
DISSERTATION

Object modelling for cognitive robotics

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Doktors der technischen Wissenschaften unter der Leitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Markus Vincze

E376
Institut für Automatisierungs- und Regelungstechnik

eingereicht an der Technischen Universität Wien
Fakultät für Elektrotechnik und Informationstechnik

von

Dipl.-Ing. Thomas Mörwald
geb. am 16.05.1982
Matr. Nr.: 0255334

Reithlegasse 15/3
A-1190 Wien

Wien, im April 2013

Thomas Mörwald

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Abstract
The development of robots received great attention in the last decades. Progressing
from hard-coded pick and place operations common for industrial applications, the
need for more intelligent solutions emerged. The field of cognitive robotics evolved,
where tasks are no more hard-coded processes that are executed monotonously. The
concept of intelligent robots, known form science fiction, found its way into science,
where soon methods appeared that allow for reasoning, representing knowledge, inter-
acting with humans and so forth. In this thesis the focus lies on cognitive perception,
that allows to learn and reason about objects as the robot perceives them. The
importance of never-ending learning methods, the ability to handle partial informa-
tion and fusion of knowledge from different cues for a better understanding of the
appearance and properties of objects is demonstrated.

The appearance of objects is given by their shape and colour. Geometric models,
such as B-spline curves and surfaces are used to segment range images and simulta-
neously reconstruct the shape of smooth, continuous surface patches. These patches
are grouped to objects according to relations inspired by Gestalt principles. Colour
information is mapped onto the shape, resulting in a model for the appearance of the
object for a single view.

The key for learning and reasoning is to identify objects that have already been
learned and to assign new information to them. In the context of perception that is,
to visually track it and to self-evaluate observations to distinguish good and bad sen-
sor data (e.g. sensor noise, occlusions, reflections, and so forth). For visual tracking
the previously reconstructed appearance of the object is used. With respect to a prior
pose, a Monte Carlo particle filter (MCPF) evaluates various pose hypothesis, effi-
ciently following the object movement, including rigid 3D translations and rotations.
A novel algorithm for evaluation of the tracking state, called tracking-state-detection
(TSD), is proposed which allows to reason about the tracking quality, detects whether
tracking is valid or lost, or if the object is occluded.

The TSD allows to identify new good views, from which new information can
be used to extend existing appearance models, but also to learn about the physical
behaviour of objects. The trajectory of an object under robotic manipulation is
observed, where a robotic finger is pushing it. This allows to learn or extend a
probabilistic motion model. That is, to assign probabilities between coordinate frames
attached to the object, the robotic finger and the environment. The advantage of a
probabilistic physical model is, in contrast to Newtonian mechanics, that it allows
for generalisation to new object shapes and pushing configurations. This makes it
perfectly suitable for cognitive robotics. Furthermore physical predictions can be used
as prior poses for tracking, increasing accuracy and robustness especially in difficult
situations (e.g. motion blur during fast movement, partial or full occlusion).

This manuscript is best to read in colour.

Acknowledgement
I would like to sincerely thank all people who supported me while working on this
thesis. My foremost thanks go to my supervisor Markus Vincze and mentor Michael
Zillich. I am grateful for the inspiration, freedom and support they provided me.
I would also like to thank my external reviewer Ales̆ Leonardis, Professor at the
University of Birmingham and the University of Ljubljana for his encouragements.

I am grateful for all the colleagues who accompanied me during my work. Es-
pecially I want to thank Johann Prankl, Andreas Richtsfeld, Marek Kopicki and
Jonathan Balzer for all the inspiring, passionate discussions and debates we had
about so many topics, leading to many valuable publications.

My gratitude also goes to my parents Johann and Anna Mörwald, who guided
me towards a scientific career by exciting my curiosity and supporting me at difficult
hurdles. And especially warm thanks to my beloved partner and dear friend Yvonne
Seiler, who inspired me to look at various problems from a different point of view.

Contents

Nomenclature IV

1 Introduction 1
1.1 Problem statement: modelling objects 3
1.2 Outline and contributions . 6

2 Segmentation and reconstruction 11
2.1 Related work . 12
2.2 B-spline fitting . 13

2.2.1 Definition of B-spline curves and surfaces 14
2.2.2 Fitting curves to 2D point-clouds 16
2.2.3 Surface fitting . 25

2.3 Surface segmentation . 28
2.3.1 Pre-segmentation . 28
2.3.2 Model selection . 29

2.4 Object segmentation . 30
2.4.1 Grouping of parametric surfaces 30

2.5 Learning . 31
2.5.1 Object registration . 31
2.5.2 Surface merging . 32

2.6 Results . 34
2.6.1 B-spline curve fitting . 34
2.6.2 Surface segmentation . 40
2.6.3 Object segmentation . 43

2.7 Discussion . 45

3 Colour based object tracking 47
3.1 Related work . 49
3.2 Pose estimation . 50

3.2.1 Transformations on the Euclidean group 50
3.2.2 Monte Carlo particle filtering (MCPF) 51
3.2.3 Image processing and confidence evaluation 54

3.3 Learning . 56
3.3.1 Tracking-state-detection (TSD) 56

I

3.3.2 Texture mapping . 58
3.3.3 SIFT mapping and object re-detection 59
3.3.4 Model completeness . 60

3.4 Results . 62
3.4.1 Evaluation of the tracking error 62
3.4.2 Accuracy and precision . 63
3.4.3 Robustness . 64
3.4.4 Performance . 65
3.4.5 Video . 65

3.5 Discussion . 67

4 Physical prediction and robotic manipulation 69
4.1 Related work . 70
4.2 Prediction . 72
4.3 Tracking . 74
4.4 Learning . 75
4.5 Results . 76

4.5.1 Tracking . 76
4.5.2 Prediction . 80

4.6 Discussion . 86

5 Conclusion 87
5.1 Summary . 87
5.2 Outlook . 88

Bibliography 91

Curriculum Vitae 99

II

Nomenclature

Segmentation and Reconstruction

S ... savings of a surface model hypothesis
κ0,1,2 ... MDL weights
Ξ ... knot vector
ξi ... element of the knot vector
ξ ... parameter of a B-spline curve
u, v ... parameters of a B-spline surface
Ω ... parameter space of a B-spline curve or surface
Ni,p ... i-th B-spline basis function of p-th order
Mj,p ... j-th B-spline basis function of p-th order
c ... B-spline curve
b ... control vector
S ... B-spline surface
B ... control grid
p ... point
n ... normal vector
t ... tangent vector
o ... outward pointing normal vector
e ... error function
f ... objective function
w ... weighting factor or -function
d ... signed distance to B-spline curve
ρ ... curvature of the B-spline curve
σ ... standard deviation or transition width
ε ... threshold
f ... force vector
K ... stiffness matrix
R ... regularisation matrix

III

Tracking and Robotic Manipulation

t ... time steps t ∈ N ∪ {0}
I ... colour image
T ... rigid transformation (rotation, translation)
t ... translation
R ... rotation (matrix form)
i, j, k ... imaginary units
q ... quaternion
r ... real value of quaternion
θx,y,z ... imaginary value of quaternion
θ ... vector of imaginary values of quaternion, i.e. rotation
x ... state vector of a particle
x̃ ... posterior particle
N ... normal distributed noise
σ ... standard deviation
c ... confidence
p ... probability
P ... discrete probability
i ... particle index
N ... number of particles
w ... importance weight
y ... observation
g ... colour gradient
M ... object model projected to image space
m ... match value
s ... normalizing factor
h ... hue value of the HSV colour space
δ(x) ... delta-Dirac mass located in x
u, v ... pixel coordinates in image space

Xf
t ... set of fixed particles

o ... detection success
qk ... fixed point on the object surface
e ... tracking error
A,B,O ... coordinate frames

IV

Chapter 1

Introduction

For an intelligent robot it is desirable to operate in an unknown environment, where
the robot will encounter new situations and objects. E.g. the robot will navigate
in rooms and areas it has not been before and it will perceive and interact with
novel objects. A typical application area is service robotics, which is concerned with
systems that are designed to support humans in home or office environments. Since
it is neither possible to provide information about every home and office nor about
all the objects encountered there, it is necessary to equip the robot with the ability to
learn things from scratch. Of course many constraints can still be taken into account
in advance but these are rather general (e.g. objects rest on a supporting surface; the
field of gravity is pointing downwards) or derived from the robotic system itself, like
from the embodiment. This means that knowing very little, the robot should be able
to create models about the world and to update them as soon as new information is
gathered. In the context of robotics these abilities characterise the field of cognitive
robotics. To quote from [55]:

“In its most general form, we take cognitive robotics to be the study of the
knowledge representation and reasoning problems faced by an autonomous
robot (or agent) in a dynamic and incompletely known world.”

Disassembling this sentence yields the following subtasks:

• Knowledge representation: Represent knowledge that allows for extension and
modification over time.

• Reasoning: Reason about the world using and updating the current knowledge.

• Autonomous robot: Integrate knowledge about the embodiment of the robot
and consider its possibilities.

• Dynamic world: Detect and observe changes in the environment as well as in
the present state of knowledge.

• Incomplete world: Identify knowledge gaps, i.e. missing information.

2 1. Introduction

These tasks strongly depend on each other and in fact they are usually highly
integrated. However, since the items of the list are describing modules in a very
generic way it is hard to integrate them as functions or algorithms in a robotic
system. This results from the fact that one big piece is missing in the quotation
above, namely the purpose of a cognitive robot. A nice and general way describing
this in the context of cognitive robotics is stated in the work of Levesque and Reiter
[56]:

“With respect to robotics, our goal (like that of many in AI) is high-level
robotic control: develop a system that is capable of generating actions
in the world that are appropriate as a function of some current set of
beliefs and desires. What we do not want to do is to simply engineer
robot controllers that solve a class of problems or that work in a class of
application domains.”

Therefore the purpose of the robot is what we want it to belief and motivate.
Consider the example of two home robots and their owner who wants them to bring
her/him a cornflakes box. One robot is equipped with a hard-coded function which
is executed exactly the same way each time the owner calls it. Figure 1.1 shows a
simplistic example of a hard-coded task execution.

goto place where
cornflakes box is

(e.g. place X)

grasp
cornflakes box

at place X

return

to start position

grasp
successfull?

report error
no yes

Figure 1.1: Hard-coded task execution for bringing a box of cornflakes.

The other robot is a cognitive one, where the command “Bring me the cornflakes
box!” is transformed into a motive considering the knowledge of the robot represented
as beliefs (e.g. probabilities of a cornflakes box being at a certain location). Figure 1.2
shows a simplistic example of a cognitive robot.

Obviously the first robot will struggle once the environment changes, e.g. when
the cornflakes box is placed at a different location. The second one will eventually
succeed because it considers a changing environment and updates its knowledge about
it during execution time. The example demonstrates the importance of a cognitive
understanding of the world for a flexible operation of robots. That is, constantly
updating its knowledge, identifying gaps therein which ideally results in the motive
to fill them. In the example above such a gap would pop out when the robot is
commanded to bring something it has never seen before. This would trigger the

1.1. Problem statement: modelling objects 3

goto place
where cornflakes

probably are

search for
cornflakes at
this position

grasp
cornflakes

cornflakes
found?

reduce probability

of current place

no yes

return

to start position

Figure 1.2: Cognitive task execution for bringing a box of cornflakes, taking into
account beliefs about the world.

motive to learn about that thing, which from now on we refer to as object. A common
way to do that is tutor-driven learning [51, 91, 92], where a tutor shows the object
to the robot. To perform tasks including it, the robot will gather information about
the object

• appearance including shape and colour, and its

• function including the physical behaviour.

Ideally these properties are generalizable over object instances. Knowing the typ-
ical appearance of a mug in general rather then only a few specific examples, would
allow the robot not only to bring the ones known, but any. And analogously, general-
ization allows to perform tasks on object classes rather than instances (e.g. detection).
Therein lies the real challenge for cognitive robotics. To equip the robot with algo-
rithms that are able to learn the features above such that they describe the object in
a meaningful way.

1.1 Problem statement: modelling objects

We place this thesis in the field of cognitive vision. That is to perceive the world with
image- and additionally depth sensors, taking into account the context of a cognitive
robot as described above. The term cognitive vision is often used to indicate a
cognitively inspired method. We rather refer to it as image analysis that outputs
meaningful features for the robot. Further we focus on the scenario of tutor-driven
or self-motivated learning. In more detail, a number of unknown objects are placed
in front of the robot which then builds up models for shape, colour and physical
behaviour. In summary, the goal is to learn arbitrary unknown objects. That is to
build up the knowledge of the robot using models that allow to successively improve
and refine. For a cognitive robot system the requirements for such models are as
follows.

4 1. Introduction

Shape is often modelled using triangle meshes, which are easy to compute but
do not convey much meaning. A more sophisticated way is to partition the object
into smooth, continuous surfaces and select higher order polynomials to approximate
those. This incorporates meaningful features like boundaries (i.e. edges), curvatures,
assembly and polynomial orders of the surfaces. Hence it is much easier to generalize
specific objects to classes. E.g. a mug could be described as a cylinder of a certain
size with one side open and the other one closed. The left of Figure 1.3 shows the
partial shape model of a cylindrical object, consisting of trimmed B-spline surfaces.

Colour information, captured by a camera is usually modelled as mixture of red,
green and blue (RGB). A strong cue is provided by the gradients of a colour image
since colour itself strongly depends on the lighting conditions. However, for pixel-
wise comparison gradients are not very distinctive. A more suitable way is to use
histograms of colour and gradients of image patches. Popular patch descriptors using
histograms are SIFT [61] and SURF [3]. To achieve a cognitive model these descrip-
tors require to be modifiable and extendible and, to link them with the object, be
attached to the surface. This linkage incorporates the understanding of when a cer-
tain descriptor is clearly visible, distorted or occluded. Once a model of such shape
dependent descriptor is built, it is straight forward to recognize and estimate the
pose of the object in the future [72]. Figure 1.3 (right) shows colour information
(i.e. texture) mapped onto the B-spline surfaces of the shape model.

Figure 1.3: Models for the object appearance. Trimmed B-spline surface patches
represent the 3D shape of the object (left). Colour information is mapped to the
surface model (right).

Physical behaviour is typically implemented using Newtonian mechanics. Con-
sidering a cognitive system, parameters like friction, object dimension and mass are
updated whenever new information is gathered. However, in the Newtonian represen-
tation the structure of the shape itself is hard to update. Consider an egg which, as a
first guess, is modelled by a sphere. After several observations during which physical
parameters are learned the visual system recognizes that an ovoid (egg shape) rep-
resents the shape in a better way. Knowing that the physical behaviour of these two

1.1. Problem statement: modelling objects 5

primitives are significantly different, and the physical parameters depend strongly
on the shape, the information already learned is worthless. Even if we consider an
ovoid in the first place the physical predictions based on Newtonian mechanics do
not match reality, although they may look plausible. Thus a more general repre-
sentation, namely a probabilistic is preferred. Therein the behaviour of the object
under a certain configuration of action is estimated using probabilities (e.g. an up-
right object is more likely to topple when being poked than a flat lying one). This
representation implicitly models the geometry of the object but, in contrast to the
Newtonian mechanics approach, allows smooth transition between different shapes.
Figure 1.4 shows the location of coordinate frames of interacting objects. Probabil-
ities, assigned to the space of all possible transformations between these coordinate
frames, encodes the physical behaviour of the object. This allows to predict correct
physical behaviour even if the geometry is not fully given.

A

B

O

f�����
o�����

��e��o�	���

local

Figure 1.4: Model for the physical behaviour. Probabilities assigned to the transfor-
mations between the reference frame of the object, robot finger, environment and the
local contact frames encode the physical behaviour.

These representations, modelling beliefs that change and extend over time, require
methods that are able to cope with incompleteness. In other words, algorithms
should not require a full model for them to work. This implies that object models
are created in parallel rather then step by step. Of course one cannot assign colour if
no region or shape defining the object is given. But once parts of it are known also
colour and physical behaviour are learned. And with every new information arriving
(e.g. new point of view) the models are extended and refined. In cognitive robotics
this corresponds to the motive to learn about the world. In terms of Figure 1.5, our
framework segments an object and creates partial models of the shape and colour to
track and detect it. Then it continuously reflects the current models and updates
them for a better understanding. A positive side effect thereof is, that using all the
information gathered so far typically increases robustness, as will be shown in the
subsequent chapters.

6 1. Introduction

t
������

d�t��t��� �

reflection

l��
� �������l

b�������
 b�

�b�t�� r�����l�t���

l��
� ����� �

reconstruction

l��
� ��l��
 �

texture & SIFT

segment object

Figure 1.5: Cognitive task execution for learning shape, colour and physical be-
haviour. First an object of interest is segmented and the shape is learned. Then
colour information is attached to the shape model which allows for visual tracking
and detection. Reflecting its beliefs the robot selects new situations (i.e. point of
view) and triggers the algorithms for updating the models.

1.2 Outline and contributions

This thesis presents a system that learns objects from scratch using colour and depth
perception. Our contribution lies in the development of methods and algorithms that
create models for the shape, colour and physical behaviour of the object in a cognitive
sense. In other words, we use knowledge representations that allow for cognitive
understanding of the world and that extend and modify over time. Following the
scheme of Figure 1.5, this thesis proceeds as follows. First, the object is segmented
from the sensor data and its shape is reconstructed. Since we are using the same shape
models for both, segmentation and reconstruction, this is done in a simultaneous
manner as will be shown in Chapter 2. Second, we project the shape model from the
first view into image space and attach colour information accordingly. This textured
model is used for tracking and further for detection with SIFT features, whenever the
tracking algorithm looses the object. The methods developed for this are presented
in Chapter 3. Third, employing our tracking algorithm and using the shape model as
depicted in Figure 1.4, Chapter 4 presents the probabilistic formulation for predicting
the physical behaviour and how it is learned by applying simple robotic manipulation.

Segmentation and reconstruction (Chapter 2)

Starting from raw depth sensor data, first planar approximations are computed
which are further refined using higher order surfaces. Inspired by the principles
of Gestalt [100] appearance features such as curvature, normals direction, proximity,
colour and texture are used to group these surfaces. The output of this module are
object models composed of trimmed B-spline surfaces. The latter are parametric free
form surfaces with meaningful features like polynomial degree, curvature, normals
and boundary edges (modelled with B-spline curves). Defining those surfaces in the
image plane of the range sensor increases the efficiency of the algorithm and allows for

1.2. Outline and contributions 7

a direct mapping from 2D image points to 3D surface points and vice versa. In [83]
we segment unknown objects typical for indoor environments. We present a 3D per-
ceptual grouping approach of B-spline surface patches of various degrees of freedom
to accurately and robustly segment objects. In [73] we use trimmed B-spline surfaces
for range image segmentation and data abstraction. We propose to define the para-
metric domain of the surfaces in the image space for two reasons. First, we can define
trimming curves (i.e. B-spline curves) to smooth the segmentation boundaries and
align them to image edges leading to a higher accuracy of the segmentation. Second,
we can directly map 2D pixels to 3D surface points and vice versa leading to a trivial
assignment of pixel information to surface points. Further the convex hull property
of B-spline curves increases the performance and robustness of finding pixels being
part of a certain segment. The property states that a B-spline curve completely lies
within the convex hull of its control points. Therefore points outside this convex
hull do not belong to the respective segment. The choice for B-spline surfaces was
inspired by our recently published reconstruction approach exploiting isogeometric
finite-elements methods for variational reconstruction tasks in vision [2].

Contribution: The output of the algorithm developed in this chapter is an object
model consisting of trimmed B-spline surfaces. Each of them is modelling a smooth
continuous part of the object. The model selection scheme provides the best fitting
B-spline surfaces, constructing the shape of the object such that it fulfils the require-
ments mentioned in Section 1.1. I.e. the boundaries are well defined and the normal,
curvature, order and type of surface is given at any point. The work on fitting B-
spline models was integrated into the point-cloud library1, which received enormous
attention in the last years.

Colour based object tracking (Chapter 3)

Given the shape and colour of one view of the object we want to add information
about missing parts to the model. Considering the tutor-driven scenario, the object
is moved in front of the robot which requires to visually track it. While turning
it, the robot adds previously occluded parts and replaces areas with better informa-
tion quality both for shape and colour. This requires a qualitative statement of the
current tracking state. Hence we extended a common approach for visual tracking,
namely Monte Carlo particle filtering, by a method called tracking-state-detection
(TSD) [74]. This models a qualitative understanding of the world (e.g. “This view
is a good one.”) but also of the robot itself (e.g. “I am still tracking correctly.”). In
our framework, TSD is employed for three tasks. First for identifying views which
are suitable for learning, for which we developed a novel probabilistic formulation
for self-evaluation and prediction of object poses [105]. Second for triggering reini-
tialization, using the present object model once tracking is lost, which was published
as part of the Blocks World Robotic Vision Toolbox (BLORT) in [72]. Third for
evaluation of the observation quality of a certain trajectory [48], where we learn to

1www.pointclouds.org/blog/trcs/moerwald

www.pointclouds.org/blog/trcs/moerwald

8 1. Introduction

predict how rigid objects behave under simple manipulation. To improve tracking ro-
bustness, we take advantage of colour texture and propose an improved functional for
evaluating the particle weights to avoid locking at difficult poses [75]. Furthermore
we introduce iterative particle filtering, also called recursive particle filtering to the
community, which significantly improves the performance.

