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Abstract

Within the past 20 years the speed of processors has grown much faster than that of memories.
To bridge the resulting performance gap, caching has been introduced. This thesis describes
the completely redesigned memory layer for the SPEAR2 core which serves as basis for the
integration of various cache controllers.
SPEAR2 (Scalable Processor for Embedded Applications in Real-time Enviroments) is a RISC
microprocessor architecture that was developed at the Department of Computer Engineering at
the Vienna University of Technology. Thanks to its real time capability and its modular structure,
this processor is especially suited to be used in embedded systems. In order to expand the
application area of the processor and to use the full address space provided by the architecture,
the SPEAR2 core must be equipped with additional storage capacity, i.e., data and instruction
memory need to be displaced into an external RAM module. The benefit of this approach comes
at the cost of a performance degradation as the SPEAR2 pipeline suffers from additional wait
states caused by the increased latency of external memory accesses. The implementation of an
internal cache memory therefore seems to be obligatory.
After providing a detailed theoretical background on the fundamental aspects of caching and
some recent advancements in this field, this master thesis proceeds with simulations in order to
find an appropriate caching strategy under the given constraints. The reader will be introduced
to SPEAR2SIM, a novel simulation environment for the SPEAR2 instruction set architecture
that allows an efficient performance assessment of different caching strategies from which three
candidates are selected. Their simulation results will be compared against the results of an
experimental implementation in VHDL in order to be able to select the best adapted caching
policy for a given application. Furthermore, practical problems and challenges of designing an
efficient cache controller for the given architecture will be pointed out. As a result of this thesis,
a novel prototype of the SPEAR2 processor with a new memory layer that can be equipped with
three different cache controllers (direct mapped, fully associative and two-way set associative)
is available.
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Kurzfassung

Innerhalb der letzten 20 Jahre stieg die Performance von Prozessoren um ein vielfaches schnel-
ler als jene von Speichermodulen. Um diesen enormen Leistungsunterschied zu überbrücken,
begann man Prozessoren mit Caches auszustatten. Diese Diplomarbeit beschreibt die komplette
Neugestaltung des Memory Layers der SPEAR2 Architektur, welche als Basis für eine anschlie-
ßende Implementierung verschiedener Cache Controller dient.
SPEAR2 (Scalable Processor for Embedded Applications in Real-time Enviroments) ist ein
RISC-Mikroprozessor, der am Institut für Technische Informatik an der Technischen Univer-
sität von Wien entwickelt wurde. Dank seiner Echtzeitfähigkeit und seiner modularen Struktur
ist SPEAR2 besonders gut für den Einsatz in Embedded Systems geeignet. Um das Anwen-
dungsgebiet jedoch zu erweitern, ist es notwendig die derzeit vorhandene Architektur mit mehr
Speicherplatz auszustatten. Dies kann nur geschehen indem Daten- und Instruktions-Speicher
aus dem FPGA in ein externes Speichermodul ausgelagert werden. Den Vorteil einer höheren
Speicherkapazität bezahlt man jedoch mit einer enormen Leistungsverschlechterung, bedingt
durch die wesentlich höheren Latenzzeiten beim Zugriff auf externe Speicher. Die Implementie-
rung eines internen Cache Speichers ist demnach unausweichlich.
Nach einer Aufarbeitung der wichtigsten grundlegenden Aspekte bezüglich Caching sowie ei-
niger fortgeschrittener Techniken, wird der Fokus dieser Diplomarbeit zuerst auf Simulationen
von verschiedenen Caching Strategien liegen. In diesem Zu diesem Zwecke wird SPEAR2SIM
vorgestellt, ein neuer SPEAR2 ISA Simulator, der es auf eine effiziente Art und Weise ermög-
licht für ein gegebenes Programm die am besten passende Caching Strategie zu finden. Diese
Simulationsergebnisse werden anschließend mit den Ergebnissen einer einer experimentellen
Umsetzung in Hardware verglichen, die darauf abzieht für vielversprechende Cache-Controller
die entsprechenden Hardwareanforderungen zu bestimmen. Als Resultat dieser Diplomarbeit
existiert ein neuer Prototyp des SPEAR2 Prozessors, welcher mit drei verschiedenen Cache-
Controllern (direct mapped, fully associative und two-way set associative) ausgestattet werden
kann.
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CHAPTER 1
Introduction

”Schön, aber wozu ist das Ding gut?” - Ein Ingenieur der Forschungsabteilung Advanced

Computing Systems Division (IBM) kommentierte 1968 den ersten Mikrochip.

Today, embedded systems are used in a broad variety of application areas. As the performance

of their integrated processors is rapidly improving by reason of more and more aggressive clock

rates combined with new sophisticated multicore designs, the area of operation of these systems

is not longer only limited to simple controlling tasks. Mobile phones, e.g., are a very typical

application field where advanced embedded microprocessors can be commonly found. While

the first mobile phones implemented only simple stand-alone software solutions running on

very simple processors,todays products like the iPhone4S from Apple Inc. R©1 include high

performance system-on-chip architectures equipped with powerful multicore processors like the

ARM-A92. This steady development of the hardware allows us to execute advanced operating

systems on our mobile phones that we only knew from being installed on our personal computers

so far. Two recent well known examples are the iOS from Apple Inc. R© used in the iPhone

or Android, an open source operating system based on the Linux Kernel v2.6 which has been

perfectly adapted to be used in embedded systems.

1http://www.apple.com/at/
2http://www.arm.com/products/processors/cortex-a/cortex-a9.php
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However, the execution of such a complex software like an operating system on an embedded

microprocessor requires a lot of random accessible memory to be available on the targeted hard-

ware platform. This requirement directs this introduction to the key contribution of this thesis:

As the performance difference between a processor and its main memory is huge for a reason

that will be explained in short, every efficient modern computer architecture additionally needs

to be equipped with fast cache memories in order to hide this discrepancy. The benefits that can

be gained by executing a configurable operating system on a configurable hardware layer taking

advantage of caching mechanisms motivated us to implement a completely redesigned memory

layer together with an integrated cache controller for the SPEAR2 processor.

The remaining part of Chapter 1 will introduce the reader to a detailed problem description and

to the history of the SPEAR processor family. The theoretical background concerning caching

which is required for the description of the technical realization of this new memory layer will

be completely covered by Chapter 2. Chapter 3 will concern itself with the implementation of

a novel simulation environment for the SPEAR2 core and simulation results of several cache

controllers whereas Chapter 4 will provide the details of the implementation in hardware with a

subsequent performance comparison with the simulated version of the processor.

1.1 Contribution and Problem Description

“The use is discussed of a fast core memory of, say, 32000 words as a slave to a slower core

memory of, say, one million words in such a way that in practical cases the effective access

time is nearer that of the fast memory than that of the slow memory” [26]. Back in the year

1965, M. V. Wilkes was probably one of the first computer engineers to write a scientific article

about taking advantage of a small but fast buffer being placed between a processor and its main

memory in order to gain a significant performance increase by the following modification of the

data transfer paradigm for these two modules: Instead of requesting single data words, transfers

are now performed from the main memory to this particular buffer in form of blocks. The

reason why this approach clearly has a positive effect on computer systems equipped with a fast

processor but a slow main memory will be the main topic of this section.

These very first proposed buffers were introduced as slave buffers with dynamic storage allo-

cation which somehow sounded a little bit heavy handed. In order to get some shorter alias,

computer architects decided to rename them into caches. This appellation originates from the

French word “cacher”, which means “to hide” [17]. Indeed, the first cache controllers were

intended to operate hidden from the user and the processor. Even though the introductory defini-

tion from Wilkes dates back really far and the stated memory capacities seem to be ridiculously

low today, it still can be applied when explaining the fundamental idea of caching.

2



However, this approach has not introduced a brand new concept since the idea of a block-wise

data transfer between two memories of different speeds already existed before the first cache

controllers appeared. In former days, an architecture consisting of a processor directly con-

nected to its main memory that fetched data words from a slower magnetic tape in form of

blocks was efficient enough as the performance of a CPU was equal or even smaller than the

performance of its main memory module. Figure 1.1 illustrates a very simplified block diagram

of the communication situation in that early period of computer architecture. As soon as the next

block or page from a program had been received from the magnetic tape, the processor was able

to operate on it without wasting any further wait cycles.

Figure 1.1: Communication situation in former days.

As it is visible in Figure 1.2, the situation began to change dramatically in the 80’s resulting

from the heavy performance increase of the processors while memories began to lag behind.

This exponentially growing gap is the result from the following disparity [6]: While the main

target for the processor industry is certainly the increase in computational performance achieved

by higher frequencies and nowadays advanced multi core systems, memory manufacturers fol-

lowed a different goal: The increase in capacity. According to [6], the improvement rate of the

performance of processors, that is 60%, far outranks the improvement rate of access times of

memories, which is calculated with less than 10% per year. Figure 1.2 shows this tremendous

divergence.

Arrived in the year 2011, the performance gap has become huge. Today, a processor without

at least one level of caching would suffer from an enormous performance degradation resulting

from the waiting for a requested data word during every memory access. The actual communica-

tion situation is visible in Figure 1.3. Considering, e.g., a single core system (non out-of-order
execution) clocked at 3,2 GHz connected to a DDR3 RAM module having an I/O clock of 800

MHz (≈ 1, 250 ns) and a CL3 of 10 ns, reading one single data word from the RAM block would

take a time of approximately 11, 250 ns (10 ns + 1, 250 ns). Consequently, the processor (3, 2
GHz ≈ 0, 31 ns) would have to wait for about 11,250 ns

0,31 ns ≈ 37 cycles before the data transfer has

completed. Accumulating this number over all memory accesses when executing a complete

3CL or Column Address Strobe Latency is the time interval between the request of the data and the instant of
time at which the data becomes available.
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Figure 1.2: The processor memory performance gap [12].

program, it becomes immediately visible that the CPU would waste a lot of computing cycles

resulting from this penalty just for doing nothing but waiting. As stated by [17], the fraction of

all memory access instructions in a more advanced program can be up to 40%!

Figure 1.3: Communication situation in modern days without caching.

Programmers do not want to access the hard disk or the main memory. Their access times are

far too slow compared to that of an internal register of a processor. As fast memory is expensive

but desirable in an unlimited amount, a memory hierarchy clearly represents an efficient solution

to this problem [12]. Figure 1.4 should be interpreted in the following way: The several levels

of the illustrated ordering represent a division of all memories into different classes focusing

on their speed and capacity. Memories with a high storage capacity but slow access time like a

magnetic tape are placed at the bottom whereas fast but small memories like an internal processor

register are placed at the top. The same holds for costs per byte. The higher a memory is

positioned in the hierarchy, the more expensive per byte are its implementation costs.

Inspecting the common hierarchy in embedded, desktop or server computer systems, we can find
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the cache being inserted at the level between the registers of a processor and the main memory.

Although the cache memory is represented as one block, this level is usually split into three

sublevels, L1, L2 and L3.

Figure 1.4: The memory hierarchy.

To finally present the benefits of this approach, two helpful properties of programs being exe-

cuted by a processor need to be explained: These are (a) the property of temporal locality and

(b) the property of spatial locality [20]. (a) states that data which will be referenced in the near

future is likely to be already in use. On the other hand (b) means that if a data word is addressed

by the processor, data words referenced by addresses near the actual referenced one tend to be

accessed soon. A simple but descriptive example for both localities is an iterative access to

an array in a loop where the temporal locality expresses itself through the iterative access and

the property of spatial locality is provided by always accessing the same space of data, i.e., the

repetitive access to the neighboring elements of the array. Beside profiting from the principle

of locality, executing iterative access operations to the same memory block might enable the

possibility to perform some kind of burst accesses which additionally decreases the latency.

Having these facts in mind it finally appears efficient to move data words from lower hierarchies

to higher hierarchies in form of blocks in order to prevent the faster memories from accessing

the slower memories too frequently, asking only for single data words. The key advantage of

this approach can be demonstrated with the help of the following descriptive example.

In [8], Patterson and Hennessy compare the functionality of a memory hierarchy with the fol-

lowing abstract situation: A student is writing on some scientific report about any possible topic.

He is sitting at his working place in a library, some books are already lying on his table, the rest
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of the literature is ordered on a bookshelf which is positioned 50 foot beside him. After some

time reading through the literature the student realizes that he needs more information about a

special topic which is not included in the books that are already stacked on his desk. Hence he

must walk to the bookshelf to find some work about the desired content and take it with him

to his working place. Indeed it would be the much more efficient approach to grab more books

from the shelf in order to protect the student from the situation in which he takes just one single

book, goes back to his desk, sits down and recognizes that he needs more additional literature

which results in standing up again, going to the bookshelf and taking only one book and so on.

Grabbing a bundle of books will certainly increase the probability to keep sitting on his work-

ing place for a longer duration, spending more time on reading through the literature instead of

always traveling between the bookshelf and the desk.

Finally a little note in the margin to clarify some misunderstandings might be given: Today,

generally every buffer which is used to store commonly reused items is called cache [12]. Indeed,

such a buffer does not necessarily need to reside physically inside a processor core. E.g., web

caches from a web browser store recently used web pages to allow a faster access to them, or at

least to a not up-to-date version of the web page.

This introduction will now proceed to the description of the targeted hardware platform in use,

i.e., the SPEAR2 architecture.

1.2 Target Description - The SPEAR Family

1.2.1 General Description

SPEAR (Scaleable Processor for Embedded Applications in Real-time Enviroments) was devel-

oped at the Department of Computer Engineering (ECS) at the Vienna University of Technology

with the intention to design a softcore processor to be used in embedded systems that is able

to fulfill real-time requirements. Therefore, two important features needed to be provided: (a)

Adaptability and (b) Real-Time Capability [10]. Whereas requirement (a) is met by the usage

of extension modules to extend the functionality of the processor, (b) is satisfied with properties

like constant execution time, deterministic interrupt execution and hardware internal resolving

of data and control hazards.

1.2.2 SPEAR

The fundamental features of the first SPEAR version are listed below:

• 16-bit RISC (load/store) architecture
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• 3 stage pipeline (instruction fetch, instruction decode, execute/write back)

• 80 instructions (32 conditional instructions) with a constant execution time (CPI = 1)4

• 32 registers (26 general purpose registers & 6 special function registers)

• Separated data and instruction memory (Harvard Architecture) from which each can store

up to 4 KB

• 1 KB of data memory reserved for the addressing of extension modules

• Data and control hazards resolved in hardware

• Worst case computable (no pipeline stalls)

The register bank of SPEAR includes six special registers: three frame pointers5, two registers

to store the return addresses when performing subroutine calls and one register to store the

return address in the case of an exception. A simple memory architecture allows word-wise6

accesses which doubles the amount of addressable memory in comparison to a byte addressing

architecture. All instructions have a constant width of 16 bits and are executed in a constant

time. Condition flags are used to determine if an operation is going to be performed or not. If

an operation is skipped, a NOP instruction is inserted to keep the execution time of the program

constant which helps to ease the calculations of the worst case execution time.

Extension modules are memory mapped and therefore accessed via normal load and store opera-

tions. Communication is performed by writing to and reading from special addresses (Extension

Module DATA fields). Figure 1.6 illustrates the generic interface to the processor. An extension

module may act as a functional extension (e.g., hardware multiplier) or as an I/O extension (e.g.,

RS232). The Processor Control Module, a special extension module which contains the status

register and the interrupt handling logic must be included by default since it is essential for the

processor to operate correctly. The generic extension interface will especially become important

in the subsection that briefly explains the integration of the AMBA bus into the SPEAR2 archi-

tecture. More detailed information about this very first processor of the SPEAR family can be

found in [9] or [10]. Figure 1.5 shows the block diagram of the core.

Unfortunately, SPEAR suffered from several disadvantages like improper types of memories (the

usage of asynchronous memories is not supported by new FPGAs), inefficient 16-bit memory

accesses (wasted memory when storing only 8-bit values) and insufficient performance due to

4CPI = Clock cycles per instruction
5Frames are similar to stacks except that all data words can be accessed randomly without cleaning the stack.
6Since SPEAR is a 16-bit architecture, the width of a word is equal to 16 bits.
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Figure 1.5: Block diagram of SPEAR [10].

16-bit operations. Consequently, a new processor based on the SPEAR architecture was devel-

oped: SPEAR2.

1.2.3 SPEAR2

Even though the source code has been completely redesigned, all the just introduced features

from SPEAR have been adopted for the implementation of SPEAR2 [10]. The following listing

provides a brief overview on the most important facts of the new processor:

• 16-bit RISC (load/store) architecture with a customizable data path (16- or 32-bit)

• 4 stage pipeline (instruction fetch, instruction decode, execute, write-back)

• 122 instructions (40 conditional instructions) with a constant execution time (CPI = 1)

• 16 registers (14 general purpose registers & 2 special function registers)

• 4 stack pointers

• Separated data and instruction memory (Harvard Architecture)
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Figure 1.6: Generic interface to the extension modules [10].

• 32 KB of data memory reserved for the addressing of extension modules

• Data and control hazards resolved in hardware

• Worst case computable (no pipeline stalls)

• Sleep mode for power saving

The new key feature of SPEAR2 is certainly its customizable data path which can be switched

between a width of 16-bit or 32-bit. Clearly, the 32-bit data path version requires more resources

but the increase in hardware requirements is not that big compared to the implementation of a

complete 32-bit processor version. The main benefit is without a doubt the gained scalability.

While using the 16-bit version might be the better approach for implementing simple embedded

microcontroller tasks in primitive FPGAs with low storage capacity, the 32-bit version offers a

noticeable performance improvement as the ALU can handle 32-bit values which is certainly

suitable for more complex algorithms. Moreover, the broader datapath potentially allows to ad-

dress a memory space of up to 4 GB. On this note it should be mentioned that the toolchain

provides full compatibility between both versions. Hence the same C-code can either be com-

piled for the 16-bit or the 32-bit version of the processor.

In contrast to its predecessor, SPEAR2 consists of four instead of three pipeline stages. The

additional write back stage was introduced by reason of the registered output of a synchronous

memory. Figure 1.7 shows the block diagram of SPEAR2.
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Figure 1.7: Block diagram of SPEAR2 [10].

The following description will explain the duties of the several pipeline stages of SPEAR2. It

might be skipped by the reader which already has experiences in computer architecture. Nev-

ertheless, reading through this description might help to better understand the structure and the

functionality of the new simulator toolchain that will be introduced in Chapter 3.

The Fetch Stage is responsible for fetching instruction words from the instruction memory and

for managing the program counter which is incremented after every cycle or loaded with a new

value if the ALU executes a jump operation.

The main function of the second pipeline stage, the Decode Stage, is the decoding of incoming

instructions. This task includes the generation of the opcode for the ALU, the extraction of

immediate values and the generation of addresses for the extended register file and the exception

vector table respectively. When the ALU performs a jump operation or a subroutine call, the

current instruction will be replaced by a NOP instruction. To be able to return to the previous

program flow in situations where an exception arises or a subroutine is called, the program

counter of the actual instruction is saved as return address.

All arithmetical and logical operations on incoming operands are performed by the Execute

Stage. To prevent the pipeline from data hazards, the ALU is always fed with the newest values

by a forwarding unit. Hence, no stalls are required to be inserted. Other possible operand sources

are the extended register file, the program counter needed for the jump destination calculation,

the output of the exception vector table when executing an interrupt or an immediate value
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extracted from an instruction word. Beside arithmetical and logical operations, also memory

and external module accesses are handled by this part of the pipeline.

The fourth and last stage finally merges the output from the ALU, the extension modules and

the memory. For more detailed information on every pipeline stage and on their specific imple-

mentation details as well, the interested reader is referred to [10].

The SPEAR2 ISA comprises 122 instructions which all have a size of 16 bits with a variable

opcode size. 40 of them are conditionals. Just like its predecessor, SPEAR2 executes every

instruction within a well known constant execution time.

Data memory organization has changed from word access to byte access in order to achieve an

easier portability to the GNU C compiler and to prevent the memory from fragmentation which

occurs when 8-bit values are stored in a word accessed memory. Data access is limited by the

width of the data path. Clearly, 32-bit accesses are only allowed with the 32-bit version of the

SPEAR27 core. 16-bit accesses on the other hand are allowed with both versions. Byte ordering

is little endian, memory accesses have to be aligned just like it is visible in Figure 1.8. To realize

the favored byte access, four parallel directly accessible byte memories were used to build the

data memory instead of implementing one single 32-bit wide memory block. As a result, only

30 from the 32 bits of the address lines are efficiently usable since the two least significant bits

are needed to address single bytes (4 byte enable control lines). A more detailed description on

the memory layer will be given in Chapter 4.

Figure 1.8: Memory organization of SPEAR 2 [10].

7Remember that the 32-bit version of SPEAR2 is not a complete 32-bit architecture. Only the data path is
extended whereas the instruction set remains unchanged. The word size still equals 16 bits.
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1.2.4 SPEAR2 AMBA Extension

The most important hardware extension for the SPEAR2 architecture was certainly the imple-

mentation of an AMBA bus interface for the processor [16]. This allows an integration of AMBA-

complient IP-cores, e.g., available in the GRLIB, which is an open-source library by Gaisler

Research8. The AMBA modules in this library are based on the AMBA 2.0 specification which

was introduced by ARM Ltd. in the year 1999 [4].

The AMBA 2.0 specification defines two data transfer protocols, one for high performance trans-

fers and one that is especially suited to be used with low bandwidth modules. They are described

in a complete technology independent manner and are used in the following three well-specified

bus architectures:

Advanced High-Performance Bus (AHB) A two data path (read/write) bus for high perfor-

mance communication. All data transfers are pipelined in one single stage, i.e., the tasks

of sending the subsequent address and the actual data word are overlapped.

Advanced System Bus (ASB) Similar to the AHB bus except that the ASB uses only one data

path for both, read and write operations.

Advanced Peripheral Bus (APB) A low performance bus for connecting simple modules like

UARTs or timers.

The AHB (ASB) and the APB bus can be connected with a special bridging module. Figure 1.9

shows the block diagram of a typical AMBA system.

Additional components needed for successful bus operations are an arbiter and an address de-

coder. While the arbiter is needed for scheduling simultaneous bus requests from two ore more

bus masters9, the decoder is used to select the targeted slaves and to manage their responses.

