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Abstract

Concrete is primarily a matrix-inclusion composite consisting of cement paste and embedded aggre-

gates. However, within a so-called interfacial transition zone (ITZ) of 15 microns around the surface

of the aggregates, cement paste exhibits a larger porosity than in the bulk, stemming from segregation

effects during production of concrete. During monotonous increase of mechanical loads, onset of con-

crete microcracking is observed within the ITZ. However, the exact location at which microcracking

starts and the related failure mechanism are still unclear. Inspection of post-failure fragments of con-

crete allows for a posteriori identification of two possibilities: in some parts of the aggregates’ surfaces,

a clean debonding from cement paste is observed, while in other parts, a very thin layer of cement

paste remains attached to the aggregates. The former observation implies that onset of microcrack-

ing might be related to debonding in the two-dimensional interface between the aggregates and the

surrounding ITZ, while the latter one suggests that also bulk failure of the thin ITZ is possible. This

provides us with the motivation to study onset of concrete cracking by means of a micromechanics

approach.

Herein, we develop tensile failure criteria (i) for debonding directly at the two-dimensional aggre-

gate’s surface, and (ii) for bulk failure within the three-dimensional ITZ, respectively. Debonding is

envisioned, once the maximum normal component of the traction vectors acting on the aggregate’s

surface reaches a corresponding tensile bond strength. ITZ failure, in turn, is considered if the largest

maximum principal ITZ stress reaches the tensile strength of the ITZ. The two failure criteria require

access to traction vectors acting on aggregates’ surfaces and to the full three-dimensional stress states

within the ITZs. This is provided by a continuum micromechanics model, resolving the microstruc-

ture of concrete, based on the separation of scales principle. On the scale of several millimeters to

centimeters, concrete is considered as a matrix-inclusion composite, where spherical aggregates are

perfectly bonded to a matrix of cement paste. Since the thickness of the ITZ is negligible compared

to the diameter of the aggregates and is significantly smaller than the typical mean inter-aggregate

spacing, the ITZ is treated as a two-dimensional interface. On the much smaller scale of a few mi-

crons, the ITZ is represented as a three-dimensional spherical shell which exhibits a shell thickness of

15 microns, perfectly bonded to the aggregates. The described representation of concrete allows us to

perform the scale transition from concrete-related macroloading down to microscopic traction vectors

and ITZ stresses. Based on continuum micromechanics-related estimates for strain concentration ten-

sors, we first quantify the average stresses and strains of the aggregates. Since these stresses are also

relevant for the aggregates’ surfaces, we use Cauchy’s formula in order to compute the orientation-
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dependent traction vectors acting on the aggregate’s surface. Their normal components are involved

in the aforementioned debonding criterion. Perfect bond-related continuity conditions for stresses and

displacements, in turn, allow us to translate aggregate’s stresses and strains into three-dimensional,

position-dependent ITZ stress states. A subsequent principal stress analysis delivers principal ITZ

stresses which are involved in the aforedescribed ITZ failure criterion.

In real concretes, onset of microcracking manifests at the material scale of concrete as the onset

of pre-peak nonlinearities in measured force-displacement diagrams, such that onset of microcracking

refers to the elastic limit of concrete. Consequently, our two models result in estimates for two elastic

limit surfaces in the macroscopic principal stress space. Considering typical concrete properties in

order to compute model predictions, and comparing them with experimentally observed elastic limits

of concrete under uniaxial tension and compression, respectively, allows us to conclude that ITZ failure

is governing for onset of concrete microcracking under compression-dominated loading scenarios. For

tension-dominated loading scenarios, in turn, both debonding and ITZ failure appear to be possible,

and the relevant failure mode is governed by the ratio between the tensile strength values related to

debonding and to ITZ failure, respectively. Finally, we study the sensitivity of our model predictions

with respect to the properties of the constituents of concrete, including the stiffness of aggregates, of

cement paste, and of the ITZ, as well as the dosage and the Poisson’s ratio of the aggregates. This

shows onset of microcracking in normal concretes is quite different from that of lightweight concretes.
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Kurzfassung

Beton stellt im Wesentlichen ein Matrix-Einschluss-Verbundmaterial dar, wobei Zuschlagskörner in

einer Zementsteinmatrix eingebettet sind. In einer ca. 15 Mikrometer großen Schnittstellen-Übergangs-

zone (
”
interfacial transition zone“ ITZ) rund um die Zuschlagskornoberflächen weist der Zementstein

allerdings aufgrund von Entmischungsvorgängen während der Betonherstellung eine größere Porosität

als im Rest der Zementsteinmatrix auf. Steigert man monoton die makroskopische Beanspruchung

von Betonen, so wird einsetzende Mikrorissbildung in dieser ITZ beobachtet. Die exakte Position

der beginnenden Rissbildung und der damit verbundene Versagensmechanismus sind jedoch immer

noch unklar. Betonbruchstücke aus zerstörenden Druckversuchen weisen auf zwei Möglichkeiten hin:

manchmal sind die Zuschlagskornoberflächen sauber von der Zementsteinmatrix getrennt, ein an-

dermal Regionen bleiben sehr dünne Zementsteinschichten auf den Zuschlagskörnern zurück. Die

erste Beobachtung verdeutlicht, dass Ablösung in der zweidimensionalen Trennfläche zwischen den

Zuschlagskörnern und der ITZ maßgebend sein könnte, während die zweite Beobachtung anzeigt, dass

Versagen innerhalb der dreidimensionalen ITZ ebenso plausibel erscheint. Das ist die Motivation,

einsetzendes Risswachstum in Betonen mit Hilfe eines mikromechanischen Modells zu untersuchen.

Es werden zwei Zugfestigkeitskriterien entwickelt: zum einen Ablösen entlang der zweidimension-

alen Oberfläche der Zuschlagskörner und zum anderen ITZ Versagen. Ablösen wird vorhergesehen,

wenn die größte auf die Zuschlagskornoberfläche wirkende Normalspannung eine entsprechende Zugfes-

tigkeit erreicht. ITZ Versagen wiederum wird vorausgesagt, wenn die größte Hauptnormalzugspannung

in der ITZ eine entsprechende Zugfestigkeit erreicht. Diese beiden Versagenskriterien erfordern die

Quantifizierung mikroskopischer Spannungszustände als Funktion der makroskopischen Beanspruchung

von Beton. Dieser Skalenübergang wird mit Hilfe der Kontinuumsmikromechanik ermöglicht, wobei

die Mikrostruktur von Beton basierend auf dem Maßstabstrennungprinzip (
”
separation of scales re-

quirement“) modelliert wird. Auf dem Beobachtungsmaßstab von einigen Millimetern bis zu eini-

gen Zentimetern wird Beton als Matrix-Einschluss-Verbundwerkstoff betrachtet, wobei kugelförmige

Zuschläge kraftschlüssig mit der umgebende Zementsteinmatrix verbunden sind, d. h. die ITZ wird als

zweidimensionale Trennfläche modelliert, weil die ITZ-Dicke einerseits gegenüber der charakteristis-

chen Größe der Zuschlagskörner vernachlässigbar ist, und andererseits auch wesentlich kleiner als der

charakteristische Zuschlagskornabstand. Auf dem viel kleineren Beobachtungsmaßstab von einigen

Mikrometern wird die ITZ allerdings als dreidimensionale und 15 Mikrometer dicke Kugelschale mod-

elliert, welche die Zuschlagskörner umhüllt und mit ihnen ebenfalls kraftschlüssig verbunden ist. Diese

Darstellung der Mikrostruktur von Beton ist die Basis für den Maßstabsübergang von makroskopischer
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Betonbeanspruchung hinunter auf mikroskopische Spannungsvektoren an der Zuschlagskornoberfläche

und Spannungszustände in der ITZ. Mit Hilfe von Verzerrungskonzentrationstensoren der Kontiu-

umsmikromechanik werden zuerst die mittleren Spannungs- und Verzerrungszustände der Zuschläge

berechnet. Da diese Spannungen auch an den Zuschlagskornoberflächen relevant sind, werden die

ortsabhängigen Spannungsvektoren, die auf den Zuschlagskornoberflächen wirken, mit Hilfe der

Cauchyschen Formel berechnet. Die Normalspannungskomponenten gehen in das Versagenskriterium

für Ablösen der Zementsteinmatrix vom Zuschlagskorn ein. Weiters zieht kraftschlüssiger Verbund

Kontinuitätsbedingungen für Spannungen und Verschiebungen nach sich; und damit können Spannungs-

und Verzerrungszustände der Zuschläge in dreidimensionale und ortsabhängige Spannungszustände in

der ITZ übersetzt werden. Eine nachfolgende Hauptnormalspannungsanalyse führt auf die größte

Hauptzugspannung der ITZ, die in das zuvor genannte ITZ-Versagenskriterium eingeht.

In realen Betonen führt einsetzendes Mikrorisswachstum zu Nichtlinearitäten in makroskopisch

gemessenen Last-Verschiebungs-kurven, sodass beginnende Mikrorissbildung mit der elastischen Gren-

zlast von Beton verbunden ist. Somit ergeben die beiden beschriebenen Versagenskriterien zwei

elastische-Grenzbeanspruchungsflächen im Hauptnormalspannungsraum. Basierend auf typischen Be-

toneigenschaften werden Modellprognosen berechnet und mit experimentell beobachteten elastischen

Grenzlasten von Beton unter einaxialer Zug- bzw. Druckbeanspruchung verglichen. Das erlaubt

die Schlussfolgerung, dass einsetzendes Risswachstum unter dominanter Druckbeanspruchung von

ITZ-Versagen herrührt. Unter dominanter Zugbeanspruchung ist sowohl Ablösen als auch ITZ-

Versagen möglich, und die Frage, welcher der beiden Mechanismen relevant ist, kann nur anhand

des Verhältnisses der beiden Zugfestigkeiten entschieden werden. Abschließend wird die Sensitivität

der Modellprognosen in Hinblick auf Variationen der Betoneigenschaften untersucht, wobei sowohl

die Steifigkeiten der Zuschläge, der Zemensteinmatrix und der ITZ, als auch die Zuschlagsdosierung

und die Querdehnungszahl des Zuschlagsmaterials variiert werden. Diese Untersuchung weist darauf

hin, dass Normalbeton und Leichtbetone hinsichtlich einsetzender Mikrorissbildung ein markant un-

terschiedliches Verhalten aufweisen.
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Chapter 1

Introduction

Visual inspection of concrete reveals the heterogeneity of the material: submillimeter to millimeter-

sized sand grains and millimeter to centimeter-sized aggregates are embedded in a cement paste matrix.

High-resolution microscopic imaging techniques, with a characteristic pixel size of less than one micron,

visualize the characteristic heterogeneities of cement paste [20]: clinker grains, hydration products,

and capillary pores, with a characteristic size typically ranging from single microns to few microns.

Capillary porosity is not uniform throughout the cement paste matrix, but it is larger in narrow zones

around the surfaces of the aggregates and the sand grains, and it is smaller in the bulk of the cement

paste [75]. These interfacial transition zones stem primarily from segregation effects associated with

the characteristic production process of concrete [66], i. e. with the dynamic mixing and compaction

processes of concrete, during which cement paste is not yet a solid material, but behaves rather like a

viscous fluid. The typical width of interfacial transition zones amounts to 15 microns.

Because the porosity within the interfacial transition zones (ITZs) is larger than the one in the

bulk cement paste, ITZs exhibit a smaller stiffness and a smaller strength than the bulk cement paste,

rendering ITZs the weakest link in the immediate vicinity of the aggregates’ surfaces. This becomes

evident, e.g., in classical, macroscopic, short-term laboratory testing, in which concrete behaves only

initially linear elastic [46, 51]. Onset of cracking in the immediate vicinity of the aggregates’ surfaces

results in pre-peak nonlinearities of macroscopically measured force-displacement diagrams [42, 76].

In other words, onset of microcracking is related to the elastic limit of concrete, rather than to the

strength of the material.

The open literature contains a great variety of modeling approaches which aim at explaining the

initiation of microcracks and/or the nonlinear shape of macroscopic stress-strain relations of concrete.

In the following, we provide a brief overview over a few selected approaches. Hashin [36] studies a

homogeneous two-dimensional interface between a spherical inclusion and a surrounding matrix, he

defines a constitutive law in terms of a linear relation between displacement jumps and interface trac-

tions, and he proves that this approach is equivalent to a thin (but three-dimensional) interfacial zone

(or a thin coating), see also [32]. In this context, displacement jumps may be positive, indicating a

separation of the inclusion from matrix, associated with tensile tractions transferred across the inter-

face, and they may be negative, indicating a small interpenetration of inclusion and matrix, associated
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CHAPTER 1. INTRODUCTION 2

with compressive tractions transferred across the interface. Nilsen and Monteiro [83] concluded, that a

reliable model for concrete should include the ITZ as distinct phase, since experimentally determined

elastic properties do not fall between the lower and the upper Hashin-Shtrikman bound, computed

for a two-phase model of concrete (aggregates + cement paste matrix). This was the motivation for

follow-up papers presenting analytical three-phase models considering aggregates, ITZs, and cement

paste for predicting the elastic stiffness of concrete [49, 64, 87]. Hashin and Monteiro [37] back-analyze,

from measured elastic properties of concrete, input values for their three-phase model of concrete: the

elastic stiffness of the ITZ is by a factor of 2 smaller than the one the bulk cement paste. Blechman

models the formation and accumulation of stable (non-propagating) microcracks in order to simulate

the degradation process of concrete right up to failure [14]. Landis and Bolander simulate interface

debonding with a three-dimensional lattice model where interface elements break based on a Mohr-

Coulomb criterion with a tension cut-off [47]. Mihai and Jefferson combine the exterior point Eshelby

solution for the stress field around a spherical inclusion with circular microcracks exhibiting rough

surfaces in order to predict initiation and evolution of microcracking in concrete [57].

None of the available models distinguishes between aggregate debonding and ITZ failure, but this

differentiation appears to be interesting when having a more detailed look at post-failure fragments of

concrete specimens (which were produced with spherical aggregates). They reveal that the aggregates

have partly clearly separated from the cement paste matrix, and partly a very thin layer of cement paste

remains attached to the aggregates’ surfaces [67]. One of these two failure mechanisms is obviously

related to onset of microcracking, but a posteriori it is impossible to decide which one it is. Also

state-of-the-art measurement equipment (such as computer tomography carried out simultaneously to

mechanical loading) is not yet able to provide a convincing answer [27]. This is the motivation for the

present work, where we develop micromechanics models for tension-driven onset of microcracking.

Herein, we develop two tensile failure criteria: one for clean debonding directly at the two-

dimensional aggregate’s surface and another one for bulk failure within the three-dimensional ITZ,

respectively. Debonding is envisioned, once the maximum normal component of the traction vectors

acting on the aggregate’s surface reaches a corresponding tensile bond strength. ITZ failure, in turn,

is considered if the largest maximum principal ITZ stress reaches the tensile strength of the ITZ.

The two failure criteria require access to traction vectors acting on aggregates’ surfaces and to the

full three-dimensional stress states within the ITZs. To this end, we consider perfect bonding in all

interfaces, and we study at which macroscopic load intensity onset of debonding or of ITZ failure,

respectively, is predicted by the micromechanics models.

Motivated by the separation of scales principle, we represent the ITZ either as a two-dimensional

interface, or as a three-dimensional volume, which is explained next. When it comes to the stress

concentration from macrostresses imposed on the boundary of a representative concrete volume down

to average stress states in aggregates, the ITZ is modeled a two-dimensional interface, because its

characteristic width of 15 microns is by orders of magnitude smaller than the characteristic size of

sand grains and aggregate inclusions. Average stress states within the aggregates are quantified based

on a continuum micromechanics approach [86]. Assuming that these stresses are representative also

close to the aggregates’ surfaces, we use Cauchy’s formula in order to compute the traction vectors
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acting on the aggregate’s surface. In general, they are orientation-dependent, i. e. they are a function

of zenith angle φ and azimuth angle θ used to mark positions on spherical aggregate inclusions. When

it comes to quantification of stress states inside the ITZ, the latter is resolved as a three-dimensional

continuum in form of a spherical shell surrounding the aggregates. The transition from stress states in

aggregates to ITZ stress states is based (i) again on the assumption that average aggregate stresses are

representative also close to the aggregates’ surfaces, (ii) on equilibrium-related continuity conditions

for stresses, and (iii) on perfect bond-related continuity conditions for displacements. Except for

macroscopic isotropic loading, under which the entire ITZ exhibits a uniform stress state, ITZ stress

states fluctuate in space, described by zenith angle φ and azimuth angle θ.

The aim of this work is to translate the two different microscopic Rankine-type elastic limit criteria

“debonding” and “ITZ failure” into corresponding elastic limit surfaces in principal stress space of

concrete macrostresses, and to compare these model predictions with available experimental data. To

this end, the thesis is organized as follows: Chapter 2 provides an overview over experimental obser-

vations which are the motivation for the modeling approach presented thereafter. Analytical solutions

for the relation between macroloading imposed on a representative concrete volume, on the one hand,

and traction vectors at aggregate’s surface as well as three-dimensional stress states in 3D interfacial

transition zones, on the other hand, are the topic of Chapter 3. These macro-micro stress concentration

rules open the door towards upscaling of tensile strength criteria describing onset of debonding and

onset of ITZ failure, respectively, see Chapter 4. Chapter 5 contains a comparison of the two different

models, a confrontation of model-predicted elastic limits of concrete with corresponding experimental

observations, as well as a sensitivity analysis regarding the influence of concrete composition of the

model-predicted elastic limits. Finally, Chapter 6 contains conclusion and an outlook to future work.



Chapter 2

Experimental Observations

2.1 Pre-existing cracks and progressive cracking as reason for pre-

failure nonlinearities of concrete

Hsu et al. [42] measured the length of pre-existing cracks in the region of the aggregate’s surface, in thin

slices of concrete samples which – apart from the loading experienced during the slicing process – were

never exposed to significant mechanical stresses. The experimenters conclude that approximately 12 %

of the aggregates’ surfaces are not bonded to the bulk cement paste matrix and that this stems typically

from gravity-driven bleeding underneath the aggregates (taking place right after the production) and

from hydration-induced shrinkage of cement paste [42].

The pre-failure behavior of concrete under monotonous increase of macroscopic uniaxial compres-

sion is associated with non-linearities stemming from different microstructural processes described

next. From the very beginning of the loading process, the opening-closure behavior of initially ex-

isting cracks is considered to result in small non-linearities of measured force-displacement diagrams

[42, 78, 76, 25, 77]. Still, the pre-existing cracks remain quite stationary (almost no crack propagation)

and only a small amount of new cracks forms, as was observed visually [42], and by ultrasonics test-

ing [45]. Therefore, concrete is typically considered to behave practically linear elastic, see Fig. 2.1.

Surpassing approximately 30-50 % of the compressive strength of the material results in onset of

distributed cracking close to the aggregates surface [42, 76, 77], whereby cracks typically propagate

in the direction of macroscopic loading [77, 27]. This onset of microcracking marks the elastic limit

of concrete [42, 76, 46], and the corresponding macroscopic load intensity is typically referred to as

initiation stress [42, 77]. Distributed microcracking intensifies with further load increase, such that

macroscopic deformations increase overlain with increasing macroloading [42, 76]. Surpassing approx-

imately 70-90 % of the compressive strength, onset of cracking in the matrix is observed [78, 76, 51],

whereby cracks characteristically propagate again in direction of the macroscopic loading [77], bridg-

ing interfacial cracks of neighboring aggregates such that continuous cracks are formed [42, 77]. The

described onset of matrix cracking correlates well with the point of inflection in the graph showing

the macroscopic uniaxial stress over the macroscopic volumetric strain [46]. Reaching the strength of

the material, i.e. at the peak load, cracks are still propagating in the direction of macroscopic loading,
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CHAPTER 2. EXPERIMENTAL OBSERVATIONS 5

but this is no longer a spatially distributed phenomenon, because cracks start to localize such that

post-peak failure of concrete specimens is associated with the formation of a shear band which is

inclined with respect to the direction of macroscopic loading [27].

no significant cracking

strain

30 − 50 %

0 %

100 %

(discontinuity stress)

(initiation stress)

onset of bond cracking

bond cracking + matrix cracking

onset of matrix cracking

failure

bond cracking

70 − 90 %

stress in percent of strength

Figure 2.1: Typical stress-strain graph of concrete under uniaxial compression and the relation to the
cracking behavior

Under monotonous increase of macroscopic uniaxial tension, some authors describe a more or less

progressive increase of cracking in the vicinity of the aggregates’ surfaces [72]. Other experimenters

do not observe a deviation from linearity of the stress-strain graphs in their experiments [84]. Still,

concrete is typically considered to remain practically linear elastic up to 70-80 % of the tensile strength.

Further macroscopic load increase, however, results in significant microcracking and strain localization

[46, 82].

Significantly less information is available for biaxial and triaxial types of macroscopic loading.

Under isotropic triaxial compression, typically no cracking is observed, but the material behaves

rather ductile [22]. Under other forms of triaxial compression (including the special case of biaxial

compression), cracks typically propagate in planes which are orthogonal to the direction of the largest

compressive stress [22].

In all cases, onset of cracking is typically observed in the immediate vicinity to the aggregates’

surfaces. This is the motivation to focus on the microstructure of concrete.

2.2 Microstructure of concrete

Concrete is a hierarchically organized material, i.e. characteristic heterogeneities are observed at dif-

ferent scales of observation. On the scale of millimeters to centimeters, concrete is a matrix-inclusion

composite consisting of aggregate stones and sand grains embedded in a matrix of cement paste. At
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the finer scale of observation of several tens of microns down to a few single microns, the character-

istic heterogeneity of cement paste is observed, consisting of unhydrated clinker grains, of hydration

products, and of capillary pores, either filled by water or air, such as first revealed electron-optically

by Chatterji and Jeffery [20].

In the immediate vicinity to the surface of the aggregate stones and sand grains, i.e. in a layer

with a characteristic width of 15 microns, both porosity and clinker content of cement paste deviate

from the typical values observed in the bulk paste [66, 75, 38]. In more detail, imaging techniques

such as back-scattered electron microscopy [75] revealed that at the surface of the aggregates (or sand

grains), the porosity is significantly larger and the clinker content is significantly smaller than in the

bulk of the cement paste matrix, and with increasing distance from the surface, porosity decreases

and the clinker content increases monotonically to the corresponding values of the bulk cement paste,

see Fig. 2.2. This was the motivation to introduce the name ”interfacial transition zone“ (ITZ). The
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Figure 2.2: Distribution of (unhydrated) clinker volume fraction and of capillary pore volume fraction
as a function of the distance to the aggregate’s surface, determined one day after mixing by means of
back-scattered electron microscopy [75]; (initial) water-to-cement mass ratio w/c = 0.4

described porosity and clinker content gradients stem from segregation effects1 during the dynamic

mixing process of the material [66] during which cement paste represents a viscous fluid and not

yet a solid material. Another consequence of the segregation effect is that, right after mixing, the

ITZ consists predominantly of small clinker grains, while the larger grains are ”washed“ out to the

1The segregation effect is frequently referred to as ”wall effect“, since a similar process can be observed at a markedly
larger scale of observation, namely during the dynamic placement and compaction of concrete: aggregates segregate
from cement paste in regions close to the formwork-walls such that the surface of the final concrete structure consists
practically of cement paste alone.
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bulk cement paste [75]. This becomes again ”visible“ from back-scattered electron microscopy used

to quantify the temporal evolution of the clinker content in the vicinity of the aggregate’s surface

[75]: up to 28 days, the clinker content inside the ITZ decreases significantly faster than in the bulk

cement paste, because small clinker grains dissolve much faster than large ones. During hydration, the

pores around the aggregates are at least partly filled up by hydration products precipitating out of the

oversaturated pore water solution. Notably, Diamond and Huang [28] describe in this context that the

solution of clinker ions in somewhat greater distances from the aggregate’s surface as well as transport

of these ions towards the aggregate’s surface compensate to some extent the initial segregation effect.

Still, it is well known that the final porosity within the ITZ remains to be smaller than the one in the

bulk cement paste, although quantitatively a significant scatter is measured [26, 28]. The increased

ITZ porosity, in turn, implies that the ITZ exhibits smaller stiffness and strength than the bulk cement

paste, rendering the ITZ the weakest link in concrete.

Indentation tests into the ITZ and into the bulk cement paste allows experimenters to quantify the

contrast of their mechanical properties. Indentation modulus, i.e. the slope of the de-loading graph in

a diagram showing the indentation force over depth of indentation, is related to the elastic properties,

while indentation hardness, i.e. the ratio between the maximum indentation force and the projected

area of the indenter, is related to the strength of the tested materials [23]. Microhardness testing of

the ITZ, reviewed in [43], with an indentation size of more than 10 µm cannot be applied because the

displacement of the material within the ITZ is restrained by the presence of the neighboring stiffer in-

clusion. In order to get access to ”real“ ITZ properties, the size of the indenter has to be scale-separated

from the typical size of the ITZ [61] and, therefore, smaller than one micrometer. The indentation

modulus of the ITZ around (unspecified) gravel aggregates obtained with a Berkovich indenter (three-

side pyramid) amounts to 85 % of the modulus of the bulk paste [60, 61]. The stiffness contrast drops

down to 70 % around limestone aggregates [60, 61]. In similar nanoindentation tests, Zhu and Bartos

[88] could prove that gravity-driven segregation underneath aggregates and reinforcements results in

ITZ properties which are significantly weaker under than above of macroheterogeneities.

2.3 Is onset of cracking related to debonding or ITZ failure?

Macroscopically (i.e. observed from a millimeter-to-centimeter scale), onset of cracking is observed

in the region between the aggregates and the bulk cement paste. Therefore, the bond between ag-

gregates and bulk cement paste is considered to represent the weakest link in concrete [42, 76, 89].

