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Deutschsprachige Kurzfassung

Die vorliegende Arbeit befasst sich mit dem Themengebiet der stochastischen Portfolio
Theorie und Problemen und Fragestellungen, die in diesem Feld auftreten. Diese Theorie
verfolgt einen deskriptiven Ansatz fiir das Langzeitverhalten von Preisen, der im Gegensatz
zu klassischen Ansétzen in der Portfolioselektion steht, wo die explizite Kenntnis von Drifts
und Nutzenfunktionen erforderlich ist. Eingangs wird ein Uberblick iiber fundamentale
Konzepte und Forschungsergebnisse in der Stochastischen Portfolio Theorie gegeben, die
wesentlich durch die wegweisenden Arbeiten von Fernholz und Karatzas gepragt wurden
(143], [44], [46], [47], [48], [49], [50)]).

Wir untersuchen in weiterer Folge das bemerkenswert stabile Verhalten zweier 6konometri-
scher Eigenschaften, ndmlich die Kapitalverteilungsstruktur und die Dynamik der Entropie
des Marktes sowie deren Reproduktion durch das verwendete Marktmodell. Mit dem Ziel,
diese beiden Eigenschaften korrekt abzubilden, entwickeln wir ein Marktmodell ausgehend
von einer bestimmten Klasse positiver affiner Prozesse. Unsere Intention ist es, sowohl
das Verhalten der genannten Eigenschaften zu reproduzieren, als auch die beobachtbaren
Korrelationsstrukturen in Aktienmérkten zu beriicksichtigen - ein essentieller Aspekt aus
Sicht des Risikomanagements. Im ersten Schritt werden unabhéngige quadrierte Brownsche
Bewegungen als Ausgangspunkt fiir ein Aktienmarkt-Modell verwendet, wobei wir zeigen,
dass dieser Ansatz die beobachtbare Struktur der Kapitalverteilung sehr gut reproduziert.
Im zweiten Schritt erweitern wir unser Modell um eine instantane Kovarianzstruktur auf
Basis von GARCH(1,1) Volatilitatsschétzern und der Korrelationsstruktur der Marktda-
ten. Diese Vorgehensweise liefert eine im Zeitverlauf veranderliche Kovarianzstruktur und
vermeidet explizite Elliptizitdtsannahmen. Durch die Anwendung von Modellierungsansat-
zen aus der affinen Kategorie und durch eine addquate Modellierung der Abhéngigkeits-
strukturen zwischen einzelnen Aktien zeigen wir empirisch, dass es gelingt, die Struktur
der Kapitalverteilung und die Dynamik der Marktentropie zusammen mit der allgemeinen
Dynamik des Aktienmarktes gut zu reproduzieren.

Der entwickelte Modellansatz erweist sich iiberdies als geeignet fiir Anwendungen im Be-
reich des Risikomanagements. Der Vergleich des korrelierten Modells mit einem Modell auf
Basis unabhéngiger Aktien verdeutlicht, dass die Einbindung einer addquaten Korrelati-
onsstruktur zu einer deutlichen Verbesserung der Struktur des langfristigen Marktverhal-
tens fiihrt und dass wir hierdurch ein realistisches Maf an Marktvolatilitat erhalten. Diese
Aspekte unterstreichen die Eignung des vorgeschlagenen korrelierten Marktmodells fiir An-
wendungen im Risikomanagement, wie beispielsweise die Berechnung von Risikomafsen und
langerfristigen Benchmark-Simulationen.






Abstract

This work is dedicated to the field of stochastic portfolio theory and to a set of problems
and questions arising therein. Omne of the most remarkable aspects of this theoretical
setup is that a descriptive approach for long-term price behavior is pursued, in contrast
to classical approaches to portfolio selection which depend on the knowledge of drift and
utility functions. Initially, we provide an overview of the fundamental concepts of stochastic
portfolio theory which are predominantly based on the seminal works by Fernholz and
Karatzas ([43|, [44], [46], |47], [48], [49], [50]).

Subsequently, we assess the stylized features of two econometric properties, observable in
the context of stochastic portfolio theory, namely the reproduction of the capital distri-
bution structure and of the dynamics of market entropy by the utilized market model,
which exhibit remarkable stability over time. To the end of adequately accounting for
these features, we develop a stock market model based on a special class of positive affine
processes. The goal of our approach is to create a model which does not only reproduce the
aforementioned stylized facts but which also permits to account for observed correlation
structures which is an essential feature from the point of view of risk management. In
the first step, we utilize independent squared Brownian Motions as basis for the equity
market model and show that this approach indeed replicates the observable structure of
the capital distribution very well. In the second step, we enhance our market model by
endowing it with an instantaneous covariance structure which is based on GARCH(1,1)
estimates for volatilities and on the correlation structure extracted from market data. This
approach ensures a time-varying covariance structure and avoids any explicit assumptions
on market ellipticity. By applying modeling approaches of the affine category and by ad-
equately capturing inter-stock correlations we show empirically that we attain the goal of
satisfyingly reproducing the structure of capital distribution and the dynamics of market
entropy together with the general dynamics of the stock market.

The proposed modeling approach furthermore proves well-suited for risk management ap-
plications. The comparison of the correlated model with a model based on independent
stocks illustrates that the incorporation of an adequate correlation structure clearly im-
proves the long term market behavior and that one obtains a realistic degree of market
volatility. These aspects render the proposed model well-suited for risk management ap-
plications such as the calculation of risk measures and long-term benchmark simulations.
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Chapter 1

A Semimartingale Model for the Stock
Market

1.1 Basic Concepts and Motivation

In the course of the last decade, the transfer of theoretical insights, models and trading
strategies that stem from the vast field of Stochastic Portfolio Theory has become an
important aspect of global financial markets. Notably, the implementation of quantitative
trading strategies has changed the face of investment processes and also played a crucial
role in the steep rise of the hedge fund industry. However, the turmoils in financial markets
since 2007 also showed the limitations of automatic trading strategies, namely when the
observed market behavior could not be captured by the implemented models and when the
liquidity crunch in many crucial asset classes rendered portfolio rebalancing impossible.

Following classical models in stochastic portfolio theory as e.g. developed by Fernholz [43],
[44], Fernholz and Karatzas [46], [47], [48], [49], [50] and Platen and Heath [86], [87] we
will introduce a stock market model. Within this model, some approaches to building
equity portfolios by means of generating functions will be discussed [44], [48]. In the
inspiring works of Fernholz et al.! the main focus lay on the implementation and quality
of such trading strategies and on the construction of relative arbitrage opportunities. The
motivation for applying quantitative trading strategies generally is to create a portfolio
which yields as high a performance as possible. Conversely one could also ask, where the
risks and weaknesses of the generated portfolio lie, namely:

ISee [43], [44], [46], [47], [48], [49], [50] and [51]



1.1 Basic Concepts and Motivation

e What happens, when the model reaches its limits?
e Which risk measure reveals most insight in the different aspects of portfolio risk?

e Which types of portfolios exhibit a beneficial risk-return structure over the long term?

It is this family of questions that we want to draw more attention to and that will lie
at the center of the ensuing considerations. But for now, let us start by introducing a
logarithmic model for stocks, as it is outlined in [44]. Unless stated otherwise the sketched
concepts and properties can be found in further detail in Fernholz [44|. For the following
considerations let (2, §, P) be a filtered probability space, let furthermore

W ={W(t) = (Wi(t),...,Wp(t)), n €N, F, 0 <t < o0}

be an n-dimensional Brownian Motion (BM). The filtration {§;}o<t<co is the augmentation
of the canonical filtration {F}V = o(W(s)); 0 < s < ¢t} w.r.t. P-null sets. Unless stated
otherwise, we will use this filtration.

Definition 1.1: Let us define the following basic properties®:

1. A process { X (t) }o<t<oo is called adapted to {Fi}o<t<oo if Xi is Fr-measurable.

2. The cross variation process { (M, N):}o<t<oo for two continuous semimartingales M(-)
and N(-) is given by:

= g 3 (o (57) e (50)) - (v (*52) - (52))

The cross variation process is adapted, continuous and of bounded variation. Fur-
thermore we denote by (M), = (M, M), the quadratic variation of M.

3. The Brownian Motion process given above is a continuous, square-integrable martin-
gale and the cross variation process equals (W;, W;), = d;;t, where &;; denotes the
Dirac Delta.

Definition 1.2: Forn € N the stock price process { X (t) }o<i<co is defined by the following
Ité decomposition which is given in terms of the log-price?:

dlog X (t) = (t)dt + zn:&,(t)dW,,(t), te0,00), (1.1)

where:

2See e.g. Karatzas and Shreve [66], Qksendal [80] or Protter [88].
3See Fernholz [44], Definition 1.1.1. and Fernholz and Karatzas [48], Section 1.




1.1 Basic Concepts and Motivation

o W = (Wy,...,W,)...is an n-dimensional Brownian Motion.
e v is measurable and adapted, satisfying fo |y (t)|dt < oo.
e and &, v=1,...,n, are measurable and adapted, s.t.

L@@ + ... +E@1)dt < 0o, T €[0,00) as.
2. limy oo t71(EX() + ... + E2(1)) loglogt = 0 a.s.
8 &)+ ... +&(t) >0, t€[0,00) a.s.

The process v = {7(t)}o<t<oo 18 the growth rate process of the stock. The processes
{&,(t) }o<t<oo model the volatility direction of the stock price towards the v-th source of
uncertainty W, at time t.

Let us furthermore assume that each company has one single share of stock outstanding,
i.e. X(t) represents the whole market capitalization of the company at time ¢t. Now,
integration of Equation 1.1 yields:

log X (t) —log X (0) = /Otfy(s)ds + /;Zf,,(s)dW,,(s), t €[0,00) (1.2)

Applying exp one obtains:

X(t) = X(0) exp (/0 ’y(s)ds—i—/o Zg,,(s)dw,,<s)>, t e 0,00) (1.3)

Remark 1.1: Point 2 in Definition 1.2 has to be seen in the context of the law of the
iterated logarithm?. In the version for a real valued local martingale M the law of the
iterated logarithm may be stated as:

M(t)

lim sup =1 a.s. 1.4
t—00 \/2 )¢ log log (M), (14

In our case we look at the local martingale part in the semimartingale characterization of

the stock price process X (t) in Equatlon 1.3, thus obtaining M(t) = > _, fo &, (s)dW,(s)
with quadratic variation (M), =>""_, fo &,(s))?ds. Hence one obtains:
lim sup - M) - = V2
o S a6 (9))2ds loglog S0, fi(€.(s)ds
M(t)
lim sup : = V2

t—300 \/ZV L Heu(s))2ds loglogt S0, L [, (s))%ds
t

4See Karatzas and Shreve [66], Theorem 2.9.23. or Revuz and Yor [89], Chapter II, Theorem 1.9.



1.1 Basic Concepts and Motivation

Hence, approximating log log <t >y % fg(fl,(s))2ds> ~ loglogt one obtains:

M(t)
lim sup t =2 (1.5)

t—00 \/ S fotgu(s))?ds log log ¢

And further approximating Y _, 1 fg(f,,(s))st ~ Y on_(&(s))? yields:

v=1 ¢t

M)
lim sup = : - =2 (1.6)
=00 \/zyzl(tfy(s)) log log ¢

If the denominator on the left hand side of (1.6) vanishes we will need the numerator on the
left hand side of (1.6) to vanish as well, in order to satisfy the law of the iterated logarithm
which is obtained by the following result in Fernholz®, stating that for any continuous local
martingale M (t) satisfying

(M), _
tllglo " loglogt =0 a.s., (1.7)
it holds that: Mt
lim M) =0 a.s. (1.8)
t—oco

This corresponds to numerator and denominator of the left hand side in Equation 1.5.
Summing up, one observes that the long-run behavior of the stock as ¢t — oo will be
dominated by the average growth rate of the stock whereas the local martingale component
of X (t) as given in Equation 1.3 will vanish on average as t — oo.

Remark 1.2: The setup outlined above is defined on [0, 00). Girsanov’s Theorem®, which
would have made a finite time domain [0, 7] necessary’, is not needed in the following
results. Furthermore, some asymptotic considerations render the infinite domain necessary.
Yet for all non-asymptotic considerations, the finite time domain may be used.

The process defined by Equation 1.1 obviously is a continuous semimartingale with bounded
variation component 7(¢)dt and local martingale component Y, &, (¢£)dW, (t).

Applying It6’s formula® for X () = explog X (¢) and considering that d(log X,log X); =
Son_ E2(t)dt one obtains the following SDE for X (-)?:

®See Fernholz, [44], Lemma 1.3.2.

6See e.g. Revuz and Yor [89], Chapter VIII, Theorem 1.4.

"See Fernholz [44], Definition 1.1.1.

8See e.g. Karatzas and Shreve [66], Theorem 3.3.3. or (Jksendal [80], Theorem 4.1.2.
9See Fernholz [44], Equation 1.1.3.



1.1 Basic Concepts and Motivation

dxX(t) = X (1) (wt) +§Z§3<t>) dt+ X (1) S &AW, (t), te o)  (19)

v=1
N 7 N 7
Vv Vo

(%) (%)

It is evident that {X;};> is a continuous semimartingale as well with bounded variation
component (x) and local martingale component (xx).

Definition 1.3: Consequently one can define the rate of return process o = {a(t)}o<i<oo

as 10
1= .,
= — . 1.1
alt) =) + 3 ;fy(t) (1.10)
Analogously to Equation 1.1 we can define a family of n stocks X;, i = 1,...,n, where
each stock is defined by !
leg Xz(t) = ’Yi(t)dt + Zfi,u(t)dwu(t)v te [07 OO) (111)
v=1

Definition 1.4: Let the matriz-valued process § be given by £(t) = (§,,(1)),<; ,<,,- Then
the covariance process o is defined by'?:

a(t) = &£(0)s)". (1.12)
Fori=1,...,n: o4(-) is the variance process of stock i.

Since for all

reR": zo(t)r’ = 2E()E() 2" = wE(1) (2€(t)" > 0,
it follows that o(t) is positive semi-definite for all ¢ € [0, 00)'. Using this setup, the cross-
variation process of two stocks X; and X; can be calculated following Equation 1.13. The

cross-variation process for log X;, log X; is related to o as follows '*:

oy (t)dt = d(log Xi(t), log X;(t)) = Y _ &, (D&, (t)dt as. (1.13)

19See Fernholz [44], Equation 1.1.4.

"See Fernholz [44], Equation 1.1.6.

12See Fernholz [44], Section 1.1.

13See Fernholz [44], Section 1.1. and Fischer [53], Section 5.4.6.
14See Fernholz [44], Equation 1.1.9.



1.1 Basic Concepts and Motivation

Let us now formally define a stock market in the modeling framework outlined above. We
will present the definition of a stock market as well as some important properties which
will be needed for several further results.

Definition 1.5: A market's is a family of stocks M = {X1,..., X,.} defined as before, s.t.
o(t) is non-singular for all t € [0,00) a.s.

i.) The market M is nondegenerate if there exists an € > 0 s.t. xo(t)x? > €||x||?, for all
x € R", forallt € [0,00) a.s.

ii.) The market 9 is said to have bounded variance, if there exists an M > 0 such that
zo(t)z? < M|z||?, z € R", t € [0,0) a.s.

It may be noted, that point i.) of Definition 1.5 constitutes a uniform constraint on the
smallest eigenvalue of ¢ which is a fairly strong assumption. The nondegeneracy condition
of the market can also be seen as ellipticity condition on the market 9. Thus we will
use the notions nondegenerate market and elliptic market equivalently. Furthermore, an
economic interpretation of the non-degeneracy of 91 is that the portfolio variance cannot
become smaller than e for any normed vector of portfolio weights y = Hi—H in long and short
portfolios. Since in a nondegenerate market, all eigenvalues of o are strictly positive (in
fact even bounded from below by €) the matrix ¢ is not just positive semi-definite but
positive definite for all ¢ € [0, 00).1°

Remark 1.3: Note that in the model introduced in [44], the number of Brownian Motions
used is taken to be the same as the number of stocks in the market. Hence a market with
n stocks is supposed to depend on n sources of uncertainty driving the evolution of stock
prices. This is also a necessary feature in order to obtain the desired ellipticity of the
market 1.

Definition 1.6: A portfolio'™ in the market M is a measurable, adapted vector-valued
process m, w(t) = (m1(t),...,m(t)), t € [0,00), s.t. 7 is a.s. bounded on [0,00) and:

> m(t)y=1, te0,00) as.
=1

;... weight of the i-th stock.

15See Fernholz [44], Definition 1.1.2.
16See Fernholz [44], Lemma 1.1.3. or Fischer [53], Section 5.7.3.
17See e.g. Fernholz [44], Definition 1.1.4 or Fernholz and Karatzas [48], Definition 1.1
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Now, let m be a portfolio and let Z.(t) > 0 be the value of the given portfolio at time ¢.
Furthermore using the fact, that the amount invested in the i-th stock is given by 7;(t) Z,(t)
the instantaneous return of the portfolio can be expressed in terms of the instantaneous
stock returns'®, provided, that our portfolio is self-financing. This self-financing condition
should be explicitly included in the characterization of portfolios in Definition 1.6 since it
is a central aspect of the outlined model.

dZ.(t) < dX;(t
7 ((t)> = ;m(t) X, é)), (1.14)

i.e. the instantaneous portfolio return is the weighted sum of instantaneous stock returns.
In Proposition 1.1 we will see, that the SDE for the portfolio value process can be written
in a very intuitive way, using the portfolio weights and components.

Proposition 1.1: Let 7 be a self-financing portfolio in M, then Z, satisfies'®:

T8 Zu() = ()t + 3 m{t)6 (OdIV, 1), (1.15)

1,v=1

fort € [0,00) a.s., where:

n n

Vx(t) = Zﬂi(t)%(t) + % ( mi(t)ou(t) — Z Wi(t)ﬂj(t)az’j(t)> - (1.16)

i=1 i=1 i,j=1

Whereby v (t) is called the portfolio growth rate and ~: is called the excess growth rate.

The excess growth rate may be interpreted as half of the diversification benefit in terms
of variance. It is noteworthy that this aspect connects the two perspectives of portfolio
performance as influenced by the growth rate and the rate of return and of portfolio risk
given by the standard deviation of portfolio returns (i.e. portfolio volatility). Thereby the
given model for 9 incorporates the effect that portfolio diversification will generally lead
to a superior risk / return profile than single stock investment, a pattern which is readily
observable in the market.

18See Fernholz [44], Equation 1.1.12.
19See Fernholz [44], Proposition 1.1.5.
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Proof: We follow the proof as given in [44|. The process Z, is adapted, so we want to show
that it satisfies Equation 1.14. By application of Ito’s formula to Z, = exp(log(Z.(t))),
one obtains, that a.s. for ¢ € [0, 00):

dZ,(t) = Z.(t)dlog Z.(t) + %ZW(t)d(log Z (1)),

hence,

= (i) + Gllog Z2),+ 3 mH)EL (AW, (1)

i,v=1

According to the nature of the cross-variation as depicted in Equation 1.13, we obtain a.s.
for t € [0, 00) that:

d(log Zz)y = Y milt)m;(t)oy;(t)dt. (1.17)

Using the Definition of

= Zm(t)%(t) + % (Z mi(t)ou(t) — Z Wi(t)ﬁj(t)gz‘j(t)> )

,j=1

one obtains:

i,v=1

Furthermore 0;;(t) = >__, &2,(t) (see |44]), hence Equation 1.9 implies that fori = 1,...,n:

dX;(t) = (m(t) + %Uu’(t)) t)dt + X;(t Z{’w t)dW, (¢

N J/

—au(t)

Therefore one obtains for ¢ € [0, 00), a.s., that:

_ 2’”‘: () dX;(t)
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It is evident, that the right hand side of Equation 1.17 corresponds to the usual definition

of portfolio variance. Hence the process {o.:(t)}i>o representing the portfolio variance®

is given by:
ounlt) = 3 Tt (0)0(0). (1.18)

1,7=1

Thus, using Equations 1.17 and 1.18, one obtains that:

(log Z, )y = /Ot Oxrn(8)ds, t €[0,00), a.s. (1.19)

Following Equation 1.10 we write the portfolio rate of return as:

ax(t) =Y m(t)as(t), t€[0,00). (1.20)

=1

And finally, the process Z, can be described by 2!:
dlog Z(t) = Y mi(t)dlog Xi(t) + Vi (t). (1.21)
i=1

Remark 1.4: One may formulate the following relations between the evolution of X;(-)
and Z,(-) and their respective growth rates®*:

1 T
lim T <logXi(T) —/ %-(t)dt> =0 forall X; € M. (1.22)
0

T—oo

This is valid in the case, that the stock variances o;; do not increase too quickly (see [48]),
e.g. if we have:

loglogT [T
lim (%/ aii(t)dt> =0, as. (1.23)
0

T—o0 T2

20See Fernholz [44], 1.1.18.

21See Fernholz [44], Corollary 1.1.6.

228ee Fernholz [44], Prop. 1.3.1. and Corollary 1.3.3 as well as Fernholz and Karatzas [48], (1.6), (1.7),
(1.14) and (1.15).



1.1 Basic Concepts and Motivation

Hence the a.s. relationship stated in Equation 1.22 links the growth rates to the respective
stock price process. The analogue for Z,(-) is:

lim % (logZﬂ(T) - /0 T%(t)dt) ~0, as. (1.24)

T—o00

which is valid under the analogue of Equation 1.23, namely

T—o00

loglogT [T
lim (%/ ||a(t)]|dt) —0, as. (1.25)
0

This is satisfied if all eigenvalues of the covariance matrix o are bounded away from infinity,
which is exactly the case when the market is of bounded variance as specified in Definition
1.5, i.e.

vlo(t)r = 2TE)E(t) w < M||z||?, Vt€[0,00), v €R" and M € (0,00) const. (1.26)

In Fernholz and Karatzas [48], Equation 1.26 is also called the uniform boundedness con-
dition on the volatility structure of 913,

Remark 1.5: Dividends?* can be incorporated into the model by defining the measurable,
adapted dividend rate process 6 which satisfies:

/t |0(s)]ds < o0, t €]0,00) a.s. (1.27)

Hence for a given stock X; we can alternatively consider the total return process X, which
is defined as:

Xi(t) = X (¢) exp (/Ot 5(s)ds) . te0,00) as. (1.28)

Thus X represents the value of an investment in X with all dividends fully reinvested.

Any realistic model setup requires us to analyze portfolios w.r.t. a pre-defined benchmark
portfolio.

Definition 1.7: The notion of relative returns®® may be defined as follows.

o The relative return of X; versus a portfolio n is given by log (28)

28ee Fernholz and Karatzas [48], (1.16.).
24See Fernholz [44], Definition 1.1.9
258ee Fernholz [44], Section 1.2. and Fernholz and Karatzas [48], (1.19) - (1.21)
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1.1 Basic Concepts and Motivation

o 0in(t) = 2jy 100 (1) oy (t) 1= 2200, 25y mi()o (H)n;(1);

e The matriz valued relative covariance process T"(t) = ( ) 1<ij<n s given by:
TZ(t) = 0ij<t) —oin(l) — Um(t) + Unn( ). (1.29)
Definition 1.8: The market portfolio® p = (uy,. .., i) is defined by:
X;(t
plt) = 0 (1.30)

Xi(t)+ ...+ X, ()
ist value process is given by S(t) = X1(t) + ... + X, (t).

The market portfolio is the canonical benchmark for any other asset in the market. It
describes the development of the entire investment universe. The market weights p;(-)
represent the proportion of the market corresponding to the market capitalization of the
i-th stock. Analogously to Definition 1.7 the relative return process of two portfolios 7 and
n may be calculated as:

log (g;rg;) , t€]0,00). (1.31)

The following Proposition provides a useful result for the relative return process w.r.t. the
market portfolio.

Proposition 1.2: Let m € 9. Then the relative return process versus the market portfolio
s given by :

dlog (i:g;) = Z.ZI7TZ-(1§)allog/u(t) +75(t)dt, a.s. for t €]0,00). (1.32)

Proof: See [44]: One may combine the fact that log u;(t) = log(X;(t)/Z,(t)), t € [0,00)
with

dlog( z> ZW, )dlog(X;(t)/Z, (1)) + vi(t)dt, (1.33)

for two portfolios m and 7. Setting n = u, one obtains the result.

26See e.g. Fernholz and Karatzas [48], Section 2.
27See Fernholz [44], Proposition 1.2.5.

11



1.2 Market Behavior and Portfolio-Generation

The relative variance of a portfolio m with respect to a certain other portfolio n may be
calculated directly by?®
T (t) = ()" ()7 (t)". (1.34)

It clearly holds that the roles of m and 1 may be switched without changing their relative

variance, i.e. 7 (t) = 77 (t).

Now that the elementary properties of the stock market model have been outlined, in the
next section we will further investigate the behavior of markets and the construction of
portfolios therein.

1.2 Market Behavior and Portfolio-Generation

As in the previous section we will follow the model setup as outlined in Fernholz [44] or
Fernholz and Karatzas [48]. Similar concepts have also been employed and described in
Platen [86] and Platen and Heath [87]. We will now introduce the concepts of market
coherence and diversity which will play a central role in the following results.

1.2.1 Market Coherence

Definition 1.9: The market 9 is said to be coherent® if fori=1,....n
lim ¢~ 'log u;(t) = 0 a.s. (1.35)
t—r00

Hence a market is coherent if none of the stocks declines too rapidly.

The property of market coherence mandates that the market capitalization (i.e. market
weight) of any stock will not decline exponentially or faster. This gives rise to a set of
questions concerning the ability of the given model to capture default events. The default
of a company would result in its market capitalization declining to virtually zero. Yet
historical evidence suggests, that the market capitalization of defaulted companies will still
be positive albeit small, reflecting the liquidation value of the company after the creditors
have been satisfied. In a coherent market, it would be possible for a stock to vanish slowly.
Although this kind of behavior is certainly possible in a classical diffusion-based model, it
has to be remarked that a jump to default behavior taking place over a very short period
of time may not be accommodated in a coherent setup.

28See Fernholz [44], Section 1.2.
29G8ee Fernholz [44], Definition 2.1.1. and Fernholz and Karatzas [48], Remark 2.1.

12



1.2 Market Behavior and Portfolio-Generation

Proposition 1.3: Let 9 = {X;,..., X,,} be a market, then the following statements are
equivalent®:

i.) 9 is coherent.
. . . 1 T
i) Fori=1,....n limy o7 [; (7:(t) —7u(t))dt =0 a.s.

iii.) Fori,j=1,...,n limy o 7 fOT(%(t) —;(t)dt =0 a.s.

Proof: We are following the proof given in [44], showing that i.) = ii.) = iii.) = i.). Let
us suppose that 91 is coherent. Then Equation 1.35 states that for i =1,...,n:

1
lim T(log Xi(T)—1logZ,(T)) =0, a.s.

T—o00

-~

=log(ui (1))

According to the results stated in Remark 1.4 it holds that

1 ’
Tlgr;of <log Z,(T) —/0 vu(t)dt) =0, a.s., (1.36)
and
1 T
lim — (logXZ-(T) —/ ’yi(t)dt) =0, a.s., (1.37)
T—oo T 0

hence using the triangle inequality 3! one obtains:
. 1 T T
lim7 o0 (fo ~i(t)dt — fo Wu(t)dt> =
limy_ o0 5 <log Xi(T) —log Z,(T) —log Xi(T) + fOT v (t)dt +log Z,(T) — fOT %(t)dt> <
limy- e & (log X(T) = log Z,(T)) + limgoc + ( f; 7:(t)dt — log X,(T)) +

limy_ oo & (log Z,(T) — [T fyﬂ(t)dt) —0 as.

Conversely, it also holds that:

30See Fernholz [44], Proposition 2.1.2.
31See e.g. Fischer [53], Section 5.1.2.
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1.2 Market Behavior and Portfolio-Generation

0 = limy_yo0 = (log X;(T') — log Z,(T)) < limy_o0 5 (fOT ~i(t)dt — fOT 'yu(t)dt> +

o g 1 '
lim T <10gX¢(T) —/0 %‘(t)dt> +Tlglgof (—log 2,(T) +/0 %(t)dt)v

T—o0
N

' g

—0 —0
T— o0 T— o0

and hence condition ii.) (see also [44]).

Condition iii.) may be obtained directly from condition ii.):

IN

limy o ( ST () = (t)dt>

%EEO% (/OT Vi(t) — w(t)dt) +Tliglgo% (/OT Vu(t) — %(t)dt) =0,

7 . J/

Vv vV
—0 —0
T— o0 T—oc0

and further:
limg o, & ( Syt = (t)dt> >

1 r o1 r
A (/0 Yilt)dt — long-(T)) + lim (long(T) —/O w(t)dt) =0;
—‘:0 :>0
T— 00 T— o0

again using the triangle inequality [53| and Equation 1.37, hence one obtains:

Now, let us suppose that iii.) holds. Equation 1.37 and condition iii.) imply that there is
a subset ' C Q with P(Q') =1 s.t. for w € Q"

1 T
lim + (logXi(T, W) — / %(t,w)dt> 0, (1.38)
T—oo T 0
and
17
Jim 7 [ Outt) =yttt =0 (1.39)
fori,j=1,...,n.

Choose w € . Then Equations 1.38 and 1.39 with j = 1 imply that for all :

14



1.2 Market Behavior and Portfolio-Generation

1 T
lim T (logXi(T,w) —/ Vl(t,w)dt> =0.
0

T—o0

Hence, for:=1,...,n,

1 T
lim — | max (log X;(T,w)) —/ vl(t,w)dt> =0,
0

T—oo T’ <1§i§n

which is equivalent to

1 T
lim T <log(rnax Xi(T,w)) —/ vl(t,w)dt) =0,
0

T—oo 1<i<n

fori=1,...,n. Now, for t € [0, c0),

Xi(t,w) < Xq(t,w) + ...+ X, (t,w) < n max X;(t,w),

1<i<n

:Z;Zt,w)
hence, for ¢ € [0, 00),
log X1 ((t,w) <log Z,,(t,w) < logn + log(lrgaix Xi(t,w)).

Since

li 11 =0
Tooo T 8T

it follows from Equations 1.40, 1.41 and 1.42 that:

1 ’
7151;10? (logZM(T,w) —/0 vl(t,w)dt> = 0.

Through 1.40 and 1.43 one obtains

o1
Tlgr;o T(logXi(T,w) —log Z,(T,w)) = 0.

This holds for any w € 2, thus 9 is coherent.

(1.40)

(1.41)

(1.42)

(1.43)

15



1.2 Market Behavior and Portfolio-Generation

The concept of market coherence may further be used to prove the fairly remarkable result
stated below.

Proposition 1.4: 32 Suppose that the market 9 is nondegenerate and coherent, and that
7 1S a portfolio with constant weights, at least two of which are nonnegative. Then:

1 Z(T
li%ri)icgf T log (Z:ET§> >0, a.s. (1.44)

Proof: For the proof we refer to Fernholz [44]|. The proof utilizes the coherence and non-
degeneracy (ellipticity) of 9t as well as several auxiliary Lemmata. O

According to Proposition 1.4 any constantly weighted portfolio satisfying the specified
criteria in a coherent market will outperform the market portfolio as T" — oo. This is
a remarkable result which is especially astonishing considering its generality. The proof
depends on the coherence of the market, hence in a non-coherent market it is not possible
to maintain the result in this generality.

1.2.2 Market Diversity

Definition 1.10: The market M is diverse3® if there exists a 6 > 0 s.t.:
Pmaz(t) <1 =46, t €[0,00) a.s. (1.45)
M is weakly diverse on [0,T)] if there exists a § > 0 s.t.:

1 /T
—/ fomaz(D)dt <1 =46 a.s. (1.46)
0

T
Proposition 1.5: 3 Let 9 be a non-degenerate and diverse market, then there exists
some & > 0 such that the excess growth rate of the market portfolio may be bounded from
below.
Y,(t) >0, t€[0,00). (1.47)

328ee Fernholz, [44], Proposition 2.1.9.
33See Fernholz [44], Definition 2.2.1, Fernholz and Karatzas [48], Section 5., Fernholz, Karatzas and
Kardaras [51], Section 4; the concept of market diversity is introduced in Fernholz [43] together with some

of the results also given in [44].
34Gee Fernholz [44], Proposition 2.2.2.
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1.2 Market Behavior and Portfolio-Generation

Proof: We follow the proof as given in Fernholz [44]. Since 90 is non-degenerate and
diverse, there exists a 0 > 0 such that

Pmaz(t) <1 =10, forallt € [0,00), a.s.
Furthermore, by the non-degeneracy of 9, Lemma 2.1.7. in Fernholz [44] implies that
Vi (t) > €(1 = punaa(t))?, forallt € [0,00), a.s.

By these two notions, one directly obtains (1.47). O

The diversity of a stock market may be discussed using classical measures for the disorder
of systems. One approach outlined in Fernholz [44] is to use the entropy®® function as
a canonical measure for market diversity. The entropy function (aka. Shannon entropy)

3

was introduced by Shannon®® in 1948 to measure the uniformity of the distribution of

signal transmission probabilities. The properties of the entropy function render it an ideal
candidate both to make statements about the dispersion of market weights and to approach
our core topic of functional generation of portfolios. The entropy function is given by:

S(z) =— Z x;log x;, (1.48)
i=1

foralze A"={zeR":x1+...4+2,=10<z;<li=1,...,n}.

Definition 1.11: Let u be the market portfolio, then the market entropy® process S(u) is
defined by:

S((®) = = > ui(®)log(u(0). ¢ € 0.7, (1.49)

S(u(+)) is a continuous semimartingale and 0 < S(u(t)) <logn for all t € [0,T] a.s.

Proposition 1.6: The market M is diverse if and only if there is an € > 0 s.t.8:
S(u(t)) >€ te€[0,T] a.s. (1.50)

Proof: The idea of the proof given in [43] and [44] depends on the continuity of S on the

closure of A"™:

AN ={zecR":zy+.. . 4+2,=10<z;<1,i=1,...,n}.

35Gee Fernholz [44], Section 2.3.

36See Shannon [92], Theorem 2.

37See Fernholz [43], Definition 4.1 or [44], Definition 2.3.1.
38See Fernholz [43], Proposition 4.1. or [44], Proposition 2.3.2.
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1.2 Market Behavior and Portfolio-Generation

The function S is nonnegative on the compact set A", and S(z) = 0 only on the vertices.

If a neighborhood of the vertices in A" is deleted, then S is bounded away from 0 on the
rest of A"

]

The market entropy function may be used directly to build a portfolio 7 which also has
some fairly remarkable properties relative to the market portfolio. We will introduce the
entropy-weighted portfolio at this point and revisit it in Example 1.1. We shall call the
portfolio 7 entropy-weighted portfolio® if its portfolio weights are given by:

oy —ha(t) log i (t)
0= 5 00)

It is straightforward to see that > . | m;(t) = 1 and furthermore that the 7; are bounded if
the market is diverse. This holds since the numerator of (1.51) is bounded from above by

, t€[0,T]. (1.51)

e~ which is the maximum of the function f(z) = —rlogz and the denominator of (1.51)
is bounded from below by some e¢ > 0 if the market is diverse according to Proposition
1.6. Moreover it is noteworthy that the ratio m;(t)/u;(t) is decreasing in p;(t), hence the
entropy-weighted portfolio overweighs small cap stocks and underweighs large cap stocks
relative to the market. By using a technical result*® provided in Fernholz [44] one obtains
that the following limit vanishes:

lim l/O (%(t) —y(t) — SZZ((i)))) dt =0, a.s. (1.52)

Thus according to Equation 1.52 the average growth rate of the entropy-weighted portfolio

v will be larger than the average growth rate of the market portfolio v, as T' — oo,
provided that the market is diverse. In fact an even stronger result is stated as a Corollary
in Fernholz [44] which we shall restate as a Lemma at this point.

Lemma 1.1: ! Let u be the market portfolio and w be the entropy-weighted portfolio in a
diverse and non-degenerate (elliptic) market 9. Then for a sufficiently large number T':

, Q.S. (1.53)

39See Fernholz [44], Definition 2.3.3.
40See Fernholz [44], Theorem 2.3.4.
41See Fernholz [44], Corollary 2.3.5.
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1.2 Market Behavior and Portfolio-Generation

Proof: The proof in [44] uses the technical result mentioned before®?. By this result one

s (1) = os(Zi) e (Sm )+ stear®
e (2D T6,
©8 (ZN(O) ) + log51 logn

J/

obtains:

—
*
~

This holds because:

o S(u(T)) > 6, by Proposition 1.6.
o S(u(t)) <logn by the definition of the entropy function, t € [0, T.

o 7i(t) = 92 by Inequality 1.47.

We are looking for a bound 7" after which the entropy-weighted portfolio outperforms the
market, hence we want (%) to be positive. By this one obtains the desired lower bound on
the time T

T > 5 logn (loglogn — log d1) . (1.54)
2

]

The essential question raised by Lemma 1.1 clearly is how large this time bound 7' is going
to be, a result which may be obtained directly from Inequality 1.54. From the proof of
Inequality 1.47 given in Fernholz*® one obtains that d, = €6 whereby e is the lower bound
on the smallest eigenvalue of o as mandated by the non-degeneracy of 9t and § > 0 is the
bound used in Definition 1.10 for market diversity. The value for n is clearly given by the
number of stocks in the market which is known. So the only remaining question is to find
a suitable §; > 0 as lower bound for the market entropy.

We will assess the behavior of the entropy on the closure of the simplex A" = {z €
RY> 2 =1,0<ux <1;i=1,...,n} in a diverse market 9. If we consider the
entropy function in two dimensions it can be seen, that the highest degree of concentration
(i.e. the lowest values for S will be obtained for x =1 — § and y = 0.

42See Fernholz [44], Theorem 2.3.4. This Theorem states that for the market portfolio and the entropy
portfolio it holds a.s. for t € [0,T] that: dlog S(u(t)) = dlog(Z=/Z,.(t)) — SA(/Z((?))dt
43See Fernholz [44], Proof of Proposition 2.2.2.
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1.2 Market Behavior and Portfolio-Generation

Hence the portfolio entropy in this case would be:
S(z,y) = —dlogd — (1 —d)log(1l — ) > —dlogd.

Since both terms in the above equation are positive and —(1 — §) log(1 — ¢) will be small
for small 6 we may discard this term and the inequality is actually strict. Hence the idea
is to use:

S(u(t)) > —dlogd = 6;. (1.55)

We have seen that this works in two dimensions, thus we shall use an induction®* argument
in order to extend this notion to n dimensions. Let us suppose that (1.55) holds for
n — 1 dimensions. We are only interested in those points where the highest amount of
concentration is observed, i.e. where puy =1 — 9, gy = and p; = 0 for all ¢ # k,[. Hence
one may distinguish the following cases:

(i.) pn = 0: hence the n-dimensional entropy function S, (p1,. .., tin—1,0) is equal to the
n—1-dimensional entropy S,,_1 (g1, - . ., ftn—1) by the definition of the entropy function
and lim, .o —zlogx = 0.

(ii.) p, =1—06 and p,, = J: in this case we can exploit the fact that the entropy function
is symmetric under re-ordering of the components of the vector u; hence we may
simply reorder p in a way that the n-th component is again 0 and reduce this case
to the one stated in (i.).

Consequently we will use the bound §; = —dlogd for § > 0 is determined by the degree of
requested market diversity. The nature of the numbers involved in Inequality 1.54 suggest,
that the resulting time 7" will be fairly large. Figure 1.1 illustrates the behavior of the
timebound depending on § in a market consisting of n = 4 stocks in which the smallest
eigenvalue of the covariance matrix is of order 1075,

44Gee e.g. Walter [100], Section A.2.2.
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Entropy Time Bound

Time (yrs)
6e+04 8e+04 1le+05
| | |

4e+04
|

2e+04
|

Oe+00
|

0.2 0.4 0.6 0.8 1.0

Delta

Figure 1.1: Timebound of the Entropy-Weighted Portfolio dependant on ¢ (Yrs.).

It is evident that the obtained finite time bound is immensely large since it is dominated
by the term 1/d2, and in fact for most values of § the time bound is in excess of 2000
years. Nonetheless other simulations indicate, that the entropy-weighted portfolio is still
an attractive investment alternative relative to the market portfolio. In Figure 1.2 we show
the relative returns of the entropy-weighted portfolio versus the market portfolio for 5000
simulated paths with investment horizon one year (i.e. 250 trading days). We see that in
slightly more than half of the simulations, the entropy-weighted portfolio outperforms the
market with - at least partly - handsome returns.
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|
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Figure 1.2: Relative Returns of the Entropy-Weighted Portfolio vs. the Market.

The concept of utilizing the entropy function for the generation of portfolios will be dis-
cussed in further detail in the following Section 1.2.3 together with some practical examples.

1.2.3 Functionally Generated Portfolios

The central idea which will be presented in this section is to use certain, real-valued func-
tions on A"(or Zn) to generate portfolios. Through the tool of portfolio-generating func-
tions it is possible to mathematically formulate various patterns of investment strategies
which can also be found in the classical, discretionary investment process. Hence, what
renders the concept of functionally-generated portfolios so attractive is the fact, that it
permits us to formalize and quantify many investment concepts. The entropy-weighted
portfolio (see also Example 1.1) and its behavior w.r.t. the market portfolio is discussed
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1.2 Market Behavior and Portfolio-Generation

in some detail in [43|. Portfolio-generating functions are comprehensively covered in [44]
and [48].

Definition 1.12: ¥ Let S be a positive continuous function on A" and let w be a portfolio.
Then S generates w if there exists a measurable process of bounded variation © s.t.:

log g:gg =log S(u(t)) +O©(t), t€0,T]. (1.56)

gzgg and log S(u(t)) are

continuous and adapted, hence © is continuous and adapted. Since © is of bounded vari-

The process O is the drift process corresponding to S. Since log

ation, log S(u) is a continuous semi-martingale, as a consequence one can write Equation
1.56 in differential form as:

dlog (228) = dlog S(u(t)) +dO(t), t €1[0,T). (1.57)

Example 1.1: The entropy-weighted portfolio®® is given via the generating function:

S(z) = — le log x;.
i=1

The entropy-weighted portfolio has the portfolio weights:

0]
The drift process satisfies:
75(t)
dO(t) = S(u(t))dt'

The growth rates of 7, p are related to the drift process © by the relation stated in the
Proposition below.

