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Abstract

Molecular interaction networks are a core concept in Life Sciences - a field of study with the
specific focus on integrative information analysis - and an ideal tool for modeling cellular pro-
cesses. On the molecular level, cellular processes are the direct cause of phenotype, whether
healthy or diseased, and all observable properties of a cell can be traced back to one or more
processes.

One of today’s main challenges in research is the variability of disease on the process level,
meaning similar phenotypes often have different causes. With the advent of the Omics revo-
lution, an enormous amount of data relevant in this context has become available, much of it,
however, still pending meaningful interpretation.

Here we demonstrate two approaches to tackle heterogeneity on the process level, based on
Omics data integration on molecular interaction graphs. The first one uses a synthetic lethality
network to address heterogeneity in cancer, while the second one uses an extended protein-
protein interaction network for overcoming variance towards patient stratification.

Our first method demonstrates both in neuroblastoma cell-lines and in human tissue how to
find synthetic lethal hubs the knock-down of which would lead to the death of malignant cells.
We generalize this method for three additional tumor types and identify relevant hubs including
drugs for targeting them.

In our second method we propose a novel interaction network holding validated protein-
protein interactions and edges additionally inferred from high quality pathway, ontology and
domain data. We use this network to investigate diabetic nephropathy from a clinical perspective
based on literature, drug, clinical trial and patent information. Subsequently, we introduce the
concept of units towards identifying multi-biomarker panels for patient stratification.

Our results demonstrate that it is possible through information integration to address biolog-
ical variability issues while at the same improving causative interpretability. We assert that the
methods presented in this thesis expand the set of available treatment approaches and will prove
in the midterm to be a valuable stepping stone towards Systems Medicine.
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Kurzfassung

Molekulare Interaktionsetzwerke stellen ein Kernkonzept in Life Sciences - ein Forschungs-
gebiet dessen Hauptaugenmerk auf der integrativen Informationsanalyse liegt - dar und sind
gleichzeitig ein optimales Werkzeug für die Modellierung von zellulären Prozessen. Auf mole-
kularer Ebene stellen solche Abläufe die Ursache für den Phänotyp dar und alle Merkmale eines
Organismus lassen sich zu einem oder mehreren solchen Prozessen zurückverfolgen.

Eine der größten Herausforderungen der heutigen Forschung ist die Variabilität der Erkran-
kung auf Prozessebene, dh ähnliche Phänotypen haben oft verschiedene Ursachen. Mit dem
Advent der Omics Revolution, ist eine Lawine an relevanten Daten verfügbar geworden, denen
jedoch zum Großteil noch eine sinnvolle Interpretation fehlt.

In dieser Arbeit werden zwei Ansätze zur Bekämpfung von Heterogenität auf Prozessebene
präsentiert, welche auf Omics Datenintegration auf molekularen Interaktionsgraphen basieren.
Der erste Ansatz benutzt ein Netzwerk von synthetischen letalen Interaktionen um die Hete-
rogenität in der Krebstherapie in den Griff zu bekommen, während der zweite ein erweitertes
Protein-Protein Interaktionsnetzwerk verwendet um biologischer Varianz hinsichtlich Patienten-
stratifizierung entgegen zu wirken.

Die Ergebnisse der ersten Methode zeigen, dass es möglich ist sowohl in Neuroblastom Zell-
linien als auch im menschlichen Gewebe synthetisch letale Hubs zu identifizieren, der Knock-
down welcher den Tod maligner Zellen herbeiführen würde. Diese Methode wird anschließend
für drei weitere Tumorarten verallgemeinert und relevante Hubs und Medikamente werden iden-
tifiziert.

In der zweiten Methode wird ein neues Interaktionsnetzwerk präsentiert, das einerseits vali-
dierte Protein-Protein Interaktionen und andererseits aus hochqualitativen Pathway-, Ontologie-
und Domänendaten abgeleitete Kanten enthält. Das Netzwerk wird benutzt um die diabetische
Nephropathie aus klinischer Sicht zu durchleuchten. Ein Units-Konzept zur Identifikation von
Biomarker Kombinationen zwecks Patientenstratifizierung wird abschließend exemplifiziert.

Die Ergebnisse zeigen, dass es durch Informationsintegration möglich ist die biologische
Variabilität bei gleichzeitiger Verbesserung der Interpretierbarkeit in den Griff zu bekommen.
Wir behaupten, dass die Methoden, die in dieser Arbeit präsentiert wurden, die derzeit verfüg-
baren Behandlungsansätze erweitern und sich mittelfristig als wertvoller Schritt in Richtung
Systemmedizin erweisen werden.
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CHAPTER 1
Introduction

1.1 The Omics revolution: from association to causality

The discovery of the deoxyribonucleic acid (DNA) 1953 by Watson and Crick [1] proved to be
a major milestone that would revolutionize biology for the years to come. In time, our under-
standing of genetics deepened as more became known of the cell. Ribonucleic acids (RNA) and
proteins were discovered and the transcription / translation principle of the protein formation
was brought to paper.

The initial hypothesis of the DNA being a phenotype (the composite of an organism’s ob-
servable characteristics) blueprint was validated and with increasing knowledge it became evi-
dent that the phenotype was a result of both intrinsic factors such as complex interactions be-
tween DNA, RNA, proteins and other compounds in the cell as well as extrinsic, i.e. environ-
mental factors.

The discovery of the link between cellular processes and phenotype opened new avenues
in biological research. A disease was no longer a non-descript malfunction but the result of
specific process perturbations which could now be acted upon. The best example for this is
cancer. The observable phenomenon of cancer is the result of cells with altered processes that
no longer act as intended. Hanahan et al. provided in 2000 [2] and in a revised version of
manuscript from 2011 [3] an insightful description of the dysfunctional mechanisms necessary
for a cell to achieve malignancy. These include among others evading programmed cell death
(apoptosis), forced growth of blood vessels (induced angiogenesis), replicative immortality and
tissue invasiveness.

While gaining insight into cellular processes allows direct intervention on the causes of
the undesired phenotype, the first step, however, still remains locating the malfunction itself.
To achieve this, various Omics methods have been developed. The term Omics summarizes a
broad spectrum of techniques which measure cell-wide activation of genes, respective proteins,
metabolites, etc. Omics allows the quantitative assessment of many thousand cellular compo-
nents in parallel, and hence provides a system-wide landscape of cellular components being
specific e.g. for a tumor cell.
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Omics methods can be used e.g. to determine which genes are currently expressed in a cell
or which proteins bind to each other. A major drawback of such methods is, however, that the
results are mainly discrete snapshots of the cellular status quo with little to no insight into the
involved dynamics. Using such data, scientists can attempt to reconstruct the order of events and
then validate these hypotheses.

Often when investigating a certain phenotype it is e.g. lists of differentially regulated genes
that are the immediate result. Assuming the experiments were performed with sufficient regard
to statistical significance, the obtained lists should be characteristic for this particular phenotype,
not taking into account variance within the phenotype itself.

While correlation can be determined using such approaches, it is often causality that is mis-
takingly extrapolated from the data. Put in a nutshell, if two properties A and B of a system
are detected simultaneously (correlation) this does not imply e.g. that B is result of A (causal-
ity). In a specific example, the process of inflammation is a typical response of the organism
to pathogens and features associated with inflammation will often be detected in the context of
other afflictions without having a direct connection to the actual cause.

Nevertheless, correlation is a powerful tool for the analysis of cellular processes and a valu-
able hypothesis source as is shown by Prieto et al. [4] and Yang at el. [5]. The former uses
genome-wide expression data to compute a human gene coexpression landscape showing genes
having similar regulation. The latter uses coexpression to specifically investigate processes af-
fected by disease.

For an in-depth understanding of the cellular mechanisms, an understanding of the causal
relationships linking their components is essential. To achieve this, theoretical models that in-
tegrate as much of the presently available knowledge as possible are necessary. This led to the
advent of Systems Biology.

This new branch of biology has an integrative approach at the core, which, by contrast to the
previous reductionist concepts, aims to consolidate the known on the assumption that a system
is more than just the sum of its components. The additional properties that arise only through
the aggregation of components are called emergent properties.

A prototypic representation of multi-level information integration is the interaction network.
An emergent property in this context is network robustness, i.e. network resilience to node
or edge removal, which for the same number of nodes and edges may vary depending on the
underlying topology.

Networks and the integration of information on biological networks mark the scope of this
thesis.

1.2 Biological networks: a step towards causality

Networks as the core concept of Systems Biology are a powerful theoretical model for under-
standing processes and supporting hypothesis generation. Networks can model a wide array
of information whether of biological nature such as gene expression correlation, transcriptional
regulation, direct protein binding or general scope such as relation direction, strength, order,
topology, etc.

The paradigm experienced a strong hype beginning in the early 2000, following Barabasi’s

2



concept of scale-free biological networks [6] and has been a subject of intense scientific debate
ever since.

General network concepts

Several characteristics of biological networks are particularly relevant in our context and will
be outlined in the following section. The small world property is such a characteristic and it
states that a random network becomes connected already for a small number of edges (phase
transition in the Erdös-Renyi model). Furthermore, each node can be reached from any other by
traveling only a small number of edges. This also holds true for biological networks with nodes
representing genes and edges representing relations between them.

A further aspect, which was mentioned previously, is network robustness. The concept de-
scribes the resilience of networks, i.e. the ability to withstand changes with little to no impact on
the overall structure. This concept is a direct result of scale-freedom. The latter is characterized
through an asymmetric node degree distribution, more precisely respecting a power-law distri-
bution, i.e. few nodes with many neighbors, also called hubs, and many node with only few
neighbors. An additional restriction imposed by scale-freedom is the inverse relationship be-
tween node degree and local clustering, i.e. the neighborhood of a hub is less tightly connected
than the neighborhood of a low-degree node.

When putting robustness and scale-freedom in relation to each other, it is easy to see why
scale-free graphs are more robust than random ones. For example, when choosing a random node
to remove, it is more probable to select one with a low degree, meaning its removal will have little
impact on graph cohesion. The same property that makes this type of networks resilient against
random attacks, also makes them particularly vulnerable against targeted attacks: deliberately
choosing a hub in a scale-free network, will have a much stronger effect than in a random one.

Motifs are specific subnetwork configurations that occur significantly more often than oth-
ers. Motifs play an important role in biological networks, as they develop dedicated functions
through their topology (emergent properties). A typical motif is the feed-forward loop (FFL)
in which a gene A regulates the transcription of two other genes B and C. Furthermore, gene B
regulates the transcription of C. Assuming gene C needs both A and B to be expressed (AND
connection) the motif plays the role of a signal filter. As stoichiometric processes in the cell do
not happen instantly, if gene A is up-regulated, gene B will become up-regulated with a certain
delay. Gene C will only become active once both A and B are present. If the expression of A
was a short-time impulse only, it will disappear before gene B becomes fully up-regulated, so
gene C will not be expressed this time. The same principle can be applied the other way around,
if A and B share an OR connection, meaning, if A disappears shortly, gene C will not be affected
unless enough time passes for B to also become down-regulated.

Other relevant motifs include single input modules (SIM) where one gene regulates several
others, dense overlapping regions (DOR) where a set of genes complexly regulates a second one,
gene self-regulation, feed-back loops in which a gene inhibits its own expression once a certain
level has been reached, etc.

Graph measures often used for characterizing biological networks include the clustering
coefficient for investigating edge density, the index of aggregation for determining the size of the
largest connected component relative to the size of the whole graph, the node degree distribution
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often used in the context of scale-freedom and the characteristic path length for determining the
average shortest path length.

Mönks et al. [7] present an overview of the topological characteristics for three different
types of biological networks, including metabolic, paralog and physical interaction networks.

Genetic interaction networks

Genetic networks are a class of biological networks in which interactions between genes oc-
cur indirectly. The most prominent members in this category are transcriptional regulation and
synthetic lethality (synlet) networks. The former describe relations between genes in which the
presence of one leads to the expression of the other. The latter describe gene pairs for which the
absence of both is lethal while the absence of only one is not.

Synthetic lethality lies within the scope of this thesis. To formalize the concept, let there be
two genes A and B and the negative impact (measured as viability loss) of a missing gene be
given as I(A) and I(B) respectively, the negative impact of both genes missing is called additive
if I(A,B) = I(A) + I(B) or synergistic (synthetically lethal) if I(A,B) ≥ I(A) · I(B). The
impact of a single, non-critical mutation is generally observable as the organism attempts to
compensate for the function loss. For two non-critical (if taken individually) mutations the
impact is even stronger, as the organism must now compensate for two missing genes. If the
impact of a double mutation is significantly stronger than expected (immediate death is the
exceptional case) then synthetic lethality is present.

Synthetic lethality opens a whole new avenue in research and particularly in cancer as tumors
can now be investigated for synlet interactions and targeted accordingly.

Large-scale screenings of synthetic lethal interaction pairs have already been done in yeast
[8]. Synlet interaction detection in human is not feasible as it is much more difficult to perform:
different tissue types, cell immortalization, etc. Translation of pairs from yeast to human is done
through gene homology.

Protein interaction networks

Protein interaction networks describe a broad group of networks the members of which are in-
volved in direct interactions. Two important representatives of this group are metabolic networks
and direct binding networks. The former describe entire sequences of chemical reactions taking
place in the cell while the latter describe binary relationships between actors which form e.g.
dimers.

Metabolic networks are used among others for quantitative modeling of processes using e.g.
flux balance analysis and petri nets to be described as systems of linear equations and solved
using linear programming. In general, protein interaction networks are used for qualitative mod-
eling of biological processes such as A transforms B in C which leads to the expression of D.

The qualitative approach to protein interaction networks lies within the scope of this thesis.
Such networks have a balanced rate of true positives to true negatives (an in-depth analysis of
such aspects is provided in section 3.1).

Two relevant initiatives for curating protein interaction data are IntAct [9] and BioGRID
[10]. The former is an open-source, open data molecular interaction database populated by
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data either curated from the literature or from direct data depositions. IntAct contains approx-
imately 275,000 curated binary interaction evidences from over 5,000 publications. The latter,
i.e. the Biological General Repository for Interaction Datasets (BioGRID) is a public database
that archives and disseminates genetic and protein interaction data from model organisms and
humans. BioGRID currently holds over 500,000 interactions curated from both high-throughput
datasets and individual focused studies, as derived from over 30,000 publications in the primary
literature.

Molecular pathways

Molecular pathways are the epitome of curated knowledge with a distinctive focus on high-
quality understanding of cellular processes. They model sequences of events occurring in the
cell e.g. in response to an external stimulus. Apoptosis, for example, describes the steps taken
by the cell during programmed cell death. Pathways have a low false positive rate due to the
stringent review process, while at the same time exhibiting a higher false negative rate.

Pathways are usually classified in generic and disease-specific as processes may vary de-
pending on the cell state.

Several significant pathway databases exist to date. These include the Kyoto Encyclopedia
of Genes and Genomes (KEGG) [11] modeling generic and metabolic pathways as well as path-
ways of disease, PANTHER [12] consisting primarily of signaling pathways and Reactome [13],
an expert-authored, peer-reviewed knowledge base of human reactions and pathways that func-
tions as a data mining resource and electronic textbook.

Omics integration approaches

While networks are indeed a core concept in Systems Biology, they gain more expressive power
through the integration of additional Omics data.

With an academic background, STRING [14, 15] and its related project STITCH [16] from
the European Molecular Biology Laboratory (EMBL) aim at building comprehensive protein
interaction networks based on genomic context data, high-throughput experiments, coexpression
and literature knowledge as well as protein-small molecule networks based on information on
metabolic pathways, crystal structures, binding experiments and drug-target relationships.

In the commercial setting, the Ingenuity Pathway Analysis (IPA) [17] tool is a software
that helps researchers to model, analyze, and understand complex biological and chemical sys-
tems by integrating data on mRNA, miRNA, proteins, single nucleotide polymorphisms (SNP),
metabolites, interactions and pathways as well as providing workflow implementations for biomarker
discovery and toxicity screenings.

On a small scale, often networks are constructed and annotated with Omics data based on
very specific needs.

In a work by He et al. [18] the authors attempt to identify dysfunctional modules in con-
genital heart disease by using a protein-protein interaction (PPI) network weighed with gene
co-expression scores. They compute shortest paths and use a network flow algorithm to deter-
mine genes of interest.
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Sengupta et al. [19] extend a PPI network with additional coexpression edges, i.e. they link
genes with a Pearson correlation coefficient above a certain cutoff and compute clusters based
on node connectivity in an attempt to investigate type 2 diabetes and associated risks.

Alexeyenko et al. [20], delineate a network constructed by inferring edge probabilities us-
ing diverse high-throughput data from different organisms with the goal of consolidating and
analyzing different interactomes in one network.

1.3 Systems Medicine: are we there yet?

Systems Medicine is a novel concept referring to the use of Systems Biology tools in the context
of disease in order to obtain a cell’s “wiring diagram”, the breakdown of which is ultimately
responsible for the emergence of a particular disease phenotype. Relating to networks as a core
concept in Systems Biology, Barabasi et al. [21] envision diseases-associated modules and speak
of the human diseasome. In light of these considerations, the concept of units presented in this
thesis is perfectly in-line with the scope of Systems Medicine.

Furthermore, establishing new links between genes, biological functions and a wide range
of human diseases has become possible with the availability of increasingly powerful high-
throughput technologies, computational tools and integrated knowledge bases, providing signa-
tures of pathological biology and links to clinical research [22].

In a report of the Directorate of Health of the European Commission from June 2010 [23],
the following potential actions in Systems Medicine are identified (excerpt):

• Clinical trials - Systems Biology approaches could guide clinical trial design, shortening
times and costs.

• Redefinition of clinical phenotypes based on molecular and dynamic parameters.

• Discovery of effective biomarkers of multiple nature for disease progression (clinically
useful for risk, prognosis, diagnosis).

• Combinatorial therapy, an approach that would be useful to find out a combination and
lower doses of effective drugs, in particular in the case of co-morbidity, where more than
one disease is affecting the patient.

• Improvement of drug development (optimized drug efficacy, safety and delivery, timing
and dosage of therapy).

Additionally, the concept of Systems Medicine is summarized as follows: “The major chal-
lenge is for Systems Biology to contribute to a change in the medical paradigm in order to build
the foundation for a prospective medicine that will be predictive, personalized, preventive and
participatory.”

In Systems Medicine the patient is placed at the center of the system and Bosquet et al. [24]
go as far as to suggest patient telemonitoring and the use of predictive markers. Additionally,
workflows to determine the most suitable therapeutic strategy should be developed. Initiatives
such as these are met with privacy concerns and other challenges in their development as e.g. a

6



predictive biomarker, depending on its usage, would have to be developed with initially healthy
test subjects monitored over a long period of time.

While many aspects of Systems Medicine still need to be investigated, approaches already
exist today aiming to use integrative methods for learning about the connection between cellular
processes and the manifestation of disease [25]. An immediate consequence of such methods
is their connection to clinical pharmacology and drug repositioning, the latter referring to drugs
already on the market being demonstrated as effective in single or multiple therapies of other
diseases.

To summarize, we can say that Systems Medicine is a promising new concept with the
potential to further our understanding of human diseases and with strong implications in the
clinical field, that is, however, still in its infancy.

1.4 Thesis scope and goals

This thesis is dedicated to demonstrating that high-quality network integration of Omics supports
interpretative causality. As such, this thesis is situated at the confluence of three disciplines:
informatics, biology and mathematics.

The scientific output of this thesis contributes to our understanding of human disease mech-
anisms and intervention modalities, in particular using synthetic lethality and biological network
analysis as a stepping stone towards personalized disease treatment and Systems Medicine.

Thesis outline

In the introduction to this thesis we delineated the close relationship between cellular processes
as the direct cause of phenotype, Systems Biology as an integrative scientific approach, and
networks as a powerful modeling paradigm.

The thesis consists of two main building blocks. The first one is an application of network
concepts in the context of synthetic lethality and cancer. Here we will show how network hubs
can be identified and used for tackling chemoresistance in tumor.

The second building block introduces a novel network data integration method which we
then use to extend biological pathways for investigating diabetic nephropathy. Finally we intro-
duce the concept of units for developing multi-marker profiles towards patient stratification.

The thesis is concluded by a short discussion section.
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CHAPTER 2
Genetic interaction networks:

synthetic lethality

2.1 Why synthetic lethality?1

To better put the subject at hand into context, a short introduction to cancer is necessary. Cancer
is among the leading causes of mortality in the industrialized parts of the world. Some 2.9
million cases are diagnosed annually in Europe, with 1.7 million deaths attributed to this class of
diseases. The efficacy of anti-cancer therapies is still limited, in a first place due to heterogeneity
of cancer limiting efficacy of drugs per se, and second if a drug shows initial efficacy by the
emergence of drug resistance.

Improvements in experimental molecular biology in the realm of the Omics revolution have
significantly contributed to the understanding of molecular processes involved in cancer [27].
From all these advancements the available data basis for describing molecular processes specific
for cancer cells has enormously increased. However, what unfortunately became clear is the
significant molecular variance of cancer when comparing different organs affected, but also
when analyzing a particular type of cancer, or even speculating that each cancer is to some degree
patient specific. Apparently, cancer cells have a multitude of strategies for escaping natural
clearance mechanisms. Aberrant cells should inherently follow apoptosis, but take routes to halt
this process [28, 29]; cancer cells are at least to some extent identified as such by the patient’s
immune system, but exhibit immunomodulatory capabilities and other methods for escape [30];
tumors modulate their local environment e.g. triggering nutrition supply via angiogenesis [31];
cancer cells when attacked with e.g. chemotherapeutics develop resistance mechanisms [32].
Obviously, cancer has to be seen as a highly complex system in a dynamic interplay of cell

1This section is based largely on the patent application Critical gene targets for cytotoxic therapy with the
publication no. WO/2011/144738, application no. PCT/EP2011/058259 by Arno Lukas, Johannes Söllner, Andreas
Bernthaler, Bernd Mayer, Raul Fechete, Paul Perco, and Andreas Heinzel submitted to the World Intellectual Property
Office (WIPO), 2011 [26].
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internal survival routes under the selective pressure of cell internal and external death pathways,
under the overall control of the body’s immune system.

Complex systems in a broad definition involve a large number of elements whose interaction
and respective dynamics generates unexpected (emergent) properties. Cancer is a prominent
representative of this class: A well-balanced machinery of cell survival and cell death looses
corrective measures, resulting in growth of tumor mass and eventually the development of re-
sistance to therapy. Major advancements have been made in managing this disease, and an
impressive body of knowledge on key molecular processes characteristic for cancer has been
assembled so far. But still, putting the pieces together for reaching an understanding of cancer,
being the prerequisite for rational and targeted therapy, remains a major challenge.

Malignant neoplasms, also commonly called cancers, form a group of diseases characterized
by uncontrolled growth of cells in higher organisms. Division of cells, invasion of adjacent tis-
sues and metastasis are thereby the three prime indicators for prognosis of disease development.

While many cell types can give rise to cancerous growth, malignant neoplasms can be
crudely classified in a number of ways. Based on phenotype, distinction in solid neoplasms
(tumours) and non-solid cancers such as leukemias is possible. Other than that, the source tis-
sue or cell-type giving rise to carcinogenesis or the organ where growth occurs in (in case of
metastasis) is used to classify cancers.

• Carcinoma: Malignant tumors derived from epithelial cells. This group represents the
most common cancers, including the common forms of breast, prostate, lung and colon
cancer.

• Sarcoma: Malignant tumors derived from connective tissue, or mesenchymal cells.

• Lymphoma and leukemia: Malignancies derived from hematopoietic (blood-forming)
cells.

• Germ cell tumor: Tumors derived from totipotent cells. In adults most often found in the
testicle and ovary.

• Blastic tumor or blastoma: A tumor (usually malignant) which resembles an immature or
embryonic tissue. These tumors are mostly seen in children.

Aside of cancers also other malignancies suffer from declining efficacy of therapies through
development of biological resistance. Among those infectious diseases are paramount as they
contribute significantly to mortality and particularly morbidity rates, particularly in developing
or non-industrialised parts of the world. In this regard, Malaria, Tuberculosis and HIV are also
known as the three big killers. There is a great need for robust cytotoxic therapies avoiding or
reducing development of resistances.

Cytotoxic therapy usually is directed against a specific target. Among the targeted im-
munotherapies there is for instance, passive immunotherapy, e.g. using monoclonal antibodies,
or active immunotherapy employing vaccines. Effectivity or applicability of any particular ther-
apy can vary greatly between types of cancer or based on presentation in individual patients. As
a consequence differentiation between patients may be beneficial in many cases; however molec-
ular biomarkers to make adequate decisions are often not available yet. One of the exceptions is
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the Her2/neu monoclonal antibody therapy (marketed as Herceptin and Trastuzumab) which can
greatly benefit from preemptive diagnostic tests for the expression status of the HER-2 protein
as the factor is found in only approximately 25-30% of breast cancer patients at sufficient levels.
Also, within a particular type of therapy differentiation by cancer type is usually necessary. For
example, the choice of chemotherapeutic agent can be influenced by gender of the patient, prin-
cipal effectivity on certain cancerous cells and, related to that, rate of degradation of drugs in
cancerous tissues [33]. These factors may vary between cancer types as well as between patients
afflicted with the same class of cancer.

Targeted chemotherapy often relies on cytostatic (cell proliferation inhibiting) chemicals
which are toxic or detrimental for dividing or metabolically highly active cells and may there-
fore exhibit severe side-effects on tissues exhibiting naturally high proliferation rates. For drug
examples, plant alcaloids, such as the Vinca alkaloids Vincristine and Vinblastine, inhibit micro-
tubule function and therefore prevent chromosomal segregation leading to mitotic arrest. These
drugs are effective or otherwise indicated only in a limited number of neoplastic disorders, how-
ever, specifically neuroblastoma, lymphomas and leukemias in the case of Vincristine. Similarly,
immunotherapies such as the activation of innate and adaptive immune responses by interferon
therapy are applicable only against a limited spectrum of neoplastic disorders, always addition-
ally including a potential patient bias. Many more chemotherapeutics are in use and implicated
for certain cancers in individual or combination therapies.

In contrast to classical chemotherapy, rational drug design and screening procedures have
enabled certain targeted therapies by influencing activity of factors of specific relevance in can-
cers, sometimes allowing improved efficacy and side effect profiles as in the case of Imatinib in
chronic myelogenous leukemia and a number of other cancers. Targeted therapies are thereby
defined by a specific, defined molecular target commonly found in a class of cancer which is
amenable to drugs. In contrast to standard chemotherapies it is possible to focus on molecu-
lar changes elementary to cancerogenesis or progression which is the basis for the mentioned
improvement in effect / side effect profiles (whereas e.g. inference with microtubule formation
by vincristine affects all cells of the body). While these developments are cause to hope, they
suffer from some of the same problems as standard chemotherapy, namely the development of
resistance against the drug stemming from mutations/alterations after onset of therapy or alterna-
tively from genetic/epigenetic heterogeneity within treated tumors to begin with. Alternatively,
only a certain subset of cancers may initially feature the drug target in adequate concentrations,
as described for Herceptin before. Heterogeneity within cancerous populations of one individ-
ual, including cancer stem-cells, and between patients is the biological basis for reduced drug
efficacy in the first place followed by resistance. To add robustness (avoidance of disease recur-
rence) to therapy therefore has to be a central goal in drug screening.

A major shortcoming of cancer therapies and certain other areas of therapy including but
not limited to infectious diseases and potentially disorders related to somatic mutations is the
development of resistance to those therapies. In the case of cancer and infectious diseases such
resistance is mediated by development of pathogen or cancer cell populations generally result-
ing in diseased cells, tissues or individuals not or less affected by therapy when compared to
the original population of cells, tissues or patients. This variability and potential to experi-
ence deterioration of therapy efficacy seemingly inherent to many drugged biological systems
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can be seen both between individuals (for example when comparing between neoplastic tis-
sues/growths/isolates stemming from at least two individuals) as well as within individuals (for
example genetically/epigenetically/phenotypically different cell populations within one neoplas-
tic tissue/growth/isolate). Therapies are therefore only of limited value if they cannot avoid re-
currence of a disease in a form resistant to the original therapy or provide only limited efficacy
in a substantial fraction of patients. Unfortunately this is a common situation when treating
infectious diseases and cancer and potentially other diseases.

