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Abstract

This thesis is targeting the dynamics and the stability behaviour of ordinary
differential equation models describing a terrorist group. It deals with several
models based on Hausken et al.’s considerations in their work Composition and
Dynamic Evolution of Terrorist Organizations, [12, Hausken et al. 2012]. One
main task is to investigate the stability behaviour with respect to changes of
parameters in the model representing such a group.

Hausken et al. assumed that terrorist organisations consist most often of
three groups: ideologues, criminal mercenaries and captive participants. Ideo-
logues provide political purpose and direction and have a strong group commit-
ment. Like every group a terrorist organisation often needs money to survive.
The ideologues acquire money through capital support by sponsors or criminal
activities. To assure permanent financial supporting, ideologues have to recruit
mercenaries. These criminal mercenaries support the organisation by providing
money, but they have a weak group commitment and may corrupt the ideological
purity of the group. Captive participants have neither strong commitments nor
financial interests but cannot leave without repercussions. The developement of
the terrorist organisation is influenced by the strength of every single group and
may turn into a criminal organisation or may break completely.

The following models, based on Hausken et al.’s work, analyse the develop-
ment of such a group. Hausken et al. first present a model only with ideologues,
which is then expanded by criminal mercenaries and finally by captive partici-
pants. Thereafter Hausken et al. also included government intervention to their
model. Those models of different dimensions will be investigated accurately for
the issue of an existing solution and the stability. In addition, an analysis for
measuring the influence of a parameter change will be carried out to minimise
the damage costs caused by the terrorist organisation.
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Chapter 1

Introduction

1.1 Definition of Terrorism

Everybody has some association to the word terrorism, usually a bad one. But
what is terrorism? In order to respond to terrorism, a clear definition is necessary.
In history there were many attempts to give a legal definition of terrorism but
none of them is widely accepted as the universal one.

1.1.1 The Difficulty of Defining Terrorism

The problem facing a global definition is the difficulty in taking account of special
circumstances according to the type of action committed, the nature of victims
or the type of method of the terrorist action, [23, Sorel 2003]. The enormity of
existing definitions of terrorism is given by an enumerative, descriptive and also
confusing mix of papers. According to J.M. Sorel it is much better to refer to
the approaches of terrorism. One could focus on how the act was undertaken,
by whom the act was perpetrated and the reason why the act was committed.

Anyway, trying to define terrorism runs the risk of getting into deeper and
deeper water. For a satisfying definition the attitude of terrorism has to be
distinguished from its acts or methods. Only the impact of the action has to be
taken into account to a common law crime. This effect can also be characterised
by a terror act that inculcates and causes a feeling of uncontrolled fear in the
mind of society.
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1. INTRODUCTION

1.1.2 Some Aspects of Terrorism

For many people terrorism seems to be a random and senseless form of violence
perpetrated by madmen. The idea to be susceptible to such apparently uncon-
trolable attacks certainly leads to an increasing sense of anxiety. An important
psychological aspect of terrorism is the terrorist’s ideological or political moti-
vation making terrorism aking to war, [22, Ruby 2002]. That may engender a
feeling of powerlessness in potential victims. This psychological aspect is likely
to make people more sensitive to terrorism than they are to much greater risks
such as traffic accidents.

As mentioned above the most difficult aspect of dealing with terrorism is
probably the issue of defining it. The word terrorism has been used to describe
a bunch of violent acts from domestic altercations to gang violence. But the
popular view of terrorism does not include these acts.

Since 1983, the U.S. Department of State [6, Fox and Zawitz 2000] has used
Title 22 of the United State Code, Section 2656f(d), to define terrorism. In the
introduction to the Departement’s Patterns of Global Terrorism it is defined as
politically motivated violence perpetrated against noncombatant targets by sub-
national groups or clandestine agents, usually intended to influence an audience.

This definition has three key criteria to distinguish terrorism from crime, [22,
Ruby 2002]. First of all terrorism has to be politically motivated. Terrorism is
targeting political goals. Those acts are intended to influence the government
policy. This criterion emphasizes that the social and psychological antecedents
of personally or criminally motivated violence are different from the antecedents
of terrorist violence.

The second one argues that terror acts are directed at noncombatants. It
identifies terrorism as violence directed towards civilian populations or groups
who are not prepared to defend against political violence.

The third criterion of the State Department’s definition is that subnational
groups or clandestic agents commit terror acts. From this point of view political
violence is not terrorism, even if there is some probability to harm noncombat-
ants (e.g. Pearl Harbor, 1941).
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1. INTRODUCTION

Additionally to the political motivation of the acts, targeting noncombatants
and the clandestine perpetrators are other two important definition criteria. Ka-
plan [15, Kaplan 1978] argued that terrorism is intended to create an extremely
fearful state of mind. Furthermore this fearful state is not intended only or
primarily for the terrorist victims but rather for an audience who may have
no relationship to the victims. Oots [19, Oots 1990] similarly said that ter-
rorism was intended to "create fear and/or anxiety-inducing effects in a target
audience larger than the immediate victims". Ruby notes also that the defini-
tion in the U.S. Army’s textbook on militarly medicine echoes that terrorism
is partly defined by its creation of fear in an audience beyond the immediate
victim, [14, Jones and Fong 1994].

Taylor [24, Taylor 1998] discussed three perspectives that society uses in
determining wether an act is terrorism or not. He presents these different per-
spectives to point out that even with a huge set of definition criteria people see
terrorism as a legal issue. With this perspective, an act is considered as terrorism
only if it is illegal. Governments are likely to use this perspective to interpret
terrorism. However, the determination that an act is terrorism under this per-
spective depends on the government’s interpretation. Obviously not all nations
have the same definition of what is legal. Thus two governments may view a
same incident differently.

A second perspective is moral in nature and would consider an act to be
terrorism only if it had no moral justification. Some groups are willing to com-
mit politically motivated illegal violence but do so by believing it is a necessary
and morally justified act. As with a legal perspective, the use of a moral one in
interpreting terrorism can result in different conclusions concerning the same act.

Taylor’s third and final perspective is behavorial. With this perspective ter-
rorism is defined purely by the behaviors involved, regardless of the laws or
morality of those doing the defining. In reasoning from this perspective, differ-
ent interpreters will necessarily reach the same conclusions as wether a particular
act is terrorism or not.

Of course, philosophing about terrorism is a neverending story and neither
the issue of this thesis. Further information on this topic can be read in lots
of different papers such as Susan Tiefenbrun’s A Semiotic Approach to a Legal
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1. INTRODUCTION

Definition of Terrorism Part III [25, Tiefenbrun 2002] in the ILSA Journal of
International & Comparative Law where several definitions of terrorism (U.S.,
English, French, European Nations, Canadian) are listed.

1.2 Background and Motivation

Most terrorist groups do not exist very long. Their lifespan is strictly correlated
to money, [21, Rapoport 1992]. They need capital fundings to carry out their ide-
ologies and political ideas and waging war against organised societies. Terrorist
groups can raise their money from outside fundings or through criminal activi-
ties. Without permanent sponsoring a group is not able to retain their ideology.
It may disband or turn into a criminal organisation. Thus the maintenance of a
terrorist group is perhaps closely related to its internal composition. The issue
of the internal dynamics of such a group is not yet explored very accurately. And
this is the inducement to Kjell Hausken’s research and his models, [12, Hausken
et al. 2012], which will be investigated in detail in this thesis.

Terror acts are not clearly distinguishable from criminal ones. Terrorists
and criminals both work outside the law and their acts look pretty similar at the
first sight. But terrorists go for a maximum of attention when exerting their acts
whereas criminals organisations try to stay latent in the background. Too much
attention on them would be bad for their business. Not all groups have a simi-
lar, political or religious, orientation. Gupta [8, Gupta 2008] argues that in time
some terrorist groups transform automatically into criminal groups. One could
follow up the transformation of some well-known terrorist groups into criminal
ones. For instance, the colombian FARC was founded as a Marxist revolutionary
group but ended up as a drug cartel due to enticement of money, [1, Betancourt
2011]. Also some splits of the IRA turned criminal, [5, English 2003].

Obviously there is only a thin line between terrorist and criminal organi-
sations and both are known for acting in a violent way. However, there is an
essential difference between them, namely their motivations. Criminals want to
intimidate society. Terrorists on the other hand want to change the political or
religious orientation of society and that is the point. This comes also through the
definition of terrorism given in Section 1.1.1 and the definition of crime which is
according to the Federal Bureau of Investigation a "criminal conspiracy ... mo-
tivated by greed".
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1. INTRODUCTION

Gupta [8, 9, Gupta 1990,2008] was convinced that some individuals of a ter-
rorist group are not just motivated by their own selfish interests but also by the
welfare of the entire group. Hausken argues similarly. According to him [10, 11,
Hausken 1996] individuals try to find a perfect mix between selfishness and self-
lessness they can live with. That is the basic concept for understanding terrorism.
Based on this utility function depending on two arguments Gupta filters out three
types of actors within a terrorist group. These actors distinguish themselves in
their primary motivation of joining such a group.

• Ideologues or the "true believers" have a strong group commitment. These
actors devote their effort for the welfare of the group and would even sac-
rifice their lives for it, [13, Hoffer 2002].

• Criminal mercenaries or the "egoists" spend their lives in pursuit of their
own selfish desires and are mostly interested in making money.

• Captive participants have neither a strong group commitment nor strong
personal financial interests. They can not leave the group due to the fact
that their cost of noncompliance of several things is too high. Their efforts
are logistical supports such as providing safe houses, acting as look-outs
and so on.

To keep up a group, ideologues to build up the foundation of an ideological
framework are needed. Thereafter it needs money to operate and finance their
activities. Those who are able to assure permanent financial support can keep
their ideology, e.g. the group Laskar-e-Taibe receives fundings from the Pakistani
military establishment, [4, Constable 2011]. Al-Qaeda can count on individual
contributors from Saudi Arabia and some Gulf countries, [18, Napoleoni 2005].

Due to lack of fundings some groups are forced to turn towards criminal acts
such as drug dealing, human trafficking or money laundering. When terrorist
groups turn to criminal activities they need the support of those people who are
just interested in making money, the mercenaries. The captive participants come
under the influence of a group when it becomes sufficiently strong to impose its
will on parts of the community which do not fully subscribe to their ideological
or strategic goals, [12, Hausken et al. 2012].

Hausken’s analysis starts with the assumption that every terrorist group con-
sists of these three types of actors, [12, Hausken et al. 2012]. A group consisting

5



1. INTRODUCTION

only of ideologues needs fundings from outside to survive. If the ideologues re-
cruit criminal mercenaries to the group the latter can provide money additionally
to the capital fundings. If there is no more sponsoring from outside and a strong
government has the ability to impose higher costs on the ideologues than on the
mercenaries, the terrorist group tends to transform itself into a criminal organ-
isation. But there are also other negative inducements for a terrorist group to
change its orientation, i.e. the group’s political base. A group consisting only of
captive participants will fail in commitment and effectiveness and thus will cease
to exist.

Hausken et al.’s assumptions suggest that every terrorist group has an optimal
mix consisting of these three actors. It is a logistical problem of the group to
keep up itself. Hence, terrorist groups evolve in time. All of them are founded
as ideological groups trying to maintain their goals. Some of them can keep
up their political or religious orientation and have a long lifespan (e.g. IRA,
Hamas), some fail their goals and turn into a criminal organisation (i.e. FARC,
Abu Sayaaf) and most of them disband (e.g. Japanese Red Army). It depends on
the internal mix within the terrorist group, which way of development it takes.

1.3 Thesis Organisation

Chapter 2 presents Hausken et al.’s two-, three- and four-dimensional models
without government intervention. These are all given by homogenous linear
first ordered differential equations. The two-dimensional model includes only
ideologues and capital funding. This one will be solved analytically and every
possible case of stability will be investigated accurately. Finally, some plots of
this model are displayed for better understanding. The three-dimensional model
additionally includes criminal mercenaries and will be treated the same way. But
the analysis claims much more pages because of the higher dimension and the
associated numerous cases of stability. Also a solution of the four-dimensional
model including captive participants is given in this chapter. But due to lack of
space this solution will be just a theoretical one.

Chapter 3 also deals with the extended four-dimensional model but this time
with government intervention. This leads to an inhomogenous system of differ-
ential equations, which can again be solved analytically.

6



1. INTRODUCTION

The further parts of this thesis are restricted to the solution of the two-
dimensional model. Chapter 4 concentrates on the examination of this solution.

