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Abstract

Recursions occur frequently throughout various areas of mathematics. To obtain a solution,
that is a closed formula for the numbers defined by the recursive equation, one may apply
the generating function approach. This involves encoding these numbers as coefficients of
a formal power series F . A functional equation which implicitly defines this function may
be derived from the recursion, however, it might be difficult to find an explicit expression
for the solution of the resulting equation. For certain cases, namely if the functional equa-
tion consists of a linear combination of F and a number of functions closely related to it,
the Kernel method provides a simple way to actually compute it. One finds couplings of
variables such that the numerator of the generating function, called the Kernel, vanishes.
Considering the combinatorial context and hence that F must have a formal power series
expansion, this yields additional equations for the involved entities, which are essentially
the generating function evaluated with special arguments. From this, an expression for
the generating function in general and subsequently the solution of the recursion may be
obtained.
The Kernel method, gaining popularity in the recent years, belongs to mathematical folk-
lore since the 1970’s and was most likely discovered several times by different authors. In
this thesis, inspired by Prodinger’s ”A collection of examples” (2004), we will present one of
those instances as given by Knuth (1968). Furthermore, we will demonstrate the usefulness
of the method in more sophisticated examples. We will study these in full detail, discuss
the necessary theorems and notions to understand the theoretical depth behind the Kernel
method and encounter some of its limitations.



Zusammenfassung

Rekursive Gleichungen finden oftmals Anwendung in vielen verschiedenen Gebieten der
Mathematik. Eine Lösung solcher Gleichungen, das heißt eine geschlossene Formel zur
Berechnung der durch die Rekursion definierten Zahlen, kann mithilfe einer erzeugenden
Funktion gefunden werden. Hierbei werden die Zahlen als Koeffizienten einer formalen
Potenzreihe F kodiert. Eine Funktionalgleichung, welche diese implizit definiert, kann aus
der Rekursion gewonnen werden. Es ist jedoch häufig sehr schwierig, daraus eine explizite
Darstellung der Funktion zu finden. Im speziellen Fall, dass die Gleichung eine Linearkom-
bination von F und einiger sehr ähnlichen Funktionen darstellt, bietet die Kernelmethode
ein einfaches Mittel, die erzeugende Funktion zu berechnen. Es werden dabei Kombinatio-
nen von Variablen gefunden, sodass der Nenner, der sogenannte Kernel, der erzeugenden
Funktion verschwindet. Aufgrund des kombinatorischen Kontextes folgt, dass F eine for-
male Potenzreihenentwicklung besitzen muss. Daher ergeben sich zusätzliche Gleichungen
für die betrachteten Objekte, welche im Wesentlichen der erzeugenden Funktion, ausge-
wertet mit speziellen Argumenten, entsprechen. Aus diesen kann eine allgemeine Formel
für die Funktion und damit die Lösung der Rekursion erhalten werden.
Die Kernelmethode, welche in den letzten Jahren zunehmend Popularität gewann, gehört
seit den 1970er Jahren zur mathematischen Folklore und wurde vermutlich von verschiede-
nen Autoren immer wieder neu entdeckt. In dieser Diplomarbeit, inspiriert von Prodingers
„A collection of examples” (2004), werden wir eine dieser Arbeiten von Knuth (1968)
präsentieren, sowie die Nützlichkeit der Methode in komplexeren Beispielen aufzeigen.
Wir werden diese in allen Details vorstellen, die nötigen Theoreme und Begriffe für das
Verständnis der Theorie hinter der Kernelmethode besprechen und die Grenzen der
Methode kennen lernen.
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1
Introduction

The Kernel method in combinatorics is an approach to solve certain kinds of functional
equations, which are not solvable using classical algebraic methods. It is not to be con-
fused with the so-called Kernel trick or Kernel methods in the field of machine learning.
Prodinger, whose collection of examples [Pro04] inspired this thesis, and Banderier and Fla-
jolet [BF02] state that it belongs to mathematical folklore for quite some time (probably
the 1970’s) and has seen a revival in the last few years. Most likely it has been ”redis-
covered” independently multiple times. Both of the aforementioned works cite a book by
Knuth as one of the more prominent and well documented instances (we will discuss it in
Chapter 2).
The argument has been turned into a real method, especially due to the works by authors
like Bousquet-Mélou and Petkovšek [BMP00] or the techniques presented in [BBMD+02].
It proved to be very useful for many kinds of counting problems and found applications
in various fields of combinatorics, such as path or tree enumeration. Despite the different
contexts, there is a unifying theme connecting those problems, which also describes the
workflow when using the Kernel method.
Our goal in this thesis is to give interested mathematicians (whether professional, student
or self-proclaimed) an insight into the workings of this technique - to this end, we will
state the required notions and theorems and proceed to carefully examine four examples
in the following chapters, where the the method is the key to solving the task: aside from
Knuth’s exercise mentioned before, we take a look at the enumeration of parking functions
3, vexillary involutions 4 and partially directed paths confined to a symmetric wedge 5.
Along the way we will try to point out the important concepts and arguments, as well
as compare the application of the Kernel method in these demonstrations. We hope to
convince the reader that most of the technical issues which arise can be taken care of and
convey the elegance of the underlying idea. To begin with, let us state the basics briefly
and in a very general form here.

1



1.1. THE KERNEL METHOD 2

1.1 The Kernel method

Given a counting task, it is often possible to find a recursive description for the involved
combinatorial objects. Sometimes it is also quite easy, or natural, to do so, for example
by using symbolic methods. Then one can introduce formal power series as generating
functions of the coefficients of the recurrence relation, which leads to a functional equation.
This equation, if equivalent to the recursion, uniquely defines the generating function as
a power series. Thus, if one can find a series which satisfies the equation, one obtains an
(more or less) explicit expression for the function. Note that there might be other kinds
of solutions, like rational functions, which we are not interested in. From this it might
be possible to find a power series expansion, yielding the solution of the recursion as the
coefficients of the series. Or if this is too complicated or does not give legible results,
an asymptotic analysis may be performed to determine the asymptotic behaviour of the
numbers defined by the recursion.
Clearly, it is not always that simple. While obtaining a functional equation might not be
the problem, solving it can prove to be very hard. One difficulty is that it might contain
too many variables. In special cases, the relation might be a linear combination of formal
series (usually ordinary power series), one of them being the unknown main generating
function F we are looking for, and the others some of its specializations, which do not
depend on all variables simultaneously. If we denote ~x = (x1, x2, . . . , xm) (analogously for
~y), this situation looks like

K(~x)F (~x) =
n∑
i=1

Qi(~x)F (~yi) +R(~x). (1.1)

Here, the series K,Q and R are given by the recursion defining this equation. The so-called
Kernel K is given as the coefficient of F (or rather its denominator) and will be the key to
solving the problem. For all (i, j) ∈ {1, 2, . . . , n}×{1, 2, . . . ,m}, the yi,j are such that not all
of the xj occur in the argument vector ~yi. Usually, some of these components are set to zero
or one and the remaining involve couplings of some, but not all, of the xj . Zeilberger [Zei00]
calls variables, which are merely introduced as aid during computations, catalytic. Like
Bousquet-Mélou, we will adopt this name for the yi,j which ”vanish” from the equation at
some point. Classes of equations with one catalytic variable always yield algebraic solutions
and have been well studied (see Section 1.2), while more catalytic variables also mean more
work to find a solution (in general).

Looking at the fundamental functional equation, one notices that it contains multiple
unknown entities - not only the generating function itself, but also its specializations.
Thus, solving it by simple algebraic manipulations is not possible. One then proceeds by
studying the Kernel and finding its roots, that is, couplings of variables such that K is set
to zero. Essentially, one expresses some of the catalytic variables as branches of (algebraic)
functions of the other arguments. Clearly these steps depend strongly on the form of
the Kernel. From this, one obtains new relations (by simply plugging in the roots of the
Kernel) for the unknown entities in the fundamental equation, as long as the substitution
of these branches into the generating function is analytically valid. Eventually, if enough
information can be obtained this way, one can find all of the unknown functions on the right
hand side of equation (1.1). Subsequently the main generating function may be obtained
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by division by the Kernel. This is a valid algebraic manipulation, even if the Kernel is
zero at the origin and therefore seems to yield singularities there, which implies that the
generating function is not a formal power series. However, it is already known a-priori
that the generating function admits a power series expansion, given the combinatorial
context. Thus, the Kernel has to be a factor of the right hand side and can be canceled
from the equation. This yields the solution to the functional equation and not only that,
it often provides a reasonable compact expression, too. Thus, even if the coefficients can
not be read off easily, the results for the generating function can be used for an asymptotic
analysis.
For our purposes this informal description shall be enough. A similar basic introduction
can be found in a summary for a seminar held by Bousquet-Mélou [BM01a]. Concrete
examples for equations will follow, and should provide enough insight to understand which
types of equations are likely to be successfully attacked with the Kernel method.

One key aspect of the Kernel method is the ”mechanic” nature of the proofs it is applied in.
In every field of mathematics, often multiple proofs for the same statement can be found,
sometimes differing radically from each other in their main ideas. This is not different
for combinatorics. Indeed, there are several techniques which provide a backbone of tech-
niques to try for a given combinatorial problem, including e.g. the bijective proof, double
counting, recursion and/or the generating function approach. Sometimes all of these and
more can be used to show that a certain theorem holds.
The Kernel method certainly belongs to the class of techniques which carry an implicit
outline of the proof they are applied in. In short, given a combinatorial problem, the
recipe is to define an appropriate generating function (by e.g. finding a recursive descrip-
tion first) and derive a functional equation for it. If it can not be solved directly and is of
the form (1.1) we have specified above, the Kernel method in one of its flavors might be
applied. Afterwards, one hopefully proceeds by simplifying the result to obtain an expres-
sion for the generating function and extracting its coefficients, if necessary. Multiple other
steps might be necessary to accomplish that, as shown, for example, in Chapter 4. But in
general the way to go on is clear, albeit not easy to follow sometimes.
This also demonstrates one of the reasons for the usefulness of the Kernel method - it works
on the level of generating functions and hence, not directly in the language of the combi-
natorial problem itself. Speaking about functional equations remains the same, regardless
where that equation is coming from. Therefore, it is possible to understand results with
little knowledge of the actual problem’s background - (essentially) all one needs to know
is how to derive a recursion.
Now, that is certainly not to everyone’s liking. There is a saying by Wilf, that ”bijec-
tive proofs give one a certain satisfying feeling that one really understands why a theorem
is true” (this does not mean that he does not approve of the use of generating functions,
though, since he wrote this in his book about them [Wil94] ). Or, as in [Yan01]: ”Whenever
a result is found by generating function analysis, a combinatorial explanation is expected.”
But on the other hand, as Bousquet-Mélou states [BM01b] ”finding proofs from the other
end of the spectrum, of a more mechanic fabrication, is interesting in its own right”. Others,
like Zeilberger, would surely applaud to this - his sometimes controversial idea is to teach
computers do mathematics and he has written numerous programs to this end [Zei]. The
author himself believes, too, that it is certainly useful to have an approach which can be
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applied to many problems in the same way, with only small alterations, in strong contrast
to, e.g., bijective proofs which require a lot of adaption to the current task.
Moreover, the Kernel method might provide a starting point for problems which could not
be tackled otherwise yet or make finding a result easier. Identities derived in such a way
could show underlying combinatorial interpretations and connected entities more clearly
and point a direction in which to look for, when trying to fully ”understand” the problem
(by e.g. finding a bijective proof). Examples for such situations can be found in [BM05],
where a result is rederived in a systematic manner using the Kernel method (the earlier
solutions were partially guessed), in Chapter 4, where the already known bijection had an
even more complicated proof, or in Chapter 5, where certain generating functions have
combinatorial interpretations, but whose form could not be derived from that using other
techniques (at least not at the time of writing).
Clearly, what is considered to be an elegant or ”combinatorial” proof might be open for
discussion, but the Kernel method proves to be well suited for producing results and solving
problems and can thus be deemed successful.

Despite its mechanistic nature, many insightful steps are necessary to successfully apply
the Kernel method in a proof. Modern day helpers, that is, computer algebra systems
such as the well known Maple or Mathematica, are big timesavers when manipulating long
algebraic expressions and working with generating functions (see e.g. the GFun [SZ94] or
Zeilberger’s packages for Maple). In fact, Maple was used sometimes for deriving equations
in this paper, although the author also tried to recapture the results manually, too. And it
proved to be possible, as outlined in this thesis. Also, while the number crunching abilities
of the computer systems are much more sophisticated than a human’s, and often less error
prone, they do need a guiding hand to be able to work with some expressions efficiently (e.g.
that involves choosing the right square root of a quadratic expression, so that terms can
be canceled). Nevertheless, the Kernel method, involving generating functions and many
equations, is well suited to put the calculation power of modern computers and symbolic
math software to good use.

1.2 Further generalizations and references

In this section we want to give a brief and very incomplete overview of how the Kernel
method is used nowadays and provide some references to continue, if the reader’s appetite
is whet after the lecture of the examples presented here. Clearly, there is a vast amount of
literature using the notion of the Kernel method, but since it is more of a computational
aid, it is rarely the main topic of the specific paper. Thus, let us only mention a few more
specialized ones, which are not mentioned prominently elsewhere in this thesis.

First off, the inspiration for this thesis was mainly Prodinger’s collection of examples, where
some more demonstrations of the technique can be found. However, he does not really
mention the various flavors the Kernel method comes in. Besides the ordinary version,
we will get to know the so-called obstinate and iterated versions (in Chapters 4 and 5
respectively). Furthermore, there is also an algebraic variant, which is somewhat different.
It is mentioned in papers by Bousquet-Mélou (e.g. [BMM08, BM05]) and in contrast to the
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usual Kernel approach, it does not require that the Kernel is set to zero. It suffices to find
couplings of the variables such that the Kernel remains constant. This can be easier than
finding its roots, but on the other hand, the resulting equations obtained by plugging in
said couplings can be more complex. Compared to the ordinary Kernel method, all of its
variants (especially the iterated and algebraic) have not found as many applications yet.

It is not a coincidence that Bousquet-Mélou is mentioned so often in this thesis - many
of her publications use the Kernel method in one of its forms. Besides the papers already
cited in this thesis, there are too many to reference here (the author counted over a dozen
at her homepage and he surely missed a few). She has also contributed to the development
of the method (e.g. in [BBMD+02]), its variants and to frameworks of solving certain
problems, in which the Kernel method plays a central role.
As an example, in [BMM08] she shows together with Mishna how the approach can be
used to systematically solve enumeration problems for certain kinds of lattice walks.
In [BMJ06] polynomial equations of the form p(F (t, x), F1(x), F2(x), . . . , Fk(x)) = 0 are
studied, where F (t, x) and Fi(x), i ∈ {1, 2, . . . , k} are formal power series. From this,
using a generalization of the Kernel method, new relations for all of the occurring series
are computed, which leads, among others, to applications in solving certain enumeration
problems.
Together with Petkovsek [BMP00] she also determined the nature of generating functions
stemming from multivariate, linear recursions with constant coefficients. They used the
essential ideas of the Kernel method to solve the algebraic case. This is an especially nice
application of the method and provides much background on how to apply it in a very
general context.

There are also some recent works by Mansour (who also has some papers using the Kernel
method, e.g. [Man06, Man07]) and Song [MS09] and Hou [HM08, HM11] in which they
study a generalization of the Kernel method to solve equation systems in which the number
of unknowns exceeds the number of equations, whereas one usually only deals with one
equation. They also include some applications for their method.

Another very similar method, in the sense that it provides a way to solve certain cases
of functional equations coming from combinatorial problems, appears to be the so-called
quadratic method, introduced by Tutte [Tut63] for the study of rooted maps. Such maps
are a special case of planar maps, which consist of a connected planar graph and an
embedding in the plane, such that one vertex and one incident edge are distinguished as
a root. The key difference is that the fundamental functional equation is quadratic in the
main generating function, unlike the equations considered here, which are linear in this
function. This approach is also briefly discussed in [BM01a, BM02].
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1.3 Notations, a little background and Theorems

Let us briefly make some remarks about the notation and recall some of the necessary
theorems we are going to use repeatedly. All of these tools will be rather basic and well
known in the field of combinatorics, so any introductory or intermediate text should provide
more background for the interested reader (good examples are [Sta99a, Sta99b, FS09].
We will make heavy use of generating functions of sequences, which are essentially ”a
clothesline on which our sequence is hanging out to dry”, as Wilf describes them in [Wil94].
His book is also an excellent resource to get a nice overview of the generating function
approach. Note that for brevity as well as clarity, we will often omit certain arguments of
generating functions, if the context allows it without (too much) ambiguity.

To begin with, let R = (R,+, ·,−, 0, 1) be a unit ring.
Denote by R[x] :=

{∑n
i=0 rix

i : n ∈ N, ri ∈ R
}

the ring of polynomials in the variable x with
coefficients in R. If one allows infinite sums, one obtains the ring of formal power series
R[[x]] :=

{∑
i≥0 rix

i : ri ∈ R
}

. Furthermore, we denote polynomials in x and x := 1/x as
R[x, x], the ring of Laurent polynomials. The field of Laurent series in a variable x include a
finite number of negative powers and are given by R((x)) :=

{∑
i≥−n rix

i : n ∈ N, ri ∈ R
}

.
The positive part of a Laurent series is the formal power series obtained by omitting all
negative powers xi with i < 0, i.e. starting the summation at i = 0.

The elementary operation addition and subtraction of formal series (and thus, by replacing
infinite with finite sums, on polynomials) are defined coefficientwise,∑

i≥0
fix

i +
∑
i≥0

gix
i :=

∑
i≥0

(fi + gi)xi,

whereas the multiplication is given by the so-called Cauchy product:

∑
i≥0

fix
i ·
∑
i≥0

gix
i :=

∑
i≥0

 i∑
j=0

ajbi−j

xi.
A formal power series F (x) ∈ R[[x]] is called invertible if 1/F (x) is also in R[[x]]. This is
the case if and only if the constant term

[
x0]F (x) has a multiplicative inverse in the ring

R.
The composition of two series F (x) =

∑
i≥0 fix

i and G(x) =
∑
i≥0 gix

i is defined by

F (G(x)) :=
∑
i≥0

fiG(x)i.

Note that this requires g0 = 0, otherwise the coefficients
[
xi
]
F (G(X)) may depend on

infinitely many coefficients of F (x) and G(x). A formal power series F (x) with no constant
term has a composition inverse F−1(x) ∈ R[[x]], for which F (F−1)(x) = F−1(F (x)) = x
holds, if and only if

[
x1]F (x) is invertible in R.

This summarizes the essential facts about power series we will need. All of these notions, as
well as the following, can be generalized to a finite number of variables in a straightforward
manner.
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To introduce some further notions concerning formal power series, let K be a field of
characteristic zero.
We say that a series F ∈ K[[x]] is rational, if there exist polynomials p(x) and q(x) 6= 0
in K[x] such that F (x) = p(x)/q(x). The series F is algebraic if there exists a polynomial
p(x, y) 6= 0 in K[x, y] such that p(x, F (x)) = 0. It is algebraic of degree m if p(x, y) has
degree m in y and there is no polynomial of strictly lower degree for which the same relation
holds. If F is not algebraic, it is said to be transcendental. Lastly, if F satisfies a nontrivial
linear differential equation with polynomial coefficients, i.e., p0(x)F (x) + p1(x)F ′(x) +
. . . + pk(x)F (k)(x) = 0 with pi(x) ∈ K[x], ∀i ∈ {1, 2, . . . , k}, then F is called D-finite or
holonomic.

A result based on the formal residual calculus, which we will use regularly is the Lagrange
inversion formula. We state it as a theorem:

Theorem 1.1 (Lagrange inversion formula). Let F (x) and ϕ(x) be in K[[x]], such that[
x0]ϕ(x) 6= 0, i.e. ϕ(x) is invertible. Let z = x/ϕ(x). Then it holds that

[zn]F (x) = 1
n

[
xn−1

]
F ′(x)(ϕ(x))n, n ≥ 1,[

z0
]
F (x) =

[
x0
]
F (x).

There are many proofs for this statement and the same holds for another helpful result,
which we will borrow from complex analysis. It can often be applied in the combinatorial
setting of generating functions.

Theorem 1.2 (Cauchy’s Coefficient Formula). Let F (x) be a complex function and assume
it is analytic in a region (i.e. an open set) around the origin. Then the coefficients of the
power series representation of F (x) are given by

[xn]F (x) = 1
2πi

∮
F (x)
xn+1 dx, ∀n ∈ N,

where the integral is evaluated along any simple loop around 0 within the region of analyt-
icity.

Many further statements from mathematical (complex) analysis can be carried over to the
context of formal expressions and power series. Proofs for the two aforementioned theorems
can be found in [FS09], as well as a little footnote which sums up the formal construction
of series concisely: ”for simplicity, our computation is developed using the usual language
of mathematics. However, analysis is not needed in this derivation, and operations such
as solving quadratic equations and expanding fractional powers can all be cast within the
purely algebraic framework of formal power series” (for deeper consequences, see Part B
of said book).
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There are many series with well known expansions, such as the geometric or the binomial
series:

1
1− x =

∑
i≥0

xi,

(1 + x)α =
∑
i≥0

(
α

i

)
xi, for α ∈ R,

where the real binomial coefficient is given by
(α
i

)
= (α(α−1)(α−2) . . . (α−i+1))/i!. Nat-

urally, they also hold for their combinatorial counterparts and we will use them throughout
this thesis.

Now, for any sequence (fi)i∈N ∈ RN (where R can be a ring, a field or actually any set -
however, we only require the first case) we can define

F (x) :=
∑
i≥0

fix
i and F̂ (x) :=

∑
i≥0

fi
xi

i! ,

which are called the ordinary respectively the exponential generating function of the se-
quence. Since we will mainly work with the former ones, we will omit the term ”ordinary”
in this thesis. On the other hand, the expansion of a series is given by the sequence of its
coefficients, which we denote by

[
xi
]
F (x) or

[
xi/i!

]
F̂ (x).

To finish this section, let us recall some more, unrelated notations which we will need.
Given two complex functions f(x), g(x), we say that they are asymptotically equivalent,
denoted by the symbol ∼, if limn→∞ f(n)/g(n) = 1. We write f(x) = O(g(x)) if there are
positive, real numbers c and x0 such that |f(x)| < c|g(x)| for all x > x0.

As everywhere else in the literature, we will omit parentheses and commas when writing
out permutations using the one-line notation. We call this the word representation of the
permutation.

Since we will use it quite often, let us briefly and informally introduce the notion of lattice
paths: given a set of allowed moves from one node of the lattice (for example N×N, Z×Z
or 3-dimensional lattices) to another, a lattice path is a sequence of such moves, starting
with a specified starting point. A path is not allowed to visit a node twice.
A very similar concept is a lattice walk: it is a path which may revisit earlier points.
Closely related are random walks, too. These need not to be restricted to a lattice and are
essentially a random process which consists of discrete steps of a certain length.
These very general descriptions allow the definition of many different kinds of combinatorial
objects. Their study is among the most classical subjects of combinatorics and other related
fields of mathematics. Consequently, there is a vast amount of literature about this topic.
Connections to the Kernel method and secondary references are provided by the papers
cited in Chapters 2, 4, 5 or for example in [BM02, BG06].



2
Knuth’s exercise

Following the example of [Pro04], we shall introduce the basic idea of the Kernel method
by solving Knuth’s quite famous exercises 2.2.1.1. - 5. from the first volume of his book
”The art of computer programming” [Knu68]. It can certainly be regarded as one of the
earlier appearances, if not as one of the possible origins of the technique nowadays called
the Kernel method. In the book it was presented as yet another method of solving certain
functional equations.

Knuth considered a data structure called a stack. It consists of a linear sequence of objects,
which are added or removed at one end (the top) in a last-in, first-out manner. In his
analogy, railway cars on the right hand side (the input) of a railway switching network,
shown in Figure 2.1, need to be moved to the left (the output) by using an auxiliary rail
(the stack).

Figure 2.1: Knuth’s analogy of a stack.

9
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Only two reasonable actions are possible:

• move the leftmost car (if the input is not empty) from the input into the stack (a
so-called push operation)

• move the topmost car (if the stack is not empty) from the stack into the output (a
pop operation)

Let us label each car in the input end-to-end to numbers from 1 to n, starting at the
leftmost position. Then, if one carries out a random sequence of these moves until all
vehicles are in the output, we obtain a permutation of {1, 2, . . . , n} by looking at these
labels, as in the following example.

Example 2.1. Starting with 1234 we carry out a sequence of random actions, which is
depicted in the table below. The number moved by the current action is underlined and
the active ends of input, stack and output are framed. Recall that push moves a number
from the left hand end of the input to the top of the stack respectively pop from the top
of the stack to the right hand end of the output.

Output Stack Input Operation
∅ ∅ 1 234 -
∅ 1 2 34 push
∅ 2 1 3 4 push
2 1 3 4 pop
2 3 1 4 push

2 3 1 4 pop
23 1 ∅ 4 pop
23 1 4 ∅ push
2314 ∅ ∅ pop

From the output we read off the permutation 2314 as the result.

Obviously there are some permutations which will never occur on the left hand side of the
switch - take for example any one starting with the pattern 312. Indeed, in exercise 5. of
Knuth’s book it is shown that a permutation π can be obtained using a stack if and only
if there are no indices i < j < k such that π(j) < π(k) < π(i), in which case we say that π
avoids the pattern 312. This also marks (part of) the beginnings of today’s very popular
study of pattern avoidance (we will talk a bit more about this topic in Chapter 4).

Now, the task given in Knuth’s exercise is the following:

Task 2.2. Provide a simple formula for the number an of permutations of n elements
which can be obtained using a stack as described above.
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Before we proceed to solve this counting problem, let us remark that another closely related
notion are one-stack-sortable permutations. They can be introduced as follows: instead of
starting with the identity 12 . . . n on the input side, one starts with a given permutation
and tries to sort it using a stack (i.e. such that the output is the identity). One can
prove that this is possible if and only if the permutation does not contain the pattern 231,
that is, there are no indices i < j < k such that π(k) < π(i) < π(j). By inverting (with
regard to composition) such a permutation, one obtains another permutation containing
312, thus establishing a bijection (a trivial Wilf-equivalence [Wil02]) which proves that an
counts one-stack-sortable permutations, too. See [Lim07] for an introduction and [Bón03]
for further informations on this topic.

2.1 Solving the exercise with a reflection principle

In this section we will give an explicit formula for an by using a technique commonly
attributed to Désiré André [And88] (although some [Ren08] state that the actual reflection
principle is merely a variation of André’s proof). It was introduced in 1887 to provide an
elegant solution to the ballot problem formulated by Joseph Bertrand [Ber88] earlier that
year. Interestingly, Betrand’s own solution to the problem (using induction) appears only
a few pages before the article by Andrè in the same journal.

