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Abstract

Up to now, three of the four fundamental interactions could have been success-
fully described as quantized gauge theories: the electromagnetism, the weak
interaction and the strong interaction, all contained in the standard model with
a SU(3)× SU(2)× U(1) gauge symmetry. Whereas the further can be formu-
lated as an Abelian U(1) gauge theory (QED), the latter two are non-Abelian
Yang-Mills type models. However, the fourth fundamental force, the gravity,
which is treated in general relativity as curvature of the space-time, is not cov-
ered by the standard model.

There is a strong belief that the space-time has to be quantized as well, at
least at the scale of the Planck length. This justifies the introduction of non-
commutative coordinates via the so-called Groenewold-Moyal star product.
Even though some renormalizable scalar models on non-commutative space-
time could have been found, no such gauge theory is yet known. In this thesis
we discuss a promising candidate for a non-commutative U?(1) gauge model.
The gauge symmetry is now a non-Abelian one.

After modifying this U?(1) gauge model with a counter term for an arising IR-
divergence at one-loop level, a BRST1 exact formulation via the introduction
of BRST doublets is given. Then, two identities are derived, expressing for
example the transversality of the two-point vertex graph. Further, relevant
considerations and calculations are made with regard to a possible algebraic
renormalization procedure. Finally, an equivalent localized model is presented
that is formulated BRST exact as well.
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Kurzfassung

Bislang können drei der vier fundamentalen Wechselwirkungen erfolgreich durch
quantisierte Eichtheorien beschrieben werden. Das sind die elektromagnetische,
die schwache und die starke Wechselwirkung, alle enthalten im Standardmodell
mit einer SU(3)×SU(2)×U(1) Eichsymmetrie. Erstere kann als abelsche U(1)
Eichtheorie formuliert werden (QED), die letzteren zwei sind nicht-abelsche
Yang-Mills Modelle. Wie auch immer, die vierte fundamentale Wechselwirkung,
die Gravitation, die in der allgemeinen Relativitätstheorie als Krümmung der
Raumzeit behandelt wird, wird vom Standardmodell nicht umfasst.

Man ist davon überzeugt, dass auch die Raumzeit quantisiert sein muss, zu-
mindest auf Distanzen in der Nähe der Planck-Länge. Damit lässt sich das
Einführen von nichtkommutativen Koordinaten unter Zuhilfenahme des soge-
nannten Groenewold-Moyal-Sternprodukts rechtfertigen. Auch wenn renormier-
bare Skalarmodelle auf nichtkommutativer Raumzeit gefunden werden konnten,
ist bis heute kein solches Eichmodell bekannt. In dieser Diplomarbeit wird ein
vielversprechendes, nichtkommutatives U?(1) Eichmodell behandelt. Die Eich-
symmetrie ist nun nicht-abelsch.

Anschließend an die Modifizierung des U?(1) Eichmodells durch das Hinzufügen
eines Gegenterms aufgrund einer auftauchenden IR-Divergenz auf Ein-Schleifen-
Niveau, wird das Modell BRST2-exakt formuliert, und zwar durch die Einfüh-
rung von BRST-Doublets. Weiters werden zwei Identitäten abgeleitet, die unter
anderem die Transversalität des Zweipunkt-Vertexgraphen ausdrücken. Außer-
dem werden für eine allfällige algebraische Renormierung relevante Überlegun-
gen angestellt. Abschließend folgt die Präsentation eines äquivalenten, lokali-
sierten Modells, dem ebenso eine erweiterte BRST-Symmetrie zugrundeliegt.
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Chapter 1

Introduction to NCQFT

Non-commutative quantum field theories (NCQFT) have become of great interest in the
last decades. There are plenty of reasons and hopes that justify such a big effort and I
would like to mention some of them now.

To begin with, non-commutativity appears in various domains of physics. A simple
example are rotations in a three-dimensional space with their non-commuting generators,
the angular momentum operators. Another well known non-commutativity in quantum
mechanics is the famous Heisenberg uncertainty relation ∆x̂∆p̂ ≥ ~/2 and accordingly
[x̂i, p̂j ] = i~ δij . This brings us to the important insight that it is no longer reasonable
to talk about “points” in the phase space on the scale of the Planck constant ~. So,
non-commutativity is nothing new in physics.

There is another minimum scale which arises when someone tries to respect gravity, and
that’s the so called Planck length lP =

√
~G/c3 ≈ 1,6 10−33cm [1, 2]. General relativity

deals with the geometry of the spacetime in which everything takes place (like propagation
of particles, interactions between fermions via gauge bosons, etc.) and with the influence
of the presence of mass and energy on it. Combining this with the Heisenberg uncertainty
of a photon or particle with a wavelength small enough for a certain position measurement
and living in that spacetime, we can make a short thought experiment [3, 4]: Due to the
small wavelength we have a high energy E (or momentum p, since p is related to E by
p = E/c for relativistic particles), which alters in turn the underlying geometry due to
the gravitational potential connected with E. So, one gets an additional uncertainty in
the measured position which is increasing with the energy E. As a consequence, it is not
possible to proceed to lengths below lP . It is this response of the geometry described by
general relativity which makes a better position accuracy (by just increasing the momentum
of the photon) impossible and, hence, lP is a fundamental limit of localization. For a
detailed discussion of such thought experiments the reader is referred to [5, 3].

So by combining the basic concepts of general relativity with quantum theory, or rather
with quantum field theory by additionally considering special relativity, we found a first
argument for a spacetime which is not continuous at least at the scale of the Planck length.
Already in the year 1946 H. S. Snyder has stated in [6] that for the main proposition
of special relativity, the Lorentz invariance of the spacetime length in a 4-dimensional
Minkowski space M4, x2 = xµx

µ = gµνx
µxν = (x0)2 − (xi)

2, this continuity in spacetime
is not necessary. There are a lot of papers concerning Lorentz invariance and its violation.
For further details see for example [7, 8, 9].

The implementation of such a minimum length is usually done by replacing the coor-
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CHAPTER 1. INTRODUCTION TO NCQFT 2

dinates x by hermitian operators x̂ with a non-vanishing commutator

[x̂µ, x̂ν ] = iθµν , (1.1)

where θµν is a constant and antisymmetric tensor with mass dimension −2. So we have

[θµν , x̂ρ] = 0 and θµν = −θνµ . (1.2)

The definition (1.1) is called a canonical structure [10, 11], in contrast to e.g. Lie-algebra
structures of the form [x̂µ, x̂ν ] = iCµνρ x̂ρ which are linear in x̂ρ. In this diploma thesis we
will work in a 4-dimensional Euclidean space E4 and further use the following definition:

[x̂µ, x̂ν ] = iεθµν . (1.3)

This results in a dimensionless θµν-tensor and a real valued ε with mass dimension −2. It
is now not so simple to formulate a field theory (even at the classical level) depending on
operators x̂µ due to the fact that

φi(x̂) ≡ φ̂i(x̂) , (1.4)

implying that

φ̂1(x̂)φ̂2(x̂) 6= φ̂2(x̂)φ̂1(x̂) . (1.5)

In order to bypass this difficulty one introduces a deformed product of field variables de-
pending only on ordinary commutative coordinates xµ. Such a non-commutative structure
can be modeled by a replacement of the usual product by the so called star product where
the Moyal star product is defined as

φ1(x) ? φ2(x) = e
i
2
εθµν∂xµ∂

y
νφ1(x)φ2(y)

∣∣∣
x=y

. (1.6)

φi(x) are any field variables. This gives a representation of Eq. (1.3),

[xµ ?, xν ] = iεθµν , (1.7)

where the xµ are the ordinary coordinates. See Sect. 2.1 for the detailed discussion.
The θµν-tensor can be regarded as the analogon to ~ of the Heisenberg uncertainty

relation. The corresponding “classical” limits can be achieved by θ → 0 (in our case ε→ 0)
and ~ → 0, where in the context of non-commutative theories we can also talk about the
“commutative” limit. In this limit the star product reduces to the ordinary product as can
be seen from the definition. Obviously, an expansion in orders of θ is possible.

Another push for NCQFTs came in the year 1999 by a work of Seiberg and Witten [12],
where it has been shown that a non-commutative space-time appears for open strings in a
background field B and with their ends fixed on D-branes. Additionally, they illustrated
that for large B this situation can be described in a non-commutative Yang-Mills way
and that it is just depending on the choice of the regularization scheme whether we get
commutativity or non-commutativity.

Hence, it should be possible to find a map between commutative gauge fields aµ and
their non-commutative counterparts Aµ. This is the so called Seiberg-Witten map [12]:

Aν [aµ] + δΛAν [aµ] = Aν [aµ + δλaµ] , (1.8)
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For Abelian, commutative fields aµ one has the usual Abelian gauge transformation

a′µ = aµ + δλaµ = aµ + ∂µλ , (1.9)

and for non-commutative fields Aµ we have the non-Abelian structure

A′µ = Aµ + δΛAµ = Aµ + ∂µΛ + ig [Λ ?, Aµ] . (1.10)

The explicit solution up to first order in θ can be written as [13]

Aν [aµ] = aν −
gθρσ

2

(
aρ (∂σaν + fσν)

)
+O(θ2) , (1.11)

with the Abelian field strength tensor fσν = ∂σaν − ∂νaσ.
In this diploma thesis we are dealing with the further development of the U?(1) gauge

theory presented in [14], and so with non-commutative QED (NCQED). The work pre-
sented in [15] leads to the insight that, for example, in the Seiberg-Witten map the photon
self-energy is renormalizable to all orders. For a better understanding: the aim of renor-
malization is to absorb all divergent parts appearing in Feynman integrals by redefinitions
of parameters like the mass or the coupling constants, or by redefinitions of the fields.

However, it has been shown in [13] that such a θ-expanded theory leads to the non-
renormalizability of a divergence arising in its electron four-point function. So θ-expanded
non-commutative QED is non-renormalizable. The non-Abelian equivalent, the non-renor-
malizability of the θ-expanded non-commutative U?(1) Yang-Mills (NCYM) theory is dis-
cussed in [16].

Another point that should be mentioned is that space-time non-commutativity leads
to an S-matrix which is not unitary (conservation of probability) [17]. The reason is the
non-locality in time. So this is not the case if just the space-coordinates aren’t commuting,
θ0i = 0. For a more detailed discussion and a solution see [18].

A further motivation for NCQFTs and the introduction of a minimum length originally
was the appearance of the above mentioned UV-divergences in ordinary QFTs [5]. The
hope that one can get rid of these divergences in the Feynman integrals hasn’t fullfilled.
It somehow gets even worse and somehow not [19, 20, 21]: On the one hand, some of the
UV-divergences remain unchanged. On the other hand, other parts of the integrals get
UV-convergent due to the fast oszillating phase factor eikθp, but develop IR-divergences for
small external momenta p with the same degree as the original UV-divergences. This is
the well-known UV/IR-mixing problem.

While the remaining UV-divergences can be treated by ordinary renormalization, the
new IR-divergences cannot be absorbed by a redefinition of the parameters or fields and,
hence, in general destroys the renormalizability [20].

The first solution of this problem for scalar models was achieved by Grosse and Wulken-
haar [22, 23]: they introduced an additional harmonic oscillator term Ω2/2 (x̃µφ) ? (x̃µφ)
with x̃µ = 2(θ−1)µνx

ν into the action to make the model renormalizable. The main critical
point on this GW model is that it breaks translation invariance and so Gurau et al. were
looking for and found another possibility in the year 2008 [24, 25, 26]:

S[φ] =

∫
d4x

(
1

2
∂µφ ? ∂

µφ+
m2

2
φ2
? + φ ?

a2

θ2�
φ+

λ

4!
φ4
?

)
. (1.12)
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This so called 1/p2 φ4
? scalar model alters the propagator IR-finite to

G(p) =
1

p2 +m2 + a2

θ2p2

with lim
p→0

G(p) = 0 , (1.13)

and is perturbatively renormalizable to all orders.
Nevertheless, only non-commutative scalar models with renormalizability but no such

gauge models have been found up to now.
The first main challenge for that is to implement a similar damping behaviour as in

Eq. (1.13) for small momenta in the gauge propagator GAAµν . This can be done for U?(1)
gauge models in Euclidean space in the following manner [27, 28]:

S[Aµ] = Sinv + Snloc =

∫
d4x

(
1

4
Fµν ? Fµν +

1

4
Fµν ?

a2

D2D̃2
Fµν

)
, (1.14)

with the non-Abelian field strength tensor Fµν and the covariant derivativeDµ, D̃µ = θµνDν

(for further mathematical details see Chap. 3). Its propagator has the desired structure:

GAAµν (p) =
1

p2 + a2

p̃2

(
δµν −

pµpν
p2

)
with lim

p→0
GAAµν (p) = 0 . (1.15)

This model is suffered from the following main problem [27]: the term 1

D2D̃2
Fµν is a power

series in the gauge field Aµ with an infinite number of terms with arbitrary powers and

therefore leads to an infinite number of vertices. Furthermore, D2D̃2 is dimensionless
(discussed in [29]).

There is a way out and that is to localize the action (1.14). Two important proposals
should be listed here: one of Vilar et al. described in [30], and another ansatz followed up
and further developed by Blaschke et al. [31, 32]. Its point of departure reads explicitly:

S[Aµ] = Sinv + Sloc =

∫
d4x

(
1

4
Fµν ? Fµν + aBµν ? Fµν −Bµν ? D̃2D2Bµν

)
. (1.16)

After some troubleshooting of problems arising from this proposal for localization, this will
further lead to the model described in [14] which is the theme of this diploma thesis and is
described in detail in Chapter 3.

To conclude this introduction, there are plenty of arguments [33, 34] that non-commuta-
tivity can also show up much before the Planck scale lP ≈ 10−33cm. So far, energy scales
up to about 1 TeV could have been reached in collider experiments, and with the new
LHC about 10 TeV collisions should be possible [1]. This is approximately one-tenth of the
electroweak scale lew ≈ 10−16cm (100 GeV) [9] and with the LHC a length l ≈ 10−18cm
should be accessible. There is a strong belief that non-commutativity can have measurable
effects in the TeV scale [33, 35].



Chapter 2

Mathematical Background

2.1 The Groenewold-Moyal star product

As described in detail in [10, 21, 11] and [36], one usually introduces the star product via
the so called Weyl operator in an n-dimensional Euclidean space

W(φ) = φ̂(x̂) =

∫
dnk

(2π)n
eikµx̂µ φ̃(k) . (2.1)

Additionally, we assume that a function φ(x) can be described by its Fourier transform

φ̃(k) =

∫
dnx e−ikµxµφ(x) . (2.2)

Combining this, a map from a function φ to its associated operator φ̂ is given by

W(φ) = φ̂(x̂) =

∫
dnxφ(x)

∫
dnk

(2π)n
eikµ(x̂µ−xµ) . (2.3)

Now, we have to examine the product of such operators together with its counterpart for
the corresponding functions

W(φ1)W(φ2) =W(φ1 ? φ2) , (2.4)

the Groenewold-Moyal star product. So we take a closer look at

W(φ1)W(φ2) =

∫
dnk

(2π)n

∫
dnq

(2π)n
eikµx̂µeiqν x̂ν φ̃1(k)φ̃2(q) , (2.5)

and have to consider that x̂µ and x̂ν are not commuting, according to (1.3). Hence, we
have to use the Baker-Campbell-Hausdorff formula

eAeB = eA+B+ 1
2

[A,B] if [[A,B] , A] = 0 , (2.6)

which is fulfilled since θµν has been chosen constant, see (1.2). With this, Eq. (2.5) implies

W(φ1)W(φ2) =

∫
dnk

(2π)n

∫
dnq

(2π)n
ei(k+q)µx̂µe−

i
2
εθµνkµqν φ̃1(k)φ̃2(q) . (2.7)

5
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Comparing this with

(φ1 ? φ2) (x) = e
i
2
εθµν∂xµ∂

y
νφ(x)φ(y)

∣∣∣
x=y

=

∫
dnk

(2π)n

∫
dnq

(2π)n
ei(k+q)µxµe−

i
2
εθµνkµqν φ̃1(k)φ̃2(q) , (2.8)

where the upper index x of the partial derivative denotes that it is with respect to x, we
attain the correspondance in (2.4), as can be seen from

W
(
ei(k+q)x

)
=

∫
dnp

(2π)n
eipx̂

∫
dnx e−ipxei(k+q)x

=

∫
dnp eipx̂ δ(n)(p− k − q)

= ei(k+q)x̂ . (2.9)

So we have found in (2.8) the definition of the star product. From now on we use the short
notation kx = kµxµ.

The star product of two exponential functions, which is an often used result in this
diploma thesis and, hence, should be stated explicitly, is

eikx ? eiqx = ei(k+q)xe−
i
2
kεθq . (2.10)

Additionally, there are some useful properties of the star product. At first, we can drop a
star under the integral ∫

d4x (φ1 ? φ2) (x) =

∫
d4xφ1(x)φ2(x) , (2.11)

Then, we have cyclic permutation∫
d4x (φ1 ? φ2 ? ... ? φn) (x) = ±

∫
d4x (φ2 ? ... ? φn ? φ1) (x) , (2.12)

where the minus sign just appears if φ has a fermionic character. For a bosonic φ we have
got the plus sign. Furthermore, the star product is associative

(φ1 ? φ2) ? φ3 = φ1 ? (φ2 ? φ3) , (2.13)

and the Fourier transform of a product of n fields can be written as∫
d4x (φ1 ? ... ? φn) (x) =

∫
d4k1

(2π)4
. . .

∫
d4kn
(2π)4

ei
∑n
i=1 kixe−

i
2

∑n
i<j kiεθkj φ̃(k1) . . . φ̃(kn) .

(2.14)

These properties can all be shown quite easily by using the definition (2.8).
In particular, Eq. (2.11) should be pointed out once again because from now on we will

neglect the unnecessary stars in the notation.
In addition, we need a definition of partial derivatives [4, 21] which are still commuting:

[∂µ ?, xν ] = δµν with [∂µ ?, ∂ν ] = 0 . (2.15)
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2.2 Path integral formalism

The following explanations are based on the references [37, 38, 39] and [40]. In Euclidean
space, corresponding to Ref. [14], one defines the generating functional, or also called
vacuum-to-vacuum transition amplitude, as

Z[j] = 〈0|e−
∫
d4x jφ̂|0〉 = N

∫
Dφ e−

∫
d4x (L+jφ) =

∫
Dφ e−(S+

∫
d4x jφ)∫

Dφ e−S
, (2.16)

where L is the Lagranian, N is the normalization so that Z[0] = 1 as applied above, and j
with j = (jAµ , j

c, ...) is the source of the field operator φ̂ with φ̂ = (Âµ, ĉ, ...). Further, Dφ
is the path integral over the fields φ = (Aµ, c, ...).

Z[j] generates the Green functions that are in the Euclidean space and in QED the
expectation values of products of n gauge field operators Âµ, or other field operators like
the ghost operators ĉ,

Gφ
1... φn

µ1... µn(x1, . . . , xn) = 〈0|φ̂1
µ1

(x1) . . . φ̂nµn(xn)|0〉 . (2.17)

They are also called n-point functions and, obviously, can be obtained by

Gφ
1... φn

µ1... µn(x1, . . . , xn) = (−1)n
δnZ[j]

δjφ
1

µ1 (x1) . . . δjφ
n

µn (xn)

∣∣∣∣∣
j=0

. (2.18)

In addition, the generating functional Z[j] can be written as series expansion

Z[j] =

∞∑
n=0

(−1)n

n!

∫
d4x1 . . . d

4xn j
φ1

µ1
(x1) . . . jφ

n

µn (xn)Gφ
1... φn

µ1... µn(x1, . . . , xn) . (2.19)

The summation is over the lower indices µi. It should be again mentioned that we have
chosen this notation of not differing between upper and lower indices (see also previous
section) to emphasize that we are in Euclidean space. One no longer has to distinguish
between co- and contravariance. Here, the upper indices just denote the kind of the fields.
To shorten the notation we will neglect these upper subscripts from now on.

Now, one can define the generating functional of the connected Green functions via
Z[j] = e−Z

c[j] to get rid of disconnected graphs. So one gets the expansion

Zc[j] =
∞∑
n=1

(−1)(n−1)

n!

∫
d4x1 . . . d

4xn jµ1(x1) . . . jµn(xn)Gcµ1... µn(x1, . . . , xn) . (2.20)

with the connected Green functions

Gcµ1... µn(x1, . . . , xn) = (−1)(n−1) δnZc[j]

δjµ1(x1) . . . δjµn(xn)

∣∣∣∣
j=0

, (2.21)

or also termed as irreducible n-point functions. Additionally, one can introduce classical
fields by φcl(x) = δZc[j]

δj(x) and with this a Legendre transform

Γ[φcl] =

(
Zc[j]−

∫
d4x j(x)φcl(x)

) ∣∣∣∣
j(x)=j[φcl](x)=− δΓ[φ]

δφcl(x)

, (2.22)
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to obtain the so-called generating functional Γ[φcl] of the vertex functions

Γµ1... µn(x1, . . . , xn) =
δnΓ[φcl]

δφcl
µ1

(x1) . . . δφcl
µn(xn)

∣∣∣∣
φcl=0

, (2.23)

or one-particle irreducible graphs. Again, we have a series expansion

Γ[φcl] =
∞∑
n=2

1

n!

∫
d4x1 . . . d

4xn φ
cl
µ1

(x1) . . . φcl
µn(xn) Γµ1... µn(x1, . . . , xn) . (2.24)

It is interesting to mention that these classical fields φcl(x) are the vacuum expectation
values of the field operators φ̂(x) as can be seen from1

φcl(x) =
δZc[j]

δj(x)
= − 1

Z[j]

δZ[j]

δj(x)
=
〈0|φ̂(x)e−

∫
d4y jφ̂|0〉

〈0|e−
∫
d4y jφ̂|0〉

. (2.25)

Further, Γ[φcl] is also termed as effective action. We can make a loop expansion and it
turns out that the zeroth loop order Γ(0)[φcl] is identical to the action S[φcl]

Γ[φcl] =
∞∑
n=0

~nΓ(n)[φcl] with Γ(0)[φcl] = S[φcl] , (2.26)

where we have dropped the subscript “cl” in the rest of this work. Each term in the
action, or in the zeroth order Γ(0)[φ] (tree approximation), leads to an appropriate vertex
graph without any loops, whereas the higher orders Γ(n)[φ] with n > 0 summarize the
contributions of the n-loop vertex graphs.

For a better understanding, we can recapitulate: With Eq. (2.18) we can get all Feynman
graphs without restriction of any kind, wheras with Eq. (2.21) we just get all connected
graphs, hence, only those where all internal lines are connected. Finally, with Eq. (2.23)
we can further exclude those graphs that don’t remain connected when someone cuts one
internal line. These one-particle irreducible (vertex) graphs can be calculated loop by
loop with the action S as initial point. On the other hand, the connected graphs can be
reassembled by use of these vertex graphs (and the propagators because vertex graphs don’t
have external legs).

