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Abstract

The software engineering process has significantly changed over the last decade. Whereas in
the past models were only used for communication and brainstorming purposes, this philosophy
has shifted drastically. Model-Driven Engineering (MDE) is the keyword that is guiding the cur-
rent engineering direction. Models are the key artifact and all development steps are aligned to
these models. Sophisticated modeling techniques have been invented to ensure a consistent and
comprehensive technological basis. The Unified Modeling Language (UML) was introduced by
the Object Management Group (OMG) to standardize and support different modeling aspects
like structural, behavioral, and architectural models. The huge success of UML is not only due
to the versatility of the language but also because of the highly-developed language extension
mechanism in form of UML profiles. UML profiles may be defined for tailoring UML to specific
domains and technological platforms.

Apart from modeling languages, the technique of model transformation plays a crucial role
for the model-driven approach. Model transformations aim at transforming an existing source
model into some desired target model. Different model transformation languages were invented
that support various kinds of model transformations. One of them is the ATLAS Transforma-
tion Language (ATL), which is currently one of the most widely used transformation languages.
While modeling languages defined by metamodels are directly supported in an ATL transfor-
mation, the use of UML profiles demands for a complex work-around. It would be desirable,
however, to simplify the handling of UML profiles in such a way that profiles are, like meta-
models, represented as language definitions.

The contribution of this master’s thesis is to extend ATL for a native UML profile support.
New language constructs are integrated into the abstract and concrete syntax of ATL to ease the
use of profile-specific information within a model transformation. Apart from the extension of
the ATL syntax, also an operational semantics for the new constructs is defined by translating
the extended ATL to standard ATL. The goal of this work is to enrich the ATL language with
new language-inherent constructs and keywords. During the implementation phase several tech-
nological possibilities as well as limitations were encountered and discussed. This collection of
lessons learned can be seen as a guideline for future extensions of ATL, and as a starting point
for a critical discussion about the extensibility of ATL.
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Kurzfassung

Softwaremodelle, anfänglich für reine Kommunikations- und Entwurfszwecke genutzt, sind mit
der Etablierung der Modellgetriebenen Softwareentwicklung (englisch Model-Driven Enginee-
ring, MDE) zum Kernstück des gesamten Entwicklungsprozesses avanciert. Verschiedenste Mo-
dellierungstechniken und -sprachen wurden geschaffen, um eine fundierte Basis für MDE zu
gewährleisten. Die Unified Modeling Language (UML), ein Standard der Object Management
Group (OMG), ist der prominenteste Vertreter unter den Modellierungssprachen. Der Erfolg
von UML liegt nicht nur in den vielfältigen Einsatzmöglichkeiten begründet, sondern ist auch
auf die elegante Erweiterungsmöglichkeit der Sprache zurückzuführen. Mit Hilfe von UML Pro-
filen kann die Sprache für verschiedene Zwecke und Plattformen angepasst werden.

Abgesehen von Modellierungssprachen spielen Modelltransformationen eine entscheidende
Rolle in MDE. Modelltransformationen haben zum Ziel, ein bestimmtes Quellmodell in ein ge-
wünschtes Zielmodell zu transformieren. Die ATLAS Transformation Language (ATL) ist die
am häufigsten eingesetzte Modelltransformationssprache. Während Modellierungssprachen, die
durch Metamodelle definiert sind, direkt in ATL unterstützt werden, muss man für die Verwen-
dung von UML Profilen auf komplizierte Behelfe zurückgreifen. Es wäre jedoch wünschens-
wert, Modellelemente des UML Profils genauso als Sprachdefinitionen nutzen zu können, wie
es für Metamodelle möglich ist.

Ziel dieser Diplomarbeit ist es, ATL dahingehend zu erweitern, dass UML Profile direkt
unterstützt werden. Die abstrakte sowie die konkrete Syntax von ATL werden um neue Sprach-
konstrukte ergänzt, um damit die Verwendung von UML Profilen zu vereinfachen. Neben der
Syntaxerweiterung muss auch eine operationale Semantik definiert werden, um die modifizierte
ATL Version mittels Präprozessor zur regulären ATL Version umwandeln zu können. Die ATL
Sprache wird dadurch um neue, sprachinhärente Bestandteile und Schlüsselwörter bereichert.
Im Zuge der Umsetzungsphase wurden technische Möglichkeiten sowie existierende Einschrän-
kungen identifiziert und aufbereitet. Diese Zusammenfassung kann als Richtlinie für zukünftige
Erweiterungen gesehen werden sowie als Ausgangspunkt für eine kritische Auseinandersetzung
mit der Erweiterbarkeit von ATL dienen.
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CHAPTER 1
Introduction

1.1 Motivation

In times of Model Driven Engineering (MDE) [5], the Unified Modeling Language (UML) [39]
is one of the most widely used modeling languages. The success of UML is not least because of
its mature language architecture. The sophisticated language extension mechanism of the UML
in form of UML profiles allows to adapt the metamodel (i.e., the language definition of UML)
for different technological platforms and modeling domains. The UML profile mechanism [14]
was introduced by the Object Management Group in order to provide a lightweight extension
mechanism for UML without requiring modifications of UML modeling tools. Therefore, pro-
files are a language inherent extension mechanism and allow to define arbitrary stereotypes and
tagged values. Stereotypes are regarded as specialized metaclasses for either introducing new
modeling concepts or restricting existing metaclasses of the UML metamodel. In the latter case,
a restriction means that the value range of a given metaclass feature may only be restricted but
the feature as such may not be deleted or deactivated. Tagged values are used for introducing
new features for existing modeling concepts. Stereotypes and tagged values, structured within a
UML profile, are a powerful tool for a controlled extension of any UML model.

When talking about MDE, the technique of model transformation is a key concept for bridg-
ing design and implementation of software systems. Various transformation languages were
invented to facilitate the required transformation functionalities and to provide the transforma-
tion developer with a sophisticated toolkit. The ATLAS Transformation Language (ATL) [23]
is currently the state-of-the-art transformation language in the Eclipse Modeling Framework1

(EMF). The transformation engineer is using ATL for developing rule-based model transfor-
mations between a source metamodel representing the source modeling language and a target
metamodel representing the target modeling language. An ATL transformation is then executed
on a source model conforming to the source metamodel in order to produce a target model which

1http://www.eclipse.org/modeling/emf/
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is conform to the target metamodel. The ATL technology offers a wide range of useful features
and a comprehensive collection of available ATL examples that help to specify a model trans-
formation.

With the ongoing importance of MDE, also the application field of model transformation
has broadened drastically. Not only transformations between metamodels for bridging the gap
between design and implementation of software systems are needed, but different model man-
agement tasks, model formats, metamodeling techniques, and model extension techniques need
to be supported. Thus, it is inevitable for transformation languages such as ATL to align to these
new challenges. In this respect, a huge limitation of the ATL transformation approach is the fact
that currently only metamodels are supported as first class language definitions, whereas UML
profiles are not natively supported in the ATL language.

1.2 Problem Statement

At present, metamodels are well supported in the ATL transformation language since both the
source and the target model of a model transformation conform to a source or a target meta-
model. Metamodel elements may be accessed and used in order to define ATL transformation
rules. However, as more and more transformation engineers take advantage of the powerful
UML profile mechanism, it is desirable to use stereotypes and tagged values like any other
metamodel element. Thus, a language-inherent support for handling UML profiles would be of
great value.

The problem with the application of UML profiles in an ATL transformation is that currently
UML profiles are not natively supported. The use of UML profiles demands for a complex and
laborious work-around. This means that operation calls to an external Java UML2 API must be
performed in order to apply profile-specific elements and information. Apparently, this leads to
various shortcomings for an ATL engineer. Firstly, the transformation code becomes more ver-
bose due to complex statements. As a result, the readability of the transformation code becomes
diminished. Additionally, maintaining the code at a later stage is much more difficult. Secondly,
precise knowledge about the underlying UML2 API is needed to invoke the Java methods cor-
rectly. By this, the definition of a model transformation becomes an error-prone task. Thirdly,
the definition of complicated attribute helpers and operation helper is needed for the execution
of the transformation code. As these ATL helpers are different for every metamodel and profile,
they have to be defined separately for each new model transformation.

Apart from the application of UML profiles, also other transformation scenarios require
transformation language extensions as has been reported in several publications (cf. [15, 36, 46]
for concrete extension examples and [49] for a survey). The problem with ATL is that it is not
designed for introducing any desired extension. There are no interfaces which may be used for
implementing additional language components. Therefore, any domain-specific extension of the
ATL language requires for a direct modification of the abstract and the concrete syntax of ATL.
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Such an extension could, for instance, include the introduction of new keywords for the ATL
language as well as the reuse of existing language components put into a new context.

1.3 Aim of the Thesis

In short, the aim of this master’s thesis is as follows:

Extending the ATLAS Transformation Language for a native UML profile support.

The goal of this work is to implement an extension of ATL which makes it possible to use
UML profiles natively within an ATL transformation. More precisely, the result of this thesis
is the implementation of an extended version of the standard ATL framework, called ATL4pros.
The benefits of ATL4pros are not only shorter ATL transformations due to newly introduced
keywords but also the abstraction from the Java UML2 API. No further technical knowledge is
needed for handling UML profiles within ATL rules. Moreover, stereotypes and tagged values
are assigned explicitly instead of implicitly which allows for sophisticated code completion as
well as static type checking. In particular, these benefits are realized by the following three
envisioned subgoals:

• Abstract Syntax extension for the integration of new keywords

• Concrete Syntax extension for reflecting the modifications of the abstract syntax

• Operational Semantics definition for the syntactical extension

ATL itself is described by a metamodel (abstract syntax) and by a Textual Concrete Syntax
(TCS). Therefore, the metamodel of the standard ATL version has to be extended by new meta-
classes in order to integrate new keywords. Thus, these keywords expand the abstract syntax of
ATL. In order to make this extended ATL version work in the ATL editor, also the TCS needs
to be adapted. As a result, the newly introduced keywords can be used by the transformation
engineer for handling and applying profile-specific information such as stereotypes and tagged
values within transformation rules.

As Figure 1.1 illustrates, ATL4pros 2© resides on top of the standard ATL infrastructure,
which is depicted in Figure 1.1- 1©. The ATL4pros transformation rules including the new key-
words have to be transformed to standard ATL code in order to be interpreted by the ATL virtual
machine. Therefore, a transformation between ATL4pros and standard ATL has to be imple-
mented, see Figure 1.1- 3©. This transformation adds semantics to the keywords and is designed
as a Higher-Order Transformation (HOT) [49]. The transformation is responsible for generating
standard ATL rules out of ATL4pros rules and is therefore an essential part of this work.

1.4 Methodological Approach

The methodological procedure of this master’s thesis is based on the design science paradigm [19]:

3
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Figure 1.1: ATL extension architecture

1. Literature analysis. First of all, a comprehensive analysis of the current state-of-the-art
and also of related work has to be conducted. This includes a literature survey in order to
get a better understanding of the involved technologies.

2. Analysis of the ATL architecture. For being able to conduct a language extension of
ATL, the ATL infrastructure has to be analyzed. The connection between abstract and con-
crete syntax needs to be studied to get a better idea of the technical interactions. Moreover,
also the existing operational semantics of ATL needs to be analyzed in order to understand
the involved concepts.

3. Design of the extension. Preparatory work in terms of an elaborate extension design has
to be done before the actual implementation may start. New metamodel elements have to
be defined and located in the ATL metamodel. Also, respective metaattributes have to be
specified and associations to predefined metaclasses have to be taken into consideration.

4. Implementation. After completing the design phase, the implementation phase consists
of three successive steps: (1) extension of the abstract syntax, (2) extension of the concrete
syntax, and (3) definition of the operational semantics.

5. Evaluation. Finally, an example-driven evaluation of ATL4pros is performed to check its
functionality, provide examples for a better understanding, and to analyze its improvement
over standard ATL transformations. The comparison between standard and extended ATL
transformations will be based on metrics and performance analysis.

1.5 Running Example

To clarify and explain the most important technological concepts and to provide a better under-
standing for the reader, this master’s thesis contains a great number of examples. All examples
are small excerpts of one primary running example. The running example is in turn based on
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a real-world case study which was conducted by members of my research group in the course
of the ModelCVS project2. This case study had two important purposes for the implemented
ATL4pros extension:

1. At the beginning of this work, the case study was used to design the ATL4pros extension.
An existing ATL transformation was used for abstracting and planning the structure of the
realized ATL extension.

2. After completing the implementation work, the transformation example of the case study
was taken and rewritten to the extended ATL version. By this, the correctness of the
extension could be evaluated by comparing target models generated by the original trans-
formation with target models derived from the extended transformation.

Case Study

The original goal of the case study in the ModelCVS project was a migration from the CASE3

tool AllFusion Gen (AFG) to a UML tool. More precisely, the transformation of AFG data
models to corresponding UML class diagrams should be facilitated. The problem concerning
this migration was the huge gap between the AFG metamodel for the data models and the UML
metamodel for class diagrams. Hence, the majority of the platform-specific information in the
AFG data models had no counterpart in UML. The proposed solution to this problem was the
use of UML profiles: With the help of a domain-specific profile, all additional information could
be stored that would otherwise have been lost. The case study showed that finally, 50 percent of
the resulting UML model was available as profile information.
The following case study artifacts were used for creating the ATL4pros extension:

• DSL_2_UML transformation
This large and complex ATL transformation was the starting point for designing the
ATL4pros extension. The DSL_2_UML transformation is used to transform DSL source
models to UML target models. Moreover, this transformation was later rewritten to an
ATL4pros transformation.

• DSL metamodel
This metamodel contains all classes used in an AFG data model. Selected excerpts of this
metamodel will be repeatedly illustrated in this thesis.

• UML profile
The UML profile of the case study was used to store additional model information. Spe-
cific parts of this profile are chosen for explaining the basic concepts of UML profiles.

• Source models
The available source models were used for executing and testing the implemented ATL
extension.

2http://www.modelcvs.org/
3CASE is the abbreviation of Computer-Aided Software Engineering
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• Target models
The target models of the case study were compared with the target models generated by
ATL4pros. Thereby, the correctness of the implemented extension was evaluated.

1.6 Structure of the Thesis

This master’s thesis is organized as follows.

Chapter 2 gives a general introduction to the topics of Model Driven Engineering (MDE) and
Model-Driven Architecture (MDA). The concepts and goals of MDA are discussed. Moreover,
the topics language engineering and transformation engineering are explained in more detail.
Language engineering focuses on the concepts of metamodels as well as UML profiles. The
section about transformation engineering discusses the term model transformation and sets the
focus on the ATLAS Transformation Language (ATL).

A motivating example that illustrates the use of UML profiles in the ATLAS Transformation
Language is introduced in Chapter 3. The problems and limitations of the current profile sup-
port in ATL are shown. Subsequently, different improvement approaches and their respective
benefits and drawbacks are discussed in more detail.

Chapter 4 focuses on the realized ATL extension named ATL4pros. This chapter is based on
a publication that I presented at the 3rd International Workshop on Model Transformation with
ATL4. The first part of this chapter explains the overall ATL extension methodology. Subse-
quently, the involved process steps that are needed for the extension are depicted and discussed
in detail.

Chapter 5 focuses on the evaluation of the implemented ATL4pros extension. An analysis of
code quality and performance is followed by a collection of lessons learned, summarizing im-
portant observations that were made during the implementation work. Finally, current limita-
tions of the developed ATL extension conclude this chapter.

Related work about other available model transformation approaches as well as different appli-
cations of UML profiles in combination with model transformations are discussed in Chapter 6.
The final Chapter 7 of this master’s thesis gives a conclusion and an outlook on future work.

4http://www.emn.fr/z-info/atlanmod/index.php/MtATL2011
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CHAPTER 2
Model Driven Engineering in a

Nutshell

2.1 Introduction to Model Driven Engineering

The notion of Model Driven Engineering [30] (MDE) has become an integral part of todays
modern software engineering discipline. With MDE, models are now at the center of attention
since they act as the key artifact of the entire engineering process. By definition, a model is
regarded as an abstraction from reality, including only the relevant aspects of a system. It is
therefore only natural to represent the details of a complex software system by means of a model.
Models are no longer restricted to documentation and representation purposes but they can be
used for a variety of important engineering tasks:

• Model transformation
In general, models have diverse fields of application, different levels of abstraction and
may be defined based on different modeling languages. The aim of a model transformation
is to automatically transform one model into another model.

• Model Testing
Errors at the source code level are hard to find and to eliminate. The functionality of
model testing eases the detection of errors and provides testing facilities at a higher level
of abstraction.

• Code generation
The (semi-)automatic generation of programming code is an essential part of the model-
based approach. Instead of using models only for communication purpose, they are di-
rectly transformed into code fragments.

• Documentation
After all, models may still be the primary source for the documentation of a software
system.

7



As the complexity of software systems is constantly rising and the integration of different tech-
nologies is becoming more important, models yield a good option for specifying such compre-
hensive systems. Like most technical innovations, also the model-driven approach is in need of
a sound basis by means of standardized technologies. The next subsection gives an overview of
the leading initiative of MDE called Model-Driven Architecture.

Model-Driven Architecture

The Object Management Group1 (OMG) introduced the Model Driven Architecture2 (MDA) in
2001. Basically, MDA is an integrated framework that both promotes and supports the concepts
of model-driven engineering. Different modeling standards and specifications constitute the core
of MDA. The Unified Modeling Language (UML) is amongst the most popular modeling stan-
dards published by the OMG. But also other predefined metamodels exist, e.g., the Meta-Object
Facility3 (MOF).
The overall goal of the MDA framework is the strict separation between the functionality of a
software system and its platform-specific implementation. This separation allows for the reuse
of one software system on different platforms, like for example on Java- or .NET-based frame-
works. To achieve this aim, different levels of abstraction are required, made available by dif-
ferent models. The most important abstraction levels are explained in the following section.
The terms MDE and MDA are repeatedly confused as a clear separation of these two concepts is
hard to identify. As stated in [20], MDA is one of many approaches to deal with the requirements
of model-driven software development. In contrast, MDE has a more general meaning and is
not necessarily restricted to the concepts of the Model-Driven Architecture.

Concepts of MDA

The reuse of existing software models on different platforms is an important aspect in relation
to MDA. A computation independent model is used to understand and present the system func-
tionality from an external point of view. Apart from this business model, it is essential to have
a platform independent model that can, at a later stage, be converted into a platform specific
model that is applicable for different software platforms. Having this platform specific model,
the last step is to automatically generate application code that may be executed. This structured
approach is illustrated in Figure 2.1.

Computation Independent Model (CIM). The computation independent model captures the
business requirements of a system under development. The main characteristic of this model
is that no implementation details like underlying data structures are present. The model only
focuses on the later use of the system and on the systems environment. Business experts use this
model to document the requirements of a system.

1http://www.omg.org/
2http://www.omg.org/mda/
3http://www.omg.org/mof/
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Platform Independent Model (PIM). This model is a complete representation of the entire
system with all required details and the necessary abstractions. Platform-specific characteristics
are totally omitted in this type of model. By this, a possible change regarding the implementation
platform has no effect on the model. The construction of a platform-independent model requires
for some suitable metamodeling language, which is more deeply discussed in Section 2.3.

Platform Specific Model (PSM). Adding platform-specific information to a PIM instance
leads to a new model called platform-specific model. This type of model is limited to one
specific target platform considering all platform specifics and details.

Application Code. The (semi-)automatic generation of the final application code as well as
the generation of other required artifacts is based on a platform specific model. Different code
generation tools are available to support the user with the production of the final implementation
code.

Platform Independent Language a o depe de
Model (PIM)

Model‐to‐Model 
Transformation

g g
Engineering

Platform Specific
Model (PSM)

Transformation 
Engineering

Application Code

Model‐to‐Text 
Transformation

Application Code

Figure 2.1: Concepts of MDA

As depicted in Figure 2.1, the terms language engineering and transformation engineering
play an important role within the MDA approach. Language engineering is required for the
specification of a modeling language like UML and is therefore the basis for any model defini-
tion. Transformation engineering on the other hand covers all aspects of a model-to-model or
a model-to-text transformation. The important PIM-to-PSM translation is accomplished by the
definition of a model-to-model transformation. To generate executable application source code,
a PSM-to-Code mapping, that is, a model-to-text transformation, is needed. A more detailed
introduction to language and transformation engineering is given in Section 2.3 and Section 2.4
respectively.

MDA Concepts in Practice

The OMG recommends its own technologies for the specification of the three aforementioned
models. Both CIM and PIM may be defined using UML. The definition of a PIM is normally
done with the help of UML profiles. As the use of these two techniques is only a suggestion,
also other generic modeling languages may be chosen.
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The different abstraction levels and the respective models, i.e., CIM, PIM and PSM, are
basically only a conceptual design of the MDA initiative. In many cases it is not really possible
to clearly distinguish between a CIM and a PIM. Moreover, current model transformation tools
mostly provide standardized solutions for transforming a PIM into a PSM but no mechanisms
for translating a CIM into a PIM, cf. [29,57]. Therefore, a computation independent model is of
less importance and is usually not supported by MDA technologies. Due to the fact that the PIM
is not automatically generated from the CIM but has to be defined separately, this procedure
results in an additional effort and is therefore not very efficient.

The (semi)-automatic code generation is another issue that needs to be addressed and opti-
mized in the future. The use of UML and UML profiles for defining the PIM and the PSM often
leads to incomplete code parts or even errors in the code. Incomplete method bodies are only
one of many examples for weak points of the generated code. The result is a manual revision
and refinement of the programming artifacts.

2.2 Goals of Model Driven Engineering

After having explained the basic ideas and principles of MDE and MDA, it is time to focus on
the pursued goals [6]:

• Higher level of abstraction
The use of models as the key artifact in Model-Driven Engineering in general and within
the Model-Driven Architecture in particular guarantees for a higher level of abstraction.
With the help of platform independent models, system components can be described in-
dependently from their actual implementation. Models also help in understanding and
capturing all aspects of complex systems.

• Portability
Due to the clear separation of modeling concerns by PIMs and PSMs it is easy to migrate
an existing software system from one software environment to another one. This migration
may become necessary due to small technological adaptations of the current system or the
radical change to another platform.