It has to be taken into account that the AMBA bus is not implemented in an usual bus structure.

Indeed it is has to be classified as a system of massive multiplexing operations. Figure 1.10

shows a simplified block diagram of the arbiter and the decoder handling incoming requests of

three bus masters via this multiplexing mechanism.

The SPEAR2 core is connected to the bus as master via its generic extension module interface.

An appropriate extension module implementing the AMBA master state machine has been de-

veloped by [16]. Figure 1.11 shows the integration of the master into the SPEAR2 architecture.

A shared memory is used to decouple the processor from the bus master so that SPEAR2 can

continue with the execution of its program while the bus master is performing the data transfer.

8http://www.gaisler.com/
9AMBA is a multi master bus architecture.
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Figure 1.9: A typical AMBA system [16].

Figure 1.10: The AMBA multiplexer structure [16].

For more detailed information on the AMBA bus itself and its different kinds of operational

modes, the interested reader is referred either to [16] or [4]. The integration of the new mem-

ory level for the SPEAR2 processor with the help of the AMBA bus system will be the main

contribution of Chapter 4.
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Figure 1.11: Integration of the AMBA master into the SPEAR2 architecture [16].
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CHAPTER 2
Caching

“Hits I Missed... And One I Didn’t.” - Johnny Cash.

To provide an adequate theoretical fundament for the following discussion on the search of an

appropriate caching strategy for the SPEAR2 processor, the next chapter summarizes the basic

concepts of caching and describes some advanced techniques as well. Prior to examining dif-

ferent design aspects like block placement and block replacement algorithms in more detail, a

number of elementary terms together with basic indicators for the estimation of cache perfor-

mance are going to be introduced.

2.1 Basic Terms and Cache Performance

As introduced by [26], a cache controller is used to decouple a fast processor from its compar-

atively slow main memory module. In order to benefit from the memory hierarchy, data words

are received and stored in form of blocks. A block consists of at least two or more data words.

The number is typically chosen to be a power of two. Sometimes in literature also the term line

is used. Common storage capacities reach from 4 KB up to 256 KB for processor internal L1

cache memories. As they are implemented on-chip they can be accessed at the speed of the pro-

cessor which results in the convenience of no extra wait cycles that must pass for the operation
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to complete.

When a requested data word can be found inside the cache, it is common to refer to such an event

as a cache hit. No further information needs to be fetched from a lower memory hierarchy and

therefore the system can fully profit from the performance advantage of the fast cache memory.

The time needed to access the cache controller and to determine if a referenced data word is

available in any block or not is identified as hit time Thit [8]. Indeed, the duration of this

operation is entirely independent from the result. On the contrary, a request yields a cache miss

if the referenced data word can not be found in any of the blocks residing inside the cache. In this

particular situation, the cache controller needs to fetch the desired information from the main

memory. The time interval between the detection of the miss and the completion of the transfer

of the block from the next lower level to the cache including a forwarding of the requested data

word to the processor is denoted as penalty time Tpenalty. An access of the main memory can be

further characterized with the terms latency and bandwidth: Latency states how long it takes to

fetch the first data word whereas bandwidth is used to determine how long it will take to transfer

the rest of the block [12], i.e., the amount of information transported per time unit. Letting BS

be the block size without the already received first word and BW the provided bandwidth of

the next lower memory level from which to retrieve the block, the remaining transmission time

Ttransfer can be defined as follows:

Ttransfer =
BS
BW

(2.1)

As a result, the penalty time can be stated as:

Tpenalty = Tlatency + Ttransfer (2.2)

The complete time lost due to a cache miss is calculated by summarizing the hit time and penalty

time:

Tmiss = Thit + Tpenalty (2.3)

Generalizing this equation over the whole memory hierarchy yields an equation for the worst

case cache miss, i.e., the request from the highest layer in the memory hierarchy falls through to

the lowest layer:

Tmiss =
N−1∑
i=0

(T i
hit + T i

penalty) (2.4)

where N is the number of all memory layers in the hierarchy and T i
hit and T i

penalty are the hit

and the penalty time of the layer i respectively.

16



Unfortunately these timing parameters are somehow really hard to measure or to estimate. In ad-

dition, concerning the implementation in an FPGA they are strongly dependent on the place and

route tool and the target technology. Thus some simpler and technology independent indicator

for cache performance is certainly desirable. Such an indicator is, e.g., the miss rate, which is

calculated by dividing the number of misses by the overall number of accesses to the cache [12]

when executing a program.

Miss Rate =
Misses

Accesses
(2.5)

Alternatively to the miss rate, it can be more informative to measure misses per instruction than

measuring the misses per memory accesses as the miss rate does not include a clear relation to

the total number of instructions.

Misses/Instruction =
Miss Rate ∗Memory Accesses

Instruction Count
(2.6)

Although both introduced measurements provide important information on the cache access,

they are only indirect measurements in the context of the overall system performance. Concern-

ing an out-of-order execution or a speculative processor, a miss rate of, e.g., 40% does not need

to be an evidence for a bad system performance since the CPU is capable of executing other

instructions while waiting for the miss penalty to pass. But what exactly is the miss penalty

of an out-of-order processor? One possible definition is stated by [12]: The penalty of such a

processor starts in the cycle where the pipeline is not able to commit the maximum number of

instructions. So if only four of five instructions are committed in a cycle because one instruction

has to wait for the data to be received from the main memory, the out-of-order processor is said

to be stalled. As a result the term stall must not be identified as a complete performance crash

since the other four instructions still can be executed while waiting for the requested data to ar-

rive. Thus, miss rate and misses per instructions should be interpreted as performance indicator

for the cache controller itself and not for the complete system performance. Nevertheless, the

negative impact on the overall performance resulting from inefficient memory access operations

of an in-order-execution processor can be approximately calculated by putting the active cycles

and the memory stall cycles into the following relation:

Idle Ratio =
Memory Stall Cycles

CPU Cycles
(2.7)

The lower this value is, the more efficiently operates the cache controller. Sadly, also this equa-

tion might be very imprecise as memory stall cycles can also result from other I/O devices being

accessed via memory load/store operations, e.g., the memory mapped extension modules of the

SPEAR2 architecture.
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In this thesis, the miss rate and misses per instruction will be used as preferred performance

indicators to estimate the efficiencies of all cache controllers under investigation. The overall

system performance will be inspected by comparing the numbers of clock cycles needed for

the executions of different benchmark programs. This indicator has been chosen since it can be

extracted in a relatively efficient way from simulation runs. Moreover, as the SPEAR2 proces-

sor belongs to the family of no in-order execution architectures, the just introduced drawbacks

concerning the reliability of the miss rate can be ignored.

According to [17] it is important to acquire information about the reason of a cache miss to be

able to improve future cache designs. Therefore, cache misses are categorized into the following

three classes, also known as the three Cs: Compulsory, Capacity and Conflict misses. When

starting the execution of a program, the very first access to a block will always lead to a miss.

Since this is an almost unavoidable event, such a miss is called compulsory miss. Alternative

appellations are cold start miss or first reference miss. Prefetching algorithms might help to

improve the situation by bringing data into the cache based on a speculative decision before they

are referenced by the processor. Such a prefetch might be performed statically at the start of the

program or dynamically during execution. More detailed information on these algorithms can

be found at the end of this chapter in the subsection Prefetching.

A capacity miss occurs when a cache can not store all blocks from the main memory which are

actually needed for the execution of the current program. Hence, some blocks that might be used

soon in the future must be discarded in order to yield free space for incoming data words.

If more than one block from the main memory can be placed at the same position in the cache,

conflict misses occur when a data word is referenced by the processor which has been discarded

by the controller because another block has been mapped to this particular position shortly be-

fore. The worst case concerning conflict misses occurs when two blocks from the main memory

which are mapped to the same position in the cache are accessed in an alternating sequence. In

this situation, which is referred to as trashing [17], the system completely loses the performance

advantage gained by caching since the processor always needs to fetch the currently referenced

data word from the memory, replacing the block inside the cache which will be needed in the

next cycle. Especially the direct mapped block placement strategy is susceptible to trashing for

a reason that will be explained in the subsequent section Block Placement.

Caused by the nature of every pipeline, instructions and data requests will occur simultaneously.

As access timing parameters like the hit time are critical [20], it appears useful to divide the cache

into an instruction- and a data cache, even though the main memory module is accessed via a

Van Neumann architecture. Beside a decreased latency for every cache access, both, instruction

and data cache return a cache hit in the best case and hence both words are immediately available

in the next cycle. Anyway, attention must be paid in the case of both, instruction and data cache,

18



suffering from a miss and thus being forced to satisfy two main memory access requests at

the same time on only one single access port. Furthermore, according to Smith [20], a crucial

drawback of a split cache is to estimate an efficient partitioning of the available storage place

as there is no general relationship between instructions and data words. One application might

need 4 KBytes of instruction memory and only 200 Bytes of data memory while another one

might occupy only 100 Bytes of instruction memory while claiming 2 MBytes of data memory.

Another kind of subdivision of the cache memory can be applied to be able to profit from both,

a fast hit time and a high storage capacity. This can be achieved by creating a multilevel struc-

ture of caches, thus adding an L2 or even an L3 cache to the architecture. The original cache

controller is then referred to as L1 cache. Anyway, the L2 and the L3 will not provide the same

low latency like the L1 cache as their capacities are usually chosen to be a multiple of the L1 ca-

pacity which results in a significantly slower hit time. As a consequence, accesses to the higher

levels of the cache controller can not be completed in one computational cycle. Nevertheless the

penalty is far lower than accessing the main memory.

2.2 Block Placement

2.2.1 Basics

The way a cache is organized and its block placement policy are critical implementation deci-

sions since they have a huge influence on the overall performance of the cache controller. Gener-

ally, a cache memory is not directly accessible and its storage capacity is rather small compared

to those of memories from the lower levels of the memory hierarchy. Therefore, resulting from

this many-to-one relation, some function is needed for an exact mapping of addresses refer-

encing the main memory to their corresponding cache internal block addresses [20]. In other

words, every block from the main memory must be assigned to one definite position inside the

cache memory. Of course, this function completely depends on the placement strategy of the

cache controller. Before explaining the three fundamental approaches for this address mapping,

a generalized cache internal address format together with the most basic functional blocks of a

simplified cache architecture are going to be introduced.

In its simplest form a cache design consists of a controller block implementing the placement

algorithm, some memory for storing the data blocks which have been fetched from the main

memory after they were requested by the processor, and a tag memory that stores well defined

parts of the referenced memory addresses for all blocks that are residing inside the cache. These

partial addresses are needed to identify the requested block inside the cache in a way that is going

to be explained next. Figure 2.1 shows the block diagram of such a basic cache implementation.
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Figure 2.1: Block diagram of a simplified cache module.

Given some main memory address being referenced by the processor, the first part of the cache

internal address, built by the least significant bits, is referred to as the word address, which

is stored in the so-called block field (see Figure 2.2). The size of this field, which is totally

independent from the placement strategy, determines the block size, i.e., the number of data

words that fit into one block. E.g., for a given block size of 16, the corresponding number of

bits is trivially calculated with log2(16) = 4. In the case of a memory load operation sent by

the processor the word address is used to extract the requested word from the targeted block.

This action will be taken immediately in the case of a cache hit or otherwise in the case of a

cache miss, after the complete block has been received from the main memory. The same holds

for memory write operations where the word address again is used to address and update the

corresponding data word in the targeted block.

Having separated the block field from the referenced address, the remaining part can be iden-

tified as block address [12] as it is used to address and identify single blocks inside the cache.

Depending on the placement strategy in use, the block address can be further divided into two

variable sub-fields: The tag field and the index field. While the index field determines the po-

sition of the targeted block inside the cache, the tag field is used for the comparison with the

corresponding entry from the tag memory in order to check if the requested data word is resid-

ing inside the cache or not. The tag field is also known as block frame address.

In addition to the bits used for addressing, a valid bit needs to be added to indicate if the data

block present at some position is valid or not [12]. The corresponding tag will only be checked

against if this valid bit is set and ignored if it is cleared. In the latter case, the block is said to

be invalid. Invalid blocks can appear when some other device that is sharing parts of its address
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space with the processor is writing to a data word in the main memory which is also currently

residing inside the cache memory or when the block is still empty at the beginning.

A typical address frame showing the just introduced sub fields is illustrated in Figure 2.2.

Figure 2.2: Cache internal addressing.

A simple cache controller might perform the following basic steps for every memory read access

instruction:

1. Select cache block addressed by the index field.

2. Compare stored tag bits with bits from the tag field and check valid bit.

3. On a hit, select requested data word addressed by the word address. On a miss, forward

referenced address to the main memory, fetch the complete block, store it in the cache and

send the requested data word to the processor.

4. Go to 1.

A simplified write access might be executed in a similar way:
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1. Select cache block addressed by the index field.

2. Compare stored tag bits with bits from the tag field and check valid bit.

3. On a hit, update selected data word addressed by the word address. On a miss, do noth-

ing1.

4. Go to 1.

As already stated, there exist three common basic placement strategies which will be explained

in the following [12]:

Direct Mapped For every block from the main memory there exists only one feasible position

inside the cache where it can be placed. A simple function to calculate this position is:

fmap := (Block address) MOD (Number of blocks in cache) (2.8)

Figure 2.3 illustrates the placement of a block from the main memory address 0x0016 at

the cache internal position 0x0016 MOD 0x0008 = 0x0006.

Figure 2.3: Direct mapped cache example.

The usage of the direct mapped placement policy is very popular for embedded processors

for a reason that will be explained later on.

1The reason for this behavior will be justified in the subsection Write Operations.
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Fully Associative There exists no restriction on the placement. Therefore a block from the

main memory can be placed at any possible position. In theory, concerning lowering the

miss rate due to conflict misses, this is definitely the best strategy as the cache controller

can execute an efficient decision procedure to select a position which is currently not

occupied by some other block or to select a block to be replaced based on the decision of

a replacement algorithm which can be applied over the complete cache address space in

order to unfold its full efficiency.

Regrettably, all these advantages go hand in hand with one tremendous drawback. In real

terms, every block includes an address tag which has to be checked during every cache ac-

cess. Indeed, this results in an enormous increase of the hardware requirements caused by

many address compare operations which will definitely increase the hit time, thus slowing

down the speed of the processor. As the critical path of most caches is defined to run

through the comparators [17], increasing the number of compare operations will also in-

crease the length of the critical path. In contrast to the direct mapped placement procedure,

no index field is needed since every block can be placed at any possible position.

Figure 2.4: Fully associative cache example.

Set Associative The cache is divided into several sets of blocks. A block from the memory is

mapped to one dedicated set in which it can be freely placed at any position. If every set

contains n blocks, the cache is said to be n-set associative. A simple function proposed

by [12] is:

fmap := (Block address) MOD (Number of sets) (2.9)

23



The number of sets, which must be all equal in size, is calculated by N = Number of blocks
n .

When accessing the set-associative cache, the bits of the index field are used to determine

the targeted set. Figure 2.5 illustrates an example for a set count of N = 4 and an index

field with the value “10”. Consequently, set number two is selected.

Figure 2.5: Set associative cache example.

Letting n be 1, the set associative organization changes to a direct mapped one. On the

other hand, it is possible to derive a fully associative policy from a set associative place-

ment strategy by letting n be equal to the overall block count of the cache. Examining the

general address format for cache addressing, the increase of n until the fully associative

strategy is reached can be illustrated by the following way: Letting the cache size remain

constant, increasing the associativity results in a higher number of blocks per set, thus

reducing the number of sets in the cache. Focusing on Figure 2.2 the index field becomes

smaller and smaller, moving to the right until it disappears [12]. At the same time, by

shrinking the index field, the tag field must consequently become larger, unfortunately

increasing the hit time as there are more bits to be compared with.

As the mapping function represents a many-to-one relation, especially conflict misses seem to be
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unavoidable since two or more different blocks from the main memory will be definitely mapped

to the same position in the cache [20]. The following proposals concerning lowering conflict-,

compulsory and capacity misses have been taken form [12].

Clearly, direct mapped cache controllers exhibit the highest miss rates as there is no room for

alternative decisions concerning the final position of a block. Ignoring the just mentioned draw-

backs of the fully associative placement policy, these conflict misses can be dramatically reduced

by increasing the set size. Beside increasing the associativity, another approach might be to in-

crease the overall size of the cache in order to allow more sets to reside inside the cache. In

this case, the index field visualized in Figure 2.2 would increase, therefore moving to the left

causing the tag field to shrink at the same time. This technique helps to lower both, the conflict

and the capacity miss rate. Unfortunately, increasing the capacity also results in higher hardware

costs, power consumption and higher hit times. Hence, larger caches are primarily used for the

L2 or the L3 cache as the pressure on the L1 cache to execute very quickly is too big to allow a

degradation of the access timing caused by a higher storage capacity.

The most simple way to decrease the miss rate, more precisely the compulsory and capacity

miss rate is to increase the size of the blocks, i.e., to allow more data words to fit into one block.

The decrease in the miss rate is a logical consequence from the property of the locality of space:

As neighboring data words are often referenced in an iterative way, transferring bigger blocks

of data from the main memory to the cache will boost the performance of the processor with a

high probability. In addition, since fewer tags have to be stored in the tag memory, also the hit

time will decrease [20]. On the other hand, if the cache is only small in size, a bigger block size

might contrary increase capacity misses as fewer blocks can be stored in the cache. Exactly the

same holds for conflict misses. Furthermore, in the case of a cache miss, more data words must

be fetched from the main memory which leads to a rise in the penalty time if the processor is

forced to stall until the transfer has completed. Thus, larger block size is only recommendable

if the processor has some kind of fetch bypass mechanism or if the memory interface provides

a high bandwidth and a low latency. All in all, the block size must be carefully chosen in order

not to erroneously degrade the performance of the cache controller.

Focusing on the optimization of the hit time, the one and only realistic approach is to build sim-

ple caches. The aim should be to keep the hardware requirements as low as possible because

smaller circuits can be clocked faster. From all the placement policies which have been intro-

duced so far, the one which provides the lowest hit time is clearly the direct mapped strategy

as only one tag entry has to be checked against. Furthermore, the retrieval of the data word

can be performed in parallel with the tag check operation. This advantage and the fact that no

replacement algorithm has to be executed make the direct mapped policy especially attractive

to be used in embedded systems. Figure 2.6 presents access times of different cache controller
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implementations depending on the overall size of the cache memory. Clearly visible is the de-

pendency of the access time on the level of associativity and cache size. These values have been

extracted from a CACTI2 model that simulated a 90 nm feature size CMOS cache controller

with 64-Byte blocks.

Figure 2.6: Hit times of different cache controllers [12].

While processors and caches provide more and more performance and rising storage capaci-

ties, also their power consumption increases. Especially on-chip caches, implemented by using

arrays of densely packed SRAM cells consume a significant amount of the overall power of a

chip [27]. Since cache sizes are increasing, this rising need for power has become a serious

problem, in particular for embedded systems which are generally expected to be power saving.

The following improvements of the basic placement policies show how to obtain cache imple-

mentations that consume less power and area or how to reduce the miss rate resulting from a

more efficient placement of blocks inside the cache. While the first approach is implemented

on the hardware layer, the second improvement presents one of many optimizations that can be

applied on the software layer.

2CACTI is an integrated cache and memory access time, cycle time, area, leakage and power model -
http://www.hpl.hp.com/research/cacti/.
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2.2.2 Improvements - Paged Cache

In [27], Chang and Lai propose a paged cache implementation which achieves a noticeable

decrease in the tag length and in the demand of chip area with a resulting decrease in power

consumption and access time. The fundamental idea is to divide the cache into a number of

areas which is equal to the count of pages being stored by the TLB3. These partitions are equal

in size and upper bounded by the size of a page. The reduction in the length of the tag is

achieved by allowing every partition to be mapped to only one particular page from the TLB.

The reduction in power consumption and hit time on the other hand is a logical consequence

from this restriction since for every cache access only one partition needs to be searched for the

desired data instead of accessing the complete cache.

Figure 2.7 shows the different structural aspects of a conventional and the paged cache:

Figure 2.7: Conventional cache controller versus paged cache controller [27].

After the virtual address (VA) has been translated to a physical address (PA) in the TLB, a

conventional cache passes the resulting address directly to the cache controller, thus performing

an access on the complete cache logic in the worst case. In a paged cache architecture, only the

partition related to the page entry will react to the fetch request. All other partitions do not need

to be searched for. The new reduced tag length resulting from this partition can be calculated

with:

3The TLB is a buffer which stores the recently used pairs of virtual addresses and their corresponding physical
addresses.
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tag length = log2(
page size

partition size
) (2.10)

For a 64 KB cache memory and a 32-entry TLB with a page size of 4 KBytes the corresponding

partition size is 2 KBytes. Following the formula stated above, the resulting tag size is calculated

to be only 1 bit. Figure 2.8 compares the tag length of a conventional cache implementation with

the paged architecture. The conventional cache controller implements a one-way associative

(direct mapped) 64 KBytes cache architecture with a tag length of 16 bit.

Figure 2.8: Tag length of a conventional (a) and paged cache (b) architecture [27].

As the TLB and the cache controller are set into a relationship concerning hits and misses, every

hit by the cache controller implies a hit in the TLB and every miss in the TLB implies a miss in

the cache controller. Based on this fact, [27] defines the following standard access sequence for

every memory access instruction:

1. Send virtual address to TLB.

2. In the case of hit, the targeted page is used to determine the corresponding partition in

the cache. In the case of a miss, the requested data from the page must be loaded from

the memory, replacing the entry in the TLB and replacing the data in the cache partition.

According to the access relationship, there is no further need to check the cache after a

TLB miss.

3. In the case of a TLB hit, check the tag to determine if the cache access is a hit.

4. In the case of a cache hit, the requested data word is returned. In the case of cache miss

the TLB address is used to fetch the particular part of the page from the main memory.

Concerning the evaluation of the decrease in power consumption, Chang and Lai performed

HSPICE simulations based on an access model described in [19]. The results of this investigation
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show that the power consumption of a cache access is independent from the overall cache size

but truly depends on the size of the partition. This behavior is contrary to conventional cache

implementations where the need for power rises tightly correlated with the increase of the cache

size and the associativity. A comparison of the power consumption of a conventional cache

controller with that of a paged cache controller is visible in Figure 2.9.