The concepts of synthetic lethality and synthetic sickness refer to the lethal or sickening
effect of elimination of function of two specific genes or molecules encoded by these genes (for
example by genetic knock-outs, natural or induced genetic or epigenetic mutation or alteration,
small interfering RNAs or interfering drug effects) on a single or multicellular organism, if
elimination of such function of either of the two genes is not lethal [34].

Recently, comprehensive high-throughput data of synthetically lethal genetic double knock-
outs have been published for the yeast Saccharomyces cerevisiae [35].

Synthetic lethality could be a promising new avenue in the attempt to overcome chemoresis-
tance in the setting where one of the two partners is missing in tumor and the second one can be
down-knocked by means of drug-intervention. In theory, this would render the cancerous cells,
and only these, unviable. The purpose of the work presented in this chapter is to investigate
this new approach in the specific setting of chemoresistant neuroblastoma. Subsequently, this
method will be extended and presented in a more generic context of tumor.

2.2 A synlet-based approach to tackling vincristine resistant
neuroblastoma2

Concept outline and goals

Neuroblastoma is a tumor of the peripheral nervous system and the most common extracranial
solid tumor of childhood [37, 38]. This disease is one of the few malignancies where sponta-
neous regression is reported, however, depending on stage and biological characteristics (e.g.
MYCN amplification) chemotherapy is indicated [39, 40]. Drugs shown to have substantial ef-
ficacy include anthracyclines (doxorubicin), platinum compounds (carboplatin), etoposide, vin-
cristine, and alkylating agents as cyclophosphamide [37]. One of the major clinical issues in
chemotherapy is drug resistance [41]. Resistance to a specific drug is either intrinsic [42], where
the patient does not respond to therapy in the first place, or acquired, where the patient becomes
non-responsive in the course of treatment [43]. Molecular mechanisms responsible for resis-
tance are manifold including drug transport, compensatory processes leading to increased drug
metabolism, or elimination/modification of the drug target, among others [44, 45].

Vinca alkaloids such as vincristine act as mitotic inhibitors by binding to tubulin and halt-
ing polymerization, consequently hampering microtubule assembly resulting in cell cycle arrest

2This section is based largely on the scientific article Synthetic lethal hubs associated with vincristine resistant
neuroblastoma by Raul Fechete, Susanne Barth, Tsviya Olender, Andreea Munteanu, Andreas Bernthaler, Aron
Inger, Paul Perco, Arno Lukas, Doron Lancet, Jindrich Cinatl, Martin Michaelis and Bernd Mayer published in
Molecular Biosystems, January 2011 [36].
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in the mitosis metaphase [46]. One phenomenological representation of vincristine resistance
is changes in the cytoskeleton structure [47, 48]. Neuroblastoma is susceptible to developing
drug resistance involving various specific mechanisms such as loss of p53 function [49], down-
regulation of ERK1/2 phosphorylation [50], or up-regulation of p-glycoprotein (ABCB1) [51].
The clinical implications of drug resistance are further augmented by an increased invasiveness
of the chemoresistant tumor cells. The particular aggressiveness of chemoresistant tumor cells
has been described both in the context of neuroblastoma and vincristine [52], as well as in a
more general context [53].

Mechanisms triggering intrinsic as well as acquired vincristine resistance are coupled to
the genomic state of the parent tumor cell, and as for other tumors, neuroblastoma shows con-
siderable heterogeneity impacting clinical outcome. Factors of relevance include copy number
variation, chromosome gains, and changes in differential gene expression [54–56]. Options for
tackling chemoresistant neuroblastoma in clinical practice are limited; various drugs as borte-
zomib [32], artesunate [57] or 131I-metaiodobenzylguanidine [58] have been evaluated in vitro
as well as in vivo. One strategy is usage of drugs whose mode of action differs fundamentally
from vincristine, thereby increasing the change for circumventing given vincristine resistance
mechanisms.

Heterogeneity in solid tumors regarding genomic status, associated expression profile and
eventual routes towards developing resistance under selective pressure of chemotherapeutics cer-
tainly impose a general problem for virtually any targeted therapy in cancer. In this context, the
application of the concept of synthetic lethality has been proposed. Synthetic lethality describes
a cellular condition in which two (or more) non-allelic and non-essential mutations being not
lethal on their own, become lethal when present within the same cell [59]. However, each single
mutation may show synthetic sickness, but the effect of the double mutation is synergistic and
not merely additive [60, 61]. Systematic analysis has been performed in yeast and C.elegans to
determine synthetically lethal gene pairs [8, 62–65].

Synthetic lethality has been pursued substantially in cancer research [34, 66–68], as this ap-
proach promises increased sensitivity for cancer cells while at the same time providing a broader
therapeutic window. Only cells showing a particular mutation are specifically affected when ap-
plying a drug addressing a single lethal partner to this mutated entity. One of the most prominent
examples resting on synthetic lethal interactions is PARP (poly (adenosine diphosphate-ribose)
polymerase) inhibitors coupled with BRCA1 or BRCA2 mutation, all acting compensatory in
repair of ssDNA breaks. Clinical trials utilizing PARP inhibitors in BRCA associated cancers
as e.g. done for ovarian cancer indeed reported decreased adverse effects and at the same time
anti-tumoral activity [69]. On the basis of population-based case-control studies, the estimated
risk of being diagnosed with ovarian cancer increases by a factor of about 15 when carrying a
BRCA1 mutation [70]. However, the prevalence of BRCA1 mutations in subjects diagnosed
with ovarian cancer is estimated to be only about 5% [71], indicating a successful therapy based
on BRCA1-associated synthetic lethality only for a fraction of patients We delineate from this
example that drugs implicating a synthetic lethal mode of action may offer less side effect prone
therapy with improved specificity, but still being hampered in broad efficacy (which we in the
following denote as “coverage”): only patients whose tumor is characterized by a specific muta-
tion (as for BRCA) are amenable by a drug addressing a synthetic lethal partner, all other tumors
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are not covered.
To tackle the issue of coverage of e.g. neuroblastoma in general independent of the genomic

state found in individual patients, the concept of protein hubs may be of value [72]. Protein
interaction networks show a scale free topology, i.e. the degree distribution (where the degree
indicates the number of interactions per protein node) follows a power law. This general prin-
ciple appears also to be true for networks of synthetic lethal interactions [73]: Most genes may
have none or a single synthetic lethal partner, whereas a small set of hubs may have many such
interactions. If a synthetic lethal hub is hampered in its function, all cells where at least one
out of the n synthetic lethal partners of a specific hub is mutated will be affected. Utilizing this
principle may increase the coverage of cancerous genotypes, as schematically depicted in Fig.
2.1.

A general setup for this concept includes a reference cell population holding as phenotype
e.g. “healthy” or “chemosensitive”, and n tumor cell populations holding as phenotype “cancer-
ous” or “chemoresistant”. This setting refers to the assumption of a stable reference genotype,
but numerous different cancer genotypes. We assume that each of these tumor cell populations
holds at least one mutation of a non-essential gene (or generally feature), A1, A2, An. If we
now identify and functionally interfer with a non-essential feature B being synthetic lethal for
all combinations of mutated features Ai (B-A1, B-A2, B-An) synthetic lethality will result for
all cancerous (or chemoresistant) cell populations, but at the same time leaving the reference
cell population unharmed (as functionally hampered B on its own is non-essential). We denote
such a feature B as a synthetic lethal hub.

This concept may now be expanded to a clinical setting with a reference gene expression
profile characterizing features for the healthy (or chemosensitive) state, and individual gene
expression profiles of tumors from individual patients. Having such profiles in hand allows
identification of synthetic lethal hubs B according to the procedure given in Fig. 2.1. Features
B are to be not differentially regulated when comparing reference and tumor samples, and have
to be in a synthetic lethal interaction with partners A, where within the total set of features A at
least one feature A’ is down-regulated in each single patient expression profile. If such a feature
B could be identified, maximum coverage (efficacy with respect to the heterogeneous tumor cell
populations) of a drug directed against the feature B would be achieved, as synthetic lethality
would be induced for each individual cancer entity (patient specific tumor).

We in the following exemplify this concept for vincristine resistant neuroblastoma utiliz-
ing gene expression profiles from vincristine sensitive and resistant cell lines, and expand our
findings of synthetic lethal hub candidates B to gene expression profiles derived from human
neuroblastoma tissue samples.

Materials and methods

Gene expression data sets

Transcriptomics data sets characterizing vincristine sensitive and resistant cell lines, and data
sets derived from neuroblastoma patient samples were used for analyzing vincristine resis-
tance mechanisms and for delineating synthetic lethal hub proteins. Cell line data were re-
trieved for UKF-NB2 (isolated by the Interdisciplinary Laboratory for Tumour and Virus Re-
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Figure 2.1: Scheme for exemplifying the concept of profile specific synthetic lethality in target
identification. Top layer: Start situation is a reference cell population (normal, drug sensitive)
and various cell populations (1, 2, .. , n) being malignant (or drug resistant). Middle layer:
For each cell population specific gene expression is given for the features A1, A2, B, .. , An.
Bottom layer: Down-regulation of features in the different cell populations. Down-regulation of
(non-essential) B only has no effect on cell viability of the reference cell population. Joint down-
regulation of [B, A1], [B,A2] or [B,An] results in synthetic lethality for the cell populations 1, 2
and n.

search [52, 74, 75]), UKF-NB3 (isolated by the Interdisciplinary Laboratory for Tumour and
Virus Research [32, 52, 76]), UKF-NB6 (isolated at the Interdisciplinary Laboratory for Tumor
and Virus Research, Klinikum der J.W. Goethe-Universität Frankfurt), SMS-KAN (received
from CP Reynolds, Children’s Hospital Los Angeles [77, 78]), SMS-KCN (received from CP
Reynolds, Children’s Hospital Los Angeles [77–79]), and IMR-32 (received from the American
Type Culture Collection ATCC [80]). For each cell line, a vincristine sensitive and a vincristine
resistant phenotype was available for expression profiling. Adaption of the vincristine sensitive
cell lines towards rendering them resistant was done as described in [31].

The expression profile for each sensitive and resistant cell line was determined in triplicate
using Applied Biosystems 1700 chemoluminescence microarrays (Applied Biosystems, Foster
City, USA) holding 32,878 probes, with 25,123 probes associated to 21,012 gene symbols. Data
preprocessing included removal of flagged features according to the manufacturer specifications,
triplicates were averaged, and quantile-quantile normalization was performed. Identification
of differentially regulated features was done using the ABarray package (Microarray QA and
statistical data analysis for Applied Biosystems Genome Survey Microarray (AB1700) gene
expression data) from R/bioconductor applying a FDR of 5%.

Two sets of features were derived and considered as relevant for characterizing resistance on
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the level of cell lines. The first set included genes being significantly differentially regulated in
a group comparison of the six sensitive and six resistant cell lines, resulting in 43 genes (21 up-
and 22 down-regulated). The second set included features showing a fold change of at least five
in at least one particular cell line when comparing sensitive and resistant phenotype for each cell
line separately. The number of features retrieved by this second procedure was 834, with 437
genes being down-regulated and 397 features being up-regulated in at least one out of the six
cell lines.

Expression data on neuroblastoma retrieved from patient tumor tissue was drawn from the
ArrayExpress database (link [81]) [82] selecting the study E-TABM-38 [83]. This data set in-
cluded 251 neuroblastoma patient profiles generated by using a customized array (A-MEXP-
255) holding 10,707 probes corresponding to 9,878 genes. Next to the expression data, Array-
Express provided clinical data on outcome for the 251 patients, allowing an assignment of 180
samples to “good outcome” defined as “no relapse, no death” in a follow of in the mean 60
months, and 71 samples to “bad outcome” with either relapse or death in a follow up time period
of in the mean 40 months. Based on this group definition, significance of differential regulation
was derived using a Student’s t-test with Benjamini and Hochberg correction for multiple test-
ing, yielding in total 2,001 genes (471 up-regulated and 1530 down-regulated) as differentially
expressed when comparing “good outcome” and “bad outcome”.

Synthetic lethal interactions

Synthetic lethal interaction data in S.cerevisiae were derived from DryGin [65]. DryGin provides
data on genetic interactions for 1,712 query genes tested against 3,885 array genes resulting in
interaction data for more than 6 million pairs. For each pair, an ε-value describing the difference
between the measured and the expected double mutant population fitness is provided. A neg-
ative ε-value indicates synthetic sickness/lethality whereas a positive value indicates synthetic
enhancement. DryGin also provide thresholds for statistical significance of sickness / enhance-
ment based on the false positives / false negative rates, suggesting |ε| > 0.8 at a given significance
level of p < 0.05 for relevant interactions, among which interactions with negative ε-value were
in the following considered as synthetic lethal.

Applying these thresholds provided 121,391 pairs showing significant synthetic lethality in
S.cerevisiae, involving in total 4,358 unique yeast genes. For this set of unique yeast genes,
a mapping to human genes was performed for deriving orthologs. This was achieved using
the GeneCards (link [84]) list of human-yeast orthologs [85] as generated by integrating SGD
(link [86]) and homologene (link [87]). Applying this procedure allowed a mapping of 2,052
yeast genes out of the 4,358 genes represented in the synthetic lethality data set to 3,130 human
orthologs (one-to-many cardinality of the yeast to human matching for a certain number of
genes). For this set of human genes a total of 150,877 synthetic lethal interactions were derived
and subsequently used.

Data on gene essentiality was obtained from the Mouse Genome Database (MGD [88])
by querying the phenotype text codes of the genes possessing a human ortholog for the word
“lethal”. This procedure yielded a set of 2,214 human genes considered as single lethal.
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Function-specific data sets

For analyzing the involvement of proteins associated with actin, and more specifically with
cytoskeleton and transport in vincristine mode of action and resistance mechanisms the totality
of genes associated with these categories was derived. The GeneCards database was queried for
“actin” in the “pathways”, “function” and “summaries” section of the database resulting in 724
genes holding NCBI gene symbols. Of these actin associated features, 119 were specifically
associated with cytoskeleton and 57 with transport.

Results

Features and processes involved in vincristine resistance

Analysis of the gene expression data sets available for vincristine sensitive and resistant neurob-
lastoma cell lines provided 43 features being significantly differentially regulated when com-
paring the six cell lines in their vincristine sensitive and resistant phenotype (in the following
denoted as “cell line consensus”), and 834 features showing a fold change of at least five in at
least one out of the six cell lines when comparing the sensitive and resistant status for each indi-
vidual cell line (in the following denoted as “cell line fold change”). Furthermore, 2,001 features
were identified in human tumor tissue when comparing samples from patients with disease free
survival and samples from patients experiencing tumor recurrence (in the following refered to as
“human tissue feature set”). Genes associated with actin biology are present in all feature sets,
specifically 3 features were found in the cell line consensus, 35 in the cell line fold change, and
112 in the human tissue feature set.

Certainly, both the in-vitro as well as in-vivo case-control studies resemble only approxi-
mations of vincristine resistance in the clinical setting. The cell lines explicitly address changes
associated with adaption to vincristine; however, the changes do not necessarily mirror resistance
mechanisms also found in the in-vivo situation. In-vivo data on the other hand do not explic-
itly reflect the development of resistance as endpoint, but the finding of disease progression is
used as a surrogate marker for the potential development of resistance in these patients. In light
of these considerations the validity of the given expression profiles with respect to chemoresis-
tance, as well as the relevance of the cell line models with respect to neuroblastoma in the human
(clinical) setting needs to be addressed in the first place.

For assessing the comparability of cell line and human tissue data the overlap of identified
features on the level of NCBI gene symbols was retrieved as presented in Tab. 2.1 and 2.2.

data sets up down total
C 21 22 43
B 437 397 834
A 471 1530 2001

Table 2.1: Number of features being up- or down-regulated in the cell line consensus (C), fold
change (B), and human tissue (A).
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B,C A,C A,B A,B,C
feature overlap, up-regulation 3 0 12 0

feature overlap, down-regulation 8 3 50 1

Table 2.2: Number of overlapping features when comparing the three feature lists A, B, C.

One feature, namely PTBP2 (polypyrimidine tract binding protein 2) was identified in all
feature lists. PTBP2 plays a role in pre-mRNA splicing and in the regulation of translation, and
is primarily expressed in brain. Various reports indicate the relevance of PTBP2 in mesothe-
lioma, glioblastoma and other tumors of the central nervous system, also linked to tumor cell
dissemination, metastasis and chemoresistance. Additional 62 features were found differentially
regulated in both, patient and cell line data.

Various meta-studies aimed at comparing the direct overlap of features identified in inde-
pendent gene expression studies for a given cancer were published, frequently identifying only
minor overlap [30, 89], but still the same molecular processes and pathways appeared as popu-
lated by identified features. Analysis of significant enrichment of features in particular pathways
(Gene Set Enrichment Analysis, GSEA [90]) using cell line and human tissue data was assessed
by using a Chi2 test comparing the number of differentially regulated features located in a spe-
cific pathway and the total number of genes assigned to this pathway. Enrichment analysis
utilizing cell line and human tissue data on the level of KEGG pathways provided two cancer
pathways and axon guidance as significantly enriched by features from both sample sources.
Furthermore, distinct sets of pathways were identified as enriched by either only the human tis-
sue (including cell cycle and replication) and the cell line features (like adhesion processes),
respectively. The complete list of significantly affected pathways is presented in Tab. 2.3.

For the consensus expression set holding features being differentially regulated when com-
paring all six sensitive with the six resistant counterparts only 43 features were identified. In
GSEA only one pathway came close to significance using this consensus data set, namely “ABC
transporters” with a p-value of 0.07.

Also on the level of pathways the involvement of actin associated mechanisms became ev-
ident. Fig. 2.2 provides a schematic view of the intersection of the KEGG pathways “focal
adhesion” (KEGG identifier hsa04510) and “pathways in cancer” (KEGG identifier hsa05200).
Features identified as differentially regulated for sensitive and resistant cell lines affected ECM-
and chemokine-chemokine receptor interactions leading, for both pathways, to the activation of
the protein tyrosine kinase 2 (FAK) as well as the phosphoinositide-3-kinase (PI3K). Via pax-
ilin the former can lead to the regulation of the actin cytoskeleton, while the latter leads to cell
survival and proliferation via the p21 protein (Cdc42/Rac)-activated kinase 4 (PAK). Strong in-
dications for the involvement of differentially regulated features in cell survival are provided by
v-akt murine thymoma viral oncogene homolog 2 (PKB/AKT2) which together with the cyclin-
dependent kinase inhibitor 1A and B (P21/P27), as well as p53 were found affected in their
expression levels.

Next to identifying the overlap of cell line and human tissue data on the level of individual
features and molecular pathways, the specific involvement of given features in chemoresistance
and neuroblastoma may support the relevance of the data sets in the context of neuroblastoma
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vincristine resistance in the clinical setting.

data set KEGG id pathway name total found p-val
A,B hsa05200 Pathways in cancer 329 92/27 <0.0001/0.0010
A,B hsa05212 Pancreatic cancer 72 22/8 0.0049/0.0296
A,B hsa04360 Axon guidance 129 31/14 0.0282/0.0026
A hsa04110 Cell cycle 113 44 <0,001
A hsa03030 DNA replication 36 18 <0,001
A hsa05222 Small cell lung cancer 86 30 <0,001
A hsa05016 Huntington’s disease 181 51 <0,001
A hsa03420 Nucleotide excision repair 44 19 <0,001
B hsa04512 ECM-receptor interaction 84 14 <0,001
B hsa04510 Focal adhesion 201 17 0,009
B hsa05218 Melanoma 71 8 0,028
B hsa04514 Cell adh. molecules (CAMs) 131 11 0,046
B hsa00565 Ether lipid metabolism 33 5 0,047

Table 2.3: KEGG pathways being significantly affected in vincristine resistance. Given is the
data set (A for human tissue, B for the fold change list derived from cell lines), the KEGG path-
way id and name, the total number of features on the pathway (total), the number of differentially
regulated features on this pathway (found), and the p-value of a Chi2 test comparing the number
of present and the number of affected features for a specific pathway.

To address this issue, each feature was queried in NCBI PubMed together with the MeSH
terms “drug resistance, neoplasm” and “neuroblastoma” for deriving already reported associa-
tion of the features with these terms. The number of citations of a certain gene in the context of
drug resistance and neuroblastoma was retrieved by invoking the ESearch tool provided by the
NCBI Entrez Programming Utilities tool set (link [91]). Results are presented in Tab. 2.4.

Joint occurrence of resistance-associated features involved in both cell line and human tis-
sue is given among others for JUN, KIT, BID, RET, CDKN2A, GAL and ABCC4. Features
well known in resistance such as ABCB1 (N-glycoprotein, described as a major active trans-
port mechanism for drug resistance [92,93]) or MYC (where patients with amplified MYCN are
known to have a poorer prognosis [94]) were only identified for either cell line or human system.

For further evaluating the significance of these findings, the PubMed database was queried
for drug resistance and neuroblastoma association for all 15,547 genes assigned in PubMed,
resulting in 2,004 genes with at least one reference to “drug resistance” and 1,987 genes with at
least one reference to “neuroblastoma”.

From the double standard deviation retrieved from the distribution of feature-to-term assign-
ments as computed for the reference genes, all features from the cell line and human tissue lists
with at least 36 references for neuroblastoma or at least 53 references for drug resistance can be
considered significant in the respective category (Tab. 2.4).

To evaluate the enrichment of the terms “neuroblastoma” and “resistance” for the cell line
and human data feature sets a Fisher’s exact test was performed. Each of the three feature lists
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Figure 2.2: Reconstruction of pathway segments (utilizing the KEGG pathways “focal adhe-
sion” and “pathways in cancer”) including features identified in the gene expression experiments
comparing sensitive and resistant cell lines. Features being differentially regulated and actin as-
sociated are marked in yellow, actin associated features not differentially regulated are marked
in orange, features being differentially regulated but not actin associated are marked in blue.

was split into groups holding either genes with no reference or genes with at least one reference
in the respective MeSH category. The number of genes assigned to these groups was tested
against the respective number of features per group derived for the reference set of 15,547 genes.
All three gene sets showed statistically significant enrichment (p < 0.05) in both neuroblastoma
and drug resistance.

Analysis results from feature comparison, gene set enrichment and literature association in-
dicated the validity of the expression data sets in the context of neuroblastoma chemoresistance.
Nevertheless, the substantial heterogeneity and complexity of the cell line and human profiles
also became evident. This is true on both levels, namely genotype (associated expression pro-
files of analyzed tumor cells and tissue samples) as well as processes responsible for embedding
vincristine resistance. This aspect also becomes clear when analyzing the cell line expression
profiles. Fig. 2.3 provides the result of hierarchical clustering of the expression profiles derived
from the six sensitive and resistant cell lines.

The cell lines, although on the phenotype level clearly assignable to being vincristine sen-
sitive or resistant, cluster by cell type. The difference in expression status of the individual
sensitive cell lines exceeded changes introduced by rendering the cell resistant to vincristine.
This finding is in line with the comparably low number of features (43) identified as differ-
entially regulated in the cell line consensus compared to the 834 features being significantly
affected in at least one cell line when comparing sensitive and resistant phenotype. For these
834 features only 15% were found affected in two, and only 1% in three cell lines. One single
feature was found up-regulated in all six cell lines (ABCB1), consequently also being a member
of the consensus feature list.

These results support the arguments in favor of a synthetic lethality approach as an attempt to
target different features in different samples for reflecting this heterogeneity rather than targeting
specific features resting on a putative “consensus” over all samples.
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cell lines human tumor tissue
gene sym. DR&NB DR NB gene sym. DR&NB DR NB
ABCB1 27 87* 2505* MYC 20 1152* 191*

JUN 1 132* 149* MYCN 23 755* 23
KIT 1 52 201* CA2 0 697* 39*

CDKN1A 3 57* 163* TNF 3 131* 417*
TNFRSF10B 2 23 147* BAX 5 156* 379*

VIP 0 96* 6 ERBB2 1 23 436*
BID 1 21 78* ACHE 1 271* 146*

HTR3A 0 96* 0 CASP8 8 118* 269*
RET 0 67* 8 CASP9 8 107* 197*

CDKN2A 0 31 38* JUN 1 132* 149*
PDGFRA 0 9 60* BCL2L1 2 54* 205*
ANXA5 0 28 38* KITLG 2 99* 158*

NMB 0 42* 9 KIT 1 52 201*
GEM 0 4 38* SRC 0 88* 160*
GAL 0 31 10 DES 0 135* 96*
ATM 0 11 29 BID 1 21 78*

CXCR4 1 20 19 RET 0 67* 8
LYN 0 3 35 CDKN2A 0 31 38*

ABCC4 1 1 32 GAL 0 31 10
ALK 0 24 8 ABCC4 1 1 32

Table 2.4: Features (only the top hits are listed) being differentially regulated in the cell lines
(left) and in human tumor tissue (right) and assigned to drug resistance and/or neuroblastoma.
Given are the gene symbol and the number of reports in PubMed associated with a given gene
based on the search terms “drug resistance, neoplasm and neuroblastoma” (DR&NB), “drug
resistance, neoplasm” (DR), and “neuroblastoma” (NB). Features identified in both data sets are
given in bold. Numbers holding an asterisk are computed as statistically significant for a given
category.

Identification of synthetic lethal hubs

Gene expression profiles for six vincristine sensitive cell lines and the corresponding resistant
phenotypes including 25,123 features associated to 21,012 genes were available as start point.
Each expression value was given in triplicate, and the average was calculated for each feature
and each cell line with a given resistance phenotype. For each feature and cell line the fold
change comparing the sensitive and resistant phenotype was computed. Fold change values x
found below 1.0 were re-computed as -1/x. Genes being represented on the array by more than
one probe were consolidated on this fold change level by calculating the median fold change
over all probes.

One important criterion for identifying synthetic lethal hubs was their validity in all six cell
lines (see Fig. 2.1). To be valid, the fold changes of a potential synthetic lethal hub (B) had to
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Figure 2.3: Hierarchical clustering of cell line expression profiles applying complete linkage
and Pearson correlation as distance measure. The expression profiles for six sensitive and six
resistant cell lines, each in triplicate, are shown.

be above a specific fold change threshold in each of the six cell lines. Ideally, this fold change
should be positive for all cell lines (i.e. a feature B is up-regulated in the resistant cell line).
We selected a minimum fold change of -2.0 as valid cutoff for respecting some variability of
the array signals as identified by the triplicate measurements, but still assuring that a given B is
present (a natural requirement for enabling a subsequent knock-down of a feature B).

As second criterion, a partner for a given B was considered as valid from the fold change
perspective if this partner A showed a fold change below -3.0 in at least one resistant cell line,
i.e. being substantially down-regulated in the resistant situation for at least one cell line. Next
to these specific fold change requirements, a third constraint was imposed on the selection of A
and B features, namely A and B had to be a synthetic lethal pair as determined on the basis of the
yeast-to-human matching of synthetic lethal partners identified in S.cerevisiae. Applying these
criteria on the six cell lines resulted in the selection of 83 features (synthetic lethal hub genes
B) having down-regulated synthetic lethal partners A assigned in all six cell lines, consequently
providing 100% cell line coverage. For each selected B, there was at least one A for each cell
line which i) was down-regulated in the resistant phenotype in at least one (or more) cell lines
and ii) B and A were assigned as synthetic lethal partners following the yeast data.

Due to the evident importance of actin associated features in the context of vincristine resis-
tance, only synthetic lethal hubs functionally assigned to this category were further considered.
Among the 83 features 13 were also present in the actin feature list (Tab. 2.5).

