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Abstract

Classic cryptographic methods are based on mathematical principles i.e. they are based on un-
proven computational complexity assumptions. The increasing performance of attaching equip-
ment imposes new requirements on the secure communications of the future.

The growth of the internet in recent years makes life easier for attackers who want to capture,
disrupt, insert, modify, or corrupt data. The substitution of the IPv4 standard by the newer IPv6
standard leads to new fields of interest according to authentication, information security, privacy
and reliable secret key distribution. IPv6 enables a large amount of unique address identifiers to
set up end to end connectivity between communication endpoints. Consequently it is possible,
to adress every kind of device like cars, airplanes, cell-phones, lamps, traffic lights, surgery
robots, entire medical information systems or classic personal computers for instance with its
unique identifier, respectively. Such unique identifiers enable access to the corresponding device
via a global network. The involvment of human lives results in an increasing sensitivity and
consequently the need of secure authentication, key exchange, communication and privacy to
gain scalable security.

Quantum cryptography or formally known as quantum key distribution is a method to de-
liver secret key material between two communication partners in a provable and information
theoretically secure manner. The communication partners encode the key to deliver on quantum
systems and transmit qubits on an authenticated quantum channel. Classic cryptographic meth-
ods have mathematical limits whereas quantum key distribution could solve one of the major
problems in classic cryptography, the reliable secret key exchange. Quantum cryptography can
be integrated in existing concepts and it is an enhancement of existing classical environments
and unconditionally secure algorithms such as the one time pad. The bottlenecks of quantum
key distribution are the limitations in the distance and speed. The present work will show, how
it is possible to secure IPv6 by quantum key distribution and bridge larger distances over optical
fibres, how privacy could be realised and how unconditional security gets involved to gain scal-
able security on quantum networks to provide end to end connectivity over IPv6. We investigate
the latency of IPv4, IPv6 and quantum key distribution to show that quantum key distribution is
a potential solution to secure IPv6.
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Kurzfassung

Klassische kryptographische Methoden basieren auf mathematischen Annahmen hinsichtlich
der Komplexität und der damit verbundenen mathematischen Härte ein Problem zu lösen. Das
bedeutet, wenn die Annahmen der mathematischen Härte widerlegt werden können, oder der
technologische Fortschritt zu einer überproportionalen Steigerung der Rechenleistung führt, dass
kryptographische Methoden, welche auf den Annahmen hinsichtlich der Komplexität basieren,
einer immanenten Gefahr ausgesetzt sind. Diese Methoden können komprommitiert werden.
Durch die Entwicklung des Internets haben Angreifer die Möglichkeit, Infrastruktur wie etwa
Rechenleistung auf Bedarf zu nützen und diese dazu einzusetzen, um gegen kryptographischen
Methoden vorzugehen. Neben diesen Fortschritten stellt auch die Entwicklung von Quanten-
computern eine Bedrohung von klassischen, kryptographischen Methoden dar. Ein Quantencom-
puter ist ein Computer, der auf den Gesetzen der Quantenmechanik basiert. Die dabei eingesetz-
ten Quantenalgorithmen ermöglichen die Kompromittierung von klassischen kryptographischen
Verfahren, da eine Vielzahl an Berechnungen gleichzeitig durchgeführt werden kann.

Das Wachstum des Internets führt dazu, dass der Bedarf an freien IPv4 Adressen nicht mehr
gedeckt werden kann. Die Adressknappheit erfordert neue Lösungen um den Mangel zu beseiti-
gen. Der designierte Nachfolger von IPv4 ist das Protokoll IPv6, welches durch eine Vergröße-
rung des Adressraums einen Anstieg der freien IP Adressen verspricht. Die zunehmende Anzahl
an Hosts im Domain Name System resultiert in einer steigenden Verbreitung von Anwendun-
gen über das Internet. Dabei kann aufgrund der Größe des IPv6 Adressraums derzeit jeder Host
im Netzwerk eindeutig identifiziert werden. Damit ist point to point Kommunikation über große
Distanzen für sicherheitsrelevante Applikationen, als auch private Anwendungszwecke möglich.

Quantenkryptographie oder auch als Quantenschlüsselverteilung bezeichnet, ist eine Me-
thode welche auf den Gesetzen der Quantenmechanik basiert. Daraus folgt, dass Quantenkryp-
tographie beweisbar zuverlässige Schlüsselverteilung zwischen zwei Kommunikationspartnern
ermöglicht. Die Information wird mit Quantenbits, auch als qubits bezeichnet vom Sender zum
Empfänger übertragen. Das bedeutet, dass Quantenkryptographie informationstheoretische Si-
cherheit bietet wenn der verteilte Schlüssel als One Time Pad eingesetzt wird, um die Kommu-
nikation abzusichern. Quantenkryptographie löst das Problem der sicheren Schlüsselverteilung
und kann in bestehende Infrastruktur integriert werden, um die Kommunikationssicherheit zu
verbessern. Bei der Distanz und der maximalen Schlüsselgenerierungsrate handelt es sich um
evidente Schwachstellen der Quantenkryptographie. Die vorliegende Arbeit zeigt, dass Quan-
tenkryptographie beweisbar sichere Schlüsselverteilung für IPv6 zur Verfügung stellt und durch
die Implementierung von Quantennetzwerken das Problem der eingeschränkten Distanzen be-
hoben werden kann. Dabei werden die Latenzzeiten von IPv4, IPv6 und Quantenkryptographie
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verglichen und um die Schlüsselgenerierungsrate ergänzt um zu zeigen, dass Quantenkryptogra-
phie ein potentieller Ansatz ist, um IPv6 für Punkt zu Punkt Kommunikation abzusichern.
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CHAPTER 1
Introduction

1.1 Motivation

Nowadays, a variety of security critical tasks are handled over the internet such as electronic
banking or medical data processing. Cryptographic methods are involved to protect transmitted
data. An interesting field in computer science is the field of cryptography. The battle between
cryptographers and cryptoanalysts goes on since centuries. Cryptoanalysts might be about to
overtake cryptographers through the advent of quantum computers. A quantum algorithm per-
forms its computations in a highly parallel fashion. It poses a threat to cryptographic methods
that rely on the computational complexity of calculating certain functions. However, cryptogra-
phers can protect secrets by the use of quantum key distribution which is provably secure. This
connects physics to computer science.

1.2 Problem

Security critical tasks have to be protected against attacks by state of the art cryptographic tech-
niques. Current cryptographic methods are based on number theory and rely on unproven com-
putational complexity assumptions where numbers are chosen to obtain keys via one way func-
tions and if the chosen numbers are too big to re-calculate the key, the cryptographic technique
is assumed to be reliable. A one way function specifies a function where the inverse is hard to
compute. However, there exists an inverse i.e. a decryption function to decrypt the ciphertext and
obtain the plaintext. The security of IPv6 is based on the Diffie Hellman key exchange where
two communication partners calculate a shared secret over probably unsecure channels via large
prime numbers. Quantum computers are able to break classical cryptographic methods by the
use of quantum algorithms.

Quantum key distribution relies on the quantum laws of physics and it is a promising method
to protect against quantum computers and their computational power. It performs the transmis-
sion of information between two communication partners to obtain a shared secret by measuring
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polarizations of light quantas. That means quantum key distribution is a method to distribute a
secret key between two communication partners provable secure. However, it is limited in the
distance and in speed. Hence it needs to be combined with classical solutions to bridge wide
areas in a global network.

1.3 Aim of the Work

Quantum key distribution is a method to provide secret key material which can be used to secure
sensitive data transmission via one time pads, but it is limited in the distance. The present
work shows that the internet protocol version 6 could be improved by using methods based on
quantum mechanics. Quantum networks are used to bridge larger distances between two distant
nodes. The work shows a performance comparison of IPv4, IPv6 and a QKD system to provide
unconditional security to IPv6 and that IPv6 and quantum key distribution complement each
other. That means the security of IPv6 does not necessarily depend on computational complexity
assumptions.

1.4 Methodological Approach

The state of the art literature research will be followed by setting up a reference model. A
requirements analysis complements an evaluation of constraints in real QKD environments.
Therefore an experiment will be provided for an improved IPv6 model via open source tech-
nology to deduce, that it is actually possible to reduce the dependency on algorithmic security
methods in IPv6 for wide area network communication. Performance measurements are done
and statistically processed as boxplots and probability density functions.

1.5 Structure of the Work

The present work ist structured as follows. The chapter basic principles deals with the virtu-
alization and router environment used for the experiments. In addition it deals with algebraic
structures, group theory, rings and fields and Hilbert spaces. It shows the need for new cryp-
tographic techniques to protect transmitted data against quantum computers and quantum al-
gorithms. The internet protocol chapter shows the concepts of IPv4 and IPv6 and the header
structure, respectively. It shows the Diffie Hellman key exchange protocol to agree on a shared
secret over unsecure channels. The fourth chapter explains the classical cryptography and the
basic mathematics of quantum information theory. It shows the differences of bits and qubits,
operators, quantum gates, the basic model of quantum key distribution, the calculation rounds
and the pre- and postprocessing of the quantum key exchange. An example BB84 key exchange
is given and the chapter shows what happens if a third party eavesdroppes on the quantum chan-
nel. In the next chapter there are concepts shown to bridge wide areas. Quantum networks are
used to connect two distant nodes. It shows that provable security is possible in the quantum
network even if there are unreliable nodes in the network. The quantum point to point pro-
tocol (Q3P) is implemented by the Austrian Institute of Technology GmbH (AIT). It provides
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the quantum key exchange over quantum networks unconditionally secure. In the experimental
evaluations chapter the results of the taken performance measurements are shown. It shows the
differences in IPv4, IPv6 and the QKD system.
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CHAPTER 2
Basic Principles

It is expensive to implement quantum infrastructure and make observations on real environ-
ments. A method to avoid higher costs is to virtualize an environment and make the observations
in virtual machines which provide the properties of a quantum network. This section describes
the basics for the experiments on quantum key distribution in virtual environments. It shows the
potential of the router hardware and its optimization for the integration of quantum key distribu-
tion into IPv6. We want to describe the basic mathematical concepts to understand the necessary
mathematics on quantum mechanics to deal with the measurements, taken.

2.1 Virtualization

Flexibility is a primary reason why organizations outsource resources i.e. computational tasks
are ported to virtual machines. However, computing power is expensive and is another pri-
mary reason to use virtualization techniques. In information technology (IT), virtualization is
a method to use the infrastructure of a physical machine (hardware and software) and separate
the virtual environment from the physical one. In particular, a distinction between a physical
machine and a virtual machine is drawn. A physical machine consists of an exhaustive set of
standalone hardware and software, whereas a virtual machine consists of virtual hardware and
software on an instance of some host hardware with an entire operating system running on it.
Hence a virtual machine denotes a set of files and runs on a physical machine. It shares the
physical infrastructure with other instances of virtual machines.

Virtualization - The Concept

Virtualization denotes the implementation of an environment, by contrast to a physical one. It
can be divided into desktop, hardware, software, memory and storage virtualization. Desktop
virtualization is referred to the concept, of separating a virtual machine from the physical ma-
chine. Figure 2.1 shows two concepts of virtualization.
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Application
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Operating System
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Operating System

Virtual Machine Monitor
Hardware
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Figure 2.1: Virtualization - (a) Virtual Process Machine vs. (b) Virtual Machine Monitor

A virtual process machine uses an abstract instruction set to run instances of applications. It
does this by a runtime system for a single process.

Another virtualization technique is the full virtualization via a virtual machine monitor
(VMM) layer. The VMM isolates the host operating system from the instances, run in the
virtualization environment. However, the VMM intercepts dedicated components and inter-
faces, hence it provides the complete instruction set from the host machine, network interfaces
(ethx, wlanx) and other common interfaces. From a technical point of view, the benefits from
virtualization are an increased portability, simplified testing and development and migration in
computer science. In an economical manner, the benefits are reduced costs, a lower level of en-
ergy consumption and an increased flexibility to use the dedicated resources. By technological
development, virtualization is increasingly used in a wide range of application. The concept of
virtualization itself is not in the scope of this work. The interested reader can find more detailed
information on virtualization in [1, 45].

ORACLE Virtualbox

ORACLE virtualbox [40] is a full virtualization and cross-platform environment. It provides
a virtual machine monitor, similar to VMWare player [48] and is available for Linux, Mac,
OpenBSD and Windows host operating systems. As guest operating systems, virtualbox sup-
ports Microsoft Windows, Linux, Solaris, BSD, IBM OS/2, MAC OSX or DOS (Disk Oper-
ating System). Virtualbox uses harddisks for guest operating systems and they are known as
*.vdi container, of fixed (static) or variable (dynamic) size. To enable the network adapter
from a virtual machine (VM), it is necessary to specify the device the VM is attached to. The
dedicated parameters are Not attached, NAT, Bridged Adapter, Internal Network, Host-only
Adapter, Generic Driver. However, the adapters bridged adapter and internal network are of
interest.

The bridged adapter uses the device driver from the host system and implements bridged
networking. Because it filters the traffic it is similar to a network filter. Hence this bidirectional
technique intercepts the traffic and injects the payload. A bidirectional channel specifies a point
to point connection between two communication parties. Hence a bidirectional communication
channel has the property that signals can be transmitted in both directions.

On the other hand, virtualbox provides an internal networking interface. It is a bidirectional
networking interface, too. However, the communication is limited to a virtual network i.e. a set
of virtual machines and routing devices, linked to the internal network over their interfaces. The
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configuration file of a virtual machine can be found in∼/VirtualBox VMs/. It is referred to
as a xml file (extensible markup language) and denoted by FILENAME.vbox. The necessary
parameters are the appended harddisks and the corresponding Machine uuid (universally
unique identifier) to enable a unique identification on the network and the appended hard disks
with the corresponding HardDisk uuid to identify the hardware. The Memory RAMSize
(Random Access Memory) is specified in MB, where MB denotes Mega Byte

(
i.e. 106Byte

)
.

For our application 512 MB up to 1 024 MB are adequate. Page fusion avoids memory dupli-
cation, if more instances of virtual machines are running simultaneously. The last essential
interface is the network adapter to specify the network parameter as a bridged interface over the
physical interface eth0. To specify the used operating system (OS), the parameter OSType can
be set to a list of various operating systems. This list can be found by the invocation of

\$ VBoxManage list ostypes.

Alternatives on virtualbox are VMWare [48], Microsoft Virtual PC [36] or Kernel-based Virtual
Machine (KVM) [22].

2.2 OpenWRT

OpenWRT is an embedded Linux distribution for wireless routers with a command line interface
(Almquist Shell, ASH) for dedicated hardware, especially developed for the Linksys WRT54GL
wireless router. However, nowadays OpenWRT supports a variety of divergent hardware. For
configuration there is an ASH interface. Moreover, OpenWRT is under GNU General Public
Licence 2 and one can download it from https://openwrt.org/ [39] as a pre-build im-
age, or one can build ones own for dedicated hardware support. OpenWRT provides a built-in
package management (opkg) and a modyfiable file system for reconfiguration.

Architecture

After building the image, all composite configuration information are stored in a non-volatile
random access memory (NVRAM). Modifications of the network interface can be made in
/etc/config/network.Hence no information get lost when the power supply interrupts.
Due to the versatile configuration options, OpenWRT supports the common internet protocols
IPv4 and IPv6. The main IPv6 components and how OpenWRT establishes an IPv6 connec-
tion via PPP (Point to Point Protocol) is shown in Fig. 2.2. The point to point protocol (PPP)
establishes a communication between two endpoints on a transmission line and is based on the
IPv6 control protocol (IPV6CP). It is specified in [21]. The configuration setup information is
handled by IP6CP to transmit IPv6 datagrams over the PPP link. To establish an end to end
connection, the communication parties need to be uniquely identified, respectively. IPV6CP is
responsible for the PPP management. It configures, enables and disables the basic IPv6 com-
ponents, respectively. IPV6CP is known as a network control protocol (NCP). A link control
protocol specifies a method to configure, establish and test a data-link connection between two
endpoints.

7
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Protocol Component Description

IPv6

PPP Point to Point Protocol
IP6CP IPv6 Control Protocol
LCP Link Control Protocol
NCP Network Control Protocol

Figure 2.2: Target IPv6 Components of OpenWRT

Parameter Description
(X) x86 Virtualization Environment
(X) BCM947xx/943xx Linksys WRT54GL Environment

Figure 2.3: Target Systems of OpenWRT

OpenWRT Configuration

By contrast to a pre-build image, a customized OpenWRT image can be build with native IPv6
support. It is recommended to build the image from the online sources with a build root envi-
ronment, as a non-root user. After downloading the sources from the mirror [39] just invoke
the setup configuration and check the missing packages as follows.

\$ make menuconfig

Finally build the image and invoke the make command in the terminal. More detailed build
information can be found in the online documentation of OpenWRT in [39]. After creating the
openWRT image for the hardware, it is necessary to clone the image for the devices to avoid
conflicts. Virtualbox assigns a uuid to every machine and stores it in the setting files for each
virtual machine. Two machine images with the same uuid can not run simultaneously and that
is, what we need. A machine image file can not be registered to virtualbox if an image with an
identical uuid already exists. The necessary packages for a native IPv6 implementation without
IPv4 connectivity need to be configured in the OpenWRT configuration manager. The virtualiza-
tion environment is based on a x86 architecture, whereas the physical Linksys WRT54GL router
environment is based on the Broadcomm BCM947xx/943xx architecture to build the generic
profile. The supported architectures are shown in a compact form in Fig. 2.3. The x86 archi-
tecture denotes a microprocessor architecture. The most common x86 central processing units
(CPUs) are known from AMD and Intel. OpenWRT runs as a root-user because it does not make
sense, to run a customizeable environment without root-privileges. It is based on the Intel 8086
series from the 1970ies. The specification of the target images and filesystem is necessary, to
specify the instance of the target system, respectively. The grub bootloader will enable booting
the environment on the dedicated machine. It is recommended to specify the parameters before
the build process. Later changes will effect in a plenty of search. After building an actual Open-
WRT image and installing it on VirtualBoxVM for developing and testing, boot it and check the
internet connection over eth0. The most common ethernet port is denoted as eth0. It specifies
a network interface and manages the ethernet network interface card (NIC). Every device has a
unique configuration file. Alternatives for OpenWRT are shown in Fig. 2.4. It shows that the
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Firmware Basis Broadcom Support
BatBox VX Works Wind River Systems Yes
CeroWRT OpenWRT Yes
DDWRT Sveasoft Alchemy Yes
eWRT Sveasoft Samadhi2 Yes
FreeWRT OpenWRT Yes
Gargoyle OpenWRT Yes
HyperWRT VX Works Wind River Systems Yes
Midge OpenWRT Yes
LuCi OpenWRT Yes
RouterTech MontaVista No
Tarifa Linksys WRT54 v1.0 Yes
Tomato HyperWRT Yes
Vyatta Debian Yes
X-WRT OpenWRT Yes

Figure 2.4: Firmware Alternatives to OpenWRT

most alternatives are a derivative of openWRT itself or the alternative firmware does not sup-
port the Broadcom architecture. After booting the openWRT image in a virtual machine it is
recommended to check a valid connection to the internet. By pinging an arbitrary host, it can
be checked if a valid internet connection exists. If there exists no valid connection, the inter-
face options in /etc/config/network/ need to be changed. After rebooting the system,
some ping will result in an established network connection over eth0. Hence there exists a valid
internet connection.

2.3 Router Environment

The WRT54GL router is a WiFi (Wireless Fidelity, also known as Wireless LAN - WLAN)
device from Linksys where L means that it runs Linux on it. A router is a device which forwards
data packets between a source and a destination. The source and the destination can be computer
networks, too. A router is an essential device in a computer network to deliver incoming packets
to the corresponding destination.

Hardware and Software

The hardware is based on a Broadcom BCM5352 central processing unit (CPU), a 16 MB (Mega
Byte) random access memory and an appended 4 MB Flash memory. It has an integrated 4-port
switch for internal networking and one single external networking port. The router supports eth-
ernet and fast ethernet. Ethernet denotes set of methods to establish a network connection in a
local area network. Typical transfer rates are 10 Mbit/s and in fast ethernet 100 Mbit/s (fast eth-
ernet) per second or 1 Gbit/s (gigabit ethernet). Besides the cable oriented methods to transmit
data, the linksys supports the wireless standards IEEE 802.11b and IEEE 802.11g. The 802.11
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Type Specification Quantity
Model WRT54GL

Ports
Ethernet 10/100 RJ-45 4
Internet 10/100 RJ-45 1
Power 12VDC, 1 A 1

Cable CAT 5 1
CPU Broadcom 5352 200 MHz 1
RAM 16 MB 1
Flash 4 MB 1
Antenna RP-TNC 2

Figure 2.5: Specifications of the Linksys WRT54GL

is an IEEE standard and specifies techniques for wireless data transfer. The 802.11 frequency
is at 2.4 GHz and the data transfer rate is 54 Mbit/s . Figure 2.5 shows the WRT54GL speci-
fications in a compact format. RJ-45 denotes the standardized physical network interface and
is referred to registered jack 45. It is used to connect a device with a service provider i.e. the
linksys WRT54GL is connected to the local internet provider via the RJ-45 network interface.
This interface is also known as a twisted pair (CAT 5) cable. CAT 5 cables are used for structured
cabling of computer networks in local area networks (LAN) i.e. for ethernet or fast ethernet data
transmissions. The basic firmware of the linksys router does not support the Internet Protocol
version 6 (IPv6). Therefore it is recommended to flash the initial firmware on the router and
overwrite it with a firmware image as shown in Fig. 2.4 or OpenWRT.

Specifications

The specifications of the router is given in Fig. 2.5. The router is a wireless fidelity router with
a Broadcomm 200 MHz central processing unit and a 16 MB Random Access Memory (RAM).
The 4 MB Flash is implemented as an EEPROM (Electrically Erasable Programmable Read-
Only Memory) and stores the firmware. The EEPROM is a non-volatile memory to store the
data when the power supply is switched off. The antenna is implemented as a reverse polarity
threaded Neill Concelman (RP-TNC) and the power supply is a 12 volts direct current (VDC).

2.4 Mathematical Principles

In classical information theory, the data transmitted can be interpreted as the content of a trans-
mission between the source and the destination, where the content consists of a finite set of
elements and this set of elements is a subset of a finite alphabet. As an alphabet, the classical
bit values “0” and “1” can be taken. By contrast to classical information theory, it is neces-
sary to distinguish the kind of the system, in which the transmission is done. By the use of a
classical bit stream to transmit information between two communication parties, there exist var-
ious techniques to reconstruct the original message, if there are losses during the transmission.
Quantum information theory focusses on the data and the interpretation (information), which is
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transmitted via particles (i.e. photons or light quanta). A communication system consists of a
preparation device (the source) and a measuring device (the destination). That means from now
on, it is necessary to focus on the length of the channel between the source and the destination.
To specify the system, we want to distinguish the information from, we have to observe mathe-
matical concepts. The essential information is given in this section, whereas the basics for it can
be found in appendix A. The basic mathematic concepts are taken from [5, 14, 33].

Algebraic Structures

In abstract algebra, an algebraic structure is specified by a non-empty set of elements and a
finitary operation on it. Finitary operations on a set of elements result in an element of the
cartesian product of the set, mapped to the set itself. To define algebraic structures, we start with
the definition of finitary operations.

Definition 2.1 (Finitary Operations) A finitary, hence n−times operation ϕ in a set A is a
function ϕ : An → A, where every n−tuple of elements in A is assigned to an element from A.

We can specify this common definition for the case that n = 2 i.e. we define a binary operation
for two elements a, b of the set A as follows.