Figure 2.9: Power Consumption per access of a conventional and paged cache [27].

The major drawback of this approach certainly is an increase in the conflict and capacity miss

rate as the block size is noticeably bigger compared to that of a conventional cache imple-

mentation. Applying this approach on caches equipped with a small capacity can therefore be

extremely inefficient as bigger blocks in a small cache result in the handicap to only store a few

blocks inside the cache.

2.2.3 Improvements - Procedure Placement

Another optimization, although it is not directly applied on the hardware level, can be gained by

implementing a procedure placement algorithm which achieves a lower miss rate for all accesses

to the instruction cache by a clever reordering of the instructions in the instruction memory [18].

On a higher level of abstraction an application can be generally subdivided into to one main

section calling several other procedures. Since these procedures are shared globally and might

be called from any possible position in the main program, the alternating usage of two proce-

dures which are mapped to the same position in the cache can easily lead to trashing [18]. The

subsequent assembler code segment provides a simple example for such a worst case program

being executed with an instruction cache with a block count of 2 and and a block size of 2.

// 2 blöcke zu 2 wörtern

.text

# Block 1

jmpi 4

nop
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# Block 2

nop

nop

# Block 1

jmpi -4

nop

In this fundamental scenario, instruction at address 0 and instruction at address 5 will be executed

alternately. For a direct mapped cache controller, both instructions will always be placed in

block 0, thus leading to trashing. A fully associative cache controller will use both cache blocks

instead, thus only suffering from two misses.

Before explaining the main concept of the algorithm, a few new terms need to be introduced: A

program line is some portion of the instruction code which fits in into one block of the instruction

cache. A procedure consists of at least one program line. Depending on the placement strategy,

these program lines are mapped to distinct positions in the instruction cache. The procedure

placement problem concerns itself with the finding of an adequate mapping of all procedures to

the instruction memory in order to reduce the number of the cache misses.

The algorithm is divided into two phases. The effort of the first phase is to try to reduce the

negative impact on the performance caused by the following problem: There is no guarantee

that all instructions from a program line are going to be executed. In the worst case, only one

instruction will be executed and this will be a branch operation jumping to another procedure

that is stored far far away at the other end of the address space of the instruction memory. As

a consequence, if not already present in the cache, this particular program line must be fetched

and be brought into the instruction cache. Therefore, the first job to be done by the algorithm

is to shift the start addresses of all procedures by an offset in order to gain some new ordering

that minimizes the number of blocks being fetched by the cache controller. The best solution

is found by trying all possible offsets and selecting the most efficient offset. Clearly, the offset

must be smaller than the size of the block.

In the second phase, the procedure replacement is performed to achieve a cache wide distribution

of all procedure calls in order to prevent two procedures from being mapped to the same cache

block. The target is not to remove all these conflicts, which is without a doubt impossible due

to the small memory space of an instruction cache, but to avoid those conflicts which appear

frequently.

Before the algorithm can start, some input data needs to be extracted from a trace simulation

of the original program, i.e., the miss distribution on all cache blocks and the number of misses

for every procedure. Additional inputs are the memory space addressed by every subroutine and
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important cache parameters, e.g., the block size. At first, the cache block with the highest num-

ber of conflicts is placed anywhere in the memory. All further blocks are positioned iteratively

following the decision procedure of a heuristic cost algorithm which tries to estimate the lowest

penalty cost of the actual procedure in the case of a conflict miss with the already positioned

procedures caused by the usage of the same cache block position.

The positive effect of the algorithm due to distributing the memory references over the complete

instruction cache and lowering the highest numbers of misses can be seen in Figure 2.10.

Figure 2.10: Positive effect of procedure placement on the miss rate [18].

The drawback on the other hand is easy to unveil: Every application needs to be pre-simulated

in order to retrieve the essential information which is necessary for a efficient reordering of the

instructions in the memory.
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2.3 Block Replacement

2.3.1 Basics

This part of the thesis will focus on the question which block to replace when a cache miss

occurs and there is no more free space left for storing new data words from the main memory.

Using direct mapping as placement strategy, this question is very easy to answer: There is only

one block to be chosen [12]. But as soon as there exists more than one possibility to place a block

inside the cache and all these positions are already occupied, the cache controller has to discard

at least one of the stored blocks based on a specific decision. Contrary to page replacement

algorithms for the main memory which can be fully implemented in software, cache replacement

algorithms must be completely realized in hardware to be able to execute very quickly without

degrading the system performance too much [20]. The longer it takes for the procedure to select

the block to be kicked out, the longer the miss penalty will become and the slower the cache

access will get. Cache replacement algorithms can be classified into the following categories:

Usage-Based The usage of a block is taken into account.

Non-Usage-Based Some other decision than the usage is taken into account.

Fixed-Space The amount of allocated memory is fixed.

Variable-Space The algorithm varies the amount of memory allocated to a process.

The variable space replacement policy is clearly not suitable for a cache memory considering

the fact that a cache is usually physically fixed in size and far too small to be divided into areas

which are big enough to hold the complete working set of a program. Hence, no more further

attention will be spent on this replacement category.

Before dealing with more complex replacement theories, the following listing will give an

overview on four common basic strategies [12]:

Random A random block will be chosen and discarded from the cache. Apparently, this is a

rather simple and probably inefficient kind of implementation since it takes no advantage

of the principle of spatial and temporal locality at all. Data words which might be used

soon by the processor can be discarded without restrictions of any kind. Considering, e.g,

an iterative access to the elements of an array from which one of it is replaced by some

arbitrary element, a cache miss will occur, thus resulting in an unnecessary decrease of

performance as the cache controller can not take advantage of the locality of space. The

same holds for the locality in time, e.g., instructions in a loop that are free to be randomly
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replaced by some other instructions. As the usage of a block is not taken into account

when discarding a block from the cache, the Random algorithm has to be classified as a

non-usage-based algorithm.

A pseudo random version of this replacement policy can be easily realized by using a

modulo E counter for every set, where E reflects the maximum number of blocks being

stored in this set [20]. The counter can be incremented with any event of interest, e.g.,

with every clock cycle, finally holding a value which is equal to the position of the block

in the set which will be discarded next.

LRU As it can be guessed from the name, the Least-Recently-Used replacement algorithm is an

usage-based algorithm. Taking advantage of the locality of time, different methods exist to

discard primarily those blocks which have not been used recently in the past. Concerning

implementation options, every block present inside the cache can be equipped with a

counter to record the number of cycles without being accessed by the processor in the near

past. During a miss, the block with the highest stored number is discarded. Truly, this is a

very inefficient realization as there is a noticeable increase of hardware requirements when

implementing these counters. To keep it more simple, a single status bit for indicating the

recent usage of a block might be sufficient. Nevertheless, regardless of the used width of

the counter, having some information about the usage of a block in the past, although this

information might be very imprecise or expensive, does help to avoid discarding blocks

from the cache, which are likely to be referenced by the processor soon.

Smith [20] proposes the following implementation strategies: For a set of two blocks, a

hot/cold toggle bit is sufficient to decide which block to remove. A more general definition

is the following: Having a set with a variable number of E elements, E(E − 1)/2 status

bits are required. This is exactly the number required to have a status bit for every pair of

elements within the set. Thus the status bits define a strict partial order on the recentness of

the element accesses. The replacement algorithm can be implemented in an efficient way

by creating an upper left triangular matrix without the diagonal. Referencing a block i in

this set will cause all values in the row i of the corresponding matrix to be replaced with a

’1’. Afterwards, all values in column i are set to ’0’. These two operations on the matrix

are repeated with every reference to this set. The least recently used block is identified

by the row in which all values are equal to ’0’ and its corresponding column in which all

values are equal to ’1’. Unfortunately, the number of required status bits increases with the

square of the set size, resulting in the fact that this algorithm is only suitable for smaller

set sizes. Choosing a LRU algorithm as replacement strategy is therefore only reasonable
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when the hardware costs are negligible and the gain in hit rate outweighs the additional

penalty time due to the complex implementation.

Figure 2.11 illustrates some simple example for the LRU matrix algorithm showing the

decision procedure for a set with a count of three blocks. After five successive accesses to

this set, block #1 is identified as the least recently used block as its entries into the matrix

exactly match with those of a least recently used block described by the algorithm above.

Figure 2.11: The matrix based LRU algorithm (the green column shows the access count).

LFU This replacement theorem is similar to the LRU policy except that the least frequently

used block is discarded and not the least recently used one. Instead of counting the passed

cycles without being referenced by the processor, every block counts the overall number

of accesses over a defined period of time. The block with the lowest number of accesses

is discarded.

FIFO To avoid the enormous hardware requirements caused by the LRU algorithm which be-

comes increasingly expensive with a rising number of blocks residing inside the cache, it

can be much cheaper to discard the oldest block instead of the least recently used one [12].

According to [20], the FIFO algorithm has to be considered as non-usage-based one, due

to the fact that the usage of a block does not improve its replacement status.

FIFO can be easily implemented by again equipping every set with a modulo E counter.

This time, the counter is incremented after every replacement in this set.

Indeed, the replacement decision procedure can be extremely simplified. If invalid blocks are

present in the cache, they should be the primary targets for removal. Beside the fact that their

presence is only a waste of space, the execution of instructions by a processor on invalid blocks

will definitely lead to an erroneous behavior of the system [17].
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Although LRU algorithms are the most expensive strategies concerning hardware costs, they are

also the most efficient ones concerning decreasing the miss rate. Nevertheless, the performance

gap between the LRU algorithm in its most basic form and the optimal replacement strategy is

huge [15]. The optimal replacement algorithm is defined as an algorithm that provides the best

reachable minimal miss rate. In 1966 Belady stated that no real algorithm can ever reach the

performance of an optimal replacement procedure since it needs to know about all future block

references [5] when bringing new data to the cache. Gathering this important information would

require a pre-run of the program with a following backwards assignment of blocks from the

memory to their positions in the cache to construct a minimum replacement sequence. However,

executing a program two times is not an option as it completely travesties the performance

issues. As a result, such an approximated “optimal” algorithm, as described by Belady is solely

applicable for analytic purposes, especially for the comparison of its optimal miss rates with

those of feasible caching strategies.

According to [15] in highly associative caches such as L2 caches which use an LRU algorithm as

replacement policy, the increase in cache misses can be up to 197% compared to the application’s

corresponding optimal algorithm. The reason for this degradation is that if a block inside the

cache is used very frequently for a period of many cycles, its probability to be replaced shrinks

with every access. If suddenly the processor starts to perform uniformly spread accesses on its

cache, it will take some time for the block to become the least recently used one and to be finally

discarded. In this particular situation, the former frequently accessed block is now referred to

as dead block. The dead time is defined as the period of time between the event of the block

becoming dead and the event of the block being kicked out of the cache. This dead time becomes

worse with higher associativity due to a better distribution of accesses over the complete cache

space. While the block placement performance improves by allowing more blocks to reside in

a set, the replacement performance becomes worse. Dead blocks should be removed as soon

as possible because they are unnecessarily occupying important cache space which is generally

rare.

2.3.2 Improvements - Counter Based Algorithms

To reduce the negative impact of dead blocks on the cache performance, Kharbutli and Soli-

hin [15] propose two special counter based algorithms taking advantage of the following fun-

damental idea: Every time a counter exceeds a certain threshold value, the block expires and is

discarded to gain more free space, thus reducing the number of dead blocks and their resulting

capacity and conflict misses. Algorithms using this technique, which is referred to as dead line

prediction technique, store unique and dynamically learned threshold values for every block in
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a small prediction table. Dead line prediction especially helps to keep frequently but not bursty

accessed blocks inside the cache which are generally discarded by reason of their unsteady ac-

cesses.

The time duration in which a block is present in the cache is called generation time. It is divided

into a live time, the time period in which the block is accessed by the processor and a dead time,

the time from the last access to the deletion. The main intention of these algorithms is to keep

the dead time as low as possible. An example life cycle of a block inside a cache memory is

visualized in Figure 2.12. The time interval illustrated by 4 is referred to as the time between

two accesses to the block. It is simply named access interval.

Figure 2.12: The life cycle of a cache block [15].

The AIP (Access Interval Predictor) algorithm works as follows: It records the number of ac-

cesses to the set where the block is stored. The counter is reset when accessing the block itself.

If the counter reaches some threshold value4thd, the cache controller assumes that its life time

has expired and as a result, the block is classified to be dead and can be discarded. The thresh-

old value 4thd is learned from the past generations of the block and is typically chosen as the

maximum from all previous accesses.

The LvP (Live-time Predictor) algorithm on the other hand estimates the live time of a block by

counting the accesses to the block itself. Again, its threshold value LTthd is dynamically learned

by taking the maximum of all previous live times.

Figure 2.13 shows the block diagram of the proposed cache architecture. The hashed program

counter (XOR function over all Bytes of the PC) of the instruction that misses on a cache block

together with the 8-bit hashed address of this block is used to access the prediction table. The
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field C includes the event counter which counts the events of interest. The past and the actual

maximum value of this counter are stored in maxCpast and maxCpresent respectively, whereas

maxCpast obtains its values from the prediction table. A block is free to be removed if the

current counter value is both bigger than the present maximum and the past maximum. The

reason why the local counter value must also be compared with the past maximum is because

the actual generation may not have reached its maximum. Consequently the present maximum

might not include the real maximum value. As the counter value in the LvP algorithm is not

reset during the generation, the maxCpresent field can be ignored since it holds a value equal to

the local counter field. On discarding a block from the cache, the actual counter value is used to

update the maxCstored stored in the prediction table. Detailed information about the algorithms

can be found in [15].

Figure 2.13: Block diagram of the proposed counter cache architecture [15].

AIP and LvP have been benchmarked with the result of speeding up 10 out of 21 Spec2000

applications by up to 40% and 11% on average. As every block is expanded with additional 21

bits, the hardware overhead is stated with 4.1% storage overhead for a 64 Bytes block plus an

37



extra 40 KBytes tagless direct mapped prediction table. Although the overhead appears to be

huge, this need for extra resources is considerably smaller than the overhead caused by the next

presented improvement.

2.3.3 Improvements - Sequence Based Algorithms

To gain the ability to identify dead blocks, Sequence Based Algorithms, which are similar to

the just presented counter based algorithms, store encoded traces or sequences which are n

subsequent memory access events that lead to the removal of the block. In [3], the authors

present a Dead-Block Predictor (DBP) that uses a so called dead-block table as storage place for

these signatures. A history table stores a recent trace for every tag from L1 cache. Every change

of such a trace forces the DBP to compare the actual history of a tag with its corresponding

entry in the dead-block table. On a match, the block becomes a candidate for removal. The

predictor learns new sequences by simply storing the corresponding trace of the history table

in the dead-block table when a block is kicked out of the cache. Accuracy can be increased by

additionally equipping every trace with two bit saturating counters to determine the confidence

of the prediction. Regrettably, for every block there can be many more than just a few such

sequences. Recording all these events will result in huge prediction tables that can be several

MBytes in size [15].

Figure 2.14 illustrates the idea of the proposed cache architecture. Truncated addition is used

to encode every trace to gain a compact representation. Referencing block A2 in the cache

triggers the controller to compare the corresponding trace from the history table with the entry

in the dead-block table. Since the trace PCi, PCj and PCk results in a match, the block A2 is a

candidate for removal.

The DBP can easily be extended with a prefetch mechanism by additionally storing some address

in the dead-block table which is assumed to be following the block that is predicted to be dead.

Higher accuracy can be achieved by also storing prior accessed addresses. Nevertheless, the

more information is used for the prefetching of the subsequent addresses, the more storage

place is needed which might slow down the performance of the cache controller. Algorithms

following this approach are named Dead-Block Correlating Address Predictors. Figure 2.15

shows an example where again block A2 is referenced. The trace in the history table includes

some prior reference to the memory address A1 which is mapped to the same block as A2. A

look-up in the dead-block table reveals that the block is dead and can be discarded. Address A3

is recommended to be prefetched.

Compared with counter based algorithms, sequence based algorithms have some little timing

advantage as they mark blocks to be dead immediately whereas counter based algorithms have

38



Figure 2.14: Architecture of a sequence based replacement cache controller [3].

Figure 2.15: Architecture of a sequence based replacement cache controller with address pre-
diction [3].

to wait for the threshold value to be reached. On the other hand, as already stated, sequence

based algorithms request a huge amount of memory for the storage of the sequences for all

cache blocks. In addition, if some sequence is a subset of another longer sequence, it might be

the case that the cache controller wrongly marks the block as dead after having passed the shorter

sequence although it might be needed by the processor in the next cycles. This miss prediction

can not happen in a counter based cache controller as the threshold values are conservatively

chosen as the maximum of previous life times.
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2.4 Write Operations

All performance issues and cache internal operations so far have been related to cache read

accesses. Now it is time to focus on the contrary access operation, the write request. In contrast

to the read operation were it is desirable to achieve a latency that is as low as possible, the

main aim of every efficient cache write policy is definitely to save bandwidth and to reduce the

frequency of the write traffic to the main memory [13]. In comparison with the read access, there

exists one fundamental drawback. Before any write operation can be started, the processor must

determine the type of access. Usually, memory access operations can be performed byte-wise,

word-wise and double word-wise. As a result, data and addresses must be appropriately adapted

by some special combinatorial logic for every of these access types [12]. A practical example

for this particular type of problem will be given in Chapter 4. A read operation on the other

hand can always safely return the complete data word.

Again, the tag check operation results in a write hit if the corresponding data word can be found

in the cache and in a write miss in the other case. There exist different strategies for both

situations.

In the case of a write hit, two different approaches can be applied. On the one hand, the infor-

mation can be immediately written into both, cache memory and main memory. This strategy

is referred to as write through policy. On the other hand, the information might at first only be

written into the cache. The corresponding block in the main memory is updated when it is re-

placed in the cache by some other block. In this case, the cache is said to implement a write back

strategy. In order to identify an altered block, dirty bits must be added that mark all blocks that

have been modified via write operations since they have been fetched from the main memory.

Every block that is replaced and which has a cleared dirty bit does not need to be written back to

the main memory, thus saving memory bandwidth. In addition, multiple writes to the same block

in the cache require only one write operation on the memory, thus profiting from the locality of

space and time. This reduction in the required bandwidth certainly saves power which makes

the write back strategy attractive to be used in embedded systems. Nevertheless, it is more com-

plicated to be implemented. According to [20], another issue which has to be taken into account

when deciding either for the write back or the write through strategy is the maintenance of data

coherency. Concerning a multiprocessor system or multilevel caches, write through will cer-

tainly be the better decision concerning an easy management of the data coherency. The main

memory can be easily used as shared storage place. Otherwise the cache memory must be shared

or some sophisticated coherency protocol must be implemented. Nevertheless, even when using

the write through policy, care must be taken when data is altered by some other device in the

main memory that is also residing in the cache memory of the processor.
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The performance of both write strategies can be significantly improved by using a write back

buffer. In fact, such a buffer is obligatory for the write back in order to provide the possibility

of simultanoues fetch and write back operations. In the case of write through, several write

requests might be stored to allow the processor to continue with its execution. Nevertheless, an

additional forward logic will be needed as successive instructions might request the data words

from the main memory that are yet residing in the buffer, waiting to be written into the main

memory. If write requests are not buffered, the processor is said to suffer from write stalls.

When using a direct mapped placement policy, the performance can be increased by implement-

ing a so called write before hit policy which always starts to write to the cache memory although

the compare operation with the tag memory has not been finished yet. Indeed, in the worst case

the written block has to be declared as invalid if the tag check operation yields a write miss.

Care must be taken in order to make sure that the destroyed block has already been written back

to the main memory before it has been altered.

Concerning write misses, it is usual to distinguish between no fetch on write and fetch on write

operations. In the first case, the only action to be taken on a miss is to update the data word in

the main memory. On the other hand, a cache controller implements a fetch on write strategy

if it additionally fetches the complete block with the updated data word from the memory and

places it in the cache. The property that enables the cache controller to even do a lookup in the

cache to check if a requested data word is available is referred to as the write allocate property.

When configured as no write allocate, there will never be a lookup in the cache memory. Indeed,

no write allocate combined with fetch on write makes no sense at all since the cache is always

bypassed and can therefore not be written. When the cache controller is configured as write

allocate with no fetch on write, the updated data word will be written into the cache block

without fetching the corresponding block from the main memory. To maintain data coherency,

all valid bits without the one for the actually written data word in this block must be turned off.

This policy is called write validate. When using no write allocate and no fetch on write, two

cases have to be distinguished depending on the usage of the write before hit strategy. First,

when writing to the memory before having checked the entries from the tag memory, all write

operations triggered by a miss must be declared invalid since no write allocate is used. This

policy is named write invalidate. In the other case, a write around strategy is used as no write

operation ever reaches the cache.

Using write before hit has no influence on the validity of the blocks stored in a cache that

implements a fetch on write strategy as the block will always be reloaded from the memory.

Figure 2.16 illustrates all write strategies in a tabularly form.
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Figure 2.16: All write strategies on a miss [13].

2.5 Prefetching

Cache fetch algorithms are usually requesting data words from the main memory on demand

from an external source like the processor. These kinds of accesses are referred to as actual

requests. One approach to lower the compulsory miss rate and to reduce the from a miss resulting

number of penalty cycles can be achieved by the usage of prefetch algorithms [20]. A cache

controller taking advantage of prefetching mechanisms tries to predict which data or instructions

words tend to be referenced in the next upcoming cycles and if not present in the cache, attempts

to preload them before they are requested by the processor. This second type of cache accesses

has been given the appellation prefetch lookup. In the best case, the complete number of penalty

cycles when performing some memory access operation can be hidden if the next block to be

requested can be prefetched while operating on the currently referenced one. To achieve this

best case situation it is necessary to benefit from unused memory bandwidth as much as possible

without colliding with demand fetches [12]. A major drawback of the proposed strategy is that

this performance increase can easily turn into a performance degradation when not designing

the predictor carefully enough. Prefetching data blocks which will not be used in the next cycles

might replace blocks in the cache which tend to be referenced soon, forcing the cache controller

to reload them from the main memory when they are requested. In this particular situation, the

cache memory is said to be polluted.

