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i

Bayesian Foundations for improving

robustness and reliability of computational

biological inference

Im Verlauf der letzten Jahrzehnte haben sich ”high-throughput”Technologien

im Bereich der biologischen und medizinischen Forschung etabliert. Diese

Methoden haben zu einem Anstieg der Menge an rechnergestützten Metho-

den, um mit diesen Daten umzugehen, geführt. Allgemeine verwendete An-

nahmen der statistischen Modellbildung sind für diese Daten oft nicht erfällt,

Stichprobengrößen sehr klein verglichen mit der Anzahl der zu schatzenden

Parameter, während die Beobachtungen meist stark schwanken und sich alles

andere als normalverteilt verhalten. Diese Herausforderung wird im Rahmen

dieser Dissertation aufgegriffen.

Um mit den komplizierten Gegebenheiten der biologischen Daten umzuge-

hen, insbesondere mit Microarraydaten, werden hierarchische Bayesmodelle

konzipiert. Verschiedene Ansätze und Methoden der Robusten Bayes Statis-

tik werden angewandt, um mit diesen Daten umzugehen. Ein hierarchischer

Modellansatz hat auch den Vorteil, einen zusätzlichen Grad der Robustheit

gegenüber der a-priori Verteilung und Wahl der Hyperparameter zu bieten.

Um mit der Herausforderung the ”overdispersion” umzugehen, werden Stu-

dent t Verteilung und Mischverteilungen von t und Normalverteilungen in

Betracht gezogen, um Robustheit in Bezug auf die Likelihood Funktion zu

bekommen.

Die Modelle werden als Markov Chain Monte Carlo Algorithmen imple-

mentiert und mit entsprechenden Methoden aus dem Gebiet auf Konver-

genzverhalten geprüft. Die biologischen Ergebnisse, die mittels dieser kom-

plexen Ansätze gewonnen werden, werden mit existierenden Methoden aus

der Bioinformatik verglichen. Darüber hinaus gehende biologische Schlussfol-

gerungen und Interpretationen werden ebenfall im Bereich der Bioinformatik

evaluiert und auf Sinnhaftigkeit geprüft.

During the past decades high-throughput technologies have been estab-

lished in biological and medical research. These methods have led to an

increase in computatonal approaches to deal with their data. In addition,



ii

the data poses a challenge for data analysis. Assumptions made for general

approaches in statistical modelling are often not fulfilled, sample sizes are

very small compared to the number of variables to estimate, while the obser-

vations are overdispersed and the noise is behaving far from Gaussian. This

challenge is met in this thesis.

For dealing with the complicated situation of biological data, in particular

coming from microarrays, hierarchical Bayesian models are designed. Various

ideas and Methods of Bayesian Robustness are applied for dealing with the

difficult situation at hand. The hierarchical model has the advantage of

providing an additional degree of robustness regarding the choice of priors and

model parameters. For approaching the challenge posed by overdispersion,

student’s t distributions and mixtures of student’s t and normal distributions

are considered to gain robustness with respect to the likelihood.

The models are implemented and tested as computationally intense

Markov Chain Monte Carlo sampling algorithms which are sanity checked

by appropriate methods from this field. The findings gained by these more

sophisticated methods are compared with existing approaches in the field of

bioinformatics. Sanity checks regarding biological conclusions and interpre-

tation of the results are gained by applying bioinformatical methods.
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Chapter 1

Introduction

The core of this thesis lies in developing and applying different approaches

towards robust inference in a fully Bayesian setting to bioinformatical ques-

tions. Bayesian robustness considerations have their origin in frequently oc-

curring criticism of the subjective choice of prior distributions. Starting from

this, every part of the Bayesian model has become the focus of robustness

considerations: prior, likelihood and loss function. Our goal was improv-

ing bioinformatical inference based on well-founded statistical theory, which

we achieved by designing Bayesian models tailored for the specific type of

challenges in the field of bioinformatics. On the one hand, we developed an

approach towards likelihood robustness which can be linked with the idea of

model selection. On the other hand, we designed a scheme for robust mixture

models, which allow the identification of systematically outlying values.

Bioinformatics indisputably is a field with great need for statistical input

in order to perform proper analyses of highly complex data. This research

area has evolved rapidly during the past two decades alongside with high-

throughput methods for biological measurements and the availablity of the

necessary computing power. Such measuring methods include large projects

like the human genome project which has revived and revolutionised the gene

sequencing methodology as well as small platforms like microarrays, which

could not be excluded from modern day biological research or medical di-

agnostics any more. High-throughput methods leading to gigabytes, if not

terabytes of data, create new challenges for researchers in the field, espe-

cially since the number of variables can be a thousand times the number

1



2 CHAPTER 1. INTRODUCTION

of samples. Microarrays in particular are well-known for their complicated

and highly over-dispersed noise behaviour. However, a systematic analysis

of their underlying structure has not been conducted before Posekany 2009

and Posekany et al. 2011 which is treated in chapter 5.1.

The importance of microarray technology for research and application has

generated a plethora of sophisticated methods specifically tailored to analyse

microarray data. One typical assumption in statistical data analysis is con-

sidering data to be (approximately) normally distributed. This assumption

is implicit to many methods proposed for microarray data analysis includ-

ing methods based on t tests (Baldi and Long 2001; Tusher et al. 2001),

linear models (Smyth 2005) and Bayesian approaches (Ibrahim et al. 2002;

Zhao et al. 2008; Bae and Mallick 2004; Ishwaran and Rao 2003). Even

nowadays, standard approaches for the analysis of microarray data, such

as limma (Smyth 2005), still assume normally distributed data even though

these are sophisticated enough to use a Bayesian model structure. For almost

15 years multiple t-tests have been the gold standard to compare methods

in microarray gene expression analysis with. Furthermore, the errors made

by the completely unfitting normal distribution assumption have previously

been unknown.

Only recently, several investigations by the bioinformatical community

have cast doubt on the correctness of the Gaussian distribution assumption.

By testing for Gaussianity, Hardin and Wilson 2009 found that microarray

data does not follow a normal distribution at all. In fact, the observed over-

dispersion manifests in a large number of outlying values, which can have

considerable influence on the inference results. Both the cost of individual

measurements and the possibility of outlying data points being caused by bio-

logical processes rule out that such samples get removed. The latter suggests

that these values must carefully be taken into account, as excluding outlying

values or including them based on incorrect distribution assumptions could

falsify the resulting biological findings. Statistical techniques for determining

the differential expression of genes which account for such outliers have for

example been introduced by Tusher et al. 2001; Haan et al. 2009; Lee et al.

2005 and Gao and Song 2005. However, using non-parametric methods re-

places the restrictive assumptions linked with the Gaussian distribution with

very general ones at the cost of losing some power of tests (Whitley and
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Ball 2002). An alternative to non-parametric approaches for analysing over-

dispersed data is using parametric mixture densities which allow modelling

Gaussian noise and deviations thereof, which are required for an appropriate

consideration of outliers. Such robust noise models can for example be imple-

mented by mixtures of Gaussian distributions or t-distributions (cf. Gottardo

et al. 2006).

In the ongoing discussion about robustness of noise models, Giles and

Kipling 2003 employed several statistical tests to argue that microarray data

are normally distributed. On the contrary, Hardin and Wilson 2009 con-

cluded, using similar methodologies, that heavy tailed noise is more likely to

be found in microarray data. Compared to these results, the series of tests

conducted by Novak et al. 2006a produced the outcome that 5-15% of genes

follow a non-Gaussian distribution, while the rest is normally distributed. In

the present study by Posekany et al. 2011, see chapter 5.1, 15 microarray

data sets were included in a systematic study of noise behaviour. To endorse

our conclusions from synthetic data about the proposed model’s validity, we

also used the spike-in experiment proposed in Choe et al. 2005 as a more

realistic test case. In addition, we analysed 14 additionaly microarray exper-

iments covering various experimental settings, organisms and measurement

platforms. As we can see, various kinds of biological data were chosen in

order to assure that our conclusions are not limited by particular choices of

data sets. The data include investigations of plant soil responses, drosophila

sleep deprivation, primate dietary comparisons and animal liver metabolism.

While applying our approach to the analysis of microarrays’ noise be-

haviour, we simultaneously tested the hypothesis of differential expression.

Due to the irregularity and complexity of noise, investigating the error be-

haviour of microarray data is of great importance, as many questions are still

left unanswered. Novak et al. 2006b concluded, after testing the whole data

set as well as the least extreme subsets for normality, that about 80-85 %

of the data are normally distributed. However, they noted that student’s t

distributions provide the best fit for extreme data. Recent studies by Hardin

and Wilson 2009 and Posekany et al. 2011 showed the heavy-tailed distribu-

tions’ superiority over the Gaussian. Therefore, we quantitatively analysed

the behaviour of over-dispersed genes, which draw the whole data set, as

well as the occurrence of normally distributed genes. As the observed errors
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may originate from the experiments’ conduction or an underlying biological

process, thus being crucial for the analysis, we aim towards accounting for

proper noise behaviour, as we discuss in chapter 5.

Since their first use in the 19th century by Pearson 1894 for modelling sizes

of crabs, mixture models have developed into a common tool in statistical

inference, cf. Frühwirth-Schnatter 2006 and Mclachlan and Peel 2000. With

the increase of computational power, Bayesian mixture models could be fitted

where inference had been impossible before. Applications of Bayesian mix-

ture models include model-based clustering (Banfield and Raftery 1993,Wang

et al. 2011) and Bayesian mixtures (Do et al. 2005,Frühwirth-Schnatter and

Pyne 2011). Ideas for robustifying Gaussian mixture models led to the de-

velopment of mixtures of Student’s distributions (cf. Frühwirth-Schnatter

2006) and Skew-normal or Skew-t distributions (cf. Frühwirth-Schnatter and

Pyne 2011). However, often part of the data suffers from outliers, while the

rest is well-fitted by the usual normal distribution. The focus of this work

lies on situations in which mixtures of only Gaussians or student’s t distri-

butions would likely misjudge the situation, whereas a combination of both

distributions shows a better performance, as it avoids the more complex non-

Gaussian distributions, if unfitting. In such cases, our model includes normal

components, whenever possible instead of student’s t components with high

degrees of freedom and unnecessary rescaling parameters. Including student’s

t distribution in the inference only makes sense, if differing between Gaus-

sian and student’s t distributions carries valuable information, as making the

model more complex than a Gaussian mixture model with enough compo-

nents to approximate any given likelihood implies additional computational

burden. In situations where more than simple density estimation is required

and the weights scattered over several normal components hold no informa-

tion about outlyingness, we require a single non-normal component which

can be interpreted in terms of underlying technical or biological processes.

In addition to noise estimates on microarray we introduced a measure for

”non-Gaussianity” to estimate the ”distance” from the normal distribution

regarding the ’tail weights’ of the distribution which is hard to calculate for

mixtures of Gaussians. Here, the common measure for the difference be-

tween normal and student’s t distribution, the kurtosis, is not defined for

the most interesting distributions with degrees of freedom less or equal to



5

4. Hence, we applied robust functions for peakedness to be able to measure

the distance between the Gaussian and the student’s t distribution. Further-

more, direct inference is impossible for the degrees of freedom parameters

ν of the t distributions, as we included Gaussians with theoretical degrees

of freedom ν = ∞ into our model. However, transforming to peakedness

allows inferring these parameters without identifying their components and

respective weights. To conclude, our approach fulfills the two purposes of

dealing with the label switching problem and measuring ”non-Gaussianity”

for each gene, based on the underlying mixture components. Additionally,

assessing noise behaviour and scoring the influence of over-dispersion with

an according non-Gaussianity measure can be more generally applied than

for microarrays, the field in which we tested the approach, see chapter 7. In

bioinformatical analysis, by reducing the number of considered genes by iden-

tifying the ’possibly errorprone’ or ’possibly interesting’ ones due to different

noise behaviour researchers could profit from this approach.

In order to give a concise overview of this thesis’ structure and contents,

the topics of the individual chapters will in the following be presented. In-

stead of ordering the chapters chronologically, we first mention the chapters

dealing with theory as well as the background of the field of application.

Then, we address the two chapters dealing with the two modelling approaches

and their respective goals. Chapter 2 will summarise the most important the-

oretical background of Bayesian statistics the reader requires to understand

all later chapters in this thesis except chapter 3. In addition, the not com-

monly known theory of Bayesian robustness will be presented in a nutshell.

In chapter 3, the required bioinformatical backgrounds necessary for under-

standing the application of the work presented here will be touched upon.

Chapter 4 discusses the theory behind Markov chain Monte Carlo sampling

in detail, in order to mathematically justify and motivate its application for

the models presented in chapters 5 and 7. Chapter 6 summarises the the-

ory as well as the application of Bayesian mixture modelling for the less

informed readers. In chapter 5, the first model suggested for robustification

of microarray analysis which performs model comparison based on likelihood

robustness consideration, will be presented. The second model will be intro-

duced in chapter 7 and builds upon the first model, while extending it to

mixtures of heavy-tailed and normal distributions with microarray quality
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control as a possible goal.



Chapter 2

Bayesian basics & Bayesian

Robustness

2.1 The basics of Bayesian inference

In a classical sense, statistics is based on observations and their frequency.

This information is then used for exploratory, often graphical, approaches as

well as inferential approaches. In the framework of model-based inference,

such as regression, the Likelihood function provides a formal way of including

this information into the process of data analysis. Observations, character-

isied by their properties (variables) and frequencies, come from a predefined

space of possible observations, the population, about which we pretendedly

do not know anything except for its elements. However, this scenario is rarely

the case, when conducting experiments, even of an explorartory nature. Any

good experimenter has an expectation of the outcome, tested for example in

classical hypothesis tests.

The principal idea behind Bayesian Statistics is involving an analyst and his

or her prior ideas such that any analysis becomes ’subjective’ which should

represent the considered experiment far better than simply stating its pop-

ulation. As likelihood functions are formalised by probability distributions,

so are the prior believes which are introduced via prior distributions. Com-

bining both sources of information, as in human learning, provides the data

analyst with an updated, a posteriori, view of the original ideas.

Bayes’ theorem formalises this information inclusion and hereby formu-

7
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lates the backbone of Bayesian statistics.

Theorem 1 (Bayes’ Theorem).

For two events A and B ∈ S, where S is a σ-field, the following formal

relation exists:

P[A|B] =
P[B|A]P[A]

P[B|A]P[A] + P[B|AC ]P[AC ]
(2.1)

Formalising the idea behind conditional probabilities and expectation for

the continuous case,

Definition 1 (conditional expectation).

The conditional expectation of random variable X given the realisation of

random variable Y = y is defined as

E[X|Y = y] =

∫
D(X)

xdP[x|Y = y] (2.2)

=

∫
xf(x|y)dx, (2.3)

where D(X) is the domain of X.

Theorem 2 (Bayes’ Theorem II).

In the continuous case, the posterior distribution results from

π(θ|x) =
π(θ)f(x|θ)∫

Θ
π(θ)f(x|θ)dθ

. (2.4)

In the denominator marginal likelihood, m(x) =
∫

Θ
π(θ)f(x|θ)dθ, appears.

This formula already includes all necessary parts required for building a

parametric Bayesian model:

� the prior distribution π(θ) which expresses the uncertainty about a

model parameter θ from parameter space Θ;

� and the likelihood function f(x|θ) which includes the information of the

observations x,
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� resulting in the posterior distribution π(θ|x) which relates the obser-

vations to the information about the parameter, shedding light on its

behaviour in the modelled process.

2.1.1 Hierarchical Bayesian modelling

As we can see, the whole Bayesian framework is hierarchical with variables

and parameters being in different points of the hierarchy. Adding another

level to the model is always possible by defining prior distributions for the

hyperparameters, the parameters of the prior over the parameter. Fully

bayesian hierarchical models for inferring linear models have been consid-

ered for almost half a century in theory and practice, cf. Hill 1965, Tiao and

Tan 1965, Robert 2001, Gottardo et al. 2003.

Directed acyclic graphs (DAG) are frequently used in the machine learn-

ing community, cf. Bishop 2006. The following convention will be used for

DAGs throughout this whole thesis:

� squares around the variable symbol are used for known or predefined

parameters and the data,

� circles around the symbol signify that a posterior distribution for the

parameter or hyperparameter is estimated during inference.

In order to explain this notion which will be used for illustrating and sup-

porting the bayesian hierarchical models later on, we will explain this using

a short and basic example.

Example 1. We will take a simple normal distribution model with prior for

the mean and precision parameter into account. The equation

y ∼ N(µ, λ) λ = 1/σ2 (2.5)

presents the likelihood model for data y which is a normal distribution with

mean µ and precision λ. The we define priors for µ and λ

µ ∼ N(m, l), (2.6)

λ ∼ Gamma(α, β). (2.7)
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λ

m l a b

µ

y

Figure 2.1: Example of a directed acyclic graph representation for the hier-
archical normal distribution model with conjugate priors

This simple model can be represented graphically as in Figure 2.1

Adding another level to this hierarchy by defining e. g. a prior distribution

over the parameter β in the following way

β ∼ Gamma(a, b) (2.8)

can be illustrated in the same way by adding another level in the hierarchy.

The theoretical advantage of definign hierarchical Bayesian models by

adding inference over the parameters and hyperparameters lies in gaining

”objectivity” and a certain kind of ’robustness’ w. r. t. the choice of prior.

Hierarchical Bayesian models are also in the center of attention of modern

Bayesian statistics as they provide a flexible tool for pooling information and

form the basis for computational inference methods, in particular Markov

chain Monte Carlo approaches.

When defining any kind of Bayesian model, one of the most essential parts

is the prior distribution’s choice. Before adding some detail on this, we take a

look at two concepts playing an important role in Bayesian statistics. One is
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the suffiency concept, while the other is referred to as the Likelihood principle.

Starting with sufficiency we define a sufficient statistic in the following way:

Definition 2 (Sufficient statistic).

For a random variable X ∼ f(x|θ), we define a statistic T (x) as suffi-

cient, if the distribution of x conditional upon T (x) is independent of θ, i.e.

p(x|T (x), θ) = p(x|T (x)).

The factorisation theorem provides a useful criterion for sufficiency which

allows an easier check for a sufficient statistic, cf. Bernardo and Smith 2000.

Theorem 3 (Factorisation theorem).

Writing the density of x in the form

f(x|θ) = g(T (x)|θ)h(x)

with density g of T (x) and non-negative function h is valid, iff T is sufficient.

Sufficiency forms the backbone for some fundamental principles important

for any kind of statistical inference. Bayesian approaches particularly build

on these principles, cf. Robert 2001 for a collection of these principles and

illustrative background literature. The likelihood principle is a particular

consequence of the sufficiency principle, linked by the conditionality principle.

Sufficiency principle

Two observations x, y which result in the same sufficient statistic

T (x) = T (y) necessarily have to lead to the same inference about the

parameter θ.

Likelihood principle

The likelihood function `(θ|x) contains the entire information of obser-

vation x about parameter θ. If two observations x, y depend on the

same parameter θ, such that there exists a constant C fulfilling the

relation

`1(θ|x) = C · `2(θ|y) ∀θ,

they then contain the same information about θ and lead to the same

statistical inference.
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Conditionality principle

If one of two available experiments E1, E2 on the parameter θ is selected

with probability p, the resulting inference on θ should only depend on

the selected experiment.

Theorem 4 (Fundamental principles). The Likelihood principle is equivalent

to the conjunction of the Sufficiency and the Conditionality principle.

Proof. Cf. Robert 2001

Although Bayesian statistics has advanced far beyong its ”gambling ori-

gins”, which it shares with combinatorics and other parts of statistics as

well, subjectivity and mainly the prior distribution introducing it still are in

the line of fire by critics. The choice of a prior distribution affects the way

of introducing prior information into a model, thus forming a key point of

Bayesian analysis. Here, a short overview over types of prior distributions,

their advantages and disadvantages is presented.

� Elicited prior . A subtle and elegant way for including prior informa-

tion into a model is manually creating a prior distribution, specifically

based on given data. However, this comes at the disadvantage that on

the one hand this method may become inconsistent rather quickly, on

the other hand the laborious construction of such a prior is a waste

of time if one has to feed it into a sampling algorithm later on. In

addition, a reliable source of reasonable prior information is required

to make this a reasonable option which rarely is the case.

� Natural conjugate prior .

Natural conjugate priors follow the straightforward way of managing a

Bayesian model by choosing a prior distribution with a structure similar

to the likelihood function. Thus, the prior becomes interpretable in

terms of the model and allows adding previously available information,

e.g. by including results from equally structured earlier experiments.

Because of their special role in this context, we take a closer look at the

exponential family of distributions. Exponential familiy distributions

also play an important role in this work, since many of the distributions
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frequently used for statistical modelling belong to this family. Distri-

butions belonging to this family have several advantageous properties

which make them interesting for Bayesian inference (cf. Robert 2001).

Definition 3 (Exponential Family).

For real functions C : Θ→ R+, h : X → R+ and R : Θ→ Rk, T : X →
Rk an exponential family of dimension k is a family of distributions

with densities of the form

f(x|θ) = C(θ)h(x)eR
>(θ)·T (x). (2.9)

The special case of R(θ) = θ, i.e. R(.) equalling the identity idRk(.), is

called natural exponential family.

In combination with exponential type families natural conjugate priors

often describe data information using representative functions of the

data, sufficient statistics. A corollary of theorem 3 is presented in the

following theorem, cf. Robert 2001.

Theorem 5 (Pitman-Koopman Lemma). If for large enough sample

size there exists a sufficient statistic of constant dimension for a family

of distributions f(.|θ), then this family is exponential, if the support of

f(.|θ) is independent of θ.

By placing the given restriction on the support, a line is drawn between

exponential family distributions and ’quasi-exponential’ distributions,

such as the uniform and Pareto distribution, which share several prop-

erties typical for exponential families including the existance of con-

stant dimensional sufficient statistics. Their support however is not

independent of θ.

The converse of the Pitman-Koopman lemma that a sufficient statistic

exists for any exponential family distribution is a natural property of

the exponential family. Thus, one can identify a natural conjugate prior

belonging to an exponential family itself, which need only be compat-

ible with the sufficient statistic. This property justifies the additional

advantage of conjugate priors that an analytical solution is always feasi-

ble, unless the model gets hierarchically structured. Updating narrows
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down to determining the ”new”distribution’s parameters, instead of de-

termining the structure of the posterior. For hierarchical models these

prior allows to use Gibbs updates which are favourable, as they are

simple, straightforward and have a good convergence behaviour. Table

2.1 presents an overview of the most important conjugate prior settings

for typical exponential family distributions which will be used for con-

structing the Gibbs updates later on, cf. 4.2.2. For a more detailed

collection and discussion of conjugate priors consult Fink 1997.

likelihood f(x|θ) prior π(θ) posterior p(θ|x)

Normal Normal Normal
N(θ, σ2) N(µ, σ2

0) N(λ(σ2µ+ σ2
0x), λσ2σ2

0) λ−1 = σ2 + σ2
0

Normal Gamma Gamma
N(µ, θ−1) Gamma(α, β) Gamma(α + 0.5, β + 0.5 ∗ (µ− x)2)

Gamma Gamma Gamma
Gamma(a, θ) Gamma(α, β) Gamma(a+ α, x+ β)

Binomial Beta Beta
Bin(n, θ) Beta(α, β) Beta(n+ α, x+ β)

Multinomial Dirichlet Dirichlet
Mn(n, θ1, . . . , θk) D(α1, . . . , αk) D(α1 + x1, . . . , αk + xk)

Table 2.1: Overview of most important conjugate prior settings.

However, using conjugate prior has the disadvantage that information

always is introduced into the model via the prior distribution. Addi-

tionally, only information fitting the structure of model and prior alike,

will be passed on, any other will be disregarded. Since the conjugate

prior except for the choice of its hyperparameters is predefined by the

model, it is referred to as objective, loosing some of the subjectivity, e.g.

including by an elicited prior (cf. Robert 2001). Automating the choice

of prior distribution is an advantage and a nuisance. Thus, computa-

tional advantages have to be weighed carefully against disadvantages

of the approach.

� Maximum Entropy prior . Maximum Entropy priors base on the

notion of spinning prior information into a model, based on the entropy.
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Stemming from information theory, the entity of entropy measures un-

certainty of data.

Definition 4 (Entropy).

For a discrete random variable X the entropy is

E(π) = −
∞∑
i=1

log (π(xi))π(xi),

where the sum be finite or infinite. Generalising this definition for

continuous x, we define

E(π) = −
∫

log (π(θ))π(θ)dθ

The methodology of maximum entropy priors aims towards maximis-

ing the prior uncertainty, thus, being as little informative as possible

in terms of entropy, while fulfilling certain side conditions. Hereby, in-

formation about certain characteristics of the prior can be included in

the model, as long as they can be written as prior expectations (e.g.

moments, quantiles, . . . ). A discrete prior maximising the entropy and

prior uncertainty) can be formulated as

πME(θi) =
exp (

∑
k λkgk(θi))∑

j exp (
∑

k λkgk(θj))

Here, λk denote the Lagrange multipliers for optimising, while the side

conditions Eπ[gk(θ)] = ωk apply, where Eπ refers to the first moment

of the distribution π of the functions gk of parameter θ.

In the continuous case an additional measure π0 for reference is re-

quired.

πME(θ) =
exp (

∑
k λkgk(θ))π0(θ)∫

exp (
∑

k λkgk(η))π0(dη)

A maximum entropy prior, contructed in this way will by definition

belong to an exponential family. Even though it allows some flexi-

bility, while resulting in manangeable distributions, the approach has
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the a drawback that it is often impractical and can result in impossi-

ble parameter values, like negative “variances” (g1(θ) = θ, g2(θ) = θ2

ω2
1 > ω2). Unless applying great care, moments used can become in-

compatible and lead to a partial rejection of available information. For

example, contradictory definitions might force the analyst to drop one

or more of the side conditions in order to obtain a density at all. (For

details see Robert 2001)

� Noninformative prior . A common problem, when performing in-

ference, is that no prior information is available, as a prior experiment

provided no compatible results or in exploratory studies. The ques-

tion then becomes, how to translate ’lack of information’ into a prior

distribution which is a necessary part of any Bayesian model. The op-

timal way of formulating a single function which represents complete

ignorance has not been found yet and very likely does not exist. Thus,

different types of ’non-informative’ priors focus on different aspects of

this lack of knowledge in order to introduce ”no information” partially

into the model. One of the typically considered aspects is invariance

to parameter transformations. Since transforming the original param-

eter due to easier handling of the model, e.g. standard deviation or

precision instead of variance is a commonly applied means in statis-

tics, such considerations are particularly valuable for data which results

from transformation or is considered to related to a arameter of interest

via transformation. Thus, a ”non-informative” prior must not provide

any information about the transformed parameter, when no informa-

tion is available for the parameter itself. A Catalog of Noninformative

Priors presents an extensive manual for the usage and calculation of

non-informative priors.

Jeffreys proposed a very general approach transformation invariance

without introducing information. His method bases the calculation of

the prior distribution on Fisher’s information matrix with appropriate

regularity conditions assumed.

Iij = E
[
∂ log (f(x|θ))

∂θi

∂ log (f(x|θ))
∂θj

]
= −E

[
∂2 log (f(x|θ))

∂θi∂θj

]
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Then the Jeffreys noninformative prior distribution is

πJ = [det(I)]−
1
2

which is invariant under diffeomorph parameter transformations.

Modifying Jeffrey’s approach led to developing reference priors

(Bernardo and Smith 2000). The two methods differ most notable in

their way of viewing parameters: the reference prior approach distin-

guishes between parameters of interests and nuisance parameters, while

for Jeffreys’ priors all parameters are equal. Robert (Robert 2001) pre-

sented an interesting way of connecting the two approaches which also

provides a constructive method for obtaining the reference prior. He

modelled x ∼ f(x|ω, θ) given the multivariate parameter (θ, ω), which

contains the parameter of interest θ and nuisance parameter ω. Here,

the reference prior is obtained by first defining πJ(ω|θ) as the Jeffreys

prior of ω for fixed θ and secondly calculating the marginal distribution

f ∗(x|θ) =

∫
ω

f(x|ω, θ)πJ(ω|θ)dω

The reference prior equals the Jeffreys prior πJ(θ), calculated with re-

spect to the new likelihood function f ∗.

Thus, the reference prior in general is an extension of the notion of Jef-

freys’ prior. In cases where a normal approximation of the posterior is

valid, the reference prior equals the Jeffreys prior, e.g. for all continu-

ous distributions as long as certain regularity conditions (see Bernardo

and Smith 2000) are fulfilled. In the discrete case the reference prior

generally equals the uniform distribution.

� Weakly informative priors Weakly informative priors were intro-

duced to bridge the gap between informative priors and non-informative

priors. They contain intentionally less information than is actually

available, while defining proper prior distribution. Gelman 2006 has

presented an excellent example of this kind of distribution in compari-

son with non-informative prior which shall be summarised here.

Example 2 (Prior distribution of the variance parameter). We look at
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Gelman’s example of the 2 group hierarchical model:

yij ∼ N(µ+ αj, σ
2
y)

αj ∼ N(0, σ2
α)

σ2
α ∼ π(θ)

(2.10)

– The conditionally conjugate prior distribution prior distribution

for σ2
α is of the inverse-gamma type, i. e. the distribution of its

inverse, the precision, is a proper gamma distribution. This prior

is most advantageous for a Gibbs updating scheme and justified,

if enough data is available to outweigh the introduced prior infor-

mation.

