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Abstract

In this thesis a method for improving existing metaheuristics for the Reconstruction of Cross-Cut
Shredded Text Documents (RCCSTD) problem is presented. For this purpose a memetic algo-
rithm is enhanced by a solution archive, which is implemented in two different ways. Finally,
the results of using the solution archive with different configurations of the memetic algorithm
are compared to each other.

Cross-cut shredded text documents are documents that are cut in rectangular pieces using a
shredding device. The aim is to fit the pieces in such a way next to each other so that the original
document is reconstructed. Since this problem is NP-complete several heuristic approaches
exist. Some of the best results are delivered by a memetic algorithm (MA), which is an extension
of an evolutionary algorithm (EA), i.e., a population based metaheuristic. One of the main
problems of this kind of algorithms is the loss of diversity in later generations because a lot of
solutions are equal to each other.

To circumvent this problem, already generated solutions can be stored and looked up in a
solution archive so that only new solutions are accepted by the EA. The insert and the search
method for this datastructure have to be as efficient as possible because all solutions generated
by the EA are inserted and looked up in the archive. Another requirement of the solution archive
is to generate a new solution efficiently if a duplicate was found. A trie-based datastructure
meets all the requirements since insertion and search run in time O(h) where h is the height of
the trie, which is bounded by the size of the input.

First an appropiate solution representation is developed—an array of shreds, which are rep-
resented by their integer IDs, containg the right and the bottom neighbor of each shred. With
this representation the maximum solution size is drastically reduced compared to the currently
used representation which stores the absolute positions of the shreds.

Two different strategies for generating new, yet unvisited, solutions are presented. In the
first method a random permutation point is chosen. From this point on the decision which shred
is chosen is entirely based on a list of available shreds, which is stored in each trie node. This
list contains all shreds that can possibly be inserted at this level, which reveals also the difficulty
of this approach—not all shreds can be chosen on every level and sometimes there is even only
one shred left to choose. The second method is also based on a random permuation point. On
that point the shred that has been inserted in the duplicate solution is swapped with an available
shred. In this case the list of available shreds can be computed more easily.

In the end the archive is tested on several instances with different cutting patterns, thus dif-
ferent sizes. It was tested if the solution archive helps the memetic algorithm to find a better
solution in the same amount of time. The results showed that in most cases the memetic algo-
rithm in combinaion with the solution archive performed only as good as the memetic algorithm
alone. This is also because of the vast memory consumption of the solution archive, which made
testing very difficult.
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Kurzfassung

In dieser Arbeit wird eine Methode vorgestellt, die existierende Metaheuristiken für das Recon-
struction of Cross-Cut Shredded Text Documents (RCCSTD) Problem verbessert. Um dieses
Ziel zu erreichen wurde ein memetischer Algorithmus durch ein Lösungsarchiv erweitert, wel-
ches auf zwei unterschiedliche Arten implementiert wurde. Zuletzt werden die Resultate ver-
glichen, die durch das Verwenden des Lösungsarchiv mit verschiedenen Konfigurationen des
memetischen Algorithmus entstanden sind.

Cross-Cut zerkleinerte Textdokumente sind Dokumente, die von einem Papierschredder in
rechteckige Teile zerschnitten wurden. Das Ziel ist, diese Teile so zusammenzusetzen, damit
das Originaldokument wieder rekonstruiert wird. Da dieses Problem NP-vollständig ist, existie-
ren diverse heuristische Lösungsansätze. Einige der besten Ergebnisse liefert ein memetischer
Algorithmus (MA), der eine Erweiterung eines evolutionären Algorithmus (EA) darstellt, d.h.
eine populationsbasierte Metaheuristik. Eines der größten Probleme solcher Algorithmen ist der
Verlust von Diversität in späteren Generationen, da viele gleiche Lösungen generiert werden.

Um dieses Problem zu umgehen, können schon besuchte Lösungen in einem Lösungsarchiv
gespeichert und nachgeschlagen werden, sodass nur neue Lösungen vom EA akzeptiert werden.
Die Einfüge- und Suchmethode für die benötigte Datenstruktur muss so effizient wie möglich
sein, da alle vom EA generierten Lösungen in dem Archiv gespeichert und nachgeschlagen wer-
den. Eine weitere Anforderung ist, dass, wenn eine Duplikatlösung gefunden wurde, eine neue
Lösung effizient generiert wird. Eine Trie-basierte Datenstruktur erfüllt alle Anforderungen, da
die Einfüge- und Suchmethode in O(h) läuft, wobei h die Höhe des Tries ist, die wiederum
durch die Größe des Inputs beschränkt ist.

Zuerst wurde eine geeignete Lösungsrepräsentation entwickelt – die Integer-IDs der Schnip-
sel in einem Array, das den rechten und den unteren Nachbar von jedem Schnipsel enthält. Mit
dieser Repräsentation wurde die maximale Größe einer Lösung im Vergleich zu der bisherigen
drastisch reduziert, die die absoluten Positionen der Schnipsel speicherte.

Es wurden zwei verschiedene Strategien entwickelt, um neue, noch unbesuchte Lösungen zu
generieren. In der ersten Methode wurde ein zufälliger Permutationspunkt gewählt. Von diesem
Punkt aus wurde die Entscheidung, welches Schnipsel als nächstes gewählt wird, ausschließlich
auf Basis einer Liste von verfügbaren Schnipseln, die in jedem Trie-Knoten gespeichert wird,
getroffen. Diese Liste enthält alle Schnipsel, die auf dieser Ebene eingefügt werden können. Das
verdeutlicht auch die Schwierigkeit dieser Methode – nicht alle Schnipsel können auf jeder Ebe-
ne eingefügt werden und manchmal kann sogar nur ein Schnipsel auf der Ebene gewählt werden.
Die zweite Methode basiert auch auf einem zufällig gewählten Permutationspunkt. Auf diesem
Punkt wird der Schnipsel, der in der Duplikatlösung auf diesem Level eingefügt wurde, mit ei-
nem verfügbaren Schnipsel getauscht. In diesem Fall kann die Liste der verfügbaren Schnipsel
leichter berechnet werden.

Schlussendlich wurde das Archiv auf diversen Instanzen mit verschiedenen Schnittmustern
(daher auch unterschiedlichen Größen) getestet. Es wurde getestet, ob das Lösungsarchiv mit
gleichem Zeitaufwand dem memetischen Algorithmus hilft, eine bessere Lösung zu finden. Die
Ergebnisse zeigten auf, dass in den meisten Fällen der memetische Algorithmus in Kombination
mit dem Lösungsarchiv nur genauso gut wie der memetische Algorithmus alleine ist. Das kommt
unter Anderem daher, dass das Lösungsarchiv einen riesigen Speicherbedarf hat, was das Testen
deutlich erschwerte.
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CHAPTER 1
Introduction

Document Shredding has a long history. The first document shredder was invented
by the US citizen Abbot Augustus Low, who applied for a patent in the year 1909.
According to [16] he named his device ’Waste-Paper Receptacle’. From then on many
others follow his idea of shredding documents and two different kinds of shredding
techniques evolved as standard:

• Strip shredding
The height of the shreds of strip shredded documents is equal to the height of the
original documents and all shreds are rectangular and have equal width.

• Cross-cut shredding
All shreds of cross-cut shredded documents are rectangular and have the same size
but the height of the shreds is smaller than the height of the original document,
see Figure 1.1 for a cross-cut shredding device and a pile of cross-cut shreds.

Another method to destroy documents is to tear them apart. This is usually done
manually—in contrast to the mechanical shredding process—and therefore the amount
of shreds per document is often smaller. In this scenario, in contrast to the others, the
shape and the edges of each shred is different, which can be exploited in a reconstruction
procedure.

Although nowadays most information is available online and does not necessarily have
to be printed out, it can often be useful to have a document in paper form—therefore
document shredding can be a very useful, or even necessary, method for obfuscating
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(a) A pile of shreds (b) A typical cross-cut shredder, taken
from [35]

Figure 1.1: A shredding device an its output

data. The main aim of document shredding is to make printed sensitive information such
as passwords, signatures, confidential data, etc. unreadable to non-authorized people.

Being able to reconstruct shredded documents is highly useful in criminal investigation
and can be used by forensic document examiners to improve their efficiency. Remnants
of destroyed documents are even found in war zones, which is why DARPA1 recently
initiated a challenge to solve five different puzzles using document reconstruction tech-
niques, see [4]. Furthermore, reconstructing shredded documents can be of historic
interest like the project aiming at the reconstruction of torn STASI2 documents [12].

Since all shreds have the same size and shape and due to the fact that there is no edge
information available, the reconstruction of shredded documents can be formulated as
a combinatorial optimization problem. Thus, a cost function that is based on the in-
formation printed on the shreds has to be defined, which is described in the next sec-
tion. Another property of the shredded document is that blank shreds can be safely
ignored because there is no information on them. Many different heuristic solving tech-
niques have been used to solve the reconstruction problem and in this thesis one of them,
namely a genetic algorithm, is improved by a complete solution archive, see 4.4.

In Chapter 2 the problem of reconstructing Cross-Cut shredded documents is defined
and the complexity of this problem is presented. In Chapter 3 recent research about both
reconstructing of documents and using solution archives together with heuristic meth-

1Defensive Advanced Research Projects Agency
2Ministry for State Security, also known as Stasi—The official state security service of the DDR (East

Germany)
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ods is summarized. This chapter is followed by a description of several meta-heuristics
illustrated with pseudo-code. In Chapter 5 a solution archive for the Reconstruction of
Cross-Cut Shredded Text Documents problem is developed and in Chapter 6 implemen-
tation issues are discussed. Finally in Chapter 7 the results are presented and compared
to other solving methods. In the last chapter a conclusion is drawn and it is shown what
could be done in future work.
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CHAPTER 2
Problem definition

Suppose that the output of a shredding device is a set of shreds S = {s0, ..., sn−1}. A
shred is a fragment of the document that is not totally blank. Moreover, all shreds have
the same width and height. Let the virtual shred sn be a blank piece of paper of the same
size as the other shreds. Here we assume that the orientation of each shred is known and
the documents are printed only on one side.

As this thesis only deals with the Reconstruction of Cross-Cut Shredded Text Docu-
ments (RCCSTD) problem, only this problem is defined here (based on the definitions
in [21] and [29]) and references are given to the definitions of the other two similar
reconstruction problems. (i.e., strip shredding and manually torn documents)

A candidate solution to the RCCSTD problem consists of an injective mapping Π =
S → D2 where each shred is mapped to a position (x, y) in the Euclidean space, where
x, y ∈ D = {0, ..., n− 1}. The remaining positions are filled with the virtual shred.

Since the RCCSTD problem is an optimization problem we have to define a cost func-
tion, whose result should be minimized. First we define the following auxiliary function
sp = D ∪ {−1, n} → {0, ..., n}, which returns the index i of si on position (x, y):

sp(x, y) =

{
i if there is a shred si ∈ S on position (x, y)
n else (2.1)

Let the position of the shred s be (x, y). Then we can define the functions nt(si), nb(si),
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nl(si) and nr(si), which return the indices of the neighbors of the shred si as follows:

top neighbor
nt(si) = sp(x, y − 1)

left neighbor right neighbor
nl(si) = sp(x− 1, y) si nr(si) = sp(x+ 1, y)

nb(si) = sp(x, y + 1)
bottom neighbor

(2.2)

Finally we can define the cost function as follows:

c(Π) =
n−1∑
y=−1

n−1∑
x=−1

cr(sp(x, y), nr(sp(x, y))) + cb(sp(x, y), nb(sp(x, y))) (2.3)

The functions cr and cb indicate how well two shreds fit together, where cr(s1, s2) is
the cost when shred s2 is placed right of s1 and cb(s3, s4) is the cost of shred s4 placed
below s3. These two functions are critical to the overall performance of any algorithm
because they measure the error induced by placing shreds next to each other. The algo-
rithm described in [30] which is based on the algorithm used for the RSSTD problem
described in [22] gives one of the best practical results. Hence, it is used in this work.

This cost function is briefly described in the following paragraph. The error estimation
function (EEF), i.e. cost function, is based on the edge information of the shreds while
the inner part of the shreds is completely ignored. Since the shredded documents have
to be scanned in order to reconstruct them automatically, it is assumed that the pictures
of the shreds that the scanner generate all have the same resolution, i.e., the number of
the pixels along the edges is the same for all shreds. Thus, a pixel-wise comparison
along the edges is possible. As shown in [29] a greyscale color space is suitable for
Cross-Cut shredded documents. To avoid side-effects, not only directly opposite pixels
of each shred are compared to each other but two pixels above and below are also taken
into account, see Figure 2.1 for an illustration.

This leads to a formula that computes a weighted average of the five pixels and compares
it with the weighted average of the corresponding shred which is then summed up along
the x-axis (or y-axis, respectively) of the shreds. The result of this formula is the error
induced by placing the two shreds next to each other.

The formal definition of the formula cr is the following (taken from [29]):
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Figure 2.1: Weighted average of two opposite pixels including their neighbor pixels

cr(i, j) =
h−2∑
y=3

eh(i, j, y)

eh(i, j, y) =

{
1 if e′h(i, j, y) ≥ τ
0 else

e′h(i, j, y) = |0.7 · (vr(i, y)− vl(j, y))
+0.1 · (vr(i, y + 1)− vl(j, y + 1))
+0.1 · (vr(i, y − 1)− vl(j, y − 1))
+0.05 · (vr(i, y + 2)− vl(j, y + 2))
+0.05 · (vr(i, y − 2)− vl(j, y − 2))

(2.4)

where h is the height of each shred (in pixels) and τ is a threshold value, which is
determined by preliminary tests. The functions vr(i, y) and vl(i, x) give the greyscale
value of pixel y (respectively x) of shred i where y is a pixel of the right (left) edge.
These tests showed that the best results are achieved when setting τ = 25. The function
cb is defined analogously.

The other two problems, the Reconstruction of Strip Shredded Text Documents (RSSTD)
and the Reconstruction of Manually Torn Paper Documents (RMTPD), are defined
in [21].

2.1 Complexity
All three problems are NP-Complete. Those kind of problems are very difficult to solve,
i.e., assuming that P 6= NP there is no algorithm that solves every instance of this
problem in polynomial time. Thus, approximative algorithms have to be developed that
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give good solutions in a reasonable amount of time. Assuming that there is an algorithm
that solves an NP-Complete problem in polynomial time would lead to the conclusion
that every NP-Complete problem can be solved in polynomial time because of the fact
that every NP-Complete problem can be reduced to any other NP-Complete problem in
polynomial time. Hence, this would be a proof that P = NP .

