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Abstract

Over the past 25 years ternary hard coatings produced by chemical vapor deposition
(CVD) have played an increasingly important role in many applications, e.g. in machining
and in the automotive and aerospace industries. A group of important representatives of
this class of material are titanium aluminium nitride (TiAlN) systems, which age harden
at elevated temperatures due to spinodal decomposition of TiAlN into TiN and cubic
AlN.

In order to describe the energetic balance and kinetics of the decomposition of su-
persaturated Ti(1−x)AlxN the strain energy density (SED) associated with this trans-
formation must be known. In the present work this SED is evaluated by treating the
three-phase system as a composite consisting of two types of transforming particles (TiN,
AlN) embedded in a matrix (TiAlN) or as a random three-phase material. Under these
assumptions, the analytical and numerical methods of continuum micromechanics can be
brought to bear on the problem, the emphasis being put on Finite-Element-based unit
cell methods in the present case.

Cube-shaped volume elements consisting of a predefined number of periodic, non-
overlapping, equally sized, spherical particles embedded in a matrix were generated by a
Random Sequential Insertion technique. Periodicity boundary conditions were applied to
these unit cells and the Finite Element Method (FEM) was used to obtain the elastic fields
due to transformation strains prescribed to the particles. These fields, in turn, allowed
evaluating the SED of the transformed system. Primarily, effects of the Al mole fraction,
of the volume fractions of the particles and of the macroscopic constraints (unconstrained,
fully constrained, layer-constrained) on the SED were studied. In addition, results were
obtained for particles of polyhedral shape and for voxel-type random phase arrangements.

The predictions of the FEM-based periodic homogenization show that the SED is
most strongly determined by the volume fraction of transformed material, by the Al
mole fraction and by the microtopology of the volume elements used. In the case of
matrix-inclusion topologies, the influence of the particle shape turned out to be rather
small.

Excellent agreement with analytical Transformation Field Analysis models based on
Mori-Tanaka methods was achieved when using matrix-inclusion microtopologies, thus
verifying previous modeling work. This good agreement was traced to the low elastic
contrast of the constituents of the TiAlN-TiN-AlN system.

V



Resumen

En los últimos 25 años, los recubrimientos ternarios endurecidos producidos mediante
deposición química de vapor (CVD) han jugado un papel importante en numerosas
aplicaciones, como por ejemplo en los procesos de mecanizado o en las industrias au-
tomovilística y aeroespacial. Los sistemas titanio aluminio nitrógeno (TiAlN) son un
grupo representativo de esta clase de material, teniendo como característica principal
el endureciemiento a altas temperaturas por efecto de la descomposición espinodal del
TiAlN en TiN y AlN cúbico.

Para describir el balance energético y la cinemática de la descomposición del Ti(1−x)AlxN
supersaturado se debe conocer la densidad energética de deformación (SED) asociada a
la transformación. En este trabajo la SED se evalua suponiendo el sistema trifásico como
un compuesto formado por dos tipos de partículas incrustadas en una matriz (TiAlN)
que sufren una transformación (TiN, AlN), o como un material trifásico con distribución
aleatoria. Bajo esta hipótesis, los métodos analíticos y numéricos de la micromecánica
continua se pueden emplear en el problema, enfatizando para el caso actual en el concepto
de celda unitaria basada en el Método de Elementos Finitos (FEM).

Mediante una técnica de inserción aleatoria se generaron los elementos volumétricos de
forma cúbica compuestos por un número predefinido de partículas esféricas, periódicas,
de igual forma y tamaño, que no se solapan e incrustadas en una matriz. Condiciones
de contorno periódicas fueron aplicadas a estas celdas unitarias y el FEM fue usado para
obtener los campos elásticos causados por las deformaciones de transformación inducidas
en las partículas. Estos campos, a su vez, permitieron la evaluación de la SED del sistema
transformado. En primer lugar se estudiaron los efectos que la fracción molar de Al, la
fracción volumétrica de las partículas y las restricciones macroscópicas (no restringido,
totalmente restringido, restricción de capa) tenían en la SED. Además, los resultados
se obtuvieron para partículas con formas poliédricas y para distribuciones aleatorias de
vóxels.

Las predicciones del FEM muestran que la SED tiene una fuerte dependencia con la
fracción volumétrica del material que sufre la transformación, con la fracción molar de Al
y con la microtopología de los elementos volumétricos usados. En el caso de topologías
matriz-inclusión, la influencia de la forma resultó ser bastante pequeña.

Se obtuvieron coincidencias muy buenas al comparar los resultados con el modelo
analítico de análisis del campo de transformación (TFA) basado en el método Mori-
Tanaka (MTM), pero siempre y cuando se usen microtopologías del tipo matriz-inclusión.
De esta forma, también se verifica el trabajo de modelado que se realizó. Se puede concluir
que la causa de la buena concordancia entre los métodos analíticos y numéricos emplea-
dos es debida al bajo contraste elástico de los constituyentes del sistema TiAlN-TiN-AlN.
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Notation

In this thesis Nye notation is used for the mechanical variables. Tensors of order 4, such
as elasticity, compliance and concentration tensors, are written as 6 × 6 quasi-matrices,
and stress-, as well as strain-, like tensors of order 2 as 6-(quasi-)vectors. These 6-vectors
are connected to index notation by the relations

σ =





σ(1)
σ(2)
σ(3)
σ(4)
σ(5)
σ(6)




=





σ11

σ22

σ33

σ12

σ13

σ23




ε =





ε(1)
ε(2)
ε(3)
ε(4)
ε(5)
ε(6)




=





ε11

ε22

ε33

γ12

γ13

γ23




,

where γij = 2εij, i �= j are the shear angles [28].
Tensors up to rank four are represented with the following notation:

• Tensors of rank four: boldface uppercase Roman letters. Examples: A, B.

• Tensors of rank two: bold Greek lower case letters. Examples: ε, σ.

• Tensors of rank one: lowercase bold Roman letters. Examples: c, u.

• Scalars: lowercase or uppercase Italic letters or non-bold Greek lower case letters.
Examples: cel, W, ξ.

Constituents (phases) are denoted by superscripts, with (p) standing for a general phase,
(m) for a matrix and (i) for inhomogeneities. Transposed vectors are indicated by a
superscript T and effective properties are denoted by a superscript asterisk (∗).
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List of abbreviations

The following abbreviations are used through this thesis:

• BCs: boundary conditions

• FEM: Finite Element Method

• IVOL: volume associated with an integration point

• MTM: Mori-Tanaka method

• PMAs: Periodic Microfield Approaches

• RVE: representative volume element

• SED: strain energy density

• TFA: Transformation Field Analysis
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1 Introduction

For the past twenty years, interest in new thin hard coating materials in industry has
increased. Nowadays these materials play a very important role in industrial applica-
tions such as high speed machining or dry machining. One important family within hard
coatings are metastable titanium aluminium nitride (Ti(1−x)AlxN) systems used as cut-
ting tools due to their excellent behaviour at high temperatures (high hardness and wear
resistance). At this point, it is necessary to understand how to tailor a hard coating in
order to achieve the desired properties and how will it behave during operation.

The focus in the present work is the determination of the strain energy density (SED) of
a family of composite hard coatings for several cases of study. This family is a three-phase
system: titanium aluminium nitride, Ti(1−x)AlxN, which can contain Al mole fractions
(x) between 0 and 1. It is treated as a composite consisting of a matrix (TiAlN) and
two families of inhomogeneous inclusions (AlN and TiN). Under the assumption that
continuum mechanics can be used for the nanoscale phase domains involved, the tools of
micromechanics of materials can be used to evaluate the SED.

The strain energy density is an important factor in the transformation kinetics and
energetic balance of the Ti(1−x)AlxN system [23]. It represents the elastic energy stored
due to the misfit between the parent phase and the transformed daughter phases. A
correct knowledge of how some factors (macroscopic constraints, Al mole fraction, phase
volume fractions, inclusions’ shape, particle distribution or elastic contrast) affect the
SED makes it possible to explain partly (other energetic contributions are obviously
involved) the decomposition of Ti(1−x)AlxN to form AlN and TiN phases [23]. Also,
the results obtained via a numerical method, periodic homogenization using the Finite
Element method (FEM), are compared with those obtained via an analytical method,
transformation field analysis (TFA). This way, the performance and accuracy of the TFA
can be evaluated for different configurations.

The finite element method is employed in this thesis to compute the SED of three-
dimensional unit cells which are used to approximate a representative volume element
of Ti(1−x)AlxN. In order for the unit cell to represent an infinite material, periodicity
boundary conditions are applied to it.

Continuum micromechanics provides the necessary methods and tools (periodic mi-
crofield and unit cell methods, RVE, boundary conditions, etc.) to link macroscopic
and microscopic fields and, thus, determining the effective properties of the composite
material as well as strain energies.

Material parameters of the transformation of Ti(1−x)AlxN into AlN and TiN evaluated
by ab initio calculations by Mayrhofer’s group [23] were used in the micromechanical
models.

1



1 Introduction

1.1 Literature Review

Many analytical micromechanics theories have been developed and published in the liter-
ature; among them Eshelby’s theory [9], Mori–Tanaka methods [2, 25] and self-consistent
schemes [14] have been used to describe the effective properties of composites. One of
the main problems of these classical models are their limitations in taking into account
factors like shapes and size distributions of the inclusions contained in the composite.

These methods are not directly applicable to systems with multiple transforming
phases, but there is an analytical scheme that allows to calculate the energetic state and
the macroscopic properties of such transforming systems: the Transformation Field Anal-
ysis [8]. This method in combination with the Mori-Tanaka and classical self consistent
schemes can describe the behaviour of both matrix-inclusion and non-matrix-inclusion
topologies.

The unit cell concept based on the Finite Element method (FE-based PMAs) provides
the necessary flexibility for analyzing factors that analytical methods cannot take into
account. There exist different works that use this approach in order to obtain the effective
properties of inhomogeneous materials [6, 34, 35]. The effect of the size, the shape and
the volume fraction of the inclusions contained in a heterogeneous medium has also been
discussed in [20, 28, 31, 36].

It is important to mention that the goal of this thesis is not to calculate the effective
properties of the of the TiN-AlN-TiAlN system; the main aim of the study lies on the
stress and strain states produced after the transformation of this material into AlN and
TiN has occurred, that are described by the strain energy density. Work has been done
on the SED for two-phase systems [26] and for multiphase systems [5] but no literature
is available on unit cell based evaluations of the energetics of this class of material.

1.2 Hard Coatings

The tool price is often a significant part in the manufacturing price of a product. There-
fore, the longer the tool lifetime, the higher will be its productivity. Together with
improvements in the tool materials, protective coatings have been developed. Their
main feature is the protection of the tool by their high hardness and chemical resistance,
and they tend to be relatively brittle and expensive, so they are not appropriate as bulk
tool materials. Hence, the combination of bulk material and coating ensures optimal tool
properties, reducing wear and extending the tool life [18].

When hard coatings are used at high temperatures, they require excellent thermal,
chemical and mechanical properties. Their main properties are:

• High hardness and reasonable toughness

• Low thermal conductivity

• Controlled adhesion

• Minimum diffusion and low friction

2



1 Introduction

• Thermal stability

• Oxidation and corrosion resistance

The development of hard protective coatings started in the 1970s with the chemical
(CVD) and physical (PVD) vapor deposition techniques. Many PVD variants are in use
today (magnetron sputtering, evaporation by laser, cathode arc, electron beam, etc.).

The most common hard coatings are based on transition metal nitrides (TiN, CrN),
but in the past decade there has been an increase in multicomponent coatings (TiAlN),
multilayer coatings (TiN/TiAlN) as well as carbon-based coatings (DLC).

1.2.1 Applications

Hard coatings have been developed mainly for cutting machining processes but they are
also employed in the aerospace and automotive industries.

High hardness, low coefficient of friction, and resistance against high temperatures
allows high speed machining (HSM) and dry machining without use of cooling-lubricating
liquids. These properties make it possible to increase the lifetime of the surface on to
which a hard coating was deposited and to maintain tool precision during its use.

Figure 1.2.1: Tool machine working under dry conditions [22].

