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Abstract

Detailed computer simulations are indispensable tools for the development and optimization
of modern particle detectors. The interaction of particles with the sensitive medium, giving
rise to ionization or excitation of atoms, is stochastic by its nature. The transport of the
resulting photons and charge carriers, which eventually generate the observed signal, is also
subject to statistical fluctuations. Together with the readout electronics, these processes – which
are ultimately governed by the atomic cross-sections for the respective interactions – pose a
fundamental limit to the achievable detector performance.

Conventional methods for calculating electron drift lines based on macroscopic transport coeffi-
cients used to provide an adequate description for traditional gas-based particle detectors such
as wire chambers. However, they are not suitable for small-scale devices such as micropattern
gas detectors, which have significantly gained importance in recent years. In this thesis, a novel
approach, based on semi-classical (“microscopic”) Monte Carlo simulation, is presented.

As a first application, the simulation of avalanche fluctuations is discussed. It is shown that the
microscopic electron transport method allows, for the first time, a quantitative prediction of gas
gain spectra. Further, it is shown that the shape of avalanche size distributions in uniform fields
can be understood intuitively in terms of a toy model extracted from the simulation.

Stochastic variations in the number of electrons produced along a charged particle track are
another determining factor for the resolution and efficiency of a detector. It is shown that the
parameters characterizing primary ionization fluctuations, more specifically the so-called W value
and the Fano factor, can be calculated accurately using microscopic techniques such that they
need no longer be treated as free variables in the simulation.

Profiting from recent progress in the determination of Penning transfer probabilities, the influence
of excitation transfer on both primary ionization fluctuations and avalanche statistics is examined
and a model for the microscopic calculation of Penning effects is proposed.

“Garfield” is a widely used program for the simulation of gas-based particle detectors. In the
context of this thesis work, an object-oriented version (Garfield++) of this software package
was developed which includes the above-mentioned microscopic methods. The integration of
semiconductor detectors in Garfield++, comprising the adaptation of algorithms, modelling of
material properties and validation against measurements, constitutes a further topic of the thesis.
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Kurzfassung

Detailgenaue Computersimulationen sind unverzichtbare Werkzeuge für die Entwicklung und
Optimierung moderner Teilchendetektoren. Die Wechselwirkung von Teilchen mit dem sensi-
tiven Medium, die typischerweise zur Ionisierung oder Anregung von Atomen führt, ist von
stochastischer Natur. Ebenso ist der Transport der produzierten Photonen und Ladungsträger,
welche das beobachtete Signal erzeugen, statistischen Fluktuationen unterworfen. Gemeinsam
mit der Ausleseelektronik stellen diese Prozesse – die letztlich von den zugrundeliegenden atom-
aren Wirkungsquerschnitten bestimmt werden – fundamentale Beschränkungen der erzielbaren
Detektorauflösung dar.

Herkömmliche Methoden zur Berechnung von Elektronendrift auf der Basis von makroskopis-
chen Transportkoeffizienten liefern eine adäquate Beschreibung für traditionelle Gasdetektoren
wie beispielsweise Drahtkammern. Sie sind jedoch ungeeignet für sogenannte “Micropattern”
Gasdetektoren, die in den letzten Jahren stark an Bedeutung gewonnen haben. In der vorliegen-
den Arbeit wird ein neuartiger Zugang zu Elektronentransportberechnungen in Gasdetektoren
vorgestellt, der auf semi-klassischer (“mikroskopischer”) Monte-Carlo-Simulation beruht.

Als erste Anwendung wird die Simulation von Lawinenfluktuationen diskutiert. Es wird gezeigt,
dass die mikroskopische Elektrontransportmethode erstmalig eine quantitative Voraussage der
Verteilung des Gasverstärkungsfaktors erlaubt. Weiters wird gezeigt, dass die Lawinenverteilung
in ebenen Feldern mittels eines aus der Simulation gewonnenen Toy-Modells intuitiv verstanden
werden kann.

Stochastische Schwankungen in der Anzahl der entlang einer Primärteilchen-Trajektorie pro-
duzierten Elektronen stellen einen weiteren ausschlaggebenden Faktor für die Auflösung und
Effizienz eines Detektors dar. Es wird gezeigt, dass die charakteristischen Größen für Primärioni-
sationsfluktuationen, insbesonders der sog.W -Wert und der Fano-Faktor, mittels mikroskopischer
Techniken berechnet werden können, sodass diese Parameter nicht länger als freie Variablen in
der Simulation behandelt werden müssen.

Auf kürzlich erfolgten Arbeiten zur Bestimmung von Penningtransfer-Wahrscheinlichkeiten
aufbauend wird der Einfluss von Anregungstransfer auf Primärionisationsfluktuationen und
Elektronenlawinenstatistik untersucht und ein Modell zur mikroskopischen Berechnung von
Penningeffekten wird vorgeschlagen.

“Garfield” ist ein weitverbreitetes Programm zur Simulation von gasbasierten Teilchendetektoren.
Im Rahmen dieser Arbeit wurde eine objektorientierte Version (Garfield++) dieses Programm-
pakets erarbeitet, die die oben genannten mikroskopischen Methoden beinhaltet. Die Integration
von Halbleiterdetektorsimulation in Garfield++, einschließlich der Anpassung von Algorithmen,
Modellierung von Materialeigenschaften und Vergleich mit Messdaten, bildet ein weiteres Thema
der Arbeit.
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1. Introduction

Broadly speaking, particle physics experiments require two kinds of tools: a source of particles
(e. g. colliders) and instruments (detectors) which measure the properties of these particles.
Particle detectors – the physics of which is the subject of the present thesis – can be classified
according to the purpose they serve in an experiment or, in other words, the type of information
they are meant to provide about a particle.

• Tracking detectors record the path of a charged particle. By immersing the detector in a
magnetic field, the particle momentum can be inferred from the track curvature.

• Calorimeters measure the energy of charged and neutral particles.

• Particle identification detectors help discriminate between different types of particles.
Phenomena like the emission of Cherenkov or transition radiation are often exploited for
this purpose.

From a technological viewpoint, one can characterize detectors according to the type of particle
interaction with matter on which they are based (ionization, excitation followed by emission of
scintillation light, Cherenkov radiation etc.) and the type of sensitive medium (gas, semiconductor,
noble liquid, scintillator crystal etc.). The present thesis deals primarily with devices for tracking
and photon detection which are based on ionization measurement in gases or semiconductors.
These detectors work according to the same fundamental principles:

• a charged particle traversing the detector ionizes the medium along its track;

• the electrons and ions (or holes) released in the primary ionization process are separated
by means of an electric field and are observed through the current their motion induces on
the readout electrodes.

In gases, the amount of primary ionization is usually too small to be detected directly. Internal
charge amplification, achieved by electron multiplication in a strong electric field, is necessary
to obtain a good signal-to-noise ratio. The characteristics of a gas-based detector are to a large
extent determined by the shape of the amplification field. Due to the 1/r dependence of the
electric field in their vicinity, metal wires represent convenient structures for generating a localized
high field region in which electron avalanches can develop. This concept, dating back to the
Geiger counter, was revolutionized with the invention of the multiwire proportional counter
(MWPC) by G. Charpak in the 1960s [1] and has been subject to continuous improvement ever
since. MWPCs, drift chambers, straw tubes and other wire-based detectors are still widely used
today, for instance in the muon systems of the LHC experiments. A comprehensive introduction
to wire chambers is given in Ref. [2].

The limited rate capability of wire chambers (a consequence of space charge accumulation due to
slow ion evacuation) motivated the development of detectors with alternative electrode layouts.
Profiting from manufacturing techniques developed for microelectronics, a new generation of
gas-based detectors with cell sizes of the order of 100 µm has emerged in the last two decades. Two
main “families” of so-called Micropattern Gas Detectors (MPGDs) have established themselves:

1
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GEMs1, developed in 1997 by F. Sauli [3], and Micromegas2, introduced by Y. Giomataris [4]
in 1996. A concise, up-to-date description of these detectors can be found in Ref. [5]. MPGDs,
which are already in operation in several experiments, are candidates for LHC detector upgrades
and are also being considered to be used as readout chambers in future time projection chambers
(TPCs) [6].

While gas detectors continue to be the technology of choice for instrumenting large areas, precision
tracking near the vertex has become the domain of silicon sensors. In ATLAS, CMS and ALICE,
for example, silicon pixel detectors constitute the innermost layers of instrumentation around the
beam pipe, followed by silicon strip sensors at larger radii. In order to cope with the challenges in
terms of radiation hardness associated with the planned luminosity upgrade of the LHC, strong
R&D efforts are underway aimed at exploring new materials and detector layouts which promise
to be less prone to radiation damage than current technologies [7]. Monolithic detectors, which
integrate sensor and readout electronics on the same substrate, are another active line of research.
Excellent textbooks [8, 9] discussing the physics and technology of semiconductor detectors are
available.

Monte Carlo simulations are indispensable and ubiquitous tools in modern high-energy physics.
Event generators like Pythia [10] are used for sampling the final state particles produced in a
collision. The trajectories of these particles (including their decay and interaction with matter)
through the experiment surrounding the interaction point can subsequently be calculated by
detector simulation programs like Geant4 [11, 12]. Such “virtual experiments” are used e. g. for
optimizing the layout of an experiment during the design phase, for calibrating detectors, and
for discriminating new phenomena against the “background” of known physics as implemented
in event generators.

On a smaller scale, but in a conceptually similar manner, simulations also play a vital role in
the development of particle detectors. A necessary prerequisite for the successful operation of a
detector is a profound understanding of its response. In other words, it has to be known how the
passage of a particle through the sensitive region of the device translates into a signal observed
in the readout electronics (and vice versa). For this purpose, it is useful to estimate the expected
detector response by means of a calculation and to compare the result against measurements.
Good agreement between measurement and calculation can be taken as an indication that the
detector is fully understood. Moreover, given sufficient confidence in the reliability of a calculation,
one can try to optimize a detector “on the drawing-board” by varying, for instance, the field
configuration or, in case of gas-based detectors, the composition of the gas mixture.

Order-of-magnitude (and occasionally even more accurate) estimates can often be obtained by
analytic, “back of the envelope” calculations. For refined calculations it has become common
practice to resort to computer programs, though. For instance, numerical methods are often
necessary to evaluate the electric field inside the detector (Sec. 2.2). Other key elements of detector
physics such as the inelastic interaction of relativistic charged particles with the detection medium
(Sec. 2.1) or the transport of electrons (and holes/ions) under the influence of an electric field are
stochastic processes and can thus be modelled conveniently in terms of Monte Carlo simulation. A
central theme of the present thesis is the simulation of particle (in particular: electron) transport
using semi-classical (“microscopic”) Monte Carlo techniques. Being based on atomic cross-sections,
this approach represents a close approximation to the “true” detector processes.

1 Gas Electron Multiplier
2 Micromesh gaseous structure



3 Chapter 1. Introduction

In the Magboltz program [13, 14], such a technique has been used for several years for calculating
electron transport coefficients such as drift velocity or diffusion coefficients in gas mixtures. Using
the same set of input data (i. e. the cross-sections for electron scattering by gas atoms/molecules)
and adapting the algorithm to arbitrary, inhomogeneous field configurations, a broad range of
topics – beyond the conventional scope of Magboltz – can be investigated. This is the basis of the
microscopic tracking method presented in Sec. 2.3.2. While the development of this technique
was initiated within the context of MPGD R&D (more specifically, within the framework of
the RD51 collaboration), its use is not limited to micropattern gas detectors. A more generic
application is the study of fluctuations in ionization processes, which constitutes the core of
this thesis work. In Chapter 3, the microscopic technique is used for the calculation of electron
avalanche size statistics. Chapter 4 addresses fluctuations in the primary ionization process. In
Chapter 5 an extended model (including radiative and collisional excitation transfer) for the
Monte Carlo simulation of electron avalanches is presented.

In order to simulate the overall behaviour of a detector, it is necessary to “glue” different
modules such as field calculation and charge transport simulation together. Garfield [15], written
by R. Veenhof, is a widely used program for the detailed simulation of gas-based detectors.
It is interfaced with various field solvers, programs for the simulation of primary ionization,
and Magboltz for the computation of electron transport properties. Unless explicitly indicated
otherwise, the simulation results presented in this work were obtained using Garfield++ [16], an
object-oriented version of Garfield developed within the context of this thesis, which is intended
to provide a common framework for the simulation of both gas and semiconductor detectors.
The implementation of silicon detector simulation in Garfield++ is discussed in Chapter 6.
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2. Concepts and Techniques

In this introductory chapter, an overview of the building blocks constituting a typical detector
simulation program is given. Basic concepts, definitions and calculation methods used and referred
to in subsequent chapters are reviewed.

2.1. Primary Ionization

2.1.1. Photons

Photoelectric absorption is the dominant interaction process of photons in the VUV and X-ray
energy range. It is described by the photoabsorption cross-section σγ (shown in Fig. 2.1a for the
case of argon). At high energies, i. e. above the respective absorption edges, photons interact
preferentially with inner shell electrons. As an example, we consider the absorption of a 5.9 keV
photon1 by an argon atom. With a probability of about 80% the photon liberates an electron
from the K shell [18]. The vacancy in the K shell gives rise to a relaxation chain proceeding
either radiatively, i. e. by emission of a fluorescence photon, or radiation-less (Auger effect),
resulting in the emission of an Auger electron. The fluorescence photon can in turn ionize another
atom in the gas or, with a probability depending on the geometry of the device, escape from
the detector. The ejected photoelectrons and (most of) the Auger electrons have kinetic energies
well above the ionization threshold of the gas and are thus able to release further electrons along
their path. The resulting ionization pattern provides information about the primary photon, in
particular its energy εγ .

The average number of electron-ion pairs n is expressed in terms of the mean energy W required
to form an electron-ion pair [19]:

n = εγ
W
. (2.1)

The energy resolution is limited by fluctuations in the relaxation cascade and in the electron
degradation process. The variance σ2 of the number of electron-ion pairs n is characterized by
the Fano factor F ,

σ2 = (n− n)2 = Fn. (2.2)

Similarly as for photons, a W value and Fano factor describing the secondary electron spectrum
produced by a high energy electron (δ-electron) can be defined. The calculation of these parameters
is the subject of Section 4.3.

As discussed in Section 2.1.3, the photoabsorption cross-section (more generally: the optical
dielectric function) is not only relevant for the simulation of photon transport but also serves as
an ingredient for constructing models for charged particle interaction.

1 This energy corresponds to the main X-ray emission line of 55Fe sources, which are often used for calibration
purposes.

5
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Figure 2.1. Left: total photoabsorption cross-section of argon [17] (solid curve) and cross-
section for photoabsorption by K shell electrons [18] (dashed curve). Right: differential
inverse inelastic mean free path (differential cross-section dσ/dE multiplied by the atomic
density) for minimum-ionizing pions (βγ = 4) in silicon, calculated using the PAI model
implementation discussed in Section 6.1.

2.1.2. Charged Particles

The energy loss of a fast charged particle due to electromagnetic interaction with the matter
it traverses is described by the differential cross-section dσ/dE, where E denotes the energy
transferred in a collision. An example (for pions in silicon) is shown in Fig. 2.1b.

Important average quantities determined by dσ/dE are:

• the total cross-section σ and thus the inverse inelastic mean free path λ−1,

λ−1 = Nσ = N

Emax∫
0

dE dσ
dE ,

where N is the number of scattering centres per unit volume (i. e. the atomic density of
the medium);

• the so-called stopping power dE/dx, i. e. the mean energy loss per track length,

dE
dx = N

Emax∫
0

dE E
dσ
dE .

In combination with a measurement of the particle momentum, the dependence of the stop-
ping power on βγ, as described by the Bethe-Bloch formula (A.12), can be used for particle
identification.

Fluctuations of the energy loss play an important role. Due to the long tail of dσ/dE towards
large energy transfers, the distribution of the energy loss over a short2 track segment has an

2 In this context, “short” means that the energy loss of the charged particle over this distance is small compared
to the kinetic energy.
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asymmetric shape. As a consequence, the mean energy loss corresponding to dE/dx is typically
higher than the most probable energy loss. An approximate representation of energy loss spectra
is given by the Landau distribution (A.13), which is based on a simplified differential cross-section
of the form dσ/dE ∝ 1/E2. For accurate calculations of energy loss distributions and simulations
of ionization patterns however, a more detailed description of the differential cross-section is
required. A convenient framework for calculating dσ/dE is provided by the so-called dielectric
theory of energy loss [20–22] outlined in the following section. In this formalism, the response of
the medium to an incident particle is described by the dielectric function ε (k, ω).

2.1.3. Dielectric Theory

We start with a macroscopic derivation of the stopping power (see e. g. Ref. [23]). The electric
field of a particle with mass M , charge ze, and velocity βc traversing a non-magnetic medium is
determined by Maxwell’s equations (cgs system)

∇ ·B = 0 , ∇×E = −1
c

∂B
∂t
,

∇×B = 1
c

∂D
∂t

+ 4π
c

j , ∇ ·D = 4πρ,

with source terms ρ = zeδ3 (r− βct), j = βcρ.

Within the domain of linear response, the displacement field D in an isotropic medium is (in
Fourier space) related to the electric field E by

D (k, ω) = ε (k, ω) E (k, ω) , ε (k, ω) = ε′ (k, ω) + iε′′ (k, ω) . (2.3)

In order to find a solution of the inhomogeneous Maxwell equations, the fields are written in
terms of Fourier integrals

D (r, t) = 1
(2π)2

∫
d3k

∫
dωε (k, ω) E (k, ω) ei(k·r−ωt),

B (r, t) = 1
(2π)2

∫
d3k

∫
dωB (k, ω) ei(k·r−ωt).

We obtain for the Fourier components of the fields

iε (k, ω) k ·E (k, ω) = 2zeδ (ω − k · βc) ,

ik×B (k, ω) = − iωε (k, ω)
c

E (k, ω) + 2zeβδ (ω − k · βc) ,

and, adopting the Coulomb gauge k ·A (k, ω) = 0, for the Fourier components of the potentials

φ (k, ω) = 1
ε (k, ω) k2 2zeδ (ω − k · βc) ,

A (k, ω) =
−ωk
k2c + β

k2 − ε (k, ω) ω2

c2

2zeδ (ω − k · βc) .

The moving particle gives rise to an electric field

E(r, t) = 1
(2π)2

∫
d3k

∫
dω ei(k·r−ωt)

[ iω
c

A (k, ω)− ikφ (k, ω)
]

= ize
2π2

∫
d3k

∫
dω ei(k·r−ωt)δ (ω − k · βc)

[
ω2

k2c2 k− ω
cβ

−k2 + ε (k, ω) ω2

c2

− k
k2ε (k, ω)

]
.
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At r = βct, the particle experiences a force zeE(βct, t). The stopping power dE/dx is given by
the component of this force along the direction of the particle,

dE
dx = zeE (βct, t) · β

β
. (2.4)

The magnetic field B does not affect the energy of the particle. Inserting the above expression
for the electric field, one obtains

dE
dx = iz2e2

β2π2

∫
d3k

∫
dω ei(k·βct−ωt)δ (ω − k · βc)

 ω2k·β
k2c2 − ωβ2

c

−k2 + ε (k, ω) ω2

c2

− k · β
k2ε (k, ω)

 .
Transforming to spherical coordinates and integrating over the angles yields

dE
dx = iz2e2

β2π

∞∫
−∞

dω
∞∫
ω
βc

dk

 kω
(
β2 − ω2

k2c2

)
−k2c2 + ε (k, ω)ω2 −

ω

kc2ε (k, ω)

 .
Using ε(−ω) = ε∗(ω) the integration over ω can be limited to positive frequencies,

dE
dx = −2z2e2

β2π

∞∫
0

dω
∞∫
ω
βc

dk
[
ωk

(
β2 − ω2

k2c2

)
Im
( 1
−k2c2 + ε (k, ω)ω2

)
+ ω

kc2 Im
( −1
ε (k, ω)

)]
.

(2.5)

The second term in the integrand represents the non-relativistic contribution to the energy loss
which we would have obtained by considering only the scalar potential φ (Coulomb interaction).
It is often referred to as the longitudinal term. The first term (transverse term) originates from
the vector potential A; it incorporates relativistic effects.

Up to this point, the interaction of the incident particle with the medium has been treated
in an entirely classical framework. We reinterpret (2.5) now in a quantum mechanical picture:
the incident particle is not slowed down continuously but loses energy in collisions with energy
transfer E = ~ω and momentum transfer ~k. With N being the atomic density in the medium,
we can write the stopping power as

dE
dx = −

ωmax∫
0

dω
∞∫
ω
βc

dkN~ω
d2σ

dkdω . (2.6)

The limits of the integration over k in (2.6) can be understood from kinematic considerations.
With pµ and p′µ being the four-momenta of the incident particle before and after a collision,
respectively, we have

p2 − p′2

2γM = ~ω
(

1− ~ω
2γMc2

)
− ~cβ · k + ~2k2

2γM = 0,

which in the limit of small energy and momentum transfers (~ω � γMc2, ~k � βγMc) reduces
to ω = βkc cos θ. At fixed ω, the lower bound of k is thus kmin = ω/βc.

The upper limit of the integration over ω is also determined by kinematic constraints, as the
maximum energy a particle (other than an electron) can transfer to an electron in a single
collision is given by [24]

Emax = 2mec
2β2γ2

[
1 +

(
me

M

)2
+ 2γme

M

]−1

. (2.7)
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By comparison of (2.5) and (2.6), one sees that the doubly differential cross-section d2σ/(dkdω)
is fully determined by the dielectric function ε(k, ω). As a next step we, therefore, have to specify
ε(k, ω), in particular the so-called loss function Im (−1/ε (k, ω)).

Dielectric Function

In order to find a quantum-mechanical expression for the dielectric function ε (k, ω), we follow
the approach outlined in Ref. [25]. We consider the response of a system of electrons to a weak
perturbation induced by an external test charge density ρext (r, t). In particular, we want to
calculate the expectation value of the induced electron density ρind. Using

ik ·D (k, ω) = ik · ε (k, ω) E (k, ω) = 4πρext (k, ω) ,
ik ·E = 4π (ρind (k, ω) + ρext (k, ω))

we can then obtain the dielectric function ε (k, ω) from

1
ε (k, ω) = 1 + ρind (k, ω)

ρext (k, ω) .

The Hamiltonian of the system, H = H0 +U , consists of the Hamiltonian H0 of the unperturbed
system and a perturbation term U due to the external test charge,

U(ri, t) = 1
(2π)2

∫
d3k

∫
dω eφext (k, ω)

∑
i

eik·rie−iωt+Γt,

where
φext (k, ω) = 4π

k2 ρext (k, ω)

is the Fourier component of the test charge potential φext. The damping constant Γ is inserted to
ensure that the perturbation vanishes at t = −∞. The many-body wave function of the electron
system can be expanded as

|ψ(t)〉 =
∑
j

cj(t)e−i(εj/~)t |j〉 ,

where |j〉, εj are the eigenstates and eigenvalues of H0. It is assumed that the electron system was
initially, that is at t = −∞, in its ground state |0〉. In first order time dependent perturbation
theory the coefficients cj are given by

cj (t) = c
(0)
j (t) + c

(1)
j (t) = δj0 + 1

i~

t∫
−∞

dt′eiωj0t′ 〈j|U
(
t′
)
|0〉 ; ωj = εj − ε0

~
.

Inserting the expression for U from above we find for the first order coefficient

c
(1)
j (t) = e

i~
1

(2π)2

∫
d3k

∫
dω

t∫
−∞

dt′eiωj0t′e−iωt′eΓt′φext (k, ω)Fj0 (k)

= e

~
1

(2π)2

∫
d3k

∫
dω ei(ωj0−ω)teΓt

−ωj0 + ω + iΓφext (k, ω)Fj0 (k)

where Fj0 denotes the so-called form factor

Fj0 (k) = 〈j|
∑
i

eik·ri |0〉 .
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Since the charge density of the electron system is given by

ρ (r) = e
∑
i

δ (r− ri) , ρ (k) = e

(2π)3/2

∑
i

e−ik·ri ,

the matrix elements of ρ (k) are

〈0| ρ (k) |j〉 = e

(2π)3/2F0j (−k) .

To linear order we obtain for the expectation value of the induced charge density

ρind (k) ≈ 〈ψ| ρ (k) |ψ〉 − 〈0| ρ (k) |0〉

=
∑
j

[
c

(1)
j

∗
(t) eiωj0t 〈j| ρ (k) |0〉+ c

(1)
j (t) e−iωj0t 〈0| ρ (k) |j〉

]
.

Inserting the expression for c(1)
j and using φ∗ (k, ω) = φ (−k,−ω) yields

ρind (k, ω) = −
∫

d3k′
∑
j

φ
(
k′, ω

) [Fj0 (k′)F0j (−k)
ωj0 − (ω + iΓ) + F0j (k′)Fj0 (−k)

ωj0 + (ω + iΓ)

]
.

Neglecting coupling between different components k of the density fluctuation, i. e. considering
only the Fourier component k′ = k of the potential, one finally obtains the result

1
ε (k, ω) = 1− 4πe2

~k2

∑
j

|Fj0 (k)|2
[

1
ωj0 − (ω + iΓ) + 1

ωj0 + (ω + iΓ)

]
. (2.8)

Using3

lim
Γ→0

1
ω − y + iΓ = P 1

ω − y
− iπδ (ω − y) ,

where P denotes the Cauchy principal value, one obtains for the loss function in the limit of
small Γ

Im
( −1
ε (k, ω)

)
= 4π2e2

~k2

∑
j

|Fj0 (k)|2 [δ (ω − ωj0)− δ (ω + ωj0)] .

A closed-form expression for (2.8) can only be obtained for special cases such as the hydrogen
atom and the Fermi gas.

Atomic Hydrogen

In atomic physics, the coupling between a charged particle and an atom is usually described in
terms of the so-called generalized oscillator strength density (GOS)

df (k, ω)
dω = 2me

~k2

∑
j

ωj0 |Fj0 (k)|2 δ (ω − ωj0) ,

which is related to the loss function by

Im
( −1
ε (k, ω)

)
= 2π2e2N

meω

df (k, ω)
dω .

3 Strictly speaking, this relation holds only under the integral.
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Figure 2.2. Left: generalized oscillator strength density df
d(E/R) of atomic hydrogen for transitions

to the continuum according to formula (3.10) in Ref. [27] (R is the binding energy of hydrogen,
a0 is the Bohr radius). Right: loss function Im (−1/εL (k, ω)) of a degenerate Fermi gas
(Lindhard function).

The form factors Fj0 (k) of the hydrogen atom were calculated in 1930 by Bethe [26]. Figure 2.2a
shows a plot of the corresponding generalized oscillator strength density for transitions to the
continuum.

At large energy and momentum transfers, df (k, ω) /dω is concentrated along the free electron
line ω = ~k2/2me. At low k the exponential in the form factor can be approximated by an
expansion to linear order (dipole approximation). The generalized oscillator strength then reduces
to the dipole (or optical) oscillator strength (see Appendix A.1.1) describing the photon-atom
interaction. A comprehensive review of the generalized oscillator strength concept can be found
in Ref. [27].

Fermi Gas

For free electrons,
φj (r) = 1√

V
eikj ·r,

the form factor reduces to [28]

Fj0 (k) = (2π)3

V
δ (k− kj + k0) ,

and the excitation frequencies become

ωj0 = ~k2

2me
+ ~
me

k · k0 = ωk + ~
me

k · k0.

As we are dealing with continuous quantum numbers kj , the sum over the states j is transformed
into an integral, ∑

j

→ V

(2π)3

∫
d3kj .
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The occupation probability of the initial state k0 is given by the Fermi-Dirac distribution gFD (k0).
For the ensemble average of ε (k, ω) one obtains

ε (k, ω) = 1+
ω2
p

2ωk
3

4πk3
F

∫
d3k0gFD (k0)

[
1

ωk + ~
me

k · k0 − (ω + iΓ)
+ 1
ωk + ~

me
k · k0 + (ω + iΓ)

]
,

where we have introduced the plasma frequency

ωp =

√
4πe2Ne

me
, (2.9)

with Ne being the electron density of the medium. Considering the limit of low momentum
transfer, we perform a Taylor expansion of the integrand to fourth order

1
ωj0 − ω

+ 1
ωj0 + ω

= −2~k0 cos θ
meω2 k − ~

meω2k
2 − 2~3k3

0 cos3 θ

m3
eω

4 k3 − 3~3k2
0 cos2 θ

m3
eω

4 k4 + ...

The linear and the cubic term contain odd powers of cos θ and thus vanish upon integration.
Retaining only the quadratic term yields

ε (k, ω) ≈ 1−
ω2
p

ω2 .

In the regime of low momentum transfer, the loss function thus exhibits a singularity at the
plasma frequency ωp. In a simple, classical picture this resonance can be interpreted as follows [29]:
the external perturbation causes a displacement of the electrons by r leading to a polarization
P = Neer and an electric field E = −4πP. The resulting equation of motion

me
d2

dt2 r = eE = −4πNee
2r,

describes a harmonic oscillation with frequency ωp. Collective oscillations of the electron density
are indeed a predominant feature of the loss function of solids, in particular of simple metals
and semiconductors. The quanta of such plasma oscillations are called plasmons. Inserting the
fourth-order expansion term yields

ε (k, ω) ≈ 1−
ω2
p

ω2

(
1 + 3

5
k2v2

F

ω2

)
.

From the resonance condition, ε (k, ω) = 0, one obtains the plasmon dispersion relation

ω2 ≈ ω2
p + 3

5
k2v2

F

ω2
p

.

Lindhard [30, 31] found a closed-form solution for the dielectric function of a Fermi gas at zero
temperature. The Lindhard loss function Im (−1/εL (k, ω)) is plotted in Fig. 2.2b. Two distinct
features of the loss function can be identified: the continuum of single-electron excitations in the
region

~k2

2me
− ~kkF

me
< ω <

~k2

2me
+ ~kkF

me
,

and the plasmon line determined by ε (k, ω) = 0. As in the case of hydrogen, with increasing
momentum transfer the loss function is concentrated around the free electron line ω = ωk. The
plasmon line joins the single-electron excitation region at a critical wave-vector k = kc, beyond
which plasmons decay by transferring their energy to one of the electrons. The critical wave-vector
can roughly be approximated as kc ≈ ωp/vF .
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Equivalence with Born Approximation

As outlined in Appendix A.1, the non-relativistic expression for the stopping power according to
the first Born approximation is given by

dE
dx = −8πz2e4M2N

~4K2

∑
j

kmax∫
kmin

dk |Fj0|
2

k3 (εj − ε0) . (2.10)

From the macroscopic derivation we obtained for the longitudinal part of the stopping power

dE
dx = − 2z2e2

β2c2π

∞∫
0

dω
kmax∫
kmin

dkω
k
Im
( −1
ε (k, ω)

)
.

Inserting the expression for the loss function (for small damping constants) derived above,

Im
( −1
ε (k, ω)

)
= 4π2e2N

~k2

∑
j

|Fj0 (k)|2 [δ (ω − ωj0)− δ (ω + ωj0)] , ωj0 = 1
~

(εj − ε0) ,

(2.11)
one sees that the macroscopic expression for the longitudinal contribution to the stopping power
in combination with an appropriate microscopic expression for the dielectric function is equivalent
to the first-order non-relativistic quantum-mechanical result.