In [21] a proof for the NP-completeness of the RMTPD problem is given, which ba-
sic idea is that the Subset Sum problem is reduced to the RMTPD problem. In [21]
a polynomial-time reduction from the decision variant of the (symmetric) travelling
salesman problem to the decision variant of the RSSTD problem is shown, which, to-
gether with the reduction the other way round in [21], proves the NP-completeness of
the RSSTD problem. Since the RCCSTD problem is a generalization of the RSSTD
problem, it is at least as hard as the RSSTD problem and it is obviously in NP, since one
could easily think of a guess and check algorithm.
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CHAPTER 3
Literature Survey

In this chapter an overview about current literature and research results is given. In
the first part of this chapter the three types of document reconstruction are discussed,
while the second part deals with solution archives. Since latter is a not yet deeply ex-
plored topic there is not very much literature available. For the methodology of solution
archives see section 4.4.

3.1 Document Reconstruction
Manually torn documents can be reconstructed by exploiting edge information and often
feature extracting methods are used. See [10, 11, 28] for some work in this area. In
[20] feature extraction is also used and then the document is reconstructed by an LCS1

algorithm based on the use of dynamic programming. Rane and Bhirud used mosaicing
techniques for reconstructing torn documents in [19]. They extracted the text on the
documents and tried to reconstruct the documents using this text information.

Most of the techniques used for reconstructing manually torn documents cannot be used
for solving the RSSTD or the RCCSTD problem because, as described in Chapter 1,
there is no edge information available, since the documents are cut using a shredding
device.

A straight-forward method for solving the reconstruction of strip shredded documents
is based on the reformulation to a TSP2 as mentioned in Section 2.1. Prandtstetter dis-
cussed this approach in [22] using the well-known TSP heuristic chained Lin-Kernighan

1Longest Common Subsequence
2Travelling Salesman Problem
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from [1]. Additonally, a VNS3 implementation and a hybrid approach making use of
human interaction are also presented in [22], which outperformed previous approaches
like Ukovich et al in [33], who used MPEG-7 standard descriptors for content descrip-
tion. Lin and Fan-Chiang used image-based techniques for reconstructing strip shredded
documents in [15]. In the first step they defined a measure of similarity between any pair
of shreds using pattern recognition techniques. Then they used a shortest path algorithm
on a constructed graph to reconstruct the shreds. The first genetic algorithm for solving
the RSSTD problem was introduced by Skeoch in her dissertation [31]. Moreover, she
also discussed different methods for fitness evaluation and she concluded that the pixel
comparison method is the most effective technique for measuring the similarity between
a pair of shreds. This method is also the base for the error estimation function described
in Chapter 2.

This thesis is an extension to the memetic algorithm presented in [30] to solve the RCC-
STD problem, which will be described in more detail in Section 6.1.2. In [23] Prandt-
stetter introduced a VNS and an ACO4 for the RCCSTD problem. A total different
approach to solving this problem was made by Sleit et al. in [32]. They proposed a
clustering approach, which is usually done as a preprocessing step for assigning shreds
to a document if the shreds came from more than one document. In that work the clus-
tering algorithm also generates the solution using a merge function, which can merge
two clusters if there is no collision on the positions of the shreds.

3.2 Solution Archives
It is not obvious that eliminating duplicate solutions improves the performance of a
genetic algorithm. Duplicate removal prevents elitism, whose advantages could out-
weigh the disadvantages of the loss of diversity in the population. However, Mauldin
disproved this thought in [17], where he demonstrated that maintaining the diversity in
each population significantly improves the performance of genetic search. Based on
this result, Ronald argued in [26] that duplicate removal is not at odds with the basic
mechanisms of genetic algorithms. In the same paper he introduced hash tagging for
the solutions to prevent duplicates in the current population. In [36] Yuen and Chow
introduced a non-revisiting GA5 containing a complete solution archive implemented
as a binary tree. They discovered that the pruning of subtrees, where all solutions have
already been visited, is isomorphic to a parameter-less self adaption mutation operator.

Raidl and Hu introduced a trie-based complete solution archive for genetic algorithms
3Variable Neighborhood Search - see section 4.3.2
4Ant Colony Optimization - see section 4.2
5Genetic Algorithm
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in [25]. Together with Šramko, who wrote his master thesis (see [34]) about trie-based
solution archives, they compared the impact on using a complete solution archive with
the results of algorithms of famous NP-complete problems, i.e. Royal Road function,
NK landscape problem, and the MAX-SAT problem. It turned out that in most cases, the
quality of the solutions increased when using the archive. In [27] Ruthmair and Raidl
used a trie-based solution archive in combination with a memetic algorithm for the
Rooted Delay-Constrained Minimum Spanning Tree Problem, which is a more compli-
cated problem than those mentioned above. They compared the results of the memetic
algorithm with and without the solution archive with solution hashing, whose overhead
is negligible. The result was that although the solution archive could improve the qual-
ity of the solution if the amount of revisits is very high, in most cases the time overhead
was too big so that the results were actually worse than using no duplicate detection
or hashing. Another application of a trie-based solution archive on a more complex
problem—the Generalized Minimum Spanning Tree problem—can be found in [9]. In
their work Hu and Raidl used two tries in the solution archive in order to exploit benefits
of two different solution representations. Their implementation of the solution archive
in combination with an evolutionary algorithm produced comparable results to existing
state of the art metaheuristic approaches.
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CHAPTER 4
Heuristic Solution Techniques

In this chapter a brief overview about some of the most used metaheuristics will be
given. Further the theoretic basics of the algorithms that the author used in his work
will be explained.

4.1 Genetic Algorithms
Genetic Algorithms (GAs), which are first mentioned by Holland in [8], are population-
based metaheuristics based on an observation of the nature—evolution. Genetic algo-
rithms imitate survival of the fittest (selection), sexual reproduction (recombination) and
random changes to the genotype (mutation).

Algorithm 1: Genetic Algorithm Scheme
1 t← 0;
2 initialize(P (t));
3 while stopping criterion not met do
4 t← t+ 1;
5 select(P (t));
6 recombine(P (t));
7 mutate(P (t));
8 evaluate(P (t));
9 end

10 return best solution in P (t);

11



In Algorithm 1 pseudocode for a generic GA is listed. The implementations of genetic
algorithms differ not only in how the individuals are selected from the population P (t)
(line 5), how they are recombined (line 6) and how they are mutated (line 7) but also
in the mutation rate, the number of generations and the number of individuals in each
population. The population can either be constant or variable. Possible stopping criteria
could be a time limit or a given number of created populations.

4.1.1 Memetic Algorithms
Memetic Algorithms (MAs) are genetic algorithms extended with a local search proce-
dure. Moscato and Norman first mentioned memetic algorithms in [18]. A local search
algorithm finds the local optimum within one (Local Search) or more (VND, VNS—see
below) given neighborhoods. It is a design decision when the local search is applied and
which solutions within the generation are selected for the procedure, but usually this is
not done every generation for every solution. Often at the end of the GA a local search
procedure is done with a larger neighborhood or with more neighborhoods when using
a VND / VNS approach. A common scheme of a MA is listed in Algorithm 2. Since

Algorithm 2: Memetic Algorithm Scheme
1 t← 0;
2 initialize(P (t));
3 while stopping criterion not met do
4 t← t+ 1;
5 select(P (t));
6 recombine(P (t));
7 mutate(P (t));
8 if local search criterion is met then
9 improveSolutions(P (t));

10 end
11 evaluate(P (t));
12 end
13 improveFinalSolutions(P (t));
14 return best solution in P (t);

2009 the Springer Verlag publishes a journal dedicated to memetic algorithms [14].

4.2 Ant Colony Optimization
An Ant Colony Optimization (ACO) is based on swarm intelligence. It was first in-
troduced by Colorni et al. in [3] and mimicks the foraging behavior of ants. In an ant
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colony the ants do not explicitly know what the other ants are doing, but nevertheless the
ants of the colony behave in a very structured way. Every moving ant leaves pheromone
on the ground, which can be detected by other ants and can influence the direction of
their movement. While ants initially are moving in random directions for the search of
food, over the time more and more ants are following the pheromone trails that were
laid by other ants increasing the pheromone density for this trail. One can exploit this
behavior to form a heuristic search algorithm in which the solution candidates are con-
structed step-by-step and the decisions are based on former good solutions, i.e., where
the most pheromones are.

Algorithm 3: Ant Colony Optimization
1 initialize pheromone trail;
2 while stopping criterion not met do
3 construct ant solutions based on pheromone information;
4 if local search criterion is met then
5 improveSolutions;
6 end
7 update pheromone trail;
8 end
9 return best solution found;

In Algorithm 3 the basic structure of an ACO is shown. A good overview about Ant
Colony Optimizations and its different algorithms can be found in [5].

4.3 Local Search
Local Search (LS) aims to find the local optimum within a given neighborhood. A
neighborhood structure of a solution is a function that maps a set of solutions to a so-
lution, i.e., let s ∈ S be an arbitrary solution, where S is the whole solution space.
Then a neighborhood structure N is a function S → S2—N(s) is the set of neighbors
of s (cf. [21]). While searching the neighborhood for other solutions three different
functions (step functions) can be defined when a solution is accepted:

1. Random neighbor
Choose a random solution from the neighborhood although it could be worse than
the original solution.

2. Next improvement
Search the neighborhood and accept the first solution that is better than the current
solution.
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3. Best improvement
Examine every solution in the neighborhood and take the solution with the best
solution value (if there is one).

A general scheme for a local search procedure is given in Algorithm 4.

Algorithm 4: Local Search
1 define a start solution s;
2 define a neighborhood structure N(s);
3 set step function= {random neighbor, next improvement, best improvement};
4 while stopping criterion not met do
5 choose s′ ∈ N(s) according to step function;
6 if s′ is better than s then
7 s← s′

8 end
9 end

10 return s;

The following two subsections describe metaheuristics that are similar to local search,
but more complex.

4.3.1 Variable Neighborhood Descent
In Variable Neighborhood Descent (VND) multiple neighborhoods are explored sys-
tematically. In Algorithm 5 the structure of a VND is shown. Note that only next
improvement and best improvement are valid step functions.

The neighborhood structures as well as their ordering is critical for the performance of
a VND. Usually the neighborhood structures are sorted in order of increasing size, s.t.
’nearer’ solutions are found earlier. A VND is based on the fact that a global optimum
is also a local optimum, so that exploring different local optima can lead to the global
one. Therefore, the result of VND is always an optimum with respect to all the defined
neighborhoods.

4.3.2 Variable Neighborhood Search
In contrast to LS and the deterministic VND procedure, Variable Neighborhood Search
(VNS) chooses a random solution of the current neighborhood, which is called shaking,
and improves this solution using local search. To avoid the weaknesses of local search,
it is often replaced by a VND because the VND is able to escape local optima. In
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Algorithm 5: Variable Neighborhood Descent
1 define a start solution s;
2 define K different neighborhood structures Ni(s)1≤i≤K ;
3 set step function= {next improvement, best improvement};
4 k ← 1;
5 while k ≤ K do
6 choose s′ ∈ Nk(s) according to step function;
7 if s′ is better than s then
8 s← s′;
9 k ← 1;

10 else
11 k ← k + 1;
12 end
13 end
14 return s′;

Algorithm 6 pseudocode of a VNS is shown. Successful applications of a VNS can be

Algorithm 6: (General) Variable Neighborhood Search
1 define a start solution s;
2 define K different neighborhood structures Ni(s)1≤i≤K ;
3 while stopping criterion not met do
4 k ← 1;
5 while k ≤ K do
6 choose s′ randomly from Nk(s);
7 s′′ = localSearch(s′) / VND(s′);
8 if s′′ is better than s then
9 s← s′;

10 k ← 1;
11 else
12 k ← k + 1;
13 end
14 end
15 end
16 return s;

found in [2, 7, 13].

15



4.4 Solution Archives
A common property of population based metaheuristics like a GA or MA is that they are
revisiting algorithmns, i.e., the same solution is generated more than once. This implies
multiple evaluations of the fitness for the same solution while no additional information
is added to the population. If we keep duplicate solutions in the population the GA could
suffer from a loss of diversity, which could even lead to a premature convergence of the
GA. Especially the calculation of the fitness value is usually a time consuming task.
Thus, unnecessary re-evaluations should be avoided. A reasonable way to archive this
is to add a solution archive to the metaheuristic. A solution archive stores all solutions
visited so far and should have the properties that the insertion and search methods are
efficient. In Algorithm 7 a memetic algorithm that uses a solution archive is listed.

Algorithm 7: A Memetic Algorithm with a Solution Archive
1 t← 0;
2 initialize(P (t));
3 while stopping criterion not met do
4 t← t+ 1;
5 select(P (t));
6 recombine(P (t));
7 mutate(P (t));
8 if local search criterion is met then
9 improveSolutions(P (t));

10 end
11 foreach solution s in P (t) do
12 remove s from P (t);
13 if s is already in the archive then
14 s′ = generateNewSolution(s);
15 else
16 s′ = s;
17 end
18 insertIntoSolutionArchive(s′);
19 insert s′ into P (t);
20 end
21 evaluate(P (t));
22 end
23 improveFinalSolutions(P (t));
24 return best solution in P (t);

The archive has to fulfill the following tasks:
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• insert a solution,

• check if a solutions is already in the archive,

• generate a new solution if a duplicate was found.

Therefore, a data structure is needed that implements these tasks efficiently. A straight
forward data structure for storing already visited solutions is a hash table or a binary
tree. However, both of them cannot efficiently implement the third task. A trie-based
solution archive [25,34] turned out to give the best results in terms of time and memory.
In [34] Šramko compared the memory and time consumption for each of the tasks of
the different data structures.

0 1

0 1

0 1

C
(a) Solution ’010’
inserted into the
trie

0 1

0 1

0 1

C C
(b) Solutions ’010’
and ’011’ inserted
into the trie

Figure 4.1: A schematic view of a Trie

In Figure 4.1 a solution archive implemented with a trie for a problem with solutions
that can be represented as binary strings (i.e., a binary trie) is shown. It can be easily
modified for other solution representations (e.g., integer arrays). The insertion method
for a solution which is represented as integer array is illustrated in Algorithm 8. In case
the array contains only 1s and 0s, the insertion method is also suitable for binary tries.