Contribution: When developing the methods for this thesis, we found that the
key ingredient for creating meaningful object models is the knowledge of what is
happening during learning. Therefore we developed algorithms that visually track the
object and detect it whenever it got lost. More importantly, we presented a method
that allows to reason about the current tracking status. As this issue was and still
is not sufficiently discussed by the community we found it to be the main reason
why a lot of sophisticated tracking approaches do not pave the way to real world
robotic applications. Our highly robust solution for tracking objects and determining
the state of tracking in a qualitative manner did so (ROS module BLORT2, PAL-
robotics3, CogX project4).

Physical prediction and robotic manipulation (Chapter 4)

The physical behaviour of the object is learned in a probabilistic framework. By
pushing and poking with a robotic arm and considering the model gathered so far,
the robot observes the physical effect, i.e. movement, of the object. Probabilities are
assigned to certain arm-object-environment configurations over time. This allows to
predict and constrain the object movement, increasing the robustness of tracking and
grasping. Furthermore the probabilistic model leads to a generalizable understand-
ing of the physical world where no understanding of Newtonian mechanics and its
sensitive parameters are required. In a collaboration with the University of Birming-
ham a physical prediction system based on a probabilistic representation [47, 45] was
exploited as follows. First the probabilistic predictors using the visual observations
from our pose tracking algorithm [48] were trained. Then, once the physical model is
learned, we increase the robustness of the tracking algorithm by predicting the object
pose for the next observation [71]. This allows the system to predict the object poses
where it is fully occluded, out of view, or affected by strong noise. Further a motion
prediction system based on Newtonian mechanics was tested for tracking [25]. Even
though the physical parameters used were estimated to best fit real training data and
plausible predictions were obtained, slight deviations in the test data led to strong
deviations.

Contribution: Physical models that meet the requirements as mentioned in Sec-
tion 1.1 are barely studied, especially when dealing with 6 degree-of-freedom move-
ment and relying on partial shape models. The proposed methods provide the essen-

2www.ros.org/wiki/blort
3www.pal-robotics.com/blog/internships-at-pal-robotics-bence-magyar-reports
4http://cogx.eu/download

www.ros.org/wiki/blort
www.pal-robotics.com/blog/internships-at-pal-robotics-bence-magyar-reports
http://cogx.eu/download

1.2. Outline and contributions 9

tial abilities for a robot to operate in an unknown environment, where other methods
completely fail as we will show in Chapter 4.

Conclusion (Chapter 5)

In Chapter 5 we summarize the results achieved and give an outlook on work in
progress and possible improvements for the future.

10 1. Introduction

Chapter 2

Segmentation and reconstruction

An important domain of mobile robotics is perception, the extraction of meaning from
sensory input, allowing autonomous robots to operate in complex environments per-
forming user-defined tasks. Sarkar and Boyer [90] introduced a classificatory structure
for perceptual organisation in computer vision, showing different levels of abstraction
to bring meaning to the data under the assumption that our world is not visually
chaotic, but has structure and organisation.

Figure 2.1: Segmentation of an range image captured by sensors such as the Mi-
crosoft Kinect. Left: Output of the sensor with missing data points (white). Right:
Parametric models like planes and B-spline surfaces trimmed by curves.

Data abstraction brings advantages for further processing: Representing data as
parametrized models, as shown in Figure 2.1, means data reduction and allows to
establish a continuous model with distinctive characteristics such as its polynomial
order, area, curvature and normals. This model is more accurate than the raw sensor
data, because it incorporates prior knowledge of the world. Relations can be defined
between higher level entities beyond raw point clouds (e.g. the finger tip of a robotic
hand touching the surface of an object). Knowing parameters such as the surface
normal and curvature allows to reason about grasping behaviour and stability. Fur-
thermore, physical behaviour constrained by these relations can be incorporated [47]
and even learned when model based object tracking algorithms [71, 25] observe the
motion of a certain object during a defined robotic manipulation [48].

12 2. Segmentation and reconstruction

Overview: Section 2.1 gives an overview on related work dealing with models for
representing the shape of objects. In Section 2.2 B-spline curves and surfaces are
described. Methods that meet the requirements for fitting to point-clouds both in 2D
and 3D are developed. Especially B-spline curves are investigated for approximating
the boundaries of segments in image space and to be used for trimming the surfaces
within their parametric domain. Section 2.3 describes how the planar regions of the
range image are pre-segmented by clustering local normals. Using B-spline models of
first and second order (four and nine control points) these planar patches are merged
to continuous regions. Section 2.4 takes advantage of high level features given by
parametric models. A graph-cut algorithm is applied for grouping those surface
patches to meaningful objects. Section 2.5 describes how the surfaces of multiple
views are merged together to form a complete model using the tracking system of
Chapter 3. Results of each step are shown in Section 2.6 followed by a discussion of
the introduced methods in Section 2.7. Figure 2.2 gives a high-level overview of our
segmentation and reconstruction algorithm.

surface

s����� ! "#�

�g#$%"��

surfaces

pre-

s����� ! "#�

#&'�(s����� ! "#�

��

��n)"�*

)"�* g��"s g! "on

&+ g!(,"��

��g�"�� #&'�(

surfaces

Figure 2.2: Starting from a single RGB-D image the surfaces and objects are seg-
mented in a bottom-up approach. Object movement in front of the camera is visually
tracked and new surfaces popping out from the object segmentation are merged with
the existing shape model.

2.1 Related work

The importance of segmenting range images using geometric primitives has early
been recognized by Besl et al. [4], where smooth graph surfaces are fitted to range
data by least-squares minimization. Leonardis et al. [54] models data segments us-
ing bivariate polynomials, determining their order in a model selection scheme. In

2.2. B-spline fitting 13

[53] and [39] volumetric models, namely superquadrics, are introduced for simulta-
neous classification of image elements (segmentation) and estimation of the model
parameters (reconstruction).

A popular method to represent objects for robotic grasping is to use shape primi-
tives such as boxes, cylinders, spheres and cones [69] or triangulated meshes [87]. [10]
and [5] use superquadrics as well, allowing for a higher variability and generalisation.
Further [58] use continuous surfaces to compute the geodesic distance to deal with
objects with holes (e.g. a mug with handle) whereas [21] use implicit surfaces for
shape estimation and grasping.

The most simple geometric description of point-cloud segments are planes [37],
followed by simple primitives like cylinders and spheres [38]. [101] use variational sur-
face approximation, whereas [40] employ superquadrics. [14] developed a volumetric
method to build complex models from range data.

[35] takes a mixture of five surfaces for modelling namely planes, conic surfaces,
B-splines with four and nine control points and cluttered surfaces to represent natural
scenes like bushes and trees. A jump-diffusion method allows them to segment range
data efficiently within a Bayesian framework. Unfortunately the segments are not
fused with the image data given and the range data is not corrected. Further a direct
mapping from 2D image space into 3D world coordinates is not always accurate since
their definition of B-spline surfaces does not ensure that every point of the image can
be projected onto the 3D surface.

We abstract RGB-D data with plane and B-spline models to represent segments
as well as their boundaries. Compared to other approaches our definition of surfaces
provides a direct mapping from image into 3D world space. This allows to correct
wrong and undefined values in the point-cloud leading to consistent depth and colour
information. Adjusting the boundaries of the patches to the colour edges shows a
considerable improvement of the segmentation. Further we present an algorithm to
merge partial shape models from different views where we register the object poses
using our tracking system with the TSD. Overlapping surfaces are merged by selecting
the best fitting surface model. The boundaries of the resulting surfaces are found by
employing our novel curve fitting algorithm, which is able to handle the unorganised
data points in the parameter space of the surfaces. This leads to a shape model of
low complexity and optimal degree of freedom.

2.2 B-spline fitting

A common way to model free-form curves and surfaces in computer-aided design
(CAD), computer graphics and computer vision are B-splines and their generalisa-
tion the so-called Non-Uniform Rational B-Splines (NURBS). The reason for their
popularity is the ability to represent all conic sections, i.e. circles, cylinders, ellip-
soids, spheres and so forth. They are convenient to manipulate and possess useful
mathematical properties, such as refinement through knot insertion, Cp−1-continuity

14 2. Segmentation and reconstruction

for p-th order curves and the convex hull properties which we will exploit in Sec-
tion 2.2.2.

2.2.1 Definition of B-spline curves and surfaces

A complete description of B-splines and their mathematical formulation would go
far beyond the scope of this work, so we want to point the interested reader to the
fundamental book [82]. A good overview on B-splines and NURBS is given in [12]
which we want to summarize in this section. Let us start with the so called knot
vector Ξ = {ξ1, ξ2, . . . , ξn+p+1}, a non-decreasing set of coordinates in the parameter
space Ωc = [ξ1, ξn+p+1] ⊂ R, where n is the number of basis functions used for the
B-spline curve and p is the polynomial order. The knots partition the parameter
space into elements. With the knot vector in hand, the B-spline basis functions are
defined with the Cox-de Boor recursion formula [13, 16]:

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
(2.1)

for p = 0 and for p = 1, 2, 3, . . ., they are defined by

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (2.2)

There are several important features that come with this definition. The basis con-
stitutes a partition of unity, that is, ∀ξ,

n∑

i=1

Ni,p(ξ) = 1. (2.3)

Also the basis function is point-wise non-negative over the entire domain, that is,
Ni,p(ξ) ≥ 0, ∀ξ, which becomes important in Section 2.2.2. Another important
feature is, that each p-th order function has p − 1 continuous derivatives across the
element. Figure 2.3a shows basis functions of order p = 2 with interpolating knots
at ξ = 0 and ξ = 5.

B-spline curves

A B-spline curve c(ξ) : Ωc → R
3 with the parametric domain Ωc ⊂ R is constructed

by linear combinations of B-spline basis functions. Given n basis functions Ni,p with
i = 1, 2, . . . , n, the n vector-valued coefficients of the basis functions, called control
vector {bi ∈ R

3}, defines the curve as

c(ξ) =
n∑

i=1

Ni,p(ξ)bi. (2.4)

The idea is to manipulate the B-spline curve c(ξ), by changing the values of the
control points bi. The i-th control point defines the B-spline curve at its region of

2.2. B-spline fitting 15

P0

P1

P2

P3 P4

P5

P6

N0-2

N1-2 N2-2 N3-2 N4-2 N5-2

N6-2
.

0 . / 7 8 9
:;<

:=<

Figure 2.3: Figure 3.3 from [82]. (a) Quadratic B-spline basis functions with knot
vector Ξ = {0, 0, 0, 1, 2, 3, 4, 5, 5, 5}. (b) A quadratic curve using the basis functions
of (a).

influence determined by the basis function Ni,p(ξ). A quadratic (p = 2) B-spline
curve is shown in Figure 2.3b. An important characteristic of B-spline curves is that
affine transformations of the curve are obtained by applying it directly to the control
points. Furthermore B-spline curves obey a strong convex hull property resulting
from the non-negativity and partition of unity properties of the basis, combined with
the compact support of the functions. This leads to the fact that the B-spline curve
is completely contained within the convex hull defined by its control points. This
feature will be exploited for defining B-spline surfaces described in Section 2.2.2.

B-spline surfaces

A B-spline surface S(ξ) : Ωs → R
3 with the parametric domain (u, v) ∈ Ωs ⊂ R

2 is
constructed by linear combinations of the tensor product of B-spline basis functions.

16 2. Segmentation and reconstruction

Given n, m basis functions Ni,p and Mj,q with i = 1, 2, . . . , n and j = 1, 2, . . . , m, the
vector-valued coefficients, called control grid {Bi,j ∈ R

3}, defines the surface as

S(u, v) =
n∑

i=1

m∑

j=1

Ni,p(u)Mj,p(v)Bi,j (2.5)

The same characteristics as for B-spline curves apply for B-spline surfaces. The
derivatives in a given parametric direction may be determined from the respective
one-dimensional basis function.

Trimmed B-spline surfaces

Due to the tensor product leading to an orthogonal parametric domain, the bound-
aries are four-sided with the properties given by the respective basis function of the
surface. This is not always desirable (e.g. the cap of a cylinder is of 1st polynomial
order whereas its boundary may be represented by a quadratic NURBS curve). One
possibility to get rid of the four-sided shape of a B-spline surface is to trim away areas
that lie outside a certain region. The remaining part Ωt ⊂ Ωs is defined on the para-
metric domain using closed B-spline curves. Figure 2.4 shows a sparse point-cloud of
the Stanford bunny which is fitted and trimmed using B-spline curves and surfaces.1

u

v

Ωs

Ωt

Figure 2.4: Trimming a B-spline surface (brown) using a B-spline curve (red). Left:
The surface fitted to the data points (green). Middle: The curve modelling the outer
contour defines a region Ωt within Ωs (grid). Right: The trimmed B-spline surface.

2.2.2 Fitting curves to 2D point-clouds

Fitting a B-spline curve of a certain degree of freedom to a set of points p is the task
of manipulating the control points such that the distance between the points and the
curve is minimized (Figure 2.5). This distance is usually determined by Newton’s
method.

1Video: http://users.acin.tuwien.ac.at/tmoerwald/?site=4

http://users.acin.tuwien.ac.at/tmoerwald/?site=4

2.2. B-spline fitting 17

Figure 2.5: Curve-fitting: The distance (green) between the points (black) and the
closed B-spline curve (red) is minimized by manipulating the control points (blue).

We aim to automatically find the outer boundaries of unorganised 2D point-sets
with noise and clutter (Figure 2.4) and without any prior information of the com-
plexity of the shape as shown in Figure 2.9. Further we do not use any initialization
scheme to estimate the number of control points needed. We want to extend ex-
isting curve fitting techniques to make them more robust against clutter, noise and
discontinuities. Hence, we require the curve fitting algorithm to cope with

1. unorganised point-clouds,

2. no explicitly given boundary points,

3. noisy data and clutter inside the boundary,

4. unknown required degrees of freedom (DOF),

5. deep and narrow concavities.

To solve these problems we have developed the following measures and methods:

• Asymmetric Distance (AD), the distance measure for the minimization method
to efficiently handle data points inside the boundary (1., 2., 3.).

• Error-adaptive knot insertion (EAKI), which iteratively increases the DOF of
the curve at regions of high error by adding control points (knots). This leads
to a locally optimal resolution and allows for a trivial initialization (4., 5.).

• Closest Point Strapping (CPS), a minimization constraint to force the curve
towards inside points formed by deep and narrow concavities (5.).

Distance minimization

We assume the set {pk} to consist of unorganised, scattered data points with consid-
erable non-uniformly distributed noise and heavy clutter. A commonly used formu-
lation of fitting a B-spline curve to a set of points {pk} is to minimize the objective

18 2. Segmentation and reconstruction

function

f =
1

2

n∑

k=1

ek + wsfs (2.6)

with respect to the control vector b, where ek is an error term describing the distance
between the data points and the curve. A simple and commonly used distance is the
Point Distance (PD) defined as

ePD,k = ||c(ξk)− pk||
2 (2.7)

Typically a weighted smoothing term (ST) wsfs is used to obtain a visually satisfying
solution.

fs =

∫

Ω

||c′′(ξ)||2dt (2.8)

The footpoint ξk, with c(ξk) being the closest point to pk, with respect to Euclidean
distance, is evaluated by using Newton’s method.

(a) point distance (b) tangent distance

(c) squared distance from one iteration to the next

pkpk

pk

pk

n k
n k

n k

c(ξk)
c(ξk)

c(ξk)c(ξk)

d
d

d

d

Figure 2.6: Iso-value curves for point distance (PD), tangent distance (TD) and
squared distance (SD). Note that for SD the normal vector nk does not change during
optimization.

Blake and Isard [6] introduced a Tangent Distance (TD) term to be minimized,
leading to faster convergence.

eTD,k = [(c(ξk)− pk)
Tnk]

2 (2.9)

where nk is the normal vector of the curve at the point c(ξk). The drawback of the
TD, as shown in [99], is that the method is less robust with respect to local minima.

2.2. B-spline fitting 19

Therefore Wang et al. [99] introduced the Squared Distance (SD) term to benefit from
both, the robustness of PD and fast convergence of TD.

eSD,k =

{
d

d−ρ

[
(c(ξk)− pk)

T ξk
]2

+
[
(c(ξk)− pk)

Tnk

]2
if d < 0[

(c(ξk)− pk)
Tnk

]2
if 0 ≤ d < ρ

(2.10)

where tk is the tangent vector at the curve point c(ξk). Let ρ be the curvature of the
curve and d be the signed distance, where d < 0 if pk is on the opposite side of nk

and d ≥ 0 if they are on the same side. Note that nk, tk and ρ do not change during
iteration. Figure 2.6 shows the three distance measures PD, TD and SD. For a more
detailed discussion let us refer to the paper of Wang et al. [99]. We have applied our
approach using ePD,k, eTD,k and eSD,k experiencing similar behaviour as described in
the respective literature.

Asymmetric distance (AD)

σ

wAD,k

dk

eAD,k

ok

c(ξ)

c(ξk) p1p2 p3

(a) Asymmetric distance function for PD

ok

c(t)

p1

p2

p3

(b) Iso-value curves of eAD,k for PD

Figure 2.7: Asymmetric Distance: Weighting function wAD,k (red) and asymmetric
distance (AD) term eAD,k (green) for fitting the point pk attached to the footpoint
of the B-spline curve c(ξ) (blue). Two opposing points p1 and p2 lie on the same
iso-value curve even when the Euclidean distance of p2 is higher. In other words, a
point p3 outside the curve, with the same Euclidean distance from c(ξk) as a point p2

inside, causes a much higher error. Note that in general the outward normal vector
ok does not point in the same direction as the second derivative of the curve c′′(ξk).

As depicted in Figure 2.15 segmentations are often subject to heavy clutter and
outliers at the boundary as well as inside. Figure 2.4 shows an example where the
point-cloud is not organized and a boundary other than the convex hull can not be
defined properly. This leads to the idea of an asymmetric distance (AD) term such
that points that are inside the boundary are weighted less than points outside. Let p̃k

20 2. Segmentation and reconstruction

be the vector pointing from c(ξk) to pk and ok be the outward pointing unit normal
vector of the curve at ξk. We define the asymmetric weighting function wAD,k as

wAD,k =

{
e−

d2a
2σ2 if da < 0

1 if da ≥ 0
(2.11)

where σ defines the width of the transition of the weighting function with respect to
the signed distance

da = p̃T
k ok (2.12)

The weighting function is multiplied by any distance term ek, inducing our new
asymmetric distance term illustrated in Figure 2.7.

fad =
1

2

n∑

k=1

eAD,k (2.13)

eAD,k =

wAD,kePD,k

wAD,keTD,k

wAD,keSD,k

This forces the curve to the outer boundary points, and strongly de-weights points
inside, which means that also points of concavities are not considered immediately.
Fortunately the half bell-shaped function wAD,k iteratively closes the gap between
the curve and the data points. This is different to most of the other approaches
(i.e. [82, 6, 99]) where all points are treated the same in a global sense. For the
remainder of this paper we define ek = eAD,k = wAD,keSD,k if not stated otherwise.
Figure 2.8 shows how easy it is to confuse minimization methods using PD, TD or
SD without our AD term.

Figure 2.8: Typical problem when adding some clutter inside the boundary of a
dataset such as Figure 10 of [99] (left). Solving the problem using the asymmetric
distance (AD) of our approach (right). Red: point distance [82]. Green: tangent
distance [6]. Blue: squared distance [99].

2.2. B-spline fitting 21

Error-adaptive knot insertion (EAKI)

In real world applications the degrees of freedom of the boundary is usually unknown.
Initialization is typically done by user input or by some estimation scheme as in [99,
103, 80]. In the work of [18] knots are inserted or removed depending on the distance
between neighbouring knots. In our opinion this is quite counter-intuitive, since
segments where a low resolution of the curve already fits large parts of the contour
do not require refinement. We want to introduce a new method that automatically
adapts the DOF by iteratively inserting knots to the B-spline curve at points where
the error is above the accuracy specified by the user. This leads to a non-uniformly
distributed knot vector, with a high resolution at regions of high curvature and a
low resolution at straight segments. In other words, knots are placed where they are
needed, given a certain accuracy (see Figure 2.9).

