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Chapter 1

Introduction

The objective of worst-case execution time analysis - also known as WCET analysis
- is to find the longest possible running time of a certain software component on a
given hardware platform. The running time depends on the component itself, the
input data vectors, and the execution environment.

Knowledge of the WCET is especially important in hard real-time systems. In
such systems all tasks have to finish before a predefined deadline. Failing to do so
may result in catastrophic system failure. The maximum execution time of each
task has to be known beforehand in order to choose an appropriate schedule and
to guarantee system safety.

The methods for estimating WCET can be divided into static and dynamic
methods. Static methods analyze the source code and model the target architecture
that the software component is executed on. By combining these two, the worst
case execution time of a software component can be estimated.

Dynamic methods obtain the WCET empirically. A software component is
executed with different input vectors, and its execution time on a given platform
is measured. Some tools for WCET estimation use a combination of both static
methods and measurements; they are usually classified as hybrids.

In this bachelor thesis, a hybrid method with elements of both dynamic and
static WCET analysis is implemented. Currently, the method uses synthetic val-
ues for the execution time cost of single instructions. It exercises the software-
under-test with different input data generated in an attempt to induce the longest
execution time. The input data are generated by particle swarm optimization.
Besides the maximization of execution path length, several fitness functions for
structural software testing are implemented as well.

The method can be used as a stand-alone tool, in which case it provides a
synthetic, lower WCET bound. The lower bound can be useful in recognizing
problems with the temporal specification early on in the development cycle of a
real-time application. The method could also be used to provide services to a
broader framework for WCET analysis, such as generating input data and exer-
cising execution paths. 17
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Chapter 2

Worst Case Execution Time
Analysis

2.1 Problem Statement

Execution time analysis of computer programs deals with program execution time,
in particular with finding bounds for the best case (BCET) and the worst case
(WCET) execution times. Estimates of the WCET are usually the more inter-
esting of the two execution time extremes, since the knowledge of WCET enables
validation of timeliness properties of real time systems.

2.1.1 Frequency distribution of program execution times

The execution time of a computer program is determined by the input data sup-
plied to it and by the initial state of the processor system on which it executes.
Different combinations of input data and initial processor states can induce the
same program execution times. For each observed program execution time tj, there
exists a corresponding set Stj of pairs of input data and initial processor states,
whose elements induce the program execution time tj.

f(tj) =
|Stj |∑n
i=1 |Sti |

(2.1)

In Equation 2.1, f(tj) is the ratio of the number of sample input-data/initial-
processor-state pairs, inducing the execution time tj, and the total number of
performed execution-time measurements; it corresponds to the relative frequency
of program execution time tj. Relative execution time frequencies of an exempla-
tive program are illustrated in Figure 2.1. In this figure the WCET value has been
obtained as a result of exhaustive execution time measurements over the space of

19
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input data and initial processor states. Without some restrictions this is generally
considered to be unfeasible. For example, total coverage of a single int parameter
in C would require the testing of 232 different numeric values. Therefore, Figure
2.1 is an idealization; in practice it may be difficult to obtain for some program on
a given platform.
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Figure 2.1: Relative execution time frequencies of some computer program as
would have been obtained by exhaustive testing. As a result of exhaustiveness,
one would have found the maximum execution time, i.e. the program WCET. If
exhaustiveness cannot be guaranteed, then one can only speak about the maximum
observed execution time. The difficulty of exact WCET derivation is depicted in
this figure by assigning the lowest relative frequency to the worst-case execution
time. An alternative to measurement based WCET derivation are static methods.
If implemented correctly these methods can provide an upper WCET bound, an
overestimation of worst-case execution time.
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2.1.2 Often used terms for describing WCET bounds

There are certain characteristic terms used when dealing with the properties of
WCET estimates.

1. A safe WCET estimate is greater than or equal to the real WCET of a
program.

(WCETest ≥ WCETreal) (2.2)

2. The terms precision and tightness are similar; they state that the WCET
estimate should be close to the real WCET of a program.

3. Corresponding to precision and tightness are the terms pessimism and over-
estimation. They quantify the degree whereby the upper estimate is higher
than the real WCET.

Sometimes the term WCET is interchangeably used in literature. At one time
it is used to denote the exact WCET of a program, and at other times it means
the estimated program execution time which bounds the real program WCET.
Here, the term WCET will be used to denote the real worst-case execution time,
although the exact value may be unknown or difficult to obtain for most programs.

2.1.3 Decidability of WCET

It was long assumed, that the problem of finding the exact WCET and BCET is
undecidable in general, since, as the argument went, finding it would be at least
as difficult as solving the Turing’s Halting problem. Only a safe overestimate of
the WCET could be feasibly obtained.

In contrast, a recent finding [1] showed that a class of programming languages,
among these C and subsets of Java, are equivalent to push down automata which
are decidable. It follows, that the exact WCET can be obtained for programs
written in those languages. Furthermore, it is also reported that the property of
decidability is not only influenced by the specification of the programming lan-
guage, but also by its implementation details for a concrete hardware platform.

2.2 Factors Influencing WCET

The factors influencing the program execution time can be viewed in a top down
approach, where each level corresponds to a phase of the traditional program
development and life cycle. This is graphically depicted in Figure 2.2. At the
top level there is an idea of computation that is formalized by the programmer
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into the form of a computer program. At the middle level are the translation of a
computer program into the assembly and ultimately binary code, and its scheduling
for execution. The execution of a program as instructions on a processor system
belongs to the lowest level that is considered in WCET analysis. Below that level
starts the domain of physical effects inside the processor system, which belong to
the study of microprocessor engineering.

Writing the program

Translating the program into binary code

Scheduling the program for execution

Executing the program

Interactions between the program and its environment

Figure 2.2: Phases of traditional program development and life cycle.

2.2.1 Program structure

The main elements of a computer program written using a high-level, structured,
imperative programming language such as C are variables, operators, assignments,
and function and system calls.

Elements linking the above into a logical whole are called flow-of-control state-
ments. They determine how often and upon what condition parts of program code
will be executed. Examples of flow-of-control statements are: for, while, and do
loops, if-then-else, and switch-case alternatives. Despite their multitude, all of the
high-level flow-of-control constructs rely on a simple conditional-branch instruction
for their respective implementations in assembly.

A single flow-of-control statement influences the execution time of a computer
program in a twofold manner. The first aspect is the time needed to evaluate each
statement itself, which consists of the logical condition inside and the jump to a
different part of program code. The second aspect is the time spent executing the
code to which execution was directed by the flow-of-control statement.
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Flow-of-control statements, thus, determine the set of possible code sequences
that can be executed for a given program. Which one of those sequences is executed
at runtime depends on the conditions inside the flow-of-control statements. Three
kinds of flow-of-control conditions can be distinguished.

1. First, there are those conditions in the flow-of-control statements that always
evaluate to the same value, since they are either a truism in themselves or
use some statically predefined value as a variable.

2. The second possibility are control-flow conditions whose evaluation is based
on a random value and whose outcome cannot be determined. This is a
special case and a minority among control-flow conditions used in practice.

3. The third and most common case is that the control-flow condition is eval-
uated based on the variables that directly or indirectly depend on the pro-
gram’s input data vectors. In this case the exact sequence of executed code is
a function of: (a) the program control-flow structure defined during program
development and compilation, and (b) the input data provided at runtime.

2.2.2 Program translation

A program is translated into assembly code by the compiler. Since the assembly
representation of the program corresponds one to one with the machine code ex-
ecuted on a processor system, static code analysis for WCET is usually done on
this level.

The disadvantage of low-level analysis is that high-level, flow-of-control con-
straints can be lost due to optimizations performed during compilation. State of
the art WCET tools combine high with low-level code analysis; structural and
functional flow constraints are obtained on the high and intermediate level, while
time constraints of single basic blocks are obtained on the low level.

2.2.3 Scheduling of the program for execution

If a program is not running alone on a dedicated platform, e.g. a microcontroller,
but concurrently with other programs, then it needs to be scheduled for execution,
usually by an operating system scheduler. In that context programs are usually
refferred to as tasks. If tasks can be preempted during their execution this can
have a twofold impact on WCET.

First there is the more or less constant overhead of task switching that is
taken care of by the appropriate scheduler code. Analysis of that code can give
the WCET of the overhead. The second, more difficult impact of preemption on
WCET analysis is the possible emptying of the cache content of some task upon
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it being preempted by another task. Once the original task continues execution,
it may start with an empty cache. This can pose a challenge to static WCET
analysis, since it may warrant a pessimistic assumption that the task code always
operates with an empty cache, i.e., that memory accesses always cause a cache
miss.

In WCET analysis the topic of scheduling interferences is usually abstracted
away; it is assumed that a program is running on a dedicated processor or that
tasks cannot be preempted.

2.2.4 Execution on the processor system

After the program executable has been copied into memory and the processor
instruction pointer has been set to program start, the execution can begin. Ulti-
mately, it is the effects in the processor system that determine the execution time
and correspondingly the WCET of a computer program.

The processor core is one part of the processor system. The remaining parts:
instruction cache, data caches, and main memory also have to be included in the
WCET model of the execution environment. External storage and other peripheral
components are abstracted away in WCET analysis, and effects such as spilling
the main memory to the hard disk, i.e. swapping, are not considered.

On many processors systems, the execution time of a program can be affected
by the initial state of the processor at the start of execution. For example, a
processor which is in power save mode on execution start, might need a few more
cycles than a processor which begins execution from the ready state.

2.2.5 Interactions with the environment

A program interacts with its environment by accepting input data and providing
output.

Based on when the new input data are received by the program, one can dis-
tinguish reactive and transformative systems. Reactive systems keep on running
continuously, interacting with the environment. Transformative systems are char-
acterized by their one shot behavior: the input data is taken, processed, and a
result is produced as output. After that, a transformative system terminates. A
transformative system is usually implemented as a task to be executed periodi-
cally. The WCET analysis mostly deals with such systems, since they are easier
to analyze and can serve as building blocks of more complex systems.

Different input data exercise different program control-flow paths and ulti-
mately cause different instruction sequences to be executed. It is impossible to
analyze most programs for all possible input data vectors, as the input space is
huge. As opposed to static analysis, one strategy to overcome this complexity is
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to aim for good coverage of program execution paths. This is achieved by exercis-
ing the program with a limited set of representative input data vectors. For this
purpose, heuristic techniques such as genetic programming have been used in the
past.

2.2.6 Summary

The execution time of a program is influenced by static and dynamic factors.
Static factors are the program structure itself and the architecture of the processor
system: processor, cache, and main memory. They are invariant for some program
running on a certain processor system. The dynamic factors are the program input
data and the initial state of the processor system. They may change at run-time
and are responsible for making WCET analysis difficult.

2.3 Concepts and Definitions

Since the structure of the computer program has a big influence on the WCET of
the program, static program analysis is used in almost all WCET methods. Before
going into the details of different kinds of WCET methods (Section 2.4,2.5,2.6), it is
appropriate to give the definitions of the concepts that will be used in later sections.
The following concepts dealing with program structure are defined: basic block,
segment, control-flow-graph, execution path, and the syntax-tree of a computer
program. All the here numbered concepts play a role in almost any modern WCET
analysis framework. Furthermore, since guaranteeing the temporal correctness of
real-time systems is the raison d’être for the study of program worst-case execution
time, a definition of a real-time system is given here as well.

2.3.1 Basic block

A basic block is a maximal sequence of one or more instructions with a single entry
point, where the flow of control can enter, and a single exit point, where the flow of
control can exit the sequence. Consequently, control transfer instructions (jump,
call, and return instructions) can only be present at the end of basic blocks.

2.3.2 Control flow graph

A control flow graph (CFG) describes the flow-of-control for each function in the
program. The nodes of the graph designate the basic blocks and the directed edges
designate the possible transfer of control between the basic blocks. An exemplary
CFG is shown in Figure 2.3.
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Figure 2.3: CFG of an exemplary program.

2.3.3 Program segment

A program segment is a subgraph of the program CFG. It is defined by a starting
basic block B1, an ending basic block Bn, and a set of intermediate basic blocks
S = {B2..Bn−1}. Each execution path spawned by the segment starts with B1,
ends with Bn and contains a sequence of basic blocks from S inbetween.

2.3.4 Syntax tree

A program syntax tree is a tree, where nodes denote the structural elements of
programs in a high-level language. For the purposes of WCET analysis each in-
termediate node denotes a language construct occurring in the source code, while
leaves represent basic blocks. Syntax tree nodes can be annotated with additional
information describing the possible behavior of the program. Such information
can be provided by the user or it can be obtained automatically by data analysis
of the program code. An example of a program syntax tree is shown in Figure 2.4.
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Figure 2.4: Syntax tree of a for loop[2].

2.3.5 Program execution path

A program execution path is a sequence of basic blocks, which denotes the path
taken through the program CFG. Possible paths depend on the control transfer
constructs in program code and on the input data. In case of error-free execution,
each path starts at the program entry and ends at the program exit point. Paths
which are structurally possible but cannot occur at run-time because of program
semantics are called unfeasible.

2.3.6 Real time system

A real time system is composed of tasks which need to be finished inside certain
time intervals. Each task can be a program running as a separate process or a
function or procedure called from the main function of a single process.

A real time system may be periodic or aperiodic, depending on whether the
tasks are executed repeatedly or only once. In both cases each task has a deadline
until it has to finish execution.

In soft real time systems, meeting the deadline of a task is desirable but not
mandatory. It makes sense to schedule and complete the task even after the
deadline has passed. On the contrary, in hard real time systems, a missed deadline
can cause a system failure.

It is the task of scheduling analysis to determine a task execution schedule, so



28 CHAPTER 2. WORST CASE EXECUTION TIME ANALYSIS

that all tasks finish inside their given deadlines. Hard real time systems employ
offline scheduling analysis which produces a static plan according to which tasks are
dispatched at run-time. The main benefit of static scheduling is its predictability.
Thus, it can be guaranteed that no task will miss its corresponding deadline.

Traditional literature about task scheduling algorithms abstracts away from
the problem of real task execution times in their analysis, by supposing them as
constant and known beforehand [3, p.461]. This is acceptable for a theoretical
model, but not for a system that has to obey time constraints in practice. In order
for a theoretical scheduling model to be safely applied to a hard real time system,
it has to be extended by worst case execution time analysis of tasks’ program code.

2.3.7 Causes of variance of program execution time

The variance of the execution time of computer programs, observable in the ex-
ecution time frequency diagram, Figure 2.1, can be attributed to two principal
causes.

The first cause is that different input data can exercise different program exe-
cution paths. Different execution paths contain different sequences of instructions
which is the cause of the variance in execution time.

The second cause of variance of program execution time is attributed to the
variance of execution times of single processor instructions. Hence, the same ex-
ecution path, i.e., the same sequence of processor instruction can take different
amounts of time to execute on the same processor system. This kind of variance
can be data-dependant or history-dependant [4].

Instructions with data-dependent execution times show different temporal be-
havior based on the input data. Multiplication and division are examples of oper-
ations that can take a data-dependent amount of time for completion. However,
the property depends on the exact hardware implementation of the respective
instructions.

History dependent execution times of processor instructions are the result of
features that are intended to enhance the average-case performance. Examples in
modern processors are: data caches, pipelines, and branch prediction. The cost
of these enhancements is reduced worst case performance and reduced WCET
predictability [5].

2.4 Step 1: Program Source Code Analysis

Program source code analysis is the first step of determining the worst-case exe-
cution time of a computer program.
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In order to analyze programs for WCET, static and to a lesser degree dynamic
WCET tools first have to analyze the program source code in order to build a
model of the program. The simplest model is the program CFG. More complex
models exist as well; their requirements depend on the type of WCET analysis
(static or dynamic), the level of detail, and the amount of information the tool
needs in order to perform the analysis. The complexity of the program model,
especially for static WCET tools, rises with the level of detail of the performed
analysis, with the accuracy of the WCET prediction, as well as with the complexity
of the hardware platform, for which the analysis is performed.

2.4.1 Programming language

Many imperative programming languages include features that make execution-
time analysis difficult or infeasible. Examples of such features are unbounded
recursion, functions pointers, break, and goto statements. These features have
to be disabled in order to perform static WCET analysis. Unbounded recursion
results in a set of program paths that is potentially infinite. Function pointers
complicate static identification of function call targets which is needed for the
analysis of function calling contexts. Break and goto statements should not be
allowed to cause breaks in instruction flow, as they can potentially invalidate the
structure of loops and conditional program constructs [2]. Therefore, only a limited
subset of conventional programming languages is analyzable for WCET in practice.
Note that similar restrictions exist for the safe use of the C programming language
in safety-critical embedded applications. For the automotive industry these have
been specified by the MISRA consortium [6].

2.4.2 Control flow analysis

The analysis of flow-of-control transfer instructions gives information about the
control flow paths (CFP) of a program. These describe the set of possible execution
paths with applied execution constraints. For example, the constraints can be
ranges for the values of input parameters.

The CFP are equivalent to a set of possible execution traces of a program. An
execution trace can be obtained by instrumenting the basic blocks of program code
with print statements or other kinds of instrumentation code.

A program which has unbounded loops has an unbounded set of CFP. There-
fore, it is necessary to bound that set by the use of flow facts. The flow facts give
hints about the possible CFP of a program. They can be obtained either implicitly
by analyzing the program source, or they can be specified by the user.



30 CHAPTER 2. WORST CASE EXECUTION TIME ANALYSIS

2.4.3 Flow fact annotations

Flow fact annotation involves manually specifying loop bounds and unfeasible paths
in the program code, or communicating them directly to the WCET analysis tool.
This process can take as much as seven weeks of time for a medium sized indus-
trial application [7]. Manual flow fact annotations are especially error prone for
specifying unfeasible program paths, which are necessary for a tight WCET esti-
mate. Without this information many unfeasible program paths would qualify for
the program WCET. Furthermore, using the manual flow fact annotations requires
that the developer has to update his flow facts for each functional change he makes
in the program code, thus creating a further potential for errors.

2.4.3.1 Loop bounds

In spite of disadvantages, a certain minimum of flow fact annotations seems to be
necessary, because of the limits of computability. The WCET problem without
any flow fact information can be transformed to the well known halting problem
which is provably undecidable [8]. The minimum of flow facts includes at least
loop bound annotations. An example of a complete programming language with
incorporated flow-fact annotations is wcetC, as described in [9]. It integrates the
WCET analysis with the compiler, which is beneficial for analyzing the effects of
compiler code optimizations upon the flow facts.

There have been several attempts to derive loop bounds automatically. Known
approaches include pattern matching, data-flow analysis, and abstract execution.
For loops with one loop test and a single increment, pattern matching provides
tight and safe bounds. This method is limited to very simple non-nested loops.
An improvement over pattern matching is the technique of data-flow analysis. It
can bound loops with one loop test and more than one increment [10].

A further improvement of the loop bounds can be achieved by abstract execu-
tion, a method based on abstract interpretation. The idea is to extract properties
of run-time behavior of the program by interpreting it using abstractions of values
instead of concrete values. The program is executed over an abstract domain with
abstract values for variables and abstract versions of the language operators. The
abstract domain can, for example, be the domain of intervals. Each expression
then evaluates to an interval rather than to a specific value, and each assignment
will calculate a new interval from the current intervals held by the variables on
the right hand side. A loop bound can be determined in this manner by iterating
the abstract versions of the loop until the loop test returns false. The achieved
number of loop iterations is then the worst case, i.e. the loop’s upper bound [11].

After the upper loop bound has been obtained, the CFG of the loop can be
analyzed, and out of it, the worst-case path of a single loop iteration can be found
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by further flow analysis. If the estimated execution time of the loop body is t, and
the upper loop bound is lb, then, using this approach, the estimated WCET of the
loop would be calculated as lb · t [12].

2.5 Step 2: Timing Information Derivation

The gathering of timing information is the second step of WCET analysis. It con-
cerns itself with low-level hardware effects upon the execution time of a program.
This analysis can be divided into global and local low-level timing analysis, based
on the hardware features it considers.

Global low-level timing analysis deals with those processor features which cause
timing effects across the whole program. Among these are: instruction caches,
data caches, branch predictors, and translation lookaside buffers. Global low-level
analysis does not generate actual execution times, but rather, it only determines
how certain hardware features might affect the program execution time. The
results of the global low-level analysis are passed over to the local low-level analysis
as execution facts.

With the help of execution facts, local low-level analysis can handle processor
timing effects that depend on a single instruction and its immediate neighbors.
Examples of local effects are overlapping of instructions in a processor pipeline,
instruction alignment effects, and the effects of memory banks with different speeds
(cache, main memory, ROM) that are common in real-time embedded hardware
[13].

2.5.1 Processor pipeline

Pipelines are a feature found in virtually all desktop/server processors and many
embedded processors. They offer a considerable speedup of instruction execution
and lead to shorter clock cycles. Basically, the execution of an instruction is sub-
divided into stages. After one instruction completes a single stage of the pipeline,
the following instruction may enter it, while the original instruction continues on
to the next stage.

A typical pipeline of the reduced instruction set computing (RISC) architecture
has the following stages:

Fetch stage Read instruction from memory.

Decode stage Read registers and decode instruction.

Execute stage Execute instruction or calculate a memory address.

Data stage Access operands in data memory.
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Write stage Write the results into registers.

Modern processors have deeper pipelines where each stage is subdivided into
smaller substages; for example, the Pentium 4 pipeline is 20 levels deep. The
number of pipeline stages corresponds to the number of cycles that each instruction
is in execution. More pipeline stages enable more instructions to be in execution
simultaneously, and they induce shorter clock cycles. Empty pipeline stages during
execution have a detrimental effect on performance and should be avoided.

Sometimes one instruction may depend on the results of another instruction
and cannot enter the pipeline until the other instruction has completely finished
execution. An example of such a scenario is the instruction sequence in Listing
2.1.

Listing 2.1: A sequence of instructions with mutual data dependencies awaiting
scheduling.

ld r1 , x ;
add r1 , y ;
push r1 ;
mul r2 , r3 ;

The add instruction has to wait for the ld instruction to finish, so that the register
r1 contains the needed value x. The push instruction also has to wait for the add

instruction to finish before it can push the value of the register r1 to the stack.
Independent of these instructions is the mul instruction, operating on registers
r2 and r3. To prevent that free pipeline stages in the processor are wasted,
instructions in this example should be reordered. The mul instruction should be
executed not at the end, but while the add and store instructions are waiting for
the ld instruction to finish.

Data dependencies between instructions can be identified, and instructions can
be reordered during compilation. However, stalls in the availability of instruction
operands during execution and conflicts in the use of processor execution units be-
tween the same type of instructions may bring about the reordering of instructions
at run-time by the processor pipeline scheduler. Such processors, capable of out-
of-order execution, may be difficult to analyze for WCET, since their instruction
scheduling algorithms operate on a best effort basis. The exact execution order of
instructions in those processors may be unpredictable and may complicate static
WCET analysis, since it can not be known beforehand how many stalls will be
caused in the pipeline for a certain instruction sequence.

A novel approach to make the WCET analysis of processor pipelines easier is
to disable the dynamic scheduling unit of the processor, responsible for the run-
time reordering of instructions. This can be achieved by injecting non-functional
instructions into the program code. According to [14] there are at least two ap-
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proaches to this. The first approach is to disable the prefetch window of the
pipeline scheduler by periodically inserting nop instructions; the the second ap-
proach is to inject instructions that create artificial dependencies after each original
instruction with variable execution time. These measures can remove any freedom
of the processor scheduler to reorder successive instructions, i.e., to use a different
instruction ordering from the one produced by the compiler.

2.5.2 Processor cache memory

Another feature of modern processors are memory caches. Historically, the rate
of increase in processor speed has been higher than the corresponding increase
in the speed of main memory (RAM). Thus, there now exists a gap between the
computation speeds of processors and main memory. Overall execution time of
instruction (especially for load and store instructions) is dominated by accesses to
main memory. Faster processors would bring little computational power in return,
if some mechanism to bridge this gap was not found.

Currently, computer systems implement a memory hierarchy consisting of the
cache, the main memory, and the magnetic disk. The cache is the fastest memory,
and it positioned nearest to the processor. Commonly, the cache is separated into
the data cache and instruction cache. Both are expensive, and only limited storage
space is available. A common technology for caches is SRAM.

Accesses to main memory can be slower by a factor of hundred than accesses to
cache memory. At the same time main memory in the DRAM technology is fifty
times cheaper than SRAM cache memory. Magnetic disk storage is the cheapest
and the slowest technology for computer memory with access times of about 105

times longer than corresponding RAM accesses. Typically the bit cost of magnetic
disks is 200 times less than the bit cost of RAM memory [15, p.469].