Now we should say some words about propagators, defined (except prefactors) as the
two-point functions Gµν(x, y) (free or dressed). So, we can consider the photon propagator
as

GAAµν (x, y) = − δ2Zc[j]

δjAµ (x)δjAν (y)

∣∣∣∣
j=0

= −δAν(y)

δjAµ (x)

∣∣∣∣
j=0

. (2.27)

Using j(x) = − δΓ[φ]
δφ(x) , see the Legendre transformation in (2.22), the appropriate vertex

function reads

ΓAAµν (x, y) =
δ2Γ[φ]

δAµ(x)δAν(y)

∣∣∣∣
φ=0

= − δj
A
ν (y)

δAµ(x)

∣∣∣∣
φ=0

. (2.28)

1usually one further has for j = 0: φcl = 0 .
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One observes immediately that they are inverse to each other, reading explicitly

δµνδ
(4)(x− z) =

δAµ(x)

δAν(z)
=

∫
d4y

δAµ(x)

δjAρ (y)

δjAρ (y)

δAν(z)
=

∫
d4y GAAρµ (y, x) ΓAAνρ (z, y) . (2.29)

Usually, one starts with the tree approximation

Γ(0)[φ] = S[φ] =

∫
d4x

(
L0(x) + Lint(x)

)
=

∫
d4x

(
1

2
Aµ(x)KµνAν(x) + Lint(x)

)
, (2.30)

containing a bilinear and an interaction part. Kµν is a polynomial in partial derivatives,
more precisely, of second order for the gauge boson Aµ in QED. So it’s easy to derive the
two-point vertex function of (2.28) in position space:

ΓAAµν (z, y) =
1

2
(Kµν +Kνµ) δ(4)(y − z) symm. in µ,ν

= Kµνδ
(4)(y − z) , (2.31)

where Kµν acts on y. Hence, the challenge in calculating the propagator GAAµν of (2.27)
is to find the inverse of the operator Kµν . In gauge theories one needs a gauge fixing to
guarantee the invertibility (see Sect. 3.2).

In conclusion, we should point out that the generating functional, see (2.16), Z =∫
DAe−S , is not finite in gauge theories because a gauge transform A → A + δΛA can

always be applied. This leads to a factor
∫
DΛ in the above integral that alters Z infinite.

In non-Abelian theories one usually treats this problem by the introducton of ghost fields
(c, c̄), known as the Faddeev-Popov technique. See [41, 37] for further details.



Chapter 3

The Non-Commutative U?(1)
Gauge Model

The point of departure of this diploma thesis is the model considered in [14]. So we should
explain this non-commutative U?(1) gauge model in detail and summarize the outcome of
[14]. This is done in Sect. 3.3 where we start with Eq. (1.16) of the introduction and give a
short summary of how to approach to our model. Further, we discuss the BRST symmetry.

3.1 Some basic definitions

Before we continue to develop the model mentioned in the introduction, we should start
with some definitions: the Abelian field strength tensor is well known as

fµν = ∂µAν − ∂νAµ , (3.1)

whereas the non-Abelian field strength tensor reads

Fµν = ∂µAν − ∂νAµ − ig [Aµ ?, Aν ] . (3.2)

Furthermore, we will need the definition of the covariant derivative

Dµ = ∂µ + ig [... ?, Aµ] . (3.3)

As already mentioned in the introduction, we choose

[xµ ?, xν ] = iεθµν (3.4)

to implement the deformation of our Euclidean space with a real ε of mass dimension −2
and a dimensionless θµν-tensor of the form

(θµν) =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 . (3.5)

In 4 dimensions it is possible to have this block diagonal form of θµν with rank 4! We use
further the abbreviations ψ̃µ(x) := θµνψν(x), without ε so that the dimension of ψ̃µ is the
same as of ψµ, and ψ̃(x) := θµνψµν(x).

10
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Before we can describe the further development of the localized model in Eq. (1.16)
which now reads explicitly by neglecting the star under the integral in the notation

Sinv + Sloc =

∫
d4x

(
1

4
FµνFµν + aBµνFµν −Bµνε2D̃2D2Bµν

)
, (3.6)

we have to get to know the so-called BRST symmetry.

3.2 BRST symmetry

A gauge transformation is usually given by [42, 43, 44]:

Aµ(x)→ A′µ(x) = U(x) ? Aµ(x) ? U−1(x) +
i

g
U(x) ? ∂µU

−1(x) . (3.7)

For the U?(1) gauge group we have U(x) = eigΛ = 1 + igΛ + O(Λ2). This leads us to the
infinitesimal gauge transformations of the photon field Aµ

Aµ → A′µ = Aµ + δΛAµ with δΛAµ = ∂µΛ + ig [Λ ?, Aµ] = DµΛ , (3.8)

and of the field strength tensor Fµν

Fµν → F ′µν = Fµν + δΛFµν with δΛFµν = ig [Λ ?, Fµν ] , (3.9)

which can be simply proved by insertion of the above series expansion of U(x). The part
Sinv =

∫
d4x

(
1
4FµνFµν

)
of the action is invariant under such a gauge transformation, but

leads to a transverse two-point vertex function without an inverse. See for this for example
the equations (4.27) and (4.28).

Hence, one has to break the ordinary gauge symmetry by the introduction of a gauge
fixing part

Sgf =

∫
d4x

(α
2
B2 +B∂A

)
,

δSgf

δB
= ∂A+ αB = 0 , (3.10)

to ensure the existence of the photon propagator. α = 0 is the so-called Landau gauge.
The need of the BRST procedure [39, 37] is explained by the fact that for a U?(1)

symmetry the gauge fixing part introduces a non-linear breaking - not a pleasant situa-
tion. Therefore, one tries to incorporate the gauge breaking terms as parts of a non-linear
symmetry. This is the BRST symmetry (Becchi, Rouet, Stora, Tyutin).

In the ordinary U(1)-QED one has

δAµ = ∂µΛ . (3.11)

This implies for the gauge fixing term the following linear breaking

δSgf[B,A] =

∫
d4x

(
B∂2Λ

)
6= 0 , (3.12)

which is linear in the fields.
However, for the case of a U?(1) model one has a non-Abelian transformation for the

photon field

δAµ = ∂µΛ + ig [Λ ?, Aµ] . (3.13)
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This induces a non-linear breaking:

δSgf[B,A] =

∫
d4xB ∂µ(∂µΛ + ig [Λ ?, Aµ]) 6= 0 . (3.14)

The linear breaking (3.12) can be well understood in the realm of renormalization. However,
the non-linear case induces difficulties.

Therefore, one tries to incorporate it as a part of a non-linear symmetry. This leads
to the BRST transformation in exchanging the infinitesimal gauge parameter Λ into a
fermionic ghost field c with the Faddeev-Popov(φπ)-charge +1,

δAµ −→ sAµ = ∂µc+ ig [c ?, Aµ] = Dµc , dim c = 0 . (3.15)

In order to get a symmetry of the whole gauge-fixing action one has to add a piece containing
the ghost field c and its anti-ghost field c̄. For that purpose, one takes (α = 0)

Sgf =

∫
d4x (B∂A− c̄∂µsAµ) , (3.16)

and in order to have a symmetry we impose

sSgf =

∫
d4x

(
(sB)∂A+B∂µsAµ − (sc̄) ∂µsAµ + c̄ ∂µs

2Aµ
)

= 0 . (3.17)

The answer is

sc̄ = B ,

sB = 0 ,

s2Aµ = 0 , (3.18)

and from this follows that dim c̄ = 2 with φπ-charge −1. The full action is φπ-neutral, and
the last equation gives

sc = igc ? c , (3.19)

because to obtain

s2Aµ = sDµc = s (∂µc+ ig [c ?, Aµ])

= ∂µsc+ ig [sc ?, Aµ]− ig {c ?, ∂µc+ ig [c ?, Aµ]} = 0 , (3.20)

one needs

∂µsc− ig {c ?, ∂µc} = 0 . (3.21)

This set of symmetry transformations are the BRST transformations and they have three
important properties: they are non-linear, supersymmetric and nilpotent.

A further last comment is the fact that (c̄, B) form a BRST doublet. It is well known in
the literature [40, 45] that such doublets are no problem in the renormalization procedure.

Finally, one has also the following shorthand notation:

Sgf =

∫
d4x s (c̄∂A) . (3.22)
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To complete the transformation laws, the matter part of the action has not yet been
taken into account:

Smatter =

∫
d4x ψ̄ ? (iγµ(∂µ − igAµ)−m) ? ψ , (3.23)

where γµ are the gamma matrices and ψ stands for the matter fields of the considered
theory. Their BRST laws read

sψ = igc ? ψ , sψ̄ = igψ̄ ? c . (3.24)

However, we will neglect this matter part for the rest of this diploma thesis, as is customary
and fitting to Ref. [14].

3.3 Final approach to the model

At first, the ansatz in (3.6) for the localized part of the action is modified to

Sloc =

∫
d4x

[a
2

(
Bµν + B̄µν

)
Fµν − B̄µνε2D̃2D2Bµν + ψ̄µνε

2D̃2D2ψµν

]
, (3.25)

see [14, 30, 31], with the antisymmetric (bosonic) auxiliary field Bµν and its complex
conjugated field B̄µν . Additionally, we have introduced a pair of (fermionic) ghost fields
(ψ̄µν , ψµν). The motivation for this structure will get plausible in a few moments since it
is needed for a BRST invariant formulation of the action.

This ansatz delivers IR divergences which hinder renormalizability. They are discussed
in detail in [32] and their origin is the operator D̃2D2 standing in between the new auxiliary
fields. So what is done now in [14] is that one part of the operator (D̃2) is put into the
so-called soft breaking term of the action. Its the part

Ssoft =

∫
d4x

[a
2

(
Bµν + B̄µν

)
Fµν

]
, (3.26)

which, by replacing D̃2 with �̃, gets altered to

Ssoft =

∫
d4x

[
a′

2

(
Bµν + B̄µν

) 1

�̃
Fµν

]
. (3.27)

This modification also leads to the desired damping in the photon propagator GAA de-
scribed in the introduction. So the second part of the operator (D2) is not needed any
more, and some further small changes gives [14]:

Ssoft + Saux =

∫
d4x

[
γ2

2

(
Bµν + B̄µν

) 1

�̃

(
fµν + σ

θµν
2
f̃

)
− B̄µνBµν + ψ̄µνψµν

]
. (3.28)

Here, for example, the non-Abelian field strength tensor has been replaced by the Abelian
one, since for the damping of the gauge propagator just the bilinear part is needed. The
parameter γ replaces the old parameter a and has mass dimension 1. While the second
part is invariant under the (new) BRST transformations

sψ̄µν = B̄µν , sB̄µν = 0 ,

sBµν = ψµν , sψµν = 0 , (3.29)
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hence, building BRST doublets, with

Saux = −
∫
d4x s

(
ψ̄µνBµν

)
, (3.30)

the first part of the action still needs a little more attention. It can be written BRST exact
by introduction of two more doublets

sQ̄µναβ = J̄µναβ , sJ̄µναβ = 0 ,

sQµναβ = Jµναβ , sJµναβ = 0 , (3.31)

as

Ssoft =

∫
d4x s

[(
Q̄µναβBµν +QµναβB̄µν

) 1

�̃

(
fαβ + σ

θαβ
2
f̃

)]
, (3.32)

with their physical values

Q̄µναβ
∣∣
phys

= 0 , J̄µναβ
∣∣
phys

=
γ2

4
(δµαδνβ − δµβδνα) ,

Qµναβ
∣∣
phys

= 0 , Jµναβ
∣∣
phys

=
γ2

4
(δµαδνβ − δµβδνα) . (3.33)

The advantage of such BRST doublets is that one can easily modify the IR behaviour of
the propagators by a linear coupling of these fields to the original ones [45], as has been
done for example through the soft breaking part of Eq. (3.28).

Furthermore, the BRST transformations for the gauge field Aµ (see Eq. (3.18)) and
the ghost field c (Eq. (3.19)) are non-linear. This can be treated by introducing BRST
invariant external sources ΩA

µ and Ωc in the following manner [40]:

Sext =

∫
d4x

(
ΩA
µ sAµ + Ωcsc

)
, sSext = 0 . (3.34)

So, we now have found all parts of the action S = Sinv + Sgf + Saux + Ssoft + Sext, given in
the equations (3.22), (3.30), (3.32) and (3.34).

The next step in [14] is that all auxiliary fields are integrated out in the path integral
formalism. This is equivalent to the use of the unphysical nature of such fields introduced
as BRST doublets, meaning that the theory is not depending on (Bµν , B̄µν):

δS

δBµν
=
γ2

4
(δαµδβν − δανδβµ)

1

�̃

(
fαβ + σ

θαβ
2
f̃

)
− B̄µν = 0 , (3.35)

and

δS

δB̄µν
=
γ2

4
(δαµδβν − δανδβµ)

1

�̃

(
fαβ + σ

θαβ
2
f̃

)
−Bµν = 0 . (3.36)

Here, Eq. (3.28) has been used. So, we get

Bµν = B̄µν =
γ2

2

1

�̃

(
fµν + σ

θµν
2
f̃

)
. (3.37)
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With the abbreviations θ2 = θµνθµν , ρ ≡
(

2σ + θ2

2 σ
2
)

and f̃ = −2∂̃A, one can write the

non-localized action, or from now on better termed as the so-called vertex functional in
tree approximation, as

Γ(0) =

∫
d4x

(
1

4
FµνFµν + s(c̄ ∂A) +

γ4

4

(
fµν

1

�̃2
fµν + 2ρ ∂̃A

1

�̃2
∂̃A
))

, (3.38)

where we have inserted the expressions for Bµν and B̄µν of Eq. (3.37) into Eq. (3.28). This
is the model treated in [14]. Beside the calculation of its propagators and vertices, a one-
loop analysis was carried out. These results should be quoted in the next two subsections
because they will be needed for the further development of the theory.

3.3.1 Propagators and vertices

So, this (and the next) subsection is based on Ref. [14]. The gauge propagator is in k-space
and Landau gauge

GAAµν (k) =
1

k2
(

1 + γ4

(k̃2)2

)
δµν − kµkν

k2
− ργ4

ργ4 + k2
(
k̃2 + γ4

k̃2

) k̃µk̃ν
k̃2

 , (3.39)

whereas the ghost propagator reads Gc̄c(k) = − 1
k2 . The gauge propagator has the right

damping behaviour in the IR-limit k̃2 → 0. To obtain the inverse of GAAµν , hence, the
two-point vertex function, one has to generalize to an arbitrary gauge α 6= 0:

ΓAAµν (k) = k2D

{
δµν +

(
1

αD
− 1

)
kµkν
k2
− ργ4

k2k̃2D
k̃µk̃ν

k̃2

}
, with D =

(
1 +

γ4

(k̃2)2

)
.

(3.40)

Additionally, there are three vertices, Ṽ 3A
ρστ , Ṽ 4A

ρστυ, and Ṽ c̄Ac
ρ . Their calculation gives:

Ṽ 3A
ρστ (k1, k2, k3) = 2ig (2π)4δ(4)(k1 + k2 + k3) sin

(ε
2
k1k̃2

)
×
{

(k1 − k3)σδτρ + (k2 − k1)τδρσ + (k3 − k2)ρδστ

}
, (3.41)

Ṽ 4A
ρστυ(k1, k2, k3, k4) = −4g2 (2π)4δ(4)(k1 + k2 + k3 + k4)

×
{(
δρτδσυ − δρυδστ

)
sin
(ε

2
k1k̃2

)
sin
(ε

2
k3k̃4

)
+
(
δρσδτυ − δρυδστ

)
sin
(ε

2
k1k̃3

)
sin
(ε

2
k2k̃4

)
+
(
δρσδτυ − δρτδσυ

)
sin
(ε

2
k2k̃3

)
sin
(ε

2
k1k̃4

)}
, (3.42)

and

Ṽ c̄Ac
ρ (q1, k, q2) = −2ig (2π)4δ(4)(q1 + k + q2) q2ρ sin

(ε
2
q1q̃2

)
. (3.43)

These are the results in tree approximation. We can now switch over to the one-loop results.
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Figure 3.1: The vertices of the action (3.38): V 3A
ρστ , V 4A

ρστυ, and V c̄Ac
ρ .

3.3.2 One-loop results

The one-loop corrections to the two-point vertex function (3.40), see [14] for a detailed

listing, are proportional to
(
k2δµν − kµkν

)
, or to

k̃µk̃ν
(k̃2)2

. So, they can be absorbed by a

redefinition of the parameters ρ and γ. The one-loop part containing
(
k2δµν − kµkν

)
is UV

divergent and treated by the introduction of a cutoff parameter Λ.
Further, there are UV divergences arising for the 3A and the 4A vertex, but these

corrections can be written proportional to ln(Λ)Ṽ 3A, tree
ρστ , or ln(Λ)Ṽ 4A, tree

ρστυ , respectively.
So, there is just one more term left over. It’s an IR divergent part contributing to the

3A vertex, reading

Γ3A, IR
ρστ (k1, k2, k3) = −2ig3

π2
cos
(ε

2
k1k̃2

) ∑
i=1,2,3

k̃i,ρk̃i,σk̃i,τ

ε(k̃2
i )

2
. (3.44)

This term has a complete new structure. There is no way to absorb it into a redefinition
of an already existing parameter. We have to add a counter term to our action, which
will be the first modification carried out in this diploma thesis (see next chapter), before
a further treatment of this model, starting with the BRST exact formulation (Sect. 4.1),
and followed by the derivation of two identities. This is done in the sections 4.2 and 4.3.



Chapter 4

Extended BRST Formulation

Here, at first, the action of our U?(1) gauge model has been expanded by a counter term
corresponding to (3.44), and, subsequently, formulated in a BRST exact manner. Then, two
identities for the AA and 3A vertex function has been derived. Moreover, it has been shown
that the 3A vertex gets altered in the desired way. This outcome has been published in
[46]. To conclude this chapter, the linearized BRST operator has been calculated explicitly
since it will be needed for a possible algebraic renormalization of the model.

4.1 BRST exact formulation

We have seen in the previous chapter that by adding the term

γ4

4

∫
d4x

(
fµν

1

�̃2
fµν + 2ρ ∂̃A

1

�̃2
∂̃A

)
, (4.1)

to the usual invariant and the gauge fixing part of the action, the desired damping of the
gauge propagator in the IR limit can be achieved.

Furthermore, we now have to add a counter term proportional to the one-loop result in
(3.44), concerning the 3A vertex function. It will be seen that

Γ′ext =
g′

2

∫
d4x

(
{Aµ ?, Aν}

∂̃µ∂̃ν ∂̃ρ

ε�̃2
Aρ

)
, (4.2)

is the right choice. The part
∂̃µ∂̃ν ∂̃ρ
ε�̃2 Aρ obviously has the right structure, and later in the

Appendix, Eq. (A.72), it has been shown that the first end, the anticommutator, delivers
the right cosine. Therefore, we can start with the following action:

Γ
(0)
ext = Γ′ext + Γ(0) =

∫
d4x

(
1

4
FµνFµν + s(c̄ ∂A) +

γ4

4

(
fµν

1

�̃2
fµν + 2ρ ∂̃A

1

�̃2
∂̃A
)

+
g′

2

(
{Aµ ?, Aν}

∂̃µ∂̃ν ∂̃ρ

ε�̃2
Aρ

))
, (4.3)

where the parameter γ has mass dimension 1, wheras the new parameter g′ is dimensionless,
according to the coupling constant g in the non-Abelian field strength tensor. In cases of
uncertainty concerning the notation see Sect. 3.1.

17
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This action is not yet invariant under the BRST transformation s,

sAµ = ∂µc+ ig [c ?, Aµ] = Dµc ,

sc = igc ? c ,

sc̄ = B ,

sB = 0 ,

s2φ = 0 , φ = (A,B, c, c̄) . (4.4)

In addition, we have to introduce the external sources ΩA
µ and Ωc to treat the non-linearities

in the BRST transformations (4.4) for Aµ and c,

Γext =

∫
d4x

(
ΩA
µ sAµ + Ωcsc

)
, (4.5)

as already explained above. The BRST invariance at the tree level can usually be denoted
via the so-called Slavnov-Taylor identity [40, 39, 37],

S(Γ(0)) =

∫
d4x

(
δΓ(0)

δΩA
µ

?
δΓ(0)

δAµ
+
δΓ(0)

δΩc
?
δΓ(0)

δc
+B ?

δΓ(0)

δc̄

)
= 0 , (4.6)

but this is not true for our action S(Γ
(0)
ext + Γext) 6= 0 because of the new terms (4.1) and

(4.2). Note that, for example, δΓ
δΩAµ

= sAµ. Similarly, δΓ
δΩc = sc and B = sc̄. The Slavnov-

Taylor identity (4.6) is a consequence of the nilpotency of s and of the BRST invariance of
some vertex functional Γ.

Hence, we have to extend our BRST transformations (4.4) and introduce further pa-
rameters and transformation laws:

sχ̄ = γ4 , sγ4 = 0 ,

sδ̄ = g′ , sg′ = 0 . (4.7)

So, we have installed the new parameter χ̄ as BRST doublet partner of γ4, and δ̄ as
the partner of g′. χ̄ and δ̄ both have ghost number −1 since s is a fermionic operator
that increases the ghost number by 1. The mass dimension is identical to the one of the
appropriate BRST partner because the operator s leaves it unchanged.

With this we now can write down an extended action as

Γ
(0)
inv =

∫
d4x

(
1

4
FµνFµν + s(c̄ ∂A) + s(χ̄L1

br) + s(δ̄L2
br) + ΩA

µ sAµ + Ωcsc

)
, (4.8)

with

L1
br =

1

4

(
fµν ?

1

�̃2
fµν + 2ρ ∂̃A ?

1

�̃2
∂̃A

)
,

L2
br =

1

2
{Aµ ?, Aν} ?

∂̃µ∂̃ν ∂̃ρ

ε�̃2
Aρ , (4.9)

which is now invariant under the BRST transformations (4.4) and (4.7). We can now
express this by the introduction of an extended Slavnov-Taylor operator

S(Γ
(0)
inv) =

∫
d4x

(
δΓ

(0)
inv

δΩA
µ

?
δΓ

(0)
inv

δAµ
+
δΓ

(0)
inv

δΩc
?
δΓ

(0)
inv

δc
+B ?

δΓ
(0)
inv

δc̄

)
+ γ4∂Γ

(0)
inv

∂χ̄
+ g′

∂Γ
(0)
inv

∂δ̄
,

(4.10)
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via the extended Slavnov-Taylor identity

S(Γ
(0)
inv) = 0 . (4.11)

Note again that now γ4 = sχ̄ and g′ = sδ̄. We can go back to the original, physical content
of the model by χ̄ = 0 and δ̄ = 0.

4.2 Identity for the two-point vertex graph

From the extended Slavnov-Taylor identity in (4.11) a few more identities can be derived.
Starting with the first term of the extended Slavnov-Taylor operator (4.10)

S(Γ
(0)
inv) =

∫
d4x

(
δΓ

(0)
inv

δΩA
µ

?
δΓ

(0)
inv

δAµ
+ other terms

)
, (4.12)

and inserting the equation of motion for ΩA
µ

δΓ
(0)
inv

δΩA
µ

= sAµ = ∂µc+ ig [c ?, Aµ] , (4.13)

we get (setting g = 1 for simplification)

S(Γ
(0)
inv) =

∫
d4x (∂µc+ ic ? Aµ − iAµ ? c) ?

δΓ
(0)
inv

δAµ
+ other terms . (4.14)

By using partial integration and cyclic permutation one easily shows that

δS(Γ
(0)
inv)

δc(z)
= −∂zµ

δΓ
(0)
inv

δAµ(z)
+ iAµ(z) ?

δΓ
(0)
inv

δAµ(z)
− i

δΓ
(0)
inv

δAµ(z)
? Aµ(z) + other terms . (4.15)

We can neglect the “other term”, since they won’t be important for our first identity. It is
shown in (4.38) and below, that these other possible contributions vanish.

