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Abstract

In most models the Invar anomaly is explained on the basis of magnetic effects only,
neglecting structural contributions. Since the Fe-Ni Invar concentration range overlaps
with the range where the martensitic transformation occurs, the present work exam-
ines the combination of magnetic and structural effects in static ab-initio calculations of
the Invar model systems Fe3Ni and Fe5Ni3 at various different volumes and tetragonal
deformations. Based on the results, finite temperature effects of the structural part de-
scribed by the cell volume and the tetragonal deformation are studied. The temperature
is introduced to the system in the form of local fluctuations of the volume and c/a-ratio,
which are described within a Ginzburg-Landau model.
The static ab-initio calculations and relaxations show that the ground state for Fe3Ni is
the bcc-like structure (L12 structure tetragonally deformed to c/a = 1/

√
2) whereas in

Fe5Ni3 it is the fcc-like structure (L12). In both cases the energy barrier of the martens-
itic transformation is approximately one order of magnitude higher in the non-magnetic
case.
In order to make the range of compositions between the model systems available, ana-
lytical expressions for the energy as a function of volume and tetragonal deformation
are determined, making an interpolation between the two compositions possible.
In the finite temperature model the martensitic transformation is analysed and the tem-
perature dependence of the thermal expansion coefficient, the bulk modulus, and the
elastic constant C ′ are determined. A structural transformation is only found in sys-
tems, in which the bcc-like state is the ground state. For Fe3Ni, the fcc-like state exhibits
a small negative thermal expansion coefficient, which could be a necessary property for
the Invar effect in these alloys.



Kurzfassung

In den meisten Modellen wird die Invar-Anomalie ausschließlich durch magnetische Ef-
fekte erklärt, wobei strukturelle Beiträge vernachlässigt werden. Da aber der Invar Effekt
in Fe-Ni Legierungen in einem Konzentrationsbereich auftritt, der sich mit dem der mar-
tensitischen Transformation überschneidet, wird in der vorliegenden Diplomarbeit das
Zusammenwirken magnetischer und struktureller Effekte in statischen ab-initio Rech-
nungen der Invar Modellsysteme Fe3Ni und Fe5Ni3 bei verschiedenen Volumina und te-
tragonalen Verzerrungen untersucht. Aufbauend auf den Resultaten dieser Rechnungen
werden strukturelle Effekte, beschrieben durch das Volumen und die tetragonale Ver-
zerrung, bei endlicher Temperatur analysiert. Die Temperatur wird in Form von lokalen
Fluktuationen der Variablen, die im Rahmen eines Ginzburg-Landau Modells beschrie-
ben werden, in das System eingekoppelt.
Die statischen ab-initio Rechnungen und zusätzlich durchgeführte Relaxationen des Git-
ters zeigen, dass die bcc-artige Struktur (eine tetragonal zu c/a = 1/

√
2 verzerrte L12-

Struktur) den Grundzustand von Fe3Ni darstellt. Für Fe5Ni3 hingegen ist der Grund-
zustand durch die fcc-artige L12-Struktur gegeben. In beiden Systemen ist die Ener-
giebarriere der martensitischen Transformation im nichtmagnetischen Fall um circa eine
Größenordnung höher.
Um den Konzentrationsbereich zwischen den Modellsystemen für weiterführende Rech-
nungen zugänglich zu machen, werden analytische Ausdrücke für die Energie der Mo-
dellsysteme als Funktion des Volumens und des c/a-Verhältnisses bestimmt. Dadurch
ist es möglich, beliebige Konzentrationen im Zwischenbereich durch Interpolation zu er-
reichen.
In den Berechnungen mit endlicher Temperatur wird der martensitische Übergang ana-
lysiert und die Temperaturabhängigkeit des thermischen Ausdehnungskoeffizienten, des
Bulkmoduls und der elastischen Konstante C ′ bestimmt. Ein struktureller Übergang tritt
ausschließlich in Systemen auf, in denen der Grundzustand bcc-artig ist. In Fe3Ni zeigt
der fcc-artige Zustand einen kleinen negativen thermischen Ausdehnungskoeffizienten,
was möglicherweise eine notwendige Eigenschaft für das Auftreten von Invar-Verhalten
in diesen Legierungen ist.
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1 Motivation

In 1897, Charles Édouard Guillaume discovered that the alloy Fe65Ni35 exhibits almost
zero thermal expansion over a wide temperature range [1]. Since then, many theories
have been developed to explain this behaviour called the Invar effect, a selection of which
is presented in section 2.2.1. Most of these theories explain the Invar behaviour on the
basis of magnetic effects, neglecting possible structural contributions.
In private communication Dr Xiaobing Ren working at Xi’an Jiaotong University, China,
explained the Invar effect on the basis of the formation of strain glass regions in the
material, which are similar to a tweed-like structural intermixture of an fcc-like and
a bcc-like phase and compensate for the thermal expansion of the lattice. Since this
approach is not directly based on the magnetic effects, which are the basis of most of
the theories of the Invar effect, it starts from an absolutely different perspective, which
could improve the understanding of the effect. However, since completely neglecting
magnetism in a ferromagnetic material probably leads to an incomplete description, the
significance of magnetism to the structural effects in the Invar system has to be included.
Hence the aim of the present work is to find a connection between the existing theor-
ies and structural effects by investigating the importance of magnetism in structural
transitions and by simulating the temperature dependence of the system based only on
structural variables. The findings suggest that structural transitions in Fe-Ni Invar are
highly improbable without magnetic effects but also that structural effects contribute
an important part to the behaviour of the system.
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2 Introduction

2.1 Theoretical Background

The aim of electronic structure calculations is to gain information on properties of a
complex quantum mechanical system starting from basic knowledge of the different con-
tributions to its total energy. All the information contained in a system is described
by its Schrödinger equation and boundary conditions. The solution of the Schrödinger
equation gives the system’s wave functions, from which all essential properties of the
system can be deduced. For many-body calculations, which are necessary in solid state
physics, a direct solution of the Schrödinger equation is not possible. Thus different
approaches are required.
Still, the Schrödinger equation remains the starting point of theoretical considerations
in electronic structure calculations. A very common approximation in solid state calcu-
lations is the Born-Oppenheimer approximation, which assumes that the ionic and the
electronic energy of the system can be separated. The respective Schrödinger equation
for an N electron system interacting with the potential of an ionic lattice is given by
equation 2.1.

Ĥ Ψ(x1, ...,xN) = EΨ(x1, ...,xN)

Ĥ =
N∑
i=1

(−1
2
∇2
i ) +

N∑
i=1

vne(ri) +
N∑
i<j

1
rij

(2.1)

The first term represents the kinetic energy, vne the interaction with the lattice potential
and the third term the Coulomb interaction of the electrons. Ĥ is the Hamiltonian
of the electronic system; the purely ionic part of the energy is not included in this
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representation. It should be noted that the first and the third term of Ĥ are universal,
which means that they do not depend on the lattice potential but only on the total
number of electrons N.
In order to calculate the total ground state energy, the lattice contribution (repulsion of
the nuclei) has to be added explicitly to the eigenvalue of the electronic ground state.
To achieve a physically meaningful description of an N-electron system, the wave function
must fulfil certain conditions (see equation 2.2).

Ψ(x1, ...,xi,xj...) = −Ψ(x1, ...,xj,xi...) Pauli Principle

〈Ψi | Ψj〉 = δi,j Orthonormalization
(2.2)

Since the energy of the system is the expectation value of Ĥ, it can be expressed as
a functional of Ψ. It can be shown that minimization of this functional with respect
to Ψ results in the ground state energy E0 and its wave function Ψ0. Any meaningful
approximative wave function different from the exact ground state leads to a higher
energy of the system.
Since Ĥ is uniquely described by the number of electrons N and the lattice potential vne,
these two properties combined with appropriate boundary conditions also determine the
ground state energy E0, its wave function Ψ0 and its electron density ρ(r). Hence, the
ground state energy can not only be written as a functional of Ψ but also as a functional
of N and vne.

2.1.1 Density Functional Theory

A very successful approach to describe a many-particle system is Density Functional
Theory (DFT), which is based on the previously mentioned properties of many-body
Hamiltonians. DFT circumvents the necessity to solve the many-particle Schrödinger
equation by mapping all the system’s properties to the electron density. The starting
point for Density Functional Theory was in 1964, when Hohenberg and Kohn [2] proved
that the ground state energy is a unique functional of the electron density, meaning that
ρ(r) determines Ĥ and therefore Ψ. This is known as the first Hohenberg-Kohn theorem.
The second Hohenberg-Kohn theorem states that one can apply the variational principle
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to minimize the energy. The variation of the density leads to equation 2.3, with the
universal Hohenberg-Kohn functional FHK , consisting of the kinetic energy and the
electron-electron interaction.

δE[ρ]

δρ(r)
= v(r) +

δFHK [ρ]

δρ(r)
(2.3)

The large drawback of equation 2.3 is that its solution requires an explicit form of the
Hohenberg-Kohn functional of the full electronic system.
In 1965 Kohn and Sham [3] reformulated Density Functional Theory by mapping it to
a non-interacting system, meaning that the total electronic energy is decomposed as in
equation 2.4.

E[ρ] = TS[ρ] +
1

2

∫ ∫ n(r)n(r′)

|r− r′|
drdr′ +

∫
v(r)n(r)dr + Exc[ρ] (2.4)

TS represents the kinetic energy of a system of non-interacting electrons as a functional
of the density ρ(r), the second term is the classical Coulomb repulsion, the third term
is the interaction with the lattice potential and Exc the exchange and correlation energy
including all the non-classical contributions. Again, the energy can be minimized by
application of the variational principle, leading to the Euler-Lagrange equation 2.5.

µ = veff + δTS [ρ]
δρ(r)

veff = v(r) +
∫ ρ(r′)
|r−r′|dr

′ + δExc[ρ]
δρ(r)

(2.5)

In calculations, one uses the Kohn-Sham equations in the orbital form (equations 2.6),
which resemble the Hartree-Fock equations but include an effective potential containing
the exchange and correlation potential instead of simply using the potential without
explicitly including a correlation part.

(−1
2
∇2 + veff (r))φi = εiφi

ρ(r) =
N∑
i=1

∑
s
|φi((r), s)|2

(2.6)
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These equations are exact and can be solved self-consistently. Still, it is important to
note that the Kohn-Sham orbital wave functions φi in general do not represent the phys-
ical orbitals of the material. Thus, also the corresponding orbital eigenvalues cannot be
interpreted as the exact orbital energy; nevertheless they are sometimes used as approx-
imate values for the eigenenergies.

2.1.2 Realization of Electronic Structure Calculations

As mentioned before, the Kohn-Sham equations are exact and suitable to perform elec-
tronic structure calculations. However, in practical calculations, the exact exchange
correlation potential vxc is not known and needs to be approximated.

Approximations for vxc

One frequently used approximation is the local density approximation (LDA), which as-
sumes that the exchange-correlation term can be locally approximated by the exchange
and correlation energy of a uniform electron gas of the given density. The approxima-
tion can be improved by including local changes of the density, leading to the generalized
gradient approximation (GGA). Usually, this significantly improves the accuracy of both,
exchange and correlation energy. However, in certain cases LDA calculations can yield
better results than those using GGA. Equation 2.7 shows the general form of the ex-
change correlation energy in GGA.

EGGA
xc [n↑, n↓] =

∫
d3rf(n↑, n↓,∇n↑,∇n↓) (2.7)

In order to increase accuracy further, higher order derivatives of the density can be in-
cluded (meta-GGA).
Another approach, which is more frequently used, is to introduce hybrid functionals for
the exchange correlation energy. In a typical hybrid functional the exchange energy of
GGA is partially replaced with the exact exchange energy (Hartree-Fock exchange en-
ergy) of the overlap of the orbital wave functions. However, it should be noted that more
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sophisticated approximations of the exchange correlation energy require more computa-
tional effort and should therefore only be used if high accuracy has to be achieved.