The speed gap is currently bridged by integrating the cache memory and the
processor core in the same unit. As cache is more expensive, it cannot completely
replace than conventional RAM memory. However, the principle of locality enables
comparatively smaller caches to act as a buffer between the processor and the main
memory. By temporal locality it is assumed that if a certain memory block is
referenced at the current moment, it will also tend to be referenced again at a later
time near to now. Spatial locality assumes that memory blocks whose addresses
are near to each other will tend to be referenced more often than memory blocks
with distant addresses. Based on these two principles data which is assumed to
be needed in the near future is stored in the processor cache.

A cache miss occurs when some data that are needed by the processor during
execution are not found in the cache. It can be both an instruction cache miss or a
data cache miss. Upon a miss, data are read from the main memory and inserted
into the cache. Depending on which old data block is replaced by the new block,
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different cache replacement policies are distinguished: round robin, least recently
used (LRU), most recently used (MRU), etc. The objective of these policies is to
minimize cache misses and to maximize cache hits.

2.5.2.1 Impact of memory hierarchies on program execution time

The behavior of computer memory hierarchies has great impact on the performance
of computer programs.

This used to be ignored for some time in traditional algorithm analysis. For
example, traditional algorithm analysis of the radix sort algorithm states that it is
an algorithm with linear execution time O(n), which is better then the O(n log n)
execution time of quicksort [16, 15, p.173, p.508].

However, experimental assessment of both algorithms shows that the basic
radix sort implementation causes more cache misses per item sorted than the
quicksort implementation. The effect of cache misses is such that in practice
quicksort has faster execution time than the basic radix sort, although radix sort
is algorithmically more efficient, i.e., it needs fewer operations than quicksort.

2.5.3 Speculative execution

Branch prediction is an often used speed-up feature in modern processor archi-
tectures, where the processor speculation unit tries to determine, ahead of time,
which program path will be taken. It fetches the instructions needed for the ex-
ecution of the assumed program path and stores them in the instruction cache
memory. When program execution reaches the branch condition, the processor
realizes whether the outcome of speculation was correct or not. If it was correct,
the speculative results are written to registers and memory and the instructions
are completed. If the speculation was incorrect, then the processor flushes the
speculation buffers and fetches the correct instruction sequence. Incorrect spec-
ulation causes an execution time delay, since in that case the right instructions
first need to be fetched from the main memory, written to the cache, and finally
inserted into the processor pipeline [15, p.434].

Speculation in modern processors is correct 90% of the time and, thus, offers
a considerable increase in the average-case performance [17, p.270]. The downside
of speculation is that the remaining 10% of incorrect speculation predictions can
cause timing anomalies.

2.5.4 Timing anomalies

A timing anomaly occurs when a local increase of the execution time of one instruc-
tion causes an even greater increase or an overall decrease of the global execution



2.5. STEP 2: TIMING INFORMATION DERIVATION 35

time in the future [18]. Likewise, a local decrease in the execution time of one
instruction which causes an even greater decrease or a net increase of the global
execution time in the future also creates an anomaly.

Processor features that cause timing anomalies as a result of variable execution
times of single instructions are: dynamic scheduling into the pipeline, speculative
execution (branch prediction), and some cache replacement policies [19]. Usually
cache phenomena (hits or misses) and input data are responsible for the variance
of the execution time of single instructions [18].

2.5.4.1 Scheduling anomalies

A necessary condition for scheduling based timing anomalies is the existence of
out-of-order resources in the processor system [18]. Out-of-order resource can be
multiple out-of-order execution units in the execute stage of the pipeline. They can
process instructions in parallel as long as there are no data dependencies between
the instructions.

Most execution units provide reservation stations, which serve as a queue for
instructions. Once the execution unit is available it receives the next instruction
that does not have any unsolved data dependencies from the queue. The previous
instruction schedule and the execution time of instructions in other execution
units determines the state of data dependencies and which instruction will be
chosen for processing. Thus, if there are n instructions and each instruction has
k possible execution times, then there are kn possible execution schedules for a
certain instruction sequence in the worst case [18]. Some of these schedules can
be more compact than others based on the amount of parallel processing achieved
by the execution units.

The worst-case schedule is the one in which no or little parallelism is achieved
due to the unoptimal solving of instruction data dependencies. For WCET anal-
ysis, this instruction schedule is of most interest. However, since instructions can
have variable execution time, it cannot of guaranteed that a certain execution
schedule will result from a certain instruction sequence.

2.5.4.2 Speculation anomalies

Speculation anomalies are caused when the branch prediction unit in the proces-
sor wrongly speculates about the outcome of a program conditional branch and
prefetches wrong instructions into the instruction cache. The misprediction can,
however, be prevented by a cache-miss caused by instructions prior to the condi-
tion branch. Upon the cache miss, the instruction in question may use enough
processor cycles so that there are not enough enough cycles left for the prefetching
of the speculative instructions. A cache miss in the present may thus prevent a
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more expensive branch misprediction in the future [19].

2.5.4.3 Cache anomalies

Cache replacement policies such as the round-robin policy can also cause timing
anomalies. The reason for this is that the choice of a memory block to be over-
written on cache miss may have beneficial influence on the execution time of the
program in the future [20]. A cache miss of a single program instruction and the
resulting cache-block replacement may prevent a series of future cache misses.

2.5.5 Effect of timing anomalies on WCET analysis

Processor timing anomalies invalidate two assumptions, which had previously been
assumed in static WCET analysis. The first assumption was that the worst case
state of the processor, as an initial state, will always leads to the WCET of the
executed program. However, in dynamically scheduled processors this need not be
true, since in the presence of scheduling anomalies a delay of one instruction can
result in a more compact overall instruction schedule. The second assumption was
that greedily taking the local WCET of single instructions and combining them
together would always lead to the global WCET. [19] This may not be true for
example in processors with branch prediction, since in some cases a local WCET
of a single instruction (upon a cache miss) may prevent a more expensive branch
misprediction.

2.5.5.1 Effect on measurement based WCET analysis

Timing anomalies pose a challenge for both static and measurement-based WCET
analysis tools. Since in the presence of timing anomalies no processor state can be
assumed apriori to be the worst case initial state, measurement-based tools need
to conduct measurements starting from all possible processor states. Because of
state explosion this approach is infeasible, and measurement based tools only use
a subset of possible initial states in practice. Thus, classic measurement based
tools are not safe for analyzing processors with timing anomalies [20].

2.5.5.2 Effect on static WCET analysis

For static WCET tools the challenge is to construct the model of a processor. The
physical processor itself is deterministic; a successor state is always known from
the known predecessor state, program code, and input data. Static WCET tools
handle the large number of possible processor states by grouping them together
using abstractions. Abstractions enable static WCET tools to be exhaustive in
their analysis, but the price for it is the loss of precision. The loss of precision
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leads to indeterminism of the processor model, which means that it is not always
possible to conclude about the next state of processor execution from the known
previous state, the program code, and the input data. After some known state
there can be more than one possible successor states and in that case it is unknown
which of them will really occur. Hence it becomes necessary to introduce the
concept of an unknown state with high pessimism in the processor model. A local
worst-case state was used often for the unknown state, but such an approach can
no longer provide a safe WCET bound for modern processor architectures that
exhibit timing anomalies [20].

2.5.5.3 Avoidance of timing anomalies

Timing anomalies can be completely eliminated by enforcing the in-order use of
processor resources [18]. However, hardware support for disabling the dynamic
instruction scheduler is currently lacking in most modern processors.

The processor instruction scheduler can also be disabled by a software-only
approach. This includes inserting special non-functional instructions into the pro-
gram code with the aim of creating data dependencies that guarantee the in-order
use of processor resources [14]. Alternatively, the WCET bound of the original
program can be derived without any code modifications by a computation which
assumes the serial execution of all instructions, i.e., that there is no parallelism in
the pipeline [18]. This approach is safe but can lead to gross overestimation of the
WCET.

2.6 Step 3: WCET Bound Calculation

After program source-code and low-level platform analysis the next step in WCET
calculation is the search for the program path that has the longest execution time.
In the CFG representation of the program, where each edge has a corresponding
weight i.e. execution time, the calculation step would search for the heaviest path.

The sources of overestimation in the calculation step are:

1. that not all infeasible paths have been found in the data-flow analysis of
program source code

2. that some assumptions about the low-level timing effects had to be pes-
simistic because of safety

3. that possibly not all flow fact constraints can be modelled with the method
used for the calculation step

The three principal methods used for the calculation step are: the path-based,
the tree-based, and the implicit-path-enumeration-technique based method.
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2.6.1 Path-based calculation

In path-based calculation methods the WCET is obtained by finding the longest
path out of the set of all possible program execution paths. Not every program
path is also a possible execution path. One technique that can be used for finding
the longest feasible path in a small program is exhaustive path enumeration.

However, for large programs it is impractical to test all program paths for exe-
cutability, since the number of possible paths rises exponentially with the number
of control flow branches. Instead, the following simple heuristic can be employed
according to [21]. The k longest program paths, where k is the number of con-
trol flow branches, are analyzed for executability. Using this method, the longest
feasible executable path would be returned as the WCET inducing path. If all of
the k paths are unfeasible, the WCET would be bounded by the shortest of the k
paths.

The path-based WCET calculation is mainly employed on straight-line code
which assumes the absence of loops and recursive function calls. For code without
these assumptions, path-based calculation is impractical because of the exponential
path growth. Automatic code synthesis tools for control applications often produce
code that fullfills these assumptions, i.e. straight line code.

One of the widely used tools of this sort is SCADE. It enables graphical pro-
gramming of control systems [22]; the SCADE compiler can automatically generate
straight-line C code from the SCADE graphical model [23, p.23]. The WCET of
such code is easily verifiable using the path-based WCET calculation technique
such as the one presented in [21].

2.6.2 Tree-based calculation

In tree based calculation methods the final WCET is estimated by a hierarchical
bottom-up traversal of the program syntax tree. The WCET of each tree is calcu-
lated from the WCET of all of its subtrees; on the lowest level, the WCET of each
tree leaf is calculated directly from the WCET of its basic blocks.

2.6.2.1 Basic tree-based WCET calculation

Simple WCET calculation formulae for a processor without caches, pipelines, and
branch prediction have been presented in the original paper [24]. They operate
on four basic constructs of an imperative programming language: primitives, se-
quences, if-alternatives, and for-loops, from which more complex constructs such
as switch-case-alternatives, do-while-loops, etc. can be composed.

Primitives Primitives Si are the smallest constructs in the analyzed program;
they cannot be subdivided into other constructs of a high level programming
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language. Idealistically, the WCET of a primitive can be obtained by sum-
ming up the WCETs of the machine instructions that are contained in it;
each primitive corresponds to a basic block in WCET analysis. The worst
case execution times WCET Si of all primitives Si have to be known in order
to perform the subsequent tree-based calculations.

WCET (Si) = WCET Si (2.3)

Sequences For sequences S = [S1, . . . , Sn] the combined WCET is calculated as:

WCET (S) =
n∑

i=1

WCET (Si) (2.4)

Alternatives For alternatives of the kind S = [if (test) then S1 else S2] the
combined WCET is calculated as:

WCET (S) = WCET (test) + max(WCET (S1),WCET (S2)) (2.5)

Loops For the bounded for-loop construct S = [for (; test ; incr) S1] the WCET
is calculated as:

WCET (S) = loop bound× (WCET (test) +WCET (S1) +WCET (incr))

+WCET (test) +WCET (exit)

(2.6)

2.6.2.2 Extended tree-based WCET calculation

A more sophisticated approach for tree-based calculation with support for modern
processors features has been presented in [2]. The central concepts of this work
are calling contexts for functions and hierarchical naming for nested loops.

The WCET of each basic block depends on the execution path leading to that
basic block. Thus, the same basic block in a function called from two different
contexts can have two different worst-case execution times. Calling contexts dis-
tinguish between two different call sites of a single function by representing them
as two different logical instances of the same function in the intermediate tree
representation of the program. This is achieved by a compiler technique known
as function call inlining that replaces the function call site with the body of the
callee in the syntax tree representation. The same functions and, consequently,
the same basic blocks can appear more than once in the logical representation of
the program.

In nested loops the WCET of a basic block depends on the surrounding loop.
Hierarchical loop names model this effect by giving each nested loop a name
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prefixed with the name of the surrounding loop. Thus, each loop is assigned
a certain nesting level. For example, if the nesting level of the outermost loop
is named (0), then the levels of its n immediate nested loops would be named
(0, 0), (0, 1) . . . (0, n).

In order to support nesting levels the addition (+), and multiplication (×)
operators from the basic formulas are redefined with the ⊕L, and ⊗L operators.
Intuitively, the operator ⊕L sums up the WCETs of constructs Si whose nesting
level Li is smaller or equal to L. The ⊗L operator is analogous; it multiplies and
then sums up the WCETs of constructs Si, whose nesting levels Li are smaller or
equal to L. By using these new operators, the WCETs of the surrounding program
constructs can be calculated from the inner constructs (e.g. inner loops or calls to
other functions) in a hierarchical and context-sensitive manner.

Furthermore, the extended tree-based model distinguishes WCET seq - a se-
quence of consecutive basic blocks - and WCET jmp - basic blocks whose outgoing
edge is a jump to another more distant block. Basic blocks ending with the jump
instruction can have a different execution time from consecutive basic blocks and
can not be assumed to fall into the same locality category L.

The extended tree-based formulas operate on the same constructs as the basic
formulas: primitives, sequences, if-alternatives and for-loops, but with the addi-
tional information about context level L and the basic block leaving edge (sequence
or a jump).

Primitives For a basic block primitive Si the WCET is independent from its
context level Li, since the basic block does not have any further inner ele-
ments. The extended formulas distinguish two cases depending on whether
the primitive ends with the jump or not.

WCET (Si, L)seq = WCET Sseq
i

WCET (Si, L)jmp = WCET Sjmp
i

(2.7)

Sequences For a sequence S = [S1, . . . , Sn] with the corresponding context levels
[L1, . . . ,  Ln], the operator ⊕L sums the WCETs of all Si whose level Li is
smaller or equal to L. If the sequence does not end with a jump, its WCET
is calculated as:

WCET seq(S, L) = WCET (S1, L1)⊕L . . .

⊕L WCET (Sn−1, Ln−1) +WCET seq(Sn, Ln)
(2.8)

For a sequence that ends with a jump, the WCET is calculated as:
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WCET jmp(S, L) = WCET (S1, L1)⊕L . . .

⊕L WCET (Sn−1, Ln−1) +WCET jmp(Sn, Ln)
(2.9)

Alternatives For alternatives of the kind S = [if (test) then S1 else S2] the
combined WCET on context level L is calculated as:

WCET (S, L) = max(WCET (S1)⊕L WCET seq(test, L),

WCET (S2)⊕L WCET jmp(test, L))
(2.10)

Loops For the bounded for-loop construct S = [for (; test ; incr) S1] the WCET
on context level L is calculated as:

WCET (S, L) = loop bound⊗L (WCET (test, L)⊕L WCET (S1, L)

⊕L WCET (incr, L))

+WCET seq(test, L)⊕L WCET (exit, L).

(2.11)

2.6.2.3 Pros and cons of tree-based calculation

The advantages of tree-based WCET calculation are its relative implementation
simplicity, a hierarchical approach that operates on the program syntax tree, and
the use of exact calculation formulae. The requirement that unbounded recursion
is not allowed in the source code of analyzed programs is usual in static WCET
analysis.

However, the hierarchical approach necessitates the restriction of analyzed
source code to the structured programming paradigm. Statements that can cause
unstructured breaks in the control flow such as break and goto statements in C
are forbidden [2]. Thus, tree-based methods may not be able to analyze the out-
put of automatic code generators, e.g. those for Simulink 1 or TargetLink 2, which
sometimes generate unstructured code.

The challenges of applying the tree-based method to structured programs are
how to properly express non-local flow information and how to achieve tight WCET
estimates on processors with variable instruction timing [25]. The tree-based cal-
culation method cannot express all types of program flow constraints, which can
lead to pessimism in the WCET calculation [4].

1www.mathworks.com
2www.dspaceinc.com
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2.6.3 IPET-based calculation

The implicit-path-enumeration-technique (IPET) is a WCET calculation technique
that avoids the problem of exponential path blowup inherent in explicit path enu-
meration. IPET models the problem of finding the worst-case execution time
of a computer program as a standard optimization problem of integer-linear-
programming (ILP). Standard solvers for ILP, e.g. the open source lp solve3, are
readily available. Theoretically, IPET has exponential execution time. However,
this worst case does not occur in practice [26].

2.6.3.1 The standard ILP problem

The standard ILP problem consists of finding integer values for variables x1, . . . , xn,
so that the objective function F is maximized, while at the same time satisfying a
set of constraints C1, . . . , Cm.

Variable xi denotes the amount of some resource i. The cost of the resource is
given as ci. The m constraints Cj can be any linear combination of the variables xi

multiplied by constant factors aij together with the corresponding binary relation
� and the bound bj.

Optimization variables xi

x1, . . . , xn (2.12)

Objective function F

F =
n∑

i=1

cixi (2.13)

Constraints C1, . . . , Cm

Cj =
n∑

i=1

aijxi � bj , j ∈ {1, ..,m}, (2.14)

where � can be one of the following binary relations: ≤, <,≥, >,=

2.6.3.2 Encoding of the WCET problem

The optimization variables x1, . . . , xn now denote the number of executions of
basic blocks 1, . . . , n. Each xi is bounded from above by a set of flow-of-control
constraints. These constraints need to be obtained by program code analysis.
Structural constraints are less difficult to extract; they can be derived directly from
the program CFG using Kirchhoff’s rule of flow conservation. The rule states that

3lp solve - lpsolve.sourceforge.net
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the sum of ingoing and outgoing flow has to be equal for each basic block, i.e.
vertex of the CFG. Semantic constraints are more difficult to obtain; for them,
special data-flow and control-flow analysis techniques are necessary.

In the following, two example programs are given on how to obtain the struc-
tural flow constraints. The first program consists of a single if-then-else alterna-
tive, and the second contains a single while loop. In both examples, the costs
c1, . . . , cn, i.e. the worst-case execution time of basic blocks, are assumed to be
provided beforehand and to have a constant numeric value. The overall WCET
of each program is then equal to the value of the maximized objective function F
(Equation 2.13).

2.6.3.3 Example program: if-then-else alternative

The source code of the first analyzed program is shown in Listing 2.2. The corre-
sponding CFG of the program is displayed in Figure 2.5.

Listing 2.2: A program containing a single if-then-else alternative. The associated
basic blocks Bi are given in comments.

i f (p) { //B1
q := 1 ; //B2

}
else {

q := 2 ; //B3
}
r := q ; //B4

The structural constraints on the execution counts x1, .., x4 of program basic
blocks can be obtained by following the Kirchhoff’s rule of flow conservation. They
are shown in Equations 2.15a to 2.15h.

e1 = v1 (2.15a)

e2 + e3 = v1 (2.15b)

e2 = v2 (2.15c)

e4 = v2 (2.15d)

e3 = v3 (2.15e)

e5 = v3 (2.15f)

e4 + e5 = v4 (2.15g)

e6 = v4 (2.15h)
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Figure 2.5: CFG of the if-then-else alternative [26].

In order to get numerical and not only symbolic constraints, the value of e1

needs to be provided beforehand, either by the user, or automatically. For example,
if the code fragment in Listing 2.2 were located at the beginning of a program main
function, then e1 should be equal to one. If however, the whole code fragment was
located inside a loop, then e1 should be equal to the maximum number of possible
loop executions, i.e. the upper loop bound (Subsection 2.4.3.1).

2.6.3.4 Example program: while loop

The source code of the analyzed program is given in Listing 2.3. The corresponding
CFG of the program is given in Figure 2.6.

Listing 2.3: Program with a single while loop. The associated basic blocks Bi are
given in comments.

q := p ; //B1
while ( q < 10) { //B2

q++; //B3
}
r := q ; //B4

As in the previous example, the set of constraints (Equations 2.16a to 2.16i)
is obtained by following Kirchhoff’s rule of flow conservation between the vertices
(basic-blocks) and edges of the CFG. In order to numerically solve the equations,
the values of the entry edge e1 and of the loop bound B need to be specified
beforehand.
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Figure 2.6: CFG of a while loop [26].

e1 = v1 (2.16a)

e2 = v1 (2.16b)

e2 + e4 = v2 (2.16c)

e5 + e3 = v2 (2.16d)

B · e2 ≥ v2 (2.16e)

e3 = v3 (2.16f)

e4 = v3 (2.16g)

e5 = v4 (2.16h)

e6 = v4 (2.16i)

2.6.3.5 Pros and cons of IPET

The challenge with IPET is to obtain tight bounds for vi and ci, since otherwise
pessimism in the WCET estimate is the result. If ci is assumed constant for all
basic block executions, then this can be a source of pessimism, e.q. when modelling
a processor that possesses cache memory. The same basic block can have different
execution times, depending on whether there is a cache miss or a cache hit. If
ci always assumes a cache miss, this results in undue pessimism of the WCET
estimate.

Another source of pessimism in IPET arises from the encoding of loop bound
constraints (Subsection 2.4.3.1). When a loop bound B is encoded as a constraint
Cj, this results in a WCET estimate based on the assumption that the loop will
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always execute for the maximum number of iterations as specified by the bound.
However, the maximum number of loop iterations may vary according to the con-
text in which the loop is placed. Depending on its context, each loop can have
several upper bounds. Using a single upper bound that is valid for all contexts
necessarily makes the bound pessimistic and induces overestimation.

In spite of these difficulties, IPET is reported to be one of the most flexible
technique for modelling flow constraints in WCET calculation [25].

2.7 Types of WCET Analysis

A possible division of WCET analysis methods is one based on how timing in-
formation is derived. If it is derived ’offline’ from a processor model, the method
in question belongs to the class of static WCET analysis methods. If timing in-
formation is instead obtained ’online’ by execution-time measurements on a real
computer system, then measurement-based WCET analysis is implied.

Static and measurement-based methods both have the following steps in com-
mon: static source-code analysis and WCET bound calculation. During source-
code analysis, both the static and measurement-based methods perform control-
flow analysis. Static methods additionally perform the more complex data-flow
analysis as well. For the WCET bound calculation both methods can, in princi-
ple, use any of the techniques discussed in Section 2.6.

One example of differences between the two methods is processor modelling,
which is exclusively relevant for static WCET analysis. In contrast, standard-
ized and architecture independent measurement interfaces are only relevant for
measurement-based analysis.

Depending on the basic unit of source code under consideration, measurement
based methods can be further subdivided into end-to-end measurement and hybrid
methods. In end-to-end measurement the basic unit of source code is the whole
program, while hybrid methods deal with smaller units, e.g. program segments.

Common to all measurement based WCET methods is that they need to gen-
erate test data whereby to execute the software under test in order to perform
measurements. The generation of test data can be performed randomly or by us-
ing heuristics. The main advantage of heuristics is that they perform the search
in a smart way, whereas random search operates purely by chance. Some heuris-
tics can systematically search for the longest execution path by a feedback-based
improvement of the test data [25].

Hitherto genetic algorithms have often been used for measurement based WCET
estimation, for example in [27]. They have also been used for automated functional
testing of generic computer programs [28], as well as for testing real-time systems
[29] and safety-critical systems [30]. The method presented in Chapter 4 of this
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work generates test-data by a novel particle swarm optimization heuristic.

2.7.1 Static WCET analysis

The steps of static WCET analysis are the following:

1. Static code analysis and partitioning of the program into segments

2. Derivation of segment execution times

3. Calculation of the WCET bound from the combined segment execution times

2.7.1.1 Static code analysis

Static code analysis is a well developed technique from traditional compiler con-
struction. One of its concepts that is relevant for WCET analysis is the CFG
representation of a program. The CFG explicitly states the set of all statically
possible execution paths in a program. However, not all of these paths are dy-
namically possible at run-time and, therefore, all of them cannot contribute to the
overall program execution time. As analyzing all execution paths is computation-
ally expensive, infeasible paths should be eliminated from WCET analysis. There
are two approaches for reducing the number of execution paths under considera-
tion.

The first approach is to analyze the program data-flow and dependencies be-
tween the variables in order to extract flow-facts, i.e., determine which execution
paths are not feasible. The techniques used for such analysis are implemented in
modern, code optimizing compilers and in tools for static verification. Detailed in-
formation about static code analysis can be found in books on compiler engineering
and program analysis, e.g. in [31, 32].

The second approach for reducing the number of potential execution paths is
segmentation. The program is partitioned into segments where each segment con-
tains a certain number of basic blocks. Only paths passing through the segments,
not through the basic-blocks, need to be subjected to further feasibility checks.
This reduces the overall number of paths that need checking.

Many techniques which are used to determine whether a certain path is feasible
or not come from the theories of static verification and formal methods. One of
these techniques is abstract execution, which executes the program using a reduced
number of states.