45See Fernholz [44], Definition 3.1.1. or Fernholz and Karatzas [48], Section 11.
46See Fernholz [43], Section 2.3. and [44], Example 3.1.2.
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Proposition 1.7: Let S generate portfolio m with drift © and suppose that*":

tlim %log S(u(t)) =0 a.s. (1.58)
Then
1 T T
lim ~ (/ %(t)dt—/ (D)t — @(T)) ~0 as. (1.59)
T—oo T’ 0 0

Proof: From Equation 1.56 one obtains [44]: log S(u(T")) +©(T) = log Z.(T') — log Z,.(T),
thus through Equation 1.15 in Proposition 1.1 we obtain the following representation:

log S(u(T)) + O(T) = [ (1.(6) = (et + / S (mut) — ()6 (DWW, (1), (1.60)

i,v=1

If we apply limp_,o, 7! to both sides of Equation 1.60, log S(u(7T')) vanishes by Equation
1.58 and so does the second integral on the right hand side*®. This yields the result stated
above.

]

Theorem 1.1: Let S be a positive C? function defined on a neighborhood U of A™ s.t. for
alli =1,...,n xla log S(x) is bounded on A™. Then S generates the portfolio © with
weights® :

mit) = ( o loE Sl Zug 5 loa Sl <>>> palt), (161)

fort€[0,T] andi=1,...,n and with a dmft process © s.t. a.s. fort € [0,T):

-1 " 92
25(pu(t)) 52 Onidp;

47See Fernholz [44], Proposition 3.1.3.

48See Fernholz [44], Lemma 1.3.2.: if M is a continuous local martingale s.t. lim;_,o, t~2(M);loglogt = 0
a.s., then it holds that lim; ,., t "M (t) = 0 a.s.

49Gee Fernholz [44], Theorem 3.1.5 and Fernholz and Karatzas [48], Section 11.

a6 (1) = S(1(t))a (D) (1) (1) (1.62)
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1.2 Market Behavior and Portfolio-Generation

Proof: A proof for this theorem can e.g. be found in [44].

]

In the central theorem stated above, we consider generating functions living on an open
neighborhood of A™, U C R, and S € C2.

N.b.: The weights m; only depend on the market weights u;, the covariance structure en-
ters only in the relative covariance term 7;;(¢) in the expression for dO(t).

Example 1.2: Price-to-Book Ratio™

Let b; > 0 be the book value of the i-th company, b; constant. Then the price-to-book ratio

at timet is Xé(t). In Fernholz [44] this ratio is substituted by “Z—(t) which shows a comparable
behavior and is more amenable to analysis under the introduced framework.
This ratio distinguishes growth stocks from wvalue stocks. The weighted average PtB ratio

s given by:
Z“’b—()a te0,T]
=1

The function:

generates m with weights:

mi(t) = ) t€10,7].

- biS(u(t)

Relative to the market, the portfolio m overweighs growth stocks and underweighs value
stocks. The drift process follows :

dO(t) = —i(t), t € 1[0,T].

Generating functions may also be combined as follows [44]: Let Sq,...,Sy generate port-
folios 7y, ..., respectively. Then for constants py, ..., pg such that p; + ...+ pr = 1 the
function:

S =Shghe... g (1.63)

50See Fernholz [44], Example 3.1.10
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1.2 Market Behavior and Portfolio-Generation

generates a portfolio with weights:

T =Py + .+ DTy, 2=1,...,m, (1.64)

whereby 7y,; gives the weight of the i-th stock z; in the h-th portfolio 7.

Definition 1.13: A positive C? function defined on an open neighborhood of A™ is a
measure of diversity®! if it is symmetric and concave. A portfolio generated by a measure
of diversity is called a diversity-weighted portfolio.

The following functions are (among others) used to create portfolios in [44] where various
simulation results are outlined. In order to examine the quality of results in a real world
setting, we examined some generating function when applied to the real development of
stocks. As market we use the universe of the MSCI European Monetary Union (EMU)
equity index and we consider the movements of the featured stocks between August 2006
and September 2007. N.b. in the following plots, portfolio generating functions are applied
to real time-series data and not to paths simulated via the It6 decomposition given in (1.1).

1. Entropy Function S(z) = —>""" | x;logz;.

2. For 0 < p<1llet Dy(z)= (>, aP)'/P This generates a portfolio 7 with: 7;(t) =
(D:(a%’ t €[0,T) fori =1,...,n; for p — 1, m approaches the market portfolio.

The (increasing) drift process is given by dO(t) = (1 — p)yi(t)dt, t € [0,T].
3. A 'normalized’ version of D, is given by D,(z) = (n?~' 327, xf)l/p.

The charts shown in Figure 1.3 illustrate the performance of portfolios generated by D,
with parameters p = 0.2,0.4,0.6 and 0.8 versus the market portfolio (black).

51See Fernholz [44], Definition 3.4.1.
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1.2 Market Behavior and Portfolio-Generation
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Figure 1.3: Diversity-Weighted Portfolios vs. Market.

Figure 1.3 illustrates, how the D,-generated portfolios converge towards the market portfo-
lio as p — 1. By means of this strategy one may construct portfolios which are overweighted
in small cap stocks and underweighted in large cap stocks to an extent which is predefined
by the parameter p. The merits and drawbacks of this approach are quite evident. Small
cap stocks tend to outperform large caps in certain, exceptionally bullish market condi-
tions, however this chance is generally coupled with higher volatility and downside risks.
Furthermore, the relative outperformance of small cap stocks versus large cap stocks partly
reflects the higher market liquidity risk which a small cap investment bears. The implied
liquidity premium for equities has been analyzed in some detail in Fernholz and Karatzas
[47]. This effect is illustrated quite well by the utilized data set which comprises pre-crisis
market data from 2006 as well as data from Autumn 2007 when some stress at least in
niches of the financial market was already observable. This period in the data set cor-
responds to the rightmost part of the charts in Figure 1.3, when the diversity-weighted
portfolios start to underperform the market.

A similar pattern can be observed in the behavior of the entropy-weighted portfolio versus
the market. This little example illustrates one of the most attractive features of stochastic
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1.3 Relative Arbitrage and Dominating Portfolios

portfolio theory, namely that it is possible to obtain portfolio weights and investment deci-
sions based on clearly defined rules without having to undergo any optimization routines.
The fact that at least some of the portfolio generating functions presented in Fernholz [44]
have been successfully applied to construct institutional investment products underlines
the merits of this approach. Another attractive feature of the theoretic framework devel-
oped by Fernholz and Karatzas® is the possibility to mathematically formalize classical
investment approaches like for instance taking decisions based on the price-to-book ratio as
outlined in Example 1.2, thus rendering these portfolio strategies amenable to mathemat-
ical analysis. In Chapters 4 and 5 we will add to these results some further considerations
from the perspective of risk management and related applications.

1.175
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Figure 1.4: Chart and Rel. Returns of Entropy vs. Market.

1.3 Relative Arbitrage and Dominating Portfolios

1.3.1 Dominating Portfolios and Relative Arbitrage Opportunities

One of the most remarkable aspects of the model outlined in Sections 1.1 and 1.2 is the
existence of arbitrage under certain circumstances. For a detailed discussion of the math-
ematical foundations and concepts of arbitrage we refer to the seminal works of Delbaen
and Schachermayer, e.g. [28], [29], [30] or [31].

In our semimartingale model for the equity market it is possible to construct relative arbi-
trage opportunities in the sense of dominating portfolios. For the following considerations

521n this vein we particularly refer to [43], [44], [46], [47], [48], [49], [50].
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1.3 Relative Arbitrage and Dominating Portfolios

it will be necessary to impose some restrictions on equity portfolios as defined in Definition
1.6 (see e.g. [44], [51]).

Definition 1.14: A portfolio m is called admissible®® if:

1. m(t) >0, te€[0,T] for i=1,...,n.

2.4 ¢>0 s.t.

~

Zo(t)) Z:(0) > ¢Z,(t)/ Z,(0), t €[0,T] a.s.
3. dM st fori=1,...,n

mi(t) /i (t) < M, t €[0,T] a.s.

The three conditions stated in Definition 1.14 ensure that short sales are prohibited (1),
furthermore that negative performance versus the market portfolio as numéraire is limited
(2) and lastly that arbitrary overweighting of one single stock vs. the market is prohibited
(3) (see [44]). In the next step we will define domination of one portfolio vs. another.

Definition 1.15: Given two portfolios n and w, we say that n dominates™ m in the time
interval [0, T if:

Zy(T) ) Zy(0) > Zo(T)/ Z(0) a.s. (1.65)
and
2 [Z](T) 12,(0) > Z(T)/ Z+(0)] > 0. (1.66)
If
Zy(T) ) Z,(0) > Zn(T)/ Z(0) a.s., (1.67)

then n strictly dominates .

Alternatively, in the above setup one may call 1 a relative arbitrage opportunity with re-
spect to 7 if the notions (1.65) and (1.66) prevail and a strict relative arbitrage opportunity
in the case of (1.67).%° Furthermore, in Fernholz and Karatzas [49] the notion of a portfolio

53See Fernholz [44], Definition 3.3.1.
51See Fernholz [44], Definition 3.3.2.
55See Fernholz and Karatzas [49], Section 6. or [46], Definition 2.1.
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1.3 Relative Arbitrage and Dominating Portfolios

71 constituting a superior long-term growth opportunity relative to 7 is introduced, namely
that:5°

1 Z,(T)
L, :=liminf —log [ ="~ | > 0 a.s. 1.68
7, Pt s g <ZW(T)> ( )

Now it is intuitively clear that the existence of two admissible portfolios n and 7, where
n strictly dominates 7 yields an arbitrage opportunity [44]. We can start by investing 1 $
in portfolio n at time 0 and by short-selling 1 $ in portfolio 7. At time 7" the value of our
investment is as follows. The value of the long leg of this strategy is given by:

A A

v = 2,(T)/2,(0). (1.69)

On the other hand, due to our short position in m we owe

vs = Z:(T) ] Z(0). (1.70)

At time T, it holds with positive probability that vy, > vg. Hence, starting with initial
wealth 0 through this strategy one can obtain a terminal wealth > 0 with positive proba-
bility. Consequently the strategy sketched above constitutes an arbitrage opportunity (see
[44]).

In a market 99t which is defined as above and thereby permitting certain forms of arbitrage
one may further obtain the following results. Let us therefore consider the market price of
risk process 6 : [0,00) x 2 — R" which is given by®’

0(t) = Ht)a(t), VO <t < Tand /T 10(1)]|?dt < oo a.s. (1.71)

By means of 6(-) one may now define the following process H(-) as®®

H(t) := exp (— /Ot o7 (5)dW (s) — %/Ot ||9(s)||2ds) L0<t< oo, (1.72)

%6See Fernholz and Karatzas [49], Definition 6.1.

57TSee e.g. Karatzas and Shreve [67], Theorem 1.4.2. N.b. that in Equation 1.71 we only use the
rate of return process «(-), assuming zero dividend- and interest rate. The market price of risk in a
general setup considering a non-zero dividend rate 6(-) and risk-free interest rate r(-) is given by 0(t) =
E7Ht) (a(t) + 6(t) — r(t)1), where 1 is the vector with every entry equal to one.

8See e.g. Karatzas and Shreve [67], Definition 1.5.1.
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1.3 Relative Arbitrage and Dominating Portfolios

as well as the shifted Brownian Motion W (-):»
t
W(t) :==W(t) +/ 0(s)ds, 0 <t < o0. (1.73)
0

H(-) is an exponential local martingale and a supermartingale, a martingale if and only
if E(H(t)) = 1.°0 In the case that the market 9 is of bounded variance and that there
exists a relative arbitrage opportunity for two portfolios on a certain time horizon [0, 7],
then the process H(-) is a strict local martingale, F(H(T)) < 1.' Furthermore, in this
context, no equivalent martingale measure can exist in the market 91 if we use the canonical
filtration.%?

By straightforward calculation, one obtains that

HOXO = XOen| [ a6 dsr [ S eane

=ai(s) =5 201 €5, (5)

em<‘/WYMW ——/HeudQ
- exp< / £ ()W, () — = / 6, (s))% )
- xmmw( Aom>ﬁwv ——/Hm r@)

where the v component of &;(+) is given by r;,(t) = 0,(t) — &, (t) for v = 1,...,n and
0 <t < oo. Each H(-)X;(-) is also a local martingale and a supermartingale.®®

In Fernholz and Karatzas [46], the authors also retrieve sufficient conditions for relative
arbitrage opportunities, which we will re-state in the following Propositions.
Proposition 1.8: 6

Let T : [0,00) — [0, 00) be continuous and strictly increasing with I'(0) = 0 and I'(co0) = oo.

Let furthermore the following condition with respect to the excess growth rate of the market
Y,:(+) hold almost surely

t
() < / Y (8)ds < oo, V0O <t < oo. (1.74)
0

"See e.g. Fernholz and Karatzas [49], Section 6.1.
60See e.g. Fernholz and Karatzas [46], Section 2.1. or [49], Section 6.1.
61See Fernholz and Karatzas [49], Proposition 6.1.
62See Fernholz and Karatzas [49], Proposition 6.2.
63See e.g. Fernholz and Karatzas [46], Section 2.1.
64See Fernholz and Karatzas [46], Proposition 3.1.
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1.3 Relative Arbitrage and Dominating Portfolios

Further, let S(x) = — Y"1 x;logx; be the entropy function as specified in Example 1.1.
Then for any investment horizon [0, T satisfying:

L1 (S(u(0)) =T* < T < oo, (1.75)

there exists a sufficiently large 0 < ¢ € R, such that the modified entropy-weighted portfolio
giwen by the portfolio rule

cpi(t) — pa(t) log pi(t)

mi(t) = ~ , i=1,...,n, (1.76)
c— Zj:l 1 (t) log p15(t)
constitutes an arbitrage opportunity relative to p with:
P Z.(T)>Z,T) =1 (1.77)

Proof: For the proof we refer to Fernholz and Karatzas [46|, proof of Proposition 3.1. [

Hence, by Proposition 1.8 one obtains a method to construct a relative arbitrage strategy
with respect to the market portfolio for the standard market 9t. However, this almost sure
outperformance comes at the price of a necessary investment horizon which is required to
realize it. We will discuss this aspect further in the following Section 1.3.2, where we will
see that the required time horizon may become fairly large. Furthermore, on may obtain
the following result for the exponential local martingale H(-).

Proposition 1.9: % Let condition (1.74) hold, together with the conditions on the market
price of risk process given in (1.71). Let furthermore

/0 Z <|ai(s)| + Zﬁi(s)) ds < 00, a.s., t € (0,00). (1.78)

Suppose that in addition to that for every T > 0 there exists a real-valued constant Kp > 0,
S.t.:

/0 ph(s)o(s)p(s)ds = i Z (Zui(s)fiy(s)> ds < Kr, a.s. (1.79)

Then the exponential local martingale H(-) defined in Equation 1.72 is strict.

Proof: For the proof we refer to Fernholz and Karatzas [46], proof of Proposition 3.4. [

65See Fernholz and Karatzas [46], Proposition 3.4.
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1.3 Relative Arbitrage and Dominating Portfolios

It is worth noting, that in Fernholz and Karatzas [46] a concrete choice for the func-
tion T'(¢) is given in the case that the market 9t is non-degenerate and weakly diverse,
which leads to T'(t) = 4t where ¥ = (¢§)/2 %, ¢ and ¢ stemming from the ellipticity and
diversity assumptions respectively, which illustrates that the investment horizon needed
for realizing the arbitrage opportunity will usually be rather large since it is specified by
=L (S(u(0) =T* < T < cc.

1.3.2 Implementation of Relative Arbitrage Strategies

The construction of admissible, market-dominating portfolios is discussed in some detail
in [44], [48], [49] and [51]. Consequently we will only outline some ideas in a very succinct
way and refer to the cited papers for further details.

Example 1.3: 7

Let M be a non-degenerate, weakly diverse market in [0,T] without dividends and let S be
a generating function.

The portfolio generated through S possesses the following weights and drift process:

= (2= N i1
Wz(t)_(S(,u(t)) 1) wi(t), 1,...,n.

a8 (1) = Wlw AOROLE

It can be shown that 7 is admissible and strictly dominates the market portfolio (see [44])
on a sufficiently long time horizon T'. More precisely, it is shown, that:

2nlog 2

T >
€02

(1.80)

66See Fernholz and Karatzas [46], Remark 3.2.
67See Fernholz [44], Example 3.3.3.
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1.3 Relative Arbitrage and Dominating Portfolios

It is quite evident, that the constraint on the time horizon T needed to realize the above
arbitrage opportunity as it is given in Equation 1.80 will lead to fairly large values for 7. For
an exemplary market with n = 4 stocks, and the smallest eigenvalue of order 10~° we obtain
a similar chart as in Figure 1.1. The best values for T" as given in Inequality 1.80 which
we obtain are in excess of 2200 years. N.b. that this is the result for a highly simplified
example for a market which only consists of four stocks and will be correspondingly larger
in a realistic market setup.

Time Bound
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Figure 1.5: Timebound (1.80) dependant on § (Yrs.).

Therefore it is fair to conclude that the arbitrage opportunity as constructed in Example 1.3
will not be available in everyday financial markets. Fernholz also concludes that "...perhaps

short-term arbitrage can be excluded even in a nondegenerate, weakly diverse market"%8. A

n p)l/p

similar result is given in [51] for the portfolio generated by D,(z) = (> ;_; 2! . Here,

68See Fernholz [44], Chapter 3, Remark, p. 60.
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1.3 Relative Arbitrage and Dominating Portfolios

the time horizon T necessary in order to have m dominating the market p has to fulfill
T> 22’%, which again is a fairly large number for reasonably small § and €%°.

Hence the crucial point is, whether relative arbitrage opportunities can be constructed
on arbitrarily small time horizons. This question is addressed in some detail in Fernholz,
Karatzas and Kardaras [51]. In markets where short-selling is permitted, i.e. where we
deviate from the constraints imposed on a portfolio by the admissibility conditions as given
in Definition 1.14, a somewhat reverse method to construct arbitrage opportunities is used
[51]. This technique is introduced in [51] under the name of Mirror Portfolios and is also
discussed in some detail in Fernholz and Karatzas [48] and [49].

Remark 1.6: It is worth noting that in the discussion of relative arbitrage in Fernholz,
Karatzas and Kardaras [51] a distinction between portfolios and extended portfolios
is being introduced. The difference between those two is that a portfolio 7 in the sense
of [51] consists only of nonnegative portfolio weights m; > 0 for all i = 1,...,n, whereas
an extended portfolio 7 only has to fulfill the condition ) , 7; = 1 together with the
conditions of uniform boundedness and measurability. This however corresponds to the
more general characterization of a portfolio in the sense of Fernholz [44] which is also the
one given in Definition 1.6. In order to avoid any confusion we will not use the notion of
extended portfolios but rather stick to the general definition of a portfolio which allows
short sales from the very beginning. In those cases, where nonnegativity of portfolio weights
is needed, it will be noted explicitly.

Any portfolio as specified in Definition 1.6 renders it possible to sell one or more stocks
short, but certainly not all of them. In the following considerations, we will use the market
portfolio p1 as numéraire.

Definition 1.16: For a portfolio © and p € R\{0}, let us define the p-mirror image™
of m w.r.t. pu as:

7PV () == pr(t) + (1 — p)u(t), t € [0,T]. (1.81)

If a portfolio 7 has only nonnegative portfolio weights this will also be the case for the
p-mirror image 7, provided that 0 < p < 1. Setting p = —1 one obtains ("1 (¢) =
2u(t) — m(t), the "mirror image" of 7 with respect to the market. Recalling the covariance
process 7 = {7/i(t) }1<ij<n the relative covariance of 7 w.r.t. u is given by the following
Equation™, as already stated in Equation 1.34:

69See Fernholz, Karatzas and Kardaras [51], Equation 4.5. and Appendix A.
"0See Fernholz, Karatzas and Kardaras [51], Equation 8.1.
"1See Fernholz [44], Equation 1.2.8. and Fernholz, Karatzas and Kardaras [51], Equation 8.3.
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The(t) 1= (m(t) — () o () (w(t) — p(t)) = ellm(t) — p(t)]]*. (1.82)

Through Equation 1.32 it is possible to derive that™:

log (ZZ’:()}T;) —p-log (2((?)) + p<12_p> /OTT#ﬂ(t)dt. (1.83)

N.b. that the last term in Equation 1.83 is non-negative due to 1.82. Furthermore one can

state the following Lemma [51].

Lemma 1.2: Suppose that the portfolio 7 satisfies the following conditions™:

P (gzg; > ﬂ) =1 or P (;:g; < %) =1, (1.84)
and
P (/OT T (t)dt > 77) =1, (1.85)

for B >0 and n > 0. There exists a portfolio 7w s.t.

P(Z+(T) < Z,(T)) = 1. (1.86)

Note that conditions 1.84 and 1.85 mandate, that 7« differs from the market portfolio, yet
not too much. Basically, these conditions are satisfied if ||7 — || r2(o,7) is bounded away
from zero a.s. (see [51]).

Proof: See [51]. Let P (gzg; < %) =1, then one can take p > 1+ (2/n) - log(1/53). Then

for # = 7#® it holds, that:

(58 [2)-

"See Fernholz, Karatzas and Kardaras [51], Equation 8.7.
"See Fernholz, Karatzas and Kardaras [51], Lemma 8.1.

N3

(1—p)| <0 a.s.
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In the case, that P (ZEQ > 6) = 1, one may take p < min(0,1 — (2/n) - log(1/3)). Then

from Equation 1.83 one can observe that « = 7#® satisfies:

log (5:5%) <p- {— log (%) n 3(1 —p)} <0 as.

]

Hence, Lemma 1.2 states that, under certain conditions, one may construct a portfolio in
a weakly diverse market, which a.s. underperforms the market. The idea used in [51] is,
that once one has such an underperforming portfolio, one may also construct a portfolio
which almost surely outperforms the market. We will give one example which can - among
others - be found in [51].

Example 1.4: ™

Let m = e; = (1,0,...,0)T, and let u be the market portfolio. Furthermore we consider
p > 1 where p also satisfies p > p(T) := 1+ ﬁ - log <u+(®> , €0 >0 (see [51]). In this

context we can define the portfolio 7w as follows:

7(t) == 7P (t) = pe; + (1 — p)u(t), 0<t < oco. (1.87)

Let us consider a strategy n which invests p/(u1(0))P currency units in the market portfolio
and —1 unit in 7 at time t = 0 and makes no change thereafter. The value Z, of this
strategy is given by (see [51]):

Zu(1)
(11(0))

Hence we are dealing with a portfolio n whose portfolio weights are given by:

Z,(t) = Zu1) — Za(1) = [p— (D)) >0, 0<t < ool

ni(t) = an(t) (ufo))z’ O 7O =7 - Ze)| s i=1,en (1.88)

In fact, n is an all-long portfolio [51]. In addition to that, 1 outperforms the market
portfolio a.s. at t =T with the same initial investment of ¢ := Z,(0) = p/(11(0))? —1 > 0.
This is the case, because 1 is long in the market portfolio and short in the portfolio ™ which
underperforms the market at timet =T a.s.:

Z,(T) = (M?O))pzﬂ(T) — Z:(T) > CZ,(T) a.s., from 1.86. (1.89)

"See Fernholz, Karatzas and Kardaras [51|, Example 8.1.
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It is worth noting, that the result outlined in Example 1.4 depends on the ellipticity of the
market 2. We will revisit this Example in Section 2.2 and discuss some limitations of this
approach. The fundamental question is, whether functionally generated arbitrage exists
on arbitrarily small time horizons. In the general setup for the equity market 9t which we
have employed so far, we have encountered substantial challenges in this respect. However
stronger results are possible, if the structure imposed on the market model is more specific.

This leads to more complex market models which we will briefly discuss in the following
Section 1.3.3.

1.3.3 Relative Arbitrage in Abstract Markets

The aim of this Section is to give a brief overview of the considerable efforts which have
been undertaken in the course of the past few years to address the problem of the time
horizon needed to realize arbitrage opportunities. The concept of stabilization by volatility
will also be put into the context of our work in Chapter 3.

Arbitrage by Change of Measure

One attempt to tackle the problem of constructing arbitrage opportunities on arbitrarily
short time horizons was undertaken by Osterrieder and Rheinldnder [81]. In their work, the
authors construct arbitrage opportunities by means of a non-equivalent change of measure.
It is worth noting, that this approach somehow deviates from the paradigms of the Fernholz-
Karatzas model which we have discussed so far, whose results do explicitly not depend on
any special properties imposed on the probability measure or for example the usage of an
equivalent martingale measure. The arbitrage opportunities considered by Osterrieder and
Rheinléander follow the notion of arbitrage as introduced by Delbaen and Schachermayer
in [29].

Definition 1.17: ™ Let us consider a semimartingale Y and a predictable process ® which
1s integrable with respect to Y. ® is admissible if the integral f ®dY is uniformly bounded
from below. The semimartingale Y is said to satisfy the no-arbitrage property for admissible
integrands under a probability measure P, if ® is admissible and:

/T O(s)dY(s) >0 P—a.s. = /T P(s)dY(s) =0 P —a.s. (1.90)

"5See Osterrieder and Rheinlinder [81], Definition 2.4.

38



1.3 Relative Arbitrage and Dominating Portfolios

Starting with the probability measure P°, let M(Y") be the set of all equivalent probability
measures such that the price process Y is a local martingale. Then one may impose the
following condition on the market:®

0 < inf P s mae(t) >1—6), 1.91

pant (OS?ETM (t) ) (1.91)

1 > P° ( SUD fhmaz(t) > 1 — 5) , (1.92)
0<t<T

where § € (0,1) is the bound stemming from the well known diversity condition which we
have introduced in Definition 1.10. In this setup one can now define a probability measure ()
which is absolutely continuous but not equivalent to P° via the Radon-Nikodym™" density:

dQ [0, if pae(t) > 16 for t € [0,T];
dpo

whereby ¢ € R is taken as a normalizing constant.”® Then, it is possible to prove the

1.93
c, else, ( )

following result.

Proposition 1.10: ™ Let Q be a probability measure which is absolutely continuous but
not equivalent with respect to P°. If the condition

dQ
sup P <— > O) <1 1.94
pem(y) \dP° (1.94)
holds, then there exists a Q-arbitrage opportunity which may be realized by means of an
admissible strategy.

Proof: For the proof we refer to Osterrieder and Rheinlédnder [81], proof of Proposition
2.8. O

This result, remarkable though it is, does not answer the questions raised in the context
of relative arbitrage. In the Fernholz-Karatzas model one is looking for a portfolio which
dominates the market or any other reasonable benchmark portfolio. This kind of rela-
tive arbitrage is not the one which is considered in the paper and the authors state that
"...although the sum of our arbitrage portfolio and the market portfolio dominates the mar-
ket portfolio, it is not necessarily bounded from below relative to the market portfolio as

numéraire .

"6See Osterrieder and Rheinlinder [81], Definition 2.3.

"See e.g. Rudin [90], Theorem 6.10.

"See Osterrieder and Rheinlinder [81], Definition 2.5.

™See Osterrieder and Rheinlinder [81], Proposition 2.8.
80See Osterrieder and Rheinlénder [81], Remark 2.10., p.292.
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Strong Relative Arbitrage on Arbitrary Time Horizons

Building on the results obtained by Fernholz and Karatzas in the context of volatility
stabilized markets (VSM)®!, Banner and D. Fernholz [14| constructed a setup in which
relative arbitrage may be realized over arbitrary time horizons. We will briefly sketch their
insights and conclude this topic by a brief discussion of the outlined results.

In their analysis, the authors investigate strong relative arbitrage opportunities of the
following form. Let 7, p be portfolios and consider a time horizon [ty,T]. Then 7 con-
stitutes a strong relative arbitrage opportunity relative to p, if there exists a constant
q = q(m, p,to, T) > 0, such that:*?

P (?TEQ > q) = 1 forallty <t <T and (1.95)
P(ZW(T)p> Z,(T)) = 1. (1.96)

Furthermore, one sets Z,(to) = Z,(ty) = z > 0. In the VSM, which will be discussed in
further detail in Chapter 4, relative arbitrage opportunities can be realized on fairly small
time horizons as set forth in Inequality (4.103). The aim of the work by Banner and D.
Fernholz is to strengthen this result and overcome the restrictions the VSM imposes on the
dynamics of the stock market. We will restate the central result from [14] in the following
Proposition 1.11.

Proposition 1.11: 8 Let M be a market where the dynamics of the individual stocks are
modeled via the semimartingale model specified in Equation 1.1:

1o X,(8) = ()it + 3 a0, (1)

v=1

Let further M satisfy the following condition for the relative variance (w.r.t. u(-)) of the
smallest stock T(nn(+):

T(n,n) (t) Z

V> 0, 1.97
fi(n) (t) (1.97)

where gy (t) = min{p(t), ..., ua(t)} is the market weight of the smallest stock and k > 0
constant. Then for any T > 0 there exists a strong relative arbitrage opportunity over the
investment horizon [0,T).

Proof: We will sketch the central ideas used in the proof of Banner and D. Fernholz and
refer to [14] for the detailed result.

81See Fernholz and Karatzas [46] and [49].
82See Banner and D. Fernholz [14], Section 2.
83See Banner and D. Fernholz [14], Proposition 1.
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1.3 Relative Arbitrage and Dominating Portfolios

Taking ¢ > 1 constant, the first step is to define a function f on [0, 1] by:

fly) =

{ Plet 1, —logy) = [0, e rédr, 0<y<1; (1.98)

0, y = 0.

Here T'(+,-) denotes the incomplete Gamma function® and we note that f is continuous.
Its first and second derivatives on (0, 1) are given by:

f'(y) = (=logy)® and f"(y) = _c(—lngy)c_l

The idea used in the proof is to define a portfolio generating function

S(zy,...,x Zf ) (1.99)

and apply Theorem 1.1 and the theory on portfolio generating functions as set out in
Fernholz [44], especially the following almost sure notion:®®

log (?8) =log S(u(t)) —log S(1(0)) + /0 Z P (aa) ()2 () ds.

p

(1.100)
It is shown in [14], that S(z) < nf(1/n) and S(z) > f(1). By applying these bounds to
Equation 1.100, one obtains:

o (407 ) = i) =10z (nf (1)) + [ @160, (1.101)
where:
S1(km (@) = log((n = 1) f () () + F(1 = (n = Dpw)(t))), (1.102)
01 (10 (5 — i) ()" (1) ( 1)) . (1.103)
" 2 (o () + (n — 1f (2))
By this it can be seen that Condition (1.95) is fulfilled with:
_ S
= (1.104)

It is then shown in [14], that ©;(-) is nonnegative and decreasing on (0,1/n). In the
following steps of the proof, a stopping time Ty is introduced together with a new portfolio

84See Abramowitz and Stegun [2], Section 6.5.
85See Fernholz [44], Definition 3.1.1. and Proof of Theorem 3.1.5.
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1.3 Relative Arbitrage and Dominating Portfolios

7(+) which is equal to the originally generated portfolio 7(-) up to the stopping time Tj
and equal to the market portfolio afterwards. It can then be shown that:

o (20 g (Z00) 22 To, (M) as (e

By this, Condition 1.96 is established and the proof is completed. Once again we refer to

Banner and D. Fernholz [14] for details and a closer discussion of the technical intricacies
of this proof. O

At first sight it seems, that the arbitrage opportunity obtained in this Section prevails
more or less in the general setup which we have outlined in Section 1.1. However, once
again we obtain the necessary overall stability of the market by imposing restrictions on
its (relative) variance structure. Condition 1.97 is also rather strong in the sense that it
may mandate the smallest stock in the market to have an extremely high relative variance
with respect to the market.

Further Developments in Stochastic Portfolio Theory

We will conclude Section 1.3 by briefly referring to further literature and ongoing work in
the field of stochastic portfolio theory, in order to give a complete overview of the literature.

In the context of relative arbitrage, D. Fernholz and Karatzas [50]| recently investigated
the optimal arbitrage in a Markovian model for the financial market, where they deal with
the question, what the smallest amount of initial capital is, starting with which one can
match or exceed the performance of the market.

A further extension to the concept of functionally generated relative arbitrage is due to
Strong [98] who recently investigated the performance of functionally generated portfolios
versus the market if the number of stocks is stochastic. In the case that the number of
stocks is growing due to breakups of companies and new entries to the market and that
no stock ever loses all of its capital, Strong [98] shows that the above mentioned arbitrage
opportunities as e.g. created by the entropy- or the D,-weighted portfolios relative to the
market are annihilated. In fact, it is even shown, that for the proposed generating functions
an arbitrarily large underperformance of the market may occur with positive probability.5¢

Another area which has enjoyed substantial attention in the past few years is the set of
questions linked to the dynamics of ranked market weights and the overall capital structure

86See Strong 98], Proposition 3.11. and Corollary 3.12.
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of the market. The general results together with the available literature as well as our ideas
will be discussed in Chapters 3 and 4.

This concludes our brief discussion of relative arbitrage in the Fernholz-Karatzas model.
For further examples and results we refer to Banner and D. Fernholz [14], Fernholz [44],
Fernholz and Karatzas [46], [49], Fernholz, Karatzas and Kardaras [51], Osterrieder and
Rheinlander [81], Strong [98] and Delbaen and Schachermayer [28], [29], [30] and [31].

1.4 Some Optimality Results

Apart from the framework of functionally generated portfolios, the modeling approach
outlined in the above sections may also be used to the ends of solving classical optimiza-
tion problems. These issues are covered to some extent in Fernholz [44] and Fernholz and
Karatzas [48|. For general results on the maximization of the logarithmic utility of the
portfolio value we refer to Karatzas and Shreve [67]. Furthermore these issues are compre-
hensively treated in Platen [85] and in Platen and Heath [87]|. At this point we will only
give a brief introduction to this topic and mainly focus on the construction of the growth-
optimal portfolio (see [48] or [87]). Further, we outline the result that the optimization of
the portfolio growth rate and the logarithmic utility lead to the same result®’.

The growth optimal portfolio (GOP) was first discussed by Kelly in 1956 [71]. Since then
the GOP has been applied in fields as diverse as gambling, optimization and derivatives
pricing. The GOP may be characterized as maximizing the logarithmic utility of terminal
wealth, i.e. the quantity E(log(Z,(T))) for T € [0, 00).

Let us consider the value process of a portfolio 7 as it is given in Equation 1.15:

dlog Z(t) = yx(t)dt + Y mi(t)&;u(H)dW, (1),

for t € [0,00) a.s., where:
Va(t) = Zm(t)%(t) + % <Z mi(t)ou(t) — Z 7Ti<t)ﬂ-j(t)0'ij<t)> :

87See Fernholz [44], Example 1.1.8.
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Then we may define the growth optimal portfolio in a general version which holds for any
continuous financial market model (see [85] or [87]):

Definition 1.18: In a continuous financial market a strictly positive portfolio process
Zp, = {Z..(t), t € [0,00)} is called a growth optimal portfolio (GOP)®, if for all
strictly positive portfolios n € 9N the growth rates satisfy the inequality:

Yo (£) > 7 (t), V t €]0,00) a.s. (1.106)

The optimization problem associated to the GOP can be formulated as follows®":

one 18
looking for a portfolio m,(-), such that for all t € [0, 00) the vector m,(t) maximizes with

probability 1 the expression

Z zivi(t) + % (Z mioa(t) = Y Y oy (t)a:j> = 2"a(t) - %xTJ(t)x (1.107)

i=1 j=1

over all vectors (z1, ..., x,) € R*with > | a; = 1. Werecall that a(t) = (o (t), ..., a,(t))
is the vector of the stocks’ rates of return which are defined as in Definition 1.3 by:

a;(t) = v(t) + % Z &, ().

Furthermore, the vector . (t) has to satisfy the first order condition? of this optimization
problem, i.e.:

(z —m()"(a(t) — o(t)m(t)) <0, for every vector (zy,...,r,) € R" with Z:lcZ =1
i=1

(1.108)

Then, for any portfolio 7 in a market 991 it holds almost surely, that the growth rates
satisfy the inequality®!:
() < . (1), ¥ € [0,00). (1.109)
88See Platen [85], Section 2.8. or Platen and Heath [87], Definition 10.2.1.
89See Fernholz and Karatzas [48], Problem 4.6.

98ee Fernholz and Karatzas [48], Problem 4.6.
91Gee Fernholz and Karatzas [48], Equation 4.3.
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If the property of the portfolio growth rate, which is formulated in Equation 1.24 in Remark
1.4 is satisfied, i.e. if Equation 1.25 holds, then

dlog ( ZZ ((tt))) = (4 (t) — 7pe (1)) dt + ; (O (t) — Tren (1)) AW, (1), (1.110)

where o, () = Y1, ()&, (t) for v = 1;...n, leads to the growth-optimality property®?:

. 1 Zx(t) >
lim sup = lo <0 a.s. 1.111

for every portfolio 7. If furthermore for some §-stopping time 7' it holds that

B ([ lotar) <o

then Equations 1.109 and 1.110 lead to the log-optimality property

E(log Z,(T)) < E(log Z.(T)), (1.112)
for every portfolio 7.

Remark 1.7: This result can be obtained directly by formulating the optimization problem
for the logarithmic utility as well. The general problem is also formulated in Fernholz®3.
The aim is to find the portfolio 7 which maximizes the objective function:

E (log Z,(t)), t €[0,00). (1.113)

Recalling the definition of the process {Z;}:>¢ as given in Equation 1.15, one obtains the
following expression for the objective function 1.113:

E (log Z(t)) = E (log Z(0)) + E ( /0 fy,r(s)ds> +E < /0 > Wi(s)§i7y(s)dWV(s)> .

i,v=1

(0)
(1.114)
The first term on the right hand side of Equation 1.114 is constant and the last term

on the right hand side vanishes as it is the expectation of an It6 integral by a Brownian

92See Fernholz and Karatzas [48], Equation 4.5.
93See Fernholz [44], Example 1.1.8.
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motion. Hence the above problem reduces to maximizing the expected portfolio growth
rate, thus illustrating that the questions of maximizing the expected growth rate and of
maximizing the logarithmic utility lead to the same optimization problem. One can now
insert the characterization of the portfolio growth rate which was outlined in Equation 1.16
in Proposition 1.1 into (<), thereby obtaining:

© =Bl (Z Tls(s) + 5 S mls)als) = 3 3 m(sm(s)om(s)) ds]
_ /O E |3 mls)uls) + % > mi()ls) - % > m(s)wj(@o—ij(s)] ds,
) (00) ’

where we can change the integrals by Fubini’s Theorem®®. Hence we seek to maximize the
term (<), which may be written in matrix / vector notation as follows:

1 1 1
(O0) = (v + §diag0)7rT — §7TTO'7T = anl — §7TTO'7T. (1.115)

In Equation 1.115 « is specified as in Definition 1.3. Taking the gradient of the right hand
side in Equation 1.115 and setting the whole expression equal to zero yields:

1
\Y (oer - §7TTU7T> —a—or=0. (1.116)

The matrix / vector notation used in Equation 1.116 may easily be verified by looking at
the component-wise result:

(00) = ailt) = 3 Y m(Bho(t) - 32m(Bow(t)

1#]

= a(t) - Z mj(t)ai; (t)-

am

948ee e.g. Rudin [90], Theorem 8.8.
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1

Hence, if the inverse of o, denoted by o' exists, then the log-optimal (and in fact also

growth-optimal) portfolio weights are given by:

™ =0 ta. (1.117)

Thus, for every stock 7 its corresponding weight in the log-optimal portfolio is given by
the fraction of the stock’s drift (i.e. rate of return, «;) and of its variance (i.e. o), which
corresponds to the classical result for this problem?.

In the last part of this section we will state the numéraire property of the GOP (i.e. of the
log-optimal portfolio) as well as the formal proof concerning the growth optimality result
stated in Equation 1.111. One may obtain the numéraire property of the GOP as follows?.

Let R:(:) == ZZ:*(('-))’ then an application of [to’s rule yields:

B0 ) () + 5 S (On (1) = a0 it D (0 l8) — e ()T 1)

v=1

= (n(t) = 7" ()" [(alt) — o(t)m* ()t + E(L)AW (1))

Together with the first order condition 1.108, this semi-martingale decomposition shows,
that R:(-) is a local supermartingale. Since it is positive, an application of Fatou’s Lemma
(see e.g. Rudin [90]) yields, that it is in fact a supermartingale. Consequently one obtains
the numéraire property of the GOP 7*(-):

is a supermartingale for every portfolio w(-)°". (1.118)

() =

Zze ()

The results sketched in this section are fairly remarkable, since they essentially state that
the log-optimal portfolio 7* will dominate any other portfolio as T'— oco. We will conclude
this section with the formal proof of the optimality of 7*.

Theorem 1.2: %

Let 0(t) = £V (t)a(t) denote the market price of risk. Let further the optimal® portfolio
value be given by:

98ee e.g. Karatzas and Shreve [67], Section 3.10.

96See Fernholz and Karatzas [48], Equation 4.7.

97See Fernholz and Karatzas [48], Equation 4.7.

9%8See Karatzas and Shreve [67], Theorem 3.10.1.

99Here the term "optimal" refers to the log- and growth-optimality of the portfolio.
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Zoe(t) = 7 (0) exp </Ot 67 (5)dW (s) + /Ot %||9(s)||2ds), (1.119)

N J/
'

.1
T Hp(b)

where Hy(t) is called the state price density process'®. For the optimal portfolio weights m*
we denote by T (t) := 7w (t) Z=(t) the vector of money-equivalent portfolio weights. Then
for every initial endowment x > 0 and for any portfolio process w it holds almost surely
that: 1 1

lim sup T log Z2(T') < limsup T log Z2.(T). (1.120)

T—o0 T—o00

Hence for P-almost every w € Q, m* mazimizes the growth of portfolio value (wealth) over
all other portfolios .

Proof: We follow the proof outlined in Karatzas and Shreve [67].

STEP 1: Define the ratio R(t) as follows:

R(t) = ZZ”—((’?) _ éHo(t)Zﬁ(t). (1.121)

STEP 2: One may now write R(t) in differential form.

AR(t) = éHo(t) € (1) (t) — 22 (0)0()] " dW (1), (1.122)

This result can be derived from Remark 3.3. in Karatzas and Shreve [67] where it is stated
that:

Ho(t)Z2(t) = z + /0 Ho(u) [€7(u)m(u) — Z2(u)0(u)] dW(u) 0<t<T.  (1.123)

'

(®)

Furthermore, via application of Fatou’s Lemma'® it can be shown [67], that () is a
supermartingale. Equation 1.123 implies that E [Hy(T)Z%(T")] < x. Therefore the expected
terminal wealth, discounted by the state price density process, cannot exceed the initial
endowment.

