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AbstratWe onsider a resoure onstrained wireless sensor network, where a setof distributed sensors and a fusion enter (FC) ollaborate to estimate anunknown vetor soure. The basi question is, how should a sensor enodeand/or ompress the loally observed data before transmitting it over animperfet hannel to the FC. This enoding should be suh that the FCan estimate the unknown vetor soure most aurately under the givenbandwidth and power onstraints for the data transmission. In this thesis,we fous our disussion on linear systems, where eah sensor linearly enodesits loal observed data and also the FC applies a linear mapping in order toestimate the unknown vetor soure, based on its reeived data. We adoptthe Fisher information as our performane metri, whih is motivated bytheir relation to the Cramér�Rao lower bound. We investigate two types ofhannel usage between sensors and FC, an orthogonal (i.e., non�interfering)and a oherent multiple aess hannel (MAC). For the ase when the soureis salar�valued, we derive the optimal loal sensor rule, when the hannelsbetween sensors and FC are orthogonal. We also derive an optimal powersheduling strategy, when a given total power is optimally sheduled amongsensors. Simulations show that the proposed power sheduling performsmuh better than that for the uniform power sheduling. For a salar�valuedsoure, we also study the oherent MAC under a total power onstraint andderive optimal loal sensor rules in losed form for ertain assumptions on thehannel states. We also show in simulation that the asymptoti performane,when the number of sensors inreases, ritially depends on the di�erentmultiple aess shemes. For the general ase, when the soure is vetor�valued, we onsider only the ase of an orthogonal MAC. We derive optimalloal sensor rules for ertain assumptions on the hannel states in losedform.





ZusammenfassungWir betrahten ein drahtloses Sensornetz mit begrenzten Ressouren, in demdie Sensoren ihre lokalen Beobahtungen an einer unbekannten, im allge-meinen vektorwertigen Quelle, einem so genannten Fusion Center (FC) über-mitteln. Vor allem in drahtlosen Sensornetzen ist die Bandbreite limitiertund Energiee�zienz von groÿer Bedeutung. Aus diesem Grund sollte jederSensor seine Beobahtungen (Messdaten) komprimiert und/oder odiert zumFC übertragen. Das Codieren soll dabei in einer Art und Weise geshehen,damit das FC die unbekannte Quelle möglihst genau (optimal) shätzenkann, für eine vorgegebene maximale Bandbreite und Sendeleistung. ImRahmen dieser Diplomarbeit beshränken wir uns auf lineare Systeme, wodie Codiervorshrift am lokalen Sensor (Sensor�Regel) als auh die Shätz-funktion am FC mit einer linearen Transformationen beshrieben werden.Als Performanekriterium verwenden wir die Fisher Information, motiviertdurh ihre Beziehung zur Cramér�Rao-Shranke. Wir betrahten einer-seits einen orthogonalen (d.h. ohne Nahbarkanal�Interferenzen), anderer-seits einen koheränten Mehrfahzugri�skanal (MZK) zwishen den Sensorenund dem FC. Für den Spezialfall einer skalarwertigen Quelle und der An-nahme eines orthogonalen MZKs geben wir die optimale Codiervorshriftam lokalen Sensor an; eine optimale Leistungs�Verteilungsstrategie, wenneine vorgegebene maximale Gesamtleistung im Sensornetz auf die einzelnenSensoren optimal aufgeteilt werden soll, sodass die maximale Systemperfor-mane resultiert. Durh Simulationen wird gezeigt, dass dadurh ein sig-ni�kanter Performane�Gewinn resultiert, gegenüber der einer gleihverteil-ten Verteilungsstrategie. Für einen koheränten MZK und einer skalarwerti-gen Quelle werden optimale Codiervorshriften unter einer Gesamtleistung-begrenzung und für gewisse Spezialfälle an das Kanalmodell gezeigt. Für denallgemeinen Fall einer vektorwertigen Quelle wird im Rahmen dieser Diplo-marbeit nur der orthogonale MZK Fall studiert, wobei unter bestimmten An-nahmen an den Kanalzuständen optimale Codiervorshriften in geshlossenerForm gezeigt werden.
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Chapter 1Introdution1.1 Motivation � Wireless Sensor NetworksConsider a distributed wireless sensor network (WSN), where sensors ob-serve data from a vetor soure and transmit it, possibly after performingsome preproessing, to a fusion enter (FC) over an imperfet hannel. Anexample ould be a target traking senario, where several sensors trakthe movement of a target objet and transmit their observations to a en-tral unit. Cooperative ommuniations between sensors would ost muhmore loal energy and in addition inrease the system omplexity. There-fore, distributed shemes (i.e., non�ooperative loally) are of more pratialimportane. The FC reeives the transmitted data set from the di�erent sen-sors, whih are in general a�eted by the hannel more or less, and basedon the reeived data, it generates a �nal estimate on the unknown sourefor a spei� signal proessing task. We investigate two types of hannelusage between sensors an FC: an orthogonal and a oherent multiple aesshannel (MAC). For the ase of an orthogonal MAC, the sensors have theirindependent non�interfering hannels to the FC. As for a oherent MAC,we allow all sensors transmit simultaneously, by assuming that all transmitmessages reahes the FC in a oherent sum.However, ommuniations between sensors and FC is ostly, as is the asein WSNs. Espeially in suh networks is an important fat, energy e�ienyof their operation. E.g., battery apaities may be small and their replae-ment unfeasible. There an be signi�ant power savings, if less informationis transmitted to the FC, without degrading the overall performane. Thebasi question is, how to enode and/or ompress the loally observed databefore transmitting it over the hannel to the FC. This enoding shouldbe suh that the FC an estimate the parameter of interest most auratelyunder the given bandwidth and power onstraints for the data transmission.There are at least two approahes in whih the �nite bandwidth onstraintan be modeled. On the one hand, we an limit the number of binary bits1



CHAPTER 1. INTRODUCTION 2that eah sensor transmit to the FC per observation period (soure oding).This bandwidth measure is from a digital ommuniations point of view. Onthe other hand, we an limit the number of real�valued messages that eahsensor transmit to the FC per observation period, whih is diretly propor-tional to the physial frequeny bandwidth in the system. This approah issuited for analog transmission shemes. Throughout this thesis, we adoptthe seond bandwidth measure, i.e., we onsider analog transmission of real�valued sensor messages (f. intro of [1℄). The power onstraint in ontrastlimits the strength of the transmit signals.In this thesis, we disuss the joint estimation of a vetor parameter by asensor network with a FC. The transmission between sensors and FC is sub-jet to bandwidth and power onstraints. We fous our disussion on linearsystems, where enoding funtions at the loal sensors and the fusion fun-tion at the FC are all linear. The reason behind restriting to linear modelsis tratability. For non�linear models, there are often numerial/iterativetehniques neessarily, whih in partiular often onverges only to loal op-timum solutions. As a onsequene of onsidering linear models, we andesribe our loal sensor rule by some sensor matrix and additive systematinoise. The power onstraint limits the strength of eah transmitted data,while the bandwidth onstraint limits the number of real�valued transmit-ted symbols (messages) per observation period. Under a Cramér�Rao lowerbound (CRLB) riterion, we design the optimal loal sensor rule, based onthe hannel states and the seond order statistis of the loal observation.1.2 State of the ArtSimilar questions were addressed by the authors of [1℄ and [2℄. They de-signed optimal loal sensor rules under the mean square error (MSE) rite-rion and onsidered a Bayesian setting in ontrast (minimum mean squareerror (MMSE) estimator).In [1℄, they designed optimal loal sensor rules by assuming non�orthogonalhannel usage (the orthogonal hannel usage has been studied in [3℄ before),subjet to bandwidth and/or power onstraints, for ases where the param-eter of interest and loal sensor observations are salars or vetors.For the salar ase, they used solutions for the optimal loal sensor rulesfrom [3℄ and derived an optimal power sheduling strategy, i.e., where agiven total transmit power is optimally sheduled among all sensors suhthat the ahieved MSE is maximized. Simulations show that the proposedpower sheduling strategy signi�antly improves the MSE performane whenompared to an uniform power sheduling (i.e., all sensors use the sametransmit power). They have also shown that the MSE performane ritiallydepends on the di�erent multiple aess shemes (orthogonal and oherentMAC), whih has in partiular signi�antly di�erent asymptoti behaviours



CHAPTER 1. INTRODUCTION 3(in the sense when the number of sensors inreases). When the parameterof interest and loal sensor observations are vetors, they derived a losed�form solution of an optimal loal sensor rule for a noiseless hannel (i.e.,negleting the additive hannel noise). For a noisy hannel, the probleman be e�iently solved by a numerial method (semi�de�nite programming(SDP)).In [2℄, they di�erentiate between unorrelated and orrelated loal sen-sor observations, i.e., whether the loal sensor observations are unorrelatedamong di�erent sensors or not. They onsidered the ase of estimating a ve-tor parameter and analyzed the MSE performane for a system setup with anorthogonal MAC. For orrelated sensor observations, they derived a losed�form MSE optimal loal sensor rule and showed an optimal power shedulingstrategy in a water�lling�like manner so as to balane hannel strength andadditive hannel noise variane. For orrelated sensor observations, theyfurther developed an iterative algorithm with guaranteed onvergene to atleast a stationary point of the MSE�ost.By ontrast, we onsider a lassial estimation problem, where the pa-rameter vetor is modeled as unknown deterministi and use the Fisher in-formation (FI) as the performane metri. The motivation for using the FIis based on its relation to the CRLB.1.3 Organization of this ThesisThe rest of this thesis is organized as follows. In Chapter 2, we review someelementary onepts of lassial estimation theory. In partiular, we intro-due the onepts of the CRLB, the Fisher information matrix (FIM) and dis-uss their properties. We then speialize to the linear Gaussian model (LGM)whih will be used throughout the thesis. In Chapter 3, we give a generalproblem formulation for our system model. The FI performane metri andpower onstraints are derived in terms of the loal sensor rules. We alsodisuss some fundamental notions of the optimal experiment design. In par-tiular, we introdue various optimality riteria whih an be used in the aseof a vetor�valued parameter. Then, we formulate the basi design problemin the most general form, in order to obtain the optimal loal sensor rule. InChapter 4, we show the main results of this thesis. We solve the basi designproblem for ertain speial ases, �rst, for the speial ase of a salar pa-rameter, afterwards, for the general ase of a vetor parameter, where in thelatter, we are partiularly interested in two optimality riteria. For the salarparameter, we also show an optimal power sheduling strategy. Finally, inChapter 5, we show numerial experiments, �rst, for the salar parameter,where we are interested in the optimal power sheduling performane gain.For a vetor parameter, we ompare the two ases of optimal designs withregard to the MSE performane in a single sensor setup.



CHAPTER 1. INTRODUCTION 41.4 Symbols and NotationsThroughout this thesis we adopt the following notations: A lower/upper aseletter a/A denotes a real salar, a boldfae/lowerase letter a denotes a vetorand a boldfae/upperase letter A denotes a matrix; R denotes the set of realnumbers, R+ denotes the set of positive real numbers inluding 0, R\ {0} de-notes the set of real numbers exluding 0, R+\ {0} denotes the set of positivereal numbers exluding 0, Rm denotes the set of all real vetors of dimension
m, R+m denotes the set of all real vetors with positive elements; +

√· denotesthe positive square root; | · | denotes the absolute value; sign (·) denotes thesignum funtion (returns 1 or−1 depending on the sign of the argument); (·)∗denotes an optimum; min {a1, a2, . . . , aK} and max {a1, a2, . . . , aK} denotethe minimum and maximum of the set {a1, a2, . . . , aK}.Matrix and Vetor Analysis: The notations AT , A−1, A−T , A† meanthe transpose, the matrix�inverse, the matrix�inverse�transpose and thepseudo�inverse of a matrix A; I denotes the identity matrix; 1 denotes avetor of ones; 0 denotes a vetor of zeros. The ith element of a vetor a isdenoted by ai, the element of the ith row and jth olumn of A is denotedby (A)i,j , the ith olumn vetor of A is denoted by ai, the ith row vetor of
A is denoted by ari . We denote the set of all real (k × k)�symmetri matri-es by Sym (k), �positive semi�de�nite matries by NND (k) and �positivede�nite matries by PD (k). Let A,B ∈ Sym (k), then the relations A ≥ Bor B ≤ A means that A − B ∈ NND (k), similarly, A > B or B < Ameans that A − B ∈ PD (k) (Loewner ordering among symmetri matri-es). The relation '�', '�', '≻' and '≺' denote the orresponding element�wise inequalities for vetors. The notation R (A) , {Av ∈ R

m : v = 0} andN (A) , {v ∈ R
n : Av = 0} mean the range and the nullspae of the matrix

A ∈ R
m×n. The notation rank (A) means the rank of the matrix A. Thevetor ei denotes the ith unit vetor. The notation 1 ≤ i, j ≤ N meansthat i, j ∈ {1, 2 . . . , N}. diag {x1, x2, . . . , xK} denotes a diagonal matrixwith entries xi for 1 ≤ i ≤ K. tr {A} and det {A} denote the trae ad thedeterminant of a matrix A, ‖·‖ denotes the Eulidean norm (l2�norm).Statistial Signal Proessing: The notations Ca and µa mean the auto�ovariane matrix and the mean of the random vetor a; a ∼ N (µa,Ca)means that a is Gaussian distributed with mean µa and ovariane matrix

Ca; var {a} and ov {a} mean the variane and the auto�ovariane matrix(equivalent to the notation Ca) of a; ov {a,b} means the ross�ovarianematrix between a and b; E {·} denotes the expetation operator.Abbreviations: "Fig.", "w.r.t.", "w.l.o.g." denote "Figure", "with respetto", "without log of generality"; "i�" means "if and only if"; "f." means"onfer"; "ev.", "p.", "ftn." stand for "evaluated", "page", "footnote".



Chapter 2Basi Conepts of ClassialEstimation TheoryIn this hapter, we will introdue the Cramér�Rao lower bound (CRLB)and the Fisher information matrix (FIM) for the general ase of a vetorparameter, whih is a fundamental result in lassial estimation theory. TheCRLB is a lower bound on the variane of any unbiased estimator and ispratially useful sine it provides a benhmark against whih we an om-pare the performane of any unbiased estimator. In ertain ases, it evenallows us to �nd the minimum variane unbiased (MVU) estimator. Beforewe go into details of the CRLB and the FIM, we review some basi oneptsof lassial estimation theory.2.1 The Estimation ProblemLet us onsider an unknown, deterministi parameter vetor θ ∈ R
n. A soalled fusion enter (FC) reeives the data z and estimates the parametervetor θ, based on the observed data z. It should be noted that the FChas no prior information about the parameter vetor θ, i.e., we onsider thelassial estimation setting in ontrast to the Bayesian setting, where theparameter vetor is modeled random with a known prior probability densityfuntion (pdf). The dependene of the observed data z and θ is desribedby the family of pdfs

f (z;θ) , (2.1)i.e., the notation in (2.1) means, that the pdf of z is parameterized (indexed)by θ. For an estimator θ̂ (z) the estimation error e is de�ned as
e = θ̂ (z)− θ. (2.2)5



CHAPTER 2. BASIC CONCEPTS OF CLASSICAL EST. THEORY 6The mean square error (MSE) of an estimator θ̂ (z) is given byMSEθ

{
θ̂ (z)

}
=

1

n
E{‖e‖2} (2.2)

=
1

n
E{∥∥∥θ̂ (z)− θ

∥∥∥
2
}

=
1

n

∫

z

∥∥∥θ̂ (z)− θ

∥∥∥
2
f (z;θ).

(2.3)It is important to note that the expetation in (2.3) is only with respet to z,sine θ is non-random. As the notation in (2.3) suggests, the MSE dependson the parameter vetor θ in general. The MSE an be deomposed into twoterms1:MSEθ

{
θ̂ (z)

}
=

1

n

∥∥∥biasθ {θ̂ (z)
}∥∥∥

2
+ varθ {θ̂ (z)

}
, (2.4)where the bias of θ̂ (z) is de�ned as the expetation of the estimation error

e, i.e.,biasθ {θ̂ (z)
}
, Eθ {e}

(2.2)
= Eθ

{
θ̂ (z)− θ

}
= Eθ

{
θ̂ (z)

}
− θ, (2.5)and the variane of the estimator θ̂ (z) is given byvarθ {θ̂ (z)

}
=

1

n
Eθ

{∥∥∥θ̂ (z)− Eθ

{
θ̂ (z)

}∥∥∥
2
}
. (2.6)As the MSE, also the bias and the variane of an estimator depend on θ ingeneral.De�nition 2.1.1 An estimator θ̂ (z) is said to be unbiased i�biasθ {θ̂ (z)

}
= Eθ {e} = 0 for all θ. (2.7)As an be veri�ed easily, for an unbiased estimator θ̂ (z) it holds thatEθ

{
θ̂ (z)

}
= θ for all θ(f. (2.5)) and moreover, by (2.4), we haveMSEθ = varθ {θ̂ (z)

}
.We also de�ne the ovariane matrix of θ̂ (z) byovθ {θ̂ (z)

}
= Eθ

{(
θ̂ (z)− Eθ

{
θ̂ (z)

})(
θ̂ (z)− Eθ

{
θ̂ (z)

})T}
. (2.8)1The deomposition is only valid in the lassial ontext, i.e., if θ is modeled as deter-ministi.



CHAPTER 2. BASIC CONCEPTS OF CLASSICAL EST. THEORY 7If θ̂ (z) is unbiased, i.e., Eθ

{
θ̂ (z)

}
= θ for all θ, the ovariane matrix of

θ (z) from (2.8) equals the "MSE-matrix" Eθ

{
eeT

}:ovθ {θ̂ (z)
}
= Eθ

{(
θ̂ (z)− θ

)(
θ̂ (z)− θ

)T} (2.2)
= Eθ

{
eeT

}
.Furthermore, ovθ {θ̂ (z)

}
= ovθ {θ̂ (z)− θ

}
= ovθ {e} sine θ is deter-ministi. Note that the kth diagonal element of ovθ {θ̂ (z)

} equals the vari-ane of the kth estimator omponent θ̂k, i.e., varθ {θ̂k} =
(ovθ {θ̂ (z)

})

k,k
,and thus it equals the MSE of θ̂k, if θ̂ (z) is unbiased. In partiular, theMSE of θ̂ (z) is obtained as the arithmeti mean of all individual MSEs of

θ̂k for 1 ≤ k ≤ n. Hene, the MSE is also given by the trae of the "MSE-matrix"/error ovariane matrix/ovariane matrix of an unbiased estimator
θ̂ (z), divided by n:MSEθ =

1

n
tr {Eθ

{
eeT

}}
=

1

n
tr {ovθ {e}} =

1

n
tr{ovθ {θ̂ (z)

}}
. (2.9)2.2 The Cramér�Rao Lower BoundGiven an observation z and an estimator θ̂ (z), it is desirable to quantifyhow good the estimator performs, e.g., by omparing it against some benh-mark. We now introdue our entral performane benhmark for the setof all unbiased estimators for a lassial estimation problem, whih is re-lated to the Cramér�Rao lower bound (CRLB) and the Fisher informationmatrix (FIM).2.2.1 The Fisher Information MatrixIn the following, we assume that ∂

∂θk
ln f (z;θ) and ∂2

∂θk∂θl
ln f (z;θ) exist andare absolutely integrable with respet to z. Consider an estimation problembased on the observation vetor z, whose pdf f (z;θ) is parametrized by theparameter vetor θ, whih we would like to estimate. We an then de�nethe orresponding FIM as

Jz (θ) , Eθ

{[
∂

∂θ
ln f (z;θ)

] [
∂

∂θ
ln f (z;θ)

]T}
. (2.10)The FIM is a square matrix of size n × n, where n is the dimension of theparameter vetor θ. It should be noted that Jz (θ) depends on the parameter

θ in general. The elements of Jz (θ) are thus given by
(Jz (θ))k,l =

∫

z

[
∂

∂θk
ln f (z;θ)

] [
∂

∂θl
ln f (z;θ)

]
f (z;θ) dz. (2.11)



CHAPTER 2. BASIC CONCEPTS OF CLASSICAL EST. THEORY 8We an write (2.10) and (2.11) also in the more ompat form as
Jz (θ) = −Eθ

{
∂

∂θ

∂

∂θ
ln f (z;θ)

} (2.12)and
(Jz (θ))k,l = −Eθ

{
∂2

∂θk∂θl
ln f (z;θ)

}
. (2.13)The FIM is symmetri, i.e., Jz (θ) = JT

z (θ) ∈ Sym (n) and positive semi-de�nite, i.e., Jz ∈ NND (n). For the set of symmetri matries, we an de�nea partial ordering to be able to ompare two or more FIMs [4℄.De�nition 2.2.2 The partial ordering ≥, is de�ned on Sym (s), by
A ≥ B ⇐⇒ A−B ≥ 0 ⇐⇒ A−B ∈ NND (s) ,whih is known as the Loewner ordering of symmetri matries. Note thatthe notation B ≤ A is equivalent to A ≥ B. We also de�ne the loselyrelated variant >, by
A > B ⇐⇒ A−B > 0 ⇐⇒ A−B ∈ PD (s) .In the salar ase, i.e., for s = 1, the Loewner ordering redues to thefamiliar total ordering on the real line R. Or, the other way around, the totalordering of the real line R is extended to the partial ordering of the matrixspaes Sym (s), with s > 1. In Chapter 3, we will de�ne our basi designproblem, whih is based on the Loewner ordering among FIMs. Anotherimportant property holds, if the data zk are statistially independent for all

1 ≤ k ≤ n. Then, the FIM an be written as
Jz (θ) =

n∑

k=1

Jzk (θ) , (2.14)where Jzk (θ) is the FIM for the zkth data. This property an be easilyveri�ed sine for independent data zk, the pdf f (z;θ) an be fatored intothe form
f (z;θ) =

n∏

k=1

f (zk;θ) .2.2.2 The Cramér�Rao Lower BoundIf the FIM Jz (θ) is non-singular, i.e., the inverse J−1
z (θ) exists for all θ,it an be shown that the MSE matrix/error ovariane matrix/ovariane



CHAPTER 2. BASIC CONCEPTS OF CLASSICAL EST. THEORY 9matrix of any unbiased estimator θ̂ (z) is bounded below by the inverse FIM
Jz (θ) [5℄,Eθ

{
eeT

}
= ovθ {e} = ovθ {θ̂ (z)

}
≥ J−1

z (θ) . (2.15)The inequality (2.15) is referred to as the Cramér�Rao lower bound (CRLB).Throughout this thesis we only onsider estimation problems where the FIM
Jz (θ) is non-singular. However, there are also generalizations of the CRLBto situations where the FIM is singular [6℄.2.2.3 E�ient EstimatorsIf the ovariane matrix ovθ {θ̂ (z)

} of an unbiased estimator θ̂ (z), i.e.,Eθ

{
θ̂ (z)

}
= θ for all θ, attains the CRLB, i.e.,ovθ {θ̂ (z)

}
= J−1

z (θ) ,then suh an estimator is alled e�ient, denoted by θ̂e� (z). An e�ientestimator exists if and only if ∂
∂θ ln f (z;θ) an be written as

∂

∂θ
ln f (z;θ) = K (θ) [g (θ)− θ] , (2.16)with some n × n matrix K (θ) and some funtion g (θ) [5℄. This estimatoris then given by

θ̂e� (z) = g (z) , (2.17)and its ovariane matrix is given byovθ {θ̂e� (θ)} = J−1
z (θ) = K−1 (θ) , (2.18)i.e., the FIM Jz (θ) = K (θ). If an e�ient estimator exists, it oinides withthe MVU estimator and the maximum likelihood (ML) estimator.In the following, we will de�ne the CRLB and the FIM for the speialase of a Gaussian distributed observation z. Furthermore, we speializeit to a linear observation model, i.e., when observation z (θ) is linear in θ,beause we will onsider only that system model exlusively throughout thisthesis.2.2.4 The Gaussian CaseFor the ase of a Gaussian distributed observation, i.e., we assume z ∼

N (µz (θ) ,Cz (θ)), where Cz is non-singular, it an be shown [5℄ that
(Jz (θ))k,l =

[
∂µz (θ)

∂θk

]T
C−1

z (θ)

[
∂µz (θ)

∂θl

]
+

1

2
tr{C−1

z (θ)
∂Cz (θ)

∂θk
C−1

z (θ)
∂Cz (θ)

∂θl

}
.

(2.19)



CHAPTER 2. BASIC CONCEPTS OF CLASSICAL EST. THEORY 102.2.5 The Linear Gaussian ModelWe now onsider the LGM, i.e., the observation z an be written in the form
z = Hθ + v,where H is a deterministi matrix of size p× q, with p ≥ q and full olumn-rank, i.e., rank (H) = q. The random vetor v is Gaussian distributed withmean µv and the non-singular ovariane matrix Cv, i.e., v ∼ N (µv,Cv).The LGM is a speial ase of the general Gaussian model with mean µvand ovariane matrix Cv. Therefore, we obtain the FIM of the LGM byspeializing (2.19) as
Jz =

(
∂µz

∂θ

)T

C−1
z

∂µz

∂θ
= HTC−1

v H. (2.20)An important property of the LGM is that the FIM Jz from (2.20) does notdepend on θ. Furthermore, it an be shown [5℄ that for a LGM,
• there always exist an e�ient estimator given by

θ̂e� (z) = (HTC−1
v H

)−1
HTC−1

v (z− µv) , (2.21)
• the estimator is unbiased, E{θ̂ (z)

}
= θ for all θ, and its ovarianematrix is given by

C
θ̂e�(z) = J−1

z =
(
HTC−1

v H
)−1and does not depend on θ,

• the e�ient estimator θ̂e� (z) is Gaussian distributed, i.e.,
θ̂e� ∼ N

(
θ,
(
HTC−1

v H
)−1
)
,

• the estimator θ̂e� (z) oinides with the MVU, the ML and the bestlinear unbiased estimator (BLUE).



Chapter 3Problem Formulation andSystem ModelIn the last hapter, we introdued the CRLB and the FIM for a lassialestimation problem. Sine the CRLB is a lower bound on the MSE ma-trix/error ovariane matrix/ovariane matrix of any unbiased estimator, itan be used as a performane benhmark for this lass of estimators. As al-ready indiated in Chapter 1, our goal is to design optimal loal sensor rules,in order to obtain maximal overall performane for estimating the unknowndeterministi parameter at the FC, subjet to bandwidth and/or power on-straints of the transmit signals. It is lose therefore to use the FIM, basedon the �nal observation at the FC, as a performane indiator, due to theirrelation to the CRLB (f. (2.15)). In what follows, we setup the systemmodel and problem statement that will be onsidered.3.1 System ModelSuppose, there are L ≥ 1 sensors, eah making an observation yi ∈ R
miabout an unknown soure, whih is desribed by a parameter vetor θ ∈

R
n. We assume that θ is deterministi, i.e., we have no prior informationavailable. The relation between the sensor observation yi and the parametervetor θ is fully desribed by the parametrized pdf f (yi;θ). The loal sensorsommuniate to a FC, whih omputes a �nal estimate on θ.In most WSNs, sensors only have limited battery power and limited om-muniation apability. For this reason, loal data enoding/ompression ateah sensor is of importane, to redue ommuniation requirement betweensensors and the FC. Therefore, we introdue as disussed in Chapter 1,bandwidth and power onstraints on eah transmit signal. We assume, thatthe distributed sensors have no inter�sensor ommuniation. The role ofeah sensor is to enode/ompress the observed loal data yi to a transmit11



CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 12data si by a mapping LOi : yi → si for 1 ≤ i ≤ L.In what follows, we denote suh an loal sensor rule by writing LO. Thetransmit data si for 1 ≤ i ≤ L are then transmitted over a MAC to the FC,whih is due to the bandwidth onstraint, limited by a �nite dimension. TheFC produes a �nal estimate θ̂ (z) of the true parameter vetor by applyingsome fusion rule, whih is a deterministi estimator funtion to the reeivedvetor z (f. Fig. 3.1). As already mentioned in Chapter 1, we onsider
θ

y1

y2

yL

LO1
s1LO2
s2

LOL
sL

f (
y1
; θ
)

f (y2
; θ)

f (y
L ; θ)

MAC z FC θ̂ (z)
...

