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Abstract

We calculate Hanbury Brown - Twiss (HBT) correlation functions as well as direct photon spectra from
an anisotropic quark-gluon plasma (QGP) in order to investigate possible indirect signals of photon
double pulses on the yoctosecond timescale, which arise at low emission angles. Both quantities show
a dependence on the isotropization time of the QGP. We find that HBT correlations exhibit non-trivial
features, such as plateaus or a second peak. The ratio of two spectra measured at different emission
angles is especially sensitive to early isotropization times.

Zusammenfassung

In Schwerionenkollisionen werden Quark-Gluon Plasmas (QGP) erzeugt, welche aufgrund der raschen
longitudinalen Expansion eine Anisotropie im Impulsraum aufweisen. Diese Anisotropie ist die Ur-
sache dafür, dass die differentielle thermische Photonenrate im Plasma eine starke Abhängigkeit ein-
erseits von der Richtung der Emission, als auch von der Stärke der Anisotropie besitzt. Anhand
der Emissionsrate des Plasmas, lässt sich nun ein zeitabhängiges Photonensignal berechnen, welches
von einem idealen Detektor gemessen wird. Diese Photonenpulse haben eine Länge von einigen Yoc-
tosekunden (10−24 s), was in etwa der selben Größenordnung wie der Lebensdauer des QGP entspricht.
Platziert man den Detektor zu kleineren Winkel hin, nahe zur Strahlachse der Kollision, weisen die
Pulse eine außergewöhnliche Doppelpuls-Struktur auf. Die Form der Pulse ist sehr empfindlich im
Bezug auf die Parameter des QGP-Modells, was deren Messung als Methode prädestiniert, um die
internen Dynamiken des Plasmas zu erforschen. Zum jetzigen Zeitpunkt gibt es noch keinen Ansatz
um Strukturen zeitaufgelöst im Bereich von Yoctosekunden zu messen. Daher werden in dieser Arbeit
Methoden untersucht, die ein indirektes Signal für die Existenz solcher Doppelpulse liefern könnten.

Spektren von thermischen Photonen und Hanbury Brown - Twiss (HBT) Korrelationen zeigen eine
Abhängigkeit von der Isotropisierungszeit - jener Zeitkonstante, zu der das Plasma wieder annähernd
isotrop wird. Dieser Parameter spielt eine große Rolle für die Phänomenologie der Doppelpulse. Bei
dem Verhältnis zweier Spektren, gemessen in verschiedene Richtungen (etwa in Vorwärtsrichtung und
im rechten Winkel zur Strahlachse), handelt es sich um eine Größe, die sehr empflindlich im Bezug
auf sehr frühe Isotropisierungszeiten ist. Analysiert man HBT Korrelationen für verschiedene Photon-
Vektor-Paar Geometrien, findet man nicht-triviale Modifikationen der üblichen Gauß’schen Form,
deren Ursache die Unterdrückung der Photonenrate durch die Anisotropie ist.
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—The world which we perceive is a tiny fraction of the
world which we can perceive, which is a tiny fraction
of the perceivable world, you see.

– Terence Kemp McKenna

1
Introduction

1.1. Asymptotic freedom and the quark-gluon plasma

The standard model of particle physics is currently the leading theory to describe nature on a sub-
atomic scale. It unifies the electroweak interaction together with the strong nuclear force in the
framework of a quantum gauge field theory, a theory whose Lagrangian is invariant under continuous
local transformations. The theory of strong interactions, quantum chromodynamics (QCD), belongs
to the class of non-Abelian gauge theories, also called Yang-Mills theories in honor of their inventors
Chen Ning Yang and Robert L. Mills [1]. Non-Abelian gauge theories exhibit a feature that was
revealed by David Gross, David Politzer and Frank Wilczek [2–4], who were awarded the Nobel prize
in physics in 2004 for their discovery. This property is called asymptotic freedom and refers to the fact
that the coupling or the interaction strength of such a theory becomes weak at large energy scales.

Interactions within a quantum field theory may be altered by the presence of loop diagrams. Such
is the case in quantum electrodynamics (QED), where the vacuum polarization diagram changes the
effective interaction, as depicted in Fig. 1.1.

a) b)

Figure 1.1: Electron-electron interaction via photon exchange in QED. The time direction
points to the right. Lines with arrows represent the fermionic electrons, the wiggly line is the
photon.

The diagram in Fig. 1.1a shows the known tree-level electron-electron interaction mediated by the
gauge boson of QED, the photon γ. By insertion of a vacuum polarization diagram (Fig. 1.1b), the
interaction becomes a function of the energy scale Q. Scaling behavior of quantum field theories
has been investigated by Murray Gell-Mann and Francis Low [5], and the appropriate function that
describes the change of the coupling g =

√
4πα with respect to a certain renormalization scale µ is

7
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the renormalization group equation

β(g) = µ
∂g

∂µ
= ∂g

∂ log(µ) . (1.1)

The modern name β-function was introduced by Curtis Callan and Kurt Symanzik [6, 7]. The inserted
fermion loop in Fig. 1.1b modifies the photon propagator by a factor. This modification can be
interpreted as a rescaling of the bare electron-photon vertex and hence be absorbed into the QED
coupling constant

αeff(Q2) = α(µ2)
1− α(µ2)

3π log
(
Q2

µ2

) . (1.2)

This expression contains the bare coupling α, which can by fixed by obtaining experimental values
at some scale µ. The scaling behavior of the interaction strength is known as running coupling. In
quantum electrodynamics, the beta function to one-loop order is positive, which means the interaction
strength increases with the energy scale.

One can explain this theoretical result using more phenomenological terms. Vacuum is not considered
as purely empty space in quantum electrodynamics anymore, electrically charged virtual particles are
formed and annihilated at all times. In the presence of a test charge, these virtual particle-antiparticle
pairs arrange accordingly. A cloud of virtual charges will screen the original test particle, decreasing
the strength of its electrical field to an outside observer. Moving closer to the test charge, therefore
probing higher energy scales, diminishes the screening effect and the effective interaction increases.

The same scheme can be applied to quantum chromodynamics. Here, one considers the interaction of
two fermionic quarks, mediated by the QCD gauge boson, the gluon. Opposed to QED, which is an
Abelian theory, the gauge bosons of quantum chromodynamics feature self-interactions. Additionally
to the fermion loop, like in Fig. 1.1b, one has to consider pure gluonic loops as well as a ghost loop.

a) b) c) d) e)

Figure 1.2: Interaction of two fermionic quarks by gluon exchange to one-loop order. The
quarks are represented in the diagrams by the lines with arrows. The tree-level interaction is
shown in a) with the curly line representing the gluon. In QCD, several loops can be inserted
to modify the tree-level interaction: a) a quark loop, b) a pure gluonic loop, c) a ghost-loop
(dotted lines) and d) a gluon self-energy insertion via the four-gluon vertex.

The additional contributions from the gluon loops (Fig. 1.2c and Fig. 1.2e) and the fact that gluons
interact with themselves have a significant influence on the scaling behavior of QCD.
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αeffs (Q2) = αs(µ2)
1 + (33−2nf ) αs(µ2)

12π log
(
Q2

µ2

) (1.3)

Equation (1.3) shows the energy scale dependence of the strong coupling αs at one-loop order, with
nf being the number of quark flavors. One can immediately spot the difference to the QED effective
coupling in Eq. (1.2): the factor to the logarithmic term has a different sign as long as the number
of quark flavors is equal to or smaller than 16. Six flavors of quarks have been discovered as of now,
which makes this pre-factor overall positive. So instead of an increasing coupling at large energy
scales, as was the case in QED, the effective interaction strength decreases. The beta function of QCD
is negative, and this phenomenon is called asymptotic freedom. Quarks are strongly coupled at lower
energies and behave like free particles at sufficiently high energies. Returning to the picture of a test
charge that is screened by virtual particles, we see the opposite effect. The term electric charge is
replaced by the QCD pendant, the color charge. Moving away from a charged test particle, which is
equivalent to probing lower energy scales, actually increases the color charge seen from an observer.
While virtual quark-antiquark pairs do screen the color charge of the test particle, the quarks are
surrounded by virtual gluon-antigluon pairs, which themselves carry color charge.

A part of the low energy regime of QCD matter is well known to us through nuclear physics. Quarks
form hadrons, compound particles held together by the strong interaction, such as the neutron and
the proton. Quarks have been observed indirectly by deep inelastic scattering experiments at high
energies (e.g. in Ref. [8]), but single, isolated quarks are yet to be found. Trying to separate quarks
from hadrons only leads to the formation of new hardons. This is known as confinement.

The still mysterious phenomenon of confinement stands just opposite of asymptotic freedom. We can
be certain of the confining attribute of QCD thanks to numerous experiments, and the theoretical
description of the running coupling constant matches up with the data as well [9]. These results
suggest that quarks behave as free particles at sufficiently large energies. In such a high energy limit,
the confinement is lifted and we speak of the deconfined phase. Much like in an ordinary electric plasma,
quarks and gluons are able to move as free carriers of electric and color charge - which justifies the
term quark-gluon plasma (QGP) to denote the deconfined phase of QCD matter. In practical terms,
the deconfined phase is accessible via perturbation theory, as a small coupling justifies taking into
account only diagrams at leading order in αs.

Having established these two limits, one can assume that there has to be a region of transition,
separating the two phases. Perturbation theory only works reliably at low couplings or, in the case of
QCD, at asymptotically high energies. The suggested phase transition has to occur at an intermediate
scale, which is not accessible through either perturbation theory or effective models.

With the rapid advancement of computing power, lattice gauge theory, as the only reliable non-
perturbative method, has shed light on the subject and identified a crossover transition between
confined and deconfined phases at T ≈ 160 MeV [10, 11]. Lattice computations are performed at
zero or very low baryonic chemical potential µB. Other analytical methods, such as effective models,
allowed to map out different parts of the QCD phase diagram [12], as shown in Fig. 1.3.

Close to the origin of the proposed QCD phase diagram, we see the vacuum. QCD is a theory with
a mass gap, which means that one needs a finite amount of energy to excite the lowest energy state
or lightest particle. Below the red line, we are in the confined part of the phase diagram - quarks
only exist in bound states as baryons and mesons. In the high-density region of the diagram at small
temperatures, we have several phases, which all belong to the class of color superconductors. The
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Figure 1.3: The proposed QCD phase diagram. At asymptotically high baryon densities µB,
QCD behaves as a weakly coupled theory similar to the high-temperature scenario. Hence,
the color-flavor locked (CFL) phase at such high µB is a well established phase theoretically.
As intermediate regions in the diagram can not be accessed by perturbative methods, this
phase diagram is mainly of illustrative nature. The lightning symbols indicates the state of
matter which can be created in heavy-ion collisions.

so-called color-flavor locked (CFL) quark matter phase features a Cooper pairing mechanism and is
the theoretically well established favored phase of QCD at asymptotically high densities. Next to the
CFL phase, different superconducting phases have been proposed at intermediate densities [13]. This
intermediate region at low temperature may be recreated in compact stars [14], which are among the
most dense objects found in nature so far. The phase diagram presented in Fig. 1.3 is not known
to much detail, especially at densities above the nuclear saturation density. In that regard, the CFL
and non-CFL phases depicted in the diagram should be only considered as a sketch - the red line
separating hadronic (nuclear) matter and quark matter (non-CFL phase) might not extend to T = 0,
but rather a critical point [15].

The dashed red line at T = Tc indicates the crossover transition between the confined hadron gas
phase and the deconfined plasma phase. Next to this line are two lightning symbols. Each of them
indicate the points in the phase diagram that are accessible by the heavy-ion collision experiments at
LHC and RHIC.

1.2. The quark-gluon plasma in heavy-ion collisions

So far, the only natural occurrence of the would be the early universe, some 10−6−10−5 seconds after
the big bang [16]. To study the deconfined phase, we hence need to rely on particle accelerators. In
heavy-ion collisions, heavy nuclei, such as lead or gold, are being accelerated to near light speed. The
ions acquire high center of mass energies at the order of a few hundred GeV per nucleon. Upon impact,
the energy is released and the resulting QCD matter is supposedly found in the indicated points in
the deconfined portion of the phase diagram (lightning symbols in Fig. 1.3). The quark-gluon plasma
then undergoes a cooling process and passes through a crossover to enter the confined phase, where it
hadronizes, as the quarks start forming hadrons below the chemical freezeout temperature T < Tc.
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Two facilities are able to produce a quark-gluon plasma at the moment: the Relativistic Heavy Ion
Collider (RHIC) in the Brookhaven National Laboratory and the Large Hadron Collider (LHC) at the
European Organization for Nuclear Research (CERN). The former facility has played an important role
by providing experimental evidence on the existence of the QGP. In the near future, the Compressed
Baryonic Matter experiment (CBM) at the Facility for Antiproton and Ion Research (FAIR) in the
GSI1 Darmstadt will also be able to perform similar experiments.

Figure 1.4: An illustration of the QGP creation at heavy-ion colliders. The red circles
represent the Lorentz contracted nuclei, the direction of their velocities is indicated by the
blue arrows. The interaction region is formed within the overlap of the nuclei (b). The quark-
gluon plasma then expands between the receding nuclei (c) and subsequently cools down
(d).

1Gesellschaft für Schwerionenforschung
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A schematic illustration of the situation in heavy-ion colliders is shown in Fig. 1.4. In a laboratory
rest frame, the accelerated nuclei appear as so-called Lorentz-contracted pancakes, moving at each
other at near-light speed along the beam axis (Fig. 1.4a). The coordinate system is arranged so the
z-coordinate points along this axis. Both nuclei are displaced by a certain amount in a transverse
direction, in this case along the x-axis. The separation between the center of the nuclei is the impact
parameter b. The plane spanned by the separation vector and the beam axis defines the reaction
plane. When the two nuclei hit each other, an almond shaped region is formed (Fig.1.4b). The
nucleons outside this interaction region are not affected by the violent collision at first and continue
traveling along the beam axis. Inside the interaction region, bounded by the two receding nuclei,
the quark-gluon plasma is formed (Fig. 1.4c) and cools down as the nuclei travel even further apart
(Fig.1.4d).

Strong experimental evidence for the existence of the quark-gluon plasma was found by observing the
phenomena of J/ψ-suppression [17–19], jet-quenching [20, 21] or elliptic flow [22].

J/ψ-suppression. The J/ψ particle is a meson consisting of a charm quark c and a charm antiquark
c̄. A mechanism similar to Debye screening is present in a quark-gluon plasma. Due to this screening
of color charge, the cc̄ pair will not be able to keep its bound state, if the binding radius of the meson
exceeds the Debye length which depends on the temperature of the medium. Thus, the production
of J/ψ particles should be suppressed by such a screening effect. The color screening is only possible
if color charge carriers can move freely, which is the reason why the anomalous J/ψ-suppression was
considered a signal for the deconfined phase and was found in heavy-ion experiments [23]. Although
other explanations for the suppression were found that do no require the presence of a QGP, such
as nuclear absorption models [24], the J/ψ-suppression should be mentioned here as one of the first
proposed signals for the deconfined phase of QCD.

Jet-quenching. High energetic partons scatter within the QGP, their momentum vectors pointing
back-to-back after the scattering event. As these partons leave the QGP, they produce hadron showers
that can be measured. If the scattering takes place near an edge of the QGP, one of the partons has
to travel through the entire plasma. On its way through the QGP, the parton loses energy and the
produced hadrons are lesser in numbers, compared to the parton that escaped the QGP quickly.

Elliptic flow. The asymmetry of the interaction region (red almond-shaped contour in Fig. 1.4b) in
non-central collisions gives rise to a density gradient in the transverse plane in which the interaction
region lies. This directly translates to a momentum anisotropy due to the resulting pressure gradient.
What is usually referred to as elliptic flow is the second Fourier coefficient v2 of the particle distribution,
which is a function of the azimuthal angle around the beam axis. Elliptic flow is an indication of
re-scattering events in the plasma and is linked to collective phenomena. The good agreement of
hydrodynamical calculations of v2 with measured elliptic flow patterns provide strong evidence in
favor of the quark-gluon plasma [25].

Other evidence pointing to the quark-gluon plasma is the measurement of direct photons that are
exclusively emitted by the plasma. The QGP produces photons throughout its lifetime, even the
decaying hadrons after the plasma freezeout emit photons. Unfortunately, the ratio of direct photons
to all other photons emitted during a heavy-ion collision is about 1% at 2 GeV [26]. This makes the
measurement rather difficult, since the secondary photons have to be filtered out. While other means
of investigating the QGP have been particularly successful, such as the measurement of pions created
at the freezeout surface of the plasma [27], photons are unique in the sense that they

(a) are produced throughout the whole collision,



1.3. GOAL OF THIS THESIS 13

(b) leave the plasma after creation without any further interaction,

(c) and therefore carry information about the whole evolution of the plasma.

The direct photon emission of the plasma is modified by proposed initial momentum-space anisotropies,
which will be explained in detail in the next chapter. The momentum-space anisotropies considered
here are not to be confused with the concept of elliptic flow, where two different pressure gradients
along transverse directions arise due to the asymmetrical almond shape of non-central collisions. These
initial momentum-space anisotropies will suppress the photon emission at some time after the creation
of the QGP. Such suppressions as well as the overall geometry of the plasma and the photon detector
placement give rise to an interesting double-peak feature in the time-dependent detector signal. An
important detail is that these suppressions are only visible if the detector is placed at a low polar
angle towards the beam direction. Since the quark-gluon plasma itself has only a lifetime of ≈ 13 fm/c
(≈ 40 ys = 40 · 10−24 s), such photon signals would be the shortest pulses known to date.

This particular feature of the time-dependent direct photon signal was first proposed by Andreas Ipp
et al. [28].

1.3. Goal of this thesis

The main goal of this thesis is to establish whether there is a current or future possibility of detecting
a signal of photon double pulses with lengths in the order of yoctoseconds. Detecting such pulses
in a time-resolved manner is not possible with ordinary electronic measuring devices and tools from
attosecond physics are currently not applicable at these timescales.

A more convincing assumption is that said mechanisms, which are responsible for these double pulses
also have an effect on time integrated quantities like spectra or intensity correlations as well. The
advantage would be that direct photon spectra have already been measured and will be measured in
the near future, for example at the LHC and at FAIR. Studies on direct photon spectra considering
momentum-space anisotropies have been published recently, but they focus mainly on situations where
the detector would be placed transverse to the beam axis - which is coincidentally the detector position
at which the double peak feature does not appear at all.

Another possible signal may arise in the so-called Hanbury Brown - Twiss (HBT) correlations. These
correlations provide a quantity that is sensitive to the full time-evolution of the quark-gluon plasma
without the necessity for a time-resolving detector. It can be shown analytically that a photon source
with two separated maxima in the time direction produce oscillations in the HBT correlation function,
which can be related to the evolution of the anisotropies.

Both direct photon spectra as well as HBT correlations for direct photons have the necessary capability
to shed light on the dynamics of the quark-gluon plasma. Their predictive ability is unfortunately
thwarted by the immense practical challenge to measure these photons in the presence of an enormous
amount of background photons.

Structure of the thesis

In Chapter 2, the models we use to describe the physics in the QGP are presented. The notion of initial
momentum-space anisotropies is explained as well as the models that describe their evolution in time.
Chapter 3 focuses on the derivation of the expressions needed to calculate the photon production rate
in an anisotropic quark-gluon plasma. Integrating this differential rate allows to compute a photon
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signal, which is done in Chapter 4. The phenomenology and mechanisms, which give rise to double
pulses are established and pulses for different model parameters are calculated. Considering the same
mechanisms, Chapter 5 explores how time-integrated single particle spectra are affected. In the same
manner, Chapter 6 investigates the sensitivity of Hanbury Brown - Twiss correlations for photons with
respect to these QGP model parameters.

Conventions

The calculations in this thesis are written in natural units throughout, where c = ~ = kB = 1.
Quantities, such as times, photon rates or spectra, however, are given in different units which are
labeled explicitly in the corresponding plots. We use following convention for the space-time metric
gµν = gµν :

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (1.4)



A round man cannot be expected to fit in
a square hole right away. He must have
time to modify his shape.
– Mark Twain, Following the Equator

2
Momentum-space anisotropy in the QGP

2.1. Overview

This chapter will introduce the idea of momentum-space anisotropies in the quark-gluon plasma.
These anisotropies are the basis for various phenomena in the QGP, studied in e.g. Refs. [29–34]. One
particular phenomenon related to momentum-space anisotropies are the so-called plasma instabilities,
which are a major subject of investigation at the Institute for Theoretical Physics [35–39].

Plasma instabilities in the context of an anisotropic QGP are a more general case of Weibel insta-
bilities in an electromagnetic plasma [40]. Weibel instabilities are the driving force behind the rapid
isotropization of QED plasmas, and their counterpart in quantum chromodynamics was investigated at
first in Ref. [41]. This mechanism may be the cause for a short thermalization time of the plasma [42],
although its particular value is still subject to scientific discussion. In Reference [43], thermalization
times up to 2 fm/c are considered as compatible values.

The emphasis in this thesis will be put exclusively on the production of thermal photons. After a short
introduction on the Bjorken model for the QGP, the ansatz for the anisotropic momentum distribution
function will be explained. Concluding this chapter, the models used for the time evolution of the
momentum-space anisotropy will be presented.

2.2. The Bjorken picture

We will use a model for the quark-gluon plasma pioneered by J.D. Bjorken [44], which assumes a
so-called central rapidity plateau. This central region of the plasma shall not be a function of the
space-time rapidity y, suggesting that Lorentz-boosts within this region will not change the physics
in the QGP. In a more illustrative way, this is equivalent to stating that all volume elements with
the same temperature of the plasma lie on an equal proper-time hyperbola in a Minkowski diagram
(Fig. 2.1). The assumption is backed by experimental observations, such as recent measurements at
ALICE [45], where hadron production rates show rapidity invariance near the center.

The quark-gluon plasma, which is constrained by the two proper equal time hyperbolas at τ = τ0
and τ = τf , is assumed to be entirely free of hadrons. As of now, the formation time of the plasma
τ0 is still subject of investigation. Measuring the elliptic flow of direct photons was suggested as
a way of constraining the formation time [46], but measurements do not seem to confirm photon
flow [47, 48]. For an LHC scenario, Ref. [49] matched the rapidity density dN/dy to the initial
temperature T0 = 845 MeV [50], giving an initial formation time of τ0 = 0.088 fm/c. The freezeout
time τf is determined by the proper-time at which the temperature of the plasma reaches the critical

15
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t

z

q
u

a r k - g l u o n p l a s m

a

τ =
τ0

τ = τf

Figure 2.1: A Minkowski diagram to illustrate the Bjorken model (similar to Fig. 3 in
Ref. [44]). t represents the time in the laboratory frame and z is the spatial coordinate axis
along the beam. The expansion of the plasma is bounded by a light cone (straight black and
dashed lines). The QGP phase (gray area) appears after a proper time τ0 and ends with the
freezeout time τf . The red, dashed line in between τ0 < τ < τf symbolizes an equal proper
time hyperbola within the QGP phase. The temperature of the QGP on this hyperbola is
constant according to the assumption of rapidity invariance.

value T (τ) = Tc. Using the 1D Bjorken expansion, the temperature evolution is given by

T (τ) = T0

(
τ0
τ

)1
3
, (2.1)

which leads to a freezeout time τf ≈ 13 fm/c for Tc = 160 MeV.

Additionally, the expansion of the QGP will only occur in the longitudinal direction along the beam.
This is still a good approximation for early times [51].

2.3. The Romatschke-Strickland ansatz

The major contributor to the phenomenology of the double peak effect is the possibility of momentum
anisotropies in the quark-gluon plasma. Figure 2.2 illustrates this in a rather simple fashion1.