The search function is basically the same as the insert function but does not actually
insert the solution. When a duplicate is found the search function returns true, else
false. How the new solution is generated in case of a duplicate insertion differs
from problem to problem. While the generation of a new solution is quite easy if a
permutation of a solution could not generate invalid solutions, it can be more complex
if this is not the case. In Section 5.3 it is described in great detail how the author of this
thesis solved this task for the RCCSTD problem.
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Algorithm 8: Insert
Input: Solution sol to be inserted as integer array

1 TrieNode current = root;
2 for int i← 0 to sol.length−1 do
3 if current.get(sol[i]) 6= null then
4 if current.get(sol[i]) is completed then
5 duplicate found;
6 return;
7 end
8 current=current.get(sol[i]);
9 else

10 create new trie node newNode;
11 current.set(sol[i], newNode);
12 current=newNode;
13 end
14 end
15 set current node to complete;

Another huge advantage of a trie over the other data structures is that a trie can be
pruned. If all solutions of a subtrie are already visited, the whole subtrie can be pruned,
which saves both search time and memory. An approach for pruning is given in Algo-
rithm 9. After every insertion this pruning method is called in order to keep the number
of nodes in the trie low. In Figure 4.2 a pruned trie is shown.

Algorithm 9: Subtrie Pruning
1 while current 6= root do
2 if all children of current node are completed then
3 set current node to complete;
4 else
5 return;
6 end
7 current=current.parent;
8 end

There are several possibilities to enhance the performance of the trie, e.g., pruning sub-
tries whose solutions cannot have a better objective value than the best solution found
so far—this could be implemented as computation of bounds during solution insertion.
Another modification of the trie that could improve its performance is the randomization
of the trie by a permutation of the insertion order of the solution parts.
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Figure 4.2: Trie from figure4.1b after pruning

If we deal with non-binary solution representations we have to deal with high memory
consumption caused by the huge amount of null pointers stored in the trie. We will
take a deeper look into the problem of high memory use and how to minimize it in
Section 6.2.1.
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CHAPTER 5
Solution Archive

Based on an existing framework, which will be described in more detail in Section 6.1, a
solution archive for the Reconstruction of Cross-Cut Shredded Text Documents (RCCSTD)
problem was designed. For this problem a VNS, an ACO and an MA were developed
and used in this framework, see [21] for the VNS and ACO and [29] for the MA.

In this chapter the details of the data structure and its algorithms will be discussed. It
will also be shown how to integrate the solution archive into the already existing MA.

Two different types of solution archives were developed, which differ in their handling
of duplicates. While the trie-based permutation (TBP) tries to iteratively build a solution
by calculation of all shreds that could possibly be inserted at the specific position, the
shred-based permutation (SBP) is based on a random shred exchange of two shreds.

5.1 Solution Representation
The existing algorithms in this framework store for each candidate solution for each
position in the Euclidean space as described in Chapter 2 the corresponding shred.

While this solution representation is suitable for many genetic operators, it is not ade-
quate for a solution archive. Let the number of shreds of the document be given by n.
Then we have n2 possible positions of each shred, so the height of the trie would be n2

in the worst case.

So another solution representation is used, which is based on the neighbors of each
shred. For each shred the right and the bottom neighbor is stored. Since the solution
quality is based solely on the relative positions of the shreds to each other and not on the
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Figure 5.1: Comparison of the two solution representations

absolute positions in the Euclidean space, this is a valid solution representation. From
now on we will refer to this representation as neighbor array. In this array the neighbors
of each shred can be determined in the following way: For every shred with the ID i
with 0 ≤ i < n the position in the array of its right neighbor is 2i and the position of
the bottom neighbor is 2i+ 1. In Table 5.1 an overview of the array positions and their
corresponding entries is given.

Table 5.1: New solution representation

Array position Shred
0 nr(s0)
1 nb(s0)
2 nr(s1)
3 nb(s1)
...

...
2n− 2 nr(sn−1)
2n− 1 nb(sn−1)

A comparison of the two types of the solution representations is given in Figure 5.1.
Note that the virtual shred V is a constant and its value is always n (assuming that there
are n shreds in the instance).

This method for storing solutions has two advantages:

• Drastically reducing the space needed for storing the solutions from n2 in the
worst case to 2n.

• Identifying more duplicates since the absolute positions of the shreds are ignored.
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Figure 5.2: Insert a solution to the RCCSTD problem into the trie

The solution size could even be more reduced if we take into account that the relative
position of each shred once fixed will not change anymore. So we can stop inserting the
solution at the time when all shreds are fixed. We will discuss this termination condition
of the insert function in Section 5.2.1.

5.2 Trie Design
In this section the methods that both the TBP and the SBP have in common are dis-
cussed. The insertion and the search function are designed according to the scheme
described in Algorithm 8 with an additional calculation of available shreds per node.
These available shreds are important for generating new yet unvisited solutions, which
is described in the Sections 5.3 and 5.4. The calculation of the available shreds is also
described in seperated sections because it is dependent on which type of trie is used.
Note that with the above solution representation we need two trie nodes for each shred
(one for the right neighbor and one for the bottom neighbor). A sample trie after insert-
ing one solution is shown in Figure 5.2. The number of children of each node equals the
number of shreds plus one for the virtual shred, which of course can also be a neighbor
of a shred.
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5.2.1 Termination Conditions
Two termination conditions of the insert method were developed. The insert function
terminates either if

• the whole solution is inserted or

• all shreds are connected in one shred block.

The latter is based on the observation that at the time all shreds are connected to each
other they are all fixed—see Figure 5.3. Thus, inserting the remaining shred neighbors
into the trie would not add more information.

The handling of duplicate solutions of the TBP approach is different from the SBP
approach. Nevertheless, they have to fulfill the same task: Find a solution in a finite
amount of time that is not already in the trie. One cannot just randomly guess a so-
lution because of the restriction that the time needed for generating a new solution is
bounded. Therefore, more sophisticated methods have to be applied. A general scheme
for generating new solutions is described below:

1. Choose a node u, which has been visited while inserting the duplicate solution.

2. In this node, choose a child v that is different from the one chosen before.

3. Insert the remaining solution starting at v.

Usually the node u is either the last visited node or chosen randomly. For the second
and third step it must be assured that no invalid solutions are generated. Invalid solution
creation could easily happen since we have no restriction on the choice so far. This is
also the reason why a set of available shreds is calculated and stored in each trie node.
In the next two sections the trie dependant methods will be discussed.
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5.3 Shred-based Permutation
As mentioned before the shred-based permutation is based on a swap of two shreds.
First a level is chosen randomly. The first shred to swap is the one that has previously
been inserted on this level. The second shred is chosen randomly from a list of available
shreds of the chosen node. After these shreds have been determined, the neighbor array
is adjusted accordingly. Then, three different cases could occur:

1. A valid and new solution is generated.

2. An invalid solution is generated.

3. A valid solution is generated but this solution is already in the trie, i.e., a duplicate.

It is obvious that the first output is preferred and should be eventually reached, see
Figure 5.5 for a duplicate detection and generation of a new and valid solution. In the
following it is assumed that the first case happened. The other two cases are discussed in
Section 5.3.3 and 5.3.4. Since a constant amount of shreds are swapped only a constant
amount of changes in the neighbor array is needed, see Figure 5.4 for an illustration.
That is the great advantage of this method because not only the generation of a new
solution can be efficiently done but also the solution value can be updated in a constant
amount of time. See Section 5.3.2 for a more specific explanation.
The question remaining is, how to determine the list auf available shreds?

5.3.1 Calculation of the available Shreds
In each trie node a set is stored that contains all shreds available for swapping. This set
is dynamically generated and updated during the insertion of solutions. Initially the set
contains all shreds except the virtual shred. Then the following steps are performed:
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Figure 5.5: A new solution is generated using a shred based permutation

• Delete own shred, i.e. the shred with the ID b level
2
c, and set an invalid flag at this

child.

• Delete all shreds that have already been a right or a bottom neighbor earlier and
set an invalid flag on the shreds that have already been a right/bottom neighbor on
even/odd levels.

• Delete shreds with ID < b level
2
c

The shreds in the set are basically those shreds that are free, i.e., do not have any neigh-
bors until now and are not neighbors of any shred themselves. Once generated the set
is only changed if a child node is set to complete. Then in the parent node this shred
is deleted from the set. Note that the shreds that are deleted from the set are certainly
invalid (or complete) shreds at the specific position but the shreds that remain in the
set are not necessarily valid choices. The difficulty of calculating only valid choices is
discussed in Section 5.4.1.

5.3.2 Altering Neighbor Array
The neighbor array has to be altered if a shred swap occurs. Fortunately this only needs
a constant amount of eight changes, see Figure 5.4 for an illustration of which positions
of the array have to be changed. There are two cases that can occur:

25



1. Two shreds are swapped
First the right neighbor of the first shred is swapped with the right neighbor of the
second shred. The same is done for the bottom neighbors of the shreds (marked
yellow and purple on Figure 5.4). Then, if the shreds have a top (left) neighbor
that is not the virtual shred, then the bottom (right) neighbor of these neighbors are
the shreds that have to be swapped. Therefore, the new bottom (right) neighbor of
these shreds is the other shred of the swapped shreds (marked maroon and olive
in Figure 5.4).

2. A shred is swapped with a virtual shred
This is a special case because the new neighbors of the shred are the former neigh-
bors of the virtual shred. They cannot be determined by the neighbor array only
because of the type of the solution representation in the trie. Therefore, an ad-
ditional piece of information is needed—the level. With the help of the level the
neighbors of this virtual shred can be specified by exploiting information about
the absolute positions of the shreds.

5.3.3 Invalid Swaps
As mentioned before, an invalid shred swap can occur. Since invalid solutions are not
allowed to be stored in the trie, a method has to be found to avoid such swaps. Further-
more, the algorithm needs to memorize when an invalid shred is found so that the same
shred cannot be chosen again and again.

Claim 1. Let l be the level that is chosen randomly and si be the chosen shred. Then a
shred is invalid iff nt(si) < b l2c or nl(si) < b l2c. (Note that the function nt(s) returns
the position of the top neighbor of shred s and nl(s) returns the position of the left
neighbor of shred s as defined in Chapter 2)

Proof. The proof of the claim follows from the insertion order. First, the neighbors of
the first shred are inserted, then the neighbors of the second shred and so on. This means
that at level l all neighbors of shreds with an ID < b l

2
c are determined and cannot be

changed. So, if the chosen shred has already been a neighbor of a shred with an ID
smaller than its own ID, it cannot be chosen as a neighbor of another shred, since its
relative position is already fixed.

To make sure that the algorithm steadily proceeds the previously determined invalid
shred is deleted from the list of available shreds so that it cannot be chosen again. After
an invalid shred was found the algorithm continues and tries another shred on the same
node until the list of available shreds is empty. When the list of available shreds is empty
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then this node can never be chosen again and for the current iteration another trie node
is selected.

5.3.4 Duplicate generated
It is possible that the newly generated valid solution is already in the trie, i.e., a duplicate
was generated. Only new solutions are accepted so the solution has to be transformed to
a not yet generated one. Basically as many additional shred swaps as needed are made
such that a new solution is found. The trie is traversed in a bottom up manner starting
from the node where the duplicate was found. For each node all shreds from the set of
available shreds are tried. If the root is reached during the traversal the enumeration is
complete and all possible solutions have been visited and the algorithm terminates.

5.4 Trie-based Permutation
Unfortunately it turned out that the TBP approach was too complex, therefore ineffi-
cient, while it would not improve the results. Nevertheless, it was an interesting attempt,
which is why it is described here.

In this permutation method the decision which shred is chosen at the selected level is
entirely made in the trie based on the set of available shreds. This set contains all shreds
that can be inserted at the specific position. In the next section it will be described how
these sets can be computed.

5.4.1 Calculation of the available Shreds
The sets are calculated, like in the other method, during the insertion of the solutions.
The sets are also initialized containing all shreds but in this case the virtual shred is
included since it could be a valid neighbor of a shred. Then the following steps are
performed:

1. Delete the own shred (as before).

2. Delete all shreds that have already been a right (on even levels) or a bottom neigh-
bor (on odd levels).

3. If a shred is fixed at the current position then all other shreds are deleted. (see
Section 5.4.1.1 for a definition of fixed shreds)

4. Delete all invalid shreds, see Section 5.4.1.2 for an explanation.
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5. Delete all shreds that are connected in the same block as the own shred. This step
is only done if there is no fixed shred at this level.

The remaining shreds represent the valid shreds at this position. Step 1 and 2 are basi-
cally the same as in the calculation of the available shreds of the shred based permutation
method. Step 3 and 4 are explained in the next two sections. The last step is performed
because of the observation that if two shreds are directly or indirectly (i.e., through
intermediate shreds) connected then they cannot be direct neighbors again unless one
shred is the fixed shred of the other.

5.4.1.1 Fixed Shreds

At each level there can be at most one fixed shred. A fixed shred is a shred that has
to be placed at the specific position in any case. During the insertion at each level the
fixed shreds for any future level have to be calculated and stored. A small and a more
complex example of fixed shreds is given in Figure 5.6. The complex example points
out what happens when two blocks of shreds are merged together. In Figure 5.6a the
right neighbor of the shred with the ID 2 is fixed at the time when the bottom neighbor
of the shred with the ID 1 is set (at level 3). The implicitly obtained right neighbor of
shred 2, which is the shred with the ID 3, is indicated with a red arrow. In Figure 5.6b
two neighbors are fixed at the time when the right neighbor of shred with the ID 6 is set
to the shred with the ID 3. These two fixed shreds are also marked with red arrows in
the figure.

The calculation of those fixed shreds is the big disadvantage of this permutation type. To
be able to get the fixed shred at each level it is necessary to iteratively put the shreds to-
gether such that at each level the absolute shred positions are known. Unfortunately—to
the author’s best knowledge—one cannot achieve this efficiently, i.e., without constantly
copying array elements or recalculate positions, etc.
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5.4.1.2 Invalid Shreds

Shreds that are invalid also have to be deleted from the set of available shreds. A shred
is invalid if during a merge of two shred blocks a collision occurs, i.e., two shreds have
the same absolute position, see Figure 5.7 for an illustration.

In the calculation of the invalid shreds lies the other difficulty of this permutation type.
This is basically the same problem as the calculation of the fixed shreds with the addition
that the calculation whether a shred is valid at the given position has to be made for each
shred that is in the set of available shreds.

5.4.2 Advantages
The advantages of this method are that at each stage of the insertion all possible options
for the next step are known. Actually this is only an advantage in the modelling of
the algorithm, not in the implementation or in the efficiency. Another advantage is
that under the premise that the set of available shreds can be efficiently computed, the
algorithm is really easy and nearly all steps follow directly the general scheme given in
Algorithm 8.