STEP 3: In this step it will be shown, that R(¢) satisfies the following inequality:

100Gee Karatzas and Shreve [67], Remark 1.5.8.
101Gee e.g. Rudin [90], Lemma 1.28.
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P { sup R(t) > 65”] < E[R(n)] < R(0) = g =1VneN 0<d<l  (1.124)

n<t<oo
This notion is based on two results in Karatzas and Shreve [66], namely Problem 1.3.16.
and Theorem 1.3.8.(ii). We will state the respective propositions here and refer to |[66] for
details and proofs.

Problem 1.3.16. [66]: Let {X;}i>0 be a right continuous, nonnegative supermartingale
w.r.t. the filtration {F;:}i>0; then Xoo(w) = limy oo X (f,w) exists for P-almost every
w € Q and X (t) is a supermartingale.

Theorem 1.3.8. (ii) [66]: Let {X:}i>0 be a right continuous submartingale w.r.t. the
filtration {§:}+>0; let further [k, 7] be a subinterval of [0,00) and let 0 < A € R. Then one

2nd

can state the submartingale ineqality:

K<t<T

AP { inf X, < —/\} < E[X'] - E[X,]. (1.125)

We have that R(t) is a nonnegative, continuous supermartingale. Hence by Problem 1.3.16.
in [66] Roo(w) = limy,oo Ri(w) exists for P-a.e. w € Q.

Furthermore, through adapting Theorem 1.3.8.(ii) in [66] for supermartingales one obtains:
AP [ sup R(t) > )\} < E[R(n)] — E[Rw). (1.126)
n<t<oo

Hence, if we replace A by €™ and use the nonnegativity and the supermartingale property
of R(t), then we obtain Inequality 1.124. Shifting the multiplicative ¢°® to the right hand
side and taking the probability of the logarithm, one obtains:

P [ sup log R(t) > dn| < e ", (1.127)

n<t<oo

One may now take the sum over all n in Inequality 1.127 in order to obtain:

ZP[ sup log R(t) > (571] Ze M < 0. (1.128)

n<t<oo

STEP 4: Now an application of the Borel-Cantelli Lemmal!®? yields:

P {lim sup log R(t) > (5n} = 0. (1.129)

N—=00 p<t<oo

102Gee e.g.  Durett [34], Section 1.6., Lemma 1.6.1. The Borel-Cantelli Lemma states that if:
>0, P(A,) < oo for a sequence of events A,, in the probability space, then P(A,, infinitely often) = 0,
i.e. the probability that infinitely many A,, occur is zero. This may also be denoted by P[limsup,,_, . A,] =
0.

49



1.4 Some Optimality Results

Thus there exists an Ny, s.t. ¥n > Ns(w), ¥Vt > n: log R(t,w) < dn < ot for P—a.e.w €
Q). In particular we have:

1
lim sup n log R(t,w) < 4. (1.130)

t—o00

Hence by the definition of R(t) in Equation 1.121 one obtains:

1 1 1
limsup — log Z2(t,w) — limsup — log Z%. (¢t,w) < lim sup . log R(t,w) <. (1.131)

t—00 t—o00 t—00

So, finally the result follows from 1.131 and the arbitrariness of ¢:

1 1
limsup - log Z2(t,w) < limsup — log ZZ. (t,w) + 6. (1.132)
t—00 t—oo T
This concludes the proof. O

The short discussion of the growth-optimal portfolio concludes our brief overview of topics
in stochastic portfolio theory.
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1.5 Conclusion

1.5 Conclusion

In the first chapter we have outlined a semimartingale model for the stock price process
in Definition 1.2. This representation of single stock price movements can be incorporated
into the larger framework of a stock market 9t which is a family of stocks. In Sections 1.1
and 1.2 some basic properties of stocks and markets as well as the concept of portfolios in a
stock market are presented. In Section 1.2 we also dwell on the issue of portfolio-generation
through so-called generating functions. Furthermore, in this Section some attention is paid
to the behavior of functionally generated portfolios under real market conditions. The
possibility to obtain portfolio weights and investment decisions based on clearly defined
rules without having to undergo any optimization routines may be regarded as one of the
most attractive features of stochastic portfolio theory.

A remarkable aspect of the model outlined is, that arbitrage may exist under certain
circumstances. However, the time horizon necessary in order to realize these arbitrage
opportunities is extremely large. This issue is succinctly treated in Sections 1.2.2 and 1.3.
In Section 1.3, we also present some results as to how the investment horizon needed for
the realization of relative arbitrage opportunities may shortened. It is discussed, that these
improvements come at the cost of imposing a more restrictive structure on the dynamics
of the individual stocks. In the last Section of the first Chapter, 1.4, we digress into the
field of portfolio optimization and present some properties of the growth-optimal portfolio.
With respect to all topics outlined in Chapter 1, we present the available literature and
the results therein. At some points we provide further discussions and analyses as well as
practical implementations in order to visualize some effects and assumptions prevalent in
the Fernholz-Karatzas model.
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Chapter 2

Market Ellipticity in Practice

In this chapter we will revisit the concept of non-degeneracy of the market 9 which was
specified in Chapter 1 in Definition 1.5. We will equivalently refer to the non-degeneracy
of the market as ellipticity of the market. Let us recall that a model like the one outlined
in the previous Chapter is called elliptic if the instantaneous covariance matrix o(t) is
invertible.! Since for M to be non-degenerate it has to hold that zo(t)z” > €||z|]?, i.e.
that all eigenvalues of o(t) are positive and bounded away from zero by e, it clearly holds
that the notions of ellipticity and non-degeneracy are equivalent in our setup.

2.1 An Empirical Analysis of Market Ellipticity

2.1.1 A Fourier Estimator for Instantaneous Covariances

In this section, we will analyze the extent to which traces of (uniform) non-degeneracy may
be found in real-life data. In order to estimate the instantaneous covariance matrices a
nonparametric estimation method based on Fourier transforms will be used. This approach
was outlined in Malliavin and Mancino [75] and is also briefly discussed in Malliavin and
Thalmaier [76]. For general results on Fourier analysis we refer to Grafakos [57] and Rudin
[90]. There are several reasons for applying a Fourier based estimator for instantaneous
covariance instead of classical local estimators which are comprehensively discussed in the
recent work of Cuchiero and Teichmann [26]. In this paper the authors use a Fourier-Féjer
estimator similar to the one presented in [75]. Unlike usual local estimators which use

1See e.g. Malliavin and Thalmaier [76], Theorem 2.6.
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small sliding data windows for covariance estimation, the Fourier-based method utilizes
the information of the whole time series for the estimation of instantaneous covariance.?
Furthermore, the authors show, that in fact the variance of the Fourier-Féjer estimator
is smaller than that of classical estimators.® In the case that the underlying process of
the log-price is a drifted Brownian Motion, the Fourier-Féjer estimator is in fact % of the

classical one.* These properties should in fact be beneficial to the stability of the estimator.

The approach presented in [75] is based on a semimartingale model for the log-price of
stocks as we have introduced it in Chapter 1. For the sake of completeness we will restate
Equation 1.1 here:

dlog X (t) = ~(t)dt + ify(t)dwy(t), t € ]0,00).

Further we recall that the instantaneous covariance matrix is given by o(t) = £(t)£(¢)T. In
practice, the covariance matrix is mainly computed over discrete time intervals using the
quadratic variation formula. This leads to an estimator for the integrated covariance matrix
over the considered time interval. Calculation of the instantaneous covariance matrix from
these results would request the numerical calculation of the derivative which is potentially
unstable.’

For the calculation of the Fourier transform we will rescale the finite time horizon [0, T

to [0, 27], thus for every function ¢ on the circle S' and for its differential form d¢ we can

define the respective Fourier transforms as:%

FO)(k) = ;ﬁ " o(0) exp(~ik0)do for k€ 7, (2.1)
F(do)(k) = % i 7rexp(—ik(9)d¢(9) fork e Z. (2.2)

Let us further denote the Bohr convolution” by *p if for two functions © and ¥ on Z the
following limit exists Vk € Z:

(©x5 ¥) (k) = lim 2N — Z O(s —5). (2.3)

2See Cuchiero and Teichmann [26], Section 2.

3See Cuchiero and Teichmann [26], Theorem 6.6. and Remark 6.7.

4See Cuchiero and Teichmann [26], Section 2.

®See Malliavin and Mancino |75], Section 1.

6See e.g. Malliavin and Mancino [75], Section 1. or Rudin [90], Chapter 9.

"See Malliavin and Mancino |75], Section 1. or Malliavin and Thalmaier [76], Section A.1.
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The central result presented in Malliavin and Mancino [75] provides us with a straightfor-
ward method to estimate the constituents of the instantaneous covariance matrix. We will
restate this result in the following Theorem.

Theorem 2.1: 8 Consider a market MM consisting of i = 1,...,n stocks whose log-prices
follow semimartingale processes as specified in FEquation 1.1, where the drift and local
volatility terms of the i'" stock satisfy forv=1,... n:

E [ /0 T(%(t))zdt} < o0, (2.4)
El[ (€. dt| < . (2.5)
[ otonal

Then it holds for i,7 € M, that:
1

%F(Uij‘) = F(dlog X;) xp F(dlog X;). (2.6)

Proof: For the proof we refer to Malliavin and Mancino [75], Section 7., Proof of Theorem
2.1. O

Remark 2.1: It should be noted that the regularity conditions specified in Equations 2.4
and 2.5 complement those conditions set forth in Definition 1.2. However they should
not impose any unreasonable restrictions on our model. We furthermore remark that in
[75] and [76] the instantaneous (co-)variances o;;(t) are referred to as instantaneous (co-)
volatilities. We are going to stick to the market convention and use the term "volatility" as
a synonym for the standard deviation of instantaneous log-returns and not for the variance.
Consequently we shall not use the term "volatility" in this context and digress thereby from
the nomenclature used in Malliavin and Mancino [75].

The result stated in Equation 2.6 yields that the instantaneous covariances may be retrieved
directly from the Bohr-convoluted Fourier transforms of the log-returns. Hence in order to
estimate the instantaneous covariances we will have to calculate a numerical approximation
of:

0:;(t) = F ' (2m F(dlog X;) *p F(dlog X;)) (¢). (2.7)

To that end, one has to calculate the Fourier coefficients® of the instantaneous covariance
function. Let us denote for all stocks i = 1,...,n the k' Fourier coefficient of the log-
returns as ¢4 (k) := F(dlog X;)(k). Applying the specification of the Bohr convolution

8See Malliavin and Mancino [75], Theorem 2.1.
9See e.g. Rudin [90], Section 4.26.
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2.1 An Empirical Analysis of Market Ellipticity

given in Equation 2.3, one may calculate the k™* Fourier coefficient of the convoluted log-
returns for the i and ;™ stock as:!°

N (k) = QNHqu’ (k—s), [ < N. (2.8)

SEZL

It has to be remarked that Malliavin and Mancino [75] formulated Equation 2.8 for j =
1,2 whereas a more general formulation may be found in Clément and Gloter [24].
general, for higher dimensional problems and especially with respect to their practical
implementation some care has to be taken with the concrete choice of N. We refer to
Clément and Gloter [24] for further details.

In the case that o,;(¢) is continuous, the Fourier-Fejér summation yields almost every-

where:!! "
. E i,J 1kt
oy(t) = lim > ( _N> Wi (k)el*t, vt e [0, 27]. (2.9)
|k|<N
For the practical implementation we consider a discrete time-grid for all j = 1,...,n

stocks where we assume each time-grid to have m observation points and furthermore

= 0 and tJ = 2. Thus let the set of trading times for the j stock be given by
T = {tf ,0=1,...,m}. It is worth noting, that the time-grids need not be equally spaced
and that the trading times of two assets need not necessarily coincide. In Malliavin and
Mancino [75] special emphasis is put on the fact that the proposed estimator is especially
suitable for calculations based on high frequency data over a short time horizon (e.g.
intraday) with unevenly spaced time-grids.'? For our ensuing calculations we will use
end-of-day quotes over longer time horizons which result in evenly spaced identical time

grids for all stocks. Denote further by p’(m) := maxo<p<m_1 |75{Hrl — tJ| the mesh of
the time grid, which in our case Will be the same for all stocks. We consider the time
intervals I} = [t],t] +1) for the j* stock and denote the log-return corresponding to I
by 615-(Xj) = log X, (¢ l+1) — log X;(t]). Consequently for k € Z, |k| < N the discrete
approximation for the k' Fourier coefficient!® of dlog X is given by:
L ml
Fm)(dlog X;) = o exp(—ikt{)éllj (X;). (2.10)

l

I
o

10See Clément and Gloter [24], Section 1 and Malliavin and Mancino [75], Section 2.
See Malliavin and Mancino |75], Equation 8.

12Gee Malliavin and Mancino |75, Sections 1. and 2.

13See Malliavin and Mancino [75], Equation 9.
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2.1 An Empirical Analysis of Market Ellipticity

Moreover, denote the k™ Fourier coefficient!* for o;; by:

1 2m
M (oy) = —/ exp(—ikt)o;;(t)dt. (2.11)
2m J,

Then we can accordingly define the discrete approximation of the k** Fourier coefficient of
the Bohr-convoluted Fourier transforms of the log-returns of X; and X; as follows:'?

oz(k)(N,m,Xi,Xj) = 2n

=N 1 > dom(dlog X)e ™ (dlog X;). (2.12)

Is|l<N

By Equation 2.9 one may finally calculate the following estimator for the instantaneous
covariance of stocks i and j through the subsequent formula whereby the number of Fourier
coefficients is given by N :'6

&N (1) = Z (1 — %) o™ (N, m, X;, X;)e'*. (2.13)
|kI<N

The convergence of the estimator &gn’N) (t) towards o;;(t) is comprehensively covered in

Malliavin and Mancino |75]. Firstly it is shown that for o(¢) continuous and p(m)N — 0

as m, N — oo the following limit converges in probability:*”

lim o™(N,m, X;, X;) = ™ (0y). (2.14)

m,N—o00

Secondly, for o(t) continuous and p(m)N — 0, the following convergence in probability
holds:'®

lim  sup |60 () — oy(t)| = 0. (2.15)

m,N—00 g<t<2r

From the proofs of the above limits and from the further convergence results in 75| one
also gets that the number of Fourier coefficients is related to the mesh of the time-grid by
N = p(m)~%/3.% Further results on the optimal number of Fourier coefficients may be found
in Clément and Gloter [24]. As already stated at the beginning of this section, a slightly
modified Fourier-Féjer estimator has been recently discussed in Cuchiero and Teichmann
[26]. In this work, a similar estimator albeit without the use of Bohr convolutions is applied

14See Malliavin and Mancino [75], Equation 10.
15See Malliavin and Mancino |75|, Equation 11.
16See Malliavin and Mancino [75], Equation 12.
17See Malliavin and Mancino [75], Theorem 3.3.
18See Malliavin and Mancino [75], Theorem 3.4.
19See Malliavin and Mancino [75], Section 5.
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2.1 An Empirical Analysis of Market Ellipticity

to models incorporating jumps and the authors examine the convergence behavior of the
estimator including the choice of the number of Fourier coefficients.

In the following Section 2.1.2 we will put the concept developed in Section 2.1.1 to work
and evaluate the behavior of the instantaneous covariance matrix of the S&P 100 index.

2.1.2 Empirical Analysis of the S&P 100 Index

The Standard & Poors (S&P) 100 Index is a subset of the S&P 500 Index which comprises
large cap blue chip stocks in the US market. The S&P 100 features 100 individual blue chips
across a broad set of industry sectors. The index constituents are domiciled in the United
States of America and represent some of the most important players in their respective
industry sector globally. The current index constituents as well as further information on
the index characteristics may be accessed through S&P’s web portal [96]. The main reason
for choosing the S&P 100 instead of the larger S&P 500 is that the number of corporations
with similar characteristics is smaller in the S&P 100 than in the larger index. Thus
interdependence between stocks can be expected to be more limited in the smaller index,
implying that our chances of finding traces of ellipticity in the market data will be better
with the S&P 100 than with the S&P 500.

For all ensuing calculations we use the index constituents as of April 14", 2011. The time
series of the respective stock prices were retrieved through the Bloomberg® system and
comprise daily closing prices for a time period of up to five years. We will discuss some
results which have been calculated for the whole index universe.

Covariance Structure of the S&P 100

In this section we will examine the patterns of ellipticity prevalent in the whole S&P
100 universe. Even though the estimation algorithm exhibits reasonable stability when
examined for a low dimensional problem, one observes certain numerical instabilities which
are commonplace when a problem of dimension 100 is being analyzed. In our case we
observe that the resulting matrix is symmetric, yet some of its eigenvalues take extremely
small negative values, a phenomenon which leads to a loss of positive semi-definiteness.
Such effects occur frequently when estimating high dimensional covariance structures.

In the following, we have examined several simulation runs of the whole index universe with
differing lengths of input data and different evaluation times. In the performed calculations,
the negative eigenvalues are usually of order 1077 or smaller. The following "heat map"
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2.1 An Empirical Analysis of Market Ellipticity

as depicted in Figure 2.1 shows the spectra of 100 estimated covariance matrices based
on 350 and 400 days of data history respectively. We observe, that the structure of the
spectra stays essentially the same if the number of data points input into the algorithm is
being varied from 350 to 400, however it has to be acknowledged that given the dimension
of the problem, the number of data points used for this first set of calculations certainly
needs to be further extended. Hence we conclude that some of the observed instabilities
are also due to the fact that we do not have enough observation points.

1 20 40 60 80 100 100

100 | | | | 11100 100 | | | I 11100

1 20 40 60 80 100 1 20 40 60 80 100

Figure 2.1: Heat-Maps for Estimators based on 350 (left) and 400 (right) Data Points.

In Figure 2.1 one clearly sees that all simulated instantaneous covariance matrices exhibit
a similar pattern in their respective spectrum. To the left of the heat-map we have a small
number of relatively large eigenvalues (i.e. of size 107!). The further we go to the right
the steeper we descend towards zero. Around the 60" eigenvalue we generally reach a size
of order 1077 or smaller. From this point on one can observe a certain instability among
the smallest eigenvalues which start to oscillate around zero, comprising extremely small
positive and negative values. This pattern is also observable in the rightmost area of the
plotted heat-map.

This generally observable structure of the spectra of estimated instantaneous covariance
matrices may be further illustrated by conducting a principal component analysis (PCA)%
of an exemplary covariance matrix. The scree-plot of the principal components depicted in
Figure 2.2 illustrates the phenomenon that the contribution of the principal components
to total variance declines rapidly. In fact, as can be seen in the following output of the

208ee e.g. Joliffe [62].
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2.1 An Empirical Analysis of Market Ellipticity

statistical analysis conducted in R, the first 6 principal components account for approxi-
mately 99.5% of total variance and the first 10 principal components explain more than
99.9% of total variance.

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
Std. deviation 0.02519988 0.01416013 0.01124600 0.006452271 0.004621237
Prop. of Variance 0.60566608 0.19123641 0.12062364 0.039706475 0.020368200
Cum. Proportion 0.60566608 0.79690249 0.91752612 0.957232600 0.977600800

Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
Std. deviation 0.004256226 0.001615083 0.0008867617 0.0007392009 0.0006775836
Prop. of Variance 0.017277681 0.002487860 0.0007499806 0.0005211481 0.0004378869
Cum. Proportion  0.994878481 0.997366341 0.9981163215 0.9986374696 0.9990753565

Table 2.1: Summary of Principal Component Analysis.

Since the principal components of the instantaneous covariance matrix are in fact its eigen-
vectors, the result of the PCA highlights that the eigenspace of our covariance matrix is
in fact spanned by only a handful of eigenvectors whereas the remaining eigenvectors add
next to nothing to the spanned space. From a statistical point of view, it would be highly
justifiable to reduce the dimensionality of the problem from 100 to probably around 10, as
indicated by the PCA.

The instantaneous covariance matrices computed on basis of these time series indicate,
that their smallest eigenvalues will in practice be extremely close to zero if we consider
the usual rounding procedures applied by financial practitioners which may possibly have
a precision goal somewhere around 12 after comma digits. The natural question arising in
this context clearly is, how small the smallest (positive) eigenvalues in our simulations will
get.
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2.1 An Empirical Analysis of Market Ellipticity

PCA

5e-04 6e-04

Variances
2e-04 3e-04 4e-04

le-04

Comp.1 Comp.3 Comp.5 Comp.7 Comp.9

0e+00
|

Principal Components

Figure 2.2: Scree-Plot of Principal Components of an Exemplary Covariance Matrix.

5.x10° 1.x10%® 15x10°® 2x10% 25x10%® 3.x107°®

Figure 2.3: Smallest Eigenvalues for 150 Estimated Covariance Matrices multiplied by 10%.
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2.1 An Empirical Analysis of Market Ellipticity

In the next step we extend the number of utilized data points for the estimation of the
instantaneous covariance matrix to 750 days. The overall pattern of the computed spectra
of covariance matrices remains relatively stable, however we observe two important effects.
Firstly, all calculated eigenvalues are strictly positive, i.e. we no longer observe the un-
desired effect of the smallest eigenvalues oscillating around zero as can be seen below in
Figure 2.4.

100 - 100

1 20 40 60 80 100

Figure 2.4: Heat-Maps for Estimators based on 750 Data Points.

Secondly, the size of the smallest eigenvalues has improved in terms of market ellipticity.
For those estimators based on 750 data points, the size of the smallest eigenvalue is of
order 107 which is a significant difference relative to the observations based on 350 or
400 data points. Furthermore the size of the smallest eigenvalues is quite stable over all
100 computed estimates as can be seen in Figure 2.5. Thus, if we estimate instantaneous
covariance matrices based on longer time series we cannot rule out market ellipticity in
a straightforward way. This is a valuable observation in the way that it helps to classify
empirical market ellipticity as a long term effect rather than something which may be
observable on arbitrarily short time horizons.
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2.1 An Empirical Analysis of Market Ellipticity

3.x10°8 4.x10°8 5.x1078 6.x10°8

Figure 2.5: Smallest Eigenvalues for 100 Estimated Covariance Matrices (750 data points).

The empirical analysis conducted on the time series comprising 750 data points does not
really rule out the concept of market ellipticity and unlike in the first set of analyses
computed on the shorter time windows it is not straightforward to claim that the smallest
eigenvalues are technically zero. However what may be done quite easily is to revisit for
example the time bounds provided for relative arbitrage strategies as already presented in
Sections 1.2 and 1.3.

We recall the outperformance time bound for the entropy portfolio as given in (1.54):

T > % log n(loglogn — log dy),

whereby € stems from the ellipticity assumption, ¢ is obtained from the condition of market
diversity and we already set 9; = —dlogd in Section 1.2. If we plot this time bound as a
function of 9 as we have done before, we observe that the necessary time for outperforming
the market will be in excess of eight million years for realistically chosen ¢ in the range
of 0.7 to 0.8 and even larger for smaller values of § as depicted in Figure 2.6. Hence even
though in this case traces of market ellipticity are certainly observable, the resulting time
bound for the entropy portfolio becomes fairly large.

A similar pattern may be observed in the case of the portfolio presented in Example 1.42,
where we have a time bound for outperforming the market given by:

2nlog 2
€2

T >

21Gee Fernholz [44], Example 3.3.3.
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Entropy Time Bound
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Figure 2.6: Simulated time bounds for the entropy portfolio.

The results for this simulation are depicted in Figure 2.7. For this portfolio we obtain
results for the best time bounds lying in the range of 56 to 60 million years.
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Figure 2.7: Simulated time bounds for the entropy portfolio.

It is of course also possible to select an elliptic investment universe if we arbitrarily define
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2.2 Relaxation of the Ellipticity Assumption

our "market" as a selection of a limited number of stocks with highly different charac-
teristics. Even though such a voluntary restriction of the investment universe may seem
plausible at first sight, it is in fact not an option for the vast majority of institutional
investment managers who are obliged to manage the entrusted funds relative to a certain
benchmark index. Since many institutional clients do not only prescribe the benchmark
index but in addition to that specify limits on the tracking error?? of their portfolio rela-
tive to the benchmark, the possibilities of investment managers to restrict themselves to
a non-degenerate sub-market rather than the potentially degenerate investment universe
specified by the benchmark index are limited.

2.2 Relaxation of the Ellipticity Assumption

Even though the empirical analysis in Section 2.1.2 does not totally discourage the notion
of market non-degeneracy (ellipticity), it is certainly worth considering a relaxation of the
uniform boundedness of the smallest eigenvalue by ¢ > 0 as mandated by Definition 1.5.
In the following sections we will introduce a weaker concept of ellipticity and outline what
happens if the classical assumption of market-ellipticity is dropped.

We have introduced a market 0 as a family of stocks X3, ..., X,, which are defined by the
semimartingale model for the log-price given in Equation 1.11:

dlog Xi(t) = vi(t)dt + ifi,y(t)dW,,(t), i=1,...,n

v=1

Recall that the matrix of sensitivities £(t) = (&;,(¢))1<ip<n directly leads to the definition of
the instantaneous covariance matrix o(t) = £(¢)£(¢)”. We have introduced two fundamental
properties of the market 9 in Chapter 1 which were broadly used for proving the results
outlined in the aforementioned chapter, namely non-degeneracy and bounded variance:

e M is non-degenerate, if Je > 0, s.t. zo(t)z? > e||z|?, for all z € R".

e M is of bounded variance if IM > 0, s.t. zo(t)z? < M||z|?, for all x € R".

Let us recall, that o(t) is positive semidefinite by construction and that the non-degeneracy
(or ellipticity) assumption ensured that it would actually be positive definite. We will relax

22Here the term "tracking error" is used for the relative standard deviation of a portfolio 7 relative to a
benchmark portfolio 1. Following the specification given in Equation 1.34, we use the term tracking error
to describe v/ 77x. See e.g. Jorion [63].

64



2.2 Relaxation of the Ellipticity Assumption

this assumption in the ensuing considerations. N.b. that we do not explicitly drop the
assumption of bounded variance, i.e. of an upper bound for the largest eigenvalue of the
instantaneous covariance matrix.

Definition 2.1: Let 9 be an equity market. Then we will call YN weakly non-degenerate
or weakly elliptic, if there exists a random €(t) > 0 such that for all t € [0, 00)

vo(t)x” > e(t)||z]|?, forallz € R™. (2.16)

By means of introducing the concept of weak ellipticity, we create a more general setup
which should be able to accommodate those facets of ellipticity which are identifiable in
market data. Since in this case, €(-) is a function of time ¢ € [0, 00) we allow the degree
of non-degeneracy to vary, even admitting the case that €(t) = 0 for certain ¢ € [0,00). In
the sequel, we will revisit some properties and results presented in Chapter 1 in a weakly
elliptic setup.

2.2.1 The Relative Covariance Matrix

Let us recall the definition of the relative covariance matrix 7(¢) with respect to a portfolio
1 which was given in Definition 1.7:

T (t) = 0i5(t) — oin(t) — ojy(t) + oy (1),

whereby 0y, (t) = > _, ne(t)ou(t). If we assume ellipticity, 77(¢) is positive semidefinite
with rank n— 1 and the kernel (null space) ker(7(t)) is spanned by 7(t).?*> The proof of this
result utilizes the positive definiteness of o(¢)?*, however we may attain this result if the
ellipticity assumption is relaxed to weak ellipticity as well. Let us re-state the component-
wise specification of 7(¢) from Equation 1.29 in matrix terms:

ou(t) o ou(t) o1(t) - ong(t) L1
T(t) = o(t) — : : - f : + 0 (t) L
Ty(t) -+ ong(t) N ou(t) 0 ony(t) ) L1

—on(1) ()T

If we calculate z7(t)a” for z = (z1,...,2,) € R" we get:

2See Fernholz [44], Lemma 1.2.2.
24See Fernholz [44], Proof of Lemma 1.2.2.
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1 -1
zr(t)z” = zo(t)a” —xo"(t)a" — o) 2" + oy, | 2 - 2T (2.17)
1 -1
n n n 2
= zo(t)x’ -2 Z Ti0u Z T; + opy(t) (Z xl> ) (2.18)
i=1 i=1 i=1
=wo(t)n(t)”

Following the Proof as it is outlined in Fernholz [44], one may distinguish between two
cases.

Firstly, let Y"" | z; = a # 0. Then we may consider the re-scaled vector y = éx which has
S yi=1and a7(t)z” = a’y7(t)y”. Hence, for y we have:

yr(t)y" = yo(t)y" — 2ya(tn(t)" + n(t)o(t)n(t)"
= (y—n(t)a(t)(y —n(t)" >0, (2.19)

since o(t) is positive semidefinite in any case.

Secondly, if @ = 0 then (2.18) reduces to z7(t)z” = zo(t)z” > 0 again by the positive
semidefiniteness of o(¢). Hence the positive semidefiniteness of 7(t) still holds if the ellip-
ticity assumption is dropped. From (2.19) one directly sees that we have equality to zero
in the case that y = n(t), i.e. « = an(t), hence the kernel ker(7(t)) is spanned by the
vector 7(t) and therefore dim ker(7(t)) = 1. According to the dimension formula for linear
maps? we have that dimR™ = n = dimim(7(t)) + dim ker(7(t)). Since the dimension of
the kernel of 7(¢) is one, it follows that the dimension of the image, i.e. the rank of the
matrix 7(t) is n — 1.

2.2.2 Market Coherence and Diversity

In this Section we will revisit some of the results on market coherence and diversity which
were outlined in Sections 1.2.1 and 1.2.2. Let us recall that a market 91 is called coherent
if the market weights for any stock do not decline exponentially or faster, i.e.:

1
lim —logul( )=0as.,i=1,...,n.

t—oo t

The most remarkable result concerning coherence was stated in Proposition 1.4, namely
that in a coherent and elliptic market any constant-weighted portfolio with at least two

25Gee e.g. Fischer [53], Section 2.2.4.
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2.2 Relaxation of the Ellipticity Assumption

positive weights outperforms the market. The proof of this Proposition strongly relies
on ellipticity for which reason we will revisit the notions which were used to retrieve this
result.

An essential pre-requisite for the proof of Proposition 1.4 is given in Fernholz?® namely
that for any portfolio 7 in an elliptic market 99T there exists an € > 0, such that:

7(t) > e(1 — m(t)?, as., te[0,00),i=1,...,n. (2.20)

The proof of this result uses the non-degeneracy assumption of 91 in the following way.
Define x(t) := (m(t),...,m(t) — 1,...,m,(t)), then by Definition 1.7 777 is given by:

TE(t) = 04(t) — 204:(t) + orn(t) (2.21)
= z(t)a(t)z(t)" > ellz(1)|?, (2.22)

where clearly (2.22) only holds in the setup of an elliptic market. In a weakly-elliptic
market, on may only state the weaker result, that:

() > e(t)||lz(®)]]* >0 a.s., t €]0,00). (2.23)

i

Hence, although we are able to preserve the positive semidefiniteness of 77(¢) in a weakly-
elliptic setup, we lose the positivity result for its diagonal elements, i.e. the relative vari-
ances of the stocks w.r.t. the portfolio .

This fact also has implications on the excess growth rate of portfolio 7 as it was introduced
in Equation 1.16 of Proposition 1.1:

Vo (t) = % (Z mi(t)ou(t) — Z Wi(t)ﬂj(t)aij(t)) :

Due to the numéraire invariance of the excess growth rate?”, the excess growth rate v*(t)
may also be expressed in terms of the relative covariance matrix with respect to some
arbitrary portfolio n in 90:

T = (Z HOLIOEDY m(tm(tm’;u)) . (224)

i=1 ij=1

Under the prevalence of ellipticity Equation 2.24 may be combined with Equation 2.22 to

26See Fernholz [44], Lemma 2.1.5.
27See Fernholz [44], Lemma 1.3.4.
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obtain the following result (2.27) for 4%(¢). Since for 77

Z mi()m; ()75 () = Z mi(t)m;(t)oi;(t) — Z i ()7 (t)oin (t) —
Z ()7 (1) 0jx (t) + Omn(t) Z mi(t)m;(t) (2.25)
= 20..(t) — 2 Z mi (), (o (t) = 0, (2.26)
one gets:
3(0) = 3 S M) 2 50— Tnaalt))? (227)
In a weakly-elliptic setup one obtains instead
mt)% > w0 2 ?(1 ()2 > 0 forallt € [0, 00). (2.28)

Hence, assuming only weak ellipticity, the excess growth rate may become arbitrarily small
or even zero. Furthermore, we recall that the excess growth rate corresponds to half
of the diversification benefit in terms of risk (covariance) which one attains due to the
covariance structure of the market. Thus, in the case of weak ellipticity of the market
one may observe cases where such a diversification benefit vanishes. It is worth noting
that such a loss of commonly observed diversification patterns within and across asset
classes is precisely what could be observed during the financial crisis of 2008 and 2009.
Furthermore, it should be mentioned that supervisory authorities explicitly mandate the
effects of distortions in generally observed correlation structures to be considered in banks’
stress testing scenarios.?® Nonetheless, if we preserve the property of market coherence,
one may modify Proposition 1.4 to show the following result.

Proposition 2.1: Suppose that 9 is coherent and weakly-elliptic and that 7 is a constant-
weighted portfolio with at least two positive weights, then:

1 Zx(T)
= > .S. .
11Tn1>1§.}leog <ZM(T)) >0 a.s (2.29)

Thus, if we drop the uniform ellipticity assumption prevalent in Proposition 1.4 but main-
tain the assumption of market coherence it still holds, that any constant-weighted portfolio
with at least two positive weights will at least not underperform the market. Even though

28See Basel Committee on Banking Supervision [10].
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2.2 Relaxation of the Ellipticity Assumption

this result is clearly much weaker than the almost sure outperformance stated in Propo-
sition 1.4, it is still quite a strong statement that any constant-weighted portfolio will at
least not perform worse than the market with probability one. This effect makes it clear
that the assumption of market coherence is fairly strong in its own right.

Proof: We follow the proof given in Fernholz [44] for Proposition 1.4%° and digress from it
at the points where the ellipticity property comes into play.

Let 7;(t) = p; be the constant portfolio weights, t € [0,00),7 = 1,...,n. In a weakly-elliptic
market we have: .
1
?/ Ya(t)dt >0, T € [0,00) a.s. (2.30)
0
Since by Proposition 1.2

Z4(t)
¢log (Zm)

) = ZPileg wi(t) +va(t)dt a.s.
i—1

one obtains:

lim % (log (Z”(t)

T—o00

tN
=
N———
|
N
~
%
=
oW
~
~__
I
f:
g B
M| =
VR
NE
=
o
s
=
-
~_

=1
= Zm(lim —logm(T))
= T—o0
— 0

by market coherence. Therefore and by (2.30) we have:

1 Z.(T
liminfflog( ( )) >0 a.s.

T—o0

]

Analogously, dropping the uniform ellipticity assumption leads to problems with some
results concerning market diversity which are given in Fernholz [44]. E.g. it can be shown®®
that in a non-degenerate and diverse market the excess growth rate of the market portfolio is
strictly positive, i.e. 7, (t) > d > 0 a.s. for t € [0,00) as we have already stated in Equation
1.47. This is proved using the fact that in an elliptic market () > €(1 — fimaa(t))* as
stated in Equation 2.27. Clearly enough, for the market portfolio as a special example it

29Gee Fernholz [44], Proof of Proposition 2.1.9.
30See Fernholz [44], Proposition 2.2.2.
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2.2 Relaxation of the Ellipticity Assumption

also holds that in a weakly-elliptic setup we only have v (t) > €(t)(1 — fmas(t))* > 0 for
all t € [0, 00).

This has a direct implication on the finite time bounds for outperforming the market

portfolio which we have presented in Chapter 1. For the entropy-weighted portfolio m we
Zr(T) , Zu(T)
Zx(0) 7 Zu(0) _ ' ‘
the lower bound for the excess growth rate of the market portfolio. As outlined above, in a

showed in Lemma 1.1 that a.s. if T' > % log n(loglogn —log d;), where 4, is
weakly-elliptic setting d, may become zero and hence the time bound will become infinite.
As a matter of fact, the practical analysis of outperformance time bounds as presented in
Sections 1.2.2, 1.3.2 and 2.1.2 suggests that the time bounds presented in the literature
may become extremely large. In a weakly-elliptic market €(t) > 0 for all ¢ € [0,, 00) may
become arbitrarily small and even zero, therefore the concept of weak ellipticity allows us
to accommodate the observable behavior.

2.2.3 Functionally Generated Portfolios and Relative Arbitrage

Relieving the ellipticity assumption does not prevent us from maintaining the central results
for the functional generation of portfolios. Since ellipticity is not required in the proofs of
Theorem 1.1 and Proposition 1.7, the approach for calculating the portfolio weights and
the drift term of a functionally generated portfolio 7 stays the same. The proof of Theorem
1.1 only uses the fact, that the null-space of the relative covariance matrix 7#(t) is spanned
by p which still holds in a weakly-elliptic setting as outlined above.

The impact of relaxing the uniform ellipticity assumption becomes more severe if we revisit
the results on relative arbitrage which we outlined in Section 1.3.1. In Example 1.3 we
have seen that the portfolio generated by S(z) =1 — %Z?:l x? outperforms the market
portfolio almost surely if the investment horizon is larger than 7" > %. Here once again
the € comes from the non-degeneracy condition of 9I. Hence, clearly in a weakly-elliptic
setup this time bound may become infinite since €(t) > 0 for all ¢ € [0,00). N.b. that if
€(t) = 0 for some t € [0,00) it holds for the drift of the functionally generated portfolio
that ©(7T) > 0. Hence, if the required investment horizon for outperforming the market

becomes infinite, the drift of the functionally generated portfolio may vanish as well.

Similarly, one has to revisit the results concerning the construction of arbitrage opportu-
nities based on mirror portfolios which are developed in Fernholz, Karatzas and Kardaras
[51] and discussed in the ensuing works by Fernholz and Karatzas [48] and [49]. These
results, some of which were outlined in Section 1.3, also rely on the ellipticity and bounded
variance of the market ). The first important observation one makes concerns the relative
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variance of portfolios 7 and 7 for which we stated the following notion in Equation 1.82:

Ti(t) = (m(8) = (1)) o (1) (x(t) — n(t)" = ellm(t) — n(t)]|*.

In the case of a weakly-elliptic market, this reduces to the statement

T (1) = (w(t) = n(t) o (1) (x(t) = n(t)" = e(®)|x(t) = n(®)|* = 0, forallt € [0,00),
(2.31)
since o(t) is only positive semidefinite. Hence, for the relative return of the p-mirror image
7® and p which is described by:

Z7(T) Z"(T)\ , p(1—p) [T,
log <W> = plog (Z“(T)) + 5 /0 T (t)dt,

N J/
v~

(%)

as stated in Equation 1.83, we notice that we still have nonnegativity of () by Inequality
2.31. However, (") need not be strictly positive as implied by 7/ (t) > €(t)||7(t) — u(t)]|>.
This leads to problems in the proof of Lemma 1.2 3! where the condition is used that

fOT TH (t)dt > k > 0 a.s. Thus in a weakly-elliptic market it holds that

| it = [ i) =y i = o

Example 2.1: Let us at this point revisit Example 1.43? and the results presented there.
For a portfolio m = e; = (1,0,...,0) the first unit vector, one may define the portfolio:

w(t) == 7 P(t) = pes + (1 — p)u(t), t € [0,00),

where the leverage parameter p = p(T) will depend on the investment horizon T. Hence,
one takes a long position in the first stock and shorts the market against it, whereby one
observes that the strateqy gets ever more aggressive, the higher the leverage factor p(T)

becomes. The relative log-returns of @ versus pu can be written as>3

log (g:g;) =p fog (le(g))) — p; ! /OT 71y (t)dt

7 N 7

~~

(%) (x)

The first term (x) indicates the performance of stock number one in terms of its market
capitalization. The second term (xx) needs to be ezamined more closely. Setting B := p1(0)

31See also Fernholz, Karatzas and Kardaras [51], Lemma 8.1.
32See also Fernholz Karatzas and Kardaras [51], Example 8.1.
33See Fernholz Karatzas and Kardaras [51], Equation 8.12.
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w1 (7T)
u1(0)

and thus obtaining < % and by using weak diversity one obtains in an elliptic market:

T T
/ Ty (t)dt > 6/ (1-— ,umam(t))Zdt > e0°T =: K,
0 0

by the ellipticity result 7!(t) > e(1 — p;(¢))?.34

In order to apply the approach to construct relative arbitrage strategies w.r.t. the market
as outlined in Section 1.3 one needs

()25 [0z

from which we may conclude that by construction:

p—1_ 1 1 2 1
- > 1 = p(1T) >1 | . 2.32
7 2 opoE () = 70 2 1+ g () (232)

Thus, if the uniform ellipticity assumption is relaxed to weak ellipticity, our leverage pa-
rameter p(T) in fact becomes p(t,T) for t,T € [0,00),t < T. Yet, p(t,T) may not be
bounded from above for any pair of t,T € [0,00) since €(t) may become arbitrarily small

and even zero for any t € [0, 00).

Consequently, the investment approach suggested by Example 1.4 would potentially require
an infinite degree of leverage in the shorted portfolio 7 in a weakly elliptic setup. The reason
for this may be found in the way Lemma 1.2 is applied in this example. Even though
ellipticity is not requested explicitly for Lemma 1.2, it is needed for the construction of
k>0 in fOT 14 (t)dt > K, which is based on an ellipticity result in Fernholz.3

It is quite clear that extremely leveraged investment in a single stock vs. shorting the mar-
ket is not a very sensible strategy to pursue and will in many cases end up in catastrophic
losses. However, if the 1% stock sufficiently outperforms the market (i.e. the short position
leads to a loss) which in real life may happen with positive probability for any investment
horizon, the relative arbitrage strategy outlined in Examples 1.4 and 2.1 will lead to the
investor who applies it to incur substantial losses.

34See Fernholz, Karatzas and Kardaras [51], Remark 5.1.
35By Lemma 2.1.5. in Fernholz [44] one obtains 775 (¢) > e(1 — m;(¢)).
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2.3 Conclusion

In this Chapter 2 we have started with a numerical investigation of market ellipticity,
investigating the structure of spectra of instantaneous covariance matrices, estimated via
a Fourier algorithm first presented by Malliavin and Mancino [75]. The result of our
numerical investigation on the S&P 100 index universe shows relatively weak traces of
market ellipticity in the short and medium run with smallest eigenvalues in the area of
1071, However, it has to be acknowledged, that in the first calculations, the number
of observation points was not sufficient and that some of the observed instabilities of
the estimation procedure are also due to this aspect. The stability of the estimation
substantially improves with longer time horizons which also lead to eigenvalues in the
range of 1078, In general it is fair to conclude that market ellipticity may not be ruled
out in a well diversified market setup over a sufficiently long time horizon, yet observable
ellipticity may be weak in the case of market universes with a higher amount of similar
stocks and resulting collinearities.