Building the functional derivative with respect to Aρ(y), one gets

δ2S(Γ
(0)
inv)

δAρ(y)δc(z)
= −∂zµ

δ2Γ
(0)
inv

δAρ(y)δAµ(z)
+ i

[
δ(4)(z − y) ?,

δΓ
(0)
inv

δAρ(z)

]
+ i

[
Aµ(z) ?,

δ2Γ
(0)
inv

δAρ(y)δAµ(z)

]
.

(4.16)

The equation of motion for Aµ has to depend at least linear on the fields since the terms of
our action (4.8) are bilinear or of higher order. Therefore, we attain the following identity

δ2S(Γ
(0)
inv)

δAρ(y)δc(z)

∣∣∣∣∣
φ=0

= −∂zµ
δ2Γ

(0)
inv

δAρ(y)δAµ(z)

∣∣∣∣∣
φ=0

= 0 , (4.17)

where the abbreviation φ = (Aµ, c, c̄, ...) has been used. The validity of this identity (4.17)
can be shown easily at tree level, which is done now. What we need for this purpose is the
two-point vertex graph of this model

ΓAAρµ (y, z) =
δ2Γ

(0)
inv

δAρ(y)δAµ(z)

∣∣∣∣∣
φ=0

, (4.18)
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which can be derived either from the inverse of the appropriate connected Green’s function,
since ∫

d4y GAAρν (y, x) ΓAAµρ (z, y) = δµνδ
(4)(x− z) , (4.19)

see (2.29), or directly from the bilinear part of the action (4.8). Here, the latter is chosen.
The first part of (4.8) that is bilinear in the gauge field reads

Γ
(0)
inv =

∫
d4x

(
1

4
FµνFµν + other terms

)
bi−→ Γ

(0)
bi,1 =

∫
d4x

(
1

4
fµνfµν

)
, (4.20)

but there is also a second part coming from L1
br,

Γ
(0)
bi,2 =

∫
d4x

(
γ4 L1

br

)
=
γ4

4

∫
d4x

(
fµν

1

�̃2
fµν + 2ρ ∂̃A

1

�̃2
∂̃A

)
. (4.21)

To be exact, we have to prove whether a contribution is arising from an arbitrary gauge
condition

Γ
(0)
inv,gf =

∫
d4x

(
B∂A

)
α6=0−→ Γ

(0)
bi,gf =

∫
d4x

(
B∂A− α

2
B2
)
. (4.22)

With the equation of motion for B

δΓ
(0)
bi,gf

δB
= ∂A− αB = −jB = 0 , (4.23)

we can rewrite (4.22) as

Γ
(0)
bi,gf =

1

2α

∫
d4x (∂A)2 . (4.24)

Even if this is also a bilinear part, it should be mentioned, that the identity (4.17) has been
derived under the assumption of Landau gauge fixing (α = 0). This is fitting to our BRST
exact formulation of the action (4.8)

Γ
(0)
inv =

∫
d4x
(1

4
FµνFµν + s(c̄ ∂A) + other terms

)
. (4.25)

Therefore, we can neglect a possible contribution from (4.24) and continue with the calcu-
lation for (4.20) and (4.21).

Let us start with the first part (4.20)

Γ
(0)
bi,1 =

∫
d4x

(
1

4
fµνfµν

)
. (4.26)

Its contribution is calculated in the Appendix A.1 and is given by Eq. (A.4)

δ2Γ
(0)
bi,1

δAρ(y)δAµ(z)
= −

(
�zδµρ − ∂zµ∂zρ

)
δ(4)(z − y) . (4.27)
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Essentially, this is a so called transverse delta function [38], and, in general, a transverse
projection operator has the structure

P Tµν = δµν −
∂µ∂ν
�

, P TµρP
T
ρν = P Tµν , ∂µP

T
µν = 0 , (4.28)

and has no inverse. The second contribution to the identity (4.17) comes from (4.21)

Γ
(0)
bi,2 =

γ4

4

∫
d4x

(
fµν

1

�̃2
fµν + 2ρ ∂̃A

1

�̃2
∂̃A

)
. (4.29)

Using the results of Appendix A.2, Eq. (A.15), we get

δ2Γ
(0)
bi,2

δAρ(y)δAµ(z)
= − γ

4

�̃2
z

(
�zδµρ − ∂zµ∂zρ + ρ ∂̃zµ∂̃

z
ρ

)
δ(4)(z − y) . (4.30)

Summarizing both parts gives

δ2Γ
(0)
inv

δAρ(y)δAµ(z)

∣∣∣∣∣
φ=0

= −

{(
1 +

γ4

�̃2
z

)(
�zδµρ − ∂zµ∂zρ

)
+
ργ4

�̃2
z

∂̃zµ∂̃
z
ρ

}
δ(4)(z − y) . (4.31)

As a consequence, we have shown that the identity (4.17) is fulfilled at tree level,

−∂zµ
δ2Γ

(0)
inv

δAρ(y)δAµ(z)

∣∣∣∣∣
φ=0

=

{(
1 +

γ4

�̃2
z

)
∂zµ
(
�zδµρ − ∂zµ∂zρ

)
+
ργ4

�̃2
z

∂zµ∂̃
z
µ∂̃

z
ρ

}
δ(4)(z − y) = 0 ,

(4.32)

since the first part in the curly brackets of (4.31) is proportional to the usual transverse
projection operator with its properties given in (4.28), and the second part in (4.32) is zero
because of the antisymmetric structure of our θ-tensor

∂µ∂̃µ = ∂µθµν∂ν = −∂µθνµ∂ν = −∂νθνµ∂µ = −∂ν ∂̃ν = 0. (4.33)

Here, permutability of partial derivatives and the θ-tensor has been used.
So, the identity (4.17) embodies the transversality of the two-point vertex graph and

we hope that it holds true even for higher perturbative orders.
Before deriving another identity, we should say a few more words about the gauge fixing.

We have already mentioned (see above) that equation (4.17) just holds true for Landau
gauge fixing. Otherwise we would additionally gain a contribution from the third term of
our extended Slavnov-Taylor operator (4.10)

S(Γ
(0)
inv) =

∫
d4x

(
B ?

δΓ
(0)
inv

δc̄
+ other terms

)
. (4.34)

On the one hand we need the equation of motion for c̄. Using the action in (4.8) and the
BRST transformations (4.4) we get

δΓ
(0)
inv

δc̄
= −s (∂µAµ) = −�c− ig∂µ

(
[c ?, Aµ]

)
. (4.35)
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On the other hand we can write the B-field by using the equation of motion for B (4.23)
as

B =
∂µAµ
α

. (4.36)

One can easily see that after inserting (4.35) and (4.36) in (4.34) and building the functional
derivatives with respect to c(z) and A(y), the equation (4.17) is modified to

δ2S(Γ
(0)
inv)

δAρ(y)δc(z)

∣∣∣∣∣
φ=0

= −∂zµ
δ2Γ

(0)
inv

δAρ(y)δAµ(z)

∣∣∣∣∣
φ=0

−
∂zρ
α

�zδ(4)(z − y) = 0 . (4.37)

This new term would cancel the contribution that would come from the gauge part (4.24)
when inserted into the first term of (4.37). For the detailed derivation see Appendix A.3.
We will ignore such considerations from now on and stay in Landau gauge α = 0.

Additionally, there are some possible contributions to our identity in (4.17) from the
last two terms of the extended Slavnov-Taylor operator (4.10)

S(Γ
(0)
inv) =

∫
d4x

(
(...) + γ4∂Γ

(0)
inv

∂χ̄
+ g′

∂Γ
(0)
inv

∂δ̄

)
, (4.38)

combined with the following parts of our action (4.8)

Γ
(0)
inv =

∫
d4x

(
other terms + s(χ̄L1

br) + s(δ̄L2
br)
)
, (4.39)

and with L1
br and L2

br given in (4.9). These possible contributions have been neglected above
(“other terms” in (4.12) and below) because they are transformed to zero. It is obvious
that for vanishing fields L2

br can give no additional term to the identity (4.17) because it is
trilinear in the fields, and not bilinear. However, this is different for L1

br. Here, we have to
take a closer look at

δ2S(Γ
(0)
inv)

δAρ(y)δc(z)

∣∣∣∣∣
φ=0

=
δ2

δAρ(y)δc(z)

(
γ4∂Γ

(0)
inv

∂χ̄

)∣∣∣∣∣
φ=0

. (4.40)

It has been shown explicitly in Appendix A.2 that this is zero, Eq. (A.26),

δ2

δAρ(y)δc(z)

(
γ4∂Γ

(0)
inv

∂χ̄

)∣∣∣∣∣
φ=0

= −γ4 δ2

δAρ(y)δc(z)

∫
d4x

(
sL1

br

) ∣∣∣∣∣
φ=0

= −γ4 δ2

δAρ(y)δc(z)

∫
d4x

(
c
∂µ

�̃2

(
�δµν − ∂µ∂ν + ρ∂̃µ∂̃ν

)
Aν

)∣∣∣∣∣
φ=0

= 0 ,

(4.41)

where the properties for a transverse projection operator (4.28) and ∂µ∂̃µ = 0 have been
used. So we have definitely shown that the identity (4.17), embodying the transversality
of the two-point vertex graph, is valid at tree level.
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4.3 Identity for the 3A vertex

Now, we can start to derive another identity which should tell us something about the
behaviour of the 3A vertex. For this purpose, we need the extended Slavnov-Taylor operator
in (4.10) again, in particular the following parts:

S(Γ
(0)
inv) =

∫
d4x

(
δΓ

(0)
inv

δΩA
µ

?
δΓ

(0)
inv

δAµ
+ ...

)
+ γ4∂Γ

(0)
inv

∂χ̄
+ g′

∂Γ
(0)
inv

∂δ̄
= 0 . (4.42)

Setting in the equation for motion for ΩA
µ , given in (4.13), leads to

S(Γ
(0)
inv) =

∫
d4x

(
(∂µc+ ig [c ?, Aµ]) ?

δΓ
(0)
inv

δAµ
+ ...

)
+

(
γ4 ∂

∂χ̄
+ g′

∂

∂δ̄

)
Γ

(0)
inv = 0 . (4.43)

Now we cannot neglect the last two terms because they won’t vanish. We can build the
functional derivatives with respect to c(z) and Aρ(y) and get, similar to (4.16),

δ2S(Γ
(0)
inv)

δAρ(y)δc(z)
=− ∂zµ

δ2Γ
(0)
inv

δAρ(y)δAµ(z)

+ ig

[
δ(4)(z − y) ?,

δΓ
(0)
inv

δAρ(z)

]
+ ig

[
Aµ(z) ?,

δ2Γ
(0)
inv

δAρ(y)δAµ(z)

]
+ ...

+

(
γ4 ∂

∂χ̄
+ g′

∂

∂δ̄

)
δ2Γ

(0)
inv

δAρ(y)δc(z)
= 0 . (4.44)

By building another functional derivative with respect to Aλ(r) we finally arrive at

δ3S(Γ
(0)
inv)

δAλ(r)δAρ(y)δc(z)
= −∂zµ

δ3Γ
(0)
inv

δAλ(r)δAρ(y)δAµ(z)

+ ig

[
δ(4)(z − y) ?,

δ2Γ
(0)
inv

δAλ(r)δAρ(z)

]
+ ig

[
δ(4)(z − r) ?,

δ2Γ
(0)
inv

δAρ(y)δAλ(z)

]
+ ...

+

(
γ4 ∂

∂χ̄
+ g′

∂

∂δ̄

)
δ3Γ

(0)
inv

δAλ(r)δAρ(y)δc(z)
= 0 , (4.45)

and for vanishing fields

δ3S(Γ
(0)
inv)

δAλ(r)δAρ(y)δc(z)

∣∣∣∣∣
φ=0

= −∂zµ
δ3Γ

(0)
inv

δAλ(r)δAρ(y)δAµ(z)

∣∣∣∣∣
φ=0

+ ig

δ(4)(z − y) ?,
δ2Γ

(0)
inv

δAλ(r)δAρ(z)

∣∣∣∣∣
φ=0

+ ig

δ(4)(z − r) ?,
δ2Γ

(0)
inv

δAρ(y)δAλ(z)

∣∣∣∣∣
φ=0


+

(
γ4 ∂

∂χ̄
+ g′

∂

∂δ̄

)
δ3Γ

(0)
inv

δAλ(r)δAρ(y)δc(z)

∣∣∣∣∣
φ=0

= 0 . (4.46)
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This is our second identity that we want to discuss a bit closer at tree level. Therefore, one
has to derive the partial derivative of the 3A vertex graph

∂zµΓ3A
λρµ(r, y, z) = ∂zµV

3A
λρµ(r, y, z) = ∂zµ

δ3Γ
(0)
inv

δAλ(r)δAρ(y)δAµ(z)

∣∣∣∣∣
φ=0

. (4.47)

There are two terms in our action (4.8) which are trilinear in the gauge field Aµ, precisely

Γ
(0)
tri,1 =

1

4

∫
d4x

(
FστFστ

)
tri

= −ig

∫
d4x

(
(∂σAτ ) ? (Aσ ? Aτ −Aτ ? Aσ)

)
. (4.48)

The second trilinear part is coming from our new counter term and reads

Γ
(0)
tri,2 =

∫
d4x

(
g′L2

br

)
=
g′

2

∫
d4x

(
{Aσ ?, Aν} ?

∂̃σ∂̃ν ∂̃τ

ε�̃2
Aτ

)
, (4.49)

with L2
br of (4.9). The calculations are done in the Appendices A.4 and A.7, respectively.

For the main part (4.48) we get the result (A.42)

−∂zµ
δ3Γ

(0)
tri,1

δAλ(r)δAρ(y)δAµ(z)
= −ig

{[(
�zδλρ − ∂zλ∂zρ

)
δ(4)(z − y) ?, δ(4)(z − r)

]
+
[(
�zδλρ − ∂zλ∂zρ

)
δ(4)(z − r) ?, δ(4)(z − y)

]}
. (4.50)

For the counter part we arrive at (A.61)

− ∂zµ
δ3Γ

(0)
tri,2

δAλ(r)δAρ(y)δAµ(z)
=

− g′
({

∂zµδ
(4)(z − y) ?,

∂̃zµ∂̃
z
λ∂̃

z
ρ

ε�̃2
z

δ(4)(z − r)

}
+

{
∂zµδ

(4)(z − r) ?,
∂̃zµ∂̃

z
λ∂̃

z
ρ

ε�̃2
z

δ(4)(z − y)

})
.

(4.51)

Furthermore, we have to derive the contributions arising from the second and third term
in (4.46). For this, we need all the bilinear parts of our action. They are already stated
explicitly in (4.26), which is the main bilinear part, and in (4.29), which implements the
damping of the photon propagator. The calculations are done in the Appendices A.6 and
A.9. The results (A.53) and (A.78) read

ig

δ(4)(z − y) ?,
δ2Γ

(0)
bi,1

δAλ(r)δAρ(z)

∣∣∣∣∣
φ=0

+ ig

δ(4)(z − r) ?,
δ2Γ

(0)
bi,1

δAρ(y)δAλ(z)

∣∣∣∣∣
φ=0

 =

= −ig

{[
δ(4)(z − y) ?,

(
�zδλρ − ∂zλ∂zρ

)
δ(4)(z − r)

]
+
[
δ(4)(z − r) ?,

(
�zδλρ − ∂zλ∂zρ

)
δ(4)(z − y)

]}
, (4.52)



CHAPTER 4. EXTENDED BRST FORMULATION 25

and

ig

δ(4)(z − y) ?,
δ2Γ

(0)
bi,2

δAλ(r)δAρ(z)

∣∣∣∣∣
φ=0

+ ig

δ(4)(z − r) ?,
δ2Γ

(0)
bi,2

δAρ(y)δAλ(z)

∣∣∣∣∣
φ=0

 =

= −igγ4

{[
δ(4)(z − y) ?,

1

�̃2
z

(
�zδλρ − ∂zλ∂zρ + ρ ∂̃zλ∂̃

z
ρ

)
δ(4)(z − r)

]

+

[
δ(4)(z − r) ?, 1

�̃2
z

(
�zδλρ − ∂zλ∂zρ + ρ ∂̃zλ∂̃

z
ρ

)
δ(4)(z − y)

]}
, (4.53)

Now, only the third line of our identity (4.46) still has to be considered more closely. See
for this the Appendices A.7 and A.9. The results are given in the Eqs. (A.68) and (A.87),
and can be denoted as

δ3

δAλ(r)δAρ(y)δc(z)

(
g′
∂Γ

(0)
inv

∂δ̄

)∣∣∣∣∣
φ=0

=

= g′

({
∂zµδ

(4)(z − y) ?,
∂̃zµ∂̃

z
λ∂̃

z
ρ

ε�̃2
z

δ(4)(z − r)

}
+

{
∂zµδ

(4)(z − r) ?,
∂̃zµ∂̃

z
λ∂̃

z
ρ

ε�̃2
z

δ(4)(z − y)

})
,

(4.54)

and

δ3

δAλ(r)δAρ(y)δc(z)

(
γ4∂Γ

(0)
inv

∂χ̄

)∣∣∣∣∣
φ=0

=

= igγ4

{[
δ(4)(z − r) ?, 1

�̃2
z

(
�zδλρ − ∂zλ∂zρ + ρ∂̃zλ∂̃

z
ρ

)
δ(4)(z − y)

]

+

[
δ(4)(z − y) ?,

1

�̃2
z

(
�zδλρ − ∂zλ∂zρ + ρ∂̃zλ∂̃

z
ρ

)
δ(4)(z − r)

]}
. (4.55)

One sees immediately that (4.55) cancels the contribution (4.53) in the equation (4.46).
Together with (4.52) and (4.54) we can, hence, rewrite our identity (4.46) as

δ3S(Γ
(0)
inv)

δAλ(r)δAρ(y)δc(z)

∣∣∣∣∣
φ=0

= −∂zµ
δ3Γ

(0)
inv

δAλ(r)δAρ(y)δAµ(z)

∣∣∣∣∣
φ=0

−ig
[
δ(4)(z − y) ?,

(
�zδλρ − ∂zλ∂zρ

)
δ(4)(z − r)

]
−ig

[
δ(4)(z − r) ?,

(
�zδλρ − ∂zλ∂zρ

)
δ(4)(z − y)

]
+ g′

{
∂zµδ

(4)(z − y) ?,
∂̃zµ∂̃

z
λ∂̃

z
ρ

ε�̃2
z

δ(4)(z − r)

}
+ g′

{
∂zµδ

(4)(z − r) ?,
∂̃zµ∂̃

z
λ∂̃

z
ρ

ε�̃2
z

δ(4)(z − y)

}
= 0 . (4.56)

We notice that (4.50) and (4.51) are canceled by the second and third line. Therefore, we
have shown the validity of identity (4.46) at tree level and that it can also be depicted
in the form (4.56). We hope that it holds true even at higher orders and don’t get some
anomalies.
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4.4 The altered 3A vertex in k-space

While the photon propagator and the 4A vertex are not modified due to the new counter
term, the 3A vertex indeed gains an extra term from L2

br. So this additional contribution
comes from the counter part (4.49) of our action and is calculated in the Appendix A.8,
Eq. (A.74):

Ṽ 3A
λρµ(k1, k2, k3)

∣∣
counter

= 2ig′ (2π)4δ(4)(k1 + k2 + k3) cos
(ε

2
k1θk2

) 3∑
i=1

k̃i,λk̃i,ρk̃i,µ

ε(k̃2
i )

2
. (4.57)

We have to add this to the usual main part arriving due to (4.48) of our action. In x-space
it is derived as by-product of the calculations for the 3A identity, see Eq. (A.40). The
fourier transform is carried out in Appendix A.5, Eq. (A.50):

Ṽ 3A
λρµ(k1, k2, k3)

∣∣
main

= 2ig (2π)4δ(4)(k1 + k2 + k3) sin
(ε

2
k1k̃2

)
×
{

(k1 − k3)ρδµλ + (k2 − k1)µδλρ + (k3 − k2)λδρµ

}
. (4.58)

The entire result for the new 3A vertex reads

Ṽ 3A
λρµ(k1, k2, k3) = 2i (2π)4δ(4)(k1 + k2 + k3)

{
g′ cos

(ε
2
k1θk2

) 3∑
i=1

k̃i,λk̃i,ρk̃i,µ

ε(k̃2
i )

2
+

+ g sin
(ε

2
k1k̃2

)(
(k1 − k3)ρδµλ + (k2 − k1)µδλρ + (k3 − k2)λδρµ

)}
,

(4.59)

with the desired extra term of Eq. (3.44). So it proved true that we had to add the term
(4.2) to our action.

4.5 The linearized BRST operator b

To start off with, we neglect the star in the notation for simplicity within this section.
For a possible algebraic renormalization (see Sect. 4.6) we still need the explicit form

of the extended Slavnov-Taylor operator, more precisely of the linearized BRST operator

b =

∫
d4x

(
δΓ

(0)
inv

δΩA
µ

δ

δAµ
+
δΓ

(0)
inv

δAµ

δ

δΩA
µ

+
δΓ

(0)
inv

δΩc

δ

δc
+
δΓ

(0)
inv

δc

δ

δΩc
+B

δ

δc̄

)
+ γ4 ∂

∂χ̄
+ g′

∂

∂δ̄
.

(4.60)

Therefore, we have to calculate the action of b on the fields and the included equations of
motion: we can start with the action of b on the gauge field Aµ and on the ghost field c,
respectively. Obviously, this is the same as the action of s on these fields. So, this gives
the BRST transformations of these fields:

bAµ =
δΓ

(0)
inv

δΩA
µ

= Dµc = ∂µc+ ig [c, Aµ] = sAµ , (4.61)

bc =
δΓ

(0)
inv

δΩc
= igcc = sc . (4.62)
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The action of b on ΩA
µ and Ωc is much harder to derive. It is not identical to the action

of s on these external sources (invariant with respect to s) and delivers the equations of
motion for Aµ and for c:

bΩc =
δΓ

(0)
inv

δc
6= sΩc . (4.63)

By quoting the action (4.8) at this point to keep things clear

Γ
(0)
inv =

∫
d4x
(1

4
FµνFµν + s(c̄ ∂A) + s(χ̄L1

br) + s(δ̄L2
br) + ΩA

µ sAµ + Ωcsc
)
, (4.64)

we obtain the following contributions (see also Appendix B.1)

δ

δc(y)

∫
d4xΩA

µ sAµ =
(
∂µΩA

µ + ig
[
ΩA
µ , Aµ

])
(y) = DµΩA

µ (y) ,

δ

δc(y)

∫
d4xΩcsc = ig [c,Ωc] (y) ,

δ

δc(y)

∫
d4x s(c̄ ∂A) = Dµ∂µc̄ (y) . (4.65)

Furthermore we have to add the parts arising from

δ

δc(y)

∫
d4x s(χ̄L1

br) = − δ

δc(y)

∫
d4x χ̄ (sL1

br) ,

δ

δc(y)

∫
d4x s(δ̄L2

br) = − δ

δc(y)

∫
d4x δ̄ (sL2

br) . (4.66)

The first line gives (see Appendix B.1, Eq. (B.9))

− δ

δc(y)

∫
d4x χ̄ (sL1

br) = −igχ̄

[
Aµ,

1

�̃2

(
∂νfνµ + ρ ∂̃µ∂̃νAν

)]
(y) . (4.67)

Similarly, we receive for the second line Eq. (B.10).