Figure 2.9: EAKI: Control points (red) are iteratively inserted, automatically adapt-
ing the curve (blue) to the required degrees of freedom of the outline of the Chinese
character tian. From left to right: Initial curve, 10, 15 and 30 iterations with 4, 61,
73 and 82 control points respectively. Note the simple initialization and the iterative
increase of the DOF by knot insertion, while the AD term fastens the curve to the
data points.

During each fitting iteration we measure the point distance ePD,l from every curve
point c(ξl) to the closest point pl of the point cloud, where ξl are the midpoints of two
adjacent elements of the knot vector. If the distance exceeds the accuracy specified
by εa, a new knot is inserted at the curve parameter point ξl.

Closest Point Strapping (CPS)

Unfortunately noise at the boundary and sharp turns may stop the effect of itera-
tively closing the boundary of the AD term since it de-weights data points inside the
boundary (Figure 2.10). Increasing σ might work for some cases, but causes problems
when neighbouring boundaries are close to each other.

This leads to the idea of explicitly finding data points orthogonal to the boundary
and strap the curve to these points. Starting form Equation (2.6), we add the term

22 2. Segmentation and reconstruction

Figure 2.10: Sharp turns: Without concavity filling methods (left). With Closest
Point Strapping (right).

wcfc to the functional to be minimized,

f = fad + wsfs + wcfc

fc =
∑

l ||c(ξl)− pl||
2

(2.14)

where pl is the closest point to the B-spline curve at ξl. In a similar manner as for
EAKI, we find the closest point for each midpoint ξl of two neighbouring elements
of the knot vector. The difference is that we are not using the Euclidean distance to
find pl, since we are searching for points within the curve and close to the straight
line normal to the curve. Therefore we define the distance as

do =

0 if |p̃l| = 0

∞, if oT
l p̃l ≥ 0, |p̃l| 6= 0

p̃T
l
p̃l

|oT
l
p̃l|
, if oT

l p̃l < 0, |p̃l| 6= 0

(2.15)

which results in iso-value curves as shown in in Figure 2.11. As we are minimizing
Equation (2.14) the curve is strapped to data points pl behind the sharp turn. Once
the curve is close enough (do < σ) to points in the neighbourhood of pl the closing
effect induced by AD continues.

Implementation

We have implemented the concepts above using openNURBS [67]. All of the software
is available within the Point Cloud Library [88]2. An outline of our approach is shown
in Algorithm 1.

2http://www.pointclouds.org

http://www.pointclouds.org

2.2. B-spline fitting 23

pl

−ol
c(ξl)

c(ξ)

p̃l

Figure 2.11: Closest Point Strapping: Iso-value curves for finding the closest point to
the curve at point c(ξl), with respect to the outward pointing normal vector ol. Note
that with the distance metric do the point pl is closer than the point right above c(ξl)
and therefore used for fitting the curve at ξl.

Initialization: For initialization we simply calculate the bounding circle of the
point cloud and set the 4 initial control points of the closed periodic B-spline curve
to lie on this circle while being shifted by π/4 from each other (see Figure 2.9 left).

Distance minimization: For minimization of the functional in Equation (2.14)
we assemble the three terms into a single linear system. Considering Equation (2.4)
it is easy to rewrite the first term as

fk = Kkb (2.16)

where fk is called force vector and contains all the points pk of the point-cloud to
be fitted. The stiffness matrix Kk contains the basis functions at the respective
footpoints ξk in matrix form and b is the vector of control points. The linearisation
of the third term of Equation (2.14) responsible for CPS is analogue to the first term.

f l = Klb (2.17)

where f l contains the closest points pl and Kl the basis functions at the footpoints
ξl in matrix form. The smoothing term of Equation (2.8), minimizing the second
derivatives of the functional, is approximated by a regularisation matrix R, which is
multiplied with the control vector b. R is constructed such that the position of a
certain control points tends to lie in the middle of its neighbours in the control grid.

0 = Rb (2.18)

24 2. Segmentation and reconstruction

Algorithm 1 Curve fitting algorithm

1: initialization
2: while r < R or fd > εc and ||c(ξl)− pl||2 > εa do ⊲ Termination
3:

4: for all points pk do ⊲ parametrization
5: find footpoint ξk for pk using Newton’s method
6: end for
7:

8: minimize f = fad + wsfs + wcfc ⊲ AD + ST + CPS
9:

10: for all midpoints ξl of c do ⊲ EAKI
11: find closest point pl of c(ξl)
12: if ||c(ξl)− pl||2 < εa then
13: insert new knot at ξl
14: end if
15: end for
16:

17: end while

Assembling Equation (2.16), (2.18) and (2.17) into one single system yields

fk

ws

wcf
l

 =

Kk

wsR
wcK

l

b (2.19)

with ws and wc being the weights for smoothing and CPS. For solving this linear sys-
tem efficiently we use the unsymmetric multifrontal sparse LU factorization package
(UMFPACK) of [15].

Error-adaptive-knot-insertion: The implementation of EAKI is quite straight
forward. Since the closest points at the footpoints ξl are anyway computed during
closest point strapping, this distance only has to be compared to the threshold εa set
by the user.

Termination: According to Algorithm 1 the optimization loop terminates if the
following conditions are met.

• The number of iterations exceeds a maximum R specified by the user.
OR

• The maximum distance of the curve at c(ξl) to the closest point pl is below the
threshold εa. This means that the curve is close enough to the data points.
AND

• fc is lower then a user specified threshold εc. This means that the curve fits all
data points sufficiently.

2.2. B-spline fitting 25

Image based curve fitting

The RGB-D image given by a sensor such as the Microsoft Kinect typically suffers
from heavy noise. Usually depth edges do not correspond to colour edges. Areas with
large deviation in depth are often missing points or, if they are available, their values
are completely wrong. To solve this problem we propose to fit a B-spline curve to
the contour of surface segments resulting from the segmentation algorithm described
in Section 2.3. Therefore we formulate the fitting problem such that the curve aligns
to the edges given by the colour image.

For each surface patch of the segmentation we compute the contour of the points
in image space shown in the top left of Figure 2.12. For this we parse all pixels
of the segmented region and mark them if at least one of the 4-connected neigh-
bourhood pixels does not belong to the region. The marked pixels include the outer
boundary, but also inner clutter points if the region is not completely dense or has
holes. Hence, to get the outer ordered boundary we trace the pixel chains with an
8-connected neighbourhood kernel and select the largest chain which surrounds the
inner points. To get a more consistent and accurate representation of the contour we
search for points in its neighbourhood that lie on colour edges. Each boundary pixels
is substituted by the closest colour edge pixel (Figure 2.12 top-right). For calculating
the edges of the colour image we use the Canny edge detection algorithm [7] on the
grey-scale image. The resulting set of points are used for initialisation and fitting of
the B-spline curve. The bottom right of Figure 2.12 shows the resulting curve.

2.2.3 Surface fitting

Similar as for curves, fitting a surface is the task of finding values for the control
points such that the distance between the points and the surface is minimized. Again
Newton’s method is applied for finding the closest point on the surface. Figure 2.13
shows a surface of 3rd order and 16 control points fitted to a set of points. The
surface is initialised using the principal-component-analysis (PCA) where the plane
is defined by the mean of the points and the two largest eigenvectors. In general for
this kind of surface fitting, the choice of the parameter space is not important, in
contrast to image based surface fitting.

Image based surface fitting

As shown on the left of Figure 2.14 we define the parametric domain Ωs ⊂ R
2 with

(u, v) ∈ Ωs, of the surface S : Ωs → R
3 to be a subset of the image space of the

camera. In more detail we define Ωs to be the bounding box of the control points of
the B-spline curve. Together with the convex hull property of B-splines this ensures
that every point inside the curve lies inside the bounding box of the control points
and with Equation (2.5) has its corresponding point in R

3. This means that these
points and also the curve itself can simply be transformed to R

3 as shown on the
right of Figure 2.14. For an organized 3D point-cloud this means that we can skip

26 2. Segmentation and reconstruction

Figure 2.12: Adjusting the contour points of the surface segmentation of Section 2.3
to the edges of the image. Green points lie on image edges (black) in contrast to red
points. Top-Left: Contour of the point-cloud patch. Top-Right: Contour updated
with respect to the image edges. Bottom-Left: Colour image. Bottom-Right: Curve
fitted to the updated contour.

2.2. B-spline fitting 27

Figure 2.13: Fitting a B-spline surface (green) by minimizing the distance (red)
between points (black) and the surface.

S(u, v)

Figure 2.14: The parametric domain Ωs (yellow) defined on the image space (left) is
mapped into 3D world coordinates by the B-spline surface function S(u, v) (right).
The control points (blue) of the curve (red) define the boundaries of Ωs.

the expensive search for the closest points on the surface, since the pixel coordinates
are equal to the footpoints (u, v) in the parametric domain of the surface.

Similar to B-spline curve fitting we again minimize the distance between the 3D-
points and the B-spline surface. As we require the projection of the B-spline surface
to remain unchanged we constrain the control points such that they only vary in z-
direction. Since the mapping from image space into 3D coordinates using the pinhole
camera model is not similar, in a geometric sense, the point distance minimization
(Equation (2.7)) is not suitable. Hence we apply the tangent distance for fitting the
B-spline surface.

eTD,k = [(S(uk, vk)− pk)
Tnk]

2 (2.20)

Equivalent to Equation (2.9) S(uk, vk) is the closest surface point to pk and nk is the
surface normal at this very position.

28 2. Segmentation and reconstruction

Segmentation refinement and point-cloud completion

With this representation at hand, points that do not lie within the contour of a certain
patch, are reassigned to the neighbouring segments. If no depth value is available, it
is calculated by mapping the image point to the corresponding 3D surface. Comput-
ing the surfaces and curves for all segments leads to a highly accurate, continuous,
consistent and efficient representation of the scene which significantly improves the
end result as we will demonstrate in the Section 2.6.

2.3 Surface segmentation

The work presented in this section was developed together with my colleagues An-
dreas Richtsfeld and Johann Prankl and is described in detail in [83] and [73]. 3D
cameras, such as Microsoft’s Kinect or Asus’ Xtion provide RGB-D data, consisting
of a colour image and the associated depth information for each pixel. We aim for
continuous regions (smooth surface patches) by fitting planes and B-splines of higher
polynomial order to account for curved surfaces.

2.3.1 Pre-segmentation

The task of pre-segmentation is to cluster neighbouring pixels to planar patches
without discontinuities using locally calculated normals. Therefore we exploit the
relationship between 2D image space and associated depth information of organized
point-clouds (i.e. range images).

Figure 2.15: Segmentation of planar patches of an RGB-D image by clustering points
with similar local normals.

Normal calculation

An easy way to calculate the normals of a point-cloud is to locally fit planes to neigh-
bouring 3D points. We use organized point-clouds as obtained from the Microsoft
Kinect, where a kernel defines the neighbourhood of a certain point.

2.3. Surface segmentation 29

Normal clustering

Points are clustered recursively with respect to the angular deviation α of their normal
compared to already clustered patches. If α is bellow a certain threshold it is added
to the patch it was compared to. The normal of the already clustered points is simply
the mean of all point normals.

2.3.2 Model selection

In the last section continuous planar patches were extracted from RGB-D data.
Parametrization of these patches to certain surface models allows for a more compact
representation. For surface segmentation two parametric models are chosen, planes
to represent simple planar patches and B-splines allowing to represent curved surfaces
of higher polynomial order. Note that B-splines of polynomial order p = 1 could also
represent planes and we could thus skip explicit plane models, but they are more
efficient in terms of data size, fitting and processing (e.g. intersections, distance).

Figure 2.16: Merging planar regions using B-spline surfaces of higher polynomial
order.

Neighbouring patches are merged after parametrization, if a joint parametric
model fits better than the two individual models. To come to a decision, model
selection with a minimum description length (MDL) criterion [54] is used. The sum
of savings

Sh = κ0Sarea − κ1Smodel − κ2Serror (2.21)

for models of neighbouring patches are compared with savings of a model fitted to a
merged patch and in case the latter is larger the individual patches are substituted.
Sarea corresponds to the number of points that can be explained by a hypothesis h.
Serror represents the costs for describing the error made by h. The weights κ0, κ1

and κ2 can be determined on an information-theoretical basis, or they are adjusted
for preferring a certain term. Smodel encodes the complexity of the models used. In
our case we use the number of control points ncps defining the surface and normalize
it over all surfaces involved. Given that we want to choose among m primitives the

30 2. Segmentation and reconstruction

model complexity of the i-th model is given by

Si
model =

1
∑m

j=1 n
j
cps

ni
cps (2.22)

We also use the MDL for the reconstruction of the object shape described in
Section 2.5. Table 2.1 lists some geometric primitives and the number of control points
defining the surface. Further we allow for refinement by knot insertion increasing the
number of control points. For more details on the MDL formulation we want to refer
to the work of [52].

Table 2.1: Geometric primitives
Primitive # control points
Plane 3
Quadratic B-spline patch 9
B-Spline Cylinder 16
Quadratic B-spline cylinder 24
B-spline sphere 26

2.4 Object segmentation

The work on object segmentation was established together with my colleague Andreas
Richtsfeld and is explained in more detail in [83]. In the previous section we explained
how to find a representation of a point cloud consisting of geometric primitives such
as planes and B-spline surfaces. The main idea was to segment with respect to con-
tinuous regions using range images. Now we are interested in clustering these regions
into object hypothesis. In contrast to Section 2.3 we are using colour information as
well, additionally to depth (Figure 2.17).

2.4.1 Grouping of parametric surfaces

Starting form the segmentation of Section 2.3, we try to find relations between sur-
faces that indicate if they belong together. Inspired by the principles of Gestalt [100]
features like curvature, normals direction, spatial location, colour and texture are
employed to define these relations. A support-vector-machine (SVM) is trained from
hand-annotated data, which maps the set of relations between two surfaces to a single
probability value. We can now build a graph, where the surface patches are nodes
and the relations are the edges. This allows us to use graph-cut to segment objects in
a global sense. The lower-right of Figure 2.17 shows the result of object segmentation
on the example already used in Section 2.3.

2.5. Learning 31

Figure 2.17: Grouping parametric surfaces to objects using depth and colour infor-
mation. Left: Depth and colour image. Right: Surface- and object segmentation.

2.5 Learning

Given the object segmentation of a single view as in Figure 2.17, we now aim to recon-
struct the shape of the object using multiple points of view. We consider the cognitive
robotic scenario, where the representation of the shape requires to be extendible. This
is different from typical reconstruction approaches [30, 31, 98, 104, 57, 79], which are
taking advantage of global optimization techniques. Of course these could be applied
to our approach after several key-frames have been recorded, leading to more accu-
rate models. However, since this is not in the sense of an extendible representation
we do not discuss global optimization for multi-view reconstruction in this work.

2.5.1 Object registration

Starting from the segmentation of a single view, the object of interest is selected by a
tutor. Colour information is mapped onto the shape geometry by simply projecting
it into image space. Then the tracking system described in the subsequent Chapter 3
is employed to follow the pose of the object in real-time while moving it in front of
the camera sensor. Once another good view point is indicated (see Section 3.3) a key-
frame is captured containing depth- and colour information. The object segmentation
algorithm is performed on this key-frame.

32 2. Segmentation and reconstruction

2.5.2 Surface merging

The surfaces of the object in the new key-frame are merged with the current surfaces.
Simply adding the new surfaces to the object will lead to overlaps, which need to be
resolved accordingly. Therefore we first need to identify the segmented object in the
new view as the object with the largest area of overlap, with respect to the projection
of the tracked appearance model. Afterwards surfaces which significantly overlap are
merged, resulting in a single surface patch with the proper model.

Overlap evaluation

For all surface patches of the current object we compute the overlap with all the
surface patches of the new object in image space. Therefore we project both surfaces
into 2D image space and there consider their intersection. For each point being part
of this intersection we compute the angular deviation of the surface normals in world
coordinates. The sum of the angular deviation over the region of intersection defines
our measure of overlap. This overlap is then normalized by the number of points of
the two surfaces in image space yielding two values. If one of the normalized overlap
values exceeds a certain threshold the surface pair is merged. Figure 2.18 shows an
example where two quadratic B-spline patches are merged (top row) and one where
the normalized overlap value is too low for merging (bottom row).

Figure 2.18: Overlap of a surface of the existing model (yellow) with two new surfaces
(cyan). The overlap in image space (right) is evaluated taking into account the surface
normals. Green indicates high- and red low overlap w.r.t. deviation of normals. As
a result the surfaces in the top row are merged in contrast to the bottom row.

2.5. Learning 33

Figure 2.19: Geometric primitives used for fitting point-clouds in R
3. The best

model according to Equation (2.21) is selected. From top-left to bottom-right:
Plane, quadratic B-spline patch, refined quadratic B-spline patch, B-spline cylinder,
quadratic B-spline cylinder, B-spline sphere.

Model selection

Consider that the 3D-points from previous views belonging to a certain surface are
given. Then the union of these points and the points of the surface of the current view
form the data we want to fit with a geometric model for merging. So in this sense
we substitute the two surfaces by a single one rather than merging them. We select
the best fitting surface by comparing their minimum description length according
to Equation (2.21). Figure 2.19 shows the surface primitives used for merging. To
define a boundary for the resulting surface we employ the curve fitting algorithm of
Section 2.2.2 within its parametric domain. Figure 2.20 shows how quadratic B-spline
surfaces are merged by substitution.

Figure 2.20: Two quadratic B-Spline patches are substituted by a B-spline cylinder.

34 2. Segmentation and reconstruction

2.6 Results

2.6.1 B-spline curve fitting

We employ our method in a generic way to real world data for finding the boundary of
point-clouds on manifolds like B-spline surfaces for reconstruction. Please note, that
segmentation and surface fitting is not the focus of this Subsection and is therefore
treated as given.

Continuous region segmentation: Modern methods for image segmentation of-
ten take advantage of depth information such as [85, 83] who try to identify continuous
regions using RGB-D information from sensors like the Microsoft Kinect as illustrated
in Figure 2.21. Please note the complex shape of the right side of the desk, the deep
concavity of the segment in the foreground, as well as the heavy clutter occurring at
the right side3. The noise is estimated to adjust accuracy εa for EAKI and transition
width σ for AD. (σ = 0.01, ws = 1.0, wc = 1.0, γ = −1.0, εd = 0.5, εa = 0.01)

Figure 2.21: Results of our approach when finding the contours of image segments
with complex shapes, deep concavities and clutter inside the region.

Comparison to PD, TD and SD: A qualitative comparison of methods like PD,
TD and SD with our method is quite hard, since the former are not designed for treat-
ing clutter inside the boundary and rely on proper initialization schemes to obtain
good solutions. However, as we want to point out the significance of our approach
in real world scenarios we show cases where PD, TD and SD is not appropriate in
contrast to AD. Figure 2.22 shows how a single outlier forces the curve not to lie on
the boundary.

Due to the EAKI our approach automatically determines the required DOF by
inserting knots at points where the error is above the accuracy required. This allows
for a simple and fast initialization. Figure 2.23 shows that SD only converges to
a satisfying solution if a sufficiently good initialization is given. (i.e. placement
of enough control points close to the boundary). On the other hand AD leads to
a satisfying solution with a very simple initialization starting with only 4 control

3Video: http://users.acin.tuwien.ac.at/tmoerwald/?site=4

http://users.acin.tuwien.ac.at/tmoerwald/?site=4

2.6. Results 35

Figure 2.22: Comparison: (a) Initialization using the bounding circle. (b) PD, TD
and SD disturbed by a single outlier in the middle of the dataset. (c) Our method
applied to PD, TD and SD according to Equation (2.13) after convergence.

points. Note that the number of control points can sometimes be unnecessarily high
as we are inserting knots at each iteration. Alternatively we could insert knots only
when the curve converged with its current number of control points, but this would
slower the overall convergence of the algorithm.

Curve fitting for reconstruction: Similar to [28] we have applied our approach
to the task of reconstruction. As shown in Figure 2.24 a B-spline surface is fitted
to the 3D point cloud. After that our method is used to determine the boundary,
which allows for trimming the surface. Both, curve fitting and trimming is done in
the parametric domain of the surface. Note that it is not necessary to compute the
boundary points, since the AD de-weights points inside the curve, which means that
our approach is also appropriate for dense point clouds. However, fitting a curve to
a dense point cloud is much slower due to the high number of data points.