– Non-informative priors can be formed by improper limits of proper

priors, e. g. Gamma(ε, ε) where ε → 0. This prior is improper

and inference need not lead to a proper posterior which makes it a

serious problem which should be dealt with in a sensitivity analysis.

– In his paper, Gelman 2006 proposes two types of weakly informa-

tive priors. One is related to the flat-tailed uniform prior, which

is improper if defined on [0,∞). However, practice itself sets cer-

tain restriction that this parameter cannot become infinitely large

based on finitely many finite data. Thus, a reasonable interval can

be defined based on statistical expert knowledge that under certain

restrictions presented by the standardisation of the data, an up-

per and lower bound for the uniform distribution can be found.

Although, this assumes some background knowledge, this prior

is not as strictly informative as the conjugate prior, adding less

than what could actually be known when keeping the bounds large

enough.

Choosing a proper prior for a hierarchical Bayesian inference model has

to take several aspects into account. The hierarchical structure renders some

of the properties, specifically designed and built for a basic Bayesian prior-

likelihood model, useless. Thus, elicited and maximum entropy priors are of

limited applicability, as no reasonable prior information should be available

for hyperparameters of the model parameters, which result from inference
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and have an interpretation. Non-informative priors lose importance as the

hierarchical structure itself provides a certain degree of robustness and ’non-

informativeness’. The most important criterion for prior distributions, there-

fore, is that they are eays to deal with, which rarely is the case for Jeffreys

priors. Despite belonging to an exponential family in any case, the Maxi-

mum entropy prior need not be easy to handle. This requirement finally tips

the balance in favour of the natural conjugate prior. As complex hierarchi-

cal models are usually not analytically tractable, one prefers Gibbs sampling

methods as the simplest possible update and simplification of updates for

Metropolis-Hastings steps, both of which which will be described in more

detail in a separate chapter.

2.1.2 Bayesian Robustness

Following Berger 1994, a very brief overview of the subtypes of robust

Bayesian analysis is presented. Bayesian robustness aims towards smartly

choosing priors, likelihood or loss functions in such a way that the whole

model becomes less sensitive to changes of other model components. The

principal idea is to define a whole class of distributions instead of a single

distribution in the model. For this class prior or likelihood functions are

taken into account for modelling. Instead of limiting the choice to a single

type of distribution, the class have a far wider range, e.g. including con-

jugate priors with an interval for the hyperparameters or several different

distributions as possible likelihood functions. Thus, different approaches to

modelling can be compared regarding their influence on the posterior. Com-

plete ’non-informativeness’ and ’lack of information’ are harder to model than

estimating the influence of the subjectively chosen model parts on the pos-

terior. As noted above, it is a general problem for ’non-informative’ priors

to sufficiently express indifference about the parameter, which is why usually

certain aspects are focussed on, e.g. transformation invariance. Walley 1991

made a good statement in that respect:

The problem is not that Bayesians have yet to discover the truly

noninformative priors, but rather that no precise probability dis-

tribution can adequately represent ignorance.
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For example, the situation can be robustified by defining a class which in-

cludes both the natural conjugate and several non-informative and other

types of prior distributions thus covering a larger range of possible model

behaviour.

When working with exponential family distributions, two main problems

occur during inference (see Berger 1994):

� exponential family distributions are very sensitive against outliers.

� conjugate priors have great influence on the inference results, if the

data jars with the prior information which is implicitly introduced by

its specification. This is a problem in particular if the informative

choice of hyperparameters does not come from a previous study, but

still is influential. This can even go as far as the prior distribution

becoming more influential than the data itself, when the data is not

fully compatible with the parametric model structure which is as any

model only an approximation of reality. As stated by George Box Box

1979:

Remember that all model are wrong; the practical question is

how wrong do they have to be to not be useful.

Bayesian statistics differs between several different concepts of robustness,

discerned by their focus on the effect:

� global robustness compares the overall effect of change of model distri-

butions on the parameter estimation, hypothesis testing, etc. over the

total support of the model

� local robustness looks at the effect of change of model distributions on

the parameter estimation, hypothesis testing, etc. within a suitable

large neighbourhood

� likelihood robustness in the sense of Shyamalkumar (cf. Shyamalkumar

2000) rather compares to model selection in the sense of selecting an

”optimal”, most robust model by some definition among a finite set of

possible models.
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We will discuss the concepts of robustness consiedered in this thesis in more

detail:

� Global Robustness

The principal idea behind global robustness is to evaluate the overall

effect of restricting the model to a class a distributions as priors or

likelihood functions. The chosen class of distributions Γ is defined

to contain all ”reasonable” distributions. Robustness is related to the

range of results, determined from all models with priors or likelihood

functions in this class. This range r(Γ) serves as an indicator whether

the model is sufficiently robust. In principle, if the range r(Γ) is not ”too

large” by some definition, the results are considered to be robust, cf.

Berger 1994. This concept is rather vaguely defined, but very generally

applicable and easy and straight forward to interpret. By choosing the

thresholds for ”too large” and the quantity of interest, it leaves a lot of

freedom to the analyst.

r(Γ) = ‖ψ − ψ‖,
ψ = supπ∈Γ ψ(π, f), ψ = infπ∈Γ ψ(π, f),

(2.11)

where π represents the prior, f the likelihood function and ψ(π, f) a

decision of some kind, e. g. a point estimator from the posterior or some

quantity of interest.

For global robustness, the monotony criterion for sets and suprema and

infima (2.12) holds, as written here for the one-dimensional case,

Γ′ ⊆ Γ⇒ (ψ
′ − ψ′) ≤ (ψ − ψ). (2.12)

Thus, the range can always be reduced by imposing reasonable restric-

tions on the class Γ and hereby gaining a subset Γ′ with a smaller range

of results.

The concept of global robustness applies to prior distributions, like-

lihood functions and loss functions alike, even simultaneously with a

different set of possible functions for each of them. The downside of

the approach is that by restricting the sets at will, it is always possible

to fall below a certain size for the range. Keeping the balance between
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a suitable size of the range and the class is a delicate matter. Thus,

other notions of defining ”robustness” have been considered as well.

� Local Robustness

Local robustness is closely related to the notion of global robustness

in the sense of looking for variation of the posterior estimates, when

varying the model components, such as prior, likelihood or loss func-

tions. However, only the local changes, in a predefined neighbourhood,

are considered instead of a global measure of divergence, as is the case

for global robustness. The definitions of ’suitably large’ may vary and

lie in the hand of the researcher. Sensitivity analyses regarding the

hyperparameters in hierarchical models usually try to validate local ro-

bustness. Here, usually an interval or neighbourhood of possible values

for each hyperparameter is considered and the region of ’no considerable

influence’ on the posterior distribution or estimators is determined.

� Likelihood robustness

In the majority of cases Bayesian robustness consideration focus on

robustifying the prior distributions. Two main reasons exist for these

considerations. Firstly, since the early days of Bayesian analysis, prior

distributions have been in the focus of criticism, as they form the sub-

jective part of the method. Many statistician including Bayesian view

them as the weakest link of the theory, which is why notions of ’non-

informative’ priors or ideas like global robustness have been called into

life. Yet, the likelihood function influences the analysis considerably

by determining the way how the data will introduced into the model.

However, an easy way of quantifying the actual influence does not ex-

ist, leading us to the second reason why too many considerations of

likelihood robustness have been avoided: investigating the posterior

robustness with respect to the likelihood is no easy task.

Shyamalkumar 2000 was the first to propose an alternative method for

approaching the challenge posed by likelihood robustness from a differ-

ent direction than global and local robustness. Berger 1994 devised the

original concept of global robustness to work for priors and likelihood

functions alike, defining a class of distributions Γf from which to choose
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the likelihood function and calculating the range of results as an indi-

cation the model’s robustness (see equation (2.11) ). Shyamalkumar

chose the way of investigating likelihood robustness by selecting the

likelihood function from a finite class of models M = {M1, . . . ,MI},
which might be determined e.g. by distributions with different tail be-

haviour or skewness. Among these possible models one looks for the

’optimal’ model to determine the most robust behaviour. Thus, his

approach is far closer to model selection than the original approach by

Berger, which did not ask for an optimal model. Instead, it investi-

gated the ’influence’ of the model structure and choices of parameters

on results.

The advantage of Shyamalkumar’s method, thus, lies in its easier han-

dling. Unlike for the determination of global infima and suprema, the

complexity of calculation does not increase significantly with the in-

crease of sample size. However, the obvious disadvantage is that only

an approximation of uncertainty can be achieved, since a finite class

lacks the adaptivity of a more generally defined (infinite) class.

Various approaches exist in the literature, where we briefly wish to men-

tion only a selective few. Berger 1994 provides a detailed discussion of the

then state of the art of Bayesian robustness, Berger et al. 1995 presents a

collection of interesting works in the field. Wasserman 1996 very early dis-

cussed conflicts arising between improper priors, often resulting from the

notion of non-informative priors, and robustness, as discussed here. Rug-

geri 2010 more recently builds a bridge between non-parametric approaches,

based on Dirichlet processes, and Bayesian robustness notions.



Chapter 3

Introduction to Microarray

technology

The term microarray (shortened MA) does not refer to a single well-defined

device of measurement. Instead, it sums up a variety of platforms which

all have in common that high density assays are performed in parallel on a

solid support. The basic concept is to take advantage of certain hybridisa-

tion properties of nucleic acids, when interacting with chosen complementary

molecules - the probes, also called reporters or oligos - on a solid surface.

These interactions are assumed to behave in a way that a quantitative mea-

surement of a specific molecule of interest - the target or sample - can be

conducted. The large scale of molecules which can be considered at once

separates the microarray technology from other previous methods in biology

and biochemistry, such a chromotography or thin layer electrophoresis.

In general, microarrays can be applied for any type of biochemical

molecule, which fulfil the binding assumption, thus, they are also used for

a broad range of applications. The most common biological substances are:

tissues, proteins and DNA/RNA. Protein microarrays track interactions and

activities of proteins in order to determine their function in the cell. DNA

microarrays test whether parts of the DNA - sequences - are actively used in

cells by having them react with their anti-sequence which would be located

on the opposite strand of DNA in the double-helix. Tissue microarrays are

tools in medical diagnosis and treatment which consider proteins, RNA or

DNA molecules for a series of tests, which are performed on the patient’s

24
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tissue on the small scale of the microarray.

During the past 2 decades microarrays have gained considerable influ-

ence in biological and medical investigations. From now on we refer to DNA

microarrays, when simply writing microarrays. For the fabrication of mi-

croarrays a variety of technologies can be used, among them: printing with

fine-pointed pins onto glass slides, photo-lithography using pre-made masks,

photo-lithography using dynamic micro mirror devices as well as “ink-jet”

printing, and electrochemistry on micro-electrode arrays. Some of these sys-

tems are available for creating custom microarrays in one’s own laboratory.

The majority of platforms used for experiments however is provided by com-

panies specialised in microarray design and production which guarantee a

minimum quality and predefined well-thought of design.

Based on the material and methods applied, two main systems of DNA

microarrays are commonly available:

� cDNA microarrays This system is also referred to as “spotted ar-

rays” and created by robotic spotting of genes and expressed sequence

tags which have been amplified in a polymerase chain reaction where

millions of copies of each gene are produced. Figure 3 visualises the

typical procedure of such an microarray experiment. With the encyme

reverse transcriptase the RNA is rewritten into cDNA. Each target

molecule then binds to the corresponding probe on the chip providing

the ‘anti-sequence’. Typically, two types of DNA are compared on each

microarray and then excited with laser light. The tissues are colour-

coded by Cyanine3 which submits light rays in the green part of the

visible light’s spectrum and Cyanine5 corresponding to the red part of

the spectrum. The light intensity of each part of the spectrum is then

measured separately. The basic assumption of microarray analysis is

that these light intensities are proportional to the original amount of a

gene in the cell. Absolutely values have no meaning, as they differ too

much between experiments and experimenters; only the relative differ-

ences between the light intensities can be modelled and interpreted.

� High density oligonucleotide arrays Single-channel (one-colour)

microarrays work similar to two-colour arrays w. r. t. amplification
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(PCR), and binding to its counter-part. However, now each array pro-

vides light intensity data for a single type of cells only. Again only the

relative differences between the measurements of an experiment can be

modelled. These platforms provide a reliable methodology and allow to

easily include more than two types of tissue in the experiment design

which would cause problems in the two-colour array’s world which have

typically been meant to compare 2 tissues only.

In order to understand the goals of bioinformatical microarray analysis,

we mention some of the objectives typical for microarray studies. When

possible, we demonstrate this with examples which we apply our method on,

cf. Chapter 5 and 7.

� distinguishing between patients and (healthy) control persons, e. g. in

testing a drug or therapy

� identification of subgroups of patients, e. g. identifying different types

of carcigenous melanoma

� examination of drug response, e. g. time series of neurons within a

reasonable time frame after application of an antidepressant

� comparison of alternative experimental conditions, e. g. different ver-

sions of a newly designed drug

� examination of cellular pathways, e. g. apoptosis pathway, leading to

programmed cell death and other cell-cycle-relevant genes

� identification of genes for further genetic studies, e. g. identifying candi-

date genes for identifying cancer types or Alzheimer in medical screen-

ing

� detecting SNPs, single nucleotide polymorphisms, e. g. used for forensic

analyses, evaluating mutations of cancer or other cells and determining

differences between separated populations

An important aspect in conducting a microarray experiment is determin-

ing a proper experimental design which has both biological and statistical

aspects. The biological experiemntal design includes the choice of platform
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(e. g. oligonucleotide), probes and location of these probes, lathough the

two latter aspects are typically dealt with by the company designing and

producing the arrays, yet custom arrays are possible. Typically, such cus-

tom designs focus either on a specific subselection of genes or changing the

probes location on the surface avoiding cross-gene effects and increase cor-

rect probe-target binding to optimise e. g. thermodynamical considerations,

cf. Mückstein et al. 2012. Additional aspects of design can be die swaps to

remove the known confounding effect of the die used for flourescence labelling

in two-colour arrays, but also placing “control” genes on the array which are

not targeted by the experiment yet meant to help detect whether something

went wrong during conducting the laboratory experiment. Such an approach

is the usage of “spiked in” genes which would not be present in the sample

and are added with a known concentration. We will use a data set with such

spiked in genes as a comparison to fully biological gene pool based data sets,

cf. Table 5.4 and 7.4.1.

To understand the statistical aspects of microarray experimental design,

we have to first bring to our mind the whole procedure of analysing such ex-

perimental data and its final goal, the typically gene-wise, sometimes across

genes comparison of expression patterns. As the data collected from mi-

croarray experiments is usually very noisy and includes far less samples than

variables, its analysis has posed an extraordinary challenge for researchers.

These have to be dealt with properly before applying any kind of further

data analysis or inference. In order to understand the problems occurring in

microarray data analysis, we outline the process, its methods and assump-

tions, see also Speed 2003. The R BioConductor software, cf. Gentleman

et al. 2004, provides packages which deal with all steps of analysis.

* The first step in microarray analysis is image processing, where the

light intensity on the pictures which result from the experiment has

to be evaluated properly. The most important issue here comes with

placing the proper grid over the image in order to uniquely identify

the spots on the scanned image. Firms provide segmentation algo-

rithms and gridding software, appropriate for their microarrays. Flag-

ging, i. e. removing or marking poor-quality and low-intensity features

is mainly based on “rule of thumb” criteria.
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* As a second step, the data is processed, such that global or local

background light is subtracted from the measurements to make them

at all meaningful, as the light intensity varies in each experiment even

between arrays and is adapted to the required setting. Only after back-

ground subtraction, spot intensities and intensity ratios can be deter-

mined in a reasonable way. Then, a method for global or local normal-

isation is applied to the intensities or intensity ratios. This normalisa-

tion method is on the one hand extremely influential, as it determines

in which way the data are made more homogeneous, before applying

some kind of statistical inference.

The classical microarray error model used for normalisation is the ad-

ditive - multiplicative error model,

z = a+ ε+ b · x · exp(η), (3.1)

where ε and η are errors of different sources, originating e. g. from

biological variation or laboratory work. Based on this error model

different normalisation methods are introduced, cf. Huber et al. 2004:

– For Quantile normalisation, the observations of different biological

states are transformed in such a way that their quantiles match.

– For Loess normalisation, a smooth loess function, based on the R

software system, is fit and the values of different biological systems

are corrected in such a way that they would then lie on a straight

regression line.

– Variance stabilising normalisation (vsn) stands for a statistically

well-founded transformation which is based on two assumptions

for the errors:

1. antisymmetry: h(z1, z2) = −h(z2, z1) ∀z1, z2

2. homoskedasticity: V ar(h(z1, z2)) = const. independent of

z1, z2

Then Huber et al. 2002 suggested the function

h(z1, z2) = arsinh

(
z1 − a
β

)
− arsinh

(
z2 − a
β

)
β =

σab

σb
, a, b ∈ R(3.2)
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for stabilising the sample variance.

* The typical inference problem at hand, when looking at microarray

data is determining differences in the mean gene expression between

different biological settings, e. g. healthy people and cancer patients.

The still standard approaches for comparison are classical tests, such

as the t-test for two-colour arrays, frequentist or empirical Bayesian

ANOVA or the non-parametric equivalent Mann–Whitney test. All

methods have been specifically tailored to microarray data sets taking

into account multiple comparisons or dimension reducing approaches,

such as factor analysis or clustering. The BioConductor package limma,

cf. Smyth 2005, provides an empirical Bayes software implementation

in R for fitting linear models to microarray data.

The results of such expression analyses can provide input for further

approaches which consider the interaction between genes in an exper-

iment, most prominently gene interaction networks in computational

biology. Further such methods include the KEGG approach or the

gene ontology system which builds hierarchical tree structures over bi-

ological effects. Within each level of the tree genes are assigned to

specific groups defined e. g. by their function in the cell. A Fisher’s ex-

act test is then applied to each ontology in order to determine whether

the number of differentially expressed genes detected in the experiment

belonging to this ontology compared to the total number of differen-

tially expressed genes differs from the marginal proportion defined by

the total number of genes of this organism belonging to the ontology

among all considered genes of the organism.
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Figure 3.1: Typical procedure of two-colour microarray experiments compar-
ing healthy against cancer tissue. (source:DNA Microarray)



Chapter 4

MCMC schemes

4.1 Background of the Markov Chain Monte

Carlo methodology

Markov Chain Monte Carlo (MCMC) methods unite 2 principal concepts:

1. Markov Chains and

2. Monte Carlo integration.

MCMC approximates expectations with means of random draws from a given

distribution combined with Markov chains which under certain regularity

conditions simulate draws from a stationary distribution. The essential back-

ground knowledge required for understanding MCMC simulation is presented

in the following chapter. The following definitions and theorems are required

for discussing the theoretical behaviour of the presented algorithms.

4.1.1 Monte Carlo integration

Classical Monte Carlo integration has its origins in computational physics.

Basically, the method was designed to calculate terms like moments of ran-

dom variables or functions thereof. Given observations (X1, . . . , Xn), gener-

ated from the known density f(.), the empirical average

hn =
1

n

n∑
i=1

h(xi) (4.1)

31



32 CHAPTER 4. MCMC SCHEMES

represents a valid approximation to

Ef [h(X)] =

∫
X
h(x)f(x)dx. (4.2)

According to the Strong Law of Large Numbers, we may rest assured that

hn converges almost surely to Ef [h(X)].

Under the additional condition that h2(.) has a finite expectation under f,

one can actually assess the speed of convergence. In order to construct con-

vergence tests for the Monte Carlo methodology, this property will be of

great importance. The reason for this lies in the possibility of calculating the

variance of hn, which is given by

V (hn) =
1

n

∫
X

(h(x)− Ef [h(X)])2f(x)dx.

For practical purposes we focus our attention on its empirical estimator

vn =
1

n2

n∑
i=1

(h(xi)− hn)2.

According to classical theory, the Monte Carlo estimator converges against

the true value in the following sense:

hn − Ef [h(X)]
√
vn

∼̇ N(0, 1).

Thus, the Monte Carlo methodology provides an unbiased estimator for large

enough sample sizes (n→∞). As real life restricts us to finite sample sizes,

the question regarding what sample size is large enough has to be answered

with smart empirical approaches. Some of those approaches of relevance for

the Markov Chain Monte Carlo methodology will be discussed in 4.3.

4.1.2 Markov Chain theory

Constructing Markov Chain with the unknown distribution as its stationary

distribution is the goal of MCMC. For the following theorems and definitions

we will mainly rely on Robert and Casella 1999 which provides an excellent

overview over Monte Carlo based sampling techniques. We will not discuss
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time series in general here, for an introduction on these confer Kendall and

Keith 1990, but we focus instead on the Markov process theory required for

our sampling algorithms. First, we require the definition of the specific kind

of stochastic process which gives the MCMC methodology its name, Markov

chains.

Definition 1 (Markov Chain).

In a discrete time setting, a Markov Chain is a stochastic process where the

sequence of random variables X1, X2, . . . fulfils the Markov property,

P [Xn+1 = x|Xn = xn, . . . , X0 = x0] = P [Xn+1 = x|Xn = xn], (4.3)

i.e. the probability of choosing a value x at time point n+1 given all previous

values x0, . . . , xn is independent of all but its precursor Xn = xn.

More generally in continuous time, defining Markov chains requires the

concept of its transition kernel, the function which determines how the chain

moves between its states.

Definition 2 (Transition kernel).

A transition kernel is a function K defined on X × B(X ) such that

1. K(x, .) is a probability measure ∀x ∈ X : , i.e. for every fixed value

x of the state space X K(x, .) is a function operating on the Borel sets

which assigns a probability (depending on x) to every set of B(X );

2. K(., A) is a measurable function ∀A ∈ B(X ) :, i.e. for every fixed set

A the function K(., A) operates on the state space X and is measurable.

Based on the transition kernel, the Markov process has the following proba-

bility of choosing a value xn+1 from set A of

P [Xn+1 ∈ A|Xn = xn] =

∫
A

K(xn, dx) (4.4)

For discrete space X the transition kernel is a matrix with entries

Kx,y = P [Xn+1 = y|Xn = x] x, y ∈ X
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In order to explain the interpretation of the transition matrix we look at the

probability of reaching the set A when starting from x:

Px(X1 ∈ A) = K(x,A).

Based on the notion of transition kernels, a Markov chain is defined as a

sequence of random variables which fulfils the Markov property in (4.3) and

allows us to express the probability of reaching a point in the set A when

coming from Xn = xn as

P [Xn+1 ∈ A|Xn = xn] =

∫
A

K(xn, dx).

A Markov chain is called homogeneous, if the distribution of

(Xt1 , . . . , Xtk)|Xt0 = xt0 is the same as the distribution of

(Xt1−t0 , . . . , Xtk−t0)|X0 = x0, i.e. the distribution does not change, if

it is shifted by a fixed amount of time t0.

As the transition kernel describes the movement of the chain in one time

step, the wish to take several steps at once occurs naturally. In a recursive

way, the movement of the chain is described by

K1(x,A) := K(x, a) (4.5)

Kn(x,A) :=

∫
Kn−1(y, A)K(x, dy)∀n > 1 (4.6)

An important property of transition kernels is reflected in the Chapman-

Kolmogorow equations, which provide convolution formulas of the type

Kn+m = Kn ?Km for the kernel for n+m transitions.

Lemma 1 (Chapman-Kolmogorow equations).

For every (m,n) ∈ N2, x ∈ X and A ∈ B(X ),

Km+n(x,A) =

∫
X
Kn(y, A)Km(x, dy).

Proof. see Meyn and Tweedie 1996, p. 67

These equations describe the probability to reach a set A in m+ n steps

when starting from point x. Here, ones accounts for all interim values y
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which can be reached from x in m steps and allow to reach A using m steps.

This idea will be important for the notion of irreducibility.

A property of importance for dealing with Markov Chains is the time at

which the chain enters a certain set for the first time. The term of stopping

time formalises this concept.

Definition 3 (Stopping time).

For A ∈ B(X ) the stopping time is the first index n for which the chain lands

in A, i.e.

τA = inf {n ≥ 1 : Xn ∈ A},

with τA = +∞, if Xn never reaches A (Xn /∈ A ∀n).

In association with a set A, the number of passages of (Xn) in A is defined

as

ηA =
∞∑
n=1

IA(Xn)

The probability of return to A in a finite number of steps, P [τA <∞], is

related to both terms.

The stopping time is an important property due to its link with other

characterisitics which we will discuss in the following. It also allows to differ

between the notion of weak and strong Markov property.

Definition 4 (Weak and Strong Markov property).

Let Xn be a Markov chain, h a function and (x0, . . . , xn) a sample from the

chain and µ a probability measure, which we call the initial distribution. If

the chain Xn has the weak Markov property, then the conditional expectation

of following events given the sample is independent of the sample, i. e.

Eµ[h(Xn+1, Xn+2, . . .)|x0, . . . , xn] = Exn [h(Xn+1, Xn+2, . . .)], (4.7)

assuming the expectations exist.

Given a probability measure µ and a stopping time τ which has to be finite
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almost surely, if the chain has the strong Markov property, then

Eµ[h(Xn+1, Xn+2, . . .)|x0, . . . , xn] = Eτ [h(Xn+1, Xn+2, . . .)], (4.8)

assuming the expectations exist.

There are several properties to look at, when studying a Markov chain’s

sensitivity to its initial conditions. Among the most important ones is irre-

ducibility. This notion describes the possibility of reaching any point in the

state space in a finite number of steps, independent of the chain’s starting

point.

Definition 5 (Irreducibility).

For discrete state space X , a chain is irreducible, if all states communicate,

i.e.

Px[τy <∞] > 0, ∀x, y ∈ X .

Given an auxiliary measure µ, the Markov chain (Xn) with transition kernel

K(x, y) is µ-irreducible if every set A ∈ B(X ) which is not a null set (µ(A) >

0) can be reached from every point x ∈ X in a finite number of steps n, i. e.

there exists an n such that

Kn(x,A) > 0 ∀x ∈ X ⇔ Px[τA <∞] > 0.

It is strongly µ-irreducible if n=1 for all µ-measurable sets A.

In the following theorem, cf. Robert and Casella 1999, we summarise

certain properties that are sufficient in order two imply irreducibility of a

chain:

Theorem 2 (Irreducibility of (Xn)).

The Markov chain (Xn) is µ-irreducible if and only if for every x ∈ X and

every A ∈ B(X ) such that µ(A) > 0, one of the following properties holds:

� The chain can reach any set A starting from any point x in a finite

number of steps n, ∃n ∈ N : Kn(x,A) > 0

� The expected number of passages is positive, E[ηA] > 0;
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� The resolvant is positive, Kε(x,A) := (1 − ε)
∑∞

i=0 ε
iKi(x,A) > 0 for

an ε with 0 < ε < 1

Proof. cf. Meyn and Tweedie 1996, p. 87

Among all probability measures with respect to which a chain is irre-

ducible, one is of special interest, namely the maximal irreducibility measure.

For the maximal irreducibility measure ψ the chain is ψ-irreducible and

ψ dominates all other measures µ for which (Xn) is µ-irreducible; µ � ψ.

Further theoretical statements provide even constructive methods of deter-

mining the maximal irreducibility measure ψ through a candidate measure,

cf. Robert and Casella 1999.

Of high theoretical relevance, though little practical value is the definition of

atoms and small sets.

Definition 6 (Atom).

The Markov chain (Xn) has an atom α ∈ B(X ) if there exists an associated

nonzero measure ν such that

K(x;A) = ν(A) ∀x ∈ α, ∀A ∈ B(X )

If the chain is ψ-irreducible, the atom is called accessible if it is not a null

set w. r. t. the maximal irreducibility measure (ψ(α) > 0).

By definition atoms require kernels which are constant on a set A of

positive measure. Such a notion is too strong a requirement for general

Markov chains. Thus, the term of small sets is introduced which does not

restrict the kernel to reach every set A in a single step with a given ’minimum’

probability. Here, we require only that such a ’minimum’ probability of

reaching a set A exists for a positive number of steps.

Definition 7 (Small Set).

A set C is small if there exist m ∈ N\{0} and a nonzero measure νm such

that

Km(x,A) ≥ νm(A) > 0, ∀x ∈ C, ∀A ∈ B(X )
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Thus small sets are sets which guarantee that any set A ∈ B(X ) can be

reached in a given number of steps m with positive probability, bounded from

below by some measure νm(A) of A.

To demonstrate this idea, we consider an irreducible Markov chain on a

finite set X. For a such a chain there always exists a finite number n of steps

such that the chain can reach any Borel set A with positive probability. We

set KN(x,A) =: νN(A) for the maximum number of steps N ∈ N, which

exists, as we only have a finite number of states in X. Due to the Chapman-

Kolmogorow equations in Equation (1) this provides us with a valid definition

for such a bounding measure. Thus, the set X itself is a small set. This

example also shows the connection between the notion of small sets and the

irreducibility property of a Markov chain.

Another relevant property of Markov chains is periodicity.

Definition 8 (Periodicity).