The momentum distribution of the partons evolves from an initially prolate form into an oblate form
at later times. Somewhere in between, the momentum distribution has to reach a spherical, isotropic
form. This time is denoted by τ0 and for our calculations, represents the formation time of the
quark-gluon plasma.

After a time τ > τ0 (Fig. 2.2a), the two Lorentz contracted nuclei (indicated by the thick, black

1These momentum anisotropies describe the anisotropy between longitudinal and transverse directions, and should not
be confused with pressure gradients within the transverse plane, which are responsible for the elliptic flow.
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lines) have moved away from each other, and the plasma between them is expanding primarily in
that direction. High momentum partons, which have a high momentum component in the direction of
the expanding plasma, will leave the central region of the plasma very quickly (Fig. 2.2b). The only
partons remaining in the central area will have momentum components primarily in the perpendicular
or transverse direction 〈p2

L〉 < 2〈p2
T 〉. Since we employ the Bjorken model for our computations, we

will restrict ourselves only to this central region.

For greater times τ � τ0, the flat nuclei have receded even further and the plasma expands in the
same manner. The plasma will eventually reach an isotropic state again.

〈p2
L〉 〈p2

T 〉

a) τ ≈ τ0

〈p2
L〉

〈p2
T 〉

b) τ > τ0

Figure 2.2: This sketch illustrates the buildup of momentum anisotropy in the quark-gluon
plasma. Each picture depicts some partons (dots) and their momenta (arrows) at a certain
time τ . a) is a snapshot of a time τ very shortly after τ0. Most of the partons are within
the central rapidity plateau (light blue, shaded area). At a later time, we see in b) how the
partons with primarily longitudinal momenta have already traveled away from the central
region. The partons left behind have mostly high momenta in the transverse direction. The
bars at the bottom represent the average of the momentum components within the central
area. Note that this figure depicts a two dimensional scenario with two degrees of freedom,
hence 〈p2

L〉 = 〈p2
T 〉 for the isotropic case.

To summarize the above, one needs to modify the quark and gluon distribution functions in a way
that momentum anisotropies can be incorporated. P. Romatschke and M. Strickland proposed a
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distribution function, which is now known as the RS-ansatz [52]:

f(p) = fiso(
√

p2 + ξ(n · p̂)2). (2.2)

The anisotropy parameter

ξ = 〈p2
T 〉

2〈p2
L〉
− 1, (2.3)

is defined in the range −1 < ξ <∞ and rescales an isotropic distribution function fiso. ξ > 0 contracts
the distribution function, while ξ < 0 stretches it (see Fig. 2.3). If ξ = 0, the isotropic scenario is
recovered. For our purposes, the anisotropy will only quench the distribution function along the
longitudinal direction z (n = p̂z):

fq,g(p) =
[
e
√
p2

x+p2
y+(1+ξ)p2

z/T ± 1
]−1

. (2.4)

The upper sign corresponds to the fermionic quark distribution function, whereas the lower sign
corresponds to the bosonic gluon one. Throughout this thesis, the above form (2.4) of the distribution

a) ξ = 0 b) ξ = 5

Figure 2.3: The shape of an anisotropic distribution function from Eq. (2.4) at different
anisotropy parameters ξ. These plots depict equal-value surfaces of the anisotropic distribu-
tions. The axes label the components of the momentum vector p, where p̂z is the direction
along the beam axis (see Fig. 1.4).

functions is implied, without the anisotropy parameter ξ explicitly written.

2.4. Model for the time evolution

This section shortly recaps the interpolating model for the temperature and the anisotropy parameter
[51, 53].

The two asymptotic limits, as described in Ref. [51], are the hydrodynamical expansion [44] and the
so-called free streaming limit [54], both in 1+1 dimensions. In the first case, it is assumed that the
partons in the plasma undergo an ideal hydrodynamic evolution. This is only valid, if the momentum
distribution is isotropic (ξ = 0). For the correct hydrodynamical description of an anisotropic QGP,
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see Reference [55]. Free-streaming expansion, on the other hand, neglects all parton interaction and
is applicable to anisotropic momentum distributions.

In the ideal hydrodynamic case, we have the following expressions for the anisotropy parameter and
the temperature. Note that the hard momentum scale phard is strictly only equal to the temperature
in the isotropic case. Since the momentum distribution is assumed to be isotropic at the formation
time τ0 of the plasma, there is a well defined initial temperature T0:

ξH(τ) = 0, (2.5a)

phard(τ) = TH(τ) = T0

(
τ0
τ

)1
3
. (2.5b)

A significant parameter in the evolution of the anisotropic quark-gluon plasma is the isotropization
time τiso, which corresponds to an approximate time, at which the plasma becomes isotropic again.
For a pure hydrodynamical evolution with an isotropic momentum distribution, τiso = τ0.

If one considers the free-streaming expansion, the plasma never reaches momentum-space isotropy,
and thus τiso →∞:

ξFS = τ2

τ2
0
− 1, (2.6a)

phard(τ) = T0. (2.6b)

These two extreme cases of ideal hydrodynamical evolution and free-streaming expansion can now be
extended to a more general case of momentum-space broadening [56] due to interactions:

ξ(τ) =
(
τ

τ0

)δ
− 1, (2.7a)

phard(τ) = T0

(
τ0
τ

)(1−δ/2)/3
. (2.7b)

The newly introduced parameter δ can be varied between the hydrodynamical case (δ → 0, ξ → 0)
and the non-interacting free-streaming variant (δ → 2). Different values for δ correspond to various
expansion mechanisms (Table 2.1).

δ

ideal hydrodynamics 0
plasma instabilities 1/6 < δ < 1/2
collisional broadening 2/3
non-interacting free-streaming 2

Table 2.1: Plasma expansion mechanisms and their corresponding values for the parameter
δ [51].

Because of uncertainties on which expansion mechanism enters in the plasma evolution at which time,
Ref. [51] chose an approach via a smeared step function. This step function governs the change of δ from
e.g. 2 or 2/3 to δ = 0 at approximately the isotropization time τiso and thus delivers a smooth transition
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from the collisional broadening or the free-streaming scenario to the hydrodynamical evolution:

λ(τ, τiso, γ) ≡ 1
2

(
tanh

[
γ(τ − τiso)

τiso

]
+ 1

)
. (2.8)

The inverse of the coefficient γ defines the smoothness of this transition.

0

0.25

0.5

0.75

1

λ

0 1 2 3
τ/τiso

γ = 0.5

γ = 1

γ = 2

Figure 2.4: The smeared step function λ(τ, τiso, γ) from Eq. (2.8) for different transition
widths γ. This step function enters the model for the time-evolution in Eq. (2.10) and controls
the transition of the different plasma phases in Table 2.1.

ξ and phard now read:

ξ(τ) =
(
τ

τ0

)δ[1−λ(τ,τiso,γ)]
− 1, (2.9a)

phard(τ) = T0 Ū1/3(τ). (2.9b)

The hard momentum scale, which we will effectively use as our time-dependent temperature, is defined
via a helper function Ū . We use the interpolating model that enforces fixed final entropy (multiplicity):

Ū(τ) ≡ U(τ)
U(τ+

iso)
, (2.10a)

U(τ) ≡
{
R
(

[τiso
τ

]δ − 1
)}3λ(τ)

4
(
τiso
τ0

)1−δ[1−λ(τ)]
2

, (2.10b)

U(τ+
iso) ≡ lim

τ→τ+
iso

U(τ) =
{
R
(

[τiso
τ

]δ − 1
)}3

4
(
τiso
τ0

)
, (2.10c)

R(ξ) ≡ 1
2

(
1

1 + ξ
+ arctan(

√
ξ)√

ξ

)
. (2.10d)

Fixed final multiplicity is in contrast to fixed initial conditions. By setting the initial conditions to
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a fixed value, the entropy generation ∆S/S0 will increase with respect to τ/τiso (Fig. 6 in Ref. [51]).
If one requires the entropy generation to be within a certain bound, e.g. less than 10% or 20%,
the isotropization time τiso will have upper bounds as well. These upper bounds would restrict the
isotropization time for the free-streaming model to values, which are well below the limit of what is
still regarded as possible, not yet ruled out values for τiso.

The isotropization time will have a large impact on the final photon signal, which is why we aim to
max out reasonable values for τiso. Using the model with enforced fixed final multiplicity ensures that
the hard scale phard will be independent of the isotropization times for large τ/τ0 (Fig. 2.5).

10−1

100

p
h
a
rd

/T
0

100 101 102

τ/τ0

τiso = τ0

τiso = 4τ0

τiso = 8τ0

τiso = 16τ0

Figure 2.5: Evolution of the momentum hard scale phard with enforced final fixed entropy.
Notice how different isotropization times τiso lead to a slightly different initial value of phard
at τ = τ0. γ = 10, δ = 2.

As one can see in Fig. 2.6, the anisotropy parameter ξ reaches a maximum at τ ≈ τiso. This is
apparently in contradiction to the definition given earlier, which said that τiso gives an approximate
time at which ξ becomes small again (ξ → 0). Figure 2.6 uses a very small value for γ, which is
equivalent to a very smooth and long transition of the different phases in the QGP evolution.

Changing the parameter to a larger value creates a sharper transition, as seen in Fig. 2.7. The
isotropization time then really becomes a proper time, at which ξ returns to a small value, compared
to the maximum.

The models for both the quark-gluon plasma and the evolution of the anisotropy and temperature
presented in this chapter allow to compute several quantities during the lifespan of the QGP. To
obtain a photon signal, one needs to know the differential photon production rate in the plasma. The
expressions needed for the calculation of this differential rate will be derived in the next chapter.
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Figure 2.6: Time evolution of the anisotropy parameter for a small transition parameter
γ = 0.5 and a free-streaming scenario (δ = 2).
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Figure 2.7: The same time evolution as in Fig. 2.6, but with a larger transition parameter.
The anisotropy at τiso = τ0 is not visible anymore, as it is quite close to 0. At sharper
transitions, the anisotropy parameter is closer to 0 at τiso. γ = 25, δ = 2.



Light thinks it travels faster than anything
but it is wrong. No matter how fast light
travels, it finds the darkness has always got
there first, and is waiting for it.

– Terry Pratchett, Reaper Man 3
Photon production

3.1. Overview

In this section, we calculate the photon production rate EdR/d3p in the quark-gluon plasma, taking
into account momentum anisotropies. As we have established in the introduction, we can apply the
method of perturbation theory and include only processes to leading order in the strong coupling αs.

The first analytic result of photon production rates from a quark-gluon plasma was derived by J. Ka-
pusta, P. Lichard and D. Seibert [57]. This result was calculated using the hard thermal loop resum-
mation method by E. Braaten and R.D. Pisarski [58] to deal with the divergences (see Section 3.3
for details). It has then been further extended by S. Turbide and C. Gale [50] to account for the
space-time evolution of the plasma.

The following computations of the hard (Section 3.2) and soft parts (Section 3.3) for an anisotropic
QGP are similar to reference [57] - with the difference that non-isotropic distribution functions from
Ref. [52] are used. Divergences that occur in both the hard and soft contributions will be discussed
in Section 3.4 on the numerical integration.

Z.-T. Liang and X.-N. Wang [59] proposed a mechanism for non-central heavy ion collisions that could
lead to quarks in a QGP with an initial polarization. As shown in Ref. [60], this initial polarization
can transfer to photon polarization. The detection of direct photons is an experimental challenge as
it is, without having to pay much attention to polarization states. The possibility of polarized quarks
is therefore omitted in this thesis.

The calculations in this chapter are based on the works by B. Schenke, M. Strickland [61] and A. Ipp
[60, 62]. As in Ref. [61], we will not take into account bremsstrahlung.

3.2. Hard contribution

There are two processes that fall into the category of so-called hard contributions1 to the lowest order
in αs which each yield a photon:

• Compton scattering of quarks and antiquarks (qg → qγ, q̄g → q̄γ)

• quark-antiquark annihilation (q̄q → gγ).

1Note that these hard contributions should not be mixed up with hard photons, which is usually the term used for
high-momentum photons (p > 6 GeV).

23
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Photon rates from the mentioned processes exhibit divergences for low exchanged momenta. The
corresponding scattering amplitudes can only be trusted at high or hard momentum transfer regions.
At low momentum transfer regions, the scattering amplitudes show a similar divergence in the region
of high momentum transfer, thus being only reliable for low or soft transferred momenta.

An overview of the Feynman-graphs corresponding to the processes of the hard contribution is shown
in Fig. 3.1. In the S-matrix formalism, we then to evaluate these diagrams to obtain the scattering

g

q
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q

g

q

γ

q

a)

g

q̄

γ
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q̄

γ

q̄

b)
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q

q̄

γ
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Figure 3.1: The graphs corresponding to the three leading order processes for the hard
contribution: a) qg → qγ, b) q̄g → q̄γ and c) q̄q → gγ. We use the common symbols
for (anti)quarks (straight lines), gluons (curly lines) and photons (wiggly lines). The time
coordinate points to the right.

amplitudes, which we use to compute the photon production rate. As pointed out by e.g. Boyanovsky
and de Vega [63], the S-matrix formalism involves an elementary flaw. This flaw is the use of asymptotic
in- and outgoing states, which the scattering matrix connects. While it is obvious to assume that
particles are well described by asymptotic states in scattering experiments, the matter is not so trivial
in the case of a QGP. Due to the fast hadronization of the plasma, we have to think about finite
lifetime effects and the role of quarks and gluons as transient particles. Reference [63] came to the
conclusion that photon production rates calculated via the scattering matrix differ from their result
obtained using the real-time (RT) formalism by a factor of 2-4 in the range 200 MeV < p < 2.5 GeV.
At higher energies, the photon rate from the S-matrix approach drops off, while the result using the
RT-formalism shows a flatter plateau. This should be kept in mind when calculating spectra and
drawing conclusions. We will stick to the S-matrix approach to calculate scattering amplitudes, as we
want to compute the photon rate as a function of the anisotropy parameter ξ, following the work of
Schenke and Strickland [61].

3.2.1. Quark Compton scattering

The Compton scattering contributions for quarks are shown in Fig. 3.1a and Fig. 3.1b, or detailed in
Fig. 3.2. Feynman rules used for this calculation are listed in Appendix A. The scattering amplitude
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g(f, ν)
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q(j, s′)
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g(f, ν)
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Figure 3.2: The detailed Compton-scattering diagram (qg → qγ, Fig. 3.1a). Gluons have
a color (f) and a Lorentz index (ν), (anti)quarks feature spin (s′, s) and color indices (j, i),
photons have a Lorentz index (µ).

for the sum of the two channels (plus sign due to the exchange of the bosonic gluon and the photon)
can be written as

iMqg→qγ = ūs
′
α (p2)c†j(−ieQ γµαβ)ε∗µ(p)

i( /q1 +m)βγ
q2

1 −m2 εν(p3)af (−igsT fγνγδ)usδ(p1)ci

+ ūs
′
α (p2)c†j(−igsT

fγναβ)εν(p3)af
i( /q2 +m)βγ
q2

2 −m2 ε∗µ(p)(−ieQ γµγδ)u
s
δ(p1)ci.

(3.1)

u and ū are quark and antiquark spinors respectively. The ε are polarization tensors for either photons
or gluons. gs is the strong coupling parameter, related to the coupling constant αs via gs =

√
4παs.

In accordance with Ref. [61], αs = 0.32 was used. a (a†) and c (c†) are color annihilation (creation)
operators, the former act in the adjoint color space, while the latter acts in the fundamental color
space. The gauge group matrices are denoted by T . The Greek subscripts (α, β, γ, δ) at the spinor u,
the Dirac matrices γµ (with Lorentz index µ) and the fermionic propagators (q1, q2) represent spinor
indices.

To build the modulus of the scattering amplitude, we need to write down the conjugate (iMqg→qγ)†
first. By multiplying Eq. (3.1) with its modulus (see Appendix B), we obtain the squared modulus:

|Mqg→qγ |2 = (iMqg→qγ)†(iMqg→qγ)

= e2Q2g2
s

(
c†iT

fcjc
†
jT

fciεµ′(p)ε∗ν′(p3)a†fε
∗
µ(p)εν(p3)af

)
×
{
ūsδ′(p1)γµ

′

δ′γ′
( /q2 +m)γ′β′
q2

2 −m2 γν
′
β′α′u

s′
α′(p2)ūs′α (p2)γµαβ

( /q1 +m)βγ
q2

1 −m2 γνγδu
s
δ(p1)

+ ūsδ′(p1)γµ
′

δ′γ′
( /q2 +m)γ′β′
q2

2 −m2 γν
′
β′α′u

s′
α′(p2)ūs′α (p2)γναβ

( /q2 +m)βγ
q2

2 −m2 γµγδu
s
δ(p1)

+ ūsδ′(p1)γν′δ′γ′
( /q1 +m)γ′β′
q2

1 −m2 γµ
′

β′α′u
s′
α′(p2)ūs′α (p2)γµαβ

( /q1 +m)βγ
q2

1 −m2 γνγδu
s
δ(p1)

+ ūsδ′(p1)γν′δ′γ′
( /q1 +m)γ′β′
q2

1 −m2 γµ
′

β′α′u
s′
α′(p2)ūs′α (p2)γναβ

( /q2 +m)βγ
q2

2 −m2 γµγδu
s
δ(p1)

}
.

(3.2)

The two channels (Fig. 3.2) for the qg → qγ process feature two inbound particles, a quark and a
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gluon, and two outgoing particles, another quark and a photon. In order to get the right pre-factor to
every process we want to calculate, we need to know the number of all possible states of the outgoing
particles. To correctly account for these degeneracies, one has to sum |M|2 over all outgoing (final)
states.

To include our lack of knowledge about the polarization state of the incoming quarks, we also need
to multiply by the average of each of these states. First, we can calculate the sum of spins s, s′. The
completeness relation for free (positive energy) Dirac spinors is particularly useful for this task:∑

s

usδ(p1)ūsδ′(p1) = ( /p1 +m)δδ′ . (3.3)

The sum is performed the same way for the outgoing spinors s′. To account for the spin degeneracy
of the incoming quark with spin s, we need to keep in mind a factor of 1

2 .

Similar considerations have to be given for the polarizations of the incoming gluon and the outgoing
photon. In this case, we need to make use of the Ward-Takahashi identity.

A longer and more precise derivation of the identity can be found in e.g. Refs. [64, 65], we will only
show how the identity can be used to replace the polarization sums.

The Ward-Takahashi identity states that a scattering amplitude with an incoming or outgoing photon
or gluon vanishes, if a polarization vector εµ is replaced by a momentum vector pµ:

M = εµMµ → pµMµ = 0. (3.4)

We start off by writing Eq. (3.1) in a slightly more minimalist form and omit spinor indices for the
time being (q1 = p+ p2 and q2 = p1 − p):

iM = −

C︷ ︸︸ ︷
egsQc

†
jT

fcj ε
∗
µ(p)εν(p3)

× ūs′(p2)
{
γµ

i

/p+ /p2 −m
γν + γν

i

/p1 − /p−m
γµ
}
us(p1).

(3.5)

The photon polarization vector ε∗µ(p) is replaced by pµ:

iM = −C εν(p3)ūs′(p2)
{
i

/p

/p+ /p2 −m
γν + iγν

/p

/p1 − /p−m

}
us(p1). (3.6)

Each of the numerators can now be expanded by adding and subtracting /p2−m and /p1−m respectively:

iM = −C εν(p3)ūs′(p2)
{
i
(/p+ /p2 −m)− ( /p2 −m)

/p+ /p2 −m
γν

+ iγν
−( /p1 − /p−m) + ( /p1 −m)

/p1 − /p−m

}
us(p1).

(3.7)

The fractions yield a gamma matrix each with a different sign, canceling each other:

iM = −C εν(p3)ūs′(p2)
{
�
�iγν − i /p2 −m

/p+ /p2 −m
γν −��iγ

ν + iγν
/p1 −m

/p1 − /p−m

}
us(p1). (3.8)
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The remaining fractions are equal to zero, as we can apply the free Dirac equation to each numerator:

ūs
′(p2)( /p2 −m) = 0,

( /p1 −m)us(p1) = 0,
(3.9)

and thus we have shown that (3.4) holds for our quark Compton scattering diagram. To show how
the polarization sums can be replaced, we choose our photon or gluon momentum p to point into the
z-direction:

p =


|p|
0
0
|p|

 . (3.10)

The Ward-Takahashi identity (3.4) then tells us that

M(0) =M(3). (3.11)

Choosing our transverse polarization vectors in a similar fashion, ε1 = (0, 1, 0, 0) and ε2 = (0, 0, 1, 0),
we can write a sum of polarization vectors∑

pol.
ε∗µ(p3)εν(p3)MµM∗,ν = |M (1)|2 + |M (2)|2. (3.12)

Adding (3.11) gives us our replacement rule:∑
pol.

ε∗µενMµM∗,ν = |M (1)|2 + |M (2)|2 + |M (3)|2 − |M (0)|2

= −gµνMµM∗,ν .
(3.13)

This replacement is valid as long as the polarization vectors are to be found in a scalar product with a
scattering matrix element. The gluon polarization sum can therefore be replaced by the metric tensor:∑

pol.
ε∗ν′(p3)εν(p3)→ −gνν′ . (3.14)

By assuming the gluons to be transversely polarized, we can omit the emission of ghosts in this
polarization sum.

The same can be applied to the polarization sum for the photons:∑
pol.

ε∗µ′(p)εµ(p)→ −gµµ′ . (3.15)
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Fortunately, the two minus signs cancel and the metric contracts the µ′ and ν ′ indices:

1
4 |Mqg→qγ |2 = 1

4e
2Q2g2

s

(
c†iT

fcjc
†
jT

fcia
†
faf

)
×
{

( /p1 +m)δδ′ γµδ′γ′
( /q2 +m)γ′β′
q2

2 −m2 γνβ′α′( /p2 +m)α′α γµαβ
( /q1 +m)βγ
q2

1 −m2 γνγδ (3.16a)

+ ( /p1 +m)δδ′ γµδ′γ′
( /q2 +m)γ′β′
q2

2 −m2 γνβ′α′( /p2 +m)α′α γναβ
( /q2 +m)βγ
q2

2 −m2 γµγδ (3.16b)

+ ( /p1 +m)δδ′ γνδ′γ′
( /q1 +m)γ′β′
q2

1 −m2 γµβ′α′( /p2 +m)α′α γµαβ
( /q1 +m)βγ
q2

1 −m2 γνγδ (3.16c)

+ ( /p1 +m)δδ′ γνδ′γ′
( /q1 +m)γ′β′
q2

1 −m2 γµβ′α′( /p2 +m)α′α γναβ
( /q2 +m)βγ
q2

2 −m2 γµγδ

}
. (3.16d)

Remember, the pre-factor 1
4 is the result of the spin average of the incoming quark times the polar-

ization average of the incoming gluon.

The first bracket including the tensors in the two color spaces still remain to be calculated. Color
creation and annihilation operators c†i,j and ci,j pick out the (i, j) and (j, i)-th element of the gauge
group matrices T f . Another summation over these two color spaces has to be performed, where the
average is now taken over the three (fundamental) colors of the incoming quark and the eight (adjoint)
colors of the incoming gluon.

