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Abstract

The thesis addresses the research topic of modeling imperfect spatial information in ge-

ographic information systems (GIS). The topic has a long standing history in geographic

information science: Due to, e.g., limited measurement accuracy, measurement errors,

misregistration or unsharp object boundaries, spatial information stored in a GIS is never

exact - and imperfect in this sense.

In the past, numerous methods and calculi have been proposed for representing and

propagating imperfect spatial information in GIS. While topological calculi are often

based on mathematically well-founded algebraic or axiomatic theories, geometric cal-

culi mostly rely on heuristics, which is due to the fact that geometric information is

much richer than topological information. Axiomatic calculi have one major advantage

over heuristic approaches: It is possible to formally prove if calculated results corre-

spond to reality (more precisely, to the defined interpretation) or not. In other words, the

soundness of an axiomatic calculus is provable. With the proliferation of GIS, e.g., in

applications such as disaster management, soundness of reasoning becomes increasingly

important, since it guarantees the reliability of GIS-based spatial analysis. In the present

work, we hypothesise that it is possible to define a sound axiomatic geometry that can

handle imperfect geometric information.

We approach the problem by addressing positional tolerance as one particular type

of imperfection in spatial information. In order to establish a sound geometric theory

under positional tolerance, we propose a fuzzy logic based framework that allows for

augmenting the axioms of classical geometry by degrees of truthlikeness. The aproach

is based on the assumption that classical geometry is an idealization of a - perceived

or measured - “real world geometry”, and that the two geometries are similar to each

other. The degree of similarity of statements is expressed as a truthlikeness degree, and

the similarity of the two geometries is modelled with similarity logic. The similarity

logic we use is fuzzy logic with evaluated syntax, which is a generalization of Rational

Pavelka Logic.

v



vi

The research partially verifies the hypothesis: In order to define a truthlikeness mea-

sure, we define “truth” by a formal semantic for geometry with positional tolerance,

which is designed for GIS applications. We use the equality axioms to show exemplarily

that the framework is successfully applicable. We show that any theory that is devised by

means of the proposed framework is sound. Yet, the research also shows that, with the

proposed semantic, the application of the framework to Euclid’s First Postulate yields a

trivial (i.e., always true) theory, which does not fulfill the intended purpose for GIS ap-

plications. The results of the work indicate that the proposed semantic is not rich enough

to provide a non-trivial theory of geometric reasoning under positional tolerance, but in-

stead must be extended by adding an additional parameter. With the benefit of hindsight,

this result seems to correspond to intuition. We propose directions for augmenting the

framework by an additional parameter, but leave its full development for future work.

Keywords:

GIS, geometry, positional tolerance, error propagation, approximate reasoning, fuzzy

logic, similarity logic.



Kurzfassung

Die vorliegende Dissertation befasst sich mit der Modellierung von Unvollkommen-

heiten räumlicher Information in geographischen Informationssystemen (GIS). Das For-

schungsgebiet ist Teil der Geoinformationswissenschaften, und hat eine lange Geschichte:

Aufgrund von begrenzter Messgenauigkeit, Messfehlern, Fehlregistrierungen, unschar-

fen Objektgrenzen, etc. sind die in einem GIS gespeicherten räumlichen Informationen

niemals exakt - und in diesem Sinne unvollkommen.

In der Vergangenheit wurden zahlreiche Methoden und Kalküle vorgeschlagen, um

unvollkommene räumliche Information in GIS zu repräsentieren und zu propagieren.

Während topologische Kalküle oft auf mathematisch fundierten algebraischen oder ax-

iomatischen Theorien aufbauen, sind geometrische Kalküle meist auf Heuristiken an-

gewiesen, da geometrische Information wesentlich reichhaltiger ist als topologische In-

formation. Axiomatische Kalküle haben gegenüber heuristischen Ansätzen einen we-

sentlichen Vorteil: Es ist formal beweisbar, ob die errechneten Ergebnisse mit der Wirk-

lichkeit - bzw. mit der definierten Semantik - übereinstimmen oder nicht. Mit anderen

Worten, die Korrektheit des Kalküls ist beweisbar. Diese Eigenschaft bekommt mit

der zunehmenden Nutzung von GIS, z.B. in Anwendungen wie Katastrophenmanage-

ment, wachsende Bedeutung, denn die Korrektheit der verwendeten Kalküle garantiert

die Verlässlichkeit von GIS-basierten Analysen. Die vorliegende Dissertation stellt die

Hypothese auf, dass es möglich, ist eine korrekte axiomatische Geometrie zu definieren,

die mit unvollkommener geometrischer Information umgehen kann.

Die Arbeit beschränkt sich auf Positionstoleranz als eine Art von Unvollkommenheit

räumlicher Information. Um eine korrekte geometrische Theorie unter Positionstoleranz

zu aufzustellen, schlagen wir ein Fuzzy Logik basiertes Framework vor, das es erlaubt

die Axiome der klassischen Geometrie durch Grade von Wahrheitsähnlichkeit anzurei-

chern. Dem Framework zu Grunde liegt die Annahme dass klassische Geometrie eine

Idealisierung einer - wahrgenommenen oder gemessenen - “realen Geometrie” darstellt

und dieser ähnlich ist. Der Grad der Ähnlichkeit von geometrischen Aussagen wird
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als Wahrheitsähnlichkeit ausgedrückt, die Ähnlichkeit der beiden Geometrien wird mit

Ähnlichkeitslogik modelliert. Die hier benutzte Ähnlichkeitslogik ist Fuzzy Logik mit

evaluierter Syntax, eine Weiterentwicklung der Rational Pavelka Logik.

Die vorliegende Forschung verifiziert die Hypothese teilweise: Um ein Maß für

Wahrheitsähnlichkeit festzulegen, definieren wir “Wahrheit” in Form einer formalen Se-

mantik für Geometrie unter Positionstoleranz, die für GIS Anwendungen konzipiert ist.

Wir zeigen exemplarisch anhand der Gleichheitsaxiome dass das Framework erfolgreich

angewendet werden kann. Wir zeigen außerdem, dass eine mit Hilfe des vorgeschlage-

nen Frameworks abgeleitete Theorie notwendig korrekt sein muss. Die Forschung zeigt

jedoch auch, dass die Anwendung des Frameworks auf Euklid’s Erstes Postulat auf Ba-

sis der vorgeschlagenen Semantik ein triviales (d.h. immer wahres) Ergebnis liefert,

welches nicht den intendierten Zweck für GIS Anwendungen erfüllt. Die Ergebnisse der

Arbeit deuten darauf hin, dass die vorgeschlagene Semantik nicht reichhaltig genug ist,

um eine nicht-triviale geometrische Theorie mit Positionstoleranz zu erzeugen, und dass

es, um dieses Ziel zu erreichen, nötig ist, die Semantik um einen weiteren Parameter

anzureichern. Im Nachhinein betrachtet scheint dieses Resultat mit der Intuition über-

einzustimmen. Wir geben Anregungen, wie der zusätzliche Parameter in das Framework

eingebunden werden kann, überlassen eine detaillierte Ausarbeitung aber der zukünfti-

gen Forschung.

Schlüsselwörter:

GIS, Geometrie, Positionstoleranz, Fehlerfortpflanzung, Approximatives Schließen, Fuzzy

Logik, Ähnlichkeitslogik.
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Chapter 1

Introduction

“What a high level language programmer, or even the higher level

academic who all too often only thinks of the problem, has to do is clearly

define what he means when he says a line crosses, or a point is on a line.

These sticky little problems are too often passed off as something to be

programmed in hours, or even minutes, but often they hang on and on for

want of a clear and non-naive definition of the problem.

If only some things were simple!”

– David Douglas (1990, p.304 ff.) in It makes me so CROSS

1.1 Motivation

The thesis addresses the topic of geometric reasoning with imperfect spatial information

in geographic information systems (GIS). We say that spatial information is imperfect, if

it is, e.g., imprecise, incomplete, vague, fuzzy, or uncertain1. We confine our considera-

tions to imprecise positional information, and, more specifically, to positional tolerance:

We say that a geometric point or line has positional tolerance, if its position is known up

to small displacements.

We may picture a point p with positional tolerance, e.g., as a region P (cf. figure

1.1.1a) around a point p̄. Similarly, a line l with positional tolerance may be pictured

1The use of terms for distinguishing different kinds of imperfect information is not consistent in the
literature. E.g., while many authors in the field of GIScience treat vagueness and fuzziness synonymously,
Lotfi Zadeh makes the following distinction: "Basically, vagueness has to do with insufficient specificity.
Fuzziness has to do with unsharpness of boundaries. Usually what is vague is fuzzy but what is fuzzy is not
vague. Examples. "I will be back sometime," is vague and fuzzy. "I will be back in a few minutes," is fuzzy
but not vague." (BISC mailing list, 20 January 2010).

1
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as a set of lines, whose parameters are subject to small variations. In the following, we

use these pictures to give a brief account of the problems that may arise in geometric

reasoning when points or lines have positional tolerance.

The vector data model of GIS operates on point and line features based on a co-

ordinate representation. Even though the coordinates of a point feature p are in most

cases not known exactly, it is represented by a coordinate pair p̄ � p p̄1, p̄2q instead of

a probability distribution function or a tolerance region. In case of positional tolerance,

the coordinate point p̄ is a representative of the set of points that constitute the toler-

ance region P. For example, if p̄ is the result of a measurement with accuracy ε , the disc

P :� {p1|‖ p̄� p1‖¤ ε} is a location constraint for the position of p, and p̄ P P is a repre-

sentative for P. For many GIS tasks, it is sufficient to deal with representatives instead of

regions. Yet, for some tasks, like for the conflation2 of data sets or for error assessment, it

is necessary to consider the knowledge on the position of p that is actually available, that

is, the tolerance region instead of its representative. Conflation algorithms, for example,

often use distance thresholds to deal with tolerance regions: If the distance between two

representatives p̄, q̄ is smaller than the threshold, they are “merged”: One of p̄ and q̄ is

deleted, or both are deleted and another geometric point is inserted instead. The thresh-

old can be interpreted as the radius of a disc with center p̄ and q̄, respectively. I.e., the

threshold value defines for each point a region that constrains its “true” position3.

Measurement inaccuracy, as referred to in the above example, is usually insignificant

and can be discarded, because the accuracy of today’s instruments high enough for the

intended usage of the data. In contrast to that, mapping accuracy may well be signifi-

cant in practical applications. It becomes of increasing concern due to the proliferation

of volunteered geographic information: User-generated content is particularly prone to

mapping error, since the processes of data capturing are not as well documented as they

are when provided by, e.g., national mapping agencies. As an example assume that a post

box is mapped by a volunteer as a point feature using a GPS device (cf. figure 1.1.1a):

He or she positions the GPS above the postbox, and records the 2D-coordinates of the

measured point p̄. These coordinates lie within the region defined by the footprint of

the postbox. When the recorded data point is entered into a GIS, the GIS data structure

2In the GIS literature, the term conflation or rubber-sheeting denotes a process by which two datasets
with similar content (e.g., two datasets that depict the same area at different times) are changed through
geometrical and topological transformations and feature matching, so that the different datasets can be
aligned and information form one dataset may be added to the other.

3It is a philosophical question whether an object has a “true” position or not, and a different question
if “true” coordinates exist or not. If existent, they can never be recognized, since all measurement is error-
prone. Yet, it is useful to assume the existence of ideal true points for setting up a mathematical formalism
for dealing with imperfect spatial information.
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Figure 1.1.1: (a) A point p with positional tolerance, represented by a location constraint
P. (b) Positional tolerance corrupts soundness.

may prescribe (or assert) that the entered point p̄ is the geometric center p of a post box,

while in reality, it is only a representative of the postbox’s footprint, cf. figure 1.1.1a. If

the footprint has radius ε , the tolerance region for p may, e.g., be approximated by the

disc P� {p1|‖ p̄� p1‖¤ ε}, as depicted in figure 1.1.1a.

For managing positional tolerance in geometric reasoning in GIS, one of two types

of heuristic approaches is usually employed:

1. Positional tolerance is ignored and classical geometry is used for geometric rea-

soning, based on coordinate representatives.

2. Positional tolerance is represented by tolerance regions. For geometric reasoning,

the rules of classical geometry are applied to the tolerance regions as if they where

ordinary coordinate points.

The following examples, 1.1 and 1.2, illustrate both approaches, and show that they may

yield wrong results in spatial analysis. In other words, in both cases, geometric reasoning

in GIS is not sound. Among the possible consequences are incorrect constructions and

contradictory results. In the worst case, the results of spatial analysis are meaningless.

Example 1.1 illustrates approach 1: We assume that the GIS representation ignores

positional tolerance completely, and that geometric reasoning operates on representa-

tives only, using classical geometry. We show that this approach can corrupt the sound-

ness of geometric reasoning.
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Example 1.1. Euclid’s First Postulate is a fundamental axiom of classical geometry.

It states that if two points p,q are distinct (p � q), p and q can be joined by a unique

line l � p_ q. Yet, if the points p and q are equal (p � q), they can not be joined by a

line. In the case that p and q have positional tolerance, it is, unfortunately, not always

possible to determine with certainty if p and q are equal or not. As a consequence, it is

not always possible to determine if a line can be constructed that joins them or not. To

illustrate the effect, figure 1.1.1b shows such a situation: Here, the points p and q with

positional tolerance are represented by the tolerance regions P,Q. We assume that P and

Q are not represented in the GIS, but instead only their representatives p̄, q̄ are stored.

We assume that p̄, q̄ are distinct (p̄� q̄) and consequently, they can be joined by a unique

line l̄ � p̄_ q̄. Yet, it is not clear if the true points p,q can be joined by a unique line

also: Their location constraints P,Q overlap, thus it is possible that p and q are distinct,

so that their join l � p_ q indeed exists. In this case, l̄ � p̄_ q̄ is a representative of

l � p_q. Yet, as illustrated in the figure, it is also possible that p and q are equal, and

consequently, their join does not exist. In this case, l̄ does not have a correspondent in

reality. In other words, the representation of l̄ in the GIS is incorrect in the sense that it is

not faithful to reality. Subsequent geometric operations that make use of l̄ are incorrect

as well. For example, figure 1.1.1b depicts the intersection point x̄ of l̄ with another line

m̄� ū_ v̄. Again, x̄ does not have a correspondent in reality.

The example illustrates that geometric reasoning is not sound if positional tolerance

of points, lines and their relations is not represented in the data base: Using representa-

tives instead means using wrong premises. As a consequence, wrong conclusions can be

derived.

The following example 1.2 illustrates approach 2: Here, we assume that positional

tolerance of points and lines is represented by tolerance regions, and that the rules of

classical geometric reasoning are applied to them. This means that the approach implic-

itly assumes that tolerance regions and their “geometric” relations satisfy the classical

geometric axioms. The approach is often used, e.g., when tolerance thresholds are used

for the conflation of data sets.

Example 1.2. Euclid’s First Postulate states that the join of two distinct points p,q is

always unique. It is an axiom of classical geometry, and in this example, we try to apply

it to tolerance regions. To do this, we first need to define what we accept as “geomet-

ric” relations between tolerance regions: Instead of the ordinary geometric relations of

equality and incidence between ordinary points and lines, we consider the relations pos-

sible equality and possible incidence between the possible locations of points and lines
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Figure 1.1.2: Euclid’s First Postulate is violated under conditions of positional tolerance.

whose position is not known exactly, but restricted by tolerance regions. To see that this

makes sense, figure 1.1.2 illustrates an example configuration: Here, P,Q are tolerance

regions of the (assumed) true points p,q, respectively. In other words, P is the set of

possible locations of p, and Q is the set of possible locations of q. Similarly L,M are

location constraints for the assumed true lines l and m. Notice that here, P,Q are sets of

points, and L,M are sets of lines. (L,M stem from a variation in the lines’ parameters.)

We can see that the configuration satisfies the premise of Euclid’s First Postulate:

• Since the tolerance regions P and Q do not overlap, the true points p and q can not

possibly be equal. In the words of Euclid’s First Postulate: p and q are distinct.

• Since L covers both, P and Q, the true line l is possibly incident with both, p

and q. (Note here that we replaced the “ordinary” geometric relation of incidence

by possible incidence in our interpretation of primitives.) In other words, l is a

possible join of p and q.

• Similarly, m is possibly incident with p and q. In other words, m is a possible join

of p and q.

If we now apply Euclid’s First Postulate mutatis mutandis to our interpretation of primi-

tives, we conclude that the possible join of p and q is possibly unique (i.e., it is possible

that l and m are equal). This contradicts a simple direct test: Figure 1.1.2 shows an

example where all above listed conditions hold, while the tolerance regions L and M do

not share a common line. In other words, it is not possible that l and m are equal. I.e.,

we have constructed a counter example to the assumption that Euclid’s First Postulate is

applicable to tolerance regions.

The example illustrates that Euclid’s First Postulate is false if points and lines have

positional tolerance. Applying it in geometric reasoning under positional tolerance

means using a wrong premise. As a consequence, wrong conclusions can be derived,

and again, geometric reasoning is not sound.

Since the results of spatial analysis in GIS should be reliable, these issues should

be resolved. Today, good heuristic algorithms exist for the conflation of data sets or
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for resolving contradictions that stem from wrongly derived geometric constructions or

tests. Yet, tolerance error in geometric reasoning is usually not propagated. Instead, the

existing algorithms are applied only after one of the above approaches, 1 or 2, has been

used. The algorithms are heuristic solutions that minimize the errors caused by positional

tolerance. Their assessment of tolerance error mostly relies on the availability of more

accurate geometric data or on reliable attribute data. Only a non-heuristic, axiomatic

solution guarantees that geometric reasoning under positional tolerance is sound. Using

the above examples, we conclude that two requirements must be met to set up a sound

calculus for geometric reasoning under positional tolerance:

1. Positional tolerance must be represented in the GIS. Without this requirement, the

truth or falsity of a geometric statement can not be recognized with certainty. It

ensures that the user does not act on wrong assumptions that are due to incomplete

information.

2. A correct axiomatization of geometric reasoning under positional tolerance must

be devised. Such an axiomatization differs from classical geometry, because points

and lines with positional tolerance do not satisfy the classical axioms, in general.

A correct axiomatization ensures that the user does not act on wrong assumptions

that are due to a wrong theory.

Requirement 1 affords specifying an interpretation of geometric primitives that correctly

represents incomplete positional information when incompleteness is due to positional

tolerance. We refer to this interpretation as the intended interpretation of geometric

primitives under positional tolerance. Requirement 2 affords specifying an axiomatic

theory such that the intended interpretation is a model for it. Following F. Roberts

(1973), we call such a theory a tolerance geometry.

1.2 Goal and Hypothesis

The goal of the research is to define a sound calculus for geometric reasoning under

positional tolerance for GIS. Here, a geometric point or line is said to have positional

tolerance, if its position is known up to small displacements. In order to be able to

investigate the notion of soundness, we employ an axiomatic approach to geometry.

This leads to three research questions:

1. Can geometric reasoning under positional tolerance be axiomatized?
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2. How can sound reasoning be implemented?

3. The representation of geometric objects in GIS traditionally uses classical geome-

try and ignores positional tolerance. Can an axiomatic theory of geometric reason-

ing under positional tolerance be used to propagate the error made in this case?

The hypothesis of this thesis is:

Geometric reasoning under positional tolerance can be axiomatized, and

sound deduction can be implemented. The axiomatic theory can be used for

tolerance error propagation in geometric reasoning.

To substantiate the hypothesis, we base our investigation on two groups of axioms that

are at the core of all classical geometries: The equality axioms and Euclid’s first postu-

late. We interpret them in the real projective plane.

The thesis does not

• devise a complete theory of projective geometry under positional tolerance,

• investigate logical aspects other than soundness,

• investigate algorithmic aspects of the proposed approach.

1.3 Approach

It is the objective of the research to define a sound calculus for geometric reasoning un-

der positional tolerance in GIS. Unfortunately, the definition of soundness only applies

in the context of perfect information (i.e., information that is precise, complete and cer-

tain). Outside this context, we cannot speak of soundness or unsoundness. As a first step

towards our goal, and in order to tackle this problem, we analyze and classify the types

of imperfections that are relevant for geometric reasoning under positional tolerance. In

a second step, we use the classification to devise a conceptual framework for formalizing

sound geometric reasoning under positional tolerance. In a third step, we test the frame-

work by applying it exemplarily to to the equality axioms and to Euclid’s First Postulate

and refine it in an iterative cycle.

1.3.1 Identifying Types of Imperfections

As a first step towards our goal we analyze and classify the types of imperfections that

are relevant for geometric reasoning under positional tolerance. Since soundness is a
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logical notion, we base the analysis on an ontology of imperfections proposed by L.

Godo and R. Rodríguez (2008): This ontology classifies imperfections from a logical

viewpoint, and identifies for every type of imperfection a corresponding class of formal

tools. Using this ontology, we identify two types of imperfections that are relevant for

our problem statement. The first of them is possibilistic uncertainty, which captures the

positional tolerance of points and lines (cf. example 1.1 on page 4):

Possibilistic uncertainty. The position of a point or line with positional tolerance is

known up to small displacements. I.e., we can represent our knowledge about it as a

set of possible positions. Here, a position has possibility degree 1 if it is inside the

constraining set, and possibility degree 0 if it is outside the set. The appropriate formal

tool for modeling possibilistic uncertainty is possibility theory.

The second imperfection is truthlikeness. It captures the fact that classical geometry

is a false theory under conditions of positional tolerance (cf. 1.2 on page 1.2), but close

to the truth:

Truthlikeness. Following the cognitive science of mathematics devised by G. Lakoff

and R. Núñez (2000), we base the research on the assumption that classical geometry

is an idealized abstraction of geometric relations between real entities. I.e., we assume

that under conditions of positional tolerance, the theory of classical geometry is false,

but close to the truth, or truthlike, as long as the positional tolerance of the involved

primitives is small. According to L. Godo and R. Rodríguez (2008), the appropriate

formal tool for modeling truthlikeness is similarity based reasoning (similarity logics).

1.3.2 Devising a Conceptual Framework

In a second step, we devise a conceptual framework for formalizing sound geometric

reasoning under positional tolerance. The framework is based on

1. the ontological classification of imperfections and corresponding formal tools dis-

cussed above, and

2. the definition of the notion of logical soundness.

The conceptual framework comprises three design choices: Axiomatic geometry, tol-

erance geometry, and similarity based reasoning with Rational Pavelka Logic. More

specifically, we use a generalization of Rational Pavelka Logic, which is referred to as
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fuzzy logic with evaluated syntax or graded formal logics (Gerla, 2001; Novák et al.,

1999).

Axiomatic Geometry. In order to be able to investigate the logical notion of sound-

ness, we employ an axiomatic approach to geometric reasoning. Specifically, we use a

two-sorted axiomatization of projective geometry following R. Hartshorne (2000).

Tolerance Geometry. In order to account for the possibilistic uncertainty introduced

by positional tolerance, we replace exact points and lines whose positions are uncertain

by location constraints (sets of possible positions) whose positions are certain; we re-

place primitive geometric relations between exact points and lines by relations between

location constraints (sets of possible relations). I.e., we use basic possibility theory to

devise a new interpretation of geometric primitives that applies under conditions of po-

sitional tolerance. We call it the intended interpretation of geometric primitives under

positional tolerance. Following F. Roberts (1973), we call an axiomatic theory that is

satisfied by the intended interpretation a tolerance geometry.

Similarity Based Reasoning with Rational Pavelka Logic. In order to account for

the truthlikeness of classical geometric reasoning, we employ similarity based reasoning:

If classical geometry is an idealization of tolerance geometry, it approximates tolerance

geometry. We call a logical theory that approximates tolerance geometry an approximate

tolerance geometry. In order to formalize sound geometric reasoning under positional

tolerance in approximate tolerance geometry, the approximation must be quantified and

included in the formalism. To do this, we use Rational Pavelka Logic as a similarity

logic:

• Similarity logics are logical systems that formalize reasoning based on the (syn-

tactic or semantic) similarity of logical statements. In the present work, we use

Rational Pavelka Logic as a similarity logic (cf. Godo and Rodríguez, 2008; Bia-

cino and Gerla, 1998): It is a many valued (fuzzy) logical system with evaluated

syntax, and we interpret the fuzzy truth degrees as degrees of similarity to the truth

(truthlikeness degrees).

• In order to formalize sound geometric reasoning under positional tolerance, it is

necessary to devise an axiomatization of approximate tolerance geometry. To do

this, we quantify for every classical geometric axiom its similarity to the truth in

the intended interpretation. I.e., we employ a semantic similarity relation between
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statements. The result is a fuzzy set of axioms {(ϕi;ai)}, where every classical

axiom ϕi is paired with its degree ai of similarity to the truth under conditions

of positional tolerance. In other words, every classical axiom ϕi is approximately

true, with truthlikeness degree ai.

• Rational Pavelka Logic provides approximate deduction rules that are valid in

the sense of approximate reasoning: Approximately true premises yield approxi-

mately true conclusions. A deduced approximate statement is compatible with the

original data and never yield a higher accuracy than that. The approximate deduc-

tion rules ensure that approximate geometric reasoning with locations constraints

is sound whenever it is based on approximately true premises.

• The similarity of a classical geometric statement to the truth under conditions of

positional tolerance can be interpreted as an indirect measure of its distance from

the truth under conditions of positional tolerance. I.e., truthlikeness is an indirect

measure of positional tolerance error, and deduction in Rational Pavelka Logic

implements tolerance error propagation.

1.3.3 Iterative Testing and Refinement of the Framework

In a third step, we test the applicability of the conceptual framework using two groups

of axioms that are at the core of every classical geometry, namely

1. the equality axioms, and

2. Euclid’s First Postulate.

Here, we confine our considerations to two dimensional geometry. I.e., we consider the

object sorts point and line, and the geometric predicates equality and incidence. We

interpret the axioms in the real projective plane RP2. We use the results of the test

applications to refine the conceptual framework, and repeat the step, if necessary, until

the resulting fuzzy axioms capture the intended semantic as approximations of classical

geometry. We expect several refinement steps, for the following reason:

The number of parameters used in the intended interpretation is not fixed. While

coordinate points and lines do not have two-dimensional extension, location constraints

do. Consequently, more parameters are necessary for fully characterizing location con-

straints and their mutual relations than for characterizing coordinate points and lines and

their relations. When defining the intended interpretation of primitives with tolerance,
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one can decide how many of these parameters to use, and the number of parameters

determine the the level of abstraction of the intended interpretation. For example, we

may restrict the intended semantic of points with tolerance to location constraints that

are filled ellipses, and in this case five parameters are necessary to characterize them in

the Cartesian plane. In case we restrict the intended interpretation of points with toler-

ance to filled circles, only four parameters are sufficient. The second interpretation has

a higher degree of abstraction: Given a location constraint of arbitrary shape, we may

provide rules how to fit it into an ellipse or in a circle, respectively, in order to apply our

calculus. In the case of the ellipse more information about the true shape is preserved

than in the case of the circle, and the level of abstraction is lower in the first case than

it is in the second. At first sight, the interpretation by ellipses seems to be preferable.

Yet, there is always a trade off between abstraction and complexity of representation and

reasoning: While ellipses preserve more information on the location constraint, we can

expect that an axiomatic calculus that is tailored to operate on ellipses is more complex

than a calculus that operates on circles. In order to keep complexity as small as possible,

we decided to settle for the simplest possible interpretation for all primitives, subject to

the condition that two dimensional extension is accounted for. Once an interpretation is

chosen, it is necessary to check the usefulness of the fuzzy theories that can be devised

by the proposed framework with the given interpretation. It may be necessary to include

more detail in the intended interpretation to yield a useful calculus.

1.4 Major Expected Results

We expect to substantiate the research hypothesis of the thesis based on two groups

of classical geometric axioms, the equality axioms and Euclid’s First Postulate. More

specifically, using these axiom groups, we expect to show that

• geometric reasoning under positional tolerance can be formalized as an axiomatic

theory in Rational Pavelka Logic

– where Rational Pavelka Logic is used as a similarity logic that quantifies the

similarity of classical geometric statements to the truth under conditions of

positional tolerance, and

– if the classical geometric axioms are augmented by additional geometric

predicates that quantify positional tolerance;

• soundness of geometric reasoning under positional tolerance is guaranteed if
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– points and lines with positional tolerance are represented by location con-

straints (sets of possible positions);

– geometric relations are represented by relations between location constraints

(sets of possible relations);

– geometric arguments are derived from the axiomatic theory by approximate

deduction in Rational Pavelka Logic.

• the axiomatization can be used for tolerance error propagation in classical geo-

metric reasoning.

1.5 Contribution and Intended Audience

The thesis contributes to the research area of modeling imperfections in spatial data,

which is part of the field of geographic information science (GIScience). It also adds

to the literature on fuzzy modeling in GIScience and theoretical computer science. Fi-

nally, it contributes to the area of qualitative spatial reasoning in the field of artificial

intelligence (AI).

Modeling imperfections in spatial data. In GIScience, the topic has long been re-

ferred to under the name of uncertainty modeling. Here, it has a long standing history:

“A feature of most GIS designs is the representation of position by derived coordinates,

rather than by original measurements. In such coordinate-based GIS it is impossible to

apply traditional error analysis [...]” (Goodchild, 1999, p.1) Often, a probability dis-

tribution for positional error is not available or can not be postulated. A multitude of

geometric models have successfully been implemented that represent point and line fea-

tures based on different kinds and sources of positional imperfection, cf. section 2.1. Yet,

the topic of geometric reasoning with imperfect positional information is dominated by

probabilistic approaches (e.g., Heuel, 2004; Leung et al., 2004; Heuvelink et al., 2007;

Shi, 2009). Rarely have other kinds of imperfection in geometric reasoning been con-

sidered (e.g., Clementini, 2005). The thesis contributes to this literature by considering

positional tolerance. Positional tolerance does not define a probability distribution, but is

possibilistic in nature: It is a set of possible positions. I.e., it defines a bivalent possibil-

ity distribution with possibility degree 1 inside the set, and possibility degree 0 outside

the set. Tolerance regions can stem from, e.g., non-probabilistic error band models, cf.

subsection 2.1.1. As exemplified in the motivation section 1.1, another source of po-



Chapter 1 - Introduction 13

sitional tolerance is mapping error, which can be significant in volunteered geographic

information.

To the knowledge of the author, using an axiomatic approach to geometric error

propagation is novel the GIS literature. It differs from heuristic approaches in the fact

that it guarantees correct results that are compatible with the available incomplete po-

sitional knowledge. Within the GIS community, axiomatic approaches have only been

applied to topological reasoning with imperfect positional information (e.g. Shi and Liu,

2007). Outside the GIS community, only F. Roberts (1973) and M. Katz (1980) propose

axiomatic geometries that include positional uncertainty in a similar way: They, and the

present work, account for imperfect positional information that are caused by variations

of position in the embedding space. I.e. here, imperfect information about position is

representable by regions. Other approaches focus on different aspects of imperfect po-

sitional information, like, e.g., the fuzzy membership of a position in a set (cf. Kuijken

and Maldeghem, 2002). Here, positional uncertainty can be represented by an attribute

value.

Fuzzy modeling. We use mathematical fuzzy logic (many-valued logic) as a main tool

for formal representation and reasoning. The work can be allied with the expanding

literature on reasoning under vagueness, which is mainly modeled by fuzzy set theory

and fuzzy relational reasoning (e.g. Fisher, 2000; Dilo, 2006; Lodwick, 2008; Schockaert

et al., 2008). From an ontological viewpoint, the imperfections modeled in this work are

different from vagueness (cf. section 4.1), and in this sense do not fit into the above

named literature. Yet, from a methodological viewpoint, the approaches are similar:

First, because mathematical fuzzy logic and fuzzy set theory are both based on logical

notions. Second, both approaches can be used as approximate reasoning techniques, and

both can, in principle, be applied to different kinds of imperfections, including vagueness

and possibilistic uncertainty. The third reason is that both approaches, fuzzy set theory

and mathematical fuzzy logic, have converged considerably in the last ten years, cf.

subsection 3.2.1. For these reasons, the present work can be seen as a contribution to the

literature on fuzzy modeling in GIScience.

To the knowledge of the author, the use of similarity logic, and in particular of Ra-

tional Pavelka Logic, is a novelty in the GIScience literature. Rational Pavelka Logic is

an instance of evaluated fuzzy logics, cf. subsection 3.2.2.5. Up to now research on eval-

uated fuzzy logic has mainly been performed by researchers in the mathematical logic

community. Seldom has it been used to address problems in the applied sciences (cf.,

e.g., Ciabattoni et al., 2009). Rational Pavelka Logic is a generic tool for approximate
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deduction that not only allows for propagating similarity to the truth, but also admits

for representing and propagating other kinds of imperfections, like, e.g., vagueness. For

example, G. Gerla (2008) shows that the Sorites paradox, which occurs in different con-

texts in GIS (cf., e.g., Fisher, 2000), may be formalized using Rational Pavelka Logic.

The thesis can be seen as a conceptual framework for the propagation of positional im-

perfections in GIS.

Qualitative spatial reasoning. We represent points and lines with positional toler-

ance by regions, and we replace the equality relation for points and for lines by a ver-

sion of the contact relation, cf. subsections 2.2.1 and 4.2.2. This relates the work to

region-based qualitative approaches in spatial approximate reasoning. Yet, region-based

approaches mainly focus on topological approximate reasoning, cf., e.g., Randell et al.

(1992); Egenhofer et al. (1994); Cohn and Gotts (1996); Stell (2000); Roy and Stell

(2001). In contrast to that, the thesis addresses geometric approximate reasoning. The

axiomatic approach to geometry can be seen as as a qualitative approach, because it em-

ploys a finite set of qualitative relations (equality and incidence). Since we use fuzzy

logic to graduate these relation, the approach employed in this work can be seen as a

semi-qualitative approach to approximate geometric reasoning that is based on a version

of the contact relation.

The intended audiences of this research are

• researchers from the field of imperfections modeling (uncertainty modeling) in the

GIS community;

• fuzzy logicians who are interested in the applications of mathematical fuzzy logic

in empirical sciences;

• researchers from the knowledge representation and reasoning community in AI.

1.6 Organization of the Thesis

The following chapter gives an overview of previous work on the subject of positional

tolerance: Section 2.1 reviews the literature on positional tolerance in geometric reason-

ing published in the field of GIS and contributing research areas. It can be understood as

a list of application areas for the conceptual framework proposed in this work. A char-

acteristic property of positional tolerance is that spatial relations can not be recognized
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with certainty, and this holds in particular for the equality relation. Instead of equality,

only the weaker relation of possible equality can be applied. Since equality is fundamen-

tal for all formalization, the discussion of equality versus possible equality occupies a

central position in this work. Subsection 2.2 reviews different approaches to formalizing

possible equality. It gives a chronological account for the milestones of research on this

topic, and ends with a discussion of approximate fuzzy similarity relations, which is the

formalization used in this work. Subsection 2.3 discusses two approaches to tolerance

geometry that are the basis for the approach employed in this theses: These are toler-

ance geometry, proposed by F.S. Roberts (1973), and inexact geometry, introduced by

M. Katz (1980).

Chapter 3 introduces the formal tools used in this work: Section 3.1 introduces the

axiomatic approach to projective geometry, section 3.2 gives the necessary basics of

mathematical fuzzy logic, and section 3.3 introduces extensive metrics and discusses

properties of approximate fuzzy similarity relations.

Chapter 4 discusses the ontological assumptions and formal design choices that un-

derlie the conceptual framework proposed in this work: Section 4.1 introduces the on-

tology of imperfections proposed by Godo and Rodríguez (2008). The ontology looks

at imperfections from a logicians point of view. It not only classifies imperfections, but

classifies with them formal tools for modeling them. We use the ontology to identify the

imperfections that are relevant for geometric reasoning under positional tolerance, and to

identify corresponding formal tools. Section 4.2 uses this analysis to derive three design

choices that define the formal tools setting up the conceptual framework proposed in the

thesis.

Chapter 5 defines the intended interpretation of geometric primitives under positional

tolerance, and derives from it a truthlikeness measure for classical geometric statements

under positional tolerance: Section 5.1 defines the intended interpretation of the ob-

ject sorts point and line under positional tolerance, and calls them approximate points

and approximate lines; Section 5.2 defines the intended interpretation of the geometric

predicates equality and incidence under conditions of positional tolerance, and calls the

resulting relations geometric relations with positional tolerance. By opposing this inter-

pretation with the classical interpretation of equality and incidence, section 5.3 devises

a measure of truthlikeness for geometric relations under conditions of positional toler-

ance. The measure can be seen as a fuzzy interpretation of geometric predicates, and we

call the corresponding fuzzy relations approximate geometric relations with positional

tolerance.

Based on the intended interpretation and the truthlikeness measure, chapter 6 applies
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the proposed conceptual framework to two axiom groups, namely the equality axioms

and Euclid’s First Postulate: Section 6.1 addresses the equality axioms and derives ap-

proximate geometric axioms from them. We show that one of the axioms, namely the

classical transitivity axiom, has zero truthlikeness. I.e., it is not only not true under

conditions of positional tolerance, but not even close to the truth. In order to achieve a

positive truthlikeness degree, we augment it by an additional predicate, exactness, which

quantifies positional tolerance. Here, exactness of an approximate point or line is dual to

the size their location constraint. We use the augmented transitivity axiom to exemplify

tolerance error propagation. Section 6.2 addresses Euclid’s First Postulate, and derives

approximate geometric axioms from it. Euclid’s First Postulate consists of two axioms,

an “existence axiom” and a “uniqueness axiom”. We show that the classical unique-

ness axiom has zero truthlikeness under conditions of positional tolerance. In order to

achieve a positive truthlikeness degree, we augment it by an additional predicate, direc-

tionality. It turns out that the augmented uniqueness axiom has a truthlikeness degree of

1, i.e., it is absolutely true, under conditions of positional tolerance. Yet, it is still not

usable for geometric reasoning under positional tolerance, because it is always trivially

fulfilled. The results suggest that the introduction of a size parameter (in the form of the

exactness predicate) is not sufficient to yield a non-trivial theory of approximate toler-

ance geometry. Instead, it seems to be necessary restrict the sizes of approximate points

and lines, i.e. to introduce an additional size restriction parameter. The thesis does not

elaborate on this point, but leaves it for future work.

Chapter 7 summarizes the findings of the research and presents conclusions. It high-

lights open questions and gives an outlook for future work on the topic.



Chapter 2

Previous Work

“Precision is not truth.”

– Henri Matisse

In this chapter we review literature that is related to the topic of this work. Section 2.1

accounts for literature in the field of GIScience that is related to issues of positional tol-

erance in the vector data model. The section can be understood as a list of application

areas for the conceptual framework proposed in this work. A characteristic property of

positional tolerance is that spatial relations can not be recognized with certainty, and this

holds in particular for the equality relation. Instead of equality, only the weaker relation

of possible equality can be applied. Possible equality is often called an indistinguisha-

bility relation, because two objects that are possibly equal and at the same time possibly

not equal can not be distinguished from each other in observation. Since equality is

fundamental for all formalization, the discussion of equality versus possible equality

(indistinguishability) occupies a central position in this work. Section 2.2 reviews dif-

ferent approaches to formalizing indistinguishability of sensations and measurements.

It gives a chronological account for the milestones of research on this topic, and ends

with a discussion of approximate fuzzy similarity relations, which is the formalization

used in this work. Finally, subsection 2.3 reviews the approaches of F.S. Roberts (1973)

and M. Katz (1980) to geometric reasoning under positional tolerance. It is these two

approaches that provide the basis for the methodology employed in the thesis.

17
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2.1 Positional Tolerance in Vector Based GIS

The main feature that distinguishes an indistinguishability relation (a relation of possible

equality) from an equality or equivalence relation is that indistinguishability is not nec-

essarily transitive. As a consequence, an indistinguishability relation does not partition

the plane in disjoint subsets.

Indistinguishability relations have not been discussed much in the GIS community.

The majority of approaches concentrate on frames of reference or frames of discernment

that form a partition of space. Examples are given by M. Worboys (1998a,b). T. Bittner

(1999b) develops a theory of rough location based on rough sets theory (Pawlak, 1982).

The theory of rough location relates the locations of spatial objects to sets of regions

that form regional partitions (cf. also Bittner and Stell, 1998; Bittner, 1999a; Bittner and

Stell, 2000, 2001, 2002, 2008, 2003). J. Järvinen (2001) studies a generalization of rough

sets where transitivity is dropped. Yet, to the knowledge of the author, his approach has

not yet been applied to the theory of rough location in GIS.

The reason why indistinguishability relations between point features or line features

do not receive much attention in the GIS literature may be that usually feature type at-

tributes are provided whenever it is necessary to make sure that individual features are

distinguishable. E.g., if a waste basket is affixed to a lamppost, their respective coor-

dinate representations may be indistinguishable: A standard GPS receiver for civil use

yields an accuracy of positional measurement of 6-10 m. Attaching feature tags during

the mapping process ensures that the lamppost and the waste basket can be recognized

as different entities in reality. E.g. in OpenStreetMap (OSM)1, the appropriate tags

are highway/street_lamp and amenity/waste_disposal. In other words, the tagging with

attribute data guarantees a semantic distinguishability of individual features. Yet, geo-

metric points or lines that are derived by geometric construction are not directly linked

to to a semantic interpretation, and thus may be indistinguishable.

A case where indistinguishability relations become an issue in GIS sis geometri-

cal discordance. Geometrical discordance results from the integration of different data

sources, or from data editing techniques like generalization, conflation, smoothing or

reprojection. Its treatment in the GIS literature is discussed in subsection 2.1.1. Indistin-

guishability relations also occur in volunteered geographic information, cf. subsection

2.1.2, and qualitative reasoning, cf. subsection 2.1.3. Finally, discretization errors play

a role, which we discuss in subsection 2.1.4. The present section discusses approaches

to these issues that have been proposed within the GIS community.

1http://www.openstreetmap.org/
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2.1.1 Geometrical Discordance

The representation and propagation of error and uncertainty in measurement sciences

like surveying is based on a well-developed mathematical foundation in measurement

theory (e.g., Suppes et al., 2007a; Ghilani and Wolf, 2006). Here, indistinguishability of

measurements that is not always transitive can usually be disregarded:

“Foundational theories of measurement generally assume that compar-

isons among objects can be idealized as a weak order; [...] Although any

particular method of comparison is apt to violate transitivity, this has not

been of too much concern in the foundations of physical measurement,

largely because it has been possible to devise increasingly more careful or

refined methods of comparison for properties like weight and distance. A

more refined method generally eliminates most of the intransitivities of a

coarser method. Indeed, if it does not, it is assumed that some form of

systematic error has intruded.” (Suppes et al., 2007b, p.299f.)

As opposed to surveying, which deals with physical measurements, GI Science is not

a measurement science, but a mapping science (Goodchild, 2007). Mapping errors that

arise, e.g., from geocoding (Zandbergen, 2009), and the superposition of different data

layers with different lineage and quality leads to geometrical discordance: “Geometri-

cal discordance can result from different data collection methods to errors created by

later data manipulations, which may be intended (e.g. generalizations, smoothing and

resampling) or unintended (e.g. digitizing errors, printing deviations and paper defor-

mations)” (Delafontaine et al., 2009, p.720). Different data layers may represent what

is meant to refer to the same entity in reality by different coordinate representations,

thus introducing positional tolerance of coordinate points and lines, and the resulting

indistinguishability relations are not equivalence relations.

Epsilon-Band Models. One of the earliest error models for representing point and

line features with positional tolerance is the epsilon band model introduced by J. Perkal

(cf. Perkal, 1956, 1966). Here, every feature is associated with a zone of width ep-

silon around it. The zone can be associated with different modalities of imperfections,

e.g., it may refer to the area in which the true feature possibly sits, or to a probability

distribution for the position of the true feature with standard error epsilon. The epsilon

band model gave rise to a huge amount of research in this direction, which today mainly

focuses on statistical treatment of positional imperfection, but does not account for in-

distinguishability relations that are not in general transitive (e.g., Shi, 1998; Buyong
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et al., 1991; Shi and Liu, 2000; Shi et al., 2003; Shi, 2009; Leung et al., 2004). Another

classical error model for line features is Peucker’s ‘Theory of the Cartographic Line’

(Peucker, 1975), which postulates thickness as an intrinsic characteristic of cartographic

lines. The theory derives from research on the generalization of line features by D. Dou-

glas and T. K. Peucker (Douglas and Peucker, 1973). The Douglas-Peucker algorithm,

which was independently suggested by U. Ramer (1972), is still in use today. Yet an-

other approach is the ‘Epsilon Geometry’ of D. Salesin, J. Stolfi, and L. Guibas, cf.

(Salesin et al., 1989), which is not only a model for error representation, but implements

geometric constructions and tests under positional tolerance. It stems from the research

field of digital geometry, cf. subsection 2.1.4.

Other Approaches to Representing Imperfections in Postional Information in Vec-
tor Based GIS. Other approaches to the representation of and reasoning with imper-

fections in positional information of point and line features that integrate different kinds

of positional error are, e.g., Tøssebro and Nygård (2002); Heuel (2004); Clementini

(2005); Dilo (2006). E. Tøssebro and M. Nygård propose an approach for storing prob-

abilistic uncertainty of point and line features in spatial databases, S. Heuel’s work is

concerned with augmenting Grassmann-Cayley algebra (i.e., an algebraic approach to

projective geometry) with Gaussian probability density functions (pdfs). E. Clementini

(2005) presents an approach that integrates different kinds of imperfections in positional

imformation. He extends the model for regions with broad boundaries (cf. Burrough

and Frank, 1996) to linear features, where the boundary of a line feature is its boundary

as embedded in the real line R and then broadened by assigning to it a two dimensional

extent in R2. A. Dilo’s work is based on fuzzy sets theory, and is concerned with topo-

logical and metrical reasoning with spatial entities whose spatial extent is vague.

With the exception of Heuel’s work, the approaches address geometric representa-

tion with imperfections from the analytic standpoint of coordinate representations. They

do not account for indistinguishability relations that are not in general transitive. E.g.,

Heuel (2004) defines an uncertain point as a pair consisting of a classical 2D geometric

point x � px1,x2q and a Gaussian pdf Σx with mean x. Here, two uncertain points are

equal if and only if both components of the pair are equal. E.g., two uncertain points

px,Σq,py,Σ1qwith Σ�Σ1 are strictly distinct in this representation, even in case that x� y.

In contrast to that, a correct representation of geometric relations that incorporates ran-

dom error would need to provide a pdf for the equality of “true” points corresponding to

px,Σq and py,Σ1q. Instead, as a practical means for implementing tests for geometric re-

lations between uncertain points, Heuel uses hypothesis testing techniques to determine
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a error threshold for the equality and incidence relation. I.e., Heuel’s calculus is incor-

rect in the sense that it does not represent the incomplete knowledge about geometric

relations as an intrinsic part of the calculus. The approach may be seen as a probabilis-

tic version of fibered projective geometry, where every point x in R2 is a base point for

several uncertain points {px,Σiq}iPIx . Fibered projective geometry has originally been

defined by L. Kuijken and H. Van Maldeghem for fuzzy points and lines (Kuijken, 1999;

Kuijken and Maldeghem, 2002).

