
D I P L O M A R B E I T

The Finite Element Method On Massively
Parallel Computing Architectures

Ausgeführt am

Institut für Mikroelektronik
der Technischen Universität Wien

unter der Anleitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Erasmus Langer

und

Dr.techn. Karl Rupp, MSc

durch

Florian Rudolf

Pamessergasse 7, 2103 Langenzersdorf

Studienkennzahl 869

Matrikelnummer 0326156

Datum Unterschrift

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

The finite element method is a widespread tool for solving boundary value problems ap-

proximately. These problems often arise in physics, for example in electrodynamics and

mechanics. To get accurate approximations to the true solution, fine discretizations are

needed leading to large systems of linear equations. To accelerate the solution of these sys-

tems, the algorithms are parallelized by the use of multiprocessors. In particular, graphics

adapters are employed for parallel processing and are investigated for their potential within

the finite element method.

This work makes use of the Open Computing Language, in short OpenCL, which is a

platform independent framework for programming multiprocessor computing architectures,

including an application programming interface and a programming language definition.

Graphics adapters are programmed by using the OpenCL framework. Different types of

sparse matrix storage schemes, which can be used for finite element solving, are presented.

Matrix-vector multiplications of these implementations are benchmarked. Theoretical al-

gorithm and memory requirement complexities are discussed and implementations using

OpenCL are presented. ViennaCL, a C++ Basic Linear Algebra Subprograms (BLAS)

implementation, which makes heavy use of OpenCL, is presented. A mathematical intro-

duction to boundary value problems and the finite element method is given. Finite element

implementations are proposed and benchmarked. The benchmark results are presented and

discussed.

Contents

1 Introduction 7

2 OpenCL 9

2.1 History of OpenCL . 9

2.2 The OpenCL Framework . 11

2.2.1 Platform Model . 11

2.2.2 Execution Model . 12

2.2.3 Memory Model . 14

3 Sparse Matrix-Vector Multiplication 17

3.1 Sparse Matrix Layouts . 18

3.1.1 Coordinate Scheme . 18

3.1.2 Compressed Scheme . 20

3.2 Implementation with OpenCL . 22

3.2.1 Memory object creation and transfer 22

3.2.2 The OpenCL kernel . 23

3.2.3 Launching the kernel . 25

3.3 Matrix-Vector Multiplication Benchmarks 26

4 ViennaCL 31

4.1 BLAS and uBLAS . 31

4.2 Introduction and Motivation . 32

4.3 OpenCL Management . 35

4.4 Expression Templates . 35

4.5 Pros and Cons . 39

1

CONTENTS 2

5 The Finite Element Method 41

5.1 Boundary Value Problems given by Elliptic Partial Differential Equations . . 41

5.1.1 Weak derivative and weak formulation 43

5.2 The Ritz-Galerkin Method and Finite Elements 46

5.2.1 Finite Elements . 48

5.3 The Poisson Equation . 51

6 The Finite Element Method using OpenCL 60

6.1 Definition of the Problem, Input and Output 60

6.2 Matrix and Right Hand Side Setup . 62

6.3 Solving the Boundary Value Problem . 69

6.4 Results, Benchmarks and Comparison . 71

7 Conclusion 77

7.1 Outlook . 77

A Function Spaces 80

B The Conjugate Gradient Method 83

Bibliography 84

List of Figures

2.1 Moore’s law compared to NVIDIA GeForce graphic processor 10

2.2 The OpenCL platform model . 11

2.3 A 2D index space . 13

2.4 The OpenCL memory model . 15

3.1 Storage scheme of the coordinate matrix . 19

3.2 Storing scheme of the compressed matrix . 20

3.3 Execution times . 29

4.1 Object tree of the operation v2 = v1 + v2 + v2; with expression templates . 38

5.1 The reference triangle for the basis functions. 50

5.2 Heat distribution example . 51

5.3 Triangulation of the domain Ω = (0, 1)2 . 52

5.4 Calculation of a(·, ·) . 54

5.5 Solution of the heat distribution boundary value problem 59

6.1 Trivial triangulation of the Poisson equation boundary value problem 62

6.2 Transformation of the reference triangle . 63

6.3 Assembly algorithm with primary iteration over all cells 67

6.4 Assembly algorithm with primary iteration over all vertices 69

6.5 Solution of the heat distribution boundary value problem with different dis-

cretization levels . 72

6.6 Benchmark result in seconds for one matrix-vector multiplication 75

6.7 Benchmark result in seconds the CG algorithm 75

6.8 Benchmark result in seconds for whole finite element algorithm 76

3

List of Tables

3.1 Shortcuts for sparse matrix-vector multiplication algorithm analysis 17

3.2 Element access complexity for coordinate matrices 19

3.3 Element access complexity for compressed matrices 21

3.4 Benchmark hardware . 27

3.5 Complexity for memory throughput and processing power 27

3.6 Benchmark result in seconds per matrix-vector multiplication 28

3.7 Benchmark result in seconds per matrix-vector multiplication with different

worksizes . 30

3.8 Benchmark result in seconds per matrix-vector multiplication with different

worksizes and different number of non-zero entries per row 30

6.1 Parts of the algorithms which were benchmarked 73

6.2 Benchmark result in seconds for the setup algorithm parts 74

6.3 Benchmark result in seconds for one matrix-vector multiplication 74

6.4 Benchmark result in seconds for the CG solving algorithm parts 76

6.5 Benchmark result in seconds for whole finite element algorithm 76

4

Listings

3.1 Matrix-vector multiplication for coordinate matrices 20

3.2 Matrix-vector multiplication for compressed matrices 21

3.3 OpenCL kernel source code for the matrix-vector multiplication of a com-

pressed matrix . 23

3.4 OpenCL kernel source code for matrix-vector multiplication of a compressed

matrix using an alignment of 4 . 25

4.1 Scaled vector addition example . 33

4.2 Matrix solver example . 34

4.3 Operator overloading example . 36

4.4 Expression template example . 37

4.5 Expression template problem example . 38

4.6 Performance problems with ViennaCL . 40

6.1 Definition of the input to the finite element method implementations 61

6.2 The input arrays for the trivial triangulation 62

6.3 Matrix setup pseudo code . 67

6.4 Matrix setup pseudo code with Iteration over vertices 68

6.5 Direct FEM operator in OpenCL . 70

5

Acknowledgment

Writing this diploma thesis was challenging at times and I learned a lot in the process,

thanks in great part to all the people helping me and giving me key insights in times of

need. Now it is time to pay credit where credit is due and say thank you.

First of all, I would like to thank Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Erasmus Langer

and the Institut für Mikroelektronik of the Vienna University of Technology for giving me

the opportunity to write this diploma thesis, the necessary hardware support, technical in-

formation and all required resources.

I want to express my sincere gratitude to my advisor Dr.techn. Karl Rupp, MSc for

supporting me and my work from the very beginning. Thank you a lot for your advice,

personal and technical guidance, motivation, patience, forbearance (especially with the En-

glish language), proofreading and much more! This work wouldn’t be as it is without your

support and assistance. Thank you a lot!

I’d also like to thank my classmates from university, especially Dipl.-Ing. Andreas

Morhammer and Dipl.-Ing. Klaus Neuwirth, with whom I spent lots of lectures and courses.

Thank you for your support during study and for this diploma thesis.

Last but not least I want to thank all the people close to me for giving me motivation

and stability, support and guidance for my life and my study. Thank you for believing in

me, Rafaela, Maria, Hansi, Alex and Mäx!

6

Chapter 1

Introduction

Boundary value problems often arise in physics, for example in electrodynamics and me-

chanics. A popular tool for a solving these problems is the finite element method, which is

a numerical algorithm. As most numerical methods, approximations of the exact solution

of the boundary value problem get more accurate, the finer the discretization is. Fine dis-

cretizations are needed leading to large systems of linear equations. The solving algorithm

for a linear system of equations is parallelized to take advantage of the use of multiproces-

sors, especially graphics processors. Graphics processors are evaluated for their performance

in the finite element method.

Chapter 2 gives an introduction to the Open Computing Language, in short OpenCL.

OpenCL is a platform independent framework for programming multiprocessor computing

architectures, including an application programming interface (API) and a programming

language definition. Especially graphics adapters can be programmed by using the OpenCL

framework.

Chapter 3 introduces different types of sparse matrix storage schemes which can be used

for finite element solving. Theoretical algorithm and memory requirement complexities are

discussed and implementations using OpenCL are presented. The last section of this chapter

covers benchmark results of different implementations of sparse matrix-vector multiplication.

In Chapter 4 the C++ library ViennaCL is presented. ViennaCL is a Basic Linear Alge-

bra Subprograms (BLAS) implementation which makes heavy use of OpenCL. Some extra

features like iterative solver for systems of linear equations, preconditioners and fast Fourier

7

8

transformation are supported by ViennaCL.

The finite element method is described in Chapter 5. Boundary value problems and their

weak formulation are defined in this chapter. A mathematical background for this chapter

is given in the Appendix A. Based on this definition, the finite element method algorithm is

derived. A short example using the Poisson equation is presented in the last section of this

chapter.

Chapter 6 combines the finite element method with the power of graphics adapters.

A boundary value problem is defined and different implementations of the finite element

method for solving this problem using the CPU, ViennaCL and OpenCL are described and

benchmarked. The results are presented and discussed in the last section of this chapter.

Chapter 2

OpenCL

In this chapter the Open Computing Language framework, in short OpenCL, is presented [6].

The history of OpenCL is presented in Section 2.1. Section 2.2 presents the OpenCL frame-

work and its model layout.

OpenCL is a platform and programming language independent framework specification

for parallel programming on heterogeneous collections of processors. The framework is de-

signed for SPMD (single program, multiple data) algorithms. The specification was initially

written by Apple Inc. and consists of two major parts: the OpenCL computing language,

which is a programming language similar to C, and the programming API for common pro-

gramming languages like C or C++. OpenCL is based on a client-server architecture where

the host is the application running on the central processing unit (CPU) and the client is

the computing device, for example a graphics adapter.

2.1 History of OpenCL

There are two primary ways of increasing the power of a computing architecture: increasing

the clock frequency or adding more processors. Because of technical and physical limitations

the first option became much more difficult in the past years. Therefore, CPUs increased

their performance by adding more cores and making them more flexible instead of primarily

increasing the speed. Beside common CPUs, another processor type became very power-

ful: the graphics processing unit, in short GPU. Initially only used for graphics processing,

graphics processors got much more flexible due to the introduction of programmable shaders

in 2000. Since then, graphics adapters have evolved very fast, actually faster than predicted

9

2.1. HISTORY OF OPENCL 10

 10

 100

 1000

 10000

T
ra

n
si

st
o

r
co

u
n

t
in

 M
il

li
o

n

Year

GeForce series
Moore’s law with doubling every 2 years

Moore’s law with doubling every 18 month

 2001 2010 2005 2002 2003 2004 2006 2007 2008 2009

Figure 2.1: Moore’s law compared to NVIDIA GeForce graphic processor

by Moore’s original law [1] [2] [3]. Figure 2.1 shows the transistor growth of NVIDIAs graphic

processors from 2001 to 2010.

With increasing flexibility and performance, graphics processors have started to be used

for general purpose computations. First implementations used the graphics API DirectX

or the Open Graphics Library (OpenGL) and shader for getting hardware independent

access to the GPU [4]. In 2007 NVIDIA published the first version of CUDA (Compute

Unified Device Architecture), a platform independent software development kit which allows

developer to directly use the graphics processors functionality. Later in 2007 ATI released

their development kit which could be used to access ATI graphics hardware. Only a year

later, the first specification of OpenCL was published. Apple released the first OpenCL

implementation in August 2009 with their operation system Mac OS X 10.6. In the same

year, Microsoft introduced DirectCompute with an API similar to that of OpenCL, as a

part of DirectX. NVIDIA and AMD/ATI both offer, besides their own development kits,

2.2. THE OPENCL FRAMEWORK 11

Host - Server Side

OpenCL - Client Side

Platform

Device

Local Memory

Processing Element

Compute Unit

Processing Element

Processing Element

Local Memory

Processing Element

Compute Unit

Processing Element

Processing Element

Device

Global

Memory

Device

Device

RAM CPU

Figure 2.2: The OpenCL platform model

implementations for OpenCL and DirectCompute. OpenCL is now maintained and advanced

by the industry consortium Khronos.

2.2 The OpenCL Framework

According to the OpenCL specification, the OpenCL framework can be split into three main

parts:

1. Platform model

2. Execution model

3. Memory model

These three models are discussed in the following.

2.2.1 Platform Model

The OpenCL platform model is shown hierarchically in Figure 2.2. On top there is the ap-

plication using the OpenCL implementation, called the host. The host is connected to the

OpenCL platform, which is a set of OpenCL devices. An OpenCL device is a collection of

so-called compute units, which again consists of processing elements. A processing element

is a simple processor, executing scalar operations. Many processing elements in combination

with a local memory form a compute unit. The actual OpenCL computations are carried out

2.2. THE OPENCL FRAMEWORK 12

in the processing elements, where a stream of instructions is executed as SIMD units (single

instruction, multiple data) or SPMD units (single program, multiple data). For example, an

OpenCL device can be a multi-processor computer, in which case a compute unit is a CPU

die and the processing elements are the cores of this CPU.

Asynchronous tasks are passed to the OpenCL implementation through commands. The

host application submits commands to an OpenCL context. A context is a visibility region

including one or more devices from one platform. Within such a context, command queues

can be created, which manage execution on the OpenCL implementation.

2.2.2 Execution Model

An OpenCL program consists of two execution units: the host program, written in a stan-

dard programming language and executed on the host, and the OpenCL kernels, written in

the OpenCL/C programming language and executed on one or more OpenCL devices. In the

host program the OpenCL API is used to create the OpenCL objects, especially the context,

and to manage them. Execution of OpenCL kernels are initiated by the host program.

The most important part in the execution model are the OpenCL kernels. An OpenCL

kernel is a small executable which is run in parallel on a OpenCL device. This program

is mostly written in the OpenCL/C programming language, but native kernels can also be

used. Native kernels, however, are highly hardware-dependent. Every instance of such a ker-

nel, called work-item, executes the same source code and is identified by a global unique ID.

Depending on the source code and the global ID, the program flow may vary in work-items.

Multiple work-items are organized in a work-group. Every work-group has a unique group

ID and within a work-group every work-item has a unique local ID. Hence, every work-item

can be uniquely identified by either its global ID or a combination of its local ID within

the current work-group and the work-group ID. A work-item is executed on a processing

element, while a work-group corresponds to a compute unit. A kernel is able to synchronize

data within a work-group.

The previously presented IDs are available as scalars, two- or three-dimensional tuples.

With this attribute it is possible to easily write OpenCL kernels operating on an image. For

example, a two-dimensional ID is handy for a blur filter kernel on an image. From this point

of view, a work-item can be seen as a point in an index space. This index space in OpenCL

2.2. THE OPENCL FRAMEWORK 13

NDRange with N=2: 2DRange

Work Item

local ID = (0,0)

global ID = (10,5)

Work Group, group ID = (2,1)

Work Item

local ID = (1,0)

global ID = (11,5)

Work Item

local ID = (2,0)

global ID = (12,5)

Work Item

local ID = (3,0)

global ID = (13,5)

Work Item

local ID = (4,0)

global ID = (14,5)

Work Item

local ID = (0,1)

global ID = (10,6)

Work Item

local ID = (1,1)

global ID = (11,6)

Work Item

local ID = (2,1)

global ID = (12,6)

Work Item

local ID = (3,1)

global ID = (13,6)

Work Item

local ID = (4,1)

global ID = (14,6)

Work Item

local ID = (0,2)

global ID = (10,7)

Work Item

local ID = (1,2)

global ID = (11,7)

Work Item

local ID = (2,2)

global ID = (12,7)

Work Item

local ID = (3,2)

global ID = (13,7)

Work Item

local ID = (4,2)

global ID = (14,7)

Work Item

local ID = (0,3)

global ID = (10,8)

Work Item

local ID = (1,3)

global ID = (11,8)

Work Item

local ID = (2,3)

global ID = (12,8)

Work Item

local ID = (3,3)

global ID = (13,8)

Work Item

local ID = (4,3)

global ID = (14,8)

Work Item

local ID = (0,4)

global ID = (10,6)

Work Item

local ID = (1,4)

global ID = (11,9)

Work Item

local ID = (2,4)

global ID = (12,9)

Work Item

local ID = (3,4)

global ID = (13,9)

Work Item

local ID = (4,4)

global ID = (14,9)

Figure 2.3: A 2D index space

is called NDRange, where N refers to the dimension (1, 2 or 3). Figure 2.3 shows an example

of a two-dimensional index space.

As previously mentioned, command queues are used to manage the kernel execution in

OpenCL. A command queue is associated with a single device and coordinates the execution

of OpenCL commands processed by this OpenCL device. The host program appends these

commands to a command queue and the OpenCL library takes care of that. Execution

within a command queue can be in-order or out-of-order. In the first case the commands

are executed one after another in the order pushed to the queue. In the second case the

commands are also launched in the order pushed to the queue, but the device may not wait

for the commands to finish before launching the next command. It is possible to have more

than one command queue on a device, but these queues run completely independent of each

other and synchronization has to be done manually by using OpenCL events.

2.2. THE OPENCL FRAMEWORK 14

OpenCL specifies the following set of commands:

Kernel Execution Commands. These commands will execute an OpenCL kernel

Memory Commands. These commands will perform memory manipulation tasks, like

copying memory from or to OpenCL memory objects, transferring memory between

them, or mapping OpenCL memory objects into host memory.

Synchronization Commands These commands perform synchronizations on the com-

mand queue.

Kernel Execution Commands and Memory Commands generate event objects when they are

put into a command queue. These event objects can be used to synchronize commands in

this queue and manage execution from the host program.