Microscopically (i.e. from an observation scale of some microns), however, one is able to distinguish

between two failure modes which govern the onset of cracking in the vicinity of the aggregate’s surface:

debonding (resulting in a clean aggregate’s surface) and ITZ failure (resulting in residual thin layer

of cement paste attached to the aggregate’s surface). Because there are no direct testing methods for

tensile bond strength, concrete experimenters commonly do not distinguish between debonding and

ITZ failure. However, experimental observations on other composite materials do show two modes

of failure, debonding, on the one hand, and failure within the innermost region of the matrix phase,

on the other hand. Uniaxial tension applied to a composite consisting of glass spheres (diameter
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up to 30 microns) with or without a coating embedded in an epoxy matrix leads exactly to these

two failure modes, visible through scanning electron microscopy of the fracture surface: uncoated

spheres show debonding, spheres with coatings providing good adhesion between aggregate, coating,

and epoxy show failure within the epoxy around the spheres [3], see Fig. 2.3. In a similar way, Gent

Figure 2.3: Electron scanning micrograph of fracture surface of a composite consisting of glass spheres
(diameter ranging between 1 and 30 microns) and an epoxy matrix: uncoated spheres debond and
show a clean aggregate’s surface (left) while at the coated spheres residuals of the matrix remain at
the surface (right) [3]

and Park [33] study a composite of a single spherical glass inclusion embedded in an elastomer matrix.

Using a transparent elastomer, they are able to simply observe the failure phenomena from outside.

They report two failure modes, (i) debonding of the matrix from the glass sphere, and (ii) cavitation

(formation of a vacuole) in the vicinity of the inclusion surface.

As for concrete, post-failure crack patterns suggest that both, debonding and ITZ failure are

taking place in macroscopic uniaxial compression tests on concretes. In more detail, Perry and Gillot

[67] performed uniaxial compression tests on concrete samples containing spherical glass or quartzite

aggregates, respectively, and they inspected post-failure fragments. Given that the ”north-south-axis“

of the aggregate spheres is aligned with the direction of macroscopic loading, clean debonding was

observed in the region around the equator, while closer to the poles a very thin layer of cement paste

remained attached to the aggregate’s surface, see Fig. 2.4. In other concretes, however, only one of

these two failure modes is observable. McCreath et al. [25] for instance, observe that aggregates’

surfaces appear to be more or less clean, i.e. free from cement paste residues. Mindess and Diamond

[58] observe the fracture surface of concrete specimens (crushed by bending) using scanning electron

microscopy: fracture paths passed in the vicinity of the aggregates, but commonly not directly at the

interface since clean aggregate’s surfaces were seldom observed. Shah and Slate [76], however, report

that clean surfaces of rock are visible to the unaided eye, indicating that the two-dimensional interface

between aggregates and ITZs itself is the critical region and not the paste within the three-dimensional

ITZ.

Conclusively, the question if debonding or ITZ failure governs the bond cracking behavior of con-
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Figure 2.4: Concrete fragments consisting of aggregates and cement paste, after failure under uniaxial
compression (in vertical direction), spherical glass aggregates [67] and irregular ellipsoid-shaped marble
aggregates (at the far right) [25]

crete can not be answered by experimenters. Although both phenomena are experimentally observed,

a distinction in language use as well as in modeling is not found.

2.4 Properties governing the onset of cracking in concrete

There are various factors which influence the initiation of microcracks in the vicinity of the aggregate’s

surface, and therefore, the macrostress level corresponding to the elastic limit of concrete. The applied

loading as one dominating factor is already discussed, see Sec. 2.1.

2.4.1 Strength in the vicinity of the aggregate’s surface

Mechanical and chemical bonds across the two-dimensional aggregate-ITZ interface govern the ul-

timate tensile forces transmittable from the aggregate to the ITZ. Given aggregates exhibiting an

open porosity with a characteristic pore size of a few microns (typically lightweight aggregates), pore

water will enter the aggregate’s porosity, and precipitating hydrates will result in an interdigitation

of the ITZ and the aggregate (see Fig. 2.5). This is typically referred to as mechanical interlocking

[79, 53], and it is effective as long as the characteristic size of surface roughness is larger than the

one of hydration products. Chemical bond, in turn, is the name given to attractive electrical forces

acting on even finer scales of observation. In this context we note that a chemical reaction between

calcareous aggregates and the cement paste constituents is reported in [89]. It results in an increased

tensile bond strength with increasing degree of hydration. The final macroscopic tensile strength is

larger than observed with equally rough inert aggregates like feldspar or granite. A similar effect is

also described for siliceous rocks [5, 79]. This implies that the aggregate type has a strong influence

on bond strength [41, 89, 81].

Experimenters studying the local strength in the vicinity of the aggregate’s surface do not distin-

guish between bond failure or ITZ failure, because there is no direct testing method for the two different

strength values. Therefore, test results contain information on the smaller of the two strength values.
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Figure 2.5: Extensive mechanical interlocking at porous aggregates due to the ingrowth of hydration
products [53]

Moreover, no generally excepted test method was developed so far [19]. Different push-out tests aim

at pushing a single, cylindrical aggregate out of a matrix of cement paste or mortar [59, 7, 19]. Tension

tests, in turn, show that the local strength is strongly influenced by the aggregate type [41, 89, 81],

by the roughness of the aggregate [41, 89, 81, 70], and by the composition of the cement paste [41],

discussed in more detail in the following.

Tasong et al. [81] applied direct tension to specimens of cement paste casted on two sides against

an 20 mm aggregate cube. The surfaces of the latter are, either rounded, or saw-cut, or fractured.

The authors observed a major influence of the aggregate’s surface roughness on the bond strength

when using basalt and quartz rocks, but almost no influence when using limestone. They also noted

that some of the fractured aggregates failed in their outermost regions, and conclude that the fracture

process used during the production of the aggregates results in an effective aggregate strength which

is smaller than the bond strength or the ITZ strength. In order to study the influence of surface

roughness, similar bond tests were earlier performed by Hsu and Slate [41], where (inert) sandstone

and granite aggregates show an increasing tensile strength with increasing surface roughness, while

for limestone this trend was not observed. In addition, the authors report for naturally fractured

limestone that 50 % of the failure surface broke through the the outermost regions of the aggregates,

while another type of limestone from a different quarry and without distinct fault planes, failed directly

at the aggregate-ITZ interface.

As for the properties of cement pastes, age, and composition are the main factors. The tensile

strength (obtained by flexural tests) in the vicinity of the aggregates increases with increasing age,

e.g. the 28-day strength is by 50 % larger than the strength at an age of seven days [4]. The bond

between aggregates and the bulk cement paste was studied by Hsu and Slate [41] as a function of

the initial water-to-cement mass ratios in the interval w/c ∈ [0.26 , 0.36]. The tensile bond strength

decreases with increasing w/c and it decreases more significantly than the tensile strength of the

bulk cement paste. Rao and Prasad [70] measured this tensile strength of mortars with different
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initial sand-to-cement ratios, casted against a mature concrete surface: On the one hand, higher sand

content delivers higher bond strengths. On the other hand, the tensile strength of the mortar-to-

mature concrete interface is by a factor of three smaller than the tensile strength of mortar (initial

water-to-binder mass ratio: 0.4, 10 % of cement mass replaced by silica fume, initial sand-to-binder

mass ratio: 3.0).

All this tensile strength tests, however, refer to initial perfect bond, i.e. they do not account for

pre-existing bond cracks which is typical in concrete. What can be concluded from these experiments

is that the tensile strength at the interface (be it the bond strength or the strength of the ITZ) is

smaller than the strength of neat cement paste [76, 5]. Hsu and Slate [41] report that the tensile

strength at the aggregate’s surface amounts to some 33 − 67 % of the tensile strength of neat cement

paste. Their very comprehensive experimental activities included varying aggregate types, varying

aggregate’s surface roughness, and varying cement paste compositions.

2.4.2 Stiffness, shape, size, and size distribution of aggregates

The influence of the elastic properties of the aggregates compared to those of the paste can be studied

when considering lightweight aggregate concretes. Lightweight aggregates (such as pumice, expanded

clay, or sintered pelletised fly ash) exhibit a Young’s modulus which is in the range of or even smaller

than the Young’s modulus of mature cement paste [63]. Similar stiffnesses are reported by [15], and

this reduced stiffness contrast significantly reduces the probability of microcracking [16]. Aggregates

which are more compliant than the cement paste matrix entail, that the stress fluctuations resulting

from the stiffness contrast result in smaller-than-mean stresses in aggregates and larger-than-mean

stresses in the bulk cement paste. The stress-strain relation under uniaxial compression or tension

is less nonlinear for lightweight concrete (with aggregates of Taclite or Lydon) than for limestone

concrete, and the deviation from linearity starts at macrostress levels which are closer to the strength

of the material [9].

The influence of the aggregate size was studied by Akçaoğlu et al. [1, 2], who placed a single

aggregate into a matrix of mortar and performed first compression tests (to a load level well below the

strength of the material, but large enough to induce bond cracks) and carried out destructive tension

tests thereafter. For the same pre-compression level, he observes a decrease of the tensile strength

with increasing aggregate size.

The initiation stress, i.e. the macroload level at which measured force-displacement diagrams start

to exhibit non-linearities, is a scattering quantity. The scatter increases with increasing aggregate

shape diversity and increasing aggregate size distribution [67]. The scatter is partly induced by the

heterogeneity of the ITZ [75].

2.4.3 Ultrafine additions

Using silica fume (in combination with superplasticizers which defloculate the particles) densifies the

ITZs [74, 34], since these ultrafine additions fill the zones around the aggregate’s surfaces, where the

segregation effect yields to an initially higher porosity. Backscattered electron microscopy implies that
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a 180 days old ITZ of ordinary Portland cement paste even exhibits a higher porosity than just a one

day old ITZ of a cement-silica fume paste [74].

The macroscopic uniaxial compressive strength increases monotonously with increasing silica fume

content [34]. Inert microfillers such as alumina or carbon black result in a similar increase of macro-

scopic uniaxial compressive strength [66]. Therefore, it appears that the described filling of the ITZ

is more relevant than the puzzolanic reaction induced by silica fume. Also the microscopic push-out

resistance of a single aggregate (sandstone, limestone, and granite) increases when replacing 20 % of

the cement by silica fume [19] .

2.5 Lessons learned from two-dimensional test setups

Since a detailed three-dimensional study regarding onset of cracking in the immediate vicinity of the

aggregate’s surfaces is not yet available, two-dimensional studies of plate-type specimens containing

cylindrical aggregates provide interesting insight into microstructural processes. Still, we note, that

stress fluctuations around inclusion cylinders differ significantly from the ones around spherical inclu-

sions, i. e. observations from two-dimensional studies do not necessarily imply that real concretes will

exhibit the same behavior.

The type of the used matrix and inclusion materials as well as the number and arrangement of

inclusion cylinders refer to the test setup, and the latter typically differs considerably from study to

study, such that results observed in two-dimensional testing are difficult to compare. The matrix

materials range from mortar [18, 52, 55] over high-strength mortar produced with silica fume [8], to

gypsum [44]. The inclusions consist of limestone [18, 52, 8, 55], of basalt and diabase and many other

natural stones [8], or they represent voids [55]. Typically the inclusions are stiffer than the matrix

[18, 52, 8, 55, 44], but some studies also investigate inclusions which are more compliant than the

matrix [8, 44], including the extreme case of an infinite stiffness contrast given for cylindrical voids

[55]. The number of aggregate cylinders embedded in the tested specimens ranges from one [8, 55, 44]

over two [44] or nine [18] to several [52]. The latter studies either refer to cylinders with the same

diameter [52], or to cylinders exhibiting a diameter distribution [18].

Experimental observations under uniaxial compression cover a wide spectrum and are partly equiv-

alent to what is known from real concretes. Pre-existing interface cracks, for instance, are particularly

observed underneath the aggregates [52], resulting from gravity-driven segregation processes. Onset of

cracking is observed – as a rule – in the vicinity of the inclusion surface. In specimens containing inclu-

sions of different sizes, the first cracks show up around larger inclusions first [52]. Acoustic emission

studies investigating the role of the cylinder diameter in specimens containing one single inclusion

imply that first cracks appear at load intensities which increase with decreasing cylinder diameter

[55]. The onset of cracking is associated with beginning nonlinearities in measured force-displacement

diagrams [55]. The matrix cracks observed at larger load levels typically propagate in the direction of

macroscopic loading [18, 52].

The largest scatter refers to the position at which onset of cracking is observed. Limestone cylinders

start to debond from a mortar matrix at an angle of approximately 30 degrees with respect to the axis
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of loading [55]. If the (gypsum) matrix is stiffer than the inclusions, first cracks show up in lateral

regions of the cylinders (equatorial region), and if the matrix is more compliant than the inclusions,

onset of cracks is observed in the region where the axis of loading intersects the cylinder surfaces (polar

region). However, also an inverse observation was made: stiff basalt and diabase aggregates start to

debond from a mortar matrix at the polar region, while onset of debonding with more compliant

limestone aggregates took place at the equatorial region [8].

We conclude that also two-dimensional experiments do not provide a satisfactory insight into the

onset of cracking phenomenon. This provides the motivation for a micromechanical analysis which

allows for performing parameter studies in the framework of modeling tensile failure in the region close

to the aggregate’s surfaces.



Chapter 3

Analytical solutions for traction vectors

at aggregate’s surfaces and for stress

states in 3D interfacial transition zones

In the sequel, we quantify the stress concentration from uniform macrostresses imposed on a represen-

tative concrete volume down to two different stress-like microscopic fields, namely (i) traction vectors

acting on the surfaces of spherical aggregates and (ii) three-dimensional stress states in interfacial

transition zones exhibiting a typical width of 15 microns [66, 75]. The proposed modeling approach is

resting on the separation of scales principle [86],

ℓ≪ d≪ L . (3.1)

Eq. (3.1) implies that the characteristic size d of a representative volume element (RVE) of a hetero-

geneous material is significantly larger than the characteristic size ℓ of the embedded heterogeneities

and, at the same time, significantly smaller than characteristic size L of stress and strain fluctuations

inside the structure containing the RVE. The former property allows for assigning homogenized mate-

rial properties to the RVE, and the latter property for dealing with RVEs subjected to uniform stress

or strain boundary conditions.

3.1 Fundamentals of continuum micromechanics

In applied continuum micromechanics, an RVE Ω of a heterogeneous material is typically subdivided

into np quasi-homogeneous material phases. Each phase j (with j = 1, 2, . . . , np) exhibits a specific

elastic stiffness Cj and it occupies a specific subvolume Ωj of the RVE. In the bulk of the RVE, i.e.

at any position x ∈ Ω, we introduce field equations of linear elasticity comprising static equilibrium

conditions, linear strain-displacement relations, and linear elastic material behavior in terms of gener-

alized Hooke’s law. At any position on the boundary of the RVE, i.e. at all x ∈ ∂Ω, a linear relation

between prescribed displacement vectors and a uniform macroscopic strain state E (uniform strain

14
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boundary conditions [35]) is considered. The described field equations and boundary conditions imply

a linear strain concentration rule, i.e. a linear relation between the macrostrain E and the volume

average of the microscopic phase strains εj [40]:

εj = Aj : E j = 1, 2, . . . , np (3.2)

The np phase strain concentration tensors Aj also allow for upscaling microscopic phase elasticity

tensors to the homogenized stiffness Chom of the RVE [40]

Chom =

np
∑

j=1

fj Cj : Aj , (3.3)

with fj standing for the volume fraction of the j-th phase, fj = Ωj/Ω.

Estimates of phase strain concentration tensors Aj are obtained based on Eshelby-Laws-type

matrix inclusion problems [86], where a single ellipsoidal inclusion is perfectly bonded to an infinite

matrix which exhibits auxiliary stiffness tensor C∞, and which is subjected to uniform auxiliary strains

E∞ at the infinitely remote boundary. One matrix-inclusion problem is considered for every material

phase of the RVE such that in the j-th problem the inclusion shape and stiffness are set equal to

the corresponding properties of the particular material phase. The spatially uniform strain state

inside every inclusion [31, 48] serves as estimate for the average strains of the corresponding material

phase. In a conceptually similar way, the auxiliary properties C∞ and E∞ are linked to corresponding

properties of the RVE, based on considerations regarding phase interaction and strain compatibility

[86]. In more detail, if the RVE exhibits a matrix-inclusion morphology, C∞ is set equal to the matrix

stiffness of the RVE; and if the RVE represents a highly disordered arrangement of directly interacting

heterogeneities (so-called polycrystalline morphology), C∞ is set equal to the homogenized stiffness of

the RVE. The auxiliary strain E∞, in turn, is linked to the RVE strain E based on the strain average

rule. This way of reasoning provides access to tensorial expressions for strain concentration tensors

reading as [12]

Aj =
[

I + P
∞

j : (Cj − C∞)
]−1

:

{ np
∑

i=1

fi [I + P
∞

i : (Ci −C∞)]−1

}−1

, j = 1, 2, . . . , np (3.4)

where P∞

j denotes the fourth-order Hill tensor which depends on the shape of the inclusion and on the

stiffness of the infinite matrix. I denotes the symmetric fourth-order identity tensor with components

Iijkl = 1/2 (δikδjl + δilδkj), where δij denotes the Kronecker delta which is equal to 1 for i = j and 0

otherwise.
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3.2 Micromechanical representation of concrete including interfacial

transition zones

Herein, we consider concrete to be a three-phase material comprising a cement paste matrix, millimeter-

to-centimeter sized aggregates, and interfacial transition zones (ITZs) with a characteristic width of

15 microns [75]. Strongly related to the scale separation principle, we resolve concrete by means of

a hierarchical micromechanical representation, involving two markedly different scales of observation,

described next.

On the larger observation scale A, exhibiting a characteristic size of several millimeters to a few

centimeters, we model concrete as a classical two-phase matrix-inclusion composite, comprising a

continuous cement paste matrix and spherical aggregate inclusions (Fig. 3.1). The interfacial transition

zones are represented as two-dimensional interfaces establishing a perfect bond between the aggregates

and the cement paste matrix.

The three-dimensional nature of the interfacial transition zones, i.e. their nature as a bulk material

phase, is resolved at a much finer observation scale B, exhibiting a characteristic size being equal to

15 microns (= characteristic width of ITZ [75]). In more detail, each aggregate grain is considered to

be separated from the cement paste matrix by an interfacial transition zone representing a thin (but

three-dimensional) spherical shell with a characteristic thickness of approximately 15 microns. Again,

perfect bond is considered in both types of two-dimensional interfaces, i.e. the interface between the

aggregates and the interfacial transition zones, as well as the interface between the interfacial transition

zones and the cement paste matrix. The thin ITZ shell is subdivided into approximately cubic RVEs

with side length being equal to the shell thickness. In agreement with the separation of scales principle,

smeared (averaged) stiffness properties are assigned to the ITZ. The typical heterogeneity of the ITZ,

with a characteristic size amounting to a few microns (= the size of small unhydrated clinker grains,

hydration products, and capillary pores), refers to an even finer scale of observation which is beyond

the scope of the two-scale model proposed herein.

Given our interest in onset of concrete cracking – triggered either by aggregate debonding or by ITZ

failure – we propose a new and elegant step-by-step method for the macro-to-micro scale transition

from loading imposed on a macroscopic RVE of concrete down to tractions at aggregate’s surfaces

and to ITZ stresses, respectively. The approach is strongly related to the scale-separated hierarchical

organization described above and to the assumption of perfect bond in all observation scale-specific

interfaces. First, we perform the stress concentration from the macroloading down to average aggregate

stresses and strains, based on the aforedescribed two-phase representation of concrete (observation

scale A). The next step refers to the finer observation scale B, where Cauchy’s formula allows us to

translate aggregate stresses into the traction vectors acting on the surfaces of spherical aggregates.

Also on observation scale B, perfect bond-related continuity rules for stresses and strains across the

interface between the aggregate and the ITZ allow us to compute the three-dimensional stress state

of any RVE within the ITZ shell.
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3.3 Average aggregate stresses (observation scale A)

We consider loading of a macroscopic RVE of concrete (Fig. 3.1) in form of a general stress state Σ.

Corresponding macrostrains E follow from the macroscopic elasticity law of concrete

observation scale A
RVE of concrete

3D representation of ITZ
observation scale B

aggregate

d
(A

)
co

n
≈

10
cm

cement paste matrix

aggregate d
(B

)
I
T

Z
≈

15
µ
m

ℓ(A)
con = L(B)

ITZ

cement paste

ITZ RVEs

Figure 3.1: RVE of the matrix-inclusion composite ”concrete“ where a spherical aggregate phase is
perfectly bonded to a cement paste matrix (modeled by Mori-Tanaka scheme) on observation scale A,
and the three-dimensional representation of the ITZ on an even finer scale of observation (scale B);
both two-dimensional sketches refer to three-dimensional volume elements

E = (Ccon)−1 : Σ , (3.5)

where Ccon denotes the homogenized elastic stiffness of concrete, for which the micromechanical es-

timate is described next. In this context, both the cement paste matrix and the aggregates are

considered to be isotropic such that their phase stiffness tensors can be written as

Cj = 3 kj J + 2µj K j = {cp, agg} . (3.6)

kcp and kagg as well as µagg and µcp denote bulk moduli and shear moduli of cement paste (cp)

and aggregate (agg), respectively. J stands for the volumetric part of the fourth-order unity tensor

J = 1/3 1⊗ 1 and K stands for its deviatoric part K = I−J, where 1 denotes the second-order unity

tensor with components equal to the Kronecker delta δij. Since the sum of the volume fractions of

cement paste, fcp, and the one of aggregates, fagg, equals one,

fcp + fagg = 1 , (3.7)

it is sufficient to specify the volume dosage of one phase (e.g. fagg), rendering the other one (e.g. fcp)

a dependent quality. The envisioned matrix-inclusion morphology of concrete (Fig. 3.1) renders the

Mori-Tanaka scheme [62, 12] relevant for stiffness homogenization [86]. This implies that the stiffness
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of the infinite matrix C∞ in the underlying two Eshelby problems is set equal to the stiffness of the

cement paste matrix Ccp from (3.6), see [86] for details. Specification of Eq. (3.3) for Eq. (3.4) and the

resulting expression for the two-phase concrete with spherical aggregates yields, under consideration

of Eq. (3.7) and C∞ = Ccp,

Ccon =

{

(1 − fagg) Ccp + fagg Cagg :
[

I + P
cp
sph : (Cagg − Ccp)

]−1
}

:
{

(1 − fagg) I + fagg

[

I + P
cp
sph : (Cagg − Ccp)

]−1
}−1

;

(3.8)

P
cp
sph stands for the Hill tensor of a spherical inclusion within an infinite matrix of cement paste. It is

typically decomposed into the dimensionless Eshelby tensor and the inverse of the stiffness tensor of

the infinite cement paste matrix:

P
cp
sph = S

cp
sph : C−1

cp , (3.9)

Because of the isotropy of the infinite cement paste matrix, the Eshelby tensor for a spherical inclusion

reads as [86]

S
cp
sph = αJ + βK , (3.10)

with dimensionless coefficients α and β reading as

α =
3kcp

3kcp + 4µcp
and β =

6 (kcp + 2µcp)

5 (3kcp + 4µcp)
. (3.11)

Eq. (3.8) delivers an isotropic homogenized stiffness estimate with homogenized bulk modulus kcon

and homogenized shear modulus µcon, respectively, reading as (see Appendix A for details)

kcon =

(

fagg kagg

1 +
α(kagg−kcp)

kcp

+ fcp kcp

)(

fagg

1 +
α(kagg−kcp)

kcp

+ fcp

)−1

(3.12)

and

µcon =





fagg µagg

1 +
β(µagg−µcp)

µcp

+ fcp µcp









fagg

1 +
β(µagg−µcp)

µcp

+ fcp





−1

. (3.13)

The scale transition from the macrostrains (3.5) to the average aggregate strains, εagg, is provided

by the strain concentration rule (3.2) which reads, specified for the aggregate phase, as

εagg = Aagg : E , (3.14)

with Aagg denoting the strain concentration tensor of the spherical aggregates, following from speci-

fication of Eq. (3.4) for the two-phase concrete as

Aagg =
[

I + P
∞

sph : (Cagg −Ccp)
]−1

:

{

(1 − fagg) I + fagg

[

I + P
cp
sph : (Cagg − Ccp)

]−1
}−1

(3.15)
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Also Aagg is a isotropic fourth-order tensor, allowing us to decompose it into a deviatoric part and a

volumetric part,

Aagg = AvolJ +AdevK , (3.16)

with dimensionless coefficients Avol and Adev reading as (see Appendix A for details)

Avol =

(

1

1 +
α(kagg−kcp)

kcp

)(

fagg

1 +
α(kagg−kcp)

kcp

+ fcp

)−1

,

Adev =

(

1

1 +
β(µagg−µcp)

µcp

)(

fcp

1 +
β(µagg−µcp)

µcp

+ fcp

)−1

.

(3.17)

Combination of Eqs. (3.5) and (3.14) yields a macrostress-microstrain relation, reading as

εagg = Dagg : Σ with Dagg = Aagg : (Ccon)−1 = DvolJ +DdevK , (3.18)

and involving Dagg, a fourth-order isotropic concentration tensor with

Dvol =
1

3

1

(αfcp + fagg) kagg + [fcp (1 − α)] kcp

Ddev =
1

2

1

(βfcp + fagg)µagg + [fcp (1 − β)]µcp

(3.19)

Average microscopic stresses within the aggregate phase, σagg, follow from the elasticity law

σagg = Cagg : εagg , (3.20)

with Cagg derived in Eq. (3.6). Combination of Eqs. (3.5), (3.14), and (3.20) results in a linear relation

between macroscopic RVE loading and microscopic aggregate stresses:

σagg = Bagg : Σ with Bagg = Cagg : Aagg : (Ccon)−1 = BvolJ +BdevK (3.21)

where Bagg denotes the isotropic fourth-order stress concentration tensor of the aggregate phase with

Bvol =
kagg

(αfcp + fagg) kagg + [fcp (1 − α)] kcp

Bdev =
µagg

(βfcp + fagg)µagg + [fcp (1 − β)]µcp

(3.22)

3.4 Traction vectors acting at aggregates’ surfaces (observation scale

B)

Inspired by the spatially constant stress and strain state in the inclusion of an Eshelby problem, we

consider εagg and σagg from (3.14) and (3.20) to be – on average – representative for the strain and

stress at any position inside the aggregates, including any positions adjacent to the surface of the
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aggregate. Therefore, we may compute the traction vector acting on the surface of the aggregates by

means of Cauchy’s formula

T agg(x) = σagg ·n(x) x ∈ ∂Ωagg (3.23)

where n(x) denotes the unit outward normal vector at any point x on the surface of an aggregate

grain.

3.5 Stress states in three-dimensional ITZs (observation scale B)

Herein, we provide the theoretical fundamentals allowing us to determine the full three-dimensional

stress states within the ITZ shell, based on known stress and strain states within an aggregate sphere.