− δ

δc(y)

∫
d4x δ̄ (sL2

br) = −δ̄
(
Dµ

{
Aν ,

∂̃µ∂̃ν ∂̃ρ
ε�̃2 Aρ

}
+ ig

[
Aρ,

∂̃µ∂̃ν ∂̃ρ
ε�̃2 (AµAν)

])
(y) . (4.68)

Summarizing, we achieve for the action of b on Ωc

bΩc =
δΓ

(0)
inv

δc
= DµΩA

µ + ig [c,Ωc] +Dµ∂µc̄

− igχ̄

[
Aµ,

1

�̃2

(
∂νfνµ + ρ ∂̃µ∂̃νAν

)]
− δ̄

(
Dµ

{
Aν ,

∂̃µ∂̃ν ∂̃ρ
ε�̃2 Aρ

}
+ ig

[
Aρ,

∂̃µ∂̃ν ∂̃ρ
ε�̃2 (AµAν)

])
. (4.69)

Now we still need the action of b on ΩA
µ

bΩA
µ =

δΓ
(0)
inv

δAµ
6= sΩA

µ . (4.70)
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For that we need the parts (see Appendix B.2)

δ

δAµ(y)

∫
d4xΩA

ν sAν = ig
{

ΩA
µ , c
}

(y) ,

δ

δAµ(y)

∫
d4x s(c̄ ∂A) = (ig {∂µc̄, c} − ∂µB) (y) ,

δ

δAµ(y)

∫
d4x

1

4
FµνFµν = DνFµν(y) , (4.71)

and also the contributions of L1
br and L2

br

δ

δAµ(y)

∫
d4x s(χ̄L1

br) =
δ

δAµ(y)

∫
d4x

(
γ4L1

br − χ̄ sL1
br

)
,

δ

δAµ(y)

∫
d4x s(δ̄L2

br) =
δ

δAµ(y)

∫
d4x

(
g′L2

br − δ̄ sL2
br

)
. (4.72)

The calculations are done in the Appendix B.2, Eqs. (B.20) and (B.24). Altogether, we
achieve (B.26)

bΩA
µ =

δΓ
(0)
inv

δAµ
= −(1 +

γ4

�̃2
)(�δµν − ∂ν∂µ)Aν −

ργ4

�̃2
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{

ΩA
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}

+ ig {∂µc̄, c}+ ∂µB
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[
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1

�̃2

(
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+
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�̃2

(
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)
[c, Aν ]

+ g′

{
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ε�̃2
Aρ

}
− g′ ∂̃µ∂̃ν ∂̃ρ

ε�̃2
(AρAν) + δ̄

∂̃µ∂̃ν ∂̃ρ

ε�̃2
{Dρc, Aν}

− δ̄

{
Dρc,

∂̃µ∂̃ν ∂̃ρ

ε�̃2
Aρ

}
+ igδ̄

[
c,

{
Aν ,

∂̃µ∂̃ν ∂̃ρ

ε�̃2
Aρ

}]

− igδ̄

{
Aν ,

∂̃µ∂̃ν ∂̃ρ

ε�̃2
[c, Aρ]

}
+ igδ̄

[
∂̃µ∂̃ν ∂̃ρ

ε�̃2
(AρAν), c

]
. (4.73)

where the transverse structure of the two-point vertex graph arises again, since the only
terms in (4.73) which are linear in the photon field and independent of all other fields are
the first two ones.

The action of b on all the other fields and parameters (c̄, B, χ̄, γ4, δ̄, g′) is identical with
the action of s on them:

bc̄ = sc̄ = B , bB = sB = 0 ,

bχ̄ = sχ̄ = γ4 , bγ4 = sγ4 = 0 ,

bδ̄ = sδ̄ = g′ , bg′ = sg′ = 0 . (4.74)

To conclude this section, let us note that we can summarize the results as follows: on
the one hand, for all the fields φ with external sources ρ, hence, for Aµ and c, one gets

bφ =
δΓ

(0)
inv

δρ
= sφ and bρ =

δΓ
(0)
inv

δφ
6= sρ , (4.75)

see Eqs. (4.61), (4.62), (4.69) and (4.73). On the other hand, for all the fields φ without
related external source, as well as for all the parameters λ, one just has b(φ, λ) = s(φ, λ).
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4.6 Some remarks on algebraic renormalization and the QAP

Examining this diploma thesis so far, one notices that there is a particular theme that
catches one’s eye over and over again, and that’s “symmetry”. The BRST symmetry
content of our model is expressed by the extended Slavnov-Taylor operator (4.10) via the

extended Slavnov-Taylor identity: S(Γ
(0)
inv) = 0. Both derived identities (4.17) and (4.46)

are relying on its validity and we have shown explicitly that they hold true at tree level,
hence, for the “classical theory”.

The main interest on renormalization is whether such symmetries can be maintained
for higher orders meaning that the corresponding identities are fullfilled perturbatively
order-by-order. One usually introduces the so-called linearized BRST operator SΓ [40],

SΓ =

∫
d4x

(
δΓ

δΩA
µ

?
δ

δAµ
+

δΓ

δAµ
?

δ

δΩA
µ

+
δΓ

δΩc
?
δ

δc
+
δΓ

δc
?
δ

δΩc
+B?

δ

δc̄

)
+ γ4 ∂

∂χ̄
+ g′

∂

∂δ̄
,

(4.76)

and uses the following relations:

SΓS(Γ) = 0 , ∀Γ , and S2
Γ = 0 , if S(Γ) = 0 . (4.77)

So, one can start with the zeroth loop order Γ(0) = S with the definition b ≡ SS . By using
the Slavnov-Taylor identity S(Γ(0)) = 0, one sees immediately that next to s2 = 0, we also
have a nilpotent b, b2 = 0.

To proceed, we need the so-called quantum action principle (QAP) [39, 40, 47]. What
we want is that S

(
Γ(n)

)
= 0 holds true even at higher order n:

Γ(n) =
n∑
l=0

~lΓ(l) . (4.78)

As seen, S(Γ) has the following structure:

S(Γ) =

∫
d4x

(
δΓ

δΩA
µ

?
δΓ

δAµ
+

δΓ

δΩc
?
δΓ

δc
+B ?

δΓ

δc̄

)
+ γ4∂Γ

∂χ̄
+ g′

∂Γ

∂δ̄
. (4.79)

The QAP now tells us how these terms should look like1∫
d4x

(
δΓ

δΩA
µ

δΓ

δAµ

)
= ∆ΩA · Γ ,

∫
d4x

(
δΓ

δΩc

δΓ

δc

)
= ∆Ωc · Γ ,∫

d4x

(
B
δΓ

δc̄

)
= ∆Bc̄ · Γ , γ4∂Γ

∂χ̄
= ∆γ4χ̄ · Γ , g′

∂Γ

∂δ̄
= ∆g′δ̄ · Γ , (4.80)

where the breakings ∆ are integrated local polynomials in the fields that have ghost number
1 and dimension 4. Further, the QAP tells us that if the Slavnov-Taylor identity is fullfilled
at some order (n− 1),

S
(
Γ(n−1)

)
= O(~n) , (4.81)

1without the star product, see below for the discussion.
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fields, parameters Aµ c c̄ B ΩA
µ Ωc χ̄ γ4 δ̄ g′

mass dimension d 1 0 2 2 3 4 4 4 0 0

ghost number 0 1 −1 0 −1 −2 −1 0 −1 0

Table 4.1: Dimensions and ghost numbers.

which is true for our tree-level action (4.8), we obtain

S
(
Γ(n−1)

)
= ∆ · Γ = ~n∆ +O

(
~(n+1)

)
. (4.82)

If we now use the left property of (4.77), SΓS(Γ) = 0, together with SΓ = b + O(~), we
further get

b
(
S
(
Γ(n−1)

))
= b (~n∆) = 0 . (4.83)

This leads us to the so-called consistency condition

b∆ = 0 . (4.84)

If this insertion can now be written as

∆ = b∆̃ , (4.85)

one can add a local counter term to the vertex function

Γ(n) = Γ(n−1) − ~n∆̃ +O(~n+1) , (4.86)

so that the BRST identity is fullfilled at order n,

S
(
Γ(n)

)
= S

(
Γ(n−1)

)
− ~n∆ +O

(
~(n+1)

)
= O

(
~(n+1)

)
. (4.87)

If that is the case, the theory is free of anomalies and the identity is valid order-by-order2.
However, there is still something left that has to be examined more closely. The ac-

centuation in “integrated local insertions” is on the word “local”. In the renormalization
process one has to start with the canceling of UV-divergences appearing in the Feynman
graphs at some order n, for example, by subtracting appropriate terms. These terms can
lead to a breaking of the Slavnov-Taylor identity or other symmetries. To restore the iden-
tity one can use the above described procedure to add (a finite number of) counter terms.
This is relying on the QAP. But, this procedure assumes locality [39, 40].

We have two kinds of non-localities in our model, further considered in Sect. 5.1: firstly,
there is the star product. So, one has to show that the QAP stays applicable when the
star product is present. Secondly, there are 1

�̃2 -terms in our action. The further will be
concerned in an upcoming paper [48] with strong evidence that the QAP makes sense in
the context of the star product. For the latter we will give a possible way of localization
in the next chapter.

2Furthermore, power-counting renormalizability has to be assumed, see e.g. [39, 40] for details.



Chapter 5

Localization

Firstly, we discuss the non-localities in our model in Sect. 5.1. In Sect. 5.2 a possible way
of localization is presented and we show the equivalence of this localized action to our
oringinal one (4.8). Further, the BRST symmetry is discussed. From here on the star
has been dropped again in the notation. In Sect. 5.3 the gauge propagator is calculated
explicitly to illustrate that it hasn’t been modified due to the localization. Then, all the
new propagators are derived in Sect. 5.4, and the new vertex is deduced in Sect. 5.5.

5.1 The non-localities: the operator 1
�̃2 and the star product

Looking at the results for the propagators and vertices of our model, see Sect. 3.3.1 and
Sect. 4.4, one notices that the gauge and the ghost propagator have not been modified due
to the presence of the star product. In general, propagators are identical in the commutative
and the associated non-commutative theory. This is a consequence of the property (2.11),
telling us that all bilinear terms in the action don’t get changed due to the star product.
On the other hand, the introduction of the star product indeed leads to the appearance of
some additional phase factors in the vertices.

To understand why such phase factors signify the non-locality of the represented inter-
actions, it is usefull to examine what happens if we build the star product of some function
f(x) and a plane wave eikx:

eikx ? f(x) =

∫
d4q

(2π)4
f̃(q) eikx ? eiqx =

∫
d4q

(2π)4
f̃(q) eikxeiqxe−

i
2
kεθq

=

∫
d4q

(2π)4
f̃(q) eikxeiq(x+ 1

2
εθk) = eikx · f

(
x+

ε

2
θk
)
. (5.1)

Thus, we get a translation f(x)→ f(x+ ∆x) by a vector ∆x = ε
2θk that is, hence, increas-

ing with the momentum k. Again, one notices that we can go back to the commutative
limit by ε → 0 and obtain the ordinary, commutative multiplication law, above noted by
“·”. Looking at the star product of two functions f(x) and g(x),

(f ? g)(x) =

∫
d4k

(2π)4

∫
d4q

(2π)4
f̃(k)g̃(q) eikx ? eiqx =

∫
d4q

(2π)4
f
(
x− ε

2
θq
)
g̃(q) eiqx , (5.2)

it shows that the high momentum parts in the Fourier integral exhibit large nonlocalities
in the amplitude function f(x, εq̃). Additionally, there is also a representation of the star

31
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product through a kernel K(x; y, z) [4, 19]:

(f ? g)(x) =

∫
d4y

∫
d4z K(x; y, z) f(y)g(z) , (5.3)

with1

K(x; y, z) = δ(4)(x− y) ? δ(4)(x− z) =
1

π4| det(εθ)|
e2i(x−y)(εθ)−1(x−z) , (5.4)

where for the last equal sign the θ-tensor has to be invertible which is true in our case
of the four-dimensional Euclidean space. Taking our θ-matrix of (3.5), we get θ−1

µν = θTµν
and det (θµν) = 1. The integral (5.3) illustrates the nonlocal character of the star product,
encoded in its kernel (5.4), in a clear way. It is carried out in detail in [20] that if the width
of f(x) = g(x) is some small ∆ �

√
ε, (f ? f)(x) is nonvanishing in a region proportional

to 1
∆ . So we have a mixture of phenomena at very small scales with those at very large

scales. Translating this to energy scales, it gets obvious that this nonlocality thus leads to
the already mentioned UV/IR mixing.

The nonlocality due to the star product, together with the QAP, will be discussed in
an upcoming paper [48].

The second nonlocality in our model are terms containing the operator 1
�̃2 , see L1

br and

L2
br in (4.9). To explain why such terms are not local, hence, can be written in the form∫

d4x

∫
d4y f(x)G(x, y)g(y) , (5.5)

we insert the operator 1 = �−1
x �x and obtain∫
d4x

∫
d4y f(x)�−1

x �xG(x, y)g(y) . (5.6)

If now G(x, y) is chosen to be the Green function of the operator �x,

�xG(x, y) = δ(4)(x− y) , (5.7)

it follows that

Eq. (5.5) =

∫
d4x

∫
d4y f(x)�−1

x δ(4)(x− y) g(y) =

∫
d4y f(y)

1

�y
g(y) , (5.8)

where for the last equal sign we have used partial integration twice. So, operators like 1
� ,

or 1
�̃2 , respectively, are nonlocal.
In the following sections we are going to present a way to localize the counter terms∫

d4x s(χ̄L1
br) and

∫
d4x s(δ̄L2

br) of our action (4.8) without changing the physical or the
symmetry content. We thus must find a possibility to do this in a BRST exact manner.
Some insights and arising difficulties are considered at the beginning of the next section.

1an intermediate step: δ(4)(x−y)?δ(4)(x−z) =
∫

d4k
(2π)4

eik(x−y)δ(4)(x−z+ ε
2
θk) , followed by the solution

of the k-integral by use of the delta function.
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5.2 Localizing the counter terms

The most obvious way to localize the counter terms is to use an ansatz similar to the
proposal already discussed in the introduction (1.16), there for the operator 1

D2D̃2
. We can

translate this so that it is fitting to our nonlocal operator 1
�̃2 by, for example, starting with

the first part of S1
br =

∫
d4x γ4L1

br and propose as first attempt

S1,1
br =

γ4

4

∫
d4x

(
fµν

1

�̃2
fµν

)
−→ S1st

loc =
1

2

∫
d4x

[
Bµνfµν −

1

2
Bµν

�̃2

γ4
Bµν

]
. (5.9)

The newly introduced auxiliary field Bµν is antisymmetric and has mass dimension 2. Using
the equation of motion for Bµν and the fact that the model has to be independent of this
new auxiliary field2,

δS1st
loc

δBµν
=

1

2
fµν −

1

2

�̃2

γ4
Bµν = 0 , (5.10)

one obtains

Bµν =
γ4

�̃2
fµν . (5.11)

By reinserting this into the localized action Sloc of (5.9) one gets back to the nonlocal
action S1,1

br :

S1st
loc =

1

2

∫
d4x

[
Bµνfµν −

1

2
Bµν

�̃2

γ4
Bµν

]

=
1

2

∫
d4x

[(
γ4

�̃2
fµν

)
fµν −

1

2

(
γ4

�̃2
fµν

)
�̃2

γ4

(
γ4

�̃2
fµν

)]

=
γ4

4

∫
d4x

(
fµν

1

�̃2
fµν

)
= S1,1

br . (5.12)

We could do this procedure in the same manner for the second part of S1
br, but we face

some other difficulties: bearing in mind that we have inserted all new counter terms BRST
exact into our action (4.8), hence, as S1

br, χ̄ =
∫
d4x s(χ̄L1

br) with sχ̄ = γ4, we now would
have to restore the BRST symmetry after the above localization.

On the other hand, we can start with the BRST invariant version and try to apply the
same method as in (5.9),

Snloc =

∫
d4x s

(
χ̄

4
fµν

1

�̃2
fµν

)
−→ S2nd

loc =
1

2

∫
d4x s

[
cµνfµν −

1

2
cµν

�̃2

χ̄
cµν

]
, (5.13)

but χ̄ is a fermionic, Grassmann-valued, and therefore anticommuting parameter with
χ̄2 = 0. So there is no inverse 1

χ̄ and for that reason alone the above ansatz fails.
Going back to the localized part of the action (1.16),

Sloc =

∫
d4x

(
aBµνFµν −BµνD̃2D2Bµν

)
, (5.14)

2for an antisymmetric Bµν one has:
δBµν

δBστ
= 1

2
[δµσδντ − δµτδνσ] , but fµν is antisymmetric, too.
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one notices that the BRST invariance has been achieved due to the fact that Fµν as well
as Bµν transform covariantly3 [28],

sFµν = ig [c, Fµν ] , sBµν = ig [c,Bµν ] , (5.15)

where Bµν = a
2D̃2D2

Fµν .

In our case this method is not possible. For the first term, S1
br =

∫
d4x γ4L1

br, we have
dropped this opportunity while replacing the non-Abelian field strength tensor Fµν by the
Abelian one fµν , see Sect. 3.3, and argued that we just need the bilinear part to implement
the IR-damping into the gauge propagator. Further, this simplifies the action and prevents
us from additional contributions to the vertices. For the second part, S2

br =
∫
d4x g′L2

br, see
also (4.9), this method can be excluded anyway from the outset.

So, we now want to offer a new way of how to localize the above two counter terms and
obtain BRST invariance as well. Firstly, we start with the terms S1

br and S2
br, hence, with

the non-invariant versions. Compared with (5.9) we then shift the prefactor γ4 partly to
the second term

∫
d4xBµνfµν so that it is linearly dependent on γ. The ansatz thus reads

S1,1
br −→ S1,1

loc =

∫
d4x

[
−Bµν

�̃2

γ2
Bµν + γBµνfµν

]
, (5.16)

where γ still has mass dimension 1, see table (4.1). Looking at the equation of motion,

δS1,1
loc

δBµν
= −2

�̃2

γ2
Bµν + γfµν = 0 , (5.17)

we also get a 1-dimensional auxiliary field Bµν ,

Bµν =
γ3

2�̃2
fµν , (5.18)

instead of the 2-dimensional one in the ansatz (5.9), but now the second term of (5.16) can
be written BRST exact

S1,1
loc =

∫
d4x

[
−Bµν

�̃2

γ2
Bµν + s (χ̄Bµνfµν)

]
, (5.19)

with the new transformation laws sχ̄ = γ and sγ = 0, and the physical value χ̄|phys = 0.
The new BRST doublet (χ̄, γ) replaces the original one (χ̄, γ4). So the mass dimension of
χ̄ changes from 4, see table (4.1), to 1. For a BRST invariant action S1,1

loc we also have to
assume BRST invariance of the auxiliary field Bµν , sBµν = 0. To show that this assumption
is justifiable, one can take a look at the new equation of motion,

δS1,1
loc

δBµν
= −2

�̃2

γ2
Bµν + γfµν − χ̄sfµν = 0 . (5.20)

For a nilpotent operator s, this leads us to

Bµν =
γ3

2�̃2
fµν −

γ2χ̄

2�̃2
sfµν , with sBµν = 0 , (5.21)

3using cyclic permutation and the covariant transformation laws (5.15) yields sSloc = 0 .
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and so to sS1,1
loc = 0. We can do the same procedure for the second part of S1

br,

S1,2
br =

γ4

4

∫
d4x

(
2ρ ∂̃A

1

�̃2
∂̃A

)
, (5.22)

by the introduction of another auxiliary field H,

S1,2
loc =

∫
d4x

[
−H �̃2

γ2
H + s

(
χ̄
√

2ρH(∂̃A)
)]

, (5.23)

where the physical situation is again given by χ̄|phys = 0. Further, we obtain

δS1,2
loc

δH
= −2

�̃2

γ2
H + γ

√
2ρ (∂̃A)− χ̄

√
2ρ s(∂̃A) = 0 . (5.24)

So there is again a 1-dimensional and BRST invariant auxiliary field H,

H =
γ3
√

2ρ

2�̃2
(∂̃A)− γ2χ̄

√
2ρ

2�̃2
s(∂̃A) , with sH = 0 . (5.25)

The localization of the second counter term

S2
br =

g′

2

∫
d4x {Aµ, Aν}

∂̃µ∂̃ν ∂̃ρ

ε�̃2
Aρ , (5.26)

is a little more complicated. Here, we need two new auxiliary fields because we don’t have
a symmetric structure as in (5.9) and (5.22). Of course there are various possibilities to
choose these fields but it turns out that

S2
loc =

∫
d4x

[
κ1
µε�̃

2κ2
µ − κ1

µ

√
g′∂̃ν(AµAν)− κ2

µ

√
g′∂̃µ(∂̃A)

]
, (5.27)

is probably the best one to implement BRST invariance subsequently. At first, the equiva-
lence should be shown. Therefore, the equations of motion for both new fields are needed.
For κ1

µ it reads

δS2
loc

δκ1
µ

= ε�̃2κ2
µ −

√
g′∂̃ν(AµAν) = 0 , (5.28)

whereas for κ2
µ one has

δS2
loc

δκ2
µ

= ε�̃2κ1
µ −

√
g′∂̃µ(∂̃A) = 0 . (5.29)

With this the new auxiliary fields can be identified as

κ1
µ =

√
g′

ε�̃2
∂̃µ(∂̃A) , and κ2

µ =

√
g′

ε�̃2
∂̃ν(AµAν) . (5.30)

Thus, both fields are 1-dimensional. Other choices of localization can lead to dimensonless
auxiliary fields that should be avoided. Otherwise we would be able to build arbitrary
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powers of such fields which could spoil the algebraic renormalization process, see also
Chap. (4.6). By reinsertion, one obtains

S2
loc =

∫
d4x

[
κ1
µε�̃

2κ2
µ − κ1

µ

√
g′∂̃ν(AµAν)− κ2

µ

√
g′∂̃µ(∂̃A)

]
= g′

∫
d4x

[(
1

ε�̃2
∂̃µ(∂̃A)

)
ε�̃2

(
1

ε�̃2
∂̃ν(AµAν)

)
−
(

1

ε�̃2
∂̃µ(∂̃A)

)
∂̃ν(AµAν)−

(
1

ε�̃2
∂̃ν(AµAν)

)
∂̃µ(∂̃A)

]
= g′

∫
d4x

[
−
(

1

ε�̃2
∂̃ν(AµAν)

)
∂̃µ∂̃ρAρ

]
= g′

∫
d4x

[
AµAν

∂̃µ∂̃ν ∂̃ρ

ε�̃2
Aρ

]
= S2

br , (5.31)

where in the second line the first two terms cancel each other, and from the third to the
fourth line we have used partial integration. Now, the BRST invariance can be established
in the same manner as for the first two terms by the introduction of a BRST doublet
partner for

√
g′,

S2
loc =

∫
d4x

[
κ1
µε�̃

2κ2
µ − s

(
δ̄κ1

µ∂̃ν(AµAν)
)
− s

(
δ̄κ2

µ∂̃µ(∂̃A)
)]

. (5.32)

with sδ̄ =
√
g′ and s

√
g′ = 0. The physical situation is obtained by δ̄|phys = 0, and we

presume again that sκ1
µ = 0, and that sκ2

µ = 0. This can be legitimated by the equations
of motion

δS2
loc

δκ1
µ

= ε�̃2κ2
µ −

√
g′∂̃ν(AµAν) + δ̄ s

(
∂̃ν(AµAν)

)
= 0 , (5.33)

and

δS2
loc

δκ2
µ

= ε�̃2κ1
µ −

√
g′∂̃µ(∂̃A) + δ̄ s

(
∂̃µ(∂̃A)

)
= 0 . (5.34)

The new auxiliary fields have the form

κ1
µ =

√
g′

ε�̃2
∂̃µ(∂̃A)− δ̄

ε�̃2
s
(
∂̃µ(∂̃A)

)
, (5.35)

and

κ2
µ =

√
g′

ε�̃2
∂̃ν(AµAν)− δ̄

ε�̃2
s
(
∂̃ν(AµAν)

)
, (5.36)

where their BRST invariance can be seen immediately. Only setting δ̄|phys = 0 in the end
breaks this invariance. It should also be noted explicitly that κ2

µ is bilinear dependent on
the gauge field Aµ in contrast to all the other new auxiliary fields Bµν , H, and κ1

µ that are
linear in Aµ.
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5.2.1 The localized action and its BRST transformation laws

We now have all parts together, see Eqs. (5.19), (5.23), and (5.32), to write down the
localized action which is equivalent to the nonlocal action in (4.8) and formulated BRST
exact as well:

Γ
(0)
inv =

∫
d4x

[
1

4
FµνFµν + s(c̄ ∂A) + ΩA

µ sAµ + Ωcsc−Bµν
�̃2

γ2
Bµν −H

�̃2

γ2
H + κ1

µε�̃
2κ2
µ

+ s
(
χ̄Bµνfµν + χ̄

√
2ρH(∂̃A)− δ̄κ1

µ∂̃ν(AµAν)− δ̄κ2
µ∂̃µ(∂̃A)

)]
. (5.37)

We can go back to the original action by setting χ̄|phys = 0 and δ̄|phys = 0. Afterwards,
one has to use the equations of motion of Bµν , H, κ1

µ, and κ2
µ, or alternatively integrate

out these auxiliary fields in the path integral formalism, Z =
∫
Dφi e−S[φi].