Basis Set and Pseudopotentials

For practical calculations, it is useful to expand the Kohn-Sham wave functions as series
of basis functions. Since free electrons are represented by plane waves, they are a com-
mon choice for simple calculations. A plane wave basis has several advantages, such
as orthogonality and simple Fourier transforms. The form of a plane wave expansion
in a periodic potential is given in equation 2.8, where G represents a reciprocal lattice
vector.

φi =
∑
G

cik(G) expi(G+k)r (2.8)

For an accurate description of a system, infinitely many reciprocal lattice vectors would
have to be included. In practice, a cut-off energy determining the number of plane waves
considered in the calculations is introduced. For simple potentials, the calculations can
be performed in a plane wave basis, but more complicated problems require a very large
basis set; therefore different approaches are needed. Basically two methods can be ap-
plied: the first one is to choose a different basis set, the second one is to introduce
pseudopotentials.
The basic idea of pseudopotentials is to simplify the calculation by replacing the exact
potential by an effective potential in order to reduce the size of the basis set. In the
so-called frozen core approximation, core electrons are represented by states determined
in atomistic calculations and only the valence electrons’ wave functions have to be cal-
culated. In this approximation, the core states do not contribute to the bonding, but
nevertheless they can change during the calculation in order to achieve orthogonality to
the valence states. In the core region, the valence electrons interact with a simplified
potential constructed to reproduce the correct charge density and eigenvalues. Outside
the core region however, the valence electrons are subject to the exact potential. The
pseudopotential has to be constructed in a way that the wave functions are smooth at
the boundary of the core region.
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The two approaches to simplify calculations can be generalized to methods using a
pseudopotential and a different basis set. One of these methods is employed in the cal-
culations in the present diploma thesis. It is based on the projector augmented wave
(PAW) method [4] introduced by Blöchl in 1994 and uses the PBE ([5],[6]) functional,
a functional of GGA-type. In the following paragraph the basic principles of the PAW
method are explained on the basis of [4].
In augmented wave-methods, such as the PAW method, the lattice site is divided into
two parts: one in the so-called augmentation region around the core, where the wave
function can exhibit strong oscillations, the other one in the interstitial region. The os-
cillations in the core region can lead to very involved calculations; therefore in the PAW
method further steps are applied. Blöchl introduces a pseudo-Hamiltonian with simpler
eigenstates in the augmentation region under the condition that a linear transformation
between the physically relevant Hilbert space of the Hamiltonian of the problem and
the Hilbert space of the pseudo-Hamiltonian exists. Hence the calculations inside the
augmentation region can be performed for the pseudo-Hamiltonian. The solution in the
pseudo-Hamiltonian’s space is represented by an expansion into partial waves φ̃i, which
can be transformed to partial waves φi of all-electron calculations (determined in atom-
istic calculations) in the physical space using the linear transformation between the two
spaces (see equation 2.9). Since the transformation is linear, the expansion coefficients
are the same for both spaces.

| Ψ〉 =
∑
i
ci | φi〉

| Ψ̃〉 =
∑
i
ci | φ̃i〉

(2.9)

To ensure the correctness of the calculations, the partial waves φ̃i have to coincide with
their counterpart φi outside the augmentation region, in which the transformation is
valid. The components of the valence electrons’ wave function as they can be written in
the PAW method are illustrated in equation 2.10.

| Ψ〉 =| Ψ̃〉+
∑
i

ci(| φi〉− | φ̃i〉) (2.10)

The wave function is given by the solution of the pseudo-Hamiltonian plus the difference
of the radial behaviour of the atomistic wave function and the pseudo-wave function
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inside the augmentation region. This division into three parts also holds for the total
energy and the charge density.
The major advantage of this method is that the energy minimization can be performed
by varying the coefficients of the solution of the pseudo-Hamiltonian and subsequently
transforming the wave functions to the physical solutions of the system.

Vienna ab-initio Simulation Package

The ab-initio calculations in the work were performed using VASP (Vienna ab-initio
Simulation Package) [7], [8], [9], [10].
VASP is a Fortran program package for ab-initio calculations based on Density Func-
tional Theory. Besides calculating the ground state for a given configuration, VASP can
also calculate the forces acting on the ions and the stress tensor, which can be used
to relax the structure to its energetic minimum. The input files necessary for VASP
calculations are called INCAR, POSCAR, POTCAR, and KPOINTS. These contain all
the information needed for computations.
VASP produces several output files, of which in the present work only OUTCAR will be
discussed briefly.

INCAR Essentially, the parameters in INCAR determine the type of the calculation
and its accuracy and precision. Furthermore, one can control which output files should
be produced and if the computation should start from results of previous ones. There
is a wide variety of parameters, which can be set in INCAR, but many of them have
reasonable default values and need not be set explicitly. An example of an INCAR file
is given in figure 2.1.2.
In the example three tags determine the type of calculation: ALGO = Fast determines
the algorithm used for the computation, IBRION = -1 sets up a static calculation
(without relaxation of the ionic system) and because of ISPIN=2 the calculation is
spin-polarized. The other tags modify the calculation in different ways. ENCUT sets
the energy cut-off (in eV) of basis functions included in the calculation. NSW gives the
maximum number of ionic steps performed in a relaxation; therefore it is set to zero
in the static case. MAGMOM initializes the total magnetic moment of the atoms in
the lattice. It can be used to facilitate the convergence to a magnetic state. LORBIT
controls if and in how much detail certain output files are produced.
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System = Fe3Ni
ENCUT = 450
ALGO = Fast
IBRION = -1
NSW = 0
ISPIN = 2
MAGMOM = 3.5 3.5 3.5 2.5
LORBIT = 11

Figure 2.1: Typical INCAR file used in the present work

POSCAR POSCAR contains the information about the positions of the atoms in the
material. It consists of the lattice constant, the basis vectors of the structure, the number
of atoms of each type, and their positions in the basic cell. The positions can be given
in Cartesian coordinates or in those of the basis of the structure.

POTCAR POTCAR files contain a pseudopotential for a given atomic species. For
each element, there are several different POTCAR files available, which can be selected
according to the requirements of the calculation. To construct a POTCAR file for the
desired calculation, one joins the selected POTCAR files of the different atoms to one
file, in the same sequence as the atomic species are listed in POSCAR.

KPOINTS The file KPOINTS determines the grid of k-points used in the computation.
One possibility is to enter the desired number of k-points in each direction determining
the density of the k-point mesh and let VASP generate the grid automatically in a given
scheme. This method is usually applied but for example for a band structure calculation
along specific directions KPOINTS can consist of explicit coordinates.

OUTCAR Most of the important information about the computation and its results
is written to the OUTCAR file. Besides computational details for each iteration step
and an analysis of the calculated system, OUTCAR contains detailed information on
the system’s energy, the forces acting on the atoms, and the magnetic moments for each
atom, orbital and direction (for non-collinear calculations).
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2.2 Thermal Expansion

In physics, temperature is always associated with movement of particles. In the solid
state, lattice vibrations, phonons, constitute the major contribution to the thermal en-
ergy. For many calculations in solid state physics, it is sufficient to describe phonons in
a harmonic approximation, in which displacement terms are included up to the second
order in an expansion of the ionic pair potential.
To describe thermal expansion, anharmonic terms have to be included. These anhar-
monic terms modify the ionic interaction potential, causing the equilibrium distance
to shift to larger values for increasing temperature. In addition to a change in equi-
librium volume owing to the anharmonicity of the potential, higher temperatures also
lead to more and higher excitations of phononic normal modes. One can establish a
connection between the equilibrium volume and the phonon frequencies in the crystal
via the temperature dependence of the two quantities. This relation is described by
the Grüneisen parameter γks as defined in equation 2.11 [11]. The weighted average of
all modes k,s weighted with their contribution to the specific heat cvs(k) results in the
overall Grüneisen parameter γ.

γks = − V

ωs(k)

∂ωs(k)

∂V
(2.11)

To describe thermal expansion, one defines a parameter α which directly relates the
equilibrium volume with the temperature (see equation 2.12 [11]), where B = −V

(
∂P
∂V

)
represents the bulk modulus.

α =
1

l

(
∂l

∂T

)
P

=
1

3V

(
∂V

∂T

)
P

=
1

3B

(
∂P

∂T

)
V

=
γcv
3B

(2.12)

Examining the terms more closely, it can be made plausible that the left hand side in
equation 2.12 represents the relation between volume and temperature:

• The bulk modulus relates the pressure to the equilibrium volume,

• γ relates the equilibrium volume to phononic modes,
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• the specific heat gives the connection between the phonons and temperature

For a derivation of this relation, see for example [11].
This form of the thermal expansion coefficient containing γ, cv, and B clearly demon-
strates the different effects influencing thermal expansion. Especially at low temperat-
ures, the temperature dependence of α and cv can be very similar, whereas for other
materials γ can become negative and lead to negative thermal expansion over a certain
temperature range [12].
While equation 2.12 only considers the phononic part of the thermal expansion, in metals
electrons can also contribute a considerable part to the thermal expansion. At low tem-
peratures the electronic contribution can be of the same order than the phononic part,
so that equation 2.12 must be modified, resulting in equation 2.13 [11].

α =
1

3B
(γcionv +

2

3
celv ) (2.13)

2.2.1 The Invar Effect

Since in 1897 Guillaume discovered the remarkable fact that Fe-Ni alloys of certain
compositions exhibit almost no thermal expansion over a wide temperature range [1],
various other alloys have been discovered showing this behaviour, known as the Invar
effect. With increasing number of Invar materials, one discovered that the behaviour
is neither restricted to certain crystal structures nor to binary alloys. Even amorphous
and multi-component systems can exhibit this anomaly in thermal expansion.
Since materials with virtually no thermal expansion are interesting for various applic-
ations, such as length standards, precision instruments or industrial molding tools, the
discovery led to increased efforts in Invar materials research. Numerous attempts have
been made to explain this phenomenon with a theory matching the experimental results.
As a first step, in order to describe the new behaviour one has to split the linear thermal
expansion coefficient into a term representing the lattice vibrations, the source of usual
thermal expansion, and an anomalous term (see equation 2.14).

α = αlat + αan (2.14)
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The fact that all other Invar materials also exhibit ferro- or antiferromagnetic behaviour
and a large spontaneous volume magnetostriction [13], obviously suggests a connection
of αan to the magnetic properties of the material. Today the hypothesis that Invar
behaviour is closely related to magnetism is widely accepted and the large spontaneous
magnetostriction is regarded as an essential property of all Invar materials. Further
noticeable characteristics of the Invar anomaly are, amongst others, the following [13]:

• Large negative pressure effects on the magnetization

• Large forced volume magnetostriction

• Anomalous temperature dependence of elastic constants

Regarding all the different anomalies occurring in a variety of materials and structures, it
is clear that the requirements for a theory explaining the Invar effect are high. This might
be the reason why more than 120 years after the discovery of the effect, no microscopic
theory which agrees quantitatively with all experimental results has been established.
In this section, the basic concept of different approaches to explain the Invar effect will
be discussed on the basis of reviews by Shiga [13] and Wasserman [14].
To understand the ideas behind different models of the Invar effect, it is instructive to
review two models of magnetism, both of which set the basis for models of the Invar
effect.

Localized Magnetic Moments

In a very general quantum mechanical approach, local moments are described by the
Heisenberg Hamiltonian, which treats the spins on the lattice sites as quantum mech-
anical observables with pairwise interaction. Including the interaction with an external
field, the Heisenberg Hamiltonian is given by equation 2.15 [15].