Figure 3.1: System model for a sensor network with FC and MAC.throughout this thesis a linear Gaussian setting, i.e., every blok in Fig. 3.1orresponds to a matrix multipliation and addition of a Gaussian noisevetor.Spei�ally, we assume the sensor observation yi ∈ R
mi are the linearombination of θ orrupted by additive noise and an be desribed as

yi = Giθ + ni, (3.1)where Gi ∈ R
mi×n is the known, deterministi observation matrix of sensor

i. The additive observation noise ni ∈ R
mi is assumed to be zero�meanand Gaussian distributed with �xed and known ovariane matrix Cni

, i.e.,
ni ∼ N (0,Cni

). We assume that the observation noise vetors ni for all iare unorrelated aross di�erent sensors, i.e., the ross�ovariane matrixov {ni,nj} = E {nin
T
j

}
= 0 for 1 ≤ i, j ≤ L, i 6= j.The main task of the ith loal sensor is to map the loal observed data

yi to a trasmit data vetor si before transmitting over the hannel to theFC, in order to maximize the overall performane. As already mentioned,our performane indiator is based on the CRLB or the FIM for the �nalobservation at the FC (already introdued in Chapter 2). Sine we haveassumed a linear and Gaussian setup, we desribe the ith loal sensor ruleLOi by a deterministi matrix Ai ∈ R
qi×mi and some additive systemati



CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 13noise nli , whih we restrit to be zero�mean and Gaussian distributed withovariane matrix Cli , i.e., nli ∼ N (0,Cli). Both matries Ai and Cli , fullydesribe our loal sensor rule LO of the ith loal sensor, i.e., LOi , (Ai,Cli).The LOi performs a linear transformation of yi and adds systemati noise
nli , to generate the transmit data si, whih is given by

si = AiGiθ +Aini + nli for 1 ≤ i ≤ L, (3.2)where we assume that ni is unorrelated with nlj (also orthogonal, sineboth are zero�mean) for all i and j, i.e.,ov {ni,nlj

}
= E{nin

T
lj

}
= 0 for 1 ≤ i, j ≤ L.Moreover, we also request that all systemati noise vetors nli for all i areunorrelated aross di�erent sensors, i.e.,ov {nli ,nlj

}
= E{nlin

T
lj

}
= 0 for 1 ≤ i, j ≤ L, i 6= j.The bandwidth onstraint on si leads to dimensionality ondition on Ai,i.e., Ai ∈ R

qi×mi . I.e., the ith loal sensor an transmit qi messages (real�valued symbols) to the FC, whih is determined by the degrees if freedom(dimension) of the hannel from sensor i to the FC and is potentially deidedby the hannel bandwidth [1℄. The power onstraint on si will be de�ned inthe next setion.Eah sensor thus transmits their enoded and/or ompressed data si overa hannel to the FC. Depending on the di�erent multiple aess shemes, weinvestigate two ases for the MAC between sensors and FC, an orthogonaland a oherent MAC [1℄. For the ase of an orthogonal MAC, we assume thatthe sensors have their own separate non�interfering hannel to the FC. Thisan be realized, e.g., by a time�division, ode�division or frequeny�divisionmultiple aess sheme (TDMA/CDMA/FDMA). As for a oherent MAC,we allow all sensors transmitting simultaneously by using for example thesame frequeny band or time slot. Here, we assume perfet synhronizationbetween sensors and FC, i.e., the transmitted data from all sensors reahesthe FC in a oherent sum. In the following we omplete our model systemfor both multiple aess shemes and derive the orresponding expressionsfor the FIM.3.1.1 Orthogonal MACThe orthogonal MAC onsists of L separate and non�interfering hannelsbetween eah loal sensor and the FC. The reeived vetor z at the FC isgiven by the onatenation of L individual reeive vetors zi orrespondingto the loal sensors (f. Fig. 3.2). The signal zi reeived at the FC from the
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)
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LOLFigure 3.2: Linear deentralized estimation with orthogonal MAC.
ith loal sensor, an be written as

zi = HiAiGiθ +HiAini +Hinli + nhi for 1 ≤ i ≤ L, (3.3)where Hi ∈ R
pi×qi is the known, deterministi hannel matrix from sensor ito the FC and nhi

∈ R
pi is the additive hannel noise, whih is again assumedto be zero�mean and Gaussian distributed with the known ovariane matrix

Chi
, i.e., nhi

∼ N (0,Chi
). Here, we assume that the ovariane matrix Chiis non�singular. Moreover, we assume that, �rstly, nhi

is unorrelated with
nj for all i and j, i.e.,ov {nhi

,nj} = E {nhi
nT
j

}
= 0 for 1 ≤ i, j ≤ L,and seondly, nhi

is unorrelated with nlj for all i and j, i.e.,ov {nhi
,nlj

}
= E{nhi

nT
lj

}
= 0 for 1 ≤ i, j ≤ L.Additionally, we again request that all hannel noise vetors nhi

for all i areunorrelated aross di�erent sensors, i.e.,ov {nhi
,nhj

}
= E{nhi

nT
hj

}
= 0 for 1 ≤ i, j ≤ L, i 6= j.Further, we assume that zi from (3.3) for all i are jointly Gaussian. Notethat the signal model in (3.3) is an instane of the linear Gaussian model(f. Subsetion 2.2.5) with system matrix H = HiAiGi and noise ovarianematrix Cn = Czi , where

Czi = HiAiCni
AT

i H
T
i +HiCliH

T
i +Chi

. (3.4)Therefore, we an use the expression (2.20) for the FIM of a LGM, to obtain
Jzi

(θ) = GT
i A

T
i H

T
i

(
Chi

+HiCliH
T
i +HiAiCni

AT
i H

T
i

)−1
HiAiGi, (3.5)



CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 15sine Czi (f. (3.4)) is non�singular (i.e., invertible), due to the assumptionthat Chi
for 1 ≤ i ≤ L is non�singular. The estimation problem is fullyharaterized by the joint pdf f (z1, z2, . . . , zL;θ) parametrized by θ. Notethat the joint pdf an be fatored as

f (z1, z2, . . . , zL;θ) = f (z1;θ) ·f (z2;θ) . . . f (zL;θ) =

L∏

i=1

f (zi;θ) , (3.6)sine all data vetors zi are statistially independent. This follows from ourassumption that all in the system ouring noise vetors are unorrelatedto eah other (thus ov {zi, zj} = 0 for 1 ≤ i, j ≤ L and i 6= j) and theassumed joint Gaussianity of the data vetors zi. Hene, the FIM for the�nal observation z , {zi}Li=1 at the FC, aording to (2.10), an be obtainedas
Jz (θ) = E{[ ∂

∂θ
ln f (z1, z2, . . . , zL;θ)

] [
∂

∂θ
ln f (z1, z2, . . . , zL;θ)

]T}(3.6)
= E[ ∂

∂θ
ln L∏

i=1

f (zi;θ)

][
∂

∂θ
ln L∏

i=1

f (zi;θ)

]T


= E[ ∂

∂θ

L∑

i=1

ln f (zi;θ)

] [
∂

∂θ

L∑

i=1

ln f (zi;θ)

]T


(a)
=

L∑

i=1

E{[ ∂

∂θ
ln f (zi;θ)

] [
∂

∂θ
ln f (zi;θ)

]T}

=

L∑

i=1

Jzi
(θ) , (3.7)where Jzi

(θ) has been already derived in (3.5). The derivation in (3.7)veri�es the general omposition property (2.14) of the FIM for independentdata. In step (a) of (3.7), we used the linearity property of the operators
∂
∂θ (·) and E {·}, respetively. Combining (3.5) with (3.7) yields

Jz (θ) =

L∑

i=1

GT
i A

T
i H

T
i

(
Chi

+HiCliH
T
i +HiAiCni

AT
i H

T
i

)−1
HiAiGi.(3.8)It is important to note that the FIM Jz (θ), aording to (3.8), does notdepend on the (unknown) parameter θ, whih is oneptually appealing.One immediate question that arises here is, for whih onditions on thesystem model with an orthogonal MAC exists at least one e�ient unbiased



CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 16estimator. The ondition for the existene of an e�ient estimator is given in(2.16). Invoking [5, p.89℄, we an stritly follow the derivation of the e�ientestimator for a LGM model. With Xi , HiAiGi, the �rst derivative ofln f (zi;θ) an thus be written as
∂

∂θ
ln f (zi;θ) = XT

i C
−1
zi zi − Jzi

(θ) θ,where Jzi
(θ) is given in (3.5) and sine all zi are statistially independentto eah other (f. (3.6) and the derivation in (3.7)), we obtain

∂

∂θ
ln f (z1, z2, . . . , zL;θ) =

L∑

i=1

∂

∂θ
ln f (zi;θ)

=

L∑

i=1

XT
i C

−1
zi zi − Jzi

(θ)θ

(a)
= Yz− Jz (θ) θ

(b)
= Jz (θ)

[
(Jz (θ))

−1
Yz− θ

]

= K [g (z)− θ] ,

(3.9)
where in step (a), we used (3.7) and introdued

Y ,
[
XT

1 C
−1
z1 XT

2 C
−1
z2 . . . XT

LC
−1
zL

] and
z ,

[
zT1 zT2 . . . zTL

]T
.

(3.10)In step (b), we assumed that Jz (θ) is non-singular. In the last equation of(3.9) we introdued
K , YX

(3.10)
=

L∑

i=1

XT
i C

−1
z1 Xi

(3.8)
= Jz (θ)and

g (z) , (YX)−1
Yz

(3.10)
=

(
L∑

i=1

XT
i C

−1
z1 Xi

)−1( L∑

i=1

XT
i C

−1
zi zi

)

= J−1
z (θ)

(
L∑

i=1

GT
i A

T
i H

T
i C

−1
zi zi

)
.Comparing with (2.16), we onlude the following:

• It exists an e�ient estimator (f. (2.17)), whih is given by
θ̂e� (z1, z2, . . . , zL) = g (z) = J−1

z (θ)

(
L∑

i=1

GT
i A

T
i H

T
i C

−1
zi zi

)
, (3.11)



CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 17and is simultaneously the MVU estimator. It exists i� Jz (θ) and Czifor all i are non�singular.
• The FIM is Jz (θ) = K; it does not depend on θ.
• The estimator θ̂e� (z1, z2, . . . , zL) from (3.11) is obviously unbiased,Eθ

{
θ̂e� (z1, z2, . . . , zL)} = θ for all θ, and its ovariane matrix (f.(2.18)) is given byovθ {θ̂e� (z1, z2, . . . , zL)} = J−1

z (θ) . (3.12)This is the e�ient estimator (MVU estimator) for our system model withan orthogonal MAC. It exists if
Jz is non�singular and
Czi is non�singular for all 1 ≤ i ≤ L,

(3.13)where again, the last ondition is guaranteed, to due our assumption that
Chi

is non�singular for all i.3.1.2 Coherent MACAs a seond model for the link between loal sensors and FC, we onsiderthe ase of oherent MAC. Here, the individual transmit signals si of theloal sensors, add up at the FC in a oherent sum (signals are perfetlysynhronized between sensors and FC1). We also assume that all by thehannel orrupted trasmitted data vetors have the same length p = pi for
1 ≤ i ≤ L. Then, we an use the following observation model at the FC (seeFig. 3.3),

z =
L∑

i=1

Hisi + nh =
L∑

i=1

(HiAiGiθ +HiAini +Hinli) + nh, (3.14)where again Hi ∈ R
p×qi is the known, deterministi hannel matrix fromsensor i to the FC and nh ∈ R

p is the additive hannel noise, whih isagain assumed to be zero�mean and Gaussian distributed with the knownovariane matrix Ch, i.e., nh ∼ N (0,Ch). As in the orthogonal MAC ase,we assume that nh is unorrelated with nj for all j, i.e.,ov {nh,nj} = E {nhn
T
j

}
= 0 for 1 ≤ j ≤ L,1In the orthogonal MAC ase, we only need to assume pair�wise synhronization be-tween eah sensor and the FC, where synhronization among di�erent sensors is not re-quired.
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LOLFigure 3.3: Linear deentralized estimation with oherent MACand further that nh is unorrelated with nlj for all j, i.e.,ov {nh,nlj

}
= E{nhn

T
lj

}
= 0 for 1 ≤ j ≤ L.Unless otherwise stated, we assume that the hannel matries Hi for 1 ≤

i ≤ L are of full olumn�rank and the noise ovariane matrix Ch is non�singular.Let us introdue the shorthand
Ãi , HiAi ∈ R

p×mi . (3.15)Due to our assumption, that Hi has full olumn�rank, implying p ≥ qi, wean reobtain Ai from Ãi via Ai = H
†
iAi. Here, H†

i denotes the pseudo�inverse of Hi and is given by H
†
i =

(
HTH

)−1
HT . We refer to Ãi as thesensor�hannel matrix of sensor i. Let us furthmore de�ne

Ã ,

[
Ã1 Ã2 . . . ÃL

]
, Ã ∈ R

p×k,

G ,
[
GT

1 GT
2 . . . GT

L

]T
, G ∈ R

k×n,

H ,
[
H1 H2 . . . HL

]
, H ∈ R

p×q,

(3.16)where k = m1 + m2 + · · · + mL and q = q1 + q2 + · · · + qL. Let us referto Ã and G as the total sensor�hannel matrix and the total observationmatrix, respetively. Analog, we de�ne the total observation noise and thetotal systemati noise by
n ,

[
nT
1 nT

2 . . . nT
L

]T
, n ∈ R

k,

nl ,
[
nl

T
1 nl

T
2 . . . nl

T
L

]T
, nl ∈ R

q.
(3.17)Using the notations in (3.16) and (3.17), we an write the observation z atthe FC, given in (3.14), in the form

z = ÃGθ + Ãn+Hnl + nh. (3.18)



CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 19Note that the signal model in (3.18) is again an instane of the linear Gaus-sian model (f. Subsetion 2.2.5) with system matrix H = ÃG and noiseovariane matrix Cn = Cz, where
Cz = Ch +HClH

T + ÃCnÃ
T . (3.19)Therefore, we an use the expression (2.20) for the FIM of a LGM, to obtain

Jz (θ) = GT ÃT
(
Ch +HClH

T + ÃCnÃ
T
)−1

ÃG. (3.20)We an invoke (2.20), sine the ovariane matrix Cz (f. (3.19)) is non�singular. This is guaranteed by the assumption that Ch is non�singular.Note that the FIM Jz (θ) in (3.20) does not depend on the parameter θ.As disussed at the end of Subsetion 3.1.1, we will now analyze ondi-tions on our system model with a oherent MAC, suh that it exists at leastone e�ient unbiased estimator. Now, it is muh easier to �nd an e�ientestimator as in the orthogonal MAC, sine we an diretly use the deriva-tion for a simple LGM in [5, p.89℄, and onlude that it exists an e�ientunbiased estimator (MVU estimator) i� the FIM Jz (θ) from (3.20) and Czfrom (3.19) are both non-singular. Then, we onlude the following:
• It exists an e�ient estimator, whih is given in (2.21) for systemmatrix H = ÃG (not be onfused with H from (3.16)) and noiseovariane matrix Cn = Cz, where H has full olumn�rank n and Cnis non�singular, i.e.,

θ̂e� (z) = J−1
z (θ)GT ÃTC−1

z z, (3.21)and is simultaneously the MVU estimator.
• The estimator θ̂e� (z) from (3.21) is obviously unbiased, Eθ

{
θ̂e� (z)} =

θ for all θ, and its ovariane matrix is given byovθ {θ̂e� (z)} = J−1
z (θ) . (3.22)This is the e�ient estimator (MVU estimator) for our system model witha oherent MAC. It exists i� Jz (θ) and Cz are both non�singular. Notethat we already assumed that the hannel noise ovariane matrix Ch isnon�singular and thus Cz is non�singular (f. (3.19)).Lemma 3.1.3 Consider matries A ∈ R

m×n and B ∈ R
n×p, thenrank (A) + rank (B)− n ≤ rank (AB) ≤ min {rank (A) , rank (B)} .Proof. see [7, Lemma 2.1, p.16℄.



CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 20Let us �nally derive onditions on the system matries Ã and G, suhthat it exists an e�ient estimator (MVU estimator), whih is given in (3.21).This ours i� the matrix produtH = ÃG has full olumn�rank. Aordingto Lemma 3.1.3, we onlude that rank(ÃG
)
= n when rank (G) = n and

n ≤ rank(Ã) ≤ k. Hene, the onditions for the existene of at least onee�ient, unbiased estimator on our system model with a oherent MAC anbe summarized as follows:
n ≤ rank(Ã) ≤ k, rank (G) = n,

p ≥ n, k = m1 +m2 + · · ·+mL ≥ n,and
Cz is non�singular, (3.23)where again, the last ondition is guaranteed, to due our assumption that

Ch is non�singular.So far, we have derived the FIM Jz (θ) for both multiple aess shemes.In both ases, it is important to note that, due to the assumption on a LGM,the FIM Jz (θ) does not depend on the parameter θ. Thus, we simply write
Jz in what follows. Before, we de�ne our optimization problem in detail, wewill now introdue the power onstraint on the transmit data si ∈ R

qi for
1 ≤ i ≤ L, whih seems in addition to the already mentioned bandwidthonstraint.3.2 Power ConstraintRemember that our goal is to determine eah LOi for 1 ≤ i ≤ L, suhthat the FIM or, equivalently, the CRLB for the observation at the FCis optimized. In WSN, energy e�ieny is highly desirable, e.g., due tousing battery powered devies and hanging battery is not possible easily.Hene, eah loal sensor has only limited power available for transmittingthe prepared data si to the FC over the hannel. Therefore, we have tointrodue an appropriate power onstraint for the transmitted data si. Onthe other hand, without onsidering suh a power onstraint, we an alwaysensure ideal links between sensors and the FC, by saling the sensor matries
Ai for 1 ≤ i ≤ L, with an arbitrarily large fator. Throughout this thesis,we onsider two types of power onstraints. The �rst, more natural poweronstraint, is given by

Eθ

{
‖si‖2

}
≤ P0,i for 1 ≤ i ≤ L, (C1)whih is the mean power of the transmit data si. The onstant P0,i denotesthe known, maximum power for si, whih we allow for sensor i. The seond
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{
‖si −Eθ {si}‖2

}
≤ P ′

0,i for 1 ≤ i ≤ L, (C2)whih onsider in ontrast to (C1), the variane of the transmit data si.The onstant P ′
0,i denotes the known, maximum (variane) power for si,orrespondingly. It is important to note that the expetation in (C1)) and(C2) is only with respet to si, sine θ is modeled as deterministi. Thesubsript θ in (C1) and (C2) indiates that the expetation of si depends on

θ in general. Both power onstraints have their justi�ation. Note that theonstraint (C2) is equivalent to (C1), if we hoose
P ′
0,i = P0,i − ‖Eθ {si}‖2 , (3.24)whih follows diretly from the identityvarθ {si} = Eθ

{
sTi si

}
− ‖Eθ {si}‖2 . (3.25)The optimum design for eah loal sensor with onsideration to onstraint(C1), will in all likelihood depend on the unknown parameter vetor θ, whihmakes an implementation not pratiable. However, we an estimate theparameter θ, �rst loally, at eah loal sensor, i.e., for sensor i, we omputean estimate θ̂LOi

. With the estimate θ̂LOi
, we are then able to design a, ofourse, sub�optimum LOi. Note that the ith loal sensor has to redesignitself dynamially, aording to the value of the estimate θ̂LOi

.Let us now speialize the onstraints (C1) and (C2) to our spei� systemmodel. The expeted power of the transmit data si, i.e., Eθ

{
‖si‖2

}, where
si is given in (3.2), an be expressed asEθ

{
‖si‖2

}
= Eθ

{
sTi si

}

= Eθ

{
(AiGiθ +Aini + nli)

T (AiGiθ +Aini + nli)
}

(a)
= Eθ

{
θTGT

i A
T
i AiGiθ + nT

i A
T
i Aini + nl

T
i nli

}

+ Eθ

{
θTGT

i A
T
i Aini + nT

i A
T
i AiGiθ + nT

liAini

+θTGT
i A

T
i nli + nT

i A
T
i nli + nT

liAiGiθ
}

(b)
= Eθ

{
θTGT

i A
T
i AiGiθ

}
+ Eθ

{
nT
i A

T
i Aini

}
+ Eθ

{
nT
linli

}

(c)
= ‖AiGiθ‖2 + tr{AiCni

AT
i

}
+ tr {Cli} . (3.26)In step (a) and (b), we used the linearity of the expetation operator E {·}.In step (b), we used the fat that observation noise ni and systemati noise

nli have been aepted as zero�mean and unorrelated to eah other for all
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i, i.e., ov {ni,nli} = E {ninl

T
i

}
= 0 for 1 ≤ i ≤ L. The seond expetationterm in (a) is thus zero. In the last step (), we obtain the �nal expressionfor the expeted power on si. If we write ‖AiGiθ‖2 = θTGT

i A
T
i AiGiθ, wean reformulate the last equation of (3.26) with the trae operator property

a = tr {a} for a ∈ R [8℄, also in the more ompat form asEθ

{
‖si‖2

}
= tr {θTGT

i A
T
i AiGiθ

}
+ tr{AiCni

AT
i

}
+ tr {Cli}

(a)
= tr {AiGiθθ

TGT
i A

T
i +AiCni

AT
i

}
+ tr {Cli}

= tr {Ai

(
Giθθ

TGT
i +Cni

)
AT

i

}
+ tr {Cli}

(b)
= tr {AiMiA

T
i

}
+ tr {Cli} ,

(3.27)where in step (a) we used the yli property and the linearity of the traeoperator tr {·} [8℄ and in step (b) we introdued the matrix
Mi , Giθθ

TGT
i +Cni

. (3.28)The variane of si, i.e., varθ {si}, an be diretly obtained by insertingthe last equation of (3.26) into (3.25), i.e.,varθ {si} = ‖AiGiθ‖2 + tr (AiCni
AT

i

)
+ tr {Cli} − ‖Eθ {si}‖2

(a)
= ‖AiGiθ‖2 + tr (AiCni

AT
i

)
+ tr {Cli} − ‖AiGiθ‖2

= tr{AiCni
AT

i

}
+ tr {Cli} ,

(3.29)where in step (a) we insert the mean of si, as an be veri�ed easily byomputing the expetation of si, i.e., Eθ {si} = GiAiθ. Note that from(3.29), we onlude that the seond power onstraint (C2) does not dependon the parameter θ, whih is indeed unknown.Let us summarize both power onstraints, (C1) and (C2), byEθ

{
‖si‖2

}
= tr{AiMiA

T
i

}
+ tr {Cli} ≤ P0,i for 1 ≤ i ≤ L, (C1)where Mi is given in (3.28), andvarθ {si} = tr{AiCni

AT
i

}
+ tr {Cli} ≤ P ′

0,i for 1 ≤ i ≤ L, (C2)obtained from the last equations in (3.27) and (3.29), respetively.3.3 Problem FormulationWe are now able to de�ne our basi design problem in a general form. In-spired by the CRLB for the MSE of the MVU, as disussed in the previoushapter, we hoose the loal sensor rules LOi for 1 ≤ i ≤ L, suh thatthe CRLB is minimized or equivalently the FIM is maximized, w.r.t. theLoewner ordering.



CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 233.3.1 The Loewner OptimalityRemember from Subsetion 2.2.2, that the CRLB is the inverse of the FIM(f. (2.15)).Corollary 3.3.4 Let A,B ∈ PD (k), then
A ≥ B ⇔ B−1 ≥ A−1.Proof. see [9, p.471, orollary 7.7.4℄Aording to Corollary 3.3.4, we onlude that minimizing the CRLBis equivalent to maximizing the FIM, w.r.t. the Loewner ordering. Hene,we an de�ne our optimal LOi, in the sense of maximizing the FIM Jz orminimizing the CRLB J−1
z .De�nition 3.3.5 A loal sensor rule LOi, given by (Ai,Cli), is alledLoewner optimal, when the FIM Jz (Ai,Cli) satis�es
Jz

(
A∗

i ,C
∗
li

)
≥ Jz (Ai,Cli) ,or equivalently,

J−1
z

(
A∗

i ,C
∗
li

)
≤ J−1

z (Ai,Cli) ,for all (Ai,Cli). The pair (A∗
i ,C

∗
li
), whih satis�es the power onstraint(C1) or (C2), respetively, denotes the (Loewner) optimal LOi for sensor i,denoted by LO∗

i , (A∗
i ,C

∗
li
).The question arises how to maximize a matrix valued FIM in the senseof Loewner optimality. For a salar parameter, i.e., θ ∈ R and n = 1, theFIM redues to a salar funtion on LOi = (Ai,Cli). In that ase we haveto maximize a salar real-valued funtion under the onstraint (C1) or (C2).For the general ase, i.e., for n ≥ 1, the fous inludes all parameters to beestimated. Suh optimal designs are onsidered in [4℄, where they introduedreal-valued optimality riteria.3.3.2 Real�Valued Optimality CriteriaIn this subsetion, we introdue real�valued optimality riteria, i.e., real�valued funtions, whih measure (in some sense) the "largeness" of an in-formation matrix. Thus, an optimality riteria is a real�valued funtion φfrom the domain of positive semi�de�nite matries (i.e., on the losed oneNND(s)) into the real line,

φ : NND (s) → R. (3.30)The funtion φ should apture the idea of whether an information matrix (aninformation matrix inludes the lass of FIMs as speial ases, f. [4, Chapter



CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 243℄) is large or small. It is important to note, that suh a transformation fromthe high dimensional matrix one to the one dimensional real line, an onlyretain partial aspets. Let C and D be two information matries of size s×s.The main properties, whih have to be satis�ed by those lass of funtionsare [4, Chapter 4℄:
• Isotoni: The main aspet of an optimality riterion φ is the orderingamong information matries. They are isotoni relative to the Loewnerordering, i.e.,

C ≥ D ≥ 0 ⇔ φ {C} ≥ φ {D} . (3.31)
• Conativity, i.e.,

φ {(1− α)C+ αD} ≥ (1− α)φ {C}+ αφ {D} , (3.32)for all α ∈ [0; 1], C,D ≥ 0.
• Positive homogeneity, i.e.,

φ (δC) = δφ (C) for all δ > 0, C > 0. (3.33)
• Super�additive, i.e.,

φ {C+D} ≥ φ {C}+ φ {D} for all C,D ≥ 0. (3.34)
• Non�negative, i.e.,

φ (C) ≥ 0 for all C ≥ 0, (3.35)and positive, i�
φ (C) > 0 for all C > 0. (3.36)Thus, information an never be negative. Notie, that positive homo-geneity (3.33) implies that φ vanishes for the null matrix, φ (0) = 0,beause φ (0) = φ (2 · 0) = 2φ (0).

• Non�onstant, i.e.,
φ {C} = φ {D} ⇔ C = D. (3.37)

• Upper�semiontinuity, i.e.,
{φ ≥ α} = {C ∈ NND (s) : φ {C} ≥ α} (3.38)are losed, for all α ∈ R.



CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 25The most prominent optimality riteria are the so-alled matrix means(f. [4℄), whih are denoted by φp for p ∈ [−∞; 1] (throughout this subse-tion, p denotes the paramater for matrix means; not be onfused with thedimension p of the observation vetor z in our system model).De�nition 3.3.6 For positive semi�de�nite matries, C ∈ NND (s), thematrix mean φp is represented by [4, Se. 6.7℄
φp (C) =





λmax (C) p = ∞,
(
1
s tr {Cp}

)1/p
p ∈ (−∞, 0) ∩ (0,∞) ,

(det {C})1/s p = 0,

λmin (C) p = −∞,where λmax (C) and λmin (C) denote the largest- and smallest eigenvalue of
C, respetively.For the parameter p ∈ [−∞; 1], all stated properties (3.31)-(3.38) for anoptimality riterion funtion φ are satis�ed [4, Se. 6.7℄. This family ofoptimality riteria funtions ontain the well�known riteria termed D�, A�,E� and T�optimality as speial ases.Let us now onsider the A� and T�optimality riteria in more detail, sinethroughout this thesis, we will onsider only these two partiular examplesof the φp�family, with parameter p = {1,−1}. In what follows, let C be aFIM of size s× s, i.e., C ∈ NND (s) and furthermore C ∈ Sym (s).A�Criterion: The A�riterion (also known under the name average-varianeriterion) an be obtained for p = −1, i.e., φ−1 (C) is de�ned by

φ−1 (C) ,

(
1

s
tr{C−1

})−1

, (3.39)for a non�singular C. An A-optimal design minimizes the MSE of an e�ientunbiased estimator (f. (2.9), sineC−1 is the CRLB). Note that maximizingthe average�variane riterion φ−1 among information matries is the sameas minimizing
1

φ−1 (C)
=

1

s
tr{C−1

}
. (3.40)T�Criterion: The T�riterion (also known under the name trae riterion)an be obtained for p = 1, i.e., φ1 (C) is de�ned by,

φ1 (C) ,
1

s
tr {C} . (3.41)



CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 26The usage of the T�optimality riterion has no diret pratial justi�ation.However, the T�riterion has the appealing property of being linear, i.e.,
φ1 (k1C1 + k2C2) =

1

s
tr {k1C1 + k2C2}

= k1
1

s
tr {C1}+ k2

1

s
tr {C2}

= k1φ1 (C1) + k2φ (C2) ,

(3.42)where C1 and C2 are two arbitrary FIMs and k1, k2 ∈ R
+. Deriving the T�optimal solution might give some intuition about the struture of the optimalrules for di�erent riteria, e.g., the A�optimality riterion.With the introdution on optimality riteria, we are now able to de�neour basi design problem.3.3.3 The Basi Optimization ProblemIn the previous subsetion, we have introdued real-valued optimality ri-teria, whih enables us to measure information of FIMs. Given suh anoptimality riterion φ, whih is de�ned on NND (n), the basi optimizationproblem then readsmaximizeLOi=(Ai,Cli)

1≤i≤L

φ {Jz}subjet to Jz satis�es (3.8) or (3.20)
Ai ∈ R

qi×mi for 1 ≤ i ≤ L,

Cli ∈ R
qi×qi : Cli ≥ 0 for 1 ≤ i ≤ L,(C1) or (C2) is satis�ed, i.e.,(C1) : tr{AiMiA

T
i

}
+ tr {Cli} ≤ P0,i for 1 ≤ i ≤ L,(C2) : tr{AiCni

AT
i

}
+ tr {Cli} ≤ P ′

0,i for 1 ≤ i ≤ L.

