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Abstract

Imperative programming languages are ubiquitous in virtually all fields of technology, with pro-
grams specifying all sorts of computational behavior. For many practical reasons, an automated
analysis of semantic properties of programs, such as termination and equivalence, is desirable.
We provide a new approach to the automated semantic analysis of programs by encoding their
behavior into formal logic. We consider a few syntactically simple imperative programming
languages, and we encode programs of these languages into expressions of the description logic
ALC(D) for a particular domain D. We do this in such a way that models of these encodings
correspond to executions of the source programs. In other words, essentially, we assign a model-
theoretic semantics to imperative programs. This encoding makes it possible to express semantic
properties of programs (most notably termination and equivalence) in the formal logic language.
Effectively, in this fashion, we reduce reasoning problems defined on the programs to description
logic reasoning. Practically, this directly results in algorithms to perform automated reasoning
on a number of restricted fragments of the programming languages (i.e. loop-free programs, or
programs restricted to a finite numerical domain). Theoretically, our approach makes it possible
to identify further, less restricted fragments of the programming languages for which certain
reasoning tasks are decidable. We identify one such fragment, based on finite partitionings of
the state space, and illustrate what class of programs belongs to this fragment.
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Kurzfassung

Imperative Programmiersprachen sind in praktisch allen technologischen Bereichen verbreitet,
wobei Programme verschiedene Arten von Berechnungen spezifizieren. Für viele praktische
Zwecke ist die automatisierte Analyse semantischer Eigenschaften von Programmen, wie die
Terminierung und Äquivalenz, nützlich. Wir stellen ein neues Vorgehen zur automatisierten se-
mantischen Analyse von Programmen bereit durch die Kodierung ihres Verhaltens in die for-
male Logik. Wir betrachten einige syntaktisch einfache, imperative Programmiersprachen, und
wir kodieren Programme dieser Sprachen in Ausdrücke der Beschreibungslogik ALC(D), für
einen bestimmten BereichD. Wir machen das in einer Weise, in der Modelle dieser Kodierungen
den Durchführungen der Programme entsprechen. Mit anderen Worten, wir weisen imperativen
Programmen eine modelltheoretische Semantik zu. Diese Kodierung ermöglicht es semantische
Eigenschaften von Programmen (vor allem Terminierung und Äquivalenz) in der Sprache der
formalen Logik auszudrücken. Auf diese Weise reduzieren wir das Schlussfolgern diverser se-
mantischer Eigenschaften von Programmen zu Reasoning-Verfahren der Beschreibungslogik. In
praktischer Hinsicht führt dieses Vorgehen direkt zu Algorithmen für das automatisierte Schluss-
folgern für einige Fragmente der Programmiersprachen (d.h. Zyklusfreie Programme oder Pro-
gramme beschränkt auf endliche numerische Bereiche). In theoretischer Hinsicht ermöglicht
das Vorgehen weitere, weniger eingeschränkte Fragmente der Programmiersprachen zu identi-
fizieren, wofür einige Aufgaben des Schlussfolgerns entscheidbar sind. Wir identifizieren Eins
solcher Fragmente, welches auf endliche Aufteilungen des Zustandsraums basiert, und wir illus-
trieren, welche Klasse von Programmen zu diesem Fragment gehört.

vii
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CHAPTER 1
Introduction

1.1 Problem Description

Programming languages are formal languages designed to specify instructions for a computer
to perform a particular computation. Programs, which are statements in these programming
languages, thus are recipes for computations. The main semantic property of such programs is
the input-output relation (i.e. computing the output of the computation specified by the program,
based on the inputs given). Programming languages are designed to allow for efficient evaluation
of this property. However, in many cases it is very useful to consider other semantic properties of
programs and semantic relations between different programs. For instance, knowing whether a
program terminates on all inputs, or knowing whether two programs give exactly the same output
on all possible inputs, are very useful pieces of knowledge, both theoretically and practically.
However, the general question of deciding semantic properties of programs is not restricted to
such canonical questions. To give an example of a more intricate semantic property of programs,
it might also be useful to be able to decide whether for a program, if it is presented with the value
of input variable x of at least 10, will terminate with the value of output variable y at most twice
the value of output variable z.

Unfortunately, in the general case, we know that many such semantic properties are unde-
cidable. For instance, the halting problem – the problem whether a given program in a Turing-
complete computational model (i.e. a programming language that is general enough to be equiv-
alent to Turing machines) terminates – is well-known to be undecidable. Also, many semantic
properties of programs and many semantic relations between programs, in the general case, can
be reduced to the undecidable question whether a Diophantine equation has an integer solution
– the decidability of which is the topic of Hilbert’s famous tenth problem. However, there are
a number of different ways in which we can restrict the programming languages so that the
reasoning problems corresponding to these semantic properties and relations become decidable.

In order to be able to algorithmically decide such properties for these restricted fragments
of programming languages, the semantics of programming languages needs to be formalized.
A lot of research has been done investigating the formal semantics of programming languages
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(cf. [19, 20]). This has resulted in a number of different approaches to defining semantics of
programs (e.g. operational semantics, denotational semantics, axiomatic semantics). However,
the possibilities of automatically and algorithmically deciding semantic properties of programs
of general-purpose programming languages remain largely unexplored.

In this thesis, we will investigate how a model-theoretic semantics can be assigned to pro-
gramming languages, and how this can be used to perform automated reasoning over programs
of the programming languages. In order to do so, concretely, we aim to achieve the following
three goals. Our first goal is to devise a way to assign to programs of programming languages
a model-theoretic semantics. Of course, this has to be done in a sensible way, i.e. the model-
theoretic semantics needs to correspond to previously formalized semantics of the programming
languages. Secondly, we set out to achieve the goal of using this model-theoretic semantics to au-
tomatically decide certain semantic properties of programs (such as termination and equivalence
of programs), for restricted fragments of the programming languages that are already known to
allow these semantic properties to be decided. We will show how existing algorithms (based on
the model-theoretic semantics) can be used to decide such semantic properties. The third goal we
aim to achieve is to use the model-theoretic semantics to identify previously unidentified (non-
trivial) fragments of programming languages that allow the aforementioned semantic properties
to be decided algorithmically. In addition, for the identified fragments with this property, we
give an indication of the computational complexity of deciding these semantic properties.

1.2 Methodology

In order to achieve our goals, we employ the following methodology. Firstly, we consider a num-
ber of several simple programming languages, representing various programming paradigms
(imperative programming, logic programming, functional programming). For these program-
ming languages, we consider formal semantics as defined previously in the literature (e.g. for
imperative languages we consider the operational semantics). We will encode programs of these
programming languages into expressions of formal logic, in such a way that the semantic prop-
erties of the programs correspond to model theoretic properties of the logic expressions. In
addition, we will specify how relevant semantic properties of programs can be expressed in the
formal logic, using the encoding of programs into this logic. In this way, we are able to reduce
the reasoning problems on programs of the programming languages (i.e. deciding the relevant
semantic properties of programs) to reasoning problems in the model-theoretic semantics of the
formal logic.

The formal logic we will make use of, is the description logicALC(D), which consists of the
prototypical description logicALC extended with concrete domains. In short, description logics
are formal logics designed to allow for decidable reasoning algorithms with high efficiency, in
combination with high expressive power. Since we will consider programming languages that
operate on concrete domains (i.e. numerical values), we need a logic whose expressive power
includes concrete domains (to represent the relation between programs and concrete values),
as well as the usual abstract domain (to represent the complex internal structure of programs).
The description logicALC(D) offers enough expressivity to be a suitable target language of our
encoding.
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1.3 Structure of the Thesis

The thesis is structured as follows. We start with the formal definition of the syntax and se-
mantics of the description logic ALC(D) in Chapter 2, as well as some background on the
working of available reasoning algorithms for this logic and related logics. Then, in Chapter
3, we formally define the syntax and semantics of a number of simple, representative program-
ming languages we consider in the thesis. These include imperative programming languages, as
well as a functional and a logic programming language. In addition, in Chapter 3, we determine
a number of semantic properties of programs that we focus on in the remainder of the thesis.
With all preliminary definitions in place, we can start with the technical work. In Chapter 4,
we specify how arbitrary programs of the programming languages defined before are encoded
into TBoxes of the description logic ALC(D). Along with specifying these encodings, we also
prove the exact correspondence between the semantics of the programs and the model theoretic
semantics of their encodings into ALC(D). Furthermore, in this chapter, we illustrate how a
number of reasoning problems, by means of these encodings, can be flexibly specified using the
expressive power of the description logic. After these first technical results, we elaborate on
the benefits of this technique of encoding programs into logic, in Chapter 5. Finally, with the
framework in place, we are ready to investigate the decidability and complexity of fragments of
the programming languages by means of this framework, which we will do in Chapter 6. This
entire endeavour is motivated by a real-world, industrial case of a domain-specific imperative
programming language, for which automated reasoning algorithms are desirable. In Chapter 7,
we elaborate on this motivating instance of the general problem and an implementation of rea-
soning algorithms developed on the basis of the framework developed in this thesis.1 In Chapter
8, finally, we draw our conclusions and suggest directions for further research.

The general outline of the thesis, as described above, is depicted graphically in Figure 1.1.
The boxes in the diagram represent the different chapters, and the arrows between these boxes
represent a dependency relation between the content of the chapters.

1The use cases that offer a practical motivation are provided by Siemens AG, in München. Also, Siemens AG
has helped make the research in this thesis possible by providing financial support.
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Chapter 1
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Chapter 2
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Practical application

Chapter 8
Conclusions,
further research

Figure 1.1: Graphical representation of the outline of the thesis. The arrows represent depen-
dency relations between the chapters.
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CHAPTER 2
Preliminaries

In this chapter, we repeat the formal definitions of the syntax and semantics of the description
logic ALC(D), which is the basic description logic ALC extended with concrete domains. Fur-
thermore, we will give some general background on (the working of) tableau algorithms for
description logics, and in particular for the logic ALC(D). These tableau based algorithms
are the most often used algorithm to solve reasoning problems for description logics such as
ALC(D).

2.1 The Description Logic ALC(D)

We repeat some basic definitions about the description logic ALC(D). For more details on this
particular description logic, see [16]. Description logics are a family of formal logics, often used
to reason about various application domains. Its main ingredients are concepts and roles, which
intuitively represent categories of objects and relations between objects, respectively. What
makes description logics particularly useful for these purposes is that they are more expressive
than propositional logic and that the decision problems associated with reasoning are of a lower
complexity than full first-order logic (and in many cases, reasoning problems for description
logics are decidable whereas similar problems for first-order logic are undecidable). Description
logic knowledge bases usually consist of two types of knowledge: terminological knowledge
(stored in a TBox) and assertional knowledge (stored in an ABox). Terminological knowledge
expresses general relations between the different concepts and roles in the knowledge base.
Assertional knowledge describes concrete individual objects, and the relation between these
objects and the concepts and roles in the knowledge base.

The description logicALC [21] is a prototypical description logic, and is at the basis of many
more expressive description logics. In fact, the description logic ALC(D), that we consider in
this thesis, is the extension of ALC with concrete domains (such as numerical values). We give
a formal definition of the syntax and semantics of ALC(D), but before we can do so, we must
firstly formally define what (admissible) concrete domains are.
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Definition 2.1.1 (Concrete domains). A concrete domain D is a pair (∆D,ΦD), where ∆D is a
set and ΦD a set of predicate names. Each predicate name P ∈ ΦD is associated with an arity
n and an n-ary predicate PD ⊆ ∆n

D. Let V be a set of variables. A predicate conjunction of the
form

c =
∧
i≤k

(x(i)
0 , . . . , x(i)

ni ) : Pi,

where Pi is an ni-ary predicate for i ≤ k and the x(i)
j are variables from V , is called sat-

isfiable iff there exists a function δ mapping the variables in c to elements of ∆D such that
(δ(x(i)

0 ), . . . , δ(x(i)
ni )) ∈ PDi for i ≤ k. Such a function is called a solution for c. A concrete

domain is called admissible iff

1. its set of predicate names is closed under negation and contains a name >D for ∆D, and

2. the satisfiability problem for finite conjunctions of predicates is decidable.

By P , we denote the name for the negation of the predicate P , i.e., if the arity of P is n, then
P
D = ∆n

D\PD.

In particular, we consider the admissible concrete domain of linear arithmetic over the natu-
ral numbers.

Example 2.1.2. LetNlin = (N,Φ) be the concrete domain of linear arithmetic over the natural
numbers, where N denotes the set of natural numbers, and Φ consists of the following predicates:

> = N
⊥ = ∅
ρn = {x ∈ N | x ρ n} for ρ ∈ {<,≤,=, 6=,≥, >} and n ∈ N
ρ = {(x, y) ∈ N2 | x ρ y} for ρ ∈ {<,≤,=, 6=,≥, >}
π = {(x, y, z) ∈ N3 | xπy = z} for π ∈ {+,−}
π = {(x, y, z) ∈ N3 | xπy 6= z} for π ∈ {+,−}
·n = {(x, y) ∈ N2 | x · n = y}
·n = {(x, y) ∈ N2 | x · n 6= y}

It can straightforwardly be verified that this concrete domain is admissible.

Another example of an admissible concrete domain we could consider is the restrictionN≤klin
of the previous concrete domainNlin to a finite number of numbers {0, . . . , k} for some k ∈ N.
We define N≤klin = (N≤k,Φ≤k), where N≤k = {0, . . . , k} and Φ≤k is the restriction of Φ to
N≤k. In fact, also concrete domains representing non-linear arithmetic, when restricted to a
finite number of values, are admissible.

With this notion of concrete domains in place, we are ready to formally define the syntax of
the logic ALC(D), and afterwards define its formal, model-theoretic semantics.

Definition 2.1.3 (ALC(D) syntax). Let NC and NR be disjoint and countably infinite sets of
concept and role names. Let NaF be a countably infinite subset of NR such that NR\NaF is also
countably infinite. Elements of NaF are called abstract features. Let NcF be a countably infinite
set of concrete features such that NR∩NcF = ∅ and NC∩NcF = ∅. A concrete path is a sequence
f1 . . . fng, where f1, . . . , fg ∈ NaF and g ∈ NcF. Let D = (∆D,ΦD) be a concrete domain.

6



Concepts The set of ALC(D) concepts is the smallest set such that:

1. every concept name A ∈ NC is an ALC(D) concept,

2. if C and D are ALC(D) concepts and R ∈ NR, then ¬C, C u D, C t D, ∃R.C, and
∀R.C are ALC(D) concepts, and

3. if g ∈ NcF, u1, . . . , un are concrete paths, and P ∈ ΦD is a predicate with arity n, then
∃u1, . . . , un.P and g↑ are ALC(D) concepts.

We use > as an abbreviation for some fixed propositional tautology such as At¬A, ⊥ for ¬>,
C → D for ¬C tD, and C ↔ D for (C → D) u (D → C). We use u↑ as an abbreviation for
∀f1 . . . ∀fk.g↑ if u = f1 . . . fkg is a concrete path.

ABoxes Let Oa and Oc be disjoint and countably infinite sets of abstract and concrete objects.
Let C be an ALC(D) concept, R ∈ NR a role (possibly an abstract feature), g a concrete
feature, a, b ∈ Oa, x, x1, . . . , xn ∈ Oc and P ∈ ΦD with arity n. Then

a : C, (a, b) : R, (a, x) : g, and (x1, . . . , xn) : P

are ALC(D)-assertions. An ALC(D)-ABox is a finite set A of ALC(D)-assertions.

TBoxes Let C andD beALC(D) concepts. Then an expression of the form C
.= D is called a

concept equation. A finite set T of concept equations is called a general TBox. An expression of
the form A

.= C, where A is a concept name and C is a concept, is called a concept definition.
For T a finite set of concept definitions, we say that a concept name A directly uses a concept
name B in T if there is a concept definition A .= C ∈ T such that B occurs in C. We let the
relation “uses” denote the transitive closure of “directly uses.” A finite set of concept definitions
T is called an acyclic TBox if

1. there is no concept name A such that A uses itself, and

2. the left-hand sides of all concept definitions in T are pairwise distinct.

Definition 2.1.4 (ALC(D)-semantics). An ALC(D)-interpretation I is a pair (∆I , ·I), where
∆I is a non-empty set called the abstract domain and ·I is an interpretation function that maps

• every concept name A ∈ NA to a set AI ⊆ ∆I ,

• every role name R ∈ NR\NaF to a binary relation RI ⊆ ∆I ×∆I ,

• every abstract feature f ∈ NaF to a partial function fI : ∆I → ∆I , and

• every concrete feature g ∈ NcF to a partial function gI : ∆I → ∆D.
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If u = f1 . . . fkg is a concrete path, then uI is defined as the composition of the path’s compo-
nents: gI(fIk (· · · (fI1 (·)))). The interpretation function ·I is extended to complex concepts as
follows:

(¬C)I := ∆I\CI
(C uD)I := CI ∩DI
(C tD)I := CI ∪DI
(∃R.C)I := {d | there exists e ∈ ∆I such that (d, e) ∈ RI and e ∈ CI}
(∀R.C)I := {d | for all e ∈ ∆I , (d, e) ∈ RI implies e ∈ CI}

(∃u1, . . . , un.P )I := {d ∈ ∆I | there exists x1, . . . , xn ∈ ∆D such that
uIi (d) = xi for 1 ≤ i ≤ n and (x1, . . . , xn) ∈ PD}

(g↑)I := {d ∈ ∆I | gI(d) undefined}

Interpretations I can be extended to ABoxes and TBoxes as follows. I maps each a ∈ Oa to an
element aI ∈ ∆I and each x ∈ Oc to an element xI ∈ ∆D. Then, I satisfies:

a : C iff aI ∈ CI
(a, b) : R iff (aI , bI) ∈ RI
(a, x) : g iff gI(aI) = xI

(x1, . . . , xn) : P iff PD(xI1 , . . . , x
I
n)

An interpretation I satisfies an ABox A iff it satisfies all assertions A ∈ A.
An interpretation I satisfies a concept equation/definition C .= D iff CI = DI , and it

satisfies a TBox T iff it satisfies all T ∈ T .
A concept C is satisfiable if there exists an interpretation I such that CI 6= ∅. Such an

interpretation is called a model of C. A concept C subsumes a concept D (written C v D)
iff CI ⊆ DI for all interpretations I. Two concepts are equivalent (written C ≡ D) iff they
mutually subsume each other.

A concept C is satisfiable w.r.t. a TBox T iff there exists a model of (both) C and T . A
concept C subsumes a concept D w.r.t. a TBox T (written C vT D) iff CI ⊆ DI for all
models I of T . Two concepts C and D are equivalent w.r.t. a TBox T (written C ≡T D) iff
C vT D and D vT C.

2.1.1 Reasoning Problems

Description logic knowledge bases can be used to express concepts in a particular application
domain, the relations between these concepts, and the relations between individual objects and
these concepts. Once such knowledge is described, it would be desirable to be able to solve
certain reasoning problems on this description. Important description logic reasoning problems
include concept satisfiability, concept subsumption and concept equivalence. Depending on
what terminological knowledge is present (e.g., no TBox, an acyclic TBox, a general TBox)
different variants of these reasoning problems can be distinguished.

For the description logics we consider, these problems can all be reduced to each other (or
the corresponding co-problems). In particular, concept subsumption and equivalence can be
reduced to concept (un)satisfiability. For two concepts C and D, we have that C v D holds iff
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Cu¬D is unsatisfiable, and we have thatC ≡ D holds iff (Cu¬D)t(¬CuD) is unsatisfiable.
This can be straightforwardly verified using the model-theoretic semantics.

Another important description logic reasoning problem, that is a generalization of concept
satisfiability, is ABox satisfiability. Also for this problem, different variants (depending on the
type of terminological knowledge present) can be distinguished. To see that ABox satisfiability
is more general than concept satisfiability, it suffices to check that a concept C is satisfiable iff
the ABox {a : C}, for some a ∈ Oa, is satisfiable.

All the reasoning problems mentioned above can thus be reduced to the problem of ABox
satisfiability (possibly with respect to terminological knowledge). An algorithm for this latter
problem would thus be extremely useful. In Section 2.2, we will see that there are conceptually
simple algorithms available for this purpose.

2.1.2 Nominal Concepts

In this thesis, we will also consider description logics with nominal concepts. Nominal concepts
are concepts that require an interpretation of size 1. In other words, for every interpretation I
and every nominal concept Co, we have that |CIo | = 1. The extension ofALC(D) with nominal
concepts is denoted ALCO(D).

2.2 Tableau Algorithms for Description Logics

As mentioned in Section 2.1.1, reasoning algorithms that can solve the problem of ABox satisfi-
ability are highly desirable in the field of description logics. We discuss the family of algorithms
that is most commonly used for this purpose: tableau algorithms (cf. [2]).

The method of semantic tableaux can also be used for other logics, such as propositional
logic, modal logics and first-order logic, and has been introduced by Beth in [4]. Tableau al-
gorithms involve an exhaustive semantic search for a witness of satisfiability of a given logic
sentence.

First, we shortly discuss the general working of tableau algorithms in the setting of descrip-
tion logics. Then, we elaborate briefly on the extension of this general tableau algorithm to
extensions of the basic description logic ALC. Finally, we summarize the advantages that this
type of reasoning algorithm offers, both conceptually and practically.

2.2.1 General Working

The algorithm starts with a tableau (or table) containing a number of description logic (as-
sertional) statements, and tries to find a model witnessing the (simultaneous) satisfiability of
these statements. This is done by means of nondeterministic search for such a witness model,
guided by the semantics of the statements present in the tableau. For instance, when a statement
a : (C t D) is present in the tableau, either a : C or a : D is also added, since for the first
statement to be true in a model, one of the latter two statements must also be true. Another
example is that for the statement a : ∃R.C the statements (a, b) : R and b : C are added, for
a fresh object name b. In other words, the algorithm tries to make the statements more explicit
by adding semantically more explicit statements. This procedure of nondeterministically adding
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more explicit statements might result in a “clash,” which corresponds to an inconsistency in the
constructed candidate witness. For instance, a tableau containing statements a : C and a : ¬C
is obviously inconsistent.

The algorithm thus traverses the search tree corresponding to the different possibilities of
adding statements to the tableau, and succeeds if there is a branch of the search tree that contains
no clash and for which no further statements can be added (i.e. the tableau is as explicit as
possible). The soundness of this algorithm results from the fact that such maximally explicit
tableaux directly correspond to models of the original statements. The algorithm is complete by
virtue of the exhaustiveness of the search algorithm (i.e. all possibilities are eventually tried).

2.2.2 Extensions

The algorithm as described above, is the simplest form of tableau algorithms used for the descrip-
tion logic ALC without TBoxes. For extensions of this basic reasoning setting, the algorithm
needs to be extended as well. Tableau algorithms have been developed for description logics
with transitive roles, number restrictions, functional roles, and many more additions to the ex-
pressivitiy of the logic (cf. [2]). However, here we restrict ourselves to the extension of tableau
algorithms to TBoxes and concrete domains.

When reasoning with respect to terminological axioms, additional statements can be added
to the tableaux. For instance, for a statement a : C in the tableau, in the presence of an axiom
C v D, the statement a : D needs to be added as well. For acyclic TBoxes, this can be done
straightforwardly. General TBoxes, however, can introduce cyclic behavior. An example of
such cyclic behavior results from the combination of the statement a : C and the terminological
axioms C v ∃R.D and D v ∃R.C. Blocking conditions need to be introduced to the tableau
algorithms to circumvent this behavior. These conditions prevent cyclic behavior, and detect
situations in which a model for the original statements can be constructed from the statements
in the tableau.

For the extension of description logics to concrete domains, the tableau algorithms also need
to be adapted. This adaptation involves modularly using an external reasoning algorithm that
decides the satisfiability of finite conjunctions of the concrete domain predicates. This external
algorithm is used to detect clashes based on the statements referring to the concrete domain.
Such extensions of the tableau algorithm to concrete domains, in the general case, do not work
for general TBoxes, however.

2.2.3 Efficient Implementations

Most modern, efficient implementations solving description logic reasoning problems are based
on tableau algorithms. As a result of this, much work has been done on optimizing tableau algo-
rithms. For instance, sophisticated data structures have been developed for tableau algorithms,
that result in a more efficient execution of the search procedure.
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2.2.4 Conceptual Advantages

The tableau algorithms are conceptually easy to understand. Essentially, the only task of these
algorithms is to find a model for a number of statements. The search for such a model is directly
guided by the model-theoretic semantics of the statements present in the tableau and the termi-
nological axioms present. E.g., there is a direct relation between the tableau rules applicable for
a statement and the semantics of this statement. This makes designing such algorithms concep-
tually very straightforward. As a result, it is conceptually relatively easy to extend the algorithm
to more expressive logics, containing more complicated statements. The additional rules and
mechanisms needed for such extensions namely are dictated by the semantics of the introduced
operators and statements. The design of algorithms for such extensions of the language is thus
guided by the semantics.

An illustration of this relation and its guidance in the design of algorithms concerns block-
ing conditions. The situations in which such blocking conditions are applicable (and required)
directly correspond to cases in which finite models of the corresponding statements are acyclic.
The witness models that correspond to these tableaux for which blocking conditions apply are
exactly such cyclic finite models. In essentially all cases of extensions of the description logics
to more expressive variants, the adaptation of the tableau algorithms to these variants are based
on the model-theoretic semantics of the introduced language constructs.

In fact, the tableau algorithms that have been developed for expressive description logics are
often extremely sophisticated, resulting from the complex model-theoretic semantics of these
expressive logics. The development of such sophisticated algorithms is made possible by the
straightforward relation between these algorithms and the semantics of the logic.
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CHAPTER 3
Programming Languages

The definitions of programming languages – of their syntax and the way programs specify com-
putation – are heterogeneous. Traditionally, programming languages were mainly imperative,
i.e. programs directly specified the procedure to be followed in the process of computation. Ex-
amples of such traditional imperative languages are FORTRAN and C. Many popular modern
programming languages are also based on this imperative paradigm (examples are Java, C++,
C#, etc). Besides languages from this imperative paradigm, there are also declarative program-
ming languages, with the main subparadigms of logic programming languages and functional
programming languages. Declarative languages specify what is to be computed, without spec-
ifying the control flow of how to compute it. Stereotypical examples of functional and logic
programming languages, are Haskell and Prolog, respectively.

In this thesis, we consider a number of simple programming languages that are representative
for the (sub)paradigms of programming languages mentioned above. In particular, we consider
two imperative languages (While in Section 3.1.1, and Goto in Section 3.1.2), as well as a func-
tional (FPN in Section 3.2.1) and a logic programming language (LPN in Section 3.2.2). For
the sake of simplicity, and in order to be able to straightforwardly define reasoning problems
over programs of different programming languages, we restrict all programming languages to
the same domain of values (namely numerical values).

The Goto language shows parallels to early, low-level imperative programming languages,
such as early versions of FORTRAN, while the While language is closer to later imperative
languages such as C, that uses (while) loops instead of goto statements. The programming
language FPN, as mentioned above, is a functional language, and shows many parallels to the
general-purpose functional programming language Haskell. Similarly, the language LPN is a
logic programming language, and shows many parallels to the prototypical logic programming
language Prolog.

Below, we formally define the syntax and semantics of the programming languages While,
Goto, FPN and LPN. For the imperative languages While and Goto, the (operational) semantics
of a program is defined as a (partial) mapping from states (which are themselves mappings from
variables to numerical values) to states, corresponding to the input-output relation induced by
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the program. For the declarative languages FPN and LPN, the semantics of a program is defined
as relations over numerical values for the different syntactical elements (function or predicate
symbols) of the program.

3.1 Imperative Languages

We consider two examples of imperative programming languages. Before we do so, we intro-
duce some formal machinery that is common to the semantic formalization of both languages.

Given a countably infinite set of variables X , and a finite subset of variables X ⊆ X , we
define the set of states over X , denoted with SX , as the set of total mappings s : X → N.
A state over a set of variables X is then simply a mapping s ∈ SX . Imperative programming
languages define programs that semantically are (partial) functions SX → SX , over a particular
set of variables X .

3.1.1 The Programming Language While

3.1.1.1 Syntax

We define the syntax of the simple representative imperative programming language While (de-
fined and used for similar purposes in [19, 20]) with the following context-free grammar in
Backus-Naur form (we use right-associative bracketing). We let n range over values of N, x
over the set of variables X , a over expressions of category AExp, b over expressions of category
BExp, and p over expressions of category While.

a ::= n | x | a+ a | a ? a | a− a
b ::= > | ⊥ | a = a | a ≤ a | ¬b | b ∧ b
p ::= x := a | skip | p; p | if b then p else p | while b do p

We consider programs as expressions of category While. We denote the set of variables occur-
ring in a program p with V ar(p), the set of subterms of p of category BExp with Bool(p), and
the set of subterms of p of category AExp with Arith(p).

Furthermore, we define a notion of ‘executive closure’ on programs. Intuitively, for a given
program p, its closure cl(p) contains all subprograms that could in principle occur in any execu-
tion of the program p. For instance, if a (sub)program of the form ((while b do q); r) can occur
in an execution, then also if b then (q; (while b do q); r) else (skip; r). Formally, with cl(p) we
denote the smallest set of programs such that:

• p ∈ cl(p);

• if (if b then p1 else p2) ∈ cl(p), then {p1, p2} ⊆ cl(p);

• if ((if b then p1 else p2); q) ∈ cl(p), then {(p1; q), (p2; q)} ⊆ cl(p);

• if (while b do q) ∈ cl(p), then (if b then (q; (while b do q)) else skip) ∈ cl(p);

• if ((while b do q); r) ∈ cl(p), then (if b then (q; (while b do q); r) else (skip; r)) ∈ cl(p);
and
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• if (p1; p2) ∈ cl(p) and p1 is of the form skip or of the form x := e, then p2 ∈ cl(p).

3.1.1.2 Operational Semantics

In order to define the operational semantics of While programs, we must firstly introduce the
interpretation of Boolean and arithmetical expressions. We define the function BX that interprets
expressions of category BExp as a function from StateX to B. Formally, BX takes a state
s ∈ SX and an expression of category BExp as arguments, and returns a boolean value.

BX(s, a1 σ a2) = AX(s, a1) σ AX(s, a2) for σ ∈ {=,≤}
BX(s,¬b) = ¬BX(s, b)

BX(s, b1 ∧ b2) = BX(s, b1) ∧ BX(s, b2)

We define the function AX that interprets expressions of category AExp as a function from
StateX to N. Formally, AX takes a state s ∈ SX and an expression of category AExp as
arguments, and returns a natural number.

AX(s, n) = n for n ∈ N
AX(s, x) = state(x) for x ∈ X

AX(s, a1 ρ a2) = AX(s, a1) ρ AX(s, a2) for ρ ∈ {+, ?}
AX(s, a1 − a2) = AX(s, a1)−AX(s, a2) if AX(s, a1)−AX(s, a2) ≥ 0
AX(s, a1 − a2) = 0 if AX(s, a1)−AX(s, a2) < 0

Next, we define the modification of values that states assign to variables. For s ∈ StateX ,
x ∈ X and n ∈ N, we define

s[x 7→ n](y) =

{
n if x = y

s(y) otherwise

For a program p and a set X such that var(p) ⊆ X ⊆ X , we define the operational semantics
as follows. We consider the transition system (Γ, T,⇒), where Γ = {(q, s) | q ∈ cl(p), s ∈
StateX} ∪ T , T = StateX , and⇒⊆ Γ× Γ.

