
Unification in Higher-order
Resolution

DISSERTATION

zur Erlangung des akademischen Grades

Doktor/in der technischen Wissenschaften

eingereicht von

Tomer Líbal
Matrikelnummer 0627906

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dr.phil. Alexander Leitsch

Diese Dissertation haben begutachtet:

(Univ.Prof. Dr.phil. Alexander
Leitsch)

(Prof. Dr. Manfred
Schmidt-Schauß)

Wien, 15.12.2012
(Tomer Líbal)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

 
 
Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek 
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). 
 
The approved original version of this thesis is available at the main library of 
the Vienna University of Technology  (http://www.ub.tuwien.ac.at/englweb/). 

 





Unification in Higher-order
Resolution

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor/in der technischen Wissenschaften

by

Tomer Líbal
Registration Number 0627906

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Prof. Dr.phil. Alexander Leitsch

The dissertation has been reviewed by:

(Univ.Prof. Dr.phil. Alexander
Leitsch)

(Prof. Dr. Manfred
Schmidt-Schauß)

Wien, 15.12.2012
(Tomer Líbal)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at





Erklärung zur Verfassung der Arbeit

Tomer Líbal
Pettenkofengasse 3/9, 1040 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i





Acknowledgements

I would like to express my deepest gratitude to my advisor, Alexander Leitsch. First for allowing
me to participate in the interesting multidisciplinary research done in his group. Second, for
showing great patience when my own interest deviated a little from the project goals before
converging again and most importantly, for all the help and guidance he provided during the last
four years. I am greatly indebted also to Manfred Schmidt-Schauß, whose work on unification
led to this thesis and who did not hesitate spending valuable time helping an anonymous student.

My colleagues in the theory and logic group, Cvetan Dunchev, Stefan Hetzl, Daniel Weller,
Bruno Woltzenlogel Paleo, Martin Riener, David Cerna, Mikheil Rukhaia, Paolo Baldi, Lara
Spendier and Giselle Machado N. Reis, created not only a scientific stimulating atmosphere but
also a social one, without which, a foreign student in Vienna cannot survive.

I would like to give special thanks for many interesting discussions (and arguments) to Ste-
fan, Daniel, Bruno and Martin, who also helped me with written German, to David, who has
helped me with written English and to Cvetan for helping me (and my family) with almost ev-
erything else. I also thank Paolo, Lara, Mikheil and Giselle for many nice “Mahlzeits” together.

Last but not least, I thank my wife and best friend, Irina, for her support, patience and love;
I thank my daughter, Eniko, for playing with me when I got bored with logic and my parents,
Smadar and Zvi Líbal for their continuous support.

This thesis is dedicated to my grandparents, Heni and Meir Ginsburg and Olga and Moshe
Líbal.

iii





Abstract

The mathematical analysis of proofs and the creation of modern proof calculi were originally
aiming more at analyzing the properties of existing proofs and less at the creation and discovery
of new proofs. This has changed with the introduction of computers. The advances in computer
technology which resulted in increasing computing power made it more practical to search for
new proofs as well. This process has culminated with the invention of the resolution calculus, a
logical calculus which is extremely suitable for mechanical processing.

The resolution calculus was first introduced for first-order logic, in which the calculus enjoys
many advantages and the search complexity is relatively small. Since the resolution calculus is
based on the unification principle, one of the main advantages is the fact that the first-order
unification problem is decidable and unitary. When lifting the calculus to higher-order logic,
in which the formalizing of mathematical problems is more natural, several issues arise which
render the calculus less useful in practice. The foremost of these issues is the complexity of the
higher-order unification problem, which is now both infinitary and undecidable.

The majority of the higher-order resolution calculi and their implementations are based on
either an unrestricted higher-order unification or on strongly restricted higher-order unification
in which the size of the generated unifiers is restricted. The existence of more refined higher-
order unification algorithms does not translate directly into more efficient resolution calculi as
these algorithms are normally not well suited for automated deduction.

