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Einleitung/Kurzfassung

Von allen vier fundamentalen Wechselwirkungen ist die Gravitation die einzige

Wechselwirkung, von der bis heute keine allgemein akzeptierte quantisierte Theorie

existiert. Ein möglicher Lösungsansatz zu diesem Problem basiert auf dem

holographischen Prinzip. Dieses Prinzip bezeichnet im Wesentlichen die

Vermutung, dass eine Theorie der Quantengravitation in d+ 1 Dimensionen durch

eine äquivalente Beschreibung einer Quantenfeldtheorie (ohne Gravitation) in d

Dimensionen formuliert werden kann. In Analogie zu einem Hologramm, bei dem

man entweder das abgebildete Objekt in 3 Dimensionen, oder die gespeicherte

Intensität und Phase auf dem 2-dimensionalen Schirm als Beschreibung

heranziehen kann, so hat man auch im Falle des Holographischen Prinzips zwei

gleichwertige, aber dennoch unterschiedliche Beschreibungen der Dynamik eines

Systems zur Verfügung.

Ein Spezialfall dieses Prinzips, welcher im Kontext der Stringtheorie formuliert

wurde, ist die so genannte Anti-de-Sitter/konforme Feldtheorie (AdS/CFT)

Korrespondenz, bei der eine Theorie der Quantengraviation mit negativer

kosmologischer Konstante durch eine Quantenfeldtheorie, welche unter konformen

Transformationen invariant ist, beschrieben werden kann. Da diese Korrespondenz

Ergebnisse bei starker Kopplung mit solchen bei schwacher Kopplung verbindet,

wäre dies ein idealer Kandidat, um Quantengravitation auf Skalen, bei denen

Quanteneffekte nicht mehr vernachlässigt werden können, besser zu verstehen.

Allerdings gibt es in mehr als 2+1 Dimensionen noch viele konzeptionelle und

technische Schwierigkeiten. Daher wird beispielsweise versucht, mit Hilfe von

technisch einfacheren Gravitationstheorien in 2+1 Dimensionen zuerst die

konzeptionellen Schwierigkeiten zu beseitigen, welche dem Verständnis einer

vollständigen Theorie der Quantengravitation im Wege stehen.

Viel Aufmerksamkeit in diesem Kontext haben in den vergangenen Jahren auch so

genannte Höhere-Spin Gravitationstheorien in 2+1 Dimensionen erregt, durch

deren Studium man sich ebenfalls ein besseres Verständnis der AdS/CFT

Korrespondenz erhofft.

In dieser Masterarbeit befassen wir uns mit einer bestimmten Hhere-Spin

Gravitationstheorie in 2+1 Dimensionen. Wir führen eine kanonische Analyse

durch und stellen konsistente Randbedingen vor, welche von den dynamischen

Feldern der Theorie erfüllt werden müssen. Weiters bestimmten wir die klassische

und quantisierte Symmetriealgebra der daraus resultierenden holographischen

Quantenfeldtheorie am Rande der Raumzeit und versuchen sie physikalisch zu

interpretieren.



Abstract

We analyze asymptotic symmetry algebras in (2+1)-dimensional non-AdS higher-

spin gravity with a focus on AdS2 × R and H2 × R. We find a consistent set of

boundary conditions for spin-3 gravity in the non-principal embedding and calcu-

late the corresponding asymptotic symmetry algebra in the classical and quantum

mechanical case. In addition, we check for unitary representations of the resulting

quantum W(2)
3 algebra and give an interpretation of the corresponding CFT.
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1. Introduction

In this section we will give a short introduction to the basic concepts underlying this

master thesis such as the AdS/CFT correspondence and the motivation to study

higher-spin gauge theories.

1.1 The AdS/CFT Correspondence

One of the big open questions in physics of the last century is formulating a con-

sistent theory of quantum gravity and in turn maybe also a theory of everything

that explains all of the fundamental forces of nature. One possible solution for

this problem could be provided by string theory where the fundamental objects are

described by one-dimensional objects called strings rather than zero-dimensional ob-

jects1. One conjecture formulated in the framework of string theory and a possible

candidate to understand quantum gravity better quantitatively is the so called Anti-

de-Sitter/Conformal field theory (AdS/CFT) correspondence. This AdS/CFT cor-

respondence, originally discovered by Maldacena in 1997, is one of the most striking

and unexpected discoveries of the last 20 years. Originally formulated as a correspon-

dence between a N = 4 supersymmetric Yang-Mills theory in four dimensions and

a type IIB superstring theory on AdS5 × S5 [4] the correspondence has been much

generalized since then and found many applications. The name of the special case

of a AdS/CFT correspondence originates from the canonical example according to

which the first space is the product of a p+1-dimensional Anti-de-Sitter spacetime2

and some closed manifold (a sphere for example) and the p-dimensional quantum

field theory defined on the boundary is a conformal field theory.

The generalized conjecture is formulated as an equivalence of a gauge theory (string

theory for example) defined on a specific background and a quantum field theory

without gravity on the (conformal) boundary of this spacetime. This general princi-

ple that the dynamics of a region of spacetime are encoded on the boundary of this

region is also called the holographic principle. This terminology is indeed adequate

because a hologram is completely analogous, i.e. a three-dimensional image that has

been saved on a two dimensional holographic screen but still retaining all information

present in three dimensions.

There is also one prominent physical example that hints to the possibility that the

holographic principle is actually present in nature: the entropy of a black hole.

Initially black holes were thought of as objects that have zero entropy until Beken-

stein [5] noted that this assumption would violate the second law of thermodynamics.

One could for example throw a cup with hot gas and a certain amount of entropy

into a black hole and thus decrease the amount of entropy in the universe if the

1For introductional literature on string theory please refer to [1–3].
2Anti-de-Sitter spacetimes are maximally symmetric solutions of the Einstein equations with a

negative cosmological constant and have constant negative curvature.
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assumption of black holes with zero entropy would be true. Thus, black holes would

have to have entropy in order for the second law of thermodynamics to still hold.

In fact black holes have more entropy per volume than any other object in the uni-

verse. This can be understood by considering a sphere of fixed radius R containing

a relativistic gas. The entropy of this gas increases as the energy increases and is

only limited by gravitational forces. When the energy exceeds a certain limit the

gas collapses to a black hole and thus the resulting black hole has to contain at

least the same amount of entropy as the gas before the collapse. Bekenstein used

this argument to conjecture an upper bound of the entropy of a black hole which is

proportional to the area of the black hole. This conjecture was later confirmed by

Hawking [6]. Since in statistical physics entropy is proportional to the logarithm of

the number of possible microstates, the Bekenstein-Hawking entropy suggests that

the logarithm of the number of microstates of a black hole is proportional to its area

rather than its volume. This is a statement that strongly hints at the validity of the

holographic principle.

Now back to the main reason why this AdS/CFT correspondence is a candidate do

deepen our understanding of quantum gravity. This duality is a strong/weak duality.

This means that the coupling constants of the bulk and boundary theories are related

in such a way that if one tuned the coupling of the bulk theory such that the theory

is strongly coupled, then the dual boundary theory would be weakly coupled and

vice versa. This can be seen for example by considering the perturbative expansion

of the partition function of a large N gauge theory and the loop expansion in string

theory. The perturbative expansion of a large N gauge theory in 1
N

and g2
YMN is

given by [7]

Z =
∑
g≥0

N2−2gfg(λ), (1.1)

where gYM is the coupling constant of the (Yang-Mills) gauge theory, λ = g2
YMN is

the so called ’t Hooft coupling and fg(λ) are arbitrary functions of λ. This expansion

looks very much like the loop expansion in string theory given by

Z =
∑
g≥0

g2g−2
s Zg, (1.2)

where gs is the string coupling which is identified with 1
N

in large N dualities. Con-

sidering the supergravity approximation of string theory on AdS5 × S5 this theory

has three important parameters:

• The string coupling constant gs which measures the string interaction strength

relevant for splitting and joining of strings.

• The string length ls measuring the size of the fluctuations of the string world-

sheet.
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• The curvature radius ` of AdS5 and S5.

Four dimensional N = 4 super Yang-Mills (SYM) Theory3 with U(N) gauge group

has the following two parameters:

• The rank N of the gauge group.

• The coupling constant gYM determining the strength of interactions in SYM

theories.

These parameters are related as follows

gs = g2
YM ,

(
`

ls

)4

= 4πg2
YMN = 4πλ. (1.3)

Looking at (1.1) we see that the SYM theory perturbative expansion is only valid

for small gYM and small λ. Since the supergravity approximation of string theory is

only valid for `
ls
� 1, which is equivalent to λ � 1, we see that we have indeed a

strong/weak duality. If

• λ � 1 then the SYM theory is weakly coupled but the dual string theory is

strongly coupled,

• λ � 1 then the SYM theory is strongly coupled and the dual string theory is

weakly coupled.

Thus if λ � 1 for example then it would be possible to compute certain observ-

ables on the string theory side perturbatively and then translate these results to the

SYM side and thus gain results for observables in the strongly coupled regime of this

theory. In order to establish some kind of dictionary that would help in this trans-

lation process it is thus helpful to find dual theories that are completely solvable.

Excellent candidates on the field theory side are thus 2-dimensional CFTs since these

theories are exactly solvable in generic regimes of parameter space. This is a direct

consequence of the fact that the algebra of infinitesimal conformal transformations

is infinite dimensional in two dimensions4. Thus CFTs in two dimensions are ideal

models to address fundamental questions about quantum gravity that are usually

very hard to answer in higher dimensional field theories. As a consequence we have

to consider gravity theories in three dimensions as appropriate dual theories to two

dimensional field theories.

3N is the number of supersymmetry generators.
4As an introduction to CFTs please refer to [8–11].
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1.2 Einstein-Hilbert Gravity as a Chern-Simons Theory

In this section we try to give a short introduction as to how it is possible to refor-

mulate Einstein-Hilbert gravity in 2+1 dimensions as a Chern-Simons gauge theory.

2+1 dimensional pure gravity without matter fields is described by the Einstein-

Hilbert action

IEH =
1

16πGN

∫
M

d3x
√
−g
(
R +

2

`2

)
, (1.4)

with GN being Newton’s constant, R the Ricci scalar and 1
`2

= −Λ is the cosmo-

logical constant where ` denotes the AdS radius. One of the main problems one

encounters when trying to quantize gravity in dimensions d > 3 is the problem of

non-renormalizability. The infinities that usually occur when one expands gravity in

terms of Feynman diagrams cannot be absorbed by a renormalization of the grav-

itational coupling constant [12]. This means that one would have to determine an

infinite amount of parameters in order to fully describe quantum gravity. Following

this argument it was also believed that gravity in D = 2 + 1 is non-renormalizable.

However, the theory in 2+1 dimensions is trivial in the bulk on the classical level in

the sense that there are no propagating local degrees of freedom, i.e. gravitons. Since

quantized theories that are trivial on the classical level are usually renormalizable

there was a high probability that gravity in 2+1 dimensions is actually renormal-

izable. And indeed it was then shown by Witten in [13] that in 2+1 dimensions

renormalization is indeed possible. The main reason for this is that in 2+1 dimen-

sions the Riemann tensor Rabcd can be expressed in terms of the Ricci tensor Rab,

the Ricci scalar R and the metric gab as

Rabcd = gacRbd + gbdRac − gadRbc − gbcRad −
1

2
R(gacgbd − gadgbc). (1.5)

Since the equations of motion of pure Einstein-Hilbert gravity given by

Rab −
1

2
gab

(
R +

2

`2

)
= 0 (1.6)

tell us that the Ricci tensor is equal to some scalar times the metric one can ex-

press all curvature invariants Rabcs, Rab and R in terms of the metric gab. This in

turn implies that all possible counterterms5, which should cancel the infinite dia-

grams can be written as a multiple of
∫

d3x
√
|g|, which is equivalent to an on shell

renormalization of the cosmological constant. If there are counterterms present that

vanish on shell then these terms can be absorbed by a redefinition of the metric [14]

gab → g+αRab + . . ., where α is some constant and the ellipsis denotes higher order

terms of curvature invariants. Thus in 2+1 dimensions all divergencies in pertur-

bation theory can be removed by a redefinition of the metric and the cosmological

5The lowest order pure curvature corrections to the Einstein-Hilbert action look for example like

R
√
|g|, RabRab

√
|g|, RabcdRabcd

√
|g|.
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constant [15].