For example, a program consisting of a single loop with a 32 bit integer counter
can have 232 statically possible states. If the exact value of the loop counter is
not of interest, abstraction can reduce the 232 possible states to only two states,
namely loop counter < loop limit or loop counter ≥ loop limit. The challenge
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is to find the minimum value for loop limit so that the value of the dynamic loop
counter is always below it (Subsection 2.4.3.1). Other more useful abstractions,
e.g. Presburger arithmetics, are available from the theories of formal methods.

2.7.1.2 Derivation of timing information

Unlike static source code analysis, which uses many techniques developed in other
areas of informatics, the derivation of timing information for instructions, basic
blocks, segments, and execution paths is relevant almost exclusively to WCET
analysis.

The central issue of static WCET analysis is how to construct a processor
model that can be used to yield safe and reasonably tight worst-case execution
time estimates of the categories numbered above. Up to date there exists no
systematic way of constructing such a model [25]. The challenges are twofold: first
is the inherent complexity of modern processors where the execution time of each
instruction can be influenced by the instructions preceding it and by the specific
input-data that the instruction receives. Second, it cannot be guaranteed that the
same initial state of the processor will always produce the worst-case instruction
execution time (Subsection 2.5.4). In addition to that, the closed source nature
of many commercial processors presents a further challenge in modelling their
temporal behavior.

2.7.1.3 Calculation step

The techniques used for the calculation step are not unique to static WCET anal-
ysis; they can also be applied for hybrid WCET analysis. Static WCET analysis
may use any of the three calculation techniques presented in Section 2.6. Explicit-
path-enumeration is usually avoided, since it is too computationally expensive.
Instead, tree-based-calculation and IPET are preferred.

2.7.2 End-to-end measurement

End-to-end measurement is reported to be the currently most widely used method
for WCET estimation in industry [25]. This is mostly due to its simplicity, i.e.
absence of any program or execution platform modelling. End-to-end measurement
does not provide safe WCET bounds, since there is always a possibility that not
all execution paths are exercised by the generated test data. Since the number of
potential execution paths rises exponentially with the size of the program, end-
to-end measurement quickly ’runs out of steam’ when applied to larger programs
[4].
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2.7.3 Hybrid WCET analysis

The basic feature of methods for hybrid WCET analysis is that source code analysis
and WCET bound calculation are performed by techniques similar to those used in
static WCET analysis. Timing information, on the other hand, is derived by direct
measurements on a processor system. Hence, methods for hybrid WCET analysis
share characteristics of both static WCET analysis and end-to-end measurement.

2.7.3.1 Program segmentation

The chief task of static code analysis for hybrid WCET methods is the partitioning
of the program into segments. There are two extremes cases.

Case 1 : Each program segment consists of one basic block. This results
in the maximum number of program segments; each segment has only one
execution path inside.

Case 2 : The whole program is one big segment. Since all basic blocks are in
one segment, the number of paths tends to be intractable for large programs.

Only paths within each segment are relevant for the segment’s worst-case ex-
ecution time. For a segment of reasonable size, it is relatively easy to explicitly
enumerate all paths inside it. The total number of execution paths is a function
of the number of segments. The number of segments itself is determined by the
maximum number of paths per segment i.e. the path bound [33]. Figure 2.7 illus-
trates this relationship between the number of segments and the total number of
paths.

It is the goal of program partitioning to balance the number of segments with
the average number of paths per segment. The necessary instrumentation of each
segment introduces computational overhead. Up to the point of global minimum,
the number of paths that need to be evaluated is inversely proportional to the
number of segments. Analyzing the feasibility of paths within segments and mea-
suring their execution times can be computationally intensive and time consuming
[33].

2.7.3.2 Feasibility of execution paths inside segments

After partitioning a program into segments, the next subtask of program code
analysis is to determine the feasible out of the set of possible paths for each seg-
ment.

Each segment spawns a certain number of execution paths that pass through it.
Program execution can be selectively guided to those paths in order to analyze the
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Figure 2.7: Relationship between the number of program segments n and the total
number of execution paths inside segments m. For one segment per program, the
total number of paths is maximal. Then, with the growing number of segments,
the total number of paths quickly falls, until for a certain number of segments it
achieves the minimum. After that, the number of total paths slowly rises until a
local maximum is achieved. Each segment consists of one basic block for a path
bound (PB) of one. [33]

worst-case execution time of the segment. The guidance can be achieved by using
a heuristic optimization algorithm to generate input data. The fitness function
of the algorithm should give higher preference to input data that exercise paths
spawned by the analyzed segment than to other paths.

The paths for which no input data could be found can afterwards be subjected
to model checking, which ultimately determines for each path whether it is feasible
of not. Since model checking is computationally expensive, it is only possible to
use this technique on a limited set of paths after the majority of the feasible paths
were already found by heuristics [33].

2.7.3.3 Derivation of timing information

After program segmentation and feasibility checks of the execution paths it is
possible to derive the timing information of segments. The hybrid WCET method
derives timing information by executing the program with varying test data and
measuring the execution times of the subpaths spawned by each segment. At the
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end of this process each segment is associated with the longest observed execution
time of any of its subpaths.

2.7.3.4 Calculation of the WCET bound

In the calculation step, the worst-case execution paths of program segments are
combined into the WCET bound of the whole program. In hybrid WCET analysis
the bound calculation is often performed with the IPET method, e.g. in [33].

2.7.3.5 Conclusion

Hybrid WCET analysis reduces the complexity of path coverage inherent to end-
to-end measurement by partitioning a program into segments. At the same time
it retains the advantages: it completely avoids the resource-intensive and time-
consuming construction of a processor model by deriving timing information from
target hardware. Heuristic algorithms are applied only for finding the feasible
paths inside segments, and not, as it is the case in end-to-end measurement, for
the more difficult problem of finding the WCET inducing execution path [33].

2.8 Overview of WCET Tools and Related Work

Commercial and academic WCET tools range from completely or mostly static to
completely measurement based tools. Examples of completely static tools are: aiT,
Bound-T, Chronos, Heptane, and the static prototype of TU Vienna. Examples
of mostly static tools are: Sweet, SymTA/P, the prototype of TU Chalmers, and
the hybrid prototype of TU Vienna. Completely measurement based tools are:
RapiTime and the measurement-based prototype of TU Vienna.

2.8.1 Completely static WCET tools

2.8.1.1 aiT

aiT is a commercial WCET tool from AbsInt Angewandte Informatik in Saarbrücken,
Germany. It is a static tool that obtains timing information from a processor
model. Steps of aiT are: (1) static flow analysis, (2) value analysis, cache/pipeline
analysis and (3) WCET bound calculation.

Static flow analysis is done on the object-code level. The result is a CFG anno-
tated with automatically derived flow facts. These flow facts include information
about structurally infeasible paths.

After static flow analysis, abstract interpretation is used for cache/pipeline and
value analysis. As far as it is statically feasible, value analysis determines value
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ranges of possible register contents at every program point. This information is
used for obtaining static loop bounds and semantically infeasible paths.

Flow facts about input dependent loop bounds and infeasible execution paths
that were missed in the previous analysis have to be provided by the user. The
user can specify annotations at the source code level or in a separate configuration
file.

Cache and pipeline analysis is based on a processor model and is carried out us-
ing abstract execution Cache analysis supports caches with LRU, round robin, and
pseudo-LRU replacement policies. Non-LRU policies have reduced predictability
when compared with perfect LRU policies. Pipeline analysis gives the WCET of
each basic block in the context of its execution inside the pipeline.

In the last step aiT calculates the total WCET bound. The step is designated
as path analysis, since path constraints are formulated as an ILP problem with
IPET.

The aiT tool supports a multitude of processors; among these are the Pow-
erPC MPC, Motorola ColdFire, ARM7, Renesas M32C-85, and Infineon TriCore
processors. [19, 36:22]

2.8.1.2 Bound-T

Bound-T is a tool for static WCET analysis developed at Tidorum Ltd., Finland.

The tool takes a binary executable and a user annotation file as input; it
produces the WCETs of program subroutines (with contained function calls) and
the call and control-flow graphs as output. Bound-T is used by ESA4 in its tool
chain for the verification of hard real time on-board software.

The processor model of Bound-T is constructed using information from the
processor manuals. The tool models the flow-of-control and integer-arithmetic, but
it lacks general support for more complex features such as concurrent operation of
integer and floating-point units and register overflow/underflow traps.

Basically, the tool has the following work-flow. First, limited flow analysis
detects some unfeasible program paths and loop bounds. Information about the
unfeasible paths and loop bounds that were missed has to be provided by the user.
After flow analysis, the WCET problem is modelled by IPET and solved by a
standard ILP solver.

An innovative concept of Bound-T is its use of the CFG as a pipeline state
graph. Here, nodes represent different pipeline states, and edges represent timing
dependencies between instructions. This CFG clearly models the before-after re-
lation of the instructions’ effects on variables (registers). Thereby, the tool can

4ESA - European Space Agency
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express complex interdependencies between the computational effects of instruc-
tions.

The limitations of Bound-T are twofold. First, input programs have to follow
an enforced programming style in order to conform to the patterns implemented in
the control-flow analysis. Secondly, the tool currently supports only cacheless or
processors with very small caches. Altough such processors have the disadvantage
of lesser performance, their advantage is simpler modeling and the absence of
timing anomalies.

Bound-T currently supports the Intel-8051 series, Analog ADSP-21020, Atmel
ERC32, Renesas H8/300, and the prototypes of ARM7, ATMEL AVR and ATmega
processors [19, p.36:24].

2.8.1.3 Chronos

Chronos is a static, open-source tool for WCET analysis developed at the National
University of Singapore.

It supports complex processors with out-of-order pipelines, instruction caches
and dynamic branch prediction. Furthermore, the tool accounts for the timing
effects due to interaction of the above features.

Chronos uses the SimpleScalar toolset, which is a cycle accurate processor
simulator. The toolset can simulate many processor features: different cache re-
placement policies, various branch prediction schemes, etc. Chronos can analyze
the WCET on a multitude of processors as long as they can be simulated in Sim-
pleScalar.

The input to Chronos is a program task written in C and the processor config-
uration for SimpleScalar. The CFG is constructed on the object-code level, while
user annotations have to be specified on the source code level. Annotations are
needed for bounding the maximum number of loop iterations and for information
about infeasible execution paths. Chronos can detect some loop bounds by simple
data-flow analysis ; undetected loop bounds have to be specified by the user.

The mode of operation of Chronos is the following: using the simulated proces-
sor model, the WCET of each basic block in the CFG is bounded for each possible
execution context. Execution contexts can be branch misspredictions in preceding
basic blocks or instruction cache misses in the current basic block. Afterwards, the
highest number of basic block executions in each corresponding context is bounded
by ILP. Provided with this information and linear flow constraints (loop bounds,
unfeasible paths), the final WCET of the program is calculated with IPET.

Currently, Chronos does not support data-caches; it always assumes a miss on
data-cache access. In some cases, this can lead to pessimistic WCET estimates.
[19, 36:29]
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2.8.1.4 Heptane

Heptane is a static, open-source WCET analyzer that is developed at IRISA,
Rennes. It can analyze C programs either on source or object code level.

The bound calculation on the source-code level, uses the tree-based structural
approach as described in Subsection 2.6.2. The bound calculation on object-code
level uses IPET (Subsection 2.6.3) and operates on the CFG extracted from the
object-code.

Both calculation methods provide safe WCET bounds. The structural method
is faster than the IPET method, but it delivers a more conservative WCET esti-
mate. It has no support for compiler optimizations at the object-code level. These
optimizations can create a mismatch between the CFG on the object-code level
and the program syntax tree on the source-code level.

In Heptane, the information about loop bounds, mutually-exclusive and unfea-
sible path is provided exclusively by the user using symbolic annotations in source
code. Currently, Heptane lacks any capability for static flow-analysis. The tool
mainly concentrates on modelling hardware timing effects.

Heptane accounts for the effects of instruction-caches, pipelines and branch-
prediction on program timing. Data-caches are currently not supported. All
processor features are modelled using a microarchitecture-independent formalism,
which enables Heptane to be easily retargeted to new architectures.

Currently, Heptane is limited to scalar monoprocessor architectures with in-
order pipelines. Examples of supported processors are: Pentium 1, StrongARM
1110, Hitachi H8/300 and the virtual MIPS processors. [19, p.36:31], [2]

2.8.1.5 The static prototype of TU Vienna

The prototype of TU Vienna for static WCET analysis operates on wcetC - a
subset of C - which contains language constructs for user annotations of infeasible
execution paths. The prototype is integrated with a modified GNU C compiler to
keep track of the code optimizations performed during compilation.

An interesting feature of the prototype is the support for automatic timing anal-
ysis in the Matlab/Simulink toolchain. When operating as part of the toolchain,
the prototype needs no user annotations, and it provides reasonably tight WCET
bounds. When working on generic wcetC programs, the quality of the results
depends heavily on the quality of user annotations.

The tool supports the M68000, M68360, and the C167 processors. [19, 36:26],
[9]
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2.8.2 Mostly static and hybrid WCET tools

2.8.2.1 Sweet

Sweet is a modular WCET analysis tool with an integrated research compiler. It
is developed at the Mälardalen University of Technology in Sweden.

The tool’s main components are flow analysis, the memory and pipeline anal-
ysis, and bound calculation. The integrated compiler enables the code analysis on
the intermediate code level, thus avoiding differences between the analyzed and
executed code.

Flow analysis is carried out by a combination of:

• Program slicing which restricts the analysis to only those program parts that
can affect the flow-of-control;

• Pattern matching which can automatically detect loop bounds of simple
loops;

• Abstract execution for the rest of the code.

Execution time analysis together with memory and pipeline analysis is carried
out by a simulation on a cycle-accurate processor model. Currently supported are
the ARM9 and NEC V850E processors. From these only the model of NEC V850E
has up to now been validated against real hardware.

The bound calculation is implemented by using three different calculation tech-
niques: the quick path-based, the global IPET-based and a hybrid clustered tech-
nique, which is combination of local IPET and local path-based calculation.

Sweet currently supports the analysis of in-order pipelines and one-level in-
struction caches. [19, p.36:34], [13, p.443]

2.8.2.2 Prototype of the Chalmers University of Technology

The prototype of the Chalmers University of Technology in Sweden supports
WCET analysis of the high performace PowerPC architecture with pipelines and
multiple cache banks.

Two notable features of the prototype are the use of a cycle accurate processor
simulator for symbolic code execution without any input data and binary code
transformations which eliminate the potential for timing anomalies from dynamic
instruction scheduling (Subsection 2.5.4).

The tool currently supports only a subset of the PowerPC instruction set;
therefore the analysis is safe only for programs using those instructions. Further-
more, the tool is limited by the high computational requirements of the employed
analysis techniques.
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2.8.2.3 SymTA/P

SymTA/P is a tool for mostly static WCET analysis, developed at the Braun-
schweig University of Technology in Germany. It produces both the upper and
lower bounds on the execution time of C programs.

SymTA/P tries to avoid the pitfall found in most static tools, that they are
platform specific, by separating the flow analysis on source code level from the
measurements on object-code level.

Flow analysis is platform independent; its result is the program CFG where
each node corresponds to a single feasible path (SFP) sequence. An SFP sequence
is a sequence of basic blocks which is invariant of program input data. SFP se-
quences reduce the number of instrumentation points needed for measurements,
since now, instead of instrumenting each basic block separately, it is only necessary
to instrument the beginning and the end of the SFP sequence.

The execution time measurement of each node in the CFG is obtained by either
simulating the program on a cycle accurate processor simulator or by executing it
on an evaluation board. The tool supports static analysis of data-cache accesses
and symbolic execution is used to identify the input-dependent memory accesses.
The timing behavior of such accesses is bounded with ILP.

The tool supports the execution time analysis of multiple processor architec-
tures, e.g. ARM9, TriCore, StrongARM, C167, and i8051. [19, p.36:38]

2.8.2.4 The hybrid prototype of TU Vienna

The hybrid prototype developed at the TU Vienna real-time-systems group5 is a
combination of a static approach for source code analysis and bound calculation
and a measurement based approach for the derivation of execution time.

During static code analysis, the program is partitioned into segments of rea-
sonable size, each segment containing multiple basic blocks (Subsection 2.7.3.1).
Furthermore, feasible paths within each segment are identified by a stepwise three-
phase approach.

1. Input data generated by random search are used to exercise program paths
within all program segments in order to easily identify a subset of all feasible
paths.

2. A genetic algorithm is employed to selectively generate input data that ex-
ercise specific segments in order to find additional feasible paths.

3. Model checking is used to find feasible paths in each segment that were missed
in the preceding two phases.

5http://ti.tuwien.ac.at/rts
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The multiphase approach compensates for the computational expense of model
checking alone; model checking needs to be applied only to a small number of
potentially feasible paths. The execution times of program segments are obtained
by executing the program with the generated input data on real hardware. After
local measurements, the WCET of each segment is greedily combined into the
global WCET by using IPET.

The downside of this method is that the compiler may not do any optimiza-
tions on the object-code level, since the method does its static code analysis on
the source-code level. Furthermore, as with all measurement based methods this
method is not safe for processors with timing anomalies. For such processors,
greedily taking the WCET of parts of the program - in this case of program seg-
ments - does not guarantee to produce the WCET of the whole program.

The advantage of the hybrid method is the relative ease of porting to new
architectures, which only requires modifying the measurement methodology. The
method was applied to the HCS12 and Pentium processors. [19, p.36:29], [33]

2.8.3 Completely measurement based WCET tools

2.8.3.1 RapiTime

RapiTime is the commercial version of pWCET, a research tool developed at
the University of York. The tool is completely measurement based, i.e., all ba-
sic block timing information is derived from measurements. Since the tool does
not use a processor model for obtaining timing information, in principle, it can
provide WCET bounds for any processor architecture. This only requires port-
ing the object-code reader and the tracing mechanism whereby measurements are
obtained.

RapiTime takes a program written in C, Ada, or an executable as input. Fur-
thermore, users need to provide test data for measurements and annotations in
program code. Annotations can be used to guide the WCET analysis of the tool
and to determine execution contexts. Different execution contexts help to analyze
inlined loops and different calls to the same function. RapiTime displays a html
report as output; the report contains WCET predictions and measured execution
times for each program function.

The WCET bounds provided by measurement-based tools are generally not
safe, because of timing anomalies present in modern processors as discussed in
Subsection 2.5.4. A novel concept of RapiTime which deals with this problem is
the use of probability distributions of basic block measurements. Using a probability
algebra on a program tree representation, basic block probabilities are combined
into the WCETs of program functions and subfunctions.

It is believed by the authors of RapiTime that absolute WCET bounds of a
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program are overly pessimistic if the probability of the worst case event happening
is small. For example, if the probability of a missed deadline caused by a wrong
WCET task prediction is of the same order of magnitude as other dependabil-
ity estimates of the hard real-time system, e.q. (10−12), then this is deemed as
acceptable.

Processors currently supported by RapiTime are the Motorola MPC555, HCS12,
ARM, MIPS, and NecV850. [19, p.36:38], [34]

2.8.3.2 The measurement-based prototype of TU Vienna

The prototype of TU Vienna for measurement based WCET analysis is an end-to-
end measurement based (Subsection 2.7.2) approach that greedily maximizes the
execution-time objective function.

The method works as follows: at the beginning, a population of input data
vectors is initialized randomly and used as input for the analyzed program. The
program execution time for each of the input is measured and stored. Based
on this information each data vector gets a certain fitness value, depending on
the length of execution. Data vectors which induce longer execution times are
assigned higher fitness. Subsequent populations of input data are generated from
the previous populations using a genetic algorithm (GA). The generation of new
population and corresponding measurements are repeated until the termination
criterion is reached.

This method does not guarantee a safe WCET bound; it bounds the WCET
from the lower side of possible execution times. As with all measurement and
hybrid methods, the porting to new processor architectures is relatively easy. The
method was tested on the C167 and PowerPC processors. [19, p.36:27], [27]

2.8.4 Related work

The method presented in this bachelor thesis (Chapter 4)has the most similarity
to the end-to-end measurement approach (Atanassov [27], Subsection 2.8.3.2) and
to the hybrid approach (Wenzel [33], Subsection 2.8.2.4). The main differences are
in the population generation strategy, timing information derivation, method of
WCET calculation and in program partitioning. A detailed comparison is given
in Section 4.7 of Chapter 4.



Chapter 3

Particle Swarm Optimization

3.1 Introduction

Particle swarm optimization (PSO) is a heuristic optimization technique that sim-
ulates information sharing between social animals, such as insects, flocks of birds,
and others.

The basic idea of the PSO algorithm is that sharing certain information between
the entities, like the location of food, creates special group dynamics, i.e. group
intelligence, which carries a distinct evolutionary advantage for the whole group.

One animal by itself is not able to search a big area of space. However, by
sharing its previous experiences about food locations with other animals, each
animal increases its own information about the surroundings. Consequently, the
probability of each animal finding food increases.

In the following discussion, the natural animals will be replaced by the concept
of a massless, volumeless particle. Each particle occupies a point in m-dimensional
space, has a certain velocity, and moves in a certain direction at discrete time steps.

The social simulation is achieved by the following simple rules:

1. The fitness of each particle is calculated by a fitness function that takes the
current position of a particle as input.

2. The change of the particle position is calculated at every iteration by adding
the updated velocity vector to the current position. This brings about the
movement of particles in the search space.

3. The change of the particle velocity vector is determined by the previous
velocity vector, the previous best position, and the group’s best position.
Particles that are immediate neighbors to each other form a group. The
memory of each particle about its previous best position is called the history
best (hbest) position; it is used to model simple nostalgia, a tendency of

59
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particles to return to the place that most satisfied them in the past. The
group or neighborhood best position (gbest) is a position with the highest
fitness that was discovered by the particles of some group. The definition
of a group depends on the definition of a topology, i.e., which particles are
direct neighbors.

3.2 The Continuous PSO Algorithm

The continuous PSO algorithm (CPSO) uses the concepts from the above introduc-
tion in a straightforward way. It is an abstract simulation of a natural phenomenon:
particles flying in the search space, combined with the rules of information sharing
between living organisms.

3.2.1 The continuous search space

The continuous PSO algorithm is characterized foremost by operating inside an
m-dimensional search space Xm, where m is the number of dimensions, and X is a
set containing numbers from some interval I = [Xmin, Xmax]. The constants Xmin

and Xmax can be doubles in a C implementation. They store the minimum and
maximum possible value of each particle coordinate. Since particle coordinates are
encoded in computers with a finite number of bits, the interval I is by necessity
countable. The continuous PSO algorithm can also operate on integer coordinates
by rounding each double coordinate to its nearest integer value.

In this work a version of both the continuous and the discrete binary PSO
algorithm is implemented. Since the discrete binary PSO algorithm is an extension
of the continuous PSO algorithm, it is first necessary to discuss the concepts of
continuous PSO. The discrete binary PSO is discussed in Section 3.3.

3.2.2 Definition of a PSO particle

The particle is the central object whereupon the PSO algorithm operates; how-
ever, its modelling can take various forms. From previous work on particle swarm
optimization, e.g. [35, 36, 37], one could conclude that the concepts related to
PSO particles: fitness, position, velocity, etc. should each be modeled as a sep-
arate array containing only one type of information for the entire particle swarm.
Upon trying this approach, the information about a single PSO particle tended to
become dispersed in many data structures.

To avoid this, a new data type for the PSO particle has been introduced in
Listing 3.1. It defines a data structure that encapsulates all relevant information
for a single PSO particle. Using it, the particle swarm is represented as an array
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of PSO particles and not as a set of arrays where each array models a single PSO
concept.

This approach reduces code coupling and gives a standard interface to the PSO
particles. It makes it possible to write functions that operate directly on the par-
ticle data type, thus treating PSO particles as objects. In the author’s experience
during the practical implementation, this has resulted in more code reuse, easier
configuration, and more freedom in experimenting with PSO extensions (Section
3.5). The pointers in Listing 3.1, e.g. ∗position, are implementation dependent;
the reader may easily imagine them as object references.

Listing 3.1: Definition of a PSO particle

/∗ PSO p a r t i c l e ∗/
typedef struct p a r t i c l e s {

p o s i t i o n t ∗ p o s i t i o n ;
p o s i t i o n t ∗ v e l o c i t y ;
double f i t n e s s ;
p a r t i c l e l i n k e d l i s t t ∗ n e i g h b o r p a r t i c l e s ;
struct p a r t i c l e s ∗hbest , ∗ gbest ;

} p a r t i c l e t ;

/∗ p o s i t i o n in search space ∗/
typedef union p o s i t i o n u {

int p o s i n t [ ] ;
double pos double [ ] ;

} p o s i t i o n t ;

/∗ p a r t i c l e swarm ∗/
typedef struct p a r t i c l e l i n k e d l i s t s {

p a r t i c l e t ∗ t h i s ;
struct p a r t i c l e l i n k e d l i s t s ∗next ;

} p a r t i c l e l i n k e d l i s t t ;

3.2.3 Algorithm pseudocode

Algorithm 1 shows pseudocode of the continuous PSO algorithm. Each of the
algorithm tasks are discussed in the following subsections.