The ratio of the number of blocks transfered by prefetching to the total number of data memory

accesses is denoted as prefetch ratio. The transfer ratio is defined as the the sum of the prefetch

ratio and the cache miss ratio. Letting D be the number of penalty cycles caused by a demand

miss, P the number of cycles needed for a prefetch operation and A the penalty costs resulting

from an interfering prefetch access with a demand fetch, a prefetch algorithm will be effective
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if and only if the following equation holds [20]:

D ∗mrno_prefetch > [D ∗mrprefetch + P ∗ pr + A ∗ (ar − 1)] (2.11)

where mrx stands for the miss ratio of the corresponding access mode, pr for the prefetch ratio

and ar for the access ratio on the main memory.

The efficiency of a prefetching algorithm depends on several concerns. At first, the probably

most important factor on the degree of memory pollution is the block size. The higher the block

size, the more useless data words will be loaded into the cache in the case of a miss-predicted

prefetch. On the other hand, when prefetching only a small number of data words, the over-

head of the prefetching algorithm might be higher than the performance won. Other important

implementation decisions are when to trigger some prefetch, which data blocks to prefetch and

what replacement status to be given some prefetched block. Concerning decreasing the grade of

the pollution of the memory, the cache controller might assign the highest possible replacement

priority to every prefetched block so that the block is quickly removed if it was brought into the

cache on a faulty prediction. As the cache controller should be designed in an efficient way in

order to execute very fast, the simplest decision on the question which block to prefetch is cer-

tainly the next sequential block. This technique is referred to as one block lookahead (OBL). A

more sophisticated decision procedure is going to be explained in the following. The start of the

prefetch operation can be triggered by many events, e.g., by some cache miss on the instruction

cache or when processing the last data word of some actual block being resident in the cache

memory. Although the data transfer might not be finished when the next data word is requested

by the processor, at least the advantage of a reduced number of penalty cycles being stalled is

yielded.

Especially instruction caches can profit from the OBL prefetching approach by reason of the

generally iterative execution of a program. This task is usually performed outside of the cache

and implemented in the following way [12]: On a miss, two instead of one blocks are fetched

from the memory. While the requested block that caused the miss is directly placed in the cache,

the second block is stored outside the cache in some extra buffer that is called instruction stream

buffer. If the next subsequent request results in a cache miss, the fetching from the main memory

can be left out if the data block current in the instruction stream buffer is the one which is needed.

While operating on the actual data block, the next prefetch can be started, filling the buffer with

the next data block from the memory which is supposed to be requested in the near future. The

same technique can be applied to prefetch data from the data memory. The Pentium 4, e.g., uses

eight such stream buffers to prefetch data into its second level cache. From a processor with two

four-way set associative 64 KByte caches, up to 70% of all misses can be captured with 8 stream
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buffers, buffering either data or instructions.

However, prefetching instructions in a sequential fashion fails when executing branches in a

program. The situation even gets worse in superscalar architectures that fetch more than one

instruction per cycle. In this case, a more sophisticated mechanism is needed to successfully

predict which instruction words to prefetch [11]. Simple branch prediction techniques that are

usually executed in the decode stage will not hide the latency of an instruction cache miss as

they are performed too late. Thus, [11] proposes to take branch prediction actions on the base

of blocks instead of single instructions. Such a fixed length sequence of instructions is referred

to as flow block. The size is upper bounded by the block size of the instruction cache in use and

should be chosen in a way so that there is at least one branch instruction per flow block. On the

other side, the more branch instructions are residing in a flow block, the worse the accuracy of

the branch prediction will become. As soon as the first instruction of a flow block is executed by

the processor, a prediction can be performed. Information needed for this task is usually stored

in a flow block prediction table which includes the following entries for every flow block:

Flow Block Address Tag This address is used to locate the corresponding flow block table en-

try for every flow block.

Last Branch Target Address Identifies the last predicted address that has been selected after

the branch.

History Counts the number of non-sequential exits in the past.

Indirect Branch Bit Indicates if there is an indirect branch instruction present in the flow block.

Indirect branches are not taken as their target address is usually not predictable.

LRU is used as replacement policy. Accuracy can be increased by storing more than one target

address if more than one branch instruction is present in a flow block. The algorithm can be

simply described as follows: Whenever there is change from flow block A to flow block B, B

is added as the last target address to A’s entry in the flow block table. The sequential bit is set

according to the relationship between those two blocks, i.e., it is set if B is indeed the sequential

neighbor of A and cleared in the other case. Afterwards the flow block table is searched through

for the entry of flow block B in order to locate the next block to be prefetched into the instruction

cache. These tasks are repeated for every switch between two flow blocks. Cache pollution

by the way can be avoided by using a highly associative prefetch buffer instead of bringing

prefetched blocks directly into the instruction cache.

So far, the focus in this subsection has been on dynamically prefetching algorithms that are ex-

ecuted directly in hardware. An alternative might be to prefetch data blocks before starting the
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execution of a program. This approach, which has to be to categorized as statically prefetching

algorithm, can help to lower the compulsory miss rate that dominates the cache misses when

starting the execution of a new program. An example for statical optimization is the prefetching

via a compiler [12], i.e., the insertion of data fetch instructions into the source code so that data

words are loaded before they are actually needed. Anyway, inserting these extra instructions

makes only sense if they can be executed overlapped with the original instructions of the pro-

gram. Prefetched data can either be loaded into the cache or directly into a register. Again, care

must be taken in order not to destroy the gained benefit by the overhead introduced by additional

instructions. Loop unrolling is very popular concerning scheduling prefetch operations with the

execution. Please refer to [12] for more options.

2.6 Conclusion

This chapter has introduced the reader into the fundamental aspects of caching and all its po-

tential difficulties concerning finding the best adapted caching strategy for a given architecture.

Beside choosing a placement and replacement policy, also parameters like block size or block

count do have an enormous influence on the overall performance. Applying an optimization

on one aspect will often lead to a degradation of another one. Even extensions like prefetching

mechanisms which are supposed to increase the performance of a cache controller can decrease

their efficiency if they are not implemented carefully enough. The behavior of the SPEAR2 pro-

cessor on some of these variable parameters, especially on different placement and replacement

policies, is going to be investigated in the following chapter.
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CHAPTER 3
Simulation

“What happens if a big asteroid hits Earth? Judging from realistic simulations involving a

sledge hammer and a common laboratory frog, we can assume it will be pretty bad.” - Dave

Berry (American Writer and Humorist).

The following chapter is subdivided into two parts: First of all, a novel simulator toolchain for

the SPEAR2 ISA is presented. The reader is going to be introduced into the structure and the

functionality of the simulator SPEAR2SIM and its generic cache interface that allows an easy

connection of the processor with different cache controllers. Simulation results of programs

executed on the simulated core taking advantage of these cache modules and a subsequent dis-

cussion on their efficiency are the key contribution of the second part.

3.1 SPEAR2SIM Concepts

To be able to decide for the optimal caching strategy for an application running on the SPEAR2

processor, an investigation of different implemented cache controllers operating under changing

parameters, e.g., different block sizes and block counts, has to be carried out. As the main

focus lies on the estimation of hit and miss rates and timing and hardware requirements are not
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Section Contents
.text Executable instructions.
.rodata Constant data, read-only data.
.data Initialized global and static variables.
.bss Uninitialized data.

Table 3.1: Standard ELF sections and contents.

crucial for this particular part of the decision finding1, off-the-target simulations of programs

being executed on an emulated version of the core are absolutely sufficient. SPEAR2SIM is a

cycle accurate simulator of the 32-bit data path version of the SPEAR2 processor programmed in

the language C, implementing the complete SPEAR2 ISA, thus providing the ability to execute

programs written in the architecture specific assembly language. This approach is far more

efficient than simulating programs via the VHDL testbenches with Modelsim as a simulation in

software certainly features easier and faster ways to extract the needed information about the

cache usage (hit rates, miss rates etc.) by the processor in order to determine the theoretical

possible increase in performance.

3.1.1 The ELF Storage Allocation

Before explaining the functionality of the simulator toolchain in detail, a short overview of the

ELF [7] binary file format is given. As different architectures feature different ways to store data

and instructions, the ELF file format uses the concept of sections to group each and every type

of program data. Typically it is reasonable to choose a grouping according to the final storage

destination. E.g., instruction words might be grouped in a section that will be stored in a flash

memory or some other kind of read-only2 memory. On the other hand it seems to make sense

to place global variables together in a read/write memory like a standard SRAM which offers

efficient read and write access operations.

Object files differ in type: Relocatable object files, e.g., include instructions and data words

being in an optimized format for easy composition with other modules whereas executable object

files can be directly executed on a processor. This format is usually generated by a linker which

translates one or more relocatable object ELF files into one single executable ELF file. Table 3.1

shows the standard ELF sections together with their usual contents.

1Timing and Hardware requirements will be examined in the next chapter which focuses on the implementation
of promising cache controllers in hardware (VHDL).

2At least some memory which is really difficult to write to while executing a program.
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Figure 3.1 illustrates the standard ELF file format from the linking view3. The program header

describes zero or more segments which include important information needed for the execution

of the program [22]. This header is only optional for relocatable object files as they are not

directly executable on their own. Information for the process of linking all included sections is

stored in the section header which is on the other hand only optional for executable files. The

ELF header serves as index for all contents of the complete object file.

This thesis will not go into this topic in detail. For those who are interested in the complete

specification of the ELF format, further information can be found in [7]. Implementation details

on the complete toolchain (gcc, linker etc...) of the SPEAR2 architecture are the main topic

of [21].

Figure 3.1: Standard ELF file format from the linking view.

3.1.2 Preprocessing of ELF Binaries

In order to perform efficient simulations with SPEAR2SIM it must be possible to execute pro-

grams which have been built with the original SPEAR2 gcc-toolchain. For this reason, the ex-

ecutable ELF file is converted into a format that can be interpreted by the simulator. The GNU

Binutils program spear32-objdump is very useful since it extracts the needed information, more

precisely the assembly code and the memory contents listed in the corresponding sections, from

3The view on the building of a programm.
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Location .../spear2/toolchain/spear2sim/parser

Syntax ./parser $progname$.txt

Table 3.2: Location and syntax of the parser.

the executable ELF file. The output of this process is a file named $progname$.txt that serves

as input file for a parser which is responsible for separating the instructions from the memory

contents.

Figure 3.2: The SPEAR2SIM toolchain.

Processing the .txt file yields the following two images: text.s2s and mem.s2s (see Figure 3.2)

where text.s2s includes the instructions from the .text section and mem.s2s holds all data words

that will be stored inside the simulated RAM. Indeed, the simulator does not differ between data

from the .rodata, .data or .bss section. As the complete memory content will be stored into only

one single simulated memory, the parser merges all information together into one image. The

format of this memory image can be seen below4:

4Remember that the byte ordering of SPEAR2 is little endian. The least significant byte is stored at the lowest
address.
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double word0 word address1 byte3 byte2

word address0 byte1 byte0

double word1 word address3 byte3 byte2

word address2 byte1 byte0

double word... ... ... ...

... ... ...

double wordn word address2n+1 byte3 byte2

word address2n byte1 byte0

text.s2s is formatted in the following way:

opcode0 [operand1] [operand2]

opcode1 [operand1] [operand2]

... ... ...

... ... ...

opcoden [operand1] [operand2]

After having generated these two images, the parsers final duty is to add an abortion term to the

instructions listed in text.s2s. As the two last instructions of every program are a NOP directly

followed by a JMPI -1, the NOP instruction needs to be replaced by a new halt-command in

order to bring the simulation to an end, thus preventing the simulator from looping forever. In

this sense, the parser scans through all instructions for this last command sequence and replaces

this particular NOP instruction with an END instruction which will force the ALU to return

an erroneous value, causing the simulator to stop the execution of the program. After having

finished all preparation tasks, the images are copied automatically to the SPEAR2SIM main

directory and the simulation of the program can finally be started.

3.2 SPEAR2SIM Implementation

SPEAR2SIM is a cycle accurate simulator of the SPEAR2 ISA that has been implemented in a

modular structure similar to that of the processor in order to reproduce its pipeline like program

execution. The key ambition of this approach is to achieve a better understanding of the proces-

sor internal actions based on an accurate visualization of the internal stages. Figure 3.3 shows the

block diagram of SPEAR2SIM. The main module spear2sim.c of the simulator can be compared

with the top-level entity of the VHDL implementation of the processor core as it implements

the complete pipeline framework with all pipeline registers and calls the stage corresponding

functions of the simulated pipeline units, i.e., alu.c, inst_mem.c, data_mem.c, reg_bank.c and

the cache modules.
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Figure 3.3: SPEAR2SIM block diagram.

Like in the VHDL implementation of the processor, data is transfered from one pipeline register

to the next one with the difference that it is manipulated by the functional units in between

in a serial way and not in parallel. This virtualization of the hardware layer offers noticeable

simplifications concerning the execution of an application by the simulated SPEAR2 pipeline.

When performing memory access instructions, the simulated core does not have to wait for

several penalty wait cycles to pass as data words are immediately available or stored with every

load/store operation. As the same advantage also holds for the register bank, a forwarding unit

does not need to be implemented to prevent the ALU from suffering from data hazards. If the

ALU calculates some result, it can be directly stored into the register bank without running

through the WB stage. Nevertheless, in order to provide a cycle accurate simulation, these

penalty cycles are added to the cycle counter by the simulator for every memory access.

In addition, the first pipeline register (IF - ID) does not need to address and enable the instruction

memory in order to prepare the next instruction word to be executed in the next cycle since the
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decoding stage can access the instruction memory on its own without any delay. The reader

might start to argue that there is no real need for the implementation of any pipeline register by

reason of the simplified memory access. However, since it is the key intention of the simulator

to offer a pipeline accurate illustration, these buffer registers are necessary to inform the user

about the recent status of every pipeline stage in every clock cycle or to trace the stream of

instructions running through the processor. The second pipeline register (ID - EX), e.g., includes

the operands and opcode to be operated on in the next cycle whereas the last pipeline register

(EX - WB) holds the result from the execute stage, the write back address and the opcode from

the last instruction as well.

As all results from the ALU are immediately stored into the register bank, a cycle accurate

storage of the write-back results is needed. This is achieved by creating a second register bank

which behaves like the one implemented in the VHDL design of the core, thus storing values

only after they have passed the WB stage. A cycle accurate visualization of the data memory is

inefficient and useless due to the confusing output caused by the huge number of data words to

be printed.

Another simplification is the following: SPEAR2SIM uses the assembler code and not the byte

code of an application for its execution. Since instructions are not represented as 16-bit words

like in the hardware implementation, no real decoding task is necessary but also no visualization

of this task is possible. The ID stages is therefore only responsible for the forwarding of the

opcode and the operands via the second pipeline register to the EX stage.

Before any simulation can be started, the instruction and data images provided by the parser

have to be read in. This task is performed by special routines implemented in the instruction

and data memory module. To this purpose, the generated text.s2s and data.s2s images must be

placed in the same directory like the SPEAR2SIM executable. After the instruction memory and

the data memory have been filled, the simulator will execute the program like the real processor

in several clock cycles, moving operands and opcodes from one pipeline stage to the next one.

The following listing shows the most important steps taken by the simulated pipeline during one

clock cycle.

1. Increment the program counter.

pc.value = pc.value + 1;

2. Read opcode, operand1 and operand2 from instruction memory addressed by program

counter in pipe_reg1 (IF stage) and store it in temporary buffer.
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temp_opcode = inst_mem_read_opcode(pipe_reg1.pc.value);

temp_operand1 = inst_mem_read_operand1(pipe_reg1.pc.value);

temp_operand2 = inst_mem_read_operand2(pipe_reg1.pc.value);

3. Execute opcode on operand1 and operand2 stored in pipe_reg2 (EX stage).

execute();

4. Store program counter from pipe_reg1 (ID stage) in pipe_reg2 (EX stage) and store next

program counter value in pipe_reg1 (ID stage). This updated program counter value in

reg_bank1 will be used to fetch the next instruction.

pipe_reg2.pc.value = pipe_reg1.pc.value;

pipe_reg1.pc.value = pc.value;

5. Store opcode from pipe_reg2 (EX stage) in pipe_reg3 (WB stage).

strncpy(pipe_reg3.opcode), pipe_reg2.opcode, OPCODE_MAX);

6. Store temporary opcode, temporary operand1 and temporary operand2 in pipe_reg2 (EX

stage). This will be the next instruction to be executed.

strncpy(pipe_reg2.opcode), temp_opcode, OPCODE_MAX);

strncpy(pipe_reg2.operand1), temp_operand1, OPCODE_MAX);

strncpy(pipe_reg2.operand2), temp_operand2, OPCODE_MAX);

7. Return to 1

Every simulation in SPEAR2SIM can be either executed in a single step mode or finished without

any break. The second mode is referred to as one click mode. While the single step mode

is especially suited for debugging purposes, the one click mode offers a quick extraction of

important statistics, e.g., cache miss and hit rates, from the program execution. The two modes

can be enabled/disabled by setting the following define before compilation visible in Table 3.3.

When executing the simulator in the single step mode, the console interface will output impor-

tant information about all passed memory accesses, cache accesses and the recent values of the
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Define Semantic
SINGLE_STEP Run SPEAR2SIM in single step mode,

else in one click mode.

Table 3.3: SPEAR2SIM execution mode defines.

Define Semantic
FINAL_REPORT_MEM_ACCESS Memory load and store access counter

values.
FINAL_REPORT_DATA_CACHE_ACCESS Data cache read and update counter

values.
FINAL_REPORT_DATA_CACHE_STAT Data cache hit, miss and conflict

counter values.
FINAL_REPORT_INST_CACHE_ACCESS Instruction cache read and update

counter values.
FINAL_REPORT_INST_CACHE_STAT Instruction cache hit, miss and conflict

counter values.
FINAL_REPORT_REG_BANK_CONSOLE Print register bank values to console.
FINAL_REPORT_REG_BANK_FILE Print register bank values to file.
FINAL_REPORT_DATA_MEM_FILE Print data memory values to file.

Table 3.4: SPEAR2SIM final report defines.

register bank and pipeline registers for every cycle. A final report at the end of every execu-

tion lists all these values together with some additional dumping information if desired. This

final output of the simulator is fully configurable by altering the defines from Table 3.4 in the

spear2sim.h header file.

As already stated, SPEAR2SIM is able to simulate the SPEAR2 ISA taking advantage of an

integrated cache memory. In this first version, several different cache controllers have been

implemented. They can be activated by defining the following macros listed in Table 3.5.

USE_INST_CACHE and USE_DATA_CACHE must be activated for the others defines to have

an effect.

Replacement strategies for the fully associative and set associative cache controllers can be

altered by the following defines from Table 3.6. For the set associative placement policy, only

the FIFO replacement strategy is available. Implementing a LRU policy does not seem to be that

reasonable for a 2-way set associative cache controller since a data word can only be placed at

two positions.

Different cache parameters like block count, block size and so on can be found and configured
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Define Semantic
USE_INST_CACHE Use instruction cache.
USE_DATA_CACHE Use data cache.
USE_DIRECT_MAPPED_INST_CACHE Use a direct mapped instruction

cache controller.
USE_DIRECT_MAPPED_DATA_CACHE Use a direct mapped data cache

controller.
USE_FULLY_ASSOCIATIVE_INST_CACHE Use a fully associative instruc-

tion cache controller.
USE_FULLY_ASSOCIATIVE_DATA_CACHE Use a fully associative data

cache controller.
USE_SET_ASSOCIATIVE_INST_CACHE Use a 2-way set associative in-

struction cache controller.
USE_SET_ASSOCIATIVE_DATA_CACHE Use a 2-way set associative data

cache controller.

Table 3.5: SPEAR2SIM cache controller mode defines.

Define Semantic
*_CACHE_REPLACEMENT_LRU Use least recently used replacement

strategy.
*_CACHE_REPLACEMENT_FIFO Use first in first out replacement strat-

egy.

Table 3.6: SPEAR2SIM cache replacement mode defines.

Define Semantic
*_MEM_ADDRESS_WIDTH Width of the addressed memory.
*_CACHE_INDEX_WIDTH Width of index field.
*_CACHE_BLOCK_WIDTH Width of block field.

Table 3.7: SPEAR2SIM cache parameter defines.

in the corresponding header files of the cache controller in use (see Table 3.7).

By defining the macro SPEAR2_NORMAL_MODE, SPEAR2SIM will simulate the core in its

standard version with integrated data and instruction memory overriding all given cache param-

eters. Defining neither SPEAR2_NORMAL_MODE nor any cache option, a SPEAR2 processor

accessing an external memory without taking advantage of a cache controller will be simulated.
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3.2.1 Module Description

The next section is going to provide an elementary overview on all modules that are included

in SPEAR2SIM with a following description of the generic cache interface. The reader which

is especially interested in developing extensions for the simulator toolchain will find important

information in this part of the thesis, which mainly covers design considerations related to the

programming language used for the implementation. Nevertheless, details should be principally

looked up in the source code or in the source code documentation.

reg.c

Simple registers of the SPEAR2 architecture that are used as basic blocks for the implementation

of the register bank and the pipeline registers are simulated by the reg.c module. An extract from

the reg.h header file showing the declaration of the standard register data type and the contents

of the three different pipeline registers are visualized in the following code segment:

/* standard register */

typedef struct reg

{

int32_t value;

} REG;

/* pipeline register 1 */

typedef struct pipe_reg1

{

REG pc;

} PIPE_REG1;

/* pipeline register 2 */

typedef struct pipe_reg2

{

REG pc;

char opcode[OPCODE_MAX];

char operand1[OPCODE_MAX];

char operand2[OPCODE_MAX];

} PIPE_REG2;

/* pipeline register 3 */

typedef struct pipe_reg3

{

REG pc;

REG alu_result;

REG alu_write_back_address;

char opcode[OPCODE_MAX];

} PIPE_REG3;
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The first pipeline register only needs to store the last incremented program counter value which

will be used in the next cycle in order to fetch the next instruction from the instruction memory.

Just like in the hardware version of the processor, the storage of the decoded instructions is

performed by the second pipeline register and allows the execute stage to obtain the information

needed for the actual computational cycle. While the write back address and the result from

the ALU in the last register pipeline are important for the storage of the write back results into

the cycle accurate register bank, the opcode is used to show the user which has been the last

instruction that completed and left the pipeline.

reg_bank.c

Defines concerning the naming of all included registers are specified in the reg_bank.h header

file. REG_BANK_SIZE determines the total number of registers residing inside the register bank.