• Interoperability
Building a software system on top of diverse technologies is the common standard in
todays software development. The simultaneous use of object-oriented programming lan-
guages and relational databases is only one of many examples. MDA supports inter-
operability and the integration of different and possibly changing technologies since the
software system is defined without specifying the later implementation platform.

2.3 Language Engineering

Language engineering is a sophisticated branch of modern computer science since we are con-
fronted with a large number of different languages, divided into various language classes. We
differentiate between programming languages like Java or C++ and modeling languages like
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the Unified Modeling Language (UML) or the Business Process Modeling Notation4 (BPMN).
Other classifications distinguish between General Purpose Languages (GPL) like the UML and
Domain-Specific Languages (DSL) like KM3 [24].
Language Engineering in the context of Model-Driven Engineering is concerned with different
scopes of application. This specific engineering discipline comprises all necessary methods and
concepts that are needed for inventing any kind of language. The specification of General Pur-
pose Languages on the one hand is important to make a solid modeling basis available for the
modeling community. Formal model language specifications provide standard techniques and
components which unify the way in which software models are built. The definition of Domain
Specific Languages on the other hand offers completely new and versatile possibilities.
Irrespective of the type of language and its intended purpose, there are certain characteristics
that all languages have in common. The structure of a language is determined by different com-
ponents and these are explained in the following paragraph.

Language Characteristics

In the area of software engineering there are different types of languages like modeling or pro-
gramming languages. What all languages have in common and what is required for the specifi-
cation of a language are the following three distinct dimensions [32]:

• Abstract syntax
The abstract syntax defines the language elements and their connection between each
other, in other words, the grammar of a language. By defining the abstract syntax of some
arbitrary language, the language designer determines the phrases that are valid when using
this language.

• Concrete syntax
The concrete syntax constitutes the notation of the language elements, i.e., how certain
elements are illustrated. This can either be done in a graphical or in a textual form. The
former is often achieved by means of simple graphical icons. The latter aims at speci-
fying the keywords that represent the elements of the abstract syntax. A language is not
restricted to one single concrete syntax, i.e., it is possible for a language to have more than
one concrete syntax descriptions.

• Semantics
The semantics specifies the meaning of the language elements. Thus, a precise semantics
definition is important for understanding what the particular language elements imply.
This understanding of language concepts is directed towards the users of the language.

Meta Language

Every language, whether text- or model-based, needs to have a precise definition. A language
that is used for defining another language is commonly referred to as meta language. The first

4http://www.bpmn.org/
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widely-used meta language for the definition of a textual language was titled EBNF – Extended
Backus-Naur Form. EBNF is an extension of the Backus-Naur Form (BNF) which was invented
by John Backus and Peter Naur.
EBNF consists of so-called production rules which determine the syntax of a language and
are repeatedly used for the definition of programming languages. These production rules (or
non-terminal symbols) consist of terminal symbols (alphanumeric characters) and non-terminal
symbols which can be arranged to form a valid sentence. For a short EBNF grammar example
of Mini-Java please refer to [13]. In the case of EBNF there is no strict separation of abstract
and concrete syntax. The definition of a programming language in EBNF comprises both the
abstract and the concrete syntax.
EBNF is only applicable for textual languages like most programming languages are. However,
the model-driven engineering ideology is primarily concerned with models and these models
are by definition expressed using some modeling language. The terms model, metamodel and
meta-metamodel are now carefully examined in the next part of the thesis.

Models, Metamodels and Meta-Metamodels

Models are at the center of attention in the model-driven software engineering approach. Models
form the basis for all steps in the development process since they act as the key artifact. The
meaning of the term model as well as other common definitions in this context are explained in
the following.

Model

The term model is frequently used in the area of Model-Driven Engineering. According to [34],
the best definition is that a model is „an abstraction of a system allowing predictions or in-
ferences to be made“. Another definition is found in [45] and reads that a model „is a set of
statements about some system under study.“. However, there exists a large number of other def-
initions of the term model.
What all definitions have in common is the fact that a model, in the context of software devel-
opment, is used to represent a software system. The model itself contains only the relevant parts
of the real system and is therefore referred to as an abstraction. The four-layer metamodel hier-
archy by the OMG (see Figure 2.2) illustrates the different modeling layers. The system can be
found on the lowest layer M0. Consequently, the model which represents the system is placed
on the next higher level, referred to as M1. Examples for specific models are any type of UML
model or an ATL transformation.
A model usually consists of different model elements that together form the system under de-
velopment. These elements that are present in a model are not random, but are rather formally
specified in a more abstract way – the metamodel. All model elements are therefore instances of
metamodel elements. The metamodel is placed on the M2 layer of the four-layer hierarchy and
will be explained in the next paragraph.
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Metamodel

A metamodel defines the abstract syntax of a model [31]. This means that a metamodel com-
prises all language concepts and constructs that can be used in a model which conforms to some
metamodel. Apart from the supported concepts, the metamodel also specifies the way how these
concepts are interconnected and which properties are available. A model is therefore an instance
of a metamodel consisting of model elements which are in turn instantiations of metamodel el-
ements [2]. For example, the metamodel of ATL contains all language constructs that are valid
for developing an ATL transformation.
Metamodels are of high importance in the field of Model-Driven Engineering since the entire
software development process is based on and guided by models. The advantages of metamodels
are as follows [20]:

1. Metamodels provide a standardized and concise definition of model elements. Only those
language constructs, references, and properties that are present in the metamodel are valid
in the derived models. By this, a common understanding of the particular modeling do-
main is possible. Moreover, uncontrolled model variations can be easily prevented.

2. Metamodels are the basis for the specification of models. Therefore, models can be
checked for syntactic validity as they have to conform to their respective metamodels.
Metamodels are thus an efficient control mechanism which eases the task of model devel-
opment.

3. A metamodel is not necessarily a rigid construct that cannot be modified at a later stage.
Modeling languages like the UML offer different alternatives on how to extend or special-
ize a metamodel in a controlled and language-inherent manner. Nevertheless, the original
metamodel should be as stable as possible in order to provide a consistent basis for all
conforming models.

Metamodels are found on the M2 layer of the four-layer metamodel hierarchy. By this, meta-
models are needed for the definition of a language. The UML and the ATL metamodel are
popular metamodel examples that will be further studied in the remainder of this chapter.

Meta-Metamodel

Models are specified by means of metamodels, so the next logical step is to examine how the
concepts of metamodels are defined. As a metamodel itself is again a model, there must exist
some superior level which specifies the model elements (i.e., the abstract syntax) of the meta-
model. This highest level is called meta-metamodel or M3 and is on top of the M2 layer.
As Figure 2.2 illustrates, the meta-metamodel defines a meta language. All model elements
that are used within a metamodel are specified by means of meta-metamodel elements, or in
other words, every metamodel conforms to some meta-metamodel. The two most prominent
meta-metamodels are now briefly discussed:

• MOF
The Meta-Object Facility [37] (MOF) is a specification by the OMG and is a standard for
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the definition of metamodels. MOF is particularly suitable for the definition of metamod-
els that represent object-oriented concepts and systems, like for example the UML. As
MOF was introduced by the OMG, it is the proposed meta-metamodel within the MDA
approach and the basis for all modeling concepts of the OMG.

• Ecore
Ecore is a meta-metamodel used in the Eclipse Modeling Framework [47]. The idea of
Ecore is to have a Java-based implementation of the most important MOF components.
Therefore, the basic language elements of Ecore and MOF are very similar.

As depicted in Figure 2.2, the four-layer hierarchy ends with layer M3. The reason for this
is that a meta-metamodel, like for example MOF, is reflexively specified. This means that every
language concept used on the M3 layer is again defined by itself. No further abstraction layer is
needed which helps in keeping the hierarchy manageable.
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Figure 2.2: Basic structure of the four-layer metamodel hierarchy [34]

Depending on whether a language is used for a generic application or for a concrete pur-
pose, there are two divergent language design principles, namely general-purpose languages and
domain-specific languages. These two concepts along with their opposed orientation are now
briefly discussed.
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General-Purpose Language

The UML was introduced by the OMG as a General-Purpose Language [12] (GPL). The term
general-purpose already indicates that such a language provides generic language features which
may only be used for general problems and tasks. Another important characteristic is that the
language components are not restricted to one single purpose and are therefore applicable for
meeting diverse requirements.
A common problem with general-purpose languages is the fact that they are sometimes not ex-
pressive enough for certain modeling tasks. The existence of a domain-specific problem mostly
requires for a domain-specific solution. Thus, a GPL may not be helpful in certain scenarios and
consequently, the need for a domain-based approach arises.

Domain-Specific Language

A Domain-Specific Language (DSL) aims at providing language constructs for a specific pur-
pose or domain. By this, it is more detailed than a GPL as it is restricted to a specified area of
application. The idea of domain-specific languages has been very well received in the modeling
community and is continuously used. SQL is a popular example for a DSL as it is tailored for
handling diverse manipulation tasks in a relational database system. There are several alterna-
tives for the definition of a DSL. The best way for creating a custom language including all
relevant language elements is certainly by means of metamodels. Metamodels may be defined
from scratch and aligned to any desired domain.

The Unified Modeling Language (UML)

The Unified Modeling Language5 (UML) is one of the most widely-used modeling languages
these days. UML was specified by the Object Management Group (OMG) and has become
the de-facto standard since its first release. UML is a graphical language which may be used to
model complex, object-oriented systems [41]. The UML provides different perspectives contain-
ing standardized modeling elements which allow for a holistic specification of a system under
development.

UML Diagram

Basically, a UML diagram is an illustration of data and at the same time a visual representation
of a UML model. The UML provides thirteen different diagram types which represent differ-
ent perspectives of the system under development. A UML diagram is created by some UML
modeling tool. To give the reader a better understanding of the complexity of UML, a brief sum-
mary of the most important diagram types is given below. A differentiation between structure
diagrams and behavior diagrams is drawn at the highest level.

5http://www.uml.org/
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Structure diagram. A structure diagram is needed to capture the structure of a system. For
example, fixed system components and their respective properties may easily be modeled using
a UML class diagram. Structure diagrams include amongst others:

• Class diagram: The logical structure of a system is captured by means of classes, relation-
ships between classes and certain characteristics of classes in the form of features.

• Object diagram: Classes of the class diagram are instantiated and detailed in this type of
diagram.

• Package diagram: Different packages may be clustered and structured within a package
diagram.

• Component diagram: Components of a system including their dependencies and connec-
tions may be visualized with this diagram type.

The remaining structure diagrams are the deployment diagram and the composite structure dia-
gram.

Behavior diagram. Apart from modeling the given structure of a system, it may also be essen-
tial to capture its behavior. Modeling different states and state transitions of system components
or specifying the interaction between the user and the system are only two of many modeling
possibilities. The behavior diagram type includes for example:

• Use case diagram: A use case diagram captures all functionalities that a system offers to
its users.

• State diagram: State diagrams capture the internal states of certain system components
including all possible state changes.

• Activity diagram: Operation sequences and other processes can be illustrated with this
kind of diagram.

• Sequence diagram: Sequences of message exchanges between different actors are put in a
chronological order.

Communication diagrams, interaction overview diagrams as well as timing diagrams complete
the list of behavior diagrams.

The UML Metamodel

All language constructs of the UML are specified in the UML metamodel. As UML is a highly
complex language containing a vast number of different components, the number of elements
in the metamodel is accordingly large. Therefore, the metamodel is further divided into several
packages which eases the understanding of the model and allows for a better separation of the
different modeling concepts.
A very limited excerpt of the UML metamodel is depicted in Figure 2.3. Please note that a
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large number of metamodel classes are defined as abstract classes. This means that those classes
may not be instantiated by the UML modeler. Abstract classes are indicated by their class name
written in italics, like for example the classes NamedElement or Classifier. All other classes are
so-called concrete classes which can be directly instantiated in a UML diagram.
The given excerpt of the UML metamodel shows essential metamodel elements that are of great
importance for the most prominent diagram type, the UML class diagram. The metamodel el-
ement Class inherits from the abstract class Classifier and represents a concrete class in the
class diagram. Classes may have multiple Properties which are in turn subclasses of the Struc-
turalFeature class. Classes may also have a number of Operations, an operation inherits from
the abstract superclass BehavioralFeature. Due to space limitations only a limited set of classes
and their connections between each other are shown. Other metamodel classes like for example
the Association class are missing in Figure 2.3.
According to the four-layer hierarchy of the OMG (see Figure 2.2), the UML metamodel is de-
fined on the M2 layer. Not surprisingly, the definition of the UML metamodel on layer M3 is
done using MOF.

NamedElement

name:  String

Classifier

isAbstract:  Boolean

Class DataTypeProperty

TypedElement PackageableElement

Generalization

isSubstitutable:  Boolean

Package Type

Feature

isStatic:  Boolean

BehavioralFeature

isQuery:  Boolean

StructuralFeature

isReadOnly:  Boolean

Operation

Behavior

classifier
0..1

/attribute

*

type 0..1

ownedAttribute

0..* class

0..1ownedOperation *
class 0..1

method

*

specification
0..1

generalization*

specific
1

*

general1

Figure 2.3: Excerpt of the UML metamodel [20]

Extensibility of the UML

UML is a general-purpose language and therefore not suitable for every possible modeling sce-
nario. As mentioned before, some domain-specific problems may require for domain-specific
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modeling constructs. However, the escape to a newly composed domain-specific language may
not always be an option since the definition of such a language is a complex task. Fortunately, the
UML offers some valuable extension possibilities for tailoring the predefined modeling elements
to a specific purpose. Basically, three different approaches are supported:

1. Variant: New metamodel: In some cases it may be useful to define a completely new
metamodel. This could for example be the case when the language concepts of the UML
are not matching the requirements of some system. This new metamodel is designed
as an instance of the meta-metamodel on layer M3 and may consist of arbitrary classes,
relationships between classes and features.

2. Variant: Heavy-weight extension: This approach is a so-called heavy-weight extension.
Based on the original UML metamodel, the modifications are incorporated by mecha-
nisms like inheritance or redefinition. The introduction of new super- or subclasses is one
possible aspect, but also new associations may be appended or existing element features
may be overwritten.

3. Variant: Light-weight extension: The third alternative is referred to as light-weight ex-
tension as it leaves the UML metamodel unchanged [3]. An extension is defined by means
of profiles, containing stereotypes and tagged values. This type of extension is called a
language-inherent extension as all concepts of the profile are provided by the UML infras-
tructure. This extension variant is the most promising one and is further discussed in the
next subsection.

UML Profiles

The sophisticated UML language extension mechanism in form of UML profiles allows to ex-
tend the UML metamodel for different technological platforms and modeling domains. A profile
is a language-inherent extension mechanism and stereotypes as well as tagged values constitute
the heart of the profile concept. Stereotypes may be seen as specialized metaclasses for either
introducing new modeling concepts or restricting existing ones. Tagged values are used for in-
troducing new features for existing modeling concepts.
To get a better idea of the profile concept it is best to start with a simple example:

The UML profile is titled DataModel and contains the two stereotypes Identifier and At-
tribute. The illustrated stereotypes extend the UML metaclass Property. This means that an
instance of the metaclass Property may be further specialized by either the stereotype Identifier
or the stereotype Attribute, or by both of them. The stereotype Attribute owns a tagged value
named phase which adds additional information to a Property instance.
A precise definition of the terms profile, stereotype and tagged value is given in the following
paragraphs.

Profile

A UML profile contains all metaclasses, stereotype definitions, tagged values and possible con-
straints that are needed for one specific extension of a reference metamodel. An extension is
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Language architecture of UML 2.0
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fil D t M d l

«metaclass»

«profile» DataModel

«stereotype»
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«stereotype»
Att ib t

Identifier

Attribute
phase: String
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Figure 2.4: Simple UML profile example

usually covering some particular requirement or purpose and the profile is used for grouping all
elements that form one domain-specific extension. A UML profile is usually indicated by the
keyword «profile», followed by its name (cf. profile DataModel in Figure 2.4).
The Profiles package in the meta-metamodel of the UML contains all required metaclasses that
are needed for the definition of a profile (cf. Figure 2.9). The main class Profile inherits from
the class Package. The relationship between a Profile instance and its contained Stereotypes
is established via a containment relation named ownedStereotype. The class ProfileApplication
that is associated with the class Package is used to demonstrate which profiles are applied to a
package. It is important to note that a profile must always extend a reference metamodel which
is in turn conforming to the MOF, e.g., the UML metamodel. This dependency is illustrated by
the association named metamodelReference.

Stereotype

Stereotypes are the main component of a UML profile. The concept of stereotypes is used to
specialize metaclasses with respect to some domain, platform or some specific functionality [4].
By applying a stereotype to some metaclass, the class gets bound to a defined purpose or a usage
context. For example, an instance of the metaclass Property in Figure 2.4 may be assigned with
the Identifier stereotype. This assignment indicates that the property instance is consequently
considered as an identifier.
Moreover, the existing metaclasses may be extended by new metaattributes or restricted by user-
defined constraints. Apart from the Stereotype metaclass itself, all existing UML metaclasses
may be specialized by some stereotype. The metaclasses are extended on the M2 layer (meta-
model layer) of the four-layer architecture, see Figure 2.2. Stereotypes may be instantiated and
used like normal model elements of the M1 model layer.

Appearance and declaration of a stereotype. A stereotype is depicted as a rectangle (like
classes in a class diagram) and is composed of three sections. The first section includes the
keyword «stereotype» in a pair of guillemets, followed by the name of the stereotype. The sec-
ond segment contains the attributes of a stereotype, called tag definitions. An instantiated tag
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definition is called tagged value. The third section may be used to define possible operations of
a stereotype.
The metaclass Stereotype inherits from the metaclass Class, see Figure 2.9. By this, stereo-
types can form a generalization hierarchy with abstract super-stereotypes and associated sub-
stereotypes. A derived stereotype inherits all extension relations, tag definitions and constraints
from its super-stereotype.
Figure 2.5 shows a generalization hierarchy with the abstract stereotype Attribute and the derived
stereotypes UserDefinedAttribute and SystemDefinedAttribute. The generalization relationship
is indicated by an arrow with an empty arrowhead pointing from the specialized sub-stereotypes
to the more general super-stereotype. As the figure shows, the name of an abstract stereotype
is written in italics. Both sub-stereotypes inherit the tag definition phase as well as the re-
quired extension relation from the super-stereotype Attribute. The SystemDefinedAttribute has
the additional metaattribute attributeTestFlag. As the defined extension is compulsory, a prop-
erty instance must always be linked to an instance of either the UserDefinedAttribute or the
SystemDefinedAttribute stereotype.

Generalization hierarchy

fil D t M d l

«metaclass»
Property

«profile» DataModel

«stereotype»
Attribute

{required}

Property
phase: String

Attribute

«stereotype»
UserDefinedAttribute

«stereotype»
SystemDefinedAttribute
attributeTestFlag: String

12

Figure 2.5: Generalization hierarchy of stereotypes

Extension of metaclasses. Stereotypes classify UML metaclasses by means of extension re-
lations. The actual extension is represented as an arrow with a filled arrowhead pointing from
a stereotype to the corresponding metaclass. The keyword «metaclass» on top of an extended
class is optional and may also be omitted. By default, the extension relation indicates an optional
extension, meaning that an instance of the extended metaclass may not necessarily be special-
ized by an instance of a stereotype. If the application of a stereotype needs to be enforced, the
label {required} is printed above the arrow. Figure 2.6 exemplifies the difference between an
optional and a compulsory extension.

Profile application. A stereotype can only be applied to a model element if the corresponding
profile is applied to some package. This package must be created from the reference metamodel
which is extended by the respective profile [39]. The profile application is realized by a dashed
arrow with an open arrowhead and the associated keyword «apply». The arrow is pointing from
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Extension – optional and compulsory

fil D t M d l profile DataModel

«metaclass»

«profile» DataModel

«stereotype» «metaclass»

«profile» DataModel

«stereotype»{required}

Class EntityType

(a)

Class EntityType

(b)

11

Figure 2.6: Examples for (a) optional and (b) compulsory extension relations

the package to the profile used for the extension. An example of such a profile application is
illustrated in Figure 2.7. The DataModel profile is applied to a package which represents some
DataApplication. In this example, only one profile is used. Note, however, that multiple profiles
may be applied to one single package provided that there are no conflicting constraints. After
applying a profile, all elements that are specified within this profile may be used.

Applying a profile

«profile» «profile»

«profile»
DataModel

p
DataModel

p
EJB

«apply» «apply»

«apply»

WebShopping

pp y «apply»
DataApplication

pp g
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Figure 2.7: Profile application

Stereotype application. Like normal model elements, also stereotypes are instantiated when
applied to a concrete model element. The usual notation to illustrate that an instance of a stereo-
type is applied to an instance of a metaclass is to write the name of the stereotype above the
name of the class, enclosed by a pair of guillemets. If multiple stereotypes are linked to one
metaclass, then the names of the stereotypes are separated by a comma, again within a pair of
guillemets. Figure 2.8 illustrates a simple example.
The profile DataModel consists of one metaclass and two distinct stereotypes. The metaclass
Property is extended by the two stereotypes Identifier and Attribute. The Identifier stereotype
contains only one tag definition named number. The abstract stereotype Attribute is a general-
ization of the two derived stereotypes UserDefinedAttribute and SystemDefinedAttribute which
both inherit the tag definition phase. While the UserDefinedAttribute has no further tag defini-
tions, the SystemDefinedAttribute has an additional metaattribute named attributeTestFlag. The
extension relationship between the metaclass Property and the stereotype Attribute is a compul-
sory one whereas the extension by the stereotype Identifier is merely optional.
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Beneath the profile definition there are two examples for the application of stereotypes:
(1) The property LocalSystemID is specialized by the stereotype SystemDefinedAttribute. The
values of the two tag definitions phase and attributeTestFlag are set to „phase1“ and „y“ respec-
tively.
(2) Another property instance named StartingPosition is extended by two stereotypes, UserDe-
finedAttribute and Identifier. The phase attribute has the value „phase2“, the number of the
Identifier is set to the integer value of 1.
Stereotype  Instances
«profile» DataModel

«metaclass»
Property

phase: String

«stereotype»
Attribute

{required}«stereotype»
Identifier

number: Integer

«stereotype»

phase: String

«stereotype»

number: Integer
Definition

«stereotype»
UserDefinedAttribute

«stereotype»
SystemDefinedAttribute

attributeTestFlag: String

«systemDefinedAttribute» «systemDefinedAttribute»
phase = “phase1“

(1)
EntityType1

LocalSystemID: String phase = phase1  
attributeTestFlag=“y“

«userDefinedAttribute»(2)
EntityType2

Application

«userDefinedAttribute, identifier»
StartingPosition: int

«userDefinedAttribute»
phase = “phase2“
«identifier»
number = 1 

(2)

Figure 2.8: Examples of stereotype instances

Please note that the style guidelines of the OMG Superstructure recommend to write the first
letter of an applied stereotype in lower case. In contrast, the first letter of a stereotype name
within the profile definition is capitalized.