The main aim of this thesis is to bridge the gap between the practicability of the higher-order
resolution calculus and the efficiency of the more refined unification algorithms. The weakness
of these unification algorithms with regard to automated deduction is investigated and more
suitable algorithms are defined. On the other hand, the search strategies in the resolution calculi
are modified in order to better suit the unification algorithms.

The obtained resolution calculi are compared with existing ones using a set of test cases.
The conclusion drawn from this comparison is that there is a real advantage in considering the
calculi introduced in this thesis when considering various classes of problems and in particular,
second-order arithmetical problems.

v





Kurzfassung

Die Methoden der Beweisanalyse und die in ihrem Kontext entwickelten logischen Kalküle
wurden ursprünglich zur Erlangung theoretischer Ergebnisse herangezogen. Die zunehmende
Rechenkapazität von Computern erlaubt jedoch inzwischen auch die praktische Anwendung
dieser Methoden zur Beweissuche. Einer der zentralen Fortschritte war Robinsons Einführung
des Resolutionskalküls, der sich speziell zur automatisierten Beweissuche eignet. Gerade im ur-
sprünglichen Anwendungsgebiet der Prädikatenlogik erster Stufe besitzt es eine verhältnismäßig
niedrige Suchkomplexität. Unifikation, das Kernstück des Resolutionskalküls, ist hier effizient
entscheidbar und unitär, d.h. es gibt nur höchstens einen allgemeinsten Unifikator.

Zum Formalisieren von mathematischen Beweisen sind die Prädikatenlogiken höherer Stufe
wesentlich besser geeignet als diejenige erster Stufe. In diesem Fall ist die Unifikation jedoch
nur mehr semi-entscheidbar: die Menge der allgemeinsten (Prä-)Unifikatoren ist von abzähl-
bar unendlicher Kardinalität, die Suche nach einem Unifikator terminiert im Allgemeinen auch
nicht.

Wissenschaftlich behandelt wurden bisher hauptsächlich der allgemeine Fall und syntakti-
sche Einschränkungen wie Anzahl und Typ der vorkommenden Variablen oder die Termintiefe,
mit dem Ziel das Teilproblem entscheidbar zu machen. Das Zusammenspiel von Unifikation und
Resolution erfordert noch eine gesonderte Betrachtung, da die Unifikation etwa oft aufgescho-
ben werden muss, eine möglichst frühe Elimination von nicht unifizierbaren Termen aber von
Vorteil ist.

Thema der Dissertation ist, die verfeinerten Unifikationsalgorithmen für die Anwendung in
der Resolution praktikabel zu machen. Sie behandelt die Nachteile der aktuellen Algorithmen
und stellt sie den hier entwickelten Verbesserungen gegenüber. Ein besonderes Augenmerk wird
dabei auf die unterschiedlichen Suchstrategien gelegt. Die Gegenüberstellung findet anhand ei-
ner Reihe von Testfällen statt und zeigt exemplarisch die Effizienz der neuen Algorithmen, was
speziell im Fall der Theorie der Arithmetik zweiter Ordnung gelingt.

vii





Contents

1 Introduction 1
1.1 Resolution for Second-order Arithmetic . . . . . . . . . . . . . . . . . . . . . 2
1.2 Properties of Higher-order Unification . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Higher-order Unification in Practice . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 11
2.1 Typed Lambda Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Pre-unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Constrained Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Context Unification 29
3.1 Context Unification Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Regular Contexts and Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Pre-unification Using Regular Terms . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Soundness and Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Termination and Minimal Unifiers . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Bounded Higher-order Unification 57
4.1 Bounded Higher-Order Unification Problems . . . . . . . . . . . . . . . . . . 58
4.2 Regular Terms and Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Pre-unification Using Regular Terms . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Soundness and Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 Termination and Minimal Unifiers . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Higher-order Resolution 83
5.1 The Test Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Variants of the Constrained Resolution Calculus . . . . . . . . . . . . . . . . . 87
5.3 Regular Binders Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Index 111