Chapter 5 introduces some strategic investigations on Hausken et al.’s two-
dimensional model. In order to minimise an objective functional measuring the
damage caused by the terrorist group these examinations are first carried out
analytically in Chapter 5 and then performed numerically with a chosen set of
parameter values in Chapter 6.

Chapter 7 concludes, while some of the mathematical details can be found
in the Appendix.
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Chapter 2

The Model without
Government Intervention

2.1 Ideological Purity

Hausken et al. [12, Hausken et al. 2012] presented their first model with I(t)
defined as the amount of labour exerted by ideologues to run a terrorist organ-
isation and K(t) defined as the amount of capital provided by sponsors with
t ≥ 0 representing the time argument. Over time the ideological effort increases
with the injection of capital and is constrained by itself from unbounded growth.
The willingness of sponsors to insert capital increases with the ideological effort
as well and is also constrained by itself from unbounded growth. This results in
the following system of two linear first ordered differential equations:

İ(t) = aK(t)− bI(t)

K̇(t) = cI(t)− dK(t)

where a, b, c, d > 0 are parameters. This can also be written as

(
İ(t)
K̇(t)

)
=

(
−b a

c −d

)
︸ ︷︷ ︸

A

(
I(t)
K(t)

)

with the initial conditions I(0), K(0) and A being a matrix with constant coef-
ficients. The solution of this system is given by

9



2. THE MODEL WITHOUT GOVERNMENT INTERVENTION

(
I(t)
K(t)

)
= eAt

(
I(0)
K(0)

)
.

Therefore the eigenvalues and the corresponding eigenvectors of the matrix A
have to be calculated, which will be done in what follows.

det(A− λI) =
∣∣∣∣∣ −b− λ a

c −d− λ

∣∣∣∣∣ = λ2 + λ(b+ d) + (bd− ac)

Determining the zeros of this polynomial results in the eigenvalues

λ1 = −1
2

(
b+ d−

√
(b− d)2 + 4ac

)
λ2 = −1

2

(
b+ d+

√
(b− d)2 + 4ac

)
which are both real and where the relation λ1 > λ2 is always true. Solving the
linear equation system (A− λI) · v = 0 leads to the eigenvectors

v1 =
(

a
a+b+λ1

c
c+d+λ1

)
for λ1

v2 =
(

a
a+b+λ2

c
c+d+λ2

)
for λ2.

Now the matrix eAt can be diagonalised by the Jordan canonical form and the
solution of the initial system is given by

(
I(t)
K(t)

)
= T

(
eλ1t 0

0 eλ2t

)
T−1

(
I(0)
K(0)

)

where T is the transformation matrix which consists of the two eigenvectors v1

and v2. For further information on this solution and the functions I(t) and K(t)
see Chapter 4.

10



2. THE MODEL WITHOUT GOVERNMENT INTERVENTION

2.1.1 Stability Analysis

Next we want to address on the issue of the stability of the system. For that
purpose it is useful to know what the phase portrait of the system looks like.
We need to take a look at the signatures of the two eigenvalues λ1 and λ2. It
is easy to see that the signature of λ2 is negative for all a, b, c, d > 0, so we just
have to figure out the signature of the first eigenvalue.

First of all we assume λ1 > 0, which implies that b + d <
√

(b− d)2 + 4ac
has to hold. Simple transformations give us the condition for λ1 > 0, namely
bd < ac. The analogous assumption and calculation for λ1 < 0 gives us the
condition bd > ac. The case of bd = ac is still missing and at this constellation
we get λ1 = 0. Hence we have to consider the following three cases of our system
accurately:

1. bd > ac ⇔ λ1 < 0, λ2 < 0

2. bd < ac ⇔ λ1 > 0, λ2 < 0

3. bd = ac ⇔ λ1 = 0, λ2 < 0

which will be discussed in what follows, respectively.

1. bd > ac

Here we have two real and distinct eigenvalues of the same sign, λ1, λ2 < 0 with
the relation λ1 > λ2. In this case the matrix A has two linearly independent
eigenvectors v1 and v2 as calculated above. The origin (0, 0) is called an attrac-
tive node and the solution approaches the origin as t increases. Consequently
the origin is said to be an asymptotically stable attractive node, [16, Mlitz
2008].

2. bd < ac

Under this condition both eigenvalues are real and of opposite sign, λ1 > 0 and
λ2 < 0. In this case the matrix A has still two linearly independent eigenvectors
v1 and v2. The solution would approach the origin if it started on a point
along v2, which belongs to λ2, and move away from the origin if it started on
a point along v1. In this case the origin (0, 0) is called an unstable saddle
point, [16, Mlitz 2008].

11



2. THE MODEL WITHOUT GOVERNMENT INTERVENTION

3. bd = ac

If bd = ac holds, the matrix A is singular, which means that det(A) = 0 and our
second eigenvalue is reduced to λ2 = −(b+ d). In fact this happens if and only
if we have more than one equilibrium point which is usually (0, 0). In this case
we will have a line of equilibrium points and the characteristical trajectory for
this line is the eigenvector associated to the eigenvalue zero. The corresponding
characteristical trajectories are calculated by substituting λ1 = 0 and λ2 = −b−d
to the formula of the eigenvectors and we get the simple forms v1 = (a, b)T and
v2 = (−a, d)T . Therefore the general solution can be formed easily by

(
I(t)
K(t)

)
= 1
a(b+ d)

(
a −a
b d

)(
1 0
0 e−(b+d)t

)(
b a

−d a

)(
I(0)
K(0)

)
.

Note that all the solutions are line parallel to the vector v2. For t → ∞ the
trajectory converges to the equilibrium point on the line of equilibrium points
having v1 as a direction vector. The system is also stable but not asymptotically
stable, [16, Mlitz 2008].

To get an idea of the dynamics of the system and what the phase portrait
actually looks like the system is plotted on the next pages for certain randomly
chosen cases.

2.1.2 Equilibrium Solution

An equilibrium solution is a constant solution of the system, which is usually
called a critical point, [16, Mlitz 2008]. For a linear system of the form ẋ = Ax
an equilibrium solution occurs at each solution of the (homogeneous) system
Ax = 0. So we have to solve the linear system of equations

aK(t)− bI(t) = 0

cI(t)− dK(t) = 0.

Beside the trivial equilibrium solution I(t) = K(t) = 0 there exist other equilibria
under the condition bd = ac as shown in Figure 2.5 and Figure 2.6. For further
information see section 2.1.1, where the case bd = ac is discussed in detail.
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2. THE MODEL WITHOUT GOVERNMENT INTERVENTION

Figure 2.1: Plot of the phase portrait of the system with the parameters a =
3, b = 7, c = 2, d = 3. The initial values of the plotted trajectories are chosen
randomly. The blue lines represent the eigenvectors v1 and v2. The origin is an
attractive node.

Figure 2.2: Plot of the phase portrait of the system with the parameters a =
2, b = 3, c = 1, d = 8. The initial values of the plotted trajectories are chosen
randomly. The blue lines represent the eigenvectors v1 and v2. The origin is an
attractive node.

13



2. THE MODEL WITHOUT GOVERNMENT INTERVENTION

Figure 2.3: Plot of the phase portrait of the system with the parameters a =
4, b = 2, c = 2, d = 1. The initial values of the plotted trajectories are chosen
randomly. The blue lines represent the eigenvectors v1 and v2. The origin is a
saddle point.

Figure 2.4: Plot of the phase portrait of the system with the parameters a =
3, b = 1, c = 6, d = 4. The initial values of the plotted trajectories are chosen
randomly. The blue lines represent the eigenvectors v1 and v2. The origin is a
saddle point.
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2. THE MODEL WITHOUT GOVERNMENT INTERVENTION

Figure 2.5: Plot of the phase portrait of the system with the parameters a =
4, b = 2, c = 4, d = 8. The initial values of the plotted trajectories are chosen
randomly. The blue lines represent the eigenvectors v1 and v2. All points on v1
are equilibrium points.

Figure 2.6: Plot of the phase portrait of the system with the parameters a =
3, b = 6, c = 8, d = 4. The initial values of the plotted trajectories are chosen
randomly. The blue lines represent the eigenvectors v1 and v2. All points on v1
are equilibrium points.
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2. THE MODEL WITHOUT GOVERNMENT INTERVENTION

2.2 Including Criminal Mercenaries

To ensure financial support ideologues may recruit criminal mercenaries, [12,
Hausken et al. 2012]. Thus the first model is generalised to

İ(t)
K̇(t)
Ṁ(t)

 =


−b a e

c −d −f
g −h −m


︸ ︷︷ ︸

B


I(t)
K(t)
M(t)

 ,

where a, b, c, d, e, f, g, h,m > 0 are parameters with the initial conditions I(0),
K(0) andM(0). M(t) is defined as the amount of labour exerted by mercenaries.
This system can be solved as shown above by calculating the eigenvalues with
det(B − νI) = 0 and the corresponding eigenvectors and diagonalising through
the Jordan canonical form. The characteristic polynomial of the matrix B is
given by

p(ν) = ν3 + ν2 (b+ d+m)︸ ︷︷ ︸
A

+ ν (bd+ bm+ dm− ge− hf − ca)︸ ︷︷ ︸
B

+

+ (bdm+ afg + ech− dge− hfb− cam)︸ ︷︷ ︸
C

.

The zeros of this polynomial can be determined by Cardano’s method [3, Buech-
ner 1857] by solving

z3 + pz + q = 0

with

p = B − A2

3 , q = 2A3

27 −
AB

3 + C,

which comes from the original characteristic polynomial reduced by substituting
ν = z − A

3 . At this point, two variables u and v have to be introduced linked by
the condition z = u+ v. Substituting this into the reduced polynomial gives us

u3 + v3 + (3uv + p) + q = 0.
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2. THE MODEL WITHOUT GOVERNMENT INTERVENTION

Comparing coefficients gives us another two conditions for u and v:

• −p = 3uv ⇒ u3v3 = −p3

27

• −q = u3 + v3.

According to Vieta u3 and v3 are the two roots of the equation t2 + qt− p3

27 = 0
and we finally get

u = 3

√
−q2 +

√
D, v = 3

√
−q2 −

√
D with D := q2

4 + p3

27 .

According to the condition z = u+ v we achieve our first solution

z1 = u+ v = 3

√
−q2 +

√
D + 3

√
−q2 −

√
D.

Additionally we have to consider the other two solutions, which might be conjugate-
complex. The two complex roots are obtained by considering the complex cubic
roots. The fact that uv is real implies that they are obtained by multiplying one
of the above cubic roots by ε1 = −1

2 + i
√

3
2 and the other by ε2 = −1

2 − i
√

3
2 . Now

the other two solutions can be written as z2 = uε1 + vε2 and z3 = uε2 + vε1:

z2 = −1
2

(
3

√
−q2 +

√
D + 3

√
−q2 −

√
D

)
+ i ·

√
3

2

(
3

√
−q2 +

√
D − 3

√
−q2 −

√
D

)

z3 = −1
2

(
3

√
−q2 +

√
D + 3

√
−q2 −

√
D

)
− i ·

√
3

2

(
3

√
−q2 +

√
D − 3

√
−q2 −

√
D

)
.

To determine whether the zeros of the reduced polynomial are real or complex
we have to consider the following three cases:

• D > 0
The present condition D > 0 implies that 4p3 + 27q2 > 0 has to hold:

0 < 4
(
B − A2

3

)3

+ 27
(

2A3

27 −
AB

3 + C

)2

0 < 4B3 −A2B2 + 4A3C + 27C2 − 18ABC.

This is the final condition for D > 0. If this is satisfied by the parameters

17
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a, b, c, d, e, f, g, h,m > 0, the first solution of the reduced polynomial is real
and the other two are conjugate-complex; z1 ∈ R and z2, z3 ∈ C.

• D < 0
The same calculations as shown above give us the condition

4B3 −A2B2 + 4A3C + 27C2 − 18ABC < 0,

which has to be fulfilled for a negative D. We then receive three real and
distinct solutions; zj ∈ R, j = {1, 2, 3}.

• D = 0
This case delivers

4B3 −A2B2 + 4A3C + 27C2 − 18ABC = 0.

Under this condition we also get three real solutions, zj ∈ R, j = {1, 2, 3},
but they are not distinct as in the previous case. We get either one triple
zero or one single and one double zero.

The terms containing the parameters a, b, c, d, e, f, g, h,m > 0, which occur in
the condition for the signature of D, will not be given because they would cover
more than one A4 paper.