Merging and Conflation Algorithms. Among the consequences of geometrical dis-

cordance are, e.g., sliver polygons and topological inconsistencies, which are usually

removed by applying heuristic merging and conflation algorithms. These algorithms of-

ten use tolerance thresholds, meaning, e.g., that two point features are identified if their

distance falls below a certain threshold value. One of the earliest algorithms proposed

to remove geometrical discordance resulting from map overlay is the WHIRLPOOL al-

gorithm proposed by J. A. Dougenik (1979). Subsequent research in this line includes,

amongst many others, Beard (1986); Chrisman (1987); Beard and Chrisman (1988);

Chrisman (1989, 1991); Chrisman and Lester (1991); Chrisman et al. (1992); Ware and

Jones (1998); Zhang and Tulip (1990); Wu and Franklin (1990); Pullar (1991, 1993);

Harvey (1994); Harvey and Vauglin (1996, 1997); Abdelmoty and Jones (1997). The

US National Center for Geographic Information and Analysis (NCGIA) started several

research initiatives that tackled the topic (Goodchild (1992); Buttenfield (1993); Beard

et al. (1994)).

2.1.2 Volunteered Geographic Information

In maps that are provided by traditional mapping agencies, map scale is chosen such that

it fits the theme and the intended use of the map, and GIS experts are expected to use

the provided data appropriately. Here, scale is an integrated measure that characterizes

the level of detail of the representation and the imperfections introduced by the technical

limitations of the observation system used, namely the physical size of the sensor and

random perturbations (Frank, 2009). In professionally produced maps, the reputation of

the respective companies is seen as a guarantee that these factors are balanced. With

the rise of volunteered geographic information (VGI, cf. Goodchild 2007), this situation

has changed drastically: “The wide availability of high-quality location information has

enabled mass-market mapping based on affordable GPS receivers, home computers, and

the Internet” (Haklay and Weber, 2008, p.12). For example, Open Street Map data
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is usually generated by either uploading Global Positioning System (GPS) tracks or by

hand digitizing out-of-copyright maps and Yahoo! satellite imagery2. As a consequence,

there is no guarantee that the accuracy of positional information and the spatial frequency

of sample points is balanced: As already mentioned above, the positional accuracy of

GPS point measurements is within a few meters, while it may be used for the mapping of

entities that have much smaller distance from each other, like, for example, a wast basket

that is affixed to a lamp post. Positional accuracy may be even worse if the positional data

has been digitized from misregistered satellite imagery (Goodchild, 2007, 2008; Haklay,

2010). As a consequence, the resulting positional indistinguishability relation between

point features is not transitive in general, and this affects the soundness of geometric

reasoning.

Research on the quality of volunteered geographic information has not gained much

interest yet, and the research on positional accuracy of VGI is even more sparse. One

of the first papers that carried out a systematic analysis of VGI data quality is (Haklay,

2010). It is partly based on the work of N. Zulfiqar (2008) on the positional accuracy of

motorways in the UK using a buffer overlap analysis. C. Amelunxen (2010) investigates

the positional accuracy of OpenStreetMap data for the purpose of geocoding. M. Haklay

et al. (2010) show that the positional accuracy of Open Street Map data increases with

the number of contributors to the data set.

2.1.3 Qualitative Representation and Reasoning

While quantitative representations of physical measurements usually strive to be as accu-

rate and precise as possible, qualitative representations intentionally implement incom-

plete information, i.e., they intentionally represent less information than might be avail-

able. For example, the representation of topological relations between simply connected

regions in Egenhofer’s 4-intersection model (Egenhofer, 1989) is incomplete from the

metrical standpoint of coordinate representation in vector based geographic information

systems. Yet, they proved to be of fundamental importance for the implementation of

spatial queries in GIS.

“The essence of qualitative reasoning is to find ways to represent continuous prop-

erties of the world by a discrete system of symbols. [...] The resulting set of qualitative

values is termed a quantity space, in which indistinguishable values have been identified

into an equivalence class. [...] The case where the indistinguishability relation is not an

2http://maps.yahoo.com/. “Notably, at the end of 2006, Yahoo granted OSM the right to use its satellite
imagery Web service to trace roads and other features.”(Haklay and Weber, 2008, p.14)



Chapter 2 - Previous Work 23

equivalence relation has not been much considered [...].”(Cohn and Hazarika, 2001, p.3)

For the treatment of indistinguishability relations that are not in general transitive, Cohn

and Hazarika refer to J. R. Hobbs (1985)and T. Topaloglou (1994).

Hobbs’ Granularity Framework. J. R. Hobbs (1985) proposes a framework for a the-

ory of granularity, which treats transitive and not necessarily transitive indistinguishabil-

ity relations. In his framework, transitive indistinguishability relations, i.e., equivalence

relations, can be used to select a local theory out of a global one, i.e., to simplify a theory

of space. Hobbs characterizes indistinguishability relations that are not in general tran-

sitive in terms of relevant partial predicates, and uses idealization to restore transitivity.

“This approach to the fuzzy quality of granularity [...] contrasts with a treatment that

makes the truth of the relevant predicates a matter of degree.” (Hobbs, 1985, p.434)

Topaloglou’s Haze Space. T. Topaloglou (1994) axiomatizes one and two dimen-

sional discrete space “with a built-in concept for imprecision” in a first order language.

The axiom system is based on two sorts, point and scale, and two predicates, haze and

precedence, where the haze relation is a reflexive and symmetric indistinguishability re-

lation that is not necessarily transitive. In two dimensions, a theory of haze rectangles is

constructed: A haze rectangle is a pair of haze points, where “haze points refer to points

of space which are surrounded by a haze area, the smallest distinguishable quantity in

the representation” (Topaloglou, 1994, p.47f.). Since the haze points have positional

tolerance, haze rectangles have tolerance in their position and in the size of their area.

Topaloglou defines a set of topological and directional relations for haze rectangles that

correspond to Egenhofer’s topological relations for the 4-intersection model (Egenhofer

and Franzosa, 1991) and to Hernandez’ directional relations (Hernandez, 1994), respec-

tively.

Synthetic Geometry and Semi-Qualitative Approaches. The present work is based

on axiomatic synthetic geometry. Synthetic geometry, as opposed to analytic geometry,

can be seen as a qualitative approach to geometric reasoning: It is based on a finite set

of predicates that are interpreted by relations in an interpretation domain. In classical

incidence geometry, these relations are equality and incidence. In order to incorpo-

rate positional tolerance, we replace equality by a reflexive and symmetric relation, and

incidence by a relation that accounts for tolerance, and then apply a semi-qualitative

approach that grades the relations with fuzzy values. I.e., the approach employs fuzzy

relations instead of Boolean relations, and uses mathematical fuzzy logic to propagate



Chapter 2 - Previous Work 24

these values. The approach proposed by S. Dutta (1990) is similar in the respect that it

is semi-qualitative and based on fuzzy values. In contrast to our work, Dutta’s approach

is not axiomatic, and it uses fuzzy set theory instead of mathematical fuzzy logic to

propagate incomplete information, cf. subsection 3.2.1.1. More recently, H. Liu and G.

M. Coghill (2005) proposed a fuzzy qualitative trigonometry based on fuzzy set theory,

where they replace the unit circle with a fuzzy qualitative circle, and derive qualitative

versions of the trigonometric functions and triangle theorems. This approach belongs

to the field fuzzy geometry, a sub-field of fuzzy mathematics, and was preceded by,

e.g., (Gupta and Ray, 1993; Rosenfeld, 1984; Rosenfeld and Haber, 1985; Rosenfeld,

1990, 1994; Buckley and Eslami, 1997a,b; Cheng and Mordeson, 1997) Another semi-

qualitative approach has been proposed by S. Schockaert et al. (2009), who fuzzified the

Region Connection Calculus (RCC) (Randell et al., 1992; Cohn et al., 1997) based on

fuzzy set theory and fuzzy relational reasoning.

Region-Based Geometries. The present work is similar to region-based approaches

to geometry. Region based geometries, or point-free geometries, are axiomatic, i.e., syn-

thetic theories of geometry, and therefore can be categorized as qualitative approaches.

Instead of using the abstract concept of point as a primitive object, region-based ax-

iomatizations are based on the region primitive. They are motivated by the fact that the

interpretation of a point as an infinitely small entity is counter-intuitive, whereas regions

have extension and are cognitively more adequate. Region based approaches provide

alternative axiomatizations for usual exact geometry without positional tolerance. Here,

an infinitely small point is usually defined as a so-called abstraction process, i.e., a se-

quence of nested regions. In contrast to that, the present work axiomatizes a geometric

theory that is different from exact geometry, namely geometry with positional tolerance.

We do not intend to describe geometric reasoning with exact points by using the region

primitive, but we describe geometric reasoning with regions. The regions are considered

to be location constraints for exact points. The literature on region-based geometries

has a long history, starting with N. I. Lobačevskij (1835). A historical overview can be

found in (Gerla, 1995), and recent results are summarized in (Vakarelov, 2007). Many

newer approaches build upon A. Tarski’s Geometry of Solids (Tarski, 1958). In par-

ticular, the work of G. Gerla and coworkers (e.g., Gerla and Volpe, 1985; Gerla, 1990;

Biacino and Gerla, 1996; Gerla and Miranda, 2004), is relevant for the thesis, because

some of Gerla’s results are used in the present work; The work of B. Bennett et al. (e.g.,

Bennett et al., 2000a,b,c; Bennett, 2001a), relates to the field of GIS.
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2.1.4 Discretization Error and Digital Geometries

Another source of positional tolerance is the discretization error that stems from the

discrete representation and finite precision arithmetic used in digital image processing.

Digital geometry deals with the representation of geometric configurations as subsets of

the discrete digital 2D and 3D space, and devises according geometric constructions and

tests. It’s main areas of application is digital image analysis and digital image processing.

The goals of some research areas in digital geometry are closely related to the goals

of the thesis: The thesis aims at augmenting projective geometry such that positional

tolerance of points and lines is accounted for. Consequently, we strive to preserve as

much of the geometrical properties of classical geometry as possible, and make changes

only where necessary.

“Many papers in digital image processing deal with the problem of how to

translate or adapt the concepts and methods of classical continuous geom-

etry so that they become applicable in the digital plane, that is, the plane

consisting of all points that have integral coordinates. The primary goal of

these papers is not to develop a “digital geometry” that stands completely

on its own, but rather to examine in how far classical properties, such as

straightness and convexity, are left intact by a digitization process.” (Vee-

laert, 1999, p.99)

The cell complex model of the digital plane partitions R2 into squares that are centered

around integer grid points, and calls these cells digital points, cf. (Klette and Rosenfeld,

2004). The partition defines an indistinguishability relation on the points of R2, which

is transitive. I.e., digital points are equivalence classes of R2-points. Yet, problems that

are similar to the ones described in subsection 1.1 arise due to the derived definition of

digital lines: “The intersection of two digitized lines is not necessarily a digital point,

and two digital points do not define a unique digital straight line, unless we introduce

additional criteria to select such a line” (Veelaert, 1999, p.100).

Based on the cell complex model, P. Veelaert (1999) provides a mathematical frame-

work that addresses the affine geometric relations of parallelism, collinearity, and con-

currency in the digital plane. In contrast to our work, Veelaert does not use an axiomatic

approach, but instead shows that the digitized versions of affine geometric relations “can

be verified by constructions that are still purely geometric, though slightly more compli-

cated [...]”. He replaces the geometric relations by Helly-type properties, whose charac-

teristic is to be not in general transitive.
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“To be precise, let k be a positive integer, let P be some (geometric) property,

and let F be a collection of m geometric objects. Then P is called a “Helly

type property” if the following theorem is always true: The collection F

has property P if and only if each of its k-membered sub-collections has

property P.”(Veelaert, 1999, p.100)

Similar to our approach, P. Veelaert uses what he calls the preimage of two points to

represent a digital straight line. The corresponding notion in the present work is the

line parameter space (cf. subsection 5.1.2). He also introduces a notion of thickness

of digital points and lines to parametrize positional imprecision. The definition differs

from our definition of the size of location constraints (cf. subsection 5.2.4), but captures

the same concept. Indistinguishability of digital lines is not explicitly defined, but it is

implicitly captured by the relation of collinearity of digital subsets. The definition is

closely related to the definition of indistinguishability of lines with positional tolerance

given in the present work: While we say that two lines with positional tolerance are

indistinguishable if their respective location constraints have an exact line in common,

Veelaert characterizes digital collinearity of subsets Si of the digital plane as follows:

“Hence, in terms of preimages, the sets Si are called collinear if the intersection of the

preimages of the sets contains an (affine) line B.”(Veelaert, 1999, p.109)

Veelaert’s approach differs from the one presented here in two main points: First, our

approach is axiomatic and therefore meta-mathematical properties like soundness can

be investigated. Second, Veelaert’s approach is tailored to digital image processing, and

consequently only applicable to positional tolerance error that results from discretiza-

tion. In contrast to that, positional tolerance error in GIS stems from a large variety of

sources (cf. subsection 2.1.2-2.1.1 above), and it is necessary to provide a more gen-

eral approach, where points and lines with tolerance are not restricted to the constraints

imposed by the structure of the digital plane.

2.2 Indistinguishability in Sensations and Measurements

The following subsections give an account for different approaches to formalizing in-

distinguishability in fields other than GI Science. Most of these approaches stem from

research areas that are concerned with the formalization of perceptual stimuli, and with

non-physical measurements like, e.g., judgments in behavioral sciences. In both cases,

the issue of indistinguishability is inevitable. At the same time we use the chapter to

introduce approximate fuzzy equivalence relations (cf. subsections 2.2.3 and 3.3.3), and
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to discuss their characterizing features in an informal way. In the present work, approxi-

mate fuzzy equivalence relations are used to measure the approximation error of possible

equality (cf. subsection 5.3.2).

2.2.1 Tolerance Relations

The Poincaré Paradox and the Physical Continuum. In his book “Science and Hy-

pothesis”, published in 1902, the french mathematician, physicist and philosopher of

science Hernri Poincaré (1905) stated that in the physical world (as opposed to the realm

of mathematics), equal actually means indistinguishable, “since when we assert that

two objects are equal, the only thing we can be sure of is that there is impossible to

distinguish them” (Recasens, 2007, p.3). In mathematics, an equivalence relation is a

reflexive, symmetric and transitive relation, i.e. a relation E, such that

Epa,aq, (2.2.1)

Epa,bq � Epb,aq, (2.2.2)

Epa,bq ^ Epb,cq implies Epa,cq, (2.2.3)

holds, where^ denotes the logical conjunction. If E additionally is separable, i.e. fulfills

Epa,bq ô a � b, it is called an equality relation. Poincaré stresses that, in contrast

to mathematical equality (or equivalence), the indistinguishability of sufficiently close

sensory stimuli is not transitive:

“It has, for instance, been observed that a weight A of 10 grammes and

a weight B of 11 grams produced identical sensations, that the weight B

could no longer be distinguished from a weight C of 12 grammes, but that

the weight A was readily distinguished from the weight C. Thus the rough

results of the experiments may be expressed by the following relations:

A� B, B�C, A C, (2.2.4)

which may be regarded as the formula of the physical continuum.” (Poincaré,

1905, p.22)

“Nowadays, it is quite usual to refer to this important fact as Poincaré paradox, a denota-

tion that goes back to Menger (1979)” (Bodenhofer, 2003, p.156). Poincaré regarded the

non-transitivity of the subjectively experienced “equality” relation between sensations

paradoxical, since it contradicts intuition:
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“[...] there is an intolerable disagreement with the law of contradiction,

and the necessity of banishing this disagreement has compelled us to invent

the mathematical continuum. We are therefore forced to conclude that this

notion has been created entirely by the mind, but it is experiment that has

provided the opportunity.” (Poincaré, 1905, p.22)

In Poincaré’s view, intuition provides the basis for formalization in mathematics, by an

idealization of real objects and their mutual relations (Poincaré, 1913).

Visual Perception and Tolerance Space. In 1962 the British mathematician Eric

Christopher Zeeman published a paper on “The Topology of the Brain and Visual Per-

ception”. Motivated by the wealth of experimental results available at the time, Zeeman

formulated an elementary mathematical model of visual perception. He introduced what

Poincaré called the physical continuum, by the name of tolerance space:

“Do we perceive Euclidean two-dimensional space with one eye? The an-

swer is immediately “No,” because the Euclidean plane has an infinite num-

ber of points, whereas the brain contains only a finite number of atoms. Nor

can we distinguish between points that are sufficiently close. We are there-

fore led to the notion of a “tolerance” within which we allow an object to

move before we notice any difference.” (Zeeman, 1962, p.240 ff.)

Zeeman defines a tolerance space to be a set D, together with a tolerance relation, i.e.

reflexive and symmetric relation E that is not necessarily transitive. As an example of

a tolerance relation consider a measurement device with limited accuracy: Suppose two

points a and b can not be distinguished by the device, if and only if the distance between

a and b is less or equal than a threshold ε , i.e.

a� b iff dpa,bq ¤ ε. (2.2.5)

As illustrated in Figure 2.2.1, indistinguishability� is not transitive: The points a,b and

the points b,c are indistinguishable, since their respective distances are less than ε . Yet

a and c are distinguishable, since they are not “within ε-range” of each other. In other

words, (2.2.5) is a tolerance relation and formalizes the Poincaré paradox.

Zeeman’s mathematical model of visual perception was further developed by the

mathematician Fred S. Roberts, together with the philosopher of science Patrick Suppes,
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Figure 2.2.1: The Poincaré paradox.

in 1967. In 1971, based on the work of Zeeman, and under his supervision, Timothy Pos-

ton wrote his PhD thesis with the title “Fuzzy Geometry” (Poston, 1971). By replacing

identity with indistinguishability (i.e. equality relations with tolerance relations), Poston

develops the foundations of a “mathematics of tolerance spaces” for point-set topology,

algebraic topology, the finitistic analogue of differential geometry, and discrete poten-

tial theory. He also discusses their relationship to the corresponding usual mathematical

theories. The term “geometry” in the title of Poston’s thesis mostly refers to topological

notions, and not, as in the present thesis, to Euclidean or projective geometry. Poston

shows that in tolerance spaces a metric can be defined that is intrinsic and invariant in

tolerance spaces. The word “fuzzy” in the title of Poston’s thesis can be misleading as

well: Poston replaces the term “physical continuum”, respectively “tolerance space”,

with the term fuzzy space, since his “attempts to generate a vocabulary from either of

these have all proved impossibly unwieldy”. His notions of, e.g., “fuzzy space”, “fuzzy

relation” and “fuzzy mathematics” are not directly related to the well-known and heavily

used notion of “fuzzy set”, as introduced by L. A. Zadeh in 1965 (cf. section 3.2).

Utility Theory and Semiorders. In 1956, the mathematician and cognitive scientist

Robert Duncan Luce introduced the notion of semiorder to describe the ordering of hu-

man preferences in utility theory (Luce, 1956). In economics, utility measures the the

degree of relative satisfaction, e.g., of a customer with goods or services. Underlying

utility theory is the theory of human preference, which can be measured on an ordinal

scale. Semiorders are “well-behaved” partial orders. Luce showed that the indifference

of human preference to small changes can be described by incomparable elements of

a semi-ordered set. Indifference of preference has the same characteristics as indistin-

guishability of stimuli described by Poincaré: It is a tolerance relation (cf. subsection

3.3.2).

Dana S. Scott and Patrick Suppes (1958) showed that semi-orders arise whenever the

output of a measuring device is real-valued (i.e. dense), and when the output precision

for each sample is limited by a threshold that depends on the measuring device only. In

volume two of their book series “Foundations of Measurement”, Suppes et al. (2007b)
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dedicate one section to one-dimensional “representations with thresholds”, large parts

of which are based on the work of Fred Roberts Roberts (1969b) and Peter Fishburn

(Fishburn, 1970, 1985).

Peter Fishburn compiled a survey of results in preference theory with intransitive

indifference in 1970, and in 1985 published a summary book on the topic. Fred Roberts’

(1969b) technical report is only one in a series of publications (Roberts and Suppes,

1967; Roberts, 1968, 1969a, 1971b,a, 1973, 1979a,b), in which he develops the theory

of indifference graphs: A tolerance space, i.e. a set, together with a tolerance relation,

can be interpreted as a specialized graph, where vertices represent elements of the set,

and edges represent indifference of elements. Roberts, in 1973, introduced the notion of

tolerance geometry, applying the theory of indifference graphs, which he had developed

earlier 2.3.

Parallel Processing and Concurrency. Leslie Lamport (1978) defines event as “send-

ing or receiving a message”, and process as a totally ordered set of events. In a system

that consists of several spatially distributed processes, sending and receiving messages

is time-delayed. From the knowledge of the total temporal orderings within each of the

processes and from the knowledge of the messages sent and received between processes,

an observer within the system may derive a causal order between the times of occur-

rence of events not only within one process, but involving several different processes.

The derived causal order is a semiorder, since it induces an intransitive indistinguisha-

bility relation between events: The time-delay between sending and receiving a message

makes it for certain pairs of events a,b impossible to reconstruct the “true” order of oc-

currence3. Events that are indistinguishable, i.e. incomparable by the causal order, are

called concurrent. Later, the German mathematician and computer scientist Carl Adam

Petri developed an axiomatic theory of concurrency (e.g. Petri, 1987). Petri is widely

known for inventing Petri nets (at the age of 13) for describing chemical processes. His

work on concurrency developed to what is called trace theory today. A survey and com-

prehensive discussion of Petri’s work and the development of trace theory is provided

by Paolo Boldi (1997) in his PhD thesis.

Efremovič Proximity Spaces and Contact Relations. Indistinguishability as described

by Poincaré occurs when two entities are sufficiently close to each other w.r.t. some dis-
3While from outside the system an absolute (“true”) time may be established, time measurement within

the system is only relative, i.e. each process only knows their own timeline. As Lamport remarks (Lamport,
1978, p.559), his definition of ordering of events resembles closely that given in the invariant space-time
formulation of special relativity.
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tance function. In 1951 the Soviet mathematician Vladim A. Efremovič introduced the

concept of proximity space (also called infinitesimal space) as an axiomatization of the

notion of closeness (sometimes called infinitesimal nearness) for subsets (Efremovič,

1951; Naimpally and Warrack, 1970). Efrimovič replaced the point set topological con-

cept of neighborhood (proximity of a point and a subset) by the concept of proximal

neighborhood (proximity of two subsets). Better known in mathematics today are uni-

form structures, as defined by A. Weil, which generalize proximity relations. In com-

puter science, it is of greater interest to correlate proximity relations “with the contact

relation that is taken as a primitive in many axiomatic and algebraic approaches to repre-

senting topological relationships between regions” (Bennett and Düntsch, 2007, p.119).

The contact relation can be interpreted as a refined version of the “overlap relation”.

A contact relation C is axiomatized as a reflexive, symmetric and extensional relation

(Bennett and Düntsch, 2007):

Cpa,aq � 1, (2.2.6)

Cpa,bq �Cpb,aq, (2.2.7)

@c [Cpa,cq �Cpb,cq] implies a� b. (2.2.8)

In the field of artificial intelligence and qualitative spatial reasoning, the contact rela-

tion is usually called connection relation. It is a very powerful primitive for defining

mereotopological theories of space, such as the widely known region connection cal-

culus (RCC) of Randell et al. (1992). RCC derives from only one primitive relation,

connection, different sets of jointly exhaustive and pairwise disjoint relations between

regions, like RCC-5 and RCC-8, thereby defining a qualitative calculus (cf., e.g., Cohn

et al., 1997; Renz, 2002; Ligozat and Renz, 2004; Bennett and Düntsch, 2007; Cohn

and Renz, 2008). Frank (1992) stresses that “any qualitative spatial reasoning must map

values that are slightly different to a single value.”

2.2.2 Fuzzy Equivalence Relations

The last subsection gave an overview over different formalizations of indistinguishability

as Boolean relations that are not necessarily transitive. The present subsection describes

a radically different way to “solve” the Poincaré paradox: Instead of disregarding the

transitivity property completely, a graduated version of transitivity is introduced.



Chapter 2 - Previous Work 32

Ensemble Flous and Probabilistic Equivalence Relations. In 1951, the Austrian

mathematician K. Menger (1951a) published a short text of three pages, in which he

proposed to replace the concept of set-membership by the probability that an element

belongs to a set. He called the so defined generalized sets ensemble flou. In English

texts published later on, he used the term hazy set for ensembles flous and, to stress

the difference, called ordinary sets rigid sets. In the same year, he published another

short paper titled “Probabilistic Theories of Relations” (Menger, 1951b), in which he

discussed Poincaré’s paradox:

“A closer examination of the physical continuum suggests that in de-

scribing our observations we should sacrifice more than the transitivity of

equality. We should give up the assumption that equality is a relation. [...]

simple experiments show that, for instance, the simultaneous irritation of

the same two spots, A and B, on the skin sometimes produces one sensation,

sometimes two. Only by reliance on the majority of the impressions, by

processes of averaging and the formation of means, equality relations have

been artificially created.

We obtain a more realistic theoretical description of the equality of two

elements by associating with A and B a number, namely, the probability of

finding A and B indistinguishable.” (Menger, 1951b, p.178)

Menger proposed the following axiomatization:

“If Epa,bq denotes the probability that a and b be equal, the following pos-

tulates seem to be rather natural:

(1) Epa,aq � 1 for every a;

(2) Epa,bq � Epb,aq for every aand b;

(3) Epa,bq �Epb,cq ¤ Epa,cq for every a, b, c.

(1) and (2) correspond to the reflexivity and symmetry of the equality rela-

tion, (3) expresses a minimum of transitivity.” (Menger, 1951b, p.178)

Instead of disregarding transitivity in all cases, Menger suggests to disregard it only with

some probability: As long as Epa,bq ¡ 0 and Epb,cq ¡ 0, a and c have a positive chance

to be identified, since property (3) guarantees the lower bound Epa,bq �Epb,cq ¡ 0. In

other words, property (3) provides a minimum (chance) of transitivity.
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Menger’s axiomatization generalizes the concept of equivalence relations. An equiv-

alence relation � is a reflexive, symmetric and transitive relation:

a � a (2.2.9)

a� b iff b� a (2.2.10)

a� b, b� c implies a� c (2.2.11)

To see this, note that an ordinary binary relation R on a domain D is a subset of D�D,

listing all the pairs of elements of D that are in relation R. Equivalently, R can be defined

to be a function R : D�DÑ B, where B� {0,1} is the set of Boolean truth values, and

where a,b P D are in relation R, if and only if Rpa,bq � 1. Using this last notation, a

Boolean-valued equivalence relation EB can be written as

EBpa,aq � 1, (2.2.12)

EBpa,bq � EBpb,aq, (2.2.13)

min{EBpa,bq, EBpb,cq}¤ EBpa,cq, (2.2.14)

meaning that the pair pa,aq PD2 is always in relation R, a pair pa,bq PD2 is in relation R

if and only if pb,aq is in relation R, and, given three elements a,b,c PD with Epa,bq � 1

and Epb,cq � 1, Epa,cq � 1 can be inferred. Here, the min-operator is a Boolean inter-

pretation of the logical conjunction (AND), and ¤ is a corresponding Boolean interpre-

tation of the implication. Instead of Boolean truth values, Menger assigns to each pair of

elements probabilities of being equal: In equation (2.2.14) the min-operator, represent-

ing conjunction, is replaced by its probabilistic counterpart, the product of probabilities.

Menger’s definition (1)-(3) can be interpreted as a probabilistic version of Poincaré’s

paradox: Since the product of probabilities is less than or equal to each of its fac-

tors, Epa,cq can be strictly smaller than both, Epa,bq and Epb,cq. This corresponds

to the Boolean case of intransitivity, where EBpa,bq � EBpb,cq � 1, but EBpa,cq � 0, i.e.

EBpa,cq is strictly smaller than Epa,bq and Epb,cq.

It is important to note that probabilistic equivalences allow for intransitivity in the above

sense only in case that at least one of the probabilities Epa,bq or Epb,cq is strictly smaller

than 1. If, in contrast, Epa,bq � Epb,cq � 1, it follows that the probability Epa,cq � 1

as well. In other words, the kernel kerpEq : D�DÑ {0,1},

kerpEq � {pa,bq|Epa,bq � 1} (2.2.15)
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of a probabilistic equivalence relation E is transitive. I.e. certain probabilistic equiva-

lence is, in accordance with intuition, still transitive. Since the kernel is also reflexive

and symmetric, it is an equivalence relation.

Fuzzy Sets and Similarity Relations. In 1965 Zadeh introduced fuzzy sets as a gener-

alization of ordinary sets: Each element of a domain D is assigned a degree of member-

ship λS P r0,1s; The function λS : DÑr0,1s is called a fuzzy set. Ordinary sets are fuzzy

sets with Boolean membership degree, i.e. with codomain {0,1} � r0,1s. To stress the

difference, Zadeh calls ordinary sets crisp sets.

“It seems that Menger could not envisage a mathematical theory of vague-

ness that was different from probability theory. [...] Menger did not see

that this “slight difference” between “degrees” (of fuzziness) and “proba-

bilities” is a difference not only in terminology, but also in the meaning of

the concepts.” (Seising and Bradley, 2006, p.379)

In 1971 Zadeh used the concept of membership degrees to define similarity relations as

“fuzzified” equivalence relations. In his definition, Epa,bq P r0,1s is not a probability,

but denotes a degree of equivalence of elements a,b. For all a,b,c P D, a similarity

relation E : D�DÑ r0,1s satisfies the following axioms:

Epa,aq � 1, (2.2.16)

Epa,bq � Epb,aq, (2.2.17)

min{Epa,bq,Epb,cq}¤ Epa,cq. (2.2.18)

Zadeh’s approach of graduating equality (or equivalence) of objects is often used to ex-

press concepts with unsharp boundaries. It proved particularly useful in cluster analysis,

where objects are grouped according to their properties:

“In many real situations the objects do not necessarily satisfy (or not) a

property categorically, but in general they satisfy it at some level or degree

(think for example of the property ”to be reach”). In these cases, properties

are fuzzy concepts [...]. We can not talk about identical objects, but a certain

degree of similarity must be introduced. In this way, the equality turns to a

fuzzy concept.” (Recasens, 2007)

Graduating the concept of an equality relation in the form of a similarity relation includes

graduating the transitivity property. While tolerance relations disregard transitivity com-
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pletely, similarity relations disregard it only to some degree: As long as Epa,bq ¡ 0 and

Epb,cq ¡ 0, a and c are guaranteed to have a positive degree of equality.

Since {0,1} � r0,1s, every equivalence relations is a similarity relation. The kernel

kerpEq � {pa,bq|Epa,bq � 1} of a similarity relation is an equivalence relation, i.e. it is

reflexive, symmetric and transitive. Like probabilistic equivalences, similarity relations

allow for a graduated form of intransitivity: If Epa,bq Epb,cq, then min{Epa,bq,Epb,cq}�
Epa,bq, and Epa,cq is allowed to be strictly smaller than Epb,cq. Conversely, if Epb,cq 

Epa,bq, then min{Epa,bq,Epb,cq}�Epb,cq, and Epa,cq is allowed to be strictly smaller

than Epa,bq. In this sense we can interpret similarity relations as solutions of a gradu-

ated version of Poincaré’s paradox.

Similarity relations implement a stronger notion of transitivity than probabilistic

equivalence relations: For E : D�DÑ r0,1s, Epa,bq �Epb,cq ¤ min{Epa,bq,Epb,cq}.
Consequently, a relation E that is transitive w.r.t. a probabilistic equivalence relation is

not necessarily transitive w.r.t. a similarity relation.

Fuzzy Equivalence Relations. Graduated relations that generalize equivalence rela-

tions, as, e.g., introduced by Menger and Zadeh, occur in many different disciplines

and applications. In order to make the concept of generalized transitivity more flex-

ible, Menger’s and Zadeh’s generalizations have been further generalized by Trillas

(1982) under the name of fuzzy indistinguishability operators: The product in Menger’s

probabilistic version of transitivity (3), and the minimum-operator in Zadeh’s grad-

uated version of transitivity (2.2.22) are special cases of triangular norms (t-norms)

� : r0,1s � r0,1s Ñ r0,1s; The respective generalized transitivity property is called �-

transitivity, and reads

Epa,bq �Epb,cq ¤ Epa,cq for every a, b, c. (2.2.19)

T-norms (cf. section 3.2.2.1) have been introduced by Karl Menger as soon as 1942

in a paper about “Statistical Metrics” (Menger, 1942) as a generalization of the logi-

cal conjunction. Today, a r0,1s-valued relation that is reflexive (2.2.20) and symmetric

(2.2.21), and complies with the �-transitivity property (2.2.19) is often called a fuzzy

�-equivalence relation.

Depending on the t-norm and the author, different names are in use. If Zadeh’s

minimum-operator is used, the name similarity relation is mostly maintained. This min-

imum t-norm is defined by λ �min µ �min{λ ,µ}. A fuzzy equivalence relation w.r.t. the

product t-norm, λ �p µ � λ �µ , is usually called probabilistic equality relation (Menger,
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1951b), or possibility relation (Zadeh, 1978a). The t-norm we use in this work is the

Łukasiewicz t-norm, λ b µ � max{λ �µ�1,0} (cf. subsection 3.2.2.1). Fuzzy b-

equivalence relations have been introduced by E. Ruspini (1977) under the name of

likeness relations. Other names used in the literature are, e.g., fuzzy equality relation,

fuzzy indistinguishability relation, indiscernibility relation, or proximity relation.

Since fuzzy equivalence relations allow to express degrees of equivalence (or equal-

ity), they are often used to model vague concepts. In the present thesis, we will use a

generalized version of fuzzy b-equivalence relations.

Like probabilistic equivalences and similarities, fuzzy equivalence relations gener-

alize equivalence relations: Since {0,1} � r0,1s, a crisp relation that is reflexive and

symmetric automatically satisfies fuzzy reflexivity and fuzzy symmetry. A crisp relation

EB : DÑ {0,1} that is transitive is also �-transitive: Since a�1� a, and a�0� 0 holds

for all a PD and all t-norms, EBpa,bq�EBpb,cq �min{EBpa,bq , EBpb,cq}� EBpa,cq ¤

EBpa,cq.

The kernel kerpEq � {pa,bq|Epa,bq � 1} of a fuzzy �-equivalence relation E is an

equivalence relation: It is reflexive and symmetric and, since 1 � 1 � 1, also transitive.

Like probabilistic equivalences and similarities, fuzzy �-equivalence relations allow for

a graduated form of intransitivity: Since all t-norms are monotonic in both arguments

and have 1 as identity element, Epa,bq�Epb,cq ¤ Epa,bq and Epa,bq�Epb,cq ¤ Epb,cq

hold, and consequently Epa,cq is allowed to be smaller than Epa,bq or Epb,cq. Here

it depends on the choice of the t-norm when a strict order relation can be inferred. As

we have seen in the example of Menger’s product t-norm and Zadeh’s minimum t-norm,

different t-norms produce different notions of intransitivity with varying strength.

Zadeh (1971), followed by several others (e.g. Bezdek and Harris, 1978), pointed out

that the notion of intransitivity generated by the minimum t-norm is too weak, i.e. that

its notion of transitivity is too strong in the sense that many application examples do not

comply with it. Bezdek and Harris (1978) showed that the Łukasiewicz t-normb and the

product t-norm �prod both implement a weaker notion of transitivity, i.e. a stronger no-

tion of intransitivity, than the minimum t-norm^. If a graduated notion of equivalence is

to be modeled, it depends on the problem, which t-norm is suitable. In the present thesis,

we will use the Łukasiewicz t-norm for the following reasons: First, because the notion

of transitivity induced by b is weak enough to allow for modeling a graduated notion

of Euclid’s First Postulate (cf. section 3.1.1.2); Second, because likeness-relations, i.e.

fuzzy b-equivalence relations, are dual to pseudometric distances.

Today, a vast amount of literature on fuzzy equivalence relations exists in different

fields of research and application. A comprehensive theoretical text on the topic is given
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by J. Recasens (2010).

2.2.3 Approximate Fuzzy Equivalence Relations

The last two subsections, 2.2.1 and 2.2.2, introduced tolerance relations and fuzzy equiv-

alence relations as different approaches to solving (i.e formalizing) Poincaré’s paradox.

This subsection briefly discusses the critique of De Cock and Kerre (2003) to using fuzzy

equivalences in this role, and introduces approximate fuzzy equivalence relations as in-

troduced by Gerla (2008) as a possible solution. We use approximate fuzzy equivalences

in chapter 6 as a generalized equality predicate within approximate tolerance geometry.

DeCock’s and Kerre’s critique. De Cock and Kerre (2003) argue that fuzzy equiv-

alence relations are not an adequate formalization of Poincaré’s paradox, because their

kernels are transitive: Fuzzy equivalence do not model intransitivity of degree 1. Other

fuzzy relations for solving the paradox have been proposed in the literature, e.g. [0,1]-

valued equality relations proposed by Höhle (Höhle and Stout, 1991; Höhle, 1996),

which exhibit the same problem. As a solution, De Cock and Kerre (2003) propose re-

semblance relations, which explicitly connect the notion of graduated equivalence with

a notion of distance (cf. also Klawonn, 2003). On the real line, resemblance relations

bear similarities to fuzzy nearness relations, which are mainly used in fuzzy calculus

to study properties of real functions (Janis, 2003). In 2008, as a response to DeCock’s

and Kerre’s critique, G. Gerla (2008) published an article, in which he introduced an ap-

proach that generalizes tolerance relations, fuzzy equivalence relations and resemblance

relations by the name of approximate �-similarity structures. In the present thesis we

will refer to his approach by the name of approximate fuzzy equivalence relations: First,

because in the literature, the term similarity relation is predominantly used for fuzzy

equivalence relations w.r.t. the minimum t-norm; Second, because it seems to be a rea-

sonable attenuation of the term fuzzy equivalence relation, and allows us to maintain a

consistent terminology.

Approximate Fuzzy Equivalence Relations. A triple pD,E,Pq is an approximate

fuzzy �-similarity relation, if D is a set, E : D�DÑ r0,1s, and P : DÑ r0,1s satisfy the
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following axioms:

Epa,aq � 1, (2.2.20)

Epa,bq � Epb,aq, (2.2.21)

Epa,bq �Epb,cq �Ppbq ¤ Epa,cq. (2.2.22)

Gerla shows that a reflexive and symmetric fuzzy relation E : D�DÑ r0,1s, together

with a fuzzy set P : DÑ r0,1s is an approximate fuzzy equivalence relation, if and only

if for all b P D

Ppbq ¤ dispbq � inf
a,cPD
{Epa,bq �Epb,cq Ñ Epa,cq} (2.2.23)

holds. Here, inf denotes the infimum, and Ñ the residuated implication (cf. section

3.2.2.1). In other words, P in (2.2.22) is upper bounded by dis. Gerla calls dispbq the

discernibility measure of b with respect to E. Following Gottwald (1993, 2001), he calls

transpEq � inf
bPD

dispbq (2.2.24)

the transitivity degree of E.

Approximate fuzzy equivalence relations solve the crisp and the graduated version of

Poincaré’s paradox, because they generalize both, tolerance relations and fuzzy equiva-

lence relations: E is a tolerance relation, if it is crisp, i.e. if its domain is {0,1}: Here, re-

flexivity and symmetry hold, and it is not necessarily transitive: from Epa,bq �Epb,cq �

1, we can only infer Epa,cq ¥ Ppbq P {0,1}. E is a fuzzy equivalence relation, if P is

constantly equal to 1. Gerla shows that approximate fuzzy equivalence relations also

generalize resemblance relations. Approximate fuzzy equivalence relations are dual to

so-called pointless pseudo-metric spaces (Gerla, 2008). We discuss this duality in more

detail in subsection 3.3.3.

2.3 Spatial Indistinguishability in Synthetic Geometric Rea-
soning

This section introduces the references upon which the approach of the present work is

based. These are Fred S. Roberts’ tolerance geometry (1973), and Michael Katz’ inexact

geometry (1980).
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2.3.1 Roberts’ Tolerance Geometry.

The work of E. C. Zeeman (1962) on the geometry of visual perception (cf. subsec-

tion 2.2.1 on page 27) has been further elaborated by the mathematician Fred S. Roberts

and the philosopher Patrick Suppes: Roberts and Suppes (1967) distinguish between the

objective physical space, which is Euclidean, and a subjective visual space, which has a

non-Euclidean geometry. Motivated by this work and the work of Luce (1956) on human

choice behavior, Roberts (1973) introduced the notion of tolerance geometry, which he

bases on Zeeman’s definition of tolerance relations:

“In order to study visual geometry, to take account of the tolerance ef-

fect, it seems desirable to replace classical primitives, such as betweenness,

straightness, perpendicularity, and parallelism, with more general notions,

obtained from the classical ones by substituting closeness for identity. We

shall use the term tolerance geometry for any geometry whose primitives

are obtained by such a perturbation.” (Roberts, 1973, p.68 ff.)

Here, Roberts uses the term closeness to denote a crisp distance threshold ε , which

defines a tolerance relation Etol on a set of visual stimuli:

Etolpa,bq � 1 iff dpa,bq   ε. (2.3.1)

I.e., if the distance dpa,bq between two points a and b in the field of view of a test person

is less than ε , a and b are indistinguishable, and hence (subjectively) identified.

In the remainder of the paper, Roberts (1973) develops an axiomatization of one-

dimensional Euclidean tolerance geometry. He does this in four steps: First, he chooses

an existing geometric axiom system for Euclidean geometry, namely Tarski’s funda-

mental axiomatization (Tarski, 1958). Since he confines his considerations to the one-

dimensional case, Tarski’s axiom system reduces to a simpler and smaller set of axioms,

which is derived from the original one. This axiomatization is based on one sort of prim-

itive objects, points, and two primitive relations: The binary equality relation �, which

is usually considered part of the logic, and a ternary betweenness relation B.

Second, Roberts chooses a specific model of the axiom system: He chooses the

canonical model, which is the one-dimensional Cartesian coordinate geometry in the

real line R. Here, points are interpreted by real numbers, and the equality relation is

interpreted by the usual equality �R in R. The betweenness relation B is usually inter-

preted using the order relation ¤ on R, i.e.
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BRpa,b,cq � 1 iff a¤ b¤ c. (2.3.2)

Instead of (2.3.2), Roberts uses the following equivalent definition of BR:

BRpa,b,cq � 1 iff |a�b|� |b� c| � |a� c|, (2.3.3)

where, for any real number x, |x| denotes its absolute value. BR is related to the equality

relation �R by

a�R b iff BRpa,b,aq � 1. (2.3.4)

Third, in the canonical model, Roberts “substitutes closeness for identity”: He re-

places the interpretation �R of equality by the tolerance relation Etol given in (2.3.1),

where dpa,bq � |a�b| denotes the usual metric on R. He replaces the canonical inter-

pretation BR of betweenness given in (2.3.3) by the interpretation Btol:

Btolpa,b,cq � 1 iff |a�b|� |b� c|   |a� c|�2ε, (2.3.5)

Here, Btol derives from Etol by

Etolpa,bq � 1 iff Btolpa,b,aq � 1, (2.3.6)

In other words, Roberts replaces BR “with a more general notion, obtained from the

classical one by substituting closeness for identity”. The interpretation of point remains

unchanged: Only the ability to discern points has changed, as a consequence of modify-

ing their identity, i.e. the equality relation between them.

Finally, Roberts modifies Tarski’s axiomatization of one-dimensional Euclidean ge-

ometry such that the generalized interpretations �tol and Btol comply with them, i.e.

such that they define a model: First, Roberts derives necessary modifications to the ax-

ioms from the properties of the intended interpretations �tol and Btol . He then proves

that his modified axiom system implements a set of conditions that is necessary and

sufficient for the existence of the intended interpretations �tol and Btol . For the proof,

Roberts uses the theory of indifference graphs, which he developed, e.g., in (Roberts,

1969a, 1971b). Indifference graphs interpret points by vertices, and connect the vertices

of ε-close points by edges.

The present thesis adopts Robert’s definition of tolerance geometry, as well as his

four-step approach to developing a tolerance geometry from an existing geometric axiom
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system. There are four main differences between Roberts’ approach and the approach

presented here: First, while Roberts uses Tarski’s axiomatization of Euclidean geom-

etry as a starting point, the present work is based on an projective geometry. Tarski’s

system is a first order theory that has only one sort of primitive objects, points. Here,

lines are points sets, i.e. second order objects, and consequently relations between lines

cannot be represented. In contrast to that, we use a two-sorted theory: The two object

sorts are points and lines. As a consequence, relations between lines are representable,

which is desirable in the context of GIS applications. Second, while Roberts consid-

ers a one-dimensional geometry, we consider two dimensions, since any application of

tolerance geometry to GIS needs at least two dimensions. Third, Roberts uses a sin-

gle tolerance threshold ε . Its value is arbitrary, but fixed. In contrast to that, tolerance

thresholds arising from GIS applications usually vary within one data set: Every point

feature p may be associated with a tolerance threshold εp, which depends on the point’s

lineage. Analogous considerations hold for lines. Consequently we allow for variable

ε-thresholds.

2.3.2 Katz’ Inexact Geometry

In a paper called “Inexact Geometry” Michael Katz (1980), at that time a PhD student

of Dana S. Scott, extended the work of Roberts on tolerance geometry. While Roberts

defines a tolerance geometry using a constant ε-threshold, Katz allows for associating

different ε-values to different points:

“Tolerance geometry is meant to tolerate errors (of measurement, or of per-

ception) smaller than a fixed but arbitrary ε . [...] One problem with this

approach is that the threshold is not a constant entity. It is defined statisti-

cally to be the number ε such that if the ’distance’ between two stimuli is ε

then the stimuli are indistinguishable in exactly half of the trials; and yet it

changes from one series of trials to another. This means, in fact, that there

are degrees of indistinguishability: a high degree could be attached to a pair

of stimuli which are indistinguishable in most cases and a low degree to a

pair of stimuli which are indistinguishable in only a few of the cases. We

thus suggest that the yes-or-no notion of threshold, based on the ’half-trials’

cut-point, should be replaced by a variable notion of indistinguishability.