In order to see that pure Einstein gravity and a Chern-Simons theory in three di-

mensions are equivalent up to boundary terms, it is convenient to formulate 2+1 di-

mensional general relativity in terms of a local orthonormal basis for the (co)tangent

space called dreibein e, which can be interpreted as a local inertial frame and a spin

connection ω. The dreibein and spin connection in terms of a cotangent basis are

given by

ea = eaµdx
µ, ωab = ωabµdx

µ. (1.7)

Latin letters a, b, . . . denote local Lorentz indices, greek letters µ, ν, . . . denote space-

time indices and ωabµ = −ωbaµ. The spacetime metric and the dreibein are related

as

gµν = eaµe
b
νηab, (1.8)

where ηab denotes the Minkowski metric with signature (−,+,+). A very conve-

nient feature of 2+1 dimensions is that one can ”dualize” the spin connection in the

following way

ωa =
1

2
εabcωbc, (1.9)

where εabc is the Levi-Civita symbol and we omitted the spacetime index µ for the

sake of brevity. The curvature 2-form in terms of the dualized spin connection is

then given by

Ra = dωa + εabcω
b ∧ ωc. (1.10)

One can now regard the dreibein e and the spin connection ω as the new dynamical

variables of the theory and reformulate the Einstein-Hilbert action in terms of these

new variables.

IEHP =
1

16πGN

∫
M
Ra ∧ ea +

2

3`2
εabce

a ∧ eb ∧ ec, (1.11)

The action (1.11) already looks very familiar in comparison to the Chern-Simons

action

ICS[A] =
k

4π

∫
M

Tr(A ∧ dA+
2

3
A ∧ A ∧ A), (1.12)

where A is a Lie algebra valued one form, which in the case of pure Einstein-Hilbert

gravity will be sl(2)×sl(2). Combining the dreibein and the dualized spin connection

into the following connection one forms

Aa = ωa +
1

`
ea (1.13)

Āa = ωa − 1

`
ea, (1.14)

Witten showed in [13] that the combination

I = ICS[A]− ICS[Ā] (1.15)
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is equivalent to the Einstein-Hilbert action up to boundary terms. Let La, a =

−1, 0, 1 denote the sl(2) generators then the normalization [16]

Tr(LaLb) =
1

2
ηab (1.16)

leads to the following identification

k =
`

4GN

. (1.17)

In a similar fashion one can construct a first order formulation of the dynamics of

free massless bosonic symmetric fields with spin s ≥ 2 [17, 18]. There is, however,

one notable subtlety in comparison to the sl(2) construction. Dualizing the spin

connection as in (1.9) only works for gauge groups that have dimension 3, like sl(2).

Thus in higher-spin gravity one starts with Aa and Āa and defines the corresponding

spin connection and zuvielbein6 as

ea =
`

2
(Aa − Āa) (1.18)

ωa =
1

2
(Aa − Āa). (1.19)

The spacetime metric is then defined as

gµν := (#) Tr
(
Aµ − Āµ

) (
Aν − Āν

)
, (1.20)

where (#) is some convenient factor of normalization. This definition is one possi-

bility in linking the gauge potentials A and Ā and the spacetime metric gµν . This is

a viable choice since the metric defined in this way is manifestly gauge invariant and

in the case of sl(2) coincides with (1.8). It is, however, also possible that one could

add further terms to (1.20) and thus a unique definition of the spacetime metric in

terms of the gauge potentials A and Ā is still an open topic as of yet. Thus taking

these subleties into account one can construct bosonic massless higher-spin gauge

theories via G×G Chern-Simons theories [19], where G denotes the gauge group of

the theory.

As already mentioned, gravity theories as well as Chern-Simons theories are trivial

in the sense that they have no propagating local degrees of freedom. This does,

however, not mean that these theories are trivial. In fact they are quite nontrivial as

soon as one introduces a boundary. In general there is even a symmetry enhancement

of the bulk symmetries occurring at the boundary. The by now famous example of

a SL(2) × SL(2) bulk isometry algebra that is enhanced to two copies of a Vira-

soro algebra with a central charge c = 6k at the boundary has first been studied

6Since in general for higher-spin theories the Lie algebras considered have more than three

generators and thus do not have to match the number of spacetime indices, eaµ is called zuvielbein

rather than dreibein, as it was called in the sl(2) case.
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by Brown and Henneaux [20]. By adding further massless higher-spin excitations

the asymptotic symmetries are even further enhanced to non linear algebras called

W-algebras7.

1.3 Higher-Spin Gravity

In this section we will motivate why it is interesting to study higher-spin gravity in

2+1 dimensions.

Higher-spin excitations appear quite naturally in (super)string theories. In addition

to massless modes of lower spin s ≤ 2 there is an infinite tower of massive modes of

arbitrary high spin with their mass squared proportional to the string tension T and

spin s. Since the string tension is inverse proportional to the string length squared,

these higher-spin modes are very heavy and thus unobservable at low energies. Nev-

ertheless these higher-spin excitations are necessary for the consistency of a string

theory describing all the fundamental interactions. In general, quantum field theo-

ries containing massive particles with spin s ≥ 1 are non-renormalizable unless the

mass was acquired through some kind of spontaneous symmetry breaking. Thus it

may be possible that string theory is just a broken phase of some other gauge theory

with additional higher-spin symmetry and corresponding massless higher-spin gauge

fields [22]. Since the mass squared of the higher-spin excitations is proportional

to the string tension, these modes become massless in the limit T → 0. Thus, in

this limit one should observe a symmetry enhancement of string theory by higher-

spin symmetry, and one can regard string tension generation as a mechanism of the

spontaneous symmetry breaking of the higher-spin symmetry. If this conjecture was

true, then this could be very useful in understanding string theory and in particular

the AdS/CFT correspondence. However, it is not easy to build such theories with

higher-spin gauge symmetries in flat space. There is in particular one theorem by

Coleman and Mandula which has been generalized to arbitrary dimensions by Pelc

and Horwitz [23], which states that symmetries of the S-matrix in a non-trivial (i.e.

interacting) field theory in a flat space can only have sufficiently low spins. This

theorem can, however, be circumvented if one is considering AdS spacetimes [24].

And indeed for AdS there exist interacting higher-spin theories of massless parti-

cles [25–28]. There exists also a general statement that the cosmological constant Λ

in dimensions D > 2+1 should be non-zero in the phase of the unbroken higher-spin

symmetry [28, 29], thus considering AdS spacetimes is not simply a trick to circum-

vent the Coleman-Mandula theorem as it might seem at first. One could for example

start with a theory of massless higher-spin fields and a cosmological constant Λ 6= 0.

After spontaneous symmetry breaking via some mechanism (dimensional compactifi-

cation for example) one could indeed end up in principle with a theory where m 6= 0

for higher-spin fields and Λ = 0 (or Λ very small) [30]. The modification of the

7For an introduction to W-algebras please refer to [21].
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cosmological constant could then be due to some fields that acquire a non-zero vac-

uum expectation value via the spontaneous symmetry breaking and thus modify the

vacuum energy8. Thus, it would be possible in principle to start with a massless

higher-spin theory and Λ 6= 0, and after spontaneous symmetry breaking one could

end up with a string theory containing massive higher-spin fields and a very small

cosmological constant.

In general, higher-spin gauge theories contain infinite set of spins 0 ≤ s ≤ ∞. Thus

it is generically not possible to just consider particles up to spin n in a higher-spin

gauge theory. The only known exception to this is the case of 2 + 1-dimensions,

where it is possible to truncate this otherwise infinite tower of higher-spin fields at

arbitrary spin n so that all fields have spin s ≤ n [31], which is another reason why

it is interesting to work in 2+1 dimensions.

1.4 Non-AdS Holography

There are many applications that require a generalization of the AdS/CFT corre-

spondence to a gauge/gravity duality that does not involve spacetimes asymptoting

to AdS, or asymptoting to AdS in a weaker way as compared to Brown-Henneaux

boundary conditions [20,32]. Some examples are given by

• null warped AdS spacetimes, which arise in proposed holographic duals of non-

relativistic CFTs describing cold atoms [33,34]

• Schrödinger spacetimes, which generalize null warped AdS by introducing an

arbitrary scaling exponent [35]

• Lifshitz spacetimes, which arise in gravity duals of Lifshitz-like fixed points [36]

and also have a scaling exponent parametrizing spacetime anisotropy

• AdS/log CFT correspondence [37,38], which requires a relaxation of the Brown-

Henneaux boundary conditions [39–41]

• Flat space holography, which requires the spacetime in the bulk to be asymp-

totically flat [42–44].

A priori it is not clear that higher-spin gravity can accommodate such non-AdS

backgrounds. There is, however, one example of a theory that is very similar to

higher-spin gravity in 2+1 dimensions, namely conformal Chern-Simons gravity [45–

47]. Conformal Chern-Simons gravity has

• no local physical degrees of freedom,

• a Chern-Simons formulations with a gauge group bigger than SL(2)× SL(2),

8This is due to the fact that a cosmological constant has the same effect as an intrinsic energy

density of the vacuum.
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• gauge symmetries that relate non-diffeomorphic metrics to each other,

• and the asymptotic symmetry group can be larger than two copies of the Vi-

rasoro algebra [48,49].

The axisymmetric stationary solutions of conformal Chern-Simons gravity include

AdS3 as well as AdS2 × R, which means that at least for conformal Chern-Simons

gravity non-AdS backgrounds exist. And indeed it has been shown in [50] that higher-

spin gravity with an appropriate variational principle is indeed capable of generating

spacetimes that asymptote to AdS (with weaker boundary conditions than Brown-

Henneaux), AdS2 × R, Schrödinger, Lifshitz and warped AdS spacetimes.
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2. Basics of Chern-Simons Theories

In this section we will give a short introduction to the basics of Chern-Simons theo-

ries and explain the variational principle we will be using in order to accommodate

asymptotic backgrounds beyond AdS. Since there already exist excellent books ex-

plaining the basics of constrained hamiltonian systems and canonical analysis, we

will not go much into detail regarding these topics. We refer the interested reader

to [51,52] for example.

2.1 Chern-Simons Action

As reviewed in section 1.2 Einstein gravity with a negative cosmological constant in

three dimensions can be reformulated as the difference of two Chern-Simons actions

given by

I = ICS[A]− ICS[Ā] (2.1)

with

ICS[A] =
k

4π

∫
M

Tr(A ∧ dA+
2

3
A ∧ A ∧ A) +B[A]. (2.2)

ICS[Ā] is given by just replacing A→ Ā in (2.2). Hence we will focus on the canonical

analysis of the ICS[A] term. The canonical analysis for ICS[Ā] can then be obtained

in complete analogy to the one performed with ICS[A] just by replacing k → −k and

A→ Ā in all relevant formulas. In addition we will also set the AdS radius ` to 1.