/* Size of register bank */

#define REG_BANK_SIZE 16

/* register name defines */

#define R0 0

#define R1 1

#define R2 2

#define R3 3

#define R4 4

#define R5 5

#define R6 6

#define R7 7

#define R8 8

#define R9 9

#define R10 10

#define R11 11

#define R12 12

#define R13 13

#define RTS 14

#define RTE 15

Table 3.8 provides a brief overview of all functions implemented by this module. To call the

corresponding subroutine necessary for the cycle accurate output, an “r_“ must be attached as

prefix to every function name.

inst_mem.c

In contrast to the instruction memory implemented in VHDL which stores instructions as 16-bit

words, the simulated version of the memory already contains separated and decoded opcodes and
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Function Semantic
int8_t reg_bank_write(int32_t value, uint16_t rX) Write value to register rX.
int32_t reg_bank_read(int16_t rX, int16_t *errv) Read value from register rX.
void reg_bank_reset(void) Reset all registers in register

bank.
void reg_bank_dump(void) Dump register bank to console.
int8_t freg_bank_dump(void) Dump register bank to file.

Table 3.8: Functions provided by reg_bank.c.

operands that have been pre-formatted by the SPEAR2SIM parser. The most important defines

and declarations of this module can be found in the subsequent code segment.

/* size defines */

#define INST_MEM_SIZE 65530

/* penalty defines */

#define INST_MEM_PENALTY 9

typedef struct inst_mem

{

char opcode[OPCODE_MAX];

char operand1[OPCODE_MAX];

char operand2[OPCODE_MAX];

} INST_MEM;

An entry in the instruction memory consists of three char arrays storing the opcode and two

optional operands. The complete instruction memory is implemented by creating an array of

this struct. The storage capacity can be configured by altering the value of INST_MEM_SIZE.

When simulating the SPEAR2 core interfacing an external memory, the number of penalty cycles

needed to wait for every access to complete is defined by INST_MEM_PENALTY.

data_mem.c

The module data_mem.c provides byte, word and double word accesses to the simulated data

memory. All addresses must be passed as byte addresses since all modifications depending on

the access type are performed internally. Anyway, memory double word and word operations

have to be aligned, i.e., the address must be evenly divisible by 4 and 2 respectively.

/* size defines */

#define DATA_MEM_BASE 0x00000000

#define DATA_MEM_TOP 0x0007FDFF

#define DATA_MEM_SIZE (DATA_MEM_TOP - DATA_MEM_BASE)
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Function Semantic
int8_t inst_mem_read_in(void) Read in instructions from

text.s2s image located in
SPEAR2SIM main directory.

char* inst_mem_read_opcode(uint16_t address) Read opcode from instruction
memory.

char* inst_mem_read_operand1(uint16_t address) Read operand1 from instruction
memory.

char* inst_mem_read_operand2(uint16_t address) Read operand2 from instruction
memory.

void inst_mem_dump(void) Dump instruction memory to
console.

int8_t finst_mem_dump(void) Dump instruction memory to
file.

Table 3.9: Functions provided by inst_mem.c.

Function Semantic
int8_t data_mem_read_in(void) Read in data from data.s2s im-

age located in SPEAR2SIM main
directory.

int8_t data_mem_write32bit(int32_t value, uint32_t
address)

Write 32 bit value to data mem-
ory.

int32_t data_mem_read32bit(uint32_t address,
int16_t *errv

Read 32 bit value from data
memory.

int32_t data_mem_read16bit(uint32_t address,
int16_t *errv)

Read 16 bit value from data
memory.

int8_t data_mem_write8bit(int32_t value, uint32_t
address, uint16_t pos)

Write 8 bit value to data mem-
ory.

int32_t data_mem_read8bit(uint32_t address,
int16_t *errv)

Read 8 bit value from data mem-
ory.

int8_t fdata_mem_dump(void) Dump data memory to file.

Table 3.10: Functions provided by data_mem.c.

/* penalty defines */

#define DATA_MEM_PENALTY 9

The size of the data memory is defined through the address space between DATA_MEM_BASE

and DATA_MEM_TOP. The number of penalty cycles needed to wait for every memory access

to complete when simulating the SPEAR2 core operating on an external memory module is

determined by the value of DATA_MEM_PENALTY.
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Function Semantic
int execute(void) Execute instruction on operands

stored in pipeline register 2.
int32_t convert_operand_reg(char *operand) Convert a register number from

string to numerical.
int32_t convert_operand_int(char *operand) Convert an operand from string

to numerical.

Table 3.11: Functions provided by alu_op.c.

alu_op.c

The alu_op.c module is responsible for two important tasks: As all operands stored in the in-

struction memory are represented as character arrays, they must be converted into numerical

data types in order to be able to execute logical or arithmetical operations on them. Further-

more, the register numbers must be determined from given register names. The second task is

to call the correct subroutine from alu.c depending on the actual opcode stored in the second

pipeline register. In the case of a requested END instruction, the simulation is stopped triggered

by a corresponding error-return value of the execute() function.

alu.c

This central functional unit of the simulator implements the complete SPEAR2 ISA, i.e., each

instruction from the processor is simulated by exactly one subroutine from alu.c. For a more

detailed reference on all these functions and instructions, e.g., information on the behavior of

the processor internal flags during different operations, the interested reader is referred to the

appendix of [21] or to the source code documentation.

3.2.2 Generic Cache Interface

To allow an easy development and integration of new cache controllers, SPEAR2SIM defines a

generic cache interface to the simulated core. Its obligatory declarations and functions together

with simple examples are going to be explained on the following pages. These code examples

primary illustrate the routines of a direct mapped data cache. The routines for the instruction

cache implementing the same placement strategy are similar expect for the data types that are

operated on.

The generic data type declarations for the cache memory and the cache blocks are defined in the

shared main cache header file cache_interface.h. As it is visible in the following code segment,

an entry of the data cache memory is implemented as a structure including a two dimensional
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data field, one dimension for the blocks and one for the data words respectively. Another one

dimensional array serves as the tag memory. Extra fields like an usage counter for every cache

block which are used by more sophisticated block replacement algorithms like the LRU must be

implemented locally in the corresponding cache controller. These generic data type declarations

serve as a minimal interface to all feasible cache policies and should therefore not be extended.

typedef struct data_cache

{

uint32_t address[DATA_CACHE_SIZE];

int32_t mem[DATA_CACHE_SIZE][DATA_CACHE_BLOCK_SIZE];

} DATA_CACHE;

typedef struct data_cache_block

{

int32_t data[DATA_CACHE_BLOCK_SIZE];

} DATA_CACHE_BLOCK;

Table 3.12 gives a brief overview on all compulsory functions which are required by a new cache

controller to be implemented. As all function calls by the pipeline are hard coded it is important

for every new cache controller to implement these necessary subroutines exactly as explained in

the following to guarantee the correct functionality of the processor!
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void init_data_cache(void)

The initialization function is needed to fill all tags with default values that must not be mixed

up with the values that will be stored during the execution of a program. Letting all tags e.g.

being initialized with zeros, accessing block 0 from the main memory would instantly lead to

cache hit although the corresponding data has never been brought into the cache. The following

execution on erroneous data words would lead to a mail-functional behavior of the processor.

Consequently it is certainly the better choice to choose an initialization value which is outside

the range of the tag address space. An example for a reasonable initialization can be seen below:

/*!

* \brief Init data cache tags with default values

*/

void init_data_cache(void)

{

int32_t i = 0;

for(i = 0; i < DATA_CACHE_SIZE; i++)

{

data_cache.address[i] = 0xFFFFFFFF;

}

}

As the width of the tag will always be smaller than 32 bits and the initialization value is chosen

to be 0xFFFFFFFF, there will never be some mix up with the tag addresses referenced by the

processor. By initializing the cache memory in this way, there is no need for an additional valid

bit. Furthermore, this function might also include the initialization procedure for extra counters

like the LRU fields needed in more sophisticated replacement policies.

data_cache_write_block(DATA_CACHE_BLOCK *block, uint32_t mem_block_address)

This function should be called whenever some block of data must be brought into the cache after

a memory load operation that resulted in a cache miss. In other words, this function implements

the placement and replacement strategy of the cache controller. Address translation from the

memory block address to the corresponding cache block address must be executed following

the global placement policy. The next code segment shows the write procedure and replacement

decision of a direct mapped cache controller.

/*!

* \brief Write block of data to data cache

* \param *block Block of data

* \param mem_block_address Memory block address

*/
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static void data_cache_write_block(DATA_CACHE_BLOCK *block, uint32_t mem_block_address)

{

int32_t i = 0;

uint32_t data_cache_block_address = 0;

/* address translation - get cache_block_address */

data_cache_block_address = mem_block_address % DATA_CACHE_SIZE;

/* if address tag is not default value - CONFLICT */

if(data_cache.address[data_cache_block_address] != 0xFFFFFFFF)

data_cache_conflict_counter++;

/* write new address tag */

data_cache.address[data_cache_block_address] =

(mem_block_address >> DATA_CACHE_INDEX_WIDTH);

/* write block into cache */

for(i = 0; i < (DATA_CACHE_BLOCK_SIZE); i++)

{

data_cache.mem[data_cache_block_address][i] = block->data[i];

}

}

As it is usual for direct mapped cache controllers, the one and only possible cache internal

position is calculated by taking the memory block address modulo the cache size, i.e., the overall

number of blocks that can be stored inside the cache memory. A conflict occurs when the already

stored entry in the tag memory is not equal to the initialization value. The new tag address is

calculated by a right shift of the memory block address by the number of bits used for the index

field.

uint32_t data_cache_search_block(uint32_t mem_address, int16_t *errv)

The task of this subroutine should be the localization of a requested data word in the cache, i.e.,

the identification of the corresponding cache position and the following comparison of the stored

tag with the tag field of the referenced memory address. For a direct mapped cache controller,

such a procedure might be implemented in the following way:

/*!

* \brief Check the data cache for data

* \param mem_address Memory address (bytes)

* \return DATA_CACHE_MISS if data is not found (check errv), number of block else

*/

uint32_t data_cache_search_block(uint32_t mem_address, int16_t *errv)

{

uint32_t mem_block_address = 0;

uint32_t data_cache_block_address = 0;
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*errv = DATA_CACHE_HIT;

/* get mem block address - clear bits for block-internal addressing */

mem_block_address = ((mem_address) >> (DATA_CACHE_BLOCK_WIDTH + 2));

/* get chache block address */

data_cache_block_address = mem_block_address % DATA_CACHE_SIZE;

/* look for block in cache - direct mapped - only one tag needs to be checked */

if((mem_block_address >> DATA_CACHE_INDEX_WIDTH) ==

data_cache.address[data_cache_block_address])

return (data_cache_block_address);

/* if not found */

*errv = DATA_CACHE_MISS;

return DATA_CACHE_MISS;

}

The selection of the targeted block is again performed by the same modulo operation presented

in the write procedure. The same holds for the extraction of the tag address from the memory

block address.

int32_t data_cache_fetch_data(uint32_t mem_address, int16_t *errv)

As can be concluded from the name, this subroutine is responsible for the fetching of the re-

quested data word from the cache memory. This task includes the calling of the corresponding

search routine and the retrieving of the complete block from the main memory in the case of a

cache miss as well with a subsequent write access on the cache. If the search yields a cache hit,

the requested data word is extracted from the block and returned to the calling function.

/*!

* \brief Fetch data from data cache. Update block in case of a miss

* \param mem_address Memory address (bytes)

* \param *errv Error variable

* \return DATA_CACHE_MISS in case of a miss (check errv), data word else

*/

int32_t data_cache_fetch_data(uint32_t mem_address, int16_t *errv)

{

uint32_t data_cache_block_address = 0;

uint32_t word_address = 0;

uint32_t mem_block_address = 0;

uint32_t mem_read_address = 0;

DATA_CACHE_BLOCK temp_block;

int32_t i = 0;

int16_t lerrv = 0;
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*errv = DATA_CACHE_HIT;

/* look for block in cache */

data_cache_block_address = data_cache_search_block(mem_address, &lerrv);

/* if not found return a MISS */

if(lerrv == DATA_CACHE_MISS)

{

*errv = DATA_CACHE_MISS;

/* get mem block address */

mem_block_address = ((mem_address) >> (DATA_CACHE_BLOCK_WIDTH + 2));

mem_read_address = mem_address & (0xFFFFFFFF -

((int32_t) pow(2, DATA_CACHE_BLOCK_WIDTH + 2) - 1));

/* read data from memory */

for(i = 0; i < DATA_CACHE_BLOCK_SIZE; i++)

{

temp_block.data[i] = data_mem_read32bit(mem_read_address +

(4 * i), &lerrv);

}

/* write data to cache */

data_cache_write_block(&temp_block, mem_block_address);

return DATA_CACHE_MISS;

}

/* get word_address - kill all bits except the ones needed for block

internal addressing */

word_address = (mem_address / 4) & ((DATA_CACHE_BLOCK_SIZE) - 1);

/* return desired data word */

return data_cache.mem[data_cache_block_address][word_address];

}

void data_cache_update(int32_t value, uint32_t block_address, uint32_t word_address)

This subroutine simply implements the cache memory write update procedure in the case of a

write hit.

/*!

* \brief Update word in block

* \param value New value

* \param block_address Address of block

* \param word_address Address of word inside block

*/

void data_cache_update(int32_t value, uint32_t block_address, uint32_t word_address)

{
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/* update word in block */

data_cache.mem[block_address][word_address] = value;

}

void data_cache_dump(void)

The obligatory dump function can be used to print the currently stored contents of the cache on

the console. Indeed this function is only applicable on small cache implementations, e.g., for

debugging reasons at the very start of the implementation of a new design. For larger capacities,

fdata_cache_dump might be the better choice.

/*!

* \brief Print all data cache entries on console

*/

void data_cache_dump(void)

{

int i = 0;

int j = 0;

for(i = 0; i < DATA_CACHE_SIZE; i++)

{

printf("BLOCK TAG : %x\n", data_cache.address[i]);

for(j = 0; j < (DATA_CACHE_BLOCK_SIZE); j++)

{

printf("BLOCK %d - DATA %d : %x\n", i, j, data_cache.mem[i][j]);

}

printf("\n");

}

}

int8_t fdata_cache_dump(void)

Dumps the cache contents to a dump file instead on the console. As already explained, this

function should be used for simulations using a cache memory with a high storage capacity.

/*!

* \brief Print all data cache entries in a dump file

* \return DATA_CACHE_MISS in case of an error, DATA_CACHE_HIT else

*/

int8_t fdata_cache_dump(void)

{

FILE *data_cache_dump;

int i = 0;

int j = 0;

/* open dump file */

if((data_cache_dump = fopen("dump/data_cache_dump", "w")) == NULL)
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return DATA_CACHE_MISS;

for(i = 0; i < DATA_CACHE_SIZE; i++)

{

fprintf(data_cache_dump, "BLOCK TAG : %x\n", data_cache.address[i]);

for(j = 0; j < (DATA_CACHE_BLOCK_SIZE); j++)

{

fprintf(data_cache_dump, "BLOCK %d - DATA %d : %x\n", i,

j, data_cache.mem[i][j]);

}

printf("\n");

}

/* close dump file */

fclose(data_cache_dump);

return DATA_CACHE_HIT;

}

Interfacing the Core - Example

The next code segment from the ALU shows the application of the cache interface, i.e., the hard

coded call of the cache fetch function by the core.

#ifdef USE_DATA_CACHE

errv = DATA_CACHE_HIT;

/* search for data in cache */

data_cache_return = data_cache_fetch_data(valY, &errv);

/* if not found in the cache */

if(errv == DATA_CACHE_MISS)

{

errv = DATA_MEM_SUCCESS;

data_cache_miss_counter++;

/* read value from mem */

valX = data_mem_read32bit(valY, &errv);

if(errv == DATA_MEM_FAILED)

return DATA_MEM_FAILED;

/* mem access penalty - pipeline is frozen at that time */

cycle_counter = cycle_counter + DATA_MEM_PENALTY + DATA_CACHE_BLOCK_SIZE;

}

else

{

/* if found, get it from the cache */

valX = data_cache_return;
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data_cache_hit_counter++;

}

data_cache_read_access_counter++;

#endif

This example code has been extracted from a memory load operation which firstly tries to fetch

the requested data word from the cache. In the case of a miss, the cache controller will update the

corresponding cache memory location internally. The final access to the external data memory

forwards the needed data word to the processor. Please note that this is the very first beta version

of SPEAR2SIM, i.e., many updates and modifications are likely to be applied in the future. For

an up-to-date version of the simulator tool chain, please check the SPEAR2 homepage.

3.3 Simulation Results

This subsection serves as a turtorial for the procedure of finding the best caching strategy for a

given application. As different programs offer different kinds of temporal and spatial localities,

these benchmarks should not be interpreted as general performance indicators for the presented

cache controllers. The next pages reveal the key benefit of SPEAR2SIM, i.e., the possibility to

efficiently find an appropriate cache controller for a program that is going to be executed on

the SPEAR2 processor. Nevertheless, excessive benchmarks that are concerned with the general

influence of different cache sizes, block sizes etc. on the overall performance and on the different

kinds of miss rates can be found in [12].

3.3.1 A Little Motivation

Before comparing the hit and miss rates of two benchmark applications running on different

cache controllers tested in several simulation runs, Figure 3.4 demonstrates to the reader the

positive effect of caching on the overall system performance. The bars drawn in the Figure rep-

resent the number of cycles needed by three different versions of the simulated processor for their

executions of the benchmark program cache_benchmark1.c (see appendix). The core simulated

in the INT_MEM mode corresponds to the original version of the SPEAR2 architecture equipped

with internal synthesized data and instruction memory. The total number of cycles is consider-

ably less compared to those of the other configurations as all data words and instructions are

immediately available in the subsequent cycle after the memory access request. Letting the data

and instruction memory reside in an external RAM like it is simulated in the EXT_MEM mode,
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the performance begins to degrade to a level that is unacceptable for most reasonable applica-

tions. This situation resulting from the higher latency for every memory access becomes even

worse with the data and instruction memory residing in the same physical memory and sharing

the same interface to the pipeline5. The disparity of needed cycles between the EXT_MEM and

the INT_MEM configuration can approximately stated as 1 : 6. To the rescue, even two simple

cache controllers for the data and instruction memory that implement a direct mapped placement

policy with a block count of 64 and a block size of 4 (512 Bytes) can help to significantly im-

prove the performance again. The cycle count in the CACHE_MEM configuration considerably

decreases to a value near the one from the INT_MEM configuration.

Figure 3.4: Performance boost gained by caching.

The upcoming measurements are going to investigate the performance issues of programs run-

ning on the SPEAR2 processor taking advantage of the following three cache controllers:

• Direct Mapped

• 2-Way Set Associative

• Fully Associative

5A detailed description of the transformation from a Harvard to a Van Neumann architecture will be given in the
next chapter.

71



3.3.2 Cache Benchmark 1

The first measurements focus on the performance of the three cache controllers acting as instruc-

tion caches. The benchmark program in use, i.e., cache_benchmark1.c, represents a simplified

mix of excessive loops accessing a huge area of the data memory address space mixed with a

number of sequential statements that have been implemented as simple NOP chains since the

meaning and the result of the program are not that interesting. The main duty of the sequential

statements beside a simulation of general program tasks is to interfere with the loop instructions

in order to reduce the advantage gained by the temporal locality resulting from executing in-

structions in a loop. The following code segment shows two example functions that execute this

excessive memory access over the data memory address space, intercepted by sequential NOP

chains that are executed by calling the subroutines foo5() and foo6(). The included NOP_CHAIN

macros in sum_array will not have any negative influence on the temporal locality as they are

themself part of the instructions in the loop. The rest of the program is build by similar subrou-

tines. For more information on the benchmark programs, the interested reader is recommended

to have a closer look on the appendix.

for(j = 0; j < LOOP_COUNT; j++)

{

for(i = 0; i < ARRAY_SIZE; i++)

{

foo5();

sum = sum + a1[i];

foo6();

sum = sum + a4[ARRAY_SIZE - i - 1];

foo5();

}

NOP_CHAIN

foo5();

}

for(i = 0; i < ARRAY_SIZE; i++)

{

foo5();

a3[i % ARRAY_SIZE] = a2[(i + 20) % ARRAY_SIZE];

}

Since cache_benchmark.c holds only approximately 1754 instructions, the instruction cache

memory must not have a capacity higher than this number. As no commercial or bigger bench-

mark programs have been available for testing the performance of the processor equipped with

the new memory layer, all simulations have been performed using only comparatively small

instruction caches. This is no real disadvantage at all since the values extracted from the simula-

tions will scale with the size of the program and the usage of bigger caches. Anyway, the needed
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Function Instruction Memory Address Instruction Cache Address
sum_array() 0xE8→ 298 E8→ 98

foo5() 0x93A→ A3E 3A→ 3E

Table 3.13: Instruction Memory occupied by sum_array and foo5.

stressing of the cache by frequent memory accesses is achieved by a clever implementation of

the program that will lead to an overlapping of instructions in the cache memory.

The following execution of the benchmark program now presents the danger of a performance

degradation when using a direct mapped placement strategy caused by an overlapping cache

memory address space of the two code segments occupied by the functions foo5 and sum_array.

The cache internal addresses resulting from the direct mapped mapping function in a 256 word

instruction cache are visible in Table 3.14. As foo5 is excessively called in sum_array, using a

direct mapped placement strategy will lead to a noticeable higher number of conflict misses. The

difference in miss counts between a fully associative and a 2-way set associative cache controller

executing a FIFO replacement policy together with a direct mapped cache controller are visible

in Figure 3.5. All cache controllers have been implemented with a block size of 4 and a block

count of 64 (512 Bytes). Table 3.14 lists the corresponding miss rates.

Figure 3.5: Direct Mapped vs. Fully Associative vs. 2-Way Set Associative (INST.).

Indeed, the different heights of the bars imply a clear defeat for the direct mapped cache con-

troller but the difference is not that huge as it could be in the worst case where two instructions
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Cache Mode Miss Count Miss Rate
Direct Mapped 1682891 0.083
Fully Associative 1083729 0.053
2 Way Set Associative 1287472 0.063

Table 3.14: Direct Mapped vs. Fully Associative vs. 2-Way Set Associative (INST.).

that are mapped exactly to the same cache block are called in an alternating sequence (trashing).

