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Abstract

I study the problem of a decision maker with rank-based preferences who

wants to rent an apartment. The objective is either to maximize the probability

of chosing the best apartment (best choice problem) or to minimize the expected

rank of the chosen apartment (expected rank problem). Information can be ob-

tained by sequentially inspecting the available options. A renting decision has to

be made immediately after inspection, and there is no recall. Options are modeled

by an i.i.d. sequenceX1, . . . , Xn withXi ∼ U [0, 1], where n is known. There are

two informational regimes: either, the decision maker knows the distribution of

the Xi and observes them directly (full information); or she does not know their

distribition and can only observe the relative ranks of the Xi (no information).

I study an extension where the number of options n is random, with a uniform

distibution on {1, . . . ,K}, whereK is known. I also consider an extension where

the landlord refuses to rent an inspected apartment with a certain probability.

The expected-rank problem under full information is an open problem and

is known as Robbin’s problem. The solution can be approximated (see Bruss

(2005)) by the optimal stratgy for maximizing E [XN ], where XN denotes the

chosen option. Maximizing E [XN ] was studied by Moser (1956).

For the best-choice problem under no information the solution is a threshold

strategy where the first k − 1 apartments are inspected but rejected, and the first

relatively best apartment thereafter is selected. Asymptotically, k = n
e and the

success probablility equals 1
e ≈ 0.37. For the best-choice problem under full

information the asymptotic success probability improves to ≈ 0.58, where the

optimal strategy is to stop with the first relatively best apartmentXi that lies above

a certain threshold di that only depends on the number of remaining options n−i.

These results are well known (see Gilbert and Mosteller (1966)).

For the expected-rank problem under no information the solution is to stop

with the first option whose relative rank ri lies below a certain threshold rank si

that depends on n and i. Asymptotically, the expected rank equals ≈ 3.87. This

finding is due to Chow et. al (1964). The approximative solution for the expected-

rank problem under full information is to stop with the first option Xi exceeding

a certain threshold si that only depends on the number of remaining options n−i.

I use simulations to show that the resulting expected rank is in the order of 2.
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1 A Motivating Example

Suppose you want to rent an apartment. There are three apartments available among

which you can choose. Your objective is to choose the apartment that you like best.

A priori you know nothing about the apartments. To obtain information, you can se-

quentially inspect the apartments in whatever order you like. Inspecting an apartment

only allows you to rank it relatively to the other options inspected so far, i.e., the only

information obtained from inspection are the relative ranks of the inspected options.

After ranking you have to decide whether you want to rent the apartment or not. There

is no possibility of recall, i.e., if you decide to reject the apartment there is no option

of renting it at a later time, after inspecting other options.

What strategy will maximize the probability that you rent the best among the three

availabe apartments? One strategy would be not to inspect any apartment and simply

choose one of them. This strategy ensures you a probability of
1

3
that you rent the

best apartment. If you want to have full information on all apartments you have to

inspect all of them. In this case you also have a probability of
1

3
of ending up with the

best option. This is because you do not rent the first two apartments that you inspect,

and only with probability
1

3
will the third and last option be the one that you like

best. So both no and complete inspection of the available options will guarantee you a

success probability of
1

3
. But can you do better? And the answer is yes! Consider the

following strategy:

1. You select one of the apartments and inspect it, but you do not rent it. You use

this apartment as benchmark.

2. You then inspect a second apartment and take it if you like it better than the

benchmark apartment. Otherwise you rent the remaining third apartment.

What success probability does this strategy ensure you? With probability
1

3
you pick

the second-best apartment as your benchmark, in which case you will for sure rent the

best option. Additionally, with probability
1

6
you chose the third-best option as your

benchmark and chose the best option as second apartment that you inspect, in which

case you also rent the best one. In total, this strategy ensures you a probability of
1

2
of

6
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renting the apartment that you like best. And, as can be shown, this strategy is optimal

in the sense that it provides the highest success probability among all strategies that

only use the relative ranks of the inspected apartments as available information (see

Remark 10).

2 Introduction

This thesis is concerned with problems of the type described in Section 1. I study the

problem of a decision maker who wants to rent an apartment and can obtain informa-

tion by sequentially inspecting the available options. After inspecting an apartment

the decision maker immediately has to decide whether she accepts or rejects an option,

without the possibility of recall. The decision maker has rank-based preferences, i.e.,

she derives utility only from the ranking of the chosen apartment relative to the other

available options. Her objective is either to maximize the probability of chosing the

best apartment, or to minimize the expected rank of the chosen apartment, where the

best apartment gets assigned rank 1. The informational regime is either such that she

can only rank the inspected apartments, or that she can express her evaluation of an

option by a subjective quality level and that she knows the probability distribution of

these levels across the population from which the options are drawn. The first regime

is referred to as no-information case, and the second as full-information case.

In the basic model the number of available apartments is fixed and ex-ante known

to the decision maker. In an extension I relax this assumption and study a model

where the number of options is random with a uniform distibution over a known range.

An interesting and counterintuitive observation in this setting is the following: if the

maximal number of options is small (1 < n < 6), then the uncertainty about the

number of options leads to an increased success probability. In another extension I

consider the possibility that a landlord might refuse to rent an inspected apartment,

with an ex-ante known probability.

The above described apartment hunting problems can be formulated as optimal stop-

ping problems. Such problems arise frequently in economics, e.g., in search theory,

option pricing or decision theory, and there is a large literature on them (see, e.g.,

7
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Ferguson (2011)). The prime example of an optimal stopping problem is the well-

known (Classical) Secretary Problem (see Gardener (1969)): An employer interviews

sequentially a known number of applicants for a secretary post and wants to hire the

best among the applicants, with the constraint that he has to accept or reject a candi-

date immediately after interviewing, without recall. The problem of maximizing the

probability of renting the best apartment is just an instance thereof.

The problem of minimizing the expected rank under knowledge of the quality levels

is a version of Robbin’s Problem (see Bruss (2005)). A complete solution is still un-

known. I discuss what is special about this problem and the resulting difficulties in

finding a solution. The solution of the problem can be approximated by the optimal

strategy for the related problem of maximizing the (observable) quality levels directly,

which was studied by Moser (1956). Intuitively, one might think that these problems

are equivalent, but it turns out that this is not the case. I use simulations to assess the

quality of the approximative solution in the original expected rank problem.

For the remaining problems I present the optimal strategies and the resulting success

probabilities and expected ranks, including their asymptotic behavior for a large num-

ber of available apartments. The solutions for the best-choice problems be found in

Gilbert and Mosteller (1966). The solution for the expected-rank problem under no

information can be found in Chow et. al (1964).

The above described informational regimes can be seen as boundary cases. I con-

sider a partial-information setting in which the quality levels are observable, but the

underlying distribution is unknown. I use a simply parametric setting in which infer-

ence can be used to approximate the underlying distribution. The decision maker, who

wants to choose the best option, can then use this approximation along with the opti-

mal strategy for the full-information case. Intuitively, the resulting success probability

should lie between the success probabilities of the optimal strategies of the no- and the

full-information setting. However, as it turns out the above described procedure does

not necessarily improve the success probability in comparison to the no-information

strategy.

The structure of the thesis is as follows: Section 3 incroduces the notion of an optimal

stopping problem and provides some relevant concepts and results from probability.

8
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The proofs are relegated to Appendix A. Section 4 specifies the model. Section 5 con-

siders the apartment hunting problem under no-information. It contains the extensions

of the model to a stochastic number of options, and the possible refusal of a landlord.

It also gives a digression on Bruss’ (2000) Odds-Theorem, which provides a general

solution for a class of optimal stopping problems that, for instance, contains the Clas-

sical Secretary Problen. Section 6 presents the apartment hunting problem under the

full-information regime. In Section 7 I study the above mentioned partial information

setting. In Section 8 I provide an outlook of possible extensions.

3 Preliminaries

All considerations in this thesis are based on a fixed complete probability space (Ω,F ,P).

All appearing random variables are defined on this space and are, if not explicitely

stated otherwise, univariate.

3.1 Optimal Stopping Problems

This section reviews the notion of an optimal stopping problem and presents a formally

concise description of it. The notation follows Ferguson (2011).

An optimal stopping problem consists of two components:

1. A description of the available information at each point in time.

2. A description of the reward for stopping at each point in time.

The decision maker who is facing the optimal stopping problem can at each point in

time decide, given the available information, whether to stop or not. The reward for

stopping at any point in time is a function of the available information at that point,

where the functional form is ex-ante known to her; the reward can, conditional on the

information, either be deterministic or stochastic. In the latter case she ex-ante knows

the functional form of the corresponding conditional probability distribution of the

reward. If she decides to stop, she will obtain the (potentially random) reward. The

9

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



objective of the decision maker is to find a strategy for stopping that maximizes her

expected reward and that only depends on the available information. Such a strategy is

called an optimal stopping rule.

This can be modeled in the following way. Fix an index set of the form T ⊆ N0 or

T = N0 ∪ {∞}. With the usual linear order structure the set T may be interpreted as

time. Let (Ft)t∈T be a filtration of F , with F0 = {∅,Ω} and F∞ = σ
(⋃

t∈T\{∞}Ft
)

1

if 0,∞ ∈ T . The weakly increasing sequence of σ-algebras F0 ⊆ F1 ⊆ · · · ⊆ F∞ ⊆

F models the evolution of available information over time. The collection of events Ft
represents the information available at time t ∈ T , where information means that you

can tell of every event in Ft whether it has occured or not. The interpretation of t = 0

is the opportunity of the decision maker to stop right at the beginning with the trivial

information {∅,Ω}. The interpretation of t = ∞ is the opportunity of the decision

maker to never stop, in which case her available information is described by F∞. Let

N = {N : (Ω,F) → (T, 2T ) | {N = t} ∈ Ft, t ∈ T} be the set of all stopping

times w.r.t. (Ft)t∈T . The event {N = t} can be interpreted as stopping at time t ∈ T

under the rule N . The event {N = ∞} can be interpreted as never stopping. The

Ft-measurability of {N = t} captures the idea that the decision whether to stop or

not at time t ∈ T has to be based on the available information at that time point.

Let Y = (Yt)t∈T be a sequence of random variables that is uniformly bounded from

above by an L1 random variable (i.e., with existing and finite expected value). This

assumption ensures the existence of E [Yt ] ∈ R ∪ {−∞} for all t ∈ T . For N ∈ N

and (Yt)t∈T define the random variable2

YN :=
∑
t∈T

Yt 1{N=t}. (1)

The random variable Yt models the (random) reward for stopping at time t ∈ T . Y∞

models the (random) reward for never stopping. YN may be interpreted as (random)

reward under the stopping rule N .
1The definition of the terminal σ-algebra F∞ is relevant because

⋃
t∈T Ft is a σ-algebra only if

(Ft)t∈T\{∞} is constant from some index onward (cf. Broughton and Huff (1977)).
2The fact that T is countable ensures the F-measurability of YN for any N ∈ N . Additional

conditions to ensure the measurability of YN in a more general setting (e.g., in continuous time with

T ⊆ R≥0), like the progressive measurability of (Yt)t∈T , are not required here. In such cases also an

alternative definition of YN , other than (1), is required.

10
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An optimal stopping problem w.r.t. the available information (Ft)t∈T and the rewards

Y then is defined as finding, if it exists, the maximizer N∗ ∈ N of E [YN ], i.e., finding

the stopping rule that satisfies

N∗ = arg max
N∈N

E [YN ] .