2.2.3 Memory Model

OpenCL distinguishes four different types of memory accessible to kernels. The main

OpenCL device memory is termed global memory. Global memory is visible to all work-items

and can be accessed for read and write operations. Depending on the device, read and write

operations may be cached. Constant memory is also a part of the global device memory,

but this region is constant to the work-item. The host application is responsible for filling

this memory with data. With constant memory the OpenCL device may be able to perform

optimizations within the kernel. Local memory is a memory block which is local within one

work-group. Variables allocated in this memory section are shared within a work-group. The

last memory type is private memory, which is a memory accessible to one single work-item.

No other work-items are able to access the local memory of another work-item. Figure 2.4

illustrates the memory model for work-groups and work-items.

The individual memory types also differ in access times. The following information is

valid for NVIDIA processors of the Fermi architecture. Private memory is used for tempo-

rary variables in a kernel and commonly resides in the registers of the processor. In this case

there is no latency for accessing this memory. When accessing local memory, however, there

are roughly 4 to 6 clock cycles of memory latency [7]. Global memory generates even more

memory latency. A memory access in global memory has about 400 to 600 clock cycles of

latency [5]. However, the scheduler is able to hide these latencies in most cases by switching

2.2. THE OPENCL FRAMEWORK 15

Processing Element Private Memory

Local

Memory
Processing Element Private Memory

Processing Element Private Memory

Compute Unit

Global Memory

Constant Memory

Processing Element Private Memory

Local

Memory
Processing Element Private Memory

Processing Element Private Memory

Compute Unit

OpenCL Device

Figure 2.4: The OpenCL memory model

blocked threads with some other threads.

Memory is managed by memory objects. These objects are created by the host program

and represent regions in the global memory of the device. There are two ways of trans-

ferring data between the OpenCL device and the host program: Either by using transfer

commands, or by mapping device memory into host memory. For transferring data, a data

copy command is added to a command queue. Three ways of data transfer are supported:

copying data from the host program to a device memory object, copying from one device

memory object to another device memory object, and copying data from a device memory

object back to the host program. Copy operations can be blocking, which means that the

host programs flow is stopped until the transfer is completed and the memory is ready for

further use. Mapping device memory into host memory also needs do be accomplished via

a command queue. Instead of actually transferring the data, the content of the memory

is available in host memory where the host program has direct access to. When the host

program has completed all manipulations of the mapped memory, it has to be unmapped

so that OpenCL is able to synchronize the mapping memory region in host memory to the

device memory. The mapping and unmapping commands can also be used in blocking or

non-blocking manner.

2.2. THE OPENCL FRAMEWORK 16

Two types of memory objects are specified: buffer objects and image objects. While

buffer objects define a sequential memory array, image objects are two- or three-dimensional

pictures. Every element of a buffer object array can be any type specified by OpenCL: a

basic type, a vector type or a struct. Elements are stored sequentially in device memory

which allows simple offset access using pointer arithmetics. Image objects support predefined

image types only and may not be stored sequentially. Access to image data from within an

OpenCL kernel is only possible using lookup functions. The use of pointers or typical array

arithmetic is not allowed.

OpenCL buffer memory objects are restricted in use compared to host random access

memory (RAM). There is no clear way to use pointers in OpenCL kernels because it is

not possible to reference one element in one memory object by an absolute pointer from

within another memory object. Additionally, the number of arguments passed from the host

program to the OpenCL kernel is limited. Therefore, it is also not possible to use a list of

arguments, especially a list of memory objects, for a kernel. Within a kernel the memory

size and location from a memory object is constant. It is not possible to allocate, free or

resize device memory within a kernel.

This leads to some basic design limitations when implementing algorithms using OpenCL.

Dynamic data structures are difficult to implement and very restricted in use. The only way

to use dynamic data structures in OpenCL device memory is to allocate a big memory ob-

ject and use the offset to the beginning of the block for access. It is therefore theoretically

possible to write a memory management within this memory block. Such a custom memory

management has some major disadvantages. First of all, it has to be thread-safe which can

only be achieved by synchronizing all threads. This is very impractical and usually leads to

poor performance.

Chapter 3

Sparse Matrix-Vector Multiplication

Linear mappings are a central topic in mathematics. In this work, only linear mappings

from finite dimensional vector spaces to itself are relevant. Given a basis, such a linear map-

ping can be uniquely identified with a matrix-vector multiplication, making matrix-vector

multiplication one of the most important applications of linear algebra. Linear equation

systems, a special case of the inverse linear mapping, are used very often as well. There are

mainly two algorithm types for solving linear equation systems: direct solvers and iterative

solvers. Direct solvers for matrices with a lot of zero entries do not perform well. Under

certain circumstances, iterative solver compensate these problems, especially for large sparse

matrices. For an iterative solver the matrix-vector multiplication is a central operation in

each cycle. Linear systems arising from the discretization of partial differential operations

are usually sparse, which means that most of the entries are equal to zero. In such cases it

is more efficient to store non-zero elements only such that less memory is required and the

matrix-vector multiplication requires less operations. On the other hand, the matrix-vector

multiplication algorithm has to be adapted for the storage scheme. These changes will lead

to an overhead when storing the matrix and performing the matrix-vector multiplication.

This overhead should be minimized.

nr number of rows of the matrix
nc number of columns of the matrix
nz number of non-zero elements of the matrix
nzr maximum number of non-zero elements per row

Table 3.1: Shortcuts for sparse matrix-vector multiplication algorithm analysis

17

3.1. SPARSE MATRIX LAYOUTS 18

In this chapter the shortcuts in Table 3.1 will be used. The memory requirement complex-

ity of a dense matrix is O(nr × nc) and accessing specific elements is done in constant time.

The runtime complexity of the matrix-vector multiplication algorithm for dense matrices is

O(nr × nc).

3.1 Sparse Matrix Layouts

As described in Section 2.2.3, OpenCL buffer memory objects are very restricted in use.

Because of this, all memory layouts of data structures and algorithms should be adapted

to a style with no dynamic data structures and as less memory indirections as possible. It

is recommended to design the data structures in a way that is suitable for the algorithm.

Especially it is advantageous to pack topologically close data together. When focusing on

the matrix-vector multiplication for example, the elements of a vector next to each other

should be located next to each other within the memory as well. Depending on the hardware,

caching might further improve the performance in these cases.

In this second two matrix storage schemes are presented: the coordinate scheme and the

compressed scheme. There are much more storage schemes than these two, which are also

suitable for OpenCL usage but are not covered in this work [22].

3.1.1 Coordinate Scheme

The simplest way to store a sparse matrix is by a sequence of triples: a row index, a col-

umn index and the (non-zero) value. This storing scheme is called coordinate scheme. The

non-zero values may be sorted by their coordinates within the matrix. As described in the

introduction, these triples are packed into linear arrays and therefore no dynamic data struc-

tures is used. Figure 3.1 shows the data scheme of the coordinate matrix.

The memory required for storing a coordinate matrix is linear in the number of non-zero

elements. Accessing a specific entry of the matrix is quite slow. If an element is requested,

the non-zero value array has to be searched for that element. If the elements in the array

are sorted, this search has a logarithmic complexity, otherwise the complexity is linear. In

both cases there is additional work to do if there is a write access to an element not yet

present within the array. In case of an unsorted array the element can simply be pushed to

the back of the array. In contrast, the insertion of a new element in a sorted array requires

that all successive elements are moved. Apart from memory management, the complexity

3.1. SPARSE MATRIX LAYOUTS 19

Row

Index

Column

Index
Value

Figure 3.1: Storage scheme of the coordinate matrix

Sorted Array Unsorted Array
Read Only Access O(log(nz)) O(nz)
Write Access O(nz) O(1)

Table 3.2: Element access complexity for coordinate matrices

of an insertion is linear for sorted arrays and constant for unsorted arrays. Table 3.2 gives

an overview of access complexities.

Iterating over all non-zero elements reduces to an iteration over an array. All non-zero

elements store their own location within the matrix, so no additional effort is required for

iterating over the entries, no matter if the array is sorted or not. Depending on the matrix

non-zero structure there might be a caching advantage for some algorithms if the array is

sorted. For example, the matrix-vector multiplication algorithm may benefit from a sorted

array because it is likely that neighbor elements of the vector and the result vector are ac-

cessed. For parallelization, the sorting of the array is important for good performance. If

the array is unsorted, different threads might access the same entry in the result vector and

race conditions appear.

The matrix-vector multiplication algorithm is quite simple. The pseudo code for that

algorithm is presented in Listing 3.1. The complexity of this algorithm is linear in the

number of non-zero values. There is no difference if the array is sorted or not, but a sorted

array might have caching advantages. If write access to the result vector within every loop

step is not atomic, it is difficult to parallelize the matrix-vector algorithm of the coordinate

matrix.

3.1. SPARSE MATRIX LAYOUTS 20

Row 0 Row 1 Row 2 Row 3

Column

Index
Value

Figure 3.2: Storing scheme of the compressed matrix

Listing 3.1: Matrix-vector multiplication for coordinate matrices

1 set all entries in result_vector to zero

2

3 for each non -zero value NZ in matrix

4 result_vector [NZ.row_index] += NZ.value * vector[NZ.column_index]

5 end

3.1.2 Compressed Scheme

In the compressed memory scheme, the data is stored in two arrays. All non-zero elements

and their column index are stored ordered by their row index in an array. Additionally there

is a second array, called row jumper, which holds the start index of every row in the first

array. The memory layout is presented in Figure 3.2. It is also common that the column

indices and the values are split into two separate arrays instead of one interlaced array. The

values within a row may also be sorted by their column index, similar to the coordinate

scheme.

Compared to the coordinate scheme, the compressed scheme usually requires less memory

to store. The memory complexity is O(nz+nr). The number of non-zero elements is greater

than the number of rows for all practical sparse matrices, so the memory consumption is

linear in the number of non-zero values.

The complexity of accessing an element of the matrix depends on the sorting of the array.

Due the fact that the every row has an entry in the row jumper array leading to the start

index of the column indices and values, the complexity of retrieving the row is constant.

Within a row the runtime depends on sorting of the elements by the column index. If the

3.1. SPARSE MATRIX LAYOUTS 21

Sorted Row Unsorted Row
Read Only Access O(log(nzr)) O(nzr)
Write Access O(nz) O(nz)

Table 3.3: Element access complexity for compressed matrices

elements are sorted, the complexity of a read-only access is logarithmic in the number of

non-zero values in that row, otherwise it is linear. Write access time does not depend on

whether the values within a row are sorted or not. This complexity is always linear in the

number of non-zero values because a memory move is always required when inserting a new

element. An overview of the access complexity is presented in Table 3.3.

A pseudo code of the matrix-vector multiplication algorithm for the compressed scheme

is presented in Listing 3.2. The algorithm is the same no matter if the values within a

row are sorted or not. Due to the fact that every iteration of the inner loop operates on

one non-zero element, the algorithm has a complexity of O(nz + nr). As described above,

the number of rows is often less than the number of non-zero values, so in most cases the

complexity is linear in the number of non-zero values. Since every iteration of the outer loop

is independent, this algorithm can be parallelised easily.

Listing 3.2: Matrix-vector multiplication for compressed matrices

1 for each row R in matrix

2 tmp = 0

3

4 for each element E int row R

5 tmp += E.value * vector[E.column_index]

6 end

7

8 result[R.row_index] = tmp

9 end

OpenCL has built-in support for fixed size vector types (sizes of 2, 3, 4, 8 and 16 are

supported) including memory functions and arithmetics. Memory access is usually more

efficient when reading little memory blocks instead of single elements. There is a minor

adaption to the compressed scheme which benefits from these facts. This modification

allocates the number of elements within a row to a multiple of an alignment number. If the

number of non-zero values in a row is already a multiple of that alignment, no changes have

to be made. Otherwise, additional zeros are added in the row. This modification requires

slightly more memory in most cases, but the matrix-vector algorithm can be adapted in a

way where more than one element is read in each iteration. Instead of iterating over every

3.2. IMPLEMENTATION WITH OPENCL 22

single element within a row in the inner loop, multiple non-zero values are read in every step

depending on the alignment. Good numbers for the alignment for most graphics hardware

are the sizes of the built-in vector types, especially 4 or 8.

3.2 Implementation with OpenCL

OpenCL object management is done via the OpenCL API. Since creating a context, com-

mand queues, memory objects and so on is straight-forward, these technical details are not

covered in this work.

3.2.1 Memory object creation and transfer

Memory objects can only be created by the host via OpenCL API functions. Within an

OpenCL kernel there is no way to create a memory object. Those objects are constant in

structure for the whole lifetime, which means that the size of an memory object can not be

changed after creation. As stated in the Section 3.1, dynamic data structures are difficult

to implement and very restricted in their use.

OpenCL provides four methods for managing data: copy data from host memory to

device memory, copy data from device memory back to host memory, copy data from one

memory object on a device to another memory object of probably another device and fill

data of a memory object. All methods enqueue a memory transfer job to a command queue.

The memory transfer takes place as soon as the command queue launches the job. There

are special versions of the memory copy commands which add support for transferring re-

gions. For example it is possible to transfer a sub-matrix block of a dense matrix stored in

one memory object in just one call using rectangular memory transfer functions. But those

functions only support regular rectangular regions and it is not possible to manage random

accesses from the host with only one OpenCL function call. An access to three random ele-

ments in a memory buffer requires at least two memory transfer function calls: one striding

call for accessing two elements and one call for the third access. The memory creation also

supports copying data from host to the created memory object, but this function does not

support OpenCL events and therefore can not be synchronized.

Transferring the matrix storage schemes from Section 3.1 to OpenCL leads to some major

complications. Memory structures can not be changed from within an OpenCL kernel, the

3.2. IMPLEMENTATION WITH OPENCL 23

kernel is restricted to read-only accesses to the compressed or coordinate matrix. Iterating

over all elements on the other hand is possible for both matrix types presented previously.

Therefore, the matrix-vector multiplication algorithm can be ported to OpenCL easily. Ac-

cessing elements from the host is possible, but may result in heavy memory management

operations. With the finite element method the matrices would be set up once and not mod-

ified after creation. In those cases the matrix is created by the host and then transferred to

OpenCL, where only the matrix-vector multiplication is performed.

3.2.2 The OpenCL kernel

In Section 3.1.2 the compressed matrix was presented. The focus of this section is on an

implementation of this matrix-vector multiplication using OpenCL. To perform a task on an

OpenCL device a kernel has to be created. The algorithm has to be ported to the OpenCL

C programming language and this source code is passed to OpenCL as a string. There are

also possibilities for using native kernels, but those are highly hardware dependent. The

OpenCL implementation compiles and links the kernel source code on the fly. This ensures

that a task written for OpenCL can be used on every OpenCL implementation.

The kernel source code for the matrix-vector multiplication is presented in Listing 3.3.

The algorithm specified in Listing 3.2 is split up in a way that every thread processes a

number of rows in the matrix. In multi-threaded programming on the CPU an application

uses only a few threads, mostly one thread per core. OpenCL was made for architectures

with many more cores than a common CPU.

The kernel keyword specifies that this function can be used as a kernel. A kernel

function has no return value and can be called by the host using the OpenCL API. Every

kernel consists of a set of parameters provided by OpenCL. The matrix-vector multiplication

kernel has five arguments. Memory buffer arrays are represented via pointers. An array

argument must have an address space qualifier so that the OpenCL kernel knows which type

of memory to expect. In this case the matrix arrays, the vector and the result vector are

specified as global, which means that the arrays are memory blocks in the global OpenCL

device memory and suitable for read and write access. All pointers, except the pointer to

the result vector, are marked const because the kernels do not require write accesses to these

arrays.

3.2. IMPLEMENTATION WITH OPENCL 24

Listing 3.3: OpenCL kernel source code for the matrix-vector multiplication of a com-

pressed matrix

1 __kernel void packed_compressed_matrix_vector_multiplication(

2 __global const unsigned int * row_jumper ,

3 __global const unsigned int * column_indices ,

4 __global const float * element_buffer ,

5 __global const float * vector ,

6 __global float * result_vector ,

7 unsigned int num_rows)

8 {

9 for (int row = get_global_id (0); row < num_rows; row += get_global_size (0))

10 {

11 unsigned int idx = row_jumper[row];

12 const unsigned int stop_idx = row_jumper[row +1];

13 float tmp = 0.0f;

14 for (; idx < stop_idx; ++idx)

15 {

16 tmp += element_buffer[idx] * vector[column_indices[idx]];

17 }

18 result_vector[row] = tmp;

19 }

20 }

The kernel source code represents one thread that will operate on a number of rows. Each

kernel instance is uniquely identified by its global ID which will be used to identify the start

row index on which the kernel operates. The total number of threads is given by the func-

tion get global size. The outer loops iterates over all rows, where each thread may processes

several rows. Inside the outer loop, the first and last index in the column index and element

buffer array for the current row are looked up in the row jumper array. Then the entry

of the result vector is calculated by using a temporary variable. This temporary variable

is not required, but saves some expensive array accesses to the result vector in global memory.

As presented above, there is a modification to the compressed storage scheme which uses

an alignment. Listing 3.4 presents the source code of the alignment version of the compressed

matrix matrix-vector multiplication with an alignment of 4. It is assumed that the entries of

the row jumper array are the number of quadruples within one row instead of the number of

elements. The OpenCL C programming language supports additional built-in vector types.

The algorithm iterates over all quadruples of non-zero elements within a row and loads the

values into a temporary vector. Those values are used to calculate the local dot product of

the matrix-vector multiplication algorithm.

