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Abstract

Modern traffic management systems are widely used to control the increasing traffic and to op-
timize the traffic flow in urban and interurban environments. They can differ in the functionality
and number of components involved. For instance, in an interurban environment numerous vari-
able message signs can be controlled based on data coming from radar detectors. In general,
modern traffic management systems follow a hierarchical structure. While higher levels collect
data from lower levels and provide them to human operators for global traffic monitoring and
control, lower levels are responsible for autonomous control as well as traffic and environmental
data acquisition. At the lowest level of the hierarchy, i.e., the field level, sensors (e.g. detec-
tor loops, temperature sensors) and actuators (e.g. traffic lights, variable message signs) from
various vendors are connected to local control units by so called I/O convertors. Since in most
cases sensors and actuators use vendor specific protocols for communication, I/O convertors are
responsible for translating messages from the standardized higher level communication protocol
to a vendor specific protocol and vice versa. However, higher level communication protocols are
only regional restricted (de-facto) standards. Thus, extending them onto the field level would
not yield a satisfying solution especially for vendors.

Wireless sensor and actuator networks typically consist of many different types of sensors
and actuators controlling some physical process. Due to the large number of nodes gathering
process data, the nodes of a wireless sensor network are required to be small and low-cost.
This in turn leads to limited processing capabilities and the need for low power consumption.
However, the need for security contradicts the need for low-cost sensor nodes. The main security
challenges in wireless sensor networks are limited resources, large-scale networks, dynamical
network topologies and last but not least wireless communication characteristics.

This thesis is twofold. On the one hand it aims at developing a generic information model
for sensors and actuators applied in the traffic domain. The information model in combination
with wireless data communication allows to replace the centralized approach at the field level
of today’s traffic management systems with a distributed network of autonomously cooperating
sensors and actuators. To evaluate the information model, a proof-of-concept implementation of
a traffic jam warning system is presented. The second goal of this thesis is the development of a
security concept for distributed traffic management applications based on wireless communica-
tion systems. Within the scope of the security concept, a novel broadcast authentication scheme
for wireless sensor and actuator networks is proposed and analyzed in detail.
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Kurzfassung

Moderne Verkehrsleitsysteme steuern das steigendene Verkehrsaufkommen und optimieren den
Verkehrsfluss. Sie unterscheiden sich in ihrer Funktionalität und der Anzahl ihrer Komponenten.
So können etwa mehrere Wechselverkehrszeichen mithilfe von Radar-Detektoren gesteuert wer-
den. Moderne Verkehrsleitsysteme besitzen im Allgemeinen eine hierarchische Struktur. Wäh-
rend die höheren Ebenen Daten von darunterliegenden Ebenen sammeln und den Operatoren zur
globalen Verkehrsüberwachung und -steuerung zur Verfügung stellen, sind die unteren Ebenen
für die autonome Steuerung sowie die Erfassung von Vehrkehrs- und Umweltdaten zuständig. In
der untersten Ebene der Hierarchie, der sogenannten Feldebene, finden sich Sensoren (z.B. In-
duktivschleifendetektoren, Temperatursensoren) und Aktoren (z.B. Ampeln, Wechselverkehrs-
zeichen) von einer Vielzahl an Herstellern. Diese sind über Ein-/Ausgabe-Konzentratoren mit
der sogenannten Streckenstation verbunden. In den meisten Fällen verwenden Sensoren und
Aktoren herstellerspezifische Kommunikationsprotokolle. Daher müssen E/A-Konzentratoren
Nachrichten zwischen herstellerspezifischen Protokollen und standardisierten Protokollen der
darüberliegenden Ebenen konvertieren.

Drahtlose Sensor- und Aktor-Netzwerke bestehen häufig aus einer Vielzahl von unterschied-
lichsten Sensoren bzw. Aktoren, die einen physikalischen Prozess überwachen bzw. steuern.
Aufgrund der großen Anzahl an Sensoren, die oftmals benötigt werden, um Prozessdaten zu
sammeln, sollen diese möglichst klein und kostengünstig sein. Diese Anforderungen führen
in weiterer Folge dazu, dass die eingesetzten Sensoren typischerweise batteriebetrieben sind
und nur über eine stark eingeschränkte Rechenleistung verfügen. Es ist leicht ersichtlich, dass
der Bedarf an Sicherheit im Gegensatz zu den zuvor genannten Eigenschaften von drahtlosen
Sensor-Netzwerken steht. Die größten Herausforderungen im Bezug auf Sicherheit in drahtlo-
sen Sensor- und Aktor-Netzwerken sind die stark eingeschränkten Ressourcen, die Netzwerk-
größe, die Dynamik eines Sensor- und Aktor-Netzwerkes und nicht zuletzt die Charakteristik
von drahtloser Datenübertragung selbst.

Die vorliegende Arbeit verfolgt zwei Ziele. Einerseits soll ein generisches Informations-
modell für Sensoren und Aktoren aus dem Verkehrswesen entwickelt werden. Anhand dieses
Informationsmodells kann ein Kommunikationsprotokoll für drahtlose Datenübertragung spezi-
fiziert werden, das den zentralistischen Ansatz auf der Feldebene moderner Verkehrsleitsyste-
me durch ein verteiltes Netzwerk von autonom interagierenden Sensoren und Aktoren ersetzen
könnte. Weiters wird zur Evaluierung des Informationsmodells ein Prototyp einer Stauwarnan-
lage vorgestellt. Das zweite Ziel dieser Arbeit ist die Entwicklung eines Sicherheitskonzepts für
verteilte Applikationen in der Verkehrstelematik. Im Zuge dessen wird ein neuartiges Verfahren
zur Broadcast-Authentifizierung vorgestellt und im Detail analysiert.
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CHAPTER 1
Introduction

1.1 Motivation and problem statement

Traffic Management Systems (TMSs) follow a hierarchical structure [17]. At the lowest level,
i.e., the field level, Local Control Units (LCUs) are connected to sensors and actuators collecting
traffic and environmental data by wired communication systems. An LCU typically consists of a
control module and optional I/O convertors that are responsible for translating messages from the
LCU’s standardized higher level communication protocol to a vendor specific protocol and vice
versa. Due to this centralized approach and the lack of a standardized communication protocol
for sensors and actuators applied in today’s TMSs, direct communication between sensors and
actuators is not possible. Even worse, the failure of an LCU leads to the loss of all its sensors
and actuators despite operating properly.

The wiring of sensors and actuators itself has disadvantages, too. It impedes the installation
of new infrastructure and hence increases the costs of installation. Furthermore, it lowers the
flexibility of TMS facilities. If the infrastructure for TMS facilities can be kept at a minimum, for
example by using wireless technologies for data communication and alternative energy supply
such as photovoltaic cells, TMS facilities can cost-effectively be employed at arbitrary sites.

To overcome the disadvantages mentioned above, a decentralized network consisting of au-
tonomously cooperating sensors and actuators can replace the centralized approach at the field
level of modern TMSs. However, interoperability between sensors and actuators from different
vendors must be ensured. To this end, a generic information model needs to be defined build-
ing the basis for a standardized communication protocol. Furhermore, wireless technologies
allow the use of flexible TMS facilities while reducing installation costs. Nevertheless, due to
traffic management being a safety-critical field of application, security aspects, such as mes-
sage authentication, confidentiality and integrity as well as availability and data freshness, must
be considered. Due to the resource limitations of sensors and actuators, especially broadcast
authentication is a crucial though not trivial task.
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1.2 Aim of this thesis

The main objectives of this thesis are the development of a generic information model for the
variety of sensors and actuators that can be found in today’s TMSs as well as the development
of a security concept for distributed Traffic Management (TM) applications that are based on
wireless communication systems. As part of the security concept, a novel broadcast authenti-
cation scheme for Wireless Sensor and Actuator Networks (WSANs) is proposed and analyzed.
Finally, a proof-of-concept implementation based on ZigBee [40] is presented along with other
use cases.

As a result of this thesis, the centralized approach at the field level of modern TMSs could be
replaced with a decentralized approach with securely cooperating sensors and actuators. More-
over, by using wireless data communication, far more flexible TMS facilities can be produced
reducing installation costs while allowing employment at arbitrary sites.

1.3 Outline

As mentioned in the introduction, the main objectives of this thesis are the development of a
generic information model for sensors and actuators in the traffic domain as well as a secu-
rity concept for distributed TM-applications that are based on wireless communication systems.
Thus, Chapter 2 provides an overview of modern TMSs and some of the most popular wireless
communication standards for low-cost and low-power devices such as sensors and actuators. It
also explains the notion of information modeling and introduces basic security concepts which
are needed later on.

Part II addresses the generic information model for sensors and actuators in the traffic do-
main. Chapter 3 specifies the information model including commands and attributes for general
device configuration, traffic control as well as traffic and environmental data acquisition. In ad-
dition to the theoretical specification, Chapter 4 presents a proof-of-concept implementation of
a traffic jam warning system based on ZigBee and depicts further use cases.

Part III covers the security concept for distributed TM-applications based on wireless com-
munication systems. In Chapter 5, the security concept is specified. It includes the proposal of
a novel broadcast authentication scheme for WSANs as well as a precise description of frame
protection and key management mechanisms. Chapter 6, evaluates the security concept and
provides a detailed analysis of the proposed broadcast authentication scheme.

Finally, Chapter 7 summarizes the main results of this thesis and gives an outlook on further
research work.
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CHAPTER 2
State of the art

2.1 Traffic management systems

Modern Traffic Management Systems (TMSs) are widely used to control the increasing traffic
and to optimize the traffic flow in urban and interurban environments. TMSs can differ in the
functionality and number of components involved. For instance, in an interurban environment
numerous Variable Message Signs (VMSs) can be controlled based on data coming from radar
detectors. In general, TMSs follow a hierarchical structure [17]. The Traffic Management and
Information Center (TMIC) operates at the highest level of this hierarchy. It collects data from
its underlying Sub-Stations (SSs) and provides them to the users for global traffic monitoring
and control. SSs are in turn responsible for autonomous control as well as data collection from
their interconnected Local Control Units (LCUs). LCUs operate at the lowest level of the hierar-
chy, the field level. They are connected to sensors (e.g., detector loops, temperature sensors) and
actuators (e.g., traffic lights, VMSs) from various vendors by so called I/O convertors. Com-
munication between devices of different levels is standardized, whilst in most cases sensors and
actuators use vendor specific protocols for communication. Note that the number of levels in-
volved may depend on size and complexity of the TMS. The minimum system can be composed
of autonomously acting LCUs. While this is sufficient for simple applications, e.g. the visual-
ization of successive speed reduction, more complex applications, e.g. control of VMSs with
rerouting instructions, require multiple levels of control and monitoring facilities.

As mentioned above, communication between devices of different levels is standardized.
Unfortunately, only regional restricted (de-facto) standards exist. Table 2.1 depicts some of the
most important communication standards and the communication levels involved. As illustrated
in Figure 2.1, levels A, B and C denote data exchange between TMIC and SS, SS and LCU as
well as between SS and I/O convertor, respectively [17].

Although Intelligent Traffic Management Systems (ITMSs) have been an active research
area in the last decades, human intervention is still necessary especially at the higher levels [14].
ITMSs aim to overcome limitations when facing critical traffic conditions and to support the
human operator thus reducing the need for manual intervention. To this end, an ITMS needs

5



Figure 2.1: Structure of a modern traffic management system (taken from [17])

Communication standard Country of origin Levels
A B C

DAP [34] Netherlands X X X
NTCIP [1] USA X X X

TLS [4] Germany X X
TLS over IP [2] Austria X X

Table 2.1: Communication standards in the traffic domain according to [17]

to comprise a knowledge model of traffic behavior at a strategic level. In [14], the application
of advanced knowledge modeling techniques on two ITMSs, namely, KITS and FLUIDS, is
presented. Dimitrakopoulos and Demestichas propose an ITMS based on cognitive systems
and Wireless Sensor and Actuator Networks (WSANs) in [8]. Further informations on ITMSs,
including a historical overview of ITMSs, can be found in [9].

2.2 Wireless standards

WSANs have been an emerging research topic in the recent decade. The following sections
provide an overview of some wireless standards.
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2.2.1 IEEE 802.15.4

The IEEE 802.15.4 standard [11] specifies Physical Layer (PHY) and Medium Access Control
Layer (MAC) for Low-Rate Wireless Personal Area Networkss (LR-WPANs). A LR-WPAN
is a low-cost communication network allowing wireless communication for applications with
limited power and looser throughput requirements.

The PHY layer defines various frequency bands using different access modes. While the
ultrawide-band PHY operates in the sub-gigahertz (249.6 MHz to 749.6 MHz), low band (3.1
GHz to 4.8 GHz) and high band (6 GHz to 10.6 GHz), Direct Sequence Spread Spectrum (DSSS)
PHY supports the 2450 MHz, 950 MHz and a 868 MHz bands among others [3]. Across the
latter three frequency bands, a total number of 27 channels are available: sixteen in the 2450
MHz band, ten in the 950 MHz band and one in the 868 MHz band. While the 2450 MHz
band offers a data rate of 250 kbps, frequency bands 950 MHz and 868 MHz offer data rates of
40 kbps and 20 kbps, respectively. Besides data transmission and reception, the physical layer
is also responsible for activation and deactivation of the radio transceiver, channel frequency
selection, energy detection within the selected channel, clear channel assessment and link quality
estimation.

The MAC layer handles all access to the radio channel. IEEE 802.15.4 specifies two main
network topologies for Personal Area Networks (PANs), i.e., the star topology and the peer-to-
peer topology (see Figure 2.2). No matter what topology is used, an IEEE 802.15.4 PAN can be
beacon enabled or non-beacon enabled. In a beacon-enabled PAN, the PAN coordinator period-
ically sends beacon messages to synchronize attached devices, identify the PAN and describe the
structure of the superframes. Superframes denote the interval between two consecutive beacons
as illustrated in Figure 2.3. A superframe consists of an active period and an optional inactive
period. The active period is divided into sixteen equally sized slots whereby beacons are always
transmitted in the first slot. Remaining slots form the Contention Access Period (CAP) and the
optional Contention Free Period (CFP). In CAP, nodes have to compete for channel access us-
ing slotted Carrier Sense Multiple Access – Collision Avoidance (CSMA-CA), whereas in CFP
Guaranteed Time Slots (GTSs) can be assigned to nodes. Since PAN coordinators are not al-
lowed to interact with their PAN during the inactive period, PAN coordinators and associated
devices may enter a low-power mode to safe energy until the next superframe starts. There exist
three different data transfer modes: data transfer to a coordinator, data transfer from a coor-
dinator and peer-to-peer data transfers. Whenever a device wants to transfer data to the PAN
coordinator, it has to wait for the next beacon and synchronize to the superframe structure. It
then sends the data in the next CAP. If the PAN coordinator wants to transfer data to an end de-
vice it indicates a pending message in the beacon. After synchronizing to the beacon, the device
sends a data request to the PAN coordinator. The coordinator then sends the pending message to
the requesting device. Note that both, data request und data transfer, take place in the CAP. The
last type of data transfer is peer-to-peer. This data transfer is only possible in peer-to-peer PANs
where the device’s radio transceivers are always active. Peer-to-peer data transfer takes place in
the CAP.

In non-beacon enabled PANs only unslotted CSMA-CA is used for communication. Hence,
end devices have to periodically poll the PAN coordinator for pending messages and on the other
hand are able to instantly send data to the PAN coordinator.
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Figure 2.2: IEEE 802.15.4 PAN topologies

Figure 2.3: IEEE 802.15.4 superframe structure

As depicted in Figure 2.2, the MAC layer defines two types of devices, namely, Full Function
Devices (FFDs) and Reduced Function Devices (RFDs). While FFDs implement the full MAC
layer functionality, RFDs implement only parts of it. Only FFDs may act as PAN coordinator
and furthermore, RFDs can only communicate with FFDs.

Besides (high level) data transfer, beacon synchronization and PAN (dis-)association, the
MAC layer is also responsible for frame security. IEEE 802.15.4 specifies eight different secu-
rity suites that can be classified by the properties they offer [30]: no security, authentication only,
encryption only, and encryption and authentication. The latter three are based on the Counter
with Cipher Block Chaining Message Authentication Code (CCM*) mode of operation of the
Advanced Encryption Standard (AES) block cipher with keys up to 128-bits in length (see Sec-
tion 2.4.2). However, there are some vulnerabilities and pitfalls especially with respect to key
management and integrity protection [30].

2.2.2 ZigBee

ZigBee [40] is a low-cost, low-power, wireless communication standard built upon the IEEE
802.15.4 standard. As depicted in Figure 2.4, only the higher layers, i.e., Network Layer (NWK)
and Application Layer (APL), are defined by ZigBee. While the NWK layer provides a routing
mechanism for multihop networks as well as services for network management, the APL layer
provides a framework for distributed applications and concerns about data modeling.
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Figure 2.4: ZigBee architecture

Each ZigBee device consists of Application Objects (AOs) defining the device’s functional-
ity. An AO is a single part of a distributed application. As shown in Figure 2.4, the ZigBee De-
vice Object (ZDO) is a special AO that is implemented in every device. It implements the basic
device functionality and is responsible for the initialization of Application Support Layer (APS),
NWK and Security Service Provider (SSP). The ZDO also determines the device’s role within
the network, i.e., whether the device acts as coordinator, router or end device.

Interoperability between devices from different vendors is ensured through the use of Ap-
plication Profiles (APs). Currently, application profiles are available for specific application
domains (e.g., ZigBee Home Automation Public Application Profile [41]). They contain a set
of logical device specifications that describe dedicated functionalities. Each device specification
defines the so called ZigBee clusters that have to be implemented (mandatory clusters). Zig-
Bee clusters are collections of attributes and commands. While a single attribute of a cluster
represents a single data entity (e.g., the measured air temperature), commands are used to ma-
nipulate these attributes as well as to initiate actions within the device. The exact structure of
the clusters (including the specification of the clusters’ attributes and commands) is not defined
by the core specification – clusters are specified within the so called ZigBee Cluster Library
Specification [39].

Although being built upon IEEE 802.15.4, ZigBee does not use the security mechanisms
defined by IEEE 802.15.4. Instead, ZigBee defines its own security services for NWK and APL
layers using AES in combination with the CCM* mode and three different types of keys. Link
keys are used for all unicast communications between peer entities. They are shared between
two ZigBee devices that communicate with each other. Network keys are shared amongst all
devices within the network and are utilized for broadcast communication. Last but not least,
master keys are used to distribute other keys.

ZigBee also provides different key management mechanisms. When using pre-installed
keys, all required keys have to be installed during device configuration. Another possibility is to
transport keys over the network (key transport). In secure mode, a pre-installed key is used for
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encryption of the transported key. For the sake of completeness it should be mentioned that keys
can also be transported in plain text. Both mechanisms, pre-installed keys and key transport,
can be used for all types of keys. Another mechanism is the key establishment based on the
Symmetric-Key Key Establishment (SKKE) protocol and secured through the use of a master
key. However, key establishment is possible for link keys only.

2.2.3 6LoWPAN

IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) has been specified to ex-
tend IPv6 based networks over IEEE 802.15.4 based Wireless Personal Area Networks (WPANs)
[18]. However, the requirements of IPv6 based networks are in contrast to the limitations of
WPANs. The main gap between IPv6 and IEEE 802.15.4 concerns message sizes: While the
minimum Maximum Transmission Unit (MTU) size of IPv6 packets is 1280 bytes, the maxi-
mum size of IEEE 802.15.4 PHY frames is 127 bytes. Thus, fragmentation of (possibly already
fragmented) IPv6 packets may be necessary prior transmission over the WPAN.

The architecture of 6LoWPAN is very simple. It basically consists of an adaption layer
that is inserted between the MAC and NWK layers. The 6LoWPAN adaption layer is mainly
responsible for encapsulation, fragmentation and reassembly, header compression and address
autoconfiguration. Encapsulation may add headers for mesh addressing, broadcast and frag-
mentation to the IPv6 packet while header compression can be used to shrink original headers
of upper layers. As mentioned above, fragmentation may be necessary if the maximum size of a
IEEE 802.15.4 PHY frame (reduced by the number of bytes required by the MAC layer header)
is exceeded. Address autoconfiguration allows nodes to obtain IPv6 interface identifiers based
on their 64-bits IEEE 802.15.4 extended address. However, 16-bits short addresses are also pos-
sible for generation of IPv6 interface identifiers. The complete adaption layer functionality is
defined in [24].

IPv6 packets are always carried within IEEE 802.15.4 data frames. To support link layer
recovery, acknowledgements for data frames carrying IPv6 packets are recommended [24]. Fur-
thermore, note that 6LoWPAN does not specify security services. It solely relies on the security
mechanisms defined by IEEE 802.15.4 and higher layers.

2.2.4 WirelessHART

WirelessHART is an open wireless communication standard specifically designed for process
control applications in industrial automation [33]. It extends the (wired) HART protocol offering
a wireless interface to field devices. The design principles of WirelessHART are focussed on
simplicity and robustness [13].

The WirelessHART PHY layer is based on IEEE 802.15.4. However, WirelessHART ex-
tends the IEEE 802.15.4 PHY layer with a frequency hopping mechanism to overcome narrow
band interference. As opposed to ZigBee, WirelessHART specifies its own MAC layer using
Time Division Multiple Access (TDMA) to provide collision free and deterministic communi-
cation. Each time slot has a duration of 10 ms which is enough to transmit a data frame and its
acknowledgement. A sequence of consecutive time slots is called a superframe. Furthermore,
WirelessHART defines priority classes of data units which is useful for flow control. The prior-
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ity classes, from highest to lowest priority, are control data, measurement data, normal data and
alarm and event data.