Under suitable conditions that allow for interchanging integration and summation3,

E [YN ] =
∑
t∈T

E
[
Yt 1{N=t}

]
=

∑
t∈T

E
[

E
[
Yt 1{N=t}

∣∣Ft ] ]
=

∑
t∈T

E
[

E [ Yt| Ft ] 1{N=t}
]

=
∑
t∈T

E
[
yt 1{N=t}

]
= E [ yN ] (2)

with yt := E [Yt | Ft ]. Equation (2) shows that (under the mentioned conditions) Yt

may be replaced by its conditional expectation w.r.t. Ft without changing the problem.

The optimal stopping rule (if it exists) is the same. Thus, we may w.l.o.g. assume that

Yt is adapted to (Ft)t∈T (by replacing Yt with yt if necessary). This resembles the

availability of the information contained in Ft when deciding whether or not to stop at

time t ∈ T .

Remark 1. In some cases it might be convenient to minimize E [YN ] instead of max-

imizing it. Both approaches are equivalent, since −max
N∈N

E [YN ] = min
N∈N

E [−YN ].

Remark 2. For T = {1, . . . , n} the problem is called a finite horizon problem with

horizon n. Such problems may be solved, for instance, by backward induction. To do

so, define Vn := yn and then recursively for 1 ≤ i ≤ n− 1

Vi := max {yi , E [Vi+1 | Fi ]}.
3Such conditions are, for instance,

1. T is finite, or

2. Yt ≥ 0 P-a.s. ∀t ∈ T (facilitating Lebesgue’s monotone convergence theorem), or

3. ∃ a random variable Z s.t. |Yt| ≤ Z P-a.s. ∀t ∈ T and E [Z ] < ∞ (facilitating Lebesgue’s

dominated convergence theorem).

11
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It is optimal to stop at stage 1 ≤ i ≤ n−1 iff yi ≥ E [Vi+1 | Fi ], which is also referred

to as principle of optimality.

Remark 3. The stopping problem may be based on the sequential observation of a se-

quence of random variables X = (Xt)t∈T (the observables) and a sequence of rewards

Y = (Yt)t∈T where every Yt may depend on the whole vector X . The distribution of

X and Y as well as their joint distribution are assumed to be known. The filtration

(Ft)t∈T is then generated by X , i.e., Ft = σ (Xi | i ≤ t) for t ∈ T . At time t ∈ T ,

the available information on which the stopping decision may be based are the ob-

servations X1 = x1, . . . , Xt = xt. Given these observations, the reward of stopping,

Yt, might still be a random variable. As discussed above, under suitable conditions

the rewards (Yt) may be replaced by their conditional expectations w.r.t. (Ft). Hence,

when deciding whether to stop or to continue at time t ∈ T the reward for stopping

equals w.l.o.g. yt(x1, . . . , xt) = E [ Yt | X1 = x1, . . . , Xt = xt ], which has the advan-

tage of being deterministic. This might come in quite handy in solving for the optimal

stropping rule.

3.2 Absolute and Relative Ranks of Random Variables

The following two rank concepts for a (finite) sequence of random variables are rele-

vant in this thesis:

Definition 1. Let X1, . . . , Xn be a finite sequence of random variables. The absolute

rank Rk of Xk, 1 ≤ k ≤ n, is defined by

Rk := Rk(X1, . . . , Xn) :=
n∑
i=1

1{Xk≤Xi}. (3)

The relative rank rk of Xk, 1 ≤ k ≤ n, is defined by

rk := rk(X1, . . . , Xk) :=
k∑
i=1

1{Xk≤Xi}. (4)

The absolute and relative ranks of X1, . . . , Xn are themselves random variables. For

1 ≤ k ≤ n, the relative rank rk is σ (X1, . . . , Xl)-measurable for k ≤ l ≤ n, whereas

Rk is only σ (X1, . . . , Xl)-measurable for l = n.

12
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For 1 ≤ k ≤ n and ω ∈ Ω, the realization Rk(ω) of the absolute rank is a number

in {1, . . . , n} and indicates the rank of the realization Xk(ω) among the realizations

X1(ω), . . . , Xn(ω) when ordered from the largest to the smallest value. In contrast,

for 1 ≤ k ≤ n and ω ∈ Ω, the realization rk(ω) of the relative rank is a number

in {1, . . . , k} and indicates the rank of the realization Xk(ω) only among the first k

realizations X1(ω), . . . , Xk(ω), again ordered from the largest to the smallest value.

The following fact about random variables will be used later on:

Lemma 1. Let X, Y be independent random variables with continuous c.d.f. FX and

FY , respectively. Then

P ({X = Y }) = 0. (5)

Proof. See Appendix A.

Remark 4. The fact that a random variable has a continuous c.d.f. does not imply that

it has a density. On the other hand, every random variable that has a density has a

continuous c.d.f..

Remark 5. Lemma 1 obviously holds for the case of two i.i.d. random variables

X1, X2 with continuous (univariate) c.d.f. F . It implies that ties between X1 and X2

occur only with probability 0. This can be generalized to the case of n > 2 i.i.d. ran-

dom variables X1, . . . , Xn with continuous c.d.f. F by noting that

P (∃i 6= j : Xi = Xj) = P

(⋃
i6=j

{Xi = Xj}

)
≤
∑
i6=j

P ({Xi = Xj}) = 0.

The next theorem provides some facts about relative ranks that will be of central im-

portance in the later parts of this thesis. It is attributed to Alfred Rényi (cf. Lemmas 1

and 2 in Rényi (1962)).

Theorem 1 (Rényi (1962)). LetX1, . . . , Xn be i.i.d. random variables with continuous

(univariate) c.d.f. F . Then,

(a) the corresponding absolute ranks Ri , 1 ≤ i ≤ n, are identically distributed and

have a discrete uniform distribution on {1, . . . , n}, and all events of the form

13
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{R1 = i1, . . . , Rn = in} with i1, . . . , in ∈ {1, . . . , n} and ij 6= ik for j 6= k

have the same probability

P ({R1 = i1, . . . , Rn = in}) =
1

n!
.

(b) the corresponding relative ranks r1, . . . , rn are stochastically independent, and

P ({rk = i}) =
1

k
, 1 ≤ k ≤ n, 1 ≤ i ≤ k,

i.e., rk has a discrete uniform distribution on {1, . . . , k}.

Proof. See Appendix A.
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4 The Model

The assumptions for the appartment hunting problem are:

(1) A decision maker wants to rent an apartment. There are n ∈ N apartments (op-

tions) that she can choose from, and she has to choose one of the options. The

number of options is ex-ante known to her.

(2) Every option 1 ≤ i ≤ n corresponds to an i.i.d. draw Xi from a continuous

c.d.f. F , where Xi represents a (subjective) quality level that describes how much

the decision maker likes option i.

(3) Ex-ante the decision maker has no information about an apartment, but she can

obtain information through inspecting the apartments sequentially.

(4) The informational regime is either:

(a) F is not known to the decision maker, but she has knowledge of i.i.d.-ness of

the draws. Inspection of option 1 ≤ i ≤ n does not reveal Xi, but only the

relative rank ri of option i among the first i options.

(b) F and i.i.d.-ness of the draws is known to the decision maker. Inspection of

option 1 ≤ i ≤ n reveals Xi.

(5) Immediately after inspecting an apartment the decision maker has to decide whether

she wants to rent or to reject it. There is no opportunity of recall, i.e., an apartment

that has once been rejected cannot be rented at a later point in time, after inspecting

other options.

(6) The objective of the decision maker is either

(a) to maximize the probability of choosing the best apartment (the option with

absolute rank 1) among all available options, or

(b) to minimize the expected absolute rank of the chosen option.

By identifying the decision to rent the i-th apartment (after inspection) with stopping

at time i, this can be formulated as optimal stopping problem.

15
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Remark 6. If the random variable X has a continuous c.d.f. F , then the random vari-

able F (X) ∼ U [0, 1]. The transformation x 7→ F (x) is monotonic. Hence, for two

independent random variables X1, X2 ∼ F , it holds that

X1(ω) ≤ X2(ω)⇐⇒ F (X1(ω)) ≤ F (X2(ω))

for P-a.a. ω ∈ Ω, since, by continuity of the c.d.f. of F (X), ties occur only with

probability zero. Working with (Xi)
n
i=1 or (F (Xi))

n
i=1 is for a rank-based context

equivalent.

A suitable model for the information structure satisfying the above assumptions is a

sequence of n i.i.d. random variables X1, . . . , Xn with Xi ∼ U [0, 1], i.e., with a

continuous uniform distribution on the interval [0, 1]. Using this distribution is justified

by Remark 6.

Under assumption (4a) the observables are the relative ranks, i.e., the decision maker

sequentially observes the relative ranks ri , 1 ≤ i ≤ n, of X1, . . . , Xn. Under assump-

tion (4b) the observables are the quality levels, i.e., the decision maker sequentially

observes X1, . . . , Xn. The filtration (Ft)nt=1 generated by the observables yields the

information structure for the problem.

The payoffs (Yt)
n
t=1 depend on the objective of the decision maker. For asssumption

(6a), only renting the best apartment counts. A suitable payoff structure for this is a

payoff of 1 if the best option (with absolute rank 1) is selected, and 0 else. For assump-

tion (6b), also options with absolute rank larger than 1 generate a positive "payoff". A

suitable payoff structure is a "payoff" of j if the option with absolute rank j is selected,

and the decision maker’s objective is to minimize the expected "payoff" (which could

be interpreted as expected "loss" in this case). For both objectives, the payoff for stop-

ping at time t, 1 ≤ t ≤ n−1, is a random variable at that time point, since the absolute

ranks of the options are not observable for t ≤ n − 1. As discussed in Remark 3, the

random payoffs (Yt)
n
t=1 may be replaced by their conditional expectations w.r.t. the

avaiable information Ft, denoted by (yt)
n
t=1.

Under assumption (6a) the problem is called the best choice problem; under assump-

tion (6b) the problem is called the expected rank problem.

16
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The literature (see Bruss (2005)) calls the informational regime (4a) for problems of

the above type, where F is unknown and the observables are only the relative ranks of

the Xi, the no-information case. The informational regime (4b) where F is known and

the observables are the Xi is called the full-information case.

Remark 7. By assumption (2) and Lemma 1, ties between the Xi occur only with

probability zero. Both objectives (6a) and (6b) are not affected by such null-events.

Hence, w.l.o.g. the decision maker is always able to rank the inspected options without

ties.

Remark 8. Another suitable, and more natural, model for the no-information case is

a Laplace probability space with Ω = {ω | ω is a permutation of {1, . . . , n}}, F = 2Ω

and P (ω) =
1

n!
for all ω ∈ Ω. Each ω = (ω1, . . . , ωn) corresponds to a realization

of the absolute ranks of the options, and each such realization is equally likely (by

Theorem 1). The observables are the relative ranks of the ωi, i.e., at time 1 ≤ i ≤ n the

decision maker observes ri(ω1, . . . , ωn). The advantage of the model proposed above

is its generality; it is suitable for both informational regimes by simply choosing the

observables appropriately.
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5 Apartment Hunting under No-Information

This section studies the apartment hunting problem under assumption (4a), i.e., the

decision maker sequentially observes only the relative ranks (ri)
n
i=1 of the inspected

apartments.