For these 13 hub features, 94 synthetic lethal partners (A’s) were identified, the majority
of which was found to be associated with several hub features. Further details for the synthetic
lethal partners A are listed in Tab. 2.6. Eight of the 94 genes are also found to be actin associated.
For further characterizing the set of 94 partners, GSEA was performed on the level of Gene
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gene sym. name min FC max FC avg FC # of A’s
ACTA1 Actin, alpha 1, skeletal muscle -1,71 1,96 0,07 37
ACTB Actin, beta -1,73 1,96 0,09 37

ACTG1 Actin, gamma 1 -1,72 1,24 -0,24 37

ACTR1B
Arp1 actin-related protein 1 ho-
molog b, centractin beta

-1,15 1,47 -0,26 18

ARPC2
Actin related protein 2/3 com-
plex, subunit 2, 34kda

-1,78 1,22 -0,07 21

ARPC5
Actin related protein 2/3 com-
plex, subunit 5, 16kda

-1,44 1,39 0,39 19

ARPC5L
Actin related protein 2/3 com-
plex, subunit 5-like

-1,22 1,45 -0,31 19

FMN1 Formin 1 -1,38 1,16 -0,04 12
FMN2 Formin 2 -1,72 2,25 0,45 12

MAP2K1
Mitogen-activated protein ki-
nase kinase 1

-1,28 1,52 0,46 19

MAP2K2
Mitogen-activated protein ki-
nase kinase 2

-1,42 2,06 0,08 19

PKN1 Protein kinase n1 -1,59 2,57 0,17 20

PPP1CA
Protein phosphatase 1, catalytic
subunit, alpha isoform

-1,34 1,66 0,48 19

Table 2.5: The list of actin associated synthetic lethal hubs covering all six cell lines. Given are
gene symbol and name, the minimum (min FC), maximum (max FC) and average fold change
(avg FC) when comparing sensitive and resistant cell lines, as well as the number of synthetic
lethal partners A (# of A’s).

Ontology (GO) terms [95] as depicted in Tab. 2.7.
In this procedure, each GO term was analyzed for the ratio of the number of A’s found in

the term with respect to the total number of genes assigned to the term. A Fisher’s exact test
was used to calculate the significance of enrichment using Benjamini and Hochberg correction
for multiple testing, further eliminating all terms with a corrected p-value above 0.05. Next, all
enriched terms holding only one single hub feature were removed leading to the selection of 34
significant ontology concepts as listed in Tab. 2.7. Next to actin associated terms (which were
expected due to the biased selection of B features), an enrichment of terms related to cell motion,
metabolism and regulation of MAP kinase activity was found.

For further analyzing the relation between synthetic lethal hubs and synthetic lethal partners,
the connection between the two GO concept lists, one for the hubs and one for their partners,
was studied. The first group held terms enriched by the hub gene list for which the uncorrected
p-value of Fisher’s exact test was below 0.05 and which had at least 3 hub genes. The second
group refered to terms enriched by the partner gene list for which the uncorrected p-value of
Fisher’s exact test was below 0.05 and which held at least 5 partner genes.
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gene sym. max FC avg FC #CL #B’s gene sym. max FC avg FC #CL #B’s
ABCC4 -3,98 -1,83 1 1 OSBPL1A -3,59 0,12 1 3
ACSS1 -20,20 -3,96 1 3 PCCA -4,11 -0,83 1 3
ACSS2 -4,93 -0,48 1 3 PEX5 -3,59 -1,24 1 3
ADA -4,23 -0,86 1 3 PEX5L -3,13 -0,80 1 3

AGPAT3 -4,73 -0,49 1 1 PLEKHG2 -5,22 -0,21 1 1
AP1S3 -3,56 -0,99 1 1 PPAN -3,14 -0,37 1 4
AQP10 -12,03 -2,34 1 5 PPEF1 -3,97 1,71 1 3

ARHGAP29 -7,00 -2,45 3 11 PSAT1 -11,00 -2,23 2 1
ARHGEF4 -3,43 -1,99 2 1 PSPH -4,14 0,21 1 1
C12ORF5 -12,40 -1,54 1 5 RAB25 -26,11 -4,33 1 1

C8ORF30A -4,65 -2,00 1 1 RAB35 -3,76 -0,78 1 1
CLPB -4,38 -0,46 1 1 RAB6B -3,42 -1,36 1 3

CORO1C -4,43 -0,06 1 7 RER1 -3,25 -0,05 1 5
CORO6 -10,71 -1,99 1 7 RPS4Y1 -4,27 36,88 1 3
CPVL -3,72 -0,91 1 3 SC5DL -3,34 -0,85 1 5

CSTF2T -3,46 0,31 1 2 SCPEP1 -4,39 -0,54 1 3
DAPK1 -26,50 -4,82 1 1 SDHB -3,07 0,05 1 3
DBNL -6,56 -0,59 1 7 SELI -3,59 -1,64 1 2
DCTN1 -4,47 -0,08 1 5 SLC25A29 -3,52 -0,76 1 1
DMXL1 -5,62 0,45 1 1 SLC26A8 -3,64 0,08 1 2
DNM1L -3,30 -1,47 1 5 SLC2A10 -5,20 -1,28 1 1
DPH2 -3,38 -0,57 1 2 SNX10 -9,47 1,33 2 1
EPS15 -4,09 0,08 1 2 SNX12 -4,77 -0,97 1 1

EPS15L1 -3,11 0,25 1 2 SNX13 -3,26 -0,13 1 1
FOXB1 -3,20 0,18 1 1 SORCS1 -3,59 0,32 1 2
FOXJ1 -3,91 -0,93 1 3 SPAG1 -3,05 -0,96 1 2
FOXK2 -3,78 -0,25 1 1 SRCAP -3,49 0,42 1 4
MTOR -3,01 0,41 1 5 STX7 -26,21 -4,15 1 2
FYCO1 -3,12 -0,69 1 1 TCEA1 -3,16 -0,30 1 3
GPT2 -4,11 -0,01 1 6 TCEA3 -3,74 -0,90 1 3

GRAMD1A -3,02 -0,66 1 3 TEAD2 -43,23 -10,57 2 5
HCLS1 -72,05 -11,43 1 7 TKTL1 -21,91 2,60 1 5
HHAT -3,64 -0,55 1 3 TMLHE -3,64 -1,34 1 1

HIST1H2AI -3,38 -1,90 1 3 TPM2 -22,79 -3,21 1 4
HK2 -3,41 -0,52 1 2 TSSK4 -3,25 -1,14 1 5

HSPH1 -3,64 -1,08 1 3 TTL -4,26 -1,11 1 2
IER3IP1 -3,64 -0,20 1 2 UBB -731,34 -120,92 1 6

LOC147804 -3,15 -0,17 1 4 UBE4B -3,11 0,25 1 2
LY6G5B -5,98 -0,28 1 6 ULK2 -10,31 -2,01 1 4
MAPK4 -9,20 -0,52 1 9 USP27X -3,81 -1,16 1 4

MAPRE2 -3,16 -0,04 2 2 VAC14 -3,13 -0,17 1 3
MYO1C -3,17 -0,60 1 6 VAMP5 -7,55 0,04 1 6
MYO5A -4,66 -1,42 1 3 VAMP8 -3,44 -1,18 1 6
NOTCH2 -8,45 -1,29 1 2 VPS13D -4,19 -0,63 1 1
NUAK1 -7,03 -2,73 2 1 WIPI1 -41,69 -6,88 1 1
NUAK2 -9,46 -2,46 1 1 YARS -3,09 0,29 1 1

ONECUT1 -5,80 -0,94 1 2 ZNF22 -66,09 -10,51 1 6

Table 2.6: Synthetic lethal partners (A’s), with maximum (max FC) and average (avg FC) down-
regulation fold change, number of resistant cell lines with down-regulation (#CL), and the num-
ber of synthetic lethal hubs B (#B’s) associated. Actin relevance is marked in bold.
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term ID term name size hubs p-val. c. p-val.
GO:0016043 cellular component organization 2229 7 0,008 0,039
GO:0006996 organelle organization 1184 6 0,002 0,019
GO:0030036 actin cytoskeleton organization 217 5 <0.001 0,001
GO:0030029 actin filament-based process 232 5 <0.001 0,001
GO:0007010 cytoskeleton organization 386 5 <0.001 0,002
GO:0006928 cell component movement 420 5 <0.001 0,002
GO:0032268 regulation of cellular protein metabolic process 458 4 0,001 0,017
GO:0051246 regulation of protein metabolic process 531 4 0,002 0,020
GO:0006796 phosphate metabolic process 848 4 0,010 0,039
GO:0006793 phosphorus metabolic process 848 4 0,010 0,039
GO:0030833 regulation of actin filament polymerization 49 3 <0.001 0,001
GO:0008064 regulation of actin polymerization or depolymeriz. 56 3 <0.001 0,001
GO:0032271 regulation of protein polymerization 57 3 <0.001 0,001
GO:0030832 regulation of actin filament length 58 3 <0.001 0,001
GO:0043254 regulation of protein complex assembly 78 3 <0.001 0,002
GO:0032535 regulation of cellular component size 79 3 <0.001 0,002
GO:0032956 regulation of actin cytoskeleton organization 81 3 <0.001 0,002
GO:0032970 regulation of actin filament-based process 84 3 <0.001 0,002
GO:0090066 regulation of anatomical structure size 117 3 <0.001 0,004
GO:0051493 regulation of cytoskeleton organization 118 3 <0.001 0,004
GO:0044087 regulation of cellular component biogenesis 123 3 <0.001 0,004
GO:0033043 regulation of organelle organization 200 3 0,001 0,016
GO:0051128 regulation of cellular component organization 429 3 0,008 0,039
GO:0051656 establishment of organelle localization 42 2 0,001 0,013
GO:0000187 activation of MAPK activity 77 2 0,002 0,020
GO:0043406 positive regulation of MAP kinase activity 96 2 0,004 0,025
GO:0007265 Ras protein signal transduction 99 2 0,004 0,026
GO:0048812 neuron projection morphogenesis 103 2 0,004 0,028
GO:0048858 cell projection morphogenesis 110 2 0,005 0,030
GO:0032990 cell part morphogenesis 119 2 0,006 0,033
GO:0010038 response to metal ion 126 2 0,006 0,035
GO:0043405 regulation of MAP kinase activity 134 2 0,007 0,037
GO:0010035 response to inorganic substance 145 2 0,008 0,039
GO:0048545 response to steroid hormone stimulus 179 2 0,012 0,047
GO:0032989 cellular component morphogenesis 182 2 0,013 0,047

Table 2.7: GO terms associated with the synthetic lethal hubs. For each significant term the GO
identifier (term id), name, and the total number of genes in that particular term as well as the
number of hubs for the particular term are given. Additionally the raw p-value of the Fisher’s
exact test, as well as the values after correction for multiple testing (Benjamini & Hochberg) are
given for comparing total number of genes per term and genes affected in a specific term.

25



1

2
3

4

5
6

8

7

Figure 2.4: Section of the Gene Ontology populated by synthetic lethal hubs B (blue), synthetic
lethal partners A (red), and terms populated by both (green). The main term groups are: 1:
regulation of actin cytoskeleton organization, 2: regulation of actin filament polymerization,
3: positive and negative regulation of apoptosis, 4: establishment of localization and (vesicle
mediated) transport, 5: apoptosis, 6: various cellular processes (cycle, development, etc.), 7:
post translational modifications / phosphorylation and 8: various metabolic processes (lipid,
organic acid, ketone, alcohol, etc.).

Term selection was done by considering the ontology as a directed acyclic graph and walking
its structure bottom-up (in the direction of the “is a” relationship up to the root concept) begin-
ning in each of the 27 (hub B) and 54 (partner A) significant terms. All concepts reached and
edges used during this walk in the acyclic graph were selected. The resulting graph is presented
in a hierarchical layout in Fig. 2.4.

This approach allowed identification of terms being strongly affected by the synthetic lethal
pairs including, among others, cytoskeleton organization and actin filament polymerization for
the synthetic lethal hubs (B), apoptosis and the regulation thereof, transport and various metabolic
processes for the partners (A), and post-translational modifications and phosphorylation for both
(B and A features).

This ontology analysis clearly showed disjoint areas regarding hubs and partners. Synthetic
lethal interactions were mostly found between different ontology terms rather than term-internal.
Relevant between-term interactions and their weight (i.e. number of synthetic lethal pairs asso-
ciated with the terms) are shown in Fig. 2.5.

Particularly strong interactions were found between hub-associated terms and the terms
transport, organelle organization, post translational modifications and regulation of cell com-
munication.

Relevance of hubs in tumor tissue

For assessing the relevance of synthetic lethal hubs B delineated from the cell line data, a respec-
tive coverage analysis was performed using the expression data characterizing human tissue. The
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Figure 2.5: Reconstruction of dependencies between lethal hubs B (blue) and their partners
A (orange) on the level of GO processes. The number of synthetic lethal links between terms
associated with synthetic lethal hubs and partners are given.

study by Oberthür et al. [83] provided 251 gene expression profiles. Based on the given clinical
data on outcome, 180 arrays were assigned as “good outcome” controls and 71 arrays as “bad
outcome” cases (34 samples with tumor relapse and 37 samples with death).

Equivalently to the procedure applied for cell line data, the expression values of genes being
represented on the arrays by more than one probe were consolidated computing the median over
all probes. This reduced the 10,163 probes (with 10,156 features holding a gene symbol) to
9,878 genes. In contrast to the cell line data, the human data set was composed of two groups
of samples based on clinical outcome instead of having a sensitive and a resistant phenotype for
each individual sample. For respecting this situation the median expression value for each gene
including the 180 controls (“good outcome”) was computed, and for each individual case (“bad
outcome”) the fold change for each gene was computed with respect to the median value derived
from the 180 control expression values. Again the rationale is that a hub feature B ideally had to
be present in all cases and controls, whereas a particular partner A had to be be down-regulated
in one (or many, ideally all) cases. In this setting, down-regulation of a feature A was expressed
as fold change of A in a particular case with respect to the median of A as determined from the
controls. This setup allowed the computation of the coverage of hub features B in analogy to the
cell line procedure presented above.

Fold change threshold values were adjusted for allowing comparability to the cell line se-

27



lection procedures. Specifically, cutoff values were selected such that the same percentage of
presence (B features) and down-regulation (A features) were available in both, cell line and hu-
man tissue experiments: A fold change cutoff of -3.0 (down-regulation for A features) for the
cell line data resulted in selecting 2.285% of down-regulated features on the cell line level.

For reaching the same number of features for the human tissue samples a corresponding fold
change of -1.7696 was computed. A fold change constraint of at least -2.0 (presence) on the cell
line data, selected as minimum fold change for B features, yielded 92.5% features, correspond-
ing to a cutoff of -1.3667 in the patient data. Based on these cutoff values, the coverage of the
13 hub features B identified on the cell line level was tested on the human tissue data by first
identifying partners A fulfilling the fold change criterion, and then selecting B - A pairs reported
as being synthetic lethal as derived from the yeast data set.

This procedure could be applied for only 6 out of the 13 hub genes, as the remaining seven
features were not represented on the arrays used for analyzing the human samples. Characteris-
tics on coverage, minimum, maximum and average fold changes, and the number of associated
synthetically lethal partners for the six hubs are presented in Tab. 2.8.

gene sym. coverage min FC max FC avg FC # of A’s
ACTA1 59,15% -1,53 6,63 -0,43 25
ACTG1 57,75% -2,37 1,9 0,34 25
ACTB 56,34% -1,55 1,46 -0,07 25

MAP2K2 52,11% -1,74 1,45 0,5 21
ACTR1B 38,03% -1,74 1,61 -0,12 15
ARPC5 35,21% -1,44 1,77 -0,07 15

Table 2.8: List of actin associated synthetic lethal hubs B also found in the human tumor tissue
data set. The table lists gene symbol, coverage of human samples considered, minimum (min
FC), maximum (max FC) and average fold change (avg FC) when comparing the case expression
values to the median control expression value, as well as the number of synthetic lethal partners
A. Genes identified as statistically significant regarding their coverage are given in bold.

For the six synthetic lethal hubs the best coverage is reached by ACTA1 (59.15%) and the
lowest by ARPC5 (35.21%). For evaluating the significance of these findings, a reference dis-
tribution of coverage was computed for all 733 genes from the yeast synthetic lethality data
set which were successfully mapped from yeast to human and which were also present on the
custom array used. Based on this distribution of coverage, a mean, single and double standard
deviation was computed, and the coverage reached by the six hub features derived from the cell
line data was analyzed in the context of these distribution descriptors. The result is shown in
Fig. 2.6.

Four of the lethal hubs (namely ACTA1, ACTG1, ACTB and MAP2K2) were found to be
highly significant with respect to coverage, i.e. outside the double standard deviation of the
underlying reference distribution. The remaining two (ACTR1B and ARPC5) were significant
being outside the single standard deviation.
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Figure 2.6: Synthetic lethal hub validation in human tumor tissue data. The histogram of the
case coverage of all available synthetic lethal features as derived from the yeast data set forms
the distribution given by the bars, showing the number of features (number) with a specific
coverage. Characteristics of the distribution are provided (mean, single and double standard
deviation). Coverage of selected synthetic lethal hubs as derived from the cell lines and their
gene symbol are provided.

Discussion and conclusion

Models of resistance in neuroblastoma

We explored two model systems for characterizing vincristine resistance in neuroblastoma. The
cell line model explicitly addressed vincristine resistance by comparing six sensitive (parental)
cell lines and their counterparts rendered resistant. The human tissue samples on the other
hand only serve as surrogate for drug resistant neuroblastoma in the in vivo situation. Disease
progression certainly rests on various reasons, with resistance to chemotherapy just being one
(also highly prevalent) cause.

Analysis of differentially regulated features and affected molecular processes shed some
light on the relevance of the two model systems used. Direct overlap of features being differen-
tially regulated when comparing cell line and human data with respect to resistance was found
minor (Tab. 2.1 and 2.2), including 62 features. Of further notice in this context is the low num-
ber of features found consistently differentially regulated on the cell line level when comparing
sensitive and resistant phenotype, i.e. only 43 features. However, gene expression meta-studies
done for other tumor entities also reported little feature overlap [30, 89], and it was postulated
that on a functional level (molecular processes and pathways) the factual overlap becomes more
evident.

Identified pathways significantly populated by both differentially regulated cell line and hu-
man tissue features included pathways in cancer as well as a process linked to the tissue type
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under analysis (axon guidance) (Tab. 2.3). Pathways prominently enriched in the in vivo situa-
tion included cell cycle, DNA replication and repair, in line with mechanisms linked to expand-
ing tumor mass. The in-vitro data on the other hand predominantly showed extracellular matrix
and adhesion processes as being affected, presumably indicating the specific situation of the cell
cultures.

Analyzing the 62 features identified as differentially regulated in both cell line and human
tissue again provided “pathways in cancer” as significantly affected, next to “endocytosis”. The
latter functional entity has been associated with vincristine since its introduction to the field
[96, 97], and recently has been associated with increase in lysosomal volume and leakage and
sensitization of cells to lysosomal membrane permeabilization [98]. Screening for vincristine
resistance associated features e.g. in gastric cancer also revealed the involvement of endocytosis
[99].

Clear reference to actin-associated features is found for both model systems, in line with
the assumption of the pivotal role of cytoskeleton and transport in vincristine resistance. For
features derived from cell lines 35 genes, and for the human tissue 112 genes were represented
in the actin list holding in total 724 genes. Specific features were also identified in ECM re-
ceptor interaction leading to regulation of actin cytoskeleton as well as cell proliferation (Fig.
2.2). Cytoskeletal involvement was broadly discussed in the context of invasive migration of
neoplastic cells [100–103] clearly linking the development of resistance and the clinical finding
of increased aggressiveness. Interestingly, these reports pinpoint the relevance of focal adhesion,
cell adhesion molecules and extracellular matrix/ECM interactions, being in line with pathways
found to be enriched by features differentiating drug sensitive and resistant cell lines.

Further evidence supporting the relevance of the given feature lists with respect to drug
resistance mechanisms was derived from mining literature (Tab. 2.4). Association analysis
of the approx. 15,000 genes assigned in PubMed resulted in a significant enrichment of drug
resistance associated features for both, cell line as well as human data. Interestingly, ABCB1
(p-glycoprotein), a well known transporter associated with drug resistance [104], was found
differentially regulated only in the cell lines and not in patient profiles. Another gene highly
ranked in the literature annotation but not differentially regulated in either the patient or the cell
lines is caspase 3 (CASP3). Contrary to ABCB1, CASP3 is not a direct target for triggering
drug resistance but a downstream element, as the activation of caspases plays a central role in
apoptosis.

In summary, the given feature lists as well as enriched pathways populated by these grasp
major elements associated with drug resistance. However, also substantial heterogeneity be-
comes evident, not only when comparing cell line and human tissue data, but also when analyz-
ing the cell line data as such. Clustering the expression profiles characterizing the six chemosen-
sitive and resistant cell lines provided a closer linkage on the level of cell type than on the level of
sensitive versus resistant phenotype (Fig. 2.3). Apparently no set of features (or single feature)
could be identified as target for tackling vincristine resistance. ABCB1 has been considered
as such a target based on its diverse involvement in drug resistance [105], and L-type calcium
channel blockers such as verapamil were shown to increase chemosensitivity [106, 107]. A re-
cent study reported the reversal of docetaxel- and vincristine-induced multidrug resistance also
independent of ABCB1 expression in human lung cancer cell lines [108].
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For addressing the heterogeneity of drug escape routes which appear fundamentally grounded
on the heterogeneity of primary neuroblastoma, we utilized the concept of synthetic lethality. In
theory, this approach promises improved specificity for targeting cancer cells, exhibiting at the
same time an improved safety profile.

Synthetic lethal hubs and vincristine resistant neuroblastoma

Extended data regarding genetic interactions was published recently on S.cerevisiae, showing a
dense network of interactions involving both enhancement as well as synthetic sickness/lethality.
Conservation of such genetic interactions, and consequently the validity of traversing data on
synthetic lethality between species is heavily discussed [109] with first comparative studies on-
going involving S.cerevisiae, S.pombe, and C.elegans [110]. In the presented example, about
150,000 synthetic lethal interactions were derived for human genes utilizing available data from
S.cerevisiae.

This interaction data set was then integrated with expression data given for the six individual
cell lines. Primary selection rationale was the identification of a feature B which is present (i.e.
expressed) in all sensitive as well as resistant cell lines, and interacts with one or more features
A which are absent (weakly expressed or absent) in resistant cell lines. A coverage of 100% is
reached by a feature B if there is at least one particular A in each individual resistant cell line.
If B is non-essential, then a knock-down / knock-out of B in all cell lines would result in no (or
minor) change of viability for sensitive, but in synthetic lethality for resistant cells (Fig. 2.1). In
line with this approach a mutation (as found in the definition of the concept of synthetic lethality)
is set equivalent to down-regulation of a feature as both, mutation as well as down-regulation
are assumed to result in decreased effective activity of a feature.

Thresholds of fold changes have to be introduced for implementing this approach for defin-
ing at what level a feature is considered as “present” and as “absent”. Instead of using fixed
cutoff values and imposing the constraint of presence for all B features (as applied in this work)
a dynamic procedure could be applied by searching optimal presence of B and maximum down-
regulation of respective features A. Such alternative approach would also allow selection of
suboptimal B features with respect to presence in all samples, but still providing better coverage
by selecting alternative A features.

For our data set on vincristine resistance, 83 synthetic lethal hubs could be identified inter-
acting with partners A in all six resistant cell lines (thus providing 100% coverage). 13 out of
these 83 features are found to be actin associated (Tab. 2.5), and GSEA of these 83 hubs iden-
tified “regulation of actin cytoskeleton” as significantly enriched. This pathway bias is solely
coming from the gene expression data, again indicating the important role of actin associated
processes in vincristine resistance. The hubs showed an average fold change of zero when com-
paring sensitive and resistant phenotype, and a substantial number of synthetic lethal partners
A, ranging from 12 to 37. The 13 hub features are in total associated with 94 A features, of
which 87 are down-regulated (mutated) in only one cell line (Tab. 2.6), six in two, and one in
three cell lines (Rho-type GTPase-activating protein, ARHGAP29). Of importance is the redun-
dancy in interactions, where each A is in most cases linked to more than one B, for features as
ARHGAP29 even 11 out of the 13 hubs interact. Of further interest is the mean fold change
of features A, being in many cases around zero (as also given for B features, see Tab. 2.5),
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but showing substantial down-regulation for individual cell lines. Apparently, gain in resistance
severely impacts specific features depending on the genotype of the parental, sensitive cell.

One mechanism causing synthetic lethal association between two features is (functional)
paralogs, i.e. one feature compensates the loss of the second feature. PARP and BRCA may
serve as example. However, redundancy is frequently encoded by more complex mechanisms
spanning functional categories [62]. Next to actin-associated terms coming from the synthetic
lethal hubs (Tab. 2.7) transport, apoptosis, cell cycle and development, and metabolic processes
are found for the combined set of hubs and interacting partners (Fig. 2.4). The five major
functional terms given for the synthetic lethal hubs couple with 11 major functional terms found
for partner features A. The functional interaction scheme given in Fig. 2.5 clearly indicates
degeneracy, i.e. distributed robustness [111] as major mechanism for proposed synthetic lethal
interactions and not functional compensation on the basis of redundancy.

Of the 13 synthetic lethal hub features discussed above, 6 were present on a custom array
used for profiling of neuroblastoma tissue from 251 patients. Among these, 180 showed stable
disease or regression, whereas 71 experienced relapse or died in a mean follow up of 40 months.
Based on this group specification we performed a verification of the six valid synthetic lethal
hubs as identified on the level of cell lines. Equivalent criteria as selected for the cell lines were
applied for the human tissue data. All six synthetic lethal hub candidates showed in the mean
a fold change around zero, and utilizing the synthetic lethal partners for the given hub proteins
showed a coverage between 35% and 59% (Tab. 2.8). Specifically, the increased coverage
realized by the hubs ACTA1, ACTG1, ACTB and MAP2K2 is significant with respect to a
reference distribution of coverage (Fig. 2.6). ACTA1 (actin alpha 1), specifically expressed in
skeletal muscle, is one of the six different actin isoforms also including ACTG1 (cytoplasmic
actin found in non-muscle cells) and beta-actin (ACTB). MAP2K2 is a protein kinase known to
play a critical role in mitogen growth factor signal transduction, also involved in stress induced
apoptosis and actin reorganization.

Certainly, synthetic lethal hub candidates as derived by the screening procedure described
in this work may fail in experimental verification due to various reasons: one fundamental issue
is the assumption of stable genetic association across species. To what extent traversing genetic
interactions from yeast to human provides valid interactions still needs to be clarified. Here, the
specificity of mapping yeast sequences to the human genome has also to be considered. Next,
for genes successfully mapped a bias towards essentiality may be given, and naturally synthetic
lethal hubs must not be essential as a knock-down of these would also impact the viability of
cells not carrying the mutated (down-regulated) partner. Based on a data set on single lethality,
five of the 13 actin-associated hubs, namely ACTA1, ACTB, FMN1, MAP2K1 and MAP2K2 are
indicated as essential, presumably not being valid candidates. However, cross-species evaluation
of essentiality carries the same restrictions as given for mapping genetic interactions. For other
hub candidates derived by the screening routine explicit disease annotation is provided (e.g. for
mutation in ACTG1 [112]).

Significant redundancy is suspected in genetic interaction networks, to a large extent based
on more complex interactions than explicit implementation of redundancy [62]. The procedure
proposed in this work is centrally focusing on coverage, resulting in hubs exhibiting a large
number of interaction partners, as this fact per se increases the likelihood of identifying a set of
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down-regulated partners in given expression profiles. The node degree distribution of the entire
synthetic lethality network showed that genes with the highest coverage given for the validation
utilizing patient tissue expression data, namely ACTA1, ACTB and ACTG1, are situated well
outside the double standard deviation of the degree distribution. Here, the risk of side effects
increases, as tissue specific gene expression may show absence of one (or many) of such partners,
resulting in significant off-target effects. On the other hand a fraction of synthetic lethal pairs
may be embedded in a higher order redundancy, i.e. the effect of a double mutant may still be
buffered by a third entity or alternative mechanism.

From these considerations various aspects impacting false positive as well as false negative
findings on synthetic lethal hubs become clear, alluding the relevance of extended experimental
verification. Here, the development of high throughput RNA interference screening [113] has
become a perfect complement, allowing large scale verification of synthetic lethal hub candi-
dates as derived by screening procedures exemplarily outlined in this work.

