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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Konstruktion von Konchoiden und deren Eigenschaf-
ten. Ursprünglich handelt es sich dabei um eine Kurvenkonstruktion, die auf Nikomedes
(280 v. Chr. – 210 v. Chr.) zurückgeführt wird. Er entwickelte die Konchoide des Nikome-
des, das ist die Konchoide ausgehend von einer Geraden, unter anderem zur Dreiteilung
des Winkels. Die Konstruktion kann relativ grob, wie folgt beschrieben werden: Von einer
gegebenen Kurve wird eine Abstandskurve konstruiert, wobei der Abstand bezüglich eines
Referenzpunkts gemessen wird.

Diese Konstruktion lässt sich auch direkt auf Flächen erweitern. Die Konchoide Fd
zu einer gegebenen Fläche F im Abstand d in Bezug auf den Referenzpunkt O ist der
Zariski-Abschluss der Punktmenge

Fd = {Q ∈ OP mit P ∈ F, und QP = d}.

Konchoiden haben Anwendung zum Beispiel in folgenden Bereichen:

Medizin - der Kopf des Hüftgelenks (Menschik (1997))

Optik - als Kaustiken (Szmulowicz (1996))

Astronomie - Positionsbestimmung (Kerrick (1959))

Akustik - Richtcharackteristiken von Mikrofonen (Streicher and Dooley (2003))

Mechanik - Flüssigkeitsausbreitung (Sultan (2005))

Elektronik - elektromagnetische Felder (Lin et al. (2001))

Hierbei tritt in erster Linie die Limacon des Pascal, das sind Konchoiden eines Kreises
durch den Referenzpunkt, auf.

Das Hauptaugenmerk der vorliegenden Arbeit liegt im Erstellen von rationalen Para-
metrisierungen von Konchoiden von Flächen. Dazu wird ein Modell vorgestellt bei dem die
Flächen im dreidimensionalen Raum, auf Flächen auf einem Kegel in einem vierdimensio-
nalen Raum abgebildet werden. Rationale Parametrisierungen haben vor allem durch den
Einsatz von CAD-Systemen eine wichtige Bedeutung in der Geometrie.

Ziel ist es, Klassen von rationalen Flächen zu bestimmen, deren Konchoiden eben-
falls rationale Parametrisierungen besitzen. Das einfachste Beispiel für eine solche Fläche
ist die Ebene. Diese besitzt rationale Parametrisierungen mit rationaler Distanz in den
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Flächenparametern zum Referenzpunkt. Somit sind auch die Konchoiden der Ebene bezüg-
lich des Referenzpunkts rational parametrisierbar.

Die Arbeit stützt sich im wesentlichen auf drei Publikationen die gemeinsam mit Martin
Peternell und Juana Sendra verfasst wurden:

• Peternell, Gruber und Sendra (2011)

• Peternell, Gruber und Sendra (2013)

• Gruber und Peternell (2013)

Die Arbeit ist folgendermaßen gegliedert: Kapitel 1 beinhaltet einige Grundlagen die
dem Verständnis der Arbeit dienen. Kapitel 2 widmet sich den Konchoiden der Kurven.
Dabei wird das Kegel-Modell präsentiert und die Konchoiden einiger Kurven berechnet.
Dieses Kapitel dient in erster Linie dem besseren Verständnis des Kegel-Modells.

Das dritte Kapitel behandelt Konchoiden von Flächen und deren rationale Paramete-
risierungen. Dazu wird das Kegel-Modell auf Flächen erweitert und daraus resultierende
Parametrisierungsmöglichkeiten vorgestellt. Mit Hilfe des Kegel-Modells wird die rationale
Parametrisierbarkeit von Konchoiden von rationalen Regelflächen und Quadriken gezeigt.

An dieser Stelle möchte ich mich ganz herzlich bei Martin Peternell für die gute
Betreuung meiner Dissertation bedanken. Weiters möchte ich mich bei all meinem Kollegen
und Kolleginnen für die vielen interessanten und wissenschaftlich fruchtbaren Gespräche
bedanken.

Ebenso großer Dank gebührt meiner Freundin Lisa Bauer sowie meiner Familie und
all meinen Freunden, für deren Unterstützung und Aufmunterung.
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Abstract

This thesis deals with the construction of conchoids and their attributes. The conchoid
construction dates back to the ancient Greeks. It was Nicomedes (280 bc – 210 bc) who
discovered the Conchoid of Nicomedes, the conchoid of a line, and used it for example for
angle trisection. The construction of the conchoid results, roughly speaking, in a distance
curve to a given curve, where the distance is measured with respect to a given reference
point.

This construction can be directly extended to surfaces. The conchoid Fd to a given
surface F at distance d with respect to O is the Zariski closure of the set of points Q,

Fd = {Q ∈ OP with P ∈ F, and QP = d}.

There are several applications of conchoids, for example in the following fields:

Medicine - hip joint (Menschik (1997))

Optics - caustics (Szmulowicz (1996))

Astronomy - astronomic positions (Kerrick (1959))

Acoustics - polar patterns of microphones (Streicher and Dooley (2003))

Mechanics - fluid processing (Sultan (2005))

Electronics - electromagnetic fields (Lin et al. (2001))

In most cases the Limacon of Pascal, a conchoid to a circle going through the reference
point, appears.

The focus of this thesis is on rational parameterizations of conchoid surfaces. Mainly
because of representations of geometric objects in CAD systems, such rational parame-
terizations are of scientific interest. A model to find such parameterizations is presented.
The surfaces of the three-dimensional space are mapped to surfaces on a cone in a four-
dimensional space.

The aim is to determine which rational surfaces have conchoids, admitting rational
parameterizations. A simple example is the plane, it possesses a rational parameterization
with rational distance in the surface parameters to the reference point. Hence the conchoid
surfaces of the plane also admit rational parameterizations.
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The structure of the thesis is the following: Chapter 1 gives an introduction to projective
geometry and to the conchoid construction, for better understanding of the thesis. Chapter
2 introduces the cone model for the calculation of rational parameterizations of curves and
their conchoids. This chapter primarily motivates the idea of the cone model for the surface
case.

Chapter 3 covers the rational parameterizations of surfaces and their conchoids. The
cone model of Chapter 2 is extended to the three-dimensional space and we prove that
rational ruled surfaces and quadrics and their conchoids posses rational parameterizations.

The thesis is mainly based on three articles written together with the supervisor of this
thesis, Martin Peternell and Juana Sendra:

• Peternell, Gruber and Sendra (2011)

• Peternell, Gruber and Sendra (2013)

• Gruber and Peternell (2013)

Here I want to thank Martin Peternell for the good supervision of my thesis.
I would also like to thank all my colleagues at the institute for many interesting and
scientifically productive discussions.

I also want to thank my girlfriend Lisa Bauer, my family and all my friends for their
support and encouragement.
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Chapter 1

Fundamentals

In this chapter we give some necessary background information. In Section 1.1 we present
basic ideas of projective geometry and in Section 1.2 of algebraic geometry. Section 1.3
contains the definition of conchoids and their attributes.

1.1 Projective Geometry

We start with some information on projective geometry, in particular we will deal with
the projective 3−space which we denote as P3 and its automorphic mappings. For more
information about projective geometry see for example Pottmann and Wallner (2001).

1.1.1 The Projective Space

Given a Euclidean space R3, we denote a point X ∈ R3 with the column vector x =
(x, y, z)T and the scalar product of two vectors as xT · y. The squared Euclidean norm of
a vector is ‖x‖2 = xT · x. The product of two matrices A,B and matrix times vector are
also denoted as A ·B respectively A · x.

We extend the Euclidean space R3 by points U at infinity, these can be defined as
common points of parallel lines, and receive the projective space P3 = R3 ∪ {U}. A point
X in projective space P3 is denoted by the column vector xR = (x0, x1, x2, x3)

TR. These
are projective coordinates and they are only unique up to scalar multiplication. We denote
planes E ∈ P3 with a vector Re = R(e0, e1, e2, e3)

T , to distinguish between point and plane
coordinates we place the R on the right or on the left side of the vector. The incidence
relation between a point and a plane in P3 is given by X IE : xT · e = 0.

Improper points are points at infinity, they are characterized by x0 = 0. The plane
containing all improper points is called the ideal plane Rω = R(1, 0, 0, 0)T . For proper
points we can convert the projective coordinates to Euclidean coordinates as follows

x =
x1
x0
, y =

x2
x0

and z =
x3
x0
.
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Inverting the roles of points and planes in the projective space P3 and exchanging
connecting points, by intersecting planes, leads to the dual projective space P3?. Every
true statement in P3 for points, translated to the dual space, is a true statement for planes
in P3?. A statement typically differs from its dual statement. If this is not the case, it is
called self-dual. A line g as a set of points in P3 is dual to a line g? as a sheaf of planes in
P3?.

1.1.2 Projective Mappings

In this section we give a short introduction to linear automorphic transformations in P3

and to transformations of P3 to P3?.

Definition 1.1 A regular matrix A ∈ R4×4 induces a projective mapping κ in P3

κ : P3 → P3

xR → x′R = (A · x)R.

We call κ a projective collineation.

A collineation is a bijective map in P3 and keeps collinearity of points. Planes are
transformed by κ in the following way

Re → Re′ = R(A−T · e),

where A−T is the transposed inverse of the defining matrix A of κ.
We want to determine fixed points of a projective collineation κ. Being a fixed point can

be expressed by A · x = λx and therefore fixed points are determined as the eigenvectors
of A. Thus a projective collineation has typically four fixed points, correlated to the four
distinct eigenvalues of A.

If the multiplicity of one eigenvalue is three and the according eigenspace is three
dimensional, all points of a plane are fixed, we call this plane the axis plane A of κ.
Furthermore κ has another fixed point belonging to the second distinct eigenvalue, the so
called center of κ. Such a projective collineation, with center and axis plane, is called a
perspective collineation.

In the following we need the special perspective collineation, where the center is the
origin O of the coordinate system. Every line g through the fixed point O intersects the axis
plane A in another fixed point P = g∩A. Since κ is a collineation the line g containing O
is fixed, g = g′. Furthermore the image of an arbitrary point X lies on the line connecting
X and O. Hence we are able to write the image of the point X under the perspective
collineation with center in O as

x′R = λx + aT · x(1, 0, 0, 0)T .
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O
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V

U

XX ′

Y

Y ′

(a) Perspective collineation κ with center in O
and axis plane A.

X

X ′
Y

Y ′

P
P ′

(b) Polarity κ with two conjugate points X,Y
and the self-conjugate point P .

Figure 1.1: Perspective collineation and polarity.

Points that fulfill aT ·x = 0 are fixed, hence Ra = R(a0, . . . , a3)
T are the coordinates of the

axis plane A of the collineation. Points with an improper image are given by the equation

λx0 + aT · x = vT · x = 0, (1.1)

hence they are contained in the plane V with coordinates Rv = (λ + a0, a1, a2, a3)
T . For

λ = 1, equation 1.1 can be shortly written as(
vT · x

x

)
R =

(
v0 v

0 I3

)
xR, (1.2)

with v = (v1, v2, v3)
T , x = (x1, x2, x3)

T and I3 = diag(1, 1, 1). Vanishing points, these are
image points x′ with an improper pre-image x = (0, x1, x2, x3)

TR, have the coordinates
(v1x1 + v2x2 + v3x3, x1, x2, x3)

TR. They lie in the plane U : Ru = R(−1, v1, v2, v3)
T , the so

called vanishing plane. See Figure 1.1(a) for an illustration of a perspective collineation,
with center O and axis plane A.

In Euclidean coordinates (1.2) reads

x′ =
1

v0 + v1x+ v2y + v3z
x.

1.1.3 Polarities and Quadrics

So far we have dealt with automorphic mappings in P3. Now we discuss mappings κ from
P3 to its dual space P3?.
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Definition 1.2 A regular matrix A ∈ R4×4 induces an projective mapping κ from P3 to
P3?

κ : P3 → P3?

xR → Re′ = R(A · x).

Such mappings are called correlations.

A correlation is a bijective map from P3 to P3? and maps collinear points to a sheaf of
planes.

We are interested in special correlations, namely if A is a symmetric matrix. We call
such a correlation a polarity, see Figure 1.1(b). The image of a point X under a polarity
κ is called the polar plane π of X. Two points X, Y are called conjugate, if X is contained
in the image plane of Y and vice versa, hence

xT ·A · y = 0⇔ yT ·A · x = 0,

the equivalence holds since A is a symmetric matrix.

Definition 1.3 Given a polarity κ : xR → Re = R(A · x) from P3 → P3?, with A
symmetric. The self-conjugate points of the induced conjugacy relation form a quadric in
P3. The points of the quadric F are given as the zero-set of the polynomial

F (x0, . . . , x3) : xT ·A · x = 0. (1.3)

In the following we will denote both, the quadric and the defining polynomial with F ,
the meaning should be clear from the context. The polar plane T to a self-conjugate point
X, hence Rt = R(A · x) is the tangent plane to the quadric.

The pair (X, π) with Rπ = R(A · x) is the polar plane to X, defines a perspective
collineation κ with center X and axis plane π. If κ maps one point Y /∈ π on F to a point
Y ′ ∈ F , every point of F is mapped to a point on F . Therefore such collineations keep
the quadric F fixed. Given such a perspective collineation with improper center X and
π = A · x = λx, the plane π is called a symmetry plane of F .

In the dual projective space P3? the same quadric F ? to F : xT ·A · x = 0, is given as
the envelope of tangential planes, in plane coordinates Re = R(e0, . . . , e3)

T it reads

F ? : eT ·A−1 · e = 0.

In the projective space we distinguish between oval, det(A) < 0, and ringlike, det(A) >
0, quadrics. The latter carry real lines. Depending on the intersection of F with the ideal
plane we distinguish the affine types, see Table 1.1

Given a paraboloid the ideal plane is a tangent plane, hence paraboloids possess one
real improper self-conjugate point. For the other affine types, the pre-image M of the ideal
plane, hence m = A−1ω, is called the mid-point of the quadric. Quadrics that possess a
mid-point are called mid-point quadrics, these are ellipsoids and hyperboloids.
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Affine name of F projective type intersection with ω

Ellipsoid oval complex conic

Hyperboloid of two sheets oval real conic

Elliptic paraboloid oval conjugate complex lines

Hyperboloid of one sheet ringlike real conic

Hyperbolic paraboloid ringlike real lines

Complex quadric oval complex conic

Table 1.1: Quadrics.

Equation (1.3) is a quadratic homogeneous equation and it defines a quadratic surface
F ⊂ P3 even if det(A) = 0. We call the quadric defined by (1.3) and a singular symmetric
matrix A a singular quadric. We distinguish the following cases depending on the rank of
A:

• Let rk(A) = 3, then the surface defined by F : xT · A · x = 0 is a quadratic cone.
The vertex of F is defined by the null space of A.

• Let rk(A) = 2, then the polynomial F (x0, . . . , x3) = 0 factorizes into two linear
factors, hence F consists of two planes.

• Let rk(A) = 1, then the polynomial F (x0, . . . , x3) = 0 is one squared linear term,
hence F is a plane, double covered.

1.1.4 Pencil of Quadrics

Let F : xT ·A ·x = 0 and G : xT ·B ·x = 0 be two quadrics in P3. The linear combination

(λF + µG) : xT · (λA + µB) · x = 0

with homogeneous parameters (λ, µ) ∈ R × R \ (0, 0), defines a family of quadrics, a so
called pencil of quadrics.

We want to analyze the singular quadrics in a pencil of quadrics. Let det(λA+µB) 6≡ 0,
hence not all quadrics are singular. The polynomial det(λA + µB) is maximum of degree
four in (λ : µ), therefore a pencil of quadrics includes at most four, not necessary distinct,
singular quadrics. See Figure 3.17 for an illustration of a quadratic pencil with three
different singular quadrics, in this example the cone K has to be counted twice.
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1.1.5 Focal Conics

In Section 3.3, points with a rotational tangential cone to a quadric are of interest. There-
fore we want to derive the locus of these points with methods of projective geometry. For
a Euclidean construction see for example McCrea (1960).

The tangential cone Γ of a point P to a quadric F is a quadratic cone. Its vertex is P
and a directrix is given by the intersection π ∩ F of the polar plane π to P , with respect
to F , with the quadric F , hence a conic section.

Definition 1.4 Given a quadric F : xT ·A · x = 0 ⊂ P3 and a point P ∈ P3. We call P a
focal point of F iff the tangential cone Γ with vertex in P to F has rotational symmetry.

We will construct the locus of focal points at first for mid-point quadrics, these are
ellipsoids and hyperboloids. Since the construction for paraboloids follows analogous lines
we only indicate the main results afterwards.

Let us assume we have given the mid-point quadric as a set of points in normal form,
hence O is the mid- point and the coordinate axes coincide with the axes of the quadric,

F : x20 +
x21
a

+
x22
b

+
x23
c

= 0 with a, b, c ∈ R\{0} and a ≤ b ≤ c, . (1.4)

Depending on the sign of a, b, c we get all affine mid-point quadric types, see Table 1.2.

a ≤ b ≤ c < 0 Ellipsoid

a < 0 < b ≤ c Hyperboloid of two sheets

a ≤ b < 0 < c Hyperboloid of one sheet

0 < a ≤ b ≤ c Complex quadric

Table 1.2: Mid-point quadrics.

The calculation of the tangential cone simplifies, if we describe the quadric as envelope
of planes. The dual representation of the quadric (1.4) reads

F ? : e20 + ae21 + be22 + ce23 = 0, with a ≤ b ≤ c. (1.5)

The tangential cone through a point P /∈ F : pR = (p0, . . . , p3)
TR is the envelope of the

set of tangential planes ε of F through P . We substitute the incidence relation pT · e = 0
in (1.5), and obtain the tangential cone Γ in the dual space

Γ? : eT ·B · e = eT ·


0 0 0 0

0 p21 + p20a p1p2 p1p3

0 p1p2 p22 + p20b p2p3

0 p1p3 p2p3 p23 + p20c

 · e = 0. (1.6)
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Γ

F f2

(a) Ellipsoid with focal hyperbola.

Γ

F

f1

(b) Ell. paraboloid with focal parabola.

Figure 1.2: Focal conics of quadrics and a rotational tangential cone.

For P /∈ F , rk(B) = 3 holds, and equation (1.6) defines a quadratic cone that can be
written with p = (0, p1, p2, p3)

TR as

Γ? : eT · (p · pT + p20 diag(0, a, b, c)) · e = 0.

An arbitrary quadratic cone Γ has three symmetry planes τi, i = {1, . . . , 3}, given by the
eigenvectors of B. Two symmetry planes contain the axis of the cone and one orthogonal
to the axis through the vertex. The symmetry planes have poles Ti, i = {1, . . . , 3} on
the normal to τi through the vertex P , hence Bτi = λτi, λ 6= 0, holds and therefore the
symmetry planes are given through the eigenvectors of B.