Hard coatings are also used on moving parts. Typical automotive and aerospace appli-
cations are parts of jet engines and car motors (engine valve system, gears, transmission
system, etc.).

3



2 Theoretical Approach

In this chapter a short introduction into continuum micromechanics of materials is given.
The theoretical approach is an extract of Böhm [4, 5], where further information can be
found. Special emphasis is placed on the transformation field analysis and the concept
of strain energy density; both of them play a significant role in the development of this
thesis. Another important topic is the energetics of the phase transition of Ti(1−x)AlxN,
which is explained in chapter 3.1.

2.1 Introduction

2.1.1 Inhomogeneous Materials

Many industrial and engineering materials as well as the majority of biological materials
are inhomogeneous, i.e., they consist of dissimilar constituents that are distinguishable at
some length scale. Each constituent shows different material properties and/or material
orientations and may itself be inhomogeneous at some smaller length scale(s). Well-
known examples of such materials are composites, concrete, polycrystalline materials,
porous and cellular materials, functionally graded materials, wood, and bone.

An important aim of theoretical studies of multi-phase materials lies in deducing their
overall (“effective” or “apparent”) behavior from the corresponding material behavior of
the constituents and from the geometrical arrangement of the phases.

The most basic classification criterion for inhomogeneous materials is based on the
microscopic phase topology. In matrix–inclusion arrangements only the matrix shows a
connected topology and the constituents play clearly distinct roles. In interpenetrating
and random phase arrangements, in contrast, the phases cannot be readily distinguished
topologically. Obviously, an important parameter in continuum micromechanics is the
level of inhomogeneity of the constituents, which is often described by the phase contrast.
For example, the elastic phase contrast takes the form

cel =
E(i)

E(m)
, (2.1.1)

where E stands for the Young’s modulus, (m) denotes the matrix and (i) the inhomo-
geneities.

2.1.2 Length Scales

In the present context the lowest length scale described by a model is termed the mi-
croscale, the largest one the macroscale and intermediate ones are called mesoscales.

4



2 Theoretical Approach

For each pair of length scales, on the one hand, the fluctuating contributions to the
fields at the smaller length scale (“fast variables”) influence the behavior at the larger
length scale only via their volume averages. On the other hand, gradients of the fields
as well as compositional gradients at the larger length scale (“slow variables”) are not
significant at the smaller length scale, where these fields appear to be locally constant
and can be described in terms of uniform “applied fields” or “far fields”. Formally, this
splitting of the strain and stress fields, ε(r) and σ(r), into slow and fast contributions
can be written as

ε(r) = �ε�+ ε
�
(r) and σ(r) = �σ�+ σ

�
(r) , (2.1.2)

where �ε� and �σ� are the macroscopic (slow) fields, whereas ε
� and σ

� stand for the
microscopic fluctuations.

2.1.3 Homogenization and Localization

The “bridging of length scales”, which constitutes the central issue of continuum mi-
cromechanics, involves two main tasks: homogenization and localization.

Homogenization may be interpreted as describing the behavior of a material that is
inhomogeneous at some lower length scale in terms of an energetically equivalent, ho-
mogeneous reference material at some higher length scale. The local responses at the
smaller length scale must be deduced from the loading conditions on the larger length
scale; this task is referred to as localization.

For any volume element Ωs of an inhomogeneous material that is sufficiently large
and contains no significant gradients of composition or applied loads, homogenization
relations take the form of volume averages of some variable f(r),

�f� = 1

Ωs

ˆ
Ωs

f(r)dΩ . (2.1.3)

Accordingly, the homogenization relations for the stress and strain tensors can be given
as

�ε� =
1

Ωs

ˆ
Ωs

ε(r)dΩ

�σ� =
1

Ωs

ˆ
Ωs

σ(r)dΩ , (2.1.4)

The microscopic strain and stress fields, ε(r) and σ(r), in a given volume element Ωs are
formally linked to the corresponding macroscopic responses, �ε� and �σ�, by localization
relations of the type

ε(r) = A(r) �ε� and σ(r) = B(r) �σ� . (2.1.5)

A(r) and B(r) are known as mechanical strain and stress concentration tensors, respec-
tively. When they are known, localization tasks can obviously be carried out. Equations

5



2 Theoretical Approach

(2.1.2) and (2.1.4) imply that the volume averages of fluctuations vanish for sufficiently
large integration volumes,

1

Ωs

ˆ
Ωs

ε
�
(r)dΩ = 0 =

1

Ωs

ˆ
Ωs

σ
�
(r)dΩ . (2.1.6)

2.1.4 Volume Elements

Ideally, the homogenization volume should be chosen to be a proper representative volume
element (RVE), i.e., a subvolume of Ωs that is of sufficient size to contain all information
necessary for describing the behavior of the composite. Representative volume elements
can be defined, on the one hand, by requiring them to be statistically representative of
the microgeometry. Such “geometrical RVEs” are independent of the physical property
to be studied. On the other hand, the definition can be based on the requirement that
the overall responses with respect to some given physical behavior are independent of the
actual position and orientation of the RVE and/or of the boundary conditions applied
to it (“physical RVEs”).

An RVE must be sufficiently large to allow a meaningful sampling of the microfields
and sufficiently small for the influence of macroscopic gradients to be negligible and for
an analysis of the microfields to be possible [7, 13].

For RVEs the Hill condition [15] links the microscopic and macroscopic strain energy
densities as

1

2

�
σTε

�
=

1

2
�σ�T �ε� = �w� (2.1.7)

i.e., strain energies can be evaluated from either microscopic and macroscopic fields.

2.1.5 Overall Behavior, Material Symmetries

The homogenized strain and stress fields of an elastic inhomogeneous material as obtained
by equation (2.1.4), can be linked by effective elastic tensors E∗ and C∗ as

�σ� = E∗ �ε� and �ε� = C∗ �σ� , (2.1.8)

respectively, which may be viewed as the elastic tensors of an appropriate equivalent
homogeneous material.

The resulting homogenized behavior of many multi-phase materials can be idealized as
being statistically isotropic or quasi-isotropic. Statistically isotropic multi-phase materi-
als show the same overall behavior in all directions, and their effective elasticity tensors
and thermal expansion tensors take the form

6



2 Theoretical Approach

E =





E11 E12 E12 0 0 0
E12 E11 E12 0 0 0
E12 E12 E11 0 0 0
0 0 0 E44 0 0
0 0 0 0 E44 0
0 0 0 0 0 E44 =

1
2(E11 − E12)




α =





α

α

α

0
0
0




(2.1.9)

in Nye notation. Two independent parameters are sufficient for describing isotropic
overall linear elastic behavior and one is required for the effective thermal expansion
behavior in the linear range.

2.2 Major Modeling Strategies in Continuum

Micromechanics of Materials

For convenience, the majority of the resulting modeling approaches may be treated as
falling into two groups. The first of these comprises methods that describe interactions,
e.g., between phases or between individual reinforcements, in a collective way in terms
of phase-wise uniform fields and comprises

• Mean Field Approaches (MFAs) and related methods: The microfields within each
constituent of an inhomogeneous material are approximated by their phase aver-
ages �ε�(p) and �σ�(p), i.e., piecewise uniform stress and strain fields are employed.
The phase geometry enters these models via statistical descriptors, such as volume
fractions, phase topology, reinforcement aspect ratio distributions, etc. In MFAs
the localization relations take the form

�ε�(p) = Ā(p) �ε�
�σ�(p) = B̄(p) �σ� (2.2.1)

and the homogenization relations can be written as

�ε�(p) =
1

Ω(p)

ˆ
Ω(p)

ε(x)dΩ with �ε� =
�

p
ξ
(p) �ε�(p)

�σ�(p) =
1

Ω(p)

ˆ
Ω(p)

σ(x)dΩ with �σ� =
�

p
ξ
(p) �σ�(p) (2.2.2)

where (p) denotes a given phase of the material, Ω(p) is the volume occupied by this
phase and ξ(p) = Ω(p)/

�
kΩ

(k) is the volume fraction of the phase. In contrast
to equation (2.1.5) the phase concentration tensors Ā and B̄ used in MFAs are
not functions of the spatial coordinates. Mean field approaches tend to be for-
mulated in terms of the phase concentration tensors, they pose low computational
requirements, and they have been highly successful in describing the thermoelastic
response of inhomogeneous materials.

7



2 Theoretical Approach

• Variational Bounding Methods: Variational principles are used to obtain upper
and lower bounds on the overall elastic tensors, elastic moduli, secant moduli, and
other physical properties of inhomogeneous materials the microgeometries of which
are described by statistical parameters. Bounds are important tools for assessing
other models of inhomogeneous materials. Furthermore, in many cases one of the
bounds provides good estimates for the physical property under consideration, even
if the bounds are rather slack.

The second group of approximations is based on studying discrete microgeometries, for
which they aim at fully accounting for the interactions between phases. It includes

• Periodic Microfield Approaches (PMAs), also referred to as periodic homogeniza-
tion schemes or unit cell methods. In these methods the inhomogeneous material
is approximated by an infinitely extended model material with a periodic phase
arrangement. The resulting periodic microfields are usually evaluated by analyzing
repeating unit cells via analytical or numerical methods. Unit cell methods are
often used for performing materials characterization of inhomogeneous materials
in the nonlinear range, but they can also be employed as micromechanically based
constitutive models. The high resolution of the microfields provided by PMAs can
be very useful for studying the initiation of damage at the microscale. However,
because they inherently give rise to periodic configurations of damage and patterns
of cracks, PMAs are not suited to investigating phenomena such as the interaction
of the microgeometry with macroscopic cracks.
Periodic microfield approaches can give detailed information on the local stress and
strain fields within a given unit cell, but they tend to be computationally expensive.
All numerical models used in this thesis belong to this group of methods.

• Embedded Cell or Embedding Approaches: The inhomogeneous material is ap-
proximated by a model material consisting of a “core” containing a discrete phase
arrangement that is embedded within some outer region to which far field loads
are applied. The material properties of this outer region may be described by some
macroscopic constitutive law, they can be determined self-consistently or quasi-self-
consistently from the behavior of the core, or the embedding region may take the
form of a coarse description and/or discretization of the phase arrangement. ECAs
can be used for materials characterization, and they are usually the best choice for
studying regions of special interest in inhomogeneous materials, such as the tips of
macroscopic cracks and their surroundings. Like PMAs, embedded cell approaches
can resolve local stress and strain fields in the core region at high detail, but tend
to be computationally expensive, see, e.g., [39].

• Windowing Approaches: Subregions (“windows”) are randomly chosen from a given
phase arrangement and subjected to BCs that guarantee energy equivalence be-
tween the micro- and macroscales. Accordingly, windowing methods describe the
behavior of individual inhomogeneous samples rather than of inhomogeneous ma-
terials and give rise to apparent rather than effective macroscopic responses [29].
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2.3 Mean Field Methods

Mean field methods in continuum micromechanics aim at obtaining the overall properties
of inhomogeneous materials, such as their overall elasticity and compliance tensors, E
and C, respectively, and their overall tensor of coefficients of thermal expansion (CTE),
α, as well as descriptors related to phase transformations in terms of the appropiate
phase properties and of statistical information on the phase topology and geometry. The
descriptions are based on phase averaged stress and strain fields in the constituents, in
terms of which localization is also carried out.

The most important mean field descriptions are:

• The Eshelby method for dilute composites.

• Mori-Tanaka approaches.

• Classical and generalized self-consistent schemes.

2.3.1 Transformation Field Analysis - Mori-Tanaka Method

Transformation field analysis (TFA) is a method for the micromechanical analysis of local
fields and overall properties of multi-phase heterogeneous media subjected to uniform
thermomechanical or transformation loading [8]. This approach relies on an explicit
evaluation of piecewise uniform approximations of the residual fields that are introduced
in multiphase solids by a distribution of piecewise uniform eigenstrains or eigenstresses
(e.g. temperature changes, phase transformations), jointly referred to as transformation
fields. When used with a suitable micromechanical model, in the present case with the
Mori-Tanaka method (MTM) and the classic self consistent scheme (CSCS), the analysis
provides piecewise uniform approximations of the local strain and stress fields in the
phases, and estimates of the overall thermomechanical properties as well as the strain
energy of a representative volume of the heterogeneous media.

