                

VI 

[68] K. E. Fallstrom and N. E. Molin, "A nondestructive method to determine 
material properties in orthotropic plates," Polymer Composites, vol. 8, pp. 103–
108, 1987. 

[69] K. E. Fällström, et al., "Dynamic material parameters in an anisotropic plate 
estimated by phase-stepped holographic interferometry," Optics and Lasers in 
Engineering, vol. 24, pp. 429-454, 1996. 

[70] M. Alfano, et al., "Identifying elastic properties of isotropic materials by finite 
element analyses and vibration data," Key Engineering Materials, vol. 345, pp. 
1327-1330, 2007. 

[71] C. Maletta and L. Pagnotta, "On the determination of mechanical properties of 
composite laminates using genetic algorithms," International Journal of 
Mechanics and Materials in Design, vol. 1, pp. 199-211, 2004. 

[72] L. Pagnotta and G. Stigliano, "Determining the dynamic elastic properties of 
isotropic plates of any shape." 

[73] M. Alfano, et al., "Elastic properties of cold rolled aluminium plates with 
irregular shape by dynamic testing," pp. 1-5. 

[74] L. Pagnotta and G. Stigliano, "Assessment of elastic properties of isotropic 
plates by dynamic tests," Experimental techniques, vol. 34, pp. 19-24. 

[75] L. Pagnotta and G. Stigliano, "Elastic characterization of isotropic plates of any 
shape via dynamic tests: Theoretical aspects and numerical simulations," 
Mechanics Research Communications, vol. 35, pp. 351-360, 2008. 

[76] L. Pagnotta and G. Stigliano, "Elastic characterization of isotropic plates of any 
shape via dynamic tests: Practical aspects and experimental applications," 
Mechanics Research Communications, vol. 36, pp. 154-161, 2009. 

[77] C. M. Soares, et al., "Identification of material properties of composite plate 
specimens," Composite Structures, vol. 25, pp. 277-285, 1993. 

[78] G. L. Qian, et al., "A vibration method for measuring mechanical properties of 
composite, theory and experiment," Composite Structures, vol. 39, pp. 31-38, 
1997. 

[79] S.-F. Hwang and C.-S. Chang, "Determination of elastic constants of materials 
by vibration testing," Composite Structures, vol. 49, pp. 183-190, 2000. 

[80] R. Rikards, et al., "Method for identification of elastic properties of laminates 
based on experiment design," Composites Part B: Engineering, vol. 30, pp. 279-
289, 1999. 

[81] A. Wereszczak, et al., "Flexural and torsional resonances of ceramic tiles via 
impulse excitation of vibration," 2003, pp. 207-216. 



References                                                                                

VII 

[82] T. Lauwagie, et al., "Mixed numerical-experimental identification of elastic 
properties of orthotropic metal plates," NDT & E International, vol. 36, pp. 487-
495, 2003. 

[83] M. F. T. Silva, et al., "A genetic algorithm applied to composite elastic 
parameters identification," Inverse Problems in Science and Engineering, vol. 
12, pp. 17-28, 2004. 

[84] T. Lauwagie, et al., "Resonant-based identification of the elastic properties of 
layered materials: Application to air-plasma sprayed thermal barrier coatings," 
NDT & E International, vol. 41, pp. 88-97, 2008. 

[85] J. De Visscher, et al., "Identification of the damping properties of orthotropic 
composite materials using a mixed numerical experimental method," Applied 
Composite Materials, vol. 4, pp. 13-33, 1997. 

[86] E. O. Ayorinde, "Elastic constants of thick orthotropic composite plates," 
Journal of Composite Materials, vol. 29, p. 1025, 1995. 

[87] S. Gagneja, et al., "Design of test specimens for the determination of elastic 
through-thickness shear properties of thick composites from measured modal 
vibration frequencies," Composites Science and Technology, vol. 61, pp. 679-
687, 2001. 

[88] H. Hua, "Identification of plate rigidities of anisotropic plate rectangular plates, 
sandwich panels and circular orthotropic discs using vibration data," PhD 
dissertation, Free University of Brussels, 1993. 