Let us denote a push action by I and a pop action as O. To move all n cars from the right
hand side to the left, we need exactly 2n operations. These can be coded as a sequence
of two symbols of that length, of which n are of the type I (every car must go into the
stack once) and the remaining of type O (every car is retrieved from the stack once). As
stated before, not every possible sequence of length 2n, using both symbols equally often,
is reasonable - if a symbol O appears next, the auxiliary rail must not be empty, or else
no car can be retrieved from the stack. Thus, assuming we are reading from the left, the
number of O’s never exceeds the number of I’s.

Definition 2.3. In this chapter, we will call a (finite) sequence of two symbols I and O
admissible iff O never outnumbers I throughout the sequence.

Examples for such sequences are IIOIOIOO, IOIOIOIO or IIIOOO (following the no-
tation of permutations, we will omit enclosing parentheses and separating commas).
As a remark, sequences of such a type are more commonly known as Dyck words (if one
replaces the symbols I and O with integers - see for example [FS09], example 1.16., or
[Duc00]).
Note that different sequences give different outputs from the stack. To see this, consider
two sequences of length 2n which agree until one of them has I and the other O as the next
symbol. That means that the first one puts a number into the stack which must necessarily
occur after the number which is just moved to the output by the latter one. Hence, the
resulting permutations differ at this point.
The other direction is clear and thus we can establish a bijective relationship by mapping
an admissible sequence of length 2n to the permutation of n elements given in the output
after carrying out the coded actions.



2.1. SOLVING THE EXERCISE WITH A REFLECTION PRINCIPLE 12

Example 2.4. To give a simple example for such a correspondence, let us state it explicitly
for permutations of length 3:

123↔ IOIOIO, 132↔ IOIIOO, 213↔ IIOOIO,

231↔ IIOIOO, 321↔ IIIOOO.

Recall that 312 can not be obtained by a stack and indeed, there is no other admissible
sequence of length 6 other than those given above.

So, the task of counting permutations is translated to:

Task 2.5. Provide a simple formula for the number an of sequences of length 2n, in which
the symbols I and O each occur exactly n times and which are admissible.

Before attempting to solve the task, we will introduce Bertrand’s ballot problem, which is
closely related to it and whose proof will be applicable for our purposes.
Assume that two candidates I and O are running in an election, where i votes are cast
for candidate I and o for candidate O, such that i > o. The question then is, what is the
probability that I has strictly more votes than O throughout the counting of the ballots?
Our problem is a slight variant of the above, since we additionally allow that i = o and
that I and O can be tied during the counting. Clearly, we can represent all such elections
by sequences of two symbols I (a vote for candidate I) and O (a vote for candidate O) with
length i+ o. Using Definition 2.3 above, we are only looking for admissible sequences of a
given length, in order to ensure that I never falls behind O. Hence, we can follow Pólya’s
suggestion [Pól04] to actually prove more than we actually need and generalize Task 2.5
to:

Task 2.6. Provide a simple formula for the number of sequences of length i+ o, in which
the symbols I and O occur exactly i and o times respectively and which are admissible.

To compute this number, we will apply an elegant reflection principle for lattice paths on
the cartesian plane, using the following model:

Definition 2.7. In this section, we consider (restricted) lattice paths on N×N which are
starting at the origin, such that the only allowed actions are: from (n,m) one can move to
(n+ 1,m) (east) or to (n,m+ 1) (north).

There is a straightforward interpretation of an election or equivalently of sequences of two
symbols I and O of length i+ o as paths as in the definition above:

• start at the origin (0, 0)

• whenever a vote is cast for candidate I (symbol I appears next in the sequence),
move east

• whenever a vote is cast for candidate O (symbol O appears next in the sequence),
move north
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Every such path leads to the point with coordinates (i, o). Admissible sequences define
admissible paths which never cross the main diagonal line, defined by y(x) = x, where
the horizontal coordinate equals the vertical one. Counting them will yield our numbers
an. Instead of doing that directly, we will determine the number of inadmissible paths and
subtract them from the number of all possible ones, which gives the following theorem.

Theorem 2.8. The number of admissible sequences of length i + o, as defined above, is

given by i+ 1− o
i+ 1

(
i+ o

i

)
.

If furthermore i > o, the probability that the first candidate stays strictly ahead of the second
one throughout the counting of the ballots is i− o

i+ o
, solving Bertrand’s ballot problem.

Proof. Let p = (p1, p2, . . . , pi+o) be an inadmissible sequence respectively path (we will use
these terms interchangeably). Find the smallest index j such that pj = O and both symbols
occur equally often to the left of pj (i.e. j is the smallest index where O outnumbers
I). Switch the roles of the symbols within the part of the sequence leading up to and
including pj by replacing every occurrence of I by O and vice versa. As an example, if p =
IIOIOOOIIOIOI, then j = 7 and the corresponding new sequence is OOIOIIIIIOIOI
(for a visualization of the corresponding paths see Figure 2.9).
Thus, we reflect the first fraction (p1, p2, . . . , pj) of the path along the diagonal line given

−1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

n

m

Figure 2.9: Inadmissible path (gray, dots) and path (black, crosses) partially reflected
along the line y(x) = x+ 1.

by y(x) = x + 1, giving rise to the name of the method. We obtain a new path p′, which
contains i + 1 copies of the symbol I and o − 1 copies of O. Note that by mirroring we
do not alter the endpoint of the path, but we do change the starting point - the path now
begins at (−1, 1) instead of (0, 0).
Conversely, given any such path, we can reconstruct the inadmissible path it must come
from by reversing the aforementioned process of switching symbols.
This shows that there is a bijection between inadmissible sequences and paths leading
from (−1, 1) to (i, o) with the specified amount of symbols but, and this is the point of the
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mirroring process, without further restrictions. It is easy to compute their number: out of
i+ o places, exactly i+ 1 must be chosen to put I there, padding the rest with O’s. There
are

(i+o
i+1
)

ways to do this.
Using a similar reasoning, the number of all possible paths from (0, 0) to (i, o) is given by(i+o
i

)
and we finally obtain the number of admissible paths by subtracting the inadmissible

paths: (
i+ o

i

)
−
(
i+ o

i+ 1

)
=
(
i+ o

i

)(
1− o

i+ 1

)
= i+ 1− o

i+ 1

(
i+ o

i

)
.

For completeness, we will also derive the probability from Bertrand’s original problem
(which requires i > o and that the symbol I strictly outnumbers O at all times). The
first candidate gets the initial vote with a probability of i

i+o . Using our above formula,
in i−o

i

(i−1+o
i−1

)
cases out of

(i−1+o
i−1

)
possible ones, I will stay ahead of or be tied with O

throughout the counting of the remaining i + 1 − o ballots, giving a probability of i−o
i .

Multiplying leads to the final result of i−o
i+o .

Theorem 2.8 provides the reasonably simple formula for the numbers an of Knuth’s exer-
cise 2.2. By setting i = o = n, we obtain

an = 1
n+ 1

(
2n
n

)
, n ∈ N

thus recovering a very well known sequence of numbers, called the Catalan numbers. They
are named after the Belgian mathematician Eugène Charles Catalan, although they were
already known to others before him (for example, Euler mentioned them in a letter to
Goldbach [Eul]).
Apart from that, they occur in too many classic problem in combinatorics to name them
all (as of December 2010, 190 applications were listed by Richard Stanley [Sta98, Sta10]),
so we only mention a few examples, such as the number of full binary trees with n + 1
leaves, the number of triangulations of a convex polygon with n+ 2 sides or the number of
permutations of {1, 2, . . . , n} which avoid the pattern 123. The first few Catalan numbers
are given by 1, 1, 2, 5, 14, 42, 132, 429, 1430, . . . and the sequence is listed as entry A000108
in the on-line encyclopedia of integer sequences [OEI11], where additional references can
be found.

2.2 Solving the exercise with the Kernel method

We have seen that it is not necessary to make use of the Kernel method for solving Knuth’s
historical exercise 2.2 or the ballot problem 2.6. Aside from some natural correspondences
between sequences and paths, it involved a lot of creativity to find the reflection principle,
establishing the key bijection to make counting easier. It might always be possible to
employ a bijective proof, but nevertheless it can prove to be very difficult. In addition, as
we have argued in the introduction to this thesis, to develop a consistent framework which
can be applied to many problems of a certain kind in the same way is valuable. Therefore,
in this section we will take a new, more general approach to our introductory examples
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and point out some concepts from the introduction. This, as well as the following chapters
of this thesis, will demonstrate that the Kernel method is often a good, and sometimes the
only known, way to start tackling the problem.

In order to use the Kernel method, we need to formulate a functional equation for a
generating function. Again, we employ a model of lattice paths.

Definition 2.9. In this section, we consider restricted lattice paths on the grid N × N
which are starting at the origin, such that the only allowed actions are: from (n,m) one
can move to both (n+ 1,m± 1) (northeast respectively southeast) if m > 0 or to (n+ 1, 1)
(northeast) if m = 0.

For any admissible sequence of two symbols I and O as in Definition 2.3 we can define such
a lattice path with starting point (0, 0) by:

• if a symbol I appears next, move northeast from (n,m) to (n+ 1,m+ 1)

• if a symbol O appears next, move southeast from (n,m) to (n+ 1,m− 1)

Observe that the move for O is always well defined, as m > 0 holds (i.e. the stack is
not empty or the symbol I outnumbers O) when this symbol occurs, given an admissible
sequence.
Conversely, it is clear that a path given by Definition 2.9 ending in (n,m) can be mapped
to an admissible sequence of length n in which the number of I’s exceeds the number of
O’s by m: for every move northeast (the second coordinate may be zero), add a symbol
I to the (right hand side of the) sequence and for every move down an O. Thus, another
simple bijection between paths and sequences is established.
To find the formula from Task 2.2, we need to compute the number of paths with the
endpoint (2n, 0), for n ∈ N, since they correspond to admissible sequences in which both
symbols occur equally often. Note that there are no paths ending in (2n+1, 0) - to reach 0
in the second coordinate, one must go down once for every time one went up earlier, thus
enforcing an even number of moves. Figure 2.10 depicts the paths for the permutations
from our earlier Example 2.4.

For every n,m ∈ N, let fn,m be the number of paths as in Definition 2.9 ending in (n,m)
and define a family of generating functions

∀m ∈ N : fm(x) :=
∑
n≥0

fn,mx
n.

Obtaining recursions describing the fn,m is straightforward. Obviously we have f0,0 = 1
(taking care of the empty path) as well as fn,0 = fn−1,1 since every path from (0, 0)
to (n, 0) corresponds to a path going to (n − 1, 1), adding a step southeast at the end.
Similarly, for m ≥ 1, a path ending in (n,m) can be constructed from one ending in
(n− 1,m− 1) or (n− 1,m+ 1) by going up respectively down in the next step, leading to
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Figure 2.10: The paths corresponding to the permutations 123, 132, 213, 231 and 321
(from top left to bottom right).

fn,m = fn−1,m−1 + fn−1,m+1. Putting these results into the definition above yields:

f0(x) =
∑
n≥0

fn,0x
n = 1 +

∑
n≥1

fn−1,1x
n = 1 + x

∑
n≥0

fn,1x
n = 1 + xf1(x).

Using the same manipulations we obtain a recursion for fm(x) with m ≥ 1, resulting in

Recursion 2.10.

f0(x) = 1 + xf1(x), (2.10a)
fm(x) = xfm−1(x) + xfm+1(x), m ≥ 1. (2.10b)

Now we introduce the bivariate generating function which encodes the general solution to
our problem.

Definition 2.11. Define the generating function for lattice paths as given in Definition 2.9,
enumerating them by the position (n,m) of their endpoint as

F (x, y) :=
∑

n,m≥0
fn,mx

nym.

In the following theorem, we will establish the desired functional equation for the applica-
tion of the Kernel method:

Lemma 2.12. The formal power series F (x, y) is the unique solution of(
xy2 + x− y

)
F (x, y) = xF (x, 0)− y.



2.2. SOLVING THE EXERCISE WITH THE KERNEL METHOD 17

Proof. The proof is simple. Rewrite F (x, y) =
∑
m≥0 fm(x)ym, multiply (2.10b) with ym

and sum for m ≥ 1:

F (x, y)−f0(x) =
∑
m≥1

(xfm−1(x)+xfm+1(x))ym = xyF (x, y)+ x

y
(F (x, y)−f0(x)−f1(x)y).

Adding f0(x), while using both, (2.10a) and the identity f0(x) = F (x, 0), along with some
further manipulations eventually yields the desired functional equation for F (x, y):

F (x, y) = xyF (x, y) + x

y
(F (x, y)− F (x, 0)) + 1

⇐⇒
(

1− xy − x

y

)
F (x, y) = 1− x

y
F (x, 0)

⇐⇒
(
xy2 + x− y

)
F (x, y) = xF (x, 0)− y,

which concludes the proof. This relation is equivalent to the recursion, implying uniqueness
of its solution. Thus, it may also be used as an (implicit) definition of the generating
function.

The equation above is a prototypical example, suggesting the use of the Kernel method.
To be more specific, Lemma 2.12 provides a linear combination involving one main formal
power series and (in this case) one related series which only depends on x, i.e. not on all
generating variables simultaneously. In our case, y plays the role of a catalytic variable,
i.e. it vanishes from the equation by being set to zero, as described in Chapter 1.
Regardless, at first glance the equation seems to contain two unknown variables, F (x, y)
and its specialization F (x, 0), thus leading to nothing. Plugging in y = 0 results in an
useless tautology. This is the point at which the Kernel method is applied in order to
extract the necessary information (that is, additional relations) for solving the equation.
As outlined in the introduction, the first step consists of setting the Kernel of the equation
to zero.

The Kernel is the coefficient of the main generating function F (x, y) in Lemma 2.12. Here it
is a simple quadratic polynomial in y, so we can factorize it easily: K(x, y) = xy2−y+x =
x(y − Y1(x))(y − Y2(x)) with

Y1,2(x) = 1∓
√

1− 4x2

2x .

For a visualization, the algebraic curve, defined by the equation K(x, y) = 0, is depicted
in Figure 2.13 (note the different scaling for the axes). Also shown there are the roots:
Y1(x) for x ∈ (−0.5, 0.5) and the two branches of Y2(x) for x ∈ (−0.5, 0.5) \ {0}. In this
domain, the discriminant 1−4x2 is greater than zero and hence the values are real numbers.
Eventually we want to plug the roots into the generating function F . To ensure that this is
a valid substitution, we need to analyze them to check if they actually define formal power
series in x without a constant coefficient (otherwise the composition of power series might
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Figure 2.13: Left: The algebraic curve defined by K(x, y) = 0.

Right: The roots of the Kernel (Y1: dashed line, Y2: solid line).

not be well defined). Using the formal binomial series we can expand Y1(x):

Y1(x) = 1−
√

1− 4x2

2x = 1
2x

1−
∑
k≥0

(
1/2
k

)
(−4)kx2k


= − 1

2x
∑
k≥1

(−1) ·
(

2(k − 1)
k − 1

)
2x2k

k
=
∑
k≥1

(
2(k − 1)
k − 1

)
x2k−1

k
.

Hence, limx→0 Y1(x) exists and it is equal to zero since the series does not have a constant
term. We further observe that y − Y1(x) ∼ y − x→ 0 if (x, y)→ (0, 0).
On the other hand, by comparing with the coefficients of K(x, y), we see that Y2(x) tends
toward ∞ as x → 0, since Y1(x)Y2(x) = 1 holds. Therefore, there is no formal power
series expansion around the origin for Y2(x). Indeed, its formal Laurent series expansions
involves 1/x as its first term, as the constant term of the square root expansion and the
term one in the formula of Y2(x) do not cancel each other. This indicates a pole at the
origin.
Now observe that Y1(x) and Y2(x) occur in the Kernel of 2.12, that is, the denominator of
the generating function. Solving for F , we rewrite

F (x, y) = xF (x, 0)− y
xy2 + x− y

,

which means that we have to take into account the reciprocals of the aforementioned
factors. Hence, 1

y−Y1(x) → ∞, while 1
y−Y2(x) → 0 as (x, y) → (0, 0). Seemingly, no power

series expansion exists for F (x, y) around (x, y) = (0, 0) given that one of its factors has a
singularity at the origin.

This can not be the case, however: by definition as the generating function of the solvable
Recursion 2.10, F (x, y) must have a formal power series expansion with coefficients fm,n ∈
N. Thus, a singularity at the origin can not exist, which means that y − Y1(x) must be a
factor of the numerator as well.
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In particular this implies F (x, Y1(x)) = 0, which holds the key information we need to
solve the functional equation for F .

Consequently, it is valid to plug in Y1(x) for y. Whence we obtain a new relation 0 =
F (x, Y1(x)) = xF (x, 0)− Y1(x), from which the formerly unknown variable F (x, 0) can be
computed:

F (x, 0) = Y1(x)
x

= 1−
√

1− 4x2

2x2 . (2.14)

This is essentially the standard result after the application of the Kernel method: an
additional equation for a specialization of the main generating function. In this case, the
catalytic variable y has vanished as argument to F . Furthermore, comparing this to the
well known generating function for the Catalan numbers (it can be obtained by using the
expansion for a binomial series)

C(x) =
∑
n≥0

(
2n
n

)
xn

n+ 1 = 1−
√

1− 4x
2x ,

we observe that F (x, 0) = C(x2). Reading off the coefficients which are the solution to our
initial problem Task 2.2, recovers our result from the previous section:

an = f2n,0 = [x2n]f0(x) = [x2n]F (x, 0) = 1
n+ 1

(
2n
n

)
.

Of course, it is also quite simple to find the expansion of F (x, 0) in exactly the same way
as we did before for Y1(x), reducing by x2 instead of x at the end.

Now we also have full access to the generating function F (x, y) in general, so we can
proceed to provide a solution to the problem of counting restricted paths. This computation
involves only standard techniques for manipulating formal power series and extracting their
coefficients. We start by plugging (2.14) into the equation from Task 2.12. Note again that
Y1(x)Y2(x) = 1 holds.

F (x, y) = Y1(x)− y
x(y − Y1(x))(y − Y2(x)) = 1

xY2(x)(1− y
Y2(x)) = Y1(x)

x(1− Y1(x)y)

= 1
x

∑
m≥0

Y1(x)m+1ym.

The last equality utilizes the formal power series expansion of the geometric series 1
1−Y1(x)y .

In order to read off the coefficients [xnym], it is necessary to know [xp]Y1(x)q, for p, q ∈ N.
The substitution x = u

1+u2 proves to be very useful here, since

Y1

(
u

1 + u2

)
=

1−
√

1− 4 u2

(1+u2)2

2 u
1+u2

= 1 + u2 − (1− u2)
2u = u.
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Using this in Cauchy’s coefficient formula, Theorem 1.2, as well as dx = 1−u2

(1+u2)2 du, yields:

[xp]Y1(x)q = 1
2πi

∮
Y1(x)q

xp+1 dx = 1
2πi

∮
uq

(1 + u2)p+1

up+1
1− u2

(1 + u2)2 du

= 1
2πi

∮ (1− u2)(1 + u2)p−1

up+1−q du = [up−q](1− u2)(1 + u2)p−1

= [up−q]
p−1∑
k=0

(
p− 1
k

)
u2k − [up−q−2]

p−1∑
k=0

(
p− 1
k

)
u2k

=


0 if p− q odd,(
p− 1
p−q

2

)
−
(
p− 1
p−q

2 − 1

)
if p− q even.

It is easy to extract coefficients now, as [xnym]F (x, y) = [xn+1]Y1(x)m+1. Thus, we obtain
[xnym]F (x, y) = 0 if either n or m are odd. This obviously reflects the fact that there are
no restricted paths of odd length ending in a point of even height respectively no paths of
even length ending at odd height. The other, more interesting cases are

[x2ny2m]F (x, y) =
(

2n
n−m

)
−
(

2n
n−m− 1

)
= 2m+ 1

2n+ 1

(
2n+ 1
n−m

)
,

[x2n+1y2m+1]F (x, y) =
(

2n+ 1
n−m

)
−
(

2n+ 1
n−m− 1

)
= 2m+ 2

2n+ 2

(
2n+ 2
n−m

)
.

Clearly, this implies our earlier result for f2n,0, considering that 1
2n+1

(2n+1
n

)
= 1

n+1
(2n
n

)
.

This method also provides yet another way to prove Theorem 2.8 (set i = (n+m)/2 and
o = (n−m)/2).

We summarize the findings in

Theorem 2.14. Let fn,m be the number of restricted paths defined in Definition 2.9 from
the origin to the point (n,m) ∈ N× N. Then

fn,m =



0 if either n or m is odd,
m+ 1
n+ 1

(
n+ 1
n−m

2

)
if n and m are even,

m+ 2
n+ 2

(
n+ 2
n−m

2

)
if n and m are odd.

At first glance and in the case of an easy problem such as the one we solved in this chapter,
the real usefulness and elegance of the Kernel method might not be really obvious. The
author hopes that this will change in the following chapters.
Nevertheless, we have seen that after obtaining the initial recursion we only used stan-
dard techniques for manipulating generating functions and employed the Kernel method
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to provide the missing information about the unknown specialization of the main gener-
ating series. The key here was finding the unknown entity F (x, 0) in (2.14), an equation
obtained by setting the Kernel to zero.

With some practice, this becomes a standard procedure for solving certain functional equa-
tions stemming from combinatorial problems, which is one of the reasons why the Kernel
method is very attractive. While that is not a very ”combinatorial” way to deal with
counting problems for some, it certainly does provide a procedure to start working towards
new results.



3
Defective parking functions

After the introductory example in the preceding chapter, we will now look at a more
sophisticated application of the Kernel method, as presented in [CJPS08]. To begin with,
we introduce the notion of a parking function.

Consider a car park, consisting of parking spaces in line along a one-way street, labeled
with numbers 1 to n from end to end. There are m ≤ n cars, all of their drivers having
a favorite parking space, which were chosen independently from each other. Thus, as the
cars arrive consecutively, it is possible that a driver’s preferred place is already occupied -
in this case, he continues his search and drives on in the car park towards the last lot with
number n. On his way, he takes the first place which is empty and parks there. If there is
none, he (frustratedly) leaves the car park and goes somewhere else.
This intuitive parking strategy (with applications in our daily life) essentially describes a
greedy algorithm. It is simple, as it only takes into account the driver currently searching,
but clearly it may fail to ensure that there is a parking space for every of the m arriving
cars.
Either way, we can define a function by mapping each driver to his favorite place. We call
this assignment a parking function if it leads to everyone parking successfully, using the
search method outlined above. If exactly k drivers fail to park, we say that the parking
function has a defect k (i.e. usual parking functions have defect 0 and we omit mentioning
it). Or, more formally:

Definition 3.1. A function f : {1, 2, . . . ,m} → {1, 2, . . . , n} is a parking function of defect
k if for all i ∈ {1, 2, . . . , n}, the cardinality of f−1 [{n+ i− 1, n+ i, . . . , n}] is at most k+ i.
Additionally, if k > 0, then at least one of these sets has a size of exactly k + i.

Indeed, assume that g : {1, 2, . . . ,m} → {1, 2, . . . , n} is a function which violates the first
condition, such that there exists a preimage with |g−1 [{n+ i− 1, n+ i, . . . , n}] | > k + i.
This would imply that more than k cars have to leave the car park, since more than k+i cars

22
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have chosen one of the i places in {n+i−1, n+i, . . . , n} as their favorite. Furthermore, the
second requirement ensures that at least k > 0 cars do not find a parking space. Hence,
together they formalize the intuitive notion of parking functions. However, the easy to
understand analogy of a car park will suffice for our purposes.

Before we proceed with a short example, let us comment on our notation first. Since there
seems to be no convention in the literature, we will use use the letters m and n for the
sizes of the domain (i.e. the number of cars) respectively the codomain (i.e. the number
of parking spaces) of functions throughout this chapter. Both of them have an impact
on whether or not a function is a parking function, but unlike the defect they are not
mentioned explicitly.

Example 3.2. Let n = 7,m = 6 and consider the following parking function f encoded by
the sequence (f(1), f(2), . . . , f(6)) = (1, 3, 4, 6, 3, 5). While the first 4 cars can be parked
without problems, the fifth car tries to park in a space which is already occupied, so it has
to drive ahead up to place 5. Nevertheless, everybody finds a space successfully, as seen
in Figure 3.2. Observe that the above sequence would not be a parking function if n was

Figure 3.1: Greedy parking strategy

Figure 3.2: Final distribution of cars

changed. If n = 6, it has a defect of 1, since the last driver has to leave the car park, and
similar for other values of n smaller than 7.

Note that there are many other definitions given in the literature, for example in [Sta97,
Hai94, CP02]. In most cases, ours is slightly more general as usually only m = n is
considered or the notion of defect is omitted. Defective parking functions can also be
obtained as a special case of x-parking functions introduced in [SP02], but these are not
within the scope of this thesis.

Today there are many applications of these combinatorial objects. An overview of some
early results was presented by Knuth in [Knu73] or more recently in the thesis [Sei09].
Also see [CJPS08] for further references. The starting point for the study of parking
functions was the analysis of a hashing algorithm in [KW66]. A good hashing method
aims for a low probability of data collisions, so that most of the arriving data packages
can be stored immediately in a data storage device or a data structure without further
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adjustments. Therefore, if the greedy parking strategy is employed as part of an algorithm,
it is interesting to know how many of the nm possible functions are actually parking
functions, since from this number we can easily derive the desired probability.

Task 3.3. Provide a formula for pm,n,k, the number of defective parking functions f :
{1, 2, . . . ,m} → {1, 2, . . . , n} of defect k, where m,n, k ∈ N.

In this chapter, we will establish a recursion for these numbers and obtain a functional
equation for a generating function from it. The difficult part is that this equation involves
two unknown variables and thus seems useless. However, remembering the success from
the last chapter, we will then proceed to solve the equation using the Kernel method.
Essentially, this means producing additional relations from the main equation by exploiting
certain couplings of variables. Eventually this enables us to find a formula for the generating
function and read off its coefficients.

3.1 Obtaining a recursion

Instead of deriving a recursion for the numbers pm,n,k directly, we present the approach
of [CJPS08]. We will first transform the parameters to a more feasible form and extend
their domain to all integers. This simply allows us to write the recursion more compactly,
avoiding the need to deal with special cases.

Definition 3.4. Let r, s, k ∈ Z. If one or more of r, s and k are smaller than 0, then
fr,s,k = 0. Otherwise, fr,s,k is the number of assignments of cars to parking spaces such
that, after all cars entered the car park once, r parking spaces remain empty and s spaces
are occupied, while k drivers have to search elsewhere (i.e. the defect is k).

Provided that r, s, k ∈ N, these newly introduced variables have obvious connections to our
original ones. There are m = k+ s drivers looking for a place to park and n = r+ s spaces
available. Therefore, a solution to this problem is equivalent to a solution for Task 3.3, due
to pm,n,k = fn+k−m,m−k,k. The following lemma establishes a recursive formula.

Recursion 3.5 ([CJPS08]). For r, s, k ∈ N the numbers fr,s,k as given in Definition 3.4,
can be obtained recursively by

fr,s,k =



1 if r = s = k = 0,

fr−1,s,0 +
k+1∑
i=0

(
k + s

k + 1− i

)
fr,s−1,i if k = 0 and either r > 0 or s > 0

k+1∑
i=0

(
k + s

k + 1− i

)
fr,s−1,i if k > 0.

