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Abstract

In this thesis I focus on various methods for a theoretical and experimental char-

acterisation of InAs quantum dots embedded in micropillars. My thesis is struc-

tured as follows:

In the first chapter an introduction and a motivation for the fundamental re-

search with quantum dots in micropillars is provided. Chapter 2 contains a basic

description of self-assembled InAs quantum dots, their fabrication process as well

as an overview of their physical properties. In the third chapter micropillars are

described. At the end of this chapter a powerful method for the simulation of

eigenmodes of micropillars is presented. Chapter 4 provides a short overview of

the photon statistics of different light sources and introduces the second-order

correlation function.

Chapter 5 summarizes the experimental work of my thesis. It can be organized

into three parts, in which the first provides an overview of our experimental setup.

The second part describes the basic measurements for an optical characterisation

of quantum dots in micropillars and the third presents the most important ex-

perimental results.

A conclusion and an outlook at the end of my thesis provide a short summary of

the major achievements and describe projects of our research group in the near

future.
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Chapter 1

Introduction

Nowadays semiconductor nano technology is widely spread and commonly used

in everyday life. Almost everybody is used to its applications and possibilities

and most of the time we do not consider that those technologies originally have

been discovered and developed by experts in a laboratory environment. These

days the evolution of modern semiconductor technology has to cross a borderline

due to the quantum effects that appear at very small dimensions.

Quantum theory originated in the early 20th century, when M. Planck and A.

Einstein postulated the photon as an elementary light particle [1, 2]. This theory

has come a long way since then and has yielded many important concepts and

applications.

To get a connection between modern semiconductor technology and quantum

theory the study of semiconductor quantum optics has become a very interesting

topic of research. Semiconductor devices as solid state systems are easily scalable

and therefore ideal for the integration on a chip. Especially semiconductor quan-

tum dots are very interesting candidates which show single atom like behaviour

despite being a solid state system. Quantum dots have discrete energy states

which result in sharp spectral lines for emission and absorption. Furthermore,

quantum dots produce nonclassical light [3] and can also generate entangled pho-

tons [4]. These are the basic elements for various schemes in quantum optics

like quantum cryptography [5], quantum computing [6], and quantum teleporta-

tion [7].

The goal of embedding quantum dots into micropillars is to design an address-

able source of directed nonclassical light. Furthermore micropillars act as high

quality microresonators and therefore the emissionrate of distinct quantum dot

transitions can get enhanced [8].
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Chapter 2

Semiconductor Quantum Dots

A semiconductor quantum dot is a very small region (typically a few nm wide) in-

side a semiconductor in which electrons from the conduction band, holes (missing

electrons from the valence band), or both can be trapped. Due to the small size of

this region the possible energies for the trapped particles are quantized [9]. In our

experiments we use semiconductor heterostructures as quantum dots. Nowadays

the fabrication of structures with confinement of charge carriers in one dimension

(quantum wells), two dimensions (quantum wires), or three dimensions (quantum

dots) are possible. Figure 2.1 illustrates the influence of spatial confinement to

the density of states.
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Figure 2.1: The density of states inside a very small semiconductor material

is massively dependent on the size of the structure. For a so called ”zero-

dimensional” structure the energy-levels of the charge carriers are discrete. Image

from [10].

In general to be able to trap electrons as well as holes a lower bandgap ma-

terial is embedded in between a wider bandgap material. For optically active

quantum dots a type-I bandgap discontinuity is needed. Type-I means that the

3



4 CHAPTER 2. SEMICONDUCTOR QUANTUM DOTS

bandgap of one semiconductor is completely contained in the bandgap of the

other material. The generation of optically active quantum dots also requires

a direct band gap semiconductor as the lower bandgap material. Some mate-

rial pairs are for example InAs/GaAs, InP/GaInP, and GaN/AlGaN (III-V) and

CdSe/ZnS (II-VI) [3]. In these systems the recombination of the charge carriers

inside the quantum dot can be observed directly in the optical spectrum. In our

experiments we work with self-assembled InAs/GaAs quantum dots.

2.1 Fabrication of Self-Assembled InAs Quantum Dots

Self-assembled InAs/GaAs quantum dots are produced through molecular-beam

epitaxy (MBE). First a substrate with a GaAs surface is placed in vacuum and

heated. The pure solid elements (In and As) are heated and the atoms are

deposited onto the surface of the substrate. With this technique it is possible

to deposit single atomic layers onto the substrate. Figure 2.2 shows the growth

process of quantum dots using MBE. After a critical thickness of the InAs layer

it is energetically favourable for InAs to form small islands. Those small islands

are the quantum dots. They are randomly distributed on the GaAs surface.

Dependent on the growth parameters InAs quantum dots are 4-7 nm thick and

20-40 nm wide [3].

Figure 2.2: InAs is deposited onto a GaAs surface with molecular-beam epitaxy.

The lattice mismatch of 7% [3] between the two different materials results in the

formation of small InAs islands. A thin layer of InAs (only a few monolayers)

remains on the surface. This layer is called wetting layer and it is able to confine

charge carriers in one dimension. This quantum well behaviour is also visible in

the optical spectrum, see figure 2.7. After this formation, GaAs is deposited onto

the sample. The low bandgap InAs structure is then completely surrounded with

the higher bandgap GaAs. Graphics taken from [11]
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2.2 Physics of Quantum Dots

In general, the optical as well as the electronic properties depend heavily on the

geometry and the material composition of the quantum dot. Mainly responsible

for the size and the composition is the growth process. Although the position of

a quantum dot is random with MBE growth, one can control the density and the

size of the quantum dots by choosing the amount of deposited material. Also the

growth rate and the process temperature are very important parameters which

have a major influence on the physical properties of semiconductor quantum

dots.

Due to the discrete energies of charge carriers inside a quantum dot the solid

state system shows atomic-like properties. These properties give rise to a shell

model for carrier energy levels inside the quantum dot (s-, p-, d-shell). The shell

structure was first observed by using capacitance (C-V) and infrared spectroscopy

measurements on InAs/GaAs quantum dots in 1994 [12].

2.2.1 Electronic Properties of Quantum Dots

Charge carriers are confined inside quantum dots due to their small dimensions.

This confinement generates discrete energy levels, which can be approximately

calculated by choosing a suitable confining potential and solve the Schrödinger

equation for a bound particle.

Hψ(r) =

(
− ~2

2m∗
∇2 + V (r)

)
ψ(r) = Eψ(r) (2.1)

As a very simple but quite far reaching example one could calculate the bound

states of the quantum dot by applying a symmetrical potential. This model will

be described in this section (adapted from [3]). Since self-assembled InAs quan-

tum dots have a small height and a relative large lateral expansion, one can

choose an infinite square well potential in z direction and a harmonic potential

in lateral directions.

V (r) =

{
1
2m
∗ω0(x2 + y2) |z| < L

2

∞ |z| > L
2

(2.2)

L describes the height of the quantum dot, m∗ the effective mass of the

confined charge carrier respectively and ω0 the level spacing of the lowest states.
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The energy levels resulting from this calculation with the chosen Hamiltonian

are:

E(nx, ny, nz) = (n2
x + n2

y)~ω0 +

(
π2~2

2m∗L2

)
n2
z (2.3)

nx and ny refer to integers larger or equal to zero. nz could be any integer

larger than zero. Due to the small height of an InAs quantum dot, a variation of

nz would cause a very large shift in the energy. Therefore nz is basicially set to

one, when describing the lowest order energy levels. A schematic of these energy

levels as a function of their quantum numbers, E(nx, ny) is shown in figure 2.3.

In figure 2.4 we plotted the recombination energy from the electron ground state

and the hole ground state in a quantum dot versus the height of the quantum

dot.

Figure 2.3: The solution of the Schrödinger equation with an infinite square

well potential in z direction and a harmonic potential in lateral directions yields

equidistantly separated energy levels for electrons and holes, respectively. The

recombination process from the electron ground state to the highest hole state is

schematically drawn. Image from [3].

In general, quantum dots can capture multiple charge carriers. If more

charged particles are confined inside the quantum dot, one has to take the in-

teraction between these charge carriers into account to explain the electronic

properties. In figure 2.5 several different quantum dot states are shown. Due to

the broken rotation symmetry of the quantum dot structure also finestructure-

splitting of the quantum dot states is present [13].
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Figure 2.4: The calculated energies and wavelengths of the recombination process

from the electron ground state to the hole ground state versus the quantum dot

height. For the calculation equation (2.3) and the parameters 0.41 ·me for the

effective hole mass and 0.023 ·me for the effective electron mass were used [14].