In order to account for the presence of the different eigenstrains in the different con-
stituents and for their interactions, this approach extends equations (2.2.1) to take the
form

�ε�(p) = Ā(p) �ε�+
�

D̄(pq)e(q)

�σ�(p) = B̄(p) �σ�+
�

F̄(pq)s(q) , (2.3.1)

and equations (2.1.5) to become

�ε� = C∗ �σ�+ e∗

�σ� = E∗ �ε�+ s∗ . (2.3.2)

The tensors D̄(ij) and F̄(ij) are referred to as the eigenstrain and eigenstress influence
factor tensors.
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With the above ansatz the overall stress and strain contributions, e∗ and s∗, due to
the phase eigenstrains e(p) and eigenstresses s(p) can be expressed as

e∗ =
�

(p)

ξ
(p)

�
e(p) −

�
C(p)F̄(pq)E(q)e(q)

�

s∗ =
�

(p)

ξ
(p)

�
s(p) −

�
E(p)D̄(pq)C(q)s(q)

�
. (2.3.3)

By combining the TFA ansatz with the Mori-Tanaka expressions for the phase concen-
tration tensors, strain influence tensors [8]

D̄(mm)
M = Ā(m)

M

�

(j) �=(m)

ξ
(j)(I− Ā(j)

dil)(E
(j) −E(m))−1E(m)

D̄(im)
M = Ā(i)

M

�

(j) �=(m)

ξ
(j)(I− Ā(j)

dil)(E
(j) −E(m))−1E(m) − (I− Ā(i)

dil)(E
(i) −E(m))−1E(m)

D̄(mi)
M = −ξ

(i)Ā(m)
M (I− Ā(i)

dil)(E
(i) −E(m))−1E(i)

D̄(ii)
M = (I− ξ

(i)Ā(i)
M )(I− Ā(i)

dil)(E
(i) −E(m))−1E(i)

D̄(ij)
M = −ξ

(j)Ā(i)
M (I− Ā(j)

dil)(E
(j) −E(m))−1E(j) (2.3.4)

and stress influence factor tensors

F̄(mm)
M = B̄(m)

M

�

(j) �=(m)

ξ
(j)(I− B̄(j)

dil)(C
(j) −C(m))−1C(m)

F̄(im)
M = B̄(i)

M

�

(j) �=(m)

ξ
(j)(I− B̄(j)

dil)(C
(j) −C(m))−1C(m) − (I− B̄(i)

dil)(C
(i) −C(m))−1C(m)

F̄(mi)
M = −ξ

(i)B̄(m)
M (I− B̄(i)

dil)(C
(i) −C(m))−1C(i)

F̄(ii)
M = (I− ξ

(i)B̄(i)
M )(I− B̄(i)

dil)(C
(i) −C(m))−1C(i)

F̄(ij)
M = −ξ

(j)B̄(i)
M (I− B̄(j)

dil)(C
(j) −C(m))−1C(j) (2.3.5)

can be obtained, where (i), (j) �= (m).
Like “standard” Mori-Tanaka methods, the TFA in the above form applies to matrix-

inclusion topologies.
For phase topologies that are not of the matrix-inclusion type, the classical self-

consistent scheme (also known as the two-phase self-consistent scheme) may be used
to evaluate the dilute phase concentration tensors. Following [8] this leads to iterative
TFA schemes of the type
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Ā(p)
n+1 =

�
I+ SnCn(E

(p) −En)
�−1

En+1 =
�

(p)

ξ
(p)E(p)(I−

�

(q)

D̄(pq)
n+1)

D̄(pp)
n+1 = (I− Ā(p)

n+1)(E
(p) −En)

−1(I− ξ
(p)

�
Ā(p)

n+1

�T
)E(p)

D̄(pq)
n+1 = −ξ

(q)(I− Ā(p)
n+1)(E

(p) −En)
−1

�
Ā(q)

n+1

�T
E(q) (2.3.6)

and

B̄(p)
n+1 =

�
I+En(I− Sn)(C

(p) −Cn)
�−1

Cn+1 =
�

(p)

ξ
(p)C(p)(I−

�

(q)

F̄(pq)
n+1)

F̄(pp)
n+1 = (I− B̄(p)

n+1)(C
(p) −Cn)

−1(I− ξ
(p)

�
B̄(p)

n+1

�T
)C(p)

F̄(pq)
n+1 = −ξ

(q)(I− B̄(p)
n+1)(C

(p) −Cn)
−1

�
B̄(q)

n+1

�T
C(q)

, (2.3.7)

where n is the iteration number. Obviously, some suitable starting solution must be
provided for n = 0. The iterations are stopped when the norm of the difference between
successive approximation to the effective elastic tensors falls below some specific limit.

Note that equations (2.3.4), (2.3.5), (2.3.6) and (2.3.7) cannot be used for homogeneous
inclusions.

2.4 General Remarks on Modeling Approaches Based on

Discrete Microstructures

Modeling approaches based on discrete microstructures trade off restrictions to the gen-
erality of the phase arrangements against the capability of using fine grained geometrical
descriptions and of resolving details of the stress and strain fields at the length scale of
the inhomogeneities. Because they describe the microfields in detail such approaches are
often referred to as “full field methods”. The main fields of application of these meth-
ods are studying the nonlinear behavior of inhomogeneous materials and evaluating the
microscopic stress and strain fields of relevant microgeometries at high resolution.

There are two philosophies for obtaining heterogeneous volume elements for modeling:
generating them by computer algorithms or basing them directly on geometries obtained
by experiment.

Computer generated “synthetic” volume elements may be classified into two groups:

• Generic arrangements of a number of reinforcements that are randomly positioned
and, where appropriate, randomly oriented [6, 13, 28, 31].
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• Specific phase arrangements that have identical phase distribution statistics as some
target material [38, 40].

For volume elements that contain considerable numbers of inhomogeneities or other mi-
crostructural features, statistically reconstructed phase arrangements are definitely more
specific to a given target material than are generic random microgeometries.

Computer generated microgeometries have tended to employ idealized reinforcement
shapes, equiaxed particles embedded in a matrix, for example, being often represented
by spheres, and fibers by cylinders or prolate spheroids of appropriate aspect ratio.

Instead of generating phase arrangements by computer algorithms, volume elements
may be chosen to follow as closely as possible the microgeometry in part of a given
sample of the material to be modeled, obtained from metallographic sections, serial
sections, tomographic data, etc. The resulting volume elements are often referred to as
“real microstructure” models [3, 10].

The model geometry must be complex enough to capture the physical behavior of
the material under study. A number of numerical studies [6, 41] have indicated that
substantially larger volume elements may be necessary for satisfactorily approximating
the required overall symmetry and for obtaining good agreement between the responses of
statistically equivalent phase arrangements, especially at elevated overall inelastic strains.
This indicates that the size of satisfactory multi-inclusion unit cells depends markedly
on the phase material behavior.

At present, the FEM is the most popular numerical scheme for evaluating full field
models, especially in the nonlinear range, where its flexibility and capability of support-
ing a wide range of constitutive descriptions for the constituents and for the interfaces
between them are especially appreciated. An additional asset of the FEM in the context
of continuum micromechanics is its ability to handle discontinuities in the stress and
strain components (which typically occur at interfaces between different constituents) in
a natural way via appropriately placed element boundaries.

Applications of the FEM to micromechanical studies tend to fall into four main groups,
compare fig.2.4.1.

• Phase arrangements discretized by an often high number of “standard” continuum
elements, the mesh being designed in such a way that element boundaries are po-
sitioned at all interfaces between constituents. Such approaches use unstructured
meshes and have the advantage that in principle any microgeometry can be dis-
cretized at a prescribed resolution and that readily available commercial FE pack-
ages may be used. This approach is followed, e.g., in [6, 13, 21, 28, 34, 35, 36, 40].

• Special hybrid elements may be used, which are specifically formulated to model
the deformation, stress, and strain fields in an inhomogeneous region consisting of
a single inhomogeneity or void together with the surrounding matrix on the basis
of some appropriate analytical theory, compare, e.g., [11].

• When the phase arrangements to be studied are based on digital images of actual
microgeometries, structured meshes that consists of regular, rectangular or hexa-
hedral elements of fixed size and have the same resolution as the digital data are
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used. Such meshes have the advantage of allowing a straightforward automatic
model generation from appropriate experimental data and of avoiding ambiguities
in smoothing the digital data. This modeling strategy is followed, e.g., in [12, 37].

• Structured meshes may be combined with assigning phase properties at the inte-
gration point level of standard elements (“multi-phase elements”), for an example
see [33].

Figure 2.4.1: Sketch of FEM approaches used in micromechanics: a) discretization by
standard elements, b) special hybrid elements, c) pixel/voxel discretization,
d) “multi-phase elements” [4].

2.5 Periodic Microfield Models

Periodic Microfield Approaches (PMAs) aim at approximating the macroscopic and mi-
croscopic behavior of inhomogeneous materials by studying model materials that have
periodic microstructures.

2.5.1 Basic Concepts of Unit Cell Models

Periodic microfield approaches analyze the behavior of infinite periodic phase arrange-
ments under the action of far field mechanical loads, uniform temperature fields or trans-
formation strains. The most common approach to studying the stress and strain fields in
such periodic configurations is based on describing the microgeometry by a periodically
repeating unit cell (RUC).

In periodic homogenization the strain and stress fields are decomposed into constant
macroscopic strain and stress contributions (“slow variables”), �ε� and �σ�, and peri-
odically varying microscopic fluctuations (“fast variables”), ε�

(z) and σ
�
(z), by analogy
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to equation (2.5.1). Here z is a “microscopic coordinate” that has sufficient resolution
for describing the variations on the microscale. The corresponding expression for the
displacements takes the form

u(z) = �ε� z+ u
�
(z) . (2.5.1)

In periodic microfield approaches each unit of periodicity (unit cell) contributes the
same increment of the displacement vector ∆u so that the homogenized displacements
vary (multi)linearly. An idealized depiction of such a situation is presented in fig. 5.1,
which shows the variations of the strains εs(s) = �εs� + ε

�
s(s) and of the corresponding

displacements us(s) = �εs� s+u
�
s(s) along some line s in a hypothetical periodic two-phase

material consisting of constituents A and B.

Figure 2.5.1: Schematic depiction of the variation of the strains εs(s) and the displace-
ments us(s) along a generic “one-dimensional composite” (coordinate s)
consisting of constituents A and B. Symmetry points of εs(s) and us(s) are
indicated by small circles [4].

2.5.2 Boundary Conditions

Unit cells together with the boundary conditions (BCs) prescribed on them must generate
valid tilings both for the undeformed geometry and for all deformed states pertinent to
the problem. In order to achieve this, the BCs for the unit cells must be specified in
such a way that all deformation modes appropriate for the load cases to be studied
can be attained. The three major types of BCs used in periodic microfield analysis
are periodicity, symmetry, and antisymmetry. Figure 2.5.2 shows some applications of
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these types of boundary conditions for the case of a two-dimensional hexagonal array of
inhomogeneities.

Figure 2.5.2: Periodic hexagonal array of circular inhomogeneities in a matrix and 10
unit cells that can be used to describe the mechanical responses of this
arrangement under loads acting parallel to the coordinate axes [4].

The most general BCs for unit cells in continuum micromechanics are periodicity
boundary conditions, which can handle any physically valid deformation state of the
cell and, consequently, of the inhomogeneous material to be modeled.

The surface of any unit cell to be used with periodicity boundary conditions must
consist of at least N pairs of faces (or pairs of parts of faces) Γk, and the surface elements
making up a pair, k− and k+, must be identical but shifted relative to each other by “shift
vectors” ck which are linear combinations of the periodicity vectors pn, ck =

�
l c

k
l pn.

Figure 2.5.3 shows a two dimensional arrangement of inhomogeneities together with
the periodicity vectors and a number of possible unit cells, all of which have the same
volume.
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Figure 2.5.3: Six different but equivalent periodic minimum-size unit cells for a two-
dimensional periodic matrix–inclusion medium with two (slightly) non-
orthogonal translation vectors p1 and p2. Paired faces (or parts of faces)
Γk are marked by identical line styles and regions belonging to one of the
cells are highlighted by shading [4].