While the NWK layer is mainly responsible for routing and link scheduling, the transport
layer defines block data transfer mechanisms for TCP-like data transfer with acknowledgements
and UDP-like data transfer without acknowledgements. Finally, the WirelessHART APL layer
defines commands, responses and data types.

WirelessHART networks consist of a group of network devices, a WirelessHART gateway,
a security manager and a network manager [13]. A network device can be a field device or a
handheld device, e.g. from a maintenance worker. The gateway builds the bridge to the process
plant and communicates directly with the network manager. It also provides buffering for large
data transfers. The network manager is responsible for configuration and maintenance of the
WirelessHART network. It propagates keys to the network devices, performs link scheduling
and validates devices that want to join the network. Since WirelessHART networks support
mesh topology, each network device must be equipped with routing capabilities.

Security in WirelessHART networks is mandatory. To this end, AES with the CCM* mode
as defined by IEEE 802.15.4 is used to provide confidentiality and data integrity for end-to-end
connections [33]. As mentioned above, the security manager is responsible for key generation
while the network manager is responsible for key distribution. WirelessHART defines four types
of keys, namely, public keys, session keys, join keys and network keys. While public keys are
used by joining devices to generate Message Integrity Codes (MICs) on the MAC layer, the
network key is used by authenticated network devices for the same purpose. During the joining
process, join keys are needed to authenticate a joining device with the network manager. Thus,
joining keys have to be unique for each network device. Session keys are unique for each end-
to-end connection between two network devices providing end-to-end confidentiality and data
integrity.

2.3 Information modeling

Information models comprise concepts, relationships, constraints, rules and operations to spec-
ify data semantics for a certain domain of discourse [20]. They provide a sharable and structured
view on information and knowledge in the context of the chosen domain. There exist three differ-
ent methodologies to derive information models, namely the Entity-Relationship (ER) approach,
the functional modeling approach and the Object-Oriented (OO) approach.

The ER approach is focused on the concepts of entities and relationships (among entities).
Its origin is the graphical notation technique proposed by Chen [5]. However, various extensions
of the basic ER modeling technique have been introduced since then.

Functional modeling is based on specification and decomposition of the system’s function-
ality. It considers the flow of information from one system process to another and its basic
elements are objects and functions (over objects).

The OO approach identifies objects from the domain of discourse prior to their operations
and functions. Its main building blocks are object classes, attributes, operations and associations.
One of the most widespread OO modeling language is the Unified Modeling Language (UML)
specified by the Object Management Group (OMG) [25]. The main objective of UML is to
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provide tools for analysis, design and implementation of software-based systems as well as for
modeling business. To this end, UML provides a variety of graphical notation techniques such as
use case diagrams and class diagrams. In general, UML diagrams can be divided into structural
and behavioral diagrams. Structural diagrams describe the structure of the system being modeled
whereas behavioral diagrams characterize processes as well as control and data flows.

2.4 Security in wireless sensor networks

A WSAN typically consists of many different types of sensors and actuators controlling some
physical process [6]. Due to the large number of nodes gathering process data, the nodes of a
WSAN are required to be small and low-cost. This in turn leads to limited processing capabilities
and the need for low power consumption. However, most applications require at least some level
of security due to the open medium. Obviously, the need for security contradicts the need for
low-cost sensor nodes. The main security challenges in WSANs are limited resources, large-
scale networks, dynamical network topologies and wireless communication characteristics [6].

Table 2.2 depicts the classification of security attacks according to [32]. Security attacks
can be divided into attacks from outside and inside the WSAN. Outside attacks are performed
by unauthorized nodes, i.e., nodes that are not part of the WSAN, whereas inside attacks are
made from authorized nodes within the WSAN. Both, outside and inside attacks, can further be
divided into active and passive attacks. Basically, all possible attacks from inside are subsumed
by node compromise. As soon as a node is compromised, the attacker obtains access to all secu-
rity materials stored within that node and in further consequence, the node can exhibit arbitrary
malicious behavior. While prevention of outside attacks is rather simple, inside attacks are hard
to detect. However, intrusion detection systems, such as [12], are able to detect compromised
nodes with a high degree of probability.

Classification Attack Affects
inside active Node compromise all

outside
active

Denial of Service (DoS) Availability
Message replay Freshness

Message modification Integrity
Message spoofing Authentication

passive Eavesdropping Confidentiality

Table 2.2: Classification of security attacks according to [32]

The following sections describe some basic security primitives as well as symmetric- and
public-key encryption schemes.
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2.4.1 Basic security primitives

2.4.1.1 One-way functions

A function f : X → Y is called a one-way function if f(x) is easy to compute for all x ∈ X
but given y ∈ Im(f), it is hard to find any x ∈ X such that f(x) = y [22]. The terms “easy”
and “hard” are to be understood with respect to the computational complexity of computing and
inverting f , respectively.

For example, RSA function and Rabin function are candidate1 one-way functions [22]. RSA
function fRSA : Zn → Zn is defined as fRSA(x) = xe mod n where n = pq is the product
of distinct odd primes p, q and e is an integer such that gcd(e, (p − 1)(q − 1)) = 1. Rabin
function fRabin : Qn → Qn is defined as fRabin(x) = x2 mod n where n = pq is the product
of distinct primes p, q ≡ 3 (mod 4) and Qn is the set of all quadratic residues modulo n, i.e.,
Qn = {a | a ∈ Z∗n : ∃x ∈ Z∗n s.t. x2 ≡ a (mod n)}.

2.4.1.2 One-way chains

A one-way chain C is a sequence (x0, x1, x2, · · ·xn) defined by xi = f(xi−1), 1 ≤ i ≤ n
where f is a one-way function as defined in Section 2.4.1.1. x0 is said to be the (secret) initial
seed of one-way chain C. Figure 2.5 depicts the construction of a one-way chain of length
n. Note that the one-way chain elements are disclosed in reverse order of generation. Thus,
having xi, 0 < i ≤ n, xj , 0 ≤ j < i can be verified by computing xi = f i−j(xj). One-way
chains are versatile: Lamport used one-way chains for one-time passwords [19] while Perrig et
al. proposed a broadcast authentication mechanism based on one-way (key) chains [27].

Figure 2.5: Construction of one-way chains according to [27]

2.4.1.3 Hash functions

A cryptographic hash function is a function h : {0, 1}m → {0, 1}n that maps an input x of
arbitrary but finite bitlength m to an output h(x) of fixed bitlength n [22]. Following properties
are required by hash functions:

1. Ease of computation – Given input x, h(x) is easy to compute.

1Note that the existence of one-way functions is not proven thus far. However, it is widely believed that one-way
functions do exist.
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2. Preimage resistance – Given output y, it is computationally infeasible to find any preim-
age x′ such that h(x′) = y.

3. Second-preimage resistance – Given input x, it is computationally infeasible to find any
second input x′ 6= x such that h(x) = h(x′).

4. Collision resistance – It is computationally infeasible to find two arbitrary but distinct
inputs x and x′ such that h(x) = h(x′).

Note that in literature alternate terms weak collision resistance and strong collision resis-
tance may be used for second-preimage resistance and collision resistance, respectively.

Hash functions are commonly used for data integrity and with digital signatures. If data
integrity has to be ensured, the hash value of some input is computed and protected using ap-
propriate techniques. To verify integrity of the input data, i.e., that the input data has not been
modified, the hash value is recomputed and compared with the original one.

Digital signatures are costly for long messages. To ease the signature generation for long
messages, the sender simply signs the message’s hash value. Upon receipt, the hash value for
the received message is computed and the signature is verified using the computed hash value.

Table 2.3 depicts some cryptographic hash functions and their hash and block sizes.

Algorithm Output size [bits] Block size [bits]
MD5 128 512

RIPEMD-128/256 128/256 512
SHA-1 160 512

WHIRLPOOL 512 512

Table 2.3: Some cryptographic hash functions

2.4.1.4 Hash-based message authentication code (HMAC)

Hash-based Message Authentication Code (HMAC) is a mechanism for message authentication
using keys in combination with cryptographic hash functions as defined in Section 2.4.1.3 [16].
Let H denote the chosen hash function with block size B and output size L. Furthermore, let
K be a secret key of length n ≤ B. In [16], the minimal recommended length of s K is L, i.e.,
L ≤ n ≤ B. The HMAC of message m using key K is defined as HMAC(K, m) = H((K ⊕
opad) ||H((K ⊕ ipad) ||m)) where ⊕ denotes bit-wise exclusive-or and || denotes concatena-
tion of bitstrings. Operands opad and ipad are of length B and have values 0x363636 · · · 36 and
0x5C5C5C · · · 5C, respectively.

The specification of a certain hash function is called an instantiation of HMAC. For exam-
ple, HMAC-Message Digest Algorithm Version 5 (MD5) and HMAC-Secure Hash Algorithm
Version 1 (SHA-1) are the instantiations using hash functions MD5 and SHA-1, respecively.
Note that HMAC instantiations are less affected by collisions than their underlying hash func-
tions alone.
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HMACs ensure message authentication and integrity, if the key is known by the sender and
recipient of the message, only. Otherwise the HMAC needs to be protected, e.g. using a digital
signature.

2.4.2 Symmetric-key cryptography

An encryption scheme, consisting of the sets of encryption and decryption transformations {Ee :
e ∈ K} and {Dd : d ∈ K} with key space K, is said to be a symmetric-key encryption scheme if
for each key pair (e, d), d can be easily computed knowing only e and vice versa [22]. Note that
in most symmetric-key encryption schemes e = d holds.

Symmetric-key encryption schemes are mainly divided into block and stream ciphers. A
block cipher with blocklength n is a function that maps n-bit blocks of a plaintext message m =
m1m2 · · ·ml to n-bit blocks of the message’s ciphertext c = c1c2 · · · cl, i.e., EK(mj) = cj ,
1 ≤ j ≤ l where K ∈ K is an arbitrary key. The inverse mapping together with K is used to
decrypt the ciphertext, i.e., DK(cj) = mj , 1 ≤ j ≤ l. However, there exist various modes of
operations with different properties. For example, the Cipher Block Chaining (CBC) mode of
operation encrypts plaintext block mj using the previously generated ciphertext block cj−1 as
follows cj = EK(mj⊕cj−1). The first ciphertext block c1 is generated using some initialization
vector IV , i.e., c0 = IV .

In contrast to block ciphers, stream ciphers process plaintext in small blocks using a varying
encryption function and a key stream k1k2k3 · · · ki ∈ K. However, the distinction between
block and stream ciphers is not definite.

Since the computational effort for symmetric-key encryption schemes is far smaller than
compared to public-key encryption schemes (see Section 2.4.3), symmetric-key cryptography
seems to fit best for the use in WSANs. However, authentication can not be ensured using a
symmetric key that is known by more than two entities.

AES [35] is one of the most widespread symmetric-key encryption schemes. It is a block
cipher algorithm having a block size of 128 bits which, in the context of WSANs, is equal to
its key size. Altough having relative high energy costs per byte, AES is generally regarded as
secure choice when selecting ciphers for security schemes [38].

2.4.3 Public-key cryptography

An encryption scheme, consisting of the sets of encryption and decryption transformations {Ee :
e ∈ K} and {Dd : d ∈ K} with key space K, is said to be a public-key encryption scheme if for
each key pair (e, d) where e is made publicly available and d is kept secret, it is computationally
infeasible to derive d from e [22]. Subsequently, letKpublic denote the public key e andKprivate

denote the private key d.
To encrypt a message m for recipient A, the public key KA

public of A is used to compute
the ciphertext, i.e., EKA

public
(m) = c. Thus, only A can decrypt the ciphertext using its pri-

vate key KA
private. The original message is obtained by DKA

private
(c) = m. Besides encryption,

public-key encryption schemes can be used for authentication and data integrity within a group
of entities, too. If an integrity protected message m′ is encrypted using the sender’s private key

15



KS
private, all recipients are able to decrypt the message using the sender’s public key KS

public.
Since the private key KS

private, associated to public key KS
public, is only known to its genera-

tor, S is the true originator of m′. However, the main disadvantages of public-key encryption
schemes are longer keys and higher computational effort compared to symmetric-key encryption
schemes.

One of the most popular public-key encryption schemes is RSA which has been developed
by Rivest, Shamir and Adleman [29]. The security of RSA relies on the integer factorization
problem, i.e., given a positive integer n, find its prime factorization n = pe11 p

e2
2 · · · p

ek
k where

the pi are pairwise distinct primes and each ei ≥ 1 [22]. However, to obtain a sufficient security
level, RSA keys of at least 1024-bits length are recommended.

Another popular public-key encryption scheme is the Elliptic Curve Cryptography (ECC)
scheme developed independently by Koblitz [15] and Miller [23]. The main advantage of ECC
is that the same security level as RSA can be obtained using smaller keys. For example, a
160-bits ECC key provides the same security level as a 1024-bits RSA key [10].
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Part II

Traffic management information model

17





CHAPTER 3
Information model specification

3.1 Overview

As discussed in Section 2.1, today’s Traffic Management Systems (TMSs) follow a hierarchical
structure. However, the centralized approach at the field level introduces a single point of failure.
If an Local Control Unit (LCU) fails, its sensors and actuators cannot be reached from the higher
levels anymore. Additionally, the wiring of sensors and actuators itself has disadvantages, too.
It impedes the installation of new infrastructure and hence increases the costs of installation.
Furthermore, it decreases the flexibility of TMS facilities. If the infrastructure for TMS facilities
can be kept at a minimum, for example by using wireless technologies in combination with alter-
native energy supply such as photovoltaic cells, TMS facilities can cost-effectively be employed
at arbitrary sites.

To counter these disadvantages, a decentralized approach with autonomously cooperating
sensors and actuators based on wireless data communication has to be chosen. Interoperability
among devices from different vendors is fundamental for such a decentralized system. This
leads to the need of a generic information model for sensors and actuators used in TMSs. Figure
3.1 depicts how the field level can look like using the proposed information model below.

Communication between an LCU and devices of higher levels is standardized. However,
only regional restricted (de-facto) standards exist. Examples are “Technische Lieferbedingun-
gen für Streckenstationen” (TLS) [4], which is used in Germany, and National Transportation
Communications for ITS Protocol (NTCIP) [1] used in the US. As seen in Figure 3.1, commu-
nication between sensors and actuators is independent from the protocol utilized for inter-level
communication. It is also independent from underlying vendor specific protocols. Tethered
sensors/actuators can be attached to gateways allowing them to join the wireless sensor network.

The scenario shown in Figure 3.1 illustrates that sensors and actuators can directly commu-
nicate with each other. This allows decentralized control by autonomously cooperating sensors
and actuators at the field level.

The information model presented below is based on both, TLS [4] and NTCIP [1]. As
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Figure 3.1: Proposed TMS field level structure

illustrated in Figure 3.2, it is structured on the basis of Functional Groups (FGs)1. Each FG
represents a specific field of TMSs, such as collection of environmental data or Variable Message
Sign (VMS) control. FGs are further divided into clusters. Clusters are identified by a 16-bit
unsigned integer which has to be unique. While the higher byte encodes the FG the cluster
belongs to, the lower byte identifies the cluster within the FG. The basic idea of using clusters
is to form groups of attributes and commands that belong together semantically. Furthermore,
communication between devices is ensured through so called cluster bindings. A cluster binding
between two devices exists, if both of them support some cluster X. More precisely, one device
has to support the server side of cluster X while the other one has to support the client side.
The server side of a cluster retains attributes physically, e.g, parameters or measurement values,
while the client side manipulates or retrieves them. Commands received at the server side have
to be generated on the client side and vice versa.

Subsequent sections specify a generic information model for sensors and actuators used in
TMSs. Each FG is described in detail, including their cluster definitions2.

1Note that the classification and numbering of functional groups is not the same as defined in [4]
2Note that for the sake of clarity, the server side of clusters is depicted only
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Figure 3.2: Structure of the traffic management information model

3.2 FG0 – General device configuration

FG0 comprises attributes and commands which are used for general configuration of devices.
General configuration means that this group’s clusters are applicable (and even mandatory) for
every device, whether it is a simple temperature sensor or a more complex LCU. The clusters of
FG0 are depicted in the following sections.

3.2.1 General Device Information cluster

The General Device Information cluster is mandatory for each device and keeps information
regarding the whole device. It comprises both, management and process data. Since device
configuration usually takes place at deployment, attributes representing management data are
read-only. Subsequent modifications have to be done using appropriate SetX commands (see
Section 3.2.1.2).

3.2.1.1 Attributes

The attributes of the General Device Information cluster are summarized in Table 3.1.

3.2.1.1.1 Name attribute The Name attribute is of type Character String and stores
the device’s name. Since it is necessary for identifying devices within the TMS, device names
have to be unique.

3.2.1.1.2 System Status attribute The device’s status is reflected by the 8-bit Enum-
eration typed System Status attribute. Table 3.2 depicts the possible values of the system
status enumeration.

3.2.1.1.3 Power Source attribute The Power Source attribute states how the device is pro-
vided with power. Its possible values are listed in Table 3.3.
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Name Type Subtype Access
Location Struct read

Latitude Int32
Longitude Int32

Reference Height Int16 read
Sensors/Actuators Array Struct read

Functional Group UnsignedInt8
Subgroup UnsignedInt8
Identifier UnsignedInt16
Sensor Height Int16
Status Enum8

System Status Enum8 read
Power Source Enum8 read
Battery UnsignedInt8 read
Name CharacterString read
Subscriptions Array Struct read

Cluster ID UnsignedInt16
Attributes Array Struct

Attribute ID UnsignedInt16
Devices Array DeviceAddress

Table 3.1: Attributes of the attribute General Device Information cluster

Value System Status
0 Operational
1 Non-operational

Table 3.2: Values of the System Status enumeration

Value Power Source
0 Grid
1 Battery-powered

Table 3.3: Values of the Power Source enumeration

3.2.1.1.4 Battery attribute For battery-powered devices, the Battery attribute indicates the
state of charge in percent. It is of type Unsigned 8-bit Integer and ranges from 0% to
100%.

3.2.1.1.5 Location attribute The Location attribute stores the device’s location. It is of type
Struct and comprises two members, i.e. Latitude and Longitude. Both members are of type
Signed 32-bit Integer and their unit is degrees (◦). For the sake of precision, a resolu-
tion of 10−6 ◦ is used. This means that the stored value has to be multiplied by 10−6 to retrieve
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the correct value in degrees. Latitude ranges from −90 ◦ to +90 ◦, while Longitude ranges from
−180 ◦ to +180 ◦.

3.2.1.1.6 Reference Height attribute In some cases it might be necessary to know the exact
height of a sensor or actuator. This height can be calculated using the Reference Height attribute.
The Reference Height is of type Signed 16-bit Integer and contains the height of the
device’s reference point with respect to the mean sea level in m.

3.2.1.1.7 Sensors/Actuators attribute The Sensors/Actuators attribute stores an array of all
sensors and actuators of the device. Its elements are of type Struct and comprise five mem-
bers describing a single sensor or actuator. Each sensor/actuator is identified by the Functional
Group, Subgroup and Identifier. While Functional Group and Subgroup are of type Unsigned
8-bit Integer, Identifier is a Unsigned 16-bit Integer. The Identifier has to be
unique within the given Subgroup. Sensor Height contains the height of the sensor/actuator
relative to the device’s reference point in cm. Finally, the status of the sensor/actuator can be
retrieved from the 8-bit Enumeration Status. Possible sensor statuses are shown in Table
3.4.

Value Status
0 Operational
1 Erroneous

Table 3.4: Values of the Status enumeration

3.2.1.1.8 Subscriptions attribute The Subscriptions array maintains a list of all active re-
porting subscriptions. Each element represents a single cluster identified by the Unsigned
16-bit Integer Cluster ID. The records of the Attributes array comprise of the Unsigned
16-bit Integer typed Attribute ID identifying the attribute and a list of device addresses
(Devices).

3.2.1.2 Commands

Table 3.5 depicts the commands of the General Device Information cluster. The first column
states whether the command is received or generated.

3.2.1.2.1 ReadAttributes command The ReadAttributes command allows a client to retrieve
the current values of attributes. Parameter RA List contains records of type Struct, each spec-
ifying a certain Cluster ID and a list of attribute identifiers, i.e., the Attribute List , that have to
be read. If a device receives a ReadAttributes command, it generates a ReadAttributesResponse
containing the current attribute values if present.
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R/G Name Parameter Type Subtype
R ReadAttributes RA List Array Struct

Cluster ID UnsignedInt16
Attribute List Array UnsignedInt16

G ReadAttributesResponse RAR List Array Struct
Cluster ID UnsignedInt16
Data Array Struct

Attribute ID UnsignedInt16
Attribute Value OctetString

R WriteAttributes WA List Array Struct
Cluster ID UnsignedInt16
Data Array Struct

Attribute ID UnsignedInt16
Attribute Value OctetString

G WriteAttributesResponse WAR List Array Struct
Cluster ID UnsignedInt16
Data Array Struct

Attribute ID UnsignedInt16
Status Enum8

R SetName newName CharacterString
R SetLocation newLatitude Int32

newLongitude Int32
R SetReferenceHeight newReferenceHeight Int16
R GetSensorStatus Functional Group UnsignedInt8

Subgroup UnsignedInt8
Identifier UnsignedInt16

G GetSensorStatusResponse Status Enum8
R SubscribeReporting Reporting List Array Struct

Cluster ID UnsignedInt16
Attribute List Array UnsignedInt16

R UnsubscribeReporting Cluster List Array UnsignedInt16

Table 3.5: Commands of the General Device Information cluster

3.2.1.2.2 ReadAttributesResponse command The ReadAttributesResponse is generated af-
ter receipt of a ReadAttributes command. It returns the requested attribute values to the client.
Parameter RAR List is an array of type Struct. Each record of the RAR List contains a Cluster
ID and a Data array which in turn comprises pairs of Attribute ID and Attribute Value. The
format of the Attribute Value element depends on the attribute and thus is determined by the
Attribute ID.
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3.2.1.2.3 WriteAttributes command The WriteAttributes command allows a client to write
attribute values. Each record of the WA List parameter contains a Cluster ID and a Data array
specifying the new attribute values that have to be written. If a device receives a WriteAttributes
command, it generates a WriteAttributesResponse containing the status for each written attribute.