Optical Data Models

The dielectric formalism described above can easily be implemented in a computer simulation,
provided that the generalized dielectric function is known. First-principles calculations of ε (k, ω)
– or, equivalently, the generalized oscillator strength – for many-electron atoms, molecules or
solids are quite complicated however. On the other hand, for calculating the energy loss of a
particle, one is primarily interested in the (singly) differential cross-section dσ/dE, in which the
dependence on k is “averaged out”. While measurements of the loss function over the full range
of k seem to be very scarce, optical data are more abundant. A common approach is, therefore,
to rely on measured data in the optical regime, and to use a physically motivated algorithm for
the extrapolation of the optical dielectric function ε (ω) to larger k. Model dielectric functions
of a gas or solid are typically constructed in such a way that key features of the respective
paradigmatic examples (hydrogen atom, Fermi gas) such as the Bethe ridge or the plasmon
dispersion relation are preserved.

Numerous optical data based models exist. In the following we describe the so-called photoab-
sorption ionization (PAI) model, which is often used in calculations for gas-based detectors.

Photoabsorption Ionization (PAI) Model

The PAI model was introduced in 1980 by Allison and Cobb [23]. A similar model had been
described before by Chechin et al. [32] and had been used by Lapique and Piuz for simulating
ionization patterns in argon [33]. The model was used for solid state detectors for the first time
by Hall [34].

Let us first consider the longitudinal term of the integrand in Eq. (2.5). In the PAI model,
the dipole approximation, that is the approximation of ε (k, ω) by its optical limit ε (ω), is
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extended to the whole domain ~k <
√

2me~ω. Inspired by the shape of the hydrogenic oscillator
strength, the remaining contribution to Im(−1/ε(k, ω)) required to satisfy the Bethe sum rule
(cf. Appendix A.1.1),

∞∫
0

ωIm
( −1
ε (k, ω)

)
dω = π

2ω
2
p, (2.12)

is attributed to the scattering by free electrons (“close collisions”). This term is thus of the form
Cδ(ω − ~k2/2me). The factor C is determined by the normalization (2.12),

C = 1
ω

ω∫
0

ω′Im
( −1
ε (ω′)

)
dω′.

Combining the two terms, the longitudinal loss function becomes

Im
( −1
ε (k, ω)

)
= Im

( −1
ε (ω)

)
Θ
(
ω − ~k2

2me

)
+
δ
(
ω − ~k2

2me

)
ω

ω∫
0

ω′Im
( −1
ε (ω′)

)
dω′.

After integration over k we obtain(dE
dx

)
long

= − z2e2

β2c2π

ωmax∫
0

ω

Im( −1
ε(ω)

)
ln 2meβ

2c2

~ω
+ 1
ω2

ω∫
0

ω′Im
( −1
ε(ω′)

)
dω′

dω. (2.13)

As for the transverse term, i. e. the first term of the integrand in Eq. (2.5), the largest contribution
to the integral comes from the vicinity of the real photon line ω = kc/

√
ε. In the transverse term

one consequently sets ε(k, ω) = ε(ω) throughout. Substituting u = k2c2 one obtains(dE
dx

)
trans

= z2e2

β2c2π

ωmax∫
0

dω ε′′(ω)ω3
∞∫

ω2/β2

du
(
β2 − ω2

u

)
1

u2 − 2uε′ (ω)ω2 + ω4 |ε (ω)|2
.

Integrating over u yields(dE
dx

)
trans

= − z2e2

β2c2π

ωmax∫
0

ω

Im( −1
ε (ω)

)
ln 1√

(1− 2ε′ (ω)β2)2 + ε′′ (ω)2 β4

+
(
β2 − ε′ (ω)

|ε (ω)|2

)(
π

2 − arctan 1− β2ε′ (ω)
β2ε′′ (ω)

)]
dω.

By comparison with
dE
dx = −

Emax∫
0

NE
dσ
dE dE, E = ~ω,

we obtain for the differential cross-section dσ/dE

N
dσ
dE = z2αf

β2π~c
Im
( −1
ε (E)

)
ln 2meβ

2c2

E

+ z2αf
β2π~c

Im
( −1
ε (E)

)
ln 1
|1− β2ε (E)|

+ z2αf
β2π~c

(
β2 − ε′ (E)

|ε (E)|2

)(
π

2 − arctan 1− β2ε′ (E)
β2ε′′ (E)

)

+ z2αf
β2π~c

1
E2

E∫
0

E′Im
( −1
ε (E′)

)
dE′, (2.14)
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with αf = e2/ (~c) ≈ 1/137 being the fine structure constant.

Since the model is based on dielectric theory, the density effect is naturally included (in the
second term) and does not need to be added a posteriori as a correction term. In the transparency
region (ε′′ (ω) = 0), the third term can be identified with the cross-section for the emission of
Cherenkov photons. It vanishes for β < 1/

√
ε; above threshold it becomes( dσ

dE

)
Čer

= αf
N~c

(
1− 1

β2ε

)
≈ αf
N~c

sin2 θČer,

where
cos θČer = 1

β
√
ε
.

The last term describes the scattering by quasi-free electrons. For large energy transfers it
approaches the Rutherford cross-section (A.3).

In the formulation of the PAI model by Allison and Cobb, the imaginary part ε′′ of the dielectric
function is approximated by the photoabsorption cross-section σγ ,

ε′′ (E) ≈ N~c
E

σγ (E) (2.15)

and the real part ε′ is calculated from the Kramers-Kronig relation

ε′ (E)− 1 = 2
π

P
∞∫
0

E′ε′′ (E′)
E′2 − E2 dE

′.

In addition, the approximation |ε (E)|2 ≈ 1 is used. These are valid approximations if the
refractive index is close to one (n ≈ 1) and the attenuation coefficient k is small. For gases, this
requirement is usually fulfilled in the practically relevant energy range, that is above the ionization
potential. Whether this approximation is appropriate for solid media as well is discussed in
Section 6.1.

2.2. Electric Fields

With rare exceptions, calculation techniques providing closed-form expressions of the electrostatic
potential are limited to two-dimensional problems. A number of conventional detector geometries
(e. g. wire chambers and drift tubes) do exhibit - to good approximation - translational invariance
in one direction such that a two-dimensional treatment is adequate. Semi-analytical calculation
techniques – based essentially on the capacitance matrix method4 – for the arrangements of wires
and equipotential planes (with or without periodicities) which can be handled by Garfield are
described in Ref. [35].

An elegant method for solving the two-dimensional Laplace equation is based on the use of
conformal mappings. In Section 2.2.1 this method is illustrated with the help of an example to
be used later for the weighting field in a strip detector.

For truly three-dimensional devices (e. g. GEMs), one has to resort to numerical techniques such
as the finite element method (FEM) or the boundary element method (BEM).

4 Using the Green’s function for the electrostatic potential of a wire under the given boundary conditions, the
capacitance matrix of the system is established and numerically inverted to calculate the charges on the
wires corresponding to the respective potentials. This method is conceptually similar to the neBEM approach
discussed in Section 2.2.2.
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Figure 2.3 Geometry discussed in
Section 2.2.1: two infinite par-
allel planes (y = const.), sep-
arated by a distance ∆y = d.

y

−w

d

xw

The finite element approach affords great flexibility in that virtually arbitrarily shaped geometries
can be modelled. Powerful commercial software packages (e. g. Ansys [36]) are available. A crucial
step in FEM-based calculations is the subdivision (meshing) of the physical domain into discrete
elements. In this respect, geometries involving feature sizes which are small compared to the
overall dimensions of the region to be meshed (e. g. 50 µm wire diameter vs. 1 cm tube radius in
a drift tube, 1 µm grid thickness vs. 1 mm drift gap in a GOSSIP) are particularly challenging.
In such cases, a fine mesh is necessary to obtain good accuracy for the potential, which comes
at the price of a large field map and thus slow interpolation, though. Other adverse aspects of
finite element field calculations are discontinuities of the electric field between elements and the
approximation of the field by low order polynomials [37].

These deficiencies are largely overcome in BEM-based field solvers, where only the boundary of
the domain and not its interior need to be meshed. With regard to micropattern gas detectors, a
novel BEM-variant called “nearly exact Boundary Element Method” (neBEM) has been developed
by S. Mukhopadhyay and coworkers [38, 39] and integrated into Garfield (Fortran version) by
R. Veenhof. A two-dimensional neBEM-version, which was implemented in the context of this
thesis, is described in Section 2.2.2.

2.2.1. Conformal Mapping

A conformal mapping is a transformation ζ = f (z) (z, ζ ∈ C) which preserves local angles. If
f (z) is analytic, the mapping ζ = f (z) is conformal at any point where f ′ (z) 6= 0 [40, 41].

As an example, we consider two infinite parallel plates separated by distance d (Fig. 2.3). For
the boundary conditions applied to the lower plane (y = 0), we choose

φ (x, y = 0) =

φ0, −w < x < w

0, else
.

The plane at y = d is assumed to be grounded. With φ0 = 1, this corresponds to the weighting
field of a parallel-plate chamber with a segmented readout electrode (pitch 2w). By means of the
transformation

z = x+ iy → ζ = ξ + iη = eπz/d,

the shaded region of the z plane is mapped conformally on the upper half of the ζ plane [40].

The solution for the Laplace equation in the upper half plane(
∂2

∂ξ2 + ∂2

∂η2

)
φ (ξ, η) = 0, η > 0,
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ε

U

∂U

V

∂V

ε0

Figure 2.4 Elementary con-
figuration for an electro-
static problem to be solved
by neBEM: a conductor
U with boundary ∂U at
fixed potential and a dielec-
tric body V (boundary ∂V )
with relative dielectric con-
stant ε.

satisfying the boundary condition φ (ξ, 0) = g (ξ) on the ξ axis is given by Poisson’s formula for
the half plane [40]

φ (ξ, η) = 1
π

∞∫
−∞

ds ηg (s)
η2 + (ξ − s)2 . (2.16)

With

g (ξ) =

φ0, e−πw/d < ξ < eπw/d

0, else

Eq. (2.16) yields

φ (ξ, η) = φ0
π

[
arctan

(
ξ − e−πw/d

η

)
− arctan

(
ξ − eπw/d

η

)]
.

After transformation back to the z domain one obtains

φ (x, y) = φ0
π

arctan
( sin (πy/d) sinh (πw/d)

cosh (πx/d)− cos (πy/d) cosh (πw/d)

)
. (2.17)

2.2.2. Nearly Exact Boundary Element Method (2D)

We consider the system depicted in Fig. 2.4 consisting of a conductor U at fixed potential φ and
a dielectric V with relative dielectric constant ε. The generalization of this basic configuration
to an arbitrary number of conducting and dielectric bodies is straightforward. Our goal is to
compute the electric field E and the potential φ at any point r outside the conductor. In addition
to a possible contribution from a space charge distribution ρ (r), φ and E are in part due to
charges residing on the surface ∂U of the conductor, and in part due to the polarisation of
the dielectric. For a linear, homogeneous dielectric, the effect of the latter can be described in
terms of a polarization charge density σp on the boundary ∂V of the dielectric. In the absence of
space charge, the potential and field are thus given by the boundary integrals (cf. Chapter 3 in
Ref. [42])

φ (r) =
∫
∂U

dl′σ
(
r′
)
G
(
r, r′

)
+
∫
∂V

dl′σp
(
r′
)
G
(
r, r′

)
,

E (r) = −
∫
∂U

dl′σ
(
r′
)
∇G

(
r, r′

)
−
∫
∂V

dl′σp
(
r′
)
∇G

(
r, r′

)
,

(2.18)

where G (r, r′) is the two-dimensional free-space Green’s function

G
(
r, r′

)
= − 1

2πε0
ln
∣∣r− r′

∣∣ .
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The problem consists now in determining the charge density distributions σ (r) and σp (r)
corresponding to the applied boundary conditions. As a first step towards the numerical solution,
the boundary curves are approximated by straight line segments with constant charge densities,∫

dl′σ
(
r′
)
G
(
r, r′

)
→
∑
i

σi

∫
Ci

dl′G
(
r, r′

)
.

The integration of the Green’s function G (r, r′) and its derivative, respectively, over a line
element Ci can easily be carried out. For a uniformly charged line element of length 2a along the
x axis (centered at x = 0), the potential is given by

φ (x, y) = − 1
2πε0

a∫
−a

dx′ ln
√

(x− x′)2 + y2

= 1
2πε0

[
2a− y

(
arctan

(
a− x
y

)
+ arctan

(
a+ x

y

))
− (a− x) ln

√
(a− x)2 + y2 − (a+ x) ln

√
(a+ x)2 + y2

]
,

and the components of the electric field are given by

Ex (x, y) = 1
2πε0

ln

√√√√(a+ x)2 + y2

(a− x)2 + y2
,

Ey (x, y) = 1
2πε0

[
arctan

(
a− x
y

)
+ arctan

(
a+ x

y

)]
.

These expressions are simple compared to the three-dimensional case where the Green’s function
is integrated over rectangular or triangular boundary elements.

As a next step, we establish the equations linking the surface charge densities to the boundary
conditions of the problem.

Conductor-dielectric interface (Dirichlet boundary conditions) According to (2.18), the po-
tential φi applied to a conducting boundary element i can be expressed in terms of the
(unknown) charge densities on the boundary elements:

φi =
∑
j

σj

∫
Cj

dl′G
(
ri, r′

)
︸ ︷︷ ︸

Aij

. (2.19)

Dielectric-dielectric interface (Neumann boundary conditions) In the absence of free surface
charges, the normal component of the displacement field D = εE at the boundary of a
dielectric is continuous,

ni ·
(
ε+
i E+

i − ε
−
i E−i

)
= 0,

where E± and ε± denote the electric field and the relative dielectric constant on the inside
(−) and outside (+) of the dielectric. The electric fields E± are given by

E±i = −
∑
j 6=i

σj

∫
Cj

dl′∇G
(
ri, r′

)
± ni

σi
2ε0

.

One thus obtains the equation

0 = ε+
i + ε−i

2ε0
(
ε+
i − ε

−
i

)
︸ ︷︷ ︸

Bii

σi +
∑
j 6=i

σj ni ·
∫
Cj

dl′
(
−∇G

(
ri, r′

))
︸ ︷︷ ︸

Bij

. (2.20)
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A B

C

0

φ = 1φ = 1

φ = 0

Figure 2.5 Test configuration for neBEM
validation: right-angled triangle ABC,
with boundary conditions φ = 1 V
on the legs and φ = 0 V on the hy-
potenuse.

Based on (2.19) and (2.20) one can set up a system of equations determining the charge densities
σi. Written in matrix form, we have

Kσ = b.

For a system broken down into n conducting line elements and m line elements along a dielectric-
dielectric interface, the so-called influence matrix K is given by

K =



A1,1 . . . A1,n+m
... . . . ...

An,1 . . . An,n+m
Bn+1,1 . . . Bn+1,n+m

... . . . ...
Bn+m,1 . . . Bn+m,n+m


.

The right-hand-side vector b reflecting the boundary conditions is given by

b = (φ1, . . . , φn, 0, . . . , 0)T .

In the presence of a space charge distribution ρ (r), we have to add the terms

φ(0) (r) =
∫

d2r′ρ
(
r′
)
G
(
r, r′

)
, E(0) (r) = −

∫
d2r′ρ

(
r′
)
∇G

(
r, r′

)
to the right hand sides of (2.18). Consequently, the vector b becomes

b =
(
φ1 − φ(0)

1 , . . . , φn − φ(0)
n ,−nn+1 ·E(0)

n+1, . . . ,−nn+m ·E(0)
n+m

)T
.

After inverting the influence matrix, one can obtain the charge densities from

σi = K−1
ij bj .

From the computational point of view, the matrix inversion is the most time consuming part in
this algorithm. Once the influence matrix has been inverted, though, solutions for different sets
of boundary conditions (i. e. different potentials or space charge distributions) can be calculated
relatively fast provided that the geometry remains unaltered.
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y [cm] φ [V] (exact) φ [V] (neBEM) |∆φ|
[
10−9 V

]
0.1 0.165973895 0.165973895 —
0.2 0.326353080 0.326353080 —
0.3 0.476078222 0.476078222 —
0.4 0.611014157 0.611014158 1
0.5 0.728113328 0.728113330 2
0.6 0.825364529 0.825364532 3
0.7 0.901598676 0.901598682 6
0.8 0.956238103 0.956238116 13
0.9 0.989057910 0.989057963 53

Table 2.1. Potential along the y-axis in the interior of the right-angled triangle ABC shown
in Fig. 2.5. The values in the third column are neBEM calculations with each side of the
triangle split into 1000 line elements. For comparison, the exact numerical values (Chapter 5,
Section 1.1.6 in Ref. [41]) obtained from a series expansion are given in the second column.
The difference between the two results is shown in the fourth column.

The solution depends to some extent on the choice of the so-called collocation points, i. e. the
points at which the potential and field are evaluated when calculating the matrix elements. For
the examples discussed below, one collocation point located in the centre of the line element was
used.

In order to test the numerical accuracy of the two-dimensional neBEM technique and the
correctness of the implementation, we consider the configuration shown in Fig. 2.5. This example
(including the reference values given in Table 2.1) was taken from Chapter 5 of Ref. [41]. On
the legs of the right-angled triangle, the potential is set to φ = 1 V, on the hypotenuse it is set
to φ = 0 V. The side lengths are 0A = 0B = 0C = 1 cm. A comparison between the results
from a neBEM calculation with 1000 elements per side and the exact numerical values is given
in Table 2.1. At all test points, the neBEM results agree with the exact solution to at least 7
decimal places. The agreement deteriorates towards the corner, which is a general deficiency of
the neBEM approach.

As a test example involving both conducting and dielectric interfaces, we consider two parallel
conducting plates at voltages V1 and V2 separated by a distance 3w and a dielectric slab of width
w midway between the plates (Fig. 2.6a). In order to avoid edge effects, the length of the plates
and the slab should be large compared to w. For an infinitely long capacitor, the x-components
of the electric fields are given by [42]

E(1)
x = E(3)

x = ∆V
w
(
2 + 1

ε

) , E(2)
x = E

(1)
x

ε
. (2.21)

For the calculation, the length was set to 20 cm and the width of the slab to w = 1 cm. In the
vicinity of the y-axis (more precisely, for |y| < w), the boundaries were discretized by elements
with a size of 2 mm. For |y| > w, an element size of 1 cm was chosen. As can be seen from
Fig. 2.6b, the electric field calculated using neBEM is consistent with the behaviour expected
from (2.21).
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Figure 2.6. Left: dielectric slab with relative dielectric constant ε and width w inside a
parallel-plate capacitor. Right: electric field calculated by means of neBEM (dots); the
solid curve corresponds to the asymptotic solution (2.21). For the calculation, the values
∆V = V1 − V2 = 200 V, w = 1 cm, ε = 5 were used.

2.3. Charge Transport

On a phenomenological level, the drift of electrons and ions in gases – and electrons and holes
in semiconductors – under the influence of an electric field E and a magnetic field B can be
described in terms of macroscopic transport parameters.

• Given the drift velocity vd (E,B), the average path of charge carriers can be calculated
using

ṙ = vd
(
E (r) ,B (r)

)
. (2.22)

• Due to the random nature of the scattering processes, the trajectories of individual charges
deviate from the average. In a constant field the lateral spread over a mean drift distance
d follows a Gaussian distribution with standard deviation σ = DT

√
d, where DT is the

transverse diffusion coefficient. The longitudinal diffusion coefficient DL describes the spread
in the direction of vd.

• In strong electric fields, electrons in gases (and electrons and holes in semiconductors) can
attain sufficient energy to ionize and start an avalanche. In electronegative gases, on the
other hand, electrons can be absorbed by gas molecules. Similarly, electrons and holes in
semiconductors can be captured (“trapped”) by defects. Phenomenologically, multiplication
and attachment of electrons can be described by the Townsend coefficient α (E) and the
attachment coefficient η (E), respectively. In terms of these coefficients, the average change
dn of the number of drift electrons over a distance dx (dx � α−1, dx � η−1) can be
expressed as

dn = (α− η) dx.
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In the rest of this section, we shall focus on the transport properties of electrons in gases5. From
a microscopic viewpoint, the above parameters are determined by the cross-sections for scattering
of electrons by atoms or molecules. Typical collision mechanisms are

1. elastic scattering,

2. excitation of molecular vibrations and rotations,

3. atomic excitations,

4. attachment, and

5. ionization.

As can be seen from Fig. 2.7, in atomic gases like argon only elastic, exciting (i. e. process 3
in the above list), and ionizing collisions play a role, while molecular gases like carbon dioxide
generally exhibit a larger variety of inelastic scattering processes. Mixtures of Ar and CO2 are
used in many of the calculations presented below.

2.3.1. Magboltz

Magboltz6 [13, 14], written by S. Biagi, is a widely used program for computing electron transport
coefficients in detector gas mixtures by means of semi-classical Monte Carlo simulation. The
results are time average values obtained by following an electron over a large number of collisions
(typically 107 − 109) with the gas atoms/molecules.

Transport Algorithm

The Monte Carlo algorithm which is used in Magboltz (and which serves as a basis for the
calculations using microscopic electron tracking discussed below) proceeds as follows.

• For each available scattering process i in the selected gas mixture, the collision rate τ−1
i (ε)

as a function of the electron energy is calculated:

τ−1
i (ε) = Nσi (ε) v (ε) ,

where N is the partial density of the respective atom/molecule, σi is the cross-section for
the scattering process under consideration, and v =

√
2ε/me is the electron velocity.

• Between collisions an electron (described by its coordinates r, energy ε, and velocity7 vector
v) is traced on a classical vacuum trajectory according to the electric and magnetic field
specified by the user. Arbitrary relative orientations of E and B are allowed.

• The duration ∆t of a free flight step is controlled by the total collision rate

τ−1 (ε) =
∑
i

τ−1
i (ε) .

Let us first consider the sampling of ∆t in a “field-free” situation. If the electron energy ε
and thus the collision rate were constant, the time step ∆t would follow an exponential
distribution and, given a uniform random variate u ∈ (0, 1], could be sampled according to

∆t = −τ ln u. (2.23)
5 Scattering mechanisms of electrons in semiconductors are discussed in Chapter 6.
6 The name refers to an earlier version of the program [43] which was based on the Boltzmann equation.
7 The microscopic velocity v is to be distinguished from the effective, macroscopic drift velocity vd.
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Figure 2.7. Cross-sections for scattering of electrons by Ar (top) and CO2 (bottom) as im-
plemented in Magboltz 8.9 [14]. For the sake of clarity, the above plots involve a few
simplifications with respect to the actual cross-sections in the Magboltz database: (1) the
44 excitation cross-section levels for Ar are combined to four groups; (2) the rotation terms
for CO2 (inelastic energy loss < 12 meV) are added to the elastic cross-section; (3) only the
respective sums of the vibration, excitation and attachment cross-sections in CO2 are plotted.
The cross-section data included in Magboltz extend beyond the energy range shown here:
elastic, excitation and ionization cross-sections in argon up to an electron energy of 10 MeV
are shown in Fig. 4.1.
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Because of the electric field, the electron energy and the collision rate do however vary
during the free flight step. This can be taken into account using the so-called null-collision
technique [44]. An artificial “null-collision” scattering rate τ−1

null is introduced which balances
the energy dependence of the “real” scattering rate τ−1 such that their sum τ−1 is constant,

τ−1 = τ−1 (ε) + τ−1
null (ε) = const.

The sampling of ∆t then proceeds as follows.

1. A trial time step is sampled using (2.23), but with τ in lieu of τ .

2. The energy ε′ after the trial step is calculated. In the absence of a magnetic field B, ε′
is given by

ε′ = ε+ qv ·E∆t+ q2

2me
E2∆t2. (2.24)

3. Another random number u ∈ [0, 1] is drawn. If u < τ−1 (ε) /τ , i. e. in case of a “real”
collision (as opposed to a “null-collision”), the trial time step ∆t is accepted. Otherwise,
a new random trial step ∆t′, offset by ∆t, is sampled:

∆t′ = ∆t− τ ln u.

The steps 2 and 3 are repeated until a “real” collision occurs.

• The velocity v′ and position r′ after the free flight are calculated. For B = 0:

v′ = v + q

me
E∆t, (2.25)

r′ = r + v∆t+ q

2me
E∆t2. (2.26)

• Based on the relative collision rates at the new energy ε′, the scattering process to take
place is selected and the energy and direction of the electron are updated according to the
type of collision. The scattering angle is calculated based on the algorithm described in
Ref. [45].

• After the collision, stepping is continued with the new energy and direction.

Cross-Section Database

Magboltz includes at present (version 8.9.7) cross-sections for 54 counting gases. Where available,
the cross-sections used in the program are taken from measurements and adjusted within the
experimental error to obtain agreement with measured transport coefficients [46].

The estimated reliability of the implemented cross-sections for each gas is specified in terms of
“stars”. A rating of “2*” corresponds to a coarse description of the cross-sections, while a rating
of “5*” corresponds to a detailed, carefully validated description of the cross-sections.

In the last few years8, a number of major cross-section updates were made.

8 More precisely, the above list describes changes with respect to version 7.1 of Magboltz (the version currently
interfaced to Fortran Garfield)
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• A detailed description of the excitation cross-sections for the noble gases was implemented.
The database now includes 44 excitation levels for Ar which were previously modelled
by three lumped cross-section terms. The excitation cross-section descriptions of He, Ne,
Kr, and Xe were also upgraded to the same level of detail. This opens up the possibility
to simulate light emission [47] and allows a refined modelling of deexcitation processes
(Chapter 5).

• An improved algorithm for angular scattering was introduced (in particular with regard to
δ-electron transport calculations).

• For a number of gases, the cross-section description was extended up to MeV energies (see
Section 4.2).

2.3.2. Microscopic Tracking

In Garfield, the first-order equation of motion (2.22) is traditionally solved by means of Runge-
Kutta integration. This approach is well suited for tracking electrons over large distances (like
in a TPC) or for calculations in detectors where transverse diffusion does not have significant
impact on the induced signal (e. g. drift tubes). A downside is that stochastic variations of drift
paths are not taken into account (for B = 0, electrons follow strictly the electric field lines).
In order to randomize electron drift lines which start from the same initial coordinates on an
event-by-event basis, (2.22) can be integrated in a stochastic manner [15]:

• a step of length ∆s = vd∆t in the direction of the drift velocity vd at the local field is
calculated (based on a time step9 ∆t specified by the user);

• a random diffusion step is sampled from three uncorrelated Gaussian distributions with
standard deviation σL = DL

√
∆s for the component parallel to the drift velocity and

standard deviation σT = DT

√
∆s for the two transverse components;

• the two steps are added vectorially and the location is updated.

For accurate simulations of electron trajectories in small-scale structures (with characteristic
dimensions comparable to the electron mean free path), and also for detailed calculations of
ionization and excitation processes (see Chapters 3 and 4), transporting electrons on a microscopic
level – i. e. based on the second-order equation of motion – is the method of choice. Such a
simulation technique was implemented in Garfield/Garfield++ based on the algorithm used in
Magboltz, with the stepping procedure being adapted such that it allows arbitrarily oriented
fields to be handled.

The expressions (2.24), (2.25), and (2.26) are exact solutions for constant fields and good
approximations if the electric field does not change significantly over distances of the order
of the electron mean free path. The adequacy of this approach can be verified by comparing
the results with those from a more refined method in which the electric field is updated after
each null-collision step (instead of being updated only after “real” collisions). For the field
configurations discussed below, no significant difference was found.

In the presence of a magnetic field B, the equations of motion become more complicated. To
simplify the solution, Magboltz uses a coordinate system where B is aligned with the x axis and
E lies in the x− z plane. For the microscopic tracking stepping algorithm, the same convention
was adopted. Since the magnitude and orientation of E and B may vary from collision to collision

9 Alternatively, the calculation can be done using fixed distance steps.
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however, a rotation of the electron velocity vector v into this coordinate system and back to
the global frame is required. The simulation is thus more time-consuming with respect to the
situation without magnetic field.

In Magboltz, the energy ε′ of the secondary electron produced in an ionizing collision is sampled
according to a differential cross-section of the form

dσ
dε′ ∝

1
ε′2 + w2 . (2.27)

In this parameterization of the secondary electron energy distribution, which was proposed by
Opal, Beaty, and Peterson [48], w is a gas specific parameter (“splitting” parameter) which is
of the order of the ionization potential. The normalization of (2.27) is chosen such that the
integral over ε′ from zero to the max. possible secondary energy (εp − εion) /2 equals the total
cross-section at the primary electron energy εp:

(εp−εion)/2∫
0

dσ
dε′dε

′ = σ (εp) .

By default, the “splitting” function (2.27) is also used in the microscopic tracking technique im-
plemented in Garfield++. Alternatively, the secondary electron energy can be sampled according
to the parameterization proposed by Green and Sawada [49],

dσ
dε′ ∝

1
(ε′ − ε0)2 + Γ2

, (2.28)

where ε0 and Γ are functions of the primary electron energy.

In Magboltz, the collision rates τi (and other energy-dependent parameters) are stored on an
equidistant energy grid. At energies below 1 keV, Garfield++ also uses a linear binning of the
collision rate table. At higher electron energies, the collision rates are stored on a logarithmically
spaced energy grid.

2.3.3. Penning Transfer

As can be seen from the cross-section plots in Fig. 2.7, excitations represent a significant scattering
process at high electron energies. The deexcitation of an excited atom A? can proceed via different
channels.

• In pure noble gases at atmospheric pressure, the dominant process is excimer formation,

A? + 2A→ A?2 +A.

The excimer A?2 eventually decays to the dimer ground state A2 under emission of a VUV
photon. A recent simulation study of electroluminescence in pure noble gases using the
microscopic tracking technique of Garfield++ can be found in Ref. [47].

• Detector gas mixtures often consist of a noble gas (in the following denoted by A) and
a molecular component (B), the so-called quenching gas. If the excitation energy of an
excited noble gas atom A? exceeds the ionization threshold of the quencher, ionization of a
molecule B due to energy transfer from the excited noble gas atom can occur. This process
can be responsible for a sizeable fraction of the observed gain.
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drift gap

transfer gap

Figure 2.8 Electron trajectories in a GEM,
calculated using microscopic tracking.
The plot shows the positions of every 10th
electron collision, connected by straight
lines. The electric field configuration is
characterized by the field ED in the drift
gap, the field ET in the transfer gap, and
the voltage difference UGEM between the
top and bottom metal layers (drawn in
grey) on the kapton foil (drawn in green).

– If the excited level A? has a dipole-allowed decay to the ground state (resonance
transition), the excitation transfer can proceed via photon emission and subsequent
absorption,

A? → A+ γ, B + γ → B+ + e−. (2.29)

– Collision-induced excitation transfer,

A? +B → A+B+ + e− (2.30)

is possible for both resonant and non-resonant levels.

• The ionizing transfer processes (2.29) and (2.30) compete with neutral photoabsorption
and collisional loss of excitation energy.

• Highly excited atoms A?? can also produce an electron by means of homonuclear associative
ionization,

A?? +A→ A+
2 + e−. (2.31)

In the following, we subsume all excitation transfer channels leading to ionization under the
term Penning transfer. Phenomenologically, Penning effects can be described in terms of transfer
efficiencies. The transfer efficiency ri of an excited state i (with excitation energy greater than
the ionization potential of the admixture) expresses the probability that an ionization electron is
produced eventually in the deexcitation process.