A state x has period d, if the number of steps required to return to state x is

always a multiple of d, i.e.

d = gcd{n ≥ 1 : P [Xn = x|X0 = x] > 0}

(gcd denotes the greatest common divisor).

If the chain is irreducible, implying that all its states communicate, there can

only be one value for the period.

An irreducible chain is aperiodic, if it has period d=1.

Irreducibility describes a chain’s ability to move through the parameter

space by ensuring that the chain will enter every set. Yet, this property is

too weak to guarantee that a set will also be visited ‘often enough’. Wishing

the chain to return to a state infinitely often in infinite time leads us to

the property of recurrence, which can be viewed in a discrete setting as a

’guarantee of a sure return’.

Definition 9 (Recurrence of a state).

In a finite state-space X , a state x ∈ X is transient, if the average number

of visits to x when starting from x, Ex[ηx], is finite. If this is not he case,

i.e. Ex[ηx] =∞, the state x is recurrent.
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These properties of single states apply to the whole chain, if the chain if

irreducible, which follows from the Chapman-Kolmogorow equations. This

means for any pair (x, y) ∈ X 2 that the expected number of visits to y when

starting from x Ex[ηx] =∞. Furthermore, for any Markov chain the following

definition applies

Definition 10 (Recurrence of a Markov chain).

A Markov chain (Xn) is recurrent if

1. there exists a measure ψ such that (Xn) is ψ-irreducible and

2. ∀A ∈ B(X ) with positive measure, ψ(A) > 0 : Ex[ηA] =∞ ∀x ∈ A

the chain is transient if

1. (Xn) is ψ-irreducible

2. X is transient, i.e. all states in X are transient.

In general, one can come up with the following classification result that re-

currence and transience are dichotomous properties for ψ-irreducible chains,

cf. Meyn and Tweedie 1996.

Theorem 3 (Recurrence of a ψ-irreducible chain).

A ψ-irreducible chain is either recurrent or transient.

This is a direct result of the Chapman-Kolmogorow equations that recur-

rence or transience is not a property of a single state but the chain itself.

Once a single state is recurrent, all other states visited by the chain due

to irreducibility inherit the same property. A more rigid property for guar-

anteeing to reach any state ‘often enough’ is Harris recurrence. On the one

hand, it requires an infinite average number of visits for every small set, thus,

implying the same limiting behaviour of the chain for almost every starting

value. On the other hand, it applies to all states, providing a global property

of the chain.

Definition 11 (Harris recurrence).

A set A is Harris recurrent, if the chain almost surely returns to A an infinite

number of times, Px[ηA =∞] = 1 ∀x ∈ A.
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The chain Xn is Harris recurrent, if there exists a measure ψ such that (Xn)

is ψ-irreducible and for every set A with positive measure, ψ(A) > 0, A is

Harris recurrent.

Two main results can be deduced from the notion of Harris recurrence.

Theorem 4 (Harris recurrence of (Xn)).

If every Borel set A ∈ B(X ) has a finite stopping time almost surely, Px[τA <

∞] = 1 ∀x ∈ A, then the number of returns is infinite almost surely, Px[ηA =

∞] = 1 ∀x ∈ X , and the Markov chain (Xn) is Harris recurrent.

Proof. cf. Robert and Casella 1999, p.222

Theorem 5 (Harris recurrence of ψ-irreducible chains).

If (Xn) is a ψ-irreducible Markov chain with a small set C such that

Px[τC <∞] = 1 ∀x ∈ X , then (Xn) is Harris recurrent.

Proof. see Meyn and Tweedie 1996, p. 206

The idea behind this theorem is that if a ψ-irreducible chain can inde-

pendently of its starting point reach a small set in a finite number of steps

given that such a set exists, it can by definition of the small set reach any

other set A in a finite number of steps with positive probability. Meyn and

Tweedie 1996 provide a discussion and additional theorems and proofs about

recurrence and Harris recurrence.

An even higher level of stability of a chain Xn is reached if its marginal

distribution becomes independent of the chain index n, which implies that

for Xn and Xn+1 a common probability distribution π exists such that

Xn ∼ π,Xn+1 ∼ π. This notion leads us to the following definitions and

results.

Definition 12 (Invariant measure, positivity, stationary distribu-

tion).

A σ-finite measure π is invariant for the transition kernel K(., .) as well as

for the respective chain if

π(B) =

∫
X
K(x,B)π(dx), ∀B ∈ B(X )
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When there exists an invariant probability measure for a ψ-irreducible chain,

the chain is positive recurrent. Recurrent chains without such a finite in-

variant measure are called null recurrent.

The invariant measure π is referred to as stationary distribution if π is a

probability measure, as in that case X0 ∼ π implies Xn ∼ π ∀n. Such a

chain is stationary in distribution.

The following theorem clarifies the connection between positivity and

recurrence.

Theorem 6 (Positive recurrence).

If the Markov chain Xn is positive, it is also recurrent.

Proof. cf. Robert and Casella 1999, p.224

Kac’s theorem, for details and proof see Meyn and Tweedie 1996 p.

235, is a rather classical result on irreducible Markov chains in a discrete

state-space. Basically, it states that in case of existence of the stationary

distribution, this stationary distribution is defined by

πx = (Ex[τx])
−1

An implication of this result is that (Ex[τx])
−1 is the eigenvector associated

with the eigenvalue 1 of the corresponding transition matrix. This result

can also be generalised for the continuous case. A further implication of

this result is the following theorem which is also important for justifying the

MCMC method.

Theorem 7 (Uniqueness of the invariant measure).

If (Xn) is a recurrent chain, there exists a invariant σ-finite measure which

is unique up to a multiplicative factor.

Proof. cf. Meyn and Tweedie 1996, p. 236. Follows directly from Kac’s

theorem.

Without the guarantee of uniqueness the whole setting of MCMC sam-

pling would be rendered useless, as it depends on draws from this stationarity

distribution. Without this result one could never be sure that the stationary
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distribution is the ’correct’ one given that the chain reaches stationarity at

all.

The stability property of stationarity of a chain is related to another prop-

erty, its reversibility. This notion generally states that the dynamics of the

chain is not influenced by the direction of time. More formally this means

Definition 13 (Reversibility).

A stationary Markov chain (Xn) is reversible if the distribution of Xn condi-

tionally on Xn+1 = x is the same as the distribution of Xn conditionally on

Xn−1 = x.

Tightly linked to reversibility is the detailed balance condition.

Definition 14 (Detailed Balance Condition).

A Markov chain with transition kernel K(., .) satisfies the detailed balance

condition if there exists a function f satisfying

K(y, x)f(y) = K(x, y)f(x) ∀(x, y)

This definition provides us with a sufficient, although not necessary con-

dition for f to be a stationary measure associated with a transition kernel

K (and its respective Markov chain). A more general statement links this

condition with the notion of reversibility.

Theorem 8 (Detailed Balance Condition, reversibility).

If a Markov chain with transition kernel K satisfies the detailed balance con-

dition with π a probability density function, the following statements hold

true:

1. The density π is the invariant density of the chain.

2. The chain is reversible.

Proof. To proof (1), we consider a measurable set B. For this set the detailed
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balance condition implies∫
X
K(y,B)π(y)dy =

∫
X

∫
B

K(y, x)π(y)dxdy =

=

∫
X

∫
B

K(x, y)π(x)dxdy =

∫
B

∫
X
K(x, y)dy︸ ︷︷ ︸

=1

π(x)dx

As the existence of the invariant density π is shown, reversibility follows

directly from inserting π into the detailed balance condition.

A natural candidate for the limiting distribution is the (unique) invariant

distribution. In order to make a statement about this limiting distribution,

a sufficient condition for (Xn) is required under which Xn is asymptotically

distributed according to π. Among the many possible conditions, which

one can place on the convergence of the distribution Pn of Xn, the most

fundamental and important is that of ergodicity.

Definition 15 (Ergodicity).

For a Harris positive chain (Xn), with invariant distribution π, an atom α

is ergodic if

lim
n→∞

|Kn(α, α)− π(α)| = 0

The total variation norm provides a useful statement about convergence.

Here, this norm is defined as, cf. Meyn and Tweedie 1996 and Robert and

Casella 1999:

Definition 16 (Total Variation norm).

The total variation norm of a measure µ is used:

‖µ‖TV = supg:|g|≤1

∣∣∣∣∫ g(x)µ(dx)

∣∣∣∣ = supA∈B(X )µ(A)− infA∈B(X )µ(A) (4.9)

which is a special case of the more general norm ‖.‖h

‖µ‖h = supg:|g|≤h

∣∣∣∣∫ g(x)µ(dx)

∣∣∣∣ (4.10)
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The metric which is induced by the total variation norm is defined as

‖µ1 − µ2‖TV = sup
A
|µ1(A)− µ2(A)|

Definition 17 (Geometric and uniform Ergodicity).

A chain is geometrically h-ergodic, if for a non-negative real-valued function

M with Eπ[|M |] <∞ and 0 < rh < 1

‖Kn(x, .)− π‖h ≤M(x) · rnh

Robert and Casella 1999 state that M(x) =
∑∞

n=1 r
n‖Kn(x, .)− π‖h.

A chain is uniformly ergodic, if for constants M > 0 and 0 < r < 1

sup
x
‖Kn(x, .)− π‖TV ≤M · rn

Among several statements, made about convergence under these condi-

tions, the most important ones are:

Theorem 9 (Positive recurrence and convergence in the Total Vari-

ation norm).

If Markov chain (Xn) is positive recurrent and aperiodic with transition ker-

nel K(., .) and there existis an ergodic atom α, then

lim
n→∞

‖Kn(x, .)− π‖TV = 0 ∀x ∈ X

Proof. see Meyn and Tweedie 1996, p. 315

Theorem 10 (Harris recurrence and convergence in the Total Vari-

ation norm).

If the Markov chain (Xn) is Harris positive and aperiodic, then

lim
n→∞

∥∥∥∥∫ Kn(x, .)µ(dx)− π
∥∥∥∥
TV

= 0 ∀x ∈ X

for every initial distribution µ.

Proof. see Meyn and Tweedie 1996 p. 322
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The main result on which the theory of MCMC simulation is based is the

ergodic theorem.

Theorem 11 (Ergodic theorem).

If (Xn) has a σ-finite invariant measure π, the following two statements are

equivalent:

1. If f, g ∈ L1(π) with
∫
g(x)dπ(x) 6= 0, then

lim
n→∞

1

n

n∑
i=1

f(Xi)

1

n

n∑
i=1

g(Xi)

=

∫
f(x)dπ(x)∫
g(x)dπ(x)

2. The Markov chain (Xn) is Harris recurrent.

Proof. see Robert and Casella 1999, p. 242

This section is intended to specify how certain properties of the Markov

chain lead to conclusions about its behaviour. Figure 4.1 provides a graphical

overview of the main properties required for Markov Chain Monte Carlo con-

vergence considerations. The implications of these properties in the setting

of different sampling methods, especially regarding convergence, are essential

for the whole theory behind the Markov Chain Monte Carlo methodology.

However, practical implications are very limited, as all these notions ranging

from irreducibility to convergence assume an infinite number of draws which

will never be reached in practice. This section therefore forms a theoretical

backbone which serves as justification of the presented algorithms.
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Figure 4.1: Visualisaton of basic Markov chain properties. An arrow marks
the direction of becoming more specific. A property at the tip of the arrow
implies the property at its shaft.

4.2 Overview of some important sampling

methods

The principal idea behind any MCMC method is to obtain samples from a

posterior distribution without calculating this distribution explicitly, since

hierarchical Bayesian models often lead to analytically intractible posteriors.

MCMC sampling schemes aim for constructing an ergodic Markov chain with

stationary distribution ξ in order to acquire samples from that distribution.

As described in the field of Monte Carlo integration, moments and sample-

based estimators can be calculated.

We differ between several basic kinds of samplers, required for this thesis,

additional ones do exist, but are not dealt with in this work:

� The Metropolis-Hastings sampler is the most universal sampling

scheme.

� The Gibbs sampler presents the most commonly used, simple to un-
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derstand and straightforward to calculate and implement method.

� The Reversible Jump sampler and the Birth and Death sampler

provide approaches for dealing with varying parameter sizes.

� Hybrid samplers combine at least 2 of the sampling approaches listed

above making them more generally applicable for hierarchical models.

4.2.1 Metropolis Hastings Sampler

The aim of the Metropolis Hastings sampler is drawing from the objective

target density ξ. These draws are realised via an auxiliary conditional

distribution q(.|.) of a proposed value given the ’old’ value. This pro-

posal density should be either easy to simulate from or symmetric

(i.e.q(x|y) = q(y|x)) so that it cancels out in the acceptance probability.

Then, the Metropolis-Hastings sampler works according to the following

scheme, described in Table 4.1. If the ratio of target and proposal function

� For t = 0: take starting value x0

� t > 0:

1. generate proposal Yt ∼ q(y|x(t−1))

2. Either
move to the proposed value Yt with probability α(x(t−1), Yt) or

stay at the old value x(t−1) with probability 1− α(x(t−1), Yt)

where α(x, y) = min

{
ξ(y)

ξ(x)

q(x|y)

q(y|x)
, 1

}
is the acceptance probability.

The transition kernel of the Metropolis-Hastings sampler is

K(x, y) = α(x, y)q(y|x) + (1−
∫
α(x, y)q(y|x)dy)δx(y) (4.11)

Table 4.1: Generic Metropolis-Hastings sampling algorithm

in Equation (4.11) is increased for the proposal compared to the old value,

then the value is accepted for sure. Otherwise, if the ratio decreases, the
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proposal is accepted with probability α.

This approach is illustrated by the following simple example.

Example 3. Metropolis-Hastings Sampler for student’s t distribution

Consider a non-central student’s t-distribution model with known degrees of

freedom ν and scale 1.

X ∼ tν(θ, 1)

f(x, θ) ∝ (ν + (x− θ)2)−
ν+1
2

To keep this example simple, we choose a flat prior for θ: π(θ) ∝ 1, and the

proposal distribution is standard normal N(0, 1). Given 1 sample of x (adding

more samples would result in a product of the above likelihood function), θ(t−1)

and the proposal ζ drawn from N(0, 1) the acceptance probability for run t ≥ 1

would be:

α(θ(t−1), ζ) =

(
ν + (x− ζ)2

ν + (x− θ(t−1))2

)− ν+1
2 exp (−1

2
(θ(t−1))2)

exp (−1
2
ζ2)

for any proposed value of θ that stays within the parameter’s support. Pro-

posals outside the support of the target density are necessarily rejected.

In order to draw conclusions about properties of the chains necessary

for convergence, certain conditions are required for the functions, defining

the Metropolis-Hastings acceptance probability and transition kernel. Even

though the generic Metropolis-Hastings algorithm is well-defined for any tar-

get and proposal distribution, certain regularity conditions are of importance

for ξ to be the limiting distribution of the chain:

� The support of ξ, suppξ, shall be connected, which is not necessary for

the algorithm to work, but very helpful for applications and important

for irreducibility and existence of a single stationary distribution

� ∪x∈suppξsuppq(.|x) ⊃ suppξ, i.e. the set of all values where the target

distribution ξ is not zero (i.e. its support) has to be contained in the

union of the supports of all possible proposals within the support of
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ξ. This condition is the minimal necessary condition for ξ to be the

limiting distribution of the chain.

Theorem 12 (Detailed balance condition).

Let (X(t)) be the chain produced by the Metropolis-Hastings algorithm (see

table 4.1). For every conditional distribution q whose support includes the

support of ξ the following two statements hold:

1. the kernel of the chain satisfies the detailed balance condition with ξ.

2. ξ is a stationary distribution of the chain.

Proof. The proof is straightforward and can be viewed as an example for the

application of the detailed balance condition. We apply the detailed balance

condition (4.9) on the kernel in equation (4.11).

α(x, y)q(y|x)ξ(x) = α(y, x)q(x|y)ξ(y)

α(x, y) = min

{
ξ(y)

ξ(x)

q(x|y)

q(y|x)
, 1

}
, thus 2 cases are possible.

1. α(x, y) = 1

q(y|x)ξ(x) =
ξ(x)

ξ(y)

q(y|x)

q(x|y)
· q(x|y)ξ(y)

2. α(y, x) = 1

q(x|y)ξ(y) =
ξ(y)

ξ(x)

q(x|y)

q(y|x)
· q(y|x)ξ(x)

(1−
∫
α(x, y)q(y|x)dy)δx(y)f(x) = (1−

∫
α(y, x)q(x|y)dx)δy(x)f(y)

Both expressions equal zero if x 6= y, otherwise the terms on both sides are

necessarily equal.

Aperiodicity of the chain requires that with positive probability the state

X(t+1) may be equal to X(t) which is equal to

P [ξ(X(t))q(Yt|X(t)) ≤ ξ(Yt)q(X
(t)|Yt)] < 1
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The theoretical considerations above have shown us that irreducibility is a

minimum requirement for recurrence and positivity and thus for any notion of

’converging’ to the invariant measure, which is our ultimate goal. Therefore

our first step will be to show irreducibility with respect to ξ. Irreducibility

of the chain can already be shown using the sufficient condition of positivity

of the conditional density q, i.e.

q(y|x) > 0 ∀(x, y) ∈ suppξ × suppξ

Proposing any value in the support of ξ with positive probability indepen-

dent of the current point immediately implies that in a finite number of steps

any set in this support can be reached, which is equal to the definition of

irreducibility according to Theorem 2.

Irreducibility and existence of the invariant distribution per definitionem im-

ply positivity of the chain and thus recurrence using Theorem 6.

In general it can be proven that any ξ-irreducible Metropolis-Hastings chain

(X(t)) is Harris recurrent. Thus it fulfils the ergodic theorem (Theorem 11).

To present this result in a more formal way the following convergence theorem

is formulated.

Theorem 13 (Convergence theorem for MH algorithm).

If (X(t)) is an ξ-irreducible Metropolis-Hastings Markov chain, the following

statements hold:

� If h ∈ L1(ξ), then

lim
T→∞

1

T

T∑
t=1

h(X(t)) =

∫
h(x)ξ(x)dx

� If in addition (X(t)) is aperiodic, then it converges in the total variation

norm, i.e.

lim
n→∞

∥∥∥∥∫ Kn(x, .)µ(dx)− ξ
∥∥∥∥
TV

= 0,

for every initial distribution µ and MH-transition kernel for n steps,

Kn(x, .).
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Proof. Robert and Casella 1999, p. 274 f.

4.2.2 Gibbs Samplers

The Gibbs sampler can be seen as a special case of Metroplis-Hastings sam-

pler, where every draw is accepted automatically. The simple, yet excellent

and straightforward to implement idea is to use the true conditional distri-

butions associated with the target distribution in order to generate samples

from that distribution.

We require to be able to simulate from the conditional distribution
ξi(xi|x1, x2, . . . , xi−1, xi+1, . . . , xp) i = 1, 2, . . . , p. Then ∀t ≥ 1 given the

value x(t) = (x
(t)
1 , x

(t)
2 , . . . , x

(t)
p ) generate

X
(t+1)
1 ∼ ξ1(x1|x(t)

2 , . . . , x(t)
p )

X
(t+1)
2 ∼ ξ2(x2|x(t+1)

1 , x
(t)
3 , . . . , x(t)

p )

...
...

X(t+1)
p ∼ ξp(xp|x(t+1)

1 , . . . , x
(t+1)
p−1 )

The transition kernel of this algorithm is

K(x(t+1)|x(t)) =

p∏
j=1

ξ(x
(t+1)
j |x(t+1)

1 , . . . , x
(t+1)
j−1 , x

(t)
j+1, . . . , x

(t)
p )

Table 4.2: p-stage Gibbs algorithm

The following example illustrates the differences between Metropolis-

Hastings and Gibs sampler.

Example 4. Gibbs Sampler for bivariate normal distribution

Let x = (x1, x2) follow a bivariate normal distribution of the following type(
X1

X2

)∣∣∣∣∣ ρ ∼ N2

((
µ1

µ2

)
,

(
1 ρ

ρ 1

))
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Then the Gibbs algorithm will update in step t ≥ 1 as follows:

X
(t)
1 |x

(t−1)
2 ∼ N(µ1 + ρ(x

(t−1)
2 − µ2), 1− ρ2)

X
(t)
2 |x

(t)
1 ∼ N(µ2 + ρ(x

(t)
1 − µ1), 1− ρ2)

A single Gibbs transition can be interpreted as a special case of a sin-

gle component Metropolis-Hastings move where the acceptance probability

always equals 1. Thus the 2-stage Gibbs sampler inherits all properties of

the Metropolis-Hastings Sampler. However this is not the case for the multi-

stage Gibbs sampler, which can be seen as the most well-behaved example of

a hybrid sampler. This will be described in more detail in an extra section.

4.2.3 Introduction to Reversible Jump MCMC

The method of reversible jump Markov Chain Monte Carlo (RJMCMC) was

introduced by Peter Green (see Green 1995, Richardson and Green 1997),

while Waagepetersen and Sorensen 2001 presented an excellent discussion of

the methodology. In principle, RJMCMC provides a generalisation of the

Metropolis-Hastings method in order to allow for jumps between spaces Θk

of different dimensionality. The main trick, but also the main challenge in

building the algorithm is cleverly defining a bijection (which is even a diffeo-

morphism) between well-constructed spaces, containing the original spaces

as linear subspaces and of course have the same dimension.

Being in the current state x = (k, θ(k)), where k is the indicator of the model

and corresponding parameter space and θ(k) ∈ Θk the respective model pa-

rameter, a move of type m is proposed which would lead to state dy with

probability qm(x, dy). The acceptance probability for such a proposal move

shall be αm. The algorithm requires a reversible kernel, which means that

for some invariant density π it fulfils∫
A

∫
B

K(x, dy)π(x)dx =

∫
B

∫
A

K(y, dx)π(y)dy ∀A,B ⊂ Θ
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The appropriate kernel can be written as

K(x,B) =
∑
m

∫
B

αm(x, y′)qm(x, dy′) + s(x)IB(x)

s(x) =
∑
m

∫
Θm

qm(x, dy′)(1− αm(x, y′))︸ ︷︷ ︸
probability to reject proposed move m

+ 1−
∑
m

qm(x,Θm)︸ ︷︷ ︸
probability of not attempting any move

= 1−
∑
m

αm(x, y′)qm(x,Θ)

The term s(x) describes the probability of rejecting the proposed move m or

not attempting any move at all.

The detailed balance condition requires that

∑
m

∫
A

π(dx)

∫
B

qm(x, dy′)αm(x, y′) +

∫
A∩B

π(dx)s(x)

=
∑
m

∫
A

π(dy′)

∫
B

qm(y′, dx)αm(y′, x) +

∫
B∩A

π(dy′)s(y′)

Since the last term is the same for both lines it is sufficient that for each m

the respective summands of the first term of both lines are equal. In order

to fulfil this a symmetric dominating measure ξm on Θ is required and we

assume that π(dx)qm(x, dy′) has a finite density fm(x, y′) with respect to this

measure. Then reversibility can be shown to be fulfiled:∫
A

π(dx)

∫
B

qm(x, dy′)αm(x, y′) =

∫
A

∫
B

αm(x, y′)fm(x, y′)ξm(dx, dy′)

=

∫
A

∫
B

αm(y′, x)fm(y′, x)ξm(dy′, dx)

=

∫
A

∫
B

αm(y′, x)qm(y′, dx)π(dy′)

In order for the middle equality to hold the acceptance probability has to

look like

αm(x, y′) = min

{
1,
fm(y′, x)

fm(x, y′)

}
= min

{
1,
π(dy′)qm(y′, dx)

π(dx)qm(x, dy′)

}
(4.12)
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How to obtain this dominating measure ξm under the symmetry constraint is

the most complex part of the method when moving from model k1 to k2. It is

supposed one has proper densities p(θ(k1)|k1) on Rn1 and p(θ(k2)|k2) on Rn2 .

The idea of Green is to embed both spaces Θk1 and Θk2 as linear subspaces

in space C1 and C2 which have the same dimension so that the definition of

a bijection is possible. Then take a look a the spaces U1 = C1 \ Θk1 and

U2 = C2 \ Θk2 with dimensions dim(U1) = m1 and dim(U2) = m2 and thus

n1 +m1 = n2 +m2. The completion of the spaces Θki requires simulation of

the values ui, ui ∼ gi(ui). Let ω be the bijection ω : C1 → C2 : (θ(k1), u1) 7→
(θ(k2), u2). The density f will look like

f(x, y′) = π(k1, θ
(k1))πk1,k2g1(u1)

f(y′, x) = π(k2, θ
(k2))πk2,k1g2(u2)

∣∣∣∣∂ω(θ(k1), u1)

∂(θ(k1), u1)

∣∣∣∣
Thus the acceptance probability will become

min

{
1,
π(k2, θ

(k2))πk2,k1g2(u2)

π(k1, θ(k1))πk1,k2g1(u1)

∣∣∣∣∂ω(θ(k1), u1)

∂(θ(k1), u1)

∣∣∣∣}
To summarise the following table presents the algorithm in a
more straightforward manner.

� For t = 0: take starting value x0

� t > 0: x(t−1) = (k1, θ
(t−1)
k1

)

– Select model k2 with probability πk1,k2

– Generate ui ∼ gi(ui) i = 1, 2

– (θ(k2), u2) = ω(θ(k1), u1)

– Accept θ(k2) with probability

min

{
1,
π(k2, θ

(k2))πk2,k1g2(u2)

π(k1, θ(k1))πk1,k2g1(u1)

∣∣∣∣∂ω(θ(k1), u1)

∂(θ(k1), u1)

∣∣∣∣}

Table 4.3: Reversible Jump algorithm
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4.2.4 Hybrid sampler

A more general setting than the multistage Gibbs sampler is often required

if the conditional distribution of a variable is not explicitly available. In this

case a sampling method combining Gibbs and Metropolis-Hastings updates

will be required.

Definition 18 (Hybrid Sampling algorithm).

A hybrid MCMC algorithm is a Markov chain Monte Carlo method which

utilizes several Gibbs or Metropolis-Hastings steps. Two ways of building a

hybrid kernel from the kernels K1,K2, . . . ,Kn are possible:

� a mixture of steps is associated with the kernel

K̃ = α1K1 + α2K2 + . . .+ αnKn

(where (α1, α2, . . . , αn) is a probability distribution)

� a cycle has a kernel

K∗ = K1 ◦ K2 ◦ . . . ◦ Kn

The motivation for constructing such samplers containing not only Gibbs

steps, as the multi-stage Gibbs sampler, is that Metropolis-Hastings steps

can be applied in more general settings than a Gibbs step. This is especially

of importance, when the conditional distributions cannot be sampled from

directly there is no alternative but to deviate from the Gibbs setting.

The Hybrid sampler is built upon full conditional distributions like the Gibbs

sampler. Besag and Green Besag et al. 1995 have pointed out that for any

p-variate x, x′ ∈ suppξ and indices I ⊂ {1, . . . , p}, where xI denotes all

components of x with indices in I and xIC contains the components with

indices not in I

ξ(xI |xIC ) ∝ ξ(x) (4.13)

ξ(x
′
I |x

′

IC )

ξ(xI |xIC )
=

ξ(x
′
)

ξ(x)
for x

′

IC = xIC (4.14)

In this way full conditionals can by easily introduced into Metropolis-Hastings
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steps, as the acceptance probability will become

α(x, y) = min

{
ξ(yI |xIC )

ξ(xI |xIC )

q(xI |yI , xIC )

q(yI |xI , xIC )
, 1

}
This formula also allows us to easily see the connection between the Gibbs

update and a single Metropolis Hastings step which is the case of I contain-

ing just one single index. In the case of the Gibbs sampler this proposal

distribution is chosen to be

q(yI |xI , xIC ) = ξ(yI |xIC ) (4.15)

independent of xI . Obviously the acceptance probability becomes 1 indepen-

dently of x and y.

Some basic properties of the individual kernels are inherited by the hybrid

kernel, for example a mixture kernel is irreducible and aperiodic if at least one

of the Ki has these properties. If one of the kernels of a cycle is irreducible

and aperiodic, then the composed kernel often is irreducible and aperiodic

as well, however there exist counterexamples showing that this is not always

the case. For any composition where each component has the same station-

ary distribution ξ, the stationary distribution of the composition will be ξ as

well.

Under rather rigid assumptions a very specialised result can be obtained (see

Tierney 1994)

Theorem 14 (Uniform ergodicity of hybrid sampler).

If K1 and K2 are two kernels with the same stationary distribution ξ and if

K1 produces a uniformly ergodic Markov chain, the mixture kernel

K̃ = αK1 + (1− α)K2 (0 < α < 1)

is also uniformly ergodic.

Moreover, if X is a small set for K1 with m = 1, the kernel cycles K1 ◦ K2

and K2 ◦ K1 are uniformly ergodic.

Proof. see Robert and Casella 1999, p. 390
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Partially collapsed sampling

Additionally, we introduce the methodology of partially collapsed Gibbs sam-

pling (cf. Dyk and Park 2008, Park and Dyk 2009) which will be employed

in this work for improving the efficiency of our updates. The original idea is

to combine 2 parameters or sets of parameters of a Gibbs scheme to a larger

one and perform Gibbs updates with this new set of parameters. In a more

formal setting this ansatz is shown in equation 4.16, when updating 4 sets of

parameters A, B, C and D, where we want to update the parameters B and

C jointly.

update A based on P [A|B,C,D]

update (B,C) based on P [(B,C)|A,D]

update D based on P [D|A,B,C]

(4.16)

According to Bayes’s theorem, the update of the new larger parameter or set

of parameters is an update of one parameter or set of parameters based on

the full conditional and the other based on all parameters except for the one

updated jointly.

