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Kurzfassung

Aufgrund der Zunahme von kardiovaskulären Erkrankungen in Industrieländern in
den letzten Jahren besteht starkes Interesse daran, die hämodynamischen Vorgänge
im Herzkreislaufsystem zu verstehen. Viele Forschungsarbeiten befassen sich mit den
Charakteristiken des Blutflusses und versuchen, diese mit dem Entstehen und der Ent-
wicklung von Gefäßkrankheiten in Verbindung zu bringen. Nachdem experimentelle
Methoden schwierig, oft invasiv und teilweise nicht durchführbar sind, greift man auf
mathematische Modellierung und numerische Simulation zurück, um ein besseres Ver-
ständnis von Auswirkungen verschiedenster hämodynamischer Faktoren auf den Blut-
fluss zu erhalten.

Die Mehrheit der Studien in numerischer Strömungsmechanik nimmt starre Gefäßwände
an. Speziell bei Untersuchungen des Blutflusses in großen Arterien sollten die Elasti-
zität der Blutgefäße sowie die Wechselwirkung zwischen Fluid und Gefäßwand jedoch
miteinbezogen werden. Die Behandlung solcher Fluid-Stuktur-Interaktionen stellt eine
große Herausforderung dar.

Die vorliegende Arbeit stellt eine präzise und effiziente Methode zur Modellierung und
Simulation von inkompressiblem Fluss in dehnbaren Rohren und der Interaktion zwi-
schen Fluss und Rohrwand vor, mit speziellem Fokus auf hämodynamische Anwendun-
gen. Die Lattice Boltzmann Methode wurde verwendet als Alternative zu klassischen
Verfahren zur Lösung strömungsmechanischer Probleme. Eine neue Randbedingung
wurde eingeführt, welche eine kontinuierliche Verschiebung der Gefäßwand ermöglicht
und somit Diskretisierungsfehler reduziert. Des Weiteren wurde die Methode weiter-
entwickelt, um den Blutfluss in Stents und die Auswirkungen unterschiedlicher Stent-
eigenschaften untersuchen zu können. Der gesamte Algorithmus wurde in der Pro-
grammiersprache C implementiert. Die durchgeführten numerischen Experimente an
artifiziellen Gefäßsegmenten lieferten qualitative Aussagen über den Blutfluss.
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Die erhaltenen Resultate zeigen das erwartete physikalische Verhalten und bestätigen
die Anwendbarkeit und die Effizienz der Methode. In den Simulationen wurde eine
konstante Austrittsrandbedingung verwendet. Auch wenn diese Randbedingung für
stationäre Probleme akzeptabel ist, so kann sie für zeitabhängigen Fluss störende Refle-
xionen hervorrufen, welche die Lösung verfälschen. Um dieses Problem zu umgehen,
wird eine realistischere Randbedingung, welche den Lattice Boltzmann Algorithmus
mit einem Windkesselmodell koppelt, vorgeschlagen.

Vorbereitende numerische Experimente beinhalten eine Anwendung, die von klini-
schem Interesse ist, nämlich die Änderung des Flussfeldes aufgrund eines eingesetzten
Stents.

Die entwickelte Methodik überzeugt durch ihre Einfachheit und Effizienz, während sie
gleichzeitig ermöglicht, Druck und Fluss in elastischen Gefäßen zu ermitteln. Bevor die
Methode jedoch für medizinische Prognosen oder zur Optimierung von Stentdesigns
verwendet werden kann, muss sie weiter verfeinert werden. Des Weiteren muss das
Modell durch Vergleich mit realen Messdaten validiert werden.



Abstract

Due to the increase of cardiovascular diseases in industrialized countries in the past
years, there is a strong interest in understanding the hemodynamic processes in the
cardiovascular system. A lot of research has been done to study the characteristics of
the blood flow and to correlate these to the development of vascular diseases. Since
experimental methods are difficult, limited, and often invasive, mathematical modeling
and numerical simulations are used to better understand the effects of several hemo-
dynamic factors on the blood flow.

Most studies in computational fluid dynamics assume that the vessel walls are rigid.
However, especially when studying the blood flow in large arteries, it is of particular
importance to incorporate the elasticity of the vessel and its interaction with the fluid.
The treatment of such fluid-structure interaction problems is a real challenge.

This thesis presents an accurate and computationally efficient approach for modeling
and simulating incompressible flow in distensible tubes and its interaction with the tube
wall, with particular focus on applications in hemodynamics. The developed lattice
Boltzmann method has been used as a competitive alternative approach to conventional
numerical methods. A novel boundary condition is introduced allowing a continuous
displacement of the wall, which reduces discretization errors. The method has been
extended to model the blood flow through stents and to study the effect of different stent
properties. The overall algorithm has been implemented in the programming language
C and numerical experiments on artificial vessel segments have been extensively carried
out providing qualitative results.

The results show the expected physical behavior and prove the feasibility and the
efficacy of the methodology. In the simulations, a constant outflow boundary condi-
tion has been used. Even if this condition is reasonable for steady-state problems, in
time-dependent flows it may cause spurious reflections spoiling the solution. In order
to circumvent this problem, a more realistic boundary condition coupling the lattice
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Boltzmann algorithm with a Windkessel model is suggested. Preliminary numerical
experiments include a case of clinical interest: the modification of the flow field due to
stent insertion.

The presented methodology offers a valuable tool: it is simple and computationally
efficient while at the same time able to predict waveforms and pressure fields in arteries.
However, before the elaborated method can be used to study physiological flows in a
predictive way, an additional effort is required and the parameters contained in the
model have to be identified by validation against measurement data.
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Chapter 1

Introduction

1.1 Motivation and overview of related work

Cardiovascular diseases are the most common cause of death in the European Union
[50]. There is considerable evidence that the development of such diseases are, to a
great extent, linked to the characteristics of the blood flow [150]. Since experimental
methods in the cardiovascular system are difficult and limited, mathematical models
and numerical methods to simulate the hemodynamic processes have gained importance
in the past years.

Research in that domain includes studies incorporating the whole arterial tree [90] as
well as studies of only parts of it, e.g., a segment of an artery [99]. This thesis aimed
at developing a simple method for the simulation of blood flow in a vessel segment and
hence focuses on the investigation of local flow behavior.

Many applications of fluid dynamics consider rigid boundaries as for example in hy-
draulics (flows through pipes). In some other applications, for instance in hemody-
namics, it is important to include the wall compliance. Since arteries are elastic and
change in diameter depending on the blood pressure inside (which oscillates due to the
periodic pumping of the heart), it is of particular importance to include this elasticity
in models of physiological flows in blood vessels. This means that appropriate models
for both the fluid and the structure bounding this fluid have to be developed. Further-
more, relations describing the interaction between the fluid and the elastic wall have
to be found.
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1 Introduction 2

Modeling the interaction between fluid and structure is a great challenge. Examples
for which the interaction is not negligible are flow around airfoils, fish swimming, and
blood flow in the cardiovascular system [106]. Many existing works deal with fluid-
structure interaction problems [23, 24, 31, 46, 89, 106, 151, 152, 192, 198]. They differ
by the method by which the set of equations for the fluid part (e.g., Navier-Stokes
equations) and those for the solid part (e.g., wall equations) are solved. Different
coupling algorithms exist as for example the coupled approach, the weakly coupled
approach, or the uncoupled approach where the two set of equations are computed
separately. A short description of each of these approaches can be found in [106].

Some of the cited works dealing with fluid-structure interaction problems use indepen-
dent grids for the fluid part and the solid part. This requires appropriate mappings
between the variables describing those two parts. A commonly used approach is the
Arbitrary Lagrangian Eulerian (ALE) approach [198] which provides a mapping be-
tween the Lagrangian system (in which the structure is commonly described) and the
Eulerian system (in which the fluid is generally described). In the ALE approach, the
physical boundary is moving while the fictitious boundary (e.g., inlet/outlet section
of a blood vessel) is kept fixed and is not deformed [106]. In the ALE approach, the
grid is moving. An approach based on a non-moving grid is the Cartesian Cut Cells
approach [106]. In this approach, no remeshing is needed. The wall enclosing the fluid
domain moves through the grid which is kept fixed. A drawback of this method is that
the computational domain can be quite large and that idle cells (cells outside of the
fluid domain) are constantly visited in the computations. However, in simulations of
blood flow in vessels, this method is applicable because wall deformations are small
compared to the vessel diameter.

The algorithm for solving a fluid-structure interaction problem could be as follows
[192]: (a) solve the structure problem (determine the wall position), (b) update the
domain configuration and boundary conditions for the fluid model, (c) solve the fluid
equations, (d) calculate the pressure and forcing terms for the structure model.

In the cardiovascular framework, the immersed fibers method proposed by C.S. Peskin
in 1977 [147] can be regarded as the first attempt to study fluid-structure interaction
problems in this domain [192]. Since then, other methods have been developed. Con-
ventional numerical schemes for fluid-structure interaction problems couple the finite
element method for solving the governing equations of the structure with a finite dif-
ference, finite element or finite volume method for the fluid description. The solid and
fluid subsystems can be solved simultaneously [167] or separately [146, 189]. A com-
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petitive alternative approach to these conventional numerical methods is the lattice
Boltzmann (LB) method [180, 181] which has widely been applied to fluid-structure
interactions problems in different forms [23, 24, 31, 46, 51, 52, 80, 89].

The method proposed by H. Fang et al. [51, 52] provides boundary conditions for
elastic and moving boundaries. In this approach, virtual distribution functions at the
boundary are introduced. The velocity at boundary nodes required to compute these
virtual distribution functions is obtained by quadratic interpolation or extrapolation.
The method of H. Fang has been successfully applied to lattice Boltzmann simula-
tions in two-dimensional elastic tubes by A.G. Hoekstra et al. [80]. It is accurate
but not appropriate for large simulations running in parallel because of the quadratic
extrapolations and the fact that nodes change from the solid domain to the fluid do-
main and vice versa [46]. Another modification of the LB scheme to model coupled
fluid-structure problems has been proposed by M. Krafczyk et al. [89]. It is based on
the work of A.J.C. Ladd [93] who presented a general technique for the simulation of
fluid-particle interactions (momentum exchange algorithm). The method is a combina-
tion of the lattice Boltzmann equation for the fluid domain and Newtonian dynamics
of the solid particles. It allows to determine the interaction between fluid and solid
boundary by directly using the lattice Boltzmann variables. M. Krafczyk et al. [89]
applied the method to study the fluid-structure system of moving leaflets of an artifi-
cial heart valve driven by physiological blood flow. Also other numerical simulations
using the method of A.J.C. Ladd have been carried out [94, 102, 122]. A theoretical
investigation of the momentum exchange algorithm has been performed by A. Caiazzo
[24]. Also B. Chopard and S. Marconi [31] modeled the fluid-wall interaction based on
local exchange of momentum between solid and fluid particles. Their method differs
from the approach of A.J.C. Ladd [93], in which the solid particles immersed in the
fluid are rigid, and allows to model solid, deformable particles suspended in a fluid by
using the LB method for both the fluid and the solid phase. An approach coupling
the lattice Boltzmann model (for the fluid) with a lattice spring model (for the com-
pliant boundary enclosing the fluid) has been proposed by G.A. Buxton et al. [23].
A network of ‘springs’ which are connected to each other describe the interaction. A
major advantage of a lattice springs model is its computational efficiency [23]. Efficient
computing is also provided by the approach of G.M. Doctors et al. [46] who performed
LB simulations of pulsatile fluid flow in three-dimensional elastic pipes. Their method
is "based on estimating the distances from sites at the edge of the simulation box to
the wall along the lattice directions from the displacement of the closest point on the
wall and the curvature there, followed by application of a nonequilibrium extrapolation
method" [46].
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Recently, D. Leitner [99] proposed a simple method for modeling elastic vessel walls
in lattice Boltzmann simulations of arterial blood flow. The method is similar to
the Cartesian Cut Cells approach mentioned above. The wall displacement is based
on the local pressure and involves pressure thresholds corresponding to the pressure
needed to balance the restoring forces from the elastic wall and to maintain this wall
in equilibrium. The method presented by D. Leitner does not treat a ‘real’ fluid-
structure interaction because it does not include the feedback from the wall to the
fluid. Nevertheless, it provides good results for simulations of blood flow in artery
segments by keeping the numerical algorithm simple and robust. However, the method
has some drawbacks. One limitation of the approach of D. Leitner is for example that
the wall cannot be displaced by less than one lattice unit of the underlying grid of the
lattice Boltzmann simulations. This stepwise wall displacement can cause discretization
errors that make the computed flow field inaccurate.

1.2 Objective of the thesis

This thesis presents an improvement of the method of D. Leitner. The objective is
to elaborate a simple and accurate method for incompressible flow through distensible
tubes that can be used for applications in hemodynamics. As in the work of D. Leitner,
the LB method has been used for the simulations. The thesis introduces a novel
boundary condition allowing a continuous displacement of the wall. The modeling of
the elastic wall is kept simple as in the method of D. Leitner in order to preserve the
efficiency of the LB algorithm. By developing a method acting strictly locally as the
LB method itself, the complexity of the numerical algorithm is not increased.

An advantage of the developed approach is that it can also be used for simulating
the blood flow through stents, which are wire metal meshes inserted into a narrowed
artery to prevent its occlusion [109, 153]. Due to the geometry and the different stiffness
properties of the stent, the behavior of the blood flow changes in a stented artery and
thus, turbulences can occur. It is assumed that those turbulences can cause a renewed
narrowing of the artery, so-called in-stent restenosis, which is a pathological process
prevalently occurring after stent implantation [107]. For a deeper understanding of the
flow field around stents and in order to understand the hemodynamic processes in the
stent region, a simple method to simulate the blood flow through stents is of particular
interest.
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1.3 Outline of the thesis

The thesis starts with a motivation and an overview of related work in Chapter 1. The
objective of the thesis is presented in this first chapter followed by an overview of the
following chapters.

Chapter 2 gives an overview of fluid dynamics and elasticity theory. It summarizes
the main principles in fluid dynamics, presents the mechanics of the boundaries, and
provides the corresponding equations and relations important for this work.

The numerical method used for the simulations that have been carried out for this
work is the lattice Boltzmann method. This mesoscale approach uses a statistical de-
scription of the fluid particles and has developed to a valuable alternative to classical
numerical methods for solving problems of computational fluid dynamics. The method
is presented in detail in Chapter 3. Besides describing the general method and its gov-
erning equations, this chapter also gives an overview of the main boundary conditions
supplementing the basic algorithm and needed for the computation of the solution of
a given problem.

Chapter 4 describes how the elasticity of the considered tube or vessel is modeled in
the LB framework. After presenting two different rescaling methods that have been
developed to ensure mass conservation, it introduces a new boundary condition that
allows the wall to move continuously. Furthermore, a detailed description of the overall
algorithm representing the fluid-wall interaction is given.

Based on the theory and the methods presented in Chapters 2 to 4, numerical ex-
periments have been carried out to show the feasibility of the developed approach for
modeling the elastic wall. The results of these test simulations are given in Chapter 5.
The chapter concludes with an outlook on future work concerning the coupling between
the LB algorithm and a Windkessel model to account for physiologically more correct
boundary conditions at the termination of a vessel.

Chapter 6 presents a possible application of the developed methods in hemodynamics:
the simulation of blood flow through stents.

Finally, a short summary and conclusions are given.



Chapter 2

Fluid dynamics and elasticity theory

This chapter gives an overview of the basic principles in fluid dynamics and elasticity
theory. A more detailed introduction to fluid dynamics can be found in [1] and with
focus on biomechanics in [60, 61, 137, 168].

2.1 Basic equations of fluid dynamics

The focus of this thesis is on the simulation of incompressible fluids for applications in
hemodynamics. The developed methods aim at modeling the blood flow inside large
arteries whilst taking into account the elasticity of the vessel wall. The blood flow
inside a vessel can be described with the Navier-Stokes equations which are presented
in this section.

2.1.1 Fundamental parameters

The fundamental parameters for the description of a fluid are the fluid velocity ~u and
the pressure p. Thus, a physical flow can be characterized by a velocity field ~u(~x, t)
and a pressure field p(~x, t), where t denotes the time and ~x the position in space.

Flows for which ∂~u

∂t
= ∂p

∂t
= 0 are called steady. An example for a steady flow is

the Poiseuille flow which is the solution of the Navier-Stokes equations under certain
assumptions, see Section 2.1.3.1.

6



2 Fluid dynamics and elasticity theory 7

2.1.2 The Navier-Stokes equations

Blood is almost incompressible, which means that it is a fluid of nearly constant density.
Even though it is a suspension of plasma and cellular constitutes [85], it can be assumed
to be homogeneous and Newtonian in arteries whose diameter is large. Newtonian fluids
are fluids in which the shear stress is linearly proportional to the velocity gradient
perpendicular to the direction of the shear. The proportionality constant is called
dynamic viscosity and will be denoted by µ in the following.

For the description of the blood flow, the Navier-Stokes equations for incompressible
fluids can be used. They apply for homogeneous and Newtonian fluids. The Navier-
Stokes equations consist of two nonlinear partial differential equations of second order
and are based on the principles of conservation of mass and momentum.

Let ~f be the vector of external forces (e.g., gravitational force) acting on the fluid and let
∆ denote the Laplace operator. Then, the Navier-Stokes equations for incompressible
fluids are

∂~u

∂t
+ (~u · ∇)~u+∇p− ν∆~u = ~f (2.1)

div ~u = 0 (2.2)

with initial condition
~u(~x, t0) = ~u0(~x).

Here, ν is the kinematic viscosity and is assumed to be constant. In a bounded do-
main, the Navier-Stokes equations have to be supplemented with convenient boundary
conditions.

Eq. (2.1) is called momentum equation. It is based on the principle of momentum
conservation which is an extension of Newton’s second law. (~u · ∇)~u are inertial forces
and ν∆~u viscous forces (inner friction).