The action given by (2.2) is defined on a ManifoldM with the topologyM = Σ×R
and coordinates xµ = (t, ρ, ϕ), µ = 0, 1, 2. In addition, we assume that Σ has the

topology of a disk and is parameterized by t and ρ, where ρ = const. corresponds

to the boundary. B[A] is a boundary term defined on ∂M = ∂Σ × R to ensure a

well defined variational principle and gauge invariance of the action if one wants to

consider spacetimes that do not asymptote to AdS. Without this boundary term the

resulting restrictions on the connection A that would ensure a well defined variational

principle and gauge invariance of the action would only allow the resulting spacetimes

to asymptote to AdS3. The A’s are Lie algebra valued 1-forms that can be written

as

A = Aaµ dxµTa, (2.3)

with Ta being a basis of the Lie algebra g one is considering . If one chooses such a

basis then Tr(TaTb) can be interpreted as a non-degenerate bilinear form on the Lie

algebra. In components one can write (2.2) as

ICS[A] =
k

4π

∫
M

d3xεµνλgab

(
Aaµ∂νA

b
λ +

1

3
facdA

c
µA

d
νA

b
λ

)
+B[A], (2.4)

where gab = Tr(TaTb), ε
tρϕ = 1 and fabc are the structure constants of the Lie algebra

given by

[Ta, Tb] = f cabTc. (2.5)
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Lie algebra indices (a, b, . . .) are raised and lowered with gab and spacetime indices

(µ, ν, . . .) with the background metric gµν of the spacetime considered.

2.2 Variational Principle and Equations of Motion

In order to obtain the equations of motion one has to vary (2.2). This yields

δICS[A] =
k

2π

∫
M

Tr(δA ∧ F ) +
k

4π

∫
∂M

Tr(δA ∧ A) + δB[A], (2.6)

with F = dA+A∧A. One could consider for example the following boundary term

B[A] =
k

4π

∫
∂M

d2xTr(AϕAt). (2.7)

In order to have a well defined variational principle we have to require δICS[A] = 0

which specifies the equations of motion as

F = 0. (2.8)

In addition, we have to restrict the boundary conditions such that the total boundary

term vanishes, i.e.

δICS[A]
∣∣∣
on-shell

=
k

2π

∫
∂M

d2x gabA
a
ϕδA

b
t = 0. (2.9)

This can be achieved by demanding either

Aϕ

∣∣∣
∂M

= 0 or δAt

∣∣∣
∂M

= 0. (2.10)

Since Aϕ

∣∣∣
∂M

= 0 is a slightly stronger boundary condition on the connection than

δAt

∣∣∣
∂M

= 0, we will use the latter one because we do not want to put too many

restrictions on the connection.

2.3 Gauge Invariance of the Chern-Simons Action

Another important consistency condition is gauge invariance of the action. Since the

connection has to satisfy δAt

∣∣∣
∂M

= 0, the form of the allowed gauge transformations

will also necessarily be restricted. Writing finite gauge transformations as

A→ g−1(Ã+ d)g, (2.11)

with g ∈ G where G is the gauge group one is considering, we can calculate the

change of the action (2.2) under (2.11). This leads to

ICS[A] = ICS[Ã] + δICS[Ã] + δB[Ã], (2.12)
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where

δICS[Ã] = − k

12π

∫
M

Tr(g−1dg ∧ g−1dg ∧ g−1dg)− k

4π

∫
∂M

Tr(dgg−1 ∧ Ã) (2.13)

and

δB[Ã] = − k

4π

∫
∂M

d2xTr(∂ϕg∂tg
−1 − Ãϕ∂tgg−1 − Ãt∂ϕgg−1). (2.14)

Hence the Chern-Simons action is gauge invariant if either

• g → 1 sufficiently fast when approaching the boundary ∂M; or

• the gauge transformations are certain infinitesimal gauge transformations as

specified below.

Infinitesimal gauge transformations connected to the identity are given by

g ' 1 + λaTa. (2.15)

This leads to

δICS[Ã] + δB[Ã] =− k

4π

∫
∂M

d2x gab

(
ερij∂iλ

aÃbj − Ãaϕ∂tλb − Ãat∂ϕλb
)

=
k

2π

∫
∂M

d2x gabÃ
b
ϕ∂tλ

a = 0. (2.16)

Since we do not want to impose additional constraints on the connection, one can

conclude that (2.2) is gauge invariant for infinitesimal gauge transformations satis-

fying at the boundary

∂tλ
a
∣∣∣
∂M

= 0. (2.17)

2.4 Canonical Analysis of Chern-Simons Theories

In order to proceed with the canonical analysis it is convenient to use a 2 + 1 decom-

position of the action (2.4) [53]. The 2 + 1 decomposition of (2.4) is given by

ICS[A] =
k

4π

∫
R

dt

∫
Σ

d2xεijgab

(
ȦaiA

b
j + Aa0F

b
ij + ∂j

(
AaiA

b
0

))
+B[A], (2.18)

with F a
ij = ∂iA

a
j − ∂jA

a
i + fabcA

b
iA

c
j and εij = εtij. Since the EOM require

F a
ij = 0, the form of (2.18) already specifies Aa0 as a Lagrange multiplier and Aai as

the dynamical fields. The Lagrangian density L is then given by

L =
k

4π
εijgab

(
ȦaiA

b
j + Aa0F

b
ij + ∂j

(
AaiA

b
0

))
. (2.19)

Calculating the canonical momenta πa
µ ≡ ∂L

∂Ȧaµ
corresponding to the canonical vari-

ables Aaµ one finds the following primary constraints

φa
0 := πa

0 ≈ 0 φa
i := πa

i − k

4π
εijgabA

b
j ≈ 0. (2.20)
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The Poisson brackets of the canonical variables are given by

{Aaµ(x), πb
ν(y)} = δabδµ

νδ2(x− y). (2.21)

The next step is to calculate the canonical Hamiltonian density via the following

Legendre transformation

H = πa
µȦaµ − L = − k

4π
εijgab

(
Aa0F

b
ij + ∂j

(
AaiA

b
0

))
. (2.22)

Since we are dealing with a constrained Hamiltonian system, we have to work with

the total Hamiltonian given by

HT = H + uaµφa
µ, (2.23)

where uaµ are some arbitrary multipliers. Since the primary constraints should be

conserved after a time evolution, we require

φ̇a
µ = {φaµ,HT} ≈ 0, (2.24)

which leads to the following secondary constraints

Ka ≡ −
k

4π
εijgabF

b
ij ≈ 0 (2.25)

DiA
a

0 − uai ≈ 0, (2.26)

where DiX
a = ∂iX

a + fabcA
b
iX

c is the covariant derivative. One can now use the

Hamilton equations of motion, which are given by

Ȧai =
∂HT

∂πai
= uai (2.27)

to determine the Lagrange multipliers uai and rewrite (2.26). This yields the following

weak equality

DiA
a

0 − uai = DiA
a

0 − ∂0A
a
i = F a

i0 ≈ 0. (2.28)

The total Hamiltonian can now be written in the following form

HT = Aa0K̄a + ua0φa
0 + ∂i(A

a
0πa

i), (2.29)

with

K̄a = Ka −Diφa
i. (2.30)

One can use the canonical commutation relations (2.21) to determine the following

Poisson brackets which will be necessary to determine the Poisson algebra of the
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constraints

{φa0(x), Ab0(y)} = −δabδ2(x− y), (2.31a)

{φai(x), Abj(y)} = −δabδijδ2(x− y), (2.31b)

{φai(x), πb
j(y)} = − k

4π
εijgabδ

2(x− y), (2.31c)

{φai(x), πb
j(y)} = − k

2π
εijgabδ

2(x− y), (2.31d)

{Aai(x), Djφb
j(y)} = [δab∂i + fabcA

c
i(y)]δ2(x− y), (2.31e)

{πai(x), Djφb
j(y)} = − k

4π
εij[gab∂j + fabcA

c
j(y)]δ2(x− y) + fab

cφc
i(y)δ2(x− y),

(2.31f)

{φai(x), Djφb
j(y)} = − k

2π
εij[gab∂j + fabcA

c
j(y)]δ2(x− y) + fab

cφc
i(y)δ2(x− y),

(2.31g)

{πai(x),Kb(y)} = − k

2π
εij[gab∂j + fabcA

c
j(y)]δ2(x− y), (2.31h)

{φai(x),Kb(y)} = − k

2π
εij[gab∂j + fabcA

c
j(y)]δ2(x− y), (2.31i)

{Diφa
i(x),Kb(y)} = − k

2π
εijfabcDiA

c
jδ

2(x− y), (2.31j)

{φai(x), K̄b(y)} = −fabcφciδ2(x− y), (2.31k)

{Diφa
i(x), Djφb

j(y)} = − k

2π
εijfabcDiA

c
jδ

2(x− y)− fabcDiφc
iδ2(x− y), (2.31l)

where ∂i denotes ∂
∂yi

. Using these relations one finds the following algebra of con-

straints

{φai(x), φb
j(y)} = − k

2π
εijgabδ

2(x− y), (2.32a)

{φai(x), K̄b(y)} = −fabcφciδ2(x− y), (2.32b)

{K̄a(x), K̄b(y)} = −fabcK̄cδ2(x− y), (2.32c)

which are the only non-vanishing Poisson brackets of the constraints φa
µ and K̄a.

Hence φa
0 and K̄a are first class constraints and φa

i are second class constraints.

Thus we can use the second class constraints φa
i to restrict our phase space and

define the corresponding Dirac bracket of the remaining canonical variables. In this

case the only non-vanishing Dirac bracket of the dynamical fields is given by the

following relation

{Aai(x), Abj(y)}D.B =
2π

k
gabεijδ

2(x− y). (2.33)

2.5 Constructing the Gauge Generator

As a next step we are interested in the generators that correspond to the gauge

transformations induced by the first class constraints φa
0 and K̄a. A useful way to
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construct the generators is given by Castellani’s algorithm [52]. In the general case

the gauge generator is given by

G = λ(t)G0 + λ̇(t)G1, (2.34)

with λ̇(t) ≡ dλ(t)
dt

. The constraints G0 and G1 then have to fulfill the following

relations

G1 = CPFC , (2.35a)

G0 + {G1,HT} = CPFC , (2.35b)

{G0,HT} = CPFC , (2.35c)

where CPFC denotes a primary first class constraint. These relations are fulfilled for

G0 = K̄a and G1 = φa
0 = πa

0. The smeared generator of gauge transformations has

the following form

G[λ] =

∫
Σ

d2x
(
D0λ

aπa
0 + λaK̄a

)
. (2.36)

Using (2.31) one can show by a straightforward calculation that this generator gen-

erates the following gauge transformations via δλ• = {•, G[λ]}

δλA
a

0 = D0λ
a, (2.37a)

δλA
a
i = Diλ

a, (2.37b)

δλπa
0 = −fabcλbπc0, (2.37c)

δλπa
i =

k

4π
εijgab∂jλ

b − fabcλbπci, (2.37d)

δλφa
i = −fabcλbφci. (2.37e)

The generator G that we have constructed via this method is only a preliminary

result, since the presence of a boundary in our theory prevents that the generator

G is properly functionally differentiable. We will fix this by first computing the full

variation of the generator for a field independent gauge parameter λa

δG[λ] =

∫
Σ

d2x(δ(D0λ
aπa

0) + λaδK̄a) =∫
Σ

d2x

(
λ̇aδπa

0 − λafabc(δAb0πc0 + Ab0δπc
0)− k

4π
εijgab∂jλ

aδAbi+

∂iλ
aδπa

i − λafabc(δAbiπci + Abiδπc
i)− ∂i

(
k

4π
εijgabλ

aδAbj + λaδπa
i

))
=

∫
Σ

d2x

(
fabcλ

cπa
µδAbµ +Dµλ

aδπa
µ +

k

4π
εijgab∂iλ

aδAbj−

∂i

(
k

4π
εijgabλ

aδAbj + λaδπa
i

))
. (2.38)
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The first three terms are regular bulk terms and thus do not spoil functional differen-

tiability. The last term on the other hand is a boundary term that spoils functional

differentiability. Thus in order to fix this one has to add a suitable boundary term to

the gauge generator such that the variation of this additional boundary term cancels

exactly the boundary term in (2.38) i.e.