Ĥ = −Ih
∑
l,δ

ŜlŜl+δ − gjµBHext

∑
l

Ŝzl (2.15)

The sum over l represents all the lattice sites and δ selects the interaction partner of
the spin at the site l. The material-specific quantity Ih is called exchange integral
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and represents the strength of the interaction between two spins. It is positive for
ferromagnetic and negative for antiferromagnetic coupling. In the ground state, the
spins are aligned parallel to the nonzero external field Hext.
The solutions of the Heisenberg Hamiltonian represent the magnetic state of the system.
The excited states are bosonic excitation modes of the spin system called magnons or
spin waves.
One simple example of an approximation to the Heisenberg model is the Ising model.
In this strongly simplified model the spin operators are replaced by their z-components,
leaving only two possible states (spin up and spin down) for each lattice site.
Based on a simplified model Shiga [13] shows that the model of localized moments
fails to reproduce the non-zero forced magnetostriction coefficient at zero temperature.
Furthermore, the magnetism in transition metals cannot be explained with the model
of localized magnetic moments. For these reasons, the theory of localized magnetic
moments alone cannot provide a quantitative explanation of the Invar effect.

Itinerant Electron Model

The concept of itinerant electron magnetism was introduced by Stoner [16]. In the
Stoner model, the unsaturated electron spins in d-bands are responsible for magnetism.
In contrast to the previous model, the electrons are no longer localized at the lattice sites
but they can move in the periodic lattice potential. Furthermore, magnetic moments
can take values of non-integer multiples of µB.
A molecular field representing the exchange effects causes a higher population of the
band in one spin direction, corresponding to a spin dependent energy shift of the highest
occupied state. The molecular field per atom HM and the corresponding energy shift εm
are given by equation 2.16 [15], whereM is the absolute and ζ the relative magnetization
and N is a constant relating the magnetization to the molecular field. Θ represents a
characteristic temperature for the magnetic energy.

HM = NM = NM0ζ, with ζ = M
M0

εm = −µBHM = −µBNM0ζ = −kBΘζ, with Θ = µBNM0

kB

(2.16)

In the same way as an external field applied to a paramagnet, the molecular field causes
the density of states to lose its symmetry for spin up and down. The spin direction
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Figure 2.2: Two representations of the spin split density of states, n± represents the
number of electrons with spin up/down, ε± the corresponding Fermi energy.
[15]

parallel to the molecular field is energetically favourable and so the electrons preferably
occupy states in this direction. This alignment parallel to the field leads to a gain in
magnetic energy but it also costs kinetic energy, because the electrons have to populate
higher states owing to the Pauli Exclusion Principle. In figure 2.2 two possible interpret-
ations of the spin splitting are illustrated. In 2.2a) the molecular field causes a shift in
the Fermi energies of the two spin orientations, whereas in figure b) the lowering of the
energy of the spin-up band is emphasized. In figure b) it is evident that the system is in
equilibrium, because it is clear from the figure that the chemical potentials for both spin
states are equal. The figure also illustrates that a high density of states at the Fermi
energy favours a larger magnetization, because the electrons changing the spin direction
need less additional kinetic energy.
Using the condition that for ferromagnetic ordering the energy has to have a maximum
at ζ = 0 (no magnetization), the calculation of the energy and its extrema yields the
Stoner criterion for spontaneous magnetic ordering [15]:

2

n
N (εF )kBΘ ≥ 1 (2.17)

In equation 2.17, n represents the number of electrons. The equation demonstrates that
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a large density of states at the Fermi energy and a large characteristic temperature
(meaning large values of N and M0) favour ferromagnetic order.
Depending on the occupation of the spin bands in the ferromagnetic state, one can
distinguish strong and weak ferromagnets. In a strong ferromagnet, one spin band is
completely filled. Thus an increase of the field does not lead to a significant change
of the magnetic moment. If neither of the spin bands of a ferromagnet is completely
occupied, the material is called weakly ferromagnetic.
In [13] Shiga states that for certain forms of densities of state (a sharp peak above the
paramagnetic Fermi level) and appropriate Θ, it is possible to realize two energy minima
in dependence of the magnetization, a high spin and a low spin state. The importance
of this observation will become clear in the discussion of the models of the Invar effect.
Furthermore, Shiga explains the effects of spin fluctuations as an extension of the theory
of itinerant electrons. By including spin fluctuations one can retain a finite local spin
density above the Curie temperature as dynamic spin fluctuations in contrast to the
Stoner model, in which the magnetic moments vanish completely above Tc.

Models of the Invar effect

In a review of the Invar effect [14], Wasserman points out the diversity of theories trying
to explain the characteristics of Invar. Given the wide variety of models, in the present
diploma thesis only a selection of models important for Fe-Ni alloys will be discussed.
Wasserman briefly discusses the model of latent antiferromagnetism, a model based on
local moments, which was published in its first form in 1960 by Kondorsky and Sedov
[17]. This model explains the Invar anomaly with a negative exchange integral of the
d-electrons in Fe in the fcc phase, resulting in antiferromagnetic coupling for certain
concentrations and in the coexistence of parallel and antiparallel regions near a critical
concentration. The critical concentration is determined by the values of the exchange
integrals Fe-Fe, Fe-Ni, and Ni-Ni, of which only Fe-Fe is assumed to be negative. In order
to make the antiferromagnetic coupling in the fcc-phase of the Fe-Ni system plausible,
Kondorsky and Sedov refer to other alloys of Fe in the fcc-phase exhibiting antiferro-
magnetism (for example FeMn with more than 12% Mn).
The idea of the coexisting parallel and antiparallel moments was revisited in 1976 by Jo
[18]. Jo performed concentration dependent calculations of Fe-Ni systems in coherent po-
tential approximation, describing the atoms in an effective medium given by a coherent
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potential. He found two solutions (parallel and antiparallel moments) and determined
the vanishing of the energy difference as condition for the critical concentration, where
they can coexist. However, he was unable to reproduce the significant decrease of mag-
netization near Fe65Ni35.
In 1963 Weiss [19] proposed that the Invar effect in Fe-Ni alloys resulted from a trans-
ition between two different electronic configurations of iron atoms in a fcc lattice. In this
so-called 2γ state model, Weiss starts from the fact that in γ iron additionally to the
antiferromagnetic ground state a ferromagnetic state with larger volume exists. Weiss
suggested that alloying iron with a sufficient amount of nickel can stabilize the ferromag-
netic ground state with larger volume at zero temperature. With increasing temperature,
thermal excitation of the state with the smaller volume can partially compensate the
normal thermal expansion originating in the anharmonicity of the ions’ potential.
Although the existence of these states in Fe-Ni Invar alloys has never been proven ex-
perimentally, the basic idea of two states with a high and a low magnetic moment
found new support around 1990, when first principles studies discovered the existence
of two energetic minima at different volumes. Moruzzi [20] carried out fixed spin mo-
ment calculations at different volumes and found that in Fe3Ni, for a certain volume,
the ferromagnetic high-spin-state and a low-spin-state are in equilibrium. The volume
dependence of the two states found by Moruzzi is illustrated in figure 2.3. The common
tangent line in the figure represents the pressure, at which high-spin and low-spin states
are in equilibrium. Another remarkable fact found by Moruzzi is the small energy dif-
ference between the two states (about 1 mRy). Moruzzi referred to the high spin and
low spin states in Fe3Ni as the "band-theoretical equivalent of the 2γ states proposed
by Weiss" [20]. Antiferromagnetic Invar materials are supposed to exhibit a similar be-
haviour but with an antiferromagnetic ground state instead of the ferromagnetic high
spin state. From Moruzzi’s ab-initio calculations and similar ones for different Invar
materials, one can reproduce essential ground state properties of Invar alloys.

Finite Temperature Models

Since neither of the theories mentioned above can reproduce the temperature depend-
ence of the Invar materials’ properties correctly, one needs more elaborate theories for
finite temperature descriptions.
The most frequently used approach to finite temperature modelling is spin fluctuation
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Figure 2.3: Total energy and magnetic moment of Fe, Ni and Fe3Ni as a function of the
volume (Wigner-Seitz radius) [20]. HS=high spin, LS=low spin

theory in all its varieties. Hasegawa [21] calculated the temperature dependence of
the square spin fluctuation amplitude and was able to explain the large spontaneous
magnetostriction and other properties of Invar alloys. In his calculations, Hasegawa in-
troduces a coherent potential depending on random exchange fields at lattice sites. The
mean values of these exchange fields represent the local moments. Since further details
of these calculations are rather complex and not relevant for the understanding of the
present work, they will be omitted.
In addition to developing different spin fluctuation approaches, Kakehashi [22] intro-
duced a theory of local environment effects, which he employed in the calculation of the
concentration dependence of the local moments of Fe and Ni. In principle, this theory is
similar to the molecular field approach but it includes interactions of local variations of
the field with the environment. The thermal average of a local moment at a lattice site
is given by the classical average of a field variable at this position. The energy expres-
sion used for this average includes in zeroth order only the interaction with an effective
medium, representing the overall average of the potentials and spin fluctuations. The
first order deviation from the effective medium is given by the energy contribution of the
local field variables at the lattice sites. Finally, the second order correction constitutes of
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the pairwise interaction of the local field variables. In this model only nearest-neighbour
contributions are considered and the field variables are replaced by effective Ising spins
given by their thermal average (local moments). Thus, local fluctuations contribute an
important part to the total behaviour of the system. Using this approach, one can cal-
culate distributions of the local moments and their amplitudes at different temperatures
and for different concentrations. It is important to note that this theory of local envir-
onment effects is a static approximation.
Another approach follows a Ginzburg-Landau mean field theory of spin fluctuations
developed by Wagner [23]. The basics of this phenomenological method of including
fluctuations will be explained in more detail in section 2.3.1, since it is employed in the
present diploma thesis in a similar form. Mohn et al. [24], [25] applied this theory to
Fe3Ni, starting from the energy surface, a polynomial function in two variables E(M,V )

fitted to results of a fixed spin moment calculation. An important characteristic of this
approach is that besides the fluctuations of the magnetic moment also volume fluctu-
ations are included.
In more recent publications, temperature dependence is often taken into account using
the disordered local moment (DLM) formalism [26]. In DLM calculations one assumes
the existence of local magnetic moments at each site. The local moments of an atomic
species are divided into spin-up an spin-down contributions, which are treated like two
components of a random alloy. The computational realization, as it was introduced for
example by Gyorffy [26], is based on a spin-density functional description of an inhomo-
geneous interacting electron liquid. In the DLM picture, one assumes the existence of a
molecular field and calculates the temperature dependent magnetization from statistical
mechanics. In contrast to a simple Curie-Weiss picture, the molecular field in the ground
state is provided by ab-initio calculations in local spin density approximation. In more
advanced versions of DLM, the mean-field is replaced by more elaborate concepts.
In 1999, Schilfgaarde et al. [27] were among the first groups to perform ab-initio calcu-
lations in local spin density approximation considering non-collinear magnetic moments.
They observed that the occurrence of two energetic minima (high-spin, low-spin) in Fe-
Ni alloys used in many models before is just a consequence of the constraint to collinear
magnetism. In the ground state they found a continuous transition from the ferromag-
netic state at large volumes to disordered non-collinear states for smaller cells. The
transition starts at higher volumes than the transition high-spin to low-spin and the
average magnetization changes much faster than the average values of local moments
of Fe and Ni. Since this model gives good agreement with many experimental values,
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it led to experiments trying to find non-collinear states. However, these experiments
(e.g. [28] using neutron scattering with polarization analysis) did not find evidence for
non-collinear ferromagnetism in Fe-Ni Invar.

