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Abstract

In the development of distributed applications, especially communication and coordina-
tion are complex tasks. Therefore developers are using middleware technologies which
are hiding the complexity and providing enterprise features like transactions out-of-the
box. Especially middlewares which are following the space-based computing (SBC)
paradigm are often used for coordination tasks.

But although space-based middlewares are simplifying the development of distributed
applications, most of them can not be used for complex applications because they do
not provide an essential enterprise feature: distributed transactions. Other middlewares
which already provide this feature often rely on old commit algorithms which are having
known problems in certain scenarios.

Therefore this work provides a flexible and concurrent distributed transaction model
which is aligned on the space-based computing paradigm. The new model supports
long-lived transactions and provides a high degree of consistency. As a positive side
effect the evaluation shows that in certain scenarios the new transaction model performs
better than a standard local transaction system.
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Kurzfassung

In der Entwicklung von verteilten Anwendungen sind speziell die Kommunikation so-
wie die Koordination komplexe Aufgaben. Daher verwenden Entwickler Middleware-
technologien, welche die Komplexität verstecken und die benötigten Enterprise-Features,
wie zum Beispiel Transaktionen, bereits “out of the box” mitbringen. Besonders Middleware-
Produkte, die auf dem Paradigma eines gemeinsamen Datenraums basieren (space-
based computing, SBC), werden oft für Koordinierungsaufgaben verwendet.

Obwohl die auf einem zentralen Speicher basierten Middlewareprodukte die Ent-
wicklung von verteilten Anwendungen vereinfachen, können viele von ihnen nicht für
komplexere Anwendungen verwendet werden, da sie ein wichtiges Enterprise-Feature
nicht unterstützen: Verteilte Transaktionen. Andere Middlewareprodukte, welche die-
ses Feature bereits unterstützen, verwenden ältere Commit-Algorithmen, welche in be-
stimmten Fällen Fehler aufweisen.

Daher stellt diese Arbeit ein flexibles, nebenläufiges und verteiltes Transaktions-
modell vor, welches an dem Paradigma eines gemeinsamen Datenraums orientiert ist.
Das neue Modell unterstützt langlebige Transaktionen und bietet einen hohen Grad an
Konsistenz. Als positiver Nebeneffekt zeigt sich in der Evaluierung, dass in bestimm-
ten Szenarien das neue Transaktionsmodell performanter ist als ein normales lokales
Transaktionssystem.
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CHAPTER 1
Introduction

The number of devices with an attached network interface and Internet access increases
rapidly. As a result the coordination effort among them increases exponentially. A
common method for lowering the complexity of distributed applications is to use a mid-
dleware – a software abstraction layer between the operating system and the application.
Using a middleware has several advantages:

• a general application programming interface is provided (API)

• the coordination complexity is encapsulated into the middleware

• enterprise features such as transactions are provided out-of-the box

Space-based middlewares are using a central data space for the coordination of the dis-
tributed processes and have an additional advantage: The processes need not know each
other because they are all communicating with the space. Some space-based middle-
wares like JavaSpaces [2] also provide distributed transaction handling, which is an es-
sential feature for enterprise applications. However, today‘s space-based middlewares
are all using the blocking Two-Phase-Commit (2PC) [Gra78] protocol which has one
major drawback: If the centralized transaction manager crashes, the whole application
is blocked.

1.1 Motivation and goals
The primary task of the space-based middleware XVSM (eXtensible Virtual Shared
Memory) [eK05b] is to coordinate the communication between several nodes in a dis-
tributed application. For this task XVSM uses a shared memory (called space) where
all participants operate on.
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However when the size and/or the functionality of distributed applications increases
it may not be sufficient to have only one space for the coordination.

Sometimes it makes sense to split different functionality or business processes into
different independently operating applications. An example would be to have two sep-
arate applications for the Sales department and for the Accounting department. There
would be two distributed applications with two spaces. Although both applications work
independently, they have to communicate in certain situations (e.g. when a sales order
has been confirmed).

The concept of XVSM is based on a microkernel architecture where additional func-
tionalities are plugged on top of it. The microkernel itself only provides local transac-
tions but does not support transactions which span over multiple spaces. Such function-
alities have to be implemented as extensions which are plugged on top of the microker-
nel.

The goal of this work is to implement an extension for the XVSM middleware which
provides distributed transactions. Therefore a relaxed distributed transaction model has
to be designed which fulfils the following requirements:

• Support of long lived transactions (LLT)

• Support of asynchronous transactions

• High concurrency and performance

• Relaxed handling in case of single node errors

• Deterministic behavior in all possible error cases

• Easy to use for application developers

This new transaction model will further increase the functionality of XVSM and it will
allow XVSM to cope with more complex business requirements. Therefore this thesis
introduces two new relaxed transaction models:

• Extended Paxos Commit is an extension to the existing Paxos Commit protocol
[GL06]. It allows to split transactions into several sub transactions without losing
the high consistency of Paxos Commit. Transactions can commit even though not
all sub transactions have committed successfully.

• REXX Transactions are workflow-based transactions which have to be fully
specified in advance. Transactions (workflows) are specified as combination of
sub transactions (actions). The execution and coordination of the transaction is
accomplished by the transaction manager and only the result is passed back to the
application.

2



Both transaction models have to be integrated into MozartSpaces and evaluated in terms
of usability and performance.

1.2 Thesis Structure
This thesis is organized as follows: Chapter 2 provides an overview of existing dis-
tributed commit protocols and summarizes their facts in a table. Afterwards chapter 3
describes the background of XVSM and its reference implementation MozartSpaces.
Chapter 4 focuses on the two new distributed transaction models which have been de-
signed in the course of this work. Afterwards chapter 5 gives an overview of their
implementation in MozartSpaces. The evaluation (chapter 6) compares the new trans-
action models in terms of performance and usability. Chapter 7 shows up areas of pos-
sible future work regarding the provided transaction models and their implementation.
Afterwards chapter 8 summarizes and closes this thesis.
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CHAPTER 2
Related work

Distributed transactions are transactions which span over two or more hosts on a net-
work. All hosts are using their own local transaction system to perform their part of
the distributed transaction. In the commit phase the commit protocol is responsible to
coordinate and synchronize all local transactions so that all perform the same operation
(either commit or abort). In contrast to local transactions distributed transactions have
to cope with more complex error cases like permanent and temporary network and host
failures.

However the characterization of distributed transactions in terms of the ACID prop-
erties is analogous to local transactions:

• atomicity - Atomicity assures that either all operations of the transaction are ex-
ecuted or none of them are executed.

• consistency - If a system has been consistent before a transaction, then it will also
be consistent afterwards regardless whether the transaction commits or aborts.

• isolation - Isolation prevents other transactions to see intermediate states of a
transaction.

• durability - Durability guarantees that the data of a transaction are stored persis-
tently after the transaction has been completed.

Distributed transactions can only be ACID compliant if the local transaction system of
all participating hosts as well as the commit protocol are ACID compliant.
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2.1 Constraints
This section describes two general constraints which apply to distributed systems: the
CAP theorem as well as the FLP impossibility result.

2.1.1 The CAP Theorem
The CAP theorem [Bre10] dictates that a distributed storage system (like a database or
a virtual shared memory) can only have two of the following characteristics:

• Consistency - All nodes of the system must see the same data at any point in time.
This can only be assured by ACID compliant transaction systems.

• High Availability - At any point in time the system must be available and respon-
sive so that every request eventually receives a response.

• Partition tolerance - The system is available even if the connection to some
nodes or to a group of nodes is lost.

Figure 2.1 graphically shows the dependency of these characteristics.
Although the CAP theorem is dedicated to distributed systems, it can be used to

classify distributed transaction protocols as well. Therefore we consider a transaction
protocol as a distributed system which provides the service commit to client applica-
tions. In all of the discussed transaction models the client communicates with the trans-
action managers if it wants to create, commit or rollback a transaction. So we can derive
that the availability of a transaction protocol depends on the availability of the transac-
tion managers. With this regard consistency means that all instances of a transaction
manager (if more than one exists) are consistent. Partition tolerance then focuses on
the availability of the transaction protocol if the connection to one or more transaction
managers is lost.

2.1.2 The FLP Impossibility result
Distributed transactions are using consensus algorithms to assure that all nodes come to
the same decision - either commit or abort. Therefore distributed transaction algorithms
are effected by the FLP impossibility result [FLP85]. This paper proofs that in a fully
asynchronous system there does not exist a consensus algorithm which tolerates one or
more crash failures.

Therefore all consensus-based algorithms must somehow introduce a kind of syn-
chrony (e.g. timeouts).
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Figure 2.1: The CAP theorem: Dependency of the three characteristics

2.2 Distributed transaction models

2.2.1 2-Phase Commit
The Two-Phase-Commit (2PC) protocol [Gra78] [Lam81] is a distributed atomic com-
mit protocol. Due to its long history and its low complexity related to other protocols,
it is the most popular distributed commit protocol which follows the ACID properties.
There exists one coordinator process which coordinates the protocol among all partici-
pants (cohorts). If the coordinator or any of the cohorts crashes, then the protocol blocks
until all nodes have been recovered. Therefore it is called a blocking protocol.

As the name already says the 2PC consist of two phases:

• prepare phase - The coordinator process tells all cohorts to prepare the current
transaction. Then all cohorts prepare their local transaction and acknowledge with
either Yes or abort. In the first case the cohort from this moment on must assure
to be able to perform both options: commit and abort. Since the protocol also
covers node crashes, the cohorts have to write their status into a stable storage.

• commit phase - When all cohorts have replied in the first phase, the coordinator
starts the second phase. It notifies all cohorts to either commit (if all have voted
Yes) or abort (otherwise) the transaction.

Figure 2.2 shows the message flow of the protocol for the error-free case where TM is
the transaction manager and RM1 and RM2 are the resource managers.

There are a lot of optimizations [LL93] [SBCM93] for the 2PC protocol which can
be compared regarding the total costs of the protocol. The costs are split into three

6



Figure 2.2: Sequence diagram of the 2-Phase Commit protocol

categories: number of messages, number of stable writes and message delay. All opti-
mizations improve one or more of these categories.

The 2PC protocol is working properly in nearly all cases of system failures. How-
ever there are cases where the protocol gets stuck and has to be recovered manually by
an operator. For example the protocol runs into an unrecoverable state if the coordinator
decides to commit and tries to send the commit message to every cohort. The cohort
then performs its local commit although it does not know whether the other cohorts
have already received the commit message. If now the cohort and the coordinator crash
and no other cohort has received the commit message then the protocol does not know
the coordinators decision. Therefore it is not possible for a second coordinator to de-
pendently recover and continue the protocol. If it would decide to commit, then there
would be a consistency problem when the original decision has been abort. Otherwise
if it would decide to abort and the crashed cohort has already committed, there would
be an issue because the commit can not be undone.

Regarding to the CAP theorem (section 2.1.1) in the error-free case the 2PC protocol
is consistent (since there is only one transaction manager) and available. But as soon
as one cohort or the transaction manager crash it will become unavailable. Furthermore
the protocol becomes inconsistent in the case mentioned above.
The 2PC protocol is for example used in the XA standard [5] for distributed transaction
processing which has been developed by the The Open Group. The XA standard defines
the communication between transaction managers and resource managers to execute
distributed transaction. One implementation of the standard is the Java Transaction
API (JTA) [9] which is part of the Java 2, Enterprise Edition (J2EE) . The space-
based middleware GigaSpaces [10] uses JTA to participate in XA transactions. Also
commercial middlewares like Oracle’s Tuxedo [8] supports the XA interface.

7



Another architecture relying on the 2PC protocol is Jini [4] which is part of the
Apache River project [3]. Jini is a network architecture which simplifies the develop-
ment of distributed applications. It supports distributed transactions based on the 2PC
protocol between several resources. Jini already comes with different transaction man-
agers. The main difference to the XA standard is that Jini only manages transactions
among Jini services whereas the XA standard also allows transactions among different
kind of resources as long as they have implemented the XA interface.

JavaSpaces [FAH99] is a tuple-based coordination middleware which can use the
Jini architecture to act as a service and so participate in distributed transactions.

IBM uses the 2PC protocol in their commercial middleware WebSphere MQ. Within
a WebSphere MQ environment either CICS1 or IMS2 is used as the coordinator or trans-
action manager [1].

2.2.2 3-Phase Commit
The problem with the 2PC protocol is its blocking behavior in the event of certain system
failures. Therefore the Three-Phase Commit protocol (3PC) [SS83] introduces timeouts
as well as an additional phase to circumvent this problem. Here is a short description of
the phases:

• canCommit phase - The coordinator asks all cohorts whether they can commit.
All cohorts write their current status to the stable storage and reply with Yes or
No. After a cohort has sent Yes, it has to be able to perform a commit even if it
crashes in the meanwhile.

• preCommit phase - After the coordinator has collected all replies of the first phase,
it either sends a preCommit message (if all cohorts have replied Yes within a cer-
tain time period) or an abort (otherwise) message to all cohorts. All cohorts then
reply with Ack.

• commit phase - The coordinator will send an abort message to the cohorts if it has
received at least one abort message or if it timed out when it was waiting for an
answer. Otherwise, if the coordinator has received Yes from all cohorts it sends
the final commit message.

Figure 2.3 shows the message flow of the protocol for the error-free case.
In contrary to the 2PC protocol the 3PC protocol ensures that a second coordinator

can dependably take over after the primary coordinator crashed. The new coordinator
has to query the state of all cohorts. If all have received the preCommit message the

1Customer Information Control System (CICS) is a transaction server developed by IBM.
2Information Management System (IMS) is a database which acts also as transaction manager.
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Figure 2.3: Sequence diagram of the 3-Phase Commit protocol

coordinator knows that the originally decision was commit and can resend the commit
message. Otherwise it aborts the transaction by sending abort. Even if all coordina-
tors crash, the timeout ensures that all transactions complete within a specified time.
Therefore 3PC is also called a non-blocking protocol.

However, the 3PC protocol does not work correctly in all cases. Imagine the coor-
dinator fails and the network segments into two subnets, where all cohorts of the first
subnet have received the preCommit message and those of the second subnet have not.
After querying all cohorts the new coordinator in the first subnet will decide commit.
The new coordinator in the second subnet also queries all reachable cohorts but since
none of them have received a preCommit message it decides to abort. When the two
subnets will be merged later then there will be an inconsistent state because some of the
cohorts have committed whereas the others have aborted the transaction.

Another drawback is the higher message overhead compared to the 2PC due to the
additional phase. Maybe this is the reason why the 3PC has rarely been implemented.
There is no established middleware or application server which has implemented 3PC.
However 3PC has been used in a resource broker and reservation system [HDDG04].

2.2.3 Paxos Commit
The 2PC and 3PC protocol both rely on a single transaction manager which represents
the single point of failure. If the transaction manager crashes the protocol is blocking.

9



Although the 3PC allows a secondary transaction manager to take over, there will be
a lack of availability until it can continue operation. First the new transaction man-
ager has to detect the crash of the primary transaction manager and afterwards all open
transactions have to be processed according to their current state. The Paxos Commit
algorithm [GL06] is based on the Paxos consensus algorithm [Lam98]. It uses sev-
eral (2f+1) transaction managers (called acceptors) and can therefore tolerate up to f
failures. As long as more than f acceptors are available the protocol operates without
interruption.

Due to the higher complexity Paxos Commit requires more roles than 2PC and 3PC
for its execution. Here is a list of all roles:

• Resource Manager (RM) - The resource manager is the interface between the
local transaction manager of a cohort and the Paxos protocol. Every cohort on
which transactional operations should be performed has to run an instance of the
resource manager.

• Registrar - The registrar process is responsible to communicate the set of partici-
pants of the particular distributed transaction to the Paxos protocol. Every cohort
which wants to take part in a transaction has to send a registration message to the
registrar. A cohort is not allowed to perform a transactional operation before it has
received the acknowledgement of the registration from the registrar. The registrar
is not part of the original Paxos consensus algorithm because in the original al-
gorithm only the final result is important and not the set of participating resource
managers3. However in the commit algorithm the set of participants is part of the
final result.

• Acceptor - The acceptor acts as the transaction manager of Paxos Commit. It
collects the Phase2a-messages (Prepared2a or Aborted2a) of all participating co-
horts as well as the Phase2a-message of the registrar (which contains the set
of participants) and sends an aggregated Phase2b-message to the leader. This
Phase2b-message is either Prepared2b (if only Prepared2a messages have been
received) or Aborted2b (otherwise). The Phase2b-message also contains the set
of participants. To tolerate up to f failures of acceptor nodes, the protocol requires
at least 2f+1 acceptor nodes. An increase of the acceptor nodes also linearly in-
creases the message complexity of the protocol. Since always a majority of ac-
ceptors is involved in the decision the consistency of the Paxos Commit protocol
is guaranteed. If no majority is available the protocol blocks.

• Leader - Each transaction has one initial leader which guarantees liveness of the
protocol. If the current leader crashes, then an election algorithm determines the
next leader.

3In the original consensus algorithm the resource managers are called learners
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In practice it makes sense to run several roles on the same node. A failure of the leader,
the registrar or a resource manager does not effect the protocol since timeouts at the
resource managers and at the acceptors assure that the transaction will be aborted.

Figure 2.4 shows an error-free execution of the Paxos Commit protocol with three
acceptor nodes. The figure only shows the commit cycle. Here it is assumed that re-
source managers RM1 and RM2 have already sent their registrations to the registrar
before.

Figure 2.4: Sequence diagram of the Paxos Commit protocol

The commit cycle is started when the initial leader sends startCommit to the regis-
trar process. Then the registrar closes the transaction for further participants and does
not accept further registration messages. Afterwards it sends prepare to all resource
managers which then prepare their local transactions. Afterwards the registrar and all
resource managers communicate their commit decision (prepared or abort). Therefore
each of them starts a new instance of the consensus algorithm and sends a Phase2a-
message to all acceptors. If a cohort crashes before sending the Phase2a-message to
a majority of acceptors the consensus protocol guarantees to abort the transaction. Per
definition the registrar always sends a Prepared2a-message in its second phase which
includes the correct set of participants.

For a successful execution of the protocol it is required that all resource managers as
well as the registrar have voted prepared in their Paxos instances. If at least one instance
has decided abort then the transaction will be aborted.
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Before a resource manager is sending a Prepared message it has to store its deci-
sion as well as all other required data to a stable storage. Once a resource manager has
sent its decision it must not revoke it. So in case it has communicated Prepared to the
acceptor processes it commits itself to be able to handle a Commit as well as an Abort
decision. Even if a resource manager crashes after sending Prepared it has to recover
all required information.
In contrast to 2PC and 3PC Paxos Commit is always consistent, even in the case of net-
work partitioning. However the availability is not guaranteed in that case. Availability
is guaranteed if at least a majority of acceptors can be reached, otherwise the protocol
blocks. So Paxos Commit tolerates a small degree of partitioning as long as a majority
of acceptors is available for client applications. Paxos Commit always guarantees con-
sistency, however it can not guarantee availability and partition tolerance at the same
time (see CAP theorem in section 2.1.1).

The advantages compared to 2PC and 3PC are causing an additional communication
overhead for every additional acceptor. In terms of message delays, number of messages
and stable storage writes 2PC is a special case of Paxos Commit with a single accep-
tor [GL06].
The original Paxos consensus algorithm is used in the coordination service DepSpace
[BACF08]. DepSpace provides a tuple space abstraction which implements replication
for fault tolerance and access control for security. The implementation of replication is
based on the Paxos algorithm. The data management middleware Sprint [CPW07] also
uses the original Paxos consensus algorithm to orchestrate several in-memory databases
running in a cluster. For the evaluation of the performance of the used total-order mul-
ticast approach, Sprint has also been implemented with Paxos Commit. The evaluation
shows that in the assumed scenario the performance of the total-order multicast ap-
proach is better than the Paxos Commit implementation [CPW07].

2.2.4 Sagas
Already in 1987 Hector Garcia-Molina and Kenneth Salem described in their publica-
tion [GMS87] a method to handle long lived transactions (LLT). The problem of long
lived transactions is that during their execution all of their objects are locked and not
accessible by other transactions. This leads to bad performance and concurrency. Also
the deadlock frequency grows with the fourth power of the transaction size [GMS87].
Due to their duration LLTs have a higher abort rate because the probability of a system
crash of one of the nodes increases with the duration.