Resubstituting by ν = z − A
3 leads to the three zeros of the original charac-

teristic polynomial, ν1, ν2 and ν3, which are also classified by the sign of D. Here
we finally have the three eigenvalues of the matrix B. Solving the linear system
of equations (B− νI) ·w = 0 gives us the three corresponding eigenvectors

w1 =


a(m+ν1−h)−h(e−a)

(b+ν1+a)(m+ν1−h)−(g+h)(e−a)

f
d+ν1

(
c
f −

g+h
m+ν1−h

) (
a(m+ν1−h)−h(e−a)

(b+ν1+a)(m+ν1−h)−(g+h)(e−a)

)
+ hf

(m+ν1−h)(d+ν1)(
g+h

m+ν1−h

) (
a(m+ν1−h)−h(e−a)

(b+ν1+a)(m+ν1−h)−(g+h)(e−a)

)
− h

m+ν1−h

 ,

w2 =


a(m+ν2−h)−h(e−a)

(b+ν2+a)(m+ν2−h)−(g+h)(e−a)

f
d+ν2

(
c
f −

g+h
m+ν2−h

) (
a(m+ν2−h)−h(e−a)

(b+ν2+a)(m+ν2−h)−(g+h)(e−a)

)
+ hf

(m+ν2−h)(d+ν2)(
g+h

m+ν2−h

) (
a(m+ν2−h)−h(e−a)

(b+ν2+a)(m+ν2−h)−(g+h)(e−a)

)
− h

m+ν2−h

 ,

18
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w3 =


a(m+ν3−h)−h(e−a)

(b+ν3+a)(m+ν3−h)−(g+h)(e−a)

f
d+ν3

(
c
f −

g+h
m+ν3−h

) (
a(m+ν3−h)−h(e−a)

(b+ν3+a)(m+ν3−h)−(g+h)(e−a)

)
+ hf

(m+ν3−h)(d+ν3)(
g+h

m+ν3−h

) (
a(m+ν3−h)−h(e−a)

(b+ν3+a)(m+ν3−h)−(g+h)(e−a)

)
− h

m+ν3−h

 .

Again the matrix eBt can be diagonalised and the solution of the system of
differential equations can be written as


I(t)
K(t)
M(t)

 = T


eν1t 0 0
0 eν2t 0
0 0 eν3t

T−1


I(0)
K(0)
M(0)


where T is once more the transformation matrix containing the three eigenvec-
tors, T = (w1,w2,w3).

2.2.1 Stability Analysis

Generally it is easier to check the (un)stability of a system by taking a look
at the complex variable domain of its characteristic polynomial than using any
other methods, [7, Frey et al. 2008]. A system is

• asymptotically stable if every zero of its polynomial is in the open left half-
plane, i.e. there is no zero on the imaginary axis or in the right half-plane,

• (quasi-)stable if every zero is in the left half-plane and there are just single
zeros on the imaginary axis,

• unstable as soon as one single zero is in the open right half-plane or a
multiple zero is on the imaginary axis.

Thus it is necessary to know the zeros of the characteristic polynomial to figure
out the stability of the system. However, as we have seen above, this venture is
not always easy or sometimes even impossible. Since it is obviously not practical
to determine those zeros analytically we have to give consideration to some other
methods to evaluate the dynamics of our three-dimensional system. The most
common methods in stability analysis are Hurwitz’ stability criterion [7,17, Frey
et al. 2008, Mlitz 2008] and the classification of the zeros in a qualitative anaylsis
by the Routh-Hurwitz Theorem and the Cauchy Index, [2, Bitmead and Anderson
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1997]. For further information on Hurwitz’ criterion and the qualitative analysis
take a look at the Appendix. The following illustrative examples will be investi-
gated by both methods. Since we will not skip anything we will give an example
of every single case that may occur.

Example of an asymptotically stable system with D < 0

The first example we examine is


İ(t)
K̇(t)
Ṁ(t)

 =


−5 1 5

2 −4 −1
4 −1 −6




I(t)
K(t)
M(t)


with the characteristic polynomial p(ν) = ν3 + 15ν2 + 51ν + 37.

• By using Hurwitz’ stability criterion we have to test whether p(ν) is a
Hurwitz polynomial or not. Considering p(ν) yields p3 = 1, p2 = 15, p1 =
51 and p0 = 37. Since all coefficients of p(ν) are non-zero and of the same
sign we just need to check the condition

p1p2 − p0p3 > 0,

which is actually fulfilled by the present coefficients pi, i = 0, . . . , 3. Thus
p(ν) is a Hurwitz polynomial and the present system is asymptotically
stable.

• The qualitative analysis is a bit more detailed and needs further informa-
tion. The first thing we need to know is the classification of the eigenvalues
of the present system. Therefore we take a look at the term D from Car-
dano’s method. By looking at p(ν) we denote that A = 15, B = 51 and
C = 37. Applying these three values in the condition for the signature
of D presented above yields a negative D. Hence we know that the three
zeros of p(ν) are real and distinct; νi ∈ R, i = 1, 2, 3.

Designing the Hurwitz matrix of the characteristic polynomial and deter-
mining its minors gives us the number of zeros with a positive real part.
(Since we know that νi ∈ R, ∀i = 1, 2, 3 the Hurwitz matrix gives us the
number of positive zeros.)
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H(p) =


15 37 0
1 51 0
0 15 37


M1 = 15 > 0
M2 = 728 > 0
M3 = 37 ·M2 > 0.

We are now considering the sequence p3,M1,
M2
M1
, M3
M2

and its signatures,
which is

p3, M1,
M2
M1

,
M3
M2

: +,+,+,+.

Since we do not have a change of signatures there exists no positive zero
of p(ν):

@ νi ∈ R : p(νi) = 0 ∧ νi > 0, ∀i = 1, 2, 3.

In addition we may examine the Cauchy index by determining a Sturm
chain of p(ν). The first member of the Sturm chain is the characteristic
polynomial itself and the second one is a simplified form of its derivative.
The others are calculated by Euclid’s algorithm:

(
ν3 + 15ν2 + 51ν + 37

)
:
(
ν2 + 10ν + 17

)
= ν + 5 + −16ν − 48

ν2 + 10ν + 17
− ν3 − 10ν2 − 17ν

5ν2 + 34ν + 37
− 5ν2 − 50ν − 85

− 16ν − 48

R2 := −16ν − 48 and thus

f2 ∼= −R2 ⇒ f2 = ν + 3.

The last member of the Sturm chain is calculated in the same way and we
get f3 = 1. As a matter of lucidity all elements of the Sturm chain are
listed below:
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f0 = ν3 + 15ν2 + 51ν + 37

f1 = ν2 + 10ν + 17

f2 = ν + 3

f3 = 1.

To calculate the Cauchy index we have to evaluate the sign of every single
member of the Sturm chain at the limits of the considered interval which is
of course (−∞,+∞). Since 0 is not a zero of p(ν) we additionally evaluate
the Sturm chain at the point 0 to distinguish between positive and negative
zeros.

−∞ : f0 = −
f1 = +
f2 = −
f3 = +

⇒ V (−∞) = 3

0 : +
+
+
+

V (0) = 0

∞ : +
+
+
+

V (∞) = 0

where V (.) describes the number of changes of the signature. Finally we
are able to specify the Cauchy index:

I0
−∞(p(ν)) = V (−∞)− V (0) = 3

I+∞
0 (p(ν)) = V (0)− V (+∞) = 0.

Thus we know that all three real zeros are negative. This result corresponds
with the analysis of the Hurwitz matrix:

νi ∈ R ∧ νi < 0 ∀ i = 1, 2, 3.

Remembering the stability condition above yields that the present system
is asymptotically stable, which equals the statement of Hurwitz’ stability
criterion.
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Matrix of the System

 −5 1 5
2 −4 −1
4 −1 −6


Characteristic Polynomial p(ν) = ν3 + 15ν2 + 51ν + 37

D (from Cardano’s Method) < 0

Roots of p(ν) νi ∈ R ∧ νi < 0 ∀ i = 1, 2, 3

Result of Hurwitz’ Stability Criterion asymptotically stable

Result of the Qualitative Analysis asymptotically stable

Figure 2.7: Plot of the phase portrait of the system with the parameters a =
1, b = 5, c = 2, d = 4, e = 5, f = 1, g = 4, h = 1, m = 6. The initial
values of the plotted trajectories are chosen randomly. The blue lines represent
the eigenvectors w1, w2 and w3.
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Example of an unstable system with D < 0

The second example is of the form


İ(t)
K̇(t)
Ṁ(t)

 =


−3 5 2

2 −4 −1
5 −1 −3




I(t)
K(t)
M(t)


with the characteristic polynomial p(ν) = ν3 + 10ν2 + 12ν − 8.

• The coefficients of p(ν) are p3 = 1, p2 = 10, p1 = 12 and p0 = −8. The
necessary condition of Hurwitz’ stability criterion is not fulfilled because
not all pi are of the same sign. Therefore we already know that p(ν) is no
Hurwitz polynomial and the present system is unstable.

• For a qualitative analysis we need to check the Hurwitz matrix and its
minors again.

H(p) =


10 −8 0
1 12 0
0 10 −8


M1 = 10 > 0
M2 = 128 > 0
M3 = −8 ·M2 < 0.

p3, M1,
M2
M1

,
M3
M2

: +,+,+,−.

Here we get one change in this sequence so there has to be exactly one
positive zero. By considering a Sturm chain of p(ν) and the Cauchy index
we obtain a complete classification of the eigenvalues.

I0
−∞(p(ν)) = 2, I+∞

0 (p(ν)) = 1.

This result equals the analysis of the Hurwitz matrix and now we have an accu-
rate classification of the three zeros:

νi ∈ R, ∀i = 1, 2, 3 ∧ ν1,2 < 0, ν3 > 0.

24



2. THE MODEL WITHOUT GOVERNMENT INTERVENTION

Matrix of the System

 −3 5 2
2 −4 −1
5 −1 −3


Characteristic Polynomial p(ν) = ν3 + 10ν2 + 12ν − 8

D (from Cardano’s Method) < 0

Roots of p(ν) νi ∈ R ∧ ν1,2 < 0, ν3 > 0

Result of Hurwitz’ Stability Criterion unstable

Result of the Qualitative Analysis unstable

Figure 2.8: Plot of the phase portrait of the system with the parameters a =
5, b = 3, c = 2, d = 4, e = 2, f = 1, g = 5, h = 1, m = 3. The initial
values of the plotted trajectories are chosen randomly. The blue lines represent
the eigenvectors w1, w2 and w3.
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Example of a stable system with D < 0

The third system we examine has the following structure
İ(t)
K̇(t)
Ṁ(t)

 =


−3 1 1

1 −3 −3
1 −3 −3




I(t)
K(t)
M(t)


with the characteristic polynomial p(ν) = ν3 + 9ν2 + 16ν = ν(ν2 + 9ν + 16).

Obviously the given matrix is singular. Considering p(ν) we know that one
eigenvalue has to be zero. Hence we can split this zero from p(ν) and a polynomial
of second degree remains. So we are able to determine the other two eigenvalues
explicitly and we do not need any complicated analysis at all. The two zeros
from the polynomial of second degree ν2 + 9ν + 16 are

ν1 = −9−
√

17
2 < 0

ν2 = −9 +
√

17
2 < 0,

which are both negative. In the following we seperately specify the classification
of the three zeros again:

νi ∈ R, ∀i = 1, 2, 3 ∧ ν1,2 < 0, ν3 = 0.

In this situation of the zeros we have a stable case, which is not asymptotically
stable, however.

Of course one could also use the stability criterion or additionally the qual-
itative analysis, which would both lead to the same result. But it is way more
difficult and not necessary at all.
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Matrix of the System

 −3 1 1
1 −3 −3
1 −3 −3


Characteristic Polynomial p(ν) = ν3 + 9ν2 + 16ν

D (from Cardano’s Method) < 0

Roots of p(ν) νi ∈ R ∧ ν1,2 < 0, ν3 = 0

Result of Hurwitz’ Stability Criterion -

Result of the Qualitative Analysis -

Figure 2.9: Plot of the phase portrait of the system with the parameters a =
1, b = 3, c = 1, d = 3, e = 1, f = 3, g = 1, h = 3, m = 3. The initial
values of the plotted trajectories are chosen randomly. The blue lines represent
the eigenvectors w1, w2 and w3.
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Example of an asymptotically stable system with D > 0

The next case we are interested in is of the form
İ(t)
K̇(t)
Ṁ(t)

 =


−8 27 1

1 −3 −4
2 −2 −6




I(t)
K(t)
M(t)


with the characteristic polynomial p(ν) = ν3 + 17ν2 + 53ν + 130.