Definition 2.2 (Binary Operations) Finitary Operations with the case n=2 are special cases
and will be indicated as binary operations e.g. addition or multiplication of numbers or matrices.
Hence a binary operation is a function ∗ : A×A → A. For simplification, a binary operation
is denoted by a ∗ b instead of ∗(a, b). A binary operation ∗ in A is associative, if and only if

(a ∗ b) ∗ c = a ∗ (b ∗ c)

and commutative, if and only if
a ∗ b = b ∗ a

∀a, b, c ∈ A, respectively.
An element e ∈ A is known as a neutral element respective to a binary relation ∗ inA if and

only if

a ∗ e = e ∗ a = a ∀a ∈ A

holds.
An element a−1 ∈ A is an inverse element which satisfies

a ∗ a−1 = a−1 ∗ a = e ∀a, a−1 ∈ A

An n-fold sequential composition of the binary operation is defined as

an =

n−times︷ ︸︸ ︷
a ◦ a ◦ · · · ◦ a . (2.1)

Thus, we can represent an n-fold repetition of an identical operation.
In some cases we want to investigate the elements a, b ∈ B, where B denotes a subset ofA.
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Definition 2.3 (Closure under Binary Operations) Let A be a non-empty set of elements and
let a, b ∈ B be arbitrary elements from the subset B ⊆ A. The set B has a closure under a
binary operation if

a ∗ b ∈ B ∀a, b ∈ B

holds.

That means that the set B is closed or has a closure under the binary operation, hence a ∗ b is
in B if and only if the elements a, b are in B. As an example, let B = N0 and we interpret
I (∗) = < as the less than operation. Hence the natural numbers are not closed under the less
than operation, whereas the real numbers R are.

To achieve our goal, we need algebraic structures. An algebraic structure is an arbitrary set
of elements with at least one finitary operation on it.

Definition 2.4 (Algebraic Structure) Let A be a non-empty set of elements and let ◦ be a bi-
nary operation on A as a function A × A → A i.e. every pair of elements a, b ∈ A is mapped
to an element from a ◦ b. The pair (A, ◦) is called algebraic structure or a groupoid.

That means the definition of an arbitrary algebraic structure prohibts the emptiness of A. To
define higher structures such as groups, we need algebraic structures.

Group Theory

After defining an algebraic structure, now we need knowledge about group theory and the com-
mon properties of groups, abelian groups and finite groups. Groups can be interpreted as al-
gebraic structures with binary operations and common properties. This will be shown in this
section.

Definition 2.5 (Semigroup) Let H be a non-empty set with a binary operation ∗. Hence H =
(H, ∗) is called a semigroup if ∗ is associative. If a semigroup satisfies the commutative property,
it is called an commutative semigroup.

Classic examples for semigroups are N,Q,R,C over the addition or the multiplication for in-
stance. That means that a semigroup is an algebraic structure with the associative property holds.
A monoid is an algebraic structure with an associative binary operation, hence it is a semigroup
and the existence of an identity element. The result is the definition of a monoid as follows.

Definition 2.6 (Monoid) Let (M, ∗) be an algebraic structure and letM be associative over
∗. (M, ∗) is called monoid if there exists a neutral element.

The essential structure of this part is the group. It is specified as shown below.

Definition 2.7 (Group) A set G with a binary operation ∗, denoted as (G, ∗) is a group, if ∗ is
associative, closed under G and there exists a neutral element and for all elements a ∈ G exists
an inverse element a−1. Hence every element has exactly one inverse element in G.
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That means that an algebraic structure is a group if it is associative, there exists a neutral element
and for all elements exists an inverse element i.e. a group is a special semigroup. If a structure
(semigroup, monoid, group) satisfies the commutativity property it is called commutative semi-
group, monoid or group. Commutative groups are called abelian groups.

Definition 2.8 (Abelian Group) Let (G, ∗) be a group. G is called abelian group, if ∗ is com-
mutative.

An abelian group is a special notation of a commutative group, in memory of the Norwegian
mathematician Niels Henrik Abel (? 1802− † 1829).

Definition 2.9 (Subgroup) Let (G, ∗) be a group and U ⊆ G be a non-empty subset of G. If U
is a group according to ∗, then (U , ∗) is a subgroup of G. A non-empty set of of a group (G, ∗)
is a subroup of G, if a ∗ b, a−1 ∈ U holds ∀a, b ∈ U . This can be denoted as (U , ∗) ≤ (G, ∗). If
we set U = (U , ∗) and G = (G, ∗) it can be denoted as U ≤ G.

In other words, a subset U of a group G is a subgroup, if U forms a group under the binary
operation ∗.

Definition 2.10 (Finite Group) Let (G, ∗) be a group and n ∈ N0 be a non-negative integer. G
is defined as a finite group iff |G| = n, otherwise it is infinite.

Rings and fields

In abstract algebra, the ring theory focusses on algebraic structures, which are called rings.
Rings are algebraic structures where two binary operations, the addition and the multiplication
are defined. We start with rings and fields to define the basis for a Hilbert space, which we need
to understand the basic properties of quantum information. The definition of a Hilbert space is
given in the next section.

In the set of integers (Z), there exist at least two binary operations, “+” and “ · ”. We
interpret I (+) as the addition over the integers and I ( · ) as the multiplication over the integers.
In ring theory, the basic concept is the ring as an algebraic structure with two binary operations.
Its definition is given below.

Definition 2.11 (Ring) Let R be a set with the binary operations “+” and “ ·”. An algebraic
structure (R,+, · ) specifies a ring if the three following properties are satisfied

(R,+) is a commutative group (with neutral element 0),
(R, · ) is a semigroup and
the distributive property holds as follows

a · (b+ c) = a · b+ a · c ∀a, b, c ∈ R
(a+ b) · c = a · c+ b · c

That means the ring (R,+, · ) is an abelian group with an appended binary operation (“ · ”) that
is associative and distributive over the abelian group operation.
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Now we want to show the commutative property on a ring and specify a commutative ring
as follows.

Definition 2.12 (Commutative Ring) Let (R,+, · ) be a ring. If “ ·” is commutative, then
(R,+, · ) is a commutative ring.

A commutative ring is defined similar to a commutative group as shown in the sections above.
The unity element or also called invertible element of a ringR is an arbitrary element u that

has an inverse element on the multiplication of R. R denotes a monoid as shown above. A
formal definition of a unity and a neutral element is given in appendix A.

Definition 2.13 (Ring with Unity) Let (R,+, · ) be a ring. If there exists a neutral element
with respect to “ ·”, then (R,+, · ) is a ring with unity element.

Definition 2.14 (Field) Let (F ,+, · ) be a commutative ring with unity element 1 6= 0 and every
a ∈ F is a unit, hence an inverse element exists. Then (F ,+, · ) is a field.

Hence an algebraic structure (F ,+, · ) is a field, if (F ,+) and (F\ {0} , · ) are commutative
groups and the distributive property holds. Hence the multiplication is associative, commutative,
has a neutral element and for all elements in {F\ {0}} exists an inverse element. Now we
have specified all the basic arithmetics, to construct the necessary Hilbert space for our further
discussions.

Hilbert Space

The core point in this section is the definition of a Hilbert space. It was named after the German
mathematician David Hilbert (? 1862− † 1943). To define the Hilbert space, we need a vector
space, the inner product and the complex and real numbers. To construct a vector space, we start
with the definition of a vector as shown below. Further discussions on the inner product are given
in chapter 4. The definition of the complex and the real numbers can be found in appendix A.
The first geometric object we need is an euclidean vector, named after the Greek mathematician
Euclid of Alexandria (≈ 300 before christus). An euclidean vector has a magnitude and a
direction. It is defined as follows.

Definition 2.15 (Euclidean Vector) Let F be an arbitrary field. A column vector x in the
n−dimensional space Rn is denoted by

~x =


x1
x2
...
xn


where the components are the coordinates of the vector x1, x2, . . . , xn ∈ R.

A vector is an object that can be added to further vectors or it can be multiplied with a number.
This number is called a scalar. A scalar is a mathematical quantity and is it is mapped to the real
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numbers in our case. An euclidean vector is an object in a vector space by definition. A vector
space is specified by the definition as shown below.

Definition 2.16 (Vector Space) Let F be a field and (V,+) be an abelian group. Hence the
addition maps each pair (x, y) in V × V to V . To all λ ∈ F and x ∈ V we assign the product
λ ·x ∈ V . This product is called the scalar product and maps each pair (λ, x) in (F × V) or
(F × V) to V . An algebraic structure (V,+,F) denotes a vector space or linear space over F
if the following properties are satisfied for all λ, µ ∈ F and x, y ∈ V and F is mapped to R or
C.

x+ y = y + x,
x+ (y + z) = (x+ y) + z,
∃0 ∈ V s.t. x+ 0 = 0 + x = x,
∃ (−x) ∈ V s.t. x+ (−x) = 0,
λ · (x+ y) = λ ·x+ λ · y,
(λ+ µ) ·x = λ ·x+ µ ·x,
(λµ) ·x = λ · (µ ·x)
1 ·x = x.

Definition 2.17 (A Norm on a Vector Space) Let V be a vector space and let F be a field.
A norm on a vector space is a function ‖.‖: V → R. The norm has to fulfill the following
requirements for all x, y ∈ V and all scalars λ ∈ F .

‖x‖ ≥ 0,
‖λ ·x‖ = λ · ‖x‖,
‖x+ y‖ ≤ ‖y + x‖,
‖x‖ = 0 iff x = 0.

The norm of a vector is commonly interpreted as the length of a vector. If a vector space has a
norm, it is called a normed vector space or normed space.

Definition 2.18 (Unit Vector) Let x ∈ V be a set of vectors with a norm. A vector x is called
unit vector, if the vector length is 1, i.e. if ‖x| = 1 holds. Let x be an arbitrary vector from V and
let ‖x‖ be its norm. Dividing the vector by its norm results in the unit vector as shown below.∥∥∥∥ x

‖x‖

∥∥∥∥ = 1
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Definition 2.19 (Metric) Let V be a set and let d be a function as follows.

d : V × V → R

The function d is called a metric or distance function if d satisfies the following requirements for
all x, y, z ∈ V .

d (x, y) ≥ 0,
d (x, y) = 0 iff x = y,
d (x, y) = d (y, x),
d (x, z) ≤ d (x, y) + d (y, z).

Definition 2.20 (Metric Space) A metric space is an ordered pair (M, d) whereM is a set and
d is a metric onM.

Now we want to specify a complete metric or Cauchy space. It is named by the French mathe-
matician Augustin Louis Cauchy (? 1789− † 1857).

Definition 2.21 (Complete Metric Space) A complete metric is a metricM and every Cauchy
sequence in it is convergent. Hence it has a limit that is also inM.

Definition 2.22 (Pre-Hilbert Space) Let V be a vector space over the field F . V specifies a
pre-Hilbert space or a space with an inner product (scalarproduct) if for all pairs of elements
x, y ∈ V are mapped to a number (x, y) ∈ F . This number is called the scalar product of x
and y. (x, y) denotes the inner product s.t. for arbitrary x, y, z ∈ V and an arbitrary λ ∈ F the
following properties are satisfied. These properties are specified as the axioms of inner products.

H1 (x, x) ≥ 0
H2 (λx, y) = λ (x, y)
H3 (x+ y, z) = (x, z) + (y, z)

H4 (x, y) = (y, x)

We can define a norm in a pre-Hilbert space by the scalar product as shown in the equation
below.

‖x‖ =
√

(x, x) (2.2)

In the last step, we can define now a Hilbert space. A Hilbert space is specified by

Definition 2.23 (Hilbert Space) Any pre-Hilbert space that is also complete is called Hilbert
space.

That means that a Hilbert space is a vector space with an inner product. It enables the measure-
ment of the length and an angle of a vector. If the metric defined by the norm as shown above,
is not complete, thenH is called an inner product space.
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2.5 Threats to Classical Cryptographical Methods

Quantum Computer

Classic computers operate on classical bit values, this is known as classical information. Also
quantum computers operate on information but this information is different, it needs to be dis-
tinguished to the classical information. A quantum computer promises a speed up in the com-
putation time over a classical computer. That means a quantum computer calculates a number
of calculations simultaneously. It makes use of quantum mechanical properties to compute the
result of a given problem faster than a classical computer. Because of the involvement of quan-
tum mechanical properties it is not necessarily useful to use classical algorithms in a quantum
computer alone. This introduces quantum algorithms which benefit from quantum mechanical
phenomenons. Hence a quantum computer threatens to break classical cryptographic techniques
because of its calculation power. Quantum algorithms are basic principles itself, because they
are a reason why we need modern cryptographic techniques to protect information during the
data transmission. The interested reader can find more detailed information on quantum com-
puters in [12,35,37,38,49]. But we can already anticipate that a quantum algorithm can increase
the speed of calculations in contrast to a classical algorithm.

2.6 Quantum Algorithms

A quantum algorithm takes n classical bits as input and creates a superposition of 2n possible
states. The quantum algorithm performs routines to obtain the result of the computation which
can also be referred to as a quantum result. Finally a measurement is performed to obtain
the n bits. The intermediate steps are combined into a single step. Quantum algorithms can
be classified by their computation. Figure 2.6 shows an exemplary categorization of quantum

Computation
Algorithm

Deutsch Jozsa Grover Shor
Probabilistic X X

Deterministic X
Finding Global Properties X X
Quantum Database Search X X

Brute Force X X

Figure 2.6: Categorization of Quantum Algorithms as Threats to Classical Computation

algorithms. Finding the global properties of a function by determining the function values,
offers a decision whether a function is balanced or not. Hence a brute force method provides
the desired result. Another type of algorithm solves the problem of searching in an unsorted
database. Quantum database search is also known as the use of quantum algorithms. A brute
force algorithm performs the systematically enumbering of all possible candidate solutions and
checks whether a solution satisfies the problem. Furthermore, a combination of the previously
mentioned methods as well provides a dedicated result.
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Quantum computers profit from the benefits of quantum mechanical phenomena. By contrast
to classical computation, phenomenons such as the quantum parallelism or the quantum inter-
ference, which does not exist in classical computational concepts, exist in quantum information
theory.

Quantum parallelism is a phenomenon that can be described such as a quantum operation
which is applied on a superposition of a set of input values, results in a superposition of a set of
output values [4,38,49] i.e. a quantum computer is able to compute a finite number of operations
simultaneously. The quantum parallelism was first described by David Deutsch in [11]. It was
specified to distinguish the parallelism in quantum computations to the parallelism in classical
computations. Suppose a classic computer with a multicore processor i.e. a processor with n
independent central processing units (CPUs) to read and write program executions. These CPUs
are linked together to execute different instructions simultaneously. That means if we need an
exponential grow up in classic computation power, we need an exponential grow up in CPUs.
By contrast, suppose a single quantum central processing unit, which is able to perform the
computation of n instructions simultaneously. That means that an exponential grow up in the
computation power of a quantum computer does not need necessarily an exponential grow up
in quantum central processing units i.e. the computation power increases with the number of
used quantum bits. This phenomenon is possible because a quantum bit or qubit exists in several
states simultaneously and this is called a superposition. A superposition is an overlay of the same
physical quantities in a system. It will be specified more in detail in chapter 4 at the beginning,
because it is not in the scope of the concepts of quantum algorithms.

Quantum interference is a phenomenon, which is necessary for quantum parallelism. It
is the interference of quantum mechanical objects i.e. the wave propagation of light quantas.
Quantum objects behave as waves and particles which is formally known as the wave-particle
duaslism. That means a quantum object propagates as a wave on the channel but it can only be
measured as a particle at a specific time. More information on quantum interference is given
in [27, 35, 37, 38, 49].
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CHAPTER 3
Internet Protocol

The internet protocol (IP) is an open systems interconnection (OSI) network layer (layer-3)
protocol suite. IP is used to solve the problems of packet forwarding and routing across computer
networks from one endpoint to another one. It is specified in request for comments (RFC) 760
(1980) and RFC 791 (1981) by the Internet Engineering Task Force (IETF). The IP version 4 (v4)
offers a 32 bit address space. Its address exhaustion is evolving due to the new growing markets
in the BRICS (Brazil, Russia, India, China, South Africa) countries, an increasing number of
users of mobile technologies or the distribution of resources over wide areas. The growth of the
internet in recent years has led to an evident lack of unallocated addresses. IPv6 increases the
number of bits for the source and destination address up to 128. Hence it can solve the evident
IPv4 address problem and replace the IPv4 internet with at most 2128 unique addresses.

3.1 IPv4 Specification Overview

The OSI Internet Protocol Version 4 (IPv4) is the first globally implemented and commonly
used protocol to standardize the communication on the internet. Fig. 3.1 shows the models of
the department of defense (DOD) and the open systems interconnection model (OSI). IPv4 is
used for the transmission of data packets between communication parties over a connectionless,
packet oriented network. The main idea was that every communication endpoint is identified by
a unique address in the network and specifies as an end-to-end connectivity. Due to the lack of
addresses, various techniques evolved to increase the number of advertized hosts in a network,
such as the network address translation (NAT). NAT is a solution to delay the deficiency because
of its 16-bit port number field design, with at most 216 simultanous connections from one public
IP address to internal nodes. Particularly, NAT contradicts the end-to-end pattern but is not in the
scope of this work. It causes delays and does not support all applications, such as asynchronous
full transfer zone (AXFR).
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Figure 3.1: Open Systems Interconnection Model (OSI) and Department of Defense layer Model
(DOD)

Host Numbers - Domain Name System

Figure 3.2 gives an overview of the numbers of hosts, advertised in the DNS between 1981 and
2012. It shows that the number of hosts steadily grows and that the free address space decreases.
The IPv4 design is based on recommendations and a design process from the early 1980s. In
1981 the number of advertised hosts to the domain name system (DNS) was 213. Hence a
32 bit (8-nibble) address space of at most 232 = 4 294 967 296 ≈ 4, 29 · 109 unique addresses
was deemed to be sufficient for an adequate time. In July 2012 the number of advertised hosts
to the DNS was 908 585 739 and the total number of theoretically available, unique addresses
can no longer meet these demands. More information on IPv4 and the DNS can be found
in [1, 18, 47].

Date Survey Host Count

2012
Jul 908 585 739
Jan 888 239 420

2011
Jul 849 869 781
Jan 818 374 269

2010
Jul 768 913 036
Jan 732 740 444

1993
Jul 1 776 000
Jan 1 313 000

1981 Aug 213

Figure 3.2: Number of Hosts advertised in the Domain Name System (DNS) - [6, 7]

IPv4 Header

An IPv4 packet has at least 13 and at most 14 fields of information. A simplified representation
is given in Fig. 3.3. The field of IP options is not necessary. However, it can be necessary to
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Version IHL Type of Service Total Length
Identification Flags Fragment Offset

Time to Live (TTL) Protocol Header Checksum

Source Address (4 B)

Destination Address (4 B)

IP Options Padding

Payload

Figure 3.3: Basic Header + Payload of IPv4

add further information to the IP header. Two main applications for additional information in
the options field are pre-defined routes or statistical analysis. The options field is appended after
the required header fields but it preceedes the payload (data to be transmitted). An IPv4 packet
starts with a 4 bit Version field, where 0100 denotes the version 4 pattern. The 4 bit internet
header length (IHL) field specifies the length of the IP packet header. Including the options field
and padding. The next field is the 8 bit type of service (ToS) field. It provides quality of service
(QoS) features such as delay, precedence (prioritized delivery), reliability and throughput. The
total length (TL) of an IP packet is specified by the so called 16 bit field in the header. The TL
field consists of the IP header information and the payload. The lower bound for an IPv4 packet
is represented by an IP header without payload (length of payload is 0), hence the minimum
length of an IPv4 packet is the minimum length of the IP header (20 B). The upper bound is
216 = 65 536 = 64 kB, based on its 16 bit length. An IPv4 packet consists of an identification
field. This field is used to number consecutive parts of data in case it has to be split between
several packets. Hence every multiple packet is assigned to the same identification value and
there is no risk of mixing the fragments, received by another fragmented flow (segmentation and
reassembly). If a flow needs to be fragmented, the flag field indicates the set of information
(reserved, DF, MF). The first control flag (reserved) is a bit which is assigned to “0” (invariant)
and is not used. The second control bit (DF, do not fragment) is “0” if the flow is fragmented,
or “1” if it is not fragmented. The third flag is “0” if no more fragments need to be sent (or the
original flow never was fragmented) or “1” else. The offset, where the fragmented data in the
packet is located, is specified by an 8 B fragment offset field. The first fragment has offset 0.
The TTL (time to live) specifies the maximum time (or number of router hops), how long an
IPv4 packet can survive on a network (router hops) before it is discarded. All involved routers
decreese this number by 1 or the number of seconds, delayed by the calculations in the router.
If the number in this field is 0, the packet is discarded. The next field is the 8 bit protocol
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Class Leading Bits Number of Networks Number of Hosts
A 0 27 224

B 10 214 216

C 110 221 28

D 1110 28 bit Multicast groupID
E 11110 28 bit reserved for experimental tasks

Figure 3.4: Network Classes, Numbers of Networks and Hosts of IPv4

field. It specifies the protocol that receives the dedicated payload. The 16 bit header checksum
field is computed over the entire header to provide protection against corruption and to verify
the validity of the IPv4 header by a 16 bit checksum. Every intermediate router calculates the
checksum, verifies its validity and if it is corrupted, the IPv4 packet is discarded. The source
address is denoted as a 32 bit, invariant IP address of the sender of the original flow. Intermediate
devices do not manipulate this address. The second invariant 32 bit address is the destination
address. It is invariant for intermediate devices and specifies the intended recipient of the original
packet. Particularily, the IP options field denotes settings for debugging, security or testing. The
header is padded with 0’s to make the header length a constant length of 32 bit.

Addressing

The length of an arbitrary IPv4 address is 32 bit. Its structure is specified by binary streams
b3.b2.b1.b0 where bi ∈ [0000 0000, . . . , 1111 1111] denotes the ith-byte. This corresponds
to the decimal digits d3.d2.d1.d0 where di ∈ {0, . . . , 255}. The address is represented by
4 decimal digits each mapped to an 8 bit octet, respectively. The address 127.0.0.1 denotes the
loopback address. It allows the local machine to refer to itself. Nevertheless the number of IPv4
addresses are not sufficient for future demands. Hence we need a scalable solution to solve the
imminent problem of the lack of IPv4 addresses. Another problem is the dissipation of network
fragments by predefined, rigid network classes for unicast addresses (A, B, C) and multicast
addresses (D) with fixed size of hosts. Class E networks are reserved for experimental tasks. An
overview is given in Fig. 3.4. A newer version of IP is necessary to provide a bigger address
space.

3.2 IPv6 Specification Overview

The requirements concerning the increased address space, an adequate modularity and an inte-
gration of security features resulted in a simplified header format. The development of IPv5 was
aborted. The development of IPv6 was started in the 1990’s by the Internet Engineering Task
Force (IETF) [26]. IPv6 permits to address 2128 ≈ 3.4 · 1038 devices which exceeds the IPv4
address space by 29 orders of magnitude to avoid the necessity of NAT which violates the point
to point pattern.
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3.3 IPv6 Header

The IPv6 header consists of a new header format with reduced complexity, an efficient method
of hierarchical addressing and routing, native integrated security mechanisms and extensibility
by extenion headers. The reduced complexity in the header format results in a minimalization
of the data to be processed by routers. To provide sufficient scalability in an IPv6 packet, the
header was constructed without containing any optional elements. Hence, this fixed header
format provides more efficiency than in IPv4 which results in an increased performance. Instead
of optional elements in the header, extension headers are introduced by IPv6. Furthermore, the
header checksum has been abandoned which results in an increased performance, too.

Basic Header

The basic IPv6 header without extensions is shown in Fig.3.5. The version field in the IPv6
header contains 0110 signifying version 6. Hence this unique identification allows us to mix
IPv4 and IPv6 traffic in the same network. The 8 bit traffic class field (packet priority) is similar
to the type of service field from IPv4 and allows us to distinguish different levels of priority of
IPv6 packets. It does this by QoS information [34]. Flow label (QoS management) denotes a
20 bit field to distinguish 220 different traffic flows. It identifies a set of packets belonging to
a specific flow. A flow is a sequence of packets sent from a source to a destination. Hence an
intermediate router can identify the packets with equal traffic flow values and handle them iden-
tically. Another important field is the payload length. It has 16 bit and denotes the packet length
of the payload. In contrast to IPv4, the length of the basic header is not included. However, the
length of any extension header is included. To prevent an arbitrary packet indefinitely running
through a network, the hop limit field (8 bit) is part of the header. Every intermediate device i.e.
router decrements the hop count by 1. If the hop count limit reaches zero, the packet is discarded.
The hop-by-hop limit is similar to the TTL from IPv4. The next header value is UL if a packet
is sent without extensions and specifies the upper layer protocol i.e. TCP, UDP or ICMPv6 and
the payload is appended without a subsequent extension header. The 128 bit source address field
contains the IPv6 address of the originator whereas the destination field (also 128 bit) contains
the IPv6 address of the receiver. Both addresses are invariant for intermediate nodes during the
transmission on the network. If no extension header is specified, the payload is appended after
the destination address.