Figure 2.5.4: Cube-shaped periodic unit cell containing 15 randomly positioned spherical
particles of equal size at a volume fraction of ξ(i) = 0.15. Designators of
the six faces (East, West, North, South, Top, Bottom) and of the vertices
are given [29].

Because the unit cells tile the computational space by translation, neighboring cells
must fit into each other in both undeformed and deformed states. For each pair of surface
elements, Γk, equation (2.5.1) allows to express periodicity boundary conditions for the
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mechanical problem in the small strain regime as

∆uk = uk+ − uk− = u(sk + ck)− u(sk) = �ε� ∗ ck , (2.5.2)
where uk+ and uk− are the displacements at corresponding points sk + ck and sk of the
surface elements k+ and k− (which may, e.g., correspond to faces N and S in figs.2.5.4
and 2.5.5), respectively. The sk are position vectors on surface element k−, sk+ck are the
positions of the corresponding points on surface element k+, and �ε� is the macroscopic
strain, which is prescribed in displacement controlled analysis and must be determined in
load controlled analysis. These conditions enforce a “seamless fit” between neighboring
unit cells for all possible deformed states.

Figure 2.5.5: Sketch of periodicity boundary conditions as used with an initially rectan-
gular two-dimensional unit cell [4].

2.5.2.1 Macroscopic Constraints

To obtain both phase strains and phase stresses for given constraint conditions, appro-
priate macroscopic strains and stresses must be used in equations (2.2.1) and (2.3.1).

For the macroscopically unconstrained case the overall stresses vanish (i.e., zero trac-
tion boundary conditions pertain), but there are in general nonzero overall strains, leading
to the conditions

�ε� = e∗

�σ� = 0. (2.5.3)

In the macroscopically fully constrained case the effective strains are zero (i.e., zero
strain boundary conditions prevail), but nonzero macrostresses are present. Accordingly
the relations

�ε� = 0

�σ� = s∗. (2.5.4)
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hold.
For thin layers that are perfectly bonded to a much stiffer substrate (such as thin

coatings), the overall strains must be approximately zero in the plane of the layer (taken
to be the 2-3 plane in the following), whereas the macroscopic stresses vanish in the
normal direction (taken to be the 1-direction). For materials with transversely isotropic
or higher effective symmetry the macroscopic strain and stress tensors corresponding to
such conditions can be expressed as

�ε� = (e∗11 + ae
∗
22 + be

∗
33, 0, 0, e

∗
12, 0, e

∗
31)

T

�σ� = (0, s∗22 − as
∗
11, s

∗
33 − bs

∗
11, 0, s

∗
23, 0)

T (2.5.5)

where a and b are defined as

a =
E∗

1122

E∗
1111

and b =
E∗

1133

E∗
1111

(2.5.6)

For materials with lower macroscopic symmetry more complex expressions may result.
Note that the use of a micromechanical description implies that the layer’s thickness
must be at least an order of magnitude larger than the characteristic size of the inhomo-
geneities.

In equations (2.5.3) to (2.5.5), of each pair of macroscopic strain and stress components
at least one vanishes. In general cases of prescribed far-field stresses and strains, equation
(2.3.1) must be applied to evaluate the corresponding macroscopic strain and stress
components, respectively, and the above property is lost.

2.5.3 Application of Loads and Evaluation of Fields

Once suitable unit cells have been defined and appropriate BCs applied, the volume
elements must be subjected to appropriate loads in the form of uniform macroscopic
stresses as well as strains, homogeneous temperature excursions, or suitable transforma-
tion strains, i.e., the microscopic and macroscopic fields must be linked.

The method of macroscopic degrees of freedom consists in applying far field stresses
and strains to a given unit cell via concentrated nodal forces or prescribed displacements,
respectively, at the master nodes and/or pivot points. The displacements or reaction
forces at the master nodes, in turn, can be used to evaluate the macroscopic strains and
stresses acting on the composite.

In order to obtain three-dimensional homogenized elastic tensors with the method of
macroscopic degrees of freedom six suitable, linearly independent load cases must be
solved for.

2.6 Strain Energy Density

The strain energy density is an important factor in the energetics of phase transfor-
mations, which play a major role in many industrially relevant processes in materials
engineering.
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The elastic strain energy of a volume Ω can be written as

We =
1

2

ˆ
Ω
σT(r)εe(r)dΩ , (2.6.1)

where εe stands for the elastic strain.
For inhomogeneous materials consisting of constituents (p) of volume Ω(p) (with�
(p)Ω

(p) = Ω) that take the form of a matrix (m) and inhomogeneities (i), where the
latter (but not the former) are loaded by phase-wise homogeneous stress-free eigenstrains
e(i), equation (2.6.1) takes the form

We =
1

2
Ω
�
σTε

�
− 1

2

�

(i)

Ω(i) �σ�(i)
T
e(i) . (2.6.2)

Assuming Ω to be a representative volume element, so that the Hill’s condition,�
σTε

�
= �σ�T �ε�, holds, the elastic strain energy density of the material, �we� = We/Ω,

results as
�we� =

1

2
�σ�T �ε� − 1

2

�

(i) �=(m)

ξ
(i) �σ�(i)

T
e(i) . (2.6.3)

Provided the macroscopic stresses and strains fulfill the condition �σ�T �ε� = 0, equa-
tion (2.6.3) allows the elastic strain energy density to be extended as

�we� = −1

2

�

(i) �=(m)

ξ
(i) �σ�(i)

T
e(i) . (2.6.4)

This is the case for the three sets of constraints introduced in section 2.5.2.1.
Equations (2.6.3) and (2.6.4) can be evaluated by using estimates for the stresses in

the inhomogeneities, �σ�(i), and, where required, for the macrofields �σ� and �ε� obtained
with the TFA or with unit cell methods.
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This chapter describes the modeling process and general considerations assumed. Unit
cell geometry and topology, element type employed, macroscopic constraints applied,
loading cases and material properties are the main steps to define a periodic microfield
model using the finite element method. Furthermore, micromechanical concepts such as
length scales or periodicity of the unit cell are also taken into account.

3.1 Material Description: Ti(1−x)AlxN

Titanium aluminium nitride (TiAlN) or aluminium titanium nitride (AlTiN for Al mole
fraction x > 0.5) is a metastable three-phase hard coating consisting of aluminium,
titanium (metallic elements) and nitrogen (non-metallic element). As the Al mole fraction
can vary between 0 and 1 the following expression is used: Ti(1−x)AlxN.

During annealing, structural changes occur in the coating, which transforms from a
single-phase solid solution to a nanostructured three phase material by spinodal decom-
position. These give rise to two different types of inhomogeneous phases (TiN and AlN)
and an increase in hardness.

Another important point in the description of this material is the energetic balance
during the decomposition process of Ti(1−x)AlxN to form TiN and AlN precipitates.
The energetic balance can be expressed depending on the volume fraction of transformed
material ξ, the difference in chemical energy ∆Gchem, the elastic strain energy We and
the interface energy O, as:

∆G = (∆Gchem −We −O)ξ . (3.1.1)

In the following the microstructure of this material is idealized, either, as a matrix-
inclusion or as a random topology, although atom-probe investigations [22] have shown
that these materials are heterogeneous at the nanoscale, where their phase topology is
interpenetrating (figures 3.1.1 and 3.1.2).
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Figure 3.1.1: Microstructure sample of Ti0.5Al0.5N obtained by 3D atom probe investiga-
tions [22]. Red phase represents Ti-isosurface and blue phase Al-isosurface.
The total length of the sample is 30 nm.

Figure 3.1.2: Microstructure sample of Ti0.5Al0.5N obtained by 3D atom probe investiga-
tions [22]. Red phase represents Ti-isosurface and blue phase Al-isosurface.

Further explanations about microstructure, kinetics and energy balance of Ti(1−x)AlxN
can be found in [23].

The following relations link the volume fractions of the phases and the Al mole fraction
x [5]:

ξ(TiN)

ξ(AlN)
≈ 1− x

x
, (3.1.2)

ξ
(TiN) + ξ

(AlN) + ξ
(m) = 1 , (3.1.3)

ξ
(TiN) + ξ

(AlN) = ξ
(p)

. (3.1.4)

Equation (3.1.2) states that the ratio of volume fractions of TiN and AlN is propor-
tional to the ratio of the mole fractions of Ti and Al in the parent phase.
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In table 3.1.1, the Young’s moduli E(p), the Poisson numbers ν(p) and the volume
changes δ(p) upon transformation of the Ti(1−x)AlxN matrix into TiN and AlN daughter
phases are listed, evaluated by ab-initio modeling [23] for a number of different Al mole
fractions (x). These are the values employed to define the material parameters in both
analytical and numerical micromechanical methods, TFA and FEM.

x E(m) ν(m) E(TiN) ν(TiN) δ(TiN) E(AlN) ν(AlN) δ(AlN)

[ ] [GPa] [ ] [GPa] [ ] [ ] [GPa] [ ] [ ]
0.0 414.0 0.25 414.0 0.25 0.0 378.0 0.25 −
0.25 400.50 0.25 414.0 0.25 +0.02396445 378.0 0.25 −0.10438249
0.50 387.00 0.25 414.0 0.25 +0.05195858 378.0 0.25 −0.07976260
0.66 381.00 0.25 414.0 0.25 +0.07472960 378.0 0.25 −0.06013910
0.75 378.01 0.25 414.0 0.25 +0.08965584 378.0 0.25 −0.04669945
1.0 378.0 0.25 414.0 0.25 − 378.0 0.25 0.0

Table 3.1.1: Material parameters of Ti(1−x)AlxN transforming into TiN and AlN eval-
uated by ab-initio modeling for a number of different Al mole fractions x

[23].

Note that Young’s moduli E(p) are quite similar (9% difference between TiN and AlN),
Poisson numbers ν(p) do not change and transformation strains δ(p) in TiN and AlN
have opposite signs. In the following, continuum micromechanical methods are used for
estimating the transformation-induced SEDs of nano inhomogeneous phase arrangements
of the type shown in figure 3.1.1 and 3.1.2.

3.2 Generation of Unit Cells

3.2.1 General Remarks

Three dimensional periodic cube-shaped unit cells with an edge length of e that contain
a predefined number of monodisperse inclusions (spherical, cubic or tetrahedral shape)
embedded in a matrix were meshed with Hypermesh. The inclusions are randomly dis-
tributed, of identical size and they do not overlap. The procedure followed in generating
the underlying phase arrangement was the same as the one explained in [31, 34, 35], i.e.,
Random Sequential Insertion and Random Perturbation algorithms were employed. A
relative scale is used to define length units for unit cell models throughout the present
work.

The unit cell’s size must be large enough to properly describe the composite behaviour
and small enough in terms of computational requirements.

Four different sets of unit cell arrangements were generated and are defined by the
following nomenclature:
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• UCSP: unit cells containing spherical particles, and showing a matrix-inclusion
topology

• UCCP: unit cells containing randomly oriented cube-shaped particles, and showing
a matrix-inclusion topology

• UCTP: unit cells containing randomly oriented tetrahedral particles, and showing
a matrix-inclusion topology

• UCRT: unit cells consisting of cube shaped regions each of which is randomly
assigned to some phase such that the target phase volume fractions are reached.
These voxel models constitute three-phase random composites (i.e., they do not
necessarily show a matrix-inclusion topology).

Abaqus solid elements are used for the linear analysis. Second-order elements provide
higher accuracy than first-order ones and they capture stress concentrations more effi-
ciently. In combination with a tetrahedral element shape, they are able to model com-
plex geometric features. Specifically, they can model phase arrangements with matrix-
inclusion topology with fewer elements and more accurately compared to using linear
elements, four-node tetrahedra being known to have suboptimal convergence properties
[1].