Further investigations of Invar characteristics

In [29] Entel et al. include structural considerations into the discussion of the Invar ef-
fect. In band structure calculations of the Invar model system Fe3Ni in the L12 structure
the authors concentrate on the t2g and eg states of majority and minority spin bands. In
the high moment state Entel et al. found that near the Fermi energy the majority spin
t2g antibonding orbital and the minority spin eg non-bonding orbital are energetically
close. This suggests that with rising temperature a charge transfer from the majority
spin t2g antibonding to the minority spin eg non-bonding occurs, leading to a decrease
in volume. Furthermore, the effects of tetragonal distortions of the cubic lattice on the
crystal field orbitals are analysed. Their results suggest that a tetragonal distortion
causes a band shift that could also lead to a shrinking of the lattice counteracting the
thermal expansion.
The spontaneous magnetostriction as a characteristic of the Invar effect in different Fe-
compounds is the topic of a publication by Khmelevskyi et al. [30]. Comparing the
ferromagnetic state to the paramagnetic DLM state, the spontaneous magnetostriction
was calculated. It was found that the spontaneous magnetostriction reaches its max-
imum value approximately at the valence electron number of 8.5 electrons per atom,
corresponding to the highest difference of the magnetic moments of the ferromagnetic
and the paramagnetic DLM state. Since this valence electron number is typical for fer-
romagnetic Invar compounds, this result gives a connection between the Invar effect and
large changes in the local magnetic moments.
One of the most important questions remaining unanswered is whether the physical
mechanisms leading to Invar behaviour in Fe-Ni alloys are the same as in other mater-
ials. Given the fact that the Invar effect is not constrained to materials with a specific
structure, especially the role of structural transformations, one of which occurs near the
Invar region in Fe-Ni Invar and other Invar alloys, gives rise to this question.
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The Invar System Fe65Ni35 and its model systems

The original Invar alloy Fe65Ni35 is a disordered ferromagnetic alloy with an fcc-like
structure. At room temperature its equilibrium lattice constant is a=3.595 Åand its
thermal expansion coefficient is α < 2 · 10−6K−1 [13]. At low temperatures, its magnetic
moment per atom is 1.77 µB/atom and the spontaneous magnetostriction is estimated
to ωs(0) = 1.8 · 10−2 [13].
Since ab-initio calculations usually use periodic boundary conditions, they do not sup-
port random distribution of the atomic species; hence calculations for this system would
require very large cells. Therefore the calculations are performed for ordered model sys-
tems. The most common model system for Fe-Ni Invar is Fe3Ni, which is also used in
the present diploma thesis. Fe3Ni also is a disordered alloy, but for the calculations it is
assumed to have Cu3Au (L12) structure. In order to simulate different concentrations,
the calculations are also performed for an artificial Fe5Ni3 cell. For this composition, the
Fe3Ni cell described above is doubled in z-direction and the central Fe-atom is replaced
with a Ni-atom. The two model cells are depicted in figure 2.4.

b

ac

c

ba

Figure 2.4: L12 structure of Fe3Ni cell (left); Fe5Ni3 cell (right). Grey balls represent
Ni-atoms, golden balls Fe-atoms.

The magnetic and structural properties for different concentrations of Ni can be found
in the phase diagram in figure 2.5. The hatched regions are the regions of Invar and of
the martensitic transformation. The solid lines represent the concentration dependence
of the Curie temperature and the magnetic moment. The dashed line describes the
concentration dependent equilibrium volume per atom given in terms of the Wigner-
Seitz radius.
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Figure 2.5: Structural and magnetic phase diagram of Fe-Ni-alloys.[29]

2.3 Fluctuations of Thermodynamical Variables

A macroscopic system in equilibrium is characterized by physical quantities which are
always close to their average values. But in every system, these quantities show small
deviations from their average values; they fluctuate. In order to describe the system
correctly, one needs to specify the distribution of the fluctuations.
In [31], the distribution of the fluctuating values of a variable x around its average value
x = 0 is derived. One argues that for temperatures and times, for which quantum
fluctuations can be neglected, the probability distribution of the energies of a system
as a function of the entropy is given by equation 2.18, corresponding to the Boltzmann
formula.

w(x) = const · eS(x) (2.18)

Since the entropy is maximal for the equilibrium value of x, the conditions given in
equation 2.19 can be used to determine an expression for the entropy.

(
∂S(x)
∂x

)
x=0

= 0,
(
∂2S(x)
∂x2

)
x=0

< 0 (2.19)
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In the simplest case, the expansion of S(x) into a series fulfilling these conditions is given
by equation 2.20.

S(x) = S(0)− β

2
x2 (2.20)

Together with equation 2.18, this leads to a Gaussian form for the probability distribu-
tion of x. Normalizing the probability distribution (

∫
w(x)dx = 1) results in equation

2.21 [31].

w(x)dx =

√
β

2π
e−

β
2
x2dx (2.21)

Knowing the distribution function, one can calculate the statistical averages of all powers
of the fluctuations. Since the Gaussian distribution is symmetric, the averages of odd
powers of x vanish. The average of even powers of x is given by equation 2.22 [15].

〈x2k〉 =
∫
x2kw(x)dx = β−k · (2k − 1)!! = 〈x2〉k · (2k − 1)!! (2.22)

Also fluctuations of more than one variable can be represented by a Gaussian distri-
bution. These variables are regarded as independent if averages of mixed terms vanish
(〈xixj〉 = δij). For example in [31], it is demonstrated that fluctuations of entropy and
pressure (or correspondingly temperature and volume) are independent.

2.3.1 Ginzburg-Landau Model for Fluctuations

Wagner [23] developed a Ginzburg-Landau model including fluctuations of both vari-
ables, magnetic moment and volume. Wagner’s theory is a generalization of the theory
of Murata and Doniach [32], who were the first to develop a mean-field theory of fluctu-
ations of the magnetic moment.
Starting from a polynomial representing the energy surface at zero temperature, which
is determined in static ab-initio calculations, the fluctuations introduce temperature to
the system. In a similar way, this formalism can be rewritten for fluctuations of the
c/a-ratio of a bct (body-centered tetragonal) cell and the volume per atom in order
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to describe structural transformations, as it is performed for example in [33]. Since in
the present diploma thesis the relevant variables are the c/a-ratio and the volume, the
derivation will be presented for these variables based on [33], [23] and [15].
The energy surface E(c/a, V ) at zero temperature is represented by a polynomial in two
variables (equation 2.23). The coefficients of the polynomial are calculated by fitting the
function to data points of an energy surface obtained in static ab-initio calculations. In
the next step, the variables are replaced by the statistical average over the equilibrium
value plus the corresponding fluctuation: c/a → 〈c/a+ ξ(r)〉 and V → 〈V + ν(r)〉.

E(c/a, V ) =
n∑
i=0

m∑
j=0

Aij(c/a)iV j (2.23)

First, the binomials (c/a+ ξ(r))i and (V + ν(r))j are evaluated, then the average values
are calculated, using equation 2.22. Thus the only fluctuation terms occurring in the
expression for the energy are amplitudes (〈ξ2〉, 〈ν2〉). The energy is now a function of four
variables: V , c/a, 〈ξ2(r)〉, and 〈ν2(r)〉, the fluctuation terms being random, non-centred
variables. Furthermore, the length scale of the variation of the fluctuations is assumed
to be larger than the range of interactions. Accounting for the spatial dependence of the
fluctuations by introducing lowest order gradient terms leads to the Hamiltonian of the
system (equation 2.24) [33].

H =
1

V

∫
d3r

[
E(c/a+ ξ(r), V + ν(r)) +

K

2
(∇ξ(r))2 +

Q

2
(∇ν(r))2

]
(2.24)

The gradient terms strongly suppress large short-range fluctuations. The coefficients K
and Q determine the width of the distribution of fluctuations in the k-space. Mohn et
al. [33] refer to K and Q as stiffness constants, in analogy to the spin-wave stiffness in
magnetic systems.
Furthermore, one introduces a variable φ (equation 2.25) representing the energy con-
tribution of the fluctuations.

φ =
1

V

∫
d3r [E(c/a+ ξ(r), V + ν(r))− E(c/a, V )] (2.25)

In order to calculate the free energy, the partition function (Z) needs to be calculated,

23



involving an integration over the phase space of the fluctuations (Γ).

F = −kBT lnZ, Z =
∫
dΓe−βH , with β = 1

kBT
(2.26)

In general, the functional integral cannot be calculated; therefore an approximation
needs to be applied. The approximation of the free energy is obtained using the Peierls
[34] - Feynman [35] inequality (equation 2.27) and minimizing the right hand side of the
equation.

F ≤ F0 + 〈H −H0〉0 (2.27)

F0 represents a trial free energy calculated from the trial HamiltonianH0, which is chosen
in a very general form. 〈· · ·〉0 describes the statistical average of the given quantity
using the approximate partition function. The full calculation is performed for magnetic
fluctuations in [15]. The resulting expressions for the free energy and the mean square
fluctuations are given by equations 2.28 and 2.29.

F = E(c/a, V )+ φ(c/a, V, 〈ξ2(r)〉, 〈ν2(r)〉)
−kBT

2

∑
k≤kc

ln πkBT
2((K/2)k2+∂φ/∂〈ξ2(r)〉) − 〈ξ

2(r)〉 ∂φ
∂〈ξ2(r)〉

−kBT
2

∑
d≤qc

ln πkBT
2((Q/2)k2+∂φ/∂〈ν2(r)〉) − 〈ν

2(r)〉 ∂φ
∂〈ν2(r)〉

(2.28)

〈ξ2(r)〉 = V
(2π3)

kBT
2

kc∫
0

4πk2

((K/2)k2+∂φ/∂〈ξ2(r)〉)dk

= V
2π

kBT
K

(
kc −

√
∂φ/∂〈ξ2(r)〉

K
· arctan

(√
K

∂φ/∂〈ξ2(r)〉kc
))

〈ν2(r)〉 = V
(2π3)

kBT
2

qc∫
0

4πk2

((Q/2)k2+∂φ/∂〈ν2(r)〉)dk

= V
2π

kBT
Q

(
qc −

√
∂φ/∂〈ν2(r)〉

Q
· arctan

(√
Q

∂φ/∂〈ν2(r)〉qc
))

(2.29)

The integral in equations 2.29 originates from a summation in k-space over all wavevectors.
Here the assumption was made that the system is isotropic in k and in good approxima-
tion the summation can be cancelled at a finite maximum value kc (or qc for the volume
fluctuations), the cut-off k-vector. This approximation is necessary, because otherwise
the integral would not yield finite values.
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Solving the integrals in equations 2.29 leads to equations for the fluctuations depending
on the temperature and the partial derivatives of φ. Together with the equations of state
(equations 2.30) for the c/a-ratio and the volume, these equations are the conditions for
the equilibrium values of the fluctuations.

∂E
∂(c/a)

+ ∂φ
∂(c/a)

= 0, V = const,
∂E
∂V

+ ∂φ
∂V

= −P, c/a = const
(2.30)

Since φ depends on the fluctuation amplitude and vice versa, the equations have to be
solved self-consistently. It is important to note that only in the ground state E + φ cor-
responds the physical energy surface. For finite temperatures, it is just a mathematical
quantity used to calculate the equilibrium values of the fluctuations. Inserting these
values into the equation for the free energy (equation 2.28) yields the physical results of
the calculation. From equation 2.28 one can derive expressions for the entropy and the
total energy (see equations 2.31,2.32) [33].

S = −∂F
∂T

= kB
2

∑
k≤kc

(
1 + ln πkBT

2((K/2)k2+∂φ/∂〈ξ2(r)〉)

)
+kB

2

∑
k≤qc

(
1 + ln πkBT

2((Q/2)k2+∂φ/∂〈ν2(r)〉)

) (2.31)

Obviously, the second terms in the sums diverge for zero temperature because the ex-
pression for the entropy is based on a classical (high temperature) expansion; therefore
it is not valid for temperatures close to 0 K [33]. In the calculation of the expression
for the total energy (equation 2.32) the diverging terms cancel with the corresponding
terms in the free energy.

U = F + TS = E + φ− 〈ξ2(r)〉 ∂φ
∂〈ξ2(r)〉 + kBT

2

∑
k≤kc

−〈ν2(r)〉 ∂φ
∂〈ν2(r)〉 + kBT

2

∑
k≤qc

(2.32)

In both equations there are sums without dependent variables. These sums represent
the number of independent fluctuation modes considered in the calculations and give a
constant contribution to the energy (at fixed temperature) and to the entropy. In terms
of the specific heat, these contributions represent Dulong-Petit’s law.
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The temperature evolution of the system and its phase transition can be visualized in
contour plots of the total energy. Since the calculations give an analytical expression for
the total energy U for each temperature, the thermal evolution of many properties of
the system, such as the bulk modulus, the thermal expansion coefficient, and the elastic
constant C ′, can be derived.
The application of this method to Fe3Ni and Fe5Ni3 is the topic of chapter 4.