For our experiment we expect a quantum dot height of approximately 3.4 nm,

because the s-shell transition of our quantum dots is approximately at 920 nm.

EC

EV

X -X +X

XX
-XX +XX

Figure 2.5: Several different quantum dot states and their recombination pro-

cesses. The first picture on the top left describes an exciton state (X). The one

next to it refers to a negative charged exciton (trion-X−). The top right picture

corresponds to a positive charged exciton (trion-X+). The bottom picture on the

left side describes a biexciton (XX). The images next to it refer to a negative and

positive charged biexciton, (XX−) and (XX+) respectively. Illustration from [15].
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2.2.2 Optical Properties of Quantum Dots

The optical excitation of quantum dots can be performed on resonance with

their emission or above the GaAs bandgap (above 1.52 eV or below 817 nm, re-

spectively). The above band excitation generates electron-hole pairs in the sur-

rounding of the quantum dot. Those charge carriers underlie different intraband

relaxation processes and can get trapped inside the quantum dot. The main re-

laxation mechanism is thought to be phonon emission [16]. If the carrier density

is higher, also Auger processes can contribute [3].

Figure 2.6: The energy-regimes of an InAs quantum dot embedded in GaAs,

from [3]. Since InAs quantum dots have energy levels between the bandgap of

GaAs the quantum dot has an attractive potential for electrons as well as for

holes.
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Figure 2.7: Spectrum of an InAs quantum dot (sharp lines around 885 nm) and

the emission from the wetting layer (broad signal from 855 nm to 865 nm).
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The advantages of the above band excitation are that no scattered laser light

is present at the wavelength of the quantum dot emission. Furthermore one can

investigate all energy regimes of the structure, the wetting layer, the emission

from the quantum dots and also the direct recombination from the GaAs bandgap.

The process itself is also quite efficient, because a large area of the GaAs material

is used as an absorber. Therefore only a few µW/µm2 of laser intensity are

needed.

Under resonant excitation usually higher quantum dot states (e.g. p, d-states)

are populated. These states decay and populate the lower quantum dot states.

The main advantage of this excitation scheme is that charge carriers are directly

created inside the quantum dot and therefore the single photon emission process

does not suffer from delay effects due to the trapping mechanism. Since quantum

dots have a small cross section the laser intensity has to be sufficiently higher (up

to a few mW/µm2). With resonant excitation also the probability of creating

charged states inside the dot can be lowered. By applying a resonant excitation

scheme Rabi oscillations from the quantum dot emission should be visible [3].

However, because of incoherent relaxation processes inside the quantum dot and

from the surrounding it is very hard to observe them. In figure 2.6 the energy

regime which is used for resonant excitation is drawn. A possible way to get rid

of many incoherent internal processes is to use a resonant two photon excitation

scheme which is shown in figure 2.8.

Figure 2.8: Resonant excitation by using a two photon absorption process. The

transition from the ground state to the biexciton state is driven by a resonant

two photon process using a virtual level.

2.3 Distributed Bragg Reflectors

Most of our quantum dot samples are sandwiched between two distributed Bragg

reflectors (DBR). A DBR consists of alternating layer pairs of high and low

refractive index material (e.g. AlAs and GaAs). The layers have in general a
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thickness of a λ/4 (λ is the design wavelength of the cavity). Due to construc-

tive interference, the two DBRs are high reflectance mirrors [17]. The range of

wavelengths that is reflected is called the stopband, see figure 5.12. If there is a

n·λ/2 (n ∈ N) thick central layer present between the two DBRs forming a Fabry-

Perot cavity, the structure shows a resonance for transmission in the middle of

the stopband. The reflectivity spectrum of a planar DBR can be simulated by

using a transfer-matrix method [18]. The refractive index of a material in general

depends on the temperature [19]. For our resonator materials (GaAs and AlAs)

the reflectivity spectrum of the resonator gets blue shifted if the temperature is

decreased. D. Burak and R. Binder proposed a method for simulating vectorial

eigenmodes of VCSEL’s (Vertical-cavity surface-emitting laser) [20]. This method

was used for simulating the reflectivity spectrum of micropillars, see section 3.3

for further details.

2.4 Quantum Dot Samples

Figure 2.9: This picture shows three samples which were used in the experiments

described in this thesis. The wafers are on the copper coldfinger of the cryostat.

The top right is sample #m649 (section 2.4.1), the bottom left is the micropillar

sample C3281 (section 3.4.1) and the bottom right is the calibration sample

C3281-13,7 (section 2.4.2).

2.4.1 Sample #m649

This sample was grown by G. Solomon at the Joint Quantum Institute of the

National Institute of Standards and Technology at the University of Maryland.

A planar DBR cavity consisting of 15.5 lower layer pairs and 10 upper layer

pairs of AlAs and GaAs is present on the sample. The cavity resonance is at

919.4 nm. Within the central layer a low density of self assembled InAs quantum

dots (approximately 10µm−2) are embedded. The InAs quantum dots were grown
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by MBE at 495 ◦C and their s-shell emission lies close (approximately ±5 nm) to

the cavity resonance. The central layer also offers waveguideing properties and

therefore the quantum dots can be excited from the side as well, see section 5.1.

2.4.2 Calibration Sample C3281-13,7

The sample C3281-13,7 was produced at the University of Würzburg by C. Schnei-

der. The main aim for characterising this sample was to control the results of

the InAs quantum dot growth process in terms of quantum dot density and biex-

citonic emission. The top DBR of this sample therefore has been removed (two

remaining mirror pairs) and a shadow mask was processed on top. Holes with

different diameters (from 0.2µm to 4µm) were etched into the mask which allow

to observe areas of the central layer with different sizes. The results are discussed

in chapter 5.

The micropillar samples C3281 and M4792 are discussed in chapter 3 in sec-

tion 3.4.





Chapter 3

Micropillars

Nowadays many research activities concentrate on the realization of microres-

onators with high quality factors. The study of cavity electrodynamics is a fast

growing field of science which also has a huge potential for future applications.

Light confinement on the length scale of the photon wavelength can be achieved

inside a microcavity with a wavelength-thick central layer (GaAs), which is sand-

wiched between an upper and a lower DBR. This confinement yields to many

well observable quantum effects. To realize addressable single photon sources,

microscopic lasers or for investigating the underlying physical laws often a layer

containing quantum dots is introduced into to the middle of the central cavity

layer. Furthermore the enhancement of distinct quantum dot transitions due to

the Purcell effect [8] in these microresonators offers a chance for manipulating

the lifetime of certain quantum dot states.

3.1 Fabrication and Theoretical Background

Typically, micropillars are grown by molecular beam epitaxy. In our case the

DBR layers consist of alternating λ/4-thick layers of AlAs and GaAs. Quantum

dots are embedded in the central one λ-thick GaAs layer. After the growth of

this planar cavity, micropillars are produced by electron-beam-lithography and

reactive ion etching.

13
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(a) Scanning electron microscope pic-

ture of an early quantum dot mi-

cropillar. This picture was taken in

1996, from [21].

(b) Profile from an Al(Ga)As/GaAs

microcavity structure from [22]. The

quantum dot layer is positioned inside

the central GaAs layer exactly at an

antinode of the cavity mode to guar-

antee a maximum light-matter inter-

action. To electrically excite the quan-

tum dot one can use a diode-like struc-

ture,with n- and p-doped areas, re-

spectively.

Figure 3.1: (a) Scanning electron microscope (SEM) image and (b) a schematic

profile of a micropillar.

Very important parameters for a microresonator are its quality factor Q and

its mode volume Vm. The quality factor is defined by the ratio between the emis-

sion energy Ec of the fundamental cavity mode and its linewidth γc (FWHM).

A small mode volume generates a high vacuum field inside the cavity, because of

Evac α
√

1
Vm

. The coupling strength between the cavity and the quantum dot

emission is linearly depended on the size of its vacuum field, so the mode volume

of the microresonator should be minimized [22].