• Every pi is non-zero and they all have the same signature. Thus the neces-
sary condition is fulfilled. The sufficient condition p2p1 − p0p3 > 0 is also
fulfilled, meaning we have a Hurwitz polynomial. Hence we know that the
present system is asymptotically stable.

• To exert the other analysis we need to check the Hurwitz matrix again.

H(p) =


17 130 0
1 53 0
0 17 130


M1 = 17 > 0
M2 = 771 > 0
M3 = 130 ·M2 > 0.

p3, M1,
M2
M1

,
M3
M2

: +,+,+,+.

Here we have to consider complex zeros, too, but as we can see there is no
change of the signature in this sequence. Thus we do not have a zero with
a positive real part. Calculating the Cauchy-Index yields

I0
−∞(p(ν)) = 3, I+∞

0 (p(ν)) = 0.

Obviously every zero is in the open left half-plane and thus the present system
is asymptotically stable, which again equals the statement of Hurwitz’ stability
criterion.

ν1 ∈ R, ν2,3 ∈ C ∧ ν1 < 0, Re(ν2,3) < 0.
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Matrix of the System

 −8 27 1
1 −3 −4
2 −2 −6


Characteristic Polynomial p(ν) = ν3 + 17ν2 + 53ν + 130

D (from Cardano’s Method) > 0

Roots of p(ν) ν1 ∈ R, ν2,3 ∈ C ∧ ν1 < 0, Re(ν2,3) < 0

Result of Hurwitz’ Stability Criterion asymptotically stable

Result of the Qualitative Analysis asymptotically stable

Figure 2.10: Plot of the phase portrait of the system with the parameters a =
27, b = 8, c = 1, d = 3, e = 1, f = 4, g = 2, h = 2, m = 6. The initial
values of the plotted trajectories are chosen randomly. The blue lines represent
the eigenvectors w1, w2 and w3.
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Example of an unstable system with D > 0

The next system looks as follows:
İ(t)
K̇(t)
Ṁ(t)

 =


−1 5 1

5 −3 −4
7 −7 −1




I(t)
K(t)
M(t)


with the characteristic polynomial p(ν) = ν3 + 5ν2 − 53ν + 104.

• By looking at the signature of the coefficients we already know that the
necessary condition required by Hurwitz’ stability criterion is not fulfilled
and thus the system is unstable.

• Analysing the Hurwitz matrix yields:

H(p) =


5 104 0
1 −53 0
0 5 104


M1 = 5 > 0
M2 = −369 < 0
M3 = 104 ·M2 < 0.

p3, M1,
M2
M1

,
M3
M2

: +,+,−,+.

Once again we have to consider complex zeros and we can see that there
are two changes of the signature. Consequently we have two zeros with a
positive real part. The Sturm chain and the Cauchy-Index give us

I0
−∞(p(ν)) = 1, I+∞

0 (p(ν)) = 2.

Taking care of the result from the Hurwitz matrix we know that the two conjugate-
complex zeros have a positive real part. The situation of the eigenvalues is as
follows:

ν1 ∈ R, ν2,3 ∈ C ∧ ν1 < 0, Re(ν2,3) > 0.

We have two zeros in the right half plane, hence our present system is unstable.
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Matrix of the System

 −1 5 1
5 −3 −4
7 −7 −1


Characteristic Polynomial p(ν) = ν3 + 5ν2 − 53ν + 104

D (from Cardano’s Method) > 0

Roots of p(ν) ν1 ∈ R, ν2,3 ∈ C ∧ ν1 < 0, Re(ν2,3) > 0

Result of Hurwitz’ Stability Criterion unstable

Result of the Qualitative Analysis unstable

Figure 2.11: Plot of the phase portrait of the system with the parameters a =
5, b = 1, c = 5, d = 3, e = 1, f = 4, g = 7, h = 7, m = 1. The initial
values of the plotted trajectories are chosen randomly. The blue lines represent
the eigenvectors w1, w2 and w3.
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Example of an asymptotically stable system with D = 0

Note that we now have just two zeros of p(ν), whereas one of them is doubled
since D = 0. In this case we have a simple structured matrix like the following

İ(t)
K̇(t)
Ṁ(t)

 =


−3 1 1

1 −3 −1
1 −1 −3




I(t)
K(t)
M(t)


with the characteristic polynomial p(ν) = ν3 + 9ν2 + 24ν + 20.

• Checking the necessary and sufficient condition of Hurwitz’ stability crite-
rion brings out quickly that this system has to be asymptotically stable.

• For a qualitative analysis let us check the Hurwitz matrix again.

H(p) =


9 20 0
1 24 0
0 9 20


M1 = 9 > 0
M2 = 196 > 0
M3 = 20 ·M2 > 0.

p3, M1,
M2
M1

,
M3
M2

: +,+,+,+.

Since we do not have a change of signatures there is no positive zero of
p(ν). Investigating the Sturm chain and the Cauchy-Index gives us

I0
−∞(p(ν)) = 2, I+∞

0 (p(ν)) = 0.

Now we know that both zeros are real and negative,

νi ∈ R ∧ νi < 0 ∀ i = 1, 2, 3

and therefore the present system is asymptotically stable.
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Matrix of the System

 −3 1 1
1 −3 −1
1 −1 −3


Characteristic Polynomial p(ν) = ν3 + 9ν2 + 24ν + 20

D (from Cardano’s Method) = 0

Roots of p(ν) νi ∈ R ∧ νi < 0 ∀ i = 1, 2, 3

Result of Hurwitz’ Stability Criterion asymptotically stable

Result of the Qualitative Analysis asymptotically stable

Figure 2.12: Plot of the phase portrait of the system with the parameters a =
1, b = 3, c = 1, d = 3, e = 1, f = 1, g = 1, h = 1, m = 3. The initial
values of the plotted trajectories are chosen randomly. The blue lines represent
the eigenvectors w1, w2 and w3.
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Example of an unstable system with D = 0

Now we consider the following system
İ(t)
K̇(t)
Ṁ(t)

 =


−2 5 5

5 −2 −5
5 −5 −2




I(t)
K(t)
M(t)


with the characteristic polynomial p(ν) = ν3 + 6ν2 − 63ν + 108.

• One single look at the characteristical polynomial and the singatures within
brings out that the system has to be unstable.

• The Hurwitz matrix and its minors looks as follows

H(p) =


6 108 0
1 −63 0
0 6 108


M1 = 6 > 0
M2 = −486 < 0
M3 = 108 ·M2 < 0.

p3, M1,
M2
M1

,
M3
M2

: +,+,−,+.

Two changes in this sequence again imply two positive zeros which are of
course the double ones. Again the Sturm chain and the Cauchy-Index yield

I0
−∞(p(ν)) = 1, I+∞

0 (p(ν)) = 1.

Knowing this we could also rewrite the characteristic polynomial p(ν) = ν3 +
6ν2 − 63ν + 108 = (ν + ν1)(ν − ν2)2 and therefore

νi ∈ R, ∀i = 1, 2, 3 ∧ ν1 < 0, ν2,3 > 0

detect an unstable case. (ν1 = 12, ν2,3 = 3)
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Matrix of the System

 −2 5 5
5 −2 −5
5 −5 −2


Characteristic Polynomial p(ν) = ν3 + 6ν2 − 63ν + 108

D (from Cardano’s Method) = 0

Roots of p(ν) νi ∈ R, ∀i = 1, 2, 3 ∧ ν1 < 0, ν2,3 > 0

Result of Hurwitz’ Stability Criterion unstable

Result of the Qualitative Analysis unstable

Figure 2.13: Plot of the phase portrait of the system with the parameters a =
5, b = 2, c = 5, d = 2, e = 5, f = 5, g = 5, h = 5, m = 2. The initial
values of the plotted trajectories are chosen randomly. The blue lines represent
the eigenvectors w1, w2 and w3.
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Example of a stable system with D = 0

The last presented example is a special case of the form
İ(t)
K̇(t)
Ṁ(t)

 =


−2 2 2

2 −2 −2
2 −2 −2




I(t)
K(t)
M(t)


with the characteristic polynomial p(ν) = ν3 + 6ν2 = ν2(ν + 6).

This is a special case since the matrix of the system is singular and our term
D from Cardano’s method is zero. We can read off the eigenvalues directly from
the polynomial:

ν1 = −6 ν2,3 = 0.

Regarding the minors of the Hurwitz matrix instantly shows that this case is
stable and further calculations are not necessary.
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Matrix of the System

 −2 2 2
2 −2 −2
2 −2 −2


Characteristic Polynomial p(ν) = ν3 + 6ν2

D (from Cardano’s Method) = 0

Roots of p(ν) νi ∈ R, ∀i = 1, 2, 3 ∧ ν1 < 0, ν2,3 = 0

Result of Hurwitz’ Stability Criterion -

Result of the Qualitative Analysis -

Figure 2.14: Plot of the phase portrait of the system with the parameters a =
2, b = 2, c = 2, d = 2, e = 2, f = 2, g = 2, h = 2, m = 2. The initial
values of the plotted trajectories are chosen randomly. The blue lines represent
the eigenvectors w1, w2 and w3.
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2.2.2 Equilibrium Solution

In Hausken et al.’s three-dimensional model [12, Hausken et al. 2012] we now
want to address the issue of the equilibrium points. Therefore we have to solve
the following system of linear equations:

−bI + aK + eM = 0

cI − dK − fM = 0

gI − hK −mM = 0.

Besides the trivial equilibrium I(t) = K(t) = M(t) = 0 we get other equilibrium
points under the condition

g(de− af) +m(ac− bd) + h(bf − ec) = 0,

which means that the matrix of the system is singular. The only situations with
non-trivial equilibrium points are those with at least one eigenvalue equal to
zero. When looking at the examples given above we have to consider the (not
asymptotically) stable cases to get further informations.
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2.3 Including Captive Participants

Ideologues and criminal mercenaries need captive participants to operate effi-
ciently and it is assumed that sponsors are unaffected by them. Thus the model
is generalised to

İ(t)
K̇(t)
Ṁ(t)
Ċ(t)

 =


−b a e n

c −d −f 0
g −h −m o

p 0 q −r


︸ ︷︷ ︸

C


I(t)
K(t)
M(t)
C(t)



where n, o, p, q, r > 0 are parameters. C(t) is the amount of labour exerted by
captive participants and is constrained by itself from unbounded growth. This
system can be solved as previously. The zeros of the charactaristic polynomial
of C lead to the four eigenvalues τ1, τ2, τ3 and τ4 and their corresponding eigen-
vectors s1, s2, s3 and s4. Again the solution of the differential equation system
can be written as


I(t)
K(t)
M(t)
C(t)

 = T


eτ1t 0 0 0
0 eτ2t 0 0
0 0 eτ3t 0
0 0 0 eτ4t

T−1


I(0)
K(0)
M(0)
C(0)


where T is once more the transformation matrix containing the four eigenvectors,
T = (s1, s2, s3, s4).

2.3.1 Stability Analysis

In fact it is possible to investigate this four-dimensional model, too. For descrip-
tive purpose we will show up the theoretical way for such an analysis. Actually
we need the same methods as applied above but with some alterations.

Hurwitz’ stability criterion [7, Frey et al. 2008] works in the same way as
in the previous case but needs one more sufficient condition. The necessary
condition on the characteristic polynomial is that the coefficients pi are non-zero
and of the same sign as above. The two sufficient conditions are as follows:

• p1p2 − p0p3 > 0 (as above)
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2. THE MODEL WITHOUT GOVERNMENT INTERVENTION

• p1p2p3 − p2
1p4 − p0p

2
3 > 0. (see Appendix)

If these two conditions are fulfilled, the characteristic polynomial is a Hurwitz
polynomial and the present system is asymptotically stable.

The qualitative analysis works exactly the same way but is actually more
difficult to examine since we always need to determine one more step because
of the higher dimension. Unfortunately we do not have any means to find out
whether we have real or complex eigenvalues. But indeed this fact will come out
during the further analysis.

2.3.2 Equilibrium Solution

For the sake of completeness we will also give the condition, which gives us non-
trivial equilibrium points. Besides the trivial equilibrium point I(t) = K(t) =
M(t) = C(t) = 0 we receive other ones in case of

np(hf − dm) + nq(ch− gd) + (af − de)(op+ rg) + (bd− ac)(rm− oq) + rh(ec− bf) = 0.
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Chapter 3

The Model with Government
Intervention

Hausken et al. did not only present the previously described models, which are
all homogenous systems of differential equations. They also presented a model
with government intervention, an inhomogenous one, see also [12, Hausken et al.
2012].