(P-I)
De�nition 3.3.7 A loal sensor rule, given by (Ai,Cli), whih solves (P-I),is said to be formally φ-optimal and is denoted by LO∗

i φ ,
(
A∗

i ,C
∗
li

)
φ
.The FIM Jz is given in (3.8) for a system with an orthogonal MAC andin (3.20) for a system with a oherent MAC, respetively. This alls for max-imizing information as measured by an optimality riterion φ. For solving(P-I), we assume that the FC has perfet knowledge of the observation modeland the hannel states, i.e., the matries {Gi,Cni

,Hi}Li=1, moreover, thehannel noise ovariane matries {Chi
}Li=1 (for the orthogonal MAC ase)and Ch (for the oherent MAC ase), are assumed to be known. This as-sumption is reasonable for a quasi-stati senario, i.e., when {Gi,Cni

,Hi}Li=1and {Chi
}Li=1 or Ch, respetively, hange slowly in a quasi-stati manner.The optimization problem in the form (P-I), with an optimality riteria φ



CHAPTER 3. PROBLEM FORMULATION AND SYSTEM MODEL 27is the most general one and is also alled φ-optimization problem, sine thesolution, i.e., LO∗
iφ

=
(
A∗

i ,C
∗
li

)
φ
for 1 ≤ i ≤ L depends on the hoie ofthe optimal design riterion φ. Note that we do not neessarily require theexistene of an e�ient estimator (f. onditions in (3.13) or (3.23), respe-tively) - we also study ases, when the FIM is singular, unless permitted bythe spei� optimality riterion φ, e.g., the T-optimality riterion.After having formulated our basi optimization problem (P-I), we willnow present the solutions for (P-I), separately for the ase of a oherentand an orthogonal MAC. Within this work, we fous on solving (P-I) for theorthogonal MAC ase, �rst for a salar parameter and afterwards for a vetorvalued parameter, where we are interested on T- and the A-optimal designs.For the oherent MAC we onsider only the ase of a salar parameter.
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Chapter 4Optimal Loal Sensor RulesIn this hapter we will solve (P-I) for ertain speial ases. First we solve(P-I) with respet to the systemati noise ovariane matrix Cli and showthat the optimal Cli ours with C∗
li
= 0, without any restrition on oursystem model. From then on, we restrit our system model with Cli = 0for 1 ≤ i ≤ L. Furthermore, we will show that for an orthogonal MAC andin partiular for the lass of linear optimality riterion funtions φ, we andetermine eah optimal LOi independently of eah other, whereby we mayonsider a single sensor setup. Afterwards, we will show that we an redueour original system model to an equivalent model, in whih observation andhannel noise {n′

i,n
′
hi
,n′

h, 1 ≤ i ≤ L
} are beeing independent and identi-ally distributed (iid) and the hannel matries {H′

i, 1 ≤ i ≤ L} (only foran orthogonal MAC) have diagonal struture. This model redution on-erning iid observation and hannel noise, only ours, when we onsiderpositive de�nite observation and hannel noise ovariane matries in theoriginal system model, i.e., for {Cni
> 0,Chi

> 0,Ch > 0, 1 ≤ i ≤ L}. Us-ing this foundation, we �rst onsider the speial ase of a salar parameterand afterwards the general ase of a vetor parameter.4.1 Systemati NoiseLet us now onsider the additive systematie noise nli ∼ N (0,Cli ≥ 0) atsensor i, in partiular. As a designer of Cli for LOi, we have to hoose Clioptimally for (P-I). The next theorem shows that the optimal Cli ourswith C∗
li
= 0, i.e., negleting the systemati noise nli at sensors i.Lemma 4.1.8 Let A and B are real symmetri matries of size s× s, then

A ≥ B ⇒ TTAT ≥ TTBT,for all T of size s× k. If k ≤ s, we also have
A > B ⇒ TTAT > TTBT,29



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 30whenever T has rank k.Proof. see [10, p.470, Observation 7.7.2℄.Theorem 4.1.9 The optimal Cli for a loal sensor rule LOi = (Ai,Cli)with �xed sensors matrix Ai is optimal for (P-I) if and only if C∗
li
= 0, foran arbitrary optimality riterion funtion φ.Proof. We onsider a given design for the ith LO, i.e., a sensor matrixAi anda ovariane matrix Cli , whih satis�es the power onstraint (C1) or (C2),respetively. Then, we will show that the LOi with same sensor matrix Ai,but ovariane matrix C′

li
= 0, will never result in a derease of the FIM

Jz from (P-I) (w.r.t. to the Loewner ordering) or, equivalently, of φ {Jz}(f. (3.31)) from (P-I). Finally, we will show that C′
li
= 0 also satis�es thepower onstraints (C1) or (C2), respetively.To that end, we reall the general expression of the FIM Jz, �rst, for theorthogonal MAC ase, given in (3.8), i.e.,

Jz =
L∑

j=1

GT
j A

T
j H

T
j C

−1
zj HjAjGj , (4.1)where the ovariane matrix Czj is given in (3.4), i.e.,

Czj = Chj
+HjCljH

T
j +HjAjCnj

AT
j H

T
j for 1 ≤ j ≤ L. (4.2)Let us �rst onsider the ovariane matrix Czi (sensor i) from (4.2) for i = j.It is evident that

Chi
+HiCliH

T
i +HiAiCni

AT
i H

T
i ≥ Chi

+HiAiCni
AT

i H
T
ifor all Cli ≥ 0, sine HiCliH

T
i ≥ 0 (positive semi-de�nite) for all Hi, sine

xTHiCliH
T
i x = yTCliy ≥ 0 for all x ∈ R

pi , y = HT
i x ∈ R

qi . By Corollary3.3.4, we have that
(
Chi

+HiCliH
T
i +HiAiCni

AT
i H

T
i

)−1 ≤
(
Chi

+HiAiCni
AT

i H
T
i

)−1 (4.3)for all Cli ≥ 0. We now introdue Ti , HiAiGi ∈ R
pi×n. With (4.3) andLemma 4.1.8, we onlude that

TT
i

(
Chi

+HiCliH
T
i +HiAiCni

AT
i H

T
i

)−1
Ti

≤ TT
i

(
Chi

+HiAiCni
AT

i H
T
i

)−1
Ti for all Cli ≥ 0.

(4.4)From (4.4), it is obvious that the FIM Jz from (4.1) for any Cli ≥ 0 (atsensor i), is bounded above (for a variable Cli , but otherwise �xed system
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Jz =

L∑

j=1

TT
j

(
Chj

+HjCljH
T
j +HjAjCnj

AT
j H

T
j

)−1
Tj

≤
L∑

j=1,j 6=i

TT
j

(
Chj

+HjCljH
T
j +HjAjCnj

AT
j H

T
j

)−1
Tj

+TT
i

(
Chi

HiAiCni
AT

i H
T
i

)−1
Ti , Ji

z for all Cli ≥ 0.

(4.5)
Note that Ji

z is equivalent to Jz evaluated for C′
li
= 0.Let us now reall the system model with a oherent MAC. The generalexpression for the FIM Jz is then given in (3.20), i.e.,

Jz = GT ÃTC−1
z ÃG, (4.6)where the ovariane matrix Cz is given in (3.19), i.e.,

Cz = Ch +HClH
T + ÃCnÃ

T , (4.7)and G, Ã, Ch, Cn, Cl are de�ned in (3.16) and (3.17), respetively. NotethatCl has blok-diagonal struture, whose blok-diagonal entries areClj for
1 ≤ j ≤ L (f. (3.17) and the assumption that all systemati noise vetors njare unorrelated among di�erent sensors), i.e., Cl = diag {Cl1 ,Cl2 , . . . ,ClL}.For a given (i.e., �xed) set {Clj

}L
j=1,j 6=i

and variable ovariane matrix Cli ≥
0 for sensor i, we have that
Cl = diag {Cl1 , . . . ,Cli , . . . ,ClL} ≥ diag{Cl1 , . . . ,C

′
li
= 0, . . . ,ClL

}
, Ci

l (4.8)for all Cli ≥ 0, sine1
xTClx = xTdiag {Cl1 ,0, . . . ,0} x+ · · ·+ xTdiag {0, . . . ,Cli , . . . ,0}x

+ · · · + xTdiag {0, . . . ,ClL}x
≥ xTdiag {Cl1 ,0, . . . ,0} x+ · · ·+ xTdiag {0, . . . ,C′

li = 0, . . . ,0
}
x

+ · · · + xTdiag {0, . . . ,ClL}x = xTCi
lx for all x ∈ R

q,Cli ≥ 0.Thus from (4.8), we onlude that
(
Ch +HClH

T + ÃCnÃ
T
)−1

≤
(
Ch +HCi

lH
T + ÃCnÃ

T
)−1 (4.9)for all Cli ≥ 0, sine HClH

T ≥ HCi
lH

T for all H (f. Lemma 4.1.8). Wenow introdue T , ÃG ∈ R
p×n. With (4.9) and Lemma 4.1.8, it is obvious1The Loewner ordering A ≥ B, where A,B ∈ Sym (k), is equivalent to x

T
Ax ≥ x

T
Bxfor all x ∈ R

k (f. [4℄).



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 32that the FIM Jz from (4.6) for any Cli ≥ 0, is again bounded above by
Jz = TT

(
Ch +HClH

T + ÃCnÃ
T
)−1

T

≤ TT
(
Ch +HCi

lH
T + ÃCnÃ

T
)−1

T , Ji
z for all Cli ≥ 0.

(4.10)Hene, for a variable ovariane matrix Cli ≥ 0 at sensor i, but otherwise�xed system setup (orthogonal or oherent MAC), we have showed that theFIM Jz is upper bounded by the FIM Ji
z for the same system setup, butovariane matrix C′

li
= 0, in the sense of the Loewner ordering. Sineany optimality riterion φ is isotoni, relative to the Loewner ordering (f.subsetion 3.3.2), it holds:

Jz ≤ Ji
z ⇔ φ (Jz) ≤ φ

(
Ji
z

) for all Cli ≥ 0,i.e., the objetive funtion of (P-I) is bounded above aordingly.It remains to verify that the power onstraint, i.e., (C1) or (C2), whihis assumed to be satis�ed for a given LOi with Cli ≥ 0, is also be satis�edwhen C′
li
= 0. Let us reall the ith onstraint of (C1). We onlude that(C1) is also satis�ed for C′

li
= 0, sinetr {AiMiA

T
i

}
+ tr{C′

li
= 0

}
≤ tr{AiMiA

T
i

}
+ tr {Cli} ≤ P0i ,beause tr {0} = 0 and tr {Cli} ≥ 0 for all Cli ≥ 0 [8℄. Analog, we reall the

ith onstraint of (C2). We onlude that (C2) is also satis�ed for C′
li
= 0,sine tr {AiCni

AT
i

}
+ tr{C′

li
= 0

}
≤ tr {AiCni

AT
i

}
+ tr {Cli} ≤ P ′

0i ,again, beause tr {0} = 0 and tr {Cli} ≥ 0 for all Cli ≥ 0.Thus, we have showed that C′
li
= 0 is the optimum for (P-I), i.e., C∗

li
=

C′
li
= 0.We onlude from Theorem 4.1.9 that optimal Cli for 1 ≤ i ≤ L for(P-I), is given by C∗

li
= 0. Thus, we an reformulate the basi optimizationproblem (P-I) asmaximize

Ai, 1≤i≤L
φ {Jz}subjet to Jz satis�es (3.8) or (3.20)ev. for Cli = 0 for 1 ≤ i ≤ L,

Ai ∈ R
qi×mi for 1 ≤ i ≤ L,(C1) or (C2) is satis�ed, i.e.,(C1) : tr{AiMiA

T
i

}
≤ P0,i for 1 ≤ i ≤ L, or(C2) : tr{AiCni

AT
i

}
≤ P ′

0,i for 1 ≤ i ≤ L.

(P-II)



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 334.2 The Basi Optimization Problem for an Or-thogonal MAC ReformulatedConsider the basi optimization problem (P-II) with an optimality riterion
φ and for the ase of an orthogonal MAC, in partiular. The FIM Jz is thengiven in (3.8) for Cli = 0, i.e., it onsists of the sum of all individual FIMs
Jzi

from (3.5) for Cli = 0 and for all i, i.e.,
Jz =

L∑

i=1

Jzi
.The next theorem shows that for the ase of an orthogonal MAC, we ansplit the joint problem (P-II) into L individual and independent problems,if we suppose φ to be linear.Theorem 4.2.10 Consider an optimality riterion φ, whih also is stilllinear1. Then, an optimal Ai for (P-II), is also optimal formaximize

Ai

φ {Jzi
}subjet to Jzi

satis�es (3.5) ev. for Cli = 0,

Ai ∈ R
qi×mi ,(C1)i or (C2)i is satis�ed, i.e.,(C1)i : tr {AiMiA

T
i

}
≤ P0,i or(C2)i : tr {AiCni

AT
i

}
≤ P ′

0,i.

(P-III)
The notation (C1)i and (C2)i mean the ith onstraint of (C1) and (C2).Conversely, an optimal Ai for (P-III), is also optimal for (P-II).Proof. Let us �rst interpret Jzk

from (3.5) as a funtion on Ak for all k, i.e.,
Jzk

= Jzk
(Ak).Let us start with the proof so that an optimal Ai for (P-II) implies opti-mality for (P-III). We onsider a given (i.e., �xed) set {A′

j ∈ R
qi×mi

}L

j=1,j 6=i
,whih satis�es the onstraint in (P-II). A sensor matrix A∗

i is optimal for(P-II) i�
φ



Jzi

(Ai) +

L∑

j=1,j 6=i

Jzj

(
A′

j

)


 ≤ φ



Jzi

(A∗
i ) +

L∑

j=1,j 6=i

Jzj

(
A′

j

)


 (4.11)for allAi ∈ R

qi×mi , whih satis�es the onstraint in (P-II) (i.e., the ith poweronstraint (C1) or (C2)). One we have aepted φ to be linear, (4.11) yields
φ {Jzi

(Ai)}+ φ





L∑

j=1,j 6=i

Jzj

(
A′

j

)


 ≤ φ {Jzi

(A∗
i )}+ φ





L∑

j=1,j 6=i

Jzj

(
A′

j

)


1An optimality riterion φ on NND (s) is linear i� φ {k1J1 + k2J2} = k1φ {J1} +

k2φ {J2}, where J1,J2 ∈ NND (s) and k1, k2 ∈ R
+.
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qi×mi , again whih satis�es the onstraint in (P-II), implying

φ {Jzi
(Ai)} ≤ φ {Jzi

(A∗
i )} for all Ai ∈ R

qi×mi , (4.12)whih satis�es the onstraint in (P-II). Sine both ontraints from (P-II)and (P-III) are idential, (4.12) implies optimality of A∗
i for (P-III).Conversely, if A∗

i is optimal for (P-III), then it is evident that
φ {Jzi

(Ai)} ≤ φ {Jzi
(A∗

i )} for all Ai ∈ R
qi×mi , (4.13)whih satis�es the onstraint in (P-III). Without violating (4.13), we anadd on both sides of (4.13)

φ {Jzi
(Ai)}+φ





L∑

j=1,j 6=i

Jzj

(
A′′

j

)


 ≤ φ {Jzi

(A∗
i )}+φ





L∑

j=1,j 6=i

Jzj

(
A′′

j

)


 (4.14)for all Ai ∈ R

qi×mi , whih satis�es the onstraint in (P-III) and, for anarbitrary, but �xed set {A′′
j ∈ R

qi×mi

}L

j=1,j 6=i
, whih satis�es the onstraintin (P-II), in partiular. With the assumption that φ is linear, (4.14) an alsobe written as

φ




Jzi
(Ai) +

L∑

j=1,j 6=i

Jzj

(
A′′

j

)



 ≤ φ




Jzi
(A∗

i ) +

L∑

j=1,j 6=i

Jzj

(
A′′

j

)



 (4.15)for all Ai ∈ R
qi×mi , whih satis�es the onstraint in (P-III). Again, sineboth ith ontraints from (P-II) and (P-III) are idential, (4.15) implies op-timality of A∗

i for (P-II).Supposing, an optimality riterion φ is linear and the system setup in-ludes an orthogonal MAC for solving (P-II). Then, aording to Theo-rem 4.2.10 we an solve (P-II) or, equivalently, (P-III) for solving an opti-mal LOi, i.e., the optimal sensor matrix A∗
i . Note that this result learlyholds for a salar paramater, as a speial ase. Any optimality riterion φ′would be equivalent and espeially linear, sine φ′ {k1 + k2} = k1 + k2 =

φ′ {k1} + φ′ {k2} for k1, k2 ∈ R. Thus, for the remaining part of the thesis,we will onsider problem (P-III) when we treat the speial ase of a salarparameter and furthermore, when we determine T-optimal loal sensors fora vetor parameter, both, for a system with an orthogonal MAC.4.3 Redution to Standard ModelIn Setion 4.1, we have already solved (P-I), w.r.t. Cli for all i, where wehave determined C∗
li
= 0 for 1 ≤ i ≤ L. In what follows, we restrit ouroriginal system model (for both multiple aess shemes) with Cli = 0 for



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 35all i. Let us rewrite both LGMs, �rst, for the orthogonal MAC ase, i.e., the�nal observation zi for all i from (3.3) as
zi = HiAiGiθ +HiAini + nhi

for 1 ≤ i ≤ L, (4.16)where, due to the LGM, zi is Gaussian distributed with mean
µzi = HiAiGiθ, (4.17)and ovariane matrix
Czi = Chi

+HiAiCni
HT

i A
T
i . (4.18)For the oherent MAC ase, we rewrite the LGM, i.e., the �nal observation

z from (3.18) as
z = ÃGθ + Ãn+ nh, (4.19)where again, z is Gaussian distributed with mean
µz = ÃGθ, (4.20)and ovariane matrix
Cz = Ch + ÃCnÃ

T . (4.21)Note that the model parameters for the oherent MAC ase, i.e., Ã, Gand n an be obtained from (3.16) and (3.17), respetively. The ovarianematrix Cn = diag {Cni
}Li=1, due to the assumption that the observationnoise vetors ni for all i, are unorrelated among di�erent sensors.De�nition 4.3.11 Two observations z1 and z2 are said to be equivalent,i� z1 and z2 have the same pdf for every θ, i.e., fz1 (z;θ) = fz2 (z;θ).The next theorem shows that we an redue the original model, i.e.,the LGMs for both multiple aess shemes from (4.16) and (4.19), into anequivalent model by the observation- and hannel noise vetors are beeing iidw.l.o.g. Note that this applies only if we suppose non-singular observation-and hannel noise ovariane matries in the original system model. All otherassumptions we have made so far to our original system model (f. Setion3.1) are also valid for the equivalent model.Theorem 4.3.12 (Noise Whitening) Consider the original system model,shown in (4.16) and (4.19) for both multiple aess shemes. Assuming non-singular oariane matries Cni

, Chi
for 1 ≤ i ≤ L (thus Cn) and Ch,respetively. Then we an de�ne an equivalent system model, aording toDe�nition 4.3.11, for the orthogonal MAC ase as

z′i =
1

σh′
i

C
1/2
hi

(
H′

iA
′
iG

′
iθ +H′

iA
′
in

′
i + n′

hi

)
1 ≤ i ≤ L, (4.22)
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i ∼ N

(
0, σ2

n′
i
I
), n′

hi
∼ N

(
0, σ2

h′
i
I
), H′

i , σh′
i
C

−1/2
hi

Hi, A′
i ,

1
σn′

i

AiC
1/2
ni and G′

i , σn′
i
C

−1/2
ni

Gi with σ2
n′
i
> 0 and σ2

h′
i
> 0. Here, we as-sume that n′

i is unorrelated with n′
hj

for all i and j, i.e., ov {ni,nhj

}
= 0for all i and j. For the oherent MAC ase, we an de�ne

z′ =
1

σh′

C
1/2
h

(
Ã′G′θ + Ã′n′ + n′

h

)
, (4.23)where n′

∼ N
(
0, σ2

n′I
), n′

h ∼ N
(
0, σ2

h′I
), Ã′ ,

σh′

σn′
i

C
−1/2
h ÃC

1/2
n and G′ ,

σn′C
−1/2
n G with σ2

n′ > 0 and σ2
h′ > 0. Again, we assume that n′ is unorre-lated with n′

h.Proof. Let us start with the proof for the orthogonal MAC ase. To thatend, we insert H′
i, A′

i and G′
i into (4.22) yields

z′i =
1

σh′
i

C
1/2
hi

(
H′

iA
′
iG

′
iθ +H′

iA
′
in

′
i + n′

hi

)

=
σh′

i
σn′

i

σh′
i
σn′

i

C
1/2
hi

C
−1/2
hi

HiAiC
1/2
ni

C−1/2
ni

Giθ

+
σh′

i

σh′
i
σn′

i

C
1/2
hi

C
−1/2
hi

HiAiC
1/2
ni

n′
i +

1

σh′
i

C
1/2
hi

n′
hi

= HiAiGiθ +
1

σn′
i

HiAiC
1/2
ni

n′
i +

1

σh′
i

C
1/2
hi

n′
hi
,where z′i is Gaussian distributed, with mean

µz′
i
= HiAiGiθ, (4.24)and ovariane matrix

Cz′i
=

σ2
n′
i

σn′
i
σn′

i

HiAiC
1/2
ni

C1/2
ni

AT
i H

T
i +

σ2
h′
i

σh′
i
σh′

i

C
1/2
hi

C
1/2
hi

= HiAiCni
AT

i H
T
i +Chi

,

(4.25)due to our assumption that n′
i is unorrelated with n′

hj
for all i and j.Comparing (4.24) with (4.17) and (4.25) with (4.18), we onlude that z′ifrom (4.22) is equivalent to zi from (4.16) for 1 ≤ i ≤ L, aording toDe�nition 4.3.11, sine both are Gaussian distributed random variables withsame mean and same ovariane matrix.Let us now onsider the oherent MAC. To that end, we insert Ã′ and



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 37
G′ into (4.23) yields

z′ =
1

σh′

C
1/2
h

(
Ã′G′θ + Ã′n′ + n′

h

)

=
σh′σn′

σh′σn′

C
1/2
h C

−1/2
h ÃC1/2

n C−1/2
n Gθ

+
σh′

σh′σn′

C
1/2
h C

−1/2
h ÃC1/2

n n′ +
1

σh′

C
1/2
h n′

h

= ÃGθ +
1

σn′

ÃC1/2
n n′ +

1

σh′

C
1/2
h n′

h,where z′ is Gaussian distributed, with mean
µz′ = ÃGθ, (4.26)and ovariane matrix
Cz′ =

σ2
n′

σn′σn′

ÃC1/2
n C1/2

n ÃT +
σ2
h′

σh′σh′

C
1/2
h C

1/2
h

= ÃCnÃ
T +Ch,

(4.27)again, due to the assumption that n′ is unorrelated with n′
h. Comparing(4.26) with (4.20) and (4.27) with (4.21), we onlude that z′ from (4.23)is equivalent to z from (4.19), aording to De�nition 4.3.11, sine both areGaussian distributed random variables with same mean and same ovarianematrix.Aording to Theorem 4.3.12, we an assume Cni

= σ2
ni
I with = σ2

ni
> 0and/or Chi

= σ2
hi
I with σ2

hi
> 0 for our system model with an orthogonalMAC. Otherwise, we an absorb σn′

i
C

−1/2
ni and σ−1

n′
i
C

1/2
ni into the observationmatrix Gi and the sensor matrix Ai, respetively, and/or σh′

i
C

−1/2
h and

σ−1
h′
i
C

1/2
hi

into the hannel matrix Hi and the FC, respetively, suh thatwe obtain an equivalent model in whih Cn′
i
= σ2

n′
i
I and/or Ch′

i
= σ2

h′
i
I.Similarly, we an assumme Cn = σ2

nI with σ2
n > 0 and Ch = σ2

hI with σ2
h > 0for the system model with a oherent MAC, w.l.o.g. Otherwise, we again anabsorb σn′C

−1/2
n and σ−1

n′ C
1/2
n into the total observation matrix G and thetotal sensor-hannel matrix Ã, respetively, and/or σh′C

−1/2
h and σ−1

h′ C
1/2
hinto the total sensor-hannel matrix Ã and the FC, respetively, suh thatwe obtain an equivalent model in whih Cn′ = σ2

n′I and/or Ch′ = σ2
h′I (f.Fig. 4.1).Unless otherwise stated, we assume throughout the remaining part of thisthesis iid hannel noise for both multiple aess shemes w.l.o.g. The nexttheorem shows that for the orthogonal MAC ase, we an assume diagonalhannel matries Hi for 1 ≤ i ≤ L, w.l.o.g.
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θ

y

n ∼ N (0,Cn) nh ∼ N (0,Ch)

z
s

G A H(a)
θ

y′

n′
∼ N

(
0, σ2

n′I
)

n′
h ∼ N

(
0, σ2

h′I
)

z′

s′

s′

G σn′C
−1/2
n

1
σn′

C
1/2
n A

H σh′C
−1/2
h

1
σh′

C
1/2
h

G′ A′

H′(b)Figure 4.1: Equivalene of two system models - (a) original model (b) equiv-alent, noise whitened model. For the ase of an orthogonal MAC, we haveto index all model parameters (i.e., all ouring vetors and matries, exept
θ) by an index i. Then, the �gure illustrates sensor i with an appropriateobservation- and hannel model from sensor to the FC. For the ase of aoherent MAC, �gure shows the whole system model, if we merge A with Hto obtain Ã = HA.Theorem 4.3.13 Let us onsider a system model with an orthogonal MAC,shown in (4.16). Aording to Theorem 4.3.12, we assume iid hannel noise(zero-mean, Gaussian distributed) nhi

with ovariane matrix Chi
= σ2

hi
I(σ2

hi
> 0), w.l.o.g. Then we an de�ne an equivalent system model, aordingto De�nition 4.3.11 as
z′i = Uhi

(
H′

iA
′
iGiθ +H′

iA
′
ini + nhi

)
, (4.28)where H′

i = Σhi
and A′

i , VT
hi
Ai. Uhi

Σhi
and Vhi

follows from thesingular value deomposition (SVD) of the original hannel matrix Hi =
Uhi

Σhi
VT

hi
, i.e., Uhi

and Vhi
are both unitary and the diagonal matrix Σhiof size pi× qi ontains the singular values of Hi on the main diagonal. Notethat n′

i is unorrelated with n′
hj

for all i and j as already assumed.
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i and A′

i into (4.28) yields
z′i = Uhi

(
Σhi

A′
iGiθ +Σhi

A′
ini + nhi

)

= Uhi
Σhi

VT
hi
AiGiθ +Uhi

Σhi
VT

hi
Aini +Uhi

nhi

= HiAiGiθ +HiAini +Uhi
nhi

,

(4.29)where z′i is again Gaussian distributed, with mean
µz′i

= HiAiGiθ, (4.30)and ovariane matrix
Cz′i

= HiAiCni
AT

i H
T
i + σ2

hi
UhU

T
h

= HiAiCni
AT

i H
T
i + σ2

hi
I = HiAiCni

AT
i H

T
i +Chi

.
(4.31)Comparing (4.30) with (4.16) and (4.31) with (4.18) for Chi

= σ2
hi
I, weonlude that z′i from (4.28) is equivalent to zi from (4.16) for nhi

= σ2
hi
Iand for 1 ≤ i ≤ L, aording to De�nition 4.3.11, sine both are Gaussiandistributed random variables, with same mean and same ovariane matrix.

θ
yi

ni ∼ N (0,Cni
) nhi

∼ N
(
0, σ2

hi
I
)

z′iGi Ai VT
hi

H′
i Uhi

A′
iFigure 4.2: Equivalent system model - hannel diagonalization between sen-sor i and FC.Aording to Theorem 4.3.13, we thus an assume a diagonal hannelmatrix Hi in the ase of an orthogonal MAC w.l.o.g. Otherwise, we anabsorb Uhi

and VT
hi
, whih follows from the SVD Hi = Uhi

Σhi
VT

hi
into theFC and the sensor matrix Ai, respetively, suh that we obtain an equivalentmodel in whih H′

i is diagonal, where the diagonal entries are the singularvalues of Hi. Note that the order of the diagonal entries, i.e., the singularvalues of Hi an be assumed arbitrarily. An illustration of the equivalentmodel for a diagonalized hannel matrix an be seen in Fig. 4.2. The originalmodel is shown in Fig. 4.1(a) for the orthogonal MAC.De�nition 4.3.14 (Standard Model) Assuming a system model with anorthogonal MAC, that has iid observation noise vetors ni and iid hannelnoise vetors nhi
(zero-mean, Gaussian distributed) with ovariane matries

Cni
= σ2

ni
I and Chi

= σ2
hi
I for 1 ≤ i ≤ L, and espeially diagonal hannelmatries Hi for 1 ≤ i ≤ L - is alled the standard model.