This transition is possible because of perfect bond-related continuity conditions at the 2D interface

IITZ
agg separating an aggregate from the surrounding three-dimensional ITZ.

A material interface represents a discontinuity in material stiffness (IITZ
agg , for instance, separates

an aggregate with stiffness Cagg from an ITZ with stiffness CITZ) and this results, generally speaking,

in discontinuous stress and strain fields across the interface. In case no atomic bonds exist between

the two neighboring materials, they may part from each other, or they may slide along each other. In

the former case, no continuity condition for stresses or displacements apply, but in the latter case, the

principle of action and reaction allows for deriving stress transfer conditions and geometric conditions

ensure that the two materials stay in contact but do not intersect each other. The here-considered

perfect bond along IITZ
agg , in turn, implies two specific types of continuity conditions described next.

On the one hand, formulation of equilibrium of a three-dimensional body containing an arbitrary part

of an aggregate, a part of the interface, as well as a part of the ITZ shell, and shrinking this body (in

the sense of a mathematical limit procedure) to a two-dimensional domain on the interface, delivers

the following stress continuity condition [29]

σagg(x) ·n(x) = σITZ(x) ·n(x) ∀ x ∈ IITZ
agg (3.24)

On the other hand, continuity of displacement vectors u reading as

uagg(x) = uITZ(x) ∀ x ∈ IITZ
agg (3.25)

requires continuity of the displacement vector field’s tangential derivatives on IITZ
agg , the so-called

Hadamard compatibility relation [73]

∇uagg(x) · t(x) = ∇uITZ(x) · t(x) ∀ x ∈ IITZ
agg (3.26)

where t(x) denotes any possible tangent vector to IITZ
agg at position x. Combination of (3.26) with the

linear strain-displacement relation

ε =
1

2

[

∇u+ (∇u)T
]

(3.27)

allows for deriving strain continuity conditions. Eqs. (3.24)-(3.26) represent in total, six linearly
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independent stress and strain conditions such that knowledge of σagg and εagg together with the ITZ

elasticity law

σITZ = CITZ : εITZ (3.28)

allows for a component-wise reconstruction of the sought full three-dimensional stress state at any

point of the ITZ which is adjacent to the interface. As for the related details, we have to introduce

coordinate systems, and this will be done next.

3.6 Implementation based on a Cartesian and a spherical coordinate

system

The macro-to-micro stress concentration described above is implemented next, based on an observing

Cartesian coordinate system (with unit base vectors ex, ey, and ez) as well as spherical coordinates

with unit base vectors eφ, eθ, and er forming a triad moving over the surface of an aggregate sphere,

see Fig. 3.2. The zenith angle φ and the azimuth angle θ describe positions on this two-dimensional

Figure 3.2: Spherical coordinates, from [85] with adapted notation

surface, r stands for the radial distance.

As for the macro-to-micro scale transition, Cartesian base frame is used, i.e. the 3 × 3 matrix

representation of the second-order macrostress tensor reads as

Σ =







Σxx Σxy Σxz

Σxy Σyy Σyz

Σxz Σyz Σzz







ex,ey ,ez

, (3.29)

and specification of Eq. (3.18) for Eq. (3.29) delivers the aggregate strain components

εagg,xx =1/3 [(Dvol + 2Ddev) Σxx + (Dvol −Ddev) (Σyy + Σzz)]

εagg,yy =1/3 [(Dvol + 2Ddev) Σyy + (Dvol −Ddev) (Σzz + Σxx)]

εagg,zz =1/3 [(Dvol + 2Ddev) Σzz + (Dvol −Ddev) (Σxx + Σyy)]

εagg,xy =DdevΣxy εagg,xz = DdevΣxz εagg,yz = DdevΣyz ,

(3.30)
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see also Eqs. (3.19). In a similar way, we specify Eq. (3.21) for Eqs. (3.29), delivering the aggregate

stress components as

σagg,xx =1/3 [(Bvol + 2Bdev) Σxx + (Bvol −Bdev) (Σyy + Σzz)]

σagg,yy =1/3 [(Bvol + 2Bdev) Σyy + (Bvol −Bdev) (Σzz + Σxx)]

σagg,zz =1/3 [(Bvol + 2Bdev) Σzz + (Bvol −Bdev) (Σxx + Σyy)]

σagg,xy =BdevΣxy σagg,xz = BdevΣxz σagg,yz = BdevΣyz ,

(3.31)

see also Eq. (3.22). In the context of traction vectors acting on aggregates’ surfaces, we note that

the local unit normal to any point of an aggregate sphere is the base vector er, reading in Cartesian

components:

n(φ, θ) = er(φ, θ) = cos θ sinφ ex + sin θ sinφ ey + cos θ ez (3.32)

Specification of Cauchy’s formula (3.23), for stress state (3.31) and normal vector (3.32) provides

access to traction vectors acting on the aggregate’s surface; notably, in Cartesian components Tx(φ, θ),

Ty(φ, θ), and Tz(φ, θ). In order to derive the local normal traction component Tr(φ, θ) as well as the

the shear components Tφ(φ, θ) and Tθ(φ, θ), transformation of the Cartesian components into local

spherical coordinates is carried out, based on the transformation matrix Q(φ, θ)







Tφ

Tθ

Tr






= Q(φ, θ) ·







Tx

Ty

Tz






with Q(φ, θ) =







cos θ cosφ sin θ cosφ − sinφ

− sin θ cos θ 0

cos θ sinφ sin θ sinφ cosφ






. (3.33)

This yields position-depended spherical components of the traction vector

Tφ(φ, θ) = Bdev

[

1

2
sin(2φ)

(

Σxx cos2 θ + Σyy sin2 θ − Σzz + Σxy sin(2θ)
)

+
(

2 cos2 φ− 1
)

(Σxz cos θ + Σyz sin θ)

]

Tθ(φ, θ) = Bdev

[

− Σxz sin θ
1

2
(−Σxx + Σyy) sin(2θ) sin φ

+ Σxy sinφ
(

2 cos2 θ − 1
)

+ cosφ (−Σxz sin θ + Σyz cos θ)

]

Tr(φ, θ) =
1

3
Bvol (Σxx + Σyy + Σzz) +Bdev

[

Σxx

(

cos2 θ sin2 φ− 1

3

)

+ Σyy

(

2

3
− cos2 φ sin2 θ − cos2 θ

)

+ Σzz

(

cos2 φ− 1

3

)

+ Σxy sin(2θ) sin2 φ+ Σxz sin(2φ) cos θ + Σyz sin(2φ) sin θ

]

(3.34)

As for the stresses of the ITZ, comparison of Cauchy’s formula (3.23) with stress continuity con-

dition (3.24) allows for identifying that the normal stress component in r-direction, σrr, as well as the
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shear stress components σφr and σθr are continuous across the interface IITZ
agg , i.e.

σITZ,rr(φ, θ) = σagg,rr(φ, θ) = Tr(φ, θ)

σITZ,φr(φ, θ) = σagg,φr(φ, θ) = Tφ(φ, θ)

σITZ,θr(φ, θ) = σagg,θr(φ, θ) = Tθ(φ, θ) .

(3.35)

When it comes to the displacement continuity condition (3.38), we note that all possible tangent

vectors t at any position (φ, θ) of the interface IITZ
agg can be expressed as a linear combination of the

local base vectors eφ and eθ (see Fig. 3.2)

t(φ, θ) = c1eφ(φ, θ) + c2eθ(φ, θ) c1, c2 ∈ R (3.36)

In this context, we recall that the matrix representation of the displacement gradient in spherical

coordinates reads as [73]

∇u =





















1

r

(

∂uφ

∂φ
+ ur)

)

1

r

(

1

sinφ

∂uφ

∂θ
+ uθ cot φ

)

∂uφ

∂r

1

r

∂uθ

∂φ

1

r

(

1

sinφ

∂uθ

∂θ
+ uφ cotφ+ ur

)

∂uθ

∂r

1

r

(

∂ur

∂φ
− uφ)

)

1

r

(

1

sinφ

∂ur

∂θ
− uθ

)

∂ur

∂r





















(3.37)

Combination of (3.26) with (3.36) and (3.37) implies that the components in the left two rows in

(3.37) are continuous across IITZ
agg while the components in the right row will exhibit jumps, i.e. six

out of nine components are continuous. This implies, under consideration of the strain-displacement

relation (3.27), that the normal strain components both in φ and θ-direction as well as the shear strain

component εφθ are continuous across the interface, i.e.

εITZ,φφ(φ, θ) = εagg,φφ(φ, θ)

εITZ,θθ(φ, θ) = εagg,θθ(φ, θ)

εITZ,φθ(φ, θ) = εagg,φθ(φ, θ) ,

(3.38)

whereby the aggregate strains follow from transforming the Cartesian components (3.30) into local

spherical coordinates







εagg,φφ εagg,φθ εagg,φr

εagg,φθ εagg,θθ εagg,θr

εagg,φr εagg,θr εagg,rr






= Q(φ, θ) ·







εagg,xx εagg,xy εagg,xz

εagg,xy εagg,yy εagg,yz

εagg,xy εagg,yy εagg,yz






·QT (φ, θ) . (3.39)

In Eq. (3.39), QT (φ, θ) stands for the transpose of Q(φ, θ) given in (3.33). Specification of (3.38) for
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(3.39) and the resulting expression for (3.30) delivers the following ITZ strain components

εITZ,φφ(φ, θ) =
1

3
Dvol (Σxx + Σyy + Σzz) +Ddev

[

Σxx

(

cos2 φ cos2 θ − 1

3

)

+ Σyy

(

cos2 φ sin2 θ − 1

3

)

−Σzz

(

cos2 φ− 2

3

)

+ Σxy cos2 φ sin(2θ) − sin(2φ) (Σxz cos θ + Σyz sin θ)

]

εITZ,θθ(θ) =
1

3
Dvol (Σxx + Σyy + Σzz)

+Ddev

[

Σxx

(

− cos2 θ +
2

3

)

+ Σyy

(

cos2 θ − 1

3

)

− 1

3
Σzz − Σxy sin(2θ)

]

εITZ,φθ(φ, θ) = Ddev

[

1

2
(−Σxx + Σyy) sin(2θ) cos φ+ Σxy cosφ

(

2 cos2 θ − 1
)

+ sinφ (Σxz sin θ − Σyz cos θ)

]

(3.40)

Conclusively, consideration of equilibrium and of kinematic continuity at the interface IITZ
agg enabled

us to calculate three stress and three strain components of the ITZ. The remaining stress and strain

components can be determined from the isotropic elasticity law, see (3.28), which reads, in compressed

notation (according to Kelvin [71, 24]) as























σITZ,φφ

σITZ,θθ

σITZ,rr√
2σITZ,θr√
2σITZ,φr√
2σITZ,φθ























=























kITZ+4
3µITZ kITZ−2

3µITZ kITZ−2
3µITZ 0 0 0

kITZ+4
3µITZ kITZ−2

3µITZ 0 0 0

kITZ+4
3µITZ 0 0 0

... 2µITZ 0 0

2µITZ 0

symm · · · 2µITZ























·























εITZ,φφ

εITZ,θθ

εITZ,rr√
2εITZ,θr√
2εITZ,φr√
2εITZ,φθ























(3.41)

where kITZ and µITZ denote the bulk and shear modulus of the ITZ, respectively. For the sake of

conciseness, we omit the argument (φ, θ) for all stress and strain components. The last three lines of

(3.41) imply that εITZ,θr, εITZ,φr, and σITZ,φθ follow as

εITZ,θr =
1

2µITZ
σITZ,θr , εITZ,φr =

1

2µITZ
σITZ,φr , and σITZ,φθ = 2µITZ εITZ,φθ . (3.42)

The first three lines of (3.41), in turn, can be solved for the sought normal components σITZ,φφ,

σITZ,θθ, and εITZ,rr:

σITZ,φφ =
4µITZ(2kITZ + µITZ)εITZ,φφ + (3kITZ − 2µITZ)(2µITZεITZ,θθ + σITZ,rr)

3kITZ + 4µITZ
,

σITZ,θθ =
4µITZ(2kITZ + µITZ)εITZ,θθ + (3kITZ − 2µITZ)(2µITZεITZ,φφ + σITZ,rr)

3kITZ + 4µITZ
,

εITZ,rr =
3σITZ,rr − (3kITZ − 2µITZ)(εITZ,φφ + εITZ,θθ)

3kITZ + 4µITZ

(3.43)
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Specification of Eqs. (3.42) and (3.43) for the continuous stress and strain components given in (3.35),

(3.34), and (3.38) delivers expressions for the six sought components of ITZ stresses and strains

exhibiting jumps across IITZ
agg , such that the complete three-dimensional stress and strain states within

the ITZ are determined.

3.7 Microscopic stress states under macroscopic uniaxial loading

In the sequel, we illustrate the results described so far by considering an RVE of concrete which is

subjected to a macroscopic uniaxial stress state in z-direction

Σ = Σzz ez ⊗ ez , (3.44)

and by comparing components of aggregate stresses σagg, traction vectors acting on the aggregate’s

surface IITZ
agg , and ITZ stresses σITZ , as a function of the spherical coordinates φ and θ, see Fig. 3.2.

Because of the axial symmetry of this problem with respect to the z-axis, (i) microscopic stress fields

are constant along the circumferential direction θ, i.e. they only depend on the longitudinal direction

φ, and (ii), the following shear stress components vanish:

σagg,φθ = σITZ,φθ = σagg,θr = σITZ,θr = Tθ (3.45)

As for the aggregate stresses, we transform their Cartesian components (3.31) by analogy to the

strain transformation given in (3.39), and with the transformation matrix Q from (3.33), into spherical

stress components. Specification of the resulting expressions for macroscopic uniaxial loading (3.44)

delivers, in dimensionless form, the following non-vanishing components

σagg,φφ(φ)

Σzz
=

1

3
Bvol +Bdev

(

2

3
− cos2 φ

)

σagg,θθ(φ)

Σzz
=

1

3
(Bvol −Bdev)

σagg,rr(φ)

Σzz
=

1

3
Bvol +Bdev

(

cos2 φ− 1

3

)

σagg,φr(φ)

Σzz
= −1

2
Bdev sin(2φ) ,

(3.46)

with Bvol and Bdev given in (3.22).

Non-zero spherical components of traction vectors acting on the aggregate’s surface follow from

specification of the general expressions (3.34) for macroscopic uniaxial loading (3.44). They read, in

dimensionless form, as
Tφ(φ)

Σzz
= −1

2
Bdev sin(2φ)

Tr(φ)

Σzz
=

1

3
Bvol +Bdev

(

cos2 φ− 1

3

)

.

(3.47)

Non-zero spherical components of ITZ stresses follow, on the one hand, from (3.47) under consid-
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eration of (3.34) and, on the other hand, from (3.42)3 and (3.43)1,2 under consideration of (3.40) and

uniaxial loading (3.44), they read, in dimensionless form, as

σITZ,φφ(φ)

Σzz
=

1

(9kITZ + 12µITZ)

{

Bdev

[

cos2 φ (9kITZ − 6µITZ) − 3kITZ + 2µITZ

]

+Bvol (3kITZ − 2µITZ) + 4DdevµITZ

[

−3 cos2 φ (3kITZ + µITZ) + 2µITZ − 6kITZ

]

+ 4DvolµITZ (3kITZ + µITZ)
}

σITZ,θθ(φ)

Σzz
=

1

(9kITZ + 12µITZ)

{

Bdev

[

cos2 φ (9kITZ − 6µITZ) − 3kITZ + 2µITZ

]

+Bvol (3kITZ − 2µITZ) + 6DdevµITZ

[

− cos2 φ (3kITZ − 2µITZ) − 2µITZ

]

+ 4DvolµITZ (3kITZ + µITZ)
}

σITZ,rr(φ)

Σzz
=

1

3
Bvol +Bdev

(

cos2 φ− 1

3

)

σITZ,φr(φ)

Σzz
= −1

2
Bdev sin(2φ) ,

(3.48)

with Bvol, Bdev, Dvol, and Ddev from (3.22) and (3.19).

Next, we evaluate Eqs. (3.46), (3.47), and (3.48) for a typical concrete. In more detail, we consider

an initial water-to-cement mass ratio of w/c = 0.5, a hydration degree close to completed hydration

(95 %), and a concrete-related volume fraction of quartz aggregates, being equal to 65 %:

fagg = 0.65 fcp = 1 − fagg = 0.35 (3.49)

The elastic properties, in terms of Young’s modulus E and Poisson’s ratio ν, of quartz read as [11]

Eagg = 96 GPa νagg = 0.08 . (3.50)

The ones of cement paste are estimated by the validated continuum micromechanics-model of [68]:

Ecp = 16 GPa νcp = 0.23 . (3.51)

The Young’s modulus of the ITZ is considered to amount to 85 % to the Young’s modulus of the bulk

cement paste:

EITZ = 13.6 GPa νITZ = 0.23 . (3.52)

The choice νITZ = νcp is motivated by the fact that the (drained) Poisson’s ratio of cement paste is

– in good approximation – constant with respect to the composition-related initial water-to-cement

mass ratio and to the maturity-related hydration degree [69]. Microscopic stresses (3.46), (3.47), and

(3.48) evaluated for the described elastic properties are not only valid for the described concrete, but

a dimensional analysis [10] (see Appendix D for details) implies that the evaluations are valid for any
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set of elastic properties satisfying

Eagg

Ecp
= 6 ,

EITZ

Ecp
= 0.85 , νagg = 0.08 νcp = νITZ = 0.23 , fagg = 0.65 . (3.53)

Notably, Young’s modulus and Poisson’s ratio given above can be easily converted into bulk moduli,

and shear moduli, based on standard relations of isotropic materials [73]:

kj =
Ej

3 (1 − 2 νj)
, µj =

Ej

2 (1 + νj)
, ∀j ∈ {agg, cp, ITZ} . (3.54)

Specification of Eqs. (3.46) and (3.48) for Eqs. (3.22), (3.19), (3.11), and of the resulting expressions

for (3.54) and (3.53) results in normal stress components which are symmetric with respect to φ = π/2,

and in the shear components which are antimetric with respect to φ = π/2, see Fig. 3.3. They are
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Figure 3.3: Dimensionless, nonzero microscopic stress components as a function of zenith angle: aggre-
gate stresses, traction vector components acting on the aggregate’s surface, and ITZ stresses, respec-
tively, under uniaxial loading (3.44), evaluated for elastic properties and aggregate content described
in (3.53), see also (3.22), (3.11), and (3.54)

discussed in more detail next:

• Aggregate normal stresses aligned with the direction of RVE loading are by a factor of 1.165

larger than the macroscopically imposed stress intensity Σzz, see σagg,rr at the poles (i.e. at

φ = 0 and φ = π, respectively) as well as σagg,φφ at the equator (i.e. at φ = π/2). This stress

amplification is a result of the statically indeterminate nature of the microstructure of concrete,
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which implies that stiffer microstructural components (the aggregates) take over a larger share

of the load than more compliant components (the cement paste matrix).

• At the poles, the normal stresses σagg,rr are transferred over the two-dimensional aggregate-ITZ

interface to the ITZ, because of the equilibrium-related stress continuity condition (3.24). This

implies that – under macroscopic uniaxial tension – both the aggregate-ITZ interface and the

bulk ITZ are subjected to a larger tensile normal stresses than the one imposed on the concrete

RVE.

• At the equator, the aggregates, aggregate-ITZ interfaces, and bulk ITZs exhibit normal stresses in

radial direction, the sign of which is different from the one of the macroloading, see σagg,rr = Tr =

σITZ,rr = −0.01346Σzz at φ = π/2. In other words, under macroscopic uniaxial compression,

the described microscopic normal stresses (acting perpendicular to the direction of macroscopic

loading) are tensile.

• Stress jumps across the aggregate-ITZ interface concern normal stresses acting in the tangential

plane of every interface point, see the difference between σagg,φφ and σITZ,φφ as well as between

σagg,θθ and σITZ,θθ. While these ITZ stresses range in the interval [+0.02034 ,+0.3285]Σzz , these

aggregate stresses range in the interval [−0.01346 ,+1.164]Σzz . This stems from the difference

in elastic properties of aggregates and the bulk ITZ.

• Shear stresses σagg,rφ = Tφ = σITZ,rφ vanish only at the poles and at the equator, and they

exhibit extreme values amounting to ∓0.5892Σzz at the positions φ = π/4 and φ = 3π/4, re-

spectively. Together with (3.45) this implies that the normal stress component in circumferential

θ-direction represents a principal stress component. The normal stresses σITZ,rr and σITZ,φφ,

however, are principal stresses only at the poles and at the equator. In between, the principal

stress directions in the local φ-r planes deviate from the radial and the longitudinal direction.

For the illustration of microscopic strains resulting from macroscopic uniaxial loading see Appendix

B. Therein, symmetric biaxial macroscopic loading is also discussed.



Chapter 4

Upscaling of tensile strength criteria to

describe onset of debonding and onset

of ITZ failure

Post-failure fragments from laboratory concrete specimens exhibit regions where aggregates are clearly

separated from the surrounding binder matrix and other regions where thin deposits of the binder

material remain on the surface of the aggregate. The precise spatial location at which the first

microcrack nucleated cannot be back-analyzed from such post-failure observations.

The described experimental observations provides us with the motivation to investigate potential

and limitation of two different tensile strength criteria for onset of concrete cracking: clean aggregate

debonding and failure in the bulk of the three-dimensional ITZ shell. In both cases, we perform

elastic limit analyzes, in the framework of an elasto-brittle approach. In more detail, we consider

perfect bond in all observation-scale specific interfaces, and we envision that the aggregate-ITZ in-

terface and the bulk ITZ, respectively, remain intact as long as related tensile stresses remain below

corresponding strength values. Reaching the latter, in turn, is considered to be associated with onset

of (micro)cracking of concrete. Since this microscopic failure mode is not necessarily related to the

overall load carrying capacity of the concrete RVE, our analysis delivers macroscopic load intensi-

ties at which microcracking-related pre-peak nonlinearities in the macroscopic stress-strain relation of

concrete start to appear.

4.1 Microscopic tensile strength criteria

”Aggregate debonding” refers to onset of crack propagation along the two-dimensional interface IITZ
agg

which is separating the aggregate from the three-dimensional ITZ shell. In this context, we assume

that the perfect bond established by the interface remains intact as long as the maximum normal

traction Tr remains below a related tensile strength value T ult
r , and that onset of cracking is assumed

29
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once the former quantity reaches the latter one. This is reflected by the following failure function

fIITZ
agg

(Σ) = max
φ,θ

Tr(Σ, φ, θ) − T ult
r ≤ 0 (4.1)

see (3.34)3 for an analytical expression of the Tr(Σ, φ, θ). Macroscopic stress states Σ under which the

interface establishes perfect bond between the aggregates and the ITZ are characterized by fIITZ
agg

(Σ) <

0, and onset of aggregate debonding is associated with fIITZ
agg

(Σ) = 0.

”ITZ failure” refers to tension-induced cracking of the most heavily loaded RVE within the three-

dimensional ITZ shell. In this context, we introduce a Rankine-type failure function, i.e. an RVE of

the ITZ is considered to remain intact as long as the maximum principal stress σITZ,I remains below

a tensile strength value σult
ITZ , and onset of cracking is envisioned once the former quantity reaches the

latter one. This is reflected by the following failure function

fITZ(Σ) = max
φ,θ

σI(Σ, φ, θ) − σult
ITZ ≤ 0 (4.2)

Macroscopic stress states Σ under which the entire ITZ shell remains intact are characterized by

fITZ(Σ) < 0, and onset of ITZ failure is associated with fITZ(Σ) = 0.

4.2 Performance of the aggregate debonding criterion

Herein, we upscale the aggregate debonding criterion (4.1) to the material scale of concrete in order

to link onset of debonding to corresponding macroscopic stress intensities, and to determine the exact

position (in terms of position angles φ and θ) where criterion (4.1) foresees this beginning debonding

process.

4.2.1 Macroscopic uniaxial tension and compression

The radial normal traction components acting in the aggregate-ITZ interface IITZ
agg are given, for

macroscopic uniaxial loading in z-direction (3.44), in (3.46)3 and read as

Tr(φ) = Σzz

[

1

3
Bvol +Bdev

(

cos2 φ− 1

3

)]

. (4.3)

Under uniaxial tension (Σzz > 0), the maximum normal traction, maxφ,θ Tr(Σ, φ, θ), is located at the

pole (φ = 0), and amounts to

max
φ,θ

Tr(Σ, φ, θ) = Tr(Σ, φ = 0, θ) =
1

3
Σzz (Bvol + 2Bdev) Σzz > 0 . (4.4)

Under uniaxial compression (Σzz < 0), the maximum of Tr occurs at the equator (φ = π/2) and

amounts to

max
φ,θ

Tr(Σ, φ, θ) = Tr(Σ, φ = π/2, θ) =
1

3
Σzz (Bvol −Bdev) Σzz < 0, . (4.5)
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This implies that the onset of debonding is predicted to start at the pole (under uniaxial tension)

or the equator (under uniaxial compression). Related values of the prescribed macrostress refer to

macroscopic elastic limits and they are denoted as Σlim
tu and Σlim

cu (where indexes ”tu“ stand for uniaxial

tension and ”cu“ denotes uniaxial compression). They follow from specification of criterion (4.1) for

(4.4) and (4.5), respectively, from considering the limit state fIITZ
agg

= 0, and from solving the resulting

expressions for Σzz:

Σlim
tu =

3T ult
r

Bvol + 2Bdev
Σlim

cu =
3T ult

r

Bvol −Bdev
(4.6)

From (4.6) it follows that criterion (4.1) is only able to predict tension-driven debonding under uniaxial

compression if Bvol < Bdev, see (3.22). Otherwise the radial normal traction component is compressive

all over the aggregate sphere such that tensile debonding is impossible. When considering elastic

properties of aggregates and cement paste according to (3.50) and (3.51) as well as an aggregate

dosage of 65%, see (3.49), specification of (4.6) for (3.22), (3.11), and (3.54) delivers

Σlim
tu

T ult
r

= +0.8585
Σlim

cu

T ult
r

= −74.29 (4.7)

4.2.2 Macroscopic biaxial loading

Herein, we study debonding under macroscopic biaxial loading:

Σ = Σxx ex ⊗ ex + Σyy ey ⊗ ey . (4.8)

To this end, we specify the normal tractions (3.34)3 for (4.8), yielding

Tr(Σ, φ, θ) =
1

3
Bvol (Σxx + Σyy) +Bdev

[

Σxx

(

cos2 θ sin2 φ− 1

3

)

+ Σyy

(

2

3
− cos2 φ sin2 θ − cos2 θ

)]

.