2.4 Structural Considerations and the Martensitic

Transition

An essential characteristic of Fe3Ni is that the energy as a function of a volume-conserving
tetragonal deformation E(c/a)|V exhibits two minima, corresponding to an fcc-like and
a bcc-like structure. Both structures can be regarded as special cases of a body centered
tetragonal (bct) cell.
The existence of minima at the bcc-like and the fcc-like structure is not a coincidence
but has its foundations in the high coordination numbers of the bcc and fcc structures.
It can be shown that these maxima in the number of nearest neighbours minimize the
electrostatic energy. A more detailed description of the influence of the c/a-ratio on the
energy is given for example in [36]. The position of the energetic minima in the energy
surface E(c/a, V ) of Fe3Ni is the subject of chapter 3.
The Fe3Ni cell in the L12 structure can be regarded as a bct-like structure with a c/a-
ratio of

√
2. After a compression of the bct cell to a c/a-ratio of 1 it corresponds to

a bcc cell. One of the possible processes of this transformation, called the martensitic
transformation, is illustrated in figure 2.6.
The martensitic transformation is observed in iron, where a high-temperature fcc-

phase changes to a low-temperature bcc phase (called martensite). It is a diffusionless
transition between these phases. In Fe-Ni alloys with high iron content, the martens-
itic transition is found at lower temperatures than in pure Fe. However, the transition
temperature decreases with increasing Ni-concentration until the fcc-like phase becomes
the stable ground state at approximately 30% Ni (see section 4.1). The simplest path
relating the two phases is Bain’s path [38]. It connects the bcc and fcc phases via a
volume-conserving tetragonal deformation.
An analysis of Bain’s path in Fe3Ni and other materials, similar to the computations
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Figure 2.6: The two structures in the fcc to bcc transition. The upper figure shows an fcc
cell with a bct (body centred tetragonal) cell highlighted. The lower figure
illustrates the cell after the tetragonal deformation. [37]

in chapter 3, was performed by Gruner et al. [39]. Gruner et al. calculated the energy
as a function of the volume and the tetragonal distortion for Fe3Ni, Fe3Pt, and Fe3Pd.
They investigated the structural stability of these materials by calculating the phonon
dispersion relations. For each alloy, phonon softening is observed, especially in the vi-
cinity of the M-point in k-space. The imaginary frequencies occurring in these areas due
to the phonon softening mean that a static lattice deformation can lead to an energy gain.
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3 Ab-initio Calculations

The first aim of the present diploma thesis is to illustrate the importance of magnetism
in the martensitic transformation from the α-phase to the γ-phase of Fe3Ni. Since the
typical Invar system Fe65Ni35 occurs in a disordered state and calculations require a large
cell, the system is approximated by the two model systems Fe3Ni and Fe5Ni3 explained
in section 2.2.1.
In order to compare the magnetic and the non-magnetic ground states, static ab-initio
calculations are performed at different volumes of the unit cell for different tetragonal
deformations (variations of the c/a-ratio). In all the calculations in the present work, the
cell is regarded as body centered tetragonal, meaning that c/a = 1 corresponds to the
bcc-like cell and c/a =

√
2 to the fcc-like structure. To examine Bain’s path [38] of the

martensitic transformation and the surroundings of the energetic minima, 35 c/a-ratios
from 0.82 to 1.56 and 21 volumes from 9.83 Å3/atom to 12.66 Å3/atom are included.
Since the results for the magnetic model systems are used in chapter 4, the calculations
for these systems have been extended to larger volume and c/a-ratio ranges. Similar
computations were performed by Gruner et al.[39]. Regarding the position of the global
minimum and the shape of the energy surface, the calculations in the present work agree
very well with their results. In contrast to the results presented in this section, Gruner
et al. do not find a local minimum but a saddle point for the fcc-like structure. In
order to explain this discrepancy, it should be noted that in the present work the local
minimum is found at a slightly higher c/a-ratio than

√
2, which is the maximum value

considered by Gruner et al.
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3.1 Calculations of Fe3Ni

3.1.1 Static Calculations

The static calculations for Fe3Ni are performed for the collinear magnetic and the non-
magnetic state. The aim is to determine the ground state of Fe3Ni and to evaluate the
size of the energy barrier of the martensitic transition.
From the results of the calculations it is clear that for all the volumes considered, the
magnetic state is the ground state. With decreasing volume, the energy difference
between the magnetic and the non-magnetic state decreases. Simultaneously the mag-
netic moment of the magnetic state decreases. This is in accordance with the existence
of a state with low magnetic moments at low volumes.
Figure 3.1 illustrates the system’s free energy as a function of the c/a-ratio at two differ-
ent volumes: the volume that minimizes the energy of the non-magnetic state, V = 10.35

Å3/atom, and the volume that minimizes the energy of the magnetic state, V = 11.61

Å3/atom. For comparison, the experimental lattice constant of Fe65Ni35 given in section
2.2.1 is a = 3.595, which corresponds to V = 11.61 Å3/atom. Figure 3.1 illustrates
that for realistic equilibrium volumes the magnetic state is more favourable than the
non-magnetic state independent of the c/a-ratio.
The decreasing energy difference for smaller volumes mentioned above is illustrated in
figure 3.1. However, for all the volumes considered in the present work, the magnetic
state remains energetically lower for any c/a-ratio.
For the non-magnetic state, the fcc-like phase clearly is the energetic minimum, whereas
in the magnetic state, the minimum shifts from the fcc-like phase at small volumes to
the bcc-like phase at larger volumes including the equilibrium volume. Still, in all four
configurations a local minimum can be found near the other respective structure. How-
ever, the non-magnetic calculations show the second minimum at c/a < 0.9 instead of
the bcc-like c/a = 1.
For both structures, the fcc-like and the bcc-like, the volume of minimum energy is

found to be the same, for the given resolution of the volume. Hence, a possible structural
transition is assumed to follow Bain’s path. This allows to define the energy barrier as
the difference between the ground state energy and the highest energy value between
the two minima at a constant volume (see equation 3.1).
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Figure 3.1: Free Energy of the magnetic and non-magnetic state as a function of the
c/a-ratio for two different volumes.

∆Ebarr = Emax − E0, V = const. (3.1)

The values for the energy barriers and the differences between the bcc-like and the
fcc-like state are given in table 3.1.

Ground State ∆Ebarr [eV/atom] |∆Ebcc−fcc| [eV/atom]
magnetic bcc-like 0.0252 0.0250

non-magnetic fcc-like 0.2230 0.2011

Table 3.1: Energy differences and barriers for different magnetic and structural
configurations.

Comparing the magnetic and the non-magnetic state, an important difference is obvious:
the energy barrier for a structural transformation is almost one order of magnitude higher
for the non-magnetic state. In the non-magnetic case, the fcc-like state is the ground
state for all volumes that are considered in the present work. Figure 3.1 shows that the
energy barrier is lower for volumes larger than the equilibrium volume, but still its size
makes a thermal excitation of the bcc-like state very improbable.
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Figure 3.2: Free Energy of the magnetic state as a function of the c/a-ratio for seven
different volumes [Å3/atom]; the energy minimum is set to zero.

For magnetic Fe3Ni, further computational results are visualized in figure 3.2, which
shows the energy as a function of the c/a-ratio at different volumes across the range
covered by the calculations. In order to ensure readability of the figure, only the data of
seven different volumes are shown in the figure, although computations were performed
for 21 volumes. The values in table 3.1 and the data in figure 3.2 show, that the energy
barriers in the magnetic system are very low. In terms of thermal energy, the barrier at
the equilibrium volume (25 meV) corresponds to a temperature of less than 300 K. Thus,
at room temperature the probability of thermal excitation of the state is not negligible.
On the other hand, the data in table 3.1 suggest that the local minimum is very shallow
at equilibrium volume.
From figure 3.2 it is evident, that the bcc-like phase is not the ground state for small

volumes. For both phases, the respective second minima are shallow over a wide range of
volumes. In systems with very small volumes, the second minimum is even replaced by a
saddle point. Hence, it is not probable that a thermally excited state can remain stable
at any given volume. Therefore a phase transition from the bcc-like ground state to an
fcc-like high temperature phase either needs a change in volume or additional effects,
changing the shape of the energy surface.
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Figure 3.3: Comparison of Free Energy as a function of the c/a-ratio at equilibrium
volume for collinear and non-collinear magnetism in Fe3Ni.

Non-collinear magnetism Since in previous calculations (for example [27]) a non-
collinear solution resulted in the lowest energy (see section 2.2.1), a non-collinear ap-
proach is also considered in the present diploma thesis. Indeed, the non-collinear state
is found to have the lowest energy for all c/a-ratios and volumes, in accordance with
the results described in section 2.2.1. The absolute values of the magnetic moments
of the two magnetic approaches take very similar values. For example, in the energy
minimum the magnetic moments are |µcoll| = 8.577 µB and |µnoncoll| = 8.567 µB. A
direct comparison of the two approaches is given in figure 3.3.
Both energy differences, ∆Ebarr = 9.26 meV and ∆Efcc−bcc = 7.47 meV, are signific-

antly lower in the non-collinear than in the collinear magnetic state (for comparison, see
table 3.1). Apart from the lower total energy and lower energy differences, the behaviour
is very similar to that of the collinear state. At small volumes, the fcc-like phase is the
ground state while in equilibrium and at large volumes the bcc-like phase has a lower
energy.
However, there is a variety of non-collinear states leading to different energies and mag-
netic moments, which makes the task of finding the true ground state difficult. The
major problem is that in some cases for different c/a-ratios with the same initial values
for the components of the magnetic moment, different configurations are found to be the
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ground state, leading to spikes of different energy in the energy surface. Furthermore no
experimental evidence for non-collinear states has been found. Hence, the calculations
in chapter 4 are based on the collinear results and for the Fe5Ni3 cell no non-collinear
calculations have been performed.

3.1.2 Relaxation

From the analysis of the static calculations in the previous section, it is clear that the
theoretical ground state of Fe3Ni is the bcc-like phase. Since the static calculations only
cover discrete points of volume and c/a-ratio, various calculations have been performed
in order to determine the exact ground state. Furthermore it is interesting to analyse if
the result of a relaxation depends on the starting point.
The relaxation has been performed using the so-called RMM-DIIS algorithm in VASP
relaxing the cell shape and volume. This type of calculation is achieved by setting the
tags IBRION=1 and ISIF=3. Different c/a-ratios at a volume of V = 11.64 Å3/atom
are used as starting points of the relaxation. Up to c/a-ratios of 1.25, the structure
relaxes to the bcc-like form. In computations employing a different algorithm (the con-
jugate gradient algorithm, IBRION=2), even a starting value of c/a = 1.35 results in
the bcc-like structure. Although the volume is allowed to change, it remains approxim-
ately constant during the relaxation process. This shows that the preferred structure is
bcc-like at a volume of 11.64 Å3/atom, which is very close to the equilibrium volume
found in the static calculations.
In order to determine whether the bcc-like or the fcc-like state forms more likely from
a mixed cell containing both structures, a corresponding supercell was constructed as a
starting point of an ionic relaxation process. The supercell consists of 36 atoms building
two fcc-like layers stacked onto two bcc-like layers on an fcc-like ground layer. Both fcc
and bcc cell have a lattice constant of a=3.475, resulting in a small volume per atom
for the fcc-like cell and a large one for the bcc-like cell. Since the total volume per
atom is larger than the equilibrium volume found in the static calculations, change of
the cell volume is enabled in the relaxation process. During the relaxation process the
original cells are tilted and distorted and the volume shrinks significantly. Within the
resulting structure, the formation of bcc-like cells of slightly different sizes is observed.
The average volume per atom at the end of the relaxation 11.63 Å3/atom. The original
supercell and the result of the relaxation are depicted in figure 3.4. In the relaxed cell
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Figure 3.4: Fe3Ni supercell in original (left) and relaxed (right) configuration. In the
relaxed structure, a bcc-like cell is highlighted.