The characteristic polynom G(λ) of B,

G(λ) = λ((bp20 − λ)(cp20 − λ)p21 + (ap20 − λ)(cp20 − λ)p22+

(ap20 − λ)(bp20 − λ)p23 + (ap20 − λ)(bp20 − λ)(cp20 − λ)),
(1.7)

is a polynomial of degree four in λ with three relevant zeros, since we have chosen λ 6= 0.
Initially we assume that pi 6= 0, i = {0, . . . , 3}, and substitute λ as p20a, p

2
0b, p

2
0c and ∞

in (1.7) which leads to alternating signs of G, therefore the polynomial has besides λ = 0
three different zeros. To achieve a rotational cone Γ, its defining matrix B has to have a
two dimensional eigenspace hence a double eigenvalue.

Remain the cases where at least one coordinate pi, i = {0, . . . , 3}, equals zero. Substi-
tuting p0 = 0 in (1.7) leads to

λ3(p21 + p22 + p23) = 0

and therefore only to the excluded zero λ = 0.

7



Substituting p1 = 0 in (1.7) leads to

G(λ) = (ap20 − λ)((cp20 − λ)p22 + (bp20 − λ)p23 + (bp20 − λ)(cp20 − λ)).

It has a multiple zero if λ = ap20 is a zero of the second factor, hence

p20((c− a)p22 + (b− a)p23 + (b− a)(c− a)p20) = 0

which defines a complex conic section f1, that is given in affine coordinates as

f1 : x = 0 ∩ y2

b− a
+

z2

c− a
= −1.

In the same way, substituting p2 = 0 and p3 = 0 in (1.7) leads to a hyperbola f2 and an
ellipse f3, in affine coordinates these are given as

f2 : y = 0 ∩ x2

b−a −
z2

c−b = 1 and f3 : z = 0 ∩ x2

c−a + y2

c−b = 1.

See Figure 1.2(a) for an ellipsoid with one focal conic f2. If the quadric has rotation
symmetry, for example a = b, the hyperbola f2 degenerates to the z−axis, the axis of
rotation, and f3 is a circle.

For completeness we also present the solutions for paraboloids. A paraboloid in normal
form is given as

F : x20 +
x21
a

+
x22
b

+ 2
x0x3
c

= 0, with a ≤ b.

We distinct the following affine types. The quadric is a hyperbolic paraboloid if a < 0 < b,
else an elliptic paraboloid. We again use the dual representation

F ? : 2ce0e3 + ae21 + be22 − ce23 = 0

to find rotational tangential cones. This leads to the focal parabolas

f1 : x = 0 ∩ y2

(a+c2)(b−a) + z
2c(a+c2)

= − 1
c2

and f2 : y = 0 ∩ x2

(b+c2)(b−a) −
z

2c(b+c2)
= 1

c2
.

Figure 1.2(b) shows an elliptic paraboloid with one focal parabola.
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1.2 Algebraic Geometry

In this section we give a short introduction to algebraic geometry. Since we are interested in
real rational parameterizations of real curves and real surfaces in Rn and Pn we restrict the
definitions in this section to real affine and projective spaces. For more general definitions
and detailed information about algebraic geometry we refer to Cox et al. (2010), Griffiths
and Harris (1978) and Sendra et al. (2008).

1.2.1 Affine Variety

Given the affine space Rn and polynomials Fi(x1, . . . , xn) ∈ R[x1, . . . , xn].

Definition 1.5 The set of points

V(F1, . . . , Fs) = {(x1, . . . , xn)T ∈ Rn : Fi(x1, . . . , xn) = 0,∀i ∈ {1, . . . , s}}

is called an affine variety in Rn.

In the following we will deal with hypervarieties, these are varieties defined by one
polynomial, hence s = 1, in the Euclidean plane R2 and in the Euclidean space R3.

• A variety V(F ) ⊂ R2 defined by the zero-set of one polynomial F (x, y) = 0 is called
a curve.

• A variety V(F ) ⊂ R3 defined by the zero-set of one polynomial F (x, y, z) = 0 is
called a surface.

We extend the definition of a hypervariety to the projective space Pn and give

Definition 1.6 The set of points

V(F ) = {(x0, . . . , xn)T ∈ Pn : F (x0, . . . , xn) = 0}

is called a projective hypervariety in Pn.

In the latter we denote both, the hypervariety and its defining polynomial with the
same letter, e.g. F .

An arbitrary set of points is not necessarily a variety. Therefore we give

Definition 1.7 Given a set of points P ⊂ Rn, the smallest variety V(F ) containing P is
called the Zariski closure of P.
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1.2.2 Parameterization

Given a hypervariety V(F ) ⊂ Rn, the map

f : Rm → Rn

(u1, . . . , um) → f(u1, . . . , um) = (p0(u1, . . . , um), . . . , pn(u1, . . . , um))T
(1.8)

with F (pi(uj)) = 0 is called a parameterization of V(F ).

Definition 1.8 Given a hypervariety V(F ) parameterized by a rational map f of the form
(1.8). We call V(F ) a uni-rational variety.

A rational variety is a variety, that admits a birational parameterization over an alge-
braic closed field.

Bijective parameterizations are called proper, for more information about proper pa-
rameterizations see for example Pérez-Dı́az et al. (2002, 2006).

The real rational parameterizations presented in this thesis are typically not proper,
arising from the conchoid construction, see Section 1.3. Such parameterizations are called
improper parametrizations. An improper parameterization f maps two, or more points
of the parameter domain to one point on the variety. Roughly speaking, the number of
points of the parameter domain, that are mapped to the same point is called the degree of
improperness.

Example 1.9 Unit circle
The unit circle V(F ) ⊂ R2 with F (x, y) = x2 + y2 = 1, possess the rational proper

parameterization

f : t ∈ R→ f(t) =

(
1− t2

1 + t2
,

2t

1 + t2

)T
⊂ R2.

Therefore the unit circle is a rational hypervariety. Note, that according to Lüroth’s
theorem every uni-rational curve is rational, see Sendra et al. (2008).

Another rational parameterization of the unit circle is

f′ : t ∈ R→ f(t) =

(
1− t4

1 + t4
,

2t2

1 + t4

)T
⊂ R2.

This parameterization is improper since f(t) = f(−t), and the degree of improperness is
two. Furthermore it parameterizes only one half of the real part of the unit circle. ?

1.2.3 Resultant

Given polynomials F (x), G(x) ∈ R[x] of degree m and n,

F (x) =
m∑
i=0

aix
i, G(x) =

n∑
i=0

bix
i.
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The determinant of the matrix MFGx ∈ R(m+n)×(m+n),

RFGx = det(MFGx) with MFGx =



a0 . . . am 0
. . . . . .

0 a0 . . . am

b0 . . . bn 0
. . . . . .

0 b0 . . . bn


is called resultant of F (x) and G(x) with respect to x. If F (x) and G(x) are two relatively
prime polynomials RFGx 6= 0. Else there exist unique polynomials F (x), G(x) ∈ R[x] with
degrees degF < degF, degG < degG and

RFGx = F (x)G(x) +G(x)F (x) = 0.

Since RFGx is independent of x one may use this method to eliminate the unknown x from
the given polynomials F (x), G(x).

Example 1.10 Eliminate an unknown
The unit circle C possess the rational parameterization

c(t) =

(
1− t2

1 + t2
,

2t

1 + t2

)T
,

according to Example 1.9. Splitting this vector in x and y coordinates leads to two poly-
nomials

F (t) = (1 + t2)x− (1− t2) = (x− 1) + (x+ 1)t2 and

G(t) = (1 + t2)y − 2t = y − 2t+ yt2.

The points on the circle C are the common zeros of F (t) and G(t), hence RFGt = 0, with

RFGt = det


x− 1 0 x+ 1 0

0 x− 1 0 x+ 1

y −2 y 0

0 y −2 y

 = 4(x2 + y2 − 1) = 0. (1.9)

Equation (1.9) is the well known implicit equation of the unit circle. ?
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1.3 The Conchoid Construction

In this section we present the classical construction of a conchoid to a given curve and the
extension for surfaces. Furthermore we give definitions and attributes of rational conchoid
curves and rational conchoid surfaces. For more geometric details on conchoids of curves
see for example Wieleitner (1908); Lawrence (1972); Kunz (2000) and for more information
about algebraic attributes see for example Sendra and Sendra (2008, 2010) and Albano and
Roggero (2010).

1.3.1 Definition

Definition 1.11 Given a curve C ⊂ R2, a distance d ∈ R and the fixed reference point
O ∈ R2. The conchoid curve Cd to C at distance d with respect to O is the Zariski closure
of the set of points Pd on the line OP , at distance d to the moving point P ∈ C,

Cd = {Pd ∈ R2 : Pd ∈ OP, P ∈ C and ‖PPd‖ = d}∗,

where the asterisk denotes the Zariski closure, see Figure 1.3(a) for an example.

Roughly speaking the conchoid to a given curve is a curve at distance d measured with
respect to O. The conchoid construction dates back to the ancient Greeks, see Wieleitner
(1908). Nicomedes (*280 b.c.; †210 b.c.) discovered it while studying the problem of angle
trisection. A solution of this problem uses the conchoid of a line, its shell shape caused
the name conchoid, it originates in the ancient Greek word concha - Greek: κ%́γχη, Lat.
concha: muscle, shell; from Liddell and Scott (1883). Figure 1.3(b) shows the conchoid Cd
of a line C.

We want to show the construction for angle trisection with the help of the conchoid of
Nicomedes. Given an angle α with the sides A,B and the vertex O, we construct an angle
β and proof that α = 3β holds, see Figure 1.3(b).

Construction of angle trisection We choose the line C perpendicular to A, such that
O /∈ C. The intersection P = C ∩ B defines the distance d = 2‖OP‖ for the conchoid
construction. We construct the conchoid Cd to C with respect to O at distance d, and
intersect a perpendicular line H through P to C with the conchoid Cd. The intersection
point H1 = H ∩ Cd and the point O define a line D. The angle β with vertex in O and
sides A and D is one third of α.
Proof: First we observe that the angle ∠OH1P = β. We choose M as the midpoint of
H1H2, which is also the midpoint of the circumcircle of the right-angled triangle H1H2P ,
hence ∠H1MP = 2β. The triangles H1PM , H2PM and OPM are equal-sided triangles
and we can deduce ∠POM = 2β. And therefore α = 3β holds. �

Definition 1.11 can be directly extended to surfaces.
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(b) Angular trisection with α = 3β.

Figure 1.3: Conchoid of Nicomedes.

Definition 1.12 Given a surface F ⊂ R3, a distance d ∈ R and the fixed reference point
O ∈ R2. The conchoid surface Fd to F at distance d with respect to O is the Zariski closure
of all points Pd on the line OP , at distance d to the moving point P ∈ F . As a set of
points it reads

Fd = {Pd ∈ R3 : Pd ∈ OP, P ∈ F, ‖PPd‖ = d}∗,

where the asterisk denotes the Zariski closure, see Figure 1.5(a) for an example.

This construction allows a kinematic realization which we will discuss in the next sec-
tion.

1.3.2 Kinematic Construction

In this section we present the kinematic realization of the conchoid construction and show
that it is a constrained motion. For more information about kinematics we refer to Husty
et al. (1997).

The kinematic chain consists of two links. First, the fixed one Σ0 containing O and the
curve C. Second, the moving link Σ1, containing the line g. The links are connected via
two sliding joints. One in O, where g slides through O and rotates about O. Another in the
point P = g ∩ C, where P is a fixed point on g and slides along C, furthermore g rotates
about P . In each joint the movement has two free parameters, the sliding length and the
rotation angle. Figure 1.3(a) shows a conchoid of a line and its kinematic realization.

We want to calculate the degree of freedom of the kinematic chain. Therefore we use
the degrees of freedom of each joint and the formula of Gruebler. The degree of freedom
of the kinematic chain according to Gruebler is

FG = 3(n− 1)− 2f1 − f2,
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with n is the number of links and f1, f2 the numbers of joints with one free parameter
respectively two free parameters. The kinematic realization of the conchoid construction,
with n = 2, f1 = 0 and f2 = 2 has the degree of freedom according to Gruebler, FG = 1,
hence it is a constrained motion.

Performing only an infinitesimal motion of the line g, it momentarily rotates about a
point M , the so called instantaneous center of rotation. For the kinematic realization of
the conchoid construction, M is the intersection of the normal to C in P and the normal
to g in O. This holds, since the point P ∈ g moves along C and O, considered as a point
on g, slides in direction of g during the infinitesimal motion.

Obviously every point Pd on g momentarily rotates about the same point M . Hence the
the tangents in the points Pd ∈ g to the conchoid Cd, for a fixed position of the kinematic
chain and varying d, envelope a parabola with focal point M .

1.3.3 Polar Representation

To calculate parameterizations of conchoids Cd starting with a parameterization of C we
use polar representations of C. We choose without loss of generality the reference point O
as the origin of the coordinate system, this choice is made throughout the whole thesis if
not stated otherwise. A curve C has the polar representation

c(t) = %(t)k(t), (1.10)

with %(t) = ‖c(t)‖ is the distance to the origin and k(t) = 1
‖c(t)‖c(t) is a parameterization

of the unit circle, hence ‖k(t)‖ = 1, see Figure 1.4(a). We call %(t) the radius of c(t) and
k(t) the spherical part of the parameterization. It is obvious that the conchoid Cd of C at
distance d with respect to the origin O has the parameterization

cd(t) = (%(t)± d)k(t).

Definition 1.13 A curve C is called a rational conchoid curve with respect to the origin
O, if it admits a rational polar representation of the form (1.10), with a rational radius
function %(t) and a rational parameterization of the unit circle k(t).

In an analogous way we can define rational conchoid surfaces.

Definition 1.14 A surface F is called a rational conchoid surface with respect to the origin
O, if it admits a rational polar representation of the form

f(u, v) = %(u, v)k(u, v), (1.11)

with a rational radius function %(u, v) = ‖f(u, v)‖ and a rational parameterization k(u, v)
of the unit sphere S2.
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Figure 1.4: Conchoid of Nicomedes.

Conchoids Fd, of surface F with a rational parameterization according to (1.11), have
the rational parameterization

fd(u, v) = (%(u, v)± d)k(u, v).

Typically the parameterizations f+d = (%(u, v) + d)k(u, v) and f−d = (%(u, v) − d)k(u, v)
correspond to two distinct real parts of the surface Fd.

Theoretically it might be possible that a surface F and its conchoid surface Fd admit
real rational polar representations with distinct spherical parts k. Up to now we do not
know an example for this case.

To conclude the chapter on fundamentals we give two examples for rational polar repre-
sentations of a line and a plane. In Chapters 2 and 3 we present a method to find rational
polar representations for certain curves and surface classes.

Example 1.15 Conchoid of Nicomedes
The conchoid construction is obviously invariant with respect to rotations about the

reference point O and central similarities with center in O.
We study admissible mappings in Section 2.1.1 in more detail. Therefore we can assume

without loss of generality, that the line C is given by the equation y = 1. This line has the
polar trigonometric representation

c(t) =

(
sin(t)
cos(t)

1

)
, (1.12)

with % = 1
cos(t)

and k(t) = (sin(t), cos(t))T . Therefore the conchoid of Nicomedes at distance
d has the trigonometric parameterization

cd(t) =
1± d cos(t)

cos(t)

(
sin(t)

cos(t)

)
, (1.13)
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see Figure 1.4(b) for and illustration of Conchoids Cd of a line C with different d−values.
Using the Weierstrass substitutions

cos(t) =
1− u2

1 + u2
and sin(t) =

2u

1 + u2
, (1.14)

in (1.12) and (1.13) leads to rational polar representations of C and Cd. Therefore the line
C is a rational conchoid curve, according to Definition 1.13. In Example 1.10 we illustrated
a method to gain the implicit equation from a rational parameterization using the resultant
RFGt of

F (u) = −x+ 2(1 + d)u+ 2(1− d)u3 + xu4

G(u) = (1− y + d) + (1− y − d)u2.
(1.15)

Calculating the resultant RFGu leads to the implicit equation of the Zariski closure of the
set of points cd(u)

Cd : RFGt = (x2 + y2)(y − 1)2 − d2y2 = 0. (1.16)

This is a polynomial of degree four, hence the algebraic degree of the curve is four. There
are no linear terms in x and y and one can easily see that the reference point O = (0, 0) is
a double point of the conchoid independent on d. Changing to homogeneous coordinates,
equation (1.16) reads

Cd : (x21 + x22)(x2 − x0)2 − d2x20x22 = 0.

Intersecting the conchoid with the line at infinity, x0 = 0, shows that the conchoid contains
the points (0, 1, i)R, (0, 1,−i)R and (0, 1, 0)R. A curve passing through the first two of
these points is called circular, again this is independent on d. ?

Example 1.16 Conchoids of a plane
Analogue to the conchoid of Nicomedes in R2 we can parameterize the conchoid of a

plane in R3. Starting with the trigonometric polar representation of the plane F : z = 1

f(u, v) =
1

sin(u)

 cos(u) cos(v)

cos(u) sin(v)

sin(u)

 ,

with %(u) = 1
sin(u)

and k(u, v) = (cos(u) cos(v), cos(u) sin(v), sin(u))T , the conchoid Fd of
F at distance d has the trigonometric parameterization

fd(u, v) =
1± d sin(u)

sin(u)

 cos(u) cos(v)

cos(u) sin(v)

sin(u)

 . (1.17)
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(a) Conchoid of a plane.
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(b) Spherical part: Great circles
on S2.

Figure 1.5: Conchoid of a plane and its spherical part.

See Figure 1.5(a) for the conchoid to the plane F : z = 1 at distance d = 2 and Figure
1.5(b) illustrates one parameter family of circles of k(u, v). The conchoid Fd is a surface
of algebraic order four with the equation

Fd(x, y, z) = (x2 + y2 + z2)(z − 1)2 − z2d2 = 0. (1.18)

Similar to the conchoid of Nicomedes, the origin O = (0, 0, 0) is a singular point of Fd and
the intersection with the plane at infinity consists of the point (0, 0, 0, 1)R and the ideal
conic x21 + x22 + x23 = 0 ∩ x0 = 0, independent on the choice of d. Hence the conchoid Fd
is a surface of rotation about the z−axis, the meridian curve is obviously a conchoid of
Nicomedes.

?
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Chapter 2

Rational Conchoids of Curves

The main contribution of the thesis is to find rational parameterizations of conchoid curves
and surfaces. Therefore we introduce a cone model. This was at first presented by Peternell,
Gruber and Sendra (2013) and it is similar to the cylinder model used for the construction of
rational offset curves and offset surfaces, see for example Krasauskas and Peternell (2009).

2.1 The Cone Model

Let us assume that C is a rational conchoid curve according to Definition 1.13 with

c(t) = (c1, c2)
T (t), ‖c(t)‖ = %(t)

and rational functions c1(t), c2(t), %(t). We denote the distance of a point X ∈ R2 to the
origin as ‖x‖ = w, hence the hence the coordinates c1(t), c2(t) of C satisfy the equation

D : x2 + y2 − w2 = 0. (2.1)

Interpreting w as a third coordinate of an extended space R3 of R2, equation (2.1) defines
a cone D with vertex in the origin and opening angle π/2. The rational conchoid curve C
corresponds to two rational curves ϕ on the cone D with

ϕ(t) = (c1, c2,±%)T (t),

Where ϕ(t)+ = (c1, c2,+%)T (t) and ϕ(t)− = (c1, c2,−%)T (t) are at least locally differ-
ent curves. On the other hand, a curve ϕ ⊂ D with rational parametrization ϕ(t) =
(ϕ1, ϕ2, ϕ3)

T (t) corresponds to a rational conchoid curve C in R2 with

c(t) = (ϕ1, ϕ2)
T (t) and ‖c(t)‖ = |ϕ3(t)|.