5.1 The Best-Choice Problem under No-Information

Remark 9. This problem is a version of the classical secretary problem (CSP), refor-

mulated to the apartment hunting setting. The solution, first given by Lindley (1961),

together with its properties are well known and there is an extensive literature on it.

The objective of the decision maker in the best-choice problem is to maximize the

probability of choosing the best apartment (i.e., assumption (6a)).

The payoff for renting apartment i , 1 ≤ i ≤ n, after inspection is

Yi = 1{Ri=1} =

 1, if Ri = 1,

0, else.

The expected payoff conditional on the observations Ii := {r1 = r̂1, . . . , ri = r̂i} is

yi = yi(r̂1, . . . , r̂i) = E [Yi | Ii ] = P ({Ri = 1} | Ii) =


i

n
, if r̂i = 1,

0, else.
(6)

The last identity in (6) follows from the fact that an option that has relative rank 1

among the first i options has a probability of
i

n
to have rank 1 among all options.

The objective function is

max
N∈N

P ({RN = 1}) = max
N∈N

n∑
i=1

E
[
yi 1{N=i}

]
, (7)

where N denotes the set of all stopping times w.r.t. the filtration generated by the

relative ranks.

Using (6) and (7), the problem can be solved with backward induction. However,

Ferguson (2011) proposes an alternative way that draws on the structure of the optimal

strategy, and this approach is pursued in the following.
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The first step is to determine the structure of the optimal strategy. Let Wi , 0 ≤ i ≤

n − 1, denote the probability of choosing the best apartment under the restriction that

the first i options are rejected after inspection. The relation Wi ≥ Wi+1 holds because

the optimal strategy rejecting the first i+ 1 options, resulting in the success probability

Wi+1, is available among the rules that reject the first i objects. (6) implies that it is

only optimal to stop with a candidate that has relative rank 1. The decision to stop with

option i if it has relative rank 1 is optimal iff
i

n
≥ Wi. This means that, if option i has

not relative rank 1 but
i

n
≥ Wi, it is optimal to stop with option i + 1 if it has relative

rank 1, since
i+ 1

n
>
i

n
≥ Wi ≥ Wi+1.

This implies that the optimal strategy is a threshold strategy, i.e., to reject the first r−1

options for some 1 ≤ r ≤ n and then rent the first apartment that has relative rank 1

(among all apartments inspected, including the first r − 1 options), if any such option

exists. The number r is called the threshold of the strategy. Thus, finding the optimal

strategy for the apartment hunting problem amounts to finding the optimal threshold

r∗.

The success probability P (r) of choosing the best apartment using the r-threshold rule

Nr, for 2 ≤ r ≤ n, is

P (r) = P ({RNr = 1})

= P ("best apartment is selected")

=
n∑
k=r

P ("apartment k is best and is selected")

=
n∑
k=r

P ("apartment k is best") P ("apartment k is selected" | "it is best")

=
n∑
k=r

1

n
P ("best among first k − 1 options appears before option r")

=
n∑
k=r

1

n

r − 1

k − 1
=
r − 1

n

n∑
k=r

1

k − 1
. (8)

The success probability of the 1-threshold rule (i.e., renting the first option) is

P (1) =
1

n
. (9)
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The optimal threshold r∗ is the maximizer of P (r) for 1 ≤ r ≤ n. The inequalities

P (r + 1) ≤ P (r)

⇐⇒ r

n

n∑
k=r+1

1

k − 1
≤ r − 1

n

n∑
k=r

1

k − 1

⇐⇒
n∑

k=r+1

1

k − 1
≤ 1 (10)

imply that r∗ is given by

r∗ = min

{
1 ≤ r ≤ n

∣∣∣∣∣
n∑

k=r+1

1

k − 1
≤ 1

}
. (11)

Theorem 2. The optimal strategyN∗BC−NI for the best-choice apartment hunting prob-

lem under no-information, i.e., under assumptions (1), (2), (3), (4), (4a), (5) and (6a),

is the r∗-threshold rule with r∗ given by (11). That is, it is optimal to reject the first

r∗ − 1 options and to rent the first apartment thereafter that has relative rank 1. For-

mally,

N∗BC−NI = min {r∗ ≤ i ≤ n | r̂i = 1} .

The corresponding success probability is given by (8) for r∗ > 1, and by (9) for r∗ = 1.

Proof. See above considerations.

Table 1 contains the optimal threshold r∗ and the corresponding success probability

P (r∗) for different values of the number of options n. Figure 1 depicts the optimal

threshold and the success probability for 1 ≤ n ≤ 100.

Table 1: Optimal thresholds r∗ and corresponding success probabilities P (r∗) for the

best-choice problem under no information.

n 1 2 3 4 5 6 7 8 9 10 20 30

r∗ 1 1 2 2 3 3 3 4 4 4 8 12

P (r∗) 1 .500 .500 .458 .433 .428 .414 .410 .406 .399 .384 .379

Remark 10. The values in Table 1 for n = 3 confirm the claim at the end of Section

1 that the optimal strategy for three available apartments is the threshold strategy with

r∗ = 2, with a success probability of 0.5.
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Figure 1: Optimal thresholds r∗ and corresponding success probabilities P (r∗) for the

best-choice problem under no information.

The optimal threshold and the success probability exhibit a certain regularity. The

optimal threshold seems to increase linearly in n. The success probability seems to

stabilize at a value of≈ 0.37 as n increases. To analyze the asymptotic properties of r∗

and P (r∗), Ferguson (2011) interprets the defining sum of r∗ in (11) as (upper) Rieman

sum of x 7→ x−1 for x ∈ [r , n]. This leads, for large n, to the approximation4

1 ≈
n∑

k=r∗+1

1

k − 1
≈ ln

( n
r∗

)
,

which yields

r∗ ≈ n

e
. (12)

Relation (12) implies that the optimal threshold rule, for large n, is to skip approxi-

mately a fraction of exp(−1) ≈ 0.368 of the available options. This relationship is

reflected by the linearity of the optimal threshold in Figure 1. I have run an OLS re-

gression of the optimal threshold values on the number of options for 1 ≤ n ≤ 100

which yields a slope coefficient of 0.369, with an adjusted R2 of 0.999. Repeating the

regression for 1 ≤ n ≤ 10 yields a slope coefficient of 0.370, with an adjusted R2 of

0.923. This indicates that Relation (12) is also a good approximation for small n.

4This approximation makes sense due to the decreasing curvature of x 7→ x−1 for large x.
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To get an approximation of the success probability P (r∗) for large n, Ferguson (2011)

uses the approximation (12) of r∗ and plugs it into the (exact) formula (8) for P (r∗) to

get

P (r∗) ≈

n

e
n

n∑
k=r∗+1

1

k − 1︸ ︷︷ ︸
≈1 by def. of r∗

≈ 1

e
≈ 0.368. (13)

The asymptotic relation (13) is reflected by the aforementioned stabilizing behavior of

the success probability in Figure 1.

To verify the analytical results I have simulated the success probabilities for the optimal

strategy for 1 ≤ n ≤ 30. As a benchmark I have also simulated the success probability

for the naive strategy of choosing randomly one of the available options. The exact

success probability for this strategy for the problem of n available options equals
1

n
.

The results of these simulations are displayed in Figure 2. They confirm the analytical

results.

The higher variation of the simulated success probabilities around the exact values

for the optimal strategy, in comparison to the results for the naive strategy, might be

explained by the higher (exact) success probability for the optimal strategy. For both

the optimal and the naive strategy each simulation run corresponds to a Bernoulli trial

with the corresponding exact success probability. The higher success probability of

the optimal strategy implies a higher variance of the corresponding Bernoulli trials.

This higher variance might be reflected in the higher variation of the average simulated

success probability of the optimal strategy around its theoretical value.

The increased congruence of the simulated and the exact success probablities in the

right plot, compared to the left plot, might be explained by the Law of Large Numbers.

5.1.1 A Digression on Bruss’ Odds-Theorem

Bruss (2000) presents a theorem on the solution of a class of optimal stopping problems

involving indicator functions of independent events. This theorem can be used to derive

the solution to the CSP, as well as to the best-choice apartment hunting problem under

no information. It also shows that the structure of the solution to the apartment hunting

problem presented in Theorem 2 is the same for a whole class of optimal stopping
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Figure 2: Simulated and exact success probabilities for the optimal and the naive strat-

egy in the best-choice problem under no information. (Number of simulation runs

r = 103 (left) and r = 104 (right); dots = simulated, dashed lines = exact)

problems. The optimal stopping rule is always a threshold rule, where the optimal

threshold is determined by summing up the odds of the defining events of the indicators

until this sum is larger or equal to 1.

The problem in Bruss (2000) is the following. Let A1, . . . , An be a sequence of in-

dependent events and 11, . . . ,1n be the sequence of corresponding indicator functions

(i.e., 1i := 1Ai
). A decision maker observes the indicators 1i sequentially. The indi-

cators are the only information that she has, and she may stop after each observation.

There is no recall of preceeding indicators. An event {1i = 1} is called a success.

The decision maker gets a payoff of 1 if she stops at the last success in the sequence

of observations, and she gets a payoff of 0 else. That is, her objective is to find (if it

exists) a stopping rule N∗ that maximizes the expected payoff

P := P ({1N = 1} ∩ {1N+1 = · · · = 1n = 0})

among all stopping rules N w.r.t. the filtration generated by the indicators 11, . . . ,1n.

The next theorem provides the solution to this problem.

Theorem 3 (Odds-Theorem, Bruss (2000)). Let 11, . . . ,1n be the indicator functions

of a sequence of independent events A1, . . . , An. Let pi = P (Ai), qi = 1 − pi and
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oi = pj/qj (i.e., oi denotes the odds of event Ai). Then an optimal rule N∗ for stopping

on the last success exists and is to stop on the first index (if any) k with 1k = 1 and

k ≥ s, where

s := sup

{
1, sup

{
1 ≤ k ≤ n

∣∣∣∣∣
n∑
j=k

oj ≥ 1

}}
, (14)

with sup{∅} := −∞. Thus, the optimal strategy is the s-threshold rule.

The expected payoff (the success probability) under the optimal strategy is given by

P =

(
n∏
j=s

qj

)(
n∑
j=s

oj

)
.

Proof. See Bruss (2000)

The odds-theorem 3 immediately provides the solution for the best-choice apartment

hunting problem under no-information. The corresponding events are Ai := {ri = 1},

and these are independent by Theorem 1. Using Theorem 1, pi =
1

i
, hence ri =

1

i− 1
.

The odds-theorem implies that the optimal strategy is the s-threshold rule with thresh-

old

s = sup

{
1, sup

{
1 ≤ k ≤ n

∣∣∣∣∣
n∑
j=k

1

j − 1
≥ 1

}}
.

Some algebra shows that indeed s = r∗, the optimal threshold for the problem deter-

mined in (11). The success probability according to the odds-theorem equals

P =
n∏
j=s

j − 1

j

n∑
j=s

1

j − 1
=
s− 1

n

n∑
j=s

1

j − 1
. (15)

For r = s, (15) coincides with the previously determined success probability (8).