3.2.1.2.4 WriteAttributesResponse command The WriteAttributesResponse is generated af-
ter receipt of a WriteAttributes command. It returns the status for each written attribute value
to the client. Parameter WAR List is an array of type Struct. Each record of the WAR List
contains a Cluster ID and a Data array which in turn comprises pairs of Attribute ID and Status.
The Status element is of type 8-bit Enumeration and indicates whether or not the attribute
has been written successfully.

3.2.1.2.5 SetName command The SetName command sets the device’s Name to newName.

3.2.1.2.6 SetLocation command The device’s Location can be modified using the SetLoca-
tion command. It has two parameters of type Signed 32-bit Integer, i.e. newLatitude
and newLongitude. Their format is described in Section 3.2.1.1.5.

3.2.1.2.7 SetReferenceHeight command To alter the device’s ReferenceHeight, the SetRef-
erenceHeight command can be used. Its only parameter is the Signed 16-bit Integer
typed newReferenceHeight. It contains the new height of the device’s reference point with re-
spect to the mean sea level in m.

3.2.1.2.8 GetSensorStatus command The GetSensorStatus command allows a client to re-
trieve the status of a certain sensor or actuator. Parameters Functional Group, Subgroup and
Identifier specify the sensor or actuator whose status has to be returned. If a device receives a
GetSensorStatus command, it generates a GetSensorStatusResponse containing the status of the
sensor or actuator.

3.2.1.2.9 GetSensorStatusResponse command The GetSensorStatusResponse is generated
after receipt of a GetSensorStatus command. It returns the Status of a sensor or actuator to a
requesting client. The parameter Status is of type 8-bit Enumeration. Its possible values
are depicted in Table 3.4.

3.2.1.2.10 SubscribeReporting command Clients can subscribe to reporting of measure-
ment values using the SubscribeReporting command. The Reporting List parameter contains
records of type Struct, each specifying a cluster and a list of attribute identifiers (i.e., the
Attribute List) that have to be reported. Valid subscriptions are appended to the Subscriptions
array. A detailed description of the reporting mechanism can be found in Section 3.3.1.1.3.
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3.2.1.2.11 UnsubscribeReporting command The UnsubscribeReporting command can be
used to unsubscribe from reporting of measurement values. Unsubscribing is only supported
for whole clusters. Parameter Cluster List contains a list of Unsigned 16-bit Integer cluster
identifiers. The client’s corresponding entries have to be removed from the Subscriptions array.

3.3 FG1 – Traffic data acquisition

FG1 covers all attributes and commands which are necessary for acquisition of traffic data of
all kind. The three main areas of traffic data are load statistics, traffic statistics and speeding
statistics. Table 3.6 depicts the clusters of FG1 which are described in detail in the following
sections.

Cluster name
General Configuration – Traffic Data Acquisition

Vehicle Measurement – Configuration
Vehicle Measurement

Load Statistics – Configuration
Load Statistics – Short-Term Measurement
Load Statistics – Long-Term Measurement

Traffic Statistics – Configuration
Traffic Statistics – Short-Term Measurement
Traffic Statistics – Long-Term Measurement

Speeding Statistics – Configuration
Speeding Statistics – Short-Term Measurement
Speeding Statistics – Long-Term Measurement

Table 3.6: Clusters of FG1

3.3.1 General Configuration – Traffic Data Acquisition cluster

The General Configuration – Traffic Data Acquisition cluster is mandatory for every device that
has to gather traffic data.

3.3.1.1 Attributes

Table 3.7 shows the attributes of the General Configuration – Traffic Data Acquisition cluster.

3.3.1.1.1 Measurement Period – Short-Term Data attribute The Measurement Period –
Short-Term Data gives the measurement period for short-term traffic data acquisition in sec-
onds. It is of type Unsigned 8-bit Integer and has a resolution of 30 s. With that,
values from 30 s to 7200 s are possible.
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Name Type Access
Measurement Period – Short-Term Data UnsignedInt8 read/write
Measurement Period – Long-Term Data UnsignedInt16 read/write
Operating Mode Enum8 read/write

Table 3.7: Attributes of the General Configuration – Traffic Data Acquisition cluster

3.3.1.1.2 Measurement Period – Long-Term Data attribute As for short-term traffic data,
the measurement period for long-term traffic data acquisition can be configured. Measurement
Period – Long-Term Data is of type Unsigned 16-bit Integer and states the measure-
ment period in hours. It has a resolution of 1 h, ranging from 2 h to 672 h.

3.3.1.1.3 Operating Mode attribute This attribute specifies the operating mode for sensors
acquiring traffic data. Table 3.8 depicts the possible operating modes. In Reporting mode,
measured values are reported to subscribed clients automatically at the end of each measurement
period. If Polling mode is chosen, clients have to request measured values by sending appropriate
commands.

Value Operating Mode
0 Reporting
1 Polling

Table 3.8: Values of the Operating Mode enumeration for sensors

3.3.2 Vehicle Measurement – Configuration cluster

The Vehicle Measurement – Configuration cluster defines parameters that are necessary to prop-
erly detect and classify vehicles.

3.3.2.1 Attributes

The attributes of the Vehicle Measurement – Configuration cluster are depicted in Table 3.9.

3.3.2.1.1 Maximum Axle Distance – Twin Axle attribute For the detection of twin axles, the
Maximum Axle Distance – Twin Axle attribute defines the maximum allowed distance between
the two axes of a twin axle in cm. If the maximum allowed distance between two subsequent
axles is exceeded, two single axles should be detected rather than a twin axle. The Maximum
Axle Distance – Twin Axle attribute is of type Unsigned 8-bit Integer and ranges from
20 cm to 200 cm.

3.3.2.1.2 Maximum Axle Distance – Triple Axle attribute Similar to the Maximum Axle
Distance – Twin Axle attribute, the Maximum Axle Distance – Triple Axle attribute specifies the
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Name Type Subtype Access
Maximum Axle Distance – Twin Axle UnsignedInt8 read/write
Maximum Axle Distance – Triple Axle UnsignedInt8 read/write
Maximum Loads – By Vehicle Class Array Struct read/write

Vehicle Class Code Enum8
Maximum Total Load UnsignedInt16
Maximum Axle Loads – By Axle Class Array Struct

Axle Class Code Enum8
Maximum Axle Load UnsignedInt16

Table 3.9: Attributes of the Vehicle Measurement – Configuration cluster

maximum allowed distance between each two subsequent axles of a triple axle in cm. It is of
type Unsigned 8-bit Integer and ranges from 20 cm to 150 cm.

3.3.2.1.3 Maximum Loads – By Vehicle Class attribute The Maximum Loads – By Vehicle
Class array stores the maximum total load as well as the maximum axle loads for each vehicle
class. Maximum Total Load is of type Unsigned 16-bit Integer and its unit is kg. The
Maximum Axle Loads – By Axle Class array defines the Maximum Axle Load for each type of
axle. Maximum axle loads are given in kg.

3.3.3 Vehicle Measurement cluster

The Vehicle Measurement cluster is mandatory for each device that collects traffic data. How-
ever, depending on the data to be gathered, not all attributes need to be present.

3.3.3.1 Attributes

Table 3.10 summarizes the attributes of the Vehicle Measurement cluster.

3.3.3.1.1 Vehicle Class Code attribute The 8-bit Enumeration typed Vehicle Class
Code attribute indicates the vehicle class of the detected vehicle. Its possible values are depicted
in Table 3.11. Vehicle class Other has to be applied for vehicles that could not be classified
uniquely.

3.3.3.1.2 Vehicle Length attribute The Vehicle Length attribute stores the length of the de-
tected vehicle in cm. It is of type Unsigned 16-bit Integer.

3.3.3.1.3 Vehicle Height attribute Vehicle Height is of type Unsigned 16-bit Int-
eger and records the vehicle’s height in cm.

3.3.3.1.4 Vehicle Width attribute The width of the vehicle is also measured in cm. It is
stored in the Vehicle Width attribute, which is of type Unsigned 16-bit Integer.
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Name Type Subtype Access
Vehicle Class Code Enum8 read
Vehicle Length UnsignedInt16 read
Vehicle Height UnsignedInt16 read
Vehicle Width UnsignedInt16 read
Vehicle Velocity UnsignedInt16 read
Vehicle Distance UnsignedInt16 read
Vehicle Total Load UnsignedInt16 read
Vehicle Excess Load Boolean read
Vehicle Axle Load Data Array Struct read

Axle Class Code Enum8
Axle Load UnsignedInt16
Excess Load Boolean
Axle Distance UnsignedInt16

Table 3.10: Attributes of the Vehicle Measurement cluster

Value Vehicle Class
0 Other
1 Motorcycle
2 Motor car
3 Van
4 Motor car with trailer
5 Truck
6 Truck with trailer
7 Articulated truck
8 Bus

Table 3.11: Values of the Vehicle Class enumeration according to [4]

3.3.3.1.5 Vehicle Velocity attribute Vehicle Velocity states the vehicle’s velocity. This at-
tribute is of type Unsigned 16-bit Integer and has a resolution of 0.01 km/h.

3.3.3.1.6 Vehicle Distance attribute The Vehicle Distance attribute states the distance of the
vehicle’s first detected axle to the last detected axle of the previous vehicle in dm. It is of type
Unsigned 16-bit Integer. A value of 0 indicates that either no preceding vehicle has
been detected or the distance to the previously detected vehicle exceeds the maximum value.

3.3.3.1.7 Vehicle Total Load attribute The Vehicle Total Load attribute stores the vehicle’s
total load in kg. It is of type Unsigned 16-bit Integer
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3.3.3.1.8 Vehicle Excess Load attribute The Boolean attribute Vehicle Excess Load indi-
cates whether or not the vehicle’s total load exceeds the maximum total load for the detected
vehicle class.

3.3.3.1.9 Vehicle Axle Load Data attribute The Vehicle Axle Load Data array contains one
record for each detected axle of the vehicle. Axle Class Code states the type of axle. Tabe 3.12
shows the different types of axles defined. While Axle Load stores the axle’s load in kg, Excess
Load indicates whether or not the axle’s load exceeds the maximum axle load for the given
type of axle and the detected vehicle class. Axle Distance states the distance to the previously
detected axle in cm. A value of 0 indicates that either no preceding axle has been detected or the
distance to the previously detected axle exceeds the maximum value.

Value Axle Class
0 Other
1 Single axle
2 Twin axle
3 Triple axle

Table 3.12: Values of the Axle Class enumeration according to [4]

3.3.3.2 Commands

The commands of the Vehicle Measurement cluster are shown in Table 3.13.

R/G Name Parameter Type Subtype
G ReportVehicle Data Array Struct

Attribute ID UnsignedInt16
Attribute Value OctetString

Table 3.13: Commands of the Vehicle Measurement cluster

3.3.3.2.1 ReportVehicle command The ReportVehicle command is used to notify subscribed
devices about a detected vehicle. Its only parameter is the Data array of type Struct. Each
record of the Data array is a pair of Attribute ID and Attribute Value. The format of the Attribute
Value element depends on the attribute and thus is determined by the Attribute ID.

3.3.4 Load Statistics – Configuration cluster

The Load Statistics – Configuration cluster comprises parameters that are necessary for the
collection of short- or long-term load statistics.

30



3.3.4.1 Attributes

The attributes of the Load Statistics – Configuration cluster are depicted in Table 3.14.

Name Type Subtype Access
Total Load Classes Array Struct read/write

Vehicle Class Code Enum8
Load Boundaries Array UnsignedInt16

Axle Load Classes Array Struct read/write
Axle Class Code Enum8
Load Boundaries Array UnsignedInt16

Table 3.14: Attributes of the Load Statistics – Configuration cluster

3.3.4.1.1 Total Load Classes attribute This attribute defines total load classes for each vehi-
cle class. Total load classes are left-open intervals specified by a list of boundaries, i.e. the Load
Boundaries array. Load boundaries are of type Unsigned 16-bit Integer and are given
in kg. To form proper load classes, the values of the Load Boundaries array must be strictly
increasing. Since the value of 0 is used as left bound of the first load class, the Load Boundaries
array must not contain the value 0. The last load class is built using ∞ as right bound. For
example: the Load Boundaries array [3500] leads to two total load classes, i.e. C1 = (0, 3500]
and C2 = (3500,∞].

3.3.4.1.2 Axle Load Classes attribute As for total load classes, the Axle Load Classes ar-
ray specifies axle load classes for each axle class. Axle load classes are formed by the Load
Boundaries array. Load boundaries are of type Unsigned 16-bit Integer and are stated
in kg.

3.3.5 Load Statistics – Short-Term Measurement cluster

The Load Statistics – Short-Term Measurement cluster provides short-term load statistics.

3.3.5.1 Attributes

Table 3.15 depicts the attributes of the Load Statistics – Short-Term Measurement cluster.

3.3.5.1.1 Total Load Count – By Vehicle Class attribute The Total Load Count – By Vehicle
Class array keeps an excess loads counter and counters for each total load class for every vehicle
class. Vehicle Class Excess Loads is of type Unsigned 8-bit Integer, counting the
number of excess loads belonging to the given vehicle class. The Total Load Class Count array
contains counters of type Unsigned 16-bit Integer for each total load class of the given
vehicle class. For the definition of total load classes refer to Section 3.3.4.1.1.
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Name Type Subtype Access
Total Load Count – By Vehicle Class Array Struct read

Vehicle Class Code Enum8
Vehicle Class Excess Loads UnsignedInt8
Total Load Class Count Array UnsignedInt16

Axle Load Count – By Axle Class Array Struct read
Axle Class Code Enum8
Axle Class Excess Loads UnsignedInt8
Axle Load Class Count Array UnsignedInt16

Table 3.15: Attributes of the Load Statistics – Short-Term Measurement cluster

3.3.5.1.2 Axle Load Count – By Axle Class attribute Similar to the Total Load Count – By
Vehicle Class array, the Axle Load Count – By Axle Class array keeps an excess loads counter
and counters for each axle load class for every type of axle. Axle Class Excess Loads is of type
Unsigned 8-bit Integer, counting the number of excess loads belonging to the given
axle class. The Axle Load Class Count array contains counters of type Unsigned 16-bit
Integer for each axle load class of the given axle class. For the definition of axle load classes
refer to Section 3.3.4.1.2.

3.3.5.2 Commands

The commands of the Load Statistics – Short-Term Measurement cluster are shown Table 3.16.

R/G Name Parameter Type Subtype
R GetLoadStatistics Attribute List Array UnsignedInt16
G ReportLoadStatistics Data Array Struct

Attribute ID UnsignedInt16
Attribute Value OctetString

Table 3.16: Commands of the Load Statistics – Short-Term Measurement cluster

3.3.5.2.1 GetLoadStatistics command The GetLoadStatistics command can be used to re-
trieve short-term load statistics. Parameter Attribute List allows a client to query attribute values
selectively. If a device receives a GetLoadStatistics command, it generates a ReportLoadStatis-
tics command including the attributes specified by the Attribute List parameter.

3.3.5.2.2 ReportLoadStatistics command Short-term load statistics are transferred using the
ReportLoadStatistics command. This command is generated either after receipt of a GetLoad-
Statistics command or in consequence of a expired measurement period. The format of the Data
parameter is the same as described in Section 3.3.3.2.1.
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3.3.6 Load Statistics – Long-Term Measurement cluster

The Load Statistics – Long-Term Measurement cluster provides long-term load statistics.

3.3.6.1 Attributes

Table 3.17 summarizes the attributes of the Load Statistics – Long-Term Measurement cluster.

Name Type Subtype Access
Total Load Count – By Vehicle Class Array Struct read

Vehicle Class Code Enum8
Vehicle Class Excess Loads UnsignedInt16
Total Load Class Count Array UnsignedInt32

Axle Load Count – By Axle Class Array Struct read
Axle Class Code Enum8
Axle Class Excess Loads UnsignedInt16
Axle Load Class Count Array UnsignedInt32

Table 3.17: Attributes of the Load Statistics – Long-Term Measurement cluster

3.3.6.1.1 Total Load Count – By Vehicle Class attribute The Total Load Count – By Vehicle
Class array keeps an excess loads counter and counters for each total load class for every vehicle
class. Vehicle Class Excess Loads is of type Unsigned 16-bit Integer, counting the
number of excess loads belonging to the given vehicle class. The Total Load Class Count array
contains counters of type Unsigned 32-bit Integer for each total load class of the given
vehicle class. For the definition of total load classes refer to Section 3.3.4.1.1.

3.3.6.1.2 Axle Load Count – By Axle Class attribute Similar to the Total Load Count – By
Vehicle Class array, the Axle Load Count – By Axle Class array keeps an excess loads counter
and counters for each axle load class for every type of axle. Axle Class Excess Loads is of type
Unsigned 16-bit Integer, counting the number of excess loads belonging to the given
axle class. The Axle Load Class Count array contains counters of type Unsigned 32-bit
Integer for each axle load class of the given axle class. For the definition of axle load classes
refer to Section 3.3.4.1.2.

3.3.6.2 Commands

The commands of the Load Statistics – Long-Term Measurement cluster are shown in Table
3.18.

3.3.6.2.1 GetLoadStatistics command Long-term load statistics can be queried using the
GetLoadStatistics command. The Attribute List parameter specifies which attribute values should
be retrieved.
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R/G Name Parameter Type Subtype
R GetLoadStatistics Attribute List Array UnsignedInt16
G ReportLoadStatistics Data Array Struct

Attribute ID UnsignedInt16
Attribute Value OctetString

Table 3.18: Commands of the Load Statistics – Long-Term Measurement cluster

3.3.6.2.2 ReportLoadStatistics command The ReportLoadStatistics command is used to re-
port long-term load statistics. It is generated either after receipt of a GetLoadStatistics command
or in consequence of a expired measurement period. The format of the Data parameter is the
same as described in Section 3.3.3.2.1.

3.3.7 Traffic Statistics – Configuration cluster

The Traffic Statistics – Configuration cluster defines parameters for gathering short- and long-
term traffic statistics.

3.3.7.1 Attributes

The attributes of the Traffic Statistics – Configuration cluster are summarized in Table 3.19.

Name Type Subtype Access
Averaging Mode Enum8 read/write
Speed Classes Array Struct read/write

Vehicle Class Code Enum8
Speed Boundaries Array UnsignedInt8

Table 3.19: Attributes of the Traffic Statistics – Configuration cluster

3.3.7.1.1 Averaging Mode attribute The Averaging Mode defines how the average velocity
is computed. Possible values are depicted in Table 3.20.

Value Averaging mode
0 Arithmetic mean
1 Median

Table 3.20: Values of the Averaging Mode enumeration

3.3.7.1.2 Speed Classes attribute The Speed Classes array defines speed classes used for
short- and long-term traffic data statistics. Speed classes are left-open intervals specified by a
list of boundaries, i.e. the Speed Boundaries array. Speed boundaries are of type Unsigned
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8-bit Integer and are given in km/h. To form proper speed classes, the values of the Speed
Boundaries array must be strictly increasing. Since the value of 0 is used as left bound of the
first speed class, the Speed Boundaries array must not contain the value 0. The last speed class is
built using∞ as right bound. For example: the Speed Boundaries array [50, 100] leads to three
speed classes, i.e. C1 = (0, 50], C2 = (50, 100], C3 = (100,∞].

3.3.8 Traffic Statistics – Short-Term Measurement cluster

The Traffic Statistics – Short-Term Measurement cluster provides attributes for short-term traffic
statistics.

3.3.8.1 Attributes

Table 3.21 shows the attributes of the Traffic Statistics – Short-Term Measurement cluster.

Name Type Subtype Access
Traffic Intensity – Overall UnsignedInt16 read
Traffic Intensity – By Vehicle Class Array Struct read

Vehicle Class Code Enum8
Vehicle Class Intensity UnsignedInt16
Speed Class Intensity Array UnsignedInt16

Average Velocity – Overall UnsignedInt16 read
Average Velocity – By Vehicle Class Array Struct read

Vehicle Class Code Enum8
Vehicle Class Average Velocity UnsignedInt16

Table 3.21: Attributes of the Traffic Statistics – Short-Term Measurement cluster

3.3.8.1.1 Traffic Intensity – Overall attribute The Traffic Intensity – Overall attribute is a
counter of type Unsigned 16-bit Integer. It stores the number of vehicles, passing the
controlled section, per time interval (see Section 3.3.1.1.1).

3.3.8.1.2 Traffic Intensity – By Vehicle Class attribute For more detailed statistics, the Traf-
fic Intensity – By Vehicle Class attribute keeps a counter for each vehicle class. The Vehicle Class
Intensity is of type Unsigned 16-bit Integer, counting the number of vehicles belong-
ing to a certain vehicle class, only. Furthermore, counters for each speed class of the given
vehicle class exist. For the definition of speed classes refer to Section 3.3.7.1.2.

3.3.8.1.3 Average Velocity – Overall attribute The Average Velocity – Overall attribute stores
the average velocity of all vehicles over the measurement period (see Section 3.3.1.1.1). It is of
type Unsigned 16-bit Integer and has a resolution of 0.01 km/h. Computation of the
average velocity depends on the value of the Averaging Mode attribute (see Section 3.3.7.1.1).
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3.3.8.1.4 Average Velocity – By Vehicle Class attribute As for traffic intensity counters, the
average velocity can also be retrieved for each vehicle class itself. The Vehicle Class Average Ve-
locity records the average velocity of the given vehicle class. It is of type Unsigned 16-bit
Integer and has a resolution of 0.01 km/h.