Bibliography 115

ix





CHAPTER 1
Introduction

Logic is the study of the principles of valid reasoning, inference and demonstration. The study
of logic spans from prehistoric times until our days and new results are continuously emerging
[14]. While logical thinking has probably taken place as early as the time organisms were
able to think at all, logical thinking about logical thinking has evolved much later. The ancient
Egyptians have managed to empirically obtain logical truths with regard to Geometry [51] while
the ancient Babylonians have observed and wrote down axioms and assumptions in their study of
Medicine [46]. The first use of demonstrations and proofs had taken place in Greece. Already in
the 6th century B.C. scholars like Thales [31] and Pythagoras had used such methods and might
have even developed deductive systems. The Greeks were also responsible for the development
of the first logical calculi. The Stoics had developed a calculus of propositions [51] while the
foundations of calculi for predicate logic and inductive arguments were laid down by Aristotle
and his school [33].

The first mathematical models of logical inference, i.e. the first algebras of logic, are the
calculi of Boole [13] and Frege [30]. In the beginning of the 20th century, Hilbert type [44] and
Gentzen type [35] calculi were developed in order to formalize all mathematical knowledge and
in order to investigate the notion of provability, but the actual use of these calculi in order to find
proofs for mathematical problems was very limited.

The mechanical task of proving mathematical theorems can be traced back to the 17th cen-
tury and to Leibniz’s “calculus ratiocinator” [54], a method which attempts to obtain a numerical
proof of correct theorems. Since a complete mechanization of mathematics is not possible (see
Gödel’s Incompleteness theorem [40] and Turing’s Halting problem [79]) the only thing that
could be hoped for is an efficient proof search for subsets of mathematics.

The invention of the computer lead to a renewed interest in the mechanization of mathemat-
ics. Since the proof search in predicate logic is infinite, early provers [36], [23] were based on
a search for propositional instances based on Herbrand’s theorem [43]. These provers failed,
however, to prove even simple mathematical theorems. One of the reasons for their failure is
that they were based on two search procedures, for obtaining the right propositional instances

1



and then for validating each one of them. Both these procedures are very expensive to execute,
even with today’s computation power.

A major breakthrough came with the invention of unification and the resolution calculus
[68]. The new calculus was proved to be complete with regard to searching for refutations
of unsatisfiable first-order problems of finite size and remained the most efficient calculus for
automated reasoning to this day.

The strength of the calculus can be attested by it being the first fully automated method to
solve mathematical problems [60]. Still, such results are very rare and failures to overcome the
main obstacles during the last decades have lead to the consideration of second and higher-order
automated theorem provers.

When considering arithmetic, the restriction to first-order logic poses severe limitations. The
majority of the theorems in arithmetic involves the uses of variants of the induction principle and
this principle cannot be encoded in a finite way in first-order logic. In second-order logic, this
principle can easily be encoded in the form of an induction axiom. The discipline of “reverse
mathematics” has identified subsystems of second-order arithmetic which are sufficient to prove
many interesting theorems [75]. One of these subsystems, called ACA0, even poses strong re-
strictions on the possible instantiations of the induction axiom.

On the other hand, the consideration of higher-order arithmetic poses strong computational
difficulties. The unification principle [49], which was used in order to obtain a (most) general
substitution, of which is sufficient for the refutations of first-order problems, fails to do the
same for higher-order problems. The computations of such substitutions even for second-order
problems may never terminate [37] and in case of termination, there might exist an infinite
number of such general substitutions.

Nevertheless, research into higher-order unification provided several subclasses of terms
which can be (relatively) easily unified. The most straightforward extension of first-order uni-
fication is patterns unification [61] which has applications to programming languages. Another
important subclass of second-order logic is stratified context unification [70], a method with
applications in computational linguistics [27]. The most famous of these subclasses is string
unification, shown decidable in [59].