8∑
f=1

3∑
i,j=1

c†iT
fcjc

†
jT

fcia
†
faf =

8∑
f=1

3∑
i,j=1

T fijT
f
jia
†
faf = 4 (3.17)

Instead of performing the explicit sum using the Gell-Mann matrices, one could alternatively use the
so called Fiertz identity for SU(N):

T fijT
f
kl = 1

2

(
δilδjk −

1
N
δijδkl

)
, (3.18)

or in our special case (N = 3):
T fijT

f
ji = 1

2

(
3 · 3− 1

3 · 3
)

= 4. (3.19)

With the aforementioned average, the pre-factor now reads

1
2 · 2 · 3 · 8 |Mqg→qγ |2 = 1

24e
2Q2g2

s

× {(3.16a) + (3.16b) + (3.16c) + (3.16d)}.
(3.20)

At this point, we make a simplification. We drop the quark masses m, as we are in a regime where
the quark momenta in the plasma can be expected to be much larger than their current masses. In
this ultra relativistic limit, expression (3.20) can be further simplified by decomposing the slashed
momenta via /p = γρpρ. These momenta pρ are no longer objects in spinor space, and can therefore be
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pulled out:

1
4 |Mqg→qγ |2 = 1

24e
2Q2g2

s

×
{
p1,λq1,ρp2,σq1,τ

q2
2q

2
1

[
γλδδ′γ

µ
δ′γ′γ

ρ
γ′β′γ

ν
β′α′γ

σ
α′αγ

µ
αβγ

τ
βγγ

ν
γδ

]
(3.21a)

+ p1,λq2,ρp2,σq2,τ
q4

2

[
γλδδ′γ

µ
δ′γ′γ

ρ
γ′β′γ

ν
β′α′γ

σ
α′αγ

ν
αβγ

τ
βγγ

µ
γδ

]
(3.21b)

+ p1,λq1,ρp2,σq1,τ
q4

1

[
γλδδ′γ

ν
δ′γ′γ

ρ
γ′β′γ

µ
β′α′γ

σ
α′αγ

µ
αβγ

τ
βγγ

ν
γδ

]
(3.21c)

+ p1,λq1,ρp2,σq2,τ
q2

1q
2
2

[
γλδδ′γ

ν
δ′γ′γ

ρ
γ′β′γ

µ
β′α′γ

σ
α′αγ

ν
αβγ

τ
βγγ

µ
γδ

]}
. (3.21d)

These four lines are hence traces over spinor space. To calculate these traces, one can again make use
of properties of the Dirac matrices:

Tr[γµγν ] = 4gµν ,
Tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ).

(3.22)

The trace of an odd number of Dirac matrices vanishes, and higher even-numbered traces can be
evaluated via recursive formulae, special techniques (e.g. [66]) or using a computer algebra system
[67].

It is quite evident that these computations are a tedious task. The trace over 8 gamma matrices
already consists of 105 terms, when fully expanded. Luckily, this task can be efficiently outsourced to
computer algebra systems. Performing these calculations yield the following expression:

1
96 |Mqg→qγ |2 = 1

24e
2Q2g2

s

{32 p · p1 p · p2
q4

1
+ 32 p · p1 p · p2

q4
2

}
. (3.23)

Eq. (3.23) can now be further simplified by using the momentum conservation condition at each vertex
in Fig. 3.2:

q1 = p+ p2 → q2
1 = 2p · p2,

q2 = p1 − p→ q2
2 = −2p · p1,

(3.24)

where the massless limit of the relation p2
i = m2 = 0 was used.

1
96 |Mqg→qγ |2 = 1

3e
2Q2g2

s

{
p · p1
p · p2

+ p · p2
p · p1

}
. (3.25)

3.2.2. Antiquark Compton scattering

The calculation of the antiquark Compton scattering contribution is very similar to the Compton
scattering one. One has to replace the quark spinors u and ū in Eq. (3.1) by antiquark spinors v̄ and
v respectively, as well as replace the fermionic propagators, since the momentum flow now points into
the opposite direction (see Feynman rules in Appendix A).

Instead of using the spinor sum for quark spinors (3.3), we have to apply the antiquark pendant∑
s

vsδ(p1)v̄sδ′(p1) = ( /p1 −m)δδ′ . (3.26)
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g(f, ν)

q̄(i, s)

γ(µ)

q̄(j, s′)

p3

p1

q1 p

p2

s-channel

g(f, ν)

q̄(i, s)

γ(µ)

q̄(j, s′)

p3

p1 q2

p

p2

(t,u)-channel

Figure 3.3: The detailed Compton-scattering diagram (q̄g → q̄γ, Fig. 3.1b) for antiquarks,
using the same notation as in Fig. 3.2.

Performing the calculation gives us the same result as the quark Compton scattering process.

3.2.3. Quark-antiquark annihilation

q(i, s)

q̄(j, s′)

γ(µ)

g(f, ν)

p1

p2

q1

p3

p

u-channel

q̄(j, s′)

q(i, s)

γ(µ)

g(f, ν)

p1

p2

q2

p

p3

t-channel

Figure 3.4: Detailed quark-antiquark annihilation process.

A closer look at the detailed Feynman graphs in both Fig. 3.4 and Fig. 3.2 reveals important similar-
ities. By exchanging p3 → −p3 and p2 → −p2 in the s-channel diagram in Fig. 3.4, and turning the
antiquark spinor q̄ into a quark spinor q, one arrives at the quark Compton scattering diagram. To
account for the exchanged antiquark spinor, one has to write an additional overall minus sign. While
incorporating the degeneracies for the different incoming and outgoing particle states, the result can
be written down by performing the aforementioned exchanges on Eq. (3.25):

1
36 |Mqq̄→gγ |2 = 8

9e
2Q2g2

s

{
p · p1
p · p2

+ p · p2
p · p1

}
. (3.27)

The averaging factor of 1
36 is composed of the two incoming colors (3) and incoming spins (2) for

the quark and antiquark each (2 · 3 · 2 · 3 = 36), the factor of 8
9 is attained by taking the factor of 1

3
from the Compton result and dividing by the quark colors (which we lose as outgoing states) and
multiplying by the gluon colors (which we gain): 1

3 ·
1
3 · 8 = 8

9 .
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Aside from the pre-factor, the result for the annihilation diagram is the same as for the Compton
scattering diagrams. Note that this is a special case in the ultra relativistic limit and does not hold
for finite quark masses.

3.3. Soft contribution

One can already see from the expressions (3.25) and (3.27), the hard contributions feature a logarithmic
divergence. It is therefore necessary to calculate the remaining low-energy processes that were omitted
in the hard part. The photon production rate for unpolarized photons to leading order in α and all
orders in αs can be calculated via [68]

E
dRsoft
d3q

= − 1
(2π)3 gµν Im Πµν

R (q). (3.28)

ΠR is the retarded photon polarization tensor, which in first loop order is represented by the Feynman
diagram in Fig. 3.5. By simple power-counting of the loop integral, one can see that this graph

q q

p

p − q

Figure 3.5: Photon polarization diagram with bare internal propagators.

exhibits an ultraviolet divergence. Nevertheless, we need to calculate the photon rate (3.28), and
hence the imaginary part of the polarization tensor. This imaginary part of ΠR is logarithmically
infrared divergent - like our hard contribution.

To combat this divergence, one can make use of the hard thermal loop (HTL) resummation technique
by E. Braaten and R.D. Pisarski [58]. M.E. Carrington, H. Defu and M.H. Thoma extended this
technique to the real-time formalism [69], developed by L.V. Keldysh [70]. The hard thermal loop
approximation refers to the fact that the soft external photon momenta q ∼ gT are much smaller than
the internal momenta p ∼ T .

The motivation to use a non-equilibrium formalism in order to compute the soft photon rates is
essentially the lack of knowledge about the evolution of the QGP itself. It is not yet clear, whether
the plasma reaches thermal equilibrium at all in its short lifetime.

Thorough details on the real time formalism (RTF) can be found in e.g. [71]. For an essential under-
standing of the calculations done in Refs. [28, 60, 61], the following points should be sufficient:

• the vertices in Fig. 3.5 are now distinguished between incoming (1) and outgoing photon (2),

• propagators are distinguished in a similar manner, as they connect different vertices with different
start- and endpoints.

The logarithmic infrared divergence in Fig. 3.5 is eliminated if we replace a bare internal propagator
by an effective or dressed one. This way, the previously massless fermionic propagators acquire a
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thermal mass, which shields off the divergence. According to the RTF rules, we need to replace both
the upper and the lower internal propagator, one at a time. Each blob in Fig. 3.6 represents an HTL

(1) (2)

p

p − q

q

q

(1) (2)

p

p − qq

q

Figure 3.6: Photon polarization diagram with HTL resummed fermion propagators. The
grey blob represent the dressing of a fermion propagator with quark self energies according
to Fig. 3.7.

resummed propagator with quark self-energy insertions (Fig. 3.7). In the anisotropic case, we need
to require that p� q holds for each component of the momenta [72]. The photon production rate is

= +

+ + + . . .

Figure 3.7: Quark self-energy insertions.

written as the trace of the (12)-component of the photon polarization tensor [73]:

E
dRsoft
d3q

= i

2(2π)3 gµνΠµν
(12)(q). (3.29)

The Feynman graphs (Fig. 3.6) have to be evaluated using the special rules for the real-time formalism.
We need to differentiate between vertex (1) and vertex (2), as well as propagators S12 and S21, where
the order of the numbers indicates the direction of the momentum arrow.

−iΠµν
(12)(q) = −e2Q2Nc

∫
d4p

(2π)4 Tr [γµiS?12(p)γνiS21(p− q)

+γµiS12(p)γνiS?21(p− q)]
(3.30)

The star on a propagator (S?) indicates that this is a dressed propagator - dressed with gluon self-
energy insertions (Fig. 3.7). To compute the polarization tensor, expressions for the (12) and (21)
components of the dressed fermionic propagators S? have to be found.

Using a similar notation as Refs. [69, 74], the fermionic bare propagator is

S(k) = (/k +m)
{(

(k2 −m2 + iε)−1 0
0 −(k2 −m2 − iε)−1

)

+ 2πi δ(k2 −m2)
(

fF (k) fF (k)− θ(−k(0))
fF (k)− θ(k(0)) fF (k)

)}
.

(3.31)
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The fermionic distribution function fF can be either an equilibrium or non-equilibrium distribution,
as well as isotropic or anisotropic.

The 2x2 structure of the propagators need to be taken into account when writing down the Dyson-
Schwinger equation

S? = S + SΣS?, (3.32)

with Σ being the fermion self energy. We have for the (ab)-components

S?ab = Sab +
2∑

i,j=1
SaiΣijS

?
jb. (3.33)

Writing down (3.33) for a = b = 1, a = b = 2 and taking the sum of the two resulting equations, we
get

S?11 + S?22 = S11 + S22 +
2∑

i,j=1
S1iΣijS

?
j1 +

2∑
i,j=1

S2iΣijS
?
j2. (3.34)

Including the two expanded sums, the right hand side now consists of 10 terms. As there are only
three independent linear combinations of the components [75]

SR = S11 − S12,

SA = S11 − S21,

SF = S11 + S22.

(3.35)

(3.34) can be rewritten using the shorthand notation in (3.35). Additionally, one can explicitly show
that

S11 − S12 − S21 + S22 = 0. (3.36)

First, we write down the components

[S11(k) + S22(k)− S12(k)− S21(k)](/k +m)−1 =

= 1
k2 −m2 + iε

+(((((
((((

(
2πiδ(k2 −m2)fF (k)

− 1
k2 −m2 − iε

+(((((
((((

(
2πiδ(k2 −m2)fF (k)

− 2πiδ(k2 −m2)[���fF (k)− θ(−k(0))]
− 2πiδ(k2 −m2)[���fF (k)− θ(k(0))]

= 1
k2 −m2 + iε

− 1
k2 −m2 − iε

+ 2πiδ(k2 −m2)[θ(k(0)) + θ(−k(0))︸ ︷︷ ︸
=1

].

(3.37)

Next, we make use of the Sokhatsky–Weierstrass theorem, which allows us to rewrite the two fractions
according to the sign of the infinitesimal shift in the complex plane by ε:

1
k2 −m2 + iε

= P 1
k2 −m2 − iπδ(k

2 −m2),

1
k2 −m2 − iε

= P 1
k2 −m2 + iπδ(k2 −m2),

(3.38)

and thus (3.36) is shown. Because of relation (3.36), the three independent linear combinations (3.35)
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can also be written as two different sums of propagator components each:

SR = S11 − S12 = S21 − S22,

SA = S11 − S21 = S12 − S22,

SF = S11 + S22 = S12 + S21.

(3.39)

Similar relations hold for the components of the self-energy Σ:

Σ11 + Σ12 + Σ21 + Σ22 = 0,
ΣR = Σ11 + Σ12 = −Σ21 − Σ22,

ΣA = Σ11 + Σ21 = −Σ12 − Σ22,

ΣF = Σ11 + Σ22 = −Σ12 − Σ21.

(3.40)

The subscripts of the three independent linear combinations in (3.39) reflect the property of that
propagator. If one explicitly calculates e.g. SR, one gets

SR(k) = S11(k)− S12(k) = (/k +m)[−sgn(k(0))iπδ(k2 −m2)]

=
/k +m

k2 −m2 + iεsgn(k(0))
,

(3.41)

which is the well known retarded fermion propagator, with the contour bypassing the poles at k2 = m2

in the upper half of the complex plane, depicted in Fig. 3.8. SA is the advanced propagator, while SF
is the symmetric one, employing the Feynman prescription.

SR

SF

SA

Figure 3.8: Integration contours for the retarded (SR), symmetric (SF ) and advanced (SA)
propagators. The dots represent the poles on the real axis at k = ±m.

The relations (3.39) and (3.40) can be used to find expressions for the (ab)-components of both S and
Σ:

S11 = 1
2(SF + SA + SR),

S12 = 1
2(SF + SA − SR),

S21 = 1
2(SF − SA + SR),

S22 = 1
2(SF − SA − SR),

(3.42)
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Σ11 = 1
2(+ΣF + ΣA + ΣR),

Σ12 = 1
2(−ΣF − ΣA − ΣR),

Σ21 = 1
2(−ΣF + ΣA − ΣR),

Σ22 = 1
2(+ΣF − ΣA − ΣR).

(3.43)

Note that the relations (3.42) also hold for the dressed propagator S?. Inserting the expressions (3.42)
and (3.43) into Eq. (3.34) yields the following, more legible result:

S?F = SF + SRΣRS
?
F + SFΣAS

?
A + SRΣRS

?
A. (3.44)

The general ansatz to solve this equation is [69]

S?F (k) = [1− 2fF (k)]sgn(k(0))[S?R(k)− S?A(k)]

+S?R(k)
{

ΣF (k)− [1− 2fF (k)]sgn(k(0))[ΣR(k)− ΣA(k)]
}
S?A(k).

(3.45)

As shown in [76], the Kubo-Martin-Schwinger formula,

Σ12 = −Σ21, (3.46)

also holds for non-equilibrium systems. ΣF is therefore exactly zero and the difference ΣR − ΣA is
equal to 2Σ12. The ansatz (3.45) therefore reduces to

S?F (k) = [1− 2fF (k)]sgn(k(0))[S?R(k)− S?A(k)]

−S?R(k)
{

[1− 2fF (k)]sgn(k(0))[2Σ12(k)]
}
S?A(k).

(3.47)

Since the relations in Eq. (3.42) also hold for dressed propagators, we write for S?12

S?12 = 1
2(S?F + S?A − S?R), (3.48)

and insert the result for S?F from Eq. (3.47):

S?12(k) = 1
2
{

[S?R(k)− S?A(k)]sgn(k(0))−

sgn(k(0))S?R(k) 2 Σ12(k) S?A(k) + S?A(k)− SR(k)?
}
.

(3.49)

The Dyson-Schwinger equation (3.32) can be rewritten if we multiply by S−1(. . .)[S?]−1 as

S−1 = [S?]−1 + Σ, (3.50)

so that

S−1
A = [S?A]−1 + ΣA,

S−1
R = [S?R]−1 + ΣR,

S−1
A − S

−1
R = [S?A]−1 − [S?R]−1 + ΣA − ΣR︸ ︷︷ ︸

=−2Σ12

.
(3.51)
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The difference of the inverse propagators S−1
A − S

−1
R is zero, giving us an expression for 2Σ12:

2Σ12 = [S?A]−1 − [S?R]−1, (3.52)

which can be inserted into Eq. (3.49). The inverse dressed propagators yield terms that exactly cancel
out the first term in Eq. (3.49), giving us the result for S?12:

S?12 = 1
2(S?A − S?R). (3.53)

Performing a similar calculation for S?21 yields

S?21 = 1
2(S?R − S?A) = −S?12. (3.54)

We now have expressions for both the (12) and (21) components of the dressed propagator S? and
can compute the trace of the photon polarization tensor (3.30). To simplify the expression, we shift
the momentum p in the second term p→ p+ q:

−igµνΠµν
(12)(q) = −e2Q2Ncgµν

∫
d4p

(2π)4 Tr [γµiS?12(p)γνiS21(p− q)

+γµiS12(p+ q)γνiS?21(p)] .
(3.55)

It should be noted here that the propagators still have a Dirac structure with suppressed spinor indices.
Consequently, the correct order of the gamma matrices and the propagators should always be ensured.
In the regime of the quark-gluon plasma, we can use massless propagators, eliminating the mass terms
in Eq. (3.31). The (12) and (21) components explicitly read:

S12/21(k) = /k 2πiδ(k2)[fF (k)−Θ(∓k(0))]. (3.56)

Now we can apply the aforementioned hard thermal loop approximation, since we encounter sums
(differences) of hard (q) and soft (p) momenta:

p± q ≈ ±q +O(gT ),
(p± q)2 = p2 + q2 ± 2p · q ≈ ±2p · q +O(g2T 2).

(3.57)

This gives us following expression for the (12) and (21) components:

S12/21(p± q) = (/p± /q)2πiδ([p± q]2)[fF (q)−Θ(∓[p(0) ± q(0)])

= ±/qπi
1
q(0) δ(p

(0) − p · q̂)[fF (q)−Θ(−q(0))]

= ±/
qπi

q(0) fF (q)δ(p(0) − p · q̂).

(3.58)

The theta function in the upper equation is zero, since q(0) is the zeroth component of the photon
momentum, and as such always positive: q(0) = |q|. This form of the propagator also clearly shows
us the spinor structure with the slashed photon momentum q. As we want to make use of Dirac trace
theorems again, it is helpful to decompose the propagators as follows:

S12/21 = γα(S12/21)α,
S?12/21 = γα(S?12/21)α.

(3.59)
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Inserting the explicit form of the bare propagators into Eq. (3.55) and writing out d4p = d3p dp(0) as
well as /q = γαqα leaves us with

−igµνΠµν
(12)(q) =

= e2Q2Ncgµν

∫
d3p dp(0)

(2π)4 Tr
[
γµγαγνqα

π i

q(0) fF (q) δ(p(0) − p · q̂)S?21(p)

−γµS?12(p)γνγαqα
π i

q(0) fF (q) δ(p(0) − p · q̂)
]
.

(3.60)

Making use of Eq. (3.54) allows us to compactify the sum (S?12 = −S?21) and we can perform the p(0)

integration, keeping in mind that we need to impose the condition p(0) = p · q̂ in the succeeding steps
of the calculation:

−igµνΠµν
(12)(q) =

− e2Q2Ncgµν

∫
d3p

(2π)3 · 2Tr
[
γµγαγνγβ + γµγβγνγα

]
× qα[S?12(q)]β

i

q(0) fF (q)
∣∣∣∣
p(0)=p · q̂

.

(3.61)

The dressed propagator can now be decomposed via Eq. (3.53) (−S?12 = 1
2 [S?R − S?A]) and the two

Dirac traces compute to −8gαβ when contracted with the metric tensor gµν :

− igµνΠµν
(12)(q) = −e2Q2Nc

1
q(0) fF (q)

∫
d3p

(2π)3 4gαβqα {i[S?R(p)]β − i[S?A(p)]β}
∣∣∣∣
p(0)=p · q̂

. (3.62)

The HTL resummed retarded and advanced propagators are given by

S?R,A(k) = 1
/k − ΣR,A

, (3.63)

with the retarded and advanced electron self-energies [72, 76]

ΣR,A(k) = g2CF
4

∫
d3p

(2π)3
f(p)
|p|

p · γ
p · k ± iε

, (3.64)

where CF is the Casimir factor for Nc colors

CF ≡
N2
c − 1
2Nc

. (3.65)

Using both Eq. (3.63) and Eq. (3.64), one can see that the retarded and advanced dressed propagators
are related by complex conjugation:

iS?R − iS?A = iS?R − [iS?R]∗ = −2ImS?R. (3.66)

This allows to rewrite Eq. (3.62) and leaving us with a nice, compact result [60]:

− igµνΠµν
(12) = e2Q2Nc

8fF (q)
|q|

∫
d3p

(2π)3 Im[q ·S?R(p)]
∣∣∣∣
p(0)=p · q̂

. (3.67)
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3.4. Numerical integration

The total photon production rate EdR/d3p is obtained by computing the phase space integral of the
scattering amplitudes and performing the integration in Eq. (3.67). To calculate the production rates
for the hard processes, we start with the Compton portion:

E
dRcom
d3p

= Ncom
2(2π)3

∫
d3p1 fq(p1)
2E1(2π)3

d3p2 [1− fq(p2)]
2E2(2π)3

d3p3 fg(p3)
2E3(2π)3

× (2π)4δ(4)(p1 + p3 − p2 − p)|Mcom|2.
(3.68)

The degeneracy factor Ncom contains the degrees of freedom of the incoming (anti)quarks and gluons,
some of which we already noted in Section 3.2.1. First, we pull the pre-factor 1

96 from (3.25) to
the right side and take the quark charges Q out of |Mcom|2. What remains to be considered is the
antiquark contribution (Section 3.2.3), which amounts to a factor of 2 due to the result being the same
as in the quark Compton case. We consider only up and down quarks with quark charges −1

3 and 2
3

respectively. This results in a factor of 5
9 :

Ncom = 2 · 59 = 10
9 . (3.69)

The result is consistent with both [62] and [61] if one considers e2 g2
s = 16π2ααs and the way how the

degeneracy factors are split up between |Mcom|2 and Ncom. We introduce a new variable q = p1 − p,
the four dimensional delta function is then

δ(4)(q + p3 − p2) = δ(3)(p3 + q − p2)δ(p(0)
3 + q(0) − p(0)

2 ). (3.70)

The three dimensional part of the delta function is used to integrate the momentum p3 in a trivial
fashion:

E
dRcom
d3p

= Ncom
2(2π)3

∫
d3q d3p2

fq(p + q)
2E1(2π)3

[1− fq(p2)]
2E2(2π)3

fg(q − p2)
2E3(2π)3

× (2π)4δ(p(0)
3 + q(0) − p(0)

2 )|Mcom|2.
(3.71)

In the next step, we rename p2 → k, and rewrite (3.71) in terms of our new variables (using p · p1 =
− q2

2 ):

E
dRcom
d3p

= −5ααs
36π6

∫
d3q d3k

fq(p + q)
|p + q|

[1− fq(k)]
|k|

fg(q − k)
|q − k|

× δ(p(0)
3 + q(0) − p(0)

2 )
{

q2

2p · k + 2p · k
q2

}
.