Transfer efficiencies for a number of Ar based gas mixtures have recently been determined by
Şahin et al. [50] from gain curve fits, that is by comparing gain measurements against theoretical
predictions according to the Townsend coefficient calculated by Magboltz.

In Chapters 3 and 4, these values are used for estimating the effects of Penning transfer on
avalanche size fluctuations and ionization statistics.
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2.3.4. Example: Electron Transparency

Typical applications of the microscopic tracking technique include calculations which require
accurate modelling of diffusion effects in inhomogeneous fields.

K. Nikolopoulos et al. [51] showed recently that the Magboltz-based microscopic tracking technique
– in combination with a realistic description of the electric field – allows an accurate calculation
of the electron transparency in a Micromegas. A similar example is discussed here, namely the
electron transmission properties of a GEM.

Figure 2.9a shows the measured [52] and calculated transparency of a standard10 GEM operated
in Ar/CO2 (70:30) at a drift field11 ED = 150 V/cm as a function of the voltage difference
UGEM applied to the GEM electrodes, for two values of the transfer field, ET = 300 V/cm and
ET = 3000 V/cm.

The simulation method is illustrated in Fig. 2.8. The electric field used in the calculation was
computed using Ansys. Starting from 200 µm above the GEM, at randomized lateral positions,
electrons are traced through the field map. The transparency is calculated by recording the number
of electrons which pass through the GEM hole and arrive in the transfer gap. If multiplication
occurs, the number of electrons in the transfer gap can exceed the number of primaries, giving
rise to a transmission probability greater than 100%. Penning transfer was taken into account
with a transfer efficiency r = 0.57 [50].

As can be seen from Fig. 2.9a, there is overall agreement between simulation and measurements
with the exception of the data points at a transfer field of 3 kV/cm for UGEM < 60 V. The
deviation at high GEM voltages (UGEM ≥ 160 V for ET = 3 kV/cm, UGEM ≥ 260 V for
ET = 300 V/cm) could be an indication that the Penning transfer efficiency was underestimated
in the simulation. For the transmission efficiency at low GEM voltages (UGEM ≤ 160 V for
ET = 300 V/cm, UGEM ≤ 100 V for ET = 3 kV/cm) Penning effects are negligible, though:
the values obtained with and without Penning transfer agree within the statistical uncertainty.
Another possible source of systematic bias is that charging up of the dielectric was not taken
into account in the simulation.

The measurements reported in Ref. [52] were performed with a view to assessing the performance
of GEMs as readout detectors of a TPC. In particular, the possibility of using the first GEM
foil12 for pulsed ion gating was discussed. For this application it is vital to consider the effect of a
strong magnetic field (in which TPCs in collider experiments are immersed) on the transmission
properties. While magnets providing a homogeneous field of a few Tesla are usually not readily
available in a laboratory or beam test setup, B fields can easily be included in the simulation.
The calculated transparency in the presence of a magnetic field of 4 T (as proposed for the linear
collider TPC [6]) perpendicular to the GEM foil is shown in Fig. 2.9b. It can be seen that the
overall transmission efficiency increases, but the transparency at low values of UGEM is reduced.
The latter effect can be made plausible by means of the Langevin formula for the drift velocity
(see e. g. Chapter 2 in Ref. [2]),

vd = µ |E| 1
1 + µ2B2

(
Ê + µB

(
Ê× B̂

)
+ µ2B2

(
Ê · B̂

)
B̂
)
, (2.32)

10 Outer hole diameter: 70 µm, pitch: 140 µm.
11 The drift field ED is the voltage difference between the cathode and the top metal layer of the GEM foil, divided

by the length of the drift gap. Analogously, the transfer field ET is the voltage difference between the bottom
layer of the GEM and the top metal layer of the second GEM, divided by the length of the transfer gap.

12 A typical configuration consists of three layers of GEM foils separated by a few mm (triple GEM).
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Figure 2.9. Electron transparency of a standard GEM operated with Ar/CO2 (70:30) at a
drift field of ED = 150 V/cm. Triangles are measurements [52], circles are calculations
(at UGEM = 20 V and UGEM = 40 V the markers representing the measured values for
ET = 300 V/cm are hidden by the markers representing the calculations). The errorbars
on the calculated values indicate the statistical error (3 σ). For the experimental data in
Fig. 2.9a an uncertainty of ±5% [53] is assumed.

where µ is the electron mobility13, and Ê, B̂ are the unit vectors of the electric and magnetic
field. With increasing magnetic field, the component of the drift velocity in the direction of B
also increases (in the limit B → ∞, vd is aligned with B). Electrons starting from an initial
position which is off-centred with respect to the hole axis are thus more likely to end up on the
top electrode of the GEM.

On the other hand, the same effect should help improve the extraction efficiency from the hole
to the transfer region. In addition, the higher transparency in the presence of a B field can in
part be attributed to the reduced transverse diffusion (see Fig. 2.10).

2.4. Induced Signals

Consider a point charge q moving along a trajectory R (t) in a volume bounded by n electrodes
which are kept at fixed potentials φj (j = 1, . . . , n). The electrostatic potential φ (r) inside the
volume is determined by the surface charge densities σj on the conductors and the space charge
density

ρ (r) = ρ0 (r) + qδ
(
r−R (t)

)
which, apart from a possible static charge density ρ0, includes a time-dependent term due to the
mobile charge q. As a consequence, the surface charge densities σj will also change with time.

In order to calculate the currents induced on the electrodes, we introduce a second (fictitious) set
of charge distributions ρ, σk giving rise to a potential φ (r). Green’s reciprocity theorem states

13 The electron mobility is assumed to have a negative sign here.
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Figure 2.10 Transverse diffusion in
Ar/CO2 (70:30) as a function of the
electric field for B = 0 and B = 4 T

(E‖B), calculated using Magboltz.
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that [54]∫
d3r ρ (r)φ (r) +

n∑
j=1

∫
d2fj σj (r)φ (r) =

∫
d3r ρ (r)φ (r) +

n∑
j=1

∫
d2fj σj (r)φ (r) . (2.33)

By setting

ρ = 0, φj =

1, j = k

0, else

we obtain for the time-dependent induced charge on electrode k

Qk (t) =
∫

d2f σk (t) = −qφ (R (t)) .

The induced current is given by

ik (t) = −dQk
dt = −qE (R (t)) · Ṙ (t) . (2.34)

This equation is known as the Shockley-Ramo theorem [55, 56] and φ, E are usually called the
weighting potential and weighting field, respectively. By time integration of (2.34) one obtains for
the total charge ∆Q induced by a particle moving from an initial position R0 to a position R1

∆Q = q
(
φ (R1)− φ (R0)

)
.
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2.5. Summary

The main components of a gas detector simulation program are

• simulation of the ionization pattern produced by a charged particle crossing the detector,

• computation of the electrostatic field inside the device,

• transport of electrons (including multiplication) and ions in electric and magnetic fields,
and

• calculation of induced currents.

Elements discussed in this chapter which exceed common “textbook knowledge” or include own
contributions from this thesis work are recapitulated below.

• The PAI model [23] is a popular semi-empirical scheme for calculating the differential
cross-section dσ/dE for the energy loss of fast charged particles in matter. It is based on
dielectric theory, which – as demonstrated explicitly in Section 2.1.3 for the non-relativistic
case – is equivalent to the first Born approximation.

• Boundary element methods are an attractive option for electric field calculations in gas
detectors, particularly for devices with small feature sizes or dielectric elements as in case
of micropattern gas detectors. A two-dimensional version of the so-called neBEM technique
[39] was implemented and validated within the framework of this thesis.

• The microscopic tracking technique (derived from the Magboltz program) allows a “first-
principle” simulation of electron transport in arbitrary field configurations based on the
cross-sections for electron scattering by gas atoms/molecules. As an application of the
method in the low-field domain (below the ionization threshold), the calculation of the
electron transparency of a GEM foil in the presence of a magnetic field was discussed.
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3. Avalanche Statistics

Due to the stochastic nature of the charge amplification process, the size of an electron avalanche
in a gas-based detector is subject to fluctuations. In this chapter, the calculation of these
fluctuations by means of the microscopic tracking technique is discussed.

3.1. Overview

3.1.1. Terminology

Gain fluctuations can quantitatively be described in terms of probabilities Pn (r0,p0) that an
electron with initial momentum p0 released at a position r0 initiates an avalanche comprising n
electrons in the detector. Given Pn, one can calculate the avalanche size distribution for k primary
electrons by (k − 1) fold convolution, provided that the k avalanches proceed independently of
each other, and that Pn does not depend on the initial momentum. The latter criterion can
be relaxed however, by redefining Pn as an average over a distribution of initial energies and
directions.

Determining factors for the single electron avalanche size distribution Pn are

• properties of the gas mixture, in particular the electron-molecule scattering cross-sections
as functions of the electron energy,

• macroscopic parameters such as the electric field E (r), the temperature T , and the gas
pressure p, and

• the initial momentum and position of the electron.

In order to separate avalanche fluctuations from primary ionization statistics, we assume through-
out this chapter that the initial electron energy is below the ionization potential of the gas. This
is typically the case in detectors where the primary electrons are thermalized in a drift zone
before entering the amplification region (e. g. wire chambers, GEMs, and Micromegas), and also
in the experimental setups considered in Section 3.2.3 where single electrons were released from
the cathode of a parallel-plate chamber by illumination with UV light.

In order to simplify the identification of the mechanisms at play, we first discuss the evolution
of avalanches in a constant electric field, as realized in parallel-plate counters and, to good
approximation, in Micromegas. Moreover, we focus on the proportional regime of amplification,
i. e. we assume that distortions of the electric field caused by space charge can be neglected.
Under these conditions, the mean avalanche size n grows exponentially with the gap size x,

n = eαx.

33
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3.1.2. Motivation

Together with primary ionization statistics, gain fluctuations set a physical limit to the energy
resolution of a detector. Of particular importance in this respect is the relative variance

f = σ2

n2

of Pn.

Under convolutions, both n and σ2 are additive. The relative variance fm for m primary electrons
is, therefore, given by

fm = 1
m
f.

Let ε be the energy deposition in a charged particle collision (or the energy of a photon absorbed
in the gas), m = ε/W the mean number of electron-ion pairs produced in the collision, and
σ2
m = Fm the corresponding variance. Assuming that the measured signal is proportional to
k = mn, the energy resolution is given by [57]

σ2
ε

ε2
= σ2

k

k
2 = σ2

m

m2 + 1
m
f = W

ε
(F + f) .

The relative variance f also affects the so-called number of effective electrons Neff characterizing
the spatial resolution of a TPC [2, 58].

Another performance parameter determined by the avalanche size distribution is the detection
efficiency κ, i. e. the probability for the avalanche size to exceed the detection threshold nt of
the readout electronics,

κ =
∞∑

n=nt

Pn. (3.1)

Further, a low spread in avalanche size and thus low probability of large avalanches could be
beneficial in terms of reducing the discharge rate.

3.1.3. Mathematical Description Of Gain Spectra

Measurements of gain spectra in uniform fields were first reported by L. Frommhold [59, 60], who
observed that at low reduced fields E/p, the gain spectrum could be described by an exponential
function

nPn ≈ e−n/n (3.2)

with relative variance f ≈ 1. This behaviour had been anticipated [61, 62] and could be explained
[63] in terms of the so-called Yule-Furry model (see Section A.2.1). An exponential shape of the
gain spectrum implies that the efficiency

κ = e−nt/n (3.3)

falls exponentially with increasing threshold nt.

At higher fields – yet moderate avalanche size, thus retaining exponential growth – the avalanche
size distribution was found to depart from the monotonically falling shape in that it exhibits a
peak at n > 1 [64]. It was further established that with increasing E/p, the relative variance f
decreases and the most probable size approaches the mean.
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Figure 3.1. Pólya distribution (3.4) as a function of the normalized avalanche size n/n and
detection efficiency κ (3.6) as a function of gain n over threshold nt for shape parameters
θ = 0, θ = 0.5, θ = 1, θ = 1.5, and θ = 2.

Such spectra – which are clearly preferable with regard to detector performance – are not
compatible with the Yule-Furry model or variants thereof which include attachment or double-
ionization (see Section 3.2.2). In order to reproduce “rounded” avalanche size distributions, a more
detailed description of the multiplication process is needed, which takes the energy dependence
of the ionization mean free path (an aspect which is neglected in the Yule-Furry model), and
the competition between ionization and other inelastic scattering processes into account. Such
models are discussed in Section 3.2.2.

A popular function for describing non-monotonic, “rounded” spectra is the so-called Pólya
distribution

nPn = (θ + 1)θ+1

Γ (θ + 1)

(
n

n

)θ
e−(θ+1)n/n. (3.4)

Pólya distributions for a number of shape parameters between θ = 0 and θ = 2 are plotted
in Fig. 3.1a. For θ = 0 one recovers the exponential distribution (3.2). With increasing θ, the
relative variance

f = 1
1 + θ

(3.5)

decreases and the most probable size nmp = nθ/ (θ + 1) shifts towards the mean. As can be seen
from Fig. 3.1b, the efficiency associated to the Pólya distribution (3.4),

κ =
Γ
(
θ + 1, (θ + 1)nt/n

)
Γ (θ + 1) , (3.6)

can be significantly enhanced compared to (3.3).

The standard “derivation” of the Pólya distribution (see Appendix A.2.2), in particular the
ansatz of modelling the energy dependence of the ionization probability in terms of the avalanche
size alone, has been subject to criticism [65]. Despite its dubious physical foundation, the Pólya
function is useful as a phenomenological fit function.
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3.1.4. Implementation in Simulations

In simulations based on macroscopic transport coefficients, gain fluctuations can be taken into
account by randomizing the number of electrons produced along a drift line according to a Pólya
distribution (or any other suitable function). For this purpose, the shape parameter θ for the gas
mixture and field configuration under consideration needs to be known. This is, in general, not
the case however, such that one has to resort to an “educated guess”.

Alternatively, a Yule-Furry like approach can be adopted. In the Avalanche procedure of Garfield
[15], for instance, the number of electrons produced along a drift line is calculated in the following
way:

• each drift step is subdivided such that the length ∆x of a sub-step is small compared with
the inverse Townsend coefficient α−1 at the local electric field;

• the probability for an electron to ionize during such a sub-step is thus given by α∆x;

• a random number u ∈ [0, 1] is drawn and a new electron is produced if u < α∆x.

Since this is essentially a Monte Carlo implementation of the Yule-Furry process, the result-
ing avalanche size distribution is invariably exponential. Non-monotonic gain spectra are not
reproducible with this method.

The Magboltz-based microscopic tracking technique (described in Section 2.3.2) allows one to
calculate electron avalanches from “first principles”, i. e. without additional tuning of shape
parameters or the like. By comparison with gain spectra reported in the literature, we show in
Section 3.2.3 that this is indeed a viable approach for quantitative predictions of the relative
variance f in detection gases, provided that the electron-molecule scattering cross-sections are
accurately known.

3.2. Uniform Fields

With respect to the calculation of avalanche size fluctuations, homogeneous fields have two
particularly attractive aspects.

• As discussed in Section 3.2.1, the evolution of the relative variance f as a function of the
gap size can be derived by means of general statistical considerations [66, 67]. It is thus
possible to simulate an avalanche size distribution for a moderate mean avalanche size of
the order of a few hundred electrons, and to extrapolate the corresponding relative variance
to higher gains for comparison with experimental data.

• Toy models (Section 3.2.2) incorporating crucial aspects such as the existence of an
ionization threshold and the interplay of ionizations and excitations can be constructed,
and closed-form expressions for the relative variance according to these models can be
derived. Such models can be useful for a qualitative understanding of the mechanisms at
play.
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3.2.1. Evolution of the Relative Width

Let P (1)
n , with mean n1 and variance σ2

1, be the avalanche size distribution after a distance x1
along the electric field. The mean nk after a distance xk = kx1 is given by

nk = n1
k.

Similarly, the variance after k steps is given by

σ2
k = n1

k−1
k−1∑
i=0

n1
iσ2

1.

Combining these two expressions, we obtain for the relative variance after k steps [66, 67]

fk = f1
1− 1/nk
1− 1/n1

.

The relative variance thus tends to an asymptotic value f∞. Given the mean n1 over a certain
step, the corresponding relative variance f1 can be extrapolated to the asymptotic value using
(cf. Eq. 49 in Ref. [68])

f∞ = f1
1

1− 1/n1
. (3.7)

In the derivation of these expressions we have assumed mutual independence of the avalanches
started by each new electron, and an equal avalanche size distribution for all of these sub-
avalanches. These requirements are not met if e. g. space charge modifies the field in which later
avalanches develop.

3.2.2. Toy Models

Variants of the Yule-Furry Model

We first discuss two straightforward extensions of the Yule-Furry model. Including an attachment
coefficient η in analogy to the Townsend coefficient α, Eq. (A.15) becomes [2]

d
dxPn (x) = α (x) (n− 1)Pn−1 (x) + η (x) (n+ 1)Pn+1 (x)− [α (x) + η (x)]nPn (x) . (3.8)
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For a uniform electric field, i. e. constant α and η, W. Legler [69] showed that the solution of
this equation is given by

Pn (x) =


η
α

n−1
n−η/α , n = 0

n
(

1−η/α
n−η/α

)2 (
n−1
n−η/α

)n−1
, n > 0

, (3.9)

with mean and variance

n = e(α−η)x, σ2 = α+ η

α− η
n (n− 1) .

For n� 1, the probability of obtaining no electrons at all becomes P0 ≈ η/α. The distribution
for n > 0 remains exponential (Fig. 3.2). Detailed simulations confirm that in attaching gases
values of f > 1 are possible (see e. g. Section 3.3.1).

One could also imagine that an electron occasionally releases two electrons within a step dx
[70]. With the probability of such an event being described by a coefficient β, the corresponding
differential equation reads

d
dxPn (x) = α (n− 1)Pn−1 (x) + β (n− 2)Pn−2 (x)− (α+ β)nPn (x) .

Although there is no analytic solution available, the size distribution can easily be calculated
numerically for specific values of α and β. An example (for β/α = 0.1) is shown in Fig. 3.2. Mean
and variance are given by [70]

n = e(α+2β)x, σ2 = α+ 4β
α+ 2βn (n− 1) .

Including attachment or double-ionization can thus be seen to increase the relative variance with
respect to the original Yule-Furry model.

Legler-Alkhazov Theory

As already mentioned above, the energy dependence of the ionization mean free path has to be
taken into account in order to explain spectra with f < 1. This was first pointed out by W. Legler
[69] who emphasized that electrons need to travel a minimum distance along the electric field
before they are able to ionize. A comprehensive catalog of avalanche models can be found in the
classic paper by G. D. Alkhazov [68]. Before discussing specific models, let us briefly review the
key elements of the theoretical framework on which they are based. In Legler’s model and most
of the other models discussed by Alkhazov, the energy dependence of the ionization process is
taken into account in an indirect way by modelling the ionization probability as a function of
the distance along the electric field travelled by an electron since its last ionizing collision. In
this formalism, the avalanche evolution is controlled by the normalized distribution ρ (ξ) of the
distance ξ between successive ionizing collisions. If ρ (ξ) is independent of the initial state of an
electron, Pn satisfies [68]

Pn (x) =
∞∫
0

dξ ρ (ξ)
n−1∑
n′=1

Pn′ (x− ξ)Pn−n′ (x− ξ) . (3.10)

Based on this expression, Alkhazov was able to derive a recursion relation for the moments of
Pn. In the derivation it is assumed that n is proportional to exp (αx), and that for n� 1 the
avalanche size distribution can be expressed as

Pn = 1
n
ϕ (ν) ,
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Figure 3.3. Ionization distance distribution ρ (ξ) according to Legler’s model (for αx0 = 0.2),
the Pólya distribution for θ = 1 (solid curve) and θ = 2 (dashed curve), and the stepwise
avalanche evolution model (for an ionization yield p = 0.22).

where ϕ is a continuous function which depends only on the normalized avalanche size ν = n/n.
In other words, the shape of the avalanche size distribution is assumed to be independent of the
distance x. This assumption is supported by experimental evidence [71] and is also plausible
from a theoretical viewpoint, since according to (3.7) the relative variance barely changes once
the avalanche has attained a size of a few hundred electrons. Equation (3.10) implies that [68]

ϕ (ν) = 1
αν

∞∫
ν

dν ′ ρ
( 1
α

ln
(
ν ′/ν

)) ν′∫
0

dν ′′ ϕ
(
ν ′′
)
ϕ
(
ν ′ − ν ′′

)
. (3.11)

Closed-form solutions of this integral equation are available only for special cases. A “trivial” one
is the Yule-Furry model where

ρ (ξ) = αe−αξ.

This can be regarded as a coarse grain approximation valid at low fields where ionization is a
comparatively rare event and an electron typically suffers many elastic and inelastic collisions
before eventually ionizing. At strong fields, the ionization mean free path becomes comparable
to the mean free paths for excitation and other inelastic processes such that a more refined
modelling of ρ (ξ) is necessary.

Legler’s Model

In Legler’s model [69], the energy dependence of the ionization mean free path is modelled in
terms of a step function. The probability of ionization is zero below a characteristic distance
x0 ≈ Uion/E, where Uion is the ionization potential of the gas. For ξ > x0, the ionization mean
free path is assumed to be constant. The ionization distance distribution ρ (ξ) is thus shifted
with respect to the Yule-Furry model,

ρ (ξ) = αe−α(ξ−x0)Θ (ξ − x0) . (3.12)

As shown by Alkhazov, the corresponding relative variance is given by

f = (2e−αx0 − 1)2

4e−αx0 − 2e−2αx0 − 1 . (3.13)
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Figure 3.4. Toy model gain spectra evaluted by means of Monte Carlo integration. Left:
avalanche size distribution according to Legler’s model for αx0 = 0, αx0 = 0.05, αx0 = 0.1,
αx0 = 0.15, αx0 = 0.2, and αx0 = 0.25. Right: avalanche size distribution according to the
stepwise evolution model for p = 0.1, p = 0.2, p = 0.3, p = 0.4, and p = 0.5.

In Legler’s “model gas”, the size distribution is controlled by the parameter αx0. Avalanche size
distributions for some values of αx0 are shown in Fig. 3.4a. By tuning the shape parameter αx0,
Legler was able to achieve good agreement with measured spectra [69]. On closer examination
one notices a few problematic aspects of the model however.

• The parameter α appearing in (3.12) is neither identical to the Townsend coefficient as
defined by ln (n) /x, nor does its inverse correspond to the mean free path between ionizing
collisions λion = α−1 + x0.

• The impact of scattering processes other than ionization (e. g. inelastic collisions) on the
avalanche evolution is “hidden” in the dependence of α on the electric field.

• The explicit dependence of the ionization probability on the previous history of the electron
renders the avalanche process non-Markovian.

Stepwise Evolution

Compared with Legler’s model, the interplay of inelastic and ionizing collisions is reflected more
clearly in “model 2” of Alkhazov’s paper [68]. One views the multiplication process as proceeding
in discrete steps of constant length x0 along the electric field. After each step, an electron either
ionizes with a probability p, or (with probability 1− p) it suffers a non-ionizing inelastic collision.
Assuming that p has the same value for all steps, the probability ρk that an electron ionizes at a
distance kx0 with respect to the previous ionizing collision is given by

ρk = p (1− p)k−1 . (3.14)

The probability P (k+1)
n that the avalanche comprises n electrons after k+1 steps can be calculated

recursively using

P (k+1)
n = (1− p)P (k)

n + p
n−1∑
n′=1

P
(k)
n′ P

(k)
n−n′ . (3.15)
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For mean and variance one obtains

n = (1 + p)k , σ2 = 1− p
1 + p

n (n− 1) . (3.16)

The shape of the gain spectrum is determined by the “ionization yield” p. In the limit of small p
the probability distribution tends to an exponential, whereas for p = 1 the distribution becomes
a Dirac delta distribution. Avalanche size distributions in the range between p = 0.1 and p = 0.5
are shown in Fig. 3.4b.

It may be noted that p and x0 should not be viewed as mutually independent parameters. Although
the step size x0 does not appear explicitly in (3.16), it does affect p in that it determines the gain
in energy of an electron between successive steps. With the Townsend coefficient being given by

α = 1
x0

ln (1 + p) ,

the relative variance can also be expressed as

f = 2e−αx0 − 1.

Like in Legler’s model, the shape of the distribution is characterized by a parameter αx0 ∈ [0, ln 2].
Since α/p is, to good approximation, a function of E/p and x0 is roughly proportional to 1/E,
this dependence suggests that the relative variance scales with the reduced electric field E/p.

Pólya Distribution Revisited

Alkhazov also discusses another category of models, in which a distinction between “slow” s-
electrons and “fast” f -electrons is made. Only electrons of the latter class are supposed to be
able to ionize while s-type electrons first have to come to equilibrium with the electric field
by collisions with the gas molecules before they can multiply. Such a model was proposed by
Byrne [72], who obtained a Pólya distribution as an approximative solution. This approximation
was shown to be incompatible with the moments of the distribution calculated by means of the
Alkhazov formalism [68] however.

On the other hand, the Pólya distribution can actually be reproduced by assuming an ionization
distance distribution of the form

ρ (ξ) = Γ (2 (θ + 1))
Γ (θ + 1)2 αe−α(θ+1)ξ

(
1− e−αξ

)θ
.

This function (shown in Fig. 3.3) looks a bit like a “smeared out” version of its counterpart
in the Legler model, but is not particularly instructive otherwise. The question how the shape
parameter θ is to be interpreted from a physical viewpoint also remains unanswered in this
“model”.

Numerical Evaluation

While the moments

µi =
∞∫
0

dνϕ (ν)

of the avalanche size distributions resulting from the toy models discussed above can be calculated
efficiently by means of recurrence formulae, the numerical evaluation of the function ϕ (ν) itself
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Figure 3.5. Approximations of Legler’s “model gas” distribution (for αx0 = 0.2) obtained by
truncating the series expansion (3.17) after 2 terms (red curve), 10 terms (light-blue curve),
and 40 terms (dark-blue curve). The grey curve represents a histogram calculated using
Monte Carlo simulation. A close-up of the region around the peak is shown in the inset.

according to Eq. (3.11) is considerably more challenging. Legler’s model, for instance, leads to a
so-called delay-differential equation, i. e. a differential equation which involves the function to be
solved for at different values of the independent variable.

At first glance, reconstructing the distribution from its moments seems to be a promising approach.
A possible method, which was explored within the framework of this thesis work, is based on an
expansion of ϕ (ν) into a series of generalized Laguerre polynomials Lθk [73].

The generalized Laguerre polynomials,

Lθk (ν) =
k∑
i=0

(
k + θ

k − i

)
(−ν)i

i! ,

are orthogonal over [0,∞) with respect to the weighting function νθe−ν ,

∞∫
0

dνLθm (ν)Lθn (ν) νθe−ν = Γ (n+ θ + 1)
n! δmn.

The avalanche size distribution ϕ(ν) can thus be expressed as

ϕ(ν) = (θ + 1)θ+1

Γ (θ + 1) ν
θe−(θ+1)ν

∞∑
k=0

ckL
θ
k ((θ + 1) ν) , (3.17)

where the coefficients ck of the series expansion are given by

ck = Γ (θ + 1) Γ (k + 1)
Γ (k + θ + 1)

∞∫
0

dνLθk ((θ + 1) ν)ϕ(ν)

=
k∑
i=0

(
k

i

)
Γ (θ + 1)

Γ (θ + 1 + i) (−1)i (θ + 1)i µi.
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The idea is now to approximate the avalanche size distribution by including only polynomials
up to an order kmax. The variances of the approximative solution and the original function are
matched if the parameter θ is chosen as θ = 1/ (µ2 − 1) − 1. As lowest order approximation
(kmax = 2), one then obtains a Pólya distribution with the same relative variance as ϕ (ν), which
makes this approach potentially very attractive.

As can be seen from Fig. 3.5, the convergence of the series is rather slow however. Especially
the shape of the peak is not correctly reproduced if only low order polynomials are taken into
account. In the example shown in Fig. 3.5, a reasonable approximation is obtained by truncating
the series after 40 terms. The oscillatory character of the generalized Laguerre polynomials leads
to large distortions of the fitted distribution however, if polynomials of order greater than 60 or
so are included and thus prevents the distribution to be evaluated to arbitrary precision. There
is also no guarantee that the calculated distribution is positive definite.

The above method is, therefore, not well suited for accurate calculations of ϕ (ν) and, due to
the sensitive dependence on kmax, does not offer an easy-to-use fit function either. For the latter
purpose, the Pólya distribution (or a superposition of Pólya functions) is in many cases sufficient,
though. Monte Carlo integration, on the other hand, while by construction unsuitable for fitting
purposes, represents a mathematically simple and accurate method for the numerical evaluation
of toy model avalanche size distributions. This technique was used for producing Figs. 3.4a and
3.4b. In Legler’s model, for instance, the step size ∆x between successive ionizing collisions can
be sampled using

∆x = x0 −
2e−αx0 − 1

α
ln u,

where u ∈ (0, 1] is a uniform random variate.

3.2.3. Microscopic Simulation

The toy models discussed above have the merit of affording qualitative insight into the multipli-
cation process. On the other hand, in order to arrive at a closed-form expression for the relative
variance f (and higher moments), they inevitably involve a number of simplifying assumptions.
In a microscopic Monte Carlo simulation such approximations can be avoided, since the electron
collision rates (or mean free paths) are modelled directly as functions of the electron energy. This
approach also allows scattering processes other than ionization such as inelastic collisions (e. g.
molecular vibrations and rotations), excitations, and attachment to be included. Hence, given
the complexity of real gas mixtures (and the computational power available today), Monte Carlo
simulation is the most efficient method for quantitative predictions of gain spectra.

In this section, calculations of avalanche fluctuations by means of the microscopic tracking
method are presented. Starting with a single electron at z = 0, the avalanche evolution in a
constant electric field (0, 0, E) is followed until all electrons have either reached the anode (i. e.
they have crossed the scoring plane z = z+) or are stopped because of attachment. The avalanche
size spectrum is established by histogramming the number of electrons arriving at the electrode.
For each gas mixture and field, the gap size z+ was adjusted such that a mean size between 100
and 1000 electrons was obtained.

Systematic Uncertainties

Besides the statistical error, the accuracy of the calculation is limited by uncertainties in the
electron-molecule cross-sections. The uncertainties in the cross-sections for vibrations, rotations
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Figure 3.6. Relative variance f in methylal and ethanol as function of the reduced electric field
E/p (at 20◦ C). The dark-grey band represents the (smoothed) calculated values, its width
reflects the statistical error of the calculation. The light-grey band represents the estimated
systematic uncertainty of f due to uncertainties in the electron-molecule cross-sections. In
order to obtain this estimate, the excitation cross-sections were uniformly scaled by ±30%
(methylal) and ±20% (ethanol). The triangles represent the relative variances of measured
spectra [64] estimated from the fit parameters given in Ref. [69]. The error bars on the
experimental data correspond to an uncertainty of ±0.01 in the fitted shape parameter αx0
[69].

and elastic scattering give no measurable contribution to the uncertainty in the Townsend
coefficient [46]. For the calculation of gain spectra, ionization and excitation cross-sections are
thus expected to constitute the dominant elements of uncertainty.