3.3.8.2 Commands

In Table 3.22, the commands of the Traffic Statistics – Short-Term Measurement cluster are
depicted.

R/G Name Parameter Type Subtype
R GetTrafficStatistics Attribute List Array UnsignedInt16
G ReportTrafficStatistics Data Array Struct

Attribute ID UnsignedInt16
Attribute Value OctetString

Table 3.22: Commands of the Traffic Statistics – Short-Term Measurement cluster

3.3.8.2.1 GetTrafficStatistics command The GetTrafficStatistics command can be used to
retrieve short-term traffic statistics. The parameter Attribute List allows a client to query attribute
values selectively.

3.3.8.2.2 ReportTrafficStatistics command Short-term traffic statistics are transferred using
the ReportTrafficStatistics command. This command is generated either after receipt of a Get-
TrafficStatistics command or in consequence of a expired measurement period. The format of
the Data parameter is the same as described in Section 3.3.3.2.1.

3.3.9 Traffic Statistics – Long-Term Measurement cluster

The Traffic Statistics – Long-Term Measurement cluster provides long-term traffic statistics.

3.3.9.1 Attributes

Table 3.23 summarizes the attributes of the Traffic Statistics – Long-Term Measurement cluster.

3.3.9.1.1 Traffic Intensity – Overall attribute In contrast to the Traffic Intensity – Overall
attribute for short-term traffic statistics (see Section 3.3.8.1.1, the Traffic Intensity – Overall
attribute for long-term traffic statistics is a counter of type Unsigned 32-bit Integer.
It stores the number of vehicles, passing the controlled section, per time interval (see Section
3.3.1.1.2).
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Name Type Subtype Access
Traffic Intensity – Overall UnsignedInt32 read
Traffic Intensity – By Vehicle Class Array Struct read

Vehicle Class Code Enum8
Vehicle Class Intensity UnsignedInt32
Speed Class Intensity Array UnsignedInt32

Average Velocity – Overall UnsignedInt16 read
Average Velocity – By Vehicle Class Array Struct read

Vehicle Class Code Enum8
Vehicle Class Average Velocity UnsignedInt16

Table 3.23: Attributes of the Traffic Statistics – Long-Term Measurement cluster

3.3.9.1.2 Traffic Intensity – By Vehicle Class attribute The Traffic Intensity – By Vehicle
Class attribute for long-term traffic statistics is similar to the one for short-term traffic statistics
(see Section 3.3.8.1.2). They only differentiate by their counter size. The long-term version uses
counters of type Unsigned 32-bit Integer for Vehicle Class Intensity and each single
speed class counter.

3.3.9.1.3 Average Velocity – Overall attribute The Average Velocity – Overall attribute stores
the average velocity of all vehicles over the measurement period (see Section 3.3.1.1.1). It is of
type Unsigned 16-bit Integer and has a resolution of 0.01 km/h. Computation of the
average velocity depends on the value of the Averaging Mode attribute (see Section 3.3.7.1.1).

3.3.9.1.4 Average Velocity – By Vehicle Class attribute As for traffic intensity counters, the
average velocity can also be retrieved for each vehicle class itself. The Vehicle Class Average Ve-
locity records the average velocity of the given vehicle class. It is of type Unsigned 16-bit
Integer and has a resolution of 0.01 km/h.

3.3.9.2 Commands

The commands of the Traffic Statistics – Long-Term Measurement cluster are shown in Table
3.24.

R/G Name Parameter Type Subtype
R GetTrafficStatistics Attribute List Array UnsignedInt16
G ReportTrafficStatistics Data Array Struct

Attribute ID UnsignedInt16
Attribute Value OctetString

Table 3.24: Commands of the Traffic Statistics – Long-Term Measurement cluster
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3.3.9.2.1 GetTrafficStatistics command Long-term load statistics can be queried using the
GetTrafficStatistics command. The Attribute List parameter specifies which attribute values
should be retrieved.

3.3.9.2.2 ReportTrafficStatistics command The ReportTrafficStatistics command is used to
transfer long-term traffic statistics. It is generated either after receipt of a GetTrafficStatistics
command or in consequence of a expired measurement period. The format of the Data parameter
is the same as described in Section 3.3.3.2.1.

3.3.10 Speeding Statistics – Configuration cluster

The Speeding Statistics – Configuration cluster specifies parameters for the collection of short-
and long-term speeding statistics.

3.3.10.1 Attributes

In Table 3.25, the attributes of the Speeding Statistics – Configuration cluster are summarized.

Name Type Subtype Access
Settings – Front Camera UnsignedInt8 read/write
Settings – Rear Camera UnsignedInt8 read/write
Observe Restriction On Passing For Trucks Boolean read/write
VMS Speed Limit Active Boolean read/write
VMS Speed Limit UnsignedInt8 read/write
Speed Limits – By Vehicle Class Array Struct read/write

Vehicle Class Code Enum8
Maximum Allowed Velocity UnsignedInt8
Triggering Velocity UnsignedInt8

Speed Limits – By Variable Message Sign Array Struct read/write
Maximum Allowed Velocity UnsignedInt8
Triggering Velocity UnsignedInt8

Table 3.25: Attributes of the Speeding Statistics – Configuration cluster

3.3.10.1.1 Settings – Front Camera attribute The Settings – Front Camera attribute is a bit
field of type Unsigned 8-bit Integer. It allows to specify the triggering of the front
camera, i.e., the camera which is directed against the driving direction. Table 3.26 lists the flags
that are available for configuration of the camera. If the Store pictures flag is set, pictures have
to be stored. Flags Main flash and Additional Flash can be used to activate the corresponding
flash. All other flags are reserved for future use and should be set to zero.

38



Bit Flag
0 Store pictures
1 Main flash
2 Additional flash

3 . . . 7 reserved

Table 3.26: Flags for the configuration of cameras according to [4]

3.3.10.1.2 Settings – Rear Camera attribute As for the front camera, the Settings – Rear
Camera attribute allows to specify the triggering of rear camera. The rear camera is mounted in
driving direction. For the functional description of this attribute refer to Section 3.3.10.1.1.

3.3.10.1.3 Observe Restrictions On Passing For Trucks attribute This attribute indicates
whether or not restrictions on passing for trucks should be observed. If this attribute is set to
true, the cameras have to be triggered according to their mode.

3.3.10.1.4 VMS Speed Limit Active attribute The VMS Speed Limit Active attribute indi-
cates whether or not a certain speed limit signaled by a VMS is active. If this attribute is set to
true, a general speed limit is specified by the VMS Speed Limit attribute. Otherwise, the vehicle
class specific speed limits as defined by the Speed Limits – By Vehicle Class attribute are valid.

3.3.10.1.5 VMS Speed Limit attribute The VMS Speed Limit attribute defines a general
speed limit signaled by a VMS. It is of type Unsigned 8-bit Integer and has a res-
olution of 1 km/h.

3.3.10.1.6 Speed Limits – By Vehicle Class attribute Vehicle class specific speed limits are
defined by the Speed Limits – By Vehicle Class array. Each record consists of the Vehicle Class
Code (see Table 3.11), the Maximum Allowed Velocity and the Triggering Velocity. The latter two
elements are of type Unsigned 8-bit Integer. They are given in km/h with a resolution
of 1 km/h. The triggering velocity defines the minimum velocity at which the cameras are
triggered.

3.3.10.1.7 Speed Limits – By VMS attribute If VMS Speed Limit Active is set to true, vehicle
class specific speed limits are overruled by a general speed limit as specified by the VMS Speed
Limit attribute. The Speed Limits – By VMS array stores possible speed limits and their triggering
velocities. Both, Maximum Allowed Velocity and Triggering Velocity are given in km/h with a
resolution of 1 km/h.

3.3.11 Speeding Statistics – Short-Term Measurement cluster

The Speeding Statistics – Short-Term Measurement cluster provides short-term speeding statis-
tics.
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3.3.11.1 Attributes

The attributes of the Speeding Statistics – Short-Term Measurement cluster are shown in Table
3.27.

Name Type Subtype Access
Trigger Count – Front Camera UnsignedInt16 read
Trigger Count – Rear Camera UnsignedInt16 read
Pictures – Front Camera Array OctetString read
Pictures – Rear Camera Array OctetString read

Table 3.27: Attributes of the Speeding Statistics – Short-Term Measurement cluster

3.3.11.1.1 Trigger Count – Front Camera attribute The Trigger Count – Front Camera
attribute is of type Unsigned 16-bit Integer. It is incremented every time the front
camera is triggered.

3.3.11.1.2 Trigger Count – Rear Camera attribute The Unsigned 16-bit Integer
typed Trigger Count – Rear Camera attribute counts how often the rear camera has been trig-
gered.

3.3.11.1.3 Pictures – Front Camera attribute The Pictures – Front Camera array stores all
pictures that have been made using the front camera. Its elements are of type Octet String.

3.3.11.1.4 Pictures – Rear Camera attribute Like the Pictures – Front Camera array, the
Pictures – Rear Camera array stores all pictures that have been made using the rear camera.

3.3.11.2 Commands

Table 3.28 depicts the commands of the Speeding Statistics – Short-Term Measurement cluster.

R/G Name Parameter Type Subtype
R GetSpeedingStatistics Attribute List Array UnsignedInt16
G ReportSpeedingStatistics Data Array Struct

Attribute ID UnsignedInt16
Attribute Value OctetString

Table 3.28: Commands of the Speeding Statistics – Short-Term Measurement cluster

3.3.11.2.1 GetSpeedingStatistics command The GetSpeedingStatistics command can be used
to retrieve short-term speeding statistics. Parameter Attribute List allows a client to query at-
tribute values selectively.
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3.3.11.2.2 ReportSpeedingStatistics command Short-term speeding statistics are transferred
using the ReportSpeedingStatistics command. This command is generated either after the receipt
of a GetSpeedingStatistics command or in consequence of a expired measurement period. The
format of the Data parameter is the same as described in Section 3.3.3.2.1.

3.3.12 Speeding Statistics – Long-Term Measurement cluster

The Speeding Statistics – Long-Term Measurement cluster provides long-term speeding statis-
tics.

3.3.12.1 Attributes

Table 3.29 lists the attributes of the Speeding Statistics – Long-Term Measurement cluster.

Name Type Subtype Access
Trigger Count – Front Camera UnsignedInt32 read
Trigger Count – Rear Camera UnsignedInt32 read
Pictures – Front Camera Array OctetString read
Pictures – Rear Camera Array OctetString read

Table 3.29: Attributes of the Speeding Statistics – Long-Term Measurement cluster

3.3.12.1.1 Trigger Count – Front Camera attribute In contrast to the short-term version of
this attribute, the Trigger Count – Front Camera attribute for long-term speeding statistics is of
type Unsigned 32-bit Integer.

3.3.12.1.2 Trigger Count – Rear Camera attribute In contrast to the short-term version of
this attribute, the Trigger Count – Rear Camera attribute for long-term speeding statistics is of
type Unsigned 32-bit Integer.

3.3.12.1.3 Pictures – Front Camera attribute The Pictures – Front Camera array stores all
pictures that have been made using the front camera. Its elements are of type Octet String.

3.3.12.1.4 Pictures – Rear Camera attribute As the Pictures – Front Camera array, the
Pictures – Rear Camera array stores all pictures that have been made using the rear camera.

3.3.12.2 Commands

The commands of the Speeding Statistics – Long-Term Measurement cluster are summarized in
Table 3.30.
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R/G Name Parameter Type Subtype
R GetSpeedingStatistics Attribute List Array UnsignedInt16
G ReportSpeedingStatistics Data Array Struct

Attribute ID UnsignedInt16
Attribute Value OctetString

Table 3.30: Commands of the Speeding Statistics – Long-Term Measurement cluster

3.3.12.2.1 GetSpeedingStatistics command Long-term speeding statistics can be queried
using the GetSpeedingStatistics command. The Attribute List parameter specifies which attribute
values should be retrieved.

3.3.12.2.2 ReportSpeedingStatistics command The ReportSpeedingStatistics command is
used to transfer long-term speeding statistics. It is generated either after receipt of a GetSpeed-
ingStatistics command or in consequence of a expired measurement period. The format of the
Data parameter is the same as described in Section 3.3.3.2.1.

3.4 FG2 – Environmental data acquisition

Apart from traffic data acquisition, acquisition of environmental data, e.g. air temperature, aver-
age wind velocity or precipitation intensity, is important, too. FG2 comprises all attributes and
commands that are necessary to gather environmental data of all kind. Table 3.31 lists the clus-
ters of FG2. The four measurement areas, i.e. temperature, wind, precipitation and visibility, are
described in the subsequent sections.

Cluster name
General Configuration – Environmental Data Acquisition

Temperature Measurement
Wind Measurement

Precipitation Measurement
Visibility Measurement

Table 3.31: Clusters of FG2

3.4.1 General Configuration – Environmental Data Acquisition cluster

The General Configuration – Environmental Data Acquisition cluster defines parameters for
devices collecting environmental data. This cluster is mandatory independent of the type of data
to be gathered.
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3.4.1.1 Attributes

The attributes of the General Configuration – Environmental Data Acquisition cluster are de-
picted in Table 3.32.

Name Type Access
Measurement Period UnsignedInt16 read/write
Operating Mode Enum8 read/write

Table 3.32: Attributes of the General Configuration – Environmental Data Acquisition cluster

3.4.1.1.1 Measurement Period attribute The Measurement Period gives the measurement
period for environmental data acquisition in seconds. It is of type Unsigned 16-bit Int-
eger and has a resolution of 1 s. Typical values range from 1 s to 600 s.

3.4.1.1.2 Operating Mode attribute The Operating Mode specifies the operating mode for
sensors acquiring environmental data. A detailed description of operating modes for sensors can
be found in Section 3.3.1.1.3.

3.4.2 Temperature Measurement cluster

The Temperature Measurement cluster comprises measurement values for temperature, humidity
and atmospheric pressure.

3.4.2.1 Attributes

Table 3.33 shows the attributes of the Temperature Measurement cluster.

Name Type Access
Air Temperature Int16 read
Lane Temperature Int16 read
Soil Temperature Int16 read
Freezing Temperature Int16 read
DewpoInt Temperature Int16 read
Relative Humidity UnsignedInt8 read
Atmospheric Pressure UnsignedInt16 read

Table 3.33: Attributes of the Temperature Measurement cluster

3.4.2.1.1 Air Temperature attribute The Air Temperature attribute is of type Signed 16-
bit Integer and stores the measured air temperature in degree Celsius ◦C. It has a resolution
of 0.1 ◦C and its values range from −50 ◦C to +60 ◦C.
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3.4.2.1.2 Lane Temperature attribute Lane Temperature is the temperature measured at the
lane’s surface. This attribute is of type Signed 16-bit Integer and has a resolution of
0.1 ◦C. Its values range from −50 ◦C to +80 ◦C.

3.4.2.1.3 Soil Temperature attribute The Soil Temperature is measured at some depth be-
low the lane’s surface. The sensor’s exact depth can be retained using the Sensor Height ele-
ment of the corresponding Sensors/Actuators record (see Section 3.2.1.1.7). This attribute is of
type Signed 16-bit Integer. It has a resolution of 0.1 ◦C and ranges from −50 ◦C to
+80 ◦C.

3.4.2.1.4 Freezing Temperature attribute The Freezing Temperature is the temperature at
which the watery solution at the sensor’s surface freezes. It is measured in ◦C and has a reso-
lution of 0.1 ◦C. The value of this Signed 16-bit Integer typed attribute ranges from
−30 ◦C to 0 ◦C.

3.4.2.1.5 Dewpoint Temperature attribute Dewpoint Temperature is defined as the tem-
perature at which the moistness located in the sensor’s ambient air condenses. This Signed
16-bit Integer typed attribute has a resolution of 0.1 ◦C and its values range from−30 ◦C
to +60 ◦C.

3.4.2.1.6 Relative Humidity attribute The Unsigned 8-bit Integer typed Relative
Humidity attribute states the relative humidity of the sensor’s ambient air in percent. It has a
resolution of 1% allowing values from 0% to 100%.

3.4.2.1.7 Atmospheric Pressure attribute Atmospheric Pressure is measured in hPa. This
Unsigned 16-bit Integer typed attribute has a resolution of 1 hPa. Its value ranges
from 300 hPa to 1200 hPa.

3.4.2.2 Commands

The commands of the Temperature Measurement cluster are shown in Table 3.34.

R/G Name Parameter Type Subtype
R GetTemperature Attribute List Array UnsignedInt16
G ReportTemperature Data Array Struct

Attribute ID UnsignedInt16
Attribute Value OctetString

Table 3.34: Commands of the Temperature Measurement cluster

3.4.2.2.1 GetTemperature command The GetTemperature command is used to retrieve tem-
perature measurement values. Parameter Attribute List allows a client to query measurement
values selectively.
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3.4.2.2.2 ReportTemperature command Temperature measurement values are transfered us-
ing the ReportTemperature command. This command is generated either after receipt of a Get-
Temperature command or in consequence of a expired measurement period. The format of the
Data parameter is the same as described in Section 3.3.3.2.1.

3.4.3 Wind Measurement cluster

The Wind Measurement cluster comprises measurement values for wind direction and wind ve-
locity.

3.4.3.1 Attributes

In Table 3.35 the attributes of the Wind Measurement cluster are summarized.

Name Type Access
Wind Direction UnsignedInt16 read
Average Wind Velocity UnsignedInt16 read
Peak Wind Velocity UnsignedInt16 read

Table 3.35: Attributes of the Wind Measurement cluster

3.4.3.1.1 Wind Direction attribute The wind direction is measured in degrees (◦). The
Unsigned 16-bit Integer typed Wind Direction attribute states the measured wind di-
rection with the resolution of 1 ◦. Its value ranges from 0 ◦ to 359 ◦, representing the four cardinal
directions north, east, south and west by the values 0 ◦, 90 ◦, 180 ◦ and 270 ◦.

3.4.3.1.2 Average Wind Velocity attribute The Average Wind Velocity attribute is of type
Unsigned 16-bit Integer. It stores the average wind velocity with a resolution of
0.1m/s and ranges from 0m/s up to 70m/s.

3.4.3.1.3 Peak Wind Velocity attribute This Unsigned 16-bit Integer typed attribute
stores the Peak Wind Velocity, i.e. the highest measured wind velocity, with a resolution of
0.1m/s. Possible values range from 0m/s up to 70m/s.

3.4.3.2 Commands

Table 3.36 lists the commands of the Wind Measurement cluster.

3.4.3.2.1 GetWind command The GetWind command is used to retrieve wind measurement
values. Parameter Attribute List allows a client to query measurement values selectively.
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R/G Name Parameter Type Subtype
R GetWind Attribute List Array UnsignedInt16
G ReportWind Data Array Struct

Attribute ID UnsignedInt16
Attribute Value OctetString

Table 3.36: Commands of the Wind Measurement cluster

3.4.3.2.2 ReportWind command Wind measurement values are transfered using the Re-
portWind command. This command is generated either after receipt of a GetWind command
or in consequence of a expired measurement period. The format of the Data parameter is the
same as described in Section 3.3.3.2.1.

3.4.4 Precipitation Measurement cluster

The Precipitation Measurement cluster comprises measurement values regarding precipitation.

3.4.4.1 Attributes

The attributes of the Precipitation Measurement cluster are shown in Table 3.37.

Name Type Access
Precipitation Indicator Boolean read
Precipitation Intensity UnsignedInt16 read
Precipitation Type Enum8 read
Water Film Thickness UnsignedInt16 read
Snow Height UnsignedInt8 read
Lane State Enum8 read
Salt Rate UnsignedInt8 read

Table 3.37: Attributes of the Precipitation Measurement cluster

3.4.4.1.1 Precipitation Indicator attribute The Boolean typed Precipitation Indicator at-
tribute indicates whether or not precipitation of any type is detected or not.

3.4.4.1.2 Precipitation Intensity attribute Precipitation intensity is defined as the amount
of precipitation during a certain period of time. The Precipitation Intensity attribute states the
amount of precipitation in mm/h water equivalent. It has a resolution of 0.1mm/h and its value
ranges from 0mm/h to 200mm/h.

3.4.4.1.3 Precipitation Type attribute The Precipitation Type indicates the type of precipi-
tation detected. Table 3.38 lists possible precipitation types.
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Value Precipitation type
0 Other
1 Drizzle
2 Rain
3 Snow
4 Soft Hail
5 Hail

Table 3.38: Values of the Precipitation Type enumeration according to [37]

3.4.4.1.4 Water Film Thickness attribute The Water Film Thickness attribute states the thick-
ness of the water film on top of the lane’s surface in mm. This attribute is of type Unsigned
16-bit Integer and has a resolution of 0.01mm. Its value ranges from 0mm to 20mm.

3.4.4.1.5 Snow Height attribute This attribute of type Unsigned 8-bit Integer in-
dicates the height of the snow pack at the measuring point in cm. It ranges from 0 cm to
val255cm with a resolution of 1 cm.

3.4.4.1.6 Lane State attribute The Lane State attribute indicates the state of the lane’s sur-
face. Possible lane states are shown in Table 3.39.

Value Lane state
0 Other
1 Dry
2 Wet
3 Snowy
4 Icy

Table 3.39: Values of the Lane State enumeration according to [37]

3.4.4.1.7 Salt Rate attribute The Salt Rate attribute indicates the saturation level of the wa-
tery solution on top of the lane. It is of type Unsigned 8-bit Integer and has a resolu-
tion of 1%. Its possible values range from 0% to 100%.

3.4.4.2 Commands

Table 3.40 depicts the commands of the Precipitation Measurement cluster.