(4.9)

Determination of maximum normal tractions maxφ,θ Tr(Σ, φ, θ) for arbitrary values of Σxx and Σyy is

a surprisingly challenging mathematical task. Based on the results obtained for uniaxial macroscopic

loading (see above) and consideration of the validity of the superposition principle, however, allows for

straightforward determination of the position where the maximum radial normal stress Tr is induced.

Assuming that both macroscopic stress components are compressive (Σxx < 0, Σyy < 0), the biaxial

loading scenario is considered to be a superposition of two load cases, namely uniaxial compression

in x-direction (Σxx < 0 and Σyy = 0) as well as uniaxial compression in y-direction (Σxx = 0,

Σyy < 0). In the first load case, maximum tensile normal stresses Tr occur at the intersection of the

aggregate’s surface with the y, z-plane (i.e. at the great circle defined through φ ∈ [0, 2π] and θ = π/2).

Similarly, in the second loading case, maximum tensile normal stresses Tr occur at the intersection

of the aggregate’s surface with the x, z-plane (i.e. at the great circle defined through φ ∈ [0, 2π] and

θ = 0). The tensile normal stresses of both loading cases augment each other at the position where

the x, z-plane, the y, z-plane, and aggregate’s surface intersect, i.e. at the poles φ = 0 and φ = π.

Notably, the values of Tr at the two poles are equal due to symmetry conditions. Specification of (4.9)
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for φ = 0 and consideration of sin2 θ + cos2 θ = 1 delivers

max
φ,θ

Tr(Σ, φ, θ) = Tr(Σ, φ = 0, θ) =
1

3
(Bvol −Bdev) (Σxx + Σyy) Σxx < 0, Σyy < 0 . (4.10)

If Σxx is tensile (Σxx > 0) and larger than Σyy (Σxx > Σyy), again a load case decomposition is

considered. The maximum normal stress Tr resulting from governing uniaxial tension Σxx > 0 occurs

at the intersection of the equator with the x-axis, i.e. at the points (φ = π/2, θ = 0) as well as

(φ = π/2, θ = π). As for the superposition of the second load case, no matter whether Σyy is tensile

or compressive, the location of the maximum normal traction does not change. Specification of (4.9)

for φ = π/2 and θ = 0 delivers

max
φ,θ

Tr(Σ, φ, θ) = Tr(Σ, φ =
π

2
, θ = 0) =

1

3
[Bvol (Σxx + Σyy) +Bdev (2Σxx − Σyy)]

Σxx > 0, Σxx > Σyy .
(4.11)

Similarly, for Σyy > 0 and Σyy > Σxx the maximum normal traction is obtained as

max
φ,θ

Tr(Σ, φ, θ) = Tr(Σ, φ =
π

2
, θ =

π

2
) =

1

3
[Bvol (Σxx + Σyy) +Bdev (−Σxx + 2Σyy)]

Σyy > 0, Σyy > Σxx .
(4.12)

Elastic limit-related normal stress intensities Σlim
xx and Σlim

yy follow from specification of the debond-

ing criterion (4.1) for the case-specific maximum normal tractions (4.10)-(4.12), and from considering

the limit state fIITZ
agg

= 0 as

(

Σlim
xx + Σlim

yy

)

(Bvol −Bdev) = 3T ult
r Σlim

xx < 0, Σlim
yy < 0

Σlim
xx (Bvol + 2Bdev) + Σlim

yy (Bvol −Bdev) = 3T ult
r Σlim

xx > 0, Σlim
xx > Σlim

yy

Σlim
xx (Bvol −Bdev) + Σlim

yy (Bvol + 2Bdev) = 3T ult
r Σlim

yy > 0, Σlim
yy > Σlim

xx

(4.13)

Eqs. (4.13) represent three straight lines in macroscopic biaxial stress space, forming a symmetric

(with respect to the first meridian), triangular envelope, see Fig. 4.1. Stress states within the elastic

limit envelope are elastic (all bonds remain intact), while stress states on the elastic limit envelopes

result in onset of debonding at the indicated positions.

In the case of symmetric biaxial loading, Σxx = Σyy, (4.9) leads, under consideration of theorems

for trigonometric functions, to

Tr(Σ, φ) = Σxx

[

2

3
Bvol +Bdev

(

1

3
− cos2 φ

)]

, (4.14)

which clearly is independent of the azimuth angle. Maxima of (4.14) occur at the equator for symmetric

biaxial tension (Σxx = Σyy > 0) and at the pole for symmetric biaxial compression (Σxx = Σyy < 0).

The latter maximum refers to tensile normal tractions only if Bvol < Bdev. Hence, related macroscopic

elastic limits under symmetric biaxial compression Σlim
cb follow from specification of (4.14) for φ = 0
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Figure 4.1: Debonding-related elastic limit envelope for macroscopic biaxial loading Σ = Σxx ex ⊗
ex + Σyy ey ⊗ ey: evaluation of debonding relation (4.13) for concrete properties listed in (3.53), see
also (3.22), (3.11), and (3.54); in brackets: position at aggregate sphere where debonding starts

and insertion of the resulting expression into the debonding criterion (4.1). Similarly, macroscopic

elastic limits under symmetric biaxial tension Σlim
tb follow from specification of (4.14) for φ = π/2

and insertion of the resulting expression into the debonding criterion (4.1). Consideration of elastic

properties of aggregates and cement paste according to (3.50) and (3.51) as well as of an aggregate

dosage of 65%, see (3.49), specification of the resulting expressions for (3.22), (3.11), and (3.54) delivers

symmetric biaxial elastic limit-related macroscopic stress intensities, reading as

Σlim
tb

T ult
r

= +0.8685
Σlim

cb

T ult
r

= −37.14 . (4.15)

The elastic limit of symmetric biaxial compression, amounts to exactly one half of the corresponding

value under uniaxial compression, and the elastic limit of symmetric biaxial tension is only a little

larger than under uniaxial tension, due to linear functions (4.13), compare (4.15) and (4.7).

4.2.3 General three-dimensional macroscopic stress states

Here, we consider general triaxial macroscopic loading in terms of principal stresses Σxx, Σyy, and Σzz

acting in the principal directions ex, ey, and ez, imposed on an RVE of concrete

Σ = Σxx ex ⊗ ex + Σyy ey ⊗ ey + Σzz ez ⊗ ez , (4.16)
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Because the concrete is isotropic, any general three-dimensional type of loading may be represented

by (4.16). The normal traction field acting on the aggregate’s surface follows from specification of

(3.34)3 for Σxy = Σyz = Σxz = 0 as

Tr(Σ, φ, θ) =
1

3
Bvol (Σxx + Σyy + Σzz) +Bdev

[

Σxx

(

cos2 θ sin2 φ− 1

3

)

+ Σyy

(

2

3
− cos2 φ sin2 θ − cos2 θ

)

+ Σzz

(

cos2 φ− 1

3

)]

,

(4.17)

Considering the macroscopic stress state (4.16) as the superposition of three uniaxial load cases, and

based on the same line of argumentation as used for biaxial macroscopic loading, only three positions

on the aggregate’s surface are candidates for the global maximum maxφ,θ Tr(Σ, φ, θ), namely the pole

(φ = 0), the intersection of the equator with the x-axis (φ = π/2, θ = 0), and the intersection of

the equator with the y-axis (φ = π/2, θ = π/2). The first position is relevant, if Σzz is the largest

principal macrostress (Σzz > {Σxx,Σyy}), the second one, if Σxx > {Σyy,Σzz}, and the third one, if

Σyy > {Σxx,Σzz}, yielding:

max
φ,θ

Tr(Σ, φ, θ) = Tr(Σ, φ = 0) =
1

3
[Bvol (Σxx + Σyy + Σzz) −Bdev (Σxx + Σyy − Σzz)]

Σzz > {Σxx,Σyy}

max
φ,θ

Tr(Σ, φ, θ) = Tr(Σ, φ =
π

2
, θ = 0) =

1

3
[Bvol (Σxx + Σyy + Σzz) −Bdev (−2Σxx + Σyy + Σzz)]

Σxx > {Σyy,Σzz}

max
φ,θ

Tr(Σ, φ, θ) = Tr(Σ, φ =
π

2
, θ =

π

2
) =

1

3
[Bvol (Σxx + Σyy + Σzz) −Bdev (Σxx − 2Σyy + Σzz)]

Σyy > {Σxx,Σzz} .

(4.18)

Elastic limit-related macroscopic stress intensities Σlim
xx , Σlim

yy , and Σlim
zz follow from specification of the

debonding criterion (4.1) for the case-specific maximum normal tractions (4.18), and from considering

the limit state fIITZ
agg

= 0 as

Bvol

(

Σlim
xx + Σlim

yy + Σlim
zz

)

−Bdev

(

Σlim
xx + Σlim

yy − Σlim
zz

)

= 3T ult
r Σlim

zz > {Σlim
xx ,Σ

lim
yy }

Bvol

(

Σlim
xx + Σlim

yy + Σlim
zz

)

−Bdev

(

−2Σlim
xx + Σlim

yy + Σlim
zz

)

= 3T ult
r Σlim

xx > {Σlim
yy ,Σ

lim
zz }

Bvol

(

Σlim
xx + Σlim

yy + Σlim
zz

)

−Bdev

(

Σlim
xx − 2Σlim

yy + Σlim
zz

)

= 3T ult
r Σlim

yy > {Σlim
xx ,Σ

lim
zz } .

(4.19)

Eqs. (4.19) represent a tetrahedron-shaped elastic limit surface in principal stress space, see Fig. 4.2.

Stress states within the failure surface refer to perfect bond in the aggregate-ITZ interface, while stress

states on the limit surface result in onset of debonding at the indicated positions. Notably, if all three

macroscopic principal stresses are compressive, it is possible that the entire aggregate’s surface exhibit

compressive normal tractions such that tensile debonding is impossible. The tip of the yield surface

refers to isotropic (=hydrostatic) macroscopic tension. In this case, the entire aggregate’s surface
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exhibit a uniform tensile normal traction, and criterion (4.1) predicts that the entire aggregate-ITZ

interface debonds simultaneously, once the macrostresses reaches Σlim
tt , i.e. the isotropic tension-related

macrostress level which leads to onset of debonding, reading as

Σlim
tt

T ult
r

= +0.8783 . (4.20)
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2
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Figure 4.2: Debonding-related elastic limit surface in macroscopic principal stress space: evaluation
of debonding relations (4.19) for concrete properties listed in (3.53), see also (3.22), (3.11), and (3.54);
in brackets: position on aggregate sphere where debonding starts

4.3 Performance of the ITZ failure criterion

Herein, we upscale the ITZ failure criterion (4.2) to the material scale of concrete, in order to link onset

of ITZ failure to corresponding macroscopic stress intensities.1 Notably, evaluation of the elastic limit

criterion (4.2) requires a principal stress analysis, starting from the three-dimensional stress states

derived in the previous section, see (3.35), considering (3.34), and (3.42)3 as well as (3.43)1,2.

Principal ITZ stresses σITZ,I > σITZ,II > σITZ,III are the eigenvalues of the symmetric stress tensor

σITZ and they are acting in direction of the corresponding eigenvectors eITZ,I, eITZ,II , and eITZ,III

[73]. The eigenvalue problem results in the following characteristic equation, the solution of which are

1For macroscopic uniaxial loading, we will also determine the position (in terms of angles φ and θ) at which criterion
(4.2) foresees this beginning of the ITZ failure process, as well as identify the orientation of the tension-induced first
crack.
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the sought principal stresses [56]

−σ3
ITZ,i + Iσ

1 σ
2
ITZ,i − Iσ

2 σITZ,i + Iσ

3 = 0 , i = {I, II, III} . (4.21)

The coefficients of (4.21) can be interpreted as stress invariants and they can be computed from the

ITZ stress state as follows [56]

Iσ

1 =tr(σITZ) = σITZ,φφ + σITZ,θθ + σITZ,rr

Iσ

2 =det

[

σITZ,θθ σITZ,θr

σITZ,rθ σITZ,rr

]

+ det

[

σITZ,φφ σITZ,φr

σITZ,rφ σITZ,rr

]

+ det

[

σITZ,φφ σITZ,φθ

σITZ,θφ σITZ,θθ

]

Iσ

3 =det







σITZ,φφ σITZ,φθ σITZ,φr

σITZ,θφ σITZ,θθ σITZ,θr

σITZ,rφ σITZ,rθ σITZ,rr






.

(4.22)

The solution of the characteristic equations (4.21) based on Cardano’s formulas and the Haigh-

Westergaard coordinates is given in Appendix C.

4.3.1 Macroscopic uniaxial loading

Eqs. (3.48) list the ITZ stress states under macroscopic uniaxial loading aligned with the z-axis, i.e.

under

Σ = Σzz ez ⊗ ez . (4.23)

Because of the axial symmetry of the macroscopic loading (3.44), the transformation of ITZ stresses

(3.48) into principal ITZ stresses σITZ,I ≥ σITZ,II ≥ σITZ,III, may be considered according to the

following simple procedure. The normal stress component σITZ,θθ represents already a principal

normal stress, because the shear stresses σITZ,φθ and σITZ,θr are equal to zero, see (3.45). The

other two principal stresses act in planes perpendicular to the θ-direction, i.e. in the local φ-r-planes,

such that knowledge of σITZ,rr, σITZ,φφ, and σITZ,rφ allows for their determination [56]. Summarizing,

the three principal stresses are obtained from

{

σITZ,I , σITZ,II , σITZ,III

}

=







σITZ,θθ ,
σITZ,rr + σITZ,φφ

2
±

√

(

σITZ,rr − σITZ,φφ

2

)2

+ σITZ,rφ
2







(4.24)

After numerical evaluation of the right-hand-side of (4.24), the three computed principal stresses are

ordered according to their numerical value and assigned to σITZ,I , σITZ,II , and σITZ,III .

For a typical concrete, intensity and position of the maximum principal normal stress follow from

specifying (4.24) for (3.48), (3.22), (3.11), (3.54), and for the concrete properties listed in (3.53). The

position of maxφ,θ σITZ,I is described by the zenith angle φ, which under uniaxial tension (φlim
tu ) and

under uniaxial compression (φlim
cu ) amounts to

φlim
tu = 0.3491 rad , φlim

cu = 1.0306 rad . (4.25)
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As for the related stress intensities, uniaxial tension leads to

max
φ,θ

σITZ,I = σITZ,I(φ = φlim
tu , θ) = 1.1899Σzz Σzz > 0 . (4.26)

see Fig. 4.3 a. Under macroscopic uniaxial compression, in turn, the model delivers

max
φ,θ

σITZ,I = σITZ,I(φ = φlim
cu , θ) = −0.2677Σzz Σzz < 0 . (4.27)

The macrostress level related to the onset of ITZ cracking follows from specification of ITZ failure

criterion (4.2) for (4.26) and (4.27), respectively, and considering the limit state fITZ(Σ) = 0:

Σlim
tu

σult
ITZ

= +0.8404
Σlim

cu

σult
ITZ

= −3.736 (4.28)

According to (4.25)1, the model suggests that, under macroscopic uniaxial tension, ITZ failure starts

in the vicinity of the poles, i.e. along circles of latitude with a zenith angle distance to the poles

amounting to φlim
tu = 20.00◦, see Fig. 4.3 a. According to (4.25)2, in turn, the model implies that,

under macroscopic uniaxial compression, ITZ failure starts a little bit closer to the equator than to

the poles, i.e. along circles of latitude with a polar angle distance amounting to φlim
cu = 59.05◦, see

Fig. 4.3 b. Notably, both maximum principal stresses (4.26) and (4.27) act in the local r-φ-planes.
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Figure 4.3: Uniaxial loading (Σzz ez ⊗ ez) induced principal ITZ stresses under tension Σzz > 0 (a)
and compression Σzz < 0 (b), as a function of the zenith angle φ, for concrete properties listed in
(3.53), see also (3.22), (3.11), and (3.54)
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The orientation of the first ITZ cracks is determined next. The directions of the two principal

normal stresses acting in the local r, φ-planes, relative to the the local r-axis, are described by angles

γ(φ) representing the two solution of the following equation [56]

tan(2γ(φ)) =
2σITZ,φr(φ)

σITZ,rr(φ) − σITZ,φφ(φ)
(4.29)

In order to arrive at a global description of the crack orientation, we introduce ̺(φ) as the angle

between the global z-direction and the direction of the largest principal ITZ normal stress. This angle

is accessible from (4.29) when considering that the local r-direction is rotated by the angle φ relative

to the z-axis:

̺(φ) = φ+ γ(φ) , (4.30)

where γ(φ) is the relevant solution of (4.29). The orientation of the normal vector to the local crack

plane, i.e. the orientation of the maximum of the largest principal ITZ stress with respect to the

global z-axis, is denoted as ̺lim
cu for uniaxial compression and ̺lim

tu for uniaxial tension, respectively,

and follows from (4.30) if considering the position φlim
tu and φlim

cu , respectively. The model suggests,

that the direction of the maximum principal ITZ stress deviates by only 3.28◦ from the direction of

macroscopic tensile loading, and by only 16.48◦ from the direction perpendicular to the direction of

the macroscopic compressive loading, respectively (Fig. 4.4)

̺lim
tu = 0.0572 rad ̺lim

cu = 1.8585 rad (4.31)

This implies that, under macroscopic tension, the first ITZ cracks propagate in good approximation

in a plane perpendicular to the direction of macroscopic loading, while under macroscopic uniaxial

compression, the first ITZ cracks propagate practically in the direction of macroscopic loading.

4.3.2 Macroscopic biaxial loading

For macroscopic biaxial loading Σ = Σxx ex ⊗ ex + Σyy ey ⊗ ey, the principal ITZ stresses follow from

the solution of the characteristic equation (4.21), specified for the invariants (4.22) and for the ITZ

stresses given in (3.35), (3.42), and in (3.43); see also Appendix C. Insertion of the maximum of

the largest principal ITZ stress maxφ,θ σI(Σ, φ, θ) into the ITZ failure criterion (4.2) and solving the

resulting expression for Σxx and Σyy delivers macrostresses corresponding to the onset of microcracks

caused by ITZ failure. This results in a elastic limit envelope consisting of six virtually linear branches

(Fig. 4.6). It has to be determined point-by-point, in the framework of a numerical solution procedure.

Stress states within the elastic limit surface are elastic (all bonds remain intact), while stress states

on the elastic limit surface are related to onset of ITZ cracking at the most heavily loaded position.

There, the crack plane is perpendicular to the direction of the maximum principal normal stress.

While Appendix E.3 lists the full implementation of a numerical solution procedure for determi-

nation of the elastic limit envelope and of the orientation of the first ITZ cracks, most relevant details

are briefly described next. Given the isotropy of concrete and the resulting axial symmetry of the
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Figure 4.4: Position of onset of ITZ failure and orientation of ITZ cracks under uniaxial tension and
under uniaxial compression in the y, z-plane

elastic limit envelope with respect to the first median, it is sufficient to determine one half of the

elastic limit envelope and to complete it by mirroring the computed part around the first median

(compare Figs. 4.6 and 4.5 a). In this context, it is useful to introduce the stress ratio a = Σxx/Σyy

and to investigate positive and negative values of Σyy as well as values of a in the interval [−1 ,+1], see

Fig. 4.5 a. This can be elegantly solved based on nested loops. In the context of finding the position of

the largest maximum principal ITZ stress, evaluation of the stress concentration from the macroscale

down to principal ITZ stresses may be restricted to one eighth of the aggregate’s surface, again be-

cause of the symmetries of the underlying problem. To this end, we subdivide the aggregate’s surface

part within the first octant of the global x, y, z coordinate system (i.e. in the domain 0 ≤ φ ≤ π/2

and 0 ≤ θ ≤ π/2) into 25 × 25 grid points, see Fig. 4.5 b for such a grid representation. The one

grid point, at which the largest maximum principal ITZ stress is computed for a specific realization

of the macroscopic loading, marks the position at which ITZ failure criterion (4.2) suggests onset of

ITZ cracking.

Details regarding the numerical procedure, finding the location of the maximum of the largest

principal stress for different ratios of Σxx over Σyy are given in Appendix E.3. Relating macroscopic

elastic limits to the ITZ strength yields a dimensionless illustration in the biaxial stress space, see

Fig. 4.6, where again the reference material parameters (3.53) are used.

As for symmetric biaxial compression and tension (Σxx = Σyy) we quantify the model predictions.
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The dimensionless elastic limit-related macrostress levels amount to

Σlim
tb

σult
ITZ

= +0.8465
Σlim

cb

σult
ITZ

= −3.826 . (4.32)

4.3.3 General three-dimensional macroscopic stress states

Considering general triaxial macroscopic loading in terms of principal stresses Σxx, Σyy, and Σzz

Σ = Σxx ex ⊗ ex + Σyy ey ⊗ ey + Σzz ez ⊗ ez (4.33)

again a numerical procedure is required for determination of the position at which the largest of the

maximum principal ITZ stresses occurs. As for illustration of the resulting elastic limit surface in

three-dimensional principal stress space it is useful to introduce Haigh-Westergaard coordinates of the

macroscopic loading (4.33). They are cylindrical coordinates, whereby the cylinder axis coincides with

the hydrostatic axis defined through Σxx = Σyy = Σzz:
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Σyy

Σzz

Σxx

ϑ
Σyy

Σzz

ρ
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axis
hyd

rost
atic

ξ

Σ

P (Σxx, Σyy, Σzz)
P (ξ, ρ, ϑ)

deviatoric plane
ξ = const

O

(b)

ρ

hydrostatic
axis

S

S P (Σxx, Σyy, Σzz)
P (ξ, ρ, ϑ)

(a)

Figure 4.7: (a) Macroscopic stress tensor Σ in macroscopic principal stress space Σxx, Σyy, and
Σzz, introduction of Haigh-Westergaard coordinates ξ, ρ, and ϑ; (b) deviatoric plane contains stress
deviator S

• ξ is the axial (hydrostatic) coordinate, quantifying the distance of the stress state (in direction of

the hydrostatic axis) from the origin of the coordinate system, i.e. the distance of the deviatoric

plane containing the stress state (Fig. 4.7).

• ρ is the radial coordinate, quantifying the distance of the stress state from the intersection of

the hydrostatic axis with the deviatoric plane containing the stress state.

• ϑ is the so-called Lode angle [54] marking positions in the deviatoric plane relative to the

projection of the Σxx-axis.
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The relation between the three coordinates ξ, ρ, and ϑ, on the one hand, and the principal macrostresses

Σxx, Σyy, and Σzz, on the other hand, involves so-called invariants of the stress tensor Σ and of the

stress deviator S, defined as [73]

IΣ

1 = trΣ JS

2 =
1

2
S : S , JS

3 =
1

3
(S ·S) : S , with S = Σ − IΣ

1

3
1 , (4.34)

and they read as [65]

ξ =
1√
3
IΣ

1 , ρ =
√

2JS

2 , cos 3θ =
3
√

3

2

JS

3

(JS

2 )3/2
. (4.35)

Notably, six different points in the Haigh-Westergaard representation correspond to one macroscopic

stress tensor, since the eigenvalues of Σ can be ordered arbitrarily [13].

The simple microscopic ITZ failure criterion (4.2) translates into a quite complex macroscopic

elastic limit surface representing an irregular six-sided pyramid consisting of six curved surface parts,

connected to each other along the so-called tensile and compressive meridians, characterized by ϑ =

{0 , 2π/3 , 4π/3} and by ϑ = {π/3 , π , 5π/3}, respectively (Fig. 4.8). While Appendix E.3 lists the

full implementation of a numerical solution procedure for determination of this macroscopic elastic

limit surface, most relevant details are briefly described next. The tip of the pyramid follows simply

from consideration of an isotropic tensile macroloading Σxx = Σyy = Σzz, resulting in a homogeneous

stress state all over the ITZ shell, such that the ITZ failure criterion predicts – at least theoretically

– a simultaneous failure of the entire ITZ, once maxφ,θ Tr(Σ, φ, θ) reaches σult
ITZ . The macrostress

level under hydrostatic tension, which leads to onset of ITZ cracking, Σult
tt , is quantified for reference

material properties (3.53):
Σlim

tt

σult
ITZ

= +0.8788 (4.36)

The rest of the failure surface is determined point-by-point, whereby it is useful to compute inter-

sections of the elastic limit surface with deviatoric planes (Fig. 4.9). In this context, the Haigh-

Westergaard component ξ is fixed first to a specific value of interest, and a loop is carried out for

values of ϑ ranging from 0 to π/3. The isotropy on concrete, namely, implies that it is sufficient to

determine one sixth of elastic limit surface (in the Lode angle regime ϑ ∈ [0 , π/3]) and to complete

the entire elastic limit surface by mirroring around the plane defined by Lode angle ϑ = 0 and subse-

quently by rotation of this part around the hydrostatic axis for ±2π/3. In the context of finding the

position of the largest maximum principal ITZ stress, evaluation of the stress concentration from the

macroscale down to principal ITZ stresses may be again restricted – because of symmetry properties

– to one eighth of the aggregate’s surface, see also Fig. 4.5 b. In this context, we again employ the

subdivision of the aggregate’s surface part within the first octant into 25 × 25 grid points. The one

grid point, at which the largest maximum principal ITZ stress is computed for a specific realization

of the macroscopic loading, marks the position at which ITZ failure criterion (4.2) suggests onset of

ITZ cracking. In more detail, for every pair of values of ξ and ϑ, the deviatoric Haigh-Westergaard

component ρ is progressively increased (starting from zero), until the largest of the maximum principal
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ITZ stresses reaches the tensile microstrength σult
ITZ . Connecting computed points of the elastic limit

surface, lying on the tensile or the compressive meridian, respectively, allows for plotting sections

through principal stress space which contain the hydrostatic axis and one of the mentioned meridians

(Fig. 4.10). This implies that both elastic limit meridians are markedly non-linear in the regime where

the hydrostatic part of the macrostress state, ξ, is tensile, and that the compressive meridian increases

with a steeper slope than the tensile meridian, when starting at the pyramid tip and considering a

series of macroscopic stress states characterized by decreasing values of their hydrostatic part.