(3.72)

In order to evaluate the remaining delta function, it is convenient to switch to spherical coordinates:

ζ = |ζ|

cosφζ sin θζ
sinφζ sin θζ

cos θζ

 , (3.73)

with ζ being k, p or q. Further, we set q(0) → ω to be consistent with [61, 62]:

δ(p(0)
3 + q(0) − p(0)

2 ) = δ(|k− q|+ ω − |k|). (3.74)
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Using the parametrization we chose in (3.73), the first term in the delta function computes to

|k− q| =
(
|k|2 + |q|2 − 2|k||q|[cos θk cos θq + cos(φk − φq) sin θk sin θq]

) 1
2 . (3.75)

Following [61], we want to use this delta function to integrate the azimuthal angle φk. Isolating φk
requires us to square the equation |k− q| = |k| − ω in the delta function from Eq. (3.74):

(|k− q|)2 = |k|2 + ω2 − 2|k|ω. (3.76)

This allows for an easy extraction of the cosine term, when inserting Eq. (3.75) into Eq. (3.76):

cos(φk − φq) = 2|k|(ω + |q| cos θk cos θq)− ω2 − |q|2

2|k||q| sin θk sin θq
≡ κ. (3.77)

The equation has two solutions for φk:

φk = φq ± arccosκ. (3.78)

If we extract φk using the delta function, we need to sum over the two roots φk,i

δ(g(φk)) =
∑
i

δ(φk − φk,i)
|g′(φk,i)|

(3.79)

with
g(φk) = |k− q|+ ω − |k|. (3.80)

Since |k − q| is a square root, we will use a mixed notation in this case. The derivative of g(φk) at
both roots is

|g(φk,i)| =
∣∣∣∣12 1
|k− q|2|k||q| sin θk sin θq sin(arccosκ)

∣∣∣∣. (3.81)

Rewriting this with sin(arccosκ) =
√

1− κ2 leads to

δ(|k− q|+ ω − |k|)→ 2|k− q|
∑
i

χ−
1
2 Θ(χ)δ(φk − φk,i), (3.82)

with
χ ≡ 4|k|2|q|2 sin2 θk sin2 θq − [2|k|(ω + |q| cos θk cos θq)− ω2 − |q|2]2. (3.83)

Putting it all together and expanding the integral measures into spherical coordinates d3ζ = ζ2 sin θζdζdθζdφζ
for ζ = q,k gives us (the φk integration has been performed using the delta function above):

E
dRcom
d3p

= −5ααs
18π6

∑
i

∫ ∞
q∗

q2d|q|
∫ π

0
sin θqdθq

∫ 2π

0
dφq

∫ ∞
0
|k|d|k|

∫ π

0
sin θkdθk

× fq(p + q)
|p + q| [1− fq(k)]fg(q − k)χ−

1
2 Θ(χ)

{
q2

2p · k + 2p · k
q2

} ∣∣∣∣
φk=φk,i

.

(3.84)

One can clearly see that we will encounter a logarithmic divergence for q∗ → 0, due to the term in the
scattering matrix. As can be shown by analytically extracting the leading divergence for the isotropic
case [62], the infrared cut-off q∗ can be chosen to be around the same scale as the ultraviolet cut-off
for the soft part. This turns q∗ essentially into a hard-soft separation scale. When chosen right,
small changes to this separation scale should not alter the computed photon rate noticeably. For the
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computation, q∗ has been set to
q∗ ≡ √g T = T (4πα)

1
4 . (3.85)

The calculation of the annihilation part is very similar, but one has to pay attention to the little
differences. First of all, the phase space integration takes a different form, as well as the momentum
conservation.

E
dRann
d3p

= Nann
2(2π)3

∫
d3p1 fq(p1)
2E1(2π)3

d3p2 fq(p2)
2E2(2π)3

d3p3 [1 + fg(p3)]
2E3(2π)3

× (2π)4δ(4)(p1 + p2 − p3 − p)|Mann|2.
(3.86)

The degeneracy factor for the annihilation part Nann only contains the sum over the squared quark
charges:

Nann = 5
9 . (3.87)

We again set q = p1 − p and use the three dimensional part of the delta function to perform the
integration over p3. The remaining delta function will be treated as above (ω = q(0)) to integrate φk:

cos(φk − φq) = ω2 − |q|2 + 2|k|(ω − |q| cos θq cos θk
2|q||k| sin θq sin θk

≡ η,

φk,i = φq ± arccos η,

δ(ω + k− |k + q|)→ 2|k + q|
∑
i

ψ−
1
2 Θ(ψ)δ(φk − φk,i),

(3.88)

with the helper function

ψ ≡ 4|k|2|q|2 sin2 θq sin2 θk − [ω2 − |q|2 − 2|k|(ω − |q| cos θq cos θk)]2. (3.89)

The squared matrix element is invariant under changes p1 ↔ p2, so we only need to calculate one of
the two terms in (3.27) and note another factor 2, resulting in the same numerical pre-factor as for
the Compton scattering part:

E
dRann
d3p

= 5ααs
18π6

∑
i

∫ ∞
q∗

q2d|q|
∫ π

0
sin θqdθq

∫ 2π

0
dφq

∫ ∞
0
|k|d|k|

∫ π

0
sin θkdθk

× fq(p + q)
|p + q| fq(k)[1 + fg(q − k)]ψ−

1
2 Θ(ψ)

{2p · k
q2

} ∣∣∣∣
φk=φk,i

.

(3.90)

The total hard contribution is the sum of both the Compton scattering part and the annihilation part:

E
dRhard
d3p

= E
dRcom
d3p

+ E
dRann
d3p

. (3.91)

The soft part (3.67) (notice that the photon momentum was called q earlier, so we switch p ↔ q to
be consistent with the nomenclature of the hard contribution):

E
dRsoft
d3p

= −e
2Q2Nc

2(2π)3
8fF (p)
|p|

∫
d3q

(2π)3 Im[p ·S?R(q)]. (3.92)
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Using (3.63), the scalar product q ·S?R(p) can be expanded:

E
dRsoft
d3p

= − 5
12π5α

fF (p)
|p|

×
∫
d3q Im

{
q(0)[p(0) − Σ(0)

R (q)]− q · [p−ΣR(q)]
[p(0) − Σ(0)

R (q)]2 − [p−ΣR(q)]2

} ∣∣∣∣
p(0)=p · q̂

.

(3.93)

Explicit formulae from [76] are then used for Σ0, Σx,y and Σz. The integration measure can again be
rewritten in spherical coordinates∫

d3q =
∫ q∗

0
|q|2d|q| sin θqdθqdφq, (3.94)

with the ultraviolet cut-off q∗. The fermionic distribution function is then replaced by the anisotropic
distribution (2.4) from Ref. [52].

To compute the total photon production rate

E
dRtotal
d3p

= E
dRhard
d3p

+ E
dRsoft
d3p

, (3.95)

a Monte Carlo integration routine, written by A. Ipp [60, 62], was used. This routine integrates each
remaining coordinate separately for each of the contributions. Each of the integrations is performed a
certain number of times and then averaged to increase statistics. The photon rates are computed for
photon energies p > 1 GeV, as we have not included all processes that would contribute to the photon
production at lower energies.

To illustrate the important result of [61], a plot of the photon rates at different anisotropy parameters
is shown in Fig. 3.9. Notice that the photon rates are suppressed near θp ≈ π/2 at ξ > 0. If we fold
the computed photon rates from Fig. 3.9 with the time-evolution model from (2.9), we get a time-
dependent photon rate depicted in Fig. 3.11. One immediately notices a number of unphysical kinks
in the time-dependent photon rates. These are a result of how the numerical data is being processed
and used for further computations.

First, the Monte Carlo routine calculates the photon rates for various ξ, θp and E/phard. Due to the
nature of Monte Carlo integration, one needs a large amount of data to get stable and reliable results
- meaning that the calculation of a dataset for different ξ, θp and E/phard should be repeated as often
as possible to gather enough statistics. Additionally, one would also need to perform the calculation
for as many different parameters as possible. As the calculations take some time (approximately 10
seconds per datapoint on a conventional desktop computer), one has to find a compromise regarding
the amount of statistics versus the density of the parameter space in ξ, θp and E/phard. Ultimately,
the following set was chosen:

• E/phard: 1 to 15 with spacing of 1,

• θp from 0 to π/2 with a spacing of 2π/15,

• ξ: 0, 1, 10, 30, 100, 200.

The datasets are read into a Mathematica notebook and the photon rates are calculated by averaging
over all datasets. To allow for a seamless usage of the numerical data within the computer algebra
system, the data is being interpolated linearly between the actual sampling points of the parameter
space. Despite the rather crude spacing of ξ, the interpolation works well in preserving the behavior
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Figure 3.9: Photon rates as a function of emission angle θp, similar to Fig. 2 in [61]. The
polar angle θp is measured from the beam axis, so θp = π/2 points to the transverse direction,
whereas θp = 0 is parallel to the beam. (E/phard = 5).
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Figure 3.10: This figure shows the photon rates as a function of E/phard at different photon
emission angles. ξ = 10 for all curves.
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Figure 3.11: Photon rates in forward direction (θp = 0) with time-dependent anisotropy
parameter ξ and different isotropization times τiso, but constant temperature (no plasma
cooling). E/phard = 5,γ = 2, δ = 2.

of the function (Fig. 3.12). Since the parameter space is three dimensional, a linear interpolation
between the points was chosen as the most straightforward implementation. While the interpolation
seems to be working as expected for different values of ξ, the matter is slightly more complicated
for the time-evolution in Fig. 3.11. The proper time τ enters the ξ-model in a power law (2.9) and
thus produces these kinks at the times, in which ξ equals one of the sampling points. Even for a
more densely spaced dataset in ξ, the dips would not vanish due to the power law describing the time
evolution of the anisotropy.
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Figure 3.12: This figure shows the photon rate as a function of ξ for a fixed E/phard. The
black line represents the interpolated curve with sampling points for ξ as mentioned earlier
in the text. The vertical lines indicate those sampling points. The waggly, red line is the
same function, only sampled at a higher rate (ξ = 1, 2, 3 . . . 200) and with only one dataset.
This also shows how a larger number of datasets is needed for good statistics, especially in
the higher region of ξ. θp = 0, E/phard = 1.



Bosco: It’s a bargain, trust me, trust me.
Sam: I never trust a man that says trust me twice.

– Sam & Max Save The World

4
Double pulses

4.1. Overview

With the results from Chapter 3, we are able to compute the photon emission rate EdR/d3p in a
quark-gluon plasma with momentum-space anisotropies. In the end, we are keen on calculating a
direct photon signal that could be registered by photon detectors in heavy-ion experiments.

Such a photon signal is accomplished by integrating the photon rate (3.95) over the space-time evolu-
tion of the quark-gluon plasma. As we have sketched previously (Fig. 2.2), we assume that the QGP
expands parallel to the beam direction - the transverse expansion will be omitted for the time being.

By folding the model-dependent photon rates over the entire evolution of the plasma until its freezeout
and taking care of the special geometry of this problem, we obtain a photon signal at a detector placed
far away from the plasma. By the interplay of the geometry, several parameters such as the collision
centrality, as well as the anisotropy-dependent photon rate, two successive photon peaks with durations
on the order of yoctoseconds, are possible.

The notation has been kept similar to [28, 77].

4.2. Photon emission model

4.2.1. Transformation of the photon rate

The number of photons N emitted from a certain four-volume element tV of the plasma is given by

N = R tV, (4.1)

with (constant) R being the phase-space integrated differential photon rate dR. Since the photon rate
will be a function of time at least, one has to rewrite the product as a space-time integral

N =
∫
tV
R(x) d4x =

∫ ∫
tV
f(p, x)δ(p2) d4x d4p, (4.2)

with
f(p, x)δ(p2) ≡ dR

d4p
. (4.3)

The delta function represents the on-shell condition for the photons: p2 = [p(0)]2 − p2 ≡ ω2 − p2 =
0 → ω2 = p2. As mentioned before, we want to make use of the Lorentz-boost invariance of the
central rapidity region of the plasma, hence we need to consider the transformation behavior. The

45
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photon number N , the squared photon momentum p2, as well as the infinitesimal four-volumes d4x

and d4p are Lorentz scalars. Therefore, the photon rate R and the differential photon rate f have to
be Lorentz scalars as well.

Each element of the plasma is related via Lorentz-boosts along the beam axis z - and the Bjorken
model tells us that the physics at each of these points along such a boost is the same, as long as the
boosts remain within the central rapidity plateau. We use the simplification to lengthen this plateau
section of the plasma to an infinite extent, so that the boost-invariance holds for all points within the
QGP.

The explicit expressions for the invariance of f under Lorentz-boosts is

f(p, x) = f̄(p̄, x̄) = f̄(Λp,Λx). (4.4)

Variables with a bar represent quantities in the local plasma rest frame, opposed to variables in the
laboratory frame without the bar. Λ is the Lorentz matrix for boosts in the positive z-direction

Λ =


γ 0 0 −βγ
0 1 0 0
0 0 1 0
−βγ 0 0 γ

 , (4.5)

β is the velocity of a certain infinitesimal volume element in the plasma

β(t, z) = z

t
, (4.6)

with z being the position of said volume element and γ =
√

1− β2−1. This choice for β is an
implementation of rapidity invariance: all elements of the plasma travel away from the same origin
(z = 0). To calculate the number of photons N arriving at a detector D at a certain laboratory time
td, one needs to integrate the differential rate f(p, x) along an adequate line in the Minkowski diagram.
This integration ensures that we get all the contributions from the expanding QGP, as photons emitted
earlier from the far away region of the plasma will arrive at the same time td as some photons emitted
later in the regions closer to the detector. Such a space-like curve can be parametrized as

z(t) = xpp̂1 + ypp̂2 + p̂(t− td + d) (4.7)

and represents all photons that arrive at the laboratory time t = td at the detector D placed at z = d

away from the origin. p̂ is the unit vector of the light wave vector p = (ω,p). Both p̂1 and p̂2 are
perpendicular to p and will allow us shifts in the transverse directions with the spatial parameters xp
and yp.

To account for all these photons, we integrate f in the laboratory frame over all times t1 < t < t2
along the curve z(t) to get the differential photon rate at the detector:

fd(p, td) =
∫ t2

t1
dtf(p, z(t)). (4.8)

The differential rate at the detector is integrated over all photon momenta according to Eq. (4.3) via
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the on-shell condition:

Rd(td) =
∫
fd(p, td) δ(p2)d4p

=
∫
fd(ω,p, td) δ(ω2 − p2) dωd3p.

(4.9)

At this stage, the detector D spans up the solid angle of an entire sphere 4π, enclosing the entire
plasma. Only later we will pick a certain detector position. The delta function in Eq. (4.9) has two
roots at ω = ±|p|. Since ω in our case is strictly positive, the negative energy solution is dropped,
leaving us with

δ(ω2 − p2) = 1
2|p|δ(ω − |p|) (4.10)

and

Rd(td) =
∫
fd(ω,p, td)

1
2|p|δ(ω − |p|) dωd

3p

=
∫
fd(|p|,p, td)

1
2|p|d

3p.
(4.11)

To evaluate Eq. (4.11), one has to make an idealistic assumption on the behavior of the photon
detector. We now consider the detector to have a finite area Ad and is placed into the direction of
p̂. Additionally, we assume that it only registers photons which arrive with a wave vector pointing
parallel to p̂ - alternatively, one could say that the detector is sufficiently far enough from the collision
center and the vector p̂ is fixed at a certain polar angle. This allows us to split up the integration and
neglect the angular dependence of the differential rate fd:

Rd(td) ≈
∫
Ad

dΩ
∫
fd(p, td)

1
2|p|p

2 d|p| = Ad
4πd2

∫
ω

2 fd(ω, td) dω

=
∫
Rd(ω, td) dω.

(4.12)

The differential rate fd as well as the rate Rd are still implicitly a function of the transverse shifts xp
and yp. For the total number of photons registered between ta and tb, the only step left is to integrate
these transverse shifts over the interaction region AN :

N(ta, tb) = Ad
8πd2

∫
AN

dxp dyp

∫ tb

ta
dtd

∫
dω ω W (ω) fd(ω, td), (4.13)

where W (ω) is an arbitrary detector window function, which in the simplest case is W (ω) = δ(ω−ωd)
to pick out a single frequency. This would be analogous to an ideal detector that is capable of resolving
any specific photon frequency ωd.

We have defined the differential rate in Eq. (4.8), which features f(p, z(t)) as observed in the laboratory
frame of the detector. As we calculate the photon rate in the rest frame of a volume element in the
plasma, the aforementioned transformations have to be applied to relate the two frames of reference
to each other:

f̄(ω̄, t̄, z̄) = f(ω, t, z). (4.14)
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Explicitly, the transformation of both position vector and wave vector read:

r̄ = Λ(β)x = Λ(β)


t

x

y

z

 =


t/γ

x

y

0

 ,

p̄ = Λ(β)p = Λ(β)


ω

px
py
pz

 =


γω − βγpz

kx
ky

γkz − βγω

 .
(4.15)

and finally
f(ω, t, z) = f̄(γ(ω − βpz), t/γ, 0). (4.16)

The x and y coordinates, which should not be confused with the shifts xp and yp, are not affected
by the transformation. Since we are interested in the time-dependent photon rate, we can omit the
td-integration in the last step and, using the delta-like detector window function, get

dN

dtd dωd
= Ad

8πd2

∫
AN

dxp dyp

∫ tb

ta
dt ωd f̄(γ(ωd − βpz), t/γ). (4.17)

To connect the result in Eq. (4.17) to our previously computed photon rates, we can use Eq. (4.11):

Rd(td) ≡
∫
dR(td)
d3p

d3p = Ad
4πd2

∫
fd(p, td)

1
2|p|p

2 d|p|

→ fd(ω, td) = f̄(γ(ω − βpz, t/γ)) = 2ωdR(td)
d3p

,

(4.18)

where dR(td)/d3p is simply the detector rate dR/d3p integrated along a curve such as Eq. (4.7).

All of the formulae and equations in this section have been written with as few parameters as possible
in order to give a clean derivation of Eq. (4.17). However, the transformed photon rate f̄ is a function
of the photon frequency ω̄ and the proper time t/γ. Since both depend explicitly on β, they are also
functions of the curves z(t), which again are implicitly functions of the detector time td. Additionally,
through the relation in Eq. (4.18), the transformed photon rate incorporates all the dependencies that
have been worked out in Chapter 3, e.g. the anisotropy parameter, the plasma temperature as well as
all the remaining parameters from the Martinez-Strickland model [51, 53].

4.2.2. Relativistic Doppler shift

Equation (4.15) shows the transformational behavior of a photon wave vector p. The frequency (or
energy) ω of this photon transforms as

ω̄ = γ(ω − βpz), (4.19)

which is known as the relativistic Doppler shift. Photons emitted from volume elements of the plasma
at different positions z will therefore be subject to Doppler shifts with different strengths. With

pz = ω cos θ, (4.20)
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the Doppler factor reads
1− β cos θ√

1− β2 . (4.21)

The Doppler factor is equal to 1 at
β0 = 2 cos θ

cos2 θ + 1 , (4.22)

and
β0 = 0. (4.23)

If we place the detector D at some finite positive z, volume elements with 0 < β < β0 emit photons
with frequency ω̄ that are registered as blue-shifted photons with ω > ω̄. Photons that are emitted
from portions of the plasma with β < 0 and β > β0, on the other hand, will arrive red-shifted (ω < ω̄).
This is a very important detail, as it plays a crucial role in the phenomenology of the double pulse
generation.

If we translate this conclusion into the framework of the Bjorken picture (Fig. 2.1), we see that the
Minkowski diagram is split up in three different parts (Fig. 4.1). The actual strength of the shift will

t

z

blu
e sh

ift
edred

shifted

D

Figure 4.1: Regions with blue- and red-shifted photons in the Minkowski diagram of the
Bjorken picture at θp = π/4. Although the shading is constant in this illustration, the
strength of the Doppler effect increases with growing z. For smaller angles, the gray line
separating the blue- and red shifted parts tilts more towards the light cone according to
t = z(1 + cos2 θp)/(2 cos θp).

finally depend on the z-component of the space-like curve z(t). Photons emitted at θp = π/2 have
pz = 0 and experience redshift in the entire Minkowski diagram. Bringing back to mind the energy
dependence of the photon rates (Fig. 3.10), one can immediately see that the differently shifted areas
correspond to different emission rates. Blue shifted photons were emitted at lower energy and are
therefore higher in numbers.

The position of the detector is encoded in the Lorentz transformations and the choice of the sign of β
and has to agree with the parametrization of the curve in Eq. (4.7).
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4.2.3. Interaction region and temperature dependence

The calculation of the photon rate requires the integration over the interaction region, which we call
AN . This interaction region is defined as the transverse spatial extent of the quark-gluon plasma.
Heavy-ion collisions are additionally parametrized by the impact parameter b, which is the distance
between the centers of the nuclei. This centrality parameter hence defines the total volume of the
QGP and will have an important effect on the photon emission as well.

b

R

Figure 4.2: The red shaded interaction region, within which the QGP is created in the
transverse plane. The radius of the nuclei is denoted by R and the impact parameter, which
is the distance between the two centers of the nuclei, is denoted by b.

Figure 4.2 shows a sketch of the interaction region. It depicts the heavy ion collision from a view
parallel to the beam. The two nuclei with radius R overlap according to the impact parameter b,
creating the quark-gluon plasma in the red shaded intersection AN .

One possible way of tackling the integration over AN in Eq. (4.17) is to assume that the photon rate
is independent from its location in the interaction region - equivalently formulated, the temperature
of the plasma is taken as constant in the transverse plane. This reduces the integration over AN
to a simple scaling factor. Although computation time is reduced in this approximation, the rather
sharp jump in temperature at the borders of the interaction region produces unphysical artifacts in
the photon signals.

We can use a temperature profile based on the local nucleon density for each of the two nuclei [49, 78]:

T (x, y) = T0

[
2
(

1− x2 + y2

R2

)]1
4
, (4.24)

with some initial temperature T0. The above temperature profile is based on a spherical density
according to the Glauber model [79] and can be extended to the case of non-vanishing impact param-
eters:

T (x, y) = T0

[
4
(

1− (x− b/2)2 + y2

R2

)(
1− (x+ b/2)2 + y2

R2

)]1
8

×Θ[R2 − (x− b/2)2 − y2)] ·Θ[R2 − (x+ b/2)2 + y2)].

(4.25)
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The theta functions make sure that the temperature is exactly zero, if x and y are outside the overlap
region. Figure 4.3 illustrates the temperature profile for a non-central collision.

x

y

Figure 4.3: Schematic density plot of the temperature profile (4.25) with a non-vanishing
impact parameter b (see Fig. 4.2). The yellow area in the center has the highest temperatures.
The temperature drops off towards the border of the interaction region, represented by the
orange and red shading.

One little detail needs to be kept in mind about the non-central temperature profile. It is evident in
Eq. (4.25) that for b 6= 0, the initial temperature T0 cannot be recovered at the center of the interaction
region (x = 0, y = 0). This lower initial temperature of the plasma will eventually lead to a faster
freezeout.

The vectors p̂ and p̂1 are chosen to lie in the so-called reaction plane, p̂2 is oriented orthogonal:

p̂ =

sin θp
0

cos θp

 , p̂1 =

 cos θp
0

− sin θp

 , p̂2 =

0
1
0

 , (4.26)

illustrated in Fig. 4.4.