Further, the action (5.37) is invariant with respect to the following usual BRST trans-
formation laws,

sAµ = ∂µc+ ig [c, Aµ] = Dµc ,

sc = igcc ,

sc̄ = B ,

sB = 0 , s2 = 0 , (5.38)

still neglecting the star in the notation, extended by

sχ̄ = γ , sγ = 0 ,

sδ̄ =
√
g′ , s

√
g′ = 0 ,

sBµν = 0 , sH = 0 ,

sκ1
µ = 0 , sκ2

µ = 0 . (5.39)

All new auxiliary fields Bµν , H, κ1
µ, and κ2

µ, have mass dimension 1. The same is true for
the parameters χ̄ and γ. Just δ̄ and

√
g′ are dimensonless but this is matching perfectly

to the dimensonless coupling constant g = e of (NC)QED in natural units [c] = [~] = 0.
Except χ̄ and δ̄ with ghost number −1, all these new fields and parameters carry no ghost
charge.

5.2.2 Slavnov-Taylor identity

An extended Slavnov-Taylor identity,

S(Γ
(0)
inv) = 0 , (5.40)

can now be achived by the introduction of doublet partners for the auxiliary fields Bµν , H,
κ1
µ, and κ2

µ, and by rewriting the action in the following way,

Γ
(0)
inv =

∫
d4x

[
1

4
FµνFµν + s(c̄ ∂A)− s

(
B̄µν

�̃2

γ2
Bµν − H̄

�̃2

γ2
H + χ̄Bµνfµν + χ̄

√
2ρH(∂̃A)

)

+s

(
1

2
κ̄1
µε�̃

2κ2
µ +

1

2
κ1
µε�̃

2κ̄2
µ − δ̄κ1

µ∂̃ν(AµAν)− δ̄κ2
µ∂̃µ(∂̃A)

)
+ ΩA

µ sAµ + Ωcsc

]
,

(5.41)
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where

sB̄µν = Bµν , sBµν = 0 ,

sH̄ = H , sH = 0 ,

sκ̄1
µ = κ1

µ , sκ1
µ = 0 ,

sκ̄2
µ = κ2

µ , sκ2
µ = 0 . (5.42)

The appropriate Slavnov-Taylor operator reads

S(Γ
(0)
inv) =

∫
d4x

(
δΓ

(0)
inv

δΩA
µ

δΓ
(0)
inv

δAµ
+
δΓ

(0)
inv

δΩc

δΓ
(0)
inv

δc
+B

δΓ
(0)
inv

δc̄
+Bµν

δΓ
(0)
inv

δB̄µν
+H

δΓ
(0)
inv

δH̄

+ κ1
µ

δΓ
(0)
inv

δκ̄1
µ

+ κ2
µ

δΓ
(0)
inv

δκ̄2
µ

)
+ γ

∂Γ
(0)
inv

∂χ̄
+
√
g′
∂Γ

(0)
inv

∂δ̄
. (5.43)

However, we can work with the localized action (5.37) for the rest of this diploma thesis to
keep things simple.

5.3 Gauge field propagator

Here, we want to show that the localized action (5.37) delivers the same gauge propagator
as in (3.39), deduced from the original action.

The propagator can be obtained by

GAAµν (x, y) = − δ2Zc[j]

δjAµ (x)δjAν (y)

∣∣∣∣
j=0

= −δAν(y)

δjAµ (x)

∣∣∣∣
j=0

. (5.44)

So, we have to express the gauge field Aµ(x) as a function of its source jAµ (x). Further,
just all bilinear terms of the action have to be considered since all other parts will be
transformed to zero for vanishing sources j = 0.

We can start with the equation of motion of Aµ for the physical situation χ̄|phys = 0
and δ̄|phys = 0, and collect all linear terms,

δΓ
(0)
inv

δAµ

∣∣∣∣∣
lin

= − (�δµν − ∂µ∂ν)Aν − ∂µB − 2γ∂νBνµ − γ
√

2ρ ∂̃µH −
√
g′∂̃µ∂̃νκ

2
ν = −jAµ .

(5.45)

The last term can immediately be eliminated due to the fact that

δΓ
(0)
inv

δκ1
µ

∣∣∣∣∣
lin

= ε�̃2κ2
µ = −jκ1

µ = 0 , (5.46)

and because we now have to set all sources, except the one for the gauge field jAµ (x), to
zero. κ2

µ is bilinear in the fields, as can be seen from Eq. (5.30), and so it cannot contribute
to the gauge propagator.

Furthermore, we have to express the fields B, Bµν and H as functions of Aµ and their
respective sources.
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For the Lagrange multiplier field B one can start with the gauge fixing part with α 6= 0,
hence, we are leaving the Landau gauge,

Sgf =

∫
d4x

(
−α

2
B2 +B∂νAν

)
. (5.47)

Now, its equation of motion,

δSgf

δB
= −αB + ∂νAν = −jB = 0 , B =

1

α

(
∂νAν + jB

)
, (5.48)

can be used to replace the B-dependent term of (5.45). This gives

−jAµ = − (�δµν − ∂µ∂ν)Aν − ∂µ
[

1

α

(
∂νAν + jB

)]
− 2γ∂νBνµ − γ

√
2ρ ∂̃µH . (5.49)

We can do the same for the auxiliary field Bµν ,

δΓ
(0)
inv

δBµν
= −2

�̃2

γ2
Bµν + γfµν = −jBaux

µν = 0 , Bµν =
γ2

2�̃2

(
γfµν + jBaux

µν

)
. (5.50)

Further, we also have to replace the auxiliary field H,

δΓ
(0)
inv

δH
= −2

�̃2

γ2
H + γ

√
2ρ (∂̃A) = −jH = 0 , H =

γ2

2�̃2

(
γ
√

2ρ (∂̃A) + jH
)
. (5.51)

For vanishing sources, except jAµ , this implies:

jAµ = (�δµν − ∂µ∂ν)Aν + ∂µ

[
1

α
(∂νAν)

]
+ 2γ∂νBνµ + γ

√
2ρ ∂̃µH

= (�δµν − ∂µ∂ν)Aν + ∂µ

[
1

α
(∂νAν)

]
+

γ4

2�̃2

(
2 ∂νfνµ + 2ρ ∂̃µ(∂̃A)

)
=

(
1 +

γ4

�̃2

)
(�δµν − ∂µ∂ν)Aν + ∂µ

[
1

α
(∂νAν)

]
+
γ4

�̃2

(
ρ ∂̃µ(∂̃A)

)
. (5.52)

To write Aµ as a function of jAµ , we still need ∂νAν . This can be achieved by building the
partial derivative of the source,

∂µj
A
µ =

(
1 +

γ4

�̃2

)
∂µ (�δµν − ∂µ∂ν)Aν + ∂µ∂µ

[
1

α
(∂νAν)

]
+
γ4

�̃2

(
ρ ∂µ∂̃µ(∂̃A)

)
=

�
α

(∂νAν) , (5.53)

because in the first term the partial derivative is acting on a transverse projection operator,
and in the third term one has ∂̃µ∂µ = 0. Therefore,

∂νAν =
α

�
∂νj

A
ν . (5.54)

Similarly, an expression for ∂̃νAν can be obtained by

∂̃µj
A
µ =

(
1 +

γ4

�̃2

)
∂̃µ (�δµν − ∂µ∂ν)Aν + ∂̃µ∂µ

[
1

α
(∂νAν)

]
+
γ4

�̃2

(
ρ ∂̃µ∂̃µ(∂̃A)

)
=

[(
1 +

γ4

�̃2

)
� + ργ4 1

�̃

]
∂̃νAν . (5.55)
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The result is

∂̃νAν =
∂̃ν(

1 + γ4

�̃2

)
� + ργ4 1

�̃

jAν . (5.56)

We can insert these expressions into Eq. (5.52), and receive

jAµ =

(
1 +

γ4

�̃2

)
(�δµν − ∂µ∂ν)Aν + ∂µ

[
1

α
(∂νAν)

]
+
ργ4

�̃2

(
∂̃µ(∂̃A)

)
=

(
1 +

γ4

�̃2

)(
�Aµ +

α

�
∂µ∂νj

A
ν

)
+
∂µ∂ν
�

jAν +
ργ4

�̃2

∂̃µ∂̃ν(
1 + γ4

�̃2

)
� + ργ4 1

�̃

jAν , (5.57)

or in Landau gauge, α = 0,

jAµ =

(
1 +

γ4

�̃2

)
�Aµ +

∂µ∂ν
�

jAν +
ργ4(

1 + γ4

�̃2

)
� + ργ4 1

�̃

∂̃µ∂̃ν

�̃2
jAν . (5.58)

Writing now Aµ(x) as a function of jAµ (x) gives the desired result

Aµ(x) =
1

�
(

1 + γ4

�̃2

)
jAµ (x)− ∂µ∂ν

�
jAν (x)− ργ4

ργ4 + �
(
�̃ + γ4

�̃

) ∂̃µ∂̃ν
�̃

jAν (x)

 . (5.59)

Calculating the propagator via

GAAµν (x, y) = −δAν(y)

δjAµ (x)

∣∣∣∣
j=0

, (5.60)

obviously leads to

GAAµν (x, y) = − 1

�
(

1 + γ4

�̃2

)
δµν − ∂µ∂ν

�
− ργ4

ργ4 + �
(
�̃ + γ4

�̃

) ∂̃µ∂̃ν
�̃

 δ(4)(y − x) . (5.61)

Finally, this can be fourier transformed to

GAAµν (k) =
1

k2
(

1 + γ4

(k̃2)2

)
δµν − kµkν

k2
− ργ4

ργ4 + k2
(
k̃2 + γ4

k̃2

) k̃µk̃ν
k̃2

 . (5.62)

So, we have shown that the gauge propagator hasn’t been modified due to the localization
procedure. For obvious reasons the same is true for the ghost propagator,

Gc̄c(k) = − 1

k2
, (5.63)

since we havn’t changed the gauge fixing term.
On the other hand, there are a lot of new propagators, and, furthermore, a new vertex.

We are going to deduce them in the next two sections.
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5.4 Calculation of the new propagators

There are ten new propagators delivered by the action (5.37):

Gκ
1κ1

µν , Gκ
1A
µν , GHκ

1

µ , Gκ
1Baux
ρ,µν , Gκ

1κ2

µν , GHH , GHAµ , GHBaux
µν , GBauxBaux

µν,ρσ and GBauxA
µν,ρ .

In particular the first two ones, Gκ
1κ1

µν and Gκ
1A
µν , are of special interest because there is

also a new vertex V κ1AA
ρστ , see Sect. 5.5. So, one can build loop corrections to the photon

propagator by using these two propagators together with V κ1AA
ρστ .

5.4.1 The propagator Gκ1κ1

µν

The first new propagator is Gκ
1κ1

µν (k):

Gκ
1κ1

µν (x, y) = − δ2Zc[j]

δjκ1

µ (x) δjκ1

ν (y)

∣∣∣∣∣
j=0

= − δκ
1
ν(y)

δjκ1

µ (x)

∣∣∣∣
j=0

. (5.64)

Therefore, one needs κ1 as a function of its source. All other sources disappear again. Lets
start with the equation of motion of κ2

ν ,

δΓ
(0)
inv

δκ2
ν

= ε�̃2κ1
ν −

√
g′∂̃ν(∂̃A) = −jκ2

ν , κ1
ν = − 1

ε�̃2
jκ

2

ν +

√
g′

ε�̃2
∂̃ν(∂̃A) . (5.65)

Again, we need an expression for ∂̃νAν , but now its jκ
1

ν -dependent part.
So, perhaps it’s better to derive the full equation for ∂̃νAν that is still containing all

sources. We can continue with the ansatz of Eq. (5.45). Applying the same procedure as
in the previous chapter for the gauge fixing part, see Eq. (5.47) and below, gives

jAµ = (�δµν − ∂µ∂ν)Aν +
∂µ
α

(∂νAν) + 2γ∂νBνµ + γ
√

2ρ ∂̃µH +
√
g′∂̃µ∂̃νκ

2
ν . (5.66)

Then, we need the Eqs. (5.50) and (5.51),

Bµν =
γ2

2�̃2

(
γfµν + jBaux

µν

)
, H =

γ2

2�̃2

(
γ
√

2ρ (∂̃A) + jH
)
, (5.67)

without setting the respective sources to zero. Furthermore, we need only the linear part
of κ2

ν ,

δΓ
(0)
inv

δκ1
ν

∣∣∣∣∣
lin

= ε�̃2κ2
ν = −jκ1

ν , κ2
ν

∣∣∣
lin

= − 1

ε�̃2
jκ

1

ν . (5.68)

Inserting all these expressions for the auxiliary fields gives

jAµ = (�δµν − ∂µ∂ν)Aν +
∂µ
α

(∂νAν) + γ∂ν
γ2

�̃2

(
γfνµ + jBaux

νµ

)
+ γ
√

2ρ ∂̃µ
γ2

2�̃2

(
γ
√

2ρ (∂̃A) + jH
)
−
√
g′
∂̃µ∂̃ν

ε�̃2
jκ

1

ν . (5.69)
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Building the partial derivative ∂µj
A
µ also leads to the result we have already obtained in

the previous section (5.54),

∂νAν =
α

�
∂νj

A
ν . (5.70)

Here, the antisymmetry of jBaux
µν has been used, as well as the properties of a transverse

projection operator (4.28), and the fact that ∂̃µ∂µ = 0. With this, the source of (5.69)
reads in Landau gauge

jAµ =

(
1 +

γ4

�̃2

)
�Aµ +

∂µ∂ν
�

jAν + γ3 ∂ν

�̃2
jBaux
µν + γ

√
2ρ ∂̃µ

γ2

2�̃2

(
γ
√

2ρ (∂̃A) + jH
)

−
√
g′
∂̃µ∂̃ν

ε�̃2
jκ

1

ν . (5.71)

This implies

∂̃µj
A
µ =

(
1 +

γ4

�̃2

)
�∂̃µAµ + γ3 ∂̃µ∂ν

�̃2
jBaux
µν + γ

√
2ρ

γ2

2�̃

(
γ
√

2ρ (∂̃A) + jH
)
−
√
g′
∂̃ν

ε�̃
jκ

1

ν ,

(5.72)

and finally one arrives at

∂̃µAµ =
1(

1 + γ4

�̃2

)
� + ργ4 1

�̃

(
∂̃µj

A
µ −

γ3

�̃2
∂̃µ∂νj

Baux
µν − γ3

2�̃

√
2ρ jH +

√
g′

ε�̃
∂̃νj

κ1

ν

)
. (5.73)

Therefore, we now can finish the calculations for the propagator Gκ
1κ1

µν (x, y) by combining
the Eqs. (5.64), (5.65), and (5.73):

Gκ
1κ1

µν (x, y) = − δκ
1
ν(y)

δjκ1

µ (x)

∣∣∣∣
j=0

= − δ

δjκ1

µ (x)

(√
g′

ε�̃2
∂̃ν(∂̃A)

) ∣∣∣∣
j=0

= − g′(
�̃ + γ4

�̃

)
� + ργ4

∂̃µ∂̃ν

ε2�̃2
δ(4)(y − x) . (5.74)

The fourier transformed propagator4, hence, reads

Gκ
1κ1

µν (k) =
g′

ργ4 + k2
(
k̃2 + γ4

k̃2

) k̃µk̃ν

ε2(k̃2)2
. (5.75)

5.4.2 The propagator Gκ1A
µν

The propagator GAκ
1

µν (k),

GAκ
1

µν (x, y) = − δκ
1
ν(y)

δjAµ (x)

∣∣∣∣
j=0

, (5.76)

4explanatory note: ∂̃µ∂̃νδ
(4)(z) =

∫
d4k

(2π)4
(ik̃µ)(ik̃ν) e

ikz = −
∫

d4k
(2π)4

k̃µk̃ν e
ikz
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can easily be derived by use of Eq. (5.65),

κ1
µ = − 1

ε�̃2
jκ

2

µ +

√
g′

ε�̃2
∂̃µ(∂̃A) , (5.77)

and the appropriate part of Eq. (5.73), containing the source of Aµ,

∂̃A =
1(

1 + γ4

�̃2

)
� + ργ4 1

�̃

(
∂̃µj

A
µ + ...

)
. (5.78)

Combining this, one sees immediately that the propagator in k-space is

GAκ
1

µν (k) =
−
√
g′

ργ4 + k2
(
k̃2 + γ4

k̃2

) k̃µk̃ν
εk̃2

. (5.79)

For the propagator

Gκ
1A
µν (k) = − δAν(y)

δjκ1

µ (x)

∣∣∣∣
j=0

, (5.80)

and also for other propagators, one needs Aµ = Aµ[j]. Starting with Eq. (5.71) and inserting
∂̃A of (5.73) delivers

jAµ =

(
1 +

γ4

�̃2

)
�Aµ +

∂µ∂ν
�

jAν + γ3 ∂ν

�̃2
jBaux
µν + γ

√
2ρ ∂̃µ

γ2

2�̃2

(
γ
√

2ρ (∂̃A) + jH
)

−
√
g′
∂̃µ∂̃ν

ε�̃2
jκ

1

ν

=

(
1 +

γ4

�̃2

)
�Aµ +

∂µ∂ν
�

jAν + γ3 ∂ν

�̃2
jBaux
µν + γ

√
2ρ ∂̃µ

γ2

2�̃2
jH −

√
g′
∂̃µ∂̃ν

ε�̃2
jκ

1

ν

+

ργ4

�̃2 ∂̃µ(
1 + γ4

�̃2

)
� + ργ4 1

�̃

(
∂̃νj

A
ν −

γ3

�̃2
∂̃ρ∂νj

Baux
ρν − γ3

2�̃

√
2ρ jH +

√
g′

ε�̃
∂̃νj

κ1

ν

)
. (5.81)

Expressing Aµ[j] leads to

Aµ[j] =
1

�
(

1 + γ4

�̃2

){jAµ − ∂µ∂ν
�

jAν − γ3 ∂ν

�̃2
jBaux
µν − γ

√
2ρ ∂̃µ

γ2

2�̃2
jH +

√
g′
∂̃µ∂̃ν

ε�̃2
jκ

1

ν

−
ργ4

�̃2 ∂̃µ(
1 + γ4

�̃2

)
� + ργ4 1

�̃

(
∂̃νj

A
ν −

γ3

�̃2
∂̃ρ∂νj

Baux
ρν − γ3

2�̃

√
2ρ jH +

√
g′

ε�̃
∂̃νj

κ1

ν

)}
.

(5.82)

Its jκ
1

ν -dependent part reads

Aµ

[
jκ

1

ν , ...
]

=
1

�
(

1 + γ4

�̃2

){√g′ ∂̃µ∂̃ν
ε�̃2

jκ
1

ν −
ργ4

�̃2 ∂̃µ(
1 + γ4

�̃2

)
� + ργ4 1

�̃

(√
g′

ε�̃
∂̃νj

κ1

ν

)
+ ...

}

=

√
g′(

�̃ + γ4

�̃

)
� + ργ4

∂̃µ∂̃ν

ε�̃
jκ

1

ν + ... . (5.83)



CHAPTER 5. LOCALIZATION 44

Hence, we can summarize

GAκ
1

µν (k) = Gκ
1A
µν (k) =

−
√
g′

ργ4 + k2
(
k̃2 + γ4

k̃2

) k̃µk̃ν
εk̃2

. (5.84)

5.4.3 The propagators GHκ1

µ , GBauxκ1

ρ,µν , and Gκ1κ2

µν

In this subsection, we want to derive all remaining propagators containing the auxiliary
field κ1

µ: for the propagator Gκ
1H
µ (k),

Gκ
1H
µ (x, y) = − δH(y)

δjκ1

µ (x)

∣∣∣∣
j=0

, (5.85)

one needs Eq. (5.67),

H =
γ2

2�̃2
jH +

γ3

2�̃2

√
2ρ (∂̃A) , (5.86)

and the following term of Eq. (5.73),

∂̃A =
1(

1 + γ4

�̃2

)
� + ργ4 1

�̃

(√
g′

ε�̃
∂̃νj

κ1

ν + ...

)
. (5.87)

Further, fourier transforming finally gives

Gκ
1H
µ (k) = − iγ3

√
ρg′

ργ4 + k2
(
k̃2 + γ4

k̃2

) k̃µ√
2ε(k̃2)2

. (5.88)

Calculating GHκ
1

µ (k) via

GHκ
1

µ (x, y) = −
δκ1

µ(y)

δjH(x)

∣∣∣∣
j=0

(5.89)

requires κ1
µ

[
jH
]
. For that purpose, we can use Eq. (5.65),

κ1
ν = − 1

ε�̃2
jκ

2

ν +

√
g′

ε�̃2
∂̃ν(∂̃A) , (5.90)

together with Eq. (5.73),

∂̃A =
1(

1 + γ4

�̃2

)
� + ργ4 1

�̃

(
− γ

3

2�̃

√
2ρ jH + ...