In the definition of the paper a Saga is a LLT which can be written as a sequence of
transactions that can be interleaved with other transactions. A Saga consists of several
sub transactions which commit immediately when they are completed. If the transaction
manager later decides to abort, then the work of already committed sub transactions has
to be undone. A Saga therefore stores for each sub transaction a compensation action.
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Although the whole Saga is not executed atomically, its sub transactions are. Due
to this relaxed isolation other transactions can access intermediate results of a Saga.
If a Saga has been committed, then all of its sub transactions must have committed.
Otherwise, if a Saga has been aborted, then all sub transactions have to be aborted or
compensated.

A normal transaction manager provides at least the following commands:

• startTransaction

• commitTransaction

• rollbackTransaction

For developers the Saga model provides the following commands:

• beginSaga - Starts a new Saga.

• beginTransaction - Starts a new sub transaction within the Saga.

• endTransaction - This command commits the current transaction. This com-
mand also contains a reference to the related compensation action.

• abortTransaction - Aborts the current transaction but does not abort the
surrounding Saga.

• endSaga - Commits the currently executing sub transaction if it has not yet
been committed by an endTransaction and completes the Saga. There are no
additional actions required since all sub transactions have already been committed
or aborted.

• abortSaga - Aborts the current running transaction as well as the whole Saga.
For all already committed sub transactions the related compensation action will
be executed.

Sagas additionally provide the option to specify save points between transactions. Then
in case of a system crash only transactions after the last save point need to be com-
pensated. Afterwards the Saga can be restarted at the save point. This prevents the
compensation of the whole Saga after a system crash and therefore decreases the com-
pensation effort and prevents the re-execution of the transactions before the save point.

Transaction managers of database systems are using write-ahead logs to rollback a
transaction after a system crash. But for a Saga this type of rollback is not applicable be-
cause sub transactions might have already committed and a compensation action would
be required to undo the committed work. Therefore the transaction manager4 needs to
have access to the code of the compensation action even after a crash of the application.

4The transaction manager in the saga model is called saga execution component (SEC).

13



In the normal case the applications sequentially execute the transactions of a Saga
by using the described commands. However it is possible to execute sub transactions in
parallel if the application spawns new processes. Therefore the command beginSaga
returns a reference which is used to start new transactions within an existing Saga. The
model itself does not execute sub transactions in parallel.

The model assumes that the compensation action never fails. The developer must as-
sure that the compensation action always completes successfully, otherwise the system
will become inconsistent. A Saga is only deployed on a single node whereas the dis-
cussed ACID compliant protocols (2PC, 3PC, Paxos Commit) require protocol agents
(resource managers) on every cohort. Also no distributed commit protocol is required,
since the transaction manager directly passes all SQL (Structured Query Language)
commands to the corresponding remote database managers which are acting in this
model as resource managers.

Figure 2.5: Application (APP) which executes a Saga with two sub transactions

Figure 2.5 shows the message flow of a distributed Saga consisting of two sub trans-
actions. The first sub transaction is successful and therefore the local commit on RM1
is executed immediately. The second sub transaction is aborted by the application and
therefore a rollback is executed on RM2. Afterwards the application decides to abort the
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whole Saga and the transaction manager executes the compensation actions on RM1.
The diagram also shows that sub transactions are executed sequentially if the applica-
tion does not use threading. In a Saga all sub transactions can be ACID compliant, but
the whole Saga need not.

The Saga model has been the first transaction model which was using compensation
across systems to ensure eventual consistency. Although it has been originally designed
for database management systems, its pattern including compensations has been used
by many other transaction models like the Flex model or web service compositions (see
next sections). The advantage of this pattern is that LLTs can be executed without long-
term locking of objects. This improves concurrency and performance of the system,
however there is also a drawback: Sagas are not ACID compliant because the isolation
property has been relaxed.

Sagas have not been directly implemented in any established application server or
middleware. However the Saga pattern has been indirectly implemented with the trans-
action models in the next sections.

2.2.5 Flex Transactions
The Flex Transaction model [BEeK93] is based on the Saga model but extends it in sev-
eral points. It can be seen as a kind of workflow model where several sub transactions
are executed in a pre-defined way. A transaction is described in the InterBase Parallel
Language (IPL). Like in the Saga model every sub transaction can be committed right
after its completion. When the parent transaction aborts although the sub transaction
has already committed, then its (optional) compensation action is executed to undo the
action. One advantage to the Saga model is that several sub transactions can be executed
in parallel. Dependencies can be used to specify the execution order among sub trans-
actions. There is also a main difference in the way how transactions can be used by an
application. In the Flex Transaction model the global transaction is defined in a single
IPL file and is entirely passed to the transaction manager. The transaction manager then
executes the sub transactions and takes care of the coordination among them. Whereas
in the Saga model the coordination among sub transactions is accomplished in the ap-
plication. After completion the result of the transaction is returned to the application.
The definition of a Flex transaction consists of three sections:

• variables and data structures

• definition of sub transactions

• description of the dependencies among sub transactions

IPL supports several primitive data types like int, real, boolean, charString but also
supports the possibility to compose more complex data structures. The definition of a
sub transaction contains the following parameters and sections:
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• input parameters and output parameters

• the name of the system system and the network name of the remote machine

• the body which contains all operations

• the body of commit operations, which are executed when the global transaction
has decided to commit

• the body of undo operations, which are executed when the sub transaction has
already been executed but the global transaction has decided to abort

It can be specified whether sub transactions are immediately committed after they have
completed or if the commit is deferred until the final decision of the global transaction.
The undo statements are executed if the sub transaction has been committed and the
final decision is abort. If a sub transaction needs to be compensated, then only the undo
operations of the sub transaction itself are executed, rather than all undo operations of
its sub transactions. All statements within a sub transaction are executed at a single
system, whereas different sub transactions can operate on different systems.

Listing 2.1 shows a Flex transaction which consists of three sub transactions. The
example in the listing models function replication using sub transactions performDebit1
and performDebit2. If performDebit1 fails, then performDebit2 is executed. If one of
the two sub transactions has been successful, sub transaction performCredit is executed.
All sub transactions require an input of type inparams which contains the account num-
ber as well as the amount which should be transferred. The listing also shows two
different commit strategies. Sub transactions performDebit1 and performCredit are us-
ing a deferred commit which is performed when the global transaction is committed. In
contrast sub transaction performDebit2 immediately commits and therefore a compen-
sation action has to be specified which undos the already committed operations.

1 program
2 record inparams of /* the inputs from the application */
3 accNum : charString; /* account number */
4 amount : integer; /* the amount of money */
5 endrecord;
6
7 record outparams of /* the output of the sub transactions */
8 accNum : charString; /* account number */
9 balance : integer; /* the new balance */

10 endrecord;
11
12 /* define input "in" of type inparams */
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13 input in : inparams endinput;
14
15 subtrans performDebit1 (in) : outparams use sybase at site1

output
16 beginexec /* execution step, in SQL format */
17 begin tran txDebit1;
18 update bank set balance = balance - $$in.amount$$ where

accNum = $$in.accNum$$;
19 select accNum,balance from bank where accNum = $$in.

accNum$$;
20 endexec
21 beginconfirm /* confirm step, in SQL format */
22 commit tran txDebit1;
23 endconfirm
24 beginundo /* undo step, in SQL format */
25 rollback tran txDebit1;
26 endundo
27 endsubtrans;
28
29 subtrans performDebit2 (in) : outparams use ingres at site2

output
30 beginexec /* execution step, in SQL format */
31 update bank set balance = balance - $$in.amount$$ where

accNum = $$in.accNum$$;
32 select accNum,balance from bank where accNum = $$in.

accNum$$;
33 endexec
34 beginundo /* compensation, in SQL format */
35 update bank set balance = balance + $$in.amount$$ where

accNum = $$in.accNum$$;
36 endundo
37 endsubtrans;
38
39 subtrans performCredit (in) : outparams use sybase at site3

output
40 beginexec /* execution step, in SQL format */
41 begin tran txCredit;
42 update bank set balance = balance + $$in.amount$$ where

accNum = $$in.accNum$$;
43 select accNum,balance from bank where accNum = $$in.

accNum$$;
44 endexec
45 beginconfirm /* confirm step, in SQL format */
46 commit tran txCredit;
47 endconfirm
48 beginundo /* undo step, in SQL format */
49 rollback tran txCredit;
50 endundo
51 endsubtrans;
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52
53 dependency
54 performDebit1 : performCredit;
55 not performDebit1 : performDebit2;
56 performDebit1 or performDebit2 : performCredit;
57 performCredit : accept;
58 enddep;
59 endprogram

Listing 2.1: Definition of a Flex transaction using IPL

Figure 2.6 shows the message flow of the distributed Flex transaction which is shown
in listing 2.1. It has been assumed, that sub transaction performDebit1 has been suc-
cessful and therefore the execution of performDebit2 is skipped. After the successful
execution of sub transaction performCredit the commit operations of performDebit1
and performCredit are executed.

Figure 2.6: Message flow of the Flex Transaction which is defined in listing 2.1

The Flex Transaction model also supports the execution of arbitrarily nested trans-
actions in one single atomic transaction. This can be achieved by only using sub trans-
actions with deferred commit statements. This is a further difference to the Saga model
where only sub transactions are atomic, but not the global transaction.

The Flex Transaction model has been implemented in the Corso middleware [eK05a]
[eK00] [WeKT00] which consists of the Coordination Kernel [KN98] and programming
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interfaces. Corso uses a virtual shared memory to coordinate distributed applications on
heterogeneous environments.

2.2.6 WS-BPEL
The Web Services Business Process Execution Language (WS-BPEL, short BPEL) [7]
is the current standard for expressing web service compositions. It has been specified
by OASIS5.

A BPEL definition is an XML file which defines activities to be performed and how
they depend on each other. An activity can be the invocation of a web service or any
other component which is required to define a business workflow. BPEL supports simple
manipulation of data so that data can be adapted to the input requirements of the next
activity. Further primitive structured-programming constructs like if-then-elseif-else or
while are supported and activities can be executed sequentially or in parallel. Also
BPEL provides the possibility to define event-handlers, fault-handlers or compensation-
handlers.

A business process is separated into four major sections:

• <partnerLinks>: Definition of all parties (e.g. suppliers, customers, providers,
...) that interact with the process.

• <variables>: This section defines all variables which are used to exchange
messages among the parties.

• <faultHandlers>: This section contains all fault-handlers which will be
called in response to a fault resulting from the invocation of a service.

• <processes>: This section contains all activities which are required to fulfil
the business process. The composition among the activities of the schedule can be
defined with directives like <sequence> (all activities will be executed sequen-
tially) or <flow> (parallel execution). Additionally the directive <links> can
be used to map dependencies between activities within a <flow> section. For
example a link can be used to specify that activity A must not be executed before
activities B and C have been completed.

The creation of a new process instance is triggered implicitly by a start activity. Every
executable business process must have at least one start activity which has to be anno-
tated with the createInstance property. This activity can either be a <receive>
(waits for a message to arrive) or <pick> (waits for one of several messages to arrive)
statement.

5https://www.oasis-open.org
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A business process is executed by a BPEL engine which takes an XML definition
file as input. Neither code nor other input files are required. This is accomplished by
the limitation that BPEL only supports web services with a proper WSDL6 definition.
If other systems want to participate in a business process then they need to be wrapped
into a compliant web service. The BPEL engine is the central part of the execution and
acts as the transaction manager.

Here is a list of some of the must popular engines:

• BizTalk Server7 (Microsoft)

• Oracle BPEL Process Manager8 (Oracle)

• SAP Exchange Infrastructure9 (SAP)

• WebSphere Process Server10 (IBM)

All of them are commercial products and not free of charge. However there are also
Open-Source products available like Apache ODE11. The internal message flow of
BPEL engines is similar to the one of the Flex Transaction model (figure 2.6).
BPEL is based on the Saga model where transactions are mapped to business processes
and sub transactions are mapped as activities. Every activity operates on a single host,
which can execute the activity in a single ACID compliant local transaction. Since
several activities can operate on several hosts, business processes are per definition dis-
tributed transactions. The advantage of BPEL is that activities can be executed in par-
allel and long running transactions do not affect concurrency since object locks within
activities are released when they finish. BPEL processes are dedicated to web services
and therefore require that all services are providing the appropriate interface. Analogous
to the Saga model BPEL processes are not ACID compliant. Atomicity, consistency and
isolation properties are relaxed because the work of business processes is divided into
several activities and the result of activities can be seen by other business processes as
soon as they have finished.

2.3 Comparison of transaction models
Table 2.3 shows a matrix with the differences between existing transaction models with
regard to several criteria. The last two models in the table are part of this thesis and will
be described in detail in section 4. The following characteristics are compared:

6http://www.w3.org/TR/wsdl
7http://www.microsoft.com/biztalk/en/us/default.aspx
8http://www.oracle.com/technology/products/ias/bpel/index.html
9http://www.sap.com/platform/netweaver/components/xi/index.epx

10http://www-306.ibm.com/software/integration/wps/
11http://ode.apache.org/

20

http://www.w3.org/TR/wsdl
http://www.microsoft.com/biztalk/en/us/default.aspx
http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.sap.com/platform/netweaver/components/xi/index.epx
http://www-306.ibm.com/software/integration/wps/
http://ode.apache.org/


• Synchronous. The model supports a blocking commit method.

• Asynchronous. The model supports a non-blocking commit method.

• ACID compliant. ACID compliant transactions can be performed.

• Sub Transactions. A transaction can consist of several sub transactions. In the
BPEL model sub transactions are called activities.

• Dependencies between sub transactions. The execution order of sub transac-
tions can be defined by specifying dependencies among sub transactions.

• Parallel sub transactions. Several sub transaction can be executed in parallel.

• Nested transactions. Transactions can be nested.

• Compensation. Compensation actions can be specified which semantically undo
the effects of already committed transactions.

• Function Replication. If a sub transaction fails, then another sub transaction
can take over and the parent transaction succeeds although a sub transaction has
failed.

• Transaction Coordinator. The system which is responsible to coordinate and
execute transactions, sub transactions and operations within transactions. This is
either the application (App) or the transaction manager (TM).

• Single Point of Failure. If this resource fails, then the commit service becomes
unavailable. This means that the service blocks until the resource has recovered.
It is important to know that this state is different to a state where the commit
service is available but always decides abort. Image that a resource manager
crashes during the commit cycle of Paxos Commit. After the timeout has elapsed
in the acceptor process, the transaction will be aborted. Since the commit service
remains available, the resource manager is not considered as the single point of
failure.

The already existing transaction models in the table can be separated into two groups:

• Atomic commit protocols - These protocols (2PC, 3PC, Paxos Commit) support
ACID compliant distributed transactions. The transaction manager of these pro-
tocols is only responsible to coordinate the distributed commit. The execution of
transactional operations is coordinated by the application.
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2PC, Paxos Saga Flex BPEL Ext. Paxos REXX
3PC Commit Transaction Commit Transaction

Synchronous x - x x x xa x
Asynchronous - x - - x x x
ACID compliant x x xb xb xb x x
Sub Transactions - - x x x x x
Dependencies between
sub transactions

- - - x x - x

Parallel Sub transactions - - - x x - x
Nested Transactions - - - x x - x
Compensation - - x x x - x
Function Replication - - - x x x x
Transaction Coordination App App App TM TM App TM
Single Point of Failure TM - TM TM TM - TMc

Table 2.1: Comparison of transaction models

a returns when the result of Paxos is available, but does not guarantee that the RM already performed the com-
mit/abort

b only within sub transactions
c in a space-based middleware like XVSM the space is the single point of failure if it is not replicated.
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• Relaxed transaction models - These models have relaxed the ACID properties
to achieve advantages in performance and functionality like nested sub transac-
tions, parallel sub transactions or function replication. The transaction manager
is responsible for the scheduling and execution of the sub transactions.

The Saga model is somewhere between these groups because although it is not ACID
compliant it does neither provide features like parallel sub transactions nor function
replication.

The BPEL transaction model provides very powerful features, but since it is dedi-
cated to the integration of web services it can not be used for a space-based middleware.
Also the Flex model already supports a very flexible relaxed transaction semantics and
provides features like function replication or the parallel execution of sub transactions.
However the Flex model has been designed for the integration of autonomous legacy
systems, especially for multi database systems (MDBS) and therefore it can not be
directly implemented into a space-based middleware like XVSM. A new transaction
model has to be developed which is dedicated to space-based middlewares and which
provides a relaxed transaction semantics like BPEL or the Flex model. Furthermore it
has been decided to use Paxos Commit as part of the new transaction model to support
ACID compliant distributed transactions. Paxos Commit is used because of its advan-
tages in terms of consistency and availability compared to the other atomic commit
protocols.
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CHAPTER 3
The XVSM middleware and

MozartSpaces

This chapter provides basic information which is required for the understanding of the
next chapters. The concept of XVSM (eXtensible Virtual Shared Memory) has been de-
veloped at the Institute of Computer Languages of the Vienna University of Technology
in 2005 [eK05b].

MozartSpaces1 is the Java-based reference implementation of XVSM. The devel-
opment has started in 2006 and a complete rewrite (version 2) has been released in
2010 [Bar10] [Dö11]. Since then several additional modules and functionalities have
been developed which lead to a steady improvement of the MozartSpaces implementa-
tion. The current stable release is version 2.2 which already includes Security (Authen-
tication and Authorization) [CK12] as well as persistency [Zar12].

3.1 XVSM Overview
XVSM is based on the Linda model which has been introduced by David Gelernter in
1985 [Gel85]. The formal model of XVSM as well as an implementation in Haskell
is described in [Cra10]. It uses a central memory where all data is stored. Distributed
application can access the memory and manipulate data with only a very limited number
of operations. The most important operations are write (creates new data) and take
(consumes and returns data).

Figure 3.1 shows the architecture of the XVSM middleware. The main part of the
middleware is the XVSM core, which manages the access to the space and also provides
the Core API. Applications can only access the space by using this interface. XVSM

1http://http://www.mozartspaces.org/
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Figure 3.1: Application accessing XVSM spaces by using the provided Core API

cores can either be started without embedded space (Core C) or with exactly one em-
bedded space (Core A and Core B). As shown in the figure applications can also use the
local Core API to access data from a remote space.
The memory (space) of XVSM is organized in three hierarchies. The space is the
biggest data structure. Several spaces can be hosted on the same location and every
space has a separate XVSM core. Every space contains zero or more containers and
every container stores several entries, which are the smallest unit of data. Entries can
not be directly written into a space, but only into containers.

Every container in the XVSM framework is coordinated by one or more coordina-
tors. They store additional meta information for every entry which is later used by the
corresponding selector when an entry is selected (e.g. by operations take or remove).
Supported coordinators are for example the Key Coordinator, which stores an unique
key for every entry or the FIFO Coordinator, which provides a FIFO (First in, First out)
ordering of the entries. Figure 3.2 shows one container which is managed by those two
coordinators.

The focus during the design of XVSM has been put on an extensible and flexible
architecture. The core is based on a microkernel architecture and has been designed
to run on a single site. Additional functionality like distributed algorithms can be im-
plemented on top of the core by using so-called aspects without much effort. An as-
pect contains code which can be executed before and/or after every operation. This
can either be a container operation like write or take or any space operation like
createContainer. The execution of the code can be performed within the con-
text of the operation’s transaction. Additionally aspects can also execute operations on
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Figure 3.2: Container with a Key Coordinator and a FIFO Coordinator

remote spaces but in this case a separate transaction is needed.

3.2 MozartSpaces
This section focuses on dedicated parts of the current MozartSpaces implementation
which are required for distributed transactions.

3.2.1 Transaction Support
MozartSpaces supports local transactions where all operations are performed on a sin-
gle space. Transactions are compliant to the ACID properties (see section 2) and use
pessimistic locking to fulfil the isolation property.

There are four isolation levels defined in the ANSI/ISO SQL standard [ISO92]:

• Read uncommitted - Uncommitted changes can be seen by other transactions.
This isolation level allows dirty reads.

• Read committed - Only committed changes can be seen by other transactions.
But there is no guarantee that the changes are still there when the transaction
commits (phantom read). Dirty reads are not possible in this level.