δḠ[λ] = δG[λ] + δQ[λ], (2.39)

with

δQ[λ] =

∫
Σ

d2x ∂i

(
k

4π
εijgabλ

aδAbj + λaδπa
i

)
. (2.40)

Setting the second class constraints φa
i ≈ 0 strongly equal to zero, thus going into

the reduced phase space and using in addition Stoke’s theorem, the variation of the

boundary charge can be written as

δQ[λ] =
k

2π

∫
dϕgabλ

aδAbϕ. (2.41)

If we assume that the gauge parameter is field independent, then the boundary charge

Q[λ] is trivially integrable. This yields the following canonical boundary charge

Q[λ] =
k

2π

∫
dϕgabλ

aAbϕ. (2.42)

2.6 Partially Fixing the Gauge

After performing the canonical analysis and having identified all the constraints we

can turn our attention to an appropriate choice of gauge. Since we have found

two first class constraints we are free to impose two sets of gauge conditions. One

appropriate partial gauge fixing choice is given by [52]

Aρ = b−1(ρ)∂ρb(ρ), (2.43a)

Aϕ = b−1(ρ)aϕ(ϕ, t)b(ρ), (2.43b)

At = b−1(ρ)at(ϕ, t)b(ρ), (2.43c)

with the group element

b(ρ) = eρL0 . (2.44)

This choice of gauge automatically solves the flatness conditions Ftρ = 0 and Fϕρ = 0.
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3. AdS2 × R and H2 × R for sl(3)

In this section we present appropriate boundary conditions on the connection A with

an AdS2 ×R or H2 ×R background with H2 being the Lobachevsky plane. In order

to construct such a background, an embedding that contains at least one singlet with

Tr(S2) 6= 0 is necessary. This leads to an embedding with three sl(2) generators Ln
(n = −1, 0, 1), two sets of generators ψ±n (n = −1

2
, 1

2
) of spin 3

2
and one singlet S of

spin 1. These generators fulfill the following commutation relations9

[Ln, Lm] = (n−m)Ln+m, (3.1a)

[Ln, S] = 0, (3.1b)

[Ln, ψ
±
m] = (

n

2
−m)ψ±n+m, (3.1c)

[S, ψ±m] = ± ψ±m, (3.1d)

[ψ+
n , ψ

−
m] = Lm+n +

3

2
(m− n)S. (3.1e)

The existence of the two doublets in our representation allows us to consider linear

combinations of the corresponding generators without spoiling (3.1c), and we used

this freedom to define the ψ±n in such a way that they are eigenstates of the adjoint

action of the singlet S.

Consider the connections

Aρ = L0 Āρ = − L0 (3.2a)

Aϕ = σeρL1 Āϕ = − eρL−1 (3.2b)

At = 0 Āt =
√

3S (3.2c)

with some constant σ = ±1. Using the following definition

gµν :=
1

2
Tr
(
Aµ − Āµ

) (
Aν − Āν

)
, (3.3)

one obtains the following asymptotic background metric

ds2 = dt2 + dρ2 − σe2ρ dϕ2. (3.4)

Depending on the sign of σ this metric is asymptotically AdS2×R (σ = 1) or H2×R
(σ = −1) with an Euclidean signature.

3.1 Background Fluctuations and Boundary Conditions of the Connection

Regarding the fluctuations of the background on the boundary which we assume

to be located at ρ → ∞, we consider as a starting point the following boundary

9For the matrix representations of these generators and the corresponding Killing form used for

the computations in this section, please refer to Appendix (A.1).
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conditions

gµν =

 1 +O(e−ρ) O(e−ρ) O(1)

· 1 +O(e−ρ) O(1)

· · −σe2ρ +O(eρ)


µν

, (3.5)

where the coordinates are ordered as t, ρ, ϕ. These fluctuations are chosen in such

a way that they agree with the asymptotic behavior of the first descendant of the

AdS2×R [H2×R] vacuum, which can be found in [54]. In fact it is even possible to

have a bit stricter boundary conditions that still agree with the first descendant of the

vacuum, which we will present in the following subsection. Since the structure of (3.2)

suggests that A and Ā are treated differently we will also state boundary conditions

and the corresponding boundary charges for A and Ā differently. A convenient

notation for A (Ā) is given by the following splitting

Aµ = A(0)
µ + A(1)

µ , (3.6)

where A
(1)
µ will contain all the subleading parts that do not appear in the canonical

boundary charge. Using the gauge choice given by (2.43) and (2.44) one can write

(3.6) as

Aµ = b−1aµb = b−1
(
a(0)
µ + a(1)

µ

)
b (3.7)

and Āµ as

Āµ = bāµb
−1 = b

(
ā(0)
µ + ā(1)

µ

)
b−1. (3.8)

the connection A has to obey the following boundary conditions for ρ→∞ in order

to fulfill (3.5)

a(0)
ρ = L0, (3.9a)

a(0)
ϕ = σL1 +

2π

k

(
−L(ϕ)L−1 +W+

1
2

(ϕ)ψ+
− 1

2

−W−1
2

(ϕ)ψ−− 1
2

+
3

2
W0(ϕ)S

)
, (3.9b)

a
(0)
t = 0, (3.9c)

a(1)
µ = O(e−2ρ). (3.9d)

And for Ā the boundary conditions are given by

ā(0)
ρ = (−1 +B(ϕ)e−ρ)L0 +O(e−ρ)S, (3.10a)

ā(0)
ϕ = O(1)L1 + (−1 +B(ϕ)e−ρ)L−1 +O(1)ψ+

1
2

+O(1)ψ−1
2

− 3π

k
W̄0(ϕ)S, (3.10b)

ā
(0)
t =

(√
3 +O(e−ρ)

)
S, (3.10c)

ā(1)
µ = O(e−2ρ). (3.10d)

We have chosen a normalization for the fields L, W±1
2

, W0 and W̄0 such that the

corresponding canonical charge is conveniently normalized. The specific form and
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thus the appearance of the function B(ϕ) as the subleading terms in (3.10a) and

(3.10b) is a result of the requirement to fulfill the EOM asymptotically, i.e. F |∂M →
0. If the subleading part of these two terms was not the same function, then the

resulting connection would not be an asymptotically flat one. This is thus the only

caveat if one tries to fulfill the boundary conditions (3.5). The fluctuations appearing

in gρρ and gφφ are not independent and are in fact identical. The requirement of

asymptotical flatness of the connection also restricts the subleading terms of A and

Ā to be functions of only ϕ and ρ.

As already mentioned, it is also possible to consider fluctuations of the metric that

are a bit more restricted than (3.5). Considering the fluctuations given by

gµν =

 1 +O(e−2ρ) O(e−2ρ) O(1)

· 1 +O(e−2ρ) O(1)

· · −σe2ρ +O(1)


µν

, (3.11)

then the corresponding connection A has to obey the following boundary conditions

a(0)
ρ = L0, (3.12a)

a(0)
ϕ = σL1 +

2π

k

(
−L(ϕ)L−1 +W+

1
2

(ϕ)ψ+
− 1

2

−W−1
2

(ϕ)ψ−− 1
2

+
3

2
W0(ϕ)S

)
, (3.12b)

a
(0)
t = 0, (3.12c)

a(1)
µ = O(e−2ρ). (3.12d)

For the Ā-sector the connection has to obey asymptotically

ā(0)
ρ = − L0, (3.13a)

ā(0)
ϕ = O(1)L1 − L−1 +O(1)ψ+

1
2

+O(1)ψ−1
2

− 3π

k
W̄0(ϕ)S, (3.13b)

ā
(0)
t =

√
3S, (3.13c)

ā(1)
µ = O(e−2ρ). (3.13d)

The fluctuations resulting from (3.12) and (3.13) obey (3.11) and are completely

arbitrary in contrast to the boundary conditions (3.10) and (3.13), which yielded

fluctuations of the metric that had to be of a specific form.

3.2 Boundary Condition Preserving Gauge Transformations and Bound-

ary Charges

The boundary condition preserving gauge transformations and the resulting canoni-

cal boundary charges are the same for both boundary conditions presented, thus the

following discussion applies to both cases. Since A and Ā obey different boundary

conditions, the corresponding boundary condition preserving gauge transformations
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and canonical boundary charges will be treated separately as well.

A gauge transformation with gauge parameter ε preserves a given set of boundary

conditions if

δεA
a
µ = Dµε

a = ∂µε
a + fabcA

b
µε
c = O

(
Aaµ

∣∣
∂M

)
. (3.14)

To be a little more specific on the notation: Aaµ
∣∣
∂M denotes the subleading terms of

the connection as ρ→∞. For the gauge choice (2.43) and the boundary conditions

(3.12b) this would mean for example that a boundary preserving gauge transforma-

tion has to satisfy

δεA
L1
ϕ = O(e−ρ), δεA

L0
ϕ = O(e−2ρ), δεA

L−1
ϕ = O(e−ρ),

δεA
ψ+

1
2

ϕ = O(e−
3
2
ρ), δεA

ψ+

− 1
2

ϕ = O(e−
1
2
ρ),

δεA
ψ−

1
2

ϕ = O(e−
3
2
ρ), δεA

ψ−
− 1

2
ϕ = O(e−

1
2
ρ),

δεA
S
ϕ = O(1). (3.15)

Using (3.14) one finds that the gauge transformations that preserve (3.9) [and (3.12)]

are given by

ε̂ = b−1
(
ε(0) + ε(1)

)
b. (3.16)

The first part is given by

ε(0) = (ε1L1 + ε2L0 + ε3L−1 + ε4ψ+
1
2

+ ε5ψ+
− 1

2

+ ε6ψ−1
2

+ ε7ψ−− 1
2

+ ε8S) (3.17)

with

ε1 = ε(ϕ), ε2 = − 1

σ
ε′(ϕ), (3.18a)

ε3 =
1

2σ2
ε′′(ϕ)− 2π

σk

(
L(ϕ)ε(ϕ) +

1

2

(
W−1

2

(ϕ)ε+1
2

(ϕ) +W+
1
2

(ϕ)ε−1
2

(ϕ)
))

, (3.18b)

ε4 = ε+1
2

(ϕ), ε5 = − 1

σ

(
ε+1

2

′
(ϕ)− 2π

k

(
W+

1
2

(ϕ)ε(ϕ)− 3

2
W0(ϕ)ε+1

2

(ϕ)

))
, (3.18c)

ε6 = ε−1
2

(ϕ), ε7 = − 1

σ

(
ε−1

2

′
(ϕ) +

2π

k

(
W−1

2

(ϕ)ε(ϕ)− 3

2
W0(ϕ)ε−1

2

(ϕ)

))
, (3.18d)

ε8 = ε0(ϕ). (3.18e)

and the subleading parts are given by

ε(1) = O(e−2ρ). (3.19)

Having found the boundary condition preserving gauge transformations we are now

interested how the fields L, W±1
2

and W0 transform under these gauge transforma-

tions. Since

AL−1
ϕ = −2π

k
Le−ρ, A

ψ±
− 1

2
ϕ = ±2π

k
W±1

2

e−
1
2
ρ, ASϕ =

3π

k
W0, (3.20)
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it is easy to see that

δAL−1
ϕ = −2π

k
δLe−ρ, δA

ψ±
− 1

2
ϕ = ±2π

k
δW±1

2

e−
1
2
ρ, δASϕ =

3π

k
δW0, (3.21)

with δ = δε̂ = δε0 + δε + δε+1
2

+ δε−1
2

. In order to find the correct boundary preserving

gauge transformations we already calculated δAL−1
ϕ , δA

ψ±
− 1

2
ϕ and δASϕ. Thus, one only

has to look at the leading order contributions of these expressions and read off the

transformation properties of the fields L, W±1
2

and W0. This leads to the following

transformations

δε0W0 =
k

3π
ε′0, δε0W±1

2

= ∓ε0W±1
2

, δε0L = 0, (3.22a)

δεW0 = 0, δεL = − k

4π
ε′′′ + σ (2ε′L+ εL′) ,

δεW±1
2

= σ

(
3

2
ε′W±1

2

+ εW±1
2

′ ± 3π

k
εW±1

2

W0

)
, (3.22b)

δε±1
2

W0 = ∓W∓1
2

ε±1
2

, δε±1
2

W∓1
2

= 0,

δε±1
2

W±1
2

= ±ε±1
2

L − σ
(

3ε±1
2

′W0 +
3

2
ε±1

2

W0
′ ± 9π

2k
ε±1

2

W0W0 ±
k

2π
ε±1

2

′′
)

δε±1
2

L =
σ

2

(
±6π

k
W0W∓1

2

ε±1
2

+W∓1
2

′
ε∓1

2

+ 3W∓1
2

ε±1
2

′
)
. (3.22c)

Please note that in order to obtain (3.22) we used σ2 = 1 in order to simplify some

of the expressions. If σ 6= ±1 then one has to replace σ → 1
σ

and − k
4π
ε′′′ → − k

4πσ2 ε
′′′

in (3.22) and in all formulas appearing in section 3.3 to get the correct prefactors.