Usually, any cache controller seems to be perfectly adapted to be used for instruction memories

as instructions are typically fetched in an iterative way. Regrettably, due to the missing ability to

decide for alternative storage blocks, the direct mapped cache controller will suffer from signif-

icantly higher miss rates in situations just like the one in the presented example. Concentrating

on the miss count, the fully associative placement strategy clearly would be the best choice.

Nevertheless, focusing on the miss rate, the benefit does not seem to be that enormous like it

appears to be on the first look. The question is: Are the additional needed hardware resources

justifiable when implementing an fully associative instead of a direct mapped cache controller?

Indeed, an answer can only be given when knowing the exact hardware overhead. Nevertheless

when examining the miss rate of the 2-way set associative cache controller, it is clearly visible

that even a small improvement, i.e., allowing an instruction to be placed on two positions instead

of one significantly improves the situation. In addition, implementing a cache controller with

such a low grade of associativity is not that complex compared with a fully associative cache

controller. The 2-way set associative placement policy can easily be deduced from the direct

mapped by just splitting the cache memory into two direct mapped memories. Now the cache

controller can decide in which of these memories to place an incoming instruction, which ex-

plains the evident performance increase. A justification concerning the additional cost of the

hardware requirements will be given in the next chapter. To sum up, the decision of which of

these cache controllers to be used for this specific application is moved to the hardware layer.

Contrary to the just mentioned problem concerning too small programs, a bigger data cache can

easily be tested in an excessive way. E.g., four arrays an[ARRAY _SIZE] with n ∈ [1, 4]
and ARRAY _SIZE = 8000 cover a big area of the data memory space of the SPEAR2 ar-

chitecture. Although the external memory would offer far more memory space than the internal

synthesized one, the size is left unchanged in all different modes in order to provide equal system

conditions for all simulation runs. Anyway, it is not that important to cover the complete data

memory space as all data words are positioned modulo the cache size. Accessing an address

space that is a multiple of the cache size is perfectly sufficient to investigate all performance

issues. Figure 3.6 compares the different numbers of misses. The corresponding miss rates are
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stated in Table 3.15.

Figure 3.6: Direct Mapped vs. Fully Associative vs. 2-Way Set Associative (DATA).

Focusing on the results, the difference in the miss rates for all three cache controllers is min-

imal. Therefore, it is not necessary to perform further investigations concerning the hardware

requirements as it is reasonable to decide for the direct mapped caching strategy in this case.

3.3.3 Cache Benchmark 2

Concerning the investigation of the data cache performance, the above used benchmark pro-

gram provides a somehow unrealistic scenario as programs tend to access the data memory in a

distributed manner and not iteratively. A more efficient approach, e.g., is therefore to use a re-

cursive implementation of the Mergesort algorithm (cache_benchmark2.c) equipped with some

modifications to guarantee a distributed access over the complete data memory space. Mergesort

is a sorting algorithm following the divide and conquer principle. An array of numbers is sorted

Cache Mode Miss Count Miss Rate
Direct Mapped 23254 0.050
Fully Associative 20870 0.048
2 Way Set Associative 20869 0.048

Table 3.15: Direct Mapped vs. Fully Associative vs. 2-Way Set Associative (DATA).
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by iteratively and recursively dividing the array into sub-arrays that are small enough for the

subsequent reordering of the included numbers when they are again merged together. The here

stated algorithm implements an out-of-place execution, i.e., new arrays must be generated in or-

der to provide the data memory space for the sub arrays which enhances the desired distributed

memory access. The locality of time and space is again disturbed by executing distributed mem-

ory access in between the actual algorithm and by again executing chains of NOP instructions.

For more details concerning the source code, please refer to the appendix.

Figure 3.7 introduces the miss rates of the three cache controllers executing cache_benchmark2.c.

Both, the fully associative and the 2-way set associative cache implement a FIFO replacement

policy. An improved version of the fully associative cache controller using LRU as replace-

ment policy has been simulated in order to illustrate the benefits of using a more sophisticated

replacement strategy than FIFO. The block count has been chosen to be 64, the block size is 4

(512 Bytes). Just as expected, the direct mapped cache controller exhibits a far more higher miss

rate when performing distributed memory accesses. In addition, it seems to be surprising that the

2-way set associative cache performs almost equal good as the fully associative for this partic-

ular application. Indeed it can be concluded that the fully associative cache controller can only

exhibit its full efficiency when using LRU as replacement policy. As the fully associative cache

controller is known for its high hardware requirements (we will justify this statement in the next

chapter), but its performance advantage is minimal for this application when implementing a

FIFO replacement strategy, the next benchmarks will only concentrate on the comparison of the

direct mapped with the 2-way set associative caching strategy. The corresponding miss rates are

presented in table 3.16.

Figure 3.8 compares the performance issues of the direct mapped caching strategy versus the

2-way set associative one focusing on different cache sizes. The results obtained from this

simulation shows that is also important to consider the overall cache size beside the used caching

strategy when deciding for an appropriate cache controller. Indeed, the miss count of the direct

mapped cache controller approaches that of the 2-way set associative controller with a rising

cache capacity. Ergo, if only small cache memories are available, deciding for the 2-way set

associative cache controller would be the better approach. The higher the capacity gets, the

more reasonable becomes the usage of the direct mapped cache controller. Again, the finding of

the hopefully right decision is moved to the hardware layer. At least we can safely exclude the

fully associative cache controller as its performance advantage is almost negligible compared to

that of the 2-way set associative controller.
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Figure 3.7: Direct Mapped vs. Fully Associative vs. 2-Way Set Associative (DATA).

Figure 3.8: Direct Mapped vs. 2-Way Set Associative (Cache Size).

3.4 Conclusion

To sum up, as the optimal caching strategy for a given application is strongly dependent on the

localities of time and space exhibited by the program, it is important to perform simulations

similar like the way it has been explained in this chapter, i.e, testing all possible cache con-

trollers acting as instruction and data caches with a subsequent investigation of their behavior
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Cache Mode Miss Count Miss Rate
Direct Mapped 143514 0.021
Fully Associative 92688 0.013
2 Way Set Associative 99592 0.014
Fully Associative (LRU) 88153 0.012

Table 3.16: Direct Mapped vs. Fully Associative vs. 2-Way Set Associative (DATA).

for different memory capacities. After having completed this task the next step is to compare

the hardware relevant aspects of the cache controllers.
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CHAPTER 4
Implementation

”A good idea is about ten percent and implementation and hard work and luck is 90 percent.“ -

Guy Kawasaki (Former Apple Marketing Expert).

This final chapter is going to cover the most important design details related to the implementa-

tion of the new configurable memory architecture for the SPEAR2 softcore taking advantage of

three different selectable cache controllers. Before explaining the necessary adaptations on the

original design and the available operational modes for this novel memory layer, the first section

is going to provide a brief overview on cache controller implementations from two well known

processor architectures.

4.1 Related Work

4.1.1 The 603e PowerPCTM

PowerPCTM(Performance Optimization With Enhanced RISC – Performance Computing) is a

RISC architecture developed by Apple, IBM and Motorola (also known as the AIM consortium)

in the year 1991 [23] [1]. The 603e, a second generation PowerPCTMarchitecture, is a 32-bit
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high performance superscalar1 design.

The L1 data and instruction cache both provide a storage capacity of 16 Kbyte and are organized

in a four-way set associative way, being built of 128 sets of four blocks, each of them including

one address tag and maximal 32 bytes of data. In order to be able to manage cache coherency,

every block in the instruction cache is also equipped with a valid bit whereas every block in

the data cache additionally includes two state bits that implement a three state MEI (modified,

exclusive, invalid) protocol. These two state bits in combination with a special on-chip snooping

logic guarantee that the data cache is always in a coherent state. The extra snooping mechanism

scans the bus interface and the memory system to which the cache is connected for referenced

addresses during the program execution and compares them with addresses stored inside the

cache tag memory. On a hit, corresponding actions are taken by the cache controller to maintain

the data coherency. As the instruction cache is not snooped by this special logic, coherency must

be maintained by software taking usage of the valid bit that is invalidated by the hardware if the

corresponding block is altered.

The mapping from memory addresses to cache internal positions is realized by so called chunks,

that are also known as cache pages. A chunk has the same size as one way of the cache, that

is 128 blocks ∗ 32 bytes = 4 Kbyte. Since the 603e has an address space of 4 Gbyte, the

memory needs to be subdivided into 1 million such chunks. The internal organization of data

and instruction cache is illustrated in Figure 4.1.

Figure 4.1: Internal cache organization of the 603e [1].

An index represents the relative position of a block inside a chunk and is determined by bits

1A superscalar processor is an architecture (single core) with redundant functional units that is able to execute
two or more instructions simultaneously (instruction level parallelism) [25].

80



PA[20:26] of the memory address. As it can be seen in Figure 4.2, every block from the memory

with the same index is assigned to a fixed corresponding set in which it can be placed in any of

the four available ways. The appropriate chunk is identified by the vector PA[0:19] (tag address).

The remaining five bits in PA[27:31] are used to select a word from the block.

In the case of a cache miss, data words are loaded from the main memory in 8 transfers of 32-bit

or 4 transfers of 64-bit respectively. LRU is used as replacement policy. While the data cache

is blocked until the transfer has completed due to a single ported interface, the instruction cache

allows sequential fetching from other blocks while storing data at the same time after the load

of the critical first double word of the previous load instruction has completed. This technique is

referred to as critical word first. On the contrary, a cache controller implementing early restart

will fetch the data words from the main memory in the normal order but will also restart the

execution of the processor as soon as the requested data word has arrived.

Cache locking is available for both caches. Locked blocks will be updated once on a miss and

will remain in the cache memory until the lock bit is cleared. Cacheability, write back policy

and memory coherency can be configured at the block and page level by manipulating the so

called WIMG attributes. More precisely, WIMG is an acronym for the following four properties

which can be enabled/disabled by altering the corresponding bits in a special register:

Write-Through (W) Setting this bit to ’1’, the modification of data in the cache will also trigger

an update of the original data in the main memory. Otherwise, the cache will be configured

to use a write-back strategy, forcing the controller only to update the modified data in the

main memory when it is required (e.g., in case of a cache replacement operation).

Caching-Inhibited (I) By enabling this attribute, all data words will be directly referenced in

the main memory therefore bypassing the cache.

Memory Coherency (M) If M is equal to ’1’, every access to this position will be considered

to be global, thus enforcing data coherency by triggering other snooping devices holding

the same but altered data to update the corresponding memory location.

Guarded Memory (G) Protects the system from undesired out-of-order or prefetch memory

operations.

While the G attribute prevents the system from machine exceptions2, the M attribute forces

all copies of an addressed memory location to be in a coherent state. W and I configure the

processor how to use its cache.

2Prefetch operations to memory locations which are not occupied by the program might lead to exceptions
whereas an out-of-order access to a peripheral might return undesired results when being accessed in this way.
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Figure 4.2: Memory to cache mapping of the 603e [1].

4.1.2 The LEON2 Processor

The LEON2 processor is a 32-bit SPARC V8 RISC architecture that has been designed to

be especially suited for embedded applications [2]. SPARC stands for Scalable Processor

Architecture and was developed by Sun Microsystems in the year 1987 [24]. LEON2 is either
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available as synthesizable VHDL softcore design that provides just like the SPEAR2 core an

easy composition with additional extension modules through its AMBA AHB/APB bus interface

or alternatively as radiation hard ASIC chip3.

Instruction and data cache are implemented in a Harvard architecture, thus providing simultane-

ous memory accesses via separated data and address buses. Both cache controllers can be either

configured to execute a direct mapped or a set associative placement strategy. The grade of as-

sociativity can be switched between 2 and 4. When using the set associative placement policy

it is possible to choose from the following three different replacement strategies: least recently

used (LRU), least recently replaced (LRR) and pseudo random (RAND). Beside the placement

and replacement policy, the user can also configure the set- and the block size, i.e. for the set

size it is possible to select a value from the range of 1 to 64 Kbyte whereas the block size can be

chosen from an interval of 8 up to 32 bytes of data.

On a miss on the instruction cache, the requested instruction is loaded together with the complete

block from the main memory and stored into the corresponding cache location. When activating

the instruction burst fetch mode in a special cache configuration register, all instructions from

the loaded cache block are forwarded to the integer unit if possible4, thus reducing the number

of penalty cycles. Figure 4.3 shows the address format for the instruction cache controller.

Figure 4.3: LEON2 instruction cache address format [2].

The ATAG field includes the tag address which is compared with the corresponding entry in

the tag memory in order to determine if the requested data word is present in the cache or not.

Cache locking is configurable by setting the bit in the LOCK field. While the LRR bit stores

the replacement history of the targeted cache block, the VALID field determines for all Bytes

residing in the block if they are valid or invalid where one bit of the field represents the status of

one sub block that includes four Bytes.

The address format of the data cache controller exactly equals to the address format of the

instruction cache. Quite the opposite, the data cache controller always fetches only 4 bytes

of data from the main memory in the case of a cache miss. The rest of the original block is

invalidated in order to maintain the cache coherency. Write through with no allocate on a write

miss is used as write back strategy.
3http://atmel.com/dyn/products/product_card.asp?part_id=3178
4 This is only possible if there are no branches to be executed.
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4.2 Adaptations for The New Memory Layer

Although many of the advanced features (e.g., the configurable write-back/through policy on the

block and page level) provided by the PowerPCTMarchitecture seem to be out of reach for the

SPEAR2 processor at the moment, it is certainly desirable to own an architecture that implements

a configurable memory layer equipped with a generic cache interface in order to be able to

efficiently design more sophisticated cache controllers in the future. Therefore, the aim has

been to implement a cache design that can at least be compared with the cache controller of

the LEON2 architecture concerning aspects like a configurable placement policy and a variable

number of blocks and sets. The following description of the novel memory layer for the SPEAR2

processor implemented in VHDL shows that this aim has in fact been perfectly reached.

Unfortunately, certainly one of the weak points of the original architecture is that it has not been

implemented in a clean modular way. As a result, the SPEAR2 processor did not include an

explicit memory layer. Instruction and data memory were directly instanced beside all other

modules in the spear.vhd top layer. Figure 4.4 represents the simplified block diagram of the

original top entity spear.vhd.

Figure 4.4: Old spear.vhd block diagram.

VHDL modules participating in the assembling of the memory were iram.vhd for the instruction

memory and byteram.vhd and dram.vhd for the data memory. The data memory was constructed

by generating four instances of the byteram.vhd module in order to yield the preferred byte

access for write operations.
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4.2.1 Adaptation 1 - Implementation of an Explicit Memory Layer

Therefore, in order to provide an easy configurable memory architecture allowing the user to

switch between the different available versions using some specific VHDL generics of the top

level entity, the first optimization to be applied has been the introduction of an explicit memory

layer. The block diagram of the spear.vhd with the added memory top level replacing the original

dram and iram unit is visualized in Figure 4.5. Its exact functionality, ports and internal modules

as well are going to be explained in detail in the subsequent subsection.

Figure 4.5: New spear.vhd block diagram.

4.2.2 Adaptation 2 - Implementation of an Explicit Instruction and Data Read
Signal

One of the most essential optimizations has certainly been the implementation of an explicit read

signal. Its introduction has been important for the following reason: In the old SPEAR2 memory

design, the memory read access always remained active but the data words on the other hand

only were taken over in the case of an active read request in the pipeline. As all data words are

immediately available in the following cycle when accessing an internal memory, this permanent

read enable strategy did not affect the performance of the processor in a negative way. On the

other hand, performing read operations on an external memory which suffers from a latency

of more than just one cycle, the processor will waste most of its computational cycles waiting

for data words that will not be taken over if there has not been an explicit read request from the

pipeline. This scenario would especially be a problem at the boot phase of the program execution
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where the source code is received from the serial interface and stored inside the instruction

memory. Since this task is performed by the boot loader located in the boot memory, addressed

by the upper address space of the instruction memory, the programmer would never be able to

write to the external memory since the instruction memory controller would always send read

requests to the external RAM. This dilemma made the introduction of a read signals unavoidable.

As a result, the first step to be taken beside the extension of the core.vhd interface (see Table

4.1) was to define the point in time where to enable the instruction memory by sending the

appropriate read signal. Since the address space of the programmer is mapped to the upper end

of the instruction memory address space, the condition in the original implementation to choose

between the data words from the programmer port or the incoming data from the instruction

memory port was based on the value of the most significant bits of the program counter. For

a value not equal to 0, the instructions were taken from the programmer input. For a value

equal to 0, the code from the instruction memory was forwarded to the decoding stage. In

order to activate the instruction memory at the right time, it has been necessary to introduce the

following additional check of the program counter value into core.vhd.

Port Type Direction Semantics
irami_en std_ulogic OUT Instruction memory read enable.

Table 4.1: Port extension of the core component.

-- mbirner : added read enable trigger - if highest bits (boot rom address space)

-- are 0 -> enable instruction memory !

---------------------------------------------------------------------

-- check if instructions are taken from bootrom or instruction-RAM --

---------------------------------------------------------------------

if v.f.pcnt(WORD_W-1 downto CONF.bootrom_base_address) = INST_ADDR_NULL then

irami_ren <= ’1’;

end if;

Exactly the same approach was necessary to be applied on the data ram as the dramsel signal was

only used as write enable signal in combination with write_en and byte_enable. Read accesses

again were permanently active. Enabling the read access only when requested by the processor

is achieved by splitting the dramsel in the spear.vhd architecture into one dram_write_en signal

and one dram_read_en signal.

-- mbirner : added explicit read and write signal

-- dramsel <= coreo_extwr or coreo_memen; -> old ram select signal

dram_write_en <= coreo_extwr;

dram_read_en <= coreo_memen;
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Beside the introduction of these two enable signals, also the data ram address signal was needed

to be adapted. As the SPEAR2 data memory is addressed byte wise, the least two significant bits

from the memory address were already truncated in the top level spear.vhd. This task has been

moved into the memory layer. Therefore the address vector has been extended to its original

size.

-- drami_addr <= coreo_extaddr(CONF.data_ram_size-1 downto 2); -> old addressing

-- mbirner : added dram signals

dram_addr <= coreo_extaddr(CONF.data_ram_size-1 downto 0);

Table 4.2 lists the added signals in spear.vhd.

Signal Type Semantics
dram_read_en std_ulogic Data memory read enable.
dram_write_en std_ulogic Data memory write enable.
dram_addr std_logic_vector[CONF.word_size-

1:0]
Data memory address.

Table 4.2: Signal extension of the spear component.

4.2.3 Adaption 3 - Extension of Generics Declaration of the SPEAR2 Entity
(spear.vhd)

As the new memory layer is fully configurable by selecting the memory mode, the caching

strategy and the block count and block width of both data and instruction cache, it must be

possible to set all these parameters when generating an instance of the SPEAR2 processor. In

this sense, the CONF type in the generics declaration of the top entity has been extended by the

generics listed in Table 4.3.

The user can choose from three different memory modes to be used within the SPEAR2 core.

By setting mem_mode to SPEAR2_INT_MEM, the original design storing data and instruc-

tions in a FPGA-internal RAM will be synthesized. All other additional generics will be ig-

nored in this case. Interfacing the external memory without a cache controller is enabled by

SPEAR2_EXT_MEM. Taking advantage of caching mechanisms becomes available with setting

the generic value to SPEAR2_CACHE_MEM. The caching strategy is selected by the entry in

the cache_mode field. The three available policies are listed in Table 4.4. Block width and block

count can be freely chosen with the only restriction that the block count must be equal to a

power of 2. The reg_mode generic determines if an additional register is included into the data

and address path resulting in a higher feasible storage capacity for a reason that is going to be

explained soon.
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Generic Semantics
mem_mode Selects the kind of memory to be used.
data_cache_mode Selects the caching strategy for the data

cache.
instruction_cache_mode Selects the caching strategy for the in-

struction cache.
reg_mode Determines if some extra register

should be included into the data and ad-
dress path of both caches.

data_cache_block_width Determines the block width of the data
cache (number of bits in block field).

data_cache_block_count Determines the number of blocks resid-
ing inside the data cache.

instruction_cache_block_width Determines the block width of the in-
struction cache (number of bits in block
field).

instruction_cache_block_count Determines the number of blocks resid-
ing inside the instruction cache.

Table 4.3: Extended generics in the spear component.

Cache Mode Semantics
SPEAR2_DIRECT_MAPPED Direct mapped cache.
SPEAR2_FULLY_ASSOCIATIVE Fully associative cache controller.
SPEAR2_SET_ASSOCIATIVE 2-way set associative cache controller.

Table 4.4: Available caching strategies for SPEAR2.

4.2.4 Adaption 4 - Extension of the Port Declaration of the SPEAR2 Entity
(spear.vhd)

In order to equip the core with an interface to the external RAM, the SPEAR2 entity description

has been extended with two new records: ext_ram_in_type and ext_ram_out_type. Table 4.5

and Table 4.6 introduce the reader to the added ports. Please note that these two ports provide

a generic interface which allows for connecting the SPEAR2 processor to any type of external

memory.

The finished signal informs the memory layer that the last operation on the external memory has

completed. In the case of a read access, the requested information can then be read in from the

data port.

On the other hand, the wr_rd_en signal switches between read and write requests. A logical ’0’
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Port Type Semantics
data std_logic_vector[31:0] External RAM data in.
finished std_ulogic External RAM finished signal.

Table 4.5: Input port description of the ext_ram_in_type record.

Port Type Semantics
data std_logic_vector[31:0] External RAM data out.
addr std_logic_vector[31:0] External RAM address.
wr_rd_en std_ulogic External RAM read or write select.
start std_ulogic External RAM transfer start.
trans_size std_logic_vector[2:0] External RAM transfer size.
burst std_ulogic External RAM burst mode enable.