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 404.4 Salar Parameter CaseIn this setion, we onsider the speial ase of estimating a salar parameter,i.e., θ ∈ R. In that ase, the FIMs Jz and Jzi
are both salar-valued, sine

n = 1 - thus we us the notations Jz and Jzi in what follows and set Jz = Jzand Jzi
= Jzi . In Theorem 4.1.9, we have already showed that eah LOi,an be restrit to the sensor matrix Ai, sine C∗

li
= 0 for 1 ≤ i ≤ L, i.e., weonsider (P-II) for solving optimal LOi - even for this speial ase. Note thatfor a salar parameter, we do not need any optimality riterion φ for solvingproblem (P-II), sine φ {Jz} = Jz for Jz ∈ R - in that ase all optimalityriteria are equivalent.Unless otherwise stated, we do not espeially assume iid observation noise

ni for sensor i for the ase of a salar parameter. We take only the assumption- whih has already been made in Setion 4.3 - that the hannel noise nhi
,for the orthogonal MAC ase and, nh, for the oherent MAC ase are bothassumed to be iid w.l.o.g., with ovariane matries Chi

= σ2
hi
I with σ2

hi
> 0for all i and Ch = σ2

hI with σ2
h > 0, respetively - that the hannel matries

Hi are assumed to be diagonal w.l.o.g., for the ase of an orthogonal MAC.Furthermore, we assume only for the oherent MAC that gi ∈ R (Cni
) \ {0}for all i. The reason for this partiular assumption is explained later byitself, when we onsider the oherent MAC ase in Subsubsetion 4.4.3.2.Let us now ustomize the notations for our system model, espeially forthe salar parameter ase. Sine n = 1, the observation matrix Gi ∈ R

mi×1for sensor i redues to vetor - thus we use the notation gi ∈ R
mi and set

Gi = gi in what follows. Note that mi ≥ 1. As a onsequene, the notation
G ∈ R

k×1 from (3.16) redues to a vetor too - thus we use g ∈ R
k an set

G = g, aordingly. Thus, g is in the form g =
[
gT
1 gT

2 . . . gT
L

]T . Bothdeterministi vetors gi and g stands for the observation vetor for sensor iand for the total observation vetor, respetively.Let us �rst reall the FIMs Jzi
from (3.5) and Jz from (3.8), both eval-uated for Cli = 0 and Chi

= σ2
hi
I - for the orthogonal MAC ase. Adaptedto our notations for the salar ase, this means:

Jzi = gT
i A

T
i H

T
i

(
σ2
hi
I+HiAiCni

AT
i H

T
i

)−1
HiAigi (4.32)and thus

Jz =
L∑

i=1

gT
i A

T
i H

T
i

(
σ2
hi
I+HiAiCni

AT
i H

T
i

)−1
HiAigi. (4.33)For the oherent MAC ase, we reall the FIM Jz from (3.20) for Cl = 0and Ch = σ2

hI, thus
Jz = gT ÃT

(
σ2
hI+ ÃCnÃ

T
)−1

Ãg. (4.34)



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 41Note that the model parameters for (4.34), are given in (3.16) and (3.17) for
Gi = gi and G = g.The remaining part of this setion is organized as follows: Before wesolve the optimization problem (P-II) or (P-III), espeially for the salarparameter ase, i.e., we onsider problem (P-II) for Jz = Jz from (4.33) or(4.34), and problem (P-III) for Jzi

= Jzi from (4.32) - we �rst show that forthe speial ase of a salar parameter θ ∈ R, a loal sensor rule LOi an beredued to an equivalent salar observation model w.l.o.g. Subsequently, wean solve a simpli�ed, but equivalent optimization problem. Then we give anoptimal power sheduling strategie, where a given total power is optimallysheduled among all sensors. Finally, we will show how we an implementoptimal loal sensors.4.4.1 Redution to Salar ObservationLet us onsider the original observation model for a loal sensor i, whihspezializes for a salar parameter θ to
yi = giθ + ni, (4.35)where gi ∈ R

mi is the known, deterministi observation vetor os sensor
i and ni is again the observation noise vetor, i.e., ni ∼ N (0,Cni

). Theobservation model for sensor i is illustrated in Fig. 4.3, where the ith loalsensor rule LOi is also shown, even here with the additive systemati noise
nli . Note that the following theorem onsiders nli with some Cli ≥ 0, eventhough we already know how it is to be hosen optimally for (P-II). However,

θ
yi

ni nli

sigi Ai

LOi

Figure 4.3: Observation model for the ith loal sensor for a salar parameter.
yi from (4.35) an be equivalently modeled as a Gaussian distributed randomvariable, i.e.,

yi ∼ N (giθ,Cni
) . (4.36)The next theorem shows an equivalene of two loal sensor rules LOs,where the equivalene is based on De�nition 4.4.15. As a result, we onludethat we an redue our original observation model from (4.35) - with a vetorobservation yi - to an equivalent observation model, with an appropriate



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 42salar observation yi. To that end, we �rst deompose the observation vetor
gi for sensor i into

gi = g′
i + g′

i⊥, (4.37)where g′
i denotes those omponents of g, whih lies in the range of Cni

, i.e.,
g′
i ∈ R (Cni

) and g′
i⊥ denotes onsequently those omponents of g, whihlies in the nullspae of Cni

, i.e., g′
i⊥ ∈ N (Cni

)1. Let us also de�ne even theequivalene of two LOs for an observation y = yi.De�nition 4.4.15 Two loal sensor rules, LO′ = (A′,C′
l) and LO′′ =

(A′′,C′′
l ) are equivalent, if and only if the orresponding outputs s′ and s′′,i.e., s′ = A′y + n′ and s′′ = A′′y + n′′ have the same pdf for every θ, i.e.,

fs′ (s; θ) = fs′′ (s; θ).Exlusively for the next theorem we use the spei� observation modelparameters (f. (4.35), (4.36) and (4.37)): y = yi, g = gi (thus g′ = g′
i and

g′
⊥ = g′

i⊥), n = ni and �nally Cn = Cni
.Theorem 4.4.16 The set of loal sensor rules LOs, given by

{A,Cl}A∈Rn×m,Cl≥0
, (4.38)is equivalent to the set of LOs given by

{
A′ = Aa2a

T
1 ,C

′′
l = Cl +AC′

lA
T
}
A∈Rn×m,Cl≥0

, (4.39)where a1, a2 and C′
l are to be hosen as follows, depending on the observationvetor g and the observation noise ovariane matrix Cn: For the �rst ase(ase1), when g ∈ R (Cn) \ {0}, then

a1 , C†
ng, a2 ,

1

gTC
†
ng

g and C′
l ,

ggT

gTC
†
ng

,where C
†
n is the pseudo-inverse of Cn. For the seond ase (ase2), when ghas at least one omponent in N (Cn) or, equivalently, g′

⊥ 6= 0, then
a1 , g′

⊥, a2 ,
g

g′T
⊥ g′

⊥

and C′
l , Cn.The last ase (ase3) is the trivial one, when g = 0. Then, we an de�ne(where a2 ould be hosen arbitrarily)

a1 , 0, a2 , 0 and C′
l , Cn.The equivalene of the sets (4.38) and (4.39) is taken aording to De�-nition 4.4.15. Note that C′

l has to be simulated/generated by some additiveGaussian and zero-mean systemati noise n′
l. The struture (setup) of theoriginal- and the equivalent LOs are illustrated in Fig. 4.4.1Note that for a symmetri matrix C: {R (C)}⊥ = N (C) .
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y

nl

sA

LO
(a)

y

nln′
l

s′
ỹ y′

aT1 a2 A

LO′

(b)Figure 4.4: Equivalene of LOs (a) original LO model (b) equivalent LOmodel.Proof. Let us now onsider the equivalent LO′ model from Fig. 4.4(b), wherewe assume that n′
l is unorrelated with the observation noise vetor n and,furthermore, with the systemati noise vetor nl. As indiated in theorem,we have to di�erentiate three ases, depending on how g and Cn is given:1. We assume g ∈ R (Cn) \ {0}, i.e., g has no omponent(s) in N (Cn).Then, we set

a1 = C†
ng. (4.40)First, we note that the appliation of aT1 redues the vetor y to thesalar random variable ỹ, given by

ỹ = aT1 y = aT1 gθ + aT1 n = gTC†
ngθ + ñ = g̃θ + ñ, (4.41)where g̃ = gTC

†
ng and

ñ ∼ N
(
0, σ̃2 = gTC†

ng
)
, (4.42)beause σ̃2 = aT1Cna1 = gTC

†
nCnC

†
ng = gTC

†
ng

1. Thus
y′ = a2ỹ + n′

l

(4.41)
= a2g

TC†
ngθ + a2ñ+ n′

l, (4.43)1The pseudo-inverse C
†
n of the ovariane matrix Cn (symmetri, positive semi-de�nite) is symmetri and positive semi-de�nite - both have the same eigenspae (eigen-vetors), in partiular.
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l ∼ N (0,C′

l). Choosing
a2 =

1

gTC
†
ng

g, (4.44)we obtain
y′ = gθ + n′, (4.45)where n′

∼ N (0,C′), with
C′ = a2σ̃

2aT2 +C′
l(4.44)

=
1

gTC
†
ng

ggTC†
ngg

T 1

gTC
†
ng

+C′
l

=
1

gTC
†
ng

ggT +C′
l.

(4.46)Note that a2 from (4.44) is realizable, sine gTC
†
ng > 0, due to theassumption that g is orthogonal to N (Cn) and g 6= 0. From (4.46) itis evident that the hoie

C′
l = Cn − 1

gTC
†
ng

ggT , (4.47)yields
C′ (4.46)=

1

gTC
†
ng

ggT +C′
l = Cn. (4.48)It an be argued that any noise n′
l with positive semi-de�nite ovarianematrix C′

l an be simulated/generated. Consequently, we now examinewhether xTC′
lx ≥ 0 is valid for all x ∈ R

m. To that end, we deompose
x, analog to (4.37), into

x = x′ + x′
⊥, (4.49)where x′ ∈ R (Cn) and x′

⊥ ∈ N (Cn) = {R (Cn)}⊥, i.e., Cnx
′
⊥ = 0.Beause of our assumption that g is orthogonal to N (Cn) and thus

gTx′
⊥ = 0, it follows that
x′T
⊥C′

lx
′
⊥

(4.47)
= x′T

⊥Cnx
′
⊥ − x′T

⊥

1

gTC
†
ng

ggTx′
⊥ = 0− 0 = 0. (4.50)Thus, it remains to verify that x′TC′

lx
′ ≥ 0 for all x′ ∈ R (Cn). Inwhat follows, we use the fat that

x′ = C†
nx, (4.51)
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n

)
= R (Cn). Thus,

x′TC′
lx

′ (4.51)
= xTC†

nC
′
lC

†
nx(4.47)

= xT

(
C†

nCnC
†
n −C†

n

1

gTC
†
ng

ggTC†
n

)
x

= xTC†
n
1/2

C†
n
1/2

x− xTC†
n
1/2C

†
n
1/2

ggTC
†
n
1/2

gTC
†
n
1/2

C
†
n
1/2

g

C†
n
1/2

x

(a)
= x̃T x̃− x̃T g̃g̃

T

g̃T g̃
x̃

= ‖x̃‖2 −
(
x̃T g̃

)2

‖g̃‖2
, (4.52)where in step (a) we introdued x̃ , C

†
n
1/2

x and g̃ , C
†
n
1/2

g. Usingthe Cauhy-Shwarz inequality, i.e.,
(
x̃T g̃

)2 ≤ ‖x̃‖2 ‖g̃‖2 , (4.53)we an show that
x′TC′

lx
′ (4.52)

= ‖x̃‖2 −
(
x̃T g̃

)2
/ ‖g̃‖2(4.53)

≥ ‖x̃‖2 − ‖x̃‖2 ‖g̃‖2 / ‖g̃‖2 = ‖x̃‖2 − ‖x̃‖2 = 0,

(4.54)and thus x′TC′
lx

′ ≥ 0 for all x′ ∈ R (Cn). Hene, C′
l is positive semi-de�nite.2. Now we onsider the ase, when g has at least one omponent inN (Cn). In that ase, we set

a1 = g′
⊥. (4.55)The appliation of aT1 redues the vetor y again to the salar randomvariable ỹ, given by

ỹ = aT1 y = aT1 gθ + aT1 n
(4.55)
= g′T

⊥ gθ + ñ = g̃θ + ñ, (4.56)where g̃ = g′T
⊥ g and ñ ∼ N

(
0, σ̃2 = g′T

⊥ Cng
′
⊥ = 0

) and thus an benegleted, i.e., ñ = 0. Thus
y′ = a2ỹ + n′

l
(4.56)
= a2g

Tgθ + n′
l (4.57)
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a2 =

g

g′T
⊥ g′

⊥

, (4.58)we obtain
y′ = gθ + n′. (4.59)where n′

∼ N (0,C′) with C′ = C′
l. Thus, we an hoose C′

l = Cn,suh that C′ = Cn, whih is obviously positive semi-de�nite and thusan be simulated/generated.3. Last but not least, we now onsider the trivial ase, when g = 0.Setting a1 = 0, implies
ỹ = aT1 y = aT1 gθ + aT1 n = 0 = g̃θ + ñ, (4.60)where g̃ = 0 and ñ = 0. It is evident that y′ = n′

l and thus we obtain
y′ = gθ + n′, (4.61)where g = 0 and n′

∼ N (0,C′) with C′ = C′
l. We an again hoose

C′
l = Cn, suh that C′ = Cn, whih is obviously positive semi-de�niteand thus an be simulated/generated.Hene, we have veri�ed the equivalene of LO and LO′ - the equivaleneof the sets (4.38) and (4.39) - aording to De�nition 4.4.15. Sine for anarbitrary observation vetor g, we an determine deterministi vetors a1, a2and a zero-mean, Gaussian distributed systemati noise n′

l with ovarianematrix C′
l ≥ 0, aordingly, for obtaining equivalene between y and y′ andthus also between s and s′ (f. Fig. 4.4).In Theorem 4.4.16, we have showed that there always exist an equivalentLO′ for a given original LO, if we onsider a salar parameter θ. Let us againonsider a spei� observation model for sensor i in our original notation.As a orollary, we an design an equivalent loal sensor rule, denoted byLO′

i, also for an observation model aording to (4.41) (or (4.56) or (4.60)).In what follows, we thus onsider a salar observation model yi w.l.o.g., inorder to simplify the optimization problem later, i.e.,
yi = giθ + ni, with ni ∼ N

(
0, σ2

ni

)
. (4.62)For the �rst ase, when gi ∈ R (Cni

) \ {0}, the model parameters gi and σ2
nifor (4.62), an be obtained aording to (4.41) and (4.42) as

gi = gT
i C

†
ni
gi, σ2

ni
= gT

i C
†
ni
gi. (4.63)Note that for that ase gi > 0 and σ2

ni
> 0 is guaranteed. For the seondase, when gi has at least one omponent in N (Cni

), i.e., g′
i⊥ 6= 0, the
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ni

for (4.62) an be obtained aording to (4.56)for ñ = 0 as
gi = g′T

i⊥g
′
i⊥, σ2

ni
= 0, (4.64)where again gi > 0. Reently, the trivial third ase, i.e., when gi = 0. Thenthe model parameters are both zero, i.e.,

gi = 0, σ2
ni

= 0. (4.65)Based on the assumption of non-orrelation between the individual observa-tion noise vetors ni for all i in our original system model, i.e., ov {ni,nj} =
0 for 1 ≤ i, j ≤ L with i 6= j, we onlude that also ni from (4.62) for all i areunorrelated aross di�erent sensors. Sine ni, follows by a linear mapping of
ni onto the real line, i.e., in the form ni = aT1 ni, where a1 is a deterministivetor (f. Theorem 4.4.16). However,ov {aT1 ni,a

T
2 nj

}
= E {aT1 nin

T
j a2

}
= aT1 ov {ni,nj}a2 = 0for 1 ≤ i, j ≤ L with i 6= j and for arbitrary deterministi vetors a1 and a2.The equivalent loal sensor rule LO′
i, based on the salar observationmodel yi from (4.62), an thus be desribed by linear mapping with a sensorvetor ai and additive systemati noise n′
li
(f. Fig. 4.5), i.e., LO′

i ,
(
a,C′

li

).The next orollary shows how we an determine the original LOi = (Ai,Cli)

θ
yi

ni nli

sigi ai

LO′
i

Figure 4.5: Equivalent (salar) observation model for the ith loal sensor fora salar parameter.from a given LO′
i = (ai,C

′
li
).Corollary 4.4.17 Two loal sensor rules LOi = (Ai,Cli) and LO′

i =(
ai,C

′
li

) are equivalent i� it is of the form Ai = aia
T
1 and Cli = C′

li
,where a1 is de�ned in Theorem 4.4.16, i.e., a1 = C

†
nigi for the ase, when

gi ∈ R (Cni
) \ {0} - and a1 = g′

i⊥, when gi has at least one omponent inN (Cni
), i.e., when g′

i⊥ 6= 0 - and �nally a1 = 0, when gi = 0.Proof. The LOi = (A∗
i ,Cli) performs a linear mapping of yi, given in (4.35),to the transmit data si as

si = Aigiθ+Aini+nli , where si ∼ N
(
Aigiθ, AiCni

AT
i +Cli

)
. (4.66)
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i =

(
ai,C

′
li

) performs a linear mapping of yi, given in (4.62),to the transmit data s′i as
s′i = aigiθ + aini + n′

li . (4.67)For the �rst ase, i.e., when gi ∈ R (Cni
) \ {0}, (4.67) with (4.63) yields

s′i ∼ N
(
aig

T
i C

†
ni
giθ, aig

T
i C

†
ni
gia

T
i +C′

li

)
. (4.68)Aording to De�nition 4.4.15, LOi and LO′

i are equivalent i� s from (4.66)and s′ from (4.68) have the same pdf for every θ - equivalene follows with
a1 = C

†
nigi:
Ai = aig

T
i C

†
ni

= aia
T
1 and

Cli = aig
T
i C

†
ni
gia

T
i +C′

li
−AiCni

AT
i

(a)
= aig

T
i C

†
ni
Cni

C†
ni
gia

T
i +C′

li −AiCni
AT

i

= aia
T
1Cni

a1a
T
i +C′

li −AiCni
AT

i

= AiCni
AT

i +C′
li −AiCni

AT
i = C′

li ,

(4.69)
where in step (a) we used C

†
ni = C

†
niCni

C
†
ni . For the seond ase, i.e., when

g′
i⊥ 6= 0, (4.67) with (4.64) yields

s′i ∼ N
(
aig

′T
i⊥g

′
i⊥θ, C′

li

)
. (4.70)Again, LOi and LO′

i are equivalent i� s from (4.66) and s′ from (4.70) havethe same pdf for every θ - equivalene thus follows with a1 = g′
i⊥:

Ai = aig
′T
i⊥ = aia

T
1 and

Cli = C′
li −AiCni

AT
i = C′

li − aig
′T
i⊥Cni

g′
i⊥a

T
i

(a)
= C′

li ,
(4.71)where in step (a) we used Cni

g′
i⊥ = 0, sine g′

i⊥ ∈ N (Cni
). Finally for thease, when gi = 0, (4.67) with (4.65) yields

s′i ∼ N
(
0, C′

li

)
. (4.72)Again, LOi and LO′

i are equivalent i� s from (4.66) and s′ from (4.72) havethe same pdf for every θ - equivalene thus follows with a1 = 0:
Ai = 0 = ai0 and
Cli = C′

li −AiCni
AT

i = C′
li .

(4.73)Hene, we have veri�ed the equivalene of LOi and LO′
i for all (three) asesof g.



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 494.4.2 System Model for the Equivalent Model ReformulatedLet us now onsider the salar observation model from (4.62) and the equiva-lent loal sensor rule LO′
i for sensor i in what follows. Note assuming a salarobservation model, orresponds to the original system model with mi = 1for all i. We also reall that for the original LOi: the optimal systematinoise ovariane matrix C∗

li
= 0 for all i (f. introdution of this setion)and sine C′

li
= Cli (f. Corollary 4.4.17), we onlude that also C′∗

li
= 0,as expeted. Thus, we restrit our equivalent loal sensor rule LO′

i by thesensor vetor ai in what follows. Let us reall the transmit data vetor sifor the salar observation model. The LO′
i performs a linear mapping of yi,given in (4.62), to the transmit data si as

si = aiyi. (4.74)Depending on the di�erent multiple aess shemes, we will now ustomizethe salar-valued FIs Jzi and Jz, given in (4.32), (4.33) and (4.34) - espe-ially to our equivalent model with salar observation from (4.62) and to theequivalent loal sensor rule LO′
i.Orthogonal MAC: In that ase, it is evident that the salar-valued FI

Jzi from (4.32), then speializes to
Jzi = g2i a

T
i H

T
i

(
σ2
hi
I+ σ2

ni
Hiaia

T
i H

T
i

)−1
Hiai, (4.75)and thus, the FI Jz from (4.33) yields

Jz =
L∑

i=1

g2i a
T
i H

T
i

(
σ2
hi
I+ σ2

ni
Hiaia

T
i H

T
i

)−1
Hiai, (4.76)where the parameters gi and σ2

ni
are given in (4.63), (4.64) or (4.65), de-pending on the given original observation model parameters gi and Cni

.Coherent MAC: In that ase, we ustomize, �rst, the notations to thesystem model with salar observation. We reall the shorthand (3.15), whihspeializes to a vetor as
ãi , Hiai. (4.77)Already made assumptions are, of ourse, also adopted for this speial ase,so Hi for all i are of full olumn-rank - thus p ≥ qi for all i - we refer to ãias the sensor-hannel vetor, aordingly. Note that we an relaim ai from

ãi as ai = H
†
i ãi in a unique manner, sine Hi is of full olumn-rank. We



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 50also reall (3.16) and (3.17). Those variables, whih are then used in thefollowing, speialize to
Ã ,

(
ã1 ã2 . . . ãL

)
, Ã ∈ R

p×L,

g ,
(
g1 g2 . . . gL

)T
, g ∈ R

L,

n ,
(
n1 n2 . . . nL

)T
, n ∈ R

L.

(4.78)Remember that p = pi for all i. Note that n ∼ N (0,Cn}. It is evident thatthe ovariane matrix Cn = diag {σ2
ni

}L
i=1

and is non-singular for the ase,when σ2
ni

6= 0 for all i, whih follows when gi from the original observationmodel for sensor i (4.35) holds: gi ∈ R (Cni
) \ {0} for all i (for the oherentMAC, we have already restrited to this speial ase - f. introdution of thissetion). To that end, we assume iid total observation noise for the salarobservation model n w.l.o.g., i.e., Cn = σ2

nI with σ2
n > 0. Otherwise, we ande�ne an equivalent model, in whih Cn′ = σ2

n′I (f. Theorem 4.3.12). It isevident that the salar-valued FI Jz from (4.34), then speializes to
Jz = gT ÃT

(
σ2
hI+ σ2

nÃÃT
)−1

Ãg, (4.79)where g and Ã are given in (4.78).Power Constraint: Let us reall both onstraints (C1) and (C2) evalu-ated for Cli = 0 for all i. For a salar paramter and in partiular, for thesalar observation model, (C1) speializes toEθ

{
‖si‖2

}
= ‖ai‖2

(
(giθ)

2 + σ2
ni

)
≤ P0,i for 1 ≤ i ≤ L, (C1-s)and (C2) tovarθ {si} = ‖ai‖2 σ2

ni
≤ P ′

0,i for 1 ≤ i ≤ L. (C2-s)Note that onstraint (C2-s) does not depend on the parameter θ, as expeted.Total Power Constraint for the Coherent MAC: Later, when we on-sider the ase of a oherent MAC, we will simplify the optimization problem(P-II) by introduing a modi�ed power onstraint. Here, we will onsidera total power onstraint - by whih the total transmit power for all sen-sors, i.e., the sum of all individual powers of si for all i is bounded above agiven onstant total power P0 =
∑L

i=1 P0,i - i.e., espeially adapted to theequivalent model with salar observation:
L∑

i=1

(
(giθ)

2 + σ2
n

)
‖ai‖2 ≤ P0. (C1-t)



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 51Analog, we de�ne the total variane onstraint with P ′
0 =

∑L
i=1 P

′
0,i as

L∑

i=1

‖ai‖2 ≤ P ′
0/σ

2
n. (C2-t)Note that for the oherent MAC, we have assumed Cn = σ2

nI with σ2
n > 0and thus σ2

ni
= σ2

n for all i.4.4.3 Optimal Loal Sensor Rules for a Salar ParameterSo far, we have introdued an equivalent salar observation model, in whihwe restrited an equivalent loal sensor rule LO′
i by the sensor vetor ai -sine we set C′

li
= 0 w.l.o.g. We have ustomized the FI Jz for both multipleaess shemes to the equivalent system model with salar observation (f.(4.76) and (4.79))- espeially, the FI Jzi for the orthogonal MAC ase (f.(4.75)). Furthermore, we have also adapted both onsidered onstraints (C1)and (C2) to the equivalent model - and dedued (C1-s) and (C2-s).Let us reall that an optimal sensor matrix Ai solves (P-II), where (P-II)an be onsidered for both multiple aess shemes. Adapted to our equiva-lent model with salar obervation, it speializes to:maximize

ai, 1≤i≤L
Jzsubjet to Jz satis�es (4.76) or (4.79),
ai ∈ R

qi for 1 ≤ i ≤ L,(C1-s) or (C2-s) is satis�ed, i.e.,(C1-s) : ‖ai‖2
(
(giθ)

2 + σ2
ni

)
≤ P0,i for 1 ≤ i ≤ L, or(C2-s) : ‖ai‖2 σ2

ni
≤ P ′

0,i for 1 ≤ i ≤ L,

(P-II-s)
where gi and σ2

ni
are given in (4.63), (4.64) or (4.65), depending on the givenoriginal observation model parameters gi and Cni

.In partiular, we onsider problem (P-III) for determining the optimalLOi, for the ase of an orthogonal MAC (f. Setion 4.2). For a salarparameter and espeially for the equivalent model with salar observation,(P-III) speializes with (4.75) tomaximize
ai

Jzi = g2i a
T
i H

T
i

(
σ2
hi
I+ σ2

ni
Hiaia

T
i H

T
i

)−1
Hiaisubjet to ai ∈ R

qi ,(C1-s)i or (C2-s)i is satis�ed, i.e.,(C1-s)i : ‖ai‖2
(
(giθ)

2 + σ2
ni

)
≤ P0,i or(C2-s)i : ‖ai‖2 σ2

ni
≤ P ′

0,i.