We define the relation ⇒ as the smallest relation such that for each s ∈ StateX , for each
a ∈ AExp, and for each b ∈ BExp:

• we have (skip, s)⇒ s;

• we have (x := a, s)⇒ s[x 7→ AX(a, s)];

• we have (p1; p2), (p′1, p2) ∈ cl(p) and (p1, s)⇒ (p′1, s
′) imply (p1; p2, s)⇒ (p′1; p2, s

′);

• we have (p1; p2) ∈ cl(p) and (p1, s)⇒ s′ imply (p1; p2, s)⇒ (p2, s
′);

• we have (if b then p1 else p2, s)⇒ (p1, s), if PX(b, s) = >;

• we have (if b then p1 else p2, s)⇒ (p2, s), if PX(b, s) = ⊥; and

• we have (while b do p, s)⇒ (if b then (p; while b do p) else skip, s).
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Note that⇒ is deterministic, i.e., for any s, t, t′, if s⇒ t and s⇒ t′, then t = t′. We say that p
terminates on s with outcome t if (p, s) ⇒∗ t for t ∈ T . We say that p does not terminate on s
if there is no t ∈ T such that (p, s)⇒∗ t. Note also that if p does not terminate on s, then there
is an infinite sequence (p, s)⇒ (p′, s′)⇒ . . . starting from (p, s).

3.1.1.3 Normal Form

We define a notion of normal forms for programs. Without loss of generality, we assume any
While program p is of the form (p1; . . . ; pn; skip). we consider the following substitutions that
are applied on the separate pi and that preserve the operational semantics of programs. Let x
denote a fresh variable, let ρ range over {+, ?,−}, and π over {=,≤}, and let ϕ[·] range over
contexts (if · then p1 else p2) and (while · do p).

x := a1 ρ a2  x1 := a1 ; ϕ[x := x1 ρ a2] if a1 6∈ X
x := a1 ρ a2  x2 := a2 ; ϕ[x := a1 ρ x2] if a2 6∈ X
ϕ[a1 π a2]  x := a1 ; ϕ[x π a2] if a1 6∈ X
ϕ[a1 π a2]  x := a2 ; ϕ[a1 π x] if a2 6∈ X

Using the transformations on programs given by the above substitutions, we can transform any
program p to a program p′ that is operationally equivalent (when considering only the variables
occurring in p) and such that the following holds:

• each subexpression of p′ of category AExp is either of the form x ρ y, for x, y ∈ X and
ρ ∈ {+, ?,−}, or of the form n for n ∈ N;

• for each subexpression of p′ of category BExp of the form t ρ s, for ρ ∈ {=,≤}, holds
t, s ∈ X ; and

• either p′ = skip, or p′ is of the form e; skip, for some expression e of category While.

We will say that programs that satisfy this particular condition are in normal form. In the re-
mainder of this thesis we will often assume that programs are in normal form, which will make
it easier to specify the encoding of programs into description logic.

3.1.1.4 Running Example

In order to illustrate the programming language While, and concepts and definitions related to
While programs, we will introduce a running example. We will use this example more often in
the remainder of this thesis.

Example 3.1.1. Consider the following While program p. For input values given in variables x
and y, it returns the value min{x, 3} · y as the value of variable z.

p = (z := 0;w := 0;

p′︷ ︸︸ ︷
while (w < x ∧ w < 3) do (z := z + y;w := w + 1); skip)

Note that we use p′ as an abbreviation for the indicated subprogram of p.
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Note that this example program p is not in normal form. For the sake of brevity, and in order
to keep the examples uncluttered, we will transform p into normal form only when needed.

An example derivation for p for a state s ∈ S{w,x,y,z}, with s(w) = 2, s(x) = 2, s(y) = 5
and s(z) = 3, is given in Figure 3.1. As you can see, in fact, the program returns the value
min{s(x), 3} · s(y) = 10 as the value of variable z.

3.1.1.5 Stepwise division of derivations

An auxiliary definition that we will use in later chapters of this thesis is the stepwise division
of (finite) derivations. With this notion, we divide derivations into partial derivations in such a
way that the execution of an assignment (sub)program happens at (each and only at) the end of
a partial derivation. The reason for introducing this notion of stepwise division of derivations is
purely technical. When encoding derivations into description logic interpretations, in Chapter 4,
we will let typical models consist of partial derivations that are distinguished in the stepwise di-
vision. This allows us to encode actual state changes (i.e. variable assignments) with transitions,
and the conditional behavior of (sub)programs in a derivation with properties of program-state
pairs.

In the formal definition of stepwise divisions we distinguish several cases.

Definition 3.1.2 (Stepwise division of finite derivations). For any finite derivation d = (p1, s1)⇒
· · · ⇒ (pn, sn) ⇒ sn+1 we define the stepwise division of this derivation to be the sequence of
subderivations d1, . . . , dm such that:

• d = [d1 ⇒ · · · ⇒ dm],

• for the last subderivation dm = [(p′1, s
′
1) ⇒ · · · ⇒ (p′r, s

′
r) ⇒ s′] none of the p′j for

1 ≤ j ≤ r is of the form (x := e; q); and

• for all 1 ≤ i < m the subderivation di = [(p′1, s
′
1) ⇒ · · · ⇒ (p′r, s

′
r)] satisfies that p′r is

of the form (x := e; q) and for all 1 ≤ j < r it holds that p′j is not of the form (x := e; q).

The stepwise division of any finite derivation is uniquely defined.

Definition 3.1.3 (Stepwise division of infinite derivations). For an infinite derivation d = (p1, s1)
⇒ (p2, s2) ⇒ . . . where infinitely many pi are of the form (x := e; q), we define the stepwise
division of this derivation to be the sequence of subderivations d1, d2, . . . such that:

• d = [d1 ⇒ d2 ⇒ . . . ],

• for all i ∈ N the subderivation di = [(p′1, s
′
1) ⇒ · · · ⇒ (p′r, s

′
r)] satisfies that p′r is of the

form (x := e; q) and for all 1 ≤ j < r it holds that p′j is not of the form (x := e; q).

For an infinite derivation d = (p1, s1) ⇒ (p2, s2) ⇒ . . . where only finitely many pi are of
the form (x := e; q), we define the stepwise division of this derivation to be the sequence of
subderivations d1, . . . , dm such that:

• d = [d1 ⇒ · · · ⇒ dm],
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• for the last subderivation dm = [(p′1, s
′
1)⇒ (p′2, s

′
2)⇒ . . . ] none of the p′j is of the form

(x := e; q); and

• for all 1 ≤ i < m the subderivation di = [(p′1, s
′
1) ⇒ · · · ⇒ (p′r, s

′
r)] satisfies that p′r is

of the form (x := e; q) and for all 1 ≤ j < r it holds that p′j is not of the form (x := e; q).

The stepwise division of any infinite derivation is uniquely defined.

It is easy to verify that for any derivation with stepwise division d1, . . . , dn we have that for
any di = [(p1, s1) ⇒ · · · ⇒ (pr, sr)] we get by the definition of the operational semantics that
s1 = · · · = sr (we will say that this state s1 = · · · = sr is the state of the subderivation di).

For partial derivations d = [(p1, s1) ⇒ · · · ⇒ (pm, sm)] occurring in stepwise divisions,
we write (pi, si) ∈ d for all 1 ≤ i ≤ m. Similarly for infinite partial derivations. Also, for any
successive partial derivations di and di+1 occurring in a stepwise division we write di ⇒ di+1.

To illustrate this notion of stepwise division of derivations, in Figure 3.1 we give an example
of a stepwise division of a derivation for our running example.

3.1.2 The Programming Language Goto

3.1.2.1 Syntax

We define the syntax of the simple representative imperative programming language Goto. We
use expressions of categories AExp and BExp as defined in Section 3.1.1. We let n range
over values of N, x over the set of variables X , a over expressions of category AExp, b over
expressions of category BExp, and p over expressions of category Goto. We define expressions
of category Goto with the following context-free grammar in Backus-Naur form:

p ::= x := a | return | if b goto n else n

For any l ∈ N, we let Gotol denote the set of expressions of category Goto for which it holds
that if they are of the form if b goto n1 else n2 then n1 ≤ l and n2 ≤ l.

We now define a Goto program as a total function κ : {1, . . . , l} → Gotol, for some size
l ∈ N of κ, such that κ(l) = return. Here {1, . . . , l} constitutes the set of labels of the Goto
program. For an example of a Goto program, see Section 3.1.2.5 below.

We let the set of variables occurring in a program κ of size l, denoted V ar(κ), be the union
of variables occurring in terms κ(i), for 1 ≤ i ≤ l. We let Bool(κ) be the union of subterms
Sub(b) of expressions b occurring in terms κ(i) = if b goto n1 else n2, for 1 ≤ i ≤ l.

3.1.2.2 Operational Semantics

We use the definitions of states SX and interpretation functions AX and BX for expressions of
category AExp and BExp, for a subset of variablesX ⊆ X , from Section 3.1.1. For a program κ
of size l and a setX such that V ar(κ) ⊆ X ⊆ X , we define the operational semantics as follows.
We consider the transition system (Γ, T,⇒κ), where Γ = {(n, s) | 1 ≤ n ≤ l, s ∈ SX} ∪ T ,
T = SX , and⇒κ ⊆ Γ× Γ.

For a program κ of size l, we define the relation ⇒κ as the smallest relation such that for
each s ∈ SX , for each a ∈ AExp, for each b ∈ BExp, and and for each 1 ≤ n ≤ l:
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• p[2; 2; 5; 3]

• w := 0; p′[2; 2; 5; 0]

• p′[0; 2; 5; 0]

• if (w < x ∧ w < 3) then (z := z + y;w := w + 1; p′) else skip[0; 2; 5; 0]

• z := z + y;w := w + 1; p′[0; 2; 5; 0]

• w := w + 1; p′[0; 2; 5; 5]

• p′[1; 2; 5; 5]

• if (w < x ∧ w < 3) then (z := z + y;w := w + 1; p′) else skip[1; 2; 5; 5]

• z := z + y;w := w + 1; p′[1; 2; 5; 5]

• w := w + 1; p′[1; 2; 5; 10]

• p′[2; 2; 5; 10]

• if (w < x ∧ w < 3) then (z := z + y;w := w + 1; p′) else skip[2; 2; 5; 10]

• skip[2; 2; 5; 10]

•[2; 2; 5; 10]

d1

d2

d3

d4

d5

d6

d7

Figure 3.1: Example derivation d for the running example p on state [2; 2; 5; 3], together with
its stepwise division d1, . . . , d7. States s ∈ S{w,x,y,z} are denoted [s(w); s(x); s(y); s(z)].
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• if κ(n) = return, we have (n, s)⇒κ s;

• if κ(n) = (x := a), we have (n, s)⇒κ (n+ 1, s[x 7→ AX(a, s)]);

• if κ(n) = (if b goto n1 else n2, s) and PX(b, s) = >, we have (n, s)⇒κ (n1, s); and

• if κ(n) = (if b goto n1 else n2, s) and PX(b, s) = ⊥, we have (n, s)⇒κ (n2, s).

Note that⇒κ is deterministic. We say that κ from line n terminates on s with outcome t if
(n, s) ⇒∗κ t for some t ∈ T . We say that κ does not terminate from line n on s if there is no
t ∈ T such that (n, s) ⇒∗κ t. Note also that if κ does not terminate from line n on s, then there
is an infinite sequence (n, s)⇒κ (n′, s′)⇒κ . . . starting from (n, s).

In the remainder of this thesis, we will assume without loss of generality for any Goto
program κ of size l that for all 1 ≤ i < l we have κ(l) 6= return. It is easy to transform any
Goto program κ into a program for which this holds, by replacing all occurrences of return in
lines 1 ≤ i < l by a statement of the form if > goto l else l, since by definition we have that
κ(l) = return.

3.1.2.3 Normal Form

Similarly to the case for While programs (and for similar purposes), we define the notion of nor-
mal form for Goto programs. Consider the following transformations, preserving the operational
semantics of Goto programs, for fresh variables x′, ρ ∈ {+,−, ?} and π ∈ {=,≤}:

(x := a1 ρ a2)  x1 := a1 ; x := x1 ρ a2 if a1 6∈ X
(x := a1 ρ a2)  x2 := a2 ; x := a1 ρ x2 if a2 6∈ X

if ϕ[a1 π a2] goto m1 else m2  x1 := a1 ; if ϕ[x1 π a2] goto m1 else m2 if a1 6∈ X
if ϕ[a1 π a2] goto m1 else m2  x2 := a2 ; if ϕ[a1 π x2] goto m1 else m2 if a2 6∈ X

Such transformations are intuitively interpreted as replacing a line of the form t with lines of
the form t1, . . . , tn. Formally, let κ be a program of size l, and t t1; . . . ; tn (the instantiation
of) a transformation rule, such that κ(m) = t, for some 1 ≤ m ≤ l. The application of this
transformation to κ at line m is the following program κ′ of length l + n− 1:

κ′(i) =


σ(κ(i)) if 1 ≤ i < m

ti−m+1 if m ≤ i < m+ n

σ(κ(i− n+ 1)) if m+ n ≤ i ≤ l + n− 1

where the substitution σ is given by

σ(x) =

{
if b goto σ′(m1) else σ′(m2) if x = if b goto m1 else m2

x otherwise

σ′(i) =

{
i if i ≤ m
i+ n− 1 if i > m
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Using the above transformations on Goto programs, it is easy (yet tedious) to verify that we
can transform any program κ to a program κ′ that is operationally equivalent (when considering
only the variables occurring in κ) and such that the following holds:

• for each 1 ≤ n ≤ l, if κ(n) is of the form x := a, then a is either of the form x ρ y, for
x, y ∈ X and ρ ∈ {+, ?,−}, or of the form n for n ∈ N;

• for each 1 ≤ n ≤ l, if κ(n) is of the form if b goto n1 else n2, then for each subexpression
of b of the form t ρ s, for ρ ∈ {=,≤}, we have t, s ∈ X .

We will say that Goto programs that satisfy this particular condition are in normal form. In the
remainder of this thesis we will often assume that programs are in normal form, which will make
it easier to specify the encoding of programs into description logic.

3.1.2.4 Manipulating Goto Programs

In order to make life easier, we define some notation that allows us to easily extract subprograms
of Goto programs. Let κ be a Goto program of size l, and let 1 ≤ n1 ≤ n2 ≤ l. Assume that
for all n1 ≤ i ≤ n2 we have that κ(i) being of the form if b goto m1 else m2 implies that
n1 ≤ m1 ≤ n2 and n1 ≤ m2 ≤ n2. Then we define the subprogram sub(κ, n1, n2) as the Goto
program κ′ of size n2 − δ, where δ = n1 − 1 and where for all 1 ≤ i ≤ n2 − δ:

κ′(i) =

{
if b goto (m1 − δ) else (m2 − δ) if κ(i+ δ) = if b goto m1 else m2

κ(i+ δ) otherwise

It is easy to see that under the assumptions we made the subprogram sub(κ, n1, n2) is a well-
defined Goto program.

3.1.2.5 Running Example

In order to illustrate the programming language Goto, and concepts and definitions related to
Goto programs, we will introduce a running example, similar to the running example for While.
We will use this example in the remainder of this thesis.

Example 3.1.4. Consider the following Goto program κ. Similarly to the program in Example
3.1.1, for input values given in variables x and y, it returns the value min{x, 3} · y as the value
of variable z.

κ =

1 : z := 0
2 : w := 0
3 : if (w < x ∧ w < 3) goto 4 else 7
4 : z := z + y
5 : w := w + 1
6 : if > goto 3 else 3
7 : return

An example derivation for κ for a state s ∈ S{w,x,y,z}, with s(w) = 2, s(x) = 2, s(y) = 5
and s(z) = 3, is given in Figure 3.2. As one can see, in fact, the program returns the value
min{s(x), 3} · s(y) = 10 as the value of variable z.

21



d1︷ ︸︸ ︷
([2, 2, 5, 3], 1)⇒κ

d2︷ ︸︸ ︷
([2, 2, 5, 0], 2)⇒κ

d3︷ ︸︸ ︷
([0, 2, 5, 0], 3)⇒κ ([0, 2, 5, 0], 4)⇒κ

d4︷ ︸︸ ︷
([0, 2, 5, 5], 5)⇒κ

d5︷ ︸︸ ︷
([1, 2, 5, 5], 6)⇒κ ([1, 2, 5, 5], 3)⇒κ ([1, 2, 5, 5], 4)⇒κ

d6︷ ︸︸ ︷
([1, 2, 5, 10], 5)⇒κ

d7︷ ︸︸ ︷
([2, 2, 5, 10], 6)⇒κ ([2, 2, 5, 10], 3)⇒κ ([2, 2, 5, 10], 7)⇒κ [2, 2, 5, 10]

Figure 3.2: Example derivation d for the running example κ on state [2, 2, 5, 3], together with
its stepwise division d1, . . . , d7. States s ∈ S{w,x,y,z} are denoted [s(w), s(x), s(y), s(z)].

3.1.2.6 Stepwise division of derivations

Just as we did for While, we will define the notion of stepwise division of derivations for the
programming language Goto. We will use this notion for the same (purely technical) purposes
as for the corresponding notion for While (see Section 3.1.1.5).

Definition 3.1.5 (Stepwise division of finite derivations). For any finite derivation d = (m1, s1)
⇒ · · · ⇒ (mn, sn)⇒ sn+1, for a given Goto program κ, we define the stepwise division of this
derivation to be the sequence of subderivations d1, . . . , dm such that:

• d = [d1 ⇒ · · · ⇒ dm],

• for the last subderivation dm = [(m′1, s
′
1)⇒ · · · ⇒ (m′r, s

′
r)⇒ s′] none of the κ(m′j) for

1 ≤ j ≤ r are of the form x := e; and

• for all 1 ≤ i < m the subderivation di = [(m′1, s
′
1) ⇒ · · · ⇒ (m′r, s

′
r)] it holds that

κ(m′r) is of the form x := e and for all 1 ≤ j < r it holds that κ(m′j) is not of the form
x := e.

The stepwise division of any finite derivation is uniquely defined.

Definition 3.1.6 (Stepwise division of infinite derivations). For an infinite derivation d = (m1, s1)
⇒ (m2, s2) ⇒ . . . , for a fixed Goto program κ, where infinitely many κ(mi) are of the form
x := e, we define the stepwise division of this derivation to be the sequence of subderivations
d1, d2, . . . such that:

• d = [d1 ⇒ d2 ⇒ . . . ],

• for all i ∈ N the subderivation di = [(m′1, s
′
1) ⇒ · · · ⇒ (m′r, s

′
r)] it holds that κ(m′r) is

of the form x := e and for all 1 ≤ j < r it holds that κ(m′j) is not of the form x := e.

For an infinite derivation d = (m1, s1) ⇒ (m2, s2) ⇒ . . . where only finitely many κ(mi)
are of the form x := e, we define the stepwise division of this derivation to be the sequence of
subderivations d1, . . . , dm such that:
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• d = [d1 ⇒ · · · ⇒ dm],

• for the last subderivation dm = [(m′1, s
′
1)⇒ (m′2, s

′
2)⇒ . . . ] none of the κ(m′j) is of the

form x := e; and

• for all 1 ≤ i < m the subderivation di = [(m′1, s
′
1) ⇒ · · · ⇒ (m′r, s

′
r)] it holds that

κ(m′r) is of the form x := e and for all 1 ≤ j < r it holds that κ(m′j) is not of the form
x := e.

The stepwise division of any infinite derivation is uniquely defined.

It is easy to verify that for any derivation with stepwise division d1, . . . , dn for a program
κ we have that for any di = [(m1, s1) ⇒ · · · ⇒ (mr, sr)] we get by the definition of the
operational semantics that s1 = · · · = sr (we will say that this state s1 = · · · = sr is the state
of the subderivation di).

For partial derivations d = [(m1, s1) ⇒ · · · ⇒ (mm, sl)] occurring in stepwise divisions,
we write (mi, si) ∈ d for all 1 ≤ i ≤ l. Similarly for infinite partial derivations. Also, for any
successive partial derivations di and di+1 occurring in a stepwise division we write di ⇒ di+1.

To illustrate this notion of stepwise division of derivations, in Figure 3.2 we give an example
of a stepwise division of a derivation for our running example.

3.2 Declarative Languages

We now turn to the two declarative programming languages that we will use in the remainder of
the thesis.

3.2.1 The Functional Programming Language FPN

We consider a functional programming language operating on the domain of natural numbers.
We call this language FPN, which can be considered an acronym of “Functional Programming
with Natural numbers”.

3.2.1.1 Syntax

We fix a finite number of function symbols F = {f1, . . . , fn}, each with an arity ar(fi) ∈ N.
We define a condition of length k ∈ N to be a sequence of k values in N ∪⊥. We denote the set
of all conditions with Cond. We define a consequent of arity k ∈ N to be a term over N, over
the variables {x1, . . . , xk}, over the binary operators +, − and ?, and over the operators f of
arity ar(f), for f ∈ F . We denote the set of all consequents with Cons.

A program π is a mapping from F to (Cond × Cons)∗, such that the following condition
holds:

• for f ∈ F , if π(f) = ((c1, e1), . . . , (cm, em)), we have that each ci is a condition of
length ar(f), and each ei is a consequent of arity ar(f).
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3.2.1.2 Semantics

We define the semantics of programs by (recursively) defining countably many different rela-
tions. For each f ∈ F , and for each i ∈ N, we let Semi

f denote the smallest relation on
Nar(f) × N such that:

• a tuple (n, nres) = ((n1, . . . , nar(f)), nres) ∈ Nar(f) × N is in Semi
f if there exists

a (ck, ek) in the sequence π(f) = ((c1, e1), . . . , (cm, em)) such that cj does not match
(n1, . . . , nar(f)) for all 1 ≤ j < k, and J in(ek) = nres;

• where a condition (d1, . . . , dl) matches a sequence (n1, . . . , nl) if dh 6= ⊥ implies dh =
nh, for all 1 ≤ h ≤ l;

• and where J in is defined as follows

J in(x) =



n if x = n ∈ N ∪ {0}
nj if x = xj for 1 ≤ j ≤ k and n = (n1, . . . , nk)

J in(t1) ρ J in(t2) if x = t1 ρ t2 for some ρ ∈ {+, ?}
and J in(t1) and J in(t2) are defined

J in(t1)	 J in(t2) if x = t1 − t2
and J in(t1) and J in(t2) are defined

m if x = f(t1, . . . , tl) for f ∈ F , all J in(ti) are defined, and
(J in(t1), . . . ,J in(tl),m) ∈ Semj

f for some j < i

undefined otherwise

• and where 	 is defined as follows

n1 	 n2 =

{
n1 − n2 if n1 − n2 ≥ 0
0 otherwise

We now let Semf denote
⋃
i∈N Sem

i
f . Let k = ar(f). We say that the value of f applied to the

values n1, . . . , nk is n, denoted π(f)(n1, . . . , nk) = n, if (n1, . . . , nk, n) ∈ Semf .

3.2.1.3 Examples

Consider the simple program π1 that computes the ith Fibonacci number for a given i. We let
F = {fib} and ar(fib) = 1. Then π1 is given by:

π1(fib) = [((0), 1), ((1), 1), ((⊥), fib(x1 − 2) + fib(x1 − 1)]

Consider also the program π2 that computes the Ackermann-Péter function A(x1, x2). We
let F = {ack} and ar(ack) = 2. Then π2 is given by:

π2(ack) = [((0,⊥), x2 + 1), ((⊥, 0), ack(x1 − 1, 1), ((⊥,⊥), ack(x1 − 1, ack(x1, x2 − 1)))]
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3.2.1.4 Boolean conditions

For the sake of simplicity, we don’t consider any Boolean conditions on conditions into account
in the syntax of FPN. The syntax and semantics of FPN can be extended straightforwardly to
include Boolean conditions on the matching of sequences to conditions. All the results in this
thesis can also be worked out for such an extension.

We can however simulate a form of Boolean reasoning by means of the current syntac-
tic expressivity. Instead of multiple cases, distinguished by Boolean guards, we can encode
conditionals using the (partial) program πcond with functional symbols dedicated to Boolean
reasoning.

πcond(fif ) = (((0,⊥,⊥), x2), ((1,⊥,⊥), x3))
πcond(fand) = (((1, 1), 1), ((⊥,⊥), 0))
πcond(for) = (((1,⊥), 1), ((⊥, 1), 1), ((⊥,⊥), 0))
πcond(fneg) = (((1), 0), ((0), 1))
πcond(f≤) = (((0,⊥), 1), ((⊥, 0), 0), ((⊥,⊥), f≤(x1 − 1, x2 − 1)))

We illustrate how such Boolean reasoning can be done by using this method to specify the
running example we gave for While and Goto for FPN as well.

Example 3.2.1. The following example program π3 on functional symbols F = {g, gmult, gmin,
fif , f≤} can be used to calculate min{x, 3}·y by computing π3(g)(x, y). As intermediate value,
the program calculates π3(h)(x) = min{x, 3}.

π(g) = (((⊥,⊥), gmult(x1, x2, 0)))
π(gmult) = (((0,⊥), x3), ((⊥,⊥), gmult(x1 − 1, x2, x3 + x2)))
π(gmin) = ((⊥, fif (f≤(x1, 3), x1, 3)))
π(fif ) = πcond(fif )
π(f≤) = πcond(f≤)

3.2.2 The Logic Programming Language LPN

Next, we consider a logic programming language, that defines relations on the natural numbers.
We call this language LPN, which can be considered an acronym of “Logic Programming with
Natural numbers”.

One prominent feature of many logic programming languages is the automatic search mech-
anism involving free variables. As we will see below, however, the LPN language does not
allow free variables in the way that logic programming languages as Prolog do. Therefore, we
note that the LPN language does not offer the automatic search mechanisms that languages like
Prolog do.

3.2.2.1 Syntax

Let R = {r1, . . . , rn} be a finite set of predicate symbols with each an arity ar(ri) ∈ N, and a
countably infinite set of variables X . We define rules as statements of the form:

r(x1, . . . , xar(r))← r1(t11, . . . , t
1
ar(r1)), . . . , rk(t

k
1, . . . , t

k
ar(rk)

), c1, . . . , cm
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where r ∈ R and each rj ∈ R, each xi ∈ X , each tjl is a term over N, the variables xi occurring
in the left hand side, and the binary operators +, − and ?, and where each ci is an expression
t ρ t′ for some terms t, t′ as defined above, and some ρ ∈ {=, 6=, <,≤}. We call r the head
relation symbol of the rule.

We now define a program p as a finite set of rules, for a fixed set of predicate symbols R.

3.2.2.2 Semantics

We define the semantics of programs by (recursively) defining countably many different rela-
tions. We fix an input function ι : R → 2N∗ such that for each r ∈ R we have ι(r) ⊆ Nar(r)

and ι(r) is finite. Now, for each r ∈ R, and for each i ∈ N, we let Semi
r denote the smallest

relation on Nar(r) such that:

• if (n1, . . . , nk) ∈ ι(r), then (n1, . . . , nk) ∈ Semi
r;

• for any rule r(x1, . . . , xl) ← r1(t1), . . . , rk(t
k), c1, . . . , cm in the program p, if there

exists a mapping σ from the variables x1, . . . , xl to N such that for all 1 ≤ j ≤ k we have
σ(tj) ∈ Semi′

rj for some i′ < i, and such that all inequalities Jσ(t) ρ Jσ(t′) hold for
cz = t ρ t′ for all 1 ≤ z ≤ m, then (σ(x1), . . . , σ(xl)) ∈ Semi

r;

• where Jσ is defined as follows:

Jσ(t) =



n if t = n ∈ N
σ(x) if t = x ∈ X
Jσ(t1) + Jσ(t2) if t = t1 + t2

Jσ(t1) ? Jσ(t2) if t = t1 ? t2

Jσ(t1)	 Jσ(t2) if t = t1 − t2

• and where 	 is defined as follows

n1 	 n2 =

{
n1 − n2 if n1 − n2 ≥ 0
0 otherwise

We now define the semantics of an r ∈ R given the program p and the input ι as the relation
Semr =

⋃
i∈N Sem

i
r.

In the semantic definition of LPN programs we refer to the additional input function ι as
well as the syntax of the programs. This input function ι is basically syntactic sugar. For any
r ∈ R and any (n1, . . . , nk) ∈ ι(r) we could alternatively add the rule r(x1, . . . , xk) ← x1 =
n1, . . . , xk = nk to LPN programs, and then we could get rid of ι (or rather, set ι(r) = ∅ for all
r ∈ R). However, since including the function ι in the definition of LPN has a positive effect
on the readability of programs, and since it hardly alters the encoding of LPN programs into
ALC(D) later in this thesis (specifically, see Axioms (4.51) and (4.51) in Section 4.6), we chose
to include the use of ι in the definition of LPN. Whenever ι(r) = ∅ for all r ∈ R, we omit
mentioning ι altogether.
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3.2.2.3 Examples

Consider the following example program p1 for R = {even, odd} and ar(even) = ar(odd) =
1, whose semantics correspond to the even and odd numbers, respectively.

ι1(even) = {0}

p1 = { even(x1) ← even(x1 − 2),
odd(x1) ← even(x1 − 1) }

We can express the function computed by the running example of the other programming
languages (which computes the value of min{x, 3} · y for input variables x and y) also as an
LPN program.

Example 3.2.2. Consider the following LPN program p2 on relational symbols R = {answer,
min, multiply, multiply′}. The value of min{x, 3} · y can be computed using this program by
checking for what z it holds that (x, y, z) ∈ Semanswer.

p2 = { answer(x, y, z) ← min(x, 3, x′),multiply(x′, y, z)
multiply(x1, x2, x3) ← multiply′(x1, x2, 0, x3)
multiply′(x1, x2, x3, x4) ← multiply′(x1 − 1, x2, x3 + x2, x4), x1 > 0
multiply′(x1, x2, x3, x4) ← x1 = 0, x3 = x4

min(x1, x2, x3) ← x1 = x3, x1 ≤ x2

min(x1, x2, x3) ← x2 = x3, x1 > x2 }

3.3 Computational Power

The programming languages defined above most likely seem fairly primitive and simple to the
reader, and anyone familiar with programming languages has most probably seen languages sim-
ilar to, yet much more complicated than the languages above before. However, these languages
have as much computational power as any computational model we know of. Formally, this can
be formulated as the statement that any Turing-computable function (i.e. any function that can
be computed by a Turing machine [22]) can be computed by a program of the programming
languages above. Systems that have this property are called Turing-complete.

The Turing-completeness for the imperative programming languages already follows from
the Böhm-Jacopini-Theorem [5], which states that sequential execution, conditional selection
and conditional iteration of subprograms are enough to compute all computable functions.

Nevertheless, we will briefly sketch how to show the Turing-completeness of the program-
ming languages we defined. A relatively simple way to show this is to show that any µ-recursive
function can be encoded by programs of the programming languages. It is well-known that
µ-recursive functions and Turing-computable functions coincide.

Definition 3.3.1 (µ-recursive functions). The set of µ-recursive functions is the smallest class of
functions that includes the basic functions:

1. the constant function:
for each k, n ∈ N, the function f(x1, . . . , xk) = n;
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2. the successor function:
the function f(x) = x+ 1;

3. the projection function:
for each i, k ∈ N such that 1 ≤ i ≤ k, the function f(x1, . . . , xk) = xi;

and that is closed under the operations:

4. the composition operator ◦:
given an m-ary function h(x1, . . . , xm) and k-ary functions g1(x1, . . . , xk), . . . ,
gm(x1, . . . , xk), we define h ◦ (g1, . . . , gm) = h(g1(x1, . . . , xk), . . . , gm(x1, . . . , xk));

5. the primitive recursion operator ρ:
given the k-ary function g(x1, . . . , xk) and the (k + 2)-ary function h(y, z, x1, . . . , xk)
we define ρ(g, h) = f(y, x1, . . . , xk) where f(0, x1, . . . , xk) = g(x1, . . . , xk) and f(y +
1, x1, . . . , xk) = h(y, f(y, x1, . . . , xk), x1, . . . , xk);

6. the minimisation operator µ:
given the (k + 1)-ary function f(y, x1, . . . , xk) we define µ(f)(x1, . . . , xk) = z iff
∃y0, . . . , yz such that yi = f(i, x1, . . . , xk) for 0 ≤ i ≤ z, yi > 0 for 0 ≤ i < z and
yz = 0.

Proposition 3.3.2. Every µ-recursive function can be expressed by a While program.