)
. (5.91)

All in all, we now gain

Gκ
1H
µ (k) = −GHκ1

µ (k) = − iγ3
√
ρg′

ργ4 + k2
(
k̃2 + γ4

k̃2

) k̃µ√
2ε(k̃2)2

. (5.92)
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The same method can be applied for GBauxκ1

ρ,µν :

GBauxκ1

µν,ρ (x, y) = −
δκ1

ρ(y)

δjBaux
µν (x)

∣∣∣∣
j=0

. (5.93)

By use of Eq. (5.67),

κ1
ρ = − 1

ε�̃2
jκ

2

ρ +

√
g′

ε�̃2
∂̃ρ(∂̃A) , (5.94)

and the following part of Eq. (5.73),

∂̃A =
1(

1 + γ4

�̃2

)
� + ργ4 1

�̃

(
− γ

3

�̃2
∂̃µ∂νj

Baux
νµ + ...

)
, (5.95)

where we have to take into account that jBaux
νµ is antisymmetric in the indices, we arrive at

GBauxκ1

µν,ρ (k) =
iγ3
√
g′ k̃ρ

ργ4 + k2
(
k̃2 + γ4

k̃2

) kµk̃ν − kν k̃µ
2ε(k̃2)3

. (5.96)

Calculating Gκ
1Baux
ρ,µν (k),

Gκ
1Baux
ρ,µν (x, y) = −δBµν(y)

δjκ1

ρ (x)

∣∣∣∣
j=0

, (5.97)

requires Bµν

[
jκ

1

ρ

]
. We again derive the full dependency on all the sources, Bµν [j], since it

will be needed below. We have to combine Eq. (5.67),

Bµν [j] =
γ2

2�̃2

(
γfµν [j] + jBaux

µν

)
=

γ2

2�̃2

(
γ (∂µAν [j]− ∂νAµ[j]) + jBaux

µν

)
, (5.98)

with Eq. (5.82),

Aµ[j] =
1

�
(

1 + γ4

�̃2

){jAµ − ∂µ∂ν
�

jAν − γ3 ∂ν

�̃2
jBaux
µν − γ

√
2ρ ∂̃µ

γ2

2�̃2
jH +

√
g′
∂̃µ∂̃ν

ε�̃2
jκ

1

ν

−
ργ4

�̃2 ∂̃µ(
1 + γ4

�̃2

)
� + ργ4 1

�̃

(
∂̃νj

A
ν −

γ3

�̃2
∂̃ρ∂νj

Baux
ρν − γ3

2�̃

√
2ρ jH +

√
g′

ε�̃
∂̃νj

κ1

ν

)}
.

(5.99)

That’s a really awful looking expression. However, it is sufficient to take out the adequate
terms. So, one obtains

Aµ

[
jκ

1

ρ

]
=

1

�
(

1 + γ4

�̃2

){√g′ ∂̃µ∂̃ρ
ε�̃2

jκ
1

ρ −
ργ4

�̃2 ∂̃µ(
1 + γ4

�̃2

)
� + ργ4 1

�̃

√
g′

ε�̃
∂̃ρj

κ1

ρ

}

=

√
g′(

�̃ + γ4

�̃

)
� + ργ4

∂̃µ∂̃ρ

ε�̃
jκ

1

ρ , (5.100)
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and

Bµν

[
jκ

1

ρ

]
=

γ3

2�̃2

(
∂µAν

[
jκ

1

ρ

]
− ∂νAµ

[
jκ

1

ρ

])
, (5.101)

what finally leads to

GBauxκ1

µν,ρ (k) = −Gκ1Baux
ρ,µν (k) =

iγ3
√
g′ k̃ρ

ργ4 + k2
(
k̃2 + γ4

k̃2

) kµk̃ν − kν k̃µ
2ε(k̃2)3

. (5.102)

The third propagator of this subsection, Gκ
1κ2

µν (k), follows directly from

Gκ
2κ1

µν (x, y) = − δκ
1
ν(y)

δjκ2

µ (x)

∣∣∣∣
j=0

, (5.103)

the Eq. (5.65),

κ1
µ = − 1

ε�̃2
jκ

2

µ +

√
g′

ε�̃2
∂̃µ(∂̃A) , (5.104)

and the fact that ∂̃A is independent of jκ
2

ν , see Eq. (5.73). So, we get

Gκ
2κ1

µν (k) = Gκ
1κ2

µν (k) =
δµν

ε(k̃2)2
. (5.105)

5.4.4 The propagators GHH, GHA
µ , and GHBaux

µν

In this subsection, we care about all remaining propagators containing the field H: we start
with GHH(k),

GHH(x, y) = − δH(y)

δjH(x)

∣∣∣∣
j=0

. (5.106)

Taking Eq. (5.67),

H =
γ2

2�̃2

(
γ
√

2ρ (∂̃A) + jH
)
, (5.107)

together with Eq. (5.73),

∂̃A =
1(

1 + γ4

�̃2

)
� + ργ4 1

�̃

(
− γ

3

2�̃

√
2ρ jH + ...

)
, (5.108)

immediately leads to

GHH(k) =
−γ2

2(k̃2)2

1− ργ4

ργ4 + k2
(
k̃2 + γ4

k̃2

)
 . (5.109)



CHAPTER 5. LOCALIZATION 47

The propagator GHAµ (k),

GHAµ (x, y) = −δAµ(y)

δjH(x)

∣∣∣∣
j=0

, (5.110)

can directly be obtained from the appropriate part of Eq. (5.82),

Aµ
[
jH
]

=
1

�
(

1 + γ4

�̃2

){− γ√2ρ ∂̃µ
γ2

2�̃2
jH +

ργ4

�̃2 ∂̃µ(
1 + γ4

�̃2

)
� + ργ4 1

�̃

γ3

2�̃

√
2ρ jH

}

= −
γ3√ρ(

�̃ + γ4

�̃

)
� + ργ4

∂̃µ√
2�̃

jH . (5.111)

Hence, we have

GHAµ (k) = −
iγ3√ρ

ργ4 + k2
(
k̃2 + γ4

k̃2

) k̃µ√
2 k̃2

. (5.112)

For propagator GAHµ (k),

GAHµ (x, y) = − δH(y)

δjAµ (x)

∣∣∣∣
j=0

, (5.113)

one needs Eq. (5.67),

H =
γ2

2�̃2

(
γ
√

2ρ (∂̃A) + jH
)
, (5.114)

and again Eq. (5.73),

∂̃A =
1(

1 + γ4

�̃2

)
� + ργ4 1

�̃

(
∂̃µj

A
µ + ...

)
. (5.115)

The fourier transform now leads to

GAHµ (k) = −GHAµ (k) =
iγ3√ρ

ργ4 + k2
(
k̃2 + γ4

k̃2

) k̃µ√
2 k̃2

. (5.116)

Now, we still have to derive the propagator GBauxH
µν (k),

GBauxH
µν (x, y) = − δH(y)

δjBaux
µν (x)

∣∣∣∣
j=0

. (5.117)

Using Eq. (5.67),

H =
γ2

2�̃2

(
γ
√

2ρ (∂̃A) + jH
)
, (5.118)
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and Eq. (5.73),

∂̃A =
1(

1 + γ4

�̃2

)
� + ργ4 1

�̃

(
− γ

3

�̃2
∂̃µ∂νj

Baux
µν + ...

)
, (5.119)

results in

GBauxH
µν (k) =

γ6√ρ

ργ4 + k2
(
k̃2 + γ4

k̃2

) kµk̃ν − kν k̃µ
2
√

2 (k̃2)3
. (5.120)

Finally, obtaining GHBaux
µν (k) via

GHBaux
µν (x, y) = −δBµν(y)

δjH(x)

∣∣∣∣
j=0

, (5.121)

requires Eq. (5.101), but now depending on jH ,

Bµν
[
jH
]

=
γ3

2�̃2

(
∂µAν

[
jH
]
− ∂νAµ

[
jH
])
, (5.122)

and Eq. (5.82),

Aµ
[
jH
]

=
1

�
(

1 + γ4

�̃2

){− γ√2ρ ∂̃µ
γ2

2�̃2
jH +

ργ4

�̃2 ∂̃µ(
1 + γ4

�̃2

)
� + ργ4 1

�̃

γ3

2�̃

√
2ρ jH

}

= −
γ3√ρ(

�̃ + γ4

�̃

)
� + ργ4

∂̃µ√
2 �̃

jH . (5.123)

The result, hence, reads

GBauxH
µν (k) = GHBaux

µν (k) =
γ6√ρ

ργ4 + k2
(
k̃2 + γ4

k̃2

) kµk̃ν − kν k̃µ
2
√

2 (k̃2)3
. (5.124)

5.4.5 The propagators GBauxBaux
µν,ρσ and GBauxA

µν,ρ

There are still two more propagators left for the auxiliary field Bµν : the first one is

GBauxBaux
ρσ,µν (x, y) = − δBµν(y)

δjBaux
ρσ (x)

∣∣∣∣
j=0

. (5.125)

We rewrite Eq. (5.67) to

Bµν
[
jBaux
ρσ

]
=

γ2

2�̃2

(
γ∂µAν

[
jBaux
ρσ

]
− γ∂νAµ

[
jBaux
ρσ

]
+ jBaux

µν

)
, (5.126)

and recall the jBaux
ρσ -dependence of Eq. (5.82),

Aµ
[
jBaux
ρσ

]
=

1

�
(

1 + γ4

�̃2

){− γ3 ∂σ

�̃2
jBaux
µσ −

ργ4

�̃2 ∂̃µ(
1 + γ4

�̃2

)
� + ργ4 1

�̃

γ3

�̃2
∂̃ρ∂νj

Baux
ρν

}
. (5.127)
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Hence, one gets

GBauxBaux
ρσ,µν (x, y) = − δ

δjBaux
ρσ (x)

γ2

2�̃2

jBaux
µν − γ4

�
(

1 + γ4

�̃2

) (∂µ∂τ
�̃2

jBaux
ντ − ∂ν∂τ

�̃2
jBaux
µτ

)

− γ8ρ

�
(
�̃ + γ4

�̃

)
�̃2
[(

�̃ + γ4

�̃

)
� + ργ4

] (∂µ∂̃ν − ∂ν ∂̃µ) ∂̃α∂τ jBaux
ατ

(y) .

(5.128)

Bearing in mind that jBaux
ρν is antisymmetric, one obtains

GBauxBaux
ρσ,µν (k) =

−γ2

4(k̃2)2

δµρδνσ − δµσδνρ − γ4 (kµkρδνσ − kµkσδνρ − kνkρδµσ + kνkσδµρ)

k2k̃2
(
k̃2 + γ4

k̃2

)
+
γ8ρ

(
kµk̃νkρk̃σ − kµk̃νkσk̃ρ − kν k̃µkρk̃σ + kν k̃µkσk̃ρ

)
k2(k̃2)2

(
k̃2 + γ4

k̃2

)(
ργ4 + k2

(
k̃2 + γ4

k̃2

))
 .

(5.129)

The propagator GABaux
ρ,µν (k),

GABaux
ρ,µν (x, y) = −δBµν(y)

δjAρ (x)

∣∣∣∣
j=0

, (5.130)

requires the use of Eq. (5.67),

Bµν
[
jAρ
]

=
γ3

2�̃2

(
∂µAν

[
jAρ
]
− ∂νAµ

[
jAρ
])
, (5.131)

and the jAρ -dependence of Eq. (5.82),

Aµ
[
jAρ
]

=
1

�
(

1 + γ4

�̃2

){jAµ − ∂µ∂ν
�

jAν −
ργ4

�̃2 ∂̃µ(
1 + γ4

�̃2

)
� + ργ4 1

�̃

∂̃νj
A
ν

}
. (5.132)

This leads to

GABaux
ρ,µν (k) =

iγ3

2k2k̃2
(
k̃2 + γ4

k̃2

)
kµδνρ − kνδµρ − ργ4

ργ4 + k2
(
k̃2 + γ4

k̃2

) kµk̃ν k̃ρ − kν k̃µk̃ρ
k̃2

 .

(5.133)

Finally, the propagator GBauxA
µν,ρ (k),

GBauxA
µν,ρ (x, y) = − δAρ(y)

δjBaux
µν (x)

∣∣∣∣
j=0

, (5.134)
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can directly be derived from the jBaux
µν -dependence of Eq. (5.82),

Aρ
[
jBaux
µν

]
=

1

�
(

1 + γ4

�̃2

){− γ3 ∂ν

�̃2
jBaux
ρν −

ργ4

�̃2 ∂̃ρ(
1 + γ4

�̃2

)
� + ργ4 1

�̃

(
− γ

3

�̃2
∂̃τ∂νj

Baux
τν

)}

=
−γ3

�
(

1 + γ4

�̃2

)
�̃2

{
∂νj

Baux
ρν − ργ4(

�̃ + γ4

�̃

)
� + ργ4

(
∂̃ρ∂̃τ∂ν

�̃
jBaux
τν

)}
. (5.135)

So, we now have

GBauxA
µν,ρ (k) =

−iγ3

2k2k̃2
(
k̃2 + γ4

k̃2

)
kµδνρ − kνδµρ − ργ4

ργ4 + k2
(
k̃2 + γ4

k̃2

) kµk̃ν k̃ρ − kν k̃µk̃ρ
k̃2

 ,

(5.136)

with

GABaux
ρ,µν (k) = −GBauxA

µν,ρ (k) . (5.137)

5.5 The new vertex V κ1AA
ρστ

The localized action (5.37) contains not just terms that are tri- and quadrilinear in the
photon field Aµ. There is also a part that is bilinear in Aµ and, in addition, linear in κ1

µ,
as can be seen from

Γ
(0)
inv =

∫
d4x

[
1

4
FµνFµν + ...− s

(
δ̄κ1

µ∂̃ν(AµAν)
)]

. (5.138)

So, there is another vertex V κ1AA
ρστ . We, now, derive it directly in the k-space by use of

Ṽ κ1AA
ρστ (q, k1, k2) = −(2π)12 δ3Γ

(0)
inv

δκ1
ρ(−q) δAσ(−k1) δAτ (−k2)

∣∣∣∣
φ=0

. (5.139)

Firstly, we have to remember the BRST transformation of the parameter δ̄: sδ̄ =
√
g′,

see (5.39). Don’t forget that we are in non-commutative Euclidean space. So, there are
always star products in-between that deliver phase factors. Let’s start with the fourier
transformation of the relevant part of the localized action,

Γ
(0)
inv = −

√
g′
∫
d4x

[
κ1
µ∂̃ν(AµAν)

]
=
√
g′
∫
d4x

[
(∂̃νκ

1
µ)AµAν

]
=
√
g′
∫
d4x

∫
d4p1

(2π)4

∫
d4p2

(2π)4

∫
d4p3

(2π)4

[
ip̃1,ν κ

1
µ(p1)Aµ(p2)Aν(p3)

]
× ei(p1+p2+p3)x e−

i
2
εp1p̃2 e−

i
2
εp1p̃3 e−

i
2
εp2p̃3

=
i
√
g′

(2π)8

∫
d4p1

∫
d4p2

∫
d4p3

[
p̃1,ν κ

1
µ(p1)Aµ(p2)Aν(p3)

]
× δ(4)(p1 + p2 + p3) e

i
2
εp1p̃3 , (5.140)
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Figure 5.1: The new vertex of the localized action (5.37): V κ1AA
ρστ .

because the delta function δ(4)(p1 + p2 + p3) yields p2 = −p1 − p3. Inserting this into
Eq. (5.139), gives

Ṽ κ1AA
ρστ (q, k1, k2) = −(2π)12 δ3Γ

(0)
inv

δκ1
ρ(−q) δAσ(−k1) δAτ (−k2)

∣∣∣∣
φ=0

= −
√
g′(2π)4i

δ3

δκ1
ρ(−q) δAσ(−k1) δAτ (−k2)

∫
d4p1

∫
d4p2

∫
d4p3

×
[
p̃1,ν κ

1
µ(p1)Aµ(p2)Aν(p3)

]
δ(4)(p1 + p2 + p3) e

i
2
εp1p̃3

=
√
g′(2π)4iq̃ν

δ2

δAσ(−k1) δAτ (−k2)

∫
d4p2

∫
d4p3

×
[
Aρ(p2)Aν(p3)

]
δ(4)(−q + p2 + p3) e−

i
2
εqp̃3

=
√
g′(2π)4iq̃ν

δ

δAσ(−k1)

∫
d4p2

∫
d4p3 δ

(4)(−q + p2 + p3) e−
i
2
εqp̃3

×
[
δρτδ

(4)(p2 + k2)Aν(p3) +Aρ(p2)δντδ
(4)(p3 + k2)

]
=
√
g′(2π)4iq̃ν

∫
d4p2

∫
d4p3 δ

(4)(−q + p2 + p3) e−
i
2
εqp̃3

×
[
δρτδ

(4)(p2 + k2)δνσδ
(4)(p3 + k1) + δρσδ

(4)(p2 + k1)δντδ
(4)(p3 + k2)

]
. (5.141)

Solving the remaining integrals by use of the delta functions, leads to

Ṽ κ1AA
ρστ (q, k1, k2) =

√
g′(2π)4δ4(q + k1 + k2)

{
iq̃σδρτ e

i
2
εqk̃1 + iq̃τδρσ e

i
2
εqk̃2

}
. (5.142)

This can be rewritten in the following manner,

Ṽ κ1AA
ρστ (q, k1, k2) =

√
g′(2π)4δ4(q + k1 + k2)

{
iq̃σδρτ e

i
2
εk1k̃2 + iq̃τδρσ e

− i
2
εk1k̃2

}
, (5.143)

since q = −k1 − k2.
So, all new propagators (see previous section) as well as the new vertex (see above) have

now been calculated explicitly. Even if some of these propagators deliver horrible looking
expressions, we can take comfort in the fact that most of them can not be relevant because
of the absence of fitting vertices.
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5.6 Recapitulation of the localized model

Driven by the appearance of non-localities in the BRST-exact action (4.8), more precisely
of the operator 1

�̃2 in the counter terms, we were looking for and found a way to localize
them. The main feature is that this localized action (5.37) is formulated BRST-invariant
as well.

Furthermore, the photon propagator GAAµν (5.62) and the ghost propagator Gc̄c (5.63)
still have the same structure as for the original action. However, we obtained a wealth of
new propagators: Gκ

1κ1

µν , Gκ
1A
µν , GHκ

1

µ , Gκ
1Baux
ρ,µν , Gκ

1κ2

µν , GHH , GHAµ , GHBaux
µν , GBauxBaux

µν,ρσ and

GBauxA
µν,ρ .

There is also a new vertex, V κ1AA
ρστ , in addition to the usual vertices: V 3A

ρστ , V 4A
ρστυ, and

V c̄Ac
ρ .

(a) (b)

(c) (d)

Figure 5.2: The vertices of the localized action (5.37): V 3A
ρστ , V 4A

ρστυ, V c̄Ac
ρ and V κ1AA

ρστ .

The main interest is on the new vertex V κ1AA
ρστ , together with the two new propagators

Gκ
1κ1

µν and Gκ
1A
µν . As a consequence, there are further contributions to the loop-corrections

of the gauge propagator that would have to be considered in, for example, a possible one-
loop analysis.



Chapter 6

Conclusion and Outlook

This diploma thesis dealt with the further development of the non-commutative U?(1)
gauge model presented in [14].

At first, an introduction to non-commutative field theories was given in Chap. 1. Par-
ticularly, a brief historical overview, ranging from some first motivations to implement non-
commutativity in space-time right up to the first renormalizable non-commutative scalar
models, was presented. Especially, the one of Gurau et al. [24] has to be pointed out. Up
to now, it is probably the most important milestone on the long and arduous journey to a
consistent non-commutative field-theoretical formulation of the fundamental interactions.
However, it is “only” a scalar model - a fully renormalizable non-commutative QED, for
example, is still missing.

After discussing some mathematical details in Chap. 2, and adjacent explanations on
the BRST symmetry at the beginning of Chap. 3, a short summary of how to obtain the
model in Ref. [14] was given. In non-commutative gauge theories there is a quadratic IR-
singularity arising in the two-point vertex graph at one-loop. Therefore, an appropriate
counter term has been introduced in [14] that, further, provides the IR-damping of the
gauge propagator. However, an additional IR-divergence was arising in the 3A vertex
function at one-loop:

Γ3A, IR
ρστ (k1, k2, k3) ∝ cos

(ε
2
k1k̃2

) ∑
i=1,2,3

k̃i,ρk̃i,σk̃i,τ

ε(k̃2
i )

2
. (6.1)

It couldn’t be absorbed by a redefinition of the parameters or the fields of the model because
of its complete new look.

Hence, the first thing to do in Chap. 4 was to add an appropriate (non-local) counter
term into the action. This, of course, also leads to a further parameter g′ in the model.
Afterwards, we proposed an extended BRST formulation of the action by the introduction
of doublet partners for the new parameter g′, as well as for the already existing parameter
γ4 of the IR-damping term, resulting in two new BRST doublets:

(
χ̄, γ4

)
and

(
δ̄, g′

)
. Both

non-local counter terms were, thus, formulated BRST invariant. As such, they should
not spoil an algebraic renormalization process. Further, we derived some identities (e.g.
expressing the transversality of the two-point vertex graph), and showed their validity at
tree level. The hope is that they hold true even at higher loop order.

Finally, a localized model (except the non-locality due to the star product), also for-
mulated BRST exact, was presented in Chap. 5, including the calculation of all new prop-
agators and the new vertex.
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There are now two main difficulties in applying the algebraic renormalization procedure
since it relies on the quantum action principle (QAP) and on locality:

• It is questionable whether the QAP is applicable in the presence of the star product.
This will be treated in a forthcoming paper [48].

• It is not clear whether one should continue with the more complicated localized theory,
or whether someone can find good arguments for applying the algebraic renormaliza-
tion procedure on the non-localized model.



Appendix A

Calculations for the Identities

A.1 Main bilinear contribution to the first identity

The main bilinear contribution to the identities is coming from the first term of our action

Γ
(0)
inv =

∫
d4x

(
1

4
FµνFµν + other terms

)
, (A.1)

more precisely from its Abelian part, which is obviously

Γ
(0)
bi,1 =

1

4

∫
d4x
(
fµνfµν

)
=

1

4

∫
d4x
(

(∂µAν − ∂νAµ) (∂µAν − ∂νAµ)
)

=
1

2

∫
d4x
(
∂µAν∂µAν − ∂µAν∂νAµ

)
= −1

2

∫
d4x
(
Aµ
(
∂2δµν − ∂µ∂ν

)
Aν

)
. (A.2)

Building the functional derivative with respect to Aµ(z) gives

δΓ
(0)
bi,1

δAµ(z)
= −

(
�zδµν − ∂zµ∂zν

)
Aν(z) , (A.3)

and finally we get

δ2Γ
(0)
bi,1

δAρ(y)δAµ(z)
= −

(
�zδµρ − ∂zµ∂zρ

)
δ(4)(z − y) . (A.4)

This is the usual two-point vertex graph appearing in QED.
Explanatory note: In the above derivation we have used two mathematical operations

we will need now all the time. These are the functional derivative

δAµ(x)

δAν(y)
= δµνδ

(4)(x− y) , (A.5)

and partial integration∫
d4x

(
(∂µφ) ? Aν

)
(x) = −

∫
d4x

(
φ ? ∂µAν

)
(x) , (A.6)

where φ(x) can be any polynomial in the fields and their partial derivatives.
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A.2 Damping-term contributions to the first identity

Here, we take a look at the contributions coming from

L1
br =

1

4

(
fµν ?

1

�̃2
fµν + 2ρ ∂̃A ?