Eq. (2.2) is called continuity equation. It is based on the principle of mass conserva-
tion.
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2.1.3 Analytical solutions of the Navier-Stokes equations for
special cases

Under certain assumptions, the Navier-Stokes equations can be solved analytically.
This section presents two analytical solutions, one for a plane steady flow and one for
a pulsatile flow. These solutions can be used to validate numerical methods in blood
flow simulation.

In this section, a straight and sufficiently long tube with circular cross section is con-
sidered, see Fig. 2.1. The focus is on the fully developed region of the flow. This is the
region in which the velocity profile has reached equilibrium, that is when the influence
of the no-slip boundary condition (i.e., zero velocity at the wall) effects the entire cross
section of the tube [213].

Figure 2.1: Straight tube with circular cross section

It can be shown [213] that, considering these simplifications and assuming that there are
no external forces that would provoke flow rotation, the momentum equation reduces
to

ρ
∂u

∂t
+ ∂p

∂z
= µ

(
∂2u

∂r2 + 1
r

∂u

∂r

)
(2.3)

Here, cylindrical polar coordinates have been used. r denotes the radius of the tube
and u = uz = uz(r, t). The radial and angular component of the velocity are zero.
Furthermore, the pressure p = p(z, t) is a function of z and t only. This and the
fact that the velocity does not change along the tube implies that the tube is rigid.
Otherwise, if the pressure changed locally, the cross section of the tube and hence the
velocity would change locally as well.
In Eq. 2.3, ρ denotes the density of the fluid. It is linked to the dynamic viscosity µ
and the kinematic viscosity ν through

ν = µ

ρ
. (2.4)
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2.1.3.1 Poiseuille flow

In the following, a steady-state solution for flow in a rigid tube will be derived.

If the velocity u = uz and the pressure p are independent of time, i.e.,

uz = uz(r), p = p(z), (2.5)

Eq. 2.3 becomes an ordinary differential equation and reduces to

dp

dz
= µ

(
d2uz
dr2 + 1

r

duz
dr

)
. (2.6)

Since the left-hand side of Eq. 2.6 is a function of z only and the right-hand a function
of r only, the equation can be satisfied only if both sides are equal to a constant. Let
k denote this constant. Thus

dp

dz
= k (2.7)

and
µ

(
d2uz
dr2 + 1

r

duz
dr

)
= k. (2.8)

The first equation (Eq. 2.7) has the solution

p(z) = p(0) + kz. (2.9)

Let L be the length of the considered tube. Then,

p(L) = p(0) + kL. (2.10)

and thus the constant k is given by

k = p(L)− p(0)
L

. (2.11)

The second equation (Eq. 2.8) has the solution

uz(r) = k

4µr
2 + A ln r +B (2.12)

where A and B are integration constants. Taking into account the boundary conditions,
A and B can be determined. At the center of the channel (r = 0), the velocity is finite,
thus |uz(0)| < ∞. This condition gives A = 0. At the wall (r = R), the no-slip
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condition prevails, i.e., uz(R) = 0, which gives B = −kR
2

4µ . Finally, the solution of the
ordinary differential equation 2.6 is given by

uz = p(L)− p(0)
4µL

(
r2 −R2

)
. (2.13)

This solution gives a parabolic velocity profile, see Fig. 2.2. The corresponding flow is
referred to as Poiseuille flow. It is often used to validate numerical methods.

Integrating uz over a cross section gives the volumetric flow rate through the tube

Q =
∫ R

0
2πruz(r)dr = −πR

4 (p(L)− p(0))
8µL . (2.14)

The minus sign in equation 2.14 indicates that a negative pressure gradient induces flow
in positive z direction. The equation is referred to as the Poiseuille equation [132]. The
average velocity ūz is obtained by dividing the volume flow Q by the cross-sectional
area and is one half of the maximum velocity on the tube axis, thus

ūz = Q

πR2 = −R
2 (p(L)− p(0))

8µL . (2.15)

Figure 2.2: The parabolic velocity profile (uz) of a fully developed steady Poiseuille flow.
The average velocity ūz is one half of the maximum velocity. At the wall, the
velocity is zero (no-slip condition).
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2.1.3.2 Womersley flow

Blood flow in arteries is not steady but pulsatile due to the periodic pumping of the
heart. The following derivation accounts for a time-dependent pressure gradient. The
starting point for deriving a solution is again the simplified momentum equation in
cylindrical polar coordinates (Eq. 2.3) in which the velocity is a function of r and
t while the pressure depends on z and t. Remember that this equation is valid only
for the assumptions cited at the beginning of section 2.1.3 (straight, rigid, sufficiently
long tube with circular cross section and axial symmetry, focus only on fully developed
region of the flow).

For simplicity, the form of the time-dependent pressure gradient will be taken as a
simple harmonic motion

∂p(t)
∂z

= keiωt (2.16)

where ω is the angular frequency of the motion and i =
√
−1. Taking the amplitude

equal to the constant pressure gradient k (Eq. 2.7) allows for a comparison with the
steady Poiseuille flow. A discussion about this comparison can be found in [213].

Note that, with the aid of Fourier series, any periodic function can be expressed as
sum of harmonics as the one used in Eq. 2.16. Therefore, the solution for the made
choice of the pressure gradient is of particular importance because it can be used to
represent the arterial pulse which is a periodic function.

With this choice of the time-dependent pressure gradient, the governing equation for
pulsatile flow becomes

∂2uz
∂r2 + 1

r

∂uz
∂r
− ρ

µ

∂uz
∂t

= k

µ
eiωt (2.17)

A solution of Eq. 2.17 can be found by separation of variables. For this, uz is decom-
posed into one part depending on r only and one depending on t only, i.e.,

uz(r, t) = U(r)eiωt (2.18)

Substituting the decomposition of uz in Eq. 2.17 gives, by cancellation of eiωt through-
out the equation, an ordinary differential equation for U(r)

d2U

dr2 + 1
r

dU

dr
− iΩ2

R2 U = k

µ
(2.19)
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which is a form of Bessel equation. Ω is a nondimensional parameter and is given by

Ω =
√
ρω

µ
R =

√
ω

ν
R. (2.20)

It is referred to as Womersley number, after J.R. Womersley who studied incompressible
flows through a rigid tube with an oscillating pressure gradient, see for example [203],
[204], and [205]. The Womersley number characterizes the kinematic properties of the
fluid.

Another important nondimensional number characterizing the kinematic properties of
a fluid flow is the Reynolds number. It is represented as the ratio between inertial
forces and viscous forces. If V designates the characteristic flow speed and L the
characteristic length, the Reynolds number Re is defined as

Re = V L

ν
(2.21)

where ν is the kinematic viscosity. A flow with a low Reynolds number is termed
laminar, whereas a flow with a high Reynolds number is called turbulent.

The solution of equation 2.19, appropriate to the boundary conditions of no-slip at the
wall (U(R) = 0) and finite velocity along the tube axis (|U(0)| <∞), reads [213]

U(r) = ikR2

µΩ2

(
1− J0(Ω i3/2 r/R

J0(Ω i3/2)

)
. (2.22)

where J0 is a Bessel function of order zero of the first kind [148].

Finally, using Eqs. 2.18 and 2.22, the solution of Eq. 2.17 for the pulsatile flow in a
rigid tube is given by

uz(r, t) = ikR2

µΩ2

(
1− J0(Ω i3/2 r/R

J0(Ω i3/2)

)
eiωt. (2.23)

Fig. 2.3 shows the time-dependent Womersley profile in a rigid tube. A detailed
discussion about Womersley flow can be found in [118] and [126].

The volumetric flow rate can be obtained by integrating the velocity profile uz(r, t)
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Figure 2.3: Time-dependent Womersley flow with Ω ≈ 0.056 (ω = 2π
5000 , ν = 0.4, R = 1, in

arbitrary units)

over a cross section of the tube, which yields [213]

Q(t) =
∫ R

0
2πruz(r, t)dr = iπkR4

µΩ2

(
1− 2J1(Ω i3/2)

Ω i3/2J0(Ω i3/2)

)
eiωt. (2.24)

Here, J1 is a Bessel function of first order and first kind.

In 1955, J.R. Womersely derived the analytical solution of the equation of motion of an
elastic tube, assuming (similarly to the rigid case) an infinite long tube with circular
cross section and an oscillating pressure gradient. The detailed derivation and the
exact formulas of the solution can be found in [204].

2.2 One-dimensional blood flow simulation with the
Navier-Stokes equations

As preparation for the next section, in which an introduction to the theory of the wall
mechanics will be given, a one-dimensional model for the simulation of blood flow in
large arteries is presented in this section. The model is based on the Navier-Stokes
equations for a homogeneous incompressible fluid.

Considering a distensible axisymmetrical tube of length L and with a circular section
of radius R (see Fig. 2.4), the one-dimensional cross averaged momentum equation
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Figure 2.4: Distensible axisymmetric tube of length L with circular cross section

reads [151]
∂ū

∂t
+ ū

∂ū

∂z
+ 1
ρ

∂p

∂z
= 0 (2.25)

where z denotes the axial coordinate, ū is the mean axial velocity, t is the time, and
p = p(z, t) is the pressure which is assumed to be constant on every cross section. The
viscous term is supposed to be negligible and hence does not appear in the momentum
equation.

With A denoting the cross sectional area, the continuity equation reads

∂A

∂t
+ ∂(Aū)

∂z
= 0. (2.26)

When linearizing the previous equations (Eqs. 2.26 and 2.25) supposing that

A = A0 + Ã (2.27)
p = p0 + p̃ (2.28)
ū = u0 + ũ (2.29)

where Ã, p̃, and ũ are small perturbations (|Ã| << 1, |p̃| << 1, |ũ| << 1) and assuming
furthermore that u0 = 0, one obtains

∂Ã

∂t
+ A0

∂ũ

∂z
= 0 (2.30)

∂ũ

∂t
+ 1
ρ

∂p̃

∂z
= 0. (2.31)

The cross sectional area A and the pressure p being related through a state equation
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A = A(p) which will be specified in the next section, one can write

∂A

∂t
= dA

dp

∂p

∂t
= A′

∂p

∂t
(2.32)

with A′ = dA

dp
. Substituting ∂Ã

∂t
in Eq. 2.30 using Eq. 2.32, then differentiating Eq.

2.31 with respect to z and Eq. 2.30 with respect to t and dividing the latter by A0,
and finally subtracting the obtained equations yields

∂2p̃

∂t2
− c2

0
∂2p̃

∂z2 = 0. (2.33)

Similarly, one can obtain
∂2ũ

∂t2
− c2

0
∂2ũ

∂z2 = 0. (2.34)

Eqs. 2.33 and 2.34 are classical wave equations of a traveling wave with wave speed

c0 =
√

A0

ρA′(p0) =
√
A0

ρ

dp

dA
(p0) =

√
1
ρD0

(2.35)

with D0 = A′(p0)
A0

. In the general case, still for small perturbations, one can define
locally

c(z) =
√
A0

ρ

dp

dA
(z) =

√
1

ρD(z) (2.36)

where
D(z) = 1

A
A′(p(z)) (2.37)

is called distensibility coefficient.

Note that the wave propagation speed does not depend on the viscosity of the fluid
but only on the deformability of the arteries, so the mechanical properties of the vessel
wall. When the distensibility coefficient D decreases, which corresponds to a more rigid
wall, the wave speed increases. In the limit case of a perfectly rigid channel (D = 0),
the wave would propagate with infinite speed.

The deformability coefficient of arteries is of the order of 1 bar−1 (1 bar = 105N m−2)
and corresponds, in normal physiological conditions, to an increase of the cross sectional
area A of 10% for a pressure change of the order of 10−1 bar [103, 104]. The wave
propagation speed in larger arteries is in the range of 3 − 10ms−1, whereas the fluid
velocity is, with about 20 cm s−1, much lower [85].
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2.3 Elasticity theory

The main focus of elasticity theory are relations between forces acting on a body and
its consequent deformation. The ratio of deformation to its initial configuration is
called strain; the force per unit area of a surface producing the deformation is called
stress [132]. Since stress is connected to a plane and a direction, it is a tensor [44].
The stress tensor σ is defined at any point in space and has nine components. In the
three-dimensional Cartesian coordinate system, it is represented by the matrix

σ =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (2.38)

where the first subscript of σij corresponds to the plane and the second subscript is
the direction connected to this plane, e.g., σxy is the stress acting on the ‘x-plane’
(parallel to the y-z-plane) in direction y. Fig. 2.5 shows the stresses σij acting on an
infinitesimal cubic element with faces parallel to the coordinate axes. Because angular
momentum must be conserved on each differential volume element, σij = σji [168].
Hence, the stress tensor is symmetrical and only six components are independent.

Figure 2.5: Components of the stress tensor on an infinitesimal cubic element in the Carte-
sian coordinate system
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The off-diagonal components σij, i 6= j, of the stress tensor are the shear stresses acting
tangentially on the surface element parallel to the ‘i-plane’, whereas σii are the normal
stresses acting on this surface element in normal directions.

The shear stress is an important quantity, especially when studying the blood flow in
arteries and the vascular response to it. As blood flows along the endothelial surface
layer, a shear stress is generated which slows down the flow [91]. The shear stress at
the wall is equal to the product of the fluid viscosity and the velocity gradient at the
wall. Many authors mention the connection between the wall shear stress (WSS) and
the pathogenesis of atherosclerosis [7, 21, 72, 128, 129, 130, 145, 170]. Several studies
give significant evidence that low WSS and highly oscillating WSS cause intimal wall
thickening [58, 59, 92, 144, 183, 214]. A review of the concepts and principles of WSS
measurements can be found in [170].

The knowledge of the quantities ~u and p allows the calculation of the forces that the
arterial wall is exposed to due to the movement of the blood. The vessel wall is not stiff
but elastic and expands if the pressure inside the vessel increases. This section gives
an overview of elasticity theory with focus on the mechanics of the wall. In order to
describe how the vessel reacts to a pressure change, a relationship between the pressure
inside the vessel and its radius (or its cross sectional area) is needed.

2.3.1 Mechanics of the wall

The pressure wave generated by the beating of the heart induces a pressure change
inside the vessel to which corresponds a change of the cross section. In this section, a
relationship between the pressure p and the area A or, when considering a tube with
circular cross section, the radius R will be derived. The obtained relation A = A(p)
(or R = R(p)) can be used to specify the ratio dA

dp
in the equations in the previous

section (Eqs. 2.32, 2.35, and 2.37).

The wall of a blood vessel is not homogeneous but consists of different materials (elastin,
collagen, and smooth muscle) which are responsible for the mechanical properties of the
wall [85]. An overview of the mechanical properties of the single vessel wall components
can be found in [44]. Due to the inhomogeneity, the relation between stress σ and strain
e is nonlinear and complex. However, since the deformation of the wall is small in
physiological conditions, this relation is commonly assumed to be linear if the following
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Figure 2.6: Transversal section of a tube of thickness h

assumptions and simplifications are made.

In the following, a distensible tube with circular cross section is assumed and cylindri-
cal polar coordinates (r, θ, z) are used where r indicates the radial component, θ the
angular component, and z the axial component. The radius of the tube in equilibrium
corresponding to a reference pressure p0 is denoted by R0. p0 is the pressure for which
the restoring forces from the elasticity of the wall are balanced. The wall of the tube
is supposed to be homogeneous and to have a thickness h that is small compared to
the reference radius R0 of the channel, i.e., h << R0, see Fig. 2.6. When the pressure
p increases, p > p0 with p ≈ p0, the tube deforms and its radius increases, i.e., R > R0

with R ≈ R0 where R denotes the new radius. Assuming furthermore that the com-
ponents of the stress along the directions r and z, σr and σz, are negligible, one can
write for the component of the stress in azimuthal direction

σθ = E eθ (2.39)

where eθ = R−R0

R0
is the strain corresponding to the stress σθ and E is the Young’s

modulus. The linear relation σ = E e is known as Hooke’s law and is valid for purely
elastic materials [44]. The Young’s modulus E describes the stiffness of the material in
direction of the deformation [137]. It has the dimension of force/surface. For arteries,
the value of E ranges between 2 · 105 and 10 · 105N/m2 [132].

From the balance of the forces acting on the tube wall, one obtains that the tension T
in direction θ is proportional to the pressure difference p− p0 causing the deformation
and is given by the Laplace law which states a relationship between the surface tension,
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the pressure, and the curvature of a surface [60].

T = (p− p0)R (2.40)

In absence of a pressure change, the tension T is zero. Assuming that σθ is constant
and dividing Eq. 2.40 by the wall thickness h yields

σθ = (p− p0)R
h

. (2.41)

When multiplying Eq. 2.41 by h and differentiating it, one obtains

h dσθ = Rdp+ (p− p0) dR. (2.42)

From Eqs. 2.39 and eθ = R−R0

R0
it follows that

dσθ = E deθ = E
dR

R0
. (2.43)

Finally, combining Eqs. 2.42 and 2.43 yields

dR

dp
= RR0

E h− (p− p0)R0
. (2.44)

Assuming that p − p0 <<
E h

R0
and that deformations are small, i.e., R ≈ R0 (and

correspondingly p ≈ p0), Eq. 2.44 can be simplified yielding the approximation

dR

dp
= R2

E h
. (2.45)

This is an ordinary differential equation and can be solved by separation of variables.
With the initial condition R(p0) = R0, the solution is

R(p) = R0

(
1− R0(p− p0)

E h

)−1

. (2.46)

Eq. 2.46 is a nonlinear relation between the radius R and the pressure p.

Eq. 2.45 is a relation of the form
dR = β

2 dp (2.47)

Here, β is the compliance of the tube. It is inversely proportional to the Young’s
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modulus E. To obtain the corresponding relation between dp and the change of the
cross-sectional area A = πR2, dR in Eq. 2.45 is replaced using dA = 2π R dR, which,
after rearrangement of the terms, results in

dp

dA
= E h

2πR3 . (2.48)

This ratio can now be substituted in Eq. 2.36 which yields

c =
√

1
ρD

=
√
A

ρ

dp

dA
=
√
A

ρ

E h

2πR3 =
√
E h

2Rρ. (2.49)

The relation
c =

√
E h

2Rρ. (2.50)

is known as the Moens-Korteweg equation [132]. It can be used to determine experi-
mentally the Young’s modulus E. When knowing h and R and measuring c, E can
be calculated by using Eq. 2.50. Note that the Moens-Korteweg equation is valid
presuming small perturbations and a linear elastic material.