Table 4.6: Output port description of the ext_ram_out_type record.

triggers a read operation while a logical ’1’ requests a write access. The selected operation is

started by setting the output port start to ’1’. Burst operations save computation cycles when

performing iterative read accesses to the external memory. This mode can be activated by the

writing of a ’1’ to burst. The length of the burst transfer is determined by the block size of the

requesting cache controller. The width of the transfer is set by trans_size. Table 4.7 lists all

possible values. During an operation on the external RAM, all output signals will remain active

until the finished transmission is acknowledged with the finished signal. Figure 4.6 illustrates a

typical access example where a burst read operation of the length 4 is performed on an external

memory.

4.3 Implementation Details of the New Memory Layer

The previous subsection has introduced the interface of the memory layer to the processor with-

out taking care of the underlying communication mechanism with the SDRAM module. This

particular important information will be given in the following, before providing a detailed de-

scription of the internal structure of the novel memory layer.

The SDRAM modules5 are controlled by an AMBA SDRAM controller provided by the GRLIB

that has already been included into the SPEAR2 design by [14]. As it can be concluded from the

name of the VHDL design, this controller is equipped with an AMBA AHB bus interface, acting

on the bus as a slave. In this sense, the external RAM interface of the SPEAR2 core introduced in

the last subsection must be routed to an AMBA AHB bus master in order to successfully perform

5Two Samsung SODIMM M464S3254ETS-L7A (CL3 PC133 256MB) chips
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Figure 4.6: Burst access example (read).

Value Semantic
“000“ Byte access.
”001“ 16-bit access (word).
”010“ 32-bit access (double word).

Table 4.7: External memory transfer width.

read and write operations on the external memory through the SDRAM controller. Such an

AHB master module is also already provided by the GRLIB. Figure 4.7 shows a simplified block

diagram of the processor interfacing the external memory in the just described way. For more

information on the AMBA AHB bus and on the actions that are necessary to be taken by a master

and a slave for a successful bus operation, the interested reader is referred to [4]. This thesis

will continue with a description on the internal activities of the memory layer for every memory

access operation.

As already stated, the new memory top layer for the SPEAR2 architecture is fully configurable

by selecting three different modes of memories to be used. Depending on the actual selected

value for the generic, the internal structure of the memory layer will change, resulting in a

different behavior during read and write operations. Before focusing on the single modes of
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Figure 4.7: Connection of the memory layer with the SDRAM module.

the memory unit, Table 4.8 list the port description. The ports of the external memory interface

have been left out since they are the same as in spear.vhd and have already been explained in

Table 4.5 and Table 4.6. Figure 4.8 illustrates the embedding of the new memory layer into

the SPEAR2 processor. Although the description of the three memory modes will start with the

internal memory configuration, this first block diagram shows a memory layer equipped with

cache controllers accessing the external memory.

Since there exists two address ports interfacing the instruction memory, the memory top entity

must decide which address to forward depending on the selected operation.

------------------------------------------

-- select between read or write address --

------------------------------------------

if instruction_ram_wr_en = ’1’ then

instruction_ram_addr_sig <= instruction_ram_waddr_sig;

elsif instruction_ram_rd_en_sig = ’1’ then

instruction_ram_addr_sig <= instruction_ram_raddr_sig;

else

instruction_ram_addr_sig <= (others => ’0’);
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Figure 4.8: Embedding of the novel memory layer into the SPEAR2 entity.

end if;

All write and read accesses to the memory are controlled via the hold port. By setting it to

HOLD_ACTIVE, all requests will be blocked until releasing the pipeline again.

if hold_in = HOLD_ACTIVE then

------------------------

-- block all requests --

------------------------

instruction_ram_rd_en_sig <= ’0’;

instruction_ram_wr_en_sig <= ’0’;

data_ram_rd_en_sig <= ’0’;

data_ram_wr_en_sig <= ’0’;

else

------------------------------------

-- else execute incoming requests --

------------------------------------

instruction_ram_rd_en_sig <= instruction_ram_rd_en;

instruction_ram_wr_en_sig <= prog_prupdate_sig;

data_ram_rd_en_sig <= data_ram_rd_en;

data_ram_wr_en_sig <= data_ram_wr_en;

end if;

4.3.1 Internal Memory

The original SPEAR2 memory architecture can be built by setting the mem_mode generic of

the SPEAR2 component to SPEAR2_INT_MEM. The corresponding block diagram of the entity

mem_top resulting from this configuration can be seen in Figure 4.9.
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Port Type Direction Semantics
clk std_ulogic IN Clock input.
reset std_ulogic IN Reset input.
hold_in std_ulogic IN Hold input.
data_ram_data_in std_logic_vector[31:0] IN Data memory data

in.
data_ram_data_out std_logic_vector[31:0] OUT Data memory data

out.
data_ram_addr std_logic_vector[data_size-

1:0]
IN Data memory ad-

dress.
data_ram_rd_en std_ulogic IN Data memory read

enable.
data_ram_wr_en std_ulogic IN Data memory write

enable.
data_ram_byte_en std_logic_vector[3:0] OUT Data memory byte

enable.
instruction_ram_data_out std_logic_vector[15:0] OUT Instruction mem-

ory data out.
instruction_ram_data_in std_logic_vector[15:0] IN Instruction mem-

ory data in.
instruction_ram_raddr std_logic_vector[instr_size-

1:0]
IN Instruction mem-

ory read address.
instruction_ram_waddr std_logic_vector[instr_size-

1:0]
IN Instruction mem-

ory write address.
instruction_ram_rd_en std_ulogic IN Instruction mem-

ory read enable.
instruction_ram_wr_en std_ulogic IN Instruction mem-

ory write enable.
hold_out std_ulogic OUT Hold output.

Table 4.8: Port description of the mem_top component.
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int_mem.vhd

Although the basic structure did not change with the new memory layer, the source code has

been completely rewritten in order to perform the following optimizations: The module int_mem

serves now as new basic memory block for the FPGA-internal instruction and data memory. In

contrast to the original design, there is no further need for an explicit separation of the instruction

memory module iram from the data memory module byteram as the new design merges the

functionality of both memories into one single generic entity. In this sense, some essential

modifications have been applied to allow the combination of both entities into the int_mem

module.

As it is visible in the port description in Table 4.10, the read and write clock signals have both

been replaced by one general clock signal. The same holds for the read and the write address

ports. Maybe there was some intention to provide simultaneous read and write accesses to the

data memory but this case can be safely excluded resulting from the following fact: As the

SPEAR2 processor is a non-superscalar load/store architecture it is only possible to perform one

single read or write access on the data memory but not both actions at the same time. The

generics of this new module are listed in Table 4.9.
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Generic Semantics
DATA_WIDTH Defines width of data bus.
ADDRESS_WIDTH Defines width of address bus. Deter-

mines size of memory.

Table 4.9: Generics of the int_mem component.

Port Type Direction Semantics
clk std_ulogic IN Clock input.
rd_en std_ulogic IN Memory read enable.
wr_en std_ulogic IN Memory write enable.
addr std_logic_vector[adddr_width-

1:0]
IN Memory Address.

data_in std_logic_vector[data_width-
1:0]

IN Data in.

data_out std_logic_vector[data_width-
1:0]

OUT Data out.

Table 4.10: Port description of the int_mem component.

Furthermore, since the handling of the hold mechanism has been transferred to the top level of

the memory layer, the hold (iram.vhd) and the enable signal (byteram.vhd) of the original design

became useless and have therefore been removed from the port description of the new design.

By the way, these two signals had a completely identical functionality but were unfortunately

named in two different ways, i.e, the enable signal in the iram.vhd unit was generated internally

by the inverted hold signal whereas the byteram.vhd unit directly used an incoming enable signal

which again was generated on layer above (dram.vhd) by inverting the hold signal. This port is

now replaced by an explicit read enable signal which was missing in the original design.

Figure 4.10: Internal Memory block diagram.
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data_mem_top.vhd

Similar to the original SPEAR2 design, data_mem_top implements the data memory by gener-

ating four single memory blocks, each of them providing the ability to store bytes instead of

instancing one single memory module that can store double words. Otherwise it would not be

possible to offer the required byte access for write operations. The selection of the bytes to be

written is performed by the incoming byte enable signal byte_en. Read accesses on the other

hand always return the complete 32-bit data word. The extraction of the requested information

from the complete double word is done by a special logic in the SPEAR2 entity and is therefore

not considered by the memory layer. The hold signal from the processor masks incoming read

and write requests in the case of a stalled pipeline.

As the memory access in this module is performed byte-wise, the two least significant bits from

the incoming memory address need to be truncated. The following listing shows the part of

the VHDL code segment which is responsible for this address adaption and the partition of

the incoming 32-bit data signal into four bytes that are transmitted to their corresponding byte

memories.

---------------------------

-- assign incoming bytes --

---------------------------

mem0_data_in_sig <= data_in(7 downto 0);

mem1_data_in_sig <= data_in(15 downto 8);

mem2_data_in_sig <= data_in(23 downto 16);

mem3_data_in_sig <= data_in(31 downto 24);

-------------------------------------------------------------------------------

-- assign incoming address - kick 2 least significant bits - byte addressing --

-------------------------------------------------------------------------------

mem_addr_sig <= addr(ADDRESS_WIDTH - 1 downto 2);

The outgoing data signal must be connected in the same way in which the input signal has been

partitioned.

------------------------

-- assign output data --

------------------------

data_out(7 downto 0) <= mem0_data_out_sig;

data_out(15 downto 8) <= mem1_data_out_sig;

data_out(23 downto 16) <= mem2_data_out_sig;

data_out(31 downto 24) <= mem3_data_out_sig;

The generics list is equal to that in Table 4.9. The same holds for the port description listed in

Table 4.10. Additional ports are listed in Table 4.11.

Figure 4.11 shows the data memory top level implemented with four byte memory instances.
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Port Type Direction Semantics
hold std_ulogic IN Hold in.
byte_en std_logic_vector[3:0] IN Byte enable.

Table 4.11: Additional ports of the data_mem_top component.

Figure 4.11: Data memory top level block diagram.

4.3.2 External Memory

Synthesizing the SPEAR2 core accessing the external memory without taking advantage of

caching mechanisms, the memory architecture will change from Harvard to Van Neumann due

to the single ported interface to the SDRAM controller. Figure 4.12 introduces a simplified block

diagram that illustrates this change. Due to the common link for accessing data and instructions

and the high latencies of the external memory, the modified architecture will suffer from a dra-

matic performance decrease. However, the configuration presented in the next section will equip

the memory layer with a cache controller, thus lowering the degradation.

In order to schedule simultaneous instruction and data accesses that appear whenever some op-

eration on the data memory is requested by the processor additionally to the instruction read

request6, extra functional units are needed to handle these situations and to guarantee an ordered

6Of course, the instruction read requests are permanently active during the complete execution of a program.
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Figure 4.12: The change from Harvard to Van Neumann.

access to this bottleneck. This particular task is performed by the RAM arbiter which is respon-

sible for the ordering of memory access requests from the instruction memory controller and

the data memory controller. Both memory controllers have been implemented by one generic

controller that is configurable to act either as data memory controller or as instruction memory

controller. Figure 4.13 shows the block diagram of the mem_top component. Clearly visible, the

two internal memory blocks have been replaced replaced by the two memory controllers and the

RAM arbiter. Their detailed functionality will be explained in the following. Prior to this, the

reader with less experience on the SPEAR2 architecture must be introduced into the behavior of

the pipeline during an operation on the external memory.
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In the case of external memory accesses, the pipeline must be halted during every read or write

access in order not to cause an erroneous program execution resulting from the ALU trying to

operate on data words which have not been received yet. More precisely, the pipeline needs to be

stopped exactly in the subsequent cycle after a request has been sent to the external memory and

not immediately. This behavior can be explained with the help of the following simple example:

When requesting a read access through a LDW instruction, the processor might need the received

data word for the next instruction, thus operating on it through its forwarding mechanism. Let

this subsequent instruction be an ADD operation. In the sense of a correct program execution,

the cycle with the LDW instruction needs to finish without activating the hold signal so that

the pipeline can fill all registers of the execute stage with the correct instruction code for the

following ADD operation. Activating the hold signal immediately would result in the pipeline

to still remain in the same state after all operations on the memory have finished and the hold

signal is released. The write back stage will therefore not be able to forward the received data to

the ADD operation as the pipeline has not switched to the next state yet. The following delayed

switch of the pipeline will result in a loss of the just received data as the next operation will

already be operating on the external memory. The same problem holds for the retrieve of the

next instruction from the instruction memory. Activating and releasing of the hold mechanism

in the same cycle of the read request will result in a pipeline that will never switch to the next

task as the program counter will never be incremented. Although this is some kind of very

straightforward behavior, this little trap has somehow been overseen by the author for quite

a long time, resulting in a faulty behavior when connecting the new memory layer with the

SPEAR2 pipeline. Figure 4.14 illustrates the described behavior with a graphical example.

Figure 4.14: The behavior of the SPEAR2 pipeline.
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Memory Controller

The memory controllers act as the direct interfaces to the pipeline. Their main duty is to receive

read and write requests from the data and instruction ports and to send them immediately to the

RAM arbiter. After having transmitted an incoming request to the RAM arbiter, the memory

controller will remain in a blocking state waiting for the actual operation to complete, thus

ignoring all transitions on the pipeline interface and remaining idle until the RAM arbiter signals

that all operations on the extern memory have finished. Instruction memory accesses are given a

higher priority than the data memory accesses. In the case of simultaneous transmitted requests

to the RAM arbiter, the data memory controller is forced to wait until the operation requested

by the instruction memory controller has finished. On the other hand, the instruction memory

controller must consequently buffer a received instruction word until the data memory operation

has completed.

Table 4.12 lists all ports of the entity declaration. Table 4.13 shows the generics that can be

configured when generating an instance of the memory controller.
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Generic Semantics
DATA_WIDTH Determines the width of data words.
ADDRESS_WIDTH Determines the width of the address.
MODE Selects the mode to be used.

Table 4.13: Generics of the memory_controller component.

By setting MODE to RAM_ARBITER_MASTER_MODE, the memory controller will be config-

ured as instruction memory controller, gaining the permission to be the first to perform its read or

write operation on the external memory. Care must be taken when receiving data from the RAM

arbiter as all read operations will return 32-bit words, thus reading two instructions per read

access. In order to return the correct data word to the processor, the requested 16-bit instruction

must be extracted from the received double word based on the value of the least significant bit

of the address.

-------------------------------------------

-- switch bytes in case of 16 bit access --

-- if necessary --

-------------------------------------------

if MODE = RAM_ARBITER_MASTER_MODE then

if address_reg(0) = ’1’ then

output_reg_next <= ram_data_in(31 downto 16);

else

output_reg_next <= ram_data_in(15 downto 0);

end if;

else

-------------------

-- 32 bit output --

-------------------

output_reg_next <= ram_data_in;

end if;

When being configured as slave via the generic RAM_ARBITER_SLAVE_MODE, no adaptations

need to be applied on the returned value.

The functionality of the incoming and outgoing data ports like cpu_data_in and etc. is straight-

forward and does not deserve any further explanation. Finished operations on the external RAM

are signaled by the ram_finished signal received from the RAM arbiter. In the case of two si-

multaneous requests, the first transition of this signal will trigger the master to switch into a wait

state and the slave to start waiting for its operation to complete. The first ’1’ on the ram_finished

signal will therefore inform the slave that the operation of the master has finished and that its

operation is now going to be handled by the RAM arbiter. In the special case of no request from

the master, the slave must be informed that its request will immediately be executed. This is re-

alized by the arbiter_ack signal which is set to ’1’ by the arbiter in this particular situation. On
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the other hand, the controller without any requests must be informed that the other one is going

to access the memory, if this is really the case. As the pipeline will switch to the next instruction

which might be another memory operation, the unemployed controller must be brought into the

HOLD state in order to block all new incoming requests from the pipeline. This is achieved

by the arbiter sending the hold_in signal. After all requests have been satisfied, both memory

controllers will be waiting in their HOLD states. The last task to be done by the arbiter is to

initiate a reset in both controllers and to release the hold_out signal in order to reactivate the

pipeline. The reset is performed by pulling reset_state to ’1’. Figure 4.15 shows a state diagram

of the data memory controller. The one for the instruction memory controller is similar except

the missing SLAVE_WAIT states.

Figure 4.15: State diagram of the memory_controller component.

RAM Arbiter

The RAM arbiter is responsible for the ordered access to the single ported RAM interface, the

generation of the appropriate signals for the AMBA master that will initiate the bus transfer and

the correct handling of the hold_out signal in order to control the pipeline. The generics and

the additional ports of the RAM arbiter are listed in Table 4.14 and Table 4.15 respectively. The

remaining ports are equal to those listed in Table 4.8.
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Generic Semantics
MODE Determines memory mode to be

used.
REG_MODE Determines if some extra regis-

ter should be included into the
data and address path.

EXT_RAM_ADDRESS_WIDTH Determines the width of the ex-
ternal memory address bus.

DATA_RAM_ADDRESS_WIDTH Determines the address space
and the size the of data memory.

INSTRUCTION_RAM_ADDRESS_WIDTH Determines the address space
and the size of the instruction
memory.

DATA_CACHE_BLOCK_WIDTH Determines the block width of
the data cache.

INSTRUCTION_CACHE_BLOCK_WIDTH Determines the block width of
the instruction cache.

Table 4.14: Generics of the ram_arbiter component.

Port Type Direction Semantics
data_ack std_logic OUT Data memory controller

acknowledge signal.
data_hold std_logic OUT Set data memory con-

troller to HOLD.
instruction_hold std_logic OUT Set instruction memory

controller to HOLD.
reset_controller std_ulogic OUT Reset signal for both

memory controllers.

Table 4.15: Port description of the ram_arbiter component.

The value of the MODE field determines if the RAM arbiter is configured as interface to a cache

controller or to the memory controller. The main difference between these two modes is the

number of sequential read operations per read access and will be explained in detail within the

SPEAR2_CACHE_MEM configuration of the memory layer.

As already introduced, the data_ack signal is used to inform the data memory controller that the

instruction memory controller has no active request on the external memory and that its request

is going to be executed next. The data_hold and instruction_hold signal are needed to inform

the corresponding memory controller that it must switch to its HOLD state in situations where it

has not sent any request to the RAM arbiter but the opposite controller did. The reset_controller
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signal is used to reset both controllers into their IDLE state again, thus allowing them to receive

the next requests from the pipeline which are again immediately send to the RAM arbiter.

4.3.3 Cache Memory

First of all, the arbitration mechanism of the single ported external RAM interface in this con-

figuration is exactly the same as in the SPEAR2_EXT_MEM mode except that the memory con-

trollers are replaced by cache controllers. The block diagram of the mem_top component is

visible in Figure 4.16. The cache memories are implemented by the original memory layer

of SPEAR2_INT_MEM, i.e., by generating one instance of the int_mem component for the in-

struction cache memory and a data_mem_top instance for the data cache memory. Just like the

memory controllers, these cache controllers serve as direct interfaces to the pipeline, thus re-

ceiving requests from the processor and immediately transmitting them to the RAM arbiter but

this time only if the requested data word is not already residing inside the cache memory. That

means, before any signal is sent to the RAM arbiter, the cache controller will at first look for

the referenced tag entry in its tag memory. On a miss, the request is sent to the RAM arbiter, on

a hit, the referenced data word is immediately returned from the cache memory to the pipeline.

Again, care must be taken if one controller exhibits a cache hit while the other one suffers from

a miss, thus accessing the external RAM. Consequently, the controller with the cache hit must

again be brought into an HOLD state via a transition on the hold_in port. In the case of both

cache controllers returning a hit, the requested data and instruction word will be both available

in the subsequent cycle. As a result, the pipeline will not be stalled as no request will be sent to

the RAM arbiter.
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As the write strategy has been chosen to be write-through, every write on the cache will also

trigger a write operation on the external RAM. Write operations on the external memory are

handled in the same way like in the SPEAR2_EXT_MEM configuration. This is certainly not

true for read operations. As a cache controller always fetches the complete block on a miss, the

RAM arbiter executes several sequential reads on the external memory for both, instruction and

data cache. The number of read accesses equals the block size, i.e., the number of data words

residing inside a block. Consequently, the slave controller has to wait for a number of positive

transitions on the ram_finished port that is equal to the block size of the master controller and

vice versa. As the width of an instruction word is 16-bit but every read access returns a 32-

bit data word, the number of read operations is consequently only half the block size for an

instruction cache controller. Furthermore, the instruction memory cache also has a data width of

32-bit which in addition halves the needed address space. Figure 4.17 shows the state diagram

of the data cache controller. The one for the instruction cache controller is again similar except

the missing SLAVE_WAIT states.

Figure 4.17: State diagram of the cache_controller component.

Above all, the RAM arbiter is now able to use the burst mechanism due to the iterative accesses

on the memory. For details concerning the VHDL implementation, please refer to the source
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code and to the source code documentation. Especially ram_arbiter_arc.vhd implements im-

portant procedures concerning the address translation which is needed to correctly address the

AMBA master in order to provide byte, word and double word accesses.

The new SPEAR2 memory layer can be equipped with cache controllers implementing the fol-

lowing three caching policies:

• Direct mapped

• Fully associative

• 2-way set associative

The generic lists and port descriptions are the same for all caching strategies. See Table 4.17

and Table 4.16 for more information. Table 4.16 only lists additional ports compared to those

that are already listed in Table 4.12. The MASTER_BLOCK_WIDTH generic value is needed by

the slave controller in order to know the block size of the master controller which defines the

number of incoming positive transitions on the ram_finished port that the slave must wait before

its request is going to be executed by the arbiter.
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Generic Semantics
DATA_WIDTH Determines the data width.
ADDRESS_WIDTH Determines the address width.
MASTER_BLOCK_WIDTH Determines the block width of the mas-

ter controller.
BLOCK_WIDTH Determines the local block width.
BLOCK_COUNT Determines the local block count.
MODE Determines if the controller is acting

as master (INSTRUCTIONS) or slave
(DATA)

Table 4.17: Generics of all cache controllers components.

Thanks to a generic interface and a modular structure, the one and only noticeable difference

between these three cache controllers is the way they are searching for a requested data word in

their tag memories. The following three code segments will show the tag search procedures of

the three presented cache controllers, beginning with the direct mapped placement strategy that

simple inspects on only one definite position, that is the block defined by the index field7.

if (tag_mem(v_cache_block_address_int)(TAG_WIDTH - 1 downto 0) = v_mem_tag_address)

and (tag_mem(v_cache_block_address_int)(TAG_WIDTH) = ’1’) then

cache_rd_en <= ’1’;

...