• Repeatable read - Read locks are used to guarantee that data which has been
read by the transaction is not modified or deleted until the commitment of the
transaction has been completed.

• Serializable - Transactions operate in a full isolated environment and do not see
other transactions. It appears that all transactions are executed sequentially. This
is the strictest isolation level.
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In version 2.2 of MozartSpaces the isolation levels Read committed as well as Re-
peatable read are supported [Dö11]. Local transactions are using timeouts to limit the
execution time. When the timeout of a transaction expires a rollback is performed and
all further operations which are using this transaction will fail.

Since the local transaction system of MozartSpaces is ACID compliant, it is possible
to implement an ACID compliant distributed transaction system on top of the existing
implementation.
MozartSpaces uses the term “sub transaction” for internal system transactions which are
required to perform small operations within the core. However these sub transactions
are not related to the sub transactions which are discussed in this work.

3.2.2 Persistence Support
Persistency has been introduced in MozartSpaces version 2.2 [Zar12].

The following persistency profiles are supported:

• Lazy - This profile uses an internal buffer in memory and writes the data into sta-
ble storage when the buffer is full. The advantage is a good performance because
data is only written in big chunks. However already committed data will be lost
when the system crashes before the data has been written on disk.

• Transactional - The database log is written to disk whenever a transaction is
committed. However it is possible that the data is lost during a system crash be-
cause current storage systems are using an internal volatile buffer for performance
reasons.

• Transactional with fsync - The fsync2 command forces a storage system to flush
the data of the internal buffer. This command is executed synchronously when a
transaction is committed. This assures that committed data is not affected by a
system crash. This is the slowest profile.

In the current implementation the following components are not covered by the persis-
tency:

• The isolation manager including its log items and lock items.

• The internal counter of the next transaction ID.

• All space and container aspects.

2http://linux.die.net/man/2/fsync
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Persistency in distributed transaction systems is a mandatory property which all co-
horts as well as the transaction manager must provide. Otherwise the system will be-
come inconsistent when any of the involved systems crashes.

If during the implementation phase it turns out that the persistency of any of the
mentioned components is required, then there are two possibilities:

1. The current implementation of the persistency has to be extended by the required
components.

2. If this does not make sense for any reason (e.g. to high effort) then an alternative
approach using aspects could be chosen.
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CHAPTER 4
Design and Model

The goal of the new distributed transaction model is to provide both: ACID compliant
transactions and transactions with relaxed semantics. Therefore two models are pro-
posed:

1. The Extended Paxos Commit model is responsible to perform distributed transac-
tions with full ACID compliance. However it has drawbacks in terms of perfor-
mance.

2. The REXX model is a highly concurrent relaxed transaction model, however it is
not strictly ACID compliant.

Extended Paxos Commit does not depend on the REXX model and can therefore be used
separately. However the REXX model depends on Extended Paxos Commit because it
uses distributed transactions for the execution of sub transactions. This approach allows
to execute ACID compliant distributed transactions within sub transactions and also
supports transactions with relaxed semantics.

4.1 Terminology
The next sections describe the new transaction models in more detail. For a good un-

derstanding the following definitions for the different types of transactions are needed.
These terms will be consistently used in the next sections.

Parent transactions are transactions which have at least one sub transaction.

Sub transactions have exactly one parent transaction.
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Global transactions specify the whole transaction including all parent transactions,
sub transactions and leaf transactions.

Top-level transactions are at the top of the transaction tree. Each global transaction
has exactly one top-level transaction and the state of the global transaction is based on
the state of the top-level transaction.

Leaf transactions are always at the bottom of the transaction tree and do not have any
sub transactions. Leaf transactions are usually sub transactions, however if the top-level
transaction is not a parent transaction, then the top-level transaction is a leaf transaction
but not a sub transaction. Each global transaction must have at least one leaf transaction.

The general term transaction is used for parent transactions and sub transactions.
Transactions can fulfil several roles at the same time. For example a transaction can act
as parent transaction and as sub transaction, if it has a parent transaction and at least
one sub transaction. Furthermore a sub transaction can also be a leaf transaction. Each
transaction is either a parent transaction or a leaf transaction.

Figure 4.1: Example for a global transaction

Figure 4.1 shows an example for a global transaction. The top-level transaction is
A which also acts as parent transaction. The transaction B is a parent transaction as
well as a sub transaction. Transactions C ,D and E act as sub transactions and leaf
transactions.

4.2 Extended Paxos Commit

4.2.1 Overview
The goals of this transaction model are:
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• Strict ACID compliance

• Relaxed behavior during the commit phase

• Deterministic behavior in all error cases

Table 2.3 lists three transaction models which are strictly ACID compliant: Two-Phase-
Commit, Three-Phase-Commit and Paxos Commit. Due to its advantages in terms of
failure scenarios Paxos Commit has been chosen to form the basis of the new transaction
model. During the commit phase of Paxos Commit all cohorts have to be responsive,
otherwise the transaction will fail. The goal of the following extension is to relax this
strong requirement.

To accomplish this behavior Paxos Commit is extended by sub transactions1. Big
transactions can be split into several small transactions. With that approach the original
Paxos Commit is extended by two functionalities:

• Function Replication - Several sub transactions can be specified for the same
task. During the commit phase at least one of the sub transactions must be able to
commit.

• Low Priority Transactions - Transactions can consist of several sub transactions
with different priorities. Although a sub transaction with a low priority fails,
for the overall system requirements it can make sense to commit the other sub
transactions which have been successful. This can be the case if the rollback of
already committed sub transactions is more critical than the fact that a low priority
sub transaction has been aborted.

When can the rollback and re-execution of a transaction are considered to be expensive?
This depends on the individual application, however the following facts can give an
indication:

• High number of operations within a single transaction

• High latency of an operation (slow connection to external systems)

• High amount of data

• Access to external systems is expensive in terms of data transfer or number of
calls

• Application dependent costs (cancellation of a flight)

Figure 2.4 in the related work section shows the commit phase of the original Paxos
Commit algorithm.

1These sub transactions are not related to the internal sub transactions of MozartSpaces (see section
3.2.1)
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4.2.2 The extended algorithm
The extended algorithm allows to split a transaction into one top-level transaction and
several sub transactions. For the commit of the leaf transactions the original Paxos
Commit is used. This extension focuses on the relation between parent transactions and
its sub transactions. Therefore the following design decisions have been specified:

• Parent transactions consist of one or more sub transactions. Parent transactions
can not be used to execute transactional operations.

• Sub transactions have exactly one parent transaction. Sub transactions are either
parent transactions or leaf transactions.

• Leaf transactions are executing their transactional operations in their own isola-
tion context. Therefore the modifications of a leaf transaction can never be seen
by other leaf transactions.

• Commit Rules can be used to specify how the result of a sub transaction affects
the result of the parent transaction and all siblings.

• Timeouts are only supported for leaf transactions but not explicitly for parent
transactions. The parent transaction is processed as soon as all sub transactions
are either prepared or aborted.

• ACID compliance is preserved by committing all transactions of a global trans-
action in a single atomic step.

These design decisions cause modifications in the following three areas of the original
algorithm:

1. Transaction Creation - The transaction identifier of a parent transaction must
contain the identifiers of all sub transactions. When a new sub transaction is
created, then the new transaction identifier must be registered in the parent trans-
action.

2. Transaction Commit - The application has to pass a commit rule which is pro-
cessed by the leader process.

3. Leader process - The leader process waits until the 2bPrepared messages of all
sub transactions have been received. Afterwards the commit rule is applied onto
the transaction results of the sub transactions. The result of the commit rule is the
transaction result (committed or aborted) for the parent transaction and for all sub
transactions.
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Figure 4.2: The extended algorithm applied to a parent transaction with two sub trans-
actions

Figure 4.2 shows the sequence diagram of the extended algorithm. It shows trans-
action tx3 which consists of two sub transactions (tx1 and tx2). It is assumed that all
resource managers as well as the registrar send prepared in their Phase2a-message. For
the sake of simplicity only one acceptor is used and the messages between the registrar,
the resource managers and the acceptors have been omitted. They are same as in the
original Paxos Commit algorithm in figure 2.4. The extended algorithm starts when the
leader process has received all Phase2b-messages.

When the commit phase of a sub transaction is started, the transaction identifier of
the parent transaction is passed to the Paxos Commit algorithm. When the 2bPrepared
message of a sub transaction is received by the leader it first checks whether the 2bPre-
pared message of the parent transaction (tx3) has already been received. If this is not
the case, the leader waits until it has been received.
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Similar to the sub transactions, the application also passes additional data of the
parent transaction to the Paxos Commit algorithm: the Commit Rule (CR) as well as the
list of all sub transaction identifiers.

Once the 2bPrepared message of the parent transaction tx3 has been received, the
leader checks whether the 2bPrepared messages of all sub transactions have been re-
ceived so far. If yes, then the Commit Rule is applied onto the result of the sub transac-
tions (prepared or aborted). The result of the function is the final status of the parent
transaction as well as the final status of all sub transactions. The result of all transactions
is sent to all acceptors, to all participating resource managers as well as to the applica-
tion. The commit messages sent to the acceptors are not required for the functionality,
however they improve the performance of the protocol if nodes have to query the result
of transactions. This happens either when a node restarts or when a message has been
lost and the internal timeout has been elapsed. The commit message to the application
contains the result of the transaction and all of its sub transactions. The message is also
used for the synchronization within the application. The results of sub transactions tx1
and tx2 are part of the result of tx3 and therefore not explicitly sent to the application.

4.2.3 Timeout handling
The timeout handling for leaf transactions has not been modified in the extended al-
gorithm. For every leaf transaction a relative timeout can be specified. The timeout
is started as soon as the commit phase of the leaf transaction has been started. If the
timeout elapses, the acceptor nodes will propose to abort the leaf transaction.
For parent transactions timeouts are not directly supported. Parent transactions commit
as soon as the results of all sub transactions are available. So the timeout of the parent
transaction depends on the timeouts of its sub transactions.

4.2.4 The global Commit Rule
The commit rule is passed by the application at the commit()-call of parent transactions.
It determines the result of the parent transaction as well as the results of all sub transac-
tions. Therefore it uses the intermediate results of the sub transactions as input values.
The execution of the commit rule is using the following signature:

• Input parameter: Pair {tx → IntermediateState} for every sub transaction
identified by tx where IntermediateState is either prepared or aborted.

• Return value: Pair {tx → FinalState} for every transaction (parent and sub
transactions). tx is the transaction identifier of the transaction and FinalState is
either committed or aborted.
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The commit rule can be seen as the relation

S × I 7→ S ∩ {p} × F

where S is the set of sub transactions, p is the parent transaction, I = {prepared ,
aborted} and F = {committed , aborted}. Three different types of commit rules are
supported:

• Logical Commit Rule - A boolean expression is used to determine the result
based on the results of the sub transactions.

• Threshold-based Commit Rule - The transaction is successful if the number of
successful sub transactions is above a certain threshold.

• Default Commit Rule - The transaction is only successful if all sub transactions
are successful.

4.2.4.1 Logical Commit Rule

This rule uses a boolean function to obtain the results of the transactions. Therefore it
is required to map the IntermediateState to boolean values:

• prepared→ TRUE

• aborted→ FALSE

The logical commit rule uses an additional optional argument. This is a ordered list
of sub transactions which specifies the priorities among them. The first entry has the
highest priority. The evaluation of the logical commit rule is explained with the help of
an example. Therefore we make the following assumptions:

• For the example we use the transaction shown in figure 4.2.

• Result of Paxos Commit of the sub transactions: tx1: prepared, tx2: prepared

• Commit Rule (XOR relation)

res = ¬((¬tx1 ∧ ¬tx2) ∨ (tx1 ∧ tx2))

• Transaction tx1 has higher priority than tx2

The leader performs the following actions:

1. Apply the Commit Rule to the result of the sub transactions:

¬((¬TRUE ∧ ¬TRUE ) ∨ (TRUE ∧ TRUE )) = FALSE (4.1)
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2. When the result of Paxos Commit is prepared, then the leader can either decide
to committed or aborted. However when the result is aborted, the leader has no
option. The goal of the leader is to find a solution where the result is committed
(boolean TRUE ) and where the number of sub transactions, which have to be
aborted, is minimal. For this purpose the leader uses a SAT-Solver [vHvHLP07]
which outputs a model that satisfies the equation. For an optimal result the solver
has to prioritizes TRUE -literals against FALSE -literals. Furthermore it has to
consider the priorities of the sub transactions so that it first assigns FALSE to the
sub transaction with the least priority. In this example the leader would decide to
abort sub transaction tx2 which would satisfy the equation:

¬((¬TRUE ∧ ¬FALSE ) ∨ (TRUE ∧ FALSE )) = TRUE (4.2)

3. The leader has found a solution and passes the following result to the extended
Paxos Commit algorithm:

• tx1: committed

• tx2: aborted

• tx3: committed

A possible use case for this commit rule would be a highly available system which is
connected to two services with the same functionality. The logical commit rule could
be used to wrap both services into a single redundant service which could be part of a
bigger transaction. In general this functionality is called function replication.

4.2.4.2 Threshold-based Commit Rule

This rule only takes one argument - the threshold value. The result of the parent trans-
action is determined by the number of successful sub transactions. If this number is
higher or equal to the threshold, the result is committed, otherwise aborted. The state of
all prepared sub transactions is set to the same value as the parent transaction. A possi-
ble use case of this commit rule would be a replicated write to a huge number of remote
systems where it has to be guaranteed that the write succeeds on a certain number of
systems.

4.2.4.3 Default Commit Rule

This rule does not require any additional argument. The result for the parent transaction
is committed if all sub transactions have been successful, otherwise it is aborted. The
state of all prepared sub transactions is set to the same value as the parent transaction.
The default commit rule is a special case of the other commit rules. It is the default rule
if no explicit commit rule has been specified.
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4.2.5 Failure scenarios
Due to the extension of the original Paxos Commit algorithm, there are also new failure
scenarios which have to be considered:

• Sub transactions do not finish - Since parent transactions do not have separate
timeout values, they are waiting until all sub transactions have finished. If sub
transactions do not finish before their timeout, then the acceptors are responsible
to abort them. This error case is already covered by the original algorithm.

• Result of parent transaction is not available - If the application does not com-
mit the parent transaction or if the startCommit-message is lost, then the leader
process is not aware of the parent transaction. The same problem occurs if the
Phase2a- or Phase2b-message of the parent transaction is lost. In all of these
cases the leader queries the result from the acceptors. If the acceptors are aware
of the parent transactions, they return its result, otherwise they initiate an abort of
the parent transaction.

4.2.6 Proof of consistency
The parent transaction as well as all sub transactions are using separate instances of
Paxos Commit. The Paxos Commit instance of the parent transaction only contains
the commit rule which is passed via the registrar to the acceptor processes and then to
the leader process. Although no resource managers are involved in the instance of the
parent, the behavior of Paxos Commit remains the same. Therefore the only modifi-
cation of interest of Extended Paxos Commit related to Paxos Commit is the operation
of the leader process. Since there is only one leader process we must not care about
concurrency.

The consistency of Extended Paxos Commit is already guaranteed by the acceptor
processes of Paxos Commit. Once all Phase2b-messages have been received by the
leader process Paxos Commit assures that their values (prepared, aborted or the set of
sub transactions) does not change. Therefore the result of the commit rule is always the
same even if a new leader is elected.

4.3 The REXX Transaction Model
The term ‘REXX transaction’ stands for ‘Relaxed transaction model for XVSM’ which
already indicates the relation to the XVSM middleware.
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4.3.1 Overview
For the new relaxed transaction model the following design goals have been specified:

• Support of distributed transactions

• Support of long lived transactions (LLT)

• Support of asynchronous transactions

• Monitoring of the transaction state

• No support of legacy systems

• High concurrency and performance

• Focus on transactions for coordination

• Dynamic join/leave of nodes

The overall goal is to provide dependable integration patterns for the XVSM middle-
ware.

The idea of the new relaxed transaction model is to separate one big (global) trans-
action into several parent transactions and sub transactions. Transactions are executed
with the standard ACID properties whereas the global transaction uses a relaxed model
in terms of isolation and consistency. Isolation is only guaranteed within a transaction
transaction but not in the context of the global transaction. Therefore it is possible that
other transactions see and modify an intermediate result of a transaction. The consis-
tency property is temporarily violated because other transactions can see inconsistent
states. However, eventually the global transaction will be consistent.

Transactions commit immediately when they are finished. Nevertheless it can be
necessary to undo the transaction’s operations if one of the other transactions fails. For
that case every transaction can be equipped with a compensation action. The compensa-
tion action is used to semantically perform an undo of the already committed operations.
The REXX model is aligned to the Flex model (section 2.2.5), which already supports
many of the discussed features in section 2.3. However the REXX model provides two
additional features:

• Support of asynchronous commit and

• distributed ACID compliant transactions.

Possible use cases are high-performance business workflows with various activities
which have to be processed with a certain degree of consistency. Imagine the following
activities which have to be performed by a travel agency when it is booking a trip:
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1. Book a flight

2. Book a taxi from the airport to the hotel

3. Book a hotel

4. Book an event (either a sightseeing tour or a ticket for a musical)

With REXX transactions the booking of the flight, the taxi and the hotel can be exe-
cuted in parallel. For the booking of the event function replication is used so that if the
sightseeing tour is already fully booked, a ticket for a musical is purchased.

Each activity only locks the objects which are required for its task and the locks are
released as soon as the activity is completed. Therefore if the booking of the flight takes
longer, the object locks of the other activities might have already been released. This
allows a higher concurrency than an atomic commit protocol like Paxos Commit.

4.3.2 Assumptions and Definitions
The idea of the REXX model is to specify a global transaction including parent trans-
actions, sub transactions and their internal communication in advance. Afterwards the
global transaction is handed over to the transaction manager which will then take care
of the coordination. All transactions (parent and sub transactions) are executed individ-
ually by the transaction managers. After the global transaction has been completed the
result will be passed back to the application. This keeps the developer API simple. For
the REXX transaction model the following design decisions have been defined:

• Space-based design: The model should be designed to run on a spaced-based
middleware. Therefore the focus is set on a data-driven communication.

• Legacy Systems: The model does not support legacy systems. Therefore trans-
actions must not directly interface legacy systems. Transaction are only allowed
to operate on the corresponding space.

• Execution environment: The code of transactions and compensations is exe-
cuted in the scope of the transaction manager. The application passes the global
transaction in a fire-and-forget style to the transaction manager. The application
can not influence the execution once it has started the commit of the global trans-
action in the user space. The concrete execution can also be performed on a space
different to the space of the transaction manager. This space is called execution
space and can be specified in the configuration.

• Retry on error: When the execution of a transaction or compensation fails for
some reason, then the execution will not be repeated. The reason for this decision
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is that it is unlikely that a transaction succeeds after it has failed some seconds
ago.

• Timeouts: Developers can specify transaction timeouts for the execution of leaf
transactions and for the execution of compensation actions. If the execution does
not finish within that period, the result of the execution is considered as aborted.
The correct handling of timeouts can only be guaranteed if developers are follow-
ing certain rules which are discussed later. It is also supported to specify a timeout
for the global transaction.

• Nested transactions: Transactions can be nested without any limitation of the
depth. A parent transaction can consist of several sub transactions where a sub
transaction itself can again act as a parent transaction. So a transaction can be
both - sub transaction and parent transaction. Parent transactions can have a com-
pensation action but do not have an execution body (transaction action). This
restriction helps to keep the transaction model simple without cutting the expres-
siveness of transaction compositions. The state of parent transactions is based on
the state of its sub transactions as well as the specified aggregation function. The
aggregation function can be specified by the application. It takes the results of the
sub transactions as input parameter and returns either committed or aborted.

• Compensation Scope: Compensation is only performed in the highest already
committed transaction. Imagine a (parent) transaction which consists of two sub
transactions. If the parent transaction commits it takes over the compensation
responsibility of all of its sub transactions. As of this point the sub transactions
are not queried for compensation any more. Of course, the compensation of the
parent can call the compensation of the sub transactions, but this is not part of
the model and has to be assured by the application developer. The compensa-
tion responsibility of a parent transaction does not stop at its sub transactions but
also applies to sub transactions of sub transactions. So the compensation scope
increases whenever a parent transaction commits. This approach for the compen-
sation keeps the compensation effort for the coordinator on a manageable level
even for transactions with several transaction hierarchies. This is the same ap-
proach which has been used in the Flex model. Imagine a travel agency which
has booked a trip consisting of a flight, a hotel and a taxi. If the customer cancels
the trip, the travel agency does not cancel the individual reservations of the flight,
the hotel and the taxi. Instead it can sell the whole trip to another customer.