-12
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-12

Σyy

σultITZ

Σzz

σultITZ
Σxx

σultITZ

Figure 4.8: ITZ failure-related elastic limit surface in macroscopic principal stress space for concrete
properties listed in (3.53), see also (3.22), (3.11), and (3.54)



CHAPTER 4. UPSCALING OF MICROSCOPIC TENSILE STRENGTH CRITERIA 44

2

4

6

8

π

0 = 2π

7π
6

π
6

4π
3

π
3

3π
2

π
2

5π
3

2π
3

11π
6

5π
6

Σyy

σult
ITZ

Σxx

σult
ITZ

Σzz

σult
ITZ

ρ/σult
ITZ

ϑ

ξ/σult
ITZ =-5

ξ = 0

Figure 4.9: ITZ failure-related elastic limit surfaces in different deviatoric sections through the macro-
scopic principal stress space for concrete properties listed in (3.53), see also (3.22), (3.11), and (3.54)

−8−6−4−202
0

2

4

6

8

ξ/σult
ITZ

ρ/
σ

u
lt

I
T

Z

tensile meridian, ϑ = 0
compressive meridian, ϑ = π/3

Figure 4.10: Tensile and compressive meridians in macroscopic principal stress space for concrete
properties listed in (3.53), see also (3.22), (3.11), and (3.54)



Chapter 5

Discussion

5.1 Comparison of the debonding model with the ITZ failure model

Comparison of the performance of the aggregate debonding criterion (4.1) with the one of the ITZ

failure criterion (4.2) requires a relation between the debonding strength T ult
r and the ITZ strength

σult
ITZ . Unfortunately, no experimental insight into this relation is available, because there are no

direct testing methods for characterization of debonding strength or ITZ strength, respectively. This

is the motivation for carrying out case studies, in which we will assume that T ult
r is larger or smaller,

respectively, than σult
ITZ . This is done for uniaxial compression and symmetric biaxial compression, two

types of loading frequently investigated in macroscopic laboratory testing of concrete.1 Complementing

these loading types, we will also discuss different types of tensile macroscopic loading, including

uniaxial, symmetric biaxial, and isotropic triaxial tension. In all cases, properties of a typical concrete

are considered, see the elastic properties listed in (3.50), (3.51), and (3.52) as well as the aggregate

dosage fagg = 65%, see (3.49).

Under macroscopic compressive stress states (uniaxial and symmetric biaxial compression), the

debonding criterion (4.1) and the ITZ failure criterion (4.2) predict the following elastic limits:

uniaxial compression . . . Σlim
cu =

{

−74.29T ult
r . . . debonding

−3.736σult
ITZ . . . ITZ failure

symmetric biaxial compression . . . Σlim
cb =

{

−37.14T ult
r . . . debonding

−3.826σult
ITZ . . . ITZ failure

(5.1)

see also (4.7), (4.28), (4.15), and (4.32). (5.1) implies that aggregate debonding is relevant if the

1Isotropic triaxial compression yields to uniform fields of traction vectors and ITZ stresses, respectively. Since they
are compressive, tension-driven debonding or ITZ failure is not possible.

45
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debonding strength is significantly smaller than the ITZ strength, i.e.

uniaxial compression . . .

{

T ult
r /σult

ITZ < 0.0503 . . . debonding is relevant

T ult
r /σult

ITZ > 0.0503 . . . ITZ failure is relevant

symmetric biaxial compression . . .

{

T ult
r /σult

ITZ < 0.103 . . . debonding is relevant

T ult
r /σult

ITZ > 0.103 . . . ITZ failure is relevant

(5.2)

(5.2) suggests that debonding can only be expected for aggregates exhibiting very polished surfaces

which do not well connect to the surrounding ITZ shell, while ITZ failure appears to be relevant in

the more realistic case that the debonding strength and the ITZ strength are on the same order of

magnitude.

Under macroscopic tensile stress states (uniaxial, symmetric biaxial, and isotropic triaxial tension),

the debonding criterion (4.1) and the ITZ failure criterion (4.2) predict the following elastic limits:

uniaxial tension . . . Σlim
tu =

{

0.8585T ult
r . . . debonding

0.8404σult
ITZ . . . ITZ failure

symmetric biaxial tension . . . Σlim
tb =

{

0.8685T ult
r . . . debonding

0.8465σult
ITZ . . . ITZ failure

isotropic triaxial tension . . . Σlim
tt =

{

0.8783T ult
r . . . debonding

0.8788σult
ITZ . . . ITZ failure

(5.3)

see also (4.7), (4.28), (4.15), (4.32), (4.20), and (4.36). (5.3) implies that – practically speaking –

aggregate debonding is relevant if the debonding strength is smaller than the ITZ strength, and vice

versa:

uniaxial tension . . .

{

T ult
r /σult

ITZ < 0.979 . . . debonding is relevant

T ult
r /σult

ITZ > 0.979 . . . ITZ failure is relevant

symmetric biaxial tension . . .

{

T ult
r /σult

ITZ < 0.975 . . . debonding is relevant

T ult
r /σult

ITZ > 0.975 . . . ITZ failure is relevant

symmetric biaxial tension . . .

{

T ult
r /σult

ITZ < 1.001 . . . debonding is relevant

T ult
r /σult

ITZ > 1.001 . . . ITZ failure is relevant

(5.4)

(5.4) suggests that debonding is expected for concretes with rather polished aggregates while ITZ

failure appears to be relevant for good mechanical interlock between aggregates and the ITZ shell, as

well as for weak ITZs which, nonetheless, connect well to the aggregate’s surface.

5.2 Comparison of model predictions with experimental results

Lack of quantitative experimental data regarding onset of debonding or onset of ITZ failure, respec-

tively, renders comparison of model predictions with experimental observations a challenging task. We



CHAPTER 5. DISCUSSION 47

have to rely on typically reported ranges for elastic limits under uniaxial tension and compression,

as well as on typical relations between uniaxial tensile strength and uniaxial compressive strength of

concrete; as is detailed next. Recalling experimental observations described in Sect. 2, we note that the

macroscopic elastic limit under uniaxial tension (Σlim
tu,exp) ranges from 70 to 100 % of the macroscopic

uniaxial tensile strength (Σult
tu,exp) [46, 84, 6, 50],

Σlim
tu,exp ∈ [0.7 , 1.0]Σult

tu,exp (5.5)

The macroscopic elastic limit under uniaxial compression (Σlim
cu,exp) ranges from 30 to 50 % of the

macroscopic uniaxial compressive strength (Σult
cu,exp) [42, 76, 46, 25]:

Σlim
cu,exp ∈ [0.3 , 0.5]Σult

cu,exp (5.6)

The typical ratio between the absolute values of the uniaxial tensile strength and the uniaxial com-

pressive strength ranges from 1:10 to 1:12

Σult
tu,exp

|Σult
cu,exp|

∈ [0.100 , 0.083̇] (5.7)

(5.5) and (5.6) together with (5.7) allow for determination that the ratio between the elastic limits in

uniaxial tension and in uniaxial compression range from 12 to 33 %:

Σlim
tu,exp

|Σlim
cu,exp|

=
[0.7 , 1.0]Σult

tu,exp

[0.3 , 0.5] |Σult
cu,exp|

=
[0.7 , 1.0]

[0.3 , 0.5]
×

Σult
tu,exp

|Σult
cu,exp|

=
[0.7 , 1.0]

[0.3 , 0.5]
× [0.100 , 0.083̇] = [0.12 , 0.3̇] (5.8)

This experiment-related interval is now compared with corresponding model predictions stemming

from the debonding model and from the ITZ failure model, respectively.

When it comes to model predictions for macroscopic elastic limits under uniaxial tension and

uniaxial compression, respectively, we note that model predictions (5.2) and (5.4) suggest the following

scenarios to be possible:

debonding in tension and

debonding in compression

}

T ult
r

σult
ITZ

< 0.0503

debonding in tension and

ITZ failure in compression

}

T ult
r

σult
ITZ

∈ [0.0503 , 0.979]

ITZ failure in tension and

ITZ failure in compression

}

T ult
r

σult
ITZ

> 0.979

(5.9)

ITZ failure in tension and debonding in compression is not realistic when relying on the two strength

models, because the ”ITZ failure in tension”-related condition T ult
r /σult

ITZ > 0.979 contradicts the

”debonding in compression”-related condition T ult
r /σult

ITZ < 0.0503, see (5.2) and (5.4). For the sce-

narios listed in (5.9) we now calculate model predictions for the ratio between the elastic limits in
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uniaxial tension and uniaxial compression, based on (5.1) and (5.3):

debonding in tension and

debonding in compression

}

. . .
Σlim

tu

|Σlim
cu | =

0.8585T ult
r

| − 74.26T ult
r | = 0.01

debonding in tension and

ITZ failure in compression

}

. . .
Σlim

tu

|Σlim
cu | =

0.8585T ult
r

| − 3.736σult
ITZ |

= 0.23
T ult

r

σult
ITZ

ITZ failure in tension and

ITZ failure in compression

}

. . .
Σlim

tu

|Σlim
cu | =

0.8404σult
ITZ

| − 3.736σult
ITZ |

= 0.22

(5.10)

Eqs. (5.8) to (5.10) allow us to assess whether or not the three investigated scenarios appear to be

realistic for concrete in view of available experimental observations:

• Given that T ult
r /σult

ITZ < 0.0503, the two strength models suggest that debonding is relevant both

in tension and compression, but this is related to a model-predicted elastic limit ratio which is

by one order of magnitude too small as to fall within the experiment-related interval given in

(5.8):

Σlim
tu

|Σlim
cu | = 0.01 ≪ [0.12 , 0.3̇] =

Σlim
tu,exp

|Σlim
cu,exp|

(5.11)

This implies that T ult
r /σult

ITZ < 0.0503 is not realistic for typical concretes.

• Given that T ult
r /σult

ITZ > 0.979, the two strength models suggest that ITZ failure is relevant both

in tension and compression, and this is related to a model-predicted elastic limit ratio which lies

well within the experiment-related interval of (5.8):

Σlim
tu

|Σlim
cu | = 0.22 ∈ [0.12 , 0.3̇] =

Σlim
tu,exp

|Σlim
cu,exp|

(5.12)

This implies that T ult
r /σult

ITZ > 0.979 appears to be realistic for typical concretes. Notably, the

model predicted stress ratio is approximately equal to the mean value of the experimentally

determined interval, see (5.12).

• Debonding in tension and ITZ failure in compression, appears to be realistic as long as the ratio

between debonding strength and ITZ strength ranges between the following interval,

T ult
r

σult
ITZ

∈ [0.50 , 0.98] (5.13)

because (5.10) and (5.13) imply that

Σlim
tu

|Σlim
cu | ∈ [0.12 , 0.22] and this is within [0.12 , 0.3̇] =

Σlim
tu,exp

|Σlim
cu,exp|

(5.14)

Next, we draw the conclusions, based on the described comparison of model predictions with
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experimental observations on concrete. In this context, we also consider that model predicted elastic

limits under uniaxial, biaxial and triaxial tension do not differ significantly, and that the elastic limits

under uniaxial and biaxial compression are also virtually the same in case of ITZ failure, see (5.1) and

(5.3).

1. In real concretes, it is unlikely that the debonding strength is smaller than one half of the ITZ

strength.

2. For real concretes, it is realistic that the debonding strength ranges from 50 to 100 % of the

ITZ strength. In this case, the developed models suggest that debonding is relevant for onset of

cracking under macroscopic tensile loading, and ITZ failure under macroscopic compression.

3. For real concretes, it is also realistic that the debonding strength is larger than the ITZ strength.

In this case, the developed models suggest that ITZ failure is always relevant for onset of cracking.

4. If the debonding strength is practically equal to the ITZ strength, then ITZ failure is relevant

under macroscopic compression, while debonding and ITZ failure are both realistic for onset of

cracking under predominant macroscopic tension.

5.3 Sensitivity analysis: influence of composition on model predic-

tions

So far, we focused on a typical concrete, with quartz aggregates, an initial water-to-cement mass ratio

amounting to 0.5, a hydration degree close to complete hydration, an aggregate content of 65 %,

and an ITZ which is more compliant than the bulk cement paste, see (3.49)-(3.52) and the related

dimensionless properties given in (3.53). In all practical applications, however, a variety of concretes

with properties different from those listed in (3.53) are in use. This is the motivation to perform a

sensitivity analysis.

The aggregate volume fraction ranges in typical concretes within the following interval

fagg ∈ [0.6 , 0.7]. (5.15)

A smaller amount of aggregates (and therefore, a higher content of cement) is non-economic, and

for a larger aggregate content must be expected to reduce the workability of the mix. Still, we will

investigate the sensitivity of our model predictions in a larger interval, namely fagg ∈ [0.5 , 0.85].

Elastic properties of aggregates differ from product to product. Young’s modulus ranges from

96 GPa for quartz [11] over typically 20 − 70 GPa for limestone [30] down to 3 − 20 GPa for lightweight

aggregates [63]. Poisson’s ratio ranges from 0.08 for quartz [11] to 0.2 − 0.3 for limestone [30] or

lightweight aggregates [63]. Elastic properties of cement paste, in turn, depend on the composition

and the maturity, i.e. on the initial water-to-cement mass ratio w/c and on the degree of hydration.

While Poisson’s ratio exhibits only small variance between 0.2 and 0.25, Young’s modulus of the

cement paste is strongly influenced by w/c and the hydration degree. At very early ages, close to the



CHAPTER 5. DISCUSSION 50

liquid-solid transition of cement paste, Young’s modulus of cement paste is very small compared to

that of frequently used aggregates. Mature, sub-stoichiometric mixed (w/c < 0.42), however, exhibit

Young’s moduli of up to 29 GPa [39]. Thus provides the motivation to study the sensitivity of our

model predictions in the intervals

νagg ∈ [0.05 , 0.4] ,
Eagg

Ecp
∈ [0 , 20]. (5.16)

Nanoindentation tests imply that mature ITZs reach only 70 − 85 % of the stiffness of the bulk

cement paste. At very early ages, however, the ITZ might exhibit a greater stiffness than the bulk

cement paste, because segregation yields to higher density of smaller clinker grains in the ITZ, and

they dissolve faster [75], such that the ITZ might be denser than the bulk cement paste at very early

ages. This is the motivation to study our model prediction in the interval

EITZ

Ecp
∈ [0.5 , 1.3]. (5.17)

In the sequel, we perform sensitivity analyses, whereby we vary one of the dimensionless quantities

Eagg/Ecp, EITZ/Ecp, νagg, and fagg within the aforedescribed intervals, see (5.15)-(5.17). At the same

time, we keep all the other dimensionless quantities equal to the values given in (3.53). Focusing

on uniaxial loading (3.44) we repeat the study described in Sections 3 and 4, yielding dimensionless

elastic limits under uniaxial tension and compression, related to debonding (4.1) and to ITZ failure

(4.2), respectively, see Figs. 5.1 and 5.2.
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Figure 5.1: Dimensionless elastic limits for concrete properties according to (3.53) for varying Eagg/Ecp

within the interval (5.16)
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Figure 5.2: Dimensionless elastic limits for concrete properties according to (3.53) whereby one pa-
rameter varies within the interval (5.15) (5.16), and (5.17), respectively.

When varying the dimensionless quantity Eagg/Ecp, we obtain elastic limit expressions which

are markedly nonlinear. Result obtained for uniaxial compression motivate us to discuss our model

predictions in three intervals, see also Fig. 5.1

Eagg

Ecp
=











(0 , 0.42) . . . regime 1

(0.42 , 0.85) . . . regime 2

(0.85 , 20.0] . . . regime 3

(5.18)

We discuss these three regimes, starting with regime 3, and ending with regime 1.

• In regime 3, the Young’s modulus of the aggregates is larger than the one of the ITZ, because

EITZ/Ecp = 0.85, i.e.

Eagg > EITZ = 0.85Ecp (5.19)

The elastic limits Σlim
tu /T ult

r , Σlim
tu /σult

ITZ , and Σlim
cu /σult

ITZ decrease monotonously with increasing

stiffness contrast, since aggregates (which are stiffer than cement paste) attract more loading

and therefore the failure governing microstresses are larger. This is detailed next.

Under uniaxial compression, the position (at which the ITZ failure criterion implies onset of
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cracking) increases from φ = 1.0455 rad at EITZ/Ecp = 20.0 to φ = π/2 at EITZ/Ecp = 0.85. In

other words, the smaller the stiffness contrast between aggregates and cement paste, the closer

to the equator ITZ failure is predicted by the model.

Under uniaxial tension, debonding is always predicted to happen at the poles (φ = 0). The posi-

tion (at which the ITZ failure criterion implies onset of cracking) increases from φ = 0.3369 rad at

EITZ/Ecp = 20.0 to φ = π/2 at Eagg/Ecp = 0.85. This implies that – for Eagg = EITZ < 0.85Ecp

– the longitudinal normal stresses σITZ,φφ at the equator, i.e. the normal stresses aligned with the

direction of macroscopic tensile loading, are the largest of all maximum principal ITZ stresses.

• In regime 2, the aggregates are the most compliant phase, followed by the ITZ, and the bulk

cement paste is the stiffest constituent of concrete:

Eagg < EITZ = 0.85Ecp (5.20)

Such stiffness contrast are only realistic for lightweight aggregate concrete, with well hardened

cement paste matrix.

Under uniaxial compression, the elastic limit for ITZ failure is equal to the elastic limit for

debonding, and both criteria predict onset of cracking at the equator. This implies that the

radial stress component at the equator is the largest radial normal stress transferred across the

two-dimensional aggregate-ITZ interface [maxφ,θ Tr = Tr(φ= π/2, θ)]. At the same time, it is

also the largest maximum principal ITZ stress [maxφ,θ σITZ,I = σITZ,rr(φ= π/2, θ)]; recall the

equilibrium-related stress continuity condition Tr(φ=π/2, θ) = σITZ,rr(φ=π/2, θ).

• In regime 1, the stiffness of the aggregates is significantly smaller than the ITZ:

Eagg < 2EITZ and EITZ = 0.85Ecp (5.21)

Such stiffness contrast are only realistic for lightweight concretes with extremely compliant ag-

gregates, with well hardened cement paste matrix.

Under uniaxial compression, onset of ITZ failure is predicted to happen at the poles (φ = 0).

This implies that the lateral in-plane normal stress σITZ,φφ = σITZ,θθ at the poles are the largest

of all maximum principal ITZ stresses.

Considering uniaxial tension, we do not have to distinguish between regime 1 and 2. Debonding is

always predicted to happen at the poles (φ = 0) and ITZ failure is always predicted to happen at the

equator. In this context, it is interesting to study the limiting case of Eagg → 0, i. e. the situation

in which the aggregate inclusions become spherical pores which are surrounded by thin ITZs. The

stress concentration into the inclusion tends to zero if Eagg → 0. As for debonding, we note that also

the radial normal stresses acting on the surface of the inclusion tend to zero with Eagg → 0, such

that the debonding criterion formally predicts a dramatic increase of the tensile elastic limit. In the

limiting case Eagg → 0, the stress trajectories will run around the pore, i.e. through the ITZ and the
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adjacent cement paste matrix, leading to a significant stress concentration in the equatorial region.

There, the circumferential normal stresses σITZ,φφ will dramatically increase with decreasing aggregate

stiffness, such that the ITZ failure criterion predicts a significant decrease of the tensile elastic limit if

Eagg → 0. We conclude that, for very small aggregate stiffness and under uniaxial tension, ITZ failure

in the equatorial region is much more likely than debonding at the poles.

As for the sensitivity analysis concerning the aggregate dosage, we note that model predicted

elastic limits increase with increasing aggregate dosage, see Fig. 5.2. This behavior is driven by the

stress concentration from the macroloading down to the aggregate stresses. In this context, we note

that the stiffness contrast between cement paste and aggregates is kept constant. It is interesting to

discuss the mathematical limit case fagg → 1 in which the microstructure would be uniform, such that

a uniform microscopic stress field with no stress fluctuations would be obtained. Therefore, the larger

the aggregate dosage, the less pronounced is the heterogeneity of the microstructure, and the smaller

is the stress concentration in the aggregates.

Poisson’s ratio of the aggregates has virtually no influence on the elastic limits predicted by the

model, see Fig. 5.2. This implies that – for the considered stiffness contrasts Eagg = 6Ecp and

EITZ = 0.85Ecp – the Poisson effect does not contribute significantly to the stress states in typical

concrete subjected to macroscopic uniaxial tension or compression.

The sensitivity analysis concerning the ITZ stiffness is discussed next, see Fig. 5.2. Debonding-

related elastic limits are not affected by variations of the ITZ stiffness, because debonding is driven

by Tr = σagg,rr which follows from observation scale A without considering an ITZ. Notably, the ITZ

failure-related elastic limits under uniaxial tension is also virtually independent of the ITZ stiffness.

Under uniaxial compression, in turn, the elastic limits increase with increasing ITZ stiffness. While

this appears to be intuitive from a macroscopic viewpoint (larger ITZ stiffness results in larger elastic

limits), the micromechanical reason is quite delicate. Therefore, we take the liberty to discuss this

effect in some detail. Under uniaxial loading, three stress components of the ITZ are nonzero: σITZ,rr

σITZ,rφ, and σITZ,φφ. The two components σITZ,rr and σITZ,rφ are equal to corresponding aggregate

stress components (σagg,rr and σagg,rφ) because of the equilibrium-related stress continuity condition.

Therefore, σITZ,rr and σITZ,rφ are independent of the ITZ stiffness. The ITZ stiffness exclusively

concerns the remaining ITZ stress component σITZ,φφ, and the absolute value of the latter increases

with increasing ITZ stiffness. This increase of σITZ,φφ, however, results in a decrease of the largest

maximum principal ITZ stress. At the position of the maximum of the largest principal ITZ normal

stress maxφ,θ σITZ,I , the normal stress component σITZ,rr is compressive and its absolute value is

smaller than the shear stress σagg,rφ; the normal stress component σITZ,φφ is also compressive, but

its absolute value is smaller than the one of σITZ,rr, see the Mohr circles illustrated in Fig. 5.3. If

the absolute value of σITZ,φφ increases, the distance of the two normal stresses σITZ,rr and σITZ,φφ

decreases. This moves the center of the Mohr circle in the direction of the compressive normal stresses

and, at the same time, it slightly decreases the radius of the Mohr circle. This explains why an

increase of σITZ,φφ results in a decrease of the largest maximum principal ITZ stress and, therefore,

in an increase of the elastic limit.
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Chapter 6

Summary, conclusions, and future

outlook

Herein we considered concrete to be a matrix-inclusion composite, consisting of aggregates embedded in

a continuous cement paste matrix, with thin (but three-dimensional) interfacial transition zones (ITZs)

in between. A continuum micromechanics model provided analytical access to the relation between

macroscopic loading imposed on representative concrete volumes, on the one hand, and (i) traction

vectors acting on the surface of spherical concrete aggregates as well as (ii) the three-dimensional

stress states inside the surrounding ITZs, on the other hand. Based on knowledge regarding mi-

croscopic tractions and stresses, we formulated tension-based elastic limit criteria for debonding and

ITZ failure, respectively. The two microscopic Rankine-type elastic limit criteria were upscaled to

elastic limit surfaces in principal stress space of concrete macrostresses: a three-cornered pyramid in

case of debonding, and an irregular-shaped six-sided pyramid in case of ITZ failure, with pyramid

axes coinciding in both cases with the hydrostatic axis. This result underlines that simple physical

laws defined at the microscale are frequently related to rather complex macroscopic behavior, such as

observed during testing of microheterogeneous materials. Finally, model predictions were compared

with corresponding experimental observations, and the sensitivity of model predictions was studied

with respect to the stiffness of aggregates, cement paste, and the ITZ, as well as to the dosage and

Poisson’s ratio of the aggregates.

The presented continuum micromechanics approach is well suited to study the influence of phase

properties (such volume fractions as well as stiffnesses of aggregates, cement paste, and the ITZ)

on the macroscopic behavior of concrete. Regarding the influence of the stiffness difference between

aggregates and cement paste on onset of microcracking, the models suggest the following conclusions:

• Under macroscopic uniaxial compression, elastic limits of typical concretes are governed by ITZ

failure. ITZ failure will start at positions somewhere between the poles and the equator and,

there, the first ITZ cracks will propagate – practically speaking – in the direction of macroscopic

compressive loading. The elastic limits increase with decreasing aggregate stiffness, because the

stress concentration from the macroloading down to stress states in aggregates decreases with

55
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decreasing aggregate stiffness. For lightweight aggregates, however, the situation appears to

be much more complex, because ITZ failure at the intersection of the axis of loading with the

spherical aggregates competes with debonding in lateral parts.

• Under macroscopic uniaxial tension, the stiffness difference between aggregates and cement paste

plays only a significant role, if aggregates are similarly compliant as or even more compliant than

the cement paste matrix. This is realistic for lightweight concretes. The more compliant the

aggregates, the more likely ITZ failure will be responsible for onset of microcracking. This

is caused by stress concentrations stemming from stress trajectories running around the weak

aggregates.

As for the sensitivity of microcracking with respect to other concrete properties, the models suggest

the following conclusions:

• The larger the aggregate content, the larger the elastic limits of concrete, because the stress

concentration from the macroloading down to stress states in aggregates decreases with increasing

aggregate dosage.

• Poisson’s ratio of the aggregates as well as the stiffness contrast between ITZ and cement paste,

in turn, have virtually no influence on elastic limits of concrete.

Regarding the influence of the macroscopic loading type on onset of microcracking, the models suggest

the following conclusions:

• For compression-dominated types of macroloading, microcracking is likely to start in the ITZ,

because the debonding criterion predicts elastic limits which are by far too large compared to

experimental measurements.

• If the ITZ strength is smaller than the bond strength, ITZ failure is relevant for the elastic limits

of concrete, independent from the specific type of macroloading. This is likely to be the case (i)

for aggregates with strong microroughness, providing a good mechanical interlock between the

aggregates and the ITZ and (ii) for aggregate types which react with the pore water solution,

resulting in chemical compounds exhibiting a larger strength than the usual hydration products.

• Debonding, in turn, appears to be relevant for tension-dominated types of macroloading, if the

ITZ strength is larger than the bond strength. This is likely to be the case for aggregates

exhibiting a rather smooth surface, which are made from a material which does not react with

the pore solution.