5.4.3 Problems
As mentioned before several problems occured during this approach. A huge drawback
is the lack of efficiency. A lot of computing power has to be invested in calculating the
fixed and the invalid shreds without having an advantage in terms of solution quality.
Although they could be calculated when the relative positions of the inserted shreds are
saved and with the help of an algorithm for a shred block merge position update it would
be to costly to compute. Another problem with this method is that the solution could
look completely different from the originally inserted one, which may not be intended
and raises the problem of the re-transformation of the solution to the original solution
representation. Therefore, the inverse of the solution transformation function is needed,
which also unnecessarily needs more computing power. For this reasons it turned out
that this solution permutation is not suitable for this problem, so it is completely omitted
in the test cases.
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5.5 Memetic Algorithm using a Solution Archive
The MA with the solution archive was designed according to the scheme of Algorithm 7.
However, some adjustments were made. To keep some elitism, at every generation the
best 10% of the current population are adopted by the next generation without inserting
it into the solution archive (which would change each solution because it was already
added to the archive before). The remaining 90% are inserted into the archive just as
seen in the scheme mentioned above.
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CHAPTER 6
Implementation

The solution archive was implemented in Java and extended an already existing frame-
work which contains several reconstruction approaches. This framework is also able
to visually illustrate a candidate solution with its solution value. The solutions that are
going to be inserted into the solution archive, which are represented as two dimensional
ArrayLists, are transformed as described in Chapter 5.1 into an integer array.

In this chapter the existing algorithms are presented, which are later enhanced by the
implemented solution archive. First, a brief summary of the construction heuristics that
are used for the MA and the ACO are given. Then the MA operators, namely the select,
recombination and mutate operators are described. The local search procedure at the
end of the GA, which is a VNS, is described next. After that, a short explanation of the
ACO is given and it is described, why the use of a solution archive would not improve
the results of the ACO in this case. At the end of this chapter some implementation
issues are discussed with a focus on how to handle the high amount of memory which
is needed for storing the solutions.

6.1 Existing Framework
The framework was implemented in Java 1.6 and it uses SWT1 for visually displaying
candidate solutions. Either the commandline or the GUI2 can be used to call the algo-
rithms. Parameters can be used to control the program settings (e.g., input instance, re-
construction algorithm, etc.). The commandline interface is especially useful for larger
testing purposes.

1Standard Widget Toolkit
2Graphical User Interface
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6.1.1 Construction Heuristics
Construction heuristics are used to generate an initial population for the MA. In [23]
two different heuristics were introduced:

• Row Building Heuristic
For this method it is assumed that each row of a solution begins with a shred with
a white left border and ends with a shred with a white right border. So for each
row a shred with a white left border is chosen, then the shreds are added using a
best fit heuristic until a shred with a white right border is added. Then a new row
begins and the procedure is repeated.

• Prim-Based Heuristic
This construction heuristic is based on the algorithm of Prim for finding minimum
spanning trees, see [24]. The algorithm starts with an arbitrarily chosen shred,
which is placed in the top left corner, i.e., at position (0, 0). Then one shred is
added at a time, which currently induces the minimal error over all shreds with
the additional restriction that the shred can only be inserted on positions next to
already assigned shreds.

Half of the individuals needed for the initial population are generated using the Row
Building Heuristic, the other half is generated using the Prim-Based Heuristic.

6.1.2 Memetic Algorithm
In this section a short summary of the MA will be given, which was introduced by
Schauer in [30].

6.1.2.1 Selection

The selection of individuals is done by choosing shreds randomly using an equally dis-
tributed function. In his tests this performed better than other selection methods, espe-
cially the classical fitness-proportional selection. In addition the best 10% of the current
population is copied unchanged to the next generation to guarantee the selection pres-
sure.

6.1.2.2 Recombination

In the following several recombination methods are presented. Although Schauer de-
veloped more methods than are described here, the author of this thesis only describes
those which will later be used in combination with the solution archive.
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Horizontal Block Crossover Horizontal Block Crossover (HBX) is a type of a 1-
point Crossover. As this problem can be seen as 2-dimensional, a horizontal splitting
line instead of a splitting point is chosen. This line is chosen randomly using a Gaussian
distribution function and is applied to the shorter of the two parents. With this method
invalid solutions could be generated because shreds that occur in the upper part of one
parent could also appear on the lower part of the other parent. Therefore, a check is
needed to assure that only yet unused shreds are inserted. Of course it could happen that
some of the shreds were not inserted at all. The upper part of both parents are inherited
unchanged and the unassigned shreds are inserted at the end of the method using a best
fit heuristic, i.e., they are inserted at the position which induces a minimal additional
error over all possible positions (without replacing another shred).

Vertical Block Crossover Vertical Block Crossover (VBX) is basically the same as
HBX, except that the splitting line is chosen vertically. The left part of both parents is
inherited unchanged to the descendants. The handling of the unassigned shreds is done
the same way as in HBX, i.e., they are inserted using a best fit heuristic.

Biased Uniform Crossover Best Uniform Crossover (BUX) is based on the observa-
tion that if two shreds fit together well in one parent they should stay together in the
descendants. This leads to the following method: Decide for each position whether to
take the shred from the first parent or from the other. The decision which shred fits bet-
ter is based on the error induced in the offspring if the next shred is taken from parent
one or two. Since the shape of the two parents might be different, the first child inherits
the shape of the first parent and the second child inherits the shape of the other parent.

6.1.2.3 Mutation

In this section the mutation operators are described. Again, the focus lies on those
operators that will be used with the solution archive.

Horizontal Flop Mutation HFM is the mutation analogon to the HBX recombination
method. The individual is split along a horizontal line, then the two parts are swapped.
This results in changes of the top/bottom neighbor relation only of the shreds along the
splitting line, while all left right relations remain the same.

Vertical Flop Mutation VFM complements HFM with the difference that a vertical
splitting line is chosen. In addition the empty positions of the left side of the mutated
solution are filled with the virtual shred so that the top/bottom relation of all shreds are
preserved.
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Swap Two Mutation S2M is the simplest one: it just swaps two randomly chosen
shreds. This method is repeated up to ten times during one mutation and the exact
number of repeats is chosen randomly.

Break Line Mutation Due to the nature of the recombination operators it was ob-
served that the lines of the individuals become longer over the time. The Break Line
mutation (BLM) operator was designed to solve the problem of long lines. It finds the
longest line of the individual, breaks it apart at a random position and inserts the right
half as a new line into the end of the solution. The other half of the line stays unchanged
at its position.

6.1.2.4 VNS

For the improvement of the final solution pool a VNS was applied. See Section 4.3.2
for a general description of a VNS. The VNS is taken from [23], where Prandtstetter
introduced seven neighborhoods. First two moves are defined:

• Swap Move
Two shreds are swapped.

• Shift Move
A rectangular region of shreds is shifted within the solution.

Based on these two moves seven neighborhood structures were defined:

1. Simple Swap: One swap move is applied.

2. Simple Shift: One shred is shifted either horizontally or vertically.

3. Simple Block Shift: A single row or column of defined length is shifted.

4. Rectangle Block Shift: A block of shreds is shifted, where its width and height is
chosen arbitrarily.

5. Simple Double Shift: One shred is shifted horizontally, then vertically.

6. Simple Double Block Shift: A simple row or column is shifted first horizontally
then vertically.

7. Rectangular Double Block Shift: A rectangle of shreds of arbirtrary width and
height is shifted first horizontally then vertically.
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For the shaking in the i-th neighborhood structure i2 randomly chosen shift moves of
single shreds are performed.

6.1.3 Ant Colony Optimization
For the ACO presented in [23] two pheromone matrices were introduced. One of them
corresponds to the pheromone laid for placing one shred to the right of another shred
and the other to the pheromone laid for placing one shred on top of another shred.
The pheromone matrices are initialized in a two-stage procedure. First, five candidate
solutions are generated using five different construction heuristics. Two of them are
described above in Section 6.1.1 and the other three are described in Prandtstetters work
in [23]. Then all entries of both matrices are set to τ 0 where

τ 0 =
m

min1,...,5c(Πi)
(6.1)

andm denotes the number of ants. In the second step a pheromone update is performed,
see Section 6.1.3.2.

6.1.3.1 Construct Ant Solutions

In [23] three different types of solution construction heuristics are presented. The type
that performed best was the Randomized Row Building Heuristic. It is based on the
row building construction heuristics and reconstructs a set of rows using a probability
distribution. The shred that is chosen is not only based on the cost value but also on the
pheromones produced by the ants. For each shred, the probability value

pij =
ταij · ( 1

c(i,j)
)β∑

k∈S′ ταik · ( 1
c(i,k)

)β
, ∀i ∈ S \ S ′, j ∈ S ′, (6.2)

where S ′ is defined as the set of shreds not currently used in the intermediate solution.
The solutions that are generated using this method are enhanced by a VND using the
first three neighborhoods which are described in Section 6.1.2.4.

6.1.3.2 Pheromone Update

The pheromone update is done using the following formulas, where k is the solution
obtained by ant k during the last iteration.
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τij = (1− ρ) · τij +
m∑
k=1

∆k
ij + ∆0

ij, ∀i, j ∈ S, i 6= j

∆k
ij =

{ 1
c(Πk)

if j is placed right next to i in the k-th solution
0 otherwise

∀i, j ∈ S,∀k = 0, ...,m

(6.3)
The other pheromone array is updated analogously.

6.1.3.3 The ACO and the Solution Archive

In preliminary tests it turned out that the ACO described above does not produce a
significant amount of duplicate solutions. Therefore, using a solution archive would be
a complete overhead in terms of time and memory consumption, since a solution archive
could only improve the results of a heuristic algorithm if it produces duplicate solutions.
This is why the ACO is completely omitted in the tests.

6.2 Implementation Issues for the Solution Archive
In this section implementation issues for the solution archive itself are discussed. First
it is described how the high memory consumption is handled, especially how the trie
nodes are implemented and which data structures are used. Then the calculation of the
shred blocks is presented which should be as time-efficient as possible.

6.2.1 Memory Consumption
Since a high memory consumption lies in the nature of solution archives, efficient data
structures have to be used to keep the usage as low as possible. Suppose that an instance
of the RCCSTD problem consists of 225 different shreds, which corresponds to a 15×15
cutting pattern. Then the size of each node is 226 (225 shreds plus 1 for the virtual
shred). Each solution needs, in the worst case, 225 · 2 = 450 nodes. Assume that a
pointer to a child needs 8 bytes of memory. Then each solution would approximately
consume (in the worst case) 800kB of memory!

6.2.2 Trie nodes
The example above should make clear that the choice of a datastructure for the trie nodes
have a high impact of the overall memory consumption of the implementation. Several
different types of datastructures were tested and compared.
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• Array
The standard method for storing children of a trie node needs a lot of memory
since at the time of the initialization of the array all of the memory that is possi-
bly needed is allocated. A huge advantage of this method is the time efficiency:
Looking up an element in an array takes O(1) time.

• Map
When using a map as datastructure only those children are stored that are actually
in the trie, i.e., there is no overhead because of empty children.

– Hashmap
It turned out that a Java Hashmap actually consumes memory for unassigned
entries (probably to enforce the amortized O(1) entry lookup time). Due to
the additional overhead of the hashmap this datastructure is not suited for
this problem.

– Treemap
In contrast to the Hashmap a Treemap uses a (Red-Black) tree to store its
entries3. Since a Red-Black tree is a balanced tree a log(n) lookup time is
guaranteed, which is acceptable because most trie nodes are densely popu-
lated. Unfortunately the overhead for the map entries is quite big (an entry
needs approximately 40 bytes of memory), so the possible memory savings
are nullified.

• List
The use of lists for storing the children of the trie nodes proved to be the best
method in practice. With the improvement described in Section 6.2.2.1 only ’real’
nodes (i.e., omitting complete and invalid nodes) are stored. When using a vector
as datastructure retrieving a child only needs a constant amount of time since its
underlying datastructure uses element indexing like an array. The only drawback
of using a vector (with custom initial capacity and increment steps) is that if the
capacity is too small to store the new child, all the elements have to be copied.
Preliminary tests showed that all nodes except the nodes on the first few levels
had a load factor of 2 to 3%. Therefore, the initial capacity was set to 5% of the
total number of shreds and the capacity increment was set to 1 which means that
if the size is currently too small the size is increased by 1.

For the set of available shreds a Java BitSet is suitable, since the delete operation is
efficient for this datastructure.

3http://docs.oracle.com/javase/1.5.0/docs/api/java/util/TreeMap.
html
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Figure 6.1: Two blocks of shreds are merged

6.2.2.1 Completed Nodes

To further reduce memory consumption, the completed and invalid nodes are not ac-
tually stored. Each node stores a set containing the indices of the child nodes that are
already completed or invalid.

6.2.3 Calculation of Shred Blocks
For each shred block (set of connecting shreds, might just contain 1 element) there
exists a set of integers (i.e., the indices of a Java BitSet), which corresponds to the
shred IDs. Those integers are the shreds that are currently not connected to the shred
block. Whenever a shred block merge happens the two sets of shreds can be merged by
a logical AND operation (set intersection). See Figure 6.1 for an illustration of a shred
block merge operation of two blocks of shreds.
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CHAPTER 7
Tests

For testing the solution archive ten different documents are used, see Appendix A. This
is the same set of documents which was defined by Prandtstetter in [21]. They are
cut in 9 different predefined patterns which range from 9 × 9 to 15 × 15. Most of the
documents are text documents in A4 format but some also contain images and have a
different size.

To make a fair comparison of the MA with and without the solution archive not the
number of generations is taken into account but the running time. First the MA with
the solution archive runs a specific number of generations. This number is determined
and limited by available amount of memory. Then the result is compared to the MA
without the archive, which runs the same time as the MA that uses the solution archive.
This means that the MA without the archive runs a lot more generations than the MA
with the archive. Thus, it is rather unlikely that the MA with the solution archive have
already converged to a solution value. Therefore, it is assumed that the algorithm has
even more potential but it cannot easily be exploited because of the memory restriction.

Two configurations of the MA were compared with and without the solution archive.
They are taken from [29] where Schauer introduced some test configurations.

• HVREA
The HVREA uses the HBX and the VBX recombinations operators, see Sec-
tion 6.1.2.2 for a description of them. Only the best offspring (out of two) of
each operator is used for the next generation. The mutation rate is 25% and the
operators that are used with the given probability can be seen in Table 7.1.
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HFM VFM BLM S2M
5% 5% 10% 5%

Table 7.1: Mutation rates of the HVREA

• BNREA
BNREA uses BUX recombination operator and both descendants are used for the
next generation. The mutation rate is as well 25% and the probabilities of the
mutation operators are given in Table 7.2

HFM VFM S2M
5% 15% 5%

Table 7.2: Mutation rates of the BNREA

For each of the 90 different test cases 30 runs were performed and executed on a single
core of an Intel Xeon Quadcore CPU with 2.53GHz and 23GB of RAM.