Proof. Case r = s = k = 0: Obviously there exists only the empty assignment.
Case k = 0 and either r > 0 or s > 0: If the last parking space with number r + s
remains empty, the s drivers can actually be distributed among the first r − 1 + s places.
By definition, there are fr−1,s,0 ways to arrange this.
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If the last space is occupied in the end, then exactly one driver arrives there during the
whole process - otherwise more than k = 0 cars had to leave or the last space would
be left unoccupied again. Out of the s drivers, one (and only one) might have chosen
it as his favorite parking lot, while the remaining drivers are parking successfully and
independently from him within the forepart of the car park, leaving r spaces empty. Thus,
there are

(s
1
)
fr,s−1,0 possible assignments to accomplish this. Similarly, if no one wants to

park at the end of the car park, but still one car has to, then there are
(s
0
)
fr,s−1,1 ways to

do this.
In total, fr,s,0 = fr−1,s,0 + sfr,s−1,0 + fr,s−1,1. Formally, this is exactly the recursion given
in the lemma above - expressing it in the same way as the last case will suit our purposes
later on.
Case k > 0: We can generalize the idea from the former case to an arbitrary k > 0. Since
at least one driver has to leave the car park, the last space can not remain empty and
exactly k+ 1 cars must arrive at the end of the car park during the whole process, whether
they wanted to park there or not.
Out of those k + 1 drivers, k + 1 − i, for an i ∈ {1, 2, . . . , k + 1}, might favor parking
space number r + s, while the remaining i do not but still reach it in their search for an
unoccupied lot. Now there are

( k+s
k+1−i

)
possible ways to choose drivers who like to park at

the last space and fr,s−1,i possibilities to distribute s− 1 + i cars among the first r+ s− 1
spaces, such that exactly i drivers are not able to park within that part of the car park. As
before, these choices and assignments are independent from each other, whence we obtain( k+s
k+1−i

)
fr,s−1,i possibilities in total.

Finally, note that for i 6= j, all of the occurring mappings of drivers to parking spaces must
differ. Hence, summing over all possible values for i yields the recursion.

3.2 Obtaining a functional equation

From the recursive equation above we will now derive a functional equation which implicitly
defines the generating function of the numbers fr,s,k, and thus the solution to our problem.
First, we will reformulate the recursion to analyze the parameters we are working with and
to understand which kind of generating function captures their nature best. By multiplying
with characteristic functions 1y(x), which evaluate to 1 if and only if x = y and 0 otherwise
(similar for multiple arguments), we unify the different cases of Recursion 3.5:

fr,s,k = 10,0,0(r, s, k) + 10(k)fr−1,s,0 +
k+1∑
i=0

(
k + s

k + 1− i

)
fr,s−1,i, r, s, k ≥ 0.

Note that the last sum is empty if k = r = s = 0 and that fr,s,k is zero by definition, if one
of the parameters is smaller than zero, so the equation is indeed valid for all r, s, k ≥ 0.
Additionally, observe that the parameters k and s occur inside a binomial coefficient, while
r does not. This indicates that the generating function which we will use should be ordinary
in r and exponential in k and s.
Now, dividing the equation above by

(k+s
s

)
splits the binomial coefficient in the sum into

two binomial coefficients. The advantage is that each of them depends on only one of the
parameters anymore, instead of both of them. Mathematically:
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( k+s
k+1−i

)(k+s
s

) = (k + s)!k!s!
(k + i− 1)!(s− 1 + i)!(k + s)! = s

k + 1
(k + 1)!

i!(k + 1− i)!
i!(s− 1)!

(s− 1 + i)! = s

k + 1

(k+1
i

)(s−1+i
i

) .
This also further strengthens our observation from above and yields, keeping in mind that(0+s

0
)

= 1:

fr,s,k(k+s
k

) = 10,0,0(r, s, k) + 10(k)fr−1,s,0 + s

k + 1

k+1∑
i=0

(
k + 1
i

)
fr,s−1,i(s−1+i

i

) , r, s, k ≥ 0. (3.6)

Hence, we define our generating function accordingly.

Definition 3.6. Let fr,s,k be given as in Definition 3.4 and define their generating function
as

F (x, y, z) :=
∑

r,s,k≥0
fr,s,kx

r yszk

(s+ k)! .

We proceed to derive a functional equation from (3.6) in the following lemma.

Lemma 3.7. The formal power series F (x, y, z), given in Definition 3.6, is the unique
solution of (

1− y

z
ez
)
F (x, y, z) = 1 +

(
x− y

z

)
F (x, y, 0).

Proof. This proof, as well as some of the following, might seem technical but it is important
to note that they mostly only involve standard techniques for the manipulation of formal
power series. We start by multiplying (3.6) with xr y

s

s!
zk

k! and summing for r, s, k ≥ 0.
On the left hand side of the equation we obtain

∑
r,s,k≥0 fr,s,kx

r yszk

(s+k)! which is exactly
F (x, y, z) by definition.
Now for the right hand side:

∑
r,s,k≥0

(
10,0,0(r, s, k) + 10(k)fr−1,s,0 + s

k + 1

k+1∑
i=0

(
k + 1
i

)
fr,s−1,i(s−1+i

i

))xr yszk
k!s!

= 1 +
∑
r,s≥0

fr−1,s,0x
r y

s

s!︸ ︷︷ ︸
(a)

+
∑

r,s,k≥0

(
s

k + 1

k+1∑
i=0

(
k + 1
i

)
fr,s−1,i(s−1+i

i

))xr yszk
k!s!︸ ︷︷ ︸

(b)

.

To evaluate sum (a), we apply an index shift r−1→ r and the definition of our generating
function:

(a) =
∑
r,s≥0

fr,s,0x
r+1 y

s

s! = xF (x, y, 0).

For sum (b), note that because of the term s
k+1 , the sum actually starts at s = 1. We begin

by canceling the common factors of the occurring binomial coefficients and the factors s!, k!
and s

k+1 .
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To simplify the result, we continue by shifting the indices k + 1→ k and s− 1→ s:

(b) =
∑
s≥1
r,k≥0

(
k+1∑
i=0

fr,s−1,i
(s− 1 + i)!(k + 1− i)!

)
xryszk =

∑
k≥1
r,s≥0

(
k∑
i=0

fr,s,i
(s+ 1)!(k − i)!

)
xrys+1zk−1

= y

z

∑
r,s,k≥0

(
k∑
i=0

fr,s,i
(s+ 1)!(k − i)!

)
xryszk − y

z

∑
r,s≥0

fr,s,0x
r y

s

s! .

For the last equality, we simply add the summands which occur for k = 0 and subtract
them again, while singling out the factor y

z . The latter sum can be easily identified as
y
zF (x, y, 0). The first one, arranged slightly different, is the Cauchy product of two well
known formal power series in the variable z:

y

z

∑
r,s,k≥0

(
k∑
i=0

fr,s,i
(s+ 1)!(k − i)!

)
xryszk = y

z

∑
r,s,k≥0

(
k∑
i=0

fr,s,i
zi

(s+ i)!
zk−i

(k − i)!

)
xrys

= y

z

∑
k≥0

zk

k!
∑

r,s,k≥0
fr,s,kx

rys
zk

(s+ k)! = y

z
ezF (x, y, z).

Altogether, we obtain for the left- and right-hand side

F (x, y, z) = 1 + xF (x, y, 0) + y

z
ezF (x, y, z)− y

z
F (x, y, 0),

which, after a slight rearrangement, yields the equation as given in the statement of the
lemma.

Again, note that the functional equation for F is equivalent to the recursion for the numbers
fr,s,k, which implies the uniqueness as stated in the lemma. The same argument will hold
for all similar results still to come in the following chapters.

3.3 Obtaining a closed formula

To find an explicit expression for the numbers fr,s,k, and subsequently for pm,n,k, we would
like to use the formal power series expansion of F (x, y, z) around the origin (0, 0, 0) and
read off the coefficients. Hence, we need to solve the equation

F (x, y, z) =
1 +

(
x− y

z

)
F (x, y, 0)

1− y
z ez , (3.8)

which, as we have seen in the preceding section, implicitly defines the generating function.
Observe that this is usually not possible, since both, F (x, y, z) as well as F (x, y, 0) are
unknown and plugging in z = 0 leads to a tautology.
Overall, the situation is remarkably similar to Lemma 2.12 in Section 2.2. There, we have
successfully applied the Kernel method, so we will try it once more, even if we have to deal
with a third generating variable now. Recall that the denominator of F (x, y, z) is called
the Kernel K(y, z) = 1− y

z ez of the equation.



3.3. OBTAINING A CLOSED FORMULA 28

We follow the standard procedure and start by setting K(y, z) to zero in order to recover
F (x, y, 0). It is not a polynomial this time, so there is no general way to find its roots.
But we may look for a formal power series in the variable y, i.e. z = Z(y), such that
K(y, Z(y)) = 0. This leads to the equation z = yez. As presented in, e.g., [FS09],
the solution to it is the so-called tree function (often denoted by T in the literature, for
obvious reasons), the generating function of (rooted) non-plane labeled trees. In Figure 3.9
the curve defined by K(y, z) = 0 is shown. Note that the tree function only defines the
lower part of the curve up to y = 1/e, which is exactly its radius of convergence.

−6 −5 −4 −3 −2 −1 0 1
−2

−1

0

1

2

3

4
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6

y

z

Figure 3.9: The algebraic curve defined by K(y, z) = 0 (the part given by the Tree
function is drawn solid).

To obtain the formal power series expansion of the tree function, one might use its close
relationship to the Lambert w-Function (see e.g. [CGH+96]), due to Z(y) = −w(−y). It
is named after the swiss mathematician Johann Heinrich Lambert, who proved that π is
an irrational number, among other things.
Or we can use Lagrange inversion, Theorem 1.1, for the alternate form of the defining
equation y = z

ez . Since we will need the result later on, we will actually extract the
coefficients from zj = Z(y)j , for j ∈ N.[

yi
]
zj =

[
zi
]
zj = 0, i < j,[

yi
]
zj = 1

i

[
zi−1

]
jzj−1eiz = j

i

[
zi−j

]
eiz = j

i

ii−j

(i− j)! , i ≥ j.
(3.10)
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Thus, if j = 1, the number of non-plane labeled trees with i nodes is ii−1, recovering the
famous enumeration result by Arthur Cayley [Cay88], frequently called Cayley’s formula.
Note that his result actually is ii−2, which counts unrooted trees with i nodes. However,
these can be converted to rooted trees by simply marking one node as the root - and for
this, there are obviously i choices. Furthermore, we have

z = Z(y) =
∑
i≥1

ii−1

i! yi.

We see that Z(y) has a formal power series expansion with coefficients in N and without
a constant term, so its substitution into the Kernel is valid. Clearly, by doing this the
Kernel vanishes. However, it also seems to cause a singularity at the origin (0, 0, 0), since
Z(y) = y + y2 + 3

2y
3 + . . . ∼ y and therefore y

Z(y)eZ(y) → 1, as x, y → 0. This can not
be the case, though, and we can use the values at which the Kernel is zero to recover the
missing information about our generating function:

By definition as the generating function of the solvable recursion given in Recursion 3.5,
F (x, y, z) must have a formal power series expansion around (0, 0, 0) with coefficients
fr,s,k ∈ N. Hence, if the Kernel equals zero, then 1− y

Z(y)eZ(y) must be a factor of the nu-
merator, too. In particular this implies F (x, y, Z(y)) = 0, providing the additional relation
we wanted to find.

This ensures that the generating functions we are working with do not have poles in an area
around the origin. We proceed with a lemma which gives the form of F (x, y, 0), putting
the relationship of F and Z to good use:

Lemma 3.11. The specialization F (x, y, 0) is given by

F (x, y, 0) = eZ(y)

1− xeZ(y) ,

admitting the formal power series expansion

F (x, y, 0) =
∑
r,s≥0

(r + 1)(r + s+ 1)s−1xr
ys

s! .

First proof. The first equation in the statement of the lemma above stems from the fact
that F (x, y, Z(y)) = 0. This, together with the defining equation for Z(y) = yeZ(y) yields

0 = 1 +
(
x− y

Z(y)

)
F (x, y, 0)⇐⇒ F (x, y, 0) = 1

1
eZ(y) − x

= eZ(y)

1− xeZ(y) .

Our main tool for the rest of the proof will be Lagrange inversion. To start with, we read
off the coefficients for x and reformulate the equation as

x = F (x, y, 0)− eZ(y)

F (x, y, 0)eZ(y) .
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Now define the new variable u := F (x, y, 0)− eZ(y) to obtain the form necessary for The-
orem 1.1. It follows that x = u/

(
ueZ(y) + e2Z(y)

)
and we can proceed to read off the

coefficients from F (x, y, 0) = u+ eZ(y):[
x0
]
u+ eZ(y) =

[
u0
]
u+ eZ(y) = eZ(y),

[xr]u+ eZ(y) = 1
r

[
ur−1

] (
ueZ(y) + e2Z(y)

)r
= 1
r

(
s

r − 1

)
e(r−1)Z(y)e2Z(y) = e(r+1)Z(y),

where r ≥ 1. Note that the formal power series Z(y) is the solution to the equation y = z
ez ,

so for all j ∈ N, ejZ(y) =
(
Z(y)
y

)j
holds. Therefore, we can use the result (3.10) from earlier

Z(y)j = j
∑
i≥j

ii−j−1

(i− j)!y
j = j

∑
i≥0

(i+ j)i−1

i! yi+j ,

where we applied the shift i − j → i for the second equality. Now it is easy to finish the
proof:[

xr
ys

s!

]
F (x, y, 0) =

[
ys

s!

]
e(r+1)Z(y) =

[
ys

s!

](
Z(y)
y

)r+1
= (r + 1)(r + s+ 1)s−1,

which yields the formal power series expansion for F (x, y, 0), as given in the lemma.

Second proof. There is also an alternative proof for this statement which uses a clever idea
due to Pollak (see [FR74]). Since many papers related to parking functions mention it,
we shall not omit it here. Furthermore it relates to our earlier observations: the Kernel
method provides a standard way of doing things, but there may also be great insights which
give a different perspective (likely less generatingfunctional) of the problem.
Recall that there is relationship between the number of parking functions of defect k,
denoted by pm,n,k, and the numbers fr,s,k. If k = 0, then n = r + s and m = s, so in this
case it is given by fr,s,0 = pn−m,m,0.
To obtain a formula for the numbers, replace the linear car park with n places by a circular
one with n + 1 spaces, again labeled by the numbers in {1, 2, . . . , n + 1}. We also keep
the same rules for parking the m ≤ n cars. Obviously everyone finds a place now (they
keep going around the closed circle until an empty place shows up) and no one has to drive
home, thus leaving n−m+ 1 spaces empty in the end.
A mapping of the m cars to the n + 1 spaces in this setting gives a parking function of
the original problem if and only if the space with number n+ 1, which has no counterpart
in the linear park, is among the unoccupied ones. The probability that this happens is
(n+ 1−m)/(n+ 1) and multiplying with (n+ 1)m, the number of all possible mappings,
gives (n+ 1−m)(n+ 1)m−1.
Therefore we obtain the same formal power series expansion as in the first proof, since
fr,s,0 = pn−m,m,0 = (n+ 1−m)(n+ 1)m−1 = (r + 1)(r + s+ 1)s−1.

Now that we have access to the first ”unknown” in equation (3.8), we can proceed to solve
it for the generating function F (x, y, z) in general. By simply plugging in F (x, y, 0) we
obtain
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Lemma 3.12 ([CJPS08]). The generating function for the numbers fr,s,k is given by

F (x, y, z) = 1
1− y

z ez +
x− y

z

1− y
z ez

eZ(y)

1− xeZ(y) .

Given in this form, it is not immediate that F (x, y, z) is actually a formal power series.
Both of its summands are not in Z[[x, y, z]] and thus it might seem that it is rather a formal
Laurent series in the variables x, y, z. But as mentioned before, our combinatorial interpre-
tation of F (x, y, z) as a generating function ensures that occurring negative powers must
disappear by canceling each other while summing. As an example, looking at critical values
where K(x, y) vanishes, we observe that F (x, y, z) simplifies to F (x, y, z) = 1/

(
1− xeZ(y)

)
by canceling the Kernel in denominator and numerator. This series is nothing but a geo-
metric series with a proper formal power series expansion.

Keeping this in mind, we are now ready to extract the coefficients fr,s,k and subsequently
give a formula for the car parking numbers pm,n,k. To express them concisely, we will make
use of so-called Abel-type partial sums. They are similar to the sums occurring in Abel’s
binomial theorem, which we will briefly introduce below.

Definition 3.13. Let m,n, k ∈ N. Then

A(m,n, k) :=


nm if k ≤ m− n,
m−k∑
i=0

(
m

i

)
(n−m+ k)(n−m+ k + i)i−1(m− k − i)m−i otherwise.

Using this definition, we can formulate the final lemma for this chapter.

Lemma 3.14. The generating function of the numbers fr,s,k has a formal power series
expansion around the origin (0, 0, 0) given by

F (x, y, z) =
∑

r,s,k≥0
(A(s+ k, r + s, k)−A(s+ k, r + s, k + 1))xr yszk

(s+ k)! .

Proof. To find the coefficients of F (x, y, z), our computations will take place within the
ring of formal Laurent series Z((x, y, z)), as negative powers of generating variables occur.
But we know a-priori that these must cancel each other and disappear in the end, which
we can use to our advantage.
The starting point is the equation for F (x, y, z) in Lemma 3.12. Its first summand is
1/(1 − y

z ez) ∈ Z((x, y, z)), which has a formal Laurent series expansion as a geometric
series.

1
1− y

z ez =
∑
s≥0

ysz−setz =
∑
s≥0

ysz−s
∑
k≥0

(tz)k

k! =
∑
s≥0

∑
k≥0

sk

k! y
szk−s =

∑
s≥0

∑
k≥−s

ss+k

(s+ k)!y
szk,

(3.15)
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using a shift k− s→ k for the last equality. Using this together with Lemma 3.11, we can
expand the second summand as a Cauchy product of Laurent series in the variable y.

x− y
z

1− y
z ez

eZ(y)

1− xeZ(y) =
(
x− y

z

)∑
s≥0

∑
k≥0

sk

k! y
szk−s

∑
s≥0

∑
r≥0

(r + 1)(r + s+ 1)s−1xr
ys

s!


=
(
x− y

z

)∑
s≥0

 s∑
i=0

∑
k≥0

(s− i)k

k! zk−(s−i)

∑
r≥0

(r + 1)(r + i+ 1)i−1xr
1
i!

 ys
=
(
x− y

z

) ∑
r,s,k≥0

s∑
i=0

(r + 1)(r + i+ 1)i−1 (s− i)k

k!i! xryszk−s+i

=
∑

r,s,k≥0

s∑
i=0

(r + 1)(r + i+ 1)i−1 (s− i)k

k!i!
(
xr+1yszk−s+i − xrys+1zk−s+i−1

)
.

Note that because of the factor s − i, the inner sum for i actually stops at i = s − 1.
We replace 1/(k!i!) by

(k+i
i

)
/(k + i)! and split the sum into two, shifting k − s + i → k.

Additionally, for the first part of the result we apply another shift r + 1 → r and for the
second one s+ 1→ s. This yields

x− y
z

1− y
z ez

eZ(y)

1− xeZ(y) =
∑
r≥1

∑
s≥0

s∑
i=0

∑
k≥−s+i

(
k + s

i

)
r(r + i)i−1(s− i)k+s−ixr

yszk

(s+ k)!

−
∑
r≥0

∑
s≥1

s−1∑
i=0

∑
k≥−s+i

(
k + s

i

)
(r + 1)(r + i+ 1)i−1(s− 1− i)k+s−ixr

yszk

(s+ k)! .
(3.16)

Because of the definition as a generating function, which implies that F (x, y, z) has a
proper formal power series expansion around the origin, the negative powers of variables,
i.e. all summands for k < 0, must cancel each other during the summation and we can omit
them. This gives a correspondence to Abel’s binomial theorem, to be discussed shortly.
Hence,

F (x, y, z) =
∑
s≥0

∑
k≥0

ss+k
yszk

(s+ k)! +
∑
r≥1

∑
s≥0

∑
k≥0

s∑
i=0

(
k + s

i

)
r(r + i)i−1(s− i)k+s−ixr

yszk

(s+ k)!

−
∑
r≥0

∑
s≥1

∑
k≥0

s−1∑
i=0

(
k + s

i

)
(r + 1)(r + i+ 1)i−1(s− 1− i)k+s−ixr

yszk

(s+ k)! .

The Abel-type partial sums from Definition 3.13 turn out to be very useful for shortening
the expressions of the coefficients of F (x, y, z). As we always did in this chapter, we plug
in s+ k for m and r + s for n, to obtain

A(s+ k, r + s, k) =


ss+k if r = 0,
s∑
i=0

(
k + s

i

)
r(r + i)i−1(s− i)k+s−i if r > 0,
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and

A(s+ k, r + s, k + 1) =


ss+k if r = 0,
s−1∑
i=0

(
k + s

i

)
(r + 1)(r + i+ 1)i−1(s− 1− i)k+s−i if r > 0.

Note that A(s+k, r+s, k+1) = 0, if s = 0. Comparing this with the equation for F (x, y, z)
above yields[

xr
yszk

(s+ k)!

]
F (x, y, z) = fr,s,k = A(s+ k, r + s, k)−A(s+ k, r + s, k + 1),

thus finishing the proof.

We summarize our results in the last theorem for this chapter, completing the solution to
Task 3.3.

Theorem 3.17 ([CJPS08]). Let m,n, k ∈ N. The number of defective parking functions
of defect k, denoted by pm,n,k, is given by

pm,n,k = A(m,n, k)−A(m,n, k + 1).

Equivalently, the sum A(m,n, k) counts the number of mappings from m cars to n spaces
such that at least k drivers do not find an unoccupied parking space, that means

A(m,n, k) =
m∑
j=k

pm,n,j .

Proof. As a reminder, m is the number of cars entering the car park, n the number of
available spaces and k drivers have to go home. On the other hand, r and s count the
unoccupied respectively occupied spaces. From the relationships m = k + s and n = r + s
we conclude that pm,n,k = fn+k−m,m−k,k. Plugging these values into the results from
Lemma 3.14 yields the statement.

To illustrate these numbers, Table 3.18 shows some values for pm,n,k. In the on-line ency-
clopedia of integers [OEI11] one can find the (shifted) sequence for k = 0 as entry A000272
(i.e. the numbers counting normal parking functions) and k = 1 as A140647.

Before we proceed to give some closing remarks, we will make the connection to Abel’s
binomial theorem clear, which states that

(x+ y)q =
q∑
i=0

(
n

i

)
x(x+ iw)i−1(y − iw)q−i (3.19)

holds for all q ∈ N and w, x, y ∈ R. There are many other theorems of this kind, however,
in this form it was studied by the Norwegian Nils Henrik Abel [Abe26].
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m�n 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10

k
=

0

2 3 8 15 24 35 48 63 80 99
3 16 50 108 196 320 486 700 968
4 125 432 1029 2048 3645 6000 9317
5 1296 4802 12288 26244 50000 87846
6 16807 65536 177147 400000 805255
7 262144 1062882 3000000 7086244
8 4782969 20000000 58461513
9 100000000 428717762
10 2357947691
2 1 1 1 1 1 1 1 1 1

k
=

1

3 10 13 16 19 22 25 28 31
4 107 165 235 317 411 517 635
5 1346 2341 3716 5531 7846 10721
6 19917 37883 65389 105255 160661
7 341986 697089 1286244 2206891
8 6713975 14461513 28175767
9 148717762 335073709
10 3674435393
3 1 1 1 1 1 1 1 1

k
=

2

4 23 27 31 35 39 43 47
5 436 581 746 931 1136 1361
6 8402 12373 17394 23585 31066
7 173860 277397 420106 610597
8 3924685 6685815 10773725
9 96920092 174346021
10 2612981360
6 1 1 1 1 1

k
=

57 162 169 176 183
8 12357 13737 15173
9 710314 840367
10 36046214

Table 3.18: Values of pm,n,k for various m,n and k (omitted values are zero).

To this end, we collect the negative powers of generating variables from equations (3.15)
and (3.16). Because of our underlying combinatorial interpretation we know that they
must vanish during the summation, whence

0 =
∑
s≥0

−1∑
k=−s

ss+k
yszk

(s+ k)! +
∑
r≥1

∑
s≥0

s−1∑
i=0

−1∑
k=−s+i

(
k + s

i

)
r(r + i)i−1(s− i)k+s−ixr

yszk

(s+ k)!

−
∑
r≥0

∑
s≥1

s−1∑
i=0

−1∑
k=−s+i

(
k + s

i

)
(r + 1)(r + i+ 1)i−1(s− 1− i)k+s−ixr

yszk

(s+ k)! .

Alternatively, we can use the binomial identity (3.19). By switching the sums for i and k,
we now sum from i = 0 to i = k + s. Using the formula yields
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k+s∑
i=0

(
k + s

i

)
r(r + i)i−1(s− i)k+s−i = (r + s)k+s,

k+s∑
i=0

(
k + s

i

)
(r + 1)(r + i+ 1)i−1(s− 1− i)k+s−i = (r + s)k+s.

Keeping in mind that the sums for s actually start at 1, we can simplify the right hand
side of the equation above and obtain

∑
s≥1

−1∑
k=−s

ss+k
yszk

(s+ k)! +
∑
r≥1

∑
s≥1

−1∑
k=−s

(r + s)k+sxr
yszk

(s+ k)! −
∑
r≥0

∑
s≥1

−1∑
k=−s

(r + s)k+sxr
yszk

(s+ k)!

=
∑
s≥1

−1∑
k=−s

ss+k
yszk

(s+ k)! −
∑
s≥1

−1∑
k=−s

(0 + s)s+kxr yszk

(s+ k)! = 0,

verifying our argument from before.

Now, in the other direction, we take a look at the fact that A(m,n, k) counts all defective
parking functions with defect greater or equal to k. Clearly, if we set k = 0 then any
function from {1, 2, . . . ,m} to {1, 2, . . . , n} occurs in that enumeration. We know that the
number of all functions is nm, whence

nm = A(m,n, 0) =
m∑
i=0

(
m

i

)
(n−m)(n−m+ i)i−1(m− i)m−i.

But this is a proof of a special case of Abel’s identity, setting q = m,x = n−m, y = m and
w = 1. Admittedly it is also very complicated, considering the work required to obtain
A(m,n, k).
Besides this correspondence, Abel’s theorem was also used in [CJPS08] to obtain further
asymptotic results.

In this example, we have seen that the Kernel method is still applicable in a more difficult
situation than in Chapter 2. Here the Kernel is not a polynomial (but the roots remain
tractable enough) and there are more generating variables to consider.
It provides the necessary starting point to solve the functional equation (3.8) derived from
Recursion 3.5, where it is normally not possible to solve such an equation with two unknown
variables. Additionally, the underlying combinatorial interpretation ensures that the final
result really is a formal power series and that negative powers of generating variables,
indicating singularities at the origin, must vanish in the end. Thus, computations can be
simplified.