3.2. IMPLEMENTATION WITH OPENCL 25

Listing 3.4: OpenCL kernel source code for matrix-vector multiplication of a compressed

matrix using an alignment of 4

1 __kernel void packed_compressed_matrix_vector_multiplication(

2 __global const unsigned int * row_jumper ,

3 __global const unsigned int * column_indices ,

4 __global const float * element_buffer ,

5 __global const float * vector ,

6 __global float * result_vector ,

7 unsigned int num_rows)

8 {

9 for (int row = get_global_id (0); row < num_rows; row += get_global_size (0))

10 {

11 unsigned int idx = row_jumper[row];

12 const unsigned int stop_idx = row_jumper[row +1];

13 float tmp = 0.0f;

14 for (; idx < stop_idx; ++idx)

15 {

16 float4 vals = vload4(idx , element_buffer);

17 uint4 col_idx = vload4(idx , column_indices);

18 tmp += vals.x * vector[col_idx.x];

19 tmp += vals.y * vector[col_idx.y];

20 tmp += vals.z * vector[col_idx.z];

21 tmp += vals.w * vector[col_idx.w];

22 }

23 result_vector[row] = tmp;

24 }

25 }

3.2.3 Launching the kernel

After the kernel has been successfully passed to OpenCL and the compilation of the source

code is completed, the kernel is ready to use. Before launching the kernel on an OpenCL

device, the kernel parameters have to be set to associate the memory objects with the kernel

parameters. Then, the kernel can be launched by using an NDRange (see Section 2.2.2).

For this NDRange the size and number of a work-group has to be specified. As stated in

Section 2.2.2 a work-group operates on a compute unit and a work-item operates on a single

processing element. The OpenCL function for launching a NDRange is able to determine a

proper work-group size automatically, but in many cases it is preferable to specify the size

and number of work-groups by hand. For example the device has 16 compute units and

250 threads should be started. Threads should be split equally on up to 16 compute units.

The best possible choice for that is to launch 25 threads on 10 compute units, in which case

6 compute units are idle, while 10 compute units execute 25 threads each. In this case it

is better to launch 256 threads with 6 threads idle, but 16 threads are launched on each

3.3. MATRIX-VECTOR MULTIPLICATION BENCHMARKS 26

compute unit with 16 threads each. This results in much better load balance. To achieve

this flexibility, the kernel source code has to handle situations where extra idle threads

are launched. This method provides a flexible way to choose the number of work-groups

as well as the work-group size, which is very helpful for optimizing kernels. In the case of

the kernel sources presented in Listing 3.3 and Listing 3.4, no modifications have to be made.

Finding ideal values for the work-group size depends on the hardware, the data, and on

the kernel. In general there are a few criteria for this value. The number of idle threads

should be kept to a minimum. The number of work-groups should be greater or equal to

the number of compute units. This ensures that all compute units are used for calculation.

The work-group size should be greater or equal to the number of processing elements per

compute unit, otherwise there are processing elements which execute no kernel instance.

For most graphics adapters the processing elements within one compute unit execute the

same kernel [5]. All other processing elements are idle. So in this case the work-group size

should be a multiple of the number of processing elements. If there are more work-items

than processing elements, the compute units scheduler might be able to balance the work

load and compensate memory latencies.

3.3 Matrix-Vector Multiplication Benchmarks

In this section the performance of the matrix-vector multiplication on different hardware

is discussed. The benchmarks are carried out using randomly generated quadratic sparse

matrices with sizes from 44 = 128 to 410 = 1048576 and one additional size of 221 = 2097152.

The same matrix is used for benchmarking different matrix types on different hardware for

fair comparison. The number of non-zero values per row is constant 32 for all matrix sizes.

Each benchmark consist of an average over 20 matrix-vector multiplications and is are car-

ried on a workstation with Linux 3.1.6. The benchmark programs are written in C++ and

compiled with gcc 4.4.5 using the ‘-O3’ optimization. OpenMP (Open Multi-Processing) is

used to parallelise the CPU implementation. The IEEE 754 single precision float type is

used as a data type for the matrix values.

The target processor hardware is an Intel Core i7-960 CPU. For benchmarking with

OpenCL a NVIDIA GeForce GTX 470 graphics adapter and a NVIDIA Tesla C2050 is used.

Table 3.4 gives an overview of the hardware used for the benchmarks. For benchmarking

3.3. MATRIX-VECTOR MULTIPLICATION BENCHMARKS 27

Theoretical processing Theoretical memory
Number of cores power using single bandwidth in GB/s

precision float in GFLOPs
Intel Core i7-960 CPU [11] [12] 4 102.4 76.8
NVIDIA GeForce GTX 470 448 1088.64 133.9
graphics card [9] [10]
NVIDIA Tesla C2050 [8] 448 1030 144

Table 3.4: Benchmark hardware

Memory throughput Processing power
in bytes per matrix-vector multiplication in operations per

for single floating point values matrix-vector multiplication
Dense matrix (nr × nc × 2 + nc)× 4 nc × nr × 2
Coordinate matrix nnz × 5× 4 nnz × 2
Compressed matrix (nnz × 3 + nr × 3)× 4 nnz × 2

Table 3.5: Complexity for memory throughput and processing power

the OpenCL implementations, a work-group size of 8 is used, because it results in the best

performance for those implementations.

The benchmark results presented in Table 3.6 and depicted in Figure 3.3 clearly show

that the complexity of the dense matrix-vector multiplication is quadratic and the complex-

ity of the coordinate and compressed matrix-vector multiplication is linear in the matrix

size. The benchmarks with OpenMP and OpenCL are not representative for lower matrix

sizes because of the OpenCL API or OpenMP thread overhead. The compressed scheme

with an alignment of four, benchmarked on the GeForce 470, shows best performance over

all benchmarks. Based on the values in Table 3.6, memory throughput and computing power

can be estimated. Estimated complexities for memory throughput and processing power are

presented in Table 3.5. For the largest matrix size in the benchmark, the actual memory

throughput is about 8GB/s on the GeForce 470, which is about 6% of the theoretical power.

This poor value can be explained with the randomness of the indices in the sparse matrix

and confirms that peak bandwith can only be obtained with regular accesses.

Table 3.7 presents benchmark results with different local and global work sizes. A matrix

with 262144 rows and columns containing 8388608 non-zero elements is used to perform

a matrix-vector multiplication using a compressed matrix scheme with alignment of four.

Only the NVIDIA GeForce GTX 470 was tested and a local work size of 16 has the best

performance. A benchmark with different number of non-zero elements per row is presented

3.3. MATRIX-VECTOR MULTIPLICATION BENCHMARKS 28

M
at
ri
x
si
ze

25
6

10
24

4
0
9
6

1
6
3
8
4

65
53

6
2
62

14
4

10
48

57
6

20
97

15
2

N
u
m
b
er

of
n
on

-z
er
o
va
lu
es

81
92

32
76
8

1
3
1
0
7
2

5
2
4
2
8
8

2
09

71
52

83
88

60
8

33
55

44
32

67
10

88
64

D
en
se

m
at
ri
x

1.
65
e-
04

0.
00
12
95

0
.0
2
0
4
3
2

0
.3
2
6
2
2

on
In
te
l
C
or
e
i7
-9
60

D
en
se

m
at
ri
x
w
it
h
O
p
en
M
P

5.
47
e-
05

0.
00
03
22

0
.0
0
5
1
2
9

0
.0
8
2
0
0

on
In
te
l
C
or
e
i7
-9
60

C
o
or
d
in
at
e
m
at
ri
x

4.
38
e-
05

0.
00
00
78

0
.0
0
0
4
3
8

0
.0
0
1
5
0

0.
0
06

5
0
.0
3
27

0.
1
80

0.
5
9

on
In
te
l
C
or
e
i7
-9
60

C
om

p
re
ss
ed

m
at
ri
x

2.
81
e-
05

0.
00
01
10

0
.0
0
0
3
8
0

0
.0
0
1
0
4

0.
0
05

4
0
.0
2
82

0.
1
46

0.
5
8

on
In
te
l
C
or
e
i7
-9
60

C
om

p
re
ss
ed

m
at
ri
x
w
it
h
O
p
en
M
P

2.
00
e-
05

0.
00
00
50

0
.0
0
0
0
9
3

0
.0
0
0
2
2

0.
0
01

6
0
.0
0
95

0.
0
52

0.
1
4

on
In
te
l
C
or
e
i7
-9
60

D
en
se

m
at
ri
x

7.
02
e-
05

0.
00
02
89

0
.0
0
4
9
0
5

0
.0
8
2
1
8

on
N
V
ID

IA
G
eF

or
ce

G
T
X

47
0

D
en
se

m
at
ri
x

7.
56
e-
05

0.
00
04
18

0
.0
0
5
2
7
2

0
.0
8
5
9
4

on
N
V
ID

IA
T
es
la

C
20
50

C
om

p
re
ss
ed

m
at
ri
x

2.
13
e-
05

0.
00
00
33

0
.0
0
0
1
5
9

0
.0
0
0
7
8

0.
0
03

5
0
.0
1
54

0.
0
67

0.
1
3

on
N
V
ID

IA
G
eF

or
ce

G
T
X

47
0

C
om

p
re
ss
ed

m
at
ri
x

2.
34
e-
05

0.
00
00
33

0
.0
0
0
1
5
3

0
.0
0
0
7
2

0.
0
03

1
0
.0
1
41

0.
0
72

0.
1
5

on
N
V
ID

IA
T
es
la

C
20
50

C
om

p
re
ss
ed

m
at
ri
x
w
it
h
al
ig
n
m
en
t
of

4
1.
79
e-
05

0.
00
00
27

0
.0
0
0
1
2
2

0
.0
0
0
6
2

0.
0
02

8
0
.0
1
23

0.
0
52

0.
1
0

on
N
V
ID

IA
G
eF

or
ce

G
T
X

47
0

C
om

p
re
ss
ed

m
at
ri
x
w
it
h
al
ig
n
m
en
t
of

4
2.
02
e-
05

0.
00
00
28

0
.0
0
0
1
2
1

0
.0
0
0
5
8

0.
0
02

5
0
.0
1
13

0.
0
59

0.
1
3

on
N
V
ID

IA
T
es
la

C
20
50

T
a
b
le

3
.6
:
B
en
ch
m
ar
k
re
su
lt
in

se
co
n
d
s
p
er

m
a
tr
ix
-v
ec
to
r
m
u
lt
ip
li
ca
ti
on

3.3. MATRIX-VECTOR MULTIPLICATION BENCHMARKS 29

 1
e-

00
5

 0
.0

00
1

 0
.0

01

 0
.0

1

 0
.1 1

 1
00

0
 1

00
00

 1
00

00
0

 1
e+

00
6

Seconds

M
at

rix
 s

iz
e

C
or

e
i7

 d
en

se
C

or
e

i7
 d

en
se

 O
pe

nM
P

C
or

e
i7

 c
oo

rd
in

at
e

C
or

e
i7

 c
om

pr
es

se
d

C
or

e
i7

 c
om

pr
es

se
d

O
pe

nM
P

G
eF

or
ce

 d
en

se
T

es
la

 d
en

se
G

eF
or

ce
 c

om
pr

es
se

d
T

es
la

 c
om

pr
es

se
d

G
eF

or
ce

 c
om

pr
es

se
d

al
ig

n
4

T
es

la
 c

om
pr

es
se

d
al

ig
n

4

F
ig
u
re

3
.3
:
E
x
ec
u
ti
o
n
ti
m
es

3.3. MATRIX-VECTOR MULTIPLICATION BENCHMARKS 30

local work size
16 32 64 128

g
lo
b
a
l

w
o
rk

si
ze

32 0.0121 0.0132 0.0152 0.0172
64 0.0115 0.0134 0.0154 0.0154
128 0.0131 0.0146 0.0161 0.0161
256 0.0123 0.0141 0.0160 0.0160
512 0.0124 0.0142 0.0160 0.0160
1024 0.0122 0.0140 0.0161 0.0161

Table 3.7: Benchmark result in seconds per matrix-vector multiplication with different
worksizes

H
a
rd

w
a
re

lo
ca

l
w
o
rk

si
ze

g
lo
b
a
l
w
o
rk

si
ze

1
6
n
o
n
-z
er
o
el
em

en
ts

p
er

ro
w

3
2
n
o
n
-z
er
o
el
em

en
ts

p
er

ro
w

6
4
n
o
n
-z
er
o
el
em

en
ts

p
er

ro
w

ra
n
d
o
m

n
u
m
b
er

o
f
n
o
n
-z
er
o
s

p
er

ro
w
,
w
it
h
m
ea

n
=

4
0

a
n
d
d
ev

ia
ti
o
n
=

4

ra
n
d
o
m

n
u
m
b
er

o
f
n
o
n
-z
er
o
s

p
er

ro
w
,
w
it
h
m
ea

n
=

4
0

a
n
d
d
ev

ia
ti
o
n
=

8

ra
n
d
o
m

n
u
m
b
er

o
f
n
o
n
-z
er
o
s

p
er

ro
w
,
w
it
h
m
ea

n
=

4
0

a
n
d
d
ev

ia
ti
o
n
=

2
0

GeForce GTX 470 16 64 0.0043 0.011 0.023 0.014 0.014 0.014
Tesla C2050 16 64 0.0040 0.011 0.021 0.013 0.014 0.013

GeForce GTX 470 16 1024 0.0043 0.012 0.024 0.016 0.016 0.015
Tesla C2050 16 1024 0.0039 0.011 0.022 0.015 0.014 0.015

GeForce GTX 470 32 1024 0.0047 0.014 0.029 0.018 0.018 0.018
Tesla C2050 32 1024 0.0044 0.015 0.030 0.020 0.019 0.019

GeForce GTX 470 128 128 0.0056 0.018 0.035 0.023 0.023 0.023
Tesla C2050 128 128 0.0061 0.022 0.044 0.029 0.029 0.029

Table 3.8: Benchmark result in seconds per matrix-vector multiplication with different
worksizes and different number of non-zero entries per row

in Table 3.8. It can be seen that small number of non-zero elements per row perform better

than greater numbers. The affect of a randomness in the number of non-zero elements per

row is very small.

Chapter 4

ViennaCL

In this chapter, the C++ library ViennaCL (Vienna Computing Library) is presented [17].

Section 4.1 gives a short introduction to the Basic Linear Algebra Subprograms. In Sec-

tion 4.2 the library is introduced. The OpenCL management of ViennaCL is presented in

Section 4.3. The programming technique expression templates, which is used by ViennaCL

is discussed in Section 4.4. Pros and cons of the library are presented in Section 4.5.

4.1 BLAS and uBLAS

The Basic Linear Algebra Subprograms, in short BLAS, is a software library which cov-

ers basic linear algebra operations. BLAS implements a lot of different vector and matrix

operations. The library is initially written in Fortran, but many ports and bindings for

other programming languages are available. BLAS is widely spread and a de-facto standard

interface for linear algebra computing libraries. Because of its popularity there are many

highly optimized implementations for different platforms available. BLAS is split up into 3

levels, each covering different linear algebra operations. BLAS level 1 contains vector oper-

ations with complexity O(N): operation of the form y ← αx + y, dot products and vector

norms. BLAS level 2 contains operations with complexity O(N2): matrix-vector operations

of the form y ← αA × x + y and the solution of linear equation systems given by trian-

gular matrices. BLAS level 3 contains operations with complexity O(N3): matrix-matrix

operations of the form C ← αA × C + βC. The library supports single and double preci-

sion floating point numbers as well as complex data types in either single or double precision.

31

4.2. INTRODUCTION AND MOTIVATION 32

BLAS functionality is among other libraries provided by uBLAS for the programming

language C++. uBLAS is a part of the boost C++ libraries which are a de-facto standard

extension for C++. One of the primary goals of uBLAS is mathematical notation. Classical

BLAS consists of a set of low-level functions, resulting in code which is hard to read. The

operator overloading in C++ enables the use of a mathematical notation. For example a

vector addition can be written as z = x + y instead of using function calls. These abstrac-

tions in uBLAS rely on heavy use of C++ templates. In contrast to virtual function calls,

templates can be used to eliminate penalty at runtime at the cost of increased compilation

times. Additionally uBLAS uses expression templates to reduce the number of temporary

objects. Expression templates will be discussed in Section 4.4. Due the use of templates the

uBLAS classes are very flexible. Many different storage layouts for matrices and vectors are

supported. The default storage layout is compatible to C arrays, but it is also possible to

use Fortran data layout. Due to some remaining overhead of C++ classes, uBLAS is slightly

slower than the classic BLAS implementation written in Fortran.

4.2 Introduction and Motivation

As presented in Section 3.3, GPUs can be used for high-performance linear algebra opera-

tions. The idea behind ViennaCL is to provide a BLAS library using the power of parallel

computing architectures to perform such tasks. Like uBLAS, ViennaCL is an implementa-

tion of BLAS. The library is written in C++, but instead of executing the linear algebra

operations on the CPU natively, OpenCL is used to perform the operations on an OpenCL

device. ViennaCL is designed to be as much as compatible to uBLAS as possible. In

addition, ViennaCL provides iterative solvers for linear equation systems including some

preconditioners. Like uBLAS, ViennaCL uses C++ templates and therefore it is possible to

use those solvers with other libraries. The user of the library does not need to explicitly call

an init() function. ViennaCL automatically manages OpenCL objects in the background.

Listing 4.1 shows a simple scaled vector addition. ScalarType can be either float or

double in ViennaCL 1.2.1. viennacl::vector and viennacl::matrix provide uBLAS-conforming

iterators. Transferring memory from CPU to GPU, from GPU to GPU or from GPU to

CPU is accomplished using standard copy functions with iterators provided by ViennaCL.

For scalar types, operator= is overloaded to transfer values between CPU and GPU. The

syntax for the linear algebra operation is the same as with uBLAS, which is straightforward,

4.2. INTRODUCTION AND MOTIVATION 33

and easy to use.