3.2.4 Particle initialization

The important subtasks of particle initialization are the initialization of memory
and the setting of initial particle values. The setting of particle values primarily
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Algorithm 1 Pseudocode of the continuous PSO algorithm

1: Procedure PSO CONTINUOUS ()
2: Initialize particles
3: while terminate() is false do
4: For each particle: Evaluate position
5: Update neighborhood relation between particles
6: for each particle do
7: Determine if current position better than history best position
8: Determine group best position in particle’s neighbourhood
9: Update velocity vector

10: Update positions according to the velocity vector
11: end for
12: end while

deals with the initial state of the particle’s position, velocity, fitness, and the
neighborhood relation.

3.2.4.1 Initialization of particle memory

Memory initialization includes the static reservation of memory space at the be-
ginning, as well as providing functions for dynamic memory allocation during
algorithm execution. Furthermore, functions for freeing memory should be imple-
mented as a complement to initializing memory. After the reserved memory is no
longer needed, it should be deallocated in order to avoid program memory leaks
and operating system slowdowns or possible crashes. Exact details of memory
allocation are relevant when the PSO algorithm is implemented in a low-level pro-
gramming language without support for automatic memory management, e.g. in
C, but they are not necessary for the understanding of PSO.

3.2.4.2 Initial particle position

When initializing particles it is desirable that their positions are equally distributed
over the whole range in search space Xm, so they can start searching for the
optimum from different positions. The goal of position initialization is to achieve
the greatest possible initial coverage of the search space. Usually, this is achieved
by initializing the particle coordinates with random values from the interval I =
[Xmin, Xmax]. The interval I thus defines the borders of the search space.
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3.2.4.3 Initial particle velocity

The initialization of particle velocity vectors can basically be done in two ways.
One can choose a steady state model and initialize all particles to zero velocity at
the beginning. An alternative would be to randomly initialize the velocity vectors
using a certain maximum velocity limit.

3.2.4.4 Initial particle fitness

Particle fitness can be set to any value, usually the minimum possible fitness. The
initial fitness value does not influence the starting state of the computation, since
it is immediately overwritten by position evaluation in the next step.

3.2.4.5 Initial particle neighborhood relation

The neighborhood relation between particles is needed for determining the group
best position (gbest). Depending on the used topology (discussed in Subsection
3.4.1), each particle can have a different number of neighbors. This starts from
two neighbors per particle in the circle topology up to all particles being neighbors
in the star topology. The neighborhood relation can change at runtime which
motivates modelling the neighbors of each particle as a dynamic linked list in
Listing 3.1.

3.2.5 Particle evaluation

The evaluation step in the continuous PSO algorithm deals with the calculation of
fitness, based on the current position of the particle. The calculation is performed
by a fitness function which is actually the objective function of the problem that
needs to be optimized.

particle fitness := fitness function (particle position) (3.1)

3.2.6 Update of particle history best position

Each particle has a certain position called history best or simply hbest with the
highest fitness among all previous positions of a particle. This position repre-
sents the particle’s memory of travelling through the search space. It is used
in subsequent steps of the algorithm to influence the update of the particle’s
velocity vector. For convenience the hbest position can be encapsulated in a
separate particle type. It is updated in every iteration by the following rule:

if (particle→ fitness) > (particle→ hbest particle→ fitness) then
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particle→ hbest particle := particle
end if

3.2.7 Update of particle group best position

In contrast to the hbest position, that is unique to each particle, the group best
position (gbest) is the current best position among a group of particles. Which
particle belongs to which group is defined by the neighborhood relation. The gbest
position influences the update of the velocity vector of each particle in a group. It
is determined by the following rule:

for g ∈ (particle→ neighbor particles) do
if (g → fitness) > (particle→ fitness) then
particle→ gbest particle := g

end if
end for

3.2.8 Update of particle velocity

After updating the hbest and gbest position, the velocity vector of each particle is
also updated. The new velocity vector is a function of the old velocity vector, the
old particle position, and the recently updated particle’s hbest and gbest position.
The rule for the update of the velocity vector is the following:

~v t+1 = ~v t +

∆~v t+1︷ ︸︸ ︷
c1 · rand1 · ( ~hbest− ~p t)︸ ︷︷ ︸

~vhbest

+c2 · rand2 · ( ~gbest− ~p t)︸ ︷︷ ︸
~vgbest

, (3.2)

where c1 = cognitive constant,

c2 = social constant

The factors c1 and c2 in Equation 3.2 are the user defined cognitive and social
constant. Sometimes they are also called the learning factors. The random factors
rand1 and rand2 can be any rational number in the interval [0.0, 1.0]. The value of
2 is often taken for the cognitive and social constant, since this gives the mean of
1 when it is multiplied with the random factors. Using these settings, the particles
tend to ’overfly their targets half of the time’ [35] and, thus, explore the space
beyond and between the known local optima. This ability is responsible for at
least some success of the PSO algorithm [38].

The random factors used in the calculation of the new particle velocity vector
introduce indeterminism into the PSO simulation. What is known about the vector
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∆~v t+1 is that it will be oriented somewhere in the direction between ~hbest and
~gbest. Its exact orientation and value depend on the random terms, which is

sketched in Figure 3.1.

x

y

0

∆~v t+1

∆ ~v t+1

~p

∆ ~v t+1

~hbest ∆ ~v t+1

~gbest

Figure 3.1: Change of the velocity vector ~v t+1 for a hypothetical particle p with
position ~p ∈ X2. More than one possible ∆~v t+1 illustrates the effect of random
terms rand1 and rand2 in Equation 3.2.

3.2.8.1 Limiting particle velocity

Generally, the expression in Equation 3.2 allows for unbounded velocities. Thus,
after a sufficient number of iterations, particle velocity could reach values approach-
ing the diameter of the whole search space. This would make The granularity of
such movement would be too great to effectively explore the defined search space.
Thus, it is necessary to limit the particle velocity as shown in Equation 3.3. Each
component vi of the particle velocity vector ~v is limited with a scalar Vmax.

limit v (vi) =

{
vi if |vi| ≤ Vmax

sign(vi) · Vmax otherwise
(3.3)

It is reported in [39] that good results are obtained with a setting Vmax ≤ Xmax

where Xmax is the maximum absolute value of a single coordinate in search space.
For Vmax=Xmax particles can move outside of the defined search space borders. If
a particle is inside the defined search space, then every position in it is inside the
movement range over a single iteration [~0, ~Xmax]. If a particle leaves the defined
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search space, it can return provided that the positions inside have better fitness
from those outside.

A more liberal velocity limit Vmax > Xmax can also provide good results when
used with one of the techniques for velocity manipulation, e.g. inertia or constric-
tion that are discussed in Subsection 3.5.1.

3.2.9 Update of particle position

Particle movement is simulated by adding the new velocity vector ~v t+1 of each
particle p to its current position ~p t in every algorithm iteration. The resulting
vector is stored as the new particle position ~p t+1 as shown in Equation 3.4. The
geometric interpretation of Equations 3.4 and 3.2 is given in Figure 3.2.

~p t+1 = ~p t + ~v t+1 (3.4)

3.2.9.1 Limiting particle position

In order to guarantee that particles stay withing the defined search space Im, where
I = [Xmin, Xmax], each component pi of the new particle position ~p t+1 should be
limited as shown in Equation 3.5. If the dynamic particle range is not limited,
inefficiency may result, since search could be conducted over a bigger space than
necessary.

limit p (pi) =


pi if pi ∈ [Xmin, Xmax]

Xmin if pi < Xmin

Xmax if pi > Xmax

(3.5)

An alternative approach is to stop any movement that would take the particle
further away once it is already outside of the defined search space. This is achieved
by setting the appropriate component vi of the particle velocity vector ~v t+1 to zero.
The exact procedure is shown in the following code fragment:

if (pj > Xmax and vj > 0) or (pj < −Xmax and vj < 0) then
vj := 0

end if.

After stopping for a few iterations, the particle will again move inside the
defined search space, since it is drawn there by the group’s gbest position. Only
if the particle finds the global optimum outside of the defined search space, it
will not return, because both its hbest and gbest will be set to the position of the
global optimum. In that case the particle in question would lead a number of other
particles outside of the defined search space. This problem can be prevented by



3.2. THE CONTINUOUS PSO ALGORITHM 67

x

y

~v t

~vhbest

~v t+1

~vgbest

0

~gbest

~hbest

~p t+1

~p t

Figure 3.2: Geometric interpretation of update of particle velocity and position.
The meaning of the variables is the following: vectors ~p t and ~v t are old particle
position and velocity. Vectors ~vhbest and ~vgbest are the components of the new

velocity vector ~v t+1, oriented at particle’s ~hbest and ~gbest position respectively.
The new particle velocity vector ~v t+1 is obtained by adding a linear combination
∆~v t+1 of ~vhbest and ~vgbest to the old velocity vector ~v t according to Equation 3.2.
The new particle position ~p t+1 is the sum of ~p t and ~v t+1 as in Equation 3.4. [40]

modifying the fitness function to assign the worst fitness to all positions outside
of the defined search space.

3.2.10 Values for the cognitive and social constant

The value of 2 is a commonly used, e.g. in the original paper on PSO [35], but not
the only possible value for the learning factors in Equation 3.2. These parameters
can vary from one PSO implementation to another. It is reported that values of
less than 2, e.g. 1.49, are also not uncommon [41, 39].

No definitive conclusions have been reported on the case when the learning
factors have asymmetric values [41]. In experiments in Chapter 5, Subsections
5.1.2.1, 5.1.3, 5.2.2, and 5.2.3, asymmetric and symmetric learning factors have
both demonstrated optimal behavior in some cases. What is known, however, is
that using only the cognitive or social constant alone does not bring good perfor-
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mance [41]. Experiments in Chapter 5 have shown that PSO search does not work
at all without the social constant, while only using the social constant works, but
with suboptimal performance.

Slightly decreasing the value of the social constant and increasing the value
of the cognitive constant should, in theory, emphasize independent particle search
and deemphasize group search. Alternatively, group search can be emphasized and
individual search deemphasized, by increasing the social constant and decreasing
the cognitive constant.

The learning factors limit the maximum change of particle velocity, i.e. move-
ment granularity in a single iteration step. The user can guide the behavior of the
PSO simulation by controlling these parameters.

The quality of the cognitive and social constant is related to the specific prob-
lem that is being analyzed. Problem parameters include the size of the search
space, the shape of the objective function used as the fitness evaluation function,
the number of particles in the simulation, etc.

3.2.11 Limitations of the continuous algorithm

While the continuous PSO algorithm performs well on continuous objective func-
tions, some research shows that it can have difficulties dealing with discrete vari-
ables [41]. In a discrete environment, the continuous PSO can degenerate to ran-
dom search. The concept of velocity and position update inspired by movement
in Euclidean space (Equation 3.2) may not apply to discrete spaces. The continu-
ity of objective functions (sphere, Griewank, Rastrigin, Rosenbrock) employed as
test optimization problems in the papers referred to in [41] could have been one
reason for the apparent stability of the continuous PSO. Stability in this sense im-
plies that the particle population does not change its mode of behavior with every
change of the environment [42]. The prospect of instability of the continuous PSO
for discrete objective functions motivates the introduction of discrete binary PSO,
operating on a probability search space.

3.3 The Discrete Binary PSO Algorithm

The discrete binary PSO algorithm (DPSO) translates the idea of particle position
and velocity update from the Euclidean space, used in the continuous PSO algo-
rithm, to the probability space. Each bit that encodes a certain particle coordinate
in the Euclidean space now becomes a vector component.
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3.3.1 The probability search space

The DPSO algorithm operates on an m × n dimensional probability search space
Pm×n where m is the number of coordinates in the ordinary sense, and n is the
number of bits used to encode each coordinate. The set P contains real values
from the interval J =]0, 1[. By using a simple stochastic experiment s, probability

vectors ~p ∈ Pm×n are converted to binary vectors ~b ∈ Bm×n where B = {0, 1}.
Afterwards the vectors ~b can be decoded into coordinates of the Euclidean search
space Xm by a certain decoding function d. The set X contains numbers from some
interval I = [Xmin, Xmax]; the size of I is determined by the number of encoding
bits n. The conversion between different spaces is illustrated in Equation 3.6.

Pm×n s−−→ Bm×n d−−→ Xm (3.6)

3.3.2 The discrete binary particle

The discrete binary particle can be represented by an m × n matrix where m is
the number of coordinates, i.e. the number of dimensions in the Euclidean search
space, and n is the number of bits needed to encode a single coordinate.

3.3.2.1 Probability position of discrete binary particle

Each entry pij ∈]0.0, 1.0[ of the m × n matrix of bit probabilities Pp contains the
probability that bit j from dimension i will assume a zero or one. The whole
matrix is a complete representation of the particle probability position. Each row
encodes the probability of one coordinate in Xm.

Pp =

p11 .. p1n

. . .

pm1 .. pmn

 (3.7)

3.3.2.2 Realized position of discrete binary particle

Each entry rij ∈ {1, 0} of the m×n matrix of realized bits Pr contains the realized
value of bit j from dimension i. This matrix is computed by applying the stochastic
experiment in Equation 3.11 upon entries of the Pp matrix.

Pr =

 r11 .. r1n

. . .

rm1 .. rmn

 (3.8)
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Matrix Pr contains the binary encoded realized position of a particle. It can be
decoded as a vector ~p in Euclidean space by a decoding algorithm d (Subsection
3.4.5). Each component of ~p is decoded from one row of Pr (Equation 3.9).

d(Pr) = ~p = (p1, . . . , pm) (3.9)

3.3.2.3 Probability velocity of discrete binary particle

Each entry vij of the m×n matrix of probability velocity Vp contains the value of
probability change for each bit j from dimension i. This matrix is used to update
the matrix of bit probabilities Pp (Subsection 3.3.7).

Vp =

v11 .. v1n

. . .

vm1 .. vmn

 (3.10)

3.3.3 Algorithm pseudocode

Algorithm 2 shows the pseudocode of discrete binary PSO. Basic steps of the algo-
rithm are: initialization of particles (memory, position, and velocity), calculation
of fitness, update of bit probability velocity based on gbest and hbest, and the
update of bit probability. Bit probabilities are realized to 0 or 1 values in binary
space by a stochastic experiment. Afterwards, vectors from binary space are de-
coded to Euclidean space in order to apply the fitness function and evaluate each
position.

Algorithm 2 Pseudocode of the discrete binary PSO algorithm

1: Procedure PSO DISCRETE ()
2: Initialize particles
3: while terminate() is false do
4: For each particle: Evaluate current position ~p
5: Update neighborhood relation between particles
6: for each particle do
7: Determine if current position ~p better than hbest position
8: Determine gbest position in particle’s neighbourhood
9: Update probability velocity Vp

10: Update probability position Pp

11: Derive realized position Pr from Pp

12: Decode Pr as a vector ~p in Euclidean space
13: end for
14: end while
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3.3.4 Deriving of realized position from probability posi-
tion

In line 7 of Algorithm 2, the realized particle position is obtained by applying a
simple stochastic experiment on entries of the matrix of probability positions Pp.
The experiment consists of testing whether each entry pij ∈ Pp has a greater or
equal value than a random variable X that is uniformly distributed over an interval
[0, 1]. The result of the test in Equation 3.11 is encoded as a 0 or 1 entry in the
matrix of realized positions Pr.

pij ≥ X, where X ∼ U[0, 1] (3.11)

The random variable X in the above test is usually implemented by a random
number generator. The seed used for the generator should be different in each
PSO run. Otherwise, two PSO runs with the same initial settings would perform
an identical simulation and produce the same optimization results.

The pseudocode for the derivation of realized particle position is given in the
following code fragment:

for i= 1 to m do
for j= 1 to n do

if ( pij ≥ rand()) then
rij = 1

else
rij = 0

end if
end for

end for.

3.3.5 Decoding of realized position and calculation of fit-
ness

In line 12 of Algorithm 2, the realized position of each particle p in binary space
Bm×n is decoded as a vector ~p in Euclidean space Xm according to Equation 3.9. A
selection of methods used for encoding in binary space are discussed in Subsection
3.4.5.

Particle fitness is calculated in line 4 of Algorithm 2 by a fitness function f
which evaluates the current particle position ~p in Euclidean space. The choice of
the fitness function is problem dependent. A selection of fitness functions useful in
the domain of worst-case execution time analysis is discussed in Subsection 4.3.2.
The following code fragment demonstrates the position decoding and fitness cal-
culation for some particle p. Variable m is the number of dimensions in Euclidean
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space, while ri is the i-th row of matrix Pr.

for i = 1 to m do
pi = decode binary stream (ri)

end for
fitness(p) = f (~p)

3.3.6 Update of probability velocity

After the fitness of each particle is calculated, it is possible to infer the hbest
position of each particle in line 7 of Algorithm 2. With the additional information
of neighborhood relation between particles it is possible to determine the gbest
position in line 8 of the same algorithm. The rules for the update of hbest and
gbest are similar to those of the basic PSO algorithm. The new probability velocity
of each particle is updated in line 9 based on the particle’s hbest and gbest position.
The pseudocode for the update of probability velocity is displayed in Algorithm 3.

Since the terms (hbestij − rij) and (gbestij − rij) in Algorithm 3 can only have
three possible values from the set {−1, 0, 1}, the factors c1 and c2 together with
the random factors rand1 and rand2 are dominant in determining the absolute
change ∆vij of each velocity component.

The result of the difference terms only controls the direction of ∆vij. Again, m
is the number of dimensions in Euclidean space, and n is the number of bits per
dimension.

The factors c1 and c2 have the same role as the cognitive and social constant
in the continuous PSO algorithm. Their exact value is a parameter of the system;
often used values are c1 = c2 ∈ [0.0, 2.0].

Algorithm 3 Velocity update in discrete binary PSO

for i = 1 to m do
for j = 1 to n do

vij = vij +

∆vij︷ ︸︸ ︷
c1 · rand1 · (hbestij − rij) + c2 · rand2 · (gbestij − rij)

vij = limit v(vij)
end for

end for

3.3.7 Update of probability position

The pseudocode for the update of probability position in line 10 of Algorithm 2 is
shown in the following code fragment:
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for i = 1 to m do
for j = 1 to n do
rij = S (vij)

end for
end for.

The probability position update in discrete binary PSO is only a function of
probability velocity and not a function of both probability velocity and previous
probability position, which would be analogous to continuous PSO. The probability
position is limited to the interval ]0.0, 1.0[ by the sigmoid function S (x) [38].

S (x) =
1

1 + e−x
(3.12)

3.3.8 Maximum value of probability velocity

The function limit v that limits the probability velocity in Algorithm 3 is the same
as the function in Equation 3.3 used for the continuous PSO. It has the task to
limit the entries of the Vp matrix to a scalar value Vmax, which together with the
learning factors c1 and c2 is another parameter of the DPSO system. The value of
Vmax controls whether new realized positions shall be tried even after the particle
attains a certain probability position, i.e., the probability position that leads to
certain realization of the currently known optimum in Euclidean space to which
all the particles are converging.

Examples of absolute Vmax values recommended in literature are 6.0 and 10.0
[38], whereas other values are also possible. For example, if Vmax is set to 6.0, then
according to Equation 3.13 there will be an approximate probability of 0.0025 that
a bit entry in Pr may flip even when its corresponding component of probability
velocity, vij, reaches Vmax or −Vmax. For Vmax=10.0, the probability of a random
bit flip is even smaller, only 0.000045.

Using the language of genetic algorithms: the value of Vmax controls the muta-
tion rate of the particle’s matrix of realized bits; smaller Vmax values allow higher
mutation rates. From the PSO point of view: the value Vmax sets the limit on
search space exploration after the particle swarm converged on a certain known
optimum position.

rij =
1

1 + e−vij
(3.13)

3.3.9 Statistic analysis of the update of probability velocity

The velocity update in discrete binary PSO 3 can be analyzed case by case for
different values of hbestij, gbestij, and rij. Since each of the variables is binary,
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Case hbestij gbestij pij ∆vij

1. 0 1 0 −Ψ2

2. 0 1 1 +Ψ1

3. 1 0 0 −Ψ1

4. 1 0 1 +Ψ2

5. 1 1 0 −(Ψ1 + Ψ2)
6. 1 1 1 0
7. 0 0 0 0
8. 0 0 1 +(Ψ1 + Ψ2)

Table 3.1: Different cases of probability velocity update for DPSO.

eight different cases, shown in Table 3.1, can be distinguished.

vij = vij +

∆vij︷ ︸︸ ︷
(rij − hbestij) ·Ψ1 + (rij − gbestij) ·Ψ2 (3.14)

Equation 3.14 is equivalent to the velocity update in Algorithm 3, but it uses the
distributional notation for the product of random factors rand1, rand2 and learning
constants c1, c2. In this notation, Ψ1 and Ψ2 are terms with a uniform distribution
U[0, c1] and U[0, c2] respectively. If, as it is usual, the learning constants have the
same value c = c1 = c2, this can be written as Ψ1,Ψ2 ∼ U[0, c].

The probability density of velocity change ∆vij was analyzed in [43] for a single
particle in one-dimensional space. Fixed values were used for the binary variables
hbest and gbest, and a Monte Carlo simulation was performed for each of the
four cases. The statistics collected during the simulation revealed a distribution of
50−50% for a value of realized position rij = 0 and rij = 1. Based on this fact and
the uniform distribution of Ψ1 and Ψ2, it was possible to analyze the distribution
of the velocity component change ∆vij. This analysis is summarized in Table 3.1.

For Case 1 or 2, ∆vij has a distribution [−Ψ2,Ψ1], which is centered around
zero. For Case 3 or 4, the distribution [−Ψ1,Ψ2] of ∆vij is also centered around
zero. In Cases 6 and 7 no change of velocity occurs. Only in Cases 5 and 8
there is significant velocity change. In Case 5 the distribution of ∆vij is (−Ψ1 −
Ψ2) = −(Ψ1 + Ψ2). The sum of these two uniform distributions yields a triangular
distribution whose center is less than zero. In Case 8 the distribution of ∆vij is
(Ψ1 + Ψ2) which is a triangular distribution whose center is greater than zero.

The work [43] concludes that the probability of significant velocity change ∆vij

is fairly small in discrete binary PSO, since it occurs only in Cases 5 and 8.
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3.4 Algorithm Modules

Both the continuous and the discrete discrete binary version of PSO have in com-
mon the concepts of topology, metric, and neighborhood relation. The encoding
of particle positions is straightforward in the continuous algorithm, whereas in
the discrete binary version there are at least two possibilities: binary and gray
encoding.

Each of the above concepts can be modelled in different ways with a varying
degree of complexity. There is more than one algorithm to do the job for each
task, but the input and output generally have to conform to the requirements set
by the rest of the algorithm. The implementation of each concept leaves much
room for freedom and presents many design choices, e.g., which metric shall be
used to measure the distances between particles, how shall it be implemented,
what topology best captures group dynamics and information sharing between the
particles, and how much should a single bit flip in binary space be able to change
the position of a particle in Euclidean space.

In the practical implementation it was deemed best to implement the solutions
for each concept inside a separate module. Since the computational complexity
inside each module approaches the complexity of the PSO algorithm, this orga-
nization provides good encapsulation and reduces the overall complexity of the
implementation.

3.4.1 Topology of the Particle Swarm

Topology determines the number of neighbors for each particle. For each particle,
the h nearest particles are considered its neighbors. Which particles are more or
less distant is determined by the metric. The value of h can be the same for all
particles as in the star and circle topology, or it can be different, e.q. in the wheel
topology.

The neighborhood relation between two particles can be depicted graphically
using the neighborhood graph. In it, each particle is represetned by a single vertex,
and two particles in a neighborhood relation are indicated by a connection between
two vertices. Usually, particle swarm algorithms deal with a single swarm. In
any case, the neighborhood graph of each swarm has to be connected. It must be
possible to perform a walk starting from each vertex to any other vertex in the
graph.

The property of graph’s connectedness guarantees that the global best position,
discovered by a certain number of particles, can eventually propagate itself as
the gbest position of every single particle in the swarm. Thus, particles tend to
converge on the position of the global best particle, if such a position does not
change for a sufficient number of iterations.
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The choice of topology determines the propagation speed (number of iterations)
of the global best position around the swarm. The more neighborhood relations
between particles or connections in the neighborhood graph exist, the faster is the
propagation of the currently optimal global best position.