In order to estimate the uncertainty of the relative variance f , we calculate the upper and
lower limits of f using two artificial sets of cross-sections where the excitation cross-sections are
uniformly increased and decreased by a scaling factor A. For the well-known gases (“4*” and
“5*”), the choice of A was guided by the constraint that the Townsend coefficient should not
change by more than 3%. The value of A resulting from this constraint depends on the electric
field since different energy ranges of the cross-sections are probed. For the “4*” and “5*” gases
considered here (noble gases, CH4, and CO2), an uncertainty of ±5% in the excitation cross-
sections was assumed, resulting in an estimated uncertainty in the calculated relative variance
f of < 5%. For the other two gases discussed below, the uncertainties in the electron-molecule
cross-sections are significantly larger. The uncertainty in the excitation cross-sections for methylal
(“2*” rating) might be as large as ±30% [46]. For ethanol (“3*” rating), where published total
electron cross-section data are available, the cross-sections have a better accuracy (ca. ±20%).
The uncertainty in the cross-sections implies a large uncertainty in the calculated values of f in
these gases as indicated by the light-grey shaded bands in Fig. 3.6.

In addition to the total cross-sections, we need to consider uncertainties in the differential
cross-sections, in particular the energy partitioning between primary and secondary electron in
ionizing collisions. Although based on fits to experimental data, the Opal-Beaty formula (2.27)
does not reproduce the energy spectra of secondary electrons in full detail [48]. The impact of
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Figure 3.7. Relative variance in methane as function of the reduced electric field E/p (at 20◦
C). Triangles: relative variances of spectra measured by Schlumbohm [64], estimated from
fits by Legler [69]. Full circles: fits by Cookson and Lewis [74] to measured spectra (no error
estimates available). Smoothed dark-grey band: calculations (band width representing the
statistical error).

this approximation on the calculated value of f is estimated in two ways: (1) by varying the
splitting parameter w, and (2) by using a flat distribution of ε′ instead.

The simulation results are also biased by the initial energy ε0 of the seed electron. The choice of ε0
depends on the experimental setup to be studied in the simulation. In the following, calculation
results are compared with measurements where single electrons were released from the cathode
by illumination with a weak UV lamp. For the calculation, an initial energy of 1 eV was used.
The associated uncertainty was estimated by varying ε0 between zero and the ionization potential.
The initial direction was sampled isotropically.

The relative variance was found to be insensitive to the shape of the differential ionization cross-
section and the initial electron energy. For methane, varying the splitting parameter w (originally
7.3 eV) between 2 and 15 eV, replacing the splitting function (2.27) by a flat distribution, or
varying the initial energy between 0.01 and 14 eV results in a change of f by only 1 – 2 %.

Validation

In order to test the viability of the simulation method, we compare calculation results to published
gain spectra recorded with parallel-plate chambers.

Rounded avalanche size distributions in flat fields were first reported by H. Schlumbohm [64],
who performed systematic measurements of electron avalanche statistics for several gases over
a large range of reduced electric fields (at pressures between 10 Torr and 100 Torr) at a gain
of the order of n . 105. Details of his results are available for methylal (dimethoxymethane),
ethanol vapour, acetone and methane. Since acetone is not included in the Magboltz database,
the corresponding spectra could not be used for validation purposes.
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The relative variances of the measured methylal and ethanol spectra are shown in Fig. 3.6
together with the computed asymptotic values extrapolated using (3.7). The tendency of f to
decrease with increasing E/p is reproduced by the simulation and the relative variances of the
spectra are within the estimated systematic uncertainties of the calculation.

Gain spectra for methane (“5*” rating in Magboltz) are excellent references for benchmarking the
simulation. Schlumbohm’s results for methane are discussed in detail in an article by W. Legler
[69], where the measured spectra are compared to theoretical avalanche size distributions according
to Legler’s model. By tuning the shape parameter αx0 of the theoretical curve, Legler obtained
good agreement between calculated and measured distributions. With the relative variance of
Legler’s “model gas” distribution being given by (3.13), the best–fit shape parameters αx0 quoted
by Legler can be used for estimating the relative variance of Schlumbohm’s spectra.

The statistics of single electron avalanches in methane were also investigated experimentally
by A. H. Cookson, T. J. Lewis, and B. W. Ward [74, 75], who found their spectra to be in
good agreement with Pólya distributions. The relative variance of these spectra can be inferred
from the fit parameters θ quoted by Cookson and Lewis using f = 1/ (1 + θ). As can be seen
from Fig. 3.7, Schlumbohm’s data are reproduced by the simulation within the uncertainty
of the fit parameters according to Legler. There is also agreement of the calculated relative
variances with most of the values obtained by Cookson and Lewis, except for the points at
E/p ≈ 112 V cm−1 Torr−1 and E/p ≈ 203 V cm−1 Torr−1 (at 20◦ C). As for the latter, the
authors mention that the tail of this spectrum was modified by feedback processes. Cookson and
Lewis make no statement concerning the uncertainty of their fit parameters. Estimating the error
based on the plots included in their paper is also problematic due to the low resolution of the
drawings.

Interpretation

Complementary to a detailed Monte Carlo simulation, toy models like the ones discussed above
are useful for developing an intuitive understanding of the mechanisms which influence the gain
spectrum. Such a toy model should reproduce basic features of the observed behaviour of f as
a function of the reduced field (e. g. f ≈ 1 at low E/p) and provide a qualitative explanation
of the differences between gas mixtures regarding the avalanche spread. Using the example of
methane, we show how such a model can help to interpret the simulation results.

First, we calculate the energy distribution of the electrons in the avalanche by histogramming
the energy of an electron prior to each collision. Figure 3.8a shows that with increasing reduced
field E/p the energy distribution gradually shifts towards higher energies. As a consequence, the
probability for an electron to have an energy greater than the ionization threshold (12.65 eV in
case of methane) increases. At energies close to the ionization threshold, the cross-section for
ionization is still significantly smaller than the sum of the inelastic terms (including excitations).
With increasing energy however, ionization gradually becomes the dominant process. Hence, one
expects that increasing the reduced field E/p leads to an enhanced relative frequency of ionizing
collisions. In the simulation, we can test this hypothesis by counting the number of ionizations
Nion and excitations Nexc occurring in an avalanche. As can be seen from Fig. 3.8b, the relative
frequency of ionizing collisions (with respect to excitations) indeed grows with increasing E/p.

Conceptually, the influence of inelastic and ionizing collisions on the avalanche size distribution
can be understood in terms of the “step model” discussed in Section 3.2.2. We recall that in this
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Figure 3.8. Left: calculated electron energy distribution (arbitrary scale of ordinate) in methane
at reduced fields E/p of 50 V cm−1 Torr−1, 100 V cm−1 Torr−1, 150 V cm−1 Torr−1 and 200
V cm−1 Torr−1, together with the total excitation and ionization cross-sections for scattering
of electrons by methane (as implemented in Magboltz 8.9).
Right: number of ionizations Nion (solid curve) and excitations Nexc (dashed curve) in
methane, divided by the sum Nion +Nexc, as a function of the reduced field E/p.

model the relative variance of the distribution is determined by the “ionization yield” p,

f = 1− p
1 + p

. (3.18)

Equating p = Nion/ (Nion +Nexc), one sees that, consistent with the observed behaviour, the
relative variance according to (3.18) approaches to f = 1 at low reduced field (small p) and falls
with increasing reduced field. The toy model fails to reproduce the absolute value of f however.
At 200 V cm−1 Torr−1, for instance, one would expect from (3.18) a relative variance of f ≈ 0.59,
compared with a value of f ≈ 0.39 calculated by means of the microscopic simulation (the latter
being consistent with experimental data).

The reason for this discrepancy is that the “step” toy model is built on the assumptions that the
thresholds for ionization and excitation are located energetically close to each other and that
the corresponding mean free paths are of the same order of magnitude. This is a reasonable
approximation for argon and other noble gases, but not for molecular gases like methane with
significant inelastic absorption at energies well below the ionization threshold. This difference
between atomic and molecular gases is reflected in the distribution of the distance ξ an electron
travels between successive ionizing collisions. The corresponding histogram for Ar (Fig. 3.9)
exhibits distinct bumps at regular intervals, as expected from the toy model (Fig. 3.3). For
methane, the undulating structure of the inter-ionization distance distribution is less pronounced
and becomes completely smeared out for large ξ. Nonetheless, the basic idea of the toy model,
i. e. the interplay of ionization and excitation as a key factor determining the width of the gain
spectrum, is consistent with the pieces of information extracted from the simulation.
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Figure 3.9. Histogram of the distance ξ between successive ionizing collisions for Ar (a) at E = 30
kV/cm (at atmospheric pressure and 20◦ C) and CH4 (b) at E/p = 78.9 V cm−1 Torr−1 (0◦
C).

3.2.4. Comparison of Gases

As an application, we calculate the relative variance as a function of the electric field for a few
typical noble gas based mixtures. Although rarely used in practice for amplification, pure noble
gases represent a convenient theoretical playground due to their simple structure. In Fig. 3.10a,
the calculated relative variances f for pure He, Ne, Ar, Kr, and Xe at atmospheric pressure are
plotted as a function of the Townsend coefficient α. For helium, only values up to an applied
field of 50 kV/cm are shown. At higher fields the electron mean free path becomes comparable to
the gap size.

Comparing the relative variances at equal α, one sees that the lighter elements consistently have
a lower value of f . This can be understood as a consequence of the higher ionization yield in the
lighter gas (see Fig. 3.11). As an illustration, the cross-sections for ionization and excitation in Ne
and Ar as functions of the electron energy are plotted in Fig. 3.12, together with typical electron
energy distributions. Looking at the energy distributions in the two gases, one sees that neon
is considerably “hotter” than argon. For example, at a field of 50 kV/cm the average electron
energy in Ne is ≈ 20 eV, which is close to the ionization threshold of 21.56 eV, whereas the mean
of the energy distribution in Ar (≈ 10.5 eV) is significantly lower than the ionization potential
(15.76 eV). This may be understood as a consequence of the energetically lower threshold for
excitations in Ar and the larger elastic cross-section.

So far, we have considered only pure gases. In order to achieve stable operation, a so-called
quenching gas is usually added to the noble gas. Due to inelastic scattering at energies below the
excitation and ionization thresholds, the energy distribution of the electrons in the gas mixture
is “cooled” down and the ratio of inelastic vs. ionizing collisions is shifted in favour of inelastic
scattering. As a consequence, one expects a broadening of the avalanche size distribution with
respect to the pure gas. For many combinations of gases, this effect is mitigated, though, by
Penning transfer.
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Figure 3.10. Relative width f as a function of the Townsend coefficient α (at atmospheric
pressure and 20◦ C) in He (open squares), Ne (full squares), Ar (open circles), Kr (full circles)
and Xe (triangles). Top: calculations for pure gases. Bottom: calculations (without Penning
transfer) for an admixture of 10% CO2 to the respective noble gas.
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Figure 3.11 Ionization yield (fraction
of ionizing collisions Nion of the to-
tal sum of inelastic collisions Nexc +
Nion), as a function of the electric
field (at atmospheric pressure and
20◦ C) for He, Ne, Ar, Kr, and Xe.
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Figure 3.12. Electron scattering cross-sections for ionization and excitation in neon (left) and
argon (right) as functions of the electron energy, and electron energy distributions in neon and
argon at electric fields of 30 kV/cm, 50 kV/cm and 70 kV/cm (arbitrary scale of ordinate).
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Figure 3.13 Relative width f in Ar/CO2
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transfer.

As an example, we consider mixtures of noble gases with 10% CO2. The relative variances
calculated without Penning transfers are shown in Fig. 3.10b. The impact of the admixture
on the relative variance is largest for the light gases. For instance, the relative variance in Ne
increases by up to 50%. The effect is less pronounced in Ar (increase of f by max. ≈ 12%) and
the values of f for Xe are only marginally altered (except at low α).

The dependence of f on the parameter αx0 (with x0 ∝ 1/E) predicted by the toy models
discussed above suggests that the relative variance is a function of α/E, and, consequently, the
reduced electric field E/p. As can be seen from Fig. 3.13, which shows the relative variance in
Ar/CO2 (90:10) calculated at different pressures as a function of α/E (without Penning transfer),
this scaling relation is also borne out by the simulation.

In a realistic calculation, Penning transfers need to be taken into account for He/CO2, Ne/CO2 and
Ar/CO2. For Ar/CO2 (90:10), Şahin et al. [50] find an average transfer efficiency of r ≈ 0.48±0.01
for the energetically eligible excitation levels. For Ne/CO2 (90:10), the average transfer efficiency
has been estimated as r ≈ 0.4 [76], with an uncertainty of the order of ±10%. In both cases, the
transfer probabilities were inferred from gain measurements in cylindrical chambers.

The values of f for Ar/CO2 and Ne/CO2 calculated with these transfer efficiencies are shown
in Fig. 3.14a. In both gases, the relative variance at α > 1400 cm−1 is reduced by ≈ 12% with
respect to the values calculated without Penning transfer. The above uncertainties of the transfer
efficiencies correspond to uncertainties in the relative variance of < 1.5% (for Ar) and < 3%
(for Ne). In addition, the calculations are subject to a potential systematic bias: the transfer
probabilities depend to some extent on the applied electric field, since they are average values,
weighted by the frequencies with which the individual levels are excited.

Adding CH4 to argon has a similar effect as in the case of CO2 (see Fig. 3.14b). By adding 10%
methane, the relative variance at α = 1000 cm−1 (calculated without Penning transfer) increases
by ≈ 8% with respect to pure Ar. If a Penning transfer probability of r = 0.212 [50] is taken into
account, the relative variance at α = 1000 cm−1 is reduced to f ≈ 0.38, which is only about 1%
higher than (i. e. within the uncertainty of) the value in pure argon.

Penning effects can also be nicely incorporated in the toy model. Let p be the ionization yield in
a scenario without Penning transfers and f the corresponding relative variance. With r being
the average transfer probability, the effective ionization yield p′ is given by

p′ = p+ r (1− p) .
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Figure 3.14. Relative width f as function of α (at atmospheric pressure and 20◦ C) with
and without Penning transfer. Left: calculations for Ne/CO2 90:10 (squares) and Ar/CO2
90:10 (circles). Right: calculations for Ar/CH4 (90:10). Open symbols represent the values
calculated without Penning transfers, full symbols represent the values calculated with
transfer efficiencies r = 0.48 for Ar/CO2, r = 0.4 for Ne/CO2, and r = 0.212 for Ar/CH4.

For the relative variance f ′ with Penning transfers one then obtains

f ′ = f
1− r

1 + rf
,

which shows that f ′ < f .
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3.3. Wire Chambers
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Figure 3.15. Schematic layout of the wire cham-
ber configuration considered in Section 3.3.1.
Sense wires are marked by open circles, field
wires by full circles (wire diameters not
drawn to scale).

The use of the Magboltz-based microscopic
tracking technique for gain calculations is not
restricted to uniform fields. In this section we
discuss the statistics of electron avalanches in
the vicinity of a wire.

3.3.1. Gain Fluctuations

We consider the array of wires schematically
depicted in Fig. 3.15. It consists of anode wires
(20 µm diameter) with periodicity s = 4 mm
in the horizontal direction, interleaved with
grounded field wires (75 µm diameter). The
wire grids are located at y = s, between two
ground planes at y = 0 and y = 2s.

For the given geometry, the amplification prop-
erties depend on the gas density, the gas composition, and the voltage φs applied to the sense
wires. We first focus on the latter two aspects and consider the relative width f in two argon-based
gas mixtures at atmospheric pressure and room temperature (20◦ C).

The gain spectrum is further influenced by the initial position and energy of the seed electron.
For the calculations presented in the following, a set of initial conditions aimed at mimicking
electron amplification in a TPC readout chamber was chosen. The initial electron was released
0.4 mm below the upper cathode plane, its position along the horizontal axis was randomized. As
for the initial energy ε0, two approaches were tried: using a fixed value ε0 = 0.1 eV, and sampling
ε0 from the energy distribution in a uniform field of 100 V/cm. The results obtained using the
two methods agree within the statistical error.

As in the previous section, the initial electron and the secondary electrons produced in the
avalanche are traced until all electrons have either left the device or have been captured by a gas
molecule. The gain spectrum is calculated by histogramming the number of electrons which hit
the wire. Distortions of the electric field due to space charge are not taken into account.

The calculated relative width f as a function of the mean gain n (which in turn is a function of
the anode wire voltage φs) is shown in Fig. 3.16 for pure argon, methane, and carbon dioxide as
well as for mixtures of Ar with 10% CH4 (also known as P10) and 10% CO2, respectively. For
the Penning transfer efficiencies in the two gas mixtures, the same values as in Section 3.2.4 were
used (r = 0.48 for Ar/CO2, r = 0.212 for Ar/CH4).

In attaching gases, it is possible that the initial electron is lost before multiplication starts.
As can be seen from Fig. 3.16, this has a considerable effect on the relative width of the gain
spectrum, especially for CO2. For instance, if events with n = 0 are included in the avalanche
size histogram, one obtains for n = 1000 a relative variance f ≈ 1.03± 0.02. If only avalanches
with n > 0 are included in the histogram, the corresponding relative variance f>0 ≈ 0.76± 0.02
is substantially lower.

The simulation results for argon-methane are in agreement with calculations by Alkhazov [68],
who found the relative width for n > 100 to be in the range 0.6 < f < 0.8. The fact that the
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Figure 3.16. Relative variance of electron avalanches in the wire chamber configuration depicted
in Fig. 3.15 as a function of the mean gain for Ar, Ar/CH4 (90:10), Ar/CO2 (90:10), CH4,
and CO2 (at atmospheric pressure, 20◦ C). The error bars (which are in some cases inside
the marker) indicate the statistical error (1 σ) of the calculation. The solid curves are drawn
to guide the eye. Figure (a) shows the relative width f obtained by including events with
zero electrons in the gain spectrum. For the calculation of the relative width f>0 shown in
Fig. (b) these events were not taken into account. In both plots, the same colour coding was
used.

relative width increases with the mean gain deserves some explanation. Naively, one could expect
f to be correlated with the maximum of the electric field (proportional to φs), which is higher at
larger gain. Schlumbohm [77] and Alkhazov [68] pointed out however, that the fluctuations in
the avalanche size are largely controlled by the electric field at which the multiplication process
starts. This is confirmed by the simulation, as illustrated in Fig. 3.17 for the case of pure argon.
Raising the sense wire voltage φs increases the mean gain n while E2, i. e. the average electric
field at which the first ionization occurs, decreases slightly. As can be seen from Fig. 3.17b, the
value of f for Ar in the present field configuration as a function of E2 follows closely the relative
width in a uniform field of strength E2.

Besides the gas composition, the pressure and the sense wire diameter are additional parameters
which can be used for optimizing the detector performance. In this respect, the relative width
tends to increase with higher pressure and larger wire diameter [68]. For instance, the calculated
relative width in P10 at n ≈ 1000 increases from f ≈ 0.70 at p = 1 atm to f ≈ 0.75 at p = 2 atm
(the latter value being calculated with a Penning transfer efficiency r = 0.232 [50]). Using sense
wires with a diameter of 50 µm (instead of 20 µm), one obtains for n ≈ 1000 a relative width
f ≈ 0.77 (at atmospheric pressure).

Experimental Data

The experimental data on avalanche statistics in wire-based chambers available in the literature are
less comprehensive and conclusive than in case of parallel-plate counters. The first measurement
of gain spectra was published by Curran et al. [78]. Using a cylindrical counter with a wire radius
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Figure 3.17. Left: mean gain n (red curve, left scale) and average electric field E2 at which
multiplication sets in (black curve, right scale), as a function of the sense wire voltage φs
(calculation for pure argon in the wire chamber configuration shown in Fig. 3.15). Right:
relative width for Ar in the wire chamber configuration as a function of E2 (red symbols),
and relative width for Ar in uniform fields as a function of the applied electric field (black
symbols).

of 76.2 µm (the outer diameter of the tube is not mentioned) filled with Ar/CH4 (50:50), they
found at a mean gain of n ≈ 1.5× 105 a relative width f ≈ 0.68. This value is roughly in line
with the above simulation results. A quantitative comparison is difficult however, because of
the high gain in the experiment, the unknown Penning transfer efficiency for this mixture, and
the uncertainty in the geometry of the device. Assuming a Penning transfer efficiency r = 0.52
(extrapolated from the fit function given in Ref. [50]), one obtains at n ≈ 1.5× 104 a calculated
relative width of about 0.8. Gold and Bennett [79] reported measurements in methane with an
admixture of 5% nitrogen, at pressures of 800 Torr and 400 Torr, using a proportional counter
with a wire diameter of 25.4 µm and an outer tube radius of ≈ 2.7 cm. The variation of the
relative width as a function of the mean gain found by these authors – for the counter operated at
800 Torr: decrease of the relative variance from f ≈ 1 at n ≈ 5× 103 to f . 0.55 at n ≈ 5× 105 –
seems to be contradictory to the simulation results. The reason for this discrepancy is unclear. A
potential source of systematic error in the results given in Ref. [79] could be the extrapolation
procedure towards low avalanche sizes. The decrease of f towards high gain could also be caused
by space charge.

3.3.2. Angular Spread

In the wire chamber configuration shown in Fig. 3.15, ions created in the avalanche can drift
either towards the upper (y = 2s) or the lower (y = 0) ground plane, depending on the position
they are produced at, in particular the azimuthal angle ϕ (Fig. 3.15). On the lower plane, the
ion motion induces in the first case a bipolar signal with negative undershoot, whereas in the
second case the induced current has a positive sign.

The situation is similar in the readout chambers of the ALICE TPC [80], where the ions can end
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up on the pad plane (below the sense wires), the cathode wires, or the gate wires. In a recent
paper [81], S. Rossegger and W. Riegler showed that the shape of the average ion signal can be
exploited for estimating the angular spread of avalanches in these chambers. Assuming that the
ion starting points follow a Gaussian distribution in ϕ, they determined the value of the standard
deviation σϕ which gives the best agreement between the calculated and observed ion signal. In
this way, an avalanche spread σϕ = 50− 120 degrees (increasing with the gain) was found [81].

We use this example for discussing the limitations of the present simulation technique with
respect to the modelling of Penning transfer in terms of phenomenological transfer coefficients.
The ALICE TPC is operated with Ne/CO2/N2 (85.7:9.5:4.8) which is a strong Penning mixture
as all excited states of Ne are eligible for ionization of both CO2 and N2. Using an average transfer
efficiency r = 0.57 ± 0.04 (obtained from gain curve fits [67]) and assuming that excitation
transfers happen “on the spot” (i. e. assuming that the distance between the point where an atom
is excited and the point where a quencher molecule is subsequently ionized can be neglected),
the microscopic tracking method gives a standard deviation σϕ ≈ 33− 37 degrees of the angular
distribution of ion starting points (with no significant dependence on the gain).

In order to explain the observed azimuthal spread, a spatial extent of Penning transfers, mediated
by photons produced in the avalanche, would probably need to be taken into account. This
conclusion is also supported by gain curve fits: best agreement is achieved by including a photon
feedback term,

n = n0
1− βn0

,

with a feedback coefficient β = 2× 10−5 [67].

An extended version of the microscopic tracking technique which includes coupled electron-photon
transport is described in Chapter 5. Because of a lack of input data however, a detailed model
capable of reproducing the measured spread in the above gas mixture could not be implemented
yet.

3.4. Micropattern Gas Detectors

In the context of micropattern gas detector R&D, the topic of gas gain fluctuations has re-
ceived renewed attention in recent years, in particular with respect to single electron detection
applications.

3.4.1. Micromegas

Measurements of single electron spectra in a Micromegas with an amplification gap d = 160 µm
have recently been published by T. Zerguerras et al. [82]. Neon, with an admixture of 5%
isobutane, was used as filling gas (at a pressure of 1 bar). The relative width of the avalanche size
distribution was determined by fitting the pulse height spectrum with a Pólya function. Results
for different values of Umesh – i. e. the potential difference between mesh and anode – are shown
in Fig. 3.18. For Umesh < 500 V, a relative width f ≈ 0.31± 0.02 was measured. The increase of
f observed for Umesh ≥ 500 V was attributed to photon feedback [83].

The dominant source of uncertainty in the calculation of gain spectra for this gas mixture is
given by the Penning transfer efficiency: as yet, no estimates for r in Ne/iC4H10 from gain curve
fits are available. As a first approximation, one can compute the relative width in a uniform
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Figure 3.18 Relative width f of single
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amplification field Ea = Umesh/d. Compared to using a finite-element field map (which provides a
more realistic representation of the electric field), this approach allows a much faster calculation
and is thus more suitable for a “scan” of r.

Figure 3.18 shows the calculated values of f obtained using transfer efficiencies r = 0, r = 0.5,
and r = 1. Since the electric field in the centre of the mesh hole is lower than Ea, one can expect
the measured gain spectrum to be broader than predicted by the above calculation. Judging from
Fig. 3.18, a transfer efficiency of about 50% seems plausible. With r = 0.5, a detailed simulation
using a FEM field map (calculated with Ansys [36]) gives at Umesh = 470 V a relative width
f ≈ 0.34± 0.04, which is compatible with the experimental data.

The statistics of single electron avalanches in GridPix1 detectors were investigated in the doctoral
thesis of M. Chefdeville [85] and, subsequently, in the diploma thesis of M. Lupberger [86]. The
latter effort was accompanied by simulations using Garfield++.

In both works, the same gas mixture, Ar/iC4H10 (95:5), was used. In Ref. [85], the relative
width of the avalanche size distribution was estimated using an indirect method. Assuming that
the gain spectrum can be described by a Pólya distribution, Eq. (3.6) allows one to determine
the shape parameter θ from a measurement of the detection efficiency κ and the mean gain n,
provided that the threshold nt and the electron transparency of the mesh are known.

In this way, an exponential shape (i. e. θ = 0) of the avalanche size distribution could be excluded.
The measured efficiency was stated to be compatible with a shape parameter θ ≈ 2. Using the
same method, a similar result (θ > 0.5) was found in Ref. [86]. In addition, a direct measurement
of single electron spectra was attempted. The gain distribution measured at Umesh = 340 V could
be approximated by a Pólya function with shape parameter θ ≈ 2.6 (corresponding to f ≈ 0.28).
However, the result is subject to large systematic uncertainties. Sources of systematic uncertainty
are the calibration curve relating “time-over-threshold” and charge (this function is non-linear
at low gain and its parameters vary from pixel to pixel), charge sharing between pixels and a
time-dependence of the gain (attributed to charging-up of the resistive layer [86]).

On the simulation side, the main source of uncertainty is the Penning transfer efficiency. For
Ar/iC4H10 (90:10), Şahin et al. found r = 0.40± 0.01 [50]. Adopting the same value for a 5%

1 GridPix detectors are Micromegas-like devices (typically with an amplification gap of 50 µm, where a grid is
deposited on top of a pixel chip by means of wafer post-processing techniques [84].
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Figure 3.19. Relative variance in a standard GEM filled with Ar/CO2 (90:10). Left: relative
variance as function of the voltage difference UGEM across the dielectric (full symbols: relative
variance of the total gain; open symbols: relative variance of the effective gain). Right: relative
variance as function of E2 (mean electric field at which the first ionization occurs).

concentration of isobutane and using a finite element field map, one obtains at Umesh = 340 V a
calculated relative width f ≈ 0.24.

3.4.2. GEMs

In this section, the statistics of single electron avalanches in a single GEM are discussed. For the
following calculations the same simulation procedure as in Sec. 2.3.4 is used. As gas mixture we
use Ar/CO2 (90:10), assuming – as in previous calculations – a value of r = 0.48 for the Penning
transfer efficiency.

We first consider the influence on the gain spectrum of the voltage difference UGEM between the
two electrodes of the foil. Fig. 3.19a shows the calculated relative variance as function of UGEM,
with the values of the drift field ED and induction field EI being kept fixed at ED = 1 kV/cm,
EI = 3 kV/cm.

One usually distinguishes between the total gain ntot which comprises all electrons produced in
the avalanche and the effective gain neff which only includes electrons which traverse the GEM
and arrive in the induction gap. The total and effective gain values corresponding to the GEM
voltages covered by the simulation range from ntot ≈ 30.2, neff ≈ 11.7 (at UGEM = 300 V) to
ntot ≈ 1.49× 104, neff ≈ 4.49× 103 (at UGEM = 550 V). Both the relative variance ftot of the
total gain spectrum and the relative variance feff of the effective gain spectrum decrease with
increasing UGEM (and thus increasing gain). At low gain feff is significantly higher than ftot, but
converges towards ftot with increasing gain.

Based on the discussion in Sec. 3.3.1, one would expect the decrease of f as function of UGEM
to be paired with an increase of the mean electric field E2 at which the first ionization occurs.
This is indeed the case: according to the simulation E2 increases from 36.6 ± 0.1 kV/cm at
UGEM = 300 V to 45.8±0.2 kV/cm at UGEM = 550 V. As can be seen from Fig. 3.19b, the relative
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variance in the GEM is higher than in a uniform field of strength E2 however. At UGEM = 450 V
(with corresponding E2 = 43.6 kV/cm), for instance, one obtains ftot = 0.49± 0.01, compared to
f = 0.437± 0.003 calculated in a uniform field of 43.6 kV/cm. This is plausible as – unlike in
parallel-plate or wire chambers – transverse diffusion plays a significant role for the avalanche
evolution in a GEM.

• Losses of electrons to the dielectric, which can happen already at an early stage of the
avalanche, give rise to additional size fluctuations. To quantify this effect we calculate the
relative variance for avalanches in which no losses have occured in the upper cone of the
GEM hole and compare it to the relative width obtained without such a cut. As can be seen
from Fig. 3.19b the f value of avalanches without losses in the upper part is significantly
closer to the relative variance in a uniform field of strength E2.

• The region with highest ionization density in a GEM is in the vicinity of the interface
between dielectric and lower metal layer [67], where the probability of losses to the dielectric
is also high.

No systematic measurements of gain spectra in single GEMs could be found in the literature,
such that a validation against experimental data is not possible in this case.

3.5. Summary

The microscopic tracking technique, introduced in Section 2.3.2, allows a quantitative prediction
of gas gain fluctuations. Contrary to earlier avalanche models [68, 69], no simplifying assumptions
concerning the shape of the ionization mean free path need to be made.

The impact of gas mixture and electric field on the avalanche size distribution (in particular the
relative variance f = σ2/n2) in uniform fields can be summarized as follows.

• As can intuitively be understood in terms of a simple toy model, the relative variance is
to a large extent determined by the relative abundance of exciting and ionizing electron
collisions. Molecular gases, characterized by significant inelastic absorption, tend to exhibit
broader gain spectra compared to noble gases. Among noble gases, the relative variance is
predicted to increase with the atomic number of the gas.

• Increasing the electric field and thus – at a fixed gap size – the mean gain, leads to an
increase of the relative frequency of ionizing collisions and, therefore, a reduction of the
relative variance.

• Penning transfer enhances the effective number of ionizing collisions and thus reduces the
avalanche spread.

Within the systematic uncertainty of the calculation – which is determined mainly by uncertainties
in the excitation cross-sections and the Penning transfer efficiencies – the simulation results are
in agreement with measurements using parallel-plate chambers as well as recent experimental
data for Micromegas-like detectors.