Listing 4.1: Scaled vector addition example

1 ublas ::vector <ScalarType > ublas_vector_x(SIZE);

2 ublas ::vector <ScalarType > ublas_vector_y(SIZE);

3 ScalarType ublas_scalar;

4

5 viennacl ::vector <ScalarType > vcl_vector_x(SIZE);

6 viennacl ::vector <ScalarType > vcl_vector_y(SIZE);

7 viennacl ::scalar <ScalarType > vcl_scalar;

8

9

10 // copy the data from the CPU to the OpenCL device

11 viennacl ::copy(ublas_vector_x.begin(), ublas_vector_x.end(), vcl_vector_x.begin());

12 viennacl ::copy(ublas_vector_y.begin(), ublas_vector_y.end(), vcl_vector_y.begin());

13 vcl_scalar = ublas_scalar; // implicit transfer for scalars

14

15

16 ublas_vector_y += ublas_scalar * ublas_vector_x; // performing the calculation on

the CPU

17 vcl_vector_y += vcl_scalar * vcl_vector_x; // using OpenCL for calculations

ViennaCL provides classes for vectors, dense matrices and sparse matrices. The coordi-

nate matrix and the compressed matrix presented in Section 3.1 are supported. All vector

and matrix types have built-in support for alignment of the data arrays. Besides basic

BLAS functionality, ViennaCL provides additional algorithms from the field of linear alge-

bra. These algorithms are implemented generically so they can be used with data types

from ViennaCL as well as with uBLAS or similar libraries. For directly solving systems of

linear equations, a LU factorization and substitution are provided. In ViennaCL 1.2.1 piv-

oting is not included so numerical errors might give results of poor accuracy. Three iterative

solvers are included: Conjugate Gradient (CG) [13], Stabilized Bi-CG [18] and Generalized

Minimum Residual [19]. These iterative solvers can be configured using tags. Listing 4.2

provides a short example of how to use these solvers with types from ViennaCL or uBLAS.

For accelerating these linear equation solvers, ViennaCL also provides three types of pre-

conditioners. An incomplete LU factorization preconditioner with threshold is available but

completely computed on the host CPU which might lead to low performance when used

with ViennaCL data types. Moreover, ViennaCL provides a Jacobi preconditioner and a

row-scaling preconditioner with native OpenCL support. New features in ViennaCL 1.2.1

are: algebraic multigrid preconditioners, sparse approximate inverse preconditioners and fast

Fourier transform. All preconditioners work with uBLAS as well.

4.2. INTRODUCTION AND MOTIVATION 34

Listing 4.2: Matrix solver example

1 viennacl ::matrix <ScalarType > vcl_matrix(SIZE , SIZE);

2 viennacl :: compressed_matrix <ScalarType > vcl_sparse_matrix(SIZE , SIZE);

3

4 viennacl ::vector <ScalarType > vcl_rhs(SIZE);

5 viennacl ::vector <ScalarType > vcl_scalar;

6

7 ublas :: compressed_matrix <ScalarType > ublas_matrix(SIZE , SIZE);

8 ublas ::vector <ScalarType > ublas_rhs(SIZE);

9

10 // Solving a linear equation system with a dense matrix directly using LU

factorization

11 viennacl :: lu_factorize(vcl_matrix);

12 viennacl :: lu_substitute(vcl_matrix , vcl_rhs);

13

14 // Solving a linear equation system with a sparse matrix using conjugate gradient

algorithm

15 // A custom tag is used: tolerance is set to 1e-4 and a maximum of 10 iterations are

used

16 viennacl :: linalg :: cg_tag tag(1e-4, 10);

17 viennacl ::vector <ScalarType > vcl_result = viennacl :: linalg ::solve(

18 vcl_matrix , vcl_rhs , tag);

19

20 // The same algorithm can be used to solve a linear equation system using uBLAS data

types

21 ublas ::vector <ScalarType > ublas_result = viennacl :: linalg ::solve(ublas_matrix ,

ublas_rhs , tag);

OpenCL initialization and OpenCL object management is automatically done in the

background when using ViennaCL. The first device of the first platform found on the com-

puter is used by ViennaCL by default. In addition, ViennaCL supports custom OpenCL

contexts. Such a context can be created by directly using OpenCL functions and then

connecting that context to ViennaCL. All ViennaCL operations can then be used in that

context. This mechanism is important when using ViennaCL in an existing OpenCL envi-

ronment. ViennaCL has support for custom kernels enabling a simple way to extend the

library. For some complex algorithms ViennaCL might not provide the desired functionality

efficiently, in which case an extra kernel can be written to perform that algorithm directly.

ViennaCL provides a kernel class to enable user-provided kernels to interact with ViennaCL.

Besides custom kernels ViennaCL data types can be configured to use custom memory ob-

jects. Both custom kernels and custom memory objects are important for custom extensions

of the ViennaCL library.

4.3. OPENCL MANAGEMENT 35

4.3 OpenCL Management

The OpenCL kernels for linear algebra operations in ViennaCL are included in C++ source

code. There are no extra files required for including the kernel source code. At the compi-

lation process of the C++ program the kernel source is directly packed into the executable.

At the first instantiation of a ViennaCL linear algebra object, the library passes the kernel

sources belonging to that object to OpenCL. Thus, only those kernel sources which are possi-

bly required are actually compiled by the OpenCL compiler. ViennaCL provides kernels for

all basic linear algebra operations for all objects as well as specialized kernels. The operation

in Listing 4.1 requires only one kernel although there are actually 2 operations: one scalar

multiplication and one addition. More complex operations typically require more than one

kernel.

To avoid memory leaks, all OpenCL objects have to be released after their usage. OpenCL

provides a simple reference counting mechanism used by ViennaCL. For all OpenCL objects

there is a retain() function increasing the internal reference counter and a release() function

which decreases the internal reference counter. The internal reference counter starts with

a value of one when the object is created and if the reference counter is zero, the object is

destroyed by OpenCL. This reference counting mechanism is like a smart pointer using C

functions for increasing and decreasing the internal reference counter. All OpenCL objects

used by ViennaCL are managed with a handle object. A handle object encapsulates a basic

OpenCL object and uses the retain and release functions of that object to perform reference

counting. In each constructor call of a handle the reference count is incremented and in

each destructor call it is decremented. Custom objects created by the user and passed to

ViennaCL as custom objects are also managed by ViennaCL handles.

4.4 Expression Templates

When writing a vector class in C++, operator overloading can be used to ensure clarity

and readability of mathematical instructions. However, operator overloading can also lead

to poor performance due to the generation of temporary objects. For example, the oper-

ation presented in listing 4.1 would generate one temporary object. With classic operator

overloading the return type of an operator is typically an object. So the operation scalar *

vector generates a temporary vector object which will be added in-place to the other vector.

Listing 4.3 provides an example for simple operator overloading for vector addition. The

4.4. EXPRESSION TEMPLATES 36

operation at the end of the example generates two temporary vectors, one for each addition.

Listing 4.3: Operator overloading example

1 // a simple vector class

2 template <class TYPE >

3 class Vector : public std::vector <TYPE >

4 {};

5

6 // operator+ take two Vector objects and generates a temporary Vector object as

result

7 template <class TYPE >

8 Vector <TYPE > operator +(

9 const Vector <TYPE > & lhs ,

10 const Vector <TYPE > & rhs)

11 {...}

12

13 Vector <ScalarType > v1, v2;

14 v2 = v1 + v1 + v1; // this operation generates 2 temporary Vector objects , one for

each addition

Expression Templates are a C++ meta programming mechanism to avoid certain types

of temporary objects. With expression templates an operator returns an operator expres-

sion object instead of a whole vector object. A vector expression is an object representing

a specific mathematical expression. It provides a read-only access operator evaluating the

vector expression. For example, operator+ returns an addition vector expression which holds

both vectors of the addition. The access operator of this addition vector expression eval-

uates the operation. An operator= can be implemented to assign a vector expression to a

vector object. This operator iterates over all elements and uses the access operator of the

vector expression to evaluate the expression. With this mechanism no temporary object is

required. Using C++ templates, vector expressions can be created recursively and complex

vector operations are supported.

In Listing 4.4 an example of the expression template technique is shown. The addition at

the end of the example generates a recursive VectorAddExpression object holding a Vector

object and another VectorAddExpression object holding two Vector objects. This recursive

VectorAddExpression object is evaluated in the operator= of the Vector class. The object

tree of this operation is presented in Figure 4.1. Except for the VectorAddExpression objects

this operation does not generate any other temporary objects, particularly no temporary

Vector object with large overhead in construction.

4.4. EXPRESSION TEMPLATES 37

Listing 4.4: Expression template example

1 // a simple vector class

2 template <class TYPE >

3 class Vector : public std::vector <TYPE >

4 {

5 public:

6

7 // the operator= assigns an expression to the vector , the very type of the

8 // expression is unknown. The expression object has to provide an operator []

9 template <class EXPRESSION >

10 Vector <TYPE > & operator =(const EXPRESSION & expr)

11 {

12 for (size_t i = 0; i < size(); ++i)

13 (*this)[i] = expr[i];

14 return *this;

15 }

16 };

17

18 // An object which represents a vector addition expression .

19 // The operator [] evaluates the addition

20 template <class EXPRESSION1 , class EXPRESSION2 >

21 class VectorAddExpression

22 {

23 public:

24 typedef typename EXPRESSION1 :: value_type value_type;

25

26 VectorAddExpression(

27 const EXPRESSION1 & _lhs ,

28 const EXPRESSION2 & _rhs)

29 : lhs(_lhs), rhs(_rhs) {}

30

31 value_type operator [] (const size_t i) const { return lhs[i] + rhs[i]; }

32

33 private:

34 const EXPRESSION1 & lhs;

35 const EXPRESSION2 & rhs;

36 };

37

38 // The operator+ takes two expression (a Vector or any other expression) and returns

39 // a VectorAddExpression object

40 template <class EXPRESSION1 , class EXPRESSION2 >

41 VectorAddExpression <EXPRESSION1 , EXPRESSION2 > operator +(

42 const EXPRESSION1 & lhs ,

43 const EXPRESSION2 & rhs)

44 { return VectorAddExpression <EXPRESSION1 , EXPRESSION2 >(lhs , rhs); }

45

46

47 Vector <ScalarType > v1, v2;

48 v2 = v1 + v1 + v1; // this operation generates 2 VectorAddExpression objects and

49 // the operator= of the Vector class triggers the evaluation of

50 // the VectorAddExpressions . No large temporary objects are

51 // generated

4.4. EXPRESSION TEMPLATES 38

v1
Vector<ScalarType>

v1
Vector<ScalarType>

operator+

v1
Vector<ScalarType>

VectorAddExpression<

 Vector<ScalarType>,

 Vector<ScalarType>

>

operator+

VectorAddExpression<

 VectorAddExpression<

 Vector<ScalarType>,

 Vector<ScalarType>

 >

 Vector<ScalarType>

>

operator=
v2

Vector<ScalarType>

Figure 4.1: Object tree of the operation v2 = v1 + v2 + v2; with expression templates

Operator overloading, with or without expression templates, leads to bad performance

in some cases. When using operator overloading for matrices and vectors, the operation

y ← A × B × x uses more operations than required. If no parentheses are used, C++

generates a matrix-matrix multiplication expression and then a matrix-expression vector

expression. From the calculation complexities point of view is this the same as performing a

matrix-matrix multiplication and then a matrix-vector multiplication, instead of two matrix-

vector multiplications. This leads to a complexity of O(N3) instead of O(N2). To avoid such

cases, explicit parentheses are required as shown in Listing 4.5. The expression template

mechanism does not compensate this problem.

Listing 4.5: Expression template problem example

1 VectorType v1 , v2;

2 MatrixType m1 , m2;

3

4 v1 = m1 * m2 * v2; // cubic complexity

5 v1 = m1 * (m2 * v2); // quadratic complexity

In addition expression templates have some additional disadvantages. Due to template

usage, the expression template mechanism is a compile-time technique. When using dynamic

polymorphism, expression templates are not able to evolve their full potential. Expression

4.5. PROS AND CONS 39

templates make heavy use of the C++ template technique which might lead to longer com-

pilation times. In addition the expression template mechanism has some restrictions when

used in separate compile units. A separate compilation unit has to provide compiled code

for all possible definitions, which is essentially impossible with expression templates.

uBLAS makes heavy use of expression templates as well. All vector and matrix op-

erations are implemented using this technique. ViennaCL also uses expression templates

but beside basic operations only a few more complex operations are explicitly mapped to

kernels. All other operations use expression templates but may create temporary objects.

For example the in-place addition with scalar multiplication in Listing 4.1 is an operation

which does not require any temporary. Full expression template support for ViennaCL is

difficult to implement because for every complex operation a custom kernel has to be gener-

ated. The source code of this kernel has to be written entirely automatically. For complex

operations this requires tricky code generation and might be limited due the restriction of

kernel parameters [20].

4.5 Pros and Cons

ViennaCL provides a simple way to perform BLAS operations on GPUs. OpenCL manage-

ment, object creation and deletion is completely handled internally and hidden from the user.

ViennaCL is mostly syntax-compatible to uBLAS, which allows generic algorithms to work

with ViennaCL as well as with other libraries like uBLAS. Some algorithms, like iterative

solvers and preconditioners, provided by ViennaCL already work with uBLAS, Eigen [25]

and MTL4 [26]. On the other hand, generic algorithms designed for uBLAS usually work

with ViennaCL as well. ViennaCL is a header-only library, which means that no extra com-

pilation units nor compiled binaries are required.

In contrast to uBLAS, coding optimized code with ViennaCL is not simple. Because

the OpenCL management is hidden to the user it is often not clear which OpenCL kernels

are used and optimization is not straightforward. For example, accessing a single element

of a matrix or a vector is a simple operation, which is actually quite slow. To access one

element, a memory transfer operation has to be enqueued, which is, compared to the size

of one element, a huge overhead. Setting all elements of a vector in a loop will thus result

in bad performance. In this case it is better to create a temporary vector in host memory,

4.5. PROS AND CONS 40

set the elements of this vector and then copy the vector to a ViennaCL vector. Listing 4.6

provides an example.

Listing 4.6: Performance problems with ViennaCL

1 viennacl ::vector <ScalarType > vcl_vector;

2

3 // for each element in vcl_vector a single transfer job is enqueued

4 for (viennacl ::vector <ScalarType >:: size_type i = 0; i < vcl_vector.size(); ++i)

5 vcl_vector[i] = 0;

6

7 // a temporary vector is needed but only one transfer job is enqueued

8 std::vector <ScalarType > std_vector;

9 for (std::vector <ScalarType >:: size_Type i = 0; i < std_vector.size(); ++i)

10 std_vector[i] = 0;

11 viennacl ::copy(std_vector.begin(), std_vector.end(), vcl_vector.begin ());

All ViennaCL objects require OpenCL calls for data manipulation. For each operation

a kernel has to be enqueued. Thus, every ViennaCL operation results in OpenCL API

overhead. Compared to the performance gain of the operation, the OpenCL API overhead is

too large for small matrices and vectors. This overhead is especially significant for ViennaCL

scalar objects which represent one single scalar. Those objects are very small and operations

are costly. On NVIDIA architecture, a single scalar read operation of a vector takes about

91 µs [21]. So it is not recommended to use ViennaCL for small matrices and vectors and

the user has to be aware of the performance issues when using ViennaCL scalars.

Chapter 5

The Finite Element Method

Partial differential equations, in short PDEs, are widely used in physical applications. The

most prominent representative is the Poisson equation

∆u =
d∑

i=1

∂2u

∂x2i
= f(x), x ∈ Ω, (5.1)

which is fulfilled for example by the electric potential in an electronic device. Equations of

this type are described in Section 5.1 [15] [16]. The finite element method, a mathematical

framework for a solution of these differential equations, is described in Section 5.2 [13] [14].

An example of a numerical solution of a partial differential equation of elliptic type is given

in Section 5.3. The mathematical background is provided in Appendix A.

5.1 Boundary Value Problems given by Elliptic Partial

Differential Equations

Let Ω ⊂ Rd, (d ≥ 1) be an open set and u ∈ Ck(Ω) for some k > 0. The partial derivative of

u is given by

Dαu =
∂|α|u

∂xα1
1 . . . ∂xαd

d

,

41

5.1. BOUNDARY VALUE PROBLEMS GIVEN BY ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS 42

where α = (α1, . . . , αd) ∈ N is a multi-index and |α| = α1 + · · · + αd. A linear partial

differential equation of order k is given by∑
|α|≤k

aα(x)D
αu = f(x), x ∈ Ω, (5.2)

where aα : Ω→ R, f : Ω→ R are arbitrary functions.

Definition 1 (Elliptic partial differential equation). 1. A linear partial differential equa-

tion is called elliptic in a point x ∈ Ω, if the matrix (aij(x)) is positive or negative

definite.

2. A linear partial differential equation is called elliptic in Ω if the equation is elliptic in

almost all x ∈ Ω.

Poisson’s equation (5.1) is a partial differential equation of elliptic type. The equation is

obviously linear and the matrix (aij) is equal to the identity matrix, which is positive definite.

A function u : Ω→ R is called (classical) solution to (5.2) if u ∈ Ck and u satisfies (5.2).

Without additional constraints, PDEs usually lead to an infinite number of solutions. To get

a unique solution, boundary condition need to be imposed. A boundary condition prescribes

values of the solution or the derivative of the solution at the boundary of the domain where

the differential equation is defined. Two common boundary condition are:

1. A Dirichlet boundary condition specifies the values of the solution on the boundary of

the domain.

2. A Neumann boundary condition specifies the values of the derivate of the solution on

the boundary of the domain.

Typically, the boundary of the domain has to be continuous or continuously differentiable

except for a finite number of points. It is also possible to use boundary conditions of differ-

ent type on disjoint continuously differentiable segments. A (partial) differential equation

together with one or more boundary conditions is called a boundary value problem. Similar

to a differential equation, a function u : Ω→ R is called (classical) solution to the boundary

value problem, if u ∈ Ck and u satisfies the differential equation as well as all boundary

conditions. Some boundary value problems do not have classic solutions. Therefore, the

definition of a weak solution is motivated.

5.1. BOUNDARY VALUE PROBLEMS GIVEN BY ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS 43

5.1.1 Weak derivative and weak formulation

Definition 2 (Weak derivative). Let u ∈ Lp(Ω), 1 ≤ p ≤ ∞ and α ∈ Nd be a multi-index.