Combining Eqs. 2.37 and 2.48 gives a relation between the distensibility coefficient D
and the Young’s modulus E:

E = 2R
hD

. (2.51)

2.3.2 Linear pressure-radius relationship

Under normal circumstances, the thickness h of the vessel wall is small compared to
the reference radius R0 [116]. As a consequence, the vessel wall can be treated as a
thin elastic membrane.

The relation between pressure and radius in Eq. 2.46 is nonlinear. For the simulations
in chapter 5, a linear pressure-radius relationship is assumed. A similar approximation
has been assumed by Y.C. Fung in his book Biodynamics: Circulation [61].

Using the notation from above, the assumed relationship is

p− p0 = α(R−R0) (2.52)

where α is a compliance constant. In other words, (p−p0) is the excess pressure needed
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to induce the wall displacement (R−R0).

The relation in Eq. 2.52 is similar to that of the pulmonary blood vessels [52, 61] and
a good approximation for large arteries [80].



Chapter 3

The lattice Boltzmann method

The Navier-Stokes equations can be solved analytically only in special cases. In Section
2.1.3, two analytic solutions for steady and pulsatile incompressible flow in a rigid cylin-
drical tube have been presented (Poiseuille and Womersley flow). In more general cases,
the Navier-Stokes equations can be solved by using numerical methods. Conventional
approaches, as the finite element method, are top-down approaches which discretize the
underlying partial differential equations in time and space. The finite element method
is implemented in many solvers for problems of computational fluid dynamics and has
widely been applied to blood flow simulations [2, 97, 146, 182, 187, 188].

This chapter presents an alternative method to classical numerical schemes. It is
a bottom-up approach based on the molecular behavior of the fluid. The starting
point is the Boltzmann equation of statistical mechanics which will be introduced
in the next section. The resulting lattice Boltzmann (LB) method is a mesoscopic
approach based on the Boltzmann equation and can be used to solve various problems
of computational fluid dynamics. For a detailed overview of theory and applications of
the lattice Boltzmann method (LBM), the reader is referred to [16].

A short discussion about top-down versus bottom-up approaches (see Fig. 3.1) can be
found in the book of D.A. Wolf-Gladrow [202].

22
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Figure 3.1: Top-down versus bottom-up approach

3.1 The Boltzmann equation

When applying numerical methods, it is important to consider the properties of the
underlying equations. There are physical constraints, e.g., conservation of mass and
momentum, that have to hold also for the derived equations of the numerical method.
Furthermore, there are complex boundary conditions in fluid dynamics, e.g., a complex
geometry or complex dynamic boundary values [99]. In blood flow simulations, these
complex boundary conditions are for example the geometry of the vessels, the properties
of the vessel wall and its interaction with the fluid, and the dynamic nature of pressure
and flow.

3.1.1 Description of fluids on different scales

The description of fluids can be done on different scales [99]:

• Microscopic scale: On the smallest scale, the molecules of the fluid are de-
scribed by structureless particles moving along trajectories. The underlying equa-
tions are the Newton equations. The simulations can be performed with lattice
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gas cellular automata (LGCA).

• Mesoscopic scale: On the mesoscopic scale, a statistical description of the
fluid particles is used (Liouville and Boltzmann equation). The lattice Boltzmann
method provides a numerical scheme to solve the discretized Boltzmann equation.

• Macroscopic scale: On the largest scale, the macroscopic scale, the fluid is
described by relations between macroscopic variables (e.g., fluid density, fluid
velocity) and by using the theory of continuum mechanics. Nonlinear partial
differential equations as the Navier-Stokes equations are discretized and solved
with classical numerical methods (finite differences [127], finite elements [217],
finite volumes [22], spectral methods [108]).

3.1.2 The Boltzmann equation

For the description of blood flow, the microscopic scale with the Newton equations is
not appropriate because of the large number of molecules. It is more convenient to use
a statistical description with the help of the Boltzmann equation. The main variables
of the underlying equations are distribution functions f(~x,~v, t) which give the ensemble
averaged quantity of molecules at the position ~x in space with the velocity ~v at time
t. The evolution over time of these distribution functions is given by the Boltzmann
equation [202] (

∂

∂t
+ ~v · ∇

)
f(~x,~v, t) = Q(f, f) (3.1)

where Q denotes the collision integral describing the physical interaction of the par-
ticles. Thus, Eq. 3.1 is an integro-differential equation. External forces have been
neglected.

The macroscopic variables (density ρ, momentum ~j, and momentum flux tensor Π) can
be calculated in the following way.

ρ(~x, t) =
∫
mf(~x,~v, t) d~v (3.2)

~j(~x, t) = ρ(~x, t) ~u(~x, t) =
∫
m~v f(~x,~v, t) d~v (3.3)

Παβ(~x, t) =
∫
mvαvβ f(~x,~v, t) d~v (3.4)

Here, m denotes the particle mass, ~v the particle velocity and ~u is the fluid velocity.
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A distribution function that remains unchanged by the collision operator, i.e., Q(f, f) =
0, is defined as equilibrium distribution function f eq. Such an equilibrium distribution
function is given by the Maxwell-Boltzmann distribution [202]

f eq(~x,~v, t) = ρ
(

m

2πkBT

)D/2
e
−m(~v−~u)2

2kBT (3.5)

where kB is the Boltzmann constant, T the temperature, and D the spatial dimension.
Note that the equilibrium distribution function depends on ~x and t only implicitly
through the macroscopic variables ρ(~x, t) and ~u(~x, t). In 1872, L. Boltzmann showed
with the famous Boltzmann theorem [19] that every initial distribution function satis-
fying the Boltzmann equation decays to the Maxwell-Boltzmann distribution.

Historically, the lattice Boltzmann method has developed from the lattice gas cellular
automata (LGCA) [202] with the goal to overcome one of the major drawbacks of
LGCA: statistical noise [180]. In 1988, G.R. McNamara and G. Zanetti [119] introduced
the LB method for the first time [215] to eliminate statistical noise. The new method
used particle distribution functions instead of individual particles of the LGCA. Later,
it has been shown that the LB equation can also be derived from the continuous
Boltzmann equation [73].

In analogy to the LGCA, a nonlinear collision operator has been used for first appli-
cations of the lattice Boltzmann equation, having the drawback that the simulations
are computationally expensive [119]. F.J. Higuera and J. Jimenez [76] presented a
linear collision operator by approximating the collision term by a linearization about
a local equilibrium f eq. This results in a quasilinear LB equation. The detailed con-
struction of the collision operator can be found in [180]. P.L. Bhatnagar, E.P. Gross,
and M. Krook [18] presented a coarser approximation for the collision operator Q.
The resulting equation of the BGK model uses single-time relaxation towards a local
equilibrium: (

∂

∂t
+ ~v · ∇

)
f(~x,~v, t) = −ω (f(~x,~v, t)− f eq(~x,~v, t)) (3.6)

Here, f eq is the Maxwell-Boltzmann distribution (see Eq. 3.5). ω = 1
τ
denotes the colli-

sion frequency and τ the collision time. The BGK approximation fulfills two important
properties of the collision operator [99]. Firstly, mass and momentum are conserved.
Secondly, the distribution function decays to a Maxwell-Boltzmann distribution.
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3.2 The lattice Boltzmann equation

Discretization of the Boltzmann equation in time and space leads to the lattice Boltz-
mann equation [74]. For this, the phase space is reduced to a limited set of allowed
velocities ~ci, i = 0, . . . q− 1, where q is the number of allowed directions of the velocity
vector ~ci. The resulting lattice Boltzmann equation describes the evolution of ficti-
tious particles on nodes of a regular lattice. In the following, ∆t and ∆~x denote the
temporal resolution and the lattice spacing corresponding to the discretization of the
Boltzmann equation, respectively. Temporal and spatial resolution are related through
∆~x = ~ci ∆t to guarantee Lagrangian behavior [176]. Using the abbreviating notation
fi(~x, t) ≡ f(~x,~ci, t) for the distribution functions (also called populations), the lattice
Boltzmann equation reads

fi(~x+ ~ci∆t, t+ ∆t)− fi(~x, t) = −∆tQi (3.7)

where Qi is the collision operator. As for the Boltzmann equation, the distribution
functions fi(~x, t) = f(~x,~ci, t) model the dynamics of the flow field and describe the
probability of finding at time t a particle located at site ~x and traveling along the
lattice in direction i with the speed ~ci. Starting from an initial state, the populations
evolve at every time step in two consecutive sub-steps: (a) collision, describing the
interaction of particles at a node, and (b) streaming (propagation), in which each
particle is propagated to the neighboring node based on the direction of its velocity,
see Fig. 3.2.

Figure 3.2: Propagation step: each population is propagated to the neighboring node corre-
sponding to the direction of its velocity.

In analogy to Eqs. 3.2, 3.3, and 3.4, the macroscopic variables are the zeroth, first,
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and second hydrodynamic moments of the distribution functions fi:

ρ(~x, t) =
∑
i

fi(~x, t) (3.8)

~j(~x, t) = ρ(~x, t) ~u(~x, t) =
∑
i

~ci fi(~x, t) (3.9)

Παβ(~x, t) =
∑
i

ciαciβ(fi(~x, t)− f eqi (~x, t)) (3.10)

3.2.1 The LBGK equation

The lattice Boltzmann equation with BGK approximation (single-time relaxation)
reads

fi(~x+ ~ci∆t, t+ ∆t)− fi(~x, t) = −ω∆t(fi − f eqi )(~x, t) (3.11)

with ∆t being the temporal resolution and ω being the relaxation frequency.

The equilibrium distribution functions f eqi are given by a second-order expansion of
the Maxwell-Boltzmann distribution.

f eqi (ρ,~j) = wi
ρ0

(
ρ+ m

kBT
~ci ·~j + m

2ρkBT

(
m

kBT
(~ci ·~j)2 − |~j|2

))
(3.12)

ρ0 denotes the mass density, m the particle mass, kB the Boltzmann constant, and T
the temperature. The parameters wi are weighting factors and depend on the chosen
lattice. Note that f eqi depends only on ρ and ~j. Using ~j = ρ ~u, Eq. 3.12 can be
rewritten to

f eqi (ρ, ~u) = wi ρ

ρ0

(
1 + m

kBT
~ci · ~u+ m

2kBT

(
m

kBT
(~ci · ~u)2 − |~u|2

))
(3.13)

The equilibrium distribution functions are derived by using the principle of maximum
entropy under the constraints of conservation of mass, momentum, and momentum
flux [86]. As a consequence, the f eqi ’s fulfill the following relations:

ρ(~x, t) =
∑
i

f eqi (ρ,~j) (3.14)

~j(~x, t) =
∑
i

~ci f
eq
i (ρ,~j) (3.15)

The weighting factors wi have to be chosen in accordance with the velocities ci such
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Direction i Length of ~ci Weighting factor wi
0 0 4/9

1, 2, 3, 4 c 1/9
5, 6, 7, 8

√
2c 1/36

Table 3.1: Weighting factors of the D2Q9 LBGK lattice

that for ~j = ~0, the hydrodynamic moments up to the fourth order of the equilibrium
distribution function equal the hydrodynamic moments of the Maxwell-Boltzmann dis-
tribution (Eq. 3.5) [99]. The resulting equations are generally under-constrained and
hence admit several solutions [180]. Several solutions for wi and

m

kBT
for different

lattices can be found in [162] and [163].

The lattices of the LB method are commonly called DdQq where d indicates the spatial
dimension and q the number of lattice velocities ~ci. The lattice speed

c = ∆x
∆t (3.16)

relates the temporal resolution ∆t and the spatial resolution ∆x.

In two spatial dimensions, a widely used lattice is the D2Q9 lattice, see Fig. 3.3. The
velocity ~c0 corresponds to a resting particle. ~c1, . . .~c8 are the velocities with directions
pointing towards the eight neighboring nodes. For the D2Q9 LBGK lattice, m

kBT
= 3
c2 .

The corresponding weighting factors are listed in Table 3.1.

Figure 3.3: D2Q9 lattice

In three dimensions, the most popular choices are the D3Q15 and the D3Q19 lattices,



3 The lattice Boltzmann method 29

Direction i Length of ~ci Weighting factor wi
0 0 2/9

1 – 6 c 1/9
7 – 14

√
3c 1/72

Table 3.2: Weighting factors of the D3Q15 LBGK lattice

Direction i Length of ~ci Weighting factor wi
0 0 3/9

1 – 6 c 1/18
7 – 18

√
2c 1/36

Table 3.3: Weighting factors of the D3Q19 LBGK lattice

see Figures 3.4 and 3.5, respectively, with the corresponding weighting factors listed
in Tables 3.2 and 3.3, respectively. For both these lattices, m

kBT
= 3
c2 . Compared to

the D3Q19 model, the D3Q15 model is computationally less expensive and needs less
memory. An advantage of the D3Q19 model instead is that its stability range is larger
[99].

Figure 3.4: D3Q15 lattice

For the presented DdQq lattices of the LBGK method, the pressure p is linearly related
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Figure 3.5: D3Q19 lattice

to the density ρ through a state equation:

p(~x, t) = kBT

m
ρ(~x, t) = c2

3 ρ(~x, t) (3.17)

Thus, the pressure field can easily be obtained from the density field. Density and
velocity field are determined by using Eqs. 3.8 and 3.9.

The viscosity ν is given by

ν = c2

3

( 1
ω
− 1

2

)
∆t = c2

3

(
τ − 1

2

)
∆t (3.18)

and the speed of sound cs by

cs =
√
dp

dρ
= c√

3
. (3.19)
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3.2.2 Chapman-Enskog procedure: from LBGK equation to
Navier-Stokes equations

With the help of the Chapman-Enskog procedure [26], it can be shown that the LBGK
method presented in the previous section approximates the Navier-Stokes equations
for incompressible fluids in the limit of low Mach numbers.

The Chapman-Enskog procedure is an asymptotic expansion relating the statistical
mechanics with the theory of continuum fluid dynamics. It solves the Boltzmann
equation by successive approximations [136]. The expansion parameter ε is theKnudsen
number Kn which is defined as the ratio between the mean free path length (mean
distance between two consecutive collisions) and the characteristic length scale of the
system [202]. In the following, a short overview of the derivation of the Navier-Stokes
equations from the LBGK equation is given.

The first step of the Chapman-Enskog procedure is to consider a multi-scale expansion
of the time and space derivatives, ∂t and ∂xα for α = 1, 2, 3, in the parameter ε [176]:

∂t = ε∂
(1)
t + ε2∂

(2)
t + . . . (3.20)

∂xα = ε∂(1)
xα + . . . (3.21)

As a next step, the distribution functions fi are expanded around the equilibrium
distribution functions f eqi as follows

fi = f eqi + εf
(1)
i + ε2f

(2)
i +O(ε3) (3.22)

where f (1)
i and f (2)

i do not contribute to mass and momentum, i.e.,

∑
i

f
(1)
i = 0,

∑
i

~cif
(1)
i = 0 (3.23)

∑
i

f
(2)
i = 0,

∑
i

~cif
(2)
i = 0. (3.24)

Next, the term fi(~x+~ci∆t, t+ ∆t) in the LBGK equation (Eq. 3.11) is expanded into
a Taylor series up to second order and the multi-scale expansions of the time and space
derivatives (see Eqs. 3.20 and 3.21) are inserted into this Taylor expansion. Then,
inserting the Taylor expansion of fi(~x+ ~ci∆t, t+ ∆t) and the expansion of fi (see Eq.
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3.22) into the LBGK equation, the kinetic equation takes the form

εE
(0)
i + ε2E

(1)
i +O(ε3) = 0. (3.25)

For the exact form of E(0)
i and E(1)

i , the reader is referred to [99].

Finally, the Navier-Stokes equations can be obtained by taking the zeroth and first
moments of E(0)

i and E(1)
i . A more detailed derivation of the Navier-Stokes equations

from the LBGK equation can be found in [202] and [176].

3.2.3 Applications and advantages of the LBM

The lattice Boltzmann approach has developed to a valuable method for solving prob-
lems of fluid dynamics. It has been applied to a broad range of problems, e.g.:

• particle suspensions in a fluid (C.K. Aidun et al. [3], D.S. Clague and P.J.
Cornelius [32], E.J. Ding and C.K. Aidun [42, 43], Z.G. Feng and E.E. Michaelides
[53], J. Horbach and D. Frenkel [81], N.Q. Nguyen and A.J.C. Ladd [131])

• single-component hydrodynamics (F.J. Higuera et al. [76, 77], G.R. McNamara
and G. Zanetti [119])

• multi-phase and multi-component flows (A.D. Angelopoulos et al. [5], Q. Kang
et al. [84], X. Nie et al. [133], D. Qi [158, 159], D. Qi and L. Luo [160, 161],
M.A.A. Spaid and F.R. Phelan [174], J. Tölke et al. [191])

• reaction-diffusion systems (S.P. Dawson et al. [36], Y.H. Qian and S.A. Orszag
[164])

• magnetohydrodynamics (S. Chen et al. [28])

• flows through porous media (Z.L. Guo and T.S. Zhao [69], C. Manwart et al.
[111], B. Manz et al. [112], N.S. Martys and H. Chen [114], C. Pan et al. [143],
R. Verberg and A.J.C. Ladd [194], J. Wang et al. [199])

• combustion (O. Filippova and D. Hänel [55], K. Yamamoto et al. [209])

• crystallization (W. Miller et al. [124, 125])
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• hemodynamics (A.M. Artoli [7], A.M. Artoli et al. [8, 9, 10, 11, 12], J. Boyd et
al. [21], C. Chen et al. [27], G. Doctors [45], H. Fang et al. [52], M. Hirabayashi
et al. [78, 79], A.G. Hoekstra et al. [80], M. Krafczyk et al. [89], D. Leitner et
al. [100, 101], D. Leitner [99], S. Melchionna et al. [123], G. Pontrelli [157], M.
Tamagawa and S. Matsuo [185], X. Xu and J.S. Lee [208])

The lattice Boltzmann method has been successfully applied to hemodynamics by
many authors (see list above), which has proven its value as an alternative approach
to numerical methods based on the discretization of the Navier-Stokes equations of
continuum mechanics for the simulation of blood flow. The growing application of the
LBM in many fields in the last years is related to the advantages that this approach
has, also in comparison to conventional computational fluid dynamics methods:

• The LBM is an explicit numerical method, which allows a simple, straight-forward
implementation.