The degrees of this new variable may well be related to magnitudes of the

gaps between stimuli [...].”
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Katz proposes to replace equality by a graduated notion of indistinguishability, which

is determined by a distance measure. He uses Joseph Goguen’s “Logic of Inexact Con-

cepts” (1968) to formalize an according tolerance geometry. In Goguen’s logic, absolute

truth is interpreted as absence of error. Consequently, absolute truth is represented by the

value 0 (no error): “The error in asserting that x and y are equal increases as the distance

between x and y increases. So, the closer are x and y to each other the truer is the as-

sertion that x and y are equal” (Katz, 1980, p.525). I.e., we can think of the truth-values

in Katz’ inexact geometry as error measures. Katz defines the error measure associated

with the indistinguishability of stimuli by

Etolpa,bq � |a�b| P r0,8q, (2.3.7)

and calls it metric equality. Since the error of the statement “a and b are equal” increases

with the distance of a and b, no absolute falsehood exists, i.e. the logic is valued in the

interval r0,8q. This set of truth values differs from the standard set of truth values r0,1s

used in many-valued logics in two ways: First, it is unbounded, and second, it reverses

the usual order of truth values, in which the largest value (1) represents absolute truth,

and the smallest value (0), represents absolute falsehood. In other words, Katz interprets

equality by distance, which is possible since Goguen’s logic reverses the usual order of

truth values.

Following Roberts’ approach, Katz uses a reduced version of Tarski’s axiom system for

one-dimensional Euclidean geometry, with betweenness being the only primitive relation

besides equality. Like Roberts, he considers the canonical model of the system in the

real line. He then modifies this model by interpreting equality by the metric equality

relation given in (2.3.7), and interpreting betweenness by

Btolpa,b,cq �
1
2
(|a�b|� |b� c|� |a� c|) P r0,8q. (2.3.8)

Here again, Etolpa,bq � Btolpa,b,aq holds. Katz presents a modification of Tarski’s ax-

ioms, which he formulates in the language of the logic of inexact concepts. He proves

that his intended interpretations Etol and Btol of equality and betweenness are a valid

model of the modified axioms.

The approach pursued in the present thesis is similar to Katz’ approach in that we

define graduated equality using a distance measure. Instead of using Goguen’s logic of
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inexact concepts, we use Łukasiewicz t-norm fuzzy logic:

“That the problem of variable errors can be treated within multi-valued logic

was already noted in Goguen’s work on the ’logic of inexactness’ (Goguen,

1968), which he applies to fuzzy sets and to the social sciences, in Giles’

work on the ’logic of risk’ Giles (1974), which he applies to physics, and

in Scott’s work on the ’logic of error’ (Scott, 1974). All these logics are

essentially the Łukasiewicz logic [...], but the interpretation is new.” (Katz,

1980, p.522)

In Łukasiewicz t-norm fuzzy logic, the standard set of truth values, r0,1s, is used with

the usual ordering. As a consequence of using the usual ordering of truth values, we

can not interpret equality by distance, but instead must interpret equality by a measure

that is inverse to distance: The smaller the distance, the higher the truth-value of the

statement “a and b are equal”. As an inverse measure of distance we propose to use

Łukasiewicz approximate fuzzy equivalence relations (cf. section 3.3.3). An approxi-

mate fuzzy equivalence relation generalizes the concept of a fuzzy equivalence relation,

which in turn can be interpreted as inverse distance measure. While Katz has to reverse

the usual order of truth values, fuzzy equivalence relations reverse the concept of dis-

tance, and thereby allow for keeping the usual order of truth values. The boundedness

of the set r0,1s is not a disadvantage in the context of GIS modeling, since all maps

are bounded. A maximum distance between objects on the map exists, and can be used

to normalize the map size to distance 1. Then, if two objects a,b have distance 1, the

associated approximate fuzzy equivalence degree is 0, and the statement “a and b are

equal” is assigned absolute falsity. I.e., the statement “a and b are equal” can not be

more wrong in the context of the given map.

By using approximate fuzzy equivalence relations instead of fuzzy equivalence rela-

tions, the approach presented in this thesis extends both, Roberts’ approach introduced

in the forgoing subsection, as well as Katz approach: Roberts uses Boolean logic to de-

fine a tolerance geometry with arbitrary, but fixed tolerances. Since modeling variable

tolerances requires a graduated notion of equality, Roberts’ approach can not treat vari-

able tolerances. Using a graduated calculus allows Katz to define a graduated notion of

equality. Yet, since he defines graduated equality by Etolpa,bq � |a� b|, absolute truth

of the statement “a and b are equal” only holds for a � b, i.e. for the usual equality of

points on the real line. In other words, Katz’ tolerance geometry can not express crisp

tolerance, i.e. tolerance on the level of absolute truth. This is a disadvantage, since any

tolerance geometry should address crisp tolerance relations. (For a discussion of the
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different interpretations of crisp and graduated indistinguishability relations, see subsec-

tion 2.2.) Since Katz’ definition of graduated equality is a distance measure, it essentially

corresponds to a fuzzy equivalence relation. Approximate fuzzy equivalence relations

generalize fuzzy equivalence relations by additionally allowing to represent tolerance on

the level of absolute truth.

Using Łukasiewicz fuzzy logic instead of Goguen’s logic has the advantage that

for Łukasiewicz logic a deductive apparatus, Łukasiewicz Rational Pavelka Logic, ex-

ists, which allows for deducing partially true conclusions from partially true facts (cf.

section 3.2.2.6). This is in contrast to usual deduction systems for many-valued logic,

which only deduce absolute true conclusions from absolute true facts. The deduction of

partial truth allows for propagating a worst case tolerance measure through the steps of

geometric reasoning (cf. section 6.1.6).



Chapter 3

Tools for Formalizing Approximate
Tolerance Geometry

“Im grossen Garten der Geometrie kann sich jeder nach seinem

Geschmack einen Strauss pflücken.”

– David Hilbert

This chapter introduces the formal tools used in this work. The main tools used are

axiomatic geometry, mathematical fuzzy logic, and the duality of similarity and distance

measures.

Section 3.1 introduces projective geometry and discusses the axiomatic approach to

projective geometry, as opposed to analytic or algebraic approaches. The real projective

plane, RP2, is introduced as the standard model of plane projective geometry, and a

metric is defined on RP2.

Section 3.2 introduces mathematical fuzzy logics. Mathematical fuzzy logics are

logical systems that are multivalued extensons of classical logic: Here, truth values are

allowed to take values in the real interval r0,1s. Since the term fuzzy logic does not

denote a single theory, but a diversity of different theories and methods, we give a brief

overview over the different facets of fuzzy logic. In particular, we stress the difference

between mathematical fuzzy logic and fuzzy set theory, the latter of which is preva-

lent in the GIScience literature. Łukasiewicz t-norm fuzzy logic and its extension to

Łukasiewicz Rational Pavelka logic are introduced. Łukasiewicz Rational Pavelka logic

extends “classical” fuzzy logical systems by allowing for fuzzy theories and graduated

45
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deduction. In chapter 6, we use it to formalize similarity based reasoning: Similarity

based reasoning uses similarity measures to describe the distance of a logical theory

from being a true theory with respect to a given semantic. Similarity degrees take val-

ues in r0,1s, and we interpret the fuzzy truth degrees of Łukasiewicz Rational Rational

Pavelka as similarity degrees. The graduated deduction allows for propagating similarity

degrees.

Section 3.3 discusses the duality between a certain class of fuzzy similarity relations

and generalized distance measures. The characterizing difference between classical and

approximate geometry, and the starting point of the considerations in this work is the fact

that distinct exact points and lines are not necessarily distinguishable under conditions

of positional tolerance. The approach pursued here is to replace the equality relation in

the by indistinguishability. As discussed in chapter 2, the difference in the formalization

of equality (or equivalence) and indistinguishability is that indistinguishability is not

transitive, i.e. that indistinguishability is a tolerance relation. The section introduces

approximate fuzzy similarity relations, which are consistent with tolerance relations in

the limit case of bivalent truth values. Approximate fuzzy similarity relations admit dual

distance measures, which are called pointless pseudometrics. The duality is explained,

and examples are given.

3.1 Projective Geometry

The following subsection 3.1.1 discusses the axiomatic approach to geometry and intro-

duces a two-sorted axiomatization of projective geometry. Subsection 3.1.2 introduces

the bundle model of the real projective plane RP2 and the elliptic metric on RP2.

3.1.1 The Axiomatic Approach to Geometry

The axiomatic approach to geometry is as old as Euclid’s Elements, but was put on a

formal logical basis only in the beginning of the 20th century by David Hilbert. We

give a brief account of the historical background, and introduce an axiomatization of

projective geometry. We give the definitions of the geometric operators join and meet,

and briefly introduce logical deduction as a tool for deriving geometric theorems from

the projective axioms.
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3.1.1.1 From Euclid to Hilbert

The first comprehensive and systematic treatment of the geometry was given by Euclid

in 300BC in his famous book Elements. Elements is said to be one of the most influential

books in history. Besides collecting and adding to the rich geometrical knowledge of the

time, it introduced the axiomatic method and the formal proof to mathematics. Euclid

assumed a small number of postulates (today called axioms) which he regarded as self

evident, and showed that a vast amount of useful theorems could be deduced from them.

The book Elements was the starting point for over 2000 years of research on an

axiomatic treatment of geometry. The infamous parallel postulate inspired generations of

mathematicians to investigate this topic. It was not until George Boole (1854) introduced

symbolic logic in the mid of the 19th century that axiomatic Euclidean geometry could

be fully understood. Eventually, in 1899, David Hilbert published the seminal work

Foundations of Geometry (Hilbert and Bernays, 1962), where, subsuming the work of

many mathematicians before him, he substituted the traditional set of axioms given by

Euclid, by the axiom set nowadays called Hilbert’s axioms. The new set of axioms

removed a number of weaknesses of the Euclidean system and put it on a purely formal

basis: All geometrical entities and relations between entities are implicitly defined by

the way the axioms link them to each other1. As a result, symbolic logic and the logical

deduction can be employed to derive geometrical theorems. The present work does not

use Euclidean geometry as axiomatized by Hilbert, but is based on projective geometry.

3.1.1.2 An Axiomatization of Projective Geometry

In GIS it is common to use either Cartesian coordinates or homogeneous coordinates

to represent objects in the Euclidean plane. While Cartesian coordinate geometry is

a model of Euclidean geometry, homogeneous coordinates parametrize the projective

plane. The use of homogeneous coordinates in GIS has computational advantages. The

projective plane is locally isomorphic to the Euclidean plane. I.e., homogeneous co-

ordinate representations locally approximate Cartesian coordinate representations. The

axiomatization of approximate geometry proposed is based on a projective geometry,

and can be used as an approximation to a Euclidean model.

1The purely formalistic, axiomatic approach to mathematical theories was later extended by Hilbert, and
formulated as what is today known as Hilbert’ program: “It calls for a formalization of all of mathematics in
axiomatic form, together with a proof that this axiomatization of mathematics is consistent. The consistency
proof itself was to be carried out using only what Hilbert called “finitary” methods.” Zach (2009). The
program motivated Kurt Gödel’s work on his incompleteness theorems, which today is generally taken to
show that Hilbert’s program fails.
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On way of axiomatizing the projective plane P2 is the following (Hartshorne, 2000):

(Pr1) For any two distinct points, at least one line is incident with them.

(Pr2) For any two distinct points, at most one line is incident with them.

(Pr3) For any two lines, at least one point is incident with both lines.

(Pr4) Every line is incident with at least three distinct points.

(Pr5) There are at least three points that are not incident with the same line.

The projective axioms (Pr1)-(Pr5) can be formalized in classical predicate logic. Pred-

icate logic uses predicates to express properties of objects, and quantifiers to express

statements that affect more than one object: The universal quantifier @ (“for all”), and

the existential quantifier D (“exists”). Connectives are used to formulate compound state-

ments: � stands for equality, & for a logical AND operator (conjunction),Ñ denotes

implication,  denotes negation, and � is an abbreviation for  �. We use the symbol

I to denote the incidence predicate. Predicates can assume Boolean truth values, i.e. the

value 1 (true) or the value 0 (false). E.g., Ipp,lq � 1 says that p is incident with l. The

following axioms employ two sorts of object variables, namely points and lines. In the

following, points are denoted by p,q,r, ..., lines are denoted by l,m,n, ...:

(Pr1) @p,q.Dl. [ Epp,qq Ñ Ipp,lq& Ipq,lq],

(Pr2) @p,q,l,m. [ Epp,qq& Ipp,lq& Ipq,lq& Ipp,mq& Ipq,mq Ñ l� m] ,

(Pr3) @l,m.Dp. [Ipp,lq& Ipp,mq],

(Pr4) @l.Dp,q,r. [ Epp,qq& Epq,rq& Epr,pq& Ipp,lq& Ipq,lq& Ipr,lq] ,

(Pr5) Dp,q,r.@l. [Ipp,lq& Ipq,lq& Ipr,lq] .

The projective axioms do not include axioms for the equality relation between points

and between lines, even though equality � is a primitive geometric relation, and even

though it is used in axioms pPr1q�pPr5q. The reason for this is that the equality axioms

are assumed to be part of the background predicate logic. In the present work, we intend

to change the interpretation of all primitive geometric relations including equality in

order to provide a correct representation of geometry under positional tolerance. Since

we do not want to refuse the equality axioms in the background logic, we differentiate

between equality, �, as part of the logical axioms, and geometric equality, E, as part of

the axioms of projective geometry. We explicitly add the axioms of geometric equality

to the axioms (Pr1)-(Pr5) as part of the theory of projective geometry:
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(EP1) @p. [Epp,pq],

(EP2) @p,q. [Epp,qq Ñ Epq,pq] ,

(EP3) @p,q,r. [Epp,qq& Epq,rq Ñ Epp,rq] ,

(EL1) @l. [Epl,lq] ,

(EL2) @l,m. [Epl,mq Ñ Epm,lq] ,

(EL3) @p,q,r. [Epp,qq& Epq,rq Ñ Epp,rq] .

In the following, we denote by ℘ the set of axioms

℘� {(EP1),...,(EP3),(EL1),...,(EL3),(Pr1),...,(Pr5)}. (3.1.1)

We use the equality axioms pEP1q�pEL3q and the axioms pPr1q and pPr2q in chapter

6 to test the framework proposed in this work. The axioms pPr1q and pPr2q are often

referred to as Euclid’s First Postulate, because they are usually formulated as one single

axiom, and this axiom is listed first in Euklid’s Elements.

3.1.1.3 Geometric Constructions

Geometric constructions are important tools in any practical application of geometry. In

projective geometry, two basic construction operators can be defined: join and meet. The

operation that connects, or joins, two distinct points by a line is given by

_ : pp,qq ÞÑ p_q , (3.1.2)

where p_q is the unique line that is incident with p and q, Ipp,p_qq � Ipq,p_qq �1.

Due to axiom (Pr1), the line p_q exists, and due to axiom (Pr2), it is unique. Since

existence and uniqueness is provided by Euclid’s First Postulate, it is not necessary to

refer to a specific interpretation for defining the operation. In the GIS data structure, it is

the existence of the join operation that allows for defining lines and polygons by tupels

of points.

Meet is the operation that maps two distinct lines to their unique intersection point:

^ : pl,mq ÞÑ l^m, , (3.1.3)

where Ipl^m,lq � Ipl^m,mq �1. Axiom (Pr2) again guarantees the uniqueness of

the point l^m, if l and m are distinct: Assume l and m are distinct and “meet” in two
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distinct points p,q, Epp,qq � 0. Then, according to (Pr2), l� m, which contradicts the

assumption. Consequently, p� q.

3.1.1.4 Logical Deduction

The axioms ℘� {(EP1),...,(EL3),(Pr1),...,(Pr5)} constitute the logical theory of pro-

jective geometry. Geometric theorems are statements that can be syntactically derived

from ℘ using a proof system. A proof system consists of inference rules. Inference rules

are syntactic rules that allow for transforming a set of given formulas, called premises,

into a set of new formulas, called conclusions. In classical logic, inference rules preserve

the truth of formulas. Consequently, if the axioms in ℘ are true in a specific interpreta-

tion, then all formulas that can be derived from ℘ by inference rules are true.

For predicate logic two inference rules, Modus Ponens (MP), and generalization (G)

are sufficient2:

MG :
ϕ,ϕ Ñ ψ

ψ
, G :

ϕpyq

(@x)ϕpxq
.

With MP, the truth of the statement ψ can be deduced from the truth of the premises ϕ

and ϕ Ñ ψ . The generalization rule G states the following: If ϕpyq is true for arbitrary

y, ϕpxq is true for all x, given that x does not occur as a free variable in ϕpyq. An

example of a statement that can be deduced from the axioms of projective geometry is

the uniqueness of the intersection point of two distinct lines.

In section 3.2.2.4, we introduce Rational Pavelka Logic, which incorporates an ap-

proximate logical deduction apparatus that allows for sound reasoning in an approximate

tolerance geometry. Exception errors, extra treatment of special cases, or non-closed

algebraic operations, which often occur in heuristic approaches, are automatically ex-

cluded when employing a sound calculus.

3.1.2 The Real Projective Plane

The present subsection introduces the standard model of plane projective geometry,

namely the real projective plane RP2. We introduce the elliptic metric on RP2, and

discuss its approximation properties with respect to the Euclidean metric. Finally, we

discuss duality in RP2.

2This particular style of deduction has been proposed by David Hilbert, and is called a Hilbert style
deduction system.



Chapter 3 - Tools for Formalizing Approximate Tolerance Geometry 51

3.1.2.1 The Real Projective Plane (RP2)

The bundle model of the real projective plane RP2 is the set of all R3-lines through

the origin p0,0,0qJ P R3, i.e. the set of all one-dimensional subspaces of R3 (cf., e.g.,

Gallier, 2001). The elements of RP2 are called projective points, and are symbolized

by bold letters. Alternatively, a projective point p can be interpreted by an equivalence

class rps� of nonzero R3-vectors p P
(
R3�{0}

)
w.r.t. the equivalence relation

p� q ô p� λq for some λ P R, λ � 0. (3.1.4)

The equivalence class

rps� � {λ pp1, p2, p3q|λ P R,λ � 0}�: (p1 : p2 : p3) (3.1.5)

of p � pp1, p2, p3q is called the set of homogeneous coordinates for p. In the fol-

lowing, p � rps� � pp1 : p2 : p3q indicates a point of the real projective plane, and

x � px1,x2,x3q P pp1 : p2 : p3q indicates an instance of homogeneous coordinates of

pp1 : p2 : p3q, i.e., an R3-representative of the equivalence class rps�. Note that the

representation of a projective point in homogeneous coordinates depends on the choice

of a basis in R3.

A projective line l� RP2 in the bundle model is interpreted by an R3-plane through

the origin p0,0,0qJ P R3, i.e. a two-dimensional subspace of R3. It is uniquely deter-

mined by any one of its normal vectors l1 � (l11, l
1
2, l
1
3) P R3:

l�
{

p P RP2|l1 � p� 0
}
�
{

p P RP2|l11 p1� l12 p2� l13 p3 � 0
}
.

Here, l1 is non-zero, i.e., l1 � p0,0,0q. The equivalence class rl1s� � (l11 : l12 : l13) of l1 is

called the set of homogeneous line coordinates for l, and any triple m � pm1,m2,m3q P

(l11 : l12 : l13) is an instance of homogeneous line coordinates for l. (l11 : l12 : l13) � rl
1s� �

l1 P RP2 is a projective point, and m is an R3-representative of the equivalence class

rl1s�.

A third model of the real projective plane, the spherical model, is obtained from

the bundle model by intersecting it with the unit sphere S2. Here, a projective point is

interpreted by a pair of antipodal R3-vectors of Euclidean length 1. A projective line

is interpreted by a great circle of S2. In all three models, equality is interpreted by set

equality, and incidence is interpreted by the subset relation, p� l.
The advantage of projective geometry in contrast to Cartesian geometry is that the
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projective model simplifies algebraic representation: The Cartesian plane R2 can be

embedded in the projective plane RP2 by adding to R2 “points at infinity”, and RP2 can

be written as the disjoint union

RP2 � R2\R\{0}.

As a consequence, Cartesian parallel lines intersect at infinity in the projective plane, and

no exceptional treatment of parallel lines is necessary. In particular, the representation

of geometric tests and constructors is simplified: A projective point p P RP2 is incident

with a projective line l � RP2, if p P p is orthogonal to l P l, i.e. if the dot product of

arbitrary R3-representatives vanishes:

p � l1 � p1l11� p2l12� p3l13 � 0. (3.1.6)

The geometric constructors join and meet can be implemented using the cross product

in R3:

p_q� ([p�q]�)
1 �P pRP2q1, (3.1.7)

l^m�
[
l1�m1

]
�
P pRP2q. (3.1.8)

Also, the representation of the Euclidean point-line duality simplifies in the projective

representation, cf. subsection 3.1.2.4 below.

A conic section or conic C is the zero level of a quadratic form, and can be repre-

sented in homogeneous coordinates by a symmetric matrix MC P R3�3:

C �
{

p P R3|pJ �MC � p� 0
}
. (3.1.9)

In the bundle model of RP2, a conic is a double-cone, whose vertex is p0,0,0q P R3. In

the spherical model, it is the intersection of a double-cone with the unit sphere S2. If MC

has full rank, i.e., if detMC � 0, C is called non-degenerate. If MC is additionally in-

definite (i.e., if it has positive and negative Eigenvalues), then C is an ellipse, a parabola

or a hyperbola.

3.1.2.2 The Elliptic Metric in RP2

GIS applications often use homogeneous coordinates instead of Cartesian coordinates

for calculations. Homogeneous coordinates offer a number of practical advantages,

which in paticular include the ability to model translations by matrix multiplication. Ho-
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mogeneous coordinates also allow for representing points at infinity, and do not necessi-

tate extra treatment of, e.g. parallel lines: Lines that are parallel in R2 intersect in RP2 in

points at infinity. Yet, the objects represented in a GIS map are subsets of the Cartesian

plane R2. Points at infinity are interpreted as ideal points that are added for ease of cal-

culation. For distance measurement, homogeneous points are usually transformed into

Cartesian points first, and after the transformation, the Euclidean metric d is employed.

In contrast to that, the present work does not use the Euclidean metric, but employs the

normalized elliptic metric e instead, which is a metric on RP2, cf. subsection 3.1.2.2.

Subsection 3.1.2.3 shows that it locally approximates the Euclidean metric. The reason

for choosing the elliptic metric instead of the Euclidean metric is that the elliptic metric

between projective points allows for defining the elliptic metric between projective lines

via duality. Projective point-line duality is discussed in subsection 3.1.2.4.

A metric can be defined on RP2, called the elliptic metric e0 (Busemann and Kelly,

1953):

e0 : RP2�RP2 Ñ
[
0,

π

2

]
, e0 (p,q)� arccos

|p �q|
‖p‖‖q‖

, (3.1.10)

where p,q P
(
R3�{0}

)
are representatives of the equivalence classes [p]� , [q]� w.r.t.

�, cf. (3.1.4). The dot-product p �q� p1q1� p2q2� p3q3 PR denotes the standard inner

product in R3, ‖p‖ � √p � p the corresponding norm, and |p �q| denotes the absolute

value of p �q. The elliptic distance e0 (p,q) between two projective points p,q P RP2 is

the acute angle between the R3-lines with direction p and q. The metric space (RP²,e0)

is called the elliptic plane.

Using the spherical model of the real projective plane, it is easy to see that projective

lines are isomorphic to circles. They are consequently unbounded, but have finite elliptic

length. Since antipodal points on S2 are identified, the elliptic length of a projective line

is half the circumference of the unit circle, i.e. it is π . Since e0 measures the acute angle,

the maximal elliptic distance between any two projective points on a projective line is

π{2 .

Every non-zero scaling of e0 is also a metric for RP2 and is usually also called elliptic

metric. In chapter 5, we use the elliptic metric e :� (2{π)e0 to define a distance measure

for points and lines an lines with tolerance. I.e.,

e : RP2�RP2 Ñ [0,1] , e(p,q)� (2{π)arccos
|p �q|
‖p‖‖q‖

. (3.1.11)

The scaling factor p2{πq in the definition of e normalizes the size of the elliptic plane:
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Here, the maximum e-distance between two projective points is 1, and a projective line

has e-length 2. We use the term elliptic plane for both metric spaces, pRP2,e0q and

pRP2,eq, but always indicate which metric it refers to.

The elliptic metric e induces a topology τe on RP2, which is generated by the open

balls w.r.t. e,

Be
εppq �

{
q P RP2|epp,qq   ε

}
, (3.1.12)

where ε P R, ε ¡ 0. More precisely, a subset X � pRP2,τeq is called open, if for every

p PX an ε ¡ 0 exists, such that Be
εppq�X . We use the notation Bεppq instead of Be

εppq,
in case it is clear from the context that e is the underlying metric. The topological space(
RP2,τe

)
is normal, i.e. any two disjoint closed subsets have disjoint neighborhoods.

Here, a closed set is the complement of an open set, and a τe- neighborhood of a point

p P RP2 is any subset of RP2 that contains an open ball Be
εppq that contains p.

An angle measure can be defined between projective lines l,m P RP2 by

�(l,m)� e0pl,mq � arccos
|l1 �m1|
‖l‖‖m‖

. (3.1.13)

�(l,m) measures the acute angle formed by l and m, i.e. it measures the acute angle

formed by the planes orthogonal to l1 and m1. Note that scaling of �(l,m) is not possible,

since any scale factor k � 1 would invalidate the angular normalization to the value π

for straight angles.

3.1.2.3 Local Approximation of the Euclidean Metric in R2

A connection between the elliptic metric e0 in RP2 and the Euclidean metric d in R
can be established by introducing coordinate charts for RP2: Every representative p P(
R3�{0}

)
of a projective point p is non-zero: p � (p1, p2, p3) � (0,0,0). Conse-

quently, at least one of the p1, p2, p3 must be non-zero, and p admits at least one of the

following R3-representatives: (
1,

p2

p1
,

p3

p1

)
, if p1 � 0, (3.1.14)(

p1

p2
,1,

p3

p2

)
, if p2 � 0, (3.1.15)(

p1

p3
,

p2

p3
,1
)
, if p3 � 0. (3.1.16)
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Each of the mappings

h1 : R2 Ñ RP2, px,yq ÞÑ p1 : x : yq, (3.1.17)

h2 : R2 Ñ RP2, px,yq ÞÑ px : 1 : yq, (3.1.18)

h3 : R2 Ñ RP2, px,yq ÞÑ px : y : 1q, (3.1.19)

parametrizes a region of RP2: h1pR2q, h2pR2q, h3pR2q together cover all of RP2. The

affine planes A1 �
{
p1,x,yq P R3

}
, A2 �

{
px,1,yq P R3

}
and A3 �

{
px,y,1q P R3

}
are

called affine patches of RP2 (Gallier, 2001). h1,h2,h3 are diffeomorphisms, i.e. they

are bijective and differentiable and have differentiable inverses. The inverse mappings

h�1
1 ,h�1

2 ,h�1
3 assign R2-coordinates to projective points, and are called coordinate charts

of RP2 (Galarza and Seade, 2002). It is in this sense that R2 can be embedded into RP2.

E.g., all points px : y : 1q can be represented by points of the affine plane A3 � R3, and

can be identified with the Cartesian points px,yq P R2 via the coordinate chart h�1
3 ; all

points px,y,0q are interpreted as additional points at infinity, one for each direction px,yq.

The set of all points at infinity is called the line at infinity. The line at infinity w.r.t. h3

has homogeneous line coordinates p0,0,1q. Every projective line l with homogeneous

coordinates pl11, l
1
2, l
1
3q � p0,0,1q can be associated with the point at infinity pl12,�l11,0q,

where pl12,�l11q
J �: pa1,a2q

J is the direction vector of any line a0�a1x1�a2x2 � 0 in

A3 � R2. Note that h1,h2,h3 depend on the choice of a basis in R2.

Notation. Set O3 :� h3p0,0q � p0 : 0 : 1q, and use O1,O2 analogously. For a projective

point p P h3
(
R2
)

with homogeneous coordinates p� pp1, p2, p3q, let pr3s :� p p1
p3
, p2

p3
,1q

denote the vector p
p3
P A3, and let pp3q � p p1

p3
, p2

p3
q P R2 denote the projection of pr3s on

the Cartesian plane. pr1s, pp1q, pr2s, pp2q are used analogously.

Approximation of the Euclidean Metric. The elliptic metric e0 in RP2 approximates

the Euclidean metric d in R2 � A3 � R3 locally around the R2-origin Op3q � p0,0q, cf.

figure 3.1.1: If a Cartesian point pp3q � pp1, p2q is close to Op3q, then

d
(

Op3q, pp3q
)
≈ e0 (O3,p) , (3.1.20)

where O3 � h3pOp3qq � p0 : 0 : 1q, p� h3ppp3qq � pp1 : p2 : 1q. Here, pp3q is considered

“close” to the origin, if �
(
Or3s, p

)
  1. To see that this condition is indeed sufficient for

3.1.20 to hold, note that from �
(
Or3s, p

)
  1  π

2 it follows that �
(
Or3s, p

)
� e0pO3,pq.
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Figure 3.1.1: Close to the origin O� p0,0q of R2, the elliptic metric e0 approximates the
Euclidean metric d.

Consequently, d
(
Op3q, pp3q

)
� tan

(
�
(
Or3s, p

))
� tan(e0pO3,pq), cf. figure 3.1.1. Since

tan(α)� α�
1
3

α
3�

2
15

α
5��� � � α�O

(
α

3) for α   1 and α Ñ 0, (3.1.21)

d
(
Op3q, pp3q

)
� tan(e0pO3,pq)� e0pO3,pq holds for small angles �

(
Or3s, p

)
� e0pO3,pq 

1. I.e., to make sure that the elliptic metric e is an approximation of the Euclidean metric

in the sense of 3.1.20, we need to restrict the domain of discourse to a set C�RP2 such

that �
(
Or3s, p

)
  1 for all p PC. I.e., we require that d

(
Op3q, pp3q

)
� tan

(
�
(
Or3s, p

))
 

tanp1q, which is equivalent to h�1
3 pCq � tanp1q �D2 � 1.56 �D2, and again to

C� h3
(
tanp1q �D2) . (3.1.22)

Here, D2 denotes the open Euclidean unit disc in R2,

D2 �

{
pp1, p2q

J P R2|
√

p2
1� p2

2   1
}
� R2. (3.1.23)

Approximation Error. If C�RP2 is such that condition (3.1.22) holds, then e0 (O3,p)≈
d
(
Op3q, pp3q

)
holds for all p P C, and the scaled elliptic metric e approximates the scaled

Euclidean metric 2
π
�d
(
Op3q, pp3q

)
,

e(O3,p)≈
2
π
�d
(
Op3q, pp3q

)
@p P C. (3.1.24)
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Figure 3.1.2: Elliptic Metric and Euclidean Betweenness: (a) The angle �
(

pr3s,qr3s
)

is
acute. (b) The angle �

(
pr3s,qr3s

)
is obtuse.

With the Taylor expansion of arctan, the approximation error of (3.1.24) can be estimated

by ∣∣∣∣epO3,pq�
2
π
�d
(
Op3q, pp3q

)∣∣∣∣� O

((
d
(
Op3q, pp3q

))3
)

(3.1.25)

for d
(
Op3q, pp3q

)
Ñ 0. In order to minimize the approximation error for all p P C, C

should be transformed, such that its center coincides with O3 � p0,0,1q. Here, by center

of C we mean the axis of the minimal enclosing double-cone in R3 with vertex p0,0,0q in

the bundle model of RP2. Such an enclosing double cone with minimal volume always

exists (Lawson, 1965; Barequet and Elber, 2005; Weber and Schröcker, 2011). In the

standard embedding of RP2 in R3 with z � 1, the transformation may be realized as a

Euclidean transformation by multiplication of the homogeneous coordinates pp1, p2,1q

of projective points p� pp1 : p2 : 1q P X with the matrix 1 0 tx
0 1 ty
0 0 1

 , (3.1.26)

where ptx, tyq � �centerpXq.

Preserving Euclidean Betweenness. The above discussed restriction of the domain C
assures that elliptic distance measurement in C approximates Euclidean distance mea-

surement in the affine patch A3. In subsection 5.3.4 we will define the notion size of

location constraints in pRP2,eq. In order to be able to do this, we additionally need to

make sure that the Euclidean order relation (betweenness) along projective lines is con-

sistent with shortest distances in in pRP2,eq. This is not automatically the case, because

the elliptic metric e0pp,qq measures the acute angle between the R3-lines with direc-
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tions p and q. Only if the angle �(p,q) is acute does the corresponding arc (i.e. the

corresponding projective line segment) correspond to the Euclidean line segment with

end points pp3q,qp3q P R2. I.e. if �(p,q)¤ π

2 , then

e0pp,qq � arccos
|p �q|
‖p‖‖q‖

� arccos
p �q
‖p‖‖q‖

��(p,q) , (3.1.27)

and e0pp,qq � π ��(p,q) otherwise, cf. figure 3.1.2 a and b. We implement this

constraint by further restricting the domain of discourse C� RP2 such that

h�1
3 pCq � tan

(
π

4

)
�D2

� D2
(3.1.28)

Here, D2
denotes the closed Euclidean unit disc in R2,

D2
�

{
pp1, p2q

J P R2|
√

p2
1� p2

2 ¤ 1
}

� R2. (3.1.29)

Since tanpπ

4 q � 1  tanp1q � 1.56, we have tanpπ

4 q �D
2
�D2

� tanp1q �D2, and condition

3.1.28 is stronger than condition 3.1.22. I.e., it is sufficient to require that

C� h3

(
D2
)

(3.1.30)

holds in order to achieve a faithful representation of location constraints and an approx-

imation of the Euclidean metric in pRP2,eq. As we show in the following paragraph,

condition (3.1.30) also accounts for numerical stability of calculations.

Numerical Stability. S. Heuel (2004) calls the procedure of scaling the domain of in-

terest such that calculations are numerically stable the conditioning of homogeneous enti-

ties. The naming stems from the fact that small changes in e0 (O3,p)� arccos 1√
p2

1�p2
2�1

cause large changes in d
(
Op3q, pp3q

)
�
√

p2
1� p2

2, if the homogeneous part p3 � 1 is

small in relation to p1 and p2. He points out that, in close-range applications, the R2-

origin of the reference system used is usually nearby the represented entities.

“But in aerial imagery, the reference system is usually a geodetic system,

like the Gauß-Krüger coordinate system or its international variant, the

UTM system (universal-transversal-mercator system), cf. Witte and Schmidt

(1995). For example, the tip of the dome of Aachen has the coordinates

x� 2505940.53rms, y� 5626590.37rms.” (Heuel, 2004, p. 38)
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In order to represent such a point of a GIS map section C � R2 in homogeneous coordi-

nates in a well-conditioned way, it is necessary to downscale the Euclidean coordinates

of C such that C is contained in the Euclidean unit disc D2
, before transforming C to

homogeneous coordinates by C ÞÑ C � h3pCq. In the standard embedding z � 1, the

Euclidean scaling operation can be represented in RP2 by multiplication of the homoge-

neous coordinates pp1, p2,1q of projective points p� pp1 : p2 : 1q P C with the matrix c 0 0

0 c 0

0 0 1

 , (3.1.31)

where the scaling factor c P p0,1s is chosen such that h�1
3 pCq � D2

, i.e. such that

c
√

p2
1� p2

2 ¤ 1.

In the following definition, we define the notion of well-conditioned subset of RP2.

We use the notion in the remainder of the thesis to subsume all the above considerations:

A well-conditioned subset of RP2 accounts for

1. a faithful representation of Euclidean location constraints in RP2,

2. an approximation of the Euclidean metric in pRP2,eq, and

3. numerical stability of calculations.

Definition 3.1. Let i P {1,2,3}, and B an orthonormal basis of R3. A nonempty subset

C� RP2 is called well conditioned w.r.t. hi and B, if it is centered and normalized with

respect to the elliptic metric e, and if

C� hi
(
D̄2) (3.1.32)

w.r.t. B. If i is not specified, i� 3 is assumed; if B is not specified, the standard basis of

R3 is assumed.

3.1.2.4 Point-Line Duality and Elliptic Line Distance

The duality principle of projective geometry states:

“If a valid statement is posed only in terms of points, lines and the incidence

relations, then the dual proposition obtained from the original statement by

interchanging the terms point and line, is also true.” (Galarza and Seade,

2002, p.99)
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Cartesian
Duality

Param.
of RP2

Hom. Line
Coordinates(

a : b : c
) Cartesian

Coordinates

Cartesian form
of

ax�by�cz� 0

Polar
Duality

h3
(a

c : b
c : 1

)
h�1

3

(
a : b : c

)
�(a

c ,
b
c

)
�:�(α,β )

αx�βy� 1

Slope-
Intersept
Duality

h2
(a

b : 1 : c
b

)
h�1

2

(
a : b : c

)
�

p a
b ,

c
bq �:�pk,dq

y� kx�d

Slope-
Intersept
Duality

h1
(
1 : b

a : c
a

)
h�1

1

(
a : b : c

)
�

p b
a ,

c
aq �:�pk̄, d̄q

x� k̄y� d̄

Table 3.1.1: Point-line duality.

This principle derives from the fact that the set of projective lines in the projective plane

is itself a the projective plane:

Proposition 3.2. (Hartshorne, 1967, p.27) Let Π be a projective plane. Let Π
1

be the set

of lines in Π, and define a line in Π1 to be a pencil of lines in Π. (A pencil of lines is the

set of all lines passing through some fixed point.) Then Π1 is a projective plane, called

the dual projective plane of Π.

The dual projective plane of RP2 is the set of all projective lines in RP2, and is denoted

by
(
RP2

)1. The duality mapping p1q :
(
RP2

)1
Ñ RP2 maps every projective line l P(

RP2
)1 to the projective point l1 :� rl1s� P RP2, which is given by the homogeneous

line coordinates rl1s� � pl11 : l12 : l13q of l. The converse mapping, p1q : RP2 Ñ
(
RP2

)1
maps every projective point p P RP2 to the projective line p1 �

{
q P RP2|p �q� 0

}
P(

RP2
)1. The duality mapping is an involution, i.e. l2 � l, and p2 � p. Depending on

the parametrization of RP2 (cf. (3.1.17)-(3.1.19)), the point-line duality in the projective

plane induces a point-line duality in the Cartesian plane, cf. table 3.1.1.

The reason for choosing the elliptic metric instead of the Euclidean metric for dis-

tance measurement in this work is that the duality principle allows for using the elliptic
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metric e on RP2 to define a metric e1 on
(
RP2

)1 of projective lines in RP2, by

e1 :
(
RP2)1� (RP2)1Ñ [0,1] , e1 (l,m) :� e

(
l1,m1

)
. (3.1.33)

The metric e1 induces the metric topology τe1 on
(
RP2

)1, which is generated by the open

balls

Be1

ε plq �
{

l P
(
RP2)1 |e1pl,mq   ε

}
, (3.1.34)

where ε P R, ε ¡ 0. Using the elliptic metric together with projective point-line duality

has two advantages:

1. The distance (3.1.33) between lines is a metric distance, which allows us to for-

malize indistinguishability of lines with tolerance: As we will see in section 3.3,

the metric distance between lines defines a so called pointless pseudometric be-

tween lines with tolerance. The pointless pseudometric in turn is dual to an ap-

proximate fuzzy similarity relation, which captures the idea of truthlikness of in-

distinguishability.

2. A metric distance between Cartesian lines can only be defined in a line parameter

space (e.g. in the slope-intercept parameter space, cf. figure 5.1.2). The line

parameter space, and consequently the metric, depends on the line parameters

chosen, i.e. on the chosen point-line duality. As shown in table 3.1.1 above, the

Cartesian point-line dualities are special cases of the point-line duality in RP2.

When representing geographic entities in a GIS map C � R2 based on geometric points

and lines, only points in C and lines through C are of interest. A line passes through C, if

it is incident with a point in C. Consequently, the set of projective lines passing through

a well-conditioned subset C� h3pCq of RP2 is given by

LC �
{

l P
(
RP2)1 |l1 � p� 0, p P C

}
. (3.1.35)

In order to visualize LC �
(
RP2

)1, it is useful to consider its dual set L1C � RP2:

L1C �
{

l1 P RP2|l1 � p� 0, p P C
}

(3.1.36)

� Y
pPC

{
l1 P RP2|l1 � p� 0

}︸ ︷︷ ︸� C1

�p1

. (3.1.37)

L1C � RP2 is the set of homogeneous line coordinates l1 of lines through C, and C1 �(
RP2

)1 is the set of lines dual to points in C. Since lines are sets of points, L1C and C1
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Figure 3.1.3: L1

C can be visualized as subset of a belt of width sepCq.

can be identified. For fixed p P C, p1 is a line in C1. It consists of all line coordinates l1

of lines l that are incident with p, cf. (3.1.37). p1 can be visualized as the great circle

orthogonal to p� pp1, p2,1qJ, cf. figure (3.1.3)a. Consequently, C1 can be visualized as

the set of great circles that are orthogonal to points of C. Since C is well conditioned,

C�B
e, spCq

2
pO3q �Be, 1

2
pO3q � h3pD2q, and sepCq ¤ 1. Consequently, C1 is a subset of(

B
e, spCq

2
pO3q

)1
, which can be visualized as a symmetric belt of width sepCq ¤ 1 around

the great circle orthogonal to p0,0,1qJ, cf. figure (3.1.3)b. Since antipodal points of the

belt are identified,
(
B

e, spCq
2
pO3q

)1
is homeomorphic to a Möbius strip.

3.2 Mathematical Fuzzy Logic in a Narrow Sense

Mathematical fuzzy logic or fuzzy logic in a narrow sense denotes many-valued logical

systems. In this work we use mathematical fuzzy logic as a tool for approximate rea-

soning. Subsection 3.2.1 clarifies the difference between mathematical fuzzy logic and

other facets of fuzzy logic. Subsection 3.2.2 introduces the many-valued logical system

employed in the thesis, namely Łukasiewicz Rational Pavelka Predicate Logic (RPL@) .

3.2.1 What is Mathematical Fuzzy Logic?

Today the term fuzzy logic does not have a single definition, but stands for a multitude of

theories, methods and applications. Mathematical fuzzy logic is one facet of fuzzy logic:

It is a sub-discipline of mathematical logic and comprises a family of symbolic logical

calculi. It has the task and motivation to formalize methods and techniques from what is

called fuzzy logic in a broad sense. Opposed to mathematical fuzzy logic is fuzzy logic

in the broad sense, which in particularly includes fuzzy set theory. In GIS literature and
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Figure 3.2.1: The fuzzy membership function µHM : r0,9s Ñ r0,1s associates a moun-
tain’s height with its membership degree in the fuzzy set HM. HM may be used to char-
acterize (heights of) “high mountains”.

applications, fuzzy logic is predominantly used in the facet of fuzzy set theory (cf., e.g.,

Lodwick, 2008), whereas mathematical fuzzy logic is rarely applied (cf. Bennett, 2011)

and widely unknown. In order to clarify the interrelations and differences between both

facets, we give a brief account on the historical development of fuzzy logic.

3.2.1.1 Fuzzy Sets and Fuzzy Logic

Lotfi A. Zadeh introduced the notion of a fuzzy set in 1965 in his seminal paper Fuzzy

Sets (Zadeh, 1965) as a generalization of the concept of an ordinary set. While ordinary

sets admit only membership or non-membership, fuzzy sets allow for degrees of mem-

bership. Since a relation on a set S is a subset of the product space S�S, the definition

can be applied to relations as well:

Definition 3.3. Given a non-empty set S, a fuzzy subset of S is a function µA : SÑ [0,1].

A fuzzy relation on S is a fuzzy subset of S� S, i.e. a function µR : S� S Ñ [0,1]. A

fuzzy subset is called crisp, if its codomain is the set {0,1}� [0,1].

We denote with B the set {0,1} � R, and with I the interval [0,1] � R. The family

of crisp fuzzy subsets of a set S can be identified with the family of ordinary subsets of

S by the isomorphism µA ÞÑ A� {a P S|µApaq � 1}. In analogy with the crisp case, the

fuzzy subset µA is also denoted by A. The function µA is called the membership function

of A, and µApaq is called the degree of membership of a in A. An example of a fuzzy

subset and its membership function is given in figure 3.2.1.

Based on the notion of a fuzzy set, Zadeh developed fuzzy set theory as a gener-

alization of classical set theory. Later, Zadeh (1973, 1974, 1975d,a,b,c, 1978b, 1979),

and Bellman and Zadeh (Bellman and Zadeh, 1977) developed fuzzy logic3 as a tool for
3The first usage of the term fuzzy logic is due to Joseph Goguen (1968), in a paper titled “A logic of

inexact concepts". Goguen was a PhD student of Zadeh at that time.
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approximate reasoning:

“Fuzzy logic differs from conventional logical systems in that it aims at

providing a model for approximate rather than precise reasoning.” (Bellman

and Zadeh, 1977, p.103)

Fuzzy propositions are stated in the form “x is A”, where x is a variable and A is a fuzzy

set. Implication is stated as a so called fuzzy if-then rule in the form “If x is A then y is

B”. Fuzzy logical connectives like, e.g., negation, conjunction, or disjunction are defined

by extending set theoretical operations like complementation, intersection and union to

fuzzy sets, which mimic, to a certain extent, the properties of Boolean connectives on the

set {0,1}. Fuzzy connectives are fuzzy relations on the set r0,1s, i.e. are semantically

defined. The basic deduction rule in fuzzy logic is called the compositional rule of

inference, a particular instance of which is the generalized modus ponens:

From: S = “x is A”

S1 = “If x is A then y is B”

Infer: S2 = “y is B”

The compositional rule of inference is defined semantically by relation concatenation

(Bellman and Zadeh, 1977). The truth of statements can either equal 1 (absolute truth),

or may be qualified by fuzzy truth values. Fuzzy truth values are either numerical truth

degrees in the interval r0,1s, or “fuzzy subsets of the unit interval carrying labels such

as true, very true, false, more or less true, etc.;“ (Bellman and Zadeh, 1977, p.103). For

example, considering the fuzzy set of high mountains HM shown in figure 3.2.1, the

proposition “Mount Kilimanjaro is a high mountain” may be considered “true to degree

0.95”, since Mount Kilimanjaro is about 5900m high. If we do not want to make a

commitment on a single truth degree for the statement, we may instead assign to it a

fuzzy subset of the interval r0,1s of truth values, e.g. a fuzzy truth degree “very true”,

as illustrated in figure 3.2.2.

Sometimes the more general notion of an L-fuzzy set is used in the literature. For

L-fuzzy sets, the codomain of a fuzzy membership function is allowed to be an arbi-

trary residuated lattice, generalizing the algebraic structure of the interval [0,1] together

with a suitable definition of conjunction of fuzzy sets (cf. e.g. (Novák et al., 1999)).

Throughout the present thesis, we use the term fuzzy set as introduced in definition 3.3.
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Figure 3.2.2: The fuzzy set VT is a possible characterization of the fuzzy truth degree
“very true”.