1

�̃2
∂̃A

)
, (A.7)

which is also bilinear in the gauge field. The corresponding action reads

Γ
(0)
bi,2 =

∫
d4x
(
γ4 L1

br

)
=
γ4

4

∫
d4x

(
fµν

1

�̃2
fµν + 2ρ ∂̃A

1

�̃2
∂̃A

)
. (A.8)

The first part can be rewritten as

Γ
(0)
bi,2(1) =

γ4

4

∫
d4x

(
fµν

1

�̃2
fµν

)
=
γ4

4

∫
d4x

(
(∂µAν − ∂νAµ)

1

�̃2
(∂µAν − ∂νAµ)

)
=
γ4

2

∫
d4x

(
∂µAν

1

�̃2
∂µAν − ∂µAν

1

�̃2
∂νAµ

)
= −γ

4

2

∫
d4x

(
Aµ

1

�̃2

(
∂2δµν − ∂µ∂ν

)
Aν

)
, (A.9)

and for the second part one gets

Γ
(0)
bi,2(2) =

ργ4

2

∫
d4x

(
∂̃A

1

�̃2
∂̃A

)
= −ργ

4

2

∫
d4x

(
Aµ

∂̃µ∂̃ν

�̃2
Aν

)
. (A.10)

Hence, one can derive

δΓ
(0)
bi,2(1)

δAµ(z)
= − γ

4

�̃2
z

(
�zδµν − ∂zµ∂zν

)
Aν(z) , (A.11)

and

δ2Γ
(0)
bi,2(1)

δAρ(y)δAµ(z)
= − γ

4

�̃2
z

(
�zδµρ − ∂zµ∂zρ

)
δ(4)(z − y) . (A.12)

For the second part one gets

δΓ
(0)
bi,2(2)

δAµ(z)
= −ργ4

∂̃zµ∂̃
z
ν

�̃2
z

Aν(z) , (A.13)

and

δ2Γ
(0)
bi,2(2)

δAρ(y)δAµ(z)
= −ργ4

∂̃zµ∂̃
z
ρ

�̃2
z

δ(4)(z − y) . (A.14)

Summarizing brings

δ2Γ
(0)
bi,2

δAρ(y)δAµ(z)
= − γ

4

�̃2
z

(
�zδµρ − ∂zµ∂zρ + ρ ∂̃zµ∂̃

z
ρ

)
δ(4)(z − y) . (A.15)
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Furthermore, we have to calculate the contribution from

δ2

δAρ(y)δc(z)

(
γ4∂Γ

(0)
inv

∂χ̄

)∣∣∣∣∣
φ=0

= −γ4 δ2

δAρ(y)δc(z)

∫
d4x

(
sL1

br

) ∣∣∣∣∣
φ=0

. (A.16)

Inserting L1
br brings

(A.16) = −γ
4

4

δ2

δAρ(y)δc(z)

∫
d4x s

(
fµν ?

1

�̃2
fµν + 2ρ ∂̃A ?

1

�̃2
∂̃A

) ∣∣∣∣∣
φ=0

. (A.17)

It consists of the two parts

−γ
4

4

δ2

δAρ(y)δc(z)

∫
d4x s

(
fµν ?

1

�̃2
fµν

) ∣∣∣∣∣
φ=0

, (A.18)

and

−ργ
4

2

δ2

δAρ(y)δc(z)

∫
d4x s

(
∂̃A ?

1

�̃2
∂̃A

) ∣∣∣∣∣
φ=0

. (A.19)

These can be rewritten similar to (A.9) and (A.10) as

(A.18) =
γ4

2

δ2

δAρ(y)δc(z)

∫
d4x s

(
Aµ

1

�̃2
(�δµν − ∂µ∂ν)Aν

) ∣∣∣∣∣
φ=0

, (A.20)

and

(A.19) =
ργ4

2

δ2

δAρ(y)δc(z)

∫
d4x s

(
Aµ

∂̃µ∂̃ν

�̃2
Aν

)∣∣∣∣∣
φ=0

. (A.21)

Now we use the BRST transformation (4.4) for Aµ, in particular its linear part,

sAµ = ∂µc+ ig [c ?, Aµ] = ∂µc+ ... . (A.22)

This shows that both parts are zero: The first one because of

∂µ
(
∂2δµν − ∂µ∂ν

)
= 0 , (A.23)

and the second one due to ∂µ∂̃µ = 0. Explicitly this reads

(A.20) =
γ4

2

δ2

δAρ(y)δc(z)

∫
d4x

{
∂µc,

1

�̃2
(�δµν − ∂µ∂ν)Aν

} ∣∣∣∣∣
φ=0

= −γ
4

2

δ2

δAρ(y)δc(z)

∫
d4x

{
c,
∂µ

�̃2
(�δµν − ∂µ∂ν)Aν

} ∣∣∣∣∣
φ=0

= 0 , (A.24)
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and

(A.21) =
ργ4

2

δ2

δAρ(y)δc(z)

∫
d4x

{
∂µc,

∂̃µ∂̃ν

�̃2
Aν

}∣∣∣∣∣
φ=0

= −ργ
4

2

δ2

δAρ(y)δc(z)

∫
d4x

{
c, ∂µ

∂̃µ∂̃ν

�̃2
Aν

}∣∣∣∣∣
φ=0

= 0 , (A.25)

where the symmetry in the indices µ and ν and partial integration has been used. Hence,
we can close with the result

δ2

δAρ(y)δc(z)

(
γ4∂Γ

(0)
inv

∂χ̄

)∣∣∣∣∣
φ=0

= −γ4 δ2

δAρ(y)δc(z)

∫
d4x

(
sL1

br

) ∣∣∣∣∣
φ=0

= −γ
4

2

δ2

δAρ(y)δc(z)

∫
d4x

{
c,
∂µ

�̃2

(
�δµν − ∂µ∂ν + ρ∂̃µ∂̃ν

)
Aν

} ∣∣∣∣∣
φ=0

= −γ4 δ2

δAρ(y)δc(z)

∫
d4x

(
c
∂µ

�̃2

(
�δµν − ∂µ∂ν + ρ∂̃µ∂̃ν

)
Aν

)∣∣∣∣∣
φ=0

= 0 ,

(A.26)

and so it is not contributing to the identity (4.17).

A.3 Calculations for the gauge part in the first identity

In this section, we want to study the dependence of our first identity (4.17) on an arbitrary
gauge parameter α. For that we would have to change our action in the following manner

Γ
(0)
inv,gf =

∫
d4x
(
B∂A

)
α6=0−→ Γ

(0)
bi,gf =

∫
d4x

(
B∂A− α

2
B2
)
. (A.27)

This is bilinear in A for α 6= 0 because with the equation of motion for B

δΓ
(0)
bi,gf

δB
= ∂A− αB = −jB = 0 , where B =

∂A

α
, (A.28)

we can rewrite this as

Γ
(0)
bi,gf =

1

2α

∫
d4x (∂A)2 . (A.29)

So, we would obtain the following additional contribution

−∂zµ
δ2Γ

(0)
bi,gf

δAρ(y)δAµ(z)
=
∂zρ
α

�zδ(4)(z − y) . (A.30)

in the identity (4.17). On the other hand, the extended Slavnov-Taylor operator (4.10)

S(Γ
(0)
inv) =

∫
d4x

(
B ?

δΓ
(0)
inv

δc̄
+ other terms

)
. (A.31)
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would lead to an additional term in (4.17). By use of the equation of motion for c̄, consid-
ering for this the BRST transformations (4.4),

δΓ
(0)
inv

δc̄
= −s (∂µAµ) = −�c− ig∂µ [c ?, Aµ] , (A.32)

we get from (A.31), neglecting the “other terms”,

δ2

δAρ(y)δc(z)

∫
d4x

(
B ?

δΓ
(0)
inv

δc̄

)∣∣∣∣∣
φ=0

= − δ2

δAρ(y)δc(z)

∫
d4x (B ?�c) . (A.33)

With the equation of motion for B (A.28) we arrive at

δ2

δAρ(y)δc(z)

∫
d4x

(
B ?

δΓ
(0)
inv

δc̄

)∣∣∣∣∣
φ=0

= − 1

α

δ2

δAρ(y)δc(z)

∫
d4x

{
(∂A) ?�c

}
= − 1

α

δ

δAρ(y)

∫
d4x

{
δ(4)(x− z) ?�(∂A)

}
= − 1

α

δ

δAρ(y)

{
�z∂zµAµ(z)

}
= − 1

α
�z∂zρδ

(4)(z − y) . (A.34)

This would alter our identity (4.17) to

δ2S(Γ
(0)
inv)

δAρ(y)δc(z)

∣∣∣∣∣
φ=0

= −∂zµ
δ2Γ

(0)
inv

δAρ(y)δAµ(z)

∣∣∣∣∣
φ=0

−
∂zρ
α

�zδ(4)(z − y) = 0 , (A.35)

where the new term would cancel the contribution (A.30).

A.4 Main trilinear contribution to the second identity

Here, we need the trilinear part of (A.1), which is (neglecting the star in the notation)

Γ
(0)
tri,1 =

1

4

∫
d4x
(
FστFστ

)
tri

= − ig

4

∫
d4x
(

(∂σAτ − ∂τAσ) (AσAτ −AτAσ) + (AσAτ −AτAσ) (∂σAτ − ∂τAσ)
)

= − ig

2

∫
d4x
(

(∂σAτ − ∂τAσ) (AσAτ −AτAσ)
)

= −ig

∫
d4x
(

(∂σAτ ) (AσAτ −AτAσ)
)
, (A.36)

where the defintion (3.2) for the non-Abelian field strength tensor has been used. It is
important to note here that there are always star products in between, where just one can
be dropped. So what we have got is

Γ
(0)
tri,1 = −ig

∫
d4x
(

(∂σAτ ) ? (Aσ ? Aτ −Aτ ? Aσ)
)
. (A.37)
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Building a first functional derivative leads to

δΓ
(0)
tri,1

δAµ(z)
= ig

∫
d4x

{
δ(4)(x− z)δτµ ? ∂σ (Aσ ? Aτ −Aτ ? Aσ)

− (∂σAτ ) ?
(
δ(4)(x− z)δσµ ? Aτ +Aσ ? δ

(4)(x− z)δτµ
)

+ (∂σAτ ) ?
(
δ(4)(x− z)δτµ ? Aσ +Aτ ? δ

(4)(x− z)δσµ
)}

= ig

{
∂zσ (Aσ ? Aµ −Aµ ? Aσ)−Aτ ?

(
∂zµAτ

)
− (∂zσAµ) ? Aσ +Aσ ? (∂zσAµ) +

(
∂zµAτ

)
? Aτ

}
= ig

{
(∂zσAσ) ? Aµ −Aµ ? (∂zσAσ)−Aτ ?

(
∂zµAτ

)
− 2 (∂zσAµ) ? Aσ + 2Aσ ? (∂zσAµ) +

(
∂zµAτ

)
? Aτ

}
= ig

{
[(∂zσAσ) ?, Aµ] +

[(
∂zµAτ

)
?, Aτ

]
− 2 [(∂zσAµ) ?, Aσ]

}
, (A.38)

where Aµ is now a function of z because in general
∫
d4x δ(4)(x− z) f(x) = f(z). Further-

more, we get

δ2Γ
(0)
tri,1

δAρ(y)δAµ(z)
= ig

{[(
∂zρδ

(4)(z − y)
)
?, Aµ

]
−
[
(∂zσAσ) ?, δ(4)(z − y)

]
δµρ

+
[(
∂zµδ

(4)(z − y)
)
?, Aρ

]
+
[(
∂zµAρ

)
?, δ(4)(z − y)

]
− 2

[(
∂zσδ

(4)(z − y)
)
?, Aσ

]
δµρ + 2

[(
∂zρAµ

)
?, δ(4)(z − y)

]}
, (A.39)

and finally

δ3Γ
(0)
tri,1

δAλ(r)δAρ(y)δAµ(z)
=

ig

{[(
∂zρδ

(4)(z − y)
)
?, δ(4)(z − r)

]
δµλ +

[(
∂zλδ

(4)(z − r)
)
?, δ(4)(z − y)

]
δµρ

+
[(
∂zµδ

(4)(z − y)
)
?, δ(4)(z − r)

]
δρλ +

[(
∂zµδ

(4)(z − r)
)
?, δ(4)(z − y)

]
δρλ

− 2
[(
∂zλδ

(4)(z − y)
)
?, δ(4)(z − r)

]
δµρ − 2

[(
∂zρδ

(4)(z − r)
)
?, δ(4)(z − y)

]
δµλ

}
.

(A.40)

This looks a little bit complicated in the spacetime notation, but in k-space it can be
simplified to the usual result for the 3A vertex. However, what we need at first is its
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partial derivative

∂zµ
δ3Γ

(0)
tri,1

δAλ(r)δAρ(y)δAµ(z)
=

ig

{[(
∂zµ∂

z
ρδ

(4)(z − y)
)
?, δ(4)(z − r)

]
δµλ +

[(
∂zµ∂

z
λδ

(4)(z − r)
)
?, δ(4)(z − y)

]
δµρ

+
[(
∂zµ∂

z
µδ

(4)(z − y)
)
?, δ(4)(z − r)

]
δρλ +

[(
∂zµ∂

z
µδ

(4)(z − r)
)
?, δ(4)(z − y)

]
δρλ

− 2
[(
∂zµ∂

z
λδ

(4)(z − y)
)
?, δ(4)(z − r)

]
δµρ − 2

[(
∂zµ∂

z
ρδ

(4)(z − r)
)
?, δ(4)(z − y)

]
δµλ

}
.

(A.41)

Here, all the commutators where ∂zµ has been acting on the right delta function have
canceled and not written down. Rewriting brings

∂zµ
δ3Γ

(0)
tri,1

δAλ(r)δAρ(y)δAµ(z)
= ig

{[((
�zδλρ − ∂zλ∂zρ

)
δ(4)(z − y)

)
?, δ(4)(z − r)

]
+
[((

�zδλρ − ∂zλ∂zρ
)
δ(4)(z − r)

)
?, δ(4)(z − y)

]}
. (A.42)

A.5 Fourier transform and the 3A vertex

In (A.40) we have already calculated the 3A vertex in spacetime coordinates. We can use
this result to gain the 3A vertex in k-space via Fourier transform

V 3A
λρµ(r, y, z) =

3∏
i=1

∫
d4ki
(2π)4

ei(k1r+k2y+k3z) Ṽ 3A
λρµ(k1, k2, k3) . (A.43)

Additionally, we have to consider that in (A.38) the x-integral has been solved by use of
the delta function δ(4)(x− z), which will be reindroduced now. So, combining (A.40) and
(A.38), we get

δ3Γ
(0)
tri,1

δAλ(r)δAρ(y)δAµ(z)
= ig

∫
d4x δ(4)(x− z)×

×
{[(

∂xρ δ
(4)(x− y)

)
?, δ(4)(x− r)

]
δµλ +

[(
∂xλδ

(4)(x− r)
)
?, δ(4)(x− y)

]
δµρ

+
[(
∂xµδ

(4)(x− y)
)
?, δ(4)(x− r)

]
δρλ +

[(
∂xµδ

(4)(x− r)
)
?, δ(4)(x− y)

]
δρλ

− 2
[(
∂xλδ

(4)(x− y)
)
?, δ(4)(x− r)

]
δµρ − 2

[(
∂xρ δ

(4)(x− r)
)
?, δ(4)(x− y)

]
δµλ

}
.

(A.44)

Now, we need the definition of the delta function

δ(4)(x− y) =

∫
d4k

(2π)4
e−ik(x−y) . (A.45)
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Using (A.45) in (A.44) we arrive at

δ3Γ
(0)
tri,1

δAλ(r)δAρ(y)δAµ(z)
= g

∫
d4x

∫∫∫
d4k1

(2π)4

d4k2

(2π)4

d4k3

(2π)4
e−i(k1+k2+k3)xei(k1r+k2y+k3z)

× 2i sin
(ε

2
k1θk2

){
k2,ρδµλ − k1,λδµρ + k2,µδρλ − k1,µδρλ − 2k2,λδµρ + 2k1,ρδµλ

}
,

(A.46)

since [(
∂xρ δ

(4)(x− y)
)
?, δ(4)(x− r)

]
=

∫∫
d4k1

(2π)4

d4k2

(2π)4
(−ik2,ρ)

(
e−

i
2
k2εθk1 − e−

i
2
k1εθk2

)
e−i(k1+k2)xei(k1r+k2y)

=

∫∫
d4k1

(2π)4

d4k2

(2π)4
(−ik2,ρ)

(
e+ i

2
k1εθk2 − e−

i
2
k1εθk2

)
e−i(k1+k2)xei(k1r+k2y)

=

∫∫
d4k1

(2π)4

d4k2

(2π)4
(−ik2,ρ) 2i sin

(ε
2
k1θk2

)
e−i(k1+k2)xei(k1r+k2y) . (A.47)

The spacetime integral gives a delta function∫
d4x e−i(k1+k2+k3)x = (2π)4δ(4)(k1 + k2 + k3) , (A.48)

meaning that k1 = −(k2 + k3). With these insights, one can rewrite (A.46) as

δ3Γ
(0)
tri,1

δAλ(r)δAρ(y)δAµ(z)
= g

1

(2π)8

∫∫∫
d4k1 d

4k2 d
4k3 δ

(4)(k1 + k2 + k3)ei(k1r+k2y+k3z)

× 2i sin
(ε

2
k1θk2

){
(k1 − k3)ρδµλ + (k2 − k1)µδλρ + (k3 − k2)λδρµ

}
.

(A.49)

Using (A.43) we get

Ṽ 3A
λρµ(k1, k2, k3)

∣∣
main

= 2ig (2π)4δ(4)(k1 + k2 + k3) sin
(ε

2
k1k̃2

)
×
{

(k1 − k3)ρδµλ + (k2 − k1)µδλρ + (k3 − k2)λδρµ

}
. (A.50)

This usual result for the 3A vertex gains an additional term from the new counter term,
resp. L2

br (see Appendix, Sect. A.8).

A.6 Main bilinear contributions to the second identity

The main bilinear part contribution in our identity (4.46) comes from

ig

δ(4)(z − y) ?,
δ2Γ

(0)
bi,1

δAλ(r)δAρ(z)

∣∣∣∣∣
φ=0

+ ig

δ(4)(z − r) ?,
δ2Γ

(0)
bi,1

δAρ(y)δAλ(z)

∣∣∣∣∣
φ=0

 , (A.51)
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precisely from the bilinear part of FµνFµν (see Appendix, Sect A.1). In (A.4)

δ2Γ
(0)
bi,1

δAρ(y)δAµ(z)
= −

(
�zδµρ − ∂zµ∂zρ

)
δ(4)(z − y) , (A.52)

we have already calculated the result. Inserting this is into (A.51) brings

(A.51) = −ig

{[
δ(4)(z − y) ?,

(
�zδλρ − ∂zλ∂zρ

)
δ(4)(z − r)

]
+
[
δ(4)(z − r) ?,

(
�zδλρ − ∂zλ∂zρ

)
δ(4)(z − y)

]}
. (A.53)

A.7 Counter-term contributions to the second identity

Now we take a look at the following part of the action (4.8)

Γ
(0)
tri,2 =

∫
d4x

(
g′L2

br

)
, (A.54)

which is trilinear in the gauge field Aµ. Explicitly, this reads

Γ
(0)
tri,2 =

g′

2

∫
d4x

(
{Aσ ?, Aν} ?

∂̃σ∂̃ν ∂̃τ

ε�̃2
Aτ

)

= g′
∫
d4x

(
Aσ ? Aν ?

∂̃σ∂̃ν ∂̃τ

ε�̃2
Aτ

)
. (A.55)

Again, building functional derivatives brings

δΓ
(0)
tri,2

δAµ(z)
= g′

∫
d4x

(
δ(4)(x− z) ? Aν ?

∂̃µ∂̃ν ∂̃τ

ε�̃2
Aτ +Aσ ? δ

(4)(x− z) ? ∂̃σ∂̃µ∂̃τ
ε�̃2

Aτ

+Aσ ? Aν ?
∂̃σ∂̃ν ∂̃µ

ε�̃2
δ(4)(x− z)

)
, (A.56)

and

δ2Γ
(0)
tri,2

δAρ(y)δAµ(z)
=

g′
∫
d4x

(
δ(4)(x− z) ? δ(4)(x− y) ?

∂̃µ∂̃ρ∂̃τ

ε�̃2
Aτ + δ(4)(x− z) ? Aν ?

∂̃µ∂̃ν ∂̃ρ

ε�̃2
δ(4)(x− y)

+ δ(4)(x− y) ? δ(4)(x− z) ? ∂̃ρ∂̃µ∂̃τ
ε�̃2

Aτ +Aσ ? δ
(4)(x− z) ? ∂̃σ∂̃µ∂̃ρ

ε�̃2
δ(4)(x− y)

+ δ(4)(x− y) ? Aν ?
∂̃ρ∂̃ν ∂̃µ

ε�̃2
δ(4)(x− z) +Aσ ? δ

(4)(x− y) ?
∂̃σ∂̃ρ∂̃µ

ε�̃2
δ(4)(x− z)

)
.

(A.57)
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Finally, we get

δ3Γ
(0)
tri,2

δAλ(r)δAρ(y)δAµ(z)
= g′

∫
d4x

(
δ(4)(x− z) ? δ(4)(x− y) ?

∂̃µ∂̃ρ∂̃λ

ε�̃2
δ(4)(x− r)

+ δ(4)(x− z) ? δ(4)(x− r) ? ∂̃µ∂̃λ∂̃ρ
ε�̃2

δ(4)(x− y)

+ δ(4)(x− y) ? δ(4)(x− z) ? ∂̃ρ∂̃µ∂̃λ
ε�̃2

δ(4)(x− r)

+ δ(4)(x− r) ? δ(4)(x− z) ? ∂̃λ∂̃µ∂̃ρ
ε�̃2

δ(4)(x− y)

+ δ(4)(x− y) ? δ(4)(x− r) ? ∂̃ρ∂̃λ∂̃µ
ε�̃2

δ(4)(x− z)

+ δ(4)(x− r) ? δ(4)(x− y) ?
∂̃λ∂̃ρ∂̃µ

ε�̃2
δ(4)(x− z)

)
. (A.58)

Due to the permutability of ∂̃ρ and ∂̃λ,
[
∂̃ρ, ∂̃λ

]
= 0, the order of ∂̃λ, ∂̃µ and ∂̃ρ is not im-

portant. Hence, it is always the same operator, but it is acting on different delta functions.
We can write (A.58) in a more compact way as

δ3Γ
(0)
tri,2

δAλ(r)δAρ(y)δAµ(z)
= g′

∫
d4x

({
δ(4)(x− z) ?, δ(4)(x− y)

}
?
∂̃λ∂̃ρ∂̃µ

ε�̃2
δ(4)(x− r)

+
{
δ(4)(x− z) ?, δ(4)(x− r)

}
?
∂̃λ∂̃ρ∂̃µ

ε�̃2
δ(4)(x− y)

+
{
δ(4)(x− r) ?, δ(4)(x− y)

}
?
∂̃λ∂̃ρ∂̃µ

ε�̃2
δ(4)(x− z)

)
. (A.59)

However, using (A.58) and calculating its partial derivative brings

∂zµ
δ3Γ

(0)
tri,2

δAλ(r)δAρ(y)δAµ(z)
= g′∂zµ

{
δ(4)(z − y) ?