• The LBM is numerical stable for many applications. Several authors have inves-
tigated the numerical stability of this method (A.M. Artoli [7], G. Doctors [45],
M. Junk et al. [83], P. Lallemand and L.S. Luo [95], J.D. Sterling and S. Chen
[176], R. Verberg and A.J.C. Ladd [196], D. Yu et al. [211]).

• The LBM acts strictly locally and hence is suitable for parallelization. Studies
on parallelization and code optimization have been performed by some authors
of the LB community (C. Körner et al. [87], M.D. Mazzeo and P.V. Coveney
[117], C. Pan et al. [143], T. Pohl et al. [149], J. Wang et al. [199], J. Wilke et
al. [201], X. Wu et al. [207]).

• Compared to Navier-Stokes solvers, in which the nonlinear convective term (~u ·
∇~u) has to be treated, the LBM does not include this term because convection
is replaced by simple advection (propagation to the neighboring nodes) [211].

• In the LBM, the shear stress is calculated directly from the density distribution
functions [13], see Eq. 3.10. This allows to easily determine the wall shear stress
which is a crucial quantity related to the development of atherosclerosis [170].

• In LB simulations, the pressure is obtained through a state equation (see Eq.
3.17) instead of solving the Poisson equation as it is needed for solvers for the
incompressible Navier-Stokes equations [211].
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3.3 Boundary conditions

The lattice Boltzmann method offers a simple scheme for solving various problems of
computational fluid dynamics. A difficulty, however, is to formulate boundary con-
ditions (BC) because these are usually given for macroscopic variables (pressure or
velocity) in hydrodynamic problems instead of the main LB variables which are the
distribution functions fi. At the boundary, the incoming distribution functions (point-
ing into the fluid domain) are not known after the propagation step and need to be
determined [35]. Therefore, appropriate relations between the incoming and outgoing
(known) distribution functions have to be defined in a way that the desired macroscopic
behavior on the boundary of the domain is reproduced.

S. Succi [180] distinguishes between elementary and complex boundary conditions.
Elementary boundary conditions are conditions where the boundary is aligned with
the coordinates of the grid, whereas complex boundaries can cut mesh cells. In this
work, only elementary boundary conditions (staircase boundaries) are applied. In the
following sections, the boundary conditions used in this work will be presented. These
include periodic BC, no-slip BC, and inflow/outflow BC. Several other BC exist (free-
slip, frictional slip, sliding walls) whose treatment can be found elsewhere [180].

For the treatment of complex boundary conditions, one of the two following approaches
can be applied:

• Extrapolation of the distribution functions near the curved wall (see Z. Guo et
al. [67], R. Mei et al. [120, 121], or R. Verberg and A.J.C. Ladd [195, 196])

• Local grid refinement near the curved wall (see O. Filippova and D. Hänel [54, 56],
D. Yu et al. [212], or W. Guo et al. [66]). A drawback of this approach is that the
complexity of the implementation is increased because the different lattices have
different time scales due to the coupling of the temporal and spatial resolution
of the LBGK method [99].

3.3.1 Periodic boundary conditions

Periodic boundaries are often used to study fully developed flow in a theoretically
infinite long tube. Their implementation is simple: the outward distribution functions
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f out
i (populations fi pointing out of the fluid domain) are copied and assigned to the
inward populations f in

i of the opposite side of the domain, see Fig. 3.6. In the LB
formalism, this means

f in
i (~x0, t+ ∆t) = f out

i (~xN−1, t) (3.26)
f in
i (~xN−1, t+ ∆t) = f out

i (~x0, t) (3.27)

where ~x0 and ~xN−1 correspond to the coordinates of the first and last layer of fluid
nodes in a given direction, respectively.

Figure 3.6: Periodic boundary conditions

For the implementation strategy, there are several options. One option is to use buffer
nodes saving the populations of the last fluid nodes in a given direction. Once the
buffers are filled, the particles can be moved at the propagation step to the appropriate
location. A detailed description about the buffer strategy for a two-dimensional lattice
can be found in [180]. Another option is to copy the populations directly in the
physical domain without using buffer nodes. This strategy saves memory but requires
much attention to the order in which the LB operations are processed in order to not
overwrite values that are still needed for other computations.

In this work, periodic boundary conditions have been used for first simulations in order
to prove that the implemented model provides correct physical behavior, see Section
5.2.1.

3.3.2 No-slip boundary conditions

A no-slip situation occurs at the solid boundary of a domain when the fluid velocity
is zero at that boundary. There are two common ways of implementing the no-slip
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condition

• bounce-back on the nodes (BBN), see for example [134] or [173]

• bounce-back on the link (BBL), see for example [93]

The bounce-back approach is a simple scheme to determine the unknown populations
at a boundary node. The unknown populations fi at the wall (those pointing inward)
are determined by simply reflecting the known outward populations pointing into the
opposite direction ī (~cī = −~ci). For the BBN condition, the physical boundary lies
on a lattice node, whereas for the BBL, the physical boundary is located between two
lattice nodes (but aligned with the grid lines), see Fig. 3.7.

Figure 3.7: No-slip boundary condition: bounce-back on the node (left) and halfway bounce-
back on the link (right). The red filled circles represent fluid nodes; the gray
crosses describe solid nodes. Full arrows indicate outgoing populations; dashed
arrows denote reflected incoming populations

R. Cornubert et al. [34] noticed that the numerical accuracy of the BBN condition is
only first order at the boundary. This downgrades the LB algorithm because the LB
equation is second-order in numerical accuracy for the interior lattice nodes [29]. Sev-
eral methods for the treatment of boundary conditions have been proposed to improve
the numerical accuracy of the LB method, see for example the methods proposed by
P.A. Skordos [173], D.R. Noble et al. [134, 135], T. Inamuro [82], S. Chen et al. [30],
and R.S. Maier et al. [110]. M.A. Gallivan [62] evaluated the bounce-back condition
for LB simulations and showed that it provides a computationally efficient scheme for
curved surfaces. For a comparison between some of the mentioned methods for the
boundary treatment, the reader is referred to [98].
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In the first simulations carried out in this thesis, the BBL condition has been used. In
the LB formalism, this condition can be expressed as

f in
i (~x, t+ ∆t) = f out

ī (~x, t) (3.28)

where f in
i and f out

ī denote the unknown inward populations and corresponding known
outward populations in opposite direction, respectively. ī indicates the direction oppo-
site to i.

D.P. Ziegler [216] noticed that the BBL condition is second-order in numerical accuracy
if the physical boundary is located halfway between two lattice nodes. This condition
will be termed as ‘halfway bounce-back on the link’ or ‘halfway BBL’ condition in
Chapter 5.

3.3.3 Continuous bounce-back boundary condition

The continuous bounce-back boundary condition is based on the simple bounce-back
scheme and spatial interpolations. This method has first been introduced by M. Bouzidi
et al. [20] and extended by P. Lallemand and L.S. Luo [96]. With the presented
boundary condition, the wall can be placed arbitrarily between fluid and solid nodes,
i.e., at an arbitrary distance from the last fluid node in a given direction. The unknown
distribution functions are then calculated by using interpolations and the bounce-back
rule.

The interpolation can be linear or quadratic. In this work, only the linear interpolation
formulas will be described and used in the simulations to determine the unknown
distribution functions near the wall with directions pointing into the fluid domain. For
the quadratic interpolation formulas, the reader is referred to [20] and [96].

The wall is imagined to be located at a certain distance q from the last fluid node, see
Fig. 3.8. It will be termed ‘virtual wall’ in the following because it only represents the
interface between solid and fluid domain. The lattice spacing ∆x is set to one; thus,
q ranges between zero and one. If q = 1/2, the normal bounce-back rule is recovered
(halfway bounce-back on the link). The following scheme is applied to all links that
cross the imaginary wall. Let ~xj be a fluid node such that ~xs = ~xj + ~ci∆t is a solid
node and let ī denote the opposite direction of i (thus, ~cī = −~ci). For the unknown
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Figure 3.8: Continuous bounce-back boundary condition for a virtual wall located at distance
q from the last fluid node xj. Gray crosses indicate solid nodes, red filled circles
denote fluid nodes. The lattice spacing ∆x is set to one. Dashed blue arrows
represent directions i of unknown populations fi which are determined using the
linear interpolation in Eqs. 3.29 or 3.30.

distribution functions at node ~xj, the following linear interpolation is used.

fī(~xj, t+ 1) = 2 q f ∗i (~xj, t) + (1− 2 q)f ∗i (~xj − ~ci∆t, t), q <
1
2 (3.29)

fī(~xj, t+ 1) = 1
2 qf

∗
i (~xj, t) + (2 q − 1)

2 q f ∗ī (~xj, t), q ≥ 1
2 (3.30)

Here, the superscript ∗ denotes the post-collisional state and ∆t has been set to one.

For an application of this boundary condition, the reader is referred to the next chap-
ter.

3.3.4 Inflow and outflow boundary conditions

For the simulation of arterial blood flow, it is often more convenient to use inflow/outflow
(inlet/outlet) boundary conditions. By this, a velocity profile or a given pressure can
be prescribed at the boundary.

A simple way to prescribe an inlet flow is to set the incoming (unknown) populations
to their equilibrium value corresponding to the density ρin and velocity ~uin that one
desires to prescribe:

f in
i = f eqi (ρin, ~uin). (3.31)

In blood flow simulation, a possible velocity profile for the inlet is for example a
Poiseuille flow or a Womersley flow, see Section 2.1.3.
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The outlet boundary condition is more complicated because one can have only a guess of
the values to be prescribed at the outlet. Furthermore, the outflow boundary condition
affects the flow field because of possible perturbations reflecting backwards into the
fluid domain. If the tube is long enough, this effect can be neglected. In this case, a
zero-gradient condition can be imposed; that is, the values of last layer of fluid nodes
are the same as the values in the last but one layer of fluid nodes.

Setting the inward (unknown) populations to the equilibrium values as in Eq. 3.31
requires the prescription of both density and velocity. However, it is possible that in
some applications only one of these values can be provided. In this case, the method
of Q. Zou and X. He [220] is useful to prescribe either pressure (density) or velocity
boundary conditions. It is based on the idea of bounce-back of the non-equilibrium
part of the distribution functions. Using this idea, it is possible to calculate the missing
(unknown) populations from the prescribed pressure (or velocity) and the populations
known from the streaming step. The two following subsections give a detailed overview
of the Zou/He method and of how the unknown populations are computed. Another
method for pressure and velocity boundary conditions is described in [68] where the
authors use a non-equilibrium extrapolation scheme for the boundaries.

3.3.4.1 Pressure boundary conditions

Due to the linear state equation between pressure and density (see Eq. 3.17) it is
equivalent to prescribe pressure or density. Since the main physical variables in the
LB method are density and velocity (as the hydrodynamic moments of the distribution
functions), it will be written in the remainder of this work that ‘a certain density’ rather
than ‘a certain pressure is prescribed’, keeping in mind that the two formulations are
equivalent.

With the pressure boundary condition, it is possible to impose a pressure gradient
between inlet and outlet. Note that this can cause a problem because the pressure
gradient is the result of small density fluctuations, whereas the density fluctuations
should actually be negligible in an incompressible fluid. Thus, it is important to keep
the density fluctuations (and hence the pressure gradient) small.

The following calculations are based on the work of Q. Zou and X. He [220]. A D2Q9
lattice is considered and the computations shall be examplarily performed for a node
at the inlet of a two-dimensional channel. After propagation, the distribution functions
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Figure 3.9: Inlet/outlet boundary conditions. Dashed arrows indicate unknown populations;
full arrows denote known particles.

f0, f2, f3, f4, f6, and f7 are known, whereas the populations f1, f5, and f8 have to
be determined, see Fig. 3.9. Furthermore, the prescribed pressure - or equivalently
the prescribed density ρin - at the inlet is known as well. It is assumed that uy, the
y-coordinate of the velocity vector ~u, is specified too, e.g., uy = 0 at the inlet. With
the help of Eqs. 3.8 and 3.9, it is now possible to determine the velocity component
ux and the unknown populations f1, f5, and f8.

From Eq. 3.8, it follows that

f1 + f5 + f8 = ρin − (f0 + f2 + f3 + f4 + f6 + f7). (3.32)

Rearrangement of Eq. 3.9, considering the components cix and ciy of the lattice velo-
cities ~ci separately, and keeping in mind that uy = 0, yields

f1 + f5 + f8 = ρinux + (f3 + f6 + f7) (from
∑

cixfi = ρinux) (3.33)

and

f5 − f8 = −f2 + f4 − f6 + f7 (from
∑

ciyfi = ρinuy = 0). (3.34)

Consistency of Eqs. 3.32 and 3.33 and rearrangement of the terms gives ux:

ux = 1− (f0 + f2 + f4 + 2(f3 + f6 + f7))
ρin

. (3.35)

The unknown population normal to the inlet, f1, can be determined by applying the
bounce-back rule for the non-equilibrium part, i.e., f1 − f eq1 = f3 − f eq3 . By using



3 The lattice Boltzmann method 41

furthermore Eq. 3.13 (inserting for f eqi ), one obtains

f1 = f3 + (f eq1 − f
eq
3 )

= f3 + ρin

(1
9 + 1

3ux + 1
3u

2
x − (1

9 −
1
3ux + 1

3u
2
x)
)

= f3 + 2
3ρinux (3.36)

Finally, ‘adding’ Eqs. 3.33 and 3.34 and rearranging the terms yields

f5 = f7 −
1
2(f2 − f4) + 1

6ρinux (3.37)

and, analogously, ‘subtracting’ Eq. 3.34 from Eq. 3.33 and rearrangement of the terms
results in

f8 = f6 + 1
2(f2 − f4) + 1

6ρinux. (3.38)

Eqs. 3.36, 3.37, and 3.38 with ux from Eq. 3.35 give the unknown populations for a
lattice node at the inlet. In a similar way, the unknown populations f3, f6, and f7 for
a node at the outlet of the channel can be derived:

f3 = f1 −
2
3ρoutux

f6 = f8 −
1
2(f2 − f4)− 1

6ρoutux

f7 = f5 + 1
2(f2 − f4)− 1

6ρoutux (3.39)

with
ux = (2(f1 + f5 + f8) + f0 + f2 + f4)

ρout
− 1 (3.40)

where ρout denotes the density imposed at the outlet.

The corner nodes need to be treated separately. In the following, a rough derivation
for the top node at the inlet is given. The equations for the three other corner nodes
can be obtained in an analogous way. The derivation for the unknown populations at
a corner node is similar to the one for an ‘inner’ inlet nodes. At the top inlet corner,
ρin is specified, ux = uy = 0 and the distributions functions f0, f2, f3, and f6 are
known after propagation, whereas f1, f4, f5, f7, and f8 have to be determined, see Fig.
3.10. The unknown populations normal to the boundary, f1 and f4, can be obtained
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Figure 3.10: Inlet/outlet boundary conditions for a corner node. Dashed arrows indicate
unknown populations; full arrows denote known populations.

by applying the bounce-back rule for the non-equilibrium parts, i.e.,

f1 = f3 + (f eq1 − f
eq
3 ) = f3,

f4 = f2 + (f eq4 − f
eq
2 ) = f2. (3.41)

The difference (f eqi − f
eq
ī

) vanishes for i = 1, 4 because ux = uy = 0. f1 and f4 can now
be inserted in Eqs. 3.37 and 3.38 yielding

f5 = f7,

f8 = f6. (3.42)

Finally, substituting f7 for f5 in Eq. 3.32 and rearranging the terms gives

f7 = 1
2 (ρin − (f0 + f1 + f2 + f3 + f4 + f6 + f8)) (3.43)

3.3.4.2 Velocity boundary conditions

In a way similar to the pressure boundary conditions, velocity boundary conditions can
be prescribed. The derivation is analogous to the one in the previous subsection. For
an ‘inner’ outlet node, for example, the prescribed velocity as well as all populations
except for f3, f6 and f7 are known. Using again Eqs. 3.8 and 3.9 and the bounce-back
rule for the non-equilibrium part, the density ρ and the missing populations can be
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determined. The formulas to impose velocity boundary conditions at the outlet are

ρ = 1
1 + ux

(f0 + f2 + f4 + 2(f1 + f5 + f8)) (3.44)

f3 = f1 −
2
3ρux (3.45)

f6 = −1
6ρux + 1

2uy + 1
2(f4 − f2) + f8 (3.46)

f7 = −1
6ρux −

1
2uy −

1
2(f4 − f2) + f5. (3.47)

Similar formulas can be derived for the ‘inner’ inlet nodes and the four corner nodes.

The pressure and velocity boundary conditions can also be applied in three dimensions.
A derivation of the corresponding formulas for aD3Q15 model can be found in [220].



Chapter 4

Fluid-wall interaction

In hemodynamics, the fluid-structure interaction is a real challenge. The walls of a
blood vessel are not stiff but show a complex elastic behavior and have a layered inho-
mogeneous structure (elastin, collagen, and smooth muscle) [85]. The vessel diameter
changes in time depending on the pulsatile blood pressure inside which oscillates due
to the periodic pumping of the heart. The elastic property of the wall is also essential
for the propagation of waves. Therefore, it is of particular importance to include the
elasticity of the vessel in models of physiological flows, especially when considering
large vessels.