Consequently, two types of volume element were employed:

• C3D10: second order continuum three-dimensional tetrahedral elements with 10
nodes and 4 integration points

• C3D20: second order continuum three-dimensional cubic elements with 20 nodes
and 27 integration points

The meshes of unit cells UCSP, UCCP and UCTP are composed of C3D10 elements and
UCRT uses C3D20 elements (the same element types are used for all phases in a given
unit cell).

Another factor in modeling is element size. When unit cells formed by a small number
of big elements are used, the results tend to be inaccurate, but the computational cost
is reduced. A simple rule for choosing the cell size was taken: there should be at least
two “layers” of elements in the matrix between any pair of neighbouring inhomogeneities.
This way, stress fields between inclusions can be modeled sufficiently well.

As mentioned before, the unit cell must be periodic along the three directions X, Y
and Z in both deformed and undeformed states. To fulfill this condition, periodicity
boundary conditions are defined on the unit cell using the program MedTool 3.4 (a shell
script manager developed at the ILSB by Pahr). Figures (3.2.1) and (3.2.2) show how
periodicity holds for deformed and undeformed states of such unit cells.
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Figure 3.2.1: Undeformed random section in an XY -plane of unit cell arrangement UCSP
for Al mole fraction x = 0.50. Green represents the Ti0.5Al0.5N matrix,
orange the TiN phase and blue the AlN phase. Particle volume fractions
are ξ(TiN) = ξ(AlN) = 0.2.

Figure 3.2.2: Deformed shape of the XY -section shown in 3.2.1 of unit cell arrangement
UCSP after phase transformation for Al mole fraction x = 0.50 and un-
constrained conditions. Green represents the Ti0.5Al0.5N matrix, orange
the TiN phase and blue the AlN phase. Particle volume fractions are
ξ(TiN) = ξ(AlN) = 0.2. The deformation scale factor is 21.576.
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For each set of phase arrangements five phase distributions were created by generating
one unit cell geometry and then providing different random phase assignments for it. This
was done by using a Python script employing a suitable random number generator. The
purpose of this procedure is to estimate the dependence in the parameters of interest
(strain energy density, overall thermal expansion tensor and stiffness matrix) and to
remove fluctuations due to individual samples.

The underlying phase geometries contain some 20 and 24 particles, a number known
to give reasonable approximations to elastic behaviour [7].

For unit cells UCSP, UCCP and UCTP, assignments of TiN and AlN to individual
inhomogeneities was controlled by random selection within constraint of maintaining
mole fraction; for UCRT phase assignment of each individual element (voxel) was under
random control.

All cases studied are summarised in the following table (3.2.1):

Case x ξ(p) Mac.Constr. UnitCell Inclusions Shape
[ ] [ ] [ ] [ ] [ ] [ ] [ ]
1 0.25 0.40 Unconstrained UCSP 24 Spherical
2 0.50 0.40 Unconstrained UCSP 24 Spherical
3 0.66 0.40 Unconstrained UCSP 24 Spherical
4 0.75 0.40 Unconstrained UCSP 24 Spherical
5 0.50 0.40 Fully Constrained UCSP 24 Spherical
6 0.50 0.40 LayerConstraint UCSP 24 Spherical
7 0.50 0.20 Unconstrained UCCP 22 Cubic
8 0.50 0.20 Unconstrained UCTP 20 Tetrahedral
9 0.50 0.50 Unconstrained UCRT − −

10 0.50 0.66 Unconstrained UCRT − −
11 0.50 0.90 Unconstrained UCRT − −

Table 3.2.1: Set of phase arrangements studied for different combinations of Al mole
fractions x, particle volume fractions ξ(p), macroscopic constraints and unit
cell arrangements.

3.2.2 Matrix-Inclusion Topology

Matrix-inclusion topologies are characterized by having a special distribution of the con-
stituents. The matrix phase is continuous, i.e., all inclusions are surrounded by matrix
and it is possible to go through the unit cell from one face of the cell to the opposite one
while staying within the contiguous matrix phase, see figure (3.2.3).
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Figure 3.2.3: Undeformed random section in plane an XY -plane of unit cell arrangement
UCSP for Al mole fraction x = 0.50. Green represents the Ti0.5Al0.5N
matrix, orange the TiN phase and blue the AlN phase. Particle volume
fractions are ξ(TiN) = ξ(AlN) = 0.2.

Three shapes for the inclusions were considered: spheres, cubes and tetrahedra.

3.2.2.1 Spherical particles

The unit cell arrangement UCSP contains 24 spherical inclusions (r = 0.15846e, where r
is the radius of the inclusions) of TiN and AlN embedded in a Ti(1−x)AlxN matrix. This
number of particles can be estimated to be sufficient for providing reliable results [35].
Also, there is a physical limit in terms of the maximum particle volume fraction that can
be reached, ξ(p)max,phys = 0.74. This limit arises because the fcc and hcp packings are the
densest ones that can be reached with spheres of equal size.

Within the present work periodic arrangements of spheres are generated by program
PARGEN, an in-house code based on the work of Segurado [34]. It combines Random
Sequential Insertion and Random Perturbation algorithms to reach maximum particle
volume fractions of about ξ

(p)
max,alg = 0.50. To ensure that particle arrangements can be

meshed without undue difficulty, a minimum particle distance of d (int−p)
min = 0.025e and

a minimum distance of the spheres’ surfaces from the cell faces of d (cell−bounds)
min = 0.025e

were selected.
Figure 3.2.4 shows the UCSP mesh for the particular case of Al mole fraction x = 0.5

and in figures 3.2.5 to 3.2.9 and 3.2.10 TiN (orange color) and AlN (blue color) spherical
particles and Ti0.5Al0.5N matrix (green color) can be easily distinguished.

Also, in figures 3.2.5 to 3.2.9 the five sets of particle assignments of a unit cell of the
type UCSP (x = 0.50 and ξ(m) = 0.6) are displayed.
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Figure 3.2.4: Unit cell arrangement UCSP containing 24 spherical inclusions (total par-
ticle volume fraction ξ(p) = 0.4) for Al mole fraction x = 0.50. Green
represents the Ti0.5Al0.5N matrix, orange the TiN phase and blue the AlN
phase.

Figure 3.2.5: TiN and AlN spherical particles (volume fractions ξ(TiN) = ξ(AlN) = 0.2)
contained in unit cell arrangement UCSP for Al mole fraction x = 0.50 for
phase assignment #1. Orange represents the TiN phase and blue the AlN
phase.
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Figure 3.2.6: TiN and AlN spherical particles (volume fractions ξ(TiN) = ξ(AlN) = 0.2)
contained in unit cell arrangement UCSP for Al mole fraction x = 0.50 for
phase assignment #2. Orange represents the TiN phase and blue the AlN
phase.

Figure 3.2.7: TiN and AlN spherical particles (volume fractions ξ(TiN) = ξ(AlN) = 0.2)
contained in unit cell arrangement UCSP for Al mole fraction x = 0.50 for
phase assignment #3. Orange represents the TiN phase and blue the AlN
phase.
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Figure 3.2.8: TiN and AlN spherical particles (volume fractions ξ(TiN) = ξ(AlN) = 0.2)
contained in unit cell arrangement UCSP for Al mole fraction x = 0.50 for
phase assignment #4. Orange represents the TiN phase and blue the AlN
phase.

Figure 3.2.9: TiN and AlN spherical particles (volume fractions ξ(TiN) = ξ(AlN) = 0.2)
contained in unit cell arrangement UCSP for Al mole fraction x = 0.50 for
phase assignment #5. Orange represents the TiN phase and blue the AlN
phase.

29



3 Modeling

Figure 3.2.10: Ti0.5Al0.5N matrix (volume fraction ξ(m) = 0.6) contained in the unit cell
arrangement UCSP.

3.2.2.2 Cube-shaped particles

The unit cell arrangement UCCP contains 22 cube-shaped inclusions (l = 0.2087e, where
l is the edge length of the inclusions) of TiN and AlN embedded in a Ti0.5Al0.5N matrix
with a particle volume fraction of ξ(p) = 0.20. This unit cell is one of a number of phase
arrangements developed by Rasool [31].

Figure 3.2.11 shows the UCCP mesh and in figure 3.2.12 TiN (orange color) and AlN
(blue color) cube-shaped particles are displayed for one of the five phase assignments.
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Figure 3.2.11: Unit cell arrangement UCCP containing 22 cube-shaped inclusions (vol-
ume fraction ξ(p) = 0.2) for Al mole fraction x = 0.50. Green represents
the Ti0.5Al0.5N matrix, orange the TiN phase and blue the AlN phase.

Figure 3.2.12: TiN and AlN cube-shaped particles (volume fractions ξ(TiN) = ξ(AlN) =
0.1) contained in unit cell arrangement UCCP for Al mole fraction x =
0.50. Orange represents the TiN phase and blue the AlN phase.
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3.2.2.3 Tetrahedral particles

The unit cell arrangement UCTP contains 20 tetrahedral inclusions (l = 0.4394e, where
l is the edge length of the inclusions) of TiN and AlN embedded in a Ti0.5Al0.5N matrix.
The particle volume fraction is ξ(p) = 0.20. This unit cell was also taken from the
doctoral thesis of Rasool [31].

Figure 3.2.13 shows the UCSP mesh and in figure 3.2.14 TiN (orange color) and AlN
(blue color) tetrahedral particles are displayed for one of the five phase assignments.

Figure 3.2.13: Unit cell arrangement UCTP containing 20 tetrahedral inclusions (volume
fraction ξ(p) = 0.2) for Al mole fraction x = 0.50. Green represents the
Ti0.5Al0.5N matrix, orange the TiN phase and blue the AlN phase.
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Figure 3.2.14: TiN and AlN tetrahedral particles (volume fractions ξ(TiN) = ξ(AlN) = 0.1)
contained in unit cell arrangement UCTP for Al mole fraction x = 0.50.
Orange represents the TiN phase and blue the AlN phase.

3.2.3 Random Topology

As mentioned in chapter 3.1 the real topology of Ti(1−x)AlxN appears to be an interpen-
etrating one. The phase assignments of individual voxels in data such as those depicted
in figures 3.1.1 and 3.1.2 could not be assessed for technical reasons, so that the elastic
strain energies of these phase arrangements could not be evaluated. In order to asses the
strain energy densities of phase arrangements that do not show straightforward matrix-
inclusion topology, random three-phase geometries were studied.

The unit cell arrangement UCRT consists of a regular array of 50x50x50 = 125000
cube-shaped elements (voxels of edge length l = 0.02e), randomly assigned to the TiN,
AlN or Ti0.5Al0.5N phases to attain the required phase volume fractions, see figure 3.2.15.

The accuracy of the microfields evaluated from arrangement UCRT can be expected
to be lower than those obtained from cells UCSP, UCCP and UCTP. In volume element
UCRT, the smallest possible phase region is a single element of 20 nodes (and thus
60 displacement degrees of freedom). In addition, in arrangements UCSP, UCCP and
UCTP all inclusions are convex, whereas in UCRT any phase must be expected to have
non-convex regions. Together with the voxel-type meshing scheme, compare figure 2.4.1,
this leads to re-entrant corners that may give rise to artificial stress concentrations in the
FE approximations and to singularities in the exact elasticity solution. Such issues with
pixel and voxel type meshes are well known and were discussed , e.g., by [12, 27, 32, 37].

Figures 3.2.15 and 3.2.16 show one of the microgeometries generated for ξ(TiAlN) = 0.5,
ξ(TiN) = ξ(AlN) = 0.25. Here only the parent phase is contiguous and the microtopol-
ogy can be classified as being of the matrix-inclusion type. In contrast to the phase
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arrangements discussed in section 3.2.2, however, the two daughter phases may contact
directly (i.e., without intervening matrix as, e.g., in figure 3.2.3) and their domains may
be non-convex.

For phase volume fractions of ξ(TiAlN) = 0.34, ξ(TiN) = ξ(AlN) = 0.33, a different
picture emerges. Here, all three phases are on an equal footing topologically, and none
of them is clearly contiguous, compare figures 3.2.17 and 3.2.18. This microstructure
is more closely related to grain-type ones, i.e., it may be viewed as a special type of a
polycrystal.