Robustness: We are using the same set of parameters for a certain type of point
data (e.g. the Berkeley dataset) and do not need to adjust them for each image.
Figure 2.25 shows fitting results with changing data characteristics, namely the point
density and noise. Our method fails if the accuracy for EAKI εa is lower than the
distance between some adjacent points, which follows from the fact that fitting a
concave boundary is an ill-posed problem. In other words EAKI and CF treat the gaps
between points as concavity and try to fill them. However, changing the parameter
εa changes this behavior and leads to a satisfying solution (Figure 2.26).

36 2. Segmentation and reconstruction

(a)

(b)

(c)

(d)

Figure 2.23: Comparison: (a) Squared Distance (SD) with initialization using the
bounding circle and a sufficient number of control points. (b) SD with manual ini-
tialization. Note that the accuracy at corners is quite low, due to a too small number
of control points. Only if the shape is roughly estimated with a sufficient number
of control points SD produces similar results as our approach. (c) Our method with
initialization using the bounding circle. (d) Our method after convergence. Note how
at points of sharp turns additional control points are inserted by EAKI.

2.6. Results 37

Figure 2.24: Reconstruction: The curve is fitted to a point cloud (left) in the para-
metric domain of a B-spline surface (middle) which allows for trimming it (right).
(σ = 5e−4, εd = εa = 0.015, ws = 0.5, wc = 1.0, γ = −1.0, 15 iterations).

38 2. Segmentation and reconstruction

σ
n
=

2.
5e

−
3

σ
n
=

5e
−
3

σ
n
=

7.
5e

−
3

dn = 1e−3 dn = 2.5e−3 dn = 5e−3 dn = 7.5e−3

Figure 2.25: Robustness when fitting the Chinese character tian, without changing
the parameters but the distribution of the data points. Point distance dn increases
from left to right, noise increases from top to bottom. The resulting curve is shown
in blue after 40 iterations. (σ = 0.0002, εd = 0.0, εa = 0.015, ws = 0.5, wc = 1.0,
γ = −1.0)

2.6. Results 39

Figure 2.26: Fitting of the difficult case in the lower-right of Figure 2.25 (σn = 7.5e−3,
dn = 7.5e−3) with changed parameters (σ = 0.0002, εd = 0.0, εa = 0.017, ws = 0.5,
wc = 1.0, γ = −1.0, 40 iterations).

40 2. Segmentation and reconstruction

2.6.2 Surface segmentation

We evaluate our approach using the online available Object Segmentation Database
(OSD) [83], consisting of 110 table top scenes with various kinds of objects and
with different complexities of scenes. The dataset provides RGB-D data with hand-
annotated ground truth for all objects. Pre-segmentation, model parametrization
and model refinement is evaluated with respect to over- and under-segmentation of
surface patches on objects. Since the OSD provides ground truth for segmented
objects rather than continuous regions, segments from our approach are assigned to
an object when more than half of it overlaps. Ntrue and Nfalse are the number of
correct and incorrect segmented points and Nall the number of all points on an object.
Over-segmentation Fos and under-segmentation Fus is then defined as:

Fos = 1−
Ntrue

Nall

(2.23)

Fus =
Nfalse

Nall

(2.24)

For a sequence of images with multiple objects in a scene, Ntrue, Nfalse and Nall

are summed up over all frames. Figure 2.27 shows an object and its segmentation
as rectangular region, where the different areas indicate the measures for over- and
under-segmentation.

NtrueNall

Nfalse

Figure 2.27: Correct (Ntrue) and incorrect (Nfalse) segmentation regions with respect
to the ground truth (Nall). These values are used for defining over- and under-
segmentation.

Pre-segmentation

Figure 2.28 shows two examples of pre-segmentation with two sets of parameters. We
chose the parameters such that the image is slightly over-segmented, since wrongly
split surfaces are merged during model selection. On the other hand, under-segmented
regions including two different surface patches can not be split up any more. For a
more detailed evaluation of pre-segmentation we want to point the interested reader
to the work of [73].

2.6. Results 41

>?@ >A@

>B@ >C@

Figure 2.28: Pre-segmentation of table top scene from OSD. While for image (a) the
parameters are optimal, (b) shows additional patches on the edges of the box on the
top. On the other hand, the same set of parameters causes under-segmentation on
image (c) (blue patch) while (d) shows better pre-segmentation.

Model selection

During the model selection procedure, described in Section 2.3.2, neighbouring planar
surface patches are getting merged. Reduction of patches through merging is highly
dependent on the used images, because it usually happens on curved surfaces that
planar pre-segmented patches get merged to a bigger B-spline surface. However,
typically neighbouring patches of the same object get merged, if no discontinuities
are in between.

Model refinement

Model refinement, described in Section 2.2.3, improves the boundary of segmented
patches using colour information. Further depth data not available is filled by map-
ping the point from image space to a 3D surface. This leads to the following im-
provement with respect to segmentation accuracy: The value for over-segmentation
decreases about 36% (from 3.92% to 2.50%) and under-segmentation about 30% (from
1.71% to 1.17%).

Figure 2.29 shows the sequential steps of our segmentation framework. RGB-D
images are pre-segmented to planar patches, which are then merged with respect to
curved surfaces during model selection. The refinement step fills missing data and
adjusts depth and colour edges.

42 2. Segmentation and reconstruction

Figure 2.29: From left to right: RGB-D image from the Microsoft Kinect, pre-
segmentation, model selection and model refinement.

2.6. Results 43

2.6.3 Object segmentation

The object segmentation was again evaluated using the OSD consisting of 110 RGB-D
images differentiated into six subsets with different complexity:

• Boxes

• Stacked Boxes

• Occluded Objects

• Cylindrical Objects

• Mixed Objects

• Complex Scene

45 images were used for learning the SVM for grouping the parametric surfaces (Sec-
tion 2.4.1). Figure 2.30 shows the different kinds of scenes and the results achieved
with our object segmentation algorithm.

Table 2.2: Results of object segmentation. SVM accuracy, over- and under-
segmentation.

Set SVM Fos Fus

Boxes 98.19% 0.2% 17.2%
Stacked Boxes 98.99% 0.0% 28.2%
Occluded Objects 99.23% 0.0% 0.2%
Cylindrical Objects 96.77% 2.6% 3.5%
Mixed Objects 94.97% 1.3% 39.2%
Complex Scene 98.97% 5.4% 145.5%
MEAN 98.41% 2.7% 69.5%

The evaluation results from the six different trainings sets are shown in Tab. 2.2.
The first column presents the accuracy of the SVM predictions for relations between
neighbouring surface patches, followed by the over- and under-segmentation. Note
that even occluded objects are successfully segmented by using two SVMs, where one
is specialized to resolve such difficult situations. More details on the two stage SVM
algorithm are available in the work of [83].

44 2. Segmentation and reconstruction

Figure 2.30: Selected examples of segmented objects with the proposed approach
(objects randomly coloured). The top six examples showing results from each dataset,
the bottom row is showing under-segmentation caused by wrong predictions.

2.7. Discussion 45

2.7 Discussion

In this chapter we have introduced several methods with the goal of object segmen-
tation and reconstruction. We do not claim to solve these problems in a general way,
but instead tested methods and models that allow to operate in a cognitive robotic
environment characterized as outlined in Chapter 1. The developed algorithms con-
tribute to various fields of research.

As no usable curve fitting algorithm for scattered non-dense point-clouds exists
we present the method of Section 2.2 to the community. Unfortunately this method
is not completely generic and six parameters need to be tuned to the sensor and scene
used. Considering that finding the non-convex hull of an unorganised point-cloud is
an ill-posed problem, we only consider the estimation of these parameters as future
work and not their removal.

Object segmentation on a range image is not a new problem. However, due to the
recently available cheap RGB-D sensors this field of research received a lot of atten-
tion in the past years. Many algorithms have been published to robustly segment and
reconstruct objects in real-time. Our approach puts the focus on a meaningful repre-
sentation of these objects, which is why we choose to model them using parametric
geometric primitives such as B-splines. This description gives additional information
for object categorisation, grasping and reverse engineering.

The methods described in this chapter takes advantage of the tracking algorithm
and the TSD introduced in the following chapter. Segmented objects of interest
are selected and visually tracked. TSD is used to identify good views from which
new shape information is learned. Therefore new surface segments are attached to
the object or, when it overlaps with an existing surface, merged accordingly. This
consecutively improves and extends the shape model. The drawback of our recon-
struction approach is that it neither produces watertight models nor does it model
local details due to the limited geometric primitives we are using for model selection.
The possibility for finding the intersections and seams of the object model is given
especially when taking colour information into account. Also there exist generalisa-
tions of B-spline surfaces which would allow for local refinement by knot insertion
(e.g. T-spline surfaces) in contrast to global refinement as in our approach. However,
since the statement of this thesis in this context is to benefit from parametric models
and to improve them in the cognitive sense we want to postpone this problem to
future work.

At this point the framework presented in this thesis so far is already an excellent
example of knowledge fusion from different cues, tightly welding the components
together. In this chapter the shape learning scheme relies on visual tracking to
fuse different views, whereas the tracking algorithm itself relies on the shape model
learned so far. Starting from scratch a single view is sufficient to start tracking which
in return allows for shape modelling. The appearance model is built up and refined
in a parallel manner with hardly any prior knowledge or constraints. As we will see in
the subsequent chapters this characteristic applies in the very same manner. This is
what we found to be the core principle for cognitive robotics depicted in Figure 1.5.

46 2. Segmentation and reconstruction

Chapter 3

Colour based object tracking

Once a partial model of the object appearance, namely its shape and colour, has been
learned, we can visually track it during pose changes. Subsequently we identify new
good views and, as shown in the previous chapter, add the new information to obtain
a more and more complete appearance model.

For learning about physical behaviour of objects as in Chapter 4 and in more detail
in [47, 71, 48, 25] the robot has to observe its motion (Figure 3.1, middle). Again
accuracy of tracking and also detecting if the object is tracked correctly are important
to decide whether a certain trajectory should be taken into account for learning. For
a robot operating in a complex unpredictable environment, the challenge is to develop
a tracking method that is robust to different lighting conditions, partial occlusion,
and motion blur.

Today this is achieved best by model-based tracking of objects and numerous so-
lutions using different feature types, models and mathematical frameworks have been
developed, where today’s computational power allows for several real-time solutions.
However, practical application of these methods is often limited for various reasons.
For example, some methods report good results, without giving actual numbers on
accuracy [9, 68, 42, 66]. Others are capable of handling partial occlusion or changing
lighting conditions [66, 95, 70, 94] but can not differentiate between deteriorating
tracking conditions and lost tracks. Some methods are restricted in their degrees of
freedom, e.g. 140 degrees of rotation as in [70], require off-line learning [95] or are
limited to either textured [89, 78] or low- textured objects [97]. Also recovery from
lost tracks is rarely handled with a few exceptions [78, 89], which are tracking-by-
detection approaches.

Another requirement in robotics is computational efficiency to react to observed
situations in time. Consider again the grasping scenario, where we want to use
visual servoing to adapt the grasping movement on-line. Hence, we require real-
time performance, i.e. processing time within the frame rate of a typical camera
(25-50 Hz). For now we are using RGB data only, since at the time of development
no range sensors of sufficient resolution achieving such a frame rate were commonly
available.

To meet all these requirements we propose to tackle the core problem of de-

48 3. Colour based object tracking

Figure 3.1: Tracking for robotic applications. Left: grasping; middle: learning about
object motion; right: grasp stability.

tecting tracking failure and take advantage of this supervisory knowledge to achieve
automatic object tracking using texture mapping, pose recovery and online learning.
Hence, the approach is based on the following methods:

• Tracking-state-detection (TSD): To know whether we are tracking correctly,
whether the object is occluded or whether we lost track we employ our novel
TSD method. The knowledge of the tracking state, including speed and confi-
dence of tracking, allows for triggering online learning or pose recovery.

• Texture mapping: We take advantage of texture, if available, to boost robust-
ness of tracking, especially in cluttered scenes.

• Pose recovery: To initialise tracking and recover lost tracks we use distinctive
features placed on the surface of the object model.

• Online learning: We learn these feature points and surface texture of the object
automatically while tracking.

• Model completeness: A probabilistic formulation allows to reason if sufficient
information of the object has been gathered.

Additionally to tracking itself we learn colour information and map it on the surface
of the shape model we obtained so far. Since this mapping is a trivial task we do not
spend a section on colour learning on its own, but rather focus on how to identify
good views and complete the model.

Overview: Section 3.1 gives an overview of related work on visual tracking algo-
rithms. In Section 3.2 we formulate tracking as particle filtering using a modified
version of the Bootstrap filter [34] and show how to draw observations by projecting
the model into image space. Section 3.3 introduces TSD which allows to reason about
the current tracking quality, convergence and whether tracking has lost the object
or is occluded. We show how surface texture and SIFTs of a tracked object can be

3.1. Related work 49

learned online and how they are used for re-detection. In Section 3.4 we evaluate
our approach with respect to the requirements established above. Figure 3.2 gives a
high-level overview of our tracking system.

DEEF

learn texture

and SIFTs

TSD

pEGH HGIJKLIJEiM

INLOPJiD

QEGI

object

NHRFHIHOIJEi

Figure 3.2: Tracking an object with the tracking-state-detection (TSD). Good views
are used for learning texture and SIFTs. When tracking fails and the object is visually
lost, pose recovery is triggered to re-detect it.

3.1 Related work

Tracking the pose of an object by analysing a stream of TV images in real-time
goes back to the early eighties [77, 26]. One of the first successful approaches of
tracking objects based on edges was the RAPiD system [36]. It used points on model
edges and searched for corresponding image edges the edge gradient. Subsequent
approaches aimed at improving robustness in tough real-world scenarios [22, 9, 68,
95, 43]. Approaches based on globally matching model primitives with primitives
extracted from the camera image [60, 32, 44, 49, 86] have been used for applications
such as robot and car tracking, but were later replaced by improved versions of the
RAPiD type.

[66] also use edges and textures for tracking. Their approach extracts point fea-
tures from surface texture and use them, together with edges, to calculate the object
pose. This turns out to be very fast as well as robust against occlusion. Our approach
not only uses patches but the whole texture, which usually lets the pose converge very
quickly to the accurate pose. Since the algorithm runs on the GPU, it is as fast as the
method in [66]. The work presented in [97] uses edge features to track but does not
take into account texture information. This makes it less robust against occlusion.
Since the search area in that approach is very small, it is also less robust against fast
movement and gets caught in local minima.

More recent approaches aim to solve most of the problems of tracking, such as [94]
where the authors are matching the camera image with pre-trained keyframes and
then minimizing the squared distance of feature points taking into account neigh-
bouring frames. The approach described in [70] uses a modified version of the Active
Appearance Model which allows for partial and self occlusion of the objects and for
high accuracy and precision. In [17] the authors minimize the optical flow resulting

50 3. Colour based object tracking

from the projection of a textured model and the camera image. To compensate for
shadows and changing lighting they apply an illumination normalization technique.

In [50] the authors introduce real-time tracking to robotic manipulation. They
are using the method proposed in [64], where they project the CAD model into image
space, and try to minimize a cost functional for the distance to image edges found
along the gradients of the edges of the model. The work presented in [29] describes
an approach for real-time visual servoing using a binocular camera setup to estimate
the pose by triangulating a set of feature points. Similar to our approach, [89] takes
advantage of robust Monte Carlo particle filtering to determine the pose of the camera
with respect to SIFT features, which are localized in 3D using epipolar geometry.

Missing in all methods is to detect when tracking fails rather than reporting
tracking trapped in a local optimum. The proposed TSD tries to solve this and we
develop the approach to make it work automatically.

3.2 Pose estimation

The full 6 DOF pose of the object is identified by using colour and edge information
from shape and texture. We project a model, typically consisting of triangles or
quads with attached texture, into image space and compare it against the camera
image. The pose is estimated using a modified version of the Sequential Importance
Resampling (SIR) particle filter [19]. Image processing methods such as Gaussian
smoothing and edge extraction as well as pixel-wise comparison of the projected
model is accelerated using a typical graphics processing unit (GPU).

3.2.1 Transformations on the Euclidean group

Visual observation of the trajectory of the object is the problem of finding the trans-
formations Tt given a sequence of images It, sampled over the time. Since we con-
strain the tracking approach to rigid objects, the trajectory can be described as
transformations on the Euclidean group SE(3). These are represented as

T(x) =

[
R t
0 1

]
(3.1)

where R(θ) is a rotation matrix and t = [x, y, z]T a translation respectively. Rota-
tions are realised using unit quaternions q with ||q|| = 1, which constrains R to be
an element of the SO(3). They provide a simple way to represent uniform axis-angle
rotations and avoid the gimbal lock which occurs when trying to model rotations by
Euler angles. Quaternions are extensions to the complex numbers,

q := r + θxi+ θyj+ θzk (3.2)

conveniently written as

q := r + θ (3.3)

3.2. Pose estimation 51

i, j, k are imaginary units satisfying i2 = j2 = k2 = ijk = −1. A rotation by α radians
about the axis u is defined as quaternion by

q := cos(α/2) + usin(α/2)

Let a be an ordinary vector in R
3 represented as quaternion with its real value r = 0,

then a rotation of this vector is simply the quaternion product.

ã = qaq−1 (3.4)

Since for unit quaternions one of the values of the quaternions is always given by
the other three. Together with the translation t this results in a state vector x =
[x, y, z, θx, θy, θz]

T of 6 DOF.

3.2.2 Monte Carlo particle filtering (MCPF)

A particle filter, such as the SIR (Sequential Importance Resampling) or the Boot-
strap filter, explained in [20] and more detailed in [19], estimates the current state xt

based on the previous state xt−1 and the current observation yt.

xt = f(xt−1,ut−1) +Nt−1

yt = g(xt) + h(xt)
(3.5)

For now we assume a static motion model, without taking into account external
forces ut−1, yielding f(xt−1,ut−1) = xt−1. The observation g(xt) is based on the
image gradients, whereas h(xt) is based on the hue component of the HSV (hue,
saturation, value) colour space. Figure 3.3 and Algorithm 2 show the behaviour of
a Monte Carlo particle filter which sequentially resamples and replaces the particles
depending on their weights.

In the initial phase (1a) the particle distribution is initialised using a pose x0

given by user input or by a feature based object detection system as described in
Section 3.3.3. The particles are sampled from the normal distribution N (x0,σb).
The confidence value c0 is set to 1. According to Equation (3.6) this leads to an
initial variance of σ0 = 0 and therefore to no movement at all in step (2a). Note,
that during tracking (i.e. t ≥ 1) the confidence value ct is typically below 1.

Given the observations {yt|t ∈ N ∪ {0}}, our aim is to estimate the posterior
distribution p(xt|yt). yt corresponds to the current image given by a camera sensor.
In step (2b) for all poses xi

t the importance weights are evaluated, approximating the
probability distribution of observations p(yt|xt). The posterior distribution is given
by the Bayes’ theorem.

The key idea of the MCPF lies in the approximation of p(xt|yt) with a discrete dis-
tribution PN (xt|yt). Particles with low weights are eliminated, whereas the ones with
high weights are multiplied. The final pose reported by the tracker is the weighted
mean of the bestN < N particles, xt. This is the classical Bootstrap filter, introduced
by [34], which is typically applied for visual tracking as it has several advantages.
First, it is very easy to implement. Second, the algorithm can be efficiently executed
in parallel which we exploit using the GPU. And third, it is to a large extent modular
which allows to replace certain steps by more sophisticated methods as follows.

52 3. Colour based object tracking

(1a)

(2a)

(2a)

(2b)

(2b)

(3a)

p(xt|yt)

p(xt|yt)

xt

Figure 3.3: (1a) The MCPF starts with a uniformly weighted distribution of particles.
(2b) The weight for each particle is evaluated, which results in an approximated
distribution. (3a) According to the importance weights the selection step assigns
weak particles (grey) to the fittest (green). (2a) Then all particles are moved using
Gaussian noise except one, whose pose is fixed (red). Afterwards the weights are
evaluated again closing the loop. (The labels correspond to Algorithm 2.)

Confidence dependent noise: In the sampling step (2a) of Algorithm 2, we adjust
the amount of the system noise N according to the confidence of the previous tracking
step ct−1. This means that as the confidence of the particles increases, their degree
of distribution decreases, leading to faster convergence and less jitter. Given the
requirements for tracking accuracy and speed for a typical table top scenario we
chose a basic standard deviation σb = [σx, σy, σz, σθx , σθy , σθz]

T with σx,y,z = 0.03 m
for the translational and σθ = 0.5 rad for the rotational degrees of freedom.

Fixed particle poses: Since we want to perform in real-time we use a limited
number of particles which causes jitter of the final pose xt. At the same time σt is
never 0 (ct < 1). This means that the best N particles will disperse around the true
pose. With a sufficiently large number of particles, this would not be a problem,
but due to our small number of particles it results in visible jitter. Now we could
increase the number of particles sacrificing real-time performance or use the following

3.2. Pose estimation 53

Algorithm 2 Bootstrap filter, modified with respect to importance sampling.