• Dependencies: There are two types of dependencies:

– Dependency between the parent and its sub transactions: There is an
implicit termination dependency between a parent transaction and all of its
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sub transactions. So the parent transaction can not complete before all of its
sub transactions have finished.

– Dependencies among transactions: Transactions can depend on one or
more other transactions as long as there is no recursion loop. In the default
setting all predecessors must have successfully committed in order that a
transaction can start its execution. If at least one transaction has not been
successful, the transaction immediately aborts and will not be executed.
However the transaction model provides an option which overrules this be-
havior and allows the execution of a transaction even though its predecessors
have not been successful. This options allows to implement function repli-
cation within transactions. If one transaction fails, then another transaction
can take over and the global transaction can succeed.

• Compensation dependencies: During the compensation phase transactions fol-
low their compensation dependencies. Transactions can only depend on sibling
transactions. This is not a limitation because nested compensations are not sup-
ported and therefore dependencies on other transactions would make no sense. If
no explicit compensation dependencies have been specified, the execution order
of the compensations is the reversed order as the execution of the transactions. A
dependency is fulfilled if the predecessor has terminated, regardless of the result.

• Parameter passing: A global context is provided to allow communication among
sub transactions and between sub transactions and the parent transaction. Sub
transactions can write to the context and as soon as they commit, the written
values are visible to the other sub transactions as well as to the parent transaction.
The context is provided in the normal execution as well as in the compensation
phase.

• Transaction results: Transactions can write data to the global context. The con-
text is then passed back to the application as part of the transaction result.

• Preemptive abort of sub transactions: If the execution time of sub transactions
exceeds the specified timeout, then the execution is aborted and a rollback is per-
formed.

• Crash of transaction manager: The internal state of the transaction managers
must be consistent even after a system crash. Section 4.3.6 is dedicated to that
topic.

• Crash of the execution space: A crash of the execution space is detected during
the execution of a sub transaction by the corresponding transaction manager. It
then aborts the executing sub transaction and performs a rollback.
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• Crash of a resource node: If during the execution of a sub transaction a resource
node crashes, then the developer has to take care of it. If an error is not handled
within the transaction’s code, then the transaction manager will abort the execu-
tion and perform a rollback.

• Crash of the application: Applications commit transactions in a fire-and-forget
style and therefore the reference to the transactions is lost when an application
crashes. The transaction manager executes the transaction without recognizing
the application crash. After the application has recovered it has to process the
results of the transactions which have been finished during the crash. Therefore
transactions can be labelled with an application identifier and can later be queried
with that identifier.

• Error in compensation: If there is an error in the compensation action, the con-
sistency of the global transaction is violated and the application must take care
of the recovery. Sub transactions with a failed compensation will be set to state
compensation failed. This state will then be propagated to the global transaction.

• Availability: The new transaction model assumes that the space on which the
transaction managers operate is always available. If there is a higher degree of
availability required then the space has to be replicated.

4.3.3 Architecture Overview
Figure 4.3 shows the architecture of the REXX transaction model. The centralized space
holds several data containers which are used for the coordination and communication
between all components. As already mentioned the term transaction is used for parent
transactions and sub transactions. Global transactions consist of several transactions,
compensation actions and the dependencies among transactions. They are completely
defined within the application and are then passed to the transaction managers which
will take over responsibility. The transaction managers execute the individual transac-
tions at the execution space and when the global transaction is finished the result can
be retrieved by the application. Through the normal API applications can only see the
result of global transactions if the global transactions are already finished, whereas the
Monitoring API (MAPI) provides a detailed view of the internal data of the transac-
tion manager. It allows to query the current status of all transactions of certain global
transactions even if the global transaction has not finished yet. The REXX transaction
model focuses on concurrency and performance by using the provided features of a
space-based middleware. Therefore the model already considers scalability for the later
implementation. All transaction managers act autonomously and so it is possible to run
several instances in parallel without additional coordination overhead. The number of
instances can be adapted to the expected load.
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Figure 4.3: Architecture overview

4.3.4 Provided APIs
4.3.4.1 Standard API

The REXX transaction model provides the following methods in its standard API:

• commitTransactionAsync asynchronously hands over a global transaction
to the transaction manager and returns the transaction reference immediately. This
reference can later be used to query the result. Furthermore a callback function
can be specified which will be executed as soon as the global transaction has
completed. The return value is the result the global transaction as well as the
results of all of its transactions.

• waitForTransaction blocks until a certain global transaction has been com-
pleted and returns the result. A timeout can be specified to limit the maximum
waiting time.

• commitTransaction is a combination of commitTransactionAsync
and waitForTransaction.
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• getOpenTransactions returns the transaction reference of all running and
completed global transactions whose result has not been queried so far. The
method waitForTransaction can then be used to retrieve the actual results.

The global transaction in the application space contains the parent transaction, all sub
transactions as well as the related compensation actions and other options like timeouts
and dependencies. The main task of the commitTransactionAsync method of the
API is to preprocess the transaction which has been passed by the application so that
the transaction managers can handle it appropriately. Therefore it splits the transaction
into its sub transactions. The transaction manager then only operates onto the sub trans-
actions. Additionally the predecessors of parent transactions have to be propagated to
all leaf transactions. This is because the internal model only supports dependencies for
leaf transactions. Parent transactions must not have any dependencies. Imagine parent
transaction A which consists of two sub transactions B and C . If A depends on an-
other sub transaction D , then new dependencies have to be added so that B depends
on D and C depends on D . After the execution of the global transaction the method
waitForTransaction collects the results of all corresponding sub transactions and
returns them to the application.

4.3.4.2 Monitoring API (MAPI)

The monitoring API can be used by external monitor applications to obtain the internal
status of the transaction manager. This status consists of the states of the sub transactions
as well as their dependencies, context variables and error messages. The MAPI provides
the following methods:

• getAllTransactions returns all global transactions of the transaction man-
ager. This does not include global transactions whose result has already been
queried because all internal data related to a transaction is deleted as soon as the
result has been queried.

• getRunningTransactions returns only global transactions which have not
been finished yet.

• setNotificationListener can be used to specify a callback method which
will be called whenever the internal state of the transaction manager changes.

4.3.5 The Transaction Manager (TM)
The transaction manager is the core component of the REXX transaction model. It
looks for waiting transactions and only operates on one transaction at a time. The trans-
action manager does not know the global transaction which has been handed over by
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the application. It only works on data which is needed for the processing of the current
transaction. This data contains

• the parent transaction (if exists),

• all sub transactions (if exist),

• the code for the execution and compensation,

• all predecessor transactions,

• all successor transactions and

• the available context variables.

The state of the transactions is internally stored in the following containers:

• data - Every transaction is stored as a single entry in this container. The API is
responsible to split global transactions from the application into its sub transac-
tions and parent transactions and to write them into the data container. Transac-
tions also contain the reference to the execution and compensation actions. For
a global transaction with two sub transactions the container would contain three
entries.

• context - This container is used for the intercommunication between transac-
tions as well as for passing back data to the application.

• dependencies - This container stores all dependencies between transactions -
normal dependencies as well as compensation dependencies.

• meta - This configuration container stores runtime data like the next free trans-
action identifier.

All of these containers are placed in a persistent storage so that their data is not lost when
the system crashes. The data containers are used to coordinate the access between the
transaction managers and the applications. All containers can be concurrently accessed
by several transaction managers and applications.

4.3.5.1 Transaction States

This section describes the states and transitions between transactions. The section fo-
cuses on transactions and not on the global transaction. The state of the global transac-
tion is equal to its top-level transaction. The transaction states can be divided into two
types:
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• final states - For the application only those states are visible through the API.
There are four different final states:

– committed - The transaction has finished successfully.

– aborted - The transaction has not finished successfully.

– compensated - The transaction has been successfully compensated after it
has been committed.

– compensation failed - The compensation of the transaction has failed. This
state means a severe error since it can cause an inconsistent system. If
a transaction has to be compensated but no compensation action has been
specified then it is assumed that no compensation is required and the state is
set to compensated.

• intermediate states - These states are required for the internal processing of the
transaction and are therefore never visible to the application. However trans-
actions in intermediate states can be queried with the monitoring API (section
4.3.4.2). Here is the list of all intermediate states:

– waiting for execution - The transaction is waiting for a free transaction man-
ager.

– suspended - The transaction depends on at least one transaction which has
not been completed yet.

– running - The transaction is being executed. This state is required since
long-lived transactions are supported and therefore the execution of transac-
tions can take several hours or even days. Otherwise is would not be possible
to distinguish between leaf transactions which are waiting for a transaction
manager and leaf transactions which are currently executed by a transaction
manager.

– waiting for compensation - The transaction is waiting for a free transaction
manager which processes the compensation.

– compensation suspended - The compensation depends on at least one com-
pensation which has not been completed yet.

– running compensation - The compensation is being executed. This state is
required since long-lived transactions are supported and therefore the exe-
cution of the compensation can take several hours or even days.

Regarding the internal handling there are the following differences between parent trans-
actions and leaf transactions:
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• Although parent transactions have compensation actions like leaf transactions,
they do not execute normal transaction operations.

• Due to this restriction parent transaction can never be in state running.

• The state of the parent transaction depends on its sub transactions and the aggrega-
tion function, whereas the states of leaf transactions depend on their predecessors
and on their individual execution results.

Figure 4.4 describes the state diagram of a single leaf transaction. The initial state of
all leaf transactions is waiting for execution. If not all predecessors are in a final state,
the leaf transaction is set to suspended, otherwise it is set to state aborted or running
depending on the evaluation of the predecessors. If leaf transactions are in state sus-
pended, they are set back to waiting for execution if any of the predecessors has com-
pleted. From state running the leaf transaction either changes into state committed (if it
has been successful) or aborted (otherwise). If a committed leaf transaction is sched-
uled for compensation it is first set to waiting for compensation so that the next free
transaction manager will process it. Before the compensation is started the compensa-
tion dependencies are checked and if not all compensation predecessors are in a final
state the leaf transaction is set to compensation suspended as long as it is reset by any
of the compensation predecessors. During the execution of the compensation the state
is set to running compensation. This is required to distinguish between leaf transactions
which are waiting for a transaction manager and leaf transactions whose compensation
is already executed by a transaction manager. After the compensation the state is either
set to compensated (if the compensation has been successful) or compensation failed
(otherwise).

The state diagram of parent transactions (figure 4.5) slightly differs because of the
missing running state. One transaction is represented by one entry in the data con-
tainer. The entries are created by the commit methods of the API.

4.3.5.2 Internal Architecture

The focus in the design of the transaction manager has been put on performance, scala-
bility and simplicity. Several instances of the transaction manager can run concurrently.
The more instances exist the more transactions can be processed in parallel. All trans-
action managers are operating autonomously and do not communicate with each other.
The transaction manager is running in an endless loop and performs the activities shown
in figures 4.6 and 4.7.

First we describe the activities in figure 4.6. The transaction manager waits for a
transaction which is in state waiting for execution. If the transaction is a parent trans-
action then the state of all sub transactions is checked. If not all sub transactions are
in a final state yet, then the current transaction will be set to suspended. Otherwise the
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Figure 4.4: Transaction States of leaf transactions

aggregation function of the parent will be evaluated. The evaluation is performed using
the following rules:

• S is the set of results of all sub transactions

• failed(tx ) returns True if sub transaction tx is in state compensation failed

• aggregationFunction(S ) is a boolean function and represents the aggregation
function. The function is applied on the set of results of all sub transactions.
For a transaction with three sub transactions an example aggregation function
could be (tx1 ∨ tx2) ∧ tx3 where tx1, tx2, tx3 identify the sub transactions. The
result of a sub transaction is either TRUE (if the state is committed) or FALSE
(otherwise). The default function is an ∧-connection of all sub transactions:
tx1 ∧ tx2 ∧ tx3 ∧ .....

• R = ¬(∃tx ∈ S : failed(tx )) ∧ aggregationFunction(S )

If result of R is True, the state is set to committed and all dependent transactions as
well as the parent transaction (if existing) will be woken up by setting their state to
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Figure 4.5: Transaction States of parent transactions

waiting for execution. If no dependent transactions and no parent transaction exist, the
global transaction has been completed. If the evaluation result is False and there exist
committed sub transactions, their compensations will be triggered by setting their state
to waiting for compensation (see figure 4.7). If there is at least one sub transaction in
state compensation failed then the parent transaction will also be set to compensation
failed. Otherwise the state will be set to aborted (if all sub transactions are in state
aborted) or compensated (otherwise).

With respect to these rules it can be derived that when a transaction is in state com-
pensation failed then the state of the global transaction will be compensation failed.

Now we describe the workflow for leaf transactions. If there exist predecessors
which are not in a final state the leaf transaction will be set to suspended, otherwise the
dependencies of the predecessors are evaluated using the following rules:

• t is the current transaction

• pred(tx ) returns the set of all predecessors of transaction tx . If tx does not have
any predecessors it returns the empty set {}

• state(tx ) returns True if tx is in state committed, False otherwise

• failed(tx ) returns True if tx is in state compensation failed, False otherwise
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Figure 4.6: Activity diagram of the transaction manager

• forceExecution(tx ) returns True if tx is a leaf transaction and the forceExecution
flag of tx is set. This flag can be set by the application for every leaf transaction.
It forces the execution of the transaction although not all predecessors have been
completed successfully.

• R = ¬(∃tx ∈ pred(t) : failed(tx ))∧(∀tx ∈ pred(t) : state(tx )∨forceExecution(t))
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Figure 4.7: Activity diagram for the compensation handling of the transaction manager

If the result of R is True, then the transaction manager sets the state to running and
executes the transaction. Otherwise the execution will be skipped and the state will
be immediately set to aborted. The expression returns False if there is at least one
predecessor which is in state compensation failed or if there is at least one predecessor
which is in state aborted and the forceExecution flag has not been set. Otherwise R is
True and the transaction manager sets the state according to the result of the execution
of the transaction. As soon as the new state of the current transaction has been set, all
dependent transactions as well as the parent transaction (if existing) will be woken up
by setting their state to waiting for execution.

Now we take a look at the compensation handling in figure 4.7. If not all compensa-
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tion predecessors are in a final state, then the transaction is reset to state suspended. If no
compensation dependencies have been defined, then the compensations will be executed
in the reverse order of their original execution schedule. The results of the predecessors
(either compensated or compensation failed) are not considered in the compensation
handling. This is a simpler approach than the dependency handling during the normal
execution. Otherwise the compensation is started. The state will then be set according
to the result of the compensation (compensated or compensation failed). Then all suc-
cessors in state compensation suspended as well as the parent transaction are woken up.
The workflow in both figures leads to the following behavior:
If there is at least one sub transaction in state compensation failed, the transaction man-
ager starts the compensation for the global transaction and the state of the global trans-
action will be set to compensation failed. This behavior keeps the consistency violation
as small as possible. If no other transaction is in state compensation failed, the appli-
cation only has to take care of the one transaction in state compensation failed. The
application is able to query the final states of all transactions of a global transaction.

To preserve the consistency between all transaction entries it is required to perform
one instance of a transaction manager’s workflow in a single local transaction. If this
local transaction is an ACID compliant distributed transaction then

1. the execution space does not need to be the same space as the space of the trans-
action manager and

2. sub transactions themselves can perform operations on remote spaces with the
same transaction which is used by the transaction manager for the update of its
internal data structures.

For this purpose the Extended Paxos Commit (see definition in section 4.2) algorithm
could be used. One could argue that sub transactions of Extended Paxos Commit are
not required, since the REXX model also supports sub transactions. However Extended
Paxos Commit commits sub transactions ACID compliant, which is not supported by
REXX transactions. So for example ACID compliant function replication could be
modelled.

One of the goals of the new REXX transaction model is to support long lived trans-
actions (LLT). The execution of a LLT can take several hours and therefore also the
transaction manager is blocking during this time. This blocking state can be circum-
vented if the Paxos transaction is executed asynchronously. This increases the utilization
as well as the throughput of the individual transaction managers. In that scenario the
responsibility of the error handling, which is required when the commit fails, is passed
to the guard processes which are explained in section 4.3.6. When the asynchronous
commit fails, the transaction is stuck in state running since it will never be processed by
any transaction manager.
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Since the transaction manager handles the whole workflow within one single local
transaction it will also lock all required resources (dependencies, predecessors) for a
long time and will so affect the concurrency. Therefore the workflow of leaf transac-
tions is internally split into two parts with two local transactions. Within the scope of
the first transaction all predecessors are checked and the state is set to running. The
second transaction spans over the execution as well as the update of the internal system
states. This approach improves the concurrency but also harms the consistency of the
transaction manager. This problem is discussed in the next section.

4.3.6 Orphan Transactions
Before the transaction manager executes a transaction it sets the transaction’s state in
a separate local transaction (see figure 4.6) to running. Therefore if the transaction
manager crashes during the execution of a transaction the transaction entry remains in
that state. The problem is the same when the transaction manager crashes during the
execution of compensation actions.

Imagine several transaction managers are running on different locations and are op-
erating on a replicated shared memory. Then one location suffers a power outage and
afterwards all transaction managers are restarted. If transactions (handled by transaction
managers which have been run at the crashed location) have been in state running during
the crash, then they become orphans because no one will take care of them anymore.

The problem here is to detect orphan transactions and abort them appropriately. But
when looking at all running transaction entries in the space then it can not be deter-
mined whether they are handled by a transaction manager or not. The transaction model
supports timeouts, however it specifies neither a limit for the timeout nor how long a
transaction can stay in state running. This can take seconds, hours or even days.

Nevertheless there are three methods to detect and handle orphan transactions:

• Keep-alive pings. During the execution of a transaction, transaction managers
periodically write a keep-alive message with the name of the current transaction
into a certain place. Whenever new transaction managers start or recover from
a failure they first check for all running transactions whether they are alive. If
there was no keep-alive message for a transaction within a certain period, the
transaction manager will take over responsibility and abort the transaction. The
downside of this method is that every transaction manager has to be equipped
with a separate thread whose only responsibility is to periodically write keep-alive
messages. This results in a high resource consumption and even if the proposed
thread is sending its keep-alive messages it can not be guaranteed that the main
thread of the transaction manager is still running correctly.

• Guard processes. Beside transaction processes, dedicated guard processes are
introduced and operate on the same data as transaction processes. Guard pro-
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cesses periodically query all running transactions and check their deadline. If the
deadline has been exceeded then they will take over responsibility and abort the
transaction. The deadline of a transaction is set when it starts. The computation
of the deadline is described in section 4.3.7. This either requires synchronized
clocks of all transaction managers or the current time is retrieved from the envi-
ronment of the shared space. In practice it is recommended to consider a buffer in
the deadline computation. This will prevent situations where a transaction man-
ager is preempted by a guard process although it would have finished execution
in the next seconds. One downside of this method is that long-running orphaned
transactions will not be detected before their deadline.

• Transaction Manager Identifiers. Every transaction manager has a unique iden-
tification number. Whenever it starts the execution of a transaction it also writes
its ID into the transaction entry. So every running transaction can be assigned
to a transaction manager. For this transaction managers must guarantee that they
recover within a certain period after a crash. During the startup the transaction
manager looks for a running transaction which is marked with its ID. If it finds
an orphan transaction which is labelled with its ID it will abort it appropriately.
There can be at most one orphan transaction for a certain transaction manager
at the same time. The requirements for this method are very high because the
guaranteed period within a crashed transaction manager has to recover depends
on the transaction timeouts of the transactions, and transaction timeouts can not
be influenced by the transaction system.

It has been decided to use Guard Processes for the handling of orphan transactions in
the REXX model because

• the implementation of guard processes is simple,

• they only require little resources and

• no assumptions have to be made regarding the recovery of transaction managers.