Similar to the preceding chapter, the Kernel method is not the only way to obtain our
solution. Alternatively, there are other methods (especially for asymptotic results) or the
framework of x-parking functions can be applied. See for example [Sei09] for an overview.
However, we have only used standard methods of manipulating formal Laurent respectively
formal power series. This makes the proofs very accessible (even for computer algebra
systems), albeit lengthy sometimes. No tricky bijections or concepts are involved, which
might require a more in-depth explanation for a trained generatingfunctionologist.



4
Vexillary involutions

In the last two chapters we have learned how the Kernel method can be applied to solve
functional equations which seem to contain too many unknowns to be solved using standard
techniques. We will now look at a different flavor of the method. Until now, producing one
coupling of variables which sets the Kernel to zero was enough to provide the missing infor-
mation about the generating function and its specializations. However, this is not always
the case, as we will see soon. Thus, one must not give up and simply keep on producing
as many roots as possible, in order to obtain additional relations for the occurring entities.
Indeed, this obstinate version of the Kernel method was aptly named and introduced by
Bousquet-Mélou, who in turn was inspired by the book [FIM99].
As a demonstration, we will take a look at pattern-avoiding permutations, or more specifi-
cally vexillary involutions, following the corresponding chapter in the article [BM03], while
filling in the omitted details.

To begin with, we need to formalize the notion of pattern-avoidance, a subject which earned
a lot of popularity in the recent years due to its intriguing results and many connections to
other mathematical disciplines and computer science. Indeed, we have already encountered
it in Chapter 2 - Knuth [Knu68] showed that a permutation can be sorted using a stack
if and only if the permutation avoids the pattern 231. For a thorough introduction see for
example [Bón04] or for some questions and problems which are studied within this field of
research, see [Wil02]. Now for the definition, which can be grasped very quickly.

Definition 4.1. Denote Sn := {π : {1, 2, . . . , n} → {1, 2, . . . , n} : π bijective}. Let
m ≤ n, σ = σ1σ2 . . . σm ∈ Sm and π = π1π2πn ∈ Sn. The permutation π is said to contain
the pattern σ of length m, if there are i1 < i2 < . . . < im ∈ N such that πij < πik if and
only if σj < σk. If π does not contain σ, then it is said that it avoids this pattern.

Thus, the elements of the extracted subpermutation satisfy the same ordering relations as
the numbers in the given pattern. Note that this definition generalizes some very familiar

36
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concepts such as descents and ascents. They can be described as special patterns of type
21 and 12, with the additional requirement that this pattern is made out of consecutive
letters within the permutation.

Example 4.2. As an example, take the permutation π = 751938624. Clearly, it contains
descents and ascents (and thus patterns 21 and 12) and all 6 patterns of length 3, e.g.
the pattern 231 might correspond to the subpermutations π2π4π5 = 593 or π5π6π8 = 382.
However, as there is no increasing subsequence of length 4, it avoids 1234 or e.g. 2341 as
well. It does contain 2143 though, for example given by π1π2π4π6, which will be the single
most important pattern in this chapter.

Although the definition is very simple, there is a lot of theory behind it. In fact, there
are many challenging problems regarding the study of pattern-avoidance, such as counting
the number of permutations avoiding a certain pattern or finding general results for Wilf-
equivalences (two patterns σ and τ are said to be Wilf-equivalent if they are both equally
hard to avoid, i.e. the number of permutations avoiding σ is equal to the number of
permutations avoiding τ). For more information about these topics, [Man04, Sta96, Wes96]
will provide some starting points. The latter article additionally introduces generating trees
for the study of pattern-avoiding permutations, a technique also used by Bousquet-Mélou
in the article on which this chapter is based on.
However, the simple notion in Definition 4.1 will suffice for our purposes and leads to
another definition.

Definition 4.3. Let π ∈ Sn be an involution, i.e. π = π−1 holds. We call π vexillary if it
avoids the pattern 2143 and we denote by Vn the set of all vexillary involutions of length
n.

The name vexillary (meaning ”flag-like” and having its roots in the latin word vexillum)
stems from the appearance of these permutations in [LS85]. In this paper the authors
studied Schubert polynomials, as well as sequences which occur in geometry and correspond
to so-called flags of modules. Without going into the details, in linear algebra a flag is a
sequence of subspaces of a finite-dimensional vector space, where each member of the
sequence is a proper subspace of the next one. Naturally, one can also study them for
modules, which are basically a generalization of vector space.
Many further references about these permutations can be found in [GPP01], where the
authors present a bijective proof for the rather surprising fact that vexillary involutions
are counted by the well known Motzkin numbers. One of them already conjectured that
this would be the case in his PhD thesis in 1995 [Gui95], about 6 years earlier. But as
Bousquet-Mélou states, it was very ”vexing” that despite vexillary involutions admit this
simple solution, no proof could be found for a few years time. However, she continues that
a straightforward description (i.e. a method for the enumeration of vexillary involutions)
given by Guibert in terms of generating trees was known. That did not help very much
though, as it leads to a functional equation for a generating function which involves too
many unknowns to be solved by conventional means.

In this chapter we will rederive this equation and solve it using the obstinate Kernel method
as presented by Bousquet-Mélou. This is in accordance with the earlier chapters - again,
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it is not the only method available to solve the counting problem. But unlike the bijective
proof it does not require a very deep understanding of the underlying combinatorial objects
or their relationships to each other. Instead, all we need to do is to derive a recursion
and obtain a functional equation. After that only algebraic manipulations of generating
functions occur, even if they are much more delicate than in the preceding chapters. There
will be essentially two steps involved to solve the functional equation. Both aim to make
finding the encoded solution easier and more accessible.
The first step will be to apply the Kernel method multiple times, which means finding
several different couplings of variables to set the Kernel to zero. The initial functional
equation is thus transformed into a system of equations, which only involve the generating
function at special values and describe their relations. This system still contains too many
variables to be solved directly, hence the second step is to extract the positive part of the
occurring functions in the easiest way possible. This eventually provides the necessary
informations by obtaining even more equations.

Indeed, this procedure provides a more general result than the bijective proof. Let us state
our tasks precisely. First off,

Task 4.4. Show that the number of vexillary involutions of length n is given by the n-th
Motzkin number.

The resulting numbers are named after Theodore Motzkin, who introduced them in his
article [Mot48]. They occur frequently, with many applications in various branches of
mathematics, and enumerate several combinatorial objects, 14 of which are given in [DS77].
An overview of their connections to e.g. the Catalan numbers can be found in [Ber99].
Additionally, Bousquet-Mélou’s method gives full access to the solution of said functional
equation, so we will also do

Task 4.5. Provide an expression for the generating function of vexillary involutions.

This function will count our combinatorial objects not only by their length, but also by
two other, secondary statistics. This approach is even applicable to other very similar sit-
uations concerning pattern-avoiding permutations in connection with generating trees, all
of them demonstrated in the article [BM03]. Examples for this are 1234-avoiding permu-
tations and vexillary permutations (note: not involutions). A reason for this might be that
bijections can be found between these objects and vexillary involutions [GPP01, Wes90].
Furthermore, it was used in the study of lattice paths [BM05] and osculating walks [BM06,
BMM08].

4.1 Obtaining a recursive description

As in the chapters before, we will start by finding a recursive description for vexillary
involutions. Recall the cycle notation for permutations, which enables us to write a per-
mutation as the product of cycles. A k-cycle, or cycle of length k, (i1, i2, . . . , ik) is nothing
but a permutation of length greater or equal to k that maps i1 to i2, i2 to i3 and so forth.
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Finally, ik is mapped to i1 (closing the circle) and the other numbers remain fixed (i.e.
they form a 1-cycle).

Now, let π ∈ Vn. To obtain new vexillary involutions of greater length from π, we can add
a new fixed point (n+ 1). Whence we get π′ ∈ Vn+1, as this insertion does not introduce
a 2143-pattern within the new involution.
We may also add a new cycle, of the type (i, n + 2) with 1 ≤ i ≤ n + 1. This is clearly
sufficient as involutions only consist of cycles of length at most two, but the result is not
necessarily vexillary.

One way to properly define this process is the following: in every cycle of π, regardless
of its length (it may be one or two), replace j by j + 1 if j ≥ i and add the new 2-cycle
(i, n+ 2) to obtain the cycle representation of π′. Note that this obviously implies that π′
is an involution, too.
Alternatively, one might look at the word representation of π. First, add one to all j ≥ i.
Then shift all the letters to the right by one, starting at the i-th place, and put n + 2 at
position i. Lastly, put i at the end.
For the graphically inclined, in the geometric variant one is required to move all the points
on or above the horizontal line y = i up by one unit. Analogously, increase the x-coordinate
of the points on or to the right to the vertical line x = i by one (of course, some points
satisfy both properties). Lastly, add the points (i, n+ 2) and (n+ 2, i).
However, we can not add arbitrary cycles to π and expect to obtain another vexillary
involution, as the example below demonstrates. This leads to the following definition,
introducing two parameters which are very helpful for the proper construction of new
involutions.

Definition 4.6. Let π ∈ Vn. For 1 ≤ i ≤ n + 1 we say that the site i is active, if the
insertion of the cycle (i, n+2) according to the rules given above leads to another vexillary
involution of length n+ 2.
Additionally, we denote by q the number of active sites of π and by p the position of the
first descent, or more precisely

p =
{

min{k ≥ 2 : πk−1 > πk} if π 6= 12 . . . n,
n+ 1 if π = 12 . . . n, i.e. it does not contain a descent.

Before we move on to state some facts about vexillary involutions and explain why the
statistic p is interesting, we will give a short example to demonstrate the construction
principles.

Example 4.7. Let π = (15)(46) = 523614 ∈ V6 and let us insert the cycle (58). Thus, the
new involution has the cycle representation π5 = (16)(47)(58) (changes to π are underlined)
and our second method gives the equivalent word representation:
π → 623714→ 6237 8 14⇒ π5 = 62378145.
For the sake of completeness, see the figure below for a demonstration of the graphical
method to add a cycle.
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Figure 4.8: Graphical insertion of (58) into π.

Similarily, we can insert the 2-cycles from (18) up to (78) and get the 6 other involu-
tions π1 up to π7: π1 = (18)(26)(57) = 86347251, π2 = (16)(28)(57) = 68347152, π3 =
(16)(38)(57) = 62847153, π4 = (16)(48)(57) = 62387154, π6 = (15)(47)(68) = 52371846,
π7 = (15)(46)(78) = 52361487. Lastly, we might also add the fixed point at the end, giving
π8 = (15)(46) = 5236147.
But only π1, π2, π5 (and π8) are vexillary again, as all the others contain one of the pat-
terns 6287, 5276 or 5287 which, after proper relabeling, give the inadmissible sequence 2143.
Hence, π has the parameters p = 2 and q = 3.

Observe that the example also shows that active sites are not necessarily consecutive. The
next lemma (also see Remark 3.3 in [GPP01]) analyzes the distribution of active sites
within a vexillary involution and summarizes some useful statements that we need to know
about vexillary involutions for our purposes.

Lemma 4.9. Let π ∈ Vn with π 6= 12 . . . n and parameters p and q. Then the following
properties hold:

(a) All sites i, for 1 ≤ i ≤ p, which are to the left of the first descent, are active. This
implies p ≤ q.

(b) The last site n+ 1 is inactive.

(c) Let π′ be obtained by adding the fixed point (n + 1) to π. Then π′ is a vexillary
involution of length n+ 1 and all of its sites i, where i > p, are inactive.

(d) Let π′ be the vexillary involution obtained by inserting the cycle (i, n + 2) into an
active site i of π. Then the activity of sites j located to the right of n+ 2 in the word
representation of π′ remains unchanged. That is, the state of site i < j ≤ n+ 2 in π′

equals the state of j − 1 in π. Furthermore, if i > p, then all sites for p < j ≤ i are
inactive.

Finally, all sites of the vexillary involution 12 . . . n are active, thus it has parameters p =
q = n+ 1.
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Proof. For (a), let us insert a cycle (i, n + 2) into a site i with 1 ≤ i ≤ p and look at the
word representation of the obtained involution. To the left of the newly inserted largest
element, n + 2, the letters are strictly increasing (as they were located to the left of the
first descent) and thus n + 2 can not correspond to letter 4 in the pattern 2143. Now
recall that the inverse of a permutation maps each letter to its position within the word
representation. In our case it is especially easy since π is an involution. As p indicates the
first descent, we have π1 < π2 < . . . < πp−1, hence, the positions of the elements up to
p − 1 are increasing, which is to say that these elements form an increasing subsequence
of π. Thus, there is no 21-pattern made of elements strictly smaller than i, which implies
that it can not correspond to 3 in the pattern 2143.
Statement (b) is trivial, as subsequence πp−1πp(n+ 2)(n+ 1) is inadmissible.
Statement (c) is clear, too. As we mentioned before, adding the new fixed point does not
change the rest of the permutation π. Hence, the new involution is vexillary, as (n+1) can
not play the role of the letter 3 in 2143 either. Nevertheless, we can find a subsequence of
π′ of the type 213, made by the elements πp−1πp(n + 1). Inserting a cycle (i, n + 3), for
p < i < n+ 2 thus creates the forbidden pattern 2143 in the form of πp−1πp(n+ 3)(n+ 2).
Additionally, site n+ 2 is inactive because of (b).
Now for (d). Inserting a new cycle according to the rules of this chapter retains the order
of the letters - some might be shifted to the right, but small elements stay small and big
ones get bigger by the same amount. If we write blocks of corresponding letters on top of
each other, the general transformation looks like

π = π1 π2 . . . πi−1 πi πi+1 . . . πn

⇓
π′ = π+

1 π+
2 . . . π+

i−1 (n+ 2) π+
i π+

i+1 . . . π+
n i,

where π+
j = πj if πj < i, or else π+

j = πj + 1. So, if the 2143 pattern emerges after the
insertion of a new cycle (i, n + 2), then i must play the role of the 3 or n + 2 the role of
4, or both. Therefore, let j > i be an inactive site of π′ and insert (j, n + 4) into it. By
definition, we find a 2143 pattern in the new involution π′′. If n + 4 corresponds to 4,
then the subsequence looks like π′′i1π

′′
i2(n + 4)π′′i3 with i1 < i2 < j < i3. After replacing

n+ 4 by n+ 2 and subtracting ones from the remaining letters if necessary (depending on
whether they were larger than or equal to j), this gives a 2143 pattern within the involution
obtained by adding the cycle (j − 1, n + 2) to π, thus rendering site j − 1 inactive. The
other case follows similarly.
If i > p, then we can use the reasoning from (c) again: the insertion of the 2-cycle does not
change the order of the letters of the permutation up to and including site p, so we can find
a subsequence of type 213 in π′ in the form of π′p−1π

′
p(n+ 2). All the sites p < j ≤ i must

be inactive then, or else we would create a 2143 pattern given by π′p−1π
′
p(n+ 4)(n+ 3).

As for the last remark, by inserting a new cycle (i, n + 2), for 1 ≤ i ≤ n + 1, into the
identity, we clearly obtain an involution in which neither n+ 2 can play the role of 4, nor
i the role of 3 in 2143.

With the help of this lemma, it is pretty clear how to adjust the parameters after the
insertion of new cycles into a given vexillary involution. This is essential for the inductive
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description, which is established in the next lemma. It also shows that our method is
sufficient to really generate all vexillary involutions. Essentially the same description lead
in [GPP01] to a rewriting rule for generating trees of vexillary involutions.

Lemma 4.10 (Inductive description of vexillary involutions, [BM03]). Let π be a vexillary
involution of length n. By (p, q) we denote the corresponding pair of parameters.

• If π = 12 . . . n, then the insertion of a new fixed point leads to one vexillary involution
of length n+ 1 with parameters (n+ 2, n+ 2).
The insertion of a cycle (i, n+2) into an active site 1 ≤ i ≤ n+1 leads to n+1 vexillary
involutions of length n+ 2 with parameters (2, n+ 2), (3, n+ 2), . . . , (n+ 2, n+ 2).

• If π 6= 12 . . . n, then the insertion of a new fixed point leads to one vexillary involution
of length n+ 1 with parameters (p, p).
Furthermore, the insertion of a cycle (i, n + 2) into an active site of π leads to q
vexillary involutions of length n+ 2 with parameters

(2, q + 1), (3, q + 1), . . . , (p+ 1, q + 1), (p, q), (p, q − 1), . . . (p, p+ 1)︸ ︷︷ ︸
if p < q

.

Conversely, removing the cycle which contains n (i.e. (n) or (i, n), where i = πn) and
replacing each remaining letter j > i by j − 1 gives a vexillary involution of length n − 1
respectively n− 2.

Proof. Most of the work for this proof was already done in Lemma 4.9.
Adding a new fixed point to π = 12 . . . n simply leads to the identity permutation of length
n + 1 with known parameters. All sites of π are active, thus giving n + 1 new vexillary
involutions. So, let us insert a cycle (i, n+ 2). Clearly, the first descent will be at position
i+ 1 (right after the letter n+ 2). By the aforementioned lemma, the i+ 1 sites to the left
of it (including i sites of π plus the site of n+2) are all active and activity of the remaining
n+ 1− i sites of π does not change to the right of the inserted letter n+ 2. Summing, we
obtain n + 2 active sites. This holds for all values i ∈ {1, 2, . . . , 1, 2, . . . , n} and gives the
statement in the formulation of this lemma.
Now let π 6= 12 . . . n. The first property follows directly from (c) in Lemma 4.9. For the
second one, we insert the cycle (i, n+ 2) and look at the two possible cases:
If i ≤ p, we get a new first descent at position i + 1. As above, to the right of n + 2 are
q − i sites whose activity does not change, so we get q + 1 active sites in total.
In the other case, i > p (note that this is equivalent to p < q), the first descent remains at
position p. By (d) of Lemma 4.9, we may lose some active sites. To be more exact, if we
insert the cycle into the j-th active site after the position of the first descent in π, we lose
j − 1 active sites to the left of it. Thus, depending on the value i, zero up to q − p− 1 of
the q active sites in π become inactive.
Of course, the method described in this chapter also works in the opposite direction. If π
does not contain 2143, then removing the cycle which contains n can not add this pattern.
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Indeed, all the remaining elements (after subtracting one if necessary) retain their order
with respect to each other.

As a remark, no vexillary involution is constructed twice with our method, as the starting
permutations differ (an insertion of a fixed point or a cycle does not change that).

4.2 Obtaining a functional equation

After finding an inductive description in the last section, we can now basically stop thinking
about vexillary involutions and start working with generating functions. As usual, the first
step will be to get a functional equation which seems to be impossible to solve. The very
first step, however, will be to define our generating function.

Definition 4.11. Let fn,p,q be the number of vexillary involutions of length n and the
secondary statistics p and q as given in Definition 4.6 and let

F (t, x, y) :=
∑
n≥0
p,q≥1

fn,p,qt
nxpyq

be the corresponding generating function.

Now we make use of our construction from Lemma 4.10. For (almost) all of the fn,p,q
involutions of the length n and parameters p and q, we obtain new permutations with an
increased length and changed parameters, which were explicitly given there. We can express
that directly in the language of generating functions by multiplying with our generating
variables:

fn,p,q

tn+2(x2 + x3 + . . .+ xp+1)yq+1︸ ︷︷ ︸
insertion of (i, n+ 2), i ≤ p

+ tn+2xp(yp+1 + yp+2 + . . .+ yq)︸ ︷︷ ︸
insertion of (i, n+ 2), i > p

+ tn+1xpyp︸ ︷︷ ︸
insertion of (n+ 1)

 .
The only exception is 12 . . . n, for which the term to multiply with is given by

tn+2(x2 + x3 + . . .+ xn+2)yn+2︸ ︷︷ ︸
insertion of (i, n+ 2)

+ tn+1xn+2yn+2︸ ︷︷ ︸
insertion of (n+ 1)

.

We will compensate the slight difference to the usual scheme (which actually only occurs
when adding a new fixed point) later on. Finally, we must not forget the empty involution.
It is obviously vexillary, and has parameters p = 1, q = 1, giving the term xy.
To carry out the inductive construction, we sum over all possible values for n ≥ 0 and
p, q ≥ 1. Thus, we recover all vexillary involutions, or, in other words, our generating
function F (t, x, y), leading to the equation

F (t, x, y) = xy +
∑
n≥0
p,q≥1

(
fn,p,q

(
tn+2x2 1− xp

1− x y
q+1 + tn+2xpyp+1 1− yq−p

1− y + tn+1xpyp
)

−tn+1xn+1yn+1(1− xy)
)
, (4.12)
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where we applied the formula for a finite geometric series. The last term tn+1xn+1yn+1(1−
xy) = −tn+1xn+1yn+1 +tn+1xn+2yn+2 handles the special case 12 . . . n where p = q = n+1
(note that fn,n+1,n+1 = 1 holds) by subtracting the incorrect and adding the correct terms.

Of course, this is not really a nice functional equation to work with. The following lemma
will transform it into a shape which is very similar to the other ones we have already
encountered so far.

Lemma 4.13 ([BM03]). The formal power series F (t, x, y), given in Definition 4.11, is
the unique solution of(

1 + t2x2y

1− x + t2y

1− y

)
F (t, x, y) = xy(1− t)

1− txy + t

(
1 + ty

1− y

)
F (t, xy, 1) + t2x2y

1− xF (t, 1, y).

Proof. The proof is merely a matter of rewriting (4.12) in a more fashionable way. We
reformulate the right hand side by plugging in the definition of F (t, x, y):

F (t, x, y) =xy + t2x2y

1− x
∑
n≥0
p,q≥1

fn,p,qt
n(1− xp)yq + t2y

1− y
∑
n≥0
p,q≥1

fn,p,qt
nxpyp(1− yq−p)

+ t
∑
n≥0
p,q≥1

tnxpyp − txy
∑
n≥0

(txy)n +
∑
n≥1

tn(xy)n+1

⇐⇒ F (t, x, y) = t2x2y

1− xF (t, 1, y)− t2x2y

1− xF (t, x, y) + t2y

1− yF (t, xy, 1)− t2y

1− yF (t, x, y)

+ tF (t, xy, 1)− txy

1− txy + xy

1− txy .

Hence, bringing all the F (t, x, y) terms to the left hand side gives the equation as in the
statement of the lemma.

As before, this is just another (implicit) definition of the function and it is equivalent to
the recursion. Although there is no immediate way to solve the equation and obtain one of
its variables, it looks like the usual Kernel form. That is, it is actually a linear combination
of the main formal power series and some of its specializations, which do not depend on
all the catalytic variables at once. The Kernel is given as the coefficient (or denominator)
of the general generating series F (t, x, y).
Indeed, it is another prototype for certain classes of equations, with more examples given
in [BM03]. Some of these are astonishingly similar to this one, especially for vexillary
permutations (not involutions) or of permutations avoiding 1234 - essentially the same
Kernel occurs in the equations for their generating functions (the only adjustment necessary
is to replace t2 by t). The applications mentioned at the beginning of this chapter, which
lie outside the study of pattern permutations (for example counting lattice paths), are of
a nearly identical type, too.

These are good news, obviously, as we may try our earlier method of setting the Kernel to
zero again, and hope to recover the missing information we need. On the other hand, it is



4.2. OBTAINING A FUNCTIONAL EQUATION 45

clear that it will be substantially more difficult in this case. There are now three unknowns,
the main series and two of its offsprings, as well as two catalytic variables involved, unlike
in the earlier chapters where we only had to consider one derivation of the generating
function and one variable fixed to a special value.

This is where a new flavor of the Kernel method comes into play to provide more relations
between the occurring unknowns, some of which might help to obtain explicit clues about
our generating function. This will not be enough, however, and we need to extract even
more connections (i.e. equations) by looking at the positive parts of the involved series.
This second part will be easier if we substitute the variables x and y. As the term xy
needs to be plugged into F in the equation above, it is very natural to define a new
variable z := xy. This will still not suffice, however, as the goal is to apply the following
observation.

Lemma 4.14 ([BM05]). Let G1(t, x̄), G2(t, x̄) and F (t, u, v) be Laurent series in t, with
the following properties:
F has coefficients in C[u, v] and is symmetric in u, v, i.e., F (t, u, v) = F (t, v, u). The co-
efficients of G1(t, x̄) and G2(t, x̄) are in C[x, x̄]. Additionally, it holds that the elementary
symmetric functions G1 + G2 and G1G2 are polynomials in C[x̄] without a constant term
(that is, only negative powers of x occur).
Then the series F (t, G1(t, x̄), G2(t, x̄)), if well defined, is a Laurent series in t with poly-
nomial coefficients in x̄. Furthermore, if viewed as a power series in x̄, the constant term
is given by F (t, 0, 0).

Proof. As F is symmetric in u, v, its coefficients must be symmetric polynomials (in u, v).
These can be written as polynomials in the elementary symmetric functions u + v and
uv with coefficients in C (this is, of course, true for any number of variables, with an
appropriately defined notion of ”elementary” - see e.g. [Sta99b] for more details).
So, if we plug G1 and G2 into F , then the coefficients are indeed polynomials in x̄, given
that this is true for G1 + G2 and G1G2. Clearly, the constant term in x̄ can be obtained
by setting u = v = 0 as G1 + G2 and G1G2 only involve positive powers of x̄ and do not
contribute.

This lemma, albeit simple, is very important in a number of Bousquet-Mélou’s papers
(besides the paper on which this chapter is based on, it occurs in, e.g., [BM05, BM02]).
It provides a method to quickly extract the constant term and subsequently the positive
part of certain series, giving more information to work with. We will explain later how the
change of variables helps exactly to make use of this lemma, but basically at some point of
our computations it would become natural to make a substitution. Hence, let us introduce
two new variables and apply the transformation to the functional equation in Lemma 4.13
below.
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Lemma 4.15. Let u, v be two new variables such that x = (1 + ū)/(1 + v) and y = 1 + v.
Then the generating function F satisfies the equation

K(t, u, v)F
(
t,

1 + ū

1 + v
, 1 + v

)
= uv(uv − 1)(1 + u)(1− t)

u(1− t)− t + t(uv − 1)(v(1− t)− t)G(u) + t2(1 + u)2H(v),

where the Kernel is given by K(t, u, v) = uv(uv − 1) + t2(u + v + 3uv − u2v2) and the
specializations of F are G(u) = uF (t, 1 + ū, 1), as well as H(v) = vF (t, 1, 1 + v).

Proof. We start by dividing the functional equation we obtained earlier by t2y and plugging
in the newly defined variables. This gives(

1
t2(v + 1) + (1 + u)2

u(uv − 1)(1 + v) −
1
v

)
F

(
t,

1 + ū

1 + v
, 1 + v

)

= (1− t)(1 + u)
t2(1 + v)(u(1− t)− t) +

( 1
t(1 + v) −

1
v

)
F (t, 1 + ū, 1) + (1 + u)2

u(1 + v)(uv − 1)F (t, 1, 1 + v) .