(P-III-s)



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 52The notation (C1-s)i and (C2-s)i mean the ith onstraint of (C1-s) and(C2-s). In what follows, we �rst solve problem (P-III-s) - we onsider theorthogonal MAC ase.4.4.3.1 Orthogonal MACLet us now onsider the ase of an orthogonal MAC. Remember, that wehave already assumed for this ase diagonal matries Hi for all i w.l.o.g.,i.e.,
(Hi)k,l =

{
hik k = l 1 ≤ k, l ≤ w , min {pi, qi}
0 k 6= l,

(4.80)where hik for 1 ≤ k ≤ w are the singular values of Hi, in partiular (f. The-orem 4.3.13). In that ase, we onsider espeially the optimization problem(P-III-s), for determining the optimal loal sensor vetor ai for LO′
i. Thus,we onsider the FI Jzi from (4.75) and take note that gi ∈ R and σ2
ni

≥ 0.Let us �rst treat the trivial third ase, when gi = 0 and σ2
ni

= 0 (f.(4.65)). Then, it is obvious that the FI Jzi from (4.75) yields Jzi = 0 forall ai ∈ R
qi , sine we assumed σ2

hi
> 0. Hene, for this speial ase, thereexist no optimal LO′

i for (P-III-s) and (P-II-s) and thus no optimal LOi for(P-I). For further proeed we distinguish the two remaining ases - σ2
ni

> 0or σ2
ni

= 0. In what follows we assume gi > 0, whih is guaranteed for bothases (f. (4.63) and (4.65)).1. Case - σ2
ni

6= 0: The FI Jzi from (4.75) then yields
Jzi = g2i a

T
i H

T
i

(
σ2
hi
I+ σ2

ni
Hiaia

T
i H

T
i

)−1
Hiai

(a)
= g2i ã

T
i

(
σ2
hi
I+ σ2

ni
ãiã

T
i

)−1
ãi

=
g2i
σ2
ni

ãTi

(
σ2
hi

σ2
ni

I+ ãiã
T
i

)−1

ãi for σ2
ni

> 0,

(4.81)where in step (a) we introdued the shorthand
ãi , Hiai. (4.82)We now introdue
PAi

,
1

‖ãi‖2
ãiã

T
i . (4.83)Note that PAi

is the projetion matrix1 assoiated to the linear sub-spae Ai = {cãi|c ∈ R}. Furthermore, P⊥
Ai

= I − PAi
is the pro-jetion matrix assoiated to the orthogonal omplement linear sub-spae A⊥

i of Ai, i.e., A⊥
i =

{
x ∈ R

pi |ãTi x = 0
} [5℄. With the identity1A projetion matrix P is symmetri (P = P

T ) and indempotent (P2 = P).
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I = PAi

+P⊥
Ai
, (4.81) an also be written in terms of PAi

and P⊥
Ai

as
Jzi =

g2i
σ2
ni

ãTi

((
‖ãi‖2 +

σ2
hi

σ2
ni

)
PAi

+
σ2
hi

σ2
ni

P⊥
Ai

)−1

ãi (4.84)for σ2
ni

> 0. Invoking [11℄, we have the identity
(
c1PAi

+ c2P
⊥
Ai

)−1
=

1

c1
PAi

+
1

c2
P⊥

Ai
, (4.85)for any c1 ∈ R\ {0} and c2 ∈ R\ {0}, sine

(
c1PAi

+ c2P
⊥
Ai

)( 1

c1
PAi

+
1

c2
P⊥

Ai

)
=

= PAi
PAi

+
c2
c1
P⊥

Ai
PAi

+
c1
c2
PAi

P⊥
Ai

+P⊥
Ai
P⊥

Ai

(a)
= PAi

+P⊥
Ai

= I,where in step (a) we used the fat that PAi
P⊥

Ai
= PAi

(I−PAi
) =

PAi
− PAi

= 0 = P⊥
Ai

− P⊥
Ai

= P⊥
Ai

(
I−P⊥

Ai

)
= P⊥

Ai
PAi

. Sinewe assumed that σ2
hi

> 0 and σ2
ni

> 0, we an use (4.85) for c2 =

σ2
hi
/σ2

ni
> 0 and c1 =

(
‖ãi‖2 + σ2

hi
/σ2

ni

)
> 0 and thus, (4.84) yields

Jzi =
g2i
σ2
ni

ãTi




1
σ2
hi

σ2
ni

+ ‖ãi‖2
PAi

+
σ2
ni

σ2
hi

P⊥
Ai


 ãi

=
g2i
σ2
ni

1
σ2
hi

σ2
ni

+ ‖ãi‖2
ãTi PAi

ãi +
g2i
σ2
hi

ãTi P
⊥
Ai
ãi

(a)
=

g2i
σ2
ni

ãTi ãiã
T
i ãi

‖ãi‖2
(

σ2
hi

σ2
ni

+ ‖ãi‖2
)

=
g2i
σ2
ni

‖ãi‖2
σ2
hi

σ2
ni

+ ‖ãi‖2
for σ2

ni
6= 0,

(4.86)
where in step (a) we inserted (4.83) and used the fat that

P⊥
Ai
ãi = (I−PAi

) ãi
(4.83)
= ãi − ãiã

T
i ãi/ ‖ãi‖2 = ãi − ãi = 0.Take note that ãTi ãi = ‖ãi‖2.2. Case - σ2

ni
= 0: In that ase, the FI Jzi from (4.75) yields

Jzi = g2i a
T
i H

T
i

(
σ2
hi
I
)−1

Hiai =
g2i
σ2
hi

aTi H
T
i Hiai for σ2

ni
= 0. (4.87)
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Jzi =

g2i
σ2
hi

‖ãi‖2 for σ2
ni

= 0. (4.88)Let us summarize both derivatives (4.86) and (4.88), as follows:
Jzi =





g2i
σ2
ni

‖ãi‖
2

σ2
hi

σ2
ni

+‖ãi‖
2

σ2
ni

6= 0

g2i
σ2
hi

‖ãi‖2 σ2
ni

= 0,

(4.89)whih is in turn equivalent to (4.75). So we an replae the FI Jzi of problem(P-III-s) by (4.89), without loss. It an be veri�ed easily that the FI Jz,i,given in (4.89), is a monotoni inreasing funtion in ‖ãi‖2, sine with x ,

‖ãi‖2 and Jzi = Jzi (x), the �rst derivation
J ′
zi
(x) ,

∂

∂x
Jzi (x) =





g2i
σ2
ni

1(
σ2
hi

σ2
ni

+x

)2 σ2
ni

6= 0

g2i
σ2
hi

σ2
ni

= 0,is stritliy positve for all x, i.e., J ′
zi
(x) > 0 for all x. Therefore, wean equivalently maximize ‖ãi‖2 = aTi H

T
i Hiai instead of Jzi from (4.89),while respeting the onstraint (C1-s)i or (C2-s)i. The optimization prob-lem (P-III-s) an thus be reformulated equivalently asmaximize

ai∈Rqi
aTi H

T
i Hiaisubjet to 




(
(giθ)

2 + σ2
ni

)
‖ai‖2 ≤ P0,i (C1-s)i or

σ2
ni
‖ai‖2 ≤ P ′

0,i. (C2-s)i (4.90)Theorem 4.4.18 Consider a real symmetri maxtrix A ∈ Sym (s). Let
λmax denotes the largest eigenvalue and vmax the orresponding eigenvetorof A, i.e., Aλmax = Avmax. Then,

aTAa ≤ λmax ‖a‖2 for all a ∈ R
s.Equality holds i� a = cvmax for any c ∈ R.Proof. Cf. [12, 6.2, p.110℄.Let us reall that we assumed a diagonal hannel matrixHi with diagonalentries hik for 1 ≤ k ≤ w - the singular values of Hi (f. (4.80)). It is evidentthat alsoHT

i Hi of size qi×qi is diagonal, where the w largest diagonal entries
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i Hi - are the squared singular values of Hi,i.e., h2i k for 1 ≤ k ≤ w. Let h2i max denotes the maximum value of the set{

h2i k, 1 ≤ k ≤ w
}. Let us write the sensor vetor ai in the form

ai = civi, (4.91)where ci = ‖a‖ ∈ R is the length and vi = a/ci ∈ R
qi denotes the nor-malized vetor of a (diretion), i.e., ‖vi‖2 = 1. We an reformulate (4.90)equivalently asmaximize

vi∈Rqi , ci∈R
‖vi‖

2=1

c2iv
T
i H

T
i Hivisubjet to 




(
(giθ)

2 + σ2
ni

)
c2i ≤ P0,i (C1-s)i or

σ2
ni
c2i ≤ P ′

0,i. (C2-s)i (4.92)Take note that only the objetive funtion of (4.92) depends on the nor-malized vetor vi - the onstraints (C1-s)i and (C2-s)i are not a�eted by
vi. For solving (4.92) w.r.t. vi, we an maximize the objetive funtion of(4.92), without onsidering (C1-s)i or (C2-s)i. Aording to Theorem 4.4.18,the objetive funtion of (4.92), with ‖vi‖ = 1, is bounded above by

c2iv
T
i H

T
i Hivi ≤ c2i h

2
imax for all vi ∈ R

qi, where ‖vi‖ = 1, (4.93)where equality (maximum) holds when vi = eimax, sine HT
i Hi is diagonal.The vetor eimax denotes those unit vetor (eigenvetor of HT

i Hi), whihorresponds to the largest eigenvalue h2imax of HT
i Hi. Hene, the optimal vifor (4.92) an be obtained with

v∗
i = eimax. (4.94)Inserting vi = eimax into (4.92) yieldsmaximize

ci∈R
c2i h

2
imaxsubjet to 




(
(giθ)

2 + σ2
ni

)
c2i ≤ P0,i (C1-s)i or

σ2
ni
c2i ≤ P ′

0,i. (C2-s)i (4.95)It remains to determine the optimal onstant ci for (4.92) or, equivalently, for(4.95). Let us onsider onstraint (C1-s)i. Then, for the ase (giθ)
2 + σ2

ni
=

0, the onstraint is always ful�lled and ci ould be hosen arbitrarily highin order to maximize the objetive funtion in (4.95). Similar holds foronstraint (C2-s)i when σ2
ni

= 0. However, both speial ases an our onlyif σ2
ni

= 0. To remain mathematially orret in what follows, we exludethe ase σ2
ni

= 0. For the analysis we therefore use the limit value σ2
ni

→ 0.



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 56So, we have to maximize c2i in (4.95), while respeting the onstraint(C1-s)i or (C2-s)i, respetively. Thus, it is obvious that optimal ci for (4.95)results when equality prevails in (C1-s)i or (C2-s)i, in order to obtain maxi-mal value of the objetive c2i h
2
imax, i.e., for

c∗i =





√
P0,i

(giθ)
2+σ2

ni

(C1-s)i
√

P ′
0,i

σ2
ni

(C2-s)i. (4.96)In turn, optimal ai for problem (4.90) an be obtained by inserting (4.96)and (4.94) into (4.91) as
a∗i = c∗i eimax, where c∗i =





√
P0,i

(giθ)
2+σ2

ni

(C1-s)i
√

P ′
0,i

σ2
ni

(C2-s)i. (4.97)Hene, we have determined optimal LO′
i for an orthogonal MAC - for theequivalent model with salar observation. Finally, we give the optimal FI

Jzi , that follows for an optimal LO′
i. To that end, we insert a∗i from (4.97)into (4.82), i.e., ã∗i = Hia

∗
i = c∗iHieimax = c∗i himaxeimax, whih in turn isused in (4.75), i.e.,

J∗
zi

= g2i c
∗
i
2h2imaxeTi max (σ2

hi
I+ σ2

ni
c∗i

2h2imaxeimaxeTi max)−1
eimax

= g2i c
∗
i
2h2imax 1

σ2
hi

+ σ2
ni
c∗i

2h2imax(4.96)
=





g2i P0,ih2
imax

(giθ)
2+σ2

ni

1

σ2
hi

+σ2
ni

P0,i

(giθ)
2
+σ2

ni

h2
imax (C1-s)i

g2i P
′
0,ih

2
imax

σ2
ni

1

σ2
hi

+σ2
ni

P ′
0,i

σ2
ni

h2
imax (C2-s)i

=





g2i h
2
imaxP0,i

σ2
hi
((giθ)2+σ2

ni
)+σ2

ni
h2
imaxP0,i

(C1-s)i
g2i h

2
imax

σ2
ni

P ′
0,i

σ2
hi

+h2
imaxP ′

0,i
(C2-s)i for σ2

ni
6= 0.

(4.98)
Note that (4.98) only hold for the ase when gi 6= 0 and σ2

ni
> 0. For thetrivial ase, when gi = 0 and σ2

ni
= 0 (f. (4.65)), we have already mentionedthat obviously J∗

zi
= 0.Let us now analyze (4.98) the one remaining ase (f. (4.64)), i.e., when

gi 6= 0 and σ2
ni

= 0, in more detail. Considering �rst the seond onstraint(C2-s)i, in partiular. Here, we an use for the analysis, as already men-tioned, the limit value σ2
ni

→ 0. Then, the FI J∗
zi
goes to ini�ty, sine

lim
σ2
ni

→0
J∗
zi

= ∞. (C2-s)i



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 57This is at �rst sight strange, but quite explainable. The seond onstraint(C2-s)i bounds only the variane of the transmit data si - whih goes to zero,when σ2
ni

→ 0. Therefore, we ould theoretially provide an arbitrarily largepower for sensor i without violating the onstraint (C2-s)i, but this results inan arbirtraly large FI J∗
zi
. This is the reason why (C1-s)i has more pratialrelevane. Now, we onsider the �rst onstraint (C1-s)i. The optimal loalsensor rule ai, given in (4.97), depend on the parameter θ. In pratie,the omputation of the optimal ci from (4.96) for (C1-s)i, has to be solvedwith an estimate (loally) θ̂ (yi), sine the true parameter θ is unknown. Inthis speial ase, so even when σ2

ni
= 0, then we an estimate the unknownparameter without estimation error, sine θ̂ (yi) = yi/gi and the estimationerror e = θ̂ (yi)− θ = 0. Hene, at the loal sensor we know the exat valueof the parameter θ. However, we are interested at the resulting FI Jzi at theFC for an optimum LO′

i.
J∗
zi

=
h2imaxP0,i

θσ2
hi

.Both just been treated ases oinides with (4.98) when we use the lim-iting ase σ2
ni

→ 0. Last but not least, still indiate the total optimal FI Jzfrom (4.76) for the orthogonal MAC:
J∗
z =

L∑

i=1

J∗
zi
, where {J∗

zi
= 0 if gi = 0 and σ2

ni
= 0

J∗
zi
is given in (4.98) else, (4.99)whih is the optimum in (P-II-s) and also the global optimum in (P-I) forthe speial ase of a salar parameter and onsidering the orthogonal MACwith L loal sensors, sine C′∗
li
= 0 and in turn C∗

li
= 0.4.4.3.2 Coherent MACLet us now onsider the ase of an oherent MAC. In that ase, we onsiderespeially the optimization problem (P-II-s), in order to determine the opti-mal loal sensor vetors ai (i.e., LO′

i) for 1 ≤ i ≤ L. Thus, we onsider the



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 58FI Jz from (4.79), whih an also be written as
Jz = gT ÃT

(
σ2
hI+ σ2

nÃÃT
)−1

Ãg

(a)
= gTVΣTUT

(
σ2
hI+ σ2

nUΣVTVΣTUT
)−1

UΣVTg

(b)
= gTVΣTUT

(
σ2
hUUT + σ2

nUΣΣTUT
)−1

UΣVTg

= gTVΣTUTU
(
σ2
hI+ σ2

nΣΣT
)−1

UTUΣVTg

=
1

σ2
n

gTVΣT

(
σ2
h

σ2
n

I+ΣΣT

)−1

ΣVTg

(c)
=

1

σ2
n

gTVDVTg,

(4.100)
where in step (a) we performed the SVD Ã = UΣVT , with the unitarymatries U ∈ R

p×p, V ∈ R
L×L and the (possibly retangular) diagonalmatrix Σ of size p × L, whih ontains the singular values σj for 1 ≤ j ≤

w , min {p, L} of Ã on the main diagonal, i.e., (Σ)j,j = σi for 1 ≤ j ≤ w. Instep (b), we used the fat that VVT = I and UUT = I, sine V and U areunitary. Let us assume that the singular values |σj | are ordered dereasingly(in turn of magnitude), i.e., |σ1| ≥ |σ2| ≥ · · · ≥ |σw|. Take note that, for theoherent MAC ase, we assumed σ2
n > 0. In the last step (), we introduedthe diagonal matrix

D , ΣT

(
σ2
h

σ2
n

I+ΣΣT

)−1

Σ, (4.101)whih is squared and diagonal of size L × L. The L elements on the maindiagonal are thus given by
di , (D)j,j =





σ2
j

σ2
h

σ2
n
+σ2

j

if 1 ≤ j ≤ w

0 else, (4.102)for 1 ≤ j ≤ L. Note that the diagonal elements dj are also ordered dereas-ingly, i.e., d1 ≥ d2 ≥ ...dL ≥ 0, that follows by adopting the order of theset {|σj |} for 1 ≤ j ≤ w. As mentioned above, we onsider for the oher-ent MAC ase espeially, a total power/variane onstraint (C1-t) or (C2-t),respetively. Furthermore, we will treat only the ase for onstraint (C2-t).Let us reall the shorthand from (4.77) and the notations from (4.78). Withthe assumption made that Hi for all i have all full olumn-rank, we anuniquely relaim ai with ai = H
†
i ãi. Thus, we an reformulate (C2-t) with

ai = H
†
i ãi = H

†
iÃei (ei denotes the ith unit vetor), in terms of Ã as

L∑

i=1

‖ai‖2 =
L∑

i=1

∥∥∥H†
iÃei

∥∥∥
2
=

L∑

i=1

eTi Ã
T
(
HiH

T
i

)†
Ãei ≤ P ′

0/σ
2
n, (4.103)
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i

)†
H

†
i =

(
H

†
i

)T
H

†
i =

(
HiH

T
i

)† [13℄. In termsof SVD Ã = UΣVT , (4.103) yields
t (U,Σ,V) ,

L∑

i=1

eTi VΣTUT
(
HiH

T
i

)†
UΣVTei

=
L∑

i=1

(
VΣTUT

(
HiH

T
i

)†
UΣVT

)
i,i

≤ P ′
0/σ

2
n,

(4.104)where we introdued the onstraint funtion t (·). With the derivations(4.100) (exluding the onstant1) and (4.104), the optimization problem (P-II-s)an thus be reformulated equivalently asmaximize
V,Σ,U

gTVDVTgsubjet to L∑

i=1

(
VΣTUT

(
HiH

T
i

)†
UΣVT

)
i,i

≤ P ′
0/σ

2
n, (C2-t)

ΣΣT ≥ 0,

VVT = VTV = I,

UUT = UTU = I.

(4.105)
Solving (4.105) with respet to U, V, and Σ, further gives the optimal
Ã = UΣVT , and in turn, the optimal ai = H

†
iÃei for (P-II-s) (sine Hiis assumed to be of full olumn-rank). In what follows, we solve (4.105) fortwo speial ases, with assumptions on the individual hannel matries Hifor all i.Orthogonal Channels: In that ase, we assume that all individual han-nel matries Hi for all i are orthogonal (unitary), i.e., HiH

T
i = HT

i Hi = Ifor 1 ≤ i ≤ L - implying p = qi for 1 ≤ i ≤ L. Then, the onstraint funtion
t (·) from (4.104) yields

t (U,Σ) =

L∑

i=1

(
VΣTUT

(
HiH

T
i

)†
UΣVT

)
i,i

=
L∑

i=1

(
VΣTUTUΣVT

)
i,i

= tr {VΣTUTUΣVT
}
= tr{ΣTΣ

}
,where we inserted HiH

T
i = I and used the yli property of the traeoperator [8℄, further, the fats that UTU = I and VTV = I. In turn,1 It is ommon to omit the onstant in the objetive funtion, sine it does not a�etthe optimal solution.
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V,Σ

gTVDVTgsubjet to tr {ΣTΣ
}
≤ P ′

0/σ
2
n, (C2-t)

ΣΣT ≥ 0,

VVT = VTV = I.

(4.106)In what follows, we will solve (4.106) sequentially, by determining �rstthe optimum V and then the optimum Σ. A neessary ondition for V tobe optimum in (4.106), an be obtained by �xing Σ. For a �xed Σ′, theoptimum V has to solve the problemmaximize
V

gTVD′VTgsubjet to tr{Σ′TΣ′
}
≤ P ′

0/σ
2
n, (C2-t)

Σ′Σ′T ≥ 0,

VVT = VTV = I,

(4.107)where D′ is obtained from (4.101) by inserting Σ′ for Σ. Aordingly, wedenote d′j for 1 ≤ j ≤ L as the elements of D′. Now onsider the problem(4.107) we reognize that it no longer depends on the unitary U - we thusan hoose an arbitrarily unitary U, e.g., U = I. AV is optimum for (4.107)if and only if it is optimum formaximize
V

gTVD′VTgsubjet to VVT = VTV = I,
(4.108)as an be veri�ed easily. Let us denote the orthonormal olumn vetors ofthe unitary matrix V by vj for 1 ≤ j ≤ L. Aording to Theorem 4.4.18,the objetive funtion of (4.108) is bounded above (g is given) by

gTVD′VTg ≤ d′1 ‖g‖2 , (4.109)sine we assumed that the diagonal entries d′j for 1 ≤ j ≤ L inD′ are ordereddereasingly. Equality in (4.109) (maximum) holds when v1 = cg for anyonstant c ∈ R. Sine v1 must has unit norm, i.e., ‖v1‖ = 1, the optimal v1is given by
v∗
1 =

g

‖g‖ . (4.110)The remaining (L − 1) olumn vetors of optimum V, i.e., vj for 2 ≤ j ≤
L an be hoosen arbitrarily, suh that the set {vj , 1 ≤ j ≤ L} form anorthonormal basis, i.e., V is unitary.



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 61After having determined the optimal V for (4.106), we will now hara-terize the optimum Σ for (4.106). To that end, we �rst insert the optimal
V in (4.106), where the objetive funtion then yields
gTV∗DV∗Tg =

L∑

j=1

gT djv
∗
jv

∗
j
T
g =

(
gTv∗

1

)2
d1+

L∑

j=2

(
gTv∗

j

)2
dj

(a)
= ‖g‖2 d1,(4.111)where in step (a) we inserted (4.110) and used the fat that gTv∗
j = 0 for

2 ≤ j ≤ L, sine g = ‖g‖v∗
1 (f. (4.110)) and v1 is obviously orthogonalto eah vj for 2 ≤ j ≤ L by de�nition (V is unitary). Hene, with d1 from(4.102), (4.106) by inserting optimum V yieldsmaximize

Σ

‖g‖2 σ2
1

σ2
h

σ2
n
+ σ2

1subjet to tr {ΣTΣ
}
≤ P ′

0/σ
2
n, (C2-t)

ΣΣT ≥ 0.

(4.112)Introduing the vetor notation s =
(
s1, s2, . . . , sw

)T
,
(
σ2
1 , σ

2
2 , . . . , σ

2
w

)T ∈
R
+w, i.e., it has to be: s � 01, the onstraint (C2-t) an thus be writtenby tr{ΣTΣ

}
=
∑w

i=1 si = sT1 ≤ P ′
0/σ

2
n, where 1 denotes a vetor of ones.Thus, (4.112) an equivalently be written in terms of sj for 1 ≤ j ≤ w asmaximize

s
f (s1) ,

s1
σ2
h

σ2
n
+ s1subjet to sT1 ≤ P ′

0/σ
2
n, (C2-t)

s � 0,

(4.113)where we introdued the funtion f (s1). It is obvious that the funtion
f (s1) is a monotoni funtion in s1, sine the �rst derivation

∂

∂s1
fs1 (s1) =

1
(
σ2
h

σ2
n
+ s1

)2 > 0 for all s1 ∈ R.Thus, we an equivalentely maximize s1, while respeting the onstraint(C2-t). The optimization problem (4.113) an thus be reformulated equiva-lently asmaximize
s

s1subjet to sT1 ≤ P ′
0/σ

2
n, (C2-t)

s � 0,

(4.114)1For two vetors a and b, the relation a � b means elementwise inequality, i.e., ai ≥ bifor all i, where ai and bi denote the ith elements of a and b, respetively.
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s∗1 = P ′

0/σ
2
n and s∗j = 0 for 2 ≤ j ≤ w, (4.115)and therefore, with σj =

√
sj , we �nally obtain the optimal Σ for (4.106) as

(Σ∗)j,j = σ∗
j =

{√
P ′
0

σ2
n

for j = 1

0 else. (4.116)After having determined the optimal V and Σ for (4.106), assuming
U = I (but ould be an arbitrary unitary matrix), we are now able toompute optimal Ã as

Ã∗ = Σ∗V∗T =

w∑

j=1

σ∗
j ejv

∗
j
T (4.116)

=

√
P ′
0

σ2
n

e1v
∗
1
T (4.110)

=

√
P ′
0

σ2
n ‖g‖2

e1g
T ,(4.117)where again ej denotes the jth unit vetor. Note that the �rst unit vetor e1in (4.117) follows from the assumption that U = I. It remains to determinethe optimal loal sensor vetors ai for 1 ≤ i ≤ L, whih an be obtainedwith ai = H−1

i Ãei as
a∗i = H−1

i Ã∗ei
(4.117)
=

√
P ′
0

σ2
n ‖g‖2

HT
i e1g

Tei =

√
P ′
0

σ2
n ‖g‖2

gih
r
i 1 (4.118)for 1 ≤ i ≤ L, sine Hi is assumed to be unitary, i.e., H−1

i = HT
i . Thevetor hr

i 1 denotes the �rst row-vetor of Hi and gi = gT ei denotes the ithelement of g (f. (4.78)). Note that hr
i 1 has unit norm, i.e., ∥∥hr

i 1

∥∥ = 1, sine
Hi is unitary.Hene, we have determined optimal LO′

i for a oherent MAC, where Hifor all i are assumed to be orthogonal - for the equivalent model with salarobservation. Finally, we give the optimal FI Jz, that follows for an optimalLO′
i. To that end, we insert V∗ and D∗ - where D∗, with diagonal entries

d∗i , is obtained from (4.101) by inserting Σ∗ for Σ - into (4.100), i.e.,
J∗
z =

1

σ2
n

gTV∗D∗V∗Tg
(a)
=

‖g‖2
σ2
n

d∗1
(b)
=

‖g‖2
σ2
n

σ∗
1
2

σ2
h

σ2
n
+ σ∗

1
2

(4.116)
=

‖g‖2
σ2
n

P ′
0

σ2
h + P ′

0

,(4.119)where in step (a) we used the derivation in (4.111) forD = D∗ (i.e., d1 = d∗1).In step (b) we insert (4.102) for σ2
1 = σ∗

1
2 into d∗1.



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 63Idential Channels: In that ase, we assume that all individual hannelmatriesHi for all i are idential and espeially invertable, i.e.,H , Hj = Hifor all 1 ≤ i, j ≤ L and it exists H−1. Then, the onstraint funtion t (·)from (4.104) yields
t (U,Σ,V) =

L∑

i=1

(
VΣTUT

(
HiH

T
i

)−1
UΣVT

)
i,i

=

L∑

i=1

(
VΣTUT

(
HHT

)−1
UΣVT

)
i,i

= tr{VΣTUT
(
HHT

)−1
UΣVT

}

= tr{(HHT
)−1

UΣΣTUT
}
= t (U,Σ) ,

(4.120)
where in the last step, we used the yli property of the trae operator [8℄and the fat that VTV = I. Thus, (4.105) yieldsmaximize

U,Σ,V
gTVDVTgsubjet to tr{(HHT

)−1
UΣΣTUT

}
≤ P ′

0/σ
2
n, (C2-t)

ΣΣT ≥ 0,

UUT = UTU = I,

VVT = VTV = I.

(4.121)
Note that the onstraint (C2-t) in (4.121), now depends also on the unitarymatrix U, the left singular vetors of Ã.In what follows, we will solve (4.121) sequentially, by determining �rstthe optimum V and then the optimum U. A neessary ondition for V tobe optimum in (4.121) an be obtained by �xing U and Σ. For a �xed U′and Σ′, the optimum V has to solve the problemmaximize

V

gTVD′VTgsubjet to tr{(HHT
)−1

U′Σ′Σ′TU′T
}
≤ P ′

0/σ
2
n, (C2-t)

Σ′Σ′T ≥ 0,

U′U′T = U′TU′ = I,

VVT = VTV = I.

(4.122)
where D′ is obtained from (4.101) by inserting Σ′ for Σ. A V is optimumfor (4.122) if and only if it is optimum formaximize

V

gTVD′VTgsubjet to VVT = VTV = I,
(4.123)



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 64as an be veri�ed easily. Problem (4.123) is exatly the same as (4.108),whih we have already solved. Denoting again, the orthonormal olumnvetors of the unitary matrix V by vj for 1 ≤ j ≤ L. Then, sine d′j for all
j (the diagonal elements in D′) are assumed to be ordered dereasingly, weobtain the optimal V for (4.123) and thus also for (4.121) by hoosing the�rst olumn vetor v1 as in (4.110). The remaining (L− 1) olumn vetorsof the optimal V, i.e., vj for 2 ≤ j ≤ L an again be hoosen arbitrarily suhthat the set {vj , 1 ≤ j ≤ L} forms an orthonormal basis, i.e., V is unitary.After having determined the optimal V for (4.121), we will now hara-terize the optimum U for (4.121). To that end, we insert �rst the optimal
V into (4.121), yielding:maximize

U,Σ
‖g‖2 d1subjet to tr{(HHT

)−1
UΣΣTUT

}
≤ P ′

0/σ
2
n, (C2-t)

ΣΣT ≥ 0,

UUT = UTU = I,

(4.124)where we used exatly the derivation in (4.111). If U∗ is optimal for (4.124),then it is also optimal for (4.121), as an be veri�ed easily.Let us onsider an optimal pair (U′,Σ′) solving (4.121) or, equivalently,(4.124). We will now show that neessarily U′ has to be a minimizer of theonstraint funtion t (U,Σ), given in (4.120), for the spei� hoie Σ = Σ′,i.e.,
U′ = arg minimize

U

t
(
U,Σ′

)
= tr{(HHT

)−1
UΣ′Σ′TUT

}subjet to UUT = UTU = I,
(4.125)Indeed assume that there is another unitary matrixU′′ suh that t (U′′,Σ′) <

t (U′,Σ′). It follows that also U′′, Σ′ is a feasible pair, sine U′′ is unitaryand
t
(
U′′,Σ′

)
< t

(
U′,Σ′

)
≤ P ′

0/σ
2
n. (C2-t). (4.126)We an now onstrut another Σ, i.e., Σ = Σ′′ by Σ′′ ,

√
cΣ′, where c > 1.Sine, as an be veri�ed easily, t (U,

√
cΣ) = c · t (U,Σ), we an hoose csmall enough suh that

t
(
U′′,Σ′′

)
= c · t

(
U′′,Σ′

)
≤ P ′

0/σ
2
n (C2-t),due to (4.126) implying that also (U′′,Σ′′) is feasible. However, a simpleomputation shows that for the feasible pair (U′′,Σ′′) the objetive in (4.121)is stritly larger than for (U′,Σ′). A ontradition to the assumption that

(U′,Σ′) is optimal.



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 65Theorem 4.4.19 Let A and B are two real symmetri (s×s)-matries anddenoting λi (A) and λi (B) as the ith eigenvalue of A and B, respetively.Assuming the eigenvalues λi (A) and λi (B) are arranged in dereasing order,i.e., λ1 (A) ≥ λ2 (A) ≥ ... ≥ λn (A) ≥ 0 and λ1 (B) ≥ λ2 (B) ≥ ... ≥
λn (B) ≥ 0. Then

n∑

i=1

λi (A)λs−i+1 (B) ≤ tr {AB} ≤
s∑

i=1

λi (A)λi (B) . (4.127)Proof. Cf. [14, Theorem II-1℄.So, we an determine the optimal U for (4.121) by solving (4.125), wherethe optimalU is given byU∗ = U′. An appliation of Theorem 4.4.19 revealsthat the optimal U is given by the eigenvetors of (HHT
)−1 or HHT , inthe order of inreasing eigenvalues of (HHT

)−1 or dereasing eigenvalues of
HHT , respetively. Thus, with eigenvalue deomposition (EVD) HHT =
UhΛhU

T
h , where the unitary Uh ontains the eigenvetors, and the diagonal

Λh ontains the positive eigenvalues of HHT , denoted by λhj for 1 ≤ j ≤ p,in dereasing order, i.e., λh1 ≥ λh2 ≥, . . . ,≥ λhp > 0, we obtain optimal Uby
U∗ = Uh, u∗

j = uhj for 1 ≤ j ≤ p, (4.128)where the vetors uj and uhj denote the jth olumn vetors of U and Uh,respetively.So far, we have determined the optimal U and V for (4.121). It remainsto determine the optimal Σ for (4.121). To that end, we insert U∗ into(4.124) an together with d1 from (4.102) in turn leads tomaximize
Σ

‖g‖2 σ2
1

σ2
h

σ2
n
+ σ2

1subjet to tr {Λ−1
h ΣΣT

}
≤ P ′

0/σ
2
n, (C2-t)

ΣΣT ≥ 0.