Proof (sketch). For each function f(x1, . . . , xk) we can (recursively) define a While program
that uses variables x1, . . . , xk as input variables and that returns the value of f(x1, . . . , xk) in
a variable xout. The basic functions (1)-(3) can very straightforwardly be expressed by While
programs consisting of only assignment expressions (e.g. xout := xi for the projection function
f(x1, . . . , xk) = xi).

For the operations (4)-(6), we can straightforwardly define composition functions on While
programs that result in suitable While programs expressing the result of these operations. For
the composition operator, we take the programs for the separate functions h, g1, . . . , gm. By
variable renaming and concatenation in a suitable fashion we can straightforwardly obtain the
required While program computing h ◦ (g1, . . . , gm).

For the primitive recursion operator ρ, we take the programs p and q expressing the function
g and h, respectively, where the output variable xout is renamed to xres (in both cases) and the
input variable y is renamed to xy (in the case of q). The function ρ(g, h) can then be expressed
by the program:

xc := 0;
while (xc ≤ y) do

((if xc = 0 then p
else (z := xres;xy := xc − 1; q));
xc := xc + 1);

xout := xres

For the minimisation operator µ, we take the program p for the function f , where the output
variable xout is renamed to z. The function µ(f)(x1, . . . , xm) can then be expressed by the
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program:

y := 0; z := 1;
(while z > 0 do p; y := y + 1);
xout := y − 1

This recursive argument shows that While programs can express any µ-recursive function.

Similar results can straightforwardly be shown for the languages Goto An alternative method to
show Turing-completeness for the programming language Goto is to show that for each While
program there exists an equivalent Goto program. In fact, we show this in Chapter 6, with
Definition 6.4.9 and Theorem 6.4.10.

For the declarative languages FPN and LPN, Turing-completeness can be shown quite straight-
forwardly as well. Showing this claim in full detail is beyond the scope of this thesis. We will
merely make plausible that this can be done, by suggesting how to express conditional execution
and conditional iteration of (sub)programs. For FPN, we can express conditional iteration by
(partial) programs π containing definitions of the following form:

π(fwhile) = (((1,⊥), fwhile(f1(x2), f2(x2))), ((0,⊥), x2))

Intuitively, this definition of fwhile can be understood as fwhile(1, x) being the conditional ex-
ecution of the function f2 to a variable x until the value of f1(x) becomes 0. Together with
definitions similar to those of the Boolean operators from Section 3.2.1.4, this makes it possi-
ble to express any Turing-computable function using FPN. By a similar argument, the Turing-
completeness of LPN can be shown.

3.4 Reasoning Problems over Programs

For the programming languages discussed above, we defined the semantics of executing pro-
grams. For the imperative languages, this concerns the operational semantics. For the declarative
languages, this concerns the (relational) declarative semantics. In essence, this definition of se-
mantics only concerns the input-output relation induced by programs. For imperative programs,
the operational semantics maps every input state to an output state. For declarative programs,
the declarative semantics maps every input query to an output value.

However, as mentioned in Chapter 1, we are interested in additional semantic properties of
programs. Many such additional semantic properties could be defined. For the sake of clarity
and concision, we will restrict ourselves to two basic kinds of semantic properties: termination
of (imperative) programs and equivalence of programs (both for imperative and declarative pro-
grams). Below, we will formally define these semantic properties for programs of the different
programming languages. Using the approach that we develop in Chapter 4, we are able to ex-
press many more semantic properties. We will elaborate on such additional semantic properties
a bit more below (as well as in Chapters 4 and 5), but in the remainder of the thesis we restrict
the main discussion and results to the semantic properties of termination and equivalence.
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3.4.1 (Uniform) Termination

The semantic property of uniform termination for programs (or simply termination, for short)
concerns the question whether every execution of a program, for each possible input state, ter-
minates. Formally, for While programs, we say that a program p on variables X ⊆ X is termi-
nating if for every input state s ∈ SX , the derivation starting at (p, s) terminates after finitely
many steps, i.e. (p, s) ⇒∗ s′ for some s′ ∈ SX . Similarly, for Goto programs, we say that a
program κ on variables X ⊆ X is terminating if for every input state s ∈ SX , the κ derivation
starting at (1, s) terminates after finitely many steps, i.e. (1, s)⇒∗κ s′ for some s′ ∈ SX .

Termination is an important semantic property for programs to have. For uniformly ter-
minating programs, you can count on the program not running infinitely, which is extremely
important in many practical settings. The importance of this termination property is illustrated
by the fact that a similar property has been essential in the abstract study of computation (i.e. the
uniform halting property of Turing machines), and a similar property is one of the most studied
properties for computational mechanisms such as term rewriting systems.

In principle, we could also define termination for the declarative languages FPN and LPN.
However, the notion of termination presupposes a fixed notion of operational execution of pro-
grams. Since we did not commit ourselves at all to any operational semantics of the declarative
programming languages, we will not go further into the topic of termination for programs of the
languages FPN and LPN in this thesis.

3.4.1.1 Termination on Individual Input States

Besides the uniform termination property of programs mentioned above, one can also distin-
guish the termination property of programs restricted to particular input states, i.e., the question
whether a While or Goto program with variables X ⊆ X terminates on a given input state
s ∈ SX . This property, though theoretically not less interesting, is not as important from a prac-
tical point of view, since it does not directly imply program reliability that is similar to the form
of reliability that uniform termination guarantees.

Clearly, checking whether a program terminates on a given input state can be reduced to
the uniform termination property. We briefly sketch the reduction for While. The case of Goto
is completely similar. Take a While program p over variables {x1, . . . , xk} = X ⊆ X , and
take an input state s ∈ SX . We have that p terminates on s if and only if the program (x1 :=
s(x1); . . . ;xk := s(xk); p) is uniformly terminating. Furthermore, in the general case, the
problem whether a given program terminates on a given input state is undecidable (cf. Theorem
6.3.21), just like the problem whether a given program is uniformly terminating.

In the remainder of the thesis, we will focus on the uniform termination property of While
and Goto programs. We will refer to uniform termination simply as termination of programs.

3.4.2 Equivalence

Another semantic property of programs (imperative and declarative) that is very relevant for
practical purposes, is the property of equivalence of two programs. Intuitively, two programs
that are equivalent give exactly the same result for any input state or query, and could thus be
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used to perform the same computation. This notion of equivalence is essential, for instance, for
the (definition of) optimization of programs. We formally define equivalence of programs for
the different programming languages we consider.

Two (terminating) While programs p1 and p2 on variables X ⊆ X are equivalent if and only
if for each input state s ∈ SX and each output state s′ ∈ SX , we have that (p1, s) ⇒∗ s′ iff
(p2, s) ⇒∗ s′. Similarly, two Goto programs κ1 and κ2 on variables X ⊆ X are equivalent if
and only if for each input state s ∈ SX and each output state s′ ∈ SX , we have that (1, s)⇒∗κ1

s′

iff (1, s) ⇒∗κ2
s′. Note that whenever the one program uses variables X1 ⊆ X and the other

uses variables X2 ⊆ X , and X1 6= X2, we can simply let X = X1 ∪X2.
Analogously, since While and Goto programs have the same operational setting (they both

define possibly partial mappings SX → SX ) we can define equivalence of a While program and
a Goto program as follows. A While program p and a Goto program κ on variables X ⊆ X are
equivalent if and only if for each input state s ∈ SX and each output state s′ ∈ SX , we have
(p, s)⇒∗ s′ iff (1, s)⇒∗κ s′.

In the remainder of the thesis, for the sake of keeping things as little complicated as possible,
we will usually only consider equivalence of terminating programs. The definition of equiva-
lence of (imperative) programs above works also in the case of programs that are not necessarily
terminating, however.

For FPN programs, we can define the notion of equivalence of equivalence on the basis
of the declarative (relational) semantics. Let π1 and π2 be two FPN programs, and assume
without loss of generality that they use the same set F of functional symbols. We denote the
semantic relation induced by π1 with Semπ1 and the semantic relation induced by π2 with
Semπ2 . We say that π1 and π2 are equivalent on a symbol f ∈ F of arity k if and only if for each
(n1, . . . , nk, n) ∈ Nk+1 we have that (n1, . . . , nk, n) ∈ Semπ1

f iff (n1, . . . , nk, n) ∈ Semπ2
f .

Similarly, for LPN programs, we define equivalence on the basis of the declarative (rela-
tional) semantics. Let p1 and p2 be two LPN programs, and assume without loss of generality
that they use the same set R of relational symbols. For the sake of simplicity, we fix an input
function ι such that ι(r) = ∅ for each r ∈ R. We denote the semantic relation induced by p1

with Semp1 , and the semantic relation induced by p2 with Semp2 . We say that p1 and p2 are
equivalent on a symbol r ∈ R of arity k if and only if for each (n1, . . . , nk) ∈ Nk we have that
(n1, . . . , nk) ∈ Semp1

r iff (n1, . . . , nk) ∈ Semp2
r .

3.4.3 Additional semantic properties

Besides the notions of termination and equivalence of programs defined above, there are many
more interesting semantic properties of programs that we could consider. We will briefly men-
tion a few of them here, but we will not further investigate these additional properties in much
detail in this thesis.

First of all, we could consider equivalence of imperative and declarative programs. We
illustrate this by defining (one possible notion of) equivalence of a While program and a FPN
program. Let p be a While program using variables X ⊆ X and let π be a FPN program using
functional symbols F . We say that p is equivalent for inputs {x1, . . . , xk} = X ′ ⊆ X and output
x ∈ X to π for f ∈ F if and only if (i) ar(f) = k, and (ii) for each (n1, . . . , nk, n) ∈ Nk+1 we
have that (n1, . . . , nk, n) ∈ Semπ

f holds if and only if it is the case that s(x1) = n1, . . . , s(xk) =
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nk and (p, s) ⇒∗ s′ implies s′(x) = n for all s, s′ ∈ SX . We will consider this property a bit
more in Section 4.7. Similar equivalence properties can be defined straightforwardly for the
different combinations of imperative and declarative programming languages.

Another class of semantic properties that we could define for programs are conditional vari-
ants on termination or equivalence properties. Think for instance of the relaxation of the uniform
termination property from termination on all possible input states to termination on a restricted
subset of all possible input states. Such conditional semantic properties might be practically
relevant if it is known that the input states satisfy a certain condition, for example.

Furthermore, we could also define notions like inverse relations of programs. We say a While
program p is the inverse of another While program p′, both containing variables X ⊆ X , iff for
each s ∈ SX we have that (p, s) ⇒∗ s′ and (p′, s′) ⇒∗ s, for some s′ ∈ SX . In fact, the
semantic properties that could be defined for programs and that might be relevant to consider are
numerous.
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CHAPTER 4
Encoding into Description Logic

4.1 General Approach

As explained before, in Chapter 1, we will show how to encode arbitrary programs from the
different programming languages intoALC(D) TBoxes, in such a way that the semantics of the
program corresponds to the model theoretic semantics of the TBox resulting from the encod-
ing. In order to do so, we will formally specify these encodings for each of the programming
languages introduced in Chapter 3. Along with the specification of these encodings, for each
programming language, we formally prove the correspondence between the semantics of pro-
grams (as defined in Chapter 3) and the model theoretic semantics of the encoding. Guiding
both the encoding and the semantic correspondence proofs are intuitions of how to model the
behavior of programs of the different programming languages in the (model-theoretic) semantics
of the description logic ALC(D).

4.2 Modelling the Behavior of Programming Languages

Before we give the formal specifications of the encodings together with the semantic corre-
spondence proofs, we explain these underlying intuitions for each of the different programming
(sub)paradigms.

4.2.1 Imperative Programming Languages

In order to describe the intuition behind modelling programs of the imperative programming
languages in the semantics of the description logicALC(D), we identify the core elements of the
semantics of the imperative languages. Essential in the definition of the operational semantics
of imperative programs are states (i.e. assignments of values to variables), (sub)programs of
the programming language, and derivations involving states and programs. We represent these
elements, and the relations between them, in the model-theoretic semantics as follows.
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We let objects in our domain represent occurrences of states in derivations of the operational
semantics of the imperative language. Note that identical states can occur multiple times (in
a derivation of the operational semantics), and therefore we allow multiple occurrences of one
particular state. For each state, the assignment of values to (the fixed set of) variables is rep-
resented by concrete roles, one for each variable. We represent the notion of successor state in
the derivations in the operational semantics of the imperative language as an abstract role in the
description logic, which is interpreted as a binary relation on the occurrences of states.

We represent programs defined by the imperative programming language with concepts,
which are interpreted as sets of occurrences of states. These concepts allow us to encode re-
strictions on the possible derivations in the operational semantics, i.e. restrictions on the chains
of the binary relation that is the interpretation of the successor state role. Such restrictions, that
ultimately ensure the correspondence between the operational semantics of the imperative lan-
guage and the model theoretic interpretation of the encoding, are encoded using terminological
(TBox) axioms. Furthermore, in order to enable us to talk about terminating derivations and
resulting states of derivations, we introduce a unique concept referring to terminated programs.

4.2.2 Functional Programming Languages

Similarly to the case of the imperative programming languages, in order to describe the intuition
behind modelling programs of the functional programming language FPN into the semantics
of the description logic ALC(D), we identify the core elements in the semantics of the this
functional programming language. The semantics of this language consists of k-ary relations
(one for each function symbol) over numerical values, where intuitively, for each instance, the
program determines the last value based on the first k − 1 values and on other instances of the
relations defined in the semantics of the program.

Instances of these semantic relations are represented by objects in the abstract domain of the
ALC(D) model. The values of these instances are encoded by concrete roles, relating the objects
corresponding to instances to (numerical) values in the concrete domain. The function symbols
present in the program are represented by concepts, that are interpreted as sets of instances
occurring in the semantic relation corresponding to the function symbols.

The dependencies between the values of the instances of the semantic relations defined by
the program are then encoded using terminological (TBox) axioms. Whenever the values of an
instance depend on other instances, objects corresponding to these other instances are selected
by using abstract roles.

4.2.3 Logic Programming Languages

Again, similarly to the case of the other programming languages, in order to describe the in-
tuition behind modelling programs of the logic programming language LPN into the semantics
of the description logic ALC(D), we identify the core elements in the semantics of the logic
programming language. The semantics of this language consists of relations (one for each pred-
icate symbol) over numerical values, where each instance must have a justification based on
instances in the input function and on other instances of the relations defined in the semantics of
the program. The exact nature of this justification depends on the program.
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Similarly to the case for the functional programming language, instances of the semantic
relations are represented by objects in the abstract domain of the first-order model. The values
of these instances are encoded by concrete roles, relating the objects corresponding to instances
to (numerical) values in the concrete domain. The predicate symbols present in the program
are represented by concepts, that are interpreted as sets of instances occurring in the semantic
relation corresponding to the predicate symbols.

The justification constraints on the instances of the semantic relations defined by the program
are then encoded using terminological (TBox) axioms. Whenever this justification depends on
other instances, objects corresponding to these other instances are selected by using abstract
roles.

4.3 Encoding While Programs in ALC(D)

We now show how to model the behavior of programs of the language While using description
logic. The concrete values in the programming language correspond to concrete values in the
description logic. Remember, states will be represented by objects, and programs are represented
by concepts. We represent the successor state relation, induced by the execution of programs on
states, by a (functional) role nextState.

In particular, for a given program p with V ar(p) = X = {x1, . . . , xn}, we denote states
s ∈ SX with objects that are related to numerical values with concrete features valueOfxi for
each 1 ≤ i ≤ n.

4.3.1 Constructing a TBox

Take an arbitrary While program p, i.e., an expression of category While. W.l.o.g., we assume p
is in normal form. We define an ALC(D) TBox T p as follows. We use concept names Cq for
each q ∈ cl(p), and concept names Db for each b ∈ Bool(p).

For each variable x ∈ V ar(p), we create a concrete feature valueOfx, and we require for
each q ∈ cl(p):

Cq v ¬valueOfx↑ (4.1)

We let nextState be an abstract feature and for Cskip we require:

Cskip v ¬∃nextState.> (4.2)

For each b ∈ Bool(p), we require the following, where x1, x2 range over X , and b1, b2 range
over Bool(p):

Dx1=x2 ≡ ∃(valueOfx1)(valueOfx2).= (4.3)

Dx1≤x2 ≡ ∃(valueOfx1)(valueOfx2).≤ (4.4)

D¬b1 ≡ ¬Db1 (4.5)

Db1∧b2 ≡ Db1 uDb2 (4.6)

Furthermore, we letD> denote> andD⊥ denote⊥. Then, for each q ∈ cl(p) of the form p1; p2

we require the following for Cq, where p1, p2, q1, q2 range over cl(p), x, y1, y2 range over X , a
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ranges over Arith(p),

C(x:=a);p2 v ∃nextState.Cp2 (4.7)

Cskip;p2 v Cp2 (4.8)

C(x:=n);p2 v ∃(nextState valueOfx).=n (4.9)

C(x:=y);p2 v ∃(nextState valueOfx)(valueOfy).= (4.10)

C(x:=y1+y2);p2 v ∃(nextState valueOfx)(valueOfy1)(valueOfy2).+ (4.11)

C(x:=y1−y2);p2 v (¬∃(valueOfy2)(valueOfy1).≤ t
∃(valueOfy1)(nextState valueOfx)(valueOfy2).+) u
(¬∃(valueOfy2)(valueOfy1).> t
∃(nextState valueOfx).= 0) (4.12)

C(x:=a);p2 v ∃(valueOfy)(nextState valueOfy).= for y 6= x (4.13)

C(if b then q1 else q2);p2 v (¬Db t Cq1;p2) u (Db t Cq2;p2) (4.14)

C(while b do q);p2 v (¬Db t Cq;(while b do q);p2) u (Db t Cp2) (4.15)

Notice that, in general, the TBox T p is not acyclic, since Axiom (4.15) can induce a cycle
in combination with Axioms (4.7), (4.8) and (4.14).

Intuitively, these axioms serve the following purpose. Axioms (4.1) and (4.2) ensure some
basic properties of the modelling of derivations in the model. Axioms (4.3)-(4.6) capture the
behavior of Boolean expressions. The remaining axioms enforce the modelling of the behav-
ior of programs in the model. Axiom (4.8) handles programs starting with a skip statement.
Axiom (4.7) and (4.9)-(4.13) handle programs starting with a variable assignment. Of these,
Axiom (4.13) can be considered as a frame axiom, making sure that unmentioned variables are
unchanged. Axiom (4.14) handles programs starting with if-then-statements, and Axiom (4.15)
handles programs starting with while-statements.

4.3.2 Semantic Correspondence

In order to use the above encoding of a program p into an ALC(D) TBox T p, we show the
following correspondence between the operational semantics of p and the model theoretic se-
mantics of T p.

Lemma 4.3.1 (Boolean correspondence). For any program p, any X such that V ar(p) ⊆ X ⊆
X , any state s ∈ SX , any b ∈ Bool(p), and for any model I = (∆I , ·I) of T p, we have that
d ∈ ∆I and (d, s(xi)) ∈ valueOfIxi for all 1 ≤ i ≤ n implies that d ∈ DIb iff BX(b, s) = >.

Proof. By induction on the structure of b. We know I is a model of T b. The base cases b = >
and b = ⊥ follow directly, since D> = > and D⊥ = ⊥. The base cases b = (a1 = a2) and
b = (a1 ≤ a2) follow directly from the fact that Axioms (4.3) and (4.4) hold, respectively. The
inductive cases b = ¬b1 and b = b1∧b2 follow directly from the fact that Axioms (4.5) and (4.6)
hold, respectively.
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Theorem 4.3.2 (Semantic enforcement). For any program p, any X such that V ar(p) ⊆ X ⊆
X , any state s ∈ SX such that p terminates on s with outcome t, and for any model I = (∆I , ·I)
of T p we have that d ∈ CIp and (d, s(xi)) ∈ valueOfIxi for all 1 ≤ i ≤ n implies that e ∈ CIskip
and (e, t(xi)) ∈ valueOfIxi for all 1 ≤ i ≤ n, for some e ∈ ∆I .

Proof. By induction on the length of the ⇒-derivation (p, s) ⇒k t. Assume d ∈ CIp and
(d, s(xi)) ∈ valueOfIxi for all 1 ≤ i ≤ n, for some d ∈ ∆I . The base case k = 0 holds
vacuously. In the case for k = 1, we know p = skip, since p is in normal form. Therefore, we
know s = t, and thus e = d witnesses the implication.

In the inductive case, we distinguish several cases. Case p = skip; q. We know (p, s) ⇒
(q, s)⇒k−1 t. Since I satisfies T p, by Axiom (4.8), we know d ∈ CIq . The result now follows
directly by the induction hypothesis.

Case p = (x := a); q. We know (p, s) ⇒ (q, s′) ⇒k−1 t, and s′ = s[x 7→ AX(a, s)].
Since I satisfies T p, by Axioms (4.1), (4.7), (4.9)-(4.12) and (4.13), we know there must exist a
d′ ∈ CIq such that (d′, s′(xi)) ∈ valueOfIxi for all 1 ≤ i ≤ n. Then by the induction hypothesis,
the result follows directly.

Case p = (if b then p1 else p2); q. Assume BX(b, s) = >. Then (p, s)⇒ (p1; q, s)⇒k−1 t.
By Lemma 4.3.1, we know d ∈ DIb . Then, by the fact that Axiom (4.14) holds, we know d ∈
CIp1;q. The result now follows directly by the induction hypothesis. The case for BX(b, s) = ⊥
can be shown by an analogous argument.

Case p = (while b do p1); q. Assume BX(b, s) = >. Then (p, s)⇒2 (p1; p, s)⇒k−2 t. By
Lemma 4.3.1, we know d ∈ DIb . Then, by the fact that Axiom (4.15) holds, we know d ∈ Cp1;p.
The result now follows directly by the induction hypothesis.

If, however, in the same case holds BX(b, s) = ⊥, then (p, s) ⇒3 (q, s) ⇒k−3 t. By
Lemma 4.3.1, we know d 6∈ DIb . By the fact that Axiom (4.15) holds, we know d ∈ CIq . The
result now follows directly by the induction hypothesis.

In the following two theorems canonical models are constructed on the basis of (terminating
and nonterminating) sequences.

Theorem 4.3.3 (Canonical model for nonterminating sequences). For any program p, any X
such that V ar(p) ⊆ X ⊆ X , and any state {x1 7→ c1, . . . , xn 7→ cn} = s ∈ SX such that p
does not terminate on s, there exists a model I = (∆I , ·I) of T p such that for some d ∈ ∆I we
have d ∈ CIp , (d, ci) ∈ valueOfIxi , for all 1 ≤ i ≤ n, and CIskip = ∅.

Proof. Since p does not terminate on s, we know there exists an infinite⇒-sequence d such that
(pi, si)⇒ (pi+1, si+1), for i ∈ N, where (p1, s1) = (p, s). We construct the canonical model of
T p for this infinite⇒-sequence: I = (∆I , ·I). Let D be the stepwise division of the derivation
d (which contains either finitely many or infinitely many partial derivations di ∈ D). We let
∆I = D. For q ∈ cl(p), we let CIq = {d ∈ D | (q, s) ∈ d}. For b ∈ Bool(p), we let DIb =
{d ∈ D | (p, s) ∈ d,PX(b, s) = >}. For each x ∈ X , we let valueOfIx = {(d′, s′(x)) | d′ ∈
D, s′ the state corresponding to d′}. We let nextStateI = {(di, di+1) | di, di+1 ∈ D, di ⇒
di+1}.
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The definition of I implies that CIskip = ∅. Assume di ∈ CIskip. Then for some (pk, sk) ∈
di we would have pk = skip, and thus (pk, sk) ⇒ sk, which contradicts our assumption of
nontermination.

Clearly, I satisfies Axiom (4.1). Since CIskip = ∅, I also satisfies Axiom (4.2). It is easy to
verify, that by the definition of DIb we get that I satisfies Axioms (4.3)-(4.6).

To see that I satisfies Axioms (4.7)-(4.15), we take an arbitrary class CIpj , take arbitrary
dk ∈ CIpj with (pj , sj) ∈ dk, and we distinguish several cases.

Consider pj = skip; q. Then by the constraints on ⇒, we know (pj+1, sj+1) ∈ dk where
pj+1 = q and sj+1 = sj . By definition then also dk ∈ CIq . This witnesses that the subsumption
in Axiom (4.8) holds.

Consider pj = (x := a); q. Then by the constraints on⇒, we know (pj+1, sj+1) ∈ dk+1,
for the dk+1 ∈ D such that dk ⇒ dk+1, where pj+1 = q and sj+1 = sj [x 7→ AX(a, sj)]. By
definition of I, we know (dk, dk+1) ∈ nextStateI . It is now easy to verify that the subsumptions
in Axioms (4.7), (4.9)-(4.12) and (4.13) are satisfied.

Consider pj = (if b then p′1 else p′2); q. Assume BX(b, sj) = >. Then dk ∈ DIb . Also, by
the constraints on⇒, we know (pj+1, sj+1) ∈ dk, where pj+1 = p′1; q and sj+1 = sj . It is easy
to verify that, in this case, the subsumption in Axiom (4.14) holds. The case for BX(b, sj) = ⊥
is completely analogous.

Consider pj = (while b do p′); q. If BX(b, sj) = >, then dk ∈ DIb and (pj+1, sj+1) ∈ dk,
where pj+1 = p′; pj and sj+1 = sj . If BX(b, sj) = ⊥, then dk 6∈ DIb and (pj+1, sj+1) ∈ dk,
where pj+1 = skip; q and sj+1 = sj . It is easy to verify that, in either case, the subsumption in
Axiom (4.15) holds.

Note that the canonical model constructed in the proof of Theorem 4.3.3 is infinite, and
might not be effectively constructable.

Theorem 4.3.4 (Canonical model for terminating sequences). For any program p, any X such
that V ar(p) ⊆ X ⊆ X any state {x1 7→ c1, . . . , xn 7→ cn} = s ∈ SX such that p terminates
on s, there exists a model I = (∆I , ·I) of T p such that for some d ∈ ∆I we have d ∈ CIp ,
(d, ci) ∈ valueOfIxi , for all 1 ≤ i ≤ n.

Proof (sketch). We know there exists a sequence (p, s) ⇒k (p′, s′) ⇒ t. Analogously to
the proof of Theorem 4.3.3, we can construct the canonical model I of T p for the sequence
(p, s) ⇒k (p′, s′) ⇒ t (by using the stepwise division). By similar arguments to those in the
proof of Theorem 4.3.3 it follows that I |= T p. Then, d1 ∈ CIp , where d1 is the first partial
derivation in the stepwise division of the derivation, for which we furthermore know (p, s) ∈ d1,
witnesses the further constraints on I.

The above results can intuitively be explained as follows. Lemma 4.3.1 shows us that the
behavior of Boolean expressions is correctly captured in models of the encoding. This is then
used in Theorem 4.3.2 to show that all models of the encoding (that satisfy some requirements)
reflect the behavior of programs. Furthermore, Theorems 4.3.3 and 4.3.4 tell us that this is not a
vacuous statement, and that there are in fact models witnessing the behavior of both terminating
and nonterminating derivations.
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Note that the syntax and operational semantics of While can be adapted to various concrete
domains with varying operators. The encoding into ALC(D) can be adapted correspondingly,
and a corresponding correlation between the operational semantics and the model theoretic se-
mantics can be proven.

4.3.3 Encoding Reasoning Problems

Theorems 4.3.2, 4.3.3 and 4.3.4 allow us to use the encoding of While programs intoALC(D) to
reduce various reasoning problems over While programs to reasoning problems over ALC(D).
For instance, termination of a program p directly reduces to unsatisfiability of the concept Cp
with respect to the TBox T p ∪ {Cskip v ⊥}. Any nonterminating execution of p (and only
nonterminating executions of p) will namely induce a model witnessing the satisfiability of Cp
with respect to this TBox.

Another example is checking whether two (terminating) programs p1 and p2 are equivalent.
This can be expressed in the description logicALCO(D) (the extension ofALC(D) with nomi-
nal concepts). Without loss of generality, we can assume V ar(p1) = V ar(p2). This equivalence
problem can directly be reduced to the problem of ALCO(D) unsatisfiability of the ABox

Ap1,p2 = {o : Cp1 , o : Cp2 , s : Ctest}

with respect to the TBox Sp1 ∪ Sp2 ∪ T eq where Spi is the modification of T pi where Cskip is
replaced by Ciskip and nextState is replaced by nextStatei, and

T eq = { Ctest ≡ ∃res1.C1
skip u ∃res2.C2

skip u
(∃(res1 valueOfx1)(res2 valueOfx1). 6=
t · · · t
∃(res1 valueOfxn)(res2 valueOfxn). 6=) }

for res1, res2 abstract features, and C1
skip, C

2
skip and Ctest nominal concepts. Models for this

ABox and TBox correspond to derivations of p1 and p2 starting with the same input state, and
resulting in at least one different output value.

In addition to the semantic properties of termination and equivalence, on which we focus, we
are able to encode abduction problems over While problems in the description logicALCO(D).
The question what input states for a program p could have led to the (partial) output state s, for
dom(s) ⊆ V ar(p), reduces to finding models for the ABox Ap = {o : Cskip} ∪ {(o, s(x)) :
valueOfx | x ∈ dom(s)} and the TBox T p, where Cskip is required to be a nominal concept.

Also, this approach allows us to encode more intricate reasoning problems over While pro-
grams into description logic reasoning problems. For instance, we can test whether the state
after any execution of program p always assigns a value c to variable x. Description logic offers
us a very flexible formalism to express a variety of reasoning problems over While programs.

4.3.4 Example

In order to illustrate how encoding While programs intoALC(D) TBoxes works, and to illustrate
the statements of Theorems 4.3.2, 4.3.3 and 4.3.4, we consider an example. In Figure 4.1 a
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derivation for the example program p = (x := 0; (while (x < 2) do x := x+ 1); skip) is given
for an example state s ∈ S{x} with s(x) = 5. Also, in this same figure, the encoding T p of p
into ALC(D) is given, as well as a model of T p corresponding to the example derivation.

4.4 Encoding Goto Programs in ALC(D)

We now show how to model the behavior of programs of the language Goto using description
logic. The concrete values in the programming language correspond to concrete values in the
description logic. States will be represented by objects, and (lines of) programs are represented
by concepts. We represent the execution of programs on states by an abstract feature nextState.

In particular, for a given program κ with V ar(κ) = X = {x1, . . . , xn}, we denote states
s ∈ SX with objects that have concrete features valueOfxi for each 1 ≤ i ≤ n.

4.4.1 Constructing a TBox

Take an arbitrary Goto program κ of length l. W.l.o.g., we assume κ is in normal form. We
define an ALC(D) TBox T κ as follows. We use concept names Cκ,n for each 1 ≤ n ≤ l, and
concept names Db for each b ∈ Bool(κ).

For each variable x ∈ V ar(κ), we create a concrete feature valueOfx, and we require

> v ¬valueOfx↑ (4.16)

We let nextState be an abstract feature. For each 1 ≤ n ≤ l such that κ(n) = return, we
require:

Cκ,n v Cκ,return (4.17)

Furthermore, we require:

Cκ,return v ¬∃nextState.> (4.18)

For each b ∈ Bool(κ), we require the following, where x1, x2 range over X , and b1, b2 range
over Bool(κ):

Dx1=x2 ≡ ∃(valueOfx1)(valueOfx2).= (4.19)

Dx1≤x2 ≡ ∃(valueOfx1)(valueOfx2).≤ (4.20)

D¬b1 ≡ ¬Db1 (4.21)

Db1∧b2 ≡ Db1 uDb2 (4.22)

Furthermore, we let D> denote > and D⊥ denote ⊥. For each 1 ≤ n ≤ l such that κ(n) =
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Example While program p (with subprogram p′).

p = (x := 0;

p′︷ ︸︸ ︷
(while (x < 2) do x := x+ 1); skip)

(Compact) derivation of p for the state s ∈ S{x} with s(x) = 5.
States s′ with s′(x) = n are represented as [n].