Tagged Value

Tagged values, or tag definitions, are used like normal properties of a class. They are composed
of a name and a type definition. Possible types are for example String, Integer, Boolean or some
complex type. An example of two tagged values called phase and attributeTestFlag is illustrated
in Figure 2.5. There are different presentation alternatives for tagged values. The most common
form is a comment symbol. This comment symbol usually contains the name of the stereotype
followed by the respective tagged values. Each tagged value within the comment symbol is writ-
ten as a name-value pair. A dashed line connects the comment symbol and an instance of the
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extended metaclass. The comment-based representation is depicted in Figure 2.8.

The complete Profiles package from the UML Superstructure is illustrated in Figure 2.9.
It contains all further metaclasses, relationships, and properties that are needed for a precise
definition of a UML profile.
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Figure 18.2 - The elements defined in the Profiles package

18.3 Class Descriptions
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Figure 2.9: Profiles package of the UML Superstructure [39]

For more detailed information about UML profiles and stereotypes please refer to the OMG
UML Superstructure Version 2.3 [39], pages 669 to 697. A brief introduction is given by [20],
pages 334 to 342.

When browsing through various publication databases and searching for research articles re-
lated to the concrete application field of UML profiles, there exists a large number of results.
UML profiles were specified for different application scenarios, like for example aspect-oriented
software development, software product lines, multidimensional modeling in data warehouses,
framework architectures, embedded system design or even for expressing GUI layout informa-
tion. This is, however, only a small excerpt of the broad spectrum of applications for UML
profiles.

Using UML Profiles in a Model Transformation

Even though the notion of model transformations is explained in the next section, the follow-
ing table focuses on the impacts that profiles, stereotypes and tagged values have on a model
transformation. Table 2.1 summarizes the impact that each concept has. Basically, this table is
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inspired by the Eclipse documentation of the Java UML2 API6.

UML element Functionalities required in model transformations

Profile

(1) Applying a specified profile to a UML model or package
(2) Removing an existing profile from a UML model or package
(3) Checking if a certain profile is applied to a UML model or pack-
age
(4) Querying all applied profiles of a UML model or package

Stereotype

(1) Applying a specified stereotype to a UML model element
(2) Removing an existing stereotype from a UML model element
(3) Checking if a certain stereotype is applied to a model element
(4) Checking if a certain stereotype is applicable for a model element
(5) Checking if a certain stereotype is required for a model element
(6) Querying all applicable stereotypes of a UML model element

Tagged Value

(1) Setting the value of a specified tag definition and a specific stereo-
type
(2) Querying the value of a certain tag definition and a specific
stereotype
(3) Checking if the value of a certain tag definition and stereotype is
set

Table 2.1: The impact of UML profile elements on a model transformation

2.4 Transformation Engineering

The notion of transformation engineering plays a crucial role in the context of MDE [10]. Ba-
sically, a transformation is taking some input and subsequently generates the desired output. In
the field of model-driven software engineering it is common to focus on model transformations.
Based on the outcome of a model transformation, there are two fundamental types that may
be distinguished. A transformation may either be a model-to-model (M2M) or a model-to-text
(M2T) transformation. In the first case, both the input and the generated output are models.
This type of transformation is especially useful for transforming a PIM to a PSM [16]. Another
possibility is to define a model-to-text transformation that has a model as input and generates
application code or other text artifacts as output. The type of transformation is chosen by the
transformation designer and depends on the purpose of the particular transformation.

The Concept of Model Transformations

Model transformations aim at providing facilities and operations for converting an input model
to some defined output. To be more specific: By means of model transformations it is possible

6http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.uml2.doc/
references/javadoc/org/eclipse/uml2/uml/package-summary.html
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to generate some target model that conforms to a target metamodel from a given source model,
which conforms to a source metamodel. Designing a model transformation is thus synonymous
with specifying which source elements are converted to which target elements.
This master’s thesis is only concerned with model-to-model transformations and thus, the term
model transformation is always referring to a model-to-model transformation.

Figure 2.10 illustrates the basic pattern and the involved artifacts of a typical model trans-
formation7. A given source model Ma conforms to the source metamodel MMa. This meta-
model again conforms to some higher-level meta-metamodel MMM. The goal of a model trans-
formation is to generate a target model Mb out of the source model Ma. All elements of the
source model Ma are converted into elements of the target model Mb. This target model con-
forms to the target metamodel MMb which in turn conforms to the meta-metamodel MMM. The
transformation itself, referred to as Mt, conforms to the transformation metamodel MMt. This
transformation-specific metamodel is again an instance of the meta-metamodel.
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Figure 1. An overview of model transformation 

Figure 1 summarizes the full model transformation process. A model Ma, conforming to a metamodel 
MMa, is here transformed into a model Mb that conforms to a metamodel MMb. The transformation is 
defined by the model transformation model Mt which itself conforms to a model transformation 
metamodel MMt. This last metamodel, along with the MMa and MMb metamodels, has to conform to a 
metametamodel (such as MOF or Ecore). 

3 A simple transformation example 
This section introduces the transformation example that is going to be developed in the document. The 
aim of this first example is to introduce users with the basic concepts of the ATL programming. To this 
end, this example considers two similar metamodels, Author (Figure 2) and Person (Figure 3), that 
both encode data relative to persons. 

Figure 2. The Author metamodel Figure 3. The Person metamodel 

Both metamodels are composed of a single eponym element: Author for the Author metamodel and 
Person for the Person metamodel. Both entities are characterized by the same couple of string 
properties (name and surname). 

The objective is here to design an ATL transformation enabling to generate a Person model from an 
Author model. The transformation to be designed will have to implement the following (obvious) 
semantics: 

• A distinct Person element is generated for each source Author element; 

o The name of the generated Person has to be initialized with the name of the source 
Author; 

o The surname of the generated Person has to be initialized with the name of the 
source Author. 

Figure 2.10: Basic pattern of model-to-model transformations

Research on a classification of existing and proposed model transformation approaches iden-
tified some commonalities that all model transformation approaches share [9]. For example, all
approaches provide different variations of transformation rules, source-to-target relationships,
rule organization or tracing. One model transformation approach is called QVT [38] and was
specified by the OMG after issuing a Request for Proposal. An overview of different model
transformation approaches is given in Section 6. The ATLAS Transformation Language (ATL)8,
the most widely-used transformation language, is introduced in the following subsection.

ATLAS Transformation Language (ATL)

The ATLAS Transformation Language (ATL) [23] is currently the state-of-the-art transformation
language in the Eclipse Modeling Framework9 (EMF). It was developed by the ATLAS group

7http://wiki.eclipse.org/ATL/Concepts
8http://eclipse.org/atl/
9http://www.eclipse.org/modeling/emf/
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(now called AtlanMod team) and is currently maintained and further developed by OBEO10 and
AtlanMod11. ATL was invented as an answer to the Query/View/Transformation Request for
Proposal issued by the OMG.

The transformation engineer is using ATL for developing rule-based model transformations
between a source metamodel representing the source modeling language and a target metamodel
representing the target modeling language. An ATL transformation is then executed on a source
model conforming to the source metamodel in order to produce a target model which is conform
to the target metamodel. The source model may also be referred to as input model while the
target model is also called output model.

An ATL transformation is defined within an ATL file, indicated by the .atl file extension.
Each ATL transformation is comprised of one single ATL module. The module and all other
important concepts of the ATLAS Transformation Language are explained below. For a detailed
introduction please refer to the ATL User Guide12, for an in-depth look on technical details
please see the ATL Developer Guide13.

Defining an ATL Transformation

The definition of a new ATL transformation starts with the definition of a new ATL module. An
ATL module is the highest-level unit within one ATL file and corresponds to a single model-to-
model transformation. The ATL module comprises all parts of the transformation, namely (i)
the compulsory header section, (ii) the optional import section, (iii) the helper section and (iv)
the rule section.

Header section. The header section is used for specifying the name of the ATL module as well
as the source and target models. The target models are specified after the keyword create while
the source models are specified after the keyword from. The metamodels of the respective mod-
els are defined after the name of the model, separated by a colon. The names of the metamodels
are subsequently used in the transformation to address specific metamodel elements. An exam-
ple of an ATL header is given in Listing 2.1. The name of the module is set to DSL_2_UML.
The target model is named OUT and conforms to the UML metamodel. The source model is
called IN and conforms to the DSL metamodel.

Listing 2.1: ATL module DSL_2_UML with import section
1 module DSL_2_UML;
2 create OUT : UML from IN : DSL;
3
4 uses profileLibrary;

Import section. The import section is used to specify ATL libraries that may be used to out-
source certain code parts, e.g., helpers. Libraries are reusable and may be imported into different

10http://www.obeo.fr/
11http://www.emn.fr/z-info/atlanmod
12http://wiki.eclipse.org/ATL/User_Guide
13http://wiki.eclipse.org/ATL/Developer_Guide
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ATL modules. They help in keeping the transformation code short and maintainable. Listing 2.1
shows the import of an ATL library called profileLibrary on line 4.

Helper section. The helper section usually follows after the header section and the optional
import statements and provides the possibility to declare attribute helpers or operation helpers.
The term helper actually corresponds to the operation helpers that are equivalent to methods in
some programming language like Java. Operation (or functional) helpers always have a name
and may take parameters. These helpers may be called by the rules of a transformation or from
some other helper function. Operation helpers are used to calculate some return value of a
specified data type. Attribute helpers on the other hand may be used to store a specific constant
value that may be needed at different points of the transformation. Unlike functional helpers,
attribute helpers do not accept any parameter. Listing 2.2 shows the two types of helpers in ATL.

Listing 2.2: Attribute helper and operation helper
1 -- Attribute helper
2 helper def : stereoName : String = ’DataModel’;
3
4 -- Operation helper
5 helper context UML!Element def: setVal(st:OclAny, pr:String, val:OclAny) : OclAny =
6 if(not val.oclIsUndefined())
7 then
8 self.setValue(st, pr, val)
9 else

10 OclUndefined
11 endif;

All helpers start with the keyword helper, followed by some optional context definition.
The context defines for which type of metamodel element the declared helper is applicable.
For example, the setVal helper in Listing 2.2 may only be called by an Element of the UML
metamodel. The keyword def is written after the context definition and in front of the name
of the helper. Optional parameters in brackets, the return type and the actual helper definition
(introduced by an equality sign) complete the helper declaration.
The attribute helper on line 2 of Listing 2.2 is named stereoName and returns a String value set
to the constant DataModel. The operation helper setVal on lines 5 to 11 is defined for the context
of a UML Element and takes three parameters. The return type of this helper is set to OclAny,
the most abstract ATL data type from which all other data types inherit. The body of the helper
consists of a simple if-then-else statement which returns some value based on the evaluation of
the if-part.

Rule section. The rule section is the most important part of an ATL model transformation.
This section contains all transformation rules that are executed in order to generate the target
model. The meaning of the term rule and the three different rule types are discussed below.

Rules

ATL is a rule-based transformation language. Therefore, the core of an ATL transformation
consists of several rules that are defined by the transformation engineer. Basically, each rule is
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indicated by the keyword rule, followed by its name and the body of the rule. ATL provides
three types of rules that satisfy different requirements. Each type is briefly introduced:

Matched rule. A matched rule is the most important rule type. Its purpose is to match a
distinct type of source model element and to generate the corresponding target model element.
The source model elements that are to be matched are introduced after the keyword from whereas
the target model elements are introduced after the keyword to. The initialization details of the
resulting target model elements are also determined in the rule. Please note that matched rules
are automatically executed by the ATL engine once for each match. This means that the given
source model element is matched exactly once and the corresponding target model element is
automatically created during the matching phase. Listing 2.3 gives an example of a simple
matched rule. Source model elements of the type DataModel are matched and the desired target
model elements of the type Model are generated. DataModel elements conform to the specified
DSL metamodel while Model elements conform to the UML metamodel. The details of a target
model element are specified using a set of bindings. A binding determines how features and
references of the target element are initialized. An example can be found on line 6 of Listing 2.3.
Here, the name of the UML Model is initialized with the value of the name attribute of the
DataModel source element.

Listing 2.3: Matched rule example
1 rule DataModel_2_Model {
2 from
3 s : DSL!DataModel
4 to
5 t : UML!Model (
6 name <- s.name
7 )
8 }

Lazy rule. Lazy rules have the same structure as matched rules, with the difference that the
keyword lazy is written in front of the keyword rule. A second difference is that lazy rules are
not automatically executed but they have to be called explicitly by another rule. As a result,
lazy (and called) rules are not executed during the matching phase but are evaluated during the
last phase (target model elements initialization phase) of an ATL transformation execution. An
example of a lazy rule is given in Listing 2.4.

Listing 2.4: Lazy rule example
1 lazy rule getModel {
2 from
3 s : DSL!DataModel
4 to
5 t : UML!Model (
6 name <- s.name
7 )
8 }
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Called rule. This type of rule must also be invoked explicitly. As opposed to a matched rule,
a called rule does only include the definition of the target model element. Thus, no source
model element for matching purposes is required. An example of a called rule can be seen in
Listing 2.5.

Listing 2.5: Called rule example
1 rule newModel (na: String) {
2 to
3 t : UML!Model (
4 name <- na
5 )
6 }

Rule inheritance. Since the release of the ATL 2006 version, also rule inheritance is provided
by the concept of abstract rules. The ATL developer can define an abstract superrule and arbi-
trary many subrules that extend the superrule. By this, all the bindings that are defined in the
abstract rule are automatically copied and combined via a union operator with the bindings of the
subrule. For the sake of completeness, however, it should be mentioned that rule inheritance is
also possible between concrete rules. The concept of rule inheritance is especially useful having
class inheritance in the source and the target metamodel.

ActionBlock. Every ATL rule may contain one optional ActionBlock, also referred to as do-
block. This block, introduced by the keyword do, contains an arbitrary number of imperative
code statements that may be used for setting features and/or references of the generated target
model element. The code statements defined within an ActionBlock are executed in a sequential
order after the initialization of the corresponding target model element is completed. An example
is illustrated in Listing 2.6. Every time the called rule newModel is executed, the target model
element Model gets initialized and afterwards, the name of the Model is set.

Listing 2.6: Called rule with ActionBlock
1 rule newModel (na: String) {
2 to
3 t : UML!Model
4 do {
5 name <- na
6 }
7 }

ATL Language Characteristics

ATL is a hybrid transformation language as it provides both declarative and imperative language
features.
Imperative code: Imperative programming means that the programmer specifies the exact flow
of the program instructions, i.e., the successive program steps. Imperative code includes pro-
gramming constructs like for-loops and if-then-else-statements. The imperative transformation
code, as for example defined inside an ActionBlock, is executed in a strict sequence.
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Declarative code: Declarative programming on the other hand is not concerned with the flow of
operations but rather focuses on the desired outcome.
The declarative part of ATL comprises all matched rules that match certain types of source
model elements. Nevertheless, also imperative code is needed in the form of called rules, Ac-
tionBlocks, attribute helpers and operation helpers [26]. Imperative code parts are used when
complex computations are not feasible by means of declarative constructs. Although imperative
code is supported in ATL, the declarative programming style is the preferred one.

ATL Metamodel

An excerpt of the ATL metamodel is illustrated in Figure 2.11. It contains the most important
elements that are needed for the definition of an ATL transformation. The previously discussed
concepts Module, Library, Rule, Helper, and ActionBlock are represented in the metamodel as
metaclasses. The rule inheritance, comprising matched, lazy, and called rules, is also illustrated.
The ATL metamodel is discussed in more detail in Chapter 4.

ATL Execution Modes

ATL offers two different modes that may be set when executing an ATL model transformation,
namely the normal execution mode and the refining execution mode:

Normal execution mode. This is the default execution mode of an ATL module. The given
rules of the transformation are executed and, as a result, all specified target model elements are
initialized and generated in the target model. Note that only those source model elements are
considered for which a corresponding rule exists. All other source elements that are not matched
by a rule are lost in the course of the transformation. This execution mode proves to be adequate
if the involved source and target models differ fundamentally from each other. If the models are,
however, similar to a large extent then the refining execution mode should be preferred.

Refining execution mode. The refining execution mode of ATL is especially useful when the
target model is almost a copy of the source model, with only a small number of differences
between the model elements. Using the refining mode, the transformation engineer defines rules
only for those source elements that have to be modified. All other source model elements are
automatically copied to the target model and remain unchanged. Thus, the refining mode assures
that no model information is lost during the transformation.

ATL Architecture

The execution of an ATL model transformation requires for various components which are now
briefly discussed. The ATL parser, the ATL compiler, and the ATL virtual machine together
constitute the so-called ATL core.

• Parser
The parser of ATL generates an ATL model conforming to the ATL metamodel from a
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Figure 2.11: Excerpt of the ATL metamodel

given ATL transformation file. Moreover, the parser also outputs a problem model which
includes all errors found in the code. The existing errors are illustrated by means of so-
called markers in the editor.

• Compiler
The next execution step is performed by the ATL compiler. This unit is responsible for
taking the ATL model as input and creating byte code as output. Subsequently, the byte
code is forwarded to the ATL virtual machine.

• ATL Virtual Machine
The virtual machine (VM) of ATL interprets and finally executes the provided byte code
by generating the required output model(s) from the specified input model(s).

• Editor
The ATL editor provides useful features such as error markers, syntax highlighting, code
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completion, occurrence highlighting, and hover information.

• Debugger
ATL provides a debug mode that may be used like a debugger in any other programming
language. It is possible to set breakpoints, execute a transformation step-by-step or run a
transformation to the next breakpoint.

The clear separation of the three ATL core components is helpful for updates and further de-
velopment done by different research groups. The modular design of the core makes it possible
to focus on a small set of technologies without having to be familiar with the remaining compo-
nents. For instance, modifications of the virtual machine may be accomplished independently
from upgrades of the compiler or parser [8].

Limitations of ATL

ATL is a useful and comprehensive toolkit, provided that a model transformation is purely oper-
ating on models that conform to metamodels. However, a huge limitation of the ATL transforma-
tion approach is the fact that currently only metamodels are directly supported in the language,
whereas UML profiles are not supported in a direct way. This means that the use of UML profiles
within an ATL transformation is basically possible but the handling of stereotypes and tagged
values is quite complex and requires for the escape to the external Java UML2 API.
The first part of the following chapter demonstrates a concrete example that illustrates the cur-
rent problems regarding the use of UML profiles within an ATL transformation. Consequently,
possible improvement approaches are discusses in the remaining part of the next chapter.
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CHAPTER 3
Profile Support in Model

Transformation Languages

As outlined in Section 2.4, there are several dedicated model transformation approaches. They
provide their users with sophisticated functionalities for the definition as well as the execution
of a model transformation. The basis for every model transformation are one or more models
and as a consequence, metamodels are well supported by the different toolkits. However, a sup-
port of UML profiles is either not available or very unsatisfactory in all existing approaches.
Model transformation languages like QVT or ATL do not have built-in language constructs for
supporting UML profiles natively in the language. In case of ATL, the underlying UML2 API
may be used as a kind of work-around. Native language structures would be needed in order to
overcome this major drawback.
In this section, the extension of ATL for natively supporting UML profiles is motivated by show-
ing a short transformation example using a specific DataModel profile for annotating the output
model of the transformation. First, the transformation is illustrated in standard ATL code and
associated shortcomings and problems are discussed. Second, an analysis of different improve-
ment approaches concerning the use of UML profiles in ATL is conducted. Third, the chosen ex-
tension approach that has been implemented during this master’s thesis is presented by showing
how the original ATL code may be made more concise. Finally, the challenges of the extension
process are discussed.

3.1 ATL Example using UML Profiles

The concept of UML profiles serves as a lightweight extension mechanism for UML. Arbitrary
stereotypes and tagged values may be defined within a UML profile and may subsequently be
applied to UML model elements. Using stereotypes and tagged values within an ATL transfor-
mation is feasible but leads to verbose transformation code. The code becomes complex and is
hardly maintainable at a later stage of the transformation development process. Moreover, the
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readability of the code is impaired due to difficult statements. Listing 3.1 presents an exemplary
ATL code snippet. The rule matches elements of the type SubjectArea from the DSL metamodel
and transforms them into Package elements of the UML metamodel.
The work-around for using a UML profile within an ATL transformation is based on providing
the profile as an additional input model to the transformation. Moreover, calls to the Java UML2
API for assigning profiles and stereotypes as well as setting tagged values in the imperative
ActionBlock are required (cf. line 10 to 27 in Listing 3.1).

Involved Modeling Artifacts

Before focusing on the ATL transformation code, the involved metamodels and the proposed
UML profile are presented. Figure 3.1 illustrates an excerpt of the particular artifacts.

Example – SubjectArea 2 Package

PlanningAnalysisObjects

UML metamodel:DSL metamodel: UML profile:

PlanningAnalysisObjects

name:  EString

NamedElement

name: String

fil D t M d l

EntityModelElement

phase:  EString

name:  String

PackageableElement

«metaclass»
Package

«profile» DataModel

«stereotype»
SubjectArea

h St i
SubjectArea

...

Package
phase: String
sUBJType: StringsUBJType:  EString

12

Figure 3.1: Excerpt of the DSL metamodel, the UML metamodel, and the DataModel profile

DSL metamodel. The source element that will be transformed is included in the DSL meta-
model and is named SubjectArea. This metaclass indirectly inherits the metaattribute phase from
the abstract metaclass EntityModelElement. As the EntityModelElement is in turn a direct sub-
class of the PlanningAnalysisObjects element, the SubjectArea also inherits the attribute name.
The SubjectArea itself possesses one attribute named sUBJType.