The quality factor of a cavity basically describes the lifetime of photons inside

the cavity. Losses e.g. transmission, scattering, or absorption of photons result in

a shortened lifetime. Therefore the coupling strength between the cavity and the

quantum dot emission depends directly on the Q-factor of the cavity. For high

quality microcavities the Q-factor can be expressed by equation (3.1) [23, 24]:

1/Q = 1/Qintrinsic + 1/Qedgescattering + 1/Qabsorption (3.1)

This equation claims that losses are additive. Qedgescattering and Qabsorption
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can be approximately calculated by:

1/Qabsorption = 4πn/λcαM (3.2)

1/Qedgescattering = κJ2
0 (ktR)/R (3.3)

λc describes the resonance wavelength, n the refractive index and αM refers

to the absorption coefficient of the material. The losses due to edge scattering are

proportional to fundamental mode intensity I(R) at the micropillar edge divided

by the micropillar radius R [23]. By neglecting longitudinal field components, we

can assume I(R) ∝ J2
0 (ktR), in which J0 is the zeroth Bessel function of first kind

and kt refers to the transversal wavevector with kt =
√
nk2

0 − β2 [23]. β is the

mode propagation constant (here, the longitudinal component of the wavevector)

and nk0 is the wavenumber within the material. Section 3.3 provides a closer

look into the propagation and confinement of electromagnetic radiation inside a

micropillar. κ refers to a phenomenological proportionality constant.

Figure 3.2: A state of the art micropillar with a diameter of 1 µm. This structure

was produced by J. P. Reithmaier et al. in 2004. Picture from [25].

The intrinsic Q-factor of a micropillar depends on the number of mirror pairs

(the thickness of the DBR structure), which determines the internal reflectivity

of the cavity. In [26] the intrinsic Q-factor of a planar microcavity is calculated

by using:

Qintrinsic =
2Leff

λc

π

1− rlru
(3.4)

λc is the resonance wavelength. Leff refers to the effective cavity length,

which is approximately ncavdcav + 2neffLm, where ncav is the refractive index for



16 CHAPTER 3. MICROPILLARS

the cavity layer, dcav the thickness of the cavity layer, Lm the effective mirror

length and neff the effective refractive index for the mirror. The effective refrac-

tive index for DBR-layers with the same optical path-length is given by neff =

2nGaAsnAlAs/(nGaAs + nAlAs). The effective mirror length can be calculated by

Lm = meff(dGaAs+dAlAs). d refers to the thickness of the corresponding layer and

meff is the effective number of mirror pairs ”seen” by the wave electric field. For

thick DBRs (m→∞) meff is given by 1/2(nGaAs + nAlAs)/(nGaAs − nAlAs), [27].

m refers to the number of mirror pairs. rl and ru are the reflectivity of the lower

and upper DBR region, respectively. The reflectivity for the upper and the lower

mirror can be calculated using, [27]:

r =
n0 − (nAlAs/nGaAs)

2m

n0 + (nAlAs/nGaAs)2m
(3.5)

where n0 is the refractive index of the material after the DBR which is 1 for

the upper and nGaAs for the lower mirror.

One way to characterise the coupling strength between the cavity and the quan-

tum dot emission is to use the Purcell factor. The rate of spontaneous emission

of a light source is dependent on its environment. If an emitter is located inside a

cavity and its emission is on resonance with the cavity mode, there is an enhanced

light coupling to the cavity mode present. In this case the spontaneous emission

lifetime of the emitter decreases because of the higher light coupling [8]. The

Purcell factor is the ratio between the undisturbed lifetime and the maximally

shortened lifetime of an emitter in a resonator:

FP =
τBulk

τ(∆ = 0)
(3.6)

τBulk is the spontaneous emission lifetime of the emitter in bulk material

without the presence of the resonator. τ(∆ = 0) refers to the lifetime of the

emitter on resonance (detuning ∆ equal zero).

Another approach for the Purcell factor shows the dependence on the quality

factor and the mode volume of the resonator [28]:

FP =
3

4π2

(
λc
n

)3( Q

Vm

)
(3.7)

where λc/n is the fundamental cavity wavelength within the material, Q is the

quality factor and Vm the mode volume of the cavity. In this equation the light

emitter is on perfect resonance with the cavity and the dipole of the cavity mode

completely overlaps with the dipole of the emitter. The linewidth of the emitter

is neglected. Equation (3.7) is also known as Purcell’s cavity figure of merit.

Emission into leaky modes can be considered by inserting Q from equation (3.1).
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3.2 Calculations

We calculated the Purcell factor for a micropillar with a 2µm diameter from sam-

ple M4792 by using equation (3.7). The cavity resonance is located at 902 nm and

the refractive index of the central GaAs layer at 5 K is assumed to be 3.4756 [19].

The optical pre-characterisation of this sample yields a quality factor of approxi-

mately 7900 , see figure 3.10. The volume of the cavity layer (r2πh = 0.767µm3) is

in a first approximation assumed to be equal to the mode volume of the microres-

onator, which yields a Purcell factor of 13.4 . Therefore a quantum dot transition

which is on resonance with the cavity should show a strong enhancement of the

emission rate.
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Figure 3.3: The Purcell factor as a function of the mode volume in µm3. For this

plot a GaAs microresonator with a resonance wavelength of 902 nm and a quality

factor of 7900 is assumed. This value arises from the optical pre-characterisation

of sample M4792, see figure 3.10.

For micropillar sample C3281 the same calculation yields a Purcell factor of

2.6 for a micropillar with a diameter of 2µm. An experimentally obtained quality

factor of 1500 , see figure 5.14 and a mode volume of 0.820µm3, see section 3.4.1

have been assumed.

3.3 Simulating Eigenmodes of Micropillars

In this section I would like to present a method for simulating the eigenmodes

of micropillars [20, 29]. The notation for this formalism, follows reference [20].

Each layer of the micropillar is treated as an optical fibre with a radial step index

profile. Figure 3.4 shows a schematic of a micropillar structure.
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Figure 3.4: Profile of a micropillar. The DBR consists of alternating layers with

refractive indices n1 and n2. The central layer has a refractive index of n3. For

r > R and on top, air with n0 is present. On the bottom the refractive index of

the substrate is present. A±l and B±l are the amplitudes of forward and backward

running waves at each layer l with TEz and TMz polarisation, respectively.

3.3.1 Solving Maxwell’s Equations

The electric and magnetic field components are given by the solutions of Maxwell’s

equations inside and outside the micropillar with proper boundary conditions.

The tangential field components have to be equal at the boundary (r = R) for

forward and backward running waves [20]. These boundary conditions result

in a transcendental equation which determines the eigenmodes of a cylindrical

waveguide [29]:

(
n2

β2

∂rJm
Jm

+
1

δ2

∂rKm

Km

)(
1

β2

∂rJm
Jm

+
1

δ2

∂rKm

Km

)
=
m2kz

2

R2k0
2

(
1

β2
+

1

δ2

)2

(3.8)

where

Jm = Jm(βR) and Km = Km(δR)
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refer to the Bessel function of the first kind and the modified Bessel function

of the first kind respectively. β is the transverse propagation constant inside the

micropillar and δ describes the transverse attenuation constant on the outside.

β =
√
k2

0n
2 − k2

z (3.9)

δ =
√
k2
z − k2

0 (3.10)

R is the radius of the micropillar, n is the refractive index of the layer and

k0 = ω/c refers to the vacuum wavenumber. m describes the field variation in

azimuthal direction. kz refers to the longitudinal component of the wavevector

and is the only unknown variable in (3.8). For practical reasons we express kz as

a function of β in equation (3.9) and solve β in the transcendental equation (3.8),

by inserting a wavelength λ, a refractive index n and a radius R.

The two numbers m and l characterise the solution. The number l refers to

the lth smallest root1 of the equation. m describes the order of the Bessel func-

tion and the modified Bessel function. In solutions with m = 0 the transcendental

equation (3.8) separates into two independent equations. Here the solutions can

be expressed as TEz or TMz eigenmodes [20]. For m ≥ 1 both polarisations must

be considered to satisfy the boundary conditions and therefore we obtain hybrid

eigenmodes HEml.

3.3.2 Common Mode Approximation (CMA)

In general the longitudinal wavevector kz has to be calculated from equation (3.8)

for each layer of the micropillar. This is a very complex treatment of the system

and would require intense numerical computation. Therefore we used the com-

mon mode approximation (CMA) in our simulations. The CMA is based on the

assumption that the mode of the central layer is approximately the same in each

DBR layer and that there is no coupling with other modes [20]. Furthermore

within the CMA the TEz and TMz components of the hybrid mode are assumed

to propagate separately and therefore each polarisation determines its own lon-

gitudinal mode.