Remark 11. A priori it is not clear (at least for n > 2) that the odds-theorem will

yield the same optimal strategy as the approach in section 5.1. The odds-theorem

maximizes the success probability over the set N1 of all stopping rules w.r.t. to the

filtration generated by the indicator functions of the events {ri = 1}, 1 ≤ i ≤ n; in

section 5.1 the objective was to maximize the success probability over the setN2 of all

stopping rules w.r.t. the filtration generated by the relative ranks r1, . . . , rn. The former

set of stopping rules is for n > 2 strictly smaller than the latter, since σ (11, . . . ,1m) is

a strict subset of σ (r1, . . . , rm) for 2 < m ≤ n. It is not clear whether the maximizer

over N2 is contained in N1. This problem vanishes once it is known that the optimal
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strategy over N2 is a threshold strategy. The maximizer over N2 is then contained in

N1, since it only requires information that is contained in the filtration generated by

the indicators, namely whether the option at hand has relative rank 1 (and whether the

number of the option is larger than the threshold).

5.1.2 Uncertain Availability of Options

In practice it might happen that the landlord refuses to rent an apartment to an inter-

ested applicant. In this case the decision maker has to continue with her search. The

possibility of refusal is not contained in the model so far. To study the effect of the

uncertain availability of apartments the model (i.e., assumptions (1), (2), (3), (4), (5),

(6a)) is extended by assumption

(7) If the decision maker decides to rent an option (with or without inspection), the

landlord may refuse to rent the apartment to her. This happens for each apartment

with a fixed and ex-ante known probability 1− p, with p ∈ (0, 1). If the apartment

is not avaiable, the search goes on. The decision of the landlord becomes known

to her after her renting decision. Whether apartment 1 ≤ i ≤ n is avaiable is

independent of the ranking of the apartments, and is also independent of whether

the other apartments j 6= i are avaiable upon request.

Remark 12. This extension draws on Smith (1975) who considers a modification of

the CSP in which each applicant declines an offer of employment with a certain prob-

ability. This modification is also discussed in Ferguson (2011).

The solution follows the steps of Ferguson (2011). By the same reasoning as for the

case without assumption (7), the optimal strategy for this problem is a threshold strat-

egy. The solution thus goes along the same lines as before. The success probability of

the r-threshold rule Nr, for 1 ≤ r ≤ n, is given by
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P (r) = P ({RNr = 1})

= P ("best apartment is selected")

=
n∑
k=r

P ("apartment k is available, is selected and is best")

=
n∑
k=r

P ("k available and best") P ("k selected" | "k available and best")

=
n∑
k=r

p

n
P ("option k is first available with rank 1 after option r − 1")

=
n∑
k=r

p

n

(
k−1∏
i=r

(
1− p

i

))
︸ ︷︷ ︸
=

Γ(r)Γ(k − p)
Γ(k)Γ(r − p)

=
p

n

n∑
k=r

Γ(r)Γ(k − p)
Γ(k)Γ(r − p)

, (16)

where Γ(.) denotes the Gamma function. The optimal threshold r∗ is the maximizer of

P (r) for 1 ≤ r ≤ n. Some algebra reveals that

P (r + 1) ≤ P (r)

⇐⇒ pΓ(r)

Γ(r − p+ 1)

n∑
k=r+1

Γ(k − p)
Γ(k)

≤ 1. (17)

Inequality (17) yields that r∗ is given by

r∗ = min

{
1 ≤ r ≤ n

∣∣∣∣∣ pΓ(r)

Γ(r − p+ 1)

n∑
k=r+1

Γ(k − p)
Γ(k)

≤ 1

}
. (18)

Thus, the optimal strategy for the problem with uncertain availability of options is the

r∗-threshold rule with r∗ given by (18). The success probability P (r∗) is given by (16).

Figure 3 depicts the optimal threshold and the success probability for the problem of

uncertain availability of options for 1 ≤ n ≤ 100 and p ∈ {.1, .3, .5, .7, .9, 1}.

Figure 3 reveals the qualitative influence of the parameter p on the optimal strategy.

An increase of p yields to lower optimal thresholds (i.e., it is optimal to accept apart-

ments earlier on), and to lower success probabilities (i.e., there is a cost in terms of

optimality). Both effects are intuitive:

• If the probability that options are not available increases, it seems reasonable to

start accepting apartments at an earlier stage (thus the lower threshold r∗).
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Figure 3: Optimal thresholds r∗ and corresponding success probabilities P (r∗) for

the best-choice problem under no information with uncertain avaiability of options

(p denotes the probability that an option is available).

• Earlier stopping leads to a lower benchmark (the best among the first r∗ − 1

options), and additionally apartments that the decision maker wants to rent might

not be available (thus the lower success probability).

For fixed p ∈ (0, 1), the qualitative behavior of the optimal threshold (linear growth in

n) and the corresponding success probability (stabilizing behavior as n → ∞) is the

same as for the case without uncertain availability of options (i.e., for p = 1). Ferguson

(2011) uses the convergence result

kp
Γ(k − p)

Γ(k)
−−−→
k→∞

1

to approximate the defining sum in (18) by an integral in order to derive that for large

n the optimal threshold r∗ = r∗(p) satisfies

r∗(p) ≈ n p
1

1−p . (19)

Relation (19) is reflected by the linear growth of r∗. Using the rule of L’Hospital shows

that the r.h.s. of (19) converges to
n

e
for p→ 1, which is in line with Relation (12) for

the case without uncertain availability of options.
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To get an approximation for P (r∗) for large n I use the exact formula (16) and approx-

imation (19) for r∗ to obtain

P (r∗) =
p

n

n∑
k=r

Γ(r)Γ(k − p)
Γ(k)Γ(r − p)︸ ︷︷ ︸

≈ r∗−p
p

by def. of r∗

≈ r∗ − p
n
≈ p

1
1−p . (20)

Relation (20) is reflected by the stabilizing behavior of P (r∗) for n→∞ in Figure 3.

Using again the rule of L’Hospital shows that the last expression in (20) converges to
1

e
for p→ 1, which is in line with Relation (13) for the case without uncertain availability

of options.

Remark 13. Tamaki (2001) provides a generalization of Bruss’ Odds-Theorem (see

Theorem 3) to the case of uncertain availability of options. His result can be used to

derive the optimal strategy for the problem studied in this section.

5.1.3 An Unknown Number of Options

A crucial component of assumption (1) is the ex-ante knowledge of the number of

options n ∈ N. In practice this number might not be known exactly. But the decision

maker might have a subjective belief on what the number of options is. To study such

a situation assumption (1) is replaced by

(1*) A decision maker wants to rent an apartment. There are n ∈ N apartments (op-

tions) that she can choose from, where n is a random variable that follows a dis-

crete uniform distribution on {1, . . . , N}, with some fixed N > 0. The number N

and the distribution of n are ex-ante known to the decision maker.

The remaining assumptions for the model in this section are (2), (3), (4), (5) and (6a).

Remark 14. This modification draws on Presman and Sonin (1972) who introduced

the idea of an unknown number of applicants to the CSP. This modification is also

discussed in Ferguson (2011).

The solution follows Ferguson (2011). Suppose the decision maker has just inspected

apartment 1 ≤ j ≤ N . Conditional on the event {n ≥ j} the distribution of n is
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uniform on the set {j, . . . , N}. If option j has relative rank 1 it is the best option

overall if the remaining k − j options, with j ≤ k ≤ N , all have relative rank larger

than 1. Thus, given the conditional distribution of n on {n ≥ j} and the distribution

of the relative ranks, the probability pj that option j is the best option overall is

pj =
1

N − j + 1

N∑
k=j

P ({rj+1 > 1, . . . , rk > 1})

=
1

N − j + 1

N∑
k=j

j

j + 1

j + 1

j + 2
. . .

k − 1

k
=

j

N − j + 1

N∑
k=j

1

k
. (21)

The sequence (pj)
N
j=1 is strictly increasing, i.e., pj+1 > pj for 1 ≤ j ≤ N − 1. This

follows because the difference

pj+1 − pj =

(
N + 1

(N − j + 1)(N − j)

N∑
k=j+1

1

k

)
− 1

N − j + 1

is strictly positive iff
1

N − j

N∑
k=j+1

1

k
>

1

N + 1
, (22)

which holds because the l.h.s. of (22) is the mean of numbers which are all strictly

larger than the r.h.s. of (22).

A reasoning analogous to the case with assumption (1) instead of (1*) shows that the

optimal strategy for this problem is a threshold strategy. Denote with Wj the success

probability if option j is reached but rejected. Since rejecting option j + 1 is possible

if option j is rejected, it holds that Wj ≥ Wj+1. It is optimal to rent apartment j iff it

has relative rank 1 and pj ≥ Wj . The strict monotonicity of (pj)
N
j=1 then implies that

pj+1 > pj ≥ Wj ≥ Wj+1.

Hence, if it is optimal to rent apartment j if it has relative rank 1, then it is optimal

to rent apartment j + 1 if this apartment has relative rank 1 but the previous has not.

This shows that the optimal strategy is a threshold strategy Nr with some threshold

1 ≤ r ≤ N .

The success probability usingNr conditional on the event {n < N} is zero (since there

are less apartments than the threshold). The success probability using Nr conditional
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Figure 4: Optimal thresholds r∗ and corresponding success probabilities P (r∗) for the

best-choice problem under no information with stochastic (n ∼ U({1, . . . , N})) and

deterministic (n = N ) number of options.

on the event {n ≥ N} is the same as if the number of options n was fixed and known

ex-ante, i.e. (see Equation (8)),

P ({RNr = 1} | {n ≥ N}) =


r − 1

n

n∑
i=r

1

i− 1
, for 2 ≤ r ≤ N,

1

n
, for r = 1.

(23)

Since the distribution of n is uniform on {1, . . . , N}, the (unconditional) success prob-

ability using Nr is given by

P (r) =


1

n

N∑
n=r

r − 1

n

n∑
i=r

1

i− 1
, for 2 ≤ r ≤ N,

1

N

N∑
n=1

1

n
, for r = 1.

(24)

The optimal threshold r∗ is the maximizer of P (r) for 1 ≤ r ≤ N and can be computed

numerically. Figure 4 depicts the optimal threshold and the corresponding success

probability for 1 ≤ n ≤ 100. For large N (and thus r∗ > 2) the defining sum for P (r)
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in (24) can be approximated by an integral (see Ferguson (2011)) as

P (r) =
1

n

N∑
n=r

r − 1

n

n∑
i=r

1

i− 1
≈ x

∫ 1

x

1

y

∫ y

x

1

z
dz dy

=
1

2
x(log(x))2, (25)

if x ≈ r

n
. The last expression in (25) has a unique maximum at x∗ = exp(−2) ≈

0.135. Thus, for large n, the optimal threshold r∗ satisfies

r∗ ≈ n exp(−2). (26)

Plugging (26) into (25) yields that for large n

P (r∗) ≈ 2 exp(−2) ≈ 0.271.

These findings are also reflected by the linear growth of r∗ and the stabilizing behavior

of P (r∗) in Figure 4.

An interesting observation is the following. One might intuitively expect that the un-

certainty about n leads to a cost in terms of optimality compared to the case where

n = N with probability one (i.e., when the number of options is known ex-ante).

Surprisingly this is not true for small numbers of options: for 2 ≤ N ≤ 5 the probabil-

ity of success under the optimal strategy is strictly larger in the case with uncertainty

than in the deterministic case (for N = 1 the success probabilities trivially coincide).

Figure 5 depicts the optimal threshold and the success probability for both cases for

1 ≤ N ≤ 6. To investigate this counterintuitive result consider the case of N = 2. For

the deterministic case, where N is known ex-ante then, both the 1- and the 2-threshold

rule yield a success probability of
1

2
. In the stochastic case, where N is uniformly

distributed on {1, 2}, the success probability of the 1-threshold rule equals
3

4
; this is

because with probability
1

2
the number of options is 1, in which case the decision

maker for sure chooses the best option, and with probability
1

2
the number of options

is 2, in which case the option that she chooses (the first one) is best with probability
1

2
.