Extension Header

One of the weaknesses in IPv4 is the lack of scalability and the security mechanisms. By con-
trast, the implementation of security mechanisms in IPv6 was part of the initial design process.
The structure of an extension header is shown in Fig. 3.6. It shows its length, the next header
value, the options and the padding to fill missing 0s. A simple representation of the basic IPv6
header packet and appended extension headers plus payload is given in Fig.3.7. To specify the
next header, there exists an 8 bit field in IPv6. It specifies the immediate succeeding header to
protect against corruption. After the basic (main) header is completed and the specification of
all extension headers is done, the payload is appended.
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Version Traffic Class Flow Label
Payload Length Hop Limit Next Header UL

Source Address (16 B)

Destination Address (16 B)

Payload

Figure 3.5: Basic Header + Payload of IPv6

Next Header EH Length

Options
Padding

Figure 3.6: Basic Extension Header of IPv6

Version Traffic Class Flow Label
Payload Length Hop Limit Next Header = EHi

Source Address (16 B)

Destination Address (16 B)

Extension Header i EHi Next Header EHi+1

Extension Header i+ 1 EHi+1 Next Header UL

Payload

Figure 3.7: Basic Header + Extension Headers + Payload of IPv6
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Order Header Type
NH NH

size
ID (DEC) ID (HEX)

1 Basic IPv6 Header - - 8 octets
2 Hop-by-Hop EH 0 00 var.
3 Destination Options 60 3C var.
4 Routing EH 43 2B var.
5 Fragment EH 44 2C 8 octets
6 Authentication EH 51 33 var.
7 Encapsulated Security Payload EH 50 32 var.
8 Destination Options EH 60 3C var.
9 Mobility EH 135 87 var.

No next Header exists 59 3B empty
UL TCP 6 06
UL UDP 17 11
UL ICMPv6 58 3A

Figure 3.8: Default IPv6 Headers

Fig. 3.8 shows the default extension headers (next header NH) and the corresponding deci-
mal, hexadecimal and order value. The architecture of an optional, default extension header is
shown in Fig. 3.6. Every extension header from Fig. 3.8 has the same architecture. The order
of extension headers from Fig. 3.8 is recommended to use, but is not mandatory. The use of the
ESP header without authentication is possible, but not necessarily useful. Instances of Fig. 3.7
are shown in Fig. 3.9. It lists examples of extension headers and the corresponding extension
header concatenation using the recommended order in Fig. 3.8. The basis concatenation for a
valid TCP transmission is the IPv6 basic header and the TCP header (0616). After that, the pay-
load is appended. An extension with the routing header (2B16) enables a connection between
two communication parties over a network. A routing header extension must be the same in all
packet flows. A flow is a sequence of packets. If a router receives a packet of a new flow the
router calculates the result of the carried information, caches it and re-uses it for every incoming
packet with the same flow. This method speeds up the calculation for all packets in the same
flow. Flow fragmentation by routers is not implemented in IPv6. If there exists a link with a
maximum transmission unit (MTU) than the original size of the IPv6 packet on a route between
two communication parties, the flow needs to be fragmented, anyway. In IPv6, the original flow
is split into fragments by the sender. The sender transmits an arbitrary set of packets with an
arbitrary length. It checks, if the packets are received correctly. Oversized packets are returned
as undeliverable and the router replies with a statement that fragmentation is required. The
fragmentation header (2C16) specifies the parameters by the sender. Without a routing header
extension, the fragmentation header extension is not necessary. To transmit a large payload
>64 kB, the hop-by-hop extension header (3C16) specifies the corresponding parameters. That
means if a router has a MTU e.g. 128 kB and the initial flow was e.g. 256 kB we need the hop-
by-hop and fragmentation extension headers, respectively. If the hop-by-hop extension header
is part of an IPv6 packet, it must be the first one, appended after the basic header. The header
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IPv6 Basic Header

TCP Header + Payload
Next Header =

06
IPv6 Basic Header Routing Header

TCP Header + Payload
Next Header = Next Header =

2B 06
IPv6 Basic Header Routing Header Fragment Header

TCP Header + Payload
Next Header = Next Header = Next Header =

2B 2C 06
IPv6 Basic Header Hop-by-hop Destination Options

...
Next Header = Next Header = Next Header =

00 3C 06

Figure 3.9: Header concatenation and the IPv6 Modularity

IPv6 Basic Header

plain(data)
Extension Header

ESP Header

encrypted(data)
enc(payload)

auth(data)

Figure 3.10: Structure of the Security Header of IPv6

modularity from IPv6 based on the ESP is shown in Fig. 3.10. The interface between encrypted
data and plain data is the ESP header. That means that the IPv6 basic header, the extension
header values and the esp header are transmitted as a plaintext, respectively. The payload and
the authentication values in the packet are transmitted as a ciphertext. More information on the
extension headers in IPv6 can be found in [9, 34, 47].

3.4 IPv6 Adressing

The address space increased from 32 bit in IPv4 to 128 bit by IPv6. Extending the notation used
for IPv4 addresses to IPv6 results in strings of the form
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Address Type IPv6 Address Instance
Expanded: 2001:0db8:85a3:08d3:1319:8a2e:0370:7347

Eliminating leading 0s: 2001:db8:85a3:8d3:1319:8a2e:370:7347

Expanded: 0000:0000:0000:0000:0000:0000:0000:0000
Eliminating leading 0s: 0:0:0:0:0:0:0:0

Eliminating a sequence of 0-blocks: ::

Expanded: 0000:0000:0000:0000:AC43:9876:1234:5555
Eliminating leading 0s: 0:0:0:0:ac43:9876:1234:5555

Eliminating a sequence of 0-blocks: ::ac43:9876:1234:5555

Expanded: 3228:00A3:0000:0000:0221:01FF:CE01:7842
Eliminating leading 0s: 3228:A3:0:0:221:1FF:CE01:7842

Eliminating the first sequence of 0s: 3228:A3::0:221:1FF:CE01:7842
Eliminating concatenated blocks of 0s: 3228:A3::221:1FF:CE01:7842

Expanded: 4ac0:0000:0000:0007:0000:0000:0000:000c
Eliminating leading 0s: 4AC0:0:0:7:0:0:0:C

Eliminating the first sequence of 0s: 4AC0::7:0:0:0:C
Eliminating the second sequence of 0s: 4AC0:0:0:7::C

Figure 3.11: Exemplary Overview of IPv6 Addresses

d15.d14.d13.d12.d11.d10.d9.d8.d7.d6.d5.d4.d3.d2.d1.d0where the di are
numbers in the range between 0 and 255. To improve readability, IPv6 addresses are written in
hex notation, with colons offer every four digits, respectively. Leading zeros in these four digit
blocks can be omitted.

If a sequence of blocks is zero, it can be shortened to two colons (::). To avoid ambiguities,
only one such sequence may be abbreviated this way. Figure 3.11 demonstrates the possible
simplifications for IPv6 addresses. More detailed information on IPv6 and the address formats
can be found in [1, 9, 10]. IPv6 distinguishes 3 different modes, unicast, multicast and anycast.
The types of addressing are explained in the following sections.

Unicast

An unicast addressing method is specified by a unique identifier for a single interface. A bijec-
tive function between two communication parties maps one interface endpoint in the network
uniquely to another. Hence a packet is delivered to the interface, identified by the unicast ad-
dress. Figure 3.12 shows the bijective function between the senderH0 and the receiverH1. The
IPv6 addressing architecture by the IETF [10] specifies two principal allocated types of unicast
addresses (Globally Unique Addresses, Unique Local Addresses) [8]. A globally unique address
identifier is a unique 128 bit address. It is separated into a public and a location specific part.
The public section transmits the routing information and the location specific section transmits
the structure of the dedicated subnet. The unique local address denotes a private section as a part
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of a private location subnet i.e. a private network inside an organization or as a part of a site.
More detailed information on unicast addresses can be found in [1, 23, 24]

HostH0 HostH1

Figure 3.12: Unicast Addressing of IPv6

Multicast

Multicast addressing is an IP packet delivering method to transmit one packet to multiple nodes
in an unicast group as shown in Fig. 3.13. Only one transmission is required. This IPv6 tech-
nique ensures that a packet, sent to a multicast address, is delivered to all connected interfaces
in a multicast group. More information about multicast addressing can be found in [1]

HostH0 HostH1a

HostH1b

HostH2

Multicast Group 1

Figure 3.13: Multicast Addressing of IPv6

Anycast

Anycast addresses are similar to unicast addresses except that one address instance is mapped
to a group of interfaces (hosts) consisting of at least one element (Fig. 3.14). In contrast to
a multicast or unicast address, an IP packet is sent to an arbitrary interface identified by the
anycast address. It will be delivered to an available or an arbitrary interface, chosen by a router,
routing protocol or load balancer. Choosing the nearest interface according to some ranking
metrics enables failover. By setting an anycast flag, multiple unicast address error messages will
be prevented. More information about anycast addresses can be found in [1, 19]
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HostH0 HostH1a

HostH1b

HostH2

Anycast Group 1

Figure 3.14: Anycast Addressing of IPv6

3.5 Securing IPv6 by IPsec

The internet protocol security (IPSec) is a set of protocols and algorithms to implement secu-
rity features in IPv6. The main specification is given in [31] and was developed by the IETF.
According to the required security level, IPSec allows two communication parties to select the
security algorithms, the protocols and the authentication method. IPSec provides two primary
security concepts, the authentication header (AH) and the encapsulating security payload (ESP).

Authentication Header

The specification of the authentication header (AH) is given in [30]. The authentication header
is appended after the IP header and protects against resend attacks and insertion of manipulated
packets. This is accomplished by ensuring data integrity and authenticity by cryptographic hash
functions. Data integrity means that the data remains unchanged during transmission. Authen-
ticity means that the sender can be identified beyond doubt. However, the payload is transmitted
as a plaintext and can be read by everyone. For this reason, the authentication header is rarely
used.

Encapsulating Security Payload

The encapsulating security payload (ESP) [29] provides methods to implement the key secu-
rity concepts authenticity, confidentiality and integrity. The main difference between ESP and
AH is that the payload is transmitted encrypted on the public channel. Moreover, ESP pro-
vides encryption-only and authentication-only modes with the first one being not particularly
useful. The first implemented security algorithm is the ESP-NULL, which does nothing and
implements the authentication and integrity without confidentiality. Another implemented secu-
rity mechanism is the Diffie Hellman Key exchange technique. The other implemented security
mechanisms are not in the focus of this work. The interested reader can find more informa-
tion about the symmetric encryption algorithm DES (Data Encryption Standard), 3DES (Triple
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DES), AES (Advanced Encryption Standard), or the symmetric block ciphers Blowfish, CAST-
128, IDEA (International Data Encryption Algorithm), RC5 (Rivest Cipher 5) and the hash
function RIPEMD-160 (RACE Integrity Primitives Evaluation Message Digest) in [1, 42, 46]

Internet Key Exchange

The internet key exchange (IKE) [20,28] is a management and key generation protocol in IPSec
that sets up security associations (SA). A security association is a collection of parameters for
establishing a secure communication between two communication parties. IKE is based on the
Diffie Hellman key exchange to establish a shared secret session key i.e. a cryptographic key only
used for one session between a source (sender) and a destination (receiver). The Diffie Hellman
Key exchange (or key agreement protocol) was first proposed in 1976 by Whitfield Diffie and
Martin E. Hellman in [13]. It uses an arbitrary unsecure channel for communication, like a
classic internet connection without security mechanisms. Its security depends on the difficulty to
compute discrete logarithms of large numbers. Suppose that two distant communication parties
want to share a secret key K and Eve listens to the unsecure channel to gain information. The
goal of the Diffie Hellman key agreement protocol is to transmit information over the unsecure
channel that the keyK is not available to Eve i.e. to generate a random shared secret between two
remote communication parties, which are connected via an unsecure channel e.g. the internet.
They can use the shared secret to exchange confidential data over the unsecure channel. The key
can be used as a session key or it can be reused or it can be used only once. The Diffie Hellman
key exchange provides only the key. The data exchange between the communication parties
allows to draw conclusions only with a great time and effort to an eavesdropper. To explain the
Diffie Hellman key exchange we specify the order of an integer.

Definition 3.1 (Order) Let n ∈ N and x ∈ Z such that

ax ≡ 1 mod n

holds. The order of a modulo n is the smallest positive integer x and it is denoted by ordm (a).

The Euler’s totient function provides that such an integer exists. It is named by the Swiss math-
ematician Leonhard Euler (1707 – †1783) and it is given below.

Definition 3.2 (Euler’s totient function) Let n > 1 be a positive integer. The Euler’s totient
function counts the number of positive integers less than or equal to n that are coprime. It is
denoted by ϕ (n).

That means it counts the number of integers k in the range 1 ≤ k ≤ n for which gcd (n, k) = 1
holds. Euler’s totient function has two primary properties. The first is that for an arbitrary prime
number p, ϕ (p) = ϕ (p− 1) holds since all numbers which are smaller than p are coprime to
p. The latter property is that for two coprime numbers m,n where gcd (m,n) = 1 holds it is
multiplicative i.e. ϕ (m,n) = ϕ (m) · (ϕ). We substitute [x | t] and [t | ϕ (n)]. That means

ax ≡ aϕ(n) ≡ 1 mod n (3.1)

holds.
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Definition 3.3 (Primitive Root) The integer a is called a primitive root if

ϕ (n) = ordn (a)

holds.

Let p, q be two numbers s.t. p is a prime number and q is a primitive root and p, q are
exchanged over the unsecure channel. The secret key KS is specified by the logarithm of the
private key KP to the basis q mod p for Alice and Bob, respectively.

KS,A = logq (KP,A) mod p s.t. 1 ≤ q ≤ p− 1

KS,B = logq (KP,B) mod p s.t. 1 ≤ q ≤ p− 1
(3.2)

To construct an instance for the public key KP,A Alice choose a random secret key KS,A and
Bob choose KS,B to construct its public key KP,B as shown below. Alice and Bob choose a
large random number to construct an instance of the secret key, respectively.

KP,A = qKS,A mod p
KP,B = qKS,B mod p

(3.3)

The communication partners A and B exchange the computed values KP,A,KP,B as a plaintext
on the public channel, respectively. Alice computes the key KAB and Bob computes the key
KBA.

KA,B = (KP,B)KS,A mod p

KB,A = (KP,A)KS,B mod p
(3.4)

The keys KA,B and KB,A from Eq. (3.4) are equal because of the rules for exponentiation and
associativity, the equation(

qKS,A
)KS,B

=
(
qKS,B

)KS,A
= q(KS,A ·KS,B) (3.5)

holds. This key can be used to establish a secure connection between two communication parties
i.e.K = KA,B = KB,A is the shared secret key. The computation steps from the Diffie Hellman
key agreement protocol can be summarized to secret and public parameter calculations and a
public parameter exchange between A and B. The protocol rounds are shown in Fig. 3.15.
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Public Parameter Calculation
p, q s.t. p is a prime number and

q is a primitive root of p
Secret Parameter Calculation

A B
choose KS,A choose KS,B

KP,A = qKS,A mod p KP,B = qKS,B mod p

Public Parameter Exchange
A −→ KP,A −→ B
A←− KP,B ←− B

Secret Parameter Calculation
A B

KA,B = (KP,B)KS,A mod p KB,A = (KP,A)KS,B mod p

KA,B = (KP,B)KS,A mod p = K = (KP,A)KS,B mod p = KB,A

Figure 3.15: Protocol Rounds of the Diffie Hellman Key Agreement Protocol

To show an example, we interpret the values as follows.

p = 17, q = 12, KS,A = 18, KS,B = 5.

Referencing to Eq. (3.3), A and B choose p = 17 as a prime number and q = 12 as a primitive
root from 17 (one can choose alternatively the primitive roots 3, 5, 6, 7, 10, 11, 14). The values
18 and 5 are kept secret, respectively.

KP,A = 1218 mod 17

= 26 623 333 280 885 243 904 mod 17

= 8 mod 17

= 8

KP,B = 125 mod 17

= 248 832 mod 17

= 3 mod 17

= 3
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Alice and Bob, now exchange the computed values 8 and 3, respectively and compute the final
key in the next step.

KA,B = 318 mod 17

= 387 420 489 mod 17

= 9 mod 17

= 9

KB,A = 85 mod 17

= 32 768 mod 17

= 9 mod 17

= 9

As a result, Alice and Bob get the key KA,B = 9 to initiate their secret communication i.e. the
shared secret key in our calculation is 9. From Eq. (3.5) it follows that K = KA,B = KB,A

holds in the computation. An overview of secret and public parameters in the Diffie Hellman
key agreement protocol is given in Fig. 3.16. A public parameter is known by everyone and a
secret parameter is assumed to be confidential. The computations shown above are known as the

Parameter Secret Public
p X
q X

KS,A X
KS,B X

KP,A X
KP,B X

KA,B X
KB,A X

K X

Figure 3.16: Secret and Public Parameter Overview Diffie Hellman Key Agreement Protocol

Diffie Hellman problem (DHP) or the Discrete Logarithm Problem (DLP). The basic arithmetics
of groups can be found in appendix A. Its definition is given below.

Definition 3.4 (Discrete Logarithm Problem) Let (G, ∗) be an abelian group where ∗ denotes
the group operation. We define the Discrete Logarithm Problem (DLP) as to determine an
integer x for arbitrary given elements g, h ∈ G s.t. x satisfies the following condition.

x times︷ ︸︸ ︷
g ∗ g ∗ · · · ∗ g = h
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Its difficulty depends on the specifications of the group G. The smallest value of x is called the
discrete logarithm of h with basis g. The discrete exponentiation is easy to compute, whereas
the discrete logarithm is harder to compute than a classic logarithm function.

The DHP is a problem that most cryptographic systems are based on mathematical functions
that are easy to compute but computationally hard to reverse. It is defined as follows.

Definition 3.5 (Diffie Hellman Problem) Let p be a prime number and g be an arbitrary inte-
ger. The Diffie Hellman Problem (DHP) is the mathematical problem of computing the value
qxy mod p from the values qx mod p and qy mod p and p.

Logarithms in real numbers are computational easy because they are continous and monotoni-
cally increasing functions. A discrete logarithm does not have the mentioned properties. That
means that the DHP is at most as hard as the DLP; if one can solve the DLP, the DHP can be
solved. More information on computational complexity can be found in [13, 41].

Security Problems in the Face of Quantum Computing

A cryptographic system is a protocol suite of security features to implement an encryption and
decryption system in the field of data processing. Cryptographic systems are used to secure data
transmission between distant nodes and establish a secure communication to protect against
eavesdroppers. It is defined as a secure cryptographic system if it is impossible (note the differ-
ence between impossible and hard to compute) to encrypt the ciphertext and obtain the plaintext
without knowledge on the key. The core security components of IPv6, such as the Diffie Hell-
man key exchange method, are based on unproven complexity assumptions. That means, if we
have infinite time and infinite computing power, cryptographic systems based on these unproven
computational hardness assumptions may be broken. Hence, the question is, how long will clas-
sic cryptography be secure? The increasing number of internet users in recent years and the
data processing in various industrial sectors and private communications results in the demand
to secure communication over the internet. The main potential threats are increasing computing
power, the enhancement on mathematics and quantum computers. Quantum computers are po-
tential threats to asymmetric, public key cryptography. They make use of quantum algorithms
such as the Deutsch Jozsa algorithm to find global properties of functions and quantum data base
search algorithms based on brute force attacks, such as the Grover and Shor algorithm as shown
in Fig. 2.6.

Quantum key distribution (QKD) is a promising method for securing communication for fu-
ture demands in information technology and is often referred to as quantum cryptography (QC).
QKD is a method to generate a shared random string between two communication parties which
can be used as a secret key to encrypt a plaintext to secure data transmission. The difference
to classical cryptographic techniques is that QKD relies on the quantum laws of physics. The
key distributed between the communication parties is generated by single photon pulses. Clas-
sical cryptographic methods are based on unproven complexity assumptions whereas QKD is
considered to be unconditionally secure and does not involve computational complexity. An un-
conditionally secure technique means that it is proven as an information theoretic secure method
o secure data transmission. Hence an eavesdropper can listen to the communication but it will be
detected by the communication partners because the eavesdropper induces noise on the channel.
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Because of the fact that the security of a symmetric cryptosystem depends on the quality of the
key, overall QKD solves the problem of secure key distribution between two adjacent nodes.
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CHAPTER 4
Quantum Key Distribution

In this chapter, the basis for the quantum information theory as well as the basic concepts of
quantum key distribution and why it is unconditional secure are described. We will start with
a short introduction of classical information theory. However, the focus will be on the differ-
ences between bits and qubits, the necessary arithmetics and the basic model of quantum key
distribution. This chapter describes the required basics for the experiments on quantum key
distribution.

4.1 Classic Cryptography

Cryptography is the theory of secure communications between communication partners. Claude
Elwood Shannon (? 1916− † 2001) was the founder of modern cryptography. Through his work
it was no longer necessary to keep cryptographic functions secret. He was the founder of secrecy
systems in modern cryptography. In general, a deterministic encryption function is at least in-
jective, since otherwise we can not conclude unambiguosly on the plaintext from the ciphertext.
If an encryption function is not injective it is not deterministic, as well. The basic arithmetics
and the definitions of functions can be found in Appendix A.

A function f is bijective if and only if f is injective and surjective. For every bijection there
exists an inverse function f−1. A secrecy system requires a bijection.

Let x denote the elements of the set of plaintexts and let y denote the elements of the set of
ciphertexts. The encryption function is denoted by f(x) and the decryption function by f−1(y).

y = f (x) (4.1)

x = f−1 (y) (4.2)

x = f−1 (y) = f−1 (f (x)) (4.3)

To implement an instance of a secrecy system we introduce an arbitrary instance of a plaintext
(X = x), a ciphertext (Y = y) and the secret keys (KS) for the encryption and (KP ) for the
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decryption. Figure 4.1 shows a reversible, bijective function. Hence the encryption function
and the decryption function are reversible, respectively. To encrypt the plaintext and decrypt

Plaintexts

x0

x1

x2

x3

Ciphertexts

y0

y1

y2

y3

xi yj
EKP

DKS

Figure 4.1: Secrecy Systems from Bijection and Reversibility - f(xi) = yj and f−1(yj) = xi

the ciphertext, an encryption function (EKP = f) and a decryption function
(
DKS = f−1

)
are

required. The notation (EKP = f) means that the encryption function uses the keyKP to obtain
the ciphertext from the plaintext and

(
DKS = f−1

)
means that the decryption function uses the

key KS to obtain the plaintext from the ciphertext. The encryption and decryption are defined
as follows

Y = EKP (X) , (4.4)

and
X = DKS (Y ) . (4.5)

Let A be the source (sender) and B be the destination (receiver). Public keys are denoted
by KP . They are assumed to be known by every possible communication partner i.e. even
eavesdroppers know the public keys. If A wants to send a message X to B, it looks up the
public key KP,B of B and uses Eq. (4.4) to obtain the ciphertext. The ciphertext Y is sent by A
to B over the public channel. Let KS be the private keys, which are kept secret. Hence B uses
the decryption function DKS,B as shown in Eq. (4.5) to obtain the plaintext from the ciphertext.
This method allows to encrypt and decrypt messages for the two corresponding communication
parties A and B. If A wants to sign the message to protect its integrity, we specify an encryption
function

d = EKS (X) (4.6)

and a decryption function
X = DKP (d) . (4.7)
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X Y NOT(X) NOT(Y) AND OR NAND NOR XOR
0 0 1 1 0 0 1 1 0
0 1 1 0 0 1 1 0 1
1 0 0 1 0 1 1 0 1
1 1 0 0 1 1 0 0 0

Figure 4.2: Classic information - Logical bit - Overview

A encrypts the message with its private key KS,A and obtains EKS,A (X) = d. It generates
the signature SA and appends it after the original message (d, SA). A encrypts the pair (d, SA)
with B

′
s public key KP,B and generates EKP,B (d, SA) = EKP,B

(
EKS,A (X) , SA

)
= e. A

sends the signed text e to B on the public channel. B uses its private key KS,B and com-
putes DKS,B (e) = DKS,B

(
EKP,B (d, SA)

)
= (d, SA). From the signature SA B concludes

the source A and uses the public key KP,A to decrypt the message and computes DKP,A (d) =
DKP,A

(
EKS,A (X)

)
= X . Methods based on the procedures mentioned above, are called pub-

lic key cryptography (PKC). In public key cryptography KS 6= KP holds. PKC is based on
number theoretic problems of unknown complexity (integer factorization, modular arithmetics,
elliptic curves). That means its security is based on unproven complexity assumptions. If it is
sufficiently difficult to calculate the inverse of a function, it is referred to as a one way function.
Public key encryption and decryption requires a pair of keys, with one component beeing public
and the other one kept secret. A major example for public key cryptography is the RSA (by
Rivest, Shamir, Adleman) [42]. The public key is known to an arbitrary set of communication
parties, i.e. eavesdroppers know the key, too. The private component is kept secret, in particular.