P [(B,C)|A,D] = P [B|A,C,D] · P [C|A,D] (4.17)

In order to use this simpler update for C which is drawn only from A and

D,we must not yet update any of the parameters or sets of parameters which

condition on C. Updating based on non-full conditionals would destroy the

Gibbs scheme, which requires the full conditional distributions (cf. Robert

and Casella 1999). Thus, we can only update parameters in such a partially

collapsed step, if during this updating step no other parameter has condi-

tioned on this parameter before. Therefore, unlike the original Gibbs sampler,

the order of the updates is crucial for the partially collapsed sampler.

update C based on P [C|A,D]

update B based on P [B|A,C,D]

update A based on P [A|B,C,D]

update D based on P [D|A,B,C]

(4.18)

For one of the Gibbs steps the update is partially collapsed as the jointly up-

dated parameter is integrated out. Besag (Besag et al. 1995) has described
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the generalisation of MCMC updates of Metropolis-Hastings or Reversible

jump type based on full conditionals. As full conditionals are the only re-

quired assumption for partial collapsing, the method can be applied to all

updates in the hybrid sampler.

4.3 General MCMC Convergence Analysis

As we will refer to convergence diagnositics later in this work and present

some results of such convergence diagnostics, we first provide an overview

over the involved notions and statistics (for more details see Cowles and Car-

lin 1996). Since all MCMC algorithms have to be terminated after a usually

pre-specified number of samples drawn, great importance lies in determining

whether one can safely assume that the obtained samples are truly represen-

tative of the underlying distribution. As these algorithms sample based on

Markov chains, the obtained sample of the posterior is generally correlated

due to the autocorrelation of the Markov chain. This correlation is respon-

sible for the draws being less informative than iid draws from the stationary

distribution would be. Thus, poor mixing of the chain can be the result which

means exploring the stationary distribution is hindered and slowed down.

A more theoretically well-founded attempt is analysing the transition ker-

nel itself in order to determine the required number of iterations. How-

ever, practice showed that this is not a very fruitful method, as the resulting

bounds were quite loose and too large to be of practical value. Thus, practi-

tioners commonly apply various forms of diagnostics tools to the algorithm’s

output in order to draw conclusions about convergence a posteriori. Based

on this information of pre-runs the actual algorithm is run for a resulting

number of draws, which will likely ensure convergence. Yet, the critical issue

for all these diagnostics is that independent of the construction of sample size

statistic, one cannot compare sample distributions to the unknown stationary

distribution. The only information available are other sample distributions

which originate either from different iterations or from different parts of the

same chain. Therefore, many theoreticians rightfully criticise that all such

diagnostics are fundamentally unsound which does not keep many people

from still using them due to lack of sound alternatives.
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The following diagnostics are used in this work:

� Raftery and Lewis diagnostics

The method aims towards detecting convergence and provides bounds

for the variance of the estimated quantiles of the analysed parameters

or functions thereof. In order to calculate the diagnostics with a given

precision, a minimum number of draws, Nmin, is required under the

assumption that they are independent. Then, the method’s aim is to

estimate a quantile q with accuracy r, which has to be attained with

probability s, P [q − r ≤ θ̂ ≤ q + r] ≥ s .

The output will be the total number of iterations to be run in order

to fulfil the criterion above and the number of iterations to be con-

sidered as ’burn-in’, i.e. the minimum number of iterations required

for the chain to approach its stationary distribution. Additionally, it

provides a ’thinning number’, k, which can be seen as a representation

of correlation within the chain. The idea is to remove the within-chain-

correlation of the chain such that the draws would be approximately

i. i. d. when keeping every k-th sample of the posterior distribution

and discarding all the ones in-between.

� Geweke diagnostics

The notion behind the creation of this diagnostics is to use methods of

spectral analysis to assess convergence of the sampler. The main as-

sumption is that for a MCMC process and a given function g a spectral

density Sg(ω) exists for this time series that has no discontinuities at

frequency 0. The spectral density describes the distribution of variance

of a time series with frequency; it can be obtained as Fourier transform

of the autocorrelation function. If the conditions above are fulfiled, the

spectral density provides us with the asymptotic variance Sg(0)/n for

the estimated mean of g(θ), g(θ)n. This is a requirement for performing

a two-sample t-test given that the conditions are fulfiled under which

this diagnostic approaches a standard normal distribution according to

the central limit theorem. Geweke’s diagnostic after N iterations is the

respective test statistic when comparing the N1 first iterations and N2
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last iterations.

GN =
g(θ)N1

− g(θ)N2

S∗

where S∗ is the asymptotic standard error of the difference.

� Heidelberger-Welch diagnostics

This diagnostic is predicated on another approach based on the usage of

methods of spectral analysis for detecting nonstationarities in outputs

of MCMC algorithms. This procedure allows to estimate a confidence

interval of specified width for the mean if the chain does not sample

from the stationary distribution already from the beginning. The test

for diagnosing convergence is based on the Brownian bridge theory from

which its null hypothesis is derived. The statistic is the sum of mean-

centered iterates divided by the standard error. The distribution of the

Cramer-von Mises statistic is then used to test the hypothesis.

� Autocorrelation, Partial Autocorrelation

Definition 19 (Autocorrelation function).

Autocorrelation describes the correlation between different time points

of a time series. For a discrete process of length N, the autocorrelation

function is defined as

R̂(k) =
1

(N − k)σ̂ε
2

N−k∑
t=1

(Xt −Xn)(Xt+k −Xn)

Since for a Markov chain each state depends on the previous one, we

expect the time points to be autocorrelated. However, autocorrelation

is one of the greatest problems in MCMC sampling as the goal is obtain-

ing (apporixmately) i. i. d. draws of the posterior in order to estimate

moments based on Monte Carlo methods. Thus, the auto-correlation

has to be etsimated and taken care of. Autoregressive process describe

one way of modelling the behaviour of time series, particularly ones

generated from MCMC samplers.
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Definition 20 (Autoregressive process of order p).

θt = α1θt−1 + . . .+ αpθt−p + εt εt ∼ N(0, σ2
ε)

This model is a linear regression model, where the value at time t is

predicted by the p previous values θt−1, . . . , θt−p. The partial autocor-

relation helps to estimate the order p of such a model as it estimates

the correlation between Xt and Xt−k that has not been explained by

Xt−1, . . . , Xt−k+1 for all k, the maximum value k for which this partial

autocorrelation is still significantly different from 0 is the autoregressive

model order.

� Gelman-Rubin Diagnostic

Unlike the other methods presented here, the Gelman-Rubin diagnostic

is applied to multiple chains. Basically, it can be viewed as an analysis

of variance among two or more chains which ideally should have started

from different even overdispersed initial values. Its goal is to find mul-

timodality and thus determine whether at least one of the chains gets

stuck at a local peak.

Based on the empirical variances of every single chain on the one hand

and all chains combined on the other hand the Gelman-Rubin diagnos-

tic calculates a so-called shrinking factor . Values of this statistic

which are close to 1 point towards convergence, whereas values signifi-

cantly greater than one indicate problematic behaviour.

Several of these diagnostics have been implemented in the R package

coda by Plummer et al. 2006b which we will use for our analyses. We will

combine some of these diagnostic tools, in order to be able to gain insight into

several aspects of the chains’ behaviour. The tests provided by the methods

of Heidelberger-Welch and Geweke give us general insight into the occurrence

of convergence. Both allow us to compare subsets of the first 50 % of draws to

the second half, if the null hypothesis is not accepted immediately due to slow

burn-in. If the null hypothesis of this halfwidth test is rejected, gradually the

first 10%, 20%, etc. are discarded and the rest of draws is tested against the

second half. If these tests fail every time, clearly no convergence has occurred
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Method quant./graph. Theoretical basis

Raftery-Lewis quantitative 2-state Markov chain theory
Geweke quantitative Spectral analysis

Heidelberger-Welch quantitative Brownian bridge spectral analysis

Gelman-Rubin quant./qual. analysis of variance within
and between chains

Autocorrelation quant./graph. Correlation of the sample
Partial autocorrelation graphical from a single Markov chain

Table 4.4: Overview of diagnostic methods and some of their properties; all
these methods have in common that they are generally applicable to any
MCMC algorithm, only take at least one chain into account and work for
univariate parameters (cf. Cowles and Carlin 1996 for more details)

and the only interesting diagnostic would be Raftery-Lewis’ prediction for the

estimated number of draws necessary for convergence. However the Raftery-

Lewis diagnostics can be seen as both a prediction of run lengths for future

draws as well as a ’sanity’ check in case of convergence, if enough draws

have occurred at all in order to gain sufficiently accurate estimates of the

posterior distribution. If more than one chain is available comparing them

using the Gelman-Rubin diagnostic is advisable as comparison of more than

one chain is the only way to detect local convergence problems caused e.g. by

multimodality. Plotting the first values of the autocorrelation function helps

to detect problems of slow mixing and may empirically provide the number

of values to be left out in order to get iid draws, if it is not too large. A check

of the Markov property is possible using the partial autocorrelation function.



Chapter 5

Likelihood robustness in MA

analysis

The following chapter introduces a recently developed model for investigating

Bayesian robustness issues in microarray data analysis. Guided by the notion

of likelihood robustness, we performed a systematic study of a variety of data

sets, stemming both from biology as well as laboratory work.

5.1 Model structure

The above mentioned Bayesian hierarchical model developed by Posekany

2009 was specifically designed to investigate the robustness of error models

in the bioinformatical analysis of microarrays. For this purpose, an ANOVA

type linear model was linked to the investigation of the biologically relevant

question of differential expression, implemented as a latent indicator variable

Ig. The ansatz for this approach is the following linear model equation,

yn,g = xTn,gβg + εn,g, n = 1, . . . , N, g = 1, . . . , G (5.1)

where for any given sample n and gene g the model variables represent the

following biological concepts:

63
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yn,g is the observed light intensity, corresponding to gene expression;

xn,g
is a vector of the underlying design matrix indicating the biolog-

ical system which a sample n belongs to;

xn,g = [I(Sn,g = 1), . . . , I(Sn,g = S)]T ∈ RS×1.

Sn,g

is a factor variable, encoding the biological system that observa-

tion yn,g belongs to and is defined by the experiment’s design. It

is included in the model by the design matrix X.

X (x1,g, . . . , xN,g) =: Xg = X ∈ RS×N

The design matrix (x1,g, . . . , xN,g) =: Xg = X ∈ RS×N is based

on the dummy coding of biological systems Sn,g w.r.t. n and is

independent of gene g, as all arrays are equal thus containing the

same genes.

βg
is the vector of mean expressions of a gene for the S different

systems.

Ig
is the biological indicator which differs between differential expres-

sion and no differential expression of a gene g.

εn,g are the noise residuals.

For biological interpretation, the parameter of interest is the differential

expression indicator Ig. The posterior distribution of this parameter eval-

uates the probability of each gene to be differentially expressed and allows

ranking genes according to their biological relevance. In typical microarray

experiments’ analyses, we are only interested in differentially expressed

genes. In the statistical model, Ig differs between between a univariate and

a multivariate linear model by determining the dimension of the coefficient

vector βg. A one-dimensional parameter refers to the null hypothesis of

the ANOVA model that the gene g is not differentially expressed. Here,

non-differential expression are defined as all biological systems having the

same mean expression.

Ig = 0 : βg,0|Ig = 0 ∼ N1(µg,0, (τg,0)−1)

βg = [βg,0, . . . , βg,0]T ∈ RS×1
(5.2)
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The alternative hypothesis we wish to consider in our model scenario proposes

that gene g is not differentially expressed. If the estimated mean expression

of at least one group differs from the rest, gene g is by definition differentially

expressed. Here, we model the coefficient vector βg as a multivariate vector,

which contains the different estimated mean expressions for the respective

groups.

Ig = 1 : βg|Ig = 1 ∼ NS(µg, T
−1
g )

µg = [µg,1, . . . , µg,S]T ∈ RS×1

Tg =


τg,1 0

. . .

0 τg,S

 ∈ RS×S.

(5.3)

Posekany 2009 decided for the introduction of a hierarchical model structure

due to the advantages of this approach, cf. Section 2.1.1, as well as its natural

structure which is ideal for such complicated situations. Our main reasons for

this choice are on the one hand robustness with respect to the choice of hyper-

parameters and on the other hand the ability to specifically model those

parameters on a higher level of the model which still have interpretations.

An example for such a hyper-parameter with a reasonable model-inherent

interpretation would be the overall differential expression probability. This

probability p of any gene to be differentially expressed regarding the overall

differential expression behaviour of the experiment is the hyper-parameter of

the Bernoulli prior distribution for Ig.

Ig|p ∼ Bin(1, p) (5.4)

In the hierarchical structure, the probability p is updated using a Beta dis-

tribution, which is the natural conjugate prior in this setting,

p ∼ Be(a, b). (5.5)

The part of this model which is most important for the following work is the

alternative noise model. The standard approach for linear ANOVA models is

to assume normally distributed residuals. As robustness with respect to the
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assumed distribution of the observations is our main aim in this approach,

we want to allow for different noise distributions. The noise distribution cor-

responds to the likelihood function in the Bayesian model which is the most

difficult part of the model to focus on when aiming for robustness, cf. Section

2.1.2. In order to handle outlying and over-dispersed data points in a more

suitable way, it is assumed that the set of considered distributions contains

student’s t distributions in addition to the normal distribution. We tackled

the resulting challenge of selecting the most suitable error distribution not by

a posteriori model comparison, but by including the inference of the models

into our approach. In the following section, the details of this advantageous

model comparison approach will be presented.

5.2 The Student’s t error model

The general framework of the Bayesian hierarchical ANOVA model described

in section 7.1 is our starting point for robustifying the noise inference. As

discussed in Section 5.1, our ansatz includes Student’s t-distributions as pos-

sible likelihood functions. However, student’s t distribution present a mod-

erate challenge for Bayesian modelling, as they not only have no conjugate

prior distribution, but also form a likelihood function which is very diffi-

cult to handle. In order to tackle these problems, we employed a hierarchi-

cal Bayesian representation. Following Bernardo and Smith 2000, the non-

central t-distribution’s likelihood function can be replaced by a hierarchical

structure consisting of a Normal- and a Gamma-distribution in the following

way:

X ∼ tν(µ, σ
2)⇐

X|ϕ ∼ N(µ, 1
ϕ
σ2)

ϕ ∼ Ga(ν
2
, ν

2
)

(5.6)



5.2. THE STUDENT’S T ERROR MODEL 67

According to (5.6) we can rewrite our model as

yn,g|βg, ν ∼ tν(x
T
n,gβg, τ

−1
ε ) ⇐

yn,g|βg, ϕ ∼ N(xTn,gβg, (ϕn,gτε)
−1)

ϕn,g|ν ∼ Ga(ν
2
, ν

2
)

τε|g, h ∼ Ga(g, h).

(5.7)

The introduced auxiliary parameter ϕn,g can hereby be interpreted as a rescal-

ing factor of the normal distribution’s variance such that outlying values be-

come more probable. In the now following lemma, we prove that the marginal

distribution of yn,g is indeed a student’s t distribution, as this is a constructive

proof, thus helpful in understanding the whole model approach.

Lemma 1. The marginal distribution m(yn,g|ν) of yn,g follows a student’s t

distribution with degrees of freedom ν.

Proof.

p(yn,g, ϕn,g| . . .) =
ν
2

ν
2

Γ(ν
2
)︸ ︷︷ ︸

=: c1

(ϕn,g)
ν
2
−1 exp (−ν

2
ϕn,g)

τ 0.5

√
2π︸ ︷︷ ︸

=: c2

ϕ0.5
n,g exp (−1

2
τϕn,g(yn,g − xTn,gβg)2)

= c1c2 ϕ
ν+1
2
−1

n,g exp (−ϕn,g
1

2
(ν + τ(yn,g − xTn,gβg)2))︸ ︷︷ ︸

=: I(ϕn,g)

The expression I(ϕn,g) shares the structure of a Gamma-distribution Ga(a, b)

with parameters for shape a = ν+1
2

and rate b = 1
2
(ν+ τ(yn,g−xTn,gβg)2) . All

that is missing here is the normalisation constant. Therefore, the marginal

distribution is

m(yn,g) =

∫ ∞
0

I(ϕn,g)dϕn,g = c1c2
Γ(a)

ba

After cancelling a few terms we gain

Γ(ν+1
2

)

Γ(ν
2
)

τ 0.5

√
νπ

(1 +
τ

ν
(yn,g − xTn,gβg)2)−

ν+1
2 .
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n,gySn,g
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n,gϕ

g

Κν

τ

h

Figure 5.1: Directed Acyclic Graph (DAG) representation of the model; Rect-
angular frames refer to variables which are fixed during the updates (data,
fixed hyper-parameters), whereas variables in circles are updated as parts of
the model.

yn,g observations of differential expression, i.e. normalised light
intensities

Sn,g indicator to which experiment class s observation yn,g belongs
βg ANOVA coefficient vector for gene g, i. e. the vector of mean

expressions
Ig indicator of differential expression
p prior probability of a gene to be differentially expressed
λ prior precision of βg
τ precision of the residual noise model
ϕn,g rescaling parameter linking normal and t distribution
ν degrees of freedom of the error model
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Figure 5.1 visualises the model by means of a Directed Acyclic Graph. Here,

it has to be mentioned that this representation of hierarchical Bayesian mod-

els is more common in the machine learning community than in the statistics

community. However, this visualisation presents a more efficient and useful

way for intuitively capturing the model and will thus be used for all models

presented in this thesis.

The student’s t noise model of varying degrees of freedom forms an

essential part of the model in figure 5.1. This approach also allows us to

consider robustness issues regarding outliers or overdispersed data points

in the oberservations yn,g. The modelling of overdispersion is dominated

by the degrees of freedom parameter ν of a t distribution which in our

model includes only values up to a maximum value. It is generally known

that for large enough values the t distributions will be sufficiently similar

to normal distributions. Thus, it is assumed that differing between these

distributions does not make any sense after a certain point, therefore we

specify a cut-off value νmax. Reaching the maximum value is equivalent

to choosing a normal distribution model. However, we do not simply

approximate the Gaussian distribution by the tνmax distribution, instead

we employed the exact normal distribution model. For flexibility regard-

ing the choice of the degrees of freedom parameter for the t-distribution,

a discrete uniform hyper-prior on the set N over the parameter ν is specified:

ν ∼ UN (5.8)

N := {x ∈ R|1 ≤ x := j · cgrid ≤ νmax, j ∈ N} (5.9)

⇔ P[ν = k|K] = 1/K, k ∈ N; K = |N| (5.10)

The choice of a uniform prior on this finite set also appropriately represents

our lack of information regarding the underlying noise model. In order to

improve the models readability, we introduced the ’size’ K with respect to

the counting measure of the set N for specifying the uniform distribution.

As discussed in Section 2.1.2, the definition of set N (5.9) allows for greater

flexibility in choosing the underlying parameter space, thus improving the

analysis of robust behaviour. In particular, a large grid size cgrid equal to
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1 or even 5 allows us to work with clearly distinguishable student’s t dis-

tributions, whereas refining the grid approximates a continuous setting for

ν sufficiently well. The importance of using this discrete model lies in the

notion of including the normal model not approximately but exactly, which

will be realised by a dimension-changing move. Furthermore, inferring the

degrees of freedom parameter introduces the possibility of letting the model

itself choose the most suitable error distribution. For these reasons, it is

recommended to consider a possibly large number of models.

As discussed in Section 5.1, the biological indicator for differential expres-

sion follows a Bernoulli distribution

π(Ig|p) = pIg(1− p)1−Ig . (5.11)

Here, we applied a conjugate beta prior for the parameter p, which can be

interpreted as probability of a gene being differentially expressed a priori

π(p) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1. (5.12)

Conditional on the differential expression behaviour, the coefficient vector

is determined by a mixture of a multivariate and a univariate underlying

distribution, as described above.

As a special case of the general setting, we assume several restrictions

for the involved parameters. First, the hyper-parameter µ are fixed, i.e.

µg,s = µ ∀g, s , taking the value of the overall sample mean. The precision of

βg shall be specified by the parameter λ, which by assumption is the common

parameter for all prior precision parameters. To remain in the conjugate prior

setting, λ follows a Gamma distribution, i.e.

τg,s := λ ∀g, s (5.13)

λ ∼ Ga(c, d). (5.14)
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This reduces the model parts (5.2) and (5.3) to:

Ig = 0 βg,0|Ig ∼ N1(µ, (λ)−1)

βg = [βg,0, . . . , βg,0]T ∈ RS×1

Ig = 1 βg|Ig ∼ NS(µ, (λ)−1ES)

(5.15)

βg|Ig ∼ Ig ·NS(µ, (λ)−1ES) + (1− Ig) ·N1(µg, λ
−1). (5.16)

The following table presents an overview over the different model parameters

and their respective distributions:

yn,g ∼ N(xTn,gβg, (ϕn,gτε)
−1)

βg,0|Ig = 0 ∼ N1(µ, (λ)−1)

βg|Ig = 1 ∼ NS(µ, (λ)−1ES)

λ ∼ Ga(c, d)

τε|g, h ∼ Ga(g, h)

ϕn,g|ν ∼ Ga(
ν

2
,
ν

2
)

ν ∼ UN

Ig|p ∼ Bin(1, p)

p ∼ Be(a, b)

Table 5.1: Overview over Student‘s t model

5.2.1 Likelihood Robustness Considerations

As discussed in section 2.1.2, robustness considerations can aim for different

components of a probabilistic model. The main focus of this model is the

robustification of the likelihood function of a hierarchical ANOVA model,
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which provides a certain degree of prior robustness by construction. The

standard distribution setting for such a model in the field of bioinformatics

would be a Gaussian error distribution (see Ibrahim et al. 2002, hierarchical

model Zhao et al. 2008; Bayesian ANOVA for microarrays Ishwaran and Rao

2003).

In contrast to these approaches, several authors, among others Berger

1994, suggested to employ Student’s t distributions instead of a Gaussian

distribution-based model. In the context of microarrays this approach has

been used by Gottardo et al. 2006, who already applied t distributions for

performing ANOVA analyses with all kinds of possible expression settings.

Analysing all possible settings made their approach very hard if not impos-

sible to apply to general microarray experimental settings. Furthermore, it

made the approach little useful for practical bioinformatic analyses and for

comparisons of scenarios.

The fact that the student’s t distribution has a higher probability mass in

its tails makes it a reasonable candidate for models which aim at taking out-

lying values into account. At the same time the t distribution shares certain

properties with the normal distribution, such as symmetry and unimodality,

as these properties are important for residuals of a regression model. Thus,

the student’s t distribution is well applicable for modelling values which be-

have like Gaussian values except for a higher probability of ‘outlyingness’. As

we are working in the framework of ANOVA, it is necessary to only take care

of outliers in the observations yn,g. Here, we have another good reason why

this approach is focused mainly on robustification of the likelihood function

linked to the observations’ behaviour.

In order to show the ansatz of robustification in the framework of Bayesian

Robustness studies as performed byBerger 1994 for the purpose of robusti-

fication of the likelihood, a class Γ of student’s t distribution and normal

distributions is defined in the following way:

Γ = {{tν(µ, τ−1), ν ∈ N \ {νmax}}, N(µ, τ−1)}. (5.17)

As discussed in the previous section, the definition of the set N in (5.9)

makes this approach very flexible. Choosing only a few values for ν allows

us to make clear decisions regarding the data’s tendency towards normality,
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respectively its tendency towards the t distribution, which is the general

behaviour of interest for us. A finer grid then makes it possible to have

an ’almost’ smooth representation of the limited parameter space for

the degrees of freedom parameter. This discretisation is one reasonable

possibility to take a normal model into account instead of an approximation,

which would of course be more similar to the nearest t-distributions than

to the normal distribution which the t distribution is actually supposed to

approximate. Therefore, a reasonable upper bound for ν is crucial in order

to make a clear decision as to when the distribution is sufficiently similar

to a normal distribution. From this point onward, there is no longer any

need for a robustification w. r. t. outliers. Thus, ‘jumping’ to a normal

distribution model, whenever this upper bound is reached, allows us to

accurately represent the importance of using the standard approach in cases

where robustification is found to be unnecessary.

The presented model’s complex hierarchical structure makes finding an

analytic solution virtually impossible, thus the usage of sampling methods

will be essential. As the model will be treated using a MCMC algorithm,

finding the right balance between reasonable and required robustification

and computational practicality is essential. In this case, robustness cannot

be studied in the way it has been presented for global robustness, as the

variation due to the sampling algorithm will be greater than the variation

between the parameters (e.g. βg) for different model settings (e.g. fixed

degrees of freedom for 1 student’s t model). Hence, the purpose of the model

will rather be to indicate, whether or not there exists a problem in principle

with the assumption of normally distributed data. On this assumption

further analysis steps would be based. The variable degrees of freedom

parameter ν is hereby relevant, as it is supposed to give an answer to this

question.

Even though we could choose from a broad class of unimodal distribu-

tions for robustification attempts, the class of possible likelihoods is limited

to (non-central) t distributions with degrees of freedom varying in a pre-

defined set as well as to normal distributions, in order to have analytically

tractable models. This robustification approach mainly focuses on outliers
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of the observations, as discussed in the previous section. The hierarchical

structure of the proposed model ensures that a certain robustness w. r. t. the

specification of priors is obtained.

An analysis of robustness regarding the range of the posterior distribution

or certain parameter estimates is virtually impossible, as these quantities of

interests are determined by Markov Chain Monte Carlo simulation. Hence,

more than one run per model has to be performed in order to reduce varia-

tion introduced by the simulation method itself. These combined results then

represent the estimate of the expected value of model parameters. However,

performing all these simulations for all models provided by Γ is neither com-

putationally manageable nor of real practical interest. Therefore, the idea of

finite classes, originally devised by Shyamalkumar 2000, is adapted in a way

that the hierarchical model itself chooses the ’optimal’ model given the data

and all other modelling components.

The goal of our approach is to focus on the robustness of the likelihood func-

tion of a regression model in the framework of microarray analysis. The

need for such considerations arises because of the fact that microarrays of-

ten produce widely dispersed data. If we take a look at the commonly used

models for determining gene expressions, we find that they are based on

Gaussian distribution settings, which provide analytically tractable results

(e.g. see Ishwaran and Rao 2003). Baldi and Long 2001 for example use t-

tests with appropriate adjustments for the number of tests performed. Other

researchers introduced fully Bayesian models based on normal distribution

assumptions, compare for example Ibrahim et al. 2002, Zhao et al. 2008 and

Gottardo et al. 2003. All these approaches have in common that the high

probability of ’extreme’ values frequently appearing in microarray data af-

fect the outcomes of the normal distribution model. However, these effects

have not been systematically studied before Posekany et al. 2011.

Alternatively, a statistical technique for determining the differential ex-

pression of genes, as well as for estimating and controlling error rates by

means of non-parametric statistics has been introduced by Tusher et al.

2001. Employing non-parametric methods replaces the restrictive assump-

tions linked with the normal distribution setting with very general ones, at

the cost of losing power of tests. Such a method is robust in the sense of in-
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dependence of assumptions of underlying parametric distributions. However,

this does not represent the kind of robustness we are aiming at in our ap-

proach. An additional problem we found regard non-parametric approaches

is that sample sizes are often too small to gain reasonable outcomes based

on rank statistics. This is why a robust, yet parametric approach is more

feasible for microarray data than non-parametrics.

In our approach we wanted to stay close to the parametric model of nor-

mal distributions on the one hand, but on the other hand take into account

data which deviates from the Gaussian distributions setting, e.g. far outlying

data points. However, when working with a linear regression model, we still

aim for a symmetric unimodal, ideally parametric distribution as error dis-

tribution, which is far more specific than the assumptions of non-parametric

methods. Attempts for such models have already been made, mainly focus-

ing on Gaussian mixture distributions (cf. Lewin et al. 2007), rarely on t

distributions (cf. Gottardo et al. 2006). In some aspects, our modelling at-

tempt is similar to Gottardo’s , cf. Gottardo et al. 2006, yet our approach

is more generally applicable. In contrast to the approach by Gottardo et al.

2006, we aim at comparing the model to its normal distribution analogue in

order to answer the following questions: Is a student’s t model required at

all? If it is, how ”far away” from a normal distribution is it really in terms

of degrees of freedom? In addition, we defined the set of t distributions to

include all data points into the model in a more general and flexible way.

Firstly, we can differentiate between the various t distributions with clearly

different degrees of freedom values, which is useful in principle but might be

problematic in other respects. Secondly, we were able to reduce the step size

far enough, so that ν can be seen as discretisation of a continuous degrees

of freedom parameter, while at the same time we keep the advantages of the

discrete setting described above. By introducing different test data sets we

will show the advantage of using a smaller step size in addition to a larger

one. Additionally, the variable dimension of βg|Ig allows our model to be

more generally applicable for various types of microarray experimental set-

tings. Without this property, a systematic study of noise behaviour for a

large variety of experimental settings would have been impossible.
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5.2.2 Data Collection

When performing in-depth assessment of noise models required for microar-

ray data analysis, two main aspects need to be considered:

� First, it is absolutely vital to make sure that the appropriate noise

model’s inference remains insensitive to the chosen hyper-parameters.