The above choice for the photon wave vector also determines the curve z(t):

z(t, td, xp, yp) =

x(t, td, xp, yp)
y(t, td, xp, yp)
z(t, td, xp, yp)

 =

 xp cos θp + (t− td + d) sin θp
yp

−xp sin θp + (t− td + d) cos θp

 . (4.27)

In accordance with [28], the photon rate dN will be calculated per unit solid angle dΩd (Ad = Ωd · d2):

dN

dtd dωd dΩd
= 1

8π

∫
AN

dxp dyp

∫ tb

ta
dt ωd f̄(γ(ωd − βpz), t/γ). (4.28)

There are two possible ways to implement the integration boundaries for the interaction region depicted
in Fig. 4.2. One is to write yp as a function of xp. We choose the other way and write the xp in terms
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Figure 4.4: A sketch of the two nuclei in the reaction plane (gray grid). The blue arrows
represent the photon wave vector p enclosing the polar emission angle θp as well as the
orthogonal shifting vectors p̂1 and p̂2 (arrow lengths are not to scale).

of yp. Since y = yp in Eq. (4.7), we can write easily for x = 0

−R2 +
(
b

2

)2
≤ yp ≤ R2 −

(
b

2

)2
. (4.29)

To complete the integration over AN , the yp-dependent integration boundaries for xp are:

−
√
R2 − y2

p + b
2 − (t− td + d) sin θp
cos θp

≤ xp ≤

√
R2 − y2

p − b
2 − (t− td + d) sin θp
cos θp

. (4.30)

As the boundaries for xp are a function of the laboratory time t and the shift yp, the order of integration
in Eq. (4.28) has to be changed if the integration is carried out successively. These integration
boundaries ensure that we only include photon contributions that are within the spatial extent of
the quark-gluon plasma. For θp = 0, the shape of the plasma in terms of xp and yp coincides with
Fig. 4.2. Changing the photon emission angle results in a skewed interaction region in xp and yp,
illustrated in Fig. 4.5.

Due to the cosine term in the denominator, the integration boundaries for xp diverge for θp = π
2 . The

local coordinate system p̂, p̂1 and p̂2 rotates in a way that xp-shift points into the beam direction z,
so that the boundaries for xp is essentially the light cone.

Inherently, the integration over the laboratory time t should cover the total interval, in which the
space-like curve z(t) passes through the total volume of the quark-gluon plasma. If we were choose θp
equal to zero, we would need to integrate until infinity, as our QGP is not bounded along the beam
axis. At some point, the temperature of the plasma will drop below the freezeout temperature Tc
and cease to exist. The integration is stopped at this specific time as well. This exact point of the
plasma freezeout using the models from Chapter 2 is only accessible numerically. Still, we need some
upper and lower bounds for t to use as limits for the computation. These bounds can be derived by
demanding that the curve lies within the light cone (|z| ≤ t) with the condition that |x| ≤ R. We can
eliminate xp from Eq. (4.7):

x · sin θp + z · cos θp = t− td + d, (4.31)
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Figure 4.5: This illustration shows the distortion of the interaction region in dependence of
xp and yp for some non-vanishing laboratory time t.

where x and z are a shorthand notation for x(t, td, xp, yp) and z(t, td, xp, yp). This equation relates all
photons produced at position (x, z) at laboratory time t, which arrive at the time td at the detector
placed at a distance d. By setting z = t, x = R for the lower bound and z = −t, x = −R for the
upper bound, we get the valid interval for t:

td − d−R sin θp
1 + cos θp

≤ t ≤ td − d+R sin θp
1− cos θp

. (4.32)

These bounds strictly only hold for yp = 0. As a result of the location of the interaction plane, the
extent of the QGP is maximal at yp = 0. So this choice of integration bounds for t will not result in
ignoring contributions from the plasma, because the limits cut off too early in either direction. We then
simply drop all contributions that do not lie in the overlap region within the numerical integration.
This ensures that the curve z(t) is limited to the volume of the QGP.

4.3. Analytic toy model for the one-dimensional plasma

Before we start with the full numerical treatment, we can try to analytically investigate at least parts
of the calculation with a radically simplified model. Step number one in this approximation would be
to reduce the transverse area of the QGP to a point, turning it into a wire. This approach also comes
with the advantage that we can use the two dimensional Minkowski diagram without having to worry
about the two other spatial dimensions in which the curve z(t) lives.
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Imposing δ(x)δ(y) onto the curve (4.7) yields an expression for xp, while yp is trivially zero:

x = xp cos θp + (t− td + d) sin θp = 0,
xp = −(t− td + d) tan θp.

(4.33)

Inserting this expression for z gives

z = (t− td + d) sec θp. (4.34)

Let us have a first look at how z(t) integrates in the Minkowski diagram of the Bjorken picture.
Figure 4.6 shows z(t) embedded in the z − t plane of the Minkowski diagram. The photon emission
angle θp is identical with the angle of the curve to the time axis in the one dimensional case. At
θp = π/2, the curve is parallel to the z axis, which means that all photons emitted at a certain
laboratory time t arrive at the same time at the detector. Such curves in the Minkowski diagram
apparently feature superluminal speeds, as they are tilted farther than the light cone. This is not in
contradiction to special relativity. The curve is not a world line of a particle and does not describe
the path of a single photon. Every point along this curve emits photons that arrive at laboratory time
td at the detector. These emitted photons would be represented by world lines with an angle of 45◦
towards the t = 0 plane in a t, x, z coordinate system. A curve like z(t) is hence a space-like curve.

We can also observe the integration limits for t as in Eq.(4.32), where R has been set to zero. For the
full numerical calculation, the contributions from earlier proper times than the formation time τ0 will
of course be omitted. In the next step, we have to find an expression for the photon rate. The complete

t
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τ
=

τ
0

τ = τf

Figure 4.6: The curve z(t) (blue) embedded in the Minkowski diagram of the Bjorken picture
at some finite td − d. Integration limits ta and tb at the intersection with the light cone are
indicated by vertical, dotted lines.

model, as introduced in Chapter 2 is too complicated to handle in an analytic way. A feasible toy
model should nevertheless encompass the three main aspects of the full concept: rapidity invariance,
Doppler shift and the suppression during the anisotropy build-up. Figure 3.11 already gives a good
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impression on how the time dependent photon rate combined with the full model will look like. We
expect a first peak shortly after the formation at τ0, which will subsequently get suppressed by the
growing momentum space anisotropy. The anisotropy parameter will reach its maximum near τiso and
then drop off, during which the photon rate will rise again. During this entire time, the plasma cools
off until it reaches the freezeout temperature, at which we parametrically set the photon rate to zero.

For the toy model, this rather complicated process will be replaced by two Gaussians - the first,
shorter one, will give us the photon rate shortly after the formation, while the second, longer one, will
represent the rising photon rate due to the isotropization of the plasma. This way, we can mimic the
suppressed photon rate during the anisotropy build up via the minimum between the two Gaussians.
Based on the thermal photon production rate in an isotropic QGP which is given by [57]

E
dR

d3p
= 6

9
ααs
2π2 T

2e−E/T ln
(

1 + 2.912
4παs

E

T

)
, (4.35)

we can extract the exponential term ∼ e−E/T to give us a rough idea on how to implement the
spectrum in the toy model. Incorporating the Doppler shift, the first term in our model will be

exp
[
−γ(1− cos θp ·β)B

T

]
, (4.36)

where B is a model parameter that is related to the detected frequency (energy) ωd. To account for
the rapidity invariant portion of the photon rate, we employ a Gaussian as a function of proper time
τ = t/γ:

A exp
[
(t/γ − τ)2 ·C

]
, (4.37)

where A controls the amplitude of the photon rate and C is a parameter that determines the width
of the Gaussian. Multiplying Eq. (4.36) and Eq. (4.37) we get our toy model

fi = Ai exp
[
−γ(1− cos θp ·β)Bi

T
− (t/γ − τi)2 ·Ci

]
. (4.38)

The three parameters Ai, Bi and Ci characterize the overall scaling of each Gaussian to give some
control over the model. Each of the τi represent proper times, at which the Gaussians have a maximum,
roughly corresponding to the formation time τ0 and the isotropization time τiso. While ξ does not
actually vanish at the isotropization time in the free streaming model, it is still a timescale which we
can use in this simplified case. Note that the constraint of the plasma starting to exist at τ0 is not
incorporated. The temperature T will be set to T = 1/τ , which conveniently cancels the γ in the first
term:

fi = Ai exp
[
−(1− cos θp ·β)Bit− (t/γ − τi)2 ·Ci

]
. (4.39)

Plots to show the photon rates in the Minkowski diagram are seen in Fig. 4.7. One must be very
cautious in the interpretation of this toy model, especially the second plot in Fig. 4.7. At θp = π/2,
we do not expect momentum-space anisotropies to form such a deep minimum in the photon rate, as
is depicted by the large white space in the contour plot between the two maxima. This is merely an
aspect of the toy model’s limitations, as the photon rate suppression should show a clear dependence
on the photon emission angle.

Unfortunately, even this very simple model for the photon rate can not be integrated analytically, due
to terms like ∫

dt exp
[√

(t+ c1)2 + c2

]
. (4.40)
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Figure 4.7: Contour plots showing the two peaks of the photon rate toy model in the
Minkowski diagram. Yellow and green areas indicate higher photon rates, whereas white
regions represent very low rates. One can see the effect of the Doppler shift by observing the
yellow and green shaded parts of the plot. For θp = π/8, the Doppler effect causes a blue-shift
in the z > 0 half of the diagram, causing higher photon rates. At θp = π/2, the Doppler shift
affects both halves of the diagram in the same way, as the term proportional to β vanishes.
The plasma in the toy model is formed at t = 0 and has non-vanishing photon rates for τ < τ0.

To still gain some insight, we make a second approximation. If we model our two Gaussians to be
infinitely short, the integral can be folded with delta functions at the proper times τ1 and τ2.

Equal proper time hyperbolas are defined through

t2 = τ2
i + z2, (4.41)

which we use as arguments in delta functions:

δ(t2 − τ2
i − z2). (4.42)

Using the curve z = (t− td +d) sec θp, we get two roots for the delta function for each laboratory time
ti, where the curve intersects the hyperbolas:

ti =
−(td − d) sec2 θp ∓

√
(1− sec2 θp)τ2

i + (td − d)2 sec2 θp

1− sec2 θp
. (4.43)

The photon rate is computed as
dN

dtd
=
∫ tb

ta
dt (f1 + f2) (4.44)

integrated along our curve z(t). If we plug in z = (t− td + d) sec θp into the photon rate model (4.39),
we can simplify the expression a bit since

(1− cos θp ·β)t =
(

1− cos θp ·
(t− td + d) sec θp

t

)
t = td − d, (4.45)
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Figure 4.8: The intersections of the curve z(t) with the two equal proper-time hyperbolas.

so that
fi = Ai exp

[
−(td − d) ·Bi − (t/γ − τi)2 ·Ci

]
. (4.46)

Folding the photon rate integral with the delta functions

dN

dtd
=
∫ tb

ta
dt

2∑
i=1

Ai exp
[
−(td − d) ·Bi − (t/γ − τi)2 ·Ci

]
× δ(t2 − τ2

i − z2)
(4.47)

will eliminate the term with ci as τ = t/γ will be evaluated at τi. What remains is an exponential
function in terms of the detector time td as well as the denominators from the evaluation of the delta
functions:

δ(t2 − τ2
i − z2) =

∑
j

δ(t− tj)∣∣ d
dt(t2 − τ

2
i − z2)|t=tj

∣∣ . (4.48)

The derivative of the argument of the delta function at the intersection times ti is

d

dt
(t2 − τ2

i − z2)
∣∣∣∣
t=tj

= ∓
√
τ2
i (1− sec2 θp) + (td − d)2 sec2 θp, (4.49)

where the minus-plus sign in front of the square root vanishes due to the modulus in Eq. (4.48). Since
this term appears in a denominator, we can already see that the final photon rate will have poles at

td = d± τi sin θp. (4.50)
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The final result reads

dN

dtd
=

2∑
i=1

ai exp[−(td − d) · bi]√
τ2
i (1− sec2 θp) + (td − d)2 sec2 θp

×Θ(td − t1)Θ(t2 − td) ·Θ(td − τi sin θp − d).

(4.51)

We have introduced three theta functions. The first two arise from the integration boundaries, while
the last one is helpful for plotting the function, as it delivers cut-offs near the poles. A plot of the
function can be seen in Fig. 4.9. To compare the full treatment of the toy model sans the delta-like

1 2 3 4
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d
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/d
t d

Figure 4.9: Plot of the photon rate according to our toy model. The peaks correspond to the
poles of Eq. (4.51) and represent the detector time td = d± τi sin θp at which the integration
curve touches the hyperbola at τi. Parameters are A1 = 5, B1 = 0.5, τ1 = 1, A2 = 3, B2 = 1,
τ2 = 5, θp = π/8, d = 0.

restriction (4.42), a numerically integrated photon rate dN/dtd was plotted aside with the analytic
result in Fig. 4.10. We also check whether the analytic treatment is applicable in any form if we
employ the Martinez-Strickland (MS) model from Eqs. (2.9) and Eqs. (2.10) to a one-dimensional
plasma wire. Figure 4.10 shows the three photon signals. The maxima of both analytic result and
numerical integration of the toy model practically coincide. There is also a certain overlap of the
numerical result for the full MS model. Although the shape of the pulse can not be reproduced buy
the toy model, a qualitative statement can be made about the location of the second peak in the limit
of high impact parameters.

4.3.1. Conclusions from the toy model

The models for the time evolution of the photon rate only allow for numerical solutions for the shape
of the photon pulse at the detector. A first step of a simplification is to model the photon production
rate by two Gaussians, employed in a rapidity-invariant manner. An additional factor takes care
of the relativistic Doppler shift. Even this simplification does not allow yet to compute a photon
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Figure 4.10: Numerical integration of the photon rate with the same parameters (solid,
black) as in Fig. 4.9 (dotted) but slightly different axis scaling. The location of the maxima
basically coincide. The red line represents a numerical photon rate calculation for the plasma
wire employing the Martinez-Strickland model in Eqs. (2.9) and (2.10). It has been scaled to
fit the plot, and following model parameters have been used: γ = 20, ωd = 3GeV, τ0 = 1fm/c,
τiso = 5 fm/c, γ = 2, δ = 2.

signal by purely analytic means. By restricting the photon rate in the Minkowski diagram to delta-
like structures allows to perform the integration in a trivial manner and then to roughly predict the
location of the two peaks, as seen in Fig. 4.10.

It is important to comprehend that the analytic expression in Eq. (4.51) is dominated by the geo-
metrical aspect of the integration curve passing through the Minkowski diagram and intersecting the
hyperbolas at certain times.

4.4. Three-dimensional model

4.4.1. Numerical integration

We use Mathematica for the numerical evaluation of Eq. (4.28). Again, there are a few possibilities
on how to perform the computation of the integral. Mathematica offers various integration strategies
and rules, each with their respective strengths.

One possibility is to use a multi-dimensional Monte Carlo integration. This will most likely always
perform faster than a successive integration of xp, yp, and t using a global adaptive strategy. Monte
Carlo integrations, however, may need either multiple runs or a much denser sampling to get stable
results free of numerical artifacts. This, in turn, can diminish or completely eliminate the advantage
of a faster performance.

The computation time is also highly dependent on some of the parameters, such as the impact pa-
rameter b or the photon emission angle θp and different integration strategies seem to work better
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than others at different centralities. Using Mathematica’s built-in parallel computation tools, the
computation times could be sped up significantly by making use of multi-core processors.

In the following sections, the parameters below are used [49], unless specified otherwise:

• radius of the lead nucleus R = 7.1 fm

• initial temperature (hard momentum scale) T0 = 845 MeV

• plasma freezeout temperature Tc = 160 MeV

• plasma formation time τ0 = 0.088 fm/c

• free streaming expansion δ = 2 with γ = 2.

These parameters correspond to values expected for Pb-Pb collisions (√sNN = 5500 GeV) at the LHC
[49]. The detector distance d is set to zero, but its position is assumed to be at some z > 0, therefore
establishing the correct Lorentz transformations and the Doppler shift, as seen in Fig. 4.1. A finite,
positive value for d would only produce a shift of the photon signal with respect to td.

4.4.2. Photon signal at mid-rapidity

We study the photon signal if the detector is placed at mid-rapidity, which amounts to a photon
emission angle of θp = π/2. Since there is a lesser dependence of the differential photon rate on ξ at
mid-rapidity, there will be no significant effect of the anisotropy on the time evolved quantities and
the shape of the photon pulse.

For purely illustrational purposes, the following contour plots will depict a one-dimensional scenario,
as was introduced in Section 4.3. In these figures, the full model has been implemented, but the spatial
extent of the plasma has been reduced to a one-dimensional wire.

Figures 4.6 and 4.8 already show how the curve z(t) is embedded in the Minkowski diagram for a
certain value of td and θp. The diagrams can be used to literally read off what happens during the
computation of the integral. For every detector time td, the curve is shifted in the diagram. Each of
these positions represent an integration over the QGP along the curve, which is indicated in Fig. 4.6
and Fig. 4.8 by the slightly thicker line within the two hyperbolas that represent the lifetime of the
plasma. This integration is the accumulation of all direct photon contributions throughout the plasma
that arrive at the detector at a specific laboratory time td. With increasing td, the curve shifts more
to the left (negative z) and we have to integrate over different regions of the plasma.

A contour plot in Fig. 4.11 shows the position of the curve in the Minkowski diagram. For θp = π/2,
the curve for the one-dimensional model lies parallel to the z axis. With increasing td, the curve shifts
up towards positive t. Since the Doppler shift does not divide the Minkowski diagram into two parts
in this case, the integration along the curve becomes very symmetric with respect to z(t).

What can we expect for our detector signal dN? If we take Fig. 4.11 as a guide, we see that the curve
z(t) starts at the very bottom of the Minkowski diagram at td = 0. At some later td, the curve passes
the formation time τ0 and we will begin to see a rise in the signal. Right after τ0, the differential
photon rates are the highest for a given frequency ωd, as indicated by the green area. If we increase td
further, the cooling of the plasma will reduce the differential photon rates. This is counteracted by the
growing spatial extent of the plasma - which manifests itself in the light cone. While the differential
photon rates decrease for larger t, the spatial extent increases and the integrated contributions from
the whole plasma lead to a rising signal. Eventually, the plasma will cool off by such an amount that
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Figure 4.11: Schematic contour plot of the differential photon rate embedded in the
Minkowski diagram. The vertical blue lines represent the curve z(t) at different, equally
spaced td > 0. The upwards pointing arrow indicates the direction in which the curve shifts
with increasing td.

the increasing spatial extent will not be enough to recover the same signal strength at the detector,
leading to a decrease in the photon signal until it finally vanishes.

The explanation above and the picture presented in Fig. 4.11 have to be slightly adapted for the full
three-dimensional situation. As the plasma has a finite transverse size, we will already have volume
elements in the plasma that emit photons at τ = τ0 which are away from the origin, x 6= 0. A photon
registered at td = 0 was sent away at (x, y, z) = (0, 0, 0) and arrives at laboratory time t at a detector
placed at z = d. Hence, the photon signal at the detector will not begin at td = 0, but rather at some
negative td. One could shift the detector time to account for this effect, but the earlier convention will
be kept in order to be in accordance with Ref. [28].

First, we will take a look at how the photon signal for central collisions changes with different
isotropization times. Fig. 4.12 shows the rather symmetric pulses for three different values of τiso.
A remarkable phenomenon to be seen in Fig. 4.12 is the amplitude of the pulses. One would naively
expect higher isotropization times to yield a lower amplitude photon signal, as the anisotropy sup-
presses the differential photon rate. The root of this apparent discrepancy is the time dependence of
the temperature. As was shown in Fig. 2.5, different isotropization times cause a different tempera-
ture at τ = τ0, as well as slower cooling and longer sustained initial temperature for larger τiso. For
θp = π/2, the suppression of the photon rate over time has a similar form as in Fig. 3.11, but the
photon rate only decreases by about one order of magnitude for τiso ≈ 10τ0. Hence, the main effect
driven by the isotropization time for this case is the modified temperature evolution, which results in
a higher differential photon rate for a fixed photon energy ωd.

The next quantity to investigate is the impact parameter b. It defines the transverse extent of the
plasma and should have a similar influence on the pulses as in Fig. 4.12. Lower b equals a larger
plasma volume, so the amplitudes of the photon pulses should be larger. Fig. 4.13 shows the pulses for
three different b. The differences in the pulse length are also understood using the argument presented
earlier: photons from volume elements around the near edge of the plasma arrive earlier than photon
emitted from the center at the origin of our laboratory coordinate system. For a plasma with smaller
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Figure 4.12: Photon pulses at midrapidity for different isotropization times. The dominating
effect in these particular plot is the temperature evolution which is strongly dependent on
the chosen value for the isotropization time. As seen in Fig. 2.5, larger τiso result in an
elongated plateau in the temperature evolution, which in turn increases the total photon
yield. ωd = 2 GeV, γ = 2, δ = 2, b = 0 fm, θp = π/2.

transverse size, the time difference between these two photons is less and so is the shift in detector time
td at which the photon pulse starts. It was mentioned in Subsection 4.2.3 that non-central collisions
will have a lower temperature at the center, which in turn causes a faster freezeout. The time it takes
for the plasma to reach the freezeout temperature is the main contributing factor to the pulse length.
To demonstrate this effect, we plot two pulses with the same impact parameter b = 10 fm in Fig. 4.14
- one pulse being calculated with twice the initial temperature T0. One can see a more pronounced
tail for larger td towards the end of the pulse. This tail is only notably visible if the freezeout of the
plasma takes longer than a photon from the far end of the plasma to catch up with the photons from
the near side (with respect to the detector placement). Should the freezeout happen faster, the length
of the pulse will be entirely governed by the impact parameter.

It becomes evident that the internal dynamics of the QGP determine the shape of the photon pulses.
Already at θp = π/2, we can see how the momentum-space anisotropies and their time evolution play
a vital role.

4.4.3. Photon signal away from midrapidity

In this section, we focus on photon signals at smaller emission angles θp. By positioning the detector
more in forward direction, the differential photon rates will exhibit a distinguished minimum induced
by the anisotropy build-up, similar to Fig. 4.7.

Taking a look at a photon pulse generated with the same model parameters (Fig. 4.15), we unfortu-
nately just see a shape similar to Fig. 4.14. Despite using a large value for the isotropization time, we
do not see any hints of a two-pulse structure as expected from the toy model (Fig. 4.10).
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Figure 4.13: Same as Fig. 4.12 for various impact parameters b, but same isotropization
time τiso = τ0. For smaller b, the plasma volume increases. This results in a larger total
photon yield and hence a photon pulse with larger amplitude. The pulses are not centered at
td = 0 due to an asymmetry in the time evolution of the QGP. The plasma is born sharply
at a formation time τ0, but is basically of infinite extent considering the rapidity invariance.
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Figure 4.14: Enlarged view of Fig. 4.13 with b = 10 fm. The second photon pulse with
T0 = 1690 MeV has been normalized to the other one with by a factor of ≈ 0.024. This
plot demonstrates that the tail at the end of the pulse is a characteristic that arises from the
plasma lifetime. ωd = 2 GeV, γ = 2, δ = 2, b = 10 fm, τiso = τ0.
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Figure 4.15: Photon pulse at θp = π/8 and zero impact parameter b. The double peak
features we expect via the arguments from the toy model do not appear. This is a result
of the large size of the plasma which is responsible for washing out any structure in the
pulse simply due to the time it takes a photon from the far end to travel through the QGP.
ωd = 2 GeV and τiso = 2 fm/c.

The reason we do not see any notable effect from the time-dependent photon rate suppression is the
transverse size, which at b = 0 fm is maximal. At emission angles θp < π/2, photons from the far
end of the plasma travel longer distances through the QGP compared to the case at midrapidity.
Reformulated in terms of our integration along the curve z(t), this means that we sum over many
more photon emitting volume elements per detector time td. Such an integration over a larger region
in space-time leads to a greater overlap of photons from different stages of the QGP evolution. With
larger transverse sizes, this overlap eventually hides the desired effect from the anisotropy buildup.

Fig. 4.16 shows the photon production rates in the Minkowski diagram for a detector in forward
position at θp = π/4. The two maxima can be seen as the green and yellow spots, separated by
the minimum caused by the anisotropy buildup. This figure is again a representation of the strictly
one-dimensional plasma or the limit of b ≈ 2R.

If we were to drop the constraint of having an infinitely thin plasma wire, the z-component of the
curve z(t) is tilted differently in the Minkowski diagram (Fig. 4.17), according to Eq. (4.7).