UML metamodel. The transformation aims at matching all elements of the type SubjectArea
in a source model and generating corresponding elements of the type Package in a target model.
The Package metaclass is found in the UML metamodel. Packages inherit from the abstract
class PackageableElement that again inherit from the abstract metaclass NamedElement. As a
result of this generalization hierarchy, the Package class inherits the attribute name.
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UML profile. The profile named DataModel is used to specialize the UML metaclass Package
by (i) linking it to the stereotype SubjectArea, and (ii) adding further tag definitions to this class.
As the custom-built attributes phase and sUBJType do not have a counterpart in the Package
element of UML, these attributes are defined as tagged values in the stereotype.

Listing 3.1: ATL code excerpt for using UML profiles in standard ATL
1 helper def: stereo : uml!Stereotype = OclUndefined;
2
3 rule SubjectArea_2_Package {
4 from
5 s : DSL!SubjectArea
6 to
7 t : UML!Package (
8 name <- s.name
9 )

10 do {
11 -- apply profile to target model element
12 t.applyProfile(profile!Profile.allInstances().asSequence().first());
13 -- store stereotype for later application
14 thisModule.stereo <- profile!Stereotype.allInstances()
15 -> any( e | e.name = ’SubjectArea’);
16 -- apply stereotype to target model element
17 t.applyStereotype(thisModule.stereo);
18
19 -- set tagged value phase
20 if(not s.phase.oclIsUndefined()){
21 t.setValue(thisModule.stereo, ’phase’,s.phase);
22 }
23 -- set tagged value sUBJType
24 if(not s.sUBJType.oclIsUndefined()){
25 t.setValue(thisModule.stereo, ’sUBJType’,s.sUBJType);
26 }
27 }
28 }

Declarative part. Line 1 of the code example in Listing 3.1 shows the definition of an attribute
helper called stereo. This helper is necessary for reusing the currently applied stereotype for set-
ting the different tagged values without retrieving the stereotype from the additional input model
again and again. On lines 3 to 9, the mapping between the source model element SubjectArea
and the target model element Package is specified. On line 8 it is shown that the name of the
SubjectArea may be set directly as the name of the UML Package.

Imperative part. Lines 10 to 27 comprise the imperative ActionBlock of the presented rule,
indicated by the keyword do. On line 12, the UML profile is applied to the UML Package in
order to enable stereotype applications. The code on lines 14 to 15 is used to query the stereotype
named SubjectArea from the additional input model and save this stereotype to the previously
mentioned helper stereo. Line 17 is needed for applying the recently saved stereotype to the
target element. Setting the tagged value called phase is achieved on lines 20 to 21, the tagged
value sUBJType is set on lines 24 to 25. The setValue operation on line 21 is a call to the Java
UML2 API and takes the value of s.phase as the third parameter. It may be the case that this
value is set to OclUndefined, which would not be a problem with normal bindings. But, as
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OclUndefined is mapped to NULL in Java, this would result in an exception when invoking the
setValue operation of the Java API. Therefore, it is necessary to provide an additional check (cf.
oclIsUndefined() on line 20) before calling the operation. Please note that lines 12 and 17 also
denote calls to the Java UML2 API, invoking the operations applyProfile and applyStereotype
respectively.

Shortcomings

The things that are striking about this verbose ATL code are the following:

1. Profile related model manipulation tasks are implicitly established by means of calling
Java operations. In particular, the transformation engineer needs to have knowledge con-
cerning the Java UML2 API in order to correctly invoke operations for applying profiles,
applying stereotypes and for setting tagged values. Moreover, it is not enough to know the
syntax of the operations, but also to consider implicit pre- and post-conditions like e.g.,
valid parameter types.

2. Furthermore, all operations need to be defined within the imperative ActionBlocks. Even
though ATL is a hybrid language supporting declarative and imperative constructs, imper-
ative ATL code should be avoided or at least be reduced to a minimum.

3.2 Improvement Approaches for ATL

This section is mainly inspired by [55] and gives a comprehensive overview of possible im-
provement approaches concerning the use of UML profiles within ATL transformations. Three
different alternatives are presented and their respective benefits and drawbacks are explained.
The sophisticated basic architecture as well as the modularity of the ATL toolkit (cf. Section 2.4)
allow for numerous ways how an extension may be realized. Please note that this list of improve-
ment approaches makes no claim to being complete, it should rather give an idea on different
possibilities.

Approach 1: Merging the UML Metamodel with the UML profile

An intuitive idea is to combine the UML metamodel and the UML profile to produce one unified
target metamodel. Generated target models would conform to this merged metamodel.

Benefits. This strategy has the advantage that no parts of the ATL framework are affected.
All elements of the UML profile, that is, the stereotypes, the tagged values and the constraints,
are incorporated into the metamodel of UML. Stereotypes could for instance be converted to
normal metaclasses and, by means of inheritance or containment relationships, be connected to
the metaclass they were originally extending. A further advantage is that no complex imperative
statements are needed as the calls to the Java UML2 API are no longer necessary. Given that
tag definitions are converted to standard metaattributes, setting the tagged values of a stereotype
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may be done like the normal feature assignment of ATL.

Drawbacks. The problem with this procedure is that it totally contradicts the point and
purpose of UML profiles. UML profiles were invented for specializing elements of the basic
UML metamodel for an arbitrary domain, platform, and purpose while leaving the genuine UML
metamodel untouched. By combining the UML metamodel with a UML profile, all advantages
of this separation are lost. Also, the combination of the two artifacts may lead to an impedance
mismatch between the profile and the generated metamodel. Another disadvantage is that the
generated target model may not be processed by any kind of UML tool. A separate step would be
needed in order to reverse the target model into a standard UML model so that it conforms to the
standard metamodel of UML. Moreover, the merging procedure becomes more complicated as
the number of involved profiles increases. An elaborate strategy would be needed for combining
the different profile elements and for defining the correspondences between metamodel and
profile elements. Another drawback is that a reuse of the merged metamodel is doubtful as it is
tailored to one specific application.

Approach 2: Providing a Preprocessor

The second approach takes a different direction than the first one. The strategy is to actively
extend ATL by incorporating new language constructs. This means that an extension of the ATL
syntax is realized. This extension may include profile-specific keywords and other useful con-
structs in order to ease the use of UML profiles within an ATL transformation.

Benefits. A major advantage of this scenario is that the introduction of new keywords re-
sults in a more concise transformation code. A reduction of lines of code leads to an increase
in both readability and maintainability. Furthermore, domain-specific keywords increase the un-
derstandability and as a result simplify the communication between ATL engineers. Moreover,
complex and long statements, as often found in large-scale ATL transformations, could eventu-
ally be replaced by simple terms. Another important advantage is that static validation would be
possible. As seen in Listing 3.1, the use of UML profiles within an ATL transformation requires
for the use of the underlying Java UML2 API. API operations need to be invoked for the appli-
cation of stereotypes and for the setting of tagged values. To accomplish this, knowledge about
the UML2 API is required. An extension that is based on domain-specific new keywords and a
preprocessor may fix this problem. API handling may be completely concealed from the ATL
engineer by transferring the responsibility of correct operation invocations to the preprocessor.

Drawbacks. As an extended syntax may neither be recognized by the ATL compiler nor
executed by the ATL virtual machine, the need for conducting an intermediate step arises. A
kind of preprocessor may be needed for transforming an extended ATL transformation to an
executable standard ATL transformation. This preprocessor may be implemented in various
ways, either by using a high-level language like Java or by resorting to model-driven techniques
like model transformations. Another restriction is concerned with the debugging functionality
of ATL. Debugging may only be possible in the standard ATL transformation but not in the
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extended version. Moreover, direct modifications of the ATL syntax may need the approval of
the ATL community in order to be integrated into the existing ATL environment.

Approach 3: Redefinition of the ATL Compiler

The last approach is a modification of the ATL architecture by directly redefining the ATL com-
piler. New language constructs for an intuitive application of stereotypes and tagged values may
be directly integrated into ATL.

Benefits. A modification of the ATL compiler would allow for a complete avoidance of
imperative code parts. Moreover, the compilation time of an ATL model transformation may
be reduced. Also, a complete tool support would be guaranteed and the definition of complex
preprocessors could be avoided.

Drawbacks. The main drawback of this approach is the level of difficulty. Extending the
ATL compiler demands for specific and deep knowledge concerning ACG (ATL VM Code Gen-
erator). New compiler instructions would be needed for generating the respective elements in
the target model. Obviously, this is not a simple task and therefore not the first choice for the
introduction of a small ATL extension. Apart from the complexity of this approach, it is also
problematic due to potentially uncontrolled extensions of the compiler. If every ATL engineer
adjusts the compiler to individual needs and requirements, things may start to get out of hand.
As already stated in the aforementioned approach, this solution may also need the acceptance of
the ATL community.

3.3 Introducing ATL4pros

The implementation work of this master’s thesis is based on the preprocessor approach (cf.
Section 3.2), evaluating the possibilities as well as the limitations of this approach. The approach
is realized by implementing an extended ATL version named ATL4pros. ATL4pros aims at
providing an extension which is tailored for the use of UML profiles within ATL transformations.
The benefits of such an extension for handling UML profiles are evident:

1. The number of lines of code may be reduced due to the absence of complex statements for
querying profile information from additional input models representing the UML profiles.

2. The readability of the transformation increases due to the fact that the transformation
engineer may apply UML profiles without using imperative code. The imperative parts
that are needed for the transformation to execute are completely hidden from the engineer.

3. Furthermore, ATL4pros eases the API handling as it is no longer necessary for the ATL
engineer to have knowledge about the intricacies of the underlying Java UML2 API. All
required statements that trigger an API call are automatically created by the preprocessor.
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Listing 3.2: ATL code excerpt for using UML profiles in ATL4pros
1 rule SubjectArea_2_Package {
2 from
3 s : DSL!SubjectArea
4 to
5 t : UML!Package (
6 name <- s.name
7 ) apply PRO!SubjectArea (
8 phase <- s.phase,
9 sUBJType <- s.sUBJType

10 )
11 }

Listing 3.2 (which is equivalent to Listing 3.1) illustrates the two extensions of the standard
ATL syntax that have to be introduced into ATL4pros in order to allow for a more concise
transformation definition:

1. The keyword apply (cf. line 7 in Listing 3.2) is incorporated into ATL and may be used for
applying stereotypes to a UML model elements. Therefore, a new construct needs to be
added to the existing ATL metamodel. In addition, a reasonable container element for the
new construct needs to be identified within the existing ATL language element hierarchy.

2. The tagged values of a stereotype may be set just like normal features (cf. lines 8 and 9
in Listing 3.2) for avoiding the explicit writing of imperative code. This is achieved by
reusing the existing binding construct of ATL and embedding it into a new context.

Challenges

There is a number of challenges that have to be met when extending ATL for supporting new
language features:

Abstract syntax. The abstract syntax of ATL is defined as an Ecore-based metamodel which
has to be extended with new elements. Since the metamodel is containing a large number of
elements, it is crucial to find an appropriate location for the new ones. In addition, existing
elements need to be altered in order to make the newly introduced elements usable within the
standard transformation context.

Concrete Syntax. The extension of the concrete syntax of ATL is the second challenge. Not
only is there the need to define new keywords for newly introduced elements, but also to revise
the concrete syntax definitions for already existing elements by inserting references from/to the
newly introduced ones.

Operational Semantics. The operational semantics determines how to transform the newly
introduced language features to constructs of the standard ATL language via a higher-order
transformation. To be more precise, rewriting rules need to be defined in order to produce stan-
dard ATL code and to eliminate the extended syntax elements.
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All these challenges and their respective realization will be addressed in Chapter 4. First, an ex-
tension methodology in form of an extension process is presented and subsequently, the required
process steps are discussed.
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CHAPTER 4
Realizing ATL4pros

After having introduced the problem description and also the pursued solution strategy, it is
time to focus on the actual implementation for realizing ATL4pros. The following section is
dedicated to the ATL extension methodology used for building the ATL4pros extension and
describes how the aforementioned challenges are tackled. In particular, the methodology at a
glance is described first and subsequently, each extension step is explained in more detail. To
make the methodology description more concrete, each step is exemplified by elaborating on the
main artifacts of the ATL4pros extension.

Please note that Chapter 4 is based on the publication Extending ATL for Native UML Profile
Support: An Experience Report [42] which was a result of my research stay in Nantes, France,
in March 2011. This research paper was presented by me at the 3rd International Workshop on
Model Transformation with ATL1 on the 1st of July 2011 in Zurich. The workshop was held in
conjunction with the TOOLS 2011 Federated Conferences2.

4.1 ATL Extension Methodology at a Glance

The general approach for building the ATL4pros extension is as follows. The syntactically ex-
tended ATL version ATL4pros is transformed to standard ATL via a higher-order transformation.
Realizing an extension following this preprocessor approach requires for three successive steps:

1. The abstract syntax of standard ATL needs to be extended by new language elements.

2. The concrete syntax of ATL is extended according to the conducted modifications in the
abstract syntax.

3. An operational semantics needs to be defined to determine how the language constructs of
the extended ATL version, i.e., ATL4pros, are translated to the standard ATL constructs.

1http://www.emn.fr/z-info/atlanmod/index.php/MtATL2011
2http://tools.ethz.ch/tools2011/
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Please note that this preprocessor approach is not limited to the presented example but may be
applied for other domain-specific extensions as well [49]. The described approach leads to an
extension process as depicted in Figure 4.1. Extending the abstract syntax is the first activity
which has a direct dependency to the ATL.ecore artifact. As a next step, the concrete syntax has
to be modified to reflect the performed extension of the abstract syntax. The concrete syntax of
ATL is defined in the ATL.tcs artifact which has to be modified in order to use the new syntax
elements in the ATL editor. In the last step, an operational semantics needs to be defined in
terms of a HOT which has to be developed from scratch. In the following sections, each step is
explained in more detail.

Extend 
Abstract 
Syntax

Extend 
Concrete 

Syntax

Define 
Operational 
Semantics

ATL.ecore ATL.tcs HOT

Involved artifacts:

Figure 4.1: Extension process and involved artifacts

4.2 Step 1: Extending the Abstract Syntax

The abstract syntax of the ATL language is provided both as a KM3-based3 as well as an Ecore-
based metamodel. KM3 is short for Kernel Meta Meta Model and is a textual language compat-
ible with Ecore that may be used for specifying arbitrary metamodels [24]. The KM3 version of
the ATL metamodel is a textual representation whereas the Ecore-based metamodel is a graphi-
cal one. The metamodel of ATL visualizes the ATL metaclasses, their interconnections and their
features in form of metaattributes. Each metaclass represents a certain language component,
i.e., there are metaclasses for the most important ATL components like Module, MatchedRule,
or Helper.
Apart from all essential ATL elements, the metamodel also contains a vast number of OCL
model elements that are needed in a transformation. OCL stands for Object Constraint Lan-
guage [53] and, in a transformation language like ATL, provides query language functionalities
analogous to the features of SQL in a database. With OCL it is possible to process queries on
metamodel elements and thereby define filtering rules. For example, if a model transformation
may only consider those elements with the value of a boolean attribute set to true, the ATL engi-
neer simply needs to specify an OCL filter. This filter is evaluated at execution time and results
in the processing of only those elements that meet the filter criterion. Moreover, OCL may also
be used to further restrict a collection of model elements or to impose other kinds of constraints
on model elements within a model transformation [7].

3http://wiki.eclipse.org/index.php/KM3
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Preliminary Considerations

At the beginning of the actual extension work, preliminary considerations have been examined
and decisions regarding the structure of the envisioned extension and the resulting changes in
the ATL metamodel have been made. To be more specific, the following questions have been
answered:

1. The first question was concerned with the actual appearance of the extension within the
ATL transformation code. It was important to decide how the new language constructs
may fit into the existing textual structure. As outlined in Chapter 3, the final decision in-
cluded the introduction of the new keyword apply which is always connected to one target
model element. Moreover, the setting of the respective tagged values may be handled like
normal feature assignments of ATL.

2. The second issue was about the required new ATL metaclasses, their metaattributes and
the connections between new and existing classes. Suitable metaclasses have to be in-
serted into the ATL metamodel in order to implement the new constructs that have been
designed and specified in the previous step. A detailed explanation about the particular
new elements for the ATL4pros extension is given in the remainder of this section.

3. The third consideration related to the extension of the metamodel addressed the placement
of the new metaclasses. The location of the new elements needs to fit into the overall
structure of ATL transformations to ensure a smooth integration with already existing
language elements. This step requires for a precise observation of the standard metamodel.
An excerpt of the most important classes of the entire ATL metamodel is illustrated in
Figure 4.2.

Defining an Extension

Before proceeding with the ATL4pros extension, it has to be clarified what the term extension in
this context actually means by stating which actions are valid for producing the extended syntax,
i.e., which actions are allowed for modifying the ATL metamodel during the extension process.

• Insertion of new classes
Inserting new classes into the existing metamodel is of most importance. These new
classes may have arbitrary features and may inherit from as well as reference to already
existing and new classes.

• Extending existing classes
For providing extensions, also existing elements may be extended by adding additional
features. In particular, this is necessary for defining the container of newly introduced
elements.

Given this definition of the term extension, the following operations are not allowed in the con-
text of ATL4pros.
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Figure 4.2: Excerpt of the standard ATL metamodel
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• Deletion of existing classes
All preexisting ATL metaclasses must remain in the metamodel. Removing those meta-
classes may cause inconsistencies and may lead to severe problems when transforming
the extended ATL4pros version to standard ATL.

• Deletion of existing metaattributes or references
Due to the aforementioned problem, the removal of predefined metaattributes or refer-
ences is no valid action in the extension process.

In general, deletions or updates of predefined metaclasses, metaattributes or references are of
course possible. To avoid inconsistencies, however, such actions are not valid in the context of
the ATL4pros extension.

New ATL Metaclasses

Three new metaclasses are inserted into the abstract syntax of ATL:

• ApplyPattern

• ApplyPatternElement

• SimpleApplyPatternElement

These three elements are essential for the entire ATL4pros extension. Figure 4.3 illustrates the
new metaclasses along with preexisting classes of the ATL metamodel. The new constructs are
depicted with gray color and blue lines while predefined elements are illustrated using white
color and black lines. The ApplyPattern, the main component of the extension, was inserted into
the ATL.ecore artifact first. Subsequently, the abstract class ApplyPatternElement and its con-
crete subclass SimpleApplyPatternElement followed. Note that the SimpleApplyPatternElement
is currently the only subclass of the ApplyPatternElement. Given this fact, the generalization
hierarchy may just as well be omitted. The reason why this inheritance still exists comes from
the consideration that such a flexible hierarchy may become necessary for future work on the
ATL4pros extension. For example, a ConditionalApplyPatternElement may be defined for the
specification of further conditions.

The symbol of a filled diamond in Figure 4.3 defines a composition relationship. A com-
position is a special type of an association and defines a part-of relation between the involved
elements. The elements on the opposite side of the diamond are the contained parts whereas the
element with the attached diamond is the superior container element.

For a more detailed description about purpose and location of the three new elements please
see Table 4.1.

Effects on Predefined ATL Metaclasses

A domain-specific extension of the ATL metamodel is not just about adding new metaclasses.
To ensure a sound integration of the new constructs into the language, also predefined elements
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Figure 4.3: Excerpt of the ATL metamodel extended by new elements

need to be modified. The role of the most important existing ATL metaclasses regarding the
ATL4pros extension and the performed adjustments are explained in the next part of the thesis.

Predefined ATL Metaclasses

The six predefined elements of the ATL metamodel excerpt illustrated in Figure 4.3 have the
following purposes:

• LocatedElement
The class LocatedElement has a significant role in the ATL metamodel as every other class
directly or indirectly inherits from this element. The LocatedElement with its location fea-
ture gives every subclass the opportunity to have a fixed location within the transformation
code, stating the line number(s) as well as the position within the line(s). All three newly
introduced elements have the LocatedElement as their superclass in order to maintain the
predetermined metamodel structure.

• PatternElement
The PatternElement is an abstract metaclass and serves as a superclass for the existing
classes OutPatternElement and InPatternElement (the latter is not depicted in the meta-
model excerpt). Following this standard, also the ApplyPattern inherits from the Pattern-
Element. The PatternElement is an indirect subclass of the LocatedElement metaclass.

• OutPattern
The metaclass OutPattern represents the entire to-part of a model transformation (see
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Listing 2.3 for an example). Therefore, the OutPattern is used to specify the target model
elements that are generated in the course of the transformation execution. One OutPattern
contains one to several OutPatternElements.

• OutPatternElement
The OutPatternElements represent the actual target model elements to be created. For each
source model element that meets the matching criteria, the corresponding target model

Name of metaclass Description

ApplyPattern

Purpose: The class ApplyPattern is the main element of the exten-
sion. Basically, it represents the keyword apply, that will be available
for the ATL engineer.
Function and location in the metamodel:
Like the predefined metaclasses OutPattern and InPattern, also the
class ApplyPattern directly inherits from the abstract class Located-
Element (cf. Figure 4.3). A composition relationship associates one
ApplyPattern with one OutPatternElement, which is the representa-
tion of a target model element. Furthermore, one ApplyPattern may
contain one to several ApplyPatternElements. As an ApplyPattern-
Element represents a concrete stereotype, this connection assures
that each OutPatternElement in the to-part of a transformation rule
may have several stereotypes applied.

ApplyPatternElement

Purpose: This abstract metaclass corresponds to a stereotype that
may be applied to one UML model element.
Function and location in the metamodel:
The classes ApplyPatternElement and SimpleApplyPatternElement
are inspired by the hierarchical structure of the classes OutPattern
and InPattern of the standard ATL metamodel. One ApplyPattern-
Element is always contained in one single ApplyPattern. Further-
more, the class ApplyPatternElement has a composition relationship
to the standard Binding class. By this, Bindings may be reused to
define assignments for tagged values, similarly as assignments for
metamodel features are defined.

SimpleApply-
PatternElement

Purpose: The SimpleApplyPatternElement represents a concrete in-
stance of the ApplyPatternElement and thus, it represents a concrete
stereotype.
Function and location in the metamodel:
This class is a subclass of the abstract ApplyPatternElement. There-
fore, it inherits the two associations from the superclass, one pointing
to the Binding class and the other one connecting it to the Apply-
Pattern.