[89] D. Larsson, "Using modal analysis for estimation of anisotropic material 
constants," Journal of engineering mechanics, vol. 123, p. 222, 1997. 

[90] M. Alfano, et al., "Determinazione delle costanti elastiche di piastre quadrate 
isotrope dalle frequenze naturali di vibrazione," XXXII AIAS. 

[91] M. Friswell, et al., "A combined genetic and eigensensitivity algorithm for the 
location of damage in structures," Computers & Structures, vol. 69, pp. 547-556, 
1998. 

[92] J. Cunha, et al., "Application of genetic algorithms for the identification of 
elastic constants of composite materials from dynamic tests," International 
Journal for Numerical Methods in Engineering, vol. 45, pp. 891-900, 1999. 

[93] G. R. Liu, et al., "A combined genetic algorithm and nonlinear least squares 
method for material characterization using elastic waves," Computer Methods in 
Applied Mechanics and Engineering, vol. 191, pp. 1909-1921, 2002. 

[94] G. R. Liu, et al., "An inverse procedure for determination of material constants 
of composite laminates using elastic waves," Computer Methods in Applied 
Mechanics and Engineering, vol. 191, pp. 3543-3554, 2002. 



References                                                                                

VIII 

[95] K. Balasubramaniam and N. S. Rao, "Inversion of composite material elastic 
constants from ultrasonic bulk wave phase velocity data using genetic 
algorithms," Composites Part B: Engineering, vol. 29, pp. 171-180, 1998. 

[96] G. W. Caldersmith, "Vibrations of orthotropic rectangular plates," Acustica, vol. 
56, p. 144, 1984. 

[97] P. S. Frederiksen, "Parameter uncertainty and design of optimal experiments for 
the estimation of elastic constants," International Journal of Solids and 
Structures, vol. 35, pp. 1241-1260, 1998. 

[98] P. S. Frederiksen, "Experimental procedure and results for the identification of 
elastic constants of thick orthotropic plates," Journal of Composite Materials, 
vol. 31, p. 360, 1997. 

[99] F. Moussu and M. Nivoit, "Determination of Elastic Constants of Orthotropic 
Plates By A Modal Analysis/Method of Superposition," Journal of Sound and 
Vibration, vol. 165, pp. 149-163, 1993. 

[100] A. E.-. 10, "Standard Practice for Measuring Ultrasonic Velocity in Materials," 
in Annual book of ASTM Standards, Vol. 3.03. , ed: ASTM International, West 
Conshohocken, PA. 

[101] P. S. Vibrometer, "Hardware Manual," ed: Auburn, MA: Polytec Pi, Inc, 2001. 

[102] M. Martarelli, "Exploiting the laser scanning facility for vibration 
measurements," Imperial College of Science, Technology & Medicine. 

[103] P. S. Vibrometer, "Theory Manual," ed: Version. 

[104] D. J. Ewins, Modal testing: theory and practice: Research Studies, 1984. 

[105] J. He and Z. F. Fu, Modal analysis: Butterworth-Heinemann, 2001. 

[106] B. Peeters, et al., "A new procedure for modal parameter estimation," Sound and 
Vibration, vol. 38, pp. 24-29, 2004. 

[107] P. Guillaume, et al., "Frequency-domain maximum likelihood identification of 
modal parameters with confidence intervals," 1998, pp. 359-366. 

[108] P. Guillaume, et al., "Parametric identification of multivariable systems in the 
frequency domain- A survey," ISMA 21, pp. 1069-1082, 1996. 

[109] H. Van Der Auweraer, et al., "Application of a fast-stabilizing frequency domain 
parameter estimation method," Journal of Dynamic Systems, Measurement, and 
Control, vol. 123, p. 651, 2001. 

[110] P. VERBOVEN, "Frequency-domain system identification for modal analysis," 
2002. 



References                                                                                

IX 

[111] W. Heylen, Modal analysis theory and testing, 1997. 

[112] R. Pintelon and J. Schoukens, System identification: a frequency domain 
approach: Wiley-IEEE Press, 2001. 