The simulation method can also be used for non-uniform field configurations. In wire chambers, the
minimum value of f which can be achieved for a given gas mixture is larger than in homogeneous
fields. Due to the specific shape of the electric field, the relative variance tends to increase with
the mean gain. In GEMs the relative variance is predicted to decrease with increasing voltage
difference across the foil.
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4. Primary Ionization

In this chapter, we review some key parameters characterizing ionization fluctuations in gases
and discuss the accuracy with which they can be computed from elementary physical data such
as photoabsorption and electron scattering cross-sections.

4.1. Overview

A popular tool for the simulation of charged particle ionization in gas detectors is the program
Heed1 [88], written by I. Smirnov. The calculations in this chapter were done with the C++
version of Heed [89], to which an interface was made available in Garfield++. The previous
(Fortran) version of Heed, which is integrated in (Fortran) Garfield, has been used for numerous
detector studies in the past decade (some examples are given in Refs. [88, 90]).

As for the energy loss of the primary charged particle, Heed uses essentially the differential
cross-section of the PAI model as formulated by Allison and Cobb [23] with a modification of the
1/E2 prefactor in the “Rutherford” term. By splitting the atomic photoabsorption cross-section
into partial cross-sections for each subshell, simulating atomic relaxation effects (emission of
fluorescence photons and Auger electrons), and tracking the emerging δ-electrons, the program
allows a detailed calculation of ionization patterns.

The transport of δ-electrons in Heed is done in a phenomenological fashion: the number of
“conduction electrons” (in this context: electrons with energy below the ionization threshold)
generated at each step of a δ-track is sampled according to an algorithm (described in Ref. [88])
which reproduces the asymptotic W value and Fano factor F specified by the user. This approach
has the merit of being generic, in that only the atomic composition of the material and the
values of W and F need to be supplied. A drawback of this method, however, when used in
conjunction with microscopic tracking, is that only the positions of the conduction electrons are
provided, but not their energies. This limitation can be overcome by sampling the energy of the
conduction electron from the equilibrium energy distribution at the local field. An alternative
approach, which is explored here (Section 4.3), is to use the microscopic transport technique
based on Magboltz directly for tracking the δ-electrons.

Combining energy loss sampling based on the PAI model and atomic relaxation simulation
as implemented in Heed with microscopic transport of the emerging δ-electrons allows a full
simulation of primary ionization in gases without free parameters other than photoabsorption
cross-sections, atomic transition probabilities and electron scattering cross-sections.

1 “High Energy Electrodynamics”

61
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Figure 4.1. Elastic, ionization and total excitation cross-sections for electrons in Ar, as imple-
mented in Magboltz 8.9. For the elastic cross-section at high energy (& MeV) values from
Ref. [87] were added. Both ionization and excitation cross-sections exhibit a minimum around
≈ 1 MeV.

4.2. Cluster Density

The first observable we discuss is the so-called cluster density (sometimes also referred to as the
“specific ionization”). It is equivalent to the inverse mean free path for ionization, λ−1 = Nσion.
Unlike in case of the stopping power dE/dx, the measurement of λ−1 is independent of the
energy calibration of the detector. The cluster density is, therefore, well suited for benchmarking
purposes. Accurate calculations of λ−1 are also of practical importance. For instance, the
probability p1 = 1− exp (−x/λ) for a particle to ionize at least once over a distance x sets an
ultimate limit to the detection efficiency. This limit becomes relevant if the dimension of the
detector is of the same order as the ionization mean free path λ. Let us consider, for example,
a gas layer with a thickness of 1 mm, as in case of GOSSIP detectors [91]. In order to achieve
an efficiency p1 > 0.99, a cluster density λ−1 > 46 cm−1 would be required, which imposes a
considerable restriction on the gas mixtures with which such a device can be operated.

4.2.1. Experimental Data

Total ionization cross-sections in the minimum-ionizing range can be measured by determining
the inefficiency of a gas-filled counter operated at high gain (“0-counting method”). An extensive
series of measurements based on this technique was conducted by Rieke and Prepejchal [92], using
monoenergetic β rays with kinetic energies between 0.1 and 2.7 MeV. Their paper includes results
for fourty counting gases, represented in the form of fit parameters M2, C to the relativistic
Bethe-Born cross-section

σion (ε) = 4π
( ~
mec

)2 1
β2

[
M2

(
ln
(
β2γ2

)
− β2

)
+ C

]
. (4.1)

The parameters in this formula are the dipole moment (divided by a2
0) M2 and a constant C.

These two variables are not mutually independent: according to theory [27], M2 and C are
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related by

C = M2
(

ln c̃+ ln 2mec
2

R

)
,

where both c̃ and M2 are determined by the oscillator strength density.

The systematic error in the results, as estimated by Rieke and Prepejchal, is typically 3 – 5% for
M2 and . 0.5% for C. Good agreement between experimental data and the Bethe-Born formula
had already been found earlier by McClure [93], who measured ionization cross-sections in H2,
He, Ne, and Ar.

Results from more recent measurements for Ar and a number of organic gases, carried out by a
group at Weizmann Institute, are reported in Ref. [94]. According to the authors, these data have
an accuracy of -3/+5%, except for the measurement in Ar which has a larger systematic error.

4.2.2. Simulation Methods

In Magboltz/Imip2 ionization cross-sections in the relativistic range are calculated using the
Bethe-Born formula3 (4.1). The parameters M2 and C used in the program are based on a fitting
procedure [46] matching experimental data in the keV range to the measurements of Rieke and
Prepejchal [92] (within somewhat enlarged error bars) at MeV energies. For most gases, optical
values given by Berkowitz [95, 96] have been used as a guide for adjusting the dipole moment
M2.

Given the transfer efficiencies rj of each excitation level, the contribution of excitations to the
cluster density in gas mixtures can be calculated using

λ−1
exc→ion (ε) = N

∑
j

rjσj (ε) , (4.2)

where σj (ε) is the excitation cross-section for level j.

Excitation cross-sections for resonance transitions are calculated using

σj (ε) = σ
(BB)
j (ε) ε

ε+ εj + εion
; σ

(BB)
j (ε) = fj

εj/R
4π
( ~
mec

)2 1
β2

(
ln mec

2β2γ2

2εj
− β2

)
.

At high energies, the excitation cross-section σj converges to the Bethe-Born cross-section σ(BB)
j .

In this regime, the dipole-allowed excitation cross-sections scale essentially with fj/εj , i. e. the
oscillator strength divided by the excitation energy. Cross-sections for non-resonant excitations
(fj = 0) fall off more steeply with increasing energy and are thus negligible in the minimum-
ionizing energy range. This is different from the situation in avalanches, where non-resonant
transitions do constitute a sizeable fraction of the total excitation rate. In Ar/CO2 (90:10), for
instance, a simulation using the Magboltz cross-sections predicts that at a field of 60 kV/cm
(atmospheric pressure) metastables contribute ≈ 13% to the total excitation rate, 2p levels
(Paschen notation) about 21%, and non-resonant 3d and 5s levels about 22%. It is, therefore,

2The “Imip” program is a spin-off of Magboltz, recently developed by S. Biagi. It is intended to be used for
simulating electrons at minimum ionizing energy.

3 The Bethe-Born expression can be extended to energies beyond the minimum-ionizing range by incorporating a
density-effect correction in the transverse term,

σion (ε) = 4π
( ~
mec

)2 1
β2

[
M2 (ln (β2γ2)− β2 − δF

)
+ C

]
,

where the correction term δF is identical to the one appearing in the Bethe-Bloch formula (A.12).
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not clear whether excitation transfer efficiencies determined from gain curve fits are directly
applicable to cluster density calculations. Alternatively, the following estimates can be used.

• Assuming that excitation transfers proceed exclusively via photoabsorption, the transfer
efficiency is given by

rj = η (εj) , (4.3)

where η is the photo-ionization yield of the quenching gas.

• In the other limiting case that collisions constitute the only relevant deexcitation channel,

rj = η (εj)2/5 (4.4)

can be considered as an estimate for the upper limit of the transfer efficiency (see Sec. 5.2.3).

Based on the excitation cross-sections it is also possible to estimate the amount of primary
scintillation produced in noble gases (at high pressure), assuming that each excited state gives
rise to the emission of a VUV photon via excimer formation [47].

In Heed, the total ionization cross-section is calculated by numerical integration of dσ/dE over
the physically allowed range εion < E < Emax. The total cross-section depends sensitively on
the underlying photo-ionization cross-section. By default, Heed relies for most elements on
the compilation of atomic photoabsorption cross-sections by Henke et al. [17]. For hydrogen
the parameterization given in Ref. [97] is used (with a modified scaling factor). The molecular
photoabsorption cross-sections are approximated by the sum of the atomic cross-sections of
the constituent elements. This approximation is justified at energies of the order of the inner
shell binding energies and beyond but is rather problematic at low energies. Moreover, the
molecular energy levels of the valence electrons are usually shifted with respect to the atomic
levels. In order to correct for these effects, Heed allows the ionization thresholds εion of the
atomic photoabsorption cross-sections to be adjusted, depending on the molecule for which
they are used. For example, carbon as a component of CF4 is assigned a binding energy of
16.23 eV, while the binding energy of carbon in CO2 is set to 13.79 eV. The choice of εion is not
straightforward, though, and represents a significant source of systematic bias in the calculation.
For the present calculations, the original threshold values, as predefined by the author of Heed,
were kept, except for N2 where the outer shell binding energy was adjusted to 15.581 eV. An
additional systematic error is introduced by approximating the photo-ionization cross-section
by the total photoabsorption cross-section. Whereas the photo-ionization yield η of molecules is
typically close to 100% from a few eV above the ionization threshold on, there is a significant
difference between absorption and ionization in the near threshold region.

4.2.3. Results

For the purpose of comparison, the cluster density computed using Heed was fitted with the
Bethe-Born formula in the range 1 < βγ < 6. The values of M2 and C extracted from the fit
are presented in Table 4.1 for a number of frequently used gases4, together with experimental
data and the parameters used in Magboltz. Optical values for the dipole moment given in the
books of Berkowitz [95, 96] are provided as well. The table also shows the number of clusters per
cm for minimum ionizing electrons (βγ = 3.5), at room temperature (20◦ C) and atmospheric
pressure, corresponding to the respective cross-section parameters.

4 The table includes all gases for which at the time of writing high energy cross-sections were implemented in
Magboltz.
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For some of the gases (He, Ne, Ar, Xe, CO2, CH4), Rieke and Prepejchal [92] provide more than
one set of fit parameters. In these cases, the values shown in Table 4.1 are those which were
given the best “rating” (quality estimate) by the authors. For He, the values with H2 as additive
were adopted.

Noble Gases

As the photoabsorption cross-sections for the low Z atoms He and Ne are well known, the PAI
model should give accurate results for these two gases. Both measurements in He were done with
a small admixture of H2. With an ionization threshold of 15.43 eV, H2 is eligible for ionization
by all excited states of He. According to Magboltz the total excitation cross-section in He at
1.4 MeV is ≈ 0.058 Mbarn, which is about 43% of the ionization cross-section calculated by
Heed. Since at energies above ≈ 18 eV, the photo-ionization yield of H2 is close to unity [95], the
ionization efficiency in excitation transfers is also expected to be close to 100%. The result from
Heed is thus consistent with the measurements if the measured cross-sections are interpreted as
the sum of ionization and excitation cross-sections.

For Ne and Ar (and also H2), the values reported by McClure are consistently higher than Rieke
and Prepejchal’s results which are corroborated by the spark-chamber measurement by Söchting
[98], who found n ≈ 10.8± 0.3 for Ne, and the measurement by Malamud et al. [94], who found
n ≈ 22.9 + 15%/− 12% for Ar. The reason for this discrepancy is unclear. In the case of Ne, the
higher value measured by McClure might to some extent be due to Penning effects. A crude
estimate5 gives an upper limit for the increase of the cluster density due to excitations of about
1.1 – 1.2 cm−1 for Ne/H2. Excitation transfers are, however, not likely to play a role in Ar/H2.

The Heed calculation for Ne agrees well with Rieke and Prepejchal’s data. For Ar, two sets
of Heed results are given, the first one being calculated with the (default) photoabsorption
cross-sections [17], and the second one being calculated using the cross-sections compiled by
Marr and West [100]. The cluster density according to Heed, n ≈ 25, is close to McClure’s result
but larger than the experimental value of Rieke and Prepejchal (n ≈ 23) which is reproduced by
Magboltz. The Heed results for Kr and Xe are in agreement with the experimental data.

Molecular Gases

If the default photoabsorption cross-section is used, the cluster density for molecular hydrogen
calculated by Heed (upper set of parameters in the table) exceeds the measured values by
more than 60%. This is due the fact that in the default parameterization the (continuous)
photoabsorption cross-section σγ is scaled by matching its integral to the TRK sum rule (A.8).
In the case of H2, however, this approach overestimates σγ substantially because of the large
contribution to this sum (& 40%) from absorption below the ionization threshold. Using the
original fit parameters given in Ref. [97] and extending this parameterization to the ionization
threshold, one obtains the values given in the lower row. The calculation can be refined further
by taking the detailed structure of σγ and η close to the threshold into account. Using the
data compiled in Ref. [101] for the continuous photoabsorption cross-section, together with the
photo-ionization yield from Ref. [99], and neglecting autoionization and discrete transitions above
the ionization threshold, yields a cluster density of n ≈ 4 cm−1, which could be regarded as a
lower bound to the calculation.

5 σexc (ε = 1.3 MeV) = 0.0492 Mbarn, σ1s2 ≈ 0.64σexc, η (ε1s2 ) ≈ 0.9− 0.95 [99]
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He Ne Ar
M2 C n M2 C n M2 C n

Heed 0.505 5.829 3.4 1.65 18.17 10.5 3.86 43.945 25.5
3.60 42.45 24.4

Magboltz 0.489 5.50 3.2 1.69 17.80 10.4 3.593 39.70 23
Rieke/Prepejchal 0.745 8.005 4.7 2.02 18.17 10.8 4.22 37.93 23
McClure 0.86 7.87 4.7 2.21 19.16 11.5 4.72 43.23 25.7
Berkowitz 0.4896 1.72 3.48

Kr Xe H2
M2 C n M2 C n M2 C n

Heed 4.57 53.96 31 6.39 72.87 42.1 1.22 14.35 8.3
0.857 10.1 5.8

Magboltz 5.50 56.90 33.3 8.04 75.25 44.6 0.642 8.30 4.7
Rieke/Prepejchal 6.09 52.38 31.5 8.04 72.35 43.2 0.695 8.115 4.7
McClure 0.706 8.64 5
Berkowitz 4.57 6.12 0.642

N2 CO2 CF4
M2 C n M2 C n M2 C n

Heed 3.38 39.0 22.5 5.01 59.08 34 7.73 89.86 51.8
Magboltz 3.35 38.1 22 5.60 57.91 33.9 7.20 93.0 53
Rieke/Prepejchal 3.74 34.84 20.7 5.75 57.91 34 10.27 84.05 50.9
Berkowitz 3.36 5.42

CH4 iC4H10
M2 C n M2 C n

Heed 4.04 48.15 27.5 13.13 158.35 91
3.46 41.79 24.0

Magboltz 3.75 42.5 24.5 15.5 160.0 93.6
Rieke/Prepejchal 4.23 41.85 24.6 14.19 141.9 83.4
Berkowitz 3.76
Malamud 25.9 91.5

Table 4.1. Measured and calculated parameters M2, C of the Bethe-Born formula (4.1), and
corresponding number of clusters per cm n at minimum ionizing energy (βγ = 3.5) and
T = 20◦C, p = 760 Torr.
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In general, molecular photoabsorption cross-sections near the threshold exhibit a rather compli-
cated structure with processes such as dissociation competing with photo-ionization. In this light,
the close agreement for N2, CO2, and CF4 between experimental data and Heed calculations (for
which the atomic photoabsorption cross-sections were used), should be interpreted with a grain
of salt. As an aside, it may be noted that the value for the specific ionization of CF4 quoted in
the PDG review [5], n = 63, is not corroborated by any of the calculations or measurements
discussed here.

For the alkanes CH4 and iC4H10, the Heed calculation is primarily biased by the choice of the
hydrogen cross-section. The first set of values for CH4 given in the table was calculated using
the default settings. The set of parameters given in the second row was obtained by:

• modelling the hydrogen cross-section at low energies (ε < 80 eV) as the difference between
the molecular CH4 cross-section (taken from Ref. [101]) and the atomic carbon cross-section,

• using the standard parameterization for hydrogen at higher energies, and

• scaling both carbon and hydrogen cross-sections by the ionization yield η (taken from
Ref. [102]).

The cluster density resulting from this approach is in fair agreement with the measurement of
Rieke and Prepejchal. It should be noted, though, that the experimental data also show significant
scatter, with the cluster densities reported by Malamud et al. [94] being consistently higher
than the measurements of Rieke and Prepejchal, not only in case of methane and isobutane
but also for the other gases measured by both groups (C2H6, C3H8, and DME). The authors of
Ref. [94] point out that for these gases the measurements by Rieke and Prepejchal were done in
the proportional mode of amplification (as opposed to the Geiger mode), and that the detection
efficiency could have been overestimated.

Gas Mixtures

Table 4.2 shows the cluster density in argon with 10% admixtures of carbon dioxide, methane,
and isobutane as well as in neon with 10% admixtures of CO2 and CH4 calculated without
and with excitation transfer. For the latter case, three values for λ−1 corresponding to different
estimates of the transfer efficiencies are given. The values shown in column (a) were calculated
with average transfer efficiencies extracted from gain curve fits (r = 0.48 for Ar/CO2, r = 0.212
for Ar/CH4, r = 0.4 for Ne/CO2). For the calculation of the values given in columns (b) and
(c), the transfer efficiencies were assumed to be given by Eqs. (4.3) and (4.4), respectively. In
the above mixtures, the additional specific ionization due to excitation transfers represents a
correction of order . 10%.

4.3. Delta Electron Transport

4.3.1. Ionization Yield

The mean energy W required to produce an electron-ion pair and the Fano factor F for electrons
are largely determined by the partitioning between exciting and ionizing collisions. While avalanche
calculations (see Chapter 3) typically probe the excitation and ionization cross-sections up to a
few tens of eV, W and F are sensitive to the cross-sections over the full energy range between the
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Gas λ−1 [cm−1]
without excitation transfer with excitation transfer

(a) (b) (c)

Ar/CO2 (90:10) 24.1 25.6 26.2 26.6
Ar/CH4 (90:10) 23.2 23.8 25.2 25.6
Ar/iC4H10 (90:10) 31.4 33.4
Ne/CO2 (90:10) 13.2 13.7 14.3 14.3
Ne/CH4 (90:10) 12.3 13.4 13.4

Table 4.2. Calculated cluster density (at atmospheric pressure, 20◦ C) in argon and neon based
mixtures.

ionization threshold and the primary electron energy, thus providing a complementary consistency
check of the cross-section data.

The results presented in this section were obtained by tracing the primary δ-electron and the
secondary electrons produced in the cascade by means of the microscopic tracking technique until
the electron energy falls below the ionization threshold of the gas. The calculations were done
at a uniform electric field of 100 V/cm (20◦ C, atmospheric pressure). Under these conditions,
the Townsend coefficient is negligibly small such that the ionization cascade is unaffected by
amplification in the electric field. Of the gases included in Magboltz, only the noble gases as well
as the molecular gases H2, N2, CO2, CF4, CH4, and iC4H10 (i. e. those already discussed in the
previous section) are considered here. Since, on one hand, the ionization cross-sections for these
gases used in Magboltz are consistent with measured cluster densities in the minimum-ionizing
range, and, on the other hand, the Townsend coefficient (determined primarily by the excitation
and ionization cross-sections) is supposed to be in good agreement with experimental data6, a
reliable description of the cross-sections also in the intermediate range can be expected.

After verifying that the calculated values of W and F for pure gases are consistent with
experimental data, we discuss the influence of excitation transfer on ionization fluctuations in
Penning mixtures.

Pure Gases

At primary electron energies εp in the keV range and above, W and F depend only weakly on
εp. One, therefore, speaks of asymptotic W values and Fano factors. For most gases, these high
energy values are fairly well established. A compilation of recommended average W values, based
on experimental data until 1978, is given in ICRU report 31 [19]. Critical reviews of W values
and Fano factors including also more recent data can be found in Ref. [103] and, with emphasis
on noble gases, in Ref. [104]. The asymptotic W values for Ar, Kr, Xe, H2, N2, CO2, CH4, and
iC4H10 recommended in Ref. [19] agree with the calculated values (between 1 keV and 10 keV)
within about 3%. Systematic uncertainties in the calculation for CH4, where the difference is
largest, are discussed below. For He and Ne, the calculated W values are significantly higher than
the experimental ones (calculated value for He at 5 keV: ≈ 46.3 eV, recommended experimental
value [19]: 41.3 ± 0.1 eV). This is likely to be due to Penning effects [104]. No experimental
data for the W value of electrons or photons in CF4, and only one measurement for α particles

6 With the exception of Kr, Xe, and isobutane, the gases under consideration are attributed a 5* rating in
Magboltz. For this category, the Townsend coefficient is supposed to be reproduced within about 3% [46].
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(W = 34.3 eV [105], no error bars indicated) was found in the literature. A meaningful validation
of the calculation (W ≈ 29.6 eV at 5 keV) against experimental data is, therefore, not possible in
this case. The value quoted in the PDG review [5], W = 54 eV, seems unrealistic.

Measurements of W as a function of the electron energy, especially at low energies (. 1 keV),
allow the most direct validation of the calculations. Unfortunately, such measurements are scarce
and, even worse, the existing data exhibit in many cases large differences. The lack of experimental
data is, to some extent, probably due to the difficulties involved in the measurement which, for
instance, requires a very high detection efficiency. For Ar, CH4, N2, and CO2, where at least two
independent sets of measurements were found in the literature, Fig. 4.2 shows a comparison of
Magboltz based calculations (black bands) and experimental results:

• measurements by Combecher [106] (open circles),

• experimental data from Smith and Booz [107] (full circles),

• measurements by Waibel and Grosswendt [108–110] (open squares), and,

• for CH4, W values inferred from measurements with photons by Krajcar-Bronić and
coworkers [111] (triangles).

For comparison, the W values calculated with Heed are also included in the plot (grey bands).
As mentioned above, the Heed algorithm is designed to reproduce a given asymptotic W value
(for the present calculations the recommended ICRU values were used).

As can be seen from Fig. 4.2, Combecher’s data do not converge towards the “canonical”,
asymptotic W values, which might be an indication for a systematic error in the measurement
exceeding the quoted error bars. Below about 100 eV however, the W values measured by
Combecher are in close agreement with the results obtained by Waibel and Grosswendt (where
available). The latter data do exhibit the expected high-energy behaviour. We therefore consider
these measurements as prime reference for the validation. The measurements by Smith and Booz
are in clear disagreement with the other measurements, except at high energies. At low energies,
these data are of limited significance because of the large error bars.

The calculated W value in Ar exhibits a bump around an energy of ≈ 1.7 times the ionization
threshold, which is confirmed by Combecher’s measurement. This feature can also be observed in
the calculations for the other noble gases. The oscillatory structure in the calculated W value of
methane is likely to be an artefact, though (see the discussion about systematic errors below).

Ignoring the low energy part of the data by Smith and Booz, one may conclude that for the above
gases, given the spread of the experimental data and the estimated uncertainty in the calculation
of about 5%, the sets of excitation and ionization cross-sections implemented in Magboltz allow
a realistic calculation of the W value as function of the electron energy.

Little experimental data on the Fano factor for electrons, and virtually no measurements of its
energy dependence, seem to exist [103, 104]. A validation of the calculations with respect to F is,
therefore, difficult. For Ar, Kr, N2, and CO2 the values given in Refs. [103, 104] are higher than
the high energy Fano factor calculated using the Magboltz cross-sections (see Fig. 4.3 for Ar),
but are within the systematic uncertainty of the calculation (≈ 10%).
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Figure 4.3 Fano factor as a function of
the electron energy in argon. The black
line represents calculated values based
on the Magboltz cross-sections. The
light-blue bar indicates the range of
calculated and measured values for keV
electrons (0.145 ≤ F ≤ 0.17) given in
Refs. [103, 104].

Systematic Uncertainties

We try to quantify the systematic error in the calculation of W and F due to uncertainties
in the excitation and ionization cross-sections and the approximations made in the modelling
of these scattering processes exemplarily for the case of methane. We first estimate the effect
of uncertainties in the total cross-sections by varying the excitation cross-sections which, in
general, tend to be less accurately known than the ionization cross-section [46]. More precisely,
we consider the dissociative excitation cross-sections. The sum of other excitation cross-sections
included in Magboltz (such as those for light emission) amounts to less than 3% of the sum of
the dissociative cross-sections.

The dissociative excitation cross-sections used in Magboltz are based on measurements of the
total dissociation cross-section by Winters [112]. According to Fig. 6 in Ref. [112], these data
have an uncertainty of about ±5% around 100 eV. Comparing the results of Winters with other
measurements [113], one sees that the spread of the experimental data is of similar magnitude
(typically ≈ 5 − 10%). We estimate the influence of an overall bias by applying a uniform
scaling factor of ±10% to the excitation cross-sections above 30 eV. The cross-sections below
this energy are left unchanged in order not to alter the Townsend coefficient. Such a scaling of
the cross-sections leads to a change in W of 2− 3% and to a change in F above 100 eV of ≈ 5%.

In Magboltz, the dissociative excitation cross-section is subdivided into five levels with excitation
energies of 8.55, 9, 10.5, 12, and 13.3 eV. The distribution of the cross-section among the invidual
levels and the choice of the excitation energies is to some extent arbitrary and thus represents a
further source of systematic bias. In addition, the energy loss of the electron should realistically
be modelled by a continuous distribution. If – in order to obtain a crude estimate for the above
effects – the energy loss in dissociative collisions is sampled uniformly between 8.55 and 13.3 eV
(irrespective of the actual level hit by the electron), one observes at electron energies above 50 eV
a reduction of the W value by between ≈ 2% (at low energy) and . 1% (above 1 keV or so) and
a reduction of the Fano factor by about 1− 4%, Furthermore, the oscillations of the W value
between 20 and 50 eV are considerably smoothed out.

The modelling of the differential ionization cross-section may also contribute to the systematic
uncertainty. In order to estimate this effect we replace the Opal-Beaty formula (2.27) with the
parameterization of the secondary electron energy distribution by Green and Sawada (2.28).
While the difference in the resulting W value does not exceed the statistical fluctuations, the
Fano factor in the keV range is altered by 2− 3%.
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Figure 4.4. Calculated W value (left scale) and Fano factor (right scale) in Ar/CO2 as functions
of the CO2 concentration. Black line: W value without Penning transfer, red line and orange
band: W value with Penning transfer, band width indicating the uncertainty due to errors in
the transfer efficiency. Grey line: Fano factor without Penning transfer, green line and error
band: Fano factor with Penning transfer and its uncertainty due to errors in the transfer
efficiency. Blue line and error band: transfer efficiency according to Ref. [50] and associated
uncertainty (right-hand scale).

Excitation Transfer

In “regular” mixtures, i. e. gas mixtures without Penning transfers, the W value is, to good
approximation, given by the mean of the W values in the pure gases, weighted by the respective
concentrations. The same applies to the Fano factor.

In Penning mixtures however, excitation transfer can lead to a substantial reduction of W and
F with respect to the pure gases. The lowering of W as a consequence of Penning transfers is
known as Jesse effect [114]. It can be quantified as follows. Let W0 be the hypothetical W value
calculated without Penning transfers. If Nion is the number of ionizing collisions occuring in the
δ-electron cascade, N (j)

exc is the number of collisions leading to the excitation of a level j, and
rj is the associated transfer efficiency, the W value in the presence of Penning transfers, W ′, is
given by

W ′ = W0
1

1 + 1
Nion

∑
j
rjN

(j)
exc
. (4.5)

Hence, if the transfer efficiencies rj are known (e. g. from gain fits), W ′ can easily be evaluated.
Vice versa, if measurements of W ′ are available, the (overall) transfer efficiency can be extracted
from (4.5).

We discuss the influence of Penning transfers on W and F exemplarily for the case of Ar/CO2.
This choice is motivated by two facts:

• as discussed above, the experimental W values for these gases are correctly reproduced by
the Magboltz cross-sections;
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• a fit formula for the overall transfer efficiency r as a function of the CO2 concentration c
extracted from gain measurements [50] is available,

r (c) = a1c+ a3
c+ a2

. (4.6)

Figure 4.4 shows the transfer efficiency r according to (4.6) with fit parameters a1 = 0.620±0.057,
a2 = 0.008± 0.034, a3 = −0.011± 0.009 [50, 67] and the resulting W value and Fano factor at a
primary electron energy of 1 keV. The fit is based on gain measurements for CO2 concentrations
down to 5%. At smaller concentrations, the uncertainty of the above parameterization of the
transfer efficiency diverges rapidly. The calculations were, therefore, restricted to c > 0.03.

As can be seen from Fig. 4.4, theW value displays a minimumWmin ≈ 25.3±0.1 at a concentration
cmin ≈ 0.08± 0.005. A minimum of W at low admixture concentrations is a typical feature of
Penning mixtures since the transfer efficiency r tends to rise with increasing concentration [50]
while the relative abundance of excitations with respect to ionizing collisions decreases.

The calculated Fano factor in the Ar/CO2 mixture is also significantly reduced, with a minimum
at cmin ≈ 0.05.

Systematic measurements of W in binary gas mixtures seem to have been published only for
α particles. Experimental data for Ar/CO2 (and a large number of other gas mixtures) were
reported by Bortner and coworkers [115], who found a minimum W value of Wmin = 26.05 eV at
a concentration of 4.5% CO2 (no error estimate given). The larger value of Wmin with respect to
the calculation is not too surprising considering that the W value for α particles in pure CO2 is
also higher than the one for electrons or photons. The difference between this measurement and
the above calculation might thus to some extent be explained by the different type of primary
particle. One also has to keep in mind that the transfer efficiency used in the calculation is
an average over the transfer efficiencies of several levels which might give rise to a systematic
error inasmuch as the relative abundances of the individual excitation levels in high energy
δ-electron cascades are different from those in avalanches. As the transfer efficiency is, in general,
pressure-dependent, the lower pressure (500 Torr) used in the experiment might also play a role.

4.3.2. Range

The spatial distribution of the secondary ionization produced by a δ-electron is a key factor to
be considered when assessing the position resolution of a detector. It can be characterized in
terms of the electron range, i. e. the typical pathlength travelled by a δ-electron before its energy
falls below the ionization threshold. In the literature, a number of different definitions of “range”
exist. In the following, we consider the so-called fractional ionization range Rx, which is defined
as the projected distance along the initial δ-electron direction within which the percentage x of
the total ionization is produced (cf. Ref. [108]).