Now multiply by the common denominator of the left hand side, t2uv(1+v)(uv−1), whence
we obtain the Kernel as the coefficient of F :(

uv(uv − 1) + t2v(1 + u)2 − t2u(1 + v)(uv − 1)
)
F

(
t,

1 + ū

1 + v
, 1 + v

)
=
(
uv(uv − 1) + t2(u+ v + 3uv − u2v2)

)
F

(
t,

1 + ū

1 + v
, 1 + v

)
.

On the right hand side we obtain

uv(uv − 1)(1 + u)(1− t)
u(1− t)− t + tu(uv − 1)(v − t(1 + v))F (t, 1 + ū, 1) + t2v(1 + u)2F (t, 1, 1 + v) .

Putting both sides together and introducing G(u) and H(v) yields the functional equation
as presented above.

Note that the Kernel is symmetric after the substitution of x and y (whereas it would
not be if we continued without the change of variables - see the remark at the end of
this chapter). This is a nice coincidence and will make things easier during the coming
computations (because the roots of the Kernel for u are essentially the same ones as for
v). In Figure 4.16 the algebraic curve defined by the equation K(t, u, v) = 0 is shown for
some specific values of t. Note how the symmetry of the Kernel is translated in the picture
into a symmetry with the main diagonal line as axis.
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Figure 4.16: Algebraic curve defined by the Kernel K(t, u, v), for various values of t.
(Figures in top row: t = 0.5 and t = 1, bottom row: t =

√
1.25 and t = 5)

4.3 The obstinate Kernel method

Now that we have found a functional equation for our generating function F , we can proceed
by applying the standard Kernel method. The Kernel K(v) = v2u2(1− t2)+v(t2(1+3u)−
u) + t2u is a quadratic polynomial in v, so, for fixed u and t we can easily find its roots
using the standard formula. After applying some minor algebraic transformations, such as
factorizing and reducing the fraction, we obtain

V1,2(u) = 1− t2ū− 3t2 ∓
√

(1− t2(1 + ū))(1− 5t2 − 4t2u− t2ū)
2u(1− t2) .

Since we want to plug them into the Kernel to set it to zero, we need to check if they are
proper formal power series in t and if F

(
t, 1+ū

1+Vi
, 1 + Vi

)
, i ∈ {1, 2}, is well defined, too.

A quick analysis is enough to ensure the first point:
Both roots can be written as the product of the geometric series 1/(1 − t2) and a power
series in t, whose expansion is essentially given by the binomial series of the square root
(with some additional terms). This latter series has polynomial coefficients in Z[ū, u].
Additionally, by setting t = 0 we observe that V2 (having a positive sign before the square
root) has a constant term, given by ū, while V1 does not. This is clear, since the constant
term of the aforementioned binomial series vanishes after subtracting it from one in the
numerator. Thus, the first root starts at t2.
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Now for the second point, which calls for a closer look. The composition of (multivariate)
formal power series is (in general) not defined, if at least one of the substituted series has
a constant term not equal to zero (as it is clearly the case for 1 +V1,2). However, recall our
Definition 4.11 of the main generating function and that 1 ≤ p ≤ q ≤ n+1 holds according
to Lemma 4.9. Therefore, after replacing x and y, F can actually be viewed as a power
series in t with polynomial coefficients in Z[ū, v] and rewritten as

F

(
t,

1 + ū

1 + v
, 1 + v

)
=
∑
n≥0

n+1∑
q=1

q∑
p=1

fn,p,q(1 + ū)p(1 + v)q−p
 tn.

This enables us to read off coefficients for all n ∈ N after we carry out the substitution:

[tn]F
(
t,

1 + ū

1 + Vi(t)
, 1 + Vi(t)

)
=

n∑
i=0

i+1∑
q=1

q∑
p=1

fn,p,q(1 + ū)p
[
ti
]

(1 + Vj(t))q−p,

where j ∈ {1, 2}. All of the occurring sums are finite and determining
[
ti
]

is possible, since
the term (1 + Vj(t))q−p is a finite power of a formal power series and thus a formal power
series itself. It also has polynomial coefficients in u and ū, so we can proceed to read off co-
efficients for fixed powers of u, ū and v. Hence, [tnūpvq]F (t, (1 + ū)/(1 + Vj(t)), 1 + Vj(t)),
for n, p, q ∈ N, only depends on a finite number of coefficients of F and Vj .
The same argument may be applied if u is replaced by some formal power series with
polynomial coefficients (or both, u and v simultaneously).

Also, it is not obvious that (1 + ū)/(1 + V1,2) actually has a power series expansion in t.
Now, if R is a ring, then a formal power series Z ∈ R[[t]] is invertible, that is 1/Z ∈ R[[t]]
holds, if and only if the constant term [t0]Z is invertible in R (also see the introductory
Section 1.3).
In our case, we may choose R = Z[ū, u]. For example, 1/V1 does not exist as the constant
term is zero, while 1/V2 has a formal power series expansion (this will become important
later on). Likewise, 1/(1 + V1) is a formal power series in t with a constant term one.
Hence, the expression (1 + ū)/(1 +V1) admits a power series expansion with coefficients in
the aforementioned ring.
It is a bit more subtle that the same holds if we use V2 instead. The series 1/(1 + V2)
is not well defined, at least for our choice of R (it only has a power series expansion in
Z((u))[t]). Its constant term is 1 + ū, which is not invertible in Z[ū, u]. Still, the following
computations suggest that this term can be singled out when doing the full substitution:

V2 − ū = 1− t2ū− 3t2 +
√

(1− t2(1 + ū))(1− 5t2 − 4t2u− t2ū)− 2(1− t2)
2u(1− t2)

=
−t2(1 + ū)− 1 +

∑
i≥0

(1/2
i

)
(−t)i(1 + ū)i ·

∑
i≥0

(1/2
i

)
(−t)i(5 + 4u+ ū)i

2u(1− t2) .

Here we simply used the binomial expansion for the square root. The Cauchy product
of the two sums has a constant term of one, which is canceled by the one in front of
it. If we draw the factor ū from the denominator into the second sum, we can rewrite
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ū(5 + 4u + ū) = (1 + ū)(4 + ū). This means that the factor 1 + ū occurs in both parts of
the product. Thus, it can be singled out. In total we have

1 + ū

1 + V2
= 1 + ū

(1 + ū)V ′2
= 1
V ′2
,

where V ′2 is the series such that (1 + ū)V ′2 = 1 + V2. It follows that [t0]V ′2 = 1.
Together with our result for F above, this ensures that the substitutions for x and y in the
main functional equation are valid.

Furthermore, let us take a look at the elementary symmetric functions of the roots. By
summing, the square roots cancel each other because of their different signs and we get

V1 + V2 = ū(1− t2ū− 3t2)
1− t2 . (4.17)

On the other hand, since K(t, u, v) = (v − V1(t, u))(v − V2(t, u))/(u2(1− t2)), the product
of the roots is given by the constant term of the Kernel (divided by the coefficient of v2):

V1V2 = ūt2

1− t2 . (4.18)

Note that both only involve negative powers of u, which is to say that they are polynomials
in ū with coefficients in Q[[t]], and that they do not have constant terms. This is one of the
main goals we wanted to achieve by transforming our initial variables x, y to u, v. Clearly,
this is essential for the application of Lemma 4.14, which will be very helpful below.

We have seen that the pairs (u, V1(u)) and (u, V2(u)) both set the Kernel to zero. Plugging
them into the functional equation from Lemma 4.15 is valid and gives us access to two
equations involving G(u) and two new, unknown series H(V1), H(V2). This does not really
solve the situation, as it usually did in the earlier chapters. On the contrary, we still have
too many variables and not enough relations to extract any explicit information about
them. The standard Kernel method is not sufficient in this case and we need to keep on
pushing for more equations, we need to be obstinate.
Bousquet-Mélou states in [BM05] that this next step is inspired by Section 2.4 of the book
[FIM99], albeit the context and method is different. We will proceed as follows:

Recall that the Kernel is quadratic in both u and v. Thus, if we have two Laurent series
in t, say (U(t), V (t)) 6= (0, 0), such that K(t, U(t), V (t)) = 0, then we can always produce
other pairs which set the Kernel to zero, too. The coefficients of these series lie in an
appropriate field, such as Q((u, ū, v, v̄)).
The (straightforward) key idea is that there are two possible solutions for u respectively v
to choose from. To be more specific, define a transformation ϕ(U, V ) := (U ′, V ) such that
U ′ is the other root of the Kernel, if viewed as a quadratic polynomial in u. The same
applies for v of course: ψ(U, V ) := (U, V ′) where V ′ is the second root if K is viewed as a
polynomial in v.

These actions are particularly easy in our situation, since the Kernel is symmetric in u
and v. Hence, if we solve it as a quadratic polynomial in u and for fixed v, we obtain two
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roots U1(v) and U2(v). Again, let us denote the solution with the negative sign before the
square root by U1. Then the symmetry simply means that U1(v, t) = V1(v, t), as well as
U2(v, t) = V2(v, t), where V1 and V2 are given above. In other words, the solutions are
equal if we view them as formal series in t.
We also know how to relate the two solutions of K(t, U, V ) = 0 to each other by looking
at their product (4.18). Thanks to the form of the Kernel, both kinds of roots satisfy the
same elementary symmetric formulas (one only needs to replace every occurrence of U by
V and vice-versa):

Ui = Ujvt
2

1− t2 , Vi = Vjut
2

1− t2 ,

where i, j ∈ {1, 2} such that i 6= j. An alternative way to define the new pairs of Laurent
series is thus given by:

ϕ(U, V ) =
(
UV t2

1− t2 , V
)
, ψ(U, V ) =

(
U,
UV t2

1− t2

)
.

Indeed, one can easily verify that this procedure gives new pairs which cancel the Kernel:

K

(
t,
UV t2

1− t2 , V
)

= t2

U(1− t2)

(
t2

U(1− t2) − 1
)

+ t2
(

t2

UV (1− t2) + V + 3t2

U(1− t2) −
t4

U2(1− t2)2

)

= t2

U2V (1− t2)2

(
t2V − UV (1− t2) + t2U(1− t2) + U2V 2(1− t2)2 + 3t2UV (1− t2)− t4V

)
= t2

U2V (1− t2)(UV (UV − 1) + t2(U + V + 3UV − U2V 2)) = t2

U2V (1− t2)K(t, U, V ).

Therefore, under our assumption that the series U, V are not equal to 0 and thatK(t, U, V ) =
0, the Kernel also vanishes when we plug in the new pair we obtain by applying ϕ. Clearly,
the same computations work for ψ as well (after switching the roles of U and V ).
Note that these transformations actually depend on the Kernel only and not on the explicit
knowledge of its roots. The reason is that the elementary symmetric functions of the roots
can be expressed in terms of the coefficients of the Kernel.

Now, we already know two pairs which satisfy the properties we are looking for. Let us start
with the pair (u, V1) and see which pairs we can produce by applying the two previously
defined transformations. Obviously they are involutions, so we shall not apply the same
action twice in a row. Diagram 4.19 displays the orbits of both actions, similar to Figure
6 in [BM03].

The rather abstract description above has a very intuitive geometric interpretation. Recall
that the equation K(t, u, v) = 0 describes a geometric curve, which consists of multiple
branches. Let us fix t and choose a starting point on the curve, say (u0, v0) (or, choose
u0 only and then obtain the second coordinate by plugging it into one of the roots V1(u)
or V2(u)). By applying our transformations, we simply travel parallel to the axes to find
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(u, V1)
::

ϕ

zz

dd
ψ

$$(
uV1t2

1−t2 , V1
)

= (V2, V1)
OO

ψ

��

(u, V2)
OO

ϕ

��

=
(
u, uV1t2

1−t2
)

(
V2,

V2V1t2

1−t2
)

= (V2, u)
cc

ϕ
##

(V1, V2)
;;

ψ
{{

=
(
uV2t2

1−t2 , V2
)

(
V2ut2

1−t2 , u
)

= (V1, u) =
(
V1,

V1V2t2

1−t2
)

Figure 4.19: Pairs produced by applying ϕ and ψ.

new points on the curve. To be more precise, ϕ changes the u-coordinate of the point
while v remains unchanged, and the other way around for ψ. Figure 4.20 (corresponding
to Figure 6 in [BM03]) shows a (closed) path described by tracing these transformations,
switching from one branch of the curve to another. It corresponds to the (rounded) values
(u0, v0) = (−3, 0.675) ψ→ (−3,−0.475) ϕ→ (0.675,−0.475) ψ→ (0.675,−3) ϕ→ (−0.475,−3) ψ→
(−0.475, 0.675) ϕ→ (u0, v0). While all of the 6 pairs within the hexagon above setK(t, U, V )

−5 −4 −3 −2 −1 0 1
−5

−4

−3

−2

−1

0

1

u

v

Figure 4.20: Tracing the transformations ϕ and ψ for t = 0.7 and a starting value
u0 = −3.
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to zero, not all of them can be used in the equation from Lemma 4.15. It is not ensured
that all of the involved series are still well defined as formal power series in t after applying
the substitutions. Thus, as we did before for (u, V1) and (u, V2), we have to check this
again.
Keep in mind that 1/V2, 1/(1 + V1), (1 + ū)/(1 + V2) ∈ Q[u, ū, v, v̄][[t]], as we also showed
there. Furthermore, we also know already that for all the following pairs, the replacements
for y admit power series expansions.

(V2, V1): The substitutions looks like x = (1 + 1/V2)/(1 + V1). This case is simple, as all
of the involved reciprocals exist as formal power series in t.

(V2, u): Or x = (1 + 1/V2)/(1 + u). Here 1/(1 + u) is not an element of Q[u, ū]. But it
holds that

1 + 1
V2

1 + u
= 1 + V2

(1 + u)V2
= (1 + ū)V ′2

(1 + u)V2
= 1
V2
ūV ′2 ,

where V ′2 is again defined such that (1 + ū)V ′2 = 1 + V2. In this form it is immediate
that the substitution is valid.

(V1, u): Or x = (1 + 1/V1)/(1 + u). But the series V1 · (1 + u) does not have a constant
term (as V1 starts at t2) and so is not invertible. Therefore (V1 + 1)/(V1 · (1 + u)) =
(1 + 1/V1)/(1 + u) is not a proper formal power series in t. We must not replace x
by this expression.

(V1, V2): Or x = (1 + 1/V1)/(1 + V2). Similarly, this substitution involves the series
V1 · (1 + V2) which is not invertible due to the same reasons as in the point above.
The exchange of x and (1 + V1)/(V1 · (1 + V2)) = (1 + 1/V1)/(1 + V2) is not possible.

So, by being obstinate we found two more pairs such that the Kernel vanishes. We proceed
as in the chapters before by plugging the 4 admissible solutions (u, V1), (u, V2), (V2, V1), (V2, u)
into the functional equation for vexillary involutions in Lemma 4.15. As it was our goal,
this gives us the following system of equations (4.21) in which only the specializations of
our main generating function, the series G and H, occur (at special values). If we had used
the standard Kernel method, we would merely have produced I or II, yielding little helpful
information.

I: uV1 · (uV1 − 1)(1 + u)(t− 1)
u(1− t)− t = t(uV1 − 1)(V1 · (1− t)− t)G(u) + t2(1 + u)2H(V1)

II: uV2 · (uV2 − 1)(1 + u)(t− 1)
u(1− t)− t = t(uV2 − 1)(V2 · (1− t)− t)G(u) + t2(1 + u)2H(V2)

III: V2V1 · (V2V1 − 1)(1 + V2)(t− 1)
V2 · (1− t)− t

= t(V2V1 − 1)(V1 · (1− t)− t)G(V2) + t2(1 + V2)2H(V1)

IV: V2u(V2u− 1)(1 + V2)(t− 1)
V2 · (1− t)− t

= t(V2u− 1)(u(1− t)− t)G(V2) + t2(1 + V2)2H(u)

(4.21)
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Even though this procedure provides more relations between our generating series, it is
still not enough. There are now 5 unknowns in these 4 equations and thus, it is still not
possible to solve the system with the usual algebraic methods. It seems that the problem
was only delayed, but not solved. However, as mentioned before, there is a second, rather
creative step introduced by Bousquet-Mélou.

4.4 Towards a formula for the generating function

In this section we will obtain even more information about the generating function of
vexillary involutions. We will do this by looking at the positive parts of the involved
series, as defined in the introduction. To do this, our goal is to form nice relations from
system (4.21) so that this can be done easily. This is where Lemma 4.14 finally comes
into play. We will build symmetric functions in V1 and V2 and apply the aforementioned
lemma.

For the first relation we eliminate G(u) from equations I and II of (4.21). This can be done
in the following way:

I · (uV2 − 1)(V2 · (1− t)− t)− II · (uV1 − 1)(V1 · (1− t)− t)

⇐⇒ u(1 + u)(t− 1)
u(1− t)− t (uV1 − 1)(uV2 − 1)(V1 · (V2 · (1− t)− t)− V2 · (V1 · (1− t)− t))

= t2(1 + u)2((uV2 − 1)(V2 · (1− t)− t)H(V1)− (uV1 − 1)(V1 · (1− t)− t)H(V2))
(4.22)

Of course, this expression can be simplified a lot further. The expression (uV1−1)(uV2−1)
will be an important one, so let’s start here. Recall equations (4.17) and (4.18) as the
elementary symmetric functions of the roots of the Kernel will be useful here.

(uV1 − 1)(uV2 − 1) = u2V1V2 − u(V1 + V2) + 1 = t2u

1− t2 −
1− t2ū− 3t2

1− t2 + 1

= t2(u+ ū+ 2)
1− t2 = t2ū(1 + u)2

1− t2 . (4.23)

Additionally, we have (V1 · (V2 · (1− t)− t)−V2 · (V1 · (1− t)− t)) = t(V2−V1). Thus, after
dividing by t2(1 + u)2, we obtain the left hand side

u(1 + u)(t− 1)
u(1− t)− t · t

2ū(1 + u)2

1− t2 · t

t2(1 + u)2 (V2 − V1) = −t(1 + u)
(1 + t)(u(1− t)− t)(V2 − V1).

Lastly, we put both sides together and bring V1 − V2 = −(V2 − V1) to the right:
t(1 + u)

(1 + t)(u(1− t)− t) = (uV2 − 1)(V2 · (1− t)− t)H(V1)− (uV1 − 1)(V1 · (1− t)− t)H(V2)
V1 − V2

(4.24)

The second symmetric expression will be a little more complicated. We start by repeating
exactly the same computations as for the first two equations in order to get rid of G(V2)
in III and IV:

III · (uV2 − 1)(u(1− t)− t)− IV · (V1V2 − 1)(V1 · (1− t)− t).
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The equation we obtain is virtually the same as (4.22) and leads to a new version of (4.24),
only with switched roles of u and V2.

t(1 + V2)
(1 + t)(V2 · (1− t)− t)

= (uV2 − 1)(u(1− t)− t)H(V1)− (V2V1 − 1)(V1 · (1− t)− t)H(u)
V1 − u

(4.25)

As a remark, the involved equations stem from the pairs (V2, u) and (V2, V1) which set the
Kernel to zero. Thus, for the fixed value V2 for u, the two roots for v are V1 and u, which
must satisfy the same equations as in (4.17) and (4.18) (again, after the replacement of u
with V2 and vice versa). Therefore the calculations can be performed as before and the
relation above holds.

We combine these last two equation now, such that V1 and V2 play symmetric roles. To
this end, we compute

(4.24) · (1 + t)(u(1− t)− t)(V1 − V2)− 2 · (4.25) · (1 + t)(V2 · (1− t)− t)(V1 − u)
⇐⇒ t(1 + u)(V1 − V2)− 2t(1 + V2)(V1 − u)

= −(1 + t)(u(1− t)− t)
(
(uV2 − 1)(V2 · (1− t)− t)H(V1)− (uV1 − 1)(V1 · (1− t)− t)H(V2)

)
+2(1 + t)(V2V1 − 1)(V1 · (1− t)− t)(V2 · (1− t)− t)H(u).

This pretty long expression is subject to various simplifications, thanks to the known
relations of the roots. It is also not yet immediate that it is actually symmetric. We begin
by taking a look at the coefficients of H(u) and start by simply plugging in the product
into

V1V2 − 1 = ūt2

1− t2 − 1 = t2(1 + ū)− 1
1− t2 . (4.26)

For the rest, we have

(1 + t)(V1 · (1− t)− t)(V2 · (1− t)− t) = (1 + t)(V1V2 · (1− t)2 − t(1− t)(V1 + V2) + t2)

= (1 + t)
(
t2ū(1− t)

1 + t
− tū(1− t2ū− 3t2)

1 + t
+ t2

)
= t2ū(1− t) + t2(1 + t)− tū(1− t2ū− 3t2)

= tū(t+ 2t2 + tu+ t2u+ t2ū− 1). (4.27)

Now we divide the whole equation by V1V2 − 1 in the form we have just derived. While
not obvious, this will remove the occurrences of the roots on the left hand side:

t(1 + u)(V1 − V2)− 2t(1 + V2)(V1 − u)
V1V2 − 1

= t(1− t2)
t2(1 + ū)− 1(u(V1 + V2)− (V1 + V2)− 2V1V2 + 2u)

= t(1− t2)
t2(1 + ū)− 1 ·

1− t2ū− 3t2 − ū+ t2ū2 + 3t2ū− 2t2ū+ 2u(1− t2)
1− t2

= t · t
2(ū2 − 3− 2u)− ū+ 1 + 2u

t2(1 + ū)− 1
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Using the factorization ū2 − 3− 2u = (1 + ū)(ū− 1− 2u) yields

t · t
2(ū2 − 3− 2u)− ū+ 1 + 2u

t2(1 + ū)− 1 = t(ū− 1− 2u) = t(1 + ū)(1− 2u).

As a last step, we bring H(u) to the left hand side and put all things together to finally
obtain the following equation:

2tū(1− t− 2t2 − tu− t2u− t2ū)H(u) + t(1 + ū)(1− 2u)

= (1 + t)(u(1− t)− t)(1− t2)
1− t2(1 + ū)

(
(uV2 − 1)(V2 · (1− t)− t)H(V1)

+ (uV1 − 1)(V1 · (1− t)− t)H(V2)
)
. (4.28)

Indeed, the relation we have obtained is fully symmetric in V1 and V2. This is a very nice
property but by no means mandatory for the success of the method. In the paper [BM03]
this chapter is based on, there are other examples, which demonstrate how to proceed if this
symmetry does not hold. One of those are the 1234-avoiding permutations, which share
a lot of similarities with the vexillary involutions (as mentioned before, their functional
equation has essentially the same Kernel). The difference between these two cases is that
in the analog of (4.28), the asymmetric occurrences of the roots on the left hand side can
not be removed.
In short, this makes it necessary to analyze this side of the equation in a special way
(separating the symmetric and non-symmetric parts). Regardless, the next major steps
of the approach presented here still apply (i.e. the extraction of the positive part). As
another consequence, though, the generating function of 1234-avoiding permutations is not
algebraic but D-finite.

Back to our computations: while the equation is symmetric, it involves no less than three
unknown series. So, instead of combining it with other relations to eliminate some of them,
we will gather more information in a different way. Namely by comparing the positive parts
of both sides, if viewed as Laurent series in u. The other equation (4.24) we formed earlier
will then be used to connect the last loose ends and eventually obtain some meaningful
relations for H. To this end, we denote

H(t, v) = vF (t, 1, 1 + v) =
∑
i≥1

Hi(t)vi,

where the Hi are power series in t with coefficients in N (these series must be well de-
fined as they are coming from a specialization of the generating function F , which has a
combinatorial interpretation).

Let us begin with the left hand side of (4.28). By multiplying with a power of ū, the
positive part of H (denoted by H≥) is shifted. To be more specific, for the occurring terms
of ū, we have
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(ūH)≥(u) =
∑
i≥0

Hi+1u
i = ūH(u)−H1,

and
(ū2H)≥(u) =

∑
i≥−1

Hi+2u
i = ū2H(u)−H2 − ūH1.

So, we simply subtract the unnecessary terms and do not forget to add in the contribution
from t(ū− 1− 2u). This gives the result

2tū(1− t− 2t2 − tu− t2u− t2ū)H(u)− 2t(1− t− 2t2 − t2ū)H1 + 2t3H2 − 2tu.

Now for the right hand side. Let us restate it in the form

(1 + t)(u(1− t)− t)(1− t2)︸ ︷︷ ︸
(a)

· 1
1− t2(1 + ū)︸ ︷︷ ︸

(b)

·Ĥ(t, V1, V2),

where Ĥ(t, V1, V2) = (uV2 − 1)(V2 · (1 − t) − t)H(V1) + (uV1 − 1)(V1 · (1 − t) − t)H(V2).
Clearly, Ĥ is symmetric in V1 and V2. We have seen earlier that the elementary symmetric
functions of the roots of the Kernel are polynomials in ū without a constant term. Thus,
the preconditions for Lemma 4.14 are satisfied and eventually it plays its important role.
By applying this result, we know that the coefficients of Ĥ are in Q[ū], thus involving only
non-negative powers of ū (or non-positive of u).
The same goes for the geometric series (b) in the above equation, as well.
So, the only possible way to obtain a positive power of u on the right hand side of equa-
tion (4.28) is to multiply the factor u(1 − t) from (a) with the constant terms from the
series (b) and Ĥ (this product is exactly the constant term of their Cauchy product, too).
For the first series it is easy to obtain this term using the geometric series expansion and
the binomial theorem:

1
1− t2(1 + ū) =

∑
i≥0

t2i(1 + ū)i =
∑
i≥0

t2i
i∑

j=0

(
i

j

)
ūj =

∑
j≥0

∑
i≥j

(
i

j

)
t2i

 ūj ,
after switching the order of summation. Thus, extracting the constant term gives[

ū0
] 1

1− t2(1 + ū) =
∑
i≥0

t2i = 1
1− t2 .

Lemma 4.14 tells us how to extract the constant term from Ĥ, too. But again, we need to
take a closer look before we simply plug in V1 = V2 = 0, especially where powers of u or ū
are involved. Hence, we use the definition of H and the usual relations between the roots
to reformulate the first of the two symmetric parts:
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(uV2 − 1)(V2 · (1− t)− t)H(V1)
= uV 2

2 (1− t)H(V1)− tuV2H(V1)− V2 · (1− t)H(V1) + tH(V1)

= uV1V
2

2 (1− t)H1 + t4ū(1− t)
(1− t2)2

∑
i≥2

HiV
i−2

1 − t3

1− t2
∑
i≥1

HiV
i−1

1

− t2ū

1 + t

∑
i≥1

HiV
i−1

1 + t
∑
i≥1

HiV
i

1 .

In the second part (uV1 − 1)(V1 · (1− t)− t)H(V2) the same computations are valid, only
the roles of V1 and V2 are exchanged. Together they yield Ĥ, so to obtain the constant
term in ū we can sum all the constant terms of the series involved. Of course we can omit
those for which it is immediate that they only feature positive powers of ū, for example
those which are multiplied with ū to begin with. We continue with[

ū0
]
Ĥ(t, V1, V2)

=
[
ū0
]
uV1V2 ·(V1+V2)(1−t)H1−

[
ū0
] t3

1− t2
∑
i≥1

Hi(V i−1
1 +V i−1

2 )+
[
ū0
]
t
∑
i≥1

Hi(V i
1 +V i

2 ).