2.3 A generic synlet-based approach to tackling chemoresistance
in tumor3

Concept outline and goals

In the previous sections we described and exemplified the concept of synthetic lethality in
chemoresistant neuroblastoma. Knock-down hubs were identified in resistant cell-lines and were
then validated in human tissue samples showing in both cases promising results.

The approach, however, is not at all restricted to this particular tumor type or, by that matter,
to cancer. Theoretically, any cells exhibiting a particular phenotype in which one synthetic lethal
partner is missing (as opposed to all other tissues where both are present) can be targeted by these
means. Cancer is an especially interesting target as few alternative therapies exist.

In this section we will generalize the concept of synthetic lethal hubs and their detection and
further exemplify the approach using curated human data on breast, lung and colon cancer.

To formalize this concept, an individual data set referring to an organism or biological sam-
ple presents a set of genes A1, A2, A3, .. , An which are down-modulated or functionally
compromised and are part of a set of genes S together with a functionally non-compromised
gene B, where compromising the function of B should result in a lethal effect or should lead to
substantial morbidity due to pairwise given synthetic lethal relationships to genes A1, A2, A3, ..
, An.

Classical synthetic lethality or synthetic sickness screens have previously been used to iden-
tify potential drug candidates specific to certain diseased cells. These cells were considered
amenable to drugs if a synthetically lethal partner A of a direct or indirect drug target B is
functionally inactivated in those cells, for example by down-regulation, mutation, deletion or
other mechanisms, however, present or otherwise functionally available in healthy/uninfected

3This section is based largely on the patent application Critical gene targets for cytotoxic therapy with the
publication no. WO/2011/144738, application no. PCT/EP2011/058259 by Arno Lukas, Johannes Söllner, Andreas
Bernthaler, Bernd Mayer, Raul Fechete, Paul Perco, and Andreas Heinzel submitted to the World Intellectual Property
Office (WIPO), 2011 [26].
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cells. Drug target candidates identified in such a way are not less likely to be subject to the
development of resistance than drug target candidates identified by other means, for example
high-throughput small-molecule screens. Multiple mono-lethal relationships to different genes
A might be effective in a patient sample targeting a selected gene B. Therefore it is rather likely
to preserve sensitivity to the drug even if single mono-lethal relationships to a gene partner A are
bypassed by resistance mechanisms in a patient. In the same sense the efficacy can be increased
in terms of patient coverage. Variability of down-modulated genes A in different patient samples
is taken into consideration by the approach.

Based on the concept of synthetic multi-lethality a workflow has been developed to select
drug targets characterized by increased probability of therapy efficacy across individuals and
reduced risk of development of resistance within individuals as well as reduced risk of disease
recurrence in the case at least of, but not limited to, neoplastic disorders, including solid tumor
disease, and infectious disease.

Specifically in a first step down-regulated, mutated or otherwise functionally compromised
genes A or gene products are identified. Such identification can be conducted by several means
including, but not limited to, transcriptomics experiments indicating significantly down-regulated
genes, nucleotide sequencing indicating mutated genes or a multitude of other experimental ap-
proaches leading to the identification of gene function partially or completely missing or other-
wise compromised in particular diseased individuals. Specifically this step is performed sequen-
tially and repeatedly for multiple individuals or biological samples, for example by analyzing
transcriptomics data from multiple individuals or cell-lines associated with or suffering from
a particular disease or disease condition. Synthetic multi-lethality genes A1..An can be envi-
sioned where at least one B common to all these A1..An has to be present in as many individ-
uals/biological samples as possible. In each iteration new combinations of genes A1..An, (pri-
mary, functionally compromised) and B (secondary, functionally non-compromised gene) can
be identified. Based on this iterated sampling technique genes B (gene products not functionally
inactivated or down-regulated) can be identified which are associated by synthetic multi-lethality
with one or several different genes A (gene products functionally inactivated or down-regulated).
More precisely, a specific gene taken from set A1..An which is associated with a specific gene
B may or may not be down-regulated in a specific patient, tissue or otherwise sample of organic
matter associated with a particular disease or disease state as long as it is down-regulated or
functionally inactivated in at least one of these samples. Elements from A1..An may but need
not be shared between individual samples or individuals while B must be present in at least the
substantial majority of analyzed samples. A preferred aim is to identify sets of multiple genes,
where those sets contain at least three elements (a gene triple) where at least one is a potential
drug target or biomarker B functionally present in as many analyzed individuals/tissue samples
as feasibly possible. This iterative aspect for enriching genes B optimally generally available in
diseased organisms/cells associated with a set of genes A1..An of size of at least two highlights
the potential to identify drug targets or biomarkers, which will be characterized by enhanced
patient coverage or therapy stability where therapy stability, is defined as the reduced likelihood
or delayed onset of resistance against therapy compared to standard therapies.

The described approach is mainly geared towards identification of drug targets and ulti-
mately drug therapies or targets of diagnostic methods applicable in a multitude of patients with
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improved therapy stability and reduced likelihood of disease recurrence after end of drug ther-
apy. The same approach is well suited as a basis for individualized medicine as well. Individual
patients can be profiled for the presence of genes B in a synthetic multi-lethal relationship with
sets of down-modulated genes A. While such combinations may be infrequent in most patients,
certain individuals, particularly but not exclusively in neoplastic disorders can show particular
B and A1..An combinations which make this particular patient suitable for a particular therapy
based on drug targets encoded by B. While this approach is related to testing for the presence
of Her2/neu for the targeted therapy with herceptin our approach adds stability to therapy for
a particular patient, which would otherwise not be present or subject to chance or luck. Other
patients not featuring as many missing functionalities in potential genes A should be more likely
to experience remissions or inefficacy of therapy. On the other hand they may exhibit other B
and A1..An combinations allowing selection of other accepted therapies for efficient therapy
based on molecular profiling of available functions of potential genes B and missing functions
of potential genes A.

The identified hubs can be addressed in specific therapeutic settings. Drug targets can be
drugged directly and indirectly, the essential part is that function is removed or altered.

In many cases drugs affecting the presence of gene B encoded functionality will already be
known, allowing for repositioning of drugs for new indications. In certain cases, such as anti-
neoplastic agents, the applicability for certain tumors may be new or untested and the presented
approach can be used to propose the most suitable therapy from a set of drugs. Drug databanks
such as DrugBank [114] and STITCH 2 [16] play important roles in the identification of drugs
for repositioning as they allow identification of drugs associated with molecular drug targets
identical or associated with identified products of genes B.

Materials and methods

The examples presented here describe the application of the method for identifying critical gene
targets to predict the response to a targeted cytotoxic therapy in a patient for three different
neoplastic disorders of high relevance in terms of incidence and number of associated deaths.
These are ductal breast carcinoma, non small-cell lung adenocarcinoma and colon adenocarci-
noma. For each of these cancer types the method was applied separately. To identify critical
gene targets B specific for a cancer type the following stepwise procedure was applied.

Synthetic lethal interactions

In the absence of a comprehensive set of experimentally determined synthetic lethal relationships
between human genes an alternative way was chosen, taking respective available information for
yeast genes and mapping these genes to ortholog human genes.

Therefore the publicly available data set of synthetic lethality relationships between yeast
genes [35] was filtered for significant synthetic lethal interactions according to specifications
proposed by the authors. This set of genes was mapped to ortholog (homology between organ-
isms) human genes. The aim of this step was gaining information of synthetic lethal relations
between genes in homo sapiens (human) based on the data given for yeast. To do so mapping
information was obtained from five providers: Homologene [87, 115] (content downloaded on
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2010/02/03), Inparanoid [116, 117] (content downloaded on 2010/02/03), RoundUp [118, 119]
(content downloaded on 2010/02/03), OMA [120,121] (content downloaded on 2010/02/03) and
ENSEMBL biomart [122, 123] (content downloaded on 2010/02/22).

While this process entailed several technical steps primarily because of different sequence
ID spaces both the raw synthetic lethality dataset provided for yeast and the generated orthology
dataset could be mapped to ENSEMBL gene IDs, thus also removing ambiguities due to protein
isoforms mapped to in component databases. The mapping was done assigning human EN-
SEMBL gene IDs to yeast ENSEMBL gene IDs leading to a human gene set for which synthetic
lethal relations are extrapolated as given in Tab. 2.9.

Minimum number of sources
supporting ortholog mapping 1 2 3 4 5

Number of ortholog human
genes

3714 1631 1055 662 340

Number of synthetic lethal,
ortholog human gene pairs

204124 31068 13144 5408 1478

Table 2.9: Overview on numbers of human genes and their synthetic lethal relations as resulting
from ortholog mapping of yeast to human data sets. Given are the numbers of distinct human
genes ortholog to at least one yeast gene which takes place in a synthetic sick interaction with
orthology reported in minimum N databases and the numbers of distinct extrapolated, synthetic
lethal human gene pairs (mapped by orthology with support of minimum N data sources).

The set union of the human genes mappable from yeast, corresponding genes supported by
at least one orthology source were used for further analysis.

Gene expression data sets

To determine expression of genes B and down-modulation of genes A in patient samples as
well as expression of genes A in healthy tissue samples of a particular cancer type, publicly
available transcriptomics raw data from primary tumor tissue and of samples from healthy tissue
of the same tissue type were identified in a literature and database search. The sources for these
data are listed in Tab. 2.10, 2.11 and 2.12. Transcriptomics raw data from studies as listed in
the aforementioned tables were preprocessed to assess data quality. Therefore outlier detection
was done based on hierarchical clustering and detection call distribution of the quantile-quantile
normalized data set. Sample duplicates and outliers were excluded to receive the data pools
subsequently used for the drawing procedure.

In the given example, downmodulation is determined (using data from gene expression
micro-arrays) by measuring lowered concentration of gene expression products (messenger RNA).
For each patient’s sample each gene is statistically tested for being downmodulated in the sense
of observing a significantly lowered concentration of the expression product in the patient’s
sample compared to the normal tissue sample.
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Study No. of cases No. of controls
Landi et al. 2008 58 49

Su et al. 2007 27 29
Yap et al. 2005 49 9

Shedden et al. 2008 321 0
Total 455 87

Table 2.10: Selected studies providing transcriptomics raw data gained using HG-U133A mi-
croarrays (Affymetrix, CA, USA) from human samples comprising primary tumor tissue and
respective normal tissue. Number of samples from non small-cell lung adenocarcinoma (cases)
and healthy tissue (controls) used for further analysis are given (outlier adjusted). References
are: [124–127]

Study No. of cases No. of controls
Richardson et al. 2006 40 7

Chen et al. 2010 42 143
Total 82 150

Table 2.11: Selected studies providing transcriptomics raw data gained using HG-U133 Plus 2.0
microarrays (Affymetrix, CA, USA) from human samples comprising primary tumor tissue and
respective normal tissue. Number of samples from ductal breast carcinoma (cases) and healthy
tissue (controls) used for further analysis are given (outlier adjusted). References are: [128,129]

Study No. of cases No. of controls
Sabates-Bellver et al. 2007 32 32

Jorissen et al. 2009 290 0
Gyorffy et al. 2009 30 8
Bjerrum et al. 2009 0 9

Total 349 49

Table 2.12: Selected studies providing transcriptomics raw data gained using HG-U133 Plus 2.0
microarrays (Affymetrix, CA, USA) from human samples comprising primary tumor tissue and
respective normal tissue. Number of samples from colon adenocarcinoma (cases) and healthy
tissue (controls) used for further analysis are given (outlier adjusted). References are: [130–133]

Bootstrapping and feature selection

While described transcriptomics raw data pre-processing led to reasonably homogeneous data
sets an iterative drawing process from these cancer type specific data sets as given in Tab. 2.10,
2.11 and 2.12 was applied to be able to estimate stability of results, consider varying numbers of
case and control samples for the different cancer types and reduce biases. Each single drawing
step was done by randomly selecting 30 tumor tissue samples for the cases group and randomly
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selecting 30 healthy samples for the control group from the cancer type specific sample set.
This drawing is iterated 20 times for each cancer type leading to the respective result statistics.
For each stratified random sampling, respective raw data were separately quantile-quantile nor-
malized. To estimate non specific contributions from the analysis procedure and the data sets,
separate runs with inverted sample assignments to the analysis groups were performed. This
means 30 tumor samples were drawn for the control group and 30 healthy samples were drawn
for the case group in each iterative run.

In each of these drawing steps a ranked list of critical genes B is derived based on a defined
procedure. To consider a gene B expressed in a patient’s sample or a gene A expressed in a
healthy tissue sample, the MAS5 detection calls for features on Affymetix microarray platforms
were used. This means, a valid intensity value from a microarray experiment exists for a feature
called “present”. However, no valid intensity value could be measured due to high mismatch
intensities or zero concentration of respective RNA for features called “absent”. A gene might be
represented on a microarray by multiple features. It was defined to consider a gene as expressed
in case all of its features are called present in a sample measurement. Otherwise the gene is called
absent. An intensity value for a gene is derived as mean from respective feature intensities in a
sample measurement.

In a single drawing step defining 30 cases and 30 controls each gene of the ortholog human
gene set is checked for each case to be

1. downmodulated compared to the 30 controls and / or

2. expressed.

Based on this criteria for each gene of the ortholog human gene set a coverage value is
calculated applying the information of synthetic lethal relations between genes. The coverage
represents the fraction of cases where a synthetic lethal effect is expected when repressing the
respective gene B. A case is considered as affected if the gene B is expressed and at least one
gene A exists for this case. For a gene A additionally the condition to be present in controls is
essential. By repressing a gene B, different cases can be affected due to the same or different
genes A. A gene might be a gene B and / or contribute as a gene A to the coverage of another
gene B for a particular case depending on the synthetic lethal relationships to other genes.

Targeting of gene B or gene B products shall only lead to reduced viability in tumor cells
due to the multi-synthetic lethal effect. Therefore if function encoded by gene B is depleted or
missing (due to therapeutic intervention) only cells with missing or depleted functions encoded
by genes A in multi-synthetic lethal relation with gene B (diseased cells) are affected. This
specificity of therapeutic intervention to diseased cells is secured by the need of genes A to be
expressed in healthy tissue.

Performing 20 drawing steps standard deviation for the coverage value can be calculated.
The coverage of each gene was corrected by subtraction of the background coverage value
gained by inverting cases and controls. The corrected coverage is used for sorting where high-
est coverage is preferred. As result of this analysis process a ranked list of critical genes B is
derived. Additionally to each gene B a list of genes A was derived indicating the percentage the
gene A contributes to the coverage of gene B.
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Potential gene targets B were ranked by the coverage of cases (maximum coverage of pa-
tient samples indicating optimum expected stability of therapy). This ranking scheme has been
applied for generation of target lists specific for a particular cancer and enriched for encoded
functions putatively less likely to be lost during cancer development.

Drug data

These data were further enriched by drugability data present in the STITCH 2 database [16]
allowing identification of already known drugs targeting identified, putative drug targets B and
thus readily paving the way for drug re-positioning in context of our newly identified genes B
and their products.

As an important note, selection of drug targets and ranking of these for individual patients
is done differently, basically by selecting those genes B or combinations of genes B covered
by a substantial multitude of genes A. Genes B with hundreds of A’s may also be discouraged,
however, as this multitude may indicate increased levels of toxicity upon removal of function.
Manual analysis of gene-associated function and, for example presence and dimension of paral-
ogous clusters among genes A can help substantially in selecting targets. Independent whether
drug targets for individuals or populations of patients are to be selected, rationalization of gene
function has been proven useful in many cases.

Results and discussion

Tab. 2.13, 2.14 and 2.15 are extracts of gene B lists specific for the three cancer types ranked by
coverage. Other genes B, which are still unknown with regard to their targetability of cytotoxic
therapy have not been included in the extracts. Genes B are listed with descending coverage
values from top (rank 1) to the bottom (rank n) where the rank indicates the position of the gene
in the list relative to other genes. Only genes B are extracted from these lists having an entry
for inhibiting chemicals in STITCH 2 database investigated or discussed for the treatment of the
specific cancer type. The tables hold the following information indicated by the column headers:
Gene Symbol, ENSG: ENSEMBL Gene ID, Rank: position in the list sorted by coverage, Cvrg
%: coverage value in % indicting the fraction of cases affected when targeting gene B as mean
value derived from sample drawing, Stdv Cvrg %: standard deviation of the coverage value in %
derived from sample drawing. Expr. change %: change of medium expression intensity of gene
B in Patient’s samples in % relative to medium expression intensity in controls, Drug: drugs
targeting the expression product of gene B according to the STITCH 2 database.

Dihydrofolate reductase (gene symbol: DHFR) is known as a target for the approved drugs
Pemetrexed, Trimetrexate and Methotrexate. These where clinically investigated in colon cancer
patients as antineoplastic agents showing activity in particular in combination therapy. These
drugs are antifolates, which impair the function of folic acids. Antifolates are used in cancer
chemotherapy.

Aldehyde dehydrogenase 1 family, member A1 (gene symbol: ALDH1A1) is known as
a target for Tretinoin, a naturally occurring derivative of vitamin A (retinol). The group of
retinoids such as tretinoin shows antineoplastic activity and is used in the treatment of acute
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Gene Sym. ENSG Rank Cvrg
%

Stdev
Cvrg

%

Expr
Change

%
Drug

DHFR ENSG00000228716 26 80 10 30
Pemetrexed,

Methotrexate,
Trimetrexate

ALDH1A1 ENSG00000165092 198 50 15 -92 Tretinoin
HDAC1 ENSG00000116478 248 45 12 -21 Virinostat
HDAC3 ENSG00000171720 250 45 12 4 Virinostat
HDAC8 ENSG00000147099 293 41 14 -10 Virinostat
TOP1 ENSG00000198900 419 32 16 11 Irinotecan

Table 2.13: Extract of genes B from the ranked result list derived from processing data specific
for colon adenocarcinoma samples.

promyelocytic leukemia. However in-vitro studies have shown modulating affects also for colon
cancer cells.

Histone deacetylase 1, 3 and 8 (gene symbol: HDAC1, HDAC3 and HDAC8) are known as
targets for Vorinostat, which is an antineoplastic agent approved for cutaneous T-cell lymphoma.
It inhibits the enzymatic activity of histone deacetylases Class I and II. It has shown anti cancer
activity in colon tumor cells and is currently under clinical investigation for colorectal cancer
patients.

Topoisomerase (DNA) I (gene symbol: TOP1) is known as target for Irinotecan which is an
antineoplastic enzyme inhibitor primarily used as part of the front line treatment of metastatic
colorectal cancer. Irinotecan prevents religation of the DNA strand by binding to topoisomerase
I-DNA complex, and causes double-strand DNA breakage and cell death.

Gene Sym. ENSG Rank Cvrg
%

Stdev
Cvrg

%

Expr
Change

%
Drug

TUBA1C ENSG00000167553 66 51 25 -8 Epothilone B
POLA2 ENSG00000014138 181 34 9 12 Decarbacine

Table 2.14: Extract of genes B from the ranked result list derived from processing data specific
for non small-cell lung adenocarcinoma samples.

Tubulin, alpha 1c (gene symbol: TUBA1C) is known as target for Epothilone B which is
a 16-membered macrolide with antineoplastic effects. It inhibits microtubule function and is
investigated for use/treatment in lung cancer and other neoplasms. Polymerase (DNA directed),
alpha 2 (70kD subunit) (gene symbol: POLA2) is known as target for the non-classical alkylating
agent Dacarbazine. It is usually used in conjunction with other drugs as an antineoplastic second-
line therapy. Dacarbazine when used with other chemotherapeutic agents has shown activity in
treatment of non-small cell lung cancer.
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Gene Sym. ENSG Rank Cvrg
%

Stdev
Cvrg

%

Expr
Change

%
Drug

CYP51A1 ENSG00000001630 1 77 8 42 Letrozole

CCNA2 ENSG00000145386 18 55 9 68
LY293111,
DENSPM

SLC25A5 ENSG00000005022 196 18 12 35 Clodronate
SLC25A6 ENSG00000169100 209 17 11 -24 Clodronate

Table 2.15: Extract of genes B from the ranked result list derived from processing data specific
for ductal breast carcinoma samples.

Cytochrome P450, family 51, subfamily A, polypeptide 1 (gene symbol: CYP51A1) is
known to be affected in activity by Letrozole which is a non-steroidal aromatoase inhibitor.
CYP51A1 is involved in cholesterol biosynthesis. Letrozole is used as adjuvant treatment of
hormonally-responsive breast cancer.

Solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5
(gene symbol: SLC25A5) and solute carrier family 25 (mitochondrial carrier; adenine nucleotide
translocator), member 6 (gene symbol: SLC25A6) are known targets for Clodronate which is
a (non-nitrogenous) bisphosphonate affecting calcium metabolism. Antineoplastic activity of
clodronate was clinically investigated as adjuvant treatment in metastatic breast cancer patients.

Cycline A2 (gene symbol: CCNA2) is known to be repressed by LY293111 and DENSPM.
LY293111 is known to be a leukotriene B4 antagonist, a 5-lipoxygenase inhibitor and a per-
oxisome proliferator-activated receptor (PPAR)-gamma agonist with cytotoxic properties in cell
lines. It shows synergistic activity with the active metabolite of capecitabine in two breast can-
cer cell lines. DENSPM (N1,N11-Diethylnorspermine) induce programmed cell death in breast
cancer models and it was clinically investigated for treating metastatic breast cancer patients.

Selection of drugs based on proposed target molecule lists

The described example results in the selection and ranking of molecules the functional activity
of which should be removed or impaired to produce a synthetic multi-lethal effect in a specific
diseased tissue. For many of these small molecule drugs have been experimentally implicated
to directly (for example through irreversible binding to the active site of the gene B encoded
molecule) or indirectly (through effective down-regulation of gene B transcription) effect im-
pairment of gene B encoded function. The discussed example has therefore been extended to
include small molecule data contained in the publicly available database STITCH 2. Chemicals
or drugs indicated by the database to have repressive effect on particular genes B were associated
with these based on ENSG.
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2.4 Summary of genetic interaction networks

Cancer is one of the leading causes of mortality in the industrialized world with only a very
limited therapy efficacy. This is due on the one side to strong variability in the malignant cell
population, making a targeted therapy difficult to perform. On the other side it is due to acquired
chemoresistance, making an initially successful therapy eventually fail due to relapse of disease.

Synthetic lethality promises to address both issues by widening the therapeutic window
through the targeting of synthetic lethal hubs. Assuming tumors exhibit in their array of mu-
tations responsible for malignancy knock-downs of genes normally present in healthy cells, it
is conceivable that an induced knock-down the missing genes’ synlet partners would lead to the
death of the tumor cells, while having a minimum impact on the healthy ones.

In a first approach we investigated the feasibility of this method for chemoresistant neurob-
lastoma in selected cell lines and showed that we can indeed validate the results in human tissue
samples by maintaining good patient coverage with the selected targets. In a second approach we
generalized the method and applied it to lung, colon and breast cancer and extracted significant
synlet hubs including eligible drugs.

A potentially vulnerable spot of this approach is the homology mapping of synthetic lethal
pairs from yeast to human. The results showed multiple matchings of yeast to human genes,
leading to an increased number of synlet pairs in human. This is a fact that remains to be
investigated further through experimental means.

Overall, the results of our work proved promising and with improving synthetic lethality
screenings it enables us to hope that this approach will provide a key mechanism for large-scale
treatment of cancer in the medium term.
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CHAPTER 3
Protein interaction networks

3.1 A new model for protein interaction networks: omicsNET1

Concept outline and goals

Molecular interaction networks representing the human protein coding gene universe - together
with the various types of molecular interactions and relations - have become widely used for an-
alyzing Omics profiles. Here the challenge is to translate the descriptive set of features identified
as (from a statistical perspective) relevant in an Omics experiment into pathways and processes,
being effectively amenable for results interpretation and hypothesis generation. This need is
even more pronounced for cross-Omics data interpretation, where the challenge is the combined
analysis of heterogeneous feature types essentially spanning from the genome to the metabolome
level [20]. Such integrated analysis strategies rest on expanding knowledge regarding molecular
feature catalogs, on their biological role and interaction specifics, altogether resembling the core
of Systems Biology approaches [134], in the clinical context leading to Network Medicine [21]
or Systems Pharmacology [134, 135].

Repositories for molecular catalogues are maintained by major institutions such as the Na-
tional Center for Biotechnology Information (NCBI) or ENSEMBL operated by the European
Bioinformatics Institute together with the Sanger Institute. The same is true for specific molec-
ular interaction networks with the Kyoto Encyclopedia of Genes and Genomes [11] (KEGG),
PANTHER [12], or BioCarta [136] as prominent representatives. Further databases focus ex-
plicitly on protein-protein interaction data, as the Ontario Population Health Index of Databases
[137] (OPHID), IntAct [9], or BioGRID [10]. Each such repository exhibits specific character-
istics regarding type of interaction represented, coverage of molecular catalogs, as well as evi-
dence and relevance of interactions in the biological context. KEGG for example offers various
types of interactions ranging from protein complex formation to enzyme-substrate interactions

1This section is based largely on the scientific article Expanded human protein coding gene interaction networks
for serving Omics profile interpretation by Raul Fechete, Andreas Heinzel, Johannes Söllner, Paul Perco, Arno Lukas
and Bernd Mayer submitted to Molecular Biosystems pending peer review, August 2012.
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at high level of evidence, but falls short on completeness regarding the human molecular catalog,
as 6,198 (version as of January 2012) human protein coding genes (compared to the total set of
19,980 reported in ENSEMBL [138]) are represented. OPHID on the other hand provides a con-
siderable set of protein interactions covering 14,612 UniProt/SwissProt identifiers which can be
translated to a roughly similar number of protein coding genes. Protein interactions represented
in such repositories span heterogeneous types like physical interactions or procedural dependen-
cies [139] detected via different experimental methods such as affinity chromatography, yeast-
2-hybrid screens, or being predicted based on cross-species analogies. Consequently, the data
holds false-positives [140–142], as well as an undetermined false negative rate [143–145], with
further uncertainly insofar as e.g. identified binding affinities exhibit relevance in the biological
context. On top the total number of protein-protein interactions in the human proteome is not
known, with estimates ranging from 130,000 to 650,000 [146, 147].

Obviously, the type of specific interaction network used for Omics profile interpretation in-
fluences hypothesis generation, driven by mere quantity of represented features, and biological
nature of encoded interactions. For respecting these facts hybrid interaction networks have been
developed, aiming at integrating diverse sources for obtaining networks showing improved cov-
erage on the level of molecular feature catalogs, and at the same time providing a more complete
representation of biologically relevant interactions. Alexeyenko et al. [20], for example, delin-
eated a network constructed by inferring edge probabilities using diverse high-throughput data
that achieves high gene coverage through orthology-based integration of different model organ-
isms. Tyagi et al. [141] described a framework for delineating a human protein interactome
including experimental details on complex structures and their binding interfaces together with
evolutionary conservation. Kuchaiev et al. [144] presented a technique using geometric graphs
to assess the confidence levels of interactions in PPI networks obtained from experimental stud-
ies in order to predict new interactions.

In this work we attempt to expand the set of human protein-protein interactions as provided
by IntAct, BioGRID and Reactome [148] with inferred interactions being computed based on
pathway (Reactome, PANTHER), ontology (Gene Ontology [95]) and protein domain data (In-
terPro [149]). The goal of this approach is to improve coverage of the human protein coding
gene set represented in such a combined network, and at the same time extend it with putative
interactions. Furthermore, we aim at categorizing interactions into the types “procedural” and
“functional”. The semantics of these two categories are similar to those in Gene Ontology, i.e.
a biological process is a series of events accomplished by one or more ordered assemblies of
molecular interactions, while the function refers to a gene’s own properties. A procedural re-
lationship between two entities exists in our context if both entities are involved in the same
process, e.g. A phosphorylates B, whereas a functional relationship hints at an increased level of
similarity, e.g. both A and B are ion transporters, but need not be involved in the same process.