In the plots above, the position of the curve was chosen to illustrate how a double pulse shape can
occur in the first place. For a certain given photon energy ωd and an emission angle θp < π/2, the
photon production rate in the Minkowski diagram shows two distinct peaks. These peaks are located
near the formation time as well as shortly after isotropization of the plasma. Due to the blue-shift
of photons originating from volume elements which move towards the detector, the second peak is
to be found in the right half of the diagram (for d > 0). If the curve fits exactly into the minimum
between the two peaks, as shown in Fig. 4.16, we will see a decline in the photon signal during the
time td at which the curve passes through this suppression region. Demonstrated in Fig. 4.15, this
effect can completely vanish, if the transverse extent of the plasma is too large. In the Minkowski
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Figure 4.16: Photon production rate for θp = π/4. The values have been scaled logarithmi-
cally to allow for a better separation and color coding of the peaks (yellow, green). Although
the curves are separated by the same ∆td as in Fig. 4.11, they lie closer to each other in the
Minkowski diagram.

Figure 4.17: Photon production rate for θp = π/4. The blue band indicates the z-component
of the integration area spanned up by the curve for some finite b.

diagram, integration over the shift xp corresponds to additional shifts of the curve, turning the line of
integration essentially into a band. Should these shifts for a certain value for td, in which the curve
lies in this minimum (Fig. 4.16), cause it to cross over to regions near the maxima, the phenomenon
of suppression will be diminished or vanishes entirely. It is therefore necessary to focus on collisions
with larger impact parameters in order to observe double pulses.

By reducing the transverse size of the plasma, the wanted effect from the photon rate suppression
becomes finally visible, as shown in Fig. 4.18.
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Figure 4.18: The photon pulse detected in forward direction. Due to the small transverse
size of the plasma, the integration band as depicted in Fig. 4.17 is thin enough to allow for
a visible minimum in the photon signal, as the curve z(t) passes through the minimum in
the photon rate, caused by the anisotropy. θp = π/8, ωd = 3 GeV, γ = 2, δ = 2, b = 10 fm,
τiso = 2 fm/c.

4.5. Pulse shapes

We have established the phenomenological mechanisms that give rise to a double peak structure in
the photon signal. The requirements to create such a signal from an anisotropic quark-gluon plasma
are summarized below:

1. a photon emission angle closer to the forward direction to get a larger effect from the photon
rate suppression due to the anisotropy buildup,

2. a comparably large isotropization time τiso, which ensures that the two maxima in the differential
photon rate are separated, allowing for an extended minimum in between,

3. non-central collisions to lessen the amount of overlaps due to the shift of the curve z(t).

These points have been demonstrated in the preceding sections in a qualitative way. Still, the question
on the actual values of the parameters remain. At which isotropization times do we still see a double
peak structure? How small does the emission angle have to be and at which energies does the peak
doublet vanish, if at all?

The parameters used in the models (τ0, τiso, T0, Tc, γ, δ, θp, ωd, b) to calculate the photon signal de-
termine the shape of the pulses. We should be able to read off several properties of the plasma by
investigating the photon signal.
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4.5.1. Pulses at intermediate emission angles

In this subsection, we will focus on parameters, at which the double peaks are more pronounced, such
as a large impact parameter and a large isotropization time. As the limit of very large b corresponds
to the one-dimensional plasma wire, we may use some of the ideas from Section 4.3. There, we have
determined the detector times, at which the final signal had poles due to the delta-like nature of the
photon rate as

td = d± τ sin θp, (4.52)

where τ belongs to the equal proper time hyperbola (4.42) at which the differential photon rate was
non-zero. To use this result properly, we have to first remind ourselves that the photonrate does
actually exhibit a minimum at τ = τiso for γ = 2 rather than a maximum (see Figs. 2.6 and 2.7), as
the anisotropy parameter is approximately maximal at this proper time. Marking this detector time
in photon pulse plots at different angles actually matches this time with the minima between the two
pulses very well (Fig. 4.19).

The most prominent feature in Fig. 4.19 is the varying height of the second pulse in relation to the
first one. Considering the contour plots from earlier subsections, such as Fig. 4.7 or Fig. 4.16, we know
that the second pulse originates from a region in the Minkowski diagram at later t. By lowering the
emission angle, the Doppler shift enhances the photon production rate in the blue-shifted part of the
diagram. The second peak is therefore higher in amplitude (compared to the first one), whereas the
first peak, which originates from the low-t region of the diagram, is less affected by the Doppler shift.

Figure 4.20 shows the pulse shapes for the same parameters, except for an almost instantaneous
isotropization τiso = τ0.

4.5.2. Sharpness of the transition

Until now, we have been using a value of γ = 2, as was done in Ref. [28]. Already shown in Fig. 2.4
and Figs. 2.6 and 2.7, this parameter defines the sharpness of the transitions in the time evolution of
the plasma.

Figure 4.21 shows the photon pulses at a large isotropization time with a much sharper transition
(γ = 20).

The dashed, blue lines in Fig. 4.21 show the pulses at γ = 2, and allow for an easy comparison to
the pulses at γ = 20. A larger value for γ leads to a higher maximum in the anisotropy parameter ξ
(Fig. 2.7). This higher maximum seems to have just a negligible effect on the pulses, as the minima
in the photon pulses are almost identical. Due to the sharper falloff of ξ, the photon rate suppression
is reduced much faster and the pulse shows in a higher second peak that has shifted to smaller td.

4.5.3. Pulse shapes at various isotropization times

The next plots (Fig. 4.22) show the pulse shapes with varying isotropization times. While the pulses
at τiso = 0.25 fm/c bear no noticeable difference to the case at τiso = τ0, one can notice how the second
peak starts emerging at approximately τiso ≈ 1 fm/c.

We were able to semi-quantitatively approximate the location of the minimum between the two peaks
of a double pulse. This was possible because we know that τiso roughly corresponds to the maximum
of the photon rate suppression at small γ.

Already in Fig. 4.19, one may see that the maximum of the second peak shifts forward with increasing
θp at about the same rate as the minimum does. Such a trend suggests that the coarse approximation
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Figure 4.19: Photon pulses for various θp. The vertical red, dashed lines indicate detector
times td = τiso sin θp, which correspond to extended minima of the differential photon rates.
This shows that in the limit of large b, we recover a scenario similar to the one-dimensional
plasma wire where we can relate a distinct proper time (e.g. where the anisotropy becomes
maximal) to a detector time.ωd = 2 GeV, γ = 2, δ = 2, b = 10 fm, τiso = 2 fm/c.

via the one-dimensional model may be applicable if we can determine the proper time at which the
photon rate suppression is lifted. We numerically calculate a value for τ which satisfies

ξ(τ) = ξiso, (4.53)

where ξiso indicates the return to isotropy. Per definition, ξiso is equal to 0 in the isotropic case, but
this is only reached at asymptotically large times using the interpolating model. Therefore we need
to choose a finite value for ξiso. Solving Eq. (4.53) for fixed τ0, τiso, γ and δ would give a value for
τ which is inserted into Eq. (4.50) from the analytic toy model. This would yield a detector time td



4.5. PULSE SHAPES 69

−1 0 1 2 3 4 5 6
0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008
d
N

/
(d

t d
d
ω

d
d
Ω

d
)

[(
fm

/c
)−

1
G

eV
−

1
] θp = π/10

−1 0 1 2 3 4 5 6
0

0.0001

0.0002

0.0003

0.0004

θp = π/8

0 2.5 5
td [fm/c]

0

5×10−5

0.0001

0.00015

d
N

/
(d

t d
d
ω

d
d
Ω

d
)

[(
fm

/c
)−

1
G

eV
−

1
]

θp = π/6

−1 0 1 2 3 4 5 6

td [fm/c]

0

1×10−5

2×10−5

3×10−5

4×10−5 θp = π/4

Figure 4.20: Same as Fig. 4.19, for b = 12fm and τiso = τ0. Due to the almost instantaneous
isotropization of the plasma, there is no photon rate suppression that could manifest itself in
a minimum in the photon signals.

that should reflect the isotropization of the plasma.

Unfortunately, this method does not reliably predict the location of the second maximum, since the
choice of ξiso remains an almost arbitrary one. Due to the nature of the smeared step-function,
small changes of this constant yield quite different results for τ > τiso when γ is of the order of 1.
Nevertheless, the location of the second maximum can be read off (Fig. 4.22 and used in Eq. (4.50)
to calculate a proper time at a known angle that can be regarded as the time at which the plasma
becomes isotropic again. Indeed, for td = 2 fm/c and θp = π/6, τ = τpeak equals ≈ 4 fm/c. At this
proper time, the anisotropy parameter has the value ξ ≈ 0.14, which is sufficiently low compared to
the maximum ξ ≈ 73 at γ = 2 and hence the plasma can be regarded as approximately isotropic.
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Figure 4.21: The black curves are photon pulses at γ = 20, the blue, dotted ones are the
same curves as in Fig. 4.19 with γ = 2. ωd = 2 GeV, δ = 2, b = 12 fm, τiso = 2 fm/c.
The larger (sharper) transition parameter causes a faster isotropization of the plasma, which
can be observed in the photon pulses by looking at the second peaks, which are higher in
amplitude and slightly shifted to earlier detector times.

The ratio between τpeak and τiso
τpeak
τiso

= rp/iso (4.54)

is obtained for the case τiso = 2 fm/c and then used to calculate new detector times td at different
isotropization times via Eq. (4.50) with τpeak = rp/iso · τiso.

4.5.4. Energy dependence of photon pulses

According to Fig. 3.10 or Eq. (4.35) for the isotropic plasma, picking out a photon signal at higher
energies will in general yield lower amplitudes.
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Figure 4.22: Photon pulses at various τiso. The vertical red, solid (dashed) lines indicate
the semi-numerically approximated position of the second peak of the solid (dotted) photon
pulse. ωd = 2 GeV, γ = 2, δ = 2, b = 12 fm, θp = π/6.

We see in Fig. 4.23 how the second peak of the double pulse structure becomes smaller with increasing
energy, compared to the first peak. This can be explained in the following way: the photon production
rate at a fixed emission angle and anisotropy parameter can be roughly written as

ωd
dR

d3p
∼ e−ωd/T , (4.55)

where the temperature T has a 1/τ behavior for large proper times. The first peak of the double pulse
arises from the early (τ ≈ τ0) and central (z ≈ 0) portions of the plasma. Increasing the detector
energy ωd leads to an exponential suppression according to Eq. (4.55). The second peak, however,
arises from later stages (τ ≈ τiso) and some blue-shifted portions (z > 0) of the plasma (see Fig. 4.16).
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Figure 4.23: Photon pulses at different detector energies ωd. As explained in the text, both
peaks are suppressed exponentially with linearly increasing detector energy ωd. Since the
second peak arises from later stages of the plasma evolution, the suppression of this peak is
even stronger as the first one, according to Eq. (4.56). γ = 2, δ = 2, b = 10 fm, θp = π/6,
τiso = 2 fm/c.

At later times the differential photon rate is even stronger suppressed, since

e−ωd/T ≈ e−ωd · τ (4.56)

for τ � τ0. Concluding, a linear increase in ωd leads to an exponential suppression at small τ , but an
even stronger exponential suppression for large τ . We check this explanation by considering the pulse
heights of such a double pulse. The ratio of the second pulse height to the first pulse height should
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show an exponential dependence on the detector energy ωd. Ratios

R = height of second peak
height of first peak (4.57)

of a few pulses between ωd = 2 GeV and ωd = 5 GeV have been extracted and plotted in Fig. 4.24.

2 3 4 5
ωd [GeV]

10−1

100

R

Figure 4.24: Pulse height ratios (dots) and a fit via a function a + b e−c ωd demonstrating
their exponential dependence on the detector energy ωd. The gray area represents the region
between the mean prediction bands for a 99.7% confidence interval. Parameters are the same
as in Fig. 4.23.

Conclusions

In this chapter, we have investigated the time dependent photon signals emitted from an anisotropic
quark-gluon plasma. For a smooth transition (γ = 2), the evolution of the anisotropy parameter ξ has
a maximum near τiso, which translates to a distinct minimum in the differential photon production
rate. If we place an ideal photon detector far away from the plasma at an angle close to the beam axis,
the suppression of the photon rate becomes manifest in the photon signal in form of a double-peak
structure. To prevent this structure from being washed out due to the transverse spatial extent of the
plasma, we focus mostly on peripheral collisions with large impact parameter b. The photon signals
show a high sensitivity towards the model parameters, which would make them an ideal tool to explore
the internal dynamics of the QGP. As of today, there exists no theoretically established method of
measuring time-resolved structures in the order of yoctoseconds. A recently proposed idea for the
characterization of pulses via streaking is applicable to sub-attosecond structures [80], which is still
some orders of magnitude above the QGP signal length.

The next chapter will investigate, whether the mechanisms, which lead to these double pulse structures,
still show up, if we consider time-integrated spectra. Such direct photon spectra have been already
measured and will be measured in the near future in experimental facilities at the LHC and FAIR.



I painted the picture, and in the colors the
rhythm of the music quivers. I painted the
colors I saw.

– Edvard Munch

5
Spectra

5.1. Overview

Direct photon spectra in heavy-ion collisions have been successfully measured by the PHENIX exper-
iment at RHIC [47] and the WA98 collaboration at CERN [81]. The ALICE experiment at CERN
has already taken data and publications are expected in the near future. Both the PHOS detector
at ALICE [82, 83] and the electromagnetic calorimeter at PHENIX are positioned at midrapidity,
covering a pseudo-rapidity range of −0.12 ≤ η ≤ +0.12 and −0.35 ≤ η ≤ +0.35 respectively. The
calorimeter at WA98, on the other hand, is positioned in forward direction (2.3 ≤ η ≤ 3.0) as well as
the proposed detector in the CBM experiment at FAIR (1.7 ≤ η ≤ 2.5) [84]. Pseudo-rapidity η is a
commonly used quantity in particle physics and is related to the polar angle θ via

η = − ln
[
tan

(
θ

2

)]
. (5.1)

The influence of momentum-space anisotropies on the QGP direct photon spectrum has been studied
in Refs. [85–87]. Using an extended model including a mixed and a hydrodynamical phase, L. Bhat-
tacharya and P. Roy matched their calculated spectra to the PHENIX data and found a good agree-
ment for isotropization times between 0.5 fm/c and 1.5 fm/c.

Since these spectra were calculated for a detector placed at midrapidity (η = 0, θ = π/2), the obvious
question would be how these spectra behave at different detector positions.

5.2. Photon rate in proper-time and rapidity space

It was convenient to work in the standard (t, x, y, z)-coordinate system for the purpose of calculating
and understanding photon pulses. In these coordinates, the curves z(t) are straight lines and their
embedding in the Minkowski diagram is easy to visualize. A photon spectrum is the momentum
or energy dependent accumulation of all photon emitting elements in the plasma. Practically, this is
equivalent to integrating our photon pulses over all detector times td to get the total amount of photons
for a certain detector energy ωd. Calculating such photon signals for different ωd and subsequently
performing the integral

∫
dtd results in a direct photon spectrum. Equivalently, we can ignore the curve

z(t) all together and sum over all photon emitting volume elements within the QGP volume, which
is a faster and more efficient calculation. Conveniently, we switch to proper-time (τ) and rapidity (y)

74
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coordinates:

t = τ cosh y, (5.2a)
z = τ sinh y, (5.2b)

and
dt dz = τdτ dy. (5.3)

Such a coordinate transformation compactifies the volume of the quark-gluon plasma (Fig. 5.1).

Figure 5.1: The photon production rate in the τ − y space for different angles. For better
visualization, the photon rate has been scaled by a power law. In the left picture, the emission
angle is set to θ = π/2, which results in a strong maximum (yellow and green area) near the
formation time and subsequent cooling. At θ = π/8, we can clearly see the suppression of the
rate near τ = τiso (horizontal, dotted line) as well as the longer lifetime and slower cooling of
the plasma. The sudden and hard edge in the large τ region of the right plot is caused by
the freezeout of the plasma, at which the photon rate is set to zero. The vertical, dotted line
indicates the value at which the Doppler factor γ(1−β cos θp) is minimal: y0 = arctanh (cos θp).

Additionally to the compactification of the QGP volume, the effect from the Doppler shift does not
cause the photon rate to obtain asymmetrical features as shown in Fig. 4.16. Instead, the symmetry
axis of the volume shifts towards higher y and is now located at the minimum of the Doppler factor

γ(1− β cos θp) = (cosh y − sinh y cos θ), (5.4)

at
y0 = arctanh (cos θp) . (5.5)
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5.3. Calculating the spectra

The time-integrated spectra are calculated as follows:

dN

dωd dΩd
= 1

8π

∫
AN

drx dry

∫ τf

τ0
τdτ

∫
dy ωd f̄(ωd[cosh y − sinh y cos θ], τ), (5.6)

where f̄ is the photon production rate in the plasma rest frame according to Eq. (4.18). The spatial
coordinates x and y have been renamed to rx and ry respectively, to avoid confusion with the rapidity
variable.

We write the photon rate per unit rapidity and photon transverse momentum pT , where

pT = ωd sin θp (5.7)

and therefore
dN

d2pT dy
= π

ωd

dN

dΩ dωd
. (5.8)

Integration boundaries for x and y are given by the interaction region from Eq. (4.25). The proper
time has a lower bound at the formation time τ0 and is restricted at the freezeout time τf , at which
T < Tc. Identical to the calculation of the photon pulses, τf is determined by the initial temperature
of the plasma at τ = τ0 and is therefore dependent on the x and y coordinates. The integration over
y should cover the entire rapidity space, but is practically limited to some finite values. The photon
rate drops off sufficiently to limit the integration to about |y| < 5. This is not in contradiction to the
rapidity invariance of the Bjorken model, which we implement. The red shifted parts of the plasma
(see Fig. 4.1) produce less photons and the strength of the Doppler shift grows with increasing absolute
values of the rapidity.

5.3.1. Spectra at different impact parameters

In this section, we calculate spectra at various impact parameters b. Looking at the spectra for
emission angle θp = π/2, we observe a very similar behavior for different b at two fixed isotropization
times (Fig. 5.2). The total photon yield for larger plasma volumes (small b) is trivially higher, just
as the larger isotropization time increases the time-integrated photon rate due to the temperature
evolution T (τ) according to Fig. 2.5.

As expected, the spectra mostly differ by a scaling factor for various b. The situation looks different
for emission angles closer towards forward direction (Fig. 5.3). At θp = π/8, we see a similar scaling
behavior for different impact parameters. For a large isotropization time, however, the spectra exhibit
a distinguished dent in the region between 2 and 4 GeV. This energy interval is the same region,
where we see double pulses in the calculated time-dependent photon signal. Contrary to the situation
at θp = π/2, the total photon yield is smaller with increasing isotropization times - this relation is
investigated in the next section.

5.3.2. Influence of the isotropization time on the spectra

The spectra for different isotropization times at midrapidity are shown in Fig. 5.4. We have two mech-
anisms working against each other. Large isotropization times extend the plateau in the temperature
evolution which leads to higher photon rates. At the same time, a large τiso leads to a higher buildup
of ξ which in turn reduces the photon rate and the time-integrated total yield. At lower emission
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Figure 5.2: Direct photon spectrum at mid-rapidity. At larger b, the total photon yield is
lower than for smaller b as smaller plasma volumes directly correspond to lower overall photon
emission. γ = 2, δ = 2, θp = π/2.
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Figure 5.3: Direct photon spectrum in forward direction. The scaling behavior with respect
to the impact parameter is the same as in Fig. 5.2. At larger values for τiso, the spectra
exhibit a pronounced dent in the region up to 3 GeV, which is the result of enhanced photon
rate suppression at lower emission angles. γ = 2, δ = 2, θp = π/8.

angles θp, the photon rate is also reduced.

We have seen in Fig. 5.2 how larger τiso result in a higher total direct photon yield. This is a
consequence of the temperature evolution with fixed final multiplicity (2.9) which features an extended
plateau, depending on the isotropization time. One has to keep in mind that the anisotropy also affects
the photon rate at midrapidity according to Fig. 3.9. Apparently, the elongated temperature plateau
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for increasing τiso surpasses the photon rate reduction due to the anisotropy buildup at an emission
angle θp = π/2.
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Figure 5.4: Direct photon spectrum at midrapidity (θp = π/2) for different isotropization
times. γ = 2, δ = 2, b = 0.

We compare the effect of the isotropization time for a lower photon emission angle (Fig. 5.5). Since the
same color coding is used as in Fig. 5.4, the reverse behavior of the spectra with respect to τiso easily
seen. The photon rate suppression at a lower angle of π/8 is strong enough to overcome the increase
via the elongated temperature plateau. These two cases at θp = π/2 and θp = π/8 suggest that at
some intermediate angle, change in isotropization time within some range will have no noticeable or
just very little influence on the spectra.

To find the angle at which larger τiso lead to lower total photon yields, we compute the ratio

Υ(θp, pT ) = dN(θp, τiso = τ0)
dN(θp, τiso = 2 fm/c) (5.9)

for a range of angles θp at various transverse photon momenta pT . The ratio Υ(θp, pT ) passes through
1 at different angles for different energies (shaded area in Fig. 5.6). At angles below this transition
region, increasing τiso will lead to lower total photon yields. The different angles, at which the Υ(θp, pT )
in Fig. 5.6 become less than 1 for various energies also indicate a change in shape for the spectra at
larger isotropization times.

The previous plots of spectra have shown that the isotropization time of the QGP could be derived by
measuring the spectra. For a certain set of model parameters, we have also seen that the spectra for
a wide range of isotropization times τ0 < τiso < 2 fm/c lie very close to each other. We can consider a
situation where two detectors are available in a heavy-ion collision experiment [88], e.g. at θp = π/2
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Figure 5.5: Direct photon spectrum closer to forward direction (θp = π/8) for different
isotropization times. γ = 2, δ = 2, b = 0.
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Figure 5.6: The ratio of spectra Υ(θp, pT ) at three different photon momenta pT . Dots,
triangles, squares and crosses represent angles at which the photon yields for specific pT have
been computed. The approximate transition region is indicated by the gray area. γ = 2,
δ = 2, b = 0.

and at θp = π/8. Having recorded the spectra at the two detectors, we can take the ratio

κ (pT ) =
dN/(d2y dpT )

∣∣
θp=π/2

dN/(d2y dpT )
∣∣
θp=π/8

. (5.10)
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Figure 5.7 shows how building the ratio of spectra at two different angles exploits the dent seen earlier.
Such a hypothetical detector set-up would be advantageous, as the measurement at midrapidity would
serve as a reference to which the spectra at some other angle could be compared to. The spectra for
large isotropization times are suppressed in the high-momentum region. This is reflected by the
growing ratio κ, which is almost two orders of magnitude larger for τiso = 2fm/c compared to τiso = τ0
at pT = 8 GeV/c.
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Figure 5.7: The ratio of spectra as defined in Eq. (5.10). The lowest line represents this
ratio κ for an isotropization time τiso = τ0, larger τiso lie successively higher in this plot. With
increasing τiso, the ratios become larger and the dent in the spectra at θp = π/8 translates
to a more pronounced curvature in this plot. Notice the special sensitivity of the ratio κ to
rather early isotropization times τiso < 0.5 fm/c. γ = 2, δ = 2, b = 0.

We have shown that the isotropization time in the used models have a noticeable effect on the spec-
tra. If one considers a ratio of two spectra at two different emission angles, this effect becomes even
more pronounced. Therefore, even without time-resolving detection schemes, one can obtain indirect
information about the evolution of the anisotropy parameter. A larger value of the anisotropy param-
eter ξ would strongly indicate that double pulses can be produced, although they can not be directly
measured this way.