4.3.7 Timeout Handling
The timeout handling of the REXX model is based on three different types of timeouts:

• The global timeout is passed by the application in the commit call of the API.
This timeout is converted in the transaction manager to an absolute time and acts
as the global deadline. This deadline overrules the individual timeouts of all leaf
transactions if the global deadline is earlier than the deadlines which correspond
to the individual timeouts. However the global deadline does not overrule the
compensation timeout of transactions.
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• For each leaf transaction an individual timeout can be set by the application.
When the execution of a leaf transaction is not finished within that period, the
transaction manager aborts the leaf transaction and performs a rollback. In that
case the state of the leaf transaction is set to aborted.

• The compensation timeout can also be specified for each sub transaction individ-
ually by the application. It determines the timeout for the execution of the com-
pensation of a sub transaction. If the execution time exceeds the timeout, then the
transaction manager aborts the execution, performs a rollback of the compensa-
tion action and sets the state of the sub transaction to compensation failed. Since
this behavior can cause inconsistency of the data the compensation timeout should
be used carefully.

All timeouts have to be specified in advance by the application before the global trans-
action is passed to the transaction manager. If no timeout value is specified, then an
infinite timeout is assumed.

4.3.7.1 Individual transaction timeout

The individual transaction timeout only applies to the execution of transactions and
does not affect the execution of compensations. Before the transaction manager starts
the execution of a transaction it first determines all timeouts using the following rules:

• If the timeout of a transaction has not been set by the application, then the timeout
is set to infinite.

• The timeout is set to the minimum of the parent’s timeout and the timeout of the
transaction. This keeps a hierarchical structure of the timeout values.

Whenever leaf transactions start their execution a deadline value is computed using the
formula

deadline = min(currentTime + txTimeout , globDeadline) (4.3)

where currentTime is the current time, txTimeout is the timeout of the leaf transac-
tion and globDeadline is the global deadline of the global transaction. This calculation
assures that

1. the leaf transaction does not take longer than its specified timeout and

2. the leaf transaction does not take longer than the global deadline (if the execution
engine correctly handles the timeout).

So both values are considered: the global deadline of the global transaction as well
as the relative timeout of the leaf transaction. Even if there are dependencies between
transactions, this timeout method assures that the global timeout is always considered.
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4.3.7.2 Compensation timeout

The compensation timeout is applied when the compensation of a transaction is started.
There are some differences regarding the individual transaction timeouts:

• There is no global deadline for the compensation.

• When the individual timeout elapses the state of the transaction is set to compen-
sation failed. This can result in an inconsistent state of the system.

• Compensation timeouts are not inherited to sub transactions.

Compensation timeouts should be used carefully because the system can become in-
consistent when compensation actions are aborted. Since all transactions (parents and
leaves) have compensation actions, the timeout is not inherited to the sub transactions.
Therefore compensation timeouts have to be explicitly specified for each individual
transaction.

4.3.7.3 Timeout Handling: Examples

The following examples explain the timeout handling in more detail.

Example 1: Transaction with a global timeout Figure 4.8 shows a global transaction
with a global timeout of 20 seconds which consists of the parent transaction A and the
two sub transactions B and C . No individual timeouts have been specified and therefore
the default timeout (infinite timeout) is assumed. In addition transaction C depends on
transaction B .

The following steps are performed:

1. Transaction B first starts the execution. No individual timeout has been set, there-
fore it is assumed as infinite and the deadline is set to the global deadline (20s)
(formula 4.3).

2. Transaction B finishes after 8s and C starts the execution. The deadline is again
set to the global deadline (20s) because an individual deadline has been specified.

3. Transaction finishes after 17s.

Example 2: Transaction with a global timeout and individual timeouts Figure 4.9
shows a global transaction with two nesting levels and a global timeout of 20 seconds.
Additionally for every sub transaction individual timeouts have been set. Transaction C
depends on B and transaction D depends on BC .

The following steps are performed:
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Figure 4.8: Global transaction with a global timeout

1. Transaction B first starts the execution. The actual execution deadline is com-
puted using the formula 4.3 and set to 10s.

2. Transaction B finishes after 8s and C starts the execution. The deadline is set to
13s (8s + 5s).

3. Transaction C finishes after 12s and D starts the execution. The deadline is now
set to 20s because the global deadline is lower than the current time plus the
individual timeout.

4. Transaction finishes after 18s.

Example 3: Transaction with multiple timeouts Figure 4.10 shows a global trans-
action with a global timeout of 15 seconds which consists of one parent transaction
and two sub transactions. The sub transactions have an individual timeout of 15s and a
compensation timeout of 5s. Additionally transaction C depends on B .

The following steps are performed:

1. Transaction B first starts the execution. The actual execution deadline is set to
15s.

2. Transaction B finishes successfully after 12s and C starts the execution. The
deadline is set to 15s.
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Figure 4.9: Global transaction with a global and individual timeouts

3. Transaction C is aborted by the transaction manager after 15s since its timeout
has elapsed. The parent transaction A triggers the compensation of transaction B .
The deadline of the compensation is set to 20s (15s + 5s).

4. The compensation successfully finishes after 17s.

If the compensation had not finished before the deadline, then the transaction manager
would have set the state to compensation failed.

4.3.8 The global context
From the moment when the application has handed over the global transaction to the
transaction manager the application can not access the global transaction until it has
been completed. So the application can not take care of the coordination between trans-
actions of the global transaction. But there are a lot of cases where communication
between transaction is required and therefore the global context provides exactly this
possibility.
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Figure 4.10: Transaction with several timeouts

The global context is a simple key-value store which provides two access methods
(put and get). Each sub transaction has access to its local context as well as to the
context of the parent.

The get-method first tries to obtain the value from the local context and when it
fails it accesses the context of the parent, whereas the put-method always writes to the
local context so that the sub transaction does not modify the context of the parent during
its execution.

After the execution of a transaction has finished the local context is inherited to its
parent where entries with the same key will be replaced. Since it is not possible to delete
values from the context, it monotonically grows after every transaction hierarchy.

Figure 4.11 shows a 2-level nested transaction. Parent transaction B inherits both
context values from its sub transactions D and E . After completion of transaction B its
context is passed to its parent A which also inherits the context of C . When the global
transaction has been completed all context values are stored in its top-level transaction.

If transaction D wants to pass information to transaction E , then a dependencies
has to be added to assure that transaction E is not executed before transaction D has
committed. This is required because the context values of transaction D are not visible
to other transactions until it has committed. After completion of the global transaction
the whole context is passed to the application as part of the result.
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Figure 4.11: Context inheritance between transactions

4.3.9 Scheduling of REXX transactions
The following examples explain how REXX transactions with different structures are
processed according to the described model.

4.3.9.1 Example 1: Transaction with XOR

The following example shows how function replication could be modelled with the
REXX transaction model. Figure 4.12 shows a global transaction which follows the
composition X = (A ⊕ B) ∧ C . For the modelling of this composition it is required
to introduce an intermediate transaction AB which stores the result of A ⊕ B . The
aggregation function of transaction AB is A∨B whereas transaction X uses the default
aggregation function (AND). The figure also shows that transaction B depends on A

and A has set the forceExecution flag, so that it is executed even if its predecessors have
aborted. This dependency already defines the priority of the two transactions. In this
case transaction A is executed and its result is passed to transaction B . Transaction B

has to evaluate the result of A and has to abort if A has been successful, otherwise B
will be executed. This functionality has to be implemented by the developer and is not
part of the transaction model.

When the global transaction is passed to the transaction manager it is split into five
transactions which are represented by five entries in the data container. All of the trans-
actions are initially set to state waiting for execution. Table 4.1 shows one possible exe-
cution schedule of a successful execution of the transaction. It lists all states ((W)aiting,
(S)uspended, (R)unning, (C)ommitted, (A)borted) in every round. For the schedule it
has been assumed that more than one instance of the transaction manager is running in
parallel.
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Figure 4.12: Transaction diagram for composition X = (A⊕ B) ∧ C

round A B AB C X
0 W W W W W
1 W S S R S
2 R S S C W
3 R S S C S
4 C W W C S
5 C R S C S
6 C A W C S
7 C A C C W
8 C A C C C

Table 4.1: Example execution schedule of transaction X

Here is the explanation of the rounds in table 4.1:

1. Since the dependencies are not met, transactions B , AB and X are set to sus-
pended. Transaction C has no dependencies and therefore starts the execution.
It can be seen that for the execution of this round four transaction managers are
working in parallel. Also a fifth instance would be busy if the transition of trans-
action A to state running would be moved to this round.

2. Transaction A starts its execution. Meanwhile transaction C has been committed
and the parent transaction X was awakened.

3. Since not all sub transactions of X are in a final state it returns to state suspended.

4. Now transaction A successfully completes and awakes the parent AB as well as
the successor transaction B .
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Figure 4.13: Transaction diagram for composition Y = (D ∧ E ) ∧ F

5. Transaction B starts its execution and AB is set to suspended.

6. Since A was successful the execution of transaction B returns aborted (This has
to be assured by the developer). This causes transaction AB to awake.

7. Now all dependencies of AB are met because all sub transactions are in a final
state. The aggregation function (A ∨ B ) evaluates to true and the state is set to
committed. In the same instance the parent transaction X is set to waiting for
execution.

8. Transaction X evaluates its aggregation function (AND) and finishes the global
transaction in state committed.

4.3.9.2 Example 2: Failed Compensation

This example shows a two-level nested transaction with the composition Y = (D ∧
E ) ∧ F (see figure 4.13). Both parent transactions (DE and Y ) derive their result by
performing the default AND aggregation function. There are no dependencies between
sub transactions.

Again the transaction manager splits the transaction into five transactions and sets
them initially into the waiting for execution state. Table 4.2 now shows one possi-
ble execution schedule for the scenario that transaction E aborts and subsequently the
compensation of the already committed transaction D fails. The table now uses four
more states: waiting for compensation (WC), running compensation (RC), compensated
(COMP) and compensation failed (F).

Here is the explanation of the rounds in table 4.2:
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round D E DE F Y
0 W W W W W
1 R R S R S
2 A R W C W
3 A R S C S
4 A C W C S
5 A WC S C S
6 A RC S C S
7 A F W C S
8 A F F C W
9 A F F WC S

10 A F F RC S
11 A F F COMP W
12 A F F COMP F

Table 4.2: Example execution schedule of transaction Y

1. Transactions D , E and F are starting execution while the parent transactions are
set to suspended. For this schedule we assume that there are at least five active
transaction manager threads.

2. The execution of transaction D aborts and DE is set to waiting for execution
again, whereas transaction F has committed successfully and its parent Y is set
to waiting for execution.

3. Transaction DE is set to suspended again because not all sub transactions are in
a final state. The same is valid for Y .

4. Now transaction E commits and sets DE to waiting for execution.

5. Transaction DE executes its aggregation function which yields false. Therefore
the compensation of E is triggered.

6. Compensation of E is running.

7. Compensation of E has failed and DE is set to waiting for execution.

8. Transaction DE inherits the state compensation failed and then sets its parent Y
to waiting for execution.

9. Top-level transaction Y then triggers the compensation of the already committed
transaction F and waits for it in state suspended.
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10. Compensation of F is running.

11. Compensation completes and therefore Y awakes.

12. TransactionY inherits the state compensation failed and the transaction workflow
is completed.

Whenever a global transaction in state compensation failed is passed back to the appli-
cation the application is responsible to restore a consistent state.

4.3.10 Proof of consistency
For the proof of consistency the following invariants have been checked with a model
checker:

• If a parent transaction is in a final state, then all of its sub transactions must be in
a final state.

• If a sub transaction is in state compensation failed and the parent transaction is in
a final state then the parents state must be compensation failed.

• If a parent transaction is in state committed then at least one sub transaction must
be in state committed.

For the full proof regarding consistency TLA+ (The Temporal Logic of Action Plus)
[Lam02] has been used for the formal specification of the algorithm (see appendix A).

Afterwards the specification has been checked by using TLC. TLC is the model checker
which is part of the TLA+ toolbox. TLA has been designed for specifying concurrent
system by using mainly ordinary (non-temporal) mathematics. TLA+ is based on TLA
and is a complete formal language. It includes ordinary math like first order logic and
sets. In addition it provides constructs for writing proofs.
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CHAPTER 5
Implementation

This chapter describes how the two relaxed transaction models have been integrated
into the current version of MozartSpaces. The goal was to use as many features of
MozartSpaces as possible to yield optimal performance. The big challenge is to align
the architecture of the implementation to the architecture of MozartSpaces. This means
to have a data-driven approach where the data controls the coordination between all
processes.

Throughout the implementation the focus has been set on scalability. This requires
that

• all processes can operate concurrently on the data and

• the dependencies between the data are as low as possible.

5.1 Extended Paxos Commit

5.1.1 Architecture Overview
Like any other extension of MozartSpaces the implementation of the extended Paxos
Commit algorithm has to be totally transparent to the application. The application
should only see the additional methods which are provided through the API. The whole
protocol has been implemented on top of MozartSpaces. Figure 5.1 shows that an ad-
ditional Paxos layer has been introduced between the MozartSpaces core and the API.
The Paxos layer operates like any other application and it also uses the API to access
the core. This design keeps a clear interface between the MozartSpaces core and the
new Paxos implementation. However minor changes within the core are necessary.

Based on the current MozartSpaces architecture the changes of the new extension
are performed in the following areas:
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Figure 5.1: Architecture of MozartSpaces with the new Paxos Extension

• Extension of the CAPI - new methods are added for the Paxos implementation

• The Paxos Manager - main part of the extension

• Paxos SpaceAspect - guarantees consistency after restart

• Minor changes in the MozartSpaces core

5.1.2 Extension of the CAPI
The CAPI is the API which is used by applications to communicate with MozartSpaces.

Transactions in MozartSpaces are identified by the URI of the space where the
transaction has been created as well as an ID. Both values together form the unique
TransactionReference. The new PaxosTransactionReference extends
the existing transaction reference by the values listed in table 5.1:

The transaction reference stores all data which is required to perform the execution
of the Paxos Commit algorithm.

The existing CAPI has been extended and now provides additional methods. Ta-
ble 5.2 lists some of the new methods of the class PaxosCapi. Further methods are
provided but they only differ in their arguments and not in their functionality.

Table 5.3 lists the values of the enumeration PaxosStatus. It contains all possi-
ble states of the Paxos protocol. For the application only COMMIT and ABORTED are
visible. The other states are only used internally.

The main task of the createTransaction() methods is to obtain a global
transaction ID. In the original implementation this call receives a new transaction ID
from the core. But since the existing persistence implementation does not include the
counter of the transaction ID, the transaction ID is reset after a restart of the core. For
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Attribute Description
URI registrar URI of the space where the registrar pro-

cess is located
ArrayList<URI> acceptors list of spaces where the acceptor pro-

cesses are located
Long timeout timeout of the transaction
ArrayList
<PaxosTransactionReference>
lstSubTx

list of all sub transactions

PaxosTransactionReference
parent

parent transaction

distributedFlag indicates whether the transaction is a local
or a distributed transaction

ArrayList<URI> participants list of participants (resource managers) of
the transaction

Table 5.1: The PaxosTransactionReference class

distributed transactions it is essential to have unique transaction IDs. This has been
accomplished with a persistent container which stores the value of the next ID. The im-
plementation of Paxos completely encapsulates the usage of local transactions. Local
transactions can not be directly created using the PaxosCapi. The new CAPI always
returns a PaxosTransactionReference, however if only one space is involved
in a Paxos transaction, the local transaction system is used for the commit.

The commitTransaction() methods trigger the distributed commit algorithm.
Instead of calling the local commit function, a message is sent to the registrar process.
This message starts the distributed transaction. The synchronous call is blocked until the
result of the transaction is received from the leader process of the transaction. Because
of the asynchronous characteristic of the Paxos protocol it can not be guaranteed that all
participating nodes already have committed their local data after this method returns.

All other transactional operations of the original CAPI like write() or take()
have been extended to

• add the target space of the operation to the list of participating spaces in the
PaxosTransactionReference and

• set the flag distributed of PaxosTransactionReference when the
target space of the operation is not the local space.
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Method Description
createTransaction(
timeout, space)

returns a new PaxosTransactionReference
with the next transaction ID of space space and
the specified timeout.

createTransaction(
timeout , space,
context, acceptors)

returns a new PaxosTransactionReference
with the given values. The default list of acceptors
is replaced by acceptors.

createTransaction(
timeout, context,
parent)

creates a new sub transaction of parent. The new
PaxosTransactionReference is added to
the reference of the parent.

commitTransaction(
transaction, rule,
context)

starts the Paxos Commit algorithm for the given
transaction and the commit rule rule and
returns the PaxosStatus.

commitTransaction(
transaction)

starts the Paxos Commit algorithm for the given
transaction and the default commit rule and
returns the PaxosStatus.

commitTransactionAsync
(transaction,
context)

starts the Paxos Commit algorithm for the given
transaction with the default commit rule and
returns immediately.

rollbackTransaction(
transaction)

starts the Paxos Commit algorithm for the given
transaction and forces ABORT for the result.

Table 5.2: The PaxosCapi class

5.1.3 Paxos Integration
The Paxos protocol specifies different roles and each of these roles is implemented as a
single class which extends the Thread class.

5.1.3.1 Communication between processes

The communication and coordination between the Paxos processes is accomplished
with MozartSpaces. Every space has its own message container. If a process located on
space A wants to send a message to a process on space B then it writes a message into
the message container of space B . Table 5.4 gives an overview of all used containers.

The message container is non-persistent and is created by the Paxos manager before
the startup of the other Paxos processes. The decision to use a non-persistent container
is based on the fact that operations on non-persistent containers are faster. Nevertheless
if a space restarts and the container is destroyed the operation is not affected since
the Paxos model can cope with message loss. Every process uses two containers, the
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Status Description
WORKING the transaction has been used but the commit cycle

has not started yet. This state is only used inter-
nally.

PREPARED the transaction has already been prepared by the re-
source manager. This state is only used internally.

COMMIT the transaction has been committed.
ABORTED the transaction has been aborted and a rollback has

been performed.

Table 5.3: The PaxosStatus enumeration

Container name Persistent Description
paxos metadata Yes stores the next transaction ID.
paxos msg No used for the communication between Paxos

processes.
paxos log Yes used to keep prepared data persistent. This

container is required to prevent inconsistent
system states after a system crash.

leader election No used for the communication between leader
processes.

paxos rm data Yes stores the operational data of the resource
manager process.

paxos reg data Yes stores the operational data of the registrar
process.

paxos acc data Yes stores the operational data of the acceptor
process.

paxos lead data Yes stores the operational data of the leader pro-
cess.

paxos prop data Yes stores the operational data of the proposer
process.

Table 5.4: List of containers used in the Paxos Implementation

messages container as well as a separate persistent data container which acts as the
stable storage in the Paxos Commit protocol.

The message container is coordinated with a LabelCoordinator whereas the
persistent data containers are using a KeyCoordinatorwith the transaction reference
used as key.
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5.1.3.2 The PaxosManager

Figure 5.2: Architecture of the Paxos Manager

The Paxos Manager is the main part of the implementation and it is started after the
initialization of the MozartSpaces core. It behaves like a normal application which is
communicating via the standard CAPI with the MozartSpaces core. It is responsible for
the following operations:

• Creation of the message container

• Creation and startup of Paxos processes

• Creation and startup of Paxos leader election process

• Setup of the Paxos aspect

• Shutdown of all Paxos processes

5.1.3.3 Scalability

Since all processes, regardless whether they reside on the local space or not, only com-
municate with the space, it is possible to run several processes in parallel without ad-
ditional coordination effort. So depending on the need there can run one, two or more
instances of the same Paxos process on one space. They all share the same persistent
data container.
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5.1.3.4 Space Aspects

For the implementation of the distributed commit algorithm it is required to modify the
start-up behavior of the space. Due to the flexibility of MozartSpaces those changes can
be incorporated into an aspect. The goal of the aspect is to prevent inconsistent system
states after a restart of the space. There are two cases which can result in an inconsistent
system state:

1. The space performs a transactional operation like take() or write(). After-
wards due to some reason the space crashes. Since the current implementation of
the persistency does not include the isolation manager (see section 3.2.2), the op-
eration is lost after the space has recovered. However the application thinks that
the call has been successful and so the application data might become inconsistent
if the subsequent commit succeeds.