·
p

[5]
·
p′

[0]
·

x := x+ 1; p′

[0]
·
p′

[1]
·

x := x+ 1; p′

[1]
·
p′

[2]
·

skip

[2]∗ ∗ ∗

ALC(D) encoding T p of the program p.
We do a bit of handwaving: we do not transform the program into normal form,

but instead use predicates ≤2 = {0, 1, 2} and +=1 = {(n, n+ 1) | n ∈ N}.

T p = { Cp v ¬valueOfx↑,
Cp′ v ¬valueOfx↑,

Cx:=x+1;p′ v ¬valueOfx↑,
Cskip v ¬nextState.>,
Dx<2 ≡ ∃(valueOfx).≤2,

Cx:=0;p′ v ∃nextState.Cp′ ,
Cx:=0;p′ v ∃(nextState valueOfx).=0,

Cp′ v (¬Dx<2 t Cx:=x+1;p′) u (Dx<2 t Cskip),
Cx:=x+1;p′ v ∃nextState.Cp′ ,
Cx:=x+1;p′ v ∃(nextState valueOfx)(valueOfx).+=1 }

ALC(D) model of the encoding T p corresponding to the above derivation:

?
Cp

5

?
Cp′
Dx<2

Cx:=x+1;p′

0

?
Cp′
Dx<2

Cx:=x+1;p′

1

?
Cp′
¬Dx<2
Cskip

2
valuex

next

valuex

next

valuex

next

valuex

Figure 4.1: Example While program p, together with an example derivation of the operational
semantics, its encoding into ALC(D), and a model corresponding to the given derivation.
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(x := a), we require:

Cκ,n v ∃(nextState valueOfx).=n if κ(n) = (x := n) (4.23)
Cκ,n v ∃(nextState valueOfx)(valueOfy).= if κ(n) = (x := y) (4.24)
Cκ,n v ∃(nextState valueOfx)(valueOfy1)(valueOfy2).+ if κ(n) = (x := y1 + y2) (4.25)
Cκ,n v (¬∃(valueOfy2)(valueOfy1).≤ t

∃(valueOfy1)(nextState valueOfx)(valueOfy2).+) u
(¬∃(valueOfy2)(valueOfy1).> t
∃(nextState valueOfx).= 0) if κ(n) = (x := y1 − y2) (4.26)

Cκ,n v ∃(valueOfy)(nextState valueOfy).= if κ(n) = (x := a)
and y 6= x (4.27)

Cκ,n v ∃nextState.Cκ,n+1 (4.28)

For each 1 ≤ n ≤ l such that κ(n) = (if b goto n1 else n2), we require:

Cκ,n v (¬Db t Cκ,n1) u (Db t Cκ,n2) (4.29)

Notice that, in general, the TBox T κ is not acyclic, since combinations of Axioms (4.28)
and (4.29) can induce a cycle.

Intuitively, these axioms serve the following purpose. Axioms (4.16)-(4.18) ensure some
basic properties of the modelling of derivations in the model. Axioms (4.19)-(4.22) capture the
behavior of Boolean expressions. The remaining axioms enforce the modelling of the behav-
ior of programs in the model. Axiom (4.23)-(4.28) handle programs starting with a variable
assignment. Of these, Axiom (4.27) can be considered as a frame axiom, making sure that un-
mentioned variables are unchanged. Axiom (4.29) handles programs starting with conditional
goto statements.

4.4.2 Semantic Correspondence

In order to use the above encoding of a program κ into an ALC(D) TBox T κ, we show the
following correspondence between the operational semantics of κ and the model theoretic se-
mantics of T κ.

Lemma 4.4.1 (Boolean correspondence). For any program κ, any X such that V ar(κ) ⊆ X ⊆
X , any state s ∈ SX , any b ∈ Bool(κ), and for any model I = (∆I , ·I) of T κ, we have that
d ∈ ∆I and (d, s(xi)) ∈ valueOfIxi for all 1 ≤ i ≤ n implies that d ∈ DIb iff BX(b, s) = >.

Proof. By induction on the structure of b. We know I is a model of T κ. The base cases b = >
and b = ⊥ follow directly, since D> = > and D⊥ = ⊥. The base cases b = (a1 = a2)
and b = (a1 ≤ a2) follow directly from the fact that Axioms (4.19) and (4.20) hold, respec-
tively. The inductive cases b = ¬b1 and b = b1 ∧ b2 follow directly from the fact that Ax-
ioms (4.21) and (4.22) hold, respectively.

Theorem 4.4.2 (Semantic enforcement). For any program κ, any X such that V ar(κ) ⊆ X ⊆
X , any state s ∈ SX such that κ terminates on s with outcome t, and for any model I = (∆I , ·I)
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of T κ we have that d ∈ CIκ,1 and (d, s(xi)) ∈ valueOfIxi for all 1 ≤ i ≤ n implies that
e ∈ CIκ,return and (e, t(xi)) ∈ valueOfIxi for all 1 ≤ i ≤ n, for some e ∈ ∆I .

Proof. By induction on the length of the ⇒-derivation (m, s) ⇒k t. Assume d ∈ CIp and
(d, s(xi)) ∈ valueOfIxi for all 1 ≤ i ≤ n, for some d ∈ ∆I . The base case for k = 0 holds
vacuously. In the base case for k = 1, we know κ(m) = return, and thus s = t, and e = d
witnesses the result, since I satisfies Axiom (4.17).

In the inductive case, we distinguish several cases. Case κ(m) = (x := a). We know
(m, s) ⇒ (m + 1, s′) ⇒k−1 t, and s′ = s[x 7→ AX(a, s)]. Since I satisfies T κ, by Axioms
(4.23)-(4.26), (4.27) and (4.28), we know there must exist a d′ ∈ CIκ,m+1 such that (d′, s′(xi)) ∈
valueOfIxi for all 1 ≤ i ≤ n. Then by the induction hypothesis, the result follows directly.

Case κ(m) = (if b gotom1 elsem2). AssumeBX(b, s) = >. Then (m, s)⇒ (m1, s)⇒k−1

t. By Lemma 4.4.1, we know d ∈ DIb . Then, by the fact that Axiom (4.29) holds, we know
d ∈ Cκ,m1 . The result now follows directly by the induction hypothesis.

If, however, in the same case holds BX(b, s) = ⊥, then (m, s) ⇒ (m2, s) ⇒k−1 t. By
Lemma 4.4.1, we know d 6∈ DIb . By the fact that Axiom (4.29) holds, we know d ∈ CIκ,m2

. The
result now follows directly by the induction hypothesis.

In the following two theorems canonical models are constructed on the basis of (terminating
and nonterminating) sequences.

Theorem 4.4.3 (Canonical model for nonterminating sequences). For any program κ, any X
such that V ar(κ) ⊆ X ⊆ X any state {x1 7→ c1, . . . , xn 7→ cn} = s ∈ SX such that κ does
not terminate on s, there exists a model I = (∆I , ·I) of T κ such that for some d ∈ ∆I we have
d ∈ CIκ,1, (d, ci) ∈ valueOfIxi , for all 1 ≤ i ≤ n, and CIκ,return = ∅.

Proof. Since κ does not terminate on s, we know there exists an infinite⇒-sequence d (m1, si)
⇒κ (mi+1, si+1), for i ∈ N, where (m1, s1) = (1, s). We construct the canonical model
of T κ for this infinite ⇒-sequence: I = (∆I , ·I). Let D be the stepwise division of the
derivation d (which contains either finitely many or infinitely many partial derivations di ∈
D). We let ∆I = D. For 1 ≤ m ≤ l, we let CIκ,m = {d ∈ D | ((m, s) ∈ d}. For
b ∈ Bool(p), we let DIb = {d ∈ D | (m, s) ∈ d,PX(b, s) = >}. For each x ∈ X , we
let valueOfIx = {(d′, s′(x)) | d′ ∈ D, s′ the state corresponding to d′}. We let nextStateI =
{(di, di+1) | di, di+1 ∈ D, di ⇒ di+1}.

The definition of I implies that CIκ,return = ∅. Assume di ∈ CIκ,return. Then for some
(mk, sk) ∈ di we would have κ(mk) = return, and thus (mk, sk)⇒ sk, which contradicts our
assumption of nontermination.

Clearly, I satisfies Axiom (4.16). It is also easy to verify, sinceCκ,return = ∅, that I satisfies
Axioms (4.17) and (4.18). Also, by the definition of DIb we get that I satisfies Axioms (4.19)-
(4.22).

To see that I satisfies Axioms (4.23)-(4.29), we take an arbitrary class CIκ,mj , an arbitrary
object dk in the interpretation with (mj , sj) ∈ dk, and we distinguish several cases. Consider
κ(mj) = (x := a). Then by the constraints on⇒, we know that (mj+1, sj+1) ∈ dk+1 for the
dk+1 ∈ D such that dk ⇒ dk+1 where mj+1 = mj + 1 and sj+1 = sj [x 7→ AX(a, sj)]. By
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definition of I, we know (dk, dk+1) ∈ nextStateI . It is now easy to verify that the subsumptions
in Axioms (4.23)-(4.28) are satisfied.

Consider κ(mj) = (if b goto m′1 else m′2). Assume BX(b, sj) = >. Then dk ∈ DIb .
Also, by the constraints on ⇒, we know that (mj+1, sj+1) ∈ dk+1 for the dk+1 ∈ D such
that dk ⇒ dk+1 where mj+1 = m′1 and sj+1 = sj . It is easy to verify that, in this case, the
subsumption in Axiom (4.29) holds. The case for BX(b, sj) = ⊥ is completely analogous.

Theorem 4.4.4 (Canonical model for terminating sequences). For any program κ, any X such
that V ar(κ) ⊆ X ⊆ X any state {x1 7→ c1, . . . , xn 7→ cn} = s ∈ SX such that κ terminates
on s, there exists a model I = (∆I , ·I) of T κ such that for some d ∈ ∆I we have d ∈ CIκ,1,
(d, ci) ∈ valueOfIxi , for all 1 ≤ i ≤ n.

Proof (sketch). We know there exists a sequence (1, s) ⇒k (m′, s′) ⇒ t. Analogously to
the proof of Theorem 4.4.3, we can construct the canonical model I of T κ for the sequence
(1, s) ⇒k (m′, s′) (by using the stepwise division). By similar arguments to those in the proof
of Theorem 4.4.3 it follows that I |= T κ. Then, d1 ∈ CIκ,1, where d1 is the first partial derivation
in the stepwise division of the derivation, for which we furthermore know (1, s) ∈ d1, witnesses
the further constraints on I.

The above results can intuitively be explained as follows. Lemma 4.4.1 shows us that the
behavior of Boolean expressions is correctly captured in models of the encoding. This is then
used in Theorem 4.4.2 to show that all models of the encoding (that satisfy some requirements)
reflect the behavior of programs. Furthermore, Theorems 4.4.3 and 4.4.4 tell us that this is not a
vacuous statement, and that there are in fact models witnessing the behavior of both terminating
and nonterminating derivations.

4.4.3 Encoding Reasoning Problems

Since Theorems 4.4.2, 4.4.3 and 4.4.4 are completely analogous to Theorems 4.3.2, 4.3.3 and
4.3.4, they allow us to reduce reasoning problems over Goto programs to reasoning problems
over ALC(D), similarly to the reduction of reasoning problems over While programs in Section
4.3.3. By changing concept names from Cp to Cκ,1 for Goto programs κ, and by changing con-
cept names from Cskip to Creturn, we can directly convert the encodings of reasoning problems
over While programs into encodings of reasoning problems over Goto programs.

4.5 Encoding FPN Programs into ALC(D)

We now show how to model the behavior of programs of the language FPN using description
logic. We let definitions of functional symbols f in programs be represented by concepts Ef .
Tuples of natural numbers in the relational semantics of programs will be represented by ob-
jects in the interpretation of such concepts Ef . Furthermore, for such definitions of functional
symbols, we use (indexed) concepts Cf to represent conditions and (indexed) concepts Sf to
represent consequents. In order to represent the values of (subterms of) consequents, we use
concepts Ts, (indexed) abstract features hasArg, and a number of concrete features.
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4.5.1 Constructing a TBox

Given a program π over the function symbols F , we define a TBox T π as follows. For each
f ∈ F , we introduce a concept Ef . For each condition c occurring in the sequence π(f) for any
f ∈ F , we introduce a concept Cfc . Furthermore, for each such condition c = (d1, . . . , dm), we
let the (concept) expression Ddi be ∃(hasInputxi).=di if di ∈ N and > if di = ⊥. Now, for the
condition c = (d1, . . . , dm) occurring in π(f) we require

Cfc ≡ Dd1 u · · · uDdm (4.30)

For each consequent e occurring in the sequence π(f) for any f ∈ F , we introduce a concept
Sfe . Furthermore, for each f ∈ F and π(f) = ((c1, e1), . . . , (cn, en)) we require

Ef v (¬Cfc1 t S
f
e1) u

(Cfc1 t ¬C
f
c2 t S

f
e2) u

. . .

(Cfc1 t · · · t C
f
cn−1
t ¬Cfcn t S

f
en) u

(Cfc1 t · · · t C
f
cn t hasOutput↑) (4.31)

For each consequent e occurring in the sequence π(f) for any f ∈ F , and each subterm s of
e, we introduce a concept Ts, and we require the following, where ρ ranges over {+,−}.

Ts v ¬∃hasArgj t ∃(hasInputi)(hasArgj hasInputi).= (4.32)

Tn v ∃hasValue.=n (4.33)

Txi v ∃(inputValuei)(hasValue).= (4.34)

Tt1 ρ t2 v ∃hasArg1.Tt1 u ∃hasArg2.Tt2 (4.35)

Tt1−t2 v (¬∃(hasArg1 hasValue)(hasArg2 hasValue).≥
t ∃(hasValue).=0) u
(¬∃(hasArg1 hasValue)(hasArg2 hasValue).<
t ∃(hasValue)(hasArg1 hasValue)(hasArg2 hasValue).−) (4.36)

Tt1+t2 v ∃(hasValue)(hasArg1 hasValue)(hasArg2 hasValue).+ (4.37)

Tf(t1,...,tn) v ∃hasArg1.Tt1 u · · · u ∃hasArgn.Ttn (4.38)

Tf(t1,...,tn) v ∃hasArg.Ef (4.39)

Tf(t1,...,tn) v ∃(hasArg inputValuei)(hasArgi hasValue).= (4.40)

Tf(t1,...,tn) v (∃(hasValue)(hasArg outputValue).=) t
(hasValue↑ u (hasArg outputValue)↑) (4.41)

Finally, we require for each consequent e occurring in the sequence π(f) for any f ∈ F

Sfe v ∃hasArg.Te (4.42)

Sfe v ∃(outputValue)(hasArg hasValue).= (4.43)

Sfe v ∃(inputValuei)(hasArg hasInputi).= (4.44)
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Here all roles are functional. Note that the TBox T π is not acyclic, in general, since (combina-
tions of) Axioms (4.31), (4.42) and (4.38)-(4.39) can induce cycles.

Intuitively, these axioms serve the following purpose. Axiom (4.30) enforces the correct
behavior of conditions in the modelling. Axiom (4.31) ensures that for each definition in the
program the right case is selected in the modelling, i.e. the first case that matches the condi-
tions. Axiom (4.32)-(4.41) make sure the value of expressions occurring in the program are
computed (inductively). Finally, Axioms (4.42)-(4.44) connect the definitions in the program to
expressions occuring in them.

4.5.2 Semantic Correspondence

In order to use the above encoding of a program π into an ALC(D) TBox T π, we show the
following correspondence between the semantics of π and the model theoretic semantics of T π.

Lemma 4.5.1 (Correspondence of conditions). For any program π, any f ∈ F of arity k and any
model I = (∆I , ·I) of T π, it holds that for any (n1, . . . , nk) ∈ Nk, any condition (c1, . . . , ck)
of length k occurring in π(f), and any d ∈ ∆I such that (d, ni) ∈ hasInputIxi , for all 1 ≤ i ≤ k,
we have d ∈ (Cfc )I iff condition (c1, . . . , ck) matches (n1, . . . , nk).

Proof. This follows immediately by the definition of matching of conditions and the fact that I
satisfies T π and thus Axiom (4.30).

Lemma 4.5.2 (Selection of conditions). For any program π, any f ∈ F with arity k and any
model I = (∆I , ·I) of T π, it holds that for any n = (n1, . . . , nk) ∈ Nk, and any d ∈ ∆I such
that (d, ni) ∈ hasInputIxi , for all 1 ≤ i ≤ k, the existence of a (ci, ei) in the sequence π(f) =
((c1, e1), . . . , (cm, em)) such that ci matches n and cj does not match n for all 1 ≤ j < i,
implies that we have that d ∈ (Ef )I implies d ∈ (Sfei)I; and the nonexistence of such a (ci, ei)
implies (d, n) 6∈ (hasOutput)I for all n ∈ N.

Proof. Assume there exists a suitable d ∈ ∆I such that d ∈ (Ef )I . Also, assume there exists a
suitable (ci, ei) in π(f). By Lemma 4.5.1, we know d 6∈ (Cfcj )I for all 1 ≤ j < i. Then, by the
fact that I satisfies Axiom (4.31), we know d ∈ (Sfei)I .

Now, assume that no (ci, ei) exists such that ci matches n. By Lemma 4.5.1, we know d 6∈
(Cfci)I for all ci. Then, by the fact that I satisfies Axiom (4.31), we know d ∈ (hasOutput↑)I ,
and the result follows.

Theorem 4.5.3 (Semantic enforcement). For any program π, any f ∈ F with arity k, any model
I = (∆I , ·I) of T π, any (n1, . . . , nk, n) ∈ Semf , and any object d ∈ ∆I such that (d, ni) ∈
inputValueIi for all 1 ≤ i ≤ k, we have that d ∈ (Ef )I implies (d, n) ∈ outputValueI .

Proof. Take an arbitrary (n1, . . . , nk, n) ∈ Semf . By definition, it must be in Semj
f , for some

j ∈ N. We prove the result for all Semj
f , by induction on j. Take an arbitrary object d ∈ (Ef )I

such that (d, ni) ∈ inputValueIi for all 1 ≤ i ≤ k. By the fact that (n1, . . . , nk, n) ∈ Semj
f , we

know there exists a (cz, ez) in the sequence π(f) = ((c1, e1), . . . , (cm, em)) such that ci does
not match (n1, . . . , nk) for all 1 ≤ i < z. Then, by Lemma 4.5.2, we know that d ∈ (Sfez)I .
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Now, by the fact that I satisfies Axioms (4.42)-(4.44), we know that there exists a d′ ∈ T Iez
with (d, d′) ∈ hasArgI and (d′, ni) ∈ hasInputIi , and that it suffices to show that (d′, n′) ∈
hasValueI , for n′ = J jn(ez). Note that in order to show this, we can make use of the induction
hypothesis for Semj

f , for j′ < j.
We prove that the property holds for suitable d′ by induction on the structure of ez . The base

cases for ez ∈ N or ez = xi for some xi are immediate, by the fact that I satisfies Axioms (4.33)
and (4.34). The inductive cases for ez = e1 ρ e2, for ρ ∈ {+,−}, follow immediately from the
induction hypothesis and the fact that I satisfies Axioms (4.35)-(4.37).

Consider the inductive case for ez = f(t1, . . . , tn). By the induction hypothesis, and the
fact that I satisfies Axioms (4.32) and (4.38), we know there exist d′i ∈ T Iti with (d′, d′i) ∈
hasArgIi and (d′i, n

′
i) ∈ hasInputIi for n′i = J jn(ti). Then, by the fact that I satisfies Axioms

(4.39) and (4.40), we know there exists a e ∈ (Ef )I with (e, n′i) ∈ inputValueIi . Now, by the
induction hypothesis (of the outermost induction) we know that (e, n′) ∈ outputValueI , where
n′ = J jn(ez), since (J in(t1), . . . ,J in(tn), n′) ∈ Semj′

f for some j′ < j. Now, by the fact that I
satisfies Axiom (4.41), we know (d′, n′) ∈ hasValueI .

In the following theorem, a canonical model is constructed on the basis of the relational
semantics of programs.

Theorem 4.5.4 (Canonical model). For any program π, any f ∈ F with arity k, any (n1, . . . ,
nk, n) ∈ Semf , there exists a model I = (∆I , ·I) of T π, such that there exists d ∈ ∆I with
d ∈ (Ef )I , (d, ni) ∈ inputValueIi for all 1 ≤ i ≤ k, and (d, n) ∈ outputValueI .

Proof. We define the canonical model I = (∆I , ·I) of T π, which is a suitable model. We
let Y denote the set of all subterms e′ of terms e occurring as a consequent in π(f) for some
f ∈ F . Let ∆I = {(x, f) | f ∈ F, x ∈ Semf} ∪ {(n1, . . . , nar(f), †, f) | f ∈ F,∀n′ ∈
N.(n1, . . . , nar(f), n

′) 6∈ Semf} ∪ N∗ × (N∗ ∪ {†}) × Y . For each f ∈ F and each (n, n) ∈
Semf , we let (n, n, f) ∈ (Ef )I . Also, for each f ∈ F and each (n1, . . . , nk, †, f) ∈ ∆I , we
let (n1, . . . , nk, †, f) ∈ (Ef )I . Also, we define the interpretation (Cfc )I of a concept Cfc to be
the set of those (n, n, f) for (n, n) ∈ Semf and those (n, †, f) ∈ ∆I such that n matches c.
Furthermore, we define the interpretation (Sfe )I of concepts Sfe to be the set of those (n, n, f)
for (n, n) ∈ Semf and those (n, †, f) ∈ ∆I such that π(f) = ((c1, e1), . . . , (cn, en), (c, e),
(c′1, e

′
1), . . . , (c′m, e

′
m)) for which c1, . . . , cn do not match n and c does match n. Then, for

each n ∈ N∗, for each f ∈ F and for each e′ occurring as a subterm of some consequent e
in π(f), we let (n, n′, e′) ∈ T Ie′ if n′ = Jn(e′). Also, for each n ∈ N∗, for each f ∈ F and
for each e′ occurring as a subterm of some consequent e in π(f), if Jn(e′) is undefined, we let
(n, †, e′) ∈ T Ie′ .

Now, for each (n1, . . . , nm, n) ∈ Semf for some f ∈ F , we let ((n1, . . . , nm, n, f), nk) ∈
inputValueIk for all 1 ≤ k ≤ m, and we let ((n1, . . . , nm, n, f), n) ∈ outputValueI . For
each (n1, . . . , nm, †, f) ∈ ∆I , we let ((n1, . . . , nm, †, f), nk) ∈ inputValueIk for all 1 ≤ k ≤
m. Then, for each (n1, . . . , nm, n

′, e′) ∈ T Ie′ we let ((n1, . . . , nm, n
′, e′), nk) ∈ hasInputIk

for all 1 ≤ k ≤ m, and we let ((n1, . . . , nm, n
′, e′), n′) ∈ hasValueI . Similarly, for each

(n1, . . . , nm, †, e′) ∈ T Ie′ , we let ((n1, . . . , nm, †, e′), nk) ∈ hasInputIk for all 1 ≤ k ≤ m.
Also, for each (n, x, e′) ∈ T Ie′ , for x ∈ N ∪ {†}, and where e′ is of the form g(t1, . . . , tn),
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we let ((n, x, e′), (n, y, tk)) ∈ hasArgIk for all 1 ≤ k ≤ n, where y = Jn if Jn is de-
fined and y = † otherwise; this includes g being + or −. For each (n, n, f) ∈ (Sfe )I , we
let ((n, n, f), (n, n′, e)) ∈ hasArgI , where n′ = Jn(e). Finally, for each (n, †, f) ∈ (Sfe )I , we
let ((n, †, f), (n, †, e)) ∈ hasArgI .

With the definition of I in place, it is now straightforward to verify that I satisfies Axioms
(4.30)-(4.44). The witness for the required object dwith suitable properties is then (n1, . . . , nk, n,
f) ∈ ∆I .

Corollary 4.5.5 (Canonical countermodel). For any program π, any f ∈ F with arity k, any
(n1, . . . , nk, n) ∈ Nk+1 such that (n1, . . . , nk, n) 6∈ Semf , there exists a model I = (∆I , ·I)
of T π, such that there exists a d ∈ ∆I with d ∈ (Ef )I , (d, ni) ∈ inputValueIi for all 1 ≤ i ≤ k,
and (d, n) 6∈ outputValueI .

Proof. We consider the canonical model I for T π as constructed in the proof of Theorem 4.5.4.
If (n1, . . . , nk, n

′) ∈ Semf for some n′ 6= n, we know (n1, . . . , nk, n
′, f) ∈ ∆I is a suitable

witness. If (n1, . . . , nk, n
′) 6∈ Semf for all n′ ∈ N, we know (n1, . . . , nk, †, f) ∈ ∆I is a

suitable witness.

The above results can intuitively be explained as follows. Lemma 4.5.1 ensures that condi-
tions are correctly modelled, and Lemma 4.5.2 ensures that the selection of the correct case in
definitions according to the conditions is modelled correctly. Theorem 4.5.3 then tells us that
all models of the encoding (that satisfy some requirements) reflect the behavior of programs.
Furthermore, Theorem 4.5.4 and Corollary 4.5.5 tell us that this is not a vacuous statement, and
that there are in fact models witnessing the behavior of programs, and countermodels witnessing
non-behavior of programs.

4.5.3 Encoding Reasoning Problems

Theorems 4.5.3 and 4.5.4 and Corollary 4.5.5 allow us to use the encoding of FPN programs
into ALC(D) to reduce various reasoning problems over FPN programs to reasoning problems
over ALC(D). We show how the equivalence problem of FPN programs can be encoded as an
ALC(D) (un)satisfiability problem. Let π1 and π2 be two FPN programs with disjoint function
symbols, and assume that they have function symbol f1 and f2, respectively, of the same arity
k. The equivalence problem of f1 and f2 can be encoded as the unsatisfiability problem of the
concept Cwitness with respect to the TBox

T π1,π2

eq,f1,f2
= T π1 ∪ T π2 ∪ {Cwitness v
∃ref1.Ef1 u ∃ref2.Ef2 u
∃(ref1 inputValue1)(ref2 inputValue1).= u
. . . u
∃(ref1 inputValuek)(ref2 inputValuek).= u
∃(ref1 outputValue)(ref2 outputValue). 6= }

where ref1 and ref2 are abstract features. Any model of T π1,π2

eq,f1,f2
that satisfies Cwitness corre-

sponds to a witness of the non-equivalence of the programs p1 and p2 by pointing out an example
of a tuple that distinguishes the semantics of the two programs.
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An example of another reasoning problem on FPN programs is the problem of finding a tuple
in the semantics of a function symbol given certain constraints on the values in this tuple. We
illustrate encoding such reasoning problems in ALC(D) by giving an encoding for one variant
of this general problem. Given a FPN program π, a function symbol f occurring in π, and a
partial specification P of a candidate instance of f (in the form of a set Pconstr of constraints
Pi

.= ni, denoting that the ith value of the instance has value ni), we can reduce the problem of
deciding whether there exists an instance satisfying P in the semantic relation for f induced by
π to the satisfiability of the concept P with respect to the TBox

T Pπ = T π ∪ {P v Ef} ∪ {P v ∃valuei.=ni | Pi
.= ni ∈ Pconstr}

where valuei denotes inputValuei for 1 ≤ i ≤ ar(f) and denotes outputValue for i = ar(f)+1.

4.6 Encoding LPN Programs into ALC(D)

We now show how to model the behavior of programs of the language LPN using description
logic. We let definitions of functional symbols r in programs be represented by concepts T r and
F r. Tuples of natural numbers in the relational semantics of programs will be represented by
objects in the interpretation of concepts T r, and tuples that are not in the relational semantics
will be represented by objects in the interpretation of concepts F r. We use (indexed) concepts Ir

(resp. Jr) to represent tuples that are (resp. are not) in the input function ι. We use concepts Crs
(resp. Dr

s) to represent rules switnessing that tuples are (resp. are not) in the relational semantics
for the symbol r. We use (indexed) conceptsQ andR to represent constraints occurring in rules.
We use concepts Nt to represent complex terms t and their resulting values. Finally, we use
(indexed) abstract features hasArg to refer to other tuples that are (or are not) in the relational
semantics. Also, we use a number of concrete features to express the required relations between
different concrete values.

4.6.1 Constructing a TBox

Given a program p over the relational symbols R and an input function ι for R, we define a
TBox T p,ι as follows. For each r ∈ R, and each rule s with head relation symbol r, we define
concepts Crs and Dr

s . Furthermore, for each r ∈ R and each n ∈ ι(r), we define concepts Irn
and Jrn. Also, for each r ∈ R, we define two concepts T r and F r. For each subterm t′ of a term
t occurring in any rule in p, we introduce a concept Nt′ . Now, we require:

T r v ¬hasValue1↑ u · · · u ¬hasValuear(r)↑ (4.45)

T r v ¬hasIndex ↑ (4.46)

T r v
⊔
s

Crs t
⊔

n∈ι(r)

Irn (4.47)

F r v ¬hasValue1↑ u · · · u ¬hasValuear(r)↑ (4.48)

F r v ¬

⊔
s

¬Dr
s t

⊔
n∈ι(r)

¬Jrn

 (4.49)
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Also, for each r ∈ R, each n = (n1, . . . , nk) ∈ ι(r), we require:

Irn v ∃(hasValue1).=n1 u · · · u ∃(hasValuek).=nk (4.50)

Jrn v ∃(hasValue1). 6=n1 t · · · t ∃(hasValuek). 6=nk (4.51)

Now, for each rule s = r(x1, . . . , xl)← r1(t1), . . . , rk(t
k), c1, . . . , cb in p, we require, for each

1 ≤ j ≤ k, each 1 ≤ m ≤ ar(rj), for each 1 ≤ i ≤ l, and for each 1 ≤ v ≤ b, for cv = t1v ρv t
2
v,

for each e ∈ {1, 2}, and for E ranging over {C,D}:

Crs v ∃hasArgsj .T
rj u

∃(hasArgsj hasIndex)(hasIndex).< (4.52)

Ers v ∃hasNumberjm.Ntjm
(4.53)

Ers v ∃(hasNumberjm hasInputi)(hasValuei).= (4.54)

Ers v ∃(hasArgsj hasValuem)(hasNumberjm hasOutput).= (4.55)

Crs v ∃hasConstrsv.Q
ρv (4.56)

Ers v ∃hasConstrNumbers,ev .Ntev (4.57)

Ers v ∃(hasConstrNumbers,ev hasInputi)(hasValuei).= (4.58)

Ers v ∃(hasConstrsv hasValuee)(hasConstrNumbers,ev hasOutput).= (4.59)

Dr
s v ∃hasArgs1.F

r1 t . . . t ∃hasArgsk.F
rk t

∃hasConstrs1.R
ρ1 t · · · t ∃hasConstrsb.R

ρb (4.60)

Then, for each constraint cv = t1v ρv t
2
v for 1 ≤ v ≤ b, we require

Qρv v ∃(hasValue1)(hasValue2).ρv (4.61)

Rρv v ∃(hasValue1)(hasValue2).ρv (4.62)

Then, for each conceptNt we require the following, where we distinguish different cases for dif-
ferent forms of t, where ρ ranges over {+,−}, j ∈ {1, 2}, and 1 ≤ i ≤ max{i | xi occurs in t}:

Nn v ∃(hasOutput).=n (4.63)

Nxi v ∃(hasOutput)(hasInputi).= (4.64)

Nt1 ρ t2 v ∃hasNumber1.Nt1 u ∃hasNumber2.Nt2 (4.65)

Nt1 ρ t2 v ∃(hasNumberj hasInputi)(hasInputi).= (4.66)

Nt1−t2 v (¬∃(hasNumber1 hasOutput)(hasNumber2 hasOutput).≥
t ∃(hasOutput).=0) u
(¬∃(hasNumber1 hasOutput)(hasNumber2 hasOutput).<
t ∃(hasOutput)(hasNumber1 hasOutput)(hasNumber2 hasOutput).−) (4.67)

Nt1+t2 v ∃(hasOutput)(hasNumber1 hasOutput)(hasNumber2 hasOutput).+ (4.68)

Note that, in general, the TBox T p,ι is not acyclic. There are two possible combinations of
axioms that can induce cycles: on the one hand, combinations of Axioms (4.47) and (4.52), and
on the other hand, combinations of Axioms (4.49) and (4.60) can induce cycles.
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Intuitively, these axioms serve the following purpose. We simultaneously model the behavior
and non-behavior of programs. Axioms (4.45)-(4.49) encode some general properties of the
modelling. Axioms (4.50) and (4.51) encode the behavior of the input function. Axioms (4.52)-
(4.60) encode the behavior of the right hand side of rules, where Axioms (4.61) and (4.62)
encode the behavior of constraints occuring in the right hand side of rules. Finally, Axioms
(4.63)-(4.68) compute the value of expressions occurring in rules.