1. Initialisation

(a) For i = 1, . . . , N , sample xi
0 ∼ p(x0) ∼ N (x0,σb) and set c0 = 1, t = 1.

2. Importance sampling

(a) For i = 1, . . . , N , sample x̃i
t ∼ p(xt|xi

t−1, ct−1) with

p(xi
t|x

i
t−1, ct−1) ∼ N (xi

t−1,σ
2
t−1), σt−1 = (1− ct−1)σb (3.6)

(b) For i = 1, . . . , N of x̃i
t, evaluate the confidences and the overall confidence

using Equation (3.13). Normalize the confidence values for the importance
weights

wi
t ∼ p(yt|x̃

i
t), wi

t =
cit∑N
i=0 c

i
t

(3.7)

3. Selection step

(a) Resample with replacement N particles xi
t from the discrete distribution

PN (xt|yt) =

N∑

i=1

wi
tδ(x̃

i
t) (3.8)

(b) Set t = t + 1 and go to step 2

heuristic. The idea is to keep the pose of the best particles fixed instead of sampling
from N . In detail, for each set of particles, with the same posterior x̃i

t, one is chosen
where no noise is applied. Obviously this only makes sense if there are more than
one particles in the set. The red particles in Figure 3.3 indicate the set where the
pose is fixed which we denote by Xf

t . This ensures convergence, efficiently reduces
jitter and increases robustness of tracking as shown in Figure 3.4.

Iterative particle filtering: As proposed in previous works [75] and [84], iterative
particle filtering increases responsiveness to rapid pose changes. Therefore steps 2
and 3 of Algorithm 2 are performed several times on the same image. This means
that the poses of the particles are iteratively shifted to the peak of the distribution. In
contrast to pure one-time re-weighting of the existing particles this leads to a better
approximation of the distribution p(xt|yt) per image. Figure 3.5 shows the improve-
ment over conventional particle filtering when using 8 iterations with 100 particles
each vs. 1 iteration with 800 particles. The iterative version follows the object motion

54 3. Colour based object tracking

0 20 40 60 80 100
−6

−4

−2

0

2

4

6

frame

x
-p
os
it
io
n
of

x
t
(m

m
)

Figure 3.4: Visible jitter of the pose xt (blue) and improvement when fixing the pose
of the best particles (red).

much faster.

3.2.3 Image processing and confidence evaluation

At time-step t for each particle i, we project the model of the object into the image
space using the transformation Ti. For simplicity we skip t in the mathematical
formulations since the following equations are computed in the same time-step. The
geometry of the model is defined by vertices and faces. The texture, i.e. colour of
the model is aligned to the faces by employing UV mapping, a standard technique
of computer graphics. In image space we compute the colour gradients of the model
gi
M and of the image captured by the camera gi

I , where g ∈ R
2. For each point (u, v)

on the model M in image space we can compute the difference between both of the
gradients at that position, by superimposing the projected model over the image.
The match mi

g of a particle is defined as the sum of the differences of the gradients,
and sig is a normalising constant given by the sum over all model gradients.

mi
g =

∑
(u,v)∈M |gi

M (u, v)− gi
I (u, v) |

sig =
∑

(u,v)∈M |gi
M (u, v) |

(3.9)

Additionally to the difference of gradients the colour defined in HSV (Hue, Saturation,
Value) space is used for matching. Analogous to Equation (3.9) the match for colour
mi

h and its normalising constant sih are defined as

mi
h =

∑
(u,v)∈M |hi

M (u, v)− hi
I (u, v) |

sih =
∑

(u,v)∈M |hi
M (u, v) |

(3.10)

To achieve invariance with respect to brightness the hue values are used for matching
the projected model hi

M and the image hi
I . The advantage of using colour based

3.2. Pose estimation 55

−1 0 1 2 3 4 5

0

1

2

3

4

5

frame

x
-p
os
it
io
n
of

x
t
(c
m
)

Figure 3.5: Step response showing the faster convergence of iterative- (red, 8x100)
against conventional particle filtering (blue, 1x800). Both are using the same number
of particles.

tracking is the increase of robustness against edge based clutter. Of course it is
less robust against changing lighting but the combination of both kinds of cues can
significantly improve the overall performance. The confidence of a particle xi for
matching gradients cig and colour cih are defined as

cig = 1
2

(
mi

g

sig
+

mi
g

1

N

∑N
j=1 s

j
g

)

cih = 1
2

(
mi

h

si
h

+
mi

h
1

N

∑N
j=1

s
j

h

) (3.11)

where the first term is the match normalised with respect to si. The second term is
normalised with respect to the mean over all particles, de-weighting particles with a
low number of pixels. This prevents the system from getting stuck in poses with a
small number of pixels. The combined confidence of a particle is the product of the
gradient- and colour confidence.

ci = cigc
i
h (3.12)

The overall confidence of the current observation t is defined by the arithmetic mean
of the confidences of all particles i in the distribution.

ct =
1

N

N∑

i=1

ci (3.13)

Figure 3.6 shows our implementation of the tracking system. The pose is re-
fined using iterative particle filtering until new data arrives from the image capturing
pipeline. If this happens, the image edges are updated. Otherwise the model is

56 3. Colour based object tracking

transformed according to the particles at frame t − 1. The edges of the model are
extracted and matched with the current image edges. Subsequently the weights are
updated and the particles are re-sampled with replacement.

particle

filtering

confidence

evaluation

pose estimation

model edge

extraction

model

transformation

image processing

new

image?

yes

no

image edge

extraction

xt

Figure 3.6: Tracking by iterative particle filtering.

3.3 Learning

Starting from a purely geometric representation of the object to track, robustness
is improved by adding colour texture and feature based information. Considering a
cognitive robotic environment, with as little user-input as possible, the key to auto-
matically update the object representation is to detect the current state of tracking.
This allows to identify good views for updating and improving the model representa-
tion. Furthermore a quantitative measure of completeness of the model is necessary
to determine views that have not been learned so far or where enough information is
already available.

3.3.1 Tracking-state-detection (TSD)

As outlined above observing the current state of the tracker is important for assessing
the validity of the output as well as allowing to trigger recovery from lost tracks. TSD
is a mechanism that indicates convergence, quality and overall state. It requires to
reliably detect,

• if the object is moving,

• if the algorithm converged,

• if a good view for learning features is achieved,

• if the object is occluded,

• and if the algorithm is actually tracking the correct object or got caught in a
local maximum.

3.3. Learning 57

Furthermore TSD not only allows for learning about the object, it is also beneficial
for tasks like pose recovery, robotic manipulation, visual servoing, learning physical
behaviour from visual observations and so forth.

Convergence rate: The convergence rate is important to determine if the object
is moving or still. This measure must be independent from the quality of the current
observation which might be influenced by occlusion or modelling errors, which means
that just looking at the confidence value ct is not enough. Observing the speed of the
trajectory is not satisfying for three reasons. First, the first derivative of the position
amplifies noise. Second, it depends on the scale of the object and the point of view.
And third, the elements of the speed vector derived from the position vector xt are not
of the same scale. Instead the fixed particles described in Section 3.2.2 are analysed.
In more detail, the intersection and union of the set of fixed particles Xf at frame t
and t− 1 is computed.

X̂f = Xf
t ∩Xf

t−1

X̌f = Xf
t ∪Xf

t−1

(3.14)

The intersection represents the particles that did not move from one frame to the
other. Then the mean of the weights of the particles in X̂f normalized with respect
to the weights of the particles in X̌f is an indicator of convergence.

v =
∑N̂

i=1
wi

∑Ň
j=1

wj

with wi(xi|xi ∈ X̂f)

and wj(xj |xj ∈ X̌f)

(3.15)

Figure 3.7 compares convergence in the case of no (static), slow- and fast movement
of the underlying distribution.

Quality: To give a statement about the quality of the current pose we use the
overall confidence ct which corresponds to the match of a pose hypothesis to the
image evidence. We classify this measure to obtain qualitative statements by applying
thresholds to distinguish if tracking is good, fair or bad (ct > 0.5, 0.5 ≥ ct ≥ 0.3 and
ct < 0.3 respectively).

Loss: Another task of TSD is to determine if the algorithm is tracking the object
correctly or has been lost and got stuck in a wrong local maximum of the probability
distribution. For Monte Carlo methods the effective particle size Neff is introduced
by [19]. Typically it is approximated by

N̂eff =
1

∑N
i=1(w

i
t)

2
(3.16)

and pose recovery is triggered when N̂eff drops below the threshold Nthresh = N/3.

58 3. Colour based object tracking

(a) static (b) slow (c) fast

Figure 3.7: Convergence rate for a static (left), slow- (middle) and fast (right) moving
distribution. Green particles are the fittest. Red ones are within the set of fixed
particles Xf according to the definition in Section 3.2.2. Blue ones are within the set
of intersection X̂f , from which the normalized mean weight is used for defining the
convergence rate.

Occlusion: A little more tricky is to observe whether the object is occluded or
not. Therefore a global histogram descriptor, taking into account edge- and colour
information, is introduced. Similar to SIFT [61] gradients and hue values are sam-
pled and accumulated into orientation histograms summarizing the contents over 5x5
partitions (Figure 3.8). This is done for the camera image and the projection of the
model. Figure 3.9 shows the histograms of all the subregions and their intersection
values respectively. This allows to determine how much of the object is occluded and
which parts. Note that subregions which do not overlap the object sufficiently are
not taken into account (e.g. top-left and lower-left subregion of Figure 3.9).

3.3.2 Texture mapping

Tracking is based on a CAD model which (initially) does not include surface texture.
This is sufficient for non-textured objects, where all we can observe are edges result-
ing from occlusion and surface discontinuity. For textured objects, additional edges
provided by the texture significantly improve robustness. The camera image provides
the desired colour information of the object. The geometry of the object, i.e. the
vertices are projected into image space to determine their alignment with respect to
the texture. TSD is employed to select good views. Further only faces of the model
are taken into account, which are approximately pointing in the opposite direction
of the camera view vector (i.e. faces that are parallel to the image plane). For those
faces the respective region of the camera image is cut out. The u, v-coordinates in

3.3. Learning 59

(a) (b) (c) (d)

image

model

0.948

∩

Figure 3.8: Histogram descriptor: The gradients and hue values of the subregions (a)
are sampled (b) and accumulated into orientation histograms (c), both for the model
and the image. The intersection of the histograms (d) represent the match of this
specific subregion.

pixel space are calculated by projecting the vertices using transformation T provided
by the tracker and the camera intrinsics.

3.3.3 SIFT mapping and object re-detection

While edges are well suited for fast tracking we use highly discriminating SIFT fea-
tures for object detection (where again we use a GPU implementation [29]). Hence,
we follow a standard approach similar to Gordon and Lowe [33] and Collet et al. [11]
but our training phase differs in that we do not build a sparse 3D SIFT point model
via bundle adjustment but use the 3D pose and object geometry already provided
by the tracker. Therefore the view ray according to the u, v pixel coordinates of
the SIFT points are calculated using the camera intrinsics. Then the view rays are
intersected with the faces of the object model at the current pose xt to get the 3D
positions with respect to the object pose. SIFT features falling outside the object
boundary are discarded.

To speed up object detection, SIFT features are represented using a codebook
(one per object). According to the codebook entry each matched feature has several
corresponding 3D model locations. To robustly estimate the 6D object pose we use
the OpenCV pose estimation procedure in a RANSAC [27] scheme with a probabilistic
termination criterion, where the number of iterations necessary to achieve a desired
detection probability is derived from an estimate of the inlier ratio, which is taken to
be the inlier ratio of the best hypothesis so far. So the number of RANSAC iterations
is adapted to the difficulty of the current situation and accordingly easy cases quickly
converge.

60 3. Colour based object tracking

STUVWXYZ[hue

m
\
]
^
_

im
a
g
e

`achj 0.0000.000 0.000àhck àquk `av`h `a``j `a``j

`auhv`awjx `aqjk0.000 0.000àwkq àuhh `ajqh 0.000 0.000

0.8700.817 0.8080.000 0.000àxuq àqjx 0.170 0.000 0.000

`auxh`au`v `aqjx0.000 0.000à`vx àqvj `a`hu 0.000 `a``k

`acjv 0.0000.000 0.000à`xq àuqv 0.001 0.000 0.000

`achj 0.0000.000 0.000àhck àquk `av`h `a``j `a``j

`auhv`awjx `aqjk0.000 0.000àwkq àuhh `ajqh 0.000 0.000

0.8700.817 0.8080.000 0.000àxuq àqjx 0.170 0.000 0.000

`auxh`au`v `aqjx0.000 0.000à`vx àqvj `a`hu 0.000 `a``k

`acjv 0.0000.000 0.000à`xq àuqv 0.001 0.000 0.000

Figure 3.9: Histogram descriptor for an occluded object. The intersection values
of the gradients- and hue histograms approximate the amount and location of the
occlusion.

3.3.4 Model completeness

Now that it is possible to learn texture and SIFT based features of the model, the
question arises when to stop learning. In other words, how much information is
needed to represent the model sufficiently for tracking, initialisation and recovery of
the pose. For tracking, completeness is achieved if the textures of all faces of the
model are captured according to Section 3.3.2. Unfortunately this can not be applied
to the SIFT based model since detection suffers much more from angular deviation
and scale. Therefore [105] proposes a view-based probabilistic formulation indicating
how likely it is to detect the object from a certain point of view. In more detail,
the probability of detection success ot ∈ {true, false}, given the object pose x is
formulated using Bayes rule.

p(ot|x) =
p(x|ot)p(ot)

p(xt)
=

p(x|ot)p(ot)∑
k∈{true,false} p(xt|ot = k)

(3.17)

The probability p(x|ot), i.e. of observing a particular pose x for a detected or missed
object view ot is estimated from labelled training data. This data is obtained by
transforming a virtual object model with 1000 random rotations, 252 scales and
varying levels of artificial noise and blur. The prior p(ot) is the probability of detecting
the object at all, which might come from contextual information, e.g. the probability
of an object being in a certain room. For our experiments p(ot) is set to 1. To come
to a measure of model completeness the probability of detection over all learned views

3.3. Learning 61

is taken.
p̂(o) =

∑

x,t

p(ot|x)p(x) (3.18)

where p(x) takes into account that certain views are less likely than others (such as
the underside of an object). This representation allows a robotic system to identify
lack of information and to take action to learn more views (e.g. repositioning, moving
the object or the camera, etc.). E.g. in the work of [105] a gain-cost-scheme is applied
to drive exploration.

Figure 3.10: Model completeness: The object in the scene (left) and bundles of
features with their view vectors (middle) after acquiring some views of the object.
View sphere (right) with brighter shades of grey indicating that the object has been
learned from the respective direction.

In our approach the object poses relative to the camera are represented by the
unit sphere, disregarding the distance in between. Figure 3.10 shows such a sphere,
where bright regions indicate viewing angles of high probabilities whereas dark ones
have not been learned so far.

62 3. Colour based object tracking

3.4 Results

We evaluated the approach by using virtual rendered image sequences with known
ground truth as well as live sequences where we obtain ground truth from a calibration
pattern rigidly attached to the object. All experiments were performed on a PC with
an Intel Core 2 Quad (Q6600, 2.4 GHz) CPU, a NVIDIA GeForce GTX 285 GPU
and a Logitech Webcam Pro 9000 run at a resolution of 640x480 pixels.

3.4.1 Evaluation of the tracking error

For a measure of the error we used the scheme proposed in Section IV-B in [47],
where a large number, k = [1 . . .K], of randomly chosen points qk ∈ R

3 are rigidly
attached to the object surface at the ground-truth pose and compared to the corre-
sponding points q̂k ∈ R

3 of the tracked pose. The error at a specific frame t is then
approximated by

et =
1

K

K∑

k=1

|q̂k
t − qk

t | (3.19)

Before evaluating our method in terms of the above error metric, let us briefly consider
the possible sources of errors in our system, such as errors from calibration, geometric
modelling, image quantisation and finally the tracking algorithm itself. Concretely
we identify the following sources of errors:

• Mechanical error: Positioning the calibration pattern rigidly on the object in-
troduces a small unknown error which can safely be considered to be in sub-
millimetre range.

• Camera error: The pose of the calibration pattern is detected with a standard
DLT algorithm, followed by a non-linear optimisation of the pose using the
sparse bundle adjustment implementation by Lourakis [59]. Further the rolling
shutter of the camera used introduces additional errors, which is negligible for
our speeds.

• Quantisation error: Depending on image resolution a digital camera introduces
a pixel quantisation error. In our evaluation we use a resolution of 640x480 with
a focal length of ∼500 in pixel-related units. This leads to an error of about
0.5-1.5 mm when tracking at a distance of 0.5-1.5 m parallel to the image
plane. This error is even higher for the orthogonal direction, which shows up
in Table 3.1.

• Modelling error: For modelling we measured the main dimensions of the objects
used, but we used simplified models that do not account for deviations like
small details, chamfers or slightly bulging cardboard surfaces. Unfortunately
we do not have a measure for the Modelling error but since we mainly used
basic shapes, where correct modelling is simple, we assume this error to be
negligible.

3.4. Results 63

• Texturing error: We found that textures added during the modelling phase
do not align properly. Manually capturing textures triggered by pressing a
button incorporates less error than automatic capturing based on tracking-
state-detection.

• Tracking error: The failure of the tracker to accurately locate the local maxi-
mum, depending on the challenges posed by current viewing conditions.

3.4.2 Accuracy and precision

Accuracy is defined to be the closeness of a quantity to its actual value, which in
our case is measured using Equation (3.19), where the pose of tracking is compared
to the pose of the virtual object and the pose detected by the calibration software
respectively. We evaluated the mean accuracy with respect to the poses of several
trajectories using

e =
1

Jte

J∑

j=1

te∑

t=1

et (3.20)

where j = [1 . . . J] are the trajectories of poses t = [1 . . . te] under unchanged condi-
tions, i.e. tracking J times on a sequence of te images.

Precision, also called repeatability, is the degree of deviation of a quantity under
unchanged conditions, which is measured using Equation (3.19). For each frame t,
the pose of tracking q̂k is compared to its own mean with respect to the number of
repetitions J . I.e. the points of ground-truth qk in Equation (3.19) are substituted
by

qk
t =

1

J

J∑

j=1

q̂k
t (3.21)

and precision is again given by Equation (3.20).

Table 3.1: Accuracy and Precision

Target Accuracy [mm] Precision [mm]
Object static dynamic static dynamic

x,y z x,y z x,y z x,y z
box (virt.) 0.4 2.3 1.5 5.6 0.2 1.1 0.7 3.2
box (real) 2.0 5.5 2.6 7.7 1.1 2.9 1.6 4.9
cylinder (virt.) 0.9 4.4 2.4 10.0 0.4 1.9 1.3 5.7
cylinder (real) 3.0 16.5 3.9 21.9 0.5 2.5 1.6 8.8

Table 3.1 shows the results of the accuracy and precision evaluation, where we
evaluated two different cases: A static scene where we looked at the mean error of
the pose after it converged within a few frames. And a dynamic scene where we

64 3. Colour based object tracking

observed the mean error of the trajectories. For evaluation we used box shaped and
cylindrical objects. The virtual objects show the Tracking error and Quantisation
error (all other errors being ruled out), whereas the difference between virtual and
real objects are due to Mechanical, Camera, Modelling and Texture error, where we
assume the Modelling and Texture error to play the main roles. We evaluated the
dynamic errors under the following conditions:

• Linearly moving objects with different velocities.

• Rotating objects.

• Moving objects arbitrarily (i.e. toppling, rolling).

• Partially occluded objects.

• Changing illumination.

We can derive from Table 3.1 that curved objects are typically harder to track than
box-shaped objects. A typical trajectory for arbitrary movement is shown in Fig-
ure 3.11 where the tracked pose is compared to the virtual with respect to trans-
lations, rotations and the error measured by Equation (3.19). For generating the
virtual poses the poses from the pattern detection and bundle adjustment were used
and filtered to remove jitter.

Pose alignment: Table 3.1 indicates that the tracking accuracy is significantly
better in x- and y-direction than in the direction of the camera view ray (z-direction).
This results from the projective nature of the camera. For reconstruction as described
in Section 2.5 the accuracy given would result in bad object models. To account for
this deficiency the current pose of the object is corrected. Therefore the object shape
is projected into the image space of the new key-frame assigning a depth value to each
pixel. These depth values are compared with the depth of the range image captured
by the camera, within the region of overlap. The mean of the differences of the depth
values (signed error) is used to correct the pose with respect to the z-direction in the
current key frame.