Figure 4.5a shows the 95% range in CH4 as function of the primary electron energy according to
measurements by Waibel and Grosswendt [108], together with calculated values using the Heed
δ-electron transport algorithm and the microscopic tracking technique. The calculations were
done by simulating 106 primary δ-electrons starting from z = 0 with initial direction (0, 0, 1) and
histogramming the z coordinates of the ionizing collisions in the energy degradation cascade. An
example of the resulting distribution (for a 1 keV electron in methane) is shown in Fig. 4.5b. In
line with the experimental setup described in Ref. [108], the tracking of an electron is stopped if
it is backscattered behind the z = 0 plane.
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Figure 4.5. Left: fractional ionization range R95 scaled by the mass density ρ in methane (red
symbols: experimental data [108]; black symbols: calculation based on Magboltz cross-sections;
grey symbols: calculation using Heed). Right: distribution of the z-coordinates of ionizations
created by a 1 keV δ-electron track (initial direction ‖ z-axis) and its secondaries in methane
(at atmospheric pressure), calculated using microscopic tracking. The red line indicates the
95% fractional ionization range.

Heed uses a multiple-scattering scheme [88]: the δ-electron is propagated in fixed distance steps,
after each of which the trajectory is rotated. In the microscopic transport method, the direction
is updated7 after every collision. The latter technique, therefore, gives better agreement with
experimental data at low energies. In particular, the energy dependence of R95 is correctly
reproduced. The values calculated using microscopic tracking agree with the measurement to
within 10%, except for the datapoints at 5 keV and between 100 and 200 eV. The agreement
between experimental data and Heed results improves with increasing energy, for ε > 500 eV the
calculated values differ from the measured ones by < 20%.

The Heed and Magboltz calculation results for N2 and CO2 exhibit a similar level of agreement
with measurements [109, 110]. Experimental data for other counting gases – with an accuracy
comparable to those by Waibel and Grosswendt – could not be found. Judging from the limited
available data, both calculation methods (Heed and Magboltz-based microscopic tracking) seem
to provide a realistic account of the spatial extent of ionization by δ-electrons.

7For most collision processes, the scattering angle is sampled from a screened Rutherford distribution,

dσ
d (cos θ) ∝

1
2

1− χ2

(1− χ cos θ)2 ,

where the parameter χ is tuned based on the transport cross-section.
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4.4. Summary

In atomic gases, the total ionization cross-section calculated by means of the PAI model as
implemented in Heed is within the spread of the experimental data. In Sec. 4.2 it was shown
that by taking molecular effects in the photoabsorption cross-section into account a similar level
of accuracy can also be achieved for molecular gases. If the photoabsorption cross-section of
complex gases is approximated by the sum of atomic cross-sections however, the predictive power
of the calculation is limited and ad-hoc tuning (e. g. of binding energies) is necessary to obtain
agreement with measurements.

Using the electron cross-sections for excitation and ionization available in the Magboltz database,
the effect of excitation transfer on the cluster density in gas mixtures can be estimated.

The microscopic tracking technique allows a detailed calculation of δ electron transport properties
(including their energy dependence) such as W value, Fano factor, and range. For pure gases, the
uncertainty of the ionization yield calculations, dominated by uncertainties in the excitation and
ionization cross-sections, is about ±5% for W and about 10% for F . The method is particularly
valuable for Penning mixtures, where linear interpolation of W and F between pure gas values is
not applicable.
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5. Deexcitation Processes

In the calculations discussed above, we have modelled Penning effects in terms of an empirical
transfer efficiency. In this chapter, we try to go a step further and explore the feasibility of
simulating deexcitation processes on a microscopic level.

5.1. Overview

5.1.1. Motivation

The maximum gain achievable in a gas detector before breakdown occurs has so far eluded
quantitative predictability. A plausible explanation for the onset of discharges is that VUV
photons resulting from the decay of noble gas atoms escape the confinements of the “primary”
avalanche and initiate a chain of secondary avalanches. A detailed deexcitation simulation could
be useful for understanding the relevance of the above mechanism with respect to breakdown.

As shown in Ref. [50], determining the dependence of the average transfer efficiency r on the gas
pressure p and the quencher concentration c from gain curves is possible but requires a large set
of gain measurements. In a “microscopic” deexcitation simulation, the pressure and concentration
dependence of Penning ionization should emerge naturally.

5.1.2. Description of the Model

For the purpose of simulating deexcitation processes, the microscopic tracking method was
extended by: (1) modelling of the decay processes following the production of an excited state
and (2) transport of the photons produced in the deexcitation cascade.

A schematic overview of the steps involved in the simulation is given in Fig. 5.1. Let us assume
that, as a consequence of an electron collision, a noble gas atom has been promoted to an excited
state k. The time ∆t after which the excited level decays is exponentially distributed and thus
sampled according to ∆t = −τk ln u, where τk is the total lifetime of the level and u ∈ (0, 1] is a
uniform random variate. The competing deexcitation processes are (1) spontaneous decay under
emission of a photon, and (2) excitation transfer induced by a collision of the excited atom with
another atom or molecule.

If the final state of the radiative decay is another, energetically lower lying excited state, the
energy ~ω ≈ εk − εi of the emitted photon is (in case of argon) below the absorption threshold of
all relevant quenching gases. These photons are, therefore, not tracked in the simulation. The
deexcitation cascade then proceeds with the state εi.

If the excited level decays directly to the ground state, a photon with energy ~ω ≈ εk is emitted.
After an (exponentially distributed) free flight step, the photon is absorbed either by the same
resonance line of the noble gas atom or by a quencher molecule. In the latter case, with a
probability given by the photo-ionization yield η, a new electron can be produced, which is added
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Figure 5.1. Schematic flowchart of the deexcitation model.

to the stack of electrons to be transported. In case of reabsorption, the deexcitation sequence is
repeated (we assume that the directions of absorbed and emitted photon are uncorrelated). Since
the photoabsorption cross-section of the resonance line typically exceeds the photoabsorption
cross-section of the quencher, the cycle of emission and re-absorption may recur many times
before the photon is eventually absorbed by the quencher or has diffused to the walls.

5.2. Atomic Data

In order to compile the data necessary for implementing the simulation method described above,
a literature survey was conducted, the results of which are presented in this section. In the
following, we consider mixtures of argon with the quenching gases methane, ethane, acetylene,
and carbon dioxide. This selection is based on the availability of experimental data for transfer
efficiencies [50].

5.2.1. Excitation Cross-Sections

The pathway towards a microscopic description of deexcitation processes in noble gases was
opened up by recent upgrades of the Magboltz database with respect to the modelling of
excitation cross-sections. As mentioned in Section 2.3.1, Magboltz includes since version 8.6
separate cross-sections for 44 Ar excitation levels, which had previously been lumped together to
three terms. The energetically lowest levels, which are also the most frequently excited ones, are
the four states with configuration 3p54s (in Paschen notation: 1s5, 1s4, 1s3, and 1s2). Two of these
levels, 1s5 (J = 2) at 11.55 eV and 1s3 (J = 0) at 11.72 eV, are metastable since electric dipole
transitions to the ground state are forbidden. Of the radiative 4s states (1s4 at 11.62 eV and 1s2
at 11.83 eV), the energetically higher level is the stronger one, as can be seen from Fig. 5.2.

The ten 4p levels (in Paschen notation: 2p10 – 2p1) have energies between 12.91 and 13.48 eV.
For reasons of readability, Fig. 5.2 shows only the sum of their cross-sections.
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Figure 5.2. Electron excitation cross-sections in argon, as implemented in Magboltz 8.9.

The 3d levels, which have energies between 13.85 and 14.3 eV, overlap with the 5s levels at about
14.1 eV and 14.25 eV. In Fig. 5.2, the 3d and 5s cross-sections are grouped into resonant (J = 1)
and non-resonant (J 6= 1) levels.

Of the higher excited states, Magboltz includes only resonant ns and nd levels. Up to 8s and 6d,
respectively, separate cross-sections for the individual levels are implemented. The higher levels
are combined to an artificial cross-section term with a threshold of 15.66 eV (labelled “higher” in
Fig. 5.2).

5.2.2. Radiative Decay

The strength of an optical transition between two levels k and i is characterized by the transition
rate Aki, i. e. the probability per unit time for the level k to decay spontaneously to a lower level
i. The total radiative lifetime τk is, consequently, given by

τk = 1/
∑
i

Aki,

where the sum extends over all allowed final levels. Another frequently used measure of the
intensity of an atomic transition is the oscillator strength fik, which is related to Aki by [116]

Aki = 2αf
~mec2

gk
gi

(εk − εi)2 fik,

with gi,k = 2Ji,k + 1 being the statistical weights of the two levels involved.

Where available, we have adopted the Aki values given in the NIST Atomic Spectra Database
[117]. Theoretical values calculated by Zatsarinny and Bartschat [118] have been used for a
number of 3d – 4p transitions not covered by the NIST compilation. For most of the resonance
levels, the decay to the ground state is not included in the NIST database either. In these cases,
transition rates corresponding to the f values recommended by Berkowitz [95], and, for the
highest levels (ε > 15.3 eV), where no other published data seem to exist, the oscillator strengths
calculated by Lee and Lu [119], have been used.
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Tables of the transition rates implemented in the simulation are given in Appendix A.3. For the
Magboltz cross-section term with a threshold of 15.66 eV, a special sequence is followed. If this
level is excited, the excitation is reallocated with equal probability to one of the five nearest
states (6d2, 5s4, 4s2, 5s

′
1, and 6d5) and the deexcitation cascade of the thus selected level is

followed.

Emission and Absorption Lines

The integral photoabsorption cross-section σ0 of a resonance line is given by [116]

σ0 = 2π2αf (~c)2

mec2 f,

where f is the oscillator strength of the respective line. For calculating σ0 we use f values (listed
in Table A.1) consistent with the transition rates for emission.

The absorption probability for a photon with energy ~ω is determined by the energy-dependent
photoabsorption cross-section

σ (~ω) = σ0φ (~ω) ,

where φ (~ω) denotes the so-called lineshape function with normalization

∞∫
−∞

d (~ω)φ (~ω) = 1.

The emission spectrum of a line is assumed to be described by the same lineshape function as
the absorption probability. The shape of φ (~ω) depends on the physical processes which are
responsible for the broadening.

• Natural broadening is a consequence of the finite lifetime of an excited state which, according
to Heisenberg’s uncertainty relation, implies an uncertainty in the energy of the level. The
natural lineshape follows a Lorentzian

φnat (~ω) = 1
π

Γnat/2
(~ω − ~ω0)2 + (Γnat/2)2 ,

with a full width at half-maximum (FWHM) Γnat = ~/τ . For the 1s4 and 1s2 lines of Ar,
the natural linewidth is of order 10−7 eV, which (under normal conditions) is negligibly
small compared to the other broadening mechanisms discussed below. Natural broadening
was, therefore, not taken into account in the simulation.

• Doppler broadening, caused by the relative motion of atoms in the gas, leads to a Gaussian
lineshape [120]

φD (~ω) = 1√
2πσ2

D

e
− (~ω−~ω0)2

2σ2
D

with standard deviation

σD = ~ω0

√
kBT

Mc2 (5.1)

and FWHM ΓD = 2σD
√

2 ln 2. At room temperature, one obtains for Ar a linewidth
(FWHM) of about 2− 3× 10−5 eV.
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• Pressure broadening is caused by collisions of an excited atom with its neighbours. For
radiative lines, resonance broadening is in weakly ionized gases the dominant mechanism
of this kind. It is caused by energy transfer between a resonant state and the surrounding
ground state atoms of the same species [120]. The line profile due to pressure broadening is
to good aproximation described by a Lorentzian. The full width at half maximum due to
resonance broadening is of the form

Γres = 2k αf (~c)3

mec2~ω0
fN, (5.2)

where N is the density of ground state atoms. The values of the prefactor k given in the
literature exhibit some scatter. We adopt the value proposed by Ali and Griem [121, 122],
k = 1.92π/

√
3. For pure Ar (at atmospheric pressure, T = 20◦ C), one obtains for the 1s2

line a width Γres ≈ 4× 10−4 eV.

The combined effects of pressure broadening and Doppler broadening lead to a so-called Voigt
profile, which is a convolution of a Gaussian and a Lorentzian. Let σ2

D be the variance of
the (Gaussian) lineshape when only Doppler broadening is present, and Γres be the FWHM
of the Lorentzian in case of pure resonance broadening. In terms of the reduced frequency
x = (~ω − ~ω0) /

(√
2σD

)
, the Voigt lineshape is given by (see e. g. Ref. [123])

φV (x) = aV
π

∞∫
−∞

du e−u2

(x− u)2 + a2
V

, aV = Γres/2√
2σD

.

The shape of the profile is controlled by the Voigt parameter aV . For the implementation in a
Monte Carlo simulation, we need to be able to draw random numbers from this distribution.
The following recipe (see e. g. Ref. [123] and references therein) is used: if xL is a Lorentzian
random variate with Γ/2 = aV , and xG is a Gaussian random variate with σ = 1/

√
2, the reduced

frequency xV = xL + xG is distributed according to a Voigt profile with shape parameter aV . For
the evaluation of the Voigt function itself, which is needed for the calculation of the absorption
mean free path, the implementation in ROOT [124], TMath::Voigt, is used.

In order to avoid unphysically large deviations of the emitted photon energy with respect to the
line centre, the line shape function is cut off at the wings such that

φ (~ω) =

φV (~ω) , |~ω − ~ω0| < ∆ (~ω)max

0, else
.

Photoabsorption and Photoionization

The photoabsorption cross-sections for CO2, CH4, C2H6, and C2H2 (shown in Fig. 5.3) were
taken from the compilation by Berkowitz [95] and a recent report by Sakamoto et al. [101]
based thereon. Ionization yield data were taken from Ref. [102] (methane and ethane), Ref. [125]
(acetylene), and Ref. [126] (carbon dioxide).

5.2.3. Collisional Deexcitation

Collisions with Quencher Molecules

A compilation of rate constants for 4s and 4p levels of argon used in the simulation is given in
Table 5.1.
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Figure 5.3 Photoabsorption cross-section
σγ of carbon dioxide, methane, ethane,

and acetylene [95, 101]. Grey lines
indicate resonance levels of argon.
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metastable 4s levels A comprehensive set of experimental data for a large number of quencher
gases was published by Velazco et al. [127]. In addition to their own measurements, the
authors also included a compilation of earlier results from other groups in their paper. The
rate constants for CO2 and C2H2 are taken from Table I of Ref. [127] (in case of acetylene,
the value for the 1s5 level was adopted also for the 1s3 level).

For the quenching of 1s5 by isobutane, the rate constant given in Ref. [128] is used. Since
this value is very close to the one for n-butane, we take the n-butane value for 1s3 given in
Ref. [127] as an approximation for iC4H10.

For CH4 and C2H6, the rate constants are taken from the set of measurements reported by
Chen and Setser [129]. Except for methane, these values are in good agreement with the
earlier data of Velazco et al. [127].

The uncertainty in the rate constants can be estimated to be about 10 – 20% [127, 129].

radiative 4s levels The rate constants for CO2, CH4, C2H6, and C2H2 are taken from Table II
in Ref. [127]. For iC4H10 the values given in Table IV of Ref. [128] are used.

4p levels Measurements of quenching rate constants for 2p8, 2p6, 2p5, and 2p1 (Paschen notation)
were reported by Sadeghi et al. [130]. For the other 4p levels, no experimental data seem
to be available. We use the average of the experimentally known levels as an estimate for
these rate constants.

For the higher levels, no measured rate constants could be found in the literature. In order to
estimate the rate constants of resonance levels, the Watanabe-Katsuura formula [131],

kM
[
cm3/s

]
= 2.591× 10−10

(
R2

ε2i
fi

σγ (εi)
2π2αfa

2
0

)2/5 (
T

µr

)3/10
, (5.3)

can be used, where µr is the reduced mass of argon atom and quencher molecule. For the
remaining (non-radiative) levels, an order-of-magnitude estimate of the rate constant can be
obtained using

kM = σHSv, (5.4)

where
σHS = (rAr? + rM )2 π,
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level rate constant [10−19 cm3 ns−1]
label energy [eV] CO2 CH4 C2H6 iC4H10 C2H2

1s5 11.548 5.3 4.55 5.29 7.1 5.6
1s4 11.624 5.0 4.5 6.2 6.1 4.6
1s3 11.723 5.9 5.30 6.53 8.5 5.6
1s2 11.828 7.4 5.7 10.7 11.0 8.7

2p8 13.095 6.4 7.4 9.2 5.0
2p6 13.172 6.1 3.4 4.8 5.7
2p5 13.273 6.6 6.0 9.9 6.0
2p1 13.480 6.2 9.3 11.0 5.3

Table 5.1. Rate constants for collisional quenching of Ar excited levels by carbon dioxide,
methane, ethane, isobutane, and acetylene [127–130].

gas ionization threshold diameter
[eV] [pm]

CO2 13.78 330
CH4 12.65 380
C2H6 11.52 390
iC4H10 10.67 500
C2H2 11.0 330

Table 5.2 Ionization potentials and ki-
netic diameters [134] of quenching
gases.

with rM being the radius of the quencher molecule, is the “hard sphere” collision cross-section
and

v =
√

8kBT
πµr

is the average thermal (relative) velocity. For the radii of excited argon atoms we use calculated
values given in Ref. [132]: r3d = 436 pm, r5s = 635 pm.

Ionization Yield

The above rate constants describe the total probability for collisional quenching, both ionizing
and non-ionizing. Branching ratios for quenching of metastables by C2H2 have been reported in
Ref. [133]. Two estimates are given: 0.61±0.14 and 0.74±0.07. For other levels and quenchers, one
can estimate the fraction of deexciting collisions leading to ionization of the quencher molecule
based on (5.3) as

kM+/kM ≈ η (εi)2/5 .

Collisional Self-Quenching

Collisions with ground state Ar atoms can give rise to population transfer between levels of
the same multiplet (collisional mixing) or to excitation transfer to an energetically lower lying
excited state.
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metastable 4s levels Kolts and Setser [135] reported two-body rate constants k = 2.1± 0.3×
10−24 cm3 ns−1 for the deactivation of 1s5 levels and k = 5.3± 0.9× 10−24 cm3 ns−1 for
the deactivation of 1s3 levels.

4p levels Rate constants for collisional population transfers within 4p levels are taken from
Ref. [136]. Rate constants for transfers to 4s states are given in Ref. [137]. The measurements
do not resolve the “recipient” 4s state however. We assume equal probabilities for each of
the four 4s states.

For levels with excitation energies above 14.7 eV, Hornbeck-Molnar ionization (2.31) was taken
into account, using the rate constant given in Ref. [138].

5.2.4. Tuning

Not all parameters needed for a microscopic simulation are available from experimental data or
can be calculated reliably. We, therefore, try to adjust the unknown parameters such that the
average transfer efficiencies obtained from gain curve fits are reproduced. More precisely, we are
interested in the parameters which minimize∑

i

(
r
(fit)
i − r(sim.)

i

)2
,

where ri are the average transfer efficiencies for Ar with 5%, 10%, 15%, and 20% CO2, 2%, 5%,
and 10% CH4, and 10% C2H6 (at atmospheric pressure). The reference values r(fit)i are taken
from Ref. [50]. The simulated values r(sim.)

i are calculated in a parallel-plate geometry with a gap
of 50 µm at an electric field of 70 kV/cm.

In order to reduce the parameter space, the rate constants and ionization yields are assumed to
be the same for all levels pertaining to one multiplet. Collisional mixing between 3d/5s levels
and transfers from higher excited levels to 3d and 5s levels are neglected.

One is then left with the following set of free parameters related to collisional deexcitation:

• rate constant k3d,5s→4p for collisional excitation transfer from Ar 3d and 5s levels to 4p
levels;

• rate constant khigh→4p for collisional excitation transfer from higher excited Ar levels to 4p
levels;

• rate constants and ionization yields for quenching of non-resonant 3d and 5s levels by CO2,
CH4, and C2H6 (for resonant levels the Watanabe-Katsuura formula is used);

• ionization yields for quenching of 4p levels by CH4 and C2H6;

• ionization yield for quenching of the metastable level 1s3 by C2H6.

In addition, the cut-off energy ∆ (~ω)max of the line-shape profiles can be considered as a free
parameter.

Initial estimates for the quenching rate constants are obtained from (5.4). Using a stochastic
(simulated annealing-like) optimization procedure a possible set of parameters (Table 5.3) was
found, which satisfactorily reproduces the Penning transfer efficiencies obtained from gain curve
fits. The results are shown in Fig. 5.4. The set of parameters shown in Table 5.3 is clearly not
a unique solution and probably needs to be revised if more measurements are included in the
fit. For Ar/C2H2, two sets of transfer efficiency measurements (using gain measurements with
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parameter value

k3d,5s→4p [10−20 cm3 ns−1] 10
khigh→4p [10−20 cm3 ns−1] 0.8
quenching of 3d levels by CO2

rate constant [10−19 cm3 ns−1] 12
ionization yield 0.8

quenching of 5s levels by CO2
rate constant [10−19 cm3 ns−1] 22
ionization yield 0.8

quenching of 3d levels by CH4
rate constant [10−19 cm3 ns−1] 1.8
ionization yield 0.2

quenching of 5s levels by CH4
rate constant [10−19 cm3 ns−1] 3.1
ionization yield 0.2

quenching of 3d levels by C2H6
rate constant [10−19 cm3 ns−1] 1.5
ionization yield 0.8

quenching of 5s levels by C2H6
rate constant [10−20 cm3 ns−1] 2.6
ionization yield 0.8

quenching of 4p levels by CH4
ionization yield 0.2

quenching of 4p levels by C2H6
ionization yield 0.3

quenching of 1s3 by C2H6
ionization yield 0.8

Table 5.3 Possible set of tuning param-
eters which reproduces the transfer
efficiencies (at atmospheric pressure)
for Ar/CO2, Ar/CH4, and Ar/C2H6
obtained from gain curve fits.
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Figure 5.4 Average transfer efficien-
cies as functions of the quencher

concentration in Ar/CO2, Ar/CH4,
Ar/C2H6, Ar/C2H2. Open symbols:
r values extracted from gain curves
[50], full symbols: results from mi-

croscopic calculation (see text).
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parallel-plate and cylindrical chambers, respectively) are given in Ref. [50]. At a concentration
of 5% C2H2, the extracted transfer efficiencies are r = 0.79 (cylindrical chamber) and r = 0.73
(parallel-plate chamber). As can be seen from Fig. 5.4, the simulated transfer efficiency with the
ionization yield of the metastable 4s levels set to 0.61 [133] and the ionization yield of the 4p
levels adjusted to 0.3 is in the same range (r = 0.68).

5.3. Summary

Input data for the microscopic model of Penning transfer presented in Section 5.1.2 are

1. optical transition rates for the excited states of the noble gas and lineshapes of the resonance
transitions;

2. photoabsorption cross-section and ionization yield of the quencher;

3. rate constants and ionization yield for collisional deactivation of excited noble gas atoms
by quencher molecules;

4. rate constants for collisional transitions between noble gas levels.

For the considered gases, the data associated to radiative decay (items 1 and 2) are available
from literature (except for isobutane for which no photoabsorption cross-section measurements
could be found). Literature data on collision-induced deexcitation transfer are less abundant. A
“first-principle” simulation is, therefore, not possible. By tuning the missing parameters however,
agreement with measured transfer efficiencies could be achieved, as shown in Sec. 5.2.4. The
model and the compilation of atomic data can be used as a basis for further investigations such
as photon feedback studies.



6. Semiconductor Detectors

In this chapter, the implementation of silicon detector simulation methods in Garfield++ is
described. Similarities and differences with respect to gas-based detectors are discussed.

6.1. Primary Ionization

As illustrated in Fig. 6.1, the absorption of photons with energies below ≈ 30 eV by solid,
crystalline silicon differs from the photon interaction with isolated silicon atoms in the same
energy range.

• Photo-ionization in solid silicon starts at the band gap energy (≈ 1.1 eV), whereas the
ionization threshold of atomic silicon is about 8.15 eV [117].

• A dominant feature of the loss function Im (−1/ε) of solid silicon is the so-called plasmon
peak at ≈ 16.7 eV (see Section 2.1.3) which reflects the excitation of collective oscillations
of valence electrons and is, consequently, not present in the atomic photoabsorption cross-
section.

In order to examine to which extent solid-state effects are relevant for charged particle ionization,
an implementation of the PAI model based on formula (2.14) – without the approximation (2.15)
made by Allison and Cobb [23] – was developed. The dielectric function used in the simulation
is based on experimental data for the complex index of refraction n + ik compiled in Ref. [139],
complemented by the tabulation of semi-empirical atomic form factors by Henke et al. [17] and
the compilation of optical data in Ref. [140]. The loss function, plotted in Fig. 6.1, satisfies the
Thomas-Reiche-Kuhn sum rule (A.9) to within 1%. For energy transfers between 30 keV (i. e.
the upper range of the Henke table) and the maximum allowed energy transfer, the appropriate
differential cross-section for scattering off free electrons is used1.

In terms of the level of detail with respect to the modelling of ε (k, ω), the above approach may
be regarded as a compromise between Heed, which uses the atomic photoabsorption cross-section,
and the more elaborate algorithm of Bichsel [141–143]. In the latter model (also called “Bethe-
Fano” method), which is also based on dielectric theory, the differential inelastic cross-section is
calculated as follows [141, 143]. For the transverse term, the same expression as in the PAI model is
used. For the calculation of the longitudinal term, the integration over k is split into two domains.
For low momentum transfers, k < k1, the dipole approximation Im (−1/ε (k, ω)) = Im (−1/ε (ω))
is used. For higher momentum transfers (k > k1), numerical calculations of the generalized
oscillator strength for the individual subshells are used. The parameterizations of the calculated
generalized oscillator strength are matched to optical data in the low-k regime. For large energy
transfers, the differential cross-sections for scattering of spin 0 particles by free electrons is used,

dσ
dE = dσ

dE

(R) (
1− β2 E

Emax

)
,

1 The relativistic cross-sections for scattering of spin 0, spin 1/2 and spin 1 particles with m > me, as well as of
electrons and positrons are summarized in Ref. [24].

87
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Figure 6.1. Optical data for silicon used in different implementations of the PAI model. Red
curve: loss function Im (−1/ε) of solid silicon (right scale) [17, 139, 140]. Blue curve: atomic
photoabsorption cross-section σγ divided by the photon energy, as used in Heed [17, 88].
Green curve: photoabsorption cross-section divided by the photon energy, as used in the PAI
model implementation of Geant4 (extracted from the file G4StaticSandiaData.hh).

where dσ/dE(R) is the Rutherford cross-section (A.3). Results for the stopping power dE/dx
and the inverse ionization mean free path λ−1 calculated by Bichsel, as well as tables of the
inverted cumulative differential cross-section for selected values of βγ are available on a webpage
[144]. The extension of the Bichsel model to other materials is not trivial, and has not been
attempted so far. Unlike for the PAI model implementations discussed here, the source code for
calculating dσ/dE is not publicly available.

Using the loss function depicted in Fig. 6.1, the stopping power calculated by means of the PAI
model is in agreement with Bichsel’s results. For 0.316 ≤ βγ ≤ 31622.8, i. e. the range covered in
the table provided by H. Bichsel [144], the difference between the two calculations is less than
0.5%. The difference in the inverse ionization mean free path is larger, with the values of λ−1

according to the PAI model being about 4− 5% higher than the values calculated by Bichsel.
In order to estimate the effect of uncertainties in the optical data, we replace the loss function
in the vicinity of the L23 edge by the data of Henke [17] (green curve in Fig. 6.1). This results
in an increase of λ−1 by 1.1 − 1.7% and an increase of dE/dx by 1.4 − 2.4% (with the larger
differences at low βγ).

The Heed results are also in agreement with Bichsel’s calculations. In the considered range of βγ,
the difference of the calculated values is less than 2% for the stopping power and < 5% for the
ionization mean free path. The differences between the results increase towards smaller βγ.

The results for λ−1 should be taken with a grain of salt. According to all three models, the
ionization mean free path at βγ = 3 is about 250 nm, which is significantly smaller than the
typical dimensions of today’s silicon sensors. No measurements of this quantity are available
which would allow a meaningful validation of the simulation.

In the next section, we shall discuss the impact of differences in the modelling of dσ/dE on
the resulting energy loss spectra. In addition to the above models (Heed, PAI model based on
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solid-state optical data, and Bichsel’s model), calculations using the general-purpose transport
codes Geant42 [11, 12] and Fluka3 [145, 146] are also included in the comparison.

For simulating the ionization energy loss of swift charged particles, two options provided by
Geant were explored.

standard electromagnetic package For thin absorbers, fluctuations of the continuous energy loss
are simulated according to the model described in Ref. [147]. The atoms of the material are
ascribed two discrete energy levels with excitation energies E1, E2 and oscillator strengths
f1, f2. The energy E2 is set to 10 eV× Z2 (corresponding roughly to the K shell energy),
and the associated oscillator strength is set to f2 = 2/Z. The energy E1 and the oscillator
strength f1 representing loosely bound electrons are fixed by the constraints

f1 + f2 = 1, f1 lnE1 + f2 lnE2 = ln I,

where I is the effective ionization energy of the material. Other parameters in the model
cross-sections σ1, σ2 are adjusted such that the mean energy loss according to the Bethe-
Bloch stopping formula is reproduced. The distribution of the energy loss due to ionization
between 10 eV and the threshold Ecut for explicit δ-electron generation, is approximated by
g (E) ∝ 1/E2. The number of energy loss events for each type of collision (i. e. excitations
and ionization) within a step are sampled from a Poisson distribution.

PAI model As an alternative to the standard electromagnetic physics model, Geant4 provides
an implementation of the PAI model [148]. For reasons of computational efficiency, the
photoabsorption cross-section (shown in Fig. 6.1 for the case of silicon) is represented as a
fourth-order polynomial in 1/ω.

For the present calculations, version 9.2 of Geant4 was used. The physics list was adapted from
the one of novice example N03. The production threshold was set to 10 µm.

The algorithm for the simulation of energy loss fluctuations implemented in Fluka is described
in Ref. [149]. Above a certain threshold, ionization is treated by means of explicit δ-electron
production. For the continuous energy loss below, an atomic model similar to the one of Geant is
adopted, considering two discrete energy levels (for elemental materials) and the appropriate
differential cross-section for free electron scattering above a certain threshold. The cross-sections
for “distant” collisions are assumed to be given by

σ1,2 = 2πe4

β2mec2
f1,2
E1,2

[
ln 2mec

2β2γ2

E1,2
− 0.577− δ(1,2)

F

]
,

with δF being the density effect correction.

The moments of the energy loss distribution for a single collision, 〈∆Em〉, can be evaluated
analytically. With the number of collisions n over a step being Poisson distributed, the cumulants
Km of the distribution of the total energy loss E =

n∑
i=1

∆Ei are given by

Km (E) = 〈n〉 〈∆Em〉 .