The function Dαu ∈ Lp(Ω) is called weak derivative of u, if

(Dαu, v)L2 = (−1)|α|(u,Dαv)L2 , ∀v ∈ C∞
0 (Ω) (5.3)

For u ∈ Cα(Ω) the weak derivative and the classical derivative is the same. This can be

shown easily by partial integration. Thus, the weak derivative is a true generalization of the

classical derivative. For example the function f(x) = |x| does not have a classical derivative,

but a weak derivative f ′(x) = sgn(x). Actually, a weak derivative is not unique. Each

function, which is equal to a weak derivative for all points except for a finite number, also is

a weak derivative. For boundary value problems, an equivalent to the weak derivative is the

weak formulation, which has to be expressed for each boundary condition and special types

of differential equation separately. Many boundary value problems do not have any classical

solution. thus, the weak formulation is introduced to relax the concept of the solution to a

boundary value problem.

Definition 3 (Uniformly elliptic differential operator). A differential operator

Lu = −
d∑

i,j=1

∂

∂xi
(aij(x)

∂u

∂xj
) + c(x)u (5.4)

is called uniformly elliptic in Ω, if it satisfies

∃λ > 0 : ∀ξ ∈ Rd,∀x ∈ Ω \N, |N | <∞ :
d∑

i,j=1

aij(x)ξiξj ≥ λ|ξ|2.

Definition 4 (Boundary value problem with trivial Dirichlet boundary value condition). A

boundary value problem with trivial Dirichlet boundary value condition is defined as follows:

• The Domain Ω ⊂ Rd is bounded and open with boundary ∂Ω ∈ C0,1.

• The partial differential equation is given by Lu = f in Ω, where L is an uniformly ellip-

tic operator. Additionally the following restriction have to be satisfied by the operator

L and the function f : aij, c ∈ L∞(Ω), c ≥ 0 in Ω, g ∈ H1(Ω), f ∈ L2(Ω).

• The boundary condition is a trivial function: u ≡ 0 on ∂Ω.

5.1. BOUNDARY VALUE PROBLEMS GIVEN BY ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS 44

If a Dirichlet boundary value problem satisfies the conditions presented in Definition 4,

a weak formulation of the problem can be derived for

Lu = −
d∑

i,j=1

∂

∂xi
(aij(x)

∂u

∂xj
) + c(x)u = f.

Motivated by the weak derivative, the differential equation is multiplied by a function v ∈ C∞0
and integrated over the domain Ω:

−
d∑

i,j=1

∫
Ω

∂

∂xi
(aij(x)

∂u

∂xj
)vdx+

∫
Ω

c(x)uvdx =

∫
Ω

fvdx

Now the divergence theorem can be applied.

−
∫
Ω

∂

∂xi
(aij(x)

∂u

∂xj
)vdx =

∫
Ω

aij(x)
∂u

∂xj

∂v

∂xi
dx−

∫
∂Ω

aij(x)
∂u

∂xj
vdx

=

∫
Ω

aij(x)
∂u

∂xj

∂v

∂xi
dx

(5.5)

Since v ∈ C∞0 (Ω) implies v(x) ≡ 0 for all x ∈ ∂Ω, the boundary integral is equal to zero.

The differential equation can therefore be written in weak form as follows:

a(u, v) = F (v)

a(u, v) :=
d∑

i,j=1

∫
Ω

aij(x)
∂u

∂xj

∂v

∂xi
dx+

∫
Ω

c(x)uvdx

F (v) :=

∫
Ω

fvdx

(5.6)

A function u ∈ H1
0 (Ω) is called a weak solution to the differential equation if it satisfies

(5.6) for all v ∈ H1
0 (Ω). The lemma of Lax-Milgram guarantees the existence of a unique

solution under the assumptions presented in Definition 4.

Lemma 1 (Lax-Milgram). Let V be a real Hilbert space, a : V ×V → R a bilinear form and

F ∈ V ′ an element of the dual space of V . The bilinear form a satisfies:

1. a is bounded: ∃K > 0 : ∀u, v ∈ V : |a(u, v)| ≤ K∥u∥V ∥u∥V

2. a is coercive: ∃λ > 0 : ∀u ∈ V : a(u, u) ≥ λ∥u∥2V

5.1. BOUNDARY VALUE PROBLEMS GIVEN BY ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS 45

Under these assumptions there exists a unique element u ∈ V such that

a(u, v) = F (u) ∀v ∈ V (5.7)

The lemma of Lax-Milgram can be proven by using Riesz’ representation theorem, a

fundamental theorem in functional analysis. The interested reader is referred to [13] for a

proof.

Lemma 2 (Existence and Uniqueness of a weak solution of a boundary value problem with

Dirichlet boundary condition). Under assumptions of Definition 4 there exists a unique weak

solution u ∈ H1(Ω) to the weak formulation (5.6).

Proof. The conditions in Lemma 1 have to be checked for V = H1
0 (Ω):

1. a is bounded: Using the Cauchy-Schwarz inequality (see Appendix A) the bilinear

form can be bounded:

|a(u, v)| ≤
d∑

i,j=1

∫
Ω

|aij|
∣∣∣∣ ∂u∂xj

∣∣∣∣ ∣∣∣∣ ∂v∂xi
∣∣∣∣ dx+ ∫

Ω

|c| |u| |v|dx (5.8)

≤ max
i,j=1,...,d

{∥aij∥L∞ , ∥c∥L∞}(
d∑

i,j=1

∥∥∥∥ ∂u∂xj
∥∥∥∥
L2

∥∥∥∥ ∂v∂xi
∥∥∥∥
L2

+ ∥u∥L2∥v∥L2) (5.9)

= K(∥∇u∥L2∥∇v∥L2 + ∥u∥L2∥v∥L2) (5.10)

≤ K∥u∥H1∥v∥H1 , (5.11)

where K = maxi,j=1,...,d{∥aij∥L∞ , ∥c∥L∞}.

2. a is coercive:

a(u, u) =
d∑

i,j=1

∫
Ω

aij(x)
∂u

∂xj

∂u

∂xi
dx+

∫
Ω

c(x)u2dx︸ ︷︷ ︸
≥0

(5.12)

≥
d∑

i,j=1

∫
Ω

aij(x)
∂u

∂xj

∂u

∂xi
dx (5.13)

≥ λ

d∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣2 dx (5.14)

= λ∥∇u∥2L2 (5.15)

≥ λ0∥u∥2H1 , (5.16)

5.2. THE RITZ-GALERKIN METHOD AND FINITE ELEMENTS 46

where λ0 = λ/(C2
p+1) and Cp > 0 is the constant resulting from the Poincare inequality

(see Appendix A).

3. F ∈ V ′ = H−1(Ω): Let v ∈ V . Using the Cauchy-Schwarz inequality the following

estimation can be obtained:

|F (v)| ≤ ∥f∥L2∥v∥L2

≤ ∥f∥L2∥v∥H1

(5.17)

and hence F ∈ H−1.

With Lemma 1 there exists a unique u ∈ V that satisfies (5.21).

The boundary value problem presented in Definition 4 is restricted to u(x) ≡ 0, x ∈
∂Ω. This kind of Dirichlet boundary condition is too restrictive, since in general, u(x) =

g(x) ̸= 0, x ∈ ∂Ω. To achieve this, the previously presented boundary value problem can

be transformed. Instead of calculating a function u with the boundary condition u(x) =

g(x), x ∈ ∂Ω, a function w = u− g ∈ H1
0 (Ω) with the boundary condition w(x) = 0, x ∈ ∂Ω

is calculated. The new boundary value problem becomes:

a(w, v) = G(v) (5.18)

a(u, v) =
d∑

i,j=1

∫
Ω

aij(x)
∂u

∂xj

∂v

∂xi
dx+

∫
Ω

c(x)uvdx (5.19)

G(v) =

∫
Ω

fvdx−
d∑

i,j=1

∫
Ω

aij(x)
∂g

∂xj

∂v

∂xi
dx−

∫
Ω

c(x)uvdx (5.20)

The solution u = w + g is the weak solution to the transformed problem (5.18). The

lemma of Lax-Milgram also ensures a unique solution to this transformed problem, the proof

has to be adapted only slightly in the third step.

5.2 The Ritz-Galerkin Method and Finite Elements

Finding a solution to the weak formulation (5.6) is practically impossible for an infinite-

dimensional Hilbert space V . Instead of calculating the weak solution u ∈ V , an approx-

imation uh ∈ Vh is calculated, where Vh is a finite-dimensional linear subspace of V . The

5.2. THE RITZ-GALERKIN METHOD AND FINITE ELEMENTS 47

weak formulation of the boundary value problem changes to

a(uh, v) = F (v) ∀v ∈ Vh (5.21)

uh is called Ritz-Galerkin approximation. Since a and F are linear, the weak formulation

(5.21) is equivalent to

a(uh, ϕi) = F (ϕi) i = 1, . . . , N, (5.22)

where {ϕ1, . . . , ϕN} is a linear basis of Vh. The solution uh can be represented as a linear

combination of basis functions:

uh =
N∑
j=1

ûjϕj (5.23)

Using this representation and the fact that a is bilinear, the following linear equation system

can be formulated:

a(uh, ϕi) = a

(
N∑
j=1

ûjϕj, ϕi

)
=

N∑
j=1

a(ϕj, ϕi)ûj = F (ϕi) i = 1, . . . , N (5.24)

Where û1, . . . , ûN are unknown. With A = (Aij) = (a(ϕj, ϕi)), b = (bi) = (F (ϕi)) and

u = (ûi) on obtains the linear system.

Au = b. (5.25)

Lemma 3 (Solvability of the Ritz-Galkerin approximation). If a is coercive, then the Ritz-

Galkerin approximation (5.21) is uniquely solvable in Vh.

Proof. Since a is coercive in V , it also is coercive in Vh:

xTAx =
N∑

i,j=1

a(ϕj, ϕi)xixj = a(x, x) ≥ λ∥x∥2V , x =
N∑
i=1

xiϕi. (5.26)

If Ax = 0 then x = 0. Therefore, A is injective and the linear equation system is uniquely

solvable.

To calculate the Ritz-Galerkin approximation to a weak solution of a boundary value

problem, the matrix A and the vector b have to be calculated and the system of linear

equations has to be solved. It is preferable that the calculation of the entries of the matrix

A and the vector b is cheap. It is also preferable that the matrix A is very sparse and can be

5.2. THE RITZ-GALERKIN METHOD AND FINITE ELEMENTS 48

inverted easily. The finite element method (FEM) is a Ritz-Galerkin approximation, which

achieves these requirements.

5.2.1 Finite Elements

The finite element method is split up into four parts:

1. The domain Ω is tessellated into small sets, mostly d-Simplices.

2. Basis functions, with smallest possible support, are defined.

3. The matrix A and the vector b in (5.25) are calculated.

4. The linear equation system (5.25) is solved.

Since Aij := a(ϕj, ϕi) = 0 for (suppϕi)
O ∪ (suppϕj)

O = ∅, basis functions with small

support are desirable. In order to use the finite element method efficiently, some restrictions

are imposed to the tessellation of the domain Ω.

Definition 5 (d-Simplex). Let a1, . . . , ad+1 ∈ Rd be some points which are not included in

any hyperplane of Rd. A set τ ⊆ Rd is called d-Simplex if it is equal to the convex hull of

the points a1, . . . , ad+1 ∈ Rd:

τ =

{
x ∈ Rd : x =

d+1∑
i=1

λiai, 0 ≤ λ1, . . . , λd+1 ≤ 1,
d+1∑
i=1

λi = 1

}
(5.27)

A 2-Simplex is a triangle, a 3-simplex is a tetrahedron. d-Simplexes are simple subsets

of a finite dimensional vector space and suit very well for the segmentation of the domain Ω.

Definition 6 (Triangulation). Let Ω ⊂ Rd be a bounded subset of the vector space Rd. A

segmentation Th ⊂ P(Ω) of Ω is called triangulation if it satisfies the following:

1. All elements τ ∈ Th are closed and the interior τ 0 ̸= ∅ is connected. The boundary

∂τ ∈ C0,1.

2. The closure of the domain Ω is the union of all elements τ : Ω =
∪

τ∈Th
τ .

3. The intersection of the interior of two elements τ1 and τ2 is empty: τO1 ∩ τO2 =

∅ ∀τ1, τ2 ∈ Th, τ1 ̸= τ2.

5.2. THE RITZ-GALERKIN METHOD AND FINITE ELEMENTS 49

Definition 7 (Valid Triangulation). A triangulation Th of Ω is called valid if all edges of

all τ1 ∈ Th are either an edge of another τ2 ∈ Th or a part of ∂Ω.

Although finite elements can also be defined on arbitrary polytopes, a valid triangulation

is a desired tessellation of the domain Ω. A finite element can now be defined.

Definition 8 (Finite Element). A finite element in the vector space Rd is a triplet (τ, Pτ ,Στ)

with the following properties:

1. τ ⊂ Rd is a closed d-Simplex

2. Pτ is a finite-dimensional space of functions τ → R, n := dimPτ

3. Στ is a set of linearly independent continuous functionals B1, . . . , Bn : Cs(τ)→ R, s ∈
N : ∀α1, . . . , αn ∈ R : ∃p ∈ Pτ : Bi(p) = αi, i = 1, . . . , n.

For each finite element there exists a set of functions p1, . . . , pn ∈ Pτ such that Bi(p) =

δij, i, j = 1, . . . , n. The functionals Bi are called degrees of freedom and the functions pi

are called the basis functions of this finite element. Typically, basis functions and degrees

of freedom are defined for a reference finite element. The basis functions and degrees of

freedom of every other finite element are generated by transformation of the basis functions

and the degrees of freedom defined on the reference element.

Example 1 (Linear Lagrangian finite elements in two dimensions). A finite element is called

of Lagrangian type, if all degrees of freedom define the value of the basis functions at a vertex

of the d-Simplex. Linear Lagrangian finite elements use affine functions Pτ :

Pτ = P1,τ = {p : τ → R : p is affine in τ} (5.28)

Let τ be the d-Simplex of the reference finite element with the vertices a1, . . . , ad+1 ∈ Rd.

Then the degrees of freedom of the finite element of Lagrangian type are defines as follows:

Bi(p) = p(ai), i = 1, . . . , d+ 1, p ∈ Pτ (5.29)

The basis functions pi ∈ Pσ are uniquely defined by pj(ai) = δij, i, j = 1, . . . , d + 1. For

a two dimensional vector space, the d-Simplex τ is a triangle and the reference element can

be chosen with the vertices a1 = (0, 0)T , a2 = (1, 0)T , a3 = (0, 1)T , see Figure 5.1. The basis

functions of this reference finite element are:

p1(x, y) = 1− x− y, p2(x, y) = x, p3(x, y) = y, (x, y)T ∈ τ. (5.30)

5.2. THE RITZ-GALERKIN METHOD AND FINITE ELEMENTS 50

(0,0)

σ

(1,0)

(0,1)

Figure 5.1: The reference triangle for the basis functions.

Definition 9 (Finite Element Space). The finite element space Xh is defined as

Xh =

{
v = (vτ)τ∈Th

∈
∏
τ∈Th

Pτ : ∀b ∈ Nh : ∀τ1, τ2 ∈ Th(b) : Bb,τ1(vτ1) = Bb,τ1(vτ2)

}
, (5.31)

where Th is a valid triangulation of the domain Ω, Nh is the set of all vertices of all finite

elements and Th(b) and b ∈ Nh is the set of all finite elements where b is a vertex of this

element.

Lemma 4 (Inclusion of the finite element function and the finite element space in a Sobolev

space). If the function of a finite element are included in a Sobolev space, then the finite

element space is a subset of the same Sobolev space. Let Xh be the finite element space and

k = 0, 1.

Pτ ⊂ Hk+1(τ),∀τ ∈ Th ∧Xh ⊂ Ck(Ω)⇒ Xh ⊂ Hk+1(Ω) (5.32)

A proof can be found in [14].

If all finite elements and the finite element space are defined, the matrix A can be

calculated. A basis of the finite element space is chosen and all matrix entries are calculated:

Aij = a(ϕj, ϕi), i, j = 1, . . . , N , where ϕ1, . . . , ϕN is a basis of the finite element space. As

mentioned before, this basis should contain basis elements with small support to obtain a

sparse matrix. In addition, the vector b has to be calculated: bi = F (ϕi), i = 1, . . . , N . The

linear equation system now needs to be solved. The dimension of the matrix A is equal to

N , the number of basis functions of the finite element space. To achieve accurate solutions

to the weak formulation of a boundary value problem, system matrices are usually large.

For such large linear systems of equations with sparse system matrix, iterative solvers are

5.3. THE POISSON EQUATION 51

(0,0)

(1,1)(0,1)

(1,0)

Heater

Window

(0.5,0)

(1,0.5)

ГH

ГW

Figure 5.2: Heat distribution example

preferable. Direct solvers are not suitable because they typically destroy sparsity. A good

choice for an iterative solver is the conjugate gradient method presented in Appendix B.

5.3 The Poisson Equation

In this chapter an example of a boundary value problem with Dirichlet and Neumann bound-

ary condition is presented: the heat distribution in a quadratic room. Figure 5.2 illustrates

the example. The room Ω is represented by the rectangle (0, 1)2. There is a heater ΓH at

the bottom left side of the room with a length of 0.5 and a window ΓW at the top right

side of the room with a length of 0.5. The room is assumed to be isolated, so ∂u
∂n
≡ 0 for

all x ∈ ΓN := ∂Ω \ {ΓH ∪ ΓW}. Due to the fact that ΓH and ΓW are heat sources, ∂u
∂n

is

in general not equal to zero at ΓH and ΓW . At ΓH the temperature of the room is fixed to

50 ◦C, at ΓW the temperature of the room is constant 10 ◦C. The temperature at the rest of

the boundary ΓN is not defined.