In order to cover the effects prevalent in market data we propose a relaxation of the
uniform ellipticity as it is given in Definition 1.5. To this end we introduce the notion
of weak ellipticity in Section 2.2 and revisit some results presented in Chapter 1 in this
weaker setup. In general it can be observed that some results can only be obtained in a
weaker form, given a weakly elliptic setup, yet many general properties may be preserved.
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Chapter 3

Capitalization Structure of the Equity
Market

In this chapter, we will outline the dynamics of stocks ranked by their market capitaliza-
tion. This concept provides the mathematical basis for formulating classical investment
approaches based on the distinction between large- and small-cap stocks. Furthermore, a
closer study of the structure of the market’s capital distribution will lead to a broad set of
problems which will be discussed in the ensuing considerations. In Section 3.1 some math-
ematical preliminaries are given and the behavior of ranked stocks and market weights is
outlined. In Section 3.2, we outline some modeling approaches which permit conserving
the capital distribution and give an overview of ongoing research in this field.

3.1 Interaction of Stocks through their Ranks

In order to characterize the dynamics of ranked stocks, we will first introduce the concept
of local times for Brownian Motion and continuous semimartingales. For a comprehensive
treatment of local times we refer to Kallenberg!, Karatzas and Shreve? or Revuz and
Yor3. We will first characterize local time of a Brownian motion and will then state the
characterization for continuous semimartingales.

The elementary question underlying the concept of local time is, how one may quantify

1See Kallenberg [64], Chapter 22.
2See Karatzas and Shreve [66], Sections 3.6. and 3.7.
3See Revuz and Yor [89], Chapter V1.
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3.1 Interaction of Stocks through their Ranks

the time a Brownian motion or more generally a continuous semimartingale spends at a
certain level. Denoting by W(-) a standard Brownian motion and by A(-) the Lebesgue
measure, one may introduce the level set Z,,(-) of W as:*

Zo(x)={0<t< oo | W(tw) =2z} (3.1)

Intuitively, one would calculate the Lebesgue measure of this set in order to gain some
insight on the amount of time W spends at level x, however, it turns out that A(Z,(x)) =0
P —a.e. for w € 9.° In order to overcome this shortfall, Paul Lévy introduced the so-called

"mésure du voisinage" or local time as:%

1
L(t,z) = lir% 4—)\ {o<s<t| |[W(s)—z|<e}); t€]0,00), xR (3.2)
e—0 4e

Remark 3.1: For clarity of notation we will denote Brownian local time by L(-,-) and the
local time of a semimartingale X by Ax(:,-) or simply A(-,-) if it is clear which process we
are considering. Further we write L(t) := L(¢,0) and Ax(t) := Ax(¢,0).

Let us now state the formal Definition of Brownian local time and of the occupation time
of a certain Borel set.

Definition 3.1: For a Borel set B € B(R), its occupation time by a Brownian motion is
defined as:”

(t, B) := /t 1p(W(s))ds = A({0 < s <t|W(s) € B}). (3.3)

Let further L = {L(t,z,w) | (t,z) € [0,00) X R, w € Q} denote the random field taking
values in [0,00), such that for each fixed tuple (t,x) the random variable L(t,z) is §;-
measurable. Denote by P*(A) = P%(A — z) the probability measure corresponding to a
Brownian motion with starting point z and suppose there exists Q* € § with P*(Q2*) =1
for all z € R such that for all w € Q* the function (t,z) — L(t,z,w) is continuous and it
holds that:

['(t,B,w) = / 2L(t,z,w)dz; 0 <t < oo, B € B(R). (3.4)
B

Then L is called Brownian local time.®

As stated in Equation 3.4, 2L(t, x) serves as density for the occupation time with respect
to Lebesgue measure.? It is worth noting, that the definitions of local time in the literature

4See e.g. Karatzas and Shreve [66], Section 2.9.B.
°See Karatzas and Shreve [66], Theorem 2.9.6.

6See e.g. Karatzas and Shreve [66], Equation (3.6.2.)
"See Karatzas and Shreve [66], Example 3.6.2.

8See Karatzas and Shreve [66], Definition 3.6.3.

9See also Karatzas and Shreve [66], Section 3.6.A.
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vary, especially concerning the fact whether L(¢,z) or 2L(t,z) is to be called local time.
In the ensuing considerations we will follow the characterization as given in Karatzas and
Shreve [66] which is also in line with the notion of local time used in Fernholz [44]. Usually,
Brownian local time is expressed by means of Tanaka’s formulae:*°

Lit.a) = (W(t)—a)* — (W(0)—a)* - / g0y (W (5)) WV (5), (3.5)
Lita) = W) =a) = WO =+ [ 1aaWE)we, 60

L(t,a) = % (]W(t) —a| —|[W(0) — af —/0 sgn(W(s) — a)dW(s)) : (3.7)

whereby the sign function is defined as:

1, =>0;
sgn(zr) = { 1 z<0 (3.8)

The existence of Brownian local time was proved by Trotter.!! Analogously to the charac-
terization of local time for Brownian motion, one may obtain the corresponding results for
continuous semimartingales.'> Analogously to the Tanaka formulae 3.5 to 3.7, local time
for a continuous semimartingale X (-) is given by the Tanaka-Meyer formulae:'3

Ax(tia) = (X(t)—a) — (X(0) —a) - / o (X ()X (5), (3.9)

Ax(t,a) =

~—~

X(t) — a)” — (X(0) —a) + / L (X())dX(s),  (3.10)

1 t
Ax(t,a) = 3 (|X(t) —al —|X(0) —a| — / sgn(X(s) — a)dX(s)) . (3.11)
0
By employing the concept of local time, one may now investigate the dynamics of ranked
stocks and the behavior of portfolios based on ranked market weights. Let us consider the
following ordering, following for the sake of consistency the notation introduced in Fernholz
[44]. Let us define the k** ranked stock as:4
Xwt) = max min(X;,...,X;), t€][0,T] (3.12)

1<i1 << <n

We denote by X()(t) = (X)(t),..., Xum)(t)) the vector of ranked stocks at time ¢ € [0, T
and by gy (t) = (py(t), - - ., ey (t)) the vector of ranked market weights, ordered from the
largest to the smallest.

10See e.g. Karatzas and Shreve [66], (3.6.11) - (3.6.13).

HSee e.g. Karatzas and Shreve [66], Theorem 3.6.11.

12See e.g. Kallenberg [64], Chapter 22. or Karatzas and Shreve |66, Section 3.7.
13See Karatzas and Shreve [66], (3.7.7) to (3.7.9) or Fernholz [44], Section 4.1.
14See e.g. Fernholz [44], Definition 4.0.1.
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Definition 3.2: '° Let us call the processes X1, ..., X, pathwise mutually non-degenerate,
iof they satisfy:

LYi#j: M{t] Xi(t) = X;(0)}) = 0.
2.Vi<j<k: {t|Xi(t) =X;(t) =Xi(t)} =D as.

Hence, the pathwise mutual non-degeneracy of processes ensures, that the set of times,
when two processes collide has zero Lebesgue measure and that three processes never
collide. Furthermore, we shall denote by p;(k) the permutation which yields the name
(index) of the k" ranked stock at time ¢, i.e. X)(t) = Xp,)(t) and let us impose the
ex-aequo condition p,(k) < pi(k + 1) if Xy (t) = Xpq1)(t) on our market 9. Then,
assuming now that our family of stocks Xi,..., X, fulfills the assumption of pathwise

mutual non-degeneracy, the dynamics of ranked stocks may be expressed as follows:*¢

& 1 1
= Z l{i}(pt(k))dXi(t) + EdAX(er(kH)(t) - §dAX(k—1)7X(k) (t) (3'13)

For the largest and smallest stocks, Equation 3.13 changes to:

dX(t) = Zﬂ{i}<pt(1)>dXi(t)‘f‘%dA(X(l)_X(Q))(t), (3.14)
dX@w(t) = Zﬂ{i}(pt(N))dXi(t)—%df\oqn1>—X<n)>(t)- (3.15)

Building on these dynamics, one may reformulate Theorem 1.1 as follows.

Theorem 3.1: '7 Denote the relative rank covariance process by 7(ij)(t) = Tp,i)pe() () and
consider a market I consisting of n stocks satisfying the pathwise mutual non-degeneracy
condition. Let further S be a function defined on a neighborhood U of the simplex A™ and
let S be a positive C* function on U, such that for (z1,...,x,) € U:

S(x1,...,2n) = S(xay, -, Tw)), (3.16)

and suppose that a:i% log S(x) is bounded for alli =1,...,n. Then S generates a portfolio
T with weights:

Tpu(k) (1) = (%logS )+1- Zu —log Suey( ))) Hw) (1), (3.17)

15See Fernholz [44], Definition 4.1.2.
16See Fernholz [44], Proposition 4.1.11.
17See Fernholz [44], Theorem 4.2.1.
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fort € [0,T]a.s. with drift ©(-) satisfying:

de(t) = ﬁul(t))z ax?;xj5(/%)(f))um(t)mj)(t)T(ij)(t)dt+ (3.18)

n

I
—

(70 k1) () = Ty i) (1)) Ao gy o sy (1),

N | —
b
Il
—

for allt €]0,T]a.s.

Recalling that a market 9T is called coherent if limy .. %log wi(t)y =0Vi=1,...,n as
set out in Definition 1.9, one may directly conclude that this also holds in the case of
ranked market weights. This is evident since for any rank k£ = 1,...,n the ranked market
weight /i) () equals the market weight corresponding to the name i = p,(k) for any time
t € [0, 7], whence:

1
lim —log pmy(t) =0Vk =1,...,n. (3.19)
t—oco {

Furthermore, the dynamics of the ranked market weights can be seen to follow:!®

dlog jugo (t) = Y Ly (pe(k))dlog ps(t) + (3.20)
i=1
1 1
§dA10g,U'(k)710gﬂ(k+1)(t) - §dAIOgN(k—1)710gl‘(k) (t) a.s.,te [OvT]'

The central question which arises in this context is, whether the ranked dynamics of a
certain market model exhibit a certain stability over time. This question was raised by
Fernholz!” and has played a central role in recent works by Chatterjee and Pal [22], Ichiba
et al. [61], Pal and Pitman [82], Pal and Shkolnikov [83] and Shkolnikov [93], [94]. In order
to study this question, Fernholz [44] introduced the notion of asymptotic stability.

Definition 3.3: 2° Let O be a coherent market. Then M is called asymptotically stable if
it holds almost surely that:

1. fork=1,...,n—1 it holds that lim;_, %Alogu(k)_logmkﬂ)(t) = Nokt1s

2. fork=1,...,n—1 we have lim;_,, %(log Py — 10g figrg1y)e = 0,%7,{“;

18See Fernholz [44], Corollary 4.1.12.
19See Fernholz [44], Chapter 5.
20See Fernholz [44], Definition 5.3.1.
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whereby A\ x+1 and ‘71%7k+1 are positive constants and Xo1 = A\pnt1 = 0. Furthermore, if we
denote the centered growth rate of the k'™ ranked stock at time t by gi(t):

9k (t) = Yooy () — u(t), T € [0, 00), (3.21)

then, in the case of asymptotic stability it holds that:

.1
oo = lim ¢ /0 ar(s)ds. (3.22)
In the case of asymptotic stability, the following result by Fernholz [44] permits to actually
calculate local times for the ranked market weights.

Proposition 3.1: 2! If 9 is asymptotically stable, then for k =1,... n:

1 1

Ok = §>\k—1,k - 5)\k7k+1 a.s. (3.23)

By this, one directly obtains:

Ak,k—i—l = -2 (91 + ...+ gk) a.s. (324)

The asymptotic stability of market models is directly linked to the preservation of the
capital distribution curve (CDC). The CDC is the curve which one obtains by plotting the
logarithm of the ordered ranks of stocks versus the logarithm of their respective market
weights. It was one of the most crucial insights in Fernholz’s inspiring work [44] that
the CDC, if computed on the universe of stocks taken from the Center for Research in
Securities Prices (CRSP)?? which essentially comprises all relevant US stock markets, does
not change its structure between 1929 and 1999.23

A similar pattern as observed by Fernholz [44]| for the US market may analogously be
observed if we calculate the CDC for the MSCI EMU universe which we have already used
for our calculations in Section 1.2.3. Figure 3.1 shows the CDC for the MSCI EMU universe
for selected dates between August 2"¢, 2006 and October 30", 2007. The CDCs for the
MSCI EMU universe exhibit a similar stability as the data for the US markets. Considering
that the time window we used is only slightly more than a year, the fluctuations in the
number of stocks in the market are clearly less pronounced than in the case studied in [44],
where a period of 70 years is covered.

21See Fernholz [44], Proposition 5.3.2.
22Gee CRSP [21].
2See Fernholz [44], Figure 5.1.

79



3.2 Complex Market Models and Preservation of the Capital Curve
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Figure 3.1: Capital distribution curves of the MSCI EMU universe.

The analysis of market data as e.g. performed above suggests that the distribution of
capital is nearly invariant in time. This simple observation leads to fairly delicate modeling
issues, since for example the classical log-normal model for stocks fails to reproduce the
structures observable in market data.?* In Section 3.2, we will present some approaches
towards this problem which have been undertaken so far. In Chapter 4 we will develop our
own approach for a market model which preserves the CDC.

3.2 Complex Market Models and Preservation of the
Capital Curve

3.2.1 The Atlas Model

The Atlas model of an equity market is a special case of the general semimartingale model
which has been introduced in Chapter 1. A detailed study of the Atlas model can be found
in Banner et al. [13| and also in Fernholz [44|. The basic idea of the Atlas model is that

24See Stanley et al. [97].
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only the smallest stock in a market gets a positive drift whereas all other stocks get zero
drift. This setup will generally lead to the smallest stock increasing in value and finally
changing positions with the formerly second smallest stock. For the two stocks which have
changed places, the one which now occupies the smallest rank will get the positive drift,
whereas the drift of the formerly smallest stock is set to zero. This setup leads to the
situation that the stock currently in the smallest rank is literally bearing the growth of the
entire market on its shoulders whence the name Atlas model in honor of the titan Atlas of
Greek mythology, who supported the heavens with his shoulders.

In its most general formulation, the Atlas model may be written as follows:?

whereby:
vit) = g+ Z 91X 0)=X,, 0} (1) (3.26)
k=1
oi(t) = Z ok L{x,(0)=X,, 00} (1) (3.27)
k=1

and g >0, gy = —gfork=1,...,n—1and g, = (n — 1)g and oy, is a rank-dependant
constant volatility for all ranks £ = 1,...n. The model given by Equation 3.25 to 3.27
may be formalized by means of the following polyhedral domains for ¢ = 1,...,n and
k=1,...,n—2:%

Q¥ = {yeR"|y >y Vj#i}; (3.28)
QY = {yeR"|y <y; Vj#i}; (3.29)

Q;(:J)rl = {y ceR" |y < min yj, forji,...grand y; >y V1 & {j1,. .. ,jk}} (3.30)

The families {Q,(f) H<i<n and {Q,(f) }1<k<n are partitions of R” for fixed k and i respectively.?”
Using these polyhedral domains one may reformulate Equation 3.25 as:?®

dlog X;(t) = (Z 981 (o x oty + g> dt+ Y kL, ey AWilD), (3.31)
k=1 k=1

25See Banner et al. [13], (1.1) to (1.6).
26See Banner et al. [13], Section 2.
27See Banner et al. [13], (2.2).

28See Banner et al. [13], (2.3).
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whereby we denote by log X (t) = (log X;(t),...,log X,(t)) the n-dimensional vector of log-
capitalizations of the stocks in our market 991. The log-capitalization of the entire market
can then be expressed as:?

Z log X;(t Z log X;(0) + ngt + z": o, B (1), (3.32)

k=1

with Bi(t) = >0, fo (log X (s) eQ(z)}dVV( s). By Lévy’s Characterization Theorem®® one
directly obtains that the By(-) are Brownian Motions. The Atlas model satisfies several
properties of markets which have been introduced so far. First and foremost it can be seen

directly that the Atlas model is coherent.?! For this it suffices to consider that

.1 1
JlglgoilogX(T) = max (hm TlogX (T)) =g, (3.33)

1<i<n \T—oo
from which it follows that limy_, % log 11;(T) = 0, i.e. that 9t is coherent.

Furthermore, the solution of the SDE 3.31 satisfies the ergodic relation:?

li ! TIL d ! 3.34
TI—I&T o  UogX(s) ey} S_n (3.34)

thus asymptotically each stock spends the same amount of time in every rank, i.e. T'/n if
we consider the finite time horizon [0, 7']. This includes the smallest rank which means that
each stock is acting as Atlas stock for the market one n — th of the time. Considering now
the ranked capitalization process, we shall denote the vector of ranked log-capitalizations

as Z() = (Z0(), ..., Zu(-))

Zp(t) = Zﬂ{logX(t)tegi)}logXi(t), (3.35)
=1
Xwy(t) = exp(Zk(t)). (3.36)

Xry ()
X1+t Xn (D)
by Aggs1(-) == Az,—z,.,(-) the local time at the origin of the nonnegative semimartingale

Zy, — Zy41 and using Ag1(-) = Ay 1 = 0, then:

By this one directly obtains the ranked market weights pi(t) = If we denote

1
dZy(t) Z Lo x (e y 4108 Xi(t) + D) (dA g k+1(t) — dAg—1(1)) (3.37)

29See Banner et al. [13], (2.5).

30See e.g. Karatzas and Shreve [66], Theorem 3.3.16.

31See Banner et al. [13], Remark 2.1. or Fernholz [44], Example 5.3.3.
32See Banner et al. [13], Proposition 2.3.

33See Banner et al. [13], Section 3.
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by which one obtains:

Zi(t) = Z(0) + (gk + 9)t + 0w Bi(t) + % (kg1 () = Ap—1(t)) - (3.38)

N.b. that the above Equations 3.37 and 3.38 are merely the special case for the Atlas model
of the general dynamics of ranked stocks as given in Equation 3.13. For the above notions it
is needed, that the log X1, ..., log X,, are pathwise mutually non-degenerate as specified in
Definition 3.2.3* This however follows from an application of Girsanov’s Theorem?3® whose
application is justified by the non-degeneracy of the instantaneous covariance structure
and the boundedness of the drift.3

The reason for discussing the Atlas model at this point is its asymptotic stability which is
broadly discussed in Banner et al.3” and Fernholz*®. To this end, one studies the ergodic
behavior of:3

- iy (T -
Ex(t) :== log (L()) = Zp(t) = Zis1(t) = Z(0) + O (t) + Az, (1), (3.39)
fie+1) (1)
whereby
1 ~
Or(t) := (g = grr1)t = 5 [Arr(t) + Nisr ()] + sW M) (3.40)
and
Sk = \/Or+0p4q, (3.41)
- 1
W(k)(t) == ; (O'kBk(t) — Uk+1Bk+1(t)) . (342)
Again, by Lévy’s characterization?® one obtains, that W®*)(.) is a standard Brownian Mo-
tion. For Zi(+) the following limit exists in distribution:*!
— . figr) () )
lim =x(¢) = lim log | ———~ | = &, 3.43
with &, ~ Bxp(ry) and ry := 22k — ZA@ittom) o

32
k Ok~ %k+1

34See Banner et al. [13], Section 3.

35See e.g. Kallenberg [64], Theorem 18.19. and Cor. 18.25. or Karatzas and Shreve [66], Section 3.5.
36See Banner et al. [13], Section 3.

37See Banner et al. [13], Sections 3. and 4.

38See Fernholz [44], Example 5.3.3.

39See Banner et al. [13], Equations (3.8) to (3.10) and (4.1).

408ee e.g. Karatzas and Shreve [66], Theorem 3.3.16.

41See Banner et al. [13], Equation (4.2).

83



3.2 Complex Market Models and Preservation of the Capital Curve

By this one obtains the asymptotic Pareto distribution for the ratios of successively ranked

capitalizations:*?

fige) (1)

lim P { > y} =y P (& > logy) Vy > 1. (3.44)
P 1) ()

t—o00

The results for the Atlas model can furthermore be put into the context of a portfolio 7 in

the Atlas market with n stocks where we denote the asymptotics of the portfolio growth

rate v, (-) and the excess growth rate v*(-) as follows:*3

1 T

Gr(n) = Th_r)lgo— i Y (t)dt, (3.45)
1 T

Gin) = Jim - [ (e (3.46)

by which one obtains G (n) = limy_,«, % log Z(T'). In this context it may be shown, that
in an Atlas market the equally weighted portfolio outperforms the market if the variances
are modeled in a way such that they are linearly growing by rank.**

Considering diversity it can be seen that the Atlas model admits a unique equivalent mar-
tingale measure on every finite time-horizon since it has a constant invertible instantaneous
covariance matrix and bounded growth rates by which it follows, that the Atlas model can
not be weakly diverse.*> However, in fact the probability

P (% /OT oy (tydt < 1— 5) (3.47)

is actually very close to one*®, which indicates that although we do not have weak diversity
formally, the behavior of an Atlas market will actually be similar to a weakly diverse one.

3.2.2 Hybrid Models for the Equity Market

The Atlas model introduced in Section 3.2.1 may be further extended to cover both rank-
and name-dependant characteristics. This Hybrid Atlas Model was extensively discussed in
Ichiba et al. [61] and the study of such hybrid models is the subject of ongoing research.*”

42Gee Banner et al. [13], Equation (4.4) or Fernholz [44], Example 5.3.3.
43See Banner et al. [13], Section 5.

44Gee Banner et al. [13], Example 5.2.

45See Banner et al. [13], Section 7.

46See Banner et al. [13], Section 7.

47See e.g. the lecture given by Fernholz [45].
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3.2 Complex Market Models and Preservation of the Capital Curve

Starting with the polyhedral domains {QS)} € R™ which were introduced in Section
1<i,k<n
3.2.1 we shall consider the symmetric group of permutations ¥,, and let us introduce for

cach permutation p € ¥,, the polyhedral chamber R, := (;_, Qi(k) which comprises all
points z € R", such that x,) is ranked k-th among w1, ..., z,. Since ties are resolved with
favor to the lower index, there is a unique p € 3, for every z € R", such that z € R,.1®
Hence for every x € R", one may define the associated indicator map = +— p* € ¥,,, such
that xpeq) > ... > xpe(,) which assigns to each given rank k the corresponding index
(name) p®(k).

The aim of the Hybrid Atlas Model is to extend the modeling framework discussed in the
above Sections in order to cover effects attributable to the name and rank of a certain
stock. Considering as usual the log-capitalization of stocks, the Hybrid Atlas Model may

be formulated as follows:*°

dlog X;(t) = (Z 911 1og x(0ye@ly T % T 7> dt (3.48)
k=1

j=1
+ Z Okl X(t)eQ;”}dm(t)’
=1

whereby X;(0) = z;, 0 < t < 00, gi denotes the constant drift for rank k, 7; denotes the
constant drift for name ¢, v denotes the common drift, o; denotes the volatility for rank
k and p;; denotes the name-based correlation. The system specified by 3.48 behaves like
a Brownian Motion with drift (g +; + ) and variance (0% + pii)? + 3,2, p7;>° This
setup provides a considerable amount of flexibility in incorporating effects stemming from
different patterns observable in equity markets, furthermore it permits remarkable stability
in the structure of the capital curve as will be discussed in the following considerations.
These results however come at the price that the Hybrid Atlas Model has to be restricted
to a setting fulfilling certain assumptions.

Assumption 3.1: The following assumptions have to be made!

48Gee Ichiba et al. [61], Section 1.
498ee Ichiba et al. [61], (2.1)

0See Ichiba et al. [61], Section 2.
51See Ichiba et al. [61], (2.2) and (2.3).
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Stability Condition:
S g+ m=0. (3.49)
k=1 i=1
Ellipticity Assumption:
s, = diag (O'pfl(l), . ,O'pfl(n)) + (/)ij)lgi,jgn ) (3.50)

The (n x n) matrices s, are positive definite for p € ¥,, and o}, > 0 Vk.

Setting log X (t) =: Y (t), one may now reformulate Equation 3.48 in vector form as fol-
lows:*?
dY (t) = G(Y (t))dt + S(Y(t))dW (t), (3.51)
whereby Y(0) =y e R", 0 <t <ooand G:R" — R", §:R" - R™" with:
T
Gly) = Y lyery G+ N+ o+ +7) (3.52)
pEYn
S) = Y Lyer,y5pm y € R (3.53)
PEYR

Provided that Assumption 3.1 holds, i.e. that the s, are positive definite, the system (3.48)
resp. (3.51) has a weak solution (Y, W) on a filtered probability space (2, §, {§(t)}i>0, P)

153 54

satisfying the usual®® conditions.

The ergodic behavior of the system 3.48 is comprehensively discussed in Ichiba et al. [61]
and was also briefly treated in Fernholz’s talk [45]. At this point, we will give an overview
of the ergodicity results for the Hybrid Atlas model, followed by results on the stability
of capital distribution and the discussion of remaining problems with this kind of second
order stock market models. Let us therefore consider the average log-capitalization process
V() =+ 3", Y;(-) which has the dynamics:*®

_ 1 n 1 n 1 n
V(1) == yitat+— > ouBu(t) + > piW(h), (3.54)
i=1 k=1 i,j=1
where
n t
By(t) := Zl/o Ly ey @Wils), k=1,....n; (3.55)

52Gee Ichiba et al. [61], (2.4).

53See e.g. Karatzas and Shreve [66], Definition 1.2.25.
54See Ichiba et al. [61], Section 2.

55Gee Ichiba et al. [61], Section 3.
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3.2 Complex Market Models and Preservation of the Capital Curve

and 0 < ¢t < oo, i, Q,(j) = R". Bi(:),...,B,(:) are continuous local martingales with

6

quadratic cross variations (By, B;)(t) = 6 ;t, hence by Knight’s Theorem® one obtains

that the B, £k =1,...,n are independent Brownian Motions.

It follows from Equation 3.54 that the average log-capitalization Y (-) grows at a rate equal

lim # = a.s. (3.56)

T—00

to the common drift v, i.e.:

=

by the strong law of large numbers for Brownian Motions.?”

Introducing the subspace IT of R™, 1T = {y € R"|(1,...,1)Ty = 0} and imposing in addition
to Assumption 3.1 the stability condition 22:1(916 + Ypky) < 0, it is shown in Ichiba et al.
[61] that the vector of centered log-capitalizations Y (t) = (Yi(t) — Y (£),...,Y,(t) = Y (1))
is stable in distribution,®® i.e., there is a unique invariant (ergodic) probability measure
for Y(-) and for any bounded, measurable function ¢ : IT — R, the Strong Law of Large
Numbers holds:

im = [ fT(0)dt = / F(w)uldy). (3.57)

Remark 3.2: It is worth noting at this point, that although the Hybrid Atlas model
permits non-zero drifts for all those stocks larger than the smallest, the stability condition
22:1(% + Yp(ky) < 0 mandates that cumulative rank- and name-dependant growth rates
up to rank n — 1 be negative. Thus, looking at the centralized vector of log-capitalizations
17() where the overall (average) growth rate of the market 7 is subtracted, we are again
studying a system very much akin to the standard Atlas Model, where all stocks but the
smallest have a cumulative negative growth contribution to the market.

An economic interpretation of such a system would be that the larger stocks - and the
largest stock in particular - would switch to a regime of decline or at best stagnation in
market capitalization growth once they have reached a dominating position in the market.
This concept must be put into the context of the general framework of Stochastic Portfolio
Theory which we have summarized in Chapter 1. Many results given in the monograph
by Fernholz [44] are based on the assertion that large-cap stocks will tend to lag behind

56See e.g. Karatzas and Shreve [66], Theorem 3.4.13. The Knight Theorem states the following: letting
M ={M; = (Mt(l), ce Mt(d)), §t, 0 < t < 0o} be continuous local martingales with P-almost sure limit
1ithOO<Mt(i)> = oo and cross variations (M®) M), =0 for 1 <i# j < dand 0 <t < oco. Defining
Ti(s) = inf{t > 0: (M®), > s},0 < s < o0, 1 <i<d,sothat for each i and s the random time T;(s) is a
stopping time for the right-continuous filtration {F;}, then the processes B = Mq(j)(s), 0<s<o0,1<
1 < d are independent, standard one-dimensional Brownian Motions. '

57See e.g. Karatzas and Shreve [66], Problem 2.9.3.

8See Ichiba et al. [61], Proposition 1.
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in terms of growth rate but will be superior in terms of dividend rate as opposed to small
cap stocks.?

Although this pattern may certainly be observed to some extent in real-life equity markets,
the aspect that the largest stock inevitably has to grow slower than the overall market on
average is certainly questionable. It would be an interesting empirical question - one which
is however beyond the scope of this work - whether the actually observable growth behavior
and rank-occupation time of the largest stock in various markets strongly contradicts the
pattern insinuated by the stability assumptions of the Hybrid Atlas Model.

Let us now consider the long-run average occupation time which a certain company ¢ spends
in the &' rank which is given by:%°

T
Qk,i = lim _/0 IL{X(t)eQ,(f)}dt’ i,/{}: 1,...,n. (358)

In this way, average occupation time is expressed as percentage of the total trading time
considered and it can be shown that 6y ; exists almost surely in [0,1] for all ranks & and
all names ¢ under the regularity conditions imposed by Assumption 3.1 and the already
mentioned stability condition 22:1(% + Vo)) < 0.8 Furthermore, as can be expected by
this construction, it holds that

S b= 0i=1, (3.59)
j=1 =1

hence summing the proportions of average occupation of the k' rank over all names or
summing the proportions of occupation of all ranks by a certain stock yields the whole

trading time, i.e. 100%. By this it clearly follows that the matrix ¥ = (6;,)
62

I <ki<n 18
doubly stochastic.®* Similarly it is shown in [61] that the long term average occupation

time of the market in a certain polyhedral chamber R, given by:%3

1T
6, := lim T/ Lix(rer,ydt (3.60)
0

T—o0

exists almost surely in [0,1] for all p € 3,. Finally we have that:%

Oi= Y, b, (3.61)

{peXp|p(k)=i}

%See e.g. Fernholz [44], Theorem 2.3.4. and Corollaries 2.3.5. and 2.3.6.
60See Ichiba et al. [61], (3.7).

61Gee Ichiba et al. [61], Corollary 1.

62See also Ichiba et al. [61], Corollary 1.

63See Ichiba et al. [61], (3.8).

64Gee Ichiba et al. [61], Corollary 1.
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By Theorem 1 in [61] it holds that:

e e (i)
Op; = lim — ﬂ{X(t)eQ,(j)}dt = lim ?/0 I]'{f/(t)ng)ﬂH}dt = u(Q,’), (3.62)

T—o0 T’ t—00
where y is the unique invariant (ergodic) probability measure for Y (-).

At this point we shall move on to discuss the dynamics of ranked stock prices under the

Hybrid Atlas Model. To this end we will denote the k-th ranked log-price as Zx(t) :=

log Xy (t) = >0, L, @), log X;(t). By this construction we obtain Z;(t) > ... >
i og X(H)€Q;"}

Z,(t) for all t € [0,T]. Let us further denote the index process by p; := p*® = plOgX ®)
which yields the name of the stock occupying the k-th rank at time ¢, X,,1)(t) > ...

Xpon)(t), thus Zy(-) = log X, 1)(+). Let us also recall the market weight of the i-th stock
. . (N — X0

as introduced in Chapter 1, u;(-) = ST

Z]X(# fori,k=1,.

v

and the ranked market weights u(k)(-) =

Under Assumption 3.1 and the additional stability condition Zk 19k + Ypuy) < 0 for
l=1,...,n—1 the process of ranked dev1at10ns Z() = (Z,()=Y(),..., Zn(-)=Y(-) from
the average log-capitalization Y (-) = = 3" | log X;(-) is also stable in distribution and so is
the (R?~! x ,,)-valued process (Z(-),p.), where Z(-) = (Z1(:) = Z2(-), . . ., Zn_1(-)— Zn(+)).%

Let us again denote by Ay _ () the local time for the k-th and I-th ranked stocks coin-
ciding, then the dynamics of Z(-) are given by:%

<Z dAZk Z )_ idAZz—Zk(t)> )

I=k+1

(3.63)
whereby Ny (t) = |{i|log X;(t) = Zx(t)}|. It is worth noting, that under Assumption 3.1,
the local times of collisions of three or more stocks are identically equal to zero.®” Fur-

dZ(t) Z L 10g x gty @108 Xi(t

thermore, under Assumption 3.1 and the stability condition Zizl(gk + Ypry) < 0,1 =

1,...,n — 1, one obtains the following limit properties for the Hybrid Atlas Model:%®

65See Ichiba et al. [61], Corollary 2.
66See Ichiba et al. [61], (4.3).

67See Ichiba et al. [61], Lemma 1.
68See Ichiba et al. [61], (4.5) - (4.7).
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k n
1
lim fAZ;rZz (T) = -2 Z (gl + Z%ﬁlﬂ-) ,a.s.k=1....n—1, (3.64)
=1 i=1

t—o0
S L (3:65)
. log X(T)
TIEI;OT = 71gr010—10g <ZX > =7, a.s. (3.66)
From Equations 3.64 to 3.66 it directly follows, that a market 991 in the Hybrid Atlas
Model is coherent, i.e. that limp_,. %log pi(T) =0 for all i = 1,...,n. Furthermore it is

shown in [61], that under the above assumptions the long term average occupation times
0. satisfy the equilibrium identity®

D Oige+vi=0i=1,...n (3.67)

k=1

Capital Distribution in the Hybrid Atlas Model

Akin to the standard Atlas Model which has been presented in Section 3.2.1, the Hybrid
Atlas Model also permits to calculate an invariant distribution of the ranked market weights
k) (+), however only under certain restrictions to the setup specified in Equation 3.48.

Assumption 3.2: 7 Let us assume that the conditions set forth in Assumption 3.1 hold
together with the stability condition 22:1<gk + %) <0,1=1,...,n—1. Then we further
assume that the rank based variances grow linearly, i.e.

03— 01 =03;—05=...=0-—0°_,, (3.68)
and that

Under the conditions specified in Assumption 3.2, the ranked market weights px)(-), k =

1,...,n have the invariant distribution with:™
-1
fmi,. .. mag) =Y |0 HAM (Hm pd A= 1“) (3.70)
pEEn

69See Ichiba et al. [61], Corollary 3.
"0See Ichiba et al. [61], Lemma 3 and Proposition 3.
"See Ichiba et al. [61], Corollary 5.
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n—1

asdensityfor0<mn<...<m1<1,mn:1—2j:1mj and

W (ot o) S 1<k<n—1 (3.71)
= ) S n = ~n—1, .
nk UI% + O-I%-i-l g

and A\, = A, = 0. Similarly, the log-market weights my,(-) := log f(x)(-) have an invariant
distribution with density:™

n—1
gler, ... enoy) = Z lng (Apje~Ora=Anarier) exp,nlc”] o<, <. < <0

PEXn Jj=1

(3.72)

From these invariant distributions one obtains the piecewise linear Capital Distribution
Curve with expected slope:™

[log Pk+1) — log pgry E[E4] _ M (3.73)

log(k + 1) — log(k:)] T log(l+ kY log(l+ kY

3.3 Conclusion

In this Chapter 3 we have presented some general aspects concerning the capital structure
of equity markets and the analytic complexities arising once the dynamics of ranked stocks
in a market 91 are considered instead of the name-based dynamics. We have also given an
overview of results available in the literature on special market models, namely the Atlas
and the Hybrid Atlas models which permit to reproduce some observable patterns of equity
markets, albeit at the cost of imposing stronger modeling assumptions.

"See Ichiba et al. [61], (5.19).
"See Ichiba et al. [61], (5.20).
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Chapter 4

A Market Model Preserving the Capital
Curve

The preceding considerations in Chapter 3 demonstrated the interesting empirical fact that
the Capital Distribution Curve (CDC) possesses a characteristic shape which remains sim-
ilar both over time and across markets.! Furthermore it ought to be noted, that the usual
log-normal modeling approach for equity markets fails to reproduce the desired shape of
the CDC.2 In this Chapter we will present the central contribution of this thesis, namely
the construction of a model for the stock market, based on the idea of modeling stocks ac-
cording to the dynamics of a Squared Brownian Motion (SqBM). We will provide a detailed
motivation for our model in Section 4.1, also highlighting similarities to the dynamics of
volatility stabilized markets which have been studied in the context of stochastic portfolio
theory for several years. In Section 4.2 we will equip our market with a correlation struc-
ture and present the results of our model implementation. It ought to be underlined that
the correlated model which we develop in Section 4.2.1 has been developed with special
attention to applications in risk management where the incorporation of observed depen-
dence structures is of paramount importance. While the independent SqBM model which
is introduced in Section 4.1.2 possesses some similarities to volatility stabilized market
models, the enhanced correlated model outlined in Section 4.2.1 has - to the best of our
knowledge - not been applied so far in order to address the problem of replicating the
general structure of stock markets’ capital distribution and general market dynamics.

!See Figure 3.1 and Fernholz [44].
2See Stanley et al. [97].
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4.1 Motivation

4.1.1 Analysis of Market Weights for Positive Affine Processes
General Properties of Affine Processes

In the ensuing considerations of Section 4.1, we will motivate our approach of utilizing
a squared Brownian Motion as building block of our market model. In the first step we
will state some general results on (positive) affine processes and discuss the distributional
behavior of market weights. In Section 4.1.2 we will further elaborate on the special case
of squared Brownian Motion.

Affine processes have been introduced and discussed with a view to applications in finance
by Duffie, Filipovi¢ and Schachermayer [33|. Further research in this class of processes
has been conducted for instance in the areas of affine LIBOR models?, yield curve shapes®
or affine stochastic volatility models®. For a general overview of affine processes we refer
e.g. to Keller-Ressel [68] and to Keller-Ressel, Papapantoleon and Teichmann [70], the
one-dimensional special case is discussed in Keller-Ressel and Steiner [69].

In the first step we will introduce affine processes defined on the general state space D =
RZ, x R™ with total dimension Dim(D) = d = m + n and we shall then move on to
the special case of D = R>o. With respect to the notation we will follow the standards
and conventions as set out in Keller-Ressel [68]. Let therefore M = ITUJ = {1,...,d}
be the index vector, whereby the subset I = {1,...,m} corresponds to the Rs-valued
components and J = {m + 1,...,m + n} is the index set of the R-valued components.
Furthermore, for a d-dimensional vector z let x; = (z;);e; denote its projection on the
components with index ¢ € I and let us denote the scalar product (z,y) = Zizl xRy for
x,y in R? or C%.

We shall furthermore define:®

u = {uE(Cd|ReuI§O, ReuJ:O},
Uu° = {uE(Cd|Reu1<0, RQUJZO}.

N
N =

3See Keller-Ressel, Papapantoleon and Teichmann [70].
4See Keller-Ressel and Steiner [69)].

°See Keller-Ressel [68].

6See e.g. Keller-Ressel [68], Equations 1.1. and 1.2.
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Definition 4.1: 7 Let (X (t))s>0 be a stochastically continuous®, time-homogenous Markor’
process on the state space D = RZ; x R™ with starting point X(0) = x and law P,. Then
(X (t))e>0 is called affine if its characteristic function is an exponentially-affine function of
the state vector. Thus, on iR? there exist functions ¢ : RsoxiR? — C and v : Ry xiR? —
C? such that:

E, [e09] = exp (6(t,w) + (o, 9t u))) (13)
for z € D and (t,u) € Rsy x R4,

Let furthermore (P;);>0 be the semi-group of operators associated'? to the Markov process
(X(t))t>0, acting on the bounded Borel functions By(D) by:
Pf(x)] = E.[f(X(¢t))], forallz € D, t >0, f € By(D), (4.4)
and let us define the set O
O = {(t,u) € Ryo x U|Ps[exp({0,u))] # 0V s € [0,t]}. (4.5)

Then we can state the following properties of the functions ¢ and v:!!

1. ¢ maps O to C_, whereby C_ := {u € C|Reu < 0}.
2. ¥ maps O to U.
3. ¢(0,u) =0 and ¥(0,u) = u forall u € Y.

4. ¢ and v possess the semi-flow property:

¢<t+8’u) = ¢<t7u)+¢(sa¢(t7u))’
w<t+57u) = w(‘S?w(t?u))v (46)

for all t,s > 0 with (t + s,u) € O.

"See e.g. Keller-Ressel [68], Definition 1.1. Nota bene that we stick to the definition as given in [68] and
include stochastic continuity whereas this property is introduced in Duffie, Filipovic and Schachermayer
[33] for regular affine processes.

8See e.g. Keller-Ressel [68]. A process X (-) is called stochastically continuous if for any ¢, — ¢ in R>g
it holds that X (t,) 25 X (¢).

9See e.g. Karatzas and Shreve [66], Section 2.5.B.

10See e.g. Keller-Ressel, Section 1. For the general background we refer to Kallenberg [64].
HSee Keller-Ressel [68], Proposition 1.3.
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5. ¢ and v are jointly continuous on O.

6. With the remaining arguments fixed, u; — ¢(t,u) and u; — (t,u) are analytic
functions in {u;|Reu; <0, (t,u) € O}.

7. Let (t,u), (t,w) € O with Reu < Rew. Then:

Re¢(t,u) < ¢(t,Rew),

Rey(t,u) < o(t,Rew). (4.7)
Due to the above properties, ¢(t,-) and 9(¢,-) map real numbers to real numbers.!? A
more detailed discussion of the semi-flow property can be found in Section 1.2 of Keller-
Ressel [68] together with the reference to more general results on semi-flows as e.g. given
in Filipovi¢ and Teichmann [52].

Definition 4.2: '3 An affine process X () is called reqular, if the right-sided derivatives:

F(u) = %(t, u) , R(u) := %—Qf(t,u) (4.8)

t=0+ t=0+

exist for all w € U, and if they are continuous at u = 0. F(-) and R(-) are called functional
characteristics of the affine process X (-).!