4.6.2 Semantic Correspondence

In order to use the above encoding of a program p with input ι into an ALC(D) TBox T p,ι, we
show the following correspondence between the semantics of p w.r.t. ι and the model theoretic
semantics of T p,ι.

Lemma 4.6.1 (Value computation). For any program p, any input function ι, any model I =
(∆I , ·I) of T p,ι, any (sub)term t occurring in any rule of p (with l variables in its head), and
for any (n1, . . . , nl) ∈ Nl, if d ∈ NIt and (d, ni) ∈ hasInputIi for all 1 ≤ i ≤ l, then (d, o) ∈
hasOutputI for o = Jσ(t) where σ(xi) = ni for all 1 ≤ i ≤ l.

Proof. We prove this by induction on the structure of t. In the base case for t ∈ N, this follows
directly from the definition of Jσ(t) and from the fact that Axiom (4.63) holds. Similarly, in
the base case for t = xi, the result follows directly from the definition and the fact that Axiom
(4.64) holds.

In the inductive case, for t = t1 ρ t2 where ρ ∈ {+,−}, we know by Axioms (4.65) and
(4.66) that there exist d1 ∈ NIt1 and d2 ∈ NIt2 with (dj , ni) ∈ hasInputIi for both j ∈ {1, 2}
and all 1 ≤ i ≤ l. By the induction hypothesis, then, we know that (dj , oj) ∈ hasOutputI for
j ∈ {1, 2} and oj = Jσ(tj). The result now follows directly from the definition of Jσ(t) and
from the fact that Axioms (4.67) and (4.68) hold.

Theorem 4.6.2 (Positive semantic enforcement). For any program p, any input function ι, any
model I = (∆I , ·I) of T p,ι, any r ∈ R of arity k, and for any n1, . . . , nk ∈ N, if there is a
d ∈ (T r)I with (d, ni) ∈ hasValueIi for each 1 ≤ i ≤ k, then (n1, . . . , nk) ∈ Semr.

Proof. Take an arbitrary suitable model I. We show for all suitable elements d ∈ (T r)I with
(d, j) ∈ hasIndexI that n ∈ Semj

r, by induction on j. This suffices, since we know that each
suitable d can be associated with such a j, by Axiom (4.46), and that Semj

r ⊆ Semr.
In the base case, by Axioms (4.47) and (4.52), we know that d 6∈ (Crs )I for any rule s with

at least one predicate symbol in the body, and thus by Axiom (4.47), either (i) d ∈ (Crs )I for a
rule s with 0 predicate symbols in the body, or (ii) d ∈ (Irm)I for some m ∈ ι(r).

In case (i), by Axioms (4.56)-(4.59), and by Lemma 4.6.1, we know that for each constraint
t1v ρv t

2
v in the body of s, there exist an element dv ∈ (Qρv)I such that (d, dv) ∈ (hasConstrsv)

I ,
(dv,Jσ(t1v)) ∈ hasValueI1 and (dv,Jσ(t2v)) ∈ hasValueI2 with σ(xi) = ni for all 1 ≤ i ≤ k.
Then, by Axiom (4.61), we know that the instantiation σ satisfies all constraints t1v ρv t

2
v, and

thus by definition of Semj
r, we have that (n1, . . . , nk) ∈ Semj

r.
In case (ii), by Axiom (4.50) we know that (n1, . . . , nk) = m ∈ ι(r) and thus by definition

of Semj
r, we have that (n1, . . . , nk) ∈ Semj

r.
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In the inductive case, by Axiom (4.47), we know that either (iii) d ∈ (Crs )I for a rule s, or
(iv) d ∈ (Irm)I for some m ∈ ι(r).

In case (iii), similarly to the base case, by Axioms (4.56)-(4.59) and (4.61), and by Lemma
4.6.1, we know that σ satisfies all constraints in the body of s, where σ(xi) = ni for all 1 ≤
i ≤ k. It thus suffices to show that (Jσ(tm1 ), . . . ,Jσ(tmar(rm)) ∈ Sem

j′
r for j′ < j, for all atoms

rm(tm1 , . . . , t
m
ar(rm)) in the body of rule s. Take an arbitrary such atom rm(tm). By Axioms

(4.52)-(4.55) and by Lemma 4.6.1, we know that there exists a d′ ∈ (T rm)I such that (d, d′) ∈
(hasArgsm)I , (d′,Jσ(tmu )) ∈ hasValueIu for all 1 ≤ u ≤ ar(rm), and (d′, j′) ∈ hasIndexI for
some j′ < j. The result now follows directly from the induction hypothesis.

The argumentation in case (iv) is exactly the same as in case (ii).

Theorem 4.6.3 (Negative semantic enforcement). For any program p, any input function ι, any
model I = (∆I , ·I) of T p,ι, any r ∈ R of arity k, and for any n1, . . . , nk ∈ N, if there is a
d ∈ (F r)I with (d, ni) ∈ hasValueIi for each 1 ≤ i ≤ k, then (n1, . . . , nk) 6∈ Semr.

Proof. We prove the contrapositive, for all (n1, . . . , nk) ∈ Semj
r, by induction on j. Without

loss of generality, we consider only the inductive case. Since (n1, . . . , nk) ∈ Semj
r, we know

that either (i) (n1, . . . , nk) ∈ ι(r) or (ii) some rule r(x) ← r1(t1), . . . , rm(tm), c1, . . . , cb wit-
nesses that (n1, . . . , nk) ∈ Semj

r: for σ where for all 1 ≤ i ≤ k we have σ(xi) = ni, for each
1 ≤ l ≤ m we get (Jσ(tl1), . . . ,Jσ(tlar(rl))) ∈ Sem

j′
rl for some j′ < j, and all constraints σ(cv)

for 1 ≤ v ≤ b hold.
Assume there exists a suitable d ∈ (F r)I for some model I of T p,ι. By Axiom (4.49), we

know then that d ∈ (Jrn)I for all n ∈ ι(r) and d ∈ (Dr
s)
I for all rules s with predicate symbol r

in the head.
In case (i), we know (n1, . . . , nk) ∈ ι(r). We also know that (d, ni) ∈ hasValuei for

1 ≤ i ≤ k. However, this, with the fact that d ∈ (Jr(n1,...,nk)
)I , and the fact that Axiom (4.51)

holds, leads to a direct contradiction. Thus we can conclude d 6∈ (F r)I .
In case (ii), we know that some rule s = r(x) ← r1(t1), . . . , rm(tm), c1, . . . , cb witnesses

(n1, . . . , nk) ∈ Semj
r. Remember that, by Axiom (4.49), we know d ∈ (Dr

s)
I . Also, by Axiom

(4.60), we know that either (ii.a) for some 1 ≤ i ≤ k there exists a di such that (d, di) ∈
(hasArgsi )

I , and di ∈ (F ri)I , or (ii.b) for some 1 ≤ v ≤ b there exists a ev such that (d, ev) ∈
(hasConstrsv)

I and ev ∈ (Rρv)I .
In case (ii.a), by Axioms (4.52)-(4.55), and by Lemma 4.6.1, we know that (di,Jσ(tic)) ∈

hasValueIc for all 1 ≤ c ≤ ar(ri). Since (Jσ(ti1), . . . ,Jσ(tiar(ri))) ∈ Sem
j′
r for j′ < j, we can

use the induction hypothesis, and thus we know di 6∈ (F ri)I . This is a direct contradiction with
our previous conclusion that di ∈ (F ri)I , and thus we can conclude that d 6∈ (F r)I .

In case (ii.b), by Axioms (4.57)-(4.59), and by Lemma 4.6.1, we know that for cv = t1v ρv t
2
v

we have (ev,Jσ(t1v)) ∈ hasNumberI1 and (ev,Jσ(t2v)) ∈ hasNumberI2 . By the fact that ev ∈
(Rρv)I and by Axiom (4.62), then, we know that the constraint σ(cv) is not satisfied, which is a
direct contradiction with our previous assessment, that σ(cv) is satisfied. Thus we can conclude
that d 6∈ (F r)I .

In the following theorem a canonical model is constructed on the basis of the relational
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semantics of programs.

Theorem 4.6.4 (Canonical model). For any program p, any input function ι, any r ∈ R of arity
k, and for any n1, . . . , nk ∈ N, if (n1, . . . , nk) ∈ Semr then there exists a model I of T p,ι
with some d ∈ ∆I such that d ∈ (T r)I and (d, ni) ∈ hasValueIi for each 1 ≤ i ≤ k, and if
(n1, . . . , nk) 6∈ Semr then there exists a model I of T p,ι with some d ∈ ∆I such that d ∈ (F r)I

and (d, ni) ∈ hasValueIi for each 1 ≤ i ≤ k.

Proof. We construct a canonical model I = (∆I , ·I) of T p,ι, which is a suitable model. We
let ∆I =

⋃
r∈R(Nar(r) ∪ Nar(r)+1 ∪ (Nar(r) × ({c | constraint c in a rule for r}))), and we

define ·I as follows. For each r, we let (T r)I = Semr and we let (F r)I = Nar(r)\Semr.
Also, for each n = (n1, . . . , nk) ∈ ∆I we let (n, ni) ∈ hasValueIi for 1 ≤ i ≤ k. For each
r and each n ∈ (T r)I , we let (n, j) ∈ hasIndexI for the smallest j such that n ∈ Semj

r. For
each r and each n ∈ Semr, we know there exists a justification for n ∈ Semr, in the form of
either (i) n ∈ iota(r), or (ii) a rule s = r(x) ← r1(t1), . . . , rm(tm), c1, . . . , cb with suitable
ni ∈ Semri for 1 ≤ i ≤ m. Without loss of generality, we can assume that there is exactly one
such justification. In case (i), we let n ∈ (Irn)I .

In case (ii), we let n ∈ (Crs )I and (n, ni) ∈ (hasArgsi )
I for 1 ≤ i ≤ m. For each term

tli occurring as ith term in predicate rl in rule s, we let (n, (n,Jσ(tli))) ∈ (hasNumberli)
I ,

for σ defined by σ(xi) = ni for 1 ≤ i ≤ k. Also, for each constraint cv = t1v ρv t
2
v in s,

we let (n, cv) ∈ (Qρv)I , (n, (n, cv)) ∈ (hasConstrsv)
I , and ((n, cv),Jσ(tjv)) ∈ hasValueIj for

j ∈ {1, 2} and σ defined by σ(xi) = ni for 1 ≤ i ≤ k. For each term tjv occurring as jth term
in constraint cv, we let (n, (n,Jσ(tjv))) ∈ (hasConstrNumbers,jv )I .

For each (sub)term t occurring in a rule with head predicate r, and each n = (n1, . . . , nk) ∈
Nar(r), we let (n,Jσ(t)) ∈ (Nt)I , ((n,Jσ(t)), ni) ∈ hasInputIi for 1 ≤ i ≤ k, and ((n,Jσ(t)),
Jσ(t)) ∈ hasOutputI , for σ defined by σ(xi) = ni for 1 ≤ i ≤ k. Also, for such t of the form
t1 ·t2 for some operator ·, for each n = (n1, . . . , nk) ∈ Nar(r), we let ((n,Jσ(t)), (n,Jσ(tj))) ∈
hasNumberIj for j ∈ {1, 2}.

For each r and each n = (n1, . . . , nk) ∈ (F r)I , we let n ∈ (Jrm)I for all m ∈ ι(r), and n ∈
(Dr

s)
I for all rules s for r. Further, for each rule s and each atom rl(tl1, . . . , t

l
ar(rl)

) occurring
in s, we let (n, (Jσ(tl1), . . . ,Jσ(tlar(rl)))) ∈ (hasArgsl )

I , and for each constraint cv = t1v ρv t
2
v

in s, we let (n, cv) ∈ (Qρv)I , (n, (n, cv)) ∈ (hasConstrsv)
I , and ((n, cv),Jσ(tjv)) ∈ hasValueIj

for j ∈ {1, 2} and σ defined by σ(xi) = ni for 1 ≤ i ≤ k. For each term tjv occurring as jth
term in constraint cv, we let (n, (n,Jσ(tjv))) ∈ (hasConstrNumbers,jv )I .

Finally, for each (n, c) ∈ ∆I for a constraint c = t1 ρ t2, such that σ(c) is not satisfied,
where n = (n1, . . . , nk) σ is defined by σ(xi) = ni for 1 ≤ i ≤ k, we let (n, c) ∈ (Rρ)I .

It is now straightforward to verify that I satisfies all axioms. Also, it is easy to see that I is
a suitable model witnessing the result.

The above results can intuitively be explained as follows. Lemma 4.6.1 shows us that the val-
ues of expressions are correctly computed in the modelling. Theorem 4.6.2 then shows us that
all models of the encoding (that satisfy some requirements) reflect the behavior of programs.
Similarly, Theorem 4.6.3 shows us that all models of the encoding (that satisfy some require-
ments) reflect the non-behavior of programs. Finally, Theorem 4.6.4 shows us that these are not
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vacuous statements, and that there are in fact models witnessing the behavior and non-behavior
of programs.

4.6.3 Encoding Reasoning Problems

Theorems 4.6.2, 4.6.3 and 4.6.4 allow us to use the encoding of LPN programs into ALC(D)
to reduce various reasoning problems over LPN programs to reasoning problems overALC(D).
We show how the equivalence problem of LPN programs can be encoded as an ALC(D) (un)-
satisfiability problem.

Let p1 and p2 be two LPN programs with disjoint predicate symbols, with input functions
ι1 and ι2, respectively, and assume that they have predicate symbol r1 and r2, respectively, of
the same arity k. The equivalence problem of r1 and r2 can be encoded as the unsatisfiability
problem of the concept Cwitness with respect to the TBox

T p1,ι1,p2,ι2eq,r1,r2 = T p1,ι1 ∪ T p2,ι2 ∪ {Cwitness v
((∃ref1.F r1 u ∃ref2.T r2) t (∃ref1.T r1 u ∃ref2.F r2)) u
∃(ref1 hasValue1)(ref2 hasValue1).= u
. . . u
∃(ref1 hasValuek)(ref2 hasValuek).= }

where ref1 and ref2 are abstract features. Any model of T p1,ι1,p2,ι2eq,r1,r2 that satisfies Cwitness cor-
responds to a witness of the non-equivalence of the programs p1 (with ι1) and p2 (with ι2) by
pointing out an example of a tuple that distinguishes the semantics of the two programs.

An example of another reasoning problem on LPN programs is the problem of finding a tuple
in the semantics of a function symbol given certain constraints on the values in this tuple. We
illustrate encoding such reasoning problems in ALC(D) by giving an encoding for one variant
of this general problem. Given a LPN program p with input function ι, a predicate symbol r
occurring in p, and a partial specification P of a candidate instance of r (in the form of a set
Pconstr of constraints Pi

.= ni, denoting that the ith value of the instance has value ni), we can
reduce the problem of deciding whether there exists an instance satisfying P in the semantic
relation for r induced by p and ι to the satisfiability of the concept P with respect to the TBox

T Pp,ι = T p,ι ∪ {P v T r} ∪ {P v ∃hasValuei.=ni | Pi
.= ni ∈ Pconstr}

Note that executing LPN programs can be seen as a particular instance of the above problem of
finding instances satisfying a given partial specification.

4.7 Encoding Reasoning Problems on Different Languages

In Sections 4.3.3, 4.4.3, 4.5.3 and 4.6.3, we described how reasoning over programs of any single
one of the programming languages While, Goto, FPN and LPN can be encoded as reasoning
problems of the description logicALC(D). However, it is also possible to reason simultaneously
over programs of different programming languages. We illustrate how this can be done by means
of a number of examples.
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The first example we consider illustrates how to reason on programs of different imperative
programming languages simultaneously. In Section 3.4.2, we defined what it means for a While
program p and a Goto program κ to be equivalent. We show how to encode this property as an
ALCO(D) (un)satisfiability problem. Let T p be the TBox encoding of p, as defined in Section
4.3, and let T κ be the TBox encoding of κ, as defined in Section 4.4. Consider the ABox

Ap,κ = {o : Cp, o : Cκ,1, s : Ctest}

with respect to the TBox Sp ∪ Sκ ∪ T eq where Sp consists of T p with nextState replaced by
a new abstract feature nextState1, where Sκ consists of T κ with nextState replaced by a new
abstract feature nextState2, and where

T eq = { Ctest ≡ ∃res1.Cskip u ∃res2.Creturn u
(∃(res1 valueOfx1)(res2 valueOfx1). 6=
t · · · t
∃(res1 valueOfxn)(res2 valueOfxn). 6=) }

for res1, res2 abstract features, and Cskip, Creturn and Ctest nominal concepts. ALCO(D)
models for this ABox and TBox correspond to derivations of p and κ starting with the same
input state (reflected in the ABox assertions o : Cp and o : Cκ,1), and resulting in at least one
different output value (reflected in the only TBox axiom).

Similarly, we could encode the equivalence of programs of the different declarative lan-
guages as an ALC(D) (un)satisfiability problem. By taking the encoding of an FPN program
and the encoding of an LPN program, in combination with suitable ALC statements expressing
the required relation between concepts of the two encodings, we can express the constraint that
there be values (n1, . . . , nk) ∈ Nk such that for some r ∈ R with arity k and some f ∈ F with
arity k − 1 we have that not both (n1, . . . , nk) ∈ Semp

r and (n1, . . . , nk) ∈ Semπ
f .

The final example we consider relates an imperative and a declarative program. We encode
the problem whether a While program p is equivalent for inputs X ′ = {x1, . . . , xn} and output
x to a FPN program π for a functional symbol f ∈ F , as defined in Section 3.4.3. We show how
to encode this property as anALCO(D) unsatisfiability problem. Let T p be the TBox encoding
of p, as defined in Section 4.3, and let T π be the TBox encoding of π, as defined in Section 4.5.
Consider the ABox

Ap,κ = {o : Cp, o′ : Cπ, s : Ctest, (s, o′) : ref1, (s, o) : ref2}

with respect to the TBox T p ∪ T π ∪ T eq where

T eq = { Ctest ≡ ∃ref3.Cskip u
(∃(ref1 inputValue1)(ref2 valueOfx1).=
u · · · u
∃(ref1 inputValuen)(ref2 valueOfxn).= u
∃(ref1 outputValue)(ref3 valueOfx. 6=)) }

for res1, res2, res3 abstract features, and Cskip a nominal concept. ALCO(D) models for this
ABox and TBox correspond to derivations of p starting with some values (n1, . . . , nk) ∈ Nk for
the variables X ′ leading to the output value n for x, such that π does not map (n1, . . . , nk) to n
for the functional symbol f .
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4.8 Computational Power and Decidability of Finding ALC(D)
Models

The relations between executing programs of the different programming languages and the
model-theoretic semantics ofALC(D) knowledge bases that we identified above lead to a num-
ber of interesting conclusions with respect to the computational power and decidability of the
problem of finding models for ALC(D) knowledge bases, in the general case.

4.8.1 Turing-Completeness

In Section 4.3, we formally established a connection between executing While programs and
the model-theoretic semantics of particular ALC(Nlin) knowledge bases. Together with the
well-known Turing-completeness results we discussed in Section 3.3, these results lead to the
following insight about the computational power of finding models for ALC(Nlin) knowledge
bases.

Theorem 4.8.1. Any mechanism that, given a general ALC(Nlin) TBox T and given an ALC-
(Nlin) concept C returns a model I for T with CI 6= ∅, if such a model exists, has Turing-
complete computational power.

Proof (sketch). Let M be such a mechanism. We show that M can be used to compute arbitrary
Turing-computable functions f(x1, . . . , xm). Let f be such a function. By Proposition 3.3.2 we
know that this function f can be expressed by a While program p, i.e. when p is executed on
an input state sin that provides values c1, . . . , cm for the variables x1, . . . , xm (respectively) it
returns the value of f(c1, . . . , cm) in an output variable z iff p terminates on this input state. By
Theorems 4.3.2, 4.3.3 and 4.3.4, we know that we can use M to compute f(c1, . . . , cm). We do
so as follows.

We provide M with the TBox T p and with the concept C = Cp u ∃valueOfx1 .=c1 u · · · u
∃valueOfxm .=cm . We know either p terminates on the input state sin, or it does not terminate
on sin. By Theorems 4.3.3 and 4.3.4, we know that either way, a model I of T p with CI 6= ∅
exists. Thus, M returns such a model I. If CIskip = ∅, we know that p does not terminate on sin,
by Theorem 4.3.2, and thus that f(c1, . . . , cm) is undefined. Otherwise (i.e. if CIskip 6= ∅), we
can use the model I and any object d witnessing that CI 6= ∅, together with the final element e
in the nextState chain in I starting at d and the unique value k ∈ N such that (e, k) ∈ valueOfIz
to obtain f(c1, . . . , cm).

4.8.2 Decidability

We have seen in Section 4.7 that the encodings described in this chapter offer a flexible frame-
work to express a myriad of different reasoning problems in ALC(D). The downside of this
result is that the resulting reasoning problems, in the general case, are undecidable. Several
straightforward formal undecidability proofs witnessing this will be given in Chapter 6. In this
section, we will informally describe the possible causes of the undecidability of the reasoning
problems resulting from the encoding into description logic. Investigating these possible causes
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helps to give us a better understanding of the nature of the problems we are trying to solve, as
well as guiding our search for additional fragments of the programming language that allow for
decidable reasoning problems.

It must be noted that, despite having the practical disadvantage of being undecidable in
general, these problems do have a clearly defined formal semantics. In other words, it is well
decidable whether a particular candidate solution is in fact a solution for such a problem. This
opens up the possibility of using incomplete methods for trying to find solutions to these prob-
lems. For instance, it is well possible to use local search algorithms to try to find counterexample
models for the ALC(D) reasoning problems created using the encoding framework.

4.8.2.1 General TBoxes

In [17], it is shown that ALC(D) concept satisfiability (and thereby related reasoning problems
such as concept subsumption and equivalence) with respect to general TBoxes is undecidable for
arithmetic concrete domains. A concrete domain is arithmetic if it includes the natural numbers
and has predicates for (in)equality, (in)equality to zero, addition and multiplication. The concrete
domains on which the considered programming languages operate, without further restrictions,
thus are arithmetic concrete domains.

Also, the programming languages we consider in their general form allow a certain looping
behavior that leads to a cyclicity in the TBoxes of the encoding of programs. For the imperative
programming languages, this cyclicity is induced by the unbounded number of loops that can
appear in the execution of programs. For the language While, this looping behavior is caused
by while statements, and the resulting need for general TBoxes can be seen in the fact that the
combination of Axiom (4.15) with Axioms (4.7), (4.8) and (4.14) can induce cycles. Similarly,
for the language Goto, this looping behavior is caused by goto statements, and the corresponding
need for general TBoxes is mirrored in the fact that Axioms (4.28) and (4.29) can induce cycles.

For the declarative programming languages we considered, an analogous looping behavior
is present in the semantics of the languages that is caused by the possibility of programs to be
recursive. For the language FPN, the need for general TBoxes due to this recursive behavior can
be seen in the fact that Axioms (4.31), (4.42) and (4.38)-(4.39) can induce cycles. Similarly, for
the language LPN, this need for general TBoxes is mirrored both in the fact that Axioms (4.47)
and (4.52), and in Axioms (4.49) and (4.60) can induce cycles.

Because of the use of arithmetic domains and the need for general TBoxes, the ALC(D)
reasoning problems that result from the encoding of programs into logic are particular instances
of a generally undecidable class of problems. This by itself does not imply that the resulting
reasoning problems are in fact undecidable. In principle, it could be the case that we encode
decidable problems into a class of problems that are undecidable in general. However, as we
will see in Chapter 6, we are in fact dealing with generally undecidable reasoning problems,
exactly because of the combination of numerical domains with (unbounded) cyclic behavior of
programs.

In short, this first cause of undecidability is the combination of arithmetic (yet decidable)
concrete domains and cyclicity in the terminological axioms of the description logic.
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4.8.2.2 Inadmissible Concrete Domains

Another reason why the resulting ALC(D) reasoning problems could be undecidable, is the
need for inadmissible concrete domains. For instance, non-linear integer arithmetic (i.e. logi-
cal theories capable of expressing more than linear expressions, such as polynomial expressions
in general) is undecidable, and therefore the corresponding concrete domain is inadmissible.
If we allow the use of arithmetical operations like addition and multiplication without further
restriction, in the programming languages, we end up needing such inadmissible concrete do-
mains when encoding the programs and their behavior into ALC(D). This, therefore, leads to
undecidability in the reasoning problems, even for non-looping programs.

In short, this second cause of undecidability is rooted in the fact that satisfiability problems
for concrete domains that are expressive enough are undecidable.
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CHAPTER 5
Benefits of Using Formal Logic

In Chapter 4, we developed a method of assigning a model-theoretic semantics to programs of
different programming languages by encoding programs of different programming languages
into description logics. This allows us to reduce the decision problem of deciding semantic
properties of these programs to description logic reasoning problems. This method of encoding
programs into formal logic, with the goal of deciding semantic properties of programs using
reasoning algorithms based on the formal logic, has a number of advantages over developing
special-purpose algorithms to decide such properties. We discuss the advantages that our frame-
work offers over the direct approach of developing ad-hoc algorithms.

5.1 Conceptually Simplifying the Problem

The first class of advantages are related to conceptual advantages in investigating and classifying
reasoning problems over programs. In short, these advantages boil down to the fact that our
framework allows us to reduce various reasoning problems on a variety of structures to one
well-studied logical setting.

For instance, the framework allows us to reduce the problem of deciding semantic properties
of programs of the various programming languages to deciding semantic properties of descrip-
tion logic knowledge bases. In effect, we move from the setting of various different mathemati-
cal objects (the different programming languages and their semantics) to the well-known setting
of formal logic. We are considering a number of different semantic properties of programs of
a number of very diverse programming languages. In other words, we are considering quite
some different decision problems on different structures (the syntax of the different languages is
structurally diverse) with differently defined semantics (the programming languages have differ-
ent semantics). In addition, we are considering a number of conceptually different problems. By
encoding all these reasoning problems of deciding various semantic properties of various types
of programs into reasoning problems of knowledge bases of one particular knowledge base,
we reduce the semantic underpinnings of all these reasoning problems to one well-understood
structure (namely description logic interpretations). In addition, since essentially all reasoning
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problems in description logics can be reduced to one single reasoning problem (namely ABox
satisfiability), by means of our encoding we reduce the diverse set of decision problems involved
in reasoning into one well-understood reasoning problem. Clearly, this is a major conceptual
simplification.

Secondly, the reduction of the various reasoning problems to the problem of ABox satis-
fiability not only reduces the number of problems we are considering. The description logic
satisfiability problem is conceptually very straightforward to solve. By virtue of the direct re-
lation between the description logic syntax and their model-theoretic semantics, the design of
algorithms to decide description logic satisfiability problems is directly guided by the definition
of the semantics of the language. This point is also illustrated above, in the discussion of tableau
algorithms for description logics, in Section 2.2. The fact that the problem can be conceived
quite intuitively makes it much easier to develop highly sophisticated algorithms, dealing with
complex variants of the problem. In fact, extremely sophisticated variants of the tableau al-
gorithm have been developed for description logics with all sorts of complex extensions. The
setting of finding a witness model of satisfiability for description logic knowledge bases, with
the clear guidance of the semantics of the logic, is conceptually much simpler than the plethora
of heterogeneously defined structures and semantics of the direct setting of designing ad hoc rea-
soning algorithms. This point will also be illustrated in Chapter 6, in Sections 6.3 and 6.4, where
we will make heavy use of the semantical properties of description logic to identify additional
fragments of the programming languages While and Goto for which solving certain reasoning
problems is decidable.

Incidentally, another (more practical) advantage of transferring the reasoning problems we
consider to the description logic setting, is that there has been more research on optimization of
algorithms in this description logic setting. This is mainly due to the fact that description logics
have seen more interest in the last few decades, because of their applicability in a general setting.
However, the fact that this description logic setting is conceptually easier than many domain-
specific settings, such as the setting we consider involving reasoning over various programming
languages, is also very beneficial for the optimization possibilities of reasoning algorithms.

The conceptual simplification of the problem also has some advantages for the decidability
and complexity analysis of programs from different fragments of the programming languages.
Because the satisfiability problem of description logic knowledge bases underlies many impor-
tant applications, a lot of research has been done on the decidability and complexity of this
problem for different description logics. Partially due to the reason that the problem has a clear
and intuitive model-theoretic semantics, extensive decidability and complexity results have been
found. Even for the limited class of description logics with concrete domains, there is a magni-
tude of (non-trivial) decidability and complexity results that have been found (cf. [15, 16]). By
connecting the reasoning problems of deciding semantic properties of programs with the descrip-
tion logic reasoning problems, we can use the results, ideas and techniques from the decidability
and complexity analysis of description logics for analyzing the decidability and complexity of
the programming language reasoning problems. The topic of decidability and computational
complexity of reasoning over semantic properties of the programming languages is discussed in
more detail in Chapter 6.
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5.2 Identifying Abstract Reasoning Patterns

Connecting the setting of reasoning in our particular domain (i.e. deciding semantic properties
of programs) to reasoning in the setting of formal logic also helps us to understand the abstract
structure of reasoning in the domain of programming languages better.

Formal logics often reveal what reasoning structures can be used to reason in a particular
domain. For examples of this, one can think of encoding planning problems or many other prac-
tical problems into the Boolean satisfiability problem (SAT), revealing the type and complexity
of reasoning that is sufficient to solve such problems. In a similar way, our reduction of deciding
semantic properties of programs of the different programming languages to ALC(D) satisfia-
bility problems gives us a better idea of the type and complexity of reasoning needed to reason
on programs. In particular, the encoding directly shows us what kind of reasoning structures are
sufficient to solve the original problems.

Furthermore, conversely, the connection we established between the specification of com-
putation in the form of programs and the semantics of description logics gives us insight into
the power of description logic reasoning. A prime example of such novel insight is Theorem
4.8.1, which tells us that a particular type of description logic reasoning suffices to compute any
Turing-computable function.

5.3 Obtaining a Flexible, Declarative and Unified Reasoning
Framework

Another advantage of encoding the behavior of programs of the various programming languages
into description logic knowledge bases is that by doing so we obtain a flexible, declarative and
unified framework to solve the reasoning problems over programs.

Since we encode all programming languages into the same description logic, and since we
are able to express the semantic properties of programs in this very same description logic,
we get a unified reasoning framework. The same reasoning algorithms can be used to decide
semantic properties of programs that possibly are of quite different nature. Also, the same
algorithms can be used to decide various different semantic properties of programs.

The framework we end up with also has a declarative nature. As described in Chapter 4, the
various different reasoning problems can be expressed using only the description logic language,
describing the requirements on the behavior of programs in a declarative fashion. In order to
express the semantic properties of programs for which automated reasoning is to be performed,
there is no need to express any of the internal behavior of programs. In other words, the (non-
declarative) behavior of the programming languages is hidden in the encoding, allowing us to
specify reasoning problems purely declaratively.