3.2.1.2 Fuzzy Logic in a Broad Sense

Starting from Zadeh’s 1973-paper, “a huge amount of literature was produced aim-

ing at proposing different encoding of fuzzy rules or some mechanisms for processing

them, often motivated by some engineering concerns such as fuzzy rules-based control”

(Dubois et al., 2007, p.357). The best known of these approaches where introduced by

Mamdani (1977) and Sugeno and Takagi (1983).

Fuzzy set theory, fuzzy logic and approximate reasoning developed into what Zadeh

(1997) calls fuzzy logic in a broad sense. Since fuzzy set theory provides a general basis

to represent and to reason over classes with unsharp boundaries, it gave rise to a rich

diversity of different methods, tools and theories. Particularly prominent examples from

applied sciences are fuzzy control, fuzzy clustering, fuzzy optimization, fuzzy decision

models, or computing with words.

Another class of examples is commonly known as fuzzy mathematics, having the

agenda of developing mathematical theories based on fuzzy sets instead of classical

sets. Examples are fuzzy group theory (introduced by Rosenfeld, 1971), fuzzy measure

theory (see e.g. Wang and Klir, 1993), fuzzy graph theory (introduced by Rosenfeld,

1975), fuzzy topology (see e.g. Mordeson and Niar, 2001; Palaniappan, 2004, and for an

application to GIS e.g. Shi and Liu, 2007), fuzzy geometry (introduced by Rosenfeld,

1994; Buckley and Eslami, 1997a,b), or fuzzy probability and fuzzy stochastics (see e.g.

Viertl and Hareter, 2004a,b).

A comprehensive overview of different theories, applications and methods of fuzzy

logic in the broad sense is provided by the seven volume series “Handbook of Fuzzy

logic”, published between 1998 and 2000 (Dubois and Prade, 2000). Other overview

books are (Klir and Yuan, 1995), (Ruspini et al., 1998), and (?). Wolkenhauer (2001),

Burrough and Frank (1996), Petry et al. (2005), and Lodwick (2008)specifically discuss

applications in data engineering and GIS, respectively. A partial overview over the field



Chapter 3 - Tools for Formalizing Approximate Tolerance Geometry 66

of fuzzy mathematics is, e.g., given by Mordeson and Niar (2001) or by Anastassiou

(2010). Kerre and Mordeson (2005) provide a brief history of fuzzy mathematics. A

comprehensive account of the historical development of fuzzy set theory and fuzzy logic

in a broad sense up to the 1070s has been compiled by Seising (2005), and is summarized

in (Seising and Bradley, 2006).

3.2.1.3 Fuzzy Logic in a Narrow Sense

Contrasting fuzzy logic in a broad sense is fuzzy logic in a narrow sense, or mathematical

fuzzy logics. Mathematical fuzzy logics are formal logical systems that developed from

many-valued non-classical logics (Hájek, 2002, 2006; Priest, 2008; Gottwald, 2010),

mainly in the 1990ies. Many-valued logics “are similar to classical logic because they

accept the principle of truth functionality. [...] But they differ from classical logic by

the fundamental fact that they do not restrict the number of truth values to only two”

(Gottwald, 2010). A truth functional semantics allows for uniquely determining the

truth value of a compound statement from the truth values of its compounds (Hájek

1998, p.6). Mathematical fuzzy logics are “formal systems of many-valued logics hav-

ing the real unit interval as set of truth values, and truth functions defined by fuzzy

connectives that behave classically on extremal truth values (0 and 1) and satisfy some

natural monotonicity conditions” (Dubois et al., 2007, p.374). Common generalizations

of this definition allow for partially ordered sets (i.e. lattices) of truth values. Mathe-

matical fuzzy logic has in common with fuzzy logic in a broad sense the use of fuzzy

sets: In mathematical fuzzy logics, unary predicates are interpreted by fuzzy subsets of

the domain of discourse; n-ary predicated are interpreted by fuzzy relations.

While the approximate reasoning apparatus developed by Bellman and Zadeh in

1973 and later defines logical connectives and logical inference based on semantic rules,

mathematical fuzzy logics are pure symbolic logics, e.g., defining logical connectives

syntactically. They “can be viewed as abstract formal machineries that can make syn-

tactic inferences about gradual notions, as opposed to classical logic devoted to binary

notions. As such it does not contain any epistemic ingredient, as opposed to Zadeh’s

approximate reasoning framework” (Dubois et al., 2007, p.415). Mathematical fuzzy

logics can be analyzed for classical logical questions like soundness, consistency, com-

pleteness, or decidability. Since it is the goal of this thesis to provide a sound calculus

for geometric reasoning under positional tolerance, the formal logical nature of mathe-

matical fuzzy logic is one of the main reasons for the choice of this tool.

Today, two major branches of mathematical fuzzy logic exist: Mathematical fuzzy
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logics with truth-functional semantics, like, e.g., all t-norm based fuzzy logics (Hájek,

1998), and mathematical fuzzy logic with no truth-functional semantics, like, e.g., modal

necessity logic (Lewis and Langford, 1932).

An important family of truth-functional fuzzy logics are t-norm fuzzy logics. In

the present work uses Łukasiewicz t-norm fuzzy logic (cf. subsection 3.2.2.1 below).

The first comprehensive monograph on t-norm fuzzy logic has been compiled by Hájek

(1998), which is today considered the standard textbook on the subject. Other mono-

graphs followed, which extended the theory considerably, as, e.g., Novák et al. (1999),

Gottwald (2001), and Gerla (2001).

Truth-functional fuzzy logics can again be divided into two main approaches, distin-

guishing ungraduated deduction (Hájek, 1998) and graduated deduction (Novák et al.,

1999). The approach with ungraduated deduction closely follows the tradition of clas-

sical multi-valued logic, as developed by the Lwów-Warsaw school of logic in the be-

ginning of the 20th century (e.g. Łukasiewicz, 1970): It admits predicates like small,

beautiful, or near, that are interpreted by fuzzy sets. Yet, it adheres to deduction rules

that preserve absolute truth: Only statements with truth value 1 can be deduced, i.e.,

as in classical logic, a crisp set of conclusions is deduced from a crisp set of hypothe-

ses. As opposed to this, the approach with graduated deduction fuzzifies not only the

predicates, but also the deduction apparatus itself: It is “based on the assumption that

axioms need not be fully true (convincing) and thus, form a fuzzy set of formulas.”

(Novák et al. 1999, p.95). The inference rules of the deduction system are designed to

propagate partial truth: A fuzzy set of conclusions is deduced from a fuzzy set of hy-

potheses. The deduced truth values of the conclusions are lower bound constraints on

their unknown actual truth values. In contrast to conventional deduction systems, in a

graduated deduction system, different proofs of the same statement may give different

pieces of information on the actual truth degree of that statement. The theory of t-norm

fuzzy logic with graduated deduction is also called Rational Pavelka logic or Pavelka

style fuzzy logic, after its initiator Jan Pavelka (1979). It has been further developed and

promoted by the group around V. Novák, I. Perfilieva and J. Močkoř under the name of

fuzzy logic with evaluated syntax (Novák et al., 1999). In the present work uses fuzzy

logic with evaluated syntax to derive approximately true statements about geometric

configurations under positional tolerance.
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3.2.2 Fuzzy Logic with Evaluated Syntax

Fuzzy logic with evaluated syntax is a generalization of Rational Pavelka Logic (RPL).

Since both logics rely on the same basic idea, we often use both terms synonymously in

the present thesis, which is techically not entirely correct. The present section introduces

both logics and gives a brief overview over the technical differences.

To lay a basis for the subsequent exposition, subsection 3.2.2.1 starts by introduc-

ing the basic concepts of Łukasiewicz fuzzy predicate logic (Ł@). Subsection 3.2.2.2

discusses the deduction rules of Ł@, and subsection 3.2.2.3 introduces the notion of a

logical theory in Ł@.

In a next step, subsection 3.2.2.4 shows how Łukasiewicz fuzzy predicate logic can

be extended to Łukasiewicz Rational Pavelka predicate Logic (RPL@): Ł@ is a “normal”

fuzzy logical system, in the sense that its deduction rules preserve absolute truth: from

absolute true premises absolute true conclusions can be deduced. In contrast to that,

RPL@ allows for approximate deduction (or graded deduction): Here, from approxi-

mately true premises approximately true conclusions can be deduced, and the deduction

systems provides rules for deducing the “correct” degree of approximate truth, such that

a sensible notion of soundness may be defined.

As another step up the abstraction ladder, subsection 3.2.2.5 shows how RPL@ is gen-

eralized by fuzzy logic with evaluated syntax. For the non-logician, the generalization is

a technical detail. Yet, the technical detail allows for a more convenient represenetation

of an “imperfect” theory: While Rational Pavelka Logic can be used to represent such a

theory by a set of fuzzy axioms, fuzzy logic with evaluated syntax represents it as a fuzzy

set of axioms. In other words, logical axioms can be treated as members of a fuzzy set.

Here, approximate deduction is defined similarely to approximate deduction in Rational

Pavelka Logic, cf. subsection 3.2.2.6. As discussed in subsection 3.2.2.7, a fuzzy set of

axioms is called a fuzzy theory. The membership function of the fuzzy set determines

the class of models of the fuzzy theory.

3.2.2.1 Łukasiewicz Fuzzy Predicate Logic (Ł@)

Łukasiewicz fuzzy logic was originally defined as early as 1917 by the Polish mathe-

matician Jan Łukasiewicz as a three valued propositional calculus. It was the first ax-

iomatization of a non-classical logical system. Later on, many valued Łukasiewicz fuzzy

(first order) predicate logic was developed from its as a logic that admits not only three,

but infinitely many truth values in the whole range of the interval r0,1s of real numbers.

It generalizes Boolean predicate logic: For the values 0 and 1, the truth functions behave
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classically. We denote Łukasiewicz fuzzy predicate logic by Ł@.

Ł@ belongs to the class of t-norm fuzzy logics, and consequently is truth functional.

Fuzzy triangular norms, or fuzzy t-norms, have first been introduced by K. Menger

(1942) in his influential paper Statistical Metrics, where he generalized the notion of

distance to a probabilistic distance measure, cf. subsection 2.2.2. Fuzzy t-norms gen-

eralize the logical AND operator (the conjunction) of classical Boolean logic and can

be used to define other logical connectives in an appropriate way. For an introduction

to t-norm fuzzy logics, and in particular for a rigorous definition of Łukasiewicz fuzzy

predicate logic see (Hájek, 1998). In the following, we list the connectives, quantifiers,

and some definitions that are needed later on in the thesis (see also Gerla, 2008).

Definition 3.4. A fuzzy triangular norm (t-norm) is an operation � : r0,1s � r0,1s Ñ

r0,1s that has 1 P r0,1s as identity element, and is commutative, associative, and mono-

tone in both arguments: 2

a�1� a, (3.2.1)

a�b� b�a, (3.2.2)

(a�b)� c� a� (b� c) , (3.2.3)

a1 ¤ a2 implies a1 �b¤ a2 �b, (3.2.4)

b1 ¤ b2 implies a�b1 ¤ a�b2. (3.2.5)

It follows that a � 1 � 1 � a � a and a � 0 � 0 � a � 0 holds for all a P r0,1s. Salient

examples of triangular norms are the minimum t-norm a�min b :�min{a,b}, the product

t-norm a�p b :� ab, and the Łukasiewicz t-norm

abb :�max{a�b�1,0} . (3.2.6)

The residuum of the t-norm �, (ñ) : r0,1s� r0,1s Ñ r0,1s, is defined by

(añ b) :� sup{c P r0,1s|a� c¤ b} . (3.2.7)

ñ is also called residuated implication. The pair p�,ñq is an adjoint couple of a resid-

uated lattice, and the following relation of is often called adjunction property (Novák

et al., 1999, p.24):

(añ b)¥ c iff a� c¤ b, (3.2.8)
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In particular,

(añ b)� 1 iff a¤ b. (3.2.9)

holds. The precomplement : r0,1s�r0,1sÑ r0,1s corresponding to the adjoint couple

p�,ñq is defined by a :� (añ 0); For the Łukasiewicz t-normb, the operatorsñ and

 take the following form:

(añ b)�min{1�a�b,1} , (3.2.10)

 a� 1�a. (3.2.11)

The triple r0,1sŁ :� pr0,1s,b,ñq defines an algebraic structure, which is a linearly or-

dered multivalued algebra (MV-algebra), and defines a many-valued logic (Hájek, 1998).

The languages are the languages of classical predicate logic. In the present work, we use

two sorts of primitive objects, namely points and lines, and thus many-sorted languages

are used. The following definitions are taken from (Hájek, 1998):

A many sorted predicate language consists of a non-empty finite set of sorts; each

non-empty finite sequence of sorts is a type; for each sort si is given an infinite set

of object variables of the sort si, a non-empty set of predicates, each having a type,

and a (possibly empty) set of constants, each having a sort. Here, all infinite sets are

assumed to be countable. Predicates are mostly denoted by capital letters A,B,C,....

Logical symbols are object variables a,b,c, ..., connectives ^,Ñ, truth constants 0̄, 1̄,

and quantifiers @,D. Negation is defined by  ϕ � pϕ Ñ 0̄q, and equivalence is defined

by (ϕ � ψ)� (ϕ Ñ ψ)^ (ψ Ñ ϕ). Terms are object variables and object constants.

Atomic formulas have the form Ppt1, ..., tnq, where P is a predicate of type 〈s1, ...,sn〉,
and where each ti has the sort si. Formulas are built from atomic formulas and truth

constants, using connectives and quantifiers: If ϕ,ψ are formulas and a is an object

variable, then ϕ Ñ ψ , ϕ ^ψ , (@a)ϕ , pDaqϕ , 0̄, 1̄ are formulas. Each formula results

from atomic formulas by iterated use of the rule.

Given a language L and the MV-algebra r0,1sŁ, a r0,1sŁ-structure or (fuzzy) inter-

pretation is a triple

M �
(
pMsqs sort,prPqP predicate,pmcqc constant

)
, (3.2.12)

where

• for each sort s, Ms is a non-empty domain,

• for each predicate P, of type 〈s1, ...,sn〉, rP is a fuzzy relation on Ms1 � ...�Msn ,
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i.e. rP is a mapping Ms1 � ...�Msn Ñ r0,1s,

• for each constant c of sort s, mc is an element of Ms.

An M-valuation v of object variables assigns to each object variable a of sort s an element

vpaq PMs. The value valM,v of a term in the fuzzy interpretation M with valuation v is

given by valM,vpaq � vpaq, if a is an object variable, and is given by valM,vpcq � mc, if c

is an object constant. The truth value (or truth degree) valM,v of a formula is defined as

follows:

valM,v (Ppt1, ..., tnq)� rP (valM,vpt1q, ...valM,vptnq) ; (3.2.13)

valM,v (ϕ Ñ ψ)� valM,vpϕq ñ valM,vpψq; (3.2.14)

valM,vpϕ^ψq � valM,vpϕqb valM,vpψq; (3.2.15)

valM,vp0̄q � 0; valM,vp1̄q � 1; (3.2.16)

valM,v (p@aqϕ)� inf
{

valM,vpϕq|v
a
� v1

}
; (3.2.17)

valM,v (pDaqϕ)� sup
{

valM,vpϕq|v
a
� v1

}
, (3.2.18)

where v
a
� v1 means that for two valuations v and v1, vpbq � v1pbq holds for all object vari-

ables b distinct from a. The infima and suprema are taken provided they exist; otherwise

the truth value is undefined. If all needed infima and suprema exist, the interpretation M

is called r0,1sŁ-safe. If M is a r0,1sŁ-safe, the truth value of a formula ϕ is defined by

valMpϕq � inf{valM,vpϕq|v M-valuation} . (3.2.19)

I.e., valMpϕq is the truth value of the universal closure of ϕ . A tautology is a formula ϕ ,

for which valMpϕq � 1 holds for each safe r0,1sŁ-structure M.

In Łukasiewicz fuzzy predicate logic Ł@, the existential quantifier is definable from

the universal quantifier @ by (Da)ϕ � (@a) ϕ (cf. Hájek, 1998, p.127). As a conse-

quence, the logical axioms defining Łukasiewicz fuzzy predicate logic Ł@ do not require
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axioms on existential quantification. They are

pŁ1q ϕ Ñ (ψ Ñ ϕ) ,

pŁ2q ϕ Ñ ψ Ñ ((ψ Ñ χ)Ñ (ϕ Ñ χ)) ,

pŁ3q ( φ Ñ ψ)Ñ (ψ Ñ ϕ) ,

pŁ4q ((ϕ Ñ ψ)Ñ ψ)Ñ ((ψ Ñ ϕ)Ñ ϕ) ,

p@1q (@a)ϕpaq Ñ ϕptq,

p@2q (@a)(ψ Ñ ϕ)Ñ (ψ Ñ (@a)ϕ),

(cf. Hájek, 1998, p.64 and p.111).

Remark 3.5. Łukasiewicz fuzzy logic satisfies all three classic laws of thought: the law

of the excluded middle, a` a � 1, the law of non-contradiction,  (ab a) � 1, and

the law of identity, (añ a) � 1. This is in contrast to, e.g., intuitionistic logic, where

the law of the excluded middle is not provable. Yet, notice that this does not mean that,

e.g, a formula can not be equivalent to its negation: "In classical logic, the liar paradox

(sentence asserting its own falsity) relies on the fact that no formula can be equivalent to

its own negation. In Łukasiewicz logic this is not the case: if ϕ has the value 0.5 then its

negation  ϕ has the same value and is equivalent to ϕ" (Hájek, 2010).

3.2.2.2 Deduction in Ł@

The deduction rules in Ł@ are modus ponens (from ϕ and ϕ Ñ ψ infer ψ), and gener-

alization (from ϕ infer inf
x
(ϕ)). These are the classical rules, and they are valid in the

classical sense: They preserve absolute truth, i.e., if the premises have truth degree 1,

then the conclusions have truth degree 1. The rules can not be applied to approximate

premises, i.e., to premises with a truth degree λ   1.

Remark 3.6. In Ł@, the classical form of the deduction theorem (T Y {ϕ} $ ψ iff T $

ϕ Ñ ψ) does not hold. Instead, the following variant holds: T Y{ϕ}$ ψ iff there is an

n PN such that T $ ϕn Ñψ . Here, ϕn � ϕbϕpn�1q. The formula ϕn Ñψ is equivalent

to the formula ϕ Ñ pϕ Ñ ...Ñ pϕ Ñ ψq...q (with n copies of ϕ).

3.2.2.3 Theories in Ł@

A theory T in Ł@ is a set of formulas of Ł@. The formulas in T are called axioms or

special axioms (as opposed to the logical axioms defining Ł@). An interpretation M is

a model of a theory T , M ( T , if it assigns to all special axioms of T the truth value 1
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(Hájek, 1998, p.113). T entails a formula ϕ , if the truth of the axioms of T guarantee

the truth of ϕ . A proof in a theory T is a sequence of formulas, where each formula

of the sequence is a logical axiom or a special axiom of T or follows from preceding

members of the sequence by a deduction rule. A formula ϕ is called provable in T ,

denoted by T $ ϕ , if it is the last element of a proof. A theory T in Ł@ is contradictory

(or inconsistent), if T proves falsity, T $ 0̄. Otherwise, T is called consistent.

3.2.2.4 Łukasiewicz Rational Pavelka Predicate Logic (RPL@)

Deduction in Łukasiewicz fuzzy predicate logic preserves absolute truth. In other words,

given a number of statements that have truth degree 1, the deduction apparatus of Ł@ al-

lows for deducing from them statements with truth degree 1 by repeatedly applying,

e.g., the Modus Ponens inference rule. In contrast to this, Łukasiewicz Rational Pavelka

Predicate Logic, RPL@, provides an “evaluated” deduction apparatus that allows for de-

ducing partially true conclusions from partially true premises (cf. Pavelka, 1979; Hájek,

1998; Novák et al., 1999; Gerla, 2001). For this reason, RPL@ is also called Łukasiewicz

fuzzy predicate logic with evaluated syntax.

RPL@ extends the language of many valued Łukasiewicz predicate logic by adding

to the truth constants 0̄ and 1̄ a truth constant r̄ for every rational number r of the unit

interval r0,1s4. Formulas in RPL@ are the formulas of Ł@, plus a formula r̄ for each

r. Interpretations (r0,1sŁ-structures) and valuations of object variables are defined as in

Ł@. The truth value of r̄ in an interpretation M w.r.t. the valuation v is given by

valM,vp̄rq � r. (3.2.20)

Together with the truth functions (3.2.13)-(3.2.18) and (3.2.19) of Ł@, (3.2.20) defines

a truth valuation of all formulas. The logical axioms of RPL@ are the axioms of Ł@,

extended by the following two bookkeeping axioms:

pB1q (̄rÑ s̄)� rñ s,

pB2q  r̄ � 1� r.

As in Ł@, the deduction rules are modus ponens and generalization. A theory T over

RPL@ is a set of formulas of RPL@. The notions of model, proof and consistency are

defined as in Ł@.
4The reason for not grading formulas with real numbers lies in the fact that adding all real numbers of

r0,1s as truth constants to Ł@ would make the language uncountable.
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The additional truth constants r̄ allow for defining the notion of a graded formula

(Hájek, 1998):

Definition 3.7. A graded formula is a pair (ϕ,r), where ϕ is a formula, and r is a rational

element of r0,1s. The notation(ϕ,r) is an abbreviation for the formula r̄Ñ ϕ .

The idea behind introducing graded formulas is that the graded formula pϕ,rq is true in

a fuzzy interpretation M with valuation v iff the truth value of ϕ is at least r. I.e.,

valM,v ((ϕ,r))� 1 iff valM,vpϕq ¥ r. (3.2.21)

In other words, r is a lower bound for the truth value of ϕ . To see that (3.2.21) holds, note

that valM,v ((ϕ,r))� valM,v (r̄Ñ ϕ)� (valM,vpr̄q ñ valM,vpϕq)� (rñ valM,vpϕq); with

the adjunction property (3.2.9), (rñ valM,vpϕq)� 1 is indeed equivalent to valM,vpϕq ¥

r. In the present work, truth is interpreted as truthlikeness, and in this case, truth of pϕ,rq

means that the similarity of ϕ to the truth is at least r. Now assume that a formula ϕ is

not true in a model of the theory T , but that (ϕ,r) � r̄Ñ ϕ is true for some r. In this

case, ϕ is “not too false” in T . Since the value of ϕ may be different in different models

of T , it is appropriate to choose the smallest one, i.e. the one that holds in all models of

T :

Definition 3.8. The truth degree of ϕ over T is valT pϕq � inf{valMpϕq|M ( T}.

Similarly, ϕ may not be provable in T , while pϕ,rq � r̄Ñϕ is provable for some r̄. Since

r̄ Ñ ϕ may be provable for more than one r̄, and since r is a lower bound for the truth

value of ϕ , it is appropriate to choose the greatest lower bound to define the provability

degree of ϕ:

Definition 3.9. The provability degree of ϕ over T is |ϕ|T � sup{r|T $ pϕ,rq}.

Pavelka style completeness says that for each theory T and each formula ϕ , the prov-

ability degree of ϕ over T coincides with the truth degree of ϕ over T : |ϕ|T � valT pϕq

(cf. Hájek, 1998, p.140).

Pavelka’s theory has been developed further by V. Novák et al. (1999) and G. Gerla

(2001): Not only rational-valued truth constants, but real-valued truth constants r̄ with

r P r0,1s are allowed, which admits the definition of fuzzy theories (fuzzy sets of axioms).

The resulting logical systems are referred to as fuzzy logic with evaluated syntax, or

graded logical systems. We introduce the core concepts in the following subsections.
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3.2.2.5 Fuzzy Logic with Evaluated Syntax

Definition 3.10. A formula ϕ , together with an element a P r0,1s is called an evalu-

ated formula or signed formula, and we denoted it by pϕ;aq. a is called the syntactic

evaluation or sign of ϕ .

The intended meaning of a signed formula pϕ;aq is the same as the meaning of a graded

formula pϕ,aq, namely that the truth value of ϕ is greater or equal than a. The only

difference between both definitions is that in a graded formula, a needs to be a rational

element of r0,1s, while in an evaluated formula a P r0,1s � R. For details see Novák

et al. (1999) and Gerla (2001). While a graded formula pϕ,rq � r̄ Ñ ϕ is part of the

language, an evaluated formula pϕ;aq corresponds to the concept of a fuzzy point (Gerla,

2001, p.40). Here, a P r0,1s does not belong to the language, but is a formal evaluation

of the syntax, hence the name syntactic evaluation. The reason for making the difference

is that evaluated formulas allow for defining fuzzy sets of axioms, and thereby allow for

formally extending logical systems to graded logical systems (Novák et al., 1999): While

usual fuzzy logical systems, such as Ł@, grade the semantic, but not the syntax, graded

logical systems grade both. The intended meaning of a fuzzy set of axioms is that some

of the axioms are “not fully convincing”. This idea can, e.g., be used for formalizing the

Sorites paradox (see e.g. Novák et al., 1999) or, as it is used in the present work, for

formalizing the Poincaré paradox (see, e.g., Gerla, 2008).

3.2.2.6 Approximate Deduction

A fuzzy deduction rule R in a graded logical system manipulates signed formulas. It is

a pair R � pR1,R2q, consisting of a syntactic component R1 that is an inference rule in

the usual sense, and a syntactic evaluation component R2 which operates on signs: It

calculates how the sign of the conclusion depends on the sign of the premises. A fuzzy

deduction rule R� pR1,R2q is indicated by

R1 :
ϕ1, ...,ϕn

R1pϕ1, ...,ϕnq
; R2 :

r1, ...,rn

R2pr1, ...,rnq
.

The fuzzy deduction rule R is sound, if

valM,v
(
R1pϕ1, ...,ϕnq

)
¥ R2 (valM,v (r1) , ...,valM,v (rn)) , (3.2.22)

cf. V. Novák et al. (1999, p.101) and G. Gerla (2001, p.71 ff.). I.e., a sound fuzzy

deduction rule never yields a sign whose value is higher than the actual truth valuation.
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The meaning of a sound deduction rule R can be described as follows: IF the formulas

ϕ1, ...,ϕn have truth values that are greater or equal than r1, ...,rn, respectively, THEN

the formula R1pϕ1, ...,ϕnq has a truth value that is greater or equal than R2pr1, ...,rnq.

In the present work, we interpret the fuzzy truth degree of a formula as its degree of

similarity to the truth, i.e., as its truthlikeness degree (cf. subsection 4.1.1.3). Accord-

ingly, the sign of a formula is interpreted as a lower bound for the formula’s truthlikeness

degree. Here, we can say that a sound fuzzy deduction rule never yields a better approx-

imation of truth than the original incomplete information.

The basic deduction rules of a graded logical system are the Evaluated Modus Ponens

MPev � (MP1ev,MP2ev),

MP1ev :
ϕ,ϕ Ñ ψ

ψ
; MP2ev :

r1,r2

r1b r2
,

the evaluated generalization Gev � (G1ev,G
2
ev),

G1ev :
ϕ

inf
x

ϕ
; G2ev :

r
r
,

and the logical constant introduction LCev � (LC1ev,LC2ev):

LC1ev :
ϕ

r̄Ñ ϕ
; LC2ev :

r
rñ r

,

cf. (Novák et al., 1999, p.116). The rule LCev makes a connection between evaluated

and graded formulas: Given an evaluated formula pϕ;rq, LCev derives the graded formula

pϕ,rq � r̄Ñ ϕ with syntactic evaluation of (rñ r)� 1.

In the following subsection, we define the notion of fuzzy theory (cf. Novák et al.,

1999, p.102).

3.2.2.7 Fuzzy Theories in Ł@

In the present work, we are only interested in the graded logical system that derives

from Łukasiewicz Rational Pavelka Predicate Logic RPL@. I.e., we consider only graded

formulas pϕ;aq, where ϕ is a formula of Łukasiewicz fuzzy predicate logic L@.

Definition 3.11. A fuzzy theory τ in Ł@ is a fuzzy subset τ : F Ñ r0,1s of the set F

of formulas of Ł@. Given a fuzzy interpretation M, we say that an M-valuation v of

object variables respects τ , if valM,vpϕq ¥ τpϕq holds for every formula ϕ . The fuzzy

interpretation M is a fuzzy model of τ , denoted by M ( τ , if

valMpϕq � inf{valM,vpϕq|v M-valuation}¥ τpϕq (3.2.23)
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holds for every formula ϕ . The truth degree of ϕ over τ is

valτpϕq � inf{valMpϕq|M ( τ} . (3.2.24)

A fuzzy theory can be interpreted as a set of signed formulas. A usual theory T can be

interpreted as a crisp theory, i.e. a crisp subset T : F Ñ {0,1} of F . A crisp theory T is

represented by simply listing the formulas ϕ P F with T pϕq � 1.

Definition 3.12. An evaluated proof or signed proof π of a signed formula pϕ;aq in a

fuzzy theory τ is a sequence of signed formulas, where pϕ;aq is the last element of the

sequence, and where each formula of the sequence is a logical axiom or a special axiom

of τ or follows from preceding members of the sequence by a fuzzy deduction rule. If π

proves pϕ;aq, π is called a proof of ϕ, and this is indicated by writing πϕ .

In contrast to the unevaluated case, different proofs πϕ may yield different syntactic

evaluations (signs) a of ϕ. The evaluation a derived by a proof πϕ is called the value of

the proof πϕ , valτpπϕq � a, and this is indicated by writing τ $a ϕ . (If a� 1, τ $1 ϕ is

abbreviated by τ $ ϕ .) valτpπϕq is a lower bound for the truth value of ϕ .

A fuzzy theory τ is contradictory or inconsistent, if τ proves falsity, τ $a 0̄, with a

positive truth degree a ¡ 0. τ is called consistent otherwise (Hájek, 2001, p.361). An

equivalent definition is given by Novák et al. (1999, p.129): τ is inconsistent, if there is

a proof πϕ of a formula ϕ , and a proof π 1 ϕ of its negation  ϕ , such that valτpπϕqb

valτpπ 1 ϕq ¡ 0; τ is consistent otherwise.

E.g., a fuzzy theory may admit a proof πϕ of the formula ϕ with truth degree 0.5,

and it may admit a proof π 1 ϕ of its negation ϕ with truth degree 0.4. Then valτpπϕqb

valτpπ 1 ϕq � 0.5b0.4�max{0.5�0.4�1,0}� 0. I.e., even though the formula ϕ and

its negation  ϕ are both partially true (i.e., they can be derived with positive signs), this

does not cause inconsistency of the theory τ .

As in classical logics, the principle of explosion holds: A fuzzy theory is inconsistent iff

every formula is provable with value 1, i.e iff τ $1 ϕ for all ϕ P F (Novák et al., 1999,

p.129). In other words, a contradictory fuzzy theory is useless.

Lemma 3.13. (Novák et al., 1999, p. 131) A fuzzy theory is consistent if it has a fuzzy

model.



Chapter 3 - Tools for Formalizing Approximate Tolerance Geometry 78

3.3 Extensive Metrics and Approximate Similarities

This subsection discusses the close formal relationship between distance measures and

similarity relations. Subsection 3.3.1 introduces pseudometric and extensive pseudomet-

ric distance measures. Subsection 3.3.2 introduces equivalence relations and tolerance

relations, which can be interpreted as two-valued similarity relations. Every pseudo-

metric induced an equivalence relation, and every extensive pseudometric induces a tol-

erance relation. Subsection 3.3.3 introduces fuzzy similarity relations and approximate

fuzzy similarity relations. These are many-valued extensions of equivalence and toler-

ance relations (i.e., they are similarity relations in the usual sense), and they are dual

to pseudometric and extensive pseudometric distances, respectively. In particular, the

duality between extensive pseudometrics and approximate fuzzy equivalence relations

establishes a duality between a weak form of the triangle inequality, and a weak form of

transitivity.

3.3.1 Pseudometric and Extensive Pseudometric Spaces

Definition 3.14. A pseudometric on a set X , is a function d : X �X Ñ R�, where R�

denotes the non-negative real numbers r0,8q, such that d is reflexive, symmetric, and

satisfies the triangle inequality. I.e., for all a,b,c P X , the following axioms hold:

dpa,aq � 0, (3.3.1)

dpa,bq � dpb,aq, (3.3.2)

dpa,bq�dpb,cq ¥ dpa,cq. (3.3.3)

The pseudometric d is called a metric, if separability holds:

dpa,bq � 0 iff a� b. (3.3.4)

As a generalization of the concept of a pseudometric space, G. Gerla (1990) intro-

duces the notion of a pointless pseudometric space, which takes the size of objects into

account.

Definition 3.15. A pointless pseudometric space or ppm-space is a quadruple pX ,�
,d,sq, where pX ,�q is an ordered set, d : X �X ÑR� � r0,8q, and s : X Ñ r0,8s
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Figure 3.3.1: Canonical pointless pseudometric space.

are functions, such that for every A,B,C PX the following holds:

A� B implies spAq ¥ spBq, (3.3.5)

A� B implies dpA,Cq ¤ dpC,Bq, (3.3.6)

dpA,Aq � 0, (3.3.7)

dpA,Bq�dpB,Cq� spBq ¥ dpA,Cq. (3.3.8)

The elements of X are called regions, � is called inclusion, d is called distance, and s

is called diameter or size. From (3.3.6) it follows by substituting A for B that a point-

less pseudometric d is symmetric, i.e. that dpA,Cq � dpC,Aq holds for all A,C PX .

Inequality (3.3.8) is a weak form of the triangle inequality (3.3.3), which takes the size

of regions into account (Gerla, 1990). In the following we call (3.3.8) the weak triangle

inequality.

The canonical example of a ppm-space is the space pC pXq,�,d,sq, where C pXq is

a class of nonempty subsets of a metric space pX ,dXq and where the distance d and the

size s of subsets A,B P C pXq are given by

dpA,Bq :� inf{dXpa,bq|a P A,b P B}, (3.3.9)

spAq :� sup{dXpa,a1q|a,a1 P A}. (3.3.10)

Figure 3.15 illustrates that d does not satisfy the usual triangle inequality, but, together

with s, satisfies the weak triangle inequality.

Pointless pseudometric spaces generalize pseudometric spaces: A pseudometric space

is a ppm-space where the order relation � on X coincides with the set equality relation

� on X and where the size function s is constantly equal to zero.

In the present work pointless pseudometric spaces are used for distance measurement

between points with tolerance, i.e. between extended location constraints: The distance

between “true” points can not be known with certainty, but, as long as a location con-

straint can be established that is known with certainty, the set distance measure (3.3.9)
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and the size measure (3.3.10) is known. In the framework of similarity logic, the result-

ing ppm-space is used in the form of its dual similarity relation, which is an approximate

fuzzy equivalence relation, cf. subsection 3.3.3 below. In order to establish the dual-

ity between pointless pseudometric spaces and approximate fuzzy equivalence relations,

the order relation � is not needed, but the size function s is. For ease of terminology,

an extensive pseudometric space (epm-space) pX ,d,sq can be defined as a ppm-space

where the order relation relation coincides with set equality: pX ,d,sq :� pX ,�,d,sq.

Substituting � for � in definition 3.15, yields the following definition:

Definition 3.16. An extensive pseudometric space is a triple pX ,d,sq, where X is a

set, d : X �X Ñ R� � r0,8q, and s : X Ñ r0,8s are functions, such that for every

A,B,C PX the following axioms hold:

dpA,Aq � 0, (3.3.11)

dpA,Bq � dpB,Aq, (3.3.12)

dpA,Bq�dpB,Cq� spBq ¥ dpA,Cq. (3.3.13)

In the following, we refer to inequality 3.3.13 as the extensive triangle inequality.

3.3.2 Equivalence and Tolerance Relations

Pseudometric distances are dual to equivalence relations and pointless pseudometric dis-

tances are dual to tolerance relations in the following sense:

In a metric space pX ,dq, the distance function d induces the equality relation (�) :

X�X Ñ {0,1} on the set X , by the definition

(a� b)� 1 iff dpa,bq � 0 @a,b P X ,

cf. the separability property (3.3.4). If pX ,dq is a pseudometric space, the induced

relation is an equivalence relation (�) : X�X Ñ {0,1},

(a� b)� 1 iff dpa,bq � 0 @a,b P X , (3.3.14)

where the relation� is reflexive, symmetric and transitive, but not necessarily separable,

cf. also subsection 2.2.2 on page 33. In a pointless pseudometric space pX ,¤,d,sq, the

induced relation is a tolerance relation (�) : X �X Ñ {0,1} defined by

(A� B)� 1 iff dpA,Bq � 0 @A,B PX . (3.3.15)
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Definition 3.17. A tolerance relation � on a set X is a reflexive and symmetric relation

on X , i.e. @a P X ,

a� a, (3.3.16)

a� b iff b� a. (3.3.17)

The pair pX ,�q is called a tolerance space.

Since tolerance relations are not necessarily transitive, they can be interpreted as

generalized equivalence relations. Tolerance relations are often used to formalize indis-

tinguishability in the context of perception (e.g. Poincaré, 1905; Zeeman, 1962), mea-

surement with limited accuracy (e.g. Pullar, 1991, 1993), or reasoning with incomplete

information (e.g. Lamport, 1978; Boldi, 1997), cf. subsection 2.2.1.

Definition 3.18. The tolerance neighborhood of an element a P X is the set N paq :�

{a1 P X |a1 � a}; The tolerance neighborhood of a subset A� X is the set
⋃

aPA
pN paqq.

As an example of a tolerance space consider the pair pC pR2q,
ov
�q, where C pR2q is

the class of all nonempty subsets of R2, and ov
� is the overlap relation defined by

A ov
� B iff AXB�∅. (3.3.18)

ov
� is the tolerance relation induced by the pointless distance d of the canonical ppm-space

pC pR2q,�,d,sq, where C pR2q is the class of all nonempty subsets of R2, cf. (3.3.15).

The tolerance neighborhood of A P C pR2q consists of all subsets A1 P C pR2q such that

A1 and A overlap.

3.3.3 Fuzzy Similarities and Approximate Fuzzy Similarities

Equivalence and tolerance relations are Boolean relations. Fuzzy t-norms can be used

to define graduated extensions of these relations: Equivalence relations are extended

to fuzzy equivalence relations (also called fuzzy similarity relations), which are dual to

pseudometric distances. Tolerance relations are extended to approximate fuzzy equiv-

alence relations (also called approximate fuzzy similarity relations), which are dual to

pointless pseudometric distances. Tolerance relations have the disadvantage that transi-

tivity is not addressed at all. Their extension by approximate fuzzy equivalence relations

allows for a weak form of transitivity. It will become clear in section 6.1 that weak transi-

tivity is necessary for defining an approximate tolerance geometry. The correspondence
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of approximate fuzzy equivalence relations and pointless pseudometric spaces simpli-

fies the formalism. In particular, it provides a correspondence between the weak triangle

inequality and the weak transitivity property.

Definition 3.19. A fuzzy �-similarity relation e on a set X w.r.t. a t-norm � is a fuzzy

relation on X that is reflexive, symmetric and �-transitive. I.e., e : X �X Ñ r0,1s, such

that for a,b,c P X ,

epa,aq � 1, (3.3.19)

epa,bq � epb,aq, (3.3.20)

epa,bq � epb,cq ¤ epa,cq (3.3.21)

holds. Since fuzzy �-similarity relations are graduated extensions of equivalence rela-

tions, they are often called fuzzy �-equivalence relations.

Definition 3.20. (Gerla, 2008) An approximate fuzzy �-similarity space is a set X ,

together with two functions e : X �X Ñ r0,1s and x : X Ñ r0,1s, such that for

A,B,C PX ,

epA,Aq � 1, (3.3.22)

epA,Bq � epB,Aq, (3.3.23)

epA,Bq � epB,Cq � xpBq ¤ epA,Cq (3.3.24)

holds. Here, (3.3.24) is a weak form of the graduated transitivity (3.3.21), where the

value xpBq P r0,1s can be interpreted as a local measure of transitivity w.r.t. B.

Since an approximate fuzzy �-similarity relation is a generalization of a fuzzy �-equivalence

relation, we use the term approximate fuzzy �-equivalence relation synonymously.

For discussing the correspondences of fuzzy similarity relations and approximate

fuzzy similarity relations with distance measures, it is necessary to define the notions

of Archimedian t-norm and additive generator, and to give a representation theorem for

Archimedian t-norms:

Definition 3.21. An Archimedian t-norm is a continuous t-norm �, such that for any

a� 1, lim
nÑ8

an � lim
nÑ8

pa� . . .�a︸ ︷︷ ︸
n times

q � 0 holds.

Examples of Archimedian t-norms are the product t-norm a�p b� a�b, and the Łukasiewicz

t-norm ab b � max{a�b�1,0}. The minimum-t-norm a �min b � min{a,b} is not

Archimedian.



Chapter 3 - Tools for Formalizing Approximate Tolerance Geometry 83

Definition 3.22. An additive generator is a continuous and strictly decreasing function

h : r0,1s Ñ r0,8s, such that hp1q � 0. The pseudoinverse hr�1s : r0,8s Ñ r0,1s of an

additive generator h is the function

hr�1spaq � h�1 (min{a,hp0q})�

h�1paq if a P h(r0,1s) ,

0 otherwise.
(3.3.25)

Theorem 3.23. (Representation Theorem) A binary relation � is an Archimedian t-

norm iff an additive generator h exists, such that, for all a,b P r0,1s,

a�b� hr�1s (hpaq�hpbq) . (3.3.26)

The additive generator of the product t-norm is given by hppaq � �logpaq, and its

pseudoinverse is hr�1s
p paq � e�a. The additive generator of the Łukasiewicz t-norm is

hbpaq � 1�a, and its pseudoinverse is hr�1s
b paq � 1�min{a,1}.

The representation (3.3.26) can be used to define a fuzzy similarity relation from a

given pseudometric, and conversely:

Theorem 3.24. (Valverde, 1984) Let h be the additive generator of an Archimedian t-

norm �, and d a pseudometric in a set X. Then

epa,bq � hr�1s (dpa,bq) P r0,1s (3.3.27)

is a fuzzy �-equivalence relation. Conversely, let e be a fuzzy �-equivalence relation on

X. Then

dpa,bq � h(epa,bq) P r0,1s (3.3.28)

is a pseudometric in X.

Given a pseudometric d : X �X Ñ R, the �p-similarity relation induced by the product

t-norm �p is epa,bq � e�dpa,bq, and theb-similarity relation induced by the Łukasiewicz

t-normb is epa,bq �max{1�dpa,bq,0}. If d is normalized to r0,1s, i.e. if d : X�X Ñ

r0,1s, then the b-similarity relation induced by the Łukasiewicz t-norm is epa,bq �

1�dpa,bq, i.e. the Łukasiewicz negation of dpa,bq.

Since pseudometric distances do not account for the sizes of objects, fuzzy similarity

relations do not either. One possibility to account for size (or positional tolerance) is pro-

posed by Gerla (2008): He shows that the correspondence between pseudometrics and

fuzzy similarity relations can be extended to pointless pseudometrics and approximate

similarity relations:
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Theorem 3.25. (Gerla, 2008) Let h be the additive generator of an Archimedian t-norm

�, and let (X ,d,s) be an extensive pseudometric space. Then the triple (X ,e,x), with

epA,Bq � hr�1s (dpA,Bq) P r0,1s, (3.3.29)

xpAq � hr�1spspAqq P r0,1s, (3.3.30)

is an approximate fuzzy �-similarity space. Conversely, let (X ,e, t) be a fuzzy �-similarity

space. Then (X ,d,s), with

dpA,Bq � h(epA,Bq) P r0,1s, (3.3.31)

spAq � hpxpAqq P r0,1s, (3.3.32)

is an extensive pseudometric space.

Given an epm-space pX ,d,sq with extensive metric d : X �X ÑR, and size function

s : X Ñ R, the approximate �p-similarity space induced by the product t-norm �p is(
X ,e�d ,e�s

)
. The approximate b-similarity space induced by the Łukasiewicz t-norm

b is (X ,max{1�d,0} ,max{1� s,0}). If d and s are normalized to r0,1s, i.e. if

d : X �X Ñr0,1s and s : X Ñr0,1s, then the approximateb-similarity space induced

by the Łukasiewicz t-norm is pX ,e,xq � (X ,1�d,1� s), i.e.,

epA,Bq � 1�dpA,Bq, (3.3.33)

xpAq � 1� spAq. (3.3.34)

The correspondence between extensive pseudometric spaces and approximate fuzzy b-

similarity relations yields in particular a correspondence between the weak triangle in-

equality (3.3.8) and the weak transitivity property (3.3.24):

dpA,Bq�dpB,Cq� spBq ¥ dpA,Cq ô

epA,Bqb epB,Cqb xpBq ¤ epA,Cq. (3.3.35)

An approximate fuzzy similarity has the following axiomatization in Rational Pavelka

Predicate Logic:

Axiom sign

pE1q @a.epa,aq 1

pE2q @a,b. [epa,bq Ñ epb,aq] 1

pE3xq @a,b,c. [epa,bq^Xpbq^epb,cq Ñ epa,cq] 1
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Here, e is a binary predicate, X is a unary predicate, and a,b,c are object variables. Note

that in a fuzzy Ł-interpretation of pE1q�pE3q the universal quantifier is interpreted by

the greatest lower bound, inf, cf. (3.2.17) on page 71. E.g., if e and X are interpreted

by fuzzy relations e and x, pE1q is interpreted by inf
A
{epA,Aq}� 1, which can be written

as epA,Aq � 1, because the truth value of a formula is the truth value of its universal

closure, cf. (3.2.19). From pE2q, the symmetry of e follows by exchanging the object

symbols a,b: In the Ł-interpretation of pE2q, the implication Ñ is interpreted by the

residuated implication ñ, and according to (3.2.9), ((añ b)� 1 and pbñ aq � 1) iff

(a¤ b and b¤ a) iff a� b. I.e., pE2q is indeed an axiomatization of property (3.3.23). In

pE3q, absolute truth of the implication is interpreted by ¤, using again property (3.2.9).



Chapter 4

Contributing Imperfections and
Conceptual Framework

“What appeared to be different theories of uncertainty are actually theories

of different kinds of uncertainty. The widely held view that there is just one

kind of uncertainty – probabilistic uncertainty – is incorrect.”

– Lotfi A. Zadeh (BISC mailing list, 20.01.2012)

It is the objective of this work to devise a sound calculus for geometric reasoning under

positional tolerance. Unfortunately, the classical definition of soundness only applies in

the context of perfect information (i.e., information that is precise, complete and cer-

tain). Outside this context, we cannot speak of soundness or unsoundness. To tackle

this problem, section 4.1 starts with analyzing and classifying the types of imperfec-

tions that are relevant for geometric reasoning under positional tolerance. Section 4.2

uses the classification to derive a conceptual framework for formalizing sound geomet-

ric reasoning under positional tolerance. The idea behind it is to use a generalization

of classical logic for representing geometry under positional tolerance as an axiomatic

theory, namely fuzzy logic with evaluated syntax (a generalization of Rational Pavelka

Logic). This logic allows for representing imperfect information, and a generalized no-

tion of soundness is provided that applies in this context, cf. subsection 3.2.2.6.