3.4.4.2.1 GetTemperature command Precipitation measurement values can be retrieved us-
ing the GetPrecipitation command. The parameter Attribute List allows a client to query mea-
surement values selectively.
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R/G Name Parameter Type Subtype
R GetPrecipitation Attribute List Array UnsignedInt16
G ReportPrecipitation Data Array Struct

Attribute ID UnsignedInt16
Attribute Value OctetString

Table 3.40: Commands of the Precipitation Measurement cluster

3.4.4.2.2 ReportPrecipitation command The ReportPrecipitation command is used to trans-
fer precipitation measurement values. This command is generated either after receipt of a Get-
Precipitation command or in consequence of a expired measurement period. The format of the
Data parameter is the same as described in Section 3.3.3.2.1.

3.4.5 Visibility Measurement cluster

The Visibility Measurement cluster comprises measurement values for brightness and visibility.

3.4.5.1 Attributes

Table 3.41 lists the attributes of the Visibility Measurement cluster.

Name Type Access
Visual Range UnsignedInt16 read
Brightness UnsignedInt16 read
Visibility Conditions Enum8 read

Table 3.41: Attributes of the Visibility Measurement cluster

3.4.5.1.1 Visibility Range attribute The Visibility Range attribute stores the measured visi-
bility range in m. It is of type Unsigned 16-bit Integer and its possible values range
from 5m to 1000m.

3.4.5.1.2 Brightness attribute The Unsigned 16-bit Integer typed Brightness at-
tribute indicates the brightness in Lx. Possible values range from 0Lx to 60000Lx.

3.4.5.1.3 Visibility Conditions attribute This attribute states the visibility conditions pre-
vailing at the controlled section. Table 3.42 lists the possible values for this attribute.

3.4.5.2 Commands

In Table 3.43, the commands of the Visibility Measurement cluster are shown.
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Value Visibility conditions
0 Other
1 Clear
2 Fog patches
3 Heavy fog
4 Smoke
5 Blowing Snow
6 Blowing Dust
7 Sun glare

Table 3.42: Values of the Visibility Conditions enumeration according to [37]

R/G Name Parameter Type Subtype
R GetVisibility Attribute List Array UnsignedInt16
G ReportVisibility Data Array Struct

Attribute ID UnsignedInt16
Attribute Value OctetString

Table 3.43: Commands of the Visibility Measurement cluster

3.4.5.2.1 GetVisibility command The GetVisibility command is used to retrieve visibility
measurement values. Parameter Attribute List allows a client to query measurement values se-
lectively.

3.4.5.2.2 ReportVisibility command Visibility measurement values are transfered using the
ReportVisibility command. This command is generated either after receipt of a GetVisibility
command or in consequence of a expired measurement period. The format of the Data parameter
is the same as described in Section 3.3.3.2.1.

3.5 FG3 – Traffic control

Last but not least, FG3 provides the means for traffic control. Table 3.44 summarizes the clusters
of FG3. They are depicted in detail in the following sections.

Cluster name
General Configuration – Traffic Control
Variable Message Signs – Configuration

Variable Message Signs
Groups – Configuration

Groups

Table 3.44: Clusters of FG3
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3.5.1 General Configuration – Traffic Control cluster

The General Configuration – Traffic Control cluster is mandatory and specifies parameters for
devices used for traffic control.

3.5.1.1 Attributes

The attributes of the General Configuration – Traffic Control cluster are shown in Table 3.45.

Name Type Access
Operating Mode Enum8 read/write
Brightness Control Enum8 read/write

Table 3.45: Attributes of the General Configuration – Traffic Control cluster

3.5.1.1.1 Operating Mode attribute The Operating Mode attribute indicates the mode of the
sign. Its possible values are depicted in Table 3.46.

Value Operating mode
0 Normal operation
1 Manual operation

Table 3.46: Values of the Operating Mode enumeration for signs according to [4]

3.5.1.1.2 Brightness Control attribute This attribute specifies how the sign’s brightness is
controlled. Possible modes are depicted in Table 3.47. Automatic brightness control means that
the sign adjusts its brightness automatically. However, this mode may not be supported by all
signs. If the brightness is controlled remotely, the sign’s brightness is changed after the receipt
of the corresponding write command only.

Value Brightness control
0 Remotely controlled
1 Automatic

Table 3.47: Values of the Brightness Control enumeration according to [4]

3.5.2 Variable Message Signs – Configuration cluster

The Variable Message Signs – Configuration cluster defines parameters for VMSs.

3.5.2.1 Attributes

Table 3.48 summarizes the attributes of the Variable Message Signs – Configuration cluster.
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Name Type Subtype Access
Sign Type Enum8 read
Beacon Type Enum8 read
Sign Technology UnsignedInt8 read
Sign Height UnsignedInt16 read
Sign Width UnsignedInt16 read
Default Content Code UnsignedInt8 read/write
Default Display Mode Enum8 read/write
Default Beacon Mode Enum8 read/write
Default Flashing Time UnsignedInt8 read/write
Defined Contents Array Struct read/write

Content Code UnsignedInt8
Content Definition OctetString

Default Font UnsignedInt8 read/write
Default Foreground Color Enum8 read/write
Default Background Color Enum8 read/write
Default Horizontal Justification Enum8 read/write
Default Vertical Justification Enum8 read/write
Defined Fonts Array Struct read/write

Font ID UnsignedInt8
Character Spacing UnsignedInt8
Line Spacing UnsignedInt8
Font Definition OctetString

Table 3.48: Attributes of the Variable Message Signs – Configuration cluster

3.5.2.1.1 Sign Type attribute The Sign Type attribute indicates the type of sign. Table 3.49
lists the different sign types.

3.5.2.1.2 Beacon Type attribute This attribute specifies numbers and arrangement of bea-
cons on a sign. The beacon types are shown in Table 3.53.

3.5.2.1.3 Sign Technology attribute The Sign Technology attribute indicates all technolo-
gies utilized by the sign. It is a bit field of type Unsigned 8-bit Integer. Defined sign
technologies are shown in Table 3.51. Note that more than one flag may be set.

3.5.2.1.4 Sign Height attribute The Sign Height attribute states the height of the sign in
pixels. This Unsigned 16-bit Integer typed attribute is optional. Its presence depends
on the value of the Sign Type attribute (see Section 3.5.2.1.1).
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Value Sign type
0 Other
1 Blank-Out Sign (BOS)
2 Changeable Message Sign (CMS)
3 VMS with character matrix setup
4 VMS with line matrix setup
5 VMS with full matrix setup
6 Other portable
7 Portable BOS
8 Portable CMS
9 Portable VMS with character matrix setup
10 Portable VMS with line matrix setup
11 Portable VMS with full matrix setup

Table 3.49: Values of the Sign Type enumeration according to [1]

Value Beacon type
0 Other
1 None
2 One beacon, flashing
3 One beacon, strobe light
4 Two beacons, synchronized flashing
5 Two beacons, opposed flashing
6 Two beacons, strobe light
7 Four beacons, synchronized flashing
8 Four beacons, alternate row flashing
9 Four beacons, alternate column flashing
10 Four beacons, alternate diagonal flashing
11 Four beacons, strobe light

Table 3.50: Values of the Beacon Type enumeration accoding to [1]

3.5.2.1.5 Sign Width attribute The Unsigned 16-bit Integer typed Sign Width at-
tribute states the width of the sign in pixels. This attribute is optional. It has to be present
depending on the value of the Sign Type attribute (see Section 3.5.2.1.1).

3.5.2.1.6 Default Content Code attribute The Default Content Code attribute specifies the
content that has to be displayed by default or in case of any error. Its value is of type Unsigned
8-bit Integer and must refer to a valid record of the Defined Contents attribute (see Section
3.5.2.1.10).
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Bit Technology
0 Other
1 LED
2 Flip disk
3 Fiber optics
4 Shuttered
5 Lamp
6 Drum
7 reserved

Table 3.51: Flags for utilized sign technologies according to [1]

3.5.2.1.7 Default Display Mode attribute This attribute defines the default display mode of
the sign. Possible display modes are depicted in Table 3.52.

Value Display mode
0 Off
1 On
2 Flashing

Table 3.52: Values of the Display Mode enumeration according to [4]

3.5.2.1.8 Default Beacon Mode attribute The Default Beacon Mode attribute specifies the
default mode of beacons on the sign. Its values are shown in Table 3.53.

Value Beacon mode
0 Inactive
1 Active

Table 3.53: Values of the Beacon Mode enumeration

3.5.2.1.9 Default Flashing Time attribute The Default Flashing Time determines the de-
fault flashing time for display mode Flashing in ms. This attribute is of type Unsigned
8-bit Integer and has resolution is 50ms. Its typical values range from 100ms to 1000ms.

3.5.2.1.10 Defined Contents attribute The Defined Contents array stores a record for each
displayable content of the sign. Each record consists of the Unsigned 8-bit Integer
typed Content Code and a variable length Octet String, i.e. the Content Definition. Con-
tents are stored in ascending order of the Content Code.
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3.5.2.1.11 Default Font attribute The Default Font attribute specifies the font that has to be
used by default. Its value is of type Unsigned 8-bit Integer and must refer to a valid
record of the Defined Fonts attribute (see Section 3.5.2.1.16).

3.5.2.1.12 Default Foreground Color attribute This attribute determines the default fore-
ground color, i.e. the default color used for text messages. Possible colors are enumerated in
Table 3.54. However, not all of them have to be supported on the sign.

Value Color
0 black
1 white
2 red
3 green
4 blue
5 yellow
6 cyan
7 magenta
8 orange

Table 3.54: Values of the Color enumeration according to [1]

3.5.2.1.13 Default Background Color attribute The Default Background Color defines the
sign’s default background color. It has to be one of the colors defined in Table 3.54.

3.5.2.1.14 Default Horizontal Alignment attribute The Default Horizontal Alignment at-
tribute specifies the horizontal alignment for text messages used by default. Its possible values
are shown in Table 3.55.

Value Horizontal alignment
0 Left
1 Centered
2 Right

Table 3.55: Values of the Horizontal Alignment enumeration according to [1]

3.5.2.1.15 Default Vertical Alignment attribute This attribute defines the vertical alignment
for text messages used by default. The values are defined in Table 3.56.

3.5.2.1.16 Defined Fonts attribute The Defined Fonts array stores a record for each eligible
font for text messages. Each record consists of the Unsigned 8-bit Integer typed Font
ID, Character Spacing, Line Spacing and a variable length Octet String, i.e. the Font
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Value Vertical alignment
0 Top
1 Centered
2 Bottom

Table 3.56: Values of the Vertical Alignment enumeration according to [1]

Definition. Elements Character Spacing and Line Spacing are of type Unsigned 8-bit
Integer. Both are specified in pixels. Fonts are stored in ascending order of the Font ID.

3.5.2.2 Commands

The commands of the Variable Message Signs – Configuration cluster are shown in Table 3.57.

R/G Name Parameter Type
R SetContent Content Code UnsignedInt8

Content Definition OctetString
Overwrite Boolean

R GetContent Content Code UnsignedInt8
G GetContentResponse Content Definition OctetString
R DeleteContent Content Code UnsignedInt8
R SetFont Font ID UnsignedInt8

Character Spacing UnsignedInt8
Line Spacing UnsignedInt8
Font Definition OctetString
Overwrite Boolean

R GetFont Font ID UnsignedInt8
G GetFontResponse Character Spacing UnsignedInt8

Line Spacing UnsignedInt8
Font Definition OctetString

R DeleteFont Font ID UnsignedInt8

Table 3.57: Commands of the Variable Message Signs – Configuration cluster

3.5.2.2.1 SetContent command The SetContent command allows uploading of new con-
tents to the VMS. This command has three parameters, i.e. Content Code, Content Definition
and Overwrite. The Content Code is of type Unsigned 8-bit Integer. Parameter Over-
write states whether or not an already existing content definition should be overwritten with the
Octet String typed Content Definition.

3.5.2.2.2 GetContent command Existing contents can be downloaded from the sign’s mem-
ory using the GetContent command. Its only parameter is the Content Code parameter specify-
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ing the content to be downloaded. If a GetContent command is received, a GetContentResponse
is generated returning the content definition.

3.5.2.2.3 GetContentResponse command The GetContentResponse is generated after re-
ceipt of a GetContent command. It returns the Octet String typed Content Definition of
the requested content.

3.5.2.2.4 DeleteContent command Contents that are no longer used can be deleted using the
DeleteContent command. Parameter Content Code specifies the Unsigned 8-bit Integer
content code of the content that is to be deleted. The corresponding record of the Defined Con-
tents array has to be removed and allocated memory has to be freed.

3.5.2.2.5 SetFont command The SetFont command allows uploading of new fonts to the
VMS. This command has five parameters, i.e. Font ID, Character Spacing, Line Spacing, Font
Definition and Overwrite. Parameters Font ID, Character Spacing and Line Spacing are of type
Unsigned 8-bit Integer. The Overwrite parameter states whether or not an already
existing font should be overwritten.

3.5.2.2.6 GetFont command Existing fonts can be downloaded from the sign’s memory us-
ing the GetFont command. Its only parameter is the Font ID parameter specifying the font to be
downloaded. If a GetFont command is received, a GetFontResponse is generated returning the
font definition.

3.5.2.2.7 GetFontResponse command The GetFontResponse is generated after receipt of a
GetFont command. It returns the Unsigned 8-bit Integer typed Character Spacing and
Line Spacing as well as the Octet String typed Font Definition of the requested font.

3.5.2.2.8 DeleteFont command Fonts that are no longer used can be deleted using the Delete-
Font command. Parameter Font ID specifies the Unsigned 8-bit Integer font identifier
of the font that is to be deleted. The corresponding record of the Defined Fonts array has to be
removed and allocated memory has to be freed.

3.5.3 Variable Message Signs cluster

The Variable Message Signs cluster comprises status attributes and set values for VMSs.

3.5.3.1 Attributes

Table 3.58 depicts the attributes of the Variable Message Signs cluster.

3.5.3.1.1 Display Status attribute The Display Status indicates the sign’s status. Possible
values are shown in Table 3.4.
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Name Type Subtype Access
Display Status Enum8 read
Beacon Status Enum8 read
PoInt of Light Status Array UnsignedInt8 read
Faulty Content Codes Array UnsignedInt8 read
Faulty Text Positions Array Struct read

Row UnsignedInt8
Column UnsignedInt8

Brightness UnsignedInt8 read/write
Current Content Code UnsignedInt8 read/write
Current Display Mode Enum8 read/write
Current Beacon Mode Enum8 read/write
Current Flashing Time UnsignedInt8 read/write

Table 3.58: Attributes of the Variable Message Signs cluster

3.5.3.1.2 Beacon Status attribute The Beacon Status denotes the status of the beacons on
the sign. Table 3.4 depicts the possible values.

3.5.3.1.3 Point of Light Status attribute The Point of Light Status array of type Unsigned
8-bit Integer encodes the status for each single point of light, e.g. a single LED, placed
on the sign. Each point of light is represented by a single bit. 0 means operational whereas 1
stands for faulty.

3.5.3.1.4 Faulty Content Codes attribute Due to faulty points of light, some of the stored
contents may not be displayed properly anymore. The Faulty Content Codes array maintains
a list of all contents that can not be displayed properly. Its elements are of type Unsigned
8-bit Integer containing content codes of faulty contents.

3.5.3.1.5 Faulty Text Positions attribute The Faulty Text Positions array maintains a list of
faulty text positions specified by Row and Column number. Both, row and column numbers are
of type Unsigned 8-bit Integer.

3.5.3.1.6 Brightness attribute The Brightness of the sign is specified in percent. Its values
range from 0% to 100%. If the Brightness Control (see Section 3.5.1.1.2) is set to automatic,
this attribute is read-only and its value reflects the automatically determined brightness.

3.5.3.1.7 Current Content Code attribute The Unsigned 8-bit Integer typed Cur-
rent Content Code attribute states the currently set content of the sign. Its value must refer to a
valid record of the Defined Contents attribute (see Section 3.5.2.1.10).
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3.5.3.1.8 Current Display Mode attribute The sign’s display is controlled by the Current
Display Mode attribute. Its possible values are listed in Table 3.52.

3.5.3.1.9 Current Beacon Mode attribute Beacons connected to the sign are controlled by
the Current Beacon Mode attribute. Table 3.53 depicts the possible values for this attribute.

3.5.3.1.10 Current Flashing Time attribute The Current Flashing Time attribute determines
the flashing time for the currently displayed content in ms. This attribute is of type Unsigned
8-bit Integer and has a resolution of 50ms. Its typical values range from 100ms to
1000ms.

3.5.3.2 Commands

The commands of the Variable Message Signs cluster are summarized in Table 3.59.

R/G Name Parameter Type
R Show Content Code UnsignedInt8

Display Mode Enum8
Beacon Mode Enum8
Flashing Time UnsignedInt8

Table 3.59: Commands of the Variable Message Signs cluster

3.5.3.2.1 Show command The Show command is used to activate certain contents and dis-
play modes. It sets the Current Content Code, Current Display Mode, and Current Beacon Mode
attributes according to the parameters Content Code, Display Mode, and Beacon Mode. If Dis-
play Mode is set to Flashing, the Current Flashing Time is set to Flashing Time. Otherwise it
remains unchanged.

3.5.4 Groups – Configuration cluster

The Groups – Configuration cluster specifies parameters for groups of VMSs.

3.5.4.1 Attributes

The attributes of the Groups – Configuration cluster are summarized in Table 3.60.

3.5.4.1.1 Default Group Code attribute The Default Group Code attribute specifies the
group configuration that has to be displayed by default or in case of any error. Its value is
of type Unsigned 8-bit Integer and must refer to a valid record of the Defined Groups
attribute (see Section 3.5.4.1.2).
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Name Type Subtype Access
Default Group Code UnsignedInt8 read/write
Defined Group Configurations Array Struct read/write

Group Code UnsignedInt8
Components Array Struct

Content Code UnsignedInt8
Display Mode Enum8
Beacon Mode Enum8
Flashing Time UnsignedInt8

Table 3.60: Attributes of the Groups – Configuration cluster

3.5.4.1.2 Defined Group Configurations attribute Group configurations are necessary to
control a group of signs at a time. The Defined Group Configurations array stores a record for
each group configuration. Each group record consists of the Group Code of type Unsigned
8-bit Integer and the Components array. The Components array contains a component
record for each sign of the group. Components are defined by the Content Code, Display Mode,
Beacon Mode and Flashing Mode. A functional description of these elements can be found in
Sections 3.5.2.1.6 to 3.5.2.1.9.

3.5.4.2 Commands

Table 3.61 lists the commands of the Groups – Configuration cluster.

R/G Name Parameter Type Subtype
R SetGroupConfiguration Group Code UnsignedInt8

Components Array Struct
Content Code UnsignedInt8
Display Mode Enum8
Beacon Mode Enum8
Flashing Time UnsignedInt8

Overwrite Boolean
R GetGroupConfiguration Group Code UnsignedInt8
G GetGroupResponse Components Array Struct

Content Code UnsignedInt8
Display Mode Enum8
Beacon Mode Enum8
Flashing Time UnsignedInt8

R DeleteGroupConfiguration Group Code UnsignedInt8

Table 3.61: Commands of the Groups – Configuration cluster
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3.5.4.2.1 SetGroupConfiguration command The SetGroupConfiguration command allows
the upload of new group configurations. This command has three parameters, i.e. Group Code,
Components and Overwrite. The Group Code is of type Unsigned 8-bit Integer. Pa-
rameter Overwrite states whether or not an already existing group configuration should be over-
written with the Components array. The format of the Components array is described in Section
3.5.4.1.2.

3.5.4.2.2 GetGroupConfiguration command Existing group configurations can be down-
loaded from the device’s memory using the GetGroupConfiguration command. Its only param-
eter is the Group Code parameter specifying the group configuration to be downloaded. If a
GetGroupConfiguration command is received, a GetGroupConfigurationResponse is generated
returning the group configuration.

3.5.4.2.3 GetGroupConfigurationResponse command A GetConfigurationResponse is gen-
erated after receipt of a GetGroupConfiguration command. It returns the Components array of
the requested group configuration. The format of the Components array is described in Section
3.5.4.1.2.

3.5.4.2.4 DeleteGroupConfiguration command No longer used group configurations can
be deleted using the DeleteGroupConfiguration command. Parameter Group Code specifies the
Unsigned 8-bit Integer group code of the group configuration that is to be deleted.
The corresponding record of the Defined Groups array has to be removed and allocated memory
has to be freed.

3.5.5 Groups cluster

The Groups cluster comprises set values and status attributes for VMS groups.

3.5.5.1 Attributes

The attributes of the Groups cluster are shown in Table 3.62.

Name Type Access
Display Status UnsignedInt8 read
Brightness UnsignedInt8 read/write
Current Group Code UnsignedInt8 read/write

Table 3.62: Attributes of the Groups cluster

3.5.5.1.1 Display Status attribute The Display Status indicates the group’s display status.
Each bit indicates the status of a single VMS within the group. A value of 1 means that the
VMS is erroneous.
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3.5.5.1.2 Brightness attribute The Brightness for the group is specified in percent. Its values
range from 0% to 100%. If the Brightness Control (see Section 3.5.1.1.2) is set to automatic,
this attribute is read-only and its value reflects the automatically determined brightness for the
group.

3.5.5.1.3 Current Group Code attribute The Unsigned 8-bit Integer typed Cur-
rent Group Code attribute specifies the currently set group configuration. Its value must refer to
a valid record of the Defined Group Configurations attribute (see Section 3.5.4.1.2).

3.5.5.2 Commands

Table 3.63 depicts the commands of the Groups cluster.