one of the bcc-like cells and the compressed fcc-like cell are marked with grey and black
lines. It should be noted that the structures only approximately correspond to bcc-like
cells because the distances between the atoms within the black cell deviate up to 5 %
from each other. The reason for these deviations might be the presence of Ni-rich layers
which probably do not occur in this form in the disordered crystal.
In the middle of the supercell there is a transition zone in fcc-like structure, followed by
another bcc-like area. Probably the fcc-like part is metastable, because from the static
calculations it is clear that the volume per atom is too large for an fcc-like ground state.
The result of the relaxation can be interpreted as tendency of Fe3Ni to form so-called
tweed patterns, as they are found in other materials around the martensitic transform-
ation [40].
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3.2 Calculations of Fe5Ni3

3.2.1 Static Calculations

Except for the non-collinear magnetic system, the same calculations have been performed
for Fe5Ni3. In contrast to the symmetrical Fe3Ni cell, there are two possible Ni-places
in the Fe5Ni3 cell presented in section 2.2.1. In addition to the structure illustrated
in figure 2.4, where the third Ni-atom replaces the Fe-atom in the layer separating the
two Fe3Ni cells (xy-layer), there is a second not equivalent possible spot for the third
Ni-atom in the cell. The other possibility is to replace one of the other two Fe-atoms
in the side planes (xz or yz) of the Fe3Ni cell. For both spots on the side planes this
results in the same symmetry of the Fe5Ni3 cell.
In order to ensure that the existence of two possible configurations does not influence the
behaviour of the model system, the calculations have been performed for both cells. For
the non-magnetic state both configurations give approximately the same results. The
fcc-like structure is the ground state and there is a second minimum for all volumes at
c/a ≈ 0.85. The shape of the E(c/a)|V curves is equivalent, only the energy values differ
by up to one percent.
For the magnetic state the results are qualitatively similar; both configurations show a
clear minimum at the fcc-like structure but the cell with the third Ni-atom in the centred
position has a second shallow minimum near the bcc-like structure. In the alternative
cell the minimum for the bcc-like structure does not exist. Since the bcc-like phase is the
low temperature phase in the martensitic transformation, the existence of the minimum
should not have an influence on the finite temperature calculations. The cell with the
additional Ni-atom in the centred position is used for the following calculations, since it
has higher symmetry than the other configuration.
Since the structure with two energetic minima was chosen for all the further consid-
erations, it is also possible to compare the magnetic and the non-magnetic state. In
contrast to Fe3Ni the magnetic and the non-magnetic state both have their global en-
ergy minimum at the c/a ratio corresponding to the fcc-like structure. Over the whole
volume range the magnetic state has a lower energy. As it is pointed out for Fe3Ni, also
for Fe5Ni3 the energy difference decreases at smaller volumes but the magnetic state is
energetically more favourable at all the volumes and c/a-ratios covered in the present
work.
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Figure 3.5: Free Energy of Fe5Ni3 for the magnetic state as a function of the c/a-ratio
for seven different volumes [Å3/atom].

In analogy to Fe3Ni, the energy differences and barriers can be determined (see table
3.2).

Ground State ∆Ebarr [eV/atom] |∆Ebcc−fcc| [eV/atom]
magnetic fcc-like 0.0613 0.0596

non-magnetic fcc-like 0.1849 0.1668

Table 3.2: Energy differences and barriers for different magnetic and structural config-
urations of Fe5Ni3.

For Fe5Ni3 there is essentially the same situation as for Fe3Ni. In the non-magnetic case,
the high energy barrier makes a transition impossible, while the barrier of the magnetic
configuration is significantly smaller. However, the energy barrier of the magnetic state
is approximately three times as high as in Fe3Ni which decreases the transition prob-
ability significantly. Furthermore, the local minima near the bcc-like structure are very
shallow; therefore the bcc-like state is not expected to be stable for any of the config-
urations considered in the present work. These facts are illustrated in figure 3.5, which
depicts the free energy as a function of the c/a-ratio for seven different volumes including
the equilibrium volume V = 11.47 Å3/atom. Figure 3.5 shows that for small volumes
the two-minima shape is more pronounced and the energy differences between the data
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points are larger. One possible explanation for this behaviour is that for smaller lat-
tice constants, the electrostatic configuration is more important, leading to pronounced
minima for the structures with higher coordination numbers.

3.2.2 Relaxation

In order to find the equilibrium volume and to determine whether the fcc-like structure
actually minimizes the energy, relaxations of the cell have also been performed for Fe5Ni3.
Since the static calculations and the phase diagram in figure 2.5 indicate that Fe5Ni3
does not exist in the bcc-like structure, no relaxations concerning the starting point have
been performed.
Starting from the fcc-like structure at V = 11.47 Å3/atom, the cell volume, the cell
shape and the ionic positions are allowed to change (IBRION=1, ISIF=3). The relaxed
structure is face centered tetragonal with c/a=1.45, which is still considered an fcc-like
structure. Furthermore, the cell volume increases slightly (V=11.495 Å3/atom).
Another interesting property of the relaxed cell is that the Fe-atoms on the sites in the
side planes shift towards the central layer (enriched in Ni) by approximately 1 % of the
lattice constant. In order to investigate if this behaviour is the indicator for a larger
reconstruction that is prevented by the periodic boundary conditions, the relaxation has
also been performed for a larger supercell consisting of two Fe5Ni3 cells stacked on top
of each other. However, the results of the relaxation of the supercell are equivalent to
those of the single Fe5Ni3 cell; no additional deformations take place. This suggests
that in Ni-rich areas, smaller cells could be preferred. Also the resulting c/a-ratio and
equilibrium volume deviate only negligibly from the values of the relaxed single cell.
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4 Finite temperature modelling

The calculations in chapter 3 provide information about the state of the system at T = 0

K. The aim of the present chapter is to introduce temperature to the model systems.
There are different approaches to describe the temperature dependence of a system; in
the present work, the finite temperature modelling is based on the phenomenological
procedure described in section 2.3.1.

4.1 Energy Surfaces of the Model Systems in the

Ground State

As a first step, an analytical expression of the energy surface of Fe3Ni at T = 0 K has to
be obtained. In the Landau expansion 2.23, this expression is given by a polynomial in
the variables c/a and V . The lowest order polynomial that can reproduce the ab-initio
data satisfactorily is found to be of the sixth order in c/a and of the third order in the
volume. The resulting fit polynomial is given in equation 4.1.

E(c/a, V ) =
6∑
i=0

3∑
j=0

Aij(c/a)iV j, with (4.1)

AFe3Ni
ij =



5045.006695418 −1509.59524336 148.38868092 −4.78410872588
−26151.23989000 7886.643555613 −778.673032314 25.1686183179

55109.80832438 −16772.2047598 1665.20504995 −54.01086699
−60312.7991148 18565.2780035 −1856.67770442 60.5105148

36270.54477875 −11315.0777834 1141.48482466 −37.419536044
−11415.4454152 3614.62336857 −368.183814314 12.148020519

1476.17389989 −474.79253419 48.8484051506 −1.62250597774
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Figure 4.1: Comparison of the original data energy surface (a) and the fit (b) for Fe3Ni
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The high accuracy of the coefficients is necessary in order to reproduce the surface
correctly. In figure 4.1 a comparison of the contours of the ab-initio data and the fit
polynomial is given.
The fit reproduces the position and the form of the minima and the overall shape of the
energy surface very well. There are small differences near V = 11 Å3/atom, where the
two structures have approximately the same energy, because the fit to a polynomial of
sixth order in the c/a-ratio results in a shallower second minimum. The smoother shape
of the fit is probably due to the discrete number of points of the computational data.
The contour graphics illustrate the small energy barrier between the two structures.
Furthermore their bottle-like shape shows the fact that the lowest energy for both struc-
tures is approximately at the same volume.
For Fe5Ni3, the same fitting procedure is applied, leading to the coefficients

AFe5Ni3
ij =



1400.83114414 −290.340117205 20.94791116214 −0.516190932267
−6535.44957548 1347.70484574 −96.7737761327 2.373984215937

12153.9121867 −2476.13989621 175.7810438133 −4.264634854247
−11239.54326548 2233.2493522857 −154.8822909956 3.67452268616

5328.5168961 −1006.5830761 66.420682571 −1.498385574
−1167.2667663 195.734104327 −11.2386736986 0.21357489866

78.303304987 −7.97035153871 0.065689359407 0.0094526300977


.

The comparison of the data and the fit polynomial for Fe5Ni3 is depicted in figure 4.2.
Again, the agreement of the position of the minima and the overall shape of the surface
is very good and both minima occur approximately at the same volume. The small
drop-shaped part of the contour connecting the two minima indicates the fact that the
local minimum at this position is very shallow. The drop-like shape of the contour is
less pronounced in the fit showing that the minimum is narrower in the fit.
The volume range covered in the calculations of Fe5Ni3 is larger than in those of Fe3Ni,
because in the finite temperature calculations irregularities of the fit at larger volumes
influenced the results before additional values were included.
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Figure 4.2: Comparison of the original data energy surface (a) and the fit (b) for Fe5Ni3
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4.2 Interpolation of Energy Surfaces between the

Model System Concentrations

Since the two model systems considered in the present work correspond to concentra-
tions below and above the original Invar composition (Fe65Ni35), it is possible to inter-
polate between the two structures. An interpolation allows the investigation of the finite
temperature properties of systems with different compositions. Furthermore the concen-
tration dependence of the system’s characteristics and the concentration, at which the
fcc-like and the bcc-like structure have the same energy, can be determined.
The two model systems presented in chapter 3 are the only two sampling points of the
concentration dependent energy surface. Hence, a linear concentration dependence of the
fit coefficients is assumed. The coefficients at a given concentration CNi are calculated
using the expression given by equation 4.2.

Aij(CNi) = Aij(CNi=0.375)−Aij(CNi=0.25)

0.125
· CNi+

+
(
Aij(CNi = 0.25)− Aij(CNi=0.375)−Aij(CNi=0.25)

0.125
· 0.25

) (4.2)

Figure 4.3 illustrates the concentration dependence of the shape of the energy surface,
the position of the minima and the energy barrier. The results of the interpolation
show that at a Ni-concentration between 29 % and 30 % the two minima have the
same energy and the energy barrier is very low. At this composition, the two structures
are in equilibrium. This result is in good agreement with the phase diagram in figure
2.5, in which the coexistence of an fcc-like phase begins at a minimum Ni-content of
approximately 30 %. With increasing Ni content, the energy minimum of the fcc-like
structure stabilizes, since the energy barrier increases and the minimum of the bcc-like
structure becomes shallow and increases in energy.
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Contours of Free Energy at 28 percent Ni
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Contours of Free Energy at 29 percent Ni
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Contours of Free Energy at 30 percent Ni
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Contours of Free Energy at 33 percent Ni
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Contours of Free Energy at 35 percent Ni
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Figure 4.3: Interpolated free energy contour plots for six different Ni concentrations:
Fe74Ni26, Fe72Ni28, Fe71Ni29, Fe70Ni30, Fe67Ni33 and Fe65Ni35. The fcc-like
phase is the ground state for CNi ≥ 30 %.
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4.3 Self-consistent Solution of the Equations of State

In order to investigate the temperature dependence of the system, the equations of state
of the system including the fluctuations (equations 2.29, 2.30) have to be solved self-
consistently to determine the equilibrium value of the fluctuations.
The thermal dependence of the volume and c/a-ratio fluctuations is controlled by two
quantities: the cut-off k-vectors (kc and qc) and the stiffness constants (K and Q). The
stiffness constants determine the width of the k-space distribution of the fluctuations.
These values are not directly accessible in the experiment, but they can be related to the
correlation lengths of the fluctuations, which can be determined in neutron scattering
experiments. Unfortunately no experiments determining the correlation lengths of the
volume and c/a-ratio fluctuations of Fe3Ni could be found in the literature; therefore
the stiffness constants and the cut-off k-vectors are treated as adjustable parameters.
This is possible, because the physical information is for the most part contained in the
energy surfaces whereas the parameters basically only influence the temperature scale
of the phase transition.
The parameters are adjusted in order to yield physically meaningful values of the fluc-
tuations and a transition temperature of Fe3Ni in the martensitic transition region in
figure 2.5. The values used for the parameters in the present work are listed in table
4.1.