86
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4.1 Imperfections Contributing to the Problem Statement

The following subsection 4.1.1 outlines the ontology of imperfections proposed by L.

Godo and R. Rodríguez (2008). It is based on a logical viewpoint, and classifies not only

different types of imperfections, but at the same time classifies corresponding formal

methods. Section 4.1.2 applies this ontology to the problem statement of the present

work and identifies two kinds of imperfections that contribute to it: Positional tolerance

can be classified as possibilistic uncertainty; The similarity of classical geometry to

the truth under conditions of positional tolerance can be classified as truthlikeness. We

briefly discuss the role of these types of imperfections in the present work, together with

the formal tools used for modeling them.

4.1.1 An Ontology of Imperfections

Several ontologies of imperfection have been proposed in the GIS literature, e.g. (Fisher,

1999) , (Duckham et al., 2001), Frank (2007). Summarizing and adding to the rich liter-

ature and discussion in philosophy and artificial intelligence on the concepts of vague-

ness, uncertainty, and truthlikeness (e.g. McDermott, 1987; Resconi et al., 1992; Hájek,

1998; Bouchon-Meunier et al., 1999; Oddie, 2007), Godo and Rodríguez (2008) propose

an ontology of imperfections and associated approximate reasoning formalisms. They

address the problem of building such an ontology from the point of view of classical

logics. Starting with an analysis of how classical logics formalize human knowledge

and reasoning, they identify three “design choices” of classical logics that prevent repre-

sentation of and reasoning with imperfect information. They call the resulting problems

the interpretation problem, the incomplete information problem, and the mistaken infor-

mation problem, cf. figure 4.1.1 on page 89. They show that modifying these design

choices resolves the respective problems, and naturally leads to three classes of logical

formalisms for approximate reasoning: Fuzzy set theory and mathematical fuzzy logic;

Probability theory, Possibility theory and Dempster-Shafer theory of evidence; Similar-

ity logic. The three design choices and respective problems correspond to three classes

of imperfections with orthogonal semantics: Vagueness, modeled by degrees of truth;

uncertainty, modeled by degrees of belief; truthlikeness, modeled by proximity to truth.

In the following we will elaborate briefly on the three “orthogonal axis” of the ontology.



Chapter 4 - Contributing Imperfections and Conceptual Framework 88

4.1.1.1 Vagueness is an Interpretation Problem

“Whenever we have (or fix) a representation language to describe our information about

the world, we should provide a form of interpreting the sentences in such a language, i.e.

to establish a correspondence between meaning and truth (or as Carnap says (Carnap,

1937), between theoretical concepts and observations)” (Godo and Rodríguez, 2008,

p.77). According to Tarski’s definition of truth (Tarski, 1956), the truth of a statement in

classical logic is determined by an interpretation function from language to models. Such

an interpretation function is bivalent: It either maps an expression to an interpretation

or not. It can not express gradual membership to a concept. Consequently, Tarski’s

definition (at best) applies to formal languages. It does not apply to natural languages,

since natural languages incorporate vague predicates (like “big”, “old”, “near to”), vague

modifiers (like “very”, “almost”, “more or less”), and vague quantifiers (like “some”,

“few”, “most”). These predicates, modifiers and quantifiers are vague in the sense that

their semantics is insufficiently specified, e.g. allowing for indeterminate borderline

cases (Duckham et al., 2001).

“Hence, if we want to represent knowledge of the type “the mountain is

high” we need to increase the interpretation power and hence we have to

give up classical logic principles such as the excluded middle principle (p_

 p is always true) or the non-contradiction principle (p^ p is always

false). In response to this necessity Lotfi Zadeh introduced in 1965 fuzzy

set theory.” (Godo and Rodríguez, 2008, p.78)

Godo and Rodríguez call the kind of imperfection associated with the interpretation

problem vagueness, which is in accordance with GIS literature (e.g. Burrough and Frank,

1996; Varzi, 2001; Bittner and Stell, 2002; Fisher, 1999, 2000; Bennett, 2001b, 2011).

The interpretation problem can be resolved by extending the bivalent definition of truth

to a graduated definition of truth, i.e. by introducing truth degrees. Both, fuzzy set

theory and mathematical fuzzy logics, are formalisms for representing and reasoning

with degrees of truth.

4.1.1.2 Uncertainty is an Incomplete Information Problem

“In a classical logic, there is a clear distinction between a definition of truth (such as

it was mentioned above) and a criteria for recognizing the truth” (Godo and Rodríguez,

2008, p.79). Recognition of truth is implemented by the syntactical deduction apparatus,

which enables an agent to deduce statements from a given knowledge base. In case the
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Figure 4.1.1: Ontology of imperfections after L. Godo and R. Rodríguez (2008). The
lower part of the figure gives an example for each kind of imperfection.

deduction of a statement is successful, the deduced statement is necessarily true. Yet,

if neither the statement nor it’s negation can be deduced, the agent has no means of

assigning a (bivalent of graduated) truth value to the statement. He is uncertain about

the truth value of the statement, and consequently has only incomplete knowledge about

the state of the world.

“In general, an uncertainty model attaches numbers to logical propositions

which do not indicate a degree of truth (as some authors usually point out)

but a degree of confidence or belief in the truth-value of these propositions.

In this sense, the measure of uncertainty compensates the lack of knowledge

at the propositional level with information at a higher level of abstraction.“

(Godo and Rodríguez, 2008, p.80)

In agreement with most ontologies of imperfections proposed in the GIS literature, Godo

and Rodríguez call the kind of imperfection associated with the incomplete information

problem uncertainty. The incomplete information problem can be resolved by intro-

ducing degrees of belief regarding the truth of a statement. I.e., belief degrees are not

attached to statements, but to truth values of statements. These truth values are usually
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crisp, but can as well be graduated. Examples for theories that quantify and formalize

reasoning with uncertainty are probability theory, possibility theory, or Dempster-Shafer

theory of evidence.

4.1.1.3 Truthlikeness is a Mistaken Information Problem

“In classical logic, falsity entails any statement. But, in many occasions, we may want

to use “false” theories, for instance, Newton’s Gravitational Theory.” These are theories

that are not self-contradictory, but empirically or factually false. Classical logic has no

means of expressing how close a false theory or statement comes to being true, i.e. how

truthlike it is. Truthlikeness is different from vagueness, since a false statement has a

crisp truth value. It is different from uncertainty, since the truth value ’false’ can be

deduced from the knowledge base.

“In a more pragmatic sense, the concept of truthlikeness appears, for ex-

ample, when we want to give an answer to a query over a database: if we

must match exactly the query against the database, we will possibly need

too much time or even we can fail. But, if we allow to match the consult

“approximately” enough then a lot of time may be saved. [...] Note that the

notion of “approximation” to the truth is in correspondence to the one of

error in numerical methods.” (Godo and Rodríguez, 2008, p.82)

The mistaken information problem can be formalized by attaching to statements degrees

of approximate truth, measured as proximity, or closeness, to the truth. The proximity of

a statement ϕ to the truth is measured as a “distance”, or, dually, a similarity, between

models of ϕ and models of “reality”. Logical formalisms that represent and reason with

proximity to truth are usually subsumed under the name similarity logics or similarity-

based reasoning. They aim at “studying which kinds of logical consequence relations

make sense when taking into account that some propositions may be closer to be true

than others. A typical kind of inference which is in the scope of similarity-based rea-

soning responds to the form “if φ is true then ψ is close to be true”, in the sense that,

although ψ may be false (or not provable), knowing thatφ is true leads to infer that ψ is

semantically close (or similar) to some other proposition which is indeed true.” (Godo

and Rodríguez, 2008, p.9).

Research in similarity-based reasoning is mainly divided in two major approaches:

The first approach uses similarity relations between models (or “worlds”) of a logical

statement or theory. I.e., it defines similarity semantically. From the similarity relation
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a notion of approximate semantic entailment is derived which allows to draw approxi-

mate conclusions from approximate premises. The main work in this area is (Ruspini,

1991). The second approach was proposed by Ying (1994). It uses similarity relations

between formulas, i.e. it defines similarity syntactically. A notion of approximate proof

is developed “by allowing the antecedent clause of a rule to match its premise only ap-

proximately” (Ying, 1994, p.830), which again allows for drawing conclusions in an

approximate setting. As shown by Biacino and Gerla (1998), a generalization of Ying’s

apparatus can be reduced to Rational Pavelka Logic as proposed by Pavelka (1979).

Rational Pavelka Logic is the main tool used in this thesis to define an approximate

geometric calculus.

4.1.2 Contributing Imperfections

The types of imperfections that are relevant for geometric reasoning under positional

tolerance are possibilistic uncertainty and truthlikeness. Possibilistic uncertainty stems

from the positional tolerance of points and lines. Truthlikeness stems from the assump-

tion that classical geometry is false but close to the truth under conditions of positional

tolerance.

4.1.2.1 Positional Tolerance is Incomplete Information

If the coordinates of a geometric point p are not precisely known, the information on the

precise position of p is incomplete; The truth of the logical statement “The geometric

point p has coordinates px1,x2q” is uncertain. This problem corresponds to the incom-

plete information problem. As pointed out by Godo and Rodríguez (2008), different

formal theories have been developed for dealing with incomplete information, among

which probability theory, possibility theory and Dempster-Shafer theory of evidence are

the best known. For example in surveying, probability theory is used to describe the error

in a coordinate measurement of a point p. Here, a probability density function f assigns

to each coordinate pair px1,x2q the relative likelihood f px1,x2q that p� px1,x2q holds. If

p� px1,x2q is interpreted as a logical statement that can be either true or false, f px1,x2q

expresses a degree of belief in its truth. The present thesis addresses the simplest form

of imperfections in positional information, namely positional tolerance: Here, positional

constraints of the form “The geometric point p lies in region P” are given, where P is

assumed to be a crisp region, delineated by a sharp boundary. For example, “I am in Vi-

enna” is a statement that expresses my approximate position using Vienna as a location

constraint. Location constraints can be modeled as possibility distributions, assigning
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the value 1 for each coordinate point within P, and the value 0 outside of P.

The appropriate tool for modeling possibilistic uncertainty is possibility theory. Pos-

sibility theory is only marginally used in this thesis: For a reasoning step to be sound,

all involved premises must true. To ensure that the truth of a premise can be recognized,

we replace exact points and lines whose positions are uncertain by location constraints

(sets of possible positions) whose positions are certain; we replace primitive geometric

relations between exact points and lines by relations between location constraints (sets

of possible relations). E.g., we replace the equality relation between points by the over-

lap relation between location constraints, cf. figure 1.1.1 on page 3. A formalization is

devised in chapter 5.

Positional tolerance is a fundamental type of imperfection of positional information,

because it can be seen as an upper approximation of possibility and probability distribu-

tions: In the model discussed above, only bivalent possibilities are used, i.e., statements

can have possibility values 0 and 1. In contrast to that, general possibility distributions

allow for possibility degrees in the interval r0,1s � R. If possibility is interpreted as

an imprecise probability, more specifically, as an upper probability, possibility distribu-

tions can be used to approximate probability distributions, (cf., e.g., E. Adams, 1998).

This holds in particular for bivalent possibility distributions, i.e., for location constraints.

Consequently, to describe the positional tolerance of a point or line, it is not necessary

to have a detailed possibility distribution function, and can thus can be easily assessed

in practical application. It is a possible subject of future work to include more detailed

information about the possibility distributions of, e.g., equality of points. For example,

a possibility degree may be assigned to the statement “The points p and q are equal”

that depends on the area of overlap of the corresponding location constraints of p and q.

Much work in this area is done in the field of shape recognition and image analysis (cf.

e.g. Bloch, 2005), but it is not related to approximate geometric reasoning in the sense

of this work.

4.1.2.2 Classical Geometry as Mistaken Information

As shown in the introductory examples 1.1 and 1.2 in section 1.1, classical geometry

is, under realistic conditions of imprecise positional information, an empirically false

theory. E.g., Euclid’s First Postulate does in general not hold. This deviation from being

a true statement is not arbitrary: According to G. Lakoff and R. Núñez (2000), classical

geometry is an idealized abstraction, i.e., an approximation, of spatial relations between

real entities. In particular, we assume that classical geometry is an approximation of
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geometry under positional tolerance. E.g., we assume that Euclid’s First Postulate is

close to being true if points and lines have positional tolerance. It is the objective of this

work to quantify “how close” theorems of classical geometry are to being true, depend-

ing on “how big” the positional tolerance of the involved points and lines is. We call

an axiomatic theory that approximates tolerance geometry, and at the same time quanti-

fies the approximation, an approximate tolerance geometry. According to the ontology

of imperfections introduced in the last subsection, this problem corresponds to the mis-

taken information problem, and can be formalized with similarity based reasoning. In

the present work, we use Rational Pavelka Logic for similarity based reasoning.

Rational Pavelka logic (RPL) is a fuzzy logical system with evaluated syntax, cf.

subsection 3.2.2.5. It allows for assigning truth degrees to classical logical formulas. In

the framework of similarity logic, we interpret the fuzzy truth degrees of RPL as degrees

of similarity to the truth. A false statement ϕ of classical geometry is paired with its

degree a of truthlikeness. The resulting signed statement pϕ;aq is true in the classical

sense. For example, the statement “My thesis is finished.” is currently false, but close to

truth, whereas the statement “The statement ’My thesis is finished’ is close to truth.” is

true. It is in this sense that approximate tolerance geometry is an axiomatization of ge-

ometry under positional tolerance. Geometric reasoning under positional tolerance can

be implemented as approximate deduction in RPL: A deduction rule in RPL consists of

two components: A syntactical component that coincides with a classical deduction rule,

and a semantic component that specifies how the truthlikeness degree of the conclusion

is derived from the truthlikeness degree of the premises.

4.1.2.3 Truthlikeness is not Vagueness

Spatial distance is dual to spatial proximity. Spatial proximity in turn is a vague con-

cept, and plays a prominent role in GIS theory and applications (c.f. e.g. Frank, 1992;

Worboys, 1996, 2001; Worboys et al., 2004; Fisher, 1999, 2000; Dilo, 2006; Schock-

aert, 2008). The present work uses spatial proximity for quantifying similarity to the

truth, and not for modeling a vague concept. L. Godo and R. Rogriguez (2008) give a

non-spatial example, that clarifies the ontological difference between vageness and un-

certainty on the one hand, and proximity to truth on the other hand: The truth-value of

the statement “’the height of Mount Everest is 8.800 m’ is certainly false and precisely

formulated, therefore it is neither uncertain nor vague.” (Godo and Rodríguez, 2008,

p.7). Similarly, in example 1.2 on page 4, Euclid’s First Postulate is certainly false un-

der conditions of positional tolerance. Therefore it is neither uncertain nor vague. Yet,
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we can measure its similarity to the truth, i.e., its truthlikeness.

4.2 A Conceptual Framework for Sound Geometric Reason-
ing under Positional Tolerance

The forgoing section identified two types of imperfections that are relevant for geometric

reasoning under positional tolerance. These are possibilistic uncertainty and truthlike-

ness. The appropriate formal tool for modeling possibilistic uncertainty is possibility

theory, and the appropriate tool for modeling truthlikeness is similarity based reasoning.

The present section uses this analysis for deriving a conceptual framework for formal-

izing geometric reasoning under positional tolerance. It consist of three major design

choices: The first design choice is to use an axiomatic approach to geometric reasoning,

cf. subsection 4.2.1. The second design choice is to employ tolerance geometry, cf.

subsection 4.2.2. I.e., we replace exact points and lines whose position is uncertain by

location constraints (regions) whose position is certain; we replace primitive geometric

relations accordingly. The third design choice is to use similarity based reasoning, cf.

subsection 4.2.3.

4.2.1 Design Choice 1: Axiomatic Geometry

In order to be able to investigate the logical notion of soundness, we choose an axiomatic

approach to projective geometry. Axiomatic approaches to geometry are usually referred

to as synthetic geometry, and contrast with analytic and algebraic approaches. The term

analytic geometry traditionally refers to Cartesian geometry, which is based on coordi-

nates and uses principles and methods of analysis and algebra. As opposed to analytic

geometry, synthetic geometry does not rely on coordinate representations.

We use an axiomatization of projective geometry. The axioms are introduced in

section 3.1.1. The choice of approaching the problem of soundness by adopting an

axiomatic approach to geometry complies with the approach of Roberts (1973) and Katz

(1980) outlined in subsection 1.3 and section 2.3.

4.2.2 Design Choice 2: Tolerance Geometry

The motivation for the present work is to define a sound calculus for doing geometry

with points and lines that have positional tolerance. Example 1.1 given in the introduc-

tion illustrates that the soundness of geometric reasoning is corrupted if the positional
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Figure 4.2.1: Point or lines with tolerance are (a) certainly distinct; (b) possibly equal.

tolerance of points and lines is not accounted for. In the example, two points p and q

that coincide in reality (p � q) are represented by two different point features p̄ � q̄ in

the GIS (cf. figure 1.1.1b on page 3). Constructions and tests that use p̄ and q̄ employ

a wrong assumption on the truth value of the equality relation, and consequently may

yield wrong or meaningless results. In order to ensure that the truth or falsity of an as-

sumption can be recognized, it is necessary to explicitly represent the imperfection of

the information in the formalism. The present work addresses this issue by defining an

interpretation of the object variables and predicates of classical geometry that explicitly

represents positional tolerance. We call this interpretation the intended interpretation of

geometric primitives under positional tolerance.

More specifically, in an interpretation domain of classical geometry (e.g., R2 or

RP2), we replace the classical interpretation of geometric objects whose positions are

uncertain by location constraints whose positions are certain. Here, we confine our con-

siderations to two dimensional geometry, i.e., we consider points and lines as primitive

objects. We replace a point p with positional tolerance by the set P of all points that

possibly coincide with p. Similarly, replace a line l with positional tolerance by the set

L of all lines that possibly coincide with l. We assume that knowledge about location

constraints is certain, i.e. that location constraints are specified by crisp sets.

Similarly, we replace geometric relations whose truth values are uncertain by ge-

ometric relations whose truth values can be recognized with certainty. We confine our

considerations to two geometric predicates: The equality predicate and incidence predi-

cate. Here, a point and a line are called incident, if the point lies on the line. If points and

lines are subject to positional tolerance, the truth values of the predicates can, in general,

not be recognized with certainty. To ensure the soundness of geometric arguments, we

replace equality and incidence by weaker predicates whose truth values can always be
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Figure 4.2.2: A point with tolerance and a line with tolerance are (a) certainly not inci-
dent; (b) possibly incident.

Figure 4.2.3: (a) Lower possibility of incidence; (b) higher possibility of incidence.

recognized with certainty: possible equality (indistinguishability) replaces equality, and

possible incidence replaces incidence. Figure 4.2.1a illustrates that two points p,q (or

two lines l,m) with positional tolerance are certainly distinct (distinguishable) if their

location constraints P,Q (or L,M, respectively) are disjoint. Figure 4.2.1b illustrates that

they are possibly equal (indistinguishable) if their location constraints overlap. Notice

that location constraints for lines with positional tolerance are sets of lines. I.e., the

location constraints L,M overlap, if they have a line l̄ � m̄ in common. Figure 4.2.2a il-

lustrates that a point and a line with positional tolerance are certainly not incident if their

location constraints are disjoint. Figure 4.2.2b illustrates that they are possibly incident,

if their location constraints overlap.

In the present work, we simplify the formalization task (cf. chapters 5 and 6) by

replacing the incidence relation by the subset relation instead of replacing it by the over-

lap relation. The subset relation is stronger than the overlap relation in the following

sense: The subset relation is assigned the truth value 1, if every p̄ P P is incident with

some l̄ P L, and is 0 otherwise, cf. figure 4.2.3. In contrast to that, the overlap relation is

assigned the truth value 1, if some p̄ P P is incident with some l̄ P L, and is 0 otherwise,

cf. 4.2.2. I.e., in case the subset relation holds, the possibility that p and l are indeed

incident is higher than it is in the case where only the overlap relation holds. Instead of

introducing a bivalent distinction between certainly not incident and certainly incident,

we introduce a bivalent distinction between a lower possibility of incidence and a higher

possibility of incidence. The respective possibility degrees are not represented in our

formalization. As already discussed in subsection 4.1.2.1, doing so is a refinement to the
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proposed theory, and may be addressed in future work.

Another possible generalization of the proposed framework is the following: The

present work is based on the assumption that location constraints are specified by crisp

sets. This assumption is only a minor restriction to the applicability of the model, be-

cause every bounded location constraint whose spatial location or spatial extent is vague

or uncertain can be enclosed in a crisp set. Vague regions (cf., e.g., Burrough and

Frank, 1996; Dilo, 2006) or probability distributions (cf., e.g. Leung et al., 2004) may

be addressed in future work.

The approach of replacing geometric relations by weaker, i.e. more general, relations

that are obtained from the classical ones was originally proposed by F.S. Roberts, under

the name of tolerance geometry (cf. subsection 2.3.1).

4.2.3 Design Choice 3: Similarity Based Reasoning

According to Lakoff and Núñez (2000), classical geometry is an idealized abstraction of

spatial relations between entities and locations in the real world. Consequently, we may

assume that statements of classical geometry are close to being true, when applied to

primitives with uncertainty, as long as the uncertainty is small. We further assume that

it is possible to quantify for every statement “how close” it is to being true. Using an

axiomatic approach to geometry allows us to employ the framework of similarity logic

to quantify and reason with proximity to the truth (cf. subsection 4.1.1.3). The specific

similarity logic used in this work is Łukasiewicz Rational Pavelka Logic (Biacino and

Gerla, 1998).

Łukasiewicz Rational Pavelka Logic (RPL) is based on Łukasiewicz fuzzy logic,

which is a many-valued logic based on graduated truth values (cf. subsection 3.2.2). In

the present work, the graduated truth values of Łukasiewicz fuzzy logic are interpreted

as degrees of truthlikeness. The basic idea behind using graduated truth values is to

increase the expressive power of the background logic to resolve contradictions that

stem from false assumptions: In a fuzzy theory, a formula ϕ and its negation  ϕ may

both be gradually true without making the theory inconsistent (cf. subsection 3.2.2.5).

Łukasiewicz Rational Pavelka Logic augments Łukasiewicz fuzzy logic by allowing

for fuzzy theories and graduated deduction, cf. subsections 3.2.2.5-3.2.2.7: Łukasiewicz

fuzzy logic is a “classical” fuzzy logical system. Here, theories are crisp sets of ax-

ioms. All axioms have a fuzzy truth degree of 1, i.e., they are absolutely true. Deduc-

tion preserves absolute truth, i.e., absolutely true premises yield absolutely true conclu-

sions, and conclusions can not contradict each other or the premises. In contrast to that,
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Łukasiewicz Rational Pavelka Logic is an evaluated fuzzy logical system. Here, theo-

ries are fuzzy sets of axioms. Axioms can have a truth degree that is less than one, i.e.,

they are allowed to be partially true. Deduction preserves partial truth, i.e., partially

true premises yield partially true conclusions, and conclusions can not contradict each

other or the premises. Since graduated truth values yield a higher expressive power than

bivalent truth values, a formula ϕ and its negation  ϕ may both be deduced as partially

true conclusions without contradicting each other.

In the present work, we interpret fuzzy truth degrees as truthlikeness degrees, i.e., as

degrees of similarity to the truth. A truthlike statement is interpreted as an approxima-

tion of an unknown true statement, and its degree of truthlikeness measures the quality

of the approximation. Accordingly, fuzzy theories are interpreted as theories that are

approximately true. Graduated deduction is interpreted as approximate deduction, and it

propagates the quality of the approximation through the reasoning steps.

In order to apply Łukasiewicz Rational Pavelka Logic as a similarity logic, it is

necessary to quantify “how close” classical geometric statements are to being true. I.e.,

it is necessary to quantify their truthlikeness. As a first step to doing this, we interpret the

geometric predicates equality and incidence by the intended interpretation, and define for

them a truthlikeness measure. Here, the spatial setting of the problem statement suggests

a similarity measure that is dual to a spatial distance measure. As an example, consider

the equality relation p� q. p� q is an atomic formula of classical geometry. It is

true for a specific object assignment in the intended interpretation if the corresponding

location constraints P,Q overlap. We can measure the distance of the relation p� q from

being true by measuring the spatial distance between the sets P and Q, cf. figure 5.3.1

on page 118. The spatial distance between P and Q measures “how wrong” it is that P

and Q overlap. In other words, the spatial distance measure defines a semantic distance

measure. Having this at hand, we can define the similarity degree of p� q as a measure

that is dual to the spatial distance of P and Q. Having defined truthlikness degrees for

atomic formulas, the second step is to derive from them the truthlikeness degrees of

compound geometric statements. Compound statements comprise atomic formulas that

are linked by logical connectives. Since truthlikeness degrees take values in the interval

r0,1s, fuzzy logical connectives must be use. Specifically, we employ Łukasiwicz fuzzy

logic.

Approximate deduction with Łukasiwicz Rational Pavelka Logic can be used to

propagate positional tolerance error through the steps of geometric reasoning: Truth-

likeness measures similarity to the truth, and it is inverse to distance from the truth, i.e.,

to error. We show in chapter 6 that that the definition of distance from the truth, as exem-
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plified above, is a second order positional tolerance error. I.e., truthlikeness propagation

with RPL is implicit error propagation of (second order) positional tolerance.

The approach of using approximate truth for resolving inconsistencies in the axioma-

tization complies with the approach pursued by Katz (1980). As discussed in subsection

2.3.2, Katz uses Goguen’s logic of inexact concepts for representing graduated truth

(Goguen, 1968). In contrast to that, the present work is based on Łukasiewicz Ratio-

nal Pavelka logic (Pavelka, 1979). Two noticeable differences between the two logics

are the order of truth values and the deduction system used: Goguen’s logic represents

absolute truth by 0 (no error), and absolute falsity by 8, while Łukasiewicz logic uses

the standard set of truth values r0,1s, where 1 represents absolute truth, and 0 represents

absolute falsity. More important in the context of this work is the second difference:

Goguen’s logic uses a classical deduction system, i.e. while statements may have partial

truth, axioms need to hold with absolute truth, and absolute truth is preserved by the

deduction system. In contrast to that Pavelka style deduction allows for deriving par-

tially true conclusions from partially true premises, and thereby allows for propagating

an error measure.

4.3 Summary and Results

In section 4.1 we used the ontology of imperfections proposed by L. Godo and R. Ro-

dríguez (2008) to categorize and analyze the types of imperfections that contribute to

geometric reasoning under conditions of positional tolerance. These are possibilistic

uncertainty and truthlikeness. The corresponding formal tools for describing these im-

perfections are possibility theory and similarity based reasoning.

In section 4.2, we used the analysis to devise a conceptual framework for formaliz-

ing sound geometric reasoning under positional tolerance. The framework consists of

three formal toolboxes, namely the axiomatic approach to geometry, tolerance geome-

try, and similarity based reasoning with Rational Pavelka Logic. We discussed the three

constituents. In particular, we discussed that Rational Pavelka Logic provides valid rules

for graduated, i.e., approximate deduction. Together with a correct interpretation of ge-

ometric primitives with positional tolerance the approximate deduction rules of Rational

Pavelka Logic ensure that geometric reasoning under positional tolerance is sound. We

define the correct intended interpretation in the subsequent chapter.



Chapter 5

The Intended Interpretation and Its
Similarity to the Truth

“When one admits that nothing is certain one must, I think, also admit that

some things are much more nearly certain than others.”

– Bertrand Russel

The forgoing chapter 4 identified two kinds of imperfections that are relevant to our

problem statement, together with appropriate formal tools to model them. These are

possibilistic uncertainty, together with possibility theory, and truthlikeness, together

with similarity based reasoning. Based on this analysis we defined a conceptual frame-

work for formalizing sound geometric reasoning under conditions of positional toler-

ance. The framework comprises axiomatic geometry, tolerance geometry, and similarity

based reasoning with Rational Pavelka Logic. Sections 5.1 and 5.2 address tolerance

geometry: Using a bivalent version of possibility theory, we give a formal definition

of the intended interpretation of geometric primitives under positional tolerance. More

specifically, section 5.1 defines the intended interpretation of the object sorts point and

line under conditions of positional tolerance, and we call them approximate geometric

objects; Section 5.2 defines the intended interpretation of the predicates equality and in-

cidence under conditions of positional tolerance by Boolean relations. Additionally, we

define a unary Boolean exactness predicate, together with its interpretation. The exact-

ness predicate singles out geometric objects without positional tolerance. We call the

100
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so defined relations geometric relations with positional tolerance. Both sections give

general definitions first, and exemplify their use in the real projective plane RP2.

In order to apply Rational Pavelka Logic as a similarity logic, it is necessary to define

a truthlikeness measure for classical geometric statements (cf. subsection 4.2.3). This

is done in section 5.3. Based on the intended interpretation defined in sections 5.1 and

5.2, we define a truthlikeness measure for atomic formulas, i.e., for geometric relations.

Additionally, we define a truthlikeness measure for the exactness predicate. These mea-

sures can be seen as a fuzzy interpretation of geometric predicates under conditions of

positional tolerance. I.e., the so defined geometric relations are fuzzy relations. Since

we interpret fuzzy truth degrees as truthlikeness degrees, we call them approximate ge-

ometric relations with positional tolerance. In order to derive truthlikeness degrees of

compound geometric statements from the truthlikeness degrees of atomic formulas, the

connectives of Łukasiewicz fuzzy logic are used. Again, the section gives general defi-

nitions first, and exemplify their use in the real projective plane RP2.

5.1 Geometric Objects with Positional Tolerance

Sections 5.1.1 and 5.1.2 motivate and define the intended semantic of points and lines

with positional tolerance as location constraints in a metric space. Subsection 5.1.3

shows that the definitions are consistent with the classical interpretation of geometric

points and lines for the case that positional tolerance is zero. Finally, we concretize the

definitions in subsection 5.1.4 for the real projective plane with the elliptic metric.

5.1.1 Points with Positional Tolerance

The present work aims at providing a tolerance geometry for vector based GIS. Vector

based GIS use coordinate points for object representation, typically Cartesian or ho-

mogeneous coordinate points. In the literature (e.g. Pullar, 1993), the term positional

tolerance usually indicates that the assumed “true” coordinate points that define the ob-

ject in question are not exactly known, but that, for each of them, a neighborhood can be

given that constrains their coordinates. I.e., such a neighborhood is a location constraint

for the unknown “true” point, and can be understood as the set of its possible coordinate

positions. The following definition specifies the intended interpretation of a point with

positional tolerance. Points that do not have positional tolerance are treated as special

cases.
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Figure 5.1.1: (a) A line feature and a geometric line. (b) Points with tolerance induce a geomet-
ric line with tolerance.

Definition 5.1. Let (X ,dX) be a metric space, and let τdX be the induced metric topology

on X . P � X is called an approximate point in X , if P is either a τdX -topological neigh-

borhood of a point p P X or a singleton, P � {p}. We denote the set of approximate

points in X by PX .

Remark 5.2. It follows from definition 5.1 that approximate points are nonempty.

5.1.2 Lines with Positional Tolerance

A line feature in GIS consists of a number of connected line segments, and is repre-

sented as a tuple pp1, . . . , pnq of coordinate points. Each pair (pi, pi�1), i P 1, . . . ,n�1,

of consecutive coordinate points of the tuple defines a line segment, together with its

corresponding geometric line li � pi_ pi�1, cf. figure 5.1.1a. If the points pi, pi�1 have

positional tolerance with constraining sets Pi,Pi�1, respectively, the line li has positional

tolerance and is constrained by a set Li of geometric lines, cf. 5.1.1b. It is consequently

reasonable to interpret a geometric line with positional tolerance by a set of geometric

lines. The lines of the set Li can be seen as possible candidates for the ideal “true” line

li .

Depending on the axiomatization of geometry, lines can either be defined as derived

objects that are specified by pairs of points, like it is done above, or as primitive objects

of the geometry similar to geometric points. The present work treats lines as geometric

primitives and not as derived object. This is in contrast to Tarski’s one-sorted axiomati-

zation of Euclidean geometry (1958), which is based on the point primitive only, and is

used in the works of F. Roberts (1973) and Katz (1980). The advantage of treating lines

as geometric primitives is that the positional tolerance of a geometric line need not be

defined by a pair of points with tolerance, but can be specified by arbitrary line param-

eters. As an example, figure 5.1.2 depicts a set of lines li : y � kix� di in the Cartesian

plane, and the corresponding points in the parameter space spanned by slope ki and in-

tercept di. The 1-to-1 correspondence of points and lines in the plane is usually referred
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Figure 5.1.2: (a) Set of lines in the Cartesian plane. (b) Corresponding set of points in the
slope-intercept parameter space.

to as point-line-duality.

Similar to the definition of points with tolerance, we assume that a line l with toler-

ance consists of a set L of geometric lines, which are “close” to the unknown “true” line.

In order to define a topology on the set of geometric lines, it is useful to identify lines

with their corresponding points in a dual line parameter space, and to endow the param-

eter space with a topological structure, e.g. by regarding it as a normed vector space (cf.,

e.g., Veelaert, 2001). In figure 5.1.2b, the Grey area indicates such a neighborhood in

the slope-intercept parameter space w.r.t the Euclidean norm. The Grey area in figure

5.1.2a sketches the convex hull of the corresponding set of lines in the Cartesian plane.

Definition 5.3. Let LX denote the set of geometric lines in a domain X . For a given

geometric line l P LX , denote by l1 its dual point in a dual line parameter space Y � X 1.

Let dY be a metric on Y , and let τdY be the induced metric topology on Y . L� LX is called

an approximate line in X , if L1 � {l1|l P L} is an approximate point in Y . We denote the

set of approximate lines in X by LX .

Remark 5.4. It follows from the definition that approximate lines are nonempty.

Remark 5.5. The present work uses the common trick of “hiding” or “wrapping” uncer-

tainty in higher level objects: Instead of operating on points and lines with possibilitic

uncertainty, we operate on sets of points and sets of lines that are known with certainty.
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As a consequence of the assumption that these “location constraints” are known with cer-

tainty, we model approximate points and approximate lines by crisp sets, i.e. by sets with

sharp boundaries. It is, in principle, possible to consider points and lines with second

order uncertainty, e.g. by assuming that location constraints have unsharp boundaries or

follow a probability distribution. In order to keep the problem statement as simple as

possible, this line of research is not pursued in the present thesis, but may be adopted for

future work.

5.1.3 Consistency with Classical Geometry

One property of the intended interpretation of approximate points and lines that directly

follows from its semantic is consistency with the (corresponding) classical interpretation:

An approximate point is a set P of coordinates that possibly coincide with the coordinates

of a “true” point p. If there is no uncertainty about the coordinates of p, P� {p} holds.

Similarly, if there is no uncertainty about the parameters of a “true” line l, the set of

possible coordinates of l coincide with the one-element set containing l, i.e. L� {l}.

Definition 5.6. If p is a geometric point, the singleton P� {p} is called an exact point

or abstract point, and {p} and p are identified. If l is a geometric line, the singleton

L� {l} is called an exact line or abstract line, and {l} and l are identified.

The intended property of consistency with classical geometry can also be justified

cognitively: Lakoff and Núñez (2000) lay out a cognitive science of mathematics based

on embodied cognition. They explain the cognitive conceptualization of point as a limit

process using a conceptual metaphor, called the infinite nesting property for sets. A

similar assumption is adopted by some region-based approaches to classical geometry,

which define geometric points as sequences of nested regions of decreasing size (e.g.

Weihrauch and Schreiber, 1981; Gerla, 1990; Bennett et al., 2000c). We adopt this

approach in this work, implying that a geometric point without positional uncertainty

is conceptualized as a limit of increasingly accurate positional measurements.

5.1.4 The Projective Plane as Interpretation Domain

Subsections 5.1.1 and 5.1.2 discussed properties of points and lines with tolerance on

a generic level, without referring to a specific domain. The present section concretizes

these definitions by providing an interpretation in the projective plane.

Consider the real projective plane RP2, together with the normalized elliptic metric e (cf.

subsection 3.1.2.2). Using the coordinate charts h�1
1 ,h�1

2 ,h�1
3 for RP2 (cf. subsection
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3.1.2.3), the real projective plane RP2 can be used as an underlying coordinate space for

defining approximate points and lines. In order to achieve a faithful representation of

Cartesian GIS maps, it is necessary to restrict considerations to well-conditioned subsets

C of RP2, cf. subsection 3.1.2.3. This requirement ensures that every subset A � C
is the image of a bounded subset of R2 under h3. More specifically, a set C � RP2 is

well-conditioned, if, for some orthonormal basis of R3, h�1
3 (C) �: C is a subset of the

open Euclidean unit disc D2
E � R2, i.e. if√

p2
1� p2

2   1 @pp1, p2q
J PC. (5.1.1)

The elliptic metric

e : RP2�RP2 Ñ [0,1] , e(p,q)�
2
π
� arccos

|p �q|
‖p‖‖q‖

, (5.1.2)

turns RP2 into a metric space, cf. subsection 3.1.2.2. Here, p P p � pp1 : p2 : p3q and

q P q � pq1 : q2 : q3q , p,q P
(
R3�{0}

)
, cf. definition (3.1.5). The metric e induces

a topology τe on RP2. The topology on C � RP2 is the subspace topology induced

by τe, which is defined by τe,C � {TXC|T P τe}. According to subsection 5.1.1, the

intended interpretation of a point with tolerance is either a singleton or a topological

neighborhood in a metric space. The elliptic metric allows for defining τe,C-topological

neighborhoods in the metric space (C,e). I.e., we set

(X ,dX) :� (C,e) . (5.1.3)

In order to minimize the approximation error of the Euclidean metric by the elliptic

metric e, it is necessary to require C to be centered around O3� p0 : 0 : 1q, cf. subsection

3.1.2.3.

Definition 5.7. Let C be a well-conditioned and centered subset of RP2. An approximate

point P in C is a τe,C-neighborhood of a point p PC, or a singleton P� {p} in the metric

space (C,e). The set of approximate points in C is denoted by PC.

Example 5.8. Let C� h3

(
D2
)

and p� p0 : 0 : 1q. Then C is a well conditioned subset

of RP2, and p P C. P1 :� {p} and P2 :� {q P C|epp,qq ¤ 0.1} are approximate points

in C.

According to subsection 5.1.2, the intended interpretation of a line with tolerance

is a set of geometric lines, which is dual to an approximate point in a line parameter
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space. Consider the dual projective plane
(
RP2

)1, which is the set of all lines in RP2.

The normalized elliptic metric

e1 :
(
RP2)1� (RP2)1Ñ [0,1] , e1 (l,m) :� e

(
l1,m1

)
. (5.1.4)

turns
(
RP2

)1 into a metric space and induces the metric topology τe1 on
(
RP2

)1, cf.

subsection 3.1.2.4. Given a well conditioned subset X � C of RP2, denote by LC �(
RP2

)1 the set of lines passing through C. The topology on LC is the subspace topology

induced by τe1 , which is given by τe1,LC � {TXLC|T P τe1}. The dual set of LC, L1C �
RP2, is the set of homogeneous line coordinates of lines in LC, and is a parameter space

for LC. The topology on L1C � RP2 is the subspace topology induced by
(
RP2,τe

)
,

which is given by τe,L1
C
� {OXL1C|O P τe}. I.e., we set

(Y,dY ) :�
(
L1C,e

1
)
�
(
C1,e

)
�
(
X 1,dX 1

)
. (5.1.5)

Definition 5.9. Let C be a well-conditioned and centered subset of RP2, and let LC �(
RP2

)1 be the set of lines passing through C. An approximate line L in C is the dual

set of an approximate point L1 in a well conditioned subset of the metric space
(
L1C,e

1
)
.

The set of approximate lines in C is denoted by LC.

Example 5.10. Let C� h3

(
D2
)

, D� h2

(
D2
)

, and l1 � p0 : 1 : 0q PD. Then D� L1C �
RP2 is a well conditioned subset of

(
L1C,e

1
)
. L11 :� {l1} and L12 :� {m1 P L1C|epm

1, l1q ¤
0.1} are approximate points in D. I.e., L1 :� {l} and L2 :� {m P LC|e

1pm, lq ¤ 0.1} are

approximate lines in C.

Remark 5.11. Approximate lines can not be defined directly in
(
LC,τe1,LC

)
, but must

be indirectly defined as approximate points in L1C. To see why, recall that L1 is well

conditioned if L1 � hipD2q holds for some i� 1,2,3 and some basis of R3, where D2 is

the open unit disc in R2, cf. definition 3.1 on page 59. As discussed in subsection 3.1.2.4,

L1C � C1 is a Möbius strip and not well conditioned. Consequently, a neighborhood

L1 � L1C is not necessarily well conditioned either. If L1 is not well conditioned, a notion

of size of L can not be sensibly defined: A notion of size is closely related with the

notion of interior of a circle, which is not definable in RP2 without reference to an affine

patch, cf. also subsections 3.1.2.3.

Remark 5.12. Notice that for measuring the distance between different approximate lines

L�M, it is not necessary that L1,M1 lie in the same well conditioned subset. I.e.,

(L1YM1)� L1C need not be well defined.
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Figure 5.1.3: Set of exact Cartesian lines (a) that is representable by an approximate line
in RP2, (b) that is not representable by an approximate line in RP2.

Remark 5.13. The condition that L1 must be well conditioned implies that the set of

Euclidean lines h�1
3 pLq � R2 that correspond to the set L � RP2 can not be “too big”,

i.e., the associated uncertainty must not be too large. For example, let l,m P L and

lp3q � h�1
3 plq and mp3q � h�1

3 pmq the corresponding Euclidean lines in the affine patch

A3 � R2. Then the angle �
(
lp3q,mp3q

)
between lp3q and mp3q is upper bounded by π

2 .

I.e., as sketched in figure 5.1.3 , if the angular variation of a Cartesian line with posi-

tional tolerance is larger than π

2 , then it is not representable as an approximate line in

RP2. We expect that this fact does not impose any restriction on the practical applica-

bility of the model to GIS data, because positional uncertainty in input data is usually

small in relation to the size of the map, and manually rejected otherwise. To prevent

erroneous representation automatically, a test can be implemented that checks Euclidean

parameters such as the maximal angle between member lines. The verification of this

assumption by tests with real world data is left for future work.

5.2 Geometric Relations with Positional Tolerance

The forgoing section introduced the intended interpretation of the geometric object types

point and line under conditions of positional tolerance. I.e., we defined the primitive

objects of a geometry with tolerance. The present section introduces the intended inter-

pretation of the predicates geometric equality and incidence for points and lines with po-

sitional tolerance, such that a correct representation of the incomplete positional knowl-

edge is granted (cf. subsections 5.2.1-5.2.3). I.e., we define the primitive relations of

a geometry with tolerance. Additionally, subsection 5.2.4 defines a new predicate that

tests whether an approximate point or line is exact or not. Again, we define these no-

tions in a general metric space first, and concretize them later for the real projective plane
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with elliptic metric, cf. subsection 5.2.5. Subsection 5.2.6 shows that the definitions are

consistent with the classical interpretation of geometric predicates. Finally, we show in

subsection 5.2.7 that the intended interpretation of geometric primitives with tolerance

does not satisfy the classical projective axioms. I.e., in order to axiomatize geometry

with positional tolerance, the classical axioms need to be adapted. This insight was the

motivation and starting point of the thesis, cf. subsection 1.1.

5.2.1 Boolean Relations Define the Intended Truth

As discussed in the motivation section 1.1, we expect that a correct interpretation of

geometric relations under positional tolerance does not satisfy all the classical axioms

of projective geometry. For example, we discussed in the introductory section 1.1 that

possible equality is not transitive. In this case, some or all of the classical geometric

statements are false. It is the goal of the thesis to measure “how false” (or conversely

“how true”) a classical geometric statement is, if we interpret it correctly under condi-

tions of positional tolerance. In order to define such a measure of deviation from the

truth (or conversely, of similarity to the truth), it is necessary to either know the truth,

or to agree on an interpretation that we accept as truth. The present subsection does the

latter by defining truth for the geometric predicates geometric equality and incidence

under conditions of positional tolerance. We motivate our definitions by possibilities.

In defining truth as a reference for a similarity measure, we are only interested in

differentiating true statements from all other statements. Consequently, for this purpose,

we understand truth as a bivalent concept: Only truth and falsity are distinguished, and

the intended interpretation of predicates are given in terms of Boolean relations.

5.2.2 Equality with Positional Tolerance eB

As a consequence of interpreting points and lines that have positional tolerance by lo-

cation constraints, i.e. by sets of possible locations, equality of points and lines with

tolerance can not be recognized with certainty. In order to guarantee a correct represen-

tation of the available information, the geometric equality predicate must be interpreted

by possible equality (indistinguishability) of exact points with tolerance. It can be repre-

sented by overlapping location constraints of equal sort, i.e. overlapping of an approx-

imate point with an approximate point, or overlapping of an approximate line with an

approximate line (cf. figure 4.2.1 on page 95). Notice that by “overlapping approximate

lines”, we mean that the approximate lines have a line (and not only a point) in common.
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Definition 5.14. The intended interpretation of the geometric equality predicate under

conditions of positional tolerance in a domain X is given by the Boolean relations

eB : PX �PX Ñ {0,1}, eBpP,Qq � (PXQ�∅) , and (5.2.1)

eB : LX �LX Ñ {0,1}, eBpL,Mq �
(
L1XM1 �∅

)
. (5.2.2)

If eBpP,Qq � 1, the approximate points P and Q are called equal with tolerance. Simi-

larly, if eBpL,Mq � 1, the approximate lines L and M are called equal with tolerance.

5.2.3 Incidence with Positional Tolerance iB

Following the same semantic, a correct interpretation of the incidence predicate under

conditions of positional tolerance is possible incidence of an exact point with tolerance

and an exact line line with tolerance. In terms of location constraints, possible incidence

of exact objects translates into the overlap relation between constraints of different sort,

i.e. into overlapping of an approximate point and an approximate line (cf. figure 4.2.2e

on page 96): The overlap relation is assigned the truth value 1, if if some p̄ PP is incident

with some l̄ P L. In order to simplify the modeling task, the present research uses a more

restrictive relation, namely the subset relation:

Definition 5.15. The intended interpretation of the incidence predicate under conditions

of positional tolerance in a domain X is the Boolean relation

iB : PX �LX Ñ {0,1}, iBpP,Lq � (P� L) , (5.2.3)

If iBpP,Lq � 1, the approximate point P and the approximate line L are called incident

with tolerance.

I.e., we call P and L incident with tolerance, if every p̄ P P is incident with some l̄ P L.

The extension of incidence with tolerance with tolerance to the more general overlap

relation (PXL�∅) is left for future work.