In this approximation the transverse propagation constant β is calculated only in

the central layer of the micropillar. Within the whole micropillar structure this

value is assumed to remain unchanged. The longitudinal propagation constant

γl of layer l, is defined by

1The smallest root is in the vicinity of he lth-root of the Bessel function Jm.
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γl =
√
k2

0n
2
l − β2 (3.11)

nl refers to the refractive index of the lth layer and γl = kz for the central layer.

The CMA is justified for low order modes and large micropillar radii. The approx-

imation does not hold for high order modes and/or in the limit of λR ≈ R [20].

Here the diffraction losses in the cavity are dominant. The first condition is well

fulfilled for our simulations. Due to the second condition we avoided simulating

micropillars with radii smaller than 0.9µm.

3.3.3 Transfer Matrix Method in CMA

This formalism offers a straightforward way to calculate the reflectivity for elec-

tromagnetic radiation for a certain wavelength in a distinct micropillar system

(dimensions and refractive indices well known). The transmitted field ampli-

tudes A−N+1, A+
N+1, B−N+1, B+

N+1 (see figure 3.4) are related to the incident field

amplitudes A−0 , A+
0 , B−0 , B+

0 with the transfer matrices MTE and MTM [20].(
A−N+1

A+
N+1

)
= MTE

(
A−0
A+

0

)
(3.12)

(
B−N+1

B+
N+1

)
= MTM

(
B−0
B+

0

)
(3.13)

where

MTE =
N∏
l=0

MTE
l and MTM =

N∏
l=0

MTM
l

The final transfer matrices MTE and MTM are obtained by multiplication of

the transfer matrices MTE
l and MTM

l of each layer l, respectively. These matrices

are evaluated at every boundary2 zl and are defined by

MTE
l =

1

2

(
(1 + 1/γRl )/e−l (1− 1/γRl )/e+

l

(1− 1/γRl )e+
l (1 + 1/γRl )e−l

)
(3.14)

MTM
l =

1

2

(
(εRl + γRl )/e−l (εRl − γRl )/e+

l

(εRl − γRl )e+
l (εRl + γRl )e−l

)
(3.15)

where

γRl ≡ γl/γl+1 , εRl ≡ (nl/nl+1)2 and e±l ≡ exp(i(γl+1 ± γl)zl)
2In contrast to other transfer matrix method definitions [30] these matrices follow the def-

inition of [31] Here zl is the total length from the origin of the stack instead of a single layer
thickness.
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γl has to be evaluated numerically by the CMA (section 3.3.2).

Once the transfer matrix is obtained, the reflection coefficient for each polarisa-

tion can be calculated.

RTE =
A−0
A+

0

= −M
TE
12

MTE
11

|A−
N+1=0 (3.16)

RTM =
B−0
B+

0

= −M
TM
12

MTM
11

|B−
N+1=0 (3.17)

Since RTE and RTM have approximately the same values for low order modes

and large micropillar radii [20], we can choose one polarisation for simulating the

modal reflectivity.

3.4 Micropillar Samples with Quantum Dots embedded

3.4.1 Sample C3281

This sample was produced at the University of Würzburg. A low quantum dot

density of approximately 10 to 20 dots per µm2 should yield to a higher possibility

of observing single quantum dots. The micropillar cavity mode is designed to be

very close to the quantum dot’s s-shell emission. This should yield to a higher

spontaneous emission rate of the quantum dots due to the coupling with the

cavity mode.

(a) The distributed Bragg reflector

consists of 20 upper and 23.5 lower

AlAs/GaAs mirror pairs.

(b) The central cavity layer consists of

GaAs and is 261 nm thick. The thickness

of the AlAs/GaAs DBR layers is 80 nm

and 69 nm, respectively.

Figure 3.5: Cleaved edge SEM images of sample C3281 before etching the mi-

cropilllars. (a) shows a profile of the sample. (b) is a zoom-in onto the central

GaAs cavity layer. Pictures taken by [32].
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Figure 3.6: SEM image from [32] showing the quantum dots before overgrowing

them with the upper cavity layers. A low quantum dot density of roughly 10 to

20 dots per µm2 is present inside the center of the cavity.

An optical pre-characterisation of the sample was done by C. Schneider from

University of Würzburg. The spectral reflectivity of the planar cavity at room

temperature and before etching the micropillars and the emission spectrum of

the InAs quantum dot ensemble at 20 K was measured, see figure 3.7. The fun-

damental resonance of the reflectivity spectrum (black line) is approximately at

975 nm at room temperature. Etching micropillars and lowering the temperature

to 5 K blueshifts the cavity resonance. We expected the fundamental resonance

to be at 928.5 nm, see figure 3.8. The s-shell of the quantum dots emits at about

930 nm and the wetting layer is visible at about 850 nm, see blue line in figure 3.7.
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Figure 3.7: The black line shows the spectral reflectivity of the planar microcavity

at room temperature. The blue line refers to the quantum dot emission and the

emission from the wetting layer at 20 K. Image from [32].
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We performed a simulation of the eigenmodes of micropillar sample C3281,

see figures 3.8 and 3.9. For this we used refractive indices of 3.4756 for GaAs

and 2.9205 for AlAs at 5 K [19]. The fundamental mode HE11 is at 928.3 nm. In

section 5.2.5 we compare our simulation to the experimental observations.
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Figure 3.8: Simulated reflectivity spectrum for the HE11 eigenmode for a 1.8µm

diameter micropillar with 20/23.5 mirror pairs at 5 K. The layer thickness is 80 nm

for AlAs, 69 nm for GaAs, and 261 nm for the central GaAs cavity layer [32]. For

the simulation the method presented in section 3.3 was used.
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Figure 3.9: The simulated lowest order eigenmodes of a micropillar with the same

properties as in figure 3.8.
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3.4.2 Sample M4792

The samples M4792-4.1D and M4792-4.1B were produced by C. Schneider at the

University of Würzburg. The samples both have the same properties regarding

materials and dimensions. A 244 nm thick GaAs cavity layer is sandwiched be-

tween two AlAs/GaAs DBRs consisting of 20 upper mirror pairs and 30 lower

mirror pairs, see figure 3.11. The micropillars were produced by using optical

lithography. The quantum dot density is approximately 40 µm−2. An optical pre-

characterisation was done by C. Schneider. One result of this pre-characterisation

is shown in figure 3.10. The fundamental resonance of a micropillar with a diam-

eter of approximately 2µm was measured at 902 nm.

In figure 3.12 the simulated lowest order eigenmodes of a 3µm diameter mi-

cropillar with the properties of sample M4792 are shown. The mean mirror pair

thickness was calculated from the total thickness of the DBR-reflectors and is

144 nm [32]. Therefore we assumed the layer thickness to be 65 nm for GaAs

and 79 nm for AlAs. These values are bigger than the thicknesses in the detailed

SEM image (see figure 3.11), but lead to a much better simulation. For the same

reasons the cavitylayer is assumed to be thicker than in figure 3.11. We used the

refractive indices of 3.4756 for GaAs and 2.9205 for AlAs at 5 K [19].
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Figure 3.10: Photolumeniscence measurement of a ∼2µm diameter micropillar

with above band excitation at 532 nm. The fit of the cavity resonance at 902 nm

yields a quality factor of approximately 7900 . Image from [32].
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(a) The central cavity layer consists of

GaAs and is approximately 244 nm thick.

(b) The DBR consists of alternating

GaAs/AlAs layers which have here a

thickness of 62 nm and 76 nm respec-

tively.

Figure 3.11: Cleaved edge SEM Images of the sample M4792 before etching the

micropilllars from [32].
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Figure 3.12: The simulated lowest order eigenmodes of a micropillar with a diam-

eter of 3µm with the properties of sample M4792 at 5 K. The layer thickness is

assumed to be 79 nm for AlAs, 65 nm for GaAs and 253 nm for the central GaAs

cavity layer [32]. For the simulation the method of section 3.3 was used.





Chapter 4

Photon Statistics

This chapter provides a short overview of the photon statistics of different light

sources and introduce the second-order correlation function g(2)(τ) [11]. The term

photon statistics describes the temporal distribution of the emitted photons from

one light source. There are three different classes of light regarding their photon

statistics.