The corresponding variation of the boundary charge is then given by

δQ(ε̂) =

∫
dϕ
(
δLε+ δW0ε0 + δW+

1
2

ε−1
2

+ δW−1
2

ε+1
2

)
. (3.23)

Since the gauge parameters ε, ε±1
2

, ε0 are field independent one can write the corre-

sponding canonical charge as

Q(ε̂) =

∫
dϕ
(
Lε+W0ε0 +W+

1
2

ε−1
2

+W−1
2

ε+1
2

)
. (3.24)

Finding the boundary condition preserving gauge transformations and boundary

charge for the Ā-sector works exactly like for the A-sector. The only difference is that

we have to preserve a different set of boundary conditions. The gauge transformations

preserving (3.10) [and (3.13)] are given by

ε̄(ϕ) = b
(
ε̄(0) + ε̄(1)

)
b−1, (3.25)
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with

ε̄(0) = ε̄0(ϕ)S (3.26)

and

ε̄(1) = O(e−2ρ). (3.27)

Comparing these gauge transformations with (3.18a), we see that the gauge transfor-

mations in the Ā-sector are a lot more restricted. The reason for this is the presence

of the singlet term at leading order in ĀSt . Without this singlet term the boundary

condition preserving gauge transformations for the Ā-sector would look like (3.18a).

This singlet term, however, is crucial in our discussion of AdS2 × R [H2 × R] since

the singlet term generates the dt2 part of the background. Thus, the same analysis

as for the A-sector yields the following transformation

δε̄0W̄0 = − k

3π
ε̄′0. (3.28)

The corresponding variation of the boundary charge is given by

δQ̄(ε̄) =

∫
dϕδW̄0ε̄0. (3.29)

Again, the gauge parameters are field independent and thus the canonical charge for

the Ā-sector is given by

Q̄(ε̄) =

∫
dϕW̄0ε̄0. (3.30)

3.3 Calculating the Classical Asymptotic Symmetry Algebra

After computing (3.9) and (3.10) one can calculate the Dirac brackets corresponding

to the symmetry present at the boundary [16]. The latter then yields the asymptotic

symmetry algebra. Actually, there is a convenient short-cut that avoids the tedious

calculation of Dirac brackets. Given two fields V , W and a canonical boundary

charge Q̂(λ) =
∫

dϕλ(ϕ)V(ϕ) one can use

δλW(ϕ̄) = −{Q̂(λ),W(ϕ)} = −
∫

dϕλ(ϕ){V(ϕ),W(ϕ̄)}, (3.31)

to determine {V(ϕ),W(ϕ̄)}, given that δλW(ϕ̄) has been calculated beforehand. The

Dirac bracket {L(ϕ),L(ϕ̄)} for example can be calculated via

δεL(ϕ̄) = −{Q(ε),L(ϕ̄)} = −
∫

dϕ ε(ϕ){L(ϕ),L(ϕ̄)}. (3.32)

Equation (3.32) can be satisfied for

{L(ϕ),L(ϕ̄)} = − k

4π
δ′′′(ϕ− ϕ̄) + σ (2L(ϕ̄)δ′(ϕ− ϕ̄)− L′(ϕ̄)δ(ϕ− ϕ̄)) , (3.33)
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with δ′(ϕ− ϕ̄) = ∂ϕ(ϕ− ϕ̄). This can also be written in terms of δεL as

{L(ϕ),L(ϕ̄)} = −δεL(ϕ̄)
∣∣∣
∂nϕ̄ε(ϕ̄)=(−1)n∂nϕδ(ϕ−ϕ̄)

. (3.34)

Using (3.31) this procedure can be repeated for all the other remaining fields and

gauge parameters appearing in (3.22). This yields the following Dirac brackets with

the convention that all fields appearing on the right hand side depend on ϕ̄ and

δ′(ϕ− ϕ̄) ≡ ∂ϕδ(ϕ− ϕ̄).

{W0(ϕ),W0(ϕ̄)} =
k

3π
δ′(ϕ− ϕ̄), (3.35a)

{W0(ϕ),L(ϕ̄)} = 0, (3.35b)

{W0(ϕ),W±1
2

(ϕ̄)} = ±W±1
2

δ(ϕ− ϕ̄), (3.35c)

{L(ϕ),L(ϕ̄)} = − k

4π
δ′′′(ϕ− ϕ̄) + σ (2Lδ′(ϕ− ϕ̄)− L′δ(ϕ− ϕ̄)) , (3.35d)

{L(ϕ),W±1
2

(ϕ̄)} = σ

(
3

2
W±1

2

δ′(ϕ− ϕ̄)−W±1
2

′
δ(ϕ− ϕ̄)∓ 3π

k
W±1

2

W0δ(ϕ− ϕ̄)

)
,

(3.35e)

{W+
1
2

(ϕ),W−1
2

(ϕ̄)} = Lδ(ϕ− ϕ̄) + σ

(
−3W0δ

′(ϕ− ϕ̄) +
3

2
W0
′δ(ϕ− ϕ̄)−

9π

2k
W0W0δ(ϕ− ϕ̄)− k

2π
δ′′(ϕ− ϕ̄)

)
(3.35f)

{W+
1
2

(ϕ),W+
1
2

(ϕ̄)} = {W−1
2

(ϕ),W−1
2

(ϕ̄)} = 0. (3.35g)

This algebra is written in a non-primary basis, as one can see by looking at (3.35b)

and (3.35e). This can be fixed by a shift of L given by

L → L+
3πσ

2k
W0W0 ≡ L̂. (3.36)

After applying this shift, the non-vanishing Dirac brackets for the A-sector are given

by

{W0(ϕ),W0(ϕ̄)} =
k

3π
δ′(ϕ− ϕ̄), (3.37a)

{W0(ϕ), L̂(ϕ̄)} = σW0δ
′(ϕ− ϕ̄), (3.37b)

{W0(ϕ),W±1
2

(ϕ̄)} = ±W±1
2

δ(ϕ− ϕ̄), (3.37c)

{L̂(ϕ), L̂(ϕ̄)} = − k

4π
δ′′′(ϕ− ϕ̄) + σ

(
2L̂δ′(ϕ− ϕ̄)− L̂′δ(ϕ− ϕ̄)

)
, (3.37d)

{L̂(ϕ),W±1
2

(ϕ̄)} = σ

(
3

2
W±1

2

δ′(ϕ− ϕ̄)−W±1
2

′
δ(ϕ− ϕ̄)

)
, (3.37e)

{W+
1
2

(ϕ),W−1
2

(ϕ̄)} = L̂δ(ϕ− ϕ̄) + σ

(
−3W0δ

′(ϕ− ϕ̄) +
3

2
W0
′δ(ϕ− ϕ̄)−

6π

k
W0W0δ(ϕ− ϕ̄)− k

2π
δ′′(ϕ− ϕ̄)

)
. (3.37f)
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The Dirac brackets for the Ā-sector are given by

{W̄0(ϕ), W̄0(ϕ̄)} = − k

3π
δ′(ϕ− ϕ̄). (3.38)

Thus, the boundary conditions (3.9) and (3.10) give rise to one copy of a classical

W(2)
3 algebra, which is also called Polyakov-Bershadsky algebra for the A-sector and a

u(1) current algebra with a central extension for the Ā-sector. Therefore, we obtain

W(2)
3 × u(1) as the asymptotic symmetry algebra. Since we are interested in the

central charges of the corresponding boundary theory, we will first express (3.35)

in terms of its Fourier modes but without taking normal ordering into account and

thus obtain the ”classical central charges” of the boundary theory. After obtaining

this algebra and replacing the Dirac brackets with commutators, we will focus on

normal ordering issues and determine the effective central charge of the boundary

theory. Since the central terms in (3.35) can be rescaled arbitrarily and thus the

central charges are not unique, one has to find a way to fix this. In the case we are

considering, at least in the A-sector one has the additional information of the algebra

without a central extension given by (3.1). Thus if one rescales the relations (3.35)

in such a way that the corresponding non-centrally extended part of the commutator

algebra agrees with (3.1), then the correct central charges can be read off directly.

Using the following mode expansion

L(ϕ) =
σ

2π

∑
n∈Z

Lne
−inϕ and δ(ϕ− ϕ̄) =

1

2π

∑
n∈Z

e−in(ϕ−ϕ̄), (3.39)

where we have shifted the zero mode as

L0 → L0 −
k

4
δn,0, (3.40)

and plugging this expansion into (3.35d) one obtains∑
n,m∈Z

e−i(nϕ+mϕ̄){Ln, Lm} =
∑
n,p∈Z

e−ipϕ̄−in(ϕ−ϕ̄)

(
Lp −

k

4
δp,0

)
(−2in+ ip)

− k

2

∑
n∈Z

in3e−in(ϕ−ϕ̄). (3.41)

Making an appropriate shift p− n = m and using the orthogonality property of the

complex exponential function
∫

dϕei(n−m)ϕ = 2πδn,m one obtains

{Ln, Lm} = i(m− n)Lm+n − i
k

2
n(n2 − 1)δm+n,0. (3.42)

Replacing the Dirac bracket with a commutator using i{·, ·} → [·, ·] one obtains

[Ln, Lm] = (n−m)Lm+n +
c

12
n(n2 − 1)δm+n,0. (3.43)
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with the central charge c = 6k. Using the same procedure with all remaining Dirac

brackets (3.35) and the following mode expansions

W0(ϕ) =
i

2π

∑
n∈Z

Jne
−inϕ and W±1

2

(ϕ) =
(iσ)

1∓1
2

2π

∑
n∈Z+ 1

2

G±n e
−inϕ, (3.44)

one obtains the following (classical) commutation relations

[Jn, Jm] = −2k

3
nδn+m,0, (3.45a)

[Jn, Lm] = 0, (3.45b)

[Jn, G
±
m] = ±G±m+n, (3.45c)

[Ln, Lm] = (n−m)Lm+n +
c

12
n(n2 − 1)δn+m,0, (3.45d)

[Ln, G
±
m] =

(n
2
−m

)
G±n+m ±

3

4k

∑
p∈Z

(G±m+n−pJp + JpG
±
m+n−p), (3.45e)