[113] P. Guillaume, et al., "A poly-reference implementation of the least-squares 
complex frequency-domain estimator," 2003. 

[114] J. D. Ferry, Viscoelastic properties of polymers: John Wiley & Sons Inc, 1980. 

[115] A. D. Nashif, et al., Vibration damping: Wiley-interscience, 1985. 

[116] E. Riande, Polymer viscoelasticity: stress and strain in practice vol. 55: CRC, 
2000. 

[117] D. I. G. Jones, Handbook of viscoelastic vibration damping: Wiley, 2001. 

[118] C. W. Bert, "Material damping: An introductory review of mathematic measures 
and experimental technique," Journal of Sound and Vibration, vol. 29, pp. 129-
153, 1973. 

[119] C. Coulomb, "Recherches th´eoriques et exp´erimentales: Sur la force de torsion 
et sur l’´elasticit´e des fils de m´etal," M´emoires de l’Acad´emie Royale des 
Sciences, pp. 229-269, 1784. 

[120] C. Vasques, et al., "Viscoelastic Damping Technologies–Part I: Modeling and 
Finite Element Implementation," Mechanical Engineering, vol. 1, pp. 96-110, 
2010. 

[121] L. Rayleigh, "The theory of sound, vol. 2," Mc. Millan & Co London and New 
York, 1896. 

[122] T.K.Caughey, "Classical normal modes in damped linear dynamic systems," 
Journal ofAppliedMechanics vol. 27, pp. 269–271, 1960. 

[123] T. Caughey and M. OKelly, "Classical normal modes in damped linear dynamic 
systems(Classical normal modes in discrete and continuous viscously damped 
linear dynamic systems)," ASME, TRANSACTIONS, SERIES E-JOURNAL OF 
APPLIED MECHANICS, vol. 32, pp. 583-588, 1965. 

[124] N. M. M. Maia and J. M. M. Silva, Eds., Theoretical and experimental modal 
analysis. Research Studies Press, Wiley, p.^pp. Pages. 

[125] S. Ibrahim, "Computation of normal modes from identified complex modes," 
AIAA Journal, vol. 21, pp. 446-451, 1983. 

[126] C.Lin and S. R. Ibrahim, "The use of complex versus normal modes in structural 
model improvement," presented at the Proceedings of the Second IMAC, 1984. 



References                                                                                

X 

[127] M. R. Wall and D. Neuhauser, "Extraction, through filter diagonalization, of 
general quantum eigenvalues or classical normal mode frequencies from a small 
number of residues or a short time segment of a signal. I. Theory and application 
to a quantum dynamics model," The Journal of chemical physics, vol. 102, p. 
8011, 1995. 

[128] S. Adhikari, "Damping modelling using generalized proportional damping," 
Journal of Sound and Vibration, vol. 293, pp. 156-170, 2006. 

[129] M. Gaylard, "Identification of proportional and other sorts of damping matrices 
using a weighted response-integral method," Mechanical systems and signal 
processing, vol. 15, pp. 245-256, 2001. 

[130] J. Angeles and S. Ostrovskaya, "The proportional-damping matrix of arbitrarily 
damped linear mechanical systems," Journal of applied mechanics, vol. 69, p. 
649, 2002. 

[131] C. Minas and D. Inman, "Identification of a nonproportional damping matrix 
from incomplete modal information," Journal of Vibration and Acoustics, vol. 
113, p. 219, 1991. 

[132] M. Tong, et al., "On the non-proportionality of generally damped systems," 
1992, pp. 1301-1301. 

[133] K. Liu, et al., "Evaluation of damping non-proportionality using identified 
modal information," Mechanical systems and signal processing, vol. 15, pp. 
227-242, 2001. 

[134] W. Gawronski and J. Sawicki, "Response errors of non-proportionally lightly 
damped structures," Journal of Sound and Vibration, vol. 200, pp. 543-550, 
1997. 

[135] J. Woodhouse, "Linear damping models for structural vibration," Journal of 
Sound and Vibration, vol. 215, pp. 547-569, 1998. 