∂̃zµ∂̃
z
ρ ∂̃

z
λ

ε�̃2
z

δ(4)(z − r)

+ δ(4)(z − r) ?
∂̃zµ∂̃

z
λ∂̃

z
ρ

ε�̃2
z

δ(4)(z − y)

+

(
∂̃zρ ∂̃

z
µ∂̃

z
λ

ε�̃2
z

δ(4)(z − r)
)
? δ(4)(z − y)

+

(
∂̃zλ∂̃

z
µ∂̃

z
ρ

ε�̃2
z

δ(4)(z − y)

)
? δ(4)(z − r)

−
∂̃zρ ∂̃

z
λ∂̃

z
µ

ε�̃2
z

(
δ(4)(z − y) ? δ(4)(z − r)

)
−
∂̃zλ∂̃

z
ρ ∂̃

z
µ

ε�̃2
z

(
δ(4)(z − r) ? δ(4)(z − y)

)}
. (A.60)
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The last two terms are zero because of ∂µ∂̃µ = 0. So, we get

− ∂zµ
δ3Γ

(0)
tri,2

δAλ(r)δAρ(y)δAµ(z)
=

− g′
({

∂zµδ
(4)(z − y) ?,

∂̃zµ∂̃
z
λ∂̃

z
ρ

ε�̃2
z

δ(4)(z − r)

}
+

{
∂zµδ

(4)(z − r) ?,
∂̃zµ∂̃

z
λ∂̃

z
ρ

ε�̃2
z

δ(4)(z − y)

})
.

(A.61)

This contribution of our second identity (4.46) is canceled by the term

δ3

δAλ(r)δAρ(y)δc(z)

(
g′
∂Γ

(0)
inv

∂δ̄

)∣∣∣∣∣
φ=0

= −g′ δ3

δAλ(r)δAρ(y)δc(z)

∫
d4x

(
sL2

br

) ∣∣∣∣∣
φ=0

, (A.62)

as shown now. Inserting L2
br (4.9) gives

(A.62) = −g
′

2

δ3

δAλ(r)δAρ(y)δc(z)

∫
d4x s

(
{Aσ ?, Aν} ?

∂̃σ∂̃ν ∂̃τ

ε�̃2
Aτ

)∣∣∣∣∣
φ=0

= −g′ δ3

δAλ(r)δAρ(y)δc(z)

∫
d4x s

(
Aσ ? Aν ?

∂̃σ∂̃ν ∂̃τ

ε�̃2
Aτ

)∣∣∣∣∣
φ=0

. (A.63)

Now, we need the trilinear part which is bilinear in Aµ and linear in c. For that we use the
BRST transformation (4.4) for Aµ

sAµ = ∂µc+ ig [c ?, Aµ] = ∂µc+ ... , (A.64)

and neglect all quadrilinear terms of (A.63), since they vanish for φ = 0. Hence, we get

(A.63) = −g′ δ3

δAλ(r)δAρ(y)δc(z)

∫
d4x

{
(∂σc) ? Aν ?

∂̃σ∂̃ν ∂̃τ

ε�̃2
Aτ

+Aσ ? (∂νc) ?
∂̃σ∂̃ν ∂̃τ

ε�̃2
Aτ +Aσ ? Aν ?

∂̃σ∂̃ν ∂̃τ

ε�̃2
(∂τ c)

}∣∣∣∣∣
φ=0

. (A.65)

The last term is zero due to ∂τ ∂̃τ = 0. The rest can be evaluated by additional use of
partial integration and cyclic permutation under the integral:

(A.65) = g′
δ3

δAλ(r)δAρ(y)δc(z)

∫
d4x

{
c ? (∂σAν) ?

∂̃σ∂̃ν ∂̃τ

ε�̃2
Aτ + (∂νAσ) ? c ?

∂̃σ∂̃ν ∂̃τ

ε�̃2
Aτ

}

= g′
δ2

δAλ(r)δAρ(y)

∫
d4x δ(4)(x− z)

×

{
(∂σAν) ?

(
∂̃σ∂̃ν ∂̃τ

ε�̃2
Aτ

)
+

(
∂̃σ∂̃ν ∂̃τ

ε�̃2
Aτ

)
? (∂νAσ)

}

= g′
δ2

δAλ(r)δAρ(y)

{
(∂zσAν) ?

(
∂̃zσ∂̃

z
ν ∂̃

z
τ

ε�̃2
z

Aτ

)
+

(
∂̃zσ∂̃

z
ν ∂̃

z
τ

ε�̃2
z

Aτ

)
? (∂zνAσ)

}
. (A.66)
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In the second line the star after the delta function has been dropped to solve the integral.
Further, we can derive

(A.66) = g′
δ

δAλ(r)

{
(∂zσδ

(4)(z − y)) ?

(
∂̃zσ∂̃

z
ρ ∂̃

z
τ

ε�̃2
z

Aτ

)
+ (∂zσAν) ?

(
∂̃zσ∂̃

z
ν ∂̃

z
ρ

ε�̃2
z

δ(4)(z − y)

)

+

(
∂̃zσ∂̃

z
ν ∂̃

z
ρ

ε�̃2
z

δ(4)(z − y)

)
? (∂zνAσ) +

(
∂̃zρ ∂̃

z
ν ∂̃

z
τ

ε�̃2
z

Aτ

)
? (∂zνδ

(4)(z − y))

}
.

(A.67)

Renaming σ or ν, respectively, to µ and building the last functional derivative leads to

δ3

δAλ(r)δAρ(y)δc(z)

(
g′
∂Γ

(0)
inv

∂δ̄

)∣∣∣∣∣
φ=0

=

= g′

({
∂zµδ

(4)(z − y) ?,
∂̃zµ∂̃

z
λ∂̃

z
ρ

ε�̃2
z

δ(4)(z − r)

}
+

{
∂zµδ

(4)(z − r) ?,
∂̃zµ∂̃

z
λ∂̃

z
ρ

ε�̃2
z

δ(4)(z − y)

})
.

(A.68)

Again, the fact that the order of ∂̃zµ, ∂̃zλ and ∂̃zρ is not important has been used. This
contribution (A.68) cancels the part coming from (A.61) in our vertex identity (4.46).

A.8 Fourier transform of counter-term contributions to the
3A vertex

Here, we want to calculate the Fourier transform of (A.59) and show that the 3A vertex in
k-space gets an additional term from L2

br, with

Γ
(0)
tri,2 =

∫
d4x

(
g′L2

br

)
, (A.69)

see (A.54). So we start with (A.59)

δ3Γ
(0)
tri,2

δAλ(r)δAρ(y)δAµ(z)
= g′

∫
d4x

({
δ(4)(x− z) ?, δ(4)(x− y)

}
?
∂̃λ∂̃ρ∂̃µ

ε�̃2
δ(4)(x− r)

+
{
δ(4)(x− z) ?, δ(4)(x− r)

}
?
∂̃λ∂̃ρ∂̃µ

ε�̃2
δ(4)(x− y)

+
{
δ(4)(x− r) ?, δ(4)(x− y)

}
?
∂̃λ∂̃ρ∂̃µ

ε�̃2
δ(4)(x− z)

)
, (A.70)

and use (A.45) for our delta function. Additionally, we can drop one star under the x-
integral and get

δ3Γ
(0)
tri,2

δAλ(r)δAρ(y)δAµ(z)
= −2g′

i

∫
d4x

∫∫∫
d4k1

(2π)4

d4k2

(2π)4

d4k3

(2π)4
e−i(k1+k2+k3)xei(k1r+k2y+k3z)

×
{
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(ε

2
k2θk3

) k̃1,λk̃1,ρk̃1,µ

ε(k̃2
1)2

+ cos
(ε

2
k1θk3

) k̃2,λk̃2,ρk̃2,µ

ε(k̃2
2)2

+ cos
(ε

2
k1θk2

) k̃3,λk̃3,ρk̃3,µ

ε(k̃2
3)2

}
,

(A.71)
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since {
δ(4)(x− y) ?, δ(4)(x− r)

}
=

∫∫
d4k1

(2π)4

d4k2

(2π)4

(
e−

i
2
k2εθk1 + e−

i
2
k1εθk2

)
e−i(k1+k2)xei(k1r+k2y)

=

∫∫
d4k1

(2π)4

d4k2

(2π)4

(
e+ i

2
k1εθk2 + e−

i
2
k1εθk2

)
e−i(k1+k2)xei(k1r+k2y)

=

∫∫
d4k1

(2π)4

d4k2

(2π)4
2 cos

(ε
2
k1θk2

)
e−i(k1+k2)xei(k1r+k2y) . (A.72)

We can solve the spacetime integral using (A.48). Therefore, (A.71) yields

δ3Γ
(0)
tri,2

δAλ(r)δAρ(y)δAµ(z)
= 2ig′

1

(2π)8

∫∫∫
d4k1 d

4k2 d
4k3 δ

(4)(k1 + k2 + k3) ei(k1r+k2y+k3z)

× cos
(ε

2
k1θk2

) 3∑
i=1

k̃i,λk̃i,ρk̃i,µ

ε(k̃2
i )

2
. (A.73)

With the Fourier transform given in (A.43) we can conclude with

Ṽ 3A
λρµ(k1, k2, k3)

∣∣
counter

= 2ig′ (2π)4δ(4)(k1 + k2 + k3) cos
(ε

2
k1θk2

) 3∑
i=1

k̃i,λk̃i,ρk̃i,µ

ε(k̃2
i )

2
. (A.74)

Eq. (A.50) and (A.74) are representing the whole result for the 3A vertex of our model.

A.9 Damping-term contributions to the second identity

There are two contributions to the identity (4.46) we have to consider with respect to L1
br.

The first one is coming from the second and third term of our identity (4.46)

ig

δ(4)(z − y) ?,
δ2Γ

(0)
inv

δAλ(r)δAρ(z)

∣∣∣∣∣
φ=0

+ ig

δ(4)(z − r) ?,
δ2Γ

(0)
inv

δAρ(y)δAλ(z)

∣∣∣∣∣
φ=0

 , (A.75)

where we can use the result of (A.15)

δ2Γ
(0)
bi,2

δAρ(y)δAµ(z)
= − γ

4

�̃2
z

(
�zδµρ − ∂zµ∂zρ + ρ ∂̃zµ∂̃

z
ρ

)
δ(4)(z − y) , (A.76)

with (A.8)

Γ
(0)
bi,2 =

∫
d4x
(
γ4 L1

br

)
=
γ4

4

∫
d4x

(
fµν

1

�̃2
fµν + 2ρ ∂̃A

1

�̃2
∂̃A

)
. (A.77)
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Inserting (A.76) in (A.75) brings

ig

δ(4)(z − y) ?,
δ2Γ

(0)
bi,2

δAλ(r)δAρ(z)

∣∣∣∣∣
φ=0

+ ig
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∣∣∣∣∣
φ=0

 =

= −igγ4
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1

�̃2
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(
�zδλρ − ∂zλ∂zρ + ρ ∂̃zλ∂̃

z
ρ

)
δ(4)(z − r)

]

+

[
δ(4)(z − r) ?, 1

�̃2
z

(
�zδλρ − ∂zλ∂zρ + ρ ∂̃zλ∂̃

z
ρ

)
δ(4)(z − y)

]}
. (A.78)

This is the first result, but the above contributions are canceled by the part coming from

δ3

δAλ(r)δAρ(y)δc(z)

(
γ4∂Γ

(0)
inv

∂χ̄

)∣∣∣∣∣
φ=0

= −γ4 δ3

δAλ(r)δAρ(y)δc(z)

∫
d4x

(
sL1

br

) ∣∣∣∣∣
φ=0

(A.79)

in our identity (4.46), which is shown now. We can devide

(A.79) = −γ
4

4

δ3

δAλ(r)δAρ(y)δc(z)

∫
d4x s

(
fµν ?

1

�̃2
fµν + 2ρ ∂̃A ?

1

�̃2
∂̃A

) ∣∣∣∣∣
φ=0

(A.80)

into two parts and rewrite them in similar manner as in (A.17) and below. As a result, we
get for the first part

γ4

2

δ3

δAλ(r)δAρ(y)δc(z)

∫
d4x s

(
Aµ ?

1

�̃2
(�δµν − ∂µ∂ν)Aν

) ∣∣∣∣∣
φ=0

, (A.81)

and for the second part

ργ4

2

δ3

δAλ(r)δAρ(y)δc(z)

∫
d4x s

(
Aµ ?

∂̃µ∂̃ν

�̃2
Aν

)∣∣∣∣∣
φ=0

. (A.82)

We again use the BRST transformation (4.4) for Aµ, but now its bilinear part

sAµ = ∂µc+ ig [c ?, Aµ] = ...+ ig (c ? Aµ −Aµ ? c) . (A.83)

Starting with the first part, using partial integration and cylic permutation, one gets

(A.81) = igγ4 δ3

δAλ(r)δAρ(y)δc(z)

∫
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�̃2
Aν

[
Aµ ?,

1
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]
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1

�̃2
z

(
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]
. (A.84)
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The same procedure gives for the second part

(A.82) = igργ4 δ3
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∫
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)
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z
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�̃2
z
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]
. (A.85)

Summarizing the results of (A.84) and (A.85) brings

(A.79) = igγ4 δ2

δAλ(r)δAρ(y)

[
Aµ ?,

1

�̃2
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(
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]
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, (A.86)

and, finally, the result
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z
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(
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z
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]}
. (A.87)

This is the same as in (A.78) but with opposite sign. So, the contribution given in (A.87)
cancels the one in (A.78) in the vertex identity (4.46).



Appendix B

Calculations for the Linearized
BRST Operator b

In this chapter we neglect the star product in the notation for simplification. Nonetheless,
do not forget that it is always present and that we can always apply the properties of the
star product, see Sect. (2.1), in our calculations.

Additionally, one has to take care of the fermionic character of some fields (e.g. c, c̄
or ΩA

µ ), which always gives a factor (−1) when changing the order of two such fermionic
fields.

B.1 The equation of motion for c

We start with the action (4.8)

Γ
(0)
inv =

∫
d4x

(
1

4
FµνFµν + s(c̄ ∂A) + s(χ̄L1

br) + s(δ̄L2
br) + ΩA

µ sAµ + Ωcsc

)
, (B.1)

and look for all the parts contributing to

bΩc =
δΓ

(0)
inv

δc
, (B.2)

where b of (4.60)

b =

∫
d4x

(
δΓ

δΩA
µ

δ

δAµ
+

δΓ

δAµ

δ

δΩA
µ

+
δΓ

δΩc

δ

δc
+
δΓ

δc

δ

δΩc
+B

δ

δc̄

)
+ γ4 ∂

∂χ̄
+ g′

∂

∂δ̄
, (B.3)

has been used. The first term of (B.1) is just depending on Aµ and not on c. The second,
fifth and sixth term contain the ghost field c and we can treat them in the following manner:

δ

δc(y)

∫
d4x s (c̄ ∂A) = − δ

δc(y)

∫
d4x (c̄ ∂µsAµ) = − δ

δc(y)

∫
d4x (c̄ ∂µDµc)

=
δ

δc(y)

∫
d4x (∂µc̄) (∂µc+ ig [c, Aµ]) = (∂µ(∂µc̄) + ig [(∂µc̄), Aµ]) (y) = Dµ∂µc̄ (y) ,

(B.4)
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The above (and below) applied BRST transformations are given in (4.4) and (4.7). An
important insight is that we can treat the covariant derivative Dµ in similar manner to a
partial derivative ∂µ where one just gets a factor −1 in partial integration.
The fifth and sixth term give

δ

δc(y)

∫
d4xΩA

µ sAµ =
δ

δc(y)

∫
d4xΩA

µDµc = DµΩA
µ (y) =

(
∂µΩA

µ + ig
[
ΩA
µ , Aµ

])
(y) , (B.5)

δ

δc(y)

∫
d4xΩcsc = ig

δ

δc(y)

∫
d4xΩccc = ig [c,Ωc] (y) . (B.6)

Furthermore, we get contributions from the third and fourth term of the action (B.1):
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∫
d4x s

(
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br

)
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d4x s

(
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)
. (B.7)

The left term gives

δ
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)
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)
Aν

= χ̄
Dµ
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)
Aν(y) . (B.8)

In the first and second line we got a minus sign due to the fermionic character of c, χ̄
and the s operator. In the third line we used partial integration, as well as in the fourth
line after letting s act on every Aµ, which brought the anticommutator. Due to cyclic
permutation, this cancels the factor 1

2 .
Now, we can further simplify this result in the following manner

(B.8)= χ̄
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)
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(
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(y) . (B.9)
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The right term of (B.7) can be treated as follows:

δ
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∫
d4x δ̄ (sL2

br)

= δ̄
δ

δc(y)

∫
d4x s

(
1

2
{Aµ, Aν}

∂̃µ∂̃ν ∂̃ρ

ε�̃2
Aρ

)

= δ̄
δ

δc(y)

∫
d4x s

(
AµAν

∂̃µ∂̃ν ∂̃ρ

ε�̃2
Aρ

)

= δ̄
δ

δc(y)

∫
d4x

(
{Dµc, Aν}

∂̃µ∂̃ν ∂̃ρ

ε�̃2
Aρ +AµAν

∂̃µ∂̃ν ∂̃ρ

ε�̃2
Dρc

)

= −δ̄ δ

δc(y)

∫
d4x

(
cDµ

{
Aν ,

∂̃µ∂̃ν ∂̃ρ

ε�̃2
Aρ

}
−AµAν

∂̃µ∂̃ν ∂̃ρ

ε�̃2
ig [c, Aρ]

)

= −δ̄ δ

δc(y)

∫
d4x c

(
Dµ

{
Aν ,

∂̃µ∂̃ν ∂̃ρ

ε�̃2
Aρ

}
+ ig

[
Aρ,

∂̃µ∂̃ν ∂̃ρ

ε�̃2
(AµAν)

])

= −δ̄

(
Dµ

{
Aν ,

∂̃µ∂̃ν ∂̃ρ

ε�̃2
Aρ

}
+ ig

[
Aρ,

∂̃µ∂̃ν ∂̃ρ

ε�̃2
(AµAν)

])
(y) . (B.10)

Hence, we can summarize all these results to

bΩc =
δΓ

(0)
inv

δc
= Dµ∂µc̄+DµΩA
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. (B.11)

B.2 The equation of motion for Aµ

Here, we have to scan the action (B.1) for all parts contributing to

bΩA
µ =

δΓ
(0)
inv

δAµ
, (B.12)

and notice that all terms except the last one have to be considered. We start with the easy
ones:
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(y) , (B.13)

where one has to respect the fermionic character of ΩA
ν and c, which leads to the anticom-

mutator. It is similar for the next part
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∫
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where c and c̄ are fermionic fields. Further, we have to derive (neglecting the argument y
in the notation)
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which is the expected result, analogous to ∂νfµν in the case of an Abelian gauge field in
commutative theories. Additionally, we need
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The left term leads to
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where we have to calculate

δ

δAµ(y)

∫
d4x

(
γ4L1

br

)
= γ4 δ

δAµ(y)

∫
d4x

(
1

4
fσν

1

�̃2
fσν +

ρ

2
∂̃A

1

�̃2
∂̃A

)
=
γ4

�̃2

(
∂νfµν − ρ ∂̃µ∂̃νAν

)
(y) , (B.18)
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2
Aσ

∂̃σ∂̃ν

�̃2
Aν

)

= −igχ̄
δ

δAµ(y)

∫
d4x

(
[c, Aσ]

1

�̃2
∂νfσν − ρ [c, Aσ]

∂̃σ∂̃ν

�̃2
Aν

)

= igχ̄

[
c,

1

�̃2

(
∂νfµν − ρ ∂̃µ∂̃νAν

)]
(y) +

igχ̄

�̃2

(
�δµν − ∂µ∂ν + ρ ∂̃µ∂̃ν

)
[c, Aν ] (y) ,

(B.19)

where from the second to the third line we used ∂µ∂νfµν = 0 (because of the antisymmetry
of fµν and the permutability of ∂µ and ∂ν), or stated explicitly: ∂µ

(
∂µ∂ν − ∂2δµν

)
Aν = 0

(transverse projection operator with ∂P⊥ = 0). So we get for the left term of (B.16)

δ

δAµ(y)

∫
d4x s

(
χ̄L1

br

)
=
γ4

�̃2

(
∂νfµν − ρ ∂̃µ∂̃νAν

)
(y) + igχ̄

[
c,

1

�̃2

(
∂νfµν − ρ ∂̃µ∂̃νAν

)]
(y)

+
igχ̄

�̃2

(
�δµν − ∂µ∂ν + ρ ∂̃µ∂̃ν

)
[c, Aν ] (y) . (B.20)
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The right term of (B.16) reads

δ

δAµ(y)

∫
d4x s

(
δ̄L2

br

)
=

δ

δAµ(y)

∫
d4x

(
g′L2

br − δ̄sL2
br

)
. (B.21)

Here, we need

δ

δAµ(y)

∫
d4x

(
g′L2

br

)
= g′

δ

δAµ(y)

∫
d4x

(
AσAν

∂̃σ∂̃ν ∂̃ρ

ε�̃2
Aρ

)

= g′

{
Aν ,

∂̃µ∂̃ν ∂̃ρ

ε�̃2
Aρ

}
(y)− g′ ∂̃µ∂̃ν ∂̃ρ

ε�̃2
(AρAν) (y) , (B.22)

and

− δ

δAµ(y)

∫
d4x

(
δ̄sL2

br

)
= −δ̄ δ

δAµ(y)

∫
d4x s

(
AσAν

∂̃σ∂̃ν ∂̃ρ

ε�̃2
Aρ

)

= −δ̄ δ

δAµ(y)

∫
d4x

(
{Dσc, Aν}

∂̃σ∂̃ν ∂̃ρ

ε�̃2
Aρ + ig AσAν

∂̃σ∂̃ν ∂̃ρ

ε�̃2
[c, Aρ]

)

= −δ̄ δ

δAµ(y)

∫
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(
{∂σc+ ig [c, Aσ] , Aν}
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Aρ

}
(y) + igδ̄

[
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{
Aν ,
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ε�̃2
Aρ

}]
(y)

− igδ̄

{
Aν ,
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[c, Aρ]

}
(y) + igδ̄
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ε�̃2
(AρAν), c

]
(y) , (B.23)

where the first term of the result is obtained by letting the functional derivative δ
δAµ

act

on Aρ of the first term in the second or third line, respectively (after partial integration),
followed by a renaming of σ to ρ. The second term comes from δAν

δAµ
and the third one from

the functional derivative δ(Dσc)
δAµ

= ig δ[c,Aσ ]
δAµ

in the anticommutator.

So, all in all, we achieve for this right term of (B.16)

δ

δAµ(y)

∫
d4x s
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δ̄L2

br
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(AρAν) (y)

+ δ̄
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Aρ

}]
(y)

− igδ̄

{
Aν ,

∂̃µ∂̃ν ∂̃ρ

ε�̃2
[c, Aρ]

}
(y) + igδ̄

[
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ε�̃2
(AρAν), c

]
(y) . (B.24)

In our shorthand notation we always neglect the argument y for simplification.
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Now, we can summarize all the terms contributing to the equation of motion for Aµ as

bΩA
µ =

δΓ
(0)
inv

δAµ
= DνFµν + ig

{
ΩA
µ , c
}

+ ig {∂µc̄, c} − ∂µB +
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1
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)
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. (B.25)

This can be rewritten in the following way

bΩA
µ =

δΓ
(0)
inv

δAµ
= −(1 +

γ4

�̃2
)(�δµν − ∂ν∂µ)Aν −

ργ4
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