The energy loss is then sampled from a distribution which reproduces the first six cumulants.
The present calculations were conducted with version 2008.3d.1 of Fluka, using the set of defaults
NEW-DEFA (ionization fluctuations and δ-electron production – with a threshold of 100 keV –

2 “Geometry and Tracking”
3 “Fluktuierende Kaskade”



Chapter 6. Semiconductor Detectors 90

1

2

3

4

0.5Emp Emp 1.5Emp 2Emp

pr
ob

ab
ili
ty

(a
.u

.)

energy loss

(a)

1

2

3

4

0.5Emp Emp 1.5Emp 2Emp

pr
ob

ab
ili
ty

(a
.u

.)

energy loss

(b)

Figure 6.2. Energy loss spectra for pions (βγ = 10) traversing 100 µm of silicon. Left: calculations
using the Bichsel model (black curve), the PAI model based on solid-state optical data (red
curve), HEED (blue curve), the PAI model implemented in Geant4 (green curve), the standard
electromagnetic model of Geant4 (orange curve), and Fluka (purple curve). Right: energy loss
spectrum calculated using Heed (blue histogram) and distribution of the number of electrons
(grey histogram) calculated using the subshell-separation and δ-electron transport algorithms
in Heed and converted back to an energy loss spectrum (assuming W = 3.6 eV, F = 0.11).

switched on). The threshold for δ-electron production and transport can be set with the DELTARAY
card. Varying the cut values was found to have no significant impact on the energy deposition
spectrum. The EVENTDAT scoring option was used for retrieving the energy deposition in the
target for each simulated event.

6.1.1. Energy Loss Straggling

We consider the distribution of the energy lost by a high-energetic charged pion crossing a silicon
slab with a thickness of 100 µm. A pion was chosen as primary particle since in Bichsel’s model
(and also in Heed) the differential cross-section for large energy transfers is assumed to be given
by the relativistic cross-section for spin 0 particles.

To lowest order, one can characterize energy loss spectra in terms of the most probable value
Emp and the full width at half maximum (FWHM) w. Absolute differences in Emp and w

between different models can to some extent be absorbed in a scaling constant (i. e. the W value)
converting the theoretical energy loss distribution to an observable ionization spectrum. Hence,
we use the relative width ω = w/Emp as a calibration-independent parameter characterizing the
width of a spectrum.

A comparison of Emp, w, and ω for 4 different values of βγ is given in Table 6.1. For each value
of βγ, 2× 107 primaries were simulated. The same binning (200 bins between 0 and 80 keV) was
used for each model. The overflow, i. e. the percentage of events with an energy loss greater than
the upper range of the histogram, is also shown in Table 6.1.
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Bichsel PAI (this work) Heed G4 PAI G4 Standard Fluka

βγ = 1

Emp [keV] 40.3 41.9 42.1 38.2 41.1 41.4
w [keV] 17.7 17.0 16.6 18.6 17.7 16.5
ω 0.44 0.42 0.39 0.49 0.43 0.40

overflow [%] 10.6 10.0 9.0 8.9 8.5 10.0

βγ = 10

Emp [keV] 24.4 25.3 25.0 24.4 24.2 25.1
w [keV] 11.5 11.0 10.8 12.0 10.7 10.4
ω 0.47 0.45 0.43 0.49 0.44 0.42

overflow [%] 4.0 3.6 2.7 2.6 2.6 3.5

βγ = 100

Emp [keV] 26.0 26.2 26.1 26.4 25.4 26.9
w [keV] 12.5 12.0 11.6 13.1 11.4 11.2
ω 0.48 0.46 0.45 0.50 0.45 0.42

overflow [%] 4.1 3.7 2.7 2.7 2.7 3.6

βγ = 1000

Emp [keV] 26.1 26.0 26.3 26.6 25.7 27.0
w [keV] 12.7 12.2 11.8 13.4 11.5 11.4
ω 0.49 0.47 0.45 0.50 0.45 0.42

overflow [%] 4.1 3.7 2.8 2.7 2.8 3.6

Table 6.1. Most probable energy loss Emp, absolute (w) and relative (ω = w/Emp) full width
at half maximum of the energy loss spectrum, and fraction of energy losses above 80 keV, for
pions traversing 100 µm of silicon. The error in Emp and w is ≈ 0.1 keV.
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Figure 6.3. Energy loss spectra for positrons and protons in 100 µm silicon. The histograms
represent distributions calculated using the dielectric loss function-based PAI model (red
curve) and Heed (blue curve), smeared with a Gaussian (σ = 2 keV). The circles are
experimental data reported by Bak et al. [150]. No scaling of the horizontal axis was applied.

The results are in the same “ballpark”, with a standard deviation σ ≈ 6 − 8% among the
calculated values of ω. Non-negligible differences in the shape of the energy loss spectra do exist
however. These are best illustrated with the help of a plot. Figure 6.2a shows the calculated energy
loss distributions for βγ = 10. In order to align the peaks, the energy loss is normalized with
respect to the most probable value Emp. Of the four detailed models, Heed gives the narrowest
distribution, followed by the loss-function based PAI model, the Bichsel model, and the G4 PAI
model implementation. The same sequence is observed for the other values of βγ considered here.
Given the differences in the underlying photoabsorption cross-section (Fig. 6.1), the disagreement
between the results from Heed and the G4 PAI model is plausible. With the settings described
above, the shape of the energy loss spectrum calculated by means of the standard electromagnetic
interaction model of Geant4 differs significantly from the other calculations. Bichsel model,
loss-function based PAI model and Heed predict an increase of ω with increasing βγ which is
less pronounced in the Geant4 model and Fluka results.

In order to compare the calculations with measured spectra, it is necessary to convert the energy
loss to a number of electrons. Possible changes of the spectrum due to this conversion can
be conveniently estimated with Heed which – as mentioned in Chapter 4 – provides a generic
algorithm for subshell separation, atomic relaxation, and δ-electron transport. Figure 6.2b shows
two – virtually identical – energy loss distributions for βγ = 10 calculated using Heed. The blue
histogram is identical to the one in Fig. 6.2a. The grey histogram represents the distribution of
the number of electrons produced in the silicon layer, converted back to an energy loss spectrum
using the same W value as used in the δ-electron transport procedure (cf. the discussion of the
“PAIR” model in Ref. [88]). The close agreement between the two curves shows (1) that the
ionization spectrum is, to good approximation, proportional to the energy loss spectrum, and (2)
that δ-electron escape is insignificant for the considered detector thickness.

The set of experimental data reported by Bak and coworkers [150] seems to be a popular reference
for validation purposes [141, 148, 149].
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Figure 6.4. Left: relative peak width ω as function of the detector thickness calculated using
Bichsel model (black symbols), Heed (blue symbols), and loss-function based PAI model
(red symbols). Right: energy loss spectrum of pions (βγ = 4) in 1 µm of silicon, calculated
using Heed (blue curve) and loss-function based PAI model (red curve). For producing these
histograms 106 primaries were simulated.

• A systematic comparison of measurements and calculations is presented in Bichsel’s paper
[141]. Excellent agreement between experimental and theoretical distributions is found.
Instrumental effects were accounted for by convoluting the calculated loss spectrum with a
Gaussian (with a standard deviation σ = 2 keV in case of the 100 µm sensor).

• In Ref. [149], Bak’s measurements for 2 GeV/c positrons and protons in 100 µm silicon are
used for demonstrating the performance of the Fluka algorithm. Whether a broadening of
the distribution due to the experimental resolution was taken into account is not indicated.

• Satisfactory agreement between calculations using the Geant4 PAI model implementation
and experimental data by Bak for 2 GeV/c positrons in 32 µm silicon is reported in
Ref. [148].

As shown in Fig. 6.3 for 2 GeV/c positrons and protons in a 100 µm thick sensor, calculations
using Heed and the present implementation of the PAI model are also in reasonable agreement
with measured ionization spectra.

In addition to the particle momentum, the shape of the energy loss spectrum also depends on the
thickness of the silicon layer. Figure 6.4 shows the relative width ω = FWHM/Emp as a function
of the layer thickness. The differences between the calculations using Heed, the Bichsel model and
the present implementation of the PAI model can be seen to increase towards smaller thicknesses.
At typical thicknesses of planar sensors (≈ 100 − 300 µm) the different models produce very
similar results for the relative width ω.

The differences between models become more pronounced in very thin layers since features of
the differential cross-section such as the plasmon peak become visible. This can become relevant
for monolithic sensors where the depletion depth can in some cases be only few µm. As an
example, Fig. 6.4b shows the energy loss spectrum of a minimum-ionizing pion in a 1 µm thin
silicon slab calculated using Heed and the PAI model based on the solid-state dielectric function,
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respectively. The latter distribution exhibits pronounced maxima at multiples of the plasmon
energy (≈ 16.7 eV). The differential cross-section calculated by Heed also features a peak in the
same energy range, more specifically at about 20 eV, which is reflected in the energe loss spectrum.
Of the two models, the PAI model based on the solid-state dielectric function is expected to
provide a more reliable prediction of the energy loss spectrum at this thickness. Measured charge
deposition spectra for depletion depths of few µm would be very useful for validating the PAI
model. Unfortunately, no experimental data were found in the literature. At thicknesses above
approximately 5 µm, the features visible in the spectra shown in Fig. 6.4b are largely “washed
out” due to the large number of ionizing collisions the particle suffers during its passage through
the detector.

6.2. Field Calculation

Due to the presence of mobile charges, electric field calculations for silicon sensors tend to be
more complicated than for gas-based detectors. Whereas for the latter it is usually sufficient
to solve the Laplace equation, the electric field in a silicon detector is determined by Poisson’s
equation

∇ · (εE) = ρ

ε0
= e

ε0
(p− n+ND −NA) + ρf

ε0
, (6.1)

where p is the density of holes, n is the density of electrons, ND, NA are the densities of ionized
donors and acceptors, respectively, and ρf accounts for a possible fixed charge density [8, 9, 151].
The temporal evolution of the electron and hole concentrations is described by the continuity
equations

∂n

∂t
= −∇ · jn +Gn −Rn,

∂p

∂t
= −∇ · jp +Gp −Rp, (6.2)

where the terms Gn,p, Rn,p describe the generation and loss of carriers. From a macroscopic
viewpoint, the “driving forces” of the current densities jn,p are (1) the electric field and (2)
gradients in the respective concentrations,

jn = −nµnE−Dn∇n, jp = pµpE−Dp∇p, (6.3)

with µn,p being the electron/hole mobilities and Dn,p the diffusion coefficients4. To first ap-
proximation (drift-diffusion model), other driving forces such as temperature gradients are
neglected.

Powerful device simulation (also referred to as TCAD5) programs dealing with the self-consistent
solution of (6.1) and (6.2) are available. A popular commercial package is e. g. Synopsys Sentaurus
Device [152]. While primarily geared towards microelectronics applications, the program also
includes basic models for charge generation by ionizing radiation and can thus be used for
investigating the behaviour of particle detectors (see e. g. Ref. [153]).

In the following, a “hybrid” approach is taken: only the electric field calculation is “outsourced”
to TCAD while conventional detector simulation techniques are used for calculating primary
ionization and induced currents. In Sentaurus Device, the drift-diffusion problem, given by
Eqs. (6.1) and (6.2), is solved on a finite-element mesh [154]. As output of a simulation run,
one obtains the values of the potential, electric field and other variables on the node points
of the mesh. Sentaurus Device allows one to export these results to a file, from which they

4 Note that the dimension of the diffusion coefficients Dn,p appearing in Eq. (6.3) is different from the one of the
longitudinal and transverse diffusion coefficients DL,T introduced in Section 2.3.

5 Technology Computer-Aided Design



95 Chapter 6. Semiconductor Detectors

can subsequently be imported in another program. Given the nodal solution, together with a
description of the mesh6, the field at any point inside the device can be evaluated by interpolation
based on the values at the nodes belonging to the element in which the point is located. In
Sections 2.3.4 and 3.4, we have used the same method for dealing with field maps calculated
using the finite-element program Ansys [36].

In some cases it is also possible to find analytic expressions for the electric field. For instance, in
an overdepleted, unsegmented planar diode of thickness d, the electric field in the n-type bulk is
given by [8, 9]

E (x) = U − Udep
d

+ 2x
d

Udep
d

, (6.4)

where U is the applied reverse bias voltage and Udep is the voltage needed for full depletion.

For the calculation of weighting fields, the space charge distribution inside the device is not
relevant. For fully depleted sensors, the same techniques as for gas-based detectors can, therefore,
be used.

6.3. Charge Transport

6.3.1. Transport Parameters

The algorithm described in Section 2.3.2 for the stochastic integration of the first-order equation
of motion (2.22) can be applied without changes to the calculation of electron and hole drift
lines in silicon sensors. As input data the transport coefficients, in particular the drift velocity
(or, equivalently, the mobility µ), need to be specified.

For device simulation purposes, elaborate mobility models have been devised, which provide
empirical fit formulae for the dependence of µ on temperature, doping, impurity concentration,
electric field and other parameters [151, 154–156]. The dependence of the lattice mobility µL
– i. e. the mobility in pure silicon due to phonon scattering – on the temperature T is usually
expressed in terms of a power law,

µL (T ) = µL|T=T0

(
T

T0

)−ϑ
, T0 = 300 K.

Most values for the lattice mobility at 300 K reported in the literature are in the range 1350
– 1500 cm2 V−1 s−1 for electrons, and 450 – 500 cm2 V−1 s−1 for holes [151]. In Section 6.4
the default parameters of Sentaurus Device (µ0 = 1417 cm2 V−1 s−1, ϑ = 2.5 for electrons,
µ0 = 470.5 cm2 V−1 s−1, ϑ = 2.2 for holes) are used.

At high electric fields, the drift velocity in silicon approaches a saturation value vsat. A popular
parameterization for the mobility as a function of the electric field, proposed by Canali et al.
[157], is given by

µ (E) = µL(
1 +

(
µLE
vsat

)β)1/β , (6.5)

where both the saturation velocity vsat and the exponent β are temperature-dependent. For the
following calculations, the default models for vsat and β implemented in Sentaurus Device were

6 The coordinates of all nodes and the mapping between elements and nodes can be obtained from the output
file of the mesh generator tool Mesh which is part of the Synopsys TCAD suite.
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used. At 300 K, the values are vsat = 107 µm/ns, β = 1.109 for electrons and vsat = 83.7 µm/ns,
β = 1.213 for holes.

In the presence of a magnetic field B, the drift velocity can be calculated according to7

vd = µ |E| 1
1 + µ2

HB
2

(
Ê + µHB

(
Ê× B̂

)
+ µ2

HB
2
(
Ê · B̂

)
B̂
)
, (6.6)

with µH = rHµ being the so-called Hall mobility. At room temperature, the Hall scattering
factors are rH ≈ 1.15 for electrons, and rH ≈ 0.7 for holes [158]. For E ⊥ B, the angle θL (Lorentz
angle) between the drift velocity vector and the electric field is given by θL = arctan (µHB).

In device simulation programs, the diffusion coefficients in (6.3) are usually modelled using the
Einstein relation Dn,p = µn,pkBT/e. For the longitudinal and transverse diffusion coefficients
DL,T , as defined in Chapter 2, this corresponds to

DL = DT =

√
2kBT
eE

.

The probability for an electron or hole to be captured along its drift path by a defect state can be
described in terms of an average trapping coefficient (analogously to the attachment coefficient
η accounting for the loss of electrons in electronegative gases). In unirradiated sensors, charge
trapping can to good approximation be neglected.

Charge multiplication due to impact ionization can, in principle, be calculated using the Yule-
Furry like Monte Carlo method outlined in Section 3.1.4 – with the additional complication that
(at very high fields) both electrons and holes are able to multiply. Empirical parameterizations8
of the impact ionization coefficients for electrons and holes as functions of the electric field are
available from literature (see e. g. Refs. [151, 159]).

In (small-scale) gas-based detectors the inhomogeneity of the electric field can be assumed to be
the only relevant source of local variations in the transport coefficients. This is not necessarily
true for silicon sensors, in particular after heavy irradiation. Defect accumulation, for instance,
could cause a local increase of the trapping probability. If the field is calculated using Sentaurus
Device, such inhomogeneities can be taken into account by exporting (in addition to the electric
field) also the nodal solution for the mobilities (and other transport parameters). The mobility
at a given point can then be obtained by interpolation in this “mobility map”.

6.3.2. Microscopic Tracking

Semi-classical Monte Carlo simulation is an established method for electron transport in sub-
micron semiconductor devices [160–162]. In this section, the relevance of this technique for the
simulation of silicon detectors is discussed. We first review the key differences between gases and
solids with respect to electron transport.

7 Eq. (6.6) is to be understood with a negative sign of µ in case of electrons and a positive sign in case of holes.
8 Interestingly, the standard parameterization (“Chynoweth law”) for the impact ionization coefficient, α ∝

exp (−b/E), is virtually identical to the Rose-Korff formula for the Townsend coefficient in gases.
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Semi-Classical Electron Transport in Semiconductors

The propagation of an electron wave packet – centred at a position r and a wave vector k – in a
conduction band (index n) of a semiconductor can be described by the semi-classical equations
of motion (see e. g. Ref. [163])

~k̇ = −q
(
E + vn

(
k
)
×B

)
, ṙ = vn (k) , (6.7)

where
vn (k) = 1

~
∇kεn (k)

is the group velocity. At low electron energies, the dispersion relation ε (k) can be approximated
by a second-order Taylor expansion9,

ε (k) ≈ ~2

2

(
k2
t

m?
t

+ k2
l

m?
l

)
. (6.8)

Eq. (6.8) is written with a view to the lowest conduction band of silicon (X valley), which has
ellipsoidal equienergetic surfaces characterized by the longitudinal and transverse effective masses
m?
l = 0.916me, m?

t = 0.191me. In order to account for the deviation of ε (k) from the parabolic
shape (6.8), the expression [160]

ε (1 + αε) = ~2

2

(
k2
t

m?
t

+ k2
l

m?
l

)
, (6.9)

is often used. In silicon, Eq. (6.9) – with a non-parabolicity parameter α = 0.5 eV−1 – represents
a reasonable approximation up to ≈ 1− 2 eV [164]. For a correct description of electron transport
at higher energies so-called full-band simulations are necessary, which use numerical tabulations
of ε (k) [161, 162].

Whereas the transport properties of electrons in gases are governed by collisions with atoms and
molecules, the basic collision mechanisms of electrons in semiconductors are [160]

• scattering by phonons,

• scattering by defects (e. g. ionized impurities),

• scattering by other carriers.

Given the scattering rates τ−1
i (ε) for these processes, electrons can be tracked in a manner

similar to the procedure discussed in Section 2.3.1.

Implementation

In the framework of this thesis, an extension of the microscopic tracking technique allowing
for a basic simulation of electron transport in silicon was implemented. The band structure
was approximated using (6.9). For calculating the scattering rates τ−1

i (ε), the semi-empirical
formulae and parameters given in Ref. [160] were used. Figure 6.5a shows the collision rates (at
300 K) as a function of ε for the main scattering mechanisms of electrons in the X valley: acoustic
phonon intravalley scattering, X-X intervalley scattering by phonon emission/absorption, and
X-L intervalley scattering10. Impurity scattering and impact ionization are neglected.

The modified stepping algorithm proceeds as follows:
9 In Eqs. (6.8), (6.9), k is measured with respect to the wave vector at the minimum of the band.

10 The X-L scattering rates were calculated using the parameters given in Ref. [164].
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• The duration ∆t of a free flight step is sampled using the null-collision technique11.

• The wave vector ~k′ after the step is calculated in first order approximation,

~k′ = ~k + qE∆t,

and the electron energy is updated,

ε (k)→ ε
(
k′
)
.

• The new position in coordinate space is calculated,

r′ = r + ∆t
2
(
v + v′

)
.

• The type of collision to take place is selected based on the relative collision rates. The
energy after the collision is updated,

ε→ ε± ~ω.

A new wave vector, which is consistent with the new energy and the angular distribution of
the scattering process, is selected12. In the present implementation, all collision processes
are assumed to be isotropic.

As can be seen from Fig. 6.5b, the calculated drift velocity is line with the empirical parameteri-
zation (6.5). The agreement is to be expected since the parameters given in Ref. [160] used for
calculating the scattering rates are tuned to experimental data. For the range of fields considered
here (E < 100 kV/cm), the mean electron energy remains below 0.5 eV, i. e. well within the scope
of the non-parabolic band structure approximation (6.9). As an illustration, Fig. 6.5c shows the
calculated electron energy distribution at 5 kV/cm, 10 kV/cm, and 20 kV/cm.

Possible Applications

As shown in Fig. 6.5d, the mean distance between successive collisions of an electron is about
10 – 50 nm (to be compared with a mean free path of order 1 µm in gases at atmospheric pressure)
which is significantly smaller than the the typical feature sizes of silicon sensors (& 1 µm). In
most cases, a macroscopic treatment of drift and diffusion is therefore sufficient.

In analogy to Magboltz, the microscopic simulation might be used for a calculation of transport
coefficient tables however. This could be useful, for instance, for estimating the impact of defects
on the transport properties. In its present form, the code can be used for calculating drift velocity,
diffusion coefficients, and trapping rate. For the calculation of charge multiplication, a refined
band structure model would need to be implemented.

The modelling of ε (k) is less critical for the simulation of δ-electrons since the main observables
W and F are determined essentially by the scattering rates as functions of ε and the energy
partitioning in ionizing collisions between the primary electron and the secondary electron and
hole. When trying to simulate the energy degradation of high-energetic electrons, one is faced
with other difficulties however. At energies above ≈ 40− 50 eV, the inelastic mean free path of
electrons – which is obviously a key ingredient for the simulation – can be accurately calculated
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Figure 6.5. Monte Carlo simulation of electron transport in silicon (see text).
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curve: fit formula given in Ref. [165],
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of optical data as for the PAI model im-
plementation discussed in Section 6.1).
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Figure 6.7. Left: contour plot of the electrostatic potential in a p-on-n silicon strip detector
(150 V bias) as computed using Sentaurus Device [152]. Right: electron and hole drift lines
from a charged particle track calculated using Heed [89] and Garfield++ [16]. Both plots
show cross-sections (projection on the strip axis) through the sensor. The abscissae have tick
marks in 5 µm intervals, the ordinates have tick marks in 10 µm intervals.

using optical data models based on dielectric theory (see e. g. Ref. [165]). The impact ionization
rate at energies up to a few eV, on the other hand, can be calculated using semi-empirical models
developed for device simulation purposes [166]. As can be seen from Fig. 6.6, the impact ionization
rate according to Ref. [166] is not compatible with the inelastic scattering rate expected at low
energies from optical data models. It is not clear how the scattering rate in the intermediate
energy range (between about 5 and 40 eV) should be modelled. A microscopic simulation of
δ-electron transport could, therefore, not be implemented within the framework of this thesis.

6.4. Simulation Chain

In this section, the assembly of individual components such as field calculation, energy loss
simulation, and charge transport to a “full-chain” simulation is illustrated with the help of two
examples for typical sensor geometries.

6.4.1. Strip Sensor

We consider an n-bulk sensor (thickness 300 µm) with 16 µm wide p+ strip implants (pitch 80 µm).
Since the strip width is considerably smaller than the detector thickness, the one-dimensional
approximation (6.4) is not applicable here and the electric field needs to be calculated using
numerical techniques. Figure 6.7a shows a contour plot of the electrostatic potential calculated
using Sentaurus Device for a bias voltage Ubias = 150 V. For the field calculation, dopant
concentrations of 1× 1012 cm−3 in the n-bulk, 1× 1019 cm−3 (peak value) in the p+-implant,

11 In the literature on Monte Carlo transport in semiconductors, this method is referred to as self-scattering
algorithm.

12 In case of full-band simulations, the search for an appropriate wave vector is a computationally very intensive
step.
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Figure 6.8. Left: induced current on the central strip for tracks through the strip centre. Right:
average cluster size as function of the track incident angle without magnetic field (open
symbols) and in the presence of a magnetic field B = 2 T parallel to the strips (full symbols).

and 1× 1018 cm−3 (peak value) in the n+-implant were assumed. Surface charge at the interface
between oxide and n-bulk was neglected.

Using Heed, the ionization pattern produced by a charged particle traversing the detector is
simulated. For converting the energy loss in a collision to a number of “conduction” electrons,
the phenomenological algorithm included in Heed is used (with W = 3.6 eV, F = 0.11).

The drift of electrons and holes (visualized in Fig. 6.7b) is calculated using the mobility and
diffusion models discussed above (charge trapping is not taken into account). The drift line
integration is performed in fixed-distance steps of 1 µm. For reasons of visibility, Fig. 6.7b shows
only a small subset (0.1%) of the actual drift lines.

For the calculation of the weighting field of the strip electrode, the analytic expression (2.17)
was used. Using the Shockley-Ramo theorem (2.34), the induced current at each drift line step is
evaluated. The induced current, averaged over 500 charged particle tracks passing through the
centre of a strip at perpendicular incidence, is shown in Fig. 6.8a. The hole current can be seen
to constitute the dominant contribution to the total induced charge.

An example for a basic observable which can be calculated using this simulation chain, is the mean
cluster size, i. e. the average number of strips with a signal above threshold upon the passage
of a charged particle. For this calculation, a threshold of 1 fC was assumed. The simulation
results are shown in Fig. 6.8b. In the presence of a magnetic field of 2 T parallel to the strips,
the minimum of the cluster size can be seen to be shifted by the Lorentz angle θL.

6.4.2. Pixel Sensor (Time Resolution)

We consider a hybrid pixel detector with a sensor thickness of 200 µm and a pixel size of
300 µm×300 µm as used in the Gigatracker (GTK) of the NA62 experiment. The specification
of the GTK requires the capability to timestamp tracks with an unprecedented precision of
150 ps RMS.
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In this section we try to obtain a theoretical estimate of the single pixel hit time resolution. In
order to achieve a short charge carrier drift time, the sensor (which is of p-on-n type) is operated
in overdepletion at a bias of 300 V. To first approximation, the electric field in the sensor can,
therefore, be assumed to be uniform. In order to identify the different contributions to the time
resolution, we consider three combinations of simulation techniques for charge deposition and
induced current.

1. The number of electron and hole pairs created by a charged particle is sampled using Heed
but the positions of the electrons and holes are (re-)distributed uniformly along the track.
Electrons and holes are drifted in a uniform electric field. For calculating the induced
current, a constant weighting field (corresponding to an unsegmented readout pad) is used.

2. As in case 1, constant drift and weighting fields are assumed but spatial fluctuations in the
ionization process as simulated by Heed are taken into account.

3. As in case 2, the spatial ionization profile calculated using Heed is used. For evaluating the
weighting field, a field map (calculated using Ansys) for a pixel geometry is used. This is
the most realistic case considered here.

The response of the front-end electronics can be described by the transfer function [168]

f (t) = τacτr [f1 (t) + f2 (t) + f3 (t) + f4 (t)] ,

with

f1 (t) = −e−t/τacτac
(τac − τi)2 (τac − τr)

, f2 (t) = te−t/τi
(τac − τi) τi (τi − τr)

,

f3 (t) = e−t/τrτr
(τac − τr) (τr − τi)2 , f4 (t) = e−t/τi

(
τ3
i − τacτiτr

)
(τac − τi)2 τi (τi − τr)2 ,

τr = 5.6 ns, τi = 1.8 ns, τac = 47 ns.

By convoluting the induced current with f (t), we obtain the output signal of the preamplifier.
As a next step, the pulse shape is compared against a threshold value and the threshold crossing
times t1 (leading edge) and t2 (trailing edge) are determined. In the present calculation, the
nominal discriminator threshold value, corresponding to 0.7 fC, was used. The time over threshold
(ToT), t2 − t1, provides information about the deposited charge. Since t1 is a monotonic function
of the input charge, the ToT information can be used for a timewalk correction of t1.

For each of the above-mentioned cases, a sample of 10000 tracks (10 GeV/c pions) with perpen-
dicular incidence is simulated. Similarly to the procedure used in the experiment, a look-up-table
(more precisely: a profile histogram) of ToT vs. t1 is established. In a second pass, the dis-
tribution of the ToT-corrected arrival time tcorr1 is calculated. For the jitter of tcorr1 , we thus
obtain σ1 = 71.0 ± 0.5 ps (statistical error) for case 1, σ2 = 105.7 ± 0.7 ps for case 2, and
σ3 = 141.5± 1.0 ps for case 3. Assuming that the contributions to σ3 due to ionization fluctua-
tions and due to the variation of the weighting field add in quadrature, we obtain for the latter√
σ2

3 − σ2
1 = 94.1 ps. The contribution to the jitter due to the inhomogeneity of the weighting

field can thus be seen to be of similar magnitude as the jitter due to ionization fluctuations.

In a beam test, the NA62 collaboration measured a single hit time resolution of ≈ 175 ps [169].
The difference between calculated and experimental results is qualitatively plausible considering
that jitter due to electronic noise was neglected in the simulation.



103 Chapter 6. Semiconductor Detectors

6.5. Summary

The implementation of silicon detectors in Garfield++ profits from conceptual similarities with
gas-based detectors, which exist in several areas of detector simulation such as the calculation of
energy loss, the “macroscopic” transport of charge carriers in an electric field, and the evaluation
of induced signals.

Energy Loss Two variants of the PAI model were made available: an interface to the Heed
program (which uses the atomic photoabsorption cross-section) and an implementation
based on the solid-state dielectric function, developed within this thesis work. For sensor
thicknesses of the order of 100 µm and above, the calculated spectra according to both
models are within the margin of experimental uncertainty. Using the phenomenological δ
electron transport algorithm provided by Heed, spatial fluctuations of primary ionization
which have significant impact on the spatial and time resolution (Sec. 6.4.2) can be
simulated.

Field Calculation An interface to the device simulation program Synopsys Sentaurus Device was
written which allows virtually arbitrary two- and three-dimensional field configurations to
be simulated.

Charge Transport An extended version of the microscopic tracking method allowing for electron
transport in silicon was implemented using literature data for scattering rates and band
structure. For microscopic tracking with the currently implemented level of detail no obvious
application could be identified yet. Since the mean distance between successive collisions
of an electron (about 10 – 50 nm) is small compared to typical feature sizes of silicon
sensors, macroscopic simulation based on parameterized transport coefficients provides for
most applications a sufficient approximation. It is possible however, that for novel detector
structures with reduced feature size microscopic tracking will become relevant.

The implementation of silicon detector simulation in Garfield++ was not driven by a specific
application but was intended as a “proof-of-principle” demonstration. For further developments,
it would be beneficial to use the program embedded in a concrete R&D effort. The simula-
tion methods mentioned above are not limited to silicon, but can also be extended to other
semiconducting materials provided that the relevant material properties are known.
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7. Software Aspects

This chapter outlines the motivations for developing Garfield++ and gives an overview of its
design.

7.1. Motivation

“Classic” Garfield [15] is written in Fortran 77, which used to be the prevalent programming
language in high-energy physics computing until the LHC era. Over the last 15 years or so, C++
has gradually replaced Fortran as the main language in this field. On the detector simulation
side, Geant4 [11, 12] was developed as a successor of the Fortran based Geant3 program. The
C++ based package ROOT [124] has emerged as a widely used framework for data analysis and
other aspects of computing. Event generators like Pythia and Herwig have also been rewritten in
C++ [10].

The dominance of C++ implicates that many physicists working in particle physics and related
areas such as instrumentation have nowadays at least a basic knowledge of this programming
language, while Fortran literacy is diminishing. In order to encourage users to look into the source
code and add their own contributions, thus trying to steer the development process towards a
more collaborative style, a migration of Garfield to C++ was initiated.

Making the procedures of Fortran Garfield accessible via wrapper classes would be a simple
method to give the program a C++ appearance. Instead of executing a set of instructions in
the native scripting language, users could include these wrapper objects in a C++ program and
combine them at liberty with elements from other packages such as ROOT.

Such a merely “cosmetic” approach is unsatisfactory, though.