The 2-threshold rule in this case yields a success probability of only
1

4
. The optimal

strategy is thus the 1-threshold strategy for both the deterministic and the stochastic

case. For the case with uncertainty this strategy is optimal on the events {n = 1} and
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{n = 2}. The conditional success probabilities, both weighted by
1

2
, yield the uncon-

ditional success probability. The success probability for the certainty case is identical

to the conditional success probability on the event {n = 2} in the uncertainty case,

weighted by 1. The higher weight of 1 of this conditional success probability in the

unconditional success probability for the certainty case does not outweigh the contri-

bution of the conditional success probability on the event {n = 1} in the unconditional

success probability for the case with uncertainty. Figure 5 shows that for N = 3 the

optimal strategy in the uncertainty case is still the 1-threshold rule. This rule is only

optimal on the events {n = 1} and {n = 2}, but not on {n = 3}. The success

probability in the uncertainty case is thus a linear combination of the optimal success

probabilities on the events {n = 1} and {n = 2} and a suboptimal success proba-

bility on the event {n = 2}, each weighted by
1

3
. The optimal rule for the certainty

case is the 2-threshold rule, and this is also the optimal rule on the event {n = 3}.

The success probability for the certainty case is thus the optimal success probability

on the event {n = 3}, weighted by 1. The higher optimal success probabilities on

the events {n = 1} and {n = 2}, weighted by
1

3
, still outweigh the optimal success

probability on the event {n = 3} for the certainty case. Continuing with these con-

siderations a pattern becomes visible: as N increases, the fraction of events on which

the threshold rule for the uncertainty case is optimal decreases (see Figure 6), and the

weights of those events, especially for small values of n, where this strategy is optimal

are decreasing as well. This constitutes the cost in terms of optimality caused by the

uncertainty about n for N getting larger. From N = 6 onwards the optimality loss in

terms of a decreased weighted conditional success probability on the individual events

{n = i} for 1 ≤ i ≤ N dominates the (overall) unconditional success probability.

5.2 The Expected-Rank Problem under No-Information

Remark 15. The underlying optimal stopping problem was introduced by Lindley

(1961). A complete discussion, including the asymptotics of the problem, is given by

Chow et al. (1964)).

The objective of the decision maker in the expected-rank problem is to minimize the
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Figure 5: Optimal thresholds r∗ and corresponding success probabilities P (r∗) for the

best-choice problem under no information with stochastic (n ∼ U({1, . . . , N})) and

deterministic (n = N ) number of options.
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N, on which the optimal strategy for the case of an uncertain number of options is

(conditionally) optimal.
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expected absolute rank of the chosen apartment (i.e., assumption (6b)).

The payoff for renting apartment i, 1 ≤ i ≤ n, after inspection is

Yi = Ri. (27)

The probability of the event {Ri = k}, 1 ≤ k ≤ n, conditional on the observations

Ii := {r1 = r̂1, . . . , ri = r̂i} is

P ({Ri = k} | Ii) = P ({Ri = k} | {ri = r̂i}) =

(
n

i

)−1(
k − 1

r̂i − 1

)(
n− k
i− r̂i

)
, (28)

i.e., the distribution of Ri conditional on Ii is a negative hypergeometric distribution

with parameters n, i and r̂i. Equation (28) holds because, by Theorem 1, all permu-

tations of the abolute ranks are equally likely, and the probability that option i with

absolute rank r̂i among the first i options has absolute rank k among all options is the

same as the probability that an option with absolute rank k is found in a random sample

of size i and has absolute rank r̂i there.

Using (28), the expected payoff for renting apartment i conditional on Ii is

yi = yi(r̂1, . . . , r̂i) = E [Ri | Ii ] =
n∑
k=1

k P ({Ri = k} | {ri = r̂i})

=

(
n

i

)−1 n∑
k=1

k

(
k − 1

r̂i − 1

)(
n− k
i− r̂i

)
(29)

=

(
n

i

)−1

r̂i

n∑
k=1

(
k

r̂i

)(
n− k
i− r̂i

)
︸ ︷︷ ︸

=

(
n+ 1

i+ 1

)
=
n+ 1

i+ 1
r̂i.

The objective function is

min
N∈N

E [RN ] = min
N∈N

n∑
i=1

E
[
yi 1{N=i}

]
, (30)

where N denotes the set of all stopping times w.r.t. the filtration generated by the

relative ranks (ri)
n
i=1.

Following Chow et al. (1964), backward induction is used to solve the problem. Let

Wi , 0 ≤ i ≤ n − 1, denote the expected rank of the chosen apartment under the

optimal strategy among all strategies that satisfy the restriction that the first i options
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are rejected after inspection. The optimal strategy that corresponds to W0 gives the

solution to the expected-rank apartment hunting problem.

The initial condition for the backward induction is

Wn−1 = E [ yn(rn) | Ii−1 ] = E

[
n+ 1

n+ 1
rn

∣∣∣∣ In−1

]
= E [ rn ] =

1

n

n∑
j=1

j =
n+ 1

2
.

(31)

The third equality in (31) is due to the independence of the ri. The backward induction

recursion for 1 ≤ i ≤ n− 1 is

Wi−1 = E [ min (yi(ri) , Wi) | Ii−1 ] = E

[
min

(
n+ 1

i+ 1
ri , Wi

)]
=

1

i

i∑
j=1

min

(
n+ 1

i+ 1
j , Wi

)
. (32)

Expression (32) for Wi−1 can be simplified by using the floor function b.c, where

bxc = max{y ∈ Z | y ≤ x}, x ∈ R. With

si :=

⌊
i+ 1

n+ 1
Wi

⌋
, 1 ≤ i ≤ n− 1, (33)

the r.h.s. of (32) becomes

Wi−1 =
1

i

(
n+ 1

i+ 1
(1 + 2 + · · ·+ si) + (i− si)Wi

)
=

1

i

(
n+ 1

i+ 1

si(si + 1)

2
+ (i− si)Wi

)
. (34)

Equations (31) and (32) imply

W0 ≤ W1 ≤ · · · ≤ Wn−1 =
n+ 1

2
.

Equation (33) implies

s1 ≤ s2 ≤ · · · ≤ sn−1 =
⌊n

2

⌋
.

The sequenceW1, . . . ,Wn−1 implicitly characterizes the optimal strategy: Equation (32)

shows that it is optimal to stop with option i after inspection if it is the first option that

satisfies

r̂i ≤ Wi
i+ 1

n+ 1

⇐⇒ r̂i ≤ si. (35)

Using (35), the optimal strategy can be described by the vector s := (s1, . . . , sn−1).

35

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



Theorem 4. The optimal strategy N∗ER−NI for the expected-rank apartment hunting

problem under no-information, i.e., under assumptions (1), (2), (3), (4), (4a), (5) and

(6b), is to stop with the first option i that satisfies r̂i ≤ si , with si defined by (33).

Formally,

N∗ER−NI = min {1 ≤ i ≤ n | r̂i ≤ si} .

The expected absolute rank of the chosen apartment under this strategy equals W0,

recursively defined by (31) and (32).

Proof. See above considerations.

Table 2 contains the optimal strategies s and the corresponding expected absolute ranks

for different values of the number of options n. Figure 7 depicts the expected absolute

rank under the optimal strategy for 1 ≤ n ≤ 100.

Table 2: Optimal strategies s and corresponding expected absolute ranks W0 for the

expected-rank problem under no information.

n W0 s = (s1, . . . , sn−1)

1 1.00 -

2 1.50 (1)

3 1.67 (0, 1)

4 1.88 (0, 1, 2)

5 2.05 (0, 1, 1, 2)

6 2.22 (0, 0, 1, 2, 3)

7 2.28 (0, 0, 1, 1, 2, 3)

8 2.40 (0, 0, 1, 1, 2, 2, 4)

9 2.50 (0, 0, 0, 1, 1, 2, 3, 4)

10 2.56 (0, 0, 0, 1, 1, 2, 2, 3, 5)

20 3.00 (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 7, 10)

30 3.20 (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 11, 15)

Figure 7 indicates a stabilizing behavior of the expected absolute rank Wn for n→∞

between 3.5 and 4. Chow et al. (1964) show thatW0 = W0(n) is strictly monotonically
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Figure 7: Expected absolute rank under the optimal strategy for the expected-rank

problem under no information.

increasing in n and that

W0 −−−→
n→∞

∞∏
j=1

(
j + 2

j

) 1
j+1

≈ 3.8695. (36)

Given the monotonicity of W0, the r.h.s. of (36) provides an upper bound for the ex-

pected absolute rank for an arbitrary number of options n. For large n, the expected

absolute rank under the optimal strategy is approximately equal to this upper bound.

Remark 16. Bruss (2005) provides a neat non-technical argument for the (weak)

monotonicity of W0(n) for the full-information case. The same idea works for the

no-information case as well. Suppose there is a prophet who can at the beginning fore-

see the index 1 ≤ j ≤ n of the option with absolute rank Rj = n (i.e., the worst

option). Apart from this he has no further prophetic abilities. His expected rank un-

der optimal behavior, W P
0 (n) say, has to satisfy W P

0 (n) ≤ W0(n), since he cannot

do worse than under the optimal strategy without the additional information of the

index j. Optimal behavior forces the prophet to reject option j. This implies that

W P
0 (n) = W0(n− 1), since the prophet has to solve the problem of choosing the best

apartment among the remaining n− 1 options. Hence, W0(n− 1) ≤ W0(n) for n ≥ 2.

To extend this result and see that this equality is strict note that, by Theorem 1, the
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event {R1 < R2 < · · · < Rn} has strictly positive probability
1

n!
. On this event the

worst option is the last one, i.e., j = n. The prophet would thus skip option n, whereas

the optimal strategy without the prophetic ability would be to stop with the last option

(since si < i for all 1 ≤ i ≤ n− 1 and n ≥ 2). Thus, on this event the prophet would

do strictly better. Hence W0(n− 1) < W0(n) for n ≥ 2.

To verify the analytical results I have simulated the expected absolute rank for the

optimal strategy for 1 ≤ n ≤ 30. As a benchmark I have simulated the expected

absolute rank for the naive strategy of choosing randomly one of the available options.

The exact expected absolute rank for this strategy for the problem of n available options

equals
1

n

n∑
i=1

i =
n+ 1

2
. The results of these simulations are displayed in Figure 8.

They confirm the analytical results.
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Figure 8: Simulated and exact expected absolute ranks for the optimal and the naive

strategy in the expected-rank problem under no information. (Number of simulation

runs r = 103 (left) and r = 104 (right); dots = simulated, dashed lines = exact)
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6 Apartment Hunting under Full-Information

This section studies the apartment hunting problem under assumption (4b), i.e., the

decision maker sequentially observes the quality levels (Xi)
n
i=1 of the inspected apart-

ments and knows the underlying distribution of these levels.

6.1 The Best-Choice Problem under Full-Information

Remark 17. The underlying optimal stopping problem was, according to Bruss (2005),

first solved by Gilbert and Mosteller (1966) in the context of a game.

The objective of the decision maker in the best-choice problem is to maximize the

probability of choosing the best apartment (i.e., assumption (6a)).

The payoff for renting apartment i, 1 ≤ i ≤ n, after inspection is

Yi = 1{Ri=1} =

1, if Ri = 1,

0, else.