Finally, for ξ(TiAlN) = 0.1, ξ(TiN) = ξ(AlN) = 0.45, there are inclusions of the parent
phase embedded in a region of interpenetrating daughter phases, compare figures 3.2.19
and3.2.20.

Evidently, three-phase random voxel-type microstructures can lead to a range of mi-
crotopologies, depending on the phase volume fractions.

Figure 3.2.15: Unit cell arrangement UCSP for Al mole fraction x = 0.50 (phase volume
fractions ξ(TiAlN) = 0.5, ξ(TiN) = 0.25 and ξ(AlN) = 0.25 ) consisting of
125000 cube-shaped elements. Green represents Ti0.5Al0.5N, orange TiN
and blue AlN.
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Figure 3.2.16: Random section in an XY -plane of unit cell arrangement UCRT for Al
mole fraction x = 0.50 (phase volume fractions ξ(TiAlN) = 0.5, ξ(TiN) =
0.25 and ξ(AlN) = 0.25 ). Green represents Ti0.5Al0.5N, orange TiN and
blue AlN.

Figure 3.2.17: Unit cell arrangement UCSP for Al mole fraction x = 0.50 (phase volume
fractions ξ(TiAlN) = 0.34, ξ(TiN) = 0.33 and ξ(AlN) = 0.33 ) consisting of
125000 cube-shaped elements. Green represents Ti0.5Al0.5N, orange TiN
and blue AlN.
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Figure 3.2.18: Random section in an XY -plane of unit cell arrangement UCRT for Al
mole fraction x = 0.50 (phase volume fractions ξ(TiAlN) = 0.34, ξ(TiN) =
0.33 and ξ(AlN) = 0.33 ). Green represents Ti0.5Al0.5N, orange TiN and
blue AlN.

Figure 3.2.19: Unit cell arrangement UCSP for Al mole fraction x = 0.50 (phase volume
fractions ξ(TiAlN) = 0.1, ξ(TiN) = 0.45 and ξ(AlN) = 0.45 ) consisting of
125000 cube-shaped elements. Green represents Ti0.5Al0.5N, orange TiN
and blue AlN.
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Figure 3.2.20: Random section in an XY -plane of unit cell arrangement UCRT for Al
mole fraction x = 0.50 (phase volume fractions ξ(TiAlN) = 0.1, ξ(TiN) =
0.45 and ξ(AlN) = 0.45 ). Green represents Ti0.5Al0.5N, orange TiN and
blue AlN.

3.3 Boundary Conditions and Constraints

Periodicity boundary conditions are applied to the unit cells in order to link microscopic
and macroscopic states. They restrain the relative displacements between opposite faces,
so that these fit into each other in both undeformed and deformed states. Further
explanations can be found in chapter 2.5.2.

To simplify understanding, the following nomenclature is used for the faces of the
unit cells: East (E), West (W), North (N), South (S), Top (T), Bottom (B), compare
figure 2.5.4. Accordingly, edges and vertices are defined by the intersection of faces,
so that SWB, NWB, SWT, NWT, SEB, NEB, SET, NET (see figure 3.3.1) are unique
designators for the vertices.

3.3.1 Macroscopic Constraints

Three sets of macroscopic constraints are applied via the three master nodes (NWB,
SWT, SEB) that control the deformation of the unit cell arrangements: unconstrained,
fully constrained and layer constraint case. Node SWB is completely fixed, i.e., it cannot
translate in any direction.
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3.3.1.1 Unconstrained Case

In this case, node NWB is restrained in X, SWT in Y, SEB in Z -direction and node SWB
is anchored. These constraints represent an infinite periodic material that can deform
freely in all directions. Under these conditions the transformations in general lead to
nonzero macroscopic strains, whereas the macroscopic stresses must vanish.

Figure 3.3.1: Schematic representation of a unit cell for the unconstrained case.

3.3.1.2 Fully Constrained Case

In this case, all master nodes, NWB, SWT, SEB and SWB are anchored. These con-
straints represent an infinite periodic material that is not allowed to deform macroscop-
ically (periodic microscopic deformations are allowed, however). Under these conditions
there are zero macroscopic strains upon transformation, whereas the macroscopic stresses
in general are nonzero.
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Figure 3.3.2: Schematic representation of a unit cell for the fully constrained case.

3.3.1.3 Layer Constraint Case

In this case, nodes NWB, SWT and SWB are anchored and node SEB is restrained in
Y and Z -direction. These conditions describe a coating, a thin layer deposited on a stiff
substrate, that only can be deformed in the normal direction X to its plane of residence
YZ. Under these conditions in general neither the macroscopic stress nor the macroscopic
strain tensors are zero upon transformation.

Figure 3.3.3: Schematic representation of a unit cell for the layer constraint case.

3.4 Load Cases

Seven load cases are applied to the unit cells in the present study.
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• The thermoelastic capabilities of the program are employed for modeling the phase
transformation and the volume changes δ(p) listed in table 3.1.1 are applied via
thermal expansions. This is done by setting the coefficients of thermal expansion
of the phases to α(p) = δ(p)/3 and applying a temperature increase of ∆T = 1K.
This way, the SED is obtained and the macroscopic transformation strain e∗ can
be evaluated from the deformations of the master nodes (the macroscopic stress
contribution s∗ is obtained in analogy from the reaction forces of the master nodes).

• Six linearly independent mechanical loading cases (three tensile loads and three
shear loads) allow to compute the effective elasticity matrix. This information is
not the main goal in the present work, but it helps in assessing the deviations of
the phase arrangements from macroscopic isotropy.
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In this chapter results obtained for the different unit cells are analyzed, interpreted and
explained. The principal study is done on the SED and on its dependence on phase
geometry and phase properties. Meshes of the unit cells were analyzed to check the real
volume fraction of the phases (IVOL). A Zener factor (A) was also calculated in order
to asses the deviation from isotropic macroscopic behaviour of the composite RVEs.

4.1 General Remarks

4.1.1 Computer analysis

In order to check if the particle volume fractions of the unit cell meshes generated with
Hypermesh match with the targeted value, the volumes of the integration points (IVOL)
are evaluated. Once all the IVOL values of each phase were added, the results showed
that the maximum difference between the real and target volume fractions was about
0.025%, small enough to guarantee the reliability of the unit cell meshes.

To perform the finite element analyses, Abaqus V.6.9-1 [1] was used. Linear analyses
were carried out because the strain along the three main directions (X, Y, Z ) is less than
one per cent (εX ≈ εY ≈ εZ ≤ 1%). No large-displacement formulation was used for the
step calculation.

The SED results obtained with Abaqus in the five samples of each of the eleven cases
(table 3.2.1) are extremely similar. Consequently, the standard deviation of these samples
can be approximated as zero, and no error bars are displayed in the graphics where SED
is plotted. In the following, we will denote the SED mean value of the 5 samples.

Analytical results based on the Transformation Field Analysis and Mori-Tanaka meth-
ods are computed with TRFMULT, it is an in-house program developed at the ILSB
by Böhm, which allows to evaluate the strain energies of inhomogeneous materials with
different micromechanical models.

4.1.2 Material Properties

Previous investigations [23] have demonstrated that
��(1− x)δ(TiN)

�� ≤
��xδ(AlN)

�� (see figure
4.1.1), so that the volume change associated with the formation of TiN and AlN particles
is negative for any Al mole fraction. Figure 4.1.2 shows the macroscopic shrinkage of
a unit cell of the type UCSP (one of five sets of particle assignments for x = 0.50 and
ξ(m) = 0.6) after transformation.
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Figure 4.1.1: Absolute value of phase mole fraction times phase volume change
((1− x )δ(TiN) and xδ(AlN)) for the decomposition of Ti(1−x)AlxN to form
TiN and AlN, respectively.

Figure 4.1.2: Deformed shape of one unit cell of type UCSP after transformation, for an
Al mole fraction x = 0.50, phase volume fractions ξ(TiAlN) = 0.6, ξ(TiN) =
0.2 and ξ(AlN) = 0.2 and unconstrained conditions. Green represents the
Ti0.5Al0.5N matrix, orange the TiN phase and blue the AlN phase. The
deformation scale factor is 21.576.
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As expected from the phase material parameters (see table 3.1.1), the TiN particles
grow due to a positive δ(TiN), the AlN particles shrink due to a negative δ(AlN) and the
Ti(1−x)AlxN matrix adapts to the particles’ deformation due to δ(m) = 0. This behaviour
can be seen in figures 4.1.3, 4.1.4 and 4.1.5.

Figure 4.1.3: Deformed (solid mesh) and undeformed (shaded solid) Ti0.5Al0.5N matrix
after transformation, as obtained for one unit cell of type UCSP for matrix
volume fraction ξ(TiAlN) = 0.6 and unconstrained conditions. The deforma-
tion scale factor is 21.576.
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Figure 4.1.4: Deformed (solid mesh) and undeformed (shaded solid) TiN particles af-
ter transformation, as obtained for one unit cell of type UCSP for an Al
mole fraction x = 0.50, ξ(TiN) = 0.2 and unconstrained conditions. The
deformation scale factor is 21.576.

Figure 4.1.5: Deformed (solid mesh) and undeformed (shaded solid) AlN particles af-
ter transformation, as obtained for one unit cell of type UCSP for an Al
mole fraction x = 0.50, ξ(AlN) = 0.2 and unconstrained conditions. The
deformation scale factor is 21.576.

The elastic symmetry of the composite was also evaluated. The macroscopic engineer-
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ing constants E1, E2 and E3 were calculated for each case and compared, computing
the standard deviation of the three values. A low dispersion of the averages of E1, E2

and E3 indicated isotropic or, possibly, cubic symmetry. In order to clarify the material
symmetry, the Zener factor, A, was calculated via equation (4.1.1).

A =
2E44

E11 − E12
(4.1.1)

It represents the deviation from isotropic macroscopic elastic symmetry of the compos-
ite RVE; the material has an isotropic symmetry if the value of A is unity. The results
for the Zener factor shown in table (4.1.1) indicate that the elastic symmetry of both
random and matrix-inclusion topologies is isotropic.

Case x ξ(p) Mac.Constr. UnitCell E11 E12 E44 A

[ ] [ ] [ ] [ ] [ ] [GPa] [GPa] [GPa] [ ]
1 0.25 0.40 Unconstrained UCSP 482.621 160.852 160.865 0.999
2 0.50 0.40 Unconstrained UCSP 468.517 156.138 156.154 0.999
3 0.66 0.40 Unconstrained UCSP 461.314 153.757 153.772 0.999
4 0.75 0.40 Unconstrained UCSP 457.766 152.563 152.576 0.999
9 0.50 0.50 Unconstrained UCRT 471.292 157.071 157.101 0.999
10 0.50 0.66 Unconstrained UCRT 469.561 156.500 156.522 0.999
11 0.50 0.90 Unconstrained UCRT 473.727 157.875 157.913 0.999

Table 4.1.1: List of results for the Zener factor, A, calculated for different combinations
of Al mole fractions (x), daughter phase volume fraction (ξ(p)) and unit
cell arrangements. Values for E11, E12, E44 are averages from five different
assignments of daughter phases to the particles.

4.2 Strain Energy Density

Abaqus computes local (we) and average values ( �we) of the strain energy density. Local
values are defined for each integration point of the mesh and the average value is defined
with respect to the total volume of the unit cell.

In this work, only the the average values are taken into account, even though local val-
ues may provide useful information on the behaviour of the phases upon transformation.
As can be seen in figures 4.2.1, 4.2.2 and 4.2.3 local values of the SED are not uniform in
the three phases of the composite. Also, the phase averages of the SED for Ti0.5Al0.5N,
TiN and AlN differ, with values of 51

�
MJ/m3

�
, 18.3

�
MJ/m3

�
and 32.6

�
MJ/m3

�
, re-

spectively, being obtained. Studying equations (2.6.2) and (2.6.3) can explain both facts:
on the one hand, we depends on the stress-strain state of each integration point and on
the other hand, we depends on ξ(i) and e(i) of the inclusions.
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Figure 4.2.1: Predicted distribution of the strain energy we in the Ti0.5Al0.5N matrix
after transformation evaluated for one unit cell of type UCSP, phase volume
fractions ξ(TiAlN) = 0.6, ξ(TiN) = 0.2 and ξ(AlN) = 0.2 and unconstrained
conditions. The deformation scale factor is 21.576.