5.2.4 Exactness xB as an Additional Predicate

The difference between classical primitives and primitives with tolerance is the posi-

tional uncertainty of the latter. If, as suggested by Lakoff and Núñez (2000), classical

geometric relations approximate spatial relations between real objects, it is reasonable

to assume that the distance between classical and approximate geometry with tolerance
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should continuously decrease with decreasing overall uncertainty. In particular, approx-

imate geometry with tolerance should coincide with classical geometry in the limit case.

We do not prove a continuity property for the proposed geometry with tolerance, but

we adopt consistency with classical geometry in the limit case as a basic criterion for

specifying an intended interpretation of approximate geometry.

In order to allow for representing classical geometry as a special case of geometry

with tolerance, we introduce a new geometric predicate, exactness, and denote it by

X. The exactness predicate X singles out the set of classical primitives from the set of

approximate primitives. The intended interpretation of Xppq � 1 is P� {p}, i.e., “p has

no positional tolerance”:

Definition 5.16. The intended interpretation of exactness of points with tolerance in a

domain X is the set

xB : PX Ñ {0,1}, xBpPq � (|P|� 1) . (5.2.4)

Here, |P| denotes the cardinality of the set P. If xBpPq � 1, P is called exact. Similarly,

the intended interpretation of exactness of lines with tolerance in a domain X is the set

xB : LX Ñ {0,1}, xBpLq �
(∣∣L1∣∣� 1

)
. (5.2.5)

If xBpLq � 1, L is called exact.

The exactness measure xB can be seen as an inverse size measure, xB� 1�sB, where

the size

sBpPq :�max{∆pp,qq|p,q P P} (5.2.6)

of an approximate point P is measured based on the discrete metric ∆,

∆pa,bq �

1 if a� b,

0 if a� b.
(5.2.7)

An exactness predicate does not explicitly occur in classical geometry, because prim-

itive objects are exact in all models of classical geometry, or an isomorphism to such a

model exists. Yet, we may augment the classical projective axioms by instances of X

without changing its class of models. In subsection 3.1.1.2 we listed the classical ax-

ioms of projective geometry as follows:

(EP1) @p. [Epp,pq],
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(EP2) @p,q. [Epp,qq Ñ Epq,pq] ,

(EP3) @p,q,r. [Epp,qq& Epq,rq Ñ Epp,rq] ,

(EL1) @l. [Epl,lq] ,

(EL2) @l,m. [Epl,mq Ñ Epm,lq] ,

(EP3) @p,q,r. [Epp,qq& Epq,rq Ñ Epp,rq] ,

(Pr1) @p,q.Dl. [ Epp,qq Ñ Ipp,lq& Ipq,lq],

(Pr2) @p,q,l,m. [ Epp,qq& Ipp,lq& Ipq,lq& Ipp,mq& Ipq,mq Ñ l� m] ,

(Pr3) @l,m.Dp. [Ipp,lq& Ipq,lq],

(Pr4) @l.Dp,q,r. [ Epp,qq& Epq,rq& Epr,pq& Ipp,lq& Ipq,lq& Ipr,lq] ,

(Pr5) Dp,q,r.@l. [Ipp,lq& Ipq,lq& Ipr,lq] .

We may, for example, add instances of X to the transitivity axiom (EP3) without affecting

the models of the theory:

pEP31q @p,q,r. [Xppq& Xpqq& Xprq& p� q & q� r Ñ p� r] .

Another (weaker) variant is, e.g.,

pEP32q @p,q,r. [Epp,qq& Xpqq& Epq,rq Ñ Epp,rq] .

The intended classical interpretation of Xppq is “p is a point”, i.e., it coincides with the

set Pclass of classical points,

x : Pclass Ñ {0,1}, xppq � 1.

The intended interpretation with tolerance, xB, extends the classical interpretation to the

domain P �Pclass of approximate points.

5.2.5 The Projective Plane as Interpretation Domain

The relations eB, iB and xB defined in subsections 5.2.2, 5.2.3 and 5.2.4 respectively, are

given without reference to a specific algebraic domain X . We concretizes the definitions
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for the projective plane: For a well-conditioned and centered subset of C� RP2, we set

X :� C. The relations eB, iB and xB are given by

eB : PC�PC Ñ {0,1}, eBpP,Qq � (PXQ�∅) , and (5.2.8)

eB : LC�LC Ñ {0,1}, eBpL,Mq �
(
L1XM1 �∅

)
, (5.2.9)

iB : PC�LC Ñ {0,1}, iBpP,Lq � (P� L) , (5.2.10)

xB : PC Ñ {0,1}, xBpPq �
(∣∣P1∣∣� 1

)
, (5.2.11)

xB : LC Ñ {0,1}, xBpLq �
(∣∣L1∣∣� 1

)
. (5.2.12)

5.2.6 Consistency with Classical Geometry

For exact points and lines, equality with tolerance can be identified with equality, and

incidence with tolerance can be identified with incidence: For P � {p} and Q � {q},
PXQ � ∅ holds iff p � q; for P � {p} and L � {l}, P � L holds iff p � l, i.e. if

p and l are incident. As already discussed in subsection 5.2.4, xB is consistent with

classical geometry in the sense that it singles out the classical (exact) points from the set

of approximate points: For P� {p}, xBpPq � 1 iff p PPclass.

5.2.7 Geometric Predicates with Positional Tolerance do not Satisfy the
Classical Projective Axioms

The forgoing subsection showed that the interpretation {P,L ,eB, iB,xB} generalizes

the classical interpretation of geometric primitives. For the interpretation with tolerance

in RP2, the projective axioms℘� {(EP1),...,(EL3),(Pr1),...,(Pr5)} yield the following

set of formulas:

pEP1qB @P. [eBpP,Pq] ,

pEP2qB @P,Q. [eBpP,Qq ñ eBpQ,Pq] ,

pEP3qB @P,Q,R. [eBpP,Qq ^ eBpQ,Rq ñ eBpP,Rq] ,

pEL1qB @L. [eBpL,Lq] ,

pEL2qB @L,M. [eBpL,Mq ñ eBpM,Lq] ,

pEP3qB @L,M,N. [eBpL,Mq ^ eBpM,Nq ñ eBpL,Nq] ,

pPr1qB @P,Q.DL. [ eBpP,Qq ñ iBpP,Lq ^ iBpQ,Lq] ,
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pPr2qB @P,Q,L,M.
[
 eBpP,Qq ^ iBpP,Lq ^ iBpQ,Lq ^

iBpP,Mq ^ iBpQ,Mq ñ eBpL,Mq
]
,

pPr3qB @L,M.DP. [iBpP,Lq ^ iBpP,Mq] ,

pPr4qB @L.DP,Q,R.
[
 eBpP,Qq ^  eBpQ,Rq ^  eBpR,Pq ^

iBpP,Lq ^ iBpQ,Lq ^ iBpR,Lq
]
,

pPr5qB DP,Q,R.@L. [iBpP,Lq ^ iBpQ,Lq ^ iBpR,Lq] .

In the following, we denote it by ℘B,

℘B :� {pEP1qB, ...,pEP3qB,pEL1qB, ...,pEPL1qB,pPr1qB, ...,pPr5qB}. (5.2.13)

Here, we interpret the point variables p,q,r in the axioms of ℘ by approximate points

P,Q,R, and the line variables l,m by approximate lines L,M in a well-conditioned sub-

set C of the projective plane RP2. We interpret the geometric predicates � and I by

the Boolean relations eB and iB, respectively. @,D,^,ñ are the usual interpretations of

quantifiers and connectives in classical predicate logic. Unfortunately, the interpretation

pP,L ,eB, iB,xBq is not usable as it is, because it is not a model of classical projective

geometry. I.e., some of the formulas pEP1qB-pI4qB are false.

Example 5.17. The transitivity axiom pEP3q is false in the intended interpretation

pP,L ,eB, iB,xBq with positional tolerance: The overlap relation eB is reflexive and

symmetric (i.e., (EP1) and (EP2) are satisfied), but not transitive in general (i.e., (EP3)

is violated). I.e., eB is not an equality relation, but only a tolerance relation.

Example 5.18. The uniqueness axiom pPr2q is false in the intended interpretation

pP,L ,eB, iB,xBq with positional tolerance. As an example consider C � h3pD²q, P �
{p0 : 1

2 : 1q}, Q� {p0 :� 1
2 : 1q}, L�

(
L1CXh1pD2q

)1, and M�
(
L1CXh2pD2q

)1. Then

 eBpP,Qq ^ iBpP,Lq ^ iBpQ,Lq ^ iBpP,Mq ^ iBpQ,Mq � 1, (5.2.14)

but

eBpL,Mq � 0, (5.2.15)
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which makes pPr2qB false. To see that (5.2.14) holds, consider the following:

 eBpP,Qq � 1, because PXQ�∅. iBpP,Lq � [P� L]� 1, because P� {p0 : 1
2 : 1q},

and p0, 1
2 ,1q

J � p1,0,0q � 0, where p1 : 0 : 0q1 P L. I.e., p0 : 1
2 : 1q P p1 : 0 : 0q1 P L, and

P�L. iBpP,Mq � [P�M]� 1, because P� {p0 : 1
2 : 1q}, and p0, 1

2 ,1q
J � p0,1,�1

2q � 0,

where p0 : 1 : �1
2q
1 P M. I.e., p0 : 1

2 : 1q P p0 : 1 : � 1
2q
1 P M, and P � M. Analo-

gously, iBpQ,Lq � [Q� L]� 1 and iBpQ,Mq � [Q�M]� 1 can be verified. To see that

(5.2.15) holds, recall that D2 is the open unit disc in R2. Consequently,
(
L1CXh1pD2q

)
X(

L1CXh2pD2q
)
�∅ holds and LXM�∅. I.e., eBpL,Mq � 0.

The fact that the intended interpretation {P,L ,eB, iB,xB} does not satisfy all clas-

sical projective axioms is the starting point of the research and motivates our goal to find

an axiomatization of {P,L ,eB, iB,xB} that emulates classical projective geometry.

We use the example 5.17 of violated transitivity to discuss possible approaches to

solve the problem: One way to change the equality axioms (EP1)-(EP3) such that eB is

a model for them is to drop the transitivity axiom (EP3). It was T. Poston (1971) who,

in his dissertation, devised the foundations of mathematics for the case that equality

relations are replaced by tolerance relations. While he addressed calculus and differential

geometry, he did not address classical geometry. One disadvantage of the approach is

that dropping an axiom decreases the applicability of the theory: Less conclusions can

be drawn from given facts.

Another way to adapt (EP1)-(EP3) such that the intended interpretation {P,eB}
satisfies them is to augment axiom (EP3) by adding to (EP3) instances of the exactness

predicate X, and to interpret the augmented axioms instead of the classical ones. E.g.,

interpreting the augmented transitivity axiom

pEP31q @p,q,r. [Xppq& Xpqq& Xprq& Epp,qq& Epq,rq Ñ Epp,rq] .

defined on page 111 by {P,eB} yields

pEP31qB @P,Q,R. [xBpPq ^ xBpQq ^ xBpRq ^ eBpP,Qq ^ eBpQ,Rq ñ eBpP,Rq] .

Formula pEP31qB is equivalent to

pEP311qB @{p},{q},{r}.
[
eB
(
{p},{q}

)
^ eB

(
{q},{r}

)]
ñ eB

(
{p},{r}

)
,

which is true because

pEP3qB @p,q,r. [p� q ^ q� r ñ p� r] ,
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is true. I.e., by using (EP3') instead of (EP3), we can avoid dropping transitivity com-

pletely. Yet, while (EP3') is satisfied by the interpretation {P,eB} with tolerance, it

maintains transitivity only for exact points, and no conclusions can be drawn for ap-

proximate points with nonzero positional tolerance. Consequently, using (EP3') does

not meet the objective of this work, which is to formulate a “tolerance version” of all

classical geometric statements.

Similarly, we may interpret the augmented axiom

pEP32q @p,q,r. [Epp,qq& Xpqq& Epq,rq Ñ Epp,rq] .

by {P,eB}. This yields the formula

pEP32qB @P,Q,R. [eBpP,Qq ^ xBpQq ^ eBpQ,Rq ñ eBpP,Rq] ,

which is equivalent to

pEP321qB @P,R.@{q}. [eBpP,{q}q^ eBp{q},Rq ñ eBpP,Rq] .

pEP321qB is true, because, in our interpretation {P,eB}, two approximate points P,R
that have an exact point q in common necessarily overlap. I.e., we may avoid dropping

(EP3) by replacing it by (EP3�). Here, transitivity is maintained for a greater class of

approximate points than it is in the case of (EP3'): (EP3�) holds for all triples pP,{q},Rq
of approximate points, where the middle element is exact. Yet, again, nothing can be

said about arbitrary triples pP,Q,Rq where the middle element Q has nonzero positional

tolerance.

In order to resolve the above problems, the thesis adopts a different approach: In-

stead of trying to augment the classical projective axioms within the classical logical

framework, we increase the expressive power of the background logic: Classical pred-

icate logic is bivalent and leaves only the option of setting or dropping an axiom (like

pEP3q) or a predicate (like X). In contrast to that, fuzzy logic provides more than two

truth values and allows for grading axioms and predicates by truthlikeness degrees, cf.

subsection 4.1.1.3. In the following section 5.3, we define fuzzy (i.e., graded) extensions

of eB, iB and xB. The graded extensions are used to measure how wrong it is to assume

that the respective Boolean relations are true. Here, Łukasiewicz fuzzy logic is used as a

background logic, and the Łukasiewicz connectives allow for extending the measure of

truthlikeness from atomic formulas to compound geometric statements.
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5.3 Approximate Geometric Relations with Positional Toler-
ance

The present work is built on the assumption that classical geometry and geometry with

positional tolerance do not deviate “too much” from each other: For points and lines

with positional tolerance some or all of the classical geometric statements are false in

general, and we assume that it is possible to quantify “how false” they are. In the present

section, we provide a measure that assigns to every geometric statement it’s distance

from the truth, and conversely, it’s similarity to the truth, or truthlikeness. We follow an

approach that was introduced by M. Katz (1980) for defining his inexact geometry of the

Euclidean line. We apply it as follows:

A statement of classical geometry consists of

• geometric predicates (which are interpreted by n-ary geometric relations) and

• logical connectives and quantifiers (whose interpretation is provided by a truth-

functional logical system).

We want to measure how similar a classical geometric statement is to the truth if the

interpreting geometric relations correctly represent positional tolerance. The interpreting

n-ary relations with positional tolerance are

• equality with tolerance eB, (n� 2), cf. subsection 5.2.2,

• incidence with tolerance iB, (n� 2), cf. subsection 5.2.3, and

• exactness xB, (n� 1), cf. subsection 5.2.4.

These predicates are Boolean predicates and specify the intended truth. They can be

composed using the bivalent connectives and quantifiers of classical predicate logic. In

order to define a truthlikeness measure (measure of similarity to the truth) for statements

of classical geometry, we proceed as follows:

• We first define a truthlikeness measure for each of the Boolean predicates, eB,

iB and xB. We define the measure as a fuzzy extension of the Boolean relations,

i.e. as fuzzy relations that coincide with the Boolean relations at the value 1. We

interpret the fuzzy membership degree as a truthlikeness degree that specifies the

similarity to the intended truth.
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• Second, we compose the fuzzy relations using the connectives and quantifiers

of Łukasiewicz fuzzy logic. This allows us to derive a truthlikeness degree for

arbitrary compound geometric statements.

The section is structured as follows: Subsection 5.3.1 discusses Boolean versus fuzzy

relations. Subsections 5.3.2, 5.3.3 and 5.3.4 define fuzzy extensions of eB, iB and xB,

respectively. Again, these definitions are given in a general metric space first, and are

specialized in subsection 5.3.5 for the real projective plane with the elliptic metric. Sub-

section 5.3.6 explains how to use Łukasiewicz connectives and quantifiers to derive truth-

likeness degrees of arbitrary statements from the truthlikeness degrees of eB, iB and xB.

In subsection 3.2.2.4 of chapter 3, we introduced the formalism of Rational Pavelka

Predicate Logic (RPL@): RPL@ is a fuzzy logic that assigns signs to formulas of a theory

and allows for graduated deduction. Subsection 5.3.7 discusses how we can assign signs

to the axioms of classical projective geometry by using the truthlikeness degrees of these

axioms in the intended interpretation with positional tolerance. In subsection 6.1.1, we

exemplify that, in the usual formulation of the classical axioms, not all of the axioms

can be assigned positive signs. I.e., some of the axioms have zero truthlikeness, which

is equivalent to absolute falsity. We argue that the newly introduced exactness predicate

x must be used to augment the original formulation of the classical axioms in order to

guarantee positive signs. How to do this is addressed in chapter 6.

5.3.1 Fuzzy Relations Define the Similarity to the Intended Truth

The relations equality with tolerance, eB, and incidence with tolerance, iB, are Boolean

relations,

eB : PX �PX Ñ {0,1}, (5.3.1)

eB : LX �LX Ñ {0,1}, (5.3.2)

iB : PX �LX Ñ {0,1}, (5.3.3)

that specify the intended correct interpretation of the corresponding logical predicates

geometric equality and incidence under conditions of positional tolerance. Exactness,

xB, is a classical set (i.e., a 1-ary relation),

xB : PX Ñ {0,1},

xB : LX Ñ {0,1},
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Figure 5.3.1: The extensive distance measure (5.3.7) for approximate points P and Q.

that singles out the exact geometric objects from the set of approximate geometric ob-

jects in geometry with tolerance. The interpretations specify what we intend to accept

as truth. Similarity of eB and iB to the intended truth (truthlikeness) can be represented

by fuzzy relations, that extend the corresponding Boolean relations:

PX �PX Ñ r0,1s, (5.3.4)

LX �LX Ñ r0,1s, (5.3.5)

PX �LX Ñ r0,1s. (5.3.6)

Similarity of xB to the intended truth (truthlikeness) can be represented by the fuzzy sets

(i.e., the 1-ary fuzzy relations)

PX Ñ r0,1s,

LX , Ñ r0,1s.

The fuzzy relations are chosen such that they take the value 1 if the corresponding

Boolean relations hold and their values decrease “the more wrong” it is to assume that the

corresponding Boolean relations hold. The fuzzy membership degrees are understood as

truthlikeness degrees. I.e. the fuzzy relations are graduated extensions of the intended

truth. The following three subsections, 5.3.2, 5.3.3 and 5.3.4 define fuzzy extensions of

eB, iB and xB, respectively.

5.3.2 Approximate Equality with Positional Tolerance epdX q

We want to quantify the similarity of the statement eBpP,Qq � 1 to the truth. The spatial

setting of the problem statement suggests that a similarity measure that is dual to a spa-

tial distance measure is appropriate. More specifically, definition 5.14 of equality with

tolerance, eBpP,Qq :� (PXQ�∅), suggests using the following set distance measure,

which is illustrated in figure 5.3.1:

dpdX qpP,Qq � inf{dXp p̄, q̄q|p̄ P P, q̄ P Q} ,P,Q� X . (5.3.7)
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Here, dX denotes the metric in the underlying domain X . dpdX qpP,Qq is an extensive

distance (cf. section 3.3), and measures the shortest distance between the subsets P and

Q: It quantifies the semantic distance of the statement dpdX qpP,Qq � 0 from the truth.

Since

dpdX qpP,Qq � 0 ô PXQ�∅ ô eBpP,Qq � 1 (5.3.8)

holds, dpdX qpP,Qq is a dual measure of the of similarity of eBpP,Qq � 1 to the truth:

The greater the distance dpdX qpP,Qq, the smaller the truthlikeness of dpdX qpP,Qq � 0.

Similarly, the set distance

dpdY qpL,Mq � inf
{

dY pl̄1, m̄1q|l̄1 P L1, m̄1 PM1
}

(5.3.9)

quantifies the semantic distance of the statement dpdY qpL,Mq � 0 from the truth, and is

a dual measure of truthlikeness of dpdY qpL,Mq � 0 . Here, dY denotes the metric in the

underlying line parameter space.

Similarity measures are often normalized to the interval r0,1s, and we adopt this.

We assume that the distance measures (5.3.7) and (5.3.9) are normalized to the interval

r0,1s as well. As a result of this assumption, the degree of truthlikeness of a statement

eBpP,Qq � 1, or eBpL,Mq � 1, can be defined by 1� dpdX qpP,Qq and 1� dpdY qpL,Mq,

respectively. The assumption that dX , and consequently dpdX q, can be normalized, i.e.

that a maximal distance exists, is reasonable in the context of GIS, since all maps are

bounded.

Remark 5.19. Another option for defining truthlikeness as a dual distance measure would,

e.g., be to choose 1{dpdX qpP,Qq instead of 1�dpdX qpP,Qq (and analogously for L,M). In

the present work, we adopt 1�dpdX qpP,Qq, since 1�dpdX qpP,Qq P r0,1s is the Łukasiewicz

negation of dpdX qpP,Qq, cf. subsection 3.2.2.1. Among all truth-functional fuzzy logical

systems, we choose Łukasiewicz fuzzy predicate logic, because it can be extended to

Łukasiewicz Rational Pavelka predicate Logic (RPL@), cf. subsection 3.2.2.4. Using

the negation of a distance measure allows for formalizing equality with tolerance as an

approximate fuzzy similarity relation, cf. subsections 3.3.3 and 6.1.2.

Definition 5.20. The intended fuzzy interpretation of the geometric equality predicate

under conditions of positional with tolerance is given by the fuzzy relations

epdX q : PX �PX Ñ r0,1s, epdX qpP,Qq :� 1�dpdX qpP,Qq, and (5.3.10)

epdY q : LY �LY Ñ r0,1s, epdY qpL,Mq :� 1�dpdY qpL,Mq. (5.3.11)
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P,Q and L,M are called approximately equal with tolerance to the degree epdX qpP,Qq

and epdY qpL,Mq, respectively. Here, dX and dY are a normalized metrics in X and Y ,

respectively.

The fuzzy relations epdX qpP,Qq and epdY qpL,Mq extend the Boolean relations eBpP,Qq and

eBpL,Mq, respectively, because they coincide at the value 1:

epdX qpP,Qq � 1�dpdX qpP,Qq � 1 ô eBpP,Qq � (PXQ�∅)� 1, (5.3.12)

epdY qpL,Mq � 1�dpdY qpL,Mq � 1 ô eBpL,Mq �
(
L1XM1 �∅

)
� 1. (5.3.13)

5.3.3 Approximate Incidence with Positional Tolerance i∆

A measure of truthlikeness for the primitive relation of incidence with tolerance is a

measure that quantifies the distance of the statement iBpP,Lq � (P� L) � 1 from the

truth. The set distance measure used for specifying truthlikeness of equality with toler-

ance can not be used here: While the Boolean interpretation of equality with tolerance is

the overlap relation between location constraints of the same sort, incidence with toler-

ance is interpreted by the overlap relation between location constraints of different sorts.

The trivial solution for this problem is to keep the Boolean relation (P� L) and interpret

it as a discrete similarity measure. In order to simplify the modeling task at hand, we

adopt this solution in this work, and leave the integration of a more realistic graduated

definition of truthlikeness of incidence with tolerance as a task for future work. In anal-

ogy to the definition of eB, we may understand (P� L) as an inverse distance measure,

(P� L)� 1�∆pP,Lq, where ∆ denotes the discrete distance measure

∆pP,Lq � 1� (P� L)�

1 if pP� Lq � 0,

0 if pP� Lq � 1.
(5.3.14)

Definition 5.21. The intended fuzzy interpretation of the incidence predicate under con-

ditions of positional tolerance coincides with definition 5.15. It is a Boolean relation and

it is given by

i∆ : PX �LX Ñ {0,1}� r0,1s, i∆pP,Lq :� 1�∆pP,Lq � P� L, (5.3.15)

P and L are called approximately incident with tolerance to the degree i∆pP,Lq P {0,1}.

Since the fuzzy relation is chosen such that it coincides with the Boolean relation, it

trivially extends the Boolean relation.
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Remark 5.22. A possible candidate for a graduated definition of truthlikeness is the

distance measure dKpdX q
pP,Lq � inf

{
dKX p p̄, l̄q| p̄ P P, l̄ P L

}
, where dKX p p̄, l̄q denotes the or-

thogonal distance between Cartesian points and lines p̄, l̄. In order to integrate this mea-

sure in the present framework it is necessary to investigate if it works in concert with the

definition of truthlikeness of the indistinguishability predicate in the sense that

1. together, they allow for a modification of classical projective geometry in the

framework of similarity logic, which in turn

2. allows for a model that complies with the properties of the intended interpretation

specified in the other subsections.

5.3.4 Approximate Exactness xpdX q

Points (or lines) that have non-zero positional tolerance are not exact. In this case

xBpPq � 0 holds. Since we represent positional tolerance by location constraints, the

size (diameter) of a location constraint P can be used to quantify positional tolerance:

It measures the error made when assuming that all points p P P are equal. In terms of

the exactness relation xB, the size of P measures “how wrong” it is to assume that the

statement xBpPq � 1 holds.

Definition 5.23. For an approximate point P PPX , and an approximate line L P LX ,

define the size of P and L, respectively, by

spdX qpPq :� sup{dXp p̄, q̄q| p̄, q̄ P P} and spdY qpLq :� sup
{

dY pl̄1, m̄1q|l̄1, m̄1 P L1
}
.

(5.3.16)

The size measures spdX qpPq and spdY qpLq quantify the semantic distance of the assump-

tions

[dXp p̄, q̄q � 0 @p̄, q̄ P P] , and
[
dY pl̄1, m̄1q � 0 @l̄1, m̄1 P L1

]
(5.3.17)

from the truth, respectively. Conversely, the truthlikeness degree of xBpPq is intended to

measure the similarity of the statement xBpPq� 1 to the truth. We define the truthlikeness

degree xpdX qpPq of xBpPq � 1 as an inverse size measure:

Definition 5.24. The intended fuzzy interpretations of the exactness predicate for points
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with tolerance and for lines with tolerance are the fuzzy sets

xpdX q : PX Ñ r0,1s, xpdX qpPq :� 1� spdX qpPq, and (5.3.18)

xpdY q : LY Ñ r0,1s, xpdY qpLq :� 1� spdY qpLq, (5.3.19)

respectively. Here, dX and dY are a normalized metrics in X and Y . P and L are called

approximately exact to the degree xpdX qpPq and xpdY qpLq, respectively.

Approximate exactness xpdX q is a graduated extension of exactness xB: The fuzzy set

xpdX q : PX Ñ r0,1s is an extension of the classical set xB : PX Ñ {0,1}, because both

coincide at the value 1:

xpdX qpPq � 1 ô spdX qpPq � 0 ô |P|� 1 ô xBpPq � 1. (5.3.20)

This holds analogously for the second object sort, approximate lines: The fuzzy set xpdY q :

LX Ñ r0,1s is an extension of the classical set xB : LX Ñ {0,1}. because xpdY qpLq �

1 ô xBpLq � 1 holds for all L PLX .

5.3.5 The Projective Plane as Interpretation Domain

The definitions of fuzzy relations given in sections 5.3.2 - 5.3.4 above are given without

reference to a specific algebraic domain. We concretize the definitions for the projective

plane: For a well-conditioned and centered subset of C� RP2, we set (X ,dX) :� (C,e)

and (Y,dY )�
(
L1C,e

1
)
, cf. subsections 3.1.2.4 and 5.1.4. Then the set distance measures

dpdX q,dpdY q and the size measures spdX q,spdY q are given by

depP,Qq � inf{epp,qq|p P P,q PQ}, (5.3.21)

de1pL1,L2q � inf{e1pl1, l2q|l1 P L1, l2 P L2}, and (5.3.22)

sepPq � sup{epp,qq|p,q P P}, (5.3.23)

se1pLq � sup{e1pl1, l2q|l1, l2 P L}, respectively. (5.3.24)
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Accordingly, the fuzzy relations are epdX q,epdY q, i∆ and xpdX q,xpdY q are as follows:

eepP,Qq � 1�depP,Qq P r0,1s,

ee1pL1,L2q � 1�de1pL1,L2q P r0,1s,

i∆pP,Lq � (P� L) ,

xepPq � 1� sepPq P r0,1s,

xe1pLq � 1� se1pLq P r0,1s.

5.3.6 Truthlikeness of Compound Statements

Compound geometric statements are composed of atomic formulas, connectives and

quantifiers. In the present work, atomic formulas are statements that involve one of

the predicates geometric equality, incidence and exactness. They are interpreted by the

fuzzy relations approximate equality with tolerance, approximate incidence with toler-

ance, and approximate exactness, respectively. For assigning degrees of truthlikeness

to compound statements, any truth-functional fuzzy logical system can be used. In the

present work, we use of Łukasiewicz fuzzy predicate logic. Its connectives and quanti-

fiers are given as follows: The conjunction is interpreted by ϕbψ �max{ϕ�ψ�1,0},
implication is given by ϕ ñ ψ � min{1�ϕ�ψ,1}, negation is  ϕ � 1�ϕ , and dis-

junction is interpreted by ϕ `ψ � min{ϕ �ψ,1}. The universal quantifier @ is inter-

preted by the infimum inf, and the existential quantifier is given by the supremum sup,

cf. subsection 3.2.2.1. E.g., if ϕ,ψ are atoms, then the truthlikeness degree of ϕ&ψ is

ϕbψ .

5.3.7 Truthlikeness Degrees as Signs of Classical Statements

The last subsection discussed that truth-functional fuzzy logical systems can be used to

derive the truthlikeness degree of a compound geometric statement from the truthlike-

ness degrees of its atoms. Among all truth-functional fuzzy logical systems, we choose

Łukasiewicz fuzzy predicate logic, because it can be extended to Łukasiewicz Rational

Pavelka predicate Logic (RPL@). In contrast to other fuzzy logical systems RPL@ has

evaluated syntax: It allows for assigning fuzzy truth degrees to the axioms of a theory,

and allows for propagating them in deduction, cf. subsection 3.2.2.4. This is in contrast

to “classical” truth-functional fuzzy logical systems whose deduction systems propagate

(i.e. preserve) absolute truth.

The graded formulas of a theory in RPL@ are called signed formulas or evaluated
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formulas, and their truth degrees are called signs or syntactic evaluations, cf. subsection

3.2.2.5. A signed fuzzy theory can be seen as a fuzzy set of formulas: The sign of a

formula expresses the degree of membership of that formula to the set of true formulas

of the theory.

Fuzzy membership degrees are truth degrees in the sense that they express the degree

to which the membership of an element to a given set is true. Depending on the appli-

cation in question, fuzzy membership degrees can be assigned different semantics. E.g.,

they can be used to express the degree of confidence that an element is a member of a

set, or they can be used to express the possibility that an element belongs to a set. Many

other interpretations are possible and have been used. In the present work, we interpret

fuzzy membership degrees as truthlikeness degrees. As a consequence, we interpret the

sign of a formula as the similarity of the formula to the truth. More specifically, we as-

sign signs to the axioms of classical projective geometry and interpret these signs as the

similarity of the respective axioms to the intended truth under conditions of positional

tolerance. The deduction system of RPL@ allows for deducing a sign, i.e. a truthlikeness

degree, for every classical geometric statement from the signed axioms.

For the predicates � and I, the intended truth under positional tolerance has been

defined in subsections 5.2.2 - 5.2.5 by eB and iB; A measure of similarity to the in-

tended truth has been specified in subsections 5.3.2 - 5.3.6 for atoms and arbitrary

compound formulas by ee, i∆, and the Łukasiewicz operators. In order to assign signs

to the classical projective axioms that express the axiom’s similarity to the intended

truth under positional tolerance, we derive the truthlikeness degrees of the formulas

in ℘B � {pEP1qB,...,pPr5qB} from the truthlikeness degrees of their atoms, and assign

these degrees as signs to the classical axioms in ℘� {(EP1),...,(Pr5)}. The result-

ing signed axiom set represents a fuzzy theory of projective geometry under positional

tolerance.

The truthlikeness degrees of the formulas ℘B can be derived from their atoms as

follows: As in the Boolean case (cf. subsection 5.2.6) we interpret the point variables

p,q,r and the line variables l,m in axioms ℘by approximate points P,Q,R and approx-

imate lines L,M in a well-conditioned subset C of the projective plane RP2. Instead of

interpreting the geometric predicates � and I by the Boolean relations eB and iB, we

interpret them by the fuzzy relations ee and i∆. The atoms eepP,Qq and i∆pP,Lqmeasure

the similarity of the statements eBpP,Qq � 1 and iBpP,Lq � 1 to the truth, respectively.

Interpreting the connectives and quantifiers in ℘� {(EP1),...,(Pr5)} by the connectives

and quantifiers of Łukasiewicz fuzzy predicate logic yields the following set of formulas:
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σpEP1q � inf
PPPC

[eepP,Pq] ,

σpEP2q � inf
P,QPPC

[eepP,Qq ñ eepQ,Pq] ,

σpEP3q � inf
P,Q,RPPC

[eepP,Qq b eepQ,Rq ñ eepP,Rq] ,

σpEL1q � inf
LPLC

[ee1pL,Lq] ,

σpEL2q � inf
L,MPLC

[ee1pL,Mq ñ ee1pM,Lq] ,

σpEL3q � inf
L,M,NPLC

[ee1pL,Mq b ee1pM,Nq ñ ee1pL,Nq] ,

σpPr1q � inf
P,QPPC

sup
LPLC

[ eepP,Qq ñ i∆pP,Lq b i∆pQ,Lq] ,

σpPr2q � inf
P,QPPC

inf
L,MPLC

[ eepP,Qq b i∆pP,Lq b i∆pQ,Lq b

i∆pP,Mq b i∆pQ,Mq ñ ee1pL,Mq] ,

σpPr3q � inf
L,MPPC

sup
PPLC

[i∆pP,Lq b i∆pP,Mq] ,

σpPr4q � inf
LPLC

sup
P,Q,RPPC

[ eepP,Qq b  eepQ,Rq b  eepR,Pq b ,

i∆pP,Lq b i∆pQ,Lq b i∆pR,Lq,

σpPr5q � sup
P,Q,RPPC

inf
LPLC

 [i∆pP,Lq b i∆pQ,Lq b i∆pR,Lq] .

In the following, we denote the above set of formulas by ℘σ ,

℘σ � {σpEP1q, ...,σpEP1q,σpEL1q, ...,σpEL1q,σpPr1q, ...,σpPr5q}. (5.3.25)

The formulas in ℘σ assume values in the inteval r0,1s. They measure the similarity of

the axioms in ℘B � {pEP1qB,...,pPr5qB} to the truth, respectively. We use the values

of the formulas in ℘σ to sign the classical projective axioms ℘� {(EP1),...,(Pr5)} (cf.

subsection 3.2.2.5):

(EP1)ev

(
@p. [Epp,pq] ; σpEP1q

)
(EP2)ev

(
@p. [Epp,pq]; σpEP2q

)
(EP3)ev

(
@p,q,r. [Epp,qq& Epq,rq Ñ Epp,rq]; σpEP3q

)
(EL1)ev

(
@l. [Epl,lq]; σpEL1q

)
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(EL2)ev

(
@l,m. [Epl,mq Ñ Epm,lq]; σpEL2q

)
(EL3)ev

(
@p,q,r. [Epp,qq& Epq,rq Ñ Epp,rq] ; σpEL3q

)
(Pr1)ev

(
@p,q.Dl. [ Epp,qq Ñ Ipp,lq& Ipq,lq]; σpPr1q

)
(Pr2)ev

(
@p,q,l,m.

[
 Epp,qq& Ipp,lq& Ipq,lq&

Ipp,mq& Ipq,mq Ñ Epl,mq
]
; σpPr2q

)
(Pr3)ev

(
@l,m.Dp. [Ipp,lq& Ipp,mq]; σpPr3q

)
(Pr4)ev

(
@l.Dp,q,r.

[
 Epp,qq& Epq,rq& Epr,pq&

Ipp,lq& Ipq,lq& Ipr,lq
]
; σpPr4q

)
(Pr5)ev

(
Dp,q,r.@l. [Ipp,lq& Ipq,lq& Ipr,lq]; σpPr5q

)
In the following, we denote the above listed set of signed formulas (evaluated for-

mulas) by ℘ev,

℘ev :� {(EP1)ev,...,(EP3)ev,(EL1)ev,..., (EL3)ev,(Pr1)ev,...,(Pr5)ev}. (5.3.26)

The set ℘ev is a crisp set of signed formulas, but may alternatively be interpreted as a

fuzzy set of unsigned formulas. ℘ev defines a fuzzy theory of projective geometry under

positional tolerance.

By construction, the fuzzified intended interpretation {PC,LC,ee, i∆,xe}, which we

defined in subsections 5.3.2 - 5.3.6, is a fuzzy model for the fuzzy theory ℘ev. To see

this, recall from subsection 3.2.2.5 that a fuzzy interpretation is a fuzzy model of a fuzzy

theory if the truth degree of every formula in the interpretation is greater or equal than the

sign of the formula. Since we use the truth(likeness) degrees of the fuzzy interpretation

of the axioms as signs for the axioms, their truth(likeness) degrees are by construction

greater or equal than their signs. By soundness of the deduction system of RPL@, the

truth(likeness) degrees of deduced formulas are greater or equal than their signs as well.

5.4 Summary and Results

In section 5.1, we formally defined the intended interpretation of the geometric object

sorts point and line under conditions of positional tolerance, and called them approxi-

mate geometric objects. Section 5.2 defined the intended interpretation of the geometric

predicates equality and incidence under conditions of positional tolerance, and called

them geometric relations with tolerance. If positional tolerance is zero, approximate
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geometric objects and geometric relations with tolerance collapse to classical ones i.e.,

their definition is consistent with the classical interpretation. We defined a new predi-

cate, called exactness, which singles out classical (exact) points and lines from the set

of approximate points and lines. We exemplified that the axioms of classical projective

geometry can be augmented by instances of the exactness predicate without affecting its

class of models.

The intended interpretation of geometric primitives with positional tolerance serves

to define the intended truth. I.e., the intended interpretation establishes a correct repre-

sentation of points and lines with positional tolerance and their relations. We showed

that the intended interpretation does not satisfy the axioms of classical projective ge-

ometry. This fact is the starting point for the research. It motivates our goal to define

an axiomatization of projective geometry with positional tolerance that approximates

classical projective geometry.

We approached the goal by adopting Lakoff’s and Núñez’ cognitive theory of geom-

etry (2000): We assume that the theory of classical geometry is a limit case of geometry

with positional tolerance for tolerance approaching zero. I.e., classical geometric state-

ments are seen as approximations of geometric statements about points and lines with

positional tolerance. We implemented this idea using the framework of similarity logic:

We defined a truthlikeness measure for classical geometric statements that measures

their similarity to the intended truth. Here, the intended truth is defined by the intended

interpretation of primitives with tolerance.

We implemented the truthlikeness measure as a fuzzy extension of the geometric

relations with positional tolerance. We showed how the truthlikeness degrees of the

interpreted projective axioms can be used as signs to indicate the similarity of the axioms

to the truth. The resulting theory is a fuzzy theory within Łukasiewicz Rational Pavelka

Predicate Logic.



Chapter 6

Towards an Approximate Tolerance
Geometry

“Vagueness is no more to be done away with in the world of logic than

friction in mechanics.”

– Charles Sanders Peirce (Buchler, 2011, p.297)

Subsection 5.3.7 showed how to set up a fuzzy theory of projective geometry that mea-

sures the similarity of classical geometric statements to the truth under conditions of

positional tolerance: One determines the truthlikeness degree σpEP1q�σpI4q of each of

the classical axioms pEP1q � pI4q in the intended interpretation, and assigns the re-

sulting value to the respective axiom as signs. The result is the signed axiom system

pEP1qev�pI4qev. With the deduction apparatus of RPL@ signs for arbitrary geometric

formulas can be deduced (cf. subsection 3.2.2.5).

The present chapter determines the actual truthlikeness degrees σpEP1q � σpI4q in

arbitrary well conditioned domains C � RP2. We show that the signs of some of the

classical axioms are zero for some choices of the domain C. This is counter-intuitive:

The degree of similarity of geometric axioms to the truth should not depend on the

choice of the domain. In particular they should not be zero. If a classical axiom ϕ

has zero truthlikeness, it is not only not true, but not even close to the truth. In other

words, ϕ turns false the moment positional tolerance is introduced, regardless how small.

This contradicts the continuity property asserted by G. Lakoff’s and R. Nunez’ cognitive

theory of geometry: If classical geometry is an approximation of geometric statements

about real entities, what is it that a formula with zero truthlikeness approximates?

128
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We show that the problem is caused by the fact that positional tolerance introduces an

additional degree of freedom to the theory, namely approximate exactness. The approxi-

mate exactness degree of an approximate geometric object is inverse to the approximate

object’s size, and quantifies its positional tolerance. It does not occur in classical geome-

try, because here, positional tolerance is constantly equal to zero and does not contribute

to the theory. We show that the conceptual framework must be refined to ensure positive

truthlikeness degrees for the axioms. Here, we follow an approach proposed by G. Gerla

(2008): We augment the classical geometric axioms by a predicates that account for the

exactness degree of the involved approximate objects. The augmented axioms are con-

sistent with the classical axioms: If no positional tolerance is involved, the augmented

axioms coincide with the classical axioms. We test this approach based on

• the transitivity axiom pEP3q, which is part of the equality axioms, and

• the uniqueness axiom pPr2q, which is part of Euclid’s First Postulate.

Gerla addressed the transitivity axiom, and we use his approach as a blueprint for aug-

menting the uniqueness axiom. Our research shows that Gerla’s approach can indeed

successfully be transferred: The resulting augmented uniqueness axiom has truthlike-

ness degree 1. Unfortunately, it turns out that, in contrast to the augmented transitivity

axiom, the augmented uniqueness axiom does not serve the intended purpose, because

it is always trivially fulfilled. The results of our analysis suggest that the the intended

interpretation defined in chapter 5 is not rich enough to yield a non-trivial theory of

approximate tolerance geometry: Instead of only adding a size parameter (in the form

of the exactness predicate), it seems to be necessary to also introduce a size restriction

parameter. The thesis does not pursue this approach further, but leaves it for future work.

6.1 The Equality Axioms: Properties of the Pair pepdXq,xpdXqq

The present section addresses the equality axioms pEP1q�pEP3q, i.e., reflexivity, sym-

metry and transitivity. Subsection 6.1.1 shows that the transitivity axiom pEP3q has zero

truthlikeness in the intended interpretation with positional tolerance for some domains

C. We discuss that this is due to the additional degree of freedom that is introduced

by positional tolerance. Subsection 6.1.2 addresses the question of how the transitivity

axiom pEP3q can be augmented such that a positive truthlikeness degree results, and we

show that weak transitivity pEP3xq solves the problem: Approximate equality with toler-

ance is a fuzzy approximate similarity, and it results that pEP1q,pEP2q and pEP3xq have
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Figure 6.1.1: The transitivity axiom has zero truthlikeness.

truthlikeness degree 1. Subsection 6.1.3 discusses that weak transitivity is a localized

version of transitivity. We will use this idea later in section 6.2 to define a weak version

of the uniqueness axiom pPr2q. Subsection 6.1.5 exemplifies truthlikeness propagation

in graded deduction with Rational Pavelka Logic using the example of weak transitiv-

ity. In subsection 6.1.6 we relate truthlikeness propagation to propagation of positional

tolerance error.

6.1.1 Transitivity is Absolutely False

Consider the transitivity axiom pEP3q,

@p,q,r. [Epp,qq& Epq,rq Ñ Epp,rq], (6.1.1)

and its sign

σpEP3q � inf
P,Q,RPPC

[eepP,Qq b eepQ,Rq ñ eepP,Rq] . (6.1.2)

In order to use the signed axiom pEP3qev �
(
EP3;σpEP3q

)
in similarity based reasoning,

it is necessary to determine the actual value of its sign σpEP3q. We show in the following

that σpEP3q � 0 for C � h3pD̄2q. I.e., we show that the transitivity axiom is absolutely

false if we choose the closed unit disc as a parameter region for the domain C:

Example 6.1. Let C� h3pD̄2q, and consider three approximate points P̄,Q̄, R̄ PPC as

illustrated in figure 6.1.1a. Here, P̄,Q̄ overlap, and eepP̄,Q̄q � eBpP̄,Q̄q � 1. Similarly,

Q̄, R̄ overlap, and eepQ̄, R̄q � eBpQ̄, R̄q � 1. The definitions of Łukasiewicz conjunction,

abb�min{a�b�1,0}, and Łukasiewicz implication añ b� sup{λ P r0,1s|abλ ¤ b}
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yield

[
ee
(
P̄,Q̄

)
b ee

(
Q̄, R̄

)
ñ ee

(
P̄, R̄

)]
�

[
1b1ñ eepP̄, R̄q

]
(6.1.3)

� sup
{

λ P r0,1s|λ ¤ eepP̄, R̄q
}

(6.1.4)

� eepP̄, R̄q. (6.1.5)

Figure 6.1.1b illustrates an extreme case where Q̄ has size sepQ̄q � spCq � 1, where

P̄ � {p̄}, R̄ � {r̄} are exact with p̄, r̄ P Q̄, and where P̄, R̄ have set distance depP̄, R̄q �
sepQ̄q � 1. Here, ee

(
P̄, R̄

)
� 1�depP̄, R̄q � 0. Consequently

σpEP3q � inf
P,Q,RPPC

[ee (P,Q)b ee (Q,R)ñ ee (P,R)] (6.1.6)

� inf
P,Q,RPPC

eepP,Rq � eepP̄, R̄q � 0. (6.1.7)

The example shows that for C � h3pD̄2q, the transitivity axiom pEP3q has sign

σpEP3q � 0. This means that for this choice of C, the transitivity axiom is not only

not true in our intended interpretation {P,L ,eB, iB} of geometry with positional toler-

ance, but it is not even close to the truth. Its truthlikeness is zero, which is equivalent

to absolute falsity. As in classical (crisp) theories, it is not useful to list an absolutely

false formula as an axiom of a fuzzy theory, because graded deduction in RPL@ can only

deduce absolutely false formulas from it.

Superficially, the reason for the sign σpEP3q in example 6.1 to be zero is that Q̄
has size sepQ̄q � 1 (maximal possible size), and hence it allows for P̄, R̄ to have set

distance depP̄, R̄q � sepQ̄q � 1. If the chosen domain C has smaller size sepCq   1, any

approximate point Q̄ PPC has at most size sepQ̄q � sepCq   1, and σpEP3q ¡ 0. Yet,

the sign of an axiom should be independent of the size of the chosen domain C, because

the domain C is scaled in preprocessing anyway to ensure it is well conditioned (cf.

subsection 3.1.2.3).

The underlying reason for the sign σpEP3q in example 6.1 to be zero is that posi-

tional tolerance introduces an additional degree of freedom to geometry, which is not

accounted for in the classical transitivity axiom. The additional degree of freedom is

the approximate exactness degree of approximate geometric objects. Following the ap-

proach proposed by G. Gerla (2008), we show in the subsequent subsection 6.1.2 that

the the classical transitivity axiom can be augmented by the exactness predicate X such

that the augmented axiom has a positive truthlikeness degree.