Since the sizes of the instances and cutting patterns are very different, not all instances
are run with the same number of generations. The population size is set to 50 on all
instances but the number of generations is set to 3000, 5000 or 10000 and depends
on the size of the instance, i.e., the number of non-blank shreds. See Table B.1 in
Appendix B for information which instances runs with which number of generations.

A VNS was used to improve the solutions in the following way: after 3000 generations
a VNS with neighborhoods N1 to N3 (see Section 4.3.2) was performed. In the end a
more exhausting VNS was done which uses all seven neighborhoodsN1 toN7 described
in Section 4.3.2.

In Figure 7.2 a perfectly reconstructed document is shown (instance p01) while on some
instances the output is not as good which is illustrated in Figure 7.1, which is clearly a
not perfectly reconstructed document.

An algorithm can only benefit from a solution archive if the algorithm creates a sig-
nificant number of duplicate solutions. The chart in Figure 7.3 shows the number of
duplicates of some instances.

From Figure 7.3 it can be concluded, that the larger the instance the less duplicates will
be generated by the MA. The instance p01 is one of the smaller instances and for the
9× 9 cutting pattern every fourth solution is a duplicate. Even in the largest instance of
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Figure 7.1: A not perfectly reconstructed document (p10)

the tested set of instances, the p07 9 × 9 instance, 10% of the solutions are duplicates.
The number of duplicates of the other instances lies somewhere in between.

The number of shred swaps needed to generate a new solution was also analyzed. We
distinguish two values: the number of swaps needed for a new solution without counting
invalid swaps, i.e., only counting swaps that generated a feasible solution again, and
the total number of swaps needed, i.e., including the invalid swaps. The first number
should be low and ideally somewhere around 1 to avoid excessive duplicate generation.
The second number is expected to be much higher because the invalid swaps are also
counted. Although the check if a swap is invalid is quite fast, see Section 5.3.3, it is
interesting how many such swaps are made. In Figure 7.4 the number of shred swaps
needed without counting the invalid swaps is demonstrated on the sample instance p01.

It turned out that the number is very low even for small instances and on larger instances
the number is even lower than 1.1.

In Figure 7.5 the total number of needed shred swaps is summarized for the sample
instance p03. In this figure in can also be seen that the number of shred swaps needed
slightly decreases with the number of generations. This is because whenever an invalid
swap is made a branch of the tree is cut, so that this swap cannot be made again.

The tables below show all results using the configurations described above. The per-
centage value in the cells is the difference in percent of the given configuration in com-
parison to the optimal solution value. Note that negative values can appear because the
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Figure 7.2: A perfectly reconstructed document (p01)

solution that was found is even better than the original objective value regarding the ob-
jective function which shows that this function has some weaknesses. In Table 7.3 the
results of the HVREA configuration without a VNS in the end is compared to the same
configurations of the HVREA using the solution archive. Note that in this table also
the results of the HVREA with an intermediate VNS after 3000 generations is shown.
The intermediate VNS uses only the first three neighborhood structures descibed in
Section 4.3.2.
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Table 7.3: The mean percentage gaps of 30 runs with the given configurations
and without the VNS at the end. The column description indicates the use of
the HVREA configuration with archive (+A) or without and with intertwined
VNS (+V) or without. The entries in column p indicate whether the result with
the solution archive or the result without the archive is better (>) or equal(≈)
according to a Student’s t-test with an error level of 5%

HVR+A HVR HVR+A+V HVR+V

x y orig gap dev p gap dev gap dev p gap dev

In
st

an
ce

p0
1

9 9 2094 7,1% 12,9 > 0,0% 0,0 1,3% 4,1 ≈ 0,0% 0,0
9 12 3142 35,4% 8,3 > 28,5% 11,0 16,9% 3,9 ≈ 15,2% 5,3
9 15 3223 41,8% 8,6 > 35,8% 6,2 18,1% 6,6 ≈ 15,5% 7,5

12 9 2907 34,2% 5,3 > 24,7% 13,5 14,2% 8,2 ≈ 13,9% 7,7
12 12 3695 36,4% 4,7 > 32,6% 4,8 15,4% 3,0 ≈ 14,8% 2,4
12 15 3825 44,0% 5,0 > 40,0% 7,6 18,0% 2,5 ≈ 17,9% 2,8
15 9 2931 22,8% 18,0 ≈ 19,7% 20,0 18,8% 10,9 > 11,2% 12,6
15 12 3732 39,8% 6,1 > 34,8% 6,5 17,9% 2,9 ≈ 16,5% 4,6
15 15 3870 53,2% 5,5 > 49,1% 6,8 20,8% 2,8 ≈ 20,7% 2,8

In
st

an
ce

p0
2

9 9 1434 -13,4% 12,7 > -20,8% 8,7 -25,5% 2,9 ≈ -26,4% 3,8
9 12 1060 27,0% 13,8 > 11,7% 11,9 9,3% 5,1 > 4,9% 4,1
9 15 1978 13,3% 5,5 > 4,1% 4,9 -4,7% 2,7 ≈ -5,5% 3,2

12 9 1396 -0,9% 8,0 > -9,1% 9,3 -17,6% 5,5 > -20,6% 5,7
12 12 1083 27,4% 17,8 > 14,5% 12,8 10,5% 5,4 > 4,2% 5,5
12 15 1904 20,6% 9,0 > 12,1% 9,2 -2,1% 3,3 ≈ -2,8% 2,8
15 9 1658 7,9% 11,3 > -4,8% 8,8 -9,3% 4,9 > -11,6% 4,1
15 12 1503 23,8% 12,4 > 12,3% 12,7 6,9% 7,0 > 2,5% 4,3
15 15 2283 21,6% 7,3 > 8,8% 8,6 1,4% 3,3 > -0,2% 3,1

In
st

an
ce

p0
3

9 9 2486 14,7% 11,3 > 6,6% 13,1 2,7% 6,9 ≈ 1,3% 8,2
9 12 2651 28,7% 13,3 > 20,9% 13,9 13,8% 6,2 ≈ 10,1% 7,9
9 15 2551 11,5% 12,9 > 4,0% 6,9 4,5% 4,9 ≈ 2,4% 3,6

12 9 3075 21,7% 7,4 > 13,6% 6,7 10,2% 3,7 ≈ 9,7% 4,2
12 12 3377 33,1% 7,1 > 28,1% 7,3 12,5% 3,9 ≈ 10,8% 4,6
12 15 3313 22,5% 10,2 > 10,7% 11,5 4,7% 5,0 > 1,4% 4,1
15 9 3213 22,7% 5,5 ≈ 20,0% 7,4 8,5% 4,5 ≈ 7,3% 4,1
15 12 3278 39,2% 9,4 > 32,7% 11,8 22,5% 4,3 > 18,5% 5,8
15 15 3308 34,3% 15,4 > 15,3% 14,6 10,1% 5,1 ≈ 7,2% 6,4

In
st

an
ce

p0
4

9 9 1104 14,7% 16,6 > -0,4% 15,0 -10,5% 12,7 ≈ -10,4% 13,8
9 12 1463 11,1% 11,5 > 1,9% 11,4 0,0% 6,0 > -3,8% 8,0
9 15 1589 -0,2% 8,8 > -10,1% 7,4 -14,2% 4,5 ≈ -15,9% 4,7

12 9 1515 34,2% 13,0 > 22,9% 15,7 8,9% 10,0 > 3,1% 7,7
12 12 2051 22,4% 4,7 > 17,4% 6,7 5,5% 3,1 > 3,4% 4,6
12 15 2146 4,1% 7,3 > -4,4% 6,5 -9,6% 3,4 > -11,7% 3,1
15 9 1567 35,8% 12,2 > 24,4% 14,6 6,2% 8,1 ≈ 6,0% 7,8
15 12 1752 38,9% 11,8 > 26,0% 9,1 18,4% 6,3 > 14,0% 7,4
15 15 2026 8,6% 8,8 > 0,7% 6,6 -2,9% 4,3 ≈ -4,6% 4,6

In
st

an
ce

p0
5

9 9 690 2,8% 9,2 ≈ 0,0% 0,1 0,4% 2,1 ≈ 0,0% 0,0
9 12 888 81,1% 29,2 > 47,8% 33,4 34,4% 18,3 > 21,6% 16,2
9 15 1623 50,8% 11,8 > 34,5% 16,0 19,6% 5,1 ≈ 18,4% 6,1

12 9 1016 24,1% 18,0 > 9,6% 15,0 3,7% 6,5 ≈ 2,9% 6,1
12 12 1325 47,4% 18,0 > 36,5% 20,6 13,3% 8,7 > 8,1% 10,5
12 15 1986 55,5% 9,7 > 44,8% 20,7 22,8% 4,7 > 19,7% 5,9
15 9 1010 -8,6% 14,0 > -16,0% 9,8 -16,3% 6,7 ≈ -18,4% 3,0
15 12 1156 55,2% 31,3 > 23,3% 23,0 16,1% 12,8 ≈ 14,4% 14,8
15 15 1900 66,8% 12,2 > 56,9% 20,0 15,9% 5,3 ≈ 14,1% 4,6
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HVR+A HVR HVR+A+V HVR+V

x y orig gap dev p gap dev gap dev p gap dev
In

st
an

ce
p0

6

9 9 2184 20,2% 6,5 ≈ 17,3% 7,2 -0,8% 2,6 > -2,2% 2,8
9 12 2915 24,2% 7,4 ≈ 20,0% 10,3 -2,2% 2,6 ≈ -3,0% 3,3
9 15 2265 72,3% 13,5 > 58,4% 16,9 15,7% 5,0 ≈ 16,6% 3,3

12 9 2162 37,1% 7,1 > 32,6% 9,7 7,1% 3,3 ≈ 7,3% 3,6
12 12 3031 37,5% 7,2 > 33,0% 4,6 6,6% 2,2 ≈ 6,6% 2,7
12 15 2401 76,9% 18,0 > 64,5% 17,5 23,3% 4,7 ≈ 23,0% 4,7
15 9 2719 34,0% 7,7 > 27,7% 8,0 1,3% 3,0 ≈ 0,9% 2,7
15 12 3452 32,9% 5,5 > 25,9% 9,3 1,0% 3,2 ≈ 0,5% 2,7
15 15 2928 85,1% 12,1 > 75,7% 13,4 85,5% 11,2 > 15,4% 4,0

In
st

an
ce

p0
7

9 9 6461 -11,4% 4,4 ≈ -13,3% 3,2 -23,7% 2,6 ≈ -24,1% 2,4
9 12 6856 18,7% 6,9 > 11,6% 6,5 -14,6% 7,2 ≈ -16,5% 5,5
9 15 6952 34,1% 7,4 ≈ 33,8% 9,5 -10,6% 9,5 ≈ -10,7% 9,4

12 9 6758 -12,1% 3,6 ≈ -13,7% 4,4 -30,5% 2,0 ≈ -31,2% 1,7
12 12 7090 20,9% 6,8 > 16,3% 5,3 -23,7% 2,3 > -25,0% 2,3
12 15 7325 40,1% 8,7 > 35,0% 9,4 39,7% 8,1 > -23,0% 2,1
15 9 6979 2,2% 3,5 > -2,2% 4,8 -19,3% 2,5 ≈ -20,2% 2,0
15 12 7358 39,8% 8,4 ≈ 38,2% 10,7 41,4% 7,4 > -10,2% 12,3
15 15 7551 51,5% 7,8 ≈ 49,5% 8,9 53,4% 9,6 > -16,7% 4,7

In
st

an
ce

p0
8

9 9 3467 23,1% 6,4 > 19,1% 7,1 1,0% 2,2 ≈ 0,2% 1,7
9 12 3978 37,6% 6,7 ≈ 37,6% 7,7 2,2% 1,9 ≈ 2,0% 1,6
9 15 3726 70,3% 7,1 ≈ 69,6% 8,7 12,1% 2,7 ≈ 10,8% 2,3

12 9 3901 38,1% 5,3 ≈ 36,1% 5,9 8,3% 1,8 ≈ 7,4% 1,5
12 12 4305 50,2% 5,8 > 47,0% 5,8 7,6% 1,5 ≈ 7,4% 2,2
12 15 4225 81,1% 6,9 ≈ 79,4% 8,0 81,9% 6,6 > 12,8% 2,4
15 9 4656 30,3% 4,8 > 27,5% 6,1 -0,3% 1,4 ≈ -0,4% 1,8
15 12 5042 46,1% 5,7 ≈ 43,7% 5,9 45,5% 6,0 > 0,3% 1,2
15 15 4909 72,8% 5,1 > 67,6% 6,5 73,9% 6,9 > 7,6% 1,8

In
st

an
ce

p0
9

9 9 3319 44,2% 5,7 > 40,2% 7,4 23,0% 3,3 ≈ 22,9% 4,5
9 12 3522 43,5% 7,6 ≈ 40,7% 7,8 15,0% 3,2 ≈ 13,8% 3,1
9 15 4906 37,5% 5,8 ≈ 36,4% 5,0 6,6% 1,6 ≈ 6,4% 2,3

12 9 3506 37,0% 6,6 > 27,7% 9,1 19,8% 5,0 ≈ 19,0% 5,5
12 12 3706 44,4% 6,0 > 39,1% 11,2 13,0% 2,7 ≈ 11,8% 3,5
12 15 4922 37,8% 4,3 ≈ 36,6% 5,4 8,1% 2,5 ≈ 7,9% 1,8
15 9 4460 45,2% 6,7 > 39,9% 7,2 22,8% 2,8 > 20,4% 3,0
15 12 4690 46,9% 4,7 > 42,5% 3,9 14,9% 2,6 ≈ 14,0% 2,9
15 15 6171 39,8% 3,3 > 36,4% 3,9 38,2% 3,6 > 5,9% 1,4

In
st

an
ce

p1
0

9 9 3979 38,3% 5,7 > 32,5% 5,6 16,0% 3,2 ≈ 15,0% 2,8
9 12 6496 12,1% 2,8 ≈ 12,0% 2,8 -0,3% 1,0 ≈ -0,6% 1,1
9 15 7821 20,9% 2,5 > 19,4% 2,7 4,5% 1,4 ≈ 4,0% 1,2

12 9 3535 51,5% 7,6 ≈ 46,7% 10,5 20,1% 3,6 ≈ 19,7% 3,7
12 12 5708 24,9% 3,5 > 21,1% 2,9 5,7% 1,5 ≈ 5,1% 1,8
12 15 7138 26,5% 2,3 ≈ 25,1% 4,2 7,0% 1,4 ≈ 6,9% 1,3
15 9 5190 38,9% 5,3 > 32,1% 5,7 10,5% 2,2 ≈ 9,3% 2,8
15 12 7183 19,3% 3,0 > 16,1% 2,5 2,0% 1,7 ≈ 1,5% 1,0
15 15 8356 26,2% 2,5 ≈ 25,1% 2,5 6,4% 1,1 > 5,6% 1,3

On some instances the solution archive seemed to improve the solution value, e.g., in-
stance p04 9 × 9, p06 9x15 and p06 12 × 9 (using the intertwined VNS in each case)
of Table 7.3, even without the VNS at the end, but the Student’s t-test revealed that they
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are actually equal.