3.4.3 Robustness

We tested our approach against various situations including

• fast movement introducing motion blur,

• occlusion,

• changes in lighting,

• large distances, small objects,

• different objects (high resolution, curved surfaces, low texture, . . .).

Since robustness is hard to put in numbers the reader is referred to the video described
in Section 3.4.5, to get an impression of how these various challenges are handled.

3.4. Results 65

Figure 3.11: Trajectory of a tracked virtual object with 45 cm x-translation followed
by a 70 cm z-translation and a rotation about the objects y-axis. The lower right
figure shows the pose deviations respectively.

3.4.4 Performance

Processing time during tracking depends, on the complexity of the model as well as
on the number of particles used for tracking.

Table 3.2 shows the frame rates for different numbers of faces and particles. 2x50,
3x100 and 4x300 indicates 2, 3 and 4 iterations using 50, 100 and 300 particles for
each iteration respectively. Figure 3.12 shows the frames per second on different
GPUs with respect to the total number of particles used for tracking.

3.4.5 Video

The video1 shows how we learn texture and feature points during tracking. Then
TSD identifies whether an object is occluded or tracking fails, in which case pose
recovery is triggered automatically. Since pose recovery also takes advantage of GPU
computing the tracker slows down at this particular moments. Note that we do

1Video: http://users.acin.tuwien.ac.at/tmoerwald/?site=4 (bottom)

http://users.acin.tuwien.ac.at/tmoerwald/?site=4

66 3. Colour based object tracking

0 50 100 150 200 250 300 350 400 450 500 550 600

0

50

100

150

200

250

number of particles

fr
am

es
p
er

se
co
n
d

GeForce GTX 285 (PC)
Quadro FX 770M (Notebook)
GeForce 9300M GS (Notebook)

Figure 3.12: Frame rates with respect to the number of particles on different platforms
for the Box model.

Table 3.2: Frame rates with respect to model complexity and number of particles

Example Faces Frames per Second
Objects 2x50 3x100 4x300
Box 6 240 100 33

Cylinder (low) 24 220 95 30
Cylinder (mid) 96 210 90 28
Cylinder (high) 384 190 80 25

not interfere with the tracking system via the keyboard other than for changing the
visualisation modes.

3.5. Discussion 67

3.5 Discussion

In this chapter we described how the pose of the object of interest is tracked ro-
bustly. We have modified and improved state-of-the-art particle filtering approaches
by various contributions. Defining the variance of the particles depending on their
confidence from the previous observation yields faster convergence and less jitter.
Fixing the pose of some of the best particles further reduces jitter as no good poses
are lost due to re-sampling. Further this fixed poses indicate the tracking state. An-
other method improving visual tracking based on particle filtering is our iterative
structure leading to a faster convergence by sampling fewer particles more often.

Further we have developed a method to determine the state of tracking in a
qualitative way. This allows us to reason about the quality of a certain trajectory
and to identify good views. The first is needed in the following chapter, where the
physical behaviour is learned by visual tracking, only taking into account trajectories
of a certain quality. The latter was already applied twice. First, when learning the
shape of an object from multiple views as in Section 2.5 and second when learning the
texture and colour features which are then mapped onto the surface in Section 3.3.2
and 3.3.3.

In our scenario of a cognitive robot it is necessary to drive the robot’s interest
in learning objects. Considering the requirements of a cognitive task execution the
robot therefore needs to reflect its current knowledge. In the case of object tracking
this reflecting is modelled by a probabilistic representation, namely the view sphere.
It allows to add already learned regions and search for views from which the object
has not been observed yet.

A not so obvious but necessary requirement for TSD is detection of occluded
objects as a special case of a tracking state. Its importance becomes clear when
considering that we start learning from scratch, and we do not want to improve our
models by adding information of other occluding objects. This means that we have
to detect views where such a situation occurs and mark them as being not good to
learn from.

Note that this chapter provides the tools for our cognitive robot, rather than
describing new cognitive methods. Therein also lies the main contribution to the
community. Although a lot of tracking algorithms exists, there are hardly any that
allow for robust tracking and provide qualitative statements about the observations.
In other words our visual tracking method with its TSD corresponds to the reflectance
block in Figure 1.2 executed in real-time.

68 3. Colour based object tracking

Chapter 4

Physical prediction and robotic
manipulation

This chapter describes how physical behaviour of objects can be learned in a cognitive
sense. That is, to allow for modification and extension as new information about the
object arrives. As already mentioned in Chapter 1, classical mechanics based on
Newtons laws are not appropriate for three reasons. First, they strongly depend
on the shape and completeness of the object model. Consequently the parameters
learnt are worthless once the shape changes. Second, they are only idealized models
of reality and third, even if the are capable of making good predictions, it might be
difficult to estimate all parameters required for a particular case. Although physical
model generalise well to changing parameters, in the sense that predictions look
qualitatively reasonable, their predictions may be far from the actual ones.

A more reasonable representation is to use probabilities assigned to certain move-
ment configurations. This implicitly encodes basic physical effects such as impene-
trability, gravity and inertia as well as more complex ones as friction and dynamic
movement. The model is realised by different experts which are attached to global
or local coordinate frames. Locally weighted projection regression (LWPR) and ker-
nel density estimation (KDE) are employed to predict the movement of objects,
where KDE allows to generalize the learnt probabilities to different configurations
and shapes. Further we show how this representation can be used to improve robust-
ness of visual tracking for a robotic system. The physical knowledge allows to handle
difficult situations like full occlusion and motion blur due to fast movement.

In our scenario a robot arm, equipped with a single rigid finger, applies a series
of pokes or pushes to the object, causing it to move from one pose to another. Doing
so, the system observes the object using the visual tracking algorithm described in
Chapter 3 and thereby builds up its physical knowledge. After several trials the robot
is able to predict the movement of the object which is used to constrain tracking. By
detecting visual distraction with the tracking-state-detection (TSD), the predictor
steps in during phases of heavy distractions, guiding the tracker to physically feasible
poses. Finally these poses are validated by the Monte Carlo particle filter, described
in Section 3.2.2, where again the most probable ones are fed back to the prediction

70 4. Physical prediction and robotic manipulation

experts. TSD allows for further training of the experts leading to better predictions
and consequently better tracking. This demonstrates the usability of detecting gaps
in the knowledge representation of a cognitive robot.

It may seem somewhat esoteric to focus on pushing, however there are good
reasons to do so. Pushing is a very fundamental form of manipulation. More com-
plex activities, such as dexterous in-hand manipulation with multiple fingers, can be
viewed as combinations of many simultaneous single-finger actions. More practically,
even industrial pick and place operations with a simple two jawed gripper often result
in a pushing phase, where uncertainties in both object and robot pose lead to one
jaw contacting the object before the other. This can even lead to gross grasp failures
when the object topples over under pushing from the first jaw, before the second jaw
makes contact. Therefore it is important to solve the problems of robotic pushing,
and controlled pushing will typically be reliant on tracking the object pose with a
vision system.

Overview: In this chapter, we provide an overview of the ”learning-to-predict”
architecture, and then show how it can be conveniently incorporated into a parti-
cle filter-based vision algorithm to propagate particles from one frame to the next.
We demonstrate the effectiveness of the technique, for tracking pushed objects past
large occlusions and other difficult circumstances, where attempting vision without
adequate prediction would fail.

We start by giving an overview of related work on physical motion models for
objects under robotic manipulation and their application for visual tracking in Sec-
tion 4.1. Section 4.2 provides an overview of our system for learning to predict the
outcomes of manipulative pushes. We describe how the motions of rigid bodies are
represented by coordinate frames and transformations. We show how objects and
their motions can be decomposed and how a variety of probabilistic experts can be
trained to predict various aspects of these motions. We show how to combine the
opinions of these experts as a product of densities, which is capable of significant gen-
eralization to new objects with different shapes and different push directions which
have not been encountered during training. In Section 4.3 we extend our algorithm
for visual tracking of 3D objects [75, 72, 71, 74] with the prediction framework in-
troduced in Section 4.2. We show how tracking can be improved by incorporating a
well trained predictor. Section 4.5 presents results of this work, providing examples
of how the enhanced tracker copes with difficult situations such as occlusion and
motion blur. Figure 4.1 gives a high-level overview of our tracking and prediction
framework.

4.1 Related work

There is a limited body of literature describing vision algorithms tailored specifically
for robotic manipulation tasks. For example, Drummond and Cipolla [23] incorporate
knowledge of kinematic constraints into tracking of articulated chains of rigid bodies,

4.1. Related work 71

good

yz{|}

predictors

TSD

~���{y �|{���}�

bad

predict

object pose

Figure 4.1: Simultaneous tracking and predicting the object pose.

with a view to tracking robotic arms for visual servoing. However, it is more usual
for researchers to simply take a generic tracking algorithm and incorporate it with
an existing manipulation planning system, e.g. [50]. Typically the vision algorithms
are drawn from the model based tracking literature, for example [36, 60, 102], which
predominantly track by choosing candidate poses of the tracked body, whose pro-
jected wire-frame edges best match edges extracted from images. More recently, the
ability to make use of advanced graphics cards for high speed projective calculations,
means that such techniques can be applied to tracking with robust particle filters,
e.g. [42, 9, 76].

Particle filters rely on motion models, to propagate particles from one predictor-
corrector step to the next. In practice, little may be known about the motion of
the tracked object, and so predominantly these motion models must be very blunt
instruments. It is typical to simply apply Gaussian noise to particles to propagate
them, assuming no real understanding of how the object might move at the next time
step. However, if the tracked object is subject to robotic manipulation, we should
be able to make use of our knowledge of the planned manipulative action, to make
a much more informed prediction of the next phase of the objects motion. In the
case of an object which is rigidly held in the jaws of a hand or gripper, the motion
prediction problem becomes trivial since the object is exactly constrained to follow
the motion of the manipulating arm. However, in pushing manipulation, the motion
of an object which will result from an applied single-finger push or poke is much more
uncertain.

Early approaches to predicting the effects of robotic pushes on object motion,
[65, 81, 62, 1, 63], attempted analytical solutions of physical constraints. These ap-
proaches did not progress beyond anything more complex than the simple 2D case,
with flat polygonal objects, constrained to slide on a planar surface. More recently,
Cappelleri [8] used physics simulation software to plan manipulative pushes, but again
this was limited to a 2D problem, with a small, flat rectangular object which was
constrained to slide while floating on a film of oil to simplify frictional interactions.
We know of little in the way of literature which specifically addresses the prediction
problem in robotic push manipulations of real 3D objects, which are subject to com-
plex 6-dof motions such as tipping and toppling over. It is possible to use physics
simulators to predict the motions of interacting rigid bodies, however this approach

72 4. Physical prediction and robotic manipulation

is reliant on explicit knowledge of the objects, the environment and key physical
parameters which can be surprisingly difficult to effectively tune in practice, [24].
Furthermore, once a physics simulator has been set up for a particular scenario, it is
not generalizable to new objects or novel situations.

In contrast, recent works by Kopicki et al. [45, 47, 46, 48] propose a system which
can learn to predict the explicit 3D rigid body transformations. The system does
not make use of any physics simulation, or any hard coding of Newtonian physics
equations or physical constraints. Instead, a statistical relationship between applied
pushes and resulting object motions is trained, by simply having the robot apply a
series of random pushes to the object, recording the finger trajectories, and observing
the resulting object motions with a vision system.

The work in this chapter was achieved together with my colleague Marek Kopicki
from the University of Birmingham. Work on predicting and learning physical move-
ment is still going on and results achieved so far are quite promising especially for
unknown objects and environments.

4.2 Prediction

This section is just a brief overview of the work in [46, 45] to show how rigid body
movement can be described in a probabilistic form.

Figure 4.2: A system consisting of three interacting bodies with frames A and B and
some constant environment with frame O.

A system consisting of three interacting rigid bodies can be described by coordi-
nate frames A, B and O and by six transformations between the bodies and different
time steps (t − 1, t and t + 1), with respect to a constant environment O as shown
in Figure 4.2. A and B change in time and are observed at discrete time steps
. . . , t− 1, t, t+ 1, . . . every non-zero ∆t. As stated in [46] a triple of transformations
TAt,O, TAt−1,At and TAt,At+1 provide a complete description of a state of a rigid body
A in terms of classical mechanics. Of course the same is true for some body B. The

4.2. Prediction 73

prediction problem can be stated as: given we know or observe the starting states
and the motion of the pusher, TAt,At+1, predict the resulting motion of the object,
TBt,Bt+1. This is a problem of finding a function:

f : TAt,Bt,TBt,O,TAt−1,At ,TBt−1,Bt ,TAt,At+1 → TBt,Bt+1 (4.1)

In many robotic applications manipulations are slow, so we can assume quasi-
static conditions and it is often possible to ignore all frames at time t − 1. This
conveniently reduces the dimensionality of the problem, giving:

f : TAt,Bt ,TBt,O,TAt,At+1 → TBt,Bt+1 (4.2)

A
t

Finger Object

Environment

T
A
t

l
, B
t

l

B
t

l
T
A
t
, B
t

T
B
t
,O

A
t

l

B
t

O

Figure 4.3: A robotic finger A pushing an object B in an environment O, decomposed
into local and global coordinate frames.

Prediction learning using Functions (4.1) or (4.2) is limited with respect to changes
in shape (see Chapter 5.3 of [45]). The problem can be expressed by a product of
several probability densities over the rigid body transformation, encoding global as
well as local contact configurations. Figure 4.3 shows the frames representing two
different experts [45].

pglobal ≡ pglobal(T
Bt,Bt+1|TAt,At+1,TAt,Bt ,TBt,O) (4.3)

plocal ≡ plocal(T
Bl

t,B
l
t+1|TAl

t,A
l
t+1,TAl

t,B
l
t)

In addition to learning how an object moves in response to a push, it is desirable
if we can also incorporate learned information about the inherent tendencies of parts
of an object to move in various directions with respect to the environment or any
other objects, but regardless of whether it is being pushed or not. This additional
information may help when predicting the motions of previously unseen objects,
because it provides some prior knowledge about what kinds of motions are possible
and which are not. The subsequent motion of the object in the inertial frame can

74 4. Physical prediction and robotic manipulation

now be described as:

p(TBt,Bt+1|K) =

plocal(T
Bt,Bt+1|TAl

t,A
l
t+1,TAl

t,B
l
t) ×

pglobal(T
Bt,Bt+1|TAt,At+1,TAt,Bt ,TBt,O) (4.4)

where K stands for the known conditions TAl
t,A

l
t+1, TAl

t,B
l
t , TAt,At+1, TAt,Bt and TBt,O.

The product of probability densities allows to incorporate even more information, like
the local shape densities with respect to the environment as in [48].

Implementation We presented two formulations of the prediction problem: 1) as
function of approximation in Equation (4.2), and 2) as density estimation in Equa-
tion (4.4). Further we have suggested that there may be an advantage of solving the
density problem by applying the product of experts in Equation (4.4).

• Regression method: We used locally weighted projection regression (LWPR) [96]
to estimate the mapping described by Equation (4.2). The regression scheme
was implemented using the LWPR software library [41].

• Single expert and multiple expert methods: A variant of kernel density estima-
tion (KDE) is used to approximate conditional densities as

T̃Bt,Bt+1 = argmax
T

Bt,Bt+1

{pglobalplocal} (4.5)

The density product is maximised using the differential evolution optimisation
algorithm [93].

Rigid body transformations used in both were parametrised as described in Sec-
tion 3.2.1. For more details see [48, 46].

4.3 Tracking

For visual observation of the trajectory of the object we use the tracker introduced in
Chapter 3. To obtain better results for tracking we conveniently fuse prediction into
the particle filtering framework. Inserting Equation (4.4) into (3.6) and substituting

T̃Bt,Bt+1 with xBt,Bt+1 according to Equation (3.1) yields to

p(xi
t|x

i
t−1, ct−1) ∼ N (xi

t−1 + xBi
t−1

,Bi
t ,σ2

t−1). (4.6)

Therefore the prediction xBt,Bt+1, with xBi
t ,O

i
t = −xi

t, is only calculated when a new
image arrives from the image capturing pipeline, otherwise it is set to 0. After
the prediction step t is incremented by 1. Figure 4.4 shows the modified tracking
algorithm.

4.4. Learning 75

re-sampling

replacement

(with prediction)

matching

particle filtering

edge

extraction

model

transformation

image processing

new

image?
yes

no

image edge

extraction
sigma

adjustment

transformation

prediction

prediction

Figure 4.4: Tracking with motion prediction within the iterative particle filtering
framework.

The particle filter always tries to find the local maximum in observation space.
In the case of occlusion, as shown in Figure 4.7 and 4.9, this leads to drifting of the
tracker away from the real pose of the object. To cope with this problem we employ
the tracking-state-detection explained in Section 3.3.1 and turn off noise N whenever
the tracking quality is too low, i.e. σ2

t−1 is set to 0.

σ
2
t−1 = 0 if quality = bad (4.7)

With respect to Equation (4.6), this means that the system completely relies on the
output of the predictor.

4.4 Learning

The prediction system can be trained by observing the outcomes of random robotic
pushes, and extracting the resulting object motions with the tracker presented in
Chapter 3. For the first trials the tracker does not take into account the prediction.
This decreases the robustness of the tracker with respect to occlusion or motion blur.
However, in a tutor-driven learning scenario these disturbances can be limited. Fur-
thermore the tracking-state-detection allows to differentiate between good and bad
trajectories, where the latter are simply neglected. In return, the physical prediction
system provides prior poses for the tracker, increasing accuracy and robustness. Fur-
thermore situations of full occlusion or strong motion blur may be overcome using
these predictions as will be shown in Section 4.5.

76 4. Physical prediction and robotic manipulation

4.5 Results

The prediction system used is evaluated with respect to the tracking system. The
multiple experts and regression methods are evaluated against each other and to
prediction using Newtonian mechanics. Further the generalisation of the proposed
representation to novel pushing configurations and object shapes is tested. In all the
experiments we used simple object shapes like boxes, cylinders and polyflaps, which
are two planar, rectangular plates rigidly connected on one of each edge. Polyflaps
were chosen since they provide a wide range of interesting movements (sliding, top-
pling, rotating and tilting while not toppling).

4.5.1 Tracking

In all our experiments we are using the tracking system as described in Chapter 3,
and compare it against the tracker without prediction which is the same system but
without the motion prediction step as in Figure 4.4. Other than motion prediction we
are using the same configuration for each of the trackers, respectively non-iterative
particle filtering with 100 particles for each frame. The number of particles was cho-
sen small enough to ensure real-time operation in normal conditions, which however
meant the tracker would run into problems as conditions deteriorate. One option
in such a case would be to increase the number of particles, accepting loss of real-
time performance (and e.g. buffering images), and indeed the tracker allows such
dynamic resizing of the particle set. The approach is to rely on an improved mo-
tion model based on the learned predictors rather than throw more particles at the
problem, which allows us to also cover very severe cases where no number of par-
ticles can maintain a successful track. The following experiments are designed to
illustrate the differences in performance between tracking with and without incorpo-
rating a learned prediction system. The poses are drawn as wire-frame models with
the following colour-code:

• White: Ground truth. Note that we did not use an external system such as a
magnetic tracker for obtaining ground truth, but used the visual tracker itself
in a high accuracy non real-time setting with many iterations and particles (4
and 200 respectively).

• Green: Tracking with prediction.

• Red/Magenta: Tracking without motion prediction.

• Blue: Pure motion prediction without visual feedback by the tracker, i.e. in
Equation (4.7) nt+1 = 0.

For visual observation a camera is capturing images with a resolution of 800×600
at a frame rate of 30 Hz and highly accurate time-stamps. Tracking is executed in
real-time whereas in critical situations, where the prediction system has to take over,
the data is buffered and evaluated at a frame rate of 1-5 Hz.

4.5. Results 77

Tracking accuracy

Figure 4.5: Accuracy: Overlaid edge-based tracking results with and without pre-
diction, from top-left to bottom-right. (ground truth: white, tracking with predic-
tion: green, tracking without prediction: red)

In this experiment we show how accuracy increases using the proposed meth-
ods. We compare the poses of tracking with and without prediction against ground
truth. To evaluate the error in both cases we used the non-normalized error measure
described in Section IV-B of [47].

Et =
∑

n=1...N

|p2,tn − p1,tn | (4.8)

where p1,tn are randomly chosen points on the object surface at the ground truth pose.
Thus Et measures the mean displacement of the object surface.

For a fair comparison we only used pushing examples, where also the tracker
without prediction was able to maintain tracking throughout the whole sequence,
as shown in Figure 4.5. In the upper-left image both trackers are initialised at the
same pose. The upper-right and lower-left show the mismatch of the tracker without
prediction (red) while the object is moving. At the end of the sequence, lower-right
image, both trackers converge to the ground-truth pose as to be expected.