Table 4.1: Description of the three new ATL metaclasses
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element is created. The initialization of a target model element requires the specification
of a type and an optional assignment of features.

• SimpleOutPatternElement
The metaclass SimpleOutPatternElement is one concrete subclass of the abstract Out-
PatternElement. Thereby, it inherits all associations and metaattributes of the superclass.

• Binding
The Binding metaclass is used for the ATL feature assignment. To be more precise, the
Binding construct enables the initialization of features and/or references of a target model
element with according feature and/or reference values from the source model element. A
Binding is directly connected to an OutPatternElement via a composition relationship.

Modification of Predefined ATL Metaclasses

The modification of preexisting ATL metaclasses is an important part of the extension work.
First of all, it is necessary to define a container element for the newly introduced classes. In
the case of the ATL4pros extension, the main element ApplyPattern gets connected to the exist-
ing metaclass OutPatternElement. This connection constitutes the container relationship for the
profile-specific ATL extension. Secondly, also other new elements need to be directly integrated
into the metamodel by establishing relationships to predefined metaclasses. Depending on the
purpose of an extension and the number of new metaclasses, this may become a time-consuming
and critical activity. The extension may not work as intended if certain relationships are miss-
ing or defined incorrectly. Consequently, setting up the relationships between new and existing
metaclasses deserves special attention.
The performed extension of the ATL metamodel affected only two predefined metaclasses.
Therefore, only a small number of modifications concerning the default metaclasses is required
(cf. Figure 4.3):

• OutPatternElement
This metaclass is extended with one additional containment reference pointing to the new
class ApplyPattern. This connection allows that each target element of a transformation
rule may have one ApplyPattern associated. In concrete terms, the new relationship en-
ables the application of stereotypes to UML model elements. The multiplicity value of
0..1 indicates that it is not mandatory for an OutPatternElement to have a relation to an
ApplyPattern. The multiplicity value of 1 at the other end of the relation states that one
ApplyPattern belongs to exactly one OutPatternElement.

• Binding
The Binding metaclass obtains one supplementary reference which connects it to exactly
one ApplyPatternElement. This relation assures that the binding statement, i.e., the defi-
nition of a feature assignment, may be reused in the context of an ApplyPatternElement.
The constraint that one Binding is bound to exactly one ApplyPatternElement reflects the
situation that one tagged value is always related to one stereotype. Based on the consider-
ation that it is legitimate for a stereotype to have either several or no tagged values at all,
the multiplicity value on the Binding side of the relation is set to 0..*.
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Summarizing the extension of the abstract syntax in the context of ATL4pros, there are two
major parts: (1) Three new metaclasses are incorporated into the metamodel of ATL and (2)
two predefined metaclasses are modified in order to connect the new elements with the existing
ones. A successful completion of this process step (cf. Figure 4.1) leads to the next activity –
extending the textual concrete syntax of ATL.

4.3 Step 2: Extending the Textual Concrete Syntax (TCS)

After a successful introduction of additional abstract syntax elements in form of new meta-
classes, the concrete syntax for these elements needs to be defined. The concrete syntax of ATL
is available as a textual representation, also referred to as Textual Concrete Syntax (TCS) [25].
The TCS builds on the metamodel and consists of so-called templates which define the textual
structure of the entire transformation. To be more specific, the TCS associates each element of
the metamodel with a precisely defined textual counterpart. Each template in the TCS corre-
sponds to an element of the metamodel, i.e., a new template in the textual concrete syntax needs
to be inserted for each new element in the abstract syntax.
Before focusing on the available TCS templates of ATL and, subsequently, on the new templates
for the ATL4pros extension, it is necessary to explain the term TCS, the purpose of this spe-
cial kind of concrete syntax and the different constructs that may be used for defining the new
templates.

TCS

The Textual Concrete Syntax (TCS) is a DSL that is used for converting models that are based
on a metamodel to a corresponding textual representation. TCS itself is defined by a KM3-based
metamodel and its syntax is specified reflexively. This means that the syntax elements of TCS
are again defined in TCS. In the context of TCS, the terms injector and extractor constantly
emerge. TCS provides both functionalities: The injector part is responsible for parsing the tex-
tual representation to the conforming model representation. The TCS parser itself is relying
on the parser generator ANTLR [40] (short for Another Tool for Language Recognition). The
extractor on the other hand may be used for serializing the information presented by a model to
the associated textual format.
The metamodel of TCS contains various metaclasses that may be used for specifying a concrete
syntax of an arbitrary DSL. The basic TCS constructs are explained in the following paragraph.

TCS Constructs

Basically, there are two major kinds of templates, namely the PrimitiveTemplate and the ClassTem-
plate. Apart from these two main constructs, there are also other syntactic elements that may
be used within a template specification. For a more detailed explanation of the individual TCS
constructs please refer to [25].
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• Primitive template
This kind of template describes the way how primitive data types of the abstract syntax,
e.g., Double, Integer, or String, are textually represented. Each primitive template consists
of a name and the respective data type. As more than one template may be defined for
one single data type, there is always one obligatory default template. Lines 1 and 2 of
Listing 4.1 show an example of a possible primitive template for the String data type.

• Class template
Each metaclass (also called classifier) of the metamodel needs to be textually specified
by a corresponding class template. This template determines the textual structure of the
classifier and consists of a sequence of keywords, special symbols and other elements. The
name of the class template has to be equivalent to the name of the metaclass. Additionally,
only one class template per classifier is allowed, and exactly one class template needs to
be marked with the keyword main to indicate that this template corresponds to the root
metaclass in the metamodel. An example of a class template is given in Listing 4.3. As the
name of the template is set to Module, this template corresponds to the Module metaclass
of the abstract ATL syntax.

• Keyword
Keywords are reserved words that have a special meaning in a model transformation. In
ATL, keywords like module, rule, helper, or if allude the beginning of the particular ATL
components. A good example for the definition of keywords is given by the class template
of an if-expression, shown in Listing 4.1. The arrangement of the keywords if, then, else
and endif determines the structure of an if-expression. The name of a keyword is written
between double quotes.

• Symbol
Special symbols like, e.g., opening and closing parentheses, may be used to structure
the text within a model transformation. These symbols are, just like keywords, defined
between double quotes. In contrast to keywords, each symbol needs a separate entry
in the symbols section of the TCS definition. Each symbol in the symbols section is
identified by a symbol name. For instance, the symbol names lparen and rparen identify
the corresponding characters „(„ and „)“ respectively. Listing 4.2 illustrates the usage of
the opening and closing parentheses on line 2. An excerpt of the symbols section including
the two parentheses is given on lines 7 to 10.

• Token
Tokens are special symbols that are not interpreted by the parser generator. The best
example for a token is a comment within a code line. The token for the comment defines
which characters indicate the start of a new comment.
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Listing 4.1: Examples for primitive template and class template
1 primitiveTemplate identifier for String default using NAME:
2 value = "%token%";
3
4 template IfExp
5 : "if" condition "then" [
6 thenExpression
7 ] "else" [
8 elseExpression
9 ] "endif"

10 ;

Listing 4.2: Symbol usage and symbols section in TCS
1 template ForStat context
2 : "for" "(" iterator "in" collection ")" "{" [
3 statements
4 ] "}"
5 ;
6
7 symbols {
8 lparen = "(";
9 rparen = ")";

10 }

Predefined TCS Templates

The textual concrete syntax of ATL is defined in the ATL.tcs artifact (cf. Figure 4.1). The TCS
strictly determines the grammar of the ATL language, i.e., which keywords and other constructs
have to be used when defining an ATL model transformation. Moreover, the grammar also
specifies how certain keywords have to be arranged among each other and which other text
blocks are possible.
For each metaclass in the abstract syntax there is a dedicated template in the textual concrete
syntax. Before focusing on the creation of the templates for the three newly integrated classes,
it is necessary to examine and understand a predefined TCS template first. More precisely,
the mapping between a metaclass, its features as well as relationships and the corresponding
template is observed. For this purpose, the ATL metaclass Module and the related template
serve as an example.

From an ATL Metaclass to the TCS Template

Figure 4.4 illustrates the Module metaclass from the ATL metamodel. To keep the example
simple, all relevant metaattributes of abstract superclasses are illustrated as direct attributes of
the Module class. The Module has two attributes and four composition relationships to other
metaclasses.

Listing 4.3 illustrates the corresponding TCS template for the Module metaclass. A close
look at the TCS code reveals that the two attributes name and isRefining along with the four
associations libraries, inModels, outModels and elements are all present in the template.
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Figure 4.4: ATL metaclass Module

Attributes. The name that is given to a Module appears right behind the module keyword,
seen on line 2 of Listing 4.3. The value of the boolean attribute isRefining is evaluated and, if
set to true, the keyword refining is required between the specification of the outModels and the
inModels. Otherwise, the keyword from is needed.

Associations. The four associations that are attached to the Module are pointing to other meta-
classes of the metamodel. The textual representation of each of these individual classes is spec-
ified in their corresponding TCS templates and not inside the Module template.
The terms outModels on line 3 and inModels on line 4 of Listing 4.3 reflect the composition rela-
tionships that point to the OclModel. Looking at the Module metaclass in Figure 4.4, it is shown
that more than one inModel or outModel may be attached to a Module. This fact is expressed in
the template by using the built-in separator argument of TCS. In the illustrated TCS example, a
comma is used as the delimiter between multiple OclModels.
The references to the metaclasses LibraryRef and ModuleElement are defined inside the square
parentheses on lines 6 and 7. Hence, the respective textual representations of the involved meta-
classes are inserted at these points of the template.

Listing 4.3: TCS template of the metaclass Module
1 template Module context
2 : "module" name ";" <newline>
3 "create" outModels{separator = ","} (isRefining ? "refining" : "from")
4 inModels{separator = ","} ";"
5 [
6 libraries
7 elements
8 ] {nbNL = 2, indentIncr = 0}
9 ;

Another example of a TCS template is given in Listing 4.4. The Binding is responsible for
instantiating a certain attribute (also called property) of a metaclass with a defined value. The
propertyName is, depending on the boolean value of the isAssignment attribute, followed by one
of two possible arrow symbols. It must be noted that the second displayed arrow is the standard
arrow whereas the first one is hardly used in any available ATL example. The value that is used
for the instantiation of the property follows after the arrow.
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Listing 4.4: TCS template of the metaclass Binding
1 template Binding
2 : propertyName{as = identifierOrKeyword}
3 (isAssignment ? "<:=" : "<-") ’value’
4 ;

After this concise introduction to the notion of TCS, the most important TCS concepts, and
the connection between an ATL metaclass and a TCS template, it is time to define the three
templates for the new metamodel elements.

New TCS Templates

The insertion of the three new metaclasses into the abstract syntax of ATL requires for the def-
inition of three new templates in the textual concrete syntax. In other words, the new templates
are defined in order to reflect the changes of the abstract syntax also in the concrete syntax.

Template for the ApplyPattern

The ApplyPattern template (cf. Listing 4.5) determines that the ATL4pros extension for applying
a stereotype to a UML model element has to start with the keyword apply. This keyword may
subsequently be followed by a comma-separated list of elements, whereby these elements refer
to the ApplyPatternElements of the extended metamodel (cf. Figure 4.3). This assures that the
constraints of the metamodel are correctly implemented, and that multiple stereotypes may be
applied to one single target model element.

Listing 4.5: TCS template for ApplyPattern
1 -- Defining the textual concrete syntax of the new element ApplyPattern
2
3 template ApplyPattern
4 : "apply" [ elements{separator = ","} ] {endNL = false}
5 ;

Templates for the ApplyPatternElement and SimpleApplyPatternElement

The two templates for the remaining new metaclasses are presented in Listing 4.6. As the Ap-
plyPatternElement is defined as an abstract class, also the corresponding template is declared as
abstract.
The template for the SimpleApplyPatternElement is, compared to the other new templates, the
most extensive one. The type (cf. line 7 of Listing 4.6) is used to represent a certain stereotype.
Given the fact that the metaclass for the SimpleApplyPatternElement has no type attribute, there
needs to be some other explanation for its occurrence: The inheritance hierarchy for the Sim-
pleApplyPatternElement does not end with the ApplyPatternElement superclass. As illustrated
in Figure 4.3, the ApplyPatternElement inherits from the abstract class PatternElement. The Pat-
ternElement in turn inherits from a metaclass called VariableDeclaration. This class is located
in the OCL-part of the ATL metamodel and contains the type attribute. The data type of this
attribute is set to OclType which allows for a flexible application of all kinds of metaclass types.
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The reuse of the existing Binding construct is illustrated on lines 9 to 13 of Listing 4.6. Please re-
member that Bindings represent tagged values and the connected ApplyPatternElement (or rather
the concrete SimpleApplyPatternElement) represents a certain stereotype. The tagged values of
a specific stereotype are defined between parentheses and separated by a comma.

Listing 4.6: TCS templates for ApplyPatternElement and SimpleApplyPatternElement
1 -- Defining the textual concrete syntax of the new elements
2 -- ApplyPatternElement and SimpleApplyPatternElement
3
4 template ApplyPatternElement abstract addToContext;
5
6 template SimpleApplyPatternElement
7 : type
8 -- Reuse of the existing element Binding
9 (isDefined(applyBindings) ?

10 <space> "(" [
11 applyBindings{separator = ","}
12 ] ")"
13 )
14 ;

Please note that the existing Binding template of Listing 4.4 does not need to be changed due
to the fact that the textual representation of a feature assignment does not change. Even though
a new relationship was added to the metaclass Binding in the abstract syntax, this has no effects
on its textual structure. Therefore, the Binding template remains unchanged and is only reused
in the context of a SimpleApplyPatternElement.

Modification of Predefined TCS Templates

The definition of new elements in the abstract syntax of ATL led to the modification of exist-
ing metaclasses. Therefore, it is only natural that the extension of the concrete syntax involves
a modification of existing TCS templates. As outlined in the previous paragraph, the Binding
template remains unchanged. The only template that needs to be adapted is the one for the Sim-
pleOutPatternElement.
To keep the template of the SimpleOutPatternElement simple, all preexisting lines of code were
omitted except for the one on line 4 of Listing 4.7. Line 7 illustrates the conducted modification.
The template is extended in such a way that an ApplyPattern may be attached to a SimpleOutPat-
ternElement. Basically, this extension defines the anchor for the ApplyPattern within the textual
concrete syntax.

Listing 4.7: TCS template for SimpleOutPatternElement
1 -- Enhancing the SimpleOutPatternElement to comprise ApplyPatterns
2
3 template SimpleOutPatternElement
4 : varName ":" type
5 ...
6 -- Embedding a new element into an existing element
7 (isDefined(applyPattern) ? applyPattern)
8 ;

The modification of the predefined template completes the extension of the textual concrete
syntax. All extensions that are present in the abstract syntax of ATL are now provided in the
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concrete syntax as well. Thus, the new keyword apply is ready for use. Nevertheless, one final
detail needs to be addressed.

Syntax Highlighting

One important detail is still missing at the end of this process step. The new elements in the
metamodel are defined and the corresponding textual representations are specified. Having ac-
complished this, it is possible to use the new keyword apply within the ATL editor. What has not
been considered, though, is the colored syntax highlighting for reserved keywords in the editor.
In order to provide syntax highlighting for the new keyword, one specific Java file needs to be
modified. The String „apply“ is simply added to a String array and, as a result, the phrase apply
is printed in bold, purple letters in the ATL editor.

4.4 Step 3: Defining the Operational Semantics

After extending the abstract and the concrete syntax of ATL with new constructs, the final step
of the extension process is to define an operational semantics. A transformation defined using
the extended ATL syntax cannot be processed by the existing compiler and virtual machine
without modifying these components to support the extended syntax also in the runtime. This
would require for a heavyweight extension affecting practically all ATL runtime components
which would lead to a separate runtime. Please note that this additional runtime has to be
maintained separately from the standard runtime. However, following the preprocessor approach
discussed in Section 3.2, the desired behavior may be addressed using the standard ATL syntax.
The preprocessor allows for the implementation of a more lightweight extension mechanism,
leaving the ATL compiler and virtual machine untouched. A model transformation defined in
the extended ATL syntax is simply preprocessed in order to produce standard ATL code. Before
focusing on the actual definition of an operational semantics, the most important terms and
concepts are introduced.

Operational Semantics

The operational semantics determines how the concepts of the extended ATL version are trans-
lated to concepts of the standard ATL version.
Example. The keyword apply is not provided by the original ATL syntax. In the extended
syntax, however, this keyword is used to apply stereotypes of a UML profile to concrete UML
model elements. To achieve this application of stereotypes in the standard ATL version, the
corresponding code statements have to be generated. Listing 4.8 illustrates the application of
the stereotype Identifier. To keep the example simple and understandable, all other parts of the
transformation rule are omitted. Normally, of course, a target model element is specified in front
of the keyword apply, cf. Listing 3.2.

Listing 4.8: Using the new keyword apply in ATL4pros
1 apply PRO!Identifier
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This single-line statement including the new keyword is not executable in the standard ATL
version. The corresponding statements that are needed for performing the actual application
of the Identifier stereotype are depicted in Listing 4.9. The imperative do-block contains the
two statements that need to be executed. As previously discussed in Section 3.1, the desired
stereotype is obtained from the UML profile and, for later reuse, stored in the attribute helper
named stereo. The invocation of the external Java UML2 operation applyStereotype finally links
the specified target model element (t, in this example) to the stored stereotype Identifier.

Listing 4.9: ATL statements for applying a stereotype
1 do {
2 thisModule.stereo <- profile!Stereotype.allInstances()
3 -> any( e | e.name = ’Identifier’);
4 t.applyStereotype(thisModule.stereo);
5 }

These two listings exemplify what is meant by and what is needed for the operational semantics.
Apparently, such mappings between code statements in the one ATL version and compliant,
executable code fragments in the other ATL version need to be specified for the entire ATL4pros
extension.
There are different alternatives on how to define such an operational semantics. The two most
evident approaches regarding the implemented ATL4pros extension are introduced below.

Defining an Operational Semantics: Two Possible Approaches

The operational semantics that is needed for the preprocessor approach (see Section 3.2) may
be implemented in various ways. The two alternatives that are worth to be considered for the
ATL4pros extension are the following:

• Programming language Java
The high-level language Java may be used to modify the ATL transformation by adding
the required code parts. This is possible since the Eclipse Modeling Framework provides
applicable ATL model handlers. With these model handlers it is possible to create, load,
and save ATL models, to add, delete, and modify ATL model elements and to read and
write element properties. The allocation of the new statements within the existing ATL
code may also be accomplished by Java methods. As this Java-based approach is escaping
to a technology different than ATL, another possibility is explained below.

• Higher-order transformation
Basically, a higher-order transformation works like any other model transformation: a
given source model is transformed to some desired target model. The only difference is,
as the term higher-order already indicates, that this type of transformation may be used for
transforming a source model transformation to a target model transformation. In the case
of ATL, a given ATL transformation may be transformed to a new ATL transformation,
containing additional information. By this, new ATL statements may be inserted into a
given transformation. The main advantage of this approach is that a higher-order transfor-
mation may be defined with ATL. This implies that no further technological knowledge is
needed, saving both time and effort.
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The decision to implement the operational semantics using the higher-order approach is based
on the following reasons:

1. The definition of the operational semantics is done using ATL. As ATL is a familiar tech-
nology, it seems more reasonable to stick to this technology.

2. The possibility to fully explore and exploit the whole functionality of ATL seems very
interesting. It offers the opportunity to use the refining mode of ATL which is normally
not used when writing a standard ATL transformation. Thus, this approach offers the
chance to acquire additional and deeper knowledge about ATL and gain further insight
into the ATL refining mode.

3. The third reason is that the use of a higher-order transformation written in ATL is not mix-
ing up different platforms. Although the model handlers that are provided by Java seem
promising, the combination of different technologies is rarely working without problems.

The concepts and functionalities of a higher-order transformation are explained in the following
section.

Higher-Order Transformation (HOT)

A definition of the term Higher-Order Transformation may be found in [49] and reads as fol-
lows:
„A Higher-Order Transformation, commonly abbreviated as HOT, is a model-to-model trans-
formation that takes a model as input and generates a model as output. The input and/or output
model itself is a transformation model.“
As ATL transformations are themselves models that conform to the ATL metamodel, they may
be preprocessed by a HOT. In general, the execution of a HOT is not possible in cases where the
transformation language is not based on a specific transformation metamodel.
For a better understanding of the higher-order transformation concept in the context of ATL,
Figure 4.5 gives a typical example. The source as well as the target model are both ATL trans-
formations. The functionalities of the three involved components TCS injector, HOT, and TCS
extractor are explained below [48]:

• TCS injector
The TCS injector takes an ATL transformation as input and generates the respective ATL
transformation model as output. As the name of this component already suggests, the in-
jection task is done using TCS (see Section 4.3). As illustrated in Figure 4.5, the produced
ATL model conforms to the ATL metamodel.

• HOT
The ATL transformation model serves as the input for the higher-order transformation,
which then generates an ATL transformation model as output. In the example of Fig-
ure 4.5, the HOT is defined as an ATL transformation using the refining mode of ATL. By
this, the HOT itself conforms to the ATL metamodel.
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• TCS extractor
The TCS extractor does the exact opposite of the TCS injector. The transformation model
that is generated by the HOT is extracted to an ATL transformation. Thus, this step restores
the textual representation of the ATL transformation.

As mentioned in [48], the TCS injector and extractor may not always be necessary for the ex-
ecution of a HOT. If the source transformation is already in the form of a transformation model,
no injection task is needed. This might be the case, for example, if several HOTs are executed
in succession. Likewise, the extraction task may also be unnecessary in some transformation
scenarios.

3

Definition 1 (Higher-order transformation). A higher-order transforma-
tion is a model transformation such that its input and/or output models are
themselves transformation models.

According to this definition HOTs either take a transformation model as
input, produce a transformation model as output, or both.

The typical schema of a HOT, particularized for the AmmA framework, is
shown in Figure 1. This example reads and writes a transformation, e.g. with
the purpose of performing a refactoring. The three operations shown as large
arrows at level M1 (Models) are:

– Transformation injection. The textual representation of the transformation
rules is read and translated into a model representation. This translation in
AmmA is performed using TCS [11]. The generated model is an instance of
the ATL metamodel.