Symmetric key cryptography uses only secret keys and is formally known as secret key cryp-
tography. It can use an identical key to encrypt and decrypt messages or as an alternative one
can choose a pair of keys (KS ,KP ) where the keys can be calculated with a single operation
from each other, respectively. In classical secret key cryptography the keys are identically, hence
K = KS = KP holds. The problem of secret key cryptography is the key exchange between
the communication parties, because the key is assumed to kept secret. A cryptosystem can be
information theoretic secure. That means it is secure even if an eavesdropper has unlimited
time and computing power. Public key cryptography is secure because of its unproven compu-
tational hardness assumptions. An overview about basic cryptographic knowledge, public key
cryptography and symmetric key cryptography and vocabulary is given in [25, 46]. In Fig. 4.2
an overview of classic bit operations is given. One can see that the logical XOR operation is
reversible, but the AND, OR, NAND and NOR are not. The XOR operation can be interpreted as an
addition modulo 2 i.e. XOR (X,Y ) = (X + Y ) mod 2. The bitwise XOR operation can be used
to encrypt plaintexts and decrypt ciphertexts because of its reversibility. We want to encrypt
plaintexts to protect the transmitted data against eavesdropping by an attacker who listens to the
private communication between the authorized communication parties without their consent.

In 1949, Claude Elwood Shannon published a formal analysis of communication theory
problems [43]. The work introduces communication theory for secrecy systems. To transmit an
arbitrary plaintext from the source to the destination Shannon proposed the one time pad (OTP),
a symmetric key encryption technique. The one time pad uses as key a random number of the
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same length as the plaintext to be transmitted over a public (probably unsecure) channel. The
keys are used only once and kept secret. The OTP is an example for an information theoretic
secury cryptosystem. However, it has two potential bottlenecks. Generating truly random keys
in large quantities and distributing the key between all communication parties, so that Eve can
not draw any conclusions on the secret key (formally known as key distribution problem) are
the major problems. Quantum key distribution (QKD) offers a solution to this problem. This
will be shown in further sections of this work. There are a variety of divergent key distribution
techniques between Alice and Bob. A detailed explanation of classic key distribution methods
is given in [1, 46].

4.2 Quantum Information Theory

In quantum mechanics, quantum information is represented by the state of a quantum system.
Quantum information theory is the theory of information processing within the laws of quantum
mechanics which rests on four primary postulates.

Postulate 1: The state of a quantum mechanical system is specified by a wave function
ϕ (r̂, t). It describes the temporal and spatial evolution of a quantum mechanical particle and
depends on the coordinates of the particle (r̂ = (x̂, ŷ, ẑ)) and on time (t). The simplified wave
function ϕ (x̂, t) describes a particle with one degree of freedom of motion (x-axis). The state
of the system is completely defined by a time-dependent state vector of a Hilbert space.

Postulate 2: Every dynamical observable corresponds to a linear, Hermitian operator in
quantum mechanics. These operators act on the wave function ϕ (x̂, t). That means that measur-
able properties of a system, e.g. the momentum p̂x = i} ∂

∂x , p̂y = i} ∂
∂y , p̂z = i} ∂

∂z , p̂ = −i}∇,

a position r̂, or an energy Ĥ = p̂2

2m+V (x̂) can be interpreted as observables. The reduced Planck
constant (or Dirac constant) is denoted by }. It is equal to the planck constant (h) divided by
2π i.e. } = h

2π . Ĥ denotes the hamilton operator, where m is the mass of the particle and V (x̂)
denotes the potential energy operator. The imaginary unit from complex numbers is denoted as
i2 = −1. The gradient operator is denoted by ∇. Hence observables are properties, that can be
observed or measured.

Postulate 3: In quantum mechanics, one can only obtain eigenvalues by a measurement of
observables. A Measurement of observables is a method to extract information form a state.

LetA be an arbitrary n×nmatrix and v be a non-zero n×1 column vector. If v is multiplied
with matrix A such that λv

′
= Av holds, an eigenvector v

′
is a vector that is parallel to x and

the eigenvalue corresponds to λ which can be interpreted as a scale factor to v.
Postulate 4: The temporal evolution of states in a system is determined by the Schrödinger

equation

Ĥϕ (x̂, t) = i}
∂ϕ (x̂, t)

∂t
. (4.8)

That means that a state vector evolves in time t. This chapter is inspired by [17, 27, 35, 37, 38].
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Qubits

A quantum bit (qubit) is the smallest unit of quantum information such as the bit in classic
information theory. The two orthonormal vectors |0〉 and |1〉 are the basis states. Qubits are
denoted by the Bra-Ket notation to describe a state of a quantum system. It was introduced by
Paul Adrien Maurice Dirac (? 08.08.1902− † 20.10.1984). The n×1 column vector (ket-vector)
is denoted by

|ψ〉 =


a1
a2
...
an

 (4.9)

and the corresponding 1× n row vector (bra-vector) is denoted by

〈ψ| = (a∗1, a
∗
2 . . . a

∗
n) . (4.10)

The bra-vector can be built by the transponse (∗) of the ket-vector. A qubit |ψ〉 is an arbitrary
unit vector in the two-dimensional, complex vector space C2 spanned by |0〉 and |1〉 over the
complex numbers, which denotes the main conceptual difference between a bit and a qubit. The
general state of a qubit can be specified as follows

|ψ〉 = α |0〉+ β |1〉, (4.11)

where α, β ∈ C are complex numbers. The only restriction for |ψ〉 is the normalization condi-
tion, i.e. the length of the unit vector has to be 1. The state |ψ〉 is called a superposition of the
states |0〉 and |1〉 with the amplitudes α, β ∈ C s.t.

|α|2 + |β|2 = 1. (4.12)

A function mapping from an arbitrary qubit to a classic bit value results in “0” / “1” with proba-
bility p (0) , p (1). A generalization for n qubits is given below

|ψ〉 =
∑

0≤x<2n

αx |x〉n, (4.13)

∑
0≤x<2n

|αx|2 = 1. (4.14)

The set of 2n classical states is called computational basis. From Eq.(4.12) follows that an
arbitrary, single qubit state can be denoted as a Bloch vector |ψ〉 as shown below.

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (4.15)

where θ, ϕ ∈ R and represent angles in the Bloch sphere by the Swiss physicist Felix Bloch
(? 23.10.1905− † 10.09.1983) as shown in Fig. 4.3. A geometric interpretation of qubit states,
as coordinates on the surface of a unit sphere, is given by the Bloch sphere. It generalizes a
complex number z s.t. |z|2 = 1 is denoted by a point on the unit sphere in polar coordinates.
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|1〉

|0〉

y

z

x

|ψ〉

θ

ϕ

Figure 4.3: Geometrical Representation of the correspondence of the angles θ, ϕ to the Bloch
State |ψ〉 - 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π

Let eiϕ |ψ〉 be an arbitrary state, where |ψ〉 denotes the state vector and ϕ ∈ R is a real
number. Hence the states eiϕ |ψ〉 and |ψ〉 are equal up to a so called global phase eiϕ. Hence
both amplitudes differ by the factor eiϕ.The computational basis is denoted by a column vector
as shown in Eq.(4.9). The most common representation for the C2 is the interpretation of ψ
(I (ψ)) as follows

|ψ〉 =


(

1
0

)
, I(ψ) = 0(

0
1

)
, I(ψ) = 1

(4.16)

Hence |0〉 and |1〉 form the computational basis with the according ket-vector as shown in
Eq.(4.16). The corresponding bra-vector is shown below.

〈ψ| =
{ (

1, 0
)
, I(ψ) = 0(

0, 1
)
, I(ψ) = 1

(4.17)

Consider the states |+〉 and |−〉 s.t.

|ψ〉 =


1√
2

(|0〉+ |1〉) , I (ψ) = +

1√
2

(|0〉 − |1〉) , I (ψ) = −
(4.18)

By contrast to the global phase, these states differ in their amplitudes. Hence, the amplitude
of state |+〉 is 1√

2
, whereas it is (−1) 1√

2
in the complementary state |−〉, respectively. Two
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amplitudes of some states αi, αj , differ by a relative phase if αi = eiϕαj holds for some ϕ ∈ R
and i 6= j.

Linear Operators

A single state will be mapped linearly to another state via linear operators (i.e. functions, linear
transformations) and will be called a state change. Operations on a single bit value in classic
computation are performed by the gate operations mentioned in Fig. 4.2. In quantum comput-
ing, a qubit can exist in a superposition. Hence it is a little bit more complex than the logical
operations from Fig. 4.2. Mathematical functions are used to describe operations on qubits, to
change the state from one into another.

Let n,m ∈ N be arbitrary integers. Let A : V → W be a linear operator and |vj〉 be an
orthonormal basis of V and |wi〉 an orthonormal basis of W s.t. 1 ≤ j ≤ n and 1 ≤ i ≤ m
holds. The linear operator represents a transition from vector space V toW where V,W ∈ C∗.
Let A(n,m) be a n×m matrix, that fulfills the linearity equation and let |v〉 ∈ Cm be a vertical
bar vector. There exist Anj ∈ C s.t.

A

(∑
i

ai |vi〉

)
=
∑
i

(aiA |vi〉) (4.19)

and
A |vj〉 =

∑
i

(Aij |wi〉) (4.20)

holds. We get the matrix representation of a ket-vector from Eq.(4.19) and Eq.(4.20). The
computational basis can be denoted as follows.

|v〉 = a1 |0〉+ a2 |1〉+ · · ·+ an |n〉 =
∑

1≤i,j≤n
aj |vj〉 =

a1...
an

 (4.21)

|w〉 = a1 |0〉+ a2 |1〉+ · · ·+ an|n〉 =
∑

1≤i,j≤n
aj |vj〉 =

a1...
an

 (4.22)

i.e. there exists only one value in the column vector that is mapped to 1.

I(ai) =

{
0, i = j
1, i 6= j

(4.23)

Let A be a 2× 2 matrix s.t. a, b, c, d, e, f ∈ R i.e.

A =

(
a+ ib c− id
e if

)
(4.24)

A matrix A∗ is the complex conjugate matrix of matrix A, if and only if Re(z∗) = Re (z) and
Im (z∗) = −Im (z) holds. Furthermore, a matrix

(
AT
)
n×m is the transponse of matrix Am×n
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if and only if
(
AT
)
n×m is the reflection over matrix A′s main diagonal. Hence, an interchange

of columns and rows succeeds over n × m. From the sequential composition by the complex
conjugate A∗ and the transposition AT via (A∗)T follows the matrix A∗

A∗ =

(
a− ib e
c+ id −if

)
(4.25)

and

(A∗)T = AH =

(
a− ib c+ id
e −if

)
(4.26)

Let z = a + ib ∈ C s.t. a, b ∈ R and let A be a linear transformation. Furthermore let |ψ〉
be an arbitrary orthonormal vector, so we apply A on |ψ〉. Due to linearity follows

A (a |ψ〉+ b |φ〉) = aA |ψ〉+ bA |φ〉 (4.27)

and if it is not explicitly written the following notation holds.

|Aψ〉 = A |ψ〉 (4.28)

From a linear operation A, follows another operation.

〈Av| = 〈v| A† (4.29)

The new transformation is called the adjoint operator (†), e.g. on the dual space of bra vectors.
From that follows the adjoint of the |v〉 vector

(|v〉)† = 〈v|. (4.30)

Let A be a binary operation and † be the adjoint operator. An operator is hermitian if and only if
A† = A holds.

(|v〉, A|w〉) =
(
A†|v〉, |w〉

)
(4.31)

Inner Products

Inner Products (or Scalar products) of two vectors are transformations from a vector space, to a
complex number. An inner product |v〉, |w〉, where |v〉 is associated with 〈v| will be represented
in braket notation as follows

〈v| (|w〉) = 〈v|w〉 =
∑

1≤i≤n
a∗i bi = (a∗1 . . . a

∗
n)

b1...
bn

 (4.32)

The inner product satisfies the following requirements.|v〉, ∑
1≤i≤n

λi |wi〉

 =
∑

1≤i≤n
λi (|v〉, |wi〉) (4.33)
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(|v〉, |w〉) = (|v〉, |w〉)∗ (4.34)

(|v〉, |v〉) ≥ 0 iff |v〉 = 0 (4.35)

Scalar products are linear in the second (right) vector argument. An inner product of two vectors
in a vector space over C∗ is denoted as follows

〈v|w〉 = 〈v|w〉∗ (4.36)

s.t.
(a+ ib)∗ = (a− ib) where a, b ∈ R (4.37)

and from that definition follows the inner product of itself (complex conjugate) is defined as
follows:

〈v|v〉 =
∑

1≤i≤n
|ai|2 s.t. (4.38)

|a+ ib|2 = a2 + b2 where a, b ∈ R (4.39)

Furthermore the inner product of a vector with itself is a real number s.t.

〈v|v〉 > 0, |v〉 6= 0 (4.40)

Outer Products

By contrast to scalar products, there exists the outer product. A matrix An,m is used instead of
vectors where |v〉 ∈ V, |w〉 ∈ W, (|v〉 × |w〉) ∈ (V ×W) holds, but |v〉, |w〉 /∈ (V ×W) holds.
While the inner product results in a scalar C, the result by applying an outer product on a pair of
vectors, is a matrix Ai,j .

|v〉〈w| =

a1...
an

 (b∗1 . . . b
∗
m) =

a1b
∗
1 . . . a1b

∗
m

...
. . .

...
anb
∗
1 . . . anb

∗
m

 = Ai,j (4.41)

Furthermore the unit operator 1 follows for a complete orthonormal set∑
1≤i≤n

|i〉〈i| = 1 (4.42)

From the unity equation follows

|v〉 = 1 |v〉 =
∑
|i〉〈i|v〉 (4.43)
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Tensor Product

A Tensor product is denoted by ⊗. It differs from the inner and outer product. However, the
tensor product results in a vector space, from two vector spaces.

Let A,B be linear operations A : V → V ′ and B : W → W ′ . Furthermore let A ⊗ B :
V ⊗W → V ′ ⊗W ′ . Suppose Am,n, Bo,p be matrices, s.t. m,n, o, p ∈ N we get

A⊗B =


A11B A12B · · · A1nB
A21B A22B · · · A2nB
· · · · · · · · · · · ·

Am1B Am2B · · · AmnB



=



a11b11 a11b12 · · · a11b1p · · · · · · a1nb11 a1nb12 · · · a1nb1p
a11b21 a11b22 · · · a11b2p · · · · · · a1nb21 a1nb22 · · · a1nb2p

...
...

. . .
...

...
...

. . .
...

a11bo1 a11bo2 · · · a11bop · · · · · · a1nbo1 a1nbo2 · · · a1nbop
...

...
. . .

...
. . .

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...
am1b11 am1b12 · · · am1b1p · · · · · · amnb11 amnb12 · · · amnb1p
am1b21 am1b22 · · · am1b2p · · · · · · amnb21 amnb22 · · · amnb2p

...
...

. . .
...

. . .
...

...
. . .

...
am1bo1 am1bo2 · · · am1bop · · · · · · amnbo1 amnbo2 · · · amnbop


(4.44)

Let V,W be m,n dimensional vector spaces. From V ⊗W and |v〉 ∈ V, |w〉 ∈ W follows the
m,n dimensional vector space. Furthermore let |v〉 = αv |0〉+βv |1〉 and |w〉 = αw |0〉+βw |1〉
be two states of qubits. Let the state |Ψ〉 = |v〉 ⊗ |w〉 be a new state, constructed by the tensor
product.

|Ψ〉 = |v〉 ⊗ |w〉
= (αv |0〉+ βv |1〉)⊗ (αw |0〉+ βw |1〉)
= αvαw |00〉+ αvβw |01〉+ βvαw |10〉βvβw |11〉

=


αvαw
αvβw
βvαw
βvβw


(4.45)

To construct an example for the tensor product, the main components are interpreted as follows

I(αv) = 1, I(βv) = 2, I(αw) = 3, I(βw) = 4
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|Ψ〉 = |v〉 ⊗ |w〉 = (αv |0〉+ βv |1〉)⊗ (αw |0〉+ βw |1〉) =


1 · 3
1 · 4
2 · 3
2 · 4

 =


3
4
6
8

 (4.46)

The result of the tensor product is the transponse of the row vector 〈Ψ| = (3, 4, 6, 8).

Hadamard Gate

The Hadamard gate is a linear operator and is denoted by H . It is defined by the following
matrix

H =
1√
2

(
1 1
1 −1

)
. (4.47)

The hadamard operator produces an equally weighted superposition of |0〉 and |1〉. In the next
steps we apply the Hadamard Operation on the states (ket vectors) |0〉, |1〉 as follows

H |0〉 =
1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

[(
1 · 1 + 1 · 0

1 · 1 + (−1) · 0

)]
=

1√
2

(
1
1

)
=

1√
2

[(
1
0

)
+

(
0
1

)]
=

1√
2

(|0〉+ |1〉)

(4.48)

H |1〉 =
1√
2

(
1 1
1 −1

)(
0
1

)
=

1√
2

[(
1 · 0 + 1 · 1

1 · 0 + (−1) · 1

)]
=

1√
2

(
1
−1

)
=

1√
2

[(
1
0

)
−
(

0
1

)]
=

1√
2

(|0〉 − |1〉)

(4.49)
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Remember the states from Eq. (4.48) and Eq. (4.49). We apply the hadamard transformation on
the states as follows.

H

(
1√
2
|0〉+

1√
2
|1〉
)

=
1√
2
· 1√

2
(|0〉+ |1〉) +

1√
2
· 1√

2
(|0〉 − |1〉)

=
1

2
|0〉+

1

2
|1〉+

1

2
|0〉 − 1

2
|1〉

= |0〉

(4.50)

H

(
1√
2
|0〉 − 1√

2
|1〉
)

=
1√
2
· 1√

2
(|0〉+ |1〉)− 1√

2
· 1√

2
(|0〉 − |1〉)

=
1

2
|0〉+

1

2
|1〉 − 1

2
|0〉+

1

2
|1〉

= |1〉

(4.51)

Two-dimensional NOT Gate

An operation like erase is an irreversible operation, so far. Quantum Computers are calculating
by reversible operations, where an initial state is transformed to a final state, using reversible
operations. If a state is reversible, there exists exactly one preimage, as shown in figure 4.1.
A reversible transformation is the NOT operation (bitflip) and will be denoted as X . This
operation interchanges the values between a pair of states s.t.

X : |ψ〉 → |ψ′〉, s.t. 1′ = 0, 0′ = 1 (4.52)

A sequential composition of the bitflip operation is defined as follows

X ◦X = X ·X = X2 = I (4.53)

Hence the matrix representation of the NOT operator is given as follows

X =

(
0 1
1 0

)
(4.54)

on a 2-dimensional vector space.

Two-dimensional Unit Gate

From the sequential composition of the two-dimensional NOT gatesX2 follows the two-dimensional
unit gate. It is denoted by

I =

(
1 0
0 1

)
. (4.55)
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Two-dimensional Pauli Gates

The pauli gates are linear operators (single qubit quantum gates) and are denoted by σX , σY and
σZ . Hence, these linear operators proceed on one single qubit. The following equations show
the matrix representations of the 2× 2 three basic pauli matrices.

σX =

(
0 1
1 0

)
(4.56)

σY =

(
0 −i
i 0

)
(4.57)

σZ =

(
1 0
0 −1

)
(4.58)

By performing a matrix multiplication with σZ and σX and the fact, that i2 = (−1) follows the
modified Pauli gate iσY .

σZσX =

(
1 0
0 −1

)(
0 1
1 0

)
=

(
0 1
−1 0

)
= i

(
0 −i
i 0

)
= iσY (4.59)

iσY = i

(
0 −i
i 0

)
(4.60)

From the Pauli gates follows the computation for each instance of σ.

σXσX =

(
0 1
1 0

)(
0 1
1 0

)
=

(
0 · 0 + 1 · 1 0 · 1 + 1 · 0
1 · 0 + 0 · 1 1 · 1 + 0 · 0

)
=

(
1 0
0 1

)
(4.61)

σY σY =

(
0 −i
i 0

)(
0 −i
i 0

)
=

(
0 · 0 + (−i) · i 0 · (−i) + (−i) · 0
i · 0 + i · 0 i · (−i) + 0 · 0

)
=

(
1 0
0 1

)
(4.62)

σZσZ =

(
1 0
0 −1

)(
1 0
0 −1

)
=

(
1 · 1 + 0 · 0 1 · 0 + 0 · (−1)

0 · 1 + (−1) · 0 0 · 0 + (−1) · (−1)

)
=

(
1 0
0 1

)
(4.63)

Because the pauli matrices are self adjoint, a sequential composition of σ results in the 2-
dimensional unit matrix.

σ2X = σ2Y = σ2Z = I (4.64)

In the next steps we apply the Pauli gate operations on the ket vectors, as follows.

σX |0〉 =

(
0 1
1 0

)(
1
0

)
=

[(
0 · 1 + 1 · 0
1 · 1 + 0 · 0

)]
=

(
0
1

)
(4.65)

σX |1〉 =

(
0 1
1 0

)(
0
1

)
=

[(
0 · 0 + 1 · 1
1 · 0 + 0 · 1

)]
=

(
1
0

)
(4.66)
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A σX operation on the states results in a bitflip. That means that the state will be changed from
|0〉 to |1〉 and vice versa.

σZ |0〉 =

(
1 0
0 −1

)(
1
0

)
=

[(
1 · 1 + 0 · 0

0 · 1 + (−1) · 0

)]
=

(
1
0

)
(4.67)

σZ |1〉 =

(
1 0
0 −1

)(
1
0

)
=

[(
1 · 0 + 0 · 1

0 · 0 + 1 · (−1)

)]
=

(
0
−1

)
(4.68)

σZ |+〉 =

(
1 0
0 −1

)( 1√
2
1√
2

)
=

[(
1 · 1√

2
+ 0 · 1√

2

0 · 1√
2

+ (−1) · 1√
2

)]
=

(
1√
2

− 1√
2

)
(4.69)

σZ |−〉 =

(
1 0
0 −1

)( 1√
2

− 1√
2

)
=

[(
1 · 1√

2
+ 0 · 1√

2

0 · 1√
2

+ (−1) · (−1) · 1√
2

)]
=

(
1√
2
1√
2

)
(4.70)

The iσY operator is the sequential composition of the operators σX and σZ . As a result, the
operator iσY performs both flip operations, the bitflip and the phase flip.

iσY |0〉 = i

(
0 −i
i 0

)(
1
0

)
=

(
0 1
−1 0

)(
1
0

)
=

[(
0 · 1 + 1 · 0

(−1) · 1 + 0 · 0

)]
=

(
0
−1

)
(4.71)

iσY |1〉 = i

(
0 −i
i 0

)(
0
1

)
=

(
0 1
−1 0

)(
0
1

)
=

[(
0 · 0 + 1 · 1

(−1) · 0 + 0 · 1

)]
=

(
1
0

)
(4.72)

A summarization of the Pauli gate operations is given in Fig. 4.4.