[G+
n , G

−
m] = Lm+n +

3

2
(m− n)Jm+n +

9

4k

∑
p∈Z

Jm+n−pJp + k(n2 − 1

4
)δm+n,0, (3.45f)

[G+
n , G

+
m] = [G−n , G

−
m] = 0. (3.45g)

Please note that in order to calculate (3.45f) the following definition for δ(ϕ− ϕ̄) has

been used

δ(ϕ− ϕ̄) =
1

2π

∑
n∈Z+ 1

2

e−in(ϕ−ϕ̄). (3.46)

This definition is necessary in order to satisfy∫
dϕε±1

2

(ϕ)δ(ϕ− ϕ̄) = ε±1
2

(ϕ̄), (3.47)

with

ε±1
2

(ϕ) =
1

2π

∑
n∈Z+ 1

2

ε±n e
−inϕ. (3.48)

Thus if one tries to write a Dirac bracket in terms of Fourier modes that has been

obtained by satisfying

δε±1
2

W±1
2

(ϕ̄) = −
∫

dϕε±1
2

(ϕ){W∓1
2

(ϕ),W±1
2

(ϕ̄)}, (3.49)

one has to use (3.46) rather than (3.39). In addition, we used

(W±1
2

W0)(ϕ̄) =
1

2
(W±1

2

W0 +W0W±1
2

)(ϕ̄). (3.50)
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The algebraic relations (3.45) can again be brought into a form where all fields

appearing are proper Virasoro primaries. This is a similar shift to the one done in

the case of the Dirac bracket algebra and is given by

Ln → L̂n ≡ Ln −
3

4k

∑
p∈Z

Jn−pJp. (3.51)

This yields the following algebra

[Jn, Jm] = −2k

3
nδn+m,0, (3.52a)

[Jn, L̂m] = nJn+m, (3.52b)

[Jn, G
±
m] = ±G±m+n, (3.52c)

[L̂n, L̂m] = (n−m)L̂m+n +
c

12
n(n2 − 1)δn+m,0, (3.52d)

[L̂n, G
±
m] =

(n
2
−m

)
G±n+m, (3.52e)

[G+
n , G

−
m] = L̂m+n +

3

2
(m− n)Jm+n +

3

k

∑
p∈Z

Jm+n−pJp + k(n2 − 1

4
)δm+n,0, (3.52f)

[G+
n , G

+
m] = [G−n , G

−
m] = 0. (3.52g)

3.4 Quantum W(2)
3 and u(1) Current Algebra

Since we are interested in the quantum mechanical version of (3.45), we also have to

take normal ordering into account whenever products of Fourier modes appear. The

symbol : : denotes normal ordering which we defined as follows

∑
p∈Z

: Jn−pJp :=
∑
p≥0

Jn−pJp +
∑
p<0

JpJn−p. (3.53)

However, since the algebraic relations (3.52) are given in terms of large c or equiv-

alently large k, it is possible that all coefficients that contain factors of k obtain

quantum corrections of O(1). Thus when introducing normal ordering these correc-

tions have to be determined. Possibly the easiest way to do this is to consider the
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following algebra

[Jn, Jm] = C1nδn+m,0, (3.54a)

[Jn, L̂m] = nJn+m, (3.54b)

[Jn, G
±
m] = ±G±m+n, (3.54c)

[L̂n, L̂m] = (n−m)L̂m+n +
ĉ

12
n(n2 − 1)δn+m,0, (3.54d)

[L̂n, G
±
m] =

(n
2
−m

)
G±n+m, (3.54e)

[G+
n , G

−
m] = C2L̂m+n +

3

2
C3(m− n)Jm+n + C4

∑
p∈Z

: Jm+n−pJp : +C5(n2 − 1

4
)δm+n,0,

(3.54f)

[G+
n , G

+
m] = [G−n , G

−
m] = 0, (3.54g)

and calculate the Jacobi identities which yield relations between these coefficients

that allow us to fix them such that we have a consistent algebra (at least consistent

with respect to the Jacobi identities). Even though the coefficients C2 and C3 are

equal to 1 in (3.52) and do not contain factors of k, a rescaling of G±n by a factor of√
k could easily produce such a k dependence and thus one has to consider these two

coefficients not to be fixed to 1. In addition, we fixed the shift of the normal ordered

Virasoro modes to be

Ln → L̂n ≡ Ln +
1

2C1

∑
p∈Z

: Jn−pJp : . (3.55)

This normalization ensures that normal ordering of the Virasoro modes results in the

expected shift of the central charge c = 6k by +1, thus yielding a preliminary shift of

the central charge c→ c+ 1. This shift, however, will also be further modified once

the Jacobi identities have to be satisfied. Calculating the Jacobi identities yields the

following relations between the coefficients

C2 + 3C3 + 2C1C4 = 0, C5 +
3

2
C3C1 = 0, (3.56a)

C2ĉ− 6C5 + 2C1C4 = 0, C3 − C2 −
2

3
C4 = 0. (3.56b)

Since we have four equations but six free parameters, we have the freedom to fix

two of them and the remaining four coefficients are then determined by the relations

(3.56). Since we already know what the algebra looks like in the classical case for

large k, one viable choice of coefficients would be

C1 = −2k

3
, C2 = 1. (3.57)
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This yields the following coefficients and shifted central charge

C3 = 1 +
8

4k − 6
, C4 =

12

4k − 6
, C5 = k

(
1 +

8

4k − 6

)
, (3.58a)

ĉ =
32k

2k − 3
+ 6k. (3.58b)

This is essentially the quantum W(2)
3 algebra found by Polyakov and Bershadsky

in [55,56] but with a different k and different normalization of the spin-3
2

modes. In

order to bring this algebra in a more familiar form, we apply the following shift of k

and renormalization of G±n

k → −
(
k̂ +

3

2

)
, G±n

√
−(k̂ + 3)→ Ĝ±n . (3.59)

This results in the following algebra

[Jn, Jm] =
2k̂ + 3

3
nδn+m,0, (3.60a)

[Jn, L̂m] = nJn+m, (3.60b)

[Jn, Ĝ
±
m] = ±G±m+n, (3.60c)

[L̂n, L̂m] = (n−m)L̂m+n +
ĉ

12
n(n2 − 1)δn+m,0, (3.60d)

[L̂n, Ĝ
±
m] =

(n
2
−m

)
Ĝ±n+m, (3.60e)

[Ĝ+
n , Ĝ

−
m] = −(k̂ + 3)L̂m+n +

3

2
(k̂ + 1)(n−m)Jm+n + 3

∑
p∈Z

: Jm+n−pJp : +

(k̂ + 1)(2k̂ + 3)

2
(n2 − 1

4
)δm+n,0, (3.60f)

[Ĝ+
n , Ĝ

+
m] = [Ĝ−n , Ĝ

−
m] = 0, (3.60g)

with

ĉ = 25− 24

k̂ + 3
− 6(k̂ + 3) = −(2k̂ + 3)(3k̂ + 1)

k̂ + 3
. (3.61)

It is easy to see that the central charge ĉ is only non-negative for a small range

of k̂, which is given by the interval −1
3
≤ k̂ ≤ −3

2
. The maximum value of the

central charge is ĉ = 1, which is obtained for k̂ = −1. Thus, it is not possible to

obtain a unitary field theory dual of AdS2 × R or H2 × R in the semi-classical limit

|k̂| → ∞ [57].

In the Ā-sector we have only one Poisson bracket corresponding to a u(1) current

algebra with a central extension. The value of the central charge corresponding

to this central extension is not unique, since we can always rescale the fields or

corresponding Fourier modes. Thus, with the following mode expansion

W̄0(ϕ) =
1

2π

∑
n∈Z

J̄ne
−inϕ, (3.62)
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and the same shift of the Chern-Simons level k as in (3.59), one obtains the following

commutator algebra

[J̄n, J̄m] =
2k̂ + 3

3
nδn+m,0. (3.63)

3.5 Unitarity of the Resulting CFT

Having found the asymptotic symmetry algebra we are now interested if it is possible

to obtain a unitary CFT for certain values of k̂ or not. Thus, we have to check if there

are any unphysical states i.e. states with negative norm present. Since the Ā-sector

only consists of a u(1) algebra and it is not hard to find unitary representations for

this algebra, we will focus with our analysis on the A-sector containing the W(2)
3

algebra where the existence of unitary representations is not obvious at first glance.

Let |a;N〉, with a = 1, . . . , N denote a basis of states for a given level N . Then any

state at level N can be written as the following linear combination

|ψ;N〉 =
N∑
a=1

λa|a;N〉, (3.64)

where λa ∈ C are some arbitrary constants. The norm of such a state is then given

by

〈ψ;N |ψ;N〉 =
N∑
a,b

λ†a 〈a;N |b;N〉︸ ︷︷ ︸
K

(N)
ab

λb, (3.65)

where K
(N)
ab denotes the Gramian matrix at level N . Thus, in order to have a unitary

theory the Gramian matrix has to be positive semidefinite.

Since all modes appearing in the W(2)
3 algebra are proper Virasoro primaries, their

action on the vacuum state is given by

Ln|0〉 = 0, Jn|0〉 = 0, Ĝ±n |0〉 = 0 for n > −hi (3.66)

where hi (with i = L, J, Ĝ) denotes the conformal weight of the primary fields that

correspond to the given modes Ln, Jn and Ĝ±n respectively. The hermitian conjugate

of the modes is defined as

(Ln)† ≡ L−n, (Jn)† ≡ J−n,
(
Ĝ±n

)†
≡ Ĝ∓−n. (3.67)

The hermitian conjugate of Ĝ±n may look strange, but is in fact a direct consequence

of the quantum W(2)
3 algebra. After defining (Ln)† and (Jn)† one can look at([

Ĝ+
n , Ĝ

−
m

])†
=

[(
Ĝ−m

)†
,
(
Ĝ+
n

)†]
=

=− (k̂ + 3)L̂†m+n +
3

2
(k̂ + 1)(n−m)J†m+n + 3

∑
p∈Z

(: Jm+n−pJp :)†+

(k̂ + 1)(2k̂ + 3)

2
(n2 − 1

4
)δm+n,0. (3.68)
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After using (Ln)† ≡ L−n and (Jn)† ≡ J−n one obtains the following[(
Ĝ−m

)†
,
(
Ĝ+
n

)†]
=− (k̂ + 3)L̂−(m+n) +

3

2
(k̂ + 1)(n−m)J−(m+n) + 3

∑
p∈Z

: J−(m+n)−pJp : +

(k̂ + 1)(2k̂ + 3)

2
(n2 − 1

4
)δm+n,0 =

[
Ĝ+
−m, Ĝ

−
−n

]
. (3.69)

Thus, in general the hermitean conjugate of Ĝ±n is given by(
Ĝ±n

)†
≡ (α)±1Ĝ∓−n, (3.70)

were α could in principle be any complex number. Since in any quantum field theory

the n-point correlation functions have to be real valued functions, we get an additional

restriction on α. Consider for example the norm of the state Ĝ+
− 3

2

|0〉. Reality of the

norm requires

〈0|
(
Ĝ+
− 3

2

)†
Ĝ+
− 3

2

|0〉 =

(
〈0|
(
Ĝ+
− 3

2

)†
Ĝ+
− 3

2

|0〉
)†
. (3.71)

Using (3.70) one gets

α〈0|Ĝ−3
2

Ĝ+
− 3

2

|0〉 = α∗〈0|Ĝ−3
2

Ĝ+
− 3

2

|0〉 (3.72)

and thus

α = α∗. (3.73)

Hence without loss of generality we can set α = 1 and arrive at the relations given

by (3.67). Having properly defined the hermitean conjugate of the modes present in

the W(2)
3 algebra, one can look for possible negative norm states on the first levels of

the resulting CFT.