– Higher-order transformation. The transformation model is the input of a
model transformation that produces another transformation model. The in-
put, output and HOT transformation models are all conforming to the same
ATL metamodel.

– Transformation extraction. Finally an extraction is performed to serialize
back the output transformation model into a textual transformation specifi-
cation.

Note that the injection an extraction operations are not always involved in a
HOT. For instance, the source transformation model may come from a previous
transformation, and already be in the form of a model. Similarly, the target
transformation model is sometimes reused as a model without need to serialize
it.

Fig. 1. A typical Higher-Order Transformation.
Figure 4.5: Example of a higher-order transformation [48]

HOT Patterns

The authors of [49] identify and analyze four different base transformation patterns that are as-
sociated with the use of HOTs. The distinction is drawn between (i) transformation synthesis,
(ii) transformation analysis, (iii) transformation composition, and (iv) transformation modifica-
tion. The distinguishing criteria are the source and the target models of the HOT. The HOT
that was implemented for translating ATL4pros to standard ATL is considered a transformation
modification.

Transformation modification. The criteria for this type of transformation pattern are as fol-
lows: 1) one model transformation servers as input to the HOT and 2) one model transformation
is the output of the HOT. During the execution, the input transformation gets modified by the
HOT in order to create the output transformation. The authors further divide the transformation
modification pattern into six different subcategories. One of them is named transformation lan-
guage extension and the implemented HOT is exactly of this type.

The survey conducted in [49], explaining the various application possibilities and the identified
transformation patterns, shows that there is a certain demand for HOTs in the model trans-
formation community. There are several ATL transformation examples available that make
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use of a higher-order transformation, e.g., the ATL2BindingDebugger transformation4 or the
ATL2Tracer transformation5. These particular examples are mentioned as both belong to the
transformation modification category and both of them make use of the ATL refining mode.
Therefore, these two examples have been carefully analyzed prior to the implementation of the
required HOT.

Implementing a HOT for ATL4pros

The definition of an operational semantics in the form of a HOT needs to be designed and
planned carefully. The ATL code statements that are to be generated for the final standard ATL
version have to be identified at the very beginning of the implementation work. In the case of
the ATL4pros extension, the HOT needs to fulfill the following requirements:

1. The occurrence of the newly introduced ApplyPattern element in a given rule triggers the
generation of an ActionBlock (do-block), if there is not already one. Subsequently, the
statements for applying the stereotype are generated inside this ActionBlock (cf. List-
ing 4.9).

2. For the rule creating the UML element Model, an ActionBlock needs to be created, if there
is not already one, and the statement for applying the UML profile needs to be added (cf.
Listing 4.10).

3. The statements for setting the tagged values of a stereotype need to be generated as well.
As these statements are added to an Endpoint Rule (please refer to Section 4.5), this spe-
cial rule is created first and subsequently, the code parts for setting the tagged values are
inserted.

4. All occurring ApplyPattern elements have to be removed from the transformation in order
to conform to the standard ATL grammar. As a consequence, the contained ApplyPattern-
Elements are deleted as well.

Listing 4.10: ATL statement for applying a profile
1 t.applyProfile(profile!Profile.allInstances().asSequence().first());

Implementing HOTs with ATL Refining Mode

A transformation written in the extended ATL version differs only slightly from a transformation
written in standard ATL. Most of the model representing the extended transformation will re-
main without changes. However, with a model-to-model transformation operating in the normal
execution mode of ATL, this is no advantage. Not only would it be necessary to create rules in
order to apply the desired changes, but also to define rules that copy all the unmodified elements.
As the metamodel of ATL is rather complex, the task of creating the so-called copy rules is quite

4http://www.eclipse.org/m2m/atl/atlTransformations/#ATL2BindingDebugger
5http://www.eclipse.org/m2m/atl/atlTransformations/#ATL2Tracer
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time consuming and even worse, it is error-prone. Instead, this is the typical scenario where
using the ATL refining mode [50] is appealing.
A transformation in refining mode is performed in-place. This means that the changes are di-
rectly applied to the input model for producing the target model incrementally. Using this re-
fining mode, it is only required to define transformation rules for the elements that are actually
changing. All model elements which are not matched by the transformation rules are kept as
they are without the necessity of copying them. It is important to note that to avoid rule inter-
action problems, a transformation in refining mode is internally performed in two steps. The
changes promoted by the rules are calculated in a first step without modifying the input model
and applied afterwards in a second step.

ActionBlock 
exists?

Create 
ActionBlock

Drop 
ApplyPattern

Create 
imperative 

code

[yes]

[no]

Figure 4.6: Rewriting process for transformation rules with ApplyPatterns

From ATL4pros to Standard ATL

Due to the aforementioned advantages, the preprocessor HOT is implemented in the refining
execution mode of ATL. To reduce the complexity of the higher-order transformation, it is split
into three successive steps. In the first step, all required ActionBlocks are created whereas in the
second step, these ActionBlocks are matched and filled with the proper statements. Additionally,
the endpoint rule is created and filled with the imperative code statements for setting the tagged
values. In the third and last step, the ApplyPattern elements are eliminated. Figure 4.6 illustrates
an overview of the process followed by the preprocessor HOT.

To get a better idea about the complexity of the implemented HOT, Listing 4.11 gives a con-
crete example of a code statement. This single-line statement is part of the code in Listing 4.9.
It is generated and included in the standard ATL version in order to invoke the external Java
operation applyStereotype that applies a stereotype to a UML model element.

Listing 4.11: ATL statement for applying a stereotype
1 t.applyStereotype(thisModule.stereo);

The corresponding excerpt from the HOT is illustrated in Listing 4.12. All these statements
are needed for the creation of the simple statement in Listing 4.11.
The CreateStereotypeApplication rule matches all SimpleApplyPatternElements in the source
model and subsequently, creates all the required ATL metamodel elements, namely instances of
the types ExpressionStat, OperationCallExp, VariableExp, NavigationOrAttributeCallExp and
VariableDeclaration. These elements represent the individual parts of the statement in List-
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ing 4.11. For instance, lines 10 to 14 only accomplish the creation of the applyStereotype frag-
ment.

Please note that this excerpt of the entire HOT is only responsible for the creation of the single-
line statement itself. The accurate allocation within the ActionBlock is not carried out yet. For
the correct nesting of different statements and the placement in the final transformation, the
specification of complex operation helpers is needed. Due to the intricacy and the length of
these helpers, they are not presented in this work.

Listing 4.12: Excerpt of the implemented HOT
1 rule CreateStereotypeApplication {
2 from
3 s : ATL!SimpleApplyPatternElement
4 to
5 t : ATL!SimpleApplyPatternElement,
6
7 expStat : ATL!ExpressionStat (
8 expression <- applySt
9 ),

10 applySt : ATL!OperationCallExp (
11 operationName <- ’applyStereotype’,
12 source <- varExp,
13 arguments <- Sequence { navStereo }
14 ),
15 varExp : ATL!VariableExp (
16 appliedProperty <- applySt,
17 referredVariable <- s.applyPattern.outPatternElement
18 ),
19 navStereo : ATL!NavigationOrAttributeCallExp (
20 name <- ’stereo’,
21 parentOperation <- applySt,
22 source <- variableExp
23 ),
24 variableExp : ATL!VariableExp (
25 appliedProperty <- navStereo,
26 referredVariable <- varDecl
27 ),
28 varDecl : ATL!VariableDeclaration (
29 varName <- ’thisModule’,
30 variableExp <- variableExp
31 )
32 }

Drop Implementation

The last task of the HOT is to delete the ApplyPattern, cf. Figure 4.6. Listing 4.13 illustrates
the corresponding deletion rule that is part of the HOT. This rule is needed so that the generated
model transformation conforms to the standard ATL syntax. The deletion of the ApplyPattern
element ensures the deletion of all contained SimpleApplyPatternElements since they are con-
nected via a composition relationship.
It must be noted that this so-called drop implementation was not an official part of ATL at the
time of the implementation work. It is a contribution that was proposed by members of the At-
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lanMod team6 and was kindly provided to me before it was even released. However, the drop
feature has been integrated into the official ATL implementation recently. It is a useful feature
that enables a deep deletion of ATL metamodel elements in the ATL refining mode [50].

Listing 4.13: HOT rule for dropping the ApplyPattern
1 rule deleteApply{
2 from
3 s : ATL!ApplyPattern
4 to
5 drop
6 }

Concluding Remark on HOTs

To conclude this final process step, it must be said that the specification of a HOT in the ATL
refining mode is not a simple task. Quite the opposite is true: Although everything is written in
the ATL language and the used concepts are familiar to an ATL engineer, some other severe and
unexpected difficulties arise.

Iterations. The development of the higher-order transformation is achieved via several itera-
tion steps. As a large number of ATL elements is needed for the creation of a short statement, a
repeated execution of the HOT is helpful to check if all elements are existing and if the connec-
tions between those elements are set correctly. Therefore, the HOT may not be implemented in
one single step but has to be defined in an iterative way.

Element matching. In the case of ATL4pros, it was difficult to specify which elements are to
be created in which rule, i.e., which source model elements are appropriate matching subjects
in order to create certain statements. In many cases it was necessary to define filtering criteria
for certain source model elements and, depending on the outcome of the filtering, create dif-
ferent elements. To be more precise, the metaclasses Module, MatchedRule, ActionBlock and
SimpleApplyPatternElement are all matched twice in the HOT, each with a particular filtering
criterion.

Nesting of statements. The various statements that are created and inserted into the standard
ATL transformation have to be nested. For this task, complex operation helpers are used that
facilitate the correct interlinking of statements. The definition of these helpers turned out to be
complicated and consumed a lot of implementation time.

Length of HOT. The creation of all required ATL statements led to a high number of lines
of code in the HOT. The HOT for the proposed profile-specific extension comprises slightly
more than 1,000 lines of code. Bearing in mind that the ATL4pros extension is rather small,
the resulting dimension of the HOT is enormous. The entire HOT consists of 13 transformation
rules. Each rule contains exactly one source model element (a larger number of source model

6http://www.emn.fr/z-info/atlanmod
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elements is not supported by the refining mode) and a varying number of target model elements.
The number of instantiated target model element differs for each rule, ranging from a minimum
of 1 to a maximum of 42 target elements per rule. In addition to the rules, a total number of 11
operation helpers is required for the correct assembly of the created statements.

4.5 Implementation

The final section of this chapter presents two important details of the ATL4pros implementation.
The first issue is concerned with the outsourcing of ATL code parts into an ATL library. The
second issue is a bit more demanding: During the implementation work of this thesis, a num-
ber of problems and technical difficulties arose that were not apparent at the beginning of the
extension. As most issues were only of minor complexity, they could be resolved very quickly.
One problem, however, affected the entire higher-order transformation and resulted in a large
and time-consuming redesign of the HOT. This main challenge was caused due to the existence
of bidirectional references between stereotype applications. The detailed problem description as
well as the successfully realized solution follow after the section discussing the ATL library.

Using an ATL Library

Due to the large dimension of the HOT the following decision was made: Complex operation
helpers, needed in the ATL transformation for calculating certain values, are outsourced to an
ATL library. This library gets imported into the ATL module and as a result, all helpers defined
within this library may be used as if they were part of the actual module. This approach has two
important benefits:

• The ATL library may be reused. In the case of the library which was specified for the
ATL4pros extension, it may be reused for every transformation which makes use of the
extended ATL syntax.

• The size of the HOT is reduced. For importing the library, only the short statement uses
libraryName; needs to be created by the HOT. This saves a lot of code lines, reduces the
complexity of the HOT, and improves maintainability.

Example. Lines 12 and 13 of Listing 4.16 illustrate the setTaggedValue operation which rep-
resents a call to a helper specified in an ATL library. This helper tests the given parameters
and, depending on a sequence of if-then-else decisions, sets the tagged values of a stereotype by
invoking the respective method of the underlying Java UML2 API.
Nevertheless, it is important to note that only selected code parts like generic helpers may be
outsourced in order to reuse the library for other model transformations. Creating a new library
for each new transformation is not conform to the basic intention of a library. Moreover, relo-
cating too much ATL information into a library only leads to transformations that are hard to
understand.
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Transformation Challenge

A bidirectional reference between two stereotype applications A and B means that one tagged
value of stereotype A is pointing to an instance of stereotype B and that one tagged value of
stereotype B is in turn referencing an instance of stereotype A.
To give the reader a better idea of the problem, Figure 4.7 illustrates an example.

(a) The DSL metamodel contains the two metaclasses Attribute and Identifier. They are con-
nected via a relationship that reads as follows: One Attribute may be contained in 0 to
multiple Identifiers and one Identifier contains 0 to multiple Attributes.

(b) The corresponding part of the UML profile contains the UML metaclass Property that is
extended by the two stereotypes Attribute and Identifier. The stereotype Attribute has a
tag definition named containedInIDENT which is of the data type Identifier. The Identifier
stereotype is analogously defined, holding the tag definition containsATTR which points to
an instance of the Attribute stereotype. These two tag definitions constitute the bidirectional
reference that is also present in the DSL metamodel.Transformation Challenge

Bidirectional References between Stereotype Applicationsyp pp

«metaclass»
Property

«stereotype»
Attribute

Attribute
Property

«stereotype»

Attribute
containedInIDENT: Identifier

0 *

0..*

t i dI IDENT

containsATTR

«stereotype»
Identifier

containsATTR: AttributeIdentifier

0..* containedInIDENT

(a) (b)

, but 

16

Figure 4.7: Bidirectional reference between the two stereotypes Attribute and Identifier

The depicted UML profile definition by itself is correct and not yet problematic. An ATL model
transformation using this specific UML profile may be defined as follows (cf. Listing 4.14):

Att2Prop. One rule matches all Attribute elements of the DSL metamodel and generates the
respective Property elements of the UML metamodel. In the imperative part of the rule, the
Attribute stereotype is applied to the Property and the tagged value containedInIDENT is set
(indicated by the corresponding comments on lines 7 and 8 of Listing 4.14).

Ident2Prop. Similarly, the second rule matches all Identifier elements of the DSL metamodel
and creates the Property elements. As before, the stereotype Identifier is applied to the target
model element and the tagged value containsATTR is set (cf. lines 18 and 19 of Listing 4.14).
Further, it is assumed that these two transformation rules are executed in the presented order.
The Att2Prop rule executes first, followed by the execution of the Ident2Prop rule.
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Problem. The problem that arises is due to the existence of the bidirectional reference between
the two stereotypes. The instantiation of the tagged value containedInIDENT on line 8 requires
for an instance of the Identifier stereotype. The problem is that these stereotype instances are not
yet existing as they are only created in the following rule. Setting the tagged value containsATTR
on line 19 works without problems as the stereotype instances for the Attribute are already
initialized at this step of the execution. As a consequence, the resulting target model may only
contain references from the Identifier to the contained Attributes but no links from an Attribute
to the associated Identifier. Obviously, the generated target model is incorrect.

Listing 4.14: Problematic ATL rules due to a bidirectional reference
1 rule Att2Prop {
2 from
3 s : DSL!Attribute
4 to
5 t : UML!Property (...)
6 do {
7 -- apply stereotype ’Attribute’
8 -- set tagged value ’containedInIDENT’
9 }

10 }
11
12 rule Ident2Prop {
13 from
14 s : DSL!Identifier
15 to
16 t : UML!Property (...)
17 do {
18 -- apply stereotype ’Identifier’
19 -- set tagged value ’containsATTR’
20 }
21 }

Solution to the Challenge

The occurrence of a bidirectional link between two stereotype applications is not unusual, indeed
this constellation ought to be quite frequent in large model transformations which make use of
UML profiles. The solution to the discussed challenge applies a specific construct of ATL – the
endpoint rule. The characteristics of this rule and the solution details are described below.

Endpoint Rule

An endpoint rule is a special kind of called rule in the ATL language. The endpoint rule, in
contrast to a normal called rule, does not need to be explicitly called as it is automatically ex-
ecuted at the end of a transformation. The idea behind this type of rule is as follows: Feature
assignments or other imperative constructs may need to be executed at the very end of a trans-
formation. This may have different reasons, bidirectional references are only one possibility.
Listing 4.15 illustrates a general example in reference to the problems depicted in Listing 4.14.
This example shows how the instantiation of tagged values may be transferred to the endpoint
rule.
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Listing 4.15: Solution by means of an endpoint rule
1 rule Att2Prop {
2 from
3 s : DSL!Attribute
4 to
5 t : UML!Property (...)
6 do {
7 -- apply stereotype ’Attribute’
8 }
9 }

10
11 rule Ident2Prop {
12 from
13 s : DSL!Identifier
14 to
15 t : UML!Property (...)
16 do {
17 -- apply stereotype ’Identifier’
18 }
19 }
20
21 endpoint rule setTaggedValues {
22 do {
23 -- set tagged value ’containedInIDENT’
24 -- set tagged value ’containsATTR’
25 }
26 }

As before, the stereotypes Attribute and Identifier are applied to the UML Property within
their associated rules. But, in contrast to Listing 4.14, the two tagged values containedInIDENT
and containsATTR are set in the endpoint rule of the transformation, cf. lines 23 and 24.
With this solution, the occurrence of bidirectional links is no longer a problem. The handling
of tagged values is transferred to the endpoint rule. As the endpoint rule is executed at the
end of a transformation, all required stereotype applications (that is, the stereotype instances)
are certainly existing. In the example above, the target model elements with either of the two
stereotypes applied, are created during the execution of the two rules. Thus, establishing a link
from a certain tagged value to an existing stereotype instance is applicable.

Endpoint Rule in ATL4pros

Due to the huge benefits of an endpoint rule regarding the occurrence of bidirectional references,
this construct is also embedded into the ATL4pros extension. More precisely, the endpoint rule
is generated and integrated when transforming the extended ATL4pros version to standard ATL
code. This automatic generation of ATL code is the responsibility of the HOT. Listing 4.16
presents an excerpt of the endpoint rule which is created for the final ATL transformation.
The endpoint rule of Listing 4.16 consists of one imperative do-block that contains a for-loop.
This loop iterates over all existing Identifier instances of the source model. For each source
instance s, the corresponding target instance t is fetched via the resolveTemp operation and,
if the target instance really exists, this target model element is stored in the targetEl attribute
helper. Subsequently, the two tagged values phase and contATTR of the stereotype Identifier
are instantiated with the respective values taken from the features of the source model element.
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Due to space limitations, the aforementioned containsATTR feature is trimmed to the name
contATTR.

Listing 4.16: Endpoint rule example
1 helper def: stereo : uml!Stereoype = OclUndefined;
2 helper def: targetEl : UML!Element = OclUndefined;
3
4 endpoint rule EndRule() {
5 do {
6 thisModule.stereo <- thisModule.allStereotypes->any(e | e.name = ’Identifier’);
7
8 for(s in DSL!Identifier.allInstances()) {
9 if(not thisModule.resolveTemp(s, ’t’).oclIsUndefined()){

10 thisModule.targetEl <- thisModule.resolveTemp(s, ’t’);
11
12 thisModule.targetEl.setTaggedValue(thisModule.stereo, ’phase’, s.phase);
13 thisModule.targetEl.setTaggedValue(thisModule.stereo, ’contATTR’, s.contATTR);
14 }
15 }
16 }
17 }

By this solution, an additional execution phase is simulated. By default, the module initialization
phase is followed by the matching phase and the target model elements initialization phase.
With the created endpoint rule, a simulated fourth phase follows at the end of the execution. A
drawback of the endpoint rule is, however, that a costly iteration over all source elements and
the subsequent trace resolution for fetching the respective target elements is needed. A more
elegant solution may be to apply the stereotypes already during the matching phase, but this
would require for a reconstruction of the ATL virtual machine and the compiler.
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CHAPTER 5
Evaluation

An extension of any (modeling) language should always be accompanied by an evaluation that
investigates different quality aspects in order to guarantee a holistic analysis and to disclose the
extensions’ improvements. The following quality parameters may be considered:

1. The first subject of evaluation should concentrate on the expressivity of the language ex-
tension. Basically, an extension should at least provide the same level of expressive power
or, even better, increase the level of expressivity. In the case of ATL4pros, an evalua-
tion of the expressivity is not required due to the following rationale: The invocation of
different UML2 API operations is necessary for setting profiles, stereotypes, and tagged
values. These API calls, which are basically still possible but not necessarily needed
in an ATL4pros transformation, are automatically generated by the HOT. Therefore, the
generated model transformation has exactly the same expressiveness as a standard ATL
transformation and thus, no further evaluation is required.

2. Secondly, the focus may be set on quality attributes which are reflecting a transformation’s
internal structure. In order to determine the improvements of using ATL4pros instead of
using standard ATL, evaluating quality attributes of ATL transformations may be the key
for this task. In particular, different metrics are computed for the original transformation
(i.e., the transformation of the original case study, see Section 1.5), for a refactored version
of this original transformation, for the ATL4pros version, and for the transformation that
is generated by the HOT. As the aim of ATL4pros is to have concise instead of verbose
transformation code, the calculated metric values should reflect these improvements.

3. In addition to the use of metrics for quality attributes, also the performance in terms of the
execution time of the aforementioned transformations may be evaluated and compared.
Possible explanations for differing execution times need to be identified and, based on the
outcome of these analyses, conclusions are drawn.
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The following two sections address the evaluation based on code quality attributes on the one
hand and the evaluation of the execution performance on the other hand.

5.1 Evaluation based on Code Quality Attributes

The calculation and comparison of different metrics is a well-established evaluation method for
model-to-model transformations [28, 51]. The metrics comparison conducted for the ATL4pros
extension is comprised of different metric features. The standard metric lines of code (LoC) and
also other measures that are computed by reusing a transformation from van Amstel et al. [52]
are taken into account. The following ATL transformations are considered:

T1. T1 is the original ATL transformation of the ModelCVS case study.

T2. T2 is a refactored version of transformation T1. The refactoring includes the following
steps: A sophisticated operation helper that assures the correct setting of tagged values by dif-
ferentiating between simple, complex, single-, and multi-valued attributes is outsourced into an
ATL library. Subsequently, this library is inserted into T2 and the defined operation helper is in-
voked whenever a tagged value has to be set. It is important to note that the defined ATL library
(38 LoCs) is, in a marginally extended form (41 LoCs), also reused in transformation T4.