The expected payoff conditional on the observations Ii := {Xi = x1, . . . , Xi = xi} is

yi = yi(x1, . . . , xi) = E [Yi | Ii ] = P ({Ri = 1} | Ii) =

x
n−i
i , if r̂i = 1,

0, else.
(37)

The last identity in (37) follows from the fact that an option that has relative rank 1

among the first i options has a probability of xn−ii to have rank 1 among all options.

This is because the (Xj)
n
j=1 are i.i.d., with P ({Xj ≤ xi}) = xi , and there are n − i

options left.

The objective function is

max
N∈N

P ({RN = 1}) = max
N∈N

n∑
i=1

E
[
yi 1{N=i}

]
, (38)

where N denotes the set of all stopping times w.r.t. the filtration generated by the

quality levels (Xj)
n
j=1.

The solution follows Gilbert and Mosteller (1966). The first step is to determine the

optimal strategy. LetWi | Ii , 0 ≤ i ≤ (n−1), denote the optimal probability of choos-

ing the best apartment conditional on the observations Ii := {Xi = x1, . . . , Xi = xi}
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and under the restriction that the first i ≤ n− 1 options are rejected. By an analogous

reasoning as in Section 5.1, the relation Wi | Ii ≥ Wi+1 | Ii+1 holds. Equation (37)

implies that it is only optimal to stop with an option that has relative rank 1. By the

principle of optimality, the decision to stop with option i if it has relative rank 1 is

optimal iff xn−ii ≥ Wi | Ii. If

xn−ii = Wi | Ii , (39)

the decision maker is indifferent between renting apartment i and continuing with her

search. To find the optimal strategy, the values of the xi that solve equation (39) for

every 0 ≤ i ≤ (n − 1) have to be found, i.e., the value of xi that makes the success

probability for stopping with xi the same as for rejecting xi. If option i has relative

rank 1 and xn−1
i = Wi | Ii, but the decision maker decides to continue, it is optimal to

stop with the first option l > i that satisfies xl ≥ xi, since

xn−ll > xn−ii = Wi | Ii ≥ Wl | Il. (40)

Let j := n− i, i.e., j denotes the number of remaining options. If there is exactly one

option among the last j options that has a quality at least as high as xi, the decision

maker will choose it (since it is only optimal to stop with options that have relative

rank 1). This happens with probability(
j

1

)
xj−1
i (1− xi).

If there are exactly two such options, there is a probability of 0.5 that the decision

maker will stop with the best (since the Xi are independent). The success probability

is then
1

2

(
j

2

)
xj−2
i (1− xi)2.

Repeating this argument and summing up shows that the probability of success for

rejecting option i if it has relative rank 1 and quality level xi equals

j∑
k=1

1

k

(
j

k

)
xj−ki (1− xi)k. (41)

Equating (41) with xji (the success probability for stopping with option i) gives an
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equation whose root is the desired indifference quality level:

xj =

j∑
k=1

1

k

(
j

k

)
xj−k(1− x)k

⇐⇒ 1 =

j∑
k=1

(
j

k

)
zj

k
with z :=

1− x
x

. (42)

In line with Gilbert and Mosteller (1966) the solution of (42) is denoted as bj , where j

denotes the number of remaining options, and the decision numbers di are defined by

di :=

 0 , for i = 0,

bn−i , for 1 ≤ i ≤ n− 1.

The numbers bj only depend on j, the number of remaining options, and not on n, the

total number of options. Relation (40) implies that the bj are strictly monotonically

increasing, and that the decision numbers di are strictly monotonically decreasing.

Table 6.1 contains the values of bj for 1 ≤ j ≤ 30. The optimal strategy can be

described by the vector d := (d1, . . . , dn).

Theorem 5. The optimal strategyN∗BC−FI for the best-choice apartment hunting prob-

lem under full information, i.e. under assumptions (1), (2), (3), (4), (4b), (5) and (6a),

is to stop with the first option i , 1 ≤ i ≤ (n − 1), that has relative rank 1 and that

satisfies xi ≥ di = bn−i , with bn−i defined as solution of equation (42) for j = n − i.

Formally,

N∗BC−FI = min {1 ≤ i ≤ n | Xi = max(X1, . . . , Xi) ∧Xi ≥ di}

Proof. See above considerations.

The next step is to determine the success probability under the optimal strategy. Let

1 ≤ i ≤ k ≤ n − 1. The probability of the event that option i has absolute rank 1

among the first k options, i.e., Xi = max(X1, . . . , Xk), and that Xi < di equals
dri
r

.

The probability of the event that option i has absolute rank 1 among all options, i.e.,

Xi = max(X1, . . . , Xn), and that Xi < di equals
dni
n

. The difference

dri
r
− dni

n
(43)
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Table 3: Optimal decision numbers bj for the best-choice problem under full-information.

j bj j bj j bj j bj j bj j bj

1 0.5000 6 0.8778 11 0.9305 16 0.9515 21 0.9627 26 0.9697

2 0.6899 7 0.8939 12 0.9361 17 0.9542 22 0.9644 27 0.9708

3 0.7758 8 0.9063 13 0.9408 18 0.9567 23 0.9659 28 0.9719

4 0.8246 9 0.9160 14 0.9448 19 0.9589 24 0.9673 29 0.9728

5 0.8559 10 0.9240 15 0.9484 20 0.9609 25 0.9686 30 0.9737

is the probability of the event that option i is the best option among the first k options,

that Xi < di, and option i is not the best option among all choics. Since Xi < di,

the decision maker would not choose option i under the optimal strategy on this event.

Since the di are monotonically decreasing, she would neither choose one of the options

before option i. Summing (43) over 1 ≤ i ≤ r thus yields the probability of the event

that no choice is made among the first k options and that the best option is among the

remaining n− k options. Conditional on this event, the probability that option k+ 1 is

the best option equals
1

n− k
. The probability that no choice is made among the first k

options and that option k + 1 is best overall equals

1

n− r

r∑
i=1

(
dri
r
− dni

n

)
. (44)

The probability that option k + 1 is best overall and that the decision maker rejects

it under the optimal strategy equals
dnk+1

n
. Hence, the probability under the optimal

strategy that the decision maker chooses option k+1 and that this option is best overall

equals

P (k + 1) :=

(
1

n− r

r∑
i=1

(
dri
r
− dni

n

))
−
dnk+1

n
, 1 ≤ k ≤ n− 1. (45)

The probability that the first option has absolute rank 1 equals
1

n
. The probability that

the first option has absolute rank 1 and that it is rejected under the optimal strategy

equals
dn1
n

. Hence, the probability that the decision maker chooses option 1 when it is

the best overall equals

P (1) :=
1

n
− dn1

n
=

1− dn1
n

. (46)
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The success probability under the optimal strategy N∗BC−FI for the best-choice apart-

ment hunting problem under full information is thus given by

P ({RN∗ = 1}) = P ("best apartment is chosen")

=
n−1∑
k=0

P ("apartment k + 1 is chosen and it is best")

=
n−1∑
k=0

P (k + 1), (47)

where P (k + 1) is given by (45) and (46). Figure 9 shows the success probablity for

1 ≤ n ≤ 50.
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Figure 9: Success probability under the optimal strategy for the best-choice problem

under full information.

By replacing sums with integrals in (45) and (47) and passing to the limit, Gilbert and

Mosteller (1966) show that

P
({
RN∗

BC−FI
= 1
})
−−−→
n→∞

0.580164 . . . . (48)

This is also reflected in Figure 9 and Table 4.

Thus, asymptotically the success probability from using the optimal strategy improves

from approx.
1

e
≈ 0.368 in the no-information case (see Equation (13)) to ≈ 0.580 in

the full-information case, which is a relative improvement of approx. 58%.
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Table 4: Success probability under the optimal strategy N∗ = N∗BC−FI for the best-

choice problem under full information.

n P ({RN∗ = 1}) n P ({RN∗ = 1}) n P ({RN∗ = 1})

1 1.000 6 0.629 20 0.594

2 0.750 7 0.622 30 0.589

3 0.684 8 0.616 40 0.587

4 0.655 9 0.612 50 0.586

5 0.639 10 0.609 100 0.583

To verify the analytical results I have simulated the success probability for the optimal

strategy under full information for 1 ≤ n ≤ 30. As benchmarks I have simulated

the success probabilities for the optimal strategy under no information and the naive

strategy of choosing randomly one of the available options. The results are displayed

in Figure 10.

Remark 18. Under the optimal strategy, the decision whether to stop or not with op-

tion 1 ≤ i ≤ n−1 depends on the number of remaining options n− i, the quality level

xi of option i, and the relative rank of Xi. That is, ri = ri(X1, . . . , Xi) is a sufficient

summary statistic that contains all the relevant information about the previously re-

jected options (the history of the problem). Apart from the relative ranking, the quality

levels x1, . . . , xi−1 itself play no role for the optimal decision at stage i.

6.2 The Expected-Rank Problem under Full Information

Remark 19. The underlying optimal stopping problem is known as Robbin’s problem

(see Bruss (2005)). A general solution for it is not known. For a detailed discussion

and an account of its history see Bruss (2005) and Bruss and Ferguson (1993).

The objective of the decision maker in the expected-rank problem is to minimize the

expected absolute rank of the chosen apartment (i.e., assumption (6b)), with ranks

defined as in Section 3.2. With this definition, the largest Xi gets assigned the smallest
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Figure 10: Simulated and exact success probabilities for the best-choice problem under

the optimal strategies in the full- and no-information regime and under the naive strat-

egy. (Number of simulation runs r = 103 (left) and r = 104 (right); dots = simulated,

dashed lines = exact)

absolute rank Ri = 1. However, in this section the ’inverse’ definitions of ranks, i.e.,

R̃k := R̃k(X1, . . . , Xn) :=
n∑
i=1

1{Xi≤Xk} (49)

and

r̃k := r̃k(X1, . . . , Xk) :=
k∑
i=1

1{Xi≤Xk}, (50)

where the largest Xi gets assigned the largest absolute rank R̃i = n, is more conve-

nient (e.g., because of Relation (61)). This is also the definition of ranks used in the

relevant literature (Bruss and Ferguson (1993), Assaf and Samuel-Cahn (1996)), and

this convention will be adopted for this section. With absolute ranks defined by (49),

the objective of the decision maker is to maximize the expected rank of the chosen

apartment.

The payoff for renting apartment i, 1 ≤ i ≤ n, after inspection is

Yi = R̃i. (51)

The expected payoff for renting apartment i conditional on the observations
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Ii := {Xi = x1, . . . , Xi = xi} is

yi = yi(x1, . . . , xi) = E
[
R̃i

∣∣∣ Ii ] = E

[
r̃i +

n∑
j=i+1

1{Xj≤Xi}

∣∣∣∣∣ Ii
]

= ̂̃ri + (n− i)xi.

(52)

The objective function is

max
N∈N

E
[
R̃N

]
= max

N∈N

n∑
i=1

E
[
yi 1{N=i}

]
, (53)

where N denotes the set of all stopping times w.r.t. the filtration generated by the

quality levels (Xj)
n
j=1.