3.4.1.1 Star topology

In the case of star topology, depicted in Figure 3.3, each particle stands in a
neighborhood relation to every other particle. This topology is inspired by social
groups where decisions are based on the consensus of all group members.

The gbest position of each particle is always the current, global best position
of the entire swarm. The current global best position is propagated to all particles
in a single iteration.

PnP1

Pn−1
P2

P3

P4

P5 P6

Pn−2

. . . . .

Figure 3.3: Particle swarm with a star topology

3.4.1.2 Circle topology

In the circle topology (Figure 3.4) each particle of the swarm has exactly k neigh-
bors; distant particles are not necessarily standing in a neighborhood relation. The
global best position of the swarm will propagate itself to all particles in at most
|S|/k iterations, where |S| is the size of the swarm. A real circle results from this
topology for k = 2.
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. . . . . 

Figure 3.4: Particle swarm with a circle topology, for k=2

3.4.1.3 Wheel topology

The wheel topology (Figure 3.5) models hierarchical social groups where each group
has a single leader. In PSO, the leader role is assumed by a single focal particle
that is connected to all other particles on the periphery. Peripheral particles have
no connections in between them. The propagation of the global best position takes
at most two iterations for each particle on the periphery and a single iteration for
the focal particle.

3.4.2 Distance metric

A metric determines the distance between two particles in search space. In the
computational sense this creates a total preorder (TPO) of distances dj for each
particle p to all other particles pi with p 6= pi. The distances are ordered starting
with the shorter distances first; in the case of ties, distance to the particle with
lower index gets precedence. For some particle p, the total preorder of distances
to other particles p1, . . . , pn is given as:

TPO(p) : di1 ≤ di2 ≤ di3 ≤ ... ≤ din , where dij = δ(p, pij ) and ij ∈ [1, n] (3.15)

Depending on the topology used, only a few starting elements of the TPO of
each particle may be necessary for building the neighborhood relation. For the
star topology, no TPO is needed, since all particles are neighbors. For the wheel
topology, the TPO is also not needed, since a single focal particle stands in the
neighborhood relation to all other particles regardless of distance. However, the
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P1
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Pn−1
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P7

Figure 3.5: Particle swarm with a wheel topology

distance preorder is relevant for the circle topology. Although the circle topology
specifies that each particle has k neighbors, it does not state which of the |S| − 1
possible particles should be considered as such. When using this topology, only
the first k particles of the TPO are defined as neighbors.

The following subsections present a selection of metric definitions that can be
used in PSO.

3.4.2.1 Euclidean metric

The distance between positions ~p, ~q of two particles p, q in continuous PSO can
be calculated using the Euclidean metric as:

δ(p, q) = ||~p, ~q|| =

√√√√ m∑
i=1

(pi − qi)2, (3.16)

where m is the number of search space dimensions.

3.4.2.2 Probability based Manhattan metric

The distance between two particles in discrete binary PSO can be defined using
the Manhattan or Taxi metric, as the sum of absolute values of bit probability
differences. Using the notation for the discrete binary particle given in Subsec-
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tion 3.3.2.1, this can be expressed as:

δ(Pp,Qp) =
m∑

i=1

n∑
j=1

|pij − qij|, (3.17)

where m is the number of dimensions in the ordinary sense and n the number of
bits needed to encode a single coordinate.

3.4.2.3 Metric based on fitness

It is possible to define the distance between two particles based on the absolute
difference of their respective fitness values. For two particles p and q the distance
can be calculated as:

δ(p, q) = |fitness function(~p)− fitness function(~q)| (3.18)

.

The advantages of the fitness based metric are its relative simplicity and low
computational requirements. It is generic and can be applied to both the contin-
uous and the discrete binary version of PSO. However, it is suspected that such
a metric might cause premature convergence of particles on the current global
best position, since all particles with the highest fitness would be standing in the
neighborhood relation. If this is the case, the chance of particles getting stuck at
a local optimum would be increased.

The motivation for using the fitness based metric is the following. Particles with
high fitness values would be in the same neighborhood, and they would tend to
concentrate their search in the area of search space around the current optimum.
Thus, they would perform local search around the current optimum and fine-
tune this solution. Other particles with mutually similar fitness would also build
neighborhoods. However, they would be attracted to the the neighborhood of
particles with the highest fitness. From this follows that particles with lower fitness
values would conduct a more global search, since according to the velocity update
in Equation 3.2, their velocities should be greater than those of the particles already
in the optimum area of search space. The reaction of particle neighborhoods with
lower fitness values to changes of the current, global optimum position would be
limited by the rate of gbest propagation, which depends on the used topology.

Experiments in Chapter 5 showed that the fitness based metric is not inferior
to other proposed metrics; in some cases it even outperformed them in terms of
achieved fitness.
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3.4.3 Neighborhood relation

A neighborhood relation is a prerequisite for determining the gbest position of each
particle. Generally, the gbest position of some particle p can be determined using
the following procedure:

1: double gbest fitness = p → fitness;
2: (p → gbest) := p;
3: for q in Neigh (p, k) do
4: if (q → fitness) > gbest fitness then
5: gbest fitness := (q → fitness);
6: (p → gbest) := q;
7: end if
8: end for.

Function Neigh(p, k) gives a list of particles in order of their distance to p.
Parameter k is the number of particle’s neighbors, which depends on the topology
definition.

For the star and wheel topologies the neighborhood relation is statically fixed
at the beginning of execution and needs not be calculated at run-time. Thus, the
list of neighboring particles is always constant.

For the circle topology the neighborhood relation can change at run-time. The
reason for this is, that the distance between particles, which naturally changes
as particles fly in the search space, determines what k particles are the closest
and should be selected as neighbors of the currently observed particle. The gbest
position in every iteration is not selected from a fixed list of particles as in the star
and wheel topology, but from a dynamically changing list.

As previously stated, the neighborhood relation in the star and wheel topology
is determined without any need for a metric. For the circle topology, the neigh-
borhood relation can be constructed both with and without the metric definition.

1. If there is no metric available, it is possible to define k neighbors of the
observed particle based on their respective position in the particle array. For
k = 2, the neighbors of particle pi would be particles pi−1 and pi+1.

2. If there is a metric available, the neighborhood relation between particles
can be modelled as an n× k matrix N, where each row i contains the list of
neighbors of some particle pi, sorted in the order of distances. The ordering
of distances in the matrix can be carried out by a modified sorting algorithm.

N =

p11 . . . p1k

. . .

pn1 . . . pnk

 (3.19)
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The metric definition should be based on some relatively stable property of
PSO particles. Abrupt changes in particle distances, i.e. the ensuing change of the
neighborhood relation can cause instability of the algorithm (Subsection 3.2.11).
The neighborhood relation determines the set of possible gbest positions for each
particle. The lack of sufficient permanence of one gbest position for a certain group
of particles can prevent them from converging to some gbest position, i.e., from
exploring the region of space around it.

An example of a stable property in continuous PSO, suitable for a metric
definition, would be the particle position in Euclidean space. For the discrete
binary PSO, the stable properties would be the particle position in probability
space. The realized particle position in binary space would not count as a stable
property for DPSO, since its change can be more abrupt than the corresponding
change of the probability position. This is a consequence of the random method
whereby the realized position is derived from the probability position.

Whether the property of particle fitness can be used to create a stable metric
definition for discrete binary PSO is not easy to answer. Since particle fitness is
a function of realized particle position, it follows that the fitness can change as
often as the position. How often the fitness, and thus, the neighborhood relation
will change significantly, depends on the definition of the fitness function. While
the neighborhood relation based on a fitness metric can be stable for some fitness
functions, it can also be unstable for others. How a fitness based metric, i.e. the
neighborhood relation that results from it and the circle topology, performs in
practice is explored in Chapter 5

Figure 3.6 shows different neighborhood relations for the circle topology that
ensue from different metric definitions.

3.4.4 Effect of topology on performance

It was shown in [44] that there are statistically significant differences in perfor-
mance between the circle and wheel topology on certain benchmark fitness func-
tions. However, the same work also concluded that, although the circle and wheel
topology were useful in combination with some fitness functions, for the majority
of benchmarks, the best results were provided by the star and random topology.

It is widely accepted that topology affects the speed of information flow of gbest
between particles. Both [44] and [45] investigated the star, circle, and wheel topol-
ogy on a set of standard benchmark functions. However, no significant influence
of topology on the convergence behavior of particles was detected.

In order to control particle convergence, especially premature convergence, a
concept of particle bouncing was proposed in [45]; this topic is discussed in Sub-
section 3.5.2. The Clerc’s constriction factor (Subsection 3.5.1.2) or an appro-
priate setting for Vmax (Subsection 3.2.8.1) can also prevent premature conver-
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Figure 3.6: Depending on whether a metric based on fitness or on particle coordi-
nates is used, there can be a difference which of the particles p2, p3 is considered as
the first neighbor of particle p1. Using a metric based on coordinates (Euclidean,
Manhattan), particle p2 would be considered to be nearest to particle p1, i.e., it
would be its first neighbor. Using a fitness based metric would result in particle
p3 being the first neighbor of particle p1, since both particles are inside the region
of search space with the same fitness. The change in distances between particles
causes a change in their neighborhood relation when the particle swarm uses a
circle topology. This influences the calculation of gbest position for each particle.

gence. However, the correct Vmax setting is problem dependent, while bouncing
and constriction seem to be more generic approaches. The above observations
were derived from experiments performed on continuous PSO using continuous
benchmarks functions.

In the overview of PSO [41], it is stated: ‘The effects of different neighborhood
structures on performance are inconclusive‘. However, it is not clear from that
and the above mentioned works what kind of a metric definition was used in
constructing the neighborhood structures. In particular for the circle topology, it
would seem that no consideration was given to the metric definition as it was done
in Subsection 3.4.3 of this work.

Furthermore, the effect of different topologies on discrete binary PSO was not
explored neither in the original paper [38] nor in the probability analysis given
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in [43]; it seems that only the star topology was used. The evaluation of other
topologies is carried out in Chapter 5 of this bachelor thesis.

3.4.5 Encoding of position coordinates

The encoding function e is the inverse of the decoding function d defined in Subsec-
tion 3.3.1. In DPSO, function e is used to convert the initial positions of particles
from Euclidean space Xm to binary space Bm×n. The initial positions in space
Bm×n can be used to derive the initial positions in probability space Pm×n. The
decoding function d, on the other hand, is needed to prepare the positions in Bm×n

for evaluation by the fitness function in Xm. This task occurs in every iteration
of DPSO.

In principle, any data type used as an argument for the fitness function can be
encoded using a binary representation. The implementation of DPSO presented in
Chapter 4 supports int and double data types. The int type can be encoded using
ordinary binary or gray encoding. The double type is based on the encoding of the
int type; the fractional part is obtained by dividing the int with 10d; constant d
determines the precision i.e. the number of decimal places.

3.4.5.1 Binary code

If ordinary binary code is used for encoding, then each coordinate pi of Xm can be
decoded from Bn by the following equation:

pi = −1bn(
n−1∑
j=0

2j · bj), where bj ∈ {0, 1}. (3.20)

Variable m is the number of dimensions in Euclidean space, and n is the number
of bits needed to encode a single coordinate. The number of dimensions in binary
space is m× n.

When using the ordinary binary code, a single bit-flip can change the value
of one coordinate by any power of 2, ranging from 20 to 2n. With this encoding,
some bits carry more weight than others, which might hurt the stability of DPSO.

3.4.5.2 Gray code

Gray code has the advantage over ordinary binary code in that the distance ‖x−y‖
of two whole numbers x and y is equal to the Hamming distance between their
respective bit representations. This property is thought to be useful in discrete
binary PSO, since a single bit flip would always change the value of a particle
coordinate by one. The only exception to this are the beginning and end of the
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Bits Number
000 -4
001 -3
011 -2
010 -1
110 0
111 1
101 2
100 3

Table 3.2: Encoding of the interval of whole numbers [-4,3] using Gray code.

encoded interval, which also have the Hamming distance of 1, but whose absolute
difference is equal to the size of the encoded. An example of this can be seen in
Table 3.2 for values −4 and 3.

The Gray code has previously been successfully used with another class of
heuristic algorithms, namely the genetic algorithms [46]. It is hoped that it would
likewise prove useful in discrete binary PSO by bringing more stability. Experi-
ments in Sections 5.1.1 and 5.2.1 have confirmed this assumption to a high degree.

3.5 Extensions of the PSO Algorithm

Since heuristic algorithms are not an exact science, there exist many possibilities
for expanding the concepts of simple PSO presented in papers [35, 38]. Each of the
concepts can be extended with new rules and an increased level of sophistication in
particle decision making. However, while some of the extensions may prove benefi-
cial (in some target domains), others will be slashed with the Occam’s razor 1. In
principle, these extensions can be implemented with both the continuous and the
discrete PSO algorithm. In practice, the results between the two implementations
can vary significantly. What seems to be a good extension of continuous PSO does
not necessarily provide good results with the discrete version.

3.5.1 Manipulation of particle velocity

The formula for velocity update in Equation 3.2 is a central piece of the PSO
algorithm and a good place to start with modifications. It can be extended to
model concepts such as inertia and constriction. Each of these modifications

1Occam’s Razor - A principle attributed to the 14th century logician and Franciscan friar
William of Ockham stating that ‘entities should not be multiplied unnecessarily‘.
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tries to balance global and local search by influencing particle velocities. Higher
velocities put more emphasis on global search, while lower velocities emphasize
local search. Usually, it is desirable to emphasize global search at the beginning
and local search towards the end of the PSO run. Local search is thus limited to
exploration of those regions of search space which were found to contain the best
candidates for the optimum during the preceding phase of global search.

3.5.1.1 Inertia

A simple extension to the velocity update formula is to model inertia, which is a
characteristic of matter to stay in its current state of motion; energy is necessary
to bring the matter out of its current state.

The parameter for inertia weight w in Equation 3.21 models the influence of
old particle velocity ~v t upon the new velocity ~v t+1. If inertia weight is greater
than 1, then particle velocity from the previous iteration has more influence on
the new velocity. If inertia is less than 1, old particle velocity is proportionally
less represented in the calculation of new velocity.

~v t+1 = w · ~v t + c1 · rand1 · ( ~hbest− ~p t) + c2 · rand2 · ( ~gbest− ~p t) (3.21)

In [47], it was found that the inertia parameter w = 0.7 is optimal for the
fitness functions investigated by the authors. Furthermore, it was found in [37]
that a linearly time decreasing inertia weight, starting from 0.9 and ending at 0.4,
discovers the optimum in even more cases. However, the difficulty is that the rate
of linear decrease has to be manually set. Furthermore, the obtained values for
w may only be optimal for the fitness function and the exact experiment settings
used by the authors. The reported experiment was carried out using the continuous
PSO algorithm.

3.5.1.2 Constriction

A different approach for balancing between global swarm ’exploration’ and local
’exploitation’ is to insert a constriction factor χ in the formula for velocity update,
as shown in Equation 3.22.

~v t+1 = χ[~v t + c1 · rand1 · ( ~hbest− ~p t) + c2 · rand2 · ( ~gbest− ~p t)] (3.22)

According to [36], the constriction factor χ is calculated using the following
equation:

χ =
2

|2− φ−
√
φ2 − 4φ|

, where φ = c1 + c2, φ > 4.. (3.23)
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As in ordinary velocity update, factors c1 and c2 stand for the cognitive and social
constant

It has been reported in [36], that using the constriction factor χ guarantees
stability and the convergence of particles on optimal regions of search space. Fur-
thermore, in order to obtain the best results the author has recommended setting
the maximum dimensional velocity, Vmax, to the maximum possible value of a
single coordinate Xmax.

In [39] it has been reported, that the velocity update using constriction χ in
Equation 3.22 is a special case of the velocity update using inertia w in Equation
3.21, if w is set to χ, and c1 and c2 meet the conditions in Equation 3.23. Authors
of the above article have concluded that both inertia and constriction can provide
good performance, whereas the advantage of constriction is that it does not require
fine tuning. With inertia, fine tuning of parameters w, c1, and c2 can bring an
additional increase in performance. The reported results were obtained using the
continuous PSO algorithm with a set of standard benchmark functions for evo-
lutionary algorithms, namely the spherical, Rosenbrock, Rastrigin, Griewank, and
Schaffer’s f6 function.

3.5.2 Spatial extension of particles

The spatial extension of particles is an attempt to avoid the crowding of particles
at a single position in search space by introducing particle volume, that is, an area
of search space around the particle, inside which there can be no other particles.
Usually, the volume is defined by assigning to each particle a certain radius r which
is a parameter of the system.

One way of achieving the requirement that there are no particles y around a
certain particle x with radius r is by particle bouncing. Bouncing consists of two
parts: collision detection and collision avoidance.

3.5.2.1 Collision detection

In each iteration of the PSO algorithm, before particle position is updated by
Equation 3.4, an additional step called collision detection is introduced. It checks
whether moving a particle x with position ~x by the current particle velocity vector
~v would bring it on a collision course with some other particle y with position ~y.
Thus, if some particle y at time t + 1 would have a position ~y t+1 that is inside
the hypersphere around the future position ~x t+1 of particle x, a collision avoidance
strategy needs to be applied to keep the two particles colliding. This condition is
formalized in Equation 3.24. Variable m is the number of search space dimensions,
and r is the radius of hypersphere Rm around the position of particle x at time
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t+ 1.
~y t+1 ∈ Rm(~x t+1, r) (3.24)

3.5.2.2 Collision avoidance

The proposed strategies for the avoidance of particle collision include: random
bouncing, realistic physical bouncing, and simple velocity-line bouncing. It was
reported in [45] based on experiments on continuous PSO that simple velocity-line
bouncing provides the best performance. It was implemented in the following way:

When an upcoming particle collision is detected using the condition from Equa-
tion 3.24, the new velocity vector ~v t+1 is scaled by the bounce factor λ according
to Equation 3.25. The bounce factor is a parameter of the system, and in princi-
ple, it can either be a constant or a random value. Furthermore, λ only scales the
magnitude of particle velocity but does not change its direction.

~v t+1 := λ · ~v t+1 (3.25)

Based on different values for λ, the following cases of collision avoidance can
be distinguished:

1. For λ ∈ [0.0, 1.0], the particle is slowed down.

2. For λ > 1.0, the particle is speeded up.

3. For λ < 0, the particle makes a U-turn.

The third case when particles make a U-turn is illustrated in Figure 3.7 for two
dimensions.

3.5.2.3 Effect of Particle Bouncing

According to the authors in [45], particle bouncing facilitated by collision detection
and avoidance provides a way for some particles to escape regions with a global or
local optimum, while letting other particles stay and perform local search. Particle
bouncing has been reported to prevent the premature convergence on local optima,
after which the performace of PSO usually ‘flattens out‘.

During practical implementation, the author of this bachelor work has observed
that premature convergence in discrete binary PSO can also be prevented by ap-
propriate settings of velocity limit, Vmax, and learning factors c1 and c2. Greater
Vmax values facilitate greater particle velocities, which in effect lead to faster con-
vergence. Premature convergence can thus be controlled by reducing the value of
Vmax, so that particles converge only after a certain number of iterations has been
reached. The exact value for Vmax can be fine-tuned depending on the:
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Figure 3.7: Particles making a U-turn with a bounce factor λ = −1. [45]

1. problem under optimization

2. computational resources and time available for each PSO run.

3.6 Summary

In this chapter, two versions of PSO were presented: the continuous and discrete
binary PSO algorithm.

The discussed topologies, metrices, and the neighborhood relation are com-
monly applicable to both versions of the algorithm. However, the effect on perfor-
mance may differ between the two versions.

The update of particle velocity and position differs significantly between the
two algorithm versions. This is the consequence of different spaces in which the
algorithms perform the search. The continuous algorithm operates in ordinary
Euclidean space, while the discrete version operates in probability space. The ve-
locity and position update in discrete binary PSO is an extension of the movement
equation from continuous PSO.

The evaluation of particle positions is the same for both algorithms, and it
operates on values from the Euclidean space. For this purpose, the discrete binary
version of the algorithm has to convert values from probability to Euclidean space
before fitness evaluation can take place. The conversion is achieved by a simple
stochastic experiment.

In the discrete binary version of PSO, the choice of encoding determines the
effect of single bit flips on the encoded particle position in Euclidean space. In
contrast to ordinary binary code, Gray code guarantees that a single bit flip will
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only change the value of a single coordinate in Euclidean space by one. This
property can be beneficial for algorithm stability.

The settings of the parameters for velocity and position update: Vmax, c1, c2,
and Xmax significantly influence the performance of PSO. Different velocity ma-
nipulation techniques can be used to find a balance between global and local search
of the search space. Examples of these techniques are inertia and constriction.

Premature convergence on a local optimum can have negative influence on
performance. It can be prevented with a spatial extension of particles, which
provides a mechanism for bouncing of converged particles.

It is estimated that each of the two PSO versions has different performance in
their respective target domains. The exact comparison of the two algorithms is
performed in Chapter 5.
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Chapter 4

Adaptation of PSO for
Estimating WCET

This chapter goes into detail how PSO is applied to estimate worst-case execu-
tion time of software components and tackle the related problems of execution
path analysis. The pso wcet1 framework implements the algorithms for continuous
(CPSO) and discrete binary (DPSO) particle swarm optimization. It also con-
tains the implementation of a brute-force random search algorithm. The results
of random search are used as a control group of the two PSO implementations.
The structure of the framework does not depend on the implemented optimization
algorithms. In principle, any optimization algorithm could have been used for the
optimizer part of the framework. Apart from estimating WCET and dealing with
execution path analysis, the framework benchmarks the performance of PSO in
this specific target domain.

4.1 Services of the PSO WCET Framework

The services provided by the pso wcet framework are: preparing the software-
under-test (SUT) for execution, iterative execution of the SUT, fitness calculation,
and the generation of input data vectors. These services are graphically depicted
as actions of the data-flow diagram in Figure 4.1.

1pso wcet - The source code of this framework is publicly available under the simplified BSD
license at http://psowcet.sourceforge.net/

91
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Figure 4.1: Data-flow diagram of the pso wcet framework - The diagram consists
of linear data-flow in the left, and cyclic data-flow in the right and lower middle
part. The linear data-flow is a one time affair for each SUT. Its tasks are the
instrumentation of intermediate SUT code and, optionally, the derivation of time
costs of basic blocks. Additionally, the user can specify a reference execution path
that is used as a target by some fitness functions. The cyclic part of the data-flow
is iteratively repeated until the termination condition is reached. The three main
phases of the cyclic part are: generation of input data vectors, SUT execution,
and fitness calculation. The generated input data vectors can be stored to a result
file for later reference.

4.1.1 Preparing the software under test

Preparing the SUT for execution includes translating it to intermediate LLVM2

code, instrumenting the basic blocks (optionally deriving the execution-time cost
of each block), and obtaining the user-specified reference execution path. The cost
of each basic block is needed to estimate the WCET of the whole SUT. The user-
specified reference path can serve as a target to generate input data that exercise
it. Both path search and execution time maximization (WCET) can serve as goals
for the fitness function.

2LLVM Project - A collection of modular and reusable compiler and toolchain technologies,
available at http://llvm.org/
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4.1.2 The testing cycle

The cyclic part of the framework consists of the following activities: generation of
input data, SUT execution, and fitness calculation.

In each iteration the SUT is executed with new input data whose fitness is
evaluated after the execution has terminated. The input data are a vector obtained
from the position of a PSO particle in m-dimensional space where m is the number
of parameters of the SUT main function.

The fitness functions can take the exercised execution path, the user specified
reference path, and the costs of basic blocks as input. The fitness function for
path-length takes only the exercised execution path. The function for path-cost
also needs the costs of basic blocks. The functions for path-similarity - these are
the prefix, set, and multiset path comparisons - need a reference path with which
to compare each exercised path.

An additional option used for testing is that PSO can be applied on the result
of computation of some SUT. This is used as a benchmark of the optimizer, since in
literature [44, 45] various implementations of PSO have been tested on mathemat-
ical benchmark functions. Currently implemented are the following benchmarks:
sphere, Griewank, Rosenbrock, and the Rastrigin function.

In the current implementation, the termination condition of the testing cycle is
specified by the user; it can be a number of algorithm iterations or a goal specifying
the number of discovered input data with certain fitness.

4.1.3 Saving the results of optimization

Depending on the mode of operation, the framework can save different fitness
values and the corresponding input vectors to a result file. The following modes
of result saving are implemented:

1. The framework saves the best input-vector of each iteration.

2. The framework saves only the best input-vector of the entire optimization
run.

3. The framework saves all input vectors that fulfill certain fitness requirements.
These requirements can be specified by the user as fitness intervals.