The model considers perfect bond in all observation scale-specific interfaces, such that it is well

suited to describe onset of microcracking, but the description of the following evolution of the cracking

process is out of reach. Once onset of ITZ failure or debonding takes place under general types of

macroscopic loading, namely, the bond properties between the aggregates and the cement paste matrix

are heterogeneously distributed over the aggregates’ surfaces: in the debonded region, no tractions are
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transmittable anymore, but a displacement jump will develop, while in the still bonded regions, the

displacement jump will be equal to zero, but tractions will still be transferred across the interface.1 A

solution to this problem is available for the two-dimensional case of a circular inclusion in an infinite

matrix, in plane elastostatics [80]. In three dimensions, Chen et al. presented a series solution for an

axisymmetric conduction problem [21], but no approach for a stress analysis is available. While this

provides a lot of motivation for future work on this topic, we focus on macroscopic uniaxial tension,

and we discuss that onset of debonding and onset of ITZ failure, respectively, might well result in

different types of subsequent microcrack evolution.

• If debonding is relevant for onset of microcracking, this process will start at the intersection of

the axis of loading with the aggregate sphere, i. e. at the poles. Microcracking will result in load

re-distributions, i. e. tensile forces which were formerly transmitted from the aggregates to the

ITZ have to be taken over in more lateral parts of the interface, i. e. right ahead of the crack edge.

These stress concentrations ahead of the crack edge will result in a catastrophic domino effect:

the bond crack will continue to propagate until also the ITZ ahead of the crack edge can no

longer sustain its loading. At that point, the crack will continue to propagate through the cement

paste matrix, and this marks the beginning of complete disintegration of the concrete specimen.

Consequently, onset of debonding is likely to be not only associated with the elastic limit of

concrete, but also with the tensile strength of the material. Inverting this line of argumentation,

one might conclude that onset of microcracking in concretes showing practically no pre-peak

non-linearities under uniaxial tension takes place by debonding.

• If ITZ failure is relevant for onset of microcracking, this process will start at positions somewhere

between the poles and the equator and, there, the first ITZ cracks will propagate – practically

speaking – in a plane which is normal to the direction of macroscopic tensile loading. Once the

first crack has propagated throughout the 15 micron thick ITZ, such that it connects the aggre-

gate’s surface with the bulk cement paste matrix, it is likely that the crack arrests. The crack,

namely will be rather small, such that corresponding stress-redistributions need not necessarily

result in bond failure or in failure of the bulk cement paste matrix. Inverting this line of ar-

gumentation, one might conclude that onset of microcracking in concretes showing pronounced

pre-peak non-linearities under uniaxial tension takes place by ITZ failure.

1These conditions are frequently referred to as unilateral constraints, and interfaces with position-dependent properties
are often referred to as inhomogeneous imperfect interfaces.
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Appendix A

Comments on isotropic fourth-order

tensors

A.1 Volumetric and deviatoric part of isotropic fourth-order tensors

An isotropic fourth-order tensor, G, can be decomposed into a volumetric part and a deviatoric part.

Considering two tensors G and H, this decomposition reads as

G = GvolJ +GdevK

H = HvolJ +HdevK
(A.1)

where Gvol, Gdev , Hvol, and Hdev are scalars, where J stands for the volumetric part of the fourth-order

unity tensor I, reading as

J =
1

3
1 ⊗ 1 (A.2)

with 1 as the second-order unity tensor with components equal to Kronecker delta δij , and where K

stands for the deviatoric part of the symmetric fourth-order unity tensor

K = I− J. (A.3)

The definition of the components of the fourth-order unity tensor, given in Sec. 3.1, is herein recalled:

Iijkl =
1

2
(δikδjl + δilδkj) (A.4)

Volumetric and deviatoric part of the symmetric fourth-order identity tensor satisfy

J : J = J K : K = K J : K = K : J = O . (A.5)

Eq. (A.5) implies that the double-contraction of two isotropic tensors, G and H, can be written as

simple as:

G : H = GvolHvolJ +GdevHdevK. (A.6)
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The inversion of an isotropic fourth-order tensor reads as

G
−1 = (GvolJ +GdevK)−1 =

1

Gvol
J +

1

Gdev
K , (A.7)

In order to prove (A.7), note that G : G−1 = I = J + K and consider G according to (A.1) as well as

G−1 according to (A.7).

A.2 Volumetric and deviatoric parts of concentration tensors and

of homogenized stiffness of concrete

Rules (A.6) and (A.7) will now be applied to isotropic fourth-order tensors relevant for homogenization

of concrete. We start with the Eshelby problem-related strain concentration tensor

A
∞

agg =
[

I + Ssph : C−1
cp : (Cagg − Ccp)

]−1
(A.8)

where we recall that

Ssph = αJ + βK , Cj = 3kjJ + 2µjK j ∈ {agg, cp} . (A.9)

Combination of (A.8) with (A.9) yields, under consideration of (A.6) and (A.7)

A
∞

agg =

[

1 + α
1

3kcp
(3kagg − 3kcp)

]−1

J +

[

1 + β
1

2µcp
(2µagg − 2µcp)

]−1

K

=
1

1 +
α(kagg−kcp)

kcp

J +
1

1 +
β(µagg−µcp)

µcp

K .
(A.10)

Next, we focus on the strain concentration tensor of the cement paste matrix:

Acp =
(

fcpI + faggA
∞

agg

)−1
(A.11)

Under consideration of (A.10), (A.6), and (A.7), the decomposition of Acp into a volumetric and a

deviatoric part reads as

Acp =



fcp +
fagg

1 +
α(kagg−kcp)

kcp





−1

J +



fcp +
fagg

1 +
β(µagg−µcp)

µcp





−1

K . (A.12)

The strain concentration tensor of the aggregates reads as

Aagg = A
∞

agg

(

fcpI + faggA
∞

agg

)−1
. (A.13)
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Under consideration of (A.10), (A.6), and (A.7), the decomposition of Aagg into a volumetric and a

deviatoric part reads as

Aagg =

(

1

1 +
α(kagg−kcp)

kcp

)(

fcp +
fagg

1 +
α(kagg−kcp)

kcp

)−1

J+

(

1

1 +
β(µagg−µcp)

µcp

)(

fcp +
fcp

1 +
β(µagg−µcp)

µcp

)−1

K .

(A.14)

Finally, the decomposition of the homogenized stiffness

Ccon = faggCagg : Aagg + fcpCcp : Acp (A.15)

follows from (A.9), (A.12), and (A.14) as

Ccon = 3



fcpkcp +
faggkagg

1 +
α(kagg−kcp)

kcp







fcp +
fagg

1 +
α(kagg−kcp)

kcp





−1

J

+ 2



fcpµcp +
faggµagg

1 +
β(µagg−µcp)

µcp







fcp +
fagg

1 +
β(µagg−µcp)

µcp





−1

K .

(A.16)



Appendix B

Further analytical results for

microscopic stress and strain states

under macroscopic uniaxial and biaxial

loading

The microscopic traction vectors and ITZ stresses under uniaxial loading are discussed in Sec. 3.7.

Herein, the corresponding strain states are studied. Average aggregate strains in spherical coordi-

nates follow from the spatially constant Cartesian components (3.30) by the transformation (3.39).

Specification of the result for uniaxial loading (3.44) delivers

εagg,φφ(φ)

Σzz
=

1

3
Dvol +Ddev

(

2

3
− cos2 φ

)

εagg,θθ(φ)

Σzz
=

1

3
(Dvol −Ddev)

εagg,rr(φ)

Σzz
=

1

3
Dvol +Ddev

(

cos2 φ− 1

3

)

εagg,φr(φ)

Σzz
= −1

2
Ddev sin(2φ) .

(B.1)

Rotational symmetry also holds for the strain components, such that shear strain components con-

taining one index equal to θ are zero, εagg,φθ = εagg,θφ = εagg,θr = εagg,rθ = 0. Three interfacial strain

components in spherical coordinates follow from the strain continuity rule (3.38), the other three are
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obtained from (3.42)1,2 and (3.43)3 as

εITZ,φφ(φ)

Σzz
=

1

3
Dvol +Ddev

(

2

3
− cos2 φ

)

εITZ,θθ(φ)

Σzz
=

1

3
(Dvol −Ddev)

εITZ,rr(φ)

Σzz
=

1

3kITZ + 4µITZ

{

Bvol +Bdev

(

3 cos2 φ− 1
)

+
1

3
Dvol (−6kITZ + 4µITZ) +

1

3
Ddev

[

cos2 φ (9kITZ − 6µITZ) − 3kitz + 2µITZ

]

}

εITZ,φr(φ)

Σzz
= −1

4

Bdev sin(2φ)

µITZ
(B.2)

The strain component εITZ,θθ is constant in the ITZ shell, since the problem is axisymmetric with

respect to the z-direction, since a spatially constant strain state is representative within the aggregate,

and since strain compatibility implies εagg,θθ = εITZ,θθ. Specification of the strain states (B.1) and

(B.2), for typical concrete properties (3.53) allows for plotting the graphs shown in Fig. B.1.
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Figure B.1: Dimensionless, nonzero microscopic strain components as a function of zenith angle:
aggregate strains and ITZ strains, respectively, under uniaxial loading (3.44), evaluated for elastic
properties and aggregate content described in (3.53), see also (3.22), (3.11), and (3.54)

Considering symmetric biaxial loading, Σ = Σxx (ex ⊗ ex + ey ⊗ ey), implies rotational symmetry

with respect to the z-axis. Hence, in spherical coordinates, stress and strain components are only a

function of the zenith angle φ. Since the superposition principal is valid, we can get access to the

results for biaxial loading by superimposing two uniaxial stress states, one with loading in global x-
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direction, and one with loading in global y-direction, see Figs. B.2 and B.3 for numerical evaluations.

Superposition holds also for microscopic ITZ stress states. For instance, the radial normal stress

−1

−0.5

0

0.5

1

1.5

zenith angle φ

st
re

ss
co

m
p
on

en
t,

σ
ij
/Σ

x
x

0 π
4

π
2

3π
4

π

σagg,φφ
σagg,θθ
σITZ,φφ
σITZ,θθ
σITZ,rr = σagg,rr
σITZ,φr = σagg,φr

Figure B.2: Dimensionless, nonzero microscopic stress components as a function of zenith angle:
aggregate strains, tractions at the aggregate’s surface, and ITZ stresses, respectively, under symmetric
biaxial loading, Σxx = Σyy, specified in (4.8), evaluated for elastic properties and aggregate content
described in (3.53), see also (3.22), (3.11), and (3.54)

component at the pole is, under biaxial loading, twice as large as the radial normal stress at the equator

under uniaxial loading, compare Figs. 3.3 and B.2. σITZ,θθ at the north pole under macroscopic biaxial

loading is the sum of σITZ,θθ and σITZ,φφ, at the equator under macroscopic uniaxial loading acting

in z-direction.
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Figure B.3: Dimensionless, nonzero microscopic strain components as a function of zenith angle:
aggregate strains and ITZ strains, respectively, under symmetric biaxial loading, Σxx = Σyy, specified
in (4.8), evaluated for elastic properties and aggregate content described in (3.53), see also (3.22),
(3.11), and (3.54)



Appendix C

Principal stress analysis: Solution of

the characteristic equation based on

Cardano’s formula

The solution of a cubic function, given as a monic trinomial, is accessible based on Cardano’s method.

The transition from the characteristic equation (4.21) to a cubic monomial is performed by dividing

Eq. (4.21) by −1 and by extracting the hydrostatic stress using the substitution

Λ = σ − Iσ

1

3
. (C.1)

With the invariants of the microstress deviator, Js

1 = 0, Js

2 , and Js

3 , this cubic monomial reads as

Λ3 − Js

2Λ − Js

3 = 0. (C.2)

Js

2 and Js

3 follow from specification of (4.34) for microscopic quantities or from the invariants of the

microscopic stress tensor Iσ

1 , Iσ

2 , and Iσ

3 , see Eq. (4.22), as:

Js

2 =
(Iσ

1 )2

3
− Iσ

2 Js

3 = Iσ

3 − Iσ

1 I
σ

2

3
+

2 (Iσ

1 )3

27
(C.3)

The solution of the cubic monomial (C.2) involves the Haigh-Westergaard coordinates ρ (deviatoric

component) and ϑ (Lode angle), see Eq. (4.35), and read as

Λ1 =

√
6

3
ρ cos ϑ

Λ2 =

√
6

3
ρ cos

(

ϑ− 2π

3

)

Λ3 =

√
6

3
ρ cos

(

ϑ+
2π

3

)

.

(C.4)
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Back-substitution of (C.4) into (C.1), i.e. addition of the hydrostatic part of the stress tensor delivers

the three sought principal ITZ stresses:

σITZ,1 = Λ1 +
Iσ

1

3
=

√
3ξ

3
+

√
6

3
ρ cos ϑ

σITZ,2 = Λ2 +
Iσ

1

3
=

√
3ξ

3
+

√
6

3
ρ cos

(

ϑ− 2π

3

)

σITZ,3 = Λ3 +
Iσ

1

3
=

√
3ξ

3
+

√
6

3
ρ cos

(

ϑ+
2π

3

)

,

(C.5)

and

{σITZ,I , σITZ,II , σITZ,III} = {σITZ,1, σITZ,2, σITZ,3} with σITZ,I > σITZ,II > σITZ,III . (C.6)

In (C.5), ξ denotes the hydrostatic component of the Haigh-Westergaard representation according to

Eq. (4.35).



Appendix D

Dimensional analysis

A dimensional analysis is beneficial to determine the governing factors responsible for onset of debond-

ing and for analyzing the sensitivity of related model predictions in a systematic fashion. Based on

Buckingham’s Pi-Theorem [17], any physical law is independent of the arbitrarily chosen units of

measurements. Any physical relation can be rewritten as a relationship between a dimensionless pa-

rameter, on the one hand, and some dimensionless parameters and several dimensionless products

of the governing parameters, on the other hand [10]. This allows for a reduction of the number of

arguments in these functions.

Several dimensional and dimensionless parameters have an influence on the onset of debonding and

on the onset of ITZ failure, respectively. In this context, we note that, starting from the macroscopic

stress state (3.29), we use the micromechanics model to derive the macrostrains. The latter provide,

under consideration of the strain concentration tensor of the aggregate phase, access to aggregate

strains. Hooke’s law of the aggregates leads to aggregate stresses and Cauchy’s formula to the traction

vectors acting on the aggregate’s surface. The radial traction component at the aggregate’s surface,

Tr, is considered to govern the onset of debonding, see (4.1). Perfect bond conditions, together with

Hooke’s law of the ITZ, allow for identification of the interfacial stress state. A subsequently performed

principal stress analysis leads to the principal ITZ stresses, whereby the largest principal ITZ stress

is denoted as σITZ,I and is considered to be responsible for the onset of ITZ failure, see (4.2). Tr as

well as σITZ,I depend on the position at the aggregate’s surface, i.e. they are both functions of the

position angles φ and θ.

Collecting all parameters needed to compute the radial traction component at the aggregate’s

surface, allows us to write this stress component as a (dimensional) function ψagg of the parameters:

σagg,rr = Tr = ψagg (Σ, Eagg, νagg, Ecp, νcp, fagg, φ, θ) . (D.1)

Similarly, we can write down a (dimensional) function ψITZ which links the largest principal ITZ

stress with all model parameters having an influence. In addition to the quantities in (D.1) the ITZ

stiffness (expressed through ITZ’s Young’s modulus EITZ and ITZ’s Poisson’s ratio νITZ) influences
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the stress state within the ITZ:

σITZ,I = ψITZ (Σ, Eagg, νagg, Ecp, νcp, EITZ , νITZ , fagg, φ, θ) . (D.2)

Next, dimensional functions of the involved physical properties are introduced and collected in the

so-called exponent matrix of dimension, which reads for (D.1) as

[Tr] [Σ] [Eagg] [νagg] [Ecp] [νcp] [fagg] [φ] [θ]

L −1 −1 −1 0 −1 0 0 0 0

M 1 1 1 0 1 0 0 0 0

T −2 2 −2 0 −2 0 0 0 0

(D.3)

and for (D.2) as

[σITZ,I ] [Σ] [Eagg] [νagg] [Ecp] [νcp] [EITZ ] [νITZ ] [fagg] [φ] [θ]

L −1 −1 −1 0 −1 0 −1 0 0 0 0

M 1 1 1 0 1 0 1 0 0 0 0

T −2 2 −2 0 −2 0 −2 0 0 0 0

(D.4)

where Σ stands for the full stress tensor, i.e. for six independent components. L, M, and T are the base

dimensions of length, mass, and time, respectively [10], i.e. they are abstract positive numbers related

to any changes of units of measurements chosen to observe the physical problem. The amount n of

governing properties (n = 13 for aggregate stresses and n = 15 for ITZ stresses), can subsequently

be reduced by k, which is equal to the rank of the exponent matrix of dimension, k = 1 for both

matrices, see (D.3) and (D.4), respectively. This way, we arrive at n − k dimensional dependent

quantities, whereby n − k = 12 for aggregate stresses and n− k = 14 for ITZ stresses. The functions

ψagg and ψITZ can now be rewritten in dimensionless form, denoted as Ψagg and ΨITZ , whereby Ecp

was chosen in order to make the other dimensional quantities dimensionless:

Tr

Ecp
= Ψagg

(

Σ

Ecp
,
Eagg

Ecp
, νagg,

Ecp

Ecp
, νcp, fagg, φ, θ

)

, (D.5)

σITZ,I

Ecp
= ΨITZ

(

Σ

Ecp
,
Eagg

Ecp
, νagg, νcp,

EITZ

Ecp
, νITZ , fagg, φ, θ

)

. (D.6)

Dimensional analysis allowed for reducing the number of influencing parameters by one. A more

significant reduction is not possible, since the governing quantities are either dimensionless, such as

the Poisson’s ratios, the volume fraction, and the position angles, or they exhibit the same dimension,

such as the stress or traction components and the elastic moduli.



Appendix E

Model implementation into the Maple

environment

Herein, we provide commented Maple sheets (lines starting with ”#“ are comments). At first, some

functions are briefly described (see Sec. E.1), involving some which are provided by a package for

tensor calculations. Next, the input properties are initialized and the homogenized stiffness of con-

crete is computed, see Sec. E.1. The subsections ”phase properties“ and ”derivation of homogenized

stiffness“, given in this section, are prerequisite for the following calculations. This is followed by

the implementation of the debonding criterion (4.1), which is solved for the three positions on an

aggregate sphere, where the maximum radial traction component may possibly be observed under a

macroscopic principal loading state, see Sec. E.2. In this context, we compute the equations of the

three planes of the elastic limit surface in macroscopic principal stress space, see also Fig. E.1, and

we calculate the intersection of this elastic limit surface with the biaxial planes. As for ITZ failure

(see Sec. E.3), we compute the stress concentration from macrostresses to ITZ microstresses, see also

Fig. E.2 for a three-dimensional illustration of the radial ITZ stress component, which is equal to the

radial traction component at the aggregate’s surface. Next, we perform a principal stress analysis and

consider the ITZ failure criterion (4.2), which is solved for uniaxial, biaxial, and triaxial macroscopic

stresses, respectively. The numerical procedure for the calculation of the biaxial elastic limit envelope,

see also Fig. E.3, as well as for the elastic limit surface under multiaxial loading, which is determined

in deviatoric planes as well as a in meridional sections, is also included.

E.1 Code: input and homogenization

> r e s t a r t ;

> # load l ibrar ies and routines

> n ew l i b d i r := "/home/mk/library/" : l ibname := new l i b d i r , l ibname :

> with ( tens3d ) : with ( l i n a l g ) : with ( bprout ines ) : with ( p l o t s ) : with ( p l o t t o o l s ) : with (

LinearAlgebra ) :
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# FUNCTIONS AND OPERATORS

> # ” i so e l s t i f f (E,nu,1)” creates 4th−order s t i f fne s s tensor with E as Young’ s

modulus and nu as Poisson ’ s ratio

> # ”eshisosph(nu)” creates the 4th−order Eshelby tensor for a spherical

inclusion embedded in inf in i te isotropic matrix with Poisson ’ s ratio nu

> # ”Inv4(T)” inverts the 4th−order tensor T

> # ”Iso4(1)” creates the 4th−order unity tensor

> # ”&++”, ”&−−” tensor addition and subtraction for tensors of equal order

> # ”&∗∗” Multiplication of tensor with scalar

> # ”&t2” double−contraction of tensors

> # ”vct4(T)” i l lustrat ion of 4th−order tensor T in compressed matrix notation

> # ”vxt4(M)” creates a 4−th order tensor of the matrix M according to

compressed notation

> # ”compt4(T, i , j ,k , l )” extracts the i jk l−component of a 4th−order tensor T

> # ”def tenseur(M, [ cont , cont ] , base fond)” creates the 2nd−order tensor for the

matrix M, whereby M contains contravariant components

> # ”composantes(T2, [ cont , cont ] , base fond)” gives the contravariant components

of the 2nd−order tensor T2

> # ”def tenseur(v , [ cont ] , base fond)” creates the 1st−order tensor for the

vector v , whereby v i s given in contravariant components

# PHASE PROPERTIES

> # al l phases are isotropic

> # inclusion phase (AGGREGATES)

> E i :=2: #input , Young’ s modulus of inclusion

> nu i :=0 .25 : #input , Poisson ’ s ratio of inclusion

> f i :=0 . 7 : #input , volume fraction of inclusion phase

>

> # matrix phase (CEMENT PASTE)

> E m:=1: #input , Young’ s modulus of matrix

> nu m :=0 .25 : #input , Poisson ’ s ratio of matrix

> f m:=1− f i : #volume fraction of matrix

>

> # inter fac ia l transition zone , ITZ (2D during homogenization , afterwards 3D)

> E i t z :=0.5∗E m: #input , Young’ s modulus of ITZ

> nu i t z :=nu m : #input , Poisson ’ s ratio of inclusion

# DERIVATION OF HOMOGENIZED STIFFNESS

> # spherical inclusions embedded in inf in i te Matrix

> # −−> Eshelby problem (perfect bonding , 2D−interface )

> # phase s t i f fne s s tensors

> i n t e r f a c e ( warn leve l =0) :

> C i := i s o e l s t i f f ( E i , nu i , 1 ) :
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> C itz := i s o e l s t i f f ( E i tz , nu i t z , 1 ) :

> C m:= i s o e l s t i f f (E m, nu m , 1 ) :

> # hi l l tensor of inclusion

> S sph := esh i s o sph (nu m) : # Eshelby tensor of sphere in cement paste

> P sph := S sph &t2 ( Inv4 (C m) ) : # corresponding Hil l tensor

> i n t e r f a c e ( warn leve l =4) :

> # homogenization

> # according to Mori−Tanaka scheme (cement paste i s identi f ied as matrix phase)

>

> # inf in i te strain concentration tensor for matrix

> A m inf := I so4 (1 ) :

> # inf in i te strain concentration tensor for inclusion

> A i i n f := Inv4 ( ( I s o4 (1 ) &++ ( P sph &t2 ( C i &−− C m) ) ) ) :

>

> # link between macrostrains and auxiliary strains at the inf in i te boundary

> l i n k E E in f c on := Inv4 (((1− f i ) &∗∗ A m inf ) &++ ( f i &∗∗ A i i n f ) ) :

>

> A m := A m inf &t2 l i nk E E in f c on : # strain concentration tensor for matrix

> A i := A i i n f &t2 l i nk E E in f c on : # strain concentration tensor for

inclusion

>

> sb1 := vct4 ( ( f i &∗∗ A i ) &++ ((1− f i ) &∗∗ A m) ) : # check , should be identity

>

> # homogenized s t i f fne s s for 2−phase composite

> C hom := ( f i &∗∗ ( C i &t2 A i ) ) &++ ((1− f i ) &∗∗ (C m &t2 A m) ) :

> C homc:=vct4 (C hom) : # matrix representation of homogenized s t i f fne s s

>

> # C hom is isotropic , therefore , homogenized Young’ s modulus

> # and homogenized Poisson ’ s ratio can be given :

> E hom := ( compt4 (C hom ,1 , 2 , 1 , 2 ) ∗(3∗ compt4 (C hom ,1 , 1 , 1 , 1 )−4∗compt4 (C hom

,1 , 2 , 1 , 2 ) ) ) /( compt4 (C hom ,1 , 1 , 1 , 1 )−compt4 (C hom ,1 , 2 , 1 , 2 ) ) :

> nu hom := ( compt4 (C hom ,1 , 1 , 1 , 1 )−2∗compt4 (C hom ,1 , 2 , 1 , 2 ) ) / (2∗ ( compt4 (C hom

,1 , 1 , 1 , 1 )−compt4 (C hom ,1 , 2 , 1 , 2 ) ) ) :

#

E.2 Code: debonding

# STRESS STATE AT THE AGGREGATESURFACE

> # macrostresses and macrostrains

> Sigmac := array ( 1 . . 3 , 1 . . 3 , [ [ S11 , S12 , S13 ] , [ S12 , S22 , S23 ] , [ S13 , S23 , S33 ] ] ) : #

Introduction of macrostress in Cartesian coordinates

> Sigma := de f t en s eu r ( Sigmac , [ cont , cont ] , base fond ) : # macroscopic stress

tensor
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>

> Eps i lon := Inv4 (C hom) &t2 Sigma : # macroscopic strain tensor (Hooke’ s law) :

> # scale transition

> # average microscopic phase strain tensors

> eps i lon m := A m &t2 Eps i lon :

> e p s i l o n i := A i &t2 Eps i lon :

>

> # average microscopic phase stress tensors

> sigma m := C m &t2 eps i lon m :

> s i gma i := C i &t2 e p s i l o n i :

> s i gma i c := composantes ( s igma i , [ cont , cont ] , base fond ) : # matrix

representation

> # the maximum radial stress i s located at the pole , or at the equator where

phi=0 or phi=pi/2

> # at these points the radial component in the spherical coordinate system i s

equal to one Cartesian component

> s i i p o l := subs ( phi=0, theta =0, s i gma i c (3 , 3 ) ) :

> s i i e q 0 := subs ( phi=Pi /2 , theta =0, s i gma i c (1 , 1 ) ) :

> s i i e q 9 0 := subs ( phi=Pi /2 , theta=Pi /2 , s i gma i c (2 , 2 ) ) :

# ELASTIC LIMIT SURFACE

> with (geom3d) :

> # 3 planes , describing the e last i c l imit

> # to obtain these planes , the respective radial stress components are set

equal to the tensi le strength of the bond ftbond ,

> # but since we give the e last i c l imit in terms of these strength , we set the

stresses equal to 1

> plane (E1 , s i i p o l =1 ,[ S11 , S22 , S33 ] ) :

> plane (E2 , s i i e q 0 =1 ,[ S11 , S22 , S33 ] ) :