For a regular affine process, the semi-flow equations given in (4.6) may be differentiated
w.r.t. s and for s = 0 one obtains the following ordinary differential equations for ¢ and ¥
and (t,u) € O, which are called generalized Riccati equations with the variable u entering

as an initial condition:!®

%¢<t,u> = F@(t,u), ¢(0,u)=0, (4.9)
%W,u) = R@(t,u), $(0,u)=u. (4.10)

It can furthermore be shown, that F(-) and R(-) are in fact log-characteristic functions
of sub-stochastic infinitely divisible measures subject to a certain set of admissibility con-
ditions.'® This establishes a connection to the theory of Lévy processes, wherefrom we

12See Keller-Ressel [68], Proposition 1.3.

13See e.g. Duffie, Filipovi¢ and Schachermayer [33], Definition 2.5., or Keller-Ressel [68], Definition 2.1.
14Gee Keller-Ressel [68], Remark 2.2.

15See Duffie, Filipovi¢ and Schachermayer [33], Section 6.

16See Duffie, Filipovi¢ and Schachermayer [33], Section 2. and Keller-Ressel [68], Chapter 2.
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have that the characteristic function of an infinitely divisible probability measure can be
described by the Lévy-triplet (a, b, m), whereby a denotes the diffusion matrix, b denotes
the drift vector and m denotes the Lévy measure.!” In the case of a sub-stochastic in-
finitely divisible measure one obtains as a fourth parameter the defect of the measure
¢ = —logm(D).'® For the scalar function F(-) and the d-dimensional, vector-valued func-
tion R(-) one ends up with a Lévy-quadruplet (a,b,c,m) describing F' and with Lévy-
quadruplets (ay, Bi, 7s, i) for i = 1, ..., d describing R.

Definition 4.3: 1°

The parameter set for an affine process X(-) is given by positive semi-definite real d x
d matrices a,a’t, ... o, by Ré-valued vectors b,B',..., 3% and by non-negative numbers
e,vh, .. .,7% and by the Lévy measures m,ut, ..., pn% on R This parameter set is called
admissible for an affine process with state space D, if the following conditions hold:

ag =0ifkelorlel, (4.11)
o’ =0 forallj € J, (4.12)
o, =0if ke I\{i} orl € I\{i}, (4.13)
be D, (4.14)
Bi >0 foralli € I andk € I\{i}, (4.15)
Bl =0 forallj € Jandk €I, (4.16)
v =0 forallj € J, (4.17)
suppm C D and / {(lz1] + |2zs?) A1} m(dz) < oo, (4.18)
D\{0}
W =0 forallj € J, (4.19)
supp i C D foralli € I, and (4.20)
/ {(lzngy| + [zso?) A1} pi(de) < oo foralli € 1. (4.21)
D\{0}

The conditions outlined in Definition 4.3 look cumbersome, yet they are far less complex
in the one-dimensional case which will be outlined below. A concise visualization of the
structure of a,a?,...,a% and b, 81, ..., 3% can be found in Section 2 of Keller-Ressel [68].
We will conclude this general overview of affine processes by stating a central result of
Duffie, Filipovi¢ and Schachermayer [33] on the generator of an affine process.

17See e.g. Applebaum [9], Section 1.2.4. or Schoutens [91].
18See Keller-Ressel [68], Chapter 2.
19See Duffie, Filipovi¢ and Schachermayer [33], Definition 2.6. or Keller-Ressel [68], Definition 2.3.
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Definition 4.4: 2° Let us define the following truncation functions h,x',...,x™ from
R? — [—1,1]? coordinate-wise by:

0, kel;VEéeRY,
hk(S) = L Le J:VE € Rd; (4'22>

14677

and
oy, J 0 keDihVeER,iel;
Xil€) =90 &, peguli)VeeRd el

14+€7°

(4.23)

Theorem 4.1: 2!

Let (X (t))i>0 be a regular affine process and D its state space. Then there exist some

-----

1. the functions F' and R given in Definition 4.2 are of the following Lévy-Khintchine
form:

Flu) = <u’au>+<b’u>_c+éd\{o} (exp ((§,u)) = 1 = (h(E), u)) m(dS),

Ri) = o)+ () =" [ (e ) 1= (016, ) )
(4.24)
and

2. the generator’® A of (X (t))i>0 s given by:
d

(z)
Z (akl + Z%z l) 01,0z

k=1

+<b+25ixi,Vf(x)> — (c+Zvixi> flx

" / (1 €) — f(x) — (h(€), V f(2))) m(de)
D\{0}

m

" Z /D\{O} (f(z+&) — flx) = (X'(€), Vf(2))) wip' (d€), (4.25)

for all f € C3(D) and z € D.

20See e.g. Keller-Ressel [68], Definition 2.4.

21See Duffie, Filipovi¢ and Schachermayer (33|, Theorm 2.7.

228ee e.g. (Oksendal [80], Definition 7.3.1. and Theorem 7.3.3. The generator of an It diffusion is
defined as Af(x) = limy o w forx € R” and f:R"” — R.
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Proof: For a proof of this theorem we refer to Duffie, Filipovi¢ and Schachermayer [33],
Proof of Theorem 2.7. or Keller-Ressel [68], Proof of Theorem 2.6. for an alternative ap-
proach. O

The general results and simplifications in the one-dimensional case have been outlined in
Keller-Ressel and Steiner [69] and we refer to their paper for further details. Specifically
we shall concentrate on the domain D = R, since we are interested in stock prices which

should not become negative. In this setup, we have:?

U ={ue ClReu <0}. (4.26)

Again in this context we may simplify Definition 4.1, thus calling a Markov process
(X(t))>0 and its semi-group (F;);>o affine if the characteristic function is exponentially
affine, i.e. there exist C-valued functions ¢(¢,u) and ¥ (¢, u) on R>o x U, such that:

E, [eX(t)“] = exp (P(t, u) + z(t,u)) . (4.27)

Furthermore, let us outline how the set of admissible parameters from Definition 4.3 simpli-
fies in the one-dimensional case. The parameters (a, a, b, 53, ¢, 7y, m, p) are called admissible
for a process with state space D = R, if:?*

a=0, (4.28)

a, b, ¢, v € Rxg, (4.29)

B € Ry, (4.30)

/ (& A L)m(dE) < oo, (4.31)
(0,00)

and m, u are Lévy measures on (0,00). Similarly the truncation functions h and y given
in Definition 4.4 simplify to:

h(€) == (4.32)

{0, if D = Rs

1f52a it D=R;

23See Keller-Ressel and Steiner [69], Definition 2.1.
248ee Keller-Ressel and Steiner [69], Definition 2.3.
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and

=, fD=R
Xk (€) :z{ e =0 (4.33)

0, ifD=R

Since we are merely focusing on D = R, the truncation functions simplify considerably
and the functions F'(-) and R(-) as stated in Equation 4.24 are given by:

F(u) = au2+bu—c—|—/ exp({u)—l—w m(dg),

D\{0} ~

Ru) = au?+ fu—~+ /D o [eptEn =1 9u | ey

(4.34)

Similarly the second result from Theorem 4.1 may be simplified, so that the infinitesimal
generator is given by:%

Af(@) = (a+aa)f"(a) + b+ B2)' (o) = (e + 92) (o)
+[ @9 - £@) - F@h©) mde)
D\{0}

t / (flz +6) — flx) — F@)x(E)) plde). (4.35)
D\{0}

This concludes our brief discussion of general properties of affine processes and we will
now move on to the next step of investigating the structure of market weights in an affine
model.

Behavior of Market Weights

Let us now assume that our market 91 consists of n independent instances of a positive
affine process X (-) with D = Ry, i.e. MM = {X;(-),..., X,()}, whereby all X;(-) have
the same distributional behavior X;(-) ~ G; = G ~ X(-) for all i = 1,...,n. We shall

25Gee Keller-Ressel and Steiner [69], Theorem 2.4.
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furthermore assume that all initial values X;(0) = x; = x are equal for i = 1,...,n. Hence
for all particles in our market, the characteristic function is of the same exponential affine
form as given in Equation 4.27. Since we assume independence between all particles in
9, the distribution of the market capitalization S(t) = Y, X;(¢) may be defined in a

straightforward way by means of multiplying the individual characteristic functions.?6
Since X;, i = 1,...,n are independent, we have
E | X;(t)| =nE[X;(t)] and Var | Y~ X;(t)| = nVar[X;(t)]. (4.36)
j=1 j=1
Summarizing, for the process S(t) = > 7| X;(t) it holds that:
B [exp(uS(#))] = exp (no(t, u) + nats(t, u) (4.37)

whereby v € U and X;(0) = x foralli € {1,...,n}. Since n is deterministic, this
expectation can be written with respect to the starting point = of individual particles and
may be expressed as:

B o (M50 | = exp (6 (1) 0 (1.2)). (4.38)

Thereby, S(-) is a positive affine process as well, with

(n) - °
o™ (¢t u) ne (t, n) , (4.39)
(n) - ¢
for n € N and (¢,u) € Rs¢ x Y. Furthermore, we obtain
9, 0 u
=™ (t,u) = n—g(t,u)] =nF(=)=F"(u), (4.41)
ot =04 ot =04 (n)
0 0 u
0 (t, u) = nY(tu)  =nR(-) = R"(u). (4.42)
ot =0+ ot o4 (n)

Now, that we have analyzed the general behavior of M = {X;(-),..., X,(-)} and of S(+),

we want to retrieve an approximation for the ordered market weights p)(t) = Ziqf—)?(;)(t)
j=1-%j

Recall, that we have assumed all particles in the market 91 to follow the distribution func-

tion G. Let us coherently define the quantile function as the (generalized) inverse G~ (p)

26See e.g. Kallenberg [64], Chapter 5.
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for p € [0,1]*". If we want to estimate the market weight of the k-th largest ordered
particle, we can do so by calculating the quantile corresponding to the probability ”T_k
for £ € {1,...,n}. The approximation for the market capitalization may be obtained by
straightforward calculation of E[S(t)]. We shall therefore utilize the following approxima-
tion for pugy(t), t >0

= n__. (4.43)
S| B[ES X0

The rationale behind (4.43) is to approximate the k' largest stock X((-) by the corre-
sponding quantile of its probability distribution G(-). Let us write p = G(x), then for all
f:10,1] — R we have
00 1
| rc@edce) = [ 106w
0 0
1 n
= Z F(G(X:(1)))Xi(t)
i=1

= % > HGXwy ) Xw (D), (4.44)

which holds due to the Law of Large Numbers (LLN)?®. Hence, again by virtue of the Law

of Large Numbers we have

.y
G(Xu (1) =" nn :

Consequently we obtain

1 a(n=k\ 1y 3 Xw(®)
' 6t (M) L —p®. (445)
N ket X (t) no )T IS X Y
Therefore in the limit we can use the approximation

LGt (nk)
t — n n

which is exactly the term which we have defined in Equation 4.43.

For v € U it holds that

i (u) = Exlexp(uX(t))] = (Lgf) (u), (4.46)

27See also Definition 5.6.
28Gee e.g. Kallenberg [64], Theorem 4.23.

101



4.1 Motivation

whereby £ denotes the Laplace transform?® and g denotes the density corresponding to
G (if it exists). Now let us assume, that gf exists, then one may recover the distribution
function of X;(t) for arbitrary ¢ € {1,...,n} by calculating the Fourier-Mellin integral®,
whereby v = Re(u):

Grofe) = [ (447

u
y+iT

= — lim ex
27Ti T—o0 P

(US)Mdu

y—iT' U

y4iT

- %zhfio /HT eXP(“OieXp(W,U) + xip(t,u))du
y4iT

= L jim / = exp (u€ + Ot u) + 20 (t, w) du.
i

Provided the above limit exists, one has retrieved the distribution function Gx(§), £ €
R>( and consequently, the approximation for ordered market weights may be obtained by
means of the (generalized) inverse Gy, (-)*.

4.1.2 The Special Case: Squared Brownian Motion
General Characteristics of the Squared Brownian Motion

Let B(-) be a standard Brownian Motion and let further X (-) = (B(:))? be the squared
process which will be used as basis for the modeling of single particles in our stock market.
Let X (0) = z, unless stated otherwise we will mostly use x = 1 or = 0. It obviously holds
that X(-) takes paths in Rs(. Furthermore, we can deduct the distributional properties
of X(t) at any time ¢ € R>( from the distributional properties of the standard Brownian
Motion B(t). Hence, X (t) = (\/52)2, whereby Z ~ N(0,1). Since the sum of m squared
standard Gaussian random variables follows a x?(m) distribution?, it holds that

X(t) =1t¢ ¢ ~x*(1). (4.48)

The Squared Brownian Motion process together with the x?(1) distribution can easily be

29Gee e.g. Kallenberg [64], Chapter 5.

30See e.g. Abate et al. [1], Section 1.1 and Abramowitz and Stegun [2], Section 29.
31See also Definition 5.6.

32Gee e.g. Abramowitz and Stegun [2], Section 26.4.
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seen to be the one-dimensional special case of a matrix valued Wishart process whose distri-
bution corresponds to the non-central Wishart distribution.?® The characteristic function
of Wishart processes together with the specification of ¢(¢,u) and (¢, u) is discussed in
some detail in Cuchiero and Teichmann [27], its one-dimensional special case being given
by

1 U
= ——log(1 — 2t 4.49
o) = exp g log(1 — 200) + 07—, (4.49)
whence we directly observe that it is of the form given in Equation 4.3 with:
1
o(t,u) = —3 log(1 — 2tu), (4.50)
u
t = : 4.51

Hence, X(+) is a positive affine process, whose dynamics are yielded by a straightforward
application of It6’s formula3* for X (t) = (B(t))?.

AX(t) = 2B(t)dB(t)+%2dt
— b4 2/ XDV (E), (4.52)

where the process W(t) = J j%dB (s) is a continuous local martingale with quadratic

variation (W), = t. Hence by Lévy’s characterization®, W (-) is a Brownian Motion. Thus
for a stock market 9 = {Xi,..., X, } consisting of independent particles governed by
above dynamics, each single stock is described by the SDE:

dXi(t) = dt + 2/X;(O)dWi(t), (4.53)

whereby (Wi(+),...,W,(+)) are independent standard Brownian Motions. A further ap-
plication of It&’s rule to X;(-) for f(z) = log(z) yields the dynamics of the instantaneous
log-returns of each stock.

33See Cuchiero and Teichmann [27], Section 1.
34See e.g. Karatzas and Shreve [66] or QOksendal [80].
35See e.g. Karatzas and Shreve [66], Theorem 3.3.16.
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dlog X;(t) = %(t)dXi(t) +% (—ﬁ) d(Xi, Xi)e
1 2
- X"t ™Y T e O
S R L A (4.54)

Xi(t) vV Xi(t)

Thus, following the notation in Fernholz [44], one has a time-dependant growth rate

‘ _ =1 . e . . By _ 2 . ~
7i(t) % and stochastic volatility directions &i(t) ATk Furthermore, again us

ing Fernholz’s notation, the instantaneous (co-)variance matrix o(t) = £(t)T€(¢) has the
following diagonal matrix structure:

D 0
X1(t
o(t) = ST . (4.55)
4
0 Xn(t)

If all stocks stay away from zero, the whole system behaves well and the above instantaneous
covariance matrix of log-returns is invertible with eigenvalues equal to its diagonal elements
S(o(t)) = {%(t), R %(t)} This is indeed the case since the local time of the process
X(-) at 0 can be seen to be zero. Using the Tanaka-Meyer formula 3.11 we can calculate

the local time Ax(¢,0):

Ax(t,0) = [ X(t) = 0] = |X(0) = 0] —/0 sgn(X(s) — O)dX(S))

X(t)—1- /Ot 1dX(s))

(X(H) —1— X(t) +1)

I
O~ N~ N
i YR

Therefore, for all t € T° = {0 < s < 00| X;(t) > 0}, ¢ =1,...,n the market 9 is elliptic
and for all t € T = {0 < s < 00| X;(t) > 0}, i =1,...,n the market 9 is weakly elliptic.
At any time ¢ the ellipticity- (non-degeneracy)- bound €(t) can be set as:

()= mi S =1 (4.56)
A= z‘e{l,...r,%glogsgt Xi(s) LSRR '
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At time t one obtains that o(t) is positive definite and 7o (t)z > €(t)||z||?>, € R. This
approach may similarly be applied to the upper bound M (t), setting it to the be the
maximum in Equation 4.56, yet it is clear, that this bound will become extremely large in
the case that a single stock takes values close to zero.

In the next step we will briefly assess the quantile function of the SqBM process. Recalling
our setting of X;(-) = W;(+)?, where W;(+) are independent standard Brownian Motions for
i =1,...,n, we can now investigate the general distributional properties of X;(-) which

can be directly derived from the properties of standard Brownian Motion.3°

Since W;(t) ~ N(0,t) one directly obtains that W’T(tt) ~ N(0,1). Defining

X Wi (W)

it clearly follows, that Y;(¢) ~ x*(1) as square of a standard normally distributed random

(4.57)

variable.?” For the sake of simplicity we will in the first step discuss the behavior of the
time-scaled particles Y;(¢), ¢ = 1,...,n and we will show in the second step, that the
approximation of market weights is in fact invariant with respect to any time scaling.
Hence, Y;(-) has the density

L yztexp(—Y), z>0;
fly, 1) =4 VG D{~g) o2 (4.58)
0, else;
and cumulative distribution function
y/2 1
1y 0 —— exp(—t)dt
P(Yéy)ZF(y,l)Zv(”f) = —= @) : (4.59)

whereby (s, y) = [/ #*"! exp(—t)dt is the lower incomplete Gamma-function® and I'(z) =
J" 7t exp(—t)dt denotes the Gamma-function.® Since I'(1/2) = /7 *°, the cumulative
distribution function (4.59) simplifies to:

y/2
P(Y <y) = F(y,1) = % 0 % exp(—t)dt — %’y G %) . (4.60)

7 (3, %) can further be expressed in terms of the error function Erf(-)*:

36For the general properties of Brownian Motion we refer e.g. to Karatzas and Shreve [66].
37See e.g. Abramowitz and Stegun [2], Section 26.4.

38See Abramowitz and Stegun [2], Section 6.3.

39See Abramowitz and Stegun [2], Section 6.1.

40See Abramowitz and Stegun [2], 6.1.8.

41See Abramowitz and Stegun [2], Section 7.1.

105



4.1 Motivation

Erf(y) = — /Oy exp(—t?)dt. (4.61)

Thus, for (-, -) one obtains

v <%, %) = /Oy/2 %exp(—t)dt
= V7 (1-Ef(V/y/2))
/\/ﬁ

0

= J1-2 exp(—t?)dt. (4.62)

Furthermore, the cumulative distribution function F(y, 1) may also be expressed in terms

of the regularized Gamma function Q(a, z) = VF(C(Z;)‘ We have already seen above in Equa-
tion 4.59, that F(y,1) = Q(%, 2). The inverse of the regularized Gamma Function may

be calculated numerically which provides us with an approach to calculate the quantile
function of the x?(1) distribution. An alternative approach for the calculation of the quan-
tile function would be to use the error function, which will also be outlined below. The
numerical results of both approaches are of course the same.

Using the correspondence

Ly (1 y
- Z2) = - == 4.
Q(2,2) pQ (2,17) 5 (4.63)
one can directly calculate the quantile corresponding to the probability p as:
(1
y=20"(5r) (4.64)

Alternatively, one may use the relationship with the error function stated in Equation 4.62,
to calculate the quantile function. By Equation 4.61 one obtains the relationship to the cu-
mulative distribution function of the standard normal distribution ®(+) in a straightforward

B(y) = \/% /yoo exp(—t2/2)dt = % [1 + Exf (%)} . (4.65)

Using Equation 4.65, we may now restate the relationship outlined in Equation 4.60.

way as:
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Fy,1) = %7 (%%) = % (ﬁ (1 b (%)))
= 1—(28(\/y) — 1)

— 2(1-B(y5)) = 28(—/7)- (4.66)

Using (4.66), we can alternatively calculate the quantile for probability p as:

y=(-2"(p/2)" (4.67)

After this little digression on the calculation of quantiles for our stock price process X (-) we
can now approximate the ordered market weights ji(;)(-) for i = 1,...,n via the following
ratio:

_ ZQ;%t) (3 %)

pRA0

=n

i) (t) (4.68)

E

We can directly compute the characteristic function of S(t) = 3.7, Yi(t) as product of the

individual characteristic functions of the Yj(t), i =1,...,n.
i n
?50 (@) = [T ev () = exp (=3 log(1 — 2u)) . (4.69)
i=1

Due to Equation 4.69, one may directly conclude that S(t) ~ x2(n)*? and therefore it holds

that E[S(t)] = n.

The ratio given in 4.68 remains unchanged if we re-scale Y;(t) ~ x*(1), i = 1,...,n by a
factor t in order to regain the characteristics of X;(¢), ¢ = 1,...,n. In this case we can use
the fact that for Y ~ x?(1) a random variable = = Y follows a ['(1/2, 2t) distribution. In
this case, E(Z) =t and Var(Z) = t*. For the calculation of the quantile function we can
once again employ the fact that P(X < x) = Q(%, 5;) which permits the direct calculation
of the p-quantile as z = 2tQ~! (%, p). Thus in case of re-scaling we obtain the following

approximation for the market weights:

[ (t) = 2Qx (5 ") _ 2Qx (3 "7)

4.70
p” " ) (4.70)

428ee e.g. Abramowitz and Stegun [2], Section 26.4.
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which is exactly the same as in Equation 4.68, i.e. this estimator for the ordered market
weights is time invariant. The ordered market weights for four markets consisting of 100,
500, 1000 and 10000 stocks respectively which have been obtained by this approximation
are plotted in Figure 4.1 on a log — log scale.

The log-log plot of the ordered market weights reproduces the desired shape of the Capital
Distribution Curve as depicted in Figure 3.1 and as discussed in Chapter 5 of Fernholz
[44] very well. Therefore, it is fair to conclude, that the approach of modeling individual
stocks in a market 901 through independent particles of a Squared Brownian Motion is
successful in reproducing the observable distributional structure of market capitalizations
and is therefore a well founded basis for further analysis. Following our general discussion
of market properties of this type of market model, we will further enhance the model in
Section 4.2 by endowing it with the correct correlation structure.

1F 1E
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001 | )
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0001 F 4 10f
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01p
0011
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20 50 100 200 500 1000 200 500 1000 2000 5000 1x10*

Figure 4.1: Log-log-plot of estimated market weights for Squared Brownian Motion markets
consisting of 100 (top left), 500 (top right), 1000 (bottom left) and 10000 (bottom right)
particles.
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Portfolio Dynamics for (W (t))?

Let us now consider a portfolio 7 = (;(+)) in the market 9t which fulfills the self-financing
condition

(4.71)

then we can calculate the dynamics of the portfolio and of the portfolio log-returns in a
straightforward way as follows:*?

n

(1)
AZ:(1) = Z:(1) Y T o (dt + 2\/Xi(t)dI/V,»(t)> : (4.72)
i=1
and
dlog Z(t) ! dZ(t)+1 1 d{(Z, Z)
0) s - T Y Ty L
& 7 (1) 2 7.(1)? ‘
“ Ti(t) u , 1
= dt + 2/ X, () dW;(t)) — 2 At dt
T (@ 2/X@awo) ;”“m)
. 2 1 — 2
i=1 ( i= ?
—— -~ /
=& () =S ) it i m () xRy dt
1 — 2 1 — 2
—— (1) ——dt — = (t)? dt 4.
5 ;m( ) X0 5 ;m( ) X0 (4.73)
u 2 “ 1
1< 4 & , 4
+3 (;m(t)Xi(t) ;m(t) Xi(t)> dt; (4.74)
with &(t) = \/XLZ__@), 7i(t) = —#(t) and o;(t) = %(t) we obtain the dynamics corresponding

to Proposition 1.1 with the following portfolio growth rate ~,(-) and excess growth rate
72 ():

43Gee also Chapter 1.
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= ()

AW, (t). (4.75)

u 2
+ ZI: mi(t) X0

As a special case, we may now compute the dynamics of the market portfolio, setting
wi(t) = Z,LX ilf) <> We obtain the following dynamics out of (4.75).

- Xi(?)
WogZu®) = 1= Ty Xm
[ Xt & 4
+= m 2 dt
P\F R RON0 = (x mw) o
L X(t) 2
s w0
_ n B 1 _ X;(t) "
2 X)L X () = 2o XG()
=p;(t)
VX
2L e
B n—2 Vv Xi(t)
= 5 1X()dt+2zz ()dW() (4.76)

Hence, by (4.76), Z,(t) takes the form

Z,(t) = Z,(0) exp (Z 11X() [(n—2t+2/2«/ $)dWi(s ]) (4.77)

Since we can set Z,(t) = >_7_; X;(t) **, we get the dynamics of Z,(-) by application of

44Gee Fernholz [44], (1.2.10).

110



4.1 Motivation

[td’s formula to f(-) = exp(+) to (4.76) as?®

n

dZ,(t) = ndt + i 2/ X (0)dWi(t) = Y dXi(t). (4.78)

=1

Furthermore, in order to render our model more amenable to comparison with volatility
stabilized markets one may introduce the process

W(t) :/0 ;\/%dwi<t);

which is a local martingale and since we are actually taking the sum over the square roots
of all market weights, it clearly holds that

Mm:lgywmzu

and therefore that TW(-) is a Brownian Motion by Lévy’s characterization theorem.*0 Thus,
Equations 4.76, 4.77 and 4.78 may also be expressed in terms of W (-) as:

n—2 2

dlog Z,(t) = Zde Z(t)dW(t), (4.79)
Z,(t) = Z,(0)exp < /0 Zu;(j)dw /0 \/%(S)dvv(s)» (4.80)
dZ,(t) = Z,(t) (%dwﬁdmt)). (4.81)

Covariance Matrix and Relative Covariance Matrix

Starting from the instantaneous covariance matrix o(t) which was given in Equation 4.55,
we can calculate the covariance of a certain stock i relative to a portfolio  and the relative
covariance matrix 7(-) as introduced in Chapter 1. Following Definition 1.7, one obtains:

7ult) = 3 1500 (8) = 105 (4.8

45See also Fernholz [44]
46See e.g. Karatzas and Shreve [66], Theorem 3.3.16.
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and
7i5(t) = 0ij(t) — ain(t) — () + oy (L) (4.83)

Thus, for ¢ # j we have:

R = 0=~ g +om
05~ 05,5 05 (481

and for i = j one gets:

Ti(t) = Xit) - m(t)%(t) + ; n?(t)%(t). (4.85)

Furthermore, we can now restate Lemma 1.2.2 from Fernholz [44] for this special case.

Lemma 4.1: For any given portfolio n(-) in the market M, the instantaneous relative
covariance matrix with respect to this portfolio , T(+) is positive semi-definite with kernel

ker(77(-)) = {n(-)}.

Proof: Let x € R™, then:

ai(t) - o)
")z = zo(t)r’ —x : : xT

Tnn(t) -+ Tny(t)
Jln(t) 0177<t) 1 .- 1
—x : : z" + o, (t) :
Jnn<t) Jm,(t) 1 - 1

= wo(t)a” —2) mioy(t) Y wi+ oy (t) Yl (4.86)
i=1 i=1 i=1
zo(tn(t)”

We will now distinguish between two cases:

1t Case: Y 'z, =a#0
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In this case we perform the following re-scaling y := lex Hence we have the correspondence
a7 (t)at = a?yr(t)yT.

yr"(t)y" = yo(t)y" — 2yo(t)n(t) +n(t)o(t)n(t)”
= (y—n@)o(t)(y —n(t)" >0. (4.87)

(4.87) holds due to the fact that in our setup o(+) is positive definite, given that no particle
X;(+) should become zero.

2" Case: > i ;=0

Here, Expression 4.86 simplifies to:

e ()xt = zo(t)z’ > 0.

From (4.87) we also directly get, that ker(7"(-)) = {n(-)}.

A Remark on Arbitrage in the SqBM Model

A natural question arising at this point is whether a market 99 whose components are
governed by the dynamics of Equation 4.53 permits the construction of an equivalent mar-
tingale measure and is therefore arbitrage-free in the sense of Delbaen and Schachermayer
[30], Theorem 1.1. Since we are considering independent particles at this point, it suf-
fices to study the construction of an equivalent martingale measure for one coordinate. Let
i € {1,...,n} denote an arbitrary particle in the market whose dynamics are - as discussed
previously - given by
dX;(t) = dt + 2/ X;(t)dW;(t).

We want to apply Girsanov’s theorem*”, to which end we re-state the market price of risk

process
1
=5 xw (459

Then it holds that 24/ X;(t)6;(t) = 1 — B(t), whereby we choose 3(t) = 0.%® Let us now put

bl 1/t
M(t):exp(—/oNTi_(t)dWi(s)—E/omds>,t§T.

47See e.g. Oksendal [80], Theorem 8.6.6.
48Gee (Iksendal [80], Theorem 8.6.6. and following Remarks.
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If M(-) is a martingale, then the equivalent martingale measure Q(w) is given by
dQ(w) = M(T,w)dP(w) on §r, (4.89)
and the process W (-)

A

Wit) = /tQ\/_

is a @-Brownian Motion. Thereby X;(-) would have the following dynamics under @Q:

t) = 2/ X, () dW;(t). (4.91)
The P-dynamics of the process X;(+) and its previously discussed distributional properties
imply that P(X;(¢) = 0) = 0. On the other hand, under @) the process X;(:) as given in
Equation 4.91 is a squared Bessel process of dimension § = 0 (BESQ?).*° Tt is evident from

ds + W(t) (4.90)

the dynamics given in Equation 4.91 that once the process has reached zero, it will stay
there. Since the (BESQ®) process is recurrent for § < 2 and the set {0} is an absorbing
point of the process for ¢ = 0, one obtains that Q(X;(¢t) = 0) > 0.°° This however means
that @ ~ P, i.e. we do not have equivalence of the measures P and Q.

Nonetheless, one may construct an equivalent martingale measure if we consider the fol-
lowing stopping time

T :=min {0 <t < 00| X;(t) < X b, i n, (4.92)

whereby X™ > 0 is the minimum admissible market capltahzatlon. One may interpret

XM > 0 as a restructuring threshold which once it is passed leads to the company being
subject to a bankruptcy action akin to Chapter 11 in the United States or, thinking of a
benchmark index, which leads to the elimination of a certain stock from the index universe.
Altogether, imposing such a minimum boundary does not seem unreasonable and does not

really infringe the flexibility of our model. Now one may define the stopped processes as
Xi(t) = X;(t AT™), i=1,...,n. (4.93)

Then the Novikov®! condition reads

IN
&

1 [T 1 1 [T 1
E |exp —/ ——=ds exp —/ ——=ds
200 94/ %) 2Jo g, /xm

[ T
= Elexp| ——

T
= ex — | < 0. 4.94
p<4 X%m> (4.94)

49Gee Revuz and Yor [89], Chapter XI, Definition 1.1.
50See Revuz and Yor [89], Chapter X1, §1 and Proposition 1.5.
1See e.g. Dksendal [80], (8.6.22).
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Thus the market 9 consisting of ¢ = 1,...,n independent particles following stopped
Squared Brownian Motions 9t = {X;(-), ..., X,.(-)} admits the construction of an equiva-
lent martingale measure and is therefore arbitrage free in the sense of "No Free Lunch with
Vanishing Risk (NFLVR)" according to the Fundamental Theorem of Asset Pricing.?? Fur-
thermore, the existence of an equivalent martingale measure implies that M is not weakly

diverse.?®

Visualization of a SqBM-Market

In Figure 4.2 we provide a first visualization of a market consisting of 100 stocks, modeled
by independent SqBM-processes. The Capital Distribution Curves (CDCs) depicted in
Figure 4.2 are obtained by simulation of 100 independent SqBM-particles for 100 time-
steps. The simulated CDCs correspond reasonably well to the observable pattern which
we have depicted in Figure 3.1.

528ee Delbaen and Schachermayer [30], Theorem 1.1.
53See Fernholz [44], Problem 5.3.6. together with Example 3.3.3.
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log(mktweights)
-6
|

-10

log(rank)

Figure 4.2: Capital Distribution Curves for 100 simulated time-steps in a SqBM-Market.

Connection to Volatility Stabilized Markets

The approach to utilize a Squared Brownian Motion as model for stock price dynamics
may seem rater far fetched at first, however we will see in Section 4.2 that this model
may be equipped with some minor modifications which lead to reasonable patterns for the
depiction of stock price movements. Further, at this point a connection ought to be made
to the concept of Volatility Stabilized Markets which have been studied predominantly
from the perspective of relative arbitrage so far. Furthermore similar dynamics for asset
prices are incorporated in the SABR model for stochastic volatility®® and the Constant

54See Hagan et al. [58].
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Elasticity of Variance (CEV) model.?

For the general concept of Volatility Stabilized Markets (VSM), we refer to the relevant
literature, above all Fernholz and Karatzas [46], [48] and [49], Pal [84] and Shkolnikov [95].
The concept of a volatility stabilized model (VSM) for equity markets was introduced by
Fernholz and Karatzas in [46] and is further discussed in [48]| and [49]. The more abstract
modeling framework of these markets permits to obtain some rather remarkable results on
relative arbitrage and other aspects of stochastic portfolio theory. The VSM is also a key
feature in ongoing research. So for instance in his recent work, Pal [84] derived the joint
density of market weights in volatility stabilized models and Shkolnikov [95] investigated
the behavior of large volatility stabilized markets if the number of diffusions tends to
infinity. These strong results, however, come at the cost of less analytic tractability and
interpretability of the behavior of such models.

In its general form, the VSM may be specified as follows:*®

a 1
241(1) pi(t)
for stocks X;(-), i = 1,...,n and a > 0 constant. By application of It&6’s formula’” for

f(z) = exp(x) one obtains:

dXi(t) = Xi(t) <2Mj< t)dt + \//i-_(t)dwt)> n ;
_ , a+1 1 |
= Xi(t) <2m(t)dt+ mdm(t)> _
By substituting 1;(t) = coril

=1 X5 ()

we get:8

AX(t) = 1;“ (Zn: Xj(t)> dt+ | Xi(0) (i Xj@)) AW (#). (4.96)

In this setup, one has a rate of return process «;(+) and sensitivities &;,(-) given by:

UL o () =

0= it)

(4.97)

55See e.g. Carr and Linetsky [20].

56See e.g. Fernholz and Karatzas [46], Section 6 or [49], Chapter IV, Section 12.
7See e.g. Dksendal [80], Theorem 4.1.2.

®8See also Fernholz and Karatzas [46], Section 6 or [49], Chapter IV, Section 12.
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With these return rates and volatilities and interest rate r(-) set to zero, the VSM fulfills

the regularity condition:®

Z/O (!%(t)\ + Z(fju(t))Q) dt < oo. (4.98)

Furthermore, the market price of risk in this setup is given by 6,(:) = % which also
il

fulfills the regularity conditions given in Equation 1.71.%°

Hence, in a VSM we are looking at uncorrelated stocks whose drift and volatility are
largest for small stocks. This setup will lead to large fluctuations for single stocks but to

.61 We note, that by setting a = 0 as it is

a relatively stable behavior of the overall marke
done in the basic setup in [46], Section 4., one obtains a model for stocks whose log-returns
solely depend on the fluctuations of the respective Brownian Motion, amplified by by the
inverse of the square-root of its market weight. Furthermore, it should be noted that the

VSM is not diverse.%?

Since in this model, the instantaneous covariance matrix of the log-returns is the diagonal
matrix with entries o;; = 1/p;(t), one directly obtains that the portfolio variance of the
market portfolio is 0, (t) = p(t)ou(t)” =1 for all t € [0,00). By using the definition of
the portfolio growth rate given in Proposition 1.1, we can directly calculate the growth
rate and excess growth rate for the market portfolio:

Tult) = ;’ui(t) Q;j(t) +% (; pilf) Hz’l(t) - ;M?<t>#1(t>>

(2

nla+1)—1

5 :
By this calculation, one directly sees that the excess growth rate of the market portfolio
is given by v;(t) = (n — 1)/2. Hence both the growth rate and excess growth rate of
the market portfolio are constant and independent of ¢.% By this and Proposition 1.1

one directly obtains the following characterization of the log-return process of the market
portfolio:®4

dlog Z,(t) = %dt + Z NCLLAD) (4.99)

59See Fernholz and Karatzas [49], Chapter IV, Section 12.

60See Fernholz and Karatzas [49], Chapter IV, Section 12.

61See Fernholz and Karatzas [46], Section 4.

62See Fernholz and Karatzas [46], Section 4. or [49], Chapter IV, Section 12.
63See also Fernholz and Karatzas [46] and [49)].

64See also Fernholz and Karatzas [46], Section 6.
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As already outhned before the process W fo > AV w(s)dW,(s) is a local martin-
gale and (W); = fo N H(s)ds = t. By Levy s Characterlzatlon Theorem65 W() is a
Brownian motlon.66 Hence, the portfolio value process for the market portfolio takes the
form of a geometric Brownian motion with drift:

1)—1 ~
Z,(t) = Z,(0) exp (%t 4 W(t)) , (4.100)
whose dynamics are given by
n(a+1) -
dz,(t) = Zu<t>Tdt + Z,(t)dW (1). (4.101)

By this it clearly follows, that the constant growth rate of the market capitalization is at
the same time its long-term limit. It can further be shown, that the long term growth of

the market and the individual stocks X;(-), i = 1,...,n are actually the same."
.1 n(l+a)—1

The fact that asymptotically, all stocks have the same growth rate, signifies that a market
governed by VSM dynamics is coherent.® Even though the VSM fails to be diverse as
stated before, the fact that the excess growth rate of the market portfolio is constant
in time permits the application of the sufficient conditions given in Proposition 1.8 for
I'(t) = t”T_l. With this we obtain the necessary investment horizon to realize arbitrage
opportunities by 7' > T* = T71(S(u(0))).%° Hence:

25(u(0)) < 2logn

n—1 — n-—1

= T* (4.103)

Equation 4.103 leads to fairly small bounds on the requested investment horizon for a
realistic number of assets in the market, which means that in VSM arbitrage opportunities
may be realized on realistically small time horizons. This result however comes at the cost
of imposing a more complex structure on the dynamics of the equity market.

However with respect to the dynamics and characteristics of the market portfolio as de-
scribed in Equations 4.99, 4.100 and 4.101 it has to be remarked that the large positive
drift produced by the model will dominate the evolution of market capitalization an will

65See e.g. Karatzas and Shreve [66], Theorem 3.3.16.

66See also Fernholz and Karatzas [46], Section 4. and Section 6.

67See Fernholz and Karatzas [46], Equation 6.9. and Proposition 6.1. This result is based on the insight,
that the stock price process in the VSM may be re-written as a time-changed Bessel process.

68See Fernholz [44], Proposition 2.1.2.

69Gee Fernholz and Karatzas [49], Equation 12.6.
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lead to an overly optimistic growth of total capitalization which may be problematic for
risk management applications.

Comparing VSM to the dynamics of the Squared Brownian Motion and its respective log-
returns as given in Equations 4.53 and 4.54 one directly observes the similarity of the terms
X(t) and /X;(t) in the denominator for the drift and volatility terms of the log-returns.
In the case of VSM, the large impact on the fluctuations of the stock in case of very small
stock prices is amplified by the multiplication with the total market capitalization, which
leads to the effect, that stocks in a VSM fluctuate "all over the place”™. Still, the feature
that volatility substantially increases when stocks decline to small values close to zero is
a feature of both models. As a matter of fact, this property may also be observed in
real-life markets, where the volatility structure of so-called "Penny-Stocks" may diverge
substantially from normal stocks.

With respect to the effect of incorporating correlations versus uncorrelated models we also
refer to Section 5.3.3, where we have visualized the behavior of the uncorrelated SqBM
which possesses certain similarities to the VSM together with the same dynamics for the
correlated model. Even though the positive drift in the SgBM model is less pronounced
than in the VSM, one still observes an overly optimistic monotonous growth behavior of
the market capitalization, albeit not as pronounced as for the VSM. Therefore it is fair
to conclude that the inclusion of correlation structures is essential for risk management
purposes.

4.1.3 Conclusion

The above considerations lead to the conclusion that a stock market where individual
particles follow independent squared Brownian Motions will eventually generate a Cap-
ital Distribution Curve very much akin to the structures observable from market data.
Indicators for this assertion are the shape of Capital Distribution Curves resulting from
simulating independent SqBM particles as depicted in Figure 4.2 as well as the time in-
variant approximation of the Capital Distribution Curve obtained through the quantile
function of the y?(1) distribution as shown in Figure 4.1.

Modeling the dynamics of a stock price by means of a Squared Brownian Motion may
at first sight seem unconventional however there exist similarities to the SABR™ and the
CEV™ models. Moreover, the comparison to Volatility Stabilized Market models - which

"0See Fernholz and Karatzas [46], Section 1, p. 150
"1See Hagan et al. [58].
"See e.g. Carr and Linetsky [20].
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4.2 Construction of Correlated Stocks in the SqBM-Model

have been studied for quite some time now - shows certain similarities in the way stock
price dynamics are being constructed, however, the SqBM approach should lead to a smaller
propensity for abnormally large fluctuations of single stocks relative to VSM models. We
will show in the following Section 4.2 that through application of some minor modifications
to the SqgBM model one may obtain a thoroughly reasonable modeling framework for equity
markets. At this point we also refer to the work of Teichmann and Wunsch [99] in which the
same set of questions as above is addressed with alternative modeling approaches based on
the particle approximation of the Wasserstein diffusion™ and on the eigenvalue processes

of general Wishart matrices.™

The biggest drawback of our current modeling framework is the absence of correlations
between stocks, a problem which we will address in the following Section 4.2 as well.
Altogether, the approach of a stock market model based on squared Brownian Motions
seems to merit closer scrutiny and it appears promising with respect to the problem of
replicating the observable structure of the Capital Distribution Curve in stock markets.

4.2 Construction of Correlated Stocks in the SqBM-
Model

In this section we will take the stock market model based on squared Brownian Motion
as basis and implement slight adaptations in order to ensure a better alignment with the
dynamics observable in stock markets. Furthermore, we will equip our stock market with
a time-varying covariance structure which is one of the essential prerequisites for a math-
ematical model to claim credibility in the market and which is of paramount importance
for any risk management application.

Hand-in-hand with the general procedure outlined in this Section goes the practical im-
plementation of this model. We have chosen the S&P 100 universe as basis for our model
and we utilize time series going back for five years. In the case of stocks with shorter
available price time series, the remainder of the time series was filled backward with the
last available quote. When working on a large-cap blue chip index as the S&P 100, the
issue of incomplete or insufficiently long time series may be less pressing, yet for smaller
or more exotic markets this can be a major problem. In such cases it is recommendable to
apply a S-mapping " onto a benchmark index or another suitable time series.