4.2 Software Under Test

In the current implementation, the software-under-test is a piece of C code inside
a separate translation unit. It is characterized by a single main function that
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needs to conform to one of the function signatures required by the optimizer.
All functions in the same unit that are called directly from the main function
or indirectly through other functions are considered to be part of the SUT. An
exemplary SUT that consists of a single function is the implementation of the
bubble sort algorithm shown in Listing 4.1.

Listing 4.1: Exemplary SUT - Bubble sort

/∗ f i l e : b u b b l e s o r t . c ∗/
double b u b b l e s o r t i ( int n , int array [ ] ) {

int i , j ;
for ( i = 0 ; i < n ; i ++) {

for ( j = 0 ; j < n − 1 ; j ++) {
i f ( array [ j ] > array [ j + 1 ] ) {

int tmp = array [ j + 1 ] ;
array [ j + 1 ] = array [ j ] ;
array [ j ] = tmp ;

}
}

}
return 0 ;

}

4.2.1 Main function signature

The main function of the SUT has to conform to one of the function signatures
given in Listing 4.2 in order to be compatible with the PSO optimizer. The array
parameter in the function signature is an input vector which is used by the PSO
optimizer to feed test data into the SUT. The array can be of variable length
specified by parameter n. In the current implementation int and double arrays are
supported.

Listing 4.2: Supported signatures of the SUT main function

double s o f twar e unde r t e s t ma in ( int n , int array [ ] ) ;
double s o f twar e unde r t e s t ma in ( int n , double array [ ] ) ;

4.2.2 Intermediate representation

The C code of an SUT is translated into an intermediate representation by using
the clang-cc3 compiler. The result of the translation is program code in LLVM

3clang-cc - A C, C++, Objective C and Objective C++ front-end for LLVM, available at
http://clang.llvm.org/
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virtual assembly language. In the output of clang-cc, each label starts a new basic
block, which again corresponds to a node in the CFG of the software-under-test.
The CFG and LLVM assembly code of bubble sort are shown in Figure 4.2.

4.2.3 Instrumentation

The basic blocks are instrumented by adding instrumentation code after each label
in the LLVM code. The instrumented LLVM code is afterwards compiled into a
binary executable. When the SUT is executed, the instrumentation code of each
basic block fires upon execution reaching that basic block. This generates an
execution trace of traversed basic blocks, which is used by the particle swarm
optimizer for subsequent WCET and execution path analyses.

In the current implementation the instrumentation of intermediate SUT code
is attained by using a script written in AWK4. The script searches for a pattern
belonging to the start of an LLVM basic block and inserts instrumentation code at
that location. The instrumentation code consists of a function call to a defined call-
back function. The callback from each basic block uses a unique ID which identifies
the exercised basic block to the optimizer. The IDs are stored, and subsequently,
the whole execution path can be reconstructed based on this information.

4.3 Particle Swarm Optimizer

4.3.1 Algorithms

The optimizer module in the current implementation contains three optimization
algorithms: basic continuous PSO, discrete binary PSO, and random search. Ran-
dom search was implemented in order to provide a control group for experiments
with the two PSO implementations.

4.3.2 Fitness functions

Each of the implemented optimization algorithms uses a fitness function to evaluate
a certain particle position, i.e., an input vector for the SUT. The available fitness
functions can be divided into two groups.

The first group calculates fitness by evaluating the execution path trace gener-
ated by the SUT for a certain input vector. It can furthermore be subdivided into
fitness functions which solely need the path trace for calculation and those which
also need a certain reference path for comparison.

4AWK - A Turing-complete programming language designed for processing text-based data,
available at http://www.gnu.org/software/gawk/
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[ B10 (ENTRY) ]

 

[ B9 ]
 1: int i;
 2: int j;
 3: i = 0

 

[ B2 ]
 1: i < n
 T: for (...; [B2.1]; ...)

  

[ B8 ]
 1: j = 0

 

[ B1 ]
 1: return 0;

 

[ B4 ]
 1: j < n - 1
 T: for (...; [B4.1]; ...)

  

[ B7 ]
 1: array[j] > array[j + 1]
 T: if [B7.1]

  

[ B3 ]
 1: i++

 

[ B6 ]
 1: array[j + 1]
 2: int tmp = array[j + 1];
 3: array[j + 1] = array[j]
 4: array[j] = tmp

 

[ B5 ]
 1: j++

 

[ B0 (EXIT) ]

Figure 4.2: Instrumented LLVM code of SUT bubble sort from Listing 4.1 and
the automatically generated CFG
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Fitness functions which only need the path trace are the path length and the
path cost fitness functions. Those which additionally need a reference path are the
path similarity fitness functions.

If a fitness function does not need a path trace at all, it belongs to the second
group. Such fitness functions work on the computation result of SUT and are used
for function optimization in the classic sense. Each of the above fitness functions
can be used for minimization or maximization.

4.3.2.1 Path length

In the case of fitness based on path-length, the total number of basic blocks in a
path is taken as the fitness of the input vector, i.e., the particle position which
induced the path.

4.3.2.2 Path cost

The fitness function based on execution path cost, calculates fitness by summing
up the cost of each basic block in the execution trace. The time cost of each basic
block has to be provided beforehand by the user. The unit of execution time can
be defined as one processor cycle or some other unit of time, e.g., µs, ns, etc.

If the pso wcet tool, presented in this thesis, would be applied for WCET
estimation on a computer system free from timing anomalies, it would be necessary
to provide realistic instruction execution times. Since currently a virtual machine
with LLVM instructions is used, it was deemed best to give each instruction the
time cost of one. The focus of this work is less on measurement of instruction
execution times and more on the analysis of execution paths and the generation of
input data. The input data generated using pso wcet can among other applications
be used for measurements of single instruction execution times by using some
measurement framework to perform the actual, local, low-level timing analysis.

4.3.2.3 Path similarity

Fitness functions based on path similarity compare the path generated by an in-
put data vector with some reference path. Usually the objective is to find input
data that exercise paths with high similarity to the given reference path. Three
functions for measuring similarity between paths are currently implemented in
Algorithms 4, 5, and 6:

• length of the common path prefix or suffix,

• set distance of the paths’ basic blocks, and

• multiset distance of the paths’ basic blocks.
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Using these basic functions the following additional measures for path similarity
are defined. The affix similarity combines both prefix and suffix similarity into
a single measure. The combined similarity combines the affix, set, and multiset
similarity by assigning weights w1, w2, w3 to each of them respectively. The
calculation of distance between two execution path traces t1 and t2 by combined
similarity is given in Equation 4.1.

sim combined(t1, t2) = w1 · sim affix(t1, t2)

+ w2 · sim set(t1, t2)

+ w3 · sim multiset(t1, t2),

with w1 + w2 + w3 = 1,

and w1, w2, w3 ∈ [0, 1]

(4.1)

A value of 1.0 similarity obtained by the prefix, suffix, affix, or combined sim-
ilarity indicates that two paths are equal. In contrast, the measures for set and
multiset similarity can give a similarity value of 1.0 even for two different paths if
they traverse the same set, viz., multiset of basic blocks.

In the current implementation, experiments showed that paths with the highest
degree of similarity, i.e., the highest fitness values, are obtained when using such
settings for w1, w2, w3 where the weight of the multiset similarity w3 in Equation
4.1 is dominant. Furthermore, it was observed that the prefix and suffix based
comparison is the most restrictive, while the multiset based comparison is less,
and the set based comparison the least restrictive measure of similarity between
two execution paths.

Algorithm 4 Measure of similarity between two path traces based on the length
of their common prefix.

double
function prefix similarity (linked list t *path1, linked list t *path2)
int i := 0;
linked list t *p1 := path1, *p2 := path2;
int max len = MAX ( len(path1), len(path2));
int min len = MIN ( len(path1), len(path2));
for i := 0; (p1 → val == p2 → val) AND (i < min len); do

i ++;
p1 := p1 → next;
p2 := p2 → next;

end for
return (i / (double) max len);
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Algorithm 5 Measure of similarity between two path traces based on the cardi-
nality of intersection of their sets of unique basic blocks.

double
function set similarity (linked list t *path1, linked list t *path2)
int match := 0, i := 0;
linked list t *p, *s1 := set (path1), *s2 := set (path2);
int max len := MAX (len (s1), len (s2));
if len (s1) < len (s2) then

exchange (s1, s2);
end if
p := s1;
for i := 0; i < max len; i ++ do

if p → val in s2 then
match ++;

end if
p := p → next;

end for
return (match / (double) max len);

Algorithm 6 Measure of similarity between two path traces based on the fre-
quency of occurrence of each unique basic block in both paths.

double
function multiset similarity (linked list t *path1, linked list t *path2)
i := 0, sum min := 0, sum max := 0;
int count1 := 0, count2 := 0;
linked list t *p, *s1 := set (path1), *s2 := set (path2);
int max len := MAX (len (s1), len (s2));
if len (s1) < len (s2) then

exchange (s1, s2);
end if
p := s1;
for i := 0; i < max len; do

count1 := count (p, path1);
count2 := count (p, path2);
sum min += MIN (count1, count2);
sum max += MAX (count1, count2);
p := p → next;
i++;

end for
return (sum min / (double) sum max);
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4.3.2.4 Computation result

In the case of computation result fitness, the return value of the SUT main function
is taken as the fitness value. It can be used for testing the optimization algorithm -
in this case PSO - on well studied mathematical functions whose minima and max-
ima are analytically known. Such mathematical functions are an ideal environment
for comparative benchmarks of different optimization techniques.

4.3.3 Other modules of the optimizer

Both the CPSO and DPSO algorithms utilize different topologies, metrics, and
number-encoding schemes implemented as stand-alone modules of the pso wcet
framework. The functionality of each of the modules is described in Chapter 3.
Exact implementations details for topology and encoding vary little from what
is described in Subsections 3.4.1 and 3.4.5. The metric implementation, with the
exception of few practical details, also adheres to the principles stated in Subsection
3.4.2.

4.3.3.1 Topology

The particle swarm optimizer contains the implementation of topologies described
in Subsection 3.4.1; these are the star, circle, and wheel topology.

4.3.3.2 Encoding

The binary and gray encoding described in Subsection 3.4.5 are also implemented
by the optimizer.

4.3.3.3 Metric

The optimizer implements metrics described in Subsection 3.4.2, the Euclid, Man-
hattan, and absolute fitness distance based metric in the following manner.

The CPSO algorithm applies the Euclid and Manhattan metric on particle po-
sitions in Euclidean space Xm (Subsection 3.2.1). The DPSO algorithm applies
those same metrics on particle positions in probability space Pm×n (Subsection
3.3.1).Variable m is equal to the size of the input data vector of the SUT main
function. Variable n corresponds to the number of bits needed to encode each
coordinate in Euclidean space. The absolute fitness distance based metric operates
on the same datatype - the particle fitness value - in both algorithms. It pro-
vides the same distance measure for both the continuous and discrete binary PSO
particles.



4.4. CONFIGURATION 101

Additionally to metrics described in Subsection 3.4.2, distances between swarm
particles can be defined as initial distances of their respective indices in the array
data structure of the optimizer implementation. This is a static neighborhood
relation, i.e., particles always have the same neighbors without regard to their
actual distance in the search space. The computational overhead for this metric
is low in comparison to other implemented metrics; there is no need to perform
the O(n2) computation of distances between n particles in each iteration of PSO.
This metric is called the initial metric, since the distances between particles are
statically determined during particle initialization (Subsection 3.2.4).

4.4 Configuration

Configuration of the pso wcet framework consists of specifying the parameters of
the particle swarm optimizer and the software-under-test. Each SUT needs to have
its own configuration entry, while the user can (but does not have to) change the
default configuration of the optimizer. The default configuration together with the
explanation of each parameter is given in Tables 4.1 and 4.2 for the optimizer and
the SUT respectively.

4.5 Applications

4.5.1 Search for the longest execution path

One of the basic applications of pso wcet is to generate input data that maximize
SUT execution path length. In this context the SUT execution path is defined as
a sequence of basic blocks, i.e. as a path of the CFG.

Although the longest execution path can be found by using graph-theory algo-
rithms, e.g., a modified Dijkstra’s algorithm as in [48], the practical value of using
PSO for this task is in mapping the set of input data vectors to a certain execution
path that they exercise. This provides an experimental guarantee of the execution
path’s feasibility.

4.5.2 Search for the WCET inducing execution path

Another application of pso wcet is for estimating the WCET by generating input
data that maximize the time cost of an SUT execution path. The difference be-
tween finding the most time consuming and the longest execution path is in the
cost of basic blocks. Unlike execution path length, where each basic block has a
cost of one, the exact time cost of each basic block depends on the number and
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Parameter Default Value Section Description

CIRCLE K 2 3.4.1.2 Number of neighboring particles
in circle topology

WHEEL FOCAL IDX 0 3.4.1.3 Index of the focal particle in wheel topology
INIT V 0 3.2.4.3 Initial dimensional velocity of a CPSO particle
|V MAX CPSO| Xmax 3.2.8.1 Velocity limit of a CPSO particle

INIT PROB 0.5 3.3.2.1 Initial bit probability
of a DPSO particle

INIT PROB V 0 3.3.2.3 Initial bit probability velocity
of a DPSO particle

V MAX DPSO 6.0 3.3.8 Argument to sigmoid function limiting the
bit probability velocity of a DPSO particle

COGNITIVE CPSO 2.0 3.2.8 Cognitive constant for CPSO3.2.10

SOCIAL CPSO 2.0 3.2.8 Social constant for CPSO3.2.10
COGNITIVE DPSO 1.0 3.3.6 Cognitive constant for DPSO
SOCIAL DPSO 1.0 3.3.6 Social constant for DPSO
COL DETECT EN 0 3.5.2 Enables particle collision avoidance

ZERO V EN 1 3.2.9.1 Sets velocity vector of CPSO particle to
zero if it leads outside of defined space

INERTIA W 0.04 3.5.1.1 Inertia weight of particle

Table 4.1: Parameters of PSO Configuration

Parameter Section Description
SUT MAIN 4.2.1 Main function of the software-under-test
SUT ARGS COUNT 4.2.1 Size of the input-data vector to the main function
SUT ARGS TYPE 4.2.1 Data type of the input-data vector

X MIN 3.2.1 Minimum value of a single search space coordinate3.3.1

X MAX 3.2.1 Maximum value of a single search space coordinate3.3.1
ALGORITHM 4.3.1 Determines the algorithm used for optimization
FITNESS FUNCTION 4.3.2 Selects the fitness function
OPTIMIZATION TYPE 4.3.2 Sets optimization to minimization or maximization
REFERENCE PATH INPUT 4.3.2.3 Input vector for inducing the reference execution path
DECIMAL PLACES 3.4.5 Decimal precision of DPSO in Euclidean space

Table 4.2: Parameters of SUT configuration
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type of assembly instructions it contains. Thus, each basic block can have a cost
greater than one unit of execution time.

When using the particle swarm optimizer for WCET search it does not matter
whether the worst-case execution time of instructions was obtained statically, from
a processor model, or by measurements. If the WCET of instructions is to be
obtained by measurements, the optimizer can be used to generate the input-data
vectors. This application of pso wcet is discussed in Subsections 4.5.3 and 4.5.4.

Assuming that the WCET costs of basic blocks are provided, it is possible to
maximize SUT execution time by the particle swarm optimizer. The use of pre-
defined values for the time costs of processor (or in the current implementation
virtual machine) instructions, may provide a safe WCET estimate on simple pro-
cessor architectures. The necessary condition for safety of the WCET estimate
derived in this way is a processor system without timing anomalies.

Since PSO is a heuristic optimization method and not an exact algorithm, it
cannot be guaranteed that the path found by it is indeed the most time consuming
execution path of the SUT. The benefit of PSO is that the found path is guaranteed
to be feasible; the proof of paths’s feasibility is offered by the input data exercising
it.

It can be concluded that the PSO algorithm applied to the problem of WCET
search can only provide a lower estimate of WCET. However, the feasibility of
the execution path generating that estimate is guaranteed. In contrast, meth-
ods for static WCET calculation: explicit path enumeration, IPET, and tree-based
calculation can provide a safe WCET estimate, assuming that the necessary con-
dition of hardware free from timing anomalies is met. The costliest path obtained
with static methods can be unfeasible at run-time which makes overestimation of
WCET possible.

4.5.3 Exercising a specific execution path

The user of pso wcet can specify a certain reference path and use a path similar-
ity fitness function to maximize similarity between the reference path and paths
induced by the optimizer-generated input data. Currently implemented measures
of path similarity are discussed in Subsection 4.3.2.3.

Input data vectors obtained by maximizing the similarity of execution paths to
that of the reference path can be used to perform execution time measurements of
the reference path. Different input vectors are needed in order to observe the vari-
ation, i.e. jitter, of execution times for processor instructions with non-constant
timing properties. In this case the observed variation of execution times is the re-
sult of data-dependent execution time of certain instructions. Additional variation
in instruction execution time, on more complex processor architectures, can be a
result of execution history [4], but this phenomenon is not considered here.
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4.5.4 Exercising an execution path neighborhood

Similarly to finding input data for a reference execution path, it is also possible to
generate data that exercise paths in the reference paths’s neighborhood. The path
neighborhood is defined as a set of execution paths that satisfy a certain similarity
criterion with regards to the reference path. The similarity criterion is usually
specified by the user; it can be an interval of the result of the path similarity fitness
function. An exemplary fitness interval 0.9 ≤ f < 1 would consider all paths with
a dissimilarity of up to 10% to be inside the reference path’s neighborhood.

When the vectorout option of pso wcet is invoked, the position of all particles
that satisfy the fitness criterion is saved at the end of every iteration. The result
is a set of data vectors that exercise paths in the defined neighborhood.

Furthermore, were the concept of path neighborhood extended with the defi-
nition of a program segment, e.g., using a segmentation scheme proposed in [49],
it would be possible to obtain input data exercising a segment in the same way
as input data exercising a neighborhood are generated in the current implemen-
tation. The obtained input data could be used for extensive measurements of
segments, i.e., measurement-based derivation of their worst-case execution time.
Incorporating a segment definition in pso wcet is a subject of further work.

4.5.5 Checking execution path feasibility

If some SUT execution path is structurally or semantically not feasible, then it is
automatically disqualified from being a WCET inducing execution path.

The problem of execution path feasibility, defined in Subsection 2.3.5, can
be solved by pso wcet to the following extent. The user provides a trace of the
path that needs feasibility checking inside a text file. The framework reads this
execution path and uses it as the reference path. Combined with one of the path
similarity fitness functions5 from Subsection 4.3.2.3, it searches for the data vector
that exercises the reference path by maximizing path similarity.

If at the end of the run, a data vector whose execution path has a similarity
of 1.0 with the reference path is found, then the user specified reference path is
deemed feasible. If that is not the case, no statement about the path’s feasibility
is made.

5All implemented fitness functions for path similarity can be used for checking execution path
feasibility except the set and multiset similarity. These two functions may not be used, since
they can give a similarity of 1.0 even for non-equal paths.
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4.6 Related Work in Software Testing

Software testing implies dynamic execution of a software component with a set of
input data vectors under specified execution conditions. Results of execution are
recorded and evaluated against the software component’s specification.

4.6.1 Types of software testing

The specification of a software component in real-time systems contains functional
as well as temporal requirements. Thus, it can be spoken of the functional and the
temporal part of the component’s specification.

4.6.1.1 Testing for functional requirements

Adherence to the functional specification is usually verified by using a set of test
cases. A test case in real-time systems contains an input data vector, a description
of the execution conditions, and a set of expected results [50, p.251]. It embodies
the relationship between the component’s input, output, and change of state. Fail-
ing to satisfy a correctly implemented test case shows that the implementation of
the software component differs from its specified functionality.

All test cases are important in functional testing; software components need to
be regularly tested with them during the development cycle in what is known as
regression testing. Failing to satisfy a single test case means that the component
does not function according to its specification. The absence of failed test cases,
however, does not prove the absence of functional errors. It merely increases the
certainty of their absence.

4.6.1.2 Testing for temporal requirements

In the case of temporal testing the goal is to find the test case, i.e., the input data
vector which induces the WCET of the software component. Extensive coverage
of input data as well as the execution paths inside the SUT is necessary for any
reasonable certainty in the lack of optimism of the WCET estimate.

If the WCET estimate obtained by testing is higher than the one specified in
the temporal specification, then the SUT fails to satisfy it. If, however, the WCET
estimate is lower than what is specified, this still does not prove that the software
component complies with its temporal requirements. A proof of that could only
be given by static WCET analysis. Still, a WCET estimate obtained by testing
can be valuable to software developers, as it can point to problems with temporal
behavior early on in the development cycle [30].
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4.6.2 Algorithms for generating input data

The input data used for functional and temporal testing can be generated au-
tomatically by suitable heuristic algorithms. Test data generated with a genetic
algorithm have been used in [30] for numerous kinds of functional testing (black
box, white box, gray box) and limited end-to-end measurements of WCET. In
[29], a genetic algorithm has been applied solely for testing the temporal prop-
erties (WCET, BCET) of a real-time system component. In the original work
about white box functional testing [51], a gradient descent method for function
minimization has been applied to generate test data. In a more recent work [52],
both PSO and a genetic algorithm have been implemented to generate test data
for gray-box functional testing. The authors have compared the two algorithms
and have concluded that PSO outperforms genetic algorithms in most of the cases.

4.6.3 Types of fitness functions

Apart from the different algorithms used to generate input data, testing meth-
ods also differ by the applied fitness functions. The traditional division of func-
tional testing is that into black box, white box, and gray box testing. Among these
methods, white box and gray box concepts have the most relevance for testing of
temporal behavior.

4.6.3.1 Black box testing

Black box testing checks whether certain data vectors provided as input cause the
software component under test to give correct data as output. The test cases used
in this kind of testing have to capture the relevant input-output relationships from
the functional specification of the software component.

The black box approach has little relevance for estimating WCET; it deals only
with the functional requirements of the SUT.

4.6.3.2 White box testing

White box testing deals with internal operation of the software component. It
checks whether the provided input data exercise the correct execution path. A
prerequisite for this kind of testing is knowledge about the internal structure of the
software component, hence the name ’white’ box testing. Information about the
internal structure can be captured by the CFG. White box testing is used mostly
to detect errors in the implementations of program logic, e.g., coding errors which
invalidate the correct flow-of-control.

The main goal of white box testing is to achieve high coverage of code with
tests. Code coverage can be measured in different ways, most simplistically, by



4.7. RELATED WORK IN MEASUREMENT BASED TIMING ANALYSIS107

the number of exercised statements. When single statements are grouped into
basic blocks, by using the definition stated in Subsection 2.3.1, code coverage can
be measured in terms of the number of exercised basic blocks. The coverage of
basic blocks in turn leads to the coverage of execution paths. Each execution
path explicitly states a sequence of executed basic blocks. The evaluated branch
conditions can be implicitly inferred from the execution path. However, in some
applications, notably in [29], it can be advantageous to measure code coverage in
terms of branch coverage, i.e., by the number of exercised branch predicates.

Since white box testing aims at high code coverage, the generated input data
can be reused for temporal testing. Usually, only a small subset of obtained exe-
cution paths will cause the software component to exhibit its worst case temporal
behavior. High code coverage provides a degree of certainty that the WCET esti-
mate obtained by testing is not unreasonably low.

4.6.3.3 Gray box testing

In contrast to white box testing, the task of gray box testing is not in achieving
high code coverage of the entire software component. Its task is to exercise the
software component with such input data that cause certain conditions of interest
to occur during execution. For example, an exception condition may need to be
caused in order to test whether the exception handling mechanism is correctly
implemented.

Often, WCET can be induced by input data that trigger an exception [9, p.
8]. Because of the comparatively rare occurrence of such input data, these need to
be generated selectively and separately from input data used in white box testing.
The fitness functions used to generate test data in gray box testing are based on
goals, i.e., on targeting specific parts of program code for execution. Goals can be
single statements, branch predicates, or execution paths.

The framework for software testing presented in [30] implements an elaborate
goal mechanism for gray box testing of exceptions. A similar mechanism is imple-
mented in pso wcet in the form of searching for some specific execution path; this
application was discussed in Subsection 4.5.3.

4.7 Related Work in Measurement Based Tim-

ing Analysis

A summary of pso wcet and two related methods for measurement-based timing
analysis (MBTA) is given in Table 4.3.