The government may target a terrorist organisation by attacking the four
forces I(t),K(t),M(t) and C(t) of the previous section, i.e. the ideologues, the
capital flow, the criminal mercenaries and the captive participants. Thus the
last presented model can be extended by a residual so that the generalised model
looks as follows:


İ(t)
K̇(t)
Ṁ(t)
Ċ(t)

 =


−b a e n

c −d −f 0
g −h −m o

p 0 q −r


︸ ︷︷ ︸

C


I(t)
K(t)
M(t)
C(t)

+


−sGI
−uGK
−vGM
−wGC

 .

Again we have the initial conditions I(0),K(0),M(0), C(0) > 0. Hausken de-
fined GI , GK , GM and GC to be the labour efforts exerted by the government to
combat the four forces, respectively. s, u, v, w > 0 are parameters. More infor-
mation on the coefficients GI , GK , GM and GC can be reviewed in [12, Hausken
et al. 2012].
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3. THE MODEL WITH GOVERNMENT INTERVENTION

3.1 Solving the Inhomogenous Model

The general solution of an inhomogenous system consists of the general solution
of the homogenous system and a specific solution of the inhomogenous one, [17,
Mlitz 2008]. The model with government intervention whereof we are searching
for a general solution is of the form

ẏ(t) = C · y(t) + l ∈ R4 y(0) ∈ R4,

which we will use in what follows. Since we have already formed the solution of
the homogenous system in the last chapter we are able to cut short the determi-
nation of the solution of the inhomogenous one. The solution given in Section
2.3 consists of the four functions I(t),K(t),M(t), C(t). Expanding the matrices
yields the concrete forms


I(t)
K(t)
M(t)
C(t)

 = eτ1t


α1

α2

α3

α4

+ eτ2t


β1

β2

β3

β4

+ eτ3t


γ1

γ2

γ3

γ4

+ eτ4t


δ1

δ2

δ3

δ4

 .

Since we already have the fundamental system we also know the corresponding
Wronski Matrix

W (t) =


α1e

τ1t β1e
τ2t γ1e

τ3t δ1e
τ4t

α2e
τ1t β2e

τ2t γ2e
τ3t δ2e

τ4t

α3e
τ1t β3e

τ2t γ3e
τ3t δ3e

τ4t

α4e
τ1t β4e

τ2t γ4e
τ3t δ4e

τ4t

 .

The Wronski Matrix is always regular, detW (t) 6= 0. Consequently its inverse
W (t)−1 also exists. The equation Ẇ (t) = C ·W (t) is also true for the Wronski
Matrix. With the approach y(t) = W (t) · x(t) we get

ẏ(t) = Ẇ (t) · x(t) +W (t) · ẋ(t)

= C · y(t) +W (t) · ẋ(t).
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3. THE MODEL WITH GOVERNMENT INTERVENTION

Substituting this into the original system yields l = W (t)·ẋ(t). As a consequence
we get ẋ(t) = W (t)−1 · l. Integrating ẋ(t) yields

x(t) =
∫
W (j)−1 · l dj.

Note that ẋ(t) is a vector and has to be integrated component wise. Now we
have a specific solution of the inhomogenous system:

ys(t) =
∫
W (j)−1 · l dj.

After all the general solution of the inhomogenous system is of the form

y(t) = W (t) ·
(∫ t

0
W (j)−1 · l dj + z

)

where z contains the initial values and z = W (0)−1 · y(0).

3.2 Stability Analysis

The stability analysis of the four-dimensional system is not the issue of this thesis
and will not be given because it would take too much space. Theoretically it
works exactly as described in the appendix.
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Chapter 4

Parameter Constraints
Assuring Feasibility of the
State Variables

In our further investigations we will address only the case of asymptotically
stable two-dimensional systems. Therefore we will focus on the functions I(t)
andK(t) given in Section 2.1. Before looking at some particular two-dimensional
systems we have to consider those solutions more accurately. For the purpose of
realism we want these two solution functions to be positive, for t > 0, because
negative values do not make sense. Therefore we eventually have to impose some
constraints on the parameters a, b, c, d > 0 and the initial conditions I(0),K(0) >
0, which the functions depend on. That means, these constraints shell force
the functions to be positive. Hence we have to examine the solution of the
two-dimensional model, as given in Section 2.1, in more detail. Expanding the
matrices yields the functions of the form

I(t) = αeλ1t + βeλ2t

K(t) = γeλ1t + δeλ2t

with the four terms

α = aK(0)(c+ d+ λ2)− cI(0)(a+ b+ λ2)
(c+ d+ λ2)

√
(b− d)2 + 4ac
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β = cI(0)(c+ d+ λ1)− aK(0)(c+ d+ λ1)
(c+ d+ λ1)

√
(b− d)2 + 4ac

γ = cI(0)(a+ b+ λ2)− aK(0)(c+ d+ λ2)
(a+ b+ λ2)

√
(b− d)2 + 4ac

δ = aK(0)(a+ b+ λ1)− cI(0)(a+ b+ λ1)
(c+ d+ λ1)

√
(b− d)2 + 4ac

.

Taking a closer look at the special case when a+b = c+d implies λ2 = −(a+b) =
−(c + d), which further implies that the terms α and γ are of the form 0

0 and
thus not defined, as is the eigenvector v2 = ( a

a+b+λ2
, c
c+d+λ2

)T of λ2. This issue
will be investigated accurately at the end of this chapter. So we have to examine
the three seperate constellations of the parameters

1. a+ b < c+ d

2. a+ b > c+ d

3. a+ b = c+ d.

4.1 a + b < c + d

Before we address the positivity of I(t) and K(t) it might be useful to know the
signs of the four terms a + b + λ1,2 and c + d + λ1,2, which occur very often.
Because of a+ b < c+ d and λ2 < λ1 we know that

a+ b+ λ2 <

{
a+ b+ λ1

c+ d+ λ2

}
< c+ d+ λ1.

We now assume c+ d+λ2 to be positive. If this assumption holds true we know
that c+ d+ λ1 has to be positive, too.

c+ d+ λ2 = c+ d− 1
2

(
b+ d+

√
(b− d)2 + 4ac

)
> 0

⇔
√

(b− d)2 + 4ac < 2c+ d− b.

To continue with the inequality it is necessary to take the square of it, which
leaves equivalence only if both sides are non-negative. To guarantee this we
need another constraint, which is b < 2c + d. In fact this is already implied by
a+ b < c+ d so we do not have to worry about this.
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(b− d)2 + 4ac < 4c2 + 4c(d− b) + (d− b)2

⇔ a+ b < c+ d.

This is a true statement and therefore we know that c+d+λ2 > 0 and c+d+λ1 >

0 without any further conditions. The analogous investigation for the assumption
a+ b+λ2 < 0 leads to the condition d < 2a+ b, which is no direct contradiction
to a+b < c+d. However, with this information we are not able to figure out the
sign of the corresponding term a + b + λ1. We get the analogous result for the
assumption a + b + λ1 > 0 with the condition d > 2a + b. To keep an overview
the whole situation is listed in the following table.

condition a+ b+ λ1 a+ b+ λ2

d < 2a+ b ? < 0
d > 2a+ b > 0 ?
d = 2a+ b > 0 < 0

Therefore we try to get the missing signs of the certain cases in another way. In
case of d < 2a+ b we know that a+ b+ λ2 < 0. To get the sign of a+ b+ λ1 we
consider the product of both terms.

(a+ b+ λ1)︸ ︷︷ ︸
?

(a+ b+ λ2)︸ ︷︷ ︸
<0

= a · (a+ b− c− d)︸ ︷︷ ︸
<0

< 0

⇒ (a+ b+ λ1) > 0

Hence, a+ b+λ1 is always positive, no matter if d < 2a+ b or d > 2a+ b. In the
same way we figure out that a+ b+λ2 is negative in both cases. Actually we do
not have any additional conditions for these four terms and we know every sign
of them. Any other assumption leads to a direct contradiction of the present
condition a+ b < c+ d.

Now let us focus on the quest for I(t) > 0. Trandforming this inequality
leads to the following constraint:
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eλ2taK(0)(c+ d+ λ1)− cI(0)(a+ b+ λ1)
(c+ d+ λ1)

√
(b− d)2 + 4ac

< eλ1taK(0)(c+ d+ λ2)− cI(0)(a+ b+ λ2)
(c+ d+ λ2)

√
(b− d)2 + 4ac

aK(0)(c+ d+ λ1)− cI(0)(a+ b+ λ1)
aK(0)(c+ d+ λ2)− cI(0)(a+ b+ λ2) < e(λ1−λ2)t c+ d+ λ1

c+ d+ λ2
.

Of course we have to do the analogous calculations to assure K(t) > 0, which
leads us to the similar result

e(λ1−λ2)ta+ b+ λ1
a+ b+ λ2

<
aK(0)(c+ d+ λ1)− cI(0)(a+ b+ λ1)
aK(0)(c+ d+ λ2)− cI(0)(a+ b+ λ2) .

Combining these inequalities results in the joint condition for I(t) and K(t) in
case of a + b < c + d. Actually this condition is not very easy to deal with.
Nevertheless we take a look at it in order to eventually replace it by some re-
strictions which are easier to handle. In this case the lower and upper bounds
are exponential functions converging to −∞ and ∞.

e(λ1−λ2)ta+ b+ λ1
a+ b+ λ2︸ ︷︷ ︸
→−∞

<
aK(0)(c+ d+ λ1)− cI(0)(a+ b+ λ1)
aK(0)(c+ d+ λ2)− cI(0)(a+ b+ λ2) < e(λ1−λ2)t c+ d+ λ1

c+ d+ λ2︸ ︷︷ ︸
→∞

To get an idea of what this condition actually looks like we take a look at Figure
4.1.

Figure 4.1: Randomly chosen plot of the upper and lower bound of the condition
for positive functions in case a+ b < c+ d.
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The value of the lower bound at t = 0 is equal to a+b+λ1
a+b+λ2

. The value of the
upper bound is equal to c+d+λ1

c+d+λ2
. Since we are only interested in values for t > 0

we can claim for the middle term to be in the interval

aK(0)(c+ d+ λ1)− cI(0)(a+ b+ λ1)
aK(0)(c+ d+ λ2)− cI(0)(a+ b+ λ2) ∈

(
a+ b+ λ1
a+ b+ λ2

,
c+ d+ λ1
c+ d+ λ2

)
heading to the next obvious inequalities

a+ b+ λ1
a+ b+ λ2

<
aK(0)(c+ d+ λ1)− cI(0)(a+ b+ λ1)
aK(0)(c+ d+ λ2)− cI(0)(a+ b+ λ2) <

c+ d+ λ1
c+ d+ λ2

,

which will be investigated, respectively. To handle those inequalities correctly
note that now there is the condition a+ b < c+ d and the signs a+ b+ λ2 < 0,
a+b+λ1 > 0, c+d+λ2 > 0 and c+d+λ1 > 0. Starting with the first inequality
yields:

a+ b+ λ1
a+ b+ λ2

<
aK(0)(c+ d+ λ1)− cI(0)(a+ b+ λ1)
aK(0)(c+ d+ λ2)− cI(0)(a+ b+ λ2)

(c+ d+ λ1)(a+ b+ λ2) < (c+ d+ λ2)(a+ b+ λ1)

λ1(a+ b− c− d) < λ2(a+ b− c− d)

λ1 > λ2.

This is a true statement always. Handling the second inequality analogously im-
plies that no further constraints are necessary to get positive functions I(t),K(t)
in case of a+ b < c+ d.

∀ a, b, c, d > 0, ∀ t > 0 and ∀ I(0),K(0) > 0 : I(t),K(t) > 0

4.2 a + b > c + d

The analogous assumptions and calculations are performed for this case, too,
and lead to a similar result, which is no real surprise. The mutual inequality for
both functions looks as follows and has to be treated as in the previous case:
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e(λ1−λ2)t c+ d+ λ1
c+ d+ λ2︸ ︷︷ ︸
→−∞

<
aK(0)(c+ d+ λ1)− cI(0)(a+ b+ λ1)
aK(0)(c+ d+ λ2)− cI(0)(a+ b+ λ2) < e(λ1−λ2)ta+ b+ λ1

a+ b+ λ2︸ ︷︷ ︸
→∞

Since this inequality turns out to hold true always we can also renounce any
further constraints to obtain positive functions I(t),K(t) in case of a+b > c+d.