Table 7.4: The mean percentage gaps of 30 runs with the given configurations and
with the VNS at the end. The column description indicates the use of the HVREA
configuration with archive (+A) or without and with intertwined VNS (+V) or
without. The entries in column p indicate whether the result with the solution
archive or the result without the archive is better (>) or equal(≈) according to a
Student’s t-test with an error level of 5%

HVR+A HVR HVR+A+V HVR+V

x y orig gap dev p gap dev gap dev p gap dev

In
st

an
ce

p0
1

9 9 2094 5,1% 10,6 > 0,0% 0,0 1,3% 4,1 ≈ 0,0% 0,0
9 12 3142 25,3% 5,4 ≈ 22,6% 7,9 16,9% 3,9 ≈ 14,8% 5,1
9 15 3223 29,1% 6,0 ≈ 27,4% 5,4 17,2% 6,9 ≈ 14,8% 7,5

12 9 2907 24,7% 5,7 > 18,5% 11,8 13,8% 8,4 ≈ 12,9% 8,2
12 12 3695 24,3% 5,6 ≈ 22,1% 4,4 14,4% 2,9 ≈ 14,3% 2,3
12 15 3825 27,7% 4,8 > 24,9% 4,6 17,3% 2,8 ≈ 17,6% 2,8
15 9 2931 18,2% 13,7 ≈ 16,9% 17,1 18,4% 10,6 > 11,1% 12,5
15 12 3732 25,9% 5,4 ≈ 24,6% 6,1 17,2% 3,0 ≈ 15,8% 4,7
15 15 3870 31,6% 4,4 ≈ 30,3% 4,7 19,8% 3,1 ≈ 20,3% 2,8

In
st

an
ce

p0
2

9 9 1434 -16,7% 9,4 > -21,5% 8,0 -25,8% 2,9 ≈ -26,4% 3,8
9 12 1060 17,5% 8,5 > 10,1% 11,0 8,7% 5,2 > 4,6% 3,8
9 15 1978 5,0% 3,8 > 1,3% 4,1 -5,0% 2,6 ≈ -5,7% 3,1

12 9 1396 -6,6% 7,8 > -11,1% 8,4 -18,0% 5,3 ≈ -20,7% 5,4
12 12 1083 17,9% 13,1 ≈ 12,1% 11,5 9,8% 5,1 > 4,1% 5,4
12 15 1904 5,6% 5,3 ≈ 5,0% 7,6 -2,6% 3,2 ≈ -3,2% 2,8
15 9 1658 -0,4% 6,1 > -7,4% 6,5 -9,7% 5,0 ≈ -11,7% 4,0
15 12 1503 17,1% 10,0 > 10,2% 10,4 6,3% 6,5 > 2,4% 4,3
15 15 2283 10,0% 4,4 > 4,4% 6,0 1,1% 3,3 > -0,6% 3,0

In
st

an
ce

p0
3

9 9 2486 10,5% 10,4 > 4,5% 11,6 2,1% 6,9 ≈ 1,2% 8,1
9 12 2651 23,0% 10,2 ≈ 18,5% 12,0 13,6% 6,0 > 10,0% 7,8
9 15 2551 7,4% 9,3 > 3,3% 5,5 4,2% 4,5 ≈ 2,2% 3,3

12 9 3075 16,2% 6,4 > 12,2% 5,9 9,7% 3,7 ≈ 9,3% 4,2
12 12 3377 22,3% 5,3 > 19,1% 6,2 12,1% 4,0 ≈ 10,4% 4,7
12 15 3313 12,3% 8,7 > 6,4% 8,0 3,8% 4,8 > 1,2% 4,0
15 9 3213 16,5% 4,9 ≈ 16,1% 6,8 7,7% 4,4 ≈ 6,8% 3,9
15 12 3278 29,1% 6,7 ≈ 26,1% 9,5 21,9% 4,3 > 18,3% 5,8
15 15 3308 18,2% 8,6 > 9,1% 8,1 9,6% 4,9 > 6,6% 6,1

In
st

an
ce

p0
4

9 9 1104 11,4% 14,7 > -0,9% 13,9 -11,2% 13,0 ≈ -11,3% 14,1
9 12 1463 6,4% 10,2 ≈ 1,4% 11,0 -0,6% 6,3 ≈ -3,8% 8,0
9 15 1589 -5,8% 6,5 > -11,2% 7,3 -14,9% 4,4 ≈ -16,0% 4,7

12 9 1515 24,8% 11,2 ≈ 19,9% 14,1 8,4% 10,1 > 3,1% 7,7
12 12 2051 16,4% 3,7 > 12,7% 6,3 5,1% 3,1 > 3,0% 4,7
12 15 2146 -2,3% 5,1 > -6,0% 5,8 -9,8% 3,3 > -11,9% 3,0
15 9 1567 25,0% 11,2 ≈ 21,3% 13,9 5,9% 8,3 ≈ 5,8% 7,6
15 12 1752 31,8% 9,4 > 23,8% 7,8 17,6% 6,7 > 13,6% 7,3
15 15 2026 2,7% 5,6 > -0,4% 5,8 -3,5% 4,0 ≈ -4,8% 4,5

In
st

an
ce

p0
5

9 9 690 1,7% 5,1 ≈ 0,0% 0,1 0,4% 2,1 ≈ 0,0% 0,0
9 12 888 66,0% 27,2 > 45,3% 30,0 33,7% 18,8 > 21,3% 15,9
9 15 1623 37,3% 10,8 > 26,5% 12,0 19,4% 5,2 ≈ 18,0% 5,9

12 9 1016 18,8% 14,6 > 9,1% 14,4 3,5% 6,4 ≈ 2,9% 6,1
12 12 1325 35,4% 15,2 ≈ 28,5% 16,9 12,6% 8,4 > 6,7% 10,2
12 15 1986 38,5% 8,5 > 30,0% 12,1 21,7% 4,9 ≈ 19,1% 5,8
15 9 1010 -10,3% 12,4 > -16,5% 7,6 -17,0% 4,1 ≈ -18,4% 2,9
15 12 1156 40,5% 26,3 > 17,6% 20,7 14,8% 12,6 ≈ 13,5% 15,0
15 15 1900 34,5% 7,5 > 26,6% 9,2 14,9% 5,2 ≈ 12,9% 5,0
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HVR+A HVR HVR+A+V HVR+V

x y orig gap dev p gap dev gap dev p gap dev
In

st
an

ce
p0

6

9 9 2184 7,7% 4,9 ≈ 7,7% 4,9 -1,2% 2,3 ≈ -2,5% 2,7
9 12 2915 5,1% 4,5 ≈ 3,1% 5,2 -2,8% 2,9 ≈ -3,2% 3,3
9 15 2265 30,8% 6,8 > 25,9% 8,1 15,0% 4,9 ≈ 16,4% 3,4

12 9 2162 19,8% 5,9 > 16,4% 5,1 6,3% 3,3 ≈ 6,9% 3,7
12 12 3031 14,8% 3,4 ≈ 13,3% 3,8 6,1% 2,2 ≈ 6,1% 2,8
12 15 2401 37,6% 8,7 > 32,4% 7,7 22,7% 4,6 ≈ 22,4% 4,8
15 9 2719 8,3% 3,3 ≈ 6,9% 4,9 0,8% 2,9 ≈ 0,3% 2,8
15 12 3452 7,7% 3,6 > 4,6% 4,5 0,6% 3,1 ≈ 0,1% 2,8
15 15 2928 27,3% 4,8 > 24,4% 6,2 16,6% 4,7 ≈ 15,0% 4,0

In
st

an
ce

p0
7

9 9 6461 -19,5% 3,8 ≈ -19,6% 3,0 -23,8% 2,6 ≈ -24,1% 2,4
9 12 6856 -9,3% 5,0 > -12,1% 5,2 -15,2% 7,0 ≈ -17,0% 5,4
9 15 6952 -1,9% 7,8 ≈ -1,7% 9,3 -11,2% 9,9 ≈ -11,3% 9,5

12 9 6758 -26,9% 3,1 ≈ -27,6% 2,9 -30,6% 2,0 ≈ -31,4% 1,7
12 12 7090 -17,0% 3,5 ≈ -17,4% 4,5 -24,4% 2,4 > -25,9% 2,4
12 15 7325 -15,4% 3,4 ≈ -17,0% 3,7 -23,1% 2,7 ≈ -23,4% 2,3
15 9 6979 -15,9% 2,4 ≈ -16,9% 2,4 -19,6% 2,4 ≈ -20,5% 1,9
15 12 7358 -7,6% 7,3 ≈ -6,1% 7,5 -14,1% 6,6 ≈ -11,0% 12,3
15 15 7551 -7,6% 7,6 ≈ -8,6% 5,5 -15,0% 4,8 ≈ -17,2% 4,7

In
st

an
ce

p0
8

9 9 3467 7,8% 4,4 ≈ 7,1% 4,1 0,6% 2,2 ≈ -0,2% 1,8
9 12 3978 9,2% 3,9 ≈ 9,3% 2,4 1,9% 1,8 ≈ 1,5% 1,6
9 15 3726 21,7% 5,4 ≈ 20,4% 3,9 11,7% 2,7 ≈ 10,5% 2,2

12 9 3901 14,2% 3,2 ≈ 14,4% 2,8 7,8% 1,7 ≈ 7,2% 1,6
12 12 4305 15,4% 3,2 ≈ 14,1% 2,2 7,3% 1,5 ≈ 7,0% 2,2
12 15 4225 22,3% 3,9 ≈ 22,0% 3,4 13,0% 2,2 ≈ 12,3% 2,4
15 9 4656 4,3% 2,6 ≈ 4,5% 2,4 -0,9% 1,5 ≈ -0,9% 1,8
15 12 5042 6,5% 3,2 ≈ 5,2% 3,1 0,3% 1,3 ≈ 0,0% 1,3
15 15 4909 15,6% 3,9 ≈ 14,3% 3,5 7,5% 1,6 ≈ 7,3% 1,9

In
st

an
ce

p0
9

9 9 3319 34,3% 5,3 ≈ 32,2% 6,0 22,7% 3,1 ≈ 22,6% 4,5
9 12 3522 24,7% 6,1 ≈ 22,5% 5,5 14,2% 3,4 ≈ 13,2% 3,1
9 15 4906 13,6% 3,8 ≈ 13,7% 3,5 6,4% 1,6 ≈ 6,0% 2,4

12 9 3506 28,8% 6,2 > 22,1% 6,9 19,5% 5,0 ≈ 18,9% 5,6
12 12 3706 21,3% 4,4 ≈ 19,6% 6,4 12,6% 2,6 ≈ 11,2% 3,6
12 15 4922 14,2% 3,1 ≈ 14,0% 2,6 7,8% 2,5 ≈ 7,7% 1,8
15 9 4460 28,9% 3,8 ≈ 27,1% 5,0 22,1% 2,7 > 20,1% 2,9
15 12 4690 23,5% 3,5 ≈ 22,0% 3,4 14,4% 2,5 ≈ 13,4% 2,8
15 15 6171 13,2% 2,8 ≈ 12,1% 2,7 6,0% 2,0 ≈ 5,7% 1,4

In
st

an
ce

p1
0

9 9 3979 22,1% 4,6 ≈ 22,0% 4,2 15,6% 3,2 ≈ 14,1% 2,6
9 12 6496 4,0% 1,9 ≈ 4,2% 1,6 -0,7% 1,1 ≈ -0,9% 1,1
9 15 7821 8,5% 1,5 > 7,3% 1,7 4,2% 1,5 ≈ 3,9% 1,2

12 9 3535 31,0% 7,0 ≈ 29,8% 7,2 19,3% 3,9 ≈ 18,3% 4,3
12 12 5708 11,9% 2,7 > 10,5% 1,8 5,3% 1,6 ≈ 4,8% 1,8
12 15 7138 11,8% 1,7 ≈ 11,3% 2,0 6,8% 1,3 ≈ 6,5% 1,3
15 9 5190 16,8% 4,8 ≈ 16,3% 4,9 9,8% 2,5 ≈ 8,6% 3,0
15 12 7183 6,5% 2,3 ≈ 6,3% 2,1 1,7% 1,8 ≈ 1,1% 1,1
15 15 8356 9,9% 1,8 ≈ 9,6% 1,6 6,2% 1,2 > 5,4% 1,4

In Table 7.4 the same configurations of the HVREA is tested but in the end a VNS
with all of the described neighborhoods is made. Note that on some instances the VNS
improves the solution value of the HVREA using the solution archive a lot more than it
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does when no archive is used, e.g., the solution value before the VNS is performed of
instance p06 15 × 15 is 85.5% compared to 15.4% (using the intertwined VNS) when
the archive is not used, so the HVREA without the archive is clearly better. After the
VNS the solution value drastically decreased from 85.5% to 16.6% in contrast to the
HVREA without the archive, which result only dropped to 15%. The Student’s t-test
showed that the results after the VNS performed are even equal.

In Table 7.5 and 7.6 the same configurations were tested but instead of the HVREA the
BNREA was used. Again, the results of the BNREA with the archive is compared to
the BNREA without the archive.