Rotation Gate

A rotation gate transformation is a general purpose class of operators. Let θ be an arbitrary
angle. A rotation operator rotates the plane by θ. Hence the rotation gate can be described by a
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Gate Qubit Result Operation

σX

|0〉
(

0
1

)
Bit Flip

|1〉
(

1
0

)

σZ

|0〉
(

1
0

)

Phase Flip
|1〉

(
0
−1

)
|+〉

(
1√
2

− 1√
2

)

|−〉

(
1√
2
1√
2

)

iσY

|0〉
(

0
−1

)
Bit + Phase Flip

|1〉
(

1
0

)
Figure 4.4: Pauli Gate Operations - Overview

2 × 2 rotation matrix. The rotation matrix is defined as an orthogonal matrix with determinant
+1 and is shown in the following equation.

Rθ =

(
cos θ sin θ
− sin θ cos θ

)
. (4.73)

The determinant detRθ is given below

detRθ =

∣∣∣∣ cos θ sin θ
− sin θ cos θ

∣∣∣∣ = cos θ · cos θ − sin θ · (−1) · sin θ = 1. (4.74)

As an alternative, one can choose the (2× 2) rotation matrix with the same properties as shown
above.

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
(4.75)

The commutativity of the rotation gate follows immediately from the matrix multiplication and
the addition theorems of trigonometric functions.
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Let θ, φ ∈ R be arbitrary angles and R be the (2× 2) rotation matrix, respectively.

Rθ ·Rφ =

(
cos θ sin θ
− sin θ cos θ

)
·
(

cosφ sinφ
− sinφ cosφ

)
=

(
cos θ · cosφ+ sin θ · (−1) · sinφ cos θ · sinφ+ sin θ · cosφ

(−1) · sin θ · cosφ+ cos θ · (−1) · sinφ (−1) · sin θ · sinφ+ cos θ · cosφ

)
=

(
cos (θ + φ) sin (θ + φ)
− sin (θ + φ) cos (θ + φ)

)
(4.76)

Let |ψ〉 = αRθ |0〉+βRθ |1〉 be an arbitrary state. By applying the rotation operator on |ψ〉 one
can see, that the equation

Rθ |ψ〉 = αRθ |0〉+ βRθ |1〉

= α

[(
cos θ sin θ
− sin θ cos θ

)(
1
0

)]
+ β

[(
cos θ sin θ
− sin θ cos θ

)(
0
1

)]
= α

[(
1 · cos θ + 0 · sin θ

1 · (− sin θ) + 0 · cos θ

)]
+ β

[(
0 · cos θ + 1 · sin θ

0 · (− sin θ) + 1 · cos θ

)]
= α

(
cos θ
− sin θ

)
+ β

(
sin θ
cos θ

)
= α

[(
cos θ

0

)
+

(
0

− sin θ

)]
+ β

[(
sin θ

0

)
+

(
0

cos θ

)]
= α

[
cos θ

(
1
0

)
+ (− sin θ)

(
0
1

)]
+ β

[
sin θ

(
1
0

)
+ cos θ

(
0
1

)]
= α [cos θ |0〉 − sin θ |1〉] + β [sin θ |0〉+ cos θ |1〉]
= α cos θ |0〉 − α sin θ |1〉+ β sin θ |0〉+ β cos θ |1〉
= (α cos θ + β sin θ) |0〉 − (α sin θ − β cos θ) |1〉
= α′ |0〉+ (−1)β′ |1〉

(4.77)

results in a modified amplitudeα′, β′ s.t. α′ = (α cos θ + β sin θ) and β′ = − (α sin θ − β cos θ)
and a change of the relative phase from (+1) to (−1) of the state of the qubit.

CNOT Gate

The controlled not gate, also known as CNOT gate is an essential operator and denoted by
CNOTij . It manipulates 2 qubits i and j. However, both qubits are to be distinguished in once
the control and secondly the target qubit. If the state of the ith qubit is mapped to |0〉, the state
of the jth qubit is invariant, whereas if the state of the ith qubit is mapped to |1〉, the CNOT
operator changes the value of the jth qubit. It does this by applying a mod2 addition. This is
shown in the subscript CNOTij , where the first index denotes the control (source) qubit and
the second index denotes the target qubit. The control qubit is invariant, whereas the target
qubit changes if and only if the control qubit is |1〉. If the control qubit is on the left, the
CNOT operation leaves the states |00〉 and |01〉 invariant. However, the states |10〉 and |11〉 are
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exchanged. The matrix representation of CNOT10 is given below.

CNOT10 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (4.78)

The CNOT gate can alternatively be given as CNOT01, where the subscript means that the right
qubit is the control, whereas the left one, is the target qubit. Hence, the states |00〉 and |10〉 are
invariant, whereas the states |01〉 and |11〉 are exchanged. From this consideration the matrix
representation of CNOT01 is as follows.

CNOT01 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 (4.79)

Furthermore, if the CNOT operator is multiplied with itself, we obtain the identity matrix I
immediately. Hence the equation below holds for CNOT10

CNOT 2
10 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ·


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I (4.80)

whereas

CNOT 2
01 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 ·


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I (4.81)

holds for CNOT01. Because I denotes the 4×4 identity matrix andAA−1 = A−1A = I holds,
we obtain that CNOTij = CNOT−1ij holds.

Furthermore, two different cases need to be distinguished by the application of the CNOT
transformation on two qubits. The first is the application on pure 2-qubit states as follows a 22

variation with repition for CNOT10

CNOT10 |00〉 → |00〉 CNOT10 |10〉 → |11〉
CNOT10 |01〉 → |01〉 CNOT10 |11〉 → |10〉 (4.82)

and for the CNOT01 transformation

CNOT01 |00〉 → |00〉 CNOT10 |10〉 → |10〉
CNOT01 |01〉 → |11〉 CNOT10 |11〉 → |01〉 (4.83)

The second application is to apply the CNOT transformation on a control qubit in a super-
position of the one-qubit states |0〉 and |1〉. The results of the transformations are defined as
CNOTij |ψ〉 |ϕ〉.
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Let |ψ〉 = 1√
2

(|0〉+ |1〉) be an arbitrary superposition of the two states |0〉 and |1〉. Fur-
thermore let the target qubit state be defined by |ϕ〉 ∈ {|0〉, |1〉}. The results of the operation
CNOT10 are shown in the equations below.

CNOT10
1√
2

(|0〉+ |1〉) |0〉 = CNOT10
1√
2

(|00〉+ |10〉) =
1√
2

(|00〉+ |11〉)

CNOT10
1√
2

(|0〉+ |1〉) |1〉 = CNOT10
1√
2

(|01〉+ |11〉) =
1√
2

(|01〉+ |10〉)
(4.84)

As an alternative, let |ϕ〉 = 1√
2

(|0〉+ |1〉) be an arbitrary superposition of the two states |0〉 and
|1〉 and ψ ∈ {|0〉, |1〉} be the target qubit. The CNOT01 operation results are as follows.

CNOT01 |0〉
1√
2

(|0〉+ |1〉) = CNOT01
1√
2

(|00〉+ |01〉) =
1√
2

(|00〉+ |11〉)

CNOT01 |1〉
1√
2

(|0〉+ |1〉) = CNOT01
1√
2

(|10〉+ |11〉) =
1√
2

(|10〉+ |01〉)
(4.85)

Hence the CNOT gate is similar to the reversible XOR gate from classical information theory.
A compact definition is given below.

CNOT10 |ψ〉 |ϕ〉 = |ψ〉 |ϕ⊕ ψ〉 CNOT01 |ψ〉 |ϕ〉 = |ψ ⊕ ϕ〉 |ϕ〉 (4.86)

Universal Quantum Gates

In classical computation, the set of all possible gates can be simulated by the NAND operation
as shown in Fig. 4.2. However, in the field of quantum information theory, exists at least one
gate, that cannot be simulated by the minimal set of universal quantum gates. However, every
quantum gate can approximately be simulated with a sufficient accuracy. Hence a minimal set of
universal quantum gates can be found in [38]. This set contains the CNOT gate, the hadamard
gate, the phase gate S and the π

8 -gate.

CNOT10 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (4.87)

H =
1√
2

(
1 1
1 −1

)
(4.88)

S =

(
1 0
0 i

)
(4.89)

T =

(
1 0

0 e
iπ
4

)
(4.90)

The proof for their universality can be found in [38], too.
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Measurement of a qubit

By contrast to reversible operations, the only not reversible operation in the field of quantum
information is the measurement. A measurement results in an interpretation of information, after
a qubit has changed to its final state. Measured by linear operators, a measurement is defined
by a transformation. We call it measurement operator, or hermitian operator Mm. Hence a
system is in state |ψ〉 before the measurement occurs and in state |ψ′〉 after the measurement.
Furthermore, the results of a measurement will be part of classical information theory. Hence
the results are classic bit values. The probability of a measurement of the qubit in state |ψ〉, that
m occurs and m ∈ {0, 1} is denoted by p (m) and defined as follows.

p(m) = 〈ϕ|M †m Mm|ϕ〉 (4.91)

Hence, the measurement operator Mm is applied on the state before the measurement |ψ〉. Fur-
thermore, the adjoint M †m is applied on the bra 〈ψ|.

|ψ′〉 = U |ψ〉 (4.92)

The state after the measurement can be described by the following equation.

|ψ′〉 =
Mm|ψ〉√

〈ψ|M †mMm|ψ〉
(4.93)

For the set of all measurement operators, the completeness equation holds.∑
m

M †mMm = I (4.94)

Hence, from completeness follows that the sum of all probabilities for all measurement operators
is 1. ∑

m

p(m) = 1 =
∑
m

〈ψ|M †m Mm|ψ〉 = 1 (4.95)

A set of measurements exists. The most important are the measurements in the computational
basis. As shown above, the states |0〉, |1〉 form a computational basis for C2.

Let |0〉, |1〉 be two computational bases. The measurement in the computational basis is
defined as the outer product. Hence it is a mapping to the classic states 0 and 1, from classic
information theory.

Let Mm be a measurement operator s.t. m ∈ {0, 1}.

M0 = |0〉〈0| =
(

1 0
0 0

)
M1 = |1〉〈1| =

(
0 0
0 1

)
(4.96)

From the definition of Mm follows immediately, that Mm = M †m holds. Now we apply the
measurement operator on an arbitrary state of a qubit |ψ〉 = α |0〉 + β |1〉, to conclude the
probability of the result of the measurement, that m = 0.

p (m) = 〈ψ|M †m Mm|ψ〉 (4.97)
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In this equation, we substitute
[
M †m|x

]
and [x|Mm] and conclude from

M †mMm = MmMm = M2
m = Mm (4.98)

the equation for the probability p (0) as follows.

p (0) = 〈ψ|M †0 M0|ψ〉
= 〈ψ|M0|ψ〉

= (α∗β∗)

(
1 0
0 0

)(
α
β

)
= (α∗β∗)

(
1 ·α+ 0 ·β
0 ·α+ 0 ·β

)
= (α∗β∗)

(
α
0

)
= α∗ ·α+ β∗ · 0
= |α|2

(4.99)

We do the same procedure for p (1) and calculate the probability to get the result m = 1.

p (1) = 〈ψ|M †1 M1|ψ〉
= 〈ψ|M1|ψ〉

= (α∗β∗)

(
0 0
0 1

)(
α
β

)
= (α∗β∗)

(
0 ·α+ 0 ·β
0 ·α+ 1 ·β

)
= (α∗β∗)

(
0
β

)
= α∗ · 0 + β∗ ·β
= |β|2

(4.100)

p (m) =

{
|α|2 , iff I(m) = 0

|β|2 , iff I(m) = 1
(4.101)

The calculations above show in a compact manner, that the result of a measurement assigns to
0 with probability |α|2, whereas it assigns to 1 with probability |α|2. As mentioned above, the
system state changes after a measurement to the predecessing state ψ

′
, respectively. Hence the
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system state after a measurement M0 is shown below.

|ψ′〉 =
M0 |ψ〉√

〈ψ|M †0 M0|ψ〉

=

1 0
0 0

α
β


√
|α|2

=

α
0


|α|

=
α |0〉
|α|

=
α

|α| |0〉

(4.102)

To compute the system state after the measurement M1, we compute as shown above with m =
1.

|ψ′〉 =
M1 |ψ〉√
〈ψ|M †1 M1|ψ〉

=

0 0
0 1

α
β


√
|α|2

=

0
β


|β|

=
β |1〉
|β|

=
β

|β| |1〉

(4.103)

After applying the measurement operatorsMm on an arbitrary superposition of |ψ〉, we obtained
the predecessing states after the transformation, |ψ′〉 as follows.

|ψ〉 → |ψ′〉 =


α

|α|
|0〉, iff I(m) = 0

β

|β|
|1〉, iff I(m) = 1

(4.104)

Now let |+〉 and |−〉 be two states in a superposition. We know that the amplitudes α = β = 1√
2

are equal. Hence we get the result 0 with probability p (0) = 1
2 and we get 1 with probability
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p (1) = 1
2 .

p (0) = p (1) = |α|2 = |β|2 =

∣∣∣∣∣ 1
√

2

∣∣∣∣∣
2

=
1

2
(4.105)

From this fact, we obtain that a measurement will result in an arbitrary value with probability
p (m). Hence for this two states, the computational basis |+〉, |−〉 are chosen.

p (m) =


1

2
, iff I(m) = 0

1

2
, iff I(m) = 1

(4.106)

After the measurement, the system state changes. Hence |ψ′〉 follows s.t.

|ψ〉 → |ψ′〉 =
α

|α| |0〉 =

1√
2∣∣∣∣∣∣ 1√
2

∣∣∣∣∣∣
|0〉 = |0〉

|ψ〉 → |ψ′〉 =
β

|β| |1〉 =

1√
2∣∣∣∣∣∣ 1√
2

∣∣∣∣∣∣
|1〉 = |1〉

(4.107)

We see that for the two states holds.

〈+|+〉 = 〈−|−〉 = 1 〈+|−〉 = 0 (4.108)

Hence the two states are orthonormal. From that fact we conclude, that the classic bit value b
are mapped as follows

I (b) =

{
“0”, iff |ψ〉 = |+〉
“1”, iff |ψ〉 = |−〉

(4.109)

Furthermore, we get from Mm the measurement operators for the states |+〉 and |−〉.

M0 = |+〉〈+| = 1

2

(
1 1
1 1

)
M1 = |−〉〈−| = 1

2

(
1 −1
−1 1

)
(4.110)

By applying the measurement operators Mm and the states |+〉 and |−〉, we obtain the probabil-
ity for the results for the probability of m = 0

p (0) = 〈+|M †0 M0|+〉 = 〈+|+〉〈+|+〉 = 1 · 1 = 1, (4.111)

and the probability of m = 1

p (1) = 〈+|M †1 M1|+〉 = 〈+|−〉〈−|+〉 = 0 · 0 = 0. (4.112)
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In the next step, we calculate the state transformation from |ψ〉 to the state after the measurement
|ψ′〉. We obtain

|ψ〉 → |ψ′〉 =
M0 |+〉√
〈+|M †0M0|+〉

=
(|+〉〈+|) |+〉√
〈+|+〉 〈+|+〉

=
1

1
|+〉 = |+〉 (4.113)

Because the probability p (0) = 1, the state after the measurement assigns to |+〉. In the com-
plementary case, the state for the result 1 does not assign to |−〉. Hence it is not defined.

Now we are applying the measurements of the states |0〉 and |1〉 in the computational basis
{|+〉, |−〉}. The results for the probability p (m) are shown below.

p (0) = 〈0|M †0M0|0〉 = 〈0|+〉 〈+|0〉 =
1√
2
· 1√

2
=

1

2

p (0) = 〈1|M †0M0|1〉 = 〈1|+〉 〈+|1〉 =
1√
2
· 1√

2
=

1

2

p (1) = 〈0|M †1M1|0〉 = 〈0|−〉 〈−|0〉 =
1√
2
· 1√

2
=

1

2

p (1) = 〈1|M †1M1|1〉 = 〈1|−〉 〈−|1〉 = − 1√
2
· − 1√

2
=

1

2

(4.114)

Now we calculate the transformation from |ψ〉 to the successor state |ψ′〉 as follows.

|ψ〉 → |ψ′〉 =
M0 |0〉√
〈0|M †0M0|0〉

=
|+〉 〈+|0〉√
〈0|+〉 〈+|0〉

=

1√
2
1√
2

|−〉 = |+〉

|ψ〉 → |ψ′〉 =
M0 |1〉√
〈1|M †0M0|1〉

=
|+〉 〈+|1〉√
〈1|+〉 〈+|1〉

=

1√
2
1√
2

|+〉 = |+〉

|ψ〉 → |ψ′〉 =
M1 |0〉√
〈0|M †1M1|0〉

=
|−〉 〈−|0〉√
〈0|−〉 〈−|0〉

=

1√
2
1√
2

|−〉 = |−〉

|ψ〉 → |ψ′〉 =
M1 |1〉√
〈1|M †1M1|1〉

=
|−〉 〈−|1〉√
〈1|−〉 〈−|1〉

=
− 1√

2
1√
2

|−〉 = (−1) · |−〉 = |−〉

(4.115)

From that we conclude, that a measurement in the wrong basis results in a randomly result with
probability p (m) = 1

2 .

4.3 Basic Model

Quantum key distribution (QKD) was first presented in 1984, by Bennett and Brassard [3]. It is a
method based on the quantum laws of physics. The basic model of QKD is given in figure 4.5. It
is not a technique, to encrypt and decrypt a plaintext. However, QKD solves the problem of key
distribution between Alice (the sender) and Bob (the receiver). Based on the quantum laws of
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Alice
(Sender)

Bob
(Receiver)

QB = {|0〉, |1〉}n

Quantum Channel (QC)

B = {0, 1}n

Public Channel (PC)
Kfinal Kfinal

Figure 4.5: Principal Model of Quantum Key Distribution

physics, it enables provable [44] unconditional security and processes the generation of a random
shared secret Kfinal between two communication parties. Unconditional security means that
the level of security does not rely on unproven computational complexity assumptions. Hence it
does not matter how much computation power or time is available to an arbitrary eavesdropper.
Furthermore, an unconditional secure ciphertext can not be broken, because the cipher does
not provide any information to determine the plaintext uniquely. QKD complements classic
algorithms for authentication and error detection or error correction. Single photon pulses i.e.
qubits (QB = {|0〉, |1〉}n) are transmitted over an authenticated but noisy quantum channel,
whereas the classic bits are transmitted over public (probably unsecure) channels (B = {0, 1}n).
That means the classical transmission over the public channel can be interpreted as a ciphertext, a
plaintext or parity bits for error handling for instance. The main idea of quantum key distribution
is, to provide eavesdropping detection.

4.4 Quantum Channel vs. Public Channel

A communication channel is an arbitrary physical implementation, which allows two communi-
cation parties, to exchange any information. In quantum information theory, a quantum channel
is implemented as a single fibre access link. Hence it is a peer to peer connection between two
communication parties. Furthermore, a quantum channel is a communication channel, which en-
ables the transmission of quantum information, to provide a private communication of quantum
information. The smallest unit in quantum information is similar to the logical bit, in classic in-
formation theory, the qubit. Qubits are used to transport the information on the quantum channel
from Alice to Bob. Classic information is a plaintext or a ciphertext X,Y ∈ {0, 1}n, described
by an n−tuple, for instance.

4.5 BB84

In 1984, Charles Bennett and Gilles Brassard (BB84) proposed the first quantum key distribu-
tion protocol. Because of the properties of quantum states, that we cannot duplicate an arbitrary,
unknown quantum state (no cloning theorem), BB84 is provable secure. The BB84 protocol is
based on three primary stages, the key exchange, key sifting and key distillation stage. Further-
more we can granulite the key distillation stage into three secondary phases (i.e. error estimation
and error correction, privacy amplification and authentication).
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0; b=“0”

π
4 ; b=“0”

π
2 ; b=“1”

3π
4 ; b=“1”

Figure 4.6: Bit Encoding of the Photon Polarizations Quantum Key Distribution

(a) Diagonal Basis (b) Rectilinear Basis

Figure 4.7: Bit Encoding of the Measurements in Quantum Key Distribution

1 1 1 0 0 0 1 0 0 1 0 1 0 1 1 0

Figure 4.8: BB84 Random Bit Sequence chosen by Alice

The first primary stage establishes the transmission of a random encoded single photon
stream of size n by Alice (the sender) to Bob (the receiver). Every photon can be encoded in four
polarization angles

(
i.e. 0, π

4 ,
π
2 ,

3π
4

)
as shown in figure 4.6. Furthermore it can be represented

by the conjugate bases rectilinear and diagonal (i.e. ⊕ = {0, π2 } and ⊗ = {π4 ,
3π
4 } ) as shown

in figure 4.7. That means a single photon can be prepared by a measurement in the rectilinear
or diagonal basis. The bases are conjugate because a measurement in the complementary basis
results in random information. However, the pairing of orthogonal couples will be represented
as classic bit values “0” and “1” e.g. 0 and π

4 corresponding to “0” and the remaining angles π
2

and 3π
4 corresponding to “1”.

Alice invokes the function (Q)URAND and generates a (quantum) random bit stream (B),
which is truely random. The random bit stream is shown in Fig. 4.8. She chooses a random
polarization sequence (PS) and combines the bit stream with the random measurement prepa-
rations mentioned in Fig. 4.6 and 4.7. Figure 4.9 illustrates the measurement preparations which
are kept secret, respectively. It shows the locations at which the polarization filter of Alice does
not match the polarization filter of Bob.

The results of the measurements are single polarized photons which are transmitted on the
quantum channel from Alice to Bob and which are denoted as (QB) and specify a stream of
qubits. The measurements in the corresponding basis are shown in Fig. 4.10 and Fig. 4.11. Bob
also prepares its random polarization sequence to measure the incoming photons on the quantum
channel. If Bob measures in the correct basis i.e. the same as Alice chose, he obtains a valid bit
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⊕ ⊗ ⊗ ⊕ ⊗ ⊗ ⊕ ⊕ ⊗ ⊗ ⊕ ⊕ ⊗ ⊕ ⊗ ⊕
⊕ ⊗ ⊕ ⊗ ⊕ ⊗ ⊗ ⊗ ⊗ ⊕ ⊕ ⊗ ⊕ ⊕ ⊗ ⊕

Figure 4.9: Random Polarization of Alice and Bob in BB84

Basis ⊕ Information
b 1 0 1 0 1 1 0 1
ϕ π

2 0 π
2 0 π

2
π
2 0 π

2

Figure 4.10: Measurement of 1 B to the Basis ⊕ in BB84

Basis ⊗ Information
b 1 0 1 0 1 1 0 1
ϕ 3π

4
π
4

3π
4

π
4

3π
4

3π
4

π
4

3π
4

Figure 4.11: Measurement of 1 B to the Basis ⊗ in BB84

value, otherwise the bit value will be random with probability 1
2 . After that Bob obtains its raw

key KB
RAW and its length is at most n0. The length of the streams can decrease iteratively from

n0 to n5 because of noise on the quantum channel, otherwise the length of the raw keys is equal.