In the next Chapter, we investigate the possibility of using identical particle correlation functions
to detect the effect of possible double pulses. These correlations have the property that the time
evolution of the considered particle source directly translates to a function in momentum space.



I shot an arrow into the air
It fell to earth I knew not where;
For so swiftly it flew, the sight
Could not follow it in its flight.

– Henry Wadsworth Longfellow,
The Arrow and the Song 6

Hanbury Brown - Twiss Correlations

6.1. Overview

We have seen in the last chapter, how the time-integrated quantity, the spectrum, can give hints on
a few parameters that have been used in our model so far. In this chapter, we focus on a different
method that may provide better insight into the spatiotemporal evolution of the quark-gluon plasma.
The so-called Hanbury Brown - Twiss correlations (HBT) provide a measurable quantity on the basis
of Bose-Einstein quantum statistics.

After an introduction on the concept of HBT correlations and their application to high energy physics,
correlation functions are calculated based on the same model that has been used to calculate the photon
pulses and spectra.

Extensive introductory and review articles on this topic can be found in e.g. Refs. [89–93].

6.2. The HBT correlation function

Two-particle intensity interferometry was first devised by British physicists Robert Hanbury Brown
and Richard Q. Twiss [94], who applied their method to measure the angular size of the star Sirius
[95]. In 1960, Goldhaber et al. [96] used intensity interferometry to derive the size of the annihilation
fireball in proton-antiproton collisions.

Following the treatment of Refs. [90, 91], we start by considering two bosonic particle emitters A
and B. These emitters send out particles with the same energy at (tA,xA) and (tB,xB) respectively,
where xA and xB denote the positions of the emitters. At some later times t1 and t2, the particles are
detected at two detectors D1 and D2, placed at x1 and x2. The two emitters may be part of a larger
source body, as shown in Fig. 6.1.

The dashed lines in Fig. 6.1 indicate the alternative path of the particles being detected at D1 and D2.
Since we cannot retrace the path that a certain particle has taken, we need to include both possibilities
when forming a detection amplitude. In a wave picture employing spherical waves, one can write the
amplitude A1 (A2) measured at the detector D1 (D2) as

Ai ∝
a

L
ei[kriA−φA] + b

L
ei[kriB−φB ] (6.1)

where L is the approximate distance riA = |xA − xi| ≈ |xB − xi| = riB between sources and detectors
and i is the index of the detector (1,2). The magnitude of the wave vectors of the particles are denoted
by k = |k1| = |k2|, a and b are the constant source amplitudes, φA and φB are two random phases

81
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A(tA,xA)

B(tB,xB)

D1(t1,x1)

D2(t2,x2)

Figure 6.1: Schematic diagram of the emitters (A, B) and detectors (D1, D2) in the Han-
bury Brown - Twiss scheme. The vectors k1 and k2 are differently oriented, but have same
magnitude |k1| = |k2| = k. The dashed lines represent alternative paths, which particles
emitted at (A,B) and detected at (D1, D2) can take.

related to the emission and detection times ta (t1) and tb (t2). We assume that the distance L between
source and detectors is much larger than the distance between the detectors d = x1−x2 or the distance
between the two point-like emitters R = xA − xB. The relation R, d� L (R = |R|, d = |d|) holds in
both the astronomical as well as the high energy physics scenario.

The intensity Ii is the squared modulus of the amplitude and reads

Ii = |Ai|2 = 1
L2

(
a2 + b2 + 2 a b cos[k(riA − riB)− (φA − φB)]

)
. (6.2)

Taking the time average of an intensity Ii is equivalent to averaging over a sufficiently large amount
of random phases φA and φB. In this average, the cosine term in Eq. (6.2) vanishes:

〈Ii〉 = a2 + b2

L2 . (6.3)

Thus, by taking the average of such a measured intensity at each detector, we cannot draw any
conclusions on the spatial separation R of the two emitters. The more interesting observable here
is the so-called coincidence rate, which is the joint probability of observing two particles at both
detectors. It is formed by multiplying the intensities I1 and I2 before taking the average. Expanding
the product I1 · I2 yields, among others, six cosine terms, of which five contain the phase φA−φB. As
before in the time average, the cosine terms with the phases drop out and the averaged coincidence
rate is

〈I1I2〉 = 〈I1〉〈I2〉+ 2 a2 b2

L4 cos[k(r1A − r1B)− k(r2A − r2B)], (6.4)

and the two-particle correlation function is

C2 = 〈I1I2〉
〈I1〉〈I2〉

= 1 + 2 a2 b2

[a2 + b2]2 cos[k(r1A − r1B − r2A + r2B)]. (6.5)

The form of the correlation function given in Eq. (6.5) can be further simplified. For an application
in high energy physics, the size of the source is much smaller than the separation of the detectors and
in this limit R� d, the cosine term reduces to (see Appendix C)

cos(R[k1 − k2]). (6.6)
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The momentum difference k1 − k2 is accessible via experimental control, and the evaluation of the
correlation function would yield a value for R.

In a few words, one can summarize the relevance of HBT correlations with regards to high energy
physics as following: the measurement of C2 can give us insight on the spatial extent of the photon
emitting volume.

Moving away from two point-like emitters to a continuous source with finite size, one could adapt a
more suitable approach to the matter, as done by D. Neuhauser [97]. In this approach, the quark-gluon
plasma1 is modeled as a sum of N currents that are randomly oriented in space.

In this current formalism, the n-photon inclusive distribution function is defined as

P (k1 . . . k2)An = 〈|Mε1k1 |
2 . . . |Mεnkn |2〉, (6.7)

where the An are some normalization factors and the Mi denote the amplitude to produce a photon
with momentum ki and polarization εi. The two-photon correlation function is

C2(k1,k2) = P (k1,k2)
P (k1)P (k2) . (6.8)

The amplitudes Mi are considered to be connected to classical currents J:

Mε,k = ε ·J(k), (6.9)

with J(k) being the Fourier transform of the current

J(x, t) =
N∑
l

jl(x− xl, t− tl) (6.10)

and

J(k) =
N∑
l

jl(k)ei k ·xl . (6.11)

The above sum represents a summation over all partial currents jl within the fireball. Every partial
current jl arises from a collision of two nucleons in the fireball. After performing the spatial averages
over the random currents (see Appendix D), one gets the following result for the two-photon correlation
function:

C(k1,k2) = 1 + 1
4
(
1 + [k̂1 · k̂2]2

) (
|ρ(q)|2 + |ρ(p)|2

)
, (6.12)

with p = k1 + k2, q = k1 − k2, and ρ being the Fourier transformed space-time source density of the
photon emitting region. The important point in this result is the fact that the Fourier transformation
is applied to the three spatial components as well as to the temporal component of the source function.
Hence, the correlation function is sensitive to the whole spatiotemporal evolution of the quark-gluon
plasma until its freezeout.

As is the case with spectra, correlation function measurements of pions only yield information about
the freezeout surface and are therefore not suitable to investigate the internal dynamics of the QGP.
Pions, however, are easier to measure than direct photons, and can be used to study other effects,
such as elliptic flow [98].

1Also referred to as "fireball" in e.g. Ref. [97]
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6.3. Analytic double pulse model

Before we start engaging in numerical computations, the analytic result (6.12) in the chaotic current
formalism from Ref. [97] allows us to compute the correlation function for a certain source distribution
function ρ. This result is limited to a fully chaotic source, meaning that there are no coherence effects
from e.g. some collective deceleration of the fireball. By employing a source function that shares some
common features with the photon rate we used throughout, we may be able to predict the form of C2
and its sensitivity to one or more model parameters.

The photon source density is usually modeled as a Gaussian in 3+1 dimensions

ρ(x) ∝ exp
(
− x2

2R −
t2

2τ2

)
, (6.13)

where R and τ can be interpreted as the radius and the lifetime of the fireball respectively, and τ is
not to be confused with the proper time. A minimalistic extension of a Gaussian source would be to
add a second, time delayed Gaussian:

ρ(x) ∝ exp
(
− x2

2R2

)[
a1 exp

(
−(t− t1)2

2τ2
1

)
+ a2 exp

(
−(t− t2)2

2τ2
2

)]
. (6.14)

This extension mimics the second maximum in the photon production rate by employing two peaks
in the time direction with maxima at t = t1 and t = t2, as well as lifetimes τ1 and τ2. The amplitudes
a1 and a2 fulfill a1 + a2 = 1, so that this extended Gaussian reduces to the original one in Eq. (6.13)
for t1 = t2 = 0. A Gaussian like this is easily transformed into momentum space:

ρ(k) =
∫
d4x eikx ρ(x) =

= exp
(
−1

2k2R2
)[

a1 exp
(
ik0t1 −

1
2k

2
0τ

2
1

)
+ exp

(
−ik0t2 −

1
2k

2
0τ

2
2

)]
.

(6.15)

Appropriate normalization constants have been chosen. For a rough idea on how this new double
Gaussian affects the HBT function, we can simplify the source by choosing a1 = a2 as well as t1 =
−t2 = tD/2 and τ1 = τ2 = τ , which corresponds to two pulses with same height, separated by tD
(Fig. 6.2).

In this rather symmetric configuration, the Fourier transformed density can be written as

ρ(k) = exp
(
−1

2[k2R2 + k2
0τ

2]
)

cos(k0tD/2). (6.16)

Hence, the implementation of a second Gaussian pulse to the source function modifies the original
density by an additional cosine factor, which depends on the photon energy and the pulse separation
tD.

To demonstrate how the correlation function changes with the pulse separation, we investigate the
simplest HBT geometry. This special case is given by the choice of the two photon vectors k1 and k2,
which we set parallel to each other, k1 ‖ k2. The remaining degree of freedom is the photon energy
difference, so we choose k1 = k2 + q. The source density in Eq. (6.14) exhibits a spatial spherical
symmetry, so we can place the two photon vectors along any arbitrary direction.
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Figure 6.2: The double Gaussian with τ = 0.2 at x = 0. The peaks are separated by tD
and their maxima are located at t = ±tD/2.

If |k2| � 1
2R and |k2| � 1

2τ , the term ρ(p) = ρ(k1 + k2) is small against ρ(q) = ρ(k1 − k2) and can be
neglected. This is a scenario we encounter for photons in the GeV range:

C2(q) = 1 + 1
2

∣∣∣∣ exp
(
−1

2q2R2 − 1
2[q(0)]2τ2

) ∣∣∣∣2 · cos2(q(0) tD/2) =

= 1 + 1
2 exp

(
−q2R2 − [q(0)]2τ2

)
· cos2(q(0) tD/2)

(6.17)

Before plotting and interpreting the correlation function for some parameter set, one should consider
a few points. Firstly, the source function in Eq. (6.14) is apparently not rapidity invariant and is given
strictly in laboratory coordinates. Consequently, the separation time cannot be simply related to the
isotropization time, which is given in the local rest frame. Secondly, the spatial extent of the plasma
is defined by R, which also holds for the size in the longitudinal direction. This is in contradiction to
our previous model assumption that the plasma is much larger along the beam than in the transverse
directions. These are reasons, why parameters used for this analytic demonstration can not give any
quantitative predictions for the full numerical treatment.

Figure 6.3 shows the correlation function for two different values of tD. This plot already demonstrates
the main characteristics of a HBT function. For photons with two polarization degrees of freedom,
the correlation function is bounded between 1 and 3

2 [99], and its width is mainly determined by the
spatiotemporal extent of the source. Larger R and τ would result in a narrower correlation function.
The dashed line in Fig. 6.3 shows C2 for a very large pulse separation time. The squared cosine
term exhibits a period of 2π/tD, which in the case of tD = 10 fm/c is about 125 MeV/c - the second
maximum of the oscillation is clearly visible in that region in Fig. 6.3.

We conclude that in order to see a noticeable effect from the anisotropy induced photon rate suppres-
sion on the HBT correlation function, we need similar prerequisites as in the time-resolved detector
signal. Larger centralities result in smaller plasma sizes and a broadening of the correlation function,
which in turn make the oscillating portion visible for smaller tD.
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Figure 6.3: Two-photon correlation function C2 as a function of momentum difference q.
The curves show the HBT function for different separation times tD. The spatial radius R and
the overall lifetime τ of the double-Gaussian source determines the width of the HBT function
in momentum space, whereas the separation time is responsible for oscillations. R = 2 fm,
τ = 1 fm/c

6.4. Calculating the correlation functions

In terms of the four-dimensional differential photon rate, the two-photon correlation function is still
given by Eq. (6.8), where [100]

P (k) =
∫
d4x

dR(x,k)
d4x d3k

(6.18)

and
P (k,k′) =

∫
d4x1 d

4x2
dR(x1,k)
d4x1 d3k

dR(x2,k′)
d4x2 d3k′

[
1 + 1

2 cos(∆k ·∆x)
]
, (6.19)

with

∆k = k − k′, (6.20a)
∆x = x1 − x2. (6.20b)

A slightly different form of the HBT correlation function was suggested in Ref. [101], which automat-
ically ensures that the quantum statistical bounds for a fully chaotic source are not violated:

P (k,k′) =
∫
d4x1 d

4x2
dR(x1,

k+k′
2 )

d4x1 d3k

dR(x2,
k+k′

2 )
d4x2 d3k′

[
1 + 1

2 cos(∆k ·∆x)
]
. (6.21)

In the following calculations, we use the same model for the QGP as was implemented in the calculation
of the double pulses as well as the spectra (see Chapter 4 and Chapter 5). As we need to integrate
over the four-dimensional volume of the plasma, it is appropriate to switch to rapidity and proper
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time variables, as was done to calculate spectra. In these coordinates, the position and momentum
vectors are

xi =


τi cosh yi
rx,i
ry,i

τi sinh yi

 (6.22)

and

ki = ωi


1

sin θi cosϕi
sin θi sinϕi

cos θi

 . (6.23)

To avoid confusion, the usual notation for the spatial x and y coordinates has been changed to rx and
ry respectively. The scalar product ∆k ·∆x can be expanded as

∆k ·∆x = (k1 − k2)µ(x1 − x2)µ (6.24)

and we collect the terms according to their index (1) or (2):

∆k ·∆x =
2∑
i=1

(−1)i+1{τi[(ω1 − ω2) cosh yi − (ω1 cos θ1 − ω2 cos θ2) sinh yi]

− rx,i[ω1 cosϕ1 sin θ1 − ω2 cosϕ2 sin θ2]
− ry,i[ω1 sinϕ1 sin θ1 − ω2 sinϕ2 sin θ2]

}
=

2∑
i=1

Γi.

(6.25)

This separation of the terms with respect to τi, rx,i, ry,i and yi, which are being integrated over, allows
to rewrite the cosine term as

cos(∆k ·∆x) = cos(Γ1 + Γ2) = cos Γ1 cos Γ2 − sin Γ1 sin Γ2. (6.26)

Since the Γi only contain integration variables of the same index i and the photon rates in Eq. (6.21)
have the same argument, the integration over d4x1 and d4x2 can be performed independently. Thus,
the eight-dimensional integral has been effectively reduced to two four-dimensional integrations:

C2(k,k′) = 1 + 1
2

(∫
d4x dR(x,[k+k′]/2)

d4x d3k cos Γ
)2

+
(∫

d4x dR(x,[k+k′]/2))
d4x d3k sin Γ

)2

P (k)P (k′) , (6.27)

where

Γ =
{
τ [(ω1 − ω2) cosh y − (ω1 cos θ1 − ω2 cos θ2) sinh y]

− rx[ω1 cosϕ1 sin θ1 − ω2 cosϕ2 sin θ2]
− ry[ω1 sinϕ1 sin θ1 − ω2 sinϕ2 sin θ2]

}
,

(6.28)

with the four-dimensional integration measure

d4x = τdτ dy drx dry. (6.29)
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The two integrals in Eq. (6.28) have to be evaluated for every pair of momentum vectors k and k′. Due
to the sine and cosine terms, the integrand shows oscillatory behavior. To compute the correlation
function, the integration has been split up into two parts. The rapidity and proper time coordinates
are being integrated first using Mathematica’s integration strategy OscillatorySelection, which is
specifically aimed at oscillating integrands with finite boundaries. In a second step, the remaining
integration over the two spatial coordinates rx and ry is performed.

To compute the correlation function for a pair of photon wave vectors k and k′, one needs to perform
a total of four integrations. Using the implementation in Mathematica, the computation time of C2 for
two specific photon vectors is around one to ten minutes, depending on the needed numerical accuracy.

6.4.1. Collinear configuration

We focus on a very simple configuration at first. The two photon vectors are fixed to point into the
same direction (k ‖ k′) at an angle θ away from the beam axis, only differing in magnitude:

k = k′ + q. (6.30)

We will start by investigating the correlation function as means to extract the spatial size of the quark-
gluon plasma. For this task, we can point the photon vector pair towards midrapidity (θ = π/2) and
calculate the correlation function at different impact parameters.

Per definition, C2 should be exactly 3
2 at q = 0. In some the following plots, the correlation functions

do not always reach C2(0) = 3
2 . The main reason for this apparent inconsistency with the quantum

statistical bound [99] is the oscillating integrand. If the two photon vectors have the same magnitude
and are almost parallel, the argument in the cosine and sine terms in Eq. (6.27) can be considered
small and the integrand does not oscillate heavily - compared to a situation where the two photon
vectors are separated by some larger finite angle or a larger momentum difference. In such a situation,
the integration kernel that is tailored to oscillating integrands is not very effective and may treat
numerical artifacts arising from the linear interpolation of the photon rate data(see Fig. 3.12) as some
oscillation period. Other integration strategies, however, require very long computation times at large
separation angles or large momentum differences. For practical reasons, we choose to use the oscillatory
integration strategy throughout the calculations, since we are mostly interested in qualitative figures.
A more elaborate technique to tackle this problem would be to analyze the integrand for a given photon
pair and to check which integration strategy is more advantageous. In addition to the calculations
which produced the plots in this chapter, we calculated the HBT function C2(0) for those curves,
which did not reach C2 = 3

2 with a different integration strategy and found all of them in agreement
with the quantum statistical bound.

Figure 6.4 shows how smaller QGP sizes widen the correlation function. The curves for larger
isotropization times in this configuration only differ very slightly, which means that the HBT function
is not sensitive towards the lifetime of the QGP if the photon vectors point towards midrapidity.

Moving away from midrapidity, we point our photon vector pair into forward direction, θ = π/4, and
then vary the isotropization time. Doing so reveals an interesting feature for a large value of τiso
(Fig. 6.5). First, we see that longer isotropization times have an effect on the HBT function, if the
photon vectors point away from midrapidity - larger τiso reduce the width of C2. For τiso = 2 fm/c,
the correlation function exhibits a plateau-like shape between 1 and 2 GeV/c. Increasing τiso to
unrealistically high values reveals an even more remarkable new shape (Fig. 6.6), the plateau turned
into a second, distinct peak, similar to Fig. 6.3. The dashed, blue line represents the correlation
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Figure 6.4: Two-photon correlation function at different impact parameters b. Large plasma
sizes and therefore small b result in a quenched HBT function. Small plasma sizes are therefore
necessary to observe any kind of modulation to the trivial shape of the correlation function.
τiso = τ0, |k′| = 2 GeV/c, θ = π/2.

function with the same parameters except for a much shorter transition width.

Turning back to reasonable scenarios, such as τiso ≤ 2 fm/c and γ = 2, we can scan through different
angles θ and try to determine when the plateau starts to emerge (Fig. 6.7).

Figure 6.7 reveals two aspects. First, the photon rate suppression does not have the same maximal
effect on the HBT function at lowest angles, as was the case in the time-dependent photon signal.
The second peak or plateau starts emerging noticeably at θ = π/8 and moves towards lower momen-
tum differences q as well as growing in amplitude with increasing angle. Secondly, the width of the
correlation function decreases as the angle grows.

The measurement of direct photon correlations is a particularly difficult task for almost the same
reasons as measuring direct photon spectra. There have only been very few HBT measurements
from QGP photons in heavy-ion colliders [102–105]. In this section, we have restricted ourselves to
the simplest possible geometry to perform the computation of the HBT function, as was done in
e.g. Ref. [100]. As of now, it is not possible to measure collinear photon correlations in a calorimeter
[106]. While there is the conceptual possibility to use the conversion of photons to e−e+-pairs in the
calorimeter to measure the collinear HBT function, this would require a good knowledge on the angle
dependence of C2. The minimal angle for a photon pair to be registered as individual particles is
determined by the physical resolution of the detector.

In experiments, the full detector surface is utilized to gather data, which is then processed to extract
the correlation function. To reconstruct a scenario for a given detector geometry, the integration would
have to be extended to all possible combinations of photon pairs, including some energy cuts as well
as restrictions on the angle between the photon momentum vectors [93]. Such an integration over six
more degrees of freedom d3k d3k′ is not feasible on an ordinary desktop computer anymore and would
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Figure 6.5: Two-photon correlation function at different isotropization times. Strong os-
cillations, as indicated by Fig. 6.3 are not seen. Nevertheless, we see the expected behavior
of the width of the HBT function with respect to τiso. Larger isotropization times lengthen
the lifetime of the plasma, expanding its four-volume. This results in a less wide correlation
function, similar to Fig. 6.4. |k′| = 2 GeV/c, θ = π/4, b = 10 fm.

require massive parallel computing to finish in an affordable time.

We make a quick estimation on how much computation time a discretized version of the problem can
take. Using the ansatz from Ref. [93], the projection of the correlation function onto transverse and
longitudinal components of the momentum difference q can be written as

Cproj
2 (qT , qL) =

∫
d3k1d

3k2 P (k1, k2)A(qT , qL; k1, k2)∫
d3k1d3k2 P (k1)P (k2)A(qT , qL; k1, k2) , (6.31)

where A(qT , qL; k1, k2) is a window function that includes the energy cuts as well as angle difference
cuts inspired by the experimental procedures. We turn the integrals in Eq. (6.31) into sums and
therefore discretize the detector into a spatial grid. Considering such a grid with m horizontal and n
vertical segments, the number of possible combinations to point the two photon vectors towards two
distinct detector segments is given by (

m ·n
2

)
. (6.32)

We then assume the length of the vectors to be discretized into q segments, which leads to q2 possible
combinations for both vectors:

Npos =
(
m ·n

2

)
q2 = (m ·n− 1) · (m ·n) · q

2

2 . (6.33)

For a spatial grid of m = n = 32 → m ·n = 1024 detector segments and q = 8 different photon
momenta, we already have roughly 33.5 million possible photon pair combinations. The current
implementation used to calculate the HBT function for the collinear case takes about 10 s to compute
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Figure 6.6: C2 at rather extreme values of τiso and two different values for the transition
width γ. The second peaks of the HBT functions show that the concept of a double-Gaussian
introduced and shown Fig. 6.2 partially holds for a photon rate with larger transition param-
eters. |k′| = 2 GeV/c, θ = π/4, b = 10 fm.

the single-inclusive distribution P (k1). The two-particle distribution function P (k1, k2) already needs
at least a minute of computation time. According to Eq. (6.31), we need to sum over all photon pair
combinations twice, each combination taking 2 × 10 s and 60 s respectively. For our small grid, this
would already take around 750,000 CPU hours, just to compute Cproj

2 for a single pair (qT , qL)! While
this is a worst-case estimate in terms of the amount of vector pair positions, the computation time
of Eq. (6.28) can significantly increase past the 60 s mark for large momentum differences or large
relative angles.

6.4.2. Correlations for non-collinear configurations

In this section we consider another photon pair configuration that only features one degree of freedom.
The configuration with relative photon vector angles does not suffer from the drawback that identical
particles have to be registered at the same detector segment, which is of practical difficulty. One
photon momentum vector is fixed in the reaction plane, whereas the other is varied at a different
angles. The magnitude of both vectors is kept fixed, turning the relative angle between the vectors
into the only degree of freedom. Figure 6.8 illustrates the position of the vectors.