R/G Name Parameter Type
R Show Group Code UnsignedInt8

Table 3.63: Commands of the Groups cluster

3.5.5.2.1 Show command The Show command is used to activate a certain group configura-
tion. Its only parameter is the Unsigned 8-bit Integer typed Group Code. After receipt
of this command, the Current Group Code is set to Group Code.
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CHAPTER 4
Prototype implementation

4.1 Overview

As proof-of-concept of the information model proposed in Chapter 3, a traffic jam warning
system has been implemented. The next section gives a concise use case description of traffic
jam warning systems and shows the implementation details. Finally, other possible use cases are
depicted briefly.

4.2 Traffic jam warning system

4.2.1 Use case description

Due to road works, traffic jams can occur especially at rush hours. A mobile traffic jam warning
system can notify the driver early enough such that alternative routes may be chosen. Such a
system consists of at least one Variable Message Sign (VMS), indicating a traffic jam, and a
device collecting short-term traffic data, i.e. average velocity and traffic intensity (see Figure
4.1).

Figure 4.1: Traffic jam warning system

The device collecting short-term traffic data must support the clusters depicted in Table 4.1.
A detailed description of clusters can be found in the particular sections of Chapter 3. Since the
device definition shown in Table 4.1 includes the server sides of clusters Vehicle Measurement
– Configuration and Vehicle Measurement, all necessary sensors are directly connected to the
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device. However, it might also be possible that the device simply collects data from independent
sensors. In the latter case, the device definition would contain the client side of the Vehicle
Measurement cluster.

Server Side Client Side
General Device Information General Device Information
General Configuration – Traffic Data Acquisition
Vehicle Measurement – Configuration
Vehicle Measurement
Traffic Statistics – Configuration
Traffic Statistics – Short-Term Measurement

Table 4.1: Clusters supported by the traffic data collecting device

Table 4.2 shows the supported clusters of the VMS. The client side of the Traffic Statistics
– Short-Term Measurement cluster is necessary to form a cluster binding between the VMS and
the traffic data collecting device.

Server Side Client Side
General Device Information General Device Information
General Configuration – Traffic Control Traffic Statistics – Short-Term Measurement
Variable Message Signs – Configuration
Variable Message Signs

Table 4.2: Clusters supported by VMS

It remains to show how the individual parts can be put together. Figure 4.2 depicts the
setup of the traffic jam warning system. For this application, it is sufficient to set the attributes
Measurement Period – Short-Term Data, Operating Mode and Averaging Mode of the traffic data
collecting device. To allow autonomous control of the VMS, the traffic data collecting device
must be in Reporting mode. Furthermore, the VMS has to subscribe for reporting of attributes
Average Velocity - Total and Traffic Intensity - Total. With that, the traffic data collecting device
reports the values of attributes Average Velocity - Total and Traffic Intensity - Total periodically,
i.e. at the end of each measurement period. The VMS then decides whether or not a warning
needs to be displayed to notify road users about an upcoming traffic jam.

4.2.2 Implementation details

As described in Section 2.2.2, ZigBee is a low-cost, low-power, wireless communication stan-
dard [40]. It specifies security methods for Network Layer (NWK) and Application Layer (APL)
layers as well as a framework for distributed applications. The application framework contains
simple mechanisms for data modeling amongst others. However, these data modeling mecha-
nisms are sufficient to map the information model proposed in Chapter 3. Due to the built-in
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Figure 4.2: Setup of the traffic jam warning system

security and data modeling scheme, ZigBee seems to be well suited not only for prototype im-
plementations.

After the wireless communication standard has been determined, a suitable hardware plat-
form had to be picked. Without specific reasons, the CC2520 Development Kit1 from Texas
Instruments has been chosen. It contains the CC2520, a ZigBee/IEEE 802.15.4 RF transceiver,
and all the necessary hardware for prototyping of ZigBee applications.

Last but not least a traffic data collecting device as well as a VMS have been needed. How-
ever, for lack of the required hardware, both devices have been simulated by applications run-
ning on a PC. Figure 4.3 depicts the hardware setup used for the prototype implementation. The
CC2520 evaluation boards have been connected to the serial port of the respective PC. They
implement the information model and act as gateway to the Wireless Sensor and Actuator Net-
work (WSAN).

The traffic data collecting device has been simulated by the TDAsim application. Figure
4.4(a) shows the start screen of TDAsim. After choosing the serial port settings and pressing the
Connect button, the application connects with the evaluation board (see Figure 4.4(b)). Using
the + and - buttons, the values for traffic intensity and average velocity can be set. By pressing
the Report button, the values for traffic intensity and average velocity are sent to the gateway
and in turn reported to the VMS using the ReportTrafficStatistics command.

Application VMSsim has been used to simulate the VMS. Figure 4.6(a) shows the start
screen of VMSsim. Again, the serial port settings have to be chosen before connecting to the

1http://www.ti.com/tool/cc2520dk
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Figure 4.3: Hardware setup of the traffic jam warning system

(a) (b)

Figure 4.4: Starting the TDAsim application

evaluation board (see Figure 4.6(b)). Whenever the gateway receives a ReportTrafficStatistics
command, it decides whether or not the jam warning needs to be displayed. If traffic intensity is
low and average velocity is high (see Figure 4.5(a)), no warning needs to be displayed. However,
if traffic intensity is high and average velocity is low (see Figure 4.5(b)), road users have to be
notified about the upcoming traffic jam. After the decision has been taken, the gateway sends
the new values for content code and display mode to the VMSsim application (see Figure 4.7).

4.3 Other use cases

4.3.1 Excess load warning system

There are some parts of the road infrastructure that are passable for vehicles with restricted total
load only. A common example is a bridge. Vehicles exceeding the maximum total load of a
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(a) (b)

Figure 4.5: Using the TDAsim application to simulate traffic

(a) (b)

Figure 4.6: Starting the VMSsim application

bridge can cause severe damage. To avoid this, an excess load warning system can warn the
driver in case of an excess load so that the bridge can be bypassed. This system consists of a
device collecting detailed vehicle information, including total load and axle loads, and a VMS
indicating the excess load (see Figure 4.8).

4.3.2 Fog warning system

For the last use case, regions are considered that are prone to limited visibility due to fog. Fog
warning systems can notify road users early enough, such that accidents can be prevented. Such
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Figure 4.7: Using the VMSsim application to simulate a VMS

Figure 4.8: Excess load warning system

systems consist of a variety of visibility measuring devices and at least one VMS (see Figure
4.9).

Figure 4.9: Fog warning system
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Part III

Security concept for distributed traffic
management applications
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CHAPTER 5
Security concept specification

5.1 Overview

Security plays an important role in nearly every field of application. However, its requirements
may vary from application to application. As mentioned in Section 2.4, security decisions have
to be taken with care, especially if a broadcast medium is used for communication. The term
security is a hypernym encompassing the five areas

• confidentiality,

• integrity,

• availability,

• authentication, and

• freshness.

Confidentiality means that some data or message can only be read by a person or network node
the data or message is destined for. To ensure confidentiality, data needs to be encrypted and
decrypted, respectively. This can be done either using a pair of keys (public-key cryptography) or
a single key (symmetric-key cryptography). Details for public- and symmetric-key cryptography
are explained in Sections 2.4.3 and 2.4.2.

Integrity denotes the correctness of a message, i.e., that it has neither been corrupted during
transmission nor altered by a malicious third. The Message Integrity Code (MIC) is a common
principle to ensure message integrity. A MIC can be computed using a cryptographic hash
function or block cipher (see Sections 2.4.1.3 and 2.4.2, respectively). The computed MIC is
sent along with the message and compared with the recomputed value by the receiver in order
to verify message integrity.

In the context of this work, availability on the one hand means that a network node can
not be brought to halt through a variety of bogus messages. Availability also means, that the
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communication medium can not be affected in a way that communication fails. The latter can
be addressed using spread spectrum techniques (e.g., frequency hopping) mitigating the effects
of jamming and noise.

Authentication terms the act of confirming the truth of a message’s origin. The recipient
of a message has to verify whether or not the message has actually been sent by the pretended
originator. This allows to reject bogus messages sent by malicious thirds. More details can be
found in Section 5.2.

Data freshness denotes the novelty of some data. Checking data freshness of a message helps
to recognize and prevent replay attacks. Freshness can be ensured by adding a counter to the
message.

The next section introduces a novel broadcast authentication scheme, solely based on sym-
metric cryptographic primitives. Sections 5.3 to 5.5 specify a security concept for distributed
traffic management applications.

5.2 Broadcast authentication

As mentioned above, authentication denotes the act of confirming the truth of a message’s origin.
There exist different approaches to verify the originator of a message. Public-key cryptography
is basically well-suited for authentication. Prior to transmission, the message’s hash value is
computed and encrypted using the originator’s private key. The signature is transmitted along
with the message and after receipt, it is decrypted using the originator’s public key. If the result-
ing hash value matches the message’s actual hash value, the message’s originator corresponds
to the generator of the key pair. Latter implication is valid since a private key is only known
to the generator of the key pair. However, procedures based on public-key cryptography are
computationally expensive and seem to be inappropriate for sensors with low processing power.
A more detailed description of public-key cryptography can be found in Section 2.4.3.

In the last years, a variety of broadcast authentication schemes based on symmetric-key cryp-
tography primitives have been proposed. Plenty of them are based on the Time Efficient Stream
Loss-tolerant Authentication (TESLA) protocol presented by Perrig, et al [27]. TESLA uses a
one-way key chain with delayed disclosure of keys and time synchronization to achieve asym-
metry which is crucial for broadcast authentication. However, the delayed disclosure of keys
leads to an authentication delay which in turn makes it necessary to buffer received messages.
Due to this characteristic, TESLA is prone to denial-of-service attacks.

However, there also exist approaches that allow instantaneous message authentication. One
of them is Bins and Balls (BiBa) proposed by Perrig [26]. The principle of BiBa is simple and
can be illustrated as follows: n balls are thrown intom bins randomly. The goal is to have at least
one bin containing more than one ball. In more detail, the n balls are in turn n different values si
that are mapped intom bins by hash functionGH(msg||cnt). GH(msg||cnt) is an instance in a hash
function family G selected by the hash value H(msg||cnt) computed over the concatenation
of message msg and a counter cnt. Any k-way collision (k ≥ 2) of values si1 to sik together
with counter cnt form a signature for message msg. If there are no collisions after the mapping
of values si, the counter gets incremented and the values si are mapped into the bins again.
This step has to be repeated until at least one k-way collision occurs. The main disadvantage of
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BiBa is the high signing costs of at least n+ 1 hash function computations. Furthermore, BiBa
requires time synchronization.

Another scheme that does not require time synchronization is Hash to Obtain Random Subset
(HORS) introduced by Reyzin and Reyzin [28]. It is based on the r-subset-resilience property
of hash functions. The n values si form the private key while the public key is calculated as
vi = f(si), 0 ≤ i ≤ n − 1 using one-way function f . To sign message msg, the computed
hash value of msg is divided into k parts of length log2 n. Each part represents the index of one
of the private key values si, i.e., a subset of at most k values si is chosen. This subset forms
the message’s signature. Since the private key is disclosed more and more by signing messages,
the r-subset-resilience property of the hash function is crucial. It states that the probability that
the signature of the (r + 1)th message msgr+1 is a subset of the set of all disclosed private key
values si through signing messages msg1 to msgr is sufficiently low. The advantages of HORS
are the fast signing and verifying of messages. Only 1 and 1+ k hash function computations are
necessary for signing and verifying messages. Main disadvantage of HORS is the large size of
private and public keys.

5.2.1 Scheme specification

The proposed broadcast authentication scheme is based on one-way chains as described in Sec-
tion 2.4.1.2. There are five parameters allowing to adjust the scheme according to the applica-
tion’s requirements with regard to the security level, communication overhead, computational
effort and storage (see Table 5.1). Parameter σnbr specifies the number of one-way chain pools
from which the signature has to be chosen. Each pool contains cnbr distinct one-way chains of
length clen. The size of each one-way chain element is specified by flen. Parameter smax de-
fines the maximum number of elements a single one-way chain can be moved during signature
generation. The movement along a single one-way chain is subsequently called a shift.

Parameter Description
σnbr the number of pools, i.e., the signature size
cnbr the number of one-way chains per pool
clen the length of the one-way chains
flen the size of the one-way function’s input/output in bits
smax the maximum shift

Table 5.1: Parameters of the broadcast authentication scheme

Figure 5.1 shows the basic principle of the proposed scheme. To sign a message m, the
message’s hash value h(m) is used to choose σnbr one-way chains, one from each pool. If
smax > 1, the shift for each chosen one-way chain needs to be determined, too. The signature
σ = {v0, ..., vσnbr−1} of message m is the set of the σnbr chosen one-way chains shifted by
Si, 0 ≤ i ≤ σnbr. To verify a message, the receiver has to compute the hash value h(m)
to identify the one-way chains Ci and their respective shift Si. Verification succeeds only if
Ci = fSi(vi) holds for each i, 0 ≤ i ≤ σnbr. The simplest way to choose the σnbr one-way
chains and their shift is to truncate the hash value after the first σnbr · (log2(cnbr) + log2(smax))
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bits. However, once the one-way chain elements are disclosed, messages may be forged if the
first σnbr · (log2(cnbr) + log2(smax)) bits of their hash value are equal to the corresponding
bits of the original hash value. Clearly, the less bits of the hash value are used, the higher the
probability of finding such a message.

Figure 5.1: Principle of the broadcast authentication scheme

To increase the number of used bits, one can increase parameters σnbr, cnbr and/or smax.
However, the gain of security follows at the expense of communication overhead, computational
effort and/or storage requirements. Furthermore, increasing smax does not raise the security
level necessarily. The disclosure of one-way chain elements allows to forge messages if ∀i, 0 ≤
i ≤ σnbr : S′i ≤ Si. In the worst case, all shifts Si are maximal allowing all bits of the hash
value used to determine the shift to be different. Thus, the security gain in the worst case is 0
bits. If all shifts are minimal, i.e., in the best case, the security gain is given by σnbr · log2(smax)
bits and is maximal. The real security gain through shifting is covered in Section 6.2.1.

In the following, an approach to increase the security level without affecting communication
overhead and storage requirements is described. The basic idea is to use m ·n,m > 1 bits of the
hash value h to generate a bit string d of length n = σnbr · log2(cnbr) which in turn determines
the signature. Since bit strings of length m · n can not be mapped to bit strings of length n
without collisions, messages can be forged with less than m ·n bits of the hash value h′ equal to
the hash value h of the original message. However, through proper construction of the mapping,
the probability that d remains unchanged if k ≥ k0 arbitrary bits of h are changed is sufficiently
small. It can also be shown that at least n bits of h and h′ must correspond. While this approach
ensures a security level of at least n bits, the security level can be raised to m · n − k0 with a
high degree of probability.
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Algorithm 5.1 shows the construction of a mapping for m = 2. It divides the hash code h
into n parts of length 2. Each part pi, 0 ≤ i < n decides to bit di of decision bit string1 d. If
pi = 112, di is set to 1 whereas pi = 002 yields di = 02. The remaining two cases for pi decide
to di+1 and ¬di+1, respectively. An important property of this mapping is that p′i = ¬pi yields
the decided value d′i = ¬di. This property is subsequently referred to as negation resilience.
Refer to Section 6.2.1 for the importance of negation resilience. Algorithm 5.2 depicts the
construction of a negation-resilient mapping for m = 4. It can be used to further increase the
security level. A detailed analysis of both mappings can be found in Section 6.2.1.

Input: hash code h, output length n
Output: bit string d of length n

1 dn ← 0
2 i← n− 1
3 for (i ≥ 0) do
4 pi ← (h2i+1h2i)
5 switch (pi) do
6 case ’11’: di ← 1
7 case ’10’: di ← di+1

8 case ’01’: di ← ¬di+1

9 case ’00’: di ← 0

10 endsw
11 i← i− 1

12 end
13 return (dn−1 · · · d0)

Algorithm 5.1: Negation-resilient mapping decide2

In the following sections initialization, signature generation and signature verification are
described in detail.

5.2.1.1 Initialization

Algorithm 30 illustrates the initialization tasks of source A that wants to broadcast messages.
The main task is the generation of the σnbr · cnbr one-way chains of length clen. One-way chains
are initialized using a random seed retrieved by random number generator RAND(). All initial
seeds of the one-way chains need to be unique. After having found a unique initial seed, the
one-way chain is computed using one-way function f(x). Note that the begin of the one-way
chain, i.e., the initial seed, is indexed with clen while the end is indexed with 0 (in reverse to
the definition of one-way chains in Section 2.4.1.2). The current index currentp,i of each chain
Cp,i, is set to 0. It points to the previously disclosed one-way chain element. This means that
all one-way chain elements Cp,i,j , j ≤ currentp,i are disclosed. After the one-way chains have
been generated, their ends, i.e., Cp,i,0, are sent to all possible sinks via unicast. This requires the
existence of a link key KAB

link between source A and sink B.
1Bit strings are sequences of zeroes and ones representing arbitrary data, e.g., numbers.
2112 and 002 denote bit strings. Their decimal values are 3 and 0, respectively.
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Input: hash code h, output length n
Output: bit string d of length n

1 dn+2 ← 0
2 dn+1 ← 1
3 dn ← 0
4 i← n− 1
5 for (i ≥ 0) do
6 pi ← (h2i+3h2i+2h2i+1h2i)
7 switch (pi) do
8 case ’1111’: di ← 1
9 case ’1110’: di ← 1

10 case ’1101’: di ← 1
11 case ’1100’: di ← di+1

12 case ’1011’: di ← 1
13 case ’1010’: di ← di+2

14 case ’1001’: di ← di+3

15 case ’1000’: di ← 0
16 case ’0111’: di ← 1
17 case ’0110’: di ← ¬di+3

18 case ’0101’: di ← ¬di+2

19 case ’0100’: di ← 0
20 case ’0011’: di ← ¬di+1

21 case ’0010’: di ← 0
22 case ’0001’: di ← 0
23 case ’0000’: di ← 0

24 endsw
25 i← i− 1

26 end
27 return (dn−1 · · · d0)

Algorithm 5.2: Negation-resilient mapping decide4

Initialization at sink B simply requires the receipt of the one-way chain elements Cp,i,0.
They are stored as authenticated values authp,i to verify future broadcast messages. The initial-
ization tasks of sink B are depicted in Algorithm 5.4.

5.2.1.2 Signing broadcast messages

The procedure illustrated in Algorithm 5.5 is used to generate the signature which needs to be
sent along with message m. Signature generation is based on the hash value h(m) of message
m. The choice of the hash function h severely affects the security level of the proposed scheme.
For details about hash functions refer to Section 2.4.1.3. At this point, Hash-based Message
Authentication Code (HMAC)-Secure Hash Algorithm Version 1 (SHA-1) is chosen for h. It
requires two computations of SHA-1 and generates a hash code of length 160bits. Besides the
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Output: one-way chains Cp,i,, disclosed elements currentp,i of one-way chain Cp,i,
1 p← 0
2 for (p < σnbr) do /* initialize one-way chains */
3 i← 0
4 for (i < cnbr) do
5 Cp,i,clen ← RAND()
6 unique← True
7 k ← 0
8 for ((k ≤ p) ∧ unique) do /* check if one-way chain Cp,i, is unique */
9 if (k < p) then lim← cnbr

10 else lim← i
11 j ← 0
12 for ((j < lim) ∧ unique) do
13 if (Ck,j,clen−1 = Cp,i,clen) then unique← False
14 j ← j + 1

15 end
16 k ← k + 1

17 end
18 if (unique) then
19 j ← clen
20 for (j > 0) do /* compute one-way chain Cp,i, */
21 Cp,i,j−1 = f(Cp,i,j)
22 j ← j − 1

23 end
24 currentp,i ← 0
25 i← i+ 1

26 end
27 end
28 p← p+ 1

29 end
30 send Cp,i,0, 0 ≤ p < σnbr, 0 ≤ i < cnbr via unicast to all possible sinks

/* Note: Unicasts are authenticated and secured using the link key

KAB
link.

*/

Algorithm 5.3: Initialization at source A
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Output: authenticated values authp,i of one-way chains Cp,i,
1 receive Cp,i,0, 0 ≤ p < σnbr, 0 ≤ i < cnbr via unicast from source A
2 p← 0
3 for (p < σnbr) do /* initialize authenticated values */
4 i← 0
5 for (i < cnbr) do
6 authp,i ← Cp,i,0
7 i← i+ 1

8 end
9 p← p+ 1

10 end
Algorithm 5.4: Initialization at sink B

message itself, HMAC-SHA-1 requires an additional input, i.e., a key. The generated hash code
depends on both inputs. After computing the hash code using the network keyKnetwork, decide2
produces the bit string necessary for generating the signature. The signature σ is the ordered set
of Cp,i, shifted by Sp, i.e., Cp,i,currentp,i+Sp , for 0 ≤ p < σnbr. Current indexes currentp,i of
the chosen chains are incremented by Sp. If a one-way chain nears its beginning, i.e., currentp,i
is within the distance of 2smax to clen, it is called exhausted and needs to be renewed. Algorithm
5.6 depicts the task of renewing exhausted one-way chains. Note that exhausted one-way chains
are broadcasted after renewal. However, the signature for the renewal message may choose
exhausted one-way chains themself. Thus, the renewing actions have to be taken as soon as
currentp,i is within the distance of 2smax to clen. Otherwise, it can not be guaranteed that the
required signature for the renewal message can be generated.

5.2.1.3 Verifying broadcast messages

Signature verification, as illustrated in Algorithm 5.7, requires the same initial steps as signature
generation. At first the message’s hash code h has to be computed using messagem and network
key Knetwork. Subsequently, decide2 produces the bit string necessary for identifying the one-
way chains Cp,i, and their respective shifts Sp. The message is accepted only if fSp(vp) matches
the authenticated value authp,i for each one-way chain Cp,i,, 0 ≤ p < σnbr and discarded
otherwise. If it is accepted, the authenticated values authp,i are overwritten by vp ∈ σ.