• Sub-Poissonian (antibunched photons) σ <
√
n

• Poissonian (random photons) σ =
√
n

• Super-Poissonian (bunched photons) σ >
√
n

t
(a) bunched

t
(b) random

t
(c) antibunched

Figure 4.1: This pictures show the photon sequences of (a) bunched, (b) random

and (c) antibunched photons.

In general one expects to find photons with super-Poissonian distribution

with thermal light sources. Here the photons are bunched and it is more likely

to detect photons with small time separation, see figure 4.1. A super-Poissonian

distribution shows a standard deviation σ which is greater than the root of the

expectation value (σ >
√
n).

Coherent light, for example from a laser, which is operated well above the thresh-

27
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old, shows a Poissonian photon statistics. This means that the detection of a

photon has the same probability in every time interval of equal duration. We

can say that the photons from such a light source are uncorrelated and therefore

randomly distributed.

Nonclassical light is described by sub-Possonian photon statistics. A single pho-

ton source shows a sub-Possonian photon distribution. In general this means that

the detected photons are antibunched. In a single quantum mechanical system,

like an atom or a quantum dot, it is impossible that a second photon from the

same transition is emitted before the system is reexcited. The total process takes

a characteristic time which depends on the lifetime of the transition and the ap-

plied excitation power. Therefore single quantum mechanical systems produce

antibunched photons.

4.1 The Second-Order Correlation Function g(2)(τ)

A method of describing the photon statistics of a light source consists of mea-

suring the second-order correlation function. This function is proportional to the

probability of detecting a second photon at time τ after the detection of a prior

photon at time τ = 0. The g(2)(τ)-function characterises the photon statistics of

a light source [11] and is defined by

g(2)(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉2

(4.1)

〈I(t)〉 refers to the averaged radiation intensity. Because the number of pho-

tons n(t) is proportional to the intensity I(t) of a light source, the second-order

correlation function can be written as

g(2)(τ) =
〈n(t)n(t+ τ)〉
〈n(t)〉2

(4.2)

Some examples for the g(2)(τ)-function are plotted in figure 4.2. Strong pho-

ton antibunching g(2)(0) < 0.5 is direct evidence that the radiation arises from a

single photon emitter [11].
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Figure 4.2: The g(2)(τ)-function for different emitters. (a) for an uncorre-

lated coherent emitter (g(2)(0) = 1), (b) refers to super-Poissonian source

(1 < g(2)(0) < 2) and (c) to a single photon emitter (sub-Poissonian source

with g(2)(0) = 0). Image from [11].

4.2 Measuring Photon Statistics

Usually, the second-order correlation function is measured with the Hanbury-

Brown-Twiss (HBT) setup [33]. A schematic of the HBT setup is shown in

figure 4.3. A 50/50 beamsplitter directs the radiation onto two photodetectors.

A detection at one photodetector starts a clock and the detection of a second

photon at the other detector results in a stop. With the measured time intervals

a histogram is produced. The histogram corresponds to the g(2)(τ)-function as

long as the measured time intervals are much smaller than the mean time between

two detection events [11].

Figure 4.3: Schematic sketch of the Hanbury-Brown-Twiss setup for measuring

photon statistics. A 50/50 beamsplitter (BS) directs the radiation to two different

avalanche photo detectors (APDs). With the measured time difference between

a detection event in one arm and the other a histogram is produced. Picture is

taken from [34].





Chapter 5

Experiment

5.1 The Setup

Figure 5.1: This picture shows the basic setup for side excitation and detecting

the exciton- and biexciton emission. The blue shaded area is the analysing or

collection part of the setup and the green shaded area is the excitation part. A

detailed description of the setup can be found in the text.

The quantum dot sample is placed inside a continuous-flow liquid helium cryo-

stat on top of a copper coldfinger in high vacuum (down to 0.05 mPa). A slight

overpressure pushes liquid He out of a 250 l dewar and into the cryostat through

31
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a vacuum insulated transfer line. A heat exchanger transfers the temperature

to the coldfinger. The helium flow is adjustable with a valve and is approxi-

mately 1 l/hr. At the bottom of the coldfinger there is a temperature sensor.

With an electrical heater and a PID-controller that controls a resistive heater

the temperature can be varied and stabilized between 4.7 K and 60 K. Changing

the temperature inside the cryostat always causes some movement of the sample

position on the order of some micrometers. Through a top window and two side

windows it is possible to optically excite and analyse the quantum dot emission.

We always collect the photoluminescence through the top window with a high

numerical aperture (0.70 ) objective. For monitoring the surface of the sample

and determining the collection-position we use a red LED to illuminate the sam-

ple surface and a flip-mirror which directs the reflected light onto a CCD-camera.

There are three different optical excitation techniques regarding their direction.

The first one is called co-linear excitation, which means that the excitation path is

also the analysing path. The excitation is therefore from the top. In our setup we

use a pellicle beamsplitter with 90 % transmission to overlap the excitation path

with the emission. Therefore most of the emitted photons can be collected in the

analysing path and do not get reflected back into the excitation path. The simple

setup for co-linear excitation is a big advantage because of the easy alignment.

By making both paths exactly coincident one can very quick determine the exact

position of a quantum dot on the sample. The disadvantage of this technique is

the cavity stopband does not allow resonant excitation if the quantum dots are

embedded into a distributed Bragg-reflector.

The second excitation technique is called side excitation. Here we use the waveg-

uiding properties of planar cavity samples for which it is possible to couple pho-

tons from the side into the central layer. With this technique both resonant

and above band excitation are possible. Almost no laser light scatters into the

analysing path because of the orthogonal setup and the use of cross polarised ex-

citation and emission. The disadvantage is that this kind of excitation is harder

to align.

The third and last excitation technique which we use in our laboratory is called

angle excitation. Here a focuser is placed under an angle to the horizontal di-

rection as well as to the sample edge, see figure 5.2. Especially for micropillars

which are positioned in the centre of the sample this seems to be the only possible

optical excitation method which allows resonant excitation. The stopband would

prevent a resonant excitation from top and the presence of other micropillars on

the sample would not allow a side excitation of an inner micropillar.
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Figure 5.2: This picture shows the three different optical excitation techniques

used in our setup: co-linear- (from top), side- and angle-excitation. A 60x micro-

scope with a numerical aperture of 0.70 is used to collect the photo luminescence

from the sample. The quantum dot samples are placed below the top window of

the cryostat.

Figure 5.3: The spectrometer system consists of a grating monochromator and a

liquid-nitrogen cooled CCD camera. Picture is taken from [15].

For above band excitation we use a simple diode laser at 636.16 nm. To per-

form resonant excitation a mode-locked Ti:Sapphire laser (Tsunami Model 3950

from Spectra-Physics) is used. The system is wavelength tunable from 690 nm

to 1080 nm and also allows continuous wave (CW) operation. A repetition rate

of 80 MHz and a tunable pulse length of 3 ps to 8 ps can be achieved with this

system.
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We use a pulse stretcher to be able to control the spectral width of the pulse.

The pulse stretcher has a four-f-arrangement and consists of one grating and one

slit. The grating is used twice. First the light gets diffracted onto the slit and

then the spectrally filtered part is reassembled and exits the pulse stretcher. In

figure 5.1 the old setup of the pulse stretcher with two gratings is drawn.

For spectroscopy measurements we use a spectrometer system which consists of a

grating monochromator (Acton SP750i) and a liquid-nitrogen-cooled CCD cam-

era (Princeton Instruments Spec-10 LN100BR). One can choose between three

different gratings with 600, 1200 and 1500 rules per mm. Figure 5.3 shows a

schematic drawing of our spectrometer system. The light is focussed on an en-

trance slit which cuts out most of the background light. After the first mirror

the divergent beam is directed on a concave mirror which collimates the light and

directs it onto the grating. A second concave mirror after the grating focuses the

spectrally separated light onto the CCD camera. Alternatively, a second entrance

and also a second exit can be used.