Table 7.5: The mean percentage gaps of 30 runs with the given configurations
and without the VNS at the end. The column description indicates the use of
the BNREA configuration with archive (+A) or without and with intertwined
VNS (+V) or without. The entries in column p indicate whether the result with
the solution archive or the result without the archive is better (>) or equal(≈)
according to a Student’s t-test with an error level of 5%

BNR+A BNR BNR+A+V BNR+V

x y orig gap dev p gap dev gap dev p gap dev

In
st

an
ce

p0
1

9 9 2094 17,2% 19,7 ≈ 14,2% 18,2 5,3% 10,1 ≈ 4,5% 10,0
9 12 3142 60,1% 9,4 > 54,0% 12,5 20,6% 4,0 ≈ 19,6% 4,2
9 15 3223 76,1% 12,2 > 63,0% 15,8 21,7% 4,9 ≈ 20,5% 5,5

12 9 2907 55,9% 9,9 ≈ 51,6% 8,2 23,8% 6,1 ≈ 21,7% 5,1
12 12 3695 66,2% 7,0 > 57,0% 6,8 18,1% 3,8 ≈ 17,1% 2,4
12 15 3825 88,7% 6,1 > 75,4% 7,7 19,6% 2,5 ≈ 19,9% 2,7
15 9 2931 58,9% 9,1 > 51,2% 9,8 27,2% 5,7 ≈ 27,3% 6,0
15 12 3732 74,0% 7,6 > 62,5% 9,4 22,5% 3,3 ≈ 21,7% 3,2
15 15 3870 86,6% 7,0 > 72,3% 11,2 24,7% 3,1 ≈ 25,6% 6,3

In
st

an
ce

p0
2

9 9 1434 29,2% 18,9 ≈ 23,4% 21,5 -21,0% 3,8 ≈ -21,0% 4,4
9 12 1060 109,1% 37,3 ≈ 109,2% 31,5 13,1% 4,2 ≈ 12,7% 3,3
9 15 1978 59,2% 14,0 ≈ 56,9% 15,8 -1,9% 2,3 ≈ -1,9% 2,3

12 9 1396 20,6% 15,6 ≈ 24,5% 15,2 -13,6% 3,6 ≈ -14,1% 3,4
12 12 1083 77,7% 24,7 ≈ 79,7% 28,7 14,1% 3,6 ≈ 12,8% 4,4
12 15 1904 54,3% 18,0 > 42,2% 14,3 -0,3% 3,1 ≈ 5,9% 22,9
15 9 1658 37,2% 10,2 > 22,4% 7,7 -2,9% 3,9 ≈ -2,6% 4,3
15 12 1503 67,9% 10,4 > 43,6% 11,8 13,0% 4,5 ≈ 11,4% 5,8
15 15 2283 40,3% 6,3 > 22,9% 8,8 3,1% 2,6 ≈ 2,4% 2,2

In
st

an
ce

p0
3

9 9 2486 25,5% 14,4 ≈ 21,8% 10,7 4,7% 7,2 ≈ 2,5% 4,8
9 12 2651 59,1% 13,2 > 46,7% 11,3 18,3% 3,8 ≈ 18,5% 5,0
9 15 2551 45,5% 13,3 > 37,5% 11,6 10,5% 4,0 ≈ 11,0% 4,0

12 9 3075 34,3% 7,7 ≈ 30,6% 8,3 11,7% 3,4 ≈ 11,1% 3,0
12 12 3377 51,5% 9,6 > 44,6% 11,4 14,9% 3,0 ≈ 14,7% 2,5
12 15 3313 61,4% 10,5 > 46,3% 8,4 9,7% 2,8 ≈ 9,3% 3,3
15 9 3213 49,9% 8,8 > 38,6% 7,3 11,2% 4,2 ≈ 9,2% 5,2
15 12 3278 84,1% 8,0 > 69,6% 11,9 21,3% 5,0 ≈ 22,6% 4,3
15 15 3308 74,8% 6,1 > 59,0% 11,1 13,4% 4,1 ≈ 13,8% 3,3

In
st

an
ce

p0
4

9 9 1104 37,0% 20,8 ≈ 33,5% 11,5 -9,9% 11,7 ≈ -9,3% 12,3
9 12 1463 39,8% 12,1 > 28,3% 13,6 1,5% 5,5 ≈ 1,6% 5,8
9 15 1589 16,4% 12,1 > 8,1% 10,4 -10,2% 3,7 > -12,4% 3,3

12 9 1515 64,0% 12,2 > 50,8% 10,3 13,4% 7,6 ≈ 10,1% 7,8
12 12 2051 39,6% 13,2 > 29,8% 6,3 14,0% 3,0 > 12,2% 3,0
12 15 2146 21,1% 7,0 > 11,4% 7,9 -3,0% 2,7 ≈ -4,2% 3,7
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BNR+A BNR BNR+A+V BNR+V

x y orig gap dev p gap dev gap dev p gap dev

15 9 1567 55,6% 16,3 > 47,5% 13,4 14,0% 6,5 ≈ 11,4% 5,4
15 12 1752 55,5% 12,4 > 46,5% 10,2 22,4% 3,7 > 19,2% 4,8
15 15 2026 28,6% 10,1 > 19,6% 7,9 -0,8% 3,0 > -2,6% 3,6

In
st

an
ce

p0
5

9 9 690 21,7% 30,7 ≈ 12,5% 26,7 1,1% 2,7 ≈ 0,2% 0,8
9 12 888 128,4% 20,9 ≈ 117,9% 26,7 46,9% 14,5 ≈ 46,0% 14,5
9 15 1623 91,9% 23,4 > 77,7% 16,6 23,2% 6,4 ≈ 22,8% 5,4

12 9 1016 56,0% 18,7 > 46,5% 15,8 18,1% 9,9 ≈ 15,7% 10,2
12 12 1325 90,2% 14,2 > 74,9% 14,9 24,6% 7,0 ≈ 24,3% 7,5
12 15 1986 132,2% 20,9 > 98,4% 24,0 28,2% 2,9 > 26,5% 3,0
15 9 1010 24,8% 21,5 > 5,5% 23,8 -10,9% 6,4 > -14,9% 6,8
15 12 1156 116,8% 21,3 ≈ 108,4% 20,7 32,7% 8,2 ≈ 33,1% 8,3
15 15 1900 145,3% 15,5 > 98,0% 15,3 20,6% 4,7 ≈ 20,2% 3,9

In
st

an
ce

p0
6

9 9 2184 49,8% 10,5 > 40,0% 16,6 2,3% 3,4 ≈ 1,7% 3,2
9 12 2915 62,0% 13,8 > 44,7% 16,2 -1,0% 2,0 ≈ -1,3% 1,7
9 15 2265 135,0% 15,6 > 108,4% 16,4 17,8% 3,9 ≈ 17,7% 4,0

12 9 2162 90,6% 16,2 > 61,8% 14,8 11,8% 4,0 ≈ 12,3% 3,5
12 12 3031 101,0% 14,9 > 72,4% 18,8 7,4% 2,5 ≈ 8,3% 2,4
12 15 2401 154,5% 15,7 > 127,2% 18,6 29,4% 4,2 ≈ 28,8% 4,2
15 9 2719 80,7% 9,4 > 54,4% 12,9 6,7% 2,3 ≈ 7,1% 2,3
15 12 3452 108,1% 5,2 > 94,6% 19,1 107,7% 7,7 > 4,2% 1,6
15 15 2928 161,9% 7,3 > 126,7% 11,1 158,3% 10,3 > 21,9% 3,7

In
st

an
ce

p0
7

9 9 6461 0,0% 5,1 > -4,1% 6,3 -23,2% 2,6 ≈ -23,7% 2,4
9 12 6856 30,6% 11,3 > 11,0% 8,5 -16,7% 2,5 ≈ -17,0% 2,9
9 15 6952 45,5% 11,5 > 30,2% 9,0 -16,9% 3,8 ≈ -17,7% 3,1

12 9 6758 10,2% 4,8 > -3,0% 6,7 -29,4% 2,2 ≈ -28,5% 2,4
12 12 7090 41,1% 7,5 > 25,6% 10,1 -22,2% 2,8 ≈ -22,3% 2,6
12 15 7325 65,9% 9,2 > 47,1% 12,0 66,1% 9,6 > -19,5% 2,4
15 9 6979 21,2% 4,3 > 11,3% 5,6 -18,1% 1,9 ≈ -18,6% 2,1
15 12 7358 56,9% 9,1 > 35,0% 8,3 57,7% 9,3 > -15,9% 3,8
15 15 7551 79,5% 8,4 > 57,2% 9,2 78,3% 7,8 ≈ 76,0% 8,3

In
st

an
ce

p0
8

9 9 3467 47,0% 9,2 ≈ 42,6% 14,1 1,7% 2,3 ≈ 1,2% 2,4
9 12 3978 64,5% 10,3 > 48,2% 12,8 2,8% 1,5 ≈ 2,8% 1,5
9 15 3726 113,7% 11,7 > 91,6% 13,2 12,3% 2,0 ≈ 12,0% 2,1

12 9 3901 78,6% 7,2 > 58,3% 9,4 11,8% 2,1 > 10,6% 2,3
12 12 4305 88,1% 6,6 > 70,0% 11,5 8,2% 1,8 ≈ 8,3% 1,4
12 15 4225 133,3% 7,5 > 113,2% 9,9 133,9% 8,5 > 14,2% 2,1
15 9 4656 63,0% 5,8 > 49,0% 11,8 0,5% 1,4 ≈ -0,1% 1,2
15 12 5042 83,7% 6,1 > 66,1% 7,7 85,7% 5,5 > 2,3% 1,8
15 15 4909 127,8% 7,5 > 109,2% 10,1 129,8% 6,7 ≈ 129,2% 7,9

In
st

an
ce

p0
9

9 9 3319 83,9% 11,2 > 75,4% 10,7 30,5% 3,3 ≈ 30,7% 3,2
9 12 3522 99,3% 10,4 > 82,2% 10,8 18,9% 4,7 ≈ 19,0% 4,0
9 15 4906 67,8% 6,6 > 52,2% 10,7 8,8% 2,2 ≈ 8,4% 2,3

12 9 3506 65,7% 10,4 > 50,9% 5,8 21,5% 3,3 ≈ 19,9% 3,9
12 12 3706 89,2% 9,4 > 64,4% 8,8 12,3% 3,1 ≈ 12,3% 3,4
12 15 4922 77,6% 7,0 > 59,8% 8,2 6,6% 2,4 ≈ 6,5% 2,6
15 9 4460 81,8% 7,8 > 70,7% 9,7 27,3% 2,3 ≈ 27,7% 2,3
15 12 4690 83,7% 4,9 > 76,1% 6,7 21,2% 2,7 ≈ 20,2% 2,3
15 15 6171 74,9% 4,5 > 64,3% 6,6 73,9% 4,6 > 7,1% 1,4

In
st

an
ce

p1
0

9 9 3979 74,3% 9,7 > 65,4% 9,3 18,2% 2,7 ≈ 17,5% 2,4
9 12 6496 34,6% 5,4 > 24,0% 5,1 0,7% 0,8 ≈ 0,4% 1,2
9 15 7821 47,0% 2,6 > 40,9% 3,2 7,0% 1,4 ≈ 6,4% 1,7

12 9 3535 94,3% 9,8 > 79,7% 11,7 23,4% 3,9 ≈ 23,7% 3,4
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BNR+A BNR BNR+A+V BNR+V

x y orig gap dev p gap dev gap dev p gap dev

12 12 5708 46,1% 4,9 > 34,6% 4,9 6,4% 1,6 ≈ 6,4% 1,3
12 15 7138 56,7% 4,3 > 48,0% 6,3 9,0% 1,4 ≈ 8,5% 1,3
15 9 5190 76,4% 7,0 > 64,3% 9,2 14,6% 2,3 ≈ 14,6% 2,7
15 12 7183 46,0% 4,5 > 36,3% 5,0 5,4% 1,1 ≈ 5,0% 1,5
15 15 8356 57,4% 2,9 > 51,0% 4,1 57,4% 2,6 > 7,9% 1,3

Table 7.6: The mean percentage gaps of 30 runs with the given configurations and
with the VNS at the end. The column description indicates the use of the BNREA
configuration with archive (+A) or without and with intertwined VNS (+V) or
without. The entries in column p indicate whether the result with the solution
archive or the result without the archive is better (>) or equal(≈) according to a
Student’s t-test with an error level of 5%

BNR+A BNR BNR+A+V BNR+V

x y orig gap dev p gap dev gap dev p gap dev

In
st

an
ce

p0
1

9 9 2094 8,7% 13,5 ≈ 8,6% 13,1 5,3% 10,1 ≈ 4,5% 10,0
9 12 3142 30,9% 6,2 ≈ 30,4% 7,3 20,2% 3,7 ≈ 18,5% 4,2
9 15 3223 37,6% 6,7 ≈ 34,5% 5,2 21,4% 4,9 ≈ 20,0% 5,4

12 9 2907 36,0% 8,3 ≈ 37,7% 7,7 23,2% 6,1 ≈ 21,5% 5,1
12 12 3695 27,3% 5,2 ≈ 27,1% 5,0 17,4% 4,0 ≈ 16,3% 2,6
12 15 3825 29,9% 6,0 ≈ 30,9% 4,7 19,2% 2,4 ≈ 19,1% 3,0
15 9 2931 37,3% 7,7 ≈ 36,0% 6,9 26,1% 5,7 ≈ 26,2% 5,6
15 12 3732 31,0% 5,5 ≈ 29,5% 5,9 21,5% 3,7 ≈ 20,1% 3,3
15 15 3870 35,1% 5,4 ≈ 36,0% 5,5 24,3% 3,3 ≈ 23,9% 3,4

In
st

an
ce

p0
2

9 9 1434 -3,6% 9,0 ≈ -4,2% 11,1 -21,2% 3,7 ≈ -21,2% 4,5
9 12 1060 29,7% 11,9 ≈ 34,1% 16,1 12,2% 4,2 ≈ 11,8% 3,5
9 15 1978 6,8% 4,8 ≈ 6,1% 5,0 -2,7% 2,4 ≈ -2,2% 2,4

12 9 1396 0,0% 7,6 ≈ -3,3% 9,3 -14,7% 3,4 ≈ -14,5% 3,4
12 12 1083 32,1% 10,2 ≈ 30,2% 9,4 13,7% 3,6 > 11,2% 4,4
12 15 1904 7,7% 5,5 ≈ 9,3% 5,1 -1,0% 3,3 ≈ -1,3% 3,1
15 9 1658 15,5% 9,1 > 10,7% 5,1 -3,3% 4,0 ≈ -3,3% 4,3
15 12 1503 31,4% 9,1 > 25,3% 8,5 11,4% 4,1 ≈ 10,4% 5,7
15 15 2283 13,4% 4,9 ≈ 11,6% 4,3 2,6% 2,6 ≈ 1,6% 1,9

In
st

an
ce

p0
3

9 9 2486 15,5% 8,6 ≈ 14,5% 8,0 4,1% 7,1 ≈ 1,8% 5,0
9 12 2651 31,5% 6,1 ≈ 30,3% 8,4 17,6% 4,2 ≈ 18,0% 4,9
9 15 2551 22,3% 10,1 ≈ 21,8% 7,7 10,1% 4,0 ≈ 10,4% 4,0