So we can state the following
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Figure 2.1: Conchoid of a parabola.

Theorem 2.1 Rational curves ϕ ⊂ D ⊂ R3 correspond to rational conchoid curves C ⊂
R2 and vice versa, where the rational parameterizations of C and ϕ are connected in the
following way

c(t) = (ϕ1, ϕ2)
T (t) and ‖c(t)‖ = |ϕ3(t)|.

We denote this correspondence as C = π(ϕ).

We embed the Euclidean plane [x, y] in a Euclidean space [x, y, w] as the plane w = 0.
Then the corresponding curves C and ϕ span a cylinder A with generating lines parallel
to the w−axis. Since C = A ∩ (w = 0), the cylinder A has the same implicit equation as
the curve C ⊂ R2. The corresponding curve on D to C is the intersection A ∩D. Figure
2.1(a) illustrates the situation in R3 for a parabola C.

According to Kubota (1972) and Farouki and Sakkalis (1990) all real polynomial curves
ϕ on the cone D are of the form

ϕ(t) =

 c(t)(a(t)2 − b(t)2)
2a(t)b(t)c(t)

c(t)(a(t)2 + b(t)2)


with polynomials a(t), b(t), c(t) ∈ R[t]. The polynomials a(t), b(t) can be chosen relatively
prime, else we put the factor gcd(a(t), b(t)) to c(t). Furthermore we exclude the trivial
cases c(t) = 0 and a(t) = b(t) = 0. We give some examples for the corresponding curves C
of ϕ for choosing a(t), b(t), c(t) with low degree.

• Let a(t) = a1t + a0 be linear and the others constant b(t) = b0, c(t) = c0. The
corresponding curve C has the parameterization c(t) = (c0((a1t+ a0)

2 − b20), 2(a1t+
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Figure 2.2: Conchoid of Nicomedes.

a0)b0c0)
T . For b0 6= 0 it defines the parabola

C : x− 1

4c0b20
y2 + c0b

2
0 = 0.

The origin is the focal point of C, see Figure 2.1(b). See Section 2.3 for more
information about the rationality of conchoids of conic sections.

• Let c(t) be linear and the others constant. The corresponding curve C is obviously a
line c(t) = ((c1t+ c0)(a

2
0 − b20), 2a0b0(c1t+ c0))

T through the origin for t = − c1
c0

, with
the defining polynomial

C : 2a0b0x− (a20 − b20)y = 0.

2.1.1 Admissible Mappings

We study mappings that keep the rationality of the polar representation of a curve. Con-
sider the mapping σ : R2 → R2 with

σ(x) = x′ =
r(x)

s(x)
R · x, with R ∈ R2×2, and RT ·R = I2 = diag(1, 1), (2.2)

and relatively prime polynomials r(x) and s(x). Consequently the norm of x′ is

‖x′‖ =
√

x′ · x′ = r(x)

s(x)
‖x‖.

Thus the rational map (2.2) preserves rational polar representations. It can be decomposed
into a rotation x 7→ R · x about O and a ’scaling’ x 7→ f(x) x with a rational function
f(x), fixing all lines through O.
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If one chooses s(x) = s0 + s1x + s2y as a linear polynomial, r ∈ R and R = I2, then
the rational map (2.2) becomes a perspective collineation. This is a projective linear map
with fixed point O, keeping the axis line r − s(x) = 0 point-wise fixed. The line s(x) = 0
contains points with an improper image, the line −r + s1x + s2y = 0 is called vanishing
line and consists of points with improper pre-images, see Section 1.1.2.

Corollary 2.2 Any rational map of the form (2.2) preserves rational polar representations
with respect to the reference point O = (0, 0). Choosing r ∈ R and a linear polynomial s(x)
these mappings are rotations about O combined with perspective collineations with center
O.

In the following sections we discuss two well known examples for rational conchoid
curves. We use the cone model to proof rationality of the distance to the reference point.
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2.2 Conchoids of Nicomedes

We already presented a trigonometric polar representation of the conchoid of a line in
Example 1.15. We investigate the corresponding curve in the cone model and compare the
results to the previous ones. Given a line L in w = 0 ⊂ R3, the cylinder A through C
is a plane parallel to the w−axis. The intersection A ∩ D is a hyperbola with main axis
direction parallel to w. A hyperbola in R3 allows a rational parametrization.

Instead of analyzing an arbitrary line L in the plane we use mappings of the form (2.2)
and map L to the line C : y = 1. We rotate L about O such that the foot-point P on L
with respect to O is a point P ′ on the y−axis after the rotation. A perspective collineation
with center O and axis line at infinity maps P ′ to P ′′, with ‖OP ′′‖ = 1. Figure 2.2(a)
illustrates the mapping L→ C.

The line C defines the plane A : y = 1 in the cone model, which intersects the cone
D in a hyperbola ϕ : w2 − x2 = 1 ∩ y = 1, see Figure 2.2(b). This hyperbola has the
parameterization

ϕ(t) =

 sinh(t)

1

cosh(t)

 .

The corresponding curve π(ϕ) is the line C with the polar representation

c(t) =

(
sinh(t)

1

)
with %(t) = cosh(t)

and its conchoids read

cd(t) = (cosh(t)± d)

(
sinh(t)
cosh(t)

1
cosh(t)

)
. (2.3)

Substituting the hyperbolic functions with rational ones,

cosh(t) =
1 + u2

1− u2
and sinh(t) =

2u

1− u2
,

in (2.3) leads to the rational polar representation of the conchoids of Nicomedes

cd(u) =
(1 + u2)± d(1− u2)

1− u4

(
2u

1− u2

)
. (2.4)

Using the Weierstrass substitutions (1.14) in equation (1.13) of Example 1.15, shows that
the parameterizations (1.13) and (2.4) are equal.
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Figure 2.3: Cylinder A through ϕ and C and projection π.

2.3 Conchoids of Conic Sections

Conic sections are well studied according to their rational polar representations. It is known
that for an arbitrary reference point in the plane, the conchoid curves of conic sections are
not rational. Except if the reference point O lies on C and if O is a focal point of C, for an
elementary proof see Wieleitner (1908) and for an algebraic proof see Sendra and Sendra
(2010). We want to show this result by analyzing the curve ϕ in the cone model.

The cylinder A through a conic section is a quadratic cylinder, hence ϕ = A ∩D is a
curve of degree four, see Figure 2.3. Quartic curves in R3 are well studied and they are
rational, if ϕ has a singularity or if it is reducible, see Telling (1936). We want to examine
these two cases.

First, let the intersection of the cone D and the cylinder A have a singularity. The
singularity has to be in the vertex of D, hence O ∈ A is a necessary condition, and so
O ∈ C follows. If C is a circle and O ∈ C, the conchoids are so called Limacons of Pascal,
see Figure 2.3(a) and Example 2.3.

Second, Let us assume ϕ is reducible, see Figure 2.3(b). Since the generators of A
are parallel to the axis of D, ϕ can only consist of two conic sections. Furthermore D is
symmetric to the plane w = 0, which implies that ϕ decomposes into two conic sections
symmetric to the plane w = 0. The corresponding curve C = π(ϕ) is a conic section with
one focal point in O, see Wunderlich (1966). We discuss a conic with focal point in O in
Example 2.4 in more detail.

Example 2.3 Limacon of Pascal
Given an arbitrary circle C with radius r through the origin O, we rotate C about O,

such that its mid-point lies on the x−axis. This circle is defined by

C : x2 − 2rx+ y2 = 0, (2.5)

see Figure 2.4(a). The cylinder A through C in the cone model has rotational symmetry
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Figure 2.4: Rational conchoid of conic sections.

and the same implicit equation as C, for an illustration see Figure 2.5(a). We parameterize
the cone D through the circle in the plane w = 1,

d(t, s) =

 s cos(t)

s sin(t)

s

 , (2.6)

and compute the intersection with A by inserting (2.6) in (2.5),

s2 − 2rs cos(t) = 0.

There are two solutions for s, first s = 0 which yields the origin and second s = 2r cos(t)
which yields to a trigonometric parameterization of the quartic ϕ with a double point in
O, see Figure 2.3(a). It reads

ϕ(t) = 2r cos(t)

 cos(t)

sin(t)

1

 , (2.7)

this defines the well known Viviani curve. Equation (2.7) leads to a trigonometric param-
eterization of the corresponding circle C = π(ϕ) and its conchoids Cd,

cd(t) = (2r cos(t)± d)

(
cos(t)

sin(t)

)
. (2.8)

In this example the parameterizations c+d and c−d parameterize the same curve since
c+d(t) = c−d(t+ π). Using the Weierstrass substitutions (1.14) in (2.8) leads to a rational
parameterization of the Limacons of Pascal, its equation is

Cd : d2(x2 + y2)− (x2 − 2xr + y2)2 = 0.
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Figure 2.5: Notation for the parameterization in the cone model.

Obviously O ∈ Cd holds and d = 0 leads to the circle (2.5). ?

Example 2.4 Ellipse with the focal point O
We want to give a rational polar representation of an ellipse C with one focal point in

O, see Figures 2.4(b) and 2.5(b). With possible admissible mappings, C is given through

C :
(x− e)2

a2
+
y2

b2
− 1 = 0,

with e2 + b2 = a2. Since ϕ decomposes into two ellipses ϕ+, ϕ−, symmetric to the w = 0
plane, we have to parameterize only one of them, for instance ϕ+ with w > 0. The
midpoint N of ϕ+ has the coordinates N = (e, 0, a)T and the plane carrying ϕ+ is spanned
by the vectors e1 = (a, 0, e)T and e2 = (0, 1, 0)T . The semi-major axis is

√
a2 + e2 and the

semi-minor axis is b, hence the parameterization of ϕ+ is

ϕ+(t) = N + cos(t)e1 + b sin(t)e2 =

 e+ a cos(t)

b sin(t)

a+ e cos(t)

 .

The corresponding curve π(ϕ+) yields a trigonometric parameterization of the ellipse C

c(t) =

(
e+ a cos(t)

b sin(t)

)
with %(t) = a+ e cos(t). (2.9)

The conchoid Cd has the trigonometric parameterization

cd(t) =
a+ e cos(t)± d
a+ e cos(t)

(
e+ a cos(t)

b sin(t)

)
. (2.10)
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The Weierstrass substitutions (1.14) applied in (2.9) and (2.10) leads to real rational polar
representations of the ellipse C and its conchoids Cd. The conchoids are algebraic curves
of degree eight that factorize into two algebraic curves C+d and C−d, both of degree four,

C±d : d2(b2x2 + a2y2)± 2dab2(x2 + y2)− a2b2(x2 + y2)

(
(x− e)2

a2
+
y2

b2
− 1

)
= 0.

?
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Chapter 3

Rational Conchoids of Surfaces

This chapter contains the main contribution of the thesis. It is a cumulation of the articles
Peternell, Gruber and Sendra (2011), Peternell, Gruber and Sendra (2013) and Gruber
and Peternell (2013). The content of the first one is adapted to the notation and concept
of the cone model. The other two have been adapted to fit the notation and the reading
flow of the thesis and some detailed information was added.

We expand the cone model presented in Section 2.1 to Euclidean three-space R3 and
give classes of rational conchoid surfaces together with algorithms to calculate the necessary
rational polar representations.

Note that this is a similar matter to Pythagorean-Normal surfaces, denoting surfaces
with rational Gaussian image, hence they possess rational normal vectors with rational
length. For more information about PN surfaces see for example Peternell and Pottmann
(1998) and Lávička and Bastl (2008).

3.1 The Cone Model

Lets assume F is a rational conchoid surface according to Definition 1.14 with

f(u, v) = (f1(u, v), f2(u, v), f3(u, v))T and ‖f(u, v)‖ = %(u, v)

and rational functions f1(u, v), f2(u, v), f3(u, v) and %(u, v). We denote the distance of a
point X ∈ R3 to the origin as ‖x‖ = w, hence the coordinates fi(u, v), i = {1, 2, 3} of
f(u, v) satisfy the equation

D : x2 + y2 + z2 − w2 = 0. (3.1)

Interpreting w as a fourth coordinate of an extended space R4 of R3, equation (3.1) defines
a cone D ⊂ R4 with vertex in the origin and opening angle π/2. The rational conchoid
surface F corresponds to a rational surface Φ on the cone D with

ϕ(u, v) = (f1(u, v), f2(u, v), f3(u, v),±%(u, v))T .
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Figure 3.1: The cone model.

On the other hand, a rational surface ϕ(u, v) ⊂ D corresponds to a rational conchoid
surface F in R3 with

f(u, v) = (ϕ1(u, v), ϕ2(u, v), ϕ2(u, v))T and ‖f(u, v)‖ = |ϕ4(u, v)|.

So we can state the following

Theorem 3.1 Rational surfaces Φ ⊂ D ⊂ R4 correspond to rational conchoid surfaces
F ⊂ R3 and vice versa. Where F and Φ are connected in the following way

f(u, v) = (ϕ1(u, v), ϕ2(u, v), ϕ3(u, v))T and ‖f(u, v)‖ = |ϕ4(u, v)|.

We denote this correspondence as F = π(Φ). For an illustration see Figure 3.1.

We embed the Euclidean space R3 with coordinates [x, y, z] in an Euclidean space R4

with coordinates [x, y, z, w] as the hyperplane w = 0. Then the corresponding surfaces
F ⊂ R3 ⊂ R4 and Φ ⊂ R4 span a cylinder A with generating lines parallel to the w−axis.
Since F = A ∩ (w = 0), the cylinder A has the same implicit equation as the surface
F ⊂ R3. The corresponding surface Φ on D to F is the intersection A ∩D.

According to Dietz et al. (1993) all polynomial surfaces F on the cone D can be pa-
rameterized as F : f(u, v) = (x(u, v), y(u, v), z(u, v), w(u, v))T with

x(u, v) = 2σ(u, v)(a(u, v)b(u, v)− c(u, v)d(u, v)),

y(u, v) = 2σ(u, v)(b(u, v)d(u, v) + a(u, v)c(u, v)),

z(u, v) = σ(u, v)(−a(u, v)2 + b(u, v)2 + c(u, v)2 − d(u, v)2),

w(u, v) = σ(u, v)(a(u, v)2 + b(u, v)2 + c(u, v)2 + d(u, v)2)

(3.2)

and polynomials a(u, v), b(u, v), c(u, v), d(u, v), σ(u, v) ∈ R[u, v].

Example 3.2 Linear polynomials
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We choose a(u, v), . . . , σ(u, v) of (3.2) as linear polynomials, hence the parameterization
f(u, v) is of maximum bi-degree (2, 2). For more details on quadratically parameterizable
surfaces see Coffman et al. (1996). For example the choice

σ(u, v) = 1, a(u, v) = u, b(u, v) = 1, c(u, v) = 1 and d(u, v) = v

leads to the two dimensional surface

ϕ(u, v) = (2(u− v), 2(u+ v),−(u2 + v2) + 2, u2 + v2 + 2)T

contained in the three space z + w = 4 ⊂ R4. Inserting w = 4 − z in (3.1) leads to the
cylinder A with generators parallel to the w−axes containing Φ, hence to the corresponding
surface F = π(Φ),

F : x2 + y2 + 8z = 16.

This is a rotational paraboloid with O as focal point, see Figure 3.2(a).
We want to derive another example by choosing the linear polynomials

σ(u, v) = 1, a(u, v) = u, b(u, v) = u, c(u, v) = 1 and d(u, v) = v.

The surface in R4 is given with the parameterization

ϕ(u, v) = (2(u2 − v), 2u(v + 1), 1− v2, 2u2 + v2 + 1)T .

To gain an implicit equation of the corresponding surface F = π(Φ), we eliminate the
parameter u, v from the polynomials

x− 2(u2 − v) = 0, y − 2u(1 + v) = 0 and z + v2 − 1 = 0.

This yields to the quartic algebraic surface F containing O,

F : 4xy2z + 4x2z2 + y4 − 16y2 + 16y2z − 8y2x+ 16z3 − 16z2 = 0.

See Figure 3.2(b) for an illustration of this surfaces. ?

3.1.1 Admissible Rational Mappings

We study mappings that keep the rationality of the polar representation of a surface.
Consider the mapping σ : R3 → R3 with

σ(x) = x′ =
r(x)

s(x)
R · x, with R ∈ R3×3, and RT ·R = I3 = diag(1, 1, 1), (3.3)

and relatively prime polynomials r(x) and s(x). Consequently the norm of x′ is

‖x′‖ =
√

x′ · x′ = r(x)

s(x)
‖x‖.
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(a) Rotational paraboloid. (b) Quartic surface.

Figure 3.2: Surfaces arising from linear polynomials.

Thus the rational map (3.3) preserves rational polar representations. It can be decomposed
into a rotation x 7→ R·x around a line through O and a ’scaling’ x 7→ f(x) x with a rational
function f(x), fixing all lines through O.

If one chooses s(x) = s0+s1x+s2y+s3z as a linear polynomial, r ∈ R and R = I3, then
the rational map (3.3) becomes a perspective collineation. This is a projective linear map
with fixed point O keeping the axis plane r−s(x) = 0 point-wise fixed. The plane s(x) = 0
contains points with improper image points, the plane −r + s1x + s2y + s3z = 0 is called
vanishing plane and consists of points with improper pre-images, see Section 1.1.2. In
Section 3.3.2 these perspective collineations together with rotations around lines through
O are used to transform a quadric to a particular normal form.

Corollary 3.3 Any rational map of the form (3.3) preserves rational polar representa-
tions with respect to the reference point O = (0, 0, 0). Choosing r ∈ R and a linear poly-
nomial s(x) these mappings are rotations about lines through O combined with perspective
collineations with center O.
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3.2 Conchoids of Rational Ruled Surfaces

In this section we prove, that real rational ruled surfaces are real rational conchoid surfaces.
Furthermore we provide an algorithm to compute a rational polar representation of a given
ruled surface and some examples. This section is the main contribution of Peternell, Gruber
and Sendra (2011).

3.2.1 Ruled Surfaces

A ruled surface F carries a one parameter family of lines, called generating lines, and
therefore it can be parameterized as follows

f(u, v) = c(u) + ve(u),

where c(u) is a curve on F , called directrix, and e(u) is the direction vector field of the
generating lines. A ruled surface is rational, if its directrix and the direction vector field
are rational. In the following we want to choose the foot-point curve p(u), with respect
to the reference point O, as directrix curve. If c(u), e(u) are real and rational, then the
foot-point curve is also a real curve with rational parameterization

p(u) = c(u)− c(u)T · e(u)

e(u)T · e(u)
e(u).