In addition to our spectrometer we built a second spectrometer specialized for

collecting exciton- and biexciton emission at the same time. Here, we used a

1200 mm−1 grating (blazed for 900 nm) and two prism-mirrors to separate the

exciton- and the biexciton emission. Both emission lines are then coupled into

single mode fibres. Each fibre is connected to an avalanche photo diode (APD)

(Single Photon Counting Module Array SPCM-AQ4C from Perkin Elmer). The

home-made spectrometer is the end of the analysing path in our setup and allows

a very fast access to correlation measurements, see figure 5.1. A 50/50 flip pellicle

beamsplitter directs the light also into the normal spectrometer if needed.

The APDs at the end of the home-made spectrometer are connected to a multi-

channel event timer (HydraHarp 400 from Picoquant). A time resolution down

to 1 ps can be achieved with the HydraHarp, but our APDs have a timing reso-

lution of 250 ps only. For experiments which require a higher timing resolution

we use APDs from Micro Photon Devices with a single photon timing resolution

of 35 ps.
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5.2 Spectroscopy

Spectroscopy is the measurement of radiation intensity as a function of wave-

length or photon energy. In general, all spectroscopy measurements in our labora-

tory were performed with our spectrometer system (see figure 5.3). As described

in section 5.1, above band excitation from top is the easiest way of observing the

emission of a quantum dot sample.
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Figure 5.4: In [3] the emission under above band excitation from different area

sizes of an InAs/GaAs quantum dot sample is shown. (a) shows the emission

from an approximately 5µm wide area, containing hundreds of quantum dots. In

(b) the emission from a 0.8µm wide area is displayed and in (c) an area with a

diameter of 0.4µm is investigated. (c) refers to a single quantum dot emission.

Graphics adapted from [3].

Similar to the spectrum shown in figure 5.4 we have characterised the quantum

dot density of the sample C3281-13,7 (section 2.4.2). One of the main aims of

investigating this sample was to find the right aperture diameter with which a

characterisation of single quantum dot states is possible. The top DBR of the

sample was removed (only two mirror pairs left) and a mask was processed on top.
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Holes with different diameters (from 0.2µm to 4µm) were etched into the mask

which allows a diameter dependent observation of the quantum dot spectrum.
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(c) 0.8µm diameter

Figure 5.5: The emission of the quantum dots of sample C3281-13,7 with various

aperture sizes. Above band excitation at 636 nm was used for excitation. As

expected, the chance of observing single quantum dots increases with smaller

aperture sizes. A diameter of 0.8µm seemed most promising in terms of observing

single quantum dots because smaller diameters often showed no emission.
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5.2.1 Power-dependent Photoluminescence

Further characterisation of quantum dot states requires power-dependent pho-

toluminescence measurements. These measurements offer a straight forward

method to distinguish between the emission from multi-particle states and single-

particle states in quantum dots.
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Figure 5.6: The emission spectrum of dot5b at sample #m649 under above band

excitation with 636.16 nm. We measured the power-dependence of two emission

lines (X at 917.65 nm and XX at 919.58 nm) and plotted the results in figure 5.7.

By increasing the excitation power it is possible to characterize multi-particle

states within the quantum dot. The chances to generate a biexciton state are

mainly dependent on the occupation of the exciton state and the presence of

additional free charge carriers. Since the occupation of the exciton state is it-

self linearly dependent on the number of free charge carriers in the surrounding,

which is proportional to the number of absorbed photons, the biexciton- and

the exciton-intensity have a different dependence on the laser power. With this

simple model one can assume that the exciton is linearly dependent on the input

laser power and that the biexciton shows a quadratic power dependence.

The third line in figure 5.7 shows almost quadratic power-dependence and there-

fore this emission line should refer to a four-particle state, a biexciton. The

exponents of 0.99 and 1.95 are both slightly smaller than expected within this

model. This mismatch can be explained by other nonlinear power-dependent

recombination processes which are not observed within this measurement.



38 CHAPTER 5. EXPERIMENT

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

Power (µW)

C
o
u
n
ts

 (
a
.u

.)

 

 

X : 7.732x0.99

XX : 0.001x
1.95

Figure 5.7: The intensity of the emission lines X and XX from dot5b on sample

#m649 (see figure 5.6) as a function of excitation power in a log-log plot. A

wavelength specific background correction is applied. For the fitting we consid-

ered only the linear part in this logarithmic plot, before saturation effects occur.

On calibration sample C3281-13,7 we did some statistics on power-dependent

photoluminescence measurements. The aim was to get an idea of the percentage

of quantum dots which show biexcitonic emission. We measured the power-

dependence of 38 emission lines from areas with smaller diameters than 1.25µm.

Larger diameters showed simply too many emission lines to guarantee a success-

ful measurement. Only three emission lines with quadratic power-dependence

were observed. Therefore, the ratio of biexcitonic to excitonic emission is ap-

proximately 10 % which is very low compared to sample #m649, in which a ratio

of approximately 60 % was found. The growth process of self-assembled InAs

quantum dots has major influence on the biexciton-exciton ratio and therefore

these statistics are an important feedback for the future growth of samples.

5.2.2 Temperature-dependent Photoluminescence

To control the influence of the Purcell effect on the quantum dot emission, one

of the first things we investigated is the temperature tunability. In general, the

cavity and the quantum dot emission wavelength have a different temperature de-

pendence. Observing the spectrum and changing the sample temperature should

show the enhancement of the quantum dot emission whenever a line gets into

resonance with the cavity.
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Figure 5.8: Spectrum from a micropillar from sample C3281 with a diameter of

1.8µm. This micropillar is located at the first row and column number nine of

the sample (micropillar 1.8µm 1-9). For excitation we used a pulsed Ti:Sapphire

laser at 854 nm.
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Figure 5.9: Emission from the same micropillar 1.8µm 1-9 for temperatures from

8 K to 44 K. Each 4 K a spectrum was taken. The first line shows an enhancement

of the signal when the emission is at approximately 930.5 nm. The emission-

intensity of the second bright emission line seems to get enhanced between 12 K

and 28 K.
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The temperature dependence of the emission from micropillar 1.8µm 1-9 gives

a first impression of the quantum dot-cavity-coupling. In order to further char-

acterise the emission lines from figure 5.8 and the strength of the coupling we

performed correlation measurements and lifetime measurements. These measure-

ments will be discussed in the next sections.

5.2.3 Time-Resolved Spectroscopy

For measuring the lifetime of excited states of quantum dots we used time-resolved

spectroscopy, which means that we measured the arrival of emitted photons with

respect to the excitation pulse. To maximize the temporal resolution we used

APDs from Micro Photon Devices (Timing resolution: 35 ps). When observing

light from a single quantum dot transition one expects an exponential decay of

the signal with time after the excitation process is turned off. The lifetime is

shortened when its emission is on resonance with the cavity and therefore the

measurement of the lifetime is a method to observe the Purcell effect. To show

the principle of time-resolved spectroscopy we measured the lifetime of a bright

emission line at 930 nm from a 1.6µm diameter micropillar in row 20 column 8

on sample C3281 and fitted an exponential decay to the data, see figure 5.10.
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Figure 5.10: A logarithmic plot of the emission arrival of the bright line of a 1.6µm

diameter micropillar 20-8 on sample C3281. The quantum dot was excited with

a pulsed Ti:Sapphire laser at 800 nm and a power of 60µW. The exponential fit

yields a lifetime of 0.95 ± 0.19 ns.

Compared to other excitons the lifetime in figure 5.10 is not shorter and

therefore no influence from the cavity is expected to be present. Furthermore,
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by detuning the emission with temperature, the lifetime of the state stays almost

constant which also indicates that the quantum dot does not couple to the cavity.

To characterise the influence of the Purcell effect we studied the emission lines

of micropillar 1.8µm 1-9 (see figure 5.8) and measured their lifetimes at different

temperatures. Especially the second bright line showed an interesting change of

its lifetime.
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Figure 5.11: The lifetime of the second bright line of micropillar 1.8µm 1-9 (see

figure 5.8) at different temperatures. (a) refers to 5 K, (b) to 25 K, (c) to 35 K

and (d) to 40 K. This line shows a coupling to the cavity at low temperatures.