Employing synthetically generated data and dedicated spike-in exper-

iments provide the ideal basis for performing such an analysis, as we

know the expected outcome. Being familiar with the true underlying

data generating process makes such data particularly useful when as-

sessing the effects of the model’s structure and building parts, as well

as studying the convergence properties of the Markov chain.

� Second, it is necessary to assess a large collection of microarray data

sets covering a wide range of model organisms, experimental settings

and measurement platforms, in order to draw fairly generally valid

conclusions.

In order to create a set of known scenarios artificial data was drawn from a

Gaussian, a t4 and a t10 noise distribution. This data simulated a two-way

comparison consisting of 500 hypothetical genes. Each of these genes was

assigned to one of five groups, the group membership defining the degree of

hypothetical differential expression. The mean structure and fraction of each

group’s occurrence are listed in Table 5.2, variances hereby took values of

0.1, 1 and 10. In order to generate a situation similar to typical microarray

datasets, we simulated 5 replicates per group, resulting in 10 synthetically

generated data points per gene. To support our conclusions drawn from syn-

subset i µi,1 µi,2 %
1 -12 12 20
2 -5 5 10
3 -1 1 30
4 -0.5 0.5 20
5 0 0 20

Table 5.2: Depending on sample type which is either 1 or 2, genes from subset
i are drawn from distributions with means equal to µi,1 and µi,2 respectively.
The proportion of genes in subset i is shown in column %.
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thetic data regarding the proposed models’ validity, we additionally employed

our method for the spike-in experiment, cf. Choe et al. 2005, which provides

a more realistic test case. For bioinformatical preprocessing we applied MAS

5.0 and vsn (Huber et al. 2003).

To ensure that our findings are not limited by particular choices of data

sets, we analysed 14 microarray experiments covering various organisms and

measurement platforms. Among other settinga, the data include investiga-

tions of plant soil responses, drosophila sleep deprivation, primate dietary

comparisons and animal liver metabolism. The data sets used in our assess-

ment are summarised in Table 5.3. These chosen experiments can be identi-

fied by their respective Gene Expression Omnibus (GEO) reference number

(see Edgar et al. 2002a) and cover various platforms and quantification algo-

rithms (see Table 5.3 column “Prep.” for details). All data was normalised

by vsn and fed into the algorithm as provided by the owner for the respective

data bases.

5.2.3 Considered bioinformatical Normalisation and

analysis methods

In bioinformatics, it is commonly acknowledged that results of microarray

data analyses can strongly depend on the chosen normalisation method, for

example cf. Bolstad et al. 2003. To ensure the correctness of our findings

independent of the chosen normalisation approach we repeated the analy-

sis on different subsets of the data in Table 5.3 with different normalisation

methods. As not all kinds of data can be used for every normalisation ap-

proach, mainly due to availability of raw data, results do not exists for every

combination of data set and normalisations. For the comparison of our data

sets, we chose the frequently applied methods loess (Yang et al. 2002) and

quantile (Bolstad et al. 2003) normalisationdue to their popularity in applied

microarray papers.

Recent discoveries shed light on the fact that intensities of highly ex-

pressed targets cross-talk to neighbouring probes due to scanner inadequacy

(Upton and Harrisson 2010). For this reason, we may expect that Affymetrix

probe sets contain outlying measurements in more systematic and frequent

ways than previously assumed. The two methods, multi-mgMOS (Liu et al.
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2005) and PPLR (Liu et al. 2006), were specifically designed to cope with

such problems. To test if such representations could be an alternative to

heavy tailed noise models we applied our algorithm to data which were nor-

malised with the multi-mgMOS method as well as the posterior expression

estimates, which were obtained by the PPLR method. As both methods

assume a Bayesian model with Gaussian noise, we are of course specifically

interested in the validity of this assumption and in the question of whether

or not these approaches would present a reasonable alternative to other more

commonly used normalisation methods.

Due to the frequent occurrence of outliers and other problems with the

normal distribution model, non-parametric methods are commonly employed

for robust assessment of microarray data, cf. Tusher et al. 2001 or Gao and

Song 2005. These approaches are per definitionem not limited by distribution

assumptions, thus we compare them against with robust, distribution-based

approach, in order to relate it to existing robustification strategies. To ensure

comparability we chose ANOVA-like methods, such as the Kruskal-Wallis

permutation test (Lee et al. 2005), for which we calculated 10000 permuta-

tions, and performed an ANOVA on (aligned) rank-transformed data (Haan

et al. 2009). When assessing different noise models for microarray data anal-

ysis, it is of great importance to evaluate the impact choosing the wrong noise

model has on any biological conclusions drawn from the model compared to

the ones based on the most appropriate noise model. The implications of

choosing a wrong noise model instead of the most appropriate one can for

example be investigated at a higher level of biological abstraction by employ-

ing Gene Ontology (GO) term analyses, Ashburner et al. 2000, for the gene

lists obtained with the different noise models. For our approach, we applied

Fishers exact tests on the GO terms which are related to the selected top

ranked genes in order to determine which ones are significantly enhanced in

the data. This procedure is the standard approach for GO analysis which is

also used in bioinformatical applications such as FatiGO, Al-Shahrour et al.

2004, and DAVID, Dennis et al. 2003. In order to quantify the divergence be-

tween the Gaussian noise model and the more appropriate heavy-tailed noise

model we compared the absolute amount of differentially expressed genes and

significant GO terms. Here, we differentiated between genes and GO terms

dependent on the noise model and terms, which are independent of the noise
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model.

5.2.4 Sensitivity analyses and convergence diagnostics

Hierarchical Bayesian models have already been designed and applied for mi-

croarray data analysis, for example cf. work by Lewin et al. 2007, Shahbaba

and Neal 2006. The hierarchical Bayesian models’ virtue lies in adequately

representing the inherent randomness of certain parameters, e. g. the mean

gene expression. However, hyper-parameters must be chosen carefully, as

any informative choice, such as their weight being high w. r. t. the mea-

surements, will have an impact on the inference results. To our advantage

most parameters follow distributions where hyper-parameters have easily un-

derstandable meanings. For example in the conjugate Jeffreys prior for the

probability of differential expression p ∼ Beta(a=1
2
,b=1

2
) we can interpret a

and b as prior observations of (non-)differential expression, weighted with 1
2
.

However, other hyper-parameters exert influence more subtly, e. g. the pre-

cision parameters λ and τ . For them the improper, yet valid Gamma(0, 0)

distribution corresponds to the limit case, where the Bayes estimator equals

the maximum likelihood estimator. As pointed out in Bernardo and Smith

2000, such theoretically motivated choices are well justified in single variable

cases as opposed to a multi-variable model such as the model in Figure 5.1,

which deserves further attention.

In contrast to these well-behaved parameters, the precision λ is the

only random hyper-parameter which directly influences the mean expres-

sions and thus also the decision about differential expression. Hence, the

hyper-parameters c and d in its prior have to be chosen with great care, as

the posterior probabilities of differential expression Ig will be quite sensitive

to informative settings. In order to investigate the effects of different choices

for the hyper-parameters c and d we performed a sensitivity analysis with

the artificial data generated according to the description in Section 5.2.2 with

precision 1. Varying these two hyper-parameters indicates how much implic-

itly introduced prior information is tolerated by the model. The graphs in

Figure 5.2 illustrate the dependency of the gene-wise posterior probabilities

of differential expression on the hyper-parameters c and d as well. As the

precision in the Gaussian prior over βg is modelled hierarchically, the prior
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variance of E[(λ − λ̂)2]p(λ|c,d) = c
d2

is the determining factor of model sensi-

tivity. By changing the prior variance we are able to assess sensitivity, while

keeping the expectation E[λ]p(λ|c,d) = c
d

fixed. Up to a small prior variance of

less than 1/500 hyper-parameter values have only moderate influence on the

posterior probabilities of differential expression, as can be seen in Figure 5.2.

Our improper choice is thus justified, as no local influence on the inference

results is introduced.
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Figure 5.2: Here, the influence of the hyper-parameters c and d in the prior
over λ for Gaussian (left) and t4 (right) distributed data is illustrated by their
increasingly different behaviour. The above two graphs show the ranked gene
specific posterior probabilities of differential expression for different prior
variances of λ.

The cut-off νmax for the degrees of freedom parameters presents another

influential hyperparameter in our model. Choosing the upper limit for the

degrees of freedom parameter ν, in order to mark the bound between stu-

dent’s t and normal distributions, is critical for clearly distinguishing between
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(a) t4 data

run

7
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9

10

11
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(b) t10 data (c) normal data

Figure 5.3: The above box plots represent the posterior distribution of the
estimated degrees of freedom parameter for a t4, a t10 and a Gaussian data
set. The strongly dashed line marks the true degrees of freedom value and the
dash-dotted line marks the posterior mean of all three data sets per setting,
i. e. 4.21, 10.66, 45 ∼ ∞.

Gaussian and student’s t noise models. Our simulations found that student’s

t densities with degrees of freedom larger than 45 are almost indistinguish-

able from appropriately parameterised Gaussians, an observations which is

consistent with visualisations of the considered distributions. When adding

values above 45 to the set ν, the model selection results in large uncertain-

ties in choosing the most proper noise model. Smaller values for this cut-off

lead to a misjudging of student’s t distributions with relatively large degrees

of freedom for Gaussians. Consequently, we decided on νmax = 45 as the

threshold for switching to the Gaussian noise model.

5.2.5 Inferring the noise model

The synthetic data sets defined in Section 5.2.2 provided us with a good

testing option for checking the most important feature of the algorithm; its

ability to correctly determine the underlying error distribution, independent

of the data’s variance. Another important aspect of MCMC algorithms is the

assessment of convergence towards the stationary distribution. To this effect,

we applied the R package coda, introduced by Plummer et al. 2006b. Our

conclusion was that 11000 draws were a suitable simulation length, whereas
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the first 500 draws should be considered the burn-in phase. Figure 5.3 visu-

alises the distributions of the samples of ν as box plots. After the burn-in

phase, the sampler draws the degrees of freedom parameter ν around the

true value, while the variation, which is estimated by the interquartile range,

remains less than 2 degrees of freedom in all cases. This way we arrive at

a comparatively small range which definitely excludes the incorrect high de-

grees of freedom as wel as the Gaussian model, in case of student’s t data.

On the contrary, the MCMC sampler correctly identifies the Gaussian noise

model during the burn-in phase for the Gaussian data and stays consequently

with the Gaussian model, without ever leaving it again. Because the Gaus-

sian model fits the data exceptionally well, moving back to the more complex

44 degrees of freedom t-distribution model would be highly unlikely. As we

have seen the algorithm includes an implicit penalty for moving from the

simpler Gaussian model, for which all rescaling parameters ϕn,g equal 1, to

the much more complex t models, for which these rescaling factors have to

be inferred additionally. To conclude, the algorithm’s ability to identify all

error distributions correctly in our test data sets assures us that our method

is well-suited for identifying the required robustness level in real microarray

data.

Our simulations on artificial data sets also revealed that the flexible ad-

justment of the grid size cgrid during runtime improves mixing and thus as

well enhances the convergence properties of the Markov chain. During burn-

in phase, the grid size is refined from an initial value in the range of 1 to 5,

as proposed in Gottardo et al. 2006, to a smaller value of about 0.05, which

remains fixed during the following sampling process. A relatively large grid

size of about 1 ensures that the algorithm is able to quickly determine the

approximately correct error model. In contrast to a large grid size, reducing

the grid size after the first half of burn-in to cgrid ≈ 0.05 improves mixing of

the Markov chain without limiting the possibility of the algorithm to reach

distant degrees of freedom. Furthermore, defining the set ν flexibly allows

inferring the degrees of freedom ν via a discrete random variable J . The

introduction of variable J enables the approximation of the continuous true

degrees of freedom with high accuracy. Moreover, the MCMC sampler with

reduced grid size requires less updates in order to reliably infer the degrees of

freedom. All in all, varying the grid size results in the improvement of chain
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mixing and is thus highly recommendable.

As opposed to the artificial data, the ”Golden Spike” experiment by Choe

et al. 2005 provides a more realistic test case, as it is a regularised data set,

wherein variation mainly originates from laboratory work. When comparing

the performance of our algorithm to the ones Choe et al. 2005 analysed (such

as Tusher et al. 2001; Baldi and Long 2001), we found that our algorithm’s

performance, based on the same preprocessing, was at the top end com-

pared to all considered methods. Liu et al. 2006 gained efficiency with their

multi-mgMOS normalised data possibly because the normalisation method is

specifically tailored for handling outliers in Affymetrix data, cf. Upton and

Harrisson 2010. However, when analysing the PPLR model’s expression esti-

mates, we found that these are heavier-tailed than the mmgmos normalised

input data. Nonetheless, the mmgmos model by Liu et al. 2006 assumes

Gaussian distributions, which are inappropriate for inferring heavier-tailed

estimates, as summarised by the results in Table 5.6.

Analysing spike-in data produced the compelling result that, for data

in which the main source of errors are laboratory processes, a student’s t

model fits much better than a Gaussian one. When comparing the gene lists

determined by our algorithm against genes from the categories in Table 1

of Choe et al. 2005, the student’s t model was able to identify 59% to 86%

more genes correctly as differentially expressed than the respective Gaussian

model.
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5.3 Bioinformatical Results

The following section describes our findings for the vsn normalised microar-

ray data sets. In order to highlight the importance of choosing valid noise

models for microarray analysis we applied the proposed inference scheme to

fourteen microarray data sets, listed in Table 5.3. To obtain a quantitative

statement we inferred differentially expressed genes from the Gaussian and

the estimated optimal student’s t model for every data set. As a result we

received two lists of differentially expressed genes, the intersect represent-

ing agreement and the symmetric difference representing different biological

interpretations induced by an inappropriate noise model.

In addition, we provided Table 5.4 which contains our findings for the

alternative normalisations and non-parametric methods. Our evaluation led

us to the conclusion that a heavy-tailed Student-t noise model provides a

better fit than a Gaussian noise model for every considered data set inde-

pendent of the normalisation. For most data sets, a student’s t distribution

with degrees of freedom between 1 and 5 resulted in the highest posterior

probability. This clearly indicates the need for robust noise models, which

are able to handle outlying data points better than Gaussian model. Thus,

we conclude that Gaussian noise models are unsuitable for microarray anal-

ysis, even if, according to Novak et al. 2006a, only about 5 to 15 percent of

samples are non-normally distributed.

When comparing our parametric approaches against the two considered

non-parametric ones we encountered two situations: First, the hierarchical

Bayesian model is able to deal with situations in which non-parametric tests

have problems with low power, as very few samples or replicates per group

are available (cf. Whitley and Ball 2002). This stands out clearly in the four

data sets which contain 4 to 24 samples overall, but only 2 or 3 replicates per

group. Here, the non-parametric tests were unable to identify any genes as

significantly differentially expressed. Second, the robust model shares more

top ranked genes of the gene lists with the non-parametric methods than the

Gaussian model does, especially in cases of large sample or replicate size.

This result indicates that considering to model non-Gaussianity with heavy

tails is a reasonable approach in order to describe some of the non-Gaussian

behaviour of the data.
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By definition, the robust model is generally less sensitive to outlying val-

ues, as they are modelled to be closer to the bulk of the data. Models with

student’s t distributed noise will thus assign lower posterior probabilities of

differential expression, if the classification is drawn by one or a few outlying

values. In general, fact is that outlying observations increase variance. In

cases where outliers additionally lead to a decreased difference between the

different average expression values, the Gaussian noise model overlooks dif-

ferentially expressed genes, which would however be captured by the heavier-

tailed noise model. Therefore, we may expect that a wrongly chosen noise

model could lead to false positives and false negatives. This expectation is

confirmed by the graphs in Figure 5.4, examples which illustrate such noise

model dependencies of the posterior probabilities of differential expression

for two of the datasets. The above statement remains true independently of

the applied normalisation method, as we can see in Figures 5.5, 5.6 and 5.7.

Figures 5.4 and 5.5 visualise the graphs for vsn normalised data, Figure 5.6

for the loess normalised data and 5.7 the quantile normalised data.

In the above figures, Figures 5.4 and 5.5, each graph plots the posterior

probabilities obtained from a Gaussian or alternatively the most probable

student’s t noise model against the genes ranked w. r. t. one of the models.

When observing the probabilities resulting from the other noise model shown

as grey dots, cf. Figures 5.4 and 5.5, we find both false positives and false

negatives. On the one hand, we see that several of the genes considered highly

differentially expressed by the Gaussian model clearly have a pronouncedly

lower posterior probability in the robust model. On the other hand, single

genes or whole ’clusters’ of genes which have low posterior probability in the

Gaussian model are actually highly differentially expressed in the student’s t

model. The human melanoma (GDS1375) data set in Figure 5.5 (b) presents

a good example of a large cluster of such genes, as can be seen at the top

right of the graph. As the model inference over degrees of freedom ν clearly

favours the robust student’s t model we may regard these genes as those which

the Gaussian model would have overlooked. To put this in numbers, Table

5.3 lists that the number of genes showing a noise model dependency in the

differential expression assessment range from 119 to 3561. This corresponds

to approximately one tenth to two times the number of genes which are

assessed as differentially expressed, independently of the noise model. As we
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(b) Ranking of genes, human melanoma
data (GDS1375)
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(c) Ranking of genes, mouse glycerol data
(GDS1555)
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(d) Ranking of genes, mouse cochlea data
(GDS3162)

Figure 5.4: The above plots illustrate the noise-model-dependent difference
in posterior probability of differential expression. The graph in subplot (a)
is ranked by the posterior probability of differential expression obtained with
the most probable t-distributed noise model (black line) with corresponding
posterior probabilities from a Gaussian noise model shown as grey dots. The
graph in subplot (b) is ranked by the posterior probability of differential ex-
pression obtained with a Gaussian noise model (black line) with correspond-
ing posterior probabilities of the most probable t-distributed noise model
drawn as grey dots.
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(a) Ranking of genes, arabidopsis data (GDS3216)
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(b) Ranking of genes, human melanoma data (GDS1375)

Figure 5.5: The above two plots present the noise-model-dependent difference
in posterior probability of differential expression. The two graphs are ranked
w. r. t. the t distribution, as in the previous figure. To make the points with
most the prominent differences between the models more visible, we thinned
out the points within an interval of 0.1 around the line.
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have seen, all results point to the fact that the choice of noise model can be

very influential on inferred gene lists.

The biological significance of the differences in gene lists can be further

assessed by a Gene Ontology term inference based on a similar strategy as

FatiGO (Al-Shahrour et al. 2004). In order to investigate the dependency of

such high-level biological inference on the chosen noise model we applied our

approach to the gene lists obtained from the Gaussian and most probable

student’s t model. Comparing the amount of noise-model-dependent and

noise-model-independent GO terms, cf. Table 5.3, reveals that between one

fifth and 22 times as many GO terms differ between the models than the

models have common. All in all our results lead to only one conclusion,

namely that an unsuitably chosen noise model is likely to have a profound

effect on all biological conclusions drawn from a microarray experiment.

The diverse structure of the experiments, which cover various popular

measurement platforms and organisms used for this assessment, suggests that

these results will hold in general. Therefore, we conclude that the choice of

noise model is likely to have serious implications on inferred gene lists and

high level biological conclusions drawn from microarray experiments. Our

evaluations, assigning a large posterior probability to student’s t distributed

noise with rather small degrees of freedom, clearly shows that microarray data

analysis requires robust noise models. Consequently, our conclusion is that

Gaussian noise, which is often chosen for convenience, is utterly unsuitable

for the analysis of microarray data.

5.3.1 Alternative Normalisation

All results presented above are mainly based on vsn normalised data (see Hu-

ber et al. 2003). In order to assure that the found effects are not due to this

specific normalisation method, we applied rma normalisation (Irizarry et al.

2003b) to those data sets, for which CEL files were available. Furthermore,

we selected a subset of data sets to which we applied loess and quantile nor-

malisation as well as Liu’s normalisation based on probe-level measurement

errors (Liu et al. 2005,Liu et al. 2006). Table 5.4 lists these alternative re-

sults in detail. However, the principal findings for vsn normalised data do not

change in the least, when applying other normalisation methods to the same
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data sets: In all cases student’s t models with low degrees of freedom are

preferred over the Gaussian model. In case of loess and quantile normalised

data, in which the variance stabilisation is missing as the overall behaviour

of the original data is retained, the degrees of freedom estimate is even lower

than for the vsn data. Regarding the human melanoma data (GDS1375),

which we discussed above in great detail, a student’s t model with about

1.1 degrees of freedom has the highest posterior probability for both loess

and quantile normalised data. For loess or quantile normalised data we even

found systematic preferences for degrees of freedom of the selected optimal t

model, which are much lower than for vsn normalised data. All in all, the pos-

terior over the model showed strong preference for Cauchy-like t distributions

with degrees of freedom close to 1, which is the most heavy-tailed distribu-

tion available in our finite set Γ, in almost all cases. These observations are

consistent with findings by Purdom and Holmes 2005. A possible interpreta-

tion for this behaviour could be that loess and quantile normalisation keep

the structure of the data’s original distribution far better than the variance

stabilising normalisation. Thus, the skewed and over-dispersed behaviour of

the data is kept, in which the large number of outlying data points is far

better explained by very heavy-tailed models. Consequently, the Gaussian

distribution cannot provide any reasonable outcomes for data which are that

much dominated by outliers. Figures 5.6 and 5.7 picture the results for two

of the data sets presented above. Concerning the human melanoma data set,

the differences within the posterior probabilities are eye-catching, as a large

percentage of genes is classified differently w. r. t. differential expression. The

arabidopsis data set represents a more typical case, in which the differences

are less prominent when visually comparing the gene lists. However, these

differences become more pronounced when performing follow-up analyses,

such as Gene Ontology analysis, on these gene lists. Here, the mismatch of

the Gaussian distribution becomes highly influential, so that results obtained

with Gaussian methods can only be considered unreliable.

5.3.2 Non-parametric methods

Non-parametric methods are generally applied, if the validity of distribu-

tion assumptions is unknown or in doubt. Therefore, such approaches are
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(a) Ranking of genes, mouse data (GDS1555)
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(b) Ranking of genes, human melanoma data (GDS1375)

Figure 5.6: The above two plots illustrate the difference in the ranked pos-
terior probability of differential expression for loess normalised data. Each
graph is ranked separately and the genes on the x axis are ordered w. r. t.
decreasing posterior probability in the Gaussian model.
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(a) Ranking of genes, mouse data (GDS1555)
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(b) Ranking of genes, human melanoma data (GDS1375)

Figure 5.7: The above two plots express the difference in the ranked posterior
probability of differential expression for quantile normalised data. Each
graph is ranked separately and the genes on the x axis are ordered w. r. t.
decreasing posterior probability in the Gaussian model.
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GEO ID loess quantile
ν comm. diff. ν comm. diff.

GDS3216 2.02 1273 1272 1.13 1284 1017
GDS3225 1.24 933 1643 1.29 1141 1592
GDS810 1.13 355 860 1.18 487 892
CAMDA 08 1.06 295 1271 1.11 444 1057
GDS1375 1.14 1657 7020 1.15 1863 6881
GDS2960 2.94 268 270 2.85 276 307
GDS1555 1.15 786 2039 1.17 825 1972
GDS972 1.38 545 851 1.4 749 699

Table 5.4: The above table provides us with a subset of data sets for testing
alternative normalisations. We calculated the posterior mean degrees of free-
dom ν and the numbers of common (’comm.’) and different (’diff.’) genes,
which the two methods classified as differentially expressed, with a proba-
bility of more than 85%. In all cases, t distributions with small degrees of
freedom between 1 and 3 are preferred.

commonly applied for robust assessment of microarray data, see Tusher et

al. 2001 or Gao and Song 2005. For analysing microarray data we chose

the following non-parametric methods: The Kruskal-Wallis test, the classical

non-parametric version of one-way ANOVA, ANOVA on rank transformed

and aligned rank-transformed data, as described by De Haan et al. 2009, as

well as permutation tests based on (non-)parametric statistics, for example

see Lee et al. 2005.

We chose these methods due to their good comparability, as these meth-

ods present exactly the non-parametric generalisations of a one-way ANOVA

approach. The Kruskal-Wallis test is the non-parametric generalisation of

the t test on ranked statistics. However, it works under the assumption of an

approximately parametric distribution of its test statistic. In order to avoid

this assumption a permutation test can be performed with the Kruskal-Wallis

test statistic instead of referring to approximate distributions. We performed

such a permutation test using 10000 permutations to estimate the distribu-

tion of the test statistic over the data set.

Concerning the robustification of ANOVA De Haan et al. 2009 evaluated

several approaches, including rank-transforming the data as well as employ-

ing robust mean estimates, for example the truncated mean and the me-
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GEO ID KW perm. RANOVA (ART)
robust Gaussian robust Gaussian

GDS3216 39% 37% - -
GDS3225 - - - -
CAMDA 08 - - - -
GDS1375 86% 84% 86% 83%
GDS2960 76% 71% 76% 72%
GDS1555 - - - -
GDS972 35% 35% 36% 35%

Table 5.5: The above table summarises the results of testing non-parametric
methods for a subset of data sets. ”KW perm” contains the fraction of shared
results at a p-value cut-off of 1% for the Kruskal Wallis permutation test with
the robust student’s t and the Gaussian model, ”RANOVA” the fraction of
shared results for aligned rank transformed ANOVA with the robust student’s
t and the Gaussian model, respectively. A dash is used to express that the
non-parametric method could classify no gene as differentially expressed with
a p-value smaller than 0.01 due to the replicate or sample size being too small.

dian. As we aimed for a non-parametric approach towards ANOVA, we chose

to apply the ANOVA on (aligned) rank-transformed data. In the one-way

ANOVA setting, such as our, no difference between the different approaches

of rank-transforming the data exists. Such differences would only occur for

interaction terms, which assume that more than one factor is available and

considered in the analysis. The findings for both methods are listed in Table

5.5.

To be able to compare the nonparametric approaches with our parametric

approach, we selected all genes with a p-value of differential expression be-

low 1%. In the next step, we chose the same number of top-ranked genes for

the robust as for the Gaussian model and calculated the relative amount of

shared genes, which were classified as differentially expressed. In cases with

large enough sample and replicate sizes, the non-parametric methods gener-

ally shared a slightly larger fraction of genes with the robust student’s t model

than with the Gaussian one. The better agreement of robust methods indi-

cates that non-parametric approaches are to be generally preferred to para-

metric ones, if the given sample size allows for their application. However, our

analysis also revealed a major drawback of non-parametric approaches, which
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lies in lack of power ,in cases where few samples or replicates are available,

a result consistent with the findings by Whitley and Ball 2002. If only 2-3

replicates per group and 4-24 samples overall were provided by the microar-

ray data, the non-parametric methods were unable to identify any significant

genes, which is marked by the dashes in Table 5.5). To conclude, our para-

metric approach outperforms non-parametric approaches on small data sets,

whereas non-parametric approaches provide a reasonable alternative only for

very large microarray experiments.

5.3.3 Probe-level measurement error

A different approach towards robustification was chosen by Liu et al. 2005

who integrated effects on probe-level into their probabilistic model. This

probabilistic normalisation approach was employed in order to estimate the

required variables for calculating the probe-level measurement error. In Liu

et al. 2006 Gaussian kernels with variance components are fitted, depending

on the variation of probe-level measurements. In order to assess the validity

of Gaussian model assumptions for this kind of data we applied our algorithm

to the posterior mean estimates of the model by Liu et al. 2006. For testing

whether or not such representations present an alternative to heavy-tailed

noise models, we applied our algorithm to multi-mgMOS normalised data.

In addition, we used it on the posterior expression estimates, obtained by the

PPLR method, in order to test the model’s Gaussian noise assumption. When

applying the algorithm to the mmgMOS normalised data our findings were

that the over-all noise of the expressions followed a student’s t distribution

with degrees of freedom between 2 and 3, as listed in Table 5.6. However,

results from the PPLR model’s expression estimates showed a heavier-tailed

distribution than their mmgmos normalised input data, even though the

model which infers theses input data assumes Gaussian distributions.

5.3.4 Conclusion

The motivation for our approach lies in the Gaussian distributions’ weak-

ness towards outlying and over-dispersed values, which is overcome by non-

parametric methods or alternatively by models including heavy-tailed noise

distributions, such as the student’s t density. Guided by the notion of
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GEO ID
GDS3216 GDS810 GDS972

multi-mgMOS
ν 2.23 3.23 3.67
comm. 815 327 432
diff. 467 354 178

PPLR
ν 1.17 1.14 1.15
comm. 2504 668 1029
diff. 1045 919 622

Table 5.6: The above table presents the results for the mmgMOS and the
PPLR method, separately listing the 3 data sets for which we had CEL files
available. The abbreviations ’comm.’ and ’diff.’ hereby signify the number
of common and different genes which are classified as differentially expressed
by the robust aa well as the normal model.