The first part does not contribute, as after plugging in both elementary symmetric func-
tions, the whole term is multiplied by ū2 (recall the form of the product V1V2) and thus
(after reducing by u) starts at ū. For the other two terms, we finally set V1 = V2 = 0 in the
equation above. Only the middle one is not zero and gives

[
ū0] Ĥ = −(2t3H1)/(1− t2).

Putting both sides together (remembering to multiply the constant factors on the right
hand side), we obtain the new relation

2tū(1− t− 2t2 − tu− t2u− t2ū)H(u)− 2t(1− t− 2t2 − t2ū)H1 + 2t3H2 − 2tu

= u(1 + t)(1− t)(1− t2) · 1
1− t2 ·

−2t3

1− t2H1,

which, after dividing by 2t and bringing everything to one side, can be simplified to

ū(1− t− 2t2 − tu− t2u− t2ū)H(u)− (1− t− 2t2 − t2ū− t2u)H1 + t2H2 − u = 0.
(4.29)

Again, in this last step two new entities, H1 and H2, are introduced. Both are power
series in t with coefficients in N. So, we still have to keep on producing more interesting
relations, especially concerning these two unknown series. A good starting point for this
is equation (4.24). It involves the series H in a very similar manner to equation (4.28),
from which we extracted the positive part and ended up with the relation above. In the
computations we just did, H1 and H2 occurred as constant terms of certain series in ū.
This suggests to apply Lemma 4.14 again.
Therefore, with regard to our next steps, we are actually interested to restate (4.24) in
terms of ū instead of u. This can be done by simply dividing both the denominator and
numerator by u:

t(1 + ū)
(1 + t)(1− t− tū) = (uV2 − 1)(V2 · (1− t)− t)H(V1)− (uV1 − 1)(V1 · (1− t)− t)H(V2)

V1 − V2
.
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We are going to find the constant terms in ū on both sides and compare them, much like
we just did above. First off, it is clear that both sides are formal power series in t with
polynomial coefficients in ū. For the right hand side, this follows from our lemma about
power series which are symmetric in the roots of the Kernel. For the left hand side, we
simply find its expansion as a geometric series:

t(1 + ū)
(1 + t)(1− t− tū) = t(1 + ū)

1 + t
· 1

1− t(1 + ū) = 1
1 + t

∑
i≥0

ti+1(1 + ū)i+1

= 1
1 + t

∑
i≥1

ti
i∑

j=0

(
i

j

)
ūj = 1

1 + t

∑
j≥0

∑
i≥max(1,j)

(
i

j

)
tiūj .

Hence, the constant term can be extracted easily:[
ū0
] t(1 + ū)

(1 + t)(1− t− tū) = 1
1 + t

∑
i≥1

ti = t

1− t2 .

Now we do basically the same steps as when we extracted
[
ū0] Ĥ. Only this time we have

to connect the two symmetric parts by a minus and divide by V1 − V2. This leads to

(uV2 − 1)(V2 · (1− t)− t)H(V1)− (uV1 − 1)(V1 · (1− t)− t)H(V2)
V1 − V2

= 1
V1 − V2

(
uV1V2 · (V2 − V1)(1− t)H1 + t4ū(1− t)

(1− t2)2

∑
i≥2

Hi

(
V i−2

1 − V i−2
2

)
− t3

1− t2
∑
i≥1

Hi

(
V i−1

1 − V i−1
2

)
− t2ū

1 + t

∑
i≥1

Hi

(
V i−1

1 − V i−1
2

)
+ t

∑
i≥1

Hi

(
V i

1 − V i
2

))
.

As before, we can omit those expressions which are multiplied by ū as they will not con-
tribute to

[
ū0]. For the rest, we carry out the division (using the factorization V k

1 − V k
2 =

(V1−V2)
∑k−1
i≥0 V

i
1V

k−1−i
2 ) and plug in the well known relations of the roots. We shift some

sums and then the constant term is given by

[
ū0
] −t2

1 + t
H1 −

[
ū0
] t3

1− t2
∑
i≥0

Hi+2

i∑
j=0

V j
1 V

i−j
2 +

[
ū0
]
t
∑
i≥0

Hi+1

i∑
j=0

V j
1 V

i−j
2

= −t2

1 + t
H1 −

t3

1− t2H2 + tH1,

after finally setting V1 = V2 = 0. Lastly, we bring the two sides together:

t

1− t2 = −t2

1 + t
H1 −

t3

1− t2H2 + tH1 ⇐⇒ 1
1− t2 −

(
1− t

1 + t

)
H1 = − t2

1− t2H2

⇐⇒ H1 · (1− t)− 1
t2

= H2. (4.30)

As we hoped, this finally provides the connection between the two series we need to obtain
some explicit information about H and subsequently the generating function for vexillary
involutions.
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4.5 The Kernel method again and again. A first result

Now basically everything is laid out to finish our proof, and obtain some explicit expressions
for our generating functions H, G and finally F . We will begin to collect the results by
using relation (4.30) in equation (4.29). To turn the coefficient of H(u) into a quadratic
polynomial in u, we also multiply by u2. This yields

(u− tu− 2t2u− tu2 − t2u2 − t2)H(u) + t2u(2u+ 1 + u2)H1 − u2(1 + u) = 0. (4.31)

Not surprisingly, the standard flavor of the Kernel method proves to be very useful to
tackle this situation. It is the usual setting of a functional equation with a main generating
function H(t, u) and only one other unknown series H1(t). So, starting from the relation
in Lemma 4.15, where we first established an equation defining the generating function
for vexillary involutions, we have reduced the difficulty of our task significantly. In fact,
by so much that we are now in the position to find some formulas for the unknown series
involved and unravel the connections we have found in our preceding efforts.

Let us start by finding the roots in u of the coefficient of H, the new Kernel K1(u) =
u2t(−1− t) + u(1− t− 2t2)− t2:

U1,2 = 1− t− 2t2 ∓
√

(1− t− 2t2)2 − 4t3(1 + t)
2t(1 + t) = 1− t− 2t2 ∓

√
1− 2t− 3t2

2t(1 + t) .

This time only the first solution U1 (with the negative sign) is a proper formal power
series in t. By computing the expansion of the square root, we observe that it starts
with

√
1− 2t− 3t2 = 1 − t − 2t2 + O(t3). More precisely, we can use the binomial series

expansion for
√

1− 2t− 3t2 =
∑
i≥0

(1/2
i

)
(−1)i(2 + 3t)iti and compute its first three coef-

ficients as a formal power series in t. For i = 0, the resulting term is 1, for i = 1 it is(1/2
1
)
(−1)(2t+ 3t2) = −t− 3/2 · t2 and for i = 2 we have

(1/2
2
)
(2 + 3)2t2 = −1/2 · t2 +O(t3).

As there are no further contributions due to the multiplication with ti, summing yields the
result.
Thus, the numerator is actually a formal power series in Q[[t]] which starts at t3. Multipli-
cation with the series 1/(1 + t) =

∑
i≥0(−t)i (afterwards, the Cauchy product still starts

at t3) and dividing by t (hence, the result starts at t2) are therefore possible within the
ring of formal power series in t.
On the other hand, this also shows that U2 (having a positive sign before the square root)
only has a Laurent series expansion. The Cauchy product of numerator and 1/(1 + t) has
the constant term 1 and thus the multiplication with 1/t yields a pole at t = 0.

Plugging the admissible root U1 into equation (4.31) sets the Kernel K1 to zero and gives

t2U1(1 + U1)2H1 − U2
1 (1 + U1) = 0

⇐⇒ H1 = U1
t2(1 + U1) = 1− t− 2t2 −

√
1− 2t− 3t2

t2(1 + t−
√

1− 2t− 3t2)
.
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This can be further simplified by multiplying both, the numerator and denominator, by
1 + t +

√
1− 2t− 3t2 and reducing the fraction. This finally provides a nice formula for

H1:

H1(t) = 1− t−
√

1− 2t− 3t2
2t2 . (4.32)

This result is actually more interesting than it might seem at first. Recall the definition of
H1(t) as the coefficient of v in H(t, v) = vF (t, 1, 1 + v). In other words,

F (t, 1, 1 + v) = H(t, v)
v

=
∑
i≥0

Hi+1(t)vi ⇒ F (t, 1, 1) = H1(t).

Obviously, F (t, 1, 1) is nothing but the generating function counting vexillary involutions
by their length (by setting the other two arguments to one, the secondary statistics do not
matter). Indeed, we have just derived one of the main results we were aiming for, namely
that the Motzkin numbers enumerate vexillary involutions, as H1 is their generating func-
tion. We can quickly rederive this result here, applying the procedures we are accustomed
to by now.
Note that there are various (more or less equivalent) definitions for Motzkin numbers (many
of which can be found in [DS77]). A classical one is the following:

Definition 4.33. Consider the lattice N× N. A Motzkin path of length n is defined as a
lattice path from the origin (0, 0) to (n, 0), where one is allowed to move from (n,m) to
(n+ 1,m+ 1) (north), (n+ 1,m− 1) (south) or (n+ 1,m) (east), while never crossing the
horizontal axis (i.e. if m = 0 in (n,m), then one can not do a step to the south).
Furthermore, the n-th Motzkin number Mn is the number of Motzkin paths of length n.

This problem is very similar to the one we solved in Section 2.2 of Chapter 2, only the
kinds of steps we are allowed to take differ. Since our approach there worked so well, we
will try to apply it again as an exercise.

Lemma 4.34. Let M(t) be the generating function of the Motzkin numbers Mn, that is
M(t) =

∑
i≥0Mit

i. Then

M(t) = H1(t) = 1− t−
√

1− 2t− 3t2
2t2 .

Proof. We have already seen the same method more in-depth, so we will be rather quick
about our proof this time. Let an,m be the number of restricted paths from the origin to
the point (n,m), where the paths follow the same rules for taking steps as Motzkin paths
as in the definition above (only the endpoint does not have to be (n, 0)).
Additionally, define am(t) :=

∑
n≥0 an,mt

n. From the description of allowed steps we can
derive a recursion for the numbers an,m, which after summing over n implies a recursion
for the generating functions am(t):

an,0 = an−1,0 + an−1,1 and an,m = an−1,m−1 + an−1,m + an−1,m+1, m ≥ 1
⇒ a0(t) = 1 + ta0(t) + ta1(t) and am(t) = t(am−1(t) + am(t) + am+1(t)), m ≥ 1.
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Now introduce the bivariate generating function A(t, s) :=
∑
m≥0 am(t)sm. This means

that we are interested in M(t) = A(t, 0). Let us proceed by multiplying the recursion
above with sm and summing for m ≥ 1, which leads to a functional equation for A.

A(t, s)− a0(t) =
∑
m≥1

t

1− t(am−1(t) + am+1(t))sm

= ts

1− tA(t, s) + t

s(1− t)(A(t, s)− a0(t)− sa1(t)).

Now, we plug in a0(t) = (1 + ta1(t))/(1− t) on the left hand side (which cancels the term
with a1(t) on the right) and note that we can write A(t, 0) = a0(t). Bringing all the terms
with A(t, s) together yields

A(t, s)
(

1− ts

1− t −
t

s(1− t)

)
= 1

1− t −
t

s(1− t)A(t, 0)

⇐⇒ A(t, s)(ts2 − s(1− t) + t) = tA(t, 0)− s.

Of course, now it is time to apply the Kernel method. The roots of K(s) = ts2−s(1−t)+t,
if viewed as a quadratic polynomial in s, are given by

S1,2 = 1− t∓
√

1− 2t− 3t2
2t .

We have already established that
√

1− 2t− 3t2 = 1 − t − 2t2 + O(t3) holds, so it is clear
that only the first solution S1 with the negative sign is a proper formal power series in t
(without a constant term), while S2 is not (having a pole at t = 0). Hence, setting s = S1
in the equation above makes the Kernel vanish and gives

A(t, 0) = S1
t

⇒ M(t) = 1− t−
√

1− 2t− 3t2
2t2 = H1(t),

which finishes the proof.

Before we continue by extracting the exact formula for the Motzkin numbers Mn from
this generating function, we remark that there is a slightly different definition for them,
for example found in [FS09]. It stems from the notion of Motzkin trees, which is closely
related to the paths of the same name. These trees, also called unary-binary trees, are
defined recursively: a Motzkin tree is either a root node only or consists of a root with one
or two ordered subtrees attached, both of which are Motzkin trees themselves. Using the
symbolic method of combinatorics, one can immediately translate this into a functional
equation for the generating function of Motzkin trees. We state it here, as it will prove to
be very useful for our own task below.

Definition 4.35. Let W (t) be the unique formal power series in t defined by the relation

W = t(1 +W +W 2).

Note that W has coefficients in N, which is immediate as it has a combinatorial interpre-
tation. Now we state our first main result as a theorem.
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Theorem 4.36 ([BM03]). The number of vexillary involutions of length n is given by the
n-th Motzkin number Mn, which may be written as

Mn =
bn/2c∑
i=0

1
i+ 1

(
n

2i

)(
2i
i

)
= −1

2

n+2∑
i=0

(
1
2
i

)(
1
2

n+ 2− i

)
(−3)i.

Proof. We have already stated that H1(t) = F (t, 1, 1) is nothing but the length generating
function of vexillary involutions. Reading off its coefficients leads to the second expression.
To this end, we remark that 1− 2t− 3t2 = (1 + t)(1− 3t) and use this form alongside the
binomial series expansion for the square root to obtain

√
(1 + t)(1− 3t) =

∑
n≥0

(
1
2
n

)
tn ·

∑
n≥0

(
1
2
n

)
(−3)ntn =

∑
n≥0

(
n∑
i=0

(
1
2
i

)(
1
2

n− i

)
(−3)i

)
tn,

by the formula for the cauchy product. The coefficients
[
t0
]

and
[
t1
]

are thus given by 1
respectively −1. Therefore, after subtracting from 1− t the resulting series actually starts
at t2. In total, this means that

H1(t) = 1
2t2

−t2 ∑
n≥2

(
n∑
i=0

(
1
2
i

)(
1
2

n− i

)
(−3)i

)
tn−2


=
∑
n≥0

(
−1

2

n+2∑
i=0

(
1
2
i

)(
1
2

n+ 2− i

)
(−3)i

)
tn,

and as H1 is their generating function, the Motzkin numbers are given as the coefficients
of tn.

Now we also want to derive the first, seemingly neater expression. For this, we can use the
formal power series W (t), which we defined above by the equation W = t(1 +W +W 2).
As the next step, we rewrite the relation as 0 = tW 2 + W (t − 1) + t and compute the
roots of the quadratic polynomial in W . We have encountered this polynomial already in
Lemma 4.34, where it occurred as a Kernel of a functional equation. However, one should
not confuse this step with an application of the Kernel method, as this easy equation,
involving only one unknown, can be solved directly by the means of standard algebra. In
the previous lemma we found that one of the roots is a formal power series in t and is given
by

W (t) = 1− t−
√

1− 2t− 3t2
2t .

Hence, it holds that tH1(t) = W (t) and we see that W also encodes the Motzkin numbers,
only shifted by one (that is, Mn =

[
tn+1]W ).

Another way to see this is by substituting t = W/(1 + W + W 2) into H1. Note that the
formal power series 1+W +W 2 has a constant term and is thus invertible and additionally,
that W starts at t - hence, their product starts at t as well. Therefore, it is a valid exchange
of variables and simplifies the square root to (1−W 2)/(1+W+W 2). Which, after reducing,
yields H1 = W/t, as expected. Care needs to be taken at this step, though - the other



4.5. THE KERNEL METHOD AGAIN AND AGAIN. A FIRST RESULT 63

square root (given by (W 2−1)/(1+W+W 2) ) must not be used as it leads to the expression
1/(tW ), which is not a well defined power series in t.
Instead of extracting its coefficients directly, we want to apply the Lagrange inversion
formula. In contrast to H1, this is much easier in this case, due to the form of the functional
equation satisfied by W . While we find, by simple computation, that H1 = 1+ tH1 + t2H1,
we can immediately express t in terms of W by t = W/(1 +W +W 2). Using Theorem 1.1,
this leads to[

t0
]
W =

[
W 0

]
W = 0

[tn]W = 1
n

[
Wn−1

]
(1 +W +W 2)n = 1

n

[
Wn−1

] n∑
j=0

(
n

j

)
W j(1 +W )j

= 1
n

[
Wn−1

] n∑
j=0

j∑
i=0

(
n

j

)(
j

i

)
W i+j , n ≥ 1.

Let us introduce a new variable by defining k := i+ j. Hence, the outer summation, which
will be over k, starts at 0 and stops at 2n. The bounds of the inner sum are given by the
constraints of the occurring binomial coefficients:(

n

j

)
> 0 ⇒ n ≥ j = k − i ⇒ i ≥ max(k − n, 0) and(

j

i

)
> 0 ⇒ j = k − i ≥ i ⇒ k

2 ≥ i.

Carrying out this transformation of the variables yields (for n ≥ 1)

[tn]W = 1
n

[
Wn−1

] 2n∑
k=0

 bk/2c∑
i≥max(k−n,0)

(
n

k − i

)(
k − i
i

)W k

= 1
n

b(n−1)/2c∑
i=0

(
n

n− 1− i

)(
n− 1− i

i

)
.

To finish the proof, we divide the first binomial coefficient by n and subsequently reduce
the factorial (n− 1− i)! from both binomial coefficients. Then multiply the denominator
and numerator by (2i)! and rearrange the factors:

[tn]W =
b(n−1)/2c∑

i=0

(n− 1)!
(i+ 1)! ·

1
i!(n− 1− 2i)! ·

(2i)!
(2i)! =

b(n−1)/2c∑
i=0

1
i+ 1

(
n− 1

2i

)(
2i
i

)
.

Considering that Mn =
[
tn+1]W , we have thus found the first expression from the state-

ment of our theorem.

So, we have recovered the result obtained by giving a bijective proof in [GPP01], thus com-
pleting Task 4.4. The well known Motzkin numbers are listed as entry A001006 in the on-
line encyclopedia of integer sequences [OEI11], starting with 1, 1, 2, 4, 9, 21, 51, 127, 323, . . .
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To finish this section, we want to remark two more consequences of the last theorem, be-
sides solving the problem of counting vexillary involutions by their length.
First, it also provides an identity of Motzkin numbers. We obtained this without much
extra effort by looking at the same thing (the generating function of these numbers) from
two slightly different perspectives. This is, of course, a typical example for a proof of com-
binatorial identities.
Furthermore, the first expression above yields a connection to the Catalan numbers Cn,
which we introduced in Chapter 2 by basically the same means. This result can be refor-
mulated as Mn =

∑bn/2c
i=0 1/(i+ 1) ·

(n
2i
)
Ci, a well known relation between these two series

of numbers [Ber99].
Thus, the Kernel method proves to be a very nice tool for recovering some interesting
results ”on the fly”, which were usually achieved in a different way.

4.6 A formula for the generating function

Finally, in this section we reach the end of our task to find an expression for the generating
function F of vexillary involutions. From now on, it will often be beneficial to remember
the relation t = W/(1 + W + W 2) in Definition 4.35. This makes many of the resulting
formulas shorter and is one of the reasons we have introduced W above. We start to unravel
the connections from the previous sections with the following lemma.

Lemma 4.37. The formal power series H(u) = uF (t, 1, 1 + u) is given by

H(u) = uW · (1 + u)
t(1− uW · (1 +W )) .

Proof. Now that we know H1, we can use this information in equation (4.31). Solving for
H yields

H(u) = u2(1 + u)− t2u(1 + u)2H1(u)
u− tu(1 + u)− t2(2u+ u2 + 1) .

Recall that H1 = W/t = 1 + W + W 2 holds. We proceed by expressing t in terms of W ,
giving

H(u) =
u2(1 + u)− W 2

(1+W+W 2)2u(1 + u)2(1 +W +W 2)

u− W
1+W+W 2u(1 + u)− W 2

(1+W+W 2)2 (1 + u)2

= 1 + u)(u2(1 +W )− uW 2)(1 +W +W 2)
(uW 2 + uW − 1)(W 2 − uW − u) = u(1 + u)(1 +W +W 2)

(1− uW · (1 +W )) .

Given the relationship of t and W , this is equivalent to the expression in the statement of
the lemma.

The other important series involved in the equation from Lemma 4.15 is F (t, 1 + u, 1).
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Lemma 4.38. The formal power series G(u) = uF (t, 1 + ū, 1) is given by

G(u) = u(1 + u)(uW 2 + t(u+W 3))
t(u(1− t)− t)(u(1 +W )−W 2) .

Proof. We continue to go up our chain of equations. To obtain G from system (4.21), one
possibility is to find H(V1) first. To this end, one could use the third and fourth equation
in this system or, more quickly, relation (4.25). The latter one provides an expression for
H(V1), which only involves the known formal power series H(u). We will leave it as it is
for now.

H(V1) = t(1 + V2)(V1 − u) + (V1V2 − 1)(V1 · (1− t)− t)(V2 · (1− t)− t)(1 + t)H(u)
(1 + t)(V2 · (1− t)− t)(uV2 − 1)(u(1− t)− t) .

Hence, in principle we could compute H(V1). So, we can use equation I from the sys-
tem (4.21), yielding

G(u) = −t
2(1 + u)2(u(1− t)− t)H(V1)− uV1 · (uV1 − 1)(1 + u)(1− t)

t(u(1− t)− t)(uV1 − 1)(V1 · (1− t)− t)
.

Plugging in our lengthy formula H(V1) (immediately reducing by (u(1− t)− t)), gives an
even longer expression for G(u). But it is easy to split it up into smaller parts which can
be simplified significantly, eventually giving rise to a decent form:

G(u) = 1
D

(
− t2(1 + u)2

(
t(1 + V2)(V1 − u)︸ ︷︷ ︸

(a)

+ (V1V2 − 1)(V1 · (1− t)− t)(V2 · (1− t)− t)(1 + t)H(u)︸ ︷︷ ︸
(b)

)

− uV1 · (uV1 − 1)(1 + u)(1− t)(1 + t)(V2 · (1− t)− t)(uV2 − 1)︸ ︷︷ ︸
(c)

)
,

where D = t(1 + t)(uV1 − 1)(uV2 − 1)(u(1 − t) − t)(V1 · (1 − t) − t)(V2 · (1 − t) − t)
is the common denominator. Recall some equations concerning the roots V1, V2 we have
encountered earlier, namely (4.23), (4.26) and (4.27). The latter one, similar to the previous
lemma, can be restated in terms of W as

(V1 · (1− t)− t)(V2 · (1− t)− t) = tū(t2(2 + u+ ū) + t(1 + u)− 1)
1 + t

= t3(1− uW · (1 +W ))(W 2 − u(1 +W ))
u2W 2(1 + t) .

This, alongside the first relation for V1V2 − 1 and the formula for H(u) from Lemma 4.37,
can be used to obtain

(b) = t2(1 + u)(t2(1 + ū)− 1)(W 2 − u(1 +W ))
uW · (1− t2) .
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For part (c), we use (4.23) again: (c) = t2V1 · (1 + u)3(V2 · (1− t)− t). Summing with (a)
yields t2(1 + u)2(a) + (c) = t2(1 + u)2(tu+ tu(V1 + V2) + V1V2 · (1 + u(t− 1))). Here, the
well known elementary symmetric functions (4.18) and (4.17) of V1, V2 can be applied.
Now we bring the whole numerator together, single out 1/(uW · (1− t2) and factorize the
remaining terms. All this gives

−t2(1+u)2((a) + (b))−(c) = − t
6(1 + u)3(1− uW · (1 +W ))(uW · (W 2 +W + 1) + u+W 3)

u2W 2(1− t2) .

The denominator can be reformulated, by simply plugging in the appropriate relations and
reducing, as

1
D

= u3W 2(1− t2)
t6(u(1− t)− t)(1 + u)2(1− uW · (1 +W ))(W 2 − u(1 +W )) .

Hence, the only terms that remain after the multiplication for G are given by

G(u) = −u(1 + u)(uW · (W 2 +W + 1) + u+W 3)
(u(1− t)− t)(W 2 − u(1 +W )) .

Lastly, we restate uW · (W 2 +W + 1) +W 3 +u = (uW 2 + t(u+W 3))/t, whence we obtain
the expression of G(u) to finish the proof.

This leads to the final theorem of this chapter, which brings us back to the beginning and
the solution for the functional equation we have derived from the inductive description
of vexillary involutions. One last time, implications of the Kernel method will help us to
provide a neat expression for the resulting generating function.

Theorem 4.39 ([BM03]). The generating function F (t, x, y) of vexillary involutions, count-
ing them by their length, the position of the first descent and the number of active sites is
given by

F (t, x, y) = xy(1− ty(1 +W ) + t2xy2W )
(1− txy)(1− txyW )(1− ty(1 +W )) .

Proof. In the last two lemmata we have collected all the necessary informations about the
specializations of F , which are involved in the Kernel equation from Lemma 4.15. All that
remains is to plug them into this relation and try to simplify the result as much as possible.
The starting point for this is

F

(
t,

1 + ū

1 + v
, 1 + v

)
= 1
D

(
tuv(1 + u)(1− t)(uv − 1)(W 2 − u(1 +W ))(1− vW · (1 +W ))

− tu(1 + u)(uv − 1)(v(1− t)− t)(uW 2 + t(u+W 3))(1− vW · (1 +W ))

+ t2vW · (1 + u)2(1 + v)(u(1− t)− t)(W 2 − u(1 +W ))
)
,

where D = t(1 − vW · (1 + W ))(u(1 − t) − t)(W 2 − u(1 + W ))K(t, u, v) is the common
denominator this time. Recall that the Kernel is further given by
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K(t, u, v) = uv(uv − 1) + t2(u + v + 3uv − u2v2). As the first small steps we reduce the
fraction by t and single out (1 + u). Then we substitute t = W/(1 + W + W 2) in the
numerator and the Kernel to express all occurrences of t in terms of W . This makes it
easier to factor the numerator (which has mixed terms in W and t). Indeed, it is not too
hard (albeit lengthy) to find this factorization, as we already know one of its components
- namely the Kernel.
During our computations, we have taken advantage of the fact that the Kernel vanishes
for certain couplings of u and v. Now, as in the preceding chapters, this seems to imply
that F can not have a formal power series expansion in t, given the form of the functional
equation it has to satisfy. Said couplings might lead to a singularity at the origin (0, 0),
making a Laurent series expansion necessary. However, as F stems from a combinatorial
counting problem, it must be well defined as a power series. Therefore, the Kernel must be
one of the factors in the aforementioned decomposition of the numerator. Thus, canceling
it from the fraction leads to

F

(
t,

1 + ū

1 + v
, 1 + v

)

=
(1 + u)

(
uvW · (W 3 +W 2 + 2W + 1)− u(W 3 +W 2 +W + 1)−W 3(1 + v)

)
(1− vW · (1 +W ))(u(1− t)− t)(W 2 − u(1 +W )) .