This foot-point curves always exists as long as ‖e‖ 6= 0, ∀u, which would not define a
ruled surface. If F is a cone with vertex in O, the curve p(u) degenerates to O and
‖p(u)‖ = 0, ∀u.

The tangent planes of a ruled surface f(u, v) = p(u) + ve(u), are defined through the
normal vectors

n(u, v) = fu(u, v)× fv(u, v) = (pu(u) + veu(u))× e(u) = n1(u) + vn2(u). (3.4)

If the normals along a generating line are linearly dependent, the line is called torsal.
A ruled surface that has only torsal generating lines is called a torsal ruled surface or
developable ruled surface. If it has a finite set of torsal generating lines it is called skew
ruled surface, see Figure 3.3(a) for an example. Torsal ruled surfaces are cylinders, cones
and tangent surfaces to spatial curves or combinations of those. Given a tangent surface
to a spacial curve, the curve itself is a locus of singular points of the surface, see Figure
3.3(b). A tangent surface is given by

f(u, v) = c(u) + vċ(u)

where ċ(u) denotes the derivative with respect to u. The normal vectors of F according
to equation (3.4) then read

n(u, v) = v(ċ(u)× c̈(u)).

If c(u) is a rational, ċ(u) and c̈(u) s also rational and therefore the tangent surfaces to a
rational spacial curve, is also rational.
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(a) Plücker conoid (skew). (b) Tangent surface of a helix
(torsal).

Figure 3.3: Ruled surfaces.

3.2.2 Rational Conchoids of Rational Ruled Surfaces

Theorem 3.4 Rational ruled surfaces F possess rational polar representations, hence they
are rational conchoid surfaces. The real rational parameterizations can be constructed
explicitly.

Proof: We give a constructive proof of the theorem. Lets assume the rational ruled surface
is given by a rational foot-point curve p(u) with respect to O and a rational direction
vector field e(u),

f(u, v) = p(u) + ve(u).

The corresponding cylinder A in the cone model, see Section 3.1, has the parameterization

a(u, v, r) = p(u) + ve(u) + rw,

with p(u) = (p(u), 0)T , e(u) = (e(u), 0)T and w = (0, 0, 0, 1)T . Obviously this cylinder
carries a one parameter family of planes ε(u) spanned by e(u) and w. The intersection
Φ = A∩D is a surface that carries a one parameter family of conic sections c(u) = ε(u)∩D.
Since p(u)T · e(u) = 0, ∀u, substituting a(u, v, r) in D : x2 + y2 + z2 − w2 = 0 leads to a
quadratic equation in v and r,

c(u) : p(u)2 + v2e(u)2 − r2 = 0.

Introducing homogeneous coordinates v = x2/x1 and r = x0/x1, the previous equation
reads

c(u) : −x20 + p(u)2x21 + e(u)2x22 = 0. (3.5)
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This defines a rational one parameter family of conic sections c(u) in the projective plane
P2 with coordinates x0, x1, x2. A rational parameterization z(u, t) of c(u) would permit a
rational parameterization of Φ,

Φ = p(u) +
z2(u, t)

z1(u, t)
e(u) +

z0(u, t)

z1(u, t)
w.

To find a rational parameterization z(u, t) satisfying (3.5),

−z0(u, t)2 + p(u)2z1(u, t)
2 + e(u)2z2(u, t)

2 = 0, (3.6)

we need the following

Lemma 3.5 Let

c(u) : (x0, x1, x2) ·A(u) · (x0, x1, x2)T = 0, (3.7)

be a one parameter family of conics in P2, with a symmetric matrix A(u) ∈ R3×3 with
real rational entries (aij(u) ∈ R(u)), and (x0, x1, x2)R are homogeneous coordinates in P2.
If for all but finitely many u ∈ R the quadratic curve c(u) contains more than one real
point, then there exists real rational functions y0(u), y1(u) and y2(u) which satisfy (3.7)
identically.

Proof: For a full constructive proof see Peternell (1997) or Schicho (1997). We give an
outline of the construction and assume that A(u) is a diagonal matrix. Let A(u) =
diag(−a0(u)2, a1(u)2, a2(u)2) with polynomials a0(u), a1(u), a2(u) ∈ R(u) of degree l,m, n
respectively. The family of conics (3.7) simplifies to

c(u) : −a0(u)2x20 + a1(u)2x21 + a2(u)2x22 = 0. (3.8)

We assume that the polynomials a0(u)2, a1(u)2, a2(u)2 do not have common or multiple
zeros and denote the conjugate complex zeros of ai(u)2 with αi,j, αi,j, i ∈ {0, 1, 2}. Sub-
stituting the zeros in 3.8 leads to a system of quadratic equations

+a1(α0,j)
2x21 + a2(α0,j)

2x22 = 0, j ∈ {0, . . . , l},
−a0(α1,j)

2x20 + a2(α1,j)
2x22 = 0, j ∈ {0, . . . ,m},

−a0(α2,j)
2x20 + a1(α2,j)

2x21 = 0, j ∈ {0, . . . , n}.

Factorizing these equations leads to at most 2(l + m + n) relevant linear equations. We
make the general ansatz

y0 =
m+n∑
i=0

y0iu
i, y1 =

l+n∑
j=0

y1ju
j, y2 =

l+m∑
k=0

y2ku
k, (3.9)

where we have 2(l + m + n) + 3 unknown. At least three degrees of freedom are left, and
we choose them such that −a0(u)2y20 + a1(u)2y21 + a2(u)2y22 = 0, ∀u ∈ R. The curve y(u)
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tracing the conic family has the degree max(m+ n, l + n, l +m) �

According to this Lemma, there exists a rational trajectory y(u) through a real rational
family of conics where the conics possess more than one real point, except a finite set. The
conics of the family (3.5) fulfill this condition for real rational p(u) and e(u), for an example
of such a family of conics see Figure 3.6(a).

Stereographic projections with centers in y(u) of a line g(t) to the conics c(u) provide
a real rational parameterization z(u, t) according to (3.6). For example if we choose g(t)
as the line at infinity g(t) = (0, 1, t)TR, the parameterization of the conics is given by

z(u, t) = y(u)− 2
p(u)2y1(u) + e(u)2y2(u)t

p(u)2 + e(u)2t2
g(t). (3.10)

The real rational polar representation of the ruled surface F follows

f(u, t) = %(u, t)k(u, t) =
1

z1(u, t)
(z1(u, t)p(u) + z2(u, t)e(u)), (3.11)

with

%(u, t) =
z0(u, t)

z1(u, t)
and k(u, t) =

1

z0(u, t)
(z1(u, t)p(u) + z2(u, t)e(u)),

and the conchoids are given by

fd(u, v) = (%(u, t)± d)k(u, t) =
z0(u, t)± dz1(u, t)
z0(u, t)z1(u, t)

(z1(u, t)p(u) + z2(u, t)e(u)). (3.12)

�

The most difficult part in the algorithm is the calculation of the rational parameteri-
zation z(u, t) of the conics c(u) in equation (3.5). More precisely the computation of the
rational trajectory y(u). We show a numerical example in Appendix A to demonstrate the
construction of y(u).

There are some special geometrically distinguished cases where y(u) can be computed
in a simple way or it even degenerates to a point. We discuss some of this simple cases in
the next sections.

3.2.3 Ruled Surfaces with Rational Length of Direction Vector
Field

Let F be a rational ruled surface, with foot-point curve p(u) with respect to the origin and
directions vectors e(u) with rational length. Since the direction vector field is unique up

to scaling we choose e(u)
‖e(u)‖ as direction vector field of the ruled surface and denote it again
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as e(u), therefore ‖e(u)‖ = 1 holds. Consequently the corresponding family of conics (3.5)
reads

c(u) : p(u)2x21 + x22 = x20. (3.13)

Obviously these conics share the common points (1, 0, 1)TR and (1, 0,−1)TR. Applying
the stereographic projection according to (3.10) to the family of conics c(u) of (3.13), leads
to the rational parameterization

z(u, t) = (1 + p(u)2t2, 2t, 1− p(u)2t2).

Furthermore the parameterization (3.11) of the ruled surface F simplifies to

f(u, t) = p(u) +
1− p(u)2t2

2t
e, with ‖f(u, t)‖ =

1 + p(u)2t2

2t
. (3.14)

According to (3.12) one obtains a rational polar representation of F and its conchoid
surfaces Fd,

fd(u, t) =
1 + p(u)2t2 ± 2td

2t(1 + p(u)2t2)
(2tp(u) + (1− p(u)2t2)e(u)). (3.15)

Let us assume that the degree of the foot-point curve p(u) is n, and that the degree of
the direction vector field is m. Then the rational bi-degree of the parameterization of the
conchoids (3.15) is (4n + m, 4). We want to give some examples with rational direction
vector field e(u).

Example 3.6 F is a rational cylinder
We choose the coordinate system such that direction vector of F is e = (0, 0, 1)T . Hence

the cross section curve p(u) = (p1, p2, 0)T (u) with the xy−plane is the foot-point curve of
F with respect to O. Therefore equations (3.14) and (3.15) read

f(u, t) =
1

2t

 2tp1(u)

2tp2(u)

1− p(u)2t2

 and fd(u, t) =
1 + p(u)2t2 ± 2td

2t(1 + p(u)2t2)

 2tp1(u)

2tp2(u)

1− p(u)2t2

 .

This is a rational parameterization of bi-degree (4n, 4), with rational degree n of p(u). ?

Example 3.7 F is a rotational ruled surface
We may assume that the rotational axis of F is parallel to the z-axis of the coordinate

system and that its direction vector is

e(u) = (cos(α) cos(u), cos(α) sin(u), sin(α))T ,

with α = const. Besides the trivial cases α = 0 where F is a plane, and α = π/2 where F is
a rotational cylinder, F is a rotational hyperboloid of one sheet. An example is illustrated
in Fig. 3.4(b).
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Figure 3.4: Conchoids Fd of different ruled surfaces at distance d.

We want to discuss a rotational hyperboloid of one sheet F with the xy−plane as
symmetry plane. The circle in the xy−plane has radius r and mid-point (m, 0, 0)T . The
surface has the parameterization

f(u, v) =

 r sin(u) +m

−r cos(u)

0

+ v

 cos(α) cos(u)

cos(α) sin(u)

sin(α)

 .

The foot-point curve p with respect to O, see Figure 3.4(a), has the parameterization

p(u) =

 r sin(u)−m cos(α)2 cos(u)2 +m

− cos(u)(r +m cos(α)2 sin(u))

−m cos(α) sin(α) cos(u)

 . (3.16)

Shape of the foot-point curve It turns out that the normal projection p(u) of p(u) to
the xy−plane is a conchoid of the circle with mid-point M = (m(1 + sin(α)2)/2, 0, 0)T and
Radius R = m cos(α)2/2 at distance r with respect to the point O = (m sin(α)2, 0, 0)T , see
Figure 3.4(a).

Substituting (3.16) in (3.14) and (3.15) leads to trigonometric polar representations of
F and Fd.

?

Example 3.8 Ruled surface by rational motion to a line
More general examples are obtained by applying a rational motion to a line. Therefore

the direction vector e(u) has constant length and defines a rational curve in the unit sphere.
We want to discuss this special case exemplarily for the Plücker conoid.
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The Plücker conoid F is an algebraic ruled surface of order three, also called cylindroid,
it is projectively equivalent to the Whitney umbrella. A trigonometric parameterization
with the double line as z-axis reads (0, 0, sin 2u)T + v(cosu, sinu, 0)T . It can be generated
in the following way. Rotate the x-axis around z and superimpose this rotation by the
translation (0, 0, sin 2u)T in z-direction. An implicit equation of F is z(x2 + y2) = 2xy.

Since the z-axis is a double line of F , the origin is a double point and the computation
of the conchoid with respect to O is trivial. Thus we apply a translation by (0, 1, 2)T . A
rational parameterization of the translated surface, which is again denoted by F is given
by

f(u, v) =
1

(u2 + 1)2

 (1− u4)v
(u2 + 2vu+ 1)(u2 + 1)

2(u4 − 2u3 + 2u2 + 2u+ 1)

 . (3.17)

The squared length of f(u, v) corresponds to the family of conics

c(u) : −(u2 + 1)4x20 + α(u)x21 + 4u(u2 + 1)3x1x2 + (u2 + 1)4x22 = 0, (3.18)

with α(u) = 5(u2 + 1)4 + 16u(u2− 1)((u2 + 1)2 + u(u2− 1)). It is obvious that these conics
share the vertices (±1, 0, 1)TR.

A rational solution z(u, t) = (z0, z1, z2)
T (u, t) of (3.18) is computed by stereographic

projection of the line (0, 1, t)TR onto the conics from (3.18) with center (1, 0, 1)TR. This
leads to the reparameterization along the generating lines of F ,

v(u, t) =
z2
z1

= −α(u)t2 + (u2 + 1)2(4tu− 1)

2(u2 + 1)3t
. (3.19)

The surface F has the rational radius function

‖f(u, t)‖ =
z0(u, t)

z1(u, t)
= −α(u)t2 + (u2 + 1)2

2(u2 + 1)3t
.

Substituting (3.19) in (3.17) leads to a rational parameterization of f(u, t) and a rational
parameterization of the conchoid Fd with respect to O and distance d = 1

fd(u, t) =

 β(u, t)(u2 − 1)(α(u)t2 + (u2 + 1)2(4tu− 1))

β(u, t)(−α(u)t2u+ (u4 − 1)2t+ (u2 + 1)u)

4tβ(u, t)(u2 + 1)2((u2 + 1)2 − 2(u2 + 2)u)


with

β(u, t) =
α(u)t2 + 2(u2 + 1)3t+ (u2 + 1)2

2t(u2 + 1)2(α(u)(u2 + 1)2t2 + (u2 + 1)4)
.

?
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Figure 3.5: Ruled surfaces and their conchoids.

Other special cases of rational ruled surfaces F occur if the norms ‖p(u)‖ and ‖e(u)‖ in
equation (3.5) are both rational. We may assume ‖e‖ = 1 and we denote ‖p(u)‖ = α(u).
Thus there exists a spherical rational curve a(u) with ‖a(u)‖ = 1 and p(u) = α(u)a(u).
The spherical part σ(F ) consists of great circles being contained in planes spanned by the
rational orthogonal unit vectors a(u) and e(u) and σ(F ) admits the parameterization

k(u, t) = a(u) cos t+ e(u) sin t.

To determine the radius function %(u, t) of f(u, t) = %(u, t)k(u, t), the parameterization
z(u, t) = (α(u), cos t, α(u) sin t) of the conics c(u) from (3.5) leads to %(u, t) = z0/z1.

This case occurs when computing conchoid surfaces Fd of rotational ruled surfaces F
with respect to a point O on the rotational axis. Examples are illustrated in Figure 3.5. It
is evident that the conchoid surface Fd of F is a rotational surface. The generating curve
of the conchoid Fd is the conchoid curve with respect to O of a generating line of F .

3.2.4 Conchoid Surfaces of Rational Cones

Let F be a rational cone with vertex v = (0, 0, 1)T and directrix c(u) = (c1(u), c2(u), 0)T .
For dealing with the general case we assume that O /∈ F . Then F is parameterized by

f(u, v) = v + v(c(u)− v) = v + ve(u),

with e(u) = (c1(u), c2(u),−1). With respect to these choices the squared length of f(u, v)
is ‖f(u, v)‖2 = 1− 2v + e(u)2v2. The family of conics reads

c(u) : x21 − 2x1x2 + x22e(u)2 = x20.

The conics c(u) share two common points (1,−1, 0)TR and (1, 1, 0)TR, and a stereographic
projection results in their rational parameterization

z(u, t) = (1− 2t+ e(u)2t2, 1− e(u)2t2, 2t(1− t))TR.
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(a) Family of conics (green) with
rational trajectories.

F

Fd

(b) Hyperbolic Paraboloid.

Figure 3.6: Conchoid of HP-Surface.

Substituting v = z2/z1 in f(u, v) gives the rational parameterization

f(u, t) = v +
2t(1− t)

1− e(u)2t2
e(u), with ‖f(u, t)‖ =

z0(u, t)

z1(u, t)
=

1− 2t+ e(u)2t2

1− e(u)2t2
.

Rational polar representations of F and its conchoid surfaces Fd are obtained with (3.11)
and (3.12).

3.2.5 Conchoid Surfaces of Quadratic Ruled Surfaces

Let F be a real quadratic ruled surface, hence a hyperboloid of one sheet or a hyperbolic
paraboloid, see Table 1.1. Depending on the incidence of O and F we can transform F ,
according to Sections 3.3.2 and 3.3.5, either to a hyperboloid of one sheet, in normal form
F ′ : −1− a2x2 + b2y2 + c2z2 = 0, or to the hyperbolic paraboloid F ′ : z = −ax2 + by2.

Instead of the method mentioned in the previous sections we use a different approach,
that leads to lower bi-degrees for the polar representation of quadratic ruled surfaces. This
approach can be used for every real rational ruled surface

Given the ruled surface F by

f(u, v) = c(u) + ve(u).

We want to parameterize the spherical part k(u, v) of the polar parameterization f(u, v) =
%(u, v)k(u, v) and then deduce the radius function %(u, v).

The spherical part k(u, v) of a ruled surface is a family of great circles contained in
planes α(u) on the unit sphere S2, with carrier planes α(u) = R(0, a(u))T = R(0, c(u) ×
e(u))T . The stereographic projection with center in (0, 0, 1)T maps this family of circles
on the sphere, to a family of circles C(u) in the plane z = 0,

C(u) :

(
x+

a1(u)

a3(u)

)2

+

(
y +

a2(u)

a3(u)

)2

− ‖a(u)‖2

a3(u)2
= 0.
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Decomposing ‖a(u)‖2 into the sum of two squares h1(u), h2(u) leads to a rational trajectory
Q of the circles C,

q(u) =
1

a3(u)

(
h1(u)− a1(u)

h2(u)− a2(u)

)
. (3.20)

The decomposition is possible, if ‖a(u)‖2 is a non-negative polynomial, this is fulfilled since
a(u) defines a real curve on S2.

With the trajectory q(u) of (3.20) we construct a rational parameterization d(u, t) of
the circles C(u). The inverse stereographic projection leads to a rational parameterization
k(u, t) of S2. See Figure 3.6(a) for the circles C(u) of the hyperbolic paraboloid F shown
in Figure 3.6(b).

In the next step we calculate the radius function %(u, t). Consider the planes ν(u)
spanned by the generating lines c(u) + ve(u) and the vector a(u). The intersection of the
line bundle %(u, t)k(u, t) with ν(u) : (x− c(u))T ·n(u) = 0, with n(u) = e(u)× a(u), leads
to the radius function

%(u, t) =
c(u) · n(u)

k(u, t) · n(u)
=
‖c(u)× e(u)‖
k(u, t) · n(u)

=
‖a(u)‖2

k(u) · n(u)
. (3.21)

Example 3.9 Hyperboloid of one sheet
Let the hyperboloid of one sheet F : −1− a2x2 + b2y2 + c2z2 = 0 be parameterized by

f(u, v) = c(u) + ve(u) =


−u
a
−u
b
1
c

+ v


−u2−1
au
u2−1
bu
2
c

 .