∀ a, b, c, d > 0, ∀ t > 0 and ∀ I(0),K(0) > 0 : I(t),K(t) > 0

4.3 a + b = c + d

Let us focus on this constellation. As mentioned at the beginning of this chapter,
the problem starts with the eigenvector v2, which is actually not defined in this
case. Hence there is no transformation matrix T and we can not even represent
a solution of the system. Shortcutting the considerations, assume the second
eigenvector to be v2 = (−1, 1)T . The proof of this fact will be given at the end
of this section.

Remember the second eigenvalue λ2 = −(a + b) = −(c + d). We can also
reduce the first eigenvalue to λ1 = c− b = a−d. The first eigenvector then reads
as v1 = (a, c)T . Thus the transformation matrix and its inverse are of the facile
form

T =
(
a −1
c 1

)
T−1 = 1

a+ c

(
1 1
−c a

)
.

Now we are able to determine the solution of the differential equation system.
The functions I(t) and K(t) are of the same form as in the two previous cases
but with modified coefficients, which are

α = a(K(0) + I(0))
a+ c

β = cI(0)− aK(0)
a+ c
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γ = c(K(0) + I(0))
a+ c

δ = aK(0)− cI(0)
a+ c

.

Since a + c 6= 0 always applies, these modified coefficients are well defined and
perfectly fit to the original ones. The claim of both functions to be positive leads
to the simplified inequalities

I(t),K(t) > 0 ⇔ −e(λ1−λ2)tc︸ ︷︷ ︸
→−∞

<
aK(0)− cI(0)
I(0) +K(0) < e(λ1−λ2)ta︸ ︷︷ ︸

→∞

which are again always fulfilled for t > 0. Again it holds true that no further
constraints are required to get positive functions I(t),K(t) in case of a+b = c+d:

∀ a, b, c, d > 0, ∀ t > 0 and ∀ I(0),K(0) > 0 : I(t),K(t) > 0

Nevertheless, the proof for the second eigenvector v2 = (−1, 1)T is still missing.
Let us consider the range of (−1, 1)T under the linear transformation A,

(
−b a

c −d

)(
−1

1

)
=
(

b+ a

−c− d

)
=
(

b+ a

−b− a

)
= (−a− b)

(
−1

1

)
.

Thus, by definition, (−1, 1)T is an eigenvector of the linear transformation A
with the eigenvalue −a− b = λ2.

�
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4.4 Examples

In order to understand the previous calculations a little bit more easily, this
section illustrates some examples for all three investigated cases with a plot
of the phase portrait, representative examples for the corresponding functions
I(t) & K(t) and the lower and upper bounds derived in the previous sections.

a + b < c + d

Starting with the first case a+ b < c+ d, a system with the following values

a b c d I(0) K(0) λ1 λ2

2 3 3 4 1 9 -1 -6

has the solution

I(t) = 21
5 e
−t − 16

5 e
−6t

K(t) = 21
5 e
−t + 24

5 e
−6t.

The phase portrait and the solution of the system are plotted below.

Figure 4.2: The left plot shows the phase portrait of the present system and
the right one the corresponding functions. I(t) is represented by the blue line
and K(t) by the green one. The red lines represent the upper and lower bounds
assuring positivity as long as the cyan line (representing the middle term of the
inequality) lies in between. As one can see the inequality is fulfilled as generally
shown above.
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a + b > c + d

An example of a system in the second case a+ b > c+ d is given h the values

a b c d I(0) K(0) λ1 λ2

2 5 1 2 3 2 −7−
√

17
2 −7+

√
17

2

and the solution

I(t) = 25 +
√

17
17 +

√
17
e−

7−
√

17
2 t + 25−

√
17

17−
√

17
e−

7+
√

17
2 t

K(t) = 25 +
√

17
−17 + 7

√
17
e−

7−
√

17
2 t + 25 +

√
17

17− 7
√

17
e−

7+
√

17
2 t

The phase portrait and the corresponding functions look as follows.

Figure 4.3: The left plot shows the phase portrait of the present system and
the right one the corresponding functions. I(t) is represented by the blue line
and K(t) by the green one. The red lines represent the upper and lower bounds
assuring positivity as long as the cyan line (representing the middle term of the
inequality) lies in between. As one can see the inequality is fulfilled as generally
shown above.
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a + b = c + d

The last and special case of a+ b = c+ d is represented by the values

a b c d I(0) K(0) λ1 λ2

3 5 4 4 8 2 −1 −8

and the solution

I(t) = 30
7 e
−t + 26

7 e
−8t

K(t) = 40
7 e
−t − 26

7 e
−8t.

The phase portrait and the corresponding functions look as follows.

Figure 4.4: The left plot shows the phase portrait of the present system and
the right one the corresponding functions. I(t) is represented by the blue line
and K(t) by the green one. The red lines represent the upper and lower bounds
assuring positivity as long as the cyan line (representing the middle term of the
inequality) lies in between. As one can see the inequality is fulfilled as generally
shown above.

Summarising this chapter we may conclude that no further conditions on
the parameters or the initial values are required. In every case we get positive
functions I(t) and K(t), ∀a, b, c, d > 0, ∀t > 0 and ∀I(0),K(0) > 0.
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Chapter 5

Dynamic Control of a Terrorist
Organisation

In this chapter we want to discuss some strategic investigations in order to give
some sort of pre-step to an optimal control model formulation. Our purpose
is to determine the relative efficiency of some control at different stages of the
terrorist organisation. For that purpose we consider some control intervention
by changing the parameters a, b, c, d in the system representing the organisation.
These changes will concern only one parameter per analysis, but we will carry
out several examinations with every parameter. Furthermore those changes will
not be made arbitrarily but rather for one year and at different stages of the
terrorist organisation similar to the examinations pertaining to treatment of a
drug epidemic in [20, Ranner 2009]. Note that - for ease of exposition - we call
one time unit simply "one year". In particular one parameter will be increased
or decreased in the first year, then in the second and so on. We will carry out
these analyses for the first ten years. Finally we figure out the one year when
the effectiveness of the control is the biggest. We will carry out the analysis on
the objective functional

J =
∫ ∞

0
e−rt(ψI(t) + ϕK(t))dt,

which we determine to describe the damage caused by terrorists over an infinite
planning horizon. r represents the annual discounting rate and ψ and ϕ are some
weighting coefficients on the two functions I(t) and K(t). For these weightenings
we claim the condition ψ,ϕ ∈ [0, 1] with ψ + ϕ = 1. To carry out the analysis
described above we have to require certain systems. On one hand we need the
functions of the system with the original parameters but with different initial
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values. On the other hand we need those where one of the four parameters is
changed for one year. The corresponding trajectories will be denoted by T0 and
T1. But first of all we have to describe the computation of the objective damage
functional. Therefore we replace the infinite planning horizon by some finite
value T in order to eventually choose a finite planning horizon, which we will
actually make use of later on. The value of J0, the objective functional without
any change of parameters, is calculated as follows.

J0 =
∫ T

0
e−rt (ψIT0(t) + ϕKT0(t))dt

=
∫ T

0
e−rt

(
ψ(αeλ1t + βeλ2t) + ϕ(γeλ1t + δeλ2t)

)
dt

=
∫ T

0
e−rt

(
eλ1t(ψα+ ϕγ) + eλ2t(ψβ + ϕδ)

)
dt

= (ψα+ ϕγ)
∫ T

0
e(λ1−r)tdt+ (ψβ + ϕδ)

∫ T

0
e(λ2−r)tdt.

Now we just have two integrals of a simple exponential function, which can be
solved easily. This leads to the following result for the value of J0:

J0 = (ψα+ ϕγ)e
(λ1−r)T − 1
λ1 − r

+ (ψβ + ϕδ)e
(λ2−r)T − 1
λ2 − r

.

If we are now able to switch on some control intervention in the very first year,
the objective functional will be of the form

J1 =
∫ 1

0
e−rt (ψIT1(t) + ϕKT1(t))dt+

∫ T

0
e−r(t+1)

(
ψĪT0(t) + ϕK̄T0(t)

)
dt.

ĪT0 and K̄T0 are from the same system as IT0 and KT0 , but with different initial
values. More precisely, we have the initial conditions

IT1(0) = I(0) ĪT0(0) = IT1(1)

KT1(0) = K(0) K̄T0(0) = KT1(1).

The value of J1 is calculated analogously to J0, so we get
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J1 = (ψα̃+ ϕγ̃)e
(λ̃1−r) − 1
λ̃1 − r

+ (ψβ̃ + ϕδ̃)e
(λ̃2−r) − 1
λ̃2 − r

+ e−r
(

(ψᾱ+ ϕγ̄)e
(λ1−r)T − 1
λ1 − r

+ (ψβ̄ + ϕδ̄)e
(λ2−r)T − 1
λ2 − r

)
,

where those parameters accentuated by˜belong to the functions IT1(t), KT1(t)
and those with ¯ belong to ĪT0(t) and K̄T0(t), respectively. For the remaining
years i > 1 we can also consider a continous function J(i) =: Ji, i ∈ R, i > 0
and not just discrete points at every year. This function is composed by the
three integrals

Ji =
∫ i

0
e−rt (ψIT0(t) + ϕKT0(t))dt+

∫ 1

0
e−r(t+i) (ψIT1(t) + ϕKT1(t))dt

+
∫ T

0
e−r(t+i+1)

(
ψĪT0(t) + ϕK̄T0(t)

)
dt.

Again we have to pay a special attention to several initial values which are

IT0(0) = I(0) IT1(0) = IT0(i) ĪT0(0) = IT1(1)

KT0(0) = K(0) KT1(0) = KT0(i) K̄T0(0) = KT1(1).

After adjusting the initial values correctly the value of Ji is given by

Ji = (ψα+ ϕγ)e
(λ1−r)i − 1
λ1 − r

+ (ψβ + ϕδ)e
(λ2−r)i − 1
λ2 − r

+ e−ri
(

(ψα̃+ ϕγ̃)e
(λ̃1−r) − 1
λ̃1 − r

+ (ψβ̃ + ϕδ̃)e
(λ̃2−r) − 1
λ̃2 − r

)

+ e−r(i+1)
(

(ψᾱ+ ϕγ̄)e
(λ1−r)T − 1
λ1 − r

+ (ψβ̄ + ϕδ̄)e
(λ2−r)T − 1
λ2 − r

)
.

After all these calculations we want to compare the value of J0 with those of
Ji, i ∈ R, i > 0 in order to find out which year is the best for the control
intervention to be switched on.
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To investigate the corresponding effects we need an indicator function which
we choose of the form

E(i) = J0 − Ji
J0

· 100 i ∈ R, i > 0.

This indicator allows us to observe the effects of some control intervention over
time. Considering Ji brings out that this function converges asymptotically to
J0. Thus the effect of the control intervention loses influence in later years and
the effect converges to zero for i→∞. As a consequence the effect has to be the
greatest in one of the first years. Due to the linearity of the investigated model
we actually expect our control intervention to have the biggest effect very early.
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Chapter 6

The Relative Efficiency of the
Controls at Different Stages of
a Terrorist Group

6.1 The Effects of an Intervention from Outside

Now we want to apply our considerations from above to some practical examples.
To avoid unnecessary computing time we use a finite approximation T to the
infinite planning horizon by considering

J =
∫ T

0
e−rt(ψI(t) + ϕK(t))dt+

∫ ∞
T

e−rt(ψÎ + ϕK̂)dt,

where Î and K̂ represent the equilibrium state of the considered system. Since
the equilibrium is actually (Î , K̂) = (0, 0), we can omit the second integral so
that the objective functional consists only of the first one. Again it fits into
the recently presented objective damage functional. In what follows we consider
a mix of parameters which imply an asymptotically stable system. This means
that the assumed terrorist group gradually approaches an equilibrium state. The
purpose of the examinations in Chapter 5 is to observe the path to the equilibrium
and the effects of the control intervention from outside on this path. The analysis
will be carried out with the parameters

a b c d

1 2 1 2
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and for two different trajectories, namely those with the initial values (I(0),K(0)) =
(3, 6) and (8, 1). In the first case the amount of labour exerted by ideologues is
half the capital fundings from outside. The second trajectory describes a lack
of money. Taking a look at the two-dimensional model in its original form and
the signs of the parameters implies that not every parameter change, increase
or decrease, does make sense. Therefore we will just increase b and d and de-
crease a and c, respectively, by the fixed proportion of 10%. Furthermore we
will use a finite approximation of time, T = 30, and discount at an annual rate
of r = 0.04. Moreover we will use a symmetric weightening of I(t) and K(t),
ψ = ϕ = 0.5. Nothe that other values do not have a significant influence on the
results, presumably due to the linearity of the model. The following figures show
the results of our examinations. Note that the respective effects are expressed
as percentage.