As usual, using (51), (52) and (53), the problem may be solved by backward induc-

tion. However, this method turns out to be cumbersome and involved, even for small

numbers of n. Using "a considerable amount of arithmetic", Assaf and Samuel-Cahn

(1996) give the solution via backward induction for n = 3:

N∗ER−FI = min{1 ≤ k ≤ 3 | 1−Xk ≤ p
(3)
k (X1, . . . , Xk−1)} (54)

with

p
(3)
1 =

1

4

(
5−
√

13
)
≈ 0.3486.

p
(3)
2 (x1) =


x1, if p(3)

1 ≤ 1− x1 ≤
2

3
,

1− x1

2
, if

2

3
≤ 1− x1 ≤ 1.

(55)

p
(3)
3 (x1, x2) ≡ 1. (56)

The expected rank under this strategy for n = 3 equals ≈ 1.392.

The method of backward induction does not yield much intuition on a general solution

for an arbitrary number of options n. A general solution would be an algorithm, that

can be implemented numerically, that only takes the number n as input and returns the

corresponding optimal strategy for the problem. For the previous problems in sections

5.1, 5.2 and 6.1, as shown there, such algorithms exists. For the problem at hand in

this section no such algorithm is known yet.

Although a general solution is not available, the structure of the optimal strategy for

arbitrary n is known (and is analogous to the structure of (54)).
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Theorem 6 (Proposition 7 in Bruss and Ferguson (1993)). For all n, the optimal rule

is a stepwise-monotone-increasing threshold function rule defined by the stopping time

N∗ := min{1 ≤ k ≤ n | 1−Xk ≤ p
(n)
k (X1, . . . , Xk−1)}, (57)

where the threshold functions p(n)
k (.) satisfy

0 ≤ p
(n)
k (X1, . . . , Xk−1) ≤ p

(n)
k+1(X1, . . . , Xk) a.s., (58)

and

p
(n)
n−1(X1, . . . , Xn−1) < 1 ≡ p(n)

n (.) a.s.. (59)

Proof. See Bruss and Ferguson (1993).

Thus, under the optimal strategy, if it is optimal to stop with Xk at stage k, then it

would also be optimal to stop with a larger value X̃k > Xk at stage k. For each history

X1, . . . , Xk−1 for which it is optimal to stop with Xk at stage k, it is optimal to stop

with Xk+1 ≥ Xk at stage k + 1.

A general solution would require the knowledge of all threshold functions p(n)
k (.) for

1 ≤ k ≤ (n− 1) and all n ≥ 1. As Assaf and Samuel-Cahn (1996) put it: "Finding

explicit expressions for p(n)
k (.) when n > 3 is a formidable task, and seems to lend

little insight to the asymptotic value [of the problem]."

In the expected-rank problem under no-information (see Section 5.2), the optimal strat-

egy, described by the vector s = (s1, . . . , sn−1), is to stop with the first option i that

satisfied r̂i ≤ si. The threshold ranks si only depend on i and n, but not on the history

of previous observations r̂1, . . . , r̂i−1. As discussed in Remark 18, all that is needed for

deciding whether to stop is the relative rank r̂i of the option at hand, i.e., r̂i is a suffi-

cient summary statistic of the history of the problem at stage i. A source of complexity

in the full-information case is the fact that the threshold functions p(n)
k (.) depend on

the entire history of the problem, i.e., on X1, . . . , Xk−1. As Bruss (2005) states: "Full

history dependence is a strong result, actually proving that the problem is complex".

This is made precise in the following theorem.

Theorem 7 (Proposition 8 in Bruss (2005)). The optimal stopping time N∗, given by

(57), which yields the optimal expected rank E [RN∗ ], is fully history dependent in the
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sense that, at each step 2 ≤ k ≤ n− 1, the decision to accept or refuse Xk depends on

all values ofX1, . . . , Xk, and no nontrivial summary satistic ofX1, . . . , Xk is sufficient

to achieve E [RN∗ ].

Proof. See Bruss and Ferguson (1993), Section 4.2.

The proof of Theorem 7 is technical in nature, but Bruss (2005) summarizes the un-

derlying ideas in a simpler style:

Suppose there are two decision makers. The first (male) has no prophetical abilities

and behaves optimally (i.e., he follows N∗). The second (female) is a ’half-prophet’ in

the following sense: if she "enters" the problem at stage 1 ≤ k ≤ n− 1, which means

that she observes the realizations of X1, . . . , Xk but cannot choose one of the options

1 to k − 1, then she can foresee the future realizations of Xk+1, . . . , Xn conditional

on the decision that she rejects option k and goes on to stage k + 1. Thus, both deci-

sion makers face the same expected absolute rank of stopping with option k, given by

yk = yk(x1, . . . , xk) = ̂̃rk + (n − k)xk (see (52)), since both have the same available

information Ik = {X1 = x1, . . . , Xk = xk}. However, to decide whether to stop or

not with option k, he has to compute the expected payoff (the expected absolute rank)

for continuing, Wk say. That is, he has to solve Robbin’s problem at stage k. She, on

the other hand, only has to compute the expected absolute rank of max(Xk+1, . . . , Xn)

conditional on Ik, denoted by WHP
k , since, if she decides to continue, her prophetic

abilities reveal the future realization of max(Xk+1, . . . , Xn), and she can stop precisely

at the corresponding observation. Her expected conditional payoff is given by

WHP
k =

∫ 1

0

(
n− k +

k∑
j=1

1{xj≤s}

)
dF (n−k)(s) = 1 +

k∑
j=1

x
(n−k)
j , (60)

where F (n−k) is the c.d.f. of the maximum of (n − k) i.i.d. U [0, 1] random variables

with c.d.f. F . By the principle of optimality, she stops if yk ≥ WHP
k . Equation (60)

shows that all values x1, . . . , xk are required to compute WHP
k . For instance, to com-

pute WHP
k+1 in the next stage, she would need again all values x1, . . . , xk plus the value

xk+1. Knowledge of just WHP
k and xk+1 would not be enough, since WHP

k+1 cannot be

computed from these two numbers. Thus, she always needs the entire previous history

of observations for her optimal decisions.
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Given her prophetic abilities, he must stop whenever she stops under her optimal strat-

egy, since he cannot do better than her (i.e., WHP
k ≥ Wk ∀ k). The contrary is not true;

even if she does not stop, his optimal strategy might force him to stop.

Where does now the full history dependence become visible? The trick is to look from

stage k, 1 ≤ k < n − 1, ahead to stage n − 1. By the principle of optimality, for de-

ciding whether to stop at stage k or not, he has to compute the expected absolute rank

of continuing under optimal behavior at stages k + 1, . . . , n − 1. He has to do so for

all stages, since all of them are reached with a strictly positive probability (this follows

from (58) and (59)), hence the behavior at every stage has a strictly positive weight in

the expected absolute rank of continuing. So he has to think about the optimal behavior

at stage n − 1. At this stage, he has the same power as her if she entered the problem

at stage n− 1: there is only one option left, and if he decides to continue, he can also

be sure to end up with this best remaining option. At stage n− 1 the optimal strategies

of her and him, if she enters the problem at this stage, coincide. Since she needs all

the previous information from stages 1 to n − 2 to make her decision at stage n − 1,

so does he. Thus, when he, at stage k, forms his exepectation conditional on Ik about

his payoff at stage n− 1 under optimal behavior, this payoff will depend on the values

x1, . . . , xk. Hence, his decision at stage k depends on these values, and the optimal

strategy N∗ is fully history dependent.

6.2.1 Approximative Solutions of Robbin’s Problem

If an exact solution is not available, it is natural to try to approximate the problem

under consideration by a similar problem whose solution is known. Trivially, the no-

information case discussed in Section 5.2 yields an upper bound for the expected rank

under optimal behavior via

E
[
R̃N∗

]
= n+ 1− E [RN∗ ]

and an applicable strategy to attain this value, since knowledge of the quality levels Xi

implies knowledge of the relative ranks ri.

Another idea to obtain an approximation is to use the relation between Xi and R̃i,

1 ≤ i ≤ n; indeed, these random variables are highly correlated for large values of n
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(see Bruss and Ferguson (1993)):

corr
(
Xi , R̃i

)
=

√
n− 1

n+ 1
−−−→
n→∞

1. (61)

Thus, at least for large values of n, the optimal strategy N∗M that maximizes E [XN ]

should also yield a good approximation for the problem at hand of maximizing E
[
R̃N

]
,

since by (61) there is approximately an affine relationship between XN and R̃N if n

is large, for any stopping rule N . The problem of maximizing E [XN ] is known as

Moser’s problem (see Section 6.3), and the optimal strategy is a memoryless threshold

rule of the form

N∗ = min{1 ≤ i ≤ n | Xi ≥ sn−i},

with constant thresholds sn−i ∈ R that depend only on the number of remaining draws

n − i, but not on the history of previous observations. Thus, although the maximizer

of E [XN ] might be a good approximation for the maximizer of E
[
R̃N

]
, they cannot

coincide since the latter maximizer is history dependent by Theorem 7.

To assess the quality of approximating the expected-rank problem by Moser’s prob-

lem I have run some simulations. The results are presented in Figure 11 and Figure

12. Figure 11 depicts the expected absolute rank E
[
RN∗

M

]
= n + 1 − E

[
R̃N∗

M

]
under the optimal strategy for Moser’s problem (henceforth: the Moser strategy), and,

as benchmark, the expected absolute rank E
[
RN∗

ER−NI

]
under the optimal strategy

for the expected-rank problem under no information. Figure 12 shows the relative im-

provement for the two strategies in terms of expected absolute rank. For n around 30,

the Moser strategy yields an expected absolute rank of ≈ 2, which is approximately

35% below the expected abolute rank in the no-information case.

The attained absolute rank under the Moser strategy seems to stabilize around 2 for n

getting larger. An intuitive explanation for this observation is the fact that

E
[
XN∗

M

]
≈ 1− 2

n
. (62)

for large n (see Equation (67)), and this is (see Bruss (2005)) in the order of the expec-

tation of the second-largest order statistic5 X(n−1) of X1, . . . , Xn, which is

E
[
X(n−1)

]
=
n− 1

n+ 1
= 1− 2

n+ 1
. (63)

5The i-th order statistic X(i), 1 ≤ i ≤ n, of an i.i.d. sample Xi, . . . , Xn with X1 ∼ U [0, 1] has

expectation E
[
X(i)

]
= i

n+1 .
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To assess the situation for large n I have simulated the expected absolute ranks for the

value n = 100 (5000 simulation runs). The Moser strategy yields an average absolute

rank of 2.2178, which is also in line with (62) and (63) above. The optimal strategy

for the no-information case yields an average absolute rank of 3.6888, which is in line

with the corresponding asymptotically attained rank of 3.8695 (see the limit (36)). The

gain in optimality of using the Moser strategy is thus ≈ 40%.
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Figure 11: Simulated expected absolute ranks under the Moser strategy in the full-

information case, and simulated and expected absolute ranks under the optimal strategy

in the no-information case. (number of simulation runs r = 103 (left) and r = 104

(right); dots = simulated, dashed lines = exact)

6.3 A Digression on Moser’s Problem

Moser (1956) studies the problem of finding

N∗M = arg max
N∈N

E [XN ] ,

where Xi, . . . , Xn are i.i.d. with X1 ∼ U [0, 1] and N denotes the set of all finite

stopping times w.r.t. the filtration (Fi)ni=1 generated by (Xi)
n
i=1.

The solution can be found by backward induction (see Ferguson (2011)). With the

notation of Remark 2 , Vn = Xn and Vi = max{Xi , E [Vi+1 | Fi ]} for 1 ≤ i ≤ n− 1.
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Figure 12: Relative improvement in absolute rank under the Moser strategy in the

full-information case, compared to the optimal strategy for the no-information case.