Figure 4.12 illustrates the distinction on the quantum key exchange to which stages are trans-
mitted on the quantum channel and which are transmitted on the public channel. It shows that
the quantum channel provides only quantum encoding and the preprocessing and postprocess-
ing methods are based on classical transmissions over the public channel. Figure 4.13 shows the

Quantum Encoding

BB84 Sifting

Error Estimation and Correction

Privacy Amplification

Authentication

CC

QC

Figure 4.12: Protocol Flow of the Quantum Key Exchange

sequence diagram of primary protocol stages of the BB84 quantum protocol to derive a raw key
between Alice and Bob. It shows that the quantum transmission is a unidirectional transmission
where Alice denotes the sender and Bob denotes the receiver. The qubits are to be transmitted
on the noisy quantum channel and the classical bits are transmitted on the probably unsecure
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Alice Bob

QTAB (QB)

PTBA (Key Sifting)

PTAB (Key Sifting)

Loop

PTAB (Key Distillation)

PTBA (Key Distillation)

Loop

Figure 4.13: Sequence Diagram of the Primary Protocol Stages of BB84

public channel. If we want to derive a raw key by sending qubits over the quantum channel from
Alice to Bob, we have to preprocess and postprocess before the transmission of the qubits and
after it. The preprocessing and postprocessing techniques to derive a raw key are shown in Fig.
4.14.

The calculation rounds from the raw key generation and the calculation of the sifted key are
summarized in Fig. 4.15. It illustrates that the key generation is based on a random bit stream,
Alice calculates and a polarization measurement to generate the transmission sequence for the
transmission on the quantum channel i.e. Alice generates a random stream of qubit to send them
to Bob. Bob measures the qubits on the quantum channel and gains polarizations and calculates
the bit values for the raw key.

After the transmission over the quantum channel, the result will be an initial raw key material
on both sides with at most n bits during noise on the quantum channel. In summarization,
this may also be referred to as the key exchange or raw key exchange (RKE) between two
communication parties.
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Alice Bob

QTAB (QB)

(Q)URAND()

B = {0, 1}n0

(Q)URAND(Polarization)

PS = {⊕,⊗}n1

CALC(TransmissionSequence)

QB = {|0〉, |1〉}n2 ,KA
RAW = {0, 1}n3

(Q)URAND(Polarization)

PS = {⊕,⊗}n4

(Q)URAND(Polarization)

KB
RAW = {0, 1}n5

Figure 4.14: Sequence Diagram of the Quantum Transmission to obtain the Raw Keys
(KA

RAW ,K
B
RAW ) in BB84 - ni ≤ ni+1
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Bob︷ ︸︸ ︷
Alice︷ ︸︸ ︷

Transmission Sequence︷ ︸︸ ︷
0 1 ⊕ π

2 |1〉 ↓ ⊕ π
2 ↓ 1 1

1 1 ⊗ 3π
4 |−〉 ← ⊗ 3π

4 ← 1 1
2 1 ⊗ 3π

4 |−〉 ← ⊕ 0 ↑ 0 ∗
3 0 ⊕ 0 |0〉 ↑ ⊗ 3π

4 ← 1 ∗

4 0 ⊗ π
4 |+〉 → ⊕ π

2 ↓ 1 ∗
5 0 ⊗ π

4 |+〉 → ⊗ π
4 → 0 0

6 1 ⊕ π
2 |1〉 ↓ ⊗ π

4 → 0 ∗
7 0 ⊕ 0 |0〉 ↑ ⊗ π

4 → 0 ∗

8 0 ⊗ π
4 |+〉 → ⊗ π

4 → 0 0
9 1 ⊗ 3π

4 |−〉 ← ⊕ π
2 ↓ 1 ∗

10 0 ⊕ 0 |0〉 ↑ ⊕ 0 ↑ 0 0
11 1 ⊕ π

2 |1〉 ↓ ⊗ 3π
4 ← 1 ∗

12 0 ⊗ π
4 |+〉 → ⊕ 0 ↑ 0 ∗

13 1 ⊕ π
2 |1〉 ↓ ⊕ π

2 ↓ 1 1
14 1 ⊗ 3π

4 |−〉 ← ⊗ 3π
4 ← 1 1

15 0 ⊕ 0 |0〉 ↑ ⊕ 0 ↑ 0 0

Figure 4.15: Example Key Exchange of Alice and Bob in BB84

The second stage is the BB84 sifting phase. Sifting means that Alice and Bob reveal infor-
mation about the sent and detected stream over an unsecure channel e.g. the internet. However in
practice, the unsecure channel is a result of a switch to a pseudo-classic channel on the physical
implementation of the quantum channel by wave division multiplexing. Because a single photon
can be measured only once, we can apply one basis on it. Yet the photon can be measured in
two different types. On the one hand to the correct base, on the other hand, to the wrong base.
The measurement with the correct base will result in a unique measurement value. If the photon
is measured in the wrong basis, the result will be a random value with probability p (m) = 1

2 .
Alice maintains only the polarization values, received by Bob in the correct basis and sends this
revised list of polarization values back to Bob over the classic channel. Alice and Bob get a
revised alignment of polarization values, where the measured values are equal. This alignment
is also called the sifted key and is of equal size for both communication parties i.e. n bits. The
result of the computation of the sifted key is shown in Fig. 4.16 where ∗ denotes the purged
bits. That means that Alice and Bob chose a divergent polarization during the measurement and
the corresponding bits are eliminated. However, this alignment is not necessarily complete and
may contain errors of unknown quantity. The sifted key rate (SKR) is shown in the following
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1 1 ∗ ∗ ∗ 0 ∗ ∗ 0 ∗ 0 ∗ ∗ 1 1 0

Figure 4.16: Example Key Exchange to obtain the Sifted BB84 Key Material in BB84

equation.

m = n ·µ ·αf ·αp ·αe · ηdet · kdead (4.116)

It is taken from [50]. Where n denotes the sifted key length. The number of photons at the
transmitter by Alice is denoted by µ. Because Alice and Bob choose their bases at random, the
length of the raw key is less or equal than the sifted key length. A quantum channel is a noisy
channel, hence it has fibre losses per distance αf . The additional loss of the system is denoted
by αe. Corresponding to the protocol rounds of the implemented protocol, the losses of it effect
on the SKR which are denoted by αp and are in the interval [0; 1]. If BB84 is implemented the
losses will be 1

2 . By the use of quantum measurements, the detector efficiency ηdet and the dead
time factor kdead reduce on the SKR, respectively.

The property of the decreasing length of streams and erroneous bits show the need for key
distillation techniques to handle the errors in the raw keys and the divergent length, respectively.
Error handling is a method to detect errors in the raw key and eliminate them iteratively to obtain
a valid key from the sifted key. Figure 4.17 shows a sequence diagram for the key distillation
phase and its three stages. Privacy amplification and authentication are not in the scope of this
work. More information on privacy amplification and authentication can be found in [2, 4, 16].
The stages from the corresponding error handling are shown in Fig. 4.18. Alice and Bob store a
temporary database about their polarization information to set up an iterative comparison of the
sets of polarization filters for the subsequent sifting phase.

The third stage is the key distillation phase. It will be divided into three secondary stages
(error correction, privacy amplification and authentication). The erroneous sifted key will be
post-processed to obtain the reconciled key, hence this stage is called error correction phase or
reconciliation. During the reconciliation stage, a set of parity bits and error correction codes
are exchanged between Alice and Bob. The task is to avoid the transmission of explicit key
values over the unsecure channel and to eliminate the errors from the sifted key. However,
the reconciled key is smaller or equal in the length of bits, than the sifted key from the stage
before. After obtaining the reconciled key from the sifted key it is necessary to process the
next stage to obtain a private key bit stream. Nevertheless an eavesdropper can gain information
about the reconciled key via the intercept and resend strategy or the use of a beamsplitter. If
an eavesdropper uses the intercept and resend strategy on a sufficient small number of bits, the
induced errors will be lost among the errors which are introduced by the noisy quantum channel,
detector noise and other physical problems caused by the implementation. The problem of
detecting an eavesdropper is identical to the problem of error correction on the quantum channel.
Hence it is not possible to distinguish whether an error is based on corruptive behavior or the
result of the physical implementation. We summarize it as noise as a result of eavesdropping
activity on the quantum channel. Since we know that the filter polarization on Alice and Bob’s
side was random for each bit, we know that the initial bitstream was random i.e. the sifted key
was random. Hence the reconciled key is random and after applying the privacy amplification
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Alice Bob

PTBA (Error Handling)

PTAB (Error Handling)

Loop

PTAB (Privacy Amplification)

PTBA (Privacy Amplification)

Loop

PTAB (Authentication)

PTBA (Authentication)

Loop

Figure 4.17: Sequence Diagram of the Key Distillation in BB84

67



Alice Bob

PTBA

(
p
(
KB
π,i

))
PARITY

(
KB
π,i

)
p
(
KB
π,i

)

PARITY
(
KA
π,i

)
p
(
KA
π,i

)
EQUALITY

(
p
(
KA
π,i

)
, p
(
KB
π,i

))
b ∈ {0, 1}

BITFLIP(bi)

b
′
i = bi + 1 mod 2

PERMUTATION
(
KA
π,i

)
KA
π,i+1

PTAB (πi+1)

PERMUTATION
(
KB
π,i

)
KB
π,i+1

PERMUTATION
(
KB
π,i

)
KB
π,i+1

Figure 4.18: Sequence Diagram of the Transmission of parity bits over the Public Channel in
the BB84 Error Handling
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hash algorithm, the privacy amplified key is random, too.
Let us assume that Alice chooses one single bit with value 1. Remember the bit encodings

from Fig. 4.7 and Fig. 4.6 and assume that Alice has chosen the horizontal/vertical⊕ polarization
filter, which results in the angle π

2 and transmits it on the quantum channel. The eavesdropper
(Eve) uses the intercept and resend strategy whereas Bob choose the correct basis (i.e. ⊕ )
for his measurement. Eve has no knowledge about the chosen polarization by Alice and Bob
and uses its own random pattern of polarization filters (i.e. ⊕ or ⊗). After that Eve re-sends the
measurement results, where Bob receives either π4 or 3π

4 on the quantum channel with probability
1
2 . An overview of the output of random bit values if an eavesdropper listens to the quantum
channel and resends qubits by its random pattern is given in Fig. 4.19. In the upper polarization
preparation Eve choose the wrong basis, otherwise Eve choose the correct basis. It illustrates that
eavesdroppers can be detected referencing to the randomly chosen bases taken by Alice and Bob
by comparing them iteratively. A sufficiently successful strategy if Eve has been eavesdropping

Eve︷︸︸︷
Alice Bob︷ ︸︸ ︷ ︷ ︸︸ ︷

π
4 ⊕ 0

π
2

1 ⊕ π
2 ⊗

3π
4 ⊕ 0

π
2

0 ⊗
π
4
3π
4

0 ⊗ π
2 ⊕

π
2 ⊗

π
4
3π
4

Figure 4.19: Eavesdropping Intercept and Resend on the Quantum Channel

on the quantum channel, is the exchange of the alignment of the polarization directions on the
public channel between Alice and Bob. That means after Alice has sent a random stream of
qubits QB on the quantum channel by polarizing them with a random polarization sequence, to
share the same key with Bob. The sifting phase on the public channel is done via the transmission
of the polarization configuration. Now Alice knows the bits where Bob has chosen the correct
basis for the measurement. If Bob measures in the correct basis, the bit value is valid, otherwise
it is invalid and will be eliminated. Losses on the quantum channel and node internal detector
efficiency affect on the transmission of the qubits i.e. sometimes Bob is not able to measure a
photon. The necessary information to complete the sifting phase is stored in quantum tables and
base tables. If there are no clicks in the bases of Alice and Bob, the base will be set invalid. In the
complementary case the base is set to diagonal or rectilinear. This corresponds to the detector
click. Now the base tables are compared to find out misalignments. Bob sends its base table to
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Alice who compares the values and sets all bases to valid if they have chosen the same basis.
It is set invalid, otherwise. Due to the physical implementation it occurs that double detector
clicks exist because of synchronization mismatches. If a double click occurs generate a random
bit value and write it to the quantum table. This introduces the Quantum Bit Error Rate (QBER)
for noisy quantum channels and is a valid indicator for an eavesdropping attack on the QC. Alice
chooses a random bit sequence of size m

2 which she wants to reject, e.g. as shown in Fig. 4.20.
This strategy results in the remaining shared secret between Alice and Bob after the elimination

0 1 1 0

Figure 4.20: Random Bit Rejection of the Example Key Exchange in BB84

of m
2 bits. After the rejection of the random bits Alice and Bob obtain the final key for the

unconditional secure communication. Because this key is based on (quantum) randomness they
use it only once as a one time pad to encrypt a ciphertext unconditionally secure at most in the
length of the final key. That means in practice that the message to transmit encrypted is as long
as the quantum key. The final quantum key is illustrated by Fig. 4.21. Figure 4.22 shows the

1 1 0 0

Figure 4.21: Final Shared Secret of the Example Key Exchange in BB84

protocol gain of the BB84 protocol if the probability to choose a basis differs from the low point
1
2 . The formula is taken from [32].

gp = δ · δ + (1− δ) · (1− δ)
= 2δ2 − 2δ + 1

(4.117)

That means we can vary the probability to choose a basis diagonal or rectilinear during the
calculation rounds to derive the raw key. The problem will be that Alice and Bob have to agree
on a fixed value to which probability the corresponding basis will be chosen during the key
agreement stage. That means some information on the key is given to the eavesdropper. This
information reduces the security of the chosen protocol.
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Figure 4.22: Maple Simulation of the Protocol Gain for variable Probability to choose a Polar-
izationfilter in BB84 - gp
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CHAPTER 5
Securing IPv6 by Quantum Key

Distribution

The internet protocol IPv6 provides an end to end connectivity over long distances. Quantum key
distribution is a method which provides unconditional secure secret key exchange between two
distant communication nodes. However, QKD is limited in the distance and the key generation
rate, respectively. Undconditionally secure quantum repeaters which propagate light quantas
over large distances are not invented, yet. Hence we have to combine QKD with classical so-
lutions to bridge larger distances. This chapter describes the classic point to point connection
of QKD nodes and shows that a noisy quantum channel has losses which depend on the length
of the optical fibre. It will show that quantum networks solve the problem of key distribution
between two distant nodes even if there are unreliable nodes in the quantum network. That
means quantum networks are based on multiple point to point QKD connections. This section
will show that not every intermediate device needs to be reliable to enable unconditional security
between Alice and Bob.

5.1 Security Perimeter

An approach for security perimeters are firewalls which seperate demilitarized zones (DMZ) e.g.
from the internet or various zones of different security levels, as known as gateways. A set of
policies manage the use of IT infrastructure in probably unsecure environments and avoid from
internal risk potential and external threats. We define that the interprocess communication on
both machines and the wired connections between the machines and the router and the QKD
hardware are unconditionally secure. Furthermore we need an authenticated quantum channel
to guarantee unconditionally secure quantum key exchange. That means an eavesdropper can
listen on the quantum channel and it can receive and resend qubits.
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5.2 QKD Networks

In the classical way, a provable secure quantum connection can only be established between
two adjacent nodes as a point to point connection. Because the transmission rate is indirect
proportional to the transmission distance, we need a method to put long distances for QKD
applications and to ensure adequate transmission rates. Today we have no technique to repeat
qubits securely on a quantum channel as similar to a WiFi repeater in the classical way. IPv6
is a modular communications protocol to enable the data processing over long distances with a
point to point connection and the involvement of security technology to provide secrecy. Today
we can not transmit qubits over distances greater than 100km efficiently. To solve the problem
of transmission rate and distance we specify quantum networks.

QKD Point to Point Interconnection

A QKD point to point (p2p) Connection is similar to a classic p2p connection by contrast the
additional existence of a lossy quantum channel (QC) between Alice and Bob. QC’s are not
used to send ciphertext or plaintext information, yet but QC’s are used to transmit manipulated,
random quantumbits (qubits) between Alice and Bob. Hence no initial shared secret is neces-
sary to establish secure communication, per definition. A QC transmits quantum information
i.e. qubits over a noisy but authenticated channel. Hence in QKD systems, a p2p connection is
established by two channels virtually, the quantum channel and the public channel (PC). Fur-
thermore wave division multiplexing (WDM) is used to switch between the public (classic) and
quantum channel and multiplexes/demultiplexes the pulse sequence, virtually.

The physical implementation belongs to an optical channel, which denotes a physical link
between Alice and Bob to transmit photons on the quantum channel i.e. the qubits are transmit-
ted over the quantum channel. A laser from a quantum router sends photon pulses. However,
optical modems polarize the photons, which encode the quantum information. The photon de-
tector receives the quantum information and performs the measurement on Bob’s side. Quantum
protocols generate unconditional secure keys with pre- and postprocessing methods to deliver
an arbitrary, final shared secret between Alice and Bob. Hence QKD denotes a Quantum Key
Distribution System and delivers key material for various encryption techniques from one point
to another. Figure 5.1 shows the main idea behind the quantum point to point concept, between
Alice (A) and Bob (B). The 2 adjacent QKD nodes (Alice, Bob) are connected via a quantum
channel and make use of a wave division multiplexing, from one endpoint to another.

Node 0 Node 1

A

Alice

B

Bob

Figure 5.1: Quantum Point to Point Interconnection Model
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Transmission Loss

A quantum channel is implemented as a noisy optical fibre. Hence there are transmission losses
during a quantum transmission which are introduced by the physics of the quantum channel
itself. However, this does not separate quantum connections from connections in the classical
way but it shows that QKD is limited yet in the distance and speed. The transmission loss tL on
an optical fibre between Alice and Bob is shown in the following equation. The formula is taken
from [32].

tL = 10
−
α · d
10 (5.1)

The variable α denotes the absorption on the quantum channel in dB/km and d denotes the
distance in m. The transmission loss on the quantum channel is shown in figure 5.2. It shows

Figure 5.2: Maple Simulation of the Absorption on the Quantum Channel - α, d variable

the behavior of a quantum channel when α, d are variable. To show the behavior of a real
optical fibre, we construct an instance of a quantum channel at different but fixed losses and
variable length of the channel. Usual optical fibres in practical use have losses in the amount of
α ∈ {0.2, 0.3, 0.33, 0.5} dB/km, respectively. These values are in the area of a wavelength of
λ ≈ 1 500 nm and optical fibres with 0.2 dB/km are called low-attenuation optical fibres. The
wavelength λ is a value of wave where the pattern of the wave repeats. That means it can be
measured between two zero-crossings or the maximum amplitudes of a function of the same
phase. A simulation of the instance is given in Fig. 5.3 below. It shows that the transmission is
limited to the length of the channel and the losses by the physical implementation of the quantum
channel. Because of these limits, QKD is not an ideal solution for applications over wide areas.
However, if we want to use it for point to point communications over the internet and construct
a quantum extension to the modular IPv6 communications protocol for applications between
two distant nodes, we need additional concepts which rely on classical assumptions and do not
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Figure 5.3: Maple Simulation of the Absorption on the Quantum Channel - d variable

belong to the physics of QKD, yet. Figure 5.4 shows the rates of generation of raw key material
with the BB84 protocol, it is taken from [50]. The raw key generation rate is given by Eq. (5.2).

Figure 5.4: Maple Simulation of the Raw Key Generation KRAW - ν, d variable

K = q · ν ·µ · tL · tB · ηB · ηT (5.2)

where q depends on the implemented protocol and for BB84 q = 1
2 . The repetition frequency ν is

in the interval [0.001; 10]GHz and the distance between [0; 100]km are variable. The simulation
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shows the results for a fixed average number of photons per pulse e.g. µ = 0.1 and a transmission
loss α of 0.2 dB/km as shown in Eq. (5.1) and Fig. 5.3. We also fix the internal transmission
factor of Bob (tB)by 0.6 and set its detection efficiency (ηB) to 0.1. The detector dead time
(νT ) is fixed and set to 10 ns.

Quantum Network Interconnection

To establish a connection over wide areas i.e. in the case of a quantum connection greater than
100 km we specify the QKD network interconnection model to bridge larger distances and build
a connection between two distant nodes. It is based on the laws of quantum physics and enables
unconditional security over large distances, if a few requirements are satisfied. Hence a QKD
Network Interconnection model is similar to a QKD p2p connection and can be interpreted
as a quantum backbone network infrastructure (QBNI). A backbone is usually an optical fibre
endpoint that can be connected to an external network i.e. the quantum network and to a node
internal network.

Figure 5.5 shows a single path with 2 intermediate nodes (Node 1, Node 2) between Alice
(Node 0) and Bob (Node 3) to increase the distance, respectively. To encrypt an arbitrary plain-

Node 0

Y0,1

K0,1

X0,3

Node 1

Y1,2

K1,2

X0,3

Node 2

Y2,3

K2,3

X0,3 X0,3

Node 3

Figure 5.5: Transmission of a Quantum Key over a QBNI with n trustful nodes in Q3P

text which can be reused as a key material, it is delivered over n − 1 nodes. We can map an
arbitrary message to the plaintext i.e. we can transmit the plaintext itself over the QBNI. How-
ever, we map a quantum random key to the X0,3 such that the initial plaintext will be encrypted
withX0,3 after the transmission. To avoid ambiguities,X0,3 denotes a plaintext, because it is not
necessarily a quantum key but for the implementation it is useful to use a quantum key because
there can exist untrusted nodes in the graph.

To show the concepts, every node on a path is assumed to be reliable in Fig. 5.5. Hence
the transmission of a (quantum) random secret key X0,3, denoted by (Q)URAND() from node
N0 to node N3 will succeed. The computation steps for the transmission of a key over a QBNI
is given in Alg. 5.1. In the first two steps of a QKD multihop key transport, the root and goal
backbones need to be specified. The rootID denotes Alice’ nodeID, whereas the goalID denotes
Bob’s nodeID on a path in the graph from Alice to Bob. As the encryption function we choose
the logical XOR operation which is reversible to use the information theoretically secure OTP.
Hence if we apply an arbitrary key K on a plaintext X twice we derive the plaintext as well.

An example of a valid hop by hop transmission over a trusted QBNI is given in Fig. 5.6.
Transmitted is a sequence of two nibbles. The rootID=0 and the goalID=3 are given, hence Alice
generates a true (quantum) random number X0,3 with a sufficient entropy i.e. shannon entropy.
Hence a true random number will be isomorph, similar to quantum key material (QKM). The 2
adjacent nodes (N0, N1) generate a Quantum Key K0,1. The node N0 encrypts X0,3 as follows
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i = 0 : Y0,1 = (X0,3 ⊕K0,1) and transmits the ciphertext Y0,1 to node N1. After receiving Y0,1,
the node N1 decrypts the ciphertext with the decryption function and derives i = 0 : X0,3 =
(Y0,1 ⊕K0,1). In the next step, the 2 adjacent nodes (N1, N2) generate a quantum key K1,2, the
node N1 encrypts X0,3 as follows i = 1 : Y1,2 = (X0,3 ⊕K1,2) and transmits the ciphertext
Y1,2 to node N2. Now the node N2 decrypts the ciphertext with the decryption function and
obtains i = 1 : X0,3 = (Y1,2 ⊕K1,2). All nodes proceed iteratively as mentioned before until
Node N3 obtains the key X0,3. Once the hop by hop mechanism is finished, Alice and Bob use
X0,3 as a One-Time-Pad to encrypt and decrypt the message to transmit. Hence every root node
has knowledge about the following components of the transmission

Nj = {Xj,n−1,Ki,i+1, Yi,i+1} (5.3)

and every intermediate node consists of

Ni = {Ki−1,i, Yi−1,i, Xj,n−1,Ki,i+1, Yi,i+1} (5.4)

whereas every goal node consists of

Nn−1 = {Kn−2,n−1, Yn−2,n−1, Xj,n−1} (5.5)

and leads to the fact, that every reliable, intermediate node knows the initial random key Xj,n−1
i.e. K0,3. The concept of the reliable nodes also allows us to transmit the plaintext instead of the

Data: A graph, Quantum Key, rootID, goalID
Result: Transmission of a a Quantum Key over a QBNI
Initialization: rootID = i = j, goalID = n− 1;1

Generate Random Key Xj,n−1;2

while i < n− 1 do3

Generate Quantum Key Ki,i+1 between the two adjacent nodes i, i+ 1;4

Node i encrypts Yi,i+1 = Xj,n−1 ⊕Ki,i+1;5

Node i sends Yi,i+1 to adjacent node i+ 1 over an arbitrary channel;6

Node i+ 1 decrypts Xj,n−1 = Yi,i+1 ⊕Ki,i+1;7

i = i+ 1 ;8

end9
Algorithm 5.1: Quantum Backbone Network Interconnection of the Transmission of a Quan-
tum Key over n nodes

quantum random key X0,3, generated by Alice. However, it is useful to transmit a seperated key
X0,3 hop by hop, instead of the plaintext if we have k < n, unknown and untrusted intermediate
nodes on a path.