[136] S. Adhikari and J. Woodhouse, "Identification of damping: part 1, viscous 
damping," Journal of Sound and Vibration, vol. 243, pp. 43-61, 2001. 

[137] S. Adhikari and J. Woodhouse, "Identification of damping: part 2, non-viscous 
damping," Journal of Sound and Vibration, vol. 243, pp. 63-88, 2001. 

[138] U. Prells and M. I. Friswell, "A measure of non-proportional damping," 
Mechanical systems and signal processing, vol. 14, pp. 125-137, 2000. 

[139] T. Kasai and M. Link, "Identification of non-proportional modal damping matrix 
and real normal modes," Mechanical systems and signal processing, vol. 16, pp. 
921-934, 2002. 



References                                                                                

XI 

[140] E. Balmes, "New results on the identification of normal modes from 
experimental complex modes," Mechanical systems and signal processing, vol. 
11, pp. 229-243, 1997. 

[141] R. M. Lin and J. Zhu, "On the relationship between viscous and hysteretic 
damping models and the importance of correct interpretation for system 
identification," Journal of Sound and Vibration, vol. 325, pp. 14-33, 2009. 

[142] T. Gmür, Dynamique des structures: Analyse modale numérique: PPUR presses 
polytechniques, 1997. 

[143] Z. Osi ski, Damping of vibrations: Taylor & Francis, 1998. 

[144] L. Meirovitch, Computational methods in structural dynamics vol. 5: Springer, 
1980. 

[145] P. Lancaster, Lambda-matrices and vibrating systems: Dover Pubns, 2002. 

[146] K. Gupta, "Eigenproblem solution of damped structural systems," International 
Journal for Numerical Methods in Engineering, vol. 8, pp. 877-911, 1974. 

[147] S. Utku and J. L. M. Clemente, "Computation of eigenpairs of Ax=[gamma] Bx 
for vibrations of spinning deformable bodies* 1," Computers & Structures, vol. 
19, pp. 843-847, 1984. 

[148] F. Tisseur and K. Meerbergen, "The quadratic eigenvalue problem," Siam 
Review, pp. 235-286, 2001. 

[149] D. Afolabi, "Linearization of the quadratic eigenvalue problem," Computers & 
Structures, vol. 26, pp. 1039-1040, 1987. 

[150] L. P. Lefebvre, et al., "Porous metals and metallic foams: Current status and 
recent developments," Advanced Engineering Materials, vol. 10, pp. 775-787, 
2008. 

[151] H. P. Degischer and B. Kriszt, Handbook of cellular metals: production, 
processing, applications: Vch Verlagsgesellschaft Mbh, 2002. 

[152] T. Daxner, Multi-Scale modeling and simulation of metallic foams: VDI-Verl., 
2003. 

[153] T. Daxner, et al., "Mesoscopic simulation of inhomogeneous metallic foams 
with respect to energy absorption," Computational materials science, vol. 16, 
pp. 61-69, 1999. 

[154] R. Gradinger and F. G. Rammerstorfer, "On the influence of meso-
inhomogeneities on the crush worthiness of metal foams," Acta Materialia, vol. 
47, pp. 143-148, 1998. 



References                                                                                

XII 

[155] S. Meguid, et al., "FE modelling of deformation localization in metallic foams," 
Finite elements in analysis and design, vol. 38, pp. 631-643, 2002. 

[156] A. Reyes, et al., "Constitutive modeling of aluminum foam including fracture 
and statistical variation of density," European Journal of Mechanics-A/Solids, 
vol. 22, pp. 815-835, 2003. 

[157] U. M. Ansys, "Theory Manual," ANSYS revision, vol. 8, 2003. 

[158] D. Systemes, "ABAQUS Theory Manual," Dessault Systémes, Providence, RI, 
2007. 

[159] H. Bart-Smith, et al., "Compressive deformation and yielding mechanisms in 
cellular Al alloys determined using X-ray tomography and surface strain 
mapping," Acta Materialia, vol. 46, pp. 3583-3592, 1998. 