Having such an expanded network in hand promises an improved representation of features
identified as relevant in Omics profiling, additionally providing expanded information on inter-
actions as well as type of interaction, together leading to improved hypothesis generation.
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Materials and methods

Gene and protein identifier cross-referencing

For gene and protein cross-referencing the BioMart interface of ENSEMBL [138] was used
(version as of October 2011). Identifiers considered as relevant included the ENSEMBL gene
(19,980) and protein (86,934) IDs, NCBI gene symbols (18,981) and IDs (18,994), NCBI pro-
tein identifiers (31,628), TrEMBL [150] (42,399) and SwissProt IDs and accessions (37,864).
The NCBI gene symbols and summaries were imported directly from the NCBI FTP site [151],
and the lists of deprecated identifiers were imported from NCBI and UniProt, respectively. IDs
referring to the same biological entity (gene or protein) were interlinked using abstract hyper-
structures. Each such structure resembles a protein sequence as retrieved from ENSEMBL.
All gene identifiers and symbols of genes coding for this sequence, and all protein identifiers
were linked to such protein sequence. These hyperstructures encode the nodes of the interaction
network.

Data sources on experimentally identified and literature curated protein interactions

Human protein-protein interaction data was retrieved from IntAct, BioGRID and Reactome, all
in their versions as of October 2011. IntAct provided 35,634 raw interactions, BioGRID 41,496
and Reactome 91,002, respectively. Reactome offers two types of interactions, namely physical
associations for all interactors occurring in the same complex, polymer or in the same reac-
tion, as well as associations for interactors involved in neighboring reactions or being associated
via (positive or negative) regulation. Consolidation of these interaction data sources provided
the core interaction network. All interactions are retrieved and stored with their characteriza-
tion provided as Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI)
Molecular Interaction (MI) [152] ontology terms. The PSI-MI ontology is rooted in the term
molecular interaction (MI:0000) and the two branches relevant for this work are the interaction
detection method (MI:0001) and the interaction type (MI:0190).

Gene and protein parameterization

For biological annotation of genes and proteins three categories of biological data was explored:
biological pathway assignment, ontology assignment, and protein domain information. Pathway
information was retrieved from Reactome and PANTHER. Reactome provided 1,128 pathways
covering 5,292 genes, while PANTHER contributed 140 pathways covering 2,120 genes. Ontol-
ogy information was retrieved from the Gene Ontology Consortium for the branches biological
process and molecular function. The process category contributed 21,433 terms covering 14,110
genes, while the function category contributed 9,087 terms covering 14,693 genes. Protein do-
main information was retrieved from InterPro, which provided 6,041 specific domains covering
38,275 protein sequences. This annotation data was subsequently used for expanding interaction
information.
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Information consolidation

For each gene/protein entity the respective hyperstructures were populated with the retrieved
annotation information. This information was subsequently used for computing relation scores
(edge weights) between entities. A major implication of this information inheritance approach
was that for each gene information became redundantly associated to all its splice variants.
Considering the large number of splice variants, i.e. 86,934 sequences for 19,980 genes, but not
having splice variant specific annotation available, only one representative protein sequence per
protein coding gene was further considered. For this, the hyperstructure representing the protein
with the longest sequence of each ENSEMBL gene was marked as the canonical sequence.
Only such canonical hyperstructures were then used as nodes in the interaction network. Protein
domain information for non-canonical sequences (if available) was also linked to the canonical
one.

Interaction scoring

Based on the consolidated information, relation scores were computed for all pair-wise combi-
nations of canonical hyperstructures. For each pair, six individual scores were computed, one
for each of the available annotation types: GO biological process, GO molecular function, Reac-
tome pathways, PANTHER pathways, protein domains and given interactions as retrieved from
the interaction databases. These were subsequently combined into an overall relation score,
expressed as edge weight.

All parameters (with the exception of the given interactions) were computed based on the
information content (IC) of the terms, pathways and domains shared by two hyperstructures. For
pathways and domains, the information content was computed as depicted in equation 1.

IC(E) = −ln(P (E)) = −ln(nE
N ) (1)

E is the entity (pathway or domain) the information content is being computed for. N is the
total number of nodes with this type of annotation. nE is the number of nodes on this particular
pathway or having this particular domain.

For computing the information content of the GO terms, this general calculation was ex-
tended to accommodate for the hierarchical structure of the ontology: each node was not only
associated to the terms explicitly mentioned by the GO but also to all parent terms in the hier-
archy following the “is-a” relationship. Further, the information content of a term is not only a
function of the number of genes associated to it and its children [153–155] but also a function
of its specificity given by the relative position in the ontology (number of its child terms) [156].
Based on these considerations two separate IC functions needed to be computed: one for the
genes and one for the terms (equation 2). We added a value of 1 to the number of genes and
child terms to enable computation of the information content values also for terms which were
either empty or which had no children.

ICterms(E) = −ln(nterms,E+1
Nterms

) ICgenes(E) = −ln(ngenes,E+1
Ngenes

) (2)

Subsequently, the overall information content of a term was computed by using the root
mean square (RMS) function (equation 3).
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IC(E) =

√
ICterms(E)2+ICgenes(E)2

2 (3)

For a given node pair (X,Y), each of the individual parameter scores was computed as the
sum of the information content values of the entities E (domains, pathways and terms) common
to both nodes (equation 4).

f(X,Y ) =
∑

E∈X∩Y
IC(E) (4)

By construction, all parameter values were equal to or greater than zero. However, the
individual parameter distributions were found to be strongly right-skewed. A high number of
zero values resulted due to a limited set of parameter overlaps. In order to ensure a similar impact
on the final edge weight delineated by utilizing distance functions on the individual parameter
level for node pairs, we performed score adjustment. Due to the semantic contrast between
the zero and the non-zero values, i.e. definitively inexistent versus given level of relation, we
ignored the zero values during the normalization process. Each parameter distribution was then
scaled with an individual factor alpha and the logarithm was computed. The alpha values were
chosen such as to ensure a maximum curve overlap after the log-transformation and rescaling
on the interval [0,1]. The 0.5 quantiles of the resulting distributions were situated around 0.35.

For the computation of the final edge weight as a proxy for the aggregate relation between
two gene/protein nodes, we distinguished between procedural (composed of GO process, Reac-
tome and PANTHER) and functional (composed of protein domain and GO molecular function)
parameters. Procedural parameters were considered as describing a dependency (B follows A
and leading to C) while functional parameters address similarity.

For each node pair, the average relation score of each category (procedural, functional) was
computed, and the effective weight of a relation between two nodes (i.e. the edge weight) was
given by the maximum of the procedural and the functional parameter. Additionally, the sources
on experimentally described interactions (INT1) were included (equation 5).

F (X,Y ) = max


avg(fReactome, fPANTHER, fGOProcess)

avg(fDomains, fGOFunction)
1|(X,Y ) ∈ INT1

 (5)

Individual parameters missing due to incomplete node annotation were omitted from the
computation, with the constraint of having at least one shared parameter for effectively com-
puting a score. Consequently, node pairs not sharing a single parameter could not be further
evaluated.

Results

Data sets and parameter characteristics

The number of gene/protein nodes taken into consideration for the protein interaction graph con-
struction corresponded to the total number of protein coding genes represented in ENSEMBL,
being 19,980. Of these, 14,212 had GO process and 14,773 GO function annotation, 5,340
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were present in Reactome, 2,138 in PANTHER and 13,681 in InterPro. Characteristics of data
sources included for annotation on experimentally determined and / or manually curated inter-
actions (edges), given in distinct entities and interactions per source is depicted in Tab. 3.1.
BioGRID had with close to 9,000 genes the best node coverage, while Reactome showed with
close to 91,000 interactions the best edge coverage.

No. of nodes
IntAct BioGRID Reactome All

IntAct 8,419 5,348 1,248 930
BioGRID 8,988 1,952
Reactome 4,458

No. of edges
IntAct BioGRID Reactome All

IntAct 35,634 13,928 2,258 1,406
BioGRID 41,496 3,987
Reactome 91,002

Table 3.1: The table holds the number of unique gene identifiers and interactions, as well as
overlap, for the data sources included in gene/protein node annotation.

Consolidating the available annotation information for each gene provided 17,022 of the
19,980 nodes with information from at least one data source. This set of nodes was further taken
into consideration for delineating the interaction graph, neglecting the 2,958 protein coding
genes not holding any annotation. The level of annotation, given by the number of data sources
per node is depicted in Fig. 3.1 (left). 1,199 node pairs showed complete annotation on the level
of all five data sources, 6,682 nodes held annotation from three sources.

Computing all-to-all edges between these nodes led to an edge evidence distribution as de-
picted in Fig. 3.1 (right). Based on the 17,022 nodes annotated with at least one source a total of
140.4 million edges could theoretically be computed. Of these, 5 million edges had no evidence
(i.e. both nodes had not a single shared annotation), and were therefore omitted from further
processing.

Of the about 140 million viable edges 145,391 rested on experimentally derived / manually
curated interactions as provided by IntAct, BioGRID or Reactome. Such edges are subsequently
denoted as INT1 (in contrast to INT0 edges not having such background on interaction).

General graph characteristics

The cumulative edge weight distribution of the 140 million edges, together with completeness,
i.e. the number of nodes holding at least one edge with a weight above a certain cutoff value, is
depicted in Fig. 3.2 (left). Weighing all 145,391 INT1 interactions with a value of 1.0 resulted in
11,162 nodes already present at this maximum weight cutoff. The maximum number of nodes,
on the other hand, is reached at a cutoff value of 0.0. This is due to the about 23 million edges
holding a weight of zero, as becoming evident in the weight dependent number of edges also
depicted in Fig. 3.2 (left).
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Figure 3.1: Overview of the number of data sources per node (left) and shared between two
nodes of an inferred edge (right), with a maximum of five according to the annotation sources.

Plotting the number of nodes and edges in dependence of edge weight provides for a given
number of nodes the number of edges being necessary to cover the nodes as depicted in Fig.
3.2 (right). Covering e.g. about 14,500 nodes results in a significant increase in the number of
additionally required edges, i.e. new edges reached by lowering the weight cutoff tend to link
nodes already being part of the graph rather than adding additional nodes.

In order to investigate potential literature bias in deriving edge weights, the association to
the gene characterization index [157] (GCI) was calculated. The Pearson correlation coefficient
between each node’s strongest edge weight and its GCI was 0.43, thus a weak positive correla-
tion between the two parameters could be observed. No correlation (Pearson R = 0.15) could be
determined for comparing each node’s strongest edge weight to the number of papers associated
to the respective gene based on NCBI’s gene2pubmed [158] links. A third analysis regarding
eventual bias in node or edge annotation focused on the node annotation level (Fig. 3.1, left).
An increase in the maximum edge weight per node with rising annotation level was identified
(Pearson correlation score of 0.53), mainly because the edge weight was computed as the max-
imum of the procedural and the functional category. To estimate the magnitude of this bias, we
performed a complementary analysis involving the edge annotation basis (Fig. 3.1, right). The
Pearson correlation coefficient between edge weights and edge evidence levels was -0.2.

Topological graph characteristics

Already at the highest cutoff of 1.0, the Index of Aggregation (IoA) was close to 1.0, i.e. paths
between virtually all 11,162 nodes represented in IntAct, BioGRID or Reactome are available.
Nodes with computed relations are added to this given sub-graph when lowering the edge weight
cutoff levels. The node degree distribution of the graph at different cutoff levels is provided in
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Figure 3.2: Edge weight distribution and node completeness as a function of edge weight (left).
Node and edge count are presented for each weight cutoff in %, with the maximum number of
nodes being 17,022, and maximum number of edges being 140 million. Relation of node and
edge counts as derived at the different edge weight cutoff values (right).

Fig. 3.3. The median number of neighbors remains below 1% of included nodes for the weight
interval [0.7, 1.0], the connectivity outliers at each cutoff provide an explanation for the high
IoA. To further investigate this finding the five nodes with the highest degrees were exemplarily
extracted at various cutoffs. At high cutoff levels (0.8-1.0), where the graph is mainly composed
of INT1 edges, genes such as UBC (ubiquitin C) and the MYC oncogene [159] were identified
as strongly connected. This finding may be explained in the light of the biological function of
e.g. ubiquitin [160], or reflecting the significant literature association of e.g. MYC in a wide
range of molecular processes [161]. At lower edge weight cutoff levels (0.5-0.7) mainly genes
annotated by highly specific ontology terms, as e.g. members of the sirtuin [162] family or
genes such as the P2RX4 [163] purinergic receptor P2X, ligand-gated ion channel 4 are present.
Following the logics for computation of edge weights, highly specific ontology terms result in
high edge weights for all genes sharing at least one of such specific term.

The global clustering coefficient (GCC) in relation to edge weights in the interval [0.5, 1.0]
is depicted in Fig. 3.4 (left). The graph provided on the basis of INT1 alone serves as “seed”
network, with an initial GCC of 0.33. Decreasing the weight cutoff, i.e. adding computed
relations, resulted in an increase of the GCC, reaching a plateau at edge weights of 0.6. To further
characterize the graph in comparison to a random network, two additional analyses starting from
the same INT1 seed network were performed. In the first approach edges were added to the
given INT1 graph in a random manner in the same pace as for the computed edges. In the
second approach the very same procedure was performed but additionally respecting the node
degree distribution. The results showed a strong GCC divergence for the three networks with
increasing number of edges, with the two reference networks generated by adding edges in a
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Figure 3.3: Degree centrality distribution as a function of edge weight. The Box Plots show
the node degree distributions for all edges in the graph above the indicated edge weight cutoff.
Additionally, the number of nodes included at each weight interval is provided (red curve).

Figure 3.4: Global clustering coefficient (GCC) (left) and characteristic path length (CPL)
(right) in relation to edge weight. The INT1 graph is extended by computed edges (Net), the
same number of edges being randomly distributed (RandEqual), and the same number of edges
as for Net taking into account the computed graph’s degree distribution (RandNet).

random fashion reaching GCC values of about 0.4 (when reflecting the node degree) and 0.1
(adding edges entirely random). Clearly, the computed graph differs on the level of the GCC
significantly from networks populated by edges instantiated randomly between nodes. For the
three graphs also the characteristic path length (CPL) was computed. The results are depicted in
Fig. 3.4 (right).

The initial characteristic path length of the INT1 network was 3.5, decreasing with lower
edge weight cutoffs to a length of 2.0 at an edge weight of 0.5. The divergence of the computed
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network in comparison to adding random effects also became clear on the level of CPL, with
smallest CPL values reached for the graph complemented with entirely random edges. At an
edge weight of about 0.5 the three graphs converge on the level of CPL.

Computed edge weights as surrogate for experimentally determined interactions

To investigate the suitability of the computed edge weights for predicting interactions as pro-
vided in databases resting on experimental evidence, the scores were investigated with respect
to their prediction performance when inferring curated or experimentally determined interac-
tions (INT1). All edges were split into two groups, namely with (INT1) and without (INT0)
experimental backup, subsequently comparing their computed edge weights. Weight distribu-
tions of the two edge sets showed a distinctive right shift for INT1, indicating higher procedural
/ functional scores than for edges only holding computed scores. To assess the impact of this
shift in terms of reflecting the nature of procedural and functional edges the receiver operator
characteristic (ROC) curves for the two groups of edges with INT1 as the prediction target were
computed. INT1 edges above a specific computed edge weight cutoff were therefore interpreted
as true positives, while edges above the same value but not holding experimental evidence were
interpreted as false positives (Fig. 3.5).

Fig. 3.5 (left) included the entire INT1 set of 145,391 edges, i.e. all interactions annotated
with the PSI-MI term MI:0190. However, Reactome was used both for deriving interactions
contributing to INT1 but also for category annotation utilized in computing edge weights. To
identify a potential bias resting on this assignment, the computation of the ROC curves was also
performed on an INT1 data set omitting contributions from Reactome (Fig. 3.5, right) including
3,872 interactions annotated with the PSI-MI term MI:0407 direct interaction. No bias could be
identified as the initial AUC of 0.82 for the data set also including Reactome only dropped to
0.79 in the latter case.

The precision (the percentage of true positives from all positives) and the recall rate (the
percentage of correctly predicted INT1 from all INT1) were investigated next. The precision
starts off at 100% and drops to 13.5% at a cutoff of 0.92, being mainly due to noise as only a
small number of edges is included. It peaks again at 63% at a cutoff of 0.89 and then decreases
continuously with decreasing cutoff. For estimating the test accuracy the F1 score, computed
as the harmonic mean of the precision and recall rates, was investigated to identify the best
precision / recall ratio, being at a cutoff of 0.74.

A further independent analysis was performed using 31,996 interactions from KEGG as the
set of interactions for the prediction analysis. For each cutoff in the edge weight interval [0,1]
the true positive rate (the number of KEGG edges correctly identified as such, relative to the total
number of KEGG edges) and the false positive rate (the number of non-KEGG edges above that
cutoff, relative to the total number of non-KEGG edges) was computed. The resulting ROC
curve is depicted in Fig. 3.6, showing an AUC of 0.79. Similarly to evaluation of INT1 edges
the procedural parameter performed equally well as the effective weight (AUC of 0.77), while
the functional parameter showed a lower AUC of 0.69.

In a further analysis we investigated the relative contribution of the parameters used for
computing relations (Reactome, PANTHER, protein domains, GO process, GO function) to the
assessment of specific interaction types, namely functional and procedural. The consolidated
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Figure 3.5: Receiver operator characteristic (ROC) curve for the entire set of INT1 (left) and
for MI:0407 direct interactions only (right). For each weight cutoff in [0,1] the true positive rate
(percentage of INT1 correctly identified from total INT1) is plotted against the false positive rate
(percentage of computed interactions falsely assigned as interactions). ROC curves are plotted
for the entire set of interactions, as well as separately for procedural and functional interactions.

INT1 edge set appeared to be mainly of type procedural, showing a significantly higher com-
puted score for this interaction type compared to the scores achieved for the functional type.
Considering computed scores above a value of 0.7 for edges not supported by database evi-
dence, the interaction type functional was the dominant form. Interesting to note is that the
relative distance between the two specific scores for functional and procedural relation remained
constant for the whole edge weight interval.

Evaluation of graph characteristics done up to this point rested on the absolute edge weights
of all edges (and nodes respectively) above a certain cutoff. Consequently, nodes holding edges
with low weights were neglected, hampering the completeness of the node set effectively rep-
resented in the graph derived at a specific edge weight cutoff. As alternative edge selection
strategy a relative order relationship rather than an absolute one may be applied by picking the
top ranked edges of each node irrespective of the absolute weight. Validation of such edge se-
lection strategy was performed again using the set of INT1 edges, as well as KEGG nodes and
edges. Prediction performance with respect to INT1 decreased only marginally (AUC of 0.77
compared to an AUC of 0.82 when using the absolute cutoff criterion), while predicting KEGG
edges was basically identical to the former approach (data not shown). While this alternative
edge selection approach raised the node coverage at apparently little cost on accuracy, other fac-
tors need to be considered: Highly weighted edges were omitted if they do not fit in the top x%
of their adjacent nodes, obviously increasing the false negative count.
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Figure 3.6: Receiver operator characteristic (ROC) curve for the KEGG classification. For each
weight cutoff in [0,1] the true positive rate (percentage of KEGG edges correctly identified from
total KEGG) is plotted against the false positive rate (percentage of edges not represented in
KEGG but predicted as being present.

Discussion and conclusion

Construction of molecular networks represents a major leap in understanding cellular processes.
Various types of networks exist, including direct protein-protein interaction networks [164],
metabolic [165] or regulatory networks as well as RNA networks [166]. A major shortcoming
of available interaction data is their lack of completeness on both molecular feature level as well
as interaction information, often coupled with a significant number of false positive interactions
in the context of biological relevance. In a previous work [89] we presented an approach to con-
struct a dependency network based on adding biological information next to protein-protein
interaction datasets. These additional data sources included pathways and ontologies, gene
expression profiles and WPSORT-predicted subcellular localization information [167]. In the
current work we present a refined version of this dependency graph based on a core network
embedding interactions backed by experimental evidence or literature curation (145,391 edges),
and then expanding this core network with computed interactions (relations) to increase cov-
erage both on a node (gene/protein) as well as on the edge (interaction) level. Datasets used
for delineating such interactions include pathway information from Reactome and PANTHER,
ontology information from Gene Ontology and protein domain data from InterPro. The data
is mapped to all presently known human protein sequences in ENSEMBL (86,934 entries) and
subsequently consolidated on the canonical sequence of each gene/protein (17,022 entries).
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Cutoff values for optimal coverage and accuracy

Inferring relations between these 17,022 nodes resulted in a complete graph with relation values
for edges between 0.0 and 1.0, leading to the need to identify an edge weight cutoff for optimal
accuracy and node coverage. While a higher edge weight implies a higher probability regarding
a true positive relation, such a cutoff also leads to a drop in the number of edges included, in
turn reducing the number of nodes represented in the graph. Accordingly, lowering the cutoff
increases node coverage going in hand with loss of precision on the edge level. The process of
choosing an edge weight cutoff implies finding a sensible balance between node coverage and
edge accuracy.

We evaluated two methods of defining a cutoff, one where a single cutoff value was defined
for all edges (absolute ranking method) and a second where for each node the top x% ranked
edges were considered as positive dependencies (relative ranking method). Following the abso-
lute ranking identified an edge weight of 0.65 as intrinsic lower boundary as the network differs
above 0.65 from random on the level of global clustering coefficient (GCC) and characteristic
path length (CPL). This provides approximately 2.5 million edges for 14,872 nodes. As upper
boundary regarding the edge weight 0.8 may be perceived. At this cutoff the network holds
204,128 edges and 11,921 nodes, being only a minor increase with respect to the core (INT1)
network holding 145,391 edges and 11,162 nodes. As further criterion the characteristics of the
degree centrality may be considered, being at steady values in the interval [0.71, 1.0], and seeing
a significant increase below an edge weight cutoff of 0.71 (at this point providing 830,470 edges
for 13,730 nodes). Further supportive factor for setting an edge weight cutoff in this range is
the computed precision F1, seeing a maximum at an edge weight of 0.74, at this point providing
12,891 nodes and 533,020 edges.

Result graph characteristics

Stumpf et at. [146] estimated the size of the human interactome to hold about 650,000 interac-
tions. In this context, the size of our resulting network at an edge weight cutoff of 0.71 is roughly
the same order of magnitude. Hart et al. [168] estimated the number of human protein-protein
interactions to be situated somewhat lower between 154,000 and 369,000, while Venkatesan
and colleagues [147] speculated on approximately 130,000 interactions. Certainly, with respect
to node coverage there is still a gap of 6,250 protein coding genes; However, utilizing the an-
notation approach presented in this work excludes 2,958 nodes due to lack of any annotation
data, leaving 3,292 protein coding genes not exhibiting a single relation scoring at least with
an edge weight of 0.71. Contrasting the hybrid network with given reference networks pro-
vides additional 2,568 nodes when compared to the consolidated data from IntAct, Reactome,
and BioGRID, naturally showing significantly increased coverage when e.g. compared to high
evidence networks as KEGG (6,198 nodes).

Notably, the hypothesis that the computed edges exhibit a strong literature bias proved un-
founded (Pearson R for comparing edge evidence level and edge weight of -0.2). Positive corre-
lation, however, was identified for each node’s strongest edge and the node’s Gene Characteriza-
tion Index (Pearson R = 0.43) and level of node annotation (Pearson R = 0.53) respectively. The
network at an edge weight cutoff of 0.71 is found to be more compact than the INT1 network,
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with a clustering coefficient of 0.51 as compared to 0.32 for the INT1 graph. The characteristic
path length is found at about 3.0 compared to 3.5 for the INT1 graph. New edges added to the
graph tend to link already included nodes in contrast to adding further nodes.

Graph validation

Validating the constructed network is an essential step towards assessing the quality of the pre-
sented method. This is, however, in practice difficult to perform. One of the main challenges to
address is finding an appropriate dataset to validate against. As the method aims at extending the
presently accepted set of protein-protein interactions (INT1, both experimentally determined and
literature-curated), it is sensible to address the quality of the INT1 prediction. This is achieved
by assessing the discriminative power of the method with respect to the INT0/INT1 classifica-
tion. An inherent shortcoming of the INT1 dataset, however, is that it is by itself a heterogeneous
collection of interactions ranging from direct binding to genetic interactions. Predicting INT1
members is therefore highly unspecific. For the complete INT1 dataset, the receiver operating
characteristic curve showed an AUC of 82% for different cutoff values in the interval between 0
and 1. While this value is indicative for good prediction quality with respect to INT1 detection,
this is still subjected to debate as the goal of the method lies not in the sole prediction but in the
extension of the INT1 dataset. In this context, it can be argued that a high prediction value adds
little novelty to the existing network, whereas a low prediction value may add novelty, but also
a significant amount of false positives.

Additional difficulty is added to the validation by the strongly asymmetric character of the
two sets’ sizes, i.e. 145,391 edges for INT1 and 60 million for INT0 (only the set of INT0 edges
between nodes present in INT1 was taken into consideration). While an AUC of 82% stands
both for good precision and significant novelty, the disproportionately large number of INT0
edges adds a great absolute number of INT0 edges already at a small false positive rate. At a
cutoff at 0.71 the true positive and false positive rates were 11% and 0.7%, respectively. This
stands for approx. 16,000 INT1 edges and 685,000 INT0 edges. By comparison, a 50% true
positive rate with an 8% false positive rate was reached at a cutoff of 0.55.

To reduce the heterogeneity of the prediction target, the classification performance was sub-
sequently investigated for a highly specific set of 3,872 direct interaction edges only. This also
yielded a high AUC of 0.79. This finding shows that the described method has good performance
irrespective of the targeted INT1 edge type.

The performance of the KEGG interaction set prediction (31,996 KEGG edges vs. approxi-
mately 10 million inferred edges) was performed to assess prediction quality for an independent
source in spite of increased edge heterogeneity. The AUC of 0.79 showed again good results,
especially when considering the variability of the KEGG edge types.

Notably, in the performance investigation using INT1 as target, the ROCs are computed
using the inferred edge weights for the INT1 network. In our final setup, however, all INT1
edges have a preset value of 1.0 and therefore, all 145,391 INT1 interactions are present within
the resulting 830,470 edge set.
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Conclusions

Molecular networks have become a central ingredient in Omics profile interpretation and hy-
pothesis generation, consequently demanding networks with significant coverage of molecular
entities combined with a comprehensive representation of interactions. The latter see various
types of interactions, together with different levels of evidence regarding biological relevance.

Hybrid networks aiming at integrating diverse data sources are a straightforward approach
for expanding both, node and edge count, and offering a single reference network for Omics
data mapping and interpretation. Although information on interactions of protein coding genes
expands on a continuous basis, computational inference of interactions on top of database infor-
mation, as introduced in this work, adds to a more complete representation of the interactome,
expanding opportunities for Omics profile-based hypothesis generation.

3.2 A new platform for visualizing molecular information: BIO

Concept outline and goals

The purpose of the work described in this section is the design and implementation of a new
platform, called BIO [169], for the visualization of molecular information. Envisioned is a tool
with which the user can query and navigate biological data on molecular entities like proteins
and genes. This includes both relations such as protein-protein interactions and entity-centric
functional annotation such as pathway membership and ontology term association.

A series of platforms addressing related aspects exists to date. STRING [14], for example,
concentrates on molecular relationships providing comprehensive information on biological de-
pendencies between genes and proteins. Fig. 3.7 shows the immediate neighborhood of BCL2
with the relation type encoded in the edge color. The figure also shows a typical information card
describing the evidence supporting the edge. STRING is directed mainly towards academia.

By contrast, an approach directed strongly towards the industry is presented by NextBio
[170]. The NextBio platform integrates different organisms and data types (drugs, diseases,
clinical trials, etc.) and was designed with a clear focus on the clinical aspect of research.

When comparing NextBio to STRING the distinction in their target audience becomes evi-
dent. While STRING focuses on relationships -with less node annotation- NextBio focuses on
the node characterization from a clinical point of view, lacking on the other hand the neighbor-
hood aspect.

The goal of BIO is to unite the strengths of both systems by simultaneously providing neigh-
borhood views and annotation information of clinical relevance for selected genes. The devel-
opment of BIO also has a synergistic effect with omicsNET as BIO becomes a front-end for the
former, while the latter gains a valuable dependency neighborhood.