In the case of large arteries, the flow in the vessel can be assumed to be Newtonian.
Investigation of non-Newtonian flows in hemodynamics can be found elsewhere [138,
157].

This chapter describes how the elasticity of the vessel is modeled in the lattice Boltz-
mann framework presented in this work. The results of these simulations will be
presented in Chapter 5. The modeling is based on a relation between the pressure and
the displacement of the vessel wall, which gives the interaction between fluid and wall.
In fact, the flow inside the vessel exerts a force (pressure) on the wall which responds
to this force by expanding. It should be noted that the presented modeling of the wall
elasticity is not a ‘real’ fluid-structure interaction problem as for example in [23] or
[24] because no response from the wall back to the fluid (forces exerted from the wall
on the fluid) is included in the model.

44
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4.1 Modeling elastic walls in lattice Boltzmann
simulations

In simulations of the blood flow in larger vessels, it is important to include the com-
pliance of the wall. A simple approach has been developed to model the elastic vessel
which does not need a parametrization of the wall as for example used in the method
of H. Fang et al. [51, 52]. The present modeling is based on the work of D. Leitner
[99] and is a local approach as the LB method itself. By this, the complexity of the
algorithm is not increased.

4.1.1 Modeling the elastic wall

4.1.1.1 Displacement of vessel wall based on node type changes

For the simulations, the considered computational domain is fixed of dimensions Nx×
Ny, where Nx and Ny are the number of lattice nodes in direction x and y, respectively.
In the modeling of the vessel wall, the nodes of the lattice can have two different states:
fluid, representing the blood inside the vessel, and solid, denoting the tissue of the ves-
sel. Contrary to the modeling described by D. Leitner [99], the vessel wall is generally
not located on the solid nodes but in between fluid and solid nodes. All nodes that are
not fluid are by default solid. The approach does not require cellular automata used
in Leitner’s method to avoid a rupture of the vessel wall. The displacement of the wall
is modeled by changing the type of a node - from solid to fluid for an outwards dis-
placement (expansion) and vice versa for an inwards displacement (contraction). The
change of node type is dependent on the local pressure of the surrounding fluid nodes.
Fig. 4.1 illustrates the concept of wall displacement based on node type changes.

The presented method is an implementation of the hemoelastic feedback system de-
scribed by Y.C. Fung [61] which consists of two functional units: an elastic body and
a pressure induced fluid mechanism. The vessel is considered as a rigid fluid conduit
having a certain shape. The pressure corresponding to the given flow is applied as load
on the elastic vessel which is treated as an elastic body in terms of elasticity theory.
The result of the computation is then used to update the wall shape of the vessel.

In the following, the terms destruction and creation of nodes are used to signify the
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Figure 4.1: Sketch of lattice illustrating the concept of wall displacement based on node type
changes. Gray crosses indicate solid nodes; red filled circles denote fluid nodes.
The dark red disk designates a node that has changed its type. The virtual wall
(dashed line) separates the solid and the fluid domain.

state change of a node. It must be clear that in this type of modeling, nodes are neither
destroyed nor created - the geometrical domain being fixed of dimensions Nx × Ny -
but that nodes change only their type. The state change ‘fluid to solid’ will be termed
as destruction and ‘solid to fluid’ as creation.

4.1.1.2 Initialization of new fluid nodes

New fluid nodes need to be initialized with values of the density ρ and the velocity
~u which are computed based on the populations fi from the neighboring fluid nodes.
Fig. 4.2 illustrates this initialization procedure. When determining the populations fi
at the new fluid node (x, y), three cases can occur:

• If the neighboring nodes of (x, y) in direction i and opposite direction ī are both
solid, fi and fī are set to their equilibrium value f eqi and f eq

ī
, respectively.

• If the neighboring nodes of (x, y) in direction i and ī are both fluid, fi and fī are
gained from propagation.

• If the neighboring node of (x, y) in direction i is fluid and the neighboring node of
(x, y) in direction ī is solid, fī is gained from propagation and fi is calculated using
the bounce-back rule for the non-equilibrium part of the distribution function fi
(fi = fī + (f eqi − f

eq
ī
), see [220]).
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Figure 4.2: Sketch of the initialization of new fluid nodes (dark red disks). (a) Example of
a new fluid node having solid neighbors in direction 1 and 3. f1 and f3 at the
new fluid node are set to their equilibrium values. (b) Example of a new fluid
node having fluid neighbors in direction 6 and 8. f6 and f8 at the new fluid node
are gained from propagation. (c) Example of a new fluid node having a fluid
neighbor in direction 8 and a solid neighbor in the opposite direction (6). At the
new fluid node, f6 is gained from propagation and f8 using the bounce-back rule
for the non-equilibrium part.
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Compared to the method of D. Leitner [99], who initializes new fluid nodes with an
equilibrium distribution function, this procedure includes also the non-equilibrium part
of the populations, which is not negligible in proximity of the wall.

4.1.2 Population rescaling methods

A mass conservation problem arises when nodes change their type because the total
number of fluid nodes changes. Mass is a priori not conserved as mass is added when
initializing new fluid nodes or subtracted when a node changes its state from fluid to
solid. Leitner [99] does not address this issue, and it is not clearly evidenced how this
is circumvented. In order to ensure mass conservation in an isolated system, methods
have been developed [40] that rescale the LB populations in a part of the domain when
a node type change occurs and so ensure mass conservation.

Mass conservation is imposed each time fluid nodes change their type (from solid to
fluid in the case of expansion and vice versa in the case of contraction of the vessel).
Two methods to rescale the populations are presented below.

4.1.2.1 Local rescaling

The local rescaling (LR) takes into account only the nearest neighbors of the node
changing its state. Fig. 4.3 shows in which domain (blue frame) the LB populations
are rescaled when using the LR method. At expansion, mass (density) is redistributed
in the following way: Let (x, y) be a node changing its state from solid to fluid and∑
ρnb the sum of the densities at fluid nodes neighboring node (x, y). After initializing

the new fluid node (x, y), its populations and those from the neighboring fluid nodes
are rescaled by the factor ∑

ρnb∑
ρnb + ρ(x, y) .

Density and velocity are computed based on these new populations. In this way, mass
is conserved. The scaling factor is equal to the fraction

old local mass
new local mass

and is smaller than 1. This approach models the transfer of mass to a new fluid node
from the neighboring nodes.
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Figure 4.3: Sketch of lattice showing which nodes (domain inside the blue frame) are affected
by the local rescaling method

In a similar way, mass is redistributed locally when a fluid node is destroyed, i.e.,
when a node changes its state from fluid to solid (contraction). The scaling factor is in
this case greater than 1. All fluid nodes surrounding the disappearing fluid node are
rescaled by this scaling factor. By this procedure, mass is transfered from the destroyed
node to the neighboring fluid nodes.

The local rescaling influences the flow field in the vessel only locally. Depending on the
fluid viscosity and the vessel geometry, it takes a certain time until this perturbation
of the flow field is damped in the simulation, see Chapter 5.

4.1.2.2 Rescaling by columns

As an alternative to the LR approach, the rescaling by columns (CR) method has been
developed. This method of rescaling takes into account the whole column of nodes -
the vessel can be considered as a sequence of ‘rings’ adjoint to each other - in which a
node type change occurs, see Fig. 4.4. When a node next to the wall changes its state
(from solid to fluid or vice versa), the populations of every node in the same column
are rescaled to ensure mass conservation (with a rescaling factor similar to the one
above).

4.1.3 Continuous bounce-back boundary condition

For the exact wall boundary location, the bounce-back scheme in combination with
spatial interpolation (continuous bounce-back boundary condition, see Section 3.3.3)
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Figure 4.4: Sketch of lattice showing which nodes (domain inside the blue frame) are affected
by the rescaling by columns method

is applied to reduce discretization errors. The linear interpolation given by Eqs. 3.29
and 3.30 is used to determine the unknown distribution functions near the wall with
directions pointing into the fluid domain. It is applied to all lattice links that cross
the virtual wall. The method allows a continuous displacement of the wall because the
wall can be placed arbitrarily between fluid and solid nodes.

As in Section 3.3.3, let q denote the distance of the wall from the last fluid node (see
Fig. 4.5). With ∆x = 1, q ranges between zero and one. The continuous bounce-back
boundary condition allows that the value of q is different at every node ~xj.

Figure 4.5: Continuous bounce-back boundary condition for a virtual wall located at distance
q from the last fluid node. To every fluid node next the the wall a different q is
assigned. Gray crosses indicate solid nodes; red filled circles denote fluid nodes.
The lattice spacing ∆x is set to one.

In the simulations, two arrays of q-values are used, one for the lower and one for
the upper boundary. Thus, for every fluid node (x, yb) next to a boundary, qb(x) =
q(x, yb) determines the distance from node (x, yb) to the wall. Here, the subscript in yb
specifies whether the lower boundary (b = lower) or the upper boundary (b = upper)
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is considered. For the sake of simplicity, the subscript is omitted in cases in which it
is not necessary to specify which boundary is considered.

The parameter q of a certain node next to the boundary is linked to the pressure at
this node. More details about the exact relationship between q and the pressure are
described further down. The approach of coupling q with the pressure and using contin-
uous bounce-back boundary conditions at the wall allows a more gradual displacement
of the (virtual) wall instead of moving the vessel wall by one lattice unit within a single
time step [39].

The virtual radius R(x) at a position x of the channel is introduced to specify the
exact distance of the wall from the centerline of the channel. It can be calculated in
the following way:

R(x) = qupper(x) + (yupper(x)− ylower(x)) + qlower(x)
2 (4.1)

where qupper and qlower denote the distance of from upper/lower wall to the fluid nodes
directly next to this virtual wall.

4.2 Pressure thresholds

The change of node type is dependent on the local pressure surrounding a considered
node. Subject to this pressure, the wall is displaced. Pressure thresholds are assigned
to each node, increasing with the distance from the vessel centerline. Nodes located
further away from the center of the vessel have a higher threshold so that a higher
pressure is needed for an outwards displacement of the wall, i.e., for changing the type
of a node from solid to fluid.

For the simulations described in Chapter 5, a linear relationship between the pressure
p and the radius R is assumed (see Section 2.3.2), similar to the one of the pulmonary
blood vessels (see Y.C. Fung [61]), and the pressure thresholds pth are computed based
on this relationship:

pth = p0 + α(R−R0) (4.2)

Here, α is a compliance constant. R0 is the radius when the transmural pressure (p−p0)
is zero and p0 = p(R0). The relation given by Eq. 4.2 is a good approximation for
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large arteries [80].

The pressure thresholds are assigned to each node. Relation 4.2 means that the pressure
threshold is equal to the pressure necessary to balance the restoring forces from the
elastic vessel wall [46]. The criterion for changing the type of a node is related to the
parameter q of the continuous bounce-back boundary condition and will be explained
in the next section.

In literature, other nonlinear relations between pressure and radius are available, see for
example Eq. 2.46. The advantage of the presented method for modeling elastic walls
is that any linear or nonlinear relationships between p and R can apply provided that
they are explicit. Eq. 2.46 for example can be rearranged giving an explicit nonlinear
relation between p and R:

p = p0 + E h
( 1
R0
− 1
R

)
(4.3)

Here, E denotes the Young’s modulus and h is the wall thickness.

4.3 The moving wall mechanism: coupling between
pressure threshold and parameter q

The parameter q is related to the pressure in the following way. Let p(x, yb) denote
the current pressure at a fluid node (x, yb) directly next to the wall and pth(x, yb)
the pressure threshold at this node. The difference to the pressure threshold of the
neighboring node (in y-direction) is given by the parameter α in the linear pressure-
radius relationship, see Eq. 4.2. At every time step, the parameter q is updated based
on the following relationship.

q(x, yb) = p(x, yb)− pth(x, yb)
α

(4.4)

q changes at every time step at each x because it is related to the pressure which varies
in time. q increases as p increases and, vice versa, q decreases as p decreases. The value
of q determines whether a node type change occurs or not. If q becomes greater than
one because of a large pressure increase (thus, p(x, yb)− pth(x, yb) > α), the solid node
next to the considered fluid node (x, yb) changes its state to fluid. On the other way
around, if q falls below zero because of a large pressure decrease (p(x, yb) < pth(x, yb)),
the node (x, yb) changes its state from fluid to solid.
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As soon as a node type change occurs (which happens when q > 1 or q < 0), q has
to be reset to a value between zero and one. This is done in the following way. If q
exceeds one, thus q = 1 + ∆q with ∆q > 0, the new q is set to ∆q if ∆q < 1 and set to
one if ∆q > 1. In a similar way, if q falls below zero, thus q = −∆q with ∆q > 0, the
new q is set to (1−∆q) if ∆q < 1 and to zero if ∆q > 1.

Compared to the method of D. Leitner [99] with which wall displacements of less
than one lattice unit were not possible, the described approach allows a continuous
displacement of the vessel wall. The populations at a node next to the wall are corrected
many times before the node changes its state. As a consequence, the system is less
perturbed when a node type change occurs (see Chapter 5).



Chapter 5

Simulations and results

This chapter starts with the computational aspects of the simulations that have been
performed for this work and which are based on what has been described in the previous
chapters. The structure of the implemented program including the lattice Boltzmann
algorithm and the modeling of the elastic wall is given as well as some details about
the memory requirements.

The main part of the chapter is dedicated to numerical experiments that have been
carried out to show the feasibility and physical correctness of the developed approach
for modeling incompressible flow in distensible tubes. Several results are presented cor-
responding to simulations including the theory and methods described in the previous
chapters.

The last section of this chapter presents the concept of Windkessel. In order to better
reproduce physiological cases, the lattice Boltzmann method has been coupled with
a Windkessel model for the outlet boundary condition. Preliminary results from first
test simulations will be given at the end of this chapter.

5.1 Computational aspects

A simulation software for the LB algorithm combined with the elastic wall model has
been implemented using the programming language C. The code includes the rescaling
methods and the pressure threshold algorithm described in Chapter 4. Using this
software program, numerical experiments have been conducted to show the effectiveness

54
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of the presented approach. It should be noted that the focus in the simulations is not
on the computational efficiency of the method but on the feasibility of the algorithm.
Readers interested in code optimization and performance are referred to other authors
(R. Argentini et al. [6], W. Guo et al. [66], C. Pan et al. [143], M.D. Mazzeo and P.V.
Coveney [117], G. Wellein et al. [200]). These references treat other LB algorithms,
not to the one described here, but anyway the reader can borrow some ideas of code
optimization for LB algorithms in the cited literature.

For the simulations, a so-called D2Q9 model (two spatial dimensions, nine directions i,
see Fig. 3.3) is considered and calculations are based on the lattice Boltzmann equation
with single-time relaxation (LBGK approximation), see Eq. 3.11.

The figures in this chapter have been generated with MATLAB from the data resulting
from the simulations in C. The units in the plots are LB units (non-dimensionalized)
if not otherwise specified.

5.1.1 Computational domain

The computational domain is a Cartesian lattice of dimensions Nx × Ny. As already
mentioned in the previous chapter, every node can have two different states: fluid
or solid. Solid nodes indicate the tissue of the vessel, fluid nodes refer to the blood
inside the vessel. The wall of the vessel can be imagined to be a moving interface
between solid and fluid nodes. The vessel under investigation is incorporated in the
computational domain with fixed dimensions Nx ×Ny, see Fig. 5.1.

5.1.2 Structure of the program

The flow chart in Fig. 5.2 illustrates the implemented lattice Boltzmann algorithm.
After initialization of the lattice, the steps in the flow chart are processed at every time
instant. It should be noted that there exists a parameter q for every node (every x) at
the lower and upper boundary of the channel.
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Figure 5.1: Sketch of lattice with embedded vessel

5.1.3 Memory requirements

For the simulations, values for many variables (density ρ, velocity components ux and
uy, the distribution functions fi, etc.) have to be stored for every node. In order
to facilitate the data access, the values are stored sequentially in a vector. Helper
functions are used to get the position in this linear vector corresponding to the value
needed. Fig. 5.3 illustrates the access of memory.

5.1.3.1 Fundamental and derived variables in memory

Many variables have to be stored for each node. Thus, it is important to allocate
memory for each of them. The fundamental and main derived variables are listed
below.

Fundamental (primary) variables:

• node type (fluid, solid) ⇒ defines the geometry of the vessel

• distribution functions fi (nine directions per node) ⇒ define the fluid dynamics
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Figure 5.2: Flow chart of the implemented lattice Boltzmann algorithm
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Figure 5.3: Example of memory allocation for the distribution functions fi(x, y). The helper
function translates x, y and i from a matrix form to the position in the linear
array.

Size of lattice Memory for Memory for Total memory
Nx ×Ny primary variables (kB) secondary variables (kB) (kB)
200× 100 1460 640 2100
400× 100 2920 1280 4200
500× 60 2190 960 3150
1000× 60 4380 1920 6300

Table 5.1: Memory requirements for the main variables for a D2Q9 lattice of dimensions
Nx ×Ny

Derived (secondary) variables:

• density ρ

• components ux and uy of the velocity ~u

• pressure thresholds pth

5.1.3.2 Examples for memory usage

Besides the node type, whose data type is a ‘character’ (1 byte per node), all other
variables are of the data type ‘double’ (8 bytes per node). The variable ρ for example
occupies (Nx ·Ny ·sizeof(double)) bytes in memory, whereas the variable fin (containing
the fi’s for all nine directions i) is allocated with (9 · Nx · Ny · sizeof(double)) bytes.
Table 5.1 lists some examples of memory needed in total for the fundamental and main
derived variables for different sizes of the lattice.
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5.2 Numerical experiments

5.2.1 Simulations with periodic boundary conditions

The main objective of the numerical experiments presented in this chapter is to prove
that the model provides correct physical behavior.