> plane (E3 , s i i e q 9 0 =1 ,[S11 , S22 , S33 ] ) :

> # tip of the tetrahedron

> i n t e r s e c t i o n (P, E1 , E2 , E3) :

> Stipdeb := coo rd ina te s (P, [ x , y , z ] ) [ 1 ] ;

> # intersection of one blue plane (pole debonding) with pi1−plane

> plane (P1 , S33=0 ,[ S11 , S22 , S33 ] ) :

> i n t e r s e c t i o n ( tra1 , E1 , P1) :

> Equation ( tra1 , u , [ S11 , S22 , S33 ] ) :

> # intersection of this trace l ine with x−axis

> l i n e ( xaxis , [ po int ( or ig , 0 , 0 , 0 ) , po int ( xx , 5 , 0 , 0 ) ] ) :

> i n t e r s e c t i o n (Smin , tra1 , xax i s ) :

> Smindeb := coo rd ina te s (Smin ) [ 1 ] ; #uniaxial compressive l imit

> # intersection of red plane (debonding at phi=Pi/2 , theta=Pi/2) with pi1−plane

> l i n e ( yaxis , [ o r ig , po int ( xx , 0 , 5 , 0 ) ] ) :
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> i n t e r s e c t i o n ( tra2 , E3 , P1) :

> Equation ( tra2 , u , [ S11 , S22 , S33 ] ) :

> # intersection of this trace l ine with y−axis

> i n t e r s e c t i o n (Smax , tra2 , yax i s ) :

> Smaxdeb:= coo rd ina te s (Smax) [ 2 ] ; #uniaxial tens i le l imit

> # intersection of E1 and E2 delivers the edge of the tetrahedron

> i n t e r s e c t i o n ( e , E1 , E2) :

> Equation ( e , v , [ S11 , S22 , S33 ] ) ;

> # il lustrat ion of the e last i c l imit

> draw ( [ E1( c o l o r=cyan ) ,E2( c o l o r=green ) ,E3( c o l o r=red ) , t ra1 ( c o l o r=black ) , e ( c o l o r=

black ) ] , axes=boxed , l a b e l s =[S11 , S22 , S33 ] , view =[ −20 . .2 , −20 . .2 , −20 . .2 ] ) ;

#

Figure E.1: Three planes describing the elastic limit envelope for debonding in principal stress space

E.3 Code: ITZ failure

E.3.1 ITZ stresses

# TRANSFORMATION MATRIX

> # base vectors of the moving spherical coordinate system

> rx := cos ( theta ) ∗ s i n ( phi ) : ry := s i n ( theta )∗ s i n ( phi ) : r z := cos ( phi ) :

> tx:=− s i n ( theta ) : ty := cos ( theta ) : tz :=0:

> px:= cos ( theta ) ∗ cos ( phi ) : py:= s i n ( theta ) ∗ cos ( phi ) : pz:=− s i n ( phi ) :

>

> r := de f t en s eu r ( [ rx , ry , r z ] , [ cont ] , base fond ) :

> t := de f t en s eu r ( [ tx , ty , tz ] , [ cont ] , base fond ) :
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> p := de f t en s eu r ( [ px , py , pz ] , [ cont ] , base fond ) :

> # base vectors of the Cartesian coordinate system

> e1 := de f t en s eu r ( [ 1 , 0 , 0 ] , [ cont ] , base fond ) :

> e2 := de f t en s eu r ( [ 0 , 1 , 0 ] , [ cont ] , base fond ) :

> e3 := de f t en s eu r ( [ 0 , 0 , 1 ] , [ cont ] , base fond ) :

> # transformation matrix between spherical and Cartesian coordinates

> Qc := array ( 1 . . 3 , 1 . . 3 , [ [ px , py , pz ] , [ tx , ty , tz ] , [ rx , ry , rz ] ] ) :

> Q := de f t en s eu r (Qc , [ cont , cont ] , base fond ) : # tensor representation of

transformation matrix

>

> QTc := transpo s e (Qc) : # inverse of Q, which exhibits orthogonality

> QT := de f t en s eu r (QTc , [ cont , cont ] , base fond ) : # tensor representation of Qtc

# STRESSES IN AGGREGATES

> # macrostress and macrostrain

> # Introduction of macrostress in Cartesian coordinates

> Sigmac := array ( 1 . . 3 , 1 . . 3 , [ [ S11 , S12 , S13 ] , [ S12 , S22 , S23 ] , [ S13 , S23 , S33 ] ] ) :

> Sigma := de f t en s eu r ( Sigmac , [ cont , cont ] , base fond ) : # macroscopic stress

tensor

>

> Eps i lon := Inv4 (C hom) &t2 Sigma : # macroscopic strain tensor (Hooke’ s law) :

> # scale transition

> # average microscopic phase strain tensors

> eps i lon m := A m &t2 Eps i lon :

> e p s i l o n i := A i &t2 Eps i lon :

>

> # average microscopic phase stress tensors

> sigma m := C m &t2 eps i lon m :

> s i gma i := C i &t2 e p s i l o n i :

> # transformation to spherical coordinates

> s i gma i l o k a l := Q &t1 s i gma i &t1 QT:

> s i gma i l o k c := composantes ( s i gma i l o k a l , [ cont , cont ] , base fond ) : #

microstresses in spherical coordinates

> e p s i l o n i l o k a l := Q &t1 e p s i l o n i &t1 QT:

> e p s i l o n i l o k c := composantes ( e p s i l o n i l o k a l , [ cont , cont ] , base fond ) : #

microstrains in spherical coordinates

# STRESSES IN INTERFACES

> # Equilibrium at the interface implies :

> s i gma i t z l o k ph i r := compt2 ( s i gma i l o k a l , 1 , 3 ) :

> s i gma i t z l o k t h e t a r := compt2 ( s i gma i l o k a l , 2 , 3 ) :
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> s i g m a i t z l o k r r := compt2 ( s i gma i l o k a l , 3 , 3 ) :

> # Compatibility at the interface implies :

> e p s i t z l o k p h i p h i := compt2 ( e p s i l o n i l o k a l , 1 , 1 ) :

> e p s i t z l o k p h i t h e t a := compt2 ( e p s i l o n i l o k a l , 1 , 2 ) :

> e p s i t z l o k t h e t a t h e t a := compt2 ( e p s i l o n i l o k a l , 2 , 2 ) :

> # Introduction of strain tensor at the interface and calculation of interface

stress tensor

> e p s i t z l o k c := array ( 1 . . 3 , 1 . . 3 , [ [ e p s i t z l o k ph i ph i , e p s i t z l o k ph i t h e t a ,

e p s i t z l o k p h i r ] , [ e p s i t z l o k ph i t h e t a , e p s i t z l o k t h e t a t h e t a ,

e p s i t z l o k t h e t a r ] , [ e p s i t z l o k p h i r , e p s i t z l o k t h e t a r , e p s i t z l o k r r ] ] ) :

> e p s i t z l o k := de f t en s eu r ( e p s i t z l o k c , [ cont , cont ] , base fond ) :

>

> s i gma i t z l o k := C i tz &t2 e p s i t z l o k :

> # solving for the 6 unknown components of the inter fac ia l stress and strain

tensors

> eq1 := s i gma i t z l o k ph i ph i = compt2 ( s i gma i t z l o k , 1 , 1 ) :

> eq2 := s i gma i t z l o k ph i t h e t a = compt2 ( s i gma i t z l o k , 1 , 2 ) :

> eq3 := s i gma i t z l o k ph i r = compt2 ( s i gma i t z l o k , 1 , 3 ) :

> eq4 := s i gma i t z l o k t h e t a t h e t a = compt2 ( s i gma i t z l o k , 2 , 2 ) :

> eq5 := s i gma i t z l o k t h e t a r = compt2 ( s i gma i t z l o k , 2 , 3 ) :

> eq6 := s i g m a i t z l o k r r = compt2 ( s i gma i t z l o k , 3 , 3 ) :

>

> a s s i g n ( s o l v e ({ eq1 , eq2 , eq3 , eq4 , eq5 , eq6 } ,{ s i gma i t z l o k ph iph i ,

s i gma i t z l o k th e t a th e t a , s i gma i t z l o k ph i th e t a , e p s i t z l o k r r ,

e p s i t z l o k p h i r , e p s i t z l o k t h e t a r }) ) ;

> # Insertion of the derived components into the tensors

> s i gma i t z l o k c := array ( 1 . . 3 , 1 . . 3 , [ [ s i gma i t z l o k ph iph i ,

s i gma i t z l o k ph i th e t a , s i gma i t z l o k ph i r ] , [ s i gma i t z l o k ph i th e t a ,

s i gma i t z l o k th e t a th e t a , s i gma i t z l o k t h e t a r ] , [ s i gma i t z l o k ph i r ,

s i gma i t z l o k t h e t a r , s i g m a i t z l o k r r ] ] ) :

> s i gma i t z l o k := de f t en s eu r ( s i gma i t z l o k c , [ cont , cont ] , base fond ) :

> s i gma i t z l o k c := composantes ( s i gma i t z l o k , [ cont , cont ] , base fond ) :

>

> e p s i t z l o k c := array ( 1 . . 3 , 1 . . 3 , [ [ e p s i t z l o k ph i ph i , e p s i t z l o k ph i t h e t a ,

e p s i t z l o k p h i r ] , [ e p s i t z l o k ph i t h e t a , e p s i t z l o k t h e t a t h e t a ,

e p s i t z l o k t h e t a r ] , [ e p s i t z l o k p h i r , e p s i t z l o k t h e t a r , e p s i t z l o k r r ] ] ) :

> e p s i t z l o k := de f t en s eu r ( e p s i t z l o k c , [ cont , cont ] , base fond ) :

> e p s i t z l o k c := composantes ( e p s i t z l o k , [ cont , cont ] , base fond ) :

> # veri f icat ion of the code with Hooke’ s law in the interface
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> sbz := s imp l i f y ( composantes ( s i gma i t z l o k &−− ( C i t z &t2 e p s i t z l o k ) , [ cont ,

cont ] , base fond ) ) :

# ILLUSTRATION OF STRESSES AND STRAINS

> # definition of macroscopic loading

> para := S11=0,S12=0,S13=0,S22=−0.4 ,S23=0,S33=1:

> # insertion of macroloading into inter fac ia l stress tensor

> s igma par phiphi := ( s imp l i f y ( subs ( para , s i gma i t z l o k ph i ph i ) ) ) ;

> s i gma pa r the ta the ta := s imp l i f y ( subs ( para , s i gma i t z l o k t h e t a t h e t a ) ) ;

> s i gma pa r r r := s imp l i f y ( subs ( para , s i g m a i t z l o k r r ) ) ;

> s i gma pa r ph i the ta := s imp l i f y ( subs ( para , s i gma i t z l o k ph i t h e t a ) ) ;

> s i gma pa r ph i r := s imp l i f y ( subs ( para , s i gma i t z l o k ph i r ) ) ;

> s i gma pa r the ta r := s imp l i f y ( subs ( para , s i gma i t z l o k t h e t a r ) ) ;

> i n t e r f a c e ( d i s p l a y p r e c i s i o n =4) :

> # insertion of macroloading into inter fac ia l strain tensor

> eps pa r ph iph i := s imp l i f y ( subs ( para , e p s i t z l o k p h i p h i ) ) ∗E i t z ;

> ep s pa r th e t a th e t a := s imp l i f y ( subs ( para , e p s i t z l o k t h e t a t h e t a ) ) ∗E i t z ;

> ep s pa r r r := s imp l i f y ( subs ( para , e p s i t z l o k r r ) ) ∗E i t z ;

> ep s pa r ph i th e t a := s imp l i f y ( subs ( para , e p s i t z l o k p h i t h e t a ) ) ∗E i t z ;

> ep s pa r ph i r := s imp l i f y ( subs ( para , e p s i t z l o k p h i r ) ) ∗E i t z ;

> ep s pa r th e t a r := s imp l i f y ( subs ( para , e p s i t z l o k t h e t a r ) ) ∗E i t z ;

> # insertion of macroloading into principal inter fac ia l stresses

> sigma h := so l v e ( e v a l f ( subs ( para ,−shˆ3+I1 ∗ shˆ2−I2 ∗ sh+I3 )=0) , sh ) :

> s1par := sigma h [ 1 ] : s2par :=sigma h [ 2 ] : s3par := sigma h [ 3 ] :

> # 3D i l lustrat ion of one component

>

> obj1 := plot3d (3+Re( s i gma pa r r r ) , theta = 0 . . Pi /2 , phi = 0 . . Pi , coords=sphe r i c a l

, c o l o r=red , th i c kne s s=1) :

> K := sphere ( [ 0 , 0 , 0 ] , 3 , c o l o r=grey , th i c kne s s =0, transparency =0.8) :

> l x := l i n e ( [ 0 , 0 , 0 ] , [ 5 , 0 , 0 ] , c o l o r=black , th i c kne s s =2, s t y l e=l i n e ) :

> l y := l i n e ( [ 0 , 0 , 0 ] , [ 0 , 5 , 0 ] , c o l o r=black , th i c kne s s =2, s t y l e=l i n e ) :

> l z := l i n e ( [ 0 , 0 , 0 ] , [ 0 , 0 , 5 ] , c o l o r=black , th i c kne s s =2, s t y l e=l i n e ) :

> d i s p l a y ( [ obj1 , K, lx , ly , l z ] , l a b e l s =[ ’x ’ , ’ y ’ , ’ z ’ ] , axes=normal , o r i e n t a t i o n

=[20 ,50 ] , s c a l i n g=cons t r a ined ) :

#

E.3.2 Elastic limit surfaces

> # Invariants of the inter fac ia l stress tensor

> # according to [Mang and Hofstetter ,2000] :

> I1 :=Trace ( s i gma i t z l o k c ) :
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Figure E.2: Three dimensional illustration of radial stresses at the surface of the aggregate, under
biaxial loading and reference material parameters

> I2 :=Determinant ( Matrix ( [ [ s i gma i t z l o k c (2 , 2 ) , s i gma i t z l o k c (2 , 3 ) ] , [

s i gma i t z l o k c (3 , 2 ) , s i gma i t z l o k c (3 , 3 ) ] ] ) )+

> Determinant ( Matrix ( [ [ s i gma i t z l o k c (1 , 1 ) , s i gma i t z l o k c (1 , 3 ) ] , [ s i gma i t z l o k c

(3 , 1 ) , s i gma i t z l o k c (3 , 3 ) ] ] ) )+

> Determinant ( Matrix ( [ [ s i gma i t z l o k c (1 , 1 ) , s i gma i t z l o k c (1 , 2 ) ] , [ s i gma i t z l o k c

(2 , 1 ) , s i gma i t z l o k c (2 , 2 ) ] ] ) ) :

> I3 :=Determinant ( s i gma i t z l o k c ) :

> # solving the characteristic equation

> # sigma h:=solve ( evalf(−shˆ3+I1∗shˆ2−I2∗sh+I3=0) ,sh) :

> # note that a solution without speci f icat ion of macrostresses i s not recommend

>

> # 1st , 2nd, and third principal inter fac ia l stress

> s1 := sigma h [ 1 ] : s2 := sigma h [ 2 ] : s3 := sigma h [ 3 ] :

> ####################

> # UNIAXIAL LOADING #

> ####################

> para := S11=0,S12=0,S13=0,S22=0,S23=0,S33=1, theta =0:

> # rotational symmetry implies independence of azimuth angle

> # principal stresses and principal direction according to the well−known

expression for plane stress state

> # valid since the shear stresses in theta−direction are vanishing ( stress

component in theta−direction = principal stress )
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>

> # principal stresses

> s1 := ( s i g m a i t z l o k r r+s i gma i t z l o k ph i ph i ) /2 + sq r t ( ( ( s i gma i t z l o k r r −
s i gma i t z l o k ph i ph i ) /2) ˆ2 + s i gma i t z l o k ph i r ˆ2) :

> s2 := ( s i g m a i t z l o k r r+s i gma i t z l o k ph i ph i ) /2 − s q r t ( ( ( s i gma i t z l o k r r −
s i gma i t z l o k ph i ph i ) /2) ˆ2 + s i gma i t z l o k ph i r ˆ2) :

> s3 := s i gma i t z l o k t h e t a t h e t a :

>

> # plot

> ph1:= p lo t ( subs ( para , s1 ) , phi =0. . Pi , c o l o r=black , l i n e s t y l e=so l i d , t h i c kne s s=1) :

> ph2:= p lo t ( subs ( para , s2 ) , phi =0. . Pi , c o l o r=blue , l i n e s t y l e=so l i d , t h i c kne s s=1) :

> ph3:= p lo t ( subs ( para , s3 ) , phi =0. . Pi , c o l o r=red , l i n e s t y l e=so l i d , t h i c kne s s=1) :

> d i s p l a y ( [ ph1 , ph2 , ph3 ] ) :

> # principal direction

> # alpha haupt denotes the angle between the axis of the spherical coordinate

system where the largest component occurs and the largest principal stress

> alpha haupt := arctan ((2∗ s i gma i t z l o k ph i r ) /( s i gma i t z l o k r r −
s i gma i t z l o k ph i ph i ) ) /2 :

>

> # plot

> plota lpha1 := p lo t ( ( e v a l f ( subs ( para , ( a lpha haupt ) ) ∗180/Pi ) ) , phi =0. . Pi ) :

> plota lpha2 := p lo t ( ( e v a l f ( subs ( para , a lpha haupt+phi ) ∗180/Pi ) ) , phi =0. . Pi ) :

> d i s p l a y ( ar ray ( [ p lo ta lpha1 , p lo ta lpha2 ] ) ) :

> # a) macroscopic uniaxial compression (S33<0)

> # => maximum tensi le stress i s given by s2

>

> # point at the interface (expressed through zenith angle ) where the maximum of

s2 occurs ( f i r s t derivative = 0)

> phimax := f s o l v e ( d i f f ( subs ( para , s2 ) , phi )=0,phi =0 . 2 . . 1 . 5 ) :

>

> # insertion of phimax into the function of s2 del ivers the sought extreme

> maxs2 := eva l ( subs ( phi=phimax , para , s2 ) )∗S :

>

> # insertion of phimax into the function of alpha haupt del ivers the

corresponding principal base frame

> alphamaxs := eva l ( subs ( phi=phimax , para , a lpha haupt ) ) :

>

> # check of symmetry in bottom hemisphere

> phimax := f s o l v e ( d i f f ( subs ( para , s2 ) , phi )=0,phi =1 . 6 . . 3 . 1 ) :

> maxs2 := eva l ( subs ( phi=phimax , para , s2 ) )∗S :

> # macroloading corresponding to the onset of microcracks within ITZ (mode 1)

> # obtained i f maxs2 i s equal to the inter fac ia l tens i le strength ftITZ
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> Sc mode1 := so l v e (maxs2=ftITZ , S) :

> # comparison : macroloading corresponding to debonding (mode 2)

> # obtained i f the radial aggregate stress component at the equator (phi=Pi/2)

i s equal to the bond’ s tens i le strength

> Sc mode2 := 1/ e v a l f ( subs ( phi=Pi /2 , para , s i gma i l o k c (3 , 3 ) ) ) ∗ ftbond :

> # b) macroscopic uniaxial tension (S33>0)

> # => maximum tensi le stress i s given by s1

>

> # by analogy to uniaxial compression

> phimin := f s o l v e ( d i f f ( subs ( para , s1 ) , phi )=0,phi =0 . 1 . . 1 . 5 ) :

> mins1 := eva l ( subs ( phi=phimin , para , s1 ) )∗S :

> alphamins := eva l ( subs ( phi=phimin , para , a lpha haupt ) ) :

>

> # check of symmetry in bottom hemisphere

> phimin := f s o l v e ( d i f f ( subs ( para , s1 ) , phi )=0,phi =1 . 6 . . 3 . 1 ) :

> mins1 := eva l ( subs ( phi=phimin , para , s1 ) )∗S :

> # macroloading corresponding to the onset of microcracks within ITZ (mode 1)

> # obtained i f mins1 i s equal to the inter fac ia l tens i le strength ftITZ

> St mode1 := so l v e ( ftITZ = mins1 , S ) :

> # comparison : macroloading corresponding to debonding (mode 2)

> # obtained i f the radial aggregate stress component at the pole (phi=0) i s

equal to the bond’ s tens i le strength

> St mode2 := 1/ e v a l f ( subs ( phi=0,para , s i gma i l o k c (3 , 3 ) ) ) ∗ ftbond :

> ###################

> # BIAXIAL LOADING #

> ###################

> # STRATEGY

> # we consider biaxial loading in the S11−S22 plane

> # the macroscopic stress path i s given by the S11=1 and S22=alphavor (e . g .

alphavor=1...symmetric biaxial loading)

> # hence we calculate the e last i c l imit of one half within the biaxial stress

space , the other half i s derived by fl ipping around the f i r s t median (blue

points in the i l lustrat ion )

> parb := S11=1,S12=0,S13=0,S22=alphavor , S23=0,S33=0:

> # CALCULATION OF ELASTIC LIMIT ENVELOPE

> # 3 loops are used , 2 for different points at the interface (expressed by

zenith angle , azimuth angle )

> # and one loop for the different ratios of S11 to S22 (expressed by alphavor)
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> s t ep ang l e :=13: # amount of computation steps for loop over phi and theta ,

respectively

> s t ep a lpha :=6: # amount of computation steps for values of alphavor

>

> # in i t i a l i zat i on of maximum principal stresses and corresponding directions

> maxs :=[ seq (0 ( n) ,n=1. . s t ep a lpha ) ] : mins :=[ seq (0 (n) ,n=1. . s t ep a lpha ) ] :

> minsminus :=[ seq (0 ( n) ,n=1. . s t ep a lpha ) ] : maxsminus :=[ seq (0 (n) ,n=1. . s t ep a lpha ) ] :

> thetamax :=[ seq (0 ( n) ,n=1. . s t ep a lpha ) ] : phimax :=[ seq (0 (n) ,n=1. . s t ep a lpha ) ] :

> thetamin :=[ seq (0 ( n) ,n=1. . s t ep a lpha ) ] : phimin :=[ seq (0 (n) ,n=1. . s t ep a lpha ) ] :

> thetamaxminus :=[ seq (0 ( n) ,n=1. . s t ep a lpha ) ] : phimaxminus :=[ seq (0 (n) ,n=1. .

s t ep a lpha ) ] :

> thetaminminus :=[ seq (0 ( n) ,n=1. . s t ep a lpha ) ] : phiminminus :=[ seq (0 (n) ,n=1. .

s t ep a lpha ) ] :

>

> f o r a l pha i t from 1 to s t ep a lpha do

> a l :=( a lpha i t −1)/( s tep a lpha −1) ; # loop over different ratios S11/S22

> f o r t h e t a i t from 1 to s t ep ang l e do

> mytheta :=( th e t a i t −1)/( s t ep ang l e −1)∗Pi /2 ; # loop over lat i tudinal points

> f o r p h i i t from 1 to s t ep ang l e do

> myphi :=( ph i i t −1)/( s t ep ang l e −1)∗Pi /2 ; # loop over longitudinal points

>

> # principal stresses from invariants

> # for positive and negative values of alphavor

> sigma h := so l v e ( e v a l f ( subs ( parb , phi=myphi , theta=mytheta , a lphavor=al ,

> −shˆ3+I1 ∗ shˆ2− I2 ∗ sh+I3 )=0) , sh ) ;

> sigma hminus := so l v e ( e v a l f ( subs ( parb , phi=myphi , theta=mytheta ,

> alphavor=−al ,−shˆ3+I1 ∗ shˆ2−I2 ∗ sh+I3 )=0) , sh ) ;

>

> # reading out the minimum and maximum ITZ principal stresses for

> # positive and negative values of alphavor :

> min sigma h :=min( seq (Re( sigma h [ k ] ) , k=1 . .3 ) ) ;

> max sigma h:=max( seq (Re( sigma h [ k ] ) , k=1 . .3 ) ) ;

>

> min sigma hminus :=min( seq (Re( sigma hminus [ k ] ) , k=1 . .3 ) ) ;

> max sigma hminus:=max( seq (Re( sigma hminus [ k ] ) , k=1 . .3 ) ) ;

>

> # i f the studied inter fac ia l point del ivers an extreme of one

> # principal stress , this extreme and the point (phi , theta ) i s

> # recorded :

> i f max sigma h>maxs [ a l pha i t ] then

> maxs [ a l pha i t ] := max sigma h ;

> phimax [ a l pha i t ] :=myphi ;

> thetamax [ a l pha i t ] := mytheta ;

> end i f ;

> i f min sigma h<mins [ a l pha i t ] then
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> mins [ a l pha i t ] := min sigma h ;

> phimin [ a l pha i t ] :=myphi ;

> thetamin [ a l pha i t ] := mytheta ;

> end i f ;

> i f min sigma hminus<minsminus [ a l pha i t ] then

> minsminus [ a l pha i t ] := min sigma hminus ;

> phiminminus [ a l pha i t ] :=myphi ;

> thetaminminus [ a l pha i t ] := mytheta ;

> end i f ;

> i f max sigma hminus>maxsminus [ a l pha i t ] then

> maxsminus [ a l pha i t ] := max sigma hminus ;

> phimaxminus [ a l pha i t ] :=myphi ;

> thetamaxminus [ a l pha i t ] := mytheta ;

> end i f ;

>

> end do ;

> end do ;

> end do :

> # PLOT

> # Init ia l i zat ion

> Sigmamax xx :=[ seq (0 (n) ,n=1. . s t ep a lpha ) ] :

> Sigmamax yy :=[ seq (0 (n) ,n=1. . s t ep a lpha ) ] :

> Sigmamin xx :=[ seq (0 (n) ,n=1. . s t ep a lpha ) ] :

> Sigmamin yy :=[ seq (0 (n) ,n=1. . s t ep a lpha ) ] :

> Sigmaminminus xx :=[ seq (0 (n) ,n=1. . s t ep a lpha ) ] :

> Sigmaminminus yy :=[ seq (0 (n) ,n=1. . s t ep a lpha ) ] :

> Sigmamaxminus xx :=[ seq (0 (n) ,n=1. . s t ep a lpha ) ] :

> Sigmamaxminus yy :=[ seq (0 (n) ,n=1. . s t ep a lpha ) ] :

> Sigma zz :=[ seq (0 ( n) ,n=1. . s t ep a lpha ) ] : # since biaxial , always zero