Figure 4.6 shows the result of the evaluation of 20 pushes. For both, average error
and standard deviation, the tracker which takes advantage of information from the
predictor performs significantly better.

The following experiments show robustness to various events in a qualitative man-
ner. For these cases a quantitative evaluation against the tracker without prediction
is meaningless, as the latter loses the object at some point altogeher.

78 4. Physical prediction and robotic manipulation

average error standard deviation

0.00

2.00

4.00

6.00

8.00

10.00

12.00

no predict ion

with predict ion
m

m

Figure 4.6: Tracking accuracy with and without prediction: average displacement
error of surface points.

Robustness – occlusion

Typically visual tracking algorithms fail when the object is partially or completely
occluded. The prediction model of Section 4.2 allows us to overcome such situations.
Figure 4.7 shows a pushing sequence which suffers from heavy occlusion. At the
beginning both of the trackers perform very well, since at least parts of the object
are visible (top row). At the point where the occluder is completely hiding the object,
the tracker without predictor (magenta wireframe) is drifting away to a visually more
likely position (e.g. it is attracted to the robot hand which introduces clutter with
respect to edges as well as colour) and fails to keep track of the object pose.

Pure prediction (blue wireframe) does not use any visual feedback and produces
the whole trajectory from the initial pose. The finger is pushing very near to the
centre of the object which is a very unstable position. Given this push, the object
in some cases might slide to the left or to the right, or topple over depending on
slightly different initial positions. However, since the predictor used for tracking gets
updated by the visual observation it is possible to handle such difficult situations.

Robustness – motion blur

Another example of a difficult situation is fast movement of the object relative to the
camera. Figure 4.8 illustrates such a case, where a box is pushed forward causing
it to tilt until it reaches an unstable pose and finally toppling over. This is a very
critical situation for visual observation. The falling object moves quite fast, causing
the image to blur.

Again the tracker with (green) and without prediction (red), and the pure pre-
dictor (blue) are initialised at the same starting pose. During the first phase of the

4.5. Results 79

Figure 4.7: Failure of tracking without prediction in case of occlusion. (edge-based
tracking with prediction: green, without prediction: magenta, pure prediction: blue)

sequence the predictor proposes an erroneous rotation of the object, while the vi-
sion system extracts the correct pose relatively accurately (top row of Figure 4.8).
However, by the time of the unstable pose shown in the lower-left image the tracker
with prediction is already better than the tracker without prediction. The object is
moving fast during the next frames causing the effects mentioned above. The tracker
without prediction can not follow the fast movement, loses track and gets trapped in
a local maximum. The predictor on the other hand proposes the right pose and the
corresponding tracker refines the result.

Robustness – occlusion with motion blur

The hardest case for a visual observation system is the combination of fast movement
and occlusion. We tested this case by applying a pushing manipulation where the
object is hidden behind an occluder where it topples over, as shown in Figure 4.9.

In the top-left image enough parts of the object are visible and both of the trackers
produce good results. The top-right image shows the object behind the occluder
already in the phase of falling down as the blur suggests. The lower-left is the
subsequent frame and illustrates the large change of the pose, which causes the tracker
without prediction to fail, whereas the tracker with prediction overcomes this difficult
situation. The pose of the pure predictor is also very close to the real one, but suffers
from integrating error over the trajectory.

Note that for this experiment we placed a virtual occluding object in the scene.
This allowed us to vary the size and texture of the occluder and most importantly to
position it right in front of the toppling object.

80 4. Physical prediction and robotic manipulation

Figure 4.8: Failure of tracking without prediction in case of a toppling object. (edge-
based tracking with prediction: green, without prediction: red, pure prediction: blue)

4.5.2 Prediction

For evaluating the prediction we use a 5-axis Katana robotic manipulator equipped
with a single rigid finger. The motion of pushed objects is captured using a single
camera and the tracking system described previously. Note that the tracking system
was only used for learning and not for testing, since we want to evaluate purely
the predictors. Simulation experiments are carried out using the NVIDIA PhysX
physics engine, providing perfect ground-truth data. The parameters of the physics
engine are automatically tuned to best fit the world. As expected we found that the
parameters neither correspond to their true values, nor do they generalise.

Comparison with prediction using Newtonian mechanics

We obtained predictions using the NVIDIA PhysX physics simulator, with estimated
parameters that match the real data the best. Figure 4.10 presents a comparison of
the physics simulation and the learned predictors (trained on 900 trials). Figure 4.11
shows an example of a polyflap being pushed by a robotic finger. Clearly the physics
simulator is unable to match predictors trained in a real experiment, even though the
real training data contains significant errors due to occasional failures and inaccura-
cies of the vision system. In particular, the physics simulator has difficulty modelling
the frictional interactions of the real world and often is unable to accurately simulate
a rotational movement of the object.

4.5. Results 81

Figure 4.9: The toughest case: toppling combined with occlusion. (colour-based
tracking with prediction: green, without prediction: red, pure prediction: blue)

Comparison of learning methods

We have trained the system on 9, 90 and 900 pushes of a polyflap object with a real
robotic finger. We evaluated the performance of the multiple expert and regression
methods. Figure 4.12 shows that the average and final prediction error decreases with
the increased number of trials used in learning for both tested prediction methods.
The multiple expert method performed reasonably well, even when trained on as little
as 9 example pushes. The method performed particularly well with 90 learning trials,
as local experts successfully prevented the predictor from violating impenetrability
constraints that were frequently violated by the regression method. However, the
performance of the multiple expert method did not significantly improve with 900
learning trials. We suspect a reason for that is the limited accuracy of the tracker (c.f.
Table 3.1). For example, cases of tipping and toppling movements are particularly
difficult to track, so that the prediction system does not always have sufficiently
accurate training data to precisely learn all possible motions. To handle this problem
we propose a deeper analysis.

Generalisation to unknown pushes

The proposed prediction technique is tested to which extent it can handle novel push-
ing configurations, which have not been learned previously. Therefore the predictors
are trained with 900 trials of pushes applied to a polyflap in forwards direction. Then
the predictors are tested on 100 pushes in backwards direction. Figure 4.13 and 4.14
show example frames from the prediction on simulated and real data. In both cases

82 4. Physical prediction and robotic manipulation

Normalised average error

multiple experts

regression

NVIDIA PhysX

0.00 0,05 0.10 0.15 0.20

Normalised final error

multiple experts

regression

NVIDIA PhysX

0.00 0,10 0.20 0.30 0.40

Figure 4.10: Physics simulation is unable to match the performance of learned pre-
dictors which have been trained in real experiments.

LWPR completely fails to generalise, as it predicts that the polyflap will not move
at all, because it was never exposed to these kind of pushes. In contrast, the KDE
product of experts is able to make physically plausible predictions. Of course they
are far from perfect, but the direction is roughly correct when using global and lo-
cal experts. Further learning trials will update the representation for the unknown
arm-object-environment configuration and lead to more accurate results.

Generalising to unknown object shapes

The predictors are tested to which extent they can generalise to novel objects, which
have different shapes from those learned during training. Therefore two experiments
are designed:

1. Training on a polyflap – testing on a box: The predictors are trained on a
polyflap object (900 pushes), and then tested on a box object (200 pushes).
Figure 4.15 shows some examples of the results achieved. The box moves in the
approximate direction as the polyflap, but again the predictions are not quite
precise.

2. Training on a box and a cylinder – testing on two rigidly connected cylinders:
Figure 4.16 shows the predictions when the experts are trained on a box (500
pushes) and a cylinder (100 pushes), which means they encode sliding, toppling
and rolling. Since the contact information between the environment and the
connected cylinders are neither considered by the global nor the local expert,
the object penetrates through the ground plane. Using additional experts as
in [48] fixes the problems which yields to a more plausible prediction.

4.5. Results 83

Figure 4.11: Random straight-line push with variable length l = 25±5 cm and angle
α = 20 degree towards an polyflap (top left). The object behaviour varies depending
on the finger trajectory. In the image sequence the object begins to rotate before
tilting. The red wire-frame shows the output of the tracking system. Green indicates
the pose predicted by the proposed method, while the blue wire-frame is generated
by the PhysX simulator.

101 102 103
0

5

10

15

20

25

30

number of trials

av
er
ag
e
er
ro
r
(m

m
)

101 102 103
0

10

20

30

40

50

number of trials

fi
n
al

er
ro
r
(m

m
)

Figure 4.12: Decrease in average (left) and final (right) prediction errors with increas-
ing number of learning trials. The prediction method multiple experts (red triangles)
outperforms regression (blue dots).

84 4. Physical prediction and robotic manipulation

Figure 4.13: Generalisation to unknown pushes on simulated data. The green wire-
frame shows the predictions (from top to bottom row) by KDE (global expert) and
KDE (global and local expert) compared to simulated ground truth (in solid cyan).
LWPR does not move at all and is therefore not shown.

Figure 4.14: Generalisation to unknown pushes on real data. The green wire-frame
shows the predictions (from top to bottom row) by KDE (global expert) and KDE
(global and local expert) for one trial and by KDE (global and local expert) on
another trial in which the polyflap rotates in a different direction as it slides. Note
that the KDE (global expert) method predicts that the robot finger passes through
the polyflap. LWPR does not move at all and is therefore not shown.

4.5. Results 85

Figure 4.15: Generalisation to novel shape on real data. The green outline shows in
the top row the predictions by KDE (global) and in the bottom row by KDE (global
expert and local experts). LWPR does not move at all.

Figure 4.16: Generalisation to novel shape on simulated data. The green outline
shows in the top row the predictions by KDE (global and local experts) and in the
middle row by KDE (global expert). The bottom row shows the results when using
more sophisticated experts as in [48] which prevents penetration through the ground
plane. LWPR does not move at all.

86 4. Physical prediction and robotic manipulation

4.6 Discussion

In this chapter we developed a probabilistic model to represent physical knowledge.
Rigid body interactions are efficiently modelled by assigning probabilities in the trans-
formation space of a certain pushing configuration. As future work we propose to
apply the model completeness scheme of Section 3.3.4 based on this space. This
would indicate if we have learned enough pushes and if not, which pushes to apply
next.

Employing global and local experts increases the accuracy of predictions. Con-
sidering the shape learning methods outlined in Section 2.5 where only parts of the
shape are modelled these experts may be introduced to the object the same way.
However, the work on extension and generalisation of experts to new shapes is un-
der development. Promising results have already been achieved and are presented in
Section 4.5.

As demonstrated, the robustness of visual tracking of objects is significantly im-
proved especially when it comes to difficult situations like heavy occlusion or fast
movement causing motion blur. Further the accuracy of tracking increases since the
prediction algorithm provides physical plausible poses. As a consequence of our whole
system framework this improves the shape and colour models which in turn leads to
better observations to update the predictors. Requirement for such a system to work
is that all the models allow for extension and improvement.

Chapter 5

Conclusion

The methods and algorithms developed in this thesis aim to learn objects from scratch
with respect to their visual appearance and physical behaviour. Therefore we follow a
cycle of object segmentation, reconstruction, model tracking and physical interaction
with the object. Any potential object segment can start the tracking process, with
the idea to incrementally build up the object model. Once new information about
the object arrives we immediately include it in our models, efficiently increasing the
robustness and accuracy of all our algorithms.

5.1 Summary

Segmentation of images is by its nature an ill-posed problem. Additionally, colour
and depth capturing devices typically introduce noise. Often range data is not aligned
properly to the colour image, or worse has some areas where no data is available at all.
Therefore we propose to use B-splines to overcome these problems. The usage of B-
spline surfaces for segmentation implicitly poses the problem as the search for smooth,
continuous surface patches. The implicit smoothing property of B-splines reduces
noise both within continuous surface patches as well as at their boundaries. Our curve
fitting method allows for alignment of range and image edges. When reconstructing
objects from multiple views, where 3D data points from previous views can not be
organized in a regular grid, our curve fitting algorithm can still efficiently compute
the enclosing boundary of the surface. Further we can assign depth data, where
none is given by the sensors, using the boundaries defined as B-spline curves on the
B-spline surfaces. Another advantage is the simple and straight forward conversion
of the trimmed B-splines to polygon meshes which are used for GPU acceleration of
tracking.

We found that the key for any robotic learning approach to work is to observe
changes of the object under inspection and reason about these observations. Although
a large number of tracking algorithms have been proposed, barely any of them tackles
the problem of a qualitative analysis of the current tracking state. To our best
knowledge no solution, usable for learning object models, exists that solves this.

88 5. Conclusion

Therefore we have developed a visual tracking system that robustly reports the pose
of the object together with qualitative statements of the observation. Using these
statements we can now reliable identify views from which to learn new information
and trigger or even guide the algorithms developed for learning.

Additionally, the tracking statements qualitatively classify the trajectories ob-
served, which are used to train a physical prediction model. In return, these pre-
dictions are used to improve the performance of the tracking system, with respect
to accuracy and robustness especially during difficult situations. Models for physical
prediction of object movement are often very limited with respect to their generalisa-
tion to novel situations. Therefore we chose a probabilistic formulation developed by
the University of Birmingham. In joint work we could show that we can now handle
modifications in terms of object shape and in terms of scene configurations when an
object is pushed by a robotic finger.

In conclusion, the thesis developed an approach to incrementally build up object
models including shape, colour and physical behaviour. Tracking enables a robust
and reliable flow of information. The repeated modelling steps allow to build up a
more and more accurate and complete object model. Finally, we showed that the
appearance model and tracking technique can be used to predict how objects move
if poked.

5.2 Outlook

We could show that our segmentation method works for very difficult situations in
strongly cluttered scenes. However, we do not account for occlusions and propose to
extend our method with another SVM. It could be trained with respect to relations
between object parts that indicate if they belong together or not. Considering our
framework where objects are pushed by the robot we could use the resulting movement
of the object to identify parts that belong together.

Our reconstruction approach models the shape of the object in order to visually
track it and to model contact information during pushing manipulation. A lot of geo-
metric modelling application and reverse engineering tools rely on watertight models.
This property is not provided by our shape models. Using additional B-spline patches
to model the seams between the surfaces could account for that. Another approach
would be to use so called T-splines which allow to merge adjacent surface patches in
a watertight manner.

Although pushing an object is a fundamental way to interact with objects, ob-
viously at some point we want the robot to pick up objects which requires grasp-
ing. Therefore we propose to extend our method to multi-finger grasps and tests
its promising characteristics. Once the object is grasped, the tutor-driven scenario,
we assume throughout the thesis, could be omitted and replaced by self learning.
Thereby the robot rotates the grasped object in front of its sensor, guided by our
probabilistic formulation of model completeness, and learns the object from different
views.

5.2. Outlook 89

Finally, it would be interesting to see if the robot can in this way go out and learn
all the objects in a certain environment. To do so, our visual tracking system has to
be extended by an environment aware tracking system that allows to track objects
even when they are out of view for a while. Errors introduced by the robot movement
have to be taken into account leading to a SLAM like approach for reconstruction.
Although a lot of work needs to be done, we think that we have laid the foundation
towards such a scenario. Our message is clear: A successful being, be it robot or
human, reasons carefully about all the knowledge arriving, tightly integrates it in its
motivation and execution process and most importantly never stops learning.

90 5. Conclusion

Bibliography

[1] Y Aiyama, M Inaba, and H Inoue. Pivoting: A new method of graspless manipulation of
object by robot fingers. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 136 –143 vol.1, 1993.

[2] Jonathan Balzer and Thomas Mörwald. Isogeometric Finite-Elements Methods and Varia-
tional Reconstruction Tasks in Vision A Perfect Match. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 1624–1631, 2012.

[3] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded Up Robust Features.
European Conference on Computer Vision, 3951(3):404–417, 2006.

[4] P J Besl and R C Jain. Segmentation Through Variable-Order Surface Fitting. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 10(2):167–192, 1988.

[5] Georg Biegelbauer and Markus Vincze. Efficient 3D Object Detection by Fitting Su-
perquadrics to Range Image Data for Robot’s Object Manipulation. In IEEE International
Conference on Robotics and Automation, pages 1086–1091, 2007.

[6] A Blake and M Isard. Active Contours, volume 17. Springer, 1998.

[7] John Canny. A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(6):679–698, 1986.

[8] D J Cappelleri, J Fink, B Mukundakrishnan, V Kumar, and J C Trinkle. Designing open-
loop plans for planar micro-manipulation. In IEEE International Conference on Robotics and
Automation, pages 637–642, 2006.

[9] J Chestnutt, S Kagami, K Nishiwaki, J Kuffner, and T Kanade. GPU-accelerated real-time
3D tracking for humanoid locomotion. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2007.

[10] Tiberiu T. Cocias, Sorin M. Grigorescu, and Florin Moldoveanu. Multiple-superquadrics based
object surface estimation for grasping in service robotics. In Optimization of Electrical and
Electronic Equipment, pages 1471–1477, 2012.

[11] Alvaro Collet, Dmitry Berenson, Siddhartha S Srinivasa, and Dave Ferguson. Object recog-
nition and full pose registration from a single image for robotic manipulation. In IEEE
International Conference on Robotics and Automation, volume 27, pages 48–55, 2009.

[12] J A Cottrell, T J R Hughes, and Y Bazilevs. Isogeometric Analysis - Toward Integration of
CAD and FEA. John Wiley & Sons, Ltd, 2009.

[13] M.G. Cox. The Numerical Evaluation of B-Splines. IMA Journal of Applied Mathematics,
10(2):134–149, 1972.

[14] Brian Curless and Marc Levoy. A volumetric method for building complex models from range
images. In Holly Rushmeier, editor, 23rd Annual Conference on Computer Graphics and
Interactive Techniques SIGGRAPH, Annual Conference Series, pages 303–312, 1996.

92 BIBLIOGRAPHY

[15] Timothy A Davis. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal
method. ACM Transactions on Mathematical Software, 30(2):196–199, 2004.

[16] C. de Boor. On calculating with B-splines. Journal of Approximation Theory, 6:50–62, 1972.

[17] Hans de Ruiter and Beno Benhabib. Visual-model-based, real-time 3D pose tracking for
autonomous navigation: methodology and experiments. Autonomous Robots, 25(3):267–286,
2008.

[18] H Delingette and J Montagnat. New Algorithms for Controlling Active Contours Shape and
Topology. In European Conference on Computer Vision, pages 381–395. Springer, 2000.

[19] Arnaud Doucet, Nando De Freitas, and Neil Gordon, editors. Sequential Monte Carlo methods
in practice. Springer, 2001.

[20] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential Monte Carlo sampling
methods for Bayesian filtering. Statistics and Computing, 10:197–208, 2000.

[21] Stanimir Dragiev, Marc Toussaint, and Michael Gienger. Gaussian process implicit surfaces
for shape estimation and grasping. In IEEE International Conference on Robotics and Au-
tomation, pages 2845–2850. Machine Learning group at the TU Berlin, Germany, 2011.

[22] T Drummond and R Cipolla. Real-Time Tracking of Complex Structures With on-Line Cam-
era Calibration. In British Machine Vision Conference, pages 574–583, 1999.

[23] T Drummond and R Cipolla. Real-Time tracking of multiple articulated structures in multiple
views. In European conference on Computer Vision, 2000.

[24] D Duff, J Wyatt, and R Stolkin. Motion estimation using physical simulation. In IEEE
International Conference on Robotics and Automation, 2010.

[25] Damien Jade D.J. Duff, Thomas Mörwald, Rustam Stolkin, and Jeremy Wyatt. Physical
simulation for monocular 3D model based tracking. In IEEE International Conference on
Robotics and Automation, pages 5218–5225, May 2011.

[26] R Eskenazi and R T Cunningham. Real-Time Tracking of Moving Objects in TV Images.
IEEE Workshop Pattern Recognition and Artificial Intelligence, pages 4–6, April 1978.

[27] Martin A Fischler and Robert C Bolles. Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cortography. Communications
of the ACM, 24(6):381–395, 1981.

[28] S Flory. Fitting curves and surfaces to point clouds in the presence of obstacles. Computer
Aided Geometric Design, 26(2):192–202, 2009.

[29] J Fuentes-Pacheco, J Ruiz-Ascencio, and J M Rendón-Mancha. Binocular visual tracking and
grasping of a moving object with a 3D trajectory. Journal of Applied Research and Technology,
7(03):259–274, 2009.

[30] Yasutaka Furukawa and Jean Ponce. Carved Visual Hulls for Image-Based Modeling. Inter-
national Journal of Computer Vision, 81(1):53–67, 2008.

[31] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview stereopsis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(8):1362–76, 2010.

[32] D Gennery. Visual tracking of known three-dimensional object. International Journal of
Computer Vision, 1992.