Architecture and implementation

Considering, among others, the large amount of preprocessed data and the need to be easily
accessible from anywhere, BIO was designed and implemented as a three-tier application. A
diagram of the project landscape is depicted in Fig. 3.8.
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Figure 3.7: Typical STRING view with network structure and edge card

The direction of the information flow is represented in the figure from left to right. Biolog-
ical data sources for the gene and protein annotation, such as drugs, patents and clinical trials
are retrieved from the Internet and are preprocessed within Metaverse. Metaverse is a distinct
project being developed independently from BIO, with the explicit goal to create a comprehen-
sive repository of biological data. A selection of this data is then prepared and handed over to
BIO over a predefined interface.

Biological data sources necessary for identifier cross-referencing and for the construction
of the molecular dependency network are retrieved from the Internet and preprocessed within
the omicsNET project. omicsNET is also a distinct project from BIO with the explicit goal to
create a high confidence gene/protein dependency graph. Details on the exact data sources and
the computation procedure, as well as an analysis of the results can be found in section 3.1. The
identifier cross-reference data and the top-ranked dependency edges are handed over to BIO over
a predefined interface.

The selected information from Metaverse and omicsNET is subsequently imported and con-
solidated in a database optimized for speed. This constitutes the first tier of the BIO project.

The second tier is represented by the main server application. It is responsible for processing
requests coming from the user, authentication, logging, statistics, etc.

The third and last tier is represented by the client application running on the user’s machine.
Presently, this is a Microsoft Silverlight application running in the user’s browser. Also part of
this tier is a Mozilla Firefox plugin highlighting and displaying information on gene symbols
found on visited websites. Furthermore, a Joomla Content Management System (CMS) is re-
sponsible for user registration, buying modules, displaying news and help items and generally
providing an entry point into the system.

omicsNET and the server were developed by me and therefore lie within the scope of this
thesis. They are also the ones to be outlined in the following. Metaverse and the third tier of the
application consisting of the viewer, the Firefox extension and the Joomla CMS are independent
projects and are not within the scope of this thesis.

BIO can be reached using the following link [169].
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Figure 3.8: The BIO project landscape

Source: omicsNET

As was previously mentioned, the molecular dependency graph is computed in omicsNET.
Method description and quality assessment were provided in section 3.1. Here we will give
a quick technical overview of the project. Early development of omicsNET was done until 2009
by my colleague Andreas Bernthaler and me and was described in his doctor’s thesis [171] and
my master’s thesis [172]. During the following years I continued the development and refine-
ment of the project.

The omicsNET software is written completely in Java, employing Hibernate [173] as per-
sistence layer. The Object Relational Modeling (ORM) facilities of Hibernate are used to store
Java objects into a relational database, in this particular case MySQL.

omicsNET consists of two main building blocks:

1. The Framework is mainly declarative, and it holds the data model along with other def-
initions necessary to interface with the omicsNET data. It is implemented as a software
library to be used by all omicsNET and custom applications.

2. Apport holds the imperative logic necessary to download, import, process and analyze the
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Figure 3.9: Framework and Apport project structure

information. Apport is an executable application holding a series of modules which do the
actual work. It is used to generate the database from scratch, compute the graph as well
as run various analyses. It uses the Framework library to access the data.

The goal of the Framework is to provide an interface towards the omicsNET data. In omics-
NET, the database is accessed only through the intermediate Hibernate (ORM) layer. This bears
portability advantages, as the DBMS can be replaced at any time with another, such as ORA-
CLE or Postgre, without having to modify the Java code. The entity classes for data storage are
annotated using JPA (the Java Persistence API) and are then persisted at runtime.

The structure of the Framework is depicted in Fig. 3.9. The Framework comprises the
data model, which holds the actual class definitions for saving into the database and the Data
Access Objects (DAO), which is a collection of methods to facilitate access to the stored entities.
Furthermore, it holds ORM definitions which tweak the way Hibernate saves the data. Such
changes are, e.g. adding prefixes to the table names for easier reference. Since database handling
is done transparently, this is not a mandatory step. It is, however, a good practice to use table
name prefixes similar to the java package names of the persisted classes in order to facilitate
maintenance and error handling.

Within the model section, the core holds classes for the biological hyperstructure and all
other gene and protein identifiers. These classes represent the unification of the different names-
paces, both on the biological level (genomic and proteomic) as well as between different databases
and organizations (NCBI, UniProt, etc.). They hold entity names, descriptions, summaries, dep-
recation relationships, protein sequences, etc. The identifier cross-referencing and biological
information mapping is outlined in Fig. 3.10. A hyperstructure (e.g. HS1) can refer to one or
more genes, while a gene can have one or more protein sequences. Biological information is
retrieved on both levels. The content holds raw data imported from external databases such as
domains, pathways, ontologies, etc. The context represents the further processing of the raw data
from the content area. This includes consolidating it for each hyperstructure and subsequently
computing the reference dependency graph using the hyperstructures as nodes. The biomart
models the interface between omicsNET and the BIO project and the data stored here will be
imported into BIO.
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Figure 3.10: Identifier cross-referencing and biological information mapping

Figure 3.11: A screenshot of Apport with expanded exporter list and selected modules

Apport is an executable application implementing the graphical user interface (GUI) and the
construction of the omicsNET by organizing all necessary steps in a modular workflow. The
modules contain the work units grouped in downloaders, importers, consolidaters, generators
and analyzers. This is also the precise data processing sequence. A major advantage of a modular
workflow is that adding a new data source to omicsNET implies adding at most one module of
each type and not changing any of the existing code. This leads to improved maintainability.
Apport also allows the selective execution of modules. A screenshot of the program is depicted
in Fig. 3.11.

Server: Data

Data retrieved from omicsNET and Metaverse is consolidated for usage by the server in a
database optimized for speed, the biomart, depicted in Fig. 3.8 at the bottom of the BIO server
component. While the data itself is partially redundant, this drawback is outweighed by the
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Figure 3.12: eBioWs project structure

reduced number of necessary table joins granting the system a significant performance boost at
high workloads.

The design details are similar to omicsNET, i.e. a library provides access to a relational
database over a Hibernate ORM layer while an application using this library implements a mod-
ular workflow to create the database. The database and access tools were designed and imple-
mented by me.

Server: eBioWs

The second tier of the BIO project consists of the BIO server, eBioWs, depicted in the middle
block of Fig. 3.8. The server was also designed and implemented by me. It is a Java web
application exposing both SOAP web services and standard HTTP interfaces over the Secure
Socket Layer (SSL). eBioWs is deployed in a Glassfish Java Application Server [174].

The main components of the server, depicted in Fig. 3.12, are listed below:

1. WebServ is the main component. It is a SOAP-based web service with an external inter-
face. It handles incoming calls from the client.

2. WebAuth is also a SOAP-based web service with an external interface. Its role is to
handle authentication requests coming from Joomla. Authentication information is stored
in a local registry and provided, as needed during credentials checks, to WebServ. The
exact authentication mechanism is described in below.

3. WebStat is a HTTP servlet handling GET requests. It returns information on the currently
authenticated (logged in) users.

4. WebLog is a HTTP servlet handling POST requests. It can be used by an external entity
(e.g. by Joomla or the client) to send messages to the server.

5. WebHist contains both a SOAP-based web service and a servlet. It is used to generate a
report out of the session history. The client submits the session information to the server
over SOAP and retrieves a PDF document over the HTTP servlet.
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6. WebInfo is a HTTP servlet handling GET requests. It returns information on queried
genes, such as gene name and available content types. It is used mainly by the Firefox
extension.

The structure of the main service of eBioWs, the WebServ, is depicted in Fig. 3.12:

1. EmTexBioWS is the web service class. It holds the methods available for remote calling.

2. Backends holds the classes that are responsible for the information retrieval from the
database. To ensure maximum maintainability, the EmTexBioWS class does not inter-
face with the data source, i.e. not even with the Hibernate ORM layer directly, but passes
all calls it receives to a proxy. The proxy class first checks the user credentials (if the
user is authorized to access this type of data), and if everything is ok, it then forwards
the call to a back-end class, the sole purpose of which is to retrieve data. By using this
mechanism, it is possible to handle credentials checking and licensing issues separately
from the web service - if the licensing policies change, the service remains unaffected. It
is also possible to reroute the information retrieval separately from the web service and
the licensing issues - the back-end can be a dummy data generator, a database interface,
etc.

3. Compatibility holds classes necessary to ensure Java-Silverlight compatibility. If a method
throws an exception in the web service, the HTTP response of the message returned to
the client will have a response code different than 200 (OK). Due to the architecture of
Silverlight, the browser will be the first to intercept this response and since the code is
not 200, the message will be discarded. Silverlight will only receive a generic error. To
ensure that messages are forwarded to Silverlight even if they contain exceptions, we
need to manually set the response code to 200 prior to sending it back. The Compatibility
package holds a HTTP filter which does exactly that.

4. Exception holds exceptions that can be thrown during remote method calls (e.g. licensing
exceptions if the user is not authorized to access certain information).

5. Security holds classes responsible for user authentication. It holds, among others, the
user validator class used during basic authentication (with user name and password). This
step of the authentication is performed automatically by Glassfish, which uses this class
to determine whether the message needs to be forwarded to the service or not. A more
detailed explanation of the authentication mechanism can be found later in this section.

6. Data holds the data objects to be marshaled and sent to the client. It revolves mainly
around a graph and various content annotations for its nodes and edges.

The client retrieves data by querying specific nodes and edges. The only possibility to
retrieve data without providing a valid node id is during a search query using a generic
string. This results in a list of hits, from which the client / user picks one. A node is
defined by its unique id like “ENSPxxxxxxxxxx”, while an edge is defined by two node
ids.
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All graphs, nodes and edges have types. When retrieving a graph, the client needs to
specify which node is being inspected (the graph will be its neighborhood) and the desired
graph type. A literature co-citation graph, for example, will have literature co-citation
edges.

For each node and edge, various contents are available. They are specified in an inheri-
tance hierarchy rooted in a generic Content class. This class also has two flags: licensed
and available. The former is set to true if the user requesting this type of information has
the right to retrieve it and false otherwise. The later is set to true if there is any content
of this type available for this node. If a user without authorization requests this type of
content, he will receive an empty object with the licensed flag set to false and the available
flag set accordingly.

Two major groups of contents exist:

• The general node content describes the gene and proteins that are associated to this
node. Information such as gene name, function, splice variants, etc. is provided

• The specific node contents hold information such as which papers are associated to
this gene, which diseases and drugs are known to be linked to this protein, which
clinical studies address this protein, etc. These contents are mostly enumerations. It
is possible to retrieve all content types at once or to query only one specific content
type. In both cases, the first X entries of each one will be returned. Additionally,
WebServ also provides methods for pagination, i.e. the client can retrieve the entries
X through Y of a specific content. The edge contents hold information such as which
papers are associated to both nodes, or how strong the interaction of the two proteins
is.

The second component of eBioWs, the WebAuth, has a similar structure to WebServ. The
main difference is the presence of a user registry used to keep track of the registered users
presently logged into the system, as well as their respective rights (which licenses they hold).
Additionally an IP filter ensures that only log-in request from an authorized machine are ac-
cepted.

WebStat, WebLog and WebInfo are simple HTTP servlets without any special architectural
considerations.

WebHist comprises a SOAP-based web service which is used by the client to submit a history
log containing the user’s session activity. Based on this logging information the server generates
a PDF history file with additional information on the visited nodes and edges, which can be
subsequently downloaded over the HTTP servlet of WebHist.

The user authentication mechanism of eBioWs is depicted as sequence diagram in Fig. 3.13.
This process is used in conjunction by WebAuth and WebServ to determine if a user exists, and
if the user is allowed to perform a certain operation.

The first authentication aspect is the registration of a user with the service upon login onto
the website. This step is executed by Joomla. Clients wishing to perform calls (on WebAuth
and WebServ) need to authenticate all their messages using basic authentication (user name and
password). This happens implicitly, before the call is executed. Services wishing to check the
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Figure 3.13: eBioWs authentication mechanism

credentials of the incoming messages need to register a UserValidator class with Glassfish which
will be called every time a message arrives. This initial credentials check is represented by the
login message. This is not a remote call per se, just the first stage of the message processing. It is
only depicted as such to enable a more intuitive representation of the process. The UserValidator
class in WebAuth is called and handed the credentials (1.1.1.). In case of WebAuth, there is only
one user (Joomla authenticates itself always with the same credentials) which are specified in the
webauth.properties file. If the credentials are ok, the message is accepted (1.1.3.) and processed
further, i.e. forwarded to the service core. The register call itself (1.2.1.) holds user information
(name, current UUID, licenses, etc). This data is entered in the user registry (1.2.2.), which is
also available to WebServ. This type of call is performed by Joomla when a user logs in on the
web page, buys a new module, or proceeds to the navigator.

The second authentication aspect is necessary for each attempt by the user to retrieve data
from the server. Such calls are performed by the Silverlight client. Again, the message needs to
be checked with basic authentication (2.1.1.-2.1.3.). This time, WebServ checks if this combi-
nation of user id and UUID (the UUID for this session) are present in the registry. This is done
for all messages regardless of licensing issues. If the user and UUID exist, then the message is
processed further, if not, the message is dropped. This procedure is triggered automatically by
Glassfish. Before the call itself is executed, another check is performed (2.2.2.) by the back-
end proxy, to see if the user is allowed to perform this operation (if a corresponding license is
available). If the license is ok, the call is forwarded to the back-end. This, in turn, processes the
search query and returns the results (or an error).

All components of the BIO web service are only accessible over HTTPS. Further, the service
provides SOAP 1.1 interfaces and it uses two extensions, namely WS-Security (WSS) and WS-
Addressing (WSA). The service requires clients to use Message Authentication over SSL to
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identify themselves and if using WSA the client must include a WSA message id in the SOAP
header. To use these security mechanisms, the METRO 2.0 libraries are necessary.

Summary and outlook

In the previous sections we introduced a platform for the visualization of biological informa-
tion. Other similar approaches such as STRING or NextBio exist, but they do not address the
neighborhood and the annotation aspects simultaneously. The application presented here at-
tempts to address these shortcomings and unite the strengths of these approaches by providing a
comprehensive information repository on both levels.

BIO is a three tier application with the information traveling from the omicsNET and Meta-
verse projects over the BIO server to the Navigator and Firefox extension, with a Joomla website
providing the entry point.

A shortcoming of this approach is the usage of Microsoft specific technology for the viewer,
restricting its usage to only Windows and MacOS. With an increase in the market share for
Linux-based distributions, addressing this shortcoming is a next step in the evolution of BIO. A
possible approach is the usage of a cross-platform technology like HTML5. Additional interest-
ing next steps are the optimization of BIO for mobile devices, especially Android and iOS-based
systems and a continuous quality assessment and improvement workflow for the provided infor-
mation.

3.3 A network-based in-silico analysis of diabetic nephropathy2

For diseases with complex phenotype such as diabetic nephropathy large scale data integration
approaches such as omicsNET promise an improved description of the disease pathophysiology,
being the basis for novel diagnostics and therapy. In light of these considerations, omicsNET
and BIO constitute essential pillars in investigating the mechanisms of disease.

The work presented in this section is meant to shed light on the disease-associated processes
involved in diabetic nephropathy at different Omics levels by using the omicsNET graph as a
starting point in the analysis of the molecular features underlying the disease phenotype.

The omicsNET version used in this analysis corresponds to a previous version of the one
described in section 3.1. Here, gene expression information across 32 human tissue types as
obtained from the Gene Expression Omnibus dataset GSE7905 [175] was included in the edge
weight computation. Additionally, information on the sub-cellular localization of proteins as
imported from SwissProt or computed with the WPSORT [167] algorithm was included. A
more detailed description of the omicsNET version used in this section can be found here [172].

2This section is based largely on the scientific article Mapping of molecular pathways, biomarkers and drug
targets for diabetic nephropathy by Raul Fechete, Andreas Heinzel, Paul Perco, Konrad Mönks, Johannes Söllner,
Gil Stelzer, Susanne Eder, Doron Lancet, Rainer Oberbauer, Gert Mayer and Bernd Mayer published in Proteomics
- Clinical Applications, June 2011 [134].
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Concept outline and goals

Diabetic nephropathy occurs in both, type 1 and 2 diabetes mellitus. In patients with type 1 dis-
ease approximately 20 to 30 percent of affected individuals will develop microalbuminuria as the
first clinical sign of renal disease after a median diabetes duration of about 15 years [176]. Early
detection of these individuals is crucial as it has been shown that less than half of the patients will
further progress to overt nephropathy (defined as urinary albumin excretion > 300 mg/day). This
finding is mainly due to better metabolic control, more aggressive blood pressure reduction, and
the use of agents blocking the renin-angiotensin system [177,178]. In type 2 diabetes robust data
on the incidence of nephropathy were derived from the United Kingdom Prospective Diabetes
Study: Among the 5,100 patients with newly diagnosed diabetes the prevalence of microalbu-
minuria, macroalbuminuria and either an elevated plasma creatinine concentration or require-
ment of renal replacement therapy after 10 years was 25%, 5% and 0.8%, respectively [179].
However, as the prevalence of type 2 diabetes for all age groups worldwide is expected to rise
from 2.8% seen in the year 2000 to 4.4% in 2030, which corresponds to an increase in abso-
lute patient numbers from 171 million to 366 million, it is not surprising that already at present
diabetic nephropathy is by far the leading cause of end stage renal disease [180]. Of particular
importance is the fact that many patients die because of cardiovascular disease before reaching
dialysis [179].

The early diagnosis of diabetic nephropathy rests on the measurement of protein and/or al-
bumin excretion in urine, and microalbuminuria (MIA, excretion of 30-300 mg albumin per
day) is currently considered as the diagnostic gold standard. In patients with type I diabetes
MIA has an excellent sensitivity as well as specificity to identify patients at risk for the devel-
opment of more severe nephropathy, and a reduction of urinary albumin excretion is associated
with the preservation of the glomerular filtration rate. In patients with type 2 diabetes, which
form the majority of subjects in clinical practice, the specificity of MIA for diabetic nephropa-
thy is much lower even though it is an established ominous sign for an adverse cardiovascular
prognosis [176, 181]. This lack of specificity however leads to treatment problems. Whereas
blockade of the renin-angiotensin system still is very effective in preventing progression of renal
disease in patients where MIA is a sign of early nephropathy, the same therapeutic intervention
did not preserve glomerular filtration rate in the ONTARGET study, which included subjects
where MIA was more an indicator of increased cardiovascular risk [182]. Accordingly, in the
ACCOMPLISH trial the combination therapy of benazepril and hydrochlorothiazide reduced
albuminuria in hypertensive subjects but resulted in an almost doubled rate of chronic kidney
disease compared to benazepril/amlodipine therapy [183]. These data led the participants of a
NKF and FDA (National Kidney Foundation and US Food and Drug Administration) sponsored
meeting to the conclusion that proteinuria in fact is only a surrogate outcome in kidney dis-
ease progression [184]. Multiple risk factors for the development of diabetic nephropathy have
been identified. These include amongst others genetic susceptibility, age, race, obesity, smoking,
blood pressure, glomerular hypertrophy and hyperfiltration, hyperglycemia, and the formation of
advanced glycation end products as well as cytokine activation [185]. Some of these risk factors
can be modified by therapy and thus current treatment regimen are directed against systemic and
especially intraglomerular hypertension (blood pressure lowering medication and blockade of
the renin-angiotensin-aldosterone system), as well as strict glycemic control [186–189]. How-
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ever, as cardiovascular mortality is also a major focus of treatment a multifactorial approach,
which additionally includes smoking cessation, dietary and behavior modification [190], lipid
lowering therapy and administration of aspirin is recommended [191, 192].

Numerous Omics technologies have been applied for deciphering biological processes linked
to DN, including genome-wide association studies [193], transcriptomics [194], proteomics
[195] and metabolomics [196]. Traversing Omics screening results towards identification of
biomarkers is seen with proteomics: Rossing and colleagues applied proteomics profiling in
a cohort of over 300 patients for studying diabetic nephropathy and non-diabetic kidney dis-
eases [197], and the method was recently expanded in a multicenter validation study for iden-
tification of subjects with DN resting on detection and quantification of urinary collagen frag-
ments [198].

Further integrating such data (cross-Omics) leading to multi-marker models to be used for
diagnosis or disease monitoring is seen as future perspective, as recently outlined by Fox et
al. [199]. More generally, DN may be considered as ideal case for utilizing the concept of Sys-
tems Biology [200], as complex pathophysiology is seen for the kidney in the realm of diabetes
mellitus and hypertension, in turn closely linking to bone metabolism and cardiovascular im-
plications denoted as the cardiorenal syndrome. Cross-omics integration of Omics data from
kidney transcriptomics and proteomics, together with literature annotation of molecular features
relevant in the cardiovascular context identified the coagulation pathway as important cardiore-
nal process [201, 202]. In this work protein-protein interaction networks (PPIs) were used for
studying causative as well as associative dependencies of feature profiles and clinical indication.
In the last years the analysis of Omics data on gene or protein interaction networks has been
established as de-facto standard for multidimensional data mapping and interpretation [203],
and concepts for linking molecular data and clinical phenotype space have emerged. Hidalgo et
al. [204] introduced the Phenotypic Disease Network (PDN) as a map summarizing phenotypic
connections between diseases. Barrenas et al. employed disease-gene networks [205] with spe-
cific focus on topological characteristics of such graphs. Shortest path-based algorithms (among
others) are frequently applied for linking multilevel networks aimed at identifying key regula-
tory genes and proteins [206–209], but also for identification of functional modules and path-
ways affected in the diseased state [210]. Furthermore, concepts for building disease-specific
drug-protein connectivity maps have been introduced [211], altogether aimed at building rela-
tions between molecular feature space, clinical data space, and associated markers, drug targets
and associated drugs.

In the present work we integrated data sources characterizing DN on a molecular level by
utilizing a full human proteome interaction network as common denominator, specifically in-
cluding data coming from DN case-control Omics studies. We further annotated the network
with DN-associated data retrieved from scientific literature, patent text and clinical trial refer-
ences, and then used this annotated PPI for linking the pathophysiological description of DN
with biomarker candidates and therapy targets discussed for diagnosis, prognosis and therapy of
DN.
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Materials and methods

Data: omics studies

A search in PubMed (link [212], database status as of June 2010) was performed in order to iden-
tify publications utilizing Omics in the context of DN. Next to the clinical phenotype “diabetic
nephropathy” the keywords “microarray”, “transcriptomics”, “proteomics”, “metabolomics”,
“metabonomics” or “SNP” were applied. This retrieval of Omics studies resulted in 146 pub-
lications, of which 31 specifically reported Omics screening results and features deregulated in
DN as identified in a case-control study design. Of these, 17 were done with human specimens
further considered, comprised of 4 transcriptomics, 7 proteomics, 2 metabolomics and 4 SNP
studies, as referenced in Tab. 3.2.

SNPs found in open reading frames of protein coding genes were directly mapped to the
respective gene ID, or otherwise assigned to the gene ID of the next transcription start site of
a protein coding reading frame, all according to the ENSEMBL human genome representa-
tion. Metabolites were mapped to associated enzymes using the Human Metabolome Database
(HMDB) [213] (status as of September 2010). Across all four Omics domains 851 unique gene
symbols could be retrieved.

Data: literature mining

Features associated with DN were furthermore extracted via literature mining. A PubMed
search using the MeSH heading “diabetic nephropathy” was applied in conjunction with the
gene2pubmed association file (link [214], status as of July 2010) maintained by NCBI enabling
a gene-to-publication assignment. For determining the relevance of an identified gene-to-DN
association, i.e. if a gene was reported significantly more frequent with DN as by chance, a
statistics procedure was applied: Contingency tables were computed by splitting the full set of
PubMed IDs first with respect to the occurrence in the context of DN and secondly with respect
to the occurrence of each specific gene. 265 unique gene symbols identified as having enriched
association with diabetic nephropathy could be retrieved. The same approach was applied for
the headings “diabetic nephropathy” AND “biomarker”. In this restricted setting 108 unique
gene symbols were identified.

Data: clinical trials mining

Information on clinical trials focusing on DN was retrieved from ClinicalTrials (link [215])
maintained by the NIH. 260 studies could be identified by using the keyword “diabetic nephropa-
thy” in the search field provided at the clinical trials web site. Among these studies 238 specif-
ically focusing on type 2 diabetes were further considered. 111 interventional drugs were ex-
tracted from these 238 studies, and were subsequently queried in the DrugBank database [114].
64 drugs could be identified in DrugBank holding 176 drug-gene relations, linking to 144 unique
gene symbols.
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Study Omics Reference

1 mRNA
Baelde, H.J. et al., Gene expression profiling in glomeruli from human kidneys with
diabetic nephropathy. Am J Kidney Dis 2004, 43, 636-650.

2 mRNA
Berthier, C.C. et al., Enhanced expression of Janus kinase-signal transducer and ac-
tivator of transcription pathway members in human diabetic nephropathy. Diabetes
2009, 58, 469-477.

3 mRNA
Cohen, C.D. et al., Improved elucidation of biological processes linked to diabetic
nephropathy by single probe-based microarray data analysis. PLoS One 2008, 3,
e2937.

4 mRNA
Rudnicki, M. et al., Gene expression profiles of human proximal tubular epithelial
cells in proteinuric nephropathies. Kidney Int 2007, 71, 325-335.

5 prot.
Dihazi, H. et al., Characterization of diabetic nephropathy by urinary proteomic anal-
ysis: identification of a processed ubiquitin form as a differentially excreted protein
in diabetic nephropathy patients. Clin Chem 2007, 53, 1636-1645.

6 prot.
Jain, S. et al., Proteomic analysis of urinary protein markers for accurate prediction
of diabetic kidney disorder. J Assoc Physicians India 2005, 53, 513-520.

7 prot.
Kim, P.K. et al., Proteome analysis of the rat hepatic stellate cells under high concen-
trations of glucose. Proteomics 2007, 7, 2184-2188.

8 prot.
Mischak, H. et al., Proteomic analysis for the assessment of diabetic renal damage in
humans. Clin Sci (London) 2004, 107, 485-495.

9 prot.
Otu, H.H. et al., Prediction of diabetic nephropathy using urine proteomic profiling
10 years prior to development of nephropathy. Diabetes Care 2007, 30, 638-643.

10 prot.
Rossing, K. et al., Urinary proteomics in diabetes and CKD. J Am Soc Nephrol 2008,
19, 1283-1290.

11 prot.
Sharma, K. et al., Two-dimensional fluorescence difference gel electrophoresis anal-
ysis of the urine proteome in human diabetic nephropathy. Proteomics 2005, 5, 2648-
2655.

12 metabo.
Xia, J.F. et al., Ultraviolet and tandem mass spectrometry for simultaneous quantifi-
cation of 21 pivotal metabolites in plasma from patients with diabetic nephropathy. J
Chromatogr B Analyt Technol Biomed Life Sci 2009, 877, 1930-1936.

13 metabo.
Zhang, J. et al., Metabonomics research of diabetic nephropathy and type 2 diabetes
mellitus based on UPLC-oaTOF-MS system. Anal Chim Acta 2009, 650, 16-22.

14 SNP
Chambers, J.C. et al., Genetic loci influencing kidney function and chronic kidney
disease. Nat Genet 2010, 42, 373-375.

15 SNP
Köttgen, A. et al., Multiple loci associated with indices of renal function and chronic
kidney disease. Nat Genet 2009, 41, 712-717.

16 SNP
Köttgen, A. et al., New loci associated with kidney function and chronic kidney dis-
ease. Nat Genet 2010, 42, 376-384.

17 SNP
Lim, S.C. et al., Microarray analysis of multiple candidate genes and associated
plasma proteins for nephropathy secondary to type 2 diabetes among Chinese in-
dividuals. Diabetologia. 2009, 52, 1343-1351.