2. The transaction has already been prepared and the space assured to be able
to commit at any time. If the space now restarts the prepared data is lost. This
is because the current implementation of the persistency does not include pre-
pared transactions. If the outcome of the distributed transaction is commit, the
application data becomes inconsistent.

The first case is handled by the aspect PaxosSpaceAspect which is plugged to the
interception point (IPoint) before all transactional operations (ALL PRE POINTS).
The aspect then creates a persistent entry for each transaction in the data container of
the resource manager process of the local Paxos instance. If an entry of the transaction
already exists no action will be performed. The second part is to mark all transactions
as invalid after the startup of the space. This is performed in the startup phase of the
space when the space aspect is added. This causes all subsequent prepare operations to
fail.

Due to the current architecture of MozartSpaces and the current persistency imple-
mentation it is not possible to guarantee a consistent state in the second case. Once a
space has communicated prepared to the Paxos protocol it can not withdraw its deci-
sion. It has assured that it is possible to commit at any time. This promise only holds if
the system is able to store the prepared data persistently so that it survives a restart of
the space. In the current implementation this can not be managed without spending a
tremendous effort. So another approach has been chosen to cope with that case.

During the startup phase of the space all prepared transactions are marked as in-
valid. Once a transaction is prepared, there are only two possible options: commit and
abort. In the abort case we are happy because we do not have to perform special ac-
tions since the prepared data has already been lost after the restart of the space. In the
commit case the validity of the transaction is checked. If it is marked as invalid then
a ContainerAspect is created for each local container which has been affected by
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the transaction. The only job of this aspect is to raise an InconsistentContainer
exception whenever a process tries to access the container. Since aspects are not covered
by the current implementation of the persistency profile, the aspect has to be re-created
after every restart. Once a container is marked as inconsistent the application is respon-
sible to recover it.

5.1.3.5 Changes in the MozartSpaces core

1. The current implementation does not allow operations which are performed with
a transaction from a remote space. This constraint has been removed.

2. If an operation with a new transaction is executed, the new transaction will be
implicitly created. Therefore the passed Paxos transaction reference is used as the
local transaction reference. So all cores which have joined in the same distributed
transactions share the same transaction reference. The current implementation
throws an error if a transaction has not been created before its first use. The new
approach was necessary because until a MozartSpaces core receives the first oper-
ation of a distributed transaction it is not clear whether the core joins the transac-
tion or not. Another approach would be the explicit creation of a local transaction
just before the first operation of a distributed transaction is executed on the core.
In that case a modification of the createTransaction method would have
been required so that it can handle already existing transaction references.

3. After the resource manager has prepared a transaction, it is not allowed to execute
further operations with that transaction. The status attribute of Default-
Transaction is set to COMMITTING when the transaction has been prepared.
So the MozartSpaces core does not allow further operations. The attribute is set
in the aspect PaxosSpaceAspect.

4. Currently MozartSpaces handles a timeout for every transaction and if this time-
out elapses a rollback is performed. But since already prepared transactions must
not time out, the TransactionTimeoutHandler has been adapted accord-
ingly.

5.1.3.6 Configuration

The configuration of the Paxos protocol is done in the class PaxosConfiguration,
which is part of the MozartSpaces configuration CommonsXmlConfiguration. The
configuration can be specified either directly in the application or through the XML con-
figuration file. The configuration contains the following values:

• Phase3 timeout - The timeout in the resource manager specifies the period after
which a re-send of the phase 3 message is requested. Default value is 3 seconds.
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1 <mozartspacesCoreConfig>
2 <!-- ... normal MozartSpaces config is here ... -->
3 <paxos>
4 <phase3Timeout>3000</phase3Timeout>
5 <leaderTimeout>6000</leaderTimeout>
6 <nbrHandlersRM>2</nbrHandlersRM>
7 <nbrHandlersREG>1</nbrHandlersREG>
8 <nbrHandlersACC>2</nbrHandlersACC>
9 <nbrHandlersPROP>1</nbrHandlersPROP>

10 <nbrHandlersLEAD>1</nbrHandlersLEAD>
11 <acceptors>
12 <acceptor>xvsm://localhost:9876</acceptor>
13 <acceptor>xvsm://localhost:9877</acceptor>
14 </acceptors>
15 </paxos>
16 </mozartspacesCoreConfig>

Listing 5.1: Sample Paxos configuration

• Leader timeout - This timeout is related to the leader election service. If there
has not been a signal from the current leader within that timeout, a new leader
will be elected. The default value is 6 seconds.

• Default acceptors - This is the list of acceptor nodes (specified by their URI),
which is used by Paxos if no acceptors have been specified in the commit method.
If the set of acceptors is neither specified in the configuration nor in the commit
call, then the current core is used as the only acceptor.

• Number of processes - For all Paxos processes the number of running threads can
be specified individually. Per default there is one thread running for each Paxos
process.

Listing 5.1 shows a sample XML configuration for Paxos.

5.1.4 Paxos Processes
The abstract class PaxosHandler acts as framework for all Paxos processes and han-
dles the communication as well as the persistent data. The class is generic and must
be parameterized with a class of type PaxosData. The class PaxosData itself is
an abstract class and is used to store the data of one transaction persistently. Every
Paxos process has its own implementation of PaxosData and PaxosHandler. The
relation between the classes is shown in figure 5.3.
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Figure 5.3: Class Diagram of the Paxos processes

The class PaxosHandler extends the Thread class and so all instances are run-
ning in a separate thread. The PaxosHandler performs the following workflow in an
endless loop:

1. Create a new local transaction.

2. Wait until a new message has been received and consume it.

3. Take the data of type PaxosData which is related to the transaction reference
of the received message.

4. Call the abstract method handleMessage. The task of this method is to put
subsequent messages into the outbox and to modify the state of the transaction
which is stored in PaxosData. The outbox is a simple internal memory provided
by PaxosHandler. This buffer for the messages is required, since the messages
must not be sent before the local commit has been finished successfully.
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5. Write the persistent PaxosData.

6. Commit the local transaction.

7. Send all messages which are in the outbox.

Messages are sent by writing the message into the paxos msg container of the re-
mote space. The sending of messages is performed outside the scope of the local trans-
action because a local transaction per definition can only operate on a single space.

5.1.5 The Resource Manager Process (PaxosHandlerRM)
The resource manager is the link between the Paxos protocol and the local MozartSpaces
core. Table 5.5 lists all messages which are processed by the resource manager and also
describes subsequent actions.

Message Action Next State Subsequent messages
PREPARE all local changes are

prepared by calling
prepareTransaction

PREPARED PHASE2A to all accep-
tors

PHASE3 local commit (if the result
is commit) or local rollback
(otherwise) is performed

COMMIT or
ABORTED

-

CHECK RM - - OUTCOME (RM) to
the next acceptor in the
list

Table 5.5: List of messages which are processed by the resource manager

As soon as the PREPARE message is received an internal timer periodically checks
whether the result of the transaction has already been received. If not, it sends the
message CHECK RM to itself which subsequently queries the state of the transaction
from the acceptors. This approach assures a clear and consistent asynchronous behavior.

5.1.6 The Registrar Process (PaxosHandlerREG)
This process starts the Paxos Commit protocol after it has received the message START
COMMIT. Table 5.6 shows further details.

5.1.7 The Acceptor Process (PaxosHandlerACC)
This process acts as the transaction manager and is the most complex Paxos process.
Table 5.7 lists all messages which are processed.
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Message Action Next State Subsequent messages
START
COMMIT

- PREPARED PHASE2A to all accep-
tors, PREPARE to all
participants

Table 5.6: List of messages which are processed by the registrar

Message Action Next State Subsequent messages
OUTCOME
(RM)

if the result is available, the
corresponding RM is notified

- PHASE3 to the corre-
sponding RM

OUTCOME if the result is not available,
the abort is triggered

- PROPOSE to the local
proposer

OUTCOME if the result is available, it is
re-sent to the leader

- PHASE2B to the leader

PHASE1A either returns ‘free’ or the
chosen value

- PHASE1B to sending
proposer

PHASE2A wait for other PHASE2Ames-
sages if they are still missing

WORKING -

PHASE2A notify leader, if all required
PHASE2A messages have
been received

PREPARED
or
ABORTED

PHASE2B to the leader

PHASE3 - COMMIT or
ABORTED

-

Table 5.7: List of messages which are processed by the acceptor

Similar to the resource manager the acceptor also starts an internal timer for each
transaction. If the timeout elapses it sends an OUTCOME message to itself to trigger
further actions. The message OUTCOME (RM) is sent by resource managers which
want to know the result of the Paxos protocol. In contrast to the resource manager, the
acceptor uses a randomized timeout value to assure that the PROPOSE message is not
sent simultaneously by all acceptors. Otherwise the protocol could get stuck if several
proposers are struggling for the highest ballot number.

5.1.8 The Proposer Process (PaxosHandlerPROP)
The proposer is notified by the acceptor when a transaction has exceeded its timeout.
The proposer then starts a new Paxos ballot where it tries to abort the transaction. Ta-
ble 5.8 lists all actions which are performed after the corresponding message has been
received.
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Message Action Next State Subsequent messages
PROPOSE increment the ballot num-

ber of the desired Paxos in-
stance and propose the value
ABORTED

- PHASE1A to all accep-
tors

PHASE1B votes for ABORTED (if in-
stance is free) or for the al-
ready chosen value (other-
wise)

- PHASE2A to all accep-
tors

Table 5.8: List of messages which are processed by the proposer

This process does not require internal timeout handling. If it does not receive an
answer for the PHASE1A message from the acceptors, it waits until it gets re-triggered
by a PROPOSE message from any of the acceptors. The proposer is not part of the
original Paxos Commit. In Paxos Commit the operations of the proposer are performed
by the acceptors. The usage of a separate proposer process keeps the complexity of the
acceptor process on a manageable level.

5.1.9 The Leader Process (PaxosHandlerLEAD)
Table 5.9 describes the actions of the leader process.

Message Action Next State Subsequent messages
PHASE2B notifies all acceptors and par-

ticipating RMs if a majority
of PHASE2B messages has
been received and if no parent
transaction exists

COMMIT or
ABORTED

PHASE3 to all accep-
tors and RMs

PHASE2B notifies the leader (itself) if
a majority of PHASE2B mes-
sages has been received and
the transaction does have a
parent transaction

PREPARED
or
ABORTED

PHASE2B to the leader
(itself)

Table 5.9: List of messages which are processed by the leader

If a majority of PHASE2B messages has been received for a sub transaction, the
leader re-triggers the evaluation of the parent transaction by sending an empty PHASE2B
message to itself. The state of the sub transaction then either remains in state PREPARED
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(if all PHASE2A messages had been PREPARED) or ABORTED (otherwise) until a final
decision has been made by the parent transaction.

The leader process implements the new extension of the Extended Paxos Commit
model of section 4.2. It executes the Commit Rule which assigns the final decisions
(commit or abort) to the parent transaction as well as to all sub transactions. All commit
rules are implementing the ICommitRule interface which only consists of the method
getResult(). This method is called by PaxosHandlerLEAD when the original
Paxos Commit instances of all sub transactions have finished their second phase (figure
2.4). In that state the state of the sub transactions is either prepared or aborted.
The argument of the method is a map HashMap<PaxosTransactionReference,
PaxosStatus> which contains the state of all sub transactions.

The return value contains the following values which are packaged into the class
RuleResult:

• The PaxosStatus of the parent transaction (commit or abort).

• The PaxosStatus of all sub transactions (commit or abort).

The leader process then communicates the results to

• all resource managers PaxosHandlerRM,

• all acceptor nodes PaxosHandlerACC and

• to the calling CAPI which then passes the result to the application.

The three different commit rules which have been defined in the model of the Extended
Paxos Commit have been implemented with the following classes:

• DefaultCommitRule

• ThresholdCommitRule

• LogicalCommitRule

Whereas the implementation of DefaultCommitRule and ThresholdCommitRule
has been straight forward, the implementation of LogicalCommitRule was a bit
more tricky.

5.1.9.1 The LogicalCommitRule

As specified in the model (section 4.2.4.1) the result of this rule is not only the PaxosStatus
of the parent transaction. The logical commit rule also modifies the state of the sub
transactions if this is required to commit the parent transaction.
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For the implementation of that desired behavior a SAT solver has been used. Other
than a simple solver, which just returns whether a boolean equation is satisfiable or not,
an enhanced solver was required which also returns a model which solves the equation.
Due to its flexibility and its licence (GNU LGPL license) the Java-based SAT solver
Sat4J 1 has been used.

The boolean equation of the LogicalCommitRule has to be specified by the
application in CNF (Conjunctive normal form) form. A clause is a list of literals where
a literal is either POS(tx) (positive literal) or NEG(tx) (negative literal) and tx is of
type PaxosTransactionReference and specifies a sub transaction.

The following values are passed to the SAT solver:

• all clauses specified by the application,

• additional clauses with the single literal NEG(tx) for all sub transactions in state
aborted and

• an ordered list of type PaxosTransactionReference which specifies the
priorities among the sub transactions.

The solver then returns two values:

1. True (if the equation is satisfiable) or False (otherwise)

2. the model (the list of assignments for all literals) which solves the equation if
the first result is True. The returned model is the optimal solution in terms
of containing the maximal number of positive literals (POS(tx)). If there are
several possibilities with the same number of positive literals, then the priorities
come into play.

The result is then converted into an RuleResult object and is returned to the leader
process.

5.1.9.2 Committing a transaction

When the application calls commitTransaction() it is checked whether the trans-
action only operates on the local space. If yes, the Paxos algorithm is skipped and the
local commit process is started. If the transaction spans over more than one node then
the Paxos algorithm has to be executed.

Figure 5.4 shows the message flow of an error-free instance of the distributed com-
mit algorithm with two resource managers and one acceptor process.

1http://www.sat4j.org/
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Figure 5.4: Transaction commit
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In the 3rd phase the current leader notifies all acceptors, all involved resource man-
agers as well as the calling CAPI. In the synchronous commitTransaction oper-
ation the call blocks until the outcome (message PaxosCapiAnswer) is received.
Since Paxos Commit is an asynchronous protocol, we can not rely on how long the
transmission of a message takes. So it is possible that the PaxosCapiAnswer arrives
before the PaxosPhase3 messages. Then the application thinks that the commit has
been processed although the resource managers have not yet started their local commit
process. The application only knows that eventually all resource managers will have
successfully performed the local commit. The sequence diagram of the CAPI method
rollbackTransaction() is similar.
One solution to this problem would be the use of notifications. Applications could setup
notifications if they necessarily need to know whether a certain entry has been actually
written and committed. Another possibility would be to put this kind of notifications
within the Paxos implementation, but this would further increase the complexity.

5.1.9.3 The Leader Election

The leader election among all Paxos nodes is performed with a modified version of
the stable algorithm described by Marcos K. Aguilera et al. [ADGFT01]. Every node
which is running an acceptor process is also running a leader process and the other way
round. Every distributed transaction requires a pool of acceptor nodes which can either
be specified in the space configuration or can be passed in the commit operation.

Since every transaction can have a different pool of acceptor nodes, there are differ-
ent approaches for the implementation of a leader election service:

1. Every transaction runs its own instance of the leader election. The advantage of
this approach is its flexibility regarding the timeout requirements of the individual
transactions. However this causes a high communication effort.

2. Every node runs its own instance of the leader election. This would require that
the pool of acceptor nodes is predefined and all transactions are using the same
processes. This approach is more efficient, but also limits the flexibility for appli-
cations.

3. Every pool of acceptor nodes runs its own instance of the leader election. This is
a mix of option 1 and 2.

The third option combines the advantages of the first two options: it is resource efficient
and keeps the flexibility of the algorithm. All transactions with the same pool of accep-
tor nodes share the same instance of the leader election service. All pools are identified
with a group ID which is a hash value of all nodes in the pool.
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A new instance of the leader election service is started when an acceptor receives
a PaxosTransactionReference with a new group ID. The first leader is always
the first node of the pool.

5.2 The REXX Transaction Model

5.2.1 Architecture Overview
The implementation of REXX transactions follows a totally different architecture de-
sign than the Paxos implementation. The operations of the transactions as well as the
coordination among the operations is swapped out into a separate Java class (Rexx-
Transaction). This class contains all information which is required to execute the
transaction on a separated execution environment, the transaction handler.

Table 5.10 lists all attributes of the RexxTransaction class.
The operations of transactions are encapsulated in separate Java classes which have

to implement the interface RexxExecutionCode which consists of the following
two methods:

• execute(capi, tx, context): This method contains the functional logic
of the transaction.

• compensate(capi, tx, context): This method is called when the trans-
action has already committed and the parent transaction decides to compensate the
transaction. This method should semantically undo the changes of the execute()
method.

The access from within those functions is limited to the following objects:

• The capi parameter must be used to execute operations on the space.

• The parameter tx is the transaction which should be used within the execution
body. The timeout of this transaction is based on the timeout attribute of the
RexxTransaction.

• The parameter context allows the communication between sub transactions.
The context is implemented with the class RexxContextwhich acts as a simple
HashMap with the signature <String, Object>.

The implementation of the timeout of REXX transactions is implemented using the
timeout functionality of MozartSpaces. If the timeout of a transaction is detected then
MozartSpaces executes a rollback, marks the transaction as invalid and throws an ex-
ception. This results in the fact that a correct timeout handling of REXX transactions
can only be guaranteed if the execution code keeps the following guidelines:
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• No blocking functions (e.g. sleep()), except space operations, may be used.

• The surrounding transaction tx must be used for all space operations.

• The timeout exception of the surrounding transaction should not be caught within
the execution code.

The coordination and communication between applications and transaction handlers as
well as the coordination among transaction handlers is accomplished with the special
containers listed in table 5.11. All containers are persistent to assure consistency even
after a system crash. The containers rexx data and rexx dependencies
are coordinated with a QueryCoordinator because selections with multiple pa-
rameters are used. The containers rexx meta and rexx context are using a
KeyCoordinator where the latter additionally uses a LabelCoordinator.

5.2.2 Extension of the CAPI
The application interface has been extended by the four methods listed in table 5.12.

The commitTransction() method takes a RexxTransaction object as ar-
gument. The main task of the method is to prepare the transaction so that it can be
processed by the transaction handlers without additional effort. Therefore the method
recursively loops over all sub transactions of type RexxTransaction and

• creates a new entry of type RexxTransactionEntry,

• obtains the next unique REXX transaction ID from container rexx meta,

• sets the timeout to value min(pTimeout , timeout) (where pTimeout is the time-
out of the parent and timeout is the timeout of the transaction),

• writes the created RexxTransactionEntry into container rexx data
and

• creates a new object of type RexxDependencyEntry for every predecessor
and writes them into container rexx dependencies.

These steps are performed in one local transaction. Figure 5.5 shows how the CAPI
splits the RexxTransaction tx into entries of type RexxTransactionEntry
(main-tx, sub-tx1, sub-tx2). Afterwards the dependencies are written into container
rexx dependencies. The next read() operation waits until the top transaction
(main-tx) has been completed and then collects the result of all sub transactions and also
queries the context values.

The methods commitTransaction() and waitForTransaction() return
the result in a RexxResult object. Table 5.13 lists all attributes.
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Figure 5.5: Sequence diagram of the commitTransaction()-method

5.2.2.1 Restrictions and Limitations

• Interfacing of 3rd party systems outside of the XVSM middleware is not explicitly
supported

• All execution classes (RexxExecutionCode) of the transactions must be seri-
alizable

• All execution classes (RexxExecutionCode) must be available in the class-
path of the execution space
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5.2.2.2 The AsyncTransactionManager

With the AsyncTransactionManager the API is extended with the functionality
of callbacks and therefore it has to be instantiated by the application. It provides two
methods which are listed in table 5.14.

When the function commitTransactionAsync() is called by the application
the AsyncTransactionManager triggers the commit of the transaction, creates a
new thread and performs a blocking wait until the result is available. As soon as the
transaction has finished it retrieves the result and calls the callback method trans-
actionCompleted of the provided RexxTransactionListener class.

5.2.2.3 The monitoring API: MAPI

For the purpose of monitoring and debugging a separate API has been implemented - the
MAPI. The difference to the standard CAPI is that the MAPI also returns intermediate
results of running transactions, whereas the CAPI only returns the results for finished
transactions.