Figure 6.1: Plots of Ji and the effects per year when a is decreased by 10%. The
initial conditions of this system are (I(0),K(0)) = (3, 6).

Figure 6.2: Plots of Ji and the effects per year when a is decreased by 10%. The
initial conditions of this system are (I(0),K(0)) = (8, 1).
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Figure 6.3: Plots of Ji and the effects per year when b is increased by 10%. The
initial conditions of this system are (I(0),K(0)) = (3, 6).

Figure 6.4: Plots of Ji and the effects per year when b is increased by 10%. The
initial conditions of this system are (I(0),K(0)) = (8, 1).

Figure 6.5: Plots of Ji and the effects per year when c is decreased by 10%. The
initial conditions of this system are (I(0),K(0)) = (3, 6).
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Figure 6.6: Plots of Ji and the effects per year when c is decreased by 10%. The
initial conditions of this system are (I(0),K(0)) = (8, 1).

Figure 6.7: Plots of Ji and the effects per year when d is increased by 10%. The
initial conditions of this system are (I(0),K(0)) = (3, 6).

Figure 6.8: Plots of Ji and the effects per year when d is increased by 10%. The
initial conditions of this system are (I(0),K(0)) = (8, 1).
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Obviously the results are pretty similar and not very surprising. We see
clearly that the first year always fetches the biggest effect. This is no real surprise
due to the linearity of the model as mentioned already in Chapter 5. This means
that the control intervention in best switched on in the first year, at the very
beginning of the option to apply the control. Please note that so far we just
considered one point in every year. So this period is maybe too long for significant
results. Taking an accurate look at the effects of Figure 6.2 or 6.8 gives us a
reason to believe that the decrease of the effects is not always monotone within
the first year. Perhaps there is even a little increase of the effects which can not be
seen in those results. So we probably should not observe the trajectories year by
year but rather scan them more accurately and consider periods which are much
smaller than one entire year. In what fallows we consider periods with length
0.1 years. Again we consider the two trajectories with (I(0),K(0)) = (3, 6) and
(8, 1).

Figure 6.9: Plots of Ji and the effects per 0.1 years when a is decreased by 10%.
The initial conditions of this system are (I(0),K(0)) = (3, 6).

Figure 6.10: Plots of Ji and the effects per 0.1 years when a is decreased by 10%.
The initial conditions of this system are (I(0),K(0)) = (8, 1).
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Figure 6.11: Plots of Ji and the effects per 0.1 years when b is increased by 10%.
The initial conditions of this system are (I(0),K(0)) = (3, 6).

Figure 6.12: Plots of Ji and the effects per 0.1 years when b is increased by 10%.
The initial conditions of this system are (I(0),K(0)) = (8, 1).

Figure 6.13: Plots of Ji and the effects per 0.1 years when c is decreased by 10%.
The initial conditions of this system are (I(0),K(0)) = (3, 6).
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Figure 6.14: Plots of Ji and the effects per 0.1 years when c is decreased by 10%.
The initial conditions of this system are (I(0),K(0)) = (8, 1).

Figure 6.15: Plots of Ji and the effects per 0.1 years when d is increased by 10%.
The initial conditions of this system are (I(0),K(0)) = (3, 6).

Figure 6.16: Plots of Ji and the effects per 0.1 years when d is increased by 10%.
The initial conditions of this system are (I(0),K(0)) = (8, 1).
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The results above of a change in a and d (also b and c) are qualitatively pretty
similar since they are connected to the same state variable. Therefore the next
two figures are just given for a decrease of a and an increase of b. Apparently it
is better for some initial values to switch on the control intervention at diferent
stages as just at the beginning of the first year.

To figure this out in more detail we take a look at the normalised effects and
the normalised state variables within one graphic. The first one shows a decrease
of a by 10%, where the thick line describes the capital fundings from outside.
Obviously there is a connection between the effects (dotted line) and this line.
This is because a is directly influencing K(t) according to Hausken et al.’s model.
The more K(t) is increasing the bigger are the effects of the intervention on the
parameter influencing this state variable. The effect is the biggest shortly after
K(t) has reached its peak and starts to decrease afterwards. If the fundings are
decreasing from the very beginning the effects also do. For comparative purpose
we also display the solution for symmetric initial conditions, I(0) = K(0), which
is quite interesting because this state starts directly on the caracteristical tra-
jectory.

The second graphic shows the analogous situation for an increase of b, where
the thick line represents I(t), the amount of labour exerted by the ideologues,
with the corresponding initial values.
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Figure 6.17: Normalised effects and state variables for (I(0),K(0)) =
(3, 6), (8, 1) and (5, 5) when a is decreased by 10%.
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Figure 6.18: Normalised effects and state variables for (I(0),K(0)) =
(3, 6), (8, 1) and (5, 5) when b is increased by 10%.
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6.2 The Effects at the Beginning

Since the analyses presented above only took into account two initial values, we
next want to expand our examinations. Therefore we consider a large area in
the (I,K)-plane. We are constructing a grid of 40 × 40 points over the plane,
where every point is representing one initial value.

If the control intervention is switched on we know that for most initial values
the biggest effect is achieved in the very first period. The control intervention
implies a change of the parameters by 10%. To compare the results we will
also change the certain parameters by only 1%. The following figures display
the (I,K)-plane coloured according to the respective efficiency of the control
interventions when switched on at the very beginning of the planning horizon.

Figure 6.19: Efficiency zones when a is decreased by 1% at the very beginning
of the planning horizon. The black line represents the characteristical trajectory
of the system leading to the equilibrium point (0, 0).
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Figure 6.20: Efficiency zones when b is increased by 1% at the very beginning of
the planning horizon. The black line represents the characteristical trajectory of
the system leading to the equilibrium point (0, 0).

Figure 6.21: Efficiency zones when c is decreased by 1% at the very beginning
of the planning horizon. The black line represents the characteristical trajectory
of the system leading to the equilibrium point (0, 0).
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Figure 6.22: Efficiency zones when d is increased by 1% at the very beginning of
the planning horizon. The black line represents the characteristical trajectory of
the system leading to the equilibrium point (0, 0).

Figure 6.23: Efficiency zones when a is decreased by 10% at the very beginning
of the planning horizon. The black line represents the characteristical trajectory
of the system leading to the equilibrium point (0, 0).
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Figure 6.24: Efficiency zones when b is increased by 10% at the very beginning
of the planning horizon. The black line represents the characteristical trajectory
of the system leading to the equilibrium point (0, 0).

Figure 6.25: Efficiency zones when c is decreased by 10% at the very beginning
of the planning horizon. The black line represents the characteristical trajectory
of the system leading to the equilibrium point (0, 0).
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Figure 6.26: Efficiency zones when d is increased by 10% at the very beginning
of the planning horizon. The black line represents the characteristical trajectory
of the system leading to the equilibrium point (0, 0).

6.3 The Effects at Different Stages of the Terrorist
Group

We only considered the control in the first period so far. But we know that there
are some initial values achieving the biggest effect in later periods. Again we
consider the (I,K)-plane with 40 × 40 points, and for each of those values the
control intervention is exerted. Therefore we will increase or reduce the param-
eters by 10% as done so far and for comparative purpose by 1%, too. To avoid
computing time we are only considering the first two years. The years afterwards
are not relevant for our examination as we can see in the recently given pictures.
Again these two years are scanned by a period length of one-tenth. After cal-
culating the objective functionals the year with the strongest effect is assigned
to every initial value. Hence the following graphics give some (I,K)-planes to
show up which period is the best for the control intervention to switch on.

Obviously the results are all nearly the same. Hence the period for the control
intervention is basically always the same no matter if the parameters are changed
by 1% or 10%.
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Figure 6.27: (I,K)-plane to discover which is the best period to change a by 1%.
The black line represents the characteristical trajectory of the system leading to
the equilibrium point (0, 0).

Figure 6.28: (I,K)-plane to discover which is the best period to change a by 10%.
The black line represents the characteristical trajectory of the system leading to
the equilibrium point (0, 0).
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Figure 6.29: (I,K)-plane to discover which is the best period to change b by 1%.
The black line represents the characteristical trajectory of the system leading to
the equilibrium point (0, 0).

Figure 6.30: (I,K)-plane to discover which is the best period to change b by 10%.
The black line represents the characteristical trajectory of the system leading to
the equilibrium point (0, 0).
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Figure 6.31: (I,K)-plane to discover which is the best period to change c by 1%.
The black line represents the characteristical trajectory of the system leading to
the equilibrium point (0, 0).

Figure 6.32: (I,K)-plane to discover which is the best period to change c by 10%.
The black line represents the characteristical trajectory of the system leading to
the equilibrium point (0, 0).
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Figure 6.33: (I,K)-plane to discover which is the best period to change d by 1%.
The black line represents the characteristical trajectory of the system leading to
the equilibrium point (0, 0).

Figure 6.34: (I,K)-plane to discover which is the best period to change d by 10%.
The black line represents the characteristical trajectory of the system leading to
the equilibrium point (0, 0).
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6.4 Approach of an Optimal Policy

What we do have so far is the information of the best point in time when the
control should be switch on for one period. We have discovered the best period
within the first year for every single parameter to change it by a certain percent-
age. Now we want to combine these informations. In the next examination we
want to find out which parameter is the best one for a certain period to change
by 10%. We know the effects of every parameter influencing the terrorist group
so we already have all information that is required. We just need to compare
those effects and assign the corresponding parameters to their initial values. We
use again the 40× 40 grid over the (I,K)-plane and assume the length of a pe-
riod is a tenth year. First of all we will check the situation with the symmetric
weightenings ψ = ϕ = 0.5 given by the Figure 6.35. This case is pretty unspec-
tacular because the optimal policy is the same in every period. On one side of
the characteristical trajectory it is optimal to change d and on the other side b.
So we will assign different weightenings to the state variables to discover some
more interesting results.

Figure 6.35: (I,K)-plane to discover which is the most efficient parameter to
change by 10% in the 0th period of the planning horizon, where ψ = ϕ = 0.5.
The black line represents the characteristical trajectory of the system leading to
the equilibrium point (0, 0).
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Figure 6.36: The first 6 periods to discover which is the most efficient parameter
to change by 10%, where ψ = 0.9 and ϕ = 0.1.

Figure 6.37: The first 6 periods to discover which is the most efficient parameter
to change by 10%, where ψ = 0.1 and ϕ = 0.9.
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As mentioned above the situation in Figure 6.35 is pretty unspectacular inas-
much as we have a symmetric constellation of the parameters and a symmetric
weightening. Thus the optimal policy contains the same decision in every period.
But if the functions receive different weightenings, we see the edge of our two
decisions, b or d, shifting over time. Considering a trajectory moving towards
this edge brings out the point of time when we have to make a change in our
decisions. For a better view of this discovery we will display the next figures
for the parameters (a, b, c, d) = (1, 2, 1, 1), the trajectory starting at the point
(I(0),K(0)) = (9, 1) and the weightenings ψ = ϕ = 0.5.

Obviously there are two significant parameters, namely b and d. The other
two parameters do not have an influence that strong and therefore they drop out
of an optimal policy. We can see clearly that d is the most important parameter.
The longer the terrorist group exists, the more important d gets for the control
intervention. Since it is possible to consider only one period per figure we will
show up the first thirteen periods because afterwards there are no more changes
in the optimal policy. After the thirteenth period, d is the only parameter for
the biggest effect on the terrorist group.

Figure 6.38: The 0th period for the optimal policy. The black spot on the
trajectory represents the actual point of time.
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Figure 6.39: The 1st period for the optimal policy. The black spot on the
trajectory represents the actual point of time and the gray one the preceding
period.

Figure 6.40: The 2nd period for the optimal policy. The black spot on the
trajectory represents the actual point of time and the gray ones the preceding
periods.
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Figure 6.41: The 3rd period for the optimal policy. The black spot on the
trajectory represents the actual point of time and the gray ones the preceding
periods.

Figure 6.42: The 4th period for the optimal policy. The black spot on the
trajectory represents the actual point of time and the gray ones the preceding
periods.
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Figure 6.43: The 5th period for the optimal policy. The black spot on the
trajectory represents the actual point of time and the gray ones the preceding
periods.