[33] Iryna Gordon and David G Lowe. What and Where: 3D Object Recognition with Accurate
Pose. Toward Category-Level Object Recognition, J. Ponce, M. Hebert, Schmid. C., and A.
Zisserman, pages 67–82, 2006.

BIBLIOGRAPHY 93

[34] N J Gordon, D J Salmond, and A F M Smith. Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEEE Radar and Signal Processing IEE Proceedings F, 140(2):107–
113, 1993.

[35] Feng Han Feng Han, Zhuowen Tu Zhuowen Tu, and Song-Chun Zhu Song-Chun Zhu. Range
image segmentation by an effective jump-diffusion method. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(9):1138–1153, 2004.

[36] C Harris and A Blake ed. Tracking with Rigid Bodies. Active Vision, pages 59–73, 1992.

[37] Dirk Holz, Stefan Holzer, Radu Bogdan Rusu, and Sven Behnke. Real-Time Plane Segmenta-
tion using RGB-D Cameras. In RoboCup Symbosium, number D, pages 230–239. Eurographics
Association, 2011.

[38] Dirk Holz and Behnke Sven. Fast Range Image Segmentation and Smoothing using Ap-
proximate Surface Reconstruction and Region Growing. In 12th International Conference on
Intelligent Autonomous Systems, 2012.

[39] Ales Jaklic, Ales Leonardis, and Franc Solina. Segmentation and Recovery of Superquadrics.
Kluwer, 2000.

[40] D Katsoulas, C C Bastidas, and D Kosmopoulos. Superquadric Segmentation in Range Images
via Fusion of Region and Boundary Information. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30(5):781–95, 2008.

[41] Stefan Klanke, Sethu Vijayakumar, and Stefan Schaal. A Library for Locally Weighted Pro-
jection Regression. Journal of Machine Learning Research, 9:623–626, 2007.

[42] G Klein and D Murray. Full-3D Edge Tracking with a Particle Filter. In British Machine
Vision Conference, 2006.

[43] Georg Klein and Tom Drummond. Robust Visual Tracking for Non-Instrumented Augmented
Reality. In IEEE/ACM International Symposium on Mixed and Augmented Reality, 2003.

[44] D Koller, K Daniilidis, and H.-H. Nagel. Model-based object tracking in monocular image
sequences of road traffic scenes. International Journal of Computer Vision, 1993.

[45] M Kopicki. Prediction learning in robotic manipulation. PhD thesis, University of Birming-
ham, 2010.

[46] M Kopicki, J Wyatt, and R Stolkin. Prediction learning in robotic pushing manipulation. In
International Conference on Advanced Robotics, pages 1–6, 2009.

[47] Marek Kopicki, Rustam Stolkin, Sebastian Zurek, Thomas Mörwald, and Jeremy Wyatt.
Predicting workpiece motions under pushing manipulations using the principle of minimum
energy. In Robotics: Science and Systems, workshop, 2009.

[48] Marek Kopicki, Sebastian Zurek, Rustam Stolkin, Thomas Mörwald, and Jeremy Wyatt.
Learning to predict how rigid objects behave under simple manipulation. In IEEE Interna-
tional Conference on Robotics and Automation, pages 5722–5729, May 2011.

[49] A Kosaka and G Nakazawa. Vision-based motion tracking of rigid objects using prediction of
uncertainties. IEEE International Conference on Robotics and Automation, 1995.

[50] Danica Kragic, Andrew T Miller, and Peter K Allen. Real-time tracking meets online grasp
planning. In IEEE International Conference on Robotics and Automation, pages 2460–2465,
2001.

[51] Geert-Jan M. Kruijff, John D. Kelleher, Gregor Berginc, and Ale\v{s} Leonardis. Struc-
tural descriptions in human-assisted robot visual learning. In Proceedings of the 1st ACM
SIGCHI/SIGART conference on Human-robot interaction, pages 343–344, 2006.

94 BIBLIOGRAPHY

[52] Bastian Leibe, Aleš Leonardis, and Bernt Schiele. Robust Object Detection with Interleaved
Categorization and Segmentation. International Journal of Computer Vision, 77(1-3):259–
289, 2007.

[53] A Leonardis, A Jaklic, and F Solina. Superquadrics for segmenting and modeling range data.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(11):1289–1295, 1997.

[54] Aleš Leonardis, Alok Gupta, and Ruzena Bajcsy. Segmentation of range images as the search
for geometric parametric models. International Journal of Computer Vision, 14(3):253–277,
April 1995.

[55] Hector Levesque and Gerhard Lakemeyer. Cognitive Robotics. In Frank van Harmelen,
Vladimir Lifschitz, and Bruce Porter, editors, Handbook of Knowledge Representation, chap-
ter 23, pages 869–886. Elsevier, 3 edition, 2008.

[56] Hector Levesque and R. Reiter. Beyond planning. In AAAI Spring Symbosium on Integrating
Robotics Research, Palo Alto, 1998.

[57] Jianguo Li Jianguo Li, E Li, Yurong Chen Yurong Chen, Lin Xu Lin Xu, and Yimin
Zhang Yimin Zhang. Bundled depth-map merging for multi-view stereo. In IEEE Computer
Vision and Pattern Recognition, volume 24, pages 2769–2776, 2010.

[58] Yi Li, Jean-Philippe Saut, Juan Cortes, Thierry Simeon, and Daniel Sidobre. Finding envelop-
ing grasps by matching continuous surfaces. In IEEE International Conference on Robotics
and Automation, pages 2825–2830, 2011.

[59] M I A Lourakis and A A Argyros. SBA: A Software Package for Generic Sparse Bundle
Adjustment. ACM Transactions on Mathematical Software, 36(1):1–30, 2009.

[60] D G Lowe. Robust model-based motion tracking through the integration of search and esti-
mation. International Journal of Computer Vision, pages 113–122, 1992.

[61] David G Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International
Journal of Computer Vision, 60(2):91–110, 2004.

[62] K Lynch. The mechanics of fine manipulation by pushing. In IEEE International Conference
on Robotics and Automation, pages 2269–2276, 1992.

[63] Kevin M Lynch. Toppling Manipulation. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 152–159, 1999.

[64] E Marchand and P Bouthemy. A 2D-3D Model-based Approach to Real-time Visual Tracking.
Image and Vision Computing, 19:941–955, 2001.

[65] M T Mason. Manipulator grasping and pushing operations. In PhD thesis MIT. Massachusetts
Institute of Technology (MIT), 1982.

[66] Lucie Masson, Michel Dhome, and Frederic Jurie. Robust Real Time Tracking of 3D Objects.
In International Conference on Pattern Recognition, 2004.

[67] Robert Mc Neel and Associates. The openNURBS Initiative, a C++ source code library -
www.opennurbs.org, 2011.

[68] Philipp Michel, Joel Chestnutt, Satoshi Kagami, Koichi Nishiwaki, James Kuffner, and Takeo
Kanade. GPU-accelerated Real-Time 3D Tracking for Humanoid Autonomy. In JSME
Robotics and Mechatronics Conference, June 2008.

[69] A T Miller, S Knoop, H I Christensen, and P K Allen. Automatic grasp planning using shape
primitives. In IEEE International Conference on Robotics and Automation, volume 2, pages
1824–1829. IEEE, 2003.

BIBLIOGRAPHY 95

[70] Pradit Mittrapiyanuruk, Guilherme N Desouza, and Avinash C Kak. Accurate 3D tracking
of rigid objects with occlusion using active appearance models. In 7th IEEE Workshop on
Applications of Computer Vision / IEEE Workshop on Motion and Video Computing, pages
90–95, 2005.

[71] Thomas Mörwald, Marek Kopicki, Rustam Stolkin, Jeremy Wyatt, Sebastian Zurek, Michael
Zillich, and Markus Vincze. Predicting the Unobservable, Visual 3D Tracking with a Proba-
bilistic Motion Model. In IEEE International Conference on Robotics and Automation, pages
1849–1855, May 2011.

[72] Thomas Mörwald, Johann Prankl, Andreas Richtsfeld, Michael Zillich, and Markus Vincze.
BLORT - The Blocks World Robotic Vision Toolbox. In IEEE International Conference on
Robotics and Automation, Workshop, 2010.

[73] Thomas Mörwald, Andreas Richtsfeld, Johann Prankl, Michael Zillich, and Markus Vincze.
Geometric data abstraction using B-splines for range image segmentation. In IEEE Interna-
tional Conference on Robotics and Automation, Karlsruhe, 2013.

[74] Thomas Mörwald, Michael Zillich, Johann Prankl, and Markus Vincze. Self-Monitoring to
Improve Robustness of 3D Object Tracking for Robotics. In IEEE International Conference
on Robotics and Biomimetics, 2011.

[75] Thomas Mörwald, Michael Zillich, and Markus Vincze. Edge tracking of textured objects with
a recursive particle filter. In Proceedings of the GraphiCon, Moscow, Russia, 2009.

[76] E Murphy-Chutorian and Mohan M Trivedi. Particle Filtering with Rendered Models: A Two
Pass Approach to Multi-Ojbect 3D Tracking with the GPU. In Computer Vision and Pattern
Recognition, Workshop, 2008.

[77] H H. Nagel. Representation of Moving Rigid Objects Based on Visual Observations. Computer,
14(8):29–39, August 1981.

[78] Mustafa Özuysal, Michael Calonder, Vincent Lepetit, and Pascal Fua. Fast Keypoint Recog-
nition using Random Ferns. In IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2009.

[79] Qi Pan, Gerhard Reitmayr, and Tom Drummond. ProFORMA : Probabilistic Feature-based
On-line Rapid Model Acquisition. 20th British Machine Vision Conference, (c):1–11, 2009.

[80] H. Park. Choosing nodes and knots in closed B-spline curve interpolation to point data.
Computer-Aided Design, 35(1):123, 2000.

[81] M A Peshkin and A C Sanderson. The motion of a pushed, sliding workpiece. IEEE Journal
on Robotics and Automation, 4:569–598, 1988.

[82] Les Piegl andWayne Tiller. The NURBS book. Monographs in visual communication. Springer,
1996.

[83] Andreas Richtsfeld, Thomas Mörwald, Johann Prankl, Michael Zillich, and Markus Vincze.
Segmentation of Unknown Objects in Indoor Environments. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2013.

[84] Andreas Richtsfeld, Thomas Mörwald, Michael Zillich, and Markus Vincze. Taking in shape:
Detection and tracking of basic 3d shapes in a robotics context. In Computer Vision Winter
Workshop, pages 91–98, 2010.

[85] Andreas Richtsfeld, Johann Prankl, Jonathan Balzer, and Michael Zillich. Towards Scene Un-
derstanding Object Segmentation Using RGBD-Images. In Computer Vision Winter Work-
shop, 2012.

[86] A Ruf, M Tonko, R Horaud, and H.-H. Nagel. Visual tracking by adaptive kinematic predic-
tion. In International Conference on Intelligent Robots and Systems, 1997.

96 BIBLIOGRAPHY

[87] R B Rusu, A Holzbach, R Diankov, G Bradski, and M Beetz. Perception for mobile ma-
nipulation and grasping using active stereo. In 9th IEEE/RAS International Conference on
Humanoid Robots, number May, pages 632–638, 2009.

[88] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In IEEE
International Conference on Robotics and Automation, pages 1–4, 2011.

[89] J R Sánchez, H Álvarez, and D Borro. Towards real time 3D tracking and reconstruction
on a GPU using Monte Carlo simulations. In IEEE International Symposium on Mixed and
Augmented Reality, pages 185–192, 2010.

[90] Sudeep Sarkar and Kim L Boyer. Perceptual organization in computer vision - A review and a
proposal for a classificatory structure. IEEE Transactions On Systems Man And Cybernetics,
23(2):382–399, 1993.

[91] D. Skocaj, G. Berginc, B. Ridge, A. Stimec, M. Jogan, O. Vanek, A. Leonardis, M. Hutter, and
N. Hawes. A system for continuous learning of visual concepts. In International Conference
on Computer Vision Systems, 2007.

[92] Michael Stark, Philipp Lies, Michael Zillich, Jeremy Wyatt, and Bernt Schiele. Functional
Object Class Detection Based on Learned Affordance Cues. In Antonios Gasteratos, Markus
Vincze, and JohnK Tsotsos, editors, Computer Vision Systems, pages 435–444. Springer Berlin
Heidelberg, 2008.

[93] R Storn and K Price. Differential evolution. A simple and efficient heuristic for global opti-
mization over continuous spaces. In Journal of Global Optimization, volume 11, pages 341–359,
1997.

[94] L Vacchetti, V Lepetit, and P Fua. Stable Real-Time 3D Tracking using Online and Offline
Information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004.

[95] Luca Vacchetti, Vincent Lepetit, and Pascal Fua. Combining Edge and Texture Information
for Real-Time Accurate 3D Camera Tracking. In IEEE/ACM International Symposium on
Mixed and Augmented Reality, 2004.

[96] Sethu Vijayakumar, Aaron D’Souza, and Stefan Schaal. Incremental online learning in high
dimensions. Neural Computation, 17(12):2602–2634, 2005.

[97] M Vincze, M Ayromlou, W Ponweiser, and M Zillich. Edge-Projected Integration of Image
and Model Cues for Robust Model-Based Object Tracking. The International Journal of
Robotics Research, 2001.

[98] George Vogiatzis, Carlos Hernández Esteban, Philip H S Torr, and Roberto Cipolla. Multiview
stereo via volumetric Graph-Cuts and occlusion robust photo-consistency. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(12):2241–2246, 2007.

[99] Wenping Wang, Helmut Pottmann, and Yang Liu. Fitting B-spline curves to point clouds by
curvature-based squared distance minimization. ACM Transactions on Graphics, 25(2):214–
238, 2006.

[100] M Wertheimer. Untersuchungen zur Lehre von der Gestalt. II. Psychological Research,
4(1):301–350, 1923.

[101] Jianhua Wu and Leif Kobbelt. Structure Recovery via Hybrid Variational Surface Approxi-
mation. Computer Graphics Forum, 24(3):277–284, 2005.

[102] P Wunsch and G Hirzinger. Registration of CAD-Models to Images by Iterative Inverse
Perspective Matching. In 13th International Conference on Pattern Recognition, pages 77–83,
1996.

[103] Huaiping Yang, Wenping Wang, and Jiaguang Sun. Control point adjustment for B-spline
curve approximation. Computer-Aided Design, 36(7):639–652, 2004.

BIBLIOGRAPHY 97

[104] Christopher Zach. Fast and High Quality Fusion of Depth Maps. 4th International Symposium
on 3D Data Processing, Visualization and Transmission, 1:1–8, 2008.

[105] Michael Zillich, Johann Prankl, Thomas Mörwald, and Markus Vincze. Knowing your limits
- self-evaluation and prediction in object recognition. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 813–820. Automation and Control Institute, Vienna
University of Technology, Austria, 2011.

98 BIBLIOGRAPHY

Curriculum Vitae

Personal data

Full Name: Thomas Mörwald
Academic Degree: Dipl.-Ing.
Address: Reithlegasse 15/3, 1190 Wien, Austria
Date and place of birth: 16th May 1982, Steyr, Austria
Citizenship: Austrian
Homepage: http://users.acin.tuwien.ac.at/tmoerwald

Education

2002 - 2008: Diploma Study of Mechatronics
Specialisation in Computer Science and Robotics
Johannes Kepler University, Linz.

1996 - 2001: Secondary Technical College for Mechanical Engineering (HTL), Steyr.

Work Experience

2008 - 2009: Research and development for pneumatic robots,
FerRobotics Compliant Robot Technology GmbH, Linz

Research projects

Feb. 2009 - Jun. 2012: Cognitive Systems that Self-Understand and Self-Extend (CogX)
Okt. 2012 - Okt. 2014: Interactive Modelling of Daily-life Objects (inMODO)

Publications

T. Mörwald, A. Richtsfeld, J. Prankl, M. Zillich, M. Vincze: ”Geometric data abstraction
using B-splines for range image segmentation”; Int. Conference on Robotics and Automation
(ICRA), Karlsruhe, Germany, 2013.

A. Richtsfeld, T. Mörwald, J. Prankl, M. Zillich, M. Vincze: ”Segmentation of Unknown
Objects in Indoor Environments”; Int. Conference on Intelligent Robots and Systems (IROS),
Vilamoura, Portugal, 2012.

http://users.acin.tuwien.ac.at/tmoerwald

100 BIBLIOGRAPHY

J. Balzer, T. Mörwald: ”Isogeometric Finite-Elements Methods and Variational Reconstruction
Tasks in Vision - A Perfect Match”; Conference on Computer Vision and Pattern Recognition
(CVPR), Providence, Rhode Island, USA, 2012.

A. Richtsfeld, T. Mörwald, J. Prankl, J. Balzer, M. Zillich, M. Vincze: ”Towards
Scene Understanding - Object Segmentation Using RGBD-Images”; Computer Vision Winter
Workshop (CVWW), Mala Nedelja, Slovenia, 2012.

M. Zillich, J. Prankl, T. Mörwald, M. Vincze: ”Knowing Your Limits - Self-Evaluation
and Prediction in Object Recognition”; Int. Conference on Intelligent Robots and Systems
(IROS), San Francisco, USA, 2011.

T. Mörwald, M. Zillich, J. Prankl, M. Vincze: ”Self-Monitoring to Improve Robustness of
3D Object Tracking for Robotics”; Int. Conference on Robotics and Biomimetics (ROBIO),
Thailand, 2011.

D. Duff, T. Mörwald, R. Stolkin, J. Wyatt: ”Physical simulation for monocular 3D model
based tracking”; Int. Conference on Robotics and Automation (ICRA), Shanghai, 2011.

M. Kopicki, S. Zurek, R. Stolkin, T. Mörwald, J. Wyatt: ”Learning to predict how rigid
objects behave under simple manipulation”; Int. Conference on Robotics and Automation
(ICRA), Shanghai, 2011.

T. Mörwald, M. Kopicki, R. Stolkin, J. Wyatt, S. Zurek, M. Zillich, M. Vincze:

”Visual 3D Tracking with a Probabilistic Motion Model”; Int. Conference on Robotics and
Automation (ICRA), Shanghai, 2011.

K. Sjöö, A. Aydemir, T. Mörwald, K. Zhou, P. Jensfelt: ”Mechanical support as a spatial
abstraction for mobile robots”; Int. Conference on Intelligent Robots and Systems (IROS),
Taipai, Taiwan, 2010.

T. Mörwald, J. Prankl, A. Richtsfeld, M. Zillich, M. Vincze: ”BLORT- The Blocks
World Robotic Vision Toolbox”; IEEE International Conference on Robotics and Automation
(workshop, ICRA), Anchorage, Alaska, 2010.

A. Richtsfeld, T. Mörwald, M. Zillich, M. Vincze: ”Taking in Shape: Detection and Tracking
of Basic 3D Shapes in a Robotics Context”; Computer Vision Winter Workshop (CVWW),
Nove Hrady, Czech Republic, 2010.

M. Kopicki, R. Stolkin, S. Zurek, T. Mörwald, J. Wyatt: ”Predicting workpiece motions
under pushing manipulations using the principle of minimum energy”; Robotics: Science and
Systems Workshop, Zaragoza, Spanien, 2010.

T. Mörwald, M. Zillich, M. Vincze: ”Edge Tracking of Textured Objects with a Recursive
Particle Filter”; Int. Conference on Computer Graphics and Vision (GraphiCon), Moskau,
Russland, 2009.

T. Mörwald, K. Stadlbauer, H. Bremer: ”Simulation and 3D-visualisation of mechanical
systems with Linux RTAI”; Diploma Thesis, Johannes Kepler University Linz, Institute for
Robotics, Austria, 2008

	Nomenclature
	Introduction
	Problem statement: modelling objects
	Outline and contributions

	Segmentation and reconstruction
	Related work
	B-spline fitting
	Definition of B-spline curves and surfaces
	Fitting curves to 2D point-clouds
	Surface fitting

	Surface segmentation
	Pre-segmentation
	Model selection

	Object segmentation
	Grouping of parametric surfaces

	Learning
	Object registration
	Surface merging

	Results
	B-spline curve fitting
	Surface segmentation
	Object segmentation

	Discussion

	Colour based object tracking
	Related work
	Pose estimation
	Transformations on the Euclidean group
	Monte Carlo particle filtering (MCPF)
	Image processing and confidence evaluation

	Learning
	Tracking-state-detection (TSD)
	Texture mapping
	SIFT mapping and object re-detection
	Model completeness

	Results
	Evaluation of the tracking error
	Accuracy and precision
	Robustness
	Performance
	Video

	Discussion

	Physical prediction and robotic manipulation
	Related work
	Prediction
	Tracking
	Learning
	Results
	Tracking
	Prediction

	Discussion

	Conclusion
	Summary
	Outlook

	Bibliography
	Curriculum Vitae