(4.129)We now aept the notation s =
(
s1, s2, . . . , sL

)T
,
(
σ2
1, σ

2
2 , . . . , σ

2
L

)T ∈ R
+was for the last ase, where we onsidered orthogonal hannels, in turn: s � 0.Comparing (4.129) with (4.112), we reognize that only the onstraint (C2-t)di�ers - the objetive in both problems are equivalent. Writting (4.129) interms of sj for 1 ≤ j ≤ w, we thus an use (4.114), whereby the onstraintis still to be adapted aordingly. In the urrent ase, the onstraint (C2-t)in terms of s an be written as tr {Λ−1

h ΣΣT
}
=
∑w

j=1 sj/λhj ≤ P ′
0/σ

2
n and



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 66thus, (4.129) in terms of sj for 1 ≤ j ≤ w �nally yieldsmaximize
s

s1subjet to w∑

i=1

sj
λhj

≤ P ′
0/σ

2
n, (C2-t)

sj ≥ 0 for 1 ≤ j ≤ w,

(4.130)whih an be easily solved by
s∗1 =

P ′
0λh1

σ2
n

and s∗j = 0 for 2 ≤ j ≤ w, (4.131)and therefore, with σj =
√
sj , we �nally obtain the optimal Σ for (4.121) as

(Σ∗)j,j = σ∗
j =

{√
P ′
0λh1

σ2
n

for j = 1

0 else. (4.132)After having determined the optimal V, U and Σ for (4.121), we arenow able to ompute optimal Ã as
Ã∗ = U∗Σ∗V∗T =

w∑

j=1

σ∗
jujv

∗
j
T (4.132)

=

√
P ′
0λh1

σ2
n

u∗
1v

∗
1
T (a)

=

√
P ′
0λh1

σ2
n ‖g‖2

uh1g
T ,(4.133)where in step (a) we inserted (4.110) and (4.128). It remains to determinethe optimal loal sensor vetors ai for 1 ≤ i ≤ L, whih an be obtainedwith ai = H−1

i Ãei = H−1Ãei as
a∗i = H−1Ã∗ei

(4.133)
=

√
P ′
0λh1

σ2
n ‖g‖2

H−1uh1g
T ei =

√
P ′
0λh1

σ2
n ‖g‖2

gi
1

σh1
vh1 (4.134)for 1 ≤ i ≤ L, where in step (a) we used, with SVD on H = VhΣhU

T
h ,the derivation H−1uh1 = VhΣ

−1
h UT

huh1 = VhΣ
−1
h e1 = 1

σh1
vh1, where σh1denotes the �rst singular value of H - whih in turn is the largest one interms of magnitude - and vh1 denotes the �rst olumn vetor of Vh - theorresponding �rst right singular vetor ofH. The salar gi = gT ei in (4.134)denotes again the ith element of g. Note that σh1 6= 0, sine we assumedthat H is invertable. Writting1 σh1 = sign (σh1) |σh1| and using the relation

λh1 = |σh1|2, we an reformulate (4.134) as
a∗i = sign (σh1)√ P ′

0

σ2
n ‖g‖2

givh1, (4.135)1The signum funtion sign (a) on a ∈ R returns 1 for a ≥ 0 and −1 for a < 0.



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 67where we reognize that a∗i does not depend on the magnitude of σh1 or λh1.Hene, we have determined optimal LO′
i for a oherent MAC, where all

Hi for 1 ≤ i ≤ L are assumed to be idential - for the equivalent model withsalar observation. Finally, we give the optimal FI Jz, that follows for anoptimal LO′
i. To that end, we aept the steps in (4.119) - exept the laststep, where we used instead of (4.116), (4.132), i.e., we obtain

J∗
z =

‖g‖2
σ2
n

P ′
0

σ2
h/λh1 + P ′

0

. (4.136)4.4.3.3 Optimal Power Sheduling for an Orthogonal MACLet us now study an optimal power sheduling strategie, espeially for theorthogonal MAC ase. To that end, we still onsider the equivalent modelwith salar observation and suppose optimal loal sensors LO′
i for all i as al-ready determined in losed-form (f. (4.97)). Then, we have already derivedthe optimal, resulting FI J∗

z shown in (4.99) - for both onstraints (C1-s)and (C2-s). Let us �rst onsider (C1-s). It raises the question of how a giventotal power P0 =
∑L

i=1 P0,i should be alloated optimally to the individualsensors. Similar holds, when we onsider onstraint (C2-s), i.e., how a giventotal variane P ′
0 =

∑L
i=1 P

′
0,i should be alloated optimally to the individualsensors.We assume the ase in whih σ2

ni
> 0 and thus gi > 0 for all i. Let usreall the FI J∗

z from (4.99), whih an also be written as
J∗
z =

L∑

i=1

b
(1)
i

Pi

b
(2)
i + b

(3)
i Pi

,where b
(1)
i , g2i h

2
imax,

b
(3)
i , σ2

ni
h2imax,

b
(2)
i ,

{
σ2
hi

(
(giθ)

2 + σ2
ni

) (C1-s)i
σ2
hi
σ2
ni
, (C2-s)i

Pi ,

{
P0,i (C1-s)i
P ′
0,i. (C2-s)i

(4.137)
Before we de�ne the optimal power sheduling problem, we �rst treat thease of an uniform power sheduling strategie, in order to obtain a perfo-mane benhmark for the optimal power sheduling. To that end, we usethe notation of (4.137) and still intrudue

P ,

{
P0 (C1-s)i
P ′
0, (C2-s)iso that both onstraints to be addressed simultaneously in what follows.



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 68Uniform Power Sheduling Suppose all sensors use the same transmitpower/variane, i.e., Pi = P/L (L ≥ 1). Then, (4.137) yields
Jz,u (P ) , J∗

z =
L∑

i=1

b
(1)
i

P/L

b
(2)
i + b

(3)
i P/L

=
L∑

i=1

b
(1)
i

P

b
(2)
i L+ b

(3)
i P

, (4.138)where we introdued Jz,u (P ) - the FI J∗
z from (4.137) as a funtion on thetotal power/variane P for a uniform power sheduling strategie. We nowanalyse the asymptoti behaviour of Jz,u (P ) for P → ∞. It is easy to verifythat

Jz,u (P → ∞) = lim
P→∞

L∑

i=1

b
(1)
i

P

b
(2)
i L+ b

(3)
i P

=

L∑

i=1

b
(1)
i

b
(3)
i

=

L∑

i=1

gi
σ2
ni

, (4.139)the same result for both onstraints. Sine, Jz,u (P ) is a monotoni funtionin P , we have that
Jz,u (P → ∞) > Jz,u (P ) ,for all P ∈ R

+. Thus, (4.139) is an upper bound for Jz,u (P ).Optimal Power Sheduling We assume at �rst that h2imax > 0 for all i,i.e., we exlude the ase when Hi = 0. Now we onsider an optimal poweralloation strategy, whereby transmit power is optimally sheduled amongsensors to ahieve the best estimation performane. We study the followingproblem under a total power/variane onstraint:maximize
P0,P1,...,PL

L∑

i=1

b
(1)
i

Pi

b
(2)
i + b

(3)
i Pisubjet to L∑

i=1

Pi ≤ P,

Pi ≥ 0 for 1 ≤ i ≤ L,

(4.140)
i.e., maximizing the FI from (4.137) for a given total power/variane P =∑L

i=1 Pi (onstraint), w.r.t. Pi ≥ 0 for 1 ≤ i ≤ L. We �rst, reformulateproblem (4.140) equivalently into standard form [15℄ asminimize
P0,P1,...,PL

−
L∑

i=1

b
(1)
i

Pi

b
(2)
i + b

(3)
i Pisubjet to L∑

i=1

Pi − P ≤ 0,

Pi ≥ 0 for 1 ≤ i ≤ L,

(4.141)



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 69whih is equivalent to problem (A.1) in Appendix A for xk = Pi, c(1)k = b
(1)
i ,

c
(2)
k = b

(2)
i , c(3)k = b

(3)
i , K = L, P = P . The resulting optimum P ∗

i for
1 ≤ i ≤ L, an be obtained by a so alled "water-�lling" proedure and anbe expressed as

P ∗
i = max0,

√√√√b
(2)
i b

(1)
i

(b
(3)
i )2

1

ν∗
− b

(2)
i

b
(3)
i



 , (4.142)and

L∑

i=1

max0,

√√√√b
(2)
i b

(1)
i

(b
(3)
i )2

1

ν∗
− b

(2)
i

b
(3)
i



 = P. (4.143)The optimal Pi for 1 ≤ i ≤ L for (4.141) and also for (4.140) an not beomputed in losed-form. First, we have to determine the optimal variable

ν from (4.143). Subsequently, the optimal Pi for 1 ≤ i ≤ L an then beomputed using (4.142). This an be done by a so alled "water-�lling"algorithm (Cf. Algorithm A.1).In Subsetion 5.1.1, we will analyse the optimal power sheduling versusthe uniform power sheduling performane in some numerial experiments.4.4.3.4 Implementation of an Optimal Loal SensorSo far, we have solved (P-II-s) for an orthogonal MAC without any restri-tion. For the oherent MAC we modi�ed (P-II-s) onerning the onstraint,we onsidered a total power onstraint (C1-t) and (C2-t) instead of (C1-s)and (C2-s), where we then have determined the optimal loal sensor ruleLO′
i for (C2-t) and for ertain speial ases on the hannel matrix Hi for all

i. However, we have solved the loal sensor rules LO′
i for the equivalentmodel with salar observation, i.e., LO′∗

i =
(
a∗,C′∗

li
= 0

). Aording toCorollary 4.4.17, we �nally obtain the optimal loal sensor rule LOi for ouroriginal model asLO∗
i ⇔ LO′∗

i :

A∗
i = a∗i g̃

T
i , where g̃i =





C
†
nigi gi ∈ R (Cni

) \ {0}
g′
i⊥ g′

i⊥ 6= 0

0 gi = 0,

C∗
li = C′∗

li = 0,

(4.144)where g′
i⊥ is de�ned in (4.37). Let us now, summarize all main results for asalar parameter.



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 70Orthogonal MAC: Let us reall (4.97) - the optimal loal sensor vetor
ai for sensor i, when we onsider an orthogonal MAC. In what follows, weonsider only the ase, when gi > 0 and σ2

ni
> 0 - the trivial ase, when gi = 0and σ2

ni
= has no optimal solution, sine Jz = 0 for hoies of a - for thease, when gi > 0 and σ2

ni
= f. disussion in Subsubsetion 4.4.3.1. Withthe already known solution C∗

li
= 0, we obtain the optimal LOi, aordingto (4.144), asLO∗

i : (
A∗

i = c∗i eimaxg̃T
i , C∗

li = 0
)
,where c∗i =





√
P0,i

(giθ)
2+σ2

ni

(C1-s)
√

P ′
0,i

σ2
ni

, (C2-s) (4.145)where g̃i is given in (4.144). The unit vetor eimax orresponds to the largestdiagonal entry ofHT
i Hi, so h2imax. The model parameter gi and σni

are givenin (4.63). An implementation is illustrated in Fig. 4.6, whih an be regardedas a three stage implementation.
yi g̃i

T eimax si

c∗i

Mathed Filter
Channel Diag.

Power Mathing
Figure 4.6: Optimal LOi implementation for a salar parameter and orthog-onal MAC.The �rst stage in Fig. 4.6, an be regarded as a Mathed Filter, i.e.,an optimal pre�ltering (mathing) in aordane with the loal observationmodel (gi,Cni

). The Channel Diagonalization stage, fores the optimal di-retion for the transmit data si onto the strongest transmission path of thegiven hannel Hi. Finally, the task of the ampli�ation stage is, to attain themaximum available power for the transmit data si, i.e., a Power Mathingfor si. Here, the gain is given by (4.96) and depends on the onstraint (C1-s)or (C2-s), respetively.Let us �nally onsider the implementation of an optimal LOi for on-straint (C1-s) in more detail. As already mentioned and as an be seen in(4.96), the optimal solution for an LOi depends on the unknown paramter θ.At �rst glane, the sensor thus an not be implemented optimally. However,only the third stage in Fig. 4.6, i.e., only the optimal ci denpends on θ. Theoptimal value of ci ours, when the power of si, i.e., E {sTi si} reahes the



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 71given onstant P0,i. Thus, we an implement the optimal loal sensor LO∗
ifor onstraint (C1-s) as follows: Choosing the �rst two stages of Fig. 4.6 asusual, i.e., a mathing and the hannel diagonalization, whih do not dependon θ. The third stage an be implemented by means of a ontrol loop as illus-trated in Fig. 4.7. Starting with an arbitrary initial value ci = csi , a ontrollerC inreases the fator ci until the deviation d = P0,i − E {sTi si} = 0, i.e.,unitl the steady state is reahed. After the steady state has been reahed,the power on si yields E {sTi si} = P0,i and we have determined the optimal

ci = c∗i and thus the optimal Ai for (C1-s).
yi g̃i

T eimax si

P0,i
d

E{
s
T
i si

}C -ci = csi

Mathed Filter
Channel Diag.

Power Mathing
Figure 4.7: Optimal LOi implementation for a salar paramter - onsideringan orthogonal MAC and onstraint (C1-s). A ontrol loop with an ontrollerC is implemented to obtain maximum transmit power for si in the steadystate.Coherent MAC: Let us �nally, give the optimal LOi for the oherentMAC ase. To that end, we reall the optimal loal sensor vetor ai for LO′

i,given in (4.118) for the ase of orthogonal individual hannel matries Hi for
1 ≤ i ≤ L, and in (4.135) for the ase of idential and invertable individualhannel matries H = Hi for 1 ≤ i ≤ L. With the already known solution
C∗

li
= 0, we obtain the optimal LOi for the orthogonal individual hannelase, aording to (4.144), asLO∗

i : (
A∗

i =

√
P ′
0

σ2
n ‖g‖2

gih
r
i 1g̃

T
i , C∗

li = 0

)
. (4.146)and for the idential individual hannel ase asLO∗

i : (
A∗

i = sign (σh1)√ P ′
0

σ2
n ‖g‖2

givh1g̃
T
i , C∗

li = 0

)
. (4.147)The vetor g̃i in (4.146) and (4.146), is again given in (4.144). Note that forthe oherent MAC we only onsidered the �rst ase for g̃i in (4.144), i.e.,
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) \ {0}. The vetor hr

i 1 in (4.146) denotes the �rst row-vetor of the unitary Hi. The vetor vh1 in (4.147) denotes the largest rightsingular vetor of H = Hi for all i, whih orresponds to the largest singularvalue σh1 of H (in terms of magnitude). The model parameter gi and σniare given in (4.63). Note that in the oherent MAC ase, we assumed gi > 0and σ2
n = σni

> 0. Finally P ′
0 denotes the total variane power inluding allsensors.The implementation of the optimal LOi for both ases is similar toFig. 4.6. Only the seond stage di�ers in hoosing hr

i 1 or vh1 instead of
eimax, respetively.4.5 Vetor Parameter CaseLet us now onsider the general ase of a vetor parameter θ ∈ R

n. Here, weexlusively use the standard model (f. De�nition 4.3.14), i.e., we onsideronly the ase of an orthogonal MAC - the observation and hannel noise areiid - the hannel matrix Hi is diagonal for all i. Thus, we desribe the ithobservation noise ovariane matrix by Cni
= σ2

ni
I and the ith hannel noiseovariane matrix by Chi

= σ2
hi
I, where σ2

ni
> 0 and σ2

hi
> 0. The assumeddiagonal hannel matrix Hi, an thus be written as

(H)k,l =

{
hl l = k

0 k 6= l
for 1 ≤ k ≤ pi and 1 ≤ l ≤ qi. (4.148)So far, we have already solved the basi optimization problem (P-I) w.r.t.

Cli , where the resulting optimum is given by C∗
li
= 0 (for all i) (f. Se-tion 4.1). We thus onsider the optimization problem (P-II) to determine thestill unknown sensor matrix Ai (for all i) φ-optimally. Let us �rst rewritethe FIMs Jzi

from (3.5) and Jz from (3.8) aording to the standard modelas
Jzi

= GT
i A

T
i H

T
i

(
σ2
hi
I+ σ2

ni
HiAiA

T
i H

T
i

)−1
HiAiGi (4.149)and

Jz =
L∑

i=1

GT
i A

T
i H

T
i

(
σ2
hi
I+ σ2

ni
HiAiA

T
i H

T
i

)−1
HiAiGi. (4.150)With these assumptions, we onsider further problem (P-II), where Jz isnow given in (4.150). In Setion 4.2, we have showed that for an orthogonalMAC and when the optimality riterion funtion φ is linear, we an solve anequivalent problem (P-III) in order to obtain the φ-optimal Ai for a spei�sensor i. In what follows, we are interested on a T- and A-optimal designfor a loal sensor i.



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 734.5.1 T�Optimal DesignLet us �rst onsider the T�optimality riterion φ1, de�ned in (3.41). A T�optimal designed loal sensor rule LO∗
i φ1

maximizes the trae of the FIM Jz,while respeting the onstraint (C1) or (C2), respetively. Sine, the traeand thus φ1 is a linear funtion on NND (n) (f. (3.42)), we an equivalentlysolve (P-III), where Jzi
is now given in (4.149), in order to determine theT�optimal loal sensor matrix Ai for sensor i. Thus, we onsider a single-sensor model, sine all L sensors an be determined independently of eahother optimally. In partiular, we treat only the ase with onstraint (C2).In the following, we let the index notation to address the ith sensor away,i.e., we set Gi = G, Ai = A, Hi = H, Cni

= Cn, Chi
, P0,i = P0, P ′

0,i = P ′
0,

pi = p, qi = q, mi = m. Hene, we an state the following optimizationproblem:maximize
A∈Rq×m

φ1 {A} =
1

n
tr{GTATHT

(
σ2
hI+ σ2

nHAATHT
)−1

HAG
}subjet to tr {AAT

}
≤ P ′

0/σ
2
n, (C2) (4.151)where we introdued the notation φ1 {Ai} = φ1 {Jzi

}. In what follows, wesolve (4.151) for ertain speial ases, where we make assumptions on thehannel matrix H. First, we assume an orthogonal hannel matrix. Thenwe generalized it to a retangular hannel matrix, where we suppose fullolumn-rank.4.5.1.1 Orthogonal ChannelHere we assume that the hannel matrix H is orthogonal (unitary), i.e.,
HTH = HHT = I. Implying that H is a squared matrix, i.e., p = q.Lemma 4.5.20 Any unitary matrix U has singular values equal to one.Proof. Cf. [16, Theorem 6.2, p. 173℄Sine, we assumed that the hannel matrix H is diagonal (standardmodel), we onlude aording to Lemma 4.5.20 that the diagonal elements
hl (f. (4.148)) are given by hl = 1 for 1 ≤ l ≤ q, whih in turn yields that
H = I. Thus, the objetive funtion φ1 (·) in (4.151), an be equivalently
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φ1 {A} =

1

n
tr{GTATHT

(
σ2
hI+ σ2

nHAATHT
)−1

HAG
}

H=I
=

1

n
tr{GTAT

(
σ2
hI+ σ2

nAAT
)−1

AG
}

=
1

n

1

σ2
n

tr{GTAT

(
σ2
h

σ2
n

I+AAT

)−1

AG

}

(a)
=

1

n

1

σ2
n

tr{GTVΣTUT

(
σ2
h

σ2
n

I+UΣVTVΣTUT

)−1

UΣVTG

}

=
1

n

1

σ2
n

tr{GTVΣTUTU

(
σ2
h

σ2
n

I+ΣΣT

)−1

UTUΣVTG

}

=
1

n

1

σ2
n

tr{GTVΣT

(
σ2
h

σ2
n

I+ΣΣT

)−1

ΣVTG

}

(b)
=

1

n

1

σ2
n

tr {GTVDVTG
}
, (4.152)In step (a) we performed the SVD A = UΣVT , with unitary matries

U ∈ R
q×q, V ∈ R

m×m and the retangular diagonal matrix Σ of size q×m,whih ontains the singular values σj for 1 ≤ j ≤ w , min {q,m} of Aon the main diagonal. We assume that the singular values σj are ordereddereasingly (in terms of magnitude), i.e., |σ1| ≥ |σ2| ≥ · · · ≥ |σw| ≥ 0. Instep (b) we introdued the diagonal matrix
D , ΣT

(
σ2
h

σ2
n

I+ΣΣT

)−1

Σ, (4.153)whih is indeed squared and diagonal of size m×m. The m elements on themain diagonal are thus given by
dj , (D)j,j =





σ2
j

σ2
h

σ2
n
+σ2

j

1 ≤ j ≤ w

0 w < j ≤ m.

(4.154)As an be veri�ed easily, the diagonal elements dj are ordered dereasingly,i.e., d1 ≥ d2 ≥ ... ≥ dm ≥ 0, as a result of the adoption order on the set
{|σj|}wj=1.The onstraint (C2) in (4.151), an also be written in terms of SVD
A = UΣVT astr {AAT

}
= tr {UΣVTVΣTUT

}

= tr {UTUΣΣT
}

= tr {ΣΣT
}
≤ P ′

0/σ
2
n, (C2) (4.155)



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 75where we used again the yli property of the trae operator [8℄ and thefats that VTV = I and UTU = I.With the derivations in (4.152) (exluding onstants, f. p. 59 ftn. 1) and(4.155), the optimization problem (4.151) an thus be reformulated equiva-lently in terms of SVD A = UΣVT asmaximize
Σ,V

tr {GTVDVTG
}subjet to tr {ΣΣT

}
≤ P ′

0/σ
2
n,

ΣΣT ≥ 0

VVT = VTV = I.

(4.156)Note that problem (4.156), does not depend on the hannel matrix H as aonsequene that H is assumed to be unitary. Furthermore, problem (4.156)does not dependend on the unitary U - the left singular vetors of the sensormatrix A - so that an arbitrary orthogonal (unitary) U an be hosen, e.g.,
U = I.In what follows, we will solve (4.156) sequentially, by determining �rstthe optimum V and then the optimum Σ. A neessary ondition for V tobe optimum in (4.156), an be obtained by �xing Σ. For a �xed Σ′, theoptimal V has to solve the problemmaximize

V

tr {GTVD′VTG
}subjet to tr{Σ′Σ′T

}
≤ P ′

0/σ
2
n

Σ′Σ′T ≥ 0

VVT = VTV = I,

(4.157)where D′ is obtained from (4.153) by inserting Σ′ for Σ. A V is optimumfor (4.158) if and only if it is optimum formaximize
V

tr {VD′VTGGT
}subjet to VTV = VTV = I,

(4.158)as an be veri�ed easily, where we used againtr {GTVD′VTG
}
= tr{VD′VTGGT

}
.Let us denote the EVD of GGT by GGT = UgΛgU

T
g , with the unitarymatrix Ug ∈ R

m×m (ontains the eingenvetors of GGT ) and the diagonalmatrix Λg of size m×m, whih ontains the positive eigenvalues λgj for 1 ≤
j ≤ m of GGT on the main diagonal. We assume that the eigenvalues λgjare ordered dereasingly, i.e., λg1 ≥ λg2 ≥ · · · ≥ λgm ≥ 0, sine the diagonal



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 76values of D are olso sorted dereasingly. Then, we have by Theorem 4.4.19that the optimal V, solving (4.158), is given by
V∗ = Ug, (4.159)where the olumn vetors of Ug orrespond to the eigenvetors of GGT ,sorted dereasingly1.After having determined the optimal V for (4.156), it remains to deter-mine the optimal Σ for (4.156). To that end, we insert the optimal V from(4.159) into (4.156), yielding:maximize

Σ

tr {ΛgD}subjet to tr {ΣΣT
}
≤ P ′

0/σ
2
n,

ΣΣT ≥ 0,

(4.160)whih has to be solved for the optimal Σ, whih then yields together with
V∗ the solution for (4.156). Let us introdue the vetor notation s =

(s1, s2, . . . , sw)
T

,
(
σ2
1 , σ

2
2 , . . . , σ

2
w

)T ∈ R
+w, i.e., s � 0. Then, we anreformulate the optimization problem (4.156) equivalently in standard form[15℄ asminimize

s
−

w∑

j=1

λ′
gj

sj
σ2
h

σ2
n
+ sjsubjet to 1T s− P ′

0 ≤ 0,

− s � 0,

(4.161)where
λ′
gj ,

{
λgj 1 ≤ j ≤ m

0 m < i ≤ w.
(4.162)The optimization problem (4.161) is equivalent to problem (A.1) in Ap-pendix A for xk = sj , c(1)k = λ′

gj , c(2)k =
σ2
h

σ2
n
, c(3)k = 1, K = w, P = P ′

0.The resulting optimum s∗j for 1 ≤ j ≤ w, an be obtained by a so alled"water-�lling" proedure and an be expressed as
s∗j = max0,

√
σ2
h

σ2
n

λ′
gj

ν∗
− σ2

h

σ2
n



 (4.163)and

w∑

j=1

max0,

√
σ2
h

σ2
n

λ′
gj

ν∗
− σ2

h

σ2
n



 = P ′

0. (4.164)1The eigenvetors of a symmetri matrix are sorted dereasingly/inreasingly if theorresponding eingenvalues are sorted dereasingly/inreasingly



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 77The optimal sj for 1 ≤ j ≤ w for (4.161) an not be omputed in losed-form. However, we an determine the optimal ν, �rst numerially, aordingto (4.164). Subsequently, we an ompute the optimal sj for 1 ≤ j ≤ wusing (4.163). This an be done by a so alled "water-�lling" algorithm (f.Algorithm A.1). With the optimal sj for (4.161), we an �nally ompute theoptimal singular values σj of A with σ∗
j =

√
s∗j for 1 ≤ j ≤ w, whih arethen arranged on the main diagonal of the optimal Σ in dereasing order.After having determined the optimal V and Σ for (4.156), we are nowable to ompute the optimal loal sensor matrix A with U = I as

A∗ = Σ∗V∗T (4.159)
= Σ∗Ug. (4.165)Note again: the optimal Σ an not be expressed in losed-form - it has to bedetermined numerially ("water-�lling" proedure); the unitary matrix Ugontains the eigenvetors of GGT , sorted dereasingly.Conlusions Let us return to our original index notation that indiates the

ith sensor and reall that C∗
li
= 0 for sensor i. For an orthogonal MAC with

L loal sensors, the T-optimal ith LO - for the standard model - onsideringonstraint (C2) - assuming an unitary hannel matrix Hi - is given byLO∗
i φ1

: (
A∗

i = Σ∗
iUgi , C∗

li = 0
)
, (4.166)where the unitary matrix Ugi ontains the eigenvetors of GiG

T
i sorted de-reasingly, the diagonal Σ∗

i has to be determined in a "water-�lling" priniplein order to balane hannel noise and sensor observation states of sensor i.4.5.1.2 Invertible ChannelStill onsidering problem (4.151), we now allow for a general invertible han-nel matrix H, i.e., it exist H−1. That implies hl 6= 0 for 1 ≤ l ≤ q = p (f.(4.148)).Introduing
Ã , HA, (4.167)the objetive funtion φ1 (·) in (4.151), an then be equivalently reformulated
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φ1 (A) = tr{GTATHT

(
σ2
hI+ σ2

nHAATHT
)−1

HAG
}

=
1

σ2
n

tr{GT ÃT

(
σ2
h

σ2
n

I+ ÃÃT

)−1

ÃG

}

(a)
=

1

σ2
n

tr{GTVΣTUT

(
σ2
h

σ2
n

I+UΣVTVΣTUT

)−1

UΣVTG

}

=
1

σ2
n

tr{GTVΣTUTU

(
σ2
h

σ2
n

I+ΣΣT

)−1

UTUΣVTG

}

=
1

σ2
n

tr{GTVΣT

(
σ2
h

σ2
n

I+ΣΣT

)−1

ΣVTG

}

(b)
=

1

σ2
n

tr {GTVDVTG
}
. (4.168)In step (a) we performed the SVD Ã = UΣVT , with unitary matries

U ∈ R
p×p, V ∈ R

m×m and the retangular diagonal matrix Σ of size p×m,whih ontains the singular values σj for 1 ≤ j ≤ w , min {p,m} of Ã onthe main diagonal. We assume again that the singular values σj are ordereddereasingly (in terms of magnitude), i.e., |σ1| ≥ |σ2| ≥ · · · ≥ |σw| ≥ 0. Instep (b) we introdued the diagonal matrix
D , ΣT

(
σ2
h

σ2
n

I+ΣΣT

)−1

Σ, (4.169)whih is indeed squared and diagonal of size m×m. The m elements on themain diagonal are thus given by
dj , (D)j,j =





σ2
j

σ2
h

σ2
n
+σ2

j

1 ≤ j ≤ w

0 w < j ≤ m,

(4.170)As an be veri�ed easily, the diagonal elements dj are ordered dereasingly,i.e., d1 ≥ d2 ≥ ... ≥ dm ≥ 0, as a result of the adoption order on the set
{|σj|}wj=1.Consider the shorthand Ã from (4.167). Sine we assumed that H isinvertible, we an uniquely relaim A from Ã with A = H−1Ã. The on-straint (C2) in (4.151), an thus be equivalently written in terms of SVD
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Ã = UΣVT astr {AAT

}
= tr{H−1ÃÃT

(
H−1

)T}

= tr{ÃÃT
(
H−1

)T
H−1

}

= tr{UΣVTVΣTUT
(
HHT

)−1
}

= tr{UΣΣTUT
(
HHT

)−1
}
≤ P ′

0

σ2
n

, (C2) (4.171)
where we used again the yli property of the trae operator, the fat that
VTV = I and (H−1

)T
H−1 =

(
HT
)−1

H−1 =
(
HHT

)−1.With the derivations in (4.168) (exluding onstants, f. p. 59 ftn. 1) and(4.171), the optimization problem (4.151) an thus be reformulated equiva-lently in terms of SVD Ã = UΣVT asmaximize
U,Σ,V

tr {GTVDVTG
}subjet to tr{UΣΣTUT
(
HHT

)−1
}
≤ P ′

0

σ2
n

,

ΣΣT � 0,

UUT = UTU = I,

VVT = VTV = I.