The result that the classical axioms need to be augmented is not surprising: Lakoff’s
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and Nunez’ cognitive theory of mathematics (2000) suggests that classical geometry is

the limit case of geometry with positional tolerance for tolerance approaching zero (ap-

proximate exactness approaching one). Consequently, tolerance needs to be accounted

for in the axiom system. In example 6.1, the interpretation with tolerance (6.1.6) of the

transitivity axiom pEP3q accounts for the fact that P̄,Q̄ and Q̄, R̄ are overlapping, re-

spectively, but does not account for the approximate exactness degree (i.e., the size) of

the middle element Q̄.

Remark 6.2. Notice that the result σpEP3q � 0 is stronger than the statement that ee is not

fuzzy transitive. This is due to the difference between signed and unsigned fuzzy logical

systems: In unsigned fuzzy logical systems, axioms are either true or false. Here, for a

fuzzy relation e, the fuzzy transitivity axiom reads

inf
P,Q,RPPC

[epP,Qqb epQ,Rq ñ epP,Rq]� 1 P {0,1}, (6.1.8)

which is usually written as

@P,Q,R PPC. [epP,Qqb epQ,Rq ¤ epP,Rq] P {0,1}. (6.1.9)

(6.1.8) and (6.1.9) are equivalent due to the adjunction property 3.2.8. Fuzzy transitivity

(6.1.8) coincides with Boolean transitivity at the value 1, cf. subsection 2.2.2. Since

the overlap relation eB is not Boolean transitive it is also not fuzzy transitive. Since ee
coincides with eB at the value 1, ee is not fuzzy transitive as well. Consequently, the

value (
inf

P,Q,RPPC
[eepP,Qqb epQ,Rq ñ epP,Rq]� 1

)
� bpEP3q P {0,1},

of (6.1.8) is zero, bpEP3q � 0. In contrast to unsigned fuzzy logical systems, signed fuzzy

logical systems allow for axioms to have a truth(likeness) degree in r0,1s. Here, fuzzy

transitivity reads

inf
P,Q,RPPC

[eepP,Qqb eepQ,Rq ñ eepP,Rq]� σpEP3q P r0,1s. (6.1.10)

With the same arguments as above, we conclude that that σpEP3q� 1 holds. Yet, this does

not imply σpEP3q� 0, but only implies σpEP3q P r0,1q. I.e., the result that σpEP3q� 0 holds

is indeed stronger than the statement that ee is not fuzzy transitive (i.e. that bpEP3q � 0

holds).
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6.1.2 Weak Transitivity is Absolutely True

We address the question of how the transitivity axiom can be augmented, such that a

positive truthlikeness degree results. We do this by following G. Gerla (2008): Recall

from subsection 3.3.3 that an approximate fuzzy similarity space (also called approxi-

mate fuzzy equivalence space) is a triple pX ,e,xq, where e is reflexive, symmetric, and

where the pair pe,xq satisfies weak transitivity. I.e.,

inf
A

epA,Aq � 1, (6.1.11)

inf
A,B

[epA,Bq ñ epB,Aq]� 1, (6.1.12)

inf
A,B,C

[epA,Bqb xpBqb epB,Cq ñ epA,Cq]� 1 (6.1.13)

holds, cf. definition 3.20 on page 82. An approximate fuzzy similarity space has the

following axiomatization in Rational Pavelka Predicate Logic (cf. page 84):

pE1q p@a.Epa,aq; 1q,

pE2q p@a,b. [Epa,bq Ñ Epb,aq]; 1q,

pE3xq p@a,b,c. [Epa,bq^Xpbq^Epb,cq Ñ Epa,cq]; 1q.

The following corollary 6.3 shows that the triple pPX ,epdX q,xpdX qq is an approximate

fuzzy similarity space. This means that the classical axioms of reflexivity, pEP1q, and

symmetry, pEP2q, have a truthlikeness degree of 1 in the intended interpretation with

positional tolerance; Weak transitivity,

pEP3xq @p,q,r. [Epp,qq^Xpqq^Epq,rq Ñ Epp,rq] ,

augments transitivity pEP3q by adding the exactness predicate X, and it has a truthlikness

degree of 1. I.e., weak transitivity not only has a positive degree of truthlikeness in the

intended interpretation, but it is absolutely true.

Corollary 6.3. Let PX denote the set of approximate points in the metric space pX ,dXq,

let epdX q and xpdX q be defined as in section 5.3, and let spdX qpXq � 1� epdX qpXq � 1.

Then the triple
(
PX ,epdX q,xpdX q

)
is an approximate fuzzy similarity space w.r.t. to the

Łukasiewicz t-norm b.

Proof. For P,Q PPX , we defined the set distance dpdX qpP,Qq in subsection 5.3.2 by

dpdX qpP,Qq � inf{dXp p̄, q̄q| p̄ P P, q̄ P Q} . (6.1.14)
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We defined the size spdX qpPq of P PPX in subsection 5.3.4 by

spdX qpPq � sup{dXp p̄, q̄q|p̄, q̄ P P} . (6.1.15)

The set PX of approximate points is a class of nonempty subsets of a metric space. Con-

sequently, pPX ,�,dpdX q,spdX qq is a canonical example of a pointless pseudometric space,

cf. definition 3.15 on page 78. Here,� denotes the set equality relation between approx-

imate points. I.e., pPX ,dpdX q,spdX qq is an extensive pseudometric space, cf. definition

3.16. In other words, dpdX q is reflexive and symmetric, and dpdX q and spdX q together satisfy

the weak triangle inequality. According to theorem 3.25 on page 84, pPX ,dpdX q,spdX qq,

together with the Łukasiewicz t-norm b, induce the approximate fuzzy similarity space

pPX ,epdX q,xpdX qq � pPX ,1�dpdX q,1� spdX qq, (6.1.16)

whenever dpdX q and spdX q are normalized to the interval r0,1s.

Corollary 6.3 holds in particular for every well-conditioned subset X � C � RP2

with the elliptic metric dX � e. The corollary shows that (PC,ee,xe) is an approximate

fuzzy similarity space. I.e.,

σpEP1q � inf
PPPC

[eepP,Pq]� 1,

σpEP2q � inf
P,QPPC

[eepP,Qq ñ eepQ,Pq]� 1

σpEP3xq � inf
P,Q,RPPC

[eepP,Qq b xepQq b eepQ,Rq ñ eepP,Rq]� 1

hold. In other words, the axioms pEP1q�pEP3xq,

pEP1q @p.E(p,p),

pEP2q @p,q. [E(p,q) Ñ E(q,p)],

pEP3xq @p,q,r. [E(p,q) & Xpqq& E(q,r) Ñ E(p,r)],

all have a positive truthlikeness degree in the intended interpretation with positional

tolerance. Consequently, we can use the signed formulas pEP1qev�pEP3xqev,

(EP1)ev

(
@p.E(p,p) ; 1

)
,

(EP2)ev

(
@p,q. [E(p,q) Ñ E(q,p)]; 1

)
,

(EP3x)ev

(
@p,q,r. [E(p,q) & Xpqq& E(q,r) Ñ E(p,r)]; 1

)
,
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to axiomatize approximate equality with tolerance, ee, of approximate points in the real

projective plane. Since approximate lines are approximate points in a line parameter

space, corollary 6.3 holds equivalently for approximate lines, and we have

(EL1)ev

(
@l.E(l,l) ; 1

)
,

(EL2)ev

(
@l,m. [E(l,m) Ñ E(m,l)]; 1

)
,

(EL3x)ev

(
@l,m,n. [E(l,m) & Xpmq& E(m,n) Ñ E(l,m)]; 1

)
.

For exact points, P�{p}, Q�{q}, and R�{r}, weak transitivity is equivalent to

transitivity:

inf
{p},{q},{r}PPC

[
eep{p},{q}q b xep{q}q b eep{q},{r}q ñ eep{q},{r}q

]
� inf

p,q,rPC

[
pp� qq b1 b pq� rq ñ pq� rq

]
� 1. (6.1.17)

The same holds for exact lines, L�{l}, M�{m}, and N�{n}. I.e., for exact points

and lines, the axioms pEP1q�pEL3xq are consistent with the classical equality ax-

ioms pEP1q�pEL3q, and the signed axioms pEP1qev�pEL3xqev are consistent with the

signed axioms pEP1qev�pEL3qev defined in subsection 5.3.7. We show in the subse-

quent subsection that weak transitivity can be seen as a localized version of transitivity.

We will use this idea in section 6.2 to define a weak version of the uniqueness axiom

pPr2q.

Remark 6.4. Theorem 3.25 on page 84 establishes a duality between extensive pseudo-

metric spaces and approximate fuzzy similarity spaces. It thus establishes the duality

between approximate points and lines and their location constraints: The extensive dis-

tance between location constraints, dpdX qpP,Qq, translates into an approximate equality

with tolerance between approximate geometric primitives, epdX qpP,Qq � 1�dpdX qpP,Qq.

Both, dpdX q and epdX q, are symmetric and reflexive, and the weak triangle inequality for

dpdX q translates into the weak transitivity of epdX q. I.e., statements about approximate

equality with tolerance can be formulated in terms of the extensive distance of their

location constraints first, and can be “translated” back later on. The representation by

distance and size has the advantage of being more intuitive than the representation by

similarity and exactness.
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6.1.3 Weak Transitivity is a Local Version of Transitivity

Example 6.1 on page 130 showed that the truthlikeness degree σpEP3q of the transitivity

axiom pEP3q is zero for C � D̄2 under conditions of positional tolerance. Specifically,

the example considered a configuration of three approximate points P̄,Q̄, R̄, where P̄,Q̄
and Q̄, R̄ overlap, respectively. We discussed that

[
ee
(
P̄,Q̄

)
b ee

(
Q̄, R̄

)
ñ ee

(
P̄, R̄

)]
� eepP̄, R̄q � 1� sepQ̄q (6.1.18)

holds, whenever P̄ and Q̄ are exact. Here, eepP̄, R̄q assumes the value zero if the size of

middle element Q̄ is 1, i.e., sepQ̄q � sepCq � 1. As a consequence,

σpEP3q � inf
P,Q,RPPC

[eepP,Qqb eepQ,Rq ñ eepP,Rq] (6.1.19)

� inf
QPPC

[1� sepQq]� inf
QPPC

[xepQq]� 0 (6.1.20)

holds. Weak transitivity,

pEP3xq @p,q,r. [Epp,qq^Xpqq^Epq,rq Ñ Epp,rq],

makes the sign σpEP3xq independent of xepQq by incorporating the exactness predicate X

in the premise of the implication, yielding

σpEP3xq � inf
P,Q,RPPC

[eepP,Qqb xepQqb eepQ,Rq ñ eepP,Rq]� 1. (6.1.21)

Here, xepQq is a local measure of exactness, while inf
QPPC

[xepQq] is a global measure of

exactness in C. In this sense, weak transitivity is a localized version of transitivity. As

proposed by G. Gerla (2008) the technical tool for “shifting xepQq from the right to the

left side” of the signed axiom is the adjunction property (3.2.8).

Specifically, we show that every fuzzy model of the signed weak transitivity axiom

pEP3xqev
(
@p,q,r. [Epp,qq^Xpqq^Epq,rq Ñ Epp,rq] ; 1

)
(6.1.22)

with sign σpEP3xq � 1, is also a fuzzy model of the signed classical transitivity axiom

pEP3qev
(
@p,q,r. [Epp,qq^Epq,rq Ñ Epp,rq] ; inf

Q
(xpQq)

)
. (6.1.23)

with sign σpEP3q � inf
Q
(xpQq). Here, x indicates a fuzzy interpretation of the predicate
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X. Recall from subsection 3.2.2.5 that the sign σϕ of a signed formula pϕ;σϕq is a

lower bound for the similarity of ϕ to the truth in any model of pϕ;σϕq. Recall also the

adjunction property (3.2.8) of the Łukasiewicz conjunction and implication:

añ b¥ c iff ab c¤ b @a,b,c P r0,1s. (6.1.24)

Let M be a fuzzy model of pEP3xqev, where e is interpreted by a fuzzy relation e, and

where X is interpreted by a fuzzy set x. Then

inf
P,Q,R

[epP,Qqb xpQqb epQ,Rq ñ epP,Rq]︸ ︷︷ ︸
pEP3xq

� 1 (6.1.25)

holds, which is equivalent to

[epP,Qqb xpQqb epQ,Rq ñ epP,Rq]� 1 @P,Q,R. (6.1.26)

With the adjunction property, this is in turn equivalent to

epP,Qqb xpQqb epQ,Rq ¤ epP,Rq @P,Q,R. (6.1.27)

Applying the adjunction property again yields

[epP,Qqb epQ,Rq ñ epP,Rq]¥ xpQq @P,Q,R. (6.1.28)

It follows that

[epP,Qqb epQ,Rq ñ epP,Rq]¥ inf
Q
(xpQq) @P,Q,R (6.1.29)

holds, and in particular

inf
P,Q,R

[epP,Qqb epQ,Rq ñ epP,Rq]︸ ︷︷ ︸
pEP3q

¥ inf
Q
(xpQq) (6.1.30)

holds. I.e., M is a fuzzy model of (6.1.23). Here, inf
Q
(xepQq) is a global lower bound

for the truthlikeness of transitivity, while xpQq is a local lower bound, cf. also inequali-

ties 6.1.28 and 6.1.29. Since inf
Q
(xpQq) ¤ xpQq @Q holds, the signed transitivity axiom

(6.1.23), provides a less accurate error estimate than the signed weak transitivity axiom
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(6.1.22). As exemplified in example 6.1, even the extreme case of inf
Q
(xpQq) � 0 may

hold in case the size of the domain is 1. In this case, (6.1.23) is useless for further

deduction, which is why we employ (6.1.22).

6.1.4 Discernibility Degree and Transitivity Measure

The present work uses a special instance of approximate fuzzy similarity spaces, namely

the space pPC,�,ee,xeq of all nonempty subsets of a set C. Following Gottwald (1993),

Gerla (2008) defines a local measure of transitivity of a fuzzy relation e : X Ñ r0,1s

more generally by

dispQq :� inf
P,RPX

{epP,Qqb epQ,Rq ñ epP,Rq} , (6.1.31)

and calls it the discernibility measure of e. dis : X Ñ r0,1s is the extension of the

formula

Dispqq :� @p,r. [Epp,qq^Epq,rq Ñ Epp,rq] . (6.1.32)

He defines a global measure of transitivity by

transpeq :� inf
QPX

(dispQq) , (6.1.33)

and calls it the transitivity degree of the fuzzy relation e. transpeq is the valuation of the

formula

Trans� @q. [Dispqq], (6.1.34)

and trans is equivalent to the classical transitivity axiom pEP3q,

pEP3q � Trans� @x,y,z. [Epx,yq^Epy,zq Ñ Epx,zq] . (6.1.35)

In our intended interpretation in pPC,�,ee,xeq, the discernibility measure dis :

PC Ñ r0,1s coincides with the exactness degree xe : PC Ñ r0,1s,

dispPq � xepPq � 1� sepPq, (6.1.36)

cf. Gerla (2008). The transitivity degree of ee coincides with the sign of the transitivity

axiom pEP3q,

transpeeq � σpEP3q � inf
QPPC

xepQq. (6.1.37)

Gerla (2008) shows that the approximate similarities and the discernibility measure are
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Figure 6.1.2: The overlap relation is not transitive.

related as follows:

Proposition 6.5. Let X be a nonempty set. Let e : X �X Ñ r0,1s be a reflexive and

symmetric fuzzy relation on X , and let f : X Ñ r0,1s be a fuzzy subset of X . Then

the triple pX ,e, f q is an approximate fuzzy similarity space if and only if f � dis holds,

i.e., if an only if

f pY q ¤ dispY q @Y PX . (6.1.38)

In other words, the exactness measure xe is the most accurate local transitivity mea-

sure that is compatible with the approximate fuzzy similarity structure. The proposition

says that any less accurate estimate of xe can also be used. E.g., if we do not have ac-

curate knowledge of the size sepPq � 1� xepPq of an approximate point P, every upper

estimate s̄epPq ¥ sepPq can be used.

6.1.5 An Example of Truthlikeness Propagation

The goal of defining an approximate tolerance geometry for GIS is to measure the sim-

ilarity of false classical statements to the truth under conditions of positional tolerance.

We use the example of the augmented signed equality axioms pEP1qev�pEP3xqev to ex-

emplify how a fuzzy theory of approximate tolerance geometry can be used to propagate

truthlikeness in graded geometric deduction. The subsequent subsection 6.1.6 shows

how truthlikeness propagation relates to tolerance error propagation.

Figure 6.1.2 illustrates a configuration where P,Q,R are the known location con-

straints for “true” points p,q,r, respectively. Since P,Q and Q,R overlap, respectively,

eBpP,Qq � 1 and eBpQ,Rq � 1 hold. I.e., the statements p� q and q� r are true in

the intended interpretation pPC,LC,eB,xB, iBq with positional tolerance. Application

of the classical transitivity axiom

@p,q,r Epp,qq^Epq,rq Ñ Epp,rq (6.1.39)
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to the classical Modus Ponens rule

pMPq :
[Epp,qq^Epq,rq] , [Epp,qq^Epq,rq Ñ Epp,rq]

Epp,rq
, (6.1.40)

yields that the statement p� r is true in the intended interpretation with tolerance. Yet,

since P,R do not overlap, eBpP,Rq � 0 holds. I.e. the direct test yields contradicts the

statement p� r is false. I.e., with classical deduction a contradiction can be derived.

In our framework of similarity logic, the equality predicate � is interpreted by ap-

proximate equality with tolerance, ee, and, ee is axiomatized by pEP1xqev�pEP3xqev.

I.e., in particular, ee is weakly transitive. Applying the Evaluated Modus Ponens MPev �

pMP1ev;MP2evq to the weak transitivity axiom pEP3xqev yields

pMP1evq :
[Epp,qq^Xpqq^Epq, rq] , [Epp,qq^Xpqq^Epq, rq Ñ Epp, rq]

Epp, rq
, (6.1.41)

with a syntactic evaluation of

pMP2evq :
[1b xepQqb1] , 1

xepQqb1
, (6.1.42)

cf. subsection 3.2.2.4. pMP2evq deduces a sign for the result Epp, rq of the usual Modus

Ponens rule pMP1evq. Here, we assume that the sign
[
1b xepQq b 1

]
� xepQq of the

formula [
Epp,qq^Xpqq^Epq, rq

]
(6.1.43)

has been deduced before. According to axiom pEP3xqev, the sign of weak transitivity,

[Epp,qq^Xpqq^Epq, rq Ñ Epp, rq] (6.1.44)

is 1. From this input, pMP2evq yields the sign xe (Q)b 1 � xe (Q). I.e., the Evaluated

Modus Ponens MPev yields the signed formula

(p� r; xe (Q)) , (6.1.45)

The signed formula (6.1.45) provides a lower bound for the truthlikeness degree of p� r,

cf. subsection 3.2.2.5. More specifically, (6.1.45) means that the truthlikeness degree of

p� q is at least xe (Q) in every fuzzy model of pEP1xqev�pEP3xqev. This is indeed

true: The set distance depP,Rq is smaller or equal than the size of Q, depP,Rq ¤ sepQq,
cf. figure 6.1.2. Consequently, the truthlikeness degree of the formula p� q can be
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assessed by

eepP,Rq � 1�depP,Rq ¥ 1� sepQq � xepQq. (6.1.46)

I.e., xepQq is indeed an lower bound for the truthlikeness degree eepP,Rq of p� r in the

intended interpretation.

Error Assessment. In terms of an error measure, the signed formula (6.1.45) provides

an upper bound for the error made when assuming that p� q holds: The upper bound is

given by

sepQq � 1� xepQq. (6.1.47)

In this sense, a fuzzy theory of approximate tolerance geometry can be used as an error

calculus for positional tolerance in GIS.

Consistency of the Theory. Recall from subsection 3.2.2.5 that a theory is called con-

tradictory or inconsistent, if there is a proof πϕ of a formula ϕ , and a proof π 1 ϕ of it’s

negation  ϕ , such that valτpπϕqb valpπ 1 ϕq ¡ 0; τ is called consistent otherwise. The

above deduction with the Evaluated Modus Ponens pMPqev is a proof π of the formula

ϕ � pp� rq with valuation valτpπϕq � xepQq. The formula ϕ � [ epp,qq] can be seen

as a proof π 1 ϕ of approximate inequality. It yields the valuation valpπ 1 ϕq � depP,Qq.
With the definition of the Łukasiewicz conjunction, abb�max{a�b�1,0}, we get

valτpπϕqb valpπ 1 ϕq � xepQqbdepP,Qq (6.1.48)

� [1� sepQq]bdepP,Qq (6.1.49)

¤ [1�depP,Qq]bdepP,Qq (6.1.50)

� max{1�depP,Qq�depP,Qq�1,0}� 0. (6.1.51)

I.e., the above proof of pp� rq does not contradict the proof of pp� rq. This is in contrast

to classical logical theories, and also in contrast to most “classical” fuzzy logical systems

with unevaluated syntax.

6.1.6 An Example of Tolerance Error Propagation

In the forgoing subsection, we mentioned that a fuzzy theory of approximate tolerance

geometry can be used as an error calculus for positional tolerance. The reason for this is
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that we defined similarity to the truth as inverse to spatial error. I.e., propagating truth-

likeness degrees amounts to indirectly propagating spatial error. The present subsection

shows that, more specifically, graduated deduction in Rational Pavelka Predicate Logic

propagates second order tolerance error. This can be seen as follows:

On the syntactical level, the primitives of projective geometry are represented by the

object variables p,q,l,m, ... and the predicates �,i. Their mutual relations are spec-

ified in terms of axioms in a first order language. On the semantic level, we choose

the interpretation domain RP2, whose structure is richer than the structure provided

by the axiom system: RP2 allows for representing approximate points by sets of ex-

act points, which amounts to using a second order language. I.e., approximate points

and lines P,Q,L,M, ... are defined as second order objects, while exact points and lines

p,q, l,m, ... are first order objects. The error made when identifying two exact points p̄,p
is a first order error and can be measured by the elliptic distance epp̄,pq. We call epp̄,pq
a first order tolerance error, if p̄ is the representative of an unknown “true” point p that

is known up to positional tolerance. To assess epp̄,pq, we introduced the size measure se
in subsection 5.3.4:

epp̄,pq ¤ sepPq @p P P. (6.1.52)

The error made when approximately identifying two approximate points P,Q is a second

order error and can be measured by the extensive elliptic distance depP,Qq. We call a

second order error a second order tolerance error, if it stems from wrongly applying

classical geometric reasoning to approximate geometric primitives. To asses second

order tolerance error, we use graduated deduction in RPL@. E.g., in the case of the

wrongly applied transitivity axiom discussed in the forgoing subsection, we applied the

evaluated Modus Ponens rule pMPqev, yielding the error assessment

depP,Rq ¤ sepQq @P,R : i∆pP,Qq � i∆pQ,Rq � 1, (6.1.53)

where depP,Rq � 1� eepP,Qq. I.e., truthlikness degrees are inverse to second order

positional tolerance errors. By propagating truthlikeness degrees, graduated deduction

with RPL@ implicitly propagates second order tolerance error.

To assess the overall first order error made when wrongly applying classical geometric

reasoning to approximate primitives, it is necessary to add to the deduced second order

error the first order errors of the involved approximate objects. E.g., figure 6.1.3a il-

lustrates the example of the wrongly applied transitivity axiom discussed in subsection

6.1.5: Here, p̄, r̄ are representatives of the unknown “true” points p,r, and P,R are the
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Figure 6.1.3: Overall first order error made when assuming transitivity for approximate primi-
tives. (a) A general case; (b) The worst case.

corresponding approximate points. The first order error made when wrongly assuming

that p̄� p holds is epp̄,pq, and we assess it by sepPq. Similarly, the first order error made

when wrongly assuming that r̄� r holds is epr̄,rq, and we assess it by sepRq. The second

order error made when wrongly assuming that eBpP,Rq � 1 holds is depP,Rq, and the

evaluated Modus Ponens rule assesses it by sepQq. Notice that sepQq is an upper bound

for depP,Rq, and thus sepQq assesses the worst case error. An example configuration

where the worst case indeed eventuates is illustrated in figure 6.1.3b. In order to assess

the overall first order tolerance error made when identifying the “true” points p and r, it

is necessary to add to sepQq the values sepPq and sepRq,

error(p� r)¤ sepPq� sepQq� sepRq. (6.1.54)

The overall first order tolerance error is important for GIS applications, because it is the

error value a user is interested in: In GIS representations, points and lines with positional

tolerance p,q, l,m, , ... are usually stored and represented as exact points without posi-

tional tolerance, i.e., by representatives p̄, q̄, l̄,m̄, ... of the corresponding approximate

points and lines P,Q,L,M, .... I.e., first order positional tolerance is neglected. Subse-

quent geometric tests and constructions usually operate on p̄, q̄, l̄,m̄, ..., and are based on

classical geometry. I.e., second order positional tolerance error is neglected, too. The

overall first order error measure provides an assessment of the worst case error made

when neglecting positional tolerance.
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6.2 Euclid’s First Postulate: Properties of the Triple pepdXq,xpdXq, i∆q

The section addresses Euclid’s First Postulate, i.e., the existence axiom pPr1q and the

uniqueness axiom pPr2q. Subsection 6.2.1 shows that the “existence axiom” pPr1q has a

truthlikeness degree of 1 in the intended interpretation with positional tolerance. Before

addressing the truthlikeness degree of the “uniqueness axiom” pPr2q, we introduce some

notation: Subsection (6.2.2) introduces the notions of approximate join and pencil of ap-

proximate joins. Subsection 6.2.3 introduces the notions of directionality measure and

uniqueness degree. Using these notions, we show in subsection 6.2.4 that the unique-

ness axiom pPr2q is absolutely false under conditions of positional tolerance for some

domains C. As a consequence, it is necessary to augment pPr2q to achieve a positive

truthlikeness degree. Subsection 6.2.5 shows that a “localized” version, pPr2Dirq of

pPr2q can be defined with a truthlikeness degree of 1, independently of the domain C.

We call pPr2Dirq the weak uniqueness axiom. Subsection 6.2.6 shows that the signed

version of weak uniqueness pPr2Dirq is still not usable as for geometric reasoning under

positional tolerance, because it is always trivially satisfied. Finally, we conclude in sub-

section 6.2.7, that it is necessary to re-adjust the intended interpretation by restricting

the sizes of approximate points and lines.

6.2.1 The Existence Axiom is Absolutely True

Recall from subsection 6.1.1 that some of the classical projective axioms pEP1q�pPr5q

may have a zero truthlikeness degree in the intended interpretation pPC,LC,ee,xe, i∆q

for some choices of the domain C. Axioms with zero truthlikness do not contribute to

a fuzzy theory of approximate tolerance geometry, because zero truthlikeness is equiv-

alent to absolute falsity. The present subsection derives the truthlikeness degree of the

“existence axiom” pI1q,

pPr1q @p,q.Dl. [ Epp,qq Ñ Ipp,lq& Ipq,lq] .

Axiom pPr1q is the first of two axioms that constitute Euclid’s First Postulate, saying

that for two distinct points, an connecting line always exists. We show in the follow-

ing that the truthlikeness degree of pPr1q in pPC,LC,eB,xB, iBq is constantly equal to

1. Consequently, we can use pPr1q unaltered to set up a corresponding signed axiom,

pPr1qev, with sign σpPr1q � 1 for approximate tolerance geometry,

pPr1qev
(
@p,q.Dl. [ Epp,qq Ñ Ipp,lq& Ipq,lq]; 1

)
.
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as a signed axiom of the fuzzy theory of approximate tolerance geometry. For deriving

the truthlikeness degree of pPr1qev, we first prove the following proposition:

Proposition 6.6. Let C be a well-conditioned subset of RP2 w.r.t. to h3, and set

Lmax :�
(
L1CXh2pD̄2q

)1
� LC. (6.2.1)

Lmax is an approximate line in C, and i∆pP,Lmaxq � 1 holds for all P PPC.

Proof. To see that Lmax is an approximate line in C, notice that Lmax is well conditioned

w.r.t. h2, because L1max � h2pD̄2q holds. Since h2pD2q � h2pD̄2q is open in pRP2,τeq,

L1CX h2pD2q is open in the subspace topology τe,L1
C

of L1C � RP2, and L1max � L1CX
h2pD2q is a τe,L1

C
-neighborhood in L1C. I.e., Lmax is an approximate line in C.

i∆pP,Lmaxq � 1 holds if P� Lmax. To see that i∆pP,Lmaxq � 1 holds for all P PPC,

we show that P� C� Lmax for all P PPC. Here, P� C holds @P PPC by definition of

approximate points. In the following we show that C�Lmax holds: Consider for every

p� pp1 : p2 : p3q PC, the line lp with homogeneous line coordinates l1p :� p0 : p3 :�p2q.

We show that p P lp P Lmax, i.e. that C � Lmax holds. p P lp holds, because p � l1p � 0,

and lp P Lmax holds, because l1p P L1max �
(
L1CXh2pD2q

)
, which can be seen as follows:

Since p P C and p P lp, it follows that l1p P L1C. To see that l1p P h2pD2q holds consider the

following:

epl1p,O2q �
2
π
� arccos

∣∣p0, p3,�p2q
J � p0,1,0qJ

∣∣
‖p0, p3,�p2qJ‖ �‖p0,1,0qJ‖

�
2
π
� arccos

|p3|√
p2

2� p2
3

(6.2.2)

¤
2
π
� arccos

|p3|√
p2

1� p2
2� p2

3

�
2
π
� arccos

∣∣pp1, p2, p3q
J � p0,0,1qJ

∣∣
‖pp1, p2, p3qJ‖ �‖p0,0,1qJ‖

(6.2.3)

� e(p,O3) ¤
sepCq

2
¤

1
2
. (6.2.4)

Here, e(p,O3) ¤
sepCq

2 , because p P C, and because C is centered around O3, cf. sub-
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section 3.1.2.3. sepCq   1 holds, because the elliptic metric e is normalized. Since

h2pD2q � h2

({
pp1, p2q P R2|

√
p2

1� p2
2   1

})
(6.2.5)

�
{

p� pp1 : p2 : 1q P RP2|e0pp,O3q  
π

4

}
(6.2.6)

�

{
p� pp1 : p2 : 1q P RP2|epp,O3q  

1
2

}
, (6.2.7)

it follows that l1p P h2pD2q.

The following corollary shows that the existence axiom pPr1q has truthlikeness de-

gree 1 in the intended interpretation with positional tolerance.

Corollary 6.7. Let C � RP2 be well-conditioned, and let ee and i∆ be defined as in

section 5.3. Then

inf
P,Q

sup
L

[ eepP,Qq ñ i∆pP,Lqb i∆pQ,Lq]� 1 (6.2.8)

holds.

Proof. It is sufficient to show that

@P,Q PPC. DL PLC :
[
 eepP,Qq ñ i∆pP,Lqb i∆pQ,Lq

]
� 1 (6.2.9)

holds. Recall that a� 1�a, 1ba� ab1� a, 0ba� ab0� 0 and that pañ bq � 1

holds iff a¤ b for a,b P r0,1s, cf. subsection 3.2.2.1. With  eepP,Qq � 1� eepP,Qq �
depP,Qq, (6.2.9) is equivalent to

@P,Q PPC. DL PLC : depP,Qq ¤ ipP,Lqb ipQ,Lq. (6.2.10)

Here, i∆ : PC �LC Ñ {0,1} is a Boolean predicate, and ipP,Lq b ipQ,Lq P {0,1}.
Since depP,Qq P r0,1s, it is sufficient to show that for every P,Q PPC an approximate

line L PLC exists such that ipP,Lqb ipQ,Lq � 1, i.e. such that P� L and Q� L holds.

According to proposition 6.6, Lmax is such an approximate line.

The “uniqueness axiom” (Pr2) is the second of two axioms that constitute Euclid’s

First Postulate. It says that a line that is incident with two distinct points is unique.

Before addressing the truthlikeness degree of (Pr2) in subsection 6.2.4, the subsections

6.2.2 and 6.2.3 introduce the notions of approximate join, pencil of approximate joins,

directionality measure, and uniqueness degree.
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6.2.2 Pencils of Approximate Joins

In classical projective geometry, the join of two distinct points is the unique line that is

incident with them. Inspired by the classical terminology, we give the following defini-

tion:

Definition 6.8. Let C be a well-conditioned subset of RP2, and let P,Q PPC be two

approximate points. An approximate line L P LC that is approximately incident with

both, P and Q, is called an approximate join of P and Q.

In classical geometry, the join defines a geometric operator, i.e., a function that as-

signs to each pair of distinct points a line. The function is definable, because, according

to Euclid’s First Postulate, an exact line that is incident with two distinct exact points

always exists and is unique. We showed in subsection 6.2.1 that an approximate join of

two approximate points always exists. Yet, example 5.18 on page 113 showed that the

uniqueness axiom pPr2q does not necessarily hold under conditions of positional toler-

ance. I.e., the approximate join of two disjoint approximate points is not unique with

respect to equality with tolerance in general. We will show in subsection 6.2.4 that it is,

in general, not even close to being unique in the intended interpretation with positional

tolerance.

Remark 6.9. The interpretation of uniqueness depends on the interpretation of the equal-

ity predicate: In classical geometry, the equality predicate is interpreted by set equality,

�. A line l that is incident with two distinct points p,q is unique in terms of set equality,

because the uniqueness axiom pPr2q states that every other such line coincides with l.

In the intended interpretation of geometry with tolerance, the equality predicate is inter-

preted by equality with tolerance, eB , i.e., by the overlap relation. An approximate line

L that is approximately incident with two approximate points P,Q is unique in terms of

equality with tolerance if every other such line overlaps with L. We showed in example

5.18 that this is not always the case.

Since the approximate join of two disjoint approximate points is not necessarily

unique, it is not possible to define a function that assigns to each pair of disjoint approx-

imate points an approximate line. Yet, we can assign to each pair of approximate points

(disjoint or not) a set of approximate lines. Again, we borrow the terminology from clas-

sical geometry: In classical geometry, a pencil of geometric figures is a set of geometric

figures of the same type that share a common property. In particular, a pencil of lines

through a point p P RP2 is the set of lines that are incident with p, cf. figure 6.2.1a. Ex-

tending the terminology, we define the pencil of lines through two points p and q as the
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Figure 6.2.1: (a)-(c) Pencil of joins (a’)-(c’) Pencil of approximate joins.

set of lines that are incident with p and q, and we denote it by p�q. If p� q holds, the

usual definition of pencil applies. If p� q, Euclid’s First Postulate guarantees that only

one line is incident with p and q, and the pencil of lines through p and q coincides with

the join of p and q, i.e., p�q� {p_q}, cf. figures 6.2.1 b and c. For short, we call p�q
the pencil of joins of p and q. We extend the notion of pencil of joins to approximate

tolerance geometry (cf. figures 6.2.1 a1� c1):

Definition 6.10. Let C be a well-conditioned subset of RP2. The pencil of approximate

lines through two approximate points P,Q PPC is the set of approximate joins of P and

Q,

P�Q :� {L PL |P,Q� L} . (6.2.11)

For short, we call P�Q the pencil of approximate joins of P and Q.

The definition of a pencil of approximate joins is consistent with the classical defi-

nition. For P� {p} and Q� {q}, definition 6.10 yields

P�Q� {p}�{q}�

{p_q} if p� q,{
l P pRP2q1|p P l

}
if p� q.

Here, the set {p_q} can be identified with the unique join p_q of the distinct points
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p� q; The set
{

l P pRP2q1|p P l
}

is the pencil of lines through p.

The figures 6.2.1 a1� c1 illustrate the intuitive idea that the distance depP,Qq between

two approximate points P,Q of fixed shape influences the “size” of the pencil P�Q. We

formalize the concept of “size” of a set of approximate lines by the name of extensive

size. For the scope of the work, it is sufficient to restrict the definition to pencils of

approximate joins:

Definition 6.11. Let C be a well-conditioned subset of RP2, and P,Q PPC. We call

SepP�Qq :� spdeqpP�Qq � sup{depL,Mq|L,M P P�Q} P r0,1s (6.2.12)

the extensive size of (P�Q)�LC. We call

XepP�Qq :� 1�SepP�Qq P r0,1s (6.2.13)

the extensive approximate exactness degree of P�Q.

The definitions of SepP�Qq and XepP�Qq are consistent with classical geometry:

For P� {p} and Q� {q},

SepP�Qq � spdeq ({p}�{q})�

spdeq ({p_q}) if p� q,

spdeq
({

l P pRP2q1|p P l
})

if p� q.


�

se ({p_q}) if p� q,

se
({

l P pRP2q1|p P l
})

if p� q.

�
0 if p� q,

1 if p� q.

� sBp{p}�{q}q

(6.2.14)

Here, se
({

l P pRP2q1|p P l
})
� 1, because for every p PPC � h3pD̄2q, two orthogonal

lines l,m P LC exist that are incident with p. E.g., for l :� p_O2 and m :� p_pp_O2q
1,

l1 � pl1, l2, l3q and m1 � pm1,m2,m3q are orthogonal in R3. I.e., l1 �m1 � 0, and epl,mq �
epl1,m1q � (2{π)arccos |l1�m1|

‖l1‖‖m1‖ � 1. I.e., for exact input, the extensive size of a pencil of

approximate lines reduces to the discrete size of a pencil of joins. Correspondingly, the

extensive exactness degree reduces to the discrete exactness measure xB,

XepP�Qq � 1� sBp{p}�{q}q � xBp{p}�{q}q. (6.2.15)

Remark 6.12. The pencil P�Q of approximate joins of P and Q is a set of approximate

lines. In analogy to an approximate line being defined as a set of exact lines, we may
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Figure 6.2.2: The extensive size of P�Q depends on the sizes of the approximate points
P,Q.

informally call P�Q an “approximate approximate line”. Formally, this notion can not

be applied, because it would require defining a topology on the set LC of approximate

lines that is compatible with the set distance de. The set distance de in turn is not a

metric, but only an extensive pseudometric. It does not induce a metric topology on the

set LC of approximate lines in the usual sense. The question if or what kind of topology

is induced by de has not been investigated by the author. To the knowledge of the author,

no literature on the topic is available as yet. The topic is not relevant for the present work:

We want to formulate geometry as a first order theory, and an “approximate approximate

line” is a second order object. For the purpose of the present work it is sufficient that

pLC,deq is an extensive pseudometric space, cf. subsection 3.3.1.

6.2.3 Directionality Degree and Uniqueness Measure

We mentioned in subsection 6.2.2 that, intuitively, the (extensive) distance depP,Qq be-

tween two approximate points P,Q influences the extensive size SepP�Qq of the pencil

P�Q. Figures 6.2.1 b’ and c’ on page 148 illustrate this idea by leaving the sizes of P,Q
fixed and varying depP,Qq. Similarly, we expect that SepP�Qq is influenced by the sizes

of P and Q. Figure 6.2.2 illustrates this idea by leaving the distance depP,Qq fixed and

varying the sizes of P,Q. This intuition is formalized by the uniqueness axiom

pPr2q @p,q,l,m. [ Epp,qq& Ipp,lq& Ipq,lq& Ipp,mq& Ipq,mq Ñ Epl,mq]
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and its fuzzy interpretation in pPC,LC,ee,xe, i∆q,

pPr2q inf
P,QPPC

inf
L,MPLC

[
 eepP,Qqb i∆pP,Lqb i∆pQ,Lqb

i∆pP,Mqb i∆pQ,Mq ñ eepL,Mq
]
.

To see this, we rewrite the truthlikeness value pPr2q of pPr2q as follows:

inf
P,QPPC

inf
L,MPLC

[
 eepP,Qqb i∆pP,Lqb i∆pQ,Lqb

i∆pP,Mqb i∆pQ,Mq ñ eepL,Mq
]

(6.2.16)

� inf
P,QPPC

inf
L,MPpP�Qq

[
 eepP,Qq ñ eepL,Mq

]
(6.2.17)

� inf
P,QPPC

[
 eepP,Qq ñ inf

L,MPpP�Qq
(eepL,Mq)

]
(6.2.18)

� inf
P,QPPC

[
depP,Qq ñ XepP�Qq

]
. (6.2.19)

Here, (6.2.17) follows from (6.2.16) by setting i∆pP,Lq�i∆pQ,Lq�i∆pP,Mq�i∆pQ,Mq�
1 and changing L,M PLC to L,M P pP�Qq. (6.2.18) follows from (6.2.17), because(

inf
iPI

(añ ai)

)
�
(

añ inf
iPI
paiq
)

@a P r0,1s (6.2.20)

holds for the residuated implication ñ, where paiqiPI is a family of elements in r0,1s

(Gerla and Miranda, 2004). Finally, (6.2.19) follows from (6.2.18) by the definitions of

de and XepP�Qq.
The expression

[
depP,Qq ñ XepP�Qq

]
in (6.2.19) measures the truthlikeness of the as-

sumption “Whenever the extensive distance of P and Q is large, the extensive exactness

of P�Q is also large”. Loosely formulated we may say that
[
depP,Qq ñ XepP�Qq

]
measures the truthlikeness of the assumption “The larger the distance the closer is the

approximate join to being unique”. We call
[
depP,Qq ñ XepP�Qq

]
the directionality

degree of P and Q:

Definition 6.13. For ee : PC�PCÑr0,1s and i:∆PC�LCÑ {0,1}, the directionality

measure induced by ee and i∆ is the fuzzy relation dir : PC�PC Ñ r0,1s,

dirpP,Qq :�
[
depP,Qq ñ XepP�Qq

]
P r0,1s (6.2.21)
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We call dirpP,Qq the directionality degree of the pair P,Q PPC w.r.t. ee, i∆.

The directionality measure dir : PC�PC Ñ r0,1s is the extension of the formula

Dirpp,qq � @l,m.
[
 Epp,qq^Ipp,lq^Ipq,lq^

Ipp,mq^Ipq,mq Ñ Epl,mq
]
. (6.2.22)

In subsection 6.1.3, we mentioned that we use the idea of “localizing” the transitivity

axiom for augmenting the uniqueness axiom. In the the analogy between the transitivity

axiom and the uniqueness axiom the directionality measure dir corresponds to the dis-

cernibility measure dis, cf. subsection 6.1.4: The value of dirpP,Qq depends on P and

Q (cf. figure 6.2.2), while pPr2q is it independent of P and Q by evaluating the greatest

lower bound over all P,Q PPC. I.e., dirpP,Qq can be seen as a local version of pPr2q.

We call the value of pPr2q the approximate uniqueness degree:

Definition 6.14. For ee : PC�PC Ñ r0,1s and i∆ : PC�LC Ñ {0,1}, we define the

approximate uniqueness degree induced by the fuzzy relations ee, i∆ in C by

unqpC,ee, i∆q :� inf
P,QPPC

[
dirpP,Qq

]
P r0,1s. (6.2.23)

The uniqueness degree unqpC,ee, i∆q is the valuation of axiom (Pr2) in pPC,LC,ee,xe, ieq,

i.e.,

Unq� @p,q. [Dirpp,qq] (6.2.24)

holds. In other words, the value of unqpC,ee, i∆q is the truthlikeness degree of the as-

sumption that the classical uniqueness axiom (Pr2) is true under conditions of positional

tolerance. In the analogy with the transitivity axiom, the uniqueness degree unq corre-

sponds to the transitivity degree trans, cf. subsection 6.1.4.

As discussed in subsection 5.3.7, the truthlikness degree of a classical axiom can be

used to set up a signed version of the classical axiom within a fuzzy theory of approxi-

mate tolerance geometry. Yet, this can only be done if its truthlikeness degree is positive.

Otherwise it is necessary to augment the original axiom. I.e., if

unqpC,ee, i∆q � σpPr2q ¡ 0. (6.2.25)

holds, we may set up the signed uniqueness axiom

pPr2qev
(
pPr2q; σpPr2q

)
.
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If unqpC,ee, i∆q � 0 holds, it is necessary to augment pPr2q before determining its truth-

likeness degree.

The subsequent subsection 6.2.4 shows that σpPr2q � unqpC,ee, i∆q � 0 holds for

some choices of C. As a consequence, pPr2qmust be changed such that the truthlikeness

degree of the changed axiom is positive for all choices of C. We do this in subsection

6.2.5. Before proceeding to the next subsection, we show that the definitions of dirpP,Qq
and unqpC,ee, i∆q are consistent with classical geometry.

To see that dirpP,Qq is consistent with classical geometry, we use the explicit repre-

sentation of the Łukasiewicz implication,

(añ b)�min{(1�a�b) ,1} , (6.2.26)

(cf. subsection 3.2.2.1), to rewrite dir as

dirpP,Qq � [depP,Qq ñ XepP�Qq] (6.2.27)

� min{1�depP,Qq�XepP�Qq, 1} . (6.2.28)

Then, for P� {p} and Q� {q} we have

dirpP,Qq � dir ({p},{q}) � min{1�de ({p},{q})�Xe ({p}�{q}) , 1} (6.2.29)

� min{1� epp,qq� xBp{p}�{q}q, 1} (6.2.30)

In classical geometry, dirp{p},{q}q   1 can not occur:

dirp{p},{q}q   1 iff [1� epp,qq� xBp{p}�{q}q]  1 (6.2.31)

iff [1� epp,qq]  1 and xB ({p}�{q})� 0 (6.2.32)

iff epp,qq ¡ 0 and xBp{p}�{q}q � 0 (6.2.33)

iff p� q and sBp{p}�{q}q � 1. (6.2.34)

I.e., dirpP,Qq   1 iff p� q holds while more than one join of p and q exist. This is

impossible. Consequently,

dirp{p},{q}q � 1 @p,q P C. (6.2.35)

I.e., the directionality of two exact points is always maximal. For the uniqueness degree
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unqpC,ee, i∆q, we get

unqpC,ee, i∆q � inf
p,q

[dirpp,qq]� 1. (6.2.36)

In other words, if positional tolerance is zero, the uniqueness axiom pPr2q has maximal

truthlikeness, i.e., it is absolutely true.

6.2.4 Uniqueness is Absolutely False

We showed in example 5.18 on page 113 that the uniqueness axiom pPr2q is not true

in the intended interpretation pPC,LC,eB,xB, iBq with tolerance. We show in the fol-

lowing example 6.15 that pPr2q may not even be close to being true under conditions of

positional tolerance. More specifically, we show that unqpC,ee, i∆q � 0 holds for some

choices of C. Before considering the example, notice the following:

unqpC,ee, i∆q � inf
P,QPPC

[dirpP,Qq]� 0 (6.2.37)

holds if approximate points P,Q PPC exist with

dirpP,Qq �min{1�depP,Qq�XepP�Qq, 1}� 0, (6.2.38)

and

dirpP,Qq � 0 iff [1�depP,Qq�XepP�Qq]� 0 (6.2.39)

iff depP,Qq � 1�XepP�Qq (6.2.40)

iff depP,Qq � 1 and XepP�Qq � 0. (6.2.41)

Example 6.15 shows that such P,Q PPC indeed exist if we choose, e.g., the domain

C� h3
(
D̄2
)
.