The family of circles C(u) in the plane z = 0 read

C(u) :

(
x+

a(1 + u2)

2cu

)2

+

(
y +

b(1− u2)
2cu

)2

− (γ(1− u2))2 + (2βu)2

4c2u2
= 0,

with β =
√
a2 + c2 and γ =

√
a2 + b2. Hence the quadratic rational trajectory Q is given

by

q(u) = − 1

2cu

(
γ(1− u2) + a(1 + u2)

2βu+ b(1− u2)

)
.

Parameterizing the family of circles C(u) with Q and inverse stereographic projection leads
to the rational spherical part k(u, t) of F of bi-degree (4, 2),

k(u, t) =
1

µ(u, t) + 2c2(1 + t2)u2

 4cu(γ(1− u2)(1− t2)− a(1 + u2)(1 + t2) + 4βut)

4cu(−2βu(1− t2) + (2tγ − b(1 + t2))(1− u2))
µ(u, t)

 .
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with

µ(u, t) = 2γ((u4 + 1)(−2bt+ γ(1 + t2)) + (1− u4)a(t2 − 1))+

(4(2btγ + (a2 − b2)(1 + t2)))u2 + 4βu(−2at(u2 + 1) + (1− u2)b(1− t2)).

Equation (3.21) leads to the rational radius function %(u, t) of F of bi-degree (4, 2),

%(u, t) =
µ(u, t) + 2c2(1 + t2)u2

ν(u, t)
,

with denominator

ν(u, t) = 2c(γ((−2bt+ γ(1 + t2))(1− u4)− a(1− t2)(u4 + 1))

+2uβ(b(1− t2)(u2 + 1)− 2at(1− u2)) + 2γa(1− t2)u2).

The hyperboloid of one sheet has a rational polar representation f(u, t) = %(u, t)k(u, t) of bi-
degree (4, 2), since the denominator of k(u, t) equals the numerator of %(u, t). Obviously the
bi-degree of the rational polar representation fd(u, t) = (%(u, t) + d)k(u, t) of the conchoids
Fd of F raises and it is (8, 4).

?
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3.3 Conchoids of Quadrics

In this section we prove that real quadrics are real rational conchoid surfaces. Furthermore
we provide an algorithm to compute a rational polar representation of a given quadric and
its conchoid surfaces and give some examples. This section is the main contribution of
Gruber and Peternell (2013).

3.3.1 Conchoids of Quadrics – Theory

A quadric F ⊂ R3 is the zero set of a quadratic equation in x, y and z, see Section 1.1.3. In
the following F denotes both, the quadric as well as its defining polynomial F (x, y, z) = 0,
since it should be clear from the context whether F denotes a surface or a polynomial. We
assume that the polynomial F has real coefficients and that the quadric F has more than
one real point.

Quadrics F ⊂ R3 and conics c ⊂ R2 admit real rational parameterizations, see for
example Lü (1996). The conchoid curves cd of conics c ⊂ R2 with respect to an arbitrary
reference point O are typically non-rational curves, see Section 2.3. Thus it is quite surpris-
ing that conchoid surfaces Fd of quadrics F ⊂ R3 admit real rational parameterizations,
with respect to any reference point O ∈ R3.

The proof of this statement is constructive and is performed in several steps. We provide
a symbolic computation of real rational polar representations of quadrics. An outline of
the construction reads as follows:

• Apply admissible transformations to represent a quadric F by a normal form, see
Section 3.1.1 for information about these transformations.

• Compute the associated pencil of quadrics in R4. Its base locus Φ carries a rational
one-parameter family of real conics L(u).

Theoretically these steps already proof the existence of a real rational parameterization of
the quadric. To obtain a parameterization of low bi-degree we perform the following steps
in addition.

• Conics L(u) ⊂ Φ are transformed to circles C(u) in S2. We provide explicit param-
eterizations of C(u) ⊂ S2 which imply rational parameterizations of Φ.

• Rational parameterizations of Φ correspond to rational polar representations of F .

3.3.2 Transformation to Normal Form

A quadric F in P3 is given by the equation

F (x, y, z) = xT ·M · x = 0, with MT = M ∈ R4×4 and x = (1, x, y, z)T ,

where M is a symmetric 4× 4 matrix with real entries. We assume that the matrix M has
rank four, and that O /∈ F . The case of rk(M) < 4 and other special cases are discussed
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in detail in Sections 3.3.4, 3.3.5 and 3.3.6. Due to some nice geometric properties, the case
that F is a sphere with mid point not in O, will be discussed separately in Section 3.4.

We apply admissible transformations according to Section 3.1.1 and coordinate trans-
formations, such that the image quadric is represented by a diagonal matrix. For the
excluded quadrics of the previous paragraph, this transformation is either not possible or
not necessary, hence we discuss them in distinct sections.

We perform this transformation in two steps. First we apply a perspective collineation
κ with center O according to Corollary 3.3. Assume that M has entries mij ∈ R, with
i, j = 1, . . . , 4, then this transformation reads

κ : x′ =
1

s(x)
x, with s(x) = m11 +m12x+m13y +m14z and x = (x, y, zT ). (3.22)

The polar plane δ of O with respect to F is given by s(x) = 0. Thus κ maps δ to the ideal
plane ω = P3 \R3 of the projective space P3 extending R3. The perspective collineation κ
maps F to the quadric

F ′ :
1

m11

+ x′T ·M′ · x′ = 0,

with a symmetric 3 × 3 matrix M′. The equation of F ′ does no longer contain linear
terms in x, y and z. Since O /∈ F and thus O /∈ δ, the origin O becomes the center of
the transformed quadric F ′. Further we may assume that m11 = ±1. Depending on the
position of O and δ with respect to F , there exist different affine types of F ′. These types
are determined by the intersection F ′∩ω, the ideal conic of F ′. It is the image of the conic
F ∩ δ with respect to the map κ.

• If O is inside of F , the intersection F∩δ does not contain real points. Since κ : δ 7→ ω,
the quadric F ′ is an ellipsoid.

• Otherwise if O is outside F , the intersection F ∩ δ is a conic containing real points.
Same arguments imply that F ′ is a hyperboloid, either of one sheet or of two sheets.

• Since O is the center of F ′, it is never a paraboloid.

In a second step we apply a coordinate transformation where the new coordinate axes are
chosen as eigenvectors of M′. This can be considered as rotation fixing O. Thus F ′ is
represented by a diagonal matrix, and reads

F ′ : xT · diag(±1,±a2,±b2,±c2) · x = 0. (3.23)

If all signs in (3.23) are positive, F ′ is a quadric without real points. Otherwise in case of
strict inequalities between a, b and c and with a proper re-ordering of the coordinate axes
the different combinations of signs imply the normal forms of Table 3.1.

In case that there are two coincident eigenvalues, say b = c, F ′ is a rotational quadric
with x as axis. In case that all three eigenvalues coincide, F ′ is a sphere, centered at
O. These particular cases where the computation simplifies significantly, are postponed to
Section 3.3.6.
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(a) Ellipsoid. (b) Hyperboloid of two sheets. (c) Hyperboloid of one sheet.

Figure 3.7: Quadrics in normal form.

Ellipsoid F ′ : −1 + a2x2 + b2y2 + c2z2 = 0,

Hyperboloid of two sheets F ′ : 1− a2x2 + b2y2 + c2z2 = 0,

Hyperboloid of one sheet F ′ : −1− a2x2 + b2y2 + c2z2 = 0.

Table 3.1: Normal forms of quadrics, illustrated in Figure 3.7.

Quadric Pencil and Base Locus

Consider a quadric represented by one of the normal forms, listed in Table 3.1. For simplic-
ity it shall be denoted again by F instead of F ′. We show that F contains a one-parameter
family of conics admitting a real rational polar representation. Let A ⊂ R4 be the three-
dimensional quadratic cylinder through F , whose generating lines are parallel to the w-axis.
Thus A is represented by

A(x, y, z, w) = F (x, y, z) = 0.

Additionally consider the quadratic cone D : x2 + y2 + z2 − w2 = 0 from equation (3.1).
Let B be the pencil of quadrics in R4 spanned by A and D, see Figure 3.8(a),

B(α, β) = αA+ βD ⊂ R4, with (α, β) ∈ R2 \ (0, 0).

A pencil of quadrics in R4 contains up to five singular quadrics. If one of these singular
quadrics, say B, is a cone over a real ruled quadric, the cone B contains two one-parameter
families of real planes ψ(u), u ∈ R, corresponding to the generating lines of the ruled
quadric.

Consider the intersection surface Φ = A ∩ D = π−1(F ), the base locus of the pencil
of quadrics B. The two-dimensional surface Φ is a so called del Pezzo surface of degree
four, and it is known that it admits real rational parameterizations, even a proper one
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over an algebraically closed field. For detailed information about del Pezzo surfaces see for
example Griffiths and Harris (1978); Manin (1974); Schicho (1998).

Assume that the singular quadric B contains real planes ψ(u). Then there exists a
subset ψ(s), s ∈ I ⊂ R of planes intersecting D in real conics L(s) = D ∩ ψ(s), compare
equation (3.31) in Section 3.3.3. Thus Φ contains the real rational family of conics L(s). It
has been proved in Peternell (1997) and Schicho (1998) that such a family of conics always
admits a real rational parameterization.

We have a look at the three different normal forms of F , and show that the pencil of
quadrics B contains a cone over a ruled quadric, which implies that Φ = A ∩D carries a
rational one-parameter family of real conics L(s).

• Given an ellipsoid F : −1 + a2x2 + b2y2 + c2z2 = 0 in R3, with 0 < a2 < b2 < c2. The
respective pencil of quadrics B contains the cylinder

B : −1− (b2 − a2)x2 + (c2 − b2)z2 + b2w2 = 0, (3.24)

which is a cylinder over the ruled two-dimensional quadric B ∩ (y = 0).

• Given a hyperboloid of two sheets F : 1−a2x2+b2y2+c2z2 = 0 in R3, with 0 < b2 < c2.
The respective pencil of quadrics contains the cylinder

B : 1− (c2 + a2)x2 − (c2 − b2)y2 + c2w2 = 0, (3.25)

which is a cylinder over the ruled two-dimensional quadric B ∩ (z = 0).

• Given the hyperboloid of one sheet F : −1 − a2x2 + b2y2 + c2z2 = 0 in R3, with
0 < b2 < c2. The corresponding cylinder A is already a cylinder over the ruled
quadric F . The respective pencil of quadrics contains two further cylinders

B1 : −1 + (a2 + b2)y2 + (a2 + c2)z2 − a2w2 = 0, and

B2 : −1− (a2 + b2)x2 + (c2 − b2)z2 + b2w2 = 0,
(3.26)

over ruled quadrics B1 ∩ x = 0 and B2 ∩ y = 0, respectively.

Theorem 3.10 A quadric F ⊂ R3 is a rational conchoid surface independent of the posi-
tion of the reference point O and the distance d.

Of course it remains to find an explicit rational parameterization of Φ which implies
a rational polar representation of F . All details on this construction are found in Sec-
tion 3.3.3.

The problem of computing a real rational parameterization of the intersection Φ of two
quadrics in R4, has already been studied in Aigner et al. (2009). This particular method
needs an educated guess two times. First, one has to find a point P ∈ Φ. The projection
of Φ from P to three-dimensional space is a cubic surface, say Ψ. Second, one has to find
a line g on the cubic surface Ψ. Consider the one parameter family of planes ε(t) through
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g. The intersection ε(t)∩Ψ consists of g and a curve k(t) of degree two, typically a conic.
A real rational parameterization of this family of curves k(t) on Ψ is lifted back to a real
rational parameterization of Φ. The bi-degree of the parameterization of Ψ is (7, 2). An
explicit example in that contribution shows that one can expect (12, 4) for the bi-degree
of the final parameterization of Φ. We improve this result and provide an algorithm in
Section 3.3.3 resulting in a real rational parameterization of Φ with bi-degree (6, 2).

3.3.3 Parameterization of the Family of Conics

The details of the construction of a real rational polar representation of a quadric F ⊂ R3

are performed exemplarily, if the normal form is an ellipsoid. The construction is analogous
in the case that F is a hyperboloid, for the formulae see Appendix B.

In case that F is an ellipsoid, the singular quadric B of the respective pencil of quadrics
B ⊂ R4 is given by (3.24). A rational parameterization of B reads

b(u, v1, v2) = e0(u) + v1e1(u) + v2e2, (3.27)

with

e0(u) =

(
−u
γ
, 0,−u

α
,
1

b

)T
, e1(u) =

(
−u

2 + 1

uγ
, 0,−u

2 − 1

uα
,
2

b

)T
, and e2 = (0, 1, 0, 0)T ,

where we use the abbreviations γ =
√
b2 − a2 and α =

√
c2 − b2. The generating planes

ψ(u) of B are spanned by e1(u) and e2. In order to obtain a quadratic equation (3.28)
without linear terms in v1, the directrix curve of B in (3.27) is chosen as e0 +λ(u)e1, with

λ(u) =
(a2b2(u2 + 1)− c2b2(u2 − 1)− 2a2c2)u2

a2b2(u2 + 1)2 − c2b2(u2 − 1)2 − 4a2c2u2
.

The family of conics L(u) ⊂ Φ, where Φ = A ∩D is obtained by inserting (3.27) into the
implicit representation of D, is given by

L(u) : l0(u) + l1(u)v21 + l2(u)v22 = 0, (3.28)

whose coefficients are the polynomials

l0(u) = b2α2γ2u2(c2(u2 − 1)2 − a2(u2 + 1)2),

l1(u) = (b2(c2(u2 − 1)2 − a2(u2 + 1)2) + 4a2c2u2)2,

l2(u) = −b2α2γ2u2(b2(c2(u2 − 1)2 − a2(u2 + 1)2) + 4a2c2u2).

The final aim is to find real rational functions (v1(u, t), v2(u, t)) satisfying equation (3.28)
identically. First of all L(u) has to contain real points for all u ∈ R. If this is not the
case it is necessary to substitute u = (u0s

2 + u1)/(s
2 + 1) such that L(s) satisfies this

requirement for all s ∈ R. In the next step one computes the zeros of the polynomials
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Figure 3.8: Illustration of the situation in R4 and planes ε(u).

li(s). Real zeros appear with even multiplicities. In case that two of the polynomials li(s)
have common zeros, equation (3.28) can be simplified. Finally we end up with an equation
L(s) of the form (3.28) where no two polynomials have common zeros. In the present case
these polynomials are of degrees ≤ 8. To construct real rational functions (v1(s, t), v2(s, t))
satisfying L(s) identically, a linear system combined with a quadratic equation has to be
solved. To our knowledge it is not possible to compute a symbolic solution for v1(s, t)
and v2(s, t), but only numeric solutions are available. In addition, the degrees of the final
parameterization of Φ are unnecessarily high.

Since this direct method does not result in a symbolic parameterization of Φ, further
geometric properties of the family of conics L(u) have to be investigated. All proposed
computational steps can be carried out symbolically with help of a computer-algebra-
system.

• The rational family of conics L(u) ⊂ Φ ⊂ R4 is transformed to a rational family of
circles C(u) ⊂ S2 ⊂ R3.

• A real rational parameterization of C(u) is constructed explicitly.

• A real rational parameterization of Φ corresponds to a real rational polar represen-
tation of the quadric F .

Cones of Revolution

Consider the top view projection π : R4 → R3 with π(x, y, z, w) = (x, y, z). We intend
to prove that the top-view projections C(u) = π(L(u)) are a family of conics which are
contained in cones of revolution Γ(u), with common vertex at the origin O. To achieve this
we investigate at first the intersection of the cone D ⊂ R4 with a generic three-dimensional
subspace E.
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Lemma 3.11 Consider the cone D : x2 + y2 + z2 − w2 = 0 and a hyperplane E : a1x +
a2y + a3z − a4w = 0. If the intersection K = D ∩ E is a real cone ⊂ R4, its top view
projection π(K) = Γ is a cone of revolution with a = (a1, a2, a3) as rotational axis and its
half opening angle τ is determined by ‖a‖ cos(τ) = a4.

Proof: The intersection K = D∩E is a quadratic cone with vertex O ∈ R4. Its projection
Γ = π(K) is a cone with vertex at O, given by

Γ : (a21 − a24)x2 + (a22 − a24)y2 + (a23 − a24)z2 + 2(a1a2xy + a2a3yz + a3a1zx) = 0. (3.29)

Since the origin in R4 coincides with the origin in R3, we use the same symbol O. Intro-
ducing the vector x = (x, y, z), we may write D : xT ·x−w2 = 0 and E : aT ·x− a4w = 0.
Eliminating w from these two equations yields Γ : xT ·M · x = 0, with M = a · aT − a24I3,
and I3 = diag(1, 1, 1), which is just equation (3.29) in vector notation.

If a4 = 0, it follows that rk(M) = 1, and Γ is the double plane (xT · a)2 = 0. If
a24 = a21 + a22 + a23, E is tangent to D, and rk(M) = 2. The projection Γ = π(D ∩ E)
consists of a real line carrying two conjugate complex planes.

Otherwise, rk(M) = 3 and its eigenvectors define the axes of symmetry of Γ. The
eigenvalues and corresponding eigenvectors (eigenspaces) of M are

t1 = a21 + a22 + a23 − a24 → a = (a1, a2, a3),

t2 = t3 = −a24 → λv1 + µv2, with v1,v2 ⊥ a.

The eigenvalue t1 corresponds to the axis a of Γ. The twofold eigenvalue t2 = t3 corresponds
to a two-dimensional eigenspace spanned by two linearly independent vectors v1,v2, both
orthogonal to a. Any plane passing through the axis with direction vector a is a plane of
symmetry of Γ, and thus Γ is a cone of rotation. Intersecting Γ : xT ·M · x = 0 with the
unit sphere xT ·I3·x = 1 shows that the half opening angle τ of Γ satisfies ‖a‖ cos(τ) = a4. �

Lemma 3.12 Consider the cone D : x2 + y2 + z2 − w2 = 0. Let ψ ⊂ R4 be a plane with
O /∈ ψ and assume that L = D ∩ ψ contains real points. Then the projection π(L) = C is
either a segment of a line or a conic contained in a rotational cone Γ ⊂ R3.

Proof: The intersection L = D ∩ ψ is a conic in R4. Assume that its carrier plane ψ
is not parallel to the w-axis, then the projection C = π(L) is a conic as well. Consider
the hyperplane E joining O = (0, 0, 0, 0) and ψ. Lemma 3.11 says that the projection
π(D ∩ E) = Γ is a cone of rotation. Since ψ ⊂ E, the projection C = π(L) is a conic in
the rotational cone Γ.