The independence of (Xi)
n
i=1 implies that Vi, for 1 ≤ i ≤ n, only depends on Xi, and

that sn−i := E [Vi+1 | Fi ], for 1 ≤ i ≤ n − 1, is a constant that depends only on the

number of remaining draws n−i. It is optimal to stop at stage 1 ≤ i ≤ n iffXi ≥ sn−i.

Hence, the optimal stopping rule is given by

N∗M = min{1 ≤ i ≤ n | Xi ≥ sn−i}, (64)

where the thresholds si are given by s0 := 0 and, recursively, for 0 ≤ i ≤ n− 1 by

si+1 = E [ max{Xn−i , Ai} ] =

∫ Ai

0

Ai dx+

∫ 1

Ai

x dx

=
1

2

(
A2
i + 1

)
. (65)

The optimal strategy yields a payoff E
[
XN∗

M

]
= sn. Since the optimal strategy only

depends on the value of Xi at hand and the number of remaining draws, but not on the

history X1, . . . , Xi−1, it is called a memoryless threshold rule.

Table contains the threshold values si for 1 ≤ i ≤ 30. Figure 13 displays the expected

payoff E
[
XN∗

M

]
under the optimal strategy for 1 ≤ n ≤ 100.

Moser (1956) shows that for large n

sn ≈ 1− 2

n+ log(n) + c
(66)
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for some constant c > 0. Gilbert and Mosteller (1966) state that c ≈ 1.768. Thus,

for large values of n, the expected payoff E
[
XN∗

M

]
under the optimal strategy N∗

satisfies

E
[
XN∗

M

]
≈ 1− 2

n
. (67)

This is also reflected in Figure 13.

Table 5: Optimal thresholds si for Moser’s problem.

j sj j sj j sj j sj j sj j sj

1 0.5000 6 0.8003 11 0.8707 16 0.9037 21 0.9230 26 0.9358

2 0.6250 7 0.8203 12 0.8790 17 0.9083 22 0.9260 27 0.9379

3 0.6953 8 0.8364 13 0.8864 18 0.9125 23 0.9287 28 0.9398

4 0.7417 9 0.8498 14 0.8928 19 0.9163 24 0.9313 29 0.9416

5 0.7750 10 0.8610 15 0.8985 20 0.9198 25 0.9336 30 0.9433
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Figure 13: Expected payoff E
[
XN∗

M

]
under the optimal strategy for Moser’s problem.
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7 A Partial Information Setting

Gilbert and Mosteller (1966) note that in many statistical decision problems some but

not all information about the underlying distribution is assumed to be known. For

instance, the distribution might only be known up to an unknown parameter, which

can be estimated by statistical inference.

In the apartment hunting problem it could be that the quality levels (Xi)
n
i=1 are ob-

servable, but the distribution F = F (θ) is only known up to a parameter θ. In this

respect, the informational regimes describe by assumptions (4a), i.e., no information,

and (4b), i.e., full information, can be interpreted as boundary cases of this partial in-

formation setting. Observing the Xi implies knowledge of the relative ranks, thus the

optimal no-information strategy is applicable. The optimal full-information strategy

on the other hand is not applicable, since F is unknown. But the Xi can be used to

obtain an estimate θ̂ of θ. The approximation F (θ̂) can then be used along with the

optimal full-information strategy. Intuitively, the outcomes associated with the opti-

mal strategies for the no- and the full-information case should provide lower and upper

bounds for the outcome of this procedure.

To study a simple partial information setting of the above type I use the following setup:

Suppose X1, . . . , Xn are i.i.d. with Xi ∼ N(µ, σ2) and θ := (µ, σ2) = (0, 1), i.e., Xi

has a standard Normal distribution. The decision maker can observe the quality levels

Xi and knows that they come from a Normal distribution, but she does not know θ. Her

objective is to maximize the probability of choosing the best option. A viable approach

for her is to inspect and reject a number of options, k say, and use the observations of

X1, . . . , Xk to estimate θ (by the sample mean µ̂ and the sample variance σ̂2 of these

k observations). For the remaining n− k options she uses the optimal strategy for the

full-information setting, based on µ̂ and σ̂2.

I have simulated this situation for 30 ≤ n ≤ 50 and k = bnfc for f = exp(−1)

and f = 0.2, and for r = 2500 simulation runs. The choice f = exp(−1) ≈ 0.37

stems from the fact that this is the fraction of options that would asymptotically be dis-

carded under the optimal strategy in the no-information case. On the other hand, in the

full-information case the very first option might be chosen under the optimal strategy,
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which suggests to also try a value of f which is smaller than exp(−1), like f = 0.2.

Figure 14 presents the results, together with the success probabilities of the optimal

strategies for the no- and the full-information case as benchmarks. Surprisingly, the

outcome for both choices of f is in the exact same range as for the optimal strategy un-

der no information. This indicates that this strategy is a sensible choice even if the Xi,

and not only their relative ranks, are observable but F is unknown. This also shows that

the crucial component of assumption (4b), i.e., the full-information regime, is not the

observability of the quality levelsXi, but knowledge of their underlying distribution F .

I have also simulated the above situation under the assumption that the decision maker

does not use a fraction f of the available n options for inference; instead, she has

access to another sample of size k, from the same underlying distribution, from which

she cannot choose and which is only used for inference. For simplicity, I have chosen

k = n, with 30 ≤ n ≤ 50 and r = 2500 simulation runs. Figure 15 shows the results.

The resulting success probability in this setting has increased by ≈ 0.15, which again

indicates the importance of an accurate knowledge about the underlying c.d.f. F for

the optimality of the full-information strategy.
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Figure 14: Simulated success probabilities for the partial information setting.
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Figure 15: Simulated success probabilities for the partial information setting with an

extra sample of size k = n for parameter estimation.

8 Outlook

A crucial assumption in the model is that there is no recall of rejected options (i.e.,

assumption (5)). This might not hold in real-world situations. A potential extension of

the model would be to introduce the possibility that the decision maker can go back,

from stage k say, a certain number of stages, l say, and choose among the already

inspected optionsXk−l, . . . , Xk; the current version of the model corresponds to l = 0.

A variation of the CSP with a possibility of this kind was studied in Yang (1974).

It would also be interesting to study the optimal strategy under different distributions

of a stochastic number of options, as studied in Section 5.1.2 for the case of a discrete

uniform distribution.

A further analysis of partial-information settings, as indicated in Section 7, could also

yield interesting results. One thing to do would be to analyse a non-parametric setting,

in which F is completely unknown. A first attempt might be to use a fraction of the

inspected options to estimate the empirical c.d.f. and use the optimal strategy for the

full-information setting based on this estimate, analogously to the procedure employed

in Section 7. It would be interesting to see whether the optimal strategy for the no-

information case yields again a good performance.
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Appendix

A Proofs

Proof of Lemma 1. X = Y ⇔ X − Y = 0, hence

{X = Y } = {X − Y ∈ {0}}. (68)

Using the definition of the image measure (cf. Definition 7.6 in Bauer (2001) and the

product measure (cf. Definition 23.4 in Bauer (2001)), and the fact that independence

of X and Y implies that the image measure P(X,Y ) of the vector (X, Y ) is the product

of the marginals, i.e., P(X,Y ) = PX⊗Y (cf. Theorem 7.5 in Bauer (1995)), it holds for

an arbitrary Borel set B ∈ B that

P ({X − Y ∈ B}) = PX⊗Y ({(x, y) ∈ R2|x− y ∈ B}
)

=

∫
R

PY (x−B) dPX(x). (69)

Using (68) and (69) (with B = {0}) yields

P ({X = Y }) =

∫
R

PY ({x}) dPX(x) = 0, (70)

where the last identity follows from the continuity ofFY , which implies that PY ({x}) =

F (x)− F−(x) = 0, ∀x ∈ R, where F− denotes the left-side limit of F .

Remark 20. The proof of lemma 1 only uses the continuity of FY (in the last step

(70)), but not the continuity of FX . Since the situation in the lemma is symmetric in

X and Y , the continuity of only one of the c.d.f.s suffices for the lemma to hold.

Proof of Theorem 1. Fix k ∈ {1, . . . , n}. Denote with S(k) the set of all permuta-

tions of {1, . . . , k}. It is well known that S(k) has k! elements. Let σ ∈ S(k) and

define the associated random vector Xσ :=
(
Xσ(1), . . . , Xσ(k)

)
, i.e., the components of

Xσ are the random variables X1, . . . , Xk ordered according to σ. Due to i.i.d-ness,

for any σ, τ ∈ S(k) the vectors Xσ and Xτ have the same distribution, i.e., the mul-

tivariate c.d.f.s Fσ and Fτ of Xσ and Xτ , respectively, coincide ∀σ, τ ∈ S(k). For

σ ∈ S(k) define the event Aσ :=
{
Xσ(1) < Xσ(2) < · · · < Xσ(k)

}
. Then (Aσ)σ∈S(k)

59

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



is a family of disjoint events, i.e., Aσ ∩ Aτ = ∅ for σ 6= τ . Define furthermore the

event A0 := {∃i 6= j : Xi = Xj}, and note that A0 is disjoint from any Aσ, σ ∈ S(k).

Thus, the family (Aσ)σ∈S(k) together with A0 is a partition of the sample space Ω. This

implies that P (A0) +
∑

σ∈S(k) P (Aσ) = P (Ω) = 1. Lemma 1, together with remark

5, implies that P (A0) = 0. Hence ∑
σ∈S(k)

P (Aσ) = 1. (71)

The equality of the c.d.f.s Fσ and Fτ for σ, τ ∈ S(n) implies (using the notation

z := (z1, . . . , zk) ∈ Rk)

P (Aσ) =

∫
R
1{z1<···<zk}(z)dFσ(z) = P (Aτ ) , ∀σ, τ ∈ S(k). (72)

This symmetry, together with (71) and the fact that the cardinality of S(k) equals k!,

implies

P (Aσ) =
1

k!
, ∀σ ∈ S(n), (73)

which proves part (a) of the theorem. Every event of the form {r1 = r̂1, . . . , rk = r̂k},

with 1 ≤ r̂i ≤ i for 1 ≤ i ≤ k, coincides with an event Aσ for some σ ∈ S(k).

Therefore, using (73),

P ({r1 = r̂1, . . . , rk = r̂k}) =
1

k!
(74)

for 1 ≤ r̂i ≤ i for 1 ≤ i ≤ k. The disjointness of the eventsAσ implies the disjointness

of the events {r1 = r̂1, . . . , rk = r̂k}. Together with (74) this yields, for 1 ≤ r̂k ≤ k,

P ({rk = r̂k}) =
∑

r̂1,...,r̂k−1

P ({r1 = r̂1, . . . , rk = r̂k}) =
1

k
, (75)

where the summation is over all combinations of r̂1, . . . , r̂k−1 satisfying 1 ≤ r̂i ≤ i for

1 ≤ i ≤ k−1, and the last equality follows becaue there are (k−1)! such combinations.

This establishes the discrete distribution of rk on {1, . . . , k} for 1 ≤ k ≤ n.

The independence of r1, . . . , rn follows from (74), for k = n, and (75), for 1 ≤ k ≤ n,

by

P ({r1 = r̂1, . . . , rn = r̂n}) =
1

n!
=

n∏
i=1

1

i
=

n∏
i=1

P ({ri = r̂i}) .
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