On level 1 there is only the state J−1|0〉 present. In this case the Gramian matrix is

simply the norm of the state and is given by

〈0|J1J−1|0〉 =
2k̂ + 3

3
, (3.74)

which is non-negative for k̂ ≥ −3
2
. The level 3

2
contains two states Ĝ+

− 3
2

|0〉 and

Ĝ−− 3
2

|0〉. Thus, the Gramian matrix at level 3
2

is given by

K( 3
2

) = (k̂ + 1)(2k̂ + 3)

(
−1 0

0 1

)
, (3.75)

with the basis vectors arranged as Ĝ+
− 3

2

|0〉, Ĝ−− 3
2

|0〉. At this level we encounter a

crucial difference to the similar and maybe more familiar N = 2 superconformal

algebra [58]. In the case of the W(2)
3 algebra where the modes Ĝ+

n and Ĝ−n obey
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commutation rather than anticommutation relations the norm of the states Ĝ+
−n|0〉

and Ĝ−−n|0〉 will always differ by a sign. However in case of the N = 2 superconformal

algebra the norm of these states would be the same. Thus while in the superconformal

case it is possible to have states corresponding to the modes Ĝ±−n which have positive

norm this is not possible for the W(2)
3 algebra. Hence we arrive at the following

conclusion:

• Unless the states Ĝ+
−n|0〉 and Ĝ−−n|0〉 are null states there are no unitary rep-

resentations of the W(2)
3 algebra for our choice of the vacuum given by (3.66).

Looking at (3.75) we see that the only values where Ĝ±− 3
2

|0〉 are null are k̂ = −1 and

k̂ = −3
2
. Choosing one of these two values of k̂ does not automatically ensure that

the resulting CFT is unitary. One still has to check whether the remaining states in

the theory that are not null spoil unitarity or not.

In order to simplify the following discussion, it is beneficial to check if the field content

of the two CFTs we are looking at is maybe more restricted than one initially thinks.

The following discussion applies only to the two values of k̂ for which Ĝ±−n|0〉 are null

states and can thus set

Ĝ±−n|0〉 = 0 ∀n ∈ Z. (3.76)

This in turn also implies that [Ĝ+
−n, Ĝ

−
−m]|0〉 = 0. Thus, also the right hand side of

(3.60) has to be zero. This leads to the following relation

L̂−(m+n)|0〉 =
1

k̂ + 3

(
3

2
(k̂ + 1)(m− n)J−(m+n) + 3

m+n−1∑
p>0

J−pJ−(m+n)+p

)
|0〉. (3.77)

Thus, we see that for k̂ ∈ {−3
2
,−1} the states L̂−(m+n)|0〉 are a linear combination

of other states which simplifies the theory considerably.

In order to have a well defined basis of states at level N , we employ the following

ordering of operators

Jm1
−n1

. . . J
mp
−npL

mp+1

−np+1
. . . LmN−nN |0〉, (3.78)

with the following restrictions on the indices mi and ni

mi ∈ N, (3.79)

n1, . . . , np ∈ N\{0}, (3.80)

np+1, . . . , nN ∈ N\{0, 1}, (3.81)

n1 > . . . > np, (3.82)

np+1 > . . . > nN , (3.83)

N∑
i=1

mini = N. (3.84)
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Since L
mp+1

−np+1
. . . LmN−nN |0〉 can be rewritten as linear combinations of states of the form

J
mp+1

−np+1
. . . JmN−nN |0〉 we can express every state at a given level N as

Jm1
−n1

. . . JmN−nN |0〉, (3.85)

where now ni ∈ N\{0} ∀i = 1, . . . , N and n1 > . . . > nN .

It is also possible to write all states at a given level N as L−1 and J−1 descendants of

level N − 1 states. For the integer valued levels this can most easily be seen at level

2 and level 1. At level 1 there is only the state J−1|0〉 present. Acting with either

L−1 or J−1 on that state one gets the following two states

L−1J−1|0〉 =[L−1, J−1]|0〉 = J−2|0〉, (3.86)

J−1J−1|0〉 =J2
−1|0〉, (3.87)

which are all possible states at level 2. One can repeat this process indefinitely and

obtain in such a way all possible states at a given level N . Please note that with

this way of generating states, starting with M states at level N would generate 2M

states for level N + 1. Since the number of possible states at level N is given by

the number of possible partitions of N , this procedure will in general produce ”too

many” states. This usually happens when a state |a;N + 1〉 at level N + 1 can be

generated by the action of either L−1 or J−1 on two different states |b;N〉, |c;N〉 at

level N i.e.

|a;N + 1〉 ∝ L−1|b;N〉, (3.88)

|a;N + 1〉 ∝ J−1|c;N〉. (3.89)

Since this will only manifest as additional zero eigenvalues of the Gramian matrix,

this would not spoil any unitarity analysis. Thanks to this procedure of generating

states it is possible to write all states as descendants of the lowest level states, which

is very convenient. If for example all states at a given level N are null states, then

one can show that all states at levels M > N are also null states. This just follows

from the fact that one can write all states at level N + 1 as descendants of level

N states, which are again null states, since descendants of null states are also null

states.

The same arguments regarding descendant states also apply to the half integer valued

levels.

3.5.1 k̂ = −3
2
and ĉ = 0

This case is trivial: The only state present in our Hilbert space is the vacuum state

itself. This can easily be seen by looking at (3.74) and (3.75), which are null for this

value of k̂. Thus, all states at integer level n > 1 and half integer level m > 3
2

are

null, since all states at a given level m,n can be written as descendants of the level 1
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and level 1
2

states. This leads to the conclusion stated at the beginning that the only

state present in the theory is the vacuum state. This statement is true in general for

the quantum W(2)
3 algebra, if one only has (3.60) as a starting point where the only

restriction on k̂ is that k̂ 6= −3. However, we obtained this algebra starting from a

Chern-Simons action with original level k. This gives us another quick argument as

to why the resulting CFT is trivial for this value of k̂. Looking at (3.59) we see that

k = 0 for k̂ = −3
2
. We see that already at the level of the action (2.2) the theory is

trivial because the action itself is zero for this value of k̂.

3.5.2 k̂ = −1 and ĉ = 1

For this value all half integer valued levels contain again only null states. This can

again easily be seen by the same argument used for the case k̂ = 3
2
. Thus, the only

states remaining are the states at integer valued levels since the norm of the level 1

state is positive for this value of k̂. In order to check if negative norm states appear

at higher levels, we need to calculate the Gramian matrix for any level N . Since a

general state at a given level N is given by (3.85), the entries of the level N Gramian

matrix will be given by

〈0|Jm̄Nn̄N
. . . Jm̄1

n̄1
Jm1
−n1

. . . JmN−nN |0〉. (3.90)

Using the algebraic relations (3.60a) and the property (3.66) one can immediately

see that these entries will be zero unless n̄i = ni ∀i = 1, . . . , N and m̄i = mi ∀i =

1, . . . , N . Hence we see that the Gramian matrix at level N will always be diagonal

and thus the eigenvalues will be equal to the norm of the states present at level N .

Calculating these norms yield10

〈0|JmNnN
. . . Jm1

n1
Jm1
−n1

. . . JmN−nN |0〉 =
N∏
i=1

mi!ni

(
2k̂ + 3

3

)mi

=
N∏
i=1

mi!ni

(
1

3

)mi
. (3.91)

Since the eigenvalues of the Gramian matrix are all positive, we see that all states

in our theory have positive norm and thus we have a unitary theory for k̂ = −1 and

ĉ = 1.

Having found a unitary theory for k̂ = −1 one can now ask what kind of CFT this

is. Looking at (3.77) we see that for k̂ = −1 this expression reduces to a Sugawara

construction of the the Virasoro modes L̂n via the u(1) currents Jn. i.e.

L̂−n|0〉 =
3

2

n−1∑
p>0

J−pJ−n+p|0〉 =
3

2

∑
p∈Z

: J−n−pJp : |0〉. (3.92)

10The Gramian matrices of the levels 1, 3
2 , 2, 3, 4, 5 as well as a general expression for arbitrary

integer valued level N can be found in Appendix B.
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Since we obtained L̂n via a shift given by (3.55), this in turn also means that the

unshifted Virasoro modes Ln annihilate the vacuum ∀n ∈ Z. Thus, the resulting

theory looks very similar to a theory based on a u(1) current algebra given by

[Jn, Jm] = nκδm+n,0 (3.93)

and the following Sugawara construction for the Virasoro modes

L̂n =
1

2κ

∑
p∈Z

: J−n−pJp : . (3.94)

This would yield the following algebra

[Jn, Jm] = nκδn+m,0, (3.95a)

[Jn, L̂m] = nJn+m, (3.95b)

[L̂n, L̂m] = (n−m)L̂m+n +
ĉκ
12
n(n2 − 1)δn+m,0, (3.95c)

with ĉ = 1. For κ = 1
3

one would obtain the same field content as for theW(2)
3 algebra

for k̂ = −1. There is, however, a crucial difference between these two theories. While

in the case of (3.95) the parameter κ can take arbitrary values11, the central charge

ĉκ remains unaffected by a change of κ. Thus, for this theory there is no preferred

value of κ. In the case of the W(2)
3 algebra on the other hand there is a preferred

value of k̂ and the central charge ĉ is also not independent of k̂.

One way to understand this is to think back to the canonical analysis and the con-

straints associated with the states Ĝ±−n|0〉. Looking at (3.60f) one can see that for

k̂ = −1 (and k̂ = −3
2
) the central term vanishes. This in turn means that the

constraints associated with Ĝ±−n|0〉 remain first class even at the boundary and thus

there is an additional gauge symmetry present at the boundary that constrains our

theory12. This additional gauge symmetry then restricts the normalization of the Jn
modes and forces κ to take the value 1

3
. Thus demanding unitarity of the quantum

theory leads to an additional symmetry enhancement of the CFT which in turn fur-

ther constrains the theory.

In order to give this fixed value of κ a physical interpretation one can consider for

example a free boson defined on the complex plane described by the action [9]

S =
1

4πκ

∫
dz dz̄ ∂X · ∂̄X, (3.96)

11The only restriction is that κ > 0 for a unitary theory.
12In the case of k̂ = − 3

2 all central extensions in the W(2)
3 algebra vanish which is another reason

why this theory is trivial. All first class constraints remain first class at the boundary and thus the

theory has no degrees of freedom left after fixing the gauge.
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where ∂X · ∂̄X denotes
√
|g|gab∂aX∂̄bX, with gab dxa dxb = dz dz̄

zz̄
. One can then

define the following chiral [anti-chiral] fields13 with conformal weight 1

j(z) = i∂X(z, z̄), j̄(z̄) = i∂̄X(z, z̄), (3.97)

whose Laurent modes, which are given by

j(z) =
1

2π

∑
n∈Z

Jnz
−n−1, j̄(z̄) =

1

2π

∑
n∈Z

J̄nz̄
−n−1, (3.98)

obey the commutation relations given by (3.93). Since κ appearing in (3.93) is

the same as in (3.96) this parameter is essentially the coupling constant of this

theory. Thus, demanding unitarity and nontriviality of the CFT based on a W(2)
3

algebra would fix this coupling constant to a certain value and one could interpret

the resulting theory as a free boson with a coupling constant fixed by an additional

gauge symmetry.

13This follows from the equations of motion ∂∂̄X(z, z̄) = 0.
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4. Conclusion

The goal of this thesis was to analyze asymptotical symmetry algebras of (2+1)-

dimensional non-AdS higher-spin gravity with a focus on AdS2×R and H2×R. We

found a consistent set of boundary conditions that yield finite, integrable, conserved

and nontrivial boundary charges. Then we determined the classical symmetry alge-

bra of these boundary charges and found a classical W(2)
3 × u(1) symmetry algebra

at the boundary.