5.3. THE POISSON EQUATION 52

(0,0)

(1,1)(0,1)

(1,0)

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16 a17

a18 a19

ГW

ГH

τ1 τ3 τ5 τ7

τ9 τ11 τ13 τ15

τ17 τ19 τ21 τ23

τ25 τ27 τ29 τ31

τ2 τ4 τ6 τ8

τ10 τ12 τ14 τ16

τ18 τ20 τ22 τ24

τ26 τ28 τ30 τ32

Figure 5.3: Triangulation of the domain Ω = (0, 1)2

Definition 10 (Heat Distribution Example). The boundary value problem for the heat dis-

tribution is given as follows:

−∆u(x) ≡ 0, ∀x ∈ Ω = (0, 1)2

∂u

∂n
≡ 0, ∀x ∈ ΓN

u(x) = 50, ∀x ∈ ΓH

u(x) = 10, ∀x ∈ ΓW

The triangulation of the domain Ω = (0, 1)2 is presented in Figure 5.3 with h = 0.25.

Only the vertices representing degrees of freedom are labeled, for all other vertices the

solution is equal to the Dirichlet boundary condition.

Due to the fact that this boundary value problem is just partially of Dirichlet type,

the weak formulation of this problem has to be derived individually. First the problem is

transformed to a similar problem where the Dirichlet boundary conditions are equal to zero.

A function g is introduced which is linear on every element in the tessellation and defined

as follows:

g(x) =


0, x = a1, . . . , a19

50, x ∈ ΓH

10, x ∈ ΓW

(5.33)

The function u is a solution to the boundary value problem as stated in Definition 10, if

5.3. THE POISSON EQUATION 53

w = u− g is a solution to the following boundary value problem.

Lw = f − Lg, x ∈ Ω

w(x) ≡ 0, ∀x ∈ ∂ΓH ∪ ΓW

∂w

∂n
≡ 0, ∀x ∈ ∂Ω

Since the values of the solution at ΓN are not necessarily equal to zero, the solution is

not in the Sobolev space H1
0 (Ω). Therefore, the domain Ω and the Sobolev space of the

solution functions is extended. Instead of using the domain Ω, a new domain Ω̃ := Ω ∪ ΓN

is considered. The Sobolev space of the solution functions is then defined as

H1
0 (Ω̃) := completion of C∞

0 (Ω̃) in ∥ · ∥H1

C∞
0 (Ω̃) =

{
u ∈ C∞(Ω) : suppu ⊂ Ω̃

}
The derivation of the weak formulation is similar to the one presented in Section 5.1.1. Since

the boundary integral in (5.5) is zero, the Neumann boundary condition is satisfied. Thus,

the weak formulation to this problem is equal to the weak formulation presented in (5.18):

a(u, v) =

∫
Ω

∇u∇vdx = −
∫
Ω

∇g∇vdx = G(v). (5.34)

Linear finite elements are chosen:

Xh =
{
u : Ω→ R : u is continuous and piecewise linear

}
⊂ H1

0 (Ω) (5.35)

To match the boundary condition u(x) = 0 for all x ∈ ΓH ∪ ΓW the following finite element

space is defined:

Vh = {u ∈ Xh : u(x) = 0,∀x ∈ ΓH ∪ ΓW} ⊂ Xh (5.36)

Vh is a linear subspace of Xh of the dimension N = 19. A basis Bh = {ϕ1, . . . , ϕ16} ⊂ Vh

with small support is chosen:

Bh :=
{
ϕi ∈ Vh : ϕi(aj) = δij, i, j = 1, . . . , 19

}
(5.37)

The basis function on the reference triangle τ̂ presented in Figure 5.1 with the vertices

5.3. THE POISSON EQUATION 54

a i

τ2

τ1

τ6
τ5

τ4

τ3

ak

a jam

Figure 5.4: Calculation of a(·, ·)

a1 = (0, 0)T , a2 = (1, 0)Ta3 = (0, 1)T are as follows:

p̂1(x, y) = 1− x− y, p̂2(x, y) = x, p̂3(x, y) = y, (x, y)T ∈ τ̂ (5.38)

These basis functions can be transferred to any triangle τi in the segmentation by

p1(x, y) = 1− x− x1
h
− y − y1

h
, p2(x, y) =

x− x1
h

, p3(x, y) =
y − y1
h

(5.39)

where a1 = (x1, y1)
T .

The matrix entries Aij = a(ϕj, ϕi) can now be calculated:

a(ϕj, ϕi) =

∫
Ω

∇ϕj∇ϕidx (5.40)

=

{
const : (suppϕi)

O ∩ (suppϕj)
O ̸= ∅

0 : otherwise
(5.41)

=

{
const : ai and aj share the same triangle

0 : otherwise
(5.42)

Figure 5.4 shows the local finite elements which will be affected in the calculation of

a(ϕi, ϕj).

5.3. THE POISSON EQUATION 55

a(ϕi, ϕi) =
6∑

i=1

∫
τi

|∇ϕi|2 dx

= 2

∫
τ3

|∇p1|2 dx+ 4

∫
τ1

|∇p2|2 dx

= 2
2

h2
meas(τ3) + 4

1

h2
meas(τ1)

= 4

a(ϕj, ϕj) =

∫
τ2

|∇p1|2 dx+ 2

∫
τ3

|∇p3|2 dx

=
2

h2
meas(τ3) + 2

1

h2
meas(τ3)

= 2

a(ϕk, ϕk) = 2

∫
τ4

|∇p2|2 dx

= 2
1

h2
meas(τ3)

= 1

a(ϕi, ϕj) =

∫
τ2

∇p3∇p1dx+
∫
τ3

∇p1∇p3dx

= − 1

h2
meas(τ2)−

1

h2
meas(τ3)

= −1

a(ϕm, ϕj) =

∫
τ2

∇ϕ1∇ϕ3dx

= − 1

h2
meas(τ2)

= −1

2

a(ϕi, ϕk) =

∫
τ4

∇p3∇p2dx+
∫
τ5

∇p2∇p3dx

= 0

where meas(τi) =
h2

2
.

5.3. THE POISSON EQUATION 56

The matrix A looks like:

A =



1 − 1
2 0 0 − 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1
2 2 − 1

2 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 − 1
2 2 −1

2 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 − 1
2 2 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

−1
2 0 0 0 2 −1 0 0 − 1

2 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 −1 4 −1 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 −1 4 −1 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 −1 4 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 − 1
2 0 0 0 2 −1 0 0 −1

2 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 −1 4 −1 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 −1 4 −1 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 −1 4 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 − 1
2 0 0 0 2 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 −1 4 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 4 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 4 −1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 2 0 − 1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 2 − 1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
2 − 1

2 1



The vector b = (bi) = (F (ϕi)) is calculated similarly:

bi = F (ϕi)

=

∫
Ω

∇g∇ϕidx

=

{
const : (supp g)O ∩ (suppϕj)

O ̸= ∅
0 : otherwise

=

{
const : i = 4, 8, 12, 13, 14, 15, 17, 18

0 : otherwise

5.3. THE POISSON EQUATION 57

F (ϕ4) = −
∑
i=7,8

∫
τi

∇g∇ϕ4dx

= −10
(∫

τ8

∇(p1 + p2)∇p3dx+
∫
τ7

∇p2∇p3dx
)

= −10
(
−1

2
+ 0

)
= 5

F (ϕ8) = −
∑

i=7,15,16

∫
τi

∇g∇ϕ8dx

= −10
(∫

τ15

∇p2∇p3dx+
∫
τ16

∇(p1 + p2)∇p3dx+
∫
τ7

∇p2∇p1dx
)

= −10
(
0− 1

2
− 1

2

)
= 10

F (ϕ12) = −
∑

i=15,24

∫
τi

∇g∇ϕ12dx

= −10
(∫

τ24

∇p1∇p3dx+
∫
τ15

∇p2∇p1dx
)

= −10
(
−1

2
− 1

2

)
= 10

F (ϕ17) = −
∑
i=24

∫
τi

∇g∇ϕ17dx

= −10
(∫

τ24

∇p1∇p2dx
)

= −10
(
−1

2

)
= 5

F (ϕ13) = −
∑

i=25,26

∫
τi

∇g∇ϕ13dx

= −50
(∫

τ25

∇(p1 + p2)∇p3dx+
∫
τ26

∇p2∇p3dx
)

= −50
(
−1

2
+ 0

)
= 25

F (ϕ14) = −
∑

i=26,27,28

∫
τi

∇g∇ϕ14dx

= −50
(∫

τ26

∇p2∇p1dx+
∫
τ27

∇(p1 + p2)∇p3dx+
∫
τ28

∇p2∇p3dx
)

= −50
(
−1

2
− 1

2
+ 0

)
= 50

5.3. THE POISSON EQUATION 58

F (ϕ15) = −
∑

i=28,29

∫
τi

∇g∇ϕ15dx

= −50
(∫

τ28

∇p2∇p1dx+
∫
τ29

∇p3∇p1dx
)

= −50
(
−1

2
− 1

2

)
= 50

F (ϕ18) = −
∑
i=29

∫
τi

∇g∇ϕ18dx

= −50
(∫

τ29

∇p1∇p2dx
)

= −50
(
−1

2

)
= 25

The vector b is thus given by

b =
(

0 0 0 5 0 0 0 10 0 0 0 10 25 50 50 0 5 25 0
)T

.

Now the linear equation system Ax = b can be solved and x is the solution to the

Ritz-Galerkin approximation of the weak formulation of the boundary value problem (5.34):

x = (30 28.6765 24.7059 18.2353 31.3235 30 25.9559 19.1176 35.2941 34.0441

30 22.2794 41.7647 40.8824 37.7206 30 25 35 30)T

Figure 5.5 shows the heat distribution within the room.

5.3. THE POISSON EQUATION 59

1

2

3

4

5

1

2

3

4

5

10

20

30

40

50

Figure 5.5: Solution of the heat distribution boundary value problem

Chapter 6

The Finite Element Method using

OpenCL

One of the first analyzation of finite element method algorithms on GPUs were done by D.

Göddeke, R. Strzodka and S. Turek in 2005 [24]. They used OpenGL for a solution to a

boundary value problem. More reasearch work on this topic was done in [23].

In this chapter some implementations on solving a boundary value problem with mixed

Dirichlet and Neumann boundary conditions using linear finite elements are discussed. In

Section 6.1 the problem and the input as well as the output data are defined. Section 6.2

presents algorithms for the matrix setup. Implementations of a finite element solver for

boundary value problems are discussed in Section 6.3. The presented implementations are

compared and benchmarked in Section 6.4, where more results of the heat distribution

boundary value problem of Chapter 5 are presented.

6.1 Definition of the Problem, Input and Output

The underlying boundary value problem is similar to the one defined in Section 5.3. The

Poisson equation with mixed Dirichlet and Neumann boundary value condition is to be

solved on a two-dimensional domain Ω. In contrast to the heat distribution example, any

connected and bounded domain Ω ⊂ R2 and any mixed Dirichlet and homogeneous Neu-

mann boundary condition can be used as input data.

60

6.1. DEFINITION OF THE PROBLEM, INPUT AND OUTPUT 61

The implementations presented in this chapter cover the setup and solving of a boundary

value problem where a triangulation is already given. Thus, the topological data structure

of the system has to be defined. First an array of vertices including the type of the vertex

is required. A vertex can be of type degree of freedom or of type Dirichlet boundary vertex.

Then, the topological information of all triangles connected to a vertex and all vertices of a

triangle are needed. At last, the values of the solution at the Dirichlet boundary vertices are

required. Linear finite elements are used, hence no additional topological information such

as edge data is required. The inputs are defined in Listing 6.1.

Listing 6.1: Definition of the input to the finite element method implementations

1 cl_double2 * mesh_coordinates; // all vertices of the triangulation

2 cl_int * mesh_vertex_to_dof; // maps a vertex to the index of the degree of

3 // freedom

4 cl_uint4 * mesh_cells; // all cells of the triangulation

5 // including the vertex indices of the triangle

6 cl_uint * mesh_vertex_to_cells_id; // all cell indices ,

7 // which are connected to a vertex

8 cl_uint * mesh_vertex_to_cells_jumper; // start index of the cell indices ,

9 // which are connected to a vertex

10 cl_uint * boundary_vertex_neighbor_ids; // all degree of freedom indices ,

11 // which are neighboring a Dirichlet boundary

12 // vertex

13 cl_double * boundary_vertex_values; // the values of the solution at the

14 // Dirichlet boundary vertex

Since numerical accuracy and OpenCL compatibility is important, OpenCL vector and

base types with double precision floating point types are used. mesh coordinates defines

an array with all vertices, degrees of freedom and boundary vertices, of the triangulation.

mesh vertex to dof is an array which maps a vertex index to the index of the degree of

freedom. If the vertex is a Dirichlet boundary vertex, the array maps this vertex to the

value −1. mesh cells defines an array of all triangles. Each triangle is specified by 3 ver-

tex indices. The data type cl double4 is used because of alignment and the last entry of

the 4 dimensional type is ignored. mesh vertex to cells id and mesh vertex to cells jumper

define a mapping from a vertex to all triangles connected to that vertex. Similar to the

compressed matrix scheme, a jumper array is used to specify the start and stop index in

the mesh vertex to cells id array. boundary vertex neighbor ids defines a list of all degree of

freedom indices which are neighboring a Dirichlet boundary vertex. boundary vertex values

is a mapping from all vertices to the Dirichlet boundary value of that vertex. This array is

only defined for vertex indices which are Dirichlet boundary vertices.

6.2. MATRIX AND RIGHT HAND SIDE SETUP 62

τ2

τ1

τ6
τ6

τ7

τ3

τ4

τ5

a1 a2

a3 a4

a5

Window

Heater(0,0) (1,0)

(1,1)(0,1)

Figure 6.1: Trivial triangulation of the Poisson equation boundary value problem

Figure 6.1 shows a trivial triangulation for the problem presented in Section 5.3. For

this triangulation, the arrays defined in Listing 6.1 are:

Listing 6.2: The input arrays for the trivial triangulation

1 cl_double2 * mesh_coordinates = { {0,1}, {0.5,1}, {1,1}, {0,0.5}, {0.5 ,0.5} , {1,0.5},

{0,0}, {0.5,0}, {1,0} };

2 cl_int * mesh_vertex_to_dof = { 0, 1, -1, 2, 3, -1, -1, -1, 4 };

3 cl_uint4 * mesh_cells = { {0,3,4,0}, {0,4,1,0}, {1,4,5,0}, {1,5,2,0}, {4,6,7,0,

{3,7,4,0}, {4,7,8,0}, {4,8,5,0} };

4 cl_uint * mesh_vertex_to_cells_id = { 0, 1, 1, 2, 3, 3, 0, 4, 5, 0, 1, 2, 5, 6, 7, 2, 3,

7, 4, 4, 5, 6, 6, 7 };

5 cl_uint * mesh_vertex_to_cells_jumper = { 0, 2, 5, 6, 9, 15, 18, 19, 22, 24 };

6 cl_uint * boundary_vertex_neighbor_ids = { 1, 3, 4, 8 };

7 cl_double * boundary_vertex_values = { NAN , NAN , 10, NAN , NAN , 10, 50, 50, NAN };

The output of the finite element algorithms presented in this chapter is simply an array

of cl double types containing the values of the solution at all degree of freedom vertices. The

array mesh vertex to dof can be used to map the output array back to the vertices.

6.2 Matrix and Right Hand Side Setup

Before the matrix can be set up, some preparations are necessary. First of all, the integrals

of the basis functions in the reference triangle have to be calculated. Since the triangulation

is not necessarily based on a regular grid, as it has been the case for the example presented

in Section 5.3, the local integrals of the basis function on an arbitrary triangle with vertices

v1, v2, v3 have to be transformed from a reference triangle. Figure 6.2 shows the reference

6.2. MATRIX AND RIGHT HAND SIDE SETUP 63

(0,0)

τ

(1,0)

(0,1)

v
1

v
2

σ

T

v
2

Figure 6.2: Transformation of the reference triangle

triangle and an exemplary triangle on the plane. The basis functions p1, p2, p3 in the reference

triangle σ are defined as presented in (5.30). Similar to the basis function in the reference

triangle, the basis function q1, q2, q3 in any arbitrary triangle have to be affine functions and

should satisfy:

qi(vi) = δij

Instead of defining the basis functions for each triangle τ , the basis functions for each

triangle can be obtained from the basis functions in the reference triangle. A transformation

T is introduced, which achieve

qi(v) = pi(T
−1(v)).

T maps the triangle σ to the triangle τ and is affine per definition. Using the trans-

formation T , the basis function qi in any arbitrary triangle τ can be transformed back to

the basis function pi(v) := αivx + βivy + γi in the reference triangle. The operator T also

trivially satisfies:

T

(
0

0

)
= v1 T

(
1

0

)
= v2 T

(
0

1

)
= v3

For later calculation, the operator T is specified here in detail. The vectors d2 and d3

6.2. MATRIX AND RIGHT HAND SIDE SETUP 64

define the vector from v1 to v2 respectively v3.

d2 : = v2 − v1 =

(
d2,x

d2,y

)

d3 : = v3 − v1 =

(
d3,x

d3,y

)

A matrix A is introduced which represents the linear part of the affine operator T . The

inverse matrix A−1 is used for the inverse operator T−1.

A : =
(
d2 d3

)
A−1 =

1

d2,xd3,y − d2,yd3,x

(
d3,y −d3,x
−d2,y d2,x

)

The explicit representations of the transformation T and its inverse T−1

T (v) = Av + v1,

t : =

(
tx

ty

)
= A−1v1,

T−1 (v) = A−1v − t.

To calculate the local integrals of the basis functions in the triangle τ , the basis function

pi have to be calculated.

qi(v) = pi
(
T−1(v)

)
=pi

(
T−1

(
x

y

))
= pi

(
A−1vA−1v1

)
=pi

(
1

d2,xd3,y − d2,yd3,x

(
d3,yx− d3,xy + tx

−d2,yx+ d2,xy + ty

))
=αi

1

d2,xd3,y − d2,yd3,x
(d3,yx− d3,xy + tx)+

βi
1

d2,xd3,y − d2,yd3,x
(−d2,yx+ d2,xy + ty) + γi

6.2. MATRIX AND RIGHT HAND SIDE SETUP 65

Now the partial derivatives of pi(T
−1) have to be calculated.