Figure 5.7 illustrates the associations between a quantum node a QKD-link and a QKD-stack
to implement an unconditionally secure QBNI with more than one path. In general, this figure
shows the architecture of quantum networks, but is not restricted to. The QBNI consists of QKD
link devices made of quantum routers (QR), WDM components, Faraday-Michelson interferom-
eter (FMI) and QKD protocols, to establish a quantum connection between two adjacent nodes.
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N2︷ ︸︸ ︷
N1︷ ︸︸ ︷

N0 N3︷ ︸︸ ︷ ︷ ︸︸ ︷
X0,3 K0,1 Y0,1 X0,3 K1,2 Y1,2 X0,3 K2,3 Y2,3 X0,3

0 0 1 1 0 0 0 0 1 1 0
1 1 0 1 1 0 1 1 1 0 1
2 0 1 1 0 0 0 0 1 1 0
3 1 1 0 1 0 1 1 0 1 1

4 0 1 1 0 1 1 0 0 0 0
5 0 1 1 0 0 0 0 1 1 0
6 1 0 1 1 0 1 1 0 1 1
7 1 1 0 1 1 0 1 0 1 1

(xi, yi)i : 0 0 1 1 2 2
f(xi, yi)i : 0 1 2

(aj , bj)j : 0 0 1 1 2 2
f−1(aj , bj)j : 0 1 2

Figure 5.6: Transmission of a Quantum Key over a Quantum Network

A QBNI consists of a set of nodes, as shown before. The nodes in the graph represent quantum
nodes and every node is connected to at least one quantum node in the QBNI. Every quantm
node has at least one quantum link to connect two nodes, respectively and every link can consist
of arbitrary QKD stacks, greater than 1. QKD is restricted in the distance and the key generation
rate because of the losses on the noisy quantum channel until quantum repeaters are used to
expand these limits by a secure amplification of qubits without decreasing the security level. By
the use of concatenation of several short distance end-to-end QKD links, in combination with
secure multi hop propagation protocols, the end to end distance of two communication parties
increases. Furthermore, every QBNI can consist of n QKD subnets. Figure 5.8 shows a QBNI,
denoted as a graph G = (V,E), with vertices v ∈ V and edges e ∈ E. The structure of the
QBNI is based on redundancy point to point connections. As we will show later, these redundan-
cies enable unconditional secure key distribution over the network even if there are unreliable
intermediate nodes in the graph. Alice and Bob are authenticated on the quantum channel per
definition. Every node in the graph represents a single QKD node in the QBNI which consists
of at least one QKD Link device. For simplification, the structure of a single QKD node is
shown in Fig. 5.9. It shows the concept of the experiments. The quantum point to point proto-
col (Q3P) engine provides cryptographic functions and handles the exchange of qubits over the
quantum channel and the classic bit exchange over the public channel. The generated quantum
keys are handed out over textfiles and the standard output. The edges from Fig. 5.8 represent
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QKD-Link

QKD-Node

QKD-Stack

1..*

1

1

*

*

Figure 5.7: UML of the Node, Link and Stack associations in a QBNI

the WDM quantum channels between two adjacent nodes in the graph. By construction of the
QBNI one can see that two distant nodes are connected via at least one quantum channel and
a public channel and there exist more than one paths from A to B. The public channel is used
to enable the postprocessing methods after deriving a raw key by the quantum infrastructure
between two nodes. A postprocessing method is the error estimation or correction and this is
done in a classical way, for instance. This extension is shown in Fig. 5.10, where one untrusted
(U) and another trusted (T ) path are shown. A path in the graph is an untrusted path if there
exists at least one untrusted, intermediate node and a path is a trusted path, otherwise. The set
of untrusted nodes is denoted by U = {N1, N2} and the set of trusted nodes in the graph is
denoted by T = {N0, N3, N4, N5}. Alice and Bob are trusted per definition because they are
authenticated and there exists at least one trusted path in the graph from N0 to N3.

The propagation is similar to a transmission over a single trusted path. The iterations
from Alg. 5.1 are done from Node N0 to Node N3 over the set of trusted, intermediate nodes
Tint = {N4, N5}. This results in a random key XT

0,3. Despite the fact that the alternative path
over the untrusted, intermediate nodes Uint = (N1, N2) is untrusted, the propagation will be
done as shown before, hence the path is assumed to be reliable for the calculation of the keys,
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Application

PC
PC

Q3P-Engine

QKD-Device
QC

QKD-Device
QC

Figure 5.9: Network Node Structure of a QBNI in Q3P

Node 0

Y0,1

K0,1

XT
0,3 XU

0,3

Node 1

Y1,2

K1,2

XU
0,3

Node 2

Y2,3

K2,3

XU
0,3 XT

0,3XU
0,3

Node 3

Node 4

Y4,5

K4,5

XT
0,3

Node 5

XT
0,3

Figure 5.10: Transmission of a Quantum Key over a QBNI with k = 2 < n untrusted nodes -
Kfinal =

(
XU

0,3 ⊕XT
0,3

)

respectively. The untrusted computation results in the untrusted key XU
0,3. However, Alice and

Bob hold 2 keys and one out of these keys is a random, unconditionally secure quantum key.
As a result, both compute Kfinal =

(
XU

0,3 ⊕XT
0,3

)
. The superscript Rj specify if a path is

reliable (trustful) or unreliable i.e. it is mapped to “1” if the corresponding path is reliable and it
is mapped to “0” otherwise. A disjunction of Rj specifies if a quantum random key, transmitted
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I (Rj) =

{
T, iff b = 1

U, iff b = 0

R0 R1 R0 ∨R1

0 0 0
0 1 1
1 0 1
1 1 1

Figure 5.11: Final Key Superscript for the Multihop Mechanism over 2 paths in a QBNI

over the QBNI is trustful or not. This is shown in the following equation.

R =
∨

0≤j≤m−1
Rj (5.6)

The composition of a quantum key over a network with k < n untrusted, intermediate nodes
and m− 1 paths is denoted by KR

final and specified by the modulo 2 arithmetic by

KR
final = KR0

i,n−1 ⊕K
R1
i,n−1 ⊕ . . .⊕K

Rm−1

i,n−1 (5.7)

and an instance is shown in Fig. 5.11. Hence a trustful quantum key demands the existence of at
least one trustful path in the QBNI. Furthermore

T ∩ U = ∅ (5.8)

holds i.e. if a node is unknown or untrusted it can not be interpreted as a reliable one. Figure 5.12
shows a layer model for the quantum point to point protocol for the integration into IPv4/IPv6.
IPv6 is interpreted as a standard application, where Q3P provides quantum key material instead
of the Diffie Hellman key exchange. On the Quantum Layer, Q3P establishes a communication
over an authenticated, noisy quantum channel, to transmit the qubits from Alice to Bob. The
network layer provides public IPv4/IPv6 communication, whereas the key postprocessing layer
implements an intrinsic use of Q3P.

Intrinsic means, that Q3P needs itself to administrate. Quantum key material is used to
encrypt and authenticate the messages on the Key Postprocessing Layer. Q3P does this via
q3p_send and q3p_recv commands. If an application requires quantum key material it is
delivered over Q3P via the mentioned commands. By definition, Q3P is an intrinsic protocol
and it interprets every module as an application that demands quantum key material but Q3P
creates the quantum key material by itself. The invocation of q3p_sendwith the corresponding
parameters allows Alice to send key material to Bob. The parameters are the channel number
e.g. 1 and the options that the message should be transmitted authenticated and encrypted and the
key material as a plaintext. Q3P provides the authentication methods instantly or delayed over
an authentication channel. However, the plaintext key material gets encrypted via Q3P. The key
is specified by a character string and the keysize is specified by a 32 bit integer. To receive the
key material it is necessary to invoke the q3p_recv command on Bobs side. The initialization
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Figure 5.12: Layer Structure of Q3P

of the Q3P system is based on the universally unique identifiers from the virtual systems. How
one can find out the corresponding uuid is described in Appendix B.

The qubits are transmitted between Alice and Bob over the Quantum Channel. However,
during a transmission there exists an interaction between the Quantum Channel, the physical
implementation, the environment and an eavesdropper. In summary, this is known as noise and
changes the value of a qubit during the transmission. Hence a measurement with the correct
basis on Bob’s side

(
K
′
sifted

)
results in a divergent outcome than the original value on Alice’s

side (Ksifted), both with size of n bits. It follows that the key on Alice’s side does not match
that on Bob’s side. Furthermore Alice and Bob initiate the reconcilation phase, or former known
as error correction stage, to reconcile the divergent random bit streams. The key procedure in
the Cascade error correction and estimation is a binary search, denoted as BINARY. BINARY
calculates from every Input Stream Ai,j at most two substreams Ai+1,1, Ai+1,2 ⊆ Aij , where
i means the iteration and j ∈ {1, 2} denotes the first or second half of the original stream
Ai,j . However, the number of bits does not have to be necessarily equal in both substreams.
Furthermore, to define a rule to calculate the substreams, the length of the first substream is
specified by

ni+1,1 = SIZE_OF
(
Ai+1,1 =

{
x0, . . . , xdn−1

2 e−1
})

(5.9)

which is at least as long as the length of the second substream, which is defined by

ni+1,2 = SIZE_OF
(
Ai+1,2 =

{
xdn−1

2 e, . . . , an−1
})

(5.10)

and at most ni+1,2 + 1. Alice and Bob perform the binary search over the public channel for an
arbitrary substream of the sifted key. Both of them calculate the parity bits from their streams
for every iteration. In the first iteration, Alice calculates the parity from the entire string, as Bob
does. Bob checks the parity bits for equality. If this check assigns to true, the number of errors
in the substream is even (2k, k ∈ N0). However, if the check assigns to false, the number of
errors in the substream is odd (2k + 1, k ∈ N0). Hence if the number of errors in the stream is
odd, Alice and Bob calculate the parity of the first half of the stream. Bob calculates, whether
the odd errors occured in the first or in the second half of the stream by comparing pB (Ai,j)
with the parity bit from Alice pA (Ai,j). Hence Bob concludes the half of the stream, and set
j ∈ {1, 2}. After a couple of iteration rounds, the erroneous bit is found. It will be corrected
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Error Correction Technique Q3P Implementation
Cascade Error Correction X
Hamming Error Correction Code
Linear Error Correction
Low Density Parity Check X

Table 5.1: Overview of the Error Correction in QKD Protocols

by the XOR modulo 2 arithmetic b
′
i = (bi + 1)mod2. However, Alice has the original, infallibly

key, the modulo 2 arithmetic will be denoted as BITFLIP(Bi,j), because the errors occur
only on Bob’s side. At this stage, the number of bits in the substream is 1. Hence the bitflip
will succeed. Algorithm 5.2 shows the computation steps. An example of using cascade error
correction algorithm will be shown in Fig. 5.13, page 86.

Data: Two Strings Xi,j = {x0, . . . , xn−1} s.t.
x ∈ {a, b}, X ∈ {A,B}i, n ∈ {N0}, j ∈ {1, 2}

Result: Error Correction of k erroneous bits with an odd number of errors
Initialization: i = j = 0, Xij ;1

Bitflip k erroneous Bits;2

while ERRORNUMBER > 0 do3

n =SIZE_OF(Xij);4

while n > 1 do5

i = i+ 1, j = 1;6

Xij =
{
x0, . . . , xdn−1

2 e−1
}

;7

CALC_PARITY(Xij);8

if (pA(Ai,j) = pB(Bi,j)) then9

j = 2;10

Xij =
{
xdn−1

2 e, . . . , an−1
}

;11

else12

skip;13

end14

n =SIZE_OF(Xij);15

return(Xij);16

end17

Assert(n = 1);18

BITFLIP(Bij);19

PERMUTATION(Xij)20

end21
Algorithm 5.2: Cascade Error Correction

The LDPC consumes 96 bit and one hash tag per transmitted bit during the correction of
one single erroneous bit. The quantum key material is based on two 96 bit hash tags. The first
hash tag is the result of pre-calculated hash tables with reusable hash tag instances, whereas
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π0 πi πi︷︸︸︷ ︷︸︸︷ ︷︸︸︷
p(Ai) = p(Bi) p(Ai) = p(Bi) p(Ai) = p(Bi)︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

b
′
i = (bi + 1)mod2 b

′
i b

′
i︷︸︸︷

0 1 1 1 0 0 0 0 0 1 1 1 1 1 0
1 0 0 0 1 1 1 1 0 0 0 0 0
2 1 1 1 1 1 1 1 0 0 0 0
3 0 0 0 0 0 0 0 1 1 1 1

4 0 0 0 0 1 1 1 1 0 0 0 0
5 0 0 0 0 0 0 0 1 1 1
6 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 0 0 0

8 1 1 1 1 1 1 1 1 1
9 1 0 0 0 1 1 1 1 1

10 0 1 1 0 0 0 0
11 0 1 1 0 0 1 1

12 0 0 0 1 0 0
13 1 1 1 1 1 1
14 0 0 1 1 1 1
15 1 1 0 0 0 0

p(Ai) = p(Bi) f t f f t f t f f f f f f
Stream 2 1 1 2 1 2 1 1 1 1 1 1

Figure 5.13: Cascade Error Estimation and Correction in Q3P

the second is used for polynomial multiplication for the final hash tag. That means at least
192 bit are required for authentication in the quantum network. That means it is recommended
to use the Cascade error correction algorithm in the implementation.

5.3 Quantum Point to Point Protocol - Q3P

A communications protocol that uses a set of single point to point infrastructures is the Quan-
tum Point to Point Protocol or formally known as Q3P. Its design is similar to a client server
architecture. A Q3P link interpretes all adjacent nodes as a potential QKD device and distin-
guishes to different kinds of nodes, a QKD device and a user centric application. The first pushes
the quantum key material into the common key store, whereas the latter uses the communica-
tion facilities, provided by the Q3P link. By the integration of quantum infrastructure, from
classic gateway to gateway communication follows quantum point to point communication. The
quantum point to point protocol allows two distant nodes Alice and Bob, to communicate uncon-
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ditionally secure and unconditionally authenticated, over wide areas within a QBNI. By contrast
to classic communication protocols, which are based on the mentioned OSI or DoD layer pro-
tocol stack, Q3P is a protocol of intrinsic structure. Q3P is based on modules, which represent
applications who perform several tasks and it allows to deliver quantum key material over a
QBNI secure. Hence Q3P uses its own key material for interprocess communication between
two adjacent modules to synchronize the protocol stages over unsecure channels. So the classi-
cal procedures such as key sifting on Alice’s side, will be synchronized with the stages from key
sifting on Bobs side via q3p_send and q3p_recv. That means every classical transmission
is unconditionally authenticated and secure transmitted over the public channel. The model of
the experiments is shown below. The communication between the quantum infrastructure and
the Linksys router is secure per definition. The quantum channel and the first public channel are
used to administrate the quantum key material and enable secure communication via the Q3P
commands. The queue provides the key material and delivers it to the internet protocol instead
of the diffie hellman key exchange. Hence the second public channel is used to provide the
IPv6 connection between two distant nodes. The key store provides quantum keys to Q3P and
enables unconditionally secure communication on the public channel to administrate the key
material. Because it is not possible to extract the quantum keys directly from Q3P it is necessary
to combine a quantum random number or a true random number with the quantum keys from
Q3P. The random number is delivered from one endpoint to another and can be used to establish
an unconditionally secure communication. It is used as a one time pad.

QKD Stack

The QKD protocol stack performs postprocessing methods on QKD key material such as sift-
ing, error correction and privacy amplification. Privacy amplification and other preprocessing
techniques are not in the scope of this work. The postprocessing methods are implemented as
a classical UNIX pipeline over the standard outputs. If we use Q3P to administrate the internal
communications on the local machines, which are assumed to be secure, the key generation de-
creases. The information is redirected from one module to the next module and the stages of the
sifting phase by Alice will be synchronized with the stages from Bob by the use of q3p_send
and q3p_recv commands.
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Figure 5.14: Protocol Stack of Quantum Key Distribution

The task of the Q3P protocol stack is to generate final quantum key material for Q3P inter-
process communication (IPC) over unsecure channels. Presifting prepares the raw key material
for the subsequent sifting phase. It provides timetag information for the successive sifting mod-
ule, q3p_si from the time taking machines (TTM) and the dedicated hardware. The TTM
are responsible for the time synchronization to administrate the modules and the corresponding
tasks. The sifting module implements BB84_Sifting by manipulating quantum tables with
dedicated detector click information. The computation rounds were explained in Ch. 4. Two
different methods of error correction are present in QKD environments, which are also referred
to as reconsiliation techniques. For noisy channels, as QCs are, the low density parity check
(LDPC) [15] is a method for reconciliation by the use of bipartite graphs with two disjoint sets
of nodes, such that every node from the set of nodes is connected with one vertex from the set
of vertices. Cascade error correction is another present reconsiliation method in QKD environ-
ments. By logical AND operation, a random BIGINT results in a bitwise parity check. Privacy
Amplification is used to be designed by Toeplitz matrices. A Toeplitz matrix is an n×m matrix
where Ai,j = Ai+1,j+1 = ai−j holds. It is named by the German mathematician Otto Toeplitz
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(? 1881− † 1940). A Toeplitz matrix is specified as follows.

A =



a0 a−1 a−2 · · · · · · a−n+1

a1 a0 a−1
. . . . . .

...

a2 a1 a0
. . . . . .

...
...

. . . . . . . . . a−1 a−2
...

. . . . . . a1 a0 a−1
an−1 · · · · · · a2 a1 a0


(5.11)

Key pushing forwards the final quantum key material to the key store and notifies the system of
a new, final quantum key material in the common key store. The key material from the key store
can be used to encrypt and decrypt Q3P messages to transmit unconditionally authenticated and
unconditionally secure encrypted.

QKD Pipeline

Q3P has a modular construction. Because of its intrinsic structure, Q3P uses its own quantum
key material (QKM) to synchronize processing stages between the distant nodes in the QBNI.
One single module processes only one specific task. Hence it is possible to add or remove mod-
ules and modify the workflow to optimize it corresponding to the dedicated task. Every QKD
Module needs a Q3P service interface. As a result, all modules are able to communicate over
unsecure channels by the use of q3p_send and q3p_recv. These commands use the final
key material from the common key store to encrypt and authenticate messages unconditionally
secure.

QKD Network Management

The Q3P network management uses final key material, created by the Q3P protocol stack and
performs the transport over the public channel. It executes key storage methods and provides fi-
nal key material for IPC. The key store provides final key material for q3p_send and q3p_recv
commands whereas the crypto engine realizes the cryptographic algorithms i.e. encryption and
decryption by the XOR operation or verifying if the length of the key is identically to the length
of the message.

Q3P Message Queue

The message queue is a device or an application as any other QKD devices to Q3P. The message
queue is responsible to fetch the uuid for a peer and the queue. It requests the Q3P link for
device pairing that it is connected secure to the link device. A random source delivers bits
on Alice’s side. If Bob receives a quantum key it replies with an authenticated and encrypted
acknowledgment and pushes the quantum key into his local message queue. Alice fetches the
acknowledgment and pushes a copy of the random key into her message queue. Hence the key
is ready for further postprocessing methods.
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Key Store

The Q3P key store is used by a Q3P link and it provides quantum key material for internal IPC
over the Q3P commands q3p_send and q3p_recv to send and receive a message on the
public channel. It is similar to a library and it is based on the Berkeley system data base. The
common key store stores the quantum key material and provides it for the module.

Crypto Engine

The crypto engine is a module that provides encryption and authentication in Q3P. It checks if
the lengt of the plaintext to be transmitted fits the length of the quantum key used. It provides
cryptographic functions such as the XOR operation on the key and the plaintext to encrypt the
plaintext by the use of a one time pad. The evaluation hash tags are provided by the crypto
engine. The length of an instance of a hash tag is 32, 64, 96 or 128 bit. If delayed authentication
is necessary, it has to be triggered externally because of the trade-off based on the Cascade error
correction algorithm.
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CHAPTER 6
Experimental Evaluation

Quantum key distribution is a promising method to deal with future demands on communica-
tions security. It enables unconditional security for short distances lower than 100 km to trans-
mit light quantas reliable. However, if we combine QKD with classical solutions, we can bridge
longer distances and achieve communication over the internet between two distant nodes. The
key generation rate decreases with increasing distance because the transmission losses increase.
The security level depends on the applied technique. If we use classical solutions such as the
Diffie Hellman key agreement protocol we can bridge longer distances, but its security is based
on unproven computational complexity assumptions. If we use QKD to secure IPv6 we need
intermediate nodes between the communication partners because of the properties of quantum
channels and their behavior over larger distances. However, QKD provides unconditional secu-
rity, despite the fact that we have a set of unknown or unreliable intermediate nodes between the
endpoints. The system has been restarted after every instance of a measurement cycle.

6.1 Experimental Setup

The measuring setup of the experiments taken, is based on the virtualbox virtualization environ-
ment and a set of virtual machines where every machine has its own network interface. It runs
on a physical machine and virtualizes the setup environment in an isolated network. As we have
shown in the sections above, a QBNI consists of a set of intermediate nodes (Fig. 5.1) because of
the properties of quantum channels to establish a communication between two distant nodes in
the quantum network. The QBNI uses the properties of the quantum channels via wave division
multiplexing to multiplex and switch between the public channel and the authenticated quantum
channel. Because the public channel competes with the quantum channel over WDM we use
the new public channel between the two routers to enhance the transmission speed and balance
the load on the quantum network to discharge the QBNI and improve its efficiency. Two virtual
routers are integrated as virtual machines to establish a peer to peer connection between the end-
points. By Q3P’s point of view every module is an application. Hence we interprete the IPv6
protocol as a user centric application and integrate it as shown in Fig. 6.1. Time synchroniza-
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tion in Q3P is done via time taking machines (TTM) over the management module. However,
the virtual machines are synchronized because they run on one physical machine and the same
clock is used on it. More information on Q3P and its architecture can be found by contacting
the Austrian Institute of Technology GmbH (AIT).

6.2 Latency

IPv6 is the dedicated future solution for internet communications and it is intended to replace the
IPv4 protocol. A lot of parameters influence decisions whether a technology is used in industrial
applications or not. The latency is a factor that influences the use of a technical solution in a
widely used protocol and the implementation into existing communication environments. It is
the time delay in a communications system which depends on the system infrastructure and its
physical implementation. That means the latency is the amount of time for a packet sent. At the
beginning of this work we said, that two bottlenecks on QKD are the key generation rate and the
distance between two nodes. The performance comparisons are done with an optimized router
configuration on the WRT54GL. However, additionally application specific optimizations can
be done for user centric applications such as audio, video, medical imaging or other dedicated
tasks. But these optimizations are not in the scope of this work.

Quantum key distribution provides unconditionally secure key distribution between two
communication endpoints over distances lower than 100 km. To show that QKD provides un-
conditionally secure key distribution between two distant nodes in a realistic environment and
that QKD and IPv6 complement each other due to the modular design of IPv6 and Q3P, we
compare the latency of the standard IPv4, IPv6 and the QKD system for two distant nodes.

Detailed results will be shown by non-parametric boxplots and probability density func-
tions. The boxplot shows the sample minimum and maximum, the lower and upper quartile
(25%− 75%) and the median. It is illustrated by Fig. 6.2. The probability density function
shows the probability for a continuous random variable to take on an instance of a value. The
performance comparison shows that the QKD system is the slowest solution, yet. However,
QKD is unconditionally secure and IPv4 and IPv6 are not because of the implemented security
concepts such as the Diffie Hellman key agreement from IPv6. That means it depends on the
task to fulfill which solution is required to use for securing communications.