Figure 4.2.2: Predicted distribution of the strain energy we in the TiN particles after
transformation evaluated for one unit cell of type UCSP, Al mole fraction
x = 0.50, phase volume fraction ξ(TiN) = 0.2 and unconstrained conditions.
The deformation scale factor is 21.576.
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Figure 4.2.3: Predicted distribution of the strain energy we in the AlN particles after
transformation evaluated for one unit cell of type UCSP, Al mole fraction
x = 0.50, phase volume fraction ξ(AlN) = 0.2 and unconstrained conditions.
The deformation scale factor is 21.576.

4.2.1 Influence of the Al Mole Fraction x on SED

The strain energy density (we) results of cases 1 to 4, where the Al mole fraction x takes
the values of 0.25, 0.50, 0.66 and 0.75, are displayed in table 4.2.1. From figure (4.2.4)
it is clear that the Al mole fraction x and we do not follow a linear relationship; this
relationship can be approximated with a second order polynomial function:

we = −416.20x2 + 416.20x , 0 ≤ x ≤ 1 . (4.2.1)

Note that this approximation is only valid for arrangement UCSP and a particle volume
fraction ξ(p) = 0.4, reaching a maximum of wunconstr

e,max = 104.05MJ/m3 for x ≈ 0.50.
TFA results given in [5], compare also figure 4.3.1, consistently show that the SED is

a linear function of the matrix volume fraction ξ(m) (and thus also of the total particle
volume fraction ξ(p)) for given microtopology, constraint conditions and Al mole fraction.
On this basis, the above unit cell results for arrangement UCSP at ξ(p) = 0.4 can be
used to evaluate linear relationships of we(ξ(p)) as listed in table 4.2.1.

47



4 Results and Discussion

Case x ξ(p) Mac.Constr. UnitCell we Equation
[ ] [ ] [ ] [ ] [ ]

�
MJ/m3

�
[ ]

1 0.25 0.40 Unconstrained UCSP 72.93 we = 182.34ξ(p)

2 0.50 0.40 Unconstrained UCSP 102.76 we = 256.90ξ(p)

3 0.66 0.40 Unconstrained UCSP 96.19 we = 240.47ξ(p)

4 0.75 0.40 Unconstrained UCSP 82.38 we = 205.95ξ(p)

Table 4.2.1: List of results of we computed with unit cell arrangement UCSP, for dif-
ferent Al mole fractions (x), at a particle volume fraction ξ(p) = 0.4 and
unconstrained conditions. Values for we are averages from five different as-
signments of daughter phases to the particles.

Figure 4.2.4: Strain energy density, calculated by FEM-based unit cells, as function of the
Al mole fractions x in the three-phase system consisting of spherical TiN
and AlN particles in a Ti(1−x)AlxN matrix for a matrix volume fraction
ξ(m) = 0.6 and unconstrained conditions.

These linear relationships between ξ(m) and we are plotted in figure 4.2.5 for different
values of the Al mole fractions x. As explained in chapter 3.2.2.1, there is a physical
limit ξ

(p)
max,phys = 0.74 (equivalent to ξ

(m)
min,phys = 0.26 due to ξ(p) + ξ(m) = 1) for packings

of spherical particles of equal size. Accordingly, for ξ(m) < 0.26 we cannot be evaluated
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with volume elements of the UCSP type.

Figure 4.2.5: Strain energy density, calculated by FEM-based unit cells, as function of
the matrix volume fraction (ξ(m)) in the three-phase system consisting of
spherical TiN and AlN particles of equal size in a Ti(1−x)AlxN matrix for
four values of the Al mole fraction, x = 0.25, x = 0.50, x = 0.66, x = 0.75.
The solid black line indicates the packing limit for spheres of identical size.

Figures 4.2.6, 4.2.7, 4.2.8 and 4.2.9 show the distribution of the strain energy We in
one unit cell each of cases 1 to 4 after transformation. Different material properties of
the phases (see table 3.1.1) and numbers of inclusions assigned to a given phase for each
Al mole fraction, x, lead to different distributions of we.
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Figure 4.2.6: Predicted distribution of the strain energy we after transformation evalu-
ated for one unit cell of type UCSP, Al mole fraction x = 0.25, ξ(m) = 0.6
and unconstrained conditions. The deformation scale factor is 21.576.

Figure 4.2.7: Predicted distribution of the strain energy we after transformation evalu-
ated for one unit cell of type UCSP, Al mole fraction x = 0.50, ξ(m) = 0.6
and unconstrained conditions. The deformation scale factor is 21.576.
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Figure 4.2.8: Predicted distribution of the strain energy we after transformation evalu-
ated for one unit cell of type UCSP, Al mole fraction x = 0.66, ξ(m) = 0.6
and unconstrained conditions. The deformation scale factor is 21.576.

Figure 4.2.9: Predicted distribution of the strain energy we after transformation evalu-
ated for one unit cell of type UCSP, Al mole fraction x = 0.75, ξ(m) = 0.6
and unconstrained conditions. The deformation scale factor is 21.576.
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4.2.2 Influence of the Macroscopic Constraints on SED

Three macroscopic constraint conditions were applied to the unit cells of type USCP for
Al mole fraction x = 0.50 and particle volume fraction ξ(p) = 0.4. Table 4.2.2 presents
results for we for the unconstrained, fully constrained and layer constraint cases.

As expected, the highest values of we are obtained for the fully constrained case
(wconstr

e = 106.10MJ/m3) because during transformation the unit cells’ master nodes
are not allowed to undergo any displacements (i.e., only local, periodic deformations of
the cells’ faces are allowed), leading to a buildup of stress and an increase in the internal
energy and thus in the strain energy density. The lowest value is reached in the uncon-
strained case (wunconstr

e = 102.76MJ/m3) for the opposite reason: the unit cell is free to
deform and no energy is needed to keep the faces restrained. Finally, the layer constraint
case (wlayer constr

e = 104.24MJ/m3) can be understood as a combination of above two
cases, so it is logical to obtain an intermediate value.

Case x ξ(p) Mac.Constr. UnitCell we Equation
[ ] [ ] [ ] [ ] [ ]

�
MJ/m3

�
[ ]

2 0.50 0.40 Unconstrained UCSP 102.76 we = 256.90ξ(p)

5 0.50 0.40 Fully Constrained UCSP 106.10 we = 265.25ξ(p)

6 0.50 0.40 LayerConstraint UCSP 104.24 we = 260.59ξ(p)

Table 4.2.2: List of we results computed with the unit cell arrangement UCSP, for Al mole
fraction x = 0.50, particle volume fraction ξ(p) = 0.4 and different macro-
scopic constraints. Values for we are averages from five different assignments
of daughter phases to the particles.

Figure 4.2.10 shows the variation of we as function of the matrix volume fraction,
ξ(m), for the three macroscopic constraints considered. From this graphic a relationship
between constraints and Al mole fraction (x) is obtained:

w
fully constr
e > w

layer constr
e > w

unconstr
e ∀ ξ

(m)
, 0 ≤ ξ

(m) ≤ 1 . (4.2.2)

This relationship can be extended to the other cases were the Al mole fraction (x) is
varied (0 ≤ x ≤ 1). Compared with the dependence of we on the Al mole fraction, x,
the macroscopic have less influence on we. The reason for this behavior is the relatively
strong dependence of the material parameters on the Al mole fraction x.
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4 Results and Discussion

Figure 4.2.10: Strain energy density, calculated by FEM-based unit cells, for different
macroscopic constraints, as function of the matrix volume fraction ξ(m) in
the three-phase system consisting of spherical TiN and AlN particles in
a Ti0.5Al0.5N matrix. The solid black line indicates the packing limit for
spheres of identical size.

4.2.3 Influence of the Elastic Contrast on SED

The elastic contrast (cel) measures the level of inhomogeneity of the phases in a composite
(see chapter 2.1.1). The elastic contrast of the cases under study was 0.99 � cel � 1.05, so
it is very close to the “homogeneous value” of cel = 1 for all cases. In order to understand
the influence of this parameter on the behavior of materials with three transforming
phases, five fictitious material property configurations were set up, see table 4.2.3. Again,
five different assignments of the two particle phases to the 24 inhomogeneities of the
cell were studied. The results were evaluated in terms of averages, standard deviations
and coefficients of variation. The coefficient of variation, CV , is the relation between
the standard deviation, θ, and the average of the samples, µ̄. It is useful when doing
comparisons between data sets with widely different means.

CV =
θ

µ̄
100 (4.2.3)

Case 2 (x = 0.50, ξ(m) = 0.6) is the basis of cases 2.a to 2.f , where only the Young’s
moduli E(TiN) and E(AlN) of the inclusions are modified to fictitious values, whereas the
rest of material parameters remain equal.
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Case cel E(m) E(TiN) = E(AlN) θ(we) we CV (we)
[ ] [ ] [GPa] [GPa]

�
MJ/m3

� �
MJ/m3

�
% [ ]

2.a 0.01 387.00 3.87 0.00 2.30 0.02
2.b 0.1 387.00 38.70 0.37 20.07 0.19
2.c 1 387.00 387.00 0.00 102.14 0.00
2.d 10 387.00 3870.00 4.87 213.48 2.29
2.e 100 387.00 38700.00 8.20 250.39 3.28
2.f 1000 387.00 387000.00 8.70 255.22 3.41

Table 4.2.3: List of results computed from the unit cell arrangement UCSP, for Al mole
fraction x = 0.50, ξ(m) = 0.6 and unconstrained conditions for different
fictitious values of the elastic contrast cel values. The averages we, standard
deviations we and coefficients of variation CV (we) pertain to five different
assignments of the daughter phases to the particles.

The elastic contrasts cel follow a logarithmic scale, from 0.01 to 1000. In cases 2.a and
2.f , the change in CV (we) compared with the following or previous case is very small.
Here, CV (we) has an asymptotic behaviour, see figure 4.2.11. Case 2.c represents the
particular case of an elastically homogeneous material.

The results for CV (we) show that the elastic contrast has only a very limited influence
on the standard deviation θ(we) of ensembles of the samples.

For high elastic contrasts the strain energy density tends towards an asymptotic value
of about 255.22MJ/m3, see figure 4.2.12. This behaviour is due to the high Young’s
moduli E(p) of the transforming inclusions which are embedded in a much softer matrix.
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Figure 4.2.11: Coefficient of variation CV (we) as function of the elastic contrast (cel) in
the three-phase system consisting of spherical TiN and AlN particles in a
Ti0.5Al0.5N matrix (UCSP arrangement, ξ(p) = 0.4).

Figure 4.2.12: Strain energy density, calculated by FEM-based unit cells, as function of
the elastic contrast (cel) in the three-phase system consisting of spherical
TiN and AlN particles in a Ti0.5Al0.5N matrix (UCSP arrangement, ξ(p) =
0.4).
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4.2.4 Influence of the Particle Shape on SED

Three particle shapes were employed in the cases 2, 7 and 8: randomly oriented spher-
ical, cubic and tetrahedral particles. Table 4.2.4 shows the results for these cases. It is
important to notice that the results for we of cases 7 and 8 cannot be compared directly
with case 2 because they pertain to different values of ξ(p). This problem can be cir-
cumvented by comparing the linear functions we(ξ(p)). As can be seen in figure 4.2.13
the three inclusion shapes lead to a similar, but not equal, dependences between we and
ξ(m). Spherical particles can be seen to lead to the lowest and cube-shaped ones to the
highest predicted values of the SED, the difference between them being about 1%.

Case x ξ(p) Mac.Constr. UnitCell we Equation
[ ] [ ] [ ] [ ] [ ]

�
MJ/m3

�
[ ]

2 0.50 0.40 Unconstrained UCSP 102.76 we = 256.90ξ(p)

7 0.50 0.20 Unconstrained UCCP 51.89 we = 259.49ξ(p)

8 0.50 0.20 Unconstrained UCTP 51.84 we = 259.23ξ(p)

Table 4.2.4: List of we results computed for different combinations of particle volume
fraction, ξ(p), and unit cell arrangements. Values for we are averages from
five different assignments of daughter phases to the particles.
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Figure 4.2.13: Strain energy density, calculated by FEM-based unit cells, for different
inclusion shapes, as function of the matrix volume fraction ξ(m) in the
three-phase system consisting of TiN and AlN particles in a Ti0.5Al0.5N
matrix. The solid black line indicates the packing limit for spherical in-
clusions of identical size.