In case where the plane ψ ⊂ R4 is parallel to the w-axis, its projection π(ψ) ⊂ R3 is a
line. Consequently the projection of the conic L = D ∩ ψ is a segment of that line. �

In the remainder of the section we give the explicit representations of the conics L(u) ⊂
Φ and their projections C(u) = π(L(u)) being contained in cones of revolution Γ(u) with
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Figure 3.9: From left to right: Conics L ⊂ Φ ⊂ R4, conics C ⊂ F ⊂ R3, circles C ⊂ S2 ⊂
R3, circles C∗ ⊂ R2.

common vertex O. The intersection of a cone of revolution with vertex at O and the unit
sphere S2 consists of two circles. It is possible to define a rational map C(u) 7→ C(u)
between the family of conics C(u) ⊂ F and a family of circles C(u) ⊂ S2. An explicit
representation of this map is finally given by the radius function ρ(s, t) in equation (3.34).
The motivation to proceed in that way is that the practical parameterization of a one-
parameter family of circles on S2 is easier than parameterizing a general one-parameter
family of conics C(u) in space. Moreover it turns out that the map C(u) 7→ C(u) and its
inverse do not raise the degree of the final parameterization.

The family of conics L(u) = ψ(u) ∩D on the surface Φ ⊂ R4 are represented by

ψ(u) = e0(u) + v1e1(u) + v2e2

D : x2 + y2 + z2 − w2 = 0

}
L(u),

where ψ(u) is one family of generating planes of the cylinder B from (3.24). The top view
projection C(u) = π(L(u)) is a family of conics C = F ∩ε. Thus their representation reads

ε(u) = π(ψ(u)) : −2u+ γ(u2 − 1)x− α(u2 + 1)z = 0

F = π(Φ) : −1 + a2x2 + b2y2 + c2z2 = 0

}
C(u). (3.30)

Consider the hyperplanes E(u) connecting planes ψ(u) and the origin O in R4. According
to Lemma 3.11, the conics C(u) are the intersections of planes ε = π(ψ(u)) and rotational
cones Γ(u) = π(E(u) ∩D). An illustration is given in Figure 3.9.

The cones Γ(u) with common vertex O are defined through a direction vector of their
rotational axes (γ(u2 + 1), 0,−α(u2 − 1)) and the half opening angles τ(u). Since an
expression for the latter is rather lengthy, it is omitted here. Additionally we note that
the planes ε(u) envelope the hyperbolic cylinder −(b2 − a2)x2 + (c2 − b2)z2 − 1 = 0, see
Figure 3.8(b). It is obtained as intersection B ∩ R3 : w = 0.

Since Γ(u) is a family of rotational cones in R3, their intersections C(u) = Γ(u)∩S2 are
a family of circles in S2. The carrier planes ε(u) of the circles C(u) envelope the hyperbolic
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cylinder −(b2 − a2)x2 + (c2 − b2)z2 + b2 = 0. The family of circles C(u) is given by

ε(u) : −2ub+ γ(u2 + 1)x− α(u2 − 1)z = 0

S2 : x2 + y2 + z2 − 1 = 0

}
C(u).

Rational Parameterization of a Family of Circles

In Section 3.3.3 the family of conics L(u) ⊂ Φ ⊂ R4 has been transformed to a family of
circles C(u) ⊂ S2. Not all planes ε(u) intersect S2 in a circle containing real points. To
construct a real rational parameterization of the circles C(u) ⊂ S2 we have to restrict the
parameter u ∈ R to a proper interval. The necessary re-parameterization reads

u(s) =
u0s

2 + u1
s2 + 1

, with u0 =
c− a
β

, u1 = −c− a
β

, and β =
√
c2 − a2. (3.31)

The curves C(u0), C(u1) ⊂ S2 degenerate to the points P± = ± 1
bβ

(cγ, 0, aα). Let τ be the

symmetry plane of P+ and P−. An illustration is given in Figure 3.10(a).
To gain a rational parameterization of the circles C(s), a stereographic projection σ :

S2 → τ with projection center P+ is performed. Since σ is a conformal map, it transfers
circles C ⊂ S2 to circles C? ⊂ τ . An implicit representation for C?(s) is obtained by

choosing a Cartesian coordinate system {O, ξ, η} in τ , with η = y and ξ = η ×
−−→
OP+. This

gives

C∗(s) : (ξ −m(s))2 + η2 − r(s)2 = 0, with

m(s) =
s2αγ

b2 + s2ac
, and r(s)2 =

b2s2(s2a+ c)(a+ cs2)

(b2 + s2ac)2
.

The denominator of r(s)2 is a square of a polynomial. Its numerator is a non-negative
polynomial and therefore it is the sum of the two squares h1(s)

2 = (s2b(a + c))2 and
h2(s)

2 = (sb
√
ac(s2− 1))2. The terms h1(s) and h2(s) together with m(s) define a rational

cubic trajectory q(s) of the family of circles C∗(s), with the property that q(s) ∈ C?(s)
for all s ∈ R, see Figure 3.10(b). A parameterization reads

q(s) =
1

b+ s2ac

(
s2αγ + h1(s)

h2(s)

)
=

1

b+ s2ac

(
s2(b(c+ a) + αγ)

sb(s2 − 1)
√
ac

)

We construct a parameterization of that part of the plane τ being covered by the circles
C?(s) of bi-degree (3, 2), with the property that c?(s0, t) represents the fixed circle C?(s0),
with s0 = const. Using the abbreviation µ(s, t) = 2

√
act(s2 − 1) − (c + a)s(t2 − 1), this

parameterization reads

c∗(s, t) =
1

(b2 + s2ac)(1 + t2)

(
s(−bµ(s, t) + sαγ(t2 + 1))

−sb(
√
ac(s2 − 1)(t2 − 1) + 2ts(c+ a))

)
.
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Figure 3.10: Correspondence between the sphere and the quadric and the circles in the
plane τ .

The inverse stereographic projection σ−1 : τ → S2 maps c?(s, t) to a rational parame-
terization c(s, t) of S2 of bi-degree (6, 2),

c(s, t) = (c1(s, t), c2(s, t), c3(s, t)) =
1

n(s, t)
g(s, t), (3.32)

whose numerator g(s, t) = (g1, g2, g3)(s, t) and denominator n(s, t) are the polynomials

g1(s, t) = −2bαs(a+ cs2)µ(s, t)− γ(1 + t2)(c(s4 + 1)(b2 − s2ac) + 2s2(b2a− c3s2))
g2(s, t) = −2βs(b2 + s2ac)(

√
ac(1− t2)(1− s2) + 2st(a+ c))

g3(s, t) = 2bγs(as2 + c)µ(s, t)− α(1 + t2)(a(s4 + 1)(b2 − s2ac) + 2s2(b2c− a3s2))
n(s, t) = β(−2γαs3µ(s, t) + b(1 + t2)((1− s4)(b2 − acs2) + 2s2(s2(a2 + c2) + 2ac))).

(3.33)

Rational Polar Representation of F and its Conchoid Surfaces

A polar representation f(s, t) = ρ(s, t)k(s, t) of a surface F consists of a radius func-
tion ρ(s, t) and a parameterization k(s, t) of S2. The parameterization c(s, t) from equa-
tion (3.32) is already the spherical part of the polar representation of the ellipsoid F . To
determine the radius function ρ(s, t), we have to determine the conics C(s) ⊂ ε(s), com-
pare equation (3.30). Using the substitution (3.31), the coefficients ei and ei of the planes
ε : e0 + e1x+ e2y + e3z = 0 and ε : e0 + e1x+ e2y + e3z = 0 read

e0 = β(s4 − 1), e1 = γ(a(s4 + 1) + 2cs2), e2 = 0, e3 = α(c(s4 + 1) + 2as2), and

e0 = be0, e1 = −γ
γ
e3, e2 = 0, e3 = −α

β
e1.
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Figure 3.11: Conchoids of ellipsoids.

The conics C(s) ⊂ F are computed as intersection curves C = Γ ∩ ε. Thus we have

f(s, t) = c(s, t) = ρ(s, t)c(s, t), with

ρ(s, t) =
−e0

e1c1 + e2c2 + e3c3
=

−e0n
e1g1 + e2g2 + e3g3

. (3.34)

We note that c ⊂ ε for all s ∈ R. In case that ε(s0) = ε(s0), it follows that c ⊂ ε(s0), and
the denominator and numerator of (3.34) have the common factor (s− s0). The condition
ε(s0) = ε(s0) holds for the zeros of s2−1, corresponding to u = 0, and for the zeros of s2+1,
corresponding to u =∞. This implies that the polynomial ε : e0n+ e1g1 + e2g2 + e3g3 = 0
is divisible by s4 − 1. Since e0 = α(s4 − 1), also the denominator e1g1 + e2g2 + e3g3 is
divisible by s4 − 1. Thus the radius function (3.34) is represented by

ρ(s, t) =
n(s, t)

p(s, t)
with n(s, t) from (3.33) and (3.35)

p(s, t) = b(−2βγbsµ(s, t) + (1 + t2)(ac(1− s4)(b2 − s2ac) + 2s2b2(a2 + c2 + 2s2ac))).

Combining equations (3.32), (3.34) and (3.35) leads to real rational polar representa-
tions of the ellipsoid F and its conchoid surfaces Fd at distance d ∈ R,

F : f(s, t) =
1

p(s, t)
g(s, t) = ρ(s, t)c(s, t), with ρ(s, t) =

n(s, t)

p(s, t)
, (3.36)

Fd : fd(s, t) =
n(s, t) + d p(s, t)

p(s, t)
c(s, t) =

n(s, t) + d p(s, t)

n(s, t) p(s, t)
g(s, t).

The parameterization f(s, t) of F is of bi-degree (6, 2), whereas the parameterization fd(s, t)
of Fd is typically of bi-degree (12, 4). Numerical examples show that the degree of improper-
ness of the parameterization (3.36) is four. A rational parameterization of the del Pezzo
surface Φ = D ∩ A is of bi-degree (6, 2) and reads

φ(s, t) =
1

p(s, t)
(g1(s, t), g2(s, t), g3(s, t),±n(s, t)). (3.37)
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Figure 3.12: Conchoids of hyperboloids in normal form.

Theorem 3.13 A quadric F ⊂ R3 admits a rational polar representation f(s, t) of bi-
degree at most (6, 2) with respect to an arbitrarily chosen reference point O. Its conchoid
surfaces Fd with respect to d and O admit rational polar representations fd(s, t) of bi-degree
at most (12, 4).

See Figures 3.11 and 3.12 for illustrations of the conchoids of ellipsoids and hyperboloids.
Appendix B.3 shows a numerical example for this algorithm.

In Sections 3.3.1 and 3.3.3 we have given a detailed investigation of real rational polar
representations of regular quadrics F with respect to a reference point O in general position.
What remains is a brief discussion of all excluded cases where the parameterizations are
typically of lower degrees. These are

• F is a singular quadric,

• the reference point O lies on F ,

• the reference point O lies on a focal conic of F or coincides with a focal point of a
rotational quadric F .

3.3.4 Singular Quadrics

The quadric F : xT ·M · x = 0, with x = (1, x, y, z)T ∈ R4, M = MT ∈ R4×4, is called
singular if det(M) = 0. Singular quadrics are cones and cylinders in case that rk(M) = 3
or pairs of planes if rk(M) = 2, or a double plane if rk(M) = 1. We again assume that F
contains more than one real point. Rational polar representations of planes, cylinders and
cones are discussed already in Section 1.3.3 and Section 3.2.
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3.3.5 Reference Point lies on the Quadric

Consider the quadric F : xT ·M · x = 0, with x = (1, x, y, z)T . The reference point
O = (0, 0, 0)T is contained in F , if and only if the constant term of F (x, y, z) = 0 vanishes.
We have a look at two methods to find a real rational polar representation of F .

On the one hand, consider a parameterization f(u, v) = ρ(u, v)k(u, v) with an arbitrary
rational parameterization k(u, v) of S2. To determine the unknown radius function ρ(u, v),
one inserts f(u, v) into F (x, y, z) = 0. This gives the trivial solution ρ(u, v) = 0, and besides
this a rational function ρ(u, v), expressed by the coordinates of k(u, v).

On the other hand, a quadric F is mapped by a perspective collineation κ of the
form (3.22) to a quadric F ′. By choosing the denominator of κ as tangent plane of F
we can assume that F ′ becomes a paraboloid. By an admissible rotation we can achieve
F ′ : z = ax2+by2, with a, b ∈ R\0. Thus F ′ is either an elliptic or a hyperbolic paraboloid,
depending whether ab > 0 or ab < 0.

We consider a one-parameter family of cones of rotation Γ(v) with vertex O and axis
z. An implicit equation of these cones is Γ(v) : sinh2(v)(x2 + y2)− z2 = 0, and a possible
parameterization reads

g(u, t, v) = u

(
2t

sinh(v)
,

1− t2

sinh(v)
, 1 + t2

)T
.

Intersecting Γ(v) with F ′ determines the function u(v, t) = sinh2(v)(1 + t2)/(4at2 + b(1−
t2)2). The t-lines of the final parameterization f(t, v) = g(u(t, v), t, v) are rational quartic
curves, the intersection curves Γ(v)∩F ′. This polar representation of F ′ reads, see Figure
3.13(a),

f(v, t) =
(1 + t2) sinh(v)

4at2 + b(1− t2)2

 2t

(1− t2)
(1 + t2) sinh(v)

 , with ‖f(v, t)‖ =
(1 + t)2 sinh(v) cosh(v)

4at2 + b(1− t2)2
.

Performing the rational substitutions cosh(v) = (1 + s2)/(1− s2) and sinh(v) = 2t/(1− s2)
yields a rational polar representation of F ′ of bi-degree (4, 2). In case that F ′ : z =
a(x2 + y2) is a paraboloid of rotation, the parameterization simplifies and is of bi-degree
(2, 2), and its norm is independent on t,

f(v, t) =
sinh(v)

a(1 + t2)

(
2t, 1− t2, (1 + t2) sinh(v)

)T
, with ‖f(v, t)‖ =

sinh(v) cosh(v)

a
.

3.3.6 Reference Point lies on a Focal Conic of the Quadric

Given a quadric F : xT ·M · x = 0, the perspective collineation κ from equation (3.22)
maps F to the quadric F ′ : ±1 + x′T ·M′ · x′ = 0, whose center is the origin O = (0, 0, 0).
The tangential cone ∆ of F ′ with vertex at O is fixed with respect to κ. Thus it is the
tangential cone of F and F ′, and reads

∆ : x′T ·M′ · x′ = 0.
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The eigenvectors and eigenvalues of M′ define the coordinate transformation to achieve
the normal form (3.23). The case of pairwise distinct eigenvalues is already discussed, and
the cases of coinciding eigenvalues remain. There is the case b = c for all affine types of
Table 3.1 and additionally a = b and a = b = c in case that F ′ is an ellipsoid. We discuss
these particular cases exemplarily for an ellipsoid F ′.

Example 3.14 F ′ is a rotational quadric
Consider the rotational ellipsoid F ′ : a2x2 + b2(y2 + z2) = 1 with axis in direction

of the x−axes. We substitute b = c in the parameterization (3.33) and in (3.35). The
parameterization of the spherical part c(s, t) and the rational polar representation f(s, t)
of F ′ are

c(s, t) =
1

n(s, t)
g(s, t), and f(s, t) =

1

p(s, t)
g(s, t) = ρ(s, t)c(s, t).

with coordinate functions gi(s, t) of g(s, t) and polynomials n(s, t) and p(s, t),

g1(s, t) = b(1 + t2)(s4 − 1)

g2(s, t) = −2s(
√
ab(1− t2)(1− s2) + 2st(a+ b))

g3(s, t) = 2s(2t
√
ab(s2 − 1)− (a+ b)s(t2 − 1)) = 2sµ(s, t)

p(s, t) = b(1 + t2)(2bs2 + a(1 + s4))

n(s, t) = (1 + t2)(2as2 + b(1 + s4)).

The t-lines of f(s, t) are parallel circles, the s-lines are rational curves of degree four.
Figure 3.13(b) shows an illustration of an ellipsoid with one highlighted s-line. The pa-
rameterization f(s, t) is of bi-degree (4, 2) and has rational length ρ(s) independent on
t,

ρ(s) =
n(s, t)

p(s, t)
=

2as2 + b(1 + s4)

b(2bs2 + a(1 + s4))
.

Alternatively, the parameterization f(s, t) could be derived using the cone model, see
Section 3.3.3. The corresponding pencil of quadrics B contains a cylinder over the conic
−(b2 − a2)x2 + b2w2 = 1, and its generating planes are parallel to the yz−plane.

Two or more similar eigenvalues of M ′ imply, that the tangential cone ∆ to F and
F ′ = κ(F ), with vertex O, is a rotational cone. Hence quadrics F in R3 that have a
rotational quadric F ′ as normal form are characterized as those which have a tangential
rotational cone ∆ with vertex at O. The possible positions of the vertices of these cones lie
on the so called focal conics of the quadric F , see Section 1.1.5. Hence, if O lies on a focal
conic of the given quadric F its normal form F ′ is a rotational quadric, see Figure 1.2.

?

Example 3.15 F ′ is a sphere
Consider a sphere F ′ : x2 + y2 + z2 = 1 of radius 1, centered at O. Any rational

parameterization f(u, v) = k(u, v), with ‖k‖ = 1, of F ′ has rational length trivially. The
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Figure 3.13: Special cases.

pre-image F with respect to κ is an oval rotational quadric with O as focal point. Since
F ′ admits a proper rational polar representation of bi-degree (2, 2), the same holds for
the pre-image F . The conchoid surfaces of F with respect to O are reducible and each
component admits proper rational polar representations.

We want to look at a rotational ellipsoid F with O as focal point in more detail. Let
us assume, that the rotation axis of F is the x−axes of the coordinate system and F has
the implicit equation

F : a2(x− e)2 + b2(y2 + z2) = 1 with e2 =
1

a2
− 1

b2
. (3.38)

The perspective collineation

κ : x′ =
b2

a(1 + b2ex)
x

maps the ellipsoid F to the sphere F ′. This can be easily seen by substituting the inverse
map

κ−1 : x =
a

b2(1− aex′)
x′

in equation (3.38). If we choose a parameterization of the sphere F ′, for example the
trigonometric one

f′(u, v) = (cos(u) cos(v), cos(u) sin(v), sin(u))T ,

we receive the polar representations of F and its conchoids Fd with

f(u, v) =
a

b2(1− ae cos(u) cos(v))
f′(u, v) and

fd(u, v) =
a± db2(1− ae cos(u) cos(v))

b2(1− ae cos(u) cos(v))
f′(u, v).

?
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3.4 Conchoids of the Sphere

Although the sphere is a special quadric and therefore the algorithm provided in Section 3.3
leads to a rational polar representation of the sphere, we want to discuss this special surface
in an own section. Mainly because there are nice geometric properties of the rational polar
representation. This section is the main contribution of Peternell, Gruber and Sendra
(2013).

3.4.1 Conchoids of Spheres

Given a sphere F in R3 and an arbitrary focus point O, according to Theorem 3.10 there
exists a rational representation f(u, v) of F with the property that ‖f(u, v)‖ is a rational
function of the parameters u and v. We describe the situation in the cone model in Section
3.4.2, later on in Section 3.4.6 we study a different method working in R3 directly. There
are several relations between these methods which will be discussed along their derivation.