Table 3.2: Omics type and scientific reference of public domain Omics sources used in this
work.
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Data: patent mining

Patent Lens (link [216]) was used to identify molecular features provided in patents and patent
applications associated with DN. Patent Lens offers the full text on granted patents from the US,
Europe and Australia, as well as patent applications from the US, WIPO/PCT and Australia. A
Patent Lens search was performed using the full-text keyword query “diabetic AND nephropa-
thy”, providing 30,604 hits. Only patents linked to patent classes 424 (Drug, bio-affecting and
body treating), 436 (Chemistry: Analytical and immunological testing), and 514 (extension to
category 424) were retained. For retrieving only patents with evident association with DN a
search on each patent was done for extracting patents where either “diabetic nephropathy” was
present in the patent title or in the patent claims, or where the search string was found at least five
times in the full-text, or the string was found in full text together with specific tags in the claims
(“diabetic”, “diabetes” or “diab” AND “nephropathy”, “kidney” or “nephro”). This process re-
sulted in a list of 1,561 patents with evident link to DN. From these the claims were kept for
identification of genes and proteins associated with DN. The present list of valid NCBI symbols
and full gene names was retrieved from the current version of GenBank, holding 19,066 genes,
further expanded by associated 72,559 deprecated symbols and aliases. These were filtered by
an English thesaurus (link [217]) containing 62,109 words, resulting in 18,905 valid symbols
and full names, and 71,054 aliases. This query set was then applied for a case insensitive search
among text tokens extracted from patent claims, resulting in 901 gene symbols.

Protein interaction network

All data sets generated on DN were mapped to gene symbols as common name space. These
were subsequently mapped on a full human proteome interaction network (omicsNET, [89]).
This network aims at a complete representation of protein coding genes, furthermore integrating
the various types of protein interactions (being physical interactions, procedural interactions,
or paralogs). Our network holds 26,419 nodes representing canonical proteins (as provided by
SwissProt in combination with ENSEMBL). The starting point in the construction of omicsNET
was the set of experimentally determined PPIs as obtained through the unification of available
PPI sources (IntAct, OPHID, BioGRID, KEGG, PANTER and Reactome). On top, data on tis-
sue specific gene expression, sub-cellular localization (retrieved from SwissProt and computed
by WPSORT), ontology (GO molecular function and biological process) and pathway (KEGG,
PANTHER) annotation and protein domains (PDB) were included. This procedure resulted in a
maximum of seven data sources per node. On the basis of this parameterization we inferred the
probability of a relation between node pairs by weighting the strength of the arguments in favor
and against such a relation as encoded in the given parameters for a specific pair, technically rep-
resented by a metafunction. This procedure resulted in a matrix of pair relation weights being in
the interval [-1,2], where negative values indicate lack of relation, and positive values indicate a
relation for a given pair. The accuracy for estimating a relation between nodes certainly depends
on the number of available parameters. E.g. tissue specific gene expression (represented in
the metafunction as pair-wise correlation coefficient) is available only for 20,282 of the in total
26,419 nodes. The assumption therefore is that a higher number of valid parameters for a given
pair (maximum seven parameters) increases the validity of a given edge weight, subsequently
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termed as evidence level of the relation. For 19,236 nodes at least four out of the seven param-
eters were found valid for computing an edge weight, and by selecting an edge weight cutoff of
>= 0.58 a graph holding 18,948 nodes resulted, each specified by a unique molecular identifier.
This node set and respective interaction network was then annotated by the diverse data sets,
i.e. for each node information was added regarding identification in Omics studies, literature,
clinical trials or patent text.

PPI network layout

For allowing an interpretation of the annotated omicsNET graph a functional layout in scope
of KEGG pathways was performed utilizing the KEGG status as of October 2010. From the in
total 214 pathways provided by KEGG all entries specifically focusing on disease phenotypes
(as “pathways in cancer”) were removed, resulting in a set of 171 “generic” pathways. For each
pathway, the KEGG identifiers of the assigned genes were retrieved and mapped to ENSEMBL
protein identifiers via Entrez gene identifiers. The cross-referencing used in the process was
obtained from the current version of the ENSEMBL database, resulting in 20,462 ENSEMBL
protein identifiers. The set was then restricted to proteins present in our PPI network as described
above, yielding 7,009 items. 2,924 of these were present in more than one KEGG pathway, and
for assuring uniqueness of assignment each of these objects was assigned only to the KEGG
pathway already holding the node which showed the strongest weight (as computed in omics-
NET) to the non-uniquely assigned node. 2,644 nodes could be assigned this way, resulting in
151 populated pathways further considered. The same procedure was then applied for all nodes
from the omicsNET node set not assigned at all to a KEGG pathway. This procedure allowed
assigning the remaining nodes to a single pathway of the in total 151 pathways, where the alloca-
tion either rested on the given assignment by KEGG as such, or by the edge weights available in
omicsNET. Of the 18,948 nodes provided in omicsNET in total 17,995 nodes could be assigned.
This approach allowed the clustering of omicsNET in KEGG pathways, subsequently easing
interpretation of the DN data sets. For analyzing this KEGG-based clustering of omicsNET a
treemap [218] was computed. The inter-pathway similarity between two pathways was calcu-
lated as the average over all omicsNET edge weights between the two pathways. This similarity
was then transformed into inter-pathway distance. On the basis of these distances a hierarchical
clustering using Ward’s linkage was computed and represented as a tree with merge steps as
dummy nodes and pathways as leaves. From the resulting tree, a treemap was constructed using
the Treemap program (link [219]) enabling an inspection of pathway distances. For evaluating if
a pathway showed a significant enrichment of annotation with respect to a specific data category
(Omics, literature, clinical trials, patents) a Fisher’s Exact Test was applied using a p-value <
0.05 as significance level.

Results

Linking disease processes with markers and targets

Due to the prevalence of DN a solid body of data is available, spanning various Omics screen-
ing levels and scientific literature, but also patent text and clinical trial descriptions. We ex-
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tracted relevant data files and documents on a keyword search basis with the aim of identifying
molecular features associated with the disease, and linking these into a canonical gene/protein
interaction network (omicsNET).

All primary sources were processed for gene-disease associations, being directly provided
from Omics screening results, via MeSH-disease-to-pubmed assignment coupled with gene-
to-pubmed data for MEDLINE sources, via drug-gene assignment for clinical trials associated
with DN, and via identification of gene symbols and names in DN-relevant patent text. For
each extracted association the respective data structure of the molecular feature was expanded
for mirroring the identified association, also providing the type of data source. In this approach
no specific level of detail regarding the type of association was taken into consideration (e.g.
direction and amplitude of differential regulation/abundance as derived in Omics profiling), but
solely the fact of a qualified association between a molecular feature and the disease was re-
trieved. Next to this disease-specific annotation each molecular feature holds a second layer
of annotation specifically used for computing a relation score between genes/proteins (molec-
ular context). Applying this procedure to the full set of human protein coding genes provided
a complete interaction network for the human proteome. Functional grouping of the molecular
features in line with core KEGG pathways allows identification of pathways specifically en-
riched by one (or more) feature sets holding a disease annotation. Based on the sources used for
feature retrieval qualitative layers can be defined holding i) a description of the pathophysiology
of the disease (represented by features coming from Omics profiling and literature mining), and
ii) holding features reported in the realm of pre-clinical or clinical application, i.e. identified ex-
plicitly in the context of biomarkers and therapy targets found in scientific publications, patent
text and clinical trial descriptions (in the following denoted as “clinical context”). As a result of
this integration strategy each affected pathway becomes amenable for analyzing its association
to the pathophysiology as well as to biomarkers and therapy targets.

Feature overlap

First question to be addressed when analyzing heterogeneous feature lists is their direct overlap
on the level of molecular identifiers. Tab. 3.3 provides an overview on the molecular feature sets
derived from the various data and literature sources.

The source providing most hits is patent text with 901 gene symbols, followed by transcrip-
tomics studies with 708 symbols. Mining of scientific literature provided 287 symbols linked
with DN, and 108 symbols associated specifically with biomarkers in the context of DN. On
the level of a direct NCBI gene symbol overlap 44 symbols are identified in both, literature and
Omics profiles. The gene symbol overlap of combining Omics and literature (the pathophysi-
ology set), and individually comparing this set with the other sources classified under clinical
context is shown in Fig. 3.14.

Of the in total 1,094 unique symbols assigned to pathophysiology 102 are also found in the
restricted literature mining focused on biomarkers, 144 are represented in patents, and 39 in
clinical trial descriptions. Specific comparison of Omics tracks on a feature level is provided in
Fig. 3.14. From the in total 708 gene symbols reported from transcriptomics 5 are also reflected
on the SNP, 5 on the proteome, and 6 on the metabolome level. Weak overlap on the level
of individual features, however, has been reported in various meta-studies of Omics profiles
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Level Source Classification # features
Pathophysiology Literature “Diabetic Nephropathy” 287

Omics Transcriptomics 708
Proteomics 30

SNP 36
Metabolomics 94

Total unique features 1094
Clinical context Literature “Diabetic Nephropathy” AND “Biomarker” 108

Trials “Diabetic Nephropathy” 144
Patents “Diabetic Nephropathy” 901

Total unique features 1059

Table 3.3: Mined sources assigned to either describing the pathophysiology of DN or to the
clinical context of DN, source classification and keywords, and number of features (NCBI gene
symbols) extracted.

Figure 3.14: Venn diagrams comparing A: features assigned to pathophysiology (PP, Omics,
literature) and their overlap with features extracted from a biomarker-biased literature search
(CC-lit), patent text (CC-pat), and clinical trials (CC-trials) text. B: features assigned to the
individual Omics tracks (SNP, transcriptomics, proteomics, metabolomics).

[30, 89]. This alleged heterogeneity changes when going to the level of pathways populated by
identified features instead of comparing individual features as such.

GSEA: KEGG pathway level

A gene set enrichment analysis (GSEA) [90] utilizing KEGG pathways provided a more coher-
ent picture when comparing affected pathways grounded on data sets assigned to pathophysiol-
ogy and to clinical context, as shown in Tab. 3.4.

Two pathways, namely the renin-angiotensin system (hsa04614) as well as the complement
and coagulation cascades (hsa04610) appeared as significantly affected in both, the pathophysi-
ology as well as the clinical context layer. Although the total number of features for both layers
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hsa04614:Renin-angiotensin system 17 10 0.01 10 0
hsa04610:Complement and coagulation cascades 69 31 0 19 0.01

hsa00760:Nicotinate and nicotinamide metabolism 24 - - 10 0.04
hsa03320:PPAR signaling pathway 69 - - 19 0.01

hsa00563:Glycosylphosphatidylinositol(GPI)-anchor biosynthesis 25 - - 22 0
hsa04060:Cytokine-cytokine receptor interaction 262 93 0 - -

hsa04010:MAPK signaling pathway 267 77 0 - -
hsa04660:T cell receptor signaling pathway 108 43 0 - -

hsa04620:Toll-like receptor signaling pathway 101 41 0 - -
hsa04340:Hedgehog signaling pathway 56 29 0 - -

hsa04930:Type II diabetes mellitus 47 25 0 - -
hsa04621:NOD-like receptor signaling pathway 62 29 0 - -

hsa04350:TGF-beta signaling pathway 87 35 0 - -
hsa04722:Neurotrophin signaling pathway 124 42 0 - -
hsa04062:Chemokine signaling pathway 187 54 0 - -

hsa04672:Intestinal immune network for IgA production 49 24 0 - -
hsa04916:Melanogenesis 99 36 0 - -

hsa04012:ErbB signaling pathway 87 32 0 - -
hsa04920:Adipocytokine signaling pathway 67 26 0 - -

hsa04630:Jak-STAT signaling pathway 155 44 0 - -
hsa04664:Fc epsilon RI signaling pathway 78 28 0 - -
hsa04662:B cell receptor signaling pathway 75 27 0 - -

hsa04910:Insulin signaling pathway 135 39 0 - -
hsa04912:GnRH signaling pathway 98 30 0 - -

hsa04020:Calcium signaling pathway 176 43 0 - -
hsa04914:Progesterone-mediated oocyte maturation 86 26 0.01 - -

hsa04520:Adherens junction 77 24 0.01 - -
hsa04370:VEGF signaling pathway 75 23 0.01 - -

hsa04080: Neuroactive ligand-receptor interaction 256 54 0.02 - -
hsa04110: Cell cycle 125 32 0.02 - -

hsa04150: mTor signaling pathway 52 18 0.02 - -

Table 3.4: KEGG identifier and term name, the total number of features assigned to this path-
way, the number of features found to be affected utilizing ‘pathophysiology’ (PP) and ‘clinical
context’ (CC) data sets, as well as associated p-values indicating the significance of association.
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is in the very same range only five pathways were found to be significantly affected when map-
ping the pathophysiology feature set, but 28 pathways were found significantly affected when
supplying the clinical context list. Among these are pathways frequently reported in the context
of kidney disease, as MAPK signaling [19], VEGF signaling [220, 221], or TGF-beta signal-
ing [222]. For completeness and as positive control we explicitly included the type II diabetes
mellitus pathway also provided in KEGG, indeed showing enrichment for the clinical context
data set.

GSEA: Extended KEGG pathway level

For overcoming the limitation in coverage of genes in KEGG, but also for going beyond the
procedural interactions provided in KEGG, we generated an extended KEGG pathway set hold-
ing in total 17,995 proteins. We mapped the five feature data sets (literature, combined Omics,
literature with focus on biomarker, patents, and clinical trials) individually to the extended path-
ways and searched for pathways showing significant enrichment in affected features (i.e. being
members of the DN data sets) utilizing a treemap representation for reflecting pathway neigh-
borhood.

Treemaps align pathways with respect to their relatedness, but only a minor number of af-
fected pathways were found in proximity for any of the five data sets. Furthermore, only three
pathways were coherently found as enriched in all five maps, namely i) complement and coagu-
lation cascade, ii) the renin-angiotensin system, and iii) the PPAR signaling pathway, where the
first two were also identified on the KEGG level, and PPAR was in a first place only found on
the level of pathophysiology. Only one additional pathway is jointly affected for Omics data and
general literature data, namely “focal adhesion”. For the literature data set “TGF-beta signaling”
is an affected and direct neighbor of the renin-angiotensin pathway, whereas for the Omics data
set “vascular smooth muscle contraction” is significantly affected, apparently reflecting Ca2+
signaling. Two pathways were coherently identified on the clinical context level also being di-
rect neighbors in the treemap representation, namely i) neuroactive receptor-ligand interactions
and ii) cytokine-cytokine receptor interaction. The total number of pathways found as signifi-
cantly enriched on the individual data set level, as well as the comparative display of affected
pathways is provided in Tab. 3.5.

Source O L LB P CT
Omics (O) 19 6 3 5 6

Literature (L) 17 7 7 4
Literature, biomarker (LB) 10 7 5

Patents (P) 20 7
Clinical trials (CT) 14

Table 3.5: The feature source, the number of pathways enriched on the level of an individual
source, and the number of pathways jointly affected in a pair-wise comparison.

Among the 151 pathways represented in the treemaps at maximum 20 are affected by a single
source (patent feature list), and only three to seven pathways are jointly found as enriched when
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Figure 3.15: Network view on the renin-angiotensin system (hsa04614). Nodes are encoded
according to category assignment as triangles (multiple sources), octagons (pathophysiology-
omics), diamonds (patents), and circles (not identified as affected in any of the given data sets).
Edges represent relations as provided from omicsNET. Underlined gene symbols were assigned
to this pathway based on the extension procedure applied.

comparing two data sets. In our pathway representation each pathway is populated by members
assigned by KEGG, and members derived from the extended assignment of gene symbols based
on omicsNET edge weights. On the basis of omicsNET all members of a specific pathway have
relations assigned, enabling the extraction of pathway-specific subgraphs. The subgraph of the
extended renin-angiotensin pathway is shown in Fig. 3.15.

Of the 37 members (level of gene symbols) represented in the extended KEGG “renin-
angiotensin pathway” (compared to 17 members of the original KEGG pathway hsa04614) 11
are found in at least one data set, with multiple data source annotation for the proteins ACE
(angiotensin 1 converting enzyme 1), ACE2 (angiotensin 1 converting enzyme 2), AGT (an-
giotensin), CMA1 (chymase 1), ENPEP (glutamyl aminopeptidase), and REN (renin). Further
features identified as relevant but not being members of the original KEGG pathway are CCK
(Cholecystokinin), XPNPEP2 (X-prolyl aminopeptidase (aminopeptidase P) 2, DPEP (a renal
dipeptidase), and KLK7 (kallikrein 7). Three pathways were found individually enriched by all
five extracted data sets. Biomarkers (derived from the focused literature mining) and therapy
targets (as derived from clinical trials text) assigned to these pathways are listed in Tab. 3.6.

Biomarkers and targets associated with hsa04614 (renin-angiotensin system) obviously hold
ACE and AGT on both, biomarker and target level. A further consensus finding were the path-
ways has04080 (neuroactive receptor-ligand interactions) and hsa04060 (cytokine-cytokine re-
ceptor interaction), being enriched in the clinical context setting resting on the focused biomarker
search in the scientific literature, patent information, as well as clinical trial text. In total 16 spe-
cific drugs are linked to hsa04080 (mainly sartans acting as angiotensin II receptor antagonists),
and two to hsa04060 (statins for lowering cholesterol levels via inhibiting HMG-CoA reductase)
according to the gene-drug assignments from DrugBank. Their main associated disease indica-
tions as assigned in MeSH are given in Tab. 3.7, clearly reflecting cardiovascular medication for
drugs linked to hsa04080 and cholesterol reduction, and lipid balance and diabetes for hsa04060.
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ext. KEGG id biomarker target drug
hsa04610 CD59 SERPINE1 Atorvastatin

F3
F10, F2,

SERPINC1
Enoxaparin

FGB
C1QA, C1QB,

C1QC, C1R, C1S
Rituximab

HP
F2, MMP3,
SERPINE1

Simvastatin

KLKB1
SERPINE1,
SERPINC1,
SERPIND1

Sulodexide

LPA
PTX3

hsa03320 ALB
APOB, PON1,

PPARA, PPARG
Atorvastatin

APOB ALB Captopril, Insulin-Glargine
FABP1 VDR Paricalcitol
HPR PPARG Pioglitazone, Rosiglitazone

PON1 PPARA Simvastatin
hsa04614 ACE AGT, REN Aliskiren

ACE2 AGT
Atorvastatin, Simvastatin,

Lisinopril, Irbesartan

AGT ACE
Benazepril, Captopril,

Enalapril, Fosinopril, Lisinopril,
Ramipril, Trandolapril

Table 3.6: Biomarkers and targets including assigned drugs as represented in the extended
KEGG pathways hsa04610 (complement and coagulation cascade), hsa03320 (PPAR signaling
pathway) and hsa04614 (renin-angiotensin system).

MeSH terms associated with PubMed hits found by individually searching these 16 drugs
together with a provided MeSH modifier for obtaining systematic reviews of value to clinicians
(“systematic[sb]”) allowed us to count and rank literature occurrence of diseases associated with
these drugs, as listed in Tab. 3.8.

Discussion and conclusion

Omics technologies have significantly broadened our experimental capabilities for describing
the molecular status of a given biological matrix (tissue, blood or urine level). Improvements
in experimental workup of samples, SOPs for Omics screening, and standardization in report-
ing including both, experimental description as well as execution have provided the ground for
utilizing Omics also in the clinical context. Here individual Omics tracks, as proteomics in the
field of diabetic nephropathy, have already entered validation in disease diagnosis and prognosis.
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KEGG id drug pharmacology

hsa04080 ATENOLOL
Adrenergic beta-Antagonists, Anti-Arrhythmia

Agents, Antihypertensive Agents, Sympatholytics
BOSENTAN Antihypertensive Agents

CANDESARTAN
Angiotensin II Type 1 Receptor Blockers,

Antihypertensive Agents

CLONIDINE
Adrenergic alpha-Agonists, Analgesics,

Antihypertensive Agents, Sympatholytics
CORTICOTROPIN Hormones

DOXAZOSIN
Adrenergic alpha-Antagonists, Antihypertensive

Agents
EXENATIDE Hypoglycemic Agents
FOLIC ACID Hematinics, Vitamin B Complex

IRBESARTAN
Angiotensin II Type 1 Receptor Blockers,

Antihypertensive Agents

LOSARTAN
Angiotensin II Type 1 Receptor Blockers,

Anti-Arrhythmia Agents, Antihypertensive Agents
OLMESARTAN Angiotensin II Type 1 Receptor Blockers

PERINDOPRIL
Angiotensin-Converting Enzyme Inhibitors,

Antihypertensive Agents
SERTRALINE Antidepressive Agents, Serotonin Uptake Inhibitors

SPIRONOLACTONE Aldosterone Antagonists, Diuretics

TELMISARTAN
Angiotensin II Type 1 Receptor Blockers,

Angiotensin-Converting Enzyme Inhibitors

VALSARTAN
Angiotensin II Type 1 Receptor Blockers,

Antihypertensive Agents

hsa04060 ATORVASTATIN
Anticholesteremic Agents,

Hydroxymethylglutaryl-CoA Reductase Inhibitors

SIMVASTATIN
Hydroxymethylglutaryl-CoA Reductase Inhibitors,

Hypolipidemic Agents

Table 3.7: Drugs assigned to the pathway hsa04080 (neuroactive receptor-ligand interactions)
and hsa04060 (cytokine-cytokine receptor interaction), and pharmacological action.

Workup of microdissected kidney tissue forwarded to transcriptomics has resulted in the discov-
ery of major pathways in the tubular compartments seen with chronic kidney disease [221].
However, most of these procedures have been implemented “within the Omics domain”, still
centrally driven by statistics procedures aimed at identifying differentially regulated transcripts
or differentially abundant proteins. This domain separation also becomes evident by the highly
valuable Omics profile consolidation efforts e.g. seen for transcriptomics at ArrayExpress [223],
or for proteomics with PRIDE [224], or more general gene-centric data consolidation as with
GeneCards [225]. Disease-specific Omics repositories are unfortunately still sparse and valu-
able examples as Oncomine (OncomineTM - Compendia Bioscience, Ann Arbor, MI; focus on
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hsa04080 count hsa0460 count
HYPERTENSION 68 HYPERCHOLESTEROLEMIA 38

COLORECTAL NEOPLASMS 56 CARDIOVASCULAR DISEASES 39
NEURAL TUBE DEFECTS 41 HYPERTENSION 5

CARDIOVASCULAR
DISEASES

64 DIABETES MELLITUS 11

HEART FAILURE 24 RHABDOMYOLYSIS 4
FOLIC ACID DEFICIENCY/
HYPERHOMOCYSTEINE-

MIA
26 DEMENTIA 2

PREGNANCY
COMPLICATIONS

13 STROKE 2

STROKE 13
OPIOID-RELATED

DISORDERS
13

DIABETES MELLITUS,
TYPE 2

12

Table 3.8: Name and frequency (count) of indications assigned to drugs found as associated
with the pathway hsa04080 (neuroactive receptor-ligand interactions) and hsa04060 (cytokine-
cytokine receptor interaction).

neoplasm) or Nephromine (link [226], focus on renal expression profiles) are transcriptomics
centered. Another initiative, SysKid (link [227]), takes a different route, namely limiting the
clinical phenotype under analysis, but in turn broadening the Omics disease annotation beyond
transcriptomics by also including GWAS, proteomics and metabolomics. The present paper fol-
lows this concept for characterizing diabetic nephropathy, furthermore including text mining
results from scientific literature, patent text as well as clinical trial descriptions yielding 1,094
features characterizing the pathophysiology, and 1,059 features associated with the clinical con-
text of the disease.

A first finding in cross-Omics data comparison is on the level of direct feature comparison,
where meta-analysis within an Omics domain [89] as well as cross Omics domains [201] shows
sparse overlap. Utilizing this procedure for the given Omics data sets on DN provides the same
conclusion, and also when broadening the features included beyond Omics does not substan-
tially change this picture. In terms of biological causality with respect to abundance levels from
Omics (the central result from a statistics-driven profile analysis), however, this finding is not
surprising: SNP for instance may affect efficacy of a protein’s function but this fact is eventually
not mirrored on the transcript level with respect to different concentration as determined in a
microarray experiment. Furthermore, different Omics profiling done in different sample types
(e.g. tissue, plasma, urine) characterize joint, but also up- and downstream processes. Based on
this background cross-Omics analysis on the level of networks and pathways became the method
of choice with the underlying assumption that the heterogeneity of identified individual features
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consolidates on the level of functional units (pathways), as these provide a causal link between
concerted molecular processes being responsible for a given disease phenotype. For pathways
also interdependencies can be described (e.g. encoded as pathway distance in treemaps), which
might support elucidation of sequences of processes (as inherently given when e.g. integrating
tissue transcriptomics and urinary proteomics profiles). Data on functional units, represented
as interaction networks (graphs), is available for a number of generic cellular processes with
KEGG as the most prominent example. Mapping the data sets on DN to KEGG and performing
a GSEA identified five pathways as affected when using combined Omics and literature feature
sets. 80 out of the in total 1,094 features are assigned to these five pathways, all other features are
assigned to other pathways where the statistical analysis of the number of total features given in
a pathway and the number of respective features also found in either the Omics or the literature
data set did not show significant enrichment. In any case, identification of affected pathways is
significantly improved when combining the different Omics domains. The number of enriched
pathways is substantially expanded when using the clinical context lists, resulting in 28 path-
ways resting on in total 406 features from the 1,059 features assigned to clinical context. Two
pathways are found as affected for both, pathophysiology as well as clinical context, namely
the renin-angiotensin system as well as the complement and coagulation cascade. The renin-
angiotensin system depicts an important mechanism in the regulation of blood pressure with an
increased production of renin in the kidney leading to a constriction of blood vessels and an
increased blood pressure. Next to the direct inhibition of renin in order to lower blood pressure
in patients with diabetic nephropathy, therapeutic options targeting the angiotensin-converting
enzyme or the angiotensin II receptor are in clinical use. Next to the blood pressure lowering
capabilities of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II type 1 re-
ceptor blockers (ARBs), their independent anti-proteinuric effect made them a major factor in
treatment of chronic kidney disease. The complement cascade is an essential part of the innate
immune system, and the complement components C5b-9 have also been detected in urine of
diabetic nephropathy patients [228]. The link between complement and the coagulation cascade
and the contribution to inflammation and other diseases has been outlined by Markiewski and
colleagues [229].

However, available pathway data as encoded in KEGG are far from being complete with
respect to the number of protein coding genes, and fall short in integrating the various types of
interactions. For expanding both, comprehensiveness as well as coverage of interaction types
we utilized omicsNET aimed at a complete representation of protein coding genes in a network
of relations encapsulating various types of interactions. However, omicsNET does not provide
functional units, and recalling the above said such units are deemed necessary for consolidating
and interpreting the diverse Omics data. Therefore nodes not represented in KEGG were as-
signed to KEGG pathways using the omicsNET relations weight as assignment criterion: Each
node in the first place not represented in KEGG was assigned to a given KEGG node show-
ing strongest relation with the non-assigned node. Result of this procedure is a clustering of
omicsNET in KEGG pathway categories.

The diverse data sets retrieved on DN were mapped on this extended KEGG category set,
and GSEA was again performed resulting in 10 to 20 enriched pathways for each data source.
The two pathways already seen in KEGG, namely the renin-angiotensin as well as the comple-
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ment and coagulation cascade, were again identified, but in this setting significant enrichment
was given individually for all five data sets. Due to the fact that omicsNET is underlying the
pathways, extraction of the pathway specific relations network became possible. The functional
unit presents as a single connected component, and short paths are seen for major players of
this pathway including ACE, REN and AGT, as well as of members which were assigned to
this pathway as KLK7, linking the kallikrein-kinin system. Due to mapping all data sources on
a common name space the assignment of features to biomarkers and therapy targets is straight
forward. Cholesterol lowering drugs, insulin sensitizers, and ACE inhibitors are prominently
linked in this category together with sulodexide, a glycosaminoglycan mixture actively tested in
DN patients with urinary albumin excretion [230]. Additionally the PPAR signaling pathway, in
the first setup only seen for the combined Omics and literature data set, became significant for all
five data sets. PPARs are involved in modulating insulin resistance, hypertension, dyslipidemia,
obesity, and inflammation. PPARs depict promising alternative therapeutic targets next to the
above mentioned molecules of the renin-angiotensin pathway for diseases like type 2 diabetes,
obesity, hypertension, hyperlipidemia, or atherosclerosis. A number of clinical trials suggest the
renoprotective effects of PPAR agonists [231].