Bayesian likelihood robustness, we performed model selection in a way that

regards Gaussian noise as well as heavy tailed t-distributions, which allows

for a comparison on the level of these different noise models. Once the a

posteriori most probable likelihood function i. e. noise model is found, we

turned to investigating the biological implications caused by changing the

noise model. In order to provide conclusions of wide-ranging validity we

assessed 14 suitably chosen microarray experiments. Our assessment’s out-

standing results show that t-distributions with high kurtosis are favoured for

every analysed experiment, leading to the conclusion that the choice of er-

ror model considerably influences the biological conclusions drawn from the

analyses.



Chapter 6

Finite Mixture Models in a

nutshell

Before defing a mixture model approach for microarray analysis in Chapter 7,

we briefly present the required background knowledge about Bayesian finite

mixture modelling. An excellent, application-oriented description of the topic

of Bayesian finite mixture modelling approach can be found in Frühwirth-

Schnatter 2006, a general description of the (non-Bayesian) theory of finite

mixture models in Mclachlan and Peel 2000.

6.1 Bayesian Mixture Models

Finite mixture distributions arise naturally in situations where a random vari-

able Y shows heterogeneity across groups, while being homogeneous within

each group. A discrete indicator variable for the groups, Z, will take values

in 1, . . . , K. The weights of the groups, ωk, are the relative group sizes, the

corresponding parameter for each group is denoted by θk. Then, the density

of the random variable Y can then be rewritten based on the joint density

p(y, Z|θ1, . . . , θK) as

p(y|θ1, . . . , θK) =
K∑
Z=1

p(y, Z) =
K∑
k=1

ωkp(y|θk) (6.1)

97
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This definition of mixture distribution allows the straight-forward determi-

nation of the mixture’s moments

E[f(Y )|Z, ω, θ1, . . . , θK ] =
K∑
k=1

ωkE[f(Y )|θk], (6.2)

if the moments of the component distributions

E[f(Y )|θk] =

∫
Ω

f(y)p(y|θk)dy (6.3)

exist.

In a Bayesian framework, prior distributions for the group variable Z

and the weights ω are required. Let us first assume, we know the true group

labelling Z. Then the likelihood p(Z|ω) is combined with a prior distribution

for ω. As p(Z|ω) is of multinomial structure, the conjugate prior for ω is the

Dirichlet distribution Dir(α0) for ω, cf. 2.1.1.

P[Z = k|ω] = ωk (6.4)

ω ∼ Dir(α0) (6.5)

Posterior weights ω∗ would then be determined as the sum of prior weights,

α0, and the number of observations falling in each of the K groups, ω∗k =

α0 +Nk. If the allocation Z itself is unknown, we require a hierarchical model

structure, where for the likelihood function p(y|Z), we assume a multinomial

prior over Z with probabilities ω and the conjugate Dirichlet prior for the now

hyper-parameter ω. For both cases, the choice of conjugate prior distributions

is only one among many. However, it is the most common one, due to

the advantage of using Gibbs updates for computational inference which are

easy and straight-forward to implement. As an illustration for the conjugate

prior setting, we present a small example which we will build on, also when

illustrating identifiability, see Section 6.1.1.

Example 5 (Mixture of normals). We employ the mixture of univariate nor-

mal distributions for illustration purposes, not only because it is the classical

and most commonly used case of a mixture model, but also because it provides

the background of the model designed in chapter 7. The backbone of the model
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is built by normal distributions with mean µk and variance σ2
k respectively

p(y|θ = ((ω1, µ1, σ
2
1), . . . , (ωK , µK , σ

2
K))) =

K∑
k=1

ωkφ(y|µk, σ2
k). (6.6)

This notation is equivalent to

yi|Z = k ∼ N(µk, σ
2
k). (6.7)

We construct a hierarchical distribution setting, where we place priors on the

y

2σ

µ

m

s2

a

b

Z ω

α
0

Figure 6.1: The univariate normal mixture model visualised as directed
acyclic graph.

parameters of the mixture which are commonly chosen as conjugate priors

Z ∼ Multinomial(N,ω) (6.8)

ω ∼ Dir(α0) (6.9)

µk ∼ N(µ0, s
2) (6.10)

σ2 ∼ Ga−1(a, b) (6.11)

This is the basic hierarchical normal mixture model, which can be extended

in various ways by adding further levels to the hierarchy placing priors on

the hyper-parameters or using other types of non-conjugate prior distribu-

tions. Figure 6.1 shows the directed acyclic graph representation for this

model where we visually separate the two parts of the model:
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� the mixture parameters’ part, including Z and ω and

� the likelihood’s parameters’ part, including µk and σ2
k.

6.1.1 Identifiability

In order to perform sensibly parameter estimation, a model has to be formally

identifiable.

Definition 1 (Identifiability). We define that a parametric distribution on

sample space X with parameter θ ∈ Θ is identifiable, if any two parameters

θ and θ′ leading to the same probability law on X are necessarily identical,

i. e.

p(x|θ) = p(x|θ′) for almost all x ∈ X ⇒ θ = θ′ (6.12)

Non-identifiability of mixture models can arise from two different sources:

� Relabelling of the components

Any finite mixture distribution is invariant w. r. t. the labelling of the

components. Staying with the normal mixture example from above, we

can consider a mixture of 2 components where only 2 possible labellings

exist. Each defines a distinct parameter θ = (µ1, µ2, σ
2
1, σ

2
2, ω1, ω2) and

θ′ = (µ2, µ1, σ
2
2, σ

2
1, ω2, ω1). Thus, the mixture distribution is not iden-

tifiable in the sense of the definition above, cf. (6.12). In general,

each permutation of the labels (1, . . . , K) generates the same mixture

distribution, despite being defined by distinct parameters. Although

this non-identifiability problem is not severe and can be resolved by

introducing side-conditions which would allow for identifiability of all

distinct parameters which differ in at least one of their components.

However, this non-identifiability causes several practical problem which

we will discuss in Section 6.2.1 about label switching.

� Overfitting of components

Considering too many components for a finite mixture model also in-

troduces non-identifiability. As shown by Crawford 1994, any mix-

ture with K − 1 components defines a non-identifiable subset in the

K-dimensional parameter space ΘK of mixture with K components.
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Returning to our normal distribution example, we can also add a com-

ponent of weight 0, defining a K + 1-dimensional mixture model

p(y|θK+1) =
K∑
k=1

ωkφ(y|µk, σ2
k) + 0 · φ(y|µK+1, σ

2
K+1). (6.13)

The new parameter θK+1 = (µ1, . . . , µK , µK+1, σ
2
1, . . . , σ

2
K , σ

2
K+1,

ω1, . . . , ωK , ωK+1 = 0) is then not identifiable, as µK+1 and σ2
K+1 could

take any value and still lead to the same distribution. Alternatively,

we can fix these values to those of component j which would then lead

to non-identifiability of the weights ωj and ωK+1 = 1−
∑K

k=1 ωk.

6.2 Computational Inference of mixture

models

As in the Example 5 of the finite normal mixture model with fixed number

of components, a mixture model can be defined using only conjugate prior

distributions, requiring nothing but Gibbs sampling, cf. Frühwirth-Schnatter

2006. Metropolis-Hastings steps can occur for non-conjugate updates leading

to a hybrid sampler. However, it is inappropriate to utilise improper priors

in the context of mixture models, as they lead to improper posterior dis-

tributions. Reusing our example of a mixture of normals, we show how to

apply non-conjugate priors for the normal distribution’s parameters or mix

student’s t distributions instead of normal distributions for which the degrees

of freedom are unknown.

Example 6 (Mixture of student’s t distributions). Again, we start out from

the mixture representation

p(y) =
K∑
Z=1

p(y, Z) =
K∑
k=1

ωkp(y|θk). (6.14)

We now choose student’s t distributions as p(y|θk) and reuse Equation 5.6
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for Chapter 5

X ∼ tν(µ, σ
2)⇔

 X|ϕ ∼ N(µ, 1
ϕ
σ2)

ϕ ∼ Ga(ν
2
, ν

2
)

(6.15)

Thus, we can consider the mixture model with auxiliary variance rescaling

parameters ϕ

y|Z = k, µk, ϕk, σ
2
k ∼ N(µk,

1
ϕk
σ2
k)

µk|m, s2 ∼ N(m, s2)

σ2
k|a, b ∼ Ga(a, b)

ϕk|νk ∼ Ga(νk
2
, νk

2
)

(6.16)

as a generalisation of the model in Example 5. For fixed degrees of freedom

parameters νk, we can even stay in the conjugate prior framework and can

thus only use Gibbs updates. Only a prior distribution over the degrees of

freedom parameters necessarily requires Metropolis-Hastings updates, as no

conjugate closed from prior exits for such a case. The Gibbs sampler with

auxiliary variable ϕ leads to samples from the same posterior distribution as

an algorithm which uses the proper Metropolis-Hastings step instead, where

we use e. g. a standard normal proposal density. See Section 7.2 for detailed

updates in such a case.

Even in the Gibbs sampler’s case, special challenges arise, when perform-

ing computational inference of Bayesian mixture models. One such challenge

is the label switching problem.

6.2.1 The Label Switching Problem

The label switching problem is caused by the invariance of the mixture dis-

tribution w. r. t. the labelling of its components, cf. Section 6.1.1 where

we discussed identifiability issues due to this problem. Figure 6.2 presents

the sampled MCMC time series of the mixture weights and degrees of free-

dom parameters from the mixture of normal and student’s t distributions’

algorithm in chapter 7 in order to illustrate the label switching problem.

Several approaches exist to deal with this issue which have been cate-

gorised in two ways, cf. Crawford 1994 and Stephens 2000b. Firstly, they
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Figure 6.2: Example of fitting a mixture of a normal, t10 and t1 distribution
with generated weights (0.1, 0.4, 0.5). Both the degrees of freedom parameter
νk and the weight parameter ω are affected by label switching, which can be
recognised graphically from the crossing of trend lines which exchange their
respective trend level, e. g. ν = 45 ∼ ∞ and ν = 10

consider the case of a natural ordering of the populations, e. g. when the

density means are increasing by assumption. In such a case, there exists

only one possible labelling, assuming this ordering as side conditions allows

to uniquely identify the components. This provides an optimal solution to

the label switching problem, if the choice is theoretically sound and can be

reasoned before even fitting a mixture model. However, this might not be

the case for many applications of mixture models where the ’true’ data gen-

erating process remains in the dark. In such cases, we can try discover from

projections in the parameter space where it might be possible to identify

suitable side conditions which will finally lead to a unique labelling. In ad-

dition, recent findings, e. g. by Celeux et al. 2000 and Frühwirth-Schnatter

2001, have revealed that just some arbitrary formal identification constraint

does not necessarily lead to unique labelling, presenting counter examples.

Frühwirth-Schnatter 2006 recommends the usage of the point process rep-

resentation, as in Figure 6.2, to identify possibly sensible constraints. Such

constraints can be used online while sampling or as as postprocessing device

after sampling, “switching back” the labels such that the side conditions are

fulfilled for each sample run.

Secondly, Crawford 1994 considers the case that we do not know whether

there exists an ordering. Then, a properly introduced identifying function

can resolve the problem. An identifying function is defined as a function
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which maps equivalent values of θ to the same point

H : Θ→ Θ

p(y|θ1) = p(y|θ2) ⇔ H(θ1) = θ̃1 = θ̃2 = H(θ2) ∀θ1, θ2 ∈ Θ.
(6.17)

Then, the distinction between parameters θ̃1 and θ̃2 implies a distinction be-

tween the corresponding distributions p(y|θ̃1) and p(y|θ̃2), thus fulfilling the

criterion for identifiabilty, (6.12). The theoretical definition of this function is

far simpler than its practical determination. Therefore, researchers typically

resolve this issue by applying supervised or unsupervised learning techniques,

such as clustering, online relabelling et cetera, cf. Grün and Leisch 2009,

Celeux et al. 2000, Frühwirth-Schnatter and Pyne 2011 and Stephens 2000b.

Unsupervised clustering is a classical appraoch for undoing label switching

in an unconstrained sample. A bridge between the motivation of identifa-

bility constraints, which we can consider ’clustering criteria’ which could be

found manually, and such general unsupervised learning is built by clustering

approaches which focus an the point process representation. For all cluster-

ing approaches, the MCMC draws in every step are permuted such that a

clustering criterion, e. g. k-Means, is fulfilled leading to relabelled samples.

6.2.2 Overfitting

In addition to label switching, another problem arises from the identifiability

issues in mixture modelling, cf. 6.1.1. Over-fitting occurs, when more com-

ponents are fitted than required by the data and issues of separating these

components arise. In order to deal with such issues, Frühwirth-Schnatter

2001 has introduced the approach of mode hunting in the posterior point pro-

cess space. Mode hunting has originally been applied to sample histograms

to gain an idea of the number of mixtures to fit, however giving misleading

results, as modes in histograms are extremely sensitive to the choice of bin

width and number.

The notion of using the mode hunting approach for detecting overfitting

is based on the empirical fact that for a large enough number of observations

K! dominant modes arise for the mixture likelihood function, if the data are

generated by a mixture with K components. However, if the data stem from

a mixture with less than K components, i. e. the model is overfitting the data,
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then less than K! dominant modes are actually present. Searching for these

dominant modes, however, can be quite tedious, as the ‘clusters’ around

the modes are blurred with increasing number of overfitting components.

Although it makes mode hunting difficult, such blurring is a good indication

of possible overfitting.

An alternative approach for resolving overfitting is the method of mo-

ments, for which theoretical moments, see (6.2), are compared to sample

moments. This method cannot only be used for inference of mixture models

with fixed number of components, but also for determining the discrepancy

between the data and various such mixture models with different fixed num-

ber of components. The true diffficulty then lies in determining when adding

another component does not lead to a significant gain in the model fit. In

case of doubt, one would rather apply Occam’s Razor and stay with the

smaller mixture model, avoiding overfitting, cf. Frühwirth-Schnatter 2006.

6.2.3 Transdimensional Methods for Variable numbers

of components

When dealing with mixture models, for which the number of components

is not fixed a priori, computational inference becomes even more challeng-

ing. How to determine the number of components, specifying appropriate

priors for Bayesian model selection, can be defined fairly easily. The general

framework behind transdimensional approaches is Bayesian model selection.

Unlike (6.1), the sampling distribution p(y|θ1, . . . , θk,Mk) also depends on

the modelM. In this context modelsMk with different numbers of compo-

nents k are considered. Given a reasonable prior probability for the model

M1, . . . ,MK , p(Mk), model selection follows Bayes’ rule (cf. 2.1, Bernardo

and Smith 2000):

p(Mk|y) ∼ p(y|Mk)p(Mk) (6.18)

with the marginal posterior for the model

p(y|Mk) =

∫
Θk

p(y|Mk, ϑk)p(ϑk|Mk)dϑk. (6.19)
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The computational realisation of such transdimensional methods, how-

ever, shows some difficulty, as models with different parameter spaces have to

be compared. Here, we briefly discuss two methods of relevance for this the-

sis which have prominently been applied to deal with this problem, e. g. the

reversible jump methodology found one of its first applications in selecting

the number of components in a mixture, cf. Richardson and Green 1997,

yet it has a broad spectrum of applications also in other fields than mix-

ture modelling, cf. 4.2.3 for the discussion of MCMC updates based on this

method.

� Reversible jump algorithm

The purpose of the paper by Richardson and Green 1997 was propos-

ing a novel methodology for determining the number of mixture com-

ponents in addition to model inference of the mixture distribution. In

Chapter 4.2.3 a detailed description of the reversible jump method has

already been presented, so this section only focusses on the mixture

model aspect of the method. The main issue with the reversible jump

approach is the fact that a bijection between superspaces of the model

parameters’ parameter spaces is highly non-trivial to define. Arbitrar-

ily many possibilities exist, as one may add dimensions at will to the

original parameter space in order to construct such a bijection. Even

for rather well-known cases, such as multivariate student’s t distribu-

tions, the definition of a joint update of degrees of freedom, location and

scale parameters is not straight forward. Generally, the reversible jump

algorithm can move between models of any complexity, i. e. between

a model with 3 components and one with 15 components. However,

defining the appropriate embedding and bijection is really tedious, if

not impossible in some cases. Thus, a special type of reversible jump

algorithm has been designed for the purpose of dealing with mixture

models with variable number of components: the split and merge algo-

rithm. Instead of moving between arbitrary possible models, only two

possible trans-dimensional moves are possible:

– splitting one of the existing components in two separate compo-

nents, thus reducing their individual weights

– merging two separate components into a single one, increasing the
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single component’s weight.

These are two simpler types of updates, where it is more likely to find

an appropriate bijection.

Instead of using split and merge moves, Richardson and Green 1997

also suggested to use birth and death moves. A birth refers to adding

a nearly empty component to the mixture which is a theoretically valid

move since an empty component may always be added to the mixture

model without changing the likelihood function per se. Simply adding

a component with weight ωk′ = 0 and drawing the respective parameter

ϑk′ from some proposal density however is not a valid move, as there

exists no uniquely defined inverse move to form a bijection. The side

condition

dim(θK+1) = dim(θK) + dim(u) (6.20)

exists for the parameter u shich relates to the parameters of the added

component K + 1 in a bijective manner to fulfill the detailed balance

condition 4.9 according to the reversible jump construction scheme.

Thus, this dimension matching condition is absolutely required for a

valid reversible jump move and places clear restrictions on the proba-

bility to sample the weights and parameters from. These restrictions

led Stephens 1997 to design an alternative approach for such birth and

death moves: Stephens’ birth-and-death algorithm.

� Stephens’ birth-and-death algorithm

To avoid the reversible jump algorithms main down side, the proper

specification of a bijection between smartly chosen embedding super-

spaces of the different dimensional model parameter’s spaces and cal-

culate its Jacobian, Stephens 2000a designed an alternative approach,

the birth-and-death algorithm. The idea behind this algorithm is to

let components “die” and “be born” according to a marked point pro-

cess, based on the notion that a mixture model might quite abstractly

be considered a marked Poisson process in a general space. The birth
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rate λb of this process stays fixed during sampling and marks when a

new component (ωK+1, ϑk+1) is added. The probability of death for a

component is proportional to the weight of a component, thus, making

components with high weights less likely to“die”, while those with little

weight are prone to be removed from the model. During the birth and

death phase, labels are not reassigned, only afterwards the observa-

tions are mapped to the new components. In between birth and death

phases, an MCMC sampler updates the mixture model with fixed num-

ber of components. We present the following scheme as an overview

over the birth and death algorithm:

(a) Simulate (K,ω, ϑ1, . . . , ϑK) by running the birth and death Pois-
son process for a fixed time T , then set t = 0.

* Determine the current death rate d(θk), proportional to the
birth rate λb and the ratio of likelihoods and prior model
probabilities of the model without and including the compo-
nent k, and the summed up overall death rate dt

d(θk) =
p(y|K − 1, θK−1)λbp(K − 1)

p(y|K, θK)Kp(K)

* Simulate the next arrival time tnext

tnext = t+ ε/(λb + dt) with ε ∼ Gamma(1, 1)

as long as tnext < T and proceed with step (b) otherwise.

* Simulate new mixture weights depending on whether a birth
or death occurred.

· Divide the weight of the dying mixture model among all
other mixture models in case of death and

· reweight all mixtures’ weights such that they sum up to
1 again in case of birth

Table 6.1: Stephens’ birth and death algorithm
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(a) Adjust the mixture model accordingly, i. e. in case of the
death of component k

θK−1 = (ϑ1, . . . , ϑk−1, ϑk+1, . . . , ϑK)

ω = (
ω1

1− ωk
, . . . ,

ωk−1

1− ωk
,
ωk+1

1− ωk
, . . . ,

ωK
1− ωk

)

and in case of the birth of component K + 1

θK+1 = (ϑ1, . . . , ϑK , ϑK+1)

ω = (
ω1

1− ωK+1

, . . . ,
ωK

1− ωK+1

, ωK+1)

where ϑK+1 is drawn from the prior p(ϑ|hyper− parameter)
and ωK+1 simulated from a Beta prior with expectation 1

K
.

Set t = tnew and return to the beginning of (a).

(b) Update the parameter (ω, ϑ1, . . . , ϑK) and the allocation Z with
a fitting MCMC sampler, appropriate for the model with fixed
number of components K.

Table 6.2: Stephens’ birth and death algorithm

The transdimensional MCMC has the same purpose as Bayesian model

selection of the most appropriate mixture model, based on the marginal like-

lihoods of the different dimensional models. Theoretically, both approaches

are equivalent, yet their computational realisation is not. Again both meth-

ods are limited by computing power and ressources w. r. t. the maximal

number of components to consider and MCMC draws to compute. However,

when the number of considered possible components becomes large, i. e. more

than 10 to 20 possibilities, transdimensional methods become advantageous

and likely the only possible approach, as calculating the marginal likelihood

for every single model is virtually impossible, even in the age of parallel

computing.



Chapter 7

Extending Bayesian Mixture

models

7.1 Model structure

The following hierarchical Bayesian mixture models generalise mixtures of

Student’s t and Gaussian distributions, respectively. Unlike previously con-

sidered models (see e.g. Frühwirth-Schnatter 2006) we mix Student’s t and

normally distributed components simultaneously. With this approach we al-

low the model to collapse to the well-known cases of only Student’s t or

Gaussian distributions, but also cover all cases in between. Instead of den-

sity estimation, we focus on identifying systematic overdispersed behaviour.

This is particularly relevant in settings of joint inference as found in genomics,

e. g. microarray studies. In this case, the mixture model allows for an inter-

pretation of relative amounts of genes with specific noisy behaviour unlike

the model selection type of approach, described in chapter 5. While mere

density estimation can felxibly and relatively easily handled by mixtures of

normals, a severe problem for such an approach would lie in determining the

proper number of components in order to stay identifiable. On the one hand,

a mixture model which only differs w. r. t. variance parameters is a lot more

prone to overfitting than one differing in more than just one parameter. As

several normal components would be required to approximate the tail be-

haviour of a single student’s t component, this is a grave disadvantage. On

the other hand, fitting only mixtures of student’s t distributions, which are

110
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more appropriate for microarray data according to Hardin and Wilson 2009

and Posekany et al. 2011, contains the problem of sensitivity to the choice

of prior over the degrees of freedom. This prior is extremely sensitive to

the cut-off of the maximal degree of freedom when the student’s t distribu-

tions is already close to the normal distribution. Inference over the degrees

of freedom parameter would then also be almost uninterpretable as one has

to decide when to consider all degrees of freedom above a threshold as ap-

proximately normal. In contrast to approximating a Gaussian distribution

with student’s t components with high degree of freedom, only the neces-

sary model parameters are inferred. Jumping to the actual normal model

instead of considering a whole set of t models as approximation is a logical

alternative. Utilising student’s t components merely if required by the data

structure, inference becomes more simple compared to a mixture of only t

distributions. This also has a direct influence on the performance of the cor-

responding sampling algorithm and the required computational resources, if

implemented accordingly.

For illustration purposes, we build up the intended model for microar-

ray data gradually first defing submodels. The first such model (7.1) fits

a univariate mixture of Gaussian and t distribution where the components

can differ regarding their mean µj, precision λj and degrees of freedom νj,

if they are t-distributions. All Gaussians are considered as limiting cases of

student’s t distributions, where the degrees of freedom are infinite, νj = ∞.

In the following, we assume an i.i.d. sample (x1, . . . , xn) of size N that is

drawn from a mixture of J distributions.

xi ∼
J∑
j=1

ωjf(µj, λj, νj) (7.1)

To make the corresponding likelihood function easy to handle, we used a

commonly applied latent variable approach (see Frühwirth-Schnatter 2006

and the explanations in chapter 6). Thereby, we introduced auxiliary vari-

ables Zi that label each observation xi as being drawn from component j.

The probability for label Zi to be j is equal to ωj. Thus, the number of
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observations Nj with label Zi = j follow a multinomial distribution.

xi|Zi = j ∼ f(µj, λj, νj)

P[Zi = j] = ωj

(N1, . . . , NJ) ∼ MNN ;(ω1,...,ωJ ) N =
∑J

j=1Nj

(7.2)

The component-probabilities ω = (ω1, . . . , ωJ) follow a Dirichlet distribution.

These assumptions lead to a conjugate prior setting.

We used the relation between the student’s t distribution and the normal

and Gamma distribution to base the model on these two easier to handle

distributions, which also allow us to use conjugate priors. This relation is

for example described in (Bernardo and Smith 2000 and chapter 5). The

random variable x follows a normal distribution with mean µ and precision,

i.e. inverse of the variance, (λϕ) where the original precision is rescaled by a

parameter ϕ. The rescaling parameter originates from a Gamma distribution

with shape and rate parameter ν/2.

x ∼ N(µ, 1
λϕ

)

ϕ|ν ∼ Ga(ν
2
, ν

2
)

(7.3)

Then the marginal distribution of the random variable x is a non-central

Student’s t distribution of ν degrees of freedom.

x ∼ tν(µ, (λ)−1) (7.4)

Another way of interpreting this relation is that the student’s t distribution is

a scale mixture of normal distributions where the continuous weighting func-

tion is the Gamma distribution. Based on this relation it becomes clearer

that a finitie mixture of Gaussian distributions will approximate the t dis-

tribution with a certain error depending on the degrees of freedom and the

number of fitting components with this error becoming larger for small de-

grees of freedom, cf. Gelman et al. 2003.

Our distribution model thus contains rescaling factors ϕi,j which depend

on the component j via the degrees of freedom νj. In case of Gaussian

components all ϕi equal 1 and thus need not be inferred. This is an

advantage over estimating high degrees of freedom student’s t components.
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The model of Gauss-t-mixtures

xi ∼
J∑
j=1

ωjf(µj, λj, νj)

xi|Zi = j ∼ N(µj,
1

λjϕi,j
)

ϕi,j|νj ∼ Ga(
νj
2
,
νj
2

)

µj ∼ N(m, τ−1)

λj ∼ Ga(a, b)

b ∼ Ga(c, d)

νj ∼ U[1;νmax]

(N1, . . . , NJ) ∼ MNN ;(ω1,...,ωJ ) N =
J∑
j=1

Nj

ω = (ω1, . . . , ωJ) ∼ Dir(δ, . . . , δ)

The second model (7.5) is designed to fit a mixture of distributions as resid-

uals of a linear model, e. g. an ANOVA model. In this case, the mean is

estimated by the linear model and thus independent of the mixture compo-

nent. Therefore, the mean of all components becomes 0, µj = 0 ∀j, and the

components can only be differentiated by their precisions λj and degrees of

freedom νj.

yi = βTxi + εi εi =
J∑
j=1

ωjf(0, λj, νj) (7.5)

The residual model allows us to robustify the linear model w. r. t. inco-

herent underlying noise behaviour. Such behaviour can originate from errors

during the experiment or measurement process. Under these circumstances,

recognising the respective data points and dealing with them by mapping

them to a very noisy error component is sufficient. However, in some cases

over-dispersed data points represent samples from a sub-process of the one
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generating the data. In this case we need to reasonably include informa-

tion about this behaviour into our model. The suggested mixture model can

handle both cases. However, the weight or down-weighing of certain informa-

tion for estimation or decision making has to be introduced in a reasonable

loss function. A possible issue of the approach is identifiability of the two

noise-related parameters, describing variance and tail weight in dependence

of ony another. Without the presence of a non-noise related variable, such

as the component wise mean, introducing identifiability constraints are hard

to introduce, while overfitting looms over the data analyst as soon as more

than only 2 or 3 interpretable components are fitted. Thus, this approach

stays reasonable only for mixutres with few components. In our case, the ’tail

weight’, expressed by the degrees of freedom parameter is the parameter of

inference which we can also use as constraint for discerning the components.

In addition to the mixture model considerations above, our third model is

a special case of the residual model, which has been specifically designed

to analyse microarray data and answer the biologically relevant question of

differential gene expression.
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ANOVA model of Gauss-t-mixtures for microarrays

yn,g ∼
J∑
j=1

ωjf(Xβg, λj, νj)

yn,g|Zi = j ∼ N(µj,
1

λjϕn,g,j
)

ϕn,g,j|νj ∼ Ga(
νj
2
,
νj
2

)

βg|Ig ∼ IgNS(µ, τ−1ES) + (1− Ig)NS(µ, τ−1 · IS)

Ig|p ∼ Bin(1, p)

p ∼ Be(a, b)

τ ∼ Ga(c, d)

λj ∼ Ga(e, h)

νj ∼ U{[1,νmax],∞}

(N1, . . . , NJ) ∼ MNN ;(ω1,...,ωJ ) N =
J∑
j=1

Nj

ω = (ω1, . . . , ωJ) ∼ Dir(δ, . . . , δ)

In this model yn,g represents the preprocessed observations, Ig the indicator of

differential expression, βg the vector of mean expressions of all considered bi-

ological states. ES is the S-dimensional unit matrix and IS an S-dimensional

vector of ones, as described in chapter 5. Fig 7.1 shows the structure of

the hierarchical model represented by a directed acyclic graph. The goal

is to model the noise as simply as possible while simultaneously including

noisy observations and dealing with complicated noise behaviour typical for

this type of data. Microarrays are a typical example for a setting in which

the over-dispersed data points may contain information about underlying

measurement errors in addition to measurement errors. A one-way ANOVA

model compares the mean expressions of each gene between the S systems

considered in the experiment. Similar to Posekany et al. 2011, cf. chapter

5, we model the mean expression of a gene βg as a one-dimensional ran-

dom variable which is identical for each biological system, if the gene is not
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Figure 7.1: Directed acyclic graph representation of the normal-t mixture
model for microarray data. The parameters have the following meaning and
interpretation within the model or biological system
yn,g . . . observations for gene g and sample n
xn . . . dummy vector encoding which biological system sample n belongs to
βg . . . vector of the mean expressions of the compared biological systems
Ig . . . indicator of differential expression
τ . . . precision of the expression within the biological systems
Zg . . . factor of the mixture component j for each gene g
φn,g,j . . . rescaling factor for the observation yn,g given mixture component j
νj . . . degrees of freedom of the noise distribution of mixture component j
λj . . . precision of the distribution of mixture component j
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differentially expressed. This is the null hypothesis of our ANOVA model.