By detuning the emission from the resonance by temperature the lifetime of the

state gets longer by a factor of 1.5. Exact values for the lifetime are 1.00 ± 0.05 ns

at 5 K, 1.34 ± 0.12 ns at 25 K, 1.40 ± 0.22 ns at 35 K and 1.47 ± 0.09 ns at 40 K.
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5.2.4 Measuring the Spectral Reflectivity

We performed a measurement of the spectral reflectivity of sample #m649. Pre-

viously the reflectivity of the planar cavity structure was simulated by using the

transfer matrix method from [18]. The results are plotted in figure 5.12 and in

figure 5.13.
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Figure 5.12: Theoretical reflectivity spectrum for TE-polarized light with normal

incidence for a four-λ-cavity with a DBR consisting of 10 upper and 16 lower

mirror pairs at 10 K. The cavity resonance is at 919.4 nm. For the calculation

the refractive indices of GaAs and AlAs in [19] were used. The stopband of

the system reaches from 869 nm to 977 nm. The code for this transfer matrix

calculation was implemented by G. Weihs.

For the measurement we illuminated the sample with a white light source

(CMS Schreder type WLS 100). The reflectivity spectrum was measured with

our spectrometer system with the 600 rules per mm grating. The fundamental

mode of the cavity is at 919.4 nm (see figure 5.13). The efficiency of our setup

and the intensity of the white light source is wavelength dependent which leads

to an intensity decrease at both sides of the originally measured reflectivity spec-

trum. Furthermore, the alignment efficiency of the used spectrometer system was

maximal for the center of the observed wavelength range. Figure 5.13 shows the

normalised reflectivity spectrum and consists in total of five measured spectra.

Therefore, we observe local broad maxima every 50 nm.
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Figure 5.13: The normalised reflectivity spectrum of sample #m649. The reso-

nance of the cavity is at 919.4 nm. Because of the simulation we expect the dips

in the measured spectrum at 866 nm and at 974 nm to mark the boundaries of

the stop band.

5.2.5 Spectroscopy of the Fundamental Micropillar Eigenmode
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Figure 5.14: Measured and simulated spectral transmittance for the micropillar

1.8µm 1-9 at 44 K, see figure 5.8. For comparison reasons the maximal intensity

of the simulation and the measurement are set to one.
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We measured the spectral distribution of the fundamental HE11 eigenmode for

a 1.8µm diameter micropillar 1-9 from sample C3281 at 44 K (figure 5.8). We

used above band excitation to be able to observe the fundamental eigenmode of

the micropillar. For the simulation the refractive indices of 2.9264 for AlAs and

3.4831 for GaAs were used [19]. An exact knowledge of the refractive indices of

the two different materials is very important for a successful simulation. Changing

the refractive indices only 0.1 % shifts the HE11 eigenmode in figure 5.14 by 1 nm.

Therefore we can say that the result of this measurement is in good agreement

with the eigenmode simulation result.

5.3 Correlation Measurements

With these measurements the photon statistics of the light source can be char-

acterised. Furthermore, with cross-correlation measurements it is possible to

observe and characterise cascade emission in a quantum dot. In general a tempo-

ral photon correlation measurement describes the probability of a light source for

emitting a photon at time t2 if a photon at time t1 was emitted. To measure the

signal of a single quantum dot all sources of background light have to be removed.

Due to the low photon rate (at the moment maximally 400k photons per second

from the biexciton emission with resonant two photon excitation, collected in a

single mode fibre) very sensitive single photon detectors are needed. We used the

Single Photon Counting Module Array from Perkin Elmer with a timing resolu-

tion of 250 ps and a photon detection efficiency of approximately 20 % for 930 nm.

The detector dead time of 50 ns is irrelevant for our experiments because we are

always using two different detectors for measuring photon-correlations.

For our correlation measurements we measured the second-order correlation func-

tion (g(2)(τ)), see chapter 4. Two different classes of correlation measurements

were performed:

• Auto-correlation: Photons from one emission line.

• Cross-correlation: Photons from two different emission lines.

5.3.1 Auto-Correlation Measurement

As described in chapter 4, with a measurement of the second-order correlation

function one can experimentally verify that quantum dots are single photon emit-

ters. We performed an auto-correlation measurement for the second bright line of

micropillar 1.8µm 1-9. The result is plotted in figure 5.15. Due to the darkcount-

level of 400 Counts per second on our APDs and the present small probability of
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multi-photon emission we do not expect the g(2)(τ)-function to reach zero. The

normalized g(2)(τ)-function was fitted with 1 − ae|τ/b−c|. For very low excita-

tion power the denominator in the exponent b corresponds to the lifetime of the

state, [35]. Here, we used an excitation power of 1µW and by comparing this

value with the measured lifetime in section 5.2.3 we can see that the value is

smaller by a factor of 1.41 . The measured value is artificially shortened by the

high pumprate of the laser.
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Figure 5.15: Result for an auto-correlation measurement of the second line of

micropillar 1.8µm 1-9. The inset shows the spectrum of this micropillar. The

dip of the g(2)-function indicates the single photon character of the emission line.

The measurement was taken at 5 K exciting above band with a continuous wave

diode-laser with 1µW power.

Besides the continuous wave excitation, an auto-correlation measurement can

also be performed with pulsed excitation. Due to the pulse length of only a

few picoseconds the quantum dot state does not get reexcited within one pulse.

Therefore, for a perfect single photon source one expects the central peak to be

missing. In general, a central peak area of g(2)(0) < 0.5 indicates light from a

single quantum emitter [11]. For normalisation one can normalize the histogram

by the corresponding values of a Poissonian distributed light source with equal

radiation intensity.

We performed a pulsed auto-correlation measurement for dot5b on sample #m649.

The result is plotted in figure 5.17. For excitation we used the two-photon excita-

tion method, which is discussed in section 2.2.2, with a mode-locked Ti:Sapphire

laser (repetition rate of 80 MHz). This method resonantly populates the biexci-
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ton state of the quantum dot. The spectrum is shown in figure 5.16. The central

broad peak originates from excitation laser scattering. The other sharp emission

lines belong to the exciton (X), the biexciton (XX) and the trion (X*) state.
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Figure 5.16: Photoluminescence from dot5b at sample #469 with resonant two

photon excitation. The central broad peak corresponds to scattering from the

excitation laser. The states of this quantum dot are labelled as follows: exciton

(X), biexciton (XX) and trion (X*).
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Figure 5.17: Auto-correlation measurement of biexciton photons of dot5b with

pulsed two photon excitation. The missing central peak indicates the strong

suppression of two photon events. The decrease in height of the side peaks is due

to blinking [3].
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5.3.2 Cross-Correlation Measurement

For characterizing quantum dot states we can use cross-correlation measurements.

Figure 5.1 provides an overview of the basic setup of this measurement. Here,

photons of two different emission lines are collected separately and correlations

between the two emission lines are measured. Again, a photon detection in one

arm starts a timer and a detection in the other arm stops the timer. The mea-

sured time intervals are plotted in a histogram. For a low photon flux and for

measured time separations shorter than the mean time between detection events,

this histogram is proportional to the second-order cross-correlation function:

g
(2)
i,j (τ) =

〈Ii(t)Ij(t+ τ)〉
〈Ii(t)〉〈Ij(t)〉

(5.1)

where Ij(t) is the measured intensity of the jth transition. The second-order

cross-correlation function g
(2)
i,j (τ) describes the probability of detecting a photon

from transition i at time τ , if a photon from transition j is detected at time τ = 0.
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Figure 5.18: Cross-correlation measurement of the second line and the third line

from micropillar 1.8µm 1-9 in figure 5.8. The dip of the cross-correlation function

indicates that both emission lines origin from the same emitter. The asymmetry

indicates that one of the emission lines is a trion, see text. This measurement

was taken at 5 K with a continuous wave diode-laser with 0.92µW power.
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In figure 5.18 a cross-correlation measurement between an exciton and a trion

is shown. The antibunching indicates once again that those two emission lines

originate from the same quantum dot. The asymmetry of the dip can be explained

by one emission line belonging to a trion [11, 36]. After recombination of the trion

the quantum dot is singly charged. Injecting another single charge carrier into

the quantum dot takes considerably less time than to inject a triple charge after

the emission of an exciton. In the limit of very high excitation power of the laser

(the pumprate is much bigger than the recombination rate) the denominator of

the exponent in the fit of figure 5.18 (1.11 ns) would correspond to the triple

charge injection load time. However, with an excitation power of 0.92µW we

are not expecting to be in this limit and therefore this value can not be directly

assigned to the lifetime nor to the load time of the trion.
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Figure 5.19: Cross-correlation measurement of an exciton (X) and a biexciton

(XX) state of area K4 2/4 on sample C3281-13,7. The inset shows the spectrum

of this area with above band excitation. The peak right next to the center of the

g(2)-function indicates that one emission is always right after the other one. This

behaviour can be explained by the fact that one emission line corresponds to an

biexciton and the other to an exciton.