T3. This transformation is defined with the ATL4pros syntax. As this version is not executable,
the HOT is used to transform it to transformation T4. Consequently, this transformation is not
part of the evaluation concerning the execution time in Section 5.2.

T4. Transformation T4 is the generated model transformation resulting from the HOT exe-
cution. Like T2, also this transformation makes use of an external ATL library containing the
complex operation helper for setting tagged values and an additional attribute helper for storing
all existing stereotypes of the used UML profile. Moreover, this transformation contains the
endpoint rule that is responsible for the correct setting of bidirectional references.
Please note that all four transformations are defined in such a way that, given one specific input
model, the same target model may be generated. Whether this requirement is met by the different
transformations or not is also part of the following discussion.
Table 5.1 illustrates the gathered results of the metrics evaluation. In the following, the different
metrics will be discussed in more detail.

Lines of Code. As can be seen in the entries of the LoC measure, the original transformation
T1 is the largest one whereas the ATL4pros version T3 is the smallest one. Thus, the aim of
having concise transformation code is clearly achieved. Due to the existence of the keyword
apply, and the intuitive way of setting tagged values, the size of the transformation is kept very
small. Thereby, the maintainability of the entire transformation is improved significantly.
The generated transformation T4 has, compared to the refactored version T2, more lines of code.
However, there is an important reason for this: Both transformations T1 and T2 are not able to
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Metric T1 T2 T3 T4
LoC 370 211 186 262

LoC (declarative) 93 95 186 100
LoC (imperative) 277 116 0 162

Ratio declarative/imperative 25 / 75 45 / 55 100 / 0 38 / 62
#Elements 1436 901 383 1210

#Links 3183 2077 892 2632
#Rules 10 10 10 10

#Bindings 13 13 95 13
#Helpers 1 1 0 2

Table 5.1: Results of the metrics evaluation

handle bidirectional references correctly. It is only possible to set one side of the reference in-
stead of both sides. As a result, the generated target models of T1 and T2 are incorrect. A proper
instantiation of bidirectional references is only guaranteed by the endpoint rule of transforma-
tion T4. The task of this special rule is to fetch the target model elements that were generated by
the matched rules and use them for setting the tagged values of a stereotype. Please remember
that the endpoint rule is executed at the very end of a transformation and thus, all elements that
were instantiated beforehand are not directly available. To make use of these elements, they
have to be queried again, resulting in additional code statements. Even though this endpoint rule
requires for a few more code statements, the benefits of setting bidirectional references are of
more importance.

A comparison between declarative and imperative lines of code illustrates another benefit
of the ATL4pros extension. Please remember that declarative code is the recommended ATL
programming style. As may be seen in Table 5.1, the ATL4pros version is doing best, con-
sisting of declarative code statements only. With 38 percent of declarative code, the generated
transformation T4 is also doing very well. Comparing T4 to T2, the higher ratio of imperative
code is again due to the endpoint rule since it contains imperative code only. But again, the huge
benefits of the endpoint rule compensate for the slightly higher number of imperative statements.

The LoC metric should always be handled with care, as discussed in [21]. It is not a stan-
dardized measure since there is no default specification whether to use the number of physical
or the number of logical code lines. The LoC value is only focusing on the concrete syntax
level without considering the abstract syntax level. Having a language like ATL, consisting of
concrete as well as abstract syntax, the code formatting on the concrete (i.e., the textual) level
may have major impacts on the line numbers. Thus, measuring the number of abstract syntax
elements may be considered more significant, and is therefore discussed in the next paragraph.
Another problem associated with the LoC value is the fact that the number of code lines is highly
depending on the power of a language. Comparing one and the same program written in different
languages will eventually lead to an unequal and imprecise result.
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Number of Elements and Links. The number of elements, that is, the number of instantiated
abstract syntax elements, has a significantly small value for transformation T3. A transformation
written in the ATL4pros syntax implies that only 383 elements have to be instantiated. In com-
parison, transformation T2 leads to the instantiation of 901 abstract syntax elements. The reason
why T4 requires for a higher number of elements than T2 is again due to the use of the endpoint
rule. Retrieving the generated target model elements in order to use these elements, requires for
an additional attribute helper and additional model queries. As a result, more abstract syntax
elements have to be instantiated.
The same argument is also true for the number of links, i.e., the number of instantiated refer-
ences between the abstract syntax elements. As the ATL4pros version of T3 is the most concise
transformation, also the number of required links is very small. As before, the use of additional
elements in T4 and thus, the existence of additional links between those elements, is connected
to the endpoint rule.

Number of Rules, Helpers, and Bindings. The number of transformation rules remains un-
changed for all four transformations. The number of binding statements is also equal for trans-
formations T1, T2, and T4. The high number of bindings in T3 is based on the fact that all tagged
values are now defined like normal bindings. Thus, the total number of 95 bindings arises from
13 normal bindings (as in T1, T2, and T4) and 82 tagged value bindings. The number of in-
volved helpers is also not differing considerably with T4 containing one additional helper and
T3 containing no helpers at all.

The presented metrics evaluation clearly demonstrates the good quality of the implemented
ATL4pros extension. A transformation conforming to the extended ATL syntax may be writ-
ten using nothing but declarative code. Not only is declarative programming the recommended
style in ATL, but also the size of the transformation in terms of LoC is largely reduced due to
the absence of complex imperative code statements. This in turn increases both readability and
maintainability of the transformation.
The use of the endpoint rule, which leads to a slightly higher number of instantiated elements
and links, has great benefits for the ATL engineer. As outlined in Section 4.5, the existence
of bidirectional references is completely handled by the generated endpoint rule and thus, the
transformation engineer does not have to take care about the correct invocation of statements.
Another advantage that is not captured by the metrics evaluation is connected to the implemen-
tation time of an ATL transformation. The ATL4pros syntax eases the use of UML profiles by
the domain-specific keyword apply and, as a result, the required time and afford for defining a
transformation is reduced to a great extent.
After having discussed the most important code quality attributes, it is time to focus on an eval-
uation in terms of execution performance.

5.2 Evaluation based on Execution Performance

The performance evaluation is based on the execution time of the three aforementioned model
transformations T1, T2, and T4. Additionally, a speedup value is captured which indicates the
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ratio between the execution time of the original transformation T1 and the two other transfor-
mations, T2 and T4 respectively. Transformation T3 is not evaluated as the extended ATL4pros
syntax is not executable on the ATL virtual machine.

Setting. The performance analysis is accomplished by using the same source model for all
three transformations and for all execution runs. The resulting execution time is calculated as
the average result of ten execution runs. The first run, however, is always omitted due to the
fact that it requires considerably more time compared to the successive runs. The source model
consists of 170 model elements that have to be transformed. Apart from the generation of the
respective target model elements, each target element is specialized by a stereotype. Addition-
ally, tagged values are set for each stereotype, ranging from a minimum of 3 to a maximum of
19 tagged values per stereotype. The execution is done using the EMF-specific Virtual Machine
of ATL.
Table 5.2 summarizes the execution times (in seconds) and the respective speedup ratio, com-
paring the execution time of T1 and T2, and the one of T1 and T4 respectively.

Transformation Execution time Speedup
T1 1.50 s 1.00
T2 1.91 s 0.78
T4 1.45 s 1.03

Table 5.2: Results of the performance evaluation

The results of the performance analysis show that the generated transformation T4 performs
best, with an average execution time of 1.45 seconds. The original transformation T1 is close
behind, with an average execution time of 1.50 seconds. The execution time of the refactored
transformation T2 amounts to 1.91 seconds and thus, it is the slowest one. The reason for this
performance loss is as follows: As mentioned before, transformation T2 makes use of a library
which contains an operation helper for setting the tagged values. This helper includes a number
of if-then-else branches and also type checking invocations. Thus, this operation is very expen-
sive in terms of execution time and is therefore responsible for the poor performance value. Even
though T4 is using the same operation helper as T2, the execution performance of T4 is largely
increased by the additional attribute helper. The attribute helper stores all existing stereotypes
and thus, it is not required to query the profile every time a stereotype is applied, as it is the case
in T2. As a result, transformation T4 is working more efficiently than transformation T2.
Based on the outcomes of the execution time, the speedup ratio is calculated. The speedup be-
tween T1 and T2 has a value of 0.78, indicating that the second transformation is with a ratio
of 0.22 slower than the first one. On the contrary, a comparison between the execution times of
T1 and T4 shows that T4 is with a ratio of 0.03 faster than T1. Even though this speedup value
is not significant, it is important to remember that transformation T1 is not producing a correct
target model due to the absence of bidirectional references. This implies that transformation T4
provides more functionality, and is still performing slightly better than transformation T1.
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Based on the outcome of the metrics evaluation and the performance evaluation, it may be
concluded that the higher number of instantiated elements and links of transformation T4 is not
diminishing the performance of this transformation. Even though a larger number of code state-
ments is required within the endpoint rule, this has no adverse effects on the execution time. The
developed preprocessor in form of the higher-order transformation and the defined ATL library
are specified in such a way that the generated ATL transformation benefits from several ATL best
practices and other tricks. Accordingly, the resulting model transformation is highly optimized
and efficient in terms of code quality and also execution performance.
To conclude this section, it must be said that the extension of ATL with a profile-specific keyword
in order to facilitate the use of stereotypes and tagged values within an ATL model transforma-
tion offers lots of benefits, and that these benefits are also reflected in the values of the metrics
evaluation.

5.3 Lessons Learned

During the implementation of the profile-specific ATL4pros extension, technological possibil-
ities as well as limitations were encountered and summarized. This section presents a set of
lessons learned, experienced while extending ATL for natively supporting UML profiles. This
compendium of lessons learned may be seen as a design guideline for future extension work and
as a starting point for a critical discussion about the extensibility of ATL.

Defining extension points in the ATL metamodel. It is important to define appropriate places
for the new metamodel elements within the ATL metamodel. As Figure 4.2 partly depicts, the
entire metamodel of ATL is rather large, containing 87 metaclasses in total. When investigating
the ATL metamodel, it becomes clear that the abstract class LocatedElement has a significant
role: Every other class directly or indirectly inherits from this superior class. Given this fact,
the first natural conclusion is to define all new elements as direct or indirect subclasses of the
LocatedElement class. The exact allocation of new classes by means of containment references
as well as non-containment references to other classes depends on the purpose of the extension
and has to be determined by the extension engineer from case to case. Also, the references
between the extension classes differ for every extension. There is no written guideline or man-
ual that may be consulted in order to find the right place or arrangement. Another important
implication is concerned with the modification of the original ATL metamodel. Basically, the
extension of existing metaclasses by adding new metaattributes or relationships should be min-
imized. Even though an extension needs to be integrated into the standard language, the actual
integration should not affect the original constructs in the abstract syntax too much. This is due
to the fact that all modifications of the abstract syntax need to be included in the textual concrete
syntax as well. Thus, a large number of modifications in the abstract syntax leads to an extensive
and time-consuming rework of the textual concrete syntax.

HOTs as in-place transformations. As mentioned in Section 4.4, the implemented HOT is
designed as an in-place transformation using the ATL refining mode. Every single ATL code
fragment that is needed in the standard ATL language to represent the introduced keywords of
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the extended ATL version, has to be created by instantiating the corresponding metamodel ele-
ments. As a vast number of such elements is required for only short statements, the definition
of the HOT turned out to be a complex and time-consuming task. To give the reader an idea
about the dimension of the higher-order transformation, the entire HOT involves approximately
1,000 lines of code for supporting only small language extensions. As a consequence, before
building the HOT, the aim should be to out-source as much reusable parts from the standard
ATL transformations as possible into an ATL library. This library gets imported into the stan-
dard ATL transformation and thereby, all helpers defined in the library may be used. This helps
a lot in keeping the HOTs small, which has in turn a major impact on both the development
and the maintainability efforts. When it comes to the transformation of model transformations
themselves, there are not many alternatives that have the same expressive power as HOTs. The
possibilities of escaping to high-level languages like Java or using totally different approaches
are currently not satisfactory as additional technological knowledge is needed. Further improve-
ments for developing in-place HOTs may be explored similar to what has been done in [48] for
model-to-model HOTs.

Test-driven development. An important characteristic that needs to be investigated refers to
the correctness of the implemented extension. Therefore, an appropriate test suite may be re-
quired for assuring a test-driven development of ATL extensions. The workflow for ensuring
the correctness of the extension is basically as follows. The standard ATL transformations,
which are used for abstracting the ATL extension, are executed on sample source models. These
transformations consequently create corresponding target models. As a starting point for the cor-
rectness test, the transformations expressed in the extended syntax are transformed to standard
ATL transformations based on the implemented HOT. Afterwards it is possible to execute the
generated ATL transformations on the same sample source models as before, resulting in corre-
sponding target models. Assuming that the extension and the HOT are working correctly, these
target models need to be equivalent to the target models generated by the initial transformations.
This test-driven development allows for building an extension in an incremental and iterative
process, meaning that the additional language features are introduced and tested consecutively.
For such a framework, previous work on model transformation testing [33, 35] seems to be an
appropriate basis, but has to be extended for testing HOTs. One important building block may
form model transformation orchestration languages [43] for modeling the testing process.

ATL extension framework. Unfortunately, the ATL language is not designed to be extended
by new concepts. While implementing the presented extension of ATL, it became apparent that
an integrated ATL extension framework is needed. This is merely due to the fact that the tooling
is quite time-consuming. To be more specific, different versions of ATL plug-ins are required
for implementing the extension, and a lot of copy-and-paste tasks have to be performed. It turns
out that a wizard-driven extension may be more appropriate to keep the development/test cycles
short. An integrated extension framework may provide all required artifacts (that is, metamodel,
TCS artifact, artifact for syntax highlighting, etc.) in one place, and automatically copy the
generated files into the right folders and set the correct connections. Having such an extension
framework at hand, probably more researchers would start to experiment with introducing new

75



language features in ATL and providing domain-specific preprocessors for different domains.
Such experimental implementations of new language features may also provide valuable input
for the general evolution of ATL.

5.4 Limitations of ATL4pros

Implementing an extension for the ATLAS Transformation Language was a very interesting and
challenging experience. The envisioned extension was realized and finished as planned. Nev-
ertheless, there are a number of limitations to the current ATL4pros extension that are based on
technical restrictions or other constraints. These limitations are discussed in the next paragraphs.

Traceability information. An initial hope at the beginning of this master’s thesis concerned
the ability to store traceability information between elements of the extended syntax and their
counterparts in the standard syntax of ATL. This type of information may disclose all connec-
tions between new and existing language constructs.
On the one hand, traceability information is useful for reproducing how a specific keyword in
ATL4pros was converted by the higher-order transformation to standard ATL statements. This
may enhance reusability and may help in the implementation phase during debugging. On the
other hand, the efficient discovery of errors may be possible. Consider the following example:
An ATL engineer defines a new model transformation in ATL4pros. After completion, the HOT
is used to convert the extended transformation to the standard form. If the execution of this
standard transformation results in errors, the error messages are only addressing the lines of
code in the standard ATL version but not the line numbers of the extended ATL transformation.
However, it may be more helpful for the ATL engineer if the error messages were related to the
ATL4pros version.
The execution of a model-to-model transformation in the standard execution mode of ATL au-
tomatically produces trace links between source model elements and the generated target model
elements. Thereby, the relationship between each source and each target element is clear and
may be used for further actions. Unfortunately, there is no such traceability information pro-
vided for the refining execution mode. The only imaginable possibility would be to set up an
independent metamodel that contains particular metaclasses for fetching different internal ATL
information. During the execution of the HOT, instances of these metaclasses may be generated
and stored in a target model that conforms to the additional metamodel. As this functionality
would go far beyond the scope of this thesis, the production and storage of traceability informa-
tion is not facilitated.

Limitations regarding ATL elements. A number of limitations are directly connected to cer-
tain elements within an ATL transformation. These constraints have to be taken into account
when defining an ATL transformation in the extended ATL4pros version:

• Only matched rules are considered
The current implementation of ATL4pros is limited to matched rules. This means that
the keyword apply, the new construct for applying a stereotype to a UML model element,
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may only be used within a matched rule. Consequently, called rules and lazy rules are not
yet supported and target model elements that are created by these two kinds of rules may
not be specialized by a stereotype.
The reason for this restriction is related to the complexity of the HOT. At the beginning
of the specification, the entire HOT was designed for the handling of matched rules only.
This imposed restriction may come as no surprise since this type of rule is the most impor-
tant one. Every matched rule needs to have exactly one InPattern, which in turn consists
of at least one InPatternElement, i.e., one source model element. Information related to
the source model element was used for putting the final HOT together. Called and lazy
rules, however, do not have such a source model element and as a result, the defined HOT
may not work on these rules.

• One source model element per rule
Talking about source model elements, there is a second limitation in relation to this part of
an ATL transformation. The current version of the ATL4pros extension is only applicable
in cases where the matched rule contains a single source model element.
This constraint is again arising from the intricacy of the HOT. Creating statements in
the standard ATL version requires for the direct generation of all parts of the statement.
These individual parts need to be connected and, in some cases, the connection may only
be established by navigating to the specified source model element. Currently, the HOT is
only prepared for the occurrence of one source model element. Thus, a transformation rule
with two or more source model elements may cause problems. However, this limitation
has only limited impact since usually, the majority of all ATL transformations feature only
a single source model element.

• Rule hierarchy has no impact
It may be desirable to apply an arbitrary stereotype to a UML element inside an ab-
stract matched rule and, as a result, the stereotype is also applied to all related model
elements inside the concrete subrules. Unfortunately, this scenario is not yet supported by
the ATL4pros extension.
As before, the reason that this feature is not available in the extended ATL version is
merely due to the complexity level of the HOT. The difficulty is in finding the appropriate
matching subjects for creating all desired code statements. As one specific type of source
model element may only be matched once, the options are very limited. In addition, the
necessity of this hierarchy-based feature has not been considered at the very beginning of
the HOT definition. The integration of this property may not have been possible at a very
advanced stage of the implementation work without facing severe problems.

Higher-order transformation. The last issue is more a logical rather than a technical limita-
tion. The higher-order transformation that was created for the ATL4pros extension is only usable
for this special scenario. This is due to the fact that all elements which are created by the HOT
are tailored to this specific extension purpose. A different domain-specific extension requires
for the creation of a different HOT.

77



A reuse of the HOT, or at least of parts thereof, may be very beneficial since its development has
taken a lot of time. Unfortunately, such a reuse is not feasible from the current perspective.
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CHAPTER 6
Related Work

The related work is divided into three parts. First, an overview of available model transformation
approaches is given. Second, an orthogonal application of using UML profiles in the context of
model transformations is discussed. And third, works concerning the automatic generation of
UML profiles and transformations are presented.

6.1 Overview of Model Transformation Approaches

The notion of model transformation is an essential part of the model-driven paradigm. Trans-
forming one model to another model may be due to a variety of application purposes, based on
distinct metamodels, and also accomplished using different approaches. Besides ATL, QVT [38]
and Graph Transformations [18] are the two most important representatives. The next two sub-
sections give a short introduction to the mentioned technologies in order to understand their
functionalities as well as their differences compared to ATL.

Query/View/Transformation

The MOF 2.0 Query/View/Transformation1 (QVT) approach was specified by the OMG and is
currently under version 1.1. Similar to ATL, QVT is a comprehensive, standardized language
for defining model transformations. Although these two approaches share the same goal, namely
transforming a given source model to a desired target model, the way of how a transformation
is defined differs. The most important concepts of QVT are explained below. Basically, QVT is
divided into three named language levels:

• Core
The Core language of QVT is a small language that only provides pattern matching over
a flat set of variables. Conditions over those variables are evaluated against a set of mod-
els [38]. The Core language is equally powerful to the Relations language, but, as it

1http://www.omg.org/spec/QVT/1.1/
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is simpler, a transformation defined with the Core language is more verbose than one
defined with the Relations language. Trace information between transformed model ele-
ments need to be explicitly defined.

• Relations
The Relations language (QVT-R) is the most prominent part of the QVT standard. With
this language it is possible to define relationships between MOF models and elements of
these models. As stated in the QVT specification, this language supports complex object
pattern matching. More information and a simple example of the Relations language is
given below.

• Operational Mappings
The Operational Mappings language provides imperative implementations, meaning that
a transformation may be defined in a completely imperative style, or that imperative parts
may be used within the Relations language. Imperative parts are used whenever com-
plex statements may not be expressed in a declarative way. Operational mappings are
comparable to imperative ActionBlocks in the ATL language.

As in the case of ATL, also QVT is a hybrid language, meaning that it supports declara-
tive and imperative code parts. The Relations and the Core language constitute the declarative
components whereas the Operational Mappings and the Black Box are considered as imperative
parts. Figure 6.1 depicts the relationship between the involved language levels.
The Black Box implementations make it possible to plug-in additional, external mechanisms.
Thus, it is possible to define complex algorithms with any programming language that has a
MOF binding. By this, the calculation of model property values may be accomplished by using
external domain-specific libraries. As some calculations may be too difficult to be expressed
with OCL, an escape to a high-level programming language like Java is a helpful possibility.

Relations

Black
Box

Operational 
Mappings

RelationsToCore
Transformation

Core

imperative imperativedeclarative

26

Figure 6.1: Relationships between QVT language levels [38]

QVT-Relations (QVT-R)

The Relations language is used for a declarative specification of the relationships between so-
called candidate models, i.e., source and target models. A transformation defined in QVT-R
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usually consists of multiple relations which contain the details of the transformation. The rela-
tions are used to specify certain constraints which have to be met by elements of the candidate
models. If the relations hold, the transformation may be executed successfully. The domains
within a relation (cf. Listing 6.1) address specific element types of the candidate models and
describe the correlations (patterns) that must hold between those elements. With the relations
and the domains of the QVT-R language, it is possible to check two models for consistency, to
update a (target) model or to transform a model.
The Relations language has two different notations, namely a graphical and a textual syntax. An-
other important fact is that, in contrast to the Core language, the Relations language implicitly
creates trace information to capture the occurrences during a transformation execution. As the
Relations language may not be executed directly, it has to be transformed to the Core language,
see Figure 6.1. For details about this transformation please refer to the QVT specification [38].