Example 6.15. Consider the domain C� h3
(
D̄2
)
, and the following approximate points

P,Q PPC:

P�{p} :� {p�1 : 0 : 1q} , Q� {q} :� {p1 : 0 : 1q}

Here, depP,Qq � epp,qq � 1 holds, and we show below that XepP�Qq � 0 holds. As a

consequence, dirpP,Qq � 0, and we indeed have

unqpC,ee, i∆q � inf
P,QPPC

[dirpP,Qq]� 0. (6.2.42)
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Figure 6.2.3: The ellipses En.

To see that XepP�Qq � 0 holds, recall that XepP�Qq � 1�SepP�Qq, and

XepP�Qq � 0 iff SepP�Qq � sup
{

depL̄,M̄q|L̄,M̄ P P�Q
}
� 1. (6.2.43)

Set L :� {p_q} P P�Q. In order to show that SepP�Qq � 1 holds, we construct a

sequence of approximate lines (Mn)nPN with Mn P P�Q and

depL,Mnq Ñ 1 for nÑ8. (6.2.44)

For every n P N set Mn :� [h1pEnq]
1, where En � R2 is the filled ellipse with boundary

En �
{
px,yqJ P R2|n2x2� y2 � 1

}
. (6.2.45)

I.e., En � R2 is an ellipse with minor axis 2{n and major axis 2, cf. figure 6.2.3. To

see that Mn P P�Q holds for all n P N, consider the R2-point p0,1qJ, and notice that

p0,1qJ P En for all n P N; As a consequence, l1p :� h1
(
p0,1qJ

)
� p1 : 0 : 1q PM1

n holds,

and l1p � p � p1,0,1q � p�1,0,1q � 0. I.e., p P lp PMn, and it follows that {p} �Mn. In

other words, Mn is approximately incident with P� {p} for all n PN. Similarly, consider

the R2-point p0,�1qJ, and notice that p0,�1qJ P En for all n P N; Consequently l1q :�

h1
(
p0,�1qJ

)
� p1 : 0 :�1q PM1

n, and l1q �q� p1,0,�1q � p1,0,1q � 0. I.e., q P lq PMn,

and it follows that {q} �Mn. In other words, Mn is approximately incident with Q �
{q} for all n P N. Since Mn, n P N, is approximately incident with P and Q, Mn P P�Q
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Figure 6.2.4: Uniqueness is absolutely false.

is indeed true for all n P N. It remains to show that depL,Mnq Ñ 1 holds for nÑ8:

depL,Mnq � inf
{
e
(
l1,m1

n
)
|l1 P L1, m1

n PM1
n
}

(6.2.46)

� inf
{
e
(
pp_qq1,m1

n
)
|m1

n PM1
n
}

(6.2.47)

�
2
π

inf
{
e0
(
pp_qq1,m1

n
)
|m1

n PM1
n
}
. (6.2.48)

Here, p_q� p�1 : 0 : 1q_p1 : 0 : 1q � p0 : 1 : 0q1. Set m̂1
n :� p1 : 1

n : 0q PM1
n. Then

e0
(
pp_qq1,m̂1

n
)
� e0

(
p0 : 1 : 0q,p1 :

1
n

: 0q
)

(6.2.49)

Ñ e0 (p0 : 1 : 0q,p1 : 0 : 0q)�
π

2
(6.2.50)

for nÑ8. e0 (pp_qq1,m̂1
n) ¤ e0 (pp_qq1,m1

n) holds for all m1
n PM1

n and n P N, and

we do not show this in detail. It follows that depL,Mnq Ñ 1 for nÑ8.

Figure 6.2.4 illustrates the configuration of example 6.15 in R2 using the coordinate

chart h�1
3 . Here, L � {l} � {p_q} and M :� lim

nÑ8
Mn, with Mn defined as above. {l}

and M are the images of {l} and M under h�1
3 , respectively. The figure shows that M is

a set of parallel lines, all of which are perpendicular to l, i.e., all of them have maximal

elliptic distance from l.

Remark 6.16. Notice that M itself is not an approximate line in C, because M1 �
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lim
nÑ8

h1pEnq � lim
nÑ8

h1pEnq � h1pE8q is a segment of a projective line in LC, cf. fig-

ure 6.2.3. It is thus neither a point in LC nor a neighborhood of a point in LC. Yet, all

Mn, n P N, are approximate lines in C, and this is sufficient for the example.

The example shows that for some domains C, the uniqueness axiom pPr2q can have

zero truthlikeness under conditions of positional tolerance, i.e., it is absolutely false. As

discussed earlier in subsection 6.1.1, it is not useful to list an absolutely false formula

as an axiom of a fuzzy theory, because graded deduction in RPL@ can only deduce

absolutely false formulas from it.

Superficially, the reason for the uniqueness degree unqpC,ee, i∆q in example 6.15

to be zero is that sepCq � 1 holds: If a domain C is chosen with sepCq   1, then

depP,Qq � epp,qq   1, and example 6.15 can not be constructed as it is done above,

cf. the equivalences (6.2.39)-(6.2.41). Yet, even if the choice of a smaller domain would

yield a positive uniqueness degree and thus a positive sign σpPr2q for pPr2q, this is not

the way to go: It is not desirable that the sign of an axiom depends on the size of the

domain C, because C is scaled in preprocessing to ensure that it is well conditioned (cf.

subsection 3.1.2.3).

As in the case of the transitivity axiom, the underlying reason for the uniqueness

degree unqpC,ee, i∆q in example 6.15 to be zero is that positional tolerance introduces an

additional parameter to geometry, namely exactness, or dually, size: unqpC,ee, i∆q � 0

holds, because dirp{p}�{q}q � 0, which in turn holds, because Xep{p}�{q}q � 0, cf.

the equivalences (6.2.39)-(6.2.41). The reason that Xep{p} � {q}q � 0 holds is that the

size of approximate joins of {p} and {q} is not restricted, but arbitrary. In particular,

their size may be 1 (maximal), or it may converge to 1, as in the sequence pMnqnPN.

As a consequence, approximate joins of {p} and {q} may have arbitrary approximate

direction (cf. definitions 6.17 below). Figure 6.2.4 illustrates this in R � h�1
3 pRP2q for

the limit case of M :� lim
nÑ8

Mn: Here, the size of M (i.e., the width of the set M of parallel

lines) is greater than the distance of p and q. As a consequence, p,q PM holds, while at

the same time the direction of M is perpendicular to the direction of l � p_q.

Remark 6.17. Loosely speaking, and in analogy to exact projective geometry, an approx-

imate direction of an approximate line L in an affine patch of RP2 may be defined as an

“approximate point at infinity” that is approximately incident with L. Here, the notion

of “approximate point at infinity” needs further specification, because an approximate

point can only be “approximately at infinity”. We do not elaborate further on this point,

but leave it for future work.

Remark 6.18. Notice that M in example 6.15 is a limit of the approximate joins Mn of
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{p} and {q}, but it is not an approximate join itself. As already mentioned above, M is

a set of affine parallel lines. While directions of Mn are approximate, the direction of

M is exact, and it is perpendicular to the direction of l � p_ q in an exact sense. The

exact direction of M is the limit of the approximate directions of the Mn, and these are

approximately perpendicular to the direction of l. We do not elaborate on the notions of

approximate perpendicularity and approximate angles in this work, and leave the topic

for future work.

We show in the subsequent subsection that the classical uniqueness axiom pPr2q

can be augmented by a predicate that assesses the directionality measure, such that the

augmented axiom has a positive truthlikeness degree.

6.2.5 Weak Uniqueness is Absolutely True

We address the question of how the uniqueness axiom pPr2q can be augmented such

that a positive truthlikeness degree for the intended interpretation pPC,LC,eB,xB, iBq

results. We do this by using the analogy with the case of the transitivity axiom: Both

axioms are the universal closure of an implication,

pEP3q @p,q,r. [Epp,qq& Epq,rqr Ñ Epp,rq] ,

pPr2q @p,q,l,m. [ Epp,qq& Ipp,lq& Ipq,lq& Ipp,mq& Ipq,mq Ñ Epl,mq] .

Here, the discernibility measure dis corresponds to the directionality measure dir,

Dispqq � @p,r. [Epp,qq& Epq,rq Ñ Epp,rq] , (6.2.51)

Dirpp,qq � @l,m.
[
 Epp,qq& Ipp,lq& Ipq,lq&

Ipp,mq& Ipq,mq Ñ Epl,mq
]
, (6.2.52)

and the transitivity degree Trans corresponds to the uniqueness degree Unq,

Trans � @q [Dispqq], (6.2.53)

Unq � @p,q. [Dirpp,qq] , (6.2.54)

cf. subsection 6.1.4. In our fuzzy interpretation pPC,LC,ee,xe, ieq, the interpretation of

the discernibility measure Dis coincides with the exactness measure xe, and the inter-
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pretation of Trans coincides with the sign of the classical transitivity axiom pEP3q,

σpEP3q � inf
QPPC

xepQq (6.2.55)

Correspondingly, the interpretation of Dir in pPC,LC,ee,xe, ieq is dir, cf. definition

6.13. The interpretation of Unq is unqpC,ee, i∆q, cf. definition 6.14, and it coincides with

the sign of the classical uniqueness axiom pPr2q,

σpPr2q � inf
P,QPPC

dirpP,Qq. (6.2.56)

We showed in subsection 6.1.1 that σpEP3q � inf
QPPC

xepQq � 0 holds for some domains

C. We argued that it is not desirable that the sign of an axiom depends on the choice of

the domain. To change this, we constructed in subsection 6.1.3 a weak version, pEP3xq,

of the classical transitivity axiom pEP3q by “localizing” it, i.e., by incorporating the

exactness degree xepQq of the “middle element” Q in the antecedent of the implication,

pEP3xq @p,q,r. [Epp,qq& Xpqq& Epq,rq Ñ Epp,rq].

We showed that the resulting weak transitivity axiom pEP3xq has a positive truthlike-

ness degree, σpEP3xq � 1, in the intended interpretation with positional tolerance, inde-

pendently of the domain C. As a consequence, we could use the corresponding signed

axiom

pEP3xqev
(
@p,q,r. [Epp,qq& Xpqq& Epq,rq Ñ Epp,rq]; σpEP3xq � 1

)
as a fuzzy axiom of approximate tolerance geometry: pEP3xqev is consistent with pEP3q,

and it applies to exact points and lines as well as to approximate points and lines that are

not exact.

Similarly, we showed in the forgoing subsection 6.2.4 that

σpPr2q � inf
P,QPPC

dirpP,Qq � 0 (6.2.57)

holds for some domains C. Since it is not desirable that the sign of an axiom depends

on the choice of the domain, we construct a weak version of the classical uniqueness

axiom pPr2q by “localizing” it: We incorporate the directionality degree dirpP,Qq in the
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antecedent of the implication in pPr2q, and we call the resulting formula,

pPr2Dirq @p,q,l,m.
[
 Epp,qq& Dirpp,qq& Ipp,lq& Ipq,lq&

Ipp,mq& Ipq,mq Ñ Epl,mq
]

the weak uniqueness axiom. The following proposition shows that the weak unique-

ness axiom pPr2Dirq has a positive truthlikeness degree, σpPr2Dirq � 1, in the intended

interpretation with positional tolerance, independently of the domain C.

Proposition 6.19. The truthlikeness degree of pPr2Dirq in the intended interpretation

with positional tolerance is equal to 1,

inf
P,QPPC

inf
L,MPLC

[
 eepP,QqbdirpP,Qqb i∆pP,Lqb i∆pQ,Lqb

i∆pP,Mqb i∆pQ,Mq ñ eepL,Mq
]
� 1, (6.2.58)

independently of the domain C.

Proof. Recall the definition 6.13 of the directionality measure dir,

dirpP,Qq �
[
depP,Qq ñ XepP�Qq

]
(6.2.59)

� inf
L,MPLC

[
 eepP,Qqb i∆pP,Lqb i∆pQ,Lqb (6.2.60)

i∆pP,Mqb i∆pQ,Mq ñ eepL,Mq
]
@P,Q PPC. (6.2.61)

I.e.,[
 eepP,Qqb i∆pP,Lqb i∆pQ,Lqb i∆pP,Mqb i∆pQ,Mq ñ eepL,Mq

]
¥ dirpP,Qq

@P,Q PPC,L,M PLC (6.2.62)

holds. With the adjunction property, this is equivalent to[
 eepP,QqbdirpP,Qqb i∆pP,Lqb i∆pQ,Lqb i∆pP,Mqb i∆pQ,Mq ¤ eepL,Mq

]
@P,Q PPC,L,M PLC, (6.2.63)
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which is in turn equivalent to[
 eepP,QqbdirpP,Qqb i∆pP,Lqb i∆pQ,Lqb i∆pP,Mqb i∆pQ,Mqñ eepL,Mq

]
� 1

@P,Q PPC, L,M PLC, (6.2.64)

and with unqpC,ee, i∆q � 1.

For exact points and lines P� {p}, Q� {q}, L� {l}, M� {m}, weak uniqueness

pPr2dirq is consistent with classical uniqueness pPr2q,

inf
{p},{q}PPC

inf
{l},{m}PLC

[
 eep{p},{q}qb

�1︷ ︸︸ ︷
dirp{p},{q}qb i∆p{p},{l}qb i∆p{q},{l}qb

i∆p{p},{m}qb i∆p{q},{m}q ñ eep{l},{m}q
]
� 1, (6.2.65)

cf. equation (6.2.35) on page 153.

Since the truthlikeness degree of the weak uniqueness axiom pPr2Dirq is positive for

all C, σpPr2Dirq � 1 ¡ 0, and since pPr2Dirq is consistent with the classical uniqueness

axiom pPr2q, we can use the corresponding signed axiom

pPr2Dirqev
(
@p,q,l,m.

[
 Epp,qq& Dirpp,qq& Ipp,lq& Ipq,lq&

Ipp,mq& Ipq,mq Ñ Epl,mq
]
; σpPr2Dirq � 1

)
as a fuzzy axiom of approximate tolerance geometry: The signed uniqueness axiom

pPr2Dirqev is consistent with the classical uniqueness axiom pPr2q, because weak tran-

sitivity pPr2Dirq is consistent with pPr2q. I.e., pPr2Dirqev augments the classical unique-

ness axiom. pPr2Dirqev applies to exact points and lines as well as to approximate points

and lines that are not exact.

Together with the signed existence axiom pPr1qev, pPr2Dirqev provides fuzzy axioms

that extend classical Euclid’s First Postulate such that it is applicable under conditions

of positional tolerance:

(Pr1)ev
(
@p,q.Dl. [ Epp,qq Ñ Ipp,lq& Ipq,lq] ; 1

)
,

(Pr2Dir)ev

(
@p,q,l,m.

[
 Epp,qq& Dirpp,qq& Ipp,lq& Ipq,lq&

Ipp,mq& Ipq,mq Ñ Epl,mq
]
; 1

)
,
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Together with the signed approximate equality axioms pEP1qev�pEL3qev, we get

the following partial fuzzy axiomatization of projective approximate tolerance geometry:

(EP1)ev

(
@p.E(p,p) ; 1

)
,

(EP2)ev

(
@p,q. [E(p,q) Ñ E(q,p)]; 1

)
,

(EP3x)ev

(
@p,q,r. [E(p,q) & Xpqq& E(q,r) Ñ E(p,r)]; 1

)
,

(EL1)ev

(
@l.E(l,l) ; 1

)
,

(EL2)ev

(
@l,m. [E(l,m) Ñ E(m,l)]; 1

)
,

(EL3x)ev

(
@l,m,n. [E(l,m) & Xpmq& E(m,n) Ñ E(l,m)]; 1

)
,

(Pr1)ev
(
@p,q.Dl. [ Epp,qq Ñ Ipp,lq& Ipq,lq] ; 1

)
,

(Pr2Dir)ev

(
@p,q,l,m.

[
 Epp,qq& Dirpp,qq&

Ipp,lq& Ipq,lq& Ipp,mq& Ipq,mq Ñ Epl,mq
]
; 1

)
,

Remark 6.20. The fuzzy set of axioms pEP1qev�pPr2Dirqev is crisp, because all signs

σpEP1q�σpPr2Dirq are equal to 1. Consequently, the axiom set pEP1qev�pPr2Dirqev is

equivalent to the classical, unsigned set of axioms pEP1q�pPr2Dirq,

(EP1) @p.E(p,p),

(EP2) @p,q. [E(p,q) Ñ E(q,p)],

(EP3x) @p,q,r. [E(p,q) & Xpqq& E(q,r) Ñ E(p,r)],

(EL1) @l.E(l,l),

(EL2) @l,m. [E(l,m) Ñ E(m,l)],

(EL3x) @l,m,n. [E(l,m) & Xpmq& E(m,n) Ñ E(l,m)],

(Pr1) @p,q.Dl. [ Epp,qq Ñ Ipp,lq& Ipq,lq],

(Pr2Dir) @p,q,l,m.
[
 Epp,qq& Dirpp,qq& Ipp,lq& Ipq,lq&

Ipp,mq& Ipq,mq Ñ Epl,mq
]
.

Recall that we use the signed version pEP1qev�pPr2Dirqev in the present work, be-

cause it enables us to use graduated deduction in Rational Pavelka Logic for propagating

truthlikeness degrees through the steps of geometric deduction: Even though all fuzzy

axioms have sign 1, a premise of deduction may have a smaller sign, cf. the example of

truthlikeness propagation given in subsection 6.1.5.

We show in the following two subsections that the signed weak uniqueness axiom

pPr2Dirqev can not be used as is. Instead, it is necessary to change the intended interpre-

tation by imposing a size restriction on approximate points and lines.
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6.2.6 The Value of Directionality

The last subsection introduced the signed weak uniqueness axiom pPr2Dirqev as an

axiom of projective approximate tolerance geometry. pPr2Dirqev can only be used in

approximate deduction if the value of dirpP,Qq is known for every pair of approxi-

mate points P,Q. I.e., in practical application, we need to be able to derive from given

P,Q PPC the value

dirpP,Qq �
[
depP,Qq ñ XepP�Qq

]
(6.2.66)

� min{1�depP,Qq�XepP�Qq, 1} (6.2.67)

� min{eepP,Qq�XepP�Qq, 1} (6.2.68)

The following proposition shows that XepP�Qq is always zero, and that, consequently,

dirpP,Qq � eepP,Qq holds.

Proposition 6.21. In the intended interpretation with positional tolerance, all pencils

of approximate joins P�Q have maximal extensive size. I.e., XepP�Qq � 0 holds for

arbitrary approximate points P,Q PPC and all well conditioned domains C� RP2.

We do not prove the proposition, but we give a sketch of the proof, and make it

plausible by the illustration given in figure 6.2.5.

Proof. (Sketch) Figure 6.2.5 illustrates the following configuration: L is the image of

L� LC under the coordinate chart h�1
3 , and L :� lim

nÑ8
Ln is the limit of a sequence

pLnqnPN of approximate lines in C � h�1
3 pD̄2q. Similarly, M is the image of M� LC

under the coordinate chart h�1
3 , and M :� lim

nÑ8
Mn is the limit of a sequence pMnqnPN of

approximate lines in C. Similar to the sequence of approximate lines used in example

6.15 (cf. subsection 6.2.4), it is possible to construct the sequences pLnqnPN and pMnqnPN

such that Ln,Mn cover C for all n PN, and such that L and M are sets of affinely parallel

lines where the lines in L are perpendicular to the lines in M. Then every approximate

point P� C is approximately incident with Ln,Mn for all n PN. In particular every pair

of approximate points P,Q PPC is approximately incident with all Ln and with all Mn.

I.e. Ln,Mn P P�Q for all n P N and arbitrary P,Q. Since the directions of L and M are

perpendicular, it follows that

XepP�Qq � inf
{

depL̄,M̄q|L̄,M̄ P P�Q
}
� 0 (6.2.69)

holds for all P,Q PPC and arbitrary C.
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Figure 6.2.5: All pencils of approximate joins have maximal size.

Corollary 6.22. In the intended interpretation with positional tolerance, dirpP,Qq �
eepP,Qq holds.

Proof. Follows immediately from proposition 6.21 and equation (6.2.67).

This result shows that the weak uniqueness axiom pPr2Dirq can not be used as is:

Setting dirpP,Qq � eepP,Qq makes the implication in

pPr2Dirq inf
P,QPPC

inf
L,MPLC

[ α︷ ︸︸ ︷
 eepP,QqbdirpP,Qqb i∆pP,Lqb i∆pQ,Lqb

i∆pP,Mqb i∆pQ,Mq ñ eepL,Mq
]
� 1, (6.2.70)

trivial. To see this, notice that

α � eepP,QqbdirpP,Qq � max{(1� eepP,Qq)�dirpP,Qq�1,0} (6.2.71)

� max{dirpP,Qq� eepP,Qq,0} (6.2.72)

� max{eepP,Qq� eepP,Qq,0}� 0, (6.2.73)

and from ab0� 0 @a P r0,1s, it follows that the premise of the implication in pPr2Dirq
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is constantly equal to zero:

 eepP,QqbdirpP,Qqb i∆pP,Lqb i∆pQ,Lqb i∆pP,Mqb i∆pQ,Mq � 0

@P,Q PPC, L,M PLC. (6.2.74)

I.e., the weak uniqueness axiom pPr2Dirq is always trivially fulfilled. Since the premise

of the implication is always zero, pPr2Dirq never contributes to approximate geometric

reasoning. Adding pPr2Dirqev to the axioms of approximate tolerance geometry is as

good as adding an axiom with sign 0. In other words, not even the weaker, localized

version of the classical uniqueness axiom pPr2Dirq allows for formulating a version of

Euclid’s First Postulate that is applicable under conditions of positional tolerance. In the

following subsection, we sketch an approach to solving the problem.

6.2.7 Size Restrictions Are Necessary

The forging subsection showed that the weak uniqueness axiom pPr2Dirq is not suitable

for axiomatizing a version of the classical uniqueness axiom pPr2q for geometric reason-

ing under conditions of positional tolerance. We showed that the implication in pPr2Dirq

is always trivially true, because the value of the directionality degree coincides with the

truthlikeness degree of approximate equality, dirpP,Qq � eepP,Qq @P,Q PPC. Here,

dirpP,Qq �min{eepP,Qq�XepP�Qq, 1}� eepP,Qq @P,Q PPC (6.2.75)

holds, because XepP�Qq � 0 @P,Q PPC, cf. proposition 6.21. This result suggests that

the underlying problem is the fact that approximate points and lines are allowed to have

arbitrary size: In particular, approximate joins can have maximal size and thus arbitrary

approximate direction, cf. the proof of proposition 6.21.

We expect that introducing size restrictions to approximate points and lines solves

the problem: If, for given P,Q PPC, the size of approximate joins is restricted, e.g., to

a fixed value µ P r0,1s, then, intuitively, the extensive size SepP,Qq of P�Q is expected

to decrease with increasing distance of P and Q, cf. figure 6.2.1 a’-c’ on page 148. More

specifically, it is expected that P,Q PPC exist such that SepP,Qq   1, and consequently

that XepP,Qq � 1�SepP,Qq ¡ 0 for these P,Q. If in turn

XepP�Qq ¡ 0
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holds, it follows from equation (6.2.75) that

dirpP,Qq ¡ eepP,Qq, (6.2.76)

holds for these P,Q. As a consequence, the premise of the implication in pPr2Dirq is

not necessarily zero for these P,Q, cf. equation (6.2.72) on page 164. I.e., in order to

solve the problem, we expect that it is necessary to require restrictions on the sizes of

approximate points and lines. These may be of the form sep�q � µ P r0,1s, sep�q ¤ µ P

r0,1s or µ1 ¤ sep�q ¤ µ2 with µ1,µ2 P r0,1s, or size restriction may be introduced as

an additional parameter in the intended interpretation. We do not devise this approach

much further in the present work, but only briefly review a first step in the direction that

has been proposed by G. Wilke and A.U. Frank (2010a).

G. Wilke and A.U. Frank (2010a) propose to parametrize the geometric predicates

by a size restriction parameter. E.g., one could introduce the following parametrized

version of equality with tolerance:

eepP,QqrsLs �

1 if depP,Qq� sepPq� sepQq ¤ sL

depP,Qq� sepPq� sepQq� sL if depP,Qq� sepPq� sepQq ¡ sL

with parameter sL P r0,1s. Here, sL is intended to denote a size restriction parame-

ter. eepP,QqrsLs coincides with eepP,Qq for sL � sepPq� sepQq. We may further define

(P�Q) rsLs as the set of all approximate joins L of P and Q with sepLq � sL. I.e.,

(P�Q) rsLs is the pencil P�Q, restricted to approximate joins of size sL.

Using eepP,QqrsLs instead of eepP,Qq means that two approximate points P,Q are

understood as approximately equal, eepP,QqrsLs � 1, if

depP,Qq� sepPq� sepQq ¤ sL (6.2.77)

holds. In this case P and Q are not discernible by the parametrized approximate equality

relation eepP,QqrsLs, cf. also (Wilke and Frank, 2010a,b), and (P�Q) rsLs has maximal

extensive size,

Se ((P�Q) rsLs)� 1. (6.2.78)

Dually, (P�Q) rsLs has minimal extensive exactness,

Xe ((P�Q) rsLs)� 0,
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which means that the approximate points are not “distinct enough” for allowing a re-

striction on the approximate direction of approximate joins of size sL. This is in analogy

to exact geometry, where the pencil of lines p�q has zero exactness if p� q holds, i.e.,

if p and q are not discernible by the usual equality (or equivalence) relation �.

6.3 Summary and Results

We determined the truthlikeness degrees under conditions of positional tolerance of the

equality axioms pEP1q�pEl3q and of the two axioms pPr1q and pPr2q that constitute

Euclid’s First Postulate. Section 6.1 addressed the equality axioms and showed that

pEP1q, pEP2q, pEL1q, and pEL2q have a positive truthlikeness degree of 1. As a conse-

quence, we could use them to set up the corresponding signed axioms pEP1qev, pEP2qev,

pEL1qev, and pEL2qev as fuzzy axioms of approximate tolerance geometry. We showed

that the classical transitivity axioms pEP3qev, and pEL3qev have a truthlikeness degree

of zero for some domains C. We argued that it is necessary to augment them in order

to achieve positive truthlikeness degrees. Following G. Gerla Gerla (2008), we defined

the weak transitivity axioms pEP3xq and pEL3xq. Weak transitivity augments the classi-

cal transitivity axiom by adding an instance of the exactness predicate. We showed that

pEP3xq and pEL3xq have positive truthlikeness in the intended interpretation with posi-

tional tolerance. We used them to set up corresponding signed weak transitivity axioms

pEP3xqev and pEL3xqev. We used pEP3xqev to exemplify truthlikeness propagation with

Rational Pavelka Logic, and we also exemplified how truthlikeness propagation can be

used for tolerance error propagation.

Section 6.2 addressed Euclid’s First Postulate. We showed that the existence ax-

iom pPr1q has a positive truthlikeness degree of 1 in the intended interpretation with

positional tolerance. Consequently, we could directly use it to set up a corresponding

signed axiom pPr1qev for approximate tolerance geometry. We showed that the classical

uniqueness axiom pPr2q has zero truthlikeness for some domains C. We argued that it

is necessary to augment it in order to achieve a positive truthlikeness degree. In analogy

to the case of the transitivity axiom, we defined a weak uniqueness axiom pPr2Dirq, and

we showed that it has a positive truthlikeness degree that is equal to 1, independently

of C. We used it to set up a corresponding signed weak uniqueness axiom pPr2Dirqev.

Weak uniqueness pPr2Dirq augments the classical uniqueness axiom pPr2q by adding an

instance of the additional predicate Dir to pPr2q. The intended interpretation of Dir is

the directionality measure dir. We showed that, even though pPr2Dirq has truthlikeness

degree 1, pPr2Dirqev is useless as an axiom of approximate tolerance geometry, because
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it is always trivially fulfilled. We discussed that the results suggest that the intended

semantic we defined for approximate tolerance geometry is not rich enough: Instead of

only introducing an additional size parameter, it seems to be necessary to also introduce

and additional parameter for size restriction in order to achieve a non-trivial theory of

approximate tolerance geometry. With the benefit of the hindsight, this result seems to

correspond to intuition. We did not further pursue this direction of research, but leave it

for future work.



Chapter 7

Conclusions and Future Work

"Once it has achieved the status of paradigm, a scientific theory is declared

invalid only if an alternate candidate is available to take it’s place. [...]

The decision to reject one paradigm is always simultaneously the decision

to accept another, and the judgment leading to that decision involves the

comparison of both paradigms with nature and with each other.”

– Thomas Kuhn (1996, p.77) in The Structure of Scientific Revolutions

In the present chapter, we summarize the research and present its results. We discuss the

remaining open questions and highlight directions for future work.

7.1 Summary

The thesis addressed the questions

• if it is possible to define a sound calculus for geometric reasoning under positional

tolerance, and

• if this calculus can be used for positional error propagation when positional toler-

ance is ignored.

We addressed the problem from a formal logical viewpoint and devised an axiomatic the-

ory of approximate tolerance geometry. Here, tolerance geometry is any geometry where

geometric objects and predicates are interpreted by primitives with positional tolerance.

169
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Approximate tolerance geometry is an approximation of tolerance geometry in the sense

of similarity logic. We showed that it can be formalized as a set of axioms in Rational

Pavelka Logic. Here, every axiom is a classical geometric axiom that is paired with

its degree of similarity to the truth under conditions of positional tolerance. Approxi-

mate geometric reasoning is implemented as approximate deduction in Rational Pavelka

Logic. It is sound if it is based on the intended interpretation of geometric primtives un-

der positional tolerance. We call the measure of similarity to the truth truthlikeness, and

we defined it as an inverse measure of second order positional tolerance error. Approxi-

mate deduction in Rational Pavelka Logic propagates truthlikeness, and thus implicitely

propagates second order positional tolerance error. We showed that an approximation of

first order positional tolerance error can be derived from it. I.e., approximate deduction

can be used for tolerance error propagation.

The thesis started in chapter 2 with a review of previous work related to the topic.

We gave an overview of the related literature in the field of GIScience. Here, geometric

reasoning under positional tolerance has directly been addressed as a reasearch topic

only in the form of heuristic solutions for the conflation of data sets. A characteristic

property of positional tolerance is that it induces the relation of possible equality, or

indistinguishability, which is not transitive. This property appears in different areas

of GIScience as a byproduct of formal models, e.g., in qualitative spatial reasoning.

We also listed different approaches to formalizing indistinguishability of sensations and

measurements in other fields of research. Finally, the section discussed two approaches

to tolerance geometry that are the basis of this work. These are F.S. Roberts’ tolerance

geometry (1973), and M. Katz’ inexact geometry (1980).

Chapter 3 introdced the formal tools we used in this work. These are axiomatic ge-

ometry, mathematical fuzzy logic, and approximate similarity relations. In particular, we

introduced geometry in the real projective plane and discussed the basics of Łukasiewicz

Rational Pavelka logic as a fuzzy logical system with evaluated syntax. We further dis-

cussed the duality of approximate similarity relations and extensive psuedometrics.

Chapter 4 introduced the ontology of imperfections proposed by Godo and Ro-

dríguez (2008). The ontology looks at imperfections from a logicians point of view, and

classifies imperfections together with appropriate fromal tools for modeling them. We

used the ontology to identify appropriate formal tools for modelling geometric reasoning

under positional tolerance. We derived from it the three design choices that define the

conceptual framework of approximate tolerance geometry proposed in the thesis. These

are: axiomatic geometry , tolerance geometry, and similarity based reasoning with Ra-

tional Pavelka Logic.
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Chapter 5 addressed tolerance geometry by defining the intended interpretation of

geometric primitives under positional tolerance. We used it to devise a truthlikleness

measure for geometric relations under positional tolerance. The truthlikenss measure

was defined as an inverse spatial distance measure that quantifies positional tolerance

error. We used Łukasiewicz fuzzy logic to derive the truthlikeness of arbitrary classical

geometric statements from the truthlikness of geometric relations. In addition to the

classical geometric predicates, we introduced an exactness predicate. Truthlikeness of

exactness quantifies the positional tolerance of geometric objects.

Chapter 6 substantiated the applicability of the conceptual framework by applying

it to two axiom groups, the equality axioms and Euclid’s First Postulate. We discussed

that the resulting axioms need refinement if their degree of truthlikeness is equal to zero.

The reason for this to happen is that positional tolerance is not represented in classical

geometry, because here, it is constantly equal to zero. We showed that classical geomet-

ric axioms can be augmented by appropriate predicates such that the resulting axioms

are consistent with the original axioms and such that they have non-zero truthlikeness.

We used the transitivity axiom and the uniqueness axiom to examplify the approach. We

used the augmented axioms to show how positional tolerance error propagation can be

implemented.

7.2 Results

7.2.1 Partial Verification of the Hypothesis

It was the goal of the thesis to define a sound calculus for geometric reasoning under

positional tolerance in GIS. We asked the questions

1. if it is possible to axiomatize geometry under conditions of positional tolerance;

2. how sound geometric reasoning can be implemented based on such a formal logi-

cal approach; and

3. if the approach can be used for tolerance error propagation.

Question one could not fully be verified in this work, but leaves open questions for future

work: We provided a conceptual framework for formalizing sound geometric reasoning

under positional tolerance. The formalization is an axiomatic theory in Rational Pavelka

Logic, which we call approximate tolerance geometry. We applied the framework ex-

emplarily to two axiom groups, the equality axioms and Euclid’s First Postulate:
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• Application of the framework to the equality axioms is successful and yields the

intended axiomatization of equality with positional tolerance.

• Application of the framework to Euclid’s First Postulate is only partially success-

ful: The framework is applicable and yields (by construction) a sound theory. Yet

the resulting theory is trivial and does not serve the intended purpose of this work.

Our results suggest that the proposed semantic of goeometric predicates under positional

tolerance is not rich enough to yield a non-trivial theory of geometry under positional

tolerance. The results also suggest that size restrictions (or dually, restrictions on the de-

gree of exactness) must be accounted for in the definition of the intended interpretation.

With the benefit of hindsight, this result seems to correspond to intuition. We suggested

directions for enriching the intended interpretation by adding an additional size restric-

tion parameter to the semantic of geometric predicates. The detailed investigation of this

approach is not included in the thesis, but is left for future work.

Question two and three could be answered in the affirmative: We showed how sound

geometric reasoning under positional tolererance can be implemented by approximate

deduction, using the intended interpretation of geometric primitives with positional tol-

erance. The quality of the approximation is measured by truthlikeness, which is inverse

to positional tolerance error. Approximate deduction propagates truthlikeness, and thus

implicitely propagates positional tolerance error. We exemplified sound geometric rea-

soning by approximate deduction and positional tolerance error propagation using the

examples of the weak transitivity axiom.

7.2.2 Major Contribution

The major contribution of the thesis is the conceptual framework for

• formalizing sound geometric reasoning under conditions of positional tolerance,

and for

• propagating positional tolerance error in geometric reasoning in GIS.

7.2.3 Major Result

The framework is based on the cognitive theory of geometry proposed by G. Lakoff

and R. Núñez (2000), which states that classical geometry is an idealized abstraction of

geometric relations between entities in the real world. The thesis addresses one particu-

lar feature of real world entities, namely the feature that observations, and in particular
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observations of position, are never exact but always subject to uncertainty. The investi-

gation is restricted to positional tolerance, which is one type of positional uncertainty. As

a major scientific result, the thesis supports the conjecture that classical geometry can

not only be cognitively understood as an approximation of geometry under positional

tolerance, but that it can also be formally described as one.

7.2.4 Difference to Region Based Geometries

Region based geometries have a similar motivation, and provide a similar result: They

are based on the assumption that the interpretation of a point as an infinitely small entity

is counter-intuitive, whereas regions are cognitively more adequate. They provide an

axiomatization of geometry that uses regions as primitive objects instead of points. The

present work differs from region based geometries in one major point: Region based

geometries provide a different axiomatization for the usual idealized geometry without

positional tolerance; The present work axiomatizes a different logical theory, namely

geometry with positional tolerance. While a region based axiomatization allows only

for geometric reasoning with exact points and lines, approximate tolerance geometry

allows for approximate geometric reasoning with points and lines that have positional

tolerance.

7.2.5 Novelty in GIScience

The work is different from previous research on geometric uncertainty modeling in GI-

Science in two major points:

• It explicitly addresses soundness of geometric reasoning under uncertainty;

• It employs a formal logical approach to geometric reasoning. This is in contrast

to conventional heuristic approaches.

7.3 Open Questions and Future Work

We list a number of open questions and suggest topics for future work.

Introducing Size Restrictions

In order to verify the hypothesis of this thesis to the full extent, it is necessary to aug-

ment the proposed framework such that a non-trivial theory of geometric reasoning can
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be derived from it. We discussed in subsection 6.2.6 that every pencil of approximate

lines P�Q has maximal extensive size in the intended interpretation with positional tol-

erance. I.e., XepP�Qq � 0 holds for arbitrary approximate points P,Q P PC and all

C, cf. proposition 6.21 on page 163. As a consequence, the weak uniqueness axiom

pPr2Dirq is trivially satisfied, and thus not usable for approximate geometric reasoning

in a GIS. We discussed in subsection 6.2.7 that the results suggest that introducing re-

strictions on the sizes of approximate points and lines may solve the problem. It is an

open question, if this conjecture is correct. We proposed directions for augmenting the

intended interpretation by an additional size parameter that serves the purpose to restrict

object sizes. It is a topic for future work to pursue this idea and fully integrate it in the

framework proposed in this work.

Augmenting the Axioms pPr3q�pPr5q

The present work applied the proposed framework to the equality axioms and Euclid’s

First Postulate. It is a topic for future research to test its applicability for other clas-

sical geometric axioms. This includes in particular the remaining axioms of projective

geometry, namely axioms pPr3q�pPr5q.

Testing the Theory with Real Data

The motivation for the thesis was to devise an approximate tolerance geometry for ap-

plication in geographic information systems. If it should indeed be possible to success-

fully extend the applicability of the framework to all axioms of projective geometry, it

is necessary to test the applicability of the model to artificial and real data from GIS

applications. Here, the major open questions are:

• Is the approximation provided by approximate deduction with Rational Pavelka

Logic sufficiently accurate for typical GIS applications? Or, can the involved

parameters be fined-tuned such that this is the case? What are these parameters?

• How can approximate geometric reasoning with Rational Pavelka Logic be im-

plemented? E.g., H. Habiballa (2005) devised a non-clausal resolution theorem

prover for Rational Pavelka Predicate Logic, and implemented it in the program-

ming language Delphi. Here the main question is that of efficiency of the imple-

mentation.
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Defining Approximate Incidence as Overlap

In the present work, we simplified the definition of approximate incidence with tolerance

in order to facilitate the formalization task: Instead of employing the overlap relation,

we used the stronger subset relation to define incidence of an approximate point with an

approximate line, cf. subsection 5.2.3. The subset relation is not the intended interpreta-

tion of possible incidence, but the overlap relation is. Consequently, the formalizations

devised in the thesis should be extended to the weaker overlap relation. We expect that

this step will add considerable complexity to the formalism.

Defining Miscellaneous Approximate Projective Notions

We list some notions of projective geometry for which corresponding notions in pro-

jective approximate tolerance geometry may be defined. This list is not intended to be

exhaustive.

Approximate Direction

In remark 6.17 on page 157 we informally sketched a definition of the notion of approx-

imate direction. A formal definition should be devised.

Approximate Angle

In remark 6.18 on page 157 we mentioned the notions of approximate perpendicularity

and approximate angle. Again, formal definitions should be devised.

Range of Approximate Points

In subsection 6.2.2, we defined the pencil P�Q of approximate joins of two approximate

points P,Q. In exact projective geometry, a dual notion exists, namely the notion of a

range of points: The range of points on a line l is the set of points that are incident with l.
Extending the classical terminology, we may define the range of points on two lines l and

m as the set of points that are incident with l and m, and we denote it by l�m. Here, if

l�m holds, then l and m meet in one unique point l^m, and l�m� {l^m}; If l�m
holds, then the usual definition of range of points applies. We may define the range of

approximate points L�M on the approximate lines L,M as the set of approximate points

that are approximately incident with L and M. The extensive size of L�M is defined by

SepL�Mq :� spdeqpL�Mq, and the extensive approximate exactness degree of L �M is

given by XepP�Qq :� 1�SepP�Qq.
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Approximate Duality

In exact projective geometry, the pencil of lines through a point p can be identified with

p by duality (cf. subsection 3.1.2.4). Similarly, the range of points incident with the

line l can be identified with l. We expect that the Boolean notion of duality can not be

established in approximate tolerance geometry, but that, instead, duality is graduated.

This idea is suggested by the following consideration:

In exact projective geometry, the extensive size of the pencil of lines p�q depends

on the discrete distance

∆pp,qq �

1 if p� q,

0 if p� q
(7.3.1)

of p and q, cf. figures 6.2.1 a� c. More specifically,

sep{p}�{q}q �

se
({

l P pRP2q1|p P l
})
� 1 if ∆pp,qq � 0,

sepp_qq � 0 if ∆pp,qq � 1.
(7.3.2)

The dual object ({p}�{q})1 is a range of points, and we have

se
(
({p}�{q})1

)
�

se (p)� 0 if ∆pp,qq � 0,

se
({

r P pRP2q|r P p_q
})
� 1 if ∆pp,qq � 1.

(7.3.3)

I.e., se (pp�qq1)� 1�sepp�qq P {0,1}. In approximate tolerance geometry, the discrete

distance ∆ is replaced by the continuous set distance depP,Qq. Figures 6.2.1 a1� c1 on

page 148 illustrate the intuitive idea that the extensive size of the pencil P�Q depends

on the (continuous) set distance depP,Qq of P and Q. We expect that SepP�Qq decreases

with increasing depP,Qq, and that

Se
(
pP�Qq1

)
� 1�SepP�Qq (7.3.4)

holds. I.e., classical geometry makes a discrete distinction between equality and distinct-

ness, and we expect that approximate tolerance geometry allows for a smooth transition

between both states. Similarly, classical geometry makes a discrete distinction between

points and lines, and by (7.3.4), and we expect that approximate tolerance geometry al-

lows for a smooth transition between both object sorts, introducing a graded notion of

duality.

Notice that the above consideration is based on the assumption that that SepP�Qq
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decreases with increasing depP,Qq. According to proposition 6.21 (cf. page 163), this

assumption is false in the intended interpretation with positional tolerance devised in

this work. As discussed in subsection 6.2.7, we expect that the assumption is true if we

parametrize geometric predicates with a size parameter.

Defining Approximate Constructors

In order to be able to use approximate tolerance geometry for geometric constructions,

it is a precondition that approximate versions of the geometric operators (constructors)

join and meet are available. Unfortunately, this is not the case in approximate tolerance

geometry: As discussed in section 6.2.2, the approximate join of two approximate points

always exists, but is not unique in general. As a consequence, an approximate version of

the classical join operator pp,qq ÞÑ p_q is not definable. Instead, it is only possible to

assign to a pair pP,Qq of approximate points the pencil of approximate joins, pP,Qq ÞÑ
P�Q. This function is theoretically definable, but not usable in practical application.

For practical application, it is necessary to define a choice function in the interpretation

domain that chooses one particular approximate join from the pencil of approximate

joins. E.g., we may define the intended approximate join operator by the following

choice function:

pP,Qq ÞÑ P_i Q :� {p̄_ q̄|p̄ P P, q̄ PQ, p̄� q̄} � pRP2q1. (7.3.5)

Notice that _i is only definable in the interpretation domain, because its definition uses

operations of exact projective geometry of the real projective plane, which underlies our

intended definition. Since the logical theory of approximate tolerance geometry does not

implement knowledge about the underlying exact geometry, the intended approximate

join constructor is not part of the logical theory. It is an open question if the intended

approximate join P_i Q is an approximate line for all P,Q PPC.

In subsection 6.2.7, we discussed that it is necessary to introduce size restrictions for

approximate points and lines, and we proposed to approach this problem by parametriz-

ing geometric predicates by an additional size parameter. If this approach is successful,

it is also necessary to investigate the dependency of sepP_i Qq from sepPq and sepQq.

Investigating Other Logical Properties

The main objective of the thesis was to devise a sound calculus for geometric reasoning

under conditions of positional tolerance. If it should be possible to successfully apply
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the proposed framework to all axioms of projective geometry, it would be of interest to

investigate other logical properties of the resulting fuzzy theory, such as completeness

or class of models.

Investigating Alternative Axiomatizations

The present thesis is based on the axiomatization of classical projective geometry given

in Hartshorne (2000). This axiomatization is one of the commonly used formulations,

and it is based on the geometric primitives point, line, equality and incidence. Here,

geometric relations (i.e., geometric tests) are used as primitives. Other axiomatizations

exist. For example, L. Blumental and K. Menger (cf. Blumenthal, 1980) propose an

axiomatization of projective geometry that is based on the primitives point, line, join

and meet. I.e., they use geometric constructors as primitives. The approach may be

more directly applicable to GIS: While geometric tests are important in spatial analy-

sis, geometric constructors are used to define the GIS data structure itself. E.g., line

segments are specified by tupels of points, and this definition relies on the join construc-

tor. The conceptual framework proposed in the thesis may be applicable to alternative

axiomatizations, and it is a task for future work to investigate this option.

Applying the Framework to Different Types of Imperfect Information

The intended interpretation proposed in the thesis is based on the assumption that loca-

tion constraints describe possibilistic uncertainty. The proposed conceptual framework

may be applied to other kinds of imperfections in positional information. For example,

verity distributions can also be modeled by location constraints. Their interpretation is

not possibilistic, but veristic, cf. Zadeh (2006): Instead of interpreting a location con-

straint as a set of possible positions of an exact point, it is interpreted as a set of points

that are occupied at the same time. Examples are parcels or the footprints of buildings,

cf. (Wilke, 2009). In both cases, possibilistic or veristic, the location constraints need

not be restricted to crisp regions, but may as well be described by vague regions, cf.,

e.g., (Burrough and Frank, 1996). Examples of location constraints that are described

by vague regions are, e.g., regions defined by vernacular place names, cf., e.g., (Twaroch

et al., 2008). In the present work, location constraints are described by of crisp regions

and represent sets of possible points. Here, it is sufficient to use a bivalent version of

possibility theory to devise a correct intended interpretation of geometric primitives with

positional tolerance, cf. subsections 5.1 and 5.2. In contrast to this, vague regions afford

using the usual many-valued possibility theory; If location constraints are veristic, verity
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theory must be applied, and if location constraints are probabilistic, probability theory

must be applied.
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