• Instead of making the algorithms used in the program more transparent to non-experts of
Fortran, the parts of the code doing actual calculations are hidden from the user.

• The layout of the Fortran code imposes restrictions on the class structure of the wrapper.
For instance, in a C++ program one would typically integrate all functionality pertaining
to the handling of gas properties (e. g. specification of the gas composition, interpolation of
gas tables) in a dedicated class. In the “wrapping” approach, the variables describing the
gas properties are not encapsulated in the C++ class, but are stored in Fortran common
blocks. As a consequence, all instances of the class would share the same data. In order
to avoid inconsistencies, the class object should, therefore, be implemented as a singleton.
The same is true for other aspects of the program like electric fields or signals. A genuine
object-oriented design is not possible.

• Garfield uses a number of modules from the Cern program library (CERNLIB). This might
lead to compilation problems in the future, because this library is no longer supported. In
order to ensure the long-term maintainability of the program, dependencies on CERNLIB
should thus be kept at a minimum.
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Figure 7.1. Overview of the main class categories in Garfield++ and their interrelations. A
detailed explanation is given in the text.

Rewriting the program from scratch has the advantage that one can rethink its architecture and
adapt it to the simulation needs of current detector development efforts. Since the source code of
Garfield – not including Heed and Magboltz – comprises at present about 160000 lines of code1,
translating it to another language is not only a very time-consuming task but also introduces
inevitably some bugs.

For the development of Garfield++ [16] a step-wise, application-driven approach was taken. By
translating pieces of code only if their functionality is needed for a concrete simulation study,
and by benchmarking calculations against the Fortran version, it is hoped that serious bugs can
be detected and eliminated at an early stage. Since the start of the project (a first prototype
was written at the end of 2009), the C++ version has steadily grown, currently counting about
60000 lines of code. As the development of Garfield++ was initiated in the context of the RD51
collaboration, it has been used mainly for MPGD simulations so far. A non-exhaustive list of
examples can be found on the webpage [16].

7.2. Class Structure

The design philosophy of Garfield++ is to provide a collection of C++ classes to be used as
building blocks of a detector simulation program.

An overview of the class structure is given in Fig. 7.1. Two main categories can be distinguished:
(1) classes dealing with the transport of particles, and (2) classes providing a “static” description
of the detector. The latter group comprises classes describing the relevant material properties
(labelled Medium in Fig. 7.1), classes representing the geometry, and classes dealing with the
calculation of fields (labelled Component in Fig. 7.1). More precisely, the main purpose of

1 Even if obsolete parts of the code and subroutines dealing with graphics, histogramming, fitting etc. (i. e.
functionality which can, to some extent, be outsourced to ROOT) are subtracted, one is left with an “irreducible”
core of about 100000 lines of code.
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Component classes is to provide, for a given point (x, y, z) inside the detector, the electric and
magnetic field and a pointer to the Medium at this location. As schematically illustrated in
Fig. 7.1, a detector can be described by several Components, which are also allowed to overlap.
Combinations and superpositions of electric, magnetic and weighting fields calculated using
different techniques are thus possible. The Sensor class, which is basically an assembly of
Component objects, acts as a central interface to the transport classes and, in addition, takes
care of signal calculations.

The class concept of Garfield++ was devised with a view to minimizing mutual dependencies
between the individual objects. In Fig. 7.1, the class “hierarchy” is indicated by the directions of
the arrows. For instance, a Track class requires a description of the detector in form of a Sensor
object, whereas, casually speaking, the Sensor does not “know” about the transport classes in
which it is used. Further, a Track class depends only on the Sensor but has no reference to the
hierarchically subordinate Component class. As an illustration of the interrelations between the
objects discussed above, consider the following minimal code example.

1 // Setup the gas.
MediumMagboltz* gas = new MediumMagboltz();

3 gas->SetComposition("ar", 80., "co2", 20.);
// Create a field map component.

5 ComponentAnsys123* fm = new ComponentAnsys123();
fm->Initialise("ELIST.lis", "NLIST.lis", "MPLIST.lis", "PRNSOL.lis");

7 for (int i = fm->GetNumberOfMaterials(); i--;) {
// The gas is identified by its dielectric constant.

9 if (fabs(fm->GetPermittivity(i) - 1.) < 1.e-3) fm->SetMedium(i, gas);
}

11 // Assemble a sensor.
Sensor* sensor = new Sensor();

13 sensor->AddComponent(fm);
// Create a class for microscopic tracking.

15 AvalancheMicroscopic* aval = new AvalancheMicroscopic();
aval->SetSensor(sensor);

17 ...

In this case, the geometry of the detector is fully determined by the field map. A separate
Geometry object is thus not necessary; it is sufficient to associate the regions in the field map
where charge transport is to be enabled with a Medium class (lines 7 – 10). In order to be able to
transport electrons through the field map (in this case using the microsopic tracking technique),
a pointer to a Sensor object is passed to the AvalancheMicroscopic class (line 16). The Sensor
in turn holds a pointer (more generally, a list of pointers) to a Component object.

Some of the above class categories bear resemblance to “sections” in (Fortran) Garfield scripts.
Medium classes, for instance, can be regarded as the counterpart of the &GAS section, Component
classes are similar (but not identical) in scope to the &CELL section. These similarities might help
users accustomed to Garfield to become familiar with the C++ version.

In addition to the classes discussed so far, Garfield++ also includes classes for visualization
purposes such as plotting drift lines, making a contour plot of the electrostatic potential, or
inspecting the layout of the detector. Whereas these auxiliary classes rely extensively on ROOT,
the core framework shown in Fig. 7.1 was, as far as possible, decoupled from external software.
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7.3. Summary

Garfield++ is an object-oriented toolkit for the simulation of ionization-based particle detectors.
It shares functionality with and inherits many algorithms of the Fortran program Garfield, but
has been rewritten from scratch in C++. The focus of applications is currently in the domain of
micropattern gas detector R&D, for example for LHC upgrade studies.

Outlook

At present, the following methods for calculating electric fields are available:

• semi-analytic (two-dimensional) solutions for configurations of wires and planes;

• interpolation of field maps created with the finite element programs Ansys, Elmer, and
CST;

• interpolation of field maps created with the device simulation program Synopsys Sentaurus
[152].

In the near future, an interface to the (three-dimensional) neBEM field solver should be made
available. This requires a geometry package which is capable of discretizing surfaces into rectangles
and rectangular triangles (with consideration of overlaps). A third-party open-source software
with this feature could not be found yet. In Garfield, the internal graphics library is used for
this purpose. Porting this library to C++ (or wrapping it) seems at present the most promising
(albeit cumbersome) solution.

Depending on demand, other procedures available in Fortran Garfield (e. g. additional interfaces
to finite element programs, field optimization etc.) might also be translated or reimplemented.
Otherwise, future work should focus on aspects which are complementary to the traditional scope
of Garfield.

Finally, it should be mentioned that an interface between Garfield++ and Geant4 is in preparation
[170]. This effort is primarily motivated by the idea of enabling detailed simulations of gas-based
detectors within the Geant framework; such an interface is also attractive from the Garfield
perspective however, since it provides access to the rich catalog of physics processes available in
Geant.



8. Summary

Within the framework of the present thesis, an object-oriented version of the detector simulation
program Garfield was developed. A key feature of this toolkit (Garfield++) is a refined treatment
of electron transport: instead of calculating drift lines based on macroscopic transport parameters,
electrons are traced through individual collisions with gas atoms or molecules. The viability
of this so-called “microscopic” tracking method for modelling drift and diffusion in small-scale
devices was demonstrated by comparing simulation results and measurement data from literature
for the electron transparency of a single GEM.

Using the same technique the statistics of electron avalanches in gas detectors were examined. Up
to now, gas gain fluctuations used to be modelled in terms of a phenomenological parameterization
(Pólya distribution) or – in case of uniform fields – using toy models the physical basis and
numerical evaluation of which were discussed in Section 3.2.2. Unlike these previous approaches,
the “microscopic” simulation procedure allows a quantitative prediction of the relative variance
of gain spectra. This was verified by comparing simulation results with experimental data
for parallel-plate chambers from literature. For methane, which is the only gas for which two
independent measurements are available, excellent agreement was found. The method was then
used to investigate gain fluctuations in parallel-plate chambers, wire chambers, Micromegas and
GEMs.

• A toy model providing an intuitive explanation for the impact of gas mixture and electric
field on the relative variance in uniform fields was proposed and shown to be consistent
with the simulation.

• A study of avalanche fluctuations in noble gas based mixtures was carried out. In line with
the above mentioned model, neon mixtures were found to exhibit a lower relative variance
than argon based mixtures (at the same Townsend coefficient) since exciting collisions are
less abundant (compared to ionizing collisions) than in Ar.

• The relative variance in non-uniform field configurations is correlated with the mean field
E2 at which the first ionization occurs.

• In GEMs, E2 increases with increasing potential difference UGEM between the electrodes on
the foil. The relative variance is lower than in a uniform field of strength E2 due to losses.

• In wire chambers, E2 decreases with increasing sense wire potential. For a given gas
composition and density, the relative variance increases with increasing mean gain.

As demonstrated in Section 4.3, the “microscopic” transport method can also be used for
simulating δ electrons. Unlike for phenomenological calculations, the energy dependence of the
characteristic parameters such as W value, Fano factor, and range emerges naturally. The W
value as function of the electron energy in Ar, N2, CH4, and CO2 could be reproduced within
the spread of experimental data.

For the calculation of both avalanche and primary ionization statistics in Penning gas mixtures,
excitation transfer needs to be included in the simulation. Two approaches were explored: (1)

109



Chapter 8. Summary 110

modelling excitation transfers in terms of an empirical average transfer efficiency and (2) a
detailed simulation of the deexcitation processes on an atomic level. Using the former method,
estimates for the impact of Penning transfer on cluster density, W value, Fano factor, and relative
variance of gain spectra were made. For Ar/CO2, for instance, it was found that

• the cluster density of minimum-ionizing electrons in Ar/CO2 (90:10) is 6 – 10% higher
compared to a calculation without Penning transfer,

• the W value exhibits a minimum around a concentration of ≈ 8% CO2,

• the relative variance f of the avalanche size distribution in Ar/CO2 (90:10) is ≈ 12% lower
compared to a calculation without Penning transfer.

A proof-of-principle demonstration of the viability of the second approach was given in Chapter 5.
The average transfer efficiencies in Ar/CO2, Ar/CH4, Ar/C2H6, and Ar/C2H2 could be reproduced
using a set of microscopic parameters based on literature data and fitted values.

While originally developed for the simulation of gas-based detectors, a number of calculation
techniques available in Garfield can – with appropriate modifications – be applied to the simulation
of silicon sensors. The PAI model, for instance, can be used for primary ionization calculations
in both gases and semiconductors. The impact of the level of detail in the modelling of the
photoabsorption cross-section on the ionization mean free path in gases and on energy deposition
spectra in silicon was examined in Sections 4.2 and 6.1, respectively.

Using PAI model based simulation of primary ionization, electric field calculation using device
simulation programs, and “macroscopic” transport of electrons and holes, Garfield++ allows one
to simulate a broad class of silicon sensors.



A. Appendix

A.1. Inelastic Scattering of Charged Particles

We consider the scattering of a charged particle with mass M and charge ze by the Coulomb field
of an atom within the framework of non-relativistic quantum theory. The following derivation of
the stopping power is based on Refs. [171, 172].

In first order perturbation theory, the transition rate wi→f between two eigenstates |i〉 , |f〉 of
the unperturbed Hamiltonian can be calculated using Fermi’s “golden rule”

wi→f = 2π
~
|〈f |U |i〉|2 ρf , (A.1)

where ρf is the density of final states.

The particle is represented by a plane wave with incident wave vector K and outgoing wave
vector K′. As a result of the collision, the atom is promoted from its ground state |0〉 with energy
ε0 to an excited state |j〉 with energy εj . The interaction Hamiltonian is given by

U = ze2
[
Z

r
−

Z∑
i=1

1
|r− ri|

]
.

Hence, we have to evaluate the matrix element

〈
j,K′

∣∣U |0,K〉 =
∫

d3r

∫
d3Zrieik·rze2

[
Z

r
−

Z∑
i=1

1
|r− ri|

]
ϕ0 (ri)ϕ∗j (ri) ,

where k = K−K′.

Because of the orthogonality of the atomic states, the first term (∝ 1/r) vanishes. The second
term can be evaluated using a “trick” [171]. The electrostatic potential associated to a charge
density ρ (r) is given by

V (r) =
∫

d3r′
ρ (r′)
|r− r′| .

For a point charge ρ (r) = δ (r− ri), the Fourier components V±k of the potential are

V±k = 1
(2π)3/2

∫
d3r

e∓ik·r

|r− ri|
.

By comparison with the Poisson equation,

V±k = 1
(2π)3/2

4π
k2 e

∓ik·ri ,

one obtains ∫
d3r

e±ik·r

|r− ri|
= 4π
k2 e

±ik·ri .
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The matrix element is thus given by

∣∣〈j,K′∣∣U |0,K〉∣∣2 = 1
V 2

4 (2π)2 z2e4

k4 |Fj0 (k)|2 ,

where Fj0 denotes the form factor

Fj0 (k) =
〈
j

∣∣∣∣∣
Z∑
i=1

eik·ri
∣∣∣∣∣ 0
〉
.

Inserting the density of final states,

ρf = δ

(
~2

2M
(
K2 −K ′2

)
− (εj − ε0)

)
V d3p′

(2π~)3 , d3p′ = ~3K ′2dK ′dΩ,

and integrating over K ′ yields

dwj = 1
V

4z2e4

~k4 |Fj0 (k)|2 MK ′

~2 dΩ.

The transition rate w is the product of the scattering cross-section σ and the incident probability
current density jin,

w = σjin.

With jin = 1
V

~K
M the differential cross-section reads

dσj
dΩ = 4z2e4M2

~4k4
K ′

K
|Fj0 (k)|2 .

Using
k2 = K2 +K ′2 − 2KK ′ cos θ → dΩ = 2πkdk

KK ′

one obtains for the differential cross-section with respect to the momentum transfer k

dσj
dk = 8πz2e4M2

~4K2
|Fj0 (k)|2

k3 . (A.2)

For the scattering off free electrons, i. e. |Fj0 (k)|2 = 1, one obtains the Rutherford cross-section

dσ
dE = 2πz2 (αf~c)2

mec2
1

β2E2 , E = ~2k2

2me
. (A.3)

The total cross-section is obtained by integrating1 (A.2) over k and summing over all possible
transitions,

σ =
∑
j

σj = 8πz2e4M2

~4K2

∑
j

kmax∫
kmin

dk |Fj0 (k)|2

k3 .

In the non-relativistic case considered here, the maximum momentum which can be transferred
to an electron by the primary particle is given by

~kmax = 2meM

me +M
βc,

1 It is assumed here that the form factor is isotropic.
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which for M � me can be approximated by ~kmax ≈ 2meβc. For electrons, ~kmax = meβc/
√

2.
The minimum momentum transfer is given by

~kmin = εj − ε0
βc

. (A.4)

For the stopping power
dE
dx = −

∑
j

N

∫
dkdσjdk (εj − ε0)

one obtains by inserting (A.2)

dE
dx = −8πz2e4M2N

~4K2

∑
j

kmax∫
kmin

dk |Fj0|
2

k3 (εj − ε0) . (A.5)

A.1.1. Sum Rules

The following derivation is taken from Ref. [171], where also a more general discussion of sum
rules can be found. The quantum mechanical expression for the stopping power derived in the
previous section involves the sum

S =
∑
j

|Fj0 (k)|2 (εj − ε0) =
∑
j

〈j|F |0〉 〈0|F ∗ |j〉 (εj − ε0)

=
∑
j

〈0|F ∗ |j〉 〈j| [H0, F ] |0〉 = 〈0|F ∗ [H0, F ] |0〉 .

The potential part of the atomic Hamiltonian commutes with F ,

[H0, F ] = − ~2

2me

∑
j

∆j ,
∑
i

eik·ri


= ~2

2me

∑
i,j

eik·riδij
(
k2 − ik · ∇j

)
= ~2

2me

∑
j

eik·rj
(
k2 − ik · ∇j

)
.

As the ground state is real (ϕ∗0 = ϕ0), one can write

S = ~2

2me

∑
i 6=j

∫
d3Zrae−ik·(ri−rj)

(
k2 − ik · ∇j

)
ϕ2

0 (ra) + ~2

2me

∑
i

∫
d3Zra

(
k2 − ik · ∇i

)
ϕ2

0 (ra) .

Partial integration over the terms involving the gradients and discarding the surface terms shows
that the two terms in the first integral cancel each other out and that the second term in the
second integral vanishes. Hence, one obtains

2me

~2k2Z

∑
j

|Fj0 (k)|2 (εj − ε0) = 1. (A.6)

This is the Bethe sum rule. The quantity

2me

~2k2Z
|Fj0 (k)|2 (εj − ε0)
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is called the generalized oscillator strength.

In terms of the loss function, the Bethe sum rule reads
∞∫
0

dω Im
( −1
ε (k, ω)

)
ω = 2π2e2NZ

me
= π

2ω
2
p. (A.7)

In the limit of small momentum transfer ~k, the exponential in the form factor can be approxi-
mated by an expansion to linear order (dipole approximation). The generalized oscillator strength
then reduces to the optical oscillator strength

fj0 = 2me

3~2Z

∣∣∣∣∣〈j|∑
i

ri |0〉
∣∣∣∣∣
2

(εj − ε0)

which satisfies the Thomas-Reiche-Kuhn (TRK) sum rule∑
j

fj0 = 1. (A.8)

In terms of the optical loss function, the TRK sum rule becomes
∞∫
0

dω Im
( −1
ε (ω)

)
ω = π

2ω
2
p. (A.9)

A.1.2. Stopping Power

Owing to the Bethe sum-rule (A.6), the evaluation of the stopping power (A.5) would be greatly
simplified if the summation over the states j and the integration over k were interchangeable:

dE
dx = −8πz2e4M2

~4K2 N

kmax∫
kmin

dk
k

∑
j

|Fj0|2

k2 (εj − ε0) = − 4πz2e4

β2mec2NZ ln kmax

kmin
.

Since the lower limit of the integral depends on εj , the above equation is strictly speaking not
correct and represents an approximation.

Therefore, the minimum and maximum momentum transfers have been replaced by average
values kmin, kmax. To obtain the effective minimum momentum kmin, an appropriate average of
(A.4) needs to be taken. In terms of an effective ionization potential I, kmin is expressed as

kmin = I

βc
.

One then obtains the non-relativistic Bethe stopping formula

dE
dx = −4πz2e4

mec2 NZ
1
β2 ln 2mec

2β2

I
. (A.10)

In a relativistic treatment, not only the Coulomb potential but also the vector potential need to
be considered. The relativistic version of the Bethe stopping formula is

dE
dx = −4πz2e4

mec2 NZ
1
β2

[
ln 2mec

2β2γ2

I
− β2

]
. (A.11)
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Figure A.1 Stopping power dE/dx of Si
(I = 173 eV) as a function of βγ accord-
ing to the non-relativistic expression
(A.10), the relativistic expression (A.11)
and the standard Bethe-Bloch formula
(A.12) including the density effect cor-
rection δF (Sternheimer parameteriza-
tion).

The derivation of this formula (see e. g. Ref. [22]) involves several approximations. In order to
obtain a realistic description of the stopping power, additional correction terms are necessary. At
high incident energies, the polarization of the medium reduces the energy loss. With a correction
term δF accounting for this so-called density effect, the Bethe-Bloch equation for heavy particles
reads [5]

dE
dx = −4πz2e4

mec2 NZ
1
β2

[
ln 2mec

2β2γ2

I
− β2 − δF

2

]
. (A.12)

A parameterization of δF and numerical values for various materials are given in [173]. For further
refinement, additional correction terms can be taken into account.

• The above treatment of inelastic scattering was based on the assumption that the velocity of
the incident particle is high compared with that of the atomic electrons. If this assumption
is not valid, a further correction term (shell correction term) needs to be added.

• Measurements indicate that the stopping power of negative charged particles is lower than
that of their anti-particles [28]. This so-called Barkas effect can be taken into account by a
correction term ∝ z3.

A special treatment is required for electrons for which exchange effects and the Pauli principle
need to be considered.

In Fig. A.1, the stopping power dE/dx is plotted as a function of βγ. The 1/β2-dependence can
be seen to dominate at low velocities. At βγ ≈ 3 . . . 4 the stopping power exhibits a minimum.
Particles in this range are commonly referred to as minimum ionizing particles (mip). Beyond
the minimum ionizing region the stopping power rises logarithmically. The relativistic rise is
reduced by the density effect which leads to a saturation of dE/dx at high energies.

A.1.3. Landau Distribution

If the total cross-section σ is constant, the number of collisions n over a distance x follows a
Poisson distribution

w (n) = nn

n! e
−n

around the mean n = Nσx.
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The probability of losing an amount of energy ε in a single collision is given by

f (ε) = 1
σ

dσ
dε .

The probability of losing a total amount of energy E in n collisions follows from n-fold convolution
of f . The probability p (E, x) of losing a total amount of energy E over a distance x is then given
by

p (E, x) =
∞∑
n=0

w (n) f ⊗ f ⊗ · · · ⊗ f︸ ︷︷ ︸
n times

(E) .

In the Laplace domain one obtains

P (s, x) = e−n
∞∑
n=0

nn

n! F (s)n

= exp

−Nx ∞∫
0

dε
(
1− e−sε

) dσ
dε

 .
The following derivation is due to L. D. Landau [174]. The integral over ε is split into two parts:

∞∫
0

dε
(
1− e−sε

) dσ
dε =

ε1∫
0

dε
(
1− e−sε

) dσ
dε +

∞∫
ε1

dε
(
1− e−sε

) dσ
dε .

The energy ε1 is chosen such that ε1 � ε0 and sε1 � 1, where ε0 is of the order of the binding
energy. Further, the maximum energy transfer εmax is assumed to satisfy sεmax � 1. In the first
integral the approximation e−sε ≈ 1− sε is used:

ε1∫
0

dεdσdε
(
1− e−sε

)
≈ s

ε1∫
0

dεdσdε ε.

The contribution to the stopping power by energy transfers exceeding ε1 can be calculated from
the cross-section for scattering of spin-0 particles by free electrons

εmax∫
ε1

dε2πz2e4Z

mec2β2
1
ε2

(
1− β2

εmax

)
≈ 2πz2e4Z

mec2β2

(
ln εmax

ε1
− β2

)
.

Hence,
ε1∫

0

dεdσdε
(
1− e−sε

)
≈ 2πz2e4Z

mec2β2

(
ln 2mec

2β2γ2ε1
I2 − β2

)
= 2πz2e4Z

mec2β2 ln ε1
ε′
.

In the second integral, the Rutherford cross-section

dσ
dε = 2πz2e4Z

mec2β2
1
ε2

is used. Because of the rapid convergence of the integral for sε� 1, the upper integration limit
can be extended beyond εmax. Partially integrating and substituting z = sε yields

∞∫
ε1

dε1− e−sε

ε2
= 1− e−sε1

ε1︸ ︷︷ ︸
≈s

+s
∞∫

sε1

dz e
−z

z
≈ s

1 +
1∫

sε1

dz
z

+
1∫

0

dz e
−z − 1
z

+
∞∫
1

dz e
−z

z︸ ︷︷ ︸
−C=−0.577215665...

 .
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Figure A.2 Landau straggling function
φ (λ), as implemented in ROOT [124].

For P (s, x) one obtains
P (s, x) = exp

[
−ξs

(
1− ln sε′ − C

)]
,

where the variable
ξ = x

2πz2e4NZ

mec2β2

has been introduced. The original function p (E, x) thus reads

p (E, x) = 1
2πi

c+i∞∫
c−i∞

ds esE−ξs(1−ln sε′−C).

By substituting u = ξs and introducing the dimensionless variable

λ = 1
ξ

(
E − ξ

(
ln ξ

ε′
+ 1− C

))
,

p (E, x) can be expressed as
p (E, x) = 1

ξ
φ (λ)

where

φ (λ) = 1
2πi

c+i∞∫
c−i∞

du eu lnu+λu. (A.13)

The function φ(λ), plotted in Fig. A.2, has a maximum at λ ≈ −0.222782. The most probable
energy loss is, therefore, given by

Emp = ξ

(
ln ξ

ε′
+ 0.2

)
. (A.14)
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A.2. Avalanche Models

A.2.1. Yule-Furry Distribution

Let us assume that the distance between successive ionizing collisions of an electron is exponentially
distributed with a mean free path λion = α−1 which depends only on the local electric field (not
on the electron energy) and is, therefore, identical for all avalanche electrons (the spatial extent
of the avalanche is neglected). The avalanche evolution can then be treated as a Yule-Furry
process [175, 176]. The probability for an electron to produce a secondary electron while moving
a step ∆x� λion along the electric field is given by α∆x. For the probability that the avalanche
has grown to a size of n electrons at a distance x+ ∆x with respect to the initial electron’s point
of creation, one finds the equation [2]

Pn (x+ ∆x) = [1− nα (x) ∆x]Pn (x) + (n− 1)α (x) ∆xPn−1 (x) +O
(
∆x2

)
,

which in the limit ∆x→ 0 becomes

d
dxPn (x) = α (x) (n− 1)Pn−1 (x)− α (x)nPn (x) . (A.15)

By means of the transformation u =
x∫
0
α (s) ds [2] one obtains

d
duPn (u) = (n− 1)Pn−1 (u)− nPn (u) . (A.16)

With the initial condition Pn (0) = δn1, the solution of this differential equation is given by the
geometric distribution

Pn (x) = 1
n

(
1− 1

n

)n−1
(A.17)

with mean

n = exp

 x∫
0

α (s)ds


and variance σ2 = n (n− 1). For n� 1, Pn is well approximated by the exponential distribution
(3.2).

A.2.2. Pólya Distribution

In order to explain deviations of the avalanche size distribution from the exponential shape at
large electric fields, Byrne [72, 177] and, independently, Lansiart and Morucci [70] proposed to
amend the field-dependent Townsend coefficient by a factor depending on the instantaneous
avalanche size n,

α (x)
(

1 + θ

n

)
. (A.18)

The introduction of a size-dependent Townsend coefficient was originally motivated by the fact
that electrons lose typically a large fraction of their kinetic energy in an ionizing collision and
thus need to re-gain energy from the field before being able to ionize again. Consequently, a
fluctuation towards larger n at a distance x would lead to a reduced fraction of electrons available
for multiplication in the subsequent step x+ dx. This argument has been critized however, as
being too simplistic [65]. An alternative, more plausible interpretation for (A.18) is that α is
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reduced at high gain because of space charge. The following derivation of the Pólya distribution
based on the ansatz (A.18) might rather be regarded as a model for the shape of avalanche size
spectra at high gain than for the “rounding” effect observed in the proportional regime.

Inserting Eq. (A.18) into (A.15) leads to

d
duPn (u) = (n− 1 + θ)Pn−1 (u)− (n+ θ)Pn (u) . (A.19)

The solution of (A.19) is given by the negative binomial distribution

Pn =
(
n− 1 + θ

n− 1

)(
n− 1
n+ θ

)n−1 ( θ + 1
n+ θ

)θ+1
, (A.20)

with mean

n = (θ + 1) exp

 x∫
0

α (s)ds

− θ
and variance

σ2 = 1
θ + 1 (n+ θ) (n− 1) .

For large values of n, the avalanche size can be treated as a quasi-continuous variable and (A.20)
may be approximated by (3.4).

Assuming an ionization mean free path of the form α(x)/n, leads to a Poisson distribution,

Pn = nn

n! e
−n,

with variance σ2 = n.
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Level nl Term ε [eV] f Source

1s4 4s 2 [3/2]o 11.624 0.0609 NIST [117]
1s2 4s 2 [1/2]o 11.828 0.25 NIST [117]
3d5 3d 2 [1/2]o 13.864 0.0011 Berkowitz [95]
2s4 5s 2 [3/2]o 14.090 0.027 NIST [117]
3d2 3d 2 [3/2]o 14.153 0.0932 NIST [117]
2s2 5s 2 [1/2]o 14.255 0.0119 NIST [117]
3s′1 3d 2 [3/2]o 14.304 0.106 NIST [117]
4d5 4d 2 [1/2]o 14.711 0.0019 Berkowitz [95]
3s4 6s 2 [3/2]o 14.848 0.0144 Berkowitz [95]
4d2 4d 2 [3/2]o 14.859 0.048 Berkowitz [95]
4s′1 4d 2 [3/2]o 15.004 0.0209 Berkowitz [95]
3s2 6s 2 [1/2]o 15.022 0.0221 Berkowitz [95]
5d5 5d 2 [1/2]o 15.118 0.0041 Berkowitz [95]
4s4 7s 2 [3/2]o 15.186 0.0139 Berkowitz [95]
5d2 5d 2 [3/2]o 15.190 0.0426 Berkowitz [95]
6d5 6d 2 [1/2]o 15.308 0.00075 Lu and Lee [119]
5s′1 5d 2 [3/2]o 15.351 0.00051 Lu and Lee [119]
4s2 7s 2 [1/2]o 15.359 0.00074 Lu and Lee [119]
5s4 8s 2 [3/2]o 15.366 0.0130 Lu and Lee [119]
6d2 6d 2 [3/2]o 15.374 0.0290 Lu and Lee [119]

Table A.1. Oscillator strengths f for the Ar resonance levels included in Magboltz 8.9 [14].

A.3. Radiative Transition Rates

Unless indicated otherwise, the values for the transition rates given in Tables A.2, A.3, A.4, and
A.5 are taken from the NIST atomic spectra database [117]. Theoretical values from Zatsarinny
and Bartschat [118] are marked with a dagger (†). The values marked with a star (?) are calculated
from the oscillator strengths recommended by Berkowitz [95]. Triangles (4) indicate that the
respective value is based on the the oscillator strength calculated by Lee and Lu [119].
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A.4. Optical Properties

Macroscopically, the optical properties of a material are described by the complex dielectric
function ε (ω). The dielectric function and the complex index of refraction n + ik are interrelated
by

ε(ω) = ε′(ω) + iε′′(ω) = (n (ω) + ik (ω))2 .

The real and imaginary parts of ε(ω) can, therefore, be expressed in terms of the (real) index of
refraction n and the extinction coefficient k as

ε′(ω) = n2 − k2, ε′′(ω) = 2nk,

and, vice versa,

n = 1√
2

√√
ε′2 + ε′′2 + ε′, k = 1√

2

√√
ε′2 + ε′′2 − ε′.

Let us consider a monochromatic plane wave E (x, t) = E0ei(kx−ωt). The dispersion relation of
electromagnetic waves in a medium is given by

k = ω

c
(n + ik) .

The intensity I ∝ |E|2 of a monochromatic photon beam thus falls off exponentially when
penetrating a layer of material with thickness d,

I (d) = I0e−µd.

The linear absorption coefficient µ is given by

µ = 2ωk
c

= Nσγ (ω) ,

where σγ (ω) is the photoabsorption cross-section. For n ≈ 1, the imaginary part ε′′(ω) of the
dielectric function can be approximated by

ε′′(ω) ≈ Nc

ω
σγ(ω).

The photoabsorption cross-section is proportional to the oscillator strength density df/dE,

σγ (ω) = 2π2αf (~c)2

mec2
df
dE .
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