The small difference between case 2 and cases 7 and 8 is due to the strain concentrations
at the edges and corners of the cubic and tetrahedral particles, which induce an increase
of we [20]. Figure 4.2.14 shows the deformed shapes of selected spherical, cube-shaped
and tetrahedral inclusions. In addition, fringes of the maximum principal strain are
plotted to highlight the concentrations of strain at the edges of the polyhedral inclusion
shapes.

The clear deviation of the deformed shapes of the particles from arrangement UCSP
from their original spherical shape is due to the influence of neighboring transformed
inclusions; it is, of course, exaggerated due to the selected deformation scaling. The
differences in size between the three different particles of a given composition (TiN and
AlN) are due to the same reasons.
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Figure 4.2.14: Predicted distributions of the maximum principal strain on selected TiN
and AlN inclusions of the unit cell arrangements UCSP (top), UCCP
(middle) and UCTP (bottom) after transformation, for Al mole fraction
x = 0.50 and unconstrained conditions. The deformation scale factor is
21.576 for all particles shown.
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4.2.5 Influence of the Microtopology on SED

Two unit cell topologies were studied: matrix inclusion-topologies and random topologies.
Case 2 (spherical particles) is taken as a representative sample that defines the matrix-
inclusion behaviour and is compared with cases 9, 10 and 11. Results for we are presented
in table 4.2.5 as well as the equations that define the variation of we with ξ(p).

Case x ξ(p) Mac.Constr. UnitCell we Equation
[ ] [ ] [ ] [ ] [ ]

�
MJ/m3

�
[ ]

2 0.50 0.40 Unconstrained UCSP 102.76 we = 256.90ξ(p)

9 0.50 0.50 Unconstrained UCRT 150.63 we = 301.27ξ(p)

10 0.50 0.66 Unconstrained UCRT 199.98 we = 300.02ξ(p)

11 0.50 0.90 Unconstrained UCRT 268.54 we = 298.38ξ(p)

Table 4.2.5: List of results for we computed for different combinations of particle volume
fraction ξ(p) and unit cell arrangements. Values for we are averages from five
different assignments of daughter phases to the particles.

As discussed in section 3.2.3 random microstructures were studied for three sets of
phase volume fractions, five realizations being used in each case. Even though the three
sets of unit cells show different microtopologies, the pertinent values of SED, while being
distinctly higher than those of the “classical” matrix-inclusion topologies, can be very
well described by a linear function of ξ(m), see figure 4.2.16. This result is difficult to
interpret. If we showed a marked dependence on the microtopology, as indicated by the
difference between the predictions of the UCSP and UCRP unit cells in figure 4.2.16, the
results for the UCRP cases would not be expected to lie on one line. The most plausible
explanation is that for loading exclusively by transformation strains, the stress and strain
concentrations inherently present at the edges and vertices of phase regions composed of
cube-shaped voxels lead to overestimating the SED. In addition, the voxel-based FE-mesh
may not be sufficiently fine. Note that voxel models subjected to mechanical loading were
not reported to show such clear effects of ragged phase boundaries [12, 27, 32, 37].

Figure 4.2.15 shows the variation of the SED at the surface of one unit cell of case
10. This plot is qualitatively different from figures 4.2.6 to 4.2.9 in being dominated by
high-frequency fluctuations of the SED.
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Figure 4.2.15: Predicted distribution of the strain energy We after transformation evalu-
ated for one unit cell of type UCRT, Al mole fraction x = 0.50, ξ(m) = 0.33
and unconstrained conditions. The deformation scale factor is 31.068.

Figure 4.2.16: Strain energy density, calculated by FEM-based unit cells, as function of
the parent phase volume fraction ξ(m) in the three-phase system consist-
ing of TiN, AlN and Ti0.5Al0.5N phases for different microtopology ar-
rangements. The solid black line indicates the packing limit for spherical
inclusions of identical size.
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4.3 Comparison of FEM and TFA Results

It is important to stress that the main goal of this thesis is not only to understand how
some factors affect the SED; in the background there is a second goal: to compare the
results obtained using a finite element unit cell method with the analytical results calcu-
lated with the transformation field analysis. Analytical methods have less computational
cost and the time required to perform the analysis is also much lower than the one needed
by discretizing “full field” micromechanical methods.

The following figures show the graphics where we results, obtained with TFA, see
figure 4.3.1, and FEM, see figure 4.3.2, are plotted as functions of ξ(m) for different
configurations.

Figure 4.3.1: Strain energy density, calculated with TFA, as function of the matrix vol-
ume fraction ξ(m) in the three-phase system consisting of spherical TiN
and AlN particles in a Ti(1−x)AlxN matrix for four values of the Al mole
fraction, x = 0.25, x = 0.50, x = 0.66, x = 0.75 [5].
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Figure 4.3.2: Strain energy density, calculated by FEM-based unit cells, as function of the
matrix volume fraction ξ(m) in the three-phase system (UCSP) consisting
of spherical TiN and AlN particles in a Ti(1−x)AlxN matrix for four values
of the Al mole fraction, x = 0.25, x = 0.50, x = 0.66, x = 0.75. The solid
black line indicates the packing limit for spherical inclusions of identical
size.

In order to compare the previous graphics, the relative difference between we,FEM and
we,TFA is evaluated as

∆ =
|we,FEM − we,TFA|

we,FEM
100 , (4.3.1)

and plotted.
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Case x ξ(p) Mac.Constr. UnitCell we,FEM we,M−TFA we,S−TFA ∆
[ ] [ ] [ ] [ ] [ ]

�
MJ/m3

� �
MJ/m3

� �
MJ/m3

�
% [ ]

1 0.25 0.40 Unconstrained UCSP 72.93 72.86 − 0.09
2 0.50 0.40 Unconstrained UCSP 102.76 102.59 − 0.17
3 0.66 0.40 Unconstrained UCSP 96.19 96.02 − 0.17
4 0.75 0.40 Unconstrained UCSP 82.38 82.24 − 0.17
5 0.50 0.40 Fully Constrained UCSP 106.10 105.93 − 0.16
6 0.50 0.40 LayerConstraint UCSP 104.24 104.08 − 0.15
9 0.50 0.50 Unconstrained UCRT 150.63 127.78 128.17 15.2
10 0.50 0.66 Unconstrained UCRT 199.98 170.18 171.59 14.9
11 0.50 0.90 Unconstrained UCRT 268.54 226.72 229.23 15.6

Table 4.3.1: List of predictions for we computed with the FEM and TFA based on Mori-
Tanaka and classical self consistent methods for different combinations of Al
mole fractions, x, particle volume fraction, ξ(p), macroscopic constraints and
unit cell arrangements.

The TFA results for we,M−TFA, TFA based on Mori-Tanaka method, obtained in cases
1 to 6 are extremely close to the corresponding predictions obtained by FE-based unit
cells with matrix-inclusion topology, we,FEM. As can be seen in figures 4.3.3 and 4.3.4,
the relative differences are of the order of ∆ = 0.17%. The TFA based on the Mori-
Tanaka method gives accurate we results in modeling a low-contrast three-phase system
material consisting of equiaxed particles embedded in a matrix for different macroscopic
constraints.

The predictions of the SED for the random microstructures, cases 9 to 11, which cover
different microtopologies, differ clearly from the results obtained with the TFA based on
Mori-Tanaka (we,M−TFA) and self-consistent (we,S−TFA) schemes, compare table 4.3.1, ∆
being two orders of magnitude higher for cases 9 to 11 than for cases 1 to 8. As noted
in section 4.2.5 this discrepancy is not well understood at present, but may be due to
effects of the ragged phase boundaries of the voxel models.
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Figure 4.3.3: Values of ∆ in the three-phase system consisting of spherical TiN and AlN
particles in a Ti(1−x)AlxN matrix for four values of the Al mole fraction,
x = 0.25, x = 0.50, x = 0.66, x = 0.75 and unconstrained conditions.

Figure 4.3.4: Values of ∆ in the three-phase system consisting of spherical TiN and AlN
particles in a Ti0.5Al0.5N matrix for unconstrained, fully constrained and
layer constraint conditions.
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The different elastic contrast cases, 2.a to 2.f , were also evaluated with the TFA based
on the Mori-Tanaka method. On the one hand, for a low elastic contrast (cases 2.a and
2.b) the relative differences to the unit cell results are almost zero, see figure 4.3.5. The
TFA method cannot be used for case 2.c because it is an homogeneous model: matrix
and particles have the same Young’s modulus, see table 4.2.3. On the other hand, for
high elastic contrast cases, 2.d to 2.f , there is a considerable difference between the SED
results predicted by the two methods, see figure 4.3.5. The main reason of this behaviour
is the influence of details of the microstructure on the physical system, which become
more dominant for high cel values.

Case cel x ξ(p) Mac.Constr. UnitCell we,FEM we,M−TFA ∆
[ ] [ ] [ ] [ ] [ ] [ ]

�
MJ/m3

�
[ ] % [ ]

2.a 0.01 0.50 0.40 Unconstrained UCSP 2.30 2.29 0.43
2.b 0.1 0.50 0.40 Unconstrained UCSP 20.07 20.68 3.04
2.c 1 0.50 0.40 Unconstrained UCSP 102.14 − −
2.d 10 0.50 0.40 Unconstrained UCSP 213.48 169.29 20.70
2.e 100 0.50 0.40 Unconstrained UCSP 250.39 181.25 27.61
2.f 1000 0.50 0.40 Unconstrained UCSP 255.22 182.54 28.41

Table 4.3.2: List of predictions for we results computed with unit cell and TFA methods
for different values of the elastic contrast.
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Figure 4.3.5: Values of ∆ in the three-phase system consisting of spherical TiN and AlN
particles in a Ti(1−x)AlxN matrix for different values of the elastic contrast,
cel = 0.01 , cel = 0.1 , cel = 10, cel = 100, cel = 1000, a value of the Al mole
fraction x = 0.50, and unconstrained conditions.

Accordingly, the surprisingly good agreement between TFA based on the Mori-Tanaka
method and unit cell models for matrix-inclusion topologies evident in table 4.3.1 and
figure 4.3.3 is to a considerable extent due to the low elastic contrast of the TiN-AlN-
TiAlN system. In this low contrast regime the TFA gives excellent predictions for matrix-
inclusion topologies and reasonable approximations for random microtopologies.
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5 Conclusions

In the present work the strain energy densities of transforming ternary hard layers are
evaluated within the framework of continuum micromechanics of inhomogeneous media.

Transformation field analysis in combination with the Mori-Tanaka and classical self
consistent methods was employed to obtain analytical predictions for the SED and com-
pare them with results obtained by a FE-based unit cell method.

Following a procedure, developed in previous studies, for generating periodic unit cell
arrangements that contain a fixed number of inclusions of equal size, different configu-
rations with constant ratio of matrix volume and particle volumes were generated and
evaluated.

The SED results obtained with the TFA method agree well with those generated
by multi-particle unit cells for three-phase systems with matrix-inclusion topology and
elastic contrast close to unity. However, when the elastic contrast takes high values, the
disagreement between the TFA and the FE-based unit cell method increases to nearly
30%. Voxel-type unit cells describing three-phase random materials give predictions for
the SED that exceed the corresponding TFA results by approximately 15%.

It can be concluded that the TFA provides accurate predictions for the SED of three-
phase systems consisting of a matrix of the parent phase plus inclusions transforming
into the daughter phases with elastic contrast close to unity. Variations in macroscopic
constraints, shape and distribution have little influence on the SED of such systems.

Future work could use realistic arrangements of the TiN-AlN-TiAlN system instead
of random topologies. Accordingly, predictions computed with the FEM would be more
accurate and closer to the real behaviour of the system.
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