In case of differential expression the mean expression follows a multivariate

normal distribution where the biological states are considered to be uncor-

related. The mixture of normal and student’s distribution is used for the

residuals of the linear ANOVA model. Thus, each gene can show a different

type of scattering around its mean expression, depending on its weights of

the mixture components. As the mean expression is typically dependent on

the experiment, the mean vector and scalar µ is estimated from the data as

the overall mean expression of all arrays of a given biological state and the

whole experiment respectively. Considering the typically small sample sizes

in microarray experiments, pooling the information over thousands of genes

for estimating the noise components is advantageous.

In addition, we have extended the above models by allowing the number

of mixture components to vary for trial pruposes and performed model se-

lection by inferring each model’s posterior distribution. Recently, Frühwirth-

Schnatter and Pyne 2011 have discussed several reasonable approaches for se-

lecting the number of components in finite mixture models. A valid approach

is performing model selection with respect to the number of components.

Thus, before inferring the above model with fixed number of components,

we extended our models by varying the number of mixture components to

perform ”a priori” model selection. To this respect, we employed Stephens’

(Stephens 2000a) method of variable components estimation. As we use his

algorithm to infer the number of components, we applied the same prior set-

ting that he has chosen in his thesis (Stephens 1997) and paper (Stephens

2000a). The number of components are a priori assumed to follow a truncated

Poisson distribution.

J ∼ PγI({1, . . . , 100}) (7.6)

The choice of parameter γ is very influential, but interpretable. Selecting a

small value of about 2 or 3 will favour mixtures with few components, whereas

a large γ will lead to complex mixture with many components. Depending on

the setting and aim of an analysis, both choices might be reasonable. When

fitting models for high-dimensional problems with thousands of regressors,

as in the case of microarrays, a mixture with more than 10 components
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can be considered. However, fitting smaller and simpler models is generally

preferable.

7.2 Markov Chain Monte Carlo Algorithm

for the mixture model

The above models are too complex to analytically gain a tractable solu-

tion of the parameters’ joint posterior. Thus, for inferring our models, we

implemented hybrid Markov Chain Monte Carlo (MCMC) samplers, which

contain Gibbs, Metropolis-Hastings and Reversible Jump steps and in ad-

dition birth and death steps for adding and removing components for the

variable number of components algorithm. Robert and Casella (Robert and

Casella 1999) among others give a detailed description of the MCMC meth-

ods, applied in our sampler. In case of a variable number of components, we

applied Stephens’ algorithm (Stephens 2000a, Stephens 1997) for getting an

indication of the optimal number of components. Furthermore, we showed

that convergence concerning the variable number of components algorithm

is a complex matter. Even for a converging algorithm, it is hard to perform

inference based on the results, as only for the same number of model pa-

rameters calculation of posterior is possible. Thus, the number of samples is

usually too small or sampling takes too long. Therefore, we estimated the

number of components from this algorithm, but inferred the parameters for

fixed number of components, based on the a posteriori most likely number

of components.

Following Frühwirth-Schnatter (Frühwirth-Schnatter 2006), we used

Gibbs updates for all mixture related steps of the algorithm. However, all

parameters of interest in the microarray model require non-Gibbs updates.

For changing between the different dimensional spaces in the ANOVA model

which represent the two hypotheses of interest, we require a reversible jump

move. Green (Green 1995) and Richardson and Green (Richardson and Green

1997) have described and applied this type of update in detail. The normal

distribution can be considered a special case of the student’s t one, which is

reached by collapsing the model to estimation of only the mean and preci-

sion λj with νj = ∞ and ϕn,g = 1. Thus, for jumping between the higher
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dimensional student’s t model and the normal model we apply a reversible

jump update as well, as described before in Posekany et al. (Posekany et al.

2011).

We use a Metropolis-Hastings step to update the degrees of freedom pa-

rameters νj, as no conjugate prior is available for these parameters of stu-

dent’s t distributions. Unlike our previous work (Posekany et al. 2011), we

have chosen a continuous prior distribution for the νj. Thus, we do not ap-

proximate, but can directly estimate a continuous posterior distribution. The

jump to the truly Gaussian model however does not occur at the maximum

value, but in an interval of length 0.5 with limit νmax, [νmax− 0.5; νmax]. We

require an interval to actually perform a jump to the normal distribution with

positive probability. The width of 0.5 is chosen dua to the implementation of

the uniform prior updates, recommended e. g. by Frühwirth-Schnatter 2006.

Instead of sampling uniformly from the whole considered interval [1, νmax],

we draw from a uniform prior on a symmetric interval of length 1 around

the current value. This way, the mixing of the sampler is improved, as the

proposed value is more likely to be accepted, if it is not too far away form

the current one. This implementation bears some similarity to the discrete

updata of the degreees of freedom, described in chapter 5 and Posekany 2009.

Additionally, we employ the methodology of partially collapsed Gibbs

sampling (cf. Dyk and Park 2008, Park and Dyk 2009) for improving the

efficiency of our updates.

In the case of variable numbers of components, we employ Stephens’ al-

gorithm (cf. Stephens 2000a), based on random birth and death of compo-

nents. Compared to reversible jump, the algorithm has the advantage that it

is not necessary to construct a bijection between higher dimensional spaces,

in which the original ones are embedded, and calculate its inverse. Thus, it

can be applied in much more general cases than the reversible jump algo-

rithm. It has been specifically designed for mixtures of t distributions with

fixed degrees of freedom but variable number of components where no feasible

reversible jump update has been constructed yet.

In the following sections we will describe the updates for the different pa-

rameters in details. Based on the theory derived by Besag (Besag et al. 1995)

who described the generalisation of MCMC updates of Metropolis-Hastings or

Reversible jump type based on full conditionals, we use the notation ”θ|Θ−θ”
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for conditioning θ under all other parameters in the model. Due to the condi-

tional independence property of the DAG representation, this includes only

the ’parents’ and ’children’ in the graph, the parameters directly above and

below the given parameter in the hierarchical model which confer to the like-

lihood and the prior respectively, see Section 2.1.1 on DAGs and hierarchical

models.

7.2.1 The noise model parameters

Update ν and ϕn,g,j

Following Frühwirth-Schnatter Frühwirth-Schnatter 2006, we chose a uniform

prior on the interval [1, νmax = 45]. For switching between the student’s t

models, we take a simple Metropolis-Hastings step. To increase the rate of

accptance and mixing of the chains, we have limited the proposal of ν to

an interval of length 2 around the current degrees of freedom value. At the

limits, this probability is capped, resulting in the proposal function

ν(new) =


ν(old) − u ν(old) = νmax

ν(old) + u ν(old) = 1

max (1,min (45, ν(old) + (2 ∗ u− 1))) else

(7.7)

for a uniform random number u.

In addition to student’s t distributions, the commonly used Gaussian

model was taken into account. To switch between the two types of likelihood

a reversible jump step was introduced jumping between the t-model equal to

a normal-gamma-model with the auxiliary variables ϕn,g, and the Gaussian

model, the limiting case of student’s t model, when the auxiliary variables all

equal one and the degrees of freedom becomes infinite. In our case, a jump

to normal distribution model is proposed when landing at the maximum

value νmax in the above model.



7.2. MARKOV CHAINMONTE CARLOALGORITHM FOR THEMIXTUREMODEL121

Acceptance probability

The acceptance probability for the Metropolis-Hastings move between

two different student’s t models is

A =

∏
n,g;Zg=j

Γ
(

(ν
(n)
j +1)/2

)
Γ
(
ν
(n)
j /2

) ν
1/2
j

(
1 +

(yn,g−xTnβg)2λj

ν
(n)
j

)− ν(n)j
+1

2

∏
n,g;Zg=j

Γ
(

(ν
(o)
j +1)/2

)
Γ
(
ν
(o)
j /2

) ν
1/2
j

(
1 +

(yn,g−xTnβg)2λj

ν
(o)
j

)− ν(o)j
+1

2

·p(ν
(n))

p(ν(o))
· p(ν

(o)|ν(n))

p(ν(n)|ν(o))

As we have a uniform prior, p(ν(o)) = p(ν(n)). Our proposal setting

for p(ν(o)|ν(n)) is given in equation (7.7) and equals the probability of

proposing a given ν(n), when you currently have value ν(o). For easier

reading we denote the logarithmised acceptance probability.

logA = Nj

[
log

(
Γ

(
ν
(n)
j +1

2

))
− log

(
Γ

(
ν
(n)
j

2

))
+ log

(
Γ

(
ν
(o)
j

2

))
− log

(
Γ

(
ν
(o)
j +1

2

))
+ 1

2

(
log (ν(o))− log (ν(n))

)]
−ν

(n)
j +1

2

∑
n,g;Zg=j log

(
1 +

(yn,g−xTnβg)2λj

ν
(n)
j

)
+
ν
(o)
j +1

2

∑
n,g;Zg=j log

(
1 +

(yn,g−xTnβg)2λj

ν
(o)
j

)
+ log p(ν(o)|ν(n))− log p(ν(n)|ν(o))

Nj = |{g : Zg = j}|
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In the special case of the reversible jump step from t distribution to

normal distribution similar formulae apply, where the asymmetry of

the two different dimensional spaces has to be taken into account.

� Moving from t to Gauss:

logA = −1

2
λj

∑
n,g;Zn,g=j

(yn,g − xTnβg)2 + g∗(o)
∑

n,g;Zg=j

log h∗n,g
(o)

+Nj

(
Γ

(
ν

(o)
j

2

)
− log Γ(g∗(o))−

ν
(o)
j

2
log

ν
(o)
j

2

)
+ log p(→ normal model(ν = 45))− log p(→ t

ν
(o)
j

)

� Moving from Gauss to t:

logA =
1

2
λj

∑
n,g;Zn,g=j

(yn,g − xTnβg)2 − g∗(n)
∑

n,g;Zg=j

log h∗n,g
(n)

−Nj

(
Γ

(
ν

(n)
j

2

)
− log Γ(g∗(n))−

ν
(n)
j

2
log

ν
(n)
j

2

)
+ log p(→ t

ν
(n)
j

)− log p(→ normal model(ν = 45))

Here, the parameters g∗ and h∗n,g come from the update of ϕn,g,j. The

auxiliary variables ϕn,g,j follow the following Gamma distribution

which determines the shape and scale parameters used in the acep-

tance rate:

ϕn,g,j|Θ−ϕn,g,j ∼ Ga(g∗j , h
∗
n,g,j)

g∗ =
νj + 1

2

h∗n,g =
1

2
(νj + λj(yn,g − xTnβg)2)
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7.2.2 Update λj

The error model’s precision lambda is updated by a Gamma distribution in

the following way:

λj|Θ−λj ∼ Ga(c+
N ·Nj

2
, d+

1

2

∑
n,g;Zg=j

ϕn,g(yn,g − xTnβg)2)

Nj = |{g : Zg = j}|

7.2.3 Update allocations Z

Auxiliary allocation variables have been introduced to infer the mixture

model in a straightforward way. As each gene is supposed to follow a differ-

ent underlying noise structure, the allocation is gene dependant, remaining

identical over the samples. This update is partially collapsed and uses the

student’s t likelihood functions instead of the normal appraoximation with

rescaling factor phi.

P[Z|Θ−Z ] =

 ωjλ
N
2
j ν
−N

2 (
Γ( ν+1

2
)

Γ( ν
2

)
)N
∏

n (1 +
λj(yn,g−xTnβg)2

νj
)−

ν+1
2 tνj

ωj
λj
2

N
2
∏

n e
− 1

2
λj(yn,g−xTnβg)2 normal

7.2.4 Update ω

The weights of the components foloow are Dirichlet distribution:

ω|Θ−ω ∼ Dir(δ +N1, . . . , δ +NJ)

Nj = |{g : Zg = j}|
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7.2.5 Updating the ANOVA model parameters

An updating move for the parameter p is made by drawing p from the updated

Beta distribution

p|Θ−p ∼ Be(a+ i1, b+ (G− i1))

where I is the vector of all Ig and i1 = |{g : Ig = 1}|, i.e. the number of

genes, which are differentially expressed.

The hyperparameter τ will be updated in the following way:

τ ∼ Ga(f ∗, h∗)

f ∗ = f +
G− i1 + i1 ∗ S

2

h∗ = h+
1

2
[
∑
g;Ig=0

(βg,0 − µ)2 +
∑
g;Ig=1

(βg − µ)T (βg − µ)]
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Updating βg and Ig

(WD) update βg conditional on all other variables

case Ig = 0

βg,0|Ig = 0, Zg = j,Θ−(βg ,Ig ,Zg) ∼ N1(µ∗0, (τ
∗
0 )−1)

µ∗0 =
λj
∑N

n=1 ϕn,gyn,g + τµ

τ ∗0

τ ∗0 = (λj

N∑
n=1

ϕn,g + τ)

case Ig = 1

βg|Ig = 1, Zg = j,Θ−(βg ,Ig ,Zg) ∼ NS(µ∗, (τ ∗)−1)

µ∗ = (τ ∗)−1(τµ+ λjXDϕ,gY
T
g )

τ ∗ = τIS + λjXDϕ,gX
T = diag(τ ∗1 , . . . , τ

∗
S)

with τ ∗s = (λj

N∑
i=1

ϕ(s)
n,g + τ)

The covariance matrix τ is always diagonal, because the ma-

trix X is the design matrix of the ANOVA model, indicating

the group s a sample n belongs to, as only in the diagonal

two non-zero entries are multiplied with one another.
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(RJ) case Ig = 1→ Ig = 0: the proposal for βg,0 is as above

βg,0|Ig = 0, Zg = j,Θ−(βg ,Ig ,Zg) ∼ N1(µ∗, (ϕτ ∗)−1)

µ∗ =
λj
∑N

n=1 ϕn,gyn,g + τµ

τ ∗

τ ∗ = (λj

N∑
n=1

ϕn,g + τ)

The auxiliary variable A denotes the acceptance probabil-

ity and uses µ∗0, τ
∗
0 , µ

∗, τ ∗ as defined above for the within-

dimension update

A =

∏
n p(yn,g − βg,0|Ig = 0, . . .)∏

n p(yn,g − xTn,gβg|Ig = 1, . . .)

p(βg,0|µg,0, τg,0, Ig = 0)p(Ig = 0)

p(βg|µg, Tg, Ig = 1)p(Ig = 1)

p(βg|Ig = 1, . . .)p(Ig = 1)

p(βg,0|Ig = 0, . . .)p(Ig = 0)

= τ−
S−1
2

1− p
p

√
|τ ∗|√
τ
e−

1
2

(τµ2+µ∗T τ∗µ∗−Sτµ2−τ∗0 µ∗0)

This results in an acceptance probability of α=min{1,A}.

case Ig = 0→ Ig = 1: the proposal for βg

βg|Ig = 1, Zg = j,Θ−(βg ,Ig ,Zg) ∼ NS(µ∗, (τ ∗)−1)

µ∗ = (τ ∗)−1(τµ+ λjXDϕ,gY
T
g )

τ ∗ = diag(τ ∗1 , . . . , τ
∗
S); τ ∗s = (λj

N∑
i=1

ϕ(s)
n,g + τ)

leads to an acceptance probability of α=min{1,A−1}
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7.2.6 Theoretical consideration of Convergence

The samplers based on the models presented in this thesis are hybrid sam-

plers, containing some Gibbs-steps, Metropolis-Hastings updates and mixture

kernels of Gibbs and reversible jump updates. Partially collapsed sampling

is employed in addition, resulting in more efficient MH steps, when Gibbs

updates would have been a straightforward to implement alternative. The

composed transition kernel for the model presented in chapter 5 would look

like this:

Khybrid = ( 1
KK

(ν),(φn,g)
RJ + K−1

K K
(ν),(φn,g)
MH ) ◦ K(τ)

G ◦ K
(p)
G

◦(K(λ)
G ◦ (0.5 · K(Ig),(βg)

G + 0.5 · K(Ig),(βg)
RJ ))

The kernel for the current sampler is extended by the mixture model resulting

in

Khybrid;mixture = (K(νj),(φn,g,j)
RJ ) ◦ K(λj)

G ◦ K(Zg)
G ◦ K(p)

G

◦(K(τ)
G ◦ (0.5 · K(Ig),(βg)

G + 0.5 · K(Ig),(βg)
RJ ))

Briefly, we discuss the individual kernels of the algorithm to discern the prop-

erties of such a sampler, using this particular one as a practical example.

Here, we describe and argue the properties, which we theoretically deduced

according to the theory of section (4.1), for each kernel and their compo-

sitions, based on works by Roberts and Sahu 2001, Roberts and Rosenthal

2006, Roberts and Rosenthal 1998a and Roberts and Rosenthal 1998b. How-

ever, one has to keep in mind that due to the complexity of the MCMC

sampler theoretical results are only partially feasible and some mean of “ex-

trapolation from what is rigorously proven”, as Roberts and Rosenthal put

it, is required.

As Besag et al. 1995 argued, we can view these kernels as full conditional

kernels, thus, defining a proper sampler. The reversible jump steps form spe-

cial extensions of Metropolis-Hastings steps in such a way that their line of

argumentation includes them into the full conditional scheme.
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Firstly, we take a closer look at the Metropolis-Hastings type kernels, in-

cluding the Gibbs steps, since each of them can be viewed as special type

Metropolis-Hastings step. The first property to consider is the support of

the proposal and target / posterior distribution. An important condition

is that the support of the proposal distribution contains the support of the

posterior. According to Theorem 12, this is sufficient for the sampler to ful-

fil the detailed balance condition and for the posterior to be the stationary

distribution of the chain. Naturally, all Gibbs steps fulfil this property, since

distributions of the same family and structure with identical support are in-

volved. In case of the Metropolis-Hastings step, which in this sampler update

the degrees of freedom ν and the rescaling factors ϕn,g, we define the support

of the proposal distribution as the set R+×N, the same as the support of the

desired posterior, cf. Posekany 2009 and Section 5. All reversible jump steps

fulfil the detailed balance condition by construction. Since each kernel fulfils

the detailed balance condition, we can deduce the existence of an invariant

density, as both properties are equivalent.

Secondly, we want to assure that we do not only have the chance to ex-

plore the whole support, but will also do so ’often enough’ in all places to

properly simulate the posterior distribution. One such required property is

irreducibility. According to MCMC theory, presented above, this is fulfiled

for every kernel, if the proposal distributions are positive on the support of ξ.

Again, this is naturally the case for all considered distribution, since all pro-

posal distributions are either continuous probability distributions with the

same support as the posterior or positive by construction, as in case of ν.

However, Roberts and Rosenthal 1998a argue that the irreducibility of the

hybrid sampler cannot simply be deduced from irreducibility of each com-

ponent. Due to the complexity which makes an analytical treatment of this

question impossible, only detailed simulation studies allow us to answer this

question approximately. Irreducibility combined with the existence of invari-

ant density implies positivity of the chain per definitionem. Theorem 6 states

that positivity implies recurrence. Moreover, it implies Harris recurrence for

all Metropolis-Hastings type kernels, and additionally provides the condition

required for the Convergence theorem (13). Regarding the cycle of kernels,

irreducibility and aperiodicity are inherited from a single component with

this property. Recurrence follows from recurrence of each of the components,
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as the term is defined by reaching a set infinitely often, which is composed of

subsets with only this property. The existence of a dominating measure for

all of the invariant densities is a requirement for the existence of an invariant

density of the hybrid kernel. But as the kernels do not have a common invari-

ant distribution little can be stated in general about this invariant density

of the hybrid kernel. A generic prove for the existence of such an invariant

measure and convergence is however beyond the scope of this thesis. Given

the complexity of the sampler at hand, proving the conditions for theorem

14 analytically is virtually impossible. Approximate results can again only

be obtained based on the samples and corresponding convergence diagnostic

tools, cf. 4.3 and 5.2.4.

7.2.7 . . . and what we can do in practice

After having discussed some theoretical aspects of convergence for this hybrid

sampler in the spirit of chapter 4, we focus now on practical aspects of con-

vergence and applications for determining convergence of MCMC samplers,

which are in the focus of Cowles and Carlin (Cowles and Carlin 1996) and

Robert (Robert and Casella 2009) and have been summarised in 4.3. In his

thesis (Stephens 1997) and paper (Stephens 2000a), Stephens deals with the-

oretical and practical convergence aspects of his algorithm, as do Cappe et al.

(Cappe et al. 2003). Both find that convergence is tricky to show and cannot

be proven in general. Matching this, we observe only weak convergence of the

inference results for the variable component mixture after 15000 samples per

chain in 5 parallel chains. Longer chains are not feasible for microarray data,

but for smaller amounts of data it is an option to collect enough samples for

performing inference directly with this algorithm. Therefore, we consider the

found posterior of the number of mixture components only as an indication

for which fixed numbers of components to take into account. Our inference

of the noise and differential expression is always based on models with a fixed

number of components.

Following advice by Robert Robert and Casella 2009, we have assessed

convergence of the algorithm with a fixed number of components using the

CODA package (Plummer et al. 2006a) in R (R Development Core Team

2011). Thus, we could determine that a burn-in length of 2500 draws and
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10000 samples from each of 5 parallel chains, resulting in 50000 draws, are

sufficient for posterior inference of the considered parameters.

7.2.8 Simulated data

In order to test the performance, convergence and properties of the algorithm

we generated test data sets. For the ANOVA scenario we created two groups

of samples, cf. 7.1.

Table 7.1: Structure of the test data sets; In all cases we have 2 groups of
ANOVA results: one with means µ1 = µ2 = 0 the other with µ1 = −5, µ2 = 5.
The variance lies between 1 and 25 and overall we simulated 500 artificial
”genes”, 20% of which are differentially expressed.

J ν1 % ν2 %

2 ∞ 80 | 50 1 20 | 50
2 ∞ 80 | 50 4 20 | 50
2 ∞ 80 | 50 10 20 | 50

J ν1 % ν2 % ν3 %

3 ∞ 80 | 60 | 10 7 10 | 20 | 40 ∞ 10 | 20 | 50
3 ∞ 80 | 60 | 10 10 10 | 20 | 40 4 10 | 20 | 50
3 ∞ 80 | 60 | 10 4 10 | 20 | 40 1 10 | 20 | 50
3 ∞ 80 | 60 | 10 7 10 | 20 | 40 1 10 | 20 | 50
3 ∞ 80 | 60 | 10 10 10 | 20 | 40 1 10 | 20 | 50

One group has the two means µ1 = µ2 = 0 and the other µ1 = −5, µ2 = 5.

The residuals are simulated as mixtures of 2 or 3 different distributions (t1,

t4, t7, t10 and normal distribution) with different weights. The settings with

high weights on the normal component (0.8 and 0.6) represent our originally

intended setting, while the setting with only 10% of normally distributed

data corresponds to the scenario observed for microarray data.

7.2.9 Sensitivity analysis and robustness

With our approach we aim for robustness in several ways. On the one hand,

we want to perform robust modelling of noisy and over-dispersed data with

appropriate noise models. On the other hand, we formulate our model to
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be robust regarding our choice of priors by creating a hierarchical model

with hyper-priors on the model parameters which is a foremost goal for any

computational Bayesian inference. Although the respective hyper-parameters

have only little information, they still draw the whole posterior analysis, if

not chosen well. By performing a sensitivity analysis we wish to estimate the

influence of this choice on our inference results. Here, we discuss this check

for the the precision or scaling parameters which are most crucial parameters

influencing our analysis.

For the sensitivity analysis we specifically focused on two sets of influ-

ential hyper-parameters, the gamma hyper-parameters (c,d) and (e,h). The

parameters c and d determine the prior of the rate parameter in the gamma

distribution which models the precision of the mixture components. Varying

these parameters will influence the recognition of the proper noise model in

the components and can lead as far as favouring Gaussian models only or

just very extreme models, i. e. the Gaussian and t1 model. Our tests have

shown that such a trend exists. Here, we observed local robustness of our

weakly informative choice of parameters around c = 0.1, d = 0.1. Figure 7.2

visualises this behaviour for two of the test data sets.

Increasing these parameters to c = d = 10, c = d = 100 and c = d = 1000

shows a constant trend where only the two extreme models, Gauss and t1,

are favoured. The noise component estimation results in a Gaussian and a

t1 component and additionally up to one or more other components, which

vary a lot, but have a weight close to 0 and are thus results of over-fitting.

The larger the influence of these prior parameters becomes, the more the

differential expression analysis of the microarray model is affected. For c =

d = 1000 the posterior estimator of differential expression is almost unable

to discern between differential expression and non-differential expression, i.

e. between the 2 ANOVA hypotheses.

The second influential set of parameters contains the prior parameters for

the rate of the underlying precision of the differential expression, i. e. the

group mean of the ANOVA. A wrong choice of these parameters will have

a more direct effect on the test for differential expression. Again we show

that our prior choice of e = h = 0.1 is locally robust. As described above,

we observe that the posterior distribution of the indicator of the ANOVA

hypothesis, i. e. differential expression, collapses starting from c = d = 100.
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Figure 7.2: Plots of the sensitivity analysis for changing the parameter set
(c,d). For the test data set with 10% Gaussian, 40% t4 and 50% t10 data (to
the left) and 10% Gaussian, 40% t10 and 50% t1 data (to the right) the plot
visualises how the differential expression assessment is affected by changing
the prior towards a more informative setting. We can see that our choice
c = d = 0.1 is locally robust.

Modelling the residuals, equal to the difference of the observations and

the respective group means, with student’s t distributions we gain robustness

against outlying values.

7.2.10 Measuring Non-Gaussianity

We introduce a measure for non-Gaussianity in our analysis for two reasons.

First, we want to deal with the label-switching problem in an efficient and

straightforward way. This problem is introduced, because the Bayesian mix-

ture model is a priori not identified and we did not force any identifiability

constraints on our model, cf. chapter 6. Second, we aim for measuring the

”non-Gaussianity” of each gene to sum up its noise behaviour in a reasonable

way.

Yau and Holmes 2011 recently published a loss scheme for hierarchical

Bayesian nonparametric mixture models in order to determine the relevance

of variables. Contrary to their scheme, we wish to remain with the parametric

setting, but penalise straying from normality. Thus, we base our measure of

non-Gaussianity on the concept of peakedness, which discerns the heavy-

tailed student’s t distribution from the Gaussians.
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As the 4th moment does not exist for the most interesting and ”non-

Gaussian” distributions with degrees of freedom ν ≤ 4, we cannot use kur-

tosis as a common estimator for non-Gaussianity. Alternatively, we estimate

the not uniquely defined peakedness for evaluating the ”difference” from the

Gaussian distribution. According to the literature, several such measures

have been defined based on different definitions or interpretations of the term

”peakedness” (see Brys et al. 2006; Schmid and Trede 2003). Among them

we have selected 3 possible robust estimates for peakedness which are all

based on quantiles described by Schmid and Trede 2003. Thus, they cannot

only be used for samples but also for symmetric distributions with known

parameters. These contain the T measure,

T =
quant(0.875)− quant(0.125)

quant(0.75)− quant(0.25)
(7.8)

the P measure

P =
quant(0.975)− quant(0.025)

quant(0.875)− quant(0.125)
(7.9)

and the L measure which is the ratio of the previous two measures

L = P · T =
quant(0.975)− quant(0.025)

quant(0.75)− quant(0.25)
. (7.10)

Figure 7.3 plots the P and T measure within the relevant interval for the

degrees of freedom ν. Both functions show a similar behaviour and a larger

slope for smaller values of ν, as can be expected. For small degrees of freedom

the student’s t distribution becomes very heavy-tailed and the distance of

the quantiles from the Gaussian quantiles grows exponentially. Thus, these

measures allow us to discern very well between the ”interesting” distributions

with degrees of freedom less or equal to 4 and t distributions with larger

degrees of freedom and the Gaussian distribution. The additional advantage

of the T measure would be its higher breaking point in the view of classical

robustness which however is only relevant for sampe based estimation of

’peakedness’. The P and L measure on the contrary are particularly useful

for our estimation based on the known distributions’ exact quantiles. For

discerning between heavy-tailed distributions it is important to consider the
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difference between more ’extreme’ persentiles, such as 0.975 and 0.025 as

opposed to 0.875 and 0.125. As we calculate our measure based on the

estimated degrees of freedom and the exact quantiles of the distributions,

this is of no effect for us.
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Figure 7.3: The ”peakedness” estimator dependent on the degrees of freedom.
The red line marks the values for the Gaussian. To the left is the P measure,
to the right the T measure.