>

> f o r a l pha i t from 1 to s t ep a lpha do

> a l :=( a lpha i t −1)/( s tep a lpha −1) ; # similar loop as before

>

> # elast i c l imit i s reached i f the largest principal stress

> # is equal to the tensi le strength of the ITZ

> # in terms of the load−increasing−coeff ic ient , maxs∗lambda=ftITZ ,

> # which means that in dimensionless diagramm, plot 1/maxs

>

> # compression−compression

> # mins (or the largest absolute value of the (negative) principal

> # compressive stress for alphavor>0) implies a lambda of 1/mins

> # and al/mins , respectively , which i s both negative

> Sigmamin xx [ a l pha i t ] := 1/mins [ a l pha i t ] :

> Sigmamin yy [ a l pha i t ] := a l /mins [ a l pha i t ] ;
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>

> # tension−tension

> # maxs (or the largest positive principal tens i le stress for alphavor>0)

> # corresponds to a e last i c l imit of 1/maxs and al/maxs

> Sigmamax xx [ a l pha i t ] := 1/maxs [ a l pha i t ] ;

> Sigmamax yy [ a l pha i t ] := a l /maxs [ a l pha i t ] ;

>

> # compression−tension

> # minsminus (or the largest absolute value of the (negative) principal

> # compressive stress for alphavor<0) implies a lambda of 1/minsminus and

> # al/minsminus , respectively , whereby the latter i s set negative

> # because al i s by definition at the beginning of the loop positive

> Sigmaminminus xx [ a l pha i t ] := 1/minsminus [ a l pha i t ] ;

> Sigmaminminus yy [ a l pha i t ] := −a l /minsminus [ a l pha i t ] ;

>

> # tension−compression (alphavor<0)

> # maxminus (or the largest absolute value of the principal tens i le stress

> # for alphavor<0) implies a lambda of 1/minsminus and al/minsminus ,

> # respectively , whereby the latter i s set negative

> # because al i s by definition at the beginning of the loop positive

> Sigmamaxminus xx [ a l pha i t ] := 1/maxsminus [ a l pha i t ] ;

> Sigmamaxminus yy [ a l pha i t ] := −a l /maxsminus [ a l pha i t ] ;

>

> end do :

>

> pbi1 := po in tp l o t ( Sigmamin xx , Sigmamin yy , c o l o r=black ) :

> pbi2 := po in tp l o t ( Sigmamin yy , Sigmamin xx , c o l o r=blue ) : # flipped

>

> pbi3 := po in tp l o t ( Sigmamax xx , Sigmamax yy , c o l o r=green ) :

> pbi4 := po in tp l o t ( Sigmamax yy , Sigmamax xx , c o l o r=blue ) : # flipped

>

>

> pbi5 := po in tp l o t ( Sigmaminminus xx , Sigmaminminus yy , c o l o r=red ) :

> pbi6 := po in tp l o t ( Sigmaminminus yy , Sigmaminminus xx , c o l o r=blue ) : # flipped

>

> pbi7 := po in tp l o t ( Sigmamaxminus xx , Sigmamaxminus yy , c o l o r=magenta ) :

> pbi8 := po in tp l o t ( Sigmamaxminus yy , Sigmamaxminus xx , c o l o r=blue ) : # flipped

>

> d i s p l a y ( [ pbi1 , pbi2 , pbi3 , pbi4 , pbi5 , pbi6 , pbi7 , pbi8 ] , view =[ −6 . .2 , −6 . .2 ] , l a b e l s =[ ’

S1/ ftITZ ’ , ’ S2/ ftITZ ’ ] ) :

> ######################

> # MULTIAXIAL LOADING #

> ######################

> # a) tip of e last i c l imit surface (S11=S22=S33)
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Figure E.3: Biaxial elastic limit envelope, specifying the loading path allows for calculation of the half
envelope, which is subsequently mirrored with respect to the first median

>

> parr1 := S11=1,S12=0,S13=0,S22=1,S23=0,S33=1,phi=0, theta =0:

> # since the obtained microstresses are homogeneous ,

> # the results are independent of the position at the interface

>

> # principal stresses obtained from the solution of the characteristic equation

> s i gma t r i :=( e v a l f ( s o l v e (−shˆ3+subs ( parr1 , I1 ) ∗ shˆ2−subs ( parr1 , I2 ) ∗ sh+subs ( parr1

, I3 )=0,sh ) ) ) :

> # maximum of the three principal stresses

> max s igma tr i :=( seq (Re( s i gma t r i [ k ] ) , k =1 . .3 ) ) :

>

> # related coordinates (S11=S22=S33=Sh tri ) in macroscopic principal stress

space

> Sh t r i :=1/max( max s igma tr i ) ;

> # b) deviatoric planes

>

> s t ep lode :=7: # steps for loop over different lode angles (0<myThc<Pi/3)

> s tepmer id ian :=9: # steps along the hydrostatic axis

> s t ep ang l e :=5: # steps defining the amount of studied positions at the

interface

>

> # in i t i a l i zat i on

> S1xi := [ seq ( 0 [ k ] , k=1. . s t ep lode ) ] :

> S2xi := [ seq ( 0 [ k ] , k=1. . s t ep lode ) ] :
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> S3xi := [ seq ( 0 [ k ] , k=1. . s t ep lode ) ] :

> l o d ex i := [ seq ( 0 [ k ] , k=1. . s t ep lode ) ] :

> rhox i := [ seq ( 0 [ k ] , k=1. . s t ep lode ) ] :

> x i x i := [ seq ( 0 [ k ] , k=1. . s t ep lode ) ] :

> p h i r e l x i := [ seq ( 0 [ k ] , k=1. . s t ep lode ) ] :

> t h e t a r e l x i := [ seq ( 0 [ k ] , k=1. . s t ep lode ) ] :

>

> # general relation between the Haigh−Westergaard coordinates

> # and the macroscopic principal stresses

> S1 :=1/ sq r t (3 ) ∗ x i c+sq r t (2/3) ∗ rhoc ∗ cos (Thc) :

> S2 :=1/ sq r t (3 ) ∗ x i c+sq r t (2/3) ∗ rhoc ∗ cos (Thc−2∗Pi /3) :

> S3 :=1/ sq r t (3 ) ∗ x i c+sq r t (2/3) ∗ rhoc ∗ cos (Thc+2∗Pi /3) :

>

> maxtryendmin :=0 . 1 : # start value of deviatoric component

>

> f o r mer id i an i t from 1 to stepmer id ian do

> # loop for different position of the deviotoric plane , expressed by the

> # hydrostatic stress componen myxic<Sh tri∗sqrt3

> myxic := e v a l f ( S h t r i ∗ s q r t (3 ) ∗9/10−(mer id ian i t −1)ˆ2∗ s q r t (3 ) /10∗ Sh t r i ) ;

>

> #myxic:=−5;

> #meridianit :=52;

> mm:=0:

>

> f o r l o d e i t from 1 to s t ep lode do

> # loop for different angles within the deviatoric plane ,

> # expressed by the Lode angle myThc

> myThc:= e v a l f ((0+( l o d e i t −1)/( s tep lode −1)∗60) ∗Pi /180) ;

> wh i l e j :=0:

> maxtry :=0:

> whi le maxtry<1 do

> # computation as long as the maximum principal stress i s smaller

> # than the inter fac ia l tens i le strength i . e . as long as maxtry<1

> # we increase the third coordinate (rho=m) t i l l

> # we reach the e last i c l imit

> wh i l e j := wh i l e j +1;

>

> # Init ia l i zat ion of the starting values for m

> i f wh i l e j <1.5 then

> i f l o d e i t=1 then m:=maxtryendmin ; end i f ;

> # the starting value of m=rho i s equal to maxtryendmin

> # ( i . e . maxtry for lode=0 from the last deviatoric plane)

> i f l o d e i t=2 then m:=maxtryend∗9/10 ; end i f ;

> # the starting value of m=rho i s a l i t t l e l es s than maxtryend

> # ( i . e . maxtry for lode=0 from the currend deviatoric plane)
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> i f l o d e i t >2.5 then m:=maxtryend ; end i f ;

> # the starting value of m=rho i s equal to maxtryend

> s t ep ang l e :=25; # fu l l amount of locations in each f i r s t run

> end i f :

> i f wh i l e j >1.5 then

> # i . e . for a l l other runs m i s set equal to the amount

> # where the e last i c l imit for the previous lode was reached

> m:=mm;

>

> s t ep ang l e :=5+round (maxtry ˆ5∗5)+round (maxtry ˆ10∗5)+

> round (maxtry ˆ20∗5)+round ( maxtry ˆ50∗5) ;

> # amount of locations increases when nearing the e last i c l imit

> # => prerequisite for a fast computation

> end i f :

>

> S1try := e v a l f ( subs ( x i c=myxic , rhoc=m, Thc=myThc , S1 ) ) ;

> S2try := e v a l f ( subs ( x i c=myxic , rhoc=m, Thc=myThc , S2 ) ) ;

> S3try := e v a l f ( subs ( x i c=myxic , rhoc=m, Thc=myThc , S3 ) ) ;

>

> maxtry :=0:

> f o r t h e t a i t from 1 to s t ep ang l e do

> mytheta :=( th e t a i t −1)/( s t ep ang l e −1)∗Pi /2 ;

>

> f o r p h i i t from 1 to s t ep ang l e do

> #WARNING(”mm = %1”,mm) ;

> myphi :=( ph i i t −1)/( s t ep ang l e −1)∗Pi /2 ;

>

> sigma h := so l v e ( e v a l f ( subs ( S12=0,S23=0,S13=0,S11=S1try ,

> S22=S2try , S33=S3try , phi=myphi , theta=mytheta ,

> −shˆ3+I1 ∗ shˆ2−I2 ∗ sh+I3 )=0) , sh ) ;

> maxtry sigma h :=max( seq (Re( sigma h [ k ] ) , k=1 . .3 ) ) ;

>

> i f maxtry sigma h>maxtry then

> # i f we obtain a new maximum at a speci f i c position

> # we memorize the maximum and the position

> maxtry:=maxtry sigma h ;

> p h i r e l x i [ l o d e i t ] := e v a l f (myphi ) ;

> t h e t a r e l x i [ l o d e i t ] := e v a l f ( mytheta ) ;

> end i f ;

> end do ;

> end do :

>

> WARNING("m=%1, step_angle=%2, maxtry=%3, phi/theta=%4/%5" ,

> m, s tep ang l e , maxtry , p h i r e l x i [ l o d e i t ] , t h e t a r e l x i [ l o d e i t ] ) ;

>
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> mm:=m;

> mm:=mm+0.1∗(1−maxtry ) +0.001;

> # increase of rho i s denoted as mm,

> # the increase i s proportional to the difference (1−maxtry)

> # => faster computation

>

> i f mer id i an i t=1 then

> i f l o d e i t=1 then

> i f wh i l e j <1.5 then

> mm:=0.1+0.5∗(1−maxtry ) +0.0005;

> end i f ;

> end i f ;

> end i f ; #hence in the very f i r s t run

> end do ;

>

> S1xi [ l o d e i t ] := S1try ;

> S2xi [ l o d e i t ] := S2try ;

> S3xi [ l o d e i t ] := S3try ;

> l o d ex i [ l o d e i t ] :=myThc ;

> rhox i [ l o d e i t ] :=m;

> x i x i [ l o d e i t ] := myxic ;

>

> WARNING("DONE: xic=%1, Thc=%2, rhoc=%3, theta=%4, phi=%5, maxtry=%6" ,

> myxic ,myThc ,m, t h e t a r e l x i [ l o d e i t ] , p h i r e l x i [ l o d e i t ] , maxtry ) ;

>

> maxtryend:=m:

> # starting value of rho for next run within current deviatoric plane

>

> i f l o d e i t =1 then

> maxtryendmin :=maxtryend ;

> # starting value of rho for the next deviatoric plane

> end i f :

>

> end do ;

>

> # OUTPUT

> f i l e := cat ( pfad , "mode" ,mode , mult i haupt , comp , "_xi" , mer id ian i t , ".m" ) :

> fd := fopen ( f i l e , WRITE) :

> f o r i from 1 to s t ep lode do

> f p r i n t f ( fd , "s1_multi_xi%a(%a) = %.10f;\n" , mer id ian i t , i , S1xi [ i ] ) :

> f p r i n t f ( fd , "s2_multi_xi%a(%a) = %.10f;\n" , mer id ian i t , i , S2xi [ i ] ) :

> f p r i n t f ( fd , "s3_multi_xi%a(%a) = %.10f;\n" , mer id ian i t , i , S3xi [ i ] ) :

> f p r i n t f ( fd , "lode_multi_xi%a(%a) = %.10f;\n" , mer id ian i t , i , l o d ex i [ i ] ) :

> f p r i n t f ( fd , "rho_multi_xi%a(%a) = %.10f;\n" , mer id ian i t , i , rhox i [ i ] ) :

> f p r i n t f ( fd , "xi_multi_xi%a(%a) = %.10f;\n" , mer id ian i t , i , x i x i [ i ] ) :
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> f p r i n t f ( fd , "phi_multi_xi%a(%a) = %.10f;\n" , mer id ian i t , i , p h i r e l x i [ i ] ) :

> f p r i n t f ( fd , "theta_multi_xi%a(%a)=%.10f;\n" , mer id ian i t , i , t h e t a r e l x i [ i ] ) :

> od :

> f c l o s e ( fd ) :

>

> # PLOT

> pl1 := po in tp lo t3d ( S1xi , S2xi , S3xi , c o l o r=black ) :

> pl2 := po in tp lo t3d ( S2xi , S3xi , S1xi , c o l o r=grey ) :

> pl3 := po in tp lo t3d ( S3xi , S1xi , S2xi , c o l o r=green ) :

> pl4 := po in tp lo t3d ( S1xi , S3xi , S2xi , c o l o r=red ) :

> pl5 := po in tp lo t3d ( S3xi , S2xi , S1xi , c o l o r=magenta ) :

> pl6 := po in tp lo t3d ( S2xi , S1xi , S3xi , c o l o r=blue ) :

> cat ( plot , x i t ex t , round ( abs ( myxic ) ∗100) ) :=[ pl1 , pl2 , pl3 , pl4 , pl5 , p l6 ] :

> end do :

> # PLOT of deviatoric planes

> d i s p l a y ( plot1 , plot2 , plot3 , plot4 , plot5 , axes=normal , s c a l i n g=constra ined ,

> view =[ −15 . .2 , −15 . .2 , −15 . .2 ] , l a b e l s =[ ’ S1/ ftITZ ’ , ’ S2/ ftITZ ’ , ’ S3/ ftITZ ’ ] )

:

> # c) meridians

>

> # procedure i s similar to the one applied for the deviatoric planes

> s tepmer id ian :=9: # number of steps along the hydrostatic axes

> myThc:=0: # Lode angle expressing the meridian which i s considered (myThc=0...

tens i le meridian , myThc=60...compressive meridian)

>

> s t ep ang l e :=25:

>

> # in i t i a l i zat i on

> S1lode :=[ seq (0 ( k ) , k=1. . s tepmer id ian ) ] :

> S2lode :=[ seq (0 ( k ) , k=1. . s tepmer id ian ) ] :

> S3lode :=[ seq (0 ( k ) , k=1. . s tepmer id ian ) ] :

> l ode l ode :=[ seq ( 0 [ k ] , k=1. . s tepmer id ian ) ] :

> rho lode :=[ seq ( 0 [ k ] , k=1. . s tepmer id ian ) ] :

> x i l o d e :=[ seq ( 0 [ k ] , k=1. . s tepmer id ian ) ] :

> p h i r e l l o d e :=[ seq ( 0 [ k ] , k=1. . s tepmer id ian ) ] :

> t h e t a r e l l o d e :=[ seq ( 0 [ k ] , k=1. . s tepmer id ian ) ] :

>

> maxtryend :=0 . 1 :

> l o d e i t :=1: # other i f loop around different meridians

> mm:=0:

>

> f o r mer id i an i t from 1 to stepmer id ian do

> myxic := e v a l f ( S h t r i ∗ s q r t (3 ) ∗9/10−(mer id ian i t −1)ˆ2∗ s q r t (3 ) /10∗ Sh t r i ) ;
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>

> maxtry :=0;

> wh i l e j :=0:

>

> whi le maxtry<1 do

>

> wh i l e j := wh i l e j +1;

> i f wh i l e j <1.5 then m:=maxtryend ; end i f ;

> i f wh i l e j >1.5 then m:=mm; end i f :

>

> S1try := e v a l f ( subs ( x i c=myxic , rhoc=m, Thc=myThc , S1 ) ) ;

> S2try := e v a l f ( subs ( x i c=myxic , rhoc=m, Thc=myThc , S2 ) ) ;

> S3try := e v a l f ( subs ( x i c=myxic , rhoc=m, Thc=myThc , S3 ) ) ;

>

> f o r t h e t a i t from 1 to s t ep ang l e do

> mytheta :=( th e t a i t −1)/( s t ep ang l e −1)∗Pi ;

> f o r p h i i t from 1 to s t ep ang l e do

> myphi :=( ph i i t −1)/( s t ep ang l e −1)∗Pi ;

>

> sigma h := so l v e ( e v a l f ( subs ( S12=0,S23=0,S13=0,S11=S1try ,

> S22=S2try , S33=S3try , phi=myphi , theta=the t a i t ,

> −shˆ3+I1 ∗ shˆ2−I2 ∗ sh+I3 )=0) , sh ) ;

>

> maxtry sigma h :=max( seq (Re( sigma h [ k ] ) , k=1 . .3 ) ) ;

> i f maxtry sigma h>maxtry then

> maxtry:=maxtry sigma h ;

> p h i r e l l o d e [ mer id i an i t ] := e v a l f (myphi ) ;

> t h e t a r e l l o d e [ mer id i an i t ] := e v a l f (mytheta ) ;

> end i f ;

>

> end do ;

> end do :

> maxtryend:=m:

> mm:=mm+1.0∗(1−maxtry ) +0.002;

> end do :

>

> S1lode [ mer id i an i t ] := S1try ;

> S2lode [ mer id i an i t ] := S2try ;

> S3lode [ mer id i an i t ] := S3try ;

> l ode l ode [ mer id i an i t ] :=myThc ;

> rho lode [ mer id i an i t ] :=m;

> x i l o d e [ mer id i an i t ] := myxic ;

>

> WARNING("DONE: xic=%1, Thc=%2, rhoc=%3, theta=%4, phi=%5, maxtry=%6" ,

> myxic ,myThc ,m, t h e t a r e l x i [ l o d e i t ] , p h i r e l x i [ l o d e i t ] , maxtry ) ;
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> end do :

> # PLOT of meridian

> cat ( p l o t l o d e , round (myThc/ e v a l f ( Pi ) ∗180) ) := po in tp lo t3d ( [ S1lode , S2lode , S3 lode ] ,

c o l o r=black ) :

> d i s p l a y ( p lo t l ode0 , axes=normal , s c a l i n g=constra ined , view

=[ −15 . .2 , −15 . .2 , −15 . .2 ] , l a b e l s =[ ’S1 ’ , ’ S2 ’ , ’ S3 ’ ] ) :

#



Nomenclature

General Abbreviations

α Volumetric coefficient of Eshelby tensor S
cp
sph

β Deviatoric coefficient of Eshelby tensor S
cp
sph

δij Kronecker delta

γ Two angles describing the directions of the two principal normal stresses under uni-

axial loading relative to the the local r-axis

Λ Auxiliary variable for substitution in characteristic equation

IITZ
agg Two-dimensional interface between aggregate and the surrounding three-dimensional

ITZ

µj Shear modulus of linear elastic phase j

µagg Shear modulus of aggregates

µcon Homogenized shear modulus of concrete

µcp Shear modulus of cement paste

µITZ Shear modulus of linear elastic ITZ

νj Poisson’s ratio of phase j

νagg Poisson’s ratio of aggregates

νcp Poisson’s ratio of cement paste

νITZ Poisson’s ratio of ITZ

Ω Volume of RVE

Ωj Volume of phase j

∂Ω Boundary of RVE

∂Ωagg Boundary of the aggregate phase, (aggregates’ surfaces)

φ, θ, r Spherical (local) coordinates: zenith angle φ ∈ [0, π], reference is Cartesian z-axis,

azimuth angle θ ∈ [0, 2π), reference is Cartesian x-axis, and radial distance r ∈ [0,∞)

φlim
tu , φlim

cu Zenith angle describing the position at which the onset of ITZ failure under uniaxial

tension and compression occurs, respectively

Σlim
cu , Σlim

cb Model-predicted stress level related to the elastic limit under uniaxial and (symmetric)

biaxial macroscopic compressive loading, respectively

σult
ITZ Tensile strength of ITZ

Σlim
tu,exp, Σlim

cu,exp Experimentally determined macrostress level related to the elastic limit under uniaxial

tension or compression, respectively
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Σlim
tu , Σlim

tb , Σlim
tt Model-predicted macrostress level related to the elastic limit under uniaxial, (sym-

metric) biaxial, and (isotropic) triaxial macroscopic tensile loading, respectively

Q Transformation matrix, transforms Cartesian components into spherical components

̺ Angle between global z-axis and the direction of the largest principal ITZ stress

̺lim
tu , ̺lim

cu Angle between global z-axis and the direction of the maximum of the largest princi-

pal ITZ stress under uniaxial tension and compression, respectively, i.e. this angles

describe the orientation of the normal vector of ITZ crack planes

ξ, ρ, ϑ Haigh-Westergaard coordinates: hydrostatic component, deviatoric component, and

Lode angle respectively, used in macroscopic principal stress space

a Stress ratio of biaxial stresses, a = Σxx/Σyy ∈ [−1 , 1]

Avol, Adev Volumetric and deviatoric coefficients of aggregate strain concentration tensor Aagg

Bvol, Bdev Volumetric and deviatoric coefficient of stress concentration tensor Bagg

d Characteristic size of an RVE

Dvol, Ddev Volumetric and deviatoric coefficient of concentration tensor Dagg

Ej Young’s modulus of phase j

Eagg Young’s modulus of aggregates

Ecp Young’s modulus of cement paste

EITZ Young’s modulus of ITZ

fj Volume fraction of phase j

fIITZ
agg

Failure function expressing debonding at IITZ
agg

fagg Volume fraction of aggregates

fcp Volume fraction of cement paste

fITZ Failure function expressing ITZ failure

Gvol, Gdev Volumetric and deviatoric coefficient of G

Hvol, Hdev Volumetric and deviatoric coefficient of H

IΣ

1 , IΣ

2 , IΣ

3 Invariants of macroscopic stress tensor Σ

Iσ

1 , Iσ

2 , Iσ

3 Invariants of microscopic stress tensor of ITZ, σITZ

j Specific phase within an RVE

JS

1 , JS

2 , JS

3 Invariants of the macroscopic stress deviator S

Js

1 , Js

2 , Js

3 Invariants of the microscopic stress deviator of the ITZ s

kj Bulk modulus of linear elastic phase j

kagg Bulk modulus of aggregates

kcon Homogenized bulk modulus of concrete

kcp Bulk modulus of cement paste

kITZ Bulk modulus of linear elastic ITZ

np Number of phases within an RVE

T ult
r Tensile strength of the IITZ

agg , bond strength

x, y, z Cartesian Coordinates

ℓ Characteristic size of embedded heterogeneities in an RVE

ℓ
(A)
con Characteristic length of heterogeneity of concrete-related RVE
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ℓ
(B)
ITZ Characteristic length of heterogeneity of the ITZ-related RVE

L Characteristic size of stress and strain fluctuations inside the structure containing the

RVE

L(B)
ITZ Characteristic length of stress and strain fluctuations with respect to the ITZ-related

RVE, is equal to ℓ
(A
con)

d
(A)
con Characteristic length of concrete-related RVE

d
(B)
ITZ Characteristic length of ITZ-related RVE

ITZ Interfacial Transition Zone

RVE Representative volume element

Mathematical Symbols and Operators

· , : Single contracting product, double contracting product of tensors, respectively

⊗ Tensor product

∂ Partial differentiation

tr Trace function of a tensor

QT Transpose of transformation matrix Q or of a tensor

∇ Gradient (nabla symbol)

First-order tensors

eφ, eθ, er Unit base vector in φ-, θ-, and r-direction, respectively, defining the spherical (local)

base frame

ex, ey, ey Unit base vector in x-, y-, and z-direction, respectively, defining the Cartesian (global)

base frame

n Unit outward normal vector acting on the aggregate-ITZ interface IITZ
agg

t Tangent vector acting on the aggregate-ITZ interface IITZ
agg

T agg Traction vector acting on the aggregates’ surfaces

u Displacement vector

uagg Displacement vector field within aggregate phase

uITZ Displacement vector field within ITZ

x Position vector, labeling points within the RVE and on its boundary

Second-order tensors

1 Second-order unity tensor with components equal to Kronecker delta δij

σagg Average microscopic stress tensor of aggregates

εagg Average microscopic strain tensor of aggregates

εj Average microscopic strain tensor of phase j

E Macroscopic strain tensor

E∞ Auxiliary macroscopic strain tensor in a matrix-inclusion problem, imposed on the

infinite boundary

S Macroscopic stress deviator, corresponds to macroscopic stress tensor Σ
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s Microscopic stress deviator, corresponds to ITZ stress tensor σITZ

Fourth-order tensors

Aagg Strain concentration tensor of aggregates

Acp Strain concentration tensor of cement paste

Aj Strain concentration tensor of phase j

Bagg Stress concentration tensor of aggregates

C∞ Auxiliary stiffness tensor of the infinite matrix in a matrix-inclusion problem

Cj Stiffness tensor of phase j

Cagg Stiffness tensor of aggregates

Ccon Homogenized elastic stiffness tensor of concrete

Ccp Stiffness tensor of cement paste

Chom Homogenized stiffness tensor of the RVE

Dagg Fourth-order concentration tensor, linking macrostress Σ to microscopic aggregate

stresses εagg

G, H Isotropic fourth-order auxiliary tensors

I Fourth-order identity tensor with components Iijkl = 1
2 (δikδjl + δilδkj)

J Volumetric part of the fourth-order unity tensor, J = 1/3 1⊗ 1

K Deviatoric part of the fourth-order unity tensor, K = I− J

P∞

j Hill tensor of phase j embedded in infinite matrix

P
cp
shp Hill tensor of a spherical inclusion embedded in an infinite matrix of cement paste

S
cp
shp Eshelby tensor of a spherical inclusion embedded in an infinite matrix of cement paste