Both the measurement based method presented in Atanassov [27] and the cur-
rent implementation of pso wcet belong to the class of end-to-end measurements.
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Atanassov, [27] pso wcet Wenzel, [33]
Method type end-to-end end-to-end hybrid
Source code

- basic blocks, CFG
parse tree, basic blocks,

analysis CFG, segmentation
Input data

GA CPSO, DPSO
GA,

generation model checking
Derivation of measurement of synthetic cost of measurement of
execution times single instructions single instructions instruction sequences
Basic code unit

whole program basic block segment
in calculation
WCET heuristic heuristic graph based
Calculation longest path search longest path search longest path search
technique and IPET

Table 4.3: Comparison of related work in MBTA.

In contrast, the approach in Wenzel [33] uses an intermediate stage before cal-
culating the global WCET, namely the local WCETs of program segments. The
calculation step is carried out using IPET or with a graph based algorithm for
longest-path search. Thus, the approach in [33] can be classified as a hybrid
method.

In the case of pso wcet and [27], the search for the longest execution path is
performed by a heuristic search technique. The search proceeds on a best effort
basis and yields a lower WCET bound.

Both pso wcet and [33] use local WCET bounds of basic code units in the calcu-
lation step. This can lead to overestimation of global WCET, since the execution
times of code units can vary over a wide spectrum, depending on the current execu-
tion context [53]. In [27], the WCET estimate is obtained by executing the whole
program on a specific hardware platform. In contrast, the approach of pso wcet is
not platform specific; it uses synthetic WCET bounds of single assembly instruc-
tions. The synthetic bounds can in principle be replaced with bounds obtained by
measurements or from a timing model. Furthermore, a reduction in computational
complexity of pso wcet could be achieved by applying one of the program segmen-
tation technique used in [33] or [49]. This would enable more efficient analysis of
larger programs.

4.8 User Manual

This section contains the print out of pso wcet manual pages.
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PSO_WCET(1) ManualPSO WCET PSO_WCET(1)

NAME
pso_wcet − a framework for worst-case execution time and execution path analysis of C programs

SYNOPSIS
pso_wcet −p<particles> [ −i <iterations> |−-tf <target-fitness>] [ --fitness pathlen|pathcost|pathaffix-
cmp|pathsetcmp|pathmultisetcmp|pathcombinedcmp| fresult] [ --refpath <file> ] [ --algorithm
cpso|dpso|random] [ --optimization min |max] [ --topology star |circle |wheel] [ --metric
init |euclid|taxi |fitness] [ --encoding gray |binary ] [ --cognitive <value> ] [ --social <value> ] [ --vmax
<value> ] [ --vectorout [ < count> ] [ - -fg |--fl ] <fitness>] [ --of <output> ] [ −s|−b |−h ]

OPTIONS
Optimizer options

−p particles
Use this options to set the number of particles in search space.

−i iterations
Uses the maximum number of simulation iterations as the termination condition.

−-tf target-fitness
The simulation terminates upon reaching a certain fitness.

−-fitness
pathlenUses execution path length in basic blocks as the fitness function.

pathcostThis fitness function sums the time costs of basic blocks in the execution path.

pathaffixcmpThis fitness function compares the prefix and suffix of each execution path with that
of the reference path.

pathsetcmpThis fitness function compares the basic block set of each execution path with that of
the reference path.

pathmultisetcmpCompares the multiset of basic blocks of each execution path with that of the ref-
erence path.

pathcombinedcmpUses a combination ofpathaffixcmp, pathsetcmp, and pathmultisetcmpfor the
fitness function.

fresultThe return value of the SUT main function is used as the fitness function.

−-optimization
minThe fitness value is minimized.

maxThe fitness value is maximized.

−-algorithm
cpsoOptimizer uses the continuous PSO algorithm.

dpsoOptimizer uses the discrete PSO algorithm.

randomOptimizer uses random search.

I/O options
−-refpath file

An execution path from a user specified file is used as the reference path.If this option is not
used, the reference path is obtained at runtime using the input data fromsubject/subject.h.

−-vectorout
count Specifies the number of input data vectors to be produced as output.

0.9 2010-08-19 1
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PSO_WCET(1) ManualPSO WCET PSO_WCET(1)

−-fg fitnessProduces data vectors whose fitness is greater than the specified value.

−-fl fitnessProduces data vectors whose fitness is lesser than the specified value.

−-of file
Specifies the output destination of all simulation results.

PSO options
−-topology

star The star topology in PSO models democratic decision making; all particles form one big
neighborhood.

circle The circle topology in PSO defines two nearest particles in the search space as neighbors of
some particle.

wheelThe wheel topology in PSO models a hierarchical organization using a single focal particle.
Other particles on the periphery are in the neighborhood relation only with the focal particle.

−-metric
init The initial metric uses the position of particles in memory for determining their distance.

euclid The Euclidean metric determines the distance of particles by measuring their distance in
search space with the Euclid’s formula.

taxi The Taxi or Manhattan metric determines the distance between particles in search space with
the Manhattan formula.

fitnessThis metric determines the particle distance using the absolute difference of their respective
fitness values.

−-encoding
grayThis option encodes bits using Gray encoding in DPSO and random search.

binaryThis option encodes bits using standard binary encoding in DPSO and random search.

−-cognitive value
Sets the double value of the cognitive constant. Recommendedsettings are inside the interval
[0,3].

−-socialvalue
Sets the double value of the social constant. Recommended settings are inside the interval ]0,3].

−-vmax value
Sets the velocity limit for CPSO and DPSO; recommended are double values from the interval
[1,4] and [3,10] respectively.

Modes of operation
−s Silent mode, optimizer displays the end result of simulation only.

−b Benchmark mode, optimizer displays the best particle of each iteration.

−h Help mode, displays this help.

DESCRIPTION
pso_wcetis a framework for generating input data to exercise the flow-of-control of C programs.The input
data are generated withParticle Swarm Optimizationusing different fitness functions. Upon execution,
each input data vector exercises a certain program path consisting of a sequence of basic blocks.

Applications
Based on the applied fitness function the applications of the framework include the following:

0.9 2010-08-19 2
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1. Maximizing the longest execution path in terms of the number of basic blocks

2. Maximizing the longest execution path in terms of the execution time cost (WCET)

3. Generating test data that exercise a specific execution path

4. Exercising execution paths in the neighborhood of some specified path

5. Empirically checking the feasibility of a specified path

SUT Integration
Preparing a new software component for testing by the framework involves taking the following steps:

1. Write the software under test (SUT) in a file location<sut_filename>, e.g. in subject/other/test1.c . The
main function of the SUT has to conform to the signature:

double<func_name>(int*count,[double|int]array[]) .

2. Write the runtime configuration of the SUT insubject/subject.h using the following template:

#ifdef <sut_id>
#define SUT_MAIN_FUNCTION <func_name>
#define SUT_ARGS_COUNT <int>
#define SUT_ARGS_TYPE <int>
#define DECIMAL_PLACE <int>
#define X_MIN <double>
#define X_MAX <double>
#define ALGORITHM <int>
#define FITNESS_FUNCTION <int>
#define OPTIMIZATION_TYPE <int>
#define REFERENCE_PATH_ARGS <arg type array>

#endif

Also write the declaration of the SUT main function intosubject/subject.h . The name of this function has
to be different from<sut_id>.

3. Includethe following entry intosubject/subject.c :

#ifdef <sut_id>
#include "<sut_filename>"

#endif

4. Define the current SUT insubject/subject.h with:

/* current SUT main function */
#define<sut_id>

5. Recompile the project with:make -f Makefile.man purge all

If there have been any errors in the compilation arising from wrong configuration in the previous steps cor-
rect them. Sometimes clang cannot handle more complex C constructs used in the SUT, e.g. nested expres-
sions in boolean evaluation. Thesolution to this is to simplify the syntax of such expressions, i.e. to subdi-
vide them in a few simpler expressions.

EXAMPLES
./pso_wcet -p 30 -i 300 --fitness pathlen

Maximizes the execution path length of the current SUT in terms of basic blocks.The simulation uses 30

0.9 2010-08-19 3
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PSO particles and lasts for 300 iterations.

./pso_wcet -p 30 --tf 12321

Maximizes the execution time until the target fitness of 12321 time units is reached.

./pso_wcet -p 30 -i 300 --fitness pathmultisetcmp --vectorout --fg 1.0 -s

Finds additional input data that exercise the reference execution path.The input data inducing the reference
execution path are defined insubject/subject.h .

./pso_wcet -p 30 -i 300 --fitness pathmultisetcmp --refpath results/optimum-path-bubblesort.dat
--vectorout --fg 0.99 --fl 1.0 -s

Finds input data vectors that induce execution paths in the neighborhood of the user specified path.

./pso_wcet -p 30 -i 300 --optimization min --fitness pathmultisetcmp --refpath results/optimum-path-
bubblesort.dat --vectorout --fl 0.9 -s

Finds input data vectors that induce paths with least similarity to the user specified path.

/pso_wcet -p 30 -i 300 --fitness pathmultisetcmp --refpath results/unfeasible-path-bubblesort.dat
--vectorout --fg 0.999 --fl 1.0 -s

Checks whether a certain path is feasible. If no input data vectors with fitness 1.0 are found, the path is
empirically deemed as unfeasible.

./pso_wcet -p 30 -i 300 --algorithm dpso --topology circle --metric fitness --encoding binary --cognitive
1.1 --social 2.9 --vmax 4.0

Maximizes SUT execution time with the discrete PSO algorithm using non-default settings for the topol-
ogy, metric, encoding, cognitive and social constant, and maximum velocity.

FILES
subject/subject.c

File includes C source code of the software-under-test.

subject/subject.h
File contains different optimization configurations.

subject/subject.bcsi
File contains instrumented LLVM code of the software-under-test; it also contains basic block IDs.

subject/bbcost.dat
File contains the execution time of basic blocks.

AUTHOR
Miljenko Jakovljevic (miljenko.jakovljevic@gmail.com)

0.9 2010-08-19 4
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4.9 Summary

The pso wcet framework consists of code instrumentation, tracing of execution,
and the PSO optimizer. A SUT is written in the C programming language, and
its instrumentation is performed on the intermediate code level in LLVM virtual
assembly. An execution trace is obtained by running the SUT binary, compiled
from instrumented code in LLVM, with the input data vectors provided by the
PSO optimizer.

The main function of the SUT has to conform to the signature specified by
pso wcet. Furthermore, the framework needs to be configured with SUT specific
parameters before generation of input data can take place. Default values can be
used for parameters that are relevant only for the PSO simulation, although these
may not yield optimal results in all instances.

Applications of pso wcet include finding the longest and worst-case execution
path, generating data vectors that exercise a certain reference path, as well as
exercising neighborhoods of the reference path, and checking execution path fea-
sibility.

The generated data vectors can be used for time measurements on real hard-
ware. Different input data are needed to observe the data dependent variance
of execution time for some path. Given sufficient computational resources, the
pso wcet framework can provide such input data.
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Chapter 5

Experiments

The plan for experimental evaluation of pso wcet was the following: in the first
phase, the three algorithms DPSO, CPSO, and random search were used to opti-
mize a given software-under-test. The optimization was carried out with different
settings for topology, metric, and encoding. Other PSO parameters were set to
default values, shown in Table 5.1.

In the second phase, the value of each PSO parameter: c1, c2, Vmax, particle
count, and iteration count was changed while using the default values for other
parameters. Topology, metric, and encoding were set to values which had optimal
performance in the previous phase. The task of the second phase was to find
improvements of default PSO parameters.

In the third phase, the experience in parameterization obtained from the first
two phases was applied to estimate the WCET, i.e., to maximize the execution
time of the SUT. Different values for Vmax were tested as well.

Each software-under-test can be a unique problem. Hence, follows that a cer-
tain PSO configuration does not have to be optimal for all SUTs. The goal of
the above three-phase approach was to finetune the PSO configuration for specific
SUTs and, possibly, to draw more general conclusions about the right parameter-
ization of PSO.

Parameter CPSO DPSO
Cognitive constant c1 2.0 1.0
Social constant c2 2.0 1.0
Maximum velocity limit Vmax 16.0 6.0
Zero velocity outside search space True -

Table 5.1: Default configuration of CPSO and DPSO.
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Software under test bubble sort

Fitness function execution path cost - WCET
Optimization type maximization
Type of input vector [int]
Size of input vector 20
Search space [−16, 15]20

Table 5.2: Configuration of the optimization problem bubble sort.

PSO particles 30
Iterations per run 100
Total runs 100

Table 5.3: General configuration of PSO for experiments on bubble sort.

5.1 Maximization of the WCET Estimate

The first software under test was the bubble sort algorithm with source code
from Listing 4.1. Its configuration, assembled in Table 5.2, was the same for all
experiments. Furthermore, the general configuration of PSO that was used in
Experiments 1 and 2 on bubble sort is summarized in Table 5.3. The selected
particle and iteration count was observed to bring good fitness results, sometimes
even the optimum, while using modest computational demands on the testing
platform. The selected number of experiment runs was deemed sufficient, on the
whole, to negate the effects of randomness.

5.1.1 Experiment 1: Effect of topology, metric, and encod-
ing

The first experiment on bubble sort dealt with the effect of topology, metric,
and encoding on the performance of PSO based WCET estimation. This effect
was investigated independently of other PSO parameters. Experiment settings are
shown in Table 5.3, and the results are assembled in Table 5.4.

Both the CPSO and DPSO algorithm outperformed random search1 in all the
experiment runs. The star and wheel topology induced the two highest WCET
values as well as the two highest mean WCET values, for both CPSO and DPSO.
Furthermore, gray encoding induced comparable or higher maximum and mean

1Random search was implemented as a special case of DPSO where bit probabilities always
have a value of 0.5.
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WCET than binary encoding, for all combinations of topology-metric with DPSO
and random search.

For the CPSO algorithm, the star topology induced the highest mean WCET
and the smallest standard deviation. The wheel topology induced the maximal
WCET value.

For the DPSO algorithm, the star topology, initial metric, and gray encoding
induced the highest maximal and the highest mean WCET value with the smallest
standard deviation. Overall, the best WCET estimate of DPSO was higher than
that of CPSO.

Based on these results, the star topology, initial metric, and gray encoding were
selected for further use in Experiment 2.

Experiment 1: bubble sort
WCET estimate by Random search

Encoding Minimum Maximum Mean Stdev Mean rank
binary 11187 11607 11351.64 91.84 2
gray 11187 11586 11362.35 82.09 1

WCET estimate by CPSO
Topology Metric Minimum Maximum Mean Stdev Mean rank
star initial 11880 12069 11970.3 38.52 1
wheel initial 11775 12090 11903.94 52.81 2
circle initial 11754 12048 11856.48 54.41 6
circle fitness 11733 12027 11862.78 54.42 5
circle euclidean 11775 12048 11881.05 54.91 3
circle manhattan 11775 12069 11872.65 52.5 4

WCET estimate by DPSO
Topology Metric Encoding Minimum Maximum Mean Stdev Mean rank
star initial binary 12069 12300 12206.13 40.1 1b
star initial gray 12132 12300 12257.58 28.47 1a
wheel initial binary 11943 12237 12097.77 51.06 2b
wheel initial gray 12027 12237 12136.41 45.69 2a
circle initial binary 11943 12153 12053.04 41.48 5b
circle initial gray 11985 12174 12073.2 38.34 3a
circle fitness binary 11838 12090 11968.2 44.17 6b
circle fitness gray 11922 12132 11998.44 47.24 6a
circle euclidean binary 11964 12153 12064.59 37.55 5a
circle euclidean gray 11964 12195 12068.58 40.49 3b
circle manhattan binary 11964 12174 12068.16 44.96 4a
circle manhattan gray 11943 12174 12066.48 46.56 4b

Table 5.4: WCET estimate of bubble sort by DPSO, CPSO, and random search.
Different topology/metric/encoding combinations were evaluated. The entries in
bold are the best, and the entries in italics are the second best for each column.
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Algorithm Topology Metric Encoding
CPSO star initial -
DPSO star initial gray

Table 5.5: Special configuration of PSO for Experiment 2 on bubble sort. The
combination of topology, metric, and encoding with optimum performance in Ex-
periment 1 was selected for further application in this experiment.

5.1.2 Experiment 2: Effect of other PSO parameters

The second set of experiments investigated the following PSO parameters for their
effect on the WCET estimate: cognitive constant c1, social constant c2, maximum
velocity Vmax, particle count, and iteration count. The configuration of Experiment
2 is displayed in Tables 5.3 and 5.5.

In each experiment instance, the PSO parameters that were not currently being
surveyed were set to default values from Table 5.1. The use of these values for c1,
c2, and Vmax is reported in PSO literature, e.g., in [35, 39, 41, 37] for CPSO, and
in [38, 43] for DPSO.

5.1.2.1 Cognitive and social constant

Figures 5.1 and 5.2 show the effect of cognitive constant c1 and social constant
c2 on the performance of CPSO and DPSO in estimating WCET. The x and y
axes display different values for c1 and c2 while the fitness values - WCET - are
depicted in a topographic manner. From these figures the following observations
can be made.

For the CPSO algorithm, the highest mean fitness was achieved on the narrow
strip in the lower left corner of the diagram. This corresponds to the setting of
c2 = 1 and c1 ∈ [1, 1.5]. The fitness from this c1-c2 area had comparatively
high standard deviation. The lowest mean fitness was exhibited by the settings
c2 ∈ [1.5, 3] and c1 ∈ [1, 1.5]. It is depicted as the blue area in the upper left
corner of the diagram. The default learning factors (c1, c2) = (2.0, 2.0) induced
mediocre mean performance and low standard deviation.

In contrast to CPSO, the DPSO algorithm had a large area with optimal c1,
c2 values. Roughly, the parameters which induced the highest mean fitness were
c1 > 0.5 and c2 > 1. Values of c2 < 0.4 induced the lowest mean fitness. The
default setting of (c1, c2) = (1, 1) induced good mean fitness and mediocre standard
deviation. The standard deviation could be reduced, while retaining the optimal
mean fitness, by moving the parameters (c1, c2) in the direction (1, 1)→ (2, 2).
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Figure 5.1: Influence of the cognitive and social constant on the WCET estimate
of bubble sort that was obtained by CPSO.

5.1.2.2 Maximum velocity

The effect of maximum velocity, Vmax, on the WCET estimates obtained by CPSO
and DPSO is shown in Figures 5.3 and 5.4 respectively.

To recall, Vmax controls the relationship between global and local search of
PSO. High maximum velocity allows more global search at the beginning and less
local search towards the end of the algorithm run. In contrast, lower maximum
velocity allows particles to cover a smaller area of search space at the beginning,
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Figure 5.2: Influence of the cognitive and social constant on the WCET estimate
of bubble sort that was obtained by DPSO.

but it allows more local exploration towards the end of optimization.

For the CPSO algorithm in Figure 5.3, Vmax = 2 induced the maximum mean
fitness and highest standard deviation. The default value, Vmax = Xmax = 15,
provided mediocre mean fitness and medium standard deviation. It would seem
prudent not to use values of Vmax > 5, since they induced reduced mean fitness.
Furthermore, values of Vmax ∈ [2, 5] would have the benefit of allowing more local
search in the finishing iterations of CPSO.

In contrast to CPSO whose mean fitness decreased after Vmax > 2, the mean
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fitness of DPSO increased after Vmax > 0, as shown in Figure 5.4. For values
of Vmax ∈ [4.0, 10], the mean fitness remained static. The standard deviation
induced for this interval was lower than the corresponding deviation for Vmax < 4.
This experiment would indicate that Vmax ∈ [4.0, 10] causes DPSO to perform a
more systematic search than for Vmax < 4, since these values induced the highest
fitness and lowest standard deviation. The minimum value from the proposed
interval, i.e. Vmax = 4, could be optimal when optimization is performed with
more iterations than in this experiment, since it would allow most local search.
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Figure 5.3: Influence of maximum velocity, Vmax, on the WCET estimate of bubble
sort obtained by CPSO.
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Figure 5.4: Influence of maximum velocity, Vmax, on the WCET estimate of bubble
sort obtained by DPSO.

5.1.2.3 Particle count

The effect of particle count on the WCET estimate of CPSO and DPSO is shown
in Figures 5.5 and 5.6 respectively.

It should be noted here that a larger particle count can achieve higher search
space coverage at a single instant. However, this comes at the price of increased
computational effort, since each particle needs to be updated independently by
the optimizer. Furthermore, the computational effort of coordinating the swarm,
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i.e. calculating the gbest position and the neighborhood relation, increases with
particle count. The same computational effort can be better spent by increasing
the number of iterations than by increasing the number of particles after a certain
particle utility limit. This limit can be defined as a point after which the linear
increase of particle count results in less than a linear increase of fitness for some
iteration count. In the current implementation, particle count n increases the
overhead of one PSO iteration by at least a factor of Ω(n2).

The CPSO algorithm in Figure 5.5 offered little improvement of mean fitness
for particle count > 30; standard deviation remained bounded between 30 and
50 in this interval. Thus, there is little reason to justify the computational effort
necessary for more particles.

In contrast to CPSO, the DPSO algorithm reached the particle utility limit
somewhat later, at 50 particles. After this point there was not enough improvement
of fitness to justify the computational expense; the linear increase of particles above
this number did not result in the likewise proportional increase of fitness.

For DPSO, a better improvement could usually be achieved by a higher iter-
ation count. By comparing the experiments shown in Figures 5.6 and 5.8 it can
be observed that, increasing the particle count improved the fitness of DPSO less
than the corresponding increase of iteration count.

It can also be observed from Figure 5.6 that the standard deviation continually
dropped with increased particle count in the case of DPSO. This would indicate
that the diversity of the swarm decreases proportionally with the size of the swarm,
i.e., the convergence of particles on the same coordinates increases. In contrast, the
standard deviation of CPSO in Figure 5.5 shows that the diversity of the swarm
remained bounded for particle count > 10.

5.1.2.4 Iteration count

The effect of iteration count on WCET estimates obtained by CPSO and DPSO
is visible in Figures 5.7 and 5.8 respectively.

Intuitively, when the algorithm is run with a higher iteration count it tends to
obtain higher WCET estimates. However, after a certain number of iterations little
or no improvement of fitness may occur. It is hypothesized that this condition is
caused by particles converging on some region of search space with local optima.
Another possibility may be that there are simply too few coordinates in search
space that induce the optimum fitness - WCET, i.e. that the optimal coordinates
are too sparse. If all particles converge on a local optimum it can be effective to
restart the algorithm. Particles can then perform search from different starting
conditions, which can lead to convergence on those regions of space with global
optima.

The CPSO algorithm in Figure 5.7 achieved high fitness gains for iteration
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count ≤ 30. For iteration count > 30, improvements occurred at a much lower
rate. Standard deviation remained within constant bounds in this interval.

The progressive improvement of mean fitness by DPSO in Figure 5.8 was much
steadier than that of CPSO, even for iteration count reaching 100. Furthermore,
the standard deviation of fitness fell sharply to within stdev < 40 for iteration
count > 60. This shows that, in this experimental setting, DPSO particles had
a higher rate of convergence, i.e., more particles flew to the gbest position than in
the case of CPSO particles.
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Figure 5.5: Influence of particle count on the WCET estimate of bubble sort

obtained by CPSO.
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Figure 5.6: Influence of particle count on the WCET estimate of bubble sort

obtained by DPSO.

5.1.3 Experiment 3: Maximum velocity and mean perfor-
mance

5.1.3.1 Preparation: static calculation of WCET bounds and deriva-
tion of maximum observed execution time

A lower and upper WCET bound of the SUT bubble sort was statically calcu-
lated in order to obtain a measure of effectiveness for pso wcet. The lower bound
was necessarily too optimistic, and the upper bound was too conservative, since
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the calculation employed a greedy approach. Greedy stands for the assumption
that certain parts of code always display their worst-case behavior. The maximum
observed execution time by pso wcet lies between the calculated lower and upper
WCET bound. Equations 5.1, 5.2, 5.3, and 5.5 demonstrate the application of tree
based formulas for WCET calculation from Subsection 2.6.2 on the CFG instance
of bubble sort shown in Figure 5.9. It was possible to apply the tree-based for-
mulas directly on the CFG instance, since in this case, the CFG with removed
cycle edges is equivalent to the syntax tree.
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Figure 5.7: Influence of iteration count on the WCET estimate of bubble sort

obtained by CPSO.
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Figure 5.8: Influence of iteration count on the WCET estimate of bubble sort

obtained by DPSO.

wcet(bubblesort) = wcet(entry) + wcet(LOOP1) (5.1)

wcet(LOOP1) = wcet(for1.cond)

+ n [wcet(for1.body) + wcet(LOOP2) + wcet(for1.inc)]

+ wcet(for1.cond) + wcet(for1.end) (5.2)

wcet(LOOP2) = wcet(for2.cond)

+ (n− 1) [wcet(IF) + wcet(for2.inc) + wcet(for2.cond)]

+ wcet(for2.end) (5.3)

(5.4)
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wcet(IF) = wcet(for2.body) + max(wcet(if.then), 0) + wcet(if.end) (5.5)

exit

entry (10)

for1.cond (4)

for1.body (2)

for2.cond (5)

for2.body (11)

for2.inc (4)

for1.end (3)

for1.inc ( 4)

for2.end (1)

if.then (21)

if.end (1)

Figure 5.9: The CFG of bubble sort based on LLVM code that was obtained by
compiling the source code in Listing 4.1. The basic blocks have their synthetic,
worst-case execution times given in the parentheses. Since this CFG is almost
equivalent to the program syntax tree, it can be used to calculate the WCET
estimate with tree-based formulas from Subsection 2.6.2.