"See e.g. Andres and von Renesse [6].
"See e.g. Teichmann and Wunsch [99], Section 4.
"5See e.g. Jorion [63]. In order to perform a B-mapping of time series Y onto Z, a 3 factor has to be
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4.2 Construction of Correlated Stocks in the SqBM-Model

4.2.1 Algorithm for Constructing Correlated Stocks

As first step, let us recall the general dynamics for the process X (-) = (W(+))? as specified
in Equation 4.53:

dXi(t) = dt + 24/X;(O)dWi(t)

Now let us adjust the above SDE in order to permit for more modeling flexibility. We shall
equip the volatility term in Equation 4.53 with an additional sensitivity &;(-) and we will
introduce an additional drift b;(t) = «;(¢)&;(t). Hence the new SDE under scrutiny is of
the form:

dXi(t) = bi(t)dt + &)/ X, (1) dWi(t (4.104)

Applying Ito’s formula™ to f(x) = logx, one directly obtains the dynamics of the instan-
taneous log-returns as follows:

1 1 1
1

= % ( i (t )dt+£@( )V Xi(t)d Wi(t)) T2X,(1)?

_ 1 A &i(1) &i(t)
- (bz(t) 2) £+ Xl(t)dW() (4.105)

d(Xi(t), Xi(t))

E(1)2 X (t)dt

Nota bene that we have stuck to the notation of Fernholz [44] with &(-) denoting the
sensitivity w.r.t. the i-th Brownian Motion. At a later point, when we have equipped the
whole model with a correlation structure and a resulting instantaneous covariance matrix
we shall again use the notation o(t) = £(¢)£(t)7 for the instantaneous covariance matrix as
in Chapter 1. As long as only independent particles are involved, we shall denote by &;()?
the instantaneous variance.

For the ensuing considerations and the practical implementation we will discretize our
market setup and move to an evenly spaced time grid with mesh 7, whereby the continuous

time interval [0, 7] is translated into the discrete time set T = {t,...,tx}. The dynamics
calculated as By = C‘fvo(/zz))7 based on the available time series. The missing log-returns of Y may now be

substituted with the g-weighted log-returns of Z.
"6See e.g. Karatzas and Shreve [66] or Qksendal [80].
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for the instantaneous log-returns for any stock ¢ € 91 as given in Equation 4.105 now
translate into:

Xi(tj1) ) = — 2 (ate () — e 102 AL + (LA (L
log( Xi(t;) ) Xi(t;) = X0 ( i(t)&(ty) — 5&(t) )Atj +€z(t])AW,(t(j). |
4.106

Acting on a discrete time grid now makes our model amenable to calibration on real market
data. As already mentioned, we will calibrate our market 99T on the S&P 100 index universe.
For fitting our model we utilize daily log-returns from the time period January 3rd, 2006
to April 14th, 2011, resulting in 1330 data points.”” We shall denote the market data time
series by Yj(-) for i = 1,...100. In the first step, we will implement a GARCH(1,1)™®
estimator for stochastic volatility. To this end we will assume that our time series mimic
the dynamics given in Equation 4.106 with o;(t;) = £&(t;), resulting in zero drift. We
note that in order for the algorithm to converge, one needs b;(t;) = o (t;)&(t;) > 5&(t;)%
Then we can calculate the scaled log-returns

Yi(t, : ,
Ti(tj) = IOg (%) Y;(tj), 1= ]_, ceey 100, ] = ]_, ce ,N — 1. (4107)
i\lj

Based on 7;(t;) we can now calculate the GARCH(1,1) volatility éi(tj) as follows.

&ity) = \/90 +Orri(tj-1)? + BEilti—1)?, (4.108)

whereby we use the following standard parametrization for the GARCH(1,1) model:

’ Parameter ‘ Value ‘
h; unconditional variance of Y;
0, 0.1
I5; 0.85
Persistence 01+ 8 =0.95
) hi(1 — 6, — )

""The constituent time series of the S&P 100 index were obtained from Bloomberg® utilizing the index

ticker OEX and the time series history wizard for each featured stock.
"8See e.g. McNeal, Frey and Embrechts [78], Section 4.3.
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According to our model in Equation 4.106, the scaled log-returns r;(¢;) follow a condition-
ally normal distribution ;(¢;) ~ N(0,&(t;)27). Since we are working on a daily data base,
we will utilize a daily time scale with daily time steps, resulting in a mesh of 7 = 1 day.
Hence normalizing r;(t;) with the respective stochastic volatility yields:

. Yi(t; 1)) 1 . .
Fi(t;) =log [ =222 )\ /Yi(t)) ——, i=1,...,100, j=1,...,N — 1. 4.109
1) =105 (5250} vt j (4.109)

By construction, the normalized log-returns 7;(-) are i.i.d standard normally distributed
for 2 =1,...,100. Hence each time series of log-returns is component-wise i.i.d., however,
across stocks these time series are still correlated, a fact which we will exploit in the next
step.

Remark 4.1: At this point a remark on the normality assumption of log-returns is due.
Ever since the seminal works of Black and Scholes [17], this assumption has been at the
center of scientific discussions. It is quite clear, that modeling log-returns via a normal
distribution may lead to a serious underestimation of risk in the case that the true dis-
tribution of the returns is leptokurtic. The treatment of market data time series outlined
in this section is similar to the filtered historical simulation proposed by Barone-Adesi
et al. [15], the main difference being that we will utilize the results of (4.109) - as will
be outlined in the following paragraphs - as input for a Monte-Carlo inspired simulation
algorithm. Thus our algorithm for the construction and simulation of correlated particles
may be seen as a hybrid approach, incorporating facets of filtered historical simulation and
Monte Carlo simulation. The Gaussian modeling of log-returns may certainly be regarded
as a simplification and it comes with well-known drawbacks (among others no heavy tails,
no jumps), but still this class of models remains overwhelmingly popular in practice and
also in research.

With respect to the effectiveness of the normalization procedure outlined above we observe
that the results for mean and variance / standard deviation of the normalized time series
are quite satisfactory as can be seen in Figure 4.3. One ought to observe that we have
larger deviations from one for the standard deviations, however the fact that the standard
deviations of these time series are smaller than one indicate that we are actually overesti-
mating the volatility of the stock, which is the comforting case from the point of view of
risk management. With respect to the tail behavior of normalized log-returns it is certainly
observable that deviations to the normal distribution are prevalent in market data time
series as can be seen from the sampled normal quantile-quantile (QQ) plots in Figure 4.4
which can be regarded as a usual problem when working with a Gaussian model.

Finally we also provide exemplary sample plots of time series of normalized log-returns in
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Figure 4.5 which do not exhibit any striking autocorrelation in the data. Therefore our
claim that the time series of normalized log-returns are component-wise i.i.d. standard
normally distributed as insinuated by our model in Equation 4.109 certainly appears de-
fendable with the most important shortcoming certainly being the imperfect coverage of
tail events which constitues a challenge for future research.

One of the major advantages of models such as the one given in Equation 4.105 is its rela-
tively easy implementation and calibration which lead to considerable stability in everyday
application. On the other hand, the increased flexibility of more delicate models involving
Lévy processes’™ often comes at the cost of more challenging calibration procedures and
less numerical stability. An enhancement of the given model (4.104 and 4.105) towards
Lévy processes certainly seems a promising area for future research, yet it is well beyond
the scope of this work. For the time being, we shall therefore continue our work with
the normality assumption, always bearing in mind its evident shortcomings in case of tail
events.

We remark that a commonly used approach in order to improve the tail behavior of models
- especially in the area of risk management - would be to switch from Gaussian increments
to t-distributed increments® whereby heavier tails are obtained in simulation algorithms.
At this stage, we only point out at this possible extension of our proposed model, a detailed
discussion of the market characteristics based on t-distributed increments is beyond the
scope of this work.

In the next step we can calculate the correlation matrix p(90t, N), depending on our input
market data with ||90t|| = n stocks and the available time series. In the straightforward
implementation, one obtains p by applying the correlation estimator of the utilized software
- R in our case - on the time series of normalized log-returns, thus obtaining the matrix of
correlation coefficients®!:

L p2 o pia
poNy=| P e (4.110)
ﬁn,l T ﬁn,n—l 1

™See e.g. Applebaum [9] or Schoutens [91].
80See e.g. McNeil et al. [78], Example 2.14.
81See e.g. Casella and Berger [19].
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Figure 4.3: Means and standard deviations of normalized time series.

Utilizing the above matrix p(9, N') one may now construct a stochastic covariance matrix
for every time step of our simulation. In order to calculate the first simulated return we
first compute

S(ty) = Etn)TE(tn) = (&ltn)én(tn)) . (4.111)

Lk=1,...,n

It is worth noting, that the vector &(y) contains the GARCH(1,1) volatilities for all stocks
calculated according to Equation 4.108 based on the log-return between ¢y_; and ¢y and
the GARCH(1,1) volatility £(ty_1). Denoting by * the component-wise product of two
matrices we can calculate the estimator for the instantaneous covariance matrix as:

G(tn) = Z(ty) * 5O, N). (4.112)

The instantaneous covariance matrix (fy) shall now be utilized to calculate our first
simulated return. Therefore, we compute the Cholesky®? decomposition of G(ty):

82Gee e.g. Platen and Heath [87], Section 1.4.
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Figure 4.4: QQ-plots of exemplary normalized log-return time series.

G(tn) = E(tn)"E(tw). (4.113)

Remark 4.2: At this point it is worth noting that the outlined approach avoids any
explicit ellipticity assumptions as discussed in Chapter 2. In our model, we do not postulate
any specific structure of the correlation matrix p(9%, N) or of the resulting instantaneous
covariance matrix &(ty) but we merely extract the utilized market structure out of the
available data. Thus, our model and the quality of its results do not hinge on the concept
of non-degeneracy (ellipticity) of 9.

We can now revisit the assumed stock price dynamics of Equation 4.105 and endow this
structure with the instantaneous covariance structure we have just constructed. To this
end, we reformulate Equation 4.105 as:

dlog X;(t) = Xil(t) (bz-(t) — éi(tV) dt + \/_Zgw £)dw,( (4.114)
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Figure 4.5: Sample plots of exemplary normalized log-return time series.

which gives us the continuous setup of our final model of correlated particles. Hereby W (+)

denotes an n-dimensional Brownian Motion and &;(+)* denotes the instantaneous variance

of the i-th stock. The dynamics of X;(-) may be derived directly from (4.114) by application

of Itd’s formula to f(x) = exp(z).

dX;(t) = Xi<t)dlogXi(t>+%éii(t)zdt

= | bi(t)

- 5;_02 it + m;gw@)dwy(t) - %&(t)gdt

b VD S G ) (4.115)

This continuous setup may be discretized in a straightforward way so as to obtain the first

simulated return. We recall that we have extracted the correlation structure of log-returns

from our historical time series in the form of the correlation matrix p(9t, N) and the vector
of GARCH(1,1) volatilities £(¢x) which we have utilized to construct the instantaneous
covariance matrix &(tx). We shall denote the simulated stock prices by X;(¢;) for j € N

128



4.2 Construction of Correlated Stocks in the SqBM-Model

and j > N + 1. For the first simulation, we are utilizing the last available stock price
X;(ty) for every stock i = 1,...,n, which - without loss of generality - we re-scale to
1 for each stock. Thereby one obtains the following discrete calculation scheme for the
log-return 7(ty,tx,1) which constitutes the logarithmic return of the i-th stock realized
between time ¢y - i.e. the final point of our time series - and time ¢y, which is the first
simulated time step.

(ai(tN)fii(tN) - %éi(tzv)Q) Aty +

fi(tN,tNH) = X-(tN)

\/ﬁ Z & (tn) AW, (). (4.116)

We will pursue the simulation approach of computing a long-term projection of 5000 time
steps. Assuming 250 business days per year this corresponds to a 20 year horizon. It
is worth noting that for classical risk management applications one would often compute
several runs of short period returns rather than long term projections. Since we are inves-
tigating the capital distribution of the market at this point, we will stick to the long-term
projections. The classical applications in risk management will be discussed in Chapter 5.

With this set of simulated log-returns 7;(ty,tn41) for stocks i = 1,...,n we can now
calculate the next GARCH(1,1) volatility & (ty41) for each stock as:

&i(tnt1) = \/90 + O017i(ty, Evn)? + BEi(E)? (4.117)
Furthermore, we obtain the simulated stock price for ¢y.1:

Xi(tN-H) :XZ(tN) exXp (fi(tNatN-i-l))' (4118)

This permits us to return to the step described in Equation 4.111 and perform the com-
putation described in the above steps for the next time step from ty,; to tyi2 and so
on.

The simulation algorithm which we have just outlined in the steps between Equations 4.111
and 4.118 will be the backbone of all our further calculations. The outlined constructive
approach provides us with a model which incorporates the correlation information which
may be extracted from market data and which at the same time yields a reasonably shaped
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4.2 Construction of Correlated Stocks in the SqBM-Model

Capital Distribution Curve. In the following charts, we will visualize our correlated SqBM-
model.

4.2.2 Visualization of Results

In the first step we shall depict the heat-map of the correlation matrix p(9%, N') which has
been utilized for the ensuing simulations. It should be borne in mind that the data base
for our calculations is the S&P 100 index which should provide us per definition with a
quite well-diversified investment universe.

Visualization of Correlation Matrix
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Figure 4.6: Heat-map of the correlation matrix p(90t, V).
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4.2 Construction of Correlated Stocks in the SqgBM-Model

It can be observed in Figure 4.6 that the majority of inter-particle correlations are hovering
between zero and 0.4. Low negative correlation between particles is observable in some
cases as well as a few larger positive correlations in the area of > 0.6. It is worth noting
that different index structures can lead to a substantially different correlation pattern. In
indices with larger constituent bases, collinearities between similar stocks are usually more
pronounced than in condensed benchmark indices like the S&P 100. Specialized theme
or industry indices are - by definition - depicting a special universe consisting of strongly
dependant particles.
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Figure 4.7: Capital Distribution Curves for the correlated SqBM model for 2000 time steps.
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4.2 Construction of Correlated Stocks in the SqgBM-Model

In Figure 4.7 we have visualized 2000 CDCs which were obtained from the simulated
market structures in time steps 3000 to 5000. The pattern which we have reproduced
through the model outlined in Section 4.2.1 does a reasonable job in reproducing the
structure observable in market data as depicted in Figure 3.1. Furthermore, the fact that
we have started at simulation time 1 with a market with evenly spread market weights
permits us to visualize the convergence of the CDC from the artificially created straight
line to the characteristically sloped structure which has already been presented various
times (see Figure 4.8).
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Figure 4.8: Capital Distribution Curves for the correlated SqBM model starting with time
1 (straight line) up to time step 300.
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4.2 Construction of Correlated Stocks in the SqBM-Model

Furthermore, we can also visualize the market entropy in our correlated SqBM model
(Figure 4.9), utilizing the results from Section 1.2.2. In this plot we visualize the simulated
market entropy for our correlated model (in blue) together with the entropy in the case of
uncorrelated particles (in red) and in the case of randomly correlated particles (in green).
It is worth noting that in our simulation example we have a fairly high value of normalized
market entropy in the area of 0.92 which is due to the fact that we started our simulation

with a perfectly diverse market.
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Figure 4.9: Left chart: simulated market entropy for the correlated model (blue), the
uncorrelated model (red) and randomly correlated particles (green); right chart: market
entropy calculated from realized fluctuations of market data time series.

Altogether the market entropy which is obtained from our simulation exhibits a reasonable
degree of stability and the mean-reverting behavior which may also be observed in market
data.® If we further compare our simulated entropy with the values observable from
our market data as depicted in Figure 4.9 in the chart to the right, it may be observed

83See Fernholz [44], Section 5.5, Figure 5.7.
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4.2 Construction of Correlated Stocks in the SqBM-Model

that the results of our correlated model as outlined in Section 4.2.1 fit the observable
market structure reasonably well. Furthermore it is apparent from the charts in Figure
4.9, that the inclusion of inter-stock correlations improves the dynamics and the overall
level of market entropy when compared to market data. Our model also attains the goal of
reproducing the volatility pattern of market entropy as observable from data. In order to
render the market data based entropy calculation and the simulation results comparable
we have also re-scaled the initial "market prices" of all stocks to one, the different lengths
of the simulated charts and the data based charts in Figure 4.9 stem from the length of
our market data time series.

Finally in Figure 4.10 we visualize the Capital Distribution Curves for our correlated model
(in blue) and for uncorrelated particles (in red). As compared to some CDCs calculated
directly from our market data it is apparent that endowing our baseline SqBM model
with the above described correlation structure substantially improves the replication of
observable CDC patterns. The correlated model also leads to a slower decline of mar-
ket capitalizations relative to the uncorrelated version where the structural break between
larger stocks and small penny stocks is more pronounced. We remark that both the cor-
related and uncorrelated model contain the same number of particles. In the left chart in
Figure 4.10 the tail of the uncorrelated CDCs is cut off by the plot range.
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Figure 4.10: CDC for simulated markets with and without correlation (blue resp. red
charts on the left) and for real market data (right).
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4.2 Construction of Correlated Stocks in the SqBM-Model

Based on these results we can justifiably claim that our correlated SqBM model reasonably
captures both the diversity and the capital structure of the equity market if we compare it
to our market data. The endowment of our model with the real life correlation structure
which is utilized as base for the stochastic evolution of instantaneous covariance matrices
clearly leads to an improved imaging of real market conditions. The algorithm outlined
in Section 4.2.1 can therefore be seen as a substantial step forward towards the end of
establishing a model which solidly replicates market dynamics.

4.2.3 Alternative Approaches for Incorporating the Correlation
Structure

At this point it should be remarked, that the approach of endowing our market model with
a correlation structure which was presented in Equations 4.110 to 4.112 is by no means the
only approach one may think of.

One alternative approach for deriving an estimator for the instantaneous covariance matrix
would be to apply the Fourier Estimator we have introduced in Section 2.1.1.3* In this vein,
one could consider applying the Fourier Estimator given in Equation 2.9 to the normal-
ized time series of log-returns 7(-). This would yield an alternative estimator &p(-) which
would then be a function of time and could be evaluated at every step of the simulation.
Furthermore, every simulated log-return could be used to update the time series for the
Fourier estimator and thus to provide an updated &z () at every step of the simulation.

Another alternative approach would be to utilize the results of Ahdida and Alfonsi [4] on
stochastic differential equations on correlation matrices. In this work the authors propose
a matrix valued mean-reverting SDE model for the evolution of stochastic correlation
matrices C'(-). Such a framework of stochastic correlation matrices may be incorporated
in our model and calibrated to our normalized time series of log-returns 7(-).

Both alternative approaches possess substantial mathematical beauty, yet they have one
central drawback in common: they would dramatically increase model complexity and
would pose a bigger challenge to numerical stability. The approach we have outlined in
Section 4.2.1 possesses the great advantage of relative ease in implementation and good
performance in practical calculations. Therefore we will not further elaborate these alter-
native approaches at this point and leave these issues open for future research.

84See Malliavin and Mancino [75].
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4.3 Further Ramifications of the SqBM-Model

4.3.1 Particles as Sums of Two Squared Brownian Motions

A natural extension of the model for independent stocks as outlined in Section 4.1.2 would
be to model individual stocks as sums of two independent Squared Brownian Motions. This
approach is of course arbitrarily extendable. In this case any stock X;(-) fori € {1,...,n}

Xi(t) = tr [( Wio(t) Wio(t) ) ] , (4.119)

whereby the W;,(+), i =1,...,n and [ = 1,2 are independent standard Brownian Motions.

may be written as

Therefore we have the following dynamics for X;(-),i=1,...,n
dX;(t) = 2dt + 2W;, (t)dW;, (t) + 2We, (t)dWy, (t). (4.120)

With respect to the distributional properties of the resulting process, we have only minor
changes compared to the results described in Section 4.1.2, since for i =1,...,n

Xi(t) (Wi (t)) N (Wi (t)) ~2(2). (4.121)

t Vi Vi

Hence in this case, the scaled process is the sum of two squared standard normally dis-
tributed random variables and therefore y?(2) distributed.®® Furthermore, if one has
¢ ~ x%(2), then it holds for = = ¢{ that = ~ T'[1,2t]. Thus in analogy to the esti-
mated capital curves in Figure 4.1 we can display the same type of charts for a market
where each stock is constructed as sum of two Squared Brownian Motions.

Furthermore, akin to the capital distribution curves depicted in Figure 4.2, one may also
simulate the capital distribution structure for this extended model, the result for 300
simulation runs may be found in Figure 4.12. The results are very similar, the important
aspect being that overall structure of the CDC remains as desired in the extended SqBM
model as well. The only difference which may be observed based on our simulations is
the somehow dampened decline into nothingness happening at the right side of the chart.
Thus if we model individual stocks as sums of two Squared Brownian Motions, then the
market weights of the smallest stocks decline slower than in the standard case.

85See e.g. Abramowitz and Stegun [2], Section 26.4.
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Figure 4.11: Log-log plots for estimated market weights based on sums of two Squared

Brownian Motions for 500 (left) and 1000 (right) particles.
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Figure 4.12: Capital Distribution Curves for 300 simulated time-steps in a market consist-
ing of 100 particles as sums of two SqBMs.
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4.3.2 Generalization to Wishart Processes

In this section we will briefly outline the next obvious extension of the SqBM model de-
scribed in Section 4.1.2, namely the generalization to Wishart processes. We will briefly
outline the dynamics of Wishart processes and we will provide the results of the simulation
of a Wishart model calibrated to the S&P 100 market data which we have also used for
the other simulations in this chapter. The family of Wishart processes and more generally
that of affine processes on positive semi-definite matrices provide us with a very flexible
modeling framework, however a detailed discussion of this class of processes is well beyond
the scope of this work. A comprehensive introduction to the field of Wishart processes
may be found in Bru [18], the general topic of affine processes on positive semi-definite
matrices is extensively discussed in Cuchiero et el. [25].

Let us consider the Wishart process {X(t)}:>o living on the positive semi-definite d x d
matrices S, whose dynamics are given by®¢

dX(t) = (b+HX(t)+X(t)H")dt (4.122)

/X (@)dW (£)E
+3Taw (t)/ X (t).

We will model our stock market 9t as the diagonal elements of the matrix-valued process
X(+). At this point it is furthermore worth mentioning, that the definition given in Equation
4.122 may be further generalized by incorporating a jump component as it is done in
Cuchiero et al.®” The individual components of the dynamics for X (-) may be characterized
as follows:

e bis a d x d matrix for which it has to hold that b — (d — 1)X7% € 8.% Due to this
and the discussion in Bru® we set b = 6X7%, § =d + 1.

e We choose ¥ such that X7 = A whereby A is a d x d covariance matrix. If the
eigendecomposition of A is given by A = OAOT where A is the diagonal matrix
comprising the eigenvalues of A, then we define ¥ as the square root of A, i.e.

Y = OVAOT.

e H € R™ and furthermore —H € S;.°° Therefore we shall choose H to be a

86See Bru [18], Section 5.2.

87See Cuchiero et al. [25], Equation (1.2).
88See Cuchiero et al. Section 1.

89Gee Bru [18], Section 5.2.

90See Cuchiero et al, Section 1.
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4.3 Further Ramifications of the SqBM-Model

negative definite matrix which also serves the goal that the drift term in (4.122) does
not become too large.

e W(-) denotes a d x d matrix of Brownian Motions.

We will accordingly call X (-) a Wisy(x,d, H,3;t) process. Its characteristic function
is given as follows. Let v = dv;, v; € R¥™? then the characteristic function of a
Wisy(z, 6, H, ¥;t) process is given by”!

exp (tr [v(lq — 2qw) " 'mgam] )

E, [exp (tr (X (1)))] = Tt (L —2g077 , (4.123)

where I; denotes the d-dimensional identity matrix and ¢; and m; are given by

¢

@ = /exp(sH)ETEexp(SHT)ds, (4.124)
0

my = exp(tH). (4.125)

Hence it obviously holds that the characteristic function of a Wisy(z, d, H, ¥; ) process is
of exponentially-affine form with

o(v,t) = —glog(det([d — 2¢qv)), and (4.126)
(v, t) = exp (tr [v(ly — 2qw) 'mgazm|]) . (4.127)

If X(-) is of the form as given in Equation 4.122, then it holds that X (t) = Y (¢)TY(¢)

where Y'(+) follows the dynamics®?

dY (t) = dB(1)S + Y (t)Hadt, (4.128)

whereby Y () is a (d + 1) X d matrix and B(:) is a (d + 1) x d Brownian matrix. For
the initial value it holds that X(0) = x = y”y. Based on the dynamics of Y (-) we will
implement a simulation scheme for X (-). The implemented steps of the simulation scheme
are outlined as follows:

1. Ad-Hoc-Estimation of X

We will resort to some of the results which we have retrieved for the simulation of corre-
lated particles in the SqBM model in Section 4.2. Our aim is to construct a covariance
matrix A which is calibrated to market data. Since we are looking at a time homoge-
neous model in (4.122) we have to implement a slight adaptation to the construction of

91See Ahdida and Alfonsi [3], Proposition 5.
928ee Bru [18], (5.6) and (5.7)
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the instantaneous covariance matrices in Section 4.2. As basis we will utilize the estimated
correlation matrix 5(9%, N') which has been defined in (4.110). Based on the GARCH(1,1)
volatilities fi(tj), 1=1,...,n;5 =1,..., N we will calculate the vector comprising the
mean volatilities for each stock &, i = 1,...,n. We recall that we named the number of
stocks in the market ||07|| = n in Section 4.2. In order to be in line with the dimensionality
parameter d in this section, we will set d = n. Akin to the approach outlined in Equation
4.111 we will set

== ng = (gigj)i,jzl,...,d'

Then, again denoting by * component-wise multiplication, we obtain A as
A=Zxp(M, N). (4.129)

Denoting again by A = OAO?T the eigendecomposition of A we obtain the d x d matrix 2
as:

¥ = OVAOT, (4.130)

This choice for ¥ as square root of A ensures that we have Y'Y = A and thereby the
observed covariance structure is duly accounted for and we remark that this construction

is in line with the structure of the admissible parameter set admitting the representation
(4.122).93

2. Ad-Hoc-Estimation of H
As outlined above, we want the d x d matrix H to be negative definite. In order not to
complicate things, we will set

H=x - L kER. (4.131)
0 1

Hereby the interesting question is, how to choose x. Our aim is to keep the drift term in
Equation 4.122 under control, in order to prevent our matrix valued process X (-) from "ex-
ploding". To this end we apply the following one-dimensional heuristic. We are translating
the drift term into the scalar form

502 + 2kx = 0,
whereby we obtain
0 4
K=—=0
2

93See Cuchiero et al. [25], Theorem 2.6.
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for some suitably chosen variance term o2. Utilizing the mean of the diagonal elements of
A as o? yields
k = —0.02466859

which works quite well for our simulation.

3. Obtaining the starting point of Y'(+)

As initial value for the d x d matrix valued process X (-) we will utilize I;, an approach
which is well aligned with our usual procedure of setting the initial stock prices to one.
Since the initial value Y (0) = y is of dimension (d+1) x d, we will set y2 =z, i =1,...,d
and y; ; =0, 7 # j.

4. Simulation step
The central simulation step reads as follows

AY(t) = AB(t)X + Y (t_)HAC.
Based on the thus simulated value of Y'(¢) we obtain
Xt) =YY (t)
and consequently our vector of stock prices at time ¢ is given by
Z(t) = diag(X(t)).

This procedure is then repeated according to the defined simulation horizon.
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Figure 4.13: Evolution of stock prices in the Wishart model for 500 (left) and 5000 (right)
time steps.

The results of this simulation scheme are remarkably stable and certainly look promising
with respect to future research. In Figure 4.13 we display the evolution of simulated stock
prices over the time horizons of 500 and 5000 days. Even though a handful of stocks exhibit
a somehow quite extreme behavior, the vast majority of simulated particles possesses a very
reasonable amplitude of dynamics and the overall market behavior appears quite stable.
In the next step, we have produced the simulated Capital Distribution Curves for 3000
days (simulation runs) for our market consisting of 100 stocks. The resulting curves are
displayed in Figure 4.14. The overall shape and structure of the capital distribution is
quite similar to the ones obtained in the standard SqBM model and in the correlated
market model, however two major differences are observable. Firstly, the descent among
the largest stocks is steeper than in the other cases and secondly the decline of the smallest
stock visible at the rightmost part of the chart is less pronounced than in the previously
discussed cases.
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Figure 4.14: Capital Distribution Curves for 3000 simulated days in the Wishart model.

Finally we have simulated the market entropy in our Wishart model which may be seen in
Figure 4.15 together with the entropy calculated based on real market fluctuations.

The evolution of market entropy in the Wishart model shows the desired mean-reverting
behavior and the overall level of market entropy is comparable to the correlated model in
Section 4.2. The major difference to both the model in Section 4.2 and the market data
based fluctuations of the entropy is the larger amplitude of fluctuations in the Wishart
model. Nonetheless, the Wishart model yields realistic stock price dynamics together with
a reasonable reproduction of the capital structure and with the desired dynamics of the
market entropy. Therefore the modeling approach based on Wishart processes can certainly
be considered a promising area for future research.
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Figure 4.15: Simulated market entropy in the Wishart model and data-based market en-
tropy.

4.4 Conclusion

In Chapter 4 we have introduced a model for equity markets based on squared Brownian
Motions (SqBM). Slight adaptations to the dynamics of SqBM processes permitted us to
endow our model with a sufficient degree of flexibility in order to reproduce a realistic
pattern of stock price dynamics. In the central Section 4.2.1 we have equipped our SqBM
model with a stochastic covariance structure, thus obtaining a model which describes the
simultaneous evolution of correlated particles. Furthermore the successful reproduction of
market characteristics yielded by our model does not depend on any ellipticity assumptions,
thus eliminating a possible source of problems.

This model can be calibrated in a way which does not only reproduce volatility patterns of
single stocks but also performs a good job at reproducing the structure of the Capital Dis-
tribution Curve and the behavior of market entropy which are observable in real markets.
In our final Chapter 5 we will utilize this model to solve classical problems in the field of
risk management.

Furthermore we investigate possible ramifications of the SqBM approach, namely the case
when single stock dynamics are modeled by the sum of two Squared Brownian Motions
and the more general case of d x d matrix valued Wishart processes. Whilst the differences
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4.4 Conclusion

between the first ramification and the standard SqBM model are naturally small, the
more general Wishart model produces steeper Capital Distribution Curves. Yet altogether,
the Wishart approach still attains the goal of producing reasonable dynamics for single
particles, the distribution of capital and the market entropy, a fact which renders this class
of processes a promising field for future research.
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Chapter 5

Application to Risk Management

In the following Chapter 5 we will discuss approaches to quantify the downside risk of a
certain financial asset, like e.g. a stock X; € 9. For all general results on risk management
techniques and on the properties of commonly used risk measures we refer to the compre-
hensive works of Follmer and Schied [54] and McNeil et al. [78|. Grasping the downside
risk or loss potential of a certain financial position is the central challenge in everyday
risk management in financial institutions. In this vein, classical measures of dispersion
like variance / standard deviation (or volatility as it is commonly referred to in financial
markets) will only provide a limited picture and need to be complemented by further mea-
sures which are amenable to quantifying a position’s loss potential. Further discussions
of this challenge together with a comprehensive introduction to risk measures and their
applications can be found in Follmer and Schied [54], a book which we refer to with regard
to all general results stated in the ensuing introduction.

From the perspective of an investor, a risk measure may indicate potential loss levels linked
to a certain financial position. From the point of view of a supervising agency however, a
risk measure represents an indication for the amount of capital which a credit institution
ought to hold in order to cover the risks linked to a certain position. The current regulations
for credit institutions in the European Union as mandated by the directives of the European
Communities 2006/48/EC [38] and 2006/49/EC [39], the Capital Requirements Directive
and Capital Adequacy Directive as amended by directive 2010/76/EU [40], in accordance
with the guidelines set out by the Basel Committee on Banking Supervision (BCBS) [11]
put this principle to action. Under the so-called "Internal Model-Based Approach"!, banks
have to calculate a Value-at-Risk figure for the positions held in their trading book which
is then used to derive the regulatory capital requirement for market risk in the trading

1See e.g. the national implementation in Austria as effected in Art. 22p Austrian Banking Act [16].
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book.

In the following sections we will formally define risk measures and discuss their general char-
acteristics. Furthermore we will introduce some broadly used risk measures and outline
their properties, underlining strengths and weaknesses and we will establish a connection
to those risk measures currently employed for the calculation of regulatory capital require-
ments and provide an update on regulatory novelties in this field. The general discussion of
important risk measures will finally lead us to utilizing the correlated SqBM model which
we have constructed in Section 4.2 as a base for measuring portfolio risk.

For general mathematical properties and numerous results on risk measures we refer e.g.
to Artzner et. al. [8], Follmer and Schied [54], Jorion [63] or McNeil et al. [78]. With
regard to the regulations discussed we refer to the binding texts published by the European
Union [38], [39] and [40] as well as to the guidelines issued by BCBS [11].

5.1 Risk Measures - Definitions and Properties

In the ensuing considerations we will slightly generalize the setup introduced in Chapter
1, in order to introduce risk measures in a general way. We will follow the classical results
on risk measures introduced by Artzner et al. [8] and also refer to Follmer and Schied [54]
for a comprehensive treatment of the topic.

Let us consider a finite investment horizon [0, 7] and let us suppose that the cardinality
192l = N < co. Hence one is interested in the terminal value of a general financial position
Y (T,w) and in our case specifically in the terminal value of the stocks X;(T,w),...i € M.
Let furthermore X be the set of all risks, i.e. the set of all bounded functions Y : 2 — R,
clearly, M C %.2 Moreover we denote the discounted positions as Y (t) = %, where
B(-) denotes the value of the bank account, hence Y (T, w), w € Q denotes the discounted

terminal value of a financial position Y. Let further:

£, = {YeXx|Y(T,w) >0, Vw € Q}, (5.1)
g = {YeX|Y(T,w) <0, Vwe Q},
£ = {YeXlY(T,w) <0, Vw € Q}.

Definition 5.1: We shall denote by 2 the set of all terminal values of financial positions
which are accepted by the requlatory authority and accordingly A will be called acceptance

2See Artzner et al. [8], Section 2.2. and Féllmer and Schied [54], Section 4.1.
3See Artzner et al. [8], Section 2.2.
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set?.

The concept of acceptance sets can be generalized to comprise different currencies and
different regulatory bodies®. This generalization permits for situations where a certain
terminal value of a position might be acceptable to a certain regulator in one currency but
not in another and it may also be unacceptable to other regulators. However in all further
considerations we will restrict ourselves to the elementary case of just one currency and
one authority involved.

Let us now set forth the necessary axioms on the acceptance set as specified in Artzner et
al.f:

Axiom 5.1:
£1 CA (5.4)

Axiom 5.2:
AN L__ ={}. (5.5)

This Aziom may also be strengthened to:

AN L_={0}. (5.6)

Axiom 5.3:
The acceptance set 2L is convez. (5.7)

Axiom 5.4:
The acceptance set 2 is a positively homogeneous cone. (5.8)

Definition 5.2: A measure of risk’ is defined as a mapping p: X — R.

For those Y € X for which p(Y(T")) > 0 one may interpret the amount p(Y (7)) as the cash
or equity needed in order to make the combined position acceptable for the supervisor.
Conversely negative values of p(Y(T')) imply that the position is already acceptable and
may still be acceptable, if a negative cash position up to p(Y (7)) is included.® Risk
measures and acceptance sets may be linked to each other in a straightforward way.

1See Artzner et al. [8], 2.2.(c).

See Artzner et al. [8], 2.2.(c) and (d).
6See Artzner et al. [8], Axioms 2.1. - 2.4.
"See Artzner et al. [8], Definition 2.1.
8See Artzner et al. [8], Definition 2.1.
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Definition 5.3: The acceptance set 2, which is associated to a risk measure p is defined

as.'9

A, = {Y(T) € X|]p(Y(T)) < 0}. (5.9)

Conwversely, one may define the risk measure py which is induced by an acceptance set U

| pa = inf{m e RmB(T) + X(T) € 2A}. (5.10)

Equation 5.10 may also be stated in discounted terms as py = inf{m € Rlm + X (T) € A}.

Risk measures are generally classified according to their properties. In the following Def-
inition 5.4 we will introduce the properties commonly deemed desirable in risk measures.
Nonetheless, not all risk measures which are commonly used in practice fulfill all desirable
properties which leads potential problems and caveats in their implementation.

Definition 5.4: One can specify the following desired properties of risk measures'* for all

XY eX:

1. Monotonicity: if X(T) < Y(T), then p(X(T)) > p(Y/(T)).

2. Translation Invariance (cash invariance): let a € R, then p(X(T) + aB(T)) =
p(X(T)) — .

3. Subadditivity: for all XY € X: p(X(T)+Y(T)) < p(X(T))+ p(Y(T)).
4. Positive Homogeneity: for all A\ >0 and all X € X: p(AX(T)) = Ap(X(T)).

5. Convexity: p: X — R is called a convex measure of risk if p(AX (T)+ (1 =AY (1)) <
Ap(X(T)) + (1= Np(Y(T)), for0<A<1.

6. Relevance: for all X € X with X <0, X # 0 it holds that p(X(T')) > 0.
Remark 5.1: 2

The property of Monotonicity may be interpreted in the sense that a position with a higher
payoft profile will have less downside risk as compared to a position with a poorer payoff
profile.

The property of Translation Invariance (or Cash Invariance) represents the fact that the
riskiness of a position can be reduced by simply adding cash. Therefore, from a regulatory

9See Artzner et al. [8], Definition 2.3. and Féllmer and Schied [54], Section 4.1.
10Gee Artzner et al. [8], Definition 2.2. and Féllmer and Schied [54], Proposition 4.6.
"See Artzner et al. [8], Section 2.2. and Féllmer and Schied [54], Section 4.1.

12See Follmer and Schied [54], Section 4.1.
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point of view p(X) is the amount of cash needed, in order to compensate the risk inherent
in a certain position X and consequently to render it acceptable to the regulator, i.e.:

p(X(T) + p(X(T))B(T)) = 0. (5.11)

The Subadditivity property formalizes the fact that a combination of two risky positions
should not bear more risk than the sum of the individual positions. This also formalizes
the effect of portfolio diversification. Conversely, application of a risk measure which
is not subadditive might sometimes lead to the undesirable effect of punishing portfolio
diversification. In this case it might be possible to reduce the overall level of risk of
the positions held - and therefore also the amount of equity requested from a regulatory
perspective - if the positions were simply split up and distributed to various independent
trading desks or legal entities!3.

A positively homogenous risk measure is also normalized, i.e. p(0) = 0. Furthermore,
under the assumption of Positive Homogeneity, convexity is equivalent to Subadditivity.4
Positive Homogeneity of a risk measure depicts the effect when no netting or diversification

OCCUI‘S.15

Convexity of a risk measure also generally formalizes the effect of portfolio diversification,
namely that the risk profile of a portfolio investing the proportion A in one asset and 1 — A
in another should have a lower risk profile than the weighted sum of the individual risk
profiles.16

A risk measure satisfying the properties of Monotonicity and Translation Invariance is
sometimes called a monetary measure of risk.!”

t18

Definition 5.5: A risk measure p is called a coherent'® measure of risk if it satisfies the

properties of:
e Monotonicity,
e Translation Invariance,

o Subadditivity and

13See also Artzner et al. [8], Axiom S.

14See Follmer and Schied [54], Definition 4.5.

15See Artzner et al. [8], Remark 2.9.

16See Follmer and Schied |54, Definition 4.4.

17See Follmer and Schied [54], Definition 4.1.

18See e.g. Artzner et al. [8], Definition 2.4. or Jorion [63].
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e Positive Homogeneity.

It should be noted that Positive Homogeneity and Subadditivity of a risk measure ensure
convexity of p.* In particular, p is coherent if and only if 2, is a convex cone.?® Moreover,
any risk measure satisfying Translation Invariance and Monotonicity can be seen to be

Lipschitz continuous with respect to the supremum norm?!:

[p(X(T)) = p(Y(T)| < [|X(T) = Y(T)]|. (5.12)

In the following Section 5.2 we will introduce some commonly used risk measures and
discuss their merits and drawbacks.

5.2 Important Measures of Risk

5.2.1 Value-at-Risk (VaR)

Value-at-Risk (VaR) is probably the most commonly used risk measure in the finance
industry. This popularity is not only due to its relative ease of computation but also
due to the fact that VaR has become the risk measure of choice in financial regulation.??
Formally, VaR is defined as quantile of the P&L distribution for a given confidence level
and a given holding period.

Definition 5.6: 23 Let A € (0,1) be a given confidence level and let further X(-) be a given
financial position and let T =T —ty be the given holding period. Let us furthermore assume
without loss of generality that all financial positions are treated in a normalized way, i.e.
X(tg) = 1 and also for the bank account B(ty) = 1. Thus, the log-return of the financial
position over holding period T is given by log X (T') and log B(T) = rr.

In general, for a random variable Y, a A-quantile is any y € R with:
PY <y)>Xand P(Y <y) <A (5.13)

The formal definition of quantiles and thus of VaR may be formulated by means of the
generalized inverse:

19Gee Artzner et al. [8], Proof of Proposition 2.2.

20See Follmer and Schied [54], Proposition 4.6.(d).

21See Follmer and Schied [54], Lemma 4.3.

228ee e.g. the relevant EU directives 2006/48/EC [38] and 2006/49/EC [39] as well as the national
implementation in Austria in Article 22p Austrian Banking Act [16]. For the general methodological
outline we refer to the policy papers of the Basel Committee on Banking Supervision, above all [11].