Example. The ATL transformation example of Listing 2.3 may also be defined in the QVT-R
language. The corresponding transformation code is outlined in Listing 6.1.

Listing 6.1: QVT-R example

1 transformation datamodelUml (datamodel : DSL, uml : UML) {
2 relation DataModelToModel {
3 domain datamodel d:DataModel { name=dn }
4 domain uml m:Model { name=dn }
5 }
6 }

In this example, the transformation is named datamodelUml and it is comprised of two can-
didate models, namely datamodel and uml. The candidate models are typed with a specific
metamodel package, DSL and UML in this example. The relation DataModelToModel contains
two domains that match DataModel instances of DSL models and Model instances of UML
models respectively. The defined domain patterns are simple and require for the values of the
elements’ name-property to be equal.
In comparison with ATL, the transformation is equivalent to a module and the relation correlates
to a rule. Accordingly, the domains specify the source and the target model elements used for
the execution of the transformation. For a complete definition of all QVT functionalities please
refer to the QVT specification [38].

QVT is a comprehensive model transformation toolkit that facilitates the definition and execu-
tion of model transformations. With its declarative and imperative constructs, it offers a great
number of possibilities to transformation engineers. Nevertheless, it suffers from a severe short-
coming in relation to UML profiles – they are simply not supported in the language. Hence, ap-
plying profile-specific information to annotate target model elements is not possible with QVT.
Compared to ATL, this total lack of profile support is a huge disadvantage and may be one
explanation for the greater popularity of ATL.
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Graph Transformation

Another relevant model transformation approach is known as Graph Transformation (GT). The
connection between model transformations and graph transformations is as follows: „Models
can easily be seen as graphs“ [18].
Thus, the notion of graph transformations may be applied for different types of model manipula-
tions, including model transformations. To make the correlation between the different concepts
more explicit, the following comparisons may be drawn:

• Type graph
A type graph is comparable to a metamodel, representing the conceptual level with possi-
ble generalizations (abstractions) of elements.

• Graph
A graph is conform to a type graph and thus, it represents a model which is conform to a
metamodel.

The basic terms graph, directed graph, typed attributed graph and graph transformation rule are
explained in the following paragraphs.

Typed Graph

A graph consists of two disjoint sets: a set of vertices V and a set of edges E. In a directed graph,
the vertices are connected via directed edges, thus, each edge has a source and a target vertex.
For being able to represent model information, typed attributed graphs are required. This means
that each vertex and each edge has (1) a type and (2) may contain a number of attributes. In order
to illustrate typed attributed graphs in a model-like manner, it is common practice to represent a
graph as an object diagram and the type graph as the corresponding class diagram.

Graph Transformation Rule

A graph transformation rule p is a structure-preserving mapping between two graphs [27] and is
defined as follows: p: L→ R
L defines the left-hand side (LHS) of the rule, R the right-hand side (RHS). Both L and R
represent two graphs which participate in the graph transformation. The LHS of a graph trans-
formation rule describes the pre-condition whereas the RHS describes the post-condition. In
other words, the LHS describes which conditions (vertices and edges) must hold before the
transformation is executed, and the RHS illustrates what has to be available after a successful
transformation. The execution of a graph transformation rule p results in a graph transformation
t.

Example. The following example in Figure 6.2 is taken from [11] and shows a very simplified
form of a graph transformation.
The example illustrates the loading of a container onto a truck. As it may be seen in the figure,
most parts of the graph remain unchanged as only two edges are affected. Basically, vertices
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13Figure 6.2: Graph transformation rule for loading a container onto a truck [11]

and edges may be deleted from and others may be added to the graph. In this example, the edge
in gets deleted whereas the edge on is added to the graph. All other parts of the graph remain
unaltered.
Apart from deleting and adding vertices or edges, graph transformations may also contain more
sophisticated functionalities. Having directed, typed and attributed graphs, it is possible to cal-
culate certain values based on the given attributes. Thus, constants and variables may change or
OCL expressions may be evaluated in the course of a transformation.

To summarize the presented approach, it needs to be said that model transformations and
graph transformations share the same idea but offer different functionalities and have diverse
characteristics. Both approaches have their supporters and are important ingredients of model-
driven engineering. In general, a model-to-model transformation may be expressed as a graph
transformation, given that a model represents a graph and a metamodel represents the associ-
ated type graph. Graph transformations are able to handle complex transformation scenarios by
providing mature techniques and a wide range of functions. However, graph transformations do
not support UML profiles natively. Profile-specific information has to be integrated directly into
the definition of a graph transformation and thus, the separation between a model and a UML
profile is lost.

6.2 UML Profiles for Supporting Model Transformations

UML profiles are not limited to be directly used within a model transformation for applying
profile-specific information to UML model elements. In [44], a completely different application
scenario of UML profiles in conjunction with model transformations is introduced. The starting
point is the idea of modeling model transformations with UML and therefore, UML profiles are
needed. More precisely, the aim is to translate a given UML profile instance to a model trans-
formation. Hence, the profile is not part of the model transformation itself but rather the basis
for the transformation.
The SDM (Story Driven Modeling) metamodel, which may be used for defining a model trans-
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formation, requires for the use of a specific tool (Fujaba). Subsequently, the model transforma-
tions based on the SDM metamodel are only executable in the Fujaba development environment.
To overcome this drawback, the authors developed a template-based code generator that accepts
a UML profile for SDM as input and generates a model transformation as output. The two
components are now briefly discussed.

UML profile for SDM. As the SDM metamodel and the corresponding profile need to share
structural commonalities, each SDM component is mapped to a UML counterpart. Moreover,
specific stereotypes are used to represent all types of component variants found in the SDM
metamodel. This mapping assures that all modeling elements of the SDM metamodel remain
available. The UML profile may be designed with any CASE tool, meaning that the transforma-
tion specification is no longer bound to the Fujaba editor. Additionally, any standard-based MOF
repository may be used for storing the stereotyped UML model, since the UML is an instance of
the MOF meta-metamodel.

Code generator. Having a model transformation based on SDM, the code generation is fully
dependent on the Fujaba environment. In contrast, the transformation models based on UML
and the UML profile are translated by using a standard API for model access: the Java Meta-
data Interface2 (JMI) standard. The code generator used by the authors first of all analyzes and,
subsequently, transforms the given transformation model to the desired transformation code by
invoking JMI calls. By this, the code generator is no longer limited to one specific tool.

This approach clearly demonstrates that UML profiles may be leveraged for a wide variety of
application areas. Due to its standardization and its huge success in combination with UML, the
profile mechanism has become an essential integral part in the modeling, the metamodeling, and
also the model transformation context.
In this special case presented above, the UML profile helps in solving two drawbacks of model
transformations based on the SDM metamodel:

1. A transformation based on SDM may only be created within the Fujaba editor. However,
the UML profile makes it possible to define a transformation model within any CASE
tool, i.e., within any modeling tool that is based on the UML metamodel. Thus, the profile
assures a standardized and tool-independent specification of the model transformation.

2. The deployment of the profile-based transformation model is done by a code generator
which is based on standardized API calls. Therefore, the dependence on a specific devel-
opment environment, like in this case Fujaba, is no longer given.

Based on the findings and possibilities of the presented approach, and on the traditional
way of applying profile-specific information within an ATL model transformation, it is fair to
say that model transformations and UML profiles form an attractive combination. Not only
is it possible to set profiles, stereotypes and tagged values within a transformation to annotate

2http://java.sun.com/products/jmi/
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target model elements, but also to use UML profiles as the basis for the subsequent creation of
transformations.

6.3 Automatic generation of UML Profiles based on Mapping
Models

The applications of UML profiles discussed so far assume that the profile is already available
for being used in a model transformation. Transformation rules for generating the target model
elements are defined and the desired stereotypes and tagged values from the manually produced
UML profile are applied inside this rules. Apart from this direct assignment of UML profiles,
there is another valuable approach that follows a different direction.

In Wimmer et al. [54] (a related approach is given in [17]), the integration of DSL and
UML models is reported and a semi-automatic approach based on a mapping model is followed.
This approach is not relying on some existing UML profile, like it is for example reported in
Abouzahra et al. [1], but is instead focusing on an automatic creation of the profile and the
required transformation out of a mapping model.
As outlined in the paper, the so-called ad-hoc approach for bridging DSLs to UML has several
drawbacks. Ad-hoc in this context means that the connections between the elements of the
DSL and the ones of the UML metamodel have to be defined and that the corresponding UML
profile is manually created afterwards. The assignment of profile information is then directly
added inside the model transformation. This methodology leads to a high coupling between
the transformation and the profile and, further, the correspondences between DSL and UML
elements are not reusable in a different scope. To overcome these drawbacks, the authors propose
a new approach consisting of two fundamental parts:

1. The core of this approach is a mapping model which is manually specified. This user-
defined mapping model contains all correspondences between elements of the DSL and
appropriate elements of the UML metamodel. The mapping model is expressed using a
metamodel bridging language.

2. The second important part is a Bridge Generator which takes the mapping model as input
and generates both the final model transformation and the required UML profile. Thus,
the UML profile is not available from the very beginning but is automatically created.

Mapping model. For differentiating between the various metamodel concepts, different map-
pings are available: Cl2Cl mappings are provided for mapping classes of the involved meta-
models, Att2Att mappings connect related attributes and Ref2Ref mappings are used for map-
ping corresponding references. Apart from these three, also other mappings are available to
cover the remaining metamodel parts. For an example of Cl2Cl mappings please see Figure 6.3.
Metaclasses of a DSL metamodel on the left hand side and metaclasses of the UML metamodel
on the right hand side are related to each other by entries in the mapping model.
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3 Case Study

In this section we present our approach within a case study for bridging parts of the ComputerAssociate’s DSL
of the AllFusion Gen CASE tool and IBM’s Rational Software Modeler which implements the UML 2.0 standard.
First we briefly describe the involved metamodels, then an overview of the mappings, and finally the details for
one particular Cl2Cl mapping. Further details of the case study can be found on our project site4 including the
details for all Cl2Cl mappings.

3.1 AllFusion Gen’s Data Model

The metamodel for the data model of AllFusion Gen is illustrated in the package DataModel of Figure 3 and
contains concepts that allow modeling the data used by the applications. Since AllFusion Gen’s data model is based
on the ER model, it supports ER modelling concepts like EntityTypes, Attributes, and Relationships. In addition
to the ER modeling concepts, SubjectAreas can be used that contain EntityTypes as well as further SubjectAreas.
EntityTypes can have zero-or-one super type. Furthermore two concrete sub types of the abstract EntityType
concept can be distinguished, namely AnalysisEntityType and DesignEntityType. AllFusion Gen is typically used
for modeling data intensive applications which make excessive use of database technologies. Therefore, the data
model allows the definition of platform specific information typically usable for generating optimized database
code, e.g., EntityTypes have special occurrence configurations.

3.2 UML Class Diagram

It is obvious that the corresponding UML model type for AllFusion Gen’s data model is the class diagram. In this
work we only present the part of the UML metamodel which is relevant for integration purposes. The metamodel
excerpt is shown in Figure 3 in the package ClassModel. In UML Packages can contain further Packages as
well as Classes. Classes can be defined as either abstract or concrete and can have properties as well as arbitrary
superclasses. Properties represent attributes if the opposite property is not set, or role ends if the opposite property
is set.
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Fig. 3. Cl2Cl Mappings at a Glance.

3.3 Overview on the Mapping Model

In this subsection we present an overview of the mappings (cf. package MappingModel in Figure 3), covering
only the Cl2Cl mappings. Both metamodels make use of inheritance which results in abstract superclasses only
containing the name attribute. In order to allow for reuse of mapping information in sub mappings and to minimize

4 www.modelcvs.org/prototypes/

Figure 6.3: Example of Cl2Cl mappings [54]

Bridge generator. The proposed bridge generator takes the mapping model as input and sub-
sequently generates two artifacts: (1) the UML profile(s) used within the model transformation
and (2) the model transformation itself. The different mappings that are defined in the mapping
model instruct the bridge generator for the generation of the required profile elements as well
as the transformation rules. Concerning the profile generation, the bridge generator is able to
distinguish between model features which are supported in both metamodels and those features
that are only provided by the DSL and the UML metamodel respectively.

As outlined in the paper, this approach is not fully mature as different challenges are not yet
considered. Apart from small unresolved issues, the idea behind this approach is very appealing
since it puts the extension problem into a new perspective. The automatic generation of stereo-
types and tagged values as well as the creation of code statements for handling these constructs
in a transformation rule simplifies the work of an ATL engineer and enhances maintainability.
The complex statements that are needed for applying profiles and stereotypes or setting tagged
values may be created by the bridge generator. Thereby, the problems and difficulties that arise
when using UML profiles within an ATL model transformation are tackled from a different point
of view. The ATL language is not enriched with new, intuitive language concepts, as it is done
with ATL4pros, but instead the definition of a model transformation is accomplished by a gen-
erator.
Due to the fact that this approach is totally different from the concept of ATL4pros, it is not pos-
sible to compare the two and tell which one is better or more intuitive. It shows, however, that
different perspectives may be used when solving domain-specific problems of model transfor-
mation languages. Even though it is hard to compare the two approaches, they may be combined.
Transforming an arbitrary domain-specific model to a UML model using UML profiles is a spe-
cific scenario, but, with the help of ATL4pros, allows for an automated generation of ATL code.
The bridge generator, in turn, may be reconfigured to produce ATL4pros code which is subse-
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quently transformed by the HOT. Thus, the two approaches are combined in order to cover a
larger application spectrum.

The discussed related work shows that the area of model-driven software engineering involves a
wide variety of different approaches for solving similar challenges. The specification of a model-
to-model transformation is not restricted to a standardized transformation language like QVT or
ATL but may also be accomplished with the technique of graph transformations. Likewise, UML
profiles may not only be used during the execution of a transformation, but may also be used
for generating a model transformation. Nevertheless, there are still many tasks to be resolved
concerning the model-driven paradigm in general and model transformations in particular. The
available approaches are, however, constantly improving to overcome these pending issues.
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CHAPTER 7
Conclusion and Future Work

7.1 Conclusion

In this master’s thesis I have presented an approach for extending ATL for natively supporting
UML profiles. The necessity of a profile-specific extension of the ATL language may be seen
as the result of the continuing success of the model-driven software engineering paradigm. The
rise of OMG’s Model-Driven Architecture (MDA), the popularity of the Unified Modeling Lan-
guage (UML) in combination with UML profiles, and the need for model transformations all
play their part. The ATLAS transformation language (ATL) is the de-facto standard in the area
of model transformation and is a comprehensive tool when models are based on metamodels
only. In contrast, applying UML profiles within a model transformation is more complicated.
To overcome this serious drawback, the ATL4pros extension has been developed.

ATL4pros gives ATL engineers the possibility to apply stereotypes in a completely uncom-
plicated manner. The new keyword apply eases the application of stereotype information and,
furthermore, the setting of tagged values is simplified as the existing binding construct of ATL
is reused. In summary, this extension has significantly improved the use of UML profiles in the
ATL language. However, it must be admitted that the main limitation of the discussed approach
is the fact that it is not able to enhance the expressivity of standard ATL as such. As the extended
syntax is converted to the standard syntax in order to be executable, the original core of the ATL
language remains unchanged. Nevertheless, the concept of ATL4pros is certainly a good basis
for further investigations concerning the future orientation of ATL.

The successful implementation of ATL4pros has been accomplished in three successive
steps. First, the extension of the abstract syntax, i.e., the metamodel of ATL, has been com-
pleted. This step included the design and definition of new language elements as well as the
integration into the predefined structure. The second step assured that all modifications in the
abstract syntax are also present in the textual concrete syntax of ATL, requiring for a modifi-
cation of the respective artifact. In the final implementation step, an operational semantics has
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been defined. The operational semantics is needed to specify how new model elements of the
extended syntax are translated to elements of the standard syntax. The procedure followed in
this last step corresponds to the definition of a preprocessor. This preprocessor has been im-
plemented by means of a higher-order transformation (HOT), defined in the refining execution
mode of ATL. The benefits of this approach are the complete reuse of the standard ATL editor
as well as the ATL runtime.

The last step of the extension process has not been carried out without problems. In gen-
eral, higher-order transformations defined in the refining mode of ATL are a powerful technique.
They offer the possibility to modify ATL transformations by adding extra information. Trans-
formation elements that are not affected by a modification are simply copied. But, as every
technology has certain strengths, it also has a number of weaknesses. One such shortcoming
in relation to HOTs in refining mode was discovered during the implementation. An enormous
number of metamodel elements have to be instantiated for building very small ATL code frag-
ments. Change requests at a late stage of the implementation phase are a huge problem since the
entire HOT is affected and has to be changed. Consequently, a mature plan at the beginning of
the higher-order definition saves a lot of time and possible redesigns are considerably smaller.
The operational semantics defined for the ATL4pros extension required for the definition of var-
ious operational helpers. These helpers tend to become large and bulky. Therefore, a good
documentation about the functionalities and the expected results is inevitable. Furthermore, the
transformation rules require for a precise description for reproducing which rules are responsible
for the creation of which code statements. In summary, a well-documented HOT prevents the
ATL engineer from laborious maintenance tasks.

The need for a profile-specific extension proves that transformation languages like ATL have
to be able to align to new challenges as new technological requirements emerge. Especially in
the area of information technology a quick adaption is of most importance. In this context, it is
necessary to take a closer look at the term extensibility in connection with ATL and examine the
current status quo.
Basically, ATL is not designed for being enhanced with new language constructs by means of
extension definitions. Even though it is possible for independent developers to commit contribu-
tions for improving ATL, this requires for expert knowledge about the ATL language on the one
hand and the underlying architecture on the other hand. Such contributions are normally made
by members of the ATL development team and not by normal users. However, a proper interface
to plug in domain-specific extensions is missing. As outlined in Section 2.4 and also explained
in [8], the ATL framework itself has a modular structure. But this modularity is limited to the
ATL architecture itself. Comparable approaches for supporting modular language units are not
available to this day. However, it may be desirable for ATL users to have the possibility of
defining their own small language extensions for addressing domain-based requirements. Ap-
parently, the integration of such user-built extensions is not feasible with the current framework
and would require for a complete reconstruction of the ATL toolkit.

The topics higher-order transformation and modularity of ATL have been part of a lively
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discussion during the 3rd International Workshop on Model transformation with ATL1. All par-
ticipants of the workshop had either personal experience with the specification of a HOT or at
least knew the concepts behind this technique. Those who were using the ATL refining mode
for the definition of a HOT all agreed that (i) the specification is a highly time-consuming task
and that (ii) currently, no better alternatives are available. Therefore, developers who want to
extend ATL with new and innovative features or useful add-ons have to accept the fact that the
specification of HOTs is not unproblematic.
The second discussed topic concerning the modularity of ATL has been more difficult. All work-
shop members agreed that the need for extensions is given. Some argued that the structure of
ATL has to be changed completely if such extension points were to be provided. But, as ATL is
a very mature language with a comprehensive toolkit, it is doubtful if such a tremendous change
in structure is really achievable.
Others suggested that it would be better to focus on the further enhancement of higher-order
transformations and a rework of the ATL refining mode in order to integrate new extensions
more smoothly. This solution seems to be more promising since the further development of ATL
and its components is still in progress and a complete readjustment of the underlying structure
is complicated.
When talking about a potential improvement of the ATL refining mode, the latest contribution
of the drop implementation (cf. Section 4.4) sets a good example. This new feature is certainly
improving the refining mode by facilitating the deletion of model elements. Prior to this con-
tribution, a removal of elements has not been possible. The creation of more of this type of
features is hopefully the first step into the right direction and may lead to a better support of
domain-specific extensions.

The focus of this master’s thesis was set on the ATLAS transformation language and an ex-
tension based on UML profiles. However, the ability to tailor ATL and also other transformation
approaches to new, domain-specific needs and requirements may certainly become an important
quality criterion in the future. Presumably, the demand for such extensions will further increase
and modeling frameworks will have to adapt to the needs of the community.

7.2 Future Work

The current limitations of the ATL4pros extension discussed in Section 5.4 provide a good start-
ing point for future work. In particular, all present restrictions regarding the ATL elements may
be tackled in one step since all these limitations are only solved by a comprehensive redesign
and rework of the higher-order transformation. To be more specific, the following three issues
may be resolved as future work:

• Consideration of all rule types
Not only matched rules but also called and lazy rule may be considered in the extension.
As a result, the application of stereotypes is feasible for all three types of ATL rules.

1http://www.emn.fr/z-info/atlanmod/index.php/MtATL2011
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• Multiple source model elements
Mostly, only one source model element per transformation rule is defined. Regardless of
this assumption, an ATL engineer may have the chance to define multiple source model
elements.

• Direct support of rule hierarchy
Defining a stereotype application in an abstract rule may result in an automatic application
of the respective stereotypes in the subrules. As abstract rules ease the creation of model
transformations, this additional implementation detail may be useful.

However, what seems even more important as a goal for future work is related to the trace-
ability information between the extended and the standard ATL version. More precisely, en-
hanced debugging capabilities in form of advanced ATL editor features may be desirable. Stan-
dard ATL already provides a set of such facilities, e.g., including step-by-step transformation
execution, running a transformation to the next breakpoint, and introspection of variables. Apart
from debugging, also the disclosure of compile-time and runtime errors in the ATL editor is an
important feature.
Debugging and error messages are supported for the final preprocessed transformation, but not
for the transformation expressed in ATL4pros, which is the specification the transformation en-
gineer would prefer to debug. However, the ATL refining mode builds an internal change com-
putation model during its transformation process. Presumably, this model is used to store all
changes promoted by the matching rules, like created elements, deleted elements, and modifi-
cations of elements. Therefore, this computation model is somehow relating the two different
versions of the model transformation. Thus, the goal for future work is to explore the possibility
of using this change computation model to serialize information as an additional output model
by applying techniques as presented in [22, 56] for model-to-model transformations. It needs to
be studied if it is possible to enable debugging for transformations written in the extended ATL
syntax. In particular, debugging messages, state information, and further specific messages like
error messages may be propagated from the standard ATL transformation specification to the
ATL4pros transformation specification.
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