The flexibility of the framework is a result of encoding the behavior of the different pro-
gramming languages in the same model-theoretic semantics. The model-theoretic properties of
multiple encodings can straightforwardly be related to each other using description logic state-
ments. In this way, it is possible to add further programming languages to the framework and
relate their encoding to the encoding of other programming languages. Furthermore, using the
expressivity of description logic, it is straightforward to express additional semantic properties
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of programs for which automated reasoning is to be performed.

5.4 Integration with External Knowledge Bases

Another interesting possibility that the method of encoding reasoning over imperative programs
into description logic offers us, is to combine reasoning over programs with ontological reason-
ing in the domain in which the imperative programs are applied. For instance, if a particular
type of imperative programs is used in a medical domain, we can combine reasoning with the
behavior of such programs with other types of medical knowledge that might be present.
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CHAPTER 6
Decidability and Complexity Results

In the general case, checking termination of (While or Goto) programs is undecidable, as is
checking equivalence of programs for any of the languages. This is proven for the languages
While and Goto in Sections 6.3 and 6.4, respectively. In this chapter, we discuss a few ways of
defining restricted fragments of the programming languages such that reasoning (i.e., deciding
termination and equivalence of programs) becomes decidable. We will slightly abuse the termi-
nology, and often call such fragments decidable fragments of the programming languages. We
will focus the formal results in this chapter mainly on the imperative programming languages,
and in particular on the programming language While. Similar results can be obtained for the
other programming languages, and we will sketch how to obtain these results without going into
full detail.

6.1 Finite Concrete Domains

A first way to define such a decidable fragment is to restrict the concrete domains to finite
domains. An example of such a finite concrete domain that is used often in implementations of
computational models would be based on the set of natural numbers representable by at most 16
binary digits, i.e. the set {0, . . . , 65535}. Such a restriction would correspond to the limitation
of memory in practical computation, and therefore is plausible for practical settings. Concretely,
an example of a finite concrete domain would be the restriction of the concrete domain Nlin,
defined in Chapter 2, to the subset of the domain {0, . . . , 65535} ⊆ N.

In this section, we will give a proof of decidability for reasoning over programs, with the
restriction that the concrete domain is finite. The idea behind this proof is as follows. If there are
only finitely many concrete values, we can compile the working of the concrete domain concept
constructs into regular description logic concepts. This way, we will end up with an encoding in
regular ALC without concrete domains, for which concept satisfiability w.r.t. general TBoxes is
decidable.
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Theorem 6.1.1. If we restrict the programming language While to a finite concrete domain,
checking termination and equivalence of While programs is decidable.

Proof (sketch). With finite concrete domains, the ALC(D) TBox T p can be simulated by a
regular ALC TBox (T p)′, by introducing concepts that simulate the behavior of the concrete
values. Let the concrete domain have values {1, . . . , k}. We know we only have to consider
a finite number of variables {x1, . . . , xm} = X ⊆ X . Hence, we only have finitely many
concrete features valueOfx1 , . . . , valueOfxm . For each value 1 ≤ i ≤ k and each variable
xj , we introduce a fresh concept Exj ,i, representing those objects who are related to value i
with the concrete feature valueOfxj . Since there are only finitely many variables, each pred-
icate in the concrete domain is a relation consisting of finitely many tuples. We can now en-
code concepts like valueOfx↑ as ¬Ex,1 u · · · u ¬Ex,k. Also, we can then encode concept
constructions like ∃(valueOfx)(nextState valueOfy).ψ, for some predicate ψ with extension
{(v1, v′1), . . . , (vn, v′n)}, as the concept ¬valueOfx ↑ u ((Ex,v1 u ∃nextState.Ey,v′1) t · · · t
(Ex,vn u ∃nextState.Ey,v′n)). A similar procedure works for predicates of any arity. This way,
we end up with an encoding of any program p that consists of a general ALC TBox. Since we
know that concept satisfiability with respect to general TBoxes is decidable forALCO, we know
by the result from Section 4.3.3 that the problems of checking termination and equivalence of
While programs are decidable in this setting.

Similar results can be obtained for the other programming languages. We will not go into
detail here, but we state the results that can be gotten.

Theorem 6.1.2. If we restrict the programming language Goto to a finite concrete domain,
checking termination and equivalence of Goto programs is decidable.

Proof (sketch). Completely analogously to the proof of Theorem 6.1.1.

Theorem 6.1.3. If we restrict the programming language FPN to a finite concrete domain,
checking equivalence of funclang programs is decidable.

Proof (sketch). Completely analogously to the proof of Theorem 6.1.1.

Theorem 6.1.4. If we restrict the programming language LPN to a finite concrete domain,
checking equivalence of LPN programs is decidable.

Proof (sketch). Completely analogously to the proof of Theorem 6.1.1.

The above decidability results (at least for While and Goto) can also be obtained in a different
way, namely by using the notion of control states (see Definition 6.3.4 for While and Definition
6.4.4 for Goto below). Whenever the concrete domain is finite, there trivially exists a finite
control state partition for any program, since for finite concrete domains the state space SX for
finite X is finite as well. The above decidability results then follow directly from Theorems
6.3.9 and 6.3.14 for While, and from Theorems 6.4.12 and 6.4.13 for Goto. For more details on
these notions and results, see Sections 6.3 and 6.4.
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6.1.1 Computational Complexity

In addition to the decidability results given above, we give an indication of the computational
complexity of deciding termination and equivalence of programs that are restricted to finite
concrete domains. In particular, we prove an EXPTIME upper bound (in the size of programs)
on the complexity of deciding these properties for While programs. This is not a novel result
(any naive approach that explores the search space in a brute force fashion would suffice to show
this result1), but merely intended to indicate some complexity properties of algorithms to decide
reasoning problems on programs by means of the encoding method proposed in this thesis.

Theorem 6.1.5. If we restrict the programming language While to a finite concrete domain,
checking termination and equivalence of While programs can be done in O(2|p|·2

|D|
) time.

Proof (sketch). It is straightforward to verify that for any program pwe have |T p| = O(|p|), and
that for the concept C used for checking termination or equivalence we have |C| = O(1). By
using the method in the proof of Theorem 6.1.1, we obtain an ALC TBox (T p)′ that simulates
the ALC(D) TBox T p. By the construction of (T p)′ we know that |(T p)′| = O(|T p| · 2|D|) for
|D| the size of the concrete domain. By the results in Section 4.3.3, we know that we can solve
the problems of termination and equivalence for While programs by means of checking satisfia-
bility with respect to general TBoxes. We know satisfiability for ALC and ALCO concepts C
with respect to general TBoxes T is in EXPTIME [8, 14], i.e. can be done in time O(2|C|·|T |).
Concludingly, we get a decision procedure for termination and equivalence of While programs
that runs in time O(2|p|·2

|D|
).

For the other programming languages Goto, FPN and LPN, in the setting of finitely bounded
concrete domains, EXPTIME upper bounds on deciding termination (in case of Goto) and equiv-
alence can be found in a similar fashion.

6.2 Non-Looping Programs

Another way to restrict programs of the different programming languages in such a way that
the problems of checking termination and equivalence of programs become decidable, is to
forbid any kind of looping behavior. This results in the control flow for any execution of the
program to be fixed, which leads to decidability of reasoning over programs. Even though
this is a very severe restriction on the computational power of the programming languages (i.e.
without (conditional) loops, the languages are not Turing-complete anymore) this restriction still
leads to cases that are interesting, at least from a practical point of view. For more details on
an application concerning a real-world, industrial instance of the general problem in which no
loops occur, see Chapter 7.

In order to define the proposed fragments of the programming languages While, Goto, FPN
and LPN more precisely, we will define the notion of loop-free programs for each of these
languages.

1In fact, such naive approaches can even be used to show better upper bounds.
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Definition 6.2.1 (Loop-free While programs). We say that a While program p is loop-free if and
only if it contains no subprograms of the form while b do q.

Example 6.2.2. Consider the following loop-free While program p, that swaps the values of
variables x and y (by using a third variable z) iff the value of x exceeds the value of y:

p = (if (x > y) then (z := x;x := y; y := z) else skip)

Definition 6.2.3 (Loop-free Goto programs). We say that a Goto program κ of length l is loop-
free if and only if for each 1 ≤ i ≤ l we have that κ(i) = if b goto m1 else m2 implies that
m1 > i and m2 > i.

Example 6.2.4. Consider the following loop-free Goto program κ, that swaps the values of
variables x and y (by using a third variable z) iff the value of x exceeds the value of y:

κ =

1 : if (x > y) goto 2 else 5
2 : z := x
3 : x := y
4 : y := z
5 : return

Definition 6.2.5 (Loop-free FPN programs). We say that a FPN program π on a set of functional
symbols F is loop-free if and only if the graph G = (F,E) contains no cycles, where:

E = {(f, g) | f, g ∈ F, π(f) = ((c1, e1), . . . , (cm, em)), some ei contains the symbol g}

Definition 6.2.6 (Loop-free LPN programs). We say that a LPN program p on a set of relational
symbols R is loop-free if and only if the graph G = (R,E) contains no cycles, where:

E = {(r, s) | r, s ∈ R, p contains a rule for r in which s occurs in the body}

We will show that for each of the four programming languages we get that reasoning on
loop-free programs is decidable, by showing that in each case the encoding of programs can be
considered as an acyclic ALC(D) TBox, for which satisfiability is decidable.

Theorem 6.2.7. Termination and equivalence of loop-free While programs are decidable.

Proof. We firstly show that for any loop-free While program p the encoding T p into ALC(D)
consists of an acyclic TBox. Let p be an arbitrary loop-free While program, and let T p be its
encoding intoALC(D). By the fact that p is loop-free, we know that p contains no statements of
the form while b do q. This means that no instance of Axiom (4.15) occurs in T p. The following
linear order< on the conceptsCq for q ∈ cl(p) andDb for b ∈ Bool(p) witnesses that T p can be
considered as an acyclic TBox, i.e. each axiom in T p is of the form C v D for a concept name
C and a (possibly) complex concept D containing only concept names C ′ such that C > C ′,
and is to be replaced by the axiom C ≡ D. Let < be induced by:

Cq > Db for any Cq and any Db

Db > Db′ for any b ∈ Bool(p) and any subexpression b′ of b
Cq;q′ > Cq′ for any q; q′ ∈ cl(p)

Cif b then q1 else q2 > Cq for any if b then q1 else q2 ∈ cl(p) and q ∈ {q1, q2}
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The constructions and arguments from Chapter 4 (i.e., Lemma 4.3.1, Theorem 4.3.2, The-
orem 4.3.3 and Theorem 4.3.4) also work for the acyclic version of the TBox T p. This is
straightforward to verify. Furthermore, when checking satisfiability of a concept with respect to
an acyclic TBox, we can unfold the concept definitions from the TBox in the concept. Thus we
can reduce the problem of satisfiability with respect to the TBox to the satisfiability problem of
a single concept.

Now, by the results in Section 4.3.3, we know that termination and equivalence of While
programs can be reduced to (pure) concept satisfiability of ALCO(D), which we know to be
decidable [14].

The very same proof idea works for the other programming languages as well. We will not
spell out the details, but merely state the results.

Theorem 6.2.8. Termination and equivalence of loop-free Goto programs are decidable.

Proof (sketch). Analogous to the proof of Theorem 6.2.7. The linear order that witnesses the
acyclicity of the encoding corresponds to the linear order < on line numbers.

Theorem 6.2.9. Termination and equivalence of loop-free FPN programs are decidable.

Proof (sketch). Analogous to the proof of Theorem 6.2.7. The linear order that witnesses the
acyclicity of the encoding is induced by the graphG in the definition of loop-free FPN programs.

Theorem 6.2.10. Termination and equivalence of loop-free LPN programs are decidable.

Proof (sketch). Analogous to the proof of Theorem 6.2.7. The linear order that witnesses the
acyclicity of the encoding is induced by the graphG in the definition of loop-free LPN programs.

6.2.1 Computational Complexity

Similar to the case of programs restricted to finite concrete domains, we give an indication
of the computational complexity of deciding equivalence of loop-free programs. Note that the
termination problem of loop-free programs is trivial, since loop-free programs always terminate.
Similarly to the complexity results in Section 6.1.1, this result is merely intended to indicate
some complexity properties of algorithms to decide reasoning problems on programs by means
of the encoding method proposed in this thesis. Note that in the proof of the following theorem,
we refer to notions and results from Section 6.3 below.

Theorem 6.2.11. Checking the equivalence of two loop-free While programs p1 and p2 can be
done in NEXPTIME in |p1|+ |p2|.

Proof (sketch). We use a decision procedure similar to the one used in Theorem 6.3.14. We
make use of the fact that for loop-free While programs every derivation has one of finitely many
derivation structures (see Definition 6.3.10). Similarly to the procedure of Theorem 6.3.14 (by
using Lemma 6.3.12), we can then check equivalence of p1 and p2 by checking for only a
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bounded number of structures L whether they can be extended to a suitable model. In fact, for
loop-free While programs there are only O(|p|) such structures that need to be considered. The
NEXPTIME result can then straightforwardly be obtained by an argument similar to the one in
the proof of Theorem 6.3.16.

6.3 Structuring Variable States for While

In order to characterize classes of programs for which the semantic properties of termination
and equivalence of programs are decidable, we will identify a particular structure in the set of
input states on which programs can be executed. In particular, we will define a notion of control
states. Intuitively, control states for a program p are sets of states for which the control flow of
the execution of p is identical, regardless of what particular state s from this set of states is used
as input state (for relevant subprograms of p). We will use partitions of the set of states into
control states in identifying decidable classes of programs.

This approach to structuring the infinite space of states into a finite number of equivalence
classes is similar to approaches to model checking infinite state systems. In fact, our setting
is in essence also an infinite state system. For infinite state systems such finite partitions of
the state space, that satisfy certain properties allowing them to be used for model checking, are
often called finite bisimulations. Bisimulation is a notion of behavioral equivalence that is well-
known in the field theoretical computer science and logic. An example of infinite state systems
for which finite bisimulations are used for formal verification are hybrid automata (cf. [12, 1]).

6.3.1 Control State Partitions

In order to define the notion of control state partitions for programs p, we must firstly define the
following two notions of maximal condition free subprograms and maximal Boolean conditions.
Maximal condition free subprograms, intuitively, are the largest subprograms that don’t contain
any statements involving any conditional statements. In other words, these are the maximal
subprograms for which the control flow is entirely linear. Maximal Boolean conditions are, as
the name suggests, the maximal Boolean subexpressions occurring in a program.

We will use these notions to confine the control flow of programs. The behavior of these
two elements of programs (i.e. maximal Boolean conditions and maximal condition free sub-
programs) completely determines the control flow of programs, as we will see below. The rea-
son for this, intuitively, is that all conditional elements of a program depend on these maximal
Boolean conditions, and that besides conditional elements programs consist only of the maximal
condition free subprograms.

Definition 6.3.1 (Maximal condition free subprograms). For a given While program p, we define
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the set Gp of maximal condition free subprograms as

Gp =



∅ if p = skip

{q1; . . . ; qn} ∪ Gr if p = q1; . . . ; qn; r for some n ≥ 1,
for all i, qi is either of the form (xi := ei) or of the form skip,
and r is not of the form (r′; r′′) nor of the form r′,
for any r′ of the form (x := e) or skip

Gq1 ∪ Gq2 if p = if b then q1 else q2
Gq if p = while b do q

Definition 6.3.2 (Maximal Boolean conditions). For any given While program p, we define the
setHp of all maximal Boolean conditions occurring in p as

Hp =


Hq1 ∪Hq2 if p = q1; q2
∅ if p = skip

{b} ∪ Hq1 ∪Hq2 if p = if b then q1 else q2
{b} ∪ Hq if p = while b do q

Note that for any While program p, both sets Gp and Hp can be determined purely syntacti-
cally.

Clearly, for any While program pwe have that all g ∈ Gp are terminating (on all input states).
In order to fix notation, given any While program q containing variables X ⊆ X and any input
state s ∈ SX , we denote the unique state t ∈ SX such that (q, s)⇒∗ t by q(s).

In order to illustrate these notions, we will give the sets Gp and Hp for the While program p
in our running example.

Example 6.3.3. Remember from Example 3.1.1 that

p = (z := 0;w := 0;

p′︷ ︸︸ ︷
while (w < x ∧ w < 3) do (z := z + y;w := w + 1); skip)

We then have that

Gp = {(z := 0;w := 0), (z := z + y;w := w + 1), skip}

Hp = {(w < x ∧ w < 3)}

With these preliminary notions in place, we are now ready to define the notions of control
states and control state partitions.

Definition 6.3.4 (Control state partitions). For any While program p containing variables X ⊆
X , we define a control state partition for p to be a family (Pi)i∈I of subsets of states (called
control states) Pi ⊆ SX such that:

1. ∪i∈IPi = SX and Pi ∩ Pj = ∅ for all i, j ∈ I such that i 6= j;
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2. for all i ∈ I , all s, t ∈ Pi and all h ∈ Hp we have that BX(s, h) = BX(t, h); and

3. for all i, j ∈ I , all s, t ∈ Pi and all g ∈ Gp we have that g(s) ∈ Pj iff g(t) ∈ Pj; and

4. for all i ∈ I , and for each subset S ⊆ SX , if Pi ∩ S 6= ∅ then some state s ∈ Pi ∩ S must
be effectively constructible.

The conditions on control state partitions (Pi)i∈I can be explained intuitively as follows.
Condition (1) requires that (Pi)i∈I in fact partitions the set of states SX . Condition (2) ensures
that with the information in what partition Pi a given state s ∈ SX is, one can determine the
value of any Boolean expression b ∈ Hp in state s. Similarly, condition (3) ensures that the
information in what partition Pi a given state s ∈ SX is uniquely determines in what partition
Pj the resulting state g(s) is, for any given maximal condition free subprogram g ∈ Gp. Finally,
condition (4) ensures that it is possible to find a representative state for each control state. Fur-
thermore, condition (4) is designed in a way that makes it possible to combine multiple control
state partitions into one (see Theorem 6.3.15).

For a control state partition (Pi)i∈I for a program p containing variables X , and for a state
s ∈ SX , we let P (s) denote the unique Pi such that s ∈ Pi.

Example 6.3.5. Consider the following control state partition (Pi)i∈I for our running example
program p.

I = {(n,m) | 0 ≤ n,m ≤ 3}

f(n) =

{
3 if n ≥ 3
n otherwise

s ∈ P(f(s(x)),f(s(w))) for any s ∈ S{w,x,y,z}
Remember from Example 6.3.3 that

Gp = {(z := 0;w := 0), (z := z + y;w := w + 1), skip}

Hp = {(w < x ∧ w < 3)}

It is easy to see that (Pi)i∈I partitions the state space S{w,x,y,z}. It is also straightforward to
verify that for any state s ∈ S{w,x,y,z} the control state P (s) of s determines the evaluation of
(w < x ∧ w < 3). Intuitively, this holds because the Boolean statement cannot distinguish
values of x that are at least 3, and similarly for w. To see that the third condition of control
state partitions holds, note that for any P(i,j) and any state s ∈ P(i,j), the (sub)program (z :=
0;w := 0) executed on s results in a state in P(i,0). Also, for any P(i,j) and any state s ∈ P(i,j),
the (sub)program (z := z + y;w := w + 1) executed on s results in a state in P(i,f(j)).

6.3.2 Programs With Finite Control State Partitions

Using the notion of control state partitions defined above, we are able to identify a suitable frag-
ment of the programming language While. This fragment is the set of those While programs for
which there is a control state partition of finite size. In order to prove that deciding termination

70



and equivalence of While programs from this fragment, we need some auxiliary results. The first
of these auxiliary results concerns the notion of derivation structures, and states that the control
state of the initial state of a derivation determines the structure of the derivation.

Definition 6.3.6. For any finite derivation d of the form (p1, s1) ⇒ · · · ⇒ (pn, sn) ⇒ sn+1 in
the operational semantics of the programming language While, we define the structure of d to
be the (finite) sequence p1, . . . , pn of programs occurring in the derivation.

Similarly, for any infinite derivation d of the form (p1, s1) ⇒ (p2, s2) ⇒ . . . , we define the
structure of d to be the (infinite) sequence p1, p2, . . . .

Lemma 6.3.7. Let p be an arbitrary While program, and let (Pi)i∈I be a control state partition
for p. For any i ∈ I and for any two states s, t ∈ Pi we have that the derivation starting with
(p, s) and the derivation starting with (p, t) have the same structure.

Proof. In this proof we will use the fact that the operational semantics for While is deterministic,
i.e. for any (p, s) there is exactly one derivation starting at (p, s). Fix arbitrary i ∈ I and
s, t ∈ Pi. Firstly, consider the case in which both derivation starting with (p, s) and (p, t) are
finite. Let (p, s) = (p1, s1) ⇒ · · · ⇒ (pn, sn) ⇒ s′ be the derivation starting with (p, s), and
let (p, t) = (p′1, t1) ⇒ · · · ⇒ (p′m, tm) ⇒ t′ be the derivation starting with (p, t). We assume
w.l.o.g. that n ≤ m. By complete induction on the index i of programs pi we show for all i that
pi = p′i, and that P (si) = P (ti) for all i such that i = 1, i = n, or at least one of pi and pi−1 is
not of the form x := e; q. The base case for i = 1, follows by assumption.

For the inductive case, assume that pi−1 = p′i−1. We distinguish several cases. Consider
the case in which pi−1 is of the form x := e; q. By definition of the derivational semantics, we
get that pi = q = p′i. If in this case pi = q is not of the form x := e; q′, we need to show
P (si) = P (ti). Assume thus that q is not of the form x := e; q′. Now, let k be the maximal
number such that for all 1 ≤ j ≤ k we have that pi−j is of the form x := e; q′. We then know
that pi−k = g; q for some g ∈ Gp, by construction of Gp. We then also know by the induction
hypothesis that P (si−k) = P (ti−k), since either i−k = 1 or pi−k−1 is not of the form x := e; q′.
Now, by the facts that si = g(si−k), ti = g(ti−k), P (si−k) = P (ti−k), and by condition (3) in
the definition of control state partitions, we know that P (si) = P (ti).

Consider the case in which pi−1 is of the form (if b then q1 else q2); q. By the induc-
tion hypothesis, we know that p′i−1 = pi−1. Also, by the induction hypothesis, we know that
P (si−1) = P (ti−1). Then, since b ∈ Hp, by condition (2) in the definition of control state parti-
tions, we know that BX(si−1, b) = BX(ti−1, b). From this we can conclude that pi = p′i = qj ; q
for some j ∈ {1, 2}. Also, by the definition of the operational semantics we get that si = si−1

and ti = ti−1, and thus that P (si) = P (ti).
Consider the case in which pi−1 is of the form (while b do q′); q. By the induction hypothe-

sis, we know that p′i−1 = pi−1. By the definition of the operational semantics we can conclude
that pi = p′i = (if b then q′; (while b do q′) else skip); q. Also, by the definition of the opera-
tional semantics we get that si = si−1 and ti = ti−1, and since we know P (si−1) = P (ti−1) by
the induction hypothesis, we have that P (si) = P (ti).

In the case in which pi−1 = p′i−1 is of the form skip; q, we know by the operational se-
mantics that pi = p′i = q. By the operational semantics, we also know that si = si−1 and
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ti = ti−1, and since we know P (si−1) = P (ti−1) by the induction hypothesis, we have that
P (si) = P (ti).

Finally, we have that pi−1 = p′i−1 = skip if and only if i− 1 = n, and thus by the definition
of the operational semantics, there are no pi and p′i. This implies that n = m. This concludes
our induction, proving that the structure of the derivations starting at (p, s) and (p, t) are the
same.

The inductive argument presented above also proves the following statements. If one of the
derivations starting at (p, s) and (p, t) is finite, then so is the other. If both derivations starting at
(p, s) and (p, t) are infinite, then they have the same structure. This concludes our proof that for
any i ∈ I and any s, t ∈ Pi, the structures of the derivations starting at (p, s) and (p, t) are the
same.

This result immediately leads to the insight that for programs with a control state partition of
finite size only finitely many different, structurally distinct derivations needs to be considered.
This insight directly allows us to decide termination for such programs.

Corollary 6.3.8. For any While program p for which there exists a control state partition (Pi)i∈I
with finitely many control states (i.e. I is finite), then there is a finite set of derivation structures
such that each derivation of p has a structure in this set.

Theorem 6.3.9. For any While program p for which there exists a control state partition (Pi)i∈I
with finitely many control states (i.e. I is finite), it is decidable to check whether p terminates on
all inputs.

Proof. Let p be a program with control state partition (Pi)i∈I for finite I . Existence of a nonter-
minating execution of p on some state s can be checked by executing p on all the representative
states si for each Pi (which are finitely many). If executing p on si terminates, then by Lemma
6.3.2 we know that it terminates on all s′ ∈ Pi. If executing p on all si terminates, we thus
know p terminates on all states, since SX =

⋃
i∈I Pi. Also, it can be decided if executing p on

si does not terminate. If at any point in the derivation there occurs a pair (p′, s′) such that there
has occurred a pair (p′, s′′) before with {s′, s′′} ⊆ Pj for some j ∈ I , then we know the deriva-
tion loops infinitely (by Lemma 6.3.2). Since only a bounded number of programs p′ can occur
(namely |cl(p)| many) and only a bounded number of control states exist (namely |I| many),
we know that within a certain number of derivation steps (namely |cl(p)| · |I| many) either the
derivation has terminated or such a loop has occurred.

In order to show that equivalence of While programs allowing finite control state partitions is
decidable, we introduce the notion of derivation frames. In order to define this notion, we need
to consider the definition of stepwise divisions of While derivations, defined in Section 3.1.1.

Definition 6.3.10 (Derivation frames). For any While program p containing variables X and
any state s ∈ SX , we define the derivation frame corresponding to the (finite) derivation starting
with (p, s) as the interpretation J (p,s) = (∆J , ·J ) that is defined as follows. Let d1, . . . , dn be
the stepwise division of the derivation starting with (p, s). We let ∆J = {d1, . . . , dn}. For each
di ∈ ∆J with structure p1, . . . , pn and for each q ∈ cl(p) we let di ∈ CJq iff q ∈ {p1, . . . , pn}.
We let nextStateJ = {(di, di+1) | 1 ≤ i < n}.
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Observation 6.3.11. The derivation frame of any derivation is uniquely determined by the struc-
ture of the derivation.

In order to prove that equivalence of While programs with finite control state partitions is
decidable, the following result will play an essential role. We show that for any model of the
encoding of a While program into ALC(D), the maximal nextState connected component con-
taining the element corresponding to the start of a derivation has the structure of the frame
corresponding to this derivation.

Lemma 6.3.12. Let p be any While program containing variables X = {x1, . . . , xn}, and fix
an arbitrary state s ∈ SX . For any model I = (∆I , ·I) of T p containing an element d ∈ ∆I

such that for all xi it holds (d, s(xi)) ∈ valueOfIxi , we have that there exists a homomorphic
mapping µ : J (p,s) → I from the derivation frame J (p,s) into I such that µ(p, s) = d, i.e.:

• for any concept C and any object e ∈ ∆J
(p,s)

we have e ∈ CJ (p,s)
implies µ(e) ∈ CI;

• for any roleR and any objects e, f ∈ ∆J
(p,s)

we have (e, f) ∈ RJ (p,s)
implies (µ(e), µ(f))

∈ RI;

• µ(p, s) = d.

Furthermore, the submodel of I induced by rng(µ) is maximally connected with respect to
nextState, i.e. there exists no e ∈ rng(µ) and f ∈ ∆I\rng(µ) such that (e, f) ∈ nextStateI .

Proof. We construct a suitable mapping µ by induction on the length of the stepwise division
d1, . . . , dn of the derivation starting with (p, s) (we omit the final element s′ in this derivation).
Simultaneously, we prove by induction on the length of the stepwise devision that (1) for each di
and each xj we have that (µ(di), si(xj)) ∈ valueOfIxj where si is the state of the subderivation
di, that (2) for each di we have that µ(di) ∈ CIp′ for all p′ occurring in di, and that (3) for each
1 ≤ i < n we have that (µ(di), µ(di+1)) ∈ nextStateI .

In the base case, for d1, we define µ(d1) = d ∈ ∆I . Let d1 = [(p1, s) ⇒ · · · ⇒ (pr, s)].
Clearly, we have that (µ(d1), s(xj)) ∈ valueOfIxj for all xj . We prove by induction on the
length of d1 that µ(d1) ∈ CIpk for all 1 ≤ k ≤ r. The case for p1 holds by assumption,
since d ∈ CIp1 . In the inductive case for pk we distinguish different cases based on the form
of pk−1. The case for pk−1 = (if b then q1 else q2); p′ follows from the facts that µ(d1) ∈
CIpk−1

, (µ(d1), s(xj)) ∈ valueOfIxj for all xj , from the fact that I satisfies Axiom (4.14), by
the definition of the operational semantics and by Lemma 4.3.1 in Chapter 4. Similarly, the
case for pk−1 = (while b do q); p′ follows by using the induction hypothesis, the definition of
the operational semantics the fact that I satisfies Axiom (4.15) and Lemma 4.3.1 in Chapter 4.
The case for pk−1 = skip; p′ follows in a similar way by using the induction hypothesis, the
definition of the operational semantics and the fact that I satisfies Axiom (4.8). This completes
our induction on the length of d1.

In the inductive case (for the induction on the stepwise division) we define µ(di). By the in-
duction hypothesis, we know µ(di−1) is already defined, and we know that (µ(di−1), si−1(xj)) ∈
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valueOfIxj for all xj , where si−1 is the state of di−1. Then, by the fact that I satisfies Ax-
iom (4.7), we know there exists some d′ ∈ ∆I such that (µ(di−1), d′) ∈ nextStateI . Define
µ(di) = d′. Then, by the fact that I satisfies Axioms (4.9)-(4.13), and by the definition of the
operational semantics, we know that (µ(di), si(xj)) ∈ valueOfIxj for all xj . Then, by induc-
tion on the length of the subderivation di = [(p1, s) ⇒ · · · ⇒ (pr, s)] (similar to the inductive
argument given for the base case for d1), we know that µ(di) ∈ CIpk for all 1 ≤ k ≤ r.

Since the only relevant role is nextState and the only relevant concepts are the concepts Cpk
for the programs pk occurring in each subderivation, this inductive construction of µ combined
with the inductive proof suffices to show the existence of a suitable homomorphic mapping µ.

The fact that the submodel of I induced by {µ(d1), . . . , µ(dn)} is maximally connected
w.r.t. nextState follows from the fact that nextState is an abstract feature, the fact that for each
1 ≤ i < n we have (µ(di), µ(di+1)) ∈ nextStateI and the fact that for no e ∈ ∆I it holds that
(µ(dn), e) ∈ nextStateI (since e ∈ CIskip and I satisfies Axiom (4.2)).

Lemma tells us that for programs with a finite control state partition, there are only finitely
many different derivation frames. This fact, together with Lemma 6.3.12, gives us the following
insight.

Corollary 6.3.13. Let p be a program for which there exists a control state partition (Pi)i∈I with
finitely many control states (i.e. I is finite). Then for any model I = (∆I , ·I) of T p with some
d ∈ ∆I such that d ∈ CIp , there is a finite set of different derivation frames J = {J1, . . . ,Jn}
such that for at least one J ∈ J there is a homomorphic mapping µ from J to I such that the
unique nextState-initial element from J is mapped to d.

With the above results, we are able to devise the following algorithm to decide equivalence
of While programs that allow for finite control state partitions.

Theorem 6.3.14. For any two While programs p1 and p2 for which there exists a control state
partition (Pi)i∈I with finitely many control states (i.e. I is finite), it is decidable to check whether
p1 and p2 are equivalent.