[160] J. Banhart, "Manufacture, characterisation and application of cellular metals and 
metal foams," Progress in Materials Science, vol. 46, pp. 559-632, 2001. 

[161] L. J. Gibson and M. F. Ashby, Cellular solids: structure and properties: 
Cambridge Univ Pr, 1999. 

[162] H. X. Zhu, et al., "Analysis of the elastic properties of open-cell foams with 
tetrakaidecahedral cells," Journal of the Mechanics and Physics of Solids, vol. 
45, pp. 319-325, 1997. 

[163] W. L. Ko, "Deformations of foamed elastomers," Journal of Cellular Plastics, 
vol. 1, p. 45, 1965. 

[164] S. Youssef, et al., "Finite element modelling of the actual structure of cellular 
materials determined by X-ray tomography," Acta Materialia, vol. 53, pp. 719-
730, 2005. 

[165] W. E. Warren and A. M. Kraynik, "Linear elastic behavior of a low-density 
Kelvin foam with open cells," Journal of Applied Mechanics, vol. 64, p. 787, 
1997. 

[166] V. Shulmeister, et al., "A numerical study of large deformations of low-density 
elastomeric open-cell foams," Mechanics of Materials, vol. 30, pp. 125-140, 
1998. 

[167] H. X. Zhu, et al., "Effects of cell irregularity on the elastic properties of open-
cell foams," Acta Materialia, vol. 48, pp. 4893-4900, 2000. 

[168] A. P. Roberts and E. J. Garboczi, "Elastic moduli of model random three-
dimensional closed-cell cellular solids," Acta Materialia, vol. 49, pp. 189-197, 
2001. 



References                                                                                

XIII 

[169] E. Maire, et al., "X-ray tomography applied to the characterization of cellular 
materials. Related finite element modeling problems," Composites science and 
technology, vol. 63, pp. 2431-2443, 2003. 

[170] J. Pawlicki, et al., "MECHANICAL PROPERTIES OF CLOSED CELL Al 
FOAMS BASED ON TETRAKAIDECAHEDRONAL MODEL OF 
STRUCTURE." 

[171] O. B. Olurin, et al., "Deformation and fracture of aluminium foams," Materials 
Science and Engineering A, vol. 291, pp. 136-146, 2000. 

[172] J. Banhart and J. Baumeister, "Deformation characteristics of metal foams," 
Journal of Materials Science, vol. 33, pp. 1431-1440, 1998. 

[173] Y. Sugimura, et al., "On the mechanical performance of closed cell Al alloy 
foams," Acta Materialia, vol. 45, pp. 5245-5259, 1997. 

[174] K. Y. G. McCullough, et al., "Uniaxial stress-strain behaviour of aluminium 
alloy foams," Acta Materialia, vol. 47, pp. 2323-2330, 1999. 

[175] D. Maurer, "8-Node Hexahedron Elements applied to Explicit Finite Element 
Methods," 2003. 

[176] A. CFX, "11.0 User Manual," ANSYS Inc., Canonsburg, USA, 2006. 

[177] J. Cugnoni, et al., "Inverse method based on modal analysis for characterizing 
the constitutive properties of thick composite plates," Computers & Structures, 
vol. 85, pp. 1310-1320, 2007. 

[178] M. I. Friswell and J. E. Mottershead, Finite element model updating in structural 
dynamics vol. 38: Springer, 1995. 

[179] K. Madsen, et al., "Methods for non-linear least squares problems," 1999. 

[180] J. More, "The Levenberg-Marquardt algorithm: implementation and theory," 
Numerical analysis, pp. 105-116, 1978. 

[181] J. Mottershead and M. Friswell, "Model updating in structural dynamics: a 
survey," Journal of Sound and Vibration, vol. 167, pp. 347-375, 1993. 

[182] R. B. Nelson, "Simplified calculation of eigenvector derivatives," AIAA Journal, 
vol. 14, pp. 1201-1205, 1976. 

[183] D. V. Murthy and R. T. Haftka, "Derivatives of eigenvalues and eigenvectors of 
a general complex matrix," International Journal for Numerical Methods in 
Engineering, vol. 26, pp. 293-311, 1988. 