(4.172)
Note that the the unitary matrixU, the left singular vetors of Ã, now entersthe onstraint in (4.172) and thus has to be hosen optimally for (4.172).In what follows, we will solve (4.172) sequentially, by determining �rstthe optimal V and then the optimal U. A neessary ondition for V to beoptimum in (4.172), an be obtained by �xing U and Σ. For a �xed U′ and
Σ′, the optimal V has to solve the problemmaximize

V

tr {GTVD′VTG
}subjet to tr{U′Σ′Σ′TU′T
(
HHT

)−1
}
≤ P ′

0

σ2
n

,

Σ′Σ′T � 0,

U′U′T = U′TU′ = I,

VVT = VTV = I,

(4.173)
where D′ is obtained from (4.169), by inserting Σ′ for Σ. A V is optimumfor (4.173), if and only if it is optimum formaximize

V

tr {VD′VTGGT
}subjet to VVT = VTV = I,

(4.174)



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 80as an be veri�ed easily, where we used againtr {GTVD′VTG
}
= tr{VD′VTGGT

}
.Note that problem (4.174) is exatly the same as (4.158), whih we havealready solved. Thus, optimal V for problem (4.174) is given by

V∗ = Ug, (4.175)where the olumn vetors of Ug orrespond to the eigenvetors of GGT ,sorted dereasingly, i.e., the EVD GGT = UgΛgU
T
g , where we assume thatthe eigenvalues λgj for 1 ≤ j ≤ m of GGT are ordered dereasingly alongthe main diagonal in Λg.After having determined the optimal V for (4.172), we will now hara-terize the optimal U for (4.172). To that end, we insert the optimal V from(4.175) into (4.172), yielding:maximize

U,Σ
tr {ΛgD}subjet to tr{UΣΣTUT

(
HHT

)−1
}
≤ P ′

0

σ2
n

ΣΣT � 0

UUT = UTU = I.

(4.176)
If U∗ is optimal for (4.176), then it is also optimal for (4.172), as an beveri�ed easily. Invoking problem (4.124), we note that it has exatly thesame onstraint funtions and a fairly similar objetive. Where we haveshowed that the optimal U is determined by minimization of the onstraintfuntion

t (U,Σ) , tr{UΣΣTUT
(
HHT

)−1
}
.We an losely follow the approah and reognize that this also applies to(4.176). Thus, we an determine the optimal U by solvingminimize

U

tr{UΣ′Σ′TUT
(
HHT

)−1
}subjet to UUT = UTU = I,

(4.177)i.e., the optimal U will be a minimizer of the onstraint funtion t (U,Σ),for the spei� hoie of Σ = Σ′. An appliation of Theorem 4.4.19 reveals,that the optimal U is given by the eigenvetors of (HHT
)−1 or HHT , re-spetively, in the order of inreasing eigenvalues of (HHT
)−1, or, dereasingeigenvalues ofHHT . However, sineHHT and in turn (HHT
)−1 is diagonal,the eigenvetors are given by the unit vetors {ek}pk=1. Moreover, sine theeigenvalues of (HHT

)−1 are the squared reiproals of the diagonal values
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hj 6= 0 for 1 ≤ j ≤ p, we have that the kth olumn of U∗ is given by ejk ,where jk is the index of the kth largest main diagonal entry hjk (in termsof magnitude). Howerver, we have assumed that the diagonal entries are indereasing order in terms of magnitude w.l.o.g. Thus, the optimal U is givenby

U∗ = I, (4.178)So far, we have determined the optimal U and V for (4.172). It remainsto determine the optimal singular values σj for 1 ≤ j ≤ w. Inserting theoptimal hoies U∗ and V∗ in (4.172), yielding:maximize
Σ

tr {ΛgD}subjet to tr {ΣΣTΛ−1
h

}
≤ P ′

0/σ
2
n,

ΣΣT ≥ 0,

(4.179)Let us aept the notation s =
(
s1, s2, . . . , sw

)T
,
(
σ2
1 , σ

2
2 , . . . , σ

2
w

)T ∈
R
+w as for the last ase, where we onsidered an orthogonal hannel matrix,in turn: s � 0. Further, we introdue the vetor b =

(
h−2
1 , h−2

2 , . . . , h−2
w

)Tand
λ′
gj ,

{
λgj 1 ≤ j ≤ m

0 m < i ≤ w.
(4.180)Then, we an reformulate (4.179) equivalently into standard form [15℄ asminimize

s
−

w∑

j=1

λ′
gj

sj
σ2
h

σ2
n
+ sjsubjet to bT s− P ′

0 ≤ 0,

− s � 0,

(4.181)The only di�erene to problem (4.161) is that the one vetor 1 is now re-plaed by the vetor b in the onstraint funtion. However, we an reformu-late (4.181), by using saled variables s′i , bisi = sih
−2
i into an equivalentproblemminimize

s′
−

w∑

j=1

λ2
gj

s′j
σ2
h

h2
jσ

2
n
+ s′jsubjet to 1T s′ − P ′

0 ≤ 0,

− s′ � 0,

(4.182)of whih we already know the solution for the optimal s′. The resultingoptimum s′j
∗ for 1 ≤ j ≤ w for (4.182), an be obtained by a so alled "water-�lling" proedure aording to (4.163) and (4.164). Thus, with s∗i = h2i s

′
i
∗,
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∗ for 1 ≤ j ≤ w for (4.181) as

s∗j = max0, hj

√
σ2
h

σ2
n

σ2
gj

ν∗
− σ2

h

σ2
n



 (4.183)and

w∑

j=1

max{0,√ σ2
h

σ2
nh

2
j

σ2
gj

ν∗
− σ2

h

σ2
nh

2
j

}
= P ′

0, (4.184)respetively. Aording to the "water-�lling" algorithm (f. Algorithm A.1),we an ompute the optimal singular values of Ã numerially. We an �nallyompute the optimal singular values σj of A with σ∗
j =

√
s∗j for 1 ≤ j ≤ w,whih are then arranged on the main diagonal of the optimal Σ in dereasingorder.So far, we have determined the optimum U, V and Σ for (4.172) andthus Ã∗ = U∗Σ∗V∗T . Now, we are able to ompute the optimal loal sensormatrix A for (4.151) as

A∗ = H−1U∗Σ∗V∗T (a)
= H−1Σ∗Ug. (4.185)where in step (a) we inserted the optimal hoies U∗ from (4.178) and V∗from (4.175). The hannel matrix H−1 is diagonal and ontains their diag-onal entries in dereasing order (in terms of magnitude). The unitary Ugontains the eigenvetors of GGT in dereasing order and the diagona Σ∗ontains the optimal singular values of Ã, whih has to be determined in a"water-�lling" like manner (f. (4.183) and (4.184)).Conlusions Let us again return to our original index notation that indi-ates the ith sensor and reall that C∗

li
= 0 for sensor i. For an orthogonalMAC with L loal sensors, the T-optimal ith LO - for the standard model -onsidering onstraint (C2) - assuming an invertible hannel matrix Hi - isgiven byLO∗

i φ1
: (

A∗
i = H−1

i Σ∗
iUgi , C∗

li = 0
)
, (4.186)where the unitary matrix Ugi ontains the eigenvetors of GiG

T
i sorteddereasingly, the hannel matrix Hi is assumed to be diagonal in dereasingorder without loss, the diagonal Σ∗

i has to be determined in a "water-�lling"priniple in order to balane hannel and sensor observation states and noiseof sensor i.



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 834.5.2 A�Optimal DesignWe now onsider the A�optimality riterion φ−1, de�ned in (3.39). Notethat the A�optimality riterion φ−1 is not linear. Thus, we annot solvethe indidual sensor rules independendly, when we onsider an orthogonalMAC. Throughout this thesis, we only onsider a single sensor setup, i.e.,when L = 1. For this speial ase, we no longer speak about multiple aessshemes. Again, we let the subsript notation away and aept the samenotation as for the T�optimal design. Aording to (3.40), an A�optimaldesigned loal sensor rule LO∗
φ−1 minimizes the trae of the inverse FIM

Jz
−1, whih is indeed the CRLB, while respeting the onstraint (C1) or(C2), respetively. Therefore, we introdue φ̃−1 {Jz} , 1/

(
1
nφ−1 (Jz)

) andonsider the following optimization problem:minimize
A∈Rq×m

φ̃−1 (A) = tr{(GTATHT
(
σ2
hI+ σ2

nHAATHT
)−1

HAG
)−1

}subjet to { tr {AMAT
}
≤ P0/σ

2
n (C1) ortr {AAT

}
≤ P ′

0/σ
2
n, (C2) (4.187)where M is given in (3.28). Note that the A�optimality riterion only appliesfor a non-singular FIM as an be easily seen. Thus we study the A�optimaldesign for the ase of a positiv de�nit FIM Jz. The onditions on H, G and

A an be obtained from (3.23), i.e., H, G and A must has at least rank n.4.5.2.1 Invertible System MatriesLet us �rst assume that the observation matrix G, the loal sensor matrix
A and the hannel matrix H are all invertable. Thus, we onsider squaredmatries, where n = m = q = p. In partiular, that implies hi 6= 0 for 1 ≤
i ≤ p (f. (4.148)), sine H is required to be invertible. In what follows, weassume that the diagonal entries hl for all l are ordered dereasingly in termsof magnitude w.l.o.g. (f. Setion 4.3), i.e., |h1| ≥ |h2| ≥ · · · ≥ |hn| > 0.The objetive φ̃−1 (A) of (4.187) an equivalently reformulated as
φ̃−1 (A) = tr{(GTATHT

(
σ2
hI+ σ2

nHAATHT
)−1

HAG
)−1

}

= tr{G−1A−1H−1
(
σ2
hI+ σ2

nHAATHT
)
H−TA−TG−T

}

= σ2
htr{(GGT

)−1
A−1H−1H−TA−T

}
+

σ2
ntr{(GGT

)−1
A−1H−1HAATHTH−TA−T

}

= σ2
htr{(GGT

)−1
A−1

(
HTH

)−1
A−T

}
+

σ2
ntr{(GGT

)−1
}
,

(4.188)



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 84where we used again the yli property of the trae operator. The seondterm of the last equation in (4.188) is onstant (i.e., it does not depend on
A) and an thus be negleted for solving (4.187). By neleting also theremaining onstant fators, we an reformulate problem (4.187) equivalentlyas minimize

A

tr{(GGT
)−1

A−1
(
HTH

)−1
A−T

}subjet to { tr{AMAT
}
≤ P0 (C1)tr{AAT

}
≤ P ′

0/σ
2
n. (C2) (4.189)We �rst solve (4.189) for onstraint (C1). The solution for onstraint(C2) an then be obtained, by setting M = σ2

nI and P0 = P ′
0, respetively.First, we introdue the matrix

Ã , HAM1/2, (4.190)where M, given in (3.28), is positive de�nite and thus also invertible for all
θ, sine we assumed the standard model, in whih σ2

nI > 0. Note that sinewe assumed H to be invertible, we an uniquely relaim the sensor matrix
A from (4.190) by A = H−1ÃM−1/2. Inserting A = H−1ÃM−1/2 into theobjetive funtion of (4.189) yieldstr{M1/2

(
GGT

)−1
M1/2Ã−1H

(
HTH

)−1
HT Ã−T

}

= tr{(G̃G̃T
)−1 (

ÃT Ã
)−1

}
,where we introdued G̃ , M−1/2G, and into the onstraint funtion (C1)in (4.189) yieldstr {AMAT

}
= tr{H−1ÃM−1/2MM−1/2ÃTH−T

}

= tr{(HHT
)−1

ÃÃT
}
,sine M is symmetri and positive de�nite, i.e., it holds M = M1/2M1/2.We an equivalently reformulate problem (4.189), for onstraint (C1) asminimize

Ã

tr{(G̃G̃T
)−1 (

ÃT Ã
)−1

}subjet to tr{(HHT
)−1

ÃÃT
}
≤ P0, (C1) (4.191)whih now has to be solved with respet to Ã. Using the SVD Ã = UΣVT ,where we assume that the singular values σi for 1 ≤ i ≤ n of Ã are or-dered dereasingly (in terms of magnitude) on the main diagonal of Σ, i.e.,
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|σ1| ≥ |σ2| ≥ · · · ≥ |σn| > 0. Both unitary matries U and V, ontain theorresponding left- and right singular vetors of Ã, respetively. Problem(4.191) an then be written in terms of SVD Ã = UΣVT asminimize

U,Σ,V
tr{(G̃G̃T

)−1
VΣ−2VT

}subjet to tr{(HHT
)−1

UΣ2UT
}
≤ P0, (C1)

Σ2 ≥ 0,

UUT = UTU = I,

VVT = VTV = I.

(4.192)
In what follows, we will solve (4.192) sequentially, by determining �rst theoptimal V and then the optimal U. A neessary ondition for V to beoptimum in (4.192) an be obtained by �xing U and Σ. For a �xed U′ and
Σ′, the optimum V has to solve the problemminimize

V

tr{(G̃G̃T
)−1

VΣ′−2
VT

}subjet to tr{(HHT
)−1

U′Σ′2U′T
}
≤ P0, (C1)

Σ′2 ≥ 0,

U′U′T = U′TU′ = I,

VVT = VTV = I,

(4.193)
A V is optimum for (4.193) if and only if it is optimum forminimize

V

tr{(G̃G̃T
)−1

VΣ′−2
VT

}subjet to VVT = VTV = I.

(4.194)Aording to Theorem 4.4.19, the optimal V, solving (4.194) is given by thematrix Ug̃, ontaining the eigenvetors of G̃G̃T , sorted inreasingly. So,the EVD G̃G̃T = Ug̃Λg̃U
T
g̃ , where the eigenvalues λg̃i for 1 ≤ i ≤ n of

G̃G̃T are ordered inreasingly along the main diagonal in Λg̃. Note that(
G̃G̃T

)−1
= Ug̃Λ

−1
g̃ UT

g̃ and thus the eigenvalues of (G̃G̃T
)−1 are nowordered dereasingly along the main diagonal of Λ−1

g̃ , due to the inverseoperation. Thus, the optimalV for problem (4.194) and thus also for (4.192),is given by
V∗ = Ug̃, (4.195)where the olumn vetors of Ug̃ orrespond to the eigenvetors of G̃G̃T ,sorted inreasingly.



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 86After having determined the optimal V for (4.192), we will now hara-terize the optimum U for (4.192). To this end, we insert the optimal V into(4.192), yielding:minimize
U,Σ

tr{Λ−1
g̃ Σ−2

}subjet to tr{(HHT
)−1

UΣ2UT
}
≤ P0, (C1)

Σ2 ≥ 0,

UUT = UTU = I.

(4.196)If U∗ is optimal for (4.196), then it is also optimal for (4.192), as an beveri�ed easily.Invoking problem (4.124), we note that it has the same onstraint fun-tion (more spei�ally, the pseudo-inverse speializes now to the matrix in-verse) and a fairly similar objetive. Where we have showed that the optimal
U is determined by minimization of the onstraint funtion

t (U,Σ) , tr{UΣΣTUT
(
HHT

)−1
}
.We an losely follow the approah and reognize that this also applies to(4.196). Thus, we an determine the optimal U by solvingminimize

U

tr{(HHT
)−1

UΣ′2UT
}subjet to UUT = UTU = I,

(4.197)i.e., the optimal U will be a minimizer of the onstraint funtion t (U,Σ),for the spei� hoie of Σ = Σ′. An appliation of Theorem 4.4.19 reveals,that the optimal U is given by the eigenvetors of (HHT
)−1 or HHT , re-spetively, in the order of inreasing eigenvalues of (HHT
)−1, or, dereasingeigenvalues ofHHT . However, sineHHT and in turn (HHT
)−1 is diagonal,the eigenvetors are given by the unit vetors {ek}nk=1. Moreover, sine theeigenvalues of (HHT

)−1 are the squared reiproals of the diagonal values
hj 6= 0, we have that the kth olumn of U∗ is given by ejk , where jk is theindex of the kth largest main diagonal entry hjk . Sine, we assumed thatthe diagonal entries of H are in dereasing order (in terms of magnitude),the optimal U is given by

U∗ = I, (4.198)So far, we have determined the optimum U and V for (4.192). It remainsto determine the optimal singular values σi for i = 1, . . . , n. Inserting theoptimal hoies U∗ and V∗ into (4.192), yields to the optimization problem
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s

f (s) ,

n∑

i=1

1

λg̃isisubjet to g1 (s) , bT s− P0 ≤ 0

g2 (s) , −s ≺ 0,

(4.199)with the new introdued objetive funtion f (s), where the vetor s, ontainsthe squared singular values of Ã, i.e., s = (s1, s2, . . . , sn)T ,
(
σ2
1 , σ

2
2 , . . . , σ

2
n

)T ∈
R
+n, i.e., s � 0. The new introdued vetor b in (4.199) ontains the re-iproals of the squared diagonal entries of H, i.e., b ,

(
h−2
1 , h−2

2 , . . . , h−2
n

),sine H is assumed to be diagonal in dereasing order. Note that λg̃i > 0and h2i > 0 for all i, due to our assumption that G, H and in turn G̃ areinvertible.We �rst verify, that (4.199) is a onvex optimization problem. We anwrite the objetive f (s) of problem (4.199) as
f (s) =

n∑

i=1

fi (si) , (4.200)with fi (si) ,
1

λg̃i
si
. The �rst two derivatives of fi (si) are given by

f ′
i (si) ,

∂

∂si
f (si) = − 1

λg̃is
2
i

(4.201)and
f ′′
i (si) ,

∂2

∂s2i
f (si) = 2

1

λg̃is
3
i

> 0, (4.202)and therefore fi (si) is onvex. Sine by (4.200), the objetive is a sum ofonvex funtions [15℄, we onlude f (s) is onvex. The onvexity of theonstraint funtions g1 and g2 are obvious, sine both are linear in s. Hene,problem (4.199) is a onvex optimization problem [15℄.The Karush�Kuhn�Tuker (KKT) onditions (f. [15℄) for a solution s∗to the optimization problem (4.199) and orresponding Lagrange multipliers(f. [15, p.244℄), i.e., ν∗ for the inequality onstraint g1 (s) ≤ 0 and λ∗ ∈ R
n



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 88for the inequality onstraint g2 (s) ≺ 0, are given as
bT s∗ − P0 ≤ 0

s∗ ≻ 0

ν∗ ≥ 0

λ∗ = 0

ν∗
(
bT s∗ − P0

)
= 0

λ∗
i s

∗
i = 0, i = 1, 2, . . . , n

− 1

λg̃is
∗
i
2 + ν∗ − λ∗

i = 0, i = 1, 2, . . . , n.

(4.203)
Combining the 4th and the last ondition of (4.203), i.e., with λ∗

i = 0 for all
i = 1, . . . , n, yields

ν∗ =
1

λg̃is
∗
i
2 > 0 ⇒ s∗i =

+

√
1

λg̃iν
∗
> 0 for i = 1, . . . , nand by the 5th ondition of (4.203), i.e., bT s∗ = P0, sine ν∗ 6= 0, we obtain

ν∗ =

(∑n
i=1

1
h2
i

+
√

λg̃i

)2

P 2
0

.Therefore,
s∗i =

P0∑n
j=1

1

h2
j

+
√

λg̃j

+

√
1

λg̃i

for i = 1, . . . , n (4.204)and �nally, we obtain the optimum singular values of Ã with (Σ∗)i,i = σ∗
i =√

s∗i , i.e., the optimal Σ an be omputed in losed-form with
c∗(C1) ,√√√√ P0∑n

j=1
1

h2
j

+
√

λg̃j

, (4.205)as
Σ∗ = c∗(C1)Λ−1/4

g̃ . (4.206)So far, we have determined the optimum U, V and Σ for (4.192) andthus optimum Ã for (4.191), i.e., Ã∗ = U∗Σ∗V∗T . The unitary matrix
U∗ = I (f. (4.198)), sine the diagonal H is assumed to be in dereasingorder. The unitary matrix V∗ = Ug̃ (f. (4.195)), where Ug̃ ontains theeigenvetors of G̃G̃T , in inreasing order and Σ∗ = c∗(C1)Λ−1/4

g̃ (f. (4.206)),



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 89where the eigenvalues of G̃G̃T in Λg̃ are ordered inreasingly. From (4.190),we obtain the optimal A by
A∗ = H−1U∗Σ∗V∗TM−1/2 = c∗(C1)H−1Λ

−1/4
g̃ Ug̃

TM−1/2and in turn with the already known solution C∗
l = 0, the optimal LO∗

φ−1
=

(A∗, C∗
l ) is thus given byLO∗

φ−1
: (

A∗ = c∗(C1)H−1Λ
−1/4
g̃ Ug̃

TM−1/2, C∗
l = 0

)
φ−1for onstraint (C1), c∗(C1) is given in (4.205),EVD: G̃G̃T = Ug̃Λg̃U

T
g̃ ,where Λg̃, Ug̃ are sorted inreasingly,

H is sorted dereasingly. (4.207)
Let us reall M, given in (3.28), i.e., with Cn = σ2

nI it follows M =
GθθTGT + σ2

nI. Thus, the optimal LOφ−1 for onstraint (C1), dependson the parameter θ, whih is indeed unknown.Note that we have determined the optimal LO∗
φ−1

for the onstraint (C1).As already mentioned, we an determine the optimal LO∗
φ−1

for onstraint(C2), if we set M = σ2
nI, P0 = P ′

0 and onsequently G̃ = G in (4.207), i.e.,with
c∗(C2) ,√√√√ P ′

0/σ
2
n∑n

j=1
1

h2
j

+
√

λgj

, (4.208)as LO∗
φ−1

: (
A∗ = c∗(C2)H−1Λ−1/4

g Ug
T , C∗

l = 0
)
φ−1

,for onstraint (C2), c∗(C2) is given in (4.208),EVD: GGT = UgΛgU
T
g ,where Λg, Ug are sorted inreasingly,

H is sorted dereasingly. (4.209)
However, sine we have found a losed-form solution for the A-optimal

ith LO, we an still speify the resulting FIM J∗
z. To that end, we insert

A∗ from (4.207) into (4.149) (without the subsript notation) for A = A∗,
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J∗
z = GTATHT

(
σ2
hI+ σ2

nHAATHT
)−1

HAG

(a)
=

(
c∗

2(C1)G̃TUg̃Λ
−1/4
g̃

(
σ2
hI+ σ2

nc
∗2(C1)Λ−1/4

g̃ Ug̃
TM−1Ug̃Λ

−1/4
g̃

)−1
·

·Λ−1/4
g̃ Ug̃

T G̃
)

(b)
= Vg̃Σg̃Λ

−1/4
g̃

(
σ2
h

c∗
2(C1) I+ σ2

nΛ
−1/4
g̃ Ug̃

TM−1Ug̃Λ
−1/4
g̃

)−1

Λ
−1/4
g̃ Σg̃V

T
g̃ ,(4.210)where in step (a), we inserted A = A∗ from (4.207) and also G̃ = M−1/2G;in step (b), we performed the SVD G̃ = Ug̃Σg̃V

T
g̃ - sorted inreasingly interms of magnitude, aording to the EVD G̃G̃T = Ug̃Λg̃U

T
g̃ . Analog, wean still speify the resulting FIM J∗

z for onstraint (C2) with SVD G =
UgΣgV

T
g (sorted inreasingly):

J∗
z = VgΣgΛ

−1/4
g

(
σ2
h

c∗
2(C2) I+ σ2

nΛ
−1/4
g Λ−1/4

g

)−1

Λ−1/4
g ΣgV

T
g .

= VgΣgΛ
−1/2
g Σg

(
σ2
h

c∗
2(C2) I+ σ2

nΛ
−1/2
g

)−1

VT
g

(a)
= VgΛ

1/2
g

(
σ2
h

c∗
2(C2) I+ σ2

nΛ
−1/2
g

)−1

VT
g ,

(4.211)
where in step (a), we used the fat that Λg = Σ2

g.4.5.2.2 Full Column�Rank Channel MatrixWe now onsider only onstraint (C2). Note that we already assumed thatobservation-, hannel- and sensor matrix G, H and A has at least rank n(f. (3.23) in order to obtain a non-singular FIM Jz). In partiular, weassume that H is of full olumn-rank, implying p ≥ q and also hi 6= 0 for
1 ≤ i ≤ q (f. (4.148)). In what follows, we assume that the diagonal entries
hl for 1 ≤ l ≤ q are ordered inreasingly in terms of magnitude w.l.o.g. (f.Setion 4.3), i.e., 0 < |h1| ≤ |h2| ≤ · · · ≤ |hq|. Finally, we assume that thehannel input dimension is equal to the the parameter dimension, i.e., n = q.Again, we �rst substitude the loal sensor matrix A into the hannelmatrix H, i.e., we introdue

Ã , HA. (4.212)



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 91Performing the SVD Ã = UΣVT , where we again assume that the singularvalues σi for 1 ≤ i ≤ w , min {p,m} of Ã are ordered dereasingly on themain diagonal ofΣ (in terms of magnitude), i.e., |σ1| ≥ |σ2| ≥ · · · ≥ |σw| ≥ 0.Both unitary matries U and V, ontain the orresponding left- and rightsingular vetors of Ã, respetively. Invoking the derivation from (4.168). Wean fully aept the derivation of the FIM
Jz = GTATHT

(
σ2
hI+ σ2

nHAATHT
)−1

HAGin terms of SVD Ã = UΣVT , i.e.,
Jz = GTATHT

(
σ2
hI+ σ2

nHAATHT
)−1

HAG =
1

σ2
n

GTVDVTG,where D is given by
D , ΣT

(
σ2
hI+ σ2

nΣΣT
)−1

Σ, (4.213)whih is squared and diagonal of size m×m. The m elements on the maindiagonal are given by
di , (D)i,i =





σ2
i

σ2
h

σ2
n
+σ2

i

1 ≤ i ≤ w

0 else. (4.214)Hene, the objetive funtion φ̃−1 (A) of problem (4.187), an then beequivalently reformulated in terms of SVD Ã = UΣVT as
φ̃−1 (Σ,V) = σ2

ntr{(GTVDVTG
)−1
}

(a)
= σ2

ntr{Vg

(
ΣT

g U
T
g VDVTUgΣg

)−1
VT

g

}

= σ2
ntr{(ΣT

g U
T
g VDVTUgΣg

)−1
}
,

(4.215)where in step (a) we inserted the SVD G = UgΣgV
T
g . As an be seen, theunitary matrix Vg vanishes in (4.215), due to the yli properity of thetrae operator. Note that rank(Ã) = n, whih follows from our assumptionthat q = n and the onditions for a non-singular FIM Jz from (3.23). Thuswe an write (4.215) also in a partitioned form, with

UgΣg =
[
Ug,1 Ug,2

] [Σg,1

0

]
= Ug,1Σg,1,where Σg,1 is squared of size n×n, ontaining the n non-zero singular valuesof G and Ug,1 ontains the orresponding n left singular vetors (submatrixof the unitary matrix Ug), and with

VDVT =
[
V1 V2

] [D1 0

0 0

] [
VT

1

VT
2

]
= V1D1V

T
1
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φ̃−1 (Σ,V) = σ2

ntr{(Σg,1U
T
g,1V1D1V

T
1 Ug,1Σg,1

)−1
}

= σ2
ntr{Σ−2

g,1

(
UT

g,1V1

)−1
D−1

1

(
VT

1 Ug,1

)−1
}
.