(
pi
(
T−1 (v)

))
x
=

1

d2,xd3,y − d2,yd3,x
(αid3,y − βid2,y)(

pi
(
T−1 (v)

))
y
=

1

d2,xd3,y − d2,yd3,x
(−αid3,x + βid2,x)

The formula for the local integrals is derived as follows:∫
τ

∇qi(v)∇qj(v)dv =

∫
τ

∇
(
pi
(
T−1(v)

))
∇
(
pj
(
T−1(v)

))
dv

=

∫
τ

(
pi
(
T−1(v)

))
x

(
pj
(
T−1(v)

))
x
+(

pi
(
T−1(v)

))
y

(
pj
(
T−1(v)

))
y
dv

=

(
1

d2,xd3,y − d2,yd3,x

)2 ∫
τ

(αid3,y − βid2,y)(αjd3,y − βjd2,y)+

(−αid3,x + βid2,x)(−αjd3,x + βjd2,x)dv

=

(
1

d2,xd3,y − d2,yd3,x

)2 ∫
τ

αiαi(d
2
3,y + d23,x) + βiβj(d

2
2,y + d22,x)−

αiβj + αjβi)(d2,yd3,y + d2,xd3,x)dv

=

(
1

d2,xd3,y − d2,yd3,x

)2 ∫
τ

αiαj ⟨v3, v3⟩+ βiβj ⟨v2, v2⟩−

(αiβj + αjβi) ⟨v2, v3⟩ dv

=

(
1

d2,xd3,y − d2,yd3,x

)2

(αiαj ⟨v3, v3⟩+ βiβj ⟨v2, v2⟩−

(αiβj + αjβi) ⟨v2, v3⟩)meas(τ)

=
1

2

(
1

d2,xd3,y − d2,yd3,x

)
(αiαj ⟨v3, v3⟩+ βiβj ⟨v2, v2⟩−

(αiβj + αjβi) ⟨v2, v3⟩)

6.2. MATRIX AND RIGHT HAND SIDE SETUP 66

With this preparation, the local basis integrals can be calculated for i, j = 1, 2, 3:

ψi,j :=

∫
τ

∂ϕi

∂x
× ∂ϕj

∂x
dx =

αiαj

2

ξi,j :=

∫
τ

∂ϕi

∂x
× ∂ϕj

∂y
+
∂ϕi

∂y
× ∂ϕj

∂x
dx =

αiβj + αjβi
2

ζi,j :=

∫
τ

∂ϕi

∂y
× ∂ϕj

∂y
dx =

βiβj
2

With these elements, the basis integrals on an arbitrary triangle τ with the vertices

v1, v2, v3 can be calculated as follows:

θτ,i,j : =

∫
τ

∇ϕi∇ϕjdx

=
⟨d2, d2⟩ × ψi,j − ⟨d2, d3⟩ × ξi,j + ⟨d3, d3⟩ × ζi,j

det
(
d2 d3

)
The matrix entries are then given by

Aij = a(ϕi, ϕj)

=
∑

τ∈Th(vi)∩Th(vj)

∫
τ

∇ϕi∇ϕjdx

=
∑

τ∈Th(vi)∩Th(vj)

θτ,i,j

An array cell integrals including all θτ,i,j, τ ∈ Th, i, j = 1, 2, 3 is generated before the

matrix is actually set up. With this array the algorithm presented in Listing 6.3 generates

the matrix A. Figure 6.3 gives a graphical overview of this algorithm.

6.2. MATRIX AND RIGHT HAND SIDE SETUP 67

τ1

a1

a6a5

τ2

a1 a2

a6

τ3

a2

a7a6

a1

a5

a6

a1

a6

a2

a2

a6

a7

primary iteration
se

co
n

d
a

ry

it
e

ra
ti

o
n

se
co

n
d

a
ry

it
e

ra
ti

o
n

se
co

n
d

a
ry

it
e

ra
ti

o
n

Figure 6.3: Assembly algorithm with primary iteration over all cells

Listing 6.3: Matrix setup pseudo code

1 A = 0

2

3 for each triangle T in triangulation

4 if (T.index_1 != -1)

5 A[T.vertex_1 , T.vertex_1] += cell_integrals[T,1,1]

6 if (T.index_2 != -1) A[T.vertex_1 , T.vertex_2] += cell_integrals[T,1,2]

7 if (T.index_3 != -1) A[T.vertex_1 , T.vertex_3] += cell_integrals[T,1,3]

8 end

9

10 if (T.index_2 != -1)

11 if (T.index_1 != -1) A[T.vertex_2 , T.vertex_1] += cell_integrals[T,2,1]

12 A[T.vertex_2 , T.vertex_2] += cell_integrals[T,2,2]

13 if (T.index_3 != -1) A[T.vertex_2 , T.vertex_3] += cell_integrals[T,2,3]

14 end

15

16 if (T.index_3 != -1)

17 if (T.index_1 != -1) A[T.vertex_3 , T.vertex_1] += cell_integrals[T,3,1]

18 if (T.index_2 != -1) A[T.vertex_3 , T.vertex_2] += cell_integrals[T,3,2]

19 A[T.vertex_3 , T.vertex_3] += cell_integrals[T,3,3]

20 end

21 end

Due to the fact, that different outer loop iterations may access the same element in the

matrix data structure A, the algorithm presented in Listing 6.3 is difficult to parallelize. A

race condition with the vertices a1 and a2 can be seen in Figure 6.3. An alternative algorithm

which does not have this disadvantage is presented in Listing 6.4. This implementation

iterates over all degrees of freedom vertices instead of iterating over all triangles as shown in

Figure 6.4. Since each degree of freedom vertex represents one row in the matrix, the outer

6.2. MATRIX AND RIGHT HAND SIDE SETUP 68

loop can be executed in parallel.

Listing 6.4: Matrix setup pseudo code with Iteration over vertices

1 A = 0

2

3 for each degree of freedom vertex V in triangulation

4

5 for each triangle T connected to V

6 if (T.index_1 == V)

7 if (T.index_1 != -1) A[V, T.vertex_1] += cell_integrals[T,1,1]

8 if (T.index_2 != -1) A[V, T.vertex_2] += cell_integrals[T,1,2]

9 if (T.index_3 != -1) A[V, T.vertex_3] += cell_integrals[T,1,3]

10 end

11

12 if (T.index_2 == V)

13 if (T.index_1 != -1) A[V, T.vertex_1] += cell_integrals[T,2,1]

14 if (T.index_2 != -1) A[V, T.vertex_2] += cell_integrals[T,2,2]

15 if (T.index_3 != -1) A[V, T.vertex_3] += cell_integrals[T,2,3]

16 end

17

18 if (T.index_3 == V)

19 if (T.index_1 != -1) A[V, T.vertex_1] += cell_integrals[T,3,1]

20 if (T.index_2 != -1) A[V, T.vertex_2] += cell_integrals[T,3,2]

21 if (T.index_3 != -1) A[V, T.vertex_3] += cell_integrals[T,3,3]

22 end

23 end

24

25 end

Since both algorithms make heavy use of random accesses in the matrix, the matrix

types presented in Chapter 3.1 are not suitable for these algorithms. A dense matrix has

constant random access complexity, but requires a lot of memory. A binary search tree

with the location of the matrix entry as index is a good choice for a data type in these

algorithms. Nevertheless, the data should be converted to a storage scheme which provides

a fast matrix-vector multiplication after the matrix setup is done.

The algorithms for generating the right hand side vector are similar. When using the

algorithm prototype presented in Listing 6.4, the outer loop iterates over all degree of freedom

vertices neighboring a Dirichlet boundary vertex instead of iterating over all vertices. This

version of the algorithm can also be parallelized.

6.3. SOLVING THE BOUNDARY VALUE PROBLEM 69

a1

primary iteration
se

co
n

d
a

ry

it
e

ra
ti

o
n

τ1

a1

a6a5

τ2

a1 a2

a6

a2

τ2

a1 a2

a6

τ1

a2

a7a6

τ2

a2 a3

a7

se
co

n
d

a
ry

it
e

ra
ti

o
n

a3

τ2

a2 a3

a7

τ1

a3

a8a7

τ2

a3 a4

a8

se
co

n
d

a
ry

it
e

ra
ti

o
n

Figure 6.4: Assembly algorithm with primary iteration over all vertices

6.3 Solving the Boundary Value Problem

With the algorithms presented in the previous section an implementation using the CPU

can be created. At first the local integrals have to be computed. Then the system matrix

and right hand side vector can be set up. The matrix is converted to a storage scheme with

fast matrix-vector multiplication and the system is solved using the iterative CG algorithm.

The first implementation makes use of the CPU only.

As presented in Chapter 4, ViennaCL provides an implementation of the CG algorithm.

To take advantage of that fact, the solution of the system can be accomplished on an OpenCL

device. To achieve that, the data has to be converted to ViennaCL types. In this case the

solving of the equation system is entirely done on the OpenCL device. The result vector

has to be transferred back to the CPU after solving. Although the algorithm presented in

Listing 6.4 can be executed in parallel, the matrix setup process cannot be converted easily

to OpenCL due to restrictions in data management in OpenCL kernels. The calculation of

the right hand side vector does not require complex data management and can therefore be

done with OpenCL.

6.3. SOLVING THE BOUNDARY VALUE PROBLEM 70

Listing 6.5: Direct FEM operator in OpenCL

1 __kernel void FEMOperator(

2 unsigned int mesh_vertex_num , // the number of vertices

3 __global const int * mesh_vertex_to_dof , // degrees of freedom id

4 // (-1 for Dirichlet boundary vertex)

5 unsigned int mesh_cell_num , // number of cells

6 __global const uint4 * mesh_cells , // cells with vertex ids

7 __global const double4 * cell_integrals_alpha , // the local integrals

8 __global const double4 * cell_integrals_beta ,

9 __global const double4 * cell_integrals_gamma ,

10 __global const unsigned int * mesh_vertex_to_cells_id , // vertex to cells mapping

11 __global const unsigned int * mesh_vertex_to_cells_jumper ,

12 __global double * result , // the result vector vector

13 __global const double * rhs) // the right hand side vector

14 {

15 // iterate over all vertices of the mesh

16 for (unsigned int vertex_id = get_global_id (0);

17 vertex_id < mesh_vertex_num;

18 vertex_id += get_global_size (0))

19 {

20 int dof_id = mesh_vertex_to_dof[vertex_id];

21 if (dof_id < 0) continue; // non -degree of freedom vertices are ignored

22 double tmp = 0;

23 // iterate over all cells , which are connected to the current vertex

24 unsigned int index_stop = mesh_vertex_to_cells_jumper[vertex_id +1];

25 for (unsigned int index = mesh_vertex_to_cells_jumper[vertex_id];

26 index < index_stop;

27 ++index)

28 {

29 unsigned int cell_id = mesh_vertex_to_cells_id[index];

30 uint4 cell_vertices = mesh_cells[cell_id];

31 // distinction of cases: which of the three cell vertices is the current

vertex

32 if (cell_vertices.s0 == vertex_id)

33 {

34 int local_vertex_dof_1 = mesh_vertex_to_dof[cell_vertices.s1];

35 int local_vertex_dof_2 = mesh_vertex_to_dof[cell_vertices.s2];

36 double4 cell_integrals = cell_integrals_alpha[cell_id];

37 // perform the operator -vector multiplication for all degree of freedom

neighbor vertices on the current triangle

38 tmp += rhs[dof_id] * cell_integrals.s0;

39 if (local_vertex_dof_1 >= 0)

40 tmp += rhs[local_vertex_dof_1] * cell_integrals.s1;

41 if (local_vertex_dof_2 >= 0)

42 tmp += rhs[local_vertex_dof_2] * cell_integrals.s2;

43 }

44 // the cases cell_vertices .s1 == vertex_id and cell_vertices .s2 == vertex_id

are similar

45 }

46 result[dof_id] = tmp;

47 }

48 }

6.4. RESULTS, BENCHMARKS AND COMPARISON 71

The CG algorithm does not necessarily require a matrix, it only needs an operator which

maps a vector to another vector based on the linear system. Therefore, it is not required to

set up the system matrix explicitly. Such an operator can be provided by using the algorithm

presented in Listing 6.4. Instead of setting up the matrix explicitly, a linear multiplication

with a vector is performed. This can be achieved by adding up all local cell integral values

multiplied by the corresponding value in the right hand side vector. Since this algorithm

is derived from the algorithm presented in Listing 6.4, it can be executed in parallel and is

therefore appropriate for OpenCL. Although the complexity of this algorithm is the same

as the complexity of a matrix-vector multiplication, it will be slightly slower because the

direct finite element operator requires more operations. An OpenCL implementation of this

algorithm is presented in Listing 6.5. The cell integrals * pointers define the precomputed

local cell integral values. cl double4 is used because of alignment. When using this operator,

the local cell integrals can also be computed using OpenCL.

6.4 Results, Benchmarks and Comparison

The accuracy of solution to the boundary value problem presented in Section 5.3 can simply

be increased by increasing the number of degree of freedom vertices. All results given in

this section are calculated by using a triangulation based on a regular grid consisting of

squares. Some solutions to the boundary value problem with different discretization levels

are presented in Figure 6.5.

The benchmark setup in this section is the same as in Section 3.3. The only difference is

that only the NVIDIA GeForce GTX 470 device is used for benchmarking all OpenCL imple-

mentations. The parts stated in Table 6.1 were all benchmarked separately. The benchmark

results are given in Table 6.2 for the setup routines, in Table 6.4 for solving the linear system

and in Table 6.5 for the whole process. The linear dependency of the setup computation

times can be observed for large numbers of cells. An increase by a factor of four in the num-

ber of cells leads to a factor of about four in the computation times for all setup routines.

This behavior is not present for the solving algorithms. The larger the linear system is, the

more iterations are needed by the CG algorithm for achieving the same accuracy. Addition-

ally, the matrix-vector multiplication complexity and linear FEM operator multiplication

complexity is linearly bounded in the number of cells. This results in a solver complexity

which is above linear. Table 6.3 presents the benchmark results for one single matrix-vector

6.4. RESULTS, BENCHMARKS AND COMPARISON 72

1

2

3

4

5

1

2

3

4

5

1
0

2
0

3
0

4
0

5
0

S
o

lu
ti

o
n

 w
it

h
 5

x
5

 V
e

rt
ic

e
s

S
o

lu
ti

o
n

 w
it

h
 1

7
x

1
7

 V
e

rt
ic

e
s

S
o

lu
ti

o
n

 w
it

h
 6

5
x

6
5

 V
e

rt
ic

e
s

S
o

lu
ti

o
n

 w
it

h
 2

5
7

x
2

5
7

 V
e

rt
ic

e
s

F
ig
u
re

6
.5
:
S
ol
u
ti
on

of
th
e
h
ea
t
d
is
tr
ib
u
ti
on

b
ou

n
d
a
ry

va
lu
e
p
ro
b
le
m

w
it
h
d
iff
er
en
t
d
is
cr
et
iz
at
io
n
le
v
el
s

6.4. RESULTS, BENCHMARKS AND COMPARISON 73

Shortcut Algorithm-part

setup li Computing the local cell basis integrals using the CPU.
setup mv Computing the matrix values in a binary search tree data

structure using the CPU.
convert cm Converting the binary search tree data structure to a

compressed matrix data structure using the CPU.
vcl convert cm Converting the binary search tree data structure to

a viennacl::compressed matrix with alignment of 4
on the OpenCL device.

setup femop Creating the direct linear FEM operator, including data
transfers to the OpenCL device.

setup rhs Computing the entries for the right hand side vector using the CPU.
vcl convert rhs Converting the right hand side vector to a viennacl::vector

on the OpenCL device.
solve cm Solving the system of linear equations with the compressed matrix

data structure on the CPU.
solve vcl cm Solving the system of linear equations with the

viennacl::compressed matrix using the OpenCL device.
solve femop Solving the system using the direct linear FEM operator on the

OpenCL device.
rdb Reading back the result vector from the OpenCL device to the CPU.

Table 6.1: Parts of the algorithms which were benchmarked

multiplication with a compressed matrix data structure, viennacl::compressed matrix and

one linear FEM operator multiplication. The FEM operator is about 2 times slower than

viennacl::compressed matrix for large problem sizes. A comparison of the benchmark results

of one matrix-vector multiplication versus the whole CG algorithm can be seen in Figure 6.6

and Figure 6.7.

It can easily be seen, that the setup computation time is relatively small compared to

the solution of the linear system. Therefore, the performance of the whole FEM algorithm

is highly dependent on the performance of the CG implementation as can be seen in Fig-

ure 6.7 and Figure 6.8. The best solver times are achieved by ViennaCL linear algebra

types. With an asymptotic factor of two, the direct FEM operator is the second best solving

implementation. The asymptotic factor of two is a result of the relative difference of two

when comparing the matrix-vector multiplication with viennacl::compressed matrix with the

direct FEM operator multiplication. For small systems the ViennaCL overhead is relatively

large compared to the actual computation time. Since the linear operator multiplication is

6.4. RESULTS, BENCHMARKS AND COMPARISON 74

Number of cells setup li setup mv convert cm vcl convert cm setup femop setup rhs vcl convert rhs

2048 0.16 0.655 0.089 1.303 0.137 0.011 0.155
8192 0.44 2.454 0.521 2.117 0.442 0.028 0.193
32768 2.586 9.885 2.272 5.708 1.927 0.078 0.286
131072 14.308 39.222 7.425 21.21 8.743 0.252 0.573
524288 52.132 153.05 33.04 83.18 35.067 0.851 1.645
2097152 210.94 606.62 132.53 329.95 141.64 3.673 6.729

Table 6.2: Benchmark result in seconds for the setup algorithm parts

Number of cells Compressed matrix viennacl::compressed matrix direct FEM operator

2048 0.000010 0.000021 0.000033
8192 0.000022 0.000030 0.000046
32768 0.000061 0.000070 0.000141
131072 0.000339 0.000236 0.000471
524288 0.002397 0.000923 0.001875
2097152 0.009523 0.003802 0.007916

Table 6.3: Benchmark result in seconds for one matrix-vector multiplication

the main part of the CG algorithm from the performance point of view and there is some

overhead using ViennaCL, the relative difference in performance of the whole finite element

algorithm is smaller for a lower number of cells. The implementation on the CPU has the

worst performance. Due to implicit OpenCL calls, the benchmark times are unstable for

small systems. Therefore, the direct OpenCL operator might be faster than the method

using viennacl::compressed matrix.