The provided methods are listed in table 5.15.

5.2.3 The REXX transaction manager
The REXX transaction manager (RexxTransactionManager) acts as the operator
of the REXX transaction processing system. It controls

• the startup and shutdown of transaction handlers,

• the startup and shutdown of guard processes and

• the registration of the aspect for the timeout handling (section 5.2.5).

5.2.3.1 Transaction handlers

The transaction handler (RexxTransactionHandler) is the core component of
the implementation. It implements both workflows of the REXX model, the normal
transaction workflow (figure 4.6) as well as the compensation workflow (figure 4.7).
The transaction handler primarily operates on the rexx data container. It performs
a blocking take() operation on the container and waits until a transaction is available
for processing.

The operation starts when a new entry (RexxDependencyEntry) is available.
Transaction handlers only operate on a single entry at the same time. One instance of
the workflow is executed within one transaction. This assures that the system is always
in a consistent state. There is only one exception to this approach. If transaction entries
are ready for execution and have been set to state running or running compensation, the
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current transaction is committed. A new transaction is created and the timeout of the
transaction is set according to the timeout attribute of the entry (section 5.2.5). This
transaction is then passed to the execution code of the entry. After the execution has
successfully finished, the same transaction is used to update the parent transaction and
all successor transactions.

Figure 5.6 shows the coarse sequence diagram of the transaction handler. In case of
leaf transactions the workflow of the transaction handler is internally split into two parts
with one local transaction each. The first local transaction sets the state of the entry to
running. This is required for monitoring applications to distinguish between waiting for
execution and running transactions and is useful especially for long lived transactions.

The scope of the second transaction spans over the transaction’s execution as well
as over the updates of dependent transactions and the update of the context.

Figure 5.6: Sequence diagram of the transaction manager
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This approach has the advantage that the timeout of the second local transaction can
be set according to the specified timeout attribute. This would not be possible with only a
single transaction because the timeout for the execution of the RexxDependencyEntry
is not available when the transaction is created. The first local transaction is created be-
fore the blocking take() call.

However the approach results in an inconsistent state when a transaction manager
crashes during the execution of an entry. In that case the entry remains in state running
or running compensation and would never be processed by any transaction handler. This
is the point where Guard Processes come into play.

5.2.3.2 Remote Execution

The REXX model supports the execution of leaf transactions on a remote space. The
execution is performed by a dummy read() operation on a special container on the
remote space. Therefore the RexxExecutionAspect is plugged to the interception
point (IPoint) before and after the read() operation. The hook before the operation
returns SKIP to prevent the execution of the real read() operation. The hook after
the operation executes the passed leaf transaction. For the execution the REXX manager
has to pass the following required information through the RequestContext of the
operation:

• the available RexxContext

• the object RexxExecutionCode which contains the code

• the TransactionReference which has to be used

• the flag compensate which specifies the method which has to be executed,
either the normal transaction or the compensation.

The dummy read() operation itself is executed using the local core without a trans-
action.

5.2.3.3 Guard processes

The only task of guard processes is to detect orphan transactions. These are transactions
in state running or running compensation which are not handled by any transaction
handler. Guard processes are implemented in the class RexxTransactionGuard
and use the following pattern to filter the desired entries:

• The state is either running or running compensation.

• The deadline is earlier than the current time plus a certain offset.
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The offset has been introduced to prevent unnecessary rollbacks of almost completed
transactions. When a transaction entry matches the specified filter above, then the guard
process resets the state to waiting for execution respectively waiting for compensation
so that it will be re-evaluated by the next free transaction handler. Since the timeout
is already elapsed, the transaction handler either aborts the transaction (if the state is
waiting for execution) or it will set it to compensation failed (otherwise).

5.2.3.4 The RexxAggregateFunction

Parent transactions are using a RexxAggregateFunction to determine their state
according to the state of the sub transactions. When all sub transactions are in a fi-
nal state, method apply(Map<String,RexxState> resChildren) is called.
The argument is a map with the results of the sub transactions indexed with their names
(attribute subid). The result is either True or False. Currently there are two differ-
ent aggregate functions supported:

• AND - The result is True if all sub transactions have committed. This is the
default function if the aggregate function has not been set explicitly.

• OR - The result is True if at least one sub transaction has committed.

Depending on the result the next action in the workflow is processed (figure 4.6).

5.2.3.5 Remote Execution

The logic of a REXX transaction is coded in a Java class which is then handed over
to the transaction handler. Since the transaction handler can be located on a remote
machine it has to be ensured that all required classes of type RexxExecutionCode
are within the classpath of the remote environment.

5.2.3.6 Configuration

The configuration of the REXX transaction manager is done in class RexxConf-
iguration, which is part of the MozartSpaces configuration CommonsXmlCon-
figuration. The configuration can be specified either directly in the application or
through the XML configuration file. The configuration contains the following values:

• Number of Handlers - This value specifies the number of parallel running trans-
action handlers (RexxTransactionHandler). The default value is 5.

• Number of Guards - This value specifies the number of parallel running guard
processes (RexxTransactionGuard). The default value is 1.

Listing 5.2 shows a sample XML configuration for the REXX transaction manager.
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1 <mozartspacesCoreConfig>
2 <!-- ... normal MozartSpaces config is here ... -->
3 <rexx>
4 <nbrHandlers>3</nbrHandlers>
5 <nbrGuards>1</nbrGuards>
6 </rexx>
7 </mozartspacesCoreConfig>

Listing 5.2: Sample REXX configuration

5.2.4 Concurrency and Scalability
There is neither direct communication among transaction handlers nor among guard
processes. The synchronization and coordination is accomplished with the special con-
tainers (table 5.11) of the space. Therefore it is possible to run several instances of
RexxTransactionHandler and RexxTransactionGuard without additional
coordination effort. In theory this approach scales linearly with the number of handlers.
But in practice the following factors limit the scalability:

• synchronized blocks within MozartSpaces

• number of threads/cores provided by the hardware

• internal structure of transactions (dependencies between transactions limit the per-
formance)

5.2.5 Timeout Handling
The timeout of a transaction can be specified by the application with the attribute timeout
in the object RexxTransaction. The timeout can be set for each transaction and sub
transaction individually. Additionally the application can define a global timeout in the
commitTransaction() operation of the CAPI. The value overrules all individual
timeouts in case they are in conflict.

Every single RexxDependencyEntry has two attributes which control the inter-
nal timeouts:

• deadline specifies the absolute point in time when the transaction becomes
invalid. This value is first set when the entry is written into the rexx data
container and is updated before the execution is started.

• timeout is set by the application and will never be modified.
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Whenever absolute time values are used, it is required that the clocks of all involved sys-
tems are synchronized. Since this is a very hard assumption, the approach was to reduce
the number of involved systems to one - the space of the transaction manager. This has
been accomplished with the container aspect RexxContainerAspect which has
been added to container rexx data at the IPoint postWrite. The aspect only
processes entries which have been directly written by the commitTransaction()
operation of the CAPI. This is accomplished with a certain property which is passed
through the RequestContext of the write() operation. This aspect initializes
deadline and sets it to the current system time plus the global timeout.

When the transaction sets a transaction entry into state running, it also updates the
field deadline according to formula 4.3. Afterwards it commits the current transac-
tion and creates a new one. The timeout of the new transaction is then set to deadline
minus the current system time. Afterwards the transaction is passed to the execution
code. If the transaction times out, a MzsTimeoutException is thrown and the
transaction handler sets the transaction entry to state aborted.

The field deadline is also periodically checked by guard processes (section 5.2.3.3).

5.2.5.1 Compensation timeout

For every transaction and sub transaction an individual compensation timeout can be
specified. This timeout is independent of the normal timeout and is not affected by the
global timeout which was passed by the commitTransaction() operation. When
the transaction handler sets a transaction entry to state running compensation it also
updates the field deadline to the current system time plus the specified compensation
timeout and commits the current transaction. Then it creates a new transaction with the
compensation timeout and passes it to the execution of the compensation code.

Since the global timeout is not considered a compensated transaction can take longer
than the specified global timeout.

5.2.5.2 Deadlock Prevention

In the REXX model there are two scenarios where a deadlock between transaction han-
dlers can occur.

In the first scenario we assume a transaction AB which consists of two sub transac-
tions A and B where B depends on A. Initially all transactions are in state waiting for
execution. Then the following schedule is executed by two transaction handler (TH 1
and TH 2):

1. TM 1 performs a take on transaction AB

2. TM 2 performs a take on transaction A and executes it
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3. TM 2 wants to update its successor B and its parent AB and therefore performs a
take. The operation blocks because AB is locked by TM 1

4. TM 1 wants to check the state of the sub transactions and performs a read on
transactions A and B . The operation blocks because A is locked by TM 2

This conflict has been resolved in the method where the parent retrieves the status
of the sub transactions. The request timeout of the read operation has been set to
RequestTimeout.ZERO. This causes a EntryLockedException to be thrown
when the desired entry is locked. This exception is caught and the state of the parent
is reset to suspended. This does not affect the correctness of the model because in this
case there is always at least one sub transaction of the parent which has not yet been
finished. This sub transaction will then wake-up the parent again.

For the second scenario we assume the same transaction as in the first scenario, but
now assume the following execution schedule:

1. TM 1 performs a take on transaction A and executes it

2. TM 2 performs a take on transaction B and checks its predecessors

3. TM 2 performs a take on transaction A. The operation blocks because A is
locked by TM 1

4. TM 1 wants to update its successor B and its parent AB and therefore performs a
take. The operation blocks because B is locked by TM 2

This conflict has been resolved in the method where the state of the predecessors is re-
trieved. Again the request timeout of the read operation has been set to RequestTimeout.ZERO
and therefore the state is reset in case a predecessor is already locked. This does not
affect the correctness of the model because in this case there is always at least one pre-
decessor which has not yet been finished. And this predecessor will then wake up the
transaction again.
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Attribute Description
String appid label which specifies the owner or appli-

cation of the transaction. The appid can
be used to retrieve all open transactions of
a certain application.

String subid label which identifies the transaction
within the application. It is used to re-
trieve the result of a certain parent or sub
transaction.

ArrayList <RexxTransaction>
lstSubTx

specifies all sub transactions.

RexxTransaction parent references the parent transaction.
Long timeout specifies the timeout in milliseconds for

the transaction. See section 5.2.5 for fur-
ther information regarding timeout han-
dling.

Long compensationTimeout specifies the timeout in milliseconds for
the compensation of the transaction. See
section 5.2.5 for further information re-
garding timeout handling.

RexxExecutionCode execution class which contains the code for the exe-
cution of the transaction and the compen-
sation. This argument is only considered
for leaf transactions.

ArrayList<RexxTransaction>
lstDeps

list of predecessor transactions.

RexxAggregateFunction
fntAggregate

class which defines how the state is deter-
mined based on the states of the sub trans-
actions. This argument is only considered
for parent transactions.

boolean forceExecution specifies whether the transaction is ex-
ecuted although not all sub transactions
have been executed successfully. This ar-
gument is only considered for leaf trans-
actions.

Table 5.10: The RexxTransaction class
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Container name Persistent Description
rexx meta Yes stores the next transaction ID
rexx data Yes holds an entry for every single sub transaction.

This is the central operational container of the
transaction handlers.

rexx context Yes stores all data which has been written by trans-
actions and compensations.

rexx
dependencies

Yes stores the relations between sub transactions.

Table 5.11: List of containers used in the REXX Implementation

Method Description
commitTransactionAsync
(rexxTx, space)

passes transaction to the transaction handler
and returns immediately the transaction reference.
Argument space specifies the space of the trans-
action handler

waitForTransaction(
refTx, timeout)

waits until transaction with reference refTx
has finished and returns the result. Argument
timeout specifies the timeout for this blocking
call

commitTransaction(
rexxTx, space)

calls the methods commitTransaction-
Async and waitForTransaction sequen-
tially

getOpenTransactions(
appid, space)

returns the list of transactions whose application
ID matches the parameter appid and whose result
has not been queried so far.

Table 5.12: Additional methods in the CAPI
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Attribute Description
String appid label which specifies the owner or appli-

cation of the transaction
String subid label which identifies the transaction

within the application
ArrayList <RexxResult>
lstSubTx

contains the results of all sub transactions

RexxResult parent references the result of the parent transac-
tion

Map<String, Object> context contains all context variables which have
been written by the sub transactions

RexxState state any of the four final states. The enu-
meration RexxState contains all states
which are shown in figure 4.4

String id internal ID of the transaction, which is
never used by the application

Table 5.13: The attributes of the RexxResult class

Method Description
commitTransactionAsync
(transaction, space,
listener)

has the same functionality as the function in
the CAPI. The argument listener specifies a
RexxTransactionListener class.

shutdown() stops all running notification threads

Table 5.14: Provided methods of the AsyncTransactionManager

Method Description
getAllTransactions() returns the current internal status of all transactions

of the transaction manager
getAllTransactions
(appid)

has the same functionality as
getAllTransactions() but only returns
transactions of a certain application

getRunningTransactions
()

returns the current internal status of all running
transactions of the transaction manager

getRunningTransactions
(appid)

has the same functionality as
getRunningTransactions() but only
returns transactions of a certain application

Table 5.15: Provided methods of the MAPI
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CHAPTER 6
Evaluation

6.1 Evaluation of usability
Microsoft defines usability as “.. a measure of how easy it is to use a product to perform
prescribed tasks.” [6] First we have to distinguish between usability and utility. Utility
refers to the amount of tasks which can be performed with a certain system. The more
tasks it can perform the higher is the utility. Regarding computation the utility of pro-
gramming languages is very high since nearly every task can be performed. However
a simple calculator has a low utility since it is restricted to very limited functionality.
Utility does not consider the effort which is required to perform a certain task.

Usability on the other hand traditionally refers to the following attributes [6]:

• Discovery is related to the time how long it takes for a new user to discover a
certain functionality. In this thesis this new functionality would be the support of
distributed transactions.

• Learning starts when a new functionality has been discovered. It focuses on the
amount of time a user requires to perform a certain task after he or she has dis-
covered the required functionality.

• Efficiency comes into play when a user has full knowledge of a certain function-
ality. It defines the effort which is required by a trained user to perform a certain
task.

In this section we focus on the usability of distributed transactions of MozartSpaces.
The evaluation of the attributes Discovery and Learning would require a detailed study
with application programmers and that is beyond the scope of this thesis. However we
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want to focus on the efficiency of the implementation of the newly developed transaction
models. Therefore we compare the number of lines of code which is required to perform
a certain functionality. Additionally we address the quality of the produced code of the
new transaction models. The quality of the code directly impacts the maintainability of
an application. For the evaluation of the efficiency and maintainability we assume the
following requirement:

Data shall be replicated to three different locations. Related to MozartSpaces this
means to write entries to three different remote spaces on the network.

First a reference implementation is shown which implements this functionality with
the use of local transactions of the current implementation of MozartSpaces. After-
wards the same functionality is implemented with REXX transactions as well as with
the Extended Paxos Commit protocol.

6.1.1 Reference Implementation
The reference implementation uses three different local transactions to perform the
writes to the three remote space. Listing 6.1 shows the code of this implementation
where s1, s2, s3 are the space identifiers, strC is the name of the remote container and
capi is an instance of the CAPI of MozartSpaces.

The method replicationalWrite performs a lookup and afterwards writes
the entry into the remote container. Method compensateWrite is responsible to
compensate the written entry and therefore deletes the entry from the remote container.
Both methods execute their operation in the context of a local transaction. The main
method referenceReplication coordinates the workflow of the replication. It
calls replicationalWrite for each space and has to trigger the compensation ac-
tions if any of the methods fails. If the entry has already been written to space s1
and the write to space s2 fails, then the entry in space s1 has to be deleted by calling
compensateWrite. Otherwise the system would become inconsistent.

1 public void referenceReplication() throws MzsCoreException {
2 boolean cont = true;
3 try {
4 replicationalWrite(s1, strC);
5 } catch (MzsCoreException e) {
6 cont = false;
7 }
8 if (cont) {
9 try {
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10 replicationalWrite(s2, strC);
11 } catch (MzsCoreException e) {
12 compensateWrite(s1, strC);
13 cont = false;
14 }
15 if (cont) {
16 try {
17 replicationalWrite(s3, strC);
18 } catch (MzsCoreException e) {
19 compensateWrite(s1, strC);
20 compensateWrite(s2, strC);
21 cont = false;
22 }
23 }
24 }
25 }
26
27 public void replicationalWrite(URI space, String cName)
28 throws MzsCoreException {
29 TransactionReference tx = capi.createTransaction(3000, space);
30 ContainerReference c = capi.lookupContainer(strC, space, 3000, tx

);
31 capi.write(new Entry("TestEntry"), c, 3000, tx);
32 capi.commitTransaction(tx);
33 }
34
35 public void compensateWrite(URI space, String cName)
36 throws MzsCoreException {
37 TransactionReference tx = capi.createTransaction(3000, space);
38 ContainerReference c = capi.lookupContainer(strC, space, 3000, tx

);
39 Selector sel = AnyCoordinator.newSelector(1);
40 capi.delete(c, Arrays.asList(sel), RequestTimeout.INFINITE, tx);
41 capi.commitTransaction(tx);
42 }

Listing 6.1: Implementation of replication using the local transaction system

Of course, this implementation does not preserve consistency if the system crashes
between two commit calls. However, since it at least provides the shown complexity we
can use it as reference for the comparison of the usability. An implementation which
also covers correct recovery actions would be much more complex.

6.1.2 Implementation with Extended Paxos Commit
The implementation of the replication functionality with the Extended Paxos Commit
protocol is much simpler because due to the fact that it is an atomic commit protocol,
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it does not require compensation. Furthermore in contrast to the reference implemen-
tation, only a single transaction is required for the whole replication. Due to these two
facts the number of lines of code for the implementation with Extended Paxos Commit
is very low (see listing 6.2).

1 public void paxosReplication() throws MzsCoreException {
2 PaxosTransactionReference tx = capi.createTransaction(3000, s1);
3 paxosWrite(s1, strC, tx);
4 paxosWrite(s2, strC, tx);
5 paxosWrite(s3, strC, tx);
6 capi.commitTransaction(tx);
7 }
8
9 public void paxosWrite(URI space, String cName,

PaxosTransactionReference tx) throws MzsCoreException {
10 ContainerReference c = capi.lookupContainer(strC, space, 3000, tx

);
11 capi.write(new Entry("TestEntry"), c, 3000, tx);
12 }

Listing 6.2: Implementation of replication using Extended Paxos Commit

6.1.3 Implementation with REXX transactions
This section shows how the same functionality could be implemented with the use of
REXX transactions. In the first step a new class for the execution code has to be created
(see listing 6.4). This class defines the operations of the transaction as well as its com-
pensation. In method rexxReplication of listing 6.3 a new RexxTransaction
is created. The transaction contains three sub transactions, one for each remote space.
Afterwards the whole transaction is committed and the result is put into variable res .
If the commit has not been successful, the class RexxResult provides the following
useful methods to detect the erroneous sub transactions:

• getAbortedTransactions returns all aborted leaf transactions

• getCompensatedTransactions returns all compensated parent and sub
transactions

• getFailedTransactions returns all parent and sub transactions which caused
state failed

The result also contains the corresponding error messages of all aborted or failed trans-
actions.
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1 public void rexxReplication() throws MzsCoreException {
2 RexxTransaction main = new RexxTransaction(3000L);
3 main.addSubTransaction(new RexxTransaction(
4 new ReplicationalWrite(s1, strC)));
5 main.addSubTransaction(new RexxTransaction(
6 new ReplicationalWrite(s2, strC)));
7 main.addSubTransaction(new RexxTransaction(
8 new ReplicationalWrite(s3, strC)));
9 RexxResult res = capi.commitTransaction(main);

10 }

Listing 6.3: Implementation of replication using REXX transactions

1 public class ReplicationalWrite extends RexxExecutionCode {
2 private static final long serialVersionUID = 1L;
3 private URI space;
4 private String container;
5
6 public ReplicationalWrite(URI space, String container) {
7 this.space = space;
8 this.container = container;
9 }

10
11 @Override
12 public boolean execute(Capi capi, TransactionReference tx,

RexxContext context)
13 throws MzsCoreException {
14 ContainerReference c = capi.lookupContainer(container, space,

RequestTimeout.INFINITE, tx);
15 capi.write(new Entry("TestEntry"), c, RequestTimeout.INFINITE

, tx);
16 return true;
17 }
18
19 @Override
20 public boolean compensate(Capi capi, TransactionReference tx,
21 RexxContext context) throws MzsCoreException {
22 ContainerReference c = capi.lookupContainer(container, space,

RequestTimeout.INFINITE, tx);
23 Selector sel = AnyCoordinator.newSelector(1);
24 capi.delete(c, Arrays.asList(sel), RequestTimeout.INFINITE,

tx);
25 return true;
26 }
27 }
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Listing 6.4: Definition of class ReplicationalWrite

6.1.4 Comparison of the implementations
Efficiency The reference implementation has about 40 lines of code. The effort of
the implementation with REXX transactions is about the same or slightly lower, but it
would be much lower if the error handling would have been included into the imple-
mentations. The reference implementation would have to catch and handle all possible
exceptions whereas in the REXX transaction model all exceptions are handled by the
transaction manager. Such exceptions could be timeout exceptions or any other kind
of core exceptions (MzsCoreException) which are thrown during the execution of
transactions.