As first experiment, a straight channel with flat walls modeling the vessel is considered.
Periodic boundary conditions are imposed in direction of the channel to model an
infinite long tube. This condition will be replaced by inlet/outlet boundary conditions
in the next section. At the wall, halfway bounce-back on the link boundary conditions
are imposed which represent a no-slip condition (i.e., the fluid velocity at the wall
is zero). Furthermore, the pressure is increased ‘manually’ at a certain time, just
enough to induce an increase of the channel radius of one unit (expansion), and at
a later time decreased again, just enough to induce a decrease of the radius of one
unit (contraction). Thus, the behavior of the flow field for only one cycle of expansion
and subsequent contraction (of the whole channel) is investigated. Here and in the
following, ‘cycle’ denotes the sequence of an expansion followed by a contraction back
to the initial state. In a later stage, the manual procedure of pressure increase/decrease
will be replaced by an oscillating pressure gradient consequent on the periodic pumping
of the heart.

As mentioned above, a straight channel of width H is considered. The values of macro-
scopic variables ρ (and thus p) and ~u are symmetric with respect to the centerline. Thus,
the pressures at nodes with the same y-coordinate are equal. Furthermore, all nodes
with the same y-coordinate have the same pressure threshold. Under this assumption,
the flat wall is displaced uniformly at all nodes with the same y-coordinate (i.e., one
layer of nodes) within a single time step.

To induce an expansion in the presented model, the pressure is increased explicitly by
adding an amount ∆p to the pressure of all fluid nodes at a certain time tadd and then
decreased again at time tsub > tadd. ∆p is chosen in a way that the wall is moved by
only one layer at the lower and upper boundary. Due to the forced increase (decrease)
of pressure at tadd (tsub), mass increases (decreases) by a value proportional to ∆p at
tadd (tsub).

In order to check whether the implemented method provides correct physical behavior,
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the following steps are executed:

1. Wait for fully developed flow (until time t0).

2. At time t0 (= tadd), when the flow is fully developed, add mass by adding a small
value ∆fi to the populations fi at each node. This corresponds to an increase of
pressure by ∆p = c2

s ∆ρ in each node, with ∆ρ = ∑8
i=0 ∆fi and cs = 1/

√
3 being

the speed of sound. Then wait for the flow to be fully developed (until time t1).

3. At time t1, expansion occurs because the pressure thresholds at the wall are
exceeded due to the increase of pressure at time t0. The channel is expanded
by one layer at the upper and lower wall, respectively. The populations fi are
rescaled so as to ensure mass conservation. Then wait for fully developed flow
(until time t2).

4. At time t2 (= tsub), reduce mass by subtracting ∆fi from the populations fi at
each node. This corresponds a decrease of pressure. Wait again until flow is fully
developed (until time t3).

5. At time t3, contraction occurs because the pressure has fallen below the pressure
threshold due to the decrease of pressure at time t2. The radius of the channel is
reduced by one unit, so one layer of nodes is destroyed at the lower and upper wall,
respectively. The populations fi are rescaled so as to ensure mass conservation.

In this procedure, it is ensured that mass is conserved any time except when mass is
added (step (2)) or subtracted (step (4)) by proper rescaling.

The results of this procedure are presented hereafter.

5.2.1.1 Simulation parameters

For the simulations, the following physical parameters have been used: viscosity ν = 1
3 ,

maximum velocity Umax = 0.01, and initial density ρ0 = 1.0. All parameters and
variables are normalized and hence dimensionless. The computational domain has
200× 100 nodes and the initially straight channel is of dimensions 200× 40.
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5.2.1.2 Comparison between analytical and numerical solution

The analytical solution of a two-dimensional fully developed steady flow in a channel
of width H = 2R, where R is the radius, driven by a constant pressure gradient G and
with constant viscosity ν (Newtonian flow assumed) is given by the following formula
(Poiseuille flow):

uanalytical(y) = G (R2 − y2)
2 ν (5.1)

The pressure gradient G is given by

G = 8 ν Umax
H2 . (5.2)

The simulation output has been compared with the analytical solution using the same
parameters. Fig. 5.4 displays the velocity profile of the exact solution and the result
of the numerical simulation of a symmetric straight channel. It can be observed that
the computed velocity profile (blue crosses) and the analytical solution by Poiseuille
(green dashed line) coincide.
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Figure 5.4: Velocity: Comparison between analytical solution of Poiseuille (green) and nu-
merical result (blue) (periodic BC)

Fig. 5.5 represents the velocity field of the fully developed flow in the rigid straight
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channel. The maximum velocity of 0.01 (compare with Fig. 5.4) is correctly reached
in the center of the channel.

Figure 5.5: Velocity field of fully developed flow in a rigid straight channel. The black area
corresponds to solid nodes.

5.2.1.3 Approach for testing the modeling of elasticity using local rescaling

A simulation in the straight channel using the local rescaling (LR) method has been
carried out to show that it follows expected physical behavior. The procedure described
below is only an artificial setup to enforce expansion and contraction through pressure
increase/decrease for conducting this simulation experiment.

For this simulation, the problem of expansion and contraction has been separated in
the parts explained in Section 5.2.1 and local rescaling has been used.

Fig. 5.6 shows the total mass (sum of the density ρ at each fluid node of the lattice) over
time. It can be seen that mass is conserved at expansion (occurring at time t = 3101)
and contraction (occurring at time t = 4276). After the wall has recovered its initial
position again and the flow its initial state, i.e., after having performed the steps (1) to
(5) cited above, the value of the total mass is the same as the initial value. However,
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to reach the same value of the total mass as at the beginning, ∆fi in step (4) has to be
multiplied by H

H + 2 , H being the width of the initial channel. This is due to the fact
that the diameter (width) of the channel increases by 2 after expansion, i.e., there are
two layers of fluid nodes more than before expansion. Thus, ∆fi, being subtracted at
every node, has to be reduced by this proportionality factor to take into account the
increase of nodes.
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Figure 5.6: Total mass as a function of time. In order to better distinguish between the
single steps (1. to 5., see text), the algorithm waits for at least 100 time steps
and for fully developed flow before performing the next step.

Fig. 5.7 depicts the density at a fluid node next to the wall resulting from this simulated
experimental setup. It can be observed that the density oscillates after expansion or
contraction due to the propagation of the local perturbation throughout the channel
(oscillation period) created by the local rescaling. The duration of the oscillations is
influenced by the fluid parameters (viscosity). The value of ρ returns to the initial value
after one cycle (expansion and subsequent contraction). Due to the local rescaling of
the populations at the changed nodes and their neighbors, the value of ρ decreases at
expansion and increases at contraction.

The resulting velocity component ux at a fluid node next to the wall is displayed
in Fig. 5.8. Small oscillations occur at expansion and contraction due to the local
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Figure 5.7: Density at fluid node next to the upper wall as a function of time (local rescaling
used)

perturbation of the flow field. After one cycle of full expansion and contraction, the
value of ux returns to the initial value (when flow is fully developed).

The velocity component normal to the wall, uy, is depicted in Fig. 5.9. Similarly to ux,
oscillations can be observed at expansion and contraction. However, they are damped
much faster than those occurring for ux. Except for those oscillations, the value of
uy is almost zero at the fluid node next to the wall. This underlines that the no-slip
condition is fulfilled at the virtual wall situated halfway between last fluid and first
solid node.

The simulation results presented in this subsection show expected physical behavior.
Mass is conserved and initial values of the density and the velocity are recovered after
one cycle of expansion and subsequent contraction. The oscillatory transient lasts a
few hundred time steps, which is an expected duration for the chosen viscosity. As
described, the method works strictly locally as does the lattice Boltzmann method
itself. This allows straight-forward implementation of the method in LB simulations
and makes it suitable for parallel computation.
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Figure 5.8: Velocity component ux at fluid node next to the upper wall as a function of time
(local rescaling used)
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Figure 5.9: Velocity component uy at fluid node next to the upper wall as a function of time
(local rescaling used)
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5.2.1.4 Approach for testing the modeling of elasticity using rescaling by
columns

For this simulation, the same steps (1)-(5) cited in Section 5.2.1 have been performed
and rescaling by columns (CR) has been used. The time history of the total mass
shows the same behavior as the one for the LR method and is omitted. Contrary to
the LR method, where contraction (as well as expansion) occurs at both the upper and
lower wall at the same point in time in the simulation, the contraction of the channel
when using rescaling by columns is split into two steps. First, contraction at the lower
boundary occurs followed by a contraction at the upper boundary a few hundred time
steps later. This is related to the order in which the lattice nodes are processed in the
implementation (here, from lower to upper boundary). Since rescaling by columns does
not affect only the nearest neighbors of a node becoming fluid (as in the LR method)
but the populations of all nodes in the same column, a node type change at the lower
wall affects the flow field at the upper wall in the same time step. As a consequence,
the condition for expansion or contraction at the upper wall is not necessarily fulfilled
anymore as soon as a node type change (and thus rescaling of the whole column) has
occurred at the lower wall.

Fig. 5.10 displays the density at a fluid node next to the wall. It can be observed that
the density oscillates much less after expansion (contraction) compared to the oscilla-
tions occurring with the LR method as local perturbations are limited. Furthermore,
oscillations are completely absent at contraction. The value of ρ returns to the initial
one after one cycle (expansion and subsequent contraction) as expected.

The time history of the velocity component ux at a fluid node next to the wall, depicted
in Fig. 5.11, exhibits a similar shape as the time history of ux when using local rescaling,
but without oscillations at expansion and contraction. After one cycle, the initial value
of ux is recovered.

The velocity component normal to the wall, uy, is displayed in Fig. 5.12. Oscillations
can be observed at expansion but not at contraction. Except for those oscillations, the
value of uy is almost zero for a fluid node next to the wall (no-slip condition).

Although the CR method provides expected physical behavior (mass conservation,
recovery of the initial values after one cycle) and minimizes local perturbation, it
exhibits the drawback that node type changes at one wall boundary affect the flow
field within the whole channel without propagation latency. Since this specific effect
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Figure 5.10: Density at fluid node next to the upper wall as a function of time (rescaling
by columns used). Since rescaling by column affects the flow field in the whole
channel, expansion and contraction can occur at different points in time.
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Figure 5.11: Velocity component ux at fluid node next to the upper wall as a function of
time (rescaling by columns used)
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Figure 5.12: Velocity component uy at fluid node next to the upper wall as a function of
time (rescaling by columns used)
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does not correspond to real fluid dynamics, the method can only be used in special
cases where this side effect is negligible. Therefore, the rescaling by columns method
minimizes perturbations in the simulation but lacks the generality of the local rescaling
method.

5.2.1.5 Recovery time

The recovery time is the duration of time needed by the system to recover after a
perturbation so that (unphysical) oscillations that are caused by the discrete nature
of the method and the perturbations occurring after expansion and contractions are
damped (within a given tolerance ε).

The simulation has been run with different viscosities ν ranging from 1/30 to 1/3
and the corresponding recovery times have been saved in a table. Figs. 5.13 and
5.14 show the recovery times after initialization (i.e., the time until the flow is fully
developed), after expansion, and after contraction as a function of the diffusive time
td = H2/ν, where H is the width of the channel. The lower the viscosity, the higher
is the recovery time. The Figures 5.15 and 5.16 corresponding to a lower viscosity
(ν = 1/30) and showing the density ρ and the velocity component ux as a function of
time exhibit indeed a longer recovery time: it takes much longer for the perturbations
to be damped out compared to the case ν = 1/3 (compare with the corresponding
Figures 5.7 and 5.8).

The recovery time depends on the condition for steady flow. The condition for steady
flow is as follows and will be examined only in the center node of the channel (i.e., the
node at Nx/2 on the centerline):

• In an array UxCenter[t], the value of ux at this center node is saved at every point
in time.

• If the flow is unsteady (due to a change at the wall, i.e. expansion or contraction),
wait at least some time (proportional to max(Nx, Ny)) and store the maximum
and minimum of ux.

• If (max(ux)−min(ux)) < ε, the flow is considered to be recovered. For ε, a value
of 0.00001 has been chosen.
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Figure 5.13: Time at which flow is fully developed as a function of the diffusive time td (ν
variating)
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Figure 5.14: Recovery time after expansion (blue, H = 42) and contraction (green, H = 40)
as a function of the diffusive time td (ν variating)
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Figure 5.15: Density at fluid node next to the wall as a function of time, lower viscosity
(ν = 1/30), compare with Fig. 5.7.
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Figure 5.16: Velocity component ux at fluid node next to the wall as a function of time,
lower viscosity (ν = 1/30), compare with Fig. 5.8
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The steady flow condition is examined in one node of the fluid domain (center node). It
is clear that oscillations (of ρ and ux) occur mainly at the wall due to the redistribution
and local rescaling of the populations. This perturbation of the flow field, which is
also related to the discretization because values do not change continuously, takes a
certain time (proportional to the width/length of the channel) to propagate through
the channel (e.g., to the center node) and by consequence the flow field takes some
time to recover. So, changes at the wall (expansion/contraction) will always lead to
instabilities (the ’extent’ of those instabilities depends on the chosen rescaling method).
Thus, expansion and contraction can apply only when the flow is recovered. Otherwise
the pressure that is compared with the pressure thresholds might have a physically
incorrect value due to the perturbations that occur at the wall.

The computed recovery time is dependent on the tolerance ε when two values of ux are
compared. The smaller ε, the longer is the recovery time. Fig. 5.17 shows the recovery
times as a function of the tolerance ε.
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Figure 5.17: Recovery times as a function of the tolerance ε
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5.2.2 Simulations with inlet/outlet pressure boundary conditions

Up to now, periodic boundary conditions have been used in the main direction of
the flow (x-direction). With the aim of reproducing physiological cases, inlet/outlet
boundary conditions will be used in the remainder of this chapter.

For next simulations, an initially straight channel is considered modeling the vessel
which is again embedded in a computational domain of fixed dimensions Nx ×Ny. At
inlet and outlet, pressure boundary conditions are imposed using the method of Zou/He
[220] to determine the unknown LB populations pointing into the fluid domain. At the
inlet, an oscillating pressure is prescribed. This is equivalent to imposing an oscillating
density because density ρ and pressure p are linearly related through p = c2

sρ, where c2
s

is the sound of speed. For simplicity, the pressure at the outlet is set constant and is
chosen in a way that the pressure gradient between inlet and outlet is always positive.
At the wall, the continuous bounce-back boundary condition, described in Chapter 4,
are imposed, which represents a no-slip condition (i.e., the fluid velocity is zero at the
wall). Expansion and contraction are allowed only after 1000 time steps when the flow
is fully developed.

5.2.2.1 Simulation parameters

The following physical and numerical parameters have been used in the simulations:
viscosity ν = 1/3, initial density ρ0 = 1.0, α = 0.007, p0 = 1/3, and R0 = 20. All
parameters and variables are normalized and hence dimensionless. A channel modeling
the vessel of initial dimensions 200×40 nodes is embedded in the computational domain
of fixed dimensions 200× 100 nodes.

The densities at inlet (ρin) and outlet (ρout) are set respectively to

ρin = ρmean + A sin
(

2πt
Tpulse

)
(5.3)

ρout = 1.0 (5.4)

Here, ρmean = 1.025 is the mean pressure, A = 0.025 the amplitude of the oscillations,
t the time, and Tpulse = 2500 the period of the pulse. Thus, the density difference
between inlet and outlet varies between zero and 0.05.
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5.2.2.2 Results with halfway bounce-back on the link boundary condition

In first experiments, the continuous bounce-back boundary condition described in Sec-
tion 4.1.3 has not been included. Instead, a halfway bounce-back on the link boundary
condition has been used. This means that the wall is located halfway between fluid
and solid nodes. Thus, the results presented hereafter correspond to simulations with
the boundary conditions described in Section 3.3.2.

Before presenting the results with an oscillating pressure at the inlet in an elastic
channel, a few results from simulations in a rigid straight channel are shown in order
to prove that the system responds in a correct physical way. In a first step, a constant
density gradient ∆ρ = ρin − ρout between inlet and outlet is assumed. The pressure
gradient G is given by

G = ∆p
∆x = c2

s ∆ρ
∆x

and the corresponding centerline velocity by

Umax = GR2

2 ν

with R = H
2 being the radius of the channel, compare with Eq. 5.2. The computed fully

developed velocity profile has been compared with the analytical solution of Poiseuille.
Fig. 5.18 shows a good agreement between the numerical result and the exact solution.
Fig. 5.19a displays the parabolic fully developed velocity profiles along x in a straight
rigid channel.

Figures 5.20a and 5.20b depict ρ and ux as a function of time, respectively. The
density at inlet and outlet of the rigid channel has been chosen as follows: ρin = 1.05
and ρout = 1.0, corresponding to a density difference ∆ρ of 0.05. As soon as the flow
is fully developed ρ and ux are equal to the values expected at the center node of the
channel, i.e., 1.025 for ρ and 0.05 for ux.

The same simulations have been conducted in a rigid channel with curved walls. The
results are similar to the ones presented above. The velocity profiles at different posi-
tions x in the rigid channel with curved walls displayed in Fig. 5.19b have a parabolic
shape.

The remaining results in this subsection are gained from simulations with an elastic
channel. Halfway bounce-back condition at the wall and an oscillating density at the
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Figure 5.18: Comparison between computed velocity profile (blue) and analytical solution of
Poiseuille (green) with density difference ∆ρ = 0.02 between inlet and outlet
(inlet/outlet BC)
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Figure 5.19: Velocity profiles of fully developed flow along x in a rigid straight channel (a)
and a rigid channel with curved walls (b)
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Figure 5.20: Time history of the density ρ (a) and the velocity component ux (b) at the
center node of the channel

inlet (see Eq. 5.3) are imposed. Since the distance q from the last fluid node to the wall
is constant (q = 1/2) in the case of the BBL boundary condition, another condition
for changing the type of a node has to be chosen. One possibility is to simply compare
the current pressure to the pressure threshold and change the state of a node when
the pressure exceeds or falls below the corresponding pressure threshold. As soon as
the pressure at a fluid node exceeds the pressure threshold, the neighboring solid node
becomes fluid and the wall changes by one lattice unit within one single time step.
Analogously, as soon as the pressure of a fluid node falls below the pressure threshold,
the considered node becomes solid and the wall is displaced by one lattice unit. Thus,
the displacement of the wall is not continuous. The radius can only change by one full
lattice unit.