Let F be the sphere with center M and radius r. Without loss of generality, we can
choose the coordinate system such that, the center is given by m = (m, 0, 0)T and the
reference point O = (0, 0, 0)T is the center of the coordinate system. Thus F is given by

F : (x−m)2 + y2 + z2 − r2 = 0. (3.39)

If m = 0, the center of F coincides with O. In this trivial situation the conchoid surface
of F is reducible and consists of two spheres, where one might degenerate to F ’s center if
d = r. If m2 − r2 = 0, the focal point O is contained in F . To construct a rational polar
representation, we make the ansatz f(u, v) = ρ(u, v)k(u, v) with k(u, v) = (k1, k2, k3)(u, v)
and ‖k(u, v)‖ = 1 and an unknown radius function ρ(u, v). Plugging this into (3.39), we
obtain a rational polar representation with rational radius function ρ(u, v) = 2mk1(u, v).
Note that in this case the conchoid is irreducible and rational.

3.4.2 Pencil of Quadrics in R4

Consider the Euclidean space R4 with coordinate axes x, y, z and w and let R3 be embedded
as the hyperplane w = 0. Let a sphere F ⊂ R3 be defined by (3.39) and O = (0, 0, 0)T .
To study the general case, we assume m 6= 0 and m2 6= r2. The equation of the cylinder
A ⊂ R4 through F agrees with the equation of F in R3,

A : (x−m)2 + y2 + z2 − r2 = 0.

Consider the pencil B(t) = A+ tD of quadrics in R4, spanned by A and the quadratic cone
D : x2 +y2 +z2 = w2 from Section 3.1. We study the geometric properties of the del Pezzo
surface Φ = A∩D of degree four, the base locus of the pencil of quadrics B(t). According
to Section 3.3, the sphere F is a rational conchoid surface.

Besides A and D there exist two further singular quadrics in B(t). These quadrics are
obtained for the zeros t1 = −1 and t2 = r2/γ2 of the characteristic polynomial

det(A + tD) = −(1 + t)2t(γ2t− r2), with γ2 = m2 − r2 6= 0,
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with A,D are the defining matrices of A respectively D. The quadric corresponding to
the twofold zero t1 = −1 is a cylinder

R : w2 − 2mx+m2 − r2 = 0. (3.40)

Its directrix is a parabola in the xw-plane and its two-dimensional generators are parallel
to the yz-plane. The singular quadric S corresponding to t2 = r2/γ2 is a quadratic cone
and reads

S :

(
x− m2 − r2

m

)2

+ y2 + z2 =
r2

m2
w2.

Its vertex is the point O′ = (m
2−r2
m

, 0, 0, 0)T . The intersections of S with three-spaces w = c
are spheres σ(c), whose top view projections in w = 0 are centered at O′ and their radii
are rc/m. The intersections of D with three-spaces w = c are spheres d(c) whose top view
projections in w = 0 are centered at O with radii c. The intersections k(c) = s(c) ∩ d(c)
of these spheres (w = c) are circles in planes x = (c2 + m2 − r2)/(2m). Thus Φ contains
a family of conics, whose top view projections are the circles k(c). The conics in Φ are
contained in the planes

ε(c) : x =
c2 +m2 − r2

2m
,w = c.

The half opening angle δ of D with respect to the w-axis is π/4, thus tan δ = 1. The
half opening angle σ of S is given by tan σ = r/m, see Figure 3.14(a). Applying the scaling

(x′, y′, z′, w′)T = (fx, fy, fz, w)T , with f =
r

m

in R4 maps D to a congruent copy of S. Consider a point (x, y, z, w)T in Φ = A ∩D and
its projection X = (x, y, z)T in F . The distance dist(X,O) of X to O in R3 is w. For the
distance dist(X,O′) between X and O′ we consequently obtain

dist(X,O′) =
r

m
dist(X,O), for all X ∈ F. (3.41)

Remark on the circle of Apollonius Note that O′ is the inverse point of O with
respect to the sphere F . It is an old result by Apollonius Pergaeus (262–190 b.c.), that the
set of points X in the plane having constant ratio of distances f = d/d′, with d = dist(O,X)
and d′ = dist(O′, X), from two given fixed points O and O′, respectively, is a circle k, see
Figure 3.14(b). Rotating k around the line OO′ gives the sphere F and O and O′ are
inverse points with respect to F (and the circle k).

If we consider a varying constant ratio f , one obtains a family of spheres F (f) with
inverse points O and O′ which form an elliptic pencil of spheres. Their centers are on the
line OO′. Ratio 1 (d = d′) corresponds to the bisector plane of O and O′.
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Figure 3.14: Pencil of quadrics in R4 and Apollonius circle.

3.4.3 A Rational Quartic on the Sphere

The pencil of quadrics B(t) in R4 spanned by the cylinder A and the cone D contains the
cylinder R. Expressing the variable x from (3.40) one gets

x =
w2 +m2 − r2

2m
, (3.42)

and inserting this into D results in the polynomial

α(w) : 4m2(y2 + z2) + p(w) = 0, with p(w) = w4 − 2w2(m2 + r2) + (m2 − r2)2. (3.43)

Considering y and z as variables, α(w) is a one-parameter family of circles in the yz-plane,
depending rationally on the parameter w. The circles α(w) do not possess real points for
all w, but there exist intervals determining families of real circles α(w). To obtain real
circles one has to perform a re-parameterization w(u) within an appropriate interval. The
factorization of p(w) reads

p(w) = (w + a)(w − a)(w + b)(w − b), with a = m+ r, and b = m− r.

If O is outside of F , thus m > r, the polynomial −p(w) is positive in the interval [m −
r,m+ r]. Thus a possible re-parameterization is

w(u) =
au2 + b

1 + u2
=
u2(m+ r) +m− r

1 + u2
. (3.44)

Otherwise we could re-parameterize over another appropriate interval. Additionally we
note that if O is inside of F , the inverse point O′ is outside of F . Since equation (3.41)
holds for the distances of a point X ∈ F to O and O′, we can exchange roles and perform
the computation for the point O′.
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We return to the family of conics α(w). Substituting (3.44) into (3.43) leads to a family
of real conics

α(u) : y2 + z2 =
4r2u2

m2(1 + u2)4
(au2 +m)(mu2 + b). (3.45)

We are looking for rational functions y(u) and z(u) satisfying (3.45) identically. Therefore
we introduce auxiliary variables ỹ and z̃ by the relations y = 2ỹru/(m(1 + u2)2) and
z = 2z̃ru/(m(1 + u2)2). We obtain ỹ2 + z̃2 = (au2 + m)(mu2 + b). Factorizing left and
right hand side of this equation results in a linear system to determine ỹ and z̃,

ỹ + i z̃ = (
√
au+ i

√
m)(
√
mu+ i

√
b),

ỹ − i z̃ = (
√
au− i

√
m)(
√
mu− i

√
b).

The solution ỹ =
√
m(
√
au2 −

√
b), z̃ = u(m+

√
ab) finally leads to

y(u) =
2r
√
mu

m(1 + u2)2

(√
au2 −

√
b
)
, and z(u) =

2ru2

m(1 + u2)2

(
m+

√
ab
)
, (3.46)

which is a rational parameterization of a curve in the yz-plane, following the family of
conics α(w).

The solution (3.46) together with (3.42) determines a curve C ⊂ F which possesses the
rational distance function

‖c(u)‖ = w(u) =
u2(m+ r) + (m− r)

1 + u2
(3.47)

with respect to O. Its parameterization is

c(u) =
1

m(1 + u2)2

 u4m(m+ r) + 2u2(m2 − r2) +m(m− r)
2r
√
mu(u2

√
m+ r −

√
m− r)

2ru2(m+
√
m2 − r2)

 . (3.48)

Theorem 3.16 Let F be a sphere and let O be an arbitrary point in R3. Then there exists
a rational quartic curve C ⊂ F and a rational parameterization c(u) of C such that the
distance of C to O is a rational function in the curve parameter u.

Rotating C around the x-axis leads to a rational polar representation r(u, v)k(u, v) of
F with rational distance function %(u, v) = w(u) from O. The quartic curve C together
with this parameterization is illustrated in Figure 3.15(a). Figure 3.15(b) displays a sphere
F together with both conchoid surfaces F+d and F−d for distances d and −d with respect
to O. We summarize the presented construction.

Theorem 3.17 Spheres in R3 admit rational polar representations of bi-degree (4, 2) with
respect to any focus point O. This implies that the conchoid surfaces of spheres admit
rational parameterizations of bi-degree (8, 2). The construction is based on rational quartic
curves on F with rational distance from O.
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Figure 3.15: Rational polar representation of a sphere and its conchoid surfaces.

Example 3.18 Implicit equation of the conchoids of a sphere
The sphere F with center m = (3/2, 0, 0) and radius r = 1, and compute its con-

choid Fd for variable distance d. We obtain parameterizations f+d(u, v) and f−d(u, v) from
equation (3.48) for the real uni-rational varieties F+d and F−d. The algebraic variety
Fd = F+d ∪ F−d is given by the equation

Fd : (x2 + y2 + z2)(4(x2 + y2 + z2)− 12x+ 5)2

+d2(40(x2 + y2 + z2)− 144x2 + 96x(x2 + y2 + z2)− 32(x2 + y2 + z2)2)

+16d4(x2 + y2 + z2) = 0.

?

Remarks on the parameterization The rational quartic C on F is of course not unique
but depends on the re-parameterization (3.44). An admissible rational re-parameterization
of a real interval is of even degree. Let us consider a quadratic re-parameterization. Since
α is of degree four in w, the re-parameterized family is typically of degree ≤ 8 in u. This
implies that the solutions y(u) and z(u) are of degree ≤ 4, which holds also for x(u) because
of (3.42). The coefficient functions c(u) = (x, y, z)T (u) determine a rational quartic C on
F , with rational norm ‖c‖ = w(u).

Different choices of the interval and a quadratic re-parameterization will typically result
in different quartic curves on F . In (3.44) we have chosen the largest possible interval and
a rational function satisfying w(−u) = w(u) and obtained the curve C through antipodal
points of F . By rotating we obtain the full sphere, doubly covered.
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For any quadratic re-parameterization, the quartic C is the base locus of a pencil
of quadrics A(t) = F + tK, spanned by the sphere F and, for instance, the quadratic
projection cone K with vertex at C’s double point.

The particular choice (3.44) implies that the quartic C is symmetric with respect to
the xz-plane. This holds since u appears only with even powers in x and z, thus we have
x(−u) = x(u) and z(−u) = z(u). The orthogonal projection of C to the xz-plane is doubly
covered, thus a conic. In this case (x, z)T (u) parameterizes a parabola, because of the factor
(1 + u2)2 in c(u)’s denominator. This implies that the pencil A(t) can also be spanned
by the sphere F and the parabolic cylinder P passing through C, whose generating lines
are parallel to the y−axis. It can be proved that all quadrics A(t) except P are rotational
quadrics with parallel axes. This implies that K is a rotational cone, and the remaining
singular quadric L is a rotational cone, too. For the particular choice (3.44) and for the
generalized construction performed in Section 3.4.6, the rotational cone L has the vertex
O. We note that for any admissible re-parameterization L’s vertex is typically different
from O.

3.4.4 Pencil of Quadrics in R3

The quartic curve C from (3.48) on the sphere F is the base locus of a pencil of quadrics
F + λK in R3, spanned by F and the projection cone K of C from its double point s, see
Figure 3.16. The double point s is located in the symmetry plane of C and in the polar
plane of the origin O with respect to F . Its coordinates are

s =
1

m
(γ2, 0, rγ)T with γ2 = m2 − r2. (3.49)

The pencil F +λK contains two further singular quadrics which are obtained for the zeros
λ1 = 1/m and λ2 = −1/γ of the characteristic polynomial

det(F + λK) = r2(mλ− 1)(γλ+ 1).

Corresponding to λ1 there is a parabolic cylinder P with y-parallel generating lines passing
through C. Corresponding to λ2 we find the rotational cone L through C with vertex O.

To give explicit representations for the quadrics we use homogeneous coordinates xR =
(1, x, y, z)TR. The coefficient matrices of F and K read

F =


m2 − r2 −m 0 0

−m 1 0 0

0 0 1 0

0 0 0 1

 , K =


γ3 −γm 0 0

−γm γ 0 r

0 0 −m 0

0 r 0 −γ

 .

An elementary computation shows that K is a cone of revolution with opening angle π/2
and a = (m+ γ, 0, r)T denotes a direction vector of its axis.
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The cone L through C with vertex at O is again a cone of revolution, whose axis is
parallel to a. The parabolic cylinder P through the quartic C has generating lines parallel
to the y−axes. The axis of the cross section parabola in the xz-plane is orthogonal to a,
see Figure 3.16(a). The coefficient matrices L and P are

L =


0 0 0 0

0 0 0 −r
0 0 m+ γ 0

0 −r 0 2γ

 , P =


γ2(m+ γ) −m(m+ γ) 0 0

−m(m+ γ) m+ γ 0 r

0 0 0 0

0 r 0 m− γ

 . (3.50)

A trigonometric parameterization of the quartic C is obtained by intersecting the cone
K with one quadric of the pencil F+λK, for instance F . Let a be a unit vector in direction
of K’s axis, and b and c complete it to an orthonormal basis in R3. A trigonometric
parameterization of K is given by

k(t, v) := s + v(a + (b cos(t) + c sin(t))), with

a = 1√
2m(m+γ)

(m+ γ, 0, r)T , b = (0,−1, 0)T , and c = 1√
2m(m+γ)

(r, 0,−(m+ γ))T .

Thus K admits the explicit parameterization

k(t, v) =
1

2m
√
m(m+ γ)

 2γ2
√
m(m+ γ) + v

√
2m(m+ γ + r sin(t))

−2vm
√
m(m+ γ) cos(t)

2rγ
√
m(m+ γ) + v

√
2m(r − (m+ γ) sin(t))

 .

Finally, a trigonometric parameterization of the quartic C follows by

c(t) =
1

2m

 (m+ r sin(t))2 + γ2
√

2
√
m(m+ γ) cos(t)(γ −m− r sin(t))

r(m+ γ) cos2(t)

 , (3.51)

with ‖c(t)‖ = m+ r sin(t). The correspondence of the trigonometric parameterization and
its norm with the expressions (3.48) and (3.47) in terms of rational functions is realized
by the Weierstrass substitutions and some rearrangement of the equations. Section 3.4.5
discusses relations to Viviani’s curve (or Viviani’s window). This particular quartic has
a similar shape and its pencil of quadrics has similar properties. Viviani’s curve has an
additional symmetry.

Remark The inversion with center O at the sphere which intersects the given sphere
F perpendicularly, maps the sphere F onto itself. Analogously this inversion fixes the
rotational cone L. Thus the quartic intersection curve C = F ∩L remains fixed as a whole,
but of course not point-wise. The product of the distances dist(O,P ) and dist(O,P ′) of
two inverse points P ∈ F and P ′ ∈ F equals

√
m2 − r2. This property follows from the

elementary tangent-secant-theorem of a circle.
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Figure 3.16: Geometric properties of the conchoid construction.

3.4.5 Relations to Viviani’s Curve

The quartic curve C, the base locus of the pencil of quadrics F + tK, can be considered as
generalization of Viviani’s curve V . This particularly well known curve V is the base locus
of a pencil of quadrics, spanned by a sphere F and a cylinder of revolution L touching
F and passing through the center of F . The pencil of quadrics of Viviani’s curve also
contains a right circular cone K with vertex in V ’s double point and opening angle π/2,
and further a parabolic cylinder P . Viviani’s curve V is obtained from C by letting O →∞.
Consequently, the inverse point O′ becomes the center of the sphere F .

Choosing the inverse point O′ = (m
2−r2
m

, 0, 0)T as origin, the parameterization (3.51) of
C becomes

c(t) =
1

2m

 r2(1 + sin2(t)) + 2mr sin(t)
√

2
√
m(m+ γ) cos(t)(γ −m− r sin(t))

r(m+ γ) cos2(t)

 .

By letting m→∞ one obtains V as limit curve

v(t) =
(
r sin(t),−r sin(t) cos(t), r cos2(t)

)T
.

Figure 3.17(a) illustrates Viviani’s curve V , together with the sphere and the singular
quadrics belonging to the pencil. The generalized Viviani curve C being the base locus
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Figure 3.17: Quadric pencils of Viviani’s curve and its generalization.

of the pencil appearing in the conchoid construction of the sphere is illustrated in Figure
3.17(b). In contrast to the classical Viviani curve V whose single parameter r is the radius
of the sphere F , the quartic curve C has two parameters r and m.

3.4.6 Rotational Quadrics with Parallel Axes

We consider the mentioned pencil of quadrics B(t) = A + tD from Section 3.4.2, and a
hyperplane E : ax + by + cz − dw = 0 passing through O = (0, 0, 0, 0)T . The intersection
D ∩E is a quadratic cone, whose projection onto R3 is a cone of revolution L with axis in
direction of a = (a, b, c)T . Assuming ‖a‖ = 1, the opening angle 2τ of L is determined by
d = cos(τ).

Consider the quartic intersection curve C = F ∩ L of a sphere F and the cone of
revolution L. It is rational exactly if the cone L is touching F at a single point. Since
this touching point has to be contained in the polar plane of O = (0, 0, 0)T with respect to
F , we choose s = (γ2/m, 0, rγ/m)T (compare (3.49)) and prescribe an arbitrary opening
angle 2τ for L. Thus the unit direction vector of L’s axis is

a =
1

m
(γ cos(τ)− r sin(τ), 0, γ sin(τ) + r cos(τ))T = (a, b, c)T .

The quartic C is real if the axis is contained in the wedge formed by s and the x-axis, see
Figure 3.16(b). Thus −r/γ ≤ tan τ ≤ 0, because the rotation from s to a by τ ≤ 0 is
counterclockwise. In the following we use the abbreviations ct := cos(τ) and st := sin(τ).
The quadrics of the pencil with base locus C are denoted similarly to Section 3.4.4. The
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coefficient matrix of the projection cone L reads

L(τ) =


0 0 0 0

0 r2(ct2 − st2) + 2γrstct 0 −γr(ct2 − st2) + (r2 − γ2)stct
0 0 m2ct2 0

0 −γr(ct2 − st2) + (r2 − γ2)stct 0 γ2(ct2 − st2)− 2γrstct

 .

Rewriting L(τ) in terms of the double angle 2τ and substituting

cos(2τ) = γ/m, and sin(2τ) = −r/m

we obtain L from equation (3.50). This holds for all equations and parameterizations in
this section in an analogous way.

The pencil of quadrics F + tL(τ) contains two further singular quadrics. The first is a
parabolic cylinder P (τ) passing through C. It corresponds to the eigenvalue −1

m2ct2
and its

generating lines are parallel to the y-axis. Its coefficient matrix of cylinder reads

P(τ) =


γ2m2ct2 −m3ct2 0 0

−m3ct2 γ2(ct2 − st2) +m2st2 − 2rγstct 0 (γ2 − r2)stct+ rγ(ct2 − st2)
0 0 0 0

0 (γ2 − r2)stct+ rγ(ct2 − st2) 0 m2ct2 − γ2(ct2 − st2) + 2rγstct

 .