...

...

end if;

Searching for a requested data word indeed becomes more complicated with the fully associative

placement policy.

for i in 0 to BLOCK_COUNT - 1 loop

if (tag_mem(i)(TAG_WIDTH - 1 downto 0) = v_mem_tag_address)

and (tag_mem(i)(TAG_WIDTH) = ’1’) then

cache_rd_en <= ’1’;

v_cache_block_address := std_logic_vector(to_unsigned(i, INDEX_WIDTH));

end if;

end loop;

...

...

7Remember Chapter 2 - Block Placement.
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As it is visible in the VHDL code segment, the search procedure of this cache controller will

cover the complete tag memory. The tremendous negative effect of the loop statement on the

hardware requirements will be examined in the following.

Last but not least, the next code segment presents the tag search procedure of the 2-way set

associative cache controller. Indeed, this placement strategy can be easily deduced from the

direct mapped one by just splitting the cache memory into two parts that are equal in size. As

we have seen in Chapter 2, the tag field will consequently become on bit larger, thus moving to

the right, causing the index field to shrink.

if (tag_mem(v_cache_block_addressA_int)(TAG_WIDTH - 1 downto 0) = v_mem_tag_address)

and (tag_mem(v_cache_block_addressA_int)(TAG_WIDTH) = ’1’) then

cache_rd_en <= ’1’;

...

...

...

elsif (tag_mem(v_cache_block_addressB_int)(TAG_WIDTH - 1 downto 0) = v_mem_tag_address)

and (tag_mem(v_cache_block_addressB_int)(TAG_WIDTH) = ’1’) then

cache_rd_en <= ’1’;

...

...

...

The reader which is especially interested in technical details concerning the implementation in

VHDL, e.g., address translation, state transitions and etc., is referred to the source code and the

source code documentation.

The evaluation and practical experiments yielded many good but also some bad results. By

synthesizing our direct mapped cache controller on a Cyclone IV FPGA, we found out that

the maximal cache memory capacity of the instruction cache is upper bounded with 64 KBytes

whereas the data cache memory can only be equipped with 16 KBytes. The question now cer-

tainly is why is maximum storage of the data cache that noticeable smaller than the one of the

instruction cache? Focusing on the SPEAR2 architecture, the instruction memory has a tremen-

dous timing advantage over the data memory as the only signal to run through the combinatorial

path between the processor and the memory level is the value of the program counter. In contrast

to the signals of the instruction memory, the data path signals connected with the data cache are

much longer: In the worst case, a read instruction yields a cache hit and the requested data word

will be immediately available. If the subsequent instruction is also going to operate on the just

received data word, the data from the cache will be routed through the forwarding unit, entering

the huge memory access address-multiplexer logic in the processor top level entity8 and finally

8Remember that all extension modules of the SPEAR2 architecture are memory mapped, thus they are accessed
via normal load/store instructions.
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reaching the memory layer again where its tag field must be compared with the values stored in

the tag memory. Above all, there is another huge multiplexer logic positioned shortly before the

external RAM interface in the RAM arbiter which needs to adapt incoming addresses to be able

to correctly drive the signals which are routed to the AMBA bus master. As the searching for a

given address in the tag memory is a complex task that costs a lot of cycle time, every of the

implemented cache controllers can be equipped with an additional register, thus breaking up the

long combinatorial path. This register can help to meet the timing requirements even for larger

data cache sizes. in order to be able to increase the capacity of the tag memory. This mode is

enabled by setting the reg_mode generic in the top-level to REG_TRUE. The difference between

a cache controller and its registered version is that when including this extra register, enable sig-

nals, data and addresses will be transmitted to the RAM arbiter in the subsequent cycle and not

immedeately in the case of a cache miss. The usage of this additional register clearly depends

on the used hardware technology. We found out that for a direct mapped cache controller on

a Cyclone IV the additional register must be included to achieve a block count of more than

64. Otherwise the timing analyzer of the used place and route (QUARTUS) tool raised critical

warnings concerning timing violations.

The now following investigation on the required combinatorial functions and register is going

to justify the estimated hardware overheads from Chapter 2 for every of the three implemented

cache controllers. Clearly visible at first sight is the tremendous increase of hardware costs when

switching from a direct mapped caching strategy to a fully associative one beyond a cache size

of 1024 KBytes (Figure 4.18). The reason for this cost explosion has already been explained:

As the complete tag memory needs to be searched during every cache access, the loop statement

shown in the source code example above will result in the synthesis of a huge multiplexer and

comparator logic, therefore increasing the combinatorial path which will additionally result in

an increased runtime of the address and data signals. Figure 4.19 and Figure 4.20 illustrate the

resource requirements for block sizes of 8 and 16. We can conclude some interesting facts from

this figures. Firstly, the ratio of needed hardware resources between the direct mapped and the

fully associative cache controller does not change with a variable block size and can be con-

stantly approximated with 1:2 for a block count higher than 64. For a block count lower than 64,

the difference is minimal, thus it is reasonable to implement the fully associative cache controller

instead of the direct mapped one. To the rescue, as the 2-way set associative caching policy has

shown to be very efficient in the simulations of our two benchmark programs, this cache con-

troller might be used instead of the direct mapped caching strategy in order to approximately

keep the performance of the fully associative one for block counts higher than 64.

Furthermore, the need for combinatorial functions and registers decreases with an increasing

block size. Remembering the address format introduced in Chapter 2, increasing the block size
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will result in a bigger block field, thus shrinking the tag field or the index field at the same time.

Since less sets and blocks can reside inside the cache, less tags have to be compared which

explains the decreasing hardware costs. Nevertheless, the number of needed memory bits will

increase.

Figure 4.18: Hardware requirements (BLOCK SIZE = 4).

Figure 4.19: Hardware requirements (BLOCK SIZE = 8).

Last but least it is time to prove the performance increase gained by caching with the execution of

the cache_benchmark2.c program on the hardware version of the SPEAR2 core. The exact values

are listed in Table 4.18. As expected, the use of caches can significantly reduce the performance

hit due to the slow external memory. However, it seems somewhat counter-intuitive that the fully

associative caching strategy performs worse that the direct mapped and the 2-way set associative

caches.

115



Figure 4.20: Hardware requirements (BLOCK SIZE = 16).

Mode Cycles
SPEAR2_INT_MEM 47073111
SPEAR2_EXT_MEM 460293819
SPEAR2_DIRECT_MAPPED 59550053
SPEAR2_SET_ASSOCIATIVE 58518027
SPEAR2_FULLY_ASSOCIATIVE 61150181

Table 4.18: Performance evaluation in hardware (cache_benchmark2.c).

To the rescue, SPEAR2SIM enables us to reveal the reason for this: First of all, we already have

shown that the fully associative cache controller is only useful when implementing a LRU re-

placement policy. For the implemented fully associative cache a FIFO policy has been used.

Comparing the miss counts on the data cache and the instruction cache extracted from a sim-

ulation run with SPEAR2SIM shows the following (Table 4.19): Although the data cache miss

count is considerably higher for the direct mapped cache controller, the fully associative one im-

plementing FIFO as replacement strategy exhibits a horrible behavior on fetching instructions

which finally explains the higher number of needed cycles. Using an instruction cache imple-

menting a fully associative caching strategy is therefore not recommendable for this specific

application.

Mode DATA misses INSTRUCTION misses
SPEAR2_DIRECT_MAPPED 40915 442848
SPEAR2_FULLY_ASSOCIATIVE 13284 544769

Table 4.19: Simulation results.
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4.4 Conclusion

”Don’t look back in anger, at least not today ...“ Noel Gallagher (Former Oasis member).

We have pointed out that in the last 20 years the performance gap between processors and mem-

ory modules has become huge. Caching has been introduced to mitigate this discrepancy. We

have shown that the efficiency of a cache controller depends on various aspects like the used

placement and replacement strategy, the block size, the block count etc. Moreover, applying an

optimization on one aspect might lead to a degradation of another one, e.g., storage capacity can

be increased with the sacrifice of a larger hit time. Even advanced techniques like prefetching,

that are supposed to speed up a cache controller can result in a performance degradation when

they are not implemented carefully enough.

In order to efficiently find an appropriate caching strategy for a given application, a novel simu-

lator toolchain, i.e., SPEAR2SIM has been introduced. This SPEAR2 ISA simulator is capable of

executing programs that have been built with the original SPEAR2 toolchain. With this environ-

ment it has become possible to extract useful information about the cache usage when running

an application on the emulated core. This particular information, i.e., the miss rates and miss

counts of the data and instruction cache serve as a basis for the decision finding.

The subsequent redesign of the original memory architecture of SPEAR2 with a following im-

plementation of three promising cache controllers in hardware (VHDL) has shown that finding

the best adapted caching strategy is not only about tuning its efficiency (i.e., miss rate). Sev-

eral aspects such as hardware requirements and timing issues do have a huge influence on an

adequate overall decision.

As a result of this thesis, a new memory layer that can be equipped with three different cache

controllers has been designed. The different modes and caching strategies can be easily selected

by specific generics in the SPEAR2 entity. The external memory interface can be connected with

any possible kind of memory or memory controller.

This short resume finally closes this master thesis with the hope that the implementation of the

new memory architecture together with the cache controllers has provided a solid basis for future

projects like the integration of a memory management unit, the implementation of an embedded

operating system and many more.
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APPENDIX A
Benchmark Programs

/*!

* \file cache_benchmark1.c

* \author Michael Birner

* \date 27.06.2011

* \version 1.0

* \brief SPEAR2 cache benchmark program

*

* Copyright 2011 Michael Birner - michael.birner@gmx.at

*

* This file is part of SPEAR2SIM.

*

* SPEAR2SIM is free software: you can redistribute it and/or

* modify it under the terms of the GNU General Public License

* as published by the Free Software Foundation, either version 3

* of the License, or (at your option) any later version.

*

* SPEAR2SIM is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty

* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

* General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with SPEAR2SIM. If not, see http://www.gnu.org/licenses/.

*/

/*-------------------------------------------------------------------------------*/

/* INCLUDES */

/*-------------------------------------------------------------------------------*/

#include "cache_benchmark1.h"

/*-------------------------------------------------------------------------------*/
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/* DECLARATIONS */

/*-------------------------------------------------------------------------------*/

int a1[ARRAY_SIZE];

int a2[ARRAY_SIZE];

int a3[ARRAY_SIZE];

int a4[ARRAY_SIZE];

void foo1(void);

void foo2(void);

void foo3(void);

void foo4(void);

void foo5(void);

void foo6(void);

/*-------------------------------------------------------------------------------*/

/* SUBROUTINES */

/*-------------------------------------------------------------------------------*/

/*!

* \brief Init function for array

*/

void init_array(void)

{

int i = 0;

/* fill all arrays with default values */

for(i = 0; i < ARRAY_SIZE; i++)

{

a1[i] = 1;

a2[i] = -1;

a3[i] = 0;

a4[i] = 0;

}

}

/*!

* \brief Sum function over array entries

* \return Sum over array entries

*/

int sum_array(void)

{

int i = 0;

int j = 0;

int sum = 0;

#ifdef SPEAR2

#ifdef DEBUG

printf("\n\rEntering sum_array()");

#endif

#endif
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for(j = 0; j < LOOP_COUNT; j++)

{

for(i = 0; i < ARRAY_SIZE; i++)

{

foo5();

sum = sum + a1[i];

foo6();

sum = sum + a4[ARRAY_SIZE - i - 1];

foo5();

}

NOP_CHAIN

foo5();

}

return sum;

}

/*!

* \brief Some memory access function

*/

void foo1(void)

{

int i = 0;

#ifdef SPEAR2

#ifdef DEBUG

printf("\n\rEntering foo1()");

#endif

#endif

NOP_CHAIN

NOP_CHAIN

NOP_CHAIN

NOP_CHAIN

for(i = 0; i < ARRAY_SIZE; i++)

{

foo5();

a4[i] = a3[ARRAY_SIZE - i - 1];

NOP_CHAIN

}

}

/*!

* \brief Some memory access function

*/

void foo2(void)

{

int i = 0;

int j = 0;

int val1 = 0;
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int val2 = 0;

#ifdef SPEAR2

#ifdef DEBUG

printf("\n\rEntering foo2()");

#endif

#endif

NOP_CHAIN

j = ARRAY_SIZE - 1;

for(i = 0; i < ARRAY_SIZE; i++)

{

NOP_CHAIN

val1 = a4[i];

val2 = a2[j];

j = j - 1;

NOP_CHAIN

}

}

/*!

* \brief Some memory access function

*/

void foo3(void)

{

int i = 0;

#ifdef SPEAR2

#ifdef DEBUG

printf("\n\rEntering foo3()");

#endif

#endif

NOP_CHAIN

NOP_CHAIN

NOP_CHAIN

for(i = 0; i < ARRAY_SIZE; i++)

{

foo5();

a3[i % ARRAY_SIZE] = a2[(i + 20) % ARRAY_SIZE];

}

NOP_CHAIN

NOP_CHAIN

}

/*!

* \brief Some memory access function
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*/

void foo4(void)

{

int i = 0;

#ifdef SPEAR2

#ifdef DEBUG

printf("\n\rEntering foo4()");

#endif

#endif

for(i = 0; i < ARRAY_SIZE; i++)

{

a1[i] = a2[ARRAY_SIZE - 1 - i];

NOP_CHAIN

}

}

/*!

* \brief Some NOP function

*/

void foo5(void)

{

#ifdef SPEAR2

#ifdef DEBUG

printf("\n\rEntering foo5()");

#endif

#endif

/* a chain of nops */

NOP_CHAIN

NOP_CHAIN

NOP_CHAIN

NOP_CHAIN

}

/*!

* \brief Some NOP function

*/

void foo6(void)

{

#ifdef SPEAR2

#ifdef DEBUG

printf("\n\rEntering foo6()");

#endif

#endif

/* a chain of nops */

NOP_CHAIN

NOP_CHAIN

NOP_CHAIN
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NOP_CHAIN

}

/*-------------------------------------------------------------------------------*/

/* MAIN */

/*-------------------------------------------------------------------------------*/

/*!

* \brief main

*/

int main(void)

{

int sum = 0;

#ifdef SPEAR2

uint32_t cycles = 0;

/* module handlers */

module_handle_t counterHandle;

/* init counter */

counter_initHandle(&counterHandle, ((uint32_t)-320));

/* set counter prescaler */

counter_setPrescaler(&counterHandle, ((uint8_t)255));

printf("\n\rStarting Benchmark !!!\n\r");

/* reset and start counter */

counter_reset(&counterHandle);

counter_start(&counterHandle);

#endif

/* init test arrays */

init_array();

/* call first subroutine */

sum = sum_array();

/* do some stuff */

for(sum = 0; sum < LOOP_COUNT; sum++)

{

foo2();

foo5();

foo1();

foo3();

foo4();

}

#ifdef SPEAR2

/* stop counter and output value */

counter_stop(&counterHandle);
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cycles = counter_getValue(&counterHandle);

printf("\n\rResult : %d", sum);

printf("\n\rCycles : %d\n\r", cycles);

#endif

return sum;

}

/* EOF */

/*!

* \file cache_benchmark1.h

* \author Michael Birner

* \date 10.10.2011

* \version 1.0

* \brief Header file for cache_benchmark1.c

*

* Copyright 2011 Michael Birner - michael.birner@gmx.at

*

* This file is part of SPEAR2SIM.

*

* SPEAR2SIM is free software: you can redistribute it and/or

* modify it under the terms of the GNU General Public License

* as published by the Free Software Foundation, either version 3

* of the License, or (at your option) any later version.

*

* SPEAR2SIM is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty

* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

* General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with SPEAR2SIM. If not, see http://www.gnu.org/licenses/.

*/

#ifndef __CACHE_BENCHMARK1_H__

#define __CACHE_BENCHMARK1_H__

/*-------------------------------------------------------------------------------*/

/* INCLUDES */

/*-------------------------------------------------------------------------------*/

#include <stdio.h>

/* SPEAR2 lib */

#include <drivers/counter.h>

/*-------------------------------------------------------------------------------*/

/* DEFINES */

/*-------------------------------------------------------------------------------*/
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#define NOP_CHAIN asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop");

#define ARRAY_SIZE 8000

#define LOOP_COUNT 10

/*-------------------------------------------------------------------------------*/

/* DECLARATIONS */

/*-------------------------------------------------------------------------------*/

#endif /* __CACHE_BENCHMARK1_H__ */

/* EOF */

/*!

* \file cache_benchmark2.c

* \author Michael Birner

* \date 27.06.2011

* \version 1.0

* \brief SPEAR2 cache benchmark program

*

* Copyright 2011 Michael Birner - michael.birner@gmx.at
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*

* This file is part of SPEAR2SIM.

*

* SPEAR2SIM is free software: you can redistribute it and/or

* modify it under the terms of the GNU General Public License

* as published by the Free Software Foundation, either version 3

* of the License, or (at your option) any later version.

*

* SPEAR2SIM is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty

* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

* General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with SPEAR2SIM. If not, see http://www.gnu.org/licenses/.

*/

/*-------------------------------------------------------------------------------*/

/* INCLUDES */

/*-------------------------------------------------------------------------------*/

#include "cache_benchmark2.h"

/*-------------------------------------------------------------------------------*/

/* DECLARATIONS */

/*-------------------------------------------------------------------------------*/

int a[ARRAY_SIZE];

int b[LOOP_COUNT];

void foo1(void);

void foo2(void);

/*-------------------------------------------------------------------------------*/

/* SUBROUTINES */

/*-------------------------------------------------------------------------------*/

/*!

* \brief Init function for array

*/

void init_array(void)

{

int i = 0;

/* fill all arrays with default values */

for(i = 0; i < ARRAY_SIZE; i++)

{

a[i] = ARRAY_SIZE - i - 1;

}

for(i = 0; i < LOOP_COUNT; i++)
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{

b[i] = 1;

}

}

/*!

* \brief Merge sort algorithm

*/

void merge_sort(int list[], int size)

{

int i = 0;

int j = 0;

int k = 0;

int val = 0;

if(size > 1)

{

int temp1[size / 2];

int temp2[(size + 1) / 2];

NOP_CHAIN

for(i = 0; i < size / 2; ++i)

{

temp1[i] = list[i];

}

for(i = (size / 2); i < size; ++i)

{

temp2[i - (size / 2)] = list[i];

}

for(j = 0; j < LOOP_COUNT; j++);

{

NOP_CHAIN

val = b[j];

for(k = 0; k < LOOP_COUNT; k++)

{

val = a[(k + size) % ARRAY_SIZE];

val = a[ARRAY_SIZE - 1 - k];

}

NOP_CHAIN

}

foo1();

foo2();

merge_sort(temp1, (size / 2));

merge_sort(temp2, ((size + 1) / 2));

foo1();

foo2();
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for(j = 0; j < LOOP_COUNT; j++)

{

NOP_CHAIN

val = b[j];

for(k = 0; k < LOOP_COUNT; k++)

{

val = a[(k + size) % ARRAY_SIZE];

val = a[ARRAY_SIZE - 1 - k];

}

NOP_CHAIN

}

int *pos1 = &temp1[0];

int *pos2 = &temp2[0];

NOP_CHAIN

for(i = 0; i < size; ++i)

{

if(*pos1 <= *pos2)

{

list[i] = *pos1;

if(*pos1 == temp1[(size / 2) - 1])

{

pos1 = &temp2[(size + 1) / 2 - 1];

}

else

{

++pos1;

}

}

else

{

list[i] = *pos2;

if(*pos2 == temp2[(size + 1) / 2 -1])

{

pos2 = &temp1[size / 2 - 1];

}

else

{

++pos2;

}

}

}

}

}

/*!

* \brief Some NOP function

*/
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void foo1(void)

{

NOP_CHAIN

NOP_CHAIN

}

/*!

* \brief Some NOP function

*/

void foo2(void)

{

NOP_CHAIN

NOP_CHAIN

}

/*-------------------------------------------------------------------------------*/

/* MAIN */

/*-------------------------------------------------------------------------------*/

/*!

* \brief main

*/

int main(void)

{

int sum = 0;

#ifdef SPEAR2

uint32_t cycles = 0;

/* module handlers */

module_handle_t counterHandle;

/* init counter */

counter_initHandle(&counterHandle, ((uint32_t)-320));

printf("\n\rStarting Benchmark !!!\n\r");

/* reset and start counter */

counter_reset(&counterHandle);

counter_start(&counterHandle);

#endif

/* init test arrays */

init_array();

/* call the merge sort algorithm */

merge_sort(a, ARRAY_SIZE);

#ifdef SPEAR2

/* stop counter and output value */

counter_stop(&counterHandle);
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cycles = counter_getValue(&counterHandle);

printf("\n\rResult : %d", sum);

printf("\n\rCycles : %d\n\r", cycles);

#endif

return sum;

}

/* EOF */

/*!

* \file cache_benchmark2.h

* \author Michael Birner

* \date 10.10.2011

* \version 1.0

* \brief Header file for cache_benchmark2.c

*

* Copyright 2011 Michael Birner - michael.birner@gmx.at

*

* This file is part of SPEAR2SIM.

*

* SPEAR2SIM is free software: you can redistribute it and/or

* modify it under the terms of the GNU General Public License

* as published by the Free Software Foundation, either version 3

* of the License, or (at your option) any later version.

*

* SPEAR2SIM is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty

* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

* General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with SPEAR2SIM. If not, see http://www.gnu.org/licenses/.

*/

#ifndef __CACHE_BENCHMARK2_H__

#define __CACHE_BENCHMARK2_H__

/*-------------------------------------------------------------------------------*/

/* INCLUDES */

/*-------------------------------------------------------------------------------*/

#include <stdio.h>

/* SPEAR2 lib */

#include <drivers/counter.h>

/*-------------------------------------------------------------------------------*/

/* DEFINES */

/*-------------------------------------------------------------------------------*/

131



#define NOP_CHAIN asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop"); \

asm("nop");

#define ARRAY_SIZE 15000

#define LOOP_COUNT 2

/*-------------------------------------------------------------------------------*/

/* DECLARATIONS */

/*-------------------------------------------------------------------------------*/

#endif /* __CACHE_BENCHMARK2_H__ */

/* EOF */
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