K 16 eV Å2

Q 7·10−3 eV/Å4

kc 5.2 Å−1

qc 6.4 Å−1

Table 4.1: Values of the parameters determining the fluctuations of the system.

Since the self-consistent solution of the equations can only be calculated numerically, a
Fortran program was written for this task. The structure of the program is presented in
the following section.
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4.3.1 Numerical Solution of the Self-consistent Equations

The Fortran program solves the self-consistent equations for a given set of temperatures.
For each temperature a "do while"-loop is used to minimize the four expressions

∂E
∂V

+ ∂φ
∂V

+ P = ∆11, c/a = const,
∂E

∂(c/a)
+ ∂φ

∂(c/a)
= ∆12, V = const,

|〈ξ2〉n − 〈ξ2〉n+1| = ∆21,

|〈ν2〉n − 〈ξ2〉n+1| = ∆22,

(4.3)

in which P represents the external pressure, which is set to 7 · 10−7 eV/Å3 ≈ 1 bar.
However, it should be noted that pressures of this order of magnitude have no influence
on the calculation. First, the values of V and c/a are adapted stepwise using Newton’s
method (see equation 4.4).

Vn+1 = Vn −∆11

(
∂∆11

∂V

)−1

( c
a
)n+1 = ( c

a
)n −∆12

(
∂∆12

∂(c/a)

)−1 (4.4)

The analytic expressions for ∆11, ∆12, ∂∆12

∂(c/a)
, ∂∆11

∂(V )
are implemented as subroutines.

With the new values for the volume and c/a-ratio, equations 2.29 are used to calculate
the corresponding values of the fluctuation amplitudes for the given temperature. The
different fluctuation amplitudes change φ, the energy contribution of the fluctuations. In
the following run of the loop, φ is used to determine the new values of V and c/a. This
process is repeated until the values ∆ij with i, j = 1, 2 reach zero with a predetermined
accuracy; in the present program ∆max = 10−7 terminates the loop. In order to prevent
infinite loops, the loop stops after 105 runs, returns a message and restarts with different
initial values. As soon as a result is found, the program verifies if it is within the fit
range including its surroundings, which are set to 8 Å3 to 16 Å3 for the volume and 0.8
to 1.7 for the c/a-ratio. If the result is outside this range, it is assumed to be caused by
a numeric instability, for example a small value of the derivatives in equations 4.4, and
the calculations are restarted from different initial values.
A solution meeting the criteria mentioned above is assumed to be an equilibrium state for
the given temperature. Hence the fluctuation amplitudes determined by the program
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describe the thermal evolution of the system and they can be used to calculate the
physical ground state given by the minimum of the total energy U .
The minimization of U also uses Newton’s method and is implemented similarly to the
calculation of the solution of the equations of state, but with the important difference
that the fluctuation amplitudes are constants. Thus, only the volumes and c/a-ratios
are varied to find the minimum. Since Newton’s method is sensitive with respect to the
initial position, the search for the minimum of U is performed twice, once starting from
c/a = 1 (bcc-like) and once starting from c/a = 1.4 (near fcc-like). The energies of the
two results are compared and the lower one is assumed to be the ground state. Once
the minimum of U is obtained, many properties of the system can be calculated. In the
program, the difference in entropy (given by equation 2.31) compared to the entropy of
first temperature in the calculation, the bulk modulus

B = V
∂2U

∂V 2
, (4.5)

the thermal expansion coefficient and the elastic constant of tetragonal deformation

C ′ =
1

V

∂2U

∂(c/a)2
(4.6)

are calculated. The thermal expansion coefficient for the first temperature in the loop
is set to zero; for the other temperatures it is given by

α =
1

3V

∆V

∆T
. (4.7)

After finishing the loop over the temperatures, these characteristics of the system are
plotted as a function of temperature, giving the thermal evolution of the system. Fur-
thermore, for each temperature, a contour plot of the total energy in the surroundings
of the minimum is produced. As a first test of the validity of the results, one can check
whether at T = 0 K the total energy surface is equivalent to the free energy surface
obtained in the ab-initio calculations. Since at T = 0 K there are no contributions of
fluctuation terms, the energy surface must not change compared to the results of the
static calculations.
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4.4 Results of the Finite Temperature Model

The finite temperature modelling has been performed for eight different compositions of
the Fe-Ni alloy and at various temperatures. Therefore only selected results are presen-
ted in the present work.
The most interesting process in the finite temperature calculations is the phase trans-
ition between the bcc-like and the fcc-like state since it influences the thermal expansion
and the elastic constants of the system and it is concentration dependent. The concen-
tration dependence establishes a connection to experiments and can hence be regarded
as an indicator of the quality of the modelling process. A good model should reproduce
experimental data such as the phase diagram in figure 2.5 correctly.
In the present chapter, first the temperature evolution of the Fe3Ni system is presented.
Then a comparison is drawn to the behaviour of systems with different Fe and Ni con-
tents. The absolute values of the temperatures are not very informative since they can be
adjusted by changing the parameters kc and K; qc and Q have less influence. Therefore
all temperatures are given in units of the transition temperature TM of Fe3Ni.

4.4.1 Temperature Evolution of Fe3Ni

In Fe3Ni the volume fluctuations are found to cause a distortion of the energy surface.
In figure 4.4, the total energy surfaces for six different temperatures in a temperature
range around the transition temperature are depicted. In the total energy graphics, the
terms kBT

2

∑
k≤qc,kc

in equation 2.32 are neglected, since they correspond to the number of

modes and thus only contribute a constant value for a given temperature.
The first contour plot in figure 4.4 shows that the energy surface remains essentially
unchanged for low temperatures. Hence, one graphic is sufficient to show the changes in
the energy surface below half the transition temperature. With increasing temperature
the minimum at the bcc-like structure drifts towards larger volumes, as one would expect
from thermal expansion. The second minimum at the fcc-like structure, however, shifts
to smaller volumes. From the comparison of the first two contour plots in figure 4.4 one
can infer that the energy barrier between the two states decreases until the temperature
reaches half the transition temperature. At higher temperatures the energy barrier
remains approximately constant but the energy difference decreases until at T = TM the
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Total Energy Contours of Fe3Ni at T = 0.62 TM
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Total Energy Contours of Fe3Ni at T = 0.75 TM
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Figure 4.4: Energy surfaces for Fe3Ni for six different temperatures. With increasing
temperature, the minimum at the fcc-like structure stabilizes and shifts to-
wards smaller volumes.
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fcc-like structure becomes the ground state. A further increase in temperature causes
the volume of the stable minimum to decrease and the energy barrier between the states
to increase.
From the shape of the energy surfaces, one can already infer how the elastic constants
and the thermal expansion coefficient depend on the temperature. Up to the transition
temperature the fluctuations cause the volume to increase, leading to a positive thermal
expansion. The minimum corresponding to the fcc-like state, however, is shifted towards
smaller volumes with increasing fluctuation amplitude. This unexpected behaviour is
already implied in the shape of the energy surface at T = 0 K. In order to illustrate
this fact figure 4.5 shows the volume dependence of the energy for the fcc-like and the
bcc-like structure. For the fcc-like structure, the energy costs of a contraction are smaller
than those of an expansion of the lattice. Thus, if thermal expansion is interpreted as
the shift of the mean volume to larger values at higher energies, the fcc-like structure
is expected to show negative thermal expansion owing to the volume dependence of the
energy. In contrast, the energy curve of the bcc-like structure is steeper at volumes
smaller than the minimum and flatter at larger volumes, corresponding to the ordinary
case of a positive thermal expansion coefficient.
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Figure 4.5: Energy as a function of the fcc-like lattice constant for the fcc-like and bcc-
like structure, showing that the shape of the energy curve of the fcc-like
structure favours negative thermal expansion
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The finite temperature calculation confirms the assumption based on the shape of the
energy surface at T = 0 K. Figure 4.6 shows the results for the temperature depend-
ence of the volume and the thermal expansion coefficient. As predicted, the system
expands with increasing temperature while its structure is bcc-like. At the transition
temperature, the system changes to the fcc-like structure, which takes approximately the
same volume as the bcc-like structure at T = 0 K but shifts towards smaller volumes
with increasing temperature. Hence at the transition temperature a discontinuity in
the volume occurs, leading to an undefined value of the thermal expansion coefficient.
Numerically, α has a large negative value at this temperature, which is not included in
figure 4.6. Neglecting this point is justified because its value depends on the step size of
the temperature loop; thus it has no physical significance. At temperatures T > TM the
thermal expansion coefficient takes negative values in agreement with the shape of the
energy surface discussed above. Since the martensitic transition occurs gradually in the
bulk and is found near the Invar region (see figure 2.5), this effect certainly contributes
to the Invar behaviour. However, the fact that α decreases even further from relatively
large negative values indicates that for T >> TM the reduction of the structural consid-
erations to only two fluctuating variables (the volume and the c/a-ratio) is not a good
approximation any more.
Since the magnetic effects, which are the basis of the Invar effect according to the theories
discussed in chapter 2.2.1, are not considered, the positive thermal expansion coefficient
in the bcc-like structure should not be interpreted as failure of the theory to reproduce
Invar behaviour. Instead, the positive thermal expansion coefficient represents the case
of constant magnetic moments. Hence, it can be interpreted as a further verification
that the Invar effect below the temperature of the martensitic transformation is based
on magnetism.
An overview of the temperature dependent properties of the system is given in the fig-
ures 4.6, 4.7 and 4.8. The mean square values of the fluctuations are not illustrated
in any figure since they simply increase linearly with temperature in a good approxim-
ation over the whole temperature range. At the transition temperature they take the
critical values 〈ν2〉c ≈ 14 Å6 and 〈ξ2〉c ≈ 0.009. The fluctuations of the volume are very
large; the root mean square value corresponds to fluctuations of the lattice constant of
approximately ten percent. One possible reason why the transition only occurs at these
high critical fluctuations is that the magnetovolume effects, which could lead to smaller
volumes favouring the fcc-like state, are neglected completely.