(4.216)Note that the n olumn vetors of Ug,1 are also the n eigenvetors of GGT ,whih orresponds to the n non-zero eigenvalues of GGT , in partiular.The submatrix V1 of V, ontains the �rst n right singular vetors, whihorresponds to the n non-zero singular values of A, already assumed to beordered dereasingly. The diagonal D1 is the submatrix of D from (4.213),whih ontains the n non-zero diagonal entries di for 1 ≤ i ≤ n of D, indereasing order, as a onsequene of the order in Σ.We an rewrite the onstraint of (4.187) in terms of SVD Ã = UΣVT ,analog to (4.171), astr {AAT
}
= tr{UΣΣTUT

(
HHT

)†} ≤ P ′
0

σ2
n

, (4.217)where (HHT
)† denotes the pseudo inverse of HHT . In turn, the optimiza-tion problem (4.187) in terms of SVD Ã = UΣVT with (4.216) and (4.217)then yieldsminimize

U,Σ,V
tr{Σ−2

g,1

(
UT

g,1V1

)−1
D−1

1

(
VT

1 Ug,1

)−1
}subjet to tr{UΣΣTUT

(
HHT

)†} ≤ P ′
0

σ2
n

,

ΣΣT ≥ 0,

UUT = UTU = I,

VVT = VTV = I,

V =
[
V1 V2

]
,

(4.218)
where we neglet the onstant fator σ2

n of the objetive funtion in (4.215).In what follows, we will solve (4.218) sequentially, by determining �rst theoptimum V and then the optimum U.Theorem 4.5.21 Let A be a n×n real matrix with singular values σ1 (A) ≥
σ2 (A) · · · ≥ σn (A) and B be a (n− k)× (n− k) submatrix of A obtained bydeleting a total of k rows and olumns from A, with singular values σ1 (B) ≥
σ2 (B) · · · ≥ σn−k (B), then

σj (A) ≥ σj (B) ≥ σ′
j+k (A) for j = 1, . . . , n,where

σ′
j (A) =

{
σj (A) j ≤ n

0 else..



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 93Proof. Cf. [17, Corollary 3.1.3, p. 149℄.A neessary ondition for V to be optimum in (4.218) an be obtainedby �xing U and Σ. For a �xed U′ and Σ′, the optimum V has to solve theproblemminimize
V

tr{Σ−2
g,1

(
UT

g,1V1

)−1
D′

1
−1 (

VT
1 U

T
g,1

)−1
}subjet to tr{U′Σ′Σ′TU′T

(
HHT

)†} ≤ P ′
0

σ2
n

,

Σ′Σ′T ≥ 0,

U′U′T = U′TU′ = I,

VVT = VTV = I,

V =
[
V1 V2

]
,

(4.219)
where D′ and thus D′

1, are obtained from (4.213) by inserting Σ′ for Σ. A
V is optimum for (4.219), if and only if it is optimum forminimize

V

tr{Σ−2
g,1

(
UT

g,1V1

)−1
D′

1
−1 (

VT
1 U

T
g,1

)−1
}subjet to VVT = VTV = I,

V =
[
V1 V2

]
,

(4.220)Note that VT
1 V1 = I, but V1V

T
1 6= I. Let us introdue Z1 , UT

g,1V1 of size
n×n. It is easy to ver�y that Z1 is a submatrix of the unitary Z , UT

g V ofsizem×m (we assume n ≤ m). Performing the SVD Z1 = Uz1Σz1V
T
z1 , wherethe unitaries Uz1 and Vz1 ontain the left- and right singular vetors and thediagonal Σz1 ontains the singular values of Z1, on the main diagonal. Allsingular values of Z are equal to one aording to Lemma 4.5.20. InvokingTheorem 4.5.21, we thus onlude that

0 < σj (Z1) ≤ 1 for j = 1, . . . , n, (4.221)where σj (Z1) denotes the singular values of the submatrix Z1. Hene, theobjetive funtion of (4.220), an be bounded below bytr{Σ−2
g,1Z

−1
1 D′−1

1 Z−T
1

}
= tr{Σ−2

g,1Vz1Σ
−1
z1 U

T
z1D

′
1
−1

Uz1Σ
−1
z1 V

T
z1

}

(a)

≥ tr{Σ−2
g,1Vz1U

T
z1D

′
1
−1

Uz1Σ
−1
z1 V

T
z1

}

(b)

≥ tr{Σ−2
g,1Vz1U

T
z1D

′
1
−1

Uz1V
T
z1

}

= tr{(VT
z1Σ

−2
g,1Vz1

)(
UT

z1D
′
1
−1

Uz1

)}

(c)

≥ tr{Σ′−2
g,1 D

′
1
−1
}
= tr{Λ′−1

g,1 D
′
1
−1
}
,

(4.222)



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 94where in step (a) and (b), we used �rst the yli property of the trae-operator and seond the fat thattr {Σ−1
z1 X

}
=

n∑

j=1

σ−1
j (Z1) (X)j,j

(4.221)
≥

n∑

j=1

(X)j,j = tr {X} ,for all σj , whih satis�es (4.221) and for all X ∈ NND (n) and (X)j,j ≥ 0denotes the jth diagonal entry of X. Note that all diagonal entries of apositive semi-de�nite matrix are positive [9℄. The inequalities in (a) and(b) are satis�ed, sine it is evident that UT
z1D

′
1
−1

Uz1Σ
−1
z1 V

T
z1Σ

−2
g,1Vz1 > 0and VT

z1Σ
−2
g,1Vz1U

T
z1D

′
1
−1

Uz1 > 0. In step (), we applied Theorem 4.4.19,where Σ′
g,1 ontains the n non-zero singular values σgi in inreasing order(in terms of magnitude). Note that we already assumed that the singularvalues σ′
i of Ã and in turn d′i (elements in D′), are ordered dereasingly. Inthe last step, we introdued the diagonal matrix Λ′

g,1, whih in partiular,ontains the n non-zero eigenvalues of GGT , i.e, Λ′
g,1 is the n×n upper leftdiagonal submatrix of Λ′

g, whih follows from the EVD GGT = U′
gΛ

′
gU

′T
g ,where the eigenvalues are sorted inreasingly. In fat, the eigenvalues in Λ′
g,1are thus ordered inreasingly.Hene, the optimal V, solving (4.220), is given by V∗

1 = Ug,1, whihontains the �rst n eigenvetors ofGGT , i.e., the �rst n orthonromal olumnvetors of Ug, sorted inreasingly. The remaining m− n singular vetors in
V2 for ompletition the optimalV, an be hosen arbitrary in order to obtaina unitary V (orthonormal basis). Moreover, the optimal V for problem(4.218) is also given by

V∗ = Ug, (4.223)where the olumns of Ug orrespond to the eigenvetors of GGT , sortedinreasingly.After having determined the optimal V for (4.218), we will now hara-terize the optimal U for (4.218). To this end, we insert the optimum V in(4.218), yielding:maximize
U,Σ

tr{Λ−1
g,1D

−1
1

}subjet to tr{UΣΣTUT
(
HHT

)†} ≤ P ′
0

σ2
n

,

ΣΣT � 0,

UUT = UTU = I,

(4.224)
If U∗ is optimal for (4.224), then it is also optimal for (4.218), as an beveri�ed easily.



CHAPTER 4. OPTIMAL LOCAL SENSOR RULES 95De�nition 4.5.22 A row- and olumn-swapping permutation matrix or are�etion matrix is given by
Ξ ,




0 0 . . . 0 1
0 0 . . . 1 0
...

... . .
. ...

...
0 1 . . . 0 0
1 0 . . . 0 0




. (4.225)Invoking again problem (4.124), we note that it has exatly the sameonstraint funtion and a fairly similar objetive. Where we have showedthat the optimal U is determined by minimization of the onstraint funtion
t (U,Σ) , tr{UΣΣTUT

(
HHT

)†}
.We an losely follow the approah and reognize that this also applies to(4.224). Thus, we an determine the optimal U by solvingminimize

U

tr{UΣ′Σ′TUT
(
HHT

)†}subjet to UUT = UTU = I,
(4.226)i.e., the optimal U will be a minimizer of the onstraint funtion t (U,Σ),for the spei� hoie of Σ = Σ′. An appliation of Theorem 4.4.19 reveals,that the optimal U is given by the eigenvetors of (HHT

)† or HHT , re-spetively, in the order of inreasing eigenvalues of (HHT
)†, or, dereasingeigenvalues of HHT . However, sine HHT and in turn (HHT
)† is diagonal,the eigenvetors are given by the unit vetors {ek}pk=1. Moreover, sine theeigenvalues of (HHT

)† are the squared reiproals of the diagonal values
hj 6= 0, we have that the kth olumn of U∗ is given by ep−k+1 for 1 ≤ k ≤ p,sine we assumed that hj are ordered inreasingly in terms of magnitude.Thus, the optimal U is given by

U∗ = Ξ, (4.227)where Ξ is de�ned in (4.225).So far, we have determined the optimal U and V for (4.218). It remainsto determine the optimal Σ for (4.218). To that end, we insert the opti-mum hoies U∗ from (4.227) and V∗ from (4.223) into 4.218, yields to theoptimization problem in standard form [15℄ asminimize
s

n∑

i=1

1

λgisi
,subjet to b′T s− P ′
0 ≤ 0,

− s � 0,

(4.228)
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(
s1, s2, . . . , sn

)T
,
(
σ2
1 , σ

2
2 , . . . , σ

2
n

)T ∈ R
+n, i.e., s �

0. The vetor b in the onstraint funtion of (4.228) is de�ned as b′ ,(
h′1

−2, h′2
−2, . . . , h′n

−2)T , where
h′j ,

{
∞ 1 ≤ j ≤ p− q

hp−j+1 p− q < j ≤ p.
(4.229)Note that hi 6= 0 for 1 ≤ i ≤ n ≤ q and σj = 0 for n < j ≤ w, sine Ã hasrank n and thus s and b′ has dimension n (f. (4.228)). We reognize thatproblem (4.228) is equivalent to (4.199) for λg̃i = λgi , P0 = P ′

0 and b = b′.Hene, the optimal si of problem (4.228), is given by (4.204) for λg̃i = λgiand P0 = P ′
0. Therefore, we �nally obtain with

σ∗
i =

{√
s∗i for 1 ≤ i ≤ n

0 n < i ≤ w,the optimal Σ for (4.218) as
Σ∗ = c∗

[
Λ

−1/4
g,1 0

0 0

]
, (4.230)where

c∗ =

√√√√ P ′
0∑n

j=1
1

h′
j
2 +
√

λgj

. (4.231)So far, we have determined the optimum U, V and Σ for (4.218) and thusthe optimal Ã with Ã∗ = U∗Σ∗V∗T . The unitary matrix U∗ ontains theunit vetors {ei}pi=1, sineH is assumed to be diagonal. If we further assume,that the the diagonal H is in dereasing order (in terms of magnitude), then
U∗ = I. The unitary matrix V∗ = Ug (f. (4.223)), where Ug ontains theeigenvetors of GGT , in inreasing order and Σ∗ is given in (4.230), wherethe eigenvalues of GGT in Λg are ordered inreasingly.Finally, with (4.212) and the fat that H is of full olumn-rank, we obtainthe optimal loal sensor matrix A as

A∗ = H†U∗Σ∗V∗T = c∗H†

[
Λ

−1/4
g,1 0

0 0

]
UT

g ,and in turn with the already known solution C∗
l = 0, the optimal LO∗

φ−1
=
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(A∗, C∗

l ) is thus given byLO∗
φ−1

: (
A∗ = c∗H†

[
Λ

−1/4
g,1 0

0 0

]
UT

g , C∗
l = 0

)

φ−1for onstraint (C2), c∗ is given in (4.231),EVD: GGT = UgΛgU
T
g ,where Λg, Ug are sorted inreasingly,

Λg,1 is the n× n left upper submatrix of Λg,

H is sorted dereasingly. (4.232)
However, sine we have found a losed-form solution for the A-optimal

ith LO, we an still speify the resulting FIM J∗
z. To that end, we insert

A∗ from (4.232) into (4.149) (without the subsript notation) for A = A∗,yielding:
J∗
z =


VgΣ

T
g

[
Λ

−1/4
g,1 0

0 0

]
 σ2

h

c∗2
I+ σ2

n

[
Λ

−1/4
g,1 0

0 0

]2


−1

·

·
[
Λ

−1/4
g,1 0

0 0

]
ΣgV

T
g

)

= VgΣg,1Λ
−1/4
g,1

(
σ2
h

c∗2
I+ σ2

nΛ
−1/2
g,1

)−1

Λ
−1/4
g,1 Σg,1V

T
g

(a)
= VgΛ

1/2
g,1

(
σ2
h

c∗2
I+ σ2

nΛ
−1/2
g,1

)−1

VT
g ,

(4.233)
where in step (a), we used the fat that Λg,1 = Σ2

g,1.
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Chapter 5Numerial ExperimentsIn this hapter, we do some numerial experiments to study the performanebehaviour for optimal designed loal sensors. Supposing, we use an MVUestimator for our performane analysis. First, we use result for the speialase of a salar parameter, where we ompare the optimal power sheduling(f. Subsubsetion 4.4.3.3) versus the uniform power sheduling performanefor an orhtogonal MAC. Then, we restrit our hannel model to the ases,where we also derived optimal solutions for the oherent MAC ase, wherewe then analyse the performane of orthogonal versus oherent MAC for anoptimal power sheduling strategie (total power onstraint). Finally, we willonsider the general ase of a vetor-valued parameter, where we will analysethe MSE performane for a single sensor setup (i.e., L = 1) for an T-optimalversus an A-optimal design.Assuming ideal hannel models, i.e., when the loal sensor observations
yi for 1 ≤ i ≤ L are diretly available to the FC, the FIM Jz is then givenby

Jz,0 , Jz =
L∑

i=1

GT
i C

−1
ni

Gi. (5.1)Note that here we assume that Cni
is non-singular for 1 ≤ i ≤ L. The FIM

Jz,0 is our entral performane benhmark for non-ideal hannel models andit is obvious, that it holds for both multiple aess shemes, i.e, for (3.8) and(3.20). Note, that the FIM Jz for both MAC shemes ould exist, even if Jz,0do not exist in that form. This fat results from the existene of the hannelnoise, and the assumption that the ovariane matrix is non-singular.Let us �rst reall the MSE de�nition, given in (2.9). Sine the CRLB
J−1
z is the ovariane matrix of an e�ient MVU, whih exists for a LGM inpartiular (provided that the FIM Jz is not singular, f. Subsetion 2.2.5),the MSE an be omputed by invoking (2.9) asMSE =

1

n
tr {J−1

z

}
, (5.2)99



CHAPTER 5. NUMERICAL EXPERIMENTS 100whih is the arithmeti average of the salar varianes var{θ̂k} for 1 ≤ k ≤
n. Let us now introdue some additional de�nitions, whih are used in thefollowing numerial experiments. We denote the total hannel noise powerby

Ph ,

L∑

i=1

σ2
hi
, (5.3)and the signal to noise ratio (SNR) for onstraint (C1) bySNR , P0/Ph, with P0 ,

L∑

i=1

P0,i, (5.4)and the SNR for onstraint (C2) bySNR′ , P ′
0/Ph, with P ′

0 ,

L∑

i=1

P ′
0,i. (5.5)5.1 Salar ParameterWe �rst onsider the salar parameter ase. In what follows, we will analysethe performane for the optimal power sheduling ompared to the uniformpower sheduling strategie and their asymptoti behaviour for an orthogonalMAC, i.e., on the one hand, when the total power/variane (P0 or P ′

0) in-reases and on the other hand, when the number of sensors L inreases. Notein simulations we onsider the equivalent model with salar observation ateah loal sensor. Therefore, we onsider the observation model paramters giand σ2
i , respetively. For performane analysis of the hannel aware, we re-all the entralized performane benhmark from (5.1), whih speializes fora salar parameter and using the equivalent model with salar observationto
Jz,0 =

L∑

i=1

g2i
σ2
ni

, σ2
ni

6= 0. (5.6)For the following simulations and performane analysis, we will onsider onlyonstraint (C2). Also, we adhere strongly to the simulations made by theauthors of [1℄ to �nally arry out a omparison.5.1.1 Optimal Power Sheduling for an Orthogonal MACAs disussed in Subsubsetion 4.4.3.3, we have found a "water-�lling" so-lution for the optimal power sheduling (f. (4.142) and (4.143)), i.e., for



CHAPTER 5. NUMERICAL EXPERIMENTS 101a given total transmit variane power P ′
0 - and assuming optimal LOi for

1 ≤ i ≤ L, we derived optimal power sheduling among all L sensors, in or-der to ahieve the best performane, i.e., the maximum FI Jz, whih is givenin (4.137) for optimal designed sensors. In ontrast, we also disussed theuniform power sheduling, where the total variane power P ′
0, are uniformlydistributed among all L sensors - the resulting FI Jz,u is given in (4.138).
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(b)Figure 5.1: Uniform power sheduling vs. optimal power sheduling, when
P ′
0 or SNR′ inreases, for a �xed total number of sensors L = 15. As an beseen, both sheduling strategies onverge to the entralized benhmark, whenSNR′ inreases. The lower the SNR′, the more signi�ant the performanegain, due to optimal power sheduling.We will now ompare both power sheduling strategies in a simple numer-ial experiment, where we ompare both the FI Jz and the CRLB (MSE ofthe MVU) by varying the total transmit variane power P ′

0, while the hannelnoise power is onstant (in simulation we used unit variane Ph = 1).



CHAPTER 5. NUMERICAL EXPERIMENTS 102In Fig. 5.1, we plot the urves for the FI Jz and the CRLB J−1
z versus theSNR′ = P ′

0/Ph (f. (5.5)), under both uniform and optimal power shedules,where the total number of sensors is onstant with L = 15. Further, obser-vation noise varianes σ2
ni

are uniformly taken from the real interval [1, 1.5]- the observation gains gi are uniformly taken from the real interval (0, 4].The squared hannel gain h2imax, i.e., the largest eigenvalue of HT
i Hi aretaken as h2imax = cg ·d−3.5, where d is uniformly taken from the real interval

[1, 10] and cg is a normalization onstant suh that E {h2imax} = 1. In thesimulation, the simulated FI Jz or, equivalently, the CRLB, is averaged over
1000 realizations of the set {σ2

ni
, gi, h

2
imax : 1 ≤ i ≤ L

} and is atually theexpeted Jz and the expeted CRLB, respetively.As an be seen in Fig. 5.1, when the SNR′ inreases, both uniform anoptimal power sheduling onverges to the entralized benhmark, given in(5.6), i.e.,
Jz,o

(
P ′
0 → ∞

)
= Jz,u

(
P ′
0 → ∞

)
=

L∑

i=1

g2i
σ2
ni

, (5.7)when we denote Jz,o as the ahieved FI for optimal power sheduling (f. redurve in Fig 5.1) and Jz,u as the ahieved FI for uniform power sheduling(f. blue urve in Fig 5.1 and (4.138)). Note that the asymptoti behaviourfor the uniform ase when P ′
0 inreases, yields to (4.139), whih oinides ofourse with the entral performane benhmark in (5.6). On the other hand,the optimal power sheduling gain, i.e., the di�erene between uniform anoptimum power sheduling in a logarithmi plot, beomes more signi�antas the SNR′ dereases.We now �x the total transmission variane power P ′

0 suh that we obtainan SNR′ = 15dB and varying the total number of sensors L. In Fig 5.2,we plot the urves for the FI Jz and the CRLB versus the total number ofsensors L under both, uniform and optimal power shedules. Again, in thesimulation, the FI Jz or equivalently the CRLB is averaged over 1000 real-isations of {σ2
ni
, gi, hi : 1 ≤ i ≤ L

} for 1 ≤ L ≤ Lmax = 45, and is atuallythe expeted Jz and the expeted CRLB or MSE, respetively. As an beseen, the optimum power sheduling gain inreases, as the total number ofsensors L inreases.5.1.2 Optimal Power Sheduling for an Orthogonal MACand a Coherent MACLet us now ompare the performane of orthogonal MAC and oherent MACunder an optimal power sheduling startegie. We restrit our numerialexperiment by assuming orthogonal hannel matries Hi for all i, sine forthis speial ase we derived an optimal loal sensor rule for the oherentMAC ase (f. Subsubsetion 4.4.3.2).
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(b)Figure 5.2: Uniform Power Sheduling vs. Optimal Power Sheduling, when
L inreases for SNR′ = 15dB.For a unitary hannel matrix Hi, all eigenvalues of HT

i Hi are equal toone, thus h2imax = 1. In the following simulation we take the same settingfor observation parameters gi and σ2
ni

as before - the hannel noise power isagain assumed to have unit variane, i.e., σ2
h = 1. In Fig. 5.3, we plot theurves of the FI Jz and the CRLB versus the total number of sensors L forthe orthogonal MAC ase, as before, and in addition the oherent MAC ase.Again, we �xed the SNR′ = 10dB. Note that sine we solved the otpimumLOi for the oherent MAC ase with respet to a total power onstraint, theobserved FI Jz and the orresponding CRLB or MSE an be pereived asan optimal power sheduling solution. In the simulation, the FI Jz and theCRLB is again averaged over 1000 realisations of {σ2

ni
, gi : 1 ≤ i ≤ L

} for
1 ≤ L ≤ Lmax, and is atually the expeted Jz and the expeted CRLB orMSE, respetively.
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(b)Figure 5.3: Uniform power sheduling vs. optimal power sheduling, when
L inreases for SNR′ = 10dB.We pereive that for an orthogonal MAC with �nite amount on P ′

0, theoverall CRLB or MSE does not dereases to zero, even if L, the total numberof sensors, aproahes in�nity. This fat results from the orthogonality ofeah link from sensor to the FC, whih leads to L di�erent and independenthannel noise vetors nhi
for 1 ≤ i ≤ L. Therefore, the orruption of hannelnoise annot be eliminated even when L goes to in�nity. In the oherentMAC ase, only one hannel noise nh is generated per transmission unit. Asa result of the oherent ombination, the SNR for the reeived data saleswith L, sine all transmitted data vetors are orrelated to eah other, eventhough when P ′

0 is �nite.



CHAPTER 5. NUMERICAL EXPERIMENTS 1055.1.3 Comparison to Existing ResultsIn onlusion, we show a omparison between our simulation results for theoptimal powers sheduling performane and the simulations results by theauthors of [1℄. In Fig. 5.4 are illustrated the optimal power sheduling gainsompared to the uniform power sheduling for both multiple aess shemes.As already mentioned they onsidered a Baysian setting, where they mini-mized the MSE of the MMSE estimator. However, the performane results,with regard to asymptoti behaviours are basially the same insights.

Figure 5.4: MSE performane omparision between orthogonal and oherentMACs [1℄.5.2 Vetor ParameterIn what follows, we analyse the performane for the vetor paramter ase,where T- and A-optimal designed loal sensors (designed for onstraint (C2)),will be ompared with regard to the MSE performane - the MSE of ane�ient MVU is given in (5.2). We onsider the standard model in oursimulation setup (f. De�nition 4.3.14).5.2.1 T�Optimal and A�Optimal MSE PerformaneIn the following simulation we used a system setup, where observation- andhannel matrix are both invertable. An A-optimal LO is given in losed-form- the T-optimal LO has to be omputed in a water-�lling like manner. Sine,the A-optimal design minimizes the MSE of an e�ient unbiased estimatorMVU, we expet a signi�ant performane gain against the T-optimal design.We suppose a single sensor setup, i.e., L = 1. In Fig. 5.5, we plot the urvesfor the MSE of the MVU versus the SNR′ from (5.5), for a T- and a A-optimaldesign.
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Figure 5.5: MSE-performane for a T- and A-optimal design over SNR′ in asingle sensor setup, L = 1.In the simulation, we used onstant eigenvalues of observation matrix
GTG, i.e., λgi = 1 for all i - a Chi-squared (degree 1) distributed variane
σ2
n and the eigenvalues for HHT are uniformly taken from the real interval

[0.5, 1]. For the hannel noise ovariane, we set σ2
h = 1. Again, we averagedover 1000 realisations on the set {σ2

n, hi : 1 ≤ i ≤ L
}, and is atually theexpeted MSE.As an be seen, a design under the A-riteria, performs better than thatunder the T-riteria, in terms of the MSE. Consider the asymptoti be-haviour of both designs for inreasing SNR′. We onlude that both on-verges to the etralized benhmark, i.e., to the minimum ahievable MSE,wih results for an ideal hannel. On the other extrema, when SNR′ goesvery small, then the di�erene between A- and T-optimal performane getslarger. Hene, a T-optimal design is quite su�ient, just when the SNR′ islarge enough.



Chapter 6ConlusionsWe onsidered a WSN, where sensors and a FC ollaborate to estimate anunknown deterministi vetor parameter. Due to bandwidth and/or powerlimitations, eah loal sensor has to enode and/or ompress (loal sensorrule) their measurement data of the unknown parameter �rst, before trans-mitting it over an imperfet hannel to the FC. This enoding should be,suh that the FC an estimate the parameter of interest most aurately. Weused the FI as our performane metri, due to their relation to the CRLB.We onsidered a linear Gaussian setup, where eah loal sensor rule and thefusion rule (estimator funtion at the FC) are desribed by linear mappings.We investigated two types of hannel usage, an orthogonal and a oherentMAC. The main goal of this thesis was to determine optimal loal sensorrules, in the sense of maximizing the FI, subjet to bandwidth and/or poweronstraints of the transmit signals.First we have desribed our loal sensor rule more generally by a lineartransformation and additive systemati Gaussian noise, whereby we haveshowed that the systemati noise an be negleted.For the salar ase, we have shown that we an redue our system modelto an equivalent model in whih all loal observations are salar-valued.Based on this equivalent model, we derived optimal loal sensor rules for anorthogonal MAC in losed form. We also studied the oherent MAC ase andderived optimal loal sensor rules under a total power onstraint for ertainspeial ases of the hannel states. Based on these optimal loal sensor rules,we have onsidered the optimal power alloation among sensors. We deriveda water-�lling based solution for the optimal power sheduling under a giventotal power onstraint for the orthogonal MAC ase. Simulations showedthat the proposed power sheduling strategy signi�antly improves the per-formane when ompared to the uniform power sheduling. We have alsoshown that the performane has signi�antly di�erent asymptoti behaviorswhen the number of sensors L is large for orthogonal and oherent MACs.For a vetor parameter, we �rst disussed some fundamental notions107



CHAPTER 6. CONCLUSIONS 108of optimal experiment designs. In partiular, we introdued the T- andA-optimality riteria, whih we then used for a vetor-valued parameter.We derived T- and A-optimal loal sensor rules for ertain speial ases ofhannel states. A �nal simulation showed a MSE-performane omparisonof these two optimal designs.



Appendix AA Convex OptimizationProblemA.1 Water��lling SolutionIn solving the optimal power sheduling for a salar paramter in the orthog-onal MAC ase (f. Subsubsetion 4.4.3.3), and for solving the T-optimalDesign of a loal sensor LOi in the vetor parameter ase (f. Subsetion4.5.1), we have to solve an equivalent optimization problem in the form:minimize
x

f (x) ,= −
K∑

k=1

c
(1)
k

xk

c
(2)
k + c

(3)
k xksubjet to g1 (x) , 1Tx− P ≤ 0

g2 (x) , −x � 0,

(A.1)where the vetor x =
[
x1 x2 . . . xK

]T ; We assume that the onstants
P ≥ 0, c(1)k ≥ 0, c(2)k ≥ 0 and c

3)
k > 0. First, we verify that (A.1) is a onvexoptimization problem. We an write the objetive f (x) of problem (A.1) as

f (x) =

K∑

k=1

fk (xk) , (A.2)with fk (xk) , −c
(1)
k

xk

c
(2)
k

+c(3)xk

. It an be veri�ed easily that the �rst twoderivatives of fk (xk) are given by
f ′
k (xk) ,

∂

∂xk
f (xk) = − c

(1)
k c

(2)
k(

c
(2)
k + c

(3)
k xk

)2 (A.3)
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f ′′
k (xk) ,

∂2

∂x2k
f (xk) = 2

c
(1)
k c

(2)
k c

(3)
k(

c
(2)
k + c

(3)
k xk

)3 ≥ 0, (A.4)and therefore fk (xk) is onvex. The onvexity of the onstraint funtions
g1 (·) and g2 (·) is obvious, sine both are linear in x. Hene, problem (A.1)is a onvex optimization problem [15, Chapter 4.2.1℄.The KKT onditions (f. [15℄) for a solution x∗ to the optimizationproblem (A.1) and orresponding Lagrange multipliers (f. [15, p.244℄), i.e.,
ν∗ for the inequality onstraint g1 (·) ≤ 0 and λ∗ ∈ R

K for the inequalityonstraint g2 (·) � 0 are given as
1Tx∗ − P ≤ 0

x∗ � 0
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λ∗ � 0

ν∗
(
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)
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λ∗
i x

∗
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(3)
k x∗k

)2 + ν∗ − λ∗
k = 0, k = 1, 2, . . . ,K.

(A.5)
The resulting optimum x∗ an be obtained by a so alled "water-�lling"proedure. We note that the problem (A.1) is idential to the problem on-sidered in [15, Ex.5.2℄, exept for the objetive funtions fk (xk). Therefore,we an losely follow the method in [15, Ex.5.2℄ to solve the KKT onditions(A.5). In partiular, we obtain the following "watter-�lling". The optimalvalues xk an be expressed as
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 = P. (A.7)Hene, the optimal xk for 1 ≤ k ≤ K for (A.1) an not be omputedin losed-form. First, we have to determine the optimal variable ν from(A.7). Subsequently, the optimal xk for 1 ≤ k ≤ K an then be omputedaording to (A.6). This an be done by a so alled "water-�lling" algorithm(Cf. Algorithm A.1).
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Algorithm 1 Water-�lling Algorithm
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