2Gee e.g. Follmer and Schied [54], Definition 4.40. or McNeil et al. [78], Definition 2.10.
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e Let F': R — R be an increasing function, then the generalized inverse of F which we
will denote by F™Y is defined as F™V(u) := inf{x € R|F(z) > u}. By convention,

the inf of the empty set is defined as —oo.?*

e [n the case that F : R — R is a distribution function, its generalized inverse is its
quantile function, whereby for A € (0,1) the A-quantile is given by:

o (F) = FEY(\) = inf{z € R|F(x) > A}

By means of the quantile function and assuming log X ~ F, VaR(\,7,X) can be defined
as the negative of the 1 — X\ quantile:

VaR(A\, 7,X) = —q1-A(log X) = —inf{x € R|P(log X(T) < z) > 1— A}. (5.14)

Remark 5.2: At this stage, several points ought to be noted. Firstly, we digress from the
notational setup in Féllmer and Schied [54] by defining VaR(A, 7, X) as the (1— \)-quantile
of the P&L distribution. This is due to the notational practice in financial markets, where
a confidence level of A = 99%, say, is often utilized synonymously for the calculation of the
1% quantile. Our notation is similar to the one utilized in McNeil et al. 78] with the sole
difference, that there the authors consider the loss-distribution in a way that losses have a
positive sign, whereas we consider the P&L-distribution where losses have negative signs
and gains have positive signs. Furthermore, in order to be consistent with the notation
introduced in Section 5.1, we add a negative sign to the definition of VaR(A, 7, X) in
Equation 5.14. The pure quantile of the P&L distribution for common confidence levels
will usually yield negative values, hence we have to add the negative sign in order to be
in line with the utilized convention of a risk measure p(Y (t)) > 0 representing the amount
of cash which has to be added in order to render the risky position Y () acceptable. This
clearly also holds when our quantile is positive in which case the risk measure should be
smaller than zero, corresponding to the amount of cash that might be shorted while still
keeping the risky position acceptable.

Secondly, as already mentioned we have always described VaR in terms of the P&L dis-
tribution, whereas in Follmer and Schied [54], VaR is usually expressed in terms of the
discounted net terminal value of the financial position. These two formulations can easily
be seen to be equivalent. In Equation 5.14, VaR(A, 7, X) is expressed via the (usually
negative) log-return (loss) which the financial position X will not surpass over the defined
holding period 7 at a certain confidence level . Conversely in Section 4.4 of Follmer and
Schied [54], VaR is defined as the amount of cash which has to be added to the financial

248ee e.g. McNeil et al. [78], Definition 2.12.
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position X () in order to ensure that the discounted net terminal value of the combined
position over holding period 7 will be negative only with probability 1 — A.

These minor technical deviations in formulating VaR should however not blur the overall
picture and the central economic message that VaR describes a loss level which should not
be surpassed at a given confidence level over the specified holding period.

Remark 5.3: A second remark is due on Value-at-Risk with respect to the axioms of
coherent risk measures which we have stated in Definition 5.5. It has been discussed
extensively in the literature that VaR is not a coherent measure of risk. This observation
is due to Artzner et al. |7] and [8] and is also extensively discussed e.g. in Follmer and
Schied [54] as well as in McNeil et al. [78|, where a particularly useful discussion of the
topic is given in Section 6.1.

Nonetheless, due to its broad utilization both in regulation of financial markets as well as in
internal risk management of financial institutions, the VaR-concept deserves considerable
attention, notwithstanding its theoretical shortcomings. Despite its theoretical deficiency
of not being coherent, VaR is a risk measure which is easily and robustly computable
and facile to communicate. It ought to be underlined at this point that any risk measure
requires a certain "street credibility" on the trading / market side as well, in order to be
an efficient tool for risk steering and limitation. Its tangibility is therefore a major asset of
the VaR~concept, even though the fact, that VaR does indeed not provide any information
on the size of losses if they surpass the VaR-level, sometimes leads to misunderstandings
and also to wrong management decisions.

We have already mentioned that VaR has become the risk measure of choice in financial
regulation. Hence at this point we will state, how the minimum capital requirements for
market risks in the Trading Book of a credit institution are calculated using the VaR-
concept. According to the legal framework in the European Union?®, credit institutions
may choose between different quantification schemes for the capital requirements connected
to their trading activities (i.e. their regulatory Trading Book).

In the "Internal Model-Based Approach", credit institutions have to implement a quanti-
tative risk model which satisfies a pre-defined set of qualitative and quantitative criteria.
In the "Standardized Approach" on the other hand, capital charges are computed as per-
centage rates defined by the regulator for different types of assets and risk categories. In
its fully fledged form, an internal VaR-model covers the general and specific interest rate
risk as well as the general and specific equity risk and the risks stemming from foreign
exchange (FX) and commodity positions. However, credit institutions are free to apply for

25Gee the respective guidelines [38] and [39].
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model admission only in some of these risk categories and calculate the remaining capital
charges via the Standardized Approach (so-called "partial use"). Therefore the capital
requirement for market risks stemming from the risk position in the Trading Book Z at
time t can be formulated as:2°

60
o 1 ~
CCyr(t) = max {VaRt(QQ%, 10d. Z(t)). ko > VaR;_i11(99%,10d, Z(t — i + 1))} +

=1

60

=1

60
N 1 N
max {sVaRt(99%, 10d, Z(1)),k— Y sVaRe_i11(99%,10d, Z(t — i + 1))} +

TRCY(Zpee. 1r(t)) + APRy(Zoor (1)) + ST A Z(t)), (5.15)

whereby Z(t) = Z(t)WZ(t) is decomposed into those risky positions covered by the internal
model (Z(-)) and those covered by the standardized approach (Z(-)). In the case that the
credit institution does not possess an internal model, Z () = 0. The factor k denotes
the regulatory multiplier which is at least 3.02” and which may be increased according to

observed backtesting violations of the model and based on regulatory model assessment.

The risky position covered by the internal model Z (+) is not just subject to risk quantifi-
cation by means of VaR. Since implementation of the CRD III [40], credit institutions are
obliged to calculate a so-called "stressed Value-at-Risk" (sVaR) measure for all positions
in the application range of the internal model. This sVaR measure is methodologically
equivalent to VaR-calculation, however guideline 2010/76/EU [40] mandates that the in-
ternal model be calibrated to a continuous 12 month period of market stress instead of the
"normal" calibration for usual VaR calculation. The capital charge resulting from sVaR
calculation is computed analogously to the one based on VaR, the corresponding sVaR is
denoted by sVaR.(99%,10 d, Z(-)) in Equation 5.15.

In the case that the application range of a credit institution’s internal model also comprises
specific interest rate risk, the capital charge also has to comprise a so-called "Incremental
Risk Charge" (IRC).?® The IRC is designed to cover migration and default risks resulting
from positions bearing specific interest rate risk. To this end, credit institutions have
to model and calculate the losses stemming from credit migrations and defaults in their
portfolio over a capital horizon of one year at 99.9% confidence level.

Since positions are subject to maturing or turnover during one year, a minimum liquidity
horizon of three months has to be assumed and banks have to model portfolio changes

26See e.g. Art. 22p ABA [16] or McNeil et al. 78], Equation 2.21.
27See e.g. Art 22p Austrian Banking Act [16] and Art. 229 Solvability Bylaw.
28Gee e.g. Art. 22p para. 2 no. 4 Austrian Banking Act [16].
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according to the "constant level of risk" premise thus assuming that positions which mature
or which are eliminated from the portfolio are replaced by positions of the same risk level.
For details on the intricacies of sVaR and IRC models we refer to the guidelines issued by
the European Banking Authority on these topics (see [36] and [37]). In Equation 5.15 we

A~

denote the resulting capital charge by I RC.(Zspec. 1r(+))-

Finally the term APR.(Zcor.(-)) in Equation 5.15 denotes the measure of "All Price Risks"
(APR) to be computed for the positions of the correlation trading portfolio. As its name
alludes to, the APR measure ought by definition to cover all price risks which are connected
to the specific features of n-th-to-default instruments and other positions belonging to a
bank’s correlation trading portfolio.?

5.2.2 Expected Shortfall (ES)

The concept of Expected Shortfall (ES) is closely connected to VaR since it is defined as
the conditional expectation of losses exceeding VaR. For a general discussion of Expected
Shortfall we refer to Follmer and Schied [54] or McNeil et al. [78]. Economically, ES can
be seen as a risk measure complementing VaR since it provides information on the tail
behavior of the loss distribution.?® Furthermore, ES is a coherent measure of risk3! which
constitutes a substantial advantage over VaR. Due to these reasons, ES is increasingly
being used for internal risk management purposes in credit institutions, a development
which is also observable in international regulation. In this vein, the Basel Committee on
Banking Supervision is proposing the utilization of ES or similar coherent risk measures
for calculation of capital requirements in the Trading Book.??

Definition 5.7: 33

Formally ES can be defined as follows. Let VaR(\, 1, X) be the Value-at-Risk as given in
Definition 5.6 for the financial position X (-) at confidence level A and with holding period
7. Then the corresponding Expected Shortfall ES(\, 7, X) is defined as:

1 1-A

ES(A,T,X) = ﬁ
- 0

VaR(u, 7, X)du = —E(log X(T)|log X(T) < =VaR(\, 1, X)).
(5.16)

29Gee Art. 22p para. 2 no. 3 Austrian Banking Act [16]

30See e.g. McNeil et al. [78], Definition 2.15.

31Gee e.g. McNeil et al 78], Proposition 6.9.

32See the Basel Committee’s Fundamental review of the trading book [12].
33See e.g. McNeil et al. [78], Definition 2.15 and Lemma 2.16.
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Again, the negative signs in Equation 5.16 stem from the need for consistency with the
conventions set forth in Section 5.1.

Remark 5.4; 34

It is worth noting that different names exist for the risk measure defined in the above
Equation 5.16. Apart from Expected Shortfall, the names "conditional VaR" (c¢VaR),
"Tail Conditional Expectation" (TCE) or "Worst conditional Expectation" (WCE) are
also being used for variants of the ES-concept.

5.3 Application of the SqBM Model

In this section we will apply the correlated market model which we have constructed in
Section 4.2.1 for classical applications in portfolio risk management. To this end we will
explain, in what way the model may be applied in practice in order to address classical
issues in risk modeling. As stated above, the current regulatory setup mandates measuring
risk by means of VaR with a confidence level of A = 99% and a holding period of 7 = 10
days in the context of calculating regulatory capital requirements in the Trading Book.
We will stick to the regulatory holding period and simulate 10 day log-returns for selected
portfolios. Our SgBM model can be seen as hybrid approach, blending aspects of historical
simulation and data analysis with facets of Monte-Carlo simulation.

5.3.1 Regulatory Value-at-Risk Calculation

As described in detail in Section 4.2.1, the core of our model is based on historical data
like the correlation matrix p(9t, N) and the GARCH volatilities which are calculated from
time series data in a straightforward way. As stated in Equation 4.116 these historical,
market data-based elements are then input into our model and thereby serve as a base for
a broad set of possible simulations. In order to compute risk figures over a 10 day holding
period, we utilize the SDE 4.116 for the simulation of 10 day time windows. The result of
each simulation step is a real 10 day log-return, a calculation which is then repeated for
a sufficiently large number of times, in order to ensure robust quantile computation. In
this illustrative example, we utilize M = 10000 simulated 10 day log-returns, resulting in
100000 simulated one day log-returns.

In this example, we have calculated risk figures for four arbitrarily chosen portfolios: a

34See e.g. McNeil et al. [78], Section 2.2.
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diversity-weighted portfolio with generating function D,(-) as introduced in Section 1.2.3,
an entropy-weighted portfolio (see Definition 1.11), the market portfolio (see Definition 1.8)
and an equally weighted portfolio. Recalling that we have started our model simulation
in Section 4.2.1 with an equally weighted market universe, we have arbitrarily picked the
market weights resulting from simulation run No. 300 in Section 4.2.2 as initial weighting
for the market. This initial weighting and the short time window of 10 days explain, why
the portfolio weights and thus the resulting P&L distribution for the different portfolios
are relatively similar. Above all, it should be noted that we do not use the real world
constituent weights from the S&P 100 index, thus a comparison between the results of this
simulation and the real world index volatility is not really adequate.

As can be seen from the histograms presented in Figure 5.1, the initial setup of our market
model leads to very homogenous results in terms of simulated portfolio profit and loss.

| Mean | Vol | Vol. ann. [ VaR 99% | VaR 95% | VaR 90% | ES 99% |

Diversity | -0,05% | 3,34% | 16,71% | 8,14% 5,65% 127% | 9,37%
Entropy | -0,05% | 3,34% | 16,70% | 8,14% 5,64% 427% | 9,37%
Market | -0,05% | 3,33% | 16,67% | 8,17% 5,63% 4,25% | 9,36%
Equal | -0,05% | 3,37% | 16,87% | 8,15% 5,72% 4,32% | 9,46%

The above table completes the picture suggested by the histograms in Figure 5.1 and il-
lustrates the similar development of the four portfolios. Once again we have to underline
that this result is not surprising since we have started with a fairly homogenous market
and the different weighting approaches lead to fairly similar portfolio weights in this sit-
uation. This effect is further amplified by the very short time window of simulating 10
day returns as requested for regulatory applications. Numerical comparisons with different
(randomly selected) starting points for the initial price vector show that the effect of the
initial weighting is observable albeit small, which is not surprising considering the relatively
short regulatory time window of 10 days over which the evolution of particles is calculated.
This can also be seen from the figures in the table below where we have computed the
same risk figures based on a simulation utilizing a vector of 100 x*(1) distributed random
numbers as starting point. Thus, in Section 5.3.2 we will provide an analysis of risk figures
over a longer simulation horizon.
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Figure 5.1: Histogram of simulated portfolio P&Ls and their 1% quantile (VaR).

| Mean | Vol | Vol. ann. | VaR 99% | VaR 95% | VaR 90% | ES 99% |

Diversity | -0,04% | 3,45% | 17,25%
Entropy | -0,04% | 3,46% | 17,31%
Market | -0,05% | 3,52% | 17,60%
Equal -0,03% | 3,36% | 16,82%

8,50%
8,56%
8,69%
8,34%

5.74% 439% | 9.87%
5,76% 4,40% | 9,91%
5,82% 447% | 10,08%
5,49% 4,30% | 9,59%
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It is quite evident that the simulation based on randomly selected initial market weights
leads to more observable deviation between the different portfolio types. In this case, all
portfolios exhibit more favorable characteristics than the market portfolio with the equally
weighted portfolio suggesting the best risk / return relation.

Histogram of Diversity—Weighted Portfolio

2000
|

o

o _|

n

-
> >
(8] (8]
c c
[} [}
> =}
o o o
2 o | o
r 9 i

o

S -

n

o

T T T T T T 1
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
10-day returns
Histogram of Market Portfolio

o

(SR

o

N

o

s | — I

n

-
> >
Q (8]
c =
[} [}
s 3 5
g g g
r 9 i

500

o—;l—

T T T T T T 1
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

10-day returns

Figure 5.2: Histogram of simulated portfolio
random initial market capitalizations.
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The histograms of the four portfolios are given in Figure 5.2. These plots also illustrate
more distinguishable characteristics of the portfolio P&L distributions if compared to our
first simulation and the histograms provided in Figure 5.1.

Apart from classical VaR-calculation our model may also be applied in a straightforward
way for the calculation of stressed-Value-at-Risk (sVaR). In this vein, it would be suffi-
cient to restrict the calibration procedure outlined in Section 4.2.1 to a continuous twelve
months period of market stress. This would provide us with a correlation matrix pg(9, Ng)
resulting from the time series in the chosen stress period. In order to ensure a con-
servative stress modeling, one could furthermore choose the stochastic volatility matrix
which is utilized to retrieve the first simulated return as described in Equation 4.116 as
E(tn,,.,) = MaXy,eft;, g } 1€(t;)||, where || - || denotes some suitable matrix norm, rather

than &(tx).

A similar approach may be utilized in order to explicitly incorporate event risk for risk
management purposes as mandated by European regulation.®® To this end one may apply
a jump detection algorithm as e.g. proposed by Lee and Mykland [73] in order to identify
name- and market-specific extreme events. Once such extreme events are being identified,
one may utilize this data set to either re-calibrate the model in Equation 4.116 to some
extreme volatility level or to enrich the current Brownian model with a jump component,
thereby moving to a more general Lévy-based model.3® At this point we shall only point
out the different possible refinements of our modeling approach, a detailed elaboration of
these topics is however beyond the scope of this work.

5.3.2 Long-Term Benchmark Calculation in the Correlated SqBM
Model

In this section we shall analyze the results obtained for a long term simulation of the
portfolios already utilized in Section 5.3.1 relative to the canonical benchmark - the market
portfolio (). We start again with a market setup where all stocks have initial value 1. Due
to this, at time ¢ = 0 all four portfolios under scrutiny, the diversity-weighted, entropy-
weighted, equally-weighted and the market portfolio are identical to the equally-weighted
portfolio and their respective portfolio value is 1. This approach helps to get a feeling of

35For the national implementation in Austria we refer to Art. 232 Solvability Bylaw of the Austrian
Banking Act [16].
36See e.g. Applebaum [9] or Schoutens [91].
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the speed at which the different portfolio-generating functions diverge from the market.
We set a simulation time-frame of ¢y = 5000 business days, i.e. a 20 year time horizon.

The aim of this visualization is on the one hand to illustrate that our proposed model as
constructed in Section 4.2 is also well suited for depicting stock price dynamics over a longer
time horizon and on the other hand that it may be applied in a straightforward way for
classical relative risk analysis versus a given benchmark. Here the market portfolio is being
utilized in its role as canonical benchmark relative to which the other portfolios are assessed.
It is worth noting at this point that there exists a major difference to the regulatory
approach which we illustrated in Section 5.3.1. For the regulatory VaR-calculation, the
portfolio weights have to be held constant for the simulation, since its aim is to quantify
the risk level of the existing position without any further rebalancings. For the long-term
benchmark analysis on the other hand it is clearly necessary to adapt the market weights
in every simulation step in order to account for the concept of dynamic portfolio generation
by means of generating functions as outlined in Section 1.2.
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Figure 5.3: Diversity-weighted portfolio (red) and market portfolio (blue) and their relative
returns.

In Figure 5.3 we depict the behavior of the diversity-weighted portfolio relative to the
market. The left-hand plot illustrates the overall evolution of these portfolios, showing

161
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that our model reproduces bull- and bear-markets with a reasonable amplitude of market
fluctuations over a long time horizon without leading to "explosions" or "erosions" of the
aggregate market capitalization. The right chart illustrates the relative returns of the
diversity-weighted portfolio relative to the market which range between —4% and 4%.
Since we have started in an equally-weighted market universe it should be expected that
the relative deviations between the two portfolios increase as time passes, which is indeed
the behavior observable in the right chart. In Figure 5.4 we depict the histogram of the day-
to-day log-returns of the diversity-weighted portfolio and of the market portfolio. These
histograms suggest a more favorable behavior of the diversity-weighted portfolio from a
risk management perspective since it exhibits less dispersion in its log-returns and less
down-side potential with at the same time similar up-side versus the market.
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Figure 5.4: Histogram of day-to-day log-returns of the diversity-weighted and of the market
portfolio.

Analogously to the above charts for the diversity-weighted portfolio, the portfolio evolution
and relative returns of the entropy-weighted portfolio relative to the market are depicted
in Figure 5.5. The behavior of the entropy-weighted portfolio is rather similar to the
diversity-weighted portfolio as it was already suggested by our analysis of real market data
in Section 1.2.3. It may be noted however, that the dispersion of relative returns is smaller
than in the latter case.
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Relative Returns Entropy vs. Market Portfolio
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Figure 5.5: Entropy-weighted portfolio (green) and market portfolio (blue) and their rela-
tive returns.

The structure of the entropy portfolio’s day-to-day log-returns bears more resemblance to
those of the market portfolio than in the case of the diversity-weighted portfolio (see Figure
5.6). Finally the same charts as above for the equally-weighted portfolio are provided
below. Not surprisingly, the deviations between the equally-weighted portfolio and the
market are largest both in terms of the relative returns as provided in Figure 5.7 and
in terms of the distributional structure of day-to-day log-returns as given in Figure 5.8.
An interesting facet of the simulation for the equally weighted portfolio however is, that
it reveals remarkable risk-return characteristics with little down-side and very generous
up-side potential being suggested by its histogram. Hence one lesson to be taken from
this little analysis is that even extremely simple portfolio management techniques which
produce a high degree of diversification - in our case by simply taking the same proportion
of the portfolio in every stock in the market - may lead to very attractive results.
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Figure 5.6: Histogram of day-to-day log-returns of the entropy-weighted and of the market
portfolio.
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Figure 5.7: Equally-weighted portfolio (light-blue) and market portfolio (blue) and their
relative returns.
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Histogram of Equally-Weighted Portfolio Histogram of Market Portfolio
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Figure 5.8: Histogram of day-to-day log-returns of the entropy-weighted and of the market
portfolio.

5.3.3 On the Effect of Correlations

The final simulation study which we will describe in this chapter aims to assess the effect
of capturing the market data inflicted correlation structure in our model. To this end we
repeat the simulation performed in Section 5.3.2 for 100 times with 500 time steps each
based on the correlated model and simultaneously we repeat this simulation for a simplified
model where we replace the correlation matrix p(9t, N) by the identity matrix, keeping the
GARCH volatilities, the drift and the utilized random increments unchanged. The result
is a model where stocks possess individual drifts and volatility directions relative to their
respective Brownian Motion but they are uncorrelated to each other. Such a cancelation
of inter-stock correlations is for example used in parts of the works by Ichiba et al.3",
furthermore the volatility stabilized market model described in Section 4.1.2 is also based
on uncorrelated particles.

In Figure 5.9 we present the sample trajectories of the market portfolio, the entropy-

37See Ichiba et al. [61], Examples 2, 3, 5, 7, 8.

165



5.3 Application of the SqBM Model

weighted portfolio, the diversity-weighted portfolio and the equally-weighted in the corre-
lated case. The displayed charts illustrate that the correlated model outlined in Section
4.2.1 reproduces a realistic structure of market fluctuations.
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Figure 5.9: Sample paths of portfolios for the correlated model. Top row: market portfolio
(left) and entropy portfolio (right); bottom row: diversity portfolio (left) and equally-
weighted portfolio (right).
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Figure 5.10: Sample paths of portfolios for the uncorrelated model. Top row: market
portfolio (left) and entropy portfolio (right); bottom row: diversity portfolio (left) and
equally-weighted portfolio (right).

In Figure 5.10 the sample paths of the same portfolio value processes as in Figure 5.9 are
depicted for the uncorrelated case. It is striking to observe, that canceling the inter-stock
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correlations leads to an unrealistic structure of market fluctuations. The trajectories of
portfolio values resemble monotonically increasing functions with some noise created by
the market weight-based functional portfolio generation rules (market portfolio, diversity-
and entropy-weighted portfolio). In the case of the equally-weighted portfolio the growth
behavior of the market is essentially flattened out, the resulting charts correspond to the
development of the average capitalization of individual stocks.

From these charts it is evident that the incorporation of the data-based correlation structure
is crucial for the reproduction of realistic stock price and portfolio dynamics. The effect
due to simply canceling out inter-stock correlations in the diffusion term of our model
is massive and certainly leads to overly optimistic market evolutions. We note that this
behavior is due to the large drift component of the market portfolio in the uncorrelated
case as discussed in Section 4.1.2, as may directly be seen from the dynamics of the market
portfolio in the pure SqBM model with respect to the Brownian Motion W()

dZ,(t) = Z,(1) < Z:(t) dt + ZQ (t)dW(t)> .

Due to this feature, the incorporation of market correlations is of paramount importance
from the point of view of risk management applications. Furthermore, we note that this
kind of behavior which is observable in the case of the uncorrelated model is even more
pronounced in the VSM model which we have also discussed in Section 4.1.2, since in this
case, the dynamics of the market portfolio are given as specified in Equation 4.101 by

dZ,(t) = Z,(t) (@dt + dW(t)) :

Hence in the VSM case the overly positive development of the market portfolio is even
amplified by multiplication with the entire market capitalization. In the VSM the market
portfolio takes the dynamics of an geometric Brownian Motion with an enormously large
drift, whereas in our modeling approach based on Squared Brownian the process for the
market portfolio again possesses dynamics akin to those of individual stocks as specified in
Equation 4.52, more precisely we have that dZ,(t) = > | dX;(t) as outlined in Equation
4.78.

Another set of questions which we want to address is the risk and performance structure
of functionally generated portfolios in the correlated and uncorrelated in order to assess
the effect of incorporating correlations from this perspective as well.
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Figure 5.11: Difference in average aggregate portfolio value. Top row: market portfolio
(left) and entropy portfolio (right); bottom row: diversity portfolio (left) and equally-
weighted portfolio (right).

The first facet which will be outlined in Figure 5.11 is the performance of certain portfolios
in the uncorrelated versus the correlated case. We recall that the simulated paths in the
correlated and uncorrelated case are perfectly comparable since we have only altered the
input correlation matrix in the calculation and kept all other terms including the utilized
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random increments equal. The charts in Figure 5.11 contain the differences of the average
aggregate portfolio value based on the 100 paths containing 500 time steps which we have
already utilized above. We always calculate the difference between the uncorrelated and
the correlated case, thus positive values mean that the average aggregate portfolio value is
larger in the uncorrelated case than in the correlated case.

The striking feature in Figure 5.11 is that the three market weight based portfolio gen-
eration rules (market portfolio, entropy- and diversity-weighted portfolio) on average lead
to better results in the uncorrelated case, resulting in aggregate value differences between
around 2% and 5% over the simulated time horizon of 500 days (i.e. two business years).
Interestingly enough, the effect is exactly the opposite in the case of the equally-weighted
portfolio. Here the average aggregate value is lagging behind in the uncorrelated case by
some 14% over the simulated time horizon. We can easily obtain the portfolio dynamics in
the uncorrelated case by applying Equation 4.72 or Equation 1.1.12 in Fernholz [44]. Let
n(t) = (m(t),...,n.(t)) denote the equally weighted portfolio where for all i € {1,...,n}
and for all ¢t > 0 n;(t) = % Then the dynamics of the portfolio value are given by

"1 - 1
(2 Xi(t)) ar 2 VXi(t) dvm)] '

Since for this simulation we have actually used the correlated model given by Equation
4.115 and then canceled out the inter-stock correlations, we are actually considering the

(ib ) +Z 5“ >].

=1

az,(t) = Z1!)

n

dynamics

dz, (t) = ZTIT(t)

Similarly we have the dynamics in the correlated case given by

(S 5) 0 %y St

It is obvious that the drift terms will perfectly cancel out when assessing the differences

Zn(t)

dz,(t) =

between uncorrelated and correlated case and therefore the strong underperformance visible
in Figure 5.11 for the equally-weighted portfolio is uniquely due to the effect of inter-stock
correlations and their effect on the volatility term and the respective Brownian Motions.

Finally, if we take a closer look at the summary statistics of the distribution of daily
log-returns and the daily VaRs for various portfolios which are summarized in the table
below, we observe that the incorporation of correlations is essential for risk measurement
purposes. One observes that all portfolios exhibit annualized volatilities between 3.4% and
3.7% in the uncorrelated case which is not really a plausible range for equity portfolios.
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[ Mean | Vol. [ Vol. ann. [ VaR 99% | VaR 95% [ VaR 90% |

Market Cor. 0.052% | 1.20% | 18.96% 2.75% 1.86% 1.42%
Market Uncor. 0.052% | 0.24% | 3.74% 0.55% 0.33% 0.25%
Diversity Cor. 0.046% | 1.25% | 19.69% 2.87% 1.94% 1.48%

Diversity Uncor. 0.044% | 0.22% 3.52% 0.54% 0.31% 0.24%

Entropy Cor. 0.047% | 1.23% | 19.45% 2.84% 1.92% 1.46%

Entropy Uncor. 0.046% | 0.23% | 3.56% 0.54% 0.31% 0.25%
Equally-Wegt. Cor. | 0.031% | 1.43% | 22.61% 3.34% 2.23% 1.70%
Equally-Wet. Uncor. | 0.015% | 0.22% | 3.41% | 0.53% | 0.34% | 0.25%

In the correlated case on the other hand, all annualized portfolio volatilities range between
18.9% and 22.6% which is precisely the magnitude one would expect for well-diversified

portfolios consisting of liquid large cap stocks.

This aspect further demonstrated that

our correlated market model is well suited for risk management applications since we do
not only reproduce stylized facts like the capital distribution structure or the behavior of
market entropy but also a realistic degree of fluctuations both in individual stocks and in

compound portfolios.
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5.4 Conclusion

In this chapter we have illustrated how the equity market model which we have constructed
in Chapter 4 may be applied to classical risk management tasks. We have introduced two
of the most commonly used risk measures, Value-at-Risk and Expected Shortfall, and
given a brief introduction on the general properties of risk measures. Furthermore we have
connected the mathematical properties of our model with the international regulatory setup
in the area of market risk in the Trading Book. The exemplary applications in Section
5.3 illustrate that our proposed market model does not only do a good job in reproducing
the structure of the Capital Distribution Curve and the dynamics of market entropy but it
also provides us with a very flexible and numerically stable simulation environment for risk
management applications with short-, medium- and long-term time horizons. Furthermore
the simulation results presented in Section 5.3.2 demonstrate the ability of our proposed
model to reproduce trustworthy long-term dynamics of market evolutions.

The simulation study in Section 5.3.3 further provides some valuable results on the impor-
tance of incorporating realistic inter-stock correlations in a market model focusing on risk
management applications. We illustrate that an uncorrelated SqBM model leads to unreal-
istic market behavior when compared to the correlated model. Without due consideration
of the effect of correlations, the market capitalization exhibits extremely low volatility and
an upward trending behavior which renders the uncorrelated setup less suitable for risk
management applications.
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Appendix A

Software Code of Presented Models

A.1 Fourier Estimator for Covariance Matrices

A.1.1 R Implementation

Implementation of Fourier estimator for instantaneous covariance
matrices and its application to empirically assessing

market ellipticity.

Author: Florian Leisch

Created: 04.05.2011

Last Update: 31.05.2011

H O H H H#H H =

data <- read.csv("C:/A/Dissertation/Ellipticity_Analysis/
SP100_constituents_R_Test_7.csv",sep=";",dec=",", skip=0)

logreturns<-data
for(k in 1:length(data)) {

logreturns[1,k]<-0
}
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for(j in 1:length(data)) {

for(i in 2:length(datal,1])) {
logreturns[i,jl<-log(datali,j]/datali-1,j])
}

}

write.table(logreturns,file="C:/A/Dissertation/Ellipticity_Analysis/
logret_test_7.csv",sep=";",dec=",")

cfun<-function(k,N,times,logret){
t1<-1:length(logret)

for(j in 1:length(logret)){
t1[jl<-exp(-lixk*times[j])

}

t2<-tlxlogret

t3<-1/(2*pi)*sum(t2)

if (abs(k)<=2*N) t4<-t3 else t4<-0
return(t4)

}

afun<-function(k,N,logretl,logret2,timesl,times2) {
tnum<-2*N

templ<-(-tnum) : tnum

temp2<-templ

for(count in 1:(4*N+1)){

temp2 [count] <-cfun(templ [count] ,N,timesl,logretl)*
cfun(k-templ [count] ,N,times2,logret2)

}

temp3<- (2*xpi/ (2*%2xN+1) ) *sum (temp2)

return(temp3)

}

sfun<-function(t,N,logretl,logret2,timesl,times2){

temp4<-(-N) :N

tempb<-temp4

for(cc in 1:(2%N+1)){

temp5 [cc]<-(1-abs(temp4[cc])/N)x*
afun(temp4[cc],N,logretl,logret2,timesl, times2)*exp (li*temp4d [cc]*t)
}
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temp6<-sum(tempb)
return(temp6)
}

mytime<-pi/2

rho<-2#pi/length(logreturns[,1])

mynum<-ceiling(rho~(-2/3))

timegrid<-0: (length(logreturns[,1]))
timegrid<-2*pi*timegrid/length(logreturns[,1])
covmat<-matrix(data=NA,nrow=length(data) ,ncol=length(data))

for(i in 1:length(data)){
for(j in 1:length(data)){
covmat [i,j]<-
Re(sfun(mytime,mynum,logreturns[,i],logreturns[, j],timegrid, timegrid))

3

for(i in 95:length(data)){
for(j in 1:length(data)){
covmat [i,j]<-

Re(sfun(mytime,mynum,logreturns[,i],logreturns[, j],timegrid, timegrid))

}

}
write.table(covmat,file="C:/A/Dissertation/Ellipticity_Analysis/
covmat_test_7.csv",sep=";",dec=",")

evs<-eigen(covmat,only.values=TRUE)
write.table(evs[1],file="C:/A/Dissertation/Ellipticity_Analysis/
evs_test_7.csv",sep=";",dec=",")

require(graphics)

pco<-princomp (covmat)

screeplot(pco,xlab="Principal Components",col="navyblue")
pcsum<-summary (pco)

176



A.1 Fourier Estimator for Covariance Matrices

write.table(pcsum,file="C:/A/Dissertation/Ellipticity_Analysis/
Princomp_Covm_test_7.csv",sep=";",dec=",")

A.1.2 Mathematica Implementation

(* Data Import x*)

TSClean=
Import["/u/leischf/FourierEstimator/
SP100_constituents_Math_Test_5.csv","CSV"];
myNames=TSClean[[1]];
NumStocks=Length [myNames]

100

Quotes=Take [Drop[TSClean,1],750];
templ=Quotes;

For [k=0, k<Length[myNames] , k++;
temp1[[1,k]1]1=0;

]

For[j = 0, j<Length[myNames], j++;

For[i =1, i<Length[Quotes],i++;
templ[[i,jl]=Logl[Quotes[[i,jl]/Quotes[[i-1,j]1]1];
]

]

myDataHighDim=templ;

Length [myDataHighDim[[A11,1]]]

750

TimeFrame=2*N[Pi];
TimePoints=Table[i,{i,0,Length[myDataHighDim[[A11,1]]]}];
TimeGrid=2#N[Pi]/(Length[TimePoints]-1)*TimePoints;
TimeGrid2=Take [TimeGrid,{1,Length[TimeGrid]-13}];
rho=2*N[Pi] /(Length[TimePoints]-1);
Num=Ceiling[rho~(-2/3)]

25
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Length [TimePoints]
751

(*x Functions *)

DiscreteFourier[k_,logret_,time_,Number_] :=(
temp=1/(2*N[Pi])*Sum[Exp[-Sqrt [-1]*k*time [[i]]]
xlogret[[i]],{i,1,Length[time]-1}];

temp2=If [Abs [k]<= 2*Number,temp,0];
temp2
)

Alpha[k2_,Number_,logretl_, logret2_,timel_,time2_]:= (

t1=2%N[Pi]/ (2*2*Number +1) *
Sum[DiscreteFourier[i,logretl,timel,Number]*
DiscreteFourier[(k2-i),logret2,time2,Number],{i, -2*Number, 2*Number}] ;
t1

)

RescaledDirichletKernel [N_,t_] :=(
t1=If[t==0,1,1/(2*N+1)*(Sin[(2xN+1) /2%t])/Sin[t/2]];
t1

)

IntegratedVolatility[logretl_,logret2_,timel_,time2_,Numl_]:=(
temp=Sum [Sum [Sum [Exp [Sqrt [-1]*s* (timel [[i]]-time2[[j]1]1)]*
logret1[[i]l]*logret2[[jl1],{j,1,Length[Logret2]}],
{i,1,Length[Logret1]}],{s,-Numl,Numi}];

temp

)

Kernelestimator[x_,y_,h_]:=(
t1=1/(Length [x]*h) *
Sum[If[-1<=(x[[i]]-y)/h<=1,1/h 3/4 (1-((x[[il]l-y)/h)~2),0],{i,Length[x]}];
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(* Calculation of Volatilities (higher dim) *)

VolaTable2=IdentityMatrix [NumStocks];
For[i=0,i<NumStocks,i++;
For[j=0, j<i, j++;
tsl=myDataHighDim[[A11,i]];
ts2=myDataHighDim[[A11,3]1];
VolaTable2[[i,jl]l=
Sum[(1-Abs[1]/Num)*Exp [1*Sqrt [-1]*t]*
Alpha[l,Num,tsl,ts2,TimeGrid, TimeGrid],{1l,-Num,Num}];
VolaTable2[[j,i]1=VolaTable2[[i,j1];

]

]

Export["/u/leischf/FourierEstimator/covm_Math_11.csv",VolaTable2,"CSV"]
RandomTimes=2*Pi*Table [RandomReal [],{i,100}];
VmTable=Table[0,{i,Length[RandomTimes]}];

EvsTable=VmTable;

EvsNewTable=EvsTable;

For [count=0, count<Length[RandomTimes], count++;
vm=Re/@(VolaTable2/.t->RandomTimes[[count]]);

vm2=vm;

VmTable[[count]]=vm;

myevs=Eigenvalues[vm2] ;

EvsTable[[count]]=myevs;

Export["/u/leischf/FourierEstimator/EVS_Math_11.csv",EvsTable,"CSV"]
Export["/u/leischf/FourierEstimator/Covmat_11.csv",VmTable,"CSV"]
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A.2 Squared Brownian Motion Model

A.2 Squared Brownian Motion Model

Simulation of capital distribution curves for squared Brownian Motions
Author: Florian Leisch

Created: 23.04.2012

Last Update: 17.07.2012

Higher dimensional simulation of correlated stocks based on

low-dim approach (n=4) in file SqBM_Simulation.R

H OH H H H H H

Simulation based on latest discussion on 05.04.2012

data <- read.csv("C:/A/Dissertation/Quad_BM_Modell/
logret_SnP_100.csv",sep=";",dec=",",skip=0)
library(Matrix)

library (PASWR)

library(bdsmatrix)

library(lattice)

# Some functions for price aggregation and BM simulation

AggregatePrice<-function(retvec){

timestep<-length(retvec)

pricevec<-1:(timestep+1)

pricevec[1]<-1

for(j in 1:timestep){
pricevec[j+1]<-pricevec[jl*exp(retvec[j])
}

return(pricevec)

}

CalculateLogRet<-function(prices){
timestep<-length(prices)
returns<-1:(timestep-1)

for(j in 1:length(returns)){
returns[j]<-log(prices[j+1]/prices[j])
}

return(returns)
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A.2 Squared Brownian Motion Model

BMSimulation<-function(timestep){
deltatime<-1/timestep
noisevec<-rnorm(timestep,0,sqrt(deltatime))
bmvecl<-cumsum(noisevec)

bmvec2<-append (bmvecl,0,after=0)

return (bmvec2)

SqBMSimulation<-function(timestep){
deltatime<-1/timestep
noisevec<-rnorm(timestep,0,sqrt(deltatime))
bmvecl<-cumsum(noisevec)

bmvec2<-append (bmvecl,0,after=0)
bmvec3<-bmvec2~2

return(bmvec3)

}

# Function for calculation and plotting of
# capital distribution curves (CDC).

cdc<-function(data,day){
mktcaps<-sort(datal,day],decreasing=TRUE)
mktweights<-mktcaps/sum(mktcaps)
rank<-1:length(mktweights)

temp<-colors()

index<-sample.int(length(temp), size = 1, replace = FALSE, prob = NULL)

plot(log(rank),log(mktweights),ylim=c(-6,-2),col=temp[index],"1")

}

cdc2<-function(data,day,mycol){
mktcaps<-sort(datal,day],decreasing=TRUE)
mktweights<-mktcaps/sum(mktcaps)
rank<-1:length(mktweights)

temp<-colors()
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A.2 Squared Brownian Motion Model

index<-mycol

plot(log(rank),log(mktweights),ylim=c(-6,-3),col=temp[index],"1")
}

# Function for calculating the entropy of a given market vector

mktentropy<-function(data,day){
basecaps<-sort(datal,1],decreasing=TRUE)
baseweights<-basecaps/sum(basecaps)
logbaseweights<-log(baseweights)
baseval<-(-1)*(t(logbaseweights)’*/baseweights)

mktcaps<-sort(datal[,day],decreasing=TRUE)
mktweights<-mktcaps/sum(mktcaps)
logmktweights<-log(mktweights)
eval<-((-1)*(t(logmktweights))*%mktweights) ) /baseval
return(eval)

}

#Function for calculating market portfolio weights

calcmktweights<-function(data,day){
mktcaps<-datal,day]
mktweights<-mktcaps/sum(mktcaps)
return(mktweights)

}

# Function for calculating entropy weighted portfolios

calcentropyweights<-function(data,day){
mktcaps<-datal,day]
mktweights<-mktcaps/sum(mktcaps)
logmktweights<-log(mktweights)
eval<-((-1)*(t(logmktweights)*/mktweights))
evec<-(-1)*mktweights*logmktweights

entwght<-(1/eval)*evec
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A.2 Squared Brownian Motion Model

return(entwght)

# Functions for calculating diversity weighted portfolios

diversityweights<-function(data,day){
p<-0.7

mktcaps<-datal,day]
mktweights<-mktcaps/sum(mktcaps)
pmktweights<-mktweights~p
psum<-sum(pmktweights)
divweights<-(1/psum)*pmktweights

return(divweights)

HHHH R R
# GARCH(1,1) estimator for local volatility of a stock

mystockl<-datal1]
mystock<-mystockl[,1]
al<-0.1

beta<-0.85

stdvola<-sqrt (var(mystock))
h<-stdvola~2

pers<-al+beta
a0<-h*(1-pers)

condvola<-1:length(mystock)
condvola[1]<-0

# Calculating GARCH(1,1) volatilities
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A.2 Squared Brownian Motion Model

for (j in 2:length(mystock)){
condvolal[jl<-sqrt(a0+al*mystock[j-1]"2+beta*condvolal[j-1]"2)
}

condvola
stdvola

HHHHH AR R R R R R R R R R R R R

# GARCH vola calculation for all historical time series

GARCHestimate2<-function(tsdata){

mystockl<-tsdata[1]
mystock<-mystockl[,1]
pricevec<-1:(length(mystock)+1)

for (k in 2:length(pricevec)){
pricevec[k]<-pricevec[k-1]*exp(mystock[k-1])
}

mystocknormalized<-mystock

for(j in 1:length(mystock)){
mystocknormalized[j]l<-mystock[j]*sqrt(pricevec[j])

b

al<-0.1
beta<-0.85

stdvola<-sqrt(var(mystocknormalized))
h<-stdvola~2

pers<-al+beta

a0<-h*(1-pers)
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A.2 Squared Brownian Motion Model

condvola<-1:length(mystocknormalized)
condvola[1]<-0

# Calculating GARCH(1,1) volatilities

for (j in 2:length(mystocknormalized)){
condvolal[jl<-sqrt(a0+al*mystocknormalized[j-1]~2+beta*condvolal[j-1]"2)
}

outputmat<-condvola

for (k in 2:length(tsdata)){
mystock2<-tsdata [k]
mystock3<-mystock2[,1]

pricevec2<-1:(length(mystock3)+1)

for (1 in 2:length(pricevec2)){
pricevec2[l]<-pricevec2[1-1]*exp(mystock3[1-1])
}

mystocknormalized2<-mystock3

for(j in 1:length(mystock)){
mystocknormalized2[j]<-mystock3[j]*sqrt(pricevec2[j])
}

stdvola<-sqrt(var(mystocknormalized?2))
h<-stdvola~2
a0<-h*(1-pers)

condvola<-1:length(mystocknormalized2)
condvola[1]<-0

for (j in 2:length(mystock3)){

condvola[j]<-sqrt(a0+al*mystocknormalized2[j-1]~2+beta*condvolal[j-1]"2)
}
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A.2 Squared Brownian Motion Model

outputmat<-append(outputmat,condvola,after=length(outputmat))

outputmat2<-
matrix(data=outputmat,nrow=length(tsdata),ncol=length(mystock) ,byrow=TRUE)

return(outputmat?2)