Using the SUT configuration from Table 5.2, the loop bound n in Equations
5.2 and 5.3 was substituted with the size of the SUT input vector. Using this
information and the WCET value of each basic block, given in Figure 5.9, it was
possible to calculate the WCET bound of the whole program. The upper WCET
bound was obtained by taking the maximal execution time of the IF1 alternative
as specified in Equation 5.5. To obtain the lower WCET bound, a minimum
instead of the maximum was used in the same equation.

The cause for underestimation by the lower bound is that the WCET inducing
execution path does not always pass through the minimal sequence of basic blocks:
for2.body → if.end, for each loop iteration. The cause for overestimation by the
upper bound is that the WCET path neither traverses the maximal sequence:
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Time units Error (%)
Lower static WCET bound 8317 32.5
Maximum observed and real WCET 12321 -
Upper static WCET bound 16297 32.37

Table 5.6: The lower and upper WCET bound and the maximum observed and
real WCET of bubble sort. The lower and upper bound were calculated by ap-
plying the tree-based formulas as shown in Equations 5.1 - 5.5. The real WCET
was obtained by using the a priori known input data that exercise the longest
execution path in bubble sort. The maximum observed WCET, which in this case
corresponds to the real WCET, was obtained empirically by pso wcet using exten-
sive testing. Even for a small program, the lower and upper bound obtained by
the tree-based formulas exhibited significant underestimation, viz., overestimation
of the real WCET.

for2.body → if.then → if.end, for each loop iteration. In some iterations, the
WCET inducing path passes through the minimal sequence and in others through
the maximal sequence.

The worst-case inducing input vector for bubble sort is known from tradi-
tional algorithmic analysis to be an inversely sorted list. Extensive testing by
pso wcet also confirmed this.

The WCET bounds calculated by the tree-based formulas and the maximum
observed execution time obtained by pso wcet are assembled in Table 5.6. The
maximum observed execution time was used as the termination condition for the
following experiment.

5.1.3.2 Settings

The goal of this experiment was to examine the effects of the PSO parameters
on the mean iteration count necessary for finding the optimum solution, i.e., the
WCET inducing input vector.

The selection of parameters was based on the results of preceding two exper-
iments. The chosen value-pairs for the cognitive and social constant (c1, c2) are
assembled in Table 5.7. The rationale used for the selection of c1 and c2 from a
high number of possible combinations was based on the experimental results pre-
sented in Subsection 5.1.2.1. In the current experiment, a selection of (c1, c2) pairs
was tested over a range of maximum velocity values Vmax.

The experiment was carried out using the SUT configuration assembled in
Table 5.2, the values for topology/metric/encoding from Table 5.5, and the specific
run-configuration of the optimizer from Table 5.8.
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Algorithm c1 c2

CPSO

2 2
1 1

1.2 1
1.4 1

DPSO

1 1
1.5 1.5
1.9 1.7
0 2

Table 5.7: Pairs of cognitive and social constants (c1, c2) used in Experiment 3
on the SUT bubble sort. The selection of values was based on the results of
Experiment 2 discussed in Subsection 5.2.2.

Particle count for CPSO 30
Particle count for DPSO 50

Termination condition
fitness = maximum observed WCET
or iteration count reached 1000

Runs 100

Table 5.8: Configuration of Experiment 3 on bubble sort.

The particle count in Table 5.8 was chosen based on the results of the preced-
ing experiment that were documented in Subsection 5.1.2.3. For each algorithm,
a particle count with high mean fitness but below the particle utility limit was
selected.

The termination condition in Table 5.8 was specified in such a way that each run
instance of the experiment should terminate when it finds the optimum solution
or when it reaches the maximum number of allowed iterations. A comparatively
high number of allowed iterations was selected in order to distinguish the case of
failure to find the WCET from the case of suboptimal performance.

5.1.3.3 Results

The results of Experiment 3 on bubble sort are plotted in Figure 5.10. For the
CPSO algorithm, only two maximum velocity values: Vmax = 1 and Vmax = 2 out
of the total of 16 tested values guided the optimization successfully to the optimum
solution. In contrast, the range of successful Vmax values for the DPSO algorithm
was much larger: 4 ≤ Vmax ≤ 10.

Figure 5.10 shows that Vmax had more influence than the cognitive and social
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constant c1, c2 on the performance of both CPSO and DPSO. Optimization runs in
this experiment failed only due to incorrect Vmax settings. The effect of different
(c1, c2) settings was limited to small quantitative differences in the number of
iterations needed to find the optimum.
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Figure 5.10: Influence of maximum particle velocity, Vmax, in connection with a
selection of learning factors (c1, c2) on the mean iteration count needed to find
the WCET inducing solution of bubble sort. A mean value of 1000 for a given
set of parameters c1, c2 and Vmax indicates that the PSO algorithm did not find
the WCET solution in any of the run instances within allocated computational
resources. It can be seen from the second graph that DPSO managed to find the
optimum solution even for the cognitive constant c1 = 0, i.e., by particles doing
only group and no individual search.
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5.1.3.4 Interpretation of results

In an overview work on PSO, [41], it is stated that for CPSO: ‘no definite con-
clusions about the asymmetric learning factors (c1, c2) have been reported‘. In
comparison, the optimum for CPSO in Figure 5.10 was achieved by symmetric
learning factors (c1=1, c2=1). For DPSO in the same Figure, the asymmetric fac-
tors (c1= 1.9, c2= 1.7) slightly outperformed the symmetric factors (c1 = 1, c2 = 1).

In [54], it is reported that the cognitive and social constant are both essential to
the success of CPSO. In contrast, DPSO succeeded in the current experiment even
without the cognitive constant, i.e., with the setting (c1 = 0, c2 = 2). However,
the algorithm’s quantitative performance was handicapped when compared to the
setting of c1 > 0. The inverse case (c1 > 0, c2 = 0), i.e., particles conducting only
individual search, would be unlikely to succeed, based already on the results of the
previous experiment which are shown in Figure 5.2.

In [41], it is stated that for CPSO, Vmax is generally set to the value of the
dynamic range of each variable, i.e., to Xmax. In contrast, Figure 5.10 shows
that CPSO clearly failed for this proposed setting, Vmax = Xmax = 16, and for a
whole range of other unsuitable settings Vmax ∈ [3, Xmax]. A set of random sample
experiments, not documented here, was conducted in order to explain this strong
influence of Vmax on the performace of CPSO. Based on the obtained results, there
is reason to hypothesize that the optimum Vmax setting depends on the size of
the search space. Furthermore, it may depend on the granularity of the evaluated
search space coordinates. In the case of bubble sort, CPSO particles move in a
continuous space, but their coordinates have to be rounded to the nearest integer
before they are used as an input vector for the SUT and evaluated. This may
explain why CPSO found the optimum only for values Vmax = 1 and Vmax = 2 in
the current experiment.

To conclude, in Experiment 3, in which fine-tuned PSO parameters were used,
the best case mean performance of DPSO was four times better than that of CPSO.
Both of the algorithms succeeded in finding the optimum.

5.2 Optimization of Rastrigin’s Function

The second set of experiments designed to evaluate the pso wcet framework deals
with the optimization of Rastrigin’s function [55], a function with many local
optima that is often used to test the performance of optimization algorithms. This
function belongs to one of the more difficult benchmarks and is well established in
literature [45, 44, 39].

In contrast to the discrete problem of finding the WCET of bubble sort, for
which there are multiple optimum solutions, the Rastrigin’s function is continuous
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and has only a single optimum. The optimal solutions, i.e., the optimal coordi-
nates in search space are much more sparse for the Rastrigin’s function than for
the problem of maximizing the WCET estimate of bubble sort. The main dif-
ficulty in optimizing the Rastrigin’s function are its many local optima. Genetic
algorithms, as well as some PSO implementations can get stuck at one of these
positions, viz., all population entities may converge to a single local optimum.

A 2-dimensional Rastrigin’s function with the minimum at coordinates (0, 0)
is displayed in Figure 5.11. The configuration of the optimization problem that is
used throughout the following experiments is assembled in Table 5.9. The task of
the evaluated algorithms: random search, CPSO and DPSO was to find the global
optimum by progressive function minimization.

Software under test Rastrigin

Computation result f(~x) =
∑n

i=1(x2
i − 10cos(2πxi) + 10), [n = 2]

Fitness function computation result
Optimization type minimization
Type of input vector [double]
Size of input vector 2
Search space [−256, 256]2

Table 5.9: Configuration of the optimization problem Rastrigin.

5.2.1 Experiment 1: Effect of topology, metric, and encod-
ing

The goal of the first experiment on function Rastrigin was to survey different
combinations of topology, metric, and encoding and to compare their effect on the
performance of random search, CPSO, and DPSO. As a result, the best combina-
tion of parameters was determined for each algorithm. For CPSO this was the star
topology with initial metric, while DPSO performed best using the circle topology,
fitness based metric, and gray encoding.

PSO particles 50
Iterations per run 1000
Total runs 100

Table 5.10: General configuration of PSO for experiments on Rastrigin.
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Figure 5.11: The Rastrigin’s function belongs to one of the more challenging
benchmarks for evaluating heuristic algorithms. The above graphs visualize the
function for the case n = 2 of formula: f(~x) =

∑n
i=1(x2

i − 10cos(2πxi) + 10).
In contrast to the discrete problem of maximizing the execution time of bubble

sort, which has many optimal solutions, Rastrigin’s function is continuous and
has only one global optimum at coordinates (0, . . . , 0). The difficulty of optimizing
this function by heuristic algorithms arises from the fact that it has many local
optima.
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Parameter CPSO DPSO
Cognitive constant c1 1 1.9
Social constant c2 1 1.7
Maximum velocity limit Vmax 1 4
Granularity of particle movement - 0.01
Zero speed outside search space True -

Table 5.11: Default configuration of PSO for experiments on Rastrigin.

5.2.1.1 Settings

The configuration of the optimization problem Rastrigin that was used in Ex-
periment 1 is displayed in Table 5.9. The employed PSO settings are assembled in
Tables 5.10 and 5.11.

5.2.1.2 Results

The results of Experiment 1 are assembled in Table 5.12. Both PSO algorithms
performed much better than random search. In terms of mean fitness CPSO clearly
outperformed DPSO. This is different from Experiment 1 on bubble sort, where
DPSO always outperformed CPSO in terms of both mean and extreme fitness.
From this experiment, however, it can be observed that CPSO had difficulties in
fine-tuning the solution once particles were in the region of the global optimum;
CPSO came close, but did not succeed in finding the exact optimum. This might
be due to a faulty setting for maximum velocity Vmax and suboptimal settings for
the cognitive and social constants c1, c2. The optimal parameterization for each
algorithm is determined later in Experiments 2 and 3.

The best combination of topology/metric for CPSO was the star/initial com-
bination, which is the same conclusion as in Experiment 1 on bubble sort. For
the DPSO algorithm, the circle/fitness combination provided the best results; the
wheel topology provided the second best results after the circle topology. This
is a surprise, since in Experiment 1 on bubble sort, circle and wheel topologies
induced worse performance of DPSO than the star topology.

A comparison of encoding for DPSO shows that gray encoding was overall
superior to binary encoding for the star topology, while binary encoding was better
than the corresponding gray encoding for the wheel topology. Inconclusive results
for encoding were obtained with the circle topology.

Based on these observations, an optimal combination of topology, metric and
encoding, was selected for CPSO and DPSO and used in Experiments 2 and 3. It
is assembled in Table 5.13.
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Experiment 1: Minimization of Rastrigin’s function

Algorithm Topology Metric Encoding Minimum Maximum Mean Stdev Mean
rank

Random - - binary 3.443166 31.201209 15.085969 6.176458 2
search - - gray 2.079086 28.568722 14.972588 6.656456 1

CPSO

star initial - 0.000097 0.026250 0.008576 0.006561 1
wheel initial - 0.000022 0.083992 0.015236 0.015412 5
circle initial - 0.000035 0.083309 0.015772 0.016228 6
circle fitness - 0.000015 0.043529 0.010014 0.009278 2
circle euclid - 0.000106 0.053682 0.013499 0.011478 4
circle taxi - 0.000107 0.042642 0.011837 0.010729 3

DPSO

star initial binary 0.000000 31.876055 8.439318 9.207519 6b
star initial gray 0.000000 31.857280 7.815162 8.078447 6a

wheel initial binary 0.000000 4.157860 0.655858 0.938501 2a
wheel initial gray 0.000000 15.998506 1.192862 2.828908 5b
circle initial binary 0.000000 5.019086 0.839589 0.887523 3a
circle initial gray 0.000000 15.919253 0.794892 1.637172 2b
circle fitness binary 0.000000 2.357280 0.612021 0.581065 1b
circle fitness gray 0.000000 1.999665 0.529161 0.556208 1a
circle euclid binary 0.000000 5.099086 0.933366 0.950241 4a
circle euclid gray 0.000000 5.038506 0.973018 0.914960 4b
circle taxi binary 0.000000 5.057860 0.853111 0.887358 3b
circle taxi gray 0.000000 8.656649 1.176241 1.236614 5a

Table 5.12: Different combinations of topology/metric/encoding were investigated
for their effect on the performance of random search, CPSO, and DPSO. For each
algorithm, the entries in bold are the best and the entries in italics are the second
best of each column.
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Algorithm Topology Metric Encoding
CPSO star initial -
DPSO circle fitness gray

Table 5.13: Configuration of PSO for the optimization problem Rastrigin in
Experiments 2 and 3. The combination of topology, metric, and encoding with
optimum performance in Experiment 1 was chosen for further application in these
experiments.

5.2.2 Experiment 2: Effect of PSO learning factors

The second experiment dealt with the effect of pairs of cognitive and social con-
stants (c1, c2) on the performance of CPSO and DPSO. The objective was to obtain
a set of pairs (c1, c2) that induce good performance; a set of pairs with interesting
properties was later used for evaluating the settings for maximum velocity Vmax

in Experiment 3. The pair combinations (c1, c2), evaluated in this experiment,
were selected from the spaces [0, 2]2 and [1, 3]2 for CPSO and DPSO respectively.
As a result of the experiment, regions with suboptimal performance in the (c1, c2)
space were identified.

5.2.2.1 Settings

The configuration of the optimization problem Rastrigin used in this experiment
is displayed in Table 5.9. The resources allocated to the particle swarm optimizer
and the number of experiment runs are assembled in Table 5.10. The selected
topology, metric, and encoding, as well as the maximum velocity Vmax are displayed
in Tables 5.13 and 5.11 respectively.

5.2.2.2 Results

The results of the experiment for CPSO are shown in Figure 5.12. One can observe
that all (c1, c2) value pairs, except those with social constant c2 = 0, induced the
same mean and extreme case performance. For the setting of social constant
c2 = 0, optimization failed. There were differences in the standard deviation of
fitness for different (c1, c2) pairs: the standard deviation increased in the direction
of (c1, c2)→ (0.0, 0.2).

The results for DPSO are displayed in Figure 5.13. The function was suc-
cessfully minimized for all evaluated pairs (c1, c2). The best case fitness, i.e.
the minimum of each experiment run was zero. The mean and worst-case fit-
ness was optimal in the region around (c1, c2) = (3.0, 1.0) and worsened in the
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direction of (c1, c2) → (1, 3). The standard deviation increased in the direction:
(c1, c2)→ (1.0, 3.0).
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Figure 5.12: Algorithm CPSO - Influence of the cognitive and social constant
(c1, c2) on the minimization of function Rastrigin. The function was successfully
minimized for all (c1, c2) combinations except those with c2 = 0.0.
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Figure 5.13: Algorithm DPSO - Influence of the cognitive and social constant (c1,
c2) on the minimization of Rastrigin’s function. There was strong influence on
mean and worst-case (maximum) performance, while the best-case performance
(minimum) was the same for all (c1, c2) combinations.

5.2.3 Experiment 3: Maximum velocity and mean itera-
tion count

The goal of Experiment 3 was to survey a range of different values for maximum
velocity Vmax and to determine the effect on performance. A set of learning factors
(c1, c2), assembled in Table 5.14, was used with different Vmax settings. The selec-
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tion of learning factors was based on the results of Experiment 2. In the current
experiment, reasonable performance of CPSO was achieved for Vmax ∈ [0.5, 3],
while DPSO performed well for Vmax ∈ [3, 10].

5.2.3.1 Settings

The same settings as in Experiment 2 were used for the optimization problem
configuration, shown in Table 5.9, and for the choice of topology, metric and
encoding, shown in Table 5.13. New settings included the pairs of learning factors
which are assembled in Table 5.14.

The run settings of the experiment are displayed in Table 5.15. The interpre-
tation of the termination condition in this table is the following: if a solution is
found whose fitness is inside the interval [0, 0.01], the run instance terminates and
the iteration count necessary to achieve that solution is recorded. Otherwise, if
the run instance iterates up to 2000 iterations, it is assumed that it failed to reach
the solution within the allocated resource constraints. In this context, the resource
constraints are the particle count and the allowed iteration count.

Algorithm c1 c2

CPSO

2 2
0.1 0.1
1 1
0 2

DPSO

3 1
2.5 1.5
3 3

1.1 2.9

Table 5.14: Pairs of cognitive and social constants (c1, c2) used in Experiment 3 on
Rastrigin. The selection of values was based on Experiment 2 and was discussed
in Subsection 5.2.2.

5.2.3.2 Results

The two graphs in Figure 5.14 display the mean number of iterations of CPSO and
DPSO, for different pairs of cognitive and social constant (c1, c2), as a function of
maximum velocity Vmax.

For the CPSO algorithm, the lowest mean number of iterations was achieved
by the value Vmax = 0.5, for all combinations (c1, c2). This result is consistent with
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Particle count for CPSO 50
Particle count for DPSO 50

Termination condition
fitness ≤ 0.01
or iteration count reached 2000

Runs 100

Table 5.15: Special configuration of PSO used in Experiment 3 on Rastrigin’s

function.

Experiment 3 on bubble sort where Vmax = 1 was optimal. Among the tested
(c1, c2) pairs, the pair (c1, c2) = (2, 2) was optimal for CPSO.

The DPSO algorithm succeeded in finding the optimum region for all values
Vmax ≥ 3. The lowest and optimal iteration count was recorded for Vmax = 4 and
(c1, c2) = (1.1, 2.9). These results of DPSO are consistent with those of Experiment
3 on bubble sort, where the success in finding the optimum was also recorded
starting from Vmax ≥ 3.

Another observation regarding the CPSO algorithm confirms the hypothesis,
introduced in Subsection 5.1.3.4, that a successful Vmax setting is dependent on the
size of the search space. In Experiment 3 on bubble sort, successful Vmax values
were inside the interval [1.0, 2.0]. That experiment had a smaller search space than
the one with Rastrigin, i.e., the dimensional search range was [−16, 15] as opposed
to [−256, 256]. In Experiment 3 on Rastrigin, successful Vmax values were found
in a larger interval: [0.5, 16]. The difference in size of the dimensional range was
sixteen times, while the difference in size of the successful Vmax interval was about
eight times.

5.3 Summary

A series of experiments was conducted on algorithms: CPSO, DPSO, and ran-
dom search. The evaluated problems were maximization of the WCET estimate
of bubble sort and optimization of the Rastrigin’s function. The former prob-
lem is discrete while the latter is continuous; each one presented a challenge to
optimization in its own way. Furthermore, a systematic approach to selecting and
fine-tuning of PSO parameters for a specific problem was presented.

The two PSO algorithms outperformed random search by a large margin in
all experiments. After suitable parameters had been selected, both PSO algo-
rithms successfully found the optimum of each optimization problem in a reason-
able amount of computation time. The conclusion from literature [41], that CPSO
has difficulties in dealing with discrete variables, was confirmed experimentally.
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Figure 5.14: Influence of maximum particle velocity, Vmax, in connection with a
selection of cognitive-social pairs (c1, c2) on the mean iteration count necessary to
find the optimum for Rastrigin. A value of 2000 for the mean iteration count
indicates that a given PSO algorithm did not succeed in reaching the region of
space, specified around the optimum, in any of the run instances.
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The performance of DPSO was superior to that of CPSO on bubble sort. On
the continuous problem - Rastrigin’s function - DPSO had better extreme case
performance, while CPSO had better mean performance.

For the case of maximization of the WCET estimate of bubble sort, the WCET
estimate provided by PSO was much tighter then the upper bound calculated by
tree-based formulas. The input data generated by PSO that induced the maximum
WCET estimate were identical to the worst-case input of bubble sort known from
traditional algorithm theory.

Furthermore, it was found that the choice of topology can have significant
influence on the performance of both PSO algorithms. For the CPSO algorithm,
the star topology provided optimal performance on both optimization problems.
For the DPSO algorithm on the bubble sort problem, the star topology was also
optimal, while the circle topology provided optimal performance on the Rastrigin
problem. A further increase in DPSO performance on Rastrigin was achieved by
combining the circle topology with the fitness distance metric. However, this
increase was relatively small when compared to the increase provided by the circle
topology alone. It would seem that the right choice of topology has more influence
on PSO performance than the right choice of metric. Even the simple initial metric
worked comparatively well and outperformed more complex metrics in a few cases.

Experiments also showed that the encoding of particle coordinates can have
great influence on the performance of DPSO; gray encoding was better than binary
encoding in most of the cases.

Among the evaluated pairs of cognitive and social constants (c1, c2), the pair
(c1, c2) = (2, 2) provided the most efficient optimization of both test problems
for CPSO. For DPSO, a number of pairs (c1, c2) ∈ [1, 3]2 proved to be efficient.
Asymmetric pairs, c1 6= c2, were not significantly worse than the symmetric pairs
c1 = c2. The only limitation on the setting of the cognitive and social constant,
observed for both PSO algorithms, was that the social constant should always be
greater than zero, i.e., c2 > 0. Furthermore, it was found that search with the
zero cognitive constant, c1 = 0, works, but is less efficient than a higher than zero
setting.

As far as the maximum velocity Vmax is concerned, it was found that the correct
setting of this parameter is much more important than the fine-tuning of cognitive-
social pairs (c1, c2). A faulty setting for Vmax can have as its consequence the
failure of the particle swarm to converge upon the optimum solution, even after
the swarm discovers the region of space in its vicinity. For CPSO, search with
maximum velocity values, Vmax ∈ [0.5, 3], was successful on both optimization
problems. For DPSO, search with values, Vmax ∈ [3, 10], was likewise successful.

It was observed that a linear increase in the size of the particle swarm above
a certain value - the particle utility limit - did not result in the corresponding
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increase in performance. In terms of performance, the computational effort was
usually better spent on a higher number of algorithm iterations.

The observations obtained from these experiments might be useful in parame-
terizing PSO for other optimization problems.



Chapter 6

Conclusion

The question which this work attempted to answer was how to apply a relatively
novel, heuristic optimization technique - particle swarm optimization - on the prob-
lem of deriving worst-case execution time. The preparatory part of the work con-
tains an overview of different methods for WCET analysis (static, measurement-
based, hybrid) and an analysis of two representative PSO algorithms.

The continuous and discrete binary PSO were implemented and integrated in a
framework for synthetic WCET analysis. The framework delivers a lower WCET
bound by maximizing the execution path length. The maximization is achieved
by progressively optimizing the input data which are used to exercise the SUT.

A series of detailed experiments concerning the right parameterization of PSO
was performed. It was shown that PSO is a flexible optimization method; it worked
satisfactorily with default settings (out of the box), although performance could be
improved by fine-tuning. Of all the parameters, it was determined that maximum
velocity, Vmax, has the most potential for inducing a failure of optimization.

The optimally parameterized PSO was used to determine the longest execution
path of bubble sort. The quality of the implementation and parameterization
were such, that the derived lower bound was equal to the analytically obtained
WCET. In comparison, WCET bounds calculated by static tree-based formulas
had an error margin of 30%. The difference between the lower bounds obtained
by PSO and random search using the same computational resources was 525 time
units.

The framework was also adapted for white-box testing by introducing addi-
tional fitness functions. The optimization goals can be specified as execution path
targets. Thus, paths can be empirically checked for feasibility. Furthermore, in-
put data exercising specific SUT regions can be generated, which can be useful in
measurement-based WCET analysis.
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