Since the direct FEM operator algorithm for linear finite elements does not require much

more operations than a simple sparse matrix-vector multiplication, the algorithm is memory

bandwidth limited. Compared to a compressed matrix-vector multiplication, the direct FEM

operator needs to read more memory. Therefore, the direct FEM operator multiplication is

slower than the viennacl::compressed matrix matrix-vector multiplication. A different result

may be achieved when using a higher-order finite element basis. With higher-order finite

elements, the total memory transferred may be smaller when using a direct FEM operator

instead of using viennacl::compressed matrix. In this case, the local integrals have to be

computed within the OpenCL kernel. Since the direct FEM operator is memory bandwidth

limited, the additional operations may not affect the performance.

6.4. RESULTS, BENCHMARKS AND COMPARISON 75

 1e-005

 0.0001

 0.001

 0.01

 1000 10000 100000 1e+006 1e+007

S
ec

on
ds

Number of Cells

Compressed Matrix
viennacl::compressed matrix

direct FEM operator

Figure 6.6: Benchmark result in seconds for one matrix-vector multiplication

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1000 10000 100000 1e+006 1e+007

S
ec

on
ds

Number of Cells

Compressed Matrix
viennacl::compressed matrix

direct FEM operator

Figure 6.7: Benchmark result in seconds the CG algorithm

6.4. RESULTS, BENCHMARKS AND COMPARISON 76

Number of cells solve cm solve vcl cm solve femop rdb

2048 0.00234 0.05360 0.05042 0.000126
8192 0.01578 0.09583 0.11026 0.000118
32768 0.12575 0.23065 0.26229 0.000129
131072 1.15548 0.66637 0.95301 0.000473
524288 12.83190 3.77916 6.03665 0.001641
2097152 118.72100 24.48980 43.78280 0.007695

Table 6.4: Benchmark result in seconds for the CG solving algorithm parts

Number of cells Setup and solution Setup on the CPU, Preparation on the CPU,
is done on the CPU solution on the GPU solution on the GPU

using ViennaCL linear algebra using the direct FEM operator

2048 0.0033 0.0560 0.0510
8192 0.0192 0.1012 0.1115
32768 0.1406 0.2493 0.2673
131072 1.2167 0.7424 0.9774
524288 13.0710 4.0717 6.1280
2097152 119.6748 25.6554 44.1535

Table 6.5: Benchmark result in seconds for whole finite element algorithm

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1000 10000 100000 1e+006

S
ec

on
ds

Number of Cells

Compressed Matrix
viennacl::compressed matrix

direct FEM operator

Figure 6.8: Benchmark result in seconds for whole finite element algorithm

Chapter 7

Conclusion

The results presented in Section 3.3 imply a great potential of graphics adapters for parallel

algorithms and large amounts of data. Without optimization, the matrix-vector multipli-

cation on NVIDIA GeForce GTX 470 is about 35% faster than the implementation on the

CPU for 67108864 non-zero elements. With more effort in optimization, especially hardware-

dependent optimization, graphics adapters might be better than CPUs in these cases.

As discussed in Chapter 6, graphics adapters are also a good choice for the whole finite

element algorithm. The solution of the linear system using ViennaCL is by a factor of 4.6

and the presented direct FEM operator is by a factor of 2.7 faster than the algorithm using

the CPU. The price of both hardware used for benchmarking, the Intel Core i7-960 and

the NVIDIA GeForce GTX 470, is comparable, hence the graphics adapter is the preferable

platform.

7.1 Outlook

Finite element algorithms using graphics adapters have already been investigated for exam-

ple by D. Göddeke in 2005, yet the topic is relatively new and more research work has to be

done [23] [24]. Some possible future topics are presented here.

For matrix data structures, other schemes could be used for the finite element method.

NVIDIA presented specialized matrix data types for GPU computing to gain more perfor-

mance in matrix-vector multiplication [22].

77

7.1. OUTLOOK 78

The presented finite element algorithms with OpenCL can be optimized by transferring

some steps of the setup process to OpenCL. The calculation of the local integrals and the

setup of the right hand side vector can be parallelized easily and, therefore, be computed

using OpenCL. Due to data management restriction with OpenCL, it is not possible to port

the classical algorithm for assembling the mesh data to OpenCL. A sparse matrix data struc-

ture can be defined as a modification of the coordinate or compressed scheme, where each

entry in the matrix is represented by the sum of all entries with the same row and column

indices in the matrix data structure. Instead of summing up all local element integral values

to one element in the system matrix, each local element integral contribution is stored on its

own. With this modification to the matrix setup, two threads do not make write accesses

to the same element in the system matrix at one time and the algorithm can, therefore, be

executed in parallel.

As mentioned in Section 6.4, bandwidth limitation are less severe when using a direct

FEM operator with higher-order finite elements. With higher-order finite elements and less

pre-processing, the amount of floating point operations increases, which might lead to better

performance on GPUs.

ViennaCL provides a generic implementation of the conjugate gradient algorithm. This

implementation works with uBLAS and ViennaCL matrix and vector types. But this flex-

ibility generates unnecessary overhead due to data transfer between CPU and GPU and

superfluous API calls. A customized conjugate gradient implementation with custimized

OpenCL kernels might get better performance results for small systems where kernel launch

overheads are an issue.

Preconditioners using parallel computing architectures for the banded matrix scheme

are discussed for example by D. Göddeke in [23]. Most preconditioners are hard to paral-

lelize and often the matrix structure is destroyed in the process of creating the precondi-

tioner [27] [28] [29]. Using topological mesh information, some preconditioner algorithms

can be modified to a multi-threaded version. Additionally, preconditioner algorithms can be

adapted for direct FEM operators.

For large systems, the computations could be split up into work packages which are pro-

7.1. OUTLOOK 79

cessed by multiple devices. For example, the CPU can perform some calculations while the

OpenCL device processes some other work package. This requires tricky synchronization

and load balancing but might also lead to some performance improvements.

In this work, the tessellation of the domain Ω of a boundary value problem is not covered.

Porting this step to OpenCL might increase the performance of the whole algorithm due to a

reduction of memory transfer. If this step is accomplished on an OpenCL device, additional

topological data is available in device memory, which can be used for multi-grid solvers or

related techniques.

Appendix A

Function Spaces

The function spaces used for the finite element method are presented in the following [15].

Definition 11 (Space of coninuously differentiable functions).

Ck(Ω) := {f : Ω→ R, f is k-times continuously differentiable}, k ≥ 0 (A.1)

Definition 12 (Space of piecewise differentiable line segments).

C0,1 := {f : R→ Rk, f is continuous and piecewise differentiable} ⊂ P(Rk), k ≥ 1 (A.2)

Definition 13 (Essential supremum).

esssupΩ u := inf{K ∈ R : u(x) ≤ K for mostly all x ∈ Ω} (A.3)

A function u is called essentially bounded if esssup |x| ≤ ∞.

Definition 14 (Lebesgue space). Let Ω ⊂ Rd, d ≥ 1. The Lebesgue spaces are defined as

follows:

Lp(Ω) = {u : Ω→ R is measurable, |u|p is Lebesgue-integrable}, 1 ≤ p <∞ (A.4)

L∞(Ω) = {u : Ω→ R is measurable, u is essential bounded} (A.5)

80

81

Definition 15 (Lebesgue norm).

∥u∥Lp :=

(∫
Ω

|u(x)|pdx
) 1

p

, 1 ≤ p <∞ (A.6)

∥u∥L∞ := esssupΩ |u| (A.7)

The Lebesgue space Lp(Ω) together with the Lebesgue norm is a Banach space. The

space L2(Ω) with the scalar product (u, v)L2 :=
∫
Ω
u(x)v(x)dx is a Hilbert-space.

Definition 16 (Support of a function, test function). The support of a function is defined

as follows:

suppu := {x ∈ Ω : u(x) ̸= 0} (A.8)

A test function is a infinitly differentiable function with compact support:

C∞
0 := {u ∈ C∞(Ω) : suppu is compact} (A.9)

Definition 17 (Sobolev space). Let m ∈ N, 1 ≤ p ≤ ∞. The space

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω)∀|α| ≤ m} (A.10)

is called Sobolev space.

Lemma 5. 1. The Sobolev space Wm,p(Ω) with norm

∥u∥Wm,p :=

∑
|α|≤m

∥Dαu∥pLp

 1
p

, 1 ≤ p <∞ (A.11)

∥u∥Wm,∞ :=
∑
|α|≤m

∥Dαu∥L∞ (A.12)

is a Banach space.

2. The Sobolev space Hm(Ω) := Wm,2(Ω) with the scalar product

(u, v)Hm :=
∑
|α|≤m

(Dαu,Dαv)L2 (A.13)

is a Hilbert space.

82

A proof is given in [15].

Definition 18.

Wm,p
0 (Ω) is the completion of C∞

0 using the norm ∥ · ∥Wm,p (A.14)

Hm
0 (Ω) := Wm,2

0 (Ω) (A.15)

Lemma 6. The space Wm,p
0 (Ω) with norm ∥ · ∥Wm,p is a Banach space and Hm

0 (Ω) with the

scalar product (·, ·)Hm is a Hilbert space.

Lemma 7. Let Ω ⊂ Rd be an open domain.

1. Ω is bounded ∧ ∂Ω ∈ C0,1 ⇒ C∞(Ω) is dense in Wm,p(Ω)

2. C∞(Ω) ∩Wm,p(Ω) is dense in Wm,p(Ω)

A proof is provided in [16].

Definition 19. Let Ω ⊂ Rd be an open domain.

H−k(Ω) := {F : Hk
0 (Ω)→ R : F is linear and continuous} (A.16)

∥F∥H−k := sup
∥u∥

Hk
0 (Ω)

=1

|F (u)| (A.17)

H−k is the algebraic dual space of Hk
0 (Ω) and ∥ · ∥H−k is a norm. The dual space with this

norm is a Banach space.

Lemma 8 (Cauchy-Schwarz inequality). If H is a linear space with an inner product < ·, · >,
then

|⟨x, y⟩| ≤ ∥x∥∥y∥, ∀x, y ∈ H. (A.18)

Lemma 9 (Poincare inequality). If Ω ⊂ Rd, d ≥ 1) be a bounded domain with ∂Ω ∈ C0,1,
then there exists a Cp > 0 such that

∥u∥L2 ≤ Cp∥∇u∥L2 , ∀u ∈ H1
0 (Ω). (A.19)

The Poincare inequality ensures the equivalence of the norm ∥ · ∥H1 and ∥∇(·)∥L2.

Appendix B

The Conjugate Gradient Method

The conjugate gradient method is an algorithm for solving symmetric and positive definite

systems of linear equations Ax = b, with A ∈ Rm×m and x, b ∈ Rm [13]. Although the

method is an iterative algorithm, the precise solution is given at most m iterations. The

conjugate gradient method transforms the system of linear equations to the quadratic form

E(x) := 1
2
⟨Ax, x⟩ − ⟨b, x⟩ and minimizes this form.

Definition 20 (The Conjugate Gradient Method). Choose an arbitrary x0 ∈ Rm. The

initial residuum and search direction are calculated by

r0 := b− Ax0, (B.1)

d0 := r0. (B.2)

In each iteration step, the quadratic form E is minimized using the approximation xk and

the search direction dk of the previous iteration:

αk =
dTk rk
dTkAdk

(B.3)

xk+1 := xk + αkdk (B.4)

rk+1 := rk − αkAdk (B.5)

83

84

Finally, the search direction dk is updated:

βk :=
rTk+1rk+1

rTk rk
(B.6)

dk+1 := rk+1 + βkdk (B.7)

The iteration is stopped if the norm of the residuum ∥rk+1∥ is smaller than a specified toler-

ance.

Bibliography

[1] Cramming more components onto integrated circuits, G. E. Moore, Electronics Magazine

p. 4. Retrieved 2006-11-11, 1965

[2] GPU Architectures: Implications & Trends, D. Luebke, NVIDIA Research, SIGGRAPH

2008, http//s08.idav.ucdavis.edu/luebke-nvidia-gpu-architecture.pdf

[3] NVIDIA’s Next Generation CUDA Compute Architecture: Fermi, NVIDIA Cooperation

2009, ftp://download.intel.com/museum/Moores_Law/Articles-press_Releases/

Gordon_Moore_1965_Article.pdf

[4] Computer Vision Signal Processing on Graphics Processing Units, J. Fung, S. Mann,

ICASSP 2004

[5] OpenCL Programming Guide for the CUDA Architecture, NVIDIA Cooperation, Ver-

sion 4.1, 2012, http://developer.download.nvidia.com/compute/DevZone/docs/

html/OpenCL/doc/OpenCL_Programming_Guide.pdf

[6] The OpenCL Specification, Khronos OpenCL Working Group, Version 1.2, Nov 2011,

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

[7] OpenCL Optimization Webinar, NVIDIA Cooperation, 2009, http://developer.

download.nvidia.com/CUDA/training/NVIDIA_GPU_Computing_Webinars_Best_

Practises_For_OpenCL_Programming.pdf

[8] TESLA C2050 / C2070 GPU Computing Processor, NVIDIA Cooperation, 2010, http:

//www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdf

[9] NVIDIAs Next Generation CUDA Compute Architecture: Fermi, NVIDIA Co-

operation, Version 1.1, 2009, http://www.nvidia.com/content/PDF/fermi_white_

papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

85

BIBLIOGRAPHY 86

[10] NVIDIA GeForce 470 specification, NVIDIA Cooperation, http://www.geforce.com/

hardware/desktop-gpus/geforce-gtx-470/specifications

[11] Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel

Core i7-900 Desktop Processor Series, Intel Cooperation, 2010, http:

//www.intel.com/content/dam/www/public/us/en/documents/datasheets/

core-i7-900-ee-and-desktop-processor-series-datasheet-vol-1.pdf,

http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/

core-i7-900-ee-and-desktop-processor-series-datasheet-vol-2.pdf

[12] Intel Core i7-960 Processor specification, Intel Cooperation, 2010, http://ark.intel.

com/products/37151

[13] Finite Element Solution of Boundary Value Problems, O. Axelsson and V. A. Barker,

Society for Industrial Mathematics, 2001

[14] Das kleine Finite-Elemente-Skript, A. Jüngel, Technical University of Vienna, 2001,

http://www.asc.tuwien.ac.at/~juengel/scripts/femscript.pdf

[15] Partielle Differentialgleichungen. Sobolevräume und Randwertaufgaben, J. Wloka, Teub-

ner, 1982

[16] An Introduction to Partial Differential Equations, M. Renardy and R. Rogers, Springer,

1993

[17] ViennaCL 1.2.1 User Manual, K. Rupp, Technical University of Vienna, 2011 http:

//viennacl.sourceforge.net/viennacl-manual-current.pdf

[18] Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of

Nonsymmetric Linear Systems, H. A. Van der Vorst, SIAM Journal on Scientific and

Statistical Computing, Vol. 13, No. 2, pp. 631-644, 1992

[19] GMRES: A Generalied Minimal Residual Algorithm for Solving Nonsymmetric Lin-

ear Systems, Y. Saad and M. H. Schultz, SIAM Journal on Scientific and Statistical

Computing, Vol. 7, pp. 856-869 1986

[20] An Automatic OpenCL Compute Kernel Generator for Basic Linear Algebra Opera-

tions, P. Tillet, K. Rupp, S. Selberherr, Spring Simulation Multiconference (SpringSim

12), Florida; 2012-03-26 - 2012-03-29; in: Proceedings of the Spring Simulation Multi-

conference 2012

BIBLIOGRAPHY 87

[21] ViennaCL compilation and transfer times, K. Rupp, Intel Developer Forums, 2011,

http://software.intel.com/en-us/forums/showthread.php?t=81682&o=a&s=lr

[22] Efficient Sparse Matrix-Vector Multiplication on CUDA, N. Bell and M. Garlandy,

NVIDIA Technical Report NVR-2008-004, 2008

[23] Fast and Accurate Finite-Element Multigrid Solvers for PDE Simulations on GPU Clus-

ters, D. Göddeke, PhD thesis, Technische Universität Dortmund, Fakultät für Mathe-

matik, Logos Verlag, Berlin, May 2010

[24] Accelerating Double Precision FEM Simulations with GPUs, D. Göddeke, R. Strzodka

and S. Turek, 18th Symposium Simulation Technique (ASIM’05), Erlangen, Germany,

Sep. 2005

[25] Eigen C++ library, http://eigen.tuxfamily.org/index.php?title=Main_Page

[26] Matrix Template Library 4, http://www.simunova.com/de/node/65

[27] Implementing the Chebyshev Polynomial Preconditioner for the Iterative Solution of

Linear Systems on Massively Parallel Graphics Processors, A. Asgasri and J. E. Tate,

Proc. CIGRE Conf. Power Systems, 2009

[28] A Parallel Algebraic Multigrid Solver on Graphics Processing Units, G. Haase et al.,

High Performance Computing and Applications (Lecture Notes in Computer Science),

vol. 5938, p. 38-47, 2010

[29] Parallel Preconditioning with Sparse Approximate Inverses, M. J. Grote and T. Huckle,

SIAM J. Sci. Comp., vol. 18, no. 3, p. 838-853, 1997