Fig. 5.21 shows the density as a function of time at a fluid node near the wall. The time
history of the velocity component ux at a node near the wall is depicted in Fig. 5.22.
It can be observed that density and velocity oscillate in a correct way as a response
to the oscillating pressure at the inlet, but are superposed by smaller oscillations and
also display peaks that seem unphysical. These oscillations and peaks are caused by
the discrete nature of the method due to the not continuous displacement of the wall,
which perturbs the system. The condition for changing the type of a node has been
adapted again. In order to not use incorrect values of the pressure (that are just
the consequence of the perturbation at the wall due to the node type change) for the
comparison, the pressure over a certain number of time steps is averaged, and this
average value is compared with the pressure threshold. This procedure avoids that the
wall is displaced due to unphysical values of the pressure. However, the oscillations
and peaks remain.
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Figure 5.21: Density ρ as a function of time at a node near the wall (bounce-back on the
link, see Section 3.3.2)

0 1000 2000 3000 4000 5000 6000 7000
−0.02

−0.01

0

0.01

0.02

0.03

0.04

time t

ve
lo

ci
ty

 c
om

po
ne

nt
 u

x

Figure 5.22: Velocity component ux as a function of time at a node near the wall (bounce-
back on the link, see Section 3.3.2)
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Fig. 5.23 displays the moving average over 250 time steps (one tenth of the pulse period
Tpulse) of ux at different nodes of the channel. It can be observed that taking the moving
average filters out the superposed oscillations and peaks appearing in the time history
of the velocity. This confirms the assumption that the system reacts in a correct way
and that the perturbations are only caused by the instantaneous displacement of the
wall by one lattice unit.
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Figure 5.23: Moving average over 250 time steps of the velocity component ux at different
lattice nodes (blue and red for a node with central y-coordinate, green and black
for a node with y-coordinate near the upper wall)

5.2.2.3 Results with continuous bounce-back boundary condition

In order to minimize the unphysical oscillations and spikes appearing in the time histo-
ries of the density and the velocity, simulations including the continuous bounce-back
boundary conditions have been carried out, as described in Section 3.3.3, with the
simulation parameters cited in Section 5.2.2.1.

Density, velocity, total mass
Figures 5.24 and 5.25 display ρ and ux as a function of time at a fluid node near
the wall, respectively. In each case, the peak values are the same for the second and
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third peak. The first peak should not be taken into consideration because expansion
and contraction are allowed only after the first 1000 time steps (t > 1000) when fully
developed flow is guaranteed.
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Figure 5.24: Density ρ as a function of time at a node near the wall (continuous bounce-
back)

The time histories of ρ and ux show smooth behavior without superposed oscillations
or spikes, yet maintaining the same frequency and amplitude as in Figures 5.21 and
5.22 (the same parameters have been used for the two simulations). This is due to
the continuous displacement of the wall and to the fact that the LB populations are
corrected over several time steps before a node type change occurs and new fluid nodes
are initialized based on the LB populations of the neighboring nodes.

The total mass as a function of time is displayed in Fig. 5.26. It exhibits an oscillating
behavior as the density (pressure) at the inlet.

The surface plot of the velocity component uy at time t = 6000 in Fig. 5.27 shows
that uy is of the order of 10−3 for the given parameters. Due to the wall deformability,
uy is not exactly zero but very small. The velocity field at time t = 6000 in a part
of a channel depicted in Fig. 5.28 underlines this fact. It can be seen that the main
direction of the flow is in x-direction.
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Figure 5.25: Velocity component ux as a function of time at a node near the wall (continuous
bounce-back)
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Figure 5.26: Total mass as a function of time
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Figure 5.27: Surface plot of the velocity component uy at time t = 6000
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Figure 5.28: Velocity field at time t = 6000
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Fig. 5.29 displays the profiles for the velocity component ux at several positions x for
three points in time. The light blue lines indicate the position of the virtual wall where
the no-slip condition is valid.
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Figure 5.29: Profiles of the velocity component ux along the channel at three instants in
the case of oscillating inlet pressure. The scale of these figures do not allow a
precise resolution, but the channel in case (b) is slightly more expanded than
in case (a), and the channel in case (c) is more expanded than in case (a) and
(b). The wall displacement of just one or two lattice units is not clearly visible
in the figures.

Fig. 5.30 details the velocity field in a compliant channel computed at several instants.
As time is progressing, the channel expands and contracts by a few lattice units.

Radius
The virtual radius R(x) at a position x has been introduced in Chapter 4, see Eq.
4.1.

Fig. 5.31 displays the virtual radius at every position x for different points in time. At
the outlet (x = 199), the channel is constrained due to the boundary condition which
imposes a constant pressure, see Eqs 4.2 and 4.4. Since the pressure at the outlet does
not change (see Eq. 5.4), the parameter q does not change either and, as a consequence,
the radius at the outlet is constant. In order to neglect the effect of the constriction of
the outlet on the flow field, the channel has to be long enough. A physiologically more
correct boundary condition that does not bound the outlet section will be presented in
Section 5.2.4.

The parameter q
Fig. 5.32 shows the time evolution of the parameter q at a fixed node at the lower
wall. The discontinuities are due to the change of node type when q is reset to a value
between zero and one (see Section 4.3).
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Figure 5.30: Velocity field in a compliant channel for different points in time. The channel
expands and contracts (by a few lattice units) as time is progressing.
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Figure 5.31: Virtual radius R at every position x for different points in time
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Figure 5.32: Parameter q of continuous bounce-back condition for a fixed node at the lower
wall
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In order to verify that the continuous bounce-back condition does not cause systematic
errors, the frequency of the values taken by the parameter q has been computed. The
histogram for q at the lower boundary over one pulse period (2500 time steps) is
depicted in Fig. 5.33: for all x in Fig. 5.33a and for all x except inlet and outlet in
Fig. 5.33b. The histogram in Fig. 5.33a exhibits one prominent peak (a frequency
of 10000). This peak is due to the boundary condition at the outlet which bounds
the outlet section because of the prescribed constant pressure (and as a consequence
constant q). Besides this peak, the histograms in Fig. 5.33 do not have prominent
peaks; the smaller peaks around zero and one are due to the fact that q is reset to zero
or one after creation or destruction of a fluid node when the excess ∆q is greater than
one, see 4.3. The shape of the histograms depends on the chosen oscillating pressure,
i.e., on the pulse period and the amplitude.
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Figure 5.33: Histograms for the parameter q of the continuous bounce-back condition at the
lower boundary over one pulse period: (a) all x including inlet and outlet; (b)
all x except inlet and outlet. The prominent peak in case (a) is due to the
boundary condition at the outlet which bounds the outlet section because of the
prescribed constant pressure (and as a consequence constant q). The smaller
peaks around zero and one are due to the fact that q is reset to zero or one
after creation or destruction of a fluid node when the excess ∆q is greater than
one, see Section 4.3

.

5.2.3 Sensitivity analysis with inlet/outlet pressure boundary
conditions

A sensitivity analysis by changing the compliance parameter α, the amplitude T , or
the pulse period Tpulse has been conducted in a computational domain of dimensions
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Nx ×Ny = 400× 100 or Nx ×Ny = 200× 100.

5.2.3.1 Influence of the compliance parameter α

In order to study the behavior of the wall having different elastic properties, simulations
with different values of α have been run. The amplitude and the pulse period of the
oscillating density have been kept constant: A = 0.05 and Tpulse = 2500. Fig. 5.34
depicts the maximum radius as a function of the compliance parameter α. As expected,
a lower value of α leads to a larger wall deformation. Fig. 5.35 displaying the virtual
radius (see Eq. 4.1) at every x from simulations with different values of α shows this
effect as well.
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Figure 5.34: Maximum radius as a function of the compliance parameter α

Concerning the simulations of arterial blood flow, it should be pointed out that the
diameter of a large vessel does not change by more than 10% [165]. This should be
taken into account when choosing α. Note that the wall deformation is very sensitive
with α, compare Figures 5.35a (α = 0.003) and 5.35b (α = 0.007).

Fig. 5.36 depicts the histograms of the parameter q gained from simulations with two
different values of α. The histograms have a smooth shape (except for the peak caused
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Figure 5.35: Virtual radius R at every position x for different points in time, gained from
simulations with different α. Expansion and contraction are allowed only after
1000 time steps when the flow is fully developed. Hence, at t = 500, the channel
keeps its initial state (straight).

by the outlet boundary condition) which confirms again that there are no systematic
errors in the continuous bounce-back method.
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Figure 5.36: Histograms for the parameter q of the continuous bounce-back condition at the
lower boundary over one pulse period, gained from simulations with different α.
In each case, the prominent peak is due to the boundary condition at the outlet
which bounds the outlet section because of the prescribed constant pressure, see
Eq. 5.4 (and as a consequence constant q).

The compliance parameter α should have an effect on the wave propagation speed.
The stiffer the channel (i.e., the higher α), the higher is the wave speed, see Eq. 2.36
or Eq. 2.50. The wave speed can be identified graphically from the contour plots of
the channel radius by determining the slope of the isolines in the contour plot.
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Figure 5.37: Contour plot of the virtual radius R, gained from simulations with different α.
Different colors correspond to different values of R. Note that the scaling is
not the same in case (a) and (b).

Fig. 5.37 displays the contour plot of the radius R in the t-x-plane gained from simu-
lations with two different values of α. It can be observed that the slope of the curve
does not change much when comparing the two plots corresponding to α = 0.003 and
α = 0.007. A possible reason for this is that the modeling of the wall elasticity does
not include a real fluid-structure interaction because no feedback from the wall to the
fluid is given, see Chapter 4. In fact, in both cases, the wave speed is of the order of
magnitude of c2

s, the square of the speed of sound in the lattice Boltzmann algorithm.
If one is interested in studying the wave propagation, an appropriate model should be
further developed. One idea is to use a spring model that links contiguous wall nodes
near the wall. Further work in such a direction is planned.

The circumstance that there is no visible difference in the wave speed when changing
α could also be related to the outlet boundary condition because of the prescribed con-
stant pressure. An attempt to circumvent this problem using the Windkessel concept
will be presented in Section 5.2.4.

Furthermore, it can be seen in Fig. 5.37 that the oscillation of the wall is damped
downstream: the radius of the channel changes more in the section close to the inlet
than in the section close to the outlet. This effect can be due to the outlet boundary
condition which keeps the radius at the outlet fixed, the length of the channel, and the
chosen viscosity.
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5.2.3.2 Influence of the amplitude A

Simulations have been conducted changing the amplitude A and keeping constant the
compliance parameter (α = 0.007) and the pulse period (Tpulse = 2500). Fig. 5.38
displays the virtual radius at every x from simulations with different amplitude A. As
expected, a higher value of the amplitude leads to a larger deformation of the channel.
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Figure 5.38: Virtual radius R at every position x for different points in time, gained from
simulations with different amplitude A

The corresponding histograms of the parameter q are depicted in Fig. 5.39. It can be
observed that the amplitude has an effect on the shape of the histogram. Depending
on the amplitude, the values are accumulated in a certain interval. However, the shape
remains smooth. The prominent peaks are again due to outlet boundary condition and
can be neglected.

5.2.3.3 Influence of the pulse period Tpulse

Simulations have been carried out changing the pulse period Tpulse and keeping constant
α = 0.007 and the amplitude A = 0.05. The virtual radius at every position x gained
from simulations with different pulse period is displayed in Fig. 5.40. Since the points
in time at which the radius is saved are a multiple of the pulse period, the curves in
Fig. 5.40a almost overlap.

Fig. 5.41 depicts the histograms of the parameter q gained from simulations with two
different values of Tpulse. It can be observed that the pulse period has an effect on
the shape of histogram (nevertheless smooth) and the accumulations of certain values,
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Figure 5.39: Histograms for the parameter q of the continuous bounce-back condition at the
lower boundary over one pulse period, gained from simulations with different
amplitude A. In each case, the prominent peak (around 0.85) is due to the
boundary condition at the outlet which bounds the outlet section because of the
prescribed constant pressure (and as a consequence constant q). The peaks
around zero and one are due to the fact that q is reset to zero or one after
creation or destruction of a fluid node when the excess ∆q is greater than one,
see Section 4.3
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Figure 5.40: Virtual radius R at every position x for different points in time, gained from
simulations with different pulse period Tpulse
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as mentioned before. In fact, it is, among other, the interplay of pulse period and
amplitude that has an effect on the shape of the histogram.

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

q

F
re

qu
en

cy

(a) Tpulse = 500

0 0.2 0.4 0.6 0.8 1 1.2
0

2000

4000

6000

8000

10000

12000

q

F
re

qu
en

cy

(b) Tpulse = 2500

Figure 5.41: Histograms for the parameter q of the continuous bounce-back condition at the
lower boundary over one pulse period, gained from simulations with different
Tpulse. In each case, the prominent peak (around 0.85) is due to the boundary
condition at the outlet which bounds the outlet section because of the prescribed
constant pressure (and as a consequence constant q).

5.2.4 Coupling between Windkessel model and lattice Boltzmann
method

To circumvent the problem caused by the outflow boundary condition prescribing a
constant pressure, see Section 5.2.3, another boundary condition is suggested. The
lattice Boltzmann model is coupled with a Windkessel model at the outlet boundary.
By this, the radius of the outlet section can change because the pressure is not con-
stant anymore and physiological cases can be reproduced. To the knowledge of the
author, the coupling of lattice Boltzmann models with a Windkessel model has not
been investigated up to now.

In the following, an overview of the Windkessel (WK) concept is first given. The
LBM/WK coupling is then described and preliminary results from numerical experi-
ments are presented.
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5.2.4.1 The Windkessel model

The Windkessel model is an electric analog model commonly used in the overall repre-
sentation of the cardiovascular system. It considers the arterial system as a chamber
able to store blood and is based on the property that larger arteries first save some
amount of the blood coming from the heart in order to release it afterwards in a con-
tinuous way. By this principle, the pulsatile flow which originates due to the periodic
pumping of the heart is transformed to a continuous flow downstream the vessels. The
name of the described concept comes from the German word ‘Windkessel’ which is
an air chamber in fire engines. By analogy with the early fire-engine pumps, the air
chamber represents the large arteries while the single outlet tube represents the small
vessels [166]. S. Hales was the first who qualitatively described a lumped model of the
arterial system, in 1733 [70].

At the end of the 19th century, the German physiologist O. Frank tried to compute
the stroke volume (blood volume pumped from the heart in one heart beat) from the
measured pressure in the aorta by using the two-element Windkessel model [57]. His
calculations led to a nonlinear differential equation relating pressure and flow. When
the pressure at the distal side of the system (venous pressure) is assumed to be zero,
the differential equation takes the form

Qin = C
dp

dt
+ p

R
. (5.5)

Here, Qin is the outflow from the left ventricle and p is the arterial pressure. In this
model, the whole arterial tree is modeled as an electric chamber where R represents the
total peripheral resistance and C can be interpreted as the total arterial compliance,
i.e., C describes the ability of the whole arterial tree to store blood [166], see Fig. 5.42.
It is defined as the ratio of change in blood volume V to corresponding change of blood
pressure p and is assumed to be constant.

C = dV

dp
(5.6)

In general, Eq. 5.5 does not admit an explicit solution in p because Qin is time-
dependent. However, during diastole Qin = 0 because the aortic valves are closed. In
this case, the homogeneous solution ph of Eq. 5.5 is given by

ph(t) = B e−
t
RC (5.7)
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where B is an arbitrary constant. Eq. 5.7 represents an exponential decay with time
constant RC.

The importance of theWindkessel concept has been detected as Fourier transformations
have been applied to the nonlinear equation derived by O. Frank. By this, a description
of the Windkessel in the frequency domain was obtained, which allowed an equivalent
representation as electric circuit [166]. If current represents the rate of flow and voltage
represents the pressure, the Windkessel has the same functional form as a capacitor
(representing the total arterial compliance) in parallel with a resistor (representing
the total peripheral resistance) [166]. This is called a two-element Windkessel because
it includes two electric components, a capacitor and a resistor. The analog electric
circuit is depicted in Fig. 5.42. It has the same differential equation as the Windkessel
model described by Eq. 5.5. Other Windkessel models exist (three- and four-element
Windkessel), see for example [4]. Similarly, other lumped-parameter models for the
study of the systemic arterial tree have been designed and investigated in varying and
increasing degrees of detail. A mathematical formulation of these models can be found
in [152] and in the references therein.

Figure 5.42: The Windkessel model (a) and the equivalent representation as electric circuit
(b). Qin is the flow into the Windkessel, C denotes the compliance/capacitance
and R represents the resistance.

By adding an inductance in series with the resistance in the electric analog in Fig.
5.42, fluid inertia can be included in the model, see [44]. Table 5.2 lists the variables of
the hydrodynamic system and the corresponding variables/components of the electric
analog.

5.2.4.2 Coupling LBM/WK

In distributed models of blood flow through the cardiovascular system, the peripheral
circulation is often considered as a distal boundary condition for the arterial system.
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Flow system Electric analog
Volume flow Current
Pressure Voltage

Compliance Capacitor
Resistance Resistor
Fluid inertia Inductance

Table 5.2: Correspondance of hydrodynamic and electric variables

As a representation for a terminating impedance at the end of the arterial system,
the Windkessel model can be used for the description of the arterial termination and,
properly validated, can avoid spurious reflections at the outlet.

An attempt has been made to couple the Windkessel model with the lattice Boltzmann
model used for the computations of the fluid dynamics. The basic idea of the coupling
is sketched hereafter. It should be understood as a short outlook to the future work [38]
that is planned based on the conclusions and results achieved so far in this thesis.