Now it is only a matter of revoking the substitution we did in the lemma establishing
the functional equation for F . There we defined two new variables u, v such that x =
(1 + ū)/(1 + v) and y = 1 + v. W can undo this by setting v = y − 1 and u = 1/(xy − 1).
This quickly leads to nice expressions for the terms in the denominator:

1− vW · (1 +W ) = 1 +W +W 2 − yW · (1 +W ) = W

t
(1− ty(1 +W )),

W 2 − u(1 +W ) = 1
xy − 1(xyW 2 −W 2 −W − 1) = −W

t(xy − 1)(1− txyW ),

as well as

u(1− t)− t = 1
xy − 1(1− t− t(xy − 1)) = 1

xy − 1(1− txy).

In the numerator we get, keeping in mind the relation of t and W :

xy

xy − 1

(
y − 1
xy − 1W · (W · (W

2 +W + 1) + 1 +W )− 1
xy − 1(W 3 + W

t
)− yW 3

)
= xyW

t(xy − 1)2
(
(y − 1)(W 2 +W − tW )− tW 2 − 1− tyW 2(xy − 1)

)
= xyW

t(xy − 1)2
(
W · (1 +W )(y − 1)− 1− txy2W 2).

The fraction can therefore be reduced by −W/(t(xy − 1)2). In the numerator, proceed by
writing W · (1 +W )(y−1) = (W/t−1)(y−1) and dividing by W/t to obtain its final form:
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txy

W

(
1 + txy2W 2 −

(
W

t
− 1

)
(y − 1)

)
= xy

(
1 + t2xy2W − v

(
1− t

W

))
= xy

(
1 + t2xy2W − v

(
t(1 +W +W 2)− t

W

))
= xy(1 + t2xy2W − ty(1 +W )).

Putting everything together yields the desired expression for F (t, x, y).

As stated in the paper [BM03], this generating function is algebraic of degree two.

With this theorem we conclude our solution of the second Task 4.5 for this chapter and the
study of vexillary involutions. Throughout our computations we have applied the Kernel
method several times, in two different ways. Many of the calculations can be followed
rather quickly by using a computer algebra system (of course, this is true for the earlier
chapters as well - but there the computations were not as lengthy), even if it is often
necessary to make various substitutions of variables manually (or choosing the right square
root to continue with).
Again, this shows that the Kernel method provides basic procedures which are very helpful
to solve certain functional equations derived from enumeration problems with a recursive
description. It acts as a good starting point, especially in the obstinate version, and can
be applied later on, too, to produce more and more interesting relations to extract explicit
information from.
Still, it also showed some limits of the method: while useful, it certainly is not powerful
enough to solve any problem at hand (on its own). Here Bousquet-Mélou found a way
to continue (by extracting positive parts of power series) but this might not be possible
for some problems. We will see other limitations in the following chapter. We close this
chapter with a few remarks.

The method described here can be used in a very similar manner for other problems, as
stated at the beginning of this chapter. Especially interesting is the connection to general
vexillary permutations. In [GPP01, Gui95] it is established that there is a bijective relation
between vexillary permutations of length n and vexillary involutions of length 2n without
a fixed point. Hence, it would be nice to add this component - the number of fixed points
- to the construction we presented in Section 4.1 of this chapter. This is possible: the
only way to introduce a new fixed point is indeed to add it by inserting the cycle (n + 1)
of length one. Otherwise the number of fixed points stays the same. Translated into the
language of generating functions, this means that one defines a new variable z to encode
the number of fixed points, restates Lemma 4.10 taking into account the new parameter
and derives a functional equation again.
Its form is very similar to the one we derived and can be tackled by the same means we
have presented here. Additional steps need to be taken though. A more precise description
and examples of these steps are shown in [BM03].

Lastly, we need to comment on the substitution of variables we did for Lemma 4.15 where
we established the Kernel equation for the generating function of vexillary involutions.
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This step is not obvious beforehand - it aims to make computations more accessible. Nev-
ertheless, it does become natural at a certain point. A brief explanation, as given in the
paper by Bousquet-Mélou, will suffice to show that.
We go back to the functional equation for F in Lemma 4.13, before we substituted the
variables x, y. After multiplying with the common denominator (1 − x)(1 − y) of the left
hand side, the Kernel of the equation, that is, the resulting coefficient of F , is given by
(1 − x)(1 − y) + t2x2y(1 − y) + t2y(1 − x). The rest of the equation is not important for
our argument, as the coming steps depend only on the form of the Kernel.
Note the term xy as an argument of F on the right hand side. This naturally suggests to
introduce a new variable z such that z = xy. Now multiply the whole equation by y (to
remove any fractions introduced by setting x = z/y) and obtain the final version of this
Kernel:

K̂(t, y, z) = (y − z)(1− y) + t2
(
z2(1− y) + y(y − z)

)
.

One difference to the Kernel we used throughout this chapter is immediate: this time it
is not symmetric in y and z. While that does not prevent our method from succeeding, it
is simply not as nice as before and leads to more computational effort as in a symmetric
case. Indeed, as visualized in Figure 4.40, the curves defined by K̂(t, y, z) = 0 reflect this
- they are not symmetric and thus more complex.
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Figure 4.40: Algebraic curve defined by the Kernel K̂(t, y, z), for the same values of t as
in 4.16.
(Figures in top row: t = 0.5 and t = 1, bottom row: t =

√
1.25 and t = 5)
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Let us proceed by computing the roots of K̂ if viewed as a quadratic polynomial in y:

Y1,2 = (1 + z)
(
1− t2z

)
∓
√

(1− z)(1− t2z)(t2z2 + 3t2z − z + 1)
2(1− t2) .

Both solutions are formal power series in t with coefficients in Q[[z]], by the same reasons
we used for V1 and V2 above: the square root admits a binomial series expansion and
1/(1 − t2) is nothing but a geometric series. Again, we can obtain their

[
t0
]

terms easily:
for the solution with the negative sign before the square root, we have Y1 = z +O(t2) and
for Y2 = 1 + O(t2). Note that this expansion requires the ring of formal power series in z
(and not only polynomials).
The elementary symmetric functions of Y1, Y2 can be obtained from the Kernel K̂(y) =
(t2− 1)y2 + (1 + z)(1− t2z)y− z+ t2z2 and are a bit more complicated this time (i.e. both
contain z2) :

Y1 + Y2 = (1 + z)(1− t2z)
1− t2 and Y1Y2 = z(1− t2z)

1− t2 .

Thus, one of the crucial points of our computations in this chapter is not met: they do
not admit the immediate application of Lemma 4.14 to gain further relations by extracting
positive parts or constant terms from involved equations. However, this is not the only
reason to make a substitution.
The next step is the obstinate use of the Kernel method. That is, we define two transfor-
mations ϕ(Y, Z) and ψ(Y, Z) which, starting from one pair of Laurent series that cancel the
Kernel, produce another such pair. Recall that all the involved series are power series in t
with coefficients in an appropriate field, such as Q((z, z̄, y, ȳ)). The latter one was defined
as ϕ(Y,Z) := (Y ′, Z) such that Y ′ is the other solution for y to the quadratic equation
K̂(y) = 0, or, more precisely, by expressing Y ′ in terms of Y and Z, due to the elementary
symmetric functions of the roots of the Kernel.
In this particular case, let us find another relation for obtaining Yi from Yj , where i 6= j,
such that only z is occurring in it. Given the form of their elementary symmetric functions,
we quickly find that (1 + z)Y1Y2 − z(Y1 + Y2) = 0 (one might also apply the Euclidean
algorithm to obtain this). We can solve this relation for Y1 or Y2, whence

ϕ(Y, Z) :=
(

Y Z

Y − Z + Y Z
,Z

)
.

Since our current Kernel K̂ is not symmetric in y, z, we need to treat the case K̂(z) =
t2(1− y)z2 + (y(1− t2)− 1)z+ y+ y2(t2− 1) = 0 separately (if it was symmetric, we could
define ψ analogously to ϕ, as we did above). The actual solutions Z1, Z2 which set the
Kernel to zero are not of interest, merely their connection to the (now fixed) variable y via
their symmetric functions. They depend solely on the Kernel, so we have

Z1 + Z2 = 1− y(1− t2)
t2(1− y) and Z1Z2 = y + y2(t2 − 1)

t2(1− y) .

Again, we can find a simpler relation as clearly y(Z1 +Z2) = Z1Z2. Solving this for either
of the roots leads to

ψ(Y,Z) :=
(
Y,

Y Z

Z − Y

)
.
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Figure 4.41: Pairs produced by applying ϕ and ψ.

Starting with the pair (Y1, z) (which is a valid substitution setting the Kernel to zero), we
apply these two transformations (while not doing the same one twice in a row) and obtain
a diagram 4.41 (similar to Figure 7 in [BM03]).
The equation (Y2z)/(z − Y2) = Y1/(Y1 − 1), which can be derived by plugging
Y2 = (Y1z)/(Y1 − z + Y1z) into the right hand side, was used here to make the occurring
expressions shorter. Additionally, it shows that the solutions from the right path and the
left path are actually equal.
Now we need to check which of the possible six pairs of solutions for K̂(y, z) = 0 are formal
power series in t and thus can be substituted into the Kernel. The first root Y1 has the
constant term z. Therefore z − Y1, having no constant term, is not invertible and further,
this implies that (Y1z)/(z−Y1) only has a formal Laurent series expansion in t. The other
four pairs not containing this product are admissible, though: z/(z − 1) ∈ Z[[z]] is in the
ring of coefficients for our series and Y1− 1 has the constant term z− 1, which is invertible
(in Z[[z]]).
Hence, the four pairs (Y1, z), (Y2, z), (Y2, Y1/(Y1 − 1)) and (z/(z − 1), Y1/(Y1 − 1)) give
us again four equations with five unknown specializations of the generating function F ,
similar to system (4.21). This time the series F (t, z, 1) and F (t, Y1/(Y1 − 1), 1)) can be
eliminated from this system and the remaining series are F (t, 1, Y1), F (t, 1, Y2), as well as
F (t, 1, z/(z − 1)). At this point one is again lead to the exchange of variables we did in
Lemma 4.13.
Setting z = 1 + ū yields z/(z − 1) = 1 + u, so the latter specialization of the generating
function only involves non-negative powers of u. This allowed us to define it as a formal
power series in a variable u and extract the positive part of a certain equation (namely
(4.28) ). Furthermore, this transforms the elementary symmetric functions of the roots of
K̂ into polynomials in ū, which makes the computations easier by applying Lemma 4.14.
Lastly, the equations also involve F (Y1/(Y1−1), 1) and so it is also sensible to set y = 1+v.
This finally leads to the substitution as specified in Lemma 4.15. As we have seen, this
exchange of variables makes the computations much quicker, especially because the Kernel
becomes symmetric in u and v. Note however, that this is merely a particularly nice
coincidence and the reason why this problem has such a well behaved solution.



5
Partially directed paths in a wedge

In the last chapter we added a twist to the Kernel method by applying it several times in
succession. We obtained a finite sequence of formal series which set the Kernel to zero,
thus giving us more equations to work with. Taking this one step further, one might also
look for infinitely many such roots.

As a demonstration, we come back to lattice paths and walks again. One can imagine now
that, as stated in the introduction to this thesis, they are a traditional and wide field of
study within enumerative combinatorics. A classical way to tackle the counting problems
for related objects is the one we have already employed ample times: starting from the defi-
nition of the combinatorial object, find a recursive description, derive a functional equation
for a generating function and finally solve it. Thus, one has access to the solution in form
of an explicit formal power series expansion (if available) or it is possible to determine its
asymptotic behavior.
One of the difficulties in walk and path enumeration stems from the many restrictions
that one can impose on them, destroying invariance properties (such as symmetries) which
might make the task easier. So, even if the first step is tractable, the second one of actually
solving the resulting equation might be very hard, if at all possible with the current meth-
ods, and is the subject of this thesis. We will take on the problem of counting partially
directed paths in a wedge, introduced below, and of course try to apply the Kernel method
to obtain a solution. This example originally appeared in [vRPR08]. It will also clearly
point out some limits of the Kernel method for practical use. Let us begin by defining the
model of lattice walks we will work with in this chapter.

Definition 5.1. In this chapter, a partially directed walk on the lattice Z×Z starts at the
origin (0, 0) and the allowed moves are from (n,m) to (n+ 1,m) (east), (n,m+ 1) (north)
or (n,m− 1) (south) with the added restriction that no point of the lattice is visited twice
(hence, one is not allowed to do steps north/south in immediate succession).

72
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The special condition turns our walks into a specific case of general self-avoiding walks,
which never intersect themselves. An overview of the topic can be found, for example, in
[Sla] or [MS96]. Besides being interesting on their own right, these objects occur in many
natural contexts, namely they provide an elementary, yet realistic model of polymers in
solution (an introduction to this topic offers, for example, the book [Ter02]). Polymers are
essentially macromolecules (large molecules) consisting of long, repeated chains of smaller
subunits, held together by chemical bonds. Clearly, no two subunits can occupy the same
volume in space, preventing intersections and making them self-avoiding. Materials based
on them are ubiquitous - among them being DNA, RNA and Proteins, the building stones
of life [AJL+02], and many products of today’s industry (e.g. Nylon, Polyethylene, . . . )
[CP98].
While being so important for many applications, there is currently little to no hope of
giving a (more or less) complete description of their properties with the current methods
of combinatorics. There are results for various aspects of self-avoiding walks, but often
one has to rely on numerical simulations or simplified models, such as the one from our
definition. It stems from somewhat simpler directed paths and thus might remain tractable.
Also see [vRPR07] for a similar situation in the setting of directed paths.

Indeed, there are no special techniques necessary to give a solution for the following task:

Task 5.2. Provide a formula for the number an of paths of length n (i.e. n steps taken),
restricted by the rules given in Definition 5.1.

Let us derive the answer quickly, applying our usual approach. To this end, let rn be the
number of partially directed paths of length n, such that the last step taken was to the
east (right) (n− 1,m)→ (n,m). Similarly un and dn are defined to be paths ending with
a step north (up) or south (down). These latter two numbers are obviously equal, un = dn
(instead of taking a step down, we might take a step up at the end and the other way
around). Thus, by definition, we have an = rn + 2dn. A recursion can be found as

rn+1 = rn + 2dn and dn+1 = rn + dn, n ≥ 1,

with r0 = 1 (counting the empty path) and d0 = 0. The first equation simply says that a
step to the right can be added to any path of length n (yielding one of length n+ 1) while
the second models the self-avoidance, i.e. the restriction that a north (south) step must not
follow directly after a south (north) step. Next, define the ordinary generating functions
A(t), R(t) and D(t), which encode the numbers an, rn and dn respectively. Multiplying
the recursion above by tn and summing for n ≥ 1 yields

1
t
(R(t)− r0) = R(t) + 2D(t) and 1

t
(D(t)− d0) = R(t) +D(t).

Nothing fancy is necessary to solve this simple system of equations. Plugging in the values
for r0, d0 and expressing R in terms of D leads to R = D · (1/t− 1). Using this in the first
equation gives

1
t

(
D ·

(1
t
− 1

)
− 1

)
= D ·

(1
t

+ 1
)
⇐⇒ D ·

(1− t
t2
− 1 + t

t

)
= 1
t
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⇐⇒ D(t) = t

1− 2t− t2 .

Hence, we find an expression for R and eventually the generating function for partially
directed paths as

A(t) = R(t) + 2D(t) = 1− t
1− 2t− t2 + 2 t

1− 2t− t2 = 1 + t

1− 2t− t2 .

Now we can read off the coefficients and thus the numbers an. The denominator can be
factorized by finding its roots 1− 2t− t2 = −(t+ 1−

√
2)(t+ 1 +

√
2). Furthermore, the

partial fraction decomposition of A makes it easier to extract an:

[tn]A(t) = [tn]− 1
2

( 1
t+ 1−

√
2

+ 1
t+ 1 +

√
2

)

=− 1
2 [tn]

 1
1−
√

2
· 1

1 + t
1−
√

2
+ 1

1 +
√

2
· 1

1 + t
1+
√

2


=− 1

2

( 1
1−
√

2
· (−1)n

1−
√

2
+ 1

1 +
√

2
· (−1)n

1 +
√

2

)
.

For the last equality, we simply used the expansion for a geometric series. We can proceed
by computing the common denominator which is given by (1 +

√
2)n+1(1 −

√
2)n+1 =

(−1)n+1. Using this, we obtain

an = [tn]A(t) = 1
2

((
1 +
√

2
)n+1

+
(
1−
√

2
)n+1

)
.

The first few values of this sequence are given by 1, 3, 7, 17, 41, 99, 239, 577, 1393, . . . and it
can be found as entry A078057 in the on-line encyclopedia of integer sequences [OEI11].
From this, one can find an explicit connection to statistical mechanics via the asymptotics
(see [vRPR08]). For us it suffices to see that this model is relatively easy to understand
and allows us to solve the counting problem Task 5.2 completely.

However, besides directedness, one can impose other restrictions onto the paths such as
limiting the area in which it may grow. This is also relevant regarding applications, mod-
eling polymers in confined spaces. Indeed, the walls of the confinement interact with the
molecules and similarly the form of the surrounding space is of importance as well.
In this chapter, we will take a look at a simplified model for self-avoiding walks taking
into account these two forms of constraints. As usual, our approach will be to start with
a recursive description. However, instead of formulating it explicitly, we will immediately
derive a functional equation for a generating function.

5.1 Obtaining a functional equation

A brief remark to begin with: in the following sections of this thesis, unless specified
otherwise, we use the terms walk and path interchangeably and refer to partially directed
paths as defined in Definition 5.1.
Now let us state our task precisely. We will restrict paths not only by imposing directedness
onto them (which proved to be easy to solve, so we want to increase the difficulty) but also
by limiting them to a wedge:
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Definition 5.3. From now on, the walks as given by Definition 5.1 are additionally con-
fined within the (symmetric) wedge W ⊂ Z2, given by

W = {(m,n) ∈ Z2|m ≥ 0 and −m ≤ n ≤ m}.

Thus, for all pairs (m,n) visited by the path we have (m,n) ∈W.

Examples for walks in this space are given in Figure 5.4.
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Figure 5.4: Examples for random partially directed paths of length 35 in a symmetric
wedge (grey lines).

Now, as discussed in the underlying paper [vRPR08], this could be generalized in multiple
ways. One is to make the wedge asymmetric and use the x-axis as the bottom line of the
wedge (such that we have 0 ≤ n ≤ m). While this makes the task of finding a recurrence
and a functional equation not much harder, it significantly increases the difficulty of finding
a solution for it. The authors show that it is possible by using the same methods we will
demonstrate here. However, the computations, which mostly consist of simplifying the
result from the new flavor of the Kernel method we are going to introduce, are much more
lengthy. This is in accordance to the preceding chapter, where we have observed that a
symmetric Kernel makes everything much easier to work with, but is not essential for the
working out of the general approach.
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On the other hand, one might change the angle of the boundary lines of either wedge
(symmetric or asymmetric), i.e. the restrictions for the second coordinate become −αm ≤
n ≤ αm respectively 0 ≤ n ≤ αm for α ∈ N\{0}. While possible in theory (as proposed in
the paper), actually solving the enumeration problem for walks in these spaces seems to be
beyond the practical limit of working with the occurring expressions. We will see that even
when α = 1, while tractable, we need to do a lot of polishing to obtain orderly results. This
is especially obvious for the asymmetric model and suggests that even the most simple case
of this model of self-avoiding walks poses numerous, challenging mathematical problems.

In this chapter we will therefore concentrate on the simplest setting:

Task 5.4. Find the generating function of partially directed walks within the symmetric
wedge as in Definition 5.3, enumerating them by their length n, i.e. the number n of edges
in total.

While we will not give an explicit number of such paths, access to the generating function
admits asymptotic results and is therefore very useful (see [vRPR08] for the details). So,
as usual, let us find a recursive description of our combinatorial objects.
Unlike we did before, we will not enumerate them directly by their length and the co-
ordinates of the endpoint (which is an alternative way to obtain a functional equation).
Instead, we introduce the generating function as follows.

Definition 5.5. Let F (u, v, x, y) be defined as the generating function of partially directed
paths constrained to the symmetric wedge W, such that it enumerates the walks by the
following four statistics:

• the variables u and v correspond to the distance of the endpoint of the walk to the
upper and bottom boundary line of the wedge W. More precisely, if the last point is
(m,n) then the walk contributes the terms um−n respectively vm−n to the generating
function F (u, v, x, y).

• the variables x and y encode the number of steps taken by the walk - x counts the
horizontal edges and y the vertical ones. That is, if there are k horizontal edges in
the path, then the contribution to F (u, v, x, y) is xk, and similar for y.

Thus, to obtain the generating function we are looking for, we will eventually set x =
y = t to count the number of edges, regardless of their direction, and u = v = 1, as the
coordinates of the endpoint do not matter. To further simplify our task (which means a
simpler functional equation), we will make one more restriction.

Denote by G(u, v, x, y) the generating function of paths which end in a step to the east
(or have no steps at all). The connection to F is obvious: we can easily turn any walk
contributing to F into one ending horizontally by simply appending a step to the east.
This means that the path constructed this way has one more edge parallel to the x-axis
and its endpoint is one unit farther away from the boundary lines. In the language of
generating functions, this is accomplished by multiplying with the term uvx. Clearly, this
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way we obtain all possible such walks (not forgetting about the path consisting of a single
vertex at the origin only), leading to the simple relation

G(u, v, x, y) = 1 + uvxF (u, v, x, y). (5.6)

So, finding an expression for G immediately gives one for F , too. Thus, we can turn to a
recursive description of our walks and derive a functional equation for G in the following
theorem.

Lemma 5.7 ([vRPR08]). The generating function G(u, v, x, y), enumerating partially di-
rected walks obeying the rules of Definition 5.1, restricted to the symmetric wedge W as
defined in Definition 5.3 and ending in a horizontal step, satisfies the functional equation

K(u, v)G(u, v, x, y) = (u− vy)(v − uy)− u2vxy(u− vy)G(u, uy, x, y)
− uv2xy(v − uy)G(vy, v, x, y),

where the Kernel is given by K(u, v) = (u− vy)(v− uy)(1− uvx)− uvxy(u2 + v2 − 2uvy).

Proof. Constructing new walks starting with a given path is done by appending a sequence
of steps to the shorter one - either this sequence is a step east only or a number of steps
south (or north, but recall that we are not allowed to take south/north steps in direct
succession) ending with a single step east. In the latter case, care must be taken not to
leave the wedge, so not all possible combinations of steps are admissible and we have to
subtract them accordingly. Let us state the contributions to the generating function G of
each case.

• Appending a single step to the east: to obtain the generating function of such walks,
we have to multiply G(u, v, x, y) by uvx, for the same reasons as above (as for the
relation given in (5.6)).

• Appending south-steps followed by an east-step: note that in this case we do not care
whether or not the path leaves the wedge, so any number of steps vertically is allowed
for now. We will remove the wrong contributions below. So, again the horizontal step
at the end gives the term uvx. Every vertical step adds one y term. Furthermore,
stepping south increases the distance to the upper line, as well as ”reduces” the
distance to the bottom line by one, thus adding a u/v term (negative powers of v
correspond to a path which leaves the wedge). Summing all contributions from taking
sequences of steps of increasing length (i.e. for length i > 0) yields the geometric
series 1

1−yu/v − 1.
Overall, the generating function for paths constructed this way is given by
uvx yu/v

1−yu/vG(u, v, x, y).

• Removing south-steps which leave the wedge: to make up for the inadmissible addi-
tion of south-steps without a restriction of length, we need to remove all contributions
from walks leaving the wedge. These can be constructed in the following way: start
with a path touching the bottom line (that is, the endpoint has coordinates (m,−m))
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and append a sequence of steps south ending with a horizontal step (modeling the
part outside the wedge).
Consider a path (within the wedge) such that its endpoint has a distance of k to the
bottom line. Hence, by appending k steps down, it touches the lower boundary. This
corresponds to an increase of the distance to the upper line by k, hence to multi-
plying the main generating function G by ukyk/vk. In other words, the variable v
is replaced by uy which means that the generating function for paths ending on the
bottom line is given by G(u, uy, x, y).
The enumeration of the overhanging pieces is now done as in the point above, result-
ing in uvx yu/v

1−yu/vG(u, uy, x, y), encoding the walks leaving the wedge.

• Appending north-steps followed by an east-step: we essentially repeat the arguments
as for taking south-steps, the generating function for this case is given by
uvx yv/u

1−yv/uG(u, v, x, y).

• Removing north-steps which leave the wedge: as above, we need to subtract overhang-
ing walks, enumerated by uvx yv/u

1−yv/uG(vy, v, x, y) (analogously to the south-steps
case).

Hence, to obtain the generating function of all partially directed paths ending in a hori-
zontal step, we simply need to carry out the construction as described here. This means
to add all the generating functions for the 5 cases, leading (after some minor algebraic
transformations) to

G(u, v, x, y) = 1 + uvxG(u, v, x, y) + u2vxy

v − uy
(G(u, v, x, y)−G(u, uy, x, y))

+ uv2xy

u− vy
(G(u, v, x, y)−G(vy, v, x, y)).

Since we want to apply the Kernel method, we will rewrite it to obtain the shape we are
used to work with. That is, we bring all the G(u, v, x, y) terms to the left hand side and
multiply by the common denominator (u− vy)(v − uy). This yields the equation as given
in the statement of the lemma and concludes the proof.

A note regarding the two ways to generalize this result, as mentioned before: first, this
derivation is also true if we use a symmetric wedge between the lines −αx and αx - one
could simply put this α into the index of the generating function and adjust the distances
from newly constructed endpoints. In short, instead of multiplying the generating function
with uv, we would have to multiply by (uv)α, taking into account the slope of the boundary
lines. The subsequent steps will not work anymore, though.
Additionally, the functional equation for the asymmetric wedge is obtained by essentially
the same means. In fact, one only needs to adjust the contributions to the distance from
the bottom line, which does not change by taking the final horizontal step (i.e. a term v is
removed). See [vRPR08] for more details.
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5.2 The iterated Kernel method

We will now try to solve the equation from the lemma above. This kind of functional
equation looks somehow familiar to us now - and as usual, trying to solve it by conventional
means proves to be unsuccessful. It is the situation in which the Kernel method might prove
to be helpful: the equation essentially consists of a linear combination of a main generating
series and some of its offsprings with special arguments. However, once again it seems to
be of a somewhat different type.
Instead of being set to one or zero, as most of the catalytic variables were in the preceding
chapters, they are merely replaced by combinations of other arguments this time. Thus,
the technique needs to be adjusted for our purposes again.
In the last chapter we demonstrated a way to start with a solution that sets the Kernel
to zero and constructed new roots of the Kernel with it. We more or less applied the
Kernel method multiple times, to obtain additional information through equations of the
unknown generating functions, which originally appeared in the main functional equation.
The strategy lead to a result, even though it required additional work in the end (extracting
positive parts from certain relations).