Figure 4.7 illustrates the temperature dependence of the c/a-ratio and the entropy
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Figure 4.6: Temperature dependence of the volume (a) and the thermal expansion coef-
ficient α (b) of Fe3Ni. Both variables show that the thermal expansion is
positive in the bcc-like phase negative in the fcc-like phase.
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Figure 4.7: Temperature dependence of the c/a-ratio (a) and the entropy difference to
T = 0 K (b) of Fe3Ni. Both quantities clearly show the phase transition at
T = TM. The behaviour of ∆S is typical for entropy driven phase transitions.
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C’ (b) of Fe3Ni. After the discontinuity corresponding to the phase transition,
the bulk modulus remains nearly constant whereas the behaviour of C’ is
similar for both states.
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difference compared to T = 0 K. The c/a-ratio shows the transition from the bcc-like to
the fcc-like state. The variation of the c/a-ratio before and after the transition is caused
by small changes of the energy surface owing to the fluctuations.
The entropy rises with temperature since the fluctuation amplitudes, which represent
thermal disorder, increase with temperature. The discontinuity in the entropy is typical
for entropy driven phase transitions [41]. Since the total energy is a continuous function
of the temperature, the step to a higher entropy corresponds to negative step in the free
energy, resulting in an energy difference favouring the phase transition.
The thermal dependence of the elastic constants is illustrated in figure 4.8. In the exper-
iments cited in the review by Shiga [13] the elastic constants for Fe65Ni35 take the values
B = 106 GPa and C ′ = 22 GPa at room temperature. The comparison to the model
for Fe3Ni shows that for both parameters the values cannot be reproduced correctly,
although the bulk modulus shows a tendency towards lower values for higher temperat-
ures. C ′ is close to the experimental value at low temperatures but the deformation of
the energy surface caused by the volume fluctuations leads to a strong increase. Since
C ′ is proportional to the second derivative of the energy with respect to the c/a-ratio at
constant volume, it is clear that it increases as soon as the positions of the minima shift
to different volumes. In order to explain the discrepancy compared to the experiment, it
is important to note that a full description of the elastic behaviour of the system cannot
be given by only two elastic constants. It is possible that including shear strain into the
calculations could lead to a more accurate description of the system’s elastic behaviour.
Concerning C ′, it is possible that its enormous increase with temperature is caused by
reducing the description of the system to two structural degrees of freedom. However,
including a third variable would also increase the complexity of the calculation signific-
antly. Another fact which must not be neglected in the analysis of the results is that the
finite temperature modelling does not consider changes in the magnetic moment, which
also have influence on the elastic properties.
Finally, it should be noted that the transition to the fcc-like phase can also be induced by
external pressure. The critical pressure for this transition at T = 0 K is approximately
Pc = 16.4 GPa, which is comparable to the critical pressure found in similar calculations
for Ca by Mohn et al. [33].
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4.4.2 Temperature Evolution of Model Systems with Different

Compositions

In the present section, the results for Fe3Ni at finite temperature are compared to a selec-
tion of the model systems presented in section 4.2: Fe71Ni29, Fe69Ni31 and Fe65Ni35. On
the examples of Fe71Ni29 and Fe69Ni31 it can be shown that with increasing Ni-content the
transition temperature decreases. At concentrations CNi ≥ 30 %, the system’s ground
state is already the fcc-like structure (see figure 4.3). Thus, based on the phase diagram
(figure 2.5), no transition is expected for these concentrations. Indeed the finite tem-
perature model shows no transition but a further stabilization of the fcc-like structure
at increasing temperatures. Although no transition occurs either, Fe65Ni35 is included
in the comparison, because it is the original Invar composition found by Guillaume [1].
In order to ensure a meaningful comparison, the same values of the parameters K, Q,
kc and qc are used over the whole concentration range. Furthermore, the temperature
scale is given in units of the transition temperature TM of Fe3Ni.
First, the properties of the materials near the critical composition are compared. Fig-
ure 4.9 shows a comparison of the temperature dependence of the equilibrium volume of
Fe71Ni29 and Fe69Ni31. Clearly, the phase transition in Fe71Ni29 occurs at a significantly
lower temperature (<0.2TM) than in Fe3Ni. The lower transition temperature means
that smaller fluctuations are needed to initiate the phase transition. In this case, the
critical fluctuation amplitudes are 〈ν2〉c ≈ 2.5 Å6 and 〈ξ2〉c ≈ 0.0016. Furthermore,
figure 4.9 illustrates that no structural phase transition occurs for CNi = 31 %. Simil-
arly to the considerations concerning Fe3Ni, negative thermal expansion is found in the
fcc-like phase for both Ni-concentrations. The temperature loop for other compositions
than Fe3Ni only includes temperatures up to T ≈ 0.75 · TM since it is clear from the
total energy surfaces in figure 4.10 that the fcc-like minimum is stable and no transition
will occur at higher temperatures. The comparison of figure 4.10 with the corresponding
contour plots in figure 4.3 also shows that the minima of the fcc-like structure stabilize
with increasing temperature. Furthermore, calculations at higher temperatures were
performed but did not yield any additional information. Of course also for these two
systems the temperature evolution of all the properties, which are presented above for
Fe3Ni, has been performed.
However, the results for Fe71Ni29 are very similar to those of Fe3Ni except for a shift of
the transition temperature. Similarly, the calculated properties of Fe69Ni31 strongly re-
semble those of Fe65Ni35, which is discussed in more detail below in the present chapter.
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Figure 4.9: Temperature dependence of the volume for Fe71Ni29 (a) and Fe69Ni31(b).
Fe71Ni29 shows a structural phase transition. Both exhibit negative thermal
expansion in the fcc-like phase.
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Figure 4.10: Total energy surfaces at T = 0.75·TM for Fe71Ni29 (left) and Fe69Ni31(right).
The minimum at the fcc-like structure stabilizes at high temperatures for
both compositions.

Hence no further data on these two systems is presented.
An important result of this comparison is that the finite temperature modelling does not
always yield a phase transition from the ground state minimum to the excited state but
in the present work only the transition, which is also observed experimentally, occurs. If
the initial ground state remains stable at high temperatures, the formalism even causes
a stronger stabilization.
In the finite temperature modelling of Fe65Ni35 problems occurred concerning the stabil-
ity of the minimization of the equations of state combined with the defining equations
of the fluctuations. At T > 0.5 ·TM, no minimum fulfilling the criteria mentioned in sec-
tion 4.3.1 could be found. Since the fluctuations increased linearly up to this value, the
self-consistent solution leading to the fluctuation amplitudes was replaced with a linear
approximation, as it is suggested in [33]. The defining points of the linear approximation
are T = 0 K without any fluctuations and the fluctuations in Fe3Ni at T ≈ 1.6 · TM.
At T = 0 K, the ground state of Fe65Ni35 is near the fcc-like structure. As for Fe5Ni3 (see
section 3.2), the exact position of the minimum is at c/a ≈ 1.44. Figure 4.11 illustrates
that with increasing temperature, the minimum shifts towards the exact c/a-ratio of the
fcc-like structure.
The temperature dependence of the volume shows that also at a Ni-content of 35 %,

the fcc-like structure has a negative thermal expansion coefficient, which is depicted in
figure 4.12. The behaviour of α(T ) is unexpected, since the theories of the Invar effect
presented in section 2.2.1 explain the almost vanishing thermal expansion coefficient as
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Figure 4.11: Temperature dependence of the c/a-ratio (a) and the volume (b) of Fe65Ni35.
At higher temperatures the c/a-ratio shifts towards the exact fcc-like struc-
ture. The volume shows a small negative thermal expansion.
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Figure 4.12: Temperature dependence of the thermal expansion coefficient α showing
that it is negative and considerably smaller than in Fe3Ni.

the combination of a positive contribution of structural effects and a contraction caused
by magnetic effects. Again, the negative thermal expansion is a consequence of the
shape of the energy surface. In Fe5Ni3, the surroundings of the minimum at constant
c/a-ratio are nearly symmetric as a function of the volume. However, the energy in-
creases slightly slower towards larger volumes. Since the surroundings of the minimum
of the fcc-like structure of Fe3Ni strongly favour negative thermal expansion, the min-
imum of the interpolated energy surface of Fe65Ni35 shifts towards smaller volumes in
the finite temperature calculations.
Furthermore, the nearly symmetric form of the energy minimum of the fcc-like structure
of Fe5Ni3 causes the finite temperature results to be very sensitive to the quality of
the fit near the minimum. First, the assumption was made that the negative thermal
expansion resulted from insufficient accuracy of the fit. However, this assumption was
discarded after a very good fit in the critical area achieved by including additional data
and decreasing the fit range still led to negative thermal expansion of Fe65Ni35. Thus
it is clear that the results depicted in 4.12 are qualitatively correct but quantitatively
depend the accuracy of the fit near the minimum of the fcc-like structure.
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Figure 4.13: Temperature dependence of the bulk modulus B (a) and the elastic con-
stant C’ (b) of Fe65Ni35. The increase of both elastic constants shows the
stabilization of the fcc-like phase against fluctuations of the volume (B) and
of the c/a-ratio (C’).
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Since CNi = 35 % is near the composition of the model system Fe5Ni3, the linear inter-
polation between the model systems is assumed to be a good approximation; hence a
different type of interpolation is not expected to change the results significantly.
Figure 4.13 illustrates the thermal evolution of the bulk modulus B and the elastic con-
stant C’. Both properties increase with temperature, showing the stabilization of the
minimum. Since C’ and B are proportional to the second derivative of the energy with
respect to the c/a-ratio (C’) and the volume (B), a stabler minimum with a steeper
energy surface leads to larger values of B and C’. The temperature evolution of C’ is
very similar for all systems considered in the present work. At low temperatures small
tetragonal deformations at constant volume cost significantly less energy than at higher
temperatures. With increasing temperature, volume fluctuations cause the two minima
in the energy surface to drift apart, leading to an increase of C’.
However, in Fe65Ni35 the bulk modulus increases by approximately five percent from
T = 0 K to T = TM. This increase is not observed in Fe3Ni, where the bulk modulus
decreases up to the transition temperature and remains approximately constant in the
fcc-like structure.
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5 Summary and Conclusion

In the present work the ground state properties and the finite temperature evolution of
the Invar model systems Fe3Ni and Fe5Ni3 have been calculated, focussing on structural
effects such as the martensitic transformation.
In order to determine whether magnetism has an important influence on the structure
of the systems, static ab-initio calculations have been performed for magnetic and non-
magnetic systems at various volumes and tetragonal deformations. The results show that
the ground state of both systems is ferromagnetic but the crystal structure for the energy
minimum is different. The present study thus goes beyond earlier investigations where
the Fe3Ni structure was used as a model system for Invar and has been forced into the fcc
structure [25]. The energy minimum of Fe3Ni is given by the bcc-like structure whereas
for Fe5Ni3 an fcc-like structure is more favourable. However, in the non-magnetic case
the ground state structure of both systems is fcc-like. It is important to notice that the
onset of magnetism stabilizes the bcc structure in Fe3Ni. This behaviour resembles pure
Fe, which also shows a magnetic bcc ground state, while the non-magnetic phase would
be fcc-like. Still, for all configurations the bcc-like structure and the fcc-like structure
both correspond to a minimum in the energy.
For the non-magnetic state the energy barrier of the martensitic transformation (bcc-like
to fcc-like or vice versa) is approximately one order of magnitude higher than for the
magnetic case. This means that the formation of magnetic order is intimately entangled
with the structural phase transition. Furthermore, the magnetic moment of the ground
state is not invariant under changes of the volume and the c/a-ratio. Thus for a complete
description of Fe-Ni Invar alloys it is indispensable to take the magnetic properties into
account.
In relaxations of the ionic system, the exact ground state configurations have been
determined and in a calculation using a supercell of Fe3Ni stoichiometry and mixed
structure (bcc-like and fcc-like), the formation of a tweed-like structure favouring the
bcc-like phase has been observed.
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In order to investigate the importance of purely structural effects in the thermal evolu-
tion of Fe-Ni Invar alloys, temperature has been introduced to the system, represented by
an analytic expression of the energy as a function of the volume and the c/a-ratio. The
temperature dependence is given in the form of classical fluctuations of the volume and
the c/a-ratio, neglecting the changes of the magnetic moment. The analytic expressions
of the energy of the model systems allow an interpolation to compositions between Fe3Ni
and Fe5Ni3. It is observed that the martensitic transition occurs up to a Ni-content of
approximately 30 %.
For all the Fe-Ni alloys considered in the present work, the temperature dependence of
the elastic constant C ′, the bulk modulus and the thermal expansion coefficient have
been calculated. C ′ shows a strong increase with temperature in all systems, whereas
for increasing temperature the bulk modulus decreases in the bcc-like structure and in-
creases in the fcc-like structure. However, a complete characterization of a material is
not possible with two elastic constants only; at least the shear modulus would have to
be included in order to give an overview of the system’s elastic behaviour.
While the thermal expansion coefficient of systems in the bcc-like structure is positive
and increases approximately linearly with the temperature, in the fcc-like structure an
interesting effect occurs: Owing to the shape of the energy surface E(c/a, V ) of Fe3Ni
the thermal expansion coefficient is negative for the majority of compositions considered
in this purely structural calculation.
These results indicate that structural effects contribute an important part to the Invar
anomaly and could be necessary to explain Invar behaviour completely. However, ac-
cording to the results of the static ab-initio calculations ferromagnetism is an essential
property of the system and therefore every theory of Invar alloys has to consider the
contributions of magnetic effects.
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