5.3 Secure communication

As mentioned before, security encompasses confidentiality, integrity, availability, authentication
and data freshness. Following sections specify how these key areas can be ensured for the
purposes of distributed traffic management applications. For now, the following assumptions
are made:

A1 There exists a link key KAB
link between each two nodes A and B that want to communicate

with each other. KAB
link is only known to nodes A and B.

78



Input: message m, network key Knetwork

Output: signature σ as ordered set, exhausted one-way chains exhaustedChains as set
of 2-tuples

1 σ ← ∅
2 exhaustedChains← ∅
3 size← log2(cnbr) + log2(smax)
4 h← HMAC(Knetwork,m)
5 d← decide2(h, σnbr · size)
6 p← 0
7 for (p < σnbr) do
8 i← (dk·size+log2(cnbr)−1 · · · dk·size)
9 s← 1

10 if (log2(smax) > 0) then s← s+ (d(k+1)·size−1 · · · dk·size+log2(cnbr))

11 currentp,i ← currentp,i + s
12 append Cp,i,currentp,i to σ
13 if (currentp,i > (clen − 2smax)) then append (p, i) to exhaustedChains

/* Note: Exhausted one-way chains have to be sent via broadcast

after renewal. Thus, at least one last signature has to be

provided by each exhausted one-way chain. */

14 p← p+ 1

15 end
16 return (σ, exhaustedChains)

Algorithm 5.5: Signature generation

A2 There exists a network key Knetwork that is known to authorized nodes of the network
only, i.e., Knetwork is not known by any eavesdropping attacker.

A3 A security sublayer is deployed beneath the Application Layer (APL) layer. The security
sublayer protects APL layer messages before passing them to the Network Layer (NWK)
layer and verifies NWK layer messages before passing them to the APL layer, respectively.

A4 Let HMAC be some instantiation of HMAC as defined in Section 2.4.1.4.

A5 Let BC be some symmetric-key cryptographic block cipher as described in Section 2.4.2.
Furthermore, let Encrypt denote block cipher BC applied to plaintext while Decrypt
denotes block cipher BC applied to ciphertext.

5.3.1 Unicast messages

Figure 5.2 illustrates how unicast messages are protected. Security processing of outgoing uni-
cast messages has to be performed as follows:

1. Obtain link key KAB
link and frame counter frameCounterBout associated to KAB

link.

2. Construct auxiliary header AuxHDR:
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Input: exhausted one-way chains exhaustedChains as set of 2-tuples
1 initialize renewal message m
2 k ← 0
3 for (k < length(exhaustedChains)) do /* initialize temporary one-way chains */
4 p, i← exhaustedChainsk
5 Tp,i,clen ← RAND()
6 j ← clen − 1
7 for (j > 0) do /* compute temporary one-way chain Tp,i, */
8 Tp,i,j−1 = f(Tp,i,j)
9 j ← j − 1

10 end
11 currentp,i ← 0
12 append (p, i, Tp,i,0) to m
13 k ← k + 1

14 end
15 send renewal message m via broadcast

/* Note: Since the exhausted one-way chains may be required for m’s

signature, the temporary one-way chains have to be made permanent

after sending the renewal message. */

16 make temporary one-way chains Tp,i, permanent
Algorithm 5.6: Renewing exhausted one-way chains

a) Set the Ctrl field to 03.

b) Set the Frame Counter field to frameCounterBout.

3. Compute the message authentication code MAC of (AuxHDR ||municast) using link key
KAB
link, i.e., MAC = HMAC(KAB

link, AuxHDR ||municast).

4. Encrypt (municast ||MAC) using link key KAB
link,

i.e., Encrypted Payload = Encrypt(KAB
link, municast ||MAC).

5. Increment and store frameCounterBout.

6. Pass (AuxHDR ||Encrypted Payload) to the network layer.

Using the steps above to protect unicast messages, authentication and integrity are ensured
through the Message Authentication Code (MAC). However, authentication and integrity are
invalidated if assumption A1 does not hold. Using a frame counter guarantees data freshness
allowing to recognize replay attacks. Note that the computation of the message authentication
code must include the frame counter. If not, the frame counter may unnoticeably be altered
revoking data freshness. Encrypting the message and its authentication code using link key
KAB
link ensures confidentiality as long as assumption A1 holds.

Incoming unicast messages have to be processed as follows:
3reserved for future use
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Input: message m, signature σ = {v0, · · · , vσnbr−1}, network key Knetwork

Output: authentication result authenticated
1 authenticated← True
2 size← log2(cnbr) + log2(smax)
3 h← HMAC(Knetwork,m)
4 d← decide2(h, σnbr · size)
5 p← 0
6 for ((p < σnbr) ∧ authenticated) do
7 chainp ← (dk·size+log2(cnbr)−1 · · · dk·size)
8 s← 1
9 if (log2(smax) > 0) then s← s+ (d(k+1)·size−1 · · · dk·size+log2(cnbr))

10 if (authp,chainp 6= fs(vp)) then authenticated← False
11 p← p+ 1

12 end
13 if (authenticated) then
14 p← 0
15 for (p < σnbr) do
16 authp,chainp ← vp
17 p← p+ 1

18 end
19 end
20 return authenticated

Algorithm 5.7: Signature verification

1. Obtain link key KAB
link and frame counter frameCounterBin associated to KAB

link.

2. If AuxHDR.Frame Counter is smaller than frameCounterBin, discard the frame and in-
dicate a failure to the application layer. Otherwise proceed with next step.

3. Decrypt EncryptedPayload to obtain municast and MAC using link key KAB
link, i.e.,

(municast || textitMAC) = Decrypt(KAB
link, Encrypted Payload).

4. Compute the message authentication code MAC′ of (AuxHDR ||municast) using link key
KAB
link, i.e., MAC′ = HMAC(KAB

link, AuxHDR ||municast).

5. If MAC′ matches MAC, proceed with next step. Otherwise discard the frame and indicate
a failure to the application layer.

6. Set frameCounterBin to AuxHDR.Frame Counter + 1 and store frameCounterBin.

7. Pass municast to the APL layer.
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Figure 5.2: Protecting unicast messages

5.3.2 Broadcast messages

Figure 5.3 illustrates how broadcast messages are protected. Security processing of outgoing
broadcast messages has to be performed as follows:

1. Obtain network key Knetwork and frame counter frameCounterAnetwork associated to
Knetwork.

2. Construct auxiliary header AuxHDR:

a) Set the Ctrl field to 04.

b) Set the Frame Counter field to frameCounterAnetwork.

3. Generate signature σ using Algorithm 5.5 with parameters (AuxHDR ||mbroadcast) and
Knetwork.

4. Encrypt (mbroadcast ||σ) using network key Knetwork,
i.e., Encrypted Payload = Encrypt(Knetwork, mbroadcast ||σ).

5. Increment and store frameCounterAnetwork.

6. Pass (AuxHDR ||Encrypted Payload) to the network layer.

4reserved for future use
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Security processing for broadcast messages ensures authentication and integrity through sig-
nature σ. Using a frame counter guarantees data freshness allowing to recognize replay attacks.
Note that the signature generation must include the frame counter. If not, the frame counter may
unnoticeably be altered revoking data freshness. As long as assumption A2 holds, confidentiality
is ensured by encryption of the message and its signature using network key Knetwork.

Figure 5.3: Protecting broadcast messages

Incoming broadcast messages have to be processed as follows:

1. Obtain network key Knetwork and frame counter frameCounterBnetwork associated to
source node B.

2. If AuxHDR.Frame Counter is smaller than frameCounterBnetwork, discard the frame and
indicate a failure to the application layer. Otherwise proceed with next step.

3. DecryptEncryptedPayload to obtainmbroadcast and σ using network keyKnetwork, i.e.,
(mbroadcast ||σ) = Decrypt(Knetwork, Encrypted Payload).

4. Verify signature σ using Algorithm 5.7 with parameters (AuxHDR ||mbroadcast), σ and
Knetwork.

5. If verification fails, discard the frame and indicate a failure to the application layer. Oth-
erwise, proceed with next step.

6. Overwrite frameCounterBnetwork with AuxHDR.Frame Counter + 1.

7. Pass mbroadcast to the application layer.
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5.4 Key management

As mentioned above, secure communication relies on the existence of pairwise link keys KAB
link

and a network key Knetwork. Until now, it is not clear how these keys can be obtained and
updated in a secure way. The following assumption has to be made prior for specifying the
procedures of key distribution, key establishment and key update:

B1 There exists a Trust Center (TC), i.e., a distinguished node that is trusted by each other
node, responsible for key distribution, key establishment and key update. Furthermore,
one can assume that the TC is not compromised. The TC’s address has to be pre-configured
for each node prior to its deployment.

5.4.1 Key distribution

Let KA
TC denote the link key between node A and TC. Link keys KA

TC have to be pre-installed
to each node A. This ensures the existence of a secure channel between node A and TC that can
be taken as a basis for all further steps. Furthermore, the pre-installed keys are used to authorize
network nodes. Unauthorized nodes, i.e., potential attackers, are not able to join the network
since they lack a mutual key with TC. All other link keys KAB

link between two nodes A and B
have to be established after deployment as described in Section 5.4.2. Since not every node
needs to communicate with each other node, the establishment phase usually will not take too
much effort.

The network keyKnetwork has to be obtained from TC using the secure channel as described
above. For details regarding network keys refer to Section 5.4.3.

5.4.2 Key establishment

To establish a link key KAB
link between two nodes A and B, the Symmetric-Key Key Estab-

lishment (SKKE) procedure specified by ZigBee [40] is used. Figure 5.4 depicts the message
sequence of the SKKE procedure assuming node A wants to establish a link key with node B.
The procedure starts with a key request sent from nodeA to TC. A key request message contains
the type of key requested, i.e., link key or network key, and the partner node’s address if a link
key is requested. The TC responds with a transport key message with parameters AddrB and
initiator = TRUE containing a temporary key Ktemp. It also sends a transport key message
with parameters AddrA and initiator = FALSE containing Ktemp to B. All further mes-
sages are secured using temporary key Ktemp. A sends a SKKE request to B. If B is willing to
establish the new link key, it replies with a SKKE response containing a positive acknowledge.
With following two messages SKKE-1 and SKKE-2, A and B exchange random challenges NA

and NB . Using random challenges NA, NB and partner addresses AddrA, AddrB , A and B
compute KAB

link, MAC1 and MAC2 as follows:
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KAB
link = HMAC(Ktemp, AddrA ||AddrB ||NA ||NB)

MAC1 = HMAC(KAB
link, 102 ||AddrB ||AddrA ||NB ||NA)

MAC2 = HMAC(KAB
link, 112 ||AddrA ||AddrB ||NA ||NB)

Message SKKE-3 contains MAC2 as computed by A. B checks whether MAC2 matches
its own computation and sends MAC1 to A (message SKKE-4). Analogous, A verifies MAC1.
If all verifications succeeded, KAB

link is the new link key established between nodes A and B.

Figure 5.4: Symmetric-Key Key Exchange (SKKE) procedure

5.4.3 Key update

In general, a key has to be updated at the very latest, if any frame counter associated to it reaches
the maximum value. However, updating keys more frequently reduces the probability that a key
can be compromised by an eavesdropping attacker. This can be done by using threshold values
for frame counters. Though, threshold values should be chosen with caution since updating keys
too frequently affects communication efficiency.

The update of network keys requires that compromised keys can be revoked. Wang et al.
propose a key revocation scheme that renders compromised keys useless through the use of so-
phisticated key update techniques [36]. The key revocation scheme is based on the personal key
share distribution proposed by Liu et al. [21]. During setup, the network manager randomly
picks m 2t-degree masking polyomials, hj(x), 1 ≤ j ≤ m, from Fq[x] where q is a suffi-
cently large prime number. It then computes hj(i) for each node Ai where i is the identifier
for node Ai. The set {h1(i), h2(i), · · · , hm(i)} is the personal secret of node Ai and has to
be sent to Ai using a secure channel. Furthermore, the network manager randomly picks keys
{K1,K2, · · · ,Km} ⊂ Fq and t-degree polynomials p1(x), p2(x), · · · , pm(x) from Fq[x] and
constructs qj(x) = Kj − pj(x).
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At the end of each session j, 1 ≤ j ≤ m, the network manager broadcasts a key update
message containing the set of revoked nodes R = {r1, r2, · · · , rw}, w ≤ t and two 2t-degree
polynomials Pj(x), Qj(x) defined as follows:

Pj(x) = gj(x)pj(x) + hj(x)

Qj(x) = gj(x)qj(x) + hj(x)

where gj(x) = (x− r1)(x− r2) · · · (x− rw)

Since the revocation polynomial gj(x) evaluates to 0 for each revoked node Ai ∈ R, re-
voked nodes are not able to compute pj(i) =

Pj(i)−hj(i)
gj(i)

and qj(i) =
Qj(i)−hj(i)

gj(i)
and thus

Kj = pj(i) + qj(i). All other nodes can compute the new network key Kj . Although this
key revocation scheme seems to be efficient, it requires to renew the personal secrets after m
sessions. Unfortunately this has to be done through sending unicast messages to all nodes.

In the following some modifications of the key revocation scheme proposed in [36] are made
to overcome the limitation of sessions. Subsequently, a round denotes the period of m sessions.
Additionally to the masking polynomials hj(x) and polynomials pj(x), the network manager
randomly picks m key seeds Sj and some s ∈ Fq and constructs qj(x) = Sj − pj(x). The new
personal secret of node Ai is {s, h1(i), h2(i), · · · , hm(i)}. During key update, key seeds Sj are
obtained as before and the new network key is computed as Kj = f(Sj) where f is a one-way
function as defined in Section 2.4.1.1. After updating the network key for sessionm, the network
manager has to alter masking polynomials hj(x) before the next round can start. To this end,
the network manager randomly picks (2t + 1) nonces nk ∈ Fq and constructs ck = s · nk for
0 ≤ k ≤ 2t. Values ck form the coefficients of update polynom c(x). Using c(x), masking
polynomials hj(x) are updated as hj(x) = hj(x)+ j · c(x). As during setup phase, the network
manager then chooses m new key seeds Sj and polynomials pj(x) at random. To notify nodes
Ai about the altered masking polynomials, the network manager broadcasts random nonces nk.
Using nk, nodes Ai construct coefficients ck = s · nk and hence c(x). Having c(x), Ai updates
its personal secrets as hj(i) = hj(i) + j · c(i).

The modifications described above allow to efficiently reinitialize the key revocation scheme
to start a new round. To revoke compromised nodes from the network, an intrusion detection
system, such as [12], has to be implemented to detect compromised nodes. However, intrusion
detection is beyond the scope of this thesis.

Updating link keys is done quite similar. Let Hi(x) be a t-degree masking polynomial
for node Ai. During setup, the network manager randomly picks some si ∈ Fq and Hi(x) from
Fq[x] for all authorized nodesAi. Furthermore,Hi(i) is computed and si, Hi(i) are sentt to each
node Ai via the secure channel. If a link key KAi

TC needs to be updated, the network manager
randomly picks t-degree polynomial p(x) from Fq[x] and key seed S ∈ Fq and constructs
q(x) = S− p(x). Furthermore, the network manager randomly chooses (t+1) nonces nk ∈ Fq
and constructs ck = si · nk for 0 ≤ k ≤ t. Values ck form the coefficients of update polynom
c(x). Using c(x), masking polynomial Hi(x) is updated as Hi(x) = Hi(x) + c(x). Prior
updating Hi(x), the network manager sends a key update message to node Ai containing the
random nonces nk and two t-degree polynomials P (x), Q(x) defined as follows:
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P (x) = p(x) +Hi(x)

Q(x) = q(x) +Hi(x)

Note that Hi(x) is the masking polynomial for node Ai. Node Ai computes p(i) = P (i)−
Hi(i) and q(i) = Q(i)−Hi(i) and thus S = p(i)+ q(i). Subsequently, A revokes key KA

TC by
replacing it with KA′

TC = f(S) where f is a one-way function. Furthermore, node Ai constructs
coefficients ck = si · nk and obtains c(x). Having c(x), Ai updates its personal secret as
Hi(i) = Hi(i) + c(i).

For all other link keys KAB
link, either A or B sends a key request to the TC. The procedure

for updating link keys KAB
link is the same as for the initial establishment of link keys (see Section

5.4.2). For the sake of completeness, note that the network manager usually coincides with the
TC.

5.5 Implementation choices

The security concept for distributed traffic management applications has been specified assum-
ing that conditions A1 to A5 and B1 hold. While assumptions A3 to A5 actually are implemen-
tation choices that have to be made during application design, assumptions A1 and A2 are not.
However, A1 and A2 depend on a proper key management and thus are subsumed by assump-
tion B1. This means that a TC, implementing the key management schemes described above,
exists and that it is highly protected against node compromise. Obviously, the Local Control
Unit (LCU) seems to be a good choice to take in the role of TC.
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CHAPTER 6
Analysis

6.1 Overview

This chapter provides an analysis of the security concept for distributed traffic management
applications based on wireless systems specified in Chapter 5. While the following section gives
a detailed analysis of the broadcast authentication scheme described in Section 5.2.1, Sections
6.3 and 6.4 evaluate frame protection and key management mechanisms, respectively.

6.2 Broadcast authentication scheme

6.2.1 Security level

As already mentioned, shifting a one-way chain Cp,i, by Sp discloses the next Sp elements of
that chain. Unfortunately, this fact allows an attacker to intercept a signed message m and forge
some message m′ as long as h(m′) yields the same one-way chains as h(m), i.e., C ′p,i, = Cp,i,,
and S′p ≤ Sp for 0 ≤ p < σnbr. To express the real security gain for shifting in bits, it is
necessary to know the probability that a message can be forged, if the σnbr shifts Sp and S′p
differ in x bits in total. This probability is denoted as Pforgable(k,m, x) where k is the number
of fields, m is the field length in bits and x is the number of bits that differ at arbitrary positions
of the k ·m bits. Before defining Pforgable(k,m, x), let B be a uniformly distributed random
variable representing a bit string of length m. Furthermore, let b be a bit string of length m
that differs from B by a single but arbitrary bit i, 0 ≤ i < m. This means that Bi 6= bi and
Bj = bj for all j 6= i. With that, the probability that the value of b is smaller than the value ofB,
denoted as P (b < B), is given by Equation 6.1. However, what is if b′ differs from B by k > 1
arbitrary bits i1, · · · , ik? Actually, only the most significant bit imax = max({i1, · · · , ik})
decides whether or not b′ < B. With that, P (b′ < B) = P (Bimax = 1) and by uniformly
distribution of B, P (Bimax = 1) = 1

2 .

P (b < B) = P (Bi = 1) =
1

2
(6.1)
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Knowing P (b < B), the definition of Pforgable(k,m, x) is given by Equation 6.2. The sum
is made over all valid possibilities of distributing x differing bits over k fields with at most m
bits per field. Each ki, 1 ≤ i ≤ m holds the number of fields that differ in i bits. A distribution
is valid, if

∑
i · ki = x and

∑
ki ≤ k hold. The fraction states the probability of a certain

distribution, while P (b < B)β with β =
∑m

i=1 ki states the probability that the values of all
affected fields have been decreased.

Pforgable(k,m, x) =
∑
ki

1≤i≤m∑
i·ki=x∑
ki≤k

(∏m
i=1

((k−α(i)
ki

)
·
(
m
i

)ki)(
k·m
x

) · P (b < B)β

)

where α(i) =

i−1∑
j=1

kj

β =
m∑
i=1

ki

(6.2)

Now the security gain for shifting can be defined by Equation 6.3. Note that the security
gain is probabilistic, i.e., messages with less than Gainshift(σnbr, smax) bits of the shift fields
matching can be forged with probability Pforgable(σnbr, log2(smax), x), x > σnbr ·log2(smax)−
Gainshift(σnbr, smax). However, since Pforgable(σnbr, log2(smax), x) ≤ Pthreshold, the proba-
bility of message forgery is negligible if Pthreshold has been chosen properly.

Gainshift(σnbr, smax) = σnbr · log2(smax)− α(σnbr, log2(smax))

where α(k,m) = min
({
x ∈ {1, . . . , k ·m}

∣∣∣
Pforgable(k,m, x) ≤ Pthreshold

}) (6.3)

Figure 6.1 illustrates the security gain through shifting for Pthreshold = 10−3. Unfortunately,
there is no security gain for small signature sizes σnbr ensuring probability for message forgery
to be lower than 10−3.

Equation 6.4 states the security level if the one-way chains are chosen directly from the hash
value.

secLevel(σnbr, cnbr, smax) = σnbr · log2(cnbr) +Gainshift(σnbr, smax) (6.4)

In the following, negation-resilient mappings generating short decision bit strings are exam-
ined in detail. As mentioned in Section 5.2.1, such a mapping generates a decision bit string d
of length dlen using input bit string h of length hlen = b · dlen for some b > 1. To generate
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Figure 6.1: Security gain for shifting Gainshift(σnbr, smax)

the decision bit string, it is crucial that h is divided into dlen parts pi of length b and each part
pi corresponds to bit i of d, i.e., di. Negation resilience means that p′i = ¬pi yields d′i = ¬di.
Clearly, negating pi means changing all b bits of pi. Assume that x > (b − 1) · dlen arbitrary
bits of input bit string h change their value. Let h′ be the resulting bit string. Using the pigeon-
hole principle, there exists at least one part pj of h that needs to change the values of all b bits,
i.e., p′j = ¬pj . By negation resilience, d′j = ¬dj and hence d′ 6= d. This means that at most
(b−1) ·dlen bits of the input bit string h may be changed without changing decision bit string d.
Or rephrased, at least dlen bits of input bit string h must remain unchanged such that d remains
unchanged. Hence, negation resilience is vital to guarantee a security level of at least dlen bits.
Note that both proposed mappings, decide2 and decide4, are negation-resilient by construction
(see Algorithms 5.1 and 5.2, respectively).