We performed a cross-correlation measurement of a biexciton- and an exciton

emission of area K4 2/4 at sample C3281-13,7, see inset of figure 5.19. The

result is plotted in figure 5.19. After the emission of a biexciton photon the

quantum dot is in the exciton state. Therefore, we have a high probability to

measure an exciton photon right after the arrival of a biexciton photon. This high

probability yields a peak after the zero-point of the g(2)-function, if the biexciton
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photon arrives before the exciton photon and starts the measurement. On the

other hand, if the exciton photon detection starts the timer, then the peak would

be before the zero-point of the g(2)-function. The dip before the zero-point of

the g(2)-function in figure 5.19 occurs because, after the detection of an exciton

photon the quantum dot is empty and it takes a characteristic time to fill the

quantum dot again with two electrons and two holes before the next biexciton

photon can be emitted and afterwards detected.

5.4 Two-Photon Interference

In 1987 C. K. Hong, Z. Y. Ou and L. Mandel published the effect of two-photon

interference of photons generated with parametric down-conversion process [37].

This is one effect that unambiguously demonstrates the quantized nature of the

electromagnetic field..

Figure 5.20: Schematic of two-photon interference. Two indistinguishable pho-

tons entering a beamsplitter at the same time from different inputs always leave

the beamsplitter together. Picture is taken from [38].

If two indistinguishable photons enter a beamsplitter at the same time from

different inputs, there is a 50/50 probability for them to leave both either at the

first or at the second output. The case that one photon is transmitted and one is

reflected is ruled out by quantum theory and only possible if the incident photons

are distinguishable [37], which means that they do not enter the beamsplitter at

the same time for example. By changing the arrival time difference of the photons

(usually by changing the path length of one input arm) and detecting coincidence

events of the beamsplitter outputs, one can measure the Hong-Ou-Mandel dip: A

high degree of indistinguishability yields total absence of any coincidence counts if

the arrival time difference is zero. Figure 5.21 shows the originally observed two-

photon interference by Hong-Ou-Mandel [37]. The width of the Hong-Ou-Mandel

dip corresponds to the coherence length of the wavepackets [39].
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Figure 5.21: Plot of the coincidence counts in 10 min against the position of the

beamsplitter. The position of the beamsplitter is proportional to the difference

of the photon arrival times. Image taken from [37].

We performed a two-photon interference measurement using a resonantly ex-

cited InAs quantum dot. We used pulsed p-shell excitation for populating the

exciton level of dot5b from sample #m649. Figure 5.22 shows the experimental

setup for this measurement.

Figure 5.22: Experimental setup for measuring two-photon interference from a

quantum dot. The three major parts of this setup are the excitation path with

the pump interferometer (green), the collection path (blue) and the analysing

interferometer (yellow). Further description is in the text.
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The pulses from the excitation laser with a repetition rate of 80 MHz pass a

Michelson interferometer, in which the length of one arm can be varied. This

results in a change of the time delay between two successive excitations. The

exciton emission is collected and the two emission pulses enter one input of the

analysing interferometer. Therefore, at the two outputs of the interferometer each

detector observes three pulses in which the intensity of the middle pulse is twice

as high as the other two pulses (1:2:1). For the measurement of the coincidences

each of the three pulses can start the timer and each of the three pulses from

the other output of the interferometer can stop the timer. By considering each

combination and its relative intensity one expects to measure a five-peak cluster

with a relative intensity variation of 1:4:6:4:1. This pulse cluster repeats itself

every 12.5 ns because of the repetition rate of the laser.

For nonclassical light with perfect two-photon-interference one expects the in-

tensity ratio of the central five-peak-cluster to be at 1:2:0:2:1 [3]. It is obvious

that the central peak at τ = 0 has to disappear, if the emitted photons arrive

at the same time on the beamsplitter. For the ratio of the two side peaks one

has to take into account the other combinations that occur in the case of perfect

two-photon interference.

In figure 5.23 the case of nonclassical light with perfect two-photon interference

and the case of classical light pulses with no interference are compared.

Figure 5.23: Theoretical expectation for photon correlations obtained from the

experimental setup in figure 5.22. The origin of the five-peak clusters is described

in the text. (a) for scattered laser pulses and (b) for a single photon source with

two-photon-interference. Picture is taken from [3].

To show the Hong-Ou-Mandel dip of the exciton emission we normalised the

measured intensity of the central peak to the intensity of the mean value by peak

two and four in figure 5.23. This value was plotted against the photon arrival
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time difference, see figure 5.24. We used a pulsed Ti:Sapphire laser at 879.22 nm

with a power of 161µW for excitation. The quantum dot was excited from the

side and had a sample temperature of 4.8 K.
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Figure 5.24: Measured two-photon interference of exciton photons from dot5b

at sample #m649. The fit function is defined by: P (τ) = 1 − ae−
x2

2b2 . The

parameters are a = 0.31±0.03 and b = 250 ± 40 ps. Further details can be found

in the text.

The shape of the overlapping wavepackets corresponds to the shape of the

obtained Hong-Ou-Mandel dip. By measuring the coherence length of the ex-

citon emission of dot5b one finds a gaussian instead of an expected exponen-

tial behaviour, indicating that there is a lot of noise in the exciton decay [34].

The Gausss fit yields a coherence length of τc = 174.4 ± 3.7 ps. Because of

the Gaussian behaviour of the coherence measurement, we fitted a Gauss curve

(P (τ) = 1−ae−
x2

2b2 ) to the obtained two-photon interference. The fit parameters

are: a = 0.31±0.03 for the depth and b = 250± 40 ps for the width of the dip. The

lifetime of the exciton state of dot5b is not Fourier-limited (2τs/τc = 7.3 , [34]).

For a ratio equals 1 perfect two-photon interference is expected [39]. By embed-

ding quantum dots into micropillars one can shorten the lifetime of certain states

and therefore a better result without filtering the light can be achieved.



Chapter 6

Conclusions

In my thesis I presented various methods for a theoretical and experimental

characterisation of quantum dots embedded in micropillars. The main results

are the following:

1. We investigated the photoluminescence of over 3000 micropillars and pre-

sented the major results in this work.

2. We performed a measurement of the spectral reflectivity from the planar

cavity sample #m649 with a white light source.

3. A theoretical simulation method for micropillar eigenmodes was developed

during this thesis. The method is in good agreement with the experimental

observed values, if the refractive indices of the materials are well known

and a good knowledge of the dimensions of the system is provided.

4. By measuring the second-order correlation function we proved that quan-

tum dots embedded in micropillars can produce nonclassical light. The two-

photon excitation scheme presented in section 2.2.2 could improve the qual-

ity of auto-correlation measurements drastically. In practise this scheme can

be applied only under angle excitation for micropillars with a clear exciton

and biexciton signal.

5. We characterised cascade emission of quantum dots and measured a biexciton-

exciton ratio of 10 % at sample C3281-13,7. The growth process of the InAs

quantum dots is responsible for this low ratio, further investigations at the

Unversity of Würzburg should improve this value.

6. We detected a weak Purcell enhancement by the factor of 1.5 of a quantum

dot transition at micropillar sample C3281.

53
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7. The effect of two-photon interference with resonant p-shell excitation was

measured for dot5b at sample #m649 with a dip depth of 0.31 ± 0.03 .

Measuring two-photon interference from the emission of quantum dots in

micropillars could lead to a better result, because of the shortened lifetime

of quantum dot states on resonance.



Chapter 7

Outlook

The presented resonant two photon excitation scheme in chapter 2.2.2 was up to

now only possible with one InAs quantum dot, dot5b from sample #m649. This

scheme improves the purity of the biexciton and the exciton state drastically.

One goal of our future work will be to show this resonant excitation also with

quantum dots in micropillars.

Another project will be to show two-photon interference of dissimilar sources.

For this we want to overlap photons from a quantum dot with photons from a

spontaneous parametric down conversion source. The big challenge for showing

the interference will be to produce photons with a high enough degree of indis-

tinguishability.

For basic applications in quantum technology entangled photon pairs are very

important. Therefore, projects in the future will be dealing with entanglement

creation from semiconductor nanostructures.
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