Proof. As shown before, in Chapter 4, we know this problem can be reduced to the problem of
ALCO(D) unsatisfiability of the ABox

Ap1,p2 = {o : Cp1 , o : Cp2 , s : Ctest}

with respect to the TBox Sp1 ∪Sp2 where Spi is the modification of T pi where Cskip is replaced
by Ciskip, and where Ctest is an abbreviation for

∃res1.C1
skip u ∃res2.C2

skip u
(∃(res1 valueOfx1)(res2 valueOfx1). 6=
t · · · t
∃(res1 valueOfxn)(res2 valueOfxn). 6=)

where res1 and res2 are abstract features, and C1
skip, C

2
skip and Ctest nominal concepts.
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We know that for any modelM of Ap1,p2 and Sp1 ∪ Sp2 the interpretation J = (∆J , ·J ),
defined below, must be homomorphically embeddable in M. We define J by letting ∆J =
{i, f1, f2, s}, CJp1 = CJp2 = {i}, CJtest = {s}, (C1

skip)
J = {f1}, (C2

skip)
J = {f2}, resJ1 =

{(s, f1)} and resJ2 = {(s, f2)}.
We can check the satisfiability of Ap1,p2 w.r.t. Sp1 ∪ Sp2 by checking for a finite number of

structures L = (∆L, ·L) whether the interpretation function ·L can be extended in such a way
that the (extended) structure satisfies the ABox and TBox. These structuresL are all the different
possibilities of combining J with J (p1,si) and J (p2,si), for all i ∈ I where si is representative
for Pi, where we identify i with the unique nextState-initial objects in J (p1,si) and J (p2,si).

Clearly, if any such structure L can be extended to a model, then we have found a witness
of satisfiability. Conversely, we show that if no such structure can be extended to a satisfying
structure (by extending ·L), then we know that Ap1,p2 is unsatisfiable w.r.t. Sp1 ∪ Sp2 .

Assume no structure L can be extended to a model of Ap1,p2 and Sp1 ∪ Sp2 . Now, assume
to the contrary that there exists a model I of Ap1,p2 and Sp1 ∪ Sp2 . We know that J can be
homomorphically embedded in I. Let µ be the homomorphic mapping witnessing this. Since
I satisfies Sp1 and Sp2 , we know (µ(i), s(xj)) ∈ valueOfIxj for some state s ∈ SX . We also
know then, by Lemma 6.3.12, that J (p1,s) and J (p2,s) are homomorphically embeddable into
I, say with homomorphic mappings µ1 and µ2, respectively. Since C1

skip and C2
skip are nominal

concepts, we know that the unique nextState-final elements in J (p1,s) and J (p2,s) are mapped to
µ(f1) with µ1 and to µ(f2) with µ2, respectively. Now, consider the submodel I ′ of I induced by
rng(µ)∪rng(µ1)∪rng(µ2), with the interpretation function ·I restricted to rng(µ1)∪rng(µ2)
for all concepts and roles occurring in Sp1 and Sp2 . It is straightforward to verify that I ′ is a
model of Ap1,p2 and Sp1 ∪ Sp2 . Also, it is straightforward to verify that I ′ can be obtained by
extending the combination of J with J (p1,s) and J (p2,s). This is a contradiction with our first
assumption. Thus, we can conclude that no model I of Ap1,p2 and Sp1 ∪ Sp2 exists.

Furthermore, we know there are only finitely many candidate structures L that are to be
extended, and there are only finitely many relevant extensions of ·L (since each L has finitely
many objects and only finitely many concepts occur in the TBox Sp1 ∪ Sp2). Also, by the
admissibility of the concrete domain, we know for each extension of ·L to the interpretation
of the abstract concepts and features, it is decidable to check whether this interpretation can
be extended to an interpretation of the concrete features. Hence, we get decidability of the
equivalence problem.

Note that Theorem 6.3.14 assumes that there is a single finite control state partition (Pi)i∈I
that satisfies the properties given in Definition 6.3.4 for two programs p and q at the same time.
For the decidability result, it suffices, however, to have a finite control state partition (Pi)i∈I for
program p and a (possibly different) finite control state partition (Qj)j∈J for program q. We
can namely combine any two such finite control state partitions for separate programs into a
single finite control state partition for both programs. The following result shows us that we can
assume without loss of generality that if two programs have a finite control state partition, then
they have the same finite control state partition.

Theorem 6.3.15. Let p be a While program and (Pi)i∈I a control state partition for p, with
finite I . Let q be a While program and (Qj)j∈J a control state partition for q, with finite J .
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Then there exists a control state partition (Rk)k∈K with finite K that is a control state partition
for both p and q.

Proof. Assume without loss of generality that (Pi)i∈I and (Qj)j∈J partition SX for a common
X . If this is not the case, i.e. (Pi)i∈I partitions SX1 and (Qj)j∈J partitions SX2 for X1 6= X2,
we simply take X = X1 ∪X2 and we take the extensions of (Pi)i∈I and (Qj)j∈J to X .

Let K = I × J . Clearly, since both I and J are finite, K is finite. For each (i, j) ∈ K, we
define R(i,j) = Pi ∩Qj .

It remains to show that (Rk)k∈K satisfies the requirements of a control state partition for
both p and q. Because both (Pi)i∈I and (Qj)j∈J partition SX , so does (Rk)k∈K . Also, since for
each state s ∈ SX , we have that P (s) determines the truth value of each h ∈ Hp, and that Q(s)
determines the truth value of each h ∈ Hq. Thus, since R(s) determines both P (s) and Q(s),
we get that R(s) determines the truth value of each h ∈ Hp ∪Hq for each s ∈ SX . By a similar
argument, we get that R(s) determines g(s) for each s ∈ SX and each g ∈ Gp ∪ Gq. The fourth
condition, finally, follows by similar reasoning. Let S ⊆ SX be an arbitrary subset, and consider
R(i,j) for arbitrary (i, j) ∈ K. Since we know R(i,j) ∩ S = Pi ∩ (Qj ∩ S), by (Qj ∩ S) ⊆ SX
and by the fact that for any S′ ⊆ SX such that Pi ∩ S′ 6= ∅ it is decidable to find a witness
s ∈ Pi ∩ S′, we know it is decidable to find a witness s ∈ R(i,j) ∩ S if R(i,j) ∩ S 6= ∅.

6.3.2.1 Computational Complexity

In Theorem 6.3.14 above, we showed that checking equivalence of While programs with finite
control state partitions is decidable. We sketch a CO-NEXPTIME upper bound on the computa-
tional complexity of this reasoning problem.

Theorem 6.3.16. For any two While programs p1 and p2 for which there exists a control state
partition (Pi)i∈I with finitely many control states (i.e. I is finite), checking if p1 and p2 are
equivalent can be done in CO-NEXPTIME in the size of the programs p1 and p2, i.e. its negation
can be verified in O(|I|4 · 2|p1|+|p2|) time by a nondeterministic algorithm.

Proof (sketch). We use the decision procedure from the proof of Theorem 6.3.14. We check
whether (one of) a finite number of structures L can be extended to a model for the appropriate
ABox and TBox. We know each such structure L has sizeO(|I|2) and there are at mostO(|I|2)
many such structures. We know that the size |A| of the considered ABox is O(1) and that
the size |T | of the considered TBox is O(|p|k) for some constant k, where |p| = |p1| + |p2|.
Thus, the number of relevant extensions of any structure L are O(|I|2 · 2|p|) many, since at
most O(|p|k) many concepts occur in A and T , and for each of the O(|I|2) many objects in L
one subset of the O(|p|k) many concepts must be chosen. Thus, for each structure L it can be
checked nondeterministically in O(|I|2 · 2|p|) time whether it can be extended to a model. This
results in a O(|I|4 · 2|p|) upper time bound on the total nondeterministic procedure (checking
non-equivalence).

6.3.2.2 Some Programs With Finitely Many Control States

In order to illustrate the class of While programs that allow control state partitions of finite
cardinality, as used above, we give an example of a subclass of this class of programs. Intuitively,
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programs in this class are characterized by the fact that there are only a fixed number of variables
that affect the control flow of the program in any execution, and that for these variables only a
fixed number of values matter. In other words, for any values of these variables above a certain
threshold, the control flow of the program is the same. This results in a bounded number of
different control flows that can occur in executions of the program (and thus that need to be
taken into consideration). In order to characterize this class of programs, we make use of the
notions of maximal condition free subprograms and maximal Boolean conditions.

Example 6.3.17. Let p be a While program containing variables V ar(p) = X ⊆ X . Further-
more, assume there is some sequence of variables (x1, . . . , xk) for {x1, . . . , xk} = Xm ⊆ X
and there is some sequence of limits for these variables l1, . . . , lk ∈ N, such that:

• for each s, s′ ∈ SX with s(xi) ≥ li and s′(xi) ≥ li for all 1 ≤ i ≤ k, it holds that for
each h ∈ Hp we have BX(s, h) = BX(s′, h);

• no variable x ∈ X\Xm occurs in any h ∈ Hp; and

• for each 1 ≤ i ≤ k we have that (for any state) the value of xi is monotonically increasing
under application of each g ∈ Gp.

In other words, we consider programs p that have a fixed set of variables (i) such that only those
variables occur in any h ∈ Hp, (ii) whose values increase monotonically, and (iii) for which it
holds that when their values exceed a certain threshold, the value of any h ∈ Hp stays the same.

Assuming that p satisfies these conditions, we define the following control state partition
(Pi)i∈I for the program p:

f(l, n) =

{
l if n ≥ l
n otherwise

I = {(n1, . . . , nk) | 0 ≤ n1 ≤ l1, . . . , 0 ≤ nk ≤ lk}

s ∈ P(f(s(x1)),...,f(s(xk))) for any s ∈ SX

Clearly, sinceX is finite, we knowXm is finite, and therefore also I is finite. The argumentation
why (Pi)i∈I is a control state partition is analogous to the reasoning in example 6.3.5.

Note that the program and the control state partition from Examples 6.3.3 and 6.3.5 fit these
conditions.

In order to illustrate what kind of programs belong to the tractable subclass of programs
specified in Example 6.3.17, we give two examples of applications for which there exist pro-
grams in this subclass. The following example shows how to use While programs to compute
the value of (arbitrary) linear expressions.

Example 6.3.18. Let ϕ(x1, . . . , xk) = c1x1 + · · ·+ckxk+c be a linear expression on variables
x1, . . . , xk and using constants c1, . . . , ck ∈ N. Then the following While program pϕ takes
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the values n1, . . . , nk of variables x1, . . . , xk, respectively, as inputs, computes the value of
ϕ(n1, . . . , nk) and returns this as the value of variable z.

pϕ = z := 0;xindex := 1;xdone := 0;
x1
counter := 0; . . . ;xkcounter := 0;

while (xdone < 1) do (
if (xindex = 1 ∧ x1

counter ≥ c1) then (xindex := xindex + 1) else
. . . ;
if (xindex = k ∧ xkcounter ≥ ck) then (xindex := xindex + 1) else
if (xindex = 1) then (z := z + x1;x1

counter := x1
counter + 1) else

. . . ;
if (xindex = k) then (z := z + xk;xkcounter := xkcounter + 1) else
xdone := xdone + 1);

z := z + c

In order to see that this example program pϕ fits the assumptions of Example 6.3.17, let (xdone,
xindex, x

1
counter, . . . , x

k
counter) be the sequence of variables and (1, k + 1, c1, . . . , ck) be the

sequence of limits corresponding to the variables, according to the assumptions.

The intuition behind the class of programs defined in Example 6.3.17 can be seen in the
program in Example 6.3.18. Remember that this intuition is that only finitely many variables
and finitely many values matter for the control flow of the program. The control flow of the
program in Example 6.3.18 has a relatively fixed form, that depends on only a few variables.
This control flow consists of a cascade of incrementing variable values: the program increments
the variables xicounter (up to values ci, respectively), incrementing the variable xindex each time
a variable xicounter reaches the threshold. Similarly, it increments xdone (to the threshold value
1) when xindex reaches the threshold value (k + 1). If the values of these variables are higher
than the thresholds, then the program breaks out of the loop. In other words, the control flow of
the program depends only on the variable values below the thresholds.

The next example shows how to use While programs to compute the absolute difference of
(arbitrary) values up to a (constant) maximum.

Example 6.3.19. Let c ∈ N be an arbitrary constant, and let x1, x2 be input variables. The
following example program pdiff computes the value of min{|x1 − x2|, c} and returns this as
the value of variable z.

pdiff = y := 0; z := 0;
if (z < c ∧ (x1 − x2 = 0 ∧ x2 − x1 = 0)) then skip else
while (y = 0) do

(z := z + 1;
if (z ≥ c) do y := y + 1 else
if (z < c ∧ (x1 − z = x2 ∨ x2 − z = x1)) do y := y + 1 else skip)

In order to see that this example program pdiff fits the assumptions of Example 6.3.17, let (y, z)
be the sequence of variables and (1, c) be the sequence of limits corresponding to the variables,
according to the assumptions.

78



Intuitively, the program from Example 6.3.19 has a bounded number of different control
flows because the program increments variable z from 0 up to maximum value c, breaking out
of the while loop when z equals |x1 − x2|. Concretely, this results in a maximum of c + 1
different control flows of the program.

For further discussion of how the characterization of Example 6.3.17 can be used practically,
see Section 7.3.

Note that the class of programs defined in Example 6.3.17 is only one subclass for which
deciding termination and equivalence is decidable. However, the class of programs for which
there are finite control state partitions is more general. One suggestion for identifying additional
classes of programs that allow finite control state partitions is to create a characterization that
does not restrict the relevant values of certain variables to be only a constant number of values,
but that divides the values that these variables can take into finitely many sets. A concrete
example would be to divide the values of a certain variable into two sets: the even and the odd
values. Additionally, in order to make good use of such partitionings of variable values, it might
be useful to introduce additional built-in operators on values (e.g. an even and an odd operator
that can be used in conditionals). Classifying such additional classes of programs that allow for
finite control state partitions is a topic of further research.

6.3.3 Programs With Infinite Control State Partitions

We show that the general case of deciding equivalence of While programs with infinite control
state partitions is undecidable. In order to show this, we give a reduction from the undecidable
problem whether a Diophantine equation (an equation of the form p(x1, . . . , xn) = 0 where
p is a polynomial with integer coefficients) has a solution of natural numbers. This problem
is central to Hilbert’s Tenth Problem. For such a Diophantine equation, we construct a While
program that computes the absolute value of p(x1, . . . , xn) for the input variables x1, . . . , xn.

Theorem 6.3.20. Deciding termination and equivalence of While programs with infinite control
state partitions is undecidable in general.

Proof. In both cases, we reduce from the undecidable problem whether a multivariate polyno-
mial equation has a solution of natural numbers. Let ϕ(x1, . . . , xn) = c1x

n1
1

1 . . . x
n1
m
m + · · · +

cjx
nj1
1 . . . xn

j
m
m − cj+1x

nj+1
1

1 . . . xn
j+1
m
m − · · · − ckx

nk1
1 . . . x

nkm
m be an arbitrary multivariate poly-

nomial expression over the variables x1, . . . , xm, where all c1, . . . , ck are integers, all nij are
natural numbers, and each ±i is either + or −.

For both reductions, we will use the While program pϕ from Figure 6.1 that computes the
absolute value of ϕ(x1, . . . , xn) for input variables x1, . . . , xn. It is straightforward to verify
that it computes this value. It does so by looping through all expressions that are to be added, by
using variable xindex. For each such expression, it calculates the resulting value in xsubres and
adds this to either xposres or xnegres , depending on whether it is part of the positive or negative part
of the polynomial. In order to calculate the value of such an expression it loops through all the
parts of the expression that are to be multiplied, by using variable xelem. It keeps the subtotal
in xsubres, uses xmcount to perform the right number of multiplications (multiplying with the
input values xi), each of which is performed using variables x1

multiplier and x2
multiplier. In the
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end, it computes the absolute value of ϕ(x1, . . . , xn) based on xposres and xnegres , and puts this value
in xres. Afterwards, it sets all auxiliary variables it used (except xres) to 0. Furthermore, it is
straightforward to verify that this program always terminates.

Now, for the case of termination of While programs, consider the program

q = pϕ; (while p = 0 do skip); skip

We have that q terminates on all inputs if and only if there is no solution of natural numbers for
the multivariate polynomial equation ϕ(x1, . . . , xn) = 0.

For the case of equivalence of While programs, consider the programs

r = pϕ; (if p > 0 then (xres := 1) else skip); skip

and

r′ = xaux := 0; xelem := 0; xindex := 0; xres := 1; xsubres := 0; xmcount := 0;
x1
multiplier := 0; x2

multiplier := 0; xposres := 0; xnegres := 0; skip

We have that r and r′ are equivalent if and only if there is no solution of natural numbers for the
multivariate polynomial equation ϕ(x1, . . . , xn) = 0.

Finally, we show that there exists a control state partition (Pi)i∈I of countably infinite size
for all programs above (pϕ, q, r and r′). We define I = N7+k. A state s ∈ SX is in a control state
P(i1,...,i7+n) iff s(xindex) = i1, s(xaux) = i2, s(x1

multiplier) = i3, s(xelem) = i4, s(xposres) = i5,
s(xnegres ) = i6, s(xmcount) = i7, and s(xj) = i7+j for all 1 ≤ j ≤ n. It is straightforward to
verify that (Pi)i∈I is a control state partition for the programs above.

Theorem 6.3.21. Deciding whether a While program p containing variablesX ⊆ X terminates
on a given input state s ∈ SX is undecidable in general.

Proof (sketch). This can be proven quite straightforwardly by reduction from the Halting Prob-
lem. We know that the problem whether a Turing machine halts on a given input tape is unde-
cidable. Let M be an arbitrary Turing machine operating on the alphabet {0, 1}. Consider the
function f : N→ N given by:

f(n) =

{
1 if M halts on the binary representation of n as input tape

undefined otherwise

We get that f is a Turing-computable function. Therefore, we know there is a µ-recursive
function that specifies this function f . Hence, by Proposition 3.3.2, we can express f as a While
program p that operates on an input variable x ∈ X ⊆ X . We then get that p terminates on a
state s ∈ SX with s(x) = n if and only if M halts on the binary representation of n.
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Program pϕ computing the absolute value of a multivariate polynomial expression c1x
n1

1
1 . . . x

n1
m
m + · · ·+

cjx
nj

1
1 . . . x

nj
m
m − cj+1x

nj+1
1

1 . . . x
nj+1

m
m − · · · − ckx

nk
1

1 . . . x
nk

m
m , over the variables x1, . . . , xm, where all

c1, . . . , ck are integers, all nij are natural numbers.

pϕ = xaux := 0; xelem := 0; xindex := 1; xres := 0;
xsubres := 0; xmcount := 0;
x1
multiplier := 0; x2

multiplier := 0; xposres := 0; xnegres := 0;
while xindex ≤ k do (

if (xaux > 0 ∧ xaux ≥ x1
multiplier) then

xaux := 0
else if (xaux > 0 ∧ xaux < x1

multiplier) then
xsubres := xsubres + x2

multiplier;
xaux := xaux + 1

else if (xaux = 0 ∧ xelem = 0) then
xsubres := cxindex

;
xelem := xelem + 1

else if (xaux = 0 ∧ xelem > m) then
if (xindex ≤ j) then
xposres := xposres + xsubres

else if (xindex > j) then
xnegres := xnegres + xsubres

else (skip);
xelem := 0;
xindex := xindex + 1

else if (xaux = 0 ∧ xelem > 0 ∧ xelem ≤ m ∧ xmcount = 0) then
x1
multiplier := xxelem

;
xmcount := nxelem

xindex

else if (xaux = 0 ∧ xelem > 0 ∧ xelem ≤ m ∧ xmcount > 0) then
x2
multiplier := xsubres;
xaux := 1;
xmcount := xmcount − 1;
if (xmcount = 0) then
xelem := xelem + 1;

else skip;
else skip);

if (xposres > xnegres ) then (xres := xposres − xnegres ) else (xres := xnegres − xposres);
xaux := 0; xelem := 0; xindex := 0; xsubres := 0; xmcount := 0;
x1
multiplier := 0; x2

multiplier := 0; xposres := 0; xnegres := 0; skip

In the above formulation of pϕ, we let (xsubres := cxindex
) abbreviate (if xindex = 1 then xsubres :=

c1 else . . . else if xindex = k then xsubres := ck else skip) (similarly for other expressions containing
variables xindex or xelem as indices).

Figure 6.1: While program to compute the absolute value of a multivariate polynomial expres-
sion.
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6.3.4 Alternative Method Without Using ALC(D)

In order to get a better understanding of why using our encoding into ALC(D) is beneficial,
we will transfer the decidability result we obtained above to a setting in which no logic nor any
model-theoretic semantics is used. Of course, it is possible to state this result in such a setting.
However, we will argue that this has certain disadvantages compared to the method using formal
logic. We will firstly sketch a procedure to decide equivalence of While programs allowing finite
control state partitions that does not use any of the logical machinery used previously in this
thesis, i.e., we reprove Theorem 6.3.14:

Proof (sketch). Let p and p′ be two arbitrary While programs using variables X ⊆ X such that
(Pi)i∈I is a control state partition for both of them and let |I| = k for some k ∈ N. For the
sake of simplicity, assume that p and p′ are both (uniformly) terminating. Let s1, . . . , sk be
representative states for the control state P1, . . . , Pk, respectively. Then, let d1, . . . , dk be the
finite derivations obtained from executing p on s1, . . . , sk, respectively, and let d′1, . . . , d

′
k be the

finite derivations obtained from executing p′ on s1, . . . , sk. Now, for each 1 ≤ i ≤ k, let ei be
the derivation structure (see Definition 6.3.6) of di and let fi be the derivation structure of d′i.

Then, using these derivation structures ei and fi, we instantiate a number of Boolean prob-
lems over atomic linear arithmetic constraints. For each 1 ≤ i, j ≤ k, we create such a problem
instance. Fix ei and fj , and let pei1 , . . . , p

ei
n be the programs occurring in ei, and pfj1 , . . . , p

fj
m be

the programs occurring in fj . In the problem instance, we introduce a variable z(y) for each ele-
ment y in X ×{pei1 , . . . , pein , p

fj
1 , . . . , p

fj
m}. We add the following constraints on these variables.

For each x ∈ X we require z(x, pei1 ) = z(x, pfj1 ). Intuitively, this ensures that the initial states of
both derivations are the same. We also require

∨
x∈X(z(x, pein ) 6= z(x, pfjm)), which intuitively

ensures that the final states are different on at least one variable. Then, we add constraints to
enforce that the variables behave according to the derivation. For instance, if peik = x := x′; q
and peik+1 = q, we require that z(x, peik+1) = z(x′, peik ). This involves more than just variable
assignments. For instance, if peik = (if b then q1 else q2); q and peik+1 = q1; q, then we need to
enforce (the constraint corresponding to) b on the variables z(x, peik ) involved.

Using the Boolean arithmetic problems we constructed, we are able to determine whether
p and p′ are equivalent. Namely, p and p′ are equivalent if and only if none of the constructed
Boolean problems are satisfiable. The one direction of this equivalence can be shown by con-
structing a counterexample derivation witnessing the non-equivalence of p and p′ by using a sat-
isfying instance of one of the Boolean problems. The other direction can be shown by construct-
ing a satisfying instantiation for one of the Boolean problems from a counterexample derivation
witnessing that p and p′ are not equivalent. To show this latter implication, Lemma 6.3.2 is
crucial.

Note that in the algorithm given above to decide equivalence of While programs, we es-
sentially reduce the task of deciding equivalence to a number of Boolean problems, without
referring to any particular logic language. Conceptually, what happens in this algorithm is ex-
actly the same as what happens in the method using ALC(D) (i.e. in the proof of Theorem
6.3.14), except for the fact that it is stated in different terms. The specification of the Boolean
problems can be given in the ALC(D) language, and solutions to the Boolean problems corre-
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spond to models of such ALC(D) expressions. In other words, the above alternative procedure
is essentially a logical method in disguise.

However, explicitly using formal logic has a number of advantages over using a disguised
logical method as above. For instance, stating the problem in the syntax of a logical language,
together with the fact that the algorithms used to find solutions are based on the semantics of
this logic, allows us to directly reuse results, methods and algorithms for similar settings. This
is also illustrated, for instance, by the fact that the same methods are used to show decidability
of reasoning for the fragments identified in Sections 6.1 and 6.2. Similarly, the framework
developed in this thesis can straightforwardly be extended to additional programming languages,
because in all cases the same underlying logic is used.

Also, since using formal logic allows us to use the full expressivity of the logic language,
the logical approach is easily extendable to other semantic properties of programs (besides ter-
mination and equivalence). Algorithms for such additional reasoning problems can then use
(much of) the same underlying model-theoretic techniques. Such a reuse of methods is not so
straightforward with the alternative, logic-free approach described above.

6.3.5 More Fragments Allowing Decidable Reasoning

Partitioning the state space into a finite number of partitions, as done above, leads to a fragment
of While programs for which reasoning tasks such as termination and equivalence are decidable.
In fact, for all programs for which there is such a finite control state partition, these reasoning
problems are decidable. This does not imply the converse, however. There might be a class of
programs that can not be characterized by the existence of finite control state partitions, but for
which these reasoning problems are decidable. We suggest a few directions of further research
for identifying additional classes of programs for which deciding termination and equivalence is
possible.

It might be possible that some part of the state space is never reachable in certain parts
of the program, in any execution. For instance, for any execution of a program of the form
(x := 0; y := 1; p) it is impossible to reach any state s with s(x) = 2 at the subprogram
(y := 1; p). Such unreachable parts of the state space do not have to be taken into account when
capturing the different possible control flows that can occur in executions of programs. Using
the notion of control state partitions, ignoring parts of the state space for particular subprograms
is not possible. A refinement of the notion of control state partitions could result in a larger class
of programs for which the reasoning tasks of termination and equivalence are decidable.

Another suggestion would be to find a class of programs for which the different control flows
that can occur in executions are not bounded in number, but are of a particular regular shape.
Consider for instance the following program peven that sets variable z to 1 if input variable x is
even, and sets z to 0 otherwise.

peven = z := 0;
while (x > 0) do

((if (z = 0) do z := 1 else z := 0);
x := x− 1)

Even though there are infinitely many different executions of this program, each with a different
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derivation structure, they are structurally similar (namely the while loop is executed exactly c
times, for c the initial value of x). Such programs do not allow a finite control state partition.
Nevertheless, the structure in the different possible executions of such programs might be ex-
ploited, possibly resulting in an additional class of programs for which the reasoning tasks of
termination and equivalence are decidable.

6.4 Structuring Variable States for Goto

We will define the notion of control states (and control state partitions) for Goto programs,
much like we defined this notion for While programs. We do this with the goal of identifying a
fragment of the programming language that allows for termination and equivalence of programs
to be decided algorithmically.

We could use an approach to identifying this fragment of the Goto programming language,
for which deciding termination and equivalence of programs is decidable, that is completely
analogous to the method we used for identifying such a fragment for While. This would involve,
firstly, showing that control states entirely determine the (program) structure of Goto derivations.
Then, like in the case for While, we would have to define the notion of derivation frames for Goto
programs, and show that any model of the encoding of a Goto program into ALC(D) contains
the derivation frame (up to isomorphism) of the derivation starting with the state corresponding
to the object witnessing the satisfiability of the concept related to the Goto program. This could
be done quite straightforwardly (yet tediously), analogously to the method we worked out for
While programs.

However, for the sake of brevity, and in order not to be too much repetitive (after all, only
the details would be different from the case for While), we will use a different approach. We
show that While programs can be translated to equivalent Goto programs and vice versa. Also,
we will show that these translations only results in (at most) a linear grow in the size of control
state partitions. This will allow us to extend the (decidability and undecidability) results we ob-
tained for While to the setting of Goto as well. Furthermore, this alternative approach illustrates
the possibility of easily extending the results obtained for the programming language While to
different imperative languages, by simply specifying translations that preserve equivalence and
finiteness of control state partitions.

6.4.1 Control State Partitions

In order to define the notion of control state partitions for Goto programs κ, we must firstly
define the notions of maximal condition free subprograms and maximal Boolean conditions,
like we did for the programming language While.

Definition 6.4.1 (Maximal condition free subprograms). Let κ be a Goto program of size l We
assume w.l.o.g. that κ(l) = return. We define the set Gκ of maximal condition free subprograms
as the set of all sub(κ, n1, n2) such that:

• 1 ≤ n1 ≤ n2 ≤ l;

• n1 ∈ Nκ
begin;
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• for all n1 ≤ i ≤ n2, it holds that κ(i) = (x := e);

• for all n1 < i ≤ n2, it holds that i 6∈ Nbegin

• either (i) n2 + 1 ∈ Nκ
begin, or (ii) κ(n2 + 1) = if b goto m1 else m2, or (iii) n2 = l.

where the setNκ
begin of begin points of condition-free subprograms is defined as those 1 ≤ n ≤ l

such that either

• n = 1 or n = l; or

• there exists some 1 ≤ i ≤ l such that κ(i) = if b goto m1 else m2 and n ∈ {m1,m2}.

We will refer to the set Nκ
begin below. We will also use the following abbreviation. For any

g ∈ Gκ of size lg taken from κ starting at line j ∈ Nκ
begin (i.e. for all 1 ≤ i ≤ lg we have

g(i) = κ(j + i− 1)) we let GκWhile(j) denote the While program g(1); . . . ; g(lg). Furthermore,
in this case we let Gκsize(j) denote lg.

Definition 6.4.2 (Maximal Boolean conditions). For any given Goto program κ of size l, we
define the set Hκ of all maximal Boolean conditions occurring in κ as Hκ =

⋃
1≤i≤lHκ,i,

where:

Hκ,i =

{
{b} if κ(i) = if b goto m1 else m2

∅ otherwise

Note that for any Goto program κ, both sets Gκ and Hκ can be determined purely syntacti-
cally.

Clearly, for any Goto program κ we have that all g ∈ Gκ are terminating (on all input states).
In order to fix notation, given any Goto program λ containing variables X ⊆ X and any input
state s ∈ SX , we denote the unique state t ∈ SX such that for λ we have (1, s)⇒∗λ t with λ(s).

In order to illustrate these notions, we will give the sets Gκ and Hκ for the Goto program κ
in our running example.

Example 6.4.3. Remember from Example 3.1.4 that

κ =

1 : z := 0
2 : w := 0
3 : if (w < x ∧ w < 3) goto 4 else 7
4 : z := z + y
5 : w := w + 1
6 : if > goto 3 else 3
7 : return

We then have that

Gκ =


1 : z := 0
2 : w := 0
3 : return

,
1 : z := z + y
2 : w := w + 1
3 : return


Hκ = {(w < x ∧ w < 3),>}
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Similarly to the case of While, we define the notion of control states and control state parti-
tions.

Definition 6.4.4 (Control states). For any Goto program κ containing variables X ⊆ X , we
define a control state partition for κ to be a family (Pi)i∈I of subsets of states (called control
states) Pi ⊆ SX such that:

1. ∪i∈IPi = SX and Pi ∩ Pj = ∅ for all i, j ∈ I such that i 6= j;

2. for all i ∈ I , all s, t ∈ Pi and all h ∈ Hκ we have that BX(s, h) = BX(t, h); and

3. for all i, j ∈ I , all s, t ∈ Pi and all g ∈ Gκ we have that g(s) ∈ Pj iff g(t) ∈ Pj; and

4. for all i ∈ I , and for each subset S ⊆ SX , if Pi ∩ S 6= ∅ then some state s ∈ Pi ∩ S must
be effectively constructible

For any state s ∈ SX′ for X ′ ⊃ X , we will often implicitly use s′ ∈ SX such that for all
x ∈ X we have s(x) = s′(x), when talking about membership of s in control states. Note that
this definition of control states for Goto programs is completely analogous to the definition of
control states for While programs.

Example 6.4.5. For our running example program κ, we can use the control state partition
(Pi)i∈I from Example 6.3.5.

I = {(n,m) | 0 ≤ n,m ≤ 3}

f(n) =

{
3 if n ≥ 3
n otherwise

s ∈ P(f(s(x)),f(s(w))) for any s ∈ S{w,x,y,z}

The reasoning why this is indeed a control state partition for κ is completely analogous to the
reasoning in Example 6.3.5.