To solve the functional equation we are dealing with now, the authors of the paper [vRPR08]
proposed the so-called iterated Kernel method, which they based on works mainly by
Bousquet-Mélou and Petkovsek. It appears to be very similar to an iterative scheme [BM96]
as well as the approach of the obstinate Kernel method, outlined in the earlier chapter.
However, the big difference is that it essentially consists of applying the Kernel method
infinitely many times. So instead of only using a few (finitely many) roots of the Kernel, it
requires an infinite sequence of roots. Clearly, this approach remains tractable only in very
specific cases, when the roots can be expressed in a sufficiently simple manner. Otherwise,
the method to construct new solutions to K(u, v) = 0 might produce increasingly complex
formulas which, in theory, give the solution we are looking for but become useless for
practical purposes at some point. We will see that a lot of work must be done, even in the
simplest case we are showing here, for boundary lines of the wedge with a slope of one.

So, after worrying a lot about the upcoming difficulties, let us start with a very positive
aspect of our example. The symmetric wedge leads to two nice properties: first, the
generating function F (u, v, x, y) and consequently G(u, v, x, y), too, is symmetric in u and
v. This stems from the fact that walks ending in a point (m,n) are in obvious bijective
correspondence to walks ending in (−n,−m) (by flipping them vertically).
Secondly, the Kernel K from the functional equation in Lemma 5.7 is symmetric in the
variables u and v as well. As in the last chapter, this will make the computations easier
and shorter. Obviously, this is not the case anymore for the asymmetric wedge and one
can compare the increase in the amount of work necessary for a solution in [vRPR08].

The computations start out, as usual, with the Kernel - again, it is only a quadratic
polynomial in u, v and thus its roots can found easily. The symmetry means that the
resulting solutions to K(u, v) = 0 are equal as Laurent series, regardless whether we solve
for u or v. Hence, let us simplify and write K(u) = (v2xy2− v2x− y)u2 + v(1 + y2)u− v2y
and find its roots as a polynomial in u.
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Graphical examples for the algebraic curves defined by the solutions to this equation are
depicted in Figure 5.8.
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Figure 5.8: Algebraic curve defined by the Kernel K(u, v, x, y), for various values of (x, y).
(top row: (x, y) = (1, 0) and (x, y) = (1, 2), bottom row: (x, y) = (0, 0.5) and
(x, y) = (−0.1, 3))

Arithmetically, they are given by

U1,−1(v) = v

2 ·
1 + y2 ∓

√
(1− y2)(1− 4v2xy − y2)
y + v2x− v2xy2 . (5.9)

Let us check which of these solutions are appropriate for our purposes and define formal
power series. First off, it is easy to see that both solutions are well defined as power series
in v, with coefficients in Q[x, y, y]. The denominator is a geometric series if written as
y + v2x− v2xy2 = y(1− v2(xy − x/y)). The expansion of the square root is given by the
general binomial series and thus, the roots can be expressed as the product of two formal
power series. Both U1 and U−1 do not have a constant term, because of the multiplication
with v/2. Furthermore, we have

[
v1]U1 = y (also, U1 has an expansion in Q[x, y]) and[

v1]U−1 = 1/y - this can be obtained by looking at the constant term of the roots before
the multiplication of the additional v/2 term (when using a computer algebra system to
rederive this result, one has to exercise caution and choose the ”right” square root of
(1− y2)2, otherwise the roots are switched).
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Furthermore, recall that we will set x = y = t in the end, to count walks only by their
length (the total number of steps taken). In this case, we have

U1(t) = 1 + t2 −
√

(1− t2)(1− 4v2t2 − t2)
t+ v2t− v2t3

.

The power series expansion of the square root has the constant term 1, which is canceled
by subtraction in the numerator. Thus, the fraction can be reduced by t. That means that
the expression in the denominator now has a constant term of 1 and is thus invertible in
the ring of formal power series in t with coefficients in Z[v]. Therefore, the first root with
the negative sign is indeed a power series in t.
On the other hand, the constant terms in the numerator of U−1 do not cancel each other,
so it is not well defined in t and this series must not be used in the substitutions.

The elementary symmetric functions for the roots U1 and U−1 will prove to be useful again
below, so let us state them now as well. They are given by

U−1 + U1 = v(1 + y2)
y + v2x− v2xy2 and U−1U1 = v2y

y + v2x− v2xy2 , (5.10)

where the latter equation can be obtained by looking at the constant coefficient in u of
the Kernel.

Now comes the crucial step in the working out of (any flavor of) the Kernel method. We
have produced one solution for K(u) = 0 which is a formal power series without a constant
term, and hence admissible for substitution into the functional relation in Lemma 5.7. This
gives us one more equation to work with, in which the main generating function vanishes
(because the Kernel is set to zero). However, on the right hand side we still have two
specializations of it and these are still unknown, since the resulting equation can not be
solved directly. So, we have to create more roots of the Kernel and try to obtain more
information about them. Instead of applying the approach from the last chapter, which
involved the elementary symmetric functions of the roots to produce new ones (and another
step of extracting positive parts of equations afterwards), we will now try to substitute U1
for v repeatedly. Therefore, this flavor of the Kernel method has been named the iterative
Kernel method.

To be more precise, we have considered K(u, v) as a quadratic polynomial in the variable
u. Thus, we can also substitute U1 (a valid formal power series with no constant term)
for the other variable v and obtain K(U1(U1(v)), U1(v)) = 0. Clearly, we can repeat that
process and produce a (possibly infinite) sequence of roots of the Kernel. To this end, let
us define, for all i ∈ N:

Ui(v) := (U1 ◦ U1 ◦ . . . ◦ U1︸ ︷︷ ︸
i times

)(v),

where U0(v) = v.
Indeed, all of the series Ui, for i ∈ N are unique. This can be verified by looking at the first
coefficient

[
v1]Ui = yi. To be more formal, an inductive argument can be used: assume

that the property holds for i > 0 (for 0 we have stated it explicitly above) and we carry out
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the substitution Ui(U1). To obtain the first term of the resulting series (we checked above
that the substitution is valid), we look at the first term of Ui, which is vyi and replace v
by vy (the first term of U1). There are no further contributions, since all the other terms
involve higher powers of v, and so

[
v1]Ui+1 = yi+1 holds.

We have found a countable sequence of well defined formal power series, such that two con-
secutive elements set the Kernel K(u, v) to zero. Moreover, since it defines a formal power
series in v without a constant term, too, we can similarly define U−i as the composition of
the other root U−1. The same argument as above, starting with U0 and carrying out an
inductive step U−i → U−i−1 shows that the series are unique for all i ∈ Z.
By simply plugging in and computing the result, we observe that U1 ◦U−1 = U−1 ◦U1 = v,
which means that the composition of Ui and U−i also yields v. So in fact this sequence
together with the composition and the identity U0 forms a group structure. This nice prop-
erty will become important later on, when we try to simplify the rather messy result of the
following iterations of the Kernel method. It might also be a reason why these complicated
expression can be made much easier.

Before we proceed, let us consider the geometric viewpoint and see how we move along the
algebraic curve defined by the roots of the Kernel while carrying out these substitutions.
In the preceding chapter, the transformations for the obstinate Kernel method consisted
of switching from one branch of the algebraic curve to the other, moving parallel to the
horizontal and vertical axes.
This time, we simply stay on one branch (given by v = U1(u)). From the starting point
(u0, U1(u0)) (where u0 6= 0), we move along the curve towards the origin (0, 0). In this
iterative process, the u-coordinate of a point is given by the v-coordinate of the previous
one. This can be seen exemplary in Figure 5.11, which shows a detail view of the draw-
ing in the upper right corner in Figure 5.8. The (rounded) coordinates of the first few
iterations (drawn as points in the plot) are (u0, U1(u0)) = (1, 0.372) → (0.372, 0.175) →
(0.175, 0.086)→ (0.086, 0.0429)→ (0.0429, 0.0215)→ (0.0215, 0.011) . . .

Since all of the elements in the sequence of iterated roots are well defined, we can substitute
Ui, for all i ∈ N, into the functional equation. This gives a sequence of equations in which
the Kernel is always set to zero and hence the main generating function G(u, v, x, y) does
not occur:

0 = (Ui − Ui+1y)(Ui+1 − Uiy)− U2
i Ui+1xy(Ui − Ui+1y)G(Ui, Uiy, x, y)

− UiU2
i+1xy(Ui+1 − Uiy)G(Ui+1y, Ui+1, x, y),

where i ≥ 0. We can easily express G(Ui, Uiy) in terms of G(Ui+1y, Ui+1) by bringing it to
the left hand side and dividing by the factor U2

i Ui+1xy(Ui − Ui+1y). This gives

G(Ui, Uiy) = (Ui − Ui+1y)(Ui+1 − Uiy)
U2
i Ui+1xy(Ui − Ui+1y)

−
UiU

2
i+1xy(Ui+1 − Uiy)

U2
i Ui+1xy(Ui − Ui+1y)

G(Ui+1y, Ui+1)

= Ui+1 − Uiy
U2
i Ui+1xy

− Ui+1(Ui+1 − Uiy)
Ui(Ui − Ui+1y) G(Ui+1y, Ui+1). (5.12)
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Figure 5.11: Tracing the iteration of the root, with starting point u0 = 1 and
(x, y) = (1, 2).

Written compactly (for appropriately defined auxiliary terms), this seems to be a simple
relation of the form Gi = ai + biGi+1 for i ≥ 0.
Note that we make use of the symmetry of the generating function G here, by switching
the arguments Ui+1y and Ui+1. It also allows us to formulate the next equation for both
unknown specializations of G without extra effort (we can simply replace u by v and
switch the order of the arguments). As in the chapter before, this symmetry is not vital for
the success of the method. However, we have demonstrated earlier that it does decrease
subsequent difficulties and helps to make results much less complex. This is the case here,
too. In [vRPR08], the authors also show the working out of this method for the asymmetric
wedge. There it is required to iterate again to find Gi in terms of Gi+2, and even though
that is possible, it proves to be significantly harder to obtain a legible result.

From (5.12) we can find G(vy, v) = G(v, vy) = G(U0(v), U0(v)y) by applying the equation
iteratively:

G(v, vy) =
∑
i≥0

Ui+1 − Uiy
U2
i Ui+1xy

i−1∏
j=0
−Uj+1

Uj
· Uj+1 − Ujy
Uj − Uj+1y

=
∑
i≥0

Ui+1 − Uiy
UiUi+1vxy

(−1)i
i−1∏
j=0

Uj+1 − Ujy
Uj − Uj+1y

.

(5.13)

The latter equality is obtained by reducing the telescope product of the terms Uj+1/Uj .
This relation shows that the expression on the right hand side is well defined as a for-
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mal power series in the variables v, x, y, since G does have a combinatorial interpretation.
Otherwise, this is not immediate and we need to make substantial simplifications for veri-
fication. Along the way, it will become clear that this is indeed the case.
Moreover, we can replace v by u in the above equation. Hence, thanks to the symmetry
of the generating function, this relation also gives us the second unknown series, G(u, uy),
which occurs in Lemma 5.7. So, once we have found a tractable expression for these
specializations of the main generating function, we can solve the functional equation.

5.3 Obtaining an explicit expression

To begin with, let us state the result we have just obtained by applying the iterated Kernel
method. We plug the expressions for G(u, uy, x, y) and G(vy, v, x, y) into the equation
from Lemma 5.7:

G(u, v, x, y) = (u− vy)(v − uy)
K(u, v)

− u2vxy(u− vy)
K(u, v)

∑
i≥0

Ui+1(u)− Ui(u)y
Ui(u)Ui+1(u)uxy (−1)i

i−1∏
j=0

Uj+1(u)− Uj(u)y
Uj(u)− Uj+1(u)y

− uv2xy(v − uy)
K(u, v)

∑
i≥0

Ui+1(v)− Ui(v)y
Ui(v)Ui+1(v)vxy (−1)i

i−1∏
j=0

Uj+1(v)− Uj(v)y
Uj(v)− Uj+1(v)y .

There are a few things to do before we can call this a solution to our problem. We want
to introduce various simplifications, in order to bring this expression into a form closer
to a power series expansion. Secondly, recall that we are not interested in the general
generating function: our goal is to enumerate partially directed paths by their length,
making no distinction between horizontal and vertical steps. Furthermore, the endpoint is
of no importance. Therefore, we are actually interested in a nice expression for G(1, 1, t, t).

Not surprisingly, the starting point for this is the sequence of roots of the Kernel. In the
chapters before, we exploited their relations to make results easier, mostly using expressions
built up by their elementary symmetric functions. We will try to use these to our advantage
again, even though we are now working with compositions of the solutions to K(u, v) = 0
and not only with pairs of corresponding roots. These seem to be rather complicated, but
one can find a useful recursive description for them. To get rid of the quadratic term in
the denominator of the elementary symmetric functions in (5.10), we combine them and
thus obtain a simple relation for the reciprocals of the (first) roots (considered as Laurent
series):

1
U1(v) + 1

U−1(v) = U1(v) + U−1(v)
U1(v)U−1(v) = 1 + y2

vy
.

The variable v occurs only once, which makes it easy to substitute v = Ui−1(v). By defini-
tion of Ui as the composition of U1 respectively U−1, as well as the fact that U−1(U1(v)) = v,
we have U1(Ui−1(v)) = Ui(v) and U−1(Ui−1(v)) = Ui−2(v). Therefore, the equation yields
a recursion for the iterated roots of the Kernel:

1
Ui(v) = 1 + y2

y
· 1
Ui−1(v) −

1
Ui−2(v) , i ≥ 2,
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where U0(v) = v and U1(v) given by (5.9) are available to us, providing the starting values.
This recursion is not hard to solve, so we might as well employ the tools we are so used to
by now.
Define a generating function for the reciprocals of the roots of the Kernel U(z) :=

∑
i≥0 z

i/Ui.
Summing the recursion for i ≥ 2 and plugging in this definition, leads, after filling in the
missing first coefficients and some minor shifting operations, to

U(z)− z 1
U1
− 1
v

= 1 + y2

y
z(U(z)− 1

v
)− z2U(z)

⇐⇒ U(z)
(

1− 1 + y2

y
z + z2

)
= z

1
U1

+
(

1− 1 + y2

y
z

)
1
v
.

In the following we divide by the coefficient of U(z) in the equation above, so first we will
find a formal power series expansion for its reciprocal. To this end, we rewrite it as

1
1− 1+y2

y z + z2
= y

y − (1 + y2)z + yz2 = y

(1− yz)(y − z) .

By doing a partial fraction decomposition and using the well known geometric series, we
can easily extract the coefficients in z. So, let i ∈ N, then

[
zi
] y

(1− yz)(y − z) = y
[
zi
]( 1

y(1− y2) ·
1

1− z
y

− y

1− y2 ·
1

1− yz

)

= 1
1− y2 ·

1
yi
− y2

1− y2 · y
i = 1− y2(i+1)

yi(1− y2) .

Now reading off the solution for the roots of the Kernel from U(z) yields, for i ≥ 2:

1
Ui

=
[
zi
]
U(z) =

[
zi
] y

(1− yz)(y − z)

(
z

1
U1

+
(

1− 1 + y2

y
z

)
1
v

)

= 1− y2i

yi−1(1− y2) ·
1
U1

+
(

1− y2(i+1)

yi(1− y2) −
1 + y2

y
· 1− y2i

yi−1(1− y2)

)
1
v

= 1− y2i

yi−1(1− y2) ·
1
U1
− y2(1− y2(i−1))

yi(1− y2) · 1
v
.

This reasonably simple formula enables us to find an expression for G(v, vy), given in
(5.13). We apply it immediately to compute and simplify the following two terms, for
j ∈ N. First,

Uj+1 − Ujy
UjUj+1

= 1
Uj
− y

Uj+1

= 1− y2j

yj−1(1− y2) ·
1
U1
− y2(1− y2(j−1))

yj(1− y2) · 1
v
−
(

1− y2(j+1)

yj−1(1− y2) ·
1
U1
− y2(1− y2j)

yj(1− y2) ·
1
v

)

= y2j(y2 − 1)
yj−1(1− y2) ·

1
U1

+ y2j(1− y2)
yj(1− y2) ·

1
v

= yj
(1
v
− y

U1

)
.
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In the other term, only the denominator changes slightly. Clearly, the calculations remain
essentially the same.

Uj − Uj+1y

UjUj+1
= 1
Uj+1

− y

Uj
= 1
yj

( 1
U1
− y

v

)
.

Together, they yield new expressions for the terms occurring in the product in (5.13):

Uj+1 − Ujy
Uj − Uj+1y

= Uj+1 − yUj
UjUj+1

· UjUj+1
Uj − Uj+1y

= yj(U1 − vy)
U1v

· y
jU1v

v − U1y
= y2jU1 − vy

v − U1y
.

This leads to a lemma, which gives a formula for the specialization of the main generating
function and shows that it is indeed a formal power series.

Lemma 5.14. The generating function for partially directed paths within the symmetric
wedge, ending in a horizontal step satisfies

G(v, vy, x, y) =
(

1 + H(v, x, y)
y

)∑
i≥0

(−1)iyi2H(v, x, y)i,

where the formal power series H is given by

H(v, x, y) = (1− y2)(1− 2v2xy)−
√

(1− y2)(1− 4v2xy − y2)
(1− y2)(y + 2v2x) + y

√
(1− y2)(1− 4v2xy − y2)

.

Proof. As a proof for the statement, we simply substitute the relations we have just ob-
tained into (5.13). Hence, we have

G(v, vy) =
∑
i≥0

(−1)i y
i

vxy

(1
v
− y

U1

) i−1∏
j=0

y2jU1 − vy
v − U1y

=
( 1
v2xy

− 1
U1vx

)∑
i≥0

(−1)iyi2
(
U1 − vy
v − U1y

)i
.

Let us introduce the notation H(v, x, y) := (U1 − vy)/(v − U1y). First off, it is possible
to reduce the whole fraction by v (because U1 starts with vy - which is subtracted in
the numerator, resulting in a series which starts at v2). Consequently, the series in the
denominator 1 − U1y/v does have a constant term 1 and is therefore invertible. The
subsequent multiplication with the series in the numerator yields a formal power series
without a constant term. Also note, as U1 does not have a constant term as power series
in y, the division of H by y is possible.
Furthermore, we can rewrite H(v, x, y) = y(1/(v2xy)− 1/(U1vx)− 1). This equality holds
by definition of U1 as a root of the Kernel:

U1 − vy
v − U1y

= 1
v2x
− y

U1vx
− y

⇐⇒ U1v
2x(U1 − vy)− U1(v − U1y) + vy(v − U1y) + U1v

2xy(v − U1y) = 0
⇐⇒ K(U1(v), v) = 0.
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Therefore, the formula for G(v, vy, x, y) as given in the statement of the lemma holds.
Lastly, the expression for H is obtained by plugging equation (5.9) into the original defi-
nition of H, reducing the resulting fraction and collecting terms.

Now that we know G(v, vy) = G(vy, v) in the equation from Lemma 5.7, we can use
the symmetry of the generating function to get the other: this significantly reduces the
computations. In the earlier chapter, we had two unknown specializations and even though
the Kernel was symmetric (but only the Kernel and not the main generating function itself),
we could not derive one immediately from the knowledge of the other.
In this case it is possible, yielding an expression for G(u, v, x, y) in general by plugging into
an earlier result. We state it as a theorem.

Theorem 5.15. The generating function of partially directed walks within the symmetric
wedge ending in a horizontal step is given by

G(u, v, x, y) = (u− vy)(v − uy)
K(u, v) − u2vxy(u− vy)

K(u, v)

(
1 + H(u, x, y)

y

)∑
i≥0

(−1)iyi2H(u, x, y)i

− uv2xy(v − uy)
K(u, v)

(
1 + H(v, x, y)

y

)∑
i≥0

(−1)iyi2H(v, x, y)i,

where the formal power series H is defined as in Lemma 5.14.

This is the final result for the general generating function and yields a rather complicated
series. In contrast to all of the chapters before, where the final results were either rational
or algebraic, it is a non-holonomic series, as the authors of [vRPR08] state. In our situation,
though, this is of no importance.

To close this chapter, we want to give a solution to Task 5.4 which motivated the whole
exercise. The following theorem summarizes the results.

Theorem 5.16 ([vRPR08]). The generating function G of partially directed walks of length
n, constrained to the symmetric wedge W and ending with a horizontal step is given by

G(t) ≡ G(1, 1, t, t) = 1− t
1− 2t− t2 −

1− t2 −
√

(1− t2)(1− 5t2)
1− 2t− t2

∑
n≥0

(−1)ntn2
H(1, t, t)n,

where
H(1, t, t) = 1− 3t2 −

√
(1− t2)(1− 5t2)
2t .

Furthermore, the generating function F of partially directed walks of length n constrained
to the symmetric wedge W (without the restriction of ending in a horizontal step) is given
by

F (t) ≡ F (1, 1, t, t) = 1 + t

1− 2t− t2 −
1− t2 −

√
(1− t2)(1− 5t2)

t(1− 2t− t2)
∑
n≥0

(−1)ntn2
H(1, t, t)n.
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Proof. The proof merely consists of plugging the right values into the generating function
from Theorem 5.15. As we are only interested in the length of the path, and not the
number of steps taken horizontally or vertically, we simply set the generating variables
corresponding to the number of these steps to x = y = t. Hence, both contribute equally
to the length of the walk.
Similarly, the location of the endpoint does not matter either. In the language of generat-
ing functions, this translates to setting the conjugated variables u and v to one, i.e. they
effectively vanish from the series.
Clearly, these two modifications simplify the equation from the preceding theorem. Car-
rying out the transformations yields K(1, 1, t, t) = (1 − t)(1 − t)(1 − t) − t2(2 − 2t) =
(1− t)(1− 2t− t2) and

H(1, t, t) = (1− t2)(1− 2t2)−
√

(1− t2)(1− 5t2)
(1− t2)3t+ t

√
(1− t2)(1− 5t2)

.

By multiplying both, nominator and denominator, by (1 − t2)3t − t
√

(1− t2)(1− 5t2) we
get rid of the square root in the denominator. Proceed by reducing the resulting fraction
by 2t(t4 − 3t2 + 2) and we obtain the reasonably simple expression

H(1, t, t) = 1− 3t2 −
√

(1− t2)(1− 5t2)
2t .

Combining this in the equation for G,

G(t) = (1− t)2

(1− t)(1− 2t− t2) −
∑
n≥0

(−1)ntn2
H(1, t, t)n

·
(

t2(1− t)
(1− t)(1− 2t− t2)

(
1 + H(1, t, t)

t

)
+ t2(1− t)

(1− t)(1− 2t− t2)

(
1 + H(1, t, t)

t

))

= 1− t
1− 2t− t2 − 2 t2

1− 2t− t2

(
1 + 1− 3t2 −

√
(1− t2)(1− 5t2)
2t2

)∑
n≥0

(−1)ntn2
H(1, t, t)n

= 1− t
1− 2t− t2 −

1− t2 −
√

(1− t2)(1− 5t2)
1− 2t− t2

∑
n≥0

(−1)ntn2
H(1, t, t)n,

yields the result as presented in the statement of the theorem.
Lastly, to obtain the generating function F , we use the simple relation (5.6). That is,
F (t) = (G(t)− 1)/t. This leads directly to the formula in the theorem.

The last theorem finishes our solution to the task of obtaining the generating function for
partially directed walks in the symmetric wedge W. Even though the final result is a bit
simpler than the general form, it is still a complicated series. An explicit expression for its
coefficients is therefore not what we are looking for. Instead it is now possible to obtain
asymptotic results for the number of partially directed walks by the methods of singularity
analysis. Indeed, this is what the authors of [vRPR08] do as the final step in their paper.
They also state that the generating functions H(v, x, y)/y and G(v, vy) have combinatorial
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interpretations, counting special kinds of paths. However, they could not derive the results
obtained by the Kernel method with a more combinatorial technique in the cited paper.

For our purposes, let us recall the key to solving the functional equation given in Lemma 5.7:
it is a special flavor of the Kernel method, called the iterated Kernel method. It involves
finding new roots of the Kernel K(u, v) by following one of the branches of the algebraic
curve defined by K(u, v) = 0. In this way, we obtain an infinite sequence of well defined
solutions which set the Kernel to zero. From this an iterative scheme can be derived
which eventually yields an expression for the generating function defined by the underlying
functional equation.

The computations as shown here were particularly simple because of the highly symmetric
problem we have studied - the symmetry of the wedge W resulted in a symmetry of the
generating function of walks restricted to W. This enabled us to find the unknown spe-
cializations of the main generating function much easier. But what happens if this nice
property is not applicable?

In [vRPR08], the authors proceed to study the same counting problem where walks are
not confined to W, but to an asymmetric wedge, given by the horizontal axis and the main
diagonal line y(x) = x. The approach remains unchanged and we use the same notations
as in the demonstration above. A recursive description leads to a functional equation
for the generating function encoding partially directed walks ending in a horizontal step.
However, the essential distinction is that the generating function, as well as the Kernel of
the relation, lack the symmetry in u and v we exploited earlier. Thus, one has to study
the Kernel as a (quadratic) polynomial in u and additionally in v. This gives two different
kinds of roots: the solutions for u, given by U1(v) (again denoting the root which has a
formal power series expansion in t when setting x = y = t ) and U−1(v), respectively for
v, namely V1(u) and V−1(u). Recall that these series were equal in the example we have
studied above (i.e. U1 = V1 and U−1 = V−1).
Proceed by plugging the two roots which have a formal power series expansion into the
functional equation, which sets the Kernel to zero and gives two new equations. Each of
them is too complicated to be applied iteratively, though. But combining the equations
by considering mixed compositions of the roots (i.e. substitute U1 for u in the equation
obtained by using V1 first) does yield a relation which can be iterated. To this end, one
defines W1(u) := U1(V1(u)) and Wn(u) := Wn−1(W1(u)) as the counterpart of the series
of roots in the symmetric case. At last, this leads to a complicated expression for the
generating function. The next steps are similar to the ones we have shown here: the result
is a solution to the problem, but it has to be simplified significantly to be legible. The
lengthy computations necessary to do this can be found in [vRPR08].

To close this chapter, we want to consider the case of slightly more general wedges we have
mentioned before. That is, their boundary lines are given by y(x) = −αx and y(x) = αx
in the symmetric, and the x-axis and y(x) = αx in the asymmetric case - such that
α ∈ R \ {0, 1}. In theory, the problem works out just as we have demonstrated here. But
that is obviously not enough to obtain results - practical reasons prevent one from actually
computing a solution. Hence, it certainly needs more work to improve the working out
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of this technique - maybe by more raw computing power or better ways to manipulate
algebraic expressions.
Let us briefly explain the troubles in the specific case of partially directed walks. The
recursions leading to the functional equation are essentially the same, as outlined above.
However, the problem lies in the infinite sequence of the roots of the Kernel. Here we have
seen that it was essential to simplify them significantly, in order to be able to work with
the results from the iterated substitutions. In the case of boundary lines with general slope
α this is not easily possible. Therefore, while carrying out the iterative scheme, the new
solutions to K(u, v) = 0 get more and more complicated until they reach a point where it is
not feasible to work with them anymore. This marks the limits of the Kernel methods, in a
way - our methods of working with such complex expressions are simply not sophisticated
enough to produce results with it for very difficult problems.
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