[184] R. T. Haftka and H. M. Adelman, "Recent developments in structural sensitivity 
analysis," Structural and Multidisciplinary Optimization, vol. 1, pp. 137-151, 
1989. 



References                                                                                

XIV 

[185] O. Døssing, et al., Structural Testing: Modal Analysis and Simulation: Brüel & 
Kjær, 1988. 

[186] E. Maire, et al., "Deformation of a Metallic Foam Studied by X-Ray Computed 
Tomography and Finite Element Calculations," in Microstructural Investigation 
and Analysis, ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2006, pp. 68-73. 

 

 



      E N G R .  S A E E D  B A D S H A H  

              : +43 (1) 58801 - 325423 

                   :  saeed.badshah@tuwien.ac.at , saeedbadshah@hotmail.com  

                                   : Linke Nordbahngasse 15/3/130, 1210  Wien, Austria. 
 
 
 
Personal details Date of birth 1st June 1980, Married, Pakistan Nationality 
 
 
Education 
 
2007- Present PhD (In progress) Institute of Mechanics and Mechatronics, Vienna University of 

Technology, Austria 
 
2004-2006  Masters in Mechanical Engineering 

N.W.F.P University of Engineering and Technology Peshawar, Pakistan. 
 
1999-2003  Graduate in Mechanical Engineering 

University of Engineering and Technology Taxila, Pakistan. 
 
Professional experience 
 
Nov. 2007- Present Researcher, Institute of Mechanics and Mechatronics, Vienna University of 

Technology, Austria. 
 
Feb. - Nov. 2007 Lecturer, Air University, Mechanical and Mechatronics Engineering Department, 

Islamabad, Pakistan. 
 
June 2004- Feb 2007 Assistant Manager, National Engineering and Scientific commission, Islamabad, 

Pakistan.  
 
Research interest 
 
 Experimental Modal testing and analysis. 
 Finite element modeling. 
 Cellular metals. 
 Structural dynamics. 
 Structural optimization. 
 

 
Computer Skills 
 
 Pro Engineer (Wild Fire) 
 ANSYS 
 IDEAS 
 LMS Test.Lab 
 Istra  (software from Dantec dynamics for Q-300 and Q-500 systems) 
 Scanning laser vibrometer (Polytec) 
 MATLAB 
 Auto CAD and AMD. 

 
 



 
Conferences Proceedings 
 
 Saeed Badshah, Johann Wassermann, Mixed numerical experimental identification technique for 

closed cell aluminum foam based on modal analysis, IBCAST, 10-13 Jan 2011, Islamabad, 
Pakistan. 

 Saeed Badshah, Johann Wassermann, Modal analysis of aluminum structure filled with aluminum 
foam using scanning laser vibrometer, PIP International conference, 23-26 Feb 2009, Lahore, 
Pakistan. 

 A. Schirrer, M. Kozek,  A. Plank, M. Neumann, S. Badshah, J. Wassermann, Vibration analysis of 
an actively controlled flexible structure using laser speckle interferometry, ICSV15, 6-10 July 
2008, Daejeon, Korea. Pages 1412-1419. 

 Saeed Badshah, M.Neumann, Johann Wassermann, Modal analysis of a damped aluminum 
structure, ICSV15, 6-10 July 2008, Daejeon, Korea. Pages 1375-1381. 

 
References 

 
1. Prof. Dipl.-Ing. Dr.techn. Johann Wassermann 

E325- Institut für Mechanik und Mechatronik 
Vienna University of Technology, Austria. 
Phone : +43 (1) 58801 - 325 431 
E-Mail: johann.wassermann@tuwien.ac.at  

 
 

2. Prof. Dipl.-Ing. Dr.techn. Heinz Pettermann 
E317 - Institut für Leichtbau und Struktur-Biomechanik 
Vienna University of Technology, Austria. 
Phone : +43 (1) 58801 - 317 19 
E-Mail: heinz.pettermann@tuwien.ac.at  
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	Chap1_2_3_4_120911_12_7_all_3_6_Final_2
	Saeed_CV_thesis_2