Let Pb(d′j = dj | δ), 0 ≤ δ ≤ b denote the probability that bit dj remains unchanged if δ
bits of pj change their value. Obviously, Pb(d′j = dj | 0) = 1 and Pb(d′j = dj | b) = 0 hold for
any negation-resilient mapping. The only constraint for δ 6= 0, δ 6= b is Pb(d′j = dj | δ) < 1.
However, “good” mappings require to be further constrainted by Pb(d′j = dj | δ) < Pb(d

′
j =

dj | δ − 1) for all δ 6= 0, δ 6= b.
Consider negation-resilient mapping decide2 defined by Algorithm 5.1. Equation 6.5 states

probability P2(d
′
j = dj | 1). Let S(x+y) = {s | s bit string of length (x+y), x bits set to v, y bits
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set to ¬v, x ≥ y} be the set of bit strings of length x+y with x bits set to v and y bits set to ¬v1.
P(x+y) denotes the probability that pj ∈ S(x+y) whereas P(x+y)→(x′+y′) states the probability
that d remains unchanged if pj ∈ S(x+y) and p′j ∈ S(x′+y′). Assuming uniformly distributed
pi, 0 ≤ i < dlen, P (di = 1) = P (di = 0) = 1

2 and hence P(2+0)→(1+1) = P(1+1)→(2+0) =
1
2 .

P2(d
′
j = dj | 1) = P(2+0)︸ ︷︷ ︸

1
2

·P(2+0)→(1+1)︸ ︷︷ ︸
1
2

+P(1+1)︸ ︷︷ ︸
1
2

·P(1+1)→(2+0)︸ ︷︷ ︸
1
2

=
1

2
(6.5)

Equation 6.6 defines the probability that decision bit string d of length n remains unchanged,
if x arbitrary bits of the input bit string h of length b · n are changed. The sum is made over all
valid possibilities of distributing x differing bits over n parts with less than b bits per part. Each
ni, 1 ≤ i < b holds the number of parts that differ in i bits. A distribution is valid if

∑
i ·ni = x

and
∑
ni ≤ n hold. The fraction states the probability of a certain distribution, while the

product
∏b−1
i=1 Pb(d

′
j = dj | i)ni states the probability that all affected bits of the decision string

d remain unchanged.

Punchanged(b, n, x) =
∑
ni

1≤i<b∑
i·ni=x∑
ni≤n

(∏b−1
i=1

((
n−α(i)
ni

)
·
(
b
i

)ni
)

(
b·n
x

) ·
b−1∏
i=1

Pb(d
′
j = dj | i)ni

)

where α(i) =
i−1∑
j=1

nj

(6.6)

With Punchanged(b, n, x), the security level using a decision bit string generated by decide2
is defined by Equation 6.7.

secLevel2(σnbr, cnbr, smax) = 2 · σnbr · log2(cnbr) +Gainshift(σnbr, smax)

− α(σnbr · log2(cnbr))

where α(a) = min
({
x ∈ {1, . . . , a}

∣∣∣
Punchanged(2, a, x) ≤ Pthreshold

})
(6.7)

The security level using a decision bit string generated by decide4 can analogously be de-
fined. Algorithm 5.2 illustrates the definition of negation-resilient mapping decide4. Equa-
tions 6.8 to 6.10 state the probabilities for the basic cases P4(d

′
j = dj | 1), P4(d

′
j = dj | 2)

1For example, S(2+0) = {002, 112} and S(1+1) = {012, 102}
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and P4(d
′
j = dj | 3). Clearly, the additional constraints mentioned above hold, i.e., P4(d

′
j =

dj | 3) < P4(d
′
j = dj | 2) < P4(d

′
j = dj | 1) < P4(d

′
j = dj | 0) = 1.

P4(d
′
j = dj | 1) = P(4+0)︸ ︷︷ ︸

2
16

·P(4+0)→(3+1)︸ ︷︷ ︸
1

+

P(3+1)︸ ︷︷ ︸
8
16

·
(1
4
· P(3+1)→(4+0)︸ ︷︷ ︸

1

+
3

4
· P(3+1)→(2+2)︸ ︷︷ ︸

1
2

)
+

P(2+2)︸ ︷︷ ︸
6
16

·P(2+2)→(3+1)︸ ︷︷ ︸
1
2

=
5

8

(6.8)

P4(d
′
j = dj | 2) = P(4+0)︸ ︷︷ ︸

2
16

·P(4+0)→(2+2)︸ ︷︷ ︸
1
2

+

P(3+1)︸ ︷︷ ︸
8
16

·P(3+1)→(3+1)︸ ︷︷ ︸
1
2

+

P(2+2)︸ ︷︷ ︸
6
16

·

(
2(
4
2

) · P(2+2)→(4+0)︸ ︷︷ ︸
1
2

+

(
4
2

)
− 2(
4
2

) · P(2+2)→(2+2)︸ ︷︷ ︸
1
2

)
=

1

2

(6.9)

P4(d
′
j = dj | 3) = P(4+0)︸ ︷︷ ︸

2
16

·P(4+0)→(3+1)︸ ︷︷ ︸
0

+

P(3+1)︸ ︷︷ ︸
8
16

·

(
1(
4
3

) · P(3+1)→(4+0)︸ ︷︷ ︸
0

+

(
4
3

)
− 1(
4
3

) · P(3+1)→(2+2)︸ ︷︷ ︸
1
2

)
+

P(2+2)︸ ︷︷ ︸
6
16

·P(2+2)→(3+1)︸ ︷︷ ︸
1
2

=
3

8

(6.10)

With Punchanged(b, n, x), the security level using decide4 is defined by Equation 6.11.

secLevel4(σnbr, cnbr, smax) = 4 · σnbr · log2(cnbr) +Gainshift(σnbr, smax)

− α(σnbr · log2(cnbr))

where α(a) = min
({
x ∈ {1, . . . , 3a}

∣∣∣
Punchanged(4, a, x) ≤ Pthreshold

})
(6.11)
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Figure 6.2 depicts the comparison of secLevel, secLevel2 and secLevel4. Using deci-
sion bit strings raises the security level. When plotted against the signature size, secLevel4
turns out to have the steepest slope. This means that increasing the signature size increases
the security level at most when using secLevel4. However, both, secLevel2 and secLevel4,
are probabilistic. This means that messages can be forged with probability Punchanged(b, σnbr ·
log2(cnbr), x), x > 2 ·σnbr · log2(cnbr)+Gainshift(σnbr, smax)−secLevelb(σnbr, cnbr, smax)
matching less than secLevelb bits of the hash value. However, since Punchanged(b, σnbr ·
log2(cnbr), x) ≤ Pthreshold, the probability of message forgery is negligible if Pthreshold has
been chosen properly. Figure 6.3 illustrates secLevel4 for different values of cnbr plotted against
the signature size.
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Figure 6.2: Security level comparison

6.2.2 Storage requirements

Storage requirements at sources are different as compared with sinks. While sources need to
store whole one-way chains, sinks need to store the most recently disclosed element of each
one-way chain, only. Equation 6.12 states the storage requirements for sources. Unfortunately,
keeping whole one-way chains in memory leads to nearly prohibitive amount of memory needed.
However, there exist more sophisticated approaches allowing to trade off storage against compu-
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Figure 6.3: Enhanced security level secLevel4

tation complexity. Sella proposed a hash chain traversal with storage requirements k · k
√
n where

n is the number of elements of the chain and each element can be reached with at most k−1 hash
function computations [31]. Furthermore, a special protocol for k = 2 with storage requirement
l (assuming n = l·(l+1)

2 , l > 1) is presented. In [7], Coppersmith and Jakobsson propose a hash
chain traversal with storage complexity dlog2(n)e+ dlog2(log2(n)+1)e and computation com-
plexity blog2(

√
n)c for each element. Equation 6.13 states the enhanced storage requirements

for sources using the hash chain traversal technique presented in [7].

storageSrc(σnbr, cnbr, clen, flen) = σnbr · cnbr · (clen + 1) · flen
8

(6.12)

storageSrc∗(σnbr, cnbr, clen, flen) = σnbr · cnbr · α(clen + 1) · flen
8

where α(n) = dlog2(n)e+ dlog2(log2(n) + 1)e

(6.13)

Figure 6.4 depicts the storage requirements at source A for σnbr = 4 and flen = 80 bits
in KBytes. The enhanced storage requirements using the hash chain traversal proposed in [7]
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are illustrated in Figure 6.5. For smaller one-way chain lengths clen, storageSrc∗ is slightly
better than storageSrc. However, with increasing clen, the separation between storageSrc∗

and storageSrc grows rapidly.

Signature size: 4

One−way chain length

To
ta

l s
to

ra
ge

 [K
B

yt
es

]

23 − 1 24 − 1 25 − 1 26 − 1

22
23

24

25

26

27

●

Number of one−way chains per pool

16
32
64

●

●

●

●

Figure 6.4: Storage requirements at source A for σnbr = 4, flen = 80 bits

The amount of memory required at sinks is defined by Equation 6.14. It can only be de-
creased by reducing at least one of its parameters. However, decreasing σnbr, cnbr or flen affects
security. Figure 6.6 shows the storage requirements at sink b for flen = 80 bits.

storageSnk(σnbr, cnbr, flen) = σnbr · cnbr ·
flen
8

(6.14)

6.2.3 Computational effort

The computational effort for signature generation depends, wheter or not all one-way chain
elements are kept in memory. If whole one-way chains are stored, signature generation requires
the computation of a message’s hash value, only. When Hash-based Message Authentication
Code (HMAC)-Secure Hash Algorithm Version 1 (SHA-1) is used to generate hash values, the
computational effort relating to number of hash function computations is constant. However,
if the hash chain traversal proposed in [7] is used to reduce storage requirements, the number
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Figure 6.5: Enhanced storage requirements at source A for σnbr = 4, flen = 80 bits

of hash function computations to retrieve a certain element is given by blog2(
√
n)c. Equation

6.15 states the number of hash function computations necessary for signature generation. The
constant amount is given by HMAC-SHA-1 which is used to generate the message’s hash value.

compSign∗(σnbr, clen) = 2 + σnbr · blog2(
√
clen + 1)c (6.15)

Figure 6.7 depicts the computational effort compSign∗ for signature generation using the
hash chain traversal proposed in [7].

Signature verification depends on the signature size σnbr and the maximum shift smax. Equa-
tion 6.16 defines the upper bound of hash function computations necessary for signature veri-
fication. Again, the constant amount is given by HMAC-SHA-1 which is used to generate the
message’s hash value. Figure 6.8 shows the upper bound of hash function computations for
signature verification.

compV erify(σnbr, smax) = 2 + σnbr · smax (6.16)
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6.3 Secure communication

The frame protection mechanisms specified in Section 5.3 mainly rely on the secrecy of all in-
volved keys. Unicast messages are secured through link keys. Link keys are assumed to be only
known by the two nodes forming the link. As long as this assumption holds, confidentiality is
ensured by encrypting the message using the secret link key. Furthermore, message authentica-
tion and integrity are achieved through the use of a Message Authentication Code (MAC). By
including a frame counter into the calculation of the MAC, data freshness can also be guaran-
teed. However, once an attacker gets to know the secret link key, none of these properties hold.
In general, there are two possible ways for attackers to obtain secret link keys. Due to the open
medium, attackers are able to capture messages that are sent between two nodes. Subsequently,
an attacker may disclose the link key based on the captured messages. However, the second
attack, node compromise, is a far more dangerous threat. If an attacker is able to compromise an
authorized network node, access to all security materials stored at that node is obtained. While
the latter attack demands tamper-resistant and/or inaccessible hardware, the first requires proper
key management (see Section 6.4).

Protecting broadcast messages is as similar as to protect unicast messages. However, instead
of a link key, the network key is used to secure broadcast messages. Another difference is
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Figure 6.7: Hash function computations for signature generation

that authentication can not be achieved using a symmetric key that is known by more than two
entities. Thus, a novel broadcast authentication scheme has been proposed in Section 5.2. A
detailed analysis of the broadcast authentication scheme can be found in Section 6.2. As with
the MAC, signature σ ensures message authentication and integrity. Confidentiality and data
freshness are achieved by encryption using the network key and an integrity protected frame
counter, respectively. In contrast to disclosed link keys, disclosed network keys only revoke
confidentiality. Authentication, integrity and freshness are still protected by the signature. In
case of node compromise, an attacker may forge arbitrary broadcast messages using the node’s
security materials. However, authentication, integrity and freshness of broadcast messages sent
by non-compromised nodes is not affected.

6.4 Key management

Through the use of pre-installed link keys between each node and the Trust Center (TC), unau-
thorized nodes are not able to join the network. Furthermore, a secure channel between each
authorized node and the TC exists right after deployment. The network key and all required
security materials can be obtained from the TC using the secure channel.

The Symmetric-Key Key Establishment (SKKE) procedure used to establish (or update) a

99



Maximum shift

To
ta

l c
om

pu
ta

tio
ns

20 21 22 23

22

23

24

25

26

●

Signature size

4
5
6
7
8

●

●

●

●

Figure 6.8: Hash function computations for signature verification

link key between two nodes A and B relies on the secrecy of the link keys KA
TC shared between

A and TC and KB
TC between B and TC, respectively. If this assumption holds, the temporary

key Ktemp generated by the TC is only known to nodes A and B (as well as to the TC itself).
Hence, the established link key KAB

link is only known to nodes A and B (as well as to the TC).
However, attackers may try to disclose any of the keys KA

TC , KB
TC and Ktemp or key KAB

link

itself. To impede key disclosure based on captured messages, keys of sufficient length have to
be chosen and proper key update mechanisms ensuring forward and backward secrecy need to
be employed.

Both key update mechanisms proposed in Section 5.4.3 provide forward and backward se-
crecy. Consider the key update of link keys KAi

TC shared between nodes Ai and the TC. Ai
obtains the initial secret Hi(i) using the secure channel described above. Assuming that the TC
acts as network manager, the masking polynomial Hi(x) is only known to the TC. Thus given
P (x) and Q(x), p(i) and q(i) can only be computed if Hi(i) is known. The same is true for key
seed S = p(i) + q(i). However, given a link key KAi

TC , Hi(i) can be derived by inverting one-
way function f to obtain key seed S. Having S,Hi(i) can be computed asHi(i) =

P (i)+Q(i)−S
2 .

Although having Hi(i) at a certain point in time, si is required to compute the update polyno-
mial c(x) and hence to update Hi(i) after renewing the link key. This means that as long as
either Hi(i), si or both are not known by an attacker, it is hard to derive future and previous link

100



keys even if multiple link keys are known.
Basically, the key update mechanism for network keys is an extended version of the link

key update mechanism. Although it allows multiple sessions per round as well as revocation
of compromised nodes, its properties concerning forward and backward secrecy of keys are the
same as described above.
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CHAPTER 7
Conclusion and outlook

At the beginning of this thesis, the problem statement and the aims of this thesis were for-
mulated. Briefly, the centralized approach at the field level of modern Traffic Management
Systems (TMSs) as well as the lack of a standardized communication protocol for sensors and
actuators in the traffic domain have major drawbacks. A decentralized network consisting of
autonomously cooperating sensors and actuators may replace the centralized approach. To this
end, a generic information model needs to be defined building the basis for a standardized com-
munication protocol. Furhermore, wireless technologies allow the production of flexible TMS
facilities while reducing installation costs. Thus, a security concept for distributed Traffic Man-
agement (TM)-applications based on wireless communication systems has to be specified.

Subsequently, basic notions were explained providing the basis for this thesis’ main objec-
tives. At first an overiew of modern TMSs was given. Furthermore, some of the most popular
wireless standards for low-rate and low-power Wireless Personal Area Networks (WPANs) were
outlined. Finally, the notion of information modeling was explained and basic security concepts
were introduced.

After the basic concepts have been introduced, a generic information model for sensors and
actuators in the traffic domain was presented. The information model is structured on the basis
of Functional Groups (FGs). Each FG represents a specific field of TMSs. While the first FG,
i.e., FG0, comprises attributes and commands which are used for general device configuration
and information, FG1 defines attributes and commands for the traffic data acquisition. In more
detail, FG1 comprises clusters for vehicle measurement as well as load, traffic and speeding
statistics. FG2 specifies clusters for environmental data acquisition including temperature, wind,
precipitation and visibility measurements. Finally, FG3 defines attributes and commands that
can be used for traffic control through Variable Message Signs (VMSs) and groups of VMSs.
Based on the presented information model, a common communication protocol can easily be
developed.

In addition to the theoretical specification of the information model, a proof-of-concept im-
plementation of a traffic jam warning system was presented. It was shown how the information
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model can be used to design distributed TM-applications. Additionally, further use cases were
outlined.

Once the information model was specified, a security concept for distributed TM-applications
based on wireless communication systems was presented. Unfortunately, the need for security
contradicts the requirements of Wireless Sensor and Actuator Networks (WSANs). The main
security challenges in WSANs are limited resources, large-scale networks, dynamical network
topologies and wireless communication characteristics. Thus, the specification of a proper secu-
rity concept for WSANs is not trivial.

Broadcast authentication is a crucial part of WSAN security. After existing mechanisms, i.e.,
Time Efficient Stream Loss-tolerant Authentication (TESLA) [27], Bins and Balls (BiBa) [26]
and Hash to Obtain Random Subset (HORS) [28], were outlined, a novel broadcast authenti-
cation scheme, solely based on one-way chains, was proposed. It was shown that for the basic
scheme, storage requirements and communication overhead, i.e., signature size, are far too high
if a “high” security level needs to be achieved. Thus, two extensions of the basic scheme were
presented. Both extensions are based on negation-resilient mappings and hence are probabilis-
tic. Probabilistic means that signatures can be forged with some probability even if less bits of
the forged hash value coincide with the original hash value. However, it was shown that the se-
curity level of the basic scheme is a lower bound for both extensions and that the probability of
message forgery is negligible if the threshold probability is chosen properly. It was also shown
that the extensions offer a far better security level with same storage requirements and signature
sizes.

Furthermore, frame protection mechanisms as well as key management procedures were
presented. The security concept relies on the presence of a non-compromised trust center. Each
node stores a pre-installed link key with the trust center such that a secure channel between
the trust center and each node exists. Based on this secure channel, key establishment and key
update mechanisms were defined. The update of keys is a crucial security task. Once a key
is compromised it needs to be revoked. Furthermore, forward and backward secrecy need to
be ensured, i.e., it must be “hard” to derive previous and future keys based on a compromised
key. It was shown that both presented key update mechanisms guarantee forward and backward
secrecy. The key update mechanism for network keys further allows to revoke compromised
nodes from the network.

Future steps could include the extension of the proposed information model as well as im-
provements of the security concept with respect to storage requirements, computational effort
and communication overhead. Although the information model covers the bigger part of the
most important fields of modern TMSs, it is by far not complete. However, it builds a good basis
for designing distributed TM-applications.

As already mentioned, the security concept, especially the broadcast authentication scheme,
could also be improved. Although storage requirements and signature sizes of the broadcast
authentication scheme are reasonable, further enhancements are desirable. Broadcast authenti-
cation in WSANs is a interesting research topic and one can assume that other, probably bet-
ter, schemes will be proposed in the next years. However, the proposed security concept is
independent from the specific broadcast authentication mechanism used. Thus, the broadcast
authentication scheme could easily be replaced.
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Finally, as mentioned at the beginning of this thesis, it would be interesting to replace the
the centralized approach at the field level of modern TMSs with a decentralized network of
autonomously cooperating sensors and actuators. This requires the proposed standardized com-
munication protocol for sensors and actuators in the traffic domain. However, it is doubtful that
such a standardization in real systems will be initiated in the near future.
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APPENDIX A
Acronyms

6LoWPAN IPv6 over Low-Power Wireless Personal Area Network

AES Advanced Encryption Standard

AO Application Object

AP Application Profile

APL Application Layer

APS Application Support Layer

BiBa Bins and Balls

CAP Contention Access Period

CBC Cipher Block Chaining

CCM* Counter with Cipher Block Chaining Message Authentication Code

CFP Contention Free Period

CSMA-CA Carrier Sense Multiple Access – Collision Avoidance

DSSS Direct Sequence Spread Spectrum

ECC Elliptic Curve Cryptography

ER Entity-Relationship

FFD Full Function Device

FG Functional Group
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GTS Guaranteed Time Slot

HMAC Hash-based Message Authentication Code

HORS Hash to Obtain Random Subset

ITMS Intelligent Traffic Management System

LCU Local Control Unit

LR-WPAN Low-Rate Wireless Personal Area Networks

MAC Medium Access Control Layer

MAC Message Authentication Code

MD5 Message Digest Algorithm Version 5

MIC Message Integrity Code

MTU Maximum Transmission Unit

NTCIP National Transportation Communications for ITS Protocol

NWK Network Layer

OMG Object Management Group

OO Object-Oriented

PAN Personal Area Network

PHY Physical Layer

RFD Reduced Function Device

SHA-1 Secure Hash Algorithm Version 1

SKKE Symmetric-Key Key Establishment

SS Sub-Station

SSP Security Service Provider

TC Trust Center

TDMA Time Division Multiple Access

TESLA Time Efficient Stream Loss-tolerant Authentication

TLS “Technische Lieferbedingungen für Streckenstationen”

TM Traffic Management
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TMIC Traffic Management and Information Center

TMS Traffic Management System

UML Unified Modeling Language

VMS Variable Message Sign

WPAN Wireless Personal Area Network

WSAN Wireless Sensor and Actuator Network

ZDO ZigBee Device Object
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