IPv4 - Latency

IPv4 is the commonly known and widely used internet protocol version over wide areas. It is
used in the range of non sensitive data transmission up to safety relevant communications [25]
nowadays. We can use it for private banking, e-commerce or medical data processing. Figure 6.3
shows five independently taken latency measurements on IPv4 connections between two distant
communication nodes. A numerical overview of the values of the IPv4 boxplots is shown in Fig.
6.4. The probability density function of the measurement results of Fig. 6.3 are shown in Fig.
6.5. It shows the probability that the transmission of an IPv4 packet is transmitted takes the time
given on the x-axis.
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IPv6 - Latency

The next generation internet protocol IPv6 enables end to end connectivity over large distances
for 2128 devices. That means we can use unicast addresses to identify an interface on the net-
work, uniquely. In the development of IPv6, care was taken to avoid conceptual weaknesses
such as taken in IPv4. Figure 6.6 shows the boxplot of the measurement results for an IPv6
packet between two communication nodes. A numerical overview of the values of the IPv6 box-
plots is shown in Fig. 6.7. When comparing the latency measurements one can see that IPv6 is
somewhat faster than IPv4 in general. However, the disturbing influences that affect behavioral
deviations from the arithmetic mean of the measured values are similar to IPv4. The disturb-
ing influences are caused by the noise on the channel. Figure 6.8 shows the probability density
function of IPv6 packet traffic. The performance comparison of the packet traffic shows that the
performance increases from IPv4 to IPv6 because of the optimized packet structure despite the
fact that the packet size increased from 32 bit up to 128 bit. Hence, we can neglect the increased
packet size. That means that the latency decreased from IPv4 to IPv6. One can see that some-
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Figure 6.3: IPv4 Latency

IPv4 Latency [ms] M1 M2 M3 M4 M5

Lower Whisker 0.39 0.43 0.42 0.43 0.43
Lower Quartile 0.97 0.96 0.97 0.96 0.99

Median 1.11 1.11 1.14 1.09 0.99
Upper Quartile 1.38 1.32 1.38 1.32 1.37
Upper Whisker 1.98 1.85 1.97 1.85 1.93

Figure 6.4: Experimental Evaluation of IPv4

times IPv4 is faster than IPv6. However, the boxplot shows that the jitter in IPv6 is greater than
the one in IPv4 and IPv6. However, Ipv6 is faster in general. Jitter specifies the deviation of
the measurement values from the arithmetic mean. The probability density function of the IPv6
packets is similar to the one shown by the measurements for IPv4. The problem of the latency
for IPv4 and IPv6 depends on the development of the computing power and the improvements on
the network infrastructure, respectively. That means if we can reduce the absorption of optical
fibres it is possible to increase the distance and speed of the packet transmission.

QKD - Latency

Quantum key distribution is a method to distribute key material between two communication
parties unconditionally secure based on the properties of quantum physics. It can replace the
Diffie Hellman key agreement protocol, used in IPv6 that two communication endpoints agree
on a shared secret key and use it as a one time pad. The latency from IPv4 to IPv6 decreases
but QKD is slower than IPv6 and IPv4, respectively. QKD provides the distribution of raw key
material over a quantum channel and the raw key material is postprocessed with methods of
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Figure 6.5: Latency Probability Density Function of IPv4

Figure 6.6: IPv6 Latency

classical computation over public channels to obtain a valid final key to secure communications.
The latency of the QKD system is all over higher than the one in the previously mentioned
classical IPv4 and IPv6 systems. Because quantum systems are not closed in real environments,
there are interactions with the environment which influence the transmission of the states on the
quantum channel. Tolerances of the infrastructure affect on the latency i.e. imperfections of the
hardware implementation and differences in the quality of the detector environment result in an
increasing latency and an increasing deviation of the measurement results on the QKD network.
The quantum channel is a noisy channel i.e. the quantum channel is not a closed system. A
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IPv6 Latency [ms] M1 M2 M3 M4 M5

Lower Whisker 0.46 0.39 0.73 0.58 0.64
Lower Quartile 0.92 0.79 0.94 0.92 0.93

Median 1.02 0.98 1.00 1.01 1.01
Upper Quartile 1.24 1.12 1.08 1.14 1.13
Upper Whisker 1.70 1.61 1.29 1.47 1.42

Figure 6.7: Experimental Evaluation of IPv6

Figure 6.8: Latency Probability Density Function of IPv6

noisy channel is specified by the fact that the channel is memoryless i.e. if a sequence of actions
is applied on the quantum channel, every instance is independent. Another property of a noisy
channel is that noise acts locally. That means the noise of a quantum system does not correlate
with the noise of a distant quantum system. Quantum states i.e. quantum superpositions can
be disrupted by noise and physical imperfections of the implementation of the detectors and
the detector efficiency influence the latency. Figure 6.9 shows the latency of a Q3P packet
which enables unconditionally secure encryption and authentication. A numerical overview of
the values shown in the QKD Boxplot is given in Fig. 6.10. It illustrates that the QKD system
for unconditionally IPv6 security is slower than the classical IPv6 system based on the Diffie
Hellman key exchange protocol. One can see that the range is greater than in IPv6 or in IPv4
with a classical packet transmission. The corresponding probability density function is shown in
Fig. 6.11. It is different to the one shown by IPv4 and IPv6. The figures 6.9 and 6.11 illustrate
the sensitivity of a quantum system and the transmitted states over the quantum channel against
interferences from the environment and noise on the optical fibre.
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Figure 6.9: Quantum Key Distribution Latency (Q3P)

QKD Latency [ms] M1 M2 M3 M4 M5

Lower Whisker 2.82 1.31 3.25 2.87 2.78
Lower Quartile 5.70 4.44 5.88 5.82 5.71

Median 6.59 6.39 6.61 6.74 6.69
Upper Quartile 7.66 7.50 7.63 7.79 7.68
Upper Whisker 10.37 11.76 10.23 10.35 10.48

Figure 6.10: Experimental Evaluation of Quantum Key Distribution (Q3P)

6.3 Key Generation Rate

The key generation rate specifies the number of key bits generated per period. The key bits can
be used as a one time pad to secure communications information theoretically secure. Because
IPv6 and QKD perform end to end connectivity and the noise characteristics we have a look at
the key generation rate for QKD systems.

QKD - Key Generation Rate

The key generation rate specifies the number of key bits generated per second. As we have
shown in the previous section, a quantum network consists of QKD nodes which are connected
via QKD links and every node can be connected with multiple QKD links. The redundant ar-
chitecture of a QKD network to avoid only untrusted paths in the graph, results in an increased
latency depending on the number of intermediate nodes on a single path. Consider a path with
one intermediate node which generates raw key material. The raw key material needs to be post-
processed via classical packet transmissions over the public channel. Hence we are interested
in the link key generation rate of a single QKD point in the network. The boxplot of the link
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Figure 6.11: Latency Probability Density Function of Quantum Key Distribution (Q3P)

key generation rate is shown in Fig. 6.12. A numerical overview is given in Fig. 6.13. By con-

Figure 6.12: Keystore Key Generation Rate of Quantum Key Distribution (QKD)

trast to the boxplots from the latency measurements shown above one can see that the influences
from noise on the quantum channel and the dependencies from external interferences decrease.
This results in reduced jitter effects during the link key generation. Thus we see that the influ-
ences on the key generation rate are originally derived from the phyisical implementation of the
quantum channel and the distance between two communication end points from the QBNI. The
probability density function of the measurements is shown in Fig. 6.14.

99



Key Rate [Mbit/s] M1 M2 M3

Lower Whisker 0.31 0.37 0.34
Lower Quartile 1.40 0.82 0.88

Median 2.40 2.20 2.40
Upper Quartile 2.50 2.50 2.60
Upper Whisker 3.60 3.40 3.20

Figure 6.13: Experimental Evaluation of the Key Generation Rate of Quantum Key Distribution
(Q3P)

Figure 6.14: Probability Density Function of the Keystore Key Generation Rate

Key Generation Time

The key generation rate is a relative value which depends on the time. An absolute value is
the key generation time. That means it specifies the time left to generate a quantum key in the
network. The key generation rate and time are in coherence. Figure 6.15 illustrates boxplots of
the key generation time for quantum key material in a QBNI. A numerical overview is given in
Fig. 6.16.
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Figure 6.15: Key Generation Time of the Key Store

Key Time [ms] M1 M2 M3

Lower Whisker 53.46 59.29 46.08
Lower Quartile 127.96 129.42 124.91

Median 149.83 151.51 152.89
Upper Quartile 177.87 176.94 192.41
Upper Whisker 251.78 233.58 287.04

Figure 6.16: Experimental Evaluation of the Key Generation Time of the Key Store

Figure 6.17: Probability Density Function of the Key Generation Time of the Key Store
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CHAPTER 7
Conclusion

Network communications will be transmitted by the use of IPv6 instead of IPv4 over wide areas
because of the lack of addresses in the domain name system, in the future. There are present
classical solutions to ensure information security such as the Diffie Hellman key agreement pro-
tocol. The security of a classical cryptographic system is based on the computational complex-
ity of unproven hardness assumptions. Quantum key distribution is an interesting technology to
meet future security demands beyond mathematical functions. It provides the secret key genera-
tion over the information exchange on a quantum channel via the transmission of qubits between
two communication points in a provable secure way and obtains final key material via classical
solutions of postprocessing procedures. By contrast to classical solutions, quantum key distribu-
tion provides unconditional security. However, it is problematic if there is not sufficient final key
material available in the key store to encrypt plaintexts information theoretically secure, today. If
the key material is not available the corresponding devices need to delay the communication until
the quantum keys have been generated or a classical cryptographic method is chosen. Hence it is
necessary to generate preventive key material and not only on demand. The use of quantum key
distribution over quantum networks by encrypting plaintexts via one time pads enables uncon-
ditional secure cryptographic systems, despite the fact that there exists an unknown quantity of
unreliable nodes in the quantum network. Short distance quantum channels implement quantum
networks and can be integrated into existing optical fibre infrastructures to enhance its security.
The quantum point to point protocol delivers key material over a quantum network based on the
BB84 quantum key exchange protocol. We have described the basic mathematics of quantum
key distribution and the enhancement of IPv6 by QKD. By implementing a hybrid system in
combination with quantum key distribution and classical solutions, we can secure future internet
applications information theoretically secure and reduce the weaknesses of quantum channels.
We have shown that IPv6 and quantum key distribution complement each other because of the
modular design of IPv6 and a quantum network and that quantum key distribution is slower
than classical solutions by performance comparisons. However, the quantum extension enables
provable secure communication between two distant communication nodes over wide areas but
QKD is a subject to interferences from the environment and losses on the quantum channel.

103





APPENDIX A
Basic Mathematics

Definition A.1 (Cartesian Product of two sets) The Cartesian product (or product set) of two
sets A,B is defined by

A× B = {(a, b) | a ∈ A ∧ b ∈ B}

and is the set of all possible ordered pairs (a, b) which are characterized by

(a, b) = (c, d)⇔ a = c ∧ b = d

IfA and B are finite, the cardinality ofA×B is given by card (A× B) = (card A)×(card B).

Definition A.2 (n-ary Relation) An n-ary relation R over the setsA1, . . . An is a subset ofA1×
· · · ×An, i.e. , R ⊆ A1 × · · · ×An.

For binary relations (n = 2) we also write aRb instead of (a, b) ∈ R (infix notation).

Definition A.3 (Properties of Binary Relations) Let R ⊆ A×A be a binary relation. R is

reflexive, iff ∀a ∈ A aRa
irreflexive, iff ∀a ∈ A ¬aRa
symmetric, iff ∀a, b ∈ A (aRb⇒ bRa)

antisymmetric, iff ∀a, b ∈ A (aRb ∧ bRa⇒ a = b)
transitive, iff ∀a, b, c ∈ A (aRb ∧ bRc⇒ aRc)

linear, iff ∀a, b ∈ A (aRb ∨ bRa)
functional, iff ∀a, b, c ∈ A (aRb ∧ aRc)⇒ b = c

Definition A.4 (Function) LetA and B be two non-empty sets. A function (mapping) f fromA
to B, written f : A → B assigns to each element a ∈ A an element f(a) ∈ B. It can be viewed
as a functional relation Rf ⊆ A× B defined by Rf = {(a, f (a)) | a ∈ A}.
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Definition A.5 (Injection) A function f : A → B is injective or an injection if for all b ∈ B
there exists at most one a ∈ A with b = f(a), i.e. , a 6= a

′
implies f (a) 6= f

(
a
′
)

for all a and

a
′
.

Definition A.6 (Surjection) A function f : A → B is surjective or a surjection if for all b ∈ B
there exists at least one a ∈ A with b = f(a).

Definition A.7 (Bijection) A function f : A → B is bijective or a bijection if it is injective and
surjective, i.e. for all b ∈ B there exists exactly one a ∈ A with b = f(a).

Definition A.8 (Inverse) A function f−1 : B → A is the reverse (inverse) function of f : A →
B, if f−1 ◦ f = idA and f ◦ f−1 = idB holds (idA denotes the identity on a set A, i.e.
idA(a) = a, for all ai ∈ A.

Definition A.9 (Factorial) The factorial of a non-negative integer n, denoted by n! (n-factorial)
is the product of all positive integers less than or equal to n :

0! = 1, (n+ 1)! = (n+ 1) ·n!

Definition A.10 (Permutation) Let A be a nonempty finite set. A total bijective function
π : A → A is called a permutation of A.

A set A of size n has n! permutations.

Theorem A.1 (Integer Factorization) Every natural number n > 1 can be written as the prod-
uct of prime numbers.

n =

m∏
k=1

pαkk

The numbers pk are called prime factors and αk their multiplicities in n. αk is also denoted as
νpk (n).

Definition A.11 (Greatest Common Divisor) Let a1, a2, . . . , an be arbitrary integers s.t. ai 6=
0 for at least one one i. The greatest number in the set of common divisors of a1, a2, . . . , an is
called the greatest common divisor (gcd) of a1, a2, . . . , an and is written as gcd (a1, a2, . . . , an).
Additionally we define gcd (0, . . . , 0) = 0 . If we know the canonical prime factorization of
a1, a2, . . . , an, the greatest common divisor is given by

gcd (a1, a2, . . . , an) =
∏

p prime

p
min
i
{νp(ai)}

.

Definition A.12 (Coprime Integers) Integers a, b are called coprime or relatively prime, writ-
ten as a ⊥ b, if gcd (a, b) = 1.
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Definition A.13 (Complex Numbers) The set C of complex numbers is the set of all numbers
that can be written as z = a + ib, where a, b ∈ R and i2 = −1. a = Re (z) is called the real
part, b = Im (z) the imaginary part of z and i imaginary unit. Furthermore the trigonometric
form of a complex number is denoted as follows

z = ρ (cosϕ+ i sinϕ)

Moreover

|z| = ρ s.t. (0 ≤ ρ <∞)

denotes the absolute value of z and

arg z = ϕ+ 2kπ s.t. −π < ϕ ≤ +π, k = 0,±1,±2, . . .

will be referred to as the argument of z.

Definition A.14 (Equality) Two complex numbers z1, z2 are equal iff

Re (z1) = Re (z2)
Im (z1) = Im (z2)

holds.

Definition A.15 (Multiplication of Complex Numbers) The multiplication of complex num-
bers z1, z2 ∈ C is defined as

z1z2 = (a1 + ib1) (a2 + ib2) = (a1a2 − b1b2) + i (a1b2 + b1a2) .

Definition A.16 (Division of Complex Numbers) The division of complex numbers z1, z2 ∈ C
is defined as

z1
z2

=
a1 + ib1
a2 + ib2

=
a1a2 + b1b2
a22 + b22

+ i
a2b1 − a1b2
a22 + b22

.

Definition A.17 (Complex Conjugate) The complex conjugate of a complex number z = a+ib
is defined as

z = a− ib

Theorem A.2 The complex numbers with addition and multiplication form a field.
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APPENDIX B
Technical Appendix

B.1 Virtual Media Settings

Machine uuid

<Machine uuid="{38153a88-e614-43ec-98d5-3123a6221e12}"
name="FILENAME" OSType="Linux"
snapshotFolder="Snapshots"
lastStateChange="2012-07-25T03:24:50Z">

Hard Disk uuid

<HardDisks>
<HardDisk uuid="{8d054f65-3550-4f32-be11-ef5e7cb53afc}"
location="FILENAME.vdi" format="VDI" type="Normal"/>

</HardDisks>

Memory RAM Size

<Memory RAMSize="1024" PageFusion="false"/>

Network Interface

<BridgedInterface name="eth0"/>

Cloning a harddisk

~\$ VBoxManage clonehd SOURCENAME.vdi
DESTINATIONNAME.vdi

Searching for the uuid
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~\$ diff ALICE.vbox BOB.vbox | grep "Machine uuid"

< <Machine uuid="{277bb355-4708-4231-9620-fd370c7826cc}"
name="ALICE" OSType="Debian" snapshotFolder="Snapshots"
lastStateChange="2012-08-13T09:03:53Z">
> <Machine uuid="{d346e246-68d1-464e-af92-1798039391e0}"
name="BOB" OSType="Debian" snapshotFolder="Snapshots"
lastStateChange="2012-08-13T09:04:04Z">

B.2 OpenWRT

Target Profile

Parameter Description
(X) Generic Generic File System

Target Images

Parameter Description
(X) ext4 Root filesystem image
(X) jffs2 Journalling Flash File System version 2
(X) squashfs .sfs filesystem
(X) Build Grub Images Boot loader image file
(X) Use Console Terminal Console Terminal Support
(X) Build Virtualbox Image Files (VDI) Virtual Disk Image file
(X) Build VMWare Image Files (VMDK) Virtual Machine Ware Image file
(0) Seconds to wait before booting the default entry reduce boot delay

(/dev/sda2) root partition on target device

Base System

Parameter Description
(X) base-files Base filesystem for OpenWrt
(X) busybox Core utilities for embedded Linux
(X) dnsmasq A lightweight DNS and DHCP server
(X) drop bear Small SSH2 client/server
(X) firewall OpenWrt firewall
(X) mtd Update utility for firmwire updates
(X) opkg package manager
(X) wireless-tools Tool for manipulating Linux Wireless Extensions
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IPv6
Parameter Description

(X) 6in4 IPv6-in-IPv4 configuration support
(X) 6scripts IPv6 scripts
(X) 6to4 IPv6-to-IPv4 configuration support
(X) 6tunnel IPv4 / IPv6 tunnel proxy
(X) dhcp6client IPv6 DHCP client
(X) dhcp6server IPv6 DHCP server
(X) ipv6calc IPv6 addresses calculation (full)
(X) radvd IPv6 Routing Advertisment Daemon
(X) radvdump IPv6 Routing Advertisment Dumper

IPv6 Firewall
Parameter Description

(*) ip6tables IPv6 firewall administration tool

IPv6 Traceroute
Parameter Description

(X) traceroute6 An IPv6-based traceroute implementation

B.3 IP Addressing

IPv4 Address

\$ sipcalc -a 192.168.0.1
-[ipv4 : 192.168.0.1] - 0

[Classfull]
Host address - 192.168.0.1
Host address (decimal) - 3232235521
Host address (hex) - C0A80001
Network address - 192.168.0.0
Network class - C
Network mask - 255.255.255.0
Network mask (hex) - FFFFFF00
Broadcast address - 192.168.0.255

[CIDR]
Host address - 192.168.0.1
Host address (decimal) - 3232235521
Host address (hex) - C0A80001
Network address - 192.168.0.1
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Network mask - 255.255.255.255
Network mask (bits) - 32
Network mask (hex) - FFFFFFFF
Broadcast address - 192.168.0.1
Cisco wildcard - 0.0.0.0
Addresses in network - 1
Network range - 192.168.0.1 - 192.168.0.1

[Classfull bitmaps]
Network address - 11000000.10101000.00000000.00000000
Network mask - 11111111.11111111.11111111.00000000

[CIDR bitmaps]
Host address - 11000000.10101000.00000000.00000001
Network address - 11000000.10101000.00000000.00000001
Network mask - 11111111.11111111.11111111.11111111
Broadcast address - 11000000.10101000.00000000.00000001
Cisco wildcard - 00000000.00000000.00000000.00000000
Network range - 11000000.10101000.00000000.00000001 -

11000000.10101000.00000000.00000001

Network - 192.168.0.0 - 192.168.0.0
Network - 192.168.0.1 - 192.168.0.1 (current)
...
Network - 192.168.0.254 - 192.168.0.254
Network - 192.168.0.255 - 192.168.0.255

IPv6 Address

\$ sipcalc -a -t 2001:0db8:85a3:08d3:1319:8a2e:0370:7347/57
-[ipv6 : 2001:0db8:85a3:08d3:1319:8a2e:0370:7347/57] - 0

[IPV6 INFO]
Expanded Address - 2001:0db8:85a3:08d3:1319:8a2e:0370:7347
Compressed address - 2001:db8:85a3:8d3:1319:8a2e:370:7347
Subnet prefix (masked) - 2001:db8:85a3:880:0:0:0:0/57
Address ID (masked) - 0:0:0:53:1319:8a2e:370:7347/57
Prefix address - ffff:ffff:ffff:ff80:0:0:0:0
Prefix length - 57
Address type - Aggregatable Global Unicast Addresses
Network range - 2001:0db8:85a3:0880:0000:0000:0000:0000 -

2001:0db8:85a3:08ff:ffff:ffff:ffff:ffff

[V4INV6]
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Expanded v4inv6 address - 2001:0db8:85a3:08d3:1319:8a2e:3.112.115.71
Compr. v4inv6 address - 2001:db8:85a3:8d3:1319:8a2e:3.112.115.71

[IPV6 DNS]
Reverse DNS (ip6.arpa) -
7.4.3.7.0.7.3.0.e.2.a.8.9.1.3.1.3.d.8.0.3.a.5.8.8.b.d.0.1.0.0.2.ip6.arpa.

-

\$ sipcalc -a 0:0:0:0:0:0:0:0
-[ipv6 : 0:0:0:0:0:0:0:0] - 0

[IPV6 INFO]
Expanded Address - 0000:0000:0000:0000:0000:0000:0000:0000
Compressed address - ::
Subnet prefix (masked) - 0:0:0:0:0:0:0:0/128
Address ID (masked) - 0:0:0:0:0:0:0:0/128
Prefix address - ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff
Prefix length - 128

\$ sipcalc -a 0000:0000:0000:0000:AC43:9876:1234:5555
-[ipv6 : 0000:0000:0000:0000:AC43:9876:1234:5555] - 0

[IPV6 INFO]
Expanded Address - 0000:0000:0000:0000:ac43:9876:1234:5555
Compressed address - ::ac43:9876:1234:5555
Subnet prefix (masked) - 0:0:0:0:ac43:9876:1234:5555/128
Address ID (masked) - 0:0:0:0:0:0:0:0/128
Prefix address - ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff
Prefix length - 128

\$ sipcalc -a 3228:00A3:0000:0000:0221:01FF:CE01:7842
-[ipv6 : 3228:00A3:0000:0000:0221:01FF:CE01:7842] - 0

[IPV6 INFO]
Expanded Address - 3228:00a3:0000:0000:0221:01ff:ce01:7842
Compressed address - 3228:a3::221:1ff:ce01:7842
Subnet prefix (masked) - 3228:a3:0:0:221:1ff:ce01:7842/128
Address ID (masked) - 0:0:0:0:0:0:0:0/128
Prefix address - ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff

\$ sipcalc -a 4AC0:0:0:7:0:0:0:C
-[ipv6 : 4AC0:0:0:7:0:0:0:C] - 0
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[IPV6 INFO]
Expanded Address - 4ac0:0000:0000:0007:0000:0000:0000:000c
Compressed address - 4ac0:0:0:7::c
Subnet prefix (masked) - 4ac0:0:0:7:0:0:0:c/128
Address ID (masked) - 0:0:0:0:0:0:0:0/128
Prefix address - ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff
Prefix length - 128
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