}
HHHHH R R R R R R

GARCHts<-GARCHestimate2(data)
numstocks<-length (GARCHts[,1])
numtimes<-length(GARCHts[1,])

stdvoltable<-1:numstocks
for (i in 1:numstocks){
msi<-datal[il
ms2<-msi[,1]

pricevec2<-1:(length(ms2)+1)

for (1 in 2:length(pricevec2)){
pricevec2[l]<-pricevec2[1l-1]*exp(ms2[1-1])
}

mystocknormalized2<-ms2

for(j in 1:length(ms2)){
mystocknormalized2[j]<-ms2[j]l*sqrt(pricevec2[j])
}

stdvoltable[i]<-sqrt(var (mystocknormalized2))

b

# Normalization of historical log-returns with GARCH-volas
# s.t. every vector is i.i.d.
# Initial run of normalization to equip output matrix with a first row.
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A.2 Squared Brownian Motion Model

temp3<-GARCHts [1,]
temp4<-AggregatePrice(datal,1])
temp5<-temp6<-datal,1]

for (1 in 2:numtimes){
temp6[1]<-temp5[1]*sqrt (tempd [1])/temp3[1]
}

outputl<-temp6

# Loop to calculate remaining vectors.
for (k in 2:numstocks){
temp1<-GARCHts [k, ]
temp2<-AggregatePrice(datal,k])

temp7<-temp8<-datal,k]

for (j in 2:numtimes){
temp8[jl<-temp7 [jl*sqrt(temp2[j])/templ[j]

outputi<-append(outputl,temp8,after=length(outputl))

output2<-matrix(data=outputl,nrow=numstocks,ncol=numtimes,byrow=TRUE)

HHHHH R R R R R R R R

# Calculate correlation matrix obtained by cor(x) from
# normalized log-returns.
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A.2 Squared Brownian Motion Model

# Correlation Matrix obtained from real data
cormat<-cor (t(output2))

levelplot(cormat,col.regions=terrain.colors(100),
main="Visualization of Correlation Matrix")

# Correlation Matrix for independent particles
matdat<-1:10000
tmat<-matrix(data=matdat,ncol=numstocks,byrow=TRUE)
for(i in 1:100){

for(j in 1:100)

tmat [i,j]1<-0

}

for(i in 1:100){

tmat [i,i]<-1

}

cormat2<-tmat

# Random correlation matrix

randdat<-rnorm(10000)
randmat<-matrix(data=randdat,nrow=100,ncol=100,byrow=TRUE)
randsym<-t (randmat) %*’%randmat

randcor<-randsym

for (i in 1:100){
for (j in 1:100){

randcor[i, jl<-randsym[i,j]/(sqrt(randsym[i,i])*sqrt(randsym([j,jl))

cormat3<-randcor

188



A.2 Squared Brownian Motion Model

# Simulation Setup

simtime<-5000
# Time expressed in days. Assuming 250 business days per year
# this corresponds to 20 years simulation horizon

mesh<-1

# Simulation of random increments ~ N(0,1) for d=100 stocks
simulationdata2<-rnorm(numstocks*simtime)

randommat2<-

matrix(data=simulationdata2,nrow=numstocks,ncol=simtime,byrow=TRUE)

pricedat2<-1: (numstocks*simtime)

pricemat2<-matrix(data=pricedat2,nrow=numstocks,ncol=simtime,byrow=TRUE)

returnmat2<-pricemat?

for(i in 1:numstocks){
pricemat2[i,1]<-1
returnmat2(i,1]<-0

}

# Initial setup of volatility vectors for simulation.
# First volatility applied is the newest (last) GARCH estimator.

voladat<-1: (numstocks*simtime)
volamat<-matrix(data=voladat,nrow=numstocks,ncol=simtime, byrow=TRUE)

for(i in 1:numstocks){
volamat [i,1]<-GARCHts[i,length(GARCHts[1,])]
}

for (j in 1:(simtime-1)){

# Setup of stochastic volatility matrix for simulation.
tmi<-volamat [, jl%*%t(volamat[,j])
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A.2 Squared Brownian Motion Model

tm2<-cormat*tml
xi<-t(chol(tm2))

alpha<-median(volamat[,j])

for (i in 1:numstocks){

tempret<-(1/pricemat2[i, j])*(alpha*volamat[i,j]-volamat[i,j]~2)*
(1/mesh)+(1/sqrt(pricemat2[i,jl))*(xil[i,]%*%randommat2[, j])

returnmat2[i, j+1]<-sign(tempret)*min(0.1,abs(tempret))
# setting an absolute ceiling of 10% for daily logreturns

pricemat2[i, j+1]<-pricemat2[i, j]*exp(returnmat2[i,j+1])

al<-0.1
beta<-0.85

stdvola<-stdvoltable[i]
h<-stdvola~2
pers<-al+beta
a0<-h*(1-pers)

# Calculating the next GARCH(1,1) volatility
# based on the simulated log-return.

volamat [i, j+1]<-sqrt(a0+al*returnmat2[i,j]~2+beta*volamat[i,j]~2)

# write.csv(t(pricemat2),file="prices4.csv")
B s s s s s g i

### Simulation of uncorrelated particles for comparison
g s s s
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A.2 Squared Brownian Motion Model

volamat2<-volamat
returnmat3<-returnmat?
pricemat3<-pricemat2

for (j in 1:(simtime-1)){

# Setup of stochastic volatility matrix for simulation.
tmi<-volamat2[, jl%*%t (volamat2[, j])

tm2<-cormat2*tml

xi<-t(chol (tm2))

alpha<-median(volamat2[,j])

for (i in 1:numstocks){

tempret<-(1/pricemat3[i,j])*(alpha*volamat2[i,j]-volamat2[i,j]~2)*
(1/mesh)+(1/sqrt(pricemat3[i, j]))*(xi[i,]%*)randommat2(, j])

returnmat3[i, j+1]<-sign(tempret)*min(0.1,abs(tempret))
# setting an absolute ceiling of 10% for daily logreturns

pricemat3[i, j+1]<-pricemat3[i, j]*exp(returnmat3[i,j+1])

al<-0.1
beta<-0.85

stdvola<-stdvoltable[i]
h<-stdvola~2
pers<-al+beta

a0<-h*(1-pers)

# Calculating the next GARCH(1,1) volatility
# based on the simulated log-return.

volamat2[i, j+1]<-sqrt(a0+al*returnmat3[i, j] ~2+beta*volamat2[i,j]~2)
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s
### Simulation of randomly correlated particles for comparison
i S s S

volamat3<-volamat
returnmat4<-returnmat?2
pricemat4<-pricemat?

for (j in 1:(simtime-1)){

# Setup of stochastic volatility matrix for simulation.
tml<-volamat3[, j1%*%t (volamat3[,j])

tm2<-cormat3*tml

xi<-t(chol(tm2))

alpha<-median(volamat2[,j])

for (i in 1:numstocks){

tempret<-(1/pricemat4[i,j])*(alpha*volamat3[i,j]-volamat3[i,j]~2)*
(1/mesh)+(1/sqrt(pricemat4[i, jl))*(xi[i,]%*%randommat2[, j])

returnmat4[i, j+1]<-sign(tempret)*min(0.1,abs(tempret))
# setting an absolute ceiling of 10% for daily logreturns

pricemat4[i, j+1]<-pricemat4[i,j]l*exp(returnmat4[i,j+1])

al<-0.1
beta<-0.85

stdvola<-stdvoltable[i]
h<-stdvola~2
pers<-al+beta
a0<-hx*(1-pers)
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A.2 Squared Brownian Motion Model

# Calculating the next GARCH(1,1) volatility
# based on the simulated log-return.

volamat3[i,j+1]<-sqrt(a0+al*returnmat4[i,j] ~2+beta*volamat3[i,j]~2)

R S S
ittt S S S S S S S S R S S S S S S S S S S S S S
# Visualization

yl<-pricemat2[1,]
y2<-pricemat2[2,]
y3<-pricemat2[3,]
y4<-pricemat2[4,]
x1<-1:length(yl)

yb<-returnmat2[1,]
y6<-returnmat2[2,]
y7<-returnmat2[3,]
y8<-returnmat?2[4,]
x2<-1:1length(y5)

par (new=F)
plot(xl,yl, "1", ylab ="Stock Prices",ylim=c(0,3.5), col="navyblue")
par (new=T)

plot(x1l, y2, "1", ylab =" ",ylim=c(0,3.5), col="indianred")
par (new=T)
plot(x1l, y3, "1", ylab =" ",ylim=c(0,3.5), col="seagreen")

par (new=T)
plot(x1l, y4, "1", ylab =" ",ylim=c(0,3.5), col="moccasin"
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par (new=F)
plot(x2,y5, "1", ylab ="Log-Returns",ylim=c(-0.2,0.2), col="navyblue")

par (new=T)
plot(x2, y6, "1", ylab =" ",ylim=c(-0.2,0.2), col="indianred")
par (new=T)
plot(x2, y7, "1", ylab =" ",ylim=c(-0.2,0.2), col="seagreen")
par (new=T)
plot(x2, y8, "1", ylab =" ",ylim=c(-0.2,0.2), col="moccasin")

# Calculation of CDC

for(j in 1:300){
par (new=T)
cdc(pricemat?2, j)
}

for(j in 1:20){

par (new=T)

cdc2(pricemat2, (3000+j),491) # correlated particles (blue)

#par (new=T)

#cdc2(pricemat3, (3000+j),372) # uncorrelated particles (red)

#par (new=T)

#cdc2(pricemat4, (3000+j),574) # randomly correlated particles (green)
}

# Calculating Market Entropy

t1<-3000

t2<-5000

entropyvec<-1: (t2-t1)
x3<-entropyvec
entropyvec2<-entropyvec
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A.2 Squared Brownian Motion Model

entropyvec3<-entropyvec

for (j in 1:length(entropyvec)){
entropyvec[j]l<-mktentropy(pricemat2, (t1+j))
# correlated particles
entropyvec2[jl<-mktentropy(pricemat3, (t1+j))
# uncorrelated particles
entropyvec3[jl<-mktentropy(pricemat4, (t1+j))
# randomly correlated particles

b

plot(x3,entropyvec, "1",xlab="Time Step", ylab="Market Entropy",
main="Comparison of Simulated Market Entropies",
ylim=c(0.8,1), col="navyblue")
# correlated
par (new=T)

plot(x3,entropyvec2, "1",xlab="Time Step", ylab="Market Entropy",
main="Comparison of Simulated Market Entropies",

ylim=c(0.8,1), col="indianred")
# uncorrelated

par (new=T)

plot(x3,entropyvec3, "1",xlab="Time Step", ylab="Market Entropy",
main="Comparison of Simulated Market Entropies",

ylim=c(0.8,1), col="seagreen")
# randomly correlated

par (new=F)

mktentropy(pricemat2,50)

S T
### Visualization of real market entropy
i S S s

mktprices<-AggregatePrice(datal,1])
mylength<-length(mktprices)
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for(j in 2:numstocks){

mktprices<-

append (mktprices,AggregatePrice(datal, j]) ,after=length(mktprices))
}

tdat<-1:length(mktprices)
for(i in 1:length(mktprices)){
tdat[i]<-mktprices[i]

}

tdat2<-c(tdat)

mktpricemat<-
matrix(data=mktprices,nrow=numstocks,ncol=mylength,byrow=TRUE)

entropyvec3<-1:length(mktpricemat[1,])
x4<-entropyvec3

for (j in 1:length(entropyvec3)){
entropyvec3[jl<-mktentropy(mktpricemat, j)
}

plot(x4,entropyvec3, "1",xlab="Time Step", ylab="Market Entropy",
x1im=c(500,length(entropyvec3)),ylim=c(0.8,1), col="seagreen")
# real data

for(j in 600:700){
par (new=T)
cdc(mktpricemat, j)

HHEH R R
# Calculating the Market Portfolio

t1<-3000

£2<-5000
x3<-1: (t2-t1+1)
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weightmat<-calcmktweights(pricemat2,t1)
pfval<-t(weightmat)’%*)pricemat2[,t1]

for(j in 3001:5000){
templ<-calcmktweights(pricemat2, j)
weightmat<-append(weightmat,templ, after=length(weightmat))

temp2<-t (templ) ) *Ypricemat2[, j]
pfval<-append(pfval,temp2, after=length(pfval))
+

weightmat2<-matrix(data=weightmat,nrow=numstocks,ncol=2001,byrow=TRUE)
plot (x3,pfval, "1")

mktreturns<-CalculateLogRet (pfval)
x4<-1:1length(mktreturns)

plot(x4,mktreturns,"1")

g i S i
# Calculating the Entropy Portfolio

£1<-3000
£2<-5000
x3<-1: (t2-t1+1)

entweightmat<-calcentropyweights(pricemat2,3000)
entval<-t(entweightmat)*Jpricemat2[,3000]

for(j in 3001:5000)1
templ<-calcentropyweights(pricemat2, j)
entweightmat<-append(entweightmat,templ, after=length(entweightmat))

temp2<-t (templ)%*Y%pricemat2[, j]
entval<-append(entval,temp2,after=length(entval))

}

entweightmat2<-

matrix(data=entweightmat, nrow=numstocks,ncol=2001,byrow=TRUE)
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A.2 Squared Brownian Motion Model

plot(x3,entval, "1")
entreturns<-CalculateLogRet (entval)
plot(x4,entreturns,"1")

HHAHHH
# Calculating the Diversity Weighted Portfolio

t1<-3000
£2<-5000
x3<-1:(t2-t1+1)

divweightmat<-diversityweights (pricemat2,3000)
divval<-t(divweightmat)%*%pricemat2[,3000]

for(j in 3001:5000){
t3<-diversityweights(pricemat?2, j)
divweightmat<-

append(divweightmat,t3,after=1length(divweightmat))

t4<-t (t3) %*%pricemat2[, j]
divval<-append(divval,t4,after=length(divval))

divweightmat2<-
matrix(data=entweightmat, nrow=numstocks,ncol=2001,byrow=TRUE)

plot(x3,divval, "1")
divreturns<-CalculateLogRet (divval)

plot(x4,divreturns, "1")
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A.2 Squared Brownian Motion Model

B L L L R L L R R R T L L I R LI I I R R R R R R BRI IR
Hit Application of Simulation Algorithm for VaR Calculation it
s

MCtime<-10000 # Number of simulation runs

simtime<-11

# Holding period for VaR calculation expressed in days +1

# (i.e. 10 day holding period).

mesh<-1

aggregatedata<-1: (MCtime*numstocks)

aggregatematrix<-
matrix(data=aggregatedata,nrow=numstocks,ncol=MCtime, byrow=TRUE)

for (k in 1:MCtime){

# Simulation of random increments ~ N(0,1) for d=100 stocks
simulationdata3<-rnorm(numstocks*simtime)

randommat3<-
matrix(data=simulationdata3,nrow=numstocks,ncol=simtime,byrow=TRUE)

pricedat3<-1: (numstocks*simtime)

pricemat3<-
matrix(data=pricedat3,nrow=numstocks,ncol=simtime,byrow=TRUE)
returnmat3<-pricemat3

for(i in 1:numstocks){

pricemat3[i,1]<-1

returnmat3[i,1]<-0

b

# Initial setup of volatility vectors for simulation.
# First volatility applied is the newest (last) GARCH estimator.

voladat<-1: (numstocks*simtime)
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A.2 Squared Brownian Motion Model

volamat<-matrix(data=voladat,nrow=numstocks,ncol=simtime, byrow=TRUE)
for(i in 1:numstocks){

volamat[i,1]<-GARCHts[i,length(GARCHts[1,])]
+

for (j in 1:(simtime-1)){

# Setup of stochastic volatility matrix for simulation.
tmi<-volamat [, jl1%*%t (volamat[,j])

tm2<-cormat*tml

xi<-t(chol (tm2))

alpha<-median(volamat[,j])

for (i in 1:numstocks){

tempret<-(1/pricemat3[i,j])*(alpha*volamat[i,j]-volamat([i,j]~2)*
(1/mesh)+(1/sqrt(pricemat3[i, jl))*(xi[i,]%*%randommat3[, j])

returnmat3[i, j+1]<-sign(tempret)*min(0.4,abs(tempret))
# setting an absolute ceiling of 50% for daily logreturns

pricemat3[i, j+1]<-pricemat3[i, j]*exp(returnmat3[i,j+1])

al<-0.1
beta<-0.85

stdvola<-stdvoltable[i]
h<-stdvola~2
pers<-al+beta

a0<-hx(1-pers)

# Calculating the next GARCH(1,1) volatility
# based on the simulated log-return.

volamat[i,j+1]<-sqrt(aO+al*returnmat3[i,j]~2+beta*volamat[i,j]~2)
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A.2 Squared Brownian Motion Model

for(j in 1:numstocks){
aggregatematrix[j,k]<-sum(returnmat3[j,])

b

# Application of simulated 10 day returns to different portfolios

initialprices<-pricemat2[,300]
# Setting the starting point of the market to some
# arbitrarily chosen initial weightin from the above run (t=300).

initialdivweight<-diversityweights(pricemat2,300)
divreturns<-1:length(aggregatematrix[1,])

initialentweight<-calcentropyweights(pricemat2,300)
entreturns<-1:length(aggregatematrix[1,])

initialmktweight<-calcmktweights(pricemat2,300)
mktreturns<-1:length(aggregatematrix[1,])

equalweights<-1:numstocks
for (i in 1:numstocks){
equalweights[i]<-1/numstocks

}
equalreturns<-1:length(aggregatematrix[1,])

for (i in 1:MCtime){
divreturns[i]<-t(initialdivweight)’%*/aggregatematrix[,i]
entreturns[i]<-t(initialentweight)’%*jaggregatematrix[,i]
mktreturns[i]<-t(initialmktweight)%*%aggregatematrix[,i]
equalreturns[i]<-t(equalweights)%*%aggregatematrix[,i]

}
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A.2 Squared Brownian Motion Model

divresults<-
c(mean(divreturns),sqrt(var(divreturns)),
quantile(divreturns,0.01) ,quantile(divreturns,0.05),
quantile(divreturns,0.1))

entresults<-
c(mean(entreturns),sqrt(var(entreturns)),
quantile(entreturns,0.01) ,quantile(entreturns,0.05),
quantile(entreturns,0.1))

mktresults<-

c (mean (mktreturns) ,sqrt(var (mktreturns)),
quantile(mktreturns,0.01) ,,quantile(mktreturns,0.05),
quantile (mktreturns,0.1))

equalresults<-
c(mean(equalreturns),sqrt(var(equalreturns)),
quantile(equalreturns,0.01),quantile(equalreturns,0.05),
quantile(equalreturns,0.1))

hist(divreturns, col="navyblue", xlab="10-day returns",
main="Histogram of Diversity-Weighted Portfolio")

par (new=T)

abline(v=quantile(divreturns,0.01), col="indianred")
par (new=F)

hist(entreturns, col="seagreen", xlab="10-day returns",
main="Histogram of Entropy-Weighted Portfolio")

par (new=T)

abline(v=quantile(entreturns,0.01), col="indianred")
par (new=F)

hist(mktreturns, col="steelbluel", xlab="10-day returns",
main="Histogram of Market Portfolio")

par (new=T)

abline(v=quantile(mktreturns,0.01), col="indianred")

par (new=F)

hist(equalreturns, col="lavender", xlab="10-day returns",
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main="Histogram of Equally-Weighted Portfolio")

par (new=T)

abline(v=quantile(equalreturns,0.01), col="indianred")
par (new=F)

i S s S
#it# Calculation of Expected Shortfall for Simulated Portfolios #it#
FEERR R R R R R R R R e S

divorder<-sort(divreturns)
entorder<-sort(entreturns)
mktorder<-sort (mktreturns)
equalorder<-sort(equalreturns)
conflevel<-0.01
confindex<-conflevel*MCtime

ESdiv<-ESent<-ESmkt<-ESequal<-1:confindex

for (j in 1:confindex){
ESdiv[jl<-divorder[j]
ESent[jl<-entorder[j]
ESmkt [j]<-mktorder[j]
ESequal[j]<-equalorder[j]
}

ESvalues<-c(mean(ESdiv) ,mean(ESent) ,mean (ESmkt) ,mean(ESequal))
divresults<-append(divresults,ESvalues[1],after=length(divresults))
entresults<-append(entresults,ESvalues[2],after=length(entresults))
mktresults<-append(mktresults,ESvalues[3],after=length(mktresults))
equalresults<-append(equalresults,ESvalues[4],after=length(equalresults))
title<-c("Mean","Volatility","VaR 99%","VaR 95%",

"VaR 90%","Expected Shortfall 99%")

outputdata<-c(title,divresults,entresults,mktresults,equalresults)

outputmatrix<-matrix(data=outputdata,ncol=length(title),byrow=TRUE)
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A.2 Squared Brownian Motion Model

write.csv(outputmatrix,file="RMoutput.csv")
L s s s s s s s s s s s s g i
HAHHHHAHBHHAHBHH AR HHAHAH RS HAH RS H AR ISR HBHREHEH RS HEH RS HAH RS HAHBH RS H B HSH

# Simulation of independent stock paths

# Calculation of model log-returns: d log X_i(t) =
# = 1/X_i(t) (alpha*sigma_i(t) - sigma_i(t)~2/2) dt
# + sigma_i(t) / sqrt(X_i(t))d B_i(t)

pricedat<-1: (numstocks*numtimes)
pricemat<-matrix(data=pricedat,nrow=numstocks,ncol=numtimes,byrow=TRUE)
returnmat<-pricemat

for(i in 1:numstocks){

pricemat[i,1]<-1

returnmat[i,1]<-0

}

alpha<-((1/4)+0.0001)

for (i in 1:numstocks){

for (j in 2:numtimes){

returnmat [i, j]<-
(1/pricemat[i,j-1])*(alpha*GARCHts[i,j-1]-GARCHts[i,j-1]1"2)*

(1/mesh)+(GARCHts [1, j-1]/sqrt(pricemat[i, j-1]))*randommat [i, j]

pricemat[i,jl<-pricemat[i,j-1]*exp(returnmatl[i,j])

yl<-pricemat[1,]
y2<-pricemat[2,]
y3<-pricemat[3,]
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y4<-pricemat[4,]
x1<-1:length(yl)

yb<-returnmat[1,]
y6<-returnmat [2,]
y7<-returnmat [3,]
y8<-returnmat [4,]
x2<-1:1length(yb)

par (new=F)

plot(xl,yl, "1", ylab ="Stock Prices",ylim=c(0,2.5), col="navyblue")
par (new=T)

plot(x1l, y2, "1", ylab =" ",ylim=c(0,2.5), col="indianred")

par (new=T)

plot(x1l, y3, "1", ylab =" ",ylim=c(0,2.5), col="seagreen")

par (new=T)

plot(x1l, y4, "1", ylab =" ",ylim=c(0,2.5), col="moccasin"

par (new=F)

plot(x2,y5, "1", ylab ="Log-Returns",ylim=c(-0.2,0.2), col="navyblue")
par (new=T)

plot(x2, y6, "1", ylab =" ",ylim=c(-0.2,0.2), col="indianred")

par (new=T)

plot(x2, y7, "1", ylab =" ",ylim=c(-0.2,0.2), col="seagreen")

par (new=T)

plot(x2, y8, "1", ylab =" ",ylim=c(-0.2,0.2), col="moccasin")

S s
### Application of Simulation Algorithm for VaR Calculation #i##
Hit# Long-Term Simulation Hit#

g i S s S s T

MCtime<-10000 # Number of simulation runs
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simtime<-11 # Holding period for VaR calculation expressed in days +1
# (i.e. 250 day holding period).

mesh<-1

aggregatedata<-1: (MCtime*numstocks)
aggregatematrix<-matrix(data=aggregatedata,
nrow=numstocks,ncol=MCtime,byrow=TRUE)

for (k in 1:MCtime){

# Simulation of random increments ~ N(0,1) for d=100 stocks
simulationdata3<-rnorm(numstocks*simtime)
randommat3<-matrix(data=simulationdata3,
nrow=numstocks,ncol=simtime, byrow=TRUE)

pricedat3<-1: (numstocks*simtime)
pricemat3<-matrix(data=pricedat3,
nrow=numstocks,ncol=simtime,byrow=TRUE)
returnmat3<-pricemat3

for(i in 1:numstocks){
pricemat3[i,1]<-1

returnmat3[i,1]<-0

b

# Initial setup of volatility vectors for simulation.
# First volatility applied is the newest (last) GARCH estimator.

voladat<-1: (numstocks*simtime)
volamat<-matrix(data=voladat,nrow=numstocks,ncol=simtime, byrow=TRUE)

for(i in 1:numstocks){

volamat [i,1]<-GARCHts[i,length(GARCHts[1,])]
}

for (j in 1:(simtime-1)){

# Setup of stochastic volatility matrix for simulation.
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tmi<-volamat[, jl%*%t (volamat[,j])
tm2<-cormat*tml
xi<-t (chol (tm2))

alpha<-median(volamat[,j])

for (i in 1:numstocks){

tempret<-(1/pricemat3[i,j])*(alpha*volamat[i,j]-volamat[i,j]~2)
*x(1/mesh)+(1/sqrt(pricemat3[i, j]))*(xil[i,]%*%randommat3[, j])
returnmat3[i, j+1]<-sign(tempret)*min(0.2,abs(tempret))

# setting an absolute ceiling of 20% for daily logreturns
pricemat3[i, j+1]<-pricemat3[i, j]*exp(returnmat3[i,j+1])

al<-0.1
beta<-0.85

stdvola<-stdvoltable[i]
h<-stdvola~2
pers<-al+beta

a0<-h*(1-pers)

# Calculating the next GARCH(1,1) volatility
# based on the simulated log-return

volamat[i, j+1]<-sqrt(a0+al*returnmat3[i,j] ~2+beta*volamat[i,j]~2)

for(j in 1:numstocks){
aggregatematrix[j,k]<-sum(returnmat3[j,])

b

# Application of simulated 10 day returns to different portfolios
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initialprices<-rchisq(100,1)

ipm<-t(matrix(data=initialprices,nrow=1,byrow=TRUE))

initialdivweight<-diversityweights(ipm,1)
divreturns<-1:length(aggregatematrix[1,])

initialentweight<-calcentropyweights(ipm,1)
entreturns<-1:length(aggregatematrix[1,])

initialmktweight<-calcmktweights(ipm,1)
mktreturns<-1:length(aggregatematrix[1,])

equalweights<-1:numstocks
for (i in 1:numstocks){
equalweights[i]<-1/numstocks

}
equalreturns<-1:length(aggregatematrix[1,])

for (i in 1:MCtime){
divreturns[i]<-t(initialdivweight)%*%aggregatematrix[,i]
entreturns[i]<-t(initialentweight)’%*jaggregatematrix[,i]
mktreturns[i]<-t(initialmktweight)¥%*%aggregatematrix[,i]
equalreturns[i]<-t(equalweights)%*%aggregatematrix[,i]

}

divresults<-c(mean(divreturns),sqrt(var(divreturns)),
quantile(divreturns,0.01) ,quantile(divreturns,0.05),
quantile(divreturns,0.1))

entresults<-c(mean(entreturns),sqrt(var(entreturns)),
quantile(entreturns,0.01) ,,quantile(entreturns,0.05),

quantile(entreturns,0.1))

mktresults<-c(mean(mktreturns),sqrt(var(mktreturns)),
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quantile(mktreturns,0.01) ,quantile(mktreturns,0.05),
quantile(mktreturns,0.1))

equalresults<-c(mean(equalreturns),sqrt(var(equalreturns)),
quantile(equalreturns,0.01),quantile(equalreturns,0.05),
quantile(equalreturns,0.1))

hist(divreturns, col="navyblue", xlab="10-day returns",
main="Histogram of Diversity-Weighted Portfolio") #, nclass=20)
par (new=T)

abline(v=quantile(divreturns,0.01), col="indianred")

par (new=F)

hist(entreturns, col="seagreen", xlab="10-day returns",
main="Histogram of Entropy-Weighted Portfolio") #, nclass=20)
par (new=T)

abline(v=quantile(entreturns,0.01), col="indianred")

par (new=F)

hist(mktreturns, col="steelbluel", xlab="10-day returns", #
main="Histogram of Market Portfolio") # , nclass=20)

par (new=T)

abline(v=quantile(mktreturns,0.01), col="indianred")

par (new=F)

hist(equalreturns, col="lavender", xlab="10-day returns",
main="Histogram of Equally-Weighted Portfolio") #, nclass=20)
par (new=T)

abline(v=quantile(equalreturns,0.01), col="indianred")

par (new=F)

S S s T
Hit# Application of Simulation Algorithm for VaR Calculation

#H#H# Correlated / Uncorrelated Simulation

g s
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# For initial run evaluate body of masterloop
# individually to initiate output data set.

masternum<-100
for (mastercount in 1:masternum){

MCtime<-1 # Number of simulation runs

simtime<-500 # Holding period for benchmark calculation +1.
mesh<-1

aggregatedata<-1: (MCtime*numstocks)
aggregatematrix<-matrix(data=aggregatedata,
nrow=numstocks,ncol=MCtime, byrow=TRUE)
aggregatematrixuncor<-aggregatematrix

for (k in 1:MCtime){

# Simulation of random increments ~ N(0,1) for d=100 stocks
simulationdata3<-rnorm(numstocks*simtime)
randommat3<-matrix(data=simulationdata3,
nrow=numstocks,ncol=simtime, byrow=TRUE)

pricedat3<-1: (numstocks*simtime)
pricemat3<-matrix(data=pricedat3,
nrow=numstocks,ncol=simtime, byrow=TRUE)

returnmat3<-pricemat3
returnmatuncor<-pricemat3
pricematuncor<-pricemat3

for(i in 1:numstocks){
pricemat3[i,1]<-1
returnmat3[i,1]<-0
pricematuncor[i,1]<-1
returnmatuncor[i,1]1<-0

}

# Initial setup of volatility vectors for simulation.
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# First volatility applied is the newest (last) GARCH estimator.

voladat<-1: (numstocks*simtime)
volamat<-matrix(data=voladat,nrow=numstocks,ncol=simtime, byrow=TRUE)

for(i in 1:numstocks){
volamat [i,1]<-GARCHts[i,length(GARCHts[1,])]
}

for (j in 1:(simtime-1)){

tmi<-volamat [, jl%*%t(volamat[,j])
tm2<-cormat*tml

tm3<-cormat2*tml

xi<-t(chol(tm2))

xi12<-t(chol (tm3))

alpha<-median(volamat[,j])

# alpha<-max(median(volamat[,j]) ,mean(volamat[,j]))

for (i in 1:numstocks){

tempret<-(1/pricemat3[i,j])*(alpha*volamat[i,j]-volamat[i,j]~2)
*x(1/mesh)+(1/sqrt(pricemat3[i, j]))*(xili,]%*%randommat3[, j])
returnmat3[i, j+1]<-max(-0.1,tempret)

# setting an absolute floor of -10% for daily logreturns
pricemat3[i, j+1]<-pricemat3[i, j]*exp(returnmat3[i,j+1])

tempret2<-(1/pricematuncor[i, j])*(alpha*volamat[i,j]-volamat[i,j]~2)*
(1/mesh)+(1/sqrt(pricematuncor[i, jl1))*(xi2[i,]%*)%randommat3 [, j])
returnmatuncor[i, j+1]<-sign(tempret2)*min(0.1,abs(tempret2))

# setting an absolute ceiling of 10% for daily logreturns
pricematuncor[i, j+1]<-pricematuncor[i, j]*exp(returnmatuncor([i, j+1])

al<-0.1
beta<-0.85
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stdvola<-stdvoltable[i]
h<-stdvola~2
pers<-al+beta
a0<-h*(1-pers)

# Calculating the next GARCH(1,1) volatility
# based on the simulated log-return

volamat [i, j+1]<-sqrt(a0+al*returnmat3[i,j] ~2+beta*volamat[i,j]~2)

for(j in 1:numstocks){
aggregatematrix[j,k]<-sum(returnmat3[j,])
aggregatematrixuncor [j,k]<-sum(returnmatuncor[j,])

}

s s
# For the long-term benchmark simulation we
# calculate the initial pf-weights (correlated and uncorrelated)

initialmktweight<-calcmktweights(pricemat3,1)
mktreturns<-1:length(aggregatematrix[1,])
mktweightdat<-initialmktweight

for (j in 2:length(pricemat3[1,])){
temp<-calcmktweights(pricemat3, j)
mktweightdat<-append(mktweightdat,temp,after=length(mktweightdat))
}

mktweightmat<-t(matrix(data=mktweightdat,
nrow=length(pricemat3[1,]) ,ncol=numstocks,byrow=TRUE))
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mktpf<-1:length(pricemat3[1,])

for(j in 1:length(pricemat3[1,])){

mktpf [j]<-mktweightmat [, j]%*/pricemat3[, j]
}

initialmktweightuncor<-calcmktweights(pricematuncor,1)
mktreturnsuncor<-1:length(aggregatematrix[1,])
mktweightdatuncor<-initialmktweightuncor

for (j in 2:length(pricematuncor[1,])){
temp<-calcmktweights(pricematuncor, j)

mktweightdatuncor<-append(mktweightdatuncor,
temp,after=length(mktweightdatuncor))

b

mktweightmatuncor<-t(matrix(data=mktweightdatuncor,
nrow=length(pricematuncor[1,]) ,ncol=numstocks,byrow=TRUE))

mktpfuncor<-1:length(pricematuncor([1,])
for(j in 1:length(pricematuncor[1,])){
mktpfuncor [j]<-mktweightmatuncor[, j]l%*/pricematuncorl[, j]

b

initialdivweight<-diversityweights(pricemat3,1)
divreturns<-1:length(aggregatematrix[1,])
divweightdat<-initialdivweight

for (j in 2:length(pricemat3[1,])){
temp<-diversityweights(pricemat3, j)
divweightdat<-append(divweightdat,temp,after=length(divweightdat))
}

divweightmat<-t(matrix(data=divweightdat,
nrow=length(pricemat3[1,]) ,ncol=numstocks,byrow=TRUE))
divpf<-1:length(pricemat3[1,])

for(j in 1:length(pricemat3[1,])){

divpf [jl<-divweightmat [, j]%*%pricemat3[, j]

}

initialdivweightuncor<-diversityweights(pricematuncor,1)
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divreturnsuncor<-1:length(aggregatematrix[1,])
divweightdatuncor<-initialdivweightuncor

for (j in 2:length(pricematuncor[1,])){
temp<-diversityweights(pricematuncor, j)
divweightdatuncor<-append(divweightdatuncor,
temp,after=length(divweightdatuncor))

}

divweightmatuncor<-t(matrix(data=divweightdatuncor,
nrow=length(pricematuncor[1,]) ,ncol=numstocks,byrow=TRUE))
divpfuncor<-1:length(pricematuncor[1,])

for(j in 1:length(pricematuncor[1,])){
divpfuncor[j]<-divweightmatuncor[, j]%*%pricematuncor(, j]

b

initialentweight<-calcentropyweights(pricemat3,1)
entreturns<-1:length(aggregatematrix[1,])
entweightdat<-initialentweight

for (j in 2:length(pricemat3[1,])){
temp<-calcentropyweights(pricemat3, j)
entweightdat<-append(entweightdat,temp,after=length(entweightdat))
}

entweightmat<-t(matrix(data=entweightdat,
nrow=length(pricemat3[1,]) ,ncol=numstocks,byrow=TRUE))
entpf<-1:length(pricemat3[1,])

for(j in 1:length(pricemat3[1,])){

entpf [jl<-entweightmat[, j]%*V%pricemat3[, j]

}

initialentweightuncor<-calcentropyweights(pricematuncor,1)
entreturnsuncor<-1:length(aggregatematrix[1,])
entweightdatuncor<-initialentweightuncor

for (j in 2:length(pricematuncor[1,])){
temp<-calcentropyweights(pricematuncor, j)
entweightdatuncor<-append(entweightdatuncor,
temp,after=length(entweightdatuncor))

}

entweightmatuncor<-t(matrix(data=entweightdatuncor,
nrow=length(pricematuncor[1,]) ,ncol=numstocks,byrow=TRUE))
entpfuncor<-1:length(pricematuncor([1,])
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for(j in 1:length(pricematuncor[1,])){
entpfuncor[j]l<-entweightmatuncor[, j]%*%pricematuncor(, j]

b

equalweights<-1:numstocks

for (i in 1:numstocks){
equalweights[i]<-1/numstocks

}

equalpf<-1:length(pricemat3[1,])

for(j in 1:length(pricemat3[1,])){
equalpf [jl<-equalweights/*pricemat3[, j]
}

equalweightsuncor<-1:numstocks

for (i in 1:numstocks){
equalweightsuncor[i]<-1/numstocks

}

equalpfuncor<-1:length(pricematuncor[1,])

for(j in 1:length(pricematuncor[1,])){
equalpfuncor[jl<-equalweightsuncory*)pricematuncorl[, j]l

}

mktdatcor<-append(mktdatcor,mktpf,after=length(mktdatcor))
divdatcor<-append(divdatcor,divpf,after=length(divdatcor))
entdatcor<-append(entdatcor,entpf,after=length(entdatcor))
equdatcor<-append(equdatcor,equalpf,after=length(equdatcor))

mktdatuncor<-append (mktdatuncor,
mktpfuncor,after=length(mktdatuncor))
divdatuncor<-append(divdatuncor,
divpfuncor,after=length(divdatuncor))
entdatuncor<-append(entdatuncor,
entpfuncor,after=length(entdatuncor))
equdatuncor<-append (equdatuncor,
equalpfuncor,after=length(equdatuncor))
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i S S s
### Comparison between correlated and uncorrelated model ###

mktdatcor<-mktpf

# Utilize the time series of one isolated run of correlated calc.
divdatcor<-divpf

entdatcor<-entpf

equdatcor<-equalpf

mktdatuncor<-mktpfuncor

# Utilize the time series of one isolated run of uncorrelated calc.
divdatuncor<-divpfuncor

entdatuncor<-entpfuncor

equdatuncor<-equalpfuncor

# Visualization of Results

#Market portfolio
mktmatcor<-matrix(data=mktdatcor,
nrow<-masternum,ncol<-simtime,byrow=TRUE)
mktmatuncor<-matrix(data=mktdatuncor,
nrow<-masternum,ncol<-simtime,byrow=TRUE)

xvec<-1:simtime
temp<-colors()

par (new=F)
for (j in 1:masternum){

index<-sample.int(length(temp),

size = 1, replace = FALSE, prob = NULL)
par (new=T)
plot (xvec,mktmatcor[j,],ylim=c(0,3),

xlab="Simulation Time",ylab="Simulated Market Portfolio",
main="Correlated Model",col=temp[index],"1")

}

par (new=F)
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for (j in 1:masternum){

index<-sample.int(length(temp),

size = 1, replace = FALSE, prob = NULL)
par (new=T)
plot (xvec,mktmatuncor[j,],ylim=c(0.5,2),

xlab="Simulation Time",ylab="Simulated Market Portfolio",
main="Uncorrelated Model",col=temp[index],"1")

}

# Diversity-weighted portfolio
divmatcor<-matrix(data=divdatcor,
nrow<-masternum,ncol<-simtime,byrow=TRUE)
divmatuncor<-matrix(data=divdatuncor,
nrow<-masternum,ncol<-simtime,byrow=TRUE)

par (new=F)
for (j in 1:masternum){

index<-sample.int(length(temp),

size = 1, replace = FALSE, prob = NULL)
par (new=T)
plot(xvec,divmatcor[j,],ylim=c(0,3),

xlab="Simulation Time",ylab="Simulated Diversity Portfolio",
main="Correlated Model",col=temp[index],"1")

b

par (new=F)
for (j in 1:masternum){

index<-sample.int(length(temp),

size = 1, replace = FALSE, prob = NULL)
par (new=T)
plot(xvec,divmatuncor[j,],ylim=c(0.5,2),

xlab="Simulation Time",ylab="Simulated Diversity Portfolio",
main="Uncorrelated Model",col=temp[index],"1")

b

# Entropy-weighted portfolio
entmatcor<-matrix(data=entdatcor,nrow<-masternum,ncol<-simtime,byrow=TRUE)
entmatuncor<-matrix(data=entdatuncor,

217



A.2 Squared Brownian Motion Model

nrow<-masternum,ncol<-simtime,byrow=TRUE)

par (new=F)

for (j in 1:masternum){

index<-sample.int(length(temp), size = 1,

replace = FALSE, prob = NULL)

par (new=T)
plot(xvec,entmatcor[j,],ylim=c(0,3),xlab="Simulation Time",
ylab="Simulated Entropy Portfolio",

main="Correlated Model",col=temp[index],"1")

b

par (new=F)
for (j in 1:masternum){

index<-sample.int(length(temp),

size = 1, replace = FALSE, prob = NULL)
par (new=T)
plot (xvec,entmatuncor[j,],ylim=c(0.5,2),

xlab="Simulation Time",ylab="Simulated Entropy Portfolio",
main="Uncorrelated Model",col=temp[index],"1")

b

# Equally-weighted portfolio
equmatcor<-matrix(data=equdatcor,
nrow<-masternum,ncol<-simtime,byrow=TRUE)
equmatuncor<-matrix(data=equdatuncor,
nrow<-masternum,ncol<-simtime,byrow=TRUE)

par (new=F)

for (j in 1:masternum){

index<-sample.int(length(temp), size = 1,

replace = FALSE, prob = NULL)

par (new=T)

plot(xvec,equmatcor[j,],ylim=c(0,3),

xlab="Simulation Time",ylab="Simulated Equally-Weighted Portfolio",
main="Correlated Model",col=temp[index],"1")

by
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par (new=F)

for (j in 1:masternum){

index<-sample.int(length(temp),

size = 1, replace = FALSE, prob = NULL)
par (new=T)
plot (xvec,equmatuncor[j,],ylim=c(0.5,1.5),

xlab="Simulation Time",ylab="Simulated Equally-Weighted Portfolio",
main="Uncorrelated Model",col=temp[index],"1")

b
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