All errors of a REXX transaction can be extracted from the RexxResult class
which is returned by the commit method.
The implementation with Extended Paxos Commit is the most effective implementation.
It only requires about 10 lines of code to perform the same functionality.

Maintainability The reference implementation is the most complex one since its main
method coordinates the individual transactions as well as their compensation. In con-
trast the main method of the REXX implementation is very simple and the code of the
transaction and the compensation are defined in a separate class. This improves main-
tainability because all related code is located at the same place.
The implementation with Extended Paxos Commit is also very simple because no com-
pensation is required.

6.2 Performance evaluation
We now focus on the performance of the distributed transaction models. Therefore we
create a certain scenario and evaluate the execution times of the different implementa-
tions. Figure 6.1 shows the setup which is used for the performance benchmarks. The
hardware consists of the following parts:

• The PC on Site 1 has the following characteristics:

– Ubuntu 12.04

– Intel Core i5-450M CPU (2 Cores, 4 Threads, 2.4GHz)

– 4GB RAM

– Intel SATA solid-state drive (SSD) SSDSA2M160 (160GB)
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Figure 6.1: Scenario of the benchmark

• The PC on Site 2 has the following characteristics:

– Windows 7 Home Premium

– Intel Core i3-2370M CPU (2 Cores, 4 Threads, 2.4GHz)

– 4GB RAM

– Seagate SATA harddisk ST9750423AS (750GB, 5400 RPM, 16MB Cache)

• Both hosts (Site 1 and Site 2) are connected through a WLAN network.

The scenario is a simple replication where distributed transactions are required. The
application is located on Site 1 and does not use an embedded space. Site 2 hosts two
spaces each consisting only of one container which is coordinated with an AnyCoordi-
nator. One cycle of the benchmark consists of four operations:

1. lookup of Container 1 on Space B,

2. write of one entry into Container 1,

3. lookup of Container 2 on Space C and

4. write of one entry into Container 2.
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The benchmark scenario is performed with the same three transaction models which
have already been compared in terms of usability. Every execution calls the mentioned
cycle 50 times and is performed with the two persistency profiles (see section 3.2.2)
Lazy and Transactional with fsync. The persistency profile is always the same for all 3
cores.

Local transactions - This is the implementation which uses the current transaction
functionality of MozartSpaces. Since it does not support distributed transactions, con-
sistency is not guaranteed in this case. However we will use this implementation as ref-
erence for the comparison with the other two transaction models. This implementation
uses one local transaction for each remote space. So the first two operations are exe-
cuted with a local transaction of Space B and the second two operations are performed
using a local transaction of Space C. As an additional reference case the benchmark has
also been performed without transactions.

Paxos Commit - Since this transaction model supports distributed transactions, all 4
operations are performed with a single transaction. The execution of this benchmark
uses two acceptor instances which are located on Core A. The benchmark of Paxos
Commit has been executed with the following two approaches:

• Synchronous approach - The commit is performed with the blocking commit-
Transaction method. Therefore all 50 cycles are executed sequentially. After
the commit operation of the first cycle has been completed, the second cycle is
started.

• Asynchronous approach - The commit is performed with the non-blocking com-
mitTransactionAsync method. For the indication that all commit opera-
tions have been completed successfully a test() operation has been used. This
operation blocks until all 50 entries are available on the remote space.

REXX transaction model - This implementation uses a REXX transaction which
consists of two sub transactions. One sub transaction processes the operations of Space
B and the second sub transaction processes the operations of Space C. Due to the sepa-
ration into two sub transactions both are executed in parallel by the transaction manager.
Both sub transactions internally use the Extended Paxos Commit protocol with a sin-
gle acceptor node. Distributed transactions are required for the execution of remote
operations because additionally to the remote data also the internal data of the REXX
transaction manager have to be modified with one transaction. The benchmark of the
REXX model has been executed with the following two approaches:

• Synchronous approach - The commit is performed with the blocking commit-
Transaction method. Therefore all 50 cycles are executed sequentially. After
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the commit operation of the first cycle has been completed, the second cycle is
started.

• Asynchronous approach - The commit is performed with the non-blocking com-
mitTransactionAsync method. After all commit operations have been exe-
cuted, the results of all transactions are collected synchronously.

Both benchmarks have been evaluated with different numbers of transaction handlers.
This should show at least one aspect of the scalability of the implementation.

6.2.1 Evaluation of the results
Figure 6.2 summarizes the results of the executions. The reference implementation
using local transactions requires about 44s to complete the given scenario with the Lazy
profile. In contrast if no transactions are used the execution time is only one third. This
is because the local commit operation is very expensive.

The time required by local transactions can be reduced by about 35% if the syn-
chronous approach of Paxos Commit is used. In contrast to the reference implementa-
tion only one instead of two transactions are required. The reason for this tremendous
improvement is that the time which is required for the commit of local transactions is
much higher than all other involved operations. In this case Paxos Commit has two
advantages compared to the reference implementation:

1. The local commit operations are called asynchronously, which allows the appli-
cation to continue before the local commit has finished.

2. The local transactions are committed in parallel whereas in the reference imple-
mentation they are committed sequencially.

The asynchronous approach of Paxos Commit has given the best result with an execu-
tion time of about 4s. This is about one third of the time which has been required by the
execution without transactions. The reason for this big difference is that MozartSpaces
implicitly creates a local transaction for every operation which does not have an explicit
transaction. Thus the execution without transactions internally uses four local transac-
tions for one cycle with four operations whereas the Paxos execution only uses one local
transaction.

The benchmark of the REXX model with only one handler has given the worst
result of all executions. This is because the REXX transactions internally use two Paxos
Commit transactions and both transactions have to be executed sequentially because
only one handler is available. The execution time of the synchronous approach can be
reduced by about 25% if two handlers are used. However the result can not be further
improved by adding additional handlers, since the REXX transaction in the benchmark
scenario only consists of two sub transactions.
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On the other hand figure 6.2 shows that the execution time of the asynchronous
approach can be reduced by using additional transaction handlers. For example the
execution with three handlers is about 3-4 times faster than the execution with one han-
dler. Although the used hardware only supports four threads in parallel, there is still
a difference between five handlers and eight handlers. This is because the work of
the transaction handlers is I/O intensive and therefore the operating system reschedules
other threads while the thread of the transaction handler is waiting for new data.

We now focus on the two persistency profiles which have been evaluated. The dif-
ference between Lazy and Transactional with fsync is not that high as stated in [Zar12].
The difference between the two profiles is less than 10% in all executed benchmarks.
This because the hardware of Site 1 is equipped with a solid-state drive.

The scenario which has been used for the evaluation of the performance is very sim-
ple. However in case of distributed transactions the performance of the new transaction
models is much better than the performance of local transactions. The higher the com-
plexity of a distributed transaction the greater is the different regarding the performance.
An example of a more complex distributed transaction would be the already discussed
booking of a trip (section 4.3).
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Figure 6.2: Processing time of the different implementations for the given replication
scenario. The number in the parantheses specifies the number of parallel running trans-
action handlers.
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CHAPTER 7
Future work

Both presented transaction models do not pro-actively detect and handle distributed
deadlocks. In both models deadlocks are implicitly handled with timeouts. A new dead-
lock detection service could be implemented to pro-actively detect and resolve dead-
locks. There are several algorithms provided in the literature [GdMFnG+99] [BH03].

For the Extended Paxos Commit algorithm there is some space for improvements in
the following areas:

• Leader Election - The implemented leader election is based on the basic algo-
rithm presented in [ADGFT01]. The drawback of this algorithm is its bad be-
havior in terms of stability. If only one of the used message links is faulty for
more than the specified timeout period, a new leader is elected. In an unreliable
network this behavior would cause many unnecessary changes of the leader and
also decreases the liveness of the Paxos Commit algorithm. Therefore the same
paper describes additional, more complex algorithms which lead to a better sta-
bility. Another enhanced leader election algorithm which is dedicated to Paxos is
presented in [MOZ05].

• Persistence of the Isolation Manager - Since the data of the isolation manager
is not included in the persistency a workaround with a space aspect has been
implemented. Once the persistency covers the isolation manager the Paxos im-
plementation will be cleaner. Therefore the internal state including entry locks,
container locks and log items of transactions has to be written to the persistency
backend as soon as the transations have been prepared.

• Increase Performance - There are several possibilities to improve the perfor-
mance of the standard Paxos Commit algorithm. For example acceptor nodes
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could directly send Phase3 messages to the resource managers and would so save
one message delay. Other approaches are discussed in the literature [Lam06]
[Moi11].

• Synchronization of Paxos Commit - The current implementation does not guar-
antee that all resource managers already have committed when the commit-
Transaction operation returns to the application. There has not yet been
found a good solution to solve this issue.

Regarding REXX transactions there are also areas of improvements:

• Monitor Application - A graphical monitor application could be implemented to
ease the debugging of REXX transactions. This application could use the pro-
vided MAPI to retrieve the internal state of REXX transactions.

• Extended Dependencies - The current implemetation does not directly support
the XOR connection of sub transactions. By extending the functionality of depen-
dencies the REXX transaction model could directly handle such connections.
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CHAPTER 8
Conclusion

The goal of this work was to design a relaxed distributed transaction model for the
XVSM middleware. The model should have both characteristics, high concurrency and
a high degree of consistency. For this purpose the focus of this thesis has been put on
two transaction models where each of them addresses one of the desired characteristics.

Extended Paxos Commit provides strict ACID compliance and therefore guarantees
high consistency. The original protocol has been extended by sub transactions which
can be combined by commit rules. Especially the sophisticated logical commit rule al-
lows additional functionalities like function replication. In certain scenarios, like the
operation on remote spaces, the MozartSpaces implementation of Paxos Commit out-
performs the existing local transactions.

The REXX transaction model is aligned to the Flex model and to business processes
which are defined by WS-BPEL (Web Services Business Process Execution Language).
REXX transactions can be used to model complete business processes which consist
of an arbitrary combination of activities (sub transactions). The execution is performed
in the control of the REXX transaction manager which leads to several advantages.
The application developer need not care about the coordination among sub transactions
which improves the usability of the transaction model. Additionally sub transactions can
be executed in parallel which leads to higher performance. In contrast to Paxos Commit
the REXX transaction model provides a higher concurrency since sub transactions are
committed immediately.

Both introduced transaction models can be combined to provide both characteristics,
high concurrency and consistency, in a single transaction model. Therefore Extended
Paxos Commit is used for the execution of sub transactions in the REXX transaction
model so that ACID compliant distributed transactions can be executed. However it is
not possible to have both desired characteristics in the same transaction. The perfor-
mance of REXX transactions depends on the number of running transaction managers.
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The evaluation shows that the performance of the REXX model is significantly higher
than the synchronous execution of Paxos Commit if a sufficient number of transaction
managers is used. When two REXX transaction managers are used the execution with
the REXX model is 20% slower compared to Paxos, however if eight transaction man-
agers are used the REXX model is about 70% faster. The execution with eight transac-
tion managers is even 35% faster than the reference implementation which does not use
explicit transactions.

With the design and the implementation of the new transaction models the XVSM
middleware and especially MozartSpaces now support distributed transactions with sev-
eral features. This allows the implementation of more complex business applications.
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APPENDIX A
The REXX Transaction Model

MODULE REXXtransaction

EXTENDS Integers , FiniteSets

CONSTANTS txPool , Set of all transactions
predecessors , map predecessors {tx → {tx1, tx2}}
parents map of parents {tx → Ptx , tx2→ Ptx2}

VARIABLES states The state of the transactions

Set of all possible states
all states

∆
= {“waitingExec”, “suspended”, “running”, “waitingComp”,

“runningComp”, “committed”, “aborted”, “compensated”, “compFailed”}
Set of final states
�nal states

∆
= {“committed”, “aborted”, “compensated”, “compFailed”}

The initial predicate
RTInit

∆
= ∧ (states = [t ∈ txPool 7→ “waitingExec”])

Parent transaction
parent(t)

∆
= parents [t ]

Set of all predecessors
pred(t)

∆
= predecessors [t ]

Set of all successors
succ(t)

∆
= {tx ∈ txPool : t ∈ pred(tx )}

Set of predecessors which are in a final state
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�nal pred(t)
∆
= {tx ∈ pred(t) : states [tx ] ∈ �nal states}

All predecessors are in a final state
pred ok(t)

∆
= Cardinality(pred(t)) = Cardinality(�nal pred(t))

Checks whether there is a transaction with parent t
isParent(t)

∆
= ∃ tx ∈ txPool : (parent(tx ) = t)

Set of all sub transactions of t
getChilds(t)

∆
= {tx ∈ txPool : parent(tx ) = t}

Set of all sub transactions of t which are in a final state
getFinalChilds(t)

∆
= {tx ∈ txPool : (parent(tx ) = t ∧ states [tx ] ∈ �nal states)}

Checks whether all sub transactions are in a final state
childsFinished(t)

∆
= Cardinality(getChilds(t)) = Cardinality(getFinalChilds(t))

Set current transaction to “s”, Set parent transaction to “waitingExec”, Set successor transactions to
“waitingExec”

update states(t , s)
∆
= [tx ∈ DOMAIN states 7→

IF tx ∈ succ(t) ∨ tx = parent(t)
THEN “waitingExec”
ELSE IF tx = t THEN s ELSE states [tx ]]

Set current transaction to “s”, Set parent transaction to “waitingExec”

update states comp(t , s)
∆
= [tx ∈ DOMAIN states 7→

IF tx = parent(t)
THEN “waitingExec”
ELSE IF tx = t THEN s ELSE states [tx ]]

Set current transaction (parent) to “s”, Set committed siblings to “waitingComp”

compensate childs(t)
∆
= [tx ∈ DOMAIN states 7→

IF tx ∈ getChilds(t) ∧ states [tx ] = “committed”
THEN “waitingComp”
ELSE IF tx = t THEN “suspended” ELSE states [tx ]]

We now define the actions that my be performed by leaf transactions

Set to running if all dependencies are met
CRunning(t)

∆
= ∧ states [t ] = “waitingExec”

∧ ¬isParent(t)
∧ pred ok(t)
∧ states ′ = [states EXCEPT ! [t ] = “running”]
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Set to suspended if not all dependencies are met
CSuspended(t)

∆
= ∧ states [t ] = “waitingExec”

∧ ¬isParent(t)
∧ ¬pred ok(t)
∧ states ′ = [states EXCEPT ! [t ] = “suspended”]

Wake up parent and all successors
CAbort(t)

∆
= ∧ states [t ] = “running”

∧ states ′ = update states(t , “aborted”)

Wake up parent and all successors
CCommit(t)

∆
= ∧ states [t ] = “running”

∧ states ′ = update states(t , “committed”)

We now define the actions that my be performed by parent transactions

Commit Parent transaction
PCommit(t)

∆
= ∧ states [t ] = “waitingExec”

∧ isParent(t)
∧ childsFinished(t)
∧ ∀ tx ∈ getChilds(t) : states [tx ] = “committed”
∧ states ′ = update states(t , “committed”)

Abort Parent transaction
PAbort(t)

∆
= ∧ states [t ] = “waitingExec”

∧ isParent(t)
∧ childsFinished(t)
∧ ∀ tx ∈ getChilds(t) : states [tx ] = “aborted”
∧ states ′ = update states(t , “aborted”)

PCompensated(t)
∆
= ∧ states [t ] = “waitingExec”

∧ isParent(t)
∧ childsFinished(t)
∧ ∀ tx ∈ getChilds(t) : states [tx ] ∈ {“aborted”, “compensated”}
∧ ∃ tx2 ∈ getChilds(t) : states [tx2] = “compensated”
∧ states ′ = update states comp(t , “compensated”)

PFailed(t)
∆
= ∧ states [t ] = “waitingExec”

∧ isParent(t)
∧ childsFinished(t)
∧ ∃ tx ∈ getChilds(t) : states [tx ] = “compFailed”
∧ states ′ = update states comp(t , “compFailed”)
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Compensate transaction
PCompensate(t)

∆
= ∧ states [t ] = “waitingExec”

∧ isParent(t)
∧ childsFinished(t)
∧ ∃ tx ∈ getChilds(t) : states [tx ] = “aborted”
∧ ∃ tx ∈ getChilds(t) : states [tx ] = “committed”
∧ states ′ = compensate childs(t)

PSuspended(t)
∆
= ∧ states [t ] = “waitingExec”

∧ isParent(t)
∧ ¬childsFinished(t)
∧ states ′ = [states EXCEPT ! [t ] = “suspended”]

We now define the actions that my be performed by both:
leaf transactions and parent transactions

does not consider compensation dependencies
RunningComp(t)

∆
= ∧ states [t ] = “waitingComp”

∧ states ′ = [states EXCEPT ! [t ] = “runningComp”]

CompensationOk(t)
∆
= ∧ states [t ] = “runningComp”

∧ states ′ = update states comp(t , “compensated”)

CompensationFailed(t)
∆
= ∧ states [t ] = “runningComp”

∧ states ′ = update states comp(t , “compFailed”)

Definition of the next actions

RTNext
∆
= ∨ ∃ t ∈ txPool : The next-state action

Leaf transactions
∨ CSuspended(t)
∨ CRunning(t)
∨ CCommit(t)
∨ CAbort(t)
Parent transactions
∨ PCommit(t)
∨ PAbort(t)
∨ PSuspended(t)
∨ PCompensate(t)
∨ PCompensated(t)
∨ PFailed(t)
Both
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∨ RunningComp(t)
∨ CompensationOk(t)
∨ CompensationFailed(t)

Definition of the invariants

Consistency: If parent is final, then also all sub transactions are final
RTConsOK

∆
= ∀ t ∈ txPool :

(isParent(t) ∧ states [t ] ∈ �nal states)⇒ childsFinished(t)

Type Invariant
RTTypeOK

∆
= ∧ states ∈ [txPool → all states ]

If the parent is committed, then also all childs must be committed.
This model only considers the default AND aggregate function

RTConsCommitted
∆
= ∀ t ∈ txPool : (isParent(t) ∧ states [t ] = “committed”)

⇒ ∀ p ∈ getChilds(t) : states [p] = “committed”
If the parent is in state ’aborted’ then all sub transactions must

also be in state ’aborted’

RTConsAborted
∆
= ∀ t ∈ txPool : (isParent(t) ∧ states [t ] = “aborted”)

⇒ ∀ p ∈ getChilds(t) : states [p] = “aborted”

If a transaction is in state ’failed’, then the parent must also be in
state ’failed’ if it is in a final state

RTFailed
∆
= ∀ t ∈ txPool : (states [t ] = “compFailed”

∧ parent(t) ∈ txPool

∧ states [parent(t)] ∈ �nal states)
⇒ states [parent(t)] = “compFailed”

Specification
vars

∆
= 〈states〉

RTSpec
∆
= RTInit ∧2[RTNext ]vars

Apply the invariants to the specification
THEOREM RTSpec ⇒ ∧2RTConsOK

∧2RTTypeOK

∧2RTConsCommitted

∧2RTConsAborted

∧2RTFailed
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