6.4.2 Translating Goto to While

We firstly define the translations from arbitrary Goto programs to While programs, and from
arbitrary While programs to Goto programs. Afterwards, we show that these translations are
equivalence-preserving, and that the translations only introduce a linear increase in the size of
control state partitions. We begin with the case of translating from Goto to While.
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Definition 6.4.6 (Translation). Let κ be an arbitrary Goto program of size l. We define the
translation of κ in While to be the While program p that is of the form

p = xline := 1;
while (xline ≤ l) do

(if (xline = i1) then σ(κ, i1) else
if (xline = i2) then σ(κ, i2) else
. . .
if (xline = im) then σ(κ, im) else
skip);

skip

where {i1, . . . , im} = Nκ
begin ∪ {1 ≤ i ≤ l | κ(i) = if b goto m1 else m2}, where xline is a

fresh variable, and where for all 1 ≤ j ≤ m we define σ(κ, ij) as

σ(κ, i) =


GκWhile(ij);xline := xline + Gκsize(ij) if ij ∈ Nκ

begin and ij 6= l

xline := xline + 1 if ij = l

if b then xline := m1 else xline := m2 if κ(ij) = if b goto m1 else m2

Clearly, for any Goto program κ we have that the size of its translation p into While is linear
in the size of κ.

Theorem 6.4.7. For any Goto program κ on variables X ⊆ X and its translation p in While,
and for any state s ∈ SX′ , for X ′ = X ∪ {xline}, we have that (1, s) ⇒∗κ s′ if and only if
(p, s)⇒∗ s′′, such that s′(x) = s′′(x) for all x ∈ X .

Proof. Let {i1, . . . , im} be as defined for the translation of κ. For each ij ∈ {i1, . . . , im}, we
define an auxiliary program pim as σ(κ, im); p. In this proof, we will use the fact that derivations
for While and Goto programs are deterministic. Clearly, we have (1, s) ⇒∗κ (1, s), and we also
have (p, s)⇒∗ (p1, s[xline 7→ 1]).

We show that for each 1 ≤ n, n′ ≤ m, and each t, t′ ∈ SX′ we have that (in, t)⇒∗κ (in′ , t′)
implies (pin , t[xline 7→ in]) ⇒∗ (pin′ , t

′[xline 7→ in′ ]), by induction on the length of the ⇒κ

derivation. The base case, where the length is 0, and thus in = in′ and t = t′ is trivial.
Consider the inductive case where in ∈ Nκ

begin. Then we have that (in, t) ⇒∗κ (in +
Gκsize(in), t′′) ⇒∗κ (in′ , t′). It is easy to verify, by (induction on) the structure of pin that then
(pin , t[xline 7→ in]) ⇒∗ (pin+Gκsize(in), t

′′[xline 7→ in + Gκsize(in)]). Since in + Gκsize(in) ∈
{i1, . . . , im}, by the induction hypothesis we get that (pin+Gκsize(in), t

′′[xline 7→ in + Gκsize(in)])⇒∗
(pin′ , t

′[xline 7→ in′ ]), from which the result follows.
The inductive case where κ(in) = (if b gotom1 elsem2) is also analogous. Assume w.l.o.g.

thatBX′(t, b) = >. We then have that (in, t)⇒κ (m1, t)⇒∗ (in′ , t′). By the structure of pin we
then get (pin , t[xline 7→ in])⇒∗ (pm1 , t[xline 7→ m1]). Since we know that m1 ∈ {i1, . . . , im},
by the induction hypothesis we get that (pm1 , t[xline 7→ m1]) ⇒∗ (pin′ , t

′[xline 7→ in′ ]), from
which the result follows.

Now consider an arbitrary derivation (1, s) ⇒∗κ s′. Without loss of generality, we assume
that κ(l) = return. We then know that (1, s)⇒∗κ (l, s′)⇒κ s

′. By the above results, we know
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that (p1, s)⇒∗ (p1, s[xline 7→ 1])⇒∗ (pl, s′[xline 7→ l + 1]). By the structure of pl we get that
(pl, s′[xline 7→ l + 1])⇒∗ s′[xline 7→ l + 1]. Thus the result follows.

Theorem 6.4.8. For any Goto program κ on variables X ⊆ X and any control state partition
(Pi)i∈I for κ, there is a control state partition (Qj)j∈J for its translation p into While on X ′ =
X ∪ {xline} whose size is linear in the size of (Pi)i∈I and the size of κ.

Proof. We let J = {(i, n) | 1 ≤ n ≤ l + 1, i ∈ I}. Then we define the control state partition
(Qj)j∈J as follows. For each s ∈ SX′ and for 1 ≤ n ≤ l, we let s ∈ Q(i,n) iff s ∈ Pi and
s(xline) = n. For each s ∈ SX′ and for n = l+ 1, we let s ∈ Q(i,n) iff s ∈ Pi and s(xline) > l.

We know Hp = Hκ. Also, by construction of p, we know Gp = Gκ. It is straightforward to
verify that (Qj)j∈J is a control state partition for p and that the size of (Qj)j∈J is (l+1)·|I|.

6.4.3 Translating While to Goto

We continue with translating from While to Goto, and showing that this translation is equivalence
preserving. Furthermore, we show that control state partitions for any While program can be used
as a control state partition for its translation as well.

In the following, for the programming language Goto, we consider skip to be an abbreviation
for a statement of the form x := x, for some x ∈ X .

Definition 6.4.9 (Translation). Let p be an arbitrary While program. We define the translation of
p in Goto to be the program κ, where the partial Goto program λ of size l is defined inductively,
and where κ of size l + 1 is such that for all 1 ≤ i ≤ l we have κ(i) = λ(i) and κ(l + 1) =
return.

• If p = skip, then we let λ be of length 1 and λ(1) = skip (remember that skip abbreviates
x := x for some x).

• If p = (x := e), then we let λ be of length 1 and we let λ(1) = (x := e).

• If p = p1; p2, we let λ of length l1 be the (partial) translation of p1, and λ of length l2 be
the (partial) translation of p2. We let λ be of length l1 + l2 and:

– for 1 ≤ i ≤ l1, we let λ(i) = λ1(i); and

– for 1 ≤ i ≤ l2, we let λ(l1 + i) = λ2(i).

• If p = if b then p1 else p2, then we let λ1 of length l1 and λ2 of length l2 be the (partial)
translations of p1 and p2, respectively. We let κ be of length l1 + l2 + 3, and:

– λ(1) = if b goto 2 else 3 + l1;

– for 1 ≤ i ≤ l1, we let λ(i+ 1) = λ1(i);

– λ(l1 + 2) = if > goto l1 + l2 + 3 else 1;

– for 1 ≤ i ≤ l2, we let λ(i+ l1 + 2) = λ2(i); and

– λ(l1 + l2 + 3) = skip.
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• If p = while p do p′, then we let λ′ of length l′ be the (partial) translation of p′. We let λ
be of length l′ + 3, and:

– λ(1) = if ¬b goto l′ + 3 else 2;

– for 1 ≤ i ≤ l′, we let λ(i+ 1) = λ′(i);

– λ(l′ + 2) = if > goto 1 else 1; and

– λ(l′ + 3) = skip.

Theorem 6.4.10. For any While program p on variablesX ⊆ X and its translation κ into Goto,
and for any state s ∈ SX , we have that (p, s)⇒∗ s′ if and only if (1, s)⇒∗κ s′.

Proof. Assume without loss of generality that each derivation starting at p ends with (skip, s′),
for some s′ ∈ SX . Notice that for each While program p′ and its translation κ′ of length l′,
we have that κ′(l′) = skip. We will make use of the fact that While and Goto derivations
are deterministic. We prove by induction on the structure of While programs p that for their
translation κ of length l, and for all states s, s′ ∈ SX we have (p, s) ⇒∗ (skip, s′) implies
(1, s) ⇒∗κ (l, s′). The base case for p = skip is trivial. The other base case for p = (x :=
e; skip) is straightforward. We have (p, s) ⇒ (skip, s[x 7→ AX(s, e)]), and clearly we also
have (1, s)⇒κ (2, s[x 7→ AX(s, e)]).

The inductive case where p = p1; p2 follows immediately from the induction hypothesis and
the fact that the translations of p1 and p2 are sequentially contained in the translation of p.

For the inductive case where p = if b then p1 else p2, we let κ1 of length l1 and κ2 of length
l2 be the translations of p1 and p2, respectively. Assume w.l.o.g. that BX(s, b) = >. Then we
have (p, s) ⇒ (p1, s) ⇒∗ (skip, s′). By the structure of κ, we get that (1, s) ⇒κ (2, s). By
the induction hypothesis, since (p1, s) ⇒∗ (skip, s′), and by the fact that κ1 is contained in κ
starting at κ(2), we know that (2, s) ⇒∗κ (l1 + 1, s′). By the structure of κ, then, we know that
(l1 + 1, s′)⇒∗κ (l1 + l2 + 3, s′). Thus, (1, s)⇒∗κ (l, s′).

For the inductive case, where p = while b do p′, we let κ′ of length l′ be the translation of
p′. Assume (p, s) ⇒∗ (skip, s′). We know then that (p, s) = (p, s1) ⇒∗ (p, s2) ⇒∗ · · · ⇒∗
(p, sn) ⇒∗ (skip, s′), such that all occurrences of p in this derivation are in a pair (p, si) for
some 1 ≤ i ≤ n. We show by induction on the number of times p occurs in this derivation
that (1, s) ⇒∗κ (l, s′). In the base case, we know i = 1. Thus BX(b, s) = ⊥, and we get
(p, s) ⇒ (skip, s). By the structure of κ, we directly get (1, s) ⇒∗κ (l, s). In the inductive
case for i > 1, we know (p, s) ⇒∗ (p, s2) ⇒∗ (skip, s′). Thus BX(b, s) = >, and thus
(p, s) ⇒∗ (p′; p, s). By the structure of κ, we get (1, s) ⇒∗κ (2, s). Since (p′; p, s) ⇒∗ (p, s2),
we know (p′, s) ⇒∗ (skip, s2). Then by the induction hypothesis of our initial induction, and
since κ′ is contained in κ starting at κ(2), we know (2, s) ⇒∗κ (l′ + 1, s2). We also know
(l′ + 1, s2) ⇒κ (1, s2) By the induction hypothesis, since (p, s2) ⇒∗ (skip, s′), we know
(1, s2)⇒∗κ (l, s′). Putting this all together, we get (1, s)⇒∗κ (l, s′).

Finally, since we know κ(l) = return, we get (l, s′)⇒κ s
′, and the result follows.

Theorem 6.4.11. For any While program p on variables X ⊆ X we have that any control state
partition (Pi)i∈I for p is also a control state partition for its translation κ into Goto.
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Proof. We have Gκ = Gp. We also have that Hκ ⊆ Hp ∪ {¬h | h ∈ Hp} ∪ {>}. From this
and the fact that (Pi)i∈I is a control state partition for p, it follows that (Pi)i∈I is a control state
partition for κ.

6.4.4 Programs with Finite Control State Partitions

Using the above results, we can straightforwardly extend the decidability results we got for While
programs that allow finitely many control states, to similar programs of the programming lan-
guage Goto. In other words, we show that for such Goto programs termination and equivalence
are decidable.

Theorem 6.4.12. For any Goto program κ for which there exists a control state partition (Pi)i∈I
with finitely many control states (i.e. I is finite), it is decidable to check whether κ terminates on
all inputs.

Proof. Let κ be an arbitrary program, and (Pi)i∈I a control state partition for κ for finite I .
Now let p be the translation of κ into While. By Theorem 6.4.7, we know that κ terminates on
all inputs if and only if p terminates on all inputs. By Theorem 6.4.8, and by the fact that I is
finite, we know there exists a finite control state partition (Qj)j∈J for p. Finally, by Theorem
6.3.9 we know that checking termination of p is decidable.

Theorem 6.4.13. For any two Goto programs κ1 and κ2 for which there exists a control state
partition (Pi)i∈I with finitely many control states (i.e. I is finite), it is decidable to check whether
κ1 and κ2 are equivalent.

Proof. Assume without loss of generality that κ1 and κ2 both contain variables X ⊆ X . Let p1

and p2 be the translations of κ1 and κ2 into While, respectively. By Theorem 6.4.7, we know that
κ1 and κ2 are equivalent if and only if (p1;xline := 0) and (p2;xline := 0) are equivalent. By
Theorem 6.4.8, and by the fact that I is finite, we know there exists a finite control state partition
(Qj)j∈J for p1 and p2. Clearly, (Qj)j∈J is also a control state partition for (p1;xline := 0) and
(p2;xline := 0) (when extended to states in SX∪{xline}). Then, by Theorem 6.3.14, we know
checking equivalence of (p1;xline := 0) and (p2;xline := 0) is decidable. Thus so is checking
equivalence of κ1 and κ2.

In fact, we can also extend the upper bound on the complexity of checking equivalence of
While programs with finite control state partitions we got in Theorem 6.3.16 to the case of Goto.

Theorem 6.4.14. For any two Goto programs κ1 and κ2 for which there exists a control state
partition (Pi)i∈I with finitely many control states (i.e. I is finite), checking if κ1 and κ2 are
equivalent can be done in NEXPTIME in the size of the programs κ1 and κ2, i.e. it can be done
in O(|I|m · 2|κ1|+|κ2|) time, for some constant m, by a nondeterministic algorithm.

Proof (sketch). By Definition 6.4.6 and by Theorem 6.4.7, we know we can translate κ1 and κ2

into equivalent While programs p1 and p2, respectively. Then, by Theorems 6.4.8 and 6.3.15,
we know there exists a control state partition for p1 and p2 of size polynomial in |I|. The result
then follows immediately from Theorem 6.3.16.
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6.4.5 Programs with Infinite Control State Partitions

In order to finish extending the (un)decidability results obtained for While to Goto, we show that
deciding termination and equivalence of Goto programs with infinite control state partitions, in
general, is undecidable. We do so by using the translations and their properties defined above.

Theorem 6.4.15. Deciding termination and equivalence of Goto programs with infinite control
state partitions is undecidable in general.

Proof. In both cases, we reduce from the undecidable problem whether a multivariate polyno-
mial equation has a solution of natural numbers. Let ϕ(x1, . . . , xn) = c1x

n1
1

1 . . . x
n1
m
m + · · · +

cjx
nj1
1 . . . xn

j
m
m − cj+1x

nj+1
1

1 . . . xn
j+1
m
m − · · · − ckx

nk1
1 . . . x

nkm
m be an arbitrary multivariate poly-

nomial expression over the variables x1, . . . , xm, where all c1, . . . , ck are integers, all nij are
natural numbers, and each ±i is either + or −.

The proof is along the same general lines as the proof of Theorem 6.3.20. For both reduc-
tions, we will use the While program pϕ from Figure 6.1 that computes the absolute value of
ϕ(x1, . . . , xn) for input variables x1, . . . , xn. For the case of termination of While programs,
consider the While program

q = pϕ; (while p = 0 do skip); skip

We have that q terminates on all inputs if and only if there is no solution of natural numbers for
the multivariate polynomial equation ϕ(x1, . . . , xn) = 0. For the case of equivalence of While
programs, consider the While programs

r = pϕ; (if p > 0 then (xres := 1) else skip); skip

and

r′ = xaux := 0; xelem := 0; xindex := 0; xres := 1; xsubres := 0; xmcount := 0;
x1
multiplier := 0; x2

multiplier := 0; xposres := 0; xnegres := 0; skip

We have that r and r′ are equivalent if and only if there is no solution of natural numbers for the
multivariate polynomial equation ϕ(x1, . . . , xn) = 0.

Now, let the Goto programs κq, κr and κr′ be the translations into While of q, r and r′,
respectively. By Theorem 6.4.7, we know q terminates iff κq terminates, and we know r and r′

are equivalent iff κr and κr′ are equivalent. This shows that both checking termination of q and
checking equivalence of r and r′ are undecidable.

Furthermore, we know there exists a control state partition of countably infinite size for
programs κq, κr and κr′ . As shown in the proof of Theorem 6.3.20, we know that there exists
a control state partition (Pi)i∈I of countably infinite size for all While programs above (pϕ, q, r
and r′). By Theorem 6.4.11, we know that (Pi)i∈I is a control state partition for κq, κr and κr′
as well.
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6.5 Bounding Control Flow for FPN and LPN

Analogously to the fragments identified for While in Section 6.3 and for Goto in Section 6.4,
fragments of FPN and LPN could be defined that allow for decidable equivalence of programs,
by structuring the control flow of programs to a bounded number of different operational struc-
tures. However, an important difference to defining such fragments for the declarative program-
ming languages (with respect to the imperative programming languages) is that such fragments
depend on the operational strategy used to evaluate programs. In the case of imperative program-
ming languages, a particular operational semantics was already fixed, and thus the definition of
the fragments with decidable reasoning problems could simply make use of this fixed operational
semantics. In the case of declarative programming languages, different fragments with decid-
able reasoning could be defined for different evaluation strategies. We sketch some suggestions
how to define decidable fragments of FPN and LPN, similar to the fragments from Sections 6.3
and 6.4.

For FPN a fragment of bounded control flow could be defined for an evaluation strategy that
top-down evaluates function calls, and that eagerly evaluates needed function calls in determin-
ing the value of expressions. In order to do so, a notion similar to control state partitions could
be defined on the set of all different tuples of natural numbers involved in the execution of a
FPN program. This would partition this set of tuples into different classes such that (i) the class
to which a tuple belongs uniquely determines what conditions match the tuple, for all function
definitions in the program, and (ii) the class to which a tuple belongs uniquely determines the
resulting class when this tuple is applied to the operations defined by all consequent terms in the
program.

Similarly, for LPN a fragment of bounded control flow could be defined for a top-down,
resolution-like evaluation strategy (similar to the evaluation strategy using in Prolog). In order
to do so, a notion similar to control state partitions could be defined on the set of all different
tuples of natural numbers involved in the execution of a LPN program. This would partition
this set of tuples into different classes such that (i) the class to which a tuple belongs uniquely
determines, for each rule, whether or not the conjunction of constraints in the rule hold for the
tuple, and (ii) the class to which a tuple t belongs uniquely determines, for each relational atom
in the body of each rule, the class of the tuple that the relational atom evaluates to, when the
rules is evaluated for t.

In both cases, the partition of tuples into different classes would correspond to the partition-
ing of variables states into control states. Here, in both cases, the condition labeled ‘i’ corre-
sponds to condition (2) in Definitions 6.3.4 and 6.4.4, and the condition labeled ‘ii’ corresponds
to condition (3) in Definitions 6.3.4 and 6.4.4. Clearly, further research is needed to work out
the details of these suggestions.
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CHAPTER 7
Practical Applicability

The decidability results for termination and equivalence problems for programs of some of the
fragments of the imperative programming languages identified in Chapter 6 (e.g. loop-free pro-
grams) are theoretically not entirely surprising, and might at first sight seem of limited practical
use. However, there are real-world industrial settings in which very similar imperative program-
ming languages are used in large-scale systems. In this chapter we discuss one such system that
uses loop-free imperative programs, and the applications that the framework developed in this
thesis has led to.

We consider an industrial system in use within Siemens AG, a multinational company. In
cooperation with the Coorporate Technologies department of the company this system based on
a imperative programming language has been investigated, and a prototype reasoning applica-
tion has been developed. In the following, we discuss the system in general lines, and discuss
how it relates to the setting of imperative programming languages as dealt with in this thesis.
Furthermore, we discuss how on the basis of the framework developed in this thesis a prototype
reasoner has been implemented, and what functionalities this reasoner has. Finally, we discuss
some possibilities for further applications of the theoretical results obtained in this thesis.

7.1 A Temporal, Imperative, Rule-Based System

We describe the general working of the industrial system we consider. The system consists of a
finite number of rules that are used to monitor a number of sensors. A number of components
of the system are essential for understanding it. There are variables Xs representing the values
supplied by the sensors, and there are variables Xc representing additional computed values. We
have that X = Xs∪Xc and Xs∩Xc = ∅. In the execution of the system, there are an unbounded
number of time points T = {1, . . . , k}. Each of these variables x ∈ X gets a numerical value
for each time point t ∈ T . The values of the sensor variables Xs are given from outside the
system, as they are supplied by the sensor measurements. We can thus consider the variables
Xs as input variables. The values of the computed variables Xc are determined by the set of
rules R. For each computed variable x ∈ Xs there is exactly one rule r ∈ R. Rules are of
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a fixed if-then-conditional form, and can refer to the values of other variables x ∈ X at the
same or previous time points. Rules can only refer to variables at a bounded number of time
points ago. Also, the set of rules does not contain any cycles at the current time point, i.e., the
graph (X , {(x, x′) | the rule for x refers to x′ at the current time point}) is acyclic. Each of the
variables x ∈ X can also be undefined, which can be considered as a special value.

For the purposes of reasoning on these rule-based systems, we can consider them as im-
perative programs as follows. There are only a finite number of rules in the system. Each rule
can only refer to a bounded number of time points. Even though the execution of the system
uses an unbounded number of time points, we get that any possible situation of input values
that can occur for any rule occurs when we consider all possible instantiations over only a fi-
nite, bounded number of time points T ′. When considering possible behavior of rules, we can
thus represent the rule system as a imperative program p (e.g. a While program) over the set
of variables Xp = {xv,t | v ∈ X , t ∈ T ′}, that is loop-free (e.g. contains no subprograms of
the form while b do q). The separate rules are expressed by subprograms containing only con-
ditional statements and variable assignments. Since the set of rules contains no cycles, we can
sequentially put together all subprograms corresponding to the separate rules.

7.2 Automated Reasoning Support

The reasoning problems for which we provide automated support are used for the purpose of
debugging the rule-based system. This can be seen as an instance of the recently proposed
explorative debugging paradigm [23]. In this paradigm, debugging of rule-based systems is
based on declarative, semantic properties of rules such as equivalence. More concretely, we
provide support for automated decision of the following semantic properties. First of all, we
want to check the consistency of rules. We say that a rule r for variable x ∈ Xc is consistent, if
and only if there exists an instantiation to the sensor variables Xs such that x is not undefined.
Secondly, we are interested in subsumption of rules. We say that one rule r for variable x ∈ Xc
is subsumed by another rule r′ for variable x′ ∈ Xc, if and only if for each instantiation to the
sensor variables Xs we have that x being defined implies both that x′ is defined and that the
values of x and x′ coincide. Finally, we consider the property of equivalence of rules. We say
that two rules r and r′, for variables x, x′ ∈ Xc respectively, are equivalent if and only if for
each instantiation to the sensor variables Xs we have that the values of x and x′ coincide. In
other words, equivalence of rules is mutual subsumption.

The reasoner works by implementing the framework developed in this thesis, i.e. it consid-
ers the rules of the system as imperative programs, encodes them into formal logic, and employs
already existing reasoning algorithms for the formal logic to solve the original reasoning prob-
lems. One difference with the methods proposed in this thesis is that the programs are not
encoded into description logic. The expressivity of description logic is not needed for the loop-
free fragment of the imperative programming languages. Instead the expressivity of an extension
of Boolean logic with (numerical) concrete domains (which is a particular form of SMT, or satis-
fiability modulo theories) suffices. Implementations of efficient reasoning algorithms are readily
available for SMT, and for ALC(D) less so. This motivated the choice to use SMT methods. In
particular, the implementation that is used in the reasoner is Microsoft’s Z3 [7].
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Summarizing, the implemented reasoner is able to automatically decide the semantic prop-
erties of consistency, subsumption and equivalence of rules within an instance of the system (i.e.
a set of rules), by means of the encoding framework developed in this thesis.

7.3 Possibilities for Further Applications

The application sketched above is based on the fragment of loop-free programs, identified in
Section 6.2. The other fragments identified in Chapter 6 for which reasoning problems such as
termination and equivalence are decidable might also lead to practical applications. We sketch a
few suggestions how the other fragments can be used in practice.

Example 6.3.17, for instance, characterizes a class of programs for which termination and
equivalence are decidable. This characterization singles out a class of programs with the re-
quired properties. We can also consider this characterization as sufficient conditions on arbitrary
programs. This would give us an incomplete procedure for deciding termination and equivalence
of programs, that is defined only on programs that fall within the class of programs defined in
Example 6.3.17. Such an incomplete procedure could then be extended with additional cases for
which sufficient conditions are known.

Note that it is unclear whether the question if there exists a finite control state partition for
arbitrary programs is decidable. An incomplete procedure trying to place programs into one of a
number of decidable fragments for which practical characterizations are known might therefore
be a practical approach for automated reasoning on programs. Further heuristics might be de-
veloped for such procedures. Heuristics for trying to fit programs in the conditions identified in
Example 6.3.17, for instance, might include strategies for identifying variables and appropriate
upper bounds on the basis of the syntax of programs. For developing additional heuristics for
finding finite control state partitions, it might also be useful to identify a number of control state
partitions that often work for programs in practice. The heuristics might then involve trying to
match arbitrary programs to these common control state partitions.
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CHAPTER 8
Conclusions

8.1 Results

In this thesis, we considered the problem of developing automated reasoning methods over pro-
grams from various programming paradigms. In order to do so, we considered a number of syn-
tactically simplified programming languages that are representative for different programming
paradigms (imperative, functional and logic programming). We showed how one can assign a
model-theoretic semantics to programs of the different programming languages. We did so by
specifying a mapping encoding programs into statements of the description logic ALC(D), and
showing that the original (operational or relational) semantics of the programs corresponds to
the model-theoretic semantics of the encodings in the language of ALC(D).

We assigned this model-theoretic semantics to programs with the goal of developing algo-
rithms that perform automated reasoning on programs of the different programming languages.
In particular, we considered the reasoning problems of deciding termination and equivalence of
programs. For some (straightforwardly identifiable) fragments of the programming languages
this method of assigning a model-theoretic semantics quite directly leads to decision procedures
that use existing ALC(D) reasoning algorithms. We showed how this can be done. In fact, pro-
grams of one such fragment (or rather, such a fragment in a variant of one of the programming
languages we considered) occurs in a practical, real-world, industrial use case. We explained
how a practical implementation of a reasoning algorithm based on the framework proposed in
this thesis has been developed for this practical setting.

Furthermore, we showed how the conceptual framework that we developed, in combination
with a number of notions and techniques from the field of description logics, can be used to
identify additional classes of programs for which automated reasoning (for semantic properties
such as termination and equivalence of programs) is possible. Concretely, we structured the state
space that imperative programs operate on by introducing the notion of control state partitions,
and showed that the problems of termination and equivalence are decidable for programs that
allow finite control state partitions. Also, we argued that this is the maximal class of programs
with this decidability property, when considering only the notion of control state partitions.
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Deciding termination or equivalence of programs with infinitely many control states, in general,
is undecidable.

Summarizing, we introduced a novel approach for a semantic analysis of programming lan-
guages, that is based on a translation into formal logic and that allows for automated reasoning
algorithms in a number of settings.

8.2 Other Logical Formalisms for Reasoning over Programs

In the formal verification of software, logical methods have been widely used for a long time
(cf. [9, 18]). We briefly consider a number of different logical formalisms that can be used to
analyze the semantics of programs, and we relate these alternative approaches to the approach
we developed in this thesis.

One logical formalism that has been used for formally verifying semantic properties of pro-
grams is the Hoare calculus (or Hoare logic) [11, 13]. The Hoare calculus is a proof system that
works with preconditions and postconditions to prove correctness of programs. It is mainly used
to formally verify whether a program gives the right output (e.g. does a program in fact compute
the function it is supposed to compute). It is less suitable, however, to check equivalence of pro-
grams by means of automated reasoning. Also, since the Hoare calculus is a proof calculus, it is
difficult to get counterexamples when using methods based on Hoare calculus. For description
logic based methods, on the other hand, obtaining counterexamples in case these exist is often
quite straightforward.

Another logical formalism used to analyze (sequential) programs is propositional dynamic
logic (PDL) [10]. Similarly to the description logic used in our approach, PDL has a model-
theoretic semantics, which enables a straightforward search for counterexamples. However,
there has been much less work on extensions of PDL with concrete domains (i.e. numerical
values) than the work that has been done investigating the combination of description logics and
concrete domains. Also, since description logics have become popular for many different appli-
cation domains, including the semantic web, many more implementations and optimizations of
reasoning algorithms are available for description logics than for PDL.

The formalism of temporal logics has also been used widely to reason about computational
behavior. Within the field of model checking (cf. [3, 6] for textbooks on the subject, for in-
stance), computational processes are represented using formal models and temporal logics are
used to check whether the behavior of these processes satisfy certain properties. Logics often
used in this setting are linear-time temporal logic (LTL) and computational tree logic (CTL), as
well as further logics based on these two logics. The computational processes analyzed within
this paradigm are often not specified as (sequential) programs, however, but rather as transition
models or using formal languages specifying such transition models.

Note that besides the approaches mentioned above, a magnitude of research has been done
on the topic of (automated) reasoning over programs, ever since the field of computer science
was established. We certainly do not claim that this section on alternative (logical) approaches
to this research area is exhaustive (or even close to exhaustive). Relating the work done in this
thesis to this vast body of research remains a topic of further research.
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8.2.1 Advantages of the Model-Theoretic Approach

We used the assignment of a model-theoretic semantics to imperative programs (by means of
the encoding of programs into the description logic ALC(D)) to obtain the above decidability
results. Of course, all of the results could be phrased without using any of these model-theoretic
methods as well. But using this model-theoretic approach has a number of (conceptual) advan-
tages.

First of all, it allows us to use the well-known mathematical models of relational structures,
which are familiar and intuitive to reason about. Additionally, these relational structures offer a
flexible way of representing multiple derivations at the same time, possibly including additional
auxiliary elements that relate these derivations (such as is done in Section 4.3.3, for instance).
Furthermore, using a model-theoretic semantics makes it possible to use ideas and techniques
often used in combination with such mathematical structures. For instance, in our proof of
decidability of equivalence of programs with finitely many control states, the idea of using ho-
momorphisms is essential. This notion of homomorphic mappings is often used in combination
with relational structures.

Finally, the model-theoretic setting we used in our approach is very general, and can capture
any form of computation (as indicated by Theorem 4.8.1). Therefore, we get a very flexible
approach towards automated reasoning on programs that works for very different programming
paradigms. None of the other approaches for reasoning over programs offer this kind of gener-
ality and flexibility.

8.3 Further Research

Possibly the most important direction of further research is to investigate to what extent the
theoretical results obtained in this thesis can be used in practical settings. The class of programs
for which there exists finite control state partitions, as identified in Chapter 6, is a fragment
of the programming language allowing termination and equivalence to be decided. However,
it is not yet a practically applicable characterization, since finding out whether finite control
state partitions exist for (arbitrary) programs is non-trivial. As described in Section 7.3, some
incomplete methods could be developed on the basis of some results in this thesis. This is a
significant direction of further research. More generally, further research is needed to design
practically more useful characterizations of fragments of programming languages for which
reasoning tasks such as termination and equivalence are decidable. Such characterizations could
be based on the fragments identified in this thesis, but could also include further fragments of
the programming languages.

Additional further research includes extending the model-theoretic framework for automated
reasoning on programs developed in this thesis to further settings. For instance, the framework
could be extended to programming languages that are used in practice, with concrete domains
that include more than just the natural numbers. It could also be extended to settings that include
concurrency or nondeterminism. Also, it could be extended to logic programming languages that
do allow for built-in search mechanisms using free variables (like Prolog).

Another line of further research would be to characterize more reasoning problems on pro-
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grams, that are relevant in practical settings, by means of the description logic language used in
the framework.

A third possibility for further research would be to identify additional classes of programs
(larger than the classes identified in Chapter 6) for which the problems of termination and equiv-
alence of programs are decidable. Also, for the decidable fragments of While and Goto identified
in Sections 6.3 and 6.4, corresponding fragments could be investigated for the languages FPN
and LPN, as suggested in Section 6.5.
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