Our goal is not only to characterize the pencil of quadrics but to provide an explicit
parameterization of the quartic curve C on F whose distance from O is rational. This is
performed by using a parameterization of the second singular quadric K which corresponds
to the zero r

γm2ctst
of the characteristic polynomial det(F+tL(τ)). K is a cone of revolution

with axis parallel to a, and its coefficient matrix reads

K(τ) =


γ2 −m 0 0

−m γ(m2+2r2)stct+r3(ct2−st2)
γm2stct

0 −r((γ2−r2)stct+γr(ct2−st2))
γm2stct

0 0 γst+rct
γst

0

0 −r((γ2−r2)stct+γr(ct2−st2))
γm2stct

0 γ(γ2−r2)stct+rγ2(ct2−st2)
γm2stct

 .

A parameterization of the cone of revolution K with respect to its vertex s is

k(u, v) = s + v(a +R(b cos(u) + c sin(u))),

where a is a unit vector in direction of its axis, and b and c complete a to an orthonormal
basis in R3, and R denotes the radius of the cross section circle at distance 1 from s which
has still to be determined. In detail this reads

k(u, v) =


γ2

m
+ v(γct−rst

m
+R sin(u)(γst+rct)

m
)

−vR cos(u)
γr
m

+ v(γst+rct
m

+R sin(u)(−γct+rst)
m

)

 .
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Inserting k(u, v) into the equation xT ·K(τ) · x = 0 defines the radius

R =

√
−ctst(γst+ rct)(γct− rst)

ct(γst+ rct)
=

√
−st(γct− rst)
ct(γst+ rct)

.

The final parameterization of the quartic curve C is obtained for v = 2r(R sin(u)ct−st)
1+R2 and is

a bit lengthy. It reads

c(u) =


(4Rr sin(u)ct(γct−rst)+2rct(γst+rct)(R2 sin2(u)−1)+m2+r2+R2(m2−r2)−2Rrγ sin(u))

m(1+R2)
−2Rr cos(u)(Rct sin(u)−st)

1+R2

r(2R2ct sin2(u)(rst−γct)+4Rγ sin(u)ctst−γ(1−R2)−2rctst+2γct2+2Rr sin(u)(ct2−st2))
m(1+R2)

 ,

and its norm is

‖c(u)‖ =
γct(1 +R2)− 2rst+ 2rRct sin(u)

ct(1 +R2)
.

This is proved by using the incidence c ⊂ E, thus ac1+bc2+cc3 = ctw, with w = ‖c‖. Note
that R is not rational in any rational substitution for the trigonometric functions cos(τ)
and sin(τ). Rotating C around the x-axis gives a rational polar representation f(u, v) of
the sphere F . The resulting parameterization f of F is not proper, but almost all points
of F are traced twice, therefore belonging to two parameter values (u1, v) and (u2, v). We
summarize the construction.

Corollary 3.19 There exists a one-parameter family of quartic curves C(τ) ⊂ F with
double point at s and symmetry plane y = 0. The corresponding pencils of quadrics A(t) =
F + λL(τ) contain rotational cones K(τ) and L(τ), where the vertex of the latter is at
O, and a parabolic cylinder P (τ). Besides P (τ) all quadrics have rotational symmetry
with parallel axes a(τ). The distance function dist(OC) = ‖c(u)‖ is rational in the curve
parameter, but not rational in the angle-parameter τ .
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Conclusion

We presented a model to calculate real rational polar representations of curves and sur-
faces, to gain real rational parameterizations of their conchoids with respect to a reference
point. Besides general information about the cone model and its attributes we dealt with
admissible mappings, these are mappings that keep rationality of the polar representa-
tion. Furthermore we investigated special curves and surfaces and presented symbolic real
rational polar representations.

We used this model to show the rationality of conchoids of lines, independent on the
position of the reference point. The conchoids of conic sections possess rational polar
representations, if the reference point lies on the conic or coincides with a focal point.
Furthermore explicit symbolic real rational representations are given for some examples.

We proved that, real rational ruled surfaces and real quadrics are real rational con-
choid surfaces, hence they possess a real rational polar representation with respect to the
reference point. Additionally we gave explicit symbolic real rational polar representations
for special ruled surfaces and quadrics. The latter ones are directly connected to rational
parameterizations of del Pezzo surfaces of degree four.
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Appendix A

Rational Polar Representation of
Ruled Surfaces

A.1 Numerical Example: Hyperbolic paraboloid

The hyperbolic paraboloid is a quadratic ruled surface, hence we can use the algorithms
presented in Sections 3.2.2, 3.2.5 or 3.3. We have already seen examples of the latter ones
and therefore use the first approach. To recall, the tricky part was the construction of the
rational trajectory of the family of conics 3.5.

The necessary computational steps are outlined. Given a hyperbolic paraboloid F :
xy − z = 1 with the parameterization

f(u, v) = (u, v, uv + 1)T .

To obtain a diagonal normal form of the family of conics determined by the squared
distance ‖f(u, v)‖2, we might use the method presented in Section 3.2.1. This example
shows another method. The conics c(u) are represented in a coordinate system which is
based on the vertices of a polar triangle of the conics c(u) as base points. The squared
length of f(u, v) reads ‖f(u, v)‖2 = (u2 + 1)v2 + 2uv + (u2 + 1). For the corresponding one
parameter family of conics c(u) we get

c(u) : −x20 + (u2 + 1)x21 + 2ux1x2 + (u2 + 1)x22 = 0.

By the rational transformation x0 = x0, x1 = x1 + x2, x2 = x1 − x2, the conics are
transformed into the normal form, where we use again xi instead of xi,

c(u) = −x20 + 2(u2 + u+ 1)x21 + 2(u2 − u+ 1)x22 = 0. (A.1)

According to Lemma 3.5 there exist polynomials which satisfy (A.1) identically. Denote the
coefficients of x0, x1 and x2 in (A.1) by a0(u) = −1, a1(u) = u2+u+1 and a2(u) = u2−u+1,
and their degrees are 2l = 0, 2m = 2 2n = 2. We make the ansatz (3.9) and evaluate (A.1)
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at the zeros α0,j, α0,j, α1,j, α1,j and α2,j, α2,j of a0, a1 and a2, respectively. The solution
of these four equations in the seven unknowns y0i, y1j, y2k reads

y00 = −t1 − 2
√

3t2 + 2
√

3t3, y01 = 3t1 + 2
√

3t2 − 4
√

3t3, y02 = t1,

y10 = t2, y11 = −
√

3t1 − 2t2 + 3t3,

y20 =
√

3t1 + 3t2 − 4t3, y21 = t3.

We choose t2 = 1 and t3 = 0 and let t1 such that c(u) has an additional zero at u = 0,
thus t1 = (2

√
2 − 4

√
3)/5. The curve y(u) = (y0, y1, y2)

T (u) following the conics c(u) has
the parameterization

y(u) =
1

5

 (2
√

2− 4
√

3)u2 + (6
√

2− 2
√

3)u− 2
√

2− 6
√

3

(2
√

6 + 2)u+ 5

2
√

6 + 3

 .

Stereographic projection applied to each conic c(u) finally leads to a reparameterization of
F . The center of the stereographic projection is y(u) and the line which is projected to
c(u) is chosen by q(t) = (0, 1, t)TR. This leads to the rational polar representation of the
hyperbolic paraboloid F ,

f(u, t) = (u, v(u, t), uv(u, t) + 1),

with

v(u, t) =
b− 2t+ bt2 + u(−c+ 2at− at2) + u2(c− 4t− at2) + u3(−1− 2t+ t2)

−1− 2bt+ t2 + 2ut(2 + t) + 2u2t(−a+ t) + u3(−1 + 2t+ t2)
,

and the constant factors a = 1−
√

6, b = 2−
√

6 and c = 3−
√

6. For the rational radius
function of f(u, t) we obtain

‖f(u, t)‖ =

√
2(1 + t2 + u(−1 + t2) + u2(1 + t2))(4−

√
6 +
√

6u+ 2u2)

2(−1− 2bt+ t2 + 2ut(2 + t) + 2u2t(−a+ t) + u3(−1 + 2t+ t2))
.

Similar to the approaches of Sections 3.2.2, 3.2.5 or 3.3, we end up with a rational param-
eterization of bi-degree (4, 2).
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Appendix B

Rational Polar Representation of
Quadrics

B.1 Hyperboloid of Two Sheets

Formulae of Section 3.3.3 for a hyperboloid of two sheets. Let

F : 1− a2x2 + b2y2 + c2z2 = 0,

then the parameterization of the cylinder B of (3.25) reads

B : b(u, v1, v1) = e0(u) + v1e1(u) + v2e2

with

e0(u) =

(
−u
β
,

1

α
, 0,−u

c

)T
, e1(u) =

(
1− u2

uβ
,

2

α
, 0,−1 + u2

uc

)T
, e2 = (0, 0, 1, 0)T

and

α =
√
c2 − b2, β =

√
a2 + c2, γ =

√
a2 + b2.

The conics L(u), C(u), C(u), see Figure 3.9, are given as

ψ(u) = e0(u) + v1e1(u) + v2e2

D : x2 + y2 + z2 − w2 = 0

}
L(u),

ε(u) = π(ψ(u)) : 1 + u2 + 2βux− α(1− u2)y = 0

F = π(Φ) : 1− a2x2 + b2y2 + c2z2 = 0

}
C(u),

ε(u) : c(1 + u2) + β(1− u2)x+ 2αuy = 0

S2 : x2 + y2 + z2 − 1 = 0

}
C(u).
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The conics C degenerate to points P± for u = u0 and u = u1

P± = (cγ,−bβ,±aα, 0).

To gain a real parameterization we have to reparameterize the parameter u as

u(s) =
u0s

2 + u1
s2 + 1

, with u0 =
−b+ γ

a
, u1 = −−b+ γ

a
.

Stereographic projection of C(s) from P+ to the plane through O perpendicular to OP+

leads to the family of circles

C∗(s) : (ξ −m(s))2 + η2 − r(s)2 = 0, with

m(s) =
αβ(γ + bs2)

aµ(s)
, r(s)2 =

c2γ2(γs2 + b)(γ + bs2)

a2s2µ(s)2
, and µ(s) = bγ − s2α2.

The squared radius is the sum of the squares

h1(s)
2 =

(
cγ(b+ γ)

aµ(s)

)2

, h2(s)
2 =

(
cγ
√
bγ(s2 − 1)

asµ(s)

)2

,

and therefore we find the cubic trajectory q(s) of the family of conics C∗(s)

q(s) =
1

asµ(s)

(
s(cγ(b+ γ) + αβ(bs2 + γ))

√
bγcγ(s2 − 1)

)
.

A parameterization of the conics in the plane of bi-degree (3, 2) follows

c∗(s, t) =
1

asµ(s)(1 + t2)

(
αβs(s2b+ γ)(1 + t2)− cγ((b+ γ)s(1− t2) + 2

√
bγt(s2 − 1))

cγ(
√
bγ(s2(1 + t2) + 1− t2)− 2ts(b+ γ)).

)
.

The parameterization of the family of conics C(s) on the unit sphere reads

g1(s, t) = β(1 + t2)((s4α2 + b2)(s2b+ γ) + c2s2(s2γ + b)) + 2cαs(s2γ + b)ν(s)

g2(s, t) = a(−(1 + t2)α((3s2b+ γ)(s2γ + b) + a2s2 + s2α2(−s4 + 1))− 2cβsν(s))

g3(s, t) = 2as(s2α2 − bγ)(
√
bγ(1− t2)(−s2 + 1) + 2ts(γ + b))

n(s, t) = c(1 + t2)(α2s2((s4 + 1)γ + 2s2b) + γ2(2s2γ + (s4 + 1)b)) + 2sαβ(s2b+ γ)ν(s)

with

ν(s) = (γ + b)s(t2 − 1)− 2
√
bγt(s2 − 1).

Again the radius function ρ(s, t) does not increase the degree of the parameterization since
e1(u)g1(u, t) + e3(u)g3(u, t) = e0p(u, t) holds, with

p(s, t) = −a
γ−b(2αβcs

3(2t(s2 − 1)
√
bγ(γ − b)− a2s(t2 − 1))

+(γ − b)(1 + t2)(bα2s2(−γ(s4 + 3)− 2s2bg)− γ2((2c2s4 − b2(s4 + 1))))).

Which yields a rational parameterization of the del Pezzo surface Φ and a rational polar
representation of the corresponding hyperboloid of two sheets of bi-degree (6, 2).
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B.2 Hyperboloid of One Sheet

Formulae of Section 3.3.3 for a hyperboloid of one sheet. Let

F : −1− a2x2 + b2y2 + c2z2 = 0,

then the parameterization of one of the cylinders B of (3.26) reads

B : b(u, v1, v1) = e0(u) + v1e1(u) + v2e2

with

e0(u) =

(
u

γ
, 0,

u

α
,−1

b

)T
, e1(u) =

(
1

uγ
, 0,

1− u2

α(1 + u2)
,

2u

(1 + u2)b

)T
, e2 = (0, 1, 0, 0)T

and

α =
√
c2 − b2, β =

√
a2 + c2, γ =

√
a2 + b2.

The conics L(u), C(u), C(u), see Figure 3.9, are given as

ψ(u) = e0(u) + v1e1(u) + v2e2

D : x2 + y2 + z2 − w2 = 0

}
L(u),

ε(u) = π(ψ(u)) : 2u− γ(1− u2)x+ α(1 + u2)z = 0

F = π(Φ) : −1− a2x2 + b2y2 + c2z2 = 0

}
C(u),

ε(u) : 2bu− γ(1 + u2)x+ α(1− u2)z = 0

S2 : x2 + y2 + z2 − 1 = 0

}
C(u).

The conics C(u) are real ∀u ∈ R hence no reparameterization of the parameter u is
necessary. Stereographic projection of C(s) from (0, 0, 1)T to the plane z = 0 leads to the
family of circles

C∗(s) : (ξ −m(s))2 + η2 − r(s)2 = 0, with

m(s) = − γ(1 + u2))

2bu+ α(u2 − 1)
, r(s)2 =

a2(1 + u2)2 + c2(1− u2)2

((2bu+ α(u2 − 1))2

and µ(s) = (bβ2s2 + c2γ)(bs2 + γ).

The numer of the squared radius is the sum of the squares

h1(s)
2 = (a(1 + u2))2, h2(s)

2 = (c(1− u2))2,
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and therefore we find the quadratic trajectory q(s) of the family of conics C∗(s)

q(s) =
1

2bu+ α(u2 − 1)

(
(a− γ)(1 + u2)

c(u2 − 1)

)
.

A parameterization of the conics in the plane of bi-degree (2, 2) follows

c∗(s, t) =
1

(2bu+ α(u2 − 1))(1 + t2)

(
−(1 + u2)(γ(1 + t2) + a(1− t2)) + 2ct(1− u2)

c(u2 − 1)(t2 − 1)− 2at(1 + u2)

)

The parameterization of the family of conics C(s) on the unit sphere reads

g1(u, t) = −(2(2bu+ α(u2 − 1)))((1 + u2)(γ(1 + t2) + a(1− t2)) + 2ct(1− u2))
g2(u, t) = (2(2bu+ α(u2 − 1)))(c(u2 − 1)(t2 − 1)− 2at(1 + u2))

g3(u, t) = 2(1 + t2)(−2buα(u2 − 1) + (u2 + 1)2γ2 − 4u2b2)− 2(2ct(u4 − 1) + a(1 + u2)2(t2 − 1))γ

n(s, t) = 2(1 + t2)(2buα(u2 − 1) + (u4 + 1)β2 + 2u2(γ − α))− 2γ(2ct(u4 − 1) + a(1 + u2)(t2 − 1)).

Again the radius function ρ(s, t) does not increase the degree of the parameterization since
e1(u)g1(u, t) + e3(u)g3(u, t) = e0p(u, t) holds, with

p(u, t) = 4u((b(1− u2) + 2αu)(−u2a+ 2u2ct+ u2at2 − a− 2ct+ at2)−
(u2 + 1)(t2 + 1)(−u2bc2 − u2ba2 + 2αua2 + bc2 + ba2)).

Which yields a rational parameterization of the del Pezzo surface Φ and a rational polar
representation of the corresponding hyperboloid of one sheet of bi-degree (4, 2).
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B.3 Numerical Example: Ellipsoid

We used the following example to draw the Figures 3.8(b), 3.10(b) and 3.11. Let an
ellipsoid be given by

F : −2 + 2x2 + 4x− 2xy + 2y2 + z2 = 0.

The polar plane δ : x− 1 = 0 of the origin intersects F in a complex conic. The transfor-
mations to achieve a normal form are the following:

• Perspective collineation:

κ : x′ =
1

x− 1
x

• Rotation about O with ω = 3
8
π combined with a re-ordering of the coordinate axes:

x̃ = R · κ(x) =

 0 0 1

cos(ω) sin(ω) 0

− sin(ω) cos(ω) 0

 · κ(x).

Applying these two transformations to F leads to the normal form, again

F ′ : x2 + (3− sin 2ω + cos 2ω)y2 + (3 + sin 2ω − cos 2ω)z2 − 2.

Since the coefficients of F ′ are trigonometric functions of the rotation angle ω, and because
of the fact that the final parameterization f(s, t) contains square roots of these coefficients,
e.g. α =

√
c2 − b2, we use floating point numbers as approximations. Inserting the co-

efficients a = 1/2, b = (3 − sin 2ω + cos 2ω)/2 and c = (3 + sin 2ω − cos 2ω)/2 into the
solution (3.37) and inverting the transformations to get the following rational parameteri-
zation of the quadric F ,

f(s, t) = 1
p(s,t)

(x(s, t), y(s, t), z(s, t)), with

x(s, t) = (−1.07s6 + 0.80)(t2 + 1)− 1.41(t2 + 1.20t− 1)s5 + (1.59t2 − 2.01− 6.02t)s4

+0.34(t2 − 5.47t− 1)s3 + (6.11t2 − 4.54t− 1.47)s2 + 1.06(t2 + 3.34t− 1)s

y(s, t) = (0.44s6 − 0.33)(t2 + 1)− 3.40(t2 − 0.20t− 1)s5 + (−0.66t2 − 14.53t+ 0.83)s4

+0.83(t2 + .93t− 1)s3 + (−2.53t2 − 10.97t+ 0.61)s2 + 2.56(t2 − 0.57t− 1)s

z(s, t) = (1.10s6 − 0.83)(t2 + 1)s6 − 8.43ts5 + (12.82t2 − 5.21)s4 + 4.42ts3

+(4.60t2 − 3.98)s2 + 4.01ts,

p(s, t) = (0.82s6 + 2.23)(t2 + 1)− 1.41(t2 + 1.20t− 1)s5 + (5.86t2 − 6.02t+ 2.25)s4

+0.34(t2 − 17.26t− 1)s3 + (15.84t2 − 4.54t− 0.32)s2 + 1.06(t2 + 7.12t− 1)s.

The norm of f(s, t) reads

‖f(s, t)‖ = 1
p(s,t)

((1.60s6 + 4.79s2 + 1.21)(t2 + 1)− 4.50s3t(s2 − 1) + (11.84t2 + 2.21)s4).
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