In Section 3.4 we have computed differential photon rates for angles 0 ≤ θp ≤ π/2. Within the reaction
plane (x-z-plane), we consider the photon rate to be symmetric for polar angles larger than π/2, so
that

0 ≤ θp <
π

2 =⇒ θp, (6.34a)
π

2 ≤ θp ≤ π =⇒ π − θp. (6.34b)
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Figure 6.7: HBT function for different angles θ. The plateau emerges at θp = π/6 and
exhibits a minimum which looks similar to the oscillating features in Fig. 6.3. For a larger
angle θp = π/4, the second peak closes in to the main Gaussian structure of the HBT function
and creates a plateau. γ = 2, τiso = 2 fm/c, |k′| = 2 GeV/c, b = 10 fm.

HBT correlations for photon pair configurations as depicted in Fig. 6.8 are shown in Fig. 6.9. The
polar angle θ1 is fixed at 10◦ for the first momentum vector, the second vector is varied with respect
to the relative angle θrel between the two vectors. This specific angle has been chosen to match
the proposed CBM detector’s rapidity coverage of 1.7 ≤ η ≤ 2.5 [84]. Both vectors have the same
magnitude |k1| = |k2| (4 − 7 GeV in Fig. 6.9). If one considers the HBT functions for two different
plasma isotropization times, one notices a plateau structure for τiso = 2 fm/c, similar to the collinear
configuration shown in Fig. 6.5.

The correlation functions in Fig. 6.9 were calculated with a plasma transition parameter γ = 0.5.
At higher values for this parameter, thus a sharper transition, the plateau is reduced. This is in
contrast to Fig. 6.6, where sharper transitions lead to a more distinct shape of the correlation function.
Considering the correlation functions in Fig. 6.9, we see that the HBT function drops to 1 at relative
angles larger than ≈ 25◦. As an outlook for further computations on a discretized grid (see end of
Section 6.4.1), this reduces the amount of pair configurations which one has to consider, since photon
pair vectors separated by a certain maximal angle do not show any correlation.
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Figure 6.8: Illustration of a non-collinear photon pair configuration in the reaction plane
(gray grid). The relative angle θrel is the only quantity which is varied, while the magnitude
of the vectors k1 and k2 is held fixed.
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Figure 6.9: HBT correlations as a function of the relative angle of the photon momentum
pair θrel as seen in Fig. 6.8. A plateau structure similar to Fig. 6.5 arises for large isotropization
times. Additionally, the shapes of the HBT functions show a dependence on the magnitude of
the photon momentum vectors - the plateau structures move towards smaller relative angles
at increasing |k1|. θ1 = 10◦, γ = 0.5, b = 10 fm.



7
Summary and conclusions

The aim of this thesis is to study the effects of photon double pulses in spectra or intensity correlations.
To start, we describe the mechanism to create these double pulses from an anisotropic quark-gluon
plasma both in a phenomenological as well as in a quantitative way. It was shown that these time-
dependent signals are highly sensitive to the model parameters that characterize the QGP in the
calculations. A toy model for a one-dimensional plasma was constructed and used to infer properties
of the pulse shapes in an analytic way, such as the location of the second peak of a double pulse
structure.

Direct photons are regarded as a promising tool to probe the internal QGP dynamics, as they are
produced throughout the total lifetime of the plasma. As of now, there is no established theoretical
or practicable method of measuring time-resolved signals on the order of yoctoseconds. The lack of
employable methods to measure or characterize photon signals on these short timescales forces us to
reformulate the question. We can not directly measure the photon pulses themselves, but there may
well be a way of detecting an indirect signal, one that is sensitive to the same mechanisms which give
rise to double pulses.

Time-integrated spectra are the first choice for an investigation, as such measurements have already
been performed at various experimental facilities. It is expected that experiments at the LHC and
at FAIR will record direct photon spectra in the near to foreseeable future. The proposed detector
geometry at FAIR is especially relevant, as the calorimeter is placed in forward direction. This range is
of special interest, as double pulses only arise at lower emission angles due to the enhanced suppression
of the photon rate caused by the anisotropy buildup. We have calculated spectra for various plasma
isotropization times and found that ratios of two spectra, measured at two different angles, for example
at midrapidity and in forward direction, provide a quantity which is even more sensitive to τiso than
the single-inclusive spectra themselves.

A different approach that we studied are Hanbury Brown-Twiss correlations. By exploiting the quan-
tum statistical properties of a particle emitting source, the complete spatio temporal evolution of the
plasma can be encoded in such a correlation function. These two-particle correlations can be func-
tions of momentum space or separation angle of the photon pair. This way, the QGP dynamics at a
timescale of yoctoseconds can be made partially accessible. We calculated photon pair configurations
with one degree of freedom, such as the aforementioned momentum difference or separation angle.
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Outlook

A number of open questions remain regarding both the photon pulses as well as an indirect signal via
spectra or photon pair correlations.

Extend HBT calculations. Calculations of the HBT correlation functions were carried out for
scenarios, where only one degree of freedom was considered. In order to compare the results with
experimental data, the calculation has to be extended to realistic detector geometries, covering more
degrees of freedom for the photon pair positions. This is a numerical challenge, as the amount of
possible vector pair configurations increases the computation time significantly. Strategies have to
be established to deal with the oscillating integrand and speed up the numerical integration while
maintaining a sufficient level of precision.

Transverse QGP expansion. In the current calculations, the transverse expansion of the quark-
gluon plasma was neglected, as it is small compared to the longitudinal expansion, particularly during
the interesting initial stage of the collision. Since most of the interesting effects occur at large impact
parameters, the transverse expansion may not be negligible anymore. Incorporating the possibility of
a transverse expansion would require a new treatment of calculating the photon production rate in an
anisotropic QGP.

Viscosities. Experimental findings suggest to treat the quark-gluon plasma as a strongly coupled,
near-perfect fluid. The related effect of elliptic flow is stronger at peripheral collisions, where the
double peak structure appears in the photon signals. Reference [48] investigated how the inclusion
of viscosities in the hydrodynamical description of the QGP affects the direct photon spectra at an
emission angle of π/2. An improved model of QGP dynamics would modify the calculated shape of
the photon pulses and may have an influence on the HBT correlations as well.

Mixed phase contributions. In our calculations, only photons created in the pure QGP phase are
considered. After the temperature of the plasma drops below the freezeout temperature, the photon
production rate is set to zero at this specific point in space. Introducing a mixed phase, where the
photon production rate is a certain fraction of that in the pure QGP phase, would prolong the lifetime
of the photon emitting volume and also have an influence on the photon pulse shapes.

Coherence. The calculations start at a formation time τ0, some finite time after the collision impact.
An open question is how the initial collision at t = 0 has an effect on potential spatial coherence for
the photons created in the QGP. What contributions can we expect from bremsstrahlung photons
that arise during the collective deceleration after the initial impact?

Dileptons. Dileptons in the QGP context are lepton pairs that are created from real or virtual
photons. As such, they should show similar dependence on the anisotropy and its evolution throughout
the QGP lifetime. Thermal dilepton spectra will be investigated at the LHC [107].



A Feynman rules for quantum chromodynamics
These are the Feynman rules for QCD in momentum space [64] used for the calculations in Chapter 3.
The rules are derived from the QCD Lagrangian which is given by

LQCD =
nf∑
f=1

ψf (i /Dµ −mf )ψf −
1
4G

a
µνG

µν
a . (A.1)

Quarks with masses mf are represented by spinors ψ with flavor index f . The covariant derivative
Dµ = ∂µ − igAµ with Lorentz index µ contains the gauge fields Aµ = AaµTa with the gauge group
generators Ta, where a is the index of the adjoint color space. The Yang-Mills term includes the gauge
boson field strength Gaµν = ∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν with the quark-gluon coupling g and structure

constants fabc.

For the vertices including photons, the rules are derived from the QED Lagrangian:

LQED = ψ(i /Dµ −m)ψ − 1
4FµνF

µν . (A.2)

In the Abelian case of QED, the spinor ψ represents a fermion with mass m. The covariant derivative
is given by Dµ = ∂µ + ieAµ, where the coupling constant is the electric charge e. The field strength
tensor reduces to a simpler form compared to QCD, as the gauge fields Aµ do not commute: Fµν =
∂µAν − ∂νAµ.

Fermionic lines
p

incoming quark

us(p)ci

p

outgoing quark

ūs(p)c†
i

p

incoming antiquark

v̄s(p)c†
i

p

outgoing antiquark

vs(p)ci

External fermion lines. Quarks with momentum p and spin s are represented by spinors u and their
Dirac adjoint ū. Their structure in the fundamental color space is incorporated by color operators c
and c† [108] with color index i. Incoming lines have a color annihilation operator (c), while outgoing
quark lines feature color creation operators (c†). For antiquarks, the incoming lines have a Dirac
adjoint spinor v̄, whereas outgoing lines have spinors v. The color operators are exchanged as well.

p

quark propagator

i
/p + m

p2 − m2

p

antiquark propagator

i
−/p + m

p2 − m2

Quark and antiquark propagators for (anti)quarks with mass m and momentum p. Notice the sign
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difference for the antiquark propagator that occurs due to the momentum arrow pointing in the
opposite direction of the fermion line.

Bosonic lines
p

incoming gluon

εµ(p)af

p

outgoing gluon

ε∗
µ(p)[af ]∗

p

incoming photon

εµ

p

outgoing photon

ε∗
µ

External gauge boson lines. Incoming gluons with momentum p are represented by polarization vectors
ε which have a Lorentz index µ. They are objects in the adjoint color space, which is implemented by
color operators a that have a adjoint color index f . Outgoing gluons are constructed via the complex
conjugate polarization vectors ε∗µ. Photons are represented by polarization vectors as well, but they
do not feature adjoint color indices.

Vertices

µ, f

quark-gluon vertex

−igsT
fγµ

µ

quark-photon vertex

−ieQγµ

QED and QCD vertices including fermions. The Feynman rules for the quark-gluon vertex contains
the gauge group matrices T with adjoint color index f as well as the strong coupling constant gs. The
QED vertex is analogous, where the coupling is replaced by eQ and Q represents the quark charge
in units of the elementary electric charge e. Other vertices including ghosts or the remaining gluon
vertices were not used in the calculations and are omitted here.



B Conjugate of the Compton scattering matrix element
The matrix element

(iMqg→qγ)† = c†iu
s†
δ′ (p1)

(
+ieQ [γµ

′

γ′δ′ ]
†
)
εµ′(p)

−i( /q2 +m)†β′γ′
q2

2 −m2 a†fε
∗
ν′(p3)

×
(
+igs[γν

′
α′β′ ]†[T f ]†

)
cj ū

s′†
α′

+ us†δ′
(
+igs[T f ]†[γν′γ′δ′ ]†

)
a†fε
∗
ν′(p3)

−i( /q1 +m)†β′γ′
q2

1 −m2 εµ′(p)

×
(
+ieQ [γµ

′

α′β′ ]
†
)
cj ū

s′†
α′ ,

(B.1)

can be simplified by using the properties of the Dirac matrices and the adjoint spinors. Since

ūβ = u†αγ
0
αβ, (B.2)

the Hermitian conjugate is
(ūβ)† = (γ0

αβ)†uβ = γ0
αβuβ. (B.3)

Here we have used the hermiticity of γ0. In (B.1), we encounter terms like

(γµ
′

α′β′)
†ū†β′ . (B.4)

Since (γµ)† = γ0γµγ0, we can write using (B.3):

(γµ
′

α′β′)
†ū†β′ = (γµ

′

α′β′)
†γ0
β′γ′uγ′ = γ0

α′δ′γ
µ′

δ′ε′γ
0
ε′β′γ

0
β′γ′uγ′ = γ0

α′δ′γ
µ′

δ′γ′uγ′ . (B.5)

The relation in (B.5) allows us to pull the two γ0 matrices away from each (ū)† and through all Dirac
matrices, until we can attach them onto the conjugate spinors u† to form Dirac adjoint spinors ū
again. Using the hermiticity of the gauge group generators T f , (B.1) can be rewritten as

(iMqg→qγ)† = c†i ū
s†
δ′ (p1)

(
+ieQ γµ

′

δ′γ′

)
εµ′(p)

−i( /q2 +m)γ′β′
q2

2 −m2 a†fε
∗
ν′(p3)

×
(
+igsγν

′
β′α′T

f
)
cju

s′†
α′

+ ūs†δ′
(
+igsT fγν

′
δ′γ′

)
a†fε
∗
ν′(p3)

−i( /q1 +m)γ′β′
q2

1 −m2 εµ′(p)

×
(
+ieQ γµ

′

β′α′

)
cju

s′†
α′ .

(B.6)

The two sums in (3.1) and (B.6) can now be multiplied in order to obtain the squared modulus of the
scattering amplitude.
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C HBT function in the high-energy physics limit
Starting from Equation (6.5), we focus on the cosine term:

cos[k(r1A − r1B − r2A + r2B)]. (C.1)

In the high-energy physics scenario, the source is much smaller compared to the separation of the
detectors. Therefore the distance d = |d| is much larger than R = |R|. In this approximation, the
vectors r1A and r1B are assumed to be parallel, as are vectors r2A and r2B. The detailed HBT scheme
is illustrated in Fig. C.1.

A

B

D1

D2

k1, r1A

≈ k
2 , r2A

k2, r2B

≈ k1,
r1B

R d

r2B − r2A

r1B
− r1A

α

β

Figure C.1: Detailed HBT scheme (similar to Fig. 6.1). The lengths of the vectors are drawn
out of proportion for better legibility of the angles and labels.

We split up the argument of the cosine term in Eq. (C.1) into

k(r1A − r1B)− k(r2A − r2B). (C.2)

The distances in Eq. (C.2) appear in Fig. C.1 as magenta-colored segments. Considering the corre-
sponding right triangles, we can write

R sinα = r1B − r1A, (C.3a)
R cosβ = r2B − r2A, (C.3b)

which can be inserted into Eq. (C.2). With

k1 ·R = k R sinα, (C.4a)
(−k2) · (−R) = k R cosβ, (C.4b)

we can rewrite Eq. (C.1) as
cos(R · [k1 − k2]). (C.5)

One has to be careful with the signs of the vectors R, k1 and k2. R is defined as xA − xB, so the
triangle involving the angle β has to be spanned by R and k2 with negative signs.
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D The correlation function in the current formalism
This derivation follows Ref. [97] and Ref. [109]. We start by considering the total current in the fireball
J as a sum over all partial currents

J(x, t) =
N∑
l

jl(x− xl, t− tl). (D.1)

In this picture, the space-time coordinates (xl, tl) specify the l-th collision of two nucleons which each
produce an electromagnetic current. Hence the Fourier transform is

J(k) =
N∑
l

jl(k) eik ·xl , (D.2)

where
k = (|k|,k). (D.3)

Here, k and xl are four-vectors. To keep the model simple, a few restrictions have to be made. Usually,
one would expect an additional coherent current from the collective deceleration of the two nuclei.
This contribution is dropped and only incoherent currents are considered, so that

〈jl(k)〉 = 0. (D.4)

Coherent effects on the correlation function can also be neglected, since the photon energies of interest
are high enough. The model is now reduced to the most simple case, in which the incoherent currents
all have the same magnitude. As Neuhauser already pointed out, this is not a realistic case. The
collisions in the center of the fireball will probably differ from the more peripheral collisions in the
outer regions. Also, due to the mostly isotropic nature of the nuclear force, one expects two different
currents from two separate collisions to have no directional correlation whatsoever:

〈jl · jl′〉 = 0 ∀ l 6= l′. (D.5)

Using the aforementioned approximations, the current in momentum space is

J(k) = j(k)
N∑
l

v̂l exp(ik ·xl). (D.6)

Because of the two assumptions, the directional dependence is now only manifest in the random unit
vector v̂l. All the necessary assumptions are now made to calculate the one- and two-photon inclusive
distribution function

P (k) = 〈|Mε,k|2〉 = 〈|ε ·J(k)|2〉. (D.7)

Since the polarization of the photons is not known, we need to take an average and sum over all
polarizations. After inserting the parametrization of the classical current, the one-photon distribution
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function reads

P (k) =
2∑

λ=1
〈|ελ ·J(k)|2〉 =

2∑
λ=1
〈|ελ · j(k)

N∑
l=1

v̂l exp(ik ·xl)|2〉. (D.8)

In the next step, the modulus is expanded (|z|2 = z · z̄):

P (k) =
2∑

λ=1

〈(
ελ j(k)

N∑
l=1

v̂leik ·xl

)(
ελ j

∗(k)
N∑
l′=1

v̂l′e−ik ·xl′

)〉
(D.9a)

=
2∑

λ=1

〈
N∑
l,l′

(ελ · v̂l)(ελ · v̂l′)j(k)j∗(k)eik(xl−xl′ )
〉

(D.9b)

=
2∑

λ=1
|j(k)|2

∑
l,l′

〈
(ελ · v̂l)(ελ · v̂l′)eik(xl−xl′ )

〉
. (D.9c)

The current can be pulled out of the average, since it has no spatial dependence. To evaluate the
time-average (which is equal to a spatial average here), one must take a closer look at the product of
polarizations and the random unit vectors. Assuming that during the time span, over one averages, the
random unit vector points in all directions, we need to average this product over all spatial directions
of v̂l:

〈(ε · v̂l)(ε′ · v̂l′)〉 = 1
4π

∫
dΩ (ε · v̂l(ϑ, ϕ))

(
ε′ · v̂l(ϑ, ϕ)

)
δll′ (D.10)

To see why only the average with the condition l = l′ survives (δll′), one needs to visualize the
averaging. The two polarization vectors ε and ε′ are held fixed in space, whereas the random vectors
are integrated over all directions. If v̂l and v̂l′ are two different vectors, then the averaging affects
each polarization vector individually:

〈(ε · v̂l)(ε′ · v̂l′)〉 = 〈ε · v̂l〉〈ε′ · v̂l′〉 (D.11)

Of course the averaging of such a dot product with only one vector held in place is zero and the term
vanishes completely. Thus the condition δll′ is imposed. What is left to do is to parametrize the
vectors in spherical coordinates (remember |v̂l| = |v̂l′ | = 1) and integrate over the total solid angle:

〈(ε · v̂l)(ε′ · v̂l′)〉 = 1
4π

∫ π

0

∫ 2π

0
dϑdϕ sinϑ (εr sinϑ cosϕ+ εϑ sinϑ sinϕ+ εϕ cosϑ)

×
(
ε′r sinϑ cosϕ+ ε′ϑ sinϑ sinϕ+ ε′ϕ cosϑ

)
δll′ (D.12a)

= 1
3(ε · ε′)δll′ . (D.12b)

With this result, P (k) reduces to a simple form:

P (k) =
2∑

λ=1
|j(k)|2

N∑
l,l′

1
3(ε · ε )δll′〈eik(xl−xl′ )〉 =

2∑
λ=1
|j(k)|2

N∑
l

1
3(ε · ε′). (D.13)
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Now the polarization sum can be calculated using
∑
εiεj = δij − ninj , and in this case i = j:

P (k) =
N∑
l=1
|j(k)|2 1

3
(
δii − nini

)
= 2

3N |j(k)|2. (D.14)

The calculation of P (k1,k2) is analogous to the calculation of the one-photon distribution function.
This time, two different polarization vectors and the associated two different momenta appear:

P (k1,k2) = 〈|εk1 ·J(k1)|2|εk2 ·J(k2)|2〉 (D.15a)

=
∑

εk1 ,εk2

〈|εk1j(k1)
N∑
l

v̂leiklxl |2 |εk2j(k2)
N∑
m

v̂meikmxm |2〉 (D.15b)

=
∑

εk1 ,εk2

〈
(∑

l

εk1j(k1)v̂leik1xl

)(∑
l′

εk1j
∗(k1)v̂l′e−ik1xl′

)

×
(∑

m

εk2j(k2)v̂meik2xm

)(∑
m′

εk2j
∗(k2)v̂m′e−ik2xm′

)
〉. (D.15c)

The terms can now again be rearranged in the same manner as before. The currents are again pulled
out of the average, leaving only products of random unit vectors and polarization vectors.

P (k1,k2) =
∑
εk1,2

N∑
l,l′

N∑
m,m′

|j(k1)|2|j(k2)|2〈eik1(xl−xl′ )eik2(xm−xm′ )

×(εk1 · v̂l)(εk1 · v̂l′)(εk2 · v̂m)(εk2 · v̂m′)〉. (D.16)

The situation now is slightly different than in the calculation before. There are now several conditions,
under which the average of the last 4 terms is nonzero. Since always two unit vectors have to be the
same for a non-vanishing average, one needs to investigate the 3 possible cases δmm′δll′ , δlmδl′m′ and
δlm′δl′m and can use the relations derived for P (k).

δll′δmm′ : 〈(εk1 · v̂l)(εk1 · v̂l)(εk2 · v̂m)(εk2 · v̂m)〉 = 4
9 , (D.17a)

δlmδl′m′ : 〈(εk1 · v̂l)(εk2 · v̂l)(εk1 · v̂l′)(εk2 · v̂l′)〉 = 1
9(εk1 · εk2)2, (D.17b)

δlm′δl′m : . . . = 1
9(εk1 · εk2)2. (D.17c)

The calculation was done in the same way as before, by parametrizing the unit vectors in spherical
coordinates and performing the integration over the full solid angle ( 1

4π
∫
dΩ). Now by carefully putting

the terms together and paying attention to how the Kronecker-deltas act on the exponential functions,
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one gets

P (k1,k2) =
∑
εk1,2

N∑
l,l′

N∑
m,m′

|j(k1)|2|j(k2)|2 1
9
(
4δll′δmm′ + (εk1 · εk2)2[δlmδl′m′ + δlm′δl′m]

)
×
〈
eik1(xl−xl′ )eik2(xm−xm′ )

〉
(D.18a)

=
∑
εk1,2

N∑
l,l′

N∑
m,m′

|j(k1)|2|j(k2)|2 (D.18b)

× 1
9
(
4 + (εk1 · εk2)2[〈eixm(k1+k2)e−ixm′ (k1+k2)〉+ 〈eixm′ (k1−k2)eixm(k1−k2)〉]

)
.

Using the definition of the ensemble average

〈eikx〉 =
∫
eikxρ(x)d4x = ρ(k), (D.19)

the final result is

P (k1,k2) =
∑
εk1,2

|j(k1)|2|j(k2)|2N
2

9
(
4 + (εk1 · εk2)2[|ρ(q)|2 + |ρ(p)|2]

)
(D.20a)

=
(2

3N |j(k1)|2
)(2

3N |j(k2)|2
)

×
(

1 + 1
4(1 + (k̂2 · k̂2)2)[|ρ(q)|2 + |ρ(p)|2]

)
(D.20b)

= P (k1)P (k2)
{

1 + 1
4
(
1 + (k̂1 · k̂2)2

)
[|ρ(q)|2 + |ρ(p)|2]

}
. (D.20c)

Here, the abbreviations q = k1− k2 and p = k1 + k2, were used and the summation over polarizations
was performed using ∑

ε

(ε · ε′)2 = 1 + (k̂ · k̂′)2. (D.21)

The single-photon distribution functions cancel in the full two-photon correlation function and the
final result is

C2(k1,k2) = P (k1,k2)
P (k1)P (k2) = 1 + 1

4
(
1 + (k̂1 · k̂2)2

) [
|ρ(q)|2 + |ρ(p)|2

]
. (D.22)

The density ρ(k) is the Fourier transformed source density of the photon emission region.
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