Instead of imposing constant pressure boundary conditions at the outflow section, a
two-element Windkessel model is used to determine the pressure at the outlet. Since
Eq. 5.5 does not admit an explicit solution in the general case, an approximation is
needed for determining the pressure pout at the outlet. This approximation is found by
an Euler forward integration of Eq. 5.5 yielding

pt+hout =
∫ t+h

t

dp

dt
≈ ptout + h

C

(
Qt − ptout

R

)
(5.8)

where h is the step size (time step) of the Euler method. ptout is the outlet pressure at
time t, pt+hout the outlet pressure at time t+ h, and Qt denotes the flow at the outlet at
time t. Since ∆t = 1 in the LB simulations, h = ∆t = 1. Eq. 5.8 then becomes

pt+1
out ≈ ptout + 1

C

(
Qt − ptout

R

)
(5.9)

Eq. 5.9 is then used to update pout at every time step. The procedure is as follows.
After prescribing ptout at time t = 0,

1. compute Qt in the LB simulations

2. use Qt as input for the Windkessel model
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3. compute pt+1
out using Eq. 5.9

4. use pt+1
out as input for the LB simulations

5. perform the LB simulations

6. proceed in time by restarting with point 1., with t→ t+ 1

Since pout is updated at every time instant by virtue of Eq. 5.9, the pressure at the
outlet is not constant anymore but changes in time. As a consequence, the radius of the
outflow section changes as well, which gives a more realistic outlet boundary condition,
related to the arterial termination.

5.2.4.3 Preliminary results from first test simulations

A number of test simulations have been carried out to calibrate the parameters C and
R. A channel with initial dimensions 500 × 40 embedded in a computational domain
of dimensions 500 × 60 is considered. The numerical parameters have been chosen as
ν = 1/6 and α = 0.003.

The response of the system to the following single pressure pulse prescribed at the inlet
is studied.

ρpulse
in = ρ̄+ Ae

−50
(
t−tpulse

2 β

)2

(5.10)

where A = 0.07 and β = 10 are the amplitude and the width of the pulse, respectively.
ρ̄ = 1.0 denotes the density when no pulse is present and tpulse = 10000 is the time
when the pulse has its maximum.

Several combinations of C and R have been tried and good results (expected response to
the single pressure pulse, no unphysical oscillations) have been achieved with C = 104

and R = 0.5. The quality of the results are highly dependent on the parameters C and
R. The range for C and R still needs to be studied and a compatibility relation with
the parameters of the distributed model exists.

Figures 5.43 and 5.44 depict the density ρout (corresponding to pout) and the flow Qout

at the outlet, as a function of time, respectively, gained from simulations with the
parameters above. The first 6000 time steps have been omitted in the figures because
the pulse occurs only at t = 10000. The effect of the pulse is clearly visible. No
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unphysical oscillations appear in the time histories. The Windkessel responds in a
smooth way to the single pulse.
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Figure 5.43: Density ρout at the outlet as a function of time as a response to the single pulse
given by Eq. 5.10. Coupled LBM/WK used with C = 104 and R = 0.5.

The width of the channel at the outflow section is displayed in Fig. 5.45. Again the
first 6000 time steps have been omitted. It can be observed that the width (and hence
radius) changes when the pulse arrives at the outlet. Thus, the outlet section is not
bounded anymore and can change in diameter over time.

Fig. 5.46 shows the velocity field for several points in time. It can be seen that
the pulse travels across the channel and consequently the channel expands. However,
the amplitude of the pulse is damped and the pulse disperses as it travels across the
channel.

Such preliminary results encourage studying in more depth the coupling LBM/WK.
Additional simulations are planned in the future [38] with an oscillating pressure at the
inlet instead of the single pressure pulse used for the simulations up to now to enable
physiological cases to be reproduced.
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Figure 5.44: Flow Qout at the outlet as a function of time as a response to the single pulse
given by Eq. 5.10. Coupled LBM/WK used with C = 104 and R = 0.5.
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Figure 5.45: Width of the channel at the outlet as a function of time as a response to the
single pulse given by Eq. 5.10. Coupled LBM/WK used with C = 104 and
R = 0.5.
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(a) t = 9850 (b) t = 10050 (c) t = 10250

(d) t = 10450 (e) t = 10650 (f) t = 10850

Figure 5.46: Velocity field in a compliant channel for different points in time (coupled
LBM/WK with single pulse at inlet). The channel expands as the pulse travels
across the channel.



Chapter 6

Towards physiological experiments:
blood flow simulation through stents

The results of the numerical experiments presented in the previous chapter are promis-
ing and encourage using the developed method for modeling elastic walls for applica-
tions in hemodynamics. In particular, in this chapter the focus is on stents. A stent is
a cylindrical wire mesh (made of metal or alloy) that is inserted into a narrowed artery
to prevent its occlusion by sustaining the damaged vessel wall, see Fig. 6.1.

Figure 6.1: TenaxTM-Stent – BIOTRONIK SE & Co. KG Woermannkehre 1, 12359 Berlin,
Germany

This chapter starts with an overview of stents pointing out their main aspects and
properties. In the second section, the modeling of the stent is detailed. It is based

99
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on the methods and algorithms described in the previous chapters. Some preliminary
results from numerical experiments are presented at the end of this chapter.

6.1 Arterial stents: an overview

The first clinical studies about stents implanted in arteries were published in the 1980’s
[47, 142, 169, 172, 206]. Since then, associated with the increase of cardiovascular
diseases, research in that domain has gained importance. By now, the placement of
stents in occluded or narrowed blood vessels is considered to be a clinical standard
method. Nevertheless, only little is known about the exact behavior of blood flow
in stented arteries. The geometry and the different elasticity of the stent, which is
stiffer than the rest of the vessel, influence the blood flow pattern. Turbulences can
occur. It is assumed that those turbulences can induce intimal hyperplasia and lead
to a renewed narrowing of the artery, so-called in-stent restenosis. This pathological
process prevalently occurs after stent implantation [107].

The problem of restenosis underlines the importance of fluid mechanics around stents
by modeling and simulations. A variety of studies deal with different aspects related
to the mechanical, biochemical, or geometrical properties of arterial stents, such as:

• clinical studies of particular stents [15, 17, 105, 115, 178, 186, 197, 210]

• possible risks of stent implantation [113]

• in-stent restenosis [14, 25, 49, 64, 65, 71, 88, 107, 184]

• stent design [37, 48, 97, 140, 141, 177]

• blood flow simulation in stented aneurysms [2, 78, 79, 208]

• biodegradable stents [33, 41, 75, 186, 193]

• drug-eluting stents [41, 63, 153, 154, 155, 171]

• requirements for the stent properties [139, 140, 190]

• historical overview on stent development [219]
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A short summary of some of the aspects cited above will be given in the following
subsections.

Possible risks of stent implantation
Even if nowadays stent implantation can be regarded as a clinical standard method,
it is not without risks. First, it can injure the vessel which can cause a rupture in the
wall or perforation. Then, the stent can be incorrectly deployed or move to a wrong
location. Further complications are thrombosis due to oversized stent diameter and
the formation of aneurysms.

Finally, if the neointimal tissue grows too much, a chronic narrowing of the vessel
(restenosis) is possible. Restenosis is still one of the major problems occurring after
stent implantation. Some causes of restenosis will be given hereafter.

In-stent restenosis
In-stent restenosis can be defined as the reoccurrence of stenosis in a dilated vessel occu-
pying more than 50 percent of the vessel lumen [109]. Many clinical studies investigate
the restenosis rates, see [179, 218] as well as [17, 107] and references therein.

As possible causes for restenosis the literature [109] cites neointimal hyperplasia (growth
of neointimal tissue), inflammatory reactions, and diabetes mellitus. Besides that,
restenosis can also be caused by the implantation procedure, e.g., by applying a high
pressure at the dilatation process, by using several stents, or by injuring the vessel
wall. Concerning the stent itself, further influencing factors are oversized stent diame-
ter, length of the stent, stent design, geometric configuration, and stent compression.

Stent design
The stent design plays a crucial role for the positive outcome of the stent implantation.
Stoeckel et al. [177] give a detailed overview of stent designs. More than 100 different
designs exist, differing by the following aspects:

• material (nickel-titanium alloy, stainless steel, tantalum, cobalt alloys, etc.)

• form of the raw material (wire, tubing, ribbon, sheet)

• fabrication method (laser machining, photochemical etching, knitting, etc.)
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• geometry (coil, helical spiral, individual rings)

• additional properties (drug-eluting coating, radiopaque coating, radiopaque mark-
ers)

Biodegradable stents
Most of the developed stents are permanent implants remaining lifelong in the vessel,
far beyond the time needed to prevent wall recoil [41]. Because of the unclear function
of the implant beyond the required period and the potential long-term complications
associated with a permanent metal stent [33], the cardiology community is interested
in the development of biodegradable stents.

The first biodegradable stent has been developed by Stack et al. in 1988 and in im-
planted in animals [175]. For this prototype stent, a polymer of poly-L-lactide acid
(PLLA) was used. In 2000, Tamai et al. [186] published the first report on initial
and 6-month results after the placement of biodegradable PLLA stents in humans. A
drawback of this stent was that it could not be entirely expanded by dilation. Heat
supply, which potentially causes damage of the vessel wall, was necessary for the full
expansion. In 2004, DiMario et al. [41] presented the first drug-eluting bioabsorbable
magnesium stent. This implant had the drawback that it was completely radiolucent,
which made the confirmation of correct placement and full expansion impossible.

The development of an appropriate biodegradable stent is still a difficult task. The
main difficulty - and at the same time the most important feature - is the decomposition
of the material in appropriate time.

Requirements for stent properties
Stent manufacturer have to consider several aspects when developing vascular implants.
The requirements for the stent properties are as follows [109]:

• biocompatibility

• visibility (for verifying the correct placement and the full expansion)

• ability of elastic and plastic deformability at implantation and dilatation

• sufficient mechanical strength to sustain the vessel after dilatation
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• sufficient fatigue strength to avoid fatigue crack and fatigue break of the stent
structure

• easy to implant

• enabling of a long-term patency of the vessel

• smooth surface structure (reduces pressure gradients and prevents turbulences)

• corrosion resistance in the case of non-biodegradable stents

6.2 Modeling blood flow through a stented artery

Because only limited computational power was available for this study, only a restricted
computational domain could be used in the simulations. This allowed modeling the
stent only as stiffer part of the vessel segment without considering its detailed geome-
try. For including the exact geometry into the model, more computational power and
memory is needed.

The developed model for the elastic wall presented in Chapter 4 can easily be applied
to model the stents. The details about the modeling are specified hereafter.

Since the stented portion is stiffer than the rest of the vessel, it has a higher compliance
parameter than the unstented part. Therefore, the idea to model the stent by varying
the compliance parameter comes naturally. Instead of taking a constant α in the
pressure-radius relationship (Eq. 4.2), α is increased in the stiffer part representing
the stent. Thus, α varies with x, i.e., α = α(x). Let αs denote the elasticity parameter
of the stent and α0 the elasticity parameter of the unstented vessel. In order to avoid
a discontinuity in α(x) at the edges of the stent due to the considerable difference
between the compliant vessel and the more rigid stented part, α is chosen as a rapidly
changing function as in [156].

α(x) = α0

1 + δe
−
(
x−x∗
σ

)8 (6.1)

Here, σ is half of the stent length, x∗ is the point around which the stent is centered,
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and δ = αs − α0

α0
. For αs = α0, the compliance parameter of the unstented vessel is

recovered in Eq. 6.1. By varying the value of σ and δ it is possible to roughly model
a number of mechanical properties of stents and the local stiffening or softening of the
artery [156].

With α = α(x) defined by Eq. 6.1, the pressure-radius relationship (Eq. 4.2) used for
determining the pressure thresholds pth is generalized as

pth = p0 + α(x)(R−R0). (6.2)

By this, nodes corresponding to the stented part have higher pressure thresholds than
nodes representing the unstented vessel wall. As described in Chapter 4, the pressure
thresholds are coupled to the parameter q of the continuous bounce-back boundary
condition. In analogy to Eq. 4.4, the relation is

q(x, yb) = p(x, yb)− pth(x, yb)
α(x, yb)

. (6.3)

The following section presents preliminary results from simulations including the mod-
eling described above.

6.3 Preliminary numerical experiments

The numerical experiments presented in this section only intend to show the feasibility
of the developed algorithm. For more informative results, more computing power is
needed. To underline this fact, it is reminded that the diameter of a blood vessel
typically changes by maximum 10% [165]. Considering a channel with initial radius of
20 lattice units, the wall should not change by more than two lattice units, which does
not allow to generate figures of the vessel with smooth shape.

For the numerical experiments, a channel of dimensions 500×40 is considered, embed-
ded in a computational domain of dimensions 500 × 60. A stent of length 100 lattice
units is imagined to be located in the middle of the vessel, so σ = 50 and x∗ = 250. The
compliance parameter α0 of the unstented part has been chosen 0.007. An oscillating
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pressure is prescribed at the inlet, whereas constant pressure boundary conditions are
imposed at the outlet (the coupling LBM/WK not being developed and tested in detail
so far).

Simulations with different αs have been carried out and the ratio between the stented
and the unstented maximum deformation at the center of the stented segment has been
calculated. Fig. 6.2 depicts this ratio as a function of αs/α0. As expected, the ratio
decreases with αs/α0 and tends asymptotically to the value of the rigid wall.
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Figure 6.2: Ratio between the stented and the unstented maximum deformation at the center
of the stented segment (α0 = 0.007). Rs and Ru denote the radius of stented
and unstented vessel, respectively.

As a consequence of the perturbed flow field, the time evolutions of the wall shear
stress at the beginning and the end of the stented segment exhibit strong oscillations,
see Figures 6.3 and 6.4. It should be reminded of the correlation between the wall
shear stress and the development of atherosclerosis, see Section 2.3. There is significant
evidence that highly oscillating WSS causes intimal wall thickening [170]. Interpreting
the presented results, this would mean that the proximal and distal ends of the stent are
prone to blood stagnancy, tissue growth, increased coagulation and, as a consequence,
to restenosis.

The presented results show that the developed method can be successfully applied for
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Figure 6.3: Wall shear stress at the upper wall at the beginning of the stented segment as a
function of time (α0 = 0.07, σ = 50)
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Figure 6.4: Wall shear stress at the upper wall at the end of the stented segment as a function
of time (α0 = 0.07, σ = 50)



6 Towards physiological experiments: blood flow simulation through stents 107

a deeper investigation the blood flow through stents. However, to gain more significant
results, further improvement of the method is required. Especially, when interested
in the propagation of pulse waves, the presented model needs to be enriched and the
algorithm suitably adjusted.



Summary and conclusions

Mathematical models for the cardiovascular system are widely used to simulate blood
flow in arteries and to predict dynamic patterns in physiological and pathological con-
ditions. Nowadays, computational modeling and simulation have emerged as important
tools for a deeper understanding of the physical concurrent factors that influence the
flow field.

With this objective, an accurate and computationally efficient method for modeling in-
compressible flows in distensible tubes has been developed using the lattice Boltzmann
method. It constitutes an improvement of the method proposed by D. Leitner [99].
Compared to the approach presented in [99] by which the wall can only be displaced
in a discrete way over the underlying lattice, the current method is especially devised
for allowing a continuous wall motion.

Using the lattice Boltzmann method for the simulations has many advantages compared
to conventional solvers for computational fluid dynamics problems. The explicit scheme
allows for an easy implementation and the local nature of the LB algorithm makes it
suitable for parallel computing. The developed approach for modeling elastic walls acts
locally as the LB method itself, which makes the coupled algorithm computationally
efficient, even for simulations in complex geometries.

The developed algorithm has been implemented in the programming language C and
extensive numerical experiments have been carried out to show the feasibility and
the effectiveness of the method. The velocity field in a cylindrical tube was in good
agreement with the analytical solution and the results showed the expected physical
behavior. The results presented in this work are not complete but intend to show the
feasibility of the methodology for applications in which the compliance of the wall plays
a relevant role.

The implemented simulation environment can be applied to hemodynamics to study
the pressure and flow fields in elastic vessels and has been extended to model the blood
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flow through stents. A linear pressure-radius relationship has been assumed for this
work, but the presented method is able to treat more complex tube laws as long as
they are explicit. However, before the model can be used to study physiological flows
in a predictive way, several parameters contained in the model need to be identified.
Measurement data are necessary for validation of the model and for quantitatively
describe the blood flow in compliant vessels.

Some results pointed out the weakness of the method as it is developed so far. It was
not possible to study the propagation of pulse waves which certainly is important in
many applications, especially in hemodynamics where the pulse wave velocity gives
evidence of the stiffness of the vessel and can be used as an indicator for unhealthy
states. A possible reason for this is that the method for coupling the elastic vessel
and the enclosed fluid is not a real fluid-structure interaction problem because the
retroaction from the wall back to the fluid is missing. For this, further extension of
the method is needed (for example by using a longitudinal elasticity model that links
the LB nodes near the wall). Another reason could be the outlet condition bounding
the terminal section. In order to circumvent this problem, the LB algorithm has been
coupled with a Windkessel model accounting for the terminal system. The preliminary
results of some test simulations are promising and encourage to further develop the
LBM/WK coupling.

Despite the limitation of the presented method, it constitutes a valuable computational
tool because it is simple while at the same time able to predict flow and pressure
fields in distensible tubes and to provide first qualitative and quantitative results. By
showing the relationship between the several variables and parameters, the model can
be used to identify simple indices and clinical indicators of biomedical significance.
It would be interesting to further elaborate and extend the approach in such a way
that wave propagation can be studied and to validate the enhanced model with real
physiological data. Furthermore, the availability of more computing power enabling
to run simulations with a bigger computational domain would allow to investigate the
effects of different stent geometries or other vascular prostheses on the blood flow.
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