12 9 3075 19,0% 5,1 ≈ 17,6% 5,2 11,0% 3,1 ≈ 10,5% 3,3
12 12 3377 25,7% 5,5 ≈ 26,0% 5,1 14,2% 3,0 ≈ 14,0% 2,9
12 15 3313 21,8% 5,4 ≈ 21,3% 6,9 8,4% 3,2 ≈ 8,3% 3,6
15 9 3213 25,0% 5,9 ≈ 24,6% 7,5 10,9% 4,2 > 8,3% 5,0
15 12 3278 33,1% 7,1 ≈ 33,9% 5,4 20,4% 5,1 ≈ 22,0% 4,5
15 15 3308 24,5% 6,8 ≈ 23,7% 8,6 12,5% 4,2 ≈ 12,3% 3,2

In
st

an
ce

p0
4

9 9 1104 22,3% 14,6 ≈ 24,5% 13,0 -10,2% 11,7 ≈ -10,9% 12,2
9 12 1463 26,4% 7,4 > 17,0% 9,4 0,3% 4,8 ≈ 1,0% 6,4
9 15 1589 3,8% 7,2 > -0,3% 6,4 -10,8% 3,9 > -12,9% 3,6

12 9 1515 34,2% 10,2 ≈ 33,2% 12,1 12,1% 8,0 ≈ 8,8% 7,9
12 12 2051 23,3% 6,0 > 20,0% 5,6 13,5% 3,2 > 11,2% 3,2
12 15 2146 6,0% 4,9 > 2,3% 4,8 -3,7% 3,1 ≈ -4,8% 3,6
15 9 1567 28,6% 11,8 ≈ 30,0% 11,8 12,8% 6,4 ≈ 10,2% 5,8
15 12 1752 38,0% 8,9 > 33,3% 7,7 21,2% 3,9 > 18,7% 4,7
15 15 2026 10,1% 5,3 ≈ 7,9% 5,2 -1,1% 3,0 > -3,0% 3,2
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BNR+A BNR BNR+A+V BNR+V

x y orig gap dev p gap dev gap dev p gap dev
In

st
an

ce
p0

5

9 9 690 13,2% 20,7 ≈ 8,2% 17,5 1,0% 2,7 ≈ 0,2% 0,6
9 12 888 85,2% 16,3 ≈ 79,4% 17,1 46,4% 14,4 ≈ 43,6% 13,9
9 15 1623 45,4% 10,5 > 40,2% 9,3 22,7% 6,7 ≈ 21,8% 5,1

12 9 1016 35,5% 14,3 ≈ 34,3% 14,7 17,5% 9,7 ≈ 15,1% 10,2
12 12 1325 42,8% 9,1 ≈ 40,9% 11,7 23,4% 7,1 ≈ 23,2% 6,6
12 15 1986 41,4% 6,7 ≈ 38,7% 8,4 27,4% 2,7 ≈ 26,0% 3,2
15 9 1010 4,7% 13,9 ≈ -3,0% 17,1 -11,2% 6,4 > -15,6% 5,9
15 12 1156 56,6% 10,5 ≈ 55,2% 14,1 30,1% 10,2 ≈ 31,1% 8,7
15 15 1900 38,0% 9,6 ≈ 35,8% 5,7 20,0% 5,0 ≈ 19,4% 3,8

In
st

an
ce

p0
6

9 9 2184 13,5% 6,1 ≈ 13,9% 6,0 1,7% 3,4 ≈ 1,2% 3,3
9 12 2915 9,4% 5,2 ≈ 9,4% 3,6 -1,3% 2,3 ≈ -1,7% 2,0
9 15 2265 33,4% 6,2 ≈ 34,8% 7,1 17,1% 3,9 ≈ 16,7% 4,2

12 9 2162 26,5% 5,7 ≈ 23,7% 7,3 11,2% 4,0 ≈ 11,8% 3,7
12 12 3031 18,1% 3,8 ≈ 17,5% 4,1 7,0% 2,6 ≈ 8,1% 2,5
12 15 2401 44,7% 6,6 ≈ 43,1% 7,6 28,9% 4,4 ≈ 28,1% 4,1
15 9 2719 16,2% 4,5 ≈ 15,5% 5,6 5,9% 2,7 ≈ 6,3% 2,4
15 12 3452 13,9% 4,2 ≈ 12,7% 4,5 4,1% 1,6 ≈ 3,9% 1,6
15 15 2928 36,2% 5,0 ≈ 34,4% 5,7 20,5% 4,0 ≈ 21,3% 3,8

In
st

an
ce

p0
7

9 9 6461 -18,0% 3,0 ≈ -17,4% 3,2 -23,4% 2,6 ≈ -23,9% 2,5
9 12 6856 -8,3% 5,2 ≈ -10,4% 4,8 -17,2% 2,5 ≈ -17,9% 2,8
9 15 6952 -8,6% 4,8 ≈ -8,3% 5,7 -17,5% 3,9 ≈ -18,0% 3,0

12 9 6758 -24,0% 3,5 ≈ -23,3% 3,8 -29,6% 2,3 ≈ -28,8% 2,5
12 12 7090 -13,8% 6,3 ≈ -15,1% 4,8 -23,0% 2,9 ≈ -23,4% 2,9
12 15 7325 -10,2% 5,1 ≈ -12,3% 5,6 -21,2% 3,6 ≈ -20,2% 2,5
15 9 6979 -14,0% 2,5 ≈ -14,6% 3,0 -18,3% 1,9 ≈ -18,9% 2,1
15 12 7358 -8,1% 3,7 > -11,3% 4,4 -17,0% 2,6 ≈ -16,7% 3,9
15 15 7551 -7,5% 4,4 ≈ -8,3% 4,5 -6,0% 4,4 > -14,9% 2,9

In
st

an
ce

p0
8

9 9 3467 10,0% 4,7 ≈ 9,8% 4,0 0,8% 2,8 ≈ 0,3% 2,1
9 12 3978 10,1% 4,0 ≈ 9,7% 3,2 2,1% 1,9 ≈ 1,9% 1,8
9 15 3726 20,8% 5,0 ≈ 23,1% 5,2 11,9% 1,8 ≈ 11,6% 2,0

12 9 3901 19,2% 4,8 ≈ 19,3% 4,3 11,2% 2,2 ≈ 10,1% 2,4
12 12 4305 16,9% 4,4 ≈ 16,4% 2,7 7,8% 2,0 ≈ 7,7% 1,5
12 15 4225 24,3% 5,7 ≈ 23,9% 4,9 13,9% 2,3 ≈ 13,7% 2,3
15 9 4656 6,6% 2,9 ≈ 6,3% 2,9 0,0% 1,5 > -0,8% 1,4
15 12 5042 9,2% 3,9 ≈ 8,8% 3,4 1,4% 1,5 ≈ 1,8% 1,9
15 15 4909 15,6% 5,5 ≈ 17,1% 3,8 17,2% 3,6 > 8,5% 1,9

In
st

an
ce

p0
9

9 9 3319 44,6% 6,4 > 39,8% 6,4 29,9% 3,6 ≈ 30,0% 3,4
9 12 3522 33,0% 7,0 ≈ 33,6% 7,3 18,0% 4,5 ≈ 18,4% 3,9
9 15 4906 20,1% 5,6 > 16,7% 4,3 8,5% 2,3 ≈ 8,2% 2,3

12 9 3506 33,4% 6,7 ≈ 31,3% 5,9 20,7% 3,3 ≈ 19,2% 4,1
12 12 3706 26,5% 7,1 ≈ 24,2% 5,9 11,7% 3,1 ≈ 11,5% 4,1
12 15 4922 16,6% 3,5 ≈ 16,6% 4,4 6,3% 2,3 ≈ 5,9% 2,5
15 9 4460 36,4% 4,0 ≈ 35,8% 5,6 26,9% 2,4 ≈ 27,2% 2,3
15 12 4690 29,8% 5,0 ≈ 29,0% 4,4 20,8% 2,6 ≈ 19,8% 2,3
15 15 6171 14,4% 3,5 ≈ 15,3% 3,4 6,6% 1,6 ≈ 6,7% 1,4
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BNR+A BNR BNR+A+V BNR+V

x y orig gap dev p gap dev gap dev p gap dev
In

st
an

ce
p1

0

9 9 3979 29,4% 5,0 > 25,9% 5,9 17,5% 3,0 ≈ 16,8% 2,7
9 12 6496 5,6% 3,3 ≈ 5,8% 2,3 0,3% 0,8 ≈ 0,1% 1,2
9 15 7821 12,2% 2,6 ≈ 12,0% 2,6 6,8% 1,5 ≈ 6,1% 1,6

12 9 3535 37,8% 8,0 ≈ 34,7% 6,6 22,0% 4,1 ≈ 23,1% 3,6
12 12 5708 12,7% 3,2 ≈ 12,5% 2,2 6,1% 1,6 ≈ 6,1% 1,4
12 15 7138 14,3% 2,7 ≈ 14,2% 3,2 8,8% 1,5 ≈ 8,3% 1,2
15 9 5190 25,1% 5,9 ≈ 23,4% 5,1 14,1% 2,3 ≈ 13,7% 3,0
15 12 7183 11,4% 3,4 ≈ 10,4% 3,0 5,1% 1,1 ≈ 4,8% 1,4
15 15 8356 13,9% 2,8 ≈ 12,8% 2,1 7,3% 1,1 ≈ 7,8% 1,3

The results of the BNREA show that when using the BNREA on more instances the
results of the BNREA with the solution archive are equal to the results of the BNREA
alone. This shows that the BNREA benefits more from the solution archive than does the
HVREA. It can also be seen that on both the HVREA and the BNREA configurations
the intertwined VNS improves the solution value on all instances significantly.

A Student’s t-test with an error level of 5% was performed to compare the mean solu-
tion values with the different configurations. On some instances the MA that uses the
archive performed better than the MA alone but in all these cases the Student’s t-test un-
fortunately revealed that they are equal. The other way round, i.e., when the MA alone
is compared with the MA which is enhanced by the solution archive, it also turned out
that most results were equal according to the Student’s t-test but on some instances the
MA alone performed even statistically better.

Another result is, when both types of MA (with and without using the solution archive)
are run the same number of iterations the MA with the solution archive performed better,
but due to the longer running time of the archive these results are not directly compa-
rable. Nevertheless, this encourages the assumption that the MA with the archive will
converge in later generations as does the MA without the archive. It would be interest-
ing to see the results when running the MA with the solution archive for a longer time,
i.e., without the memory restrictions of the used test system.
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CHAPTER 8
Conclusions

Within this work an MA for the Reconstruction of Cross-Cut Shredded Text Documents
(RCCSTD) problem was extended with a trie based solution archive. Its purpose is to
store already visited solutions and thus avoids costs for reevaluating them and generate
new solutions when a duplicate is found. Using this technique gives the population of
the MA a higher diversity but some elitism is still conserved.

First the problem is formally defined, an error estimation function is described and the
complexity of the problem is briefly discussed. In the next chapter an overview of
current literature concerning both the RCCSTD problem and solution archives is given.
Then, in Chapter 4 an overview of some heuristic solution techniques is provided, where
among others memetic algorithms are presented. Chapter 5 describes the design and de-
velopment of the solution archive. In this chapter two different approaches are compared
to each other and it turned out that one of them, namely the Shred-Based Permutation
(SBP) approach is superior over the Trie-Based Permutation (TBP) approach. Addi-
tionally, other problems, which have arisen, e.g., how to avoid invalid solutions, are
discussed and solutions for these problems presented.

Chapter 6 deals with implementation issues, especially the memory problem. In this
chapter also the recombination and the mutation operators of the underlying MA are
described. Finally, in Chapter 7 the tests are performed and the results presented and
compared. To be more precise, the results of different configurations of the MA with-
out the archive are compared to the same settings of the MA that is enhanced by the
implemented solution archive.

It turned out that although the MA using a solution archive is usually able to find better
results than the MA without the archive within the same number of generations. But the
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running time overhead of the archive is too high to really improve the performance of
the MA. When both settings are given the same amount of time, the MA in combination
with the archiv cannot outperform the MA anymore. Instead, on some instances the MA
alone performs even better without the archive.

8.1 Future Work
An interesting attempt to improve the solution archive would be to increase the running
time bound of the MA with the archive. Since the solution archive for the RCCSTD
problem needs a huge amount of memory, each run can only run between 1 and 5 min-
utes before the machine runs out of memory. Therefore, one could improve the memory
efficiency of the trie with a branch and bound algorithm, as presented in [6]. Since
the objective value of a solution cannot decrease when adding a shred to the solution
many branches, especially the ones that are at the bottom half of the trie, can be cut.
This probably would decrease the memory consumption of the trie significantly and this
would maybe have an impact on the results, because the running time could then be
increased.
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A. Instances

Figure A.1: Instance p06
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Figure A.2: Instance p01 57



Figure A.3: Instance p02 58



Figure A.4: Instance p03 59



Figure A.5: Instance p04 60



Figure A.6: Instance p05 61



Figure A.7: Instance p07

Figure A.8: Instance p08
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Figure A.9: Instance p09
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Figure A.10: Instance p10
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B. Generations

Table B.1: Number of generations per instance

Instance Size Generations Instance Size Generations

p01

9x9 10000

p06

9x9 10000
9x12 10000 9x12 5000
9x15 10000 9x15 5000
12x9 10000 12x9 10000
12x12 10000 12x12 5000
12x15 10000 12x15 5000
15x9 10000 15x9 5000
15x12 10000 15x12 5000
15x15 5000 15x15 3000

p02

9x9 10000

p07

9x9 10000
9x12 10000 9x12 5000
9x15 10000 9x15 5000
12x9 10000 12x9 5000
12x12 10000 12x12 5000
12x15 5000 12x15 3000
15x9 10000 15x9 5000
15x12 10000 15x12 3000
15x15 5000 15x15 3000

p03

9x9 10000

p08

9x9 10000
9x12 10000 9x12 5000
9x15 10000 9x15 5000
12x9 10000 12x9 5000
12x12 10000 12x12 5000
12x15 10000 12x15 3000
15x9 10000 15x9 5000
15x12 10000 15x12 3000
15x15 5000 15x15 3000
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Table B.1: Number of generations per instance

Instance Size Generations Instance Size Generations

p04

9x9 10000

p09

9x9 10000
9x12 10000 9x12 10000
9x15 10000 9x15 5000
12x9 10000 12x9 10000
12x12 10000 12x12 5000
12x15 10000 12x15 5000
15x9 10000 15x9 5000
15x12 10000 15x12 5000
15x15 10000 15x15 3000

p05

9x9 10000

p10

9x9 10000
9x12 10000 9x12 10000
9x15 10000 9x15 5000
12x9 10000 12x9 10000
12x12 10000 12x12 5000
12x15 10000 12x15 5000
15x9 10000 15x9 5000
15x12 10000 15x12 5000
15x15 5000 15x15 5000
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