Figure 6.44: The 6th period for the optimal policy. The white spot on the
trajectory represents the actual point of time and the gray ones the preceding
periods.
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Figure 6.45: The 7th period for the optimal policy. The white spot on the
trajectory represents the actual point of time and the gray ones the preceding
periods.

Figure 6.46: The 8th period for the optimal policy. The white spot on the
trajectory represents the actual point of time and the gray ones the preceding
periods.
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Figure 6.47: The 9th period for the optimal policy. The white spot on the
trajectory represents the actual point of time and the gray ones the preceding
periods.

Figure 6.48: The 10th period for the optimal policy. The white spot on the
trajectory represents the actual point of time and the gray ones the preceding
periods.
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Figure 6.49: The 11th period for the optimal policy. The white spot on the
trajectory represents the actual point of time and the gray ones the preceding
periods.

Figure 6.50: The 12th period for the optimal policy. The white spot on the
trajectory represents the actual point of time and the gray ones the preceding
periods.
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Figure 6.51: The 13th period for the optimal policy. The white spot on the
trajectory represents the actual point of time and the gray ones the preceding
periods.

6.5 Simulating a 300% Shock of the Parameters

Let us expand our examinations one last time. We are now interested in the im-
pact of a big shock in every parameter, respectively. Note that we still have to
fulfill a stability condition, namely bd > ac. In order not to offend this condition
we have carefully chosen the initial set of parameters (a, b, c, d) = (1, 2, 1, 2) at
the beginning of this chapter. Again this is the set we are going to deal with,
where ψ = ϕ = 0.5. These parameters allow us to raise every single parameter
by 300% and the system still rests asymptotically stable. Afterwards we will
do the same examination as the last one of the previous section with several
adjusted trajectories.

The results are not given seperately but rather within one graphic. Obviously
a shock in a and c needs much more time to dominate the entire (I,K)-plane. A
shock in b and especially d needs maximum half the time to do the same. This
is due to the higher values of b and d from the the very beginning. A shock in
a or c does not have an influence that strong and therefore much more periods
are required.
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Figure 6.52: The first 12 periods with the optimal policy and the trajectory for
the parameters (a, b, c, d) = (3, 2, 1, 2)
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Figure 6.53: The first 6 periods with the optimal policy and the trajectory for
the parameters (a, b, c, d) = (1, 6, 1, 2)
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Figure 6.54: The first 12 periods with the optimal policy and the trajectory for
the parameters (a, b, c, d) = (1, 2, 3, 2)
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Figure 6.55: The first 5 periods with the optimal policy and the trajectory for
the parameters (a, b, c, d) = (1, 2, 1, 6)
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Chapter 7

Summary and Conclusions

We have discussed different aspects of terrorism and a variety of motives that
prompt participants to join dissident movements. This thesis contains also an
explanation of ideological migrations of terrorist organisations. The calcula-
tions are getting more complicated when they are faced with adversaries such
as the government or competing dissident groups. Terrorist organisations with
three types of actors are considered, as in Hausken et al. [12, Hausken et al.
2012]. Ideologues provide ideological purpose and have a strong group commit-
ment. They are even willing to sacrifice their own interests for the good of the
group. Criminal mercenaries have a weak group commitment but rather a per-
sonal financial interest. The third type of actors are captive participants who
have neither a strong group commitment mor strong personal financial interests.
They cannot leave the group due to the fact that their cost of defection is larger
than their benefits.

We first considered a two-dimensional model without government interven-
tion consisting of the labor exerted by altruists and capital fundings from out-
side. If a terrorist organisation consists only of ideologues, an external sponsor is
needed. This model is represented by a system of two linear first order coupled
differential equations. We solved this system generally and made some accurate
remarks on this solution later in the thesis. We also discussed the stability of the
two-dimensional model and every possibly occuring case. The main focus of this
thesis was on the two-dimensional asymptotically stable case, which means that
the terrorist organisation approaches an equilibrium over time. As mentioned
above we did some research on the state variables of the solution an discovered
a discontinouity at a specific constellation of the parameters occuring in the
system. Therefore we adjusted the given solution for further examinations. To
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avoid such problems it is possible to choose another transformation matrix T
while calculating the solution, e.g.

T =
(

−2a b− d+
√
bd− ac

−(b− d+
√
bd− ac) −2c

)
,

with other eigenvectors of the system. The determinant of this matrix does not
vanish for any constellation of the parameters a, b, c, d. Nevertheless the eigen-
vectors have to be of the same eigenspace as those of Section 2.1.

If a terrorist organisation consists of ideologues and mercenaries, the lat-
ter can provide money in addition to the capital fundings from outside if they
do not corrupt the ideological purity. This extends the first model to a three-
dimensional one. We also gave an accurate solution of this model and discussed
the stability. We thereafter gave several plots of the system to visualise the dy-
namics.

We afterwards included captive participants and thereby extended the model
to four dimensions. We also gave a general solution but due to the high dimen-
sion no further examinations were done. Finally we generalised this model by
government interventions. This results in an inhomogenous system of differential
equations. We also gave a direction to solve the inhomogenous system.

A main focus of this thesis is on the last two chapters. Chapter 5 discussed an
presented the theory to control a terrorist organisation. In our case, the control
intervention from outside was to change a parameter of the model by a certain
percentage. The question of how this control intervention was carried out could
be interpreted in many ways and was not done in this thesis. By Ji, i ∈ R, i > 0
we came up with a tool that interferes the development of the terrorist organ-
isation on its way to the equilibrium. We also formed a tool that allows us to
visualise the effects of the intervention over time. Chapter six applied this theory
on a chosen set of parameters. First of all we tried to figure out when the effect is
the biggest for two specific initial values. We observed the organisation year by
year, which was actually not very practical. Thus we scanned the development
of a group by periods of one tenth of a year. It was not very surprising that the
biggest effect almost always appeared at the very beginning of our observation.
This is due to the simplicity of the considered model, which gives us a reason to
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think twice about the assumptions. Perhaps it is possible to extend the model by
nonlinear coefficients in order to approach a more realistic model. But actually
it is the simplicity of the model that allowed us to do a variety of examina-
tions. Nevertheless there are some initial values that show up the biggest effect
in a later period. To discover those initial values we considered a grid over the
(I,K)-plane and every point of the grid represented one initial value. We found
out, which period is the best for the control intervention to switch on at every
point. For that purpose we also used different weightenings on the considered
state variables. Since the biggest effect appeared usually in the 0th period, we
plotted the "efficiency zones" on the (I,K)-plane. Actually there are some areas
that show up bigger effects than others. Those areas are seperated by a clear
edge. One could observe a trajectory of the terrorist group moving over these
regions. Hence one could ask, e.g., for the costs while waiting for the terrorist
group to move into a higher efficiency zone. We were also pursuing the issue of
an optimal policy. Actually we did not just find out, which period is the best
to change a specific parameter. We also found out, which parameter is the best
to change in a certain period. Afterwards we had the information of when to
change which parameter.

As mentioned above the considered model is pretty simple. As a consequence
of this simplicity the results were pretty predictable. On the other hand, it
allowed us to carry out a variety of investigations and would allow way more
examinations than were done in this thesis. An elevating point would be to
extend the model by nonlinear components. But in order to do that extension
it is probably necessary to observe and study the phenomenon "terrorism" more
accurately.
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Appendix A

Routh-Hurwitz

A.1 Hurwitz’ Stability Criterion

By means of this criterion it is possible to give a statement on the stability of
a system of differnetial equations without knowing the zeros of its characteristic
polynomial exactly. Therefore Hurwitz defines the so-called Hurwitz-polynomial
which is a polynomial p(λ) having all its zeros in the open left half-plane. If there
are additionally some single zeros on the imaginary axis, p(λ) is called a modified
Hurwitz-polynomial. Hence a system is asymptotically stable if its polynomial
p(λ) is a Hurwitz-polynomial and it is stable if p(λ) is a modified one.

A necessary but not sufficient condition for a Hurwitz-polynomial of n-th
degree

p(λ) = pnλ
n + pn−1λ

n−1 + . . .+ p1λ+ p0, pi ∈ R, i = 0, . . . , n

is that all coefficients pi ∈ R are available, which means that they are non-zero,
and have the same signature. (In case of n = 2 this necessary condition is also
sufficient.) For n ≥ 3 we have to check further sufficient conditions such as
the Hurwitz-determinants. Therefore we design the so called n × n Hurwitz-
matrix [7, 17, Frey et al. 2008, Mlitz 2008] of the present polynomial given by
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H(p) :=



pn−1 pn−3 pn−5 · · · · · · 0
pn pn−2 pn−4 · · · · · · 0
0 pn−1 pn−3 · · · · · · 0
0 pn pn−2 · · · · · · 0
0 0 pn−1 · · · · · · 0
...

...
... . . . . . . ...

0 0 0 · · · p2 p0


∈ Rn×n

and determine the main minors M1, . . . ,Mn. Now the sufficient conditions can
be written as:

• p(λ) is a Hurwitz-polynomial if Mi > 0, ∀i = 1, . . . , n.

• p(λ) is a modified Hurwitz-polynomial if M1, . . . ,Mn−2 > 0 and Mn−1 =
Mn = 0.

Note that Mn = p0 ·Mn−1. According to these informations the stability crite-
rion of the three-dimensional system can be summarised as follows:

p(λ) = p3λ
3+p2λ

2+p1λ+p0 turns out to be a (modified) Hurwitz-polynomial
if the coefficients pi ∈ R, i = 0, . . . , 3 are available and of the same signature
and satisfy p1p2 − p0p3 > 0 (= 0).

And furthermore in case of a four-dimensional system we get:

p(λ) = p3λ
3+p2λ

2+p1λ+p0 turns out to be a (modified) Hurwitz-polynomial
if the coefficients pi ∈ R, i = 0, . . . , 4 are available and of the same signature
and satisfy p1p2p3 − p2

1p4 − p0p
2
3 > 0 (= 0).

A.2 Qualitative Analysis

This analysis uses the Hurwitz-matrix and the Cauchy Index [2,17, Bitmead and
Anderson 1997, Mlitz 2008] as well to classify the zeros and therefore the eigen-
values of the investigated system. To obtain a first impression of the zeros of our
characteristic polynomial p(λ) = pnλ

n + pn−1λ
n−1 + . . . + p1λ + p0 we have to

take a look at the n×n Hurwitz matrix. Again we have to check the main minors
of the Hurwitz matrix, M1, . . . ,Mn, and figure out their signatures. According
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to Routh-Hurwitz there are no zeros on the imaginary axis if all three minors
are unequal to zero. We now have to look at the sequence pn,M1,

M2
M1
, . . . , Mn

Mn−1

and check for their specific signatures. The number of signature changes in this
sequence equals the number of zeros with a positive real part. Note that we still
do not know whether these zeros are real or complex.

For further analysis we may take a look at the Cauchy Index. The Cauchy
Index Iba

(
r
q

)
over an interval (a, b) of a real rational polynomial p(λ) = r(λ)

q(λ) is
defined as the number of jumps of p(λ) from −∞ to +∞ minus the number from
+∞ to −∞ as ν moves from a to b. Of course the interval (a, b) can be extended
to (−∞,+∞) to cover the entire domain of definition.

To calculate the Cauchy Index we have to consult Sturm chains, [17, Mlitz
2008]. A Sturm chain of a polynomial p is a sequence of polynomials associated
to p and its derivative by a variant of Euclid’s algorithm for polynomials. Sturm’s
theorem expresses the number of distinct real roots of p located in an interval.
Applied to the interval of all the real numbers it gives the total number of real
zeros of p.

A Sturm chain or Sturm sequence is a finite sequence of polynomials f0, . . . , fn

of decreasing degree with these following properties:

• f0 = p(ν) has only single zeroes;

• if f0(ξ) = 0, then sgn(f1(ξ)) = sgn(p′(ξ));

• if fi(ξ) = 0 for 0 < i < n, then sgn(fi−1(ξ)) = − sgn(fi+1(ξ));

• fn does not change its signature.

This Sturm chain makes it easy to calculate the Cauchy Index. If f0, . . . , fn is a
Sturm chain over (a, b), then

Iba

(
fi+1
fi

)
= V (a)− V (b),

where V (.) denotes the number of signature changes in f0, . . . , fn. Combining
this analysis with the results from the Hurwitz matrix yields a clear classification
of the zeros of the polynomial p(λ), which allows us some remarks on the stability
of the system.
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