Applying loss functions for dealing with the label switching problem

has first been suggested by Celeux et al. 2000, while Frühwirth-Schnatter

2001 has suggested to introduce identifiability constraints. We have adapted

the ideas and not introduced a loss for formal Bayesian posterior inference,

but rather a transformation of the variables νj. This approach goes along

the line of the approach which Frühwirth-Schnatter 2011 suggested in their

more recent work. Without the introduction of the ”peakedness” measure

for non-Gaussianity we could not perform posterior inference of the de-

grees of freedom parameters νj. As we have chosen to include the Gaus-

sian model (ν = ∞) into our model instead of a student’s t approximation

(ν = νmax <∞), averaging over the νjs is impossible. As soon as a chain has

jumped to the Gaussian model once, the result would be infinite. Untangling

the chains intermixed by label switching would pose an additional challenge.

This we would need to tackle applying established algorithms which however

would introduce additional errors.

As our goal is to identify the differential expression behaviour in the

current data set, not to perform predictions based on it, we need not identify
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the mixture components and their respective weights. Instead, we only have

to deal with identifying the ”components” or groups of genes with similar

peakedness behaviour, which is a much simpler one-dimensional problem. By

calculating the gene-wise average peakedness, we gain a reasonable measure

for non-Gaussianity based on the P measure

P − peakedness(g) =
N∑
i=1

quant(0.975; ν
(g)
i )− quant(0.025; ν

(g)
i )

quant(0.875; ν
(g)
i )− quant(0.125; ν

(g)
i )

(7.11)

for g = 1, . . . , G where ν
(g)
i is the degrees of freedom parameter assigned to

gene g in the ith sample run. For this measure we can for example adopt the

approach of defining identifiability constraints a posteriori to separate the

noise groups. Our measure is also consistent with Monte Carlo theory and

thus provides an asymptotically unbiased estimator.

Our peakedness-based measure also allows us to represent our trust or

lack thereof in hypothesis testing results for very heavy-tailed components,

which can contain many outliers. Using a properly chosen non-Gaussianity

measure, we are able to deal with cases where the over-dispersion most likely

originates from errors during the measurement process. Especially for exper-

iments with very few arrays available, this might be a reasonable approach

for selecting genes among the top-ranked results. Based on this scheme it

is possible to down-weight the respective observations and thereby express

lack of trust. For experiments with large sample sizes the genes following t

distributions however do not result from single erroneous arrays, but might

rather indicate systematic over-dispersed behaviour which can originate from

biological processes or seriously error-prone laboratory work. Both scenarios

are of interest for the data analyst.

7.2.11 A new approach to microarray quality control

For the purpose of microarray quality control, we propose a novel empirical

Bayes ansatz to test the influence of single arrays on noise behaviour. One

reason for outliers in microarray analysis is that several genes on a single

array are affected by an array-specific problem during conducting laboratory

work. Examples would be blotches of dye or scratches on the glass. Com-



136 CHAPTER 7. EXTENDING BAYESIAN MIXTURE MODELS

monly, these problems are only found when performing several tedious steps

of quality control and bioinformatic preprocessing, as they will not be de-

tected during the analysis, if overlooked in the preprocessing. Our intention

is to find the array(s) most likely responsible for extreme noise behaviour, if

such arrays occur in the experiment. The noise structure allows us to isolate

the most affected genes, tracing them back to the responsible array(s).

In order to compare the most probable posterior degrees of freedom

against the Gaussian for each array and gene, we suggest the Bayes Fac-

tor

BFn,g =
P[yn,g|ν = ν̂g, βg = β̂g, λ = λ̂g]P[ν = ν̂g]

P[yn,g|ν =∞, βg = β̂g, λ = λ̂g]P[ν =∞]
. (7.12)

This ratio can be interpreted in the following way: A Bayes Factor BFn,g close

to one implies an equal probability of Gaussian and t noise for this array’s

measurement. Values close to 1 favour the Gaussian, values far greater than

1 the t alternative.

Our aim is to find a value δ, to the effect that all (n, g) with BFn,g > 1+δ

drive the noise towards t. As this will be the case for the majority of observa-

tions on microarrays, we intend to look only at the most extreme cases. For

reasons of practicality, we choose the most extreme 5 to 10%, or a percentage

depending on the weight of the most extreme component (cf. Section 7.4.1).

Afterwards, we count how many of these observations correspond to which

array. For a properly conducted experiment it is expected that these counts

are approximately uniformly distributed among the arrays.

As the distribution of Bayes Factors is extremely data dependent, this ap-

proach requires empirical Bayes methods rather than a fully Bayesian model,

in which the prior is completely independent of the data. In correspon-

dence to Pearson’s χ2 statistics, we have constructed the following test: Our

basic assumption is that the observed counts of extreme values of the N

arrays are multinomially distributed with identical probability 1/N under

the null hypothesis, (N1, . . . , NN) ∼ MNsel,π. In a conjugate distribution

scenario we assume that the probability π follows a Dirichlet distribution,

π ∼ Dir(α0, . . . , α0). The choice of the prior parameter α0 of this Dirichlet

distribution is highly influential. Thus, we employ the outcomes of a corre-

sponding χ2 test as an orientation for this value, which has to depend on the
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number of arrays N . We decide for a value of α = 2.5 · N , as it has shown

the best behaviour in a series of tests. In order to test the hypothesis of

uniformly distributed extreme values among the arrays, we apply the Savage

Dickey Density Ratio (Dickey and Lientz 1970). The Savage-Dickey density

ratio is a special type of Bayes factor required if one of the considered hy-

pothesis in he Bayesian testing scheme is a point hypothesis of a continuous

distribution.

H0 : π = (1/N, . . . , 1/N)

HA : π 6= (1/N, . . . , 1/N)
(7.13)

SDR =
p(π = (1/N, . . . , 1/N)|(α∗1, . . . , α∗N))

p(π = (1/N, . . . , 1/N)|(α0, . . . , α0))
(7.14)

A Savage density ratio above 1 represents evidence in favour of the null

hypothesis, whereas values less then 1 show evidence against H0. Our first

hypothesis, termed H0 in analogy to the χ2 test which we compare it to,

represents equal amounts of extreme genes on all arrays. This is the optimal

case of no array drawing the analysis. The alternative hypothesis we are

interested in is the case when at least one array shows a different relative

amount of extreme genes compared to the others, thus influencing the anal-

ysis and not fulfilling the minmum quality. Detecting such arrays allows to

reconsider ones results obtained with the model in which they are included

to approaches where observations of this particular array are downweighted

or removed completely from the analysis which often is not possible or rea-

sonable due to the small sample sizes, compare for example 6 arrays in total

for the spike-in data. This way, our approach for quality control allows for

an improved analysis of the most extreme microarray data.

7.3 Results for artificial data

Applying our method to artificial data, we find that our algorithm is specif-

ically able to identify extreme noise situations, i.e. Gauss mixed with very

heavy-tailed student’s t components. In case of high degrees of freedom t dis-

tributions our method tends towards favouring the simpler Gaussian model,

penalising the computationally and memory-intense estimation of the unnec-
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Figure 7.4: The projection of the posterior distribution on the ν-λ plain (left)
and the P measure plotted against the posterior probability of differential
expression (right) for 10% Gaussian data, 50% t10 data and 40% t1 data.
Although no obvious intermediate t10 component forms in the ν-λ space, the
”p loss” measure captures the known noise behaviour of the 3 components,
visualised by the different plotting symbols and colours in the right graph.
Appendix A of the supplement includes further scenarios.

essary rescaling parameters. This property makes it favourable to use for

memory-intense purposes, e.g. in bioinformatics, compared to mixture mod-

els which contain only student’s t distributions, such as Stephens’ method

(cf. 6). For the test data sets described above, we observe that the algo-

rithm is always able to discern between clearly distinct noise components,

such as the Gaussian from t4 and t1 or t1 from t4, t7 and t10. These results

are summarised in Table 7.1.

Separating the t10 from the t4 distribution or the Gaussian depends on the

setting of the data and the mixture weights, as the algorithm favours smaller

and simpler models. For high degrees of freedom t distributions our method

favours the simpler Gaussian distribution, thus, splitting t10 observations be-

tween the heavy-tailed t4 or t1 and the normal component. When mixing

t1 and t10 data with Gaussian data, a simpler model with 2 components

would apparently suffice, when looking at the (ν-λ) graph. In such cases, the

method splits the t10 observations between the heavy-tailed and the normal

component in such a way that the last component is only fluctuating regard-

ing its weight and degrees of freedom. This behaviour is reassuring, as we

learn that unnecessary complexity in form of the memory- and computation-
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ally intense estimation of unnecessary rescaling parameters is automatically

penalised by the model. This property is valuable for analysing large amounts

of data, such as microarray experiments for which the method is ultimately

intended.
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Figure 7.5: Two three-dimensional visualistions of the artificial data set with
10% Gaussian data, 50% t10 data and 40% t1 data which include the genes,
the posterior P loss function and the posterior probability of differential ex-
pression.

Figure 7.4 visualises our defined peakedness measure applied to the ar-

tificial gene data sets. We show how the noise components drawn with the

two noise coordinates (ν, λ) split up in the plain of noise coordinates (ν,

λ). Clearly at least one heavy-tailed student’s t component forms. In the

setting of two heavy-tailed student’s t components, t4 and t1, both com-

ponents can be seen clearly in the two-dimensional projection of the noise
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space. The visualisation of the non-Gaussianity measure also identifies these

components as can be seen in the right graphic of figure 7.4. When we mix

t4 and t10 data with Gaussian data, the t10 data are split up between the t4

and Gauss components, which explain the majority of the data, while the 3rd

component only induces label switching, but has hardly any weight. Here,

the simpler model with 2 components would apparently suffice. However, the

non-Gaussianity measure discriminates 3 components, corresponding to our

original setting of Gauss, t1 and t10 data. This demonstrates the advantage

of our peakedness measure for the identification of noise model components.

Thus, the advantage of our peakedness measure becomes clear for the identi-

fication of noise model components, as it also considers the individual weights

of the components for each ’virtual’ gene.

We have also used the test data sets with 5 different noise settings, cf.

table 7.1, for estimating the general sensitivity and specificity of the algo-
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rithm. Both are measures of performance of the algorithm, which are based

on the number of true and false positives and negatives, respectively. Given

the performance of the MCMC runs, we can conclude that for the identifi-

cation of differential expression behaviour (the biological analysis goal) the

sensitivity lies between 0.90 and 0.97 for the cumulative analysis of 5 par-

allel chains, while the specificity amounts to 0.97 to 0.99. For identifying

the correct noise model (Gaussian vs. non-Gaussian) the specificity of the

algorithm is 0.98, while the sensitivity is 0.9. However, we could observe

that some chains perform less well than the others and draw this assessment.

Thus, a careful analysis of convergence is essential before including MCMC

output in the final summary. By the means of the coda package we could

identify chains with worse convergence behaviour. Excluding them from the

calculations substantially improved the results.

7.4 Bioinformatical analysis

7.4.1 Microarray data

In addition to artificial data, we analyse different microarray data sets.

The non-Gaussianity measure based on peakedness helps us to identify non-

Gaussian noise. This behaviour may originate from a biological sub-process

or from the execution of the experiment. In order to identify such labora-

tory effects we analysed the ”Golden Spike” experiment. Choe et al. 2005

performed a Spike-In experiment, where all genes’ behaviour w. r. t. differ-

ential expression is known. The only noise in the experiment originates from

laboratory procedures. The genetic material used is taken from flies.

Unlike the Spike-in data there is no ”gold standard” data set available for

any biological microarray experiment. We chose 4 large data sets from the

Gene Expression Omnibus (Edgar et al. 2002b) data base for the analysis.

The data set with GEO ID GDS2960 analyses marfan syndrome in humans

with 101 microarrays. The original study has been conducted by Yao et al.

2007b. The second data set has the GEO ID GDS1375 and includes 70 arrays

in the experiment. Talantov et al. 2005b studied types of human melanoma

and their genetic differences. In this study the authors identified certain

marker genes for differing between malignant and non-malignant melanoma
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types. Our third data set, GEO ID GDS531 deals with myeloma and contains

173 arrays. Tian et al. (Tian et al. 2003) performed the original study on

cells from human bone marrow. The fourth study, GEO ID 2946, contains

15 arrays and thus far less than the first three ones. However this number

is more representative of the typical number of sample sizes available for

microarray experiments. Li et al. 2008b studied obesity in rats subjected to

different diets.

Before the gene expression analysis, we performed preprocessing as it is

typically conducted for such microarray data, cf. Speed 2003 and explana-

tions in chapter 3. GDS2960 is performed on invitrogen and uses RPG3.0

for preprocessing the arrays. All other experiments use Affymetrix plat-

forms, the data were read as MAS5.0 and then normalised. Normalisation in

this case refers to the bioinformatical normalisation which aims for removing

background effects of the measurement in order to make the arrays’ mea-

surements better comparable, cf. the discussion of the difference between

the statistical and bioinfomratical view of normalisation. In statistics, the

idea behind normalization is transforming data towards the normal distri-

bution. In bioinformatics however it stands for transforming the data to

remove unwanted effects introduced during the laboratory process and mak-

ing it easier to handle. As we wish to work in a framework close to normal

distribution settings, we want normalisation to work in the original sense of

the word: transform towards normality.

Figure 7.6 shows how the variance stabilising normalisation (vsn) by Hu-

ber et al. 2002 transforms towards normality, while other standard normali-

sations, loess or quantile, keep the underlying highly skewed structure of the

unnormalised data. Therefore, it is reasonable to utilise vsn normalised data

for our further analyses and observe loess for comparison in parallel. How-

ever, we can show with the spike-in data that the skewness behaviour enforces

a trend towards heavy-tailed distributions, when only few (2-4) components

are fitted, which is not observed for vsn data or more components.

Results for Microarray Data

First, we analyse the spike-in data with known differential expression be-

haviour, where the noise only originates from laboratory work. Here, we fit
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Table 7.2: The total weights of Gaussian mixture components, which is the
sum of component weights, if more than one component is Gaussian, for
different data sets (marked by their GEO ID number), normalisations (vsn
and quantile) for models with various numbers of components. The technical
spike-in data behaves differently than the biological data, with only 0-25%
properly modelled by Gaussian distributions.

GEO ID normalisation mixture components
2 3 4 5

GDS2960 vsn 0% 0% 15% 13%
quantile 0% 0% 7% 10%

GDS1375 vsn 0% 7% 8% 8%
quantile 0% 0% 0% 0%

GDS531 vsn 0% 0% 28% 45%
quantile 0% 0% 0% 0%

GDS2946 vsn 0% 8% 24% 25%
quantile 0% 0% 0% 0%

golden spike vsn 100% 100% 100% 100%
quantile 0% 0% 33% 89%

mixture models with 2 and 3 noise components, being the most plausible

models indicated by the algorithm with variable number of components, and

4 and 5 component models as well. In particular, we look for differences

between spike-in and biological data, which has not been found in a previous

systematic study of noise behaviour, where Posekany et al. 2011 have shown

that the overall noise of the ”golden spike” data is as heavy-tailed as for

real microarray data sets. For the vsn-normalised spike-in data, the mixture

model identifies only Gaussian components, in which one component with

very low precision fits the data containing the most noise. This is plausible,

as Student’s t distributions can be approximated by mixtures of Gaussians,

indicating a regular noise behaviour of laboratory factors. However, this

does not imply that over-dispersion is generally not caused by problems dur-

ing laboratory work, but it shows that, for well-conducted experiments, the

technical noise behaves regularly and that the influence is typically Gaussian.

When using the highly skewed quantile-normalised data, we can still observe

a trend of models with 4 or more components favouring normal components,
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which appears for none of the biological data sets. Thus, there is no trend

of a differing noise behaviour between the genes, the normal components

apparently model the single sutdent’s t noise overall fitting for this data.

Applying the variable component algorithm to the biological data sets,

small models with 2 or 3 components should suffice, but as with spike-in

data we fit models with 4 and 5 components in addition. Normalising with

vsn has the positive effect of reducing over-dispersion. However, heavy-tailed

components still remain in the data, but Cauchy-distributions do not domi-

nate the model; a behaviour we observe for quantile normalisation. Contrary

to this, the skewness of quantile normalised data enforces a trend towards

heavy-tailed distributions, when fitting only few (2-4) components, which is

not observed for vsn data or more components. This observation is con-

sistent with previous findings (Posekany et al. 2011), where vsn normalised

data follow overall t4 distributions, whereas quantile normalised data require

a Cauchy (t1) distribution. Thus, choosing a preprocessing methodology for

microarray data, which includes normalisation, is highly influential on the

analysis and has to be taken into account. Apparently, a more differentiated

noise behaviour with far more extreme observations comes to the surface

when the genes’ concentrationis not prepared in the laboratory but stems

from underlying biological processes the microarray experiment wishes to

untangle and observe.

Our main finding is that at least one heavy-tailed Student’s t compo-

nent explains the majority of the noise, independent of the fitted number

of components or the normalisation. This marks a striking difference com-

pared to the spike-in data as well as to Novak et al. 2006b’s findings that 85

to 95% of the microarray data follow a normal distribution, although they

have remarked that the extreme data in microarray experiments have quan-

tiles similar to Student’s t distributions. Our assessments of the estimated

weights of components reveals that the relation seems to be the other way

around: Only 5-25 % of the data follow a normal distribution, with numbers

depending on data set and normalisation (cf. table 7.2). In models with more

than 3 components, Gaussian components form small subcomponents. How-

ever, this observation might occur due to the Gaussian component(s) mixing

together to form a single more heavy-tailed student’s t component. This

would be mean that the Gaussian components occurring for large mixture
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sizes originate from overfitting rather than an interpretable process, as an

inherent penalty against fiting student’s t components exits when Gaussian

components would suffice. For two and three component models, which have

been found to be most reasonable and interpretable, only Student’s t com-

ponents are fitted. This confers to previous studies by Hardin and Wilson

2009 and Posekany et al. 2011, who have observed that Gaussian distribu-

tions are overall unfitting for microarray data. In particular, this finding

marks a difference between the laboratory-based spike-in data and biological

data which apparently introduces an inherently more heavy-tailed behaviour

from the molecule-generating processes in the cell which is not present in

laboratory data.

When applying the peakedness score, we can observe in figure 7.7 for

GDS2960 and GDS531 that the most heavy-tailed component, including

about 10-15% of the data, identifies noisy genes with hardly any differen-

tial expression behaviour. This clear split only occurs when fitting 4 or more

components, as for less components too many genes are pooled in a single

component to allow more detailed identification. Therefore, our measure of

non-Gaussianity allows us to find the disturbing, over-dispersed genes and

thus provides a useful tool for separating them from the rest, which is valu-

able for considerations regarding the reliability of genes in gene expression

analysis.

7.4.2 Array Quality control

As the majority of microarray genes does not show Gaussian noise behaviour,

representing the severe over-dispersion, which data analysts have to struggle

with, we do not look for all genes and arrays introducing a trend towards t

distributions, but only count the most extreme ones. Due to the complexity

of microarray data and its unknown true behaviour, we will take the gener-

ated data as the gold standard for testing our method of microarray quality

control.

Based on our test data sets, we are able to show that our ansatz recog-

nises scenarios, in which the noise is split equally among the arrays as well as

scenarios with single arrays containing the majority of the extremely noisy

genes. For our test data, a compare ison of the outcomes of a regular χ2 test
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Table 7.3: We compare the outcomes of a regular χ2 test and the Bayesian
test, using Savage Density Ratio (SDR) for the microarray-like test data
consisting of 10% normally distributed data and 90% Student’s t data, which
is split up according to the first column. For equally split extreme noise, we
observe no significant findings, provided by the SDR test (or the χ2 test).
In the alternative scenario we randomly select 50% or 75% of the genes
containing the most extreme 10% of Bayes Factors. The extreme values of
these genes are accumulated on a single array, a scenario which does not
affect the noise estimation or differential expression assessment at all. Here,
our test detects this unbalanced situation reliably.

equal extremes 50% most extreme 75% most extreme
40%- 50% χ2 test SDR χ2 test SDR χ2 test SDR

t4 − t10; 5% 0.15 2.64 0.028 0.42 7.2e-11 7.4e-07
t4 − t10; 10% 0.13 2.07 0.0024 0.058 4.0e-33 1.6e-19
t4 − t10; 15% 0.47 12.56 0.015 0.22 3.4e-19 2.1e-12
t4 − t1; 5% 0.69 29.26 0.0020 0.043 1.5e-14 3.8e-09
t4 − t1; 10% 0.22 4.03 0.000056 0.0034 2.8e-29 9.5e-18
t4 − t1; 15% 0.40 9.19 0.0013 0.030 1.6e-13 3.3e-09
t7 − t1; 5% 0.33 8.27 0.056 0.82 1.2e-14 4.3e-09
t7 − t1; 10% 0.72 33.44 0.00055 0.018 1.3e-38 2.0e-22
t7 − t1; 15% 0.88 58.45 0.014 0.22 1.5e-20 2.9e-13
t10 − t1; 5% 0.53 15.83 0.00029 0.010 1.1e-03 5.5e-02
t10 − t1; 10% 0.07 0.90 0.0046 0.078 1.7e-04 7.4e-03
t10 − t1; 15% 0.18 2.85 0.0048 0.10 4.3e-03 1.1e-01

and the Bayesian test is conducted. The Bayesian testing approach uses the

Savage Density Ratio (SDR), as described in section 7.2.11, and applies it to

the microarray-like test data consisting of 10% normally distributed data and

90% Student’s t data. For extreme noise data which is by generation equally

distributed among all arrays, we observe no significant findings, provided by

the the χ2 test and SDR test. This scenario has been used for sensitivity

analysis of choice of α0 which led to the conclusion that a data-independent

fully Bayesian prior with any choice of hyperparameters is inferior to an

empirical Bayesian choice of data-dependent prior. As alternative scenarios

we randomly select 50% or 75% of the genes containing the most extreme

10% of gene and array-dependent Bayes Factors BFn,g, cf. formula (7.12).

These extreme values simulated for the artificial genes are accumulated on
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a single array. This scenario does not affect the noise estimation or differ-

ential expression assessment at all, but it should be detected by a measure

for determining microarray quality control. In the artificial scenarios, our

test detects this unbalanced situation reliably as the Bayes factors show that

the hypothesis of unequal weights is several times as probable as the bal-

anced hypothesis. Table 7.3 includes the results of our empirical Bayes test

and shows the analogy with the classical χ2 test. In all shown cases with

equally split noise, the test recognises that the observed behaviour is not

due to a single noisy array, but stems from the underlying behaviour of the

genes or sources which are common to all arrays. If a certain amount of

extremely noisy genes has influential values, located on a single array, our

approach identifies such an unbalanced situation correctly. The sensitivity to

’unbalancedness’ is adjusted by the prior of α0. The data-dependent choice

of prior for α0 partially allows for a semi-automatic approach, while careful

adjustment of priors can always lead to better results than standard choices

as for any Bayesian computational inference scheme. For application tuning

the parameters of he test and reweighting the Savage density ratio with an

informative loss scheme unlike the 0− 1 loss which we currently apply. This

can lead to an increase or decrease of the test’s sensitivity to the percentage

of ’misbehaving’ genes on a single array before an unbalanced situation is

found to be significant. Our findings have the potential of leading to im-

provement bioinformatical analysis of microarray data by adding a quality

control option to the differential expression assessment.
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Figure 7.6: Empirical cumulative distribution functions of the data accumu-
lated over all genes and arrays for different normalisations of the ”golden
spike” data. In the top left corner the unnormalised data, in the top right
the vsn normalised and in the bottom, loess and quantile normalised data.
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Figure 7.7: Graphs of the posterior probability of differential expression,
plotted against the peakedness measure for the GDS2960 and GDS531 data
for 4 component models. These scatter plots relate the biological variable
of interest for evaluating the importance of genes to our measure of non-
Gaussianity, denoted as ”P loss”. Genes on the right side have low probability
of differential expression and no biological relevance, whereas genes on the left
side are the ”targets” of the experiment. The most heavy-tailed component
contains genes with low probabilities of differential expression. A Gaussian
component with loss close to 0 contains some biologically relevant genes,
while the majority of differentially expressed genes belongs to the Student’s
t component with low degrees of freedom.



Chapter 8

Original ideas of this work

To summarise the work presented in this thesis, we will now point out all

the novel approaches, implementations and findings in this last chapter. To

make conception easier, all the important points will be divided up into three

main categories, namely statistical modelling approaches, computational im-

plementation and bioinformatical findings.

� Statistical approaches

The two hierarchical Bayesian models in chapters 5 and 7 both present

hand-tailored methods specifically designed to deal with microarray

data. The basic idea of robust Bayesian likelihood estimation is related

to Bayesian model selection, i. e. the a posteriori best fitting model is

selected. Model 5.1 applies this idea for the comparison of noise models

by considering likelihood functions. As student’s t distributions are

able to keep the symmetry of residual models and a proximity to the

normal distribution, they provide an excellent choice for dealing with

overdispersion.

Chapters 5 and 7 provide different approaches for prior distribution

settings of the degrees of freedom parameter. The flexible, yet dis-

crete set is a unique approach which was first developed by Posekany

2009. The continuous uniform distribution approach has been exten-

sively used and studied, compare for example the implementation by

Frühwirth-Schnatter 2006. However, in this setting the novel scheme

of simultaneously considering normal and t models leads to the advan-

tage of avoiding the known extreme sensitivity of t distributions to the
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cut-off of the prior over the degrees of freedom parameter. Alterna-

tive schemes do not consider the Gaussian distribution as an option

to ’jump to’, but approximate it by student’s t distributions with high

degrees of freedom. However, such alternatives do not allow a clear dis-

tinguishing between the distributions, whereas our scheme, provided in

chapter 7, combined with our peakedness measure clearly separates the

different distributions w. r. t. their respective tail weight. The alter-

native approach of identifying tail weights based on similar schemes,

e. g. for mixtures of normals, would not lead to straight-forward re-

sults, as on the one hand the curtosis to be approximated does not

exist, while on the other hand the peakedness is the same for all nor-

mal distributions. Our method of applying measures of ’peakedness’

is a unique approach, as it discriminates student’s t distributions with

degrees of freedom too small to reasonably determine an estimate for

curtosis. Our approach’s advantage lies in providing a flexible measure

for discerning the symmetric distributions with different tail behaviour

considered in this work.

� Computational implementations and approaches

Our algorithmic contribution lies in the implementation of the novel

hybrid MCMC sampler for model 7.1, which includes a reversible jump

step between student’s t and normal distributions in the microarray

analysis ANOVA setting, in particular in the mixture analysis set-

ting. First, we performed a detailed analysis of the algorithm’s ’sanity’,

i. e. sampling in known cases from a proper posterior and being able

to provide useable results within a reasonable amount of time. Second,

we applied the algorithm to a selected sample of microarray data sets.

As is generally known, mixture algorithms are prone to specific prob-

lems, such as label switching, due to the inherent lack of identifiability

of the respective components, cf. chapter 6. In addition to identify-

ing distributions, the above-mentioned peakedness measure allows us to

overcome the label switching problem by performing posterior inference

over the not label-related ’peakedness’ instead of the label-dependent

variables, the label Sn,g the precisions λj, degrees of freedom νj and

rescaling factors ϕn,g,j.
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� Bioinformatical findings

Previously, such a large-scale systematic study of microarrays’ noise be-

haviour as Posekany et al. 2011 has never been conducted in the realm

of bioinformatics. The aim of our study was to compare different ap-

proaches of modelling noise in linear regression settings by performing

Bayesian model selection based on criteria of robustness. Our findings

largely supported the heavy-tailed distributions’ model to provide a

better fit for the noise in microarray data than the normal distribution.

Our unpreceded study of the quantitative effects on secondary bioin-

formatical analyses, such as gene ontologies, led us to the conclusion

that the errors made by wrong model assumptions can lead to large

errors in biological conclusions and findings. In other words, the whole

process of bioinformatical analysis is very sensitive to unfitting choices

of model components, in particular of the likelihood function.

In order to test existing assumptions about the relative amount of data

following the normal distribution, the mixture model (7.1) was intro-

duced. The mixture of normal and t distributions has always been

meant to not only provide a better distribution approximation, but also

to allow for an interpretation of its components. This second feature

would be lost, if we fitted the model with mixtures of normal distribu-

tions with enough components. A possible way to reasonably use the

information about the ’peakedness’ of our model’s associated compo-

nents lies in array quality control, in which a single array with genes not

following the behaviour provided by the other arrays might be found.

Alternatively, genes differing in their more or less noisy behaviour could

be singled out from the rest. For future investigations it would be an

interesting possibility to explore in detail, whether the reason for the

observed effects stems from problems resulting from laboratory work

or from underlying biological processes.

All in all, out thesis had the foremost aim to unite Bayesian statistical

modelling with the field of bioinformatics, an application of great importance

for modern scientific research. Challenges stemming from the irregularly

behaved data as well as the complicated computational implementation of

the two different models were overcome by relying on specific ressources such
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as the Vienna Science Cluster. We are sure that we have been able to provide

profound results on which further investigations can be built.
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