Since we were also curious to find out what kind of CFT this symmetry algebra

would yield, we tried to obtain the quantized version of the W(2)
3 algebra by satisfy-

ing the Jacobi identities. Analyzing the field content of the quantized version of the

W(2)
3 algebra and looking for possible unitary representations of the W(2)

3 algebra we

found some quite interesting features. For our definition of the vacuum we did find

two unitary representations of the W(2)
3 algebra. The reason that we only found two

possible unitary representations is that the modes Ĝ±n appearing in theW(2)
3 algebra

are bosonic and hence obey commutator relations. Because of this the norms of the

modes Ĝ+
−n and Ĝ−−n differ by a sign and hence these states have to be null in order

to have a chance of obtaining a unitary theory. Thus, by demanding unitarity, ghost

states are automatically projected out of the theory.

Taking a closer look at the two unitary representations that we obtained we found

that one of these representations is trivial and the other one is very similar to a

theory described via u(1) currents. However, in the case of the W(2)
3 algebra the

resulting theory is more restricted than for the pure u(1) case. The reason for this is

an additional gauge symmetry enhancement that occurs at the two special values of k̂

where the states corresponding to Ĝ±−n are null. This gauge symmetry enhancement

could also explain the value of certain coupling constants such as for example the

free boson as we suggested.

Having this example of a theory where the coupling constant is fixed by an enhanced

gauge symmetry originating from a higher-spin algebra it is tempting to think that

this might also work for other theories. One could for example try to do the same

analysis for AdS2×R and H2×R as we did in this thesis, but for spin-4 gravity and

the 2-2 embedding of sl(4). For the interested reader we provided a suitable basis in

appendix C.1.

Another interesting question is related to the two values of k̂, for which the resulting

CFT is unitary. It could be possible that there is another choice of vacuum for which

we have more values of k̂ that allow unitary representations. This could for example

be realized by different embeddings of the non principal sl(3) embeddings in sl(N),

with N > 3. One could for example consider the 2-1-1 embedding14 of sl(4) and

again perform the same analysis as in this thesis. At first glance it seems like this

analysis is straightforward and should be analog to the spin-3 case that we analyzed

14A suitable basis is given in appendix C.2.
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in this thesis. After having determined the quantum asymptotic symmetry algebra,

one would then have to check whether or not the sl(4) invariant vacuum allows more

values of k̂, for which the W [2]
3 algebra that should be contained in the resulting

asymptotic symmetry algebra is unitary. In principle it could also be possible that

there are even less possible values of k̂ since there are more Jacobi identities to be

fulfilled for the quantum version of the asymptotic symmetry algebra.

Since the W [2]
3 algebra is very similar to the N = 2 superconformal algebra, it is

also interesting to check what happens if we start the canonical analysis with a su-

persymmetric theory rather than a sl(3) invariant theory. One would again expect

a correlation between the unshifted Chern-Simons level k and the central charge c.

Since in the supersymmetric case the modes Ĝ±n obey anticommutation relations and

thus the norms of the states corresponding to Ĝ+
−n and Ĝ−−n have the same sign, there

should be a wider range of k that allow for unitary representations.

The specific example of AdS2×R [H2×R] and the non-principal embedding of sl(3)

provided in this thesis can also be used to employ a general procedure in analyzing

higher-spin gravity theories formulated via a SL(N)× SL(N) Chern-Simons formu-

lation [59].

One important starting point of this analysis is the correct choice of embedding of

sl(2) in sl(N). If the embedding cannot reproduce the chosen background, then it will

be impossible to find boundary conditions that are consistent with the background

and the fluctuations. Thus, if a chosen set of boundary conditions is not consistent

with the background and the fluctuations, then the reason for this is not necessarily

a bad choice of boundary conditions. The inconsistencies could also be the result of

a bad choice of embedding or spin-N theory. We will list in the following the basic

steps one has to do in order to analyze higher-spin gravity theories. A more detailed

version of this procedure is given by figure 1 in terms of a flowchart.

1. Identify the bulk theory and propose a variational principle.

2. Choose boundary conditions of the connections A and Ā that lead to the desired

background (BG) solution and are compatible with a given set of fluctuations

of the BG and the variational principle employed.

3. Determine the boundary condition preserving gauge transformations (BCPGT).

4. Calculate the canonical boundary charge.

5. Determine the classical asymptotic symmetry algebra.

6. Quantize the classical asymptotic symmetry algebra if necessary. This can

be done for example by introducing normal ordering and imposing the Jacobi

identities on the quantum level.

7. Analyze the field content of the resulting CFT.
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Figure 1: Flowchart depicting the procedure of analyzing higher-spin gravity theories
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A. Suitable Spin-3 Bases

For the sl(2) generators we use the following conventions

[Ln, Lm] = (n−m)Ln+m (A.1)

where L±1 := L±. The commutation relations of the remaining generators of the

W-Algebras are given by

[Ln,W
l[a]
m ] = (nl −m)W

l[a]
n+m. (A.2)

The index l appearing in W
l[a]
m is an sl(2) quantum number, while [a] is a color index.

The traces of these generators are given by

tr(W k[a]
m W l[b]

n ) = (−1)l−m
(l +m)!(l −m)!

2l!
δk,lδm+n,0N

a,b
l (A.3)

with the normalization

Na,b
l := tr(W

l[a]
l W

l[b]
−l ). (A.4)

Whenever singlets fall into an sl(2) on their own their generators will be defined such

that they obey

[S[n], S[m]] = (n−m)S[n+m]. (A.5)

In addition, we also use the notation S[n] := W
0[n]
0 . If there is only one singlet present

in our representation we just denote it by S. Doublets are denoted by ψ
[a]
n := W

1
2

[a]
n .

A.1 Non-Principal Embedding

For the non-principal embedding of sl(2) in sl(3) in section (3) we used the following

set of generators obeying the commutation relations given by 3.1 .

L0 =
1

2

 1 0 0

0 0 0

0 0 −1

 L+ =

 0 0 0

0 0 0

1 0 0

 L− =

 0 0 −1

0 0 0

0 0 0

 (A.6)

Doublets:

ψ+
1
2

=

 0 0 0

−1 0 0

0 0 0

 ψ+
− 1

2

=

 0 0 0

0 0 1

0 0 0

 (A.7)

ψ−1
2

=

 0 0 0

0 0 0

0 1 0

 ψ−− 1
2

=

 0 1 0

0 0 0

0 0 0

 (A.8)

Singlet:

S =
1

3

−1 0 0

0 2 0

0 0 −1

 (A.9)
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Killing form:

gab =



0 0 −1 0 0 0 0 0

0 1
2

0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 2
3


, (A.10)

with the generators are ordered as L1, L0, L−1, ψ
+
1
2

, ψ+
− 1

2

, ψ−1
2

, ψ−− 1
2

, S.

B. Gramian Matrices for k̂ ∈ {−3
2 ,−1}

A general expression for calculating all coefficients for a Gramian matrix at integer

valued level N of the W(2)
3 algebra is given by

〈0|Jm̄Nn̄N
. . . Jm̄1

n̄1
Jm1
−n1

. . . JmN−nN |0〉 =
N∏
i=1

mi!ni

(
2k̂ + 3

3

)mi

δmi,m̄iδni,n̄i . (B.1)

Level 2:

K(2) =

 22k̂+3
3

0

0 2
(

2k̂+3
3

)2

 , (B.2)

with the basis vectors arranged as J−2|0〉, J2
−1|0〉.

Level 5
2
:

K( 5
2

) = (k̂ + 1)(2k̂ + 3)


−3 0 2 0

0 3 0 2

2 0 −2
3
(k̂ + 3) 0

0 2 0 2
3
(k̂ + 3)

 , (B.3)

with the basis vectors arranged as G+
− 5

2

|0〉, G−− 5
2

|0〉, G+
− 3

2

J−1|0〉 and G−− 3
2

J−1|0〉.

Level 3:

K(3) =


2k̂ + 3 0 0

0 2
(

2k̂+3
3

)2

0

0 0 6
(

2k̂+3
3

)3

 , (B.4)

with the basis vectors arranged as J−3|0〉, J−2J−1|0〉, J3
−1|0〉.
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Level 4:

K(4) =



42k̂+3
3

0 0 0 0

0 3
(

2k̂+3
3

)2

0 0 0

0 0 8
(

2k̂+3
3

)2

0 0

0 0 0 4
(

2k̂+3
3

)3

0

0 0 0 0 24
(

2k̂+3
3

)4


, (B.5)

with the basis vectors arranged as J−4|0〉, J−3J−1|0〉, J2
−2|0〉, J−2J

2
−1|0〉, J4

−1|0〉.

Level 5:

K(5) =



52k̂+3
3

0 0 0 0 0 0

0 4
(

2k̂+3
3

)2

0 0 0 0 0

0 0 6
(

2k̂+3
3

)2

0 0 0 0

0 0 0 6
(

2k̂+3
3

)3

0 0 0

0 0 0 0 8
(

2k̂+3
3

)3

0 0

0 0 0 0 0 12
(

2k̂+3
3

)4

0

0 0 0 0 0 0 120
(

2k̂+3
3

)5


,

(B.6)

with the basis vectors arranged as J−5|0〉, J−4J−1|0〉, J−3J−2|0〉, J−3J
2
−1|0〉, J2

−2J−1|0〉,
J−2J

3
−1|0〉, J5

−1|0〉.

C. Suitable Spin-4 Bases

In this section we present two different embeddings of sl(2) in sl(4). We use the same

notation as in [50] where one my also find further embeddings for sl(4).

C.1 2-2 Embedding

sl(2) generators:

L0 =
1

2


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 L+ =


0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

 L− =


0 0 −1 0

0 0 0 −1

0 0 0 0

0 0 0 0

 (C.1)
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Other triplets:

T
[1]
0 =

1

2


1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

 T
[1]
+ =


0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

 T
[1]
− =


0 0 −1 0

0 0 0 0

0 0 0 0

0 0 0 0

 (C.2a)

T
[2]
0 =

1

2


1 1 0 0

0 0 0 0

0 0 −1 −1

0 0 0 0

 T
[2]
+ =


0 0 0 0

0 0 0 0

1 1 0 0

0 0 0 0

 T
[2]
− =


0 0 −1 −1

0 0 0 0

0 0 0 0

0 0 0 0

 (C.2b)

T
[3]
0 =

1

2


0 0 0 0

1 1 0 0

0 0 0 0

0 0 −1 −1

 T
[3]
+ =


0 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0

 T
[3]
− =


0 0 0 0

0 0 −1 −1

0 0 0 0

0 0 0 0

 (C.2c)

Singlets:

S[0] =
1

2


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 S[+] =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

 S[−] =


0 −1 0 0

0 0 0 0

0 0 0 −1

0 0 0 0

 (C.3)

C.2 2-1-1 Embedding

sl(2) generators:

L0 =
1

2


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

 L+ =


0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

 L− =


0 0 0 −1

0 0 0 0

0 0 0 0

0 0 0 0

 (C.4)

Doublets:

G
[1]
+ =


0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

 G
[2]
+ =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

 G
[3]
+ =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 G
[4]
+ =


0 0 0 0

0 0 0 0

0 0 0 0

0 −1 0 0



G
[1]
− =


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 0 0

 G
[2]
− =


0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

 G
[3]
− =


0 0 0 0

0 0 0 −1

0 0 0 0

0 0 0 0

G
[4]
− =


0 −1 0 0

0 0 0 0

0 0 0 0

0 0 0 0


(C.5)
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Singlets:

S[0] =
1

2


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 S[+] =


0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

 S[−] =


0 0 0 0

0 0 −1 0

0 0 0 0

0 0 0 0

 (C.6a)

S =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 (C.6b)
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