From this unbiased data selection and analysis three pathways became evident allowing a
conclusive link of biomarkers and therapy targets on the basis of a molecular description of the
pathophysiology of the disease. However, two additional pathways, functionally being in close
proximity, were identified congruently for the clinical context data sets, but not being signifi-
cantly affected on the pathophysiology level, namely “neuroactive receptor-ligand interactions”
and “cytokine-cytokine receptor interaction”. Next to statins found for the cytokine-cytokine
receptor interaction pathway the class of sartans (angiotensin II receptor antagonists) is promi-
nently linked to the neuroactive receptor-ligand interactions. Cross-evaluating the drugs found
in these two pathways with assigned disease names according to NCBI MeSH clearly reflects
hypertension and diseases afflicted with lipid metabolism.

The molecular pathways retrieved by the multi-source consolidation perfectly match the
clinical view regarding risk factors for developing DN, involving among others hyperglycemia
and cytokine activation, and associated therapy regimes. Data integration also demonstrates the
intricate entanglement of decreased kidney function and hypertension in the realm of diabetes
mellitus. Certainly the various data sets utilized in this work carry different levels of evidence
and specific biases. For explorative (bias-free) Omics studies the study design, and here specifi-
cally proper case and control definition as well as appropriate statistical power, define evidence
of features termed as relevant in the context of DN. Automated data retrieval from literature and
patents on the other hand results in less evident and also biased feature extraction. Integration of
the clinical relevance data space with Omics profiles nevertheless is supportive for interpretation
of explorative data in the realm of known associations next to identification of novel features
and respective pathways. Consolidation of molecular features on interaction networks provides
furthermore the basis for linking molecular profiles with associated biomarkers and therapy tar-
gets. Expanding the concept presented here towards also linking detailed clinical data for each
individual Omics profile as yet another layer would generate patient (cohort) specific molecular
pathology landscapes, which in a next step could be linked with cohort specific diagnostics and
therapy regimes. An apparent shortcoming of the approach presented here is the on a clinical
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level still broad spectrum of DN (level of albuminuria, stage of the disease), which was not
specifically addressed in the course of data set retrieval. For implementing a true Systems Biol-
ogy approach, however, specific clinical data specifying the context of Omics profiles, but also
specifying the context of individual molecular features are necessary. Feeding a multilayered
reference network as delineated in this work with patient specific Omics profiles/marker pro-
files, and analyzing affected pathways in the realm of specific clinical data might then offer a
route towards individualized therapy strategies.

Multilevel data consolidation and integration for diabetic nephropathy, involving next to
Omics profiles also literature, patent and clinical trial text mining provides a heterogeneous spec-
trum of molecular features. This alleged heterogeneity vanishes when interpreting the features in
the context of pathways and protein interaction networks, where distinct sets of disease associ-
ated processes become evident. Identification of such disease associated pathways furthermore
allows to link pathway-specific biomarkers and drug targets. This integration concept proves
valid in representing the intricate interplay of diabetic nephropathy, cardiovascular disease and
diabetes on a molecular network level, in turn offering a platform for analysis of biomarkers and
drugs in the context of specific Omics profiles characterizing diabetic nephropathy.

3.4 A units-based in-silico approach exemplified for diabetic
nephropathy

In the previous section, an approach to disease characterization based on network and gene set
enrichment analysis (GSEA) was delineated for diabetic nephropathy. Information on related
patents and drugs was additionally cross-linked and interpreted. As is the case with most ap-
proaches, heterogeneity on the molecular level is a major issue hampering results quality.

The variance issue has already been addressed in the course of this thesis by introducing the
concept of synthetic (multi-)lethality. However, this was done in the context of cancer, in which
coverage was interpreted as the percentage of tumors that could be driven into apoptosis by
targeting a single, or otherwise small set of genes. Synthetic lethality is therefore reasonable for
targeting a wide range of heterogeneous patients when there is no need to differentiate between
the mechanisms underlying the disease phenotype.

For diseases where treatment does not involve removing the affected cells, but instead at-
tempting to stimulate protection or even damage reversal mechanisms, a detailed knowledge of
the involved processes is necessary. Ideally, each patient would be screened down to the molec-
ular level and a corresponding treatment would be prescribed. Such approaches, however, would
be prohibitively expensive and complex, not to mention technically difficult at the present mo-
ment so they are not an option for clinical routine. An alternative is patient stratification based
on biomarker panels, i.e. patients exhibiting the same disease phenotype are screened more
in-depth with a predefined set of clinical parameters and provided treatment depending on the
outcome.

The following section will introduce the concept of units, an approach to disease investiga-
tion and patient stratification based on identifying disease-specific gene groups.

83



pathway size

pa
th

w
ay

 c
ou

nt

0 200 400 600 800 1000 1200

0
10

20
30

40

overlap size (if available)

co
un

t

0 20 40 60 80 100 120

0
20

0
40

0
60

0

Figure 3.16: Distribution of KEGG pathway sizes (left) and distribution of KEGG pathway
pairwise overlaps (right) when available.

Concept outline and goals

Our concept is based on the hypothesis that small sets of genes (units) which perform well-
defined tasks exist, and that processes in the broader sense, like pathways, consist of one or
more such units.

To better outline the concept of units, a quick comparison to pathways will be provided next.
Fig. 3.16 (left) depicts the distribution of KEGG pathway sizes. Aside from pathway hsa01100
with 1,150 genes, which is an integrated map of all metabolic networks stored in KEGG, as well
as several other outliers with approximately 200 members each, the vast majority of pathways
holds less than 150 genes. The median value lies at 50 genes per pathway. This provides a rough
estimate for the upper bound of the envisioned unit size. To further characterize this value, an
exhaustive binary pathway overlap was computed. Fig. 3.16 (right) depicts the sizes of the
pathway-pathway intersections. Of the 17,955 possible binary combinations, 84% were empty
with no overlap between the investigated pathways. These values were not depicted in the figure.
The remaining 16% had a median overlap value of 6.

The median pathway size of 50 and the median overlap size of 6 characterize the approximate
number of genes in the envisioned units. In the subprocess interpretation of units, the pathway
overlap size alone, however, does not provide any information on the number of units in the
intersection. It is conceivable, e.g. that in an overlap of size 10, one or maybe two units may be
present. Considering that KEGG is a highly curated data source, we can expect that these values
lie actually higher than the ones determined here. This is even more the case when considering
that KEGG only holds high confidence information implicitly containing false negatives. The
median of the term size distribution for the GO process ontology lies at 4 genes per term. This
further supports the hypothesis of a relatively small unit size.
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A further question to be addressed is the unit computation procedure. Plainly using ontology
terms would be a valid approach with the additional advantage of good literature curation. A
drawback is that the ontology would still need to be artificially pruned. Additionally, the graph
topology would be ignored in this approach. Barabasi et al. [21] specifically emphasize the role
of topology in disease modules. Functionally related genes tend to be stronger connected to each
other than unrelated ones. This finding leads the investigation of unit computation mechanisms
towards network clustering methods.

Topology-based approaches on hybrid networks such as omicsNET make sense as they in-
tegrate both information on graph characteristics and background biological data. The latter
includes not only the Gene Ontology but also additional sources to improve completeness. In
the course of this work, several approaches to building clusters were investigated, such as walk-
trap [232], MCL [233], CAST [234] and hierarchical clustering, most leading to a single gi-
ant connected component. Better results, in terms of smaller units, were obtained with the
MCODE [235] algorithm for computing k-core components.

Assuming units can be computed with a given algorithm, the question to be addressed next
is the biological function embodied by the resulting sets. In a hybrid network, functional in-
formation is merged, making a subsequent dissection of units cumbersome. To obtain a rough
description of the retrieved subprocesses, functional annotation of the groups needs to be per-
formed. A sensible approach is to link units to related ontology terms and pathways. This
functional annotation step is reasonable when expert analysis of the results is the next intended
step. Alternatively, when units are computed based on background data specific to different phe-
notypes, a black-box approach is conceivable, in which patient assignment to disease-specific
units is the actual goal.

Based on the units interpretation as subprocesses, it would be sensible to compute such
groups on the whole graph. It is known, however, that genes play more than one biological
role, which is not only reflected in units being part of different processes but also in genes being
involved in different units. This fact is prohibitive for a meaningful whole-graph segmentation,
as processes and units overlap, leading to large and densely interlinked components. This fact
became particularly obvious during clustering attempts on the full graph.

A different method for handling units can be derived by putting a disease in relation to
the normal cell state. It can be assumed that on the molecular level a disease does not consist
of single transcriptional deregulations with no relation in-between, but instead it consists of
entire subprocesses that are affected and are therefore acting abnormally. The reasons why
during omics methods only some genes are identified as differentially regulated are manifold,
and include down-stream effects, measurement errors, etc. In our context, this would translate
into entire units being affected. This means further, that, at least theoretically, when comparing
healthy vs. diseased tissue, precisely the genes constituting the units underlying the disease
phenotype would be identified. It can also be expected that during disease the majority of the
cell functions remain intact, so attempting to determine units based on affected genes should
prove easier that on the complete graph, as less functional overlap is present in the input set.

The units - disease phenotype relation is bidirectional. Mechanistically, deregulated pro-
cesses lead to changed phenotype. When investigating the disease, however, identifying a clear
phenotype is the first step to obtaining a clear picture of the deregulated processes.
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Two distinct application scenarios for units are conceivable:

• Explorative investigation of disease. In this approach, phenotype-specific gene sets are
used to compute individual unit groups. Relation strengths between units (both intra- and
inter-group) as well as between units and GO terms / pathways / drugs / etc. are subse-
quently computed to support functional annotation. This method is ideal for supporting
hypothesis generation and drug repositioning. This is also the method that will be exem-
plified in the following.

• Patient stratification. In this second approach, the focus lies mainly on classifying pa-
tients by disease phenotype and less on understanding the mechanisms of disease.

As previously mentioned, patient disease profiles are heterogeneous depending on the af-
fected processes. As treatment is tightly coupled with the causes of disease, an accurate
patient classification is crucial towards effective treatment. Classical clinical approaches
using single biomarkers as common denominators for testing generally have poor results
due to strong variance in the data. A solution to this shortcoming is using panels of
biomarkers characterizing the different processes commonly affected by the disease. De-
pending on which of the biomarkers are found a classification of the patients for therapy
is possible.

To obtain the biomarker panel, the relevant disease processes need to be identified first.
For this, units are computed based on background data, ideally with a clear phenotype defi-
nition. Each heterogeneous patient profile constitutes -assuming our hypothesis is correct-
henceforth a sub-selection from these units, i.e. the genes of aberrant subprocesses in this
particular patient should provide a selection from the ones found in the background data.
In practice this matching is not expected to be perfect due to experimental limitations.
Furthermore, a genome-wide patient screening is again not feasible due to complexity.
To address this shortcoming, biomarkers can be chosen from each unit, which together
constitute the actual screening panel.

This second method is currently under assessment and is not within the scope of this
thesis.

Materials and methods

Workflow overview

The workflow for deriving units is depicted in Fig. 3.17. Initially, a phenotype-specific gene set
is retrieved. The members are then connected using omicsNET edges. Only direct connections
between the genes are taken into consideration. On the resulting graph, strongly connected
components are derived using the MCODE algorithm. Subsequently, unit-unit dependencies as
well as unit-term and unit-pathway relations are computed. Finally, sub-cellular location and
drug-target relationships are determined for the members of each unit.

86



networked
gene setgene set

strongly
connected

units
(mcode)

omicsnet

kegg
selected
go terms

omicsnet drugs &
subcell.-loc

units

pathways

go terms

Figure 3.17: Overview of the units workflow.

Omics studies

For demonstrating the principle of units in the context of diabetic nephropathy, a set of nine
scientific articles with clear phenotype definition for early and late disease stage respectively
was selected. The list of papers is given in Tab. 3.9 and it represents a subset of the literature
used for the analysis performed in section 3.3.

The feature count obtained from the selected literature is shown in Tab. 3.10. Noticeably
the gene sets are significantly larger for transcriptomics than for proteomics. The original data
sets were retrieved with NCBI gene ids, gene symbols and SwissProt identifiers and were sub-
sequently mapped to ENSEMBL ids. The set consolidation led to 187 features specific for the
early and 450 features specific for the late disease stage. 67 features were common to both
groups.

Protein interaction network

For connecting the features, the omicsNET graph at a cutoff value of 0.73, holding 616,816
edges was employed. A description of the omicsNET graph can be found in section 3.1.

Units computation

The MCODE [235] algorithm aims at finding strongly connected components and was initially
developed to identify protein complexes in PPI networks. In our case, the base hypothesis is that
subprocesses are tighter connected than their surrounding neighborhood.

The algorithm encompasses three steps:

1. Node scoring. Each node is assigned a score based on how strongly its immediate neigh-
bors are interconnected.
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Study Omics Reference

1 mRNA
Baelde, H.J., Eikmans, M., Doran, P.P., Lappin, D.W., et al., Gene expression profil-
ing in glomeruli from human kidneys with diabetic nephropathy. Am J Kidney Dis
2004, 43, 636-650.

2 mRNA
Berthier, C.C., Zhang, H., Schin, M., Henger, A., et al., Enhanced expression of
Janus kinase-signal transducer and activator of transcription pathway members in
human diabetic nephropathy. Diabetes 2009, 58, 469-477.

3 mRNA
Cohen, C.D., Lindenmeyer, M.T., Eichinger, F., Hahn, A., et al. Improved eluci-
dation of biological processes linked to diabetic nephropathy by single probe-based
microarray data analysis. PLoS One 2008, 3, e2937.

4 mRNA
Woroniecka KI, Park AS, Mohtat D, Thomas DB, Pullman JM, Susztak K.,
Transcriptome analysis of human diabetic kidney disease., Diabetes. 2011
Sep;60(9):2354-69. Epub 2011 Jul 13.

5 prot.
Jain, S., Rajput, A., Kumar, Y., Uppuluri, N., et al., Proteomic analysis of urinary pro-
tein markers for accurate prediction of diabetic kidney disorder. J Assoc Physicians
India 2005, 53, 513-520.

6 prot.
Kim, P.K., Kim, M.R., Kim, H.J., Yoo, H.S., et al., Proteome analysis of the rat
hepatic stellate cells under high concentrations of glucose. Proteomics 2007, 7, 2184-
2188.

7 prot.

Alkhalaf A, Zürbig P, Bakker SJ, Bilo HJ, Cerna M, Fischer C, Fuchs S, Janssen B,
Medek K, Mischak H, Roob JM, Rossing K, Rossing P, Rychlík I, Sourij H, Tiran B,
Winklhofer-Roob BM, Navis GJ; PREDICTIONS Group., Multicentric validation of
proteomic biomarkers in urine specific for diabetic nephropathy., PLoS One. 2010
Oct 20;5(10):e13421.

8 prot.
Rossing K, Mischak H, Dakna M, Zürbig P, Novak J, Julian BA, Good DM, Coon JJ,
Tarnow L, Rossing P; PREDICTIONS Network., Urinary proteomics in diabetes and
CKD., J Am Soc Nephrol. 2008 Jul;19(7):1283-90. Epub 2008 Apr 30.

9 prot.
Sharma, K., Lee, S., Han, S., Lee, S., et al., Two-dimensional fluorescence difference
gel electrophoresis analysis of the urine proteome in human diabetic nephropathy.
Proteomics 2005, 5, 2648-2655.

Table 3.9: Literature list for the diabetic nephropathy unit analysis.

2. Cluster finding. Build clusters by starting from the highest score nodes and moving
outwards. Adjacent nodes are included if their score is above a given threshold. This step
is repeated until no more changes can be performed. Clusters with less than k-cores are
filtered out.

3. Post-processing. Optional haircut (removal of poorly connected nodes from the clusters)
and fluff (next-neighbor expansion of clusters) can be performed.

For the units computation, the MCODE algorithm was executed with the standard configura-
tion parameters (node degree cutoff = 2, no loops, node score cutoff = 0.2, k-core = 2, maximum
depth = 100) for each of the early and late stage gene sets.

Fig. 3.18 (bottom) shows the early disease stage network loaded in Cytoscape and being
processed with the MCODE implementation provided by the AllegroMCODE plugin. The nodes
highlighted in yellow show the unit with the highest score (also highlighted on the right side).
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Stage Omics Glomeruli Tubuli Urine Blood
early mRNA 49 / 128 - - -

prot. - - 3 / 0 3 / 10
late mRNA 53 / 178 262 / 29 - -

prot. - - 12 / 13 3 / 10

Table 3.10: Feature set sizes for early and late disease stages grouped by tissue. The two
numbers in each cell indicate how many features are up- and down-regulated respectively.

Ontology terms

Considering that the process section of the Gene Ontology holds 21,433 concepts with any
number of genes between 0 and 14,110 a selection mechanism for the terms had to be developed
to allow meaningful unit annotation. To achieve this, a method similar to the one presented by
Alterovitz et al. [236] was developed.

The procedure encompasses the following steps:

1. Associate each term t an information content value ic(t) = −log2( n
N ) based on its size n

relative to the total number of genes N in the ontology.

2. For a preselected information content value x and a maximum deviation k, choose all
terms ti with ic(ti) ∈ [x− k, x+ k] for further processing.

3. While keeping the selected terms in a sorted queue based on their increasing distance
from x, choose the one nearest to x, mark it as valid and invalidate all its ancestors and
descendants in the ontology by removing them from the queue.

4. Repeat the previous step until the queue is empty.

The values x and k are used to limit the set of relevant terms to a certain range in order to
avoid too specific or too general ones. Removing the ancestors and descendants ensures that the
terms in the output set cover mostly distinct processes. This latter step prevents over-annotation
of units with similar terms.

For the processing of the early / late dataset we chose x = 9 and k = 1 leading to a selection
of 999 terms holding between 15 and 60 genes each. This set of terms annotates 7,403 genes.

Pathways

To facilitate KEGG annotation of units, the pathway-gene associations for all KEGG pathways
(version as of January 2012) was retrieved. The data included 248 pathways and 6,198 genes.
From these, pathways with distinctive disease focus were removed, reducing the original dataset
to 190 pathway and 5,781 genes.
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Figure 3.18: Phenotypic networks for early and late disease stages (top). Early disease network
with units computed by the AllegroMCODE Cytoscape plugin (bottom). The nodes in yellow
correspond to the highlighted unit on the right side.

Relation inference

To obtain information on the processes embodied by the units, the workflow puts them into
context by inferring relations (similarity, dependence) both between units and between units and
pathways / terms.

In standard GSEA only set overlap is taken into account. A shortcoming of this method is
that it ignores dependencies between members of the one set and the other. Such relations are
biologically relevant and therefore need to be taken into consideration.

The procedure used for relation inference is defined as follows:

• For all pairs (x, y) where x is a unit and y is a unit/pathway/term,

• the relation strength between x and y, given the omicsNET graph G(V,E) is:

w(x, y) = 2·|x∩y|
|x|+|y| +

|{(a,b) for (a,b)∈E∧a∈x∧b∈y}|
|x|·|y|−|x∩y|
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Figure 3.19: omicsNET edges linking members of a unit (late-4, given in green) to members of
an ontology term (GO:0010717, given in red). One gene (SFRP1, given in black) is common to
both groups.

The first part of the procedure ensures that only edges between units or between units and
pathways / terms are computed. Calculating dependencies between pathways and terms is be-
yond the scope of this approach. In the relation strength function the first part of the formula is
the Dice coefficient for the set overlap, while the second one determines which percentage of all
theoretically possible edges between the two sets actually is present. The reason for subtract-
ing the size of the common set of genes from the total number of possible interactions is that
self-loops are not present in omicsNET.

In empirical testing, this function showed with a Pearson score of -0.1 no correlation between
the size of the inspected modules and the strength of their relation.

Fig. 3.19 is especially representative for the rationale behind using a dependency function
based both on overlap and connectivity. In the depicted case, only one gene is common to both
sets making an enrichment analysis return a low score. On the edge level, however, the strong
connectivity between the nodes of the two sets become evident.

Drug-target relations

Drug-target information was retrieved from the DrugBank (version as of May 2012) specifically
for approved drugs. The dataset included 1,331 drugs addressing 1,461 targets.
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Figure 3.20: Unit-unit network with inter-unit edges (left). Units discovered in the early disease
stage are given in purple, units specific to the late disease stage are given in green. The edge
width and node size are indicative for the edge strength and the number of genes in the unit,
respectively. Full module graph (right) with connections between units (given in purple/green)
and ontology terms (given in red) and pathways (given in blue).

Sub-cellular location

Information on the sub-cellular location of proteins was extracted from SwissProt (version as of
May 2012) for 20,246 entities. The free-text blocks containing the information were queried for
10 reference locations, including nucleus, cytoplasm, etc. The information was retrieved with
the goal of visualizing it in Cytoscape using the Cerebral plugin. Cerebral organizes the network
in layers, with each node occurring once on the layer corresponding to its sub-cellular location.
To accommodate genes present in two adjacent locations, composite layers were introduced,
such as nucleus-cytoplasm and cytoplasm-membrane. Proteins present in more than two or non-
adjacent locations were annotated with multiple. For proteins without a known location, the term
other was used.

Results and discussion

During preprocessing of the disease-specific gene sets, from the original 187 features of the early
stage set, 98 could be connected using 267 omicsNET edges. From the original 450 features of
the late stage set, 291 could be connected using 1,561 edges.
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Figure 3.21: Subnetwork with distinct functional convergence towards mesenchyme related
processes consisting of early (given in purple) and late (given in green) units and their related
GO annotation (given in red).

The MCODE computation yielded 6 units for the early gene set with sizes in the interval
[3,10] while for the late gene set 8 units could be computed with sizes in the interval [3,29].

When inferring the unit - pathway / term dependencies, a complete graph is computed. To
reduce the size of the resulting network, two ranking methods were used for the selection of
edges: an absolute one (for the whole graph) and a relative one (for each node individually).
All edges above the average plus two standard deviations were considered to be significant. The
reason for using a relative cutoff in addition to the absolute one was due to the fact that some
units had no edge above the absolute cutoff value and were therefore discarded.

Fig. 3.20 (left) depicts the 6 + 8 units produced by the MCODE algorithm and their con-
necting edges. On the right side of the figure, the complete module graph consisting of units,
pathways and terms is shown. Interestingly, it is often the case that units that are not directly
connected, share a large number of common ontology terms, as is the case e.g. for early-5 and
late-6.

In Fig. 3.21 a function-specific subgraph is depicted, in which the units have a distinctive
focus on mesenchyme development and epithelial to mesenchymal transition. The involvement
of these processes in diabetic nephropathy has been discussed in literature [237–239] and the
strong presence of this association in the results represents a first validation of the method.

Fig. 3.22 shows an in-depth view of two units (early-5 and late-4), with their members or-
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Figure 3.22: In-depth unit analysis showing the members of two units (early in purple and late
in green) with omicsNET edges, ordered by sub-cellular location from nucleus to secreted. One
gene (THBS1, given in black) is common to both units. Depicted with call-outs are also the
drugs targeting specific genes in the units.

dered in cellular compartments as well as the omicsNET edges connecting them. Also depicted
are the drugs targeting member genes. This view is particularly useful after an initial screening
of the units, when a detailed analysis for hypothesis generation is necessary.

After a positive first evaluation, the method and results presented in this section have been
submitted for expert review and are pending experimental validation.

3.5 Summary of protein interaction networks

Networks are a core paradigm in Systems Biology and a powerful tool for representing and
analyzing biological processes. They can be used to model a wide array of information such
as gene expression correlation, transcriptional regulation or direct protein binding together with
relation direction information, interaction strength, sequence of events and much more.

Protein interaction networks represent a subclass of biological networks with a distinctive
focus on direct relations between partners. In this chapter we relax this definition to a certain
extent to also allow inferred dependency edges, where two genes or proteins are assumed to
share an unspecified relation based on the available biological annotation information.

In the introduction to this thesis we provided an overview of existing approaches to network
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information integration, including large academic and commercial projects such as STRING,
STITCH and IPA as well as specific methods delineated in various scientific articles.

In this chapter we focused on a new network model, omicsNET, a concept resting on the
extension of existing PPI networks with inferred edges based on high-quality pathway, ontology
and protein domain information.

After presenting the graph construction method and testing it using interaction and KEGG
edges, we then described the design and implementation details of a platform, BIO, for the
visualization of molecular information. This platform is also a front-end for omicsNET.

Subsequently we performed an in-silico analysis of diabetic nephropathy using the omics-
NET graph to extend KEGG pathways and identify mechanisms of disease addressed in litera-
ture, patents and clinical trials.

In the final section, a novel concept, units, was introduced to tackle the limited performance
of single biomarkers in the clinical context. In this approach, subprocesses are identified in
sets of disease-associated genes by linking them with omicsNET edges and subsequently de-
termining clusters. By choosing biomarkers from different units it is expected to reach better
performance in patient stratification. This method is currently pending experimental validation.

The results proved again to be promising both in the verification of the omicsNET construc-
tion and in its application for analyzing diabetic nephropathy. This allows us to hope that the
units concept will indeed also prove valuable in the field of Systems Medicine.
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CHAPTER 4
Discussion and conclusion

With the advent of the Omics revolution, the scientific community was presented with a whole
new array of possibilities and challenges. High-throughput experiments and large-scale ge-
nomics, transcriptomics and proteomics as well as related methods produced in a relatively
short time period vast amounts of data and enabled researchers to gain new insights in cell biol-
ogy. On the downside, high false positive rates, measurement errors, methodological limitations,
suboptimal experiment setup and a data bulk increasingly difficult to handle were the result. In-
formation extraction became the search for the needle in the proverbial haystack.

To tackle these issues new disciplines were co-opted. Mathematics, informatics and even
sociology, the latter through analogies discovered between molecular and social networks, pro-
vided tools for the analysis of the new data.

Increasing knowledge of the connection between pathways and phenotypes led to the de-
sire to influence them in case of disease. With the shift of the scientific perspective towards
processes, the theoretical model best suited for describing dependencies and complex events
was identified to be networks. These became in turn a central concept in Systems Biology, a
branch of biology focused on integrating the Omics knowledge now readily available to provide
a holistic view of the cell functioning.

Biological networks also constitute the scope of this thesis. Within these boundaries, two
novel concepts were investigated.

Genetic interaction networks, more specifically, synthetic lethality networks were used to
demonstrate that by combining a synlet map with patient data, it is possible to find target hubs
which could resolve the tumor variability issue. Having published the results in a scientific
article, the concept was generalized for additional tumor types and a patent application was
submitted.

In a different scope where the death of the affected cells is not the desired outcome, but in-
stead strengthening protection mechanisms and reversing damage is required, a network concept
was proposed aimed at overcoming the completeness issue of today’s networks while maintain-
ing a significant level of accuracy. The method was tested with promising results by investigat-
ing its prediction performance for existing PPI and KEGG interactions and was submitted as a

97



scientific article for review and publication.
For manual analysis, a software for viewing the proposed network was presented including

architecture and implementation details. For semi-automatic analysis, an approach to diabetic
nephropathy investigation using KEGG pathways extended with inferred network edges was
delineated and the results were published in a scientific article. For the automatic isolation
of disease-associated processes towards finding multi-marker panels for patient stratification,
a novel concept (units) and its associated workflow were presented and are currently pending
experimental validation.

In the introduction to this thesis we spoke about an emerging branch of Systems Biology,
the Systems Medicine. The latter focuses on the integration of Omics with the clear purpose of
addressing diseases in the clinical context. The work presented in this thesis, whether it is cancer
treatment by synthetic lethality means, network-based analysis of diabetic nephropahty or units
for clinical patient segmentation is perfectly in-line with the goals of Systems Medicine.

Overall, this thesis showed that high-quality network integration of Omics indeed supports
interpretative causality and its scientific output furthers our understanding of human disease
mechanisms and intervention modalities.
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