There is also a considerable number of higher-order theorem provers for classical logic,
mainly based on the higher-order resolution calculus [3] and its variants. Among the most
popular ones are Isabelle [66], TPS [2] and LEO II [9]. These theorem provers target general
higher-order problems and therefore do not contain refinements of the unification principle. In
particular, they also target problems in second-order arithmetic but fail to fully automate solu-
tions even to simple ones. One additional complexity which higher-order resolution theorem
provers have to deal with is the requirement of terms to be in normal forms. This requirement
is of low complexity in first-order logic but introduces into the higher-order calculus new rules
which greatly increase its complexity.

1.1 Resolution for Second-order Arithmetic

In the previous section we have mentioned that a full mechanization of all logical statements
(even in first-order logic) is impossible. One should note that, when considering higher-order

2



logic, even the mechanical construction of all valid formulas is no longer possible. Take for
example the Gödel formulas, which are used in his incompleteness theorem. These formulas are
true in second-order arithmetic but cannot be proved.

This non-completeness of higher-order logic closely relates to the comprehension axioms,
which state that higher-order variables are quantified over sets which contain at least all definable
elements of the right type. If we restrict the models of higher-order logic to contain exactly all
definable elements then we obtain a complete semantics for higher-order logic called Henkin’s
semantics [42].

While the use of non-standard semantics for arithmetic does not always make sense, it does
so in the context of higher-order resolution. Since substitution is a form of comprehension,
Henkin’s completeness is the strongest semantics we can hope to achieve. Indeed, most higher-
order theorem provers aim of obtaining Henkin’s completeness, or even a weaker one.

A major characteristic of second-order arithmetic is the usage of set variables as the only
type of higher-order variables in the problems. Usually second-order arithmetical problems also
contain a very simple set of functions symbols, such as the addition, successor and zero. The
necessity of terms to be in normal forms, however, requires the application of Skolemization [62]
and may result in terms of complex types.

When considering automated theorem provers for second-order arithmetic, resolution theo-
rem provers might appear out of place. Moreover, the existence of the induction axiom poses
severe complications to any theorem prover. The non-admissibility of cut-elimination [32] pre-
vents resolution, with its atomic cuts only, from being complete in any sensible sense. One can
consider only complete fragments of second-order arithmetic in which the cut rule is admissi-
ble [58], but the resulting fragments may not be very expressive. A more natural approach might
be to use inductive theorem provers, such as INKA [12], Oyster-Clam [15] and ACL2 [50].

Another motivation for an efficient proof search for second-order arithmetic can be found
in the CERes method [5]. This cut elimination method requires the refutation of intermediate
clauses sets. The method is implemented [26] within the GAPT1 framework but its dependency
on resolution theorem provers restricts its usefulness on second-order arithmetical problems.

Currently there are two approaches for overcoming this weakness of CERes. The exis-
tence of a schematic propositional theorem prover [4] has allowed for a version of CERes for
schematic propositional proofs [25] and work is currently in progress for supporting schematic
first-order proofs as well2. Another approach is to find a resolution calculus which is more
suitable for the refutation of second-order arithmetical problems, either by having a decidable
unification algorithm or one which is more natural for the unification of arithmetical terms, either
by having a good interactiveness with the user or by refining the search space.

This last point has motivated the current thesis, which initially targeted efficient resolution
calculi for subsystems of second-order arithmetic and tried to find a variant of Huet’s unifica-
tion algorithm which decides the unification problem for such terms. Early attempts were not
successful and have resulted in a proof for the undecidability of the unification problem over
second-order arithmetical terms3. The proof can be obtained by a reduction to a language which

1http://code.google.com/p/gapt/
2http://www.logic.at/asap/
3Personal communication with Daniel Weller (2009)

3



contains only one binary function symbol and unary second-order variables and in which the
unification problem was proved to be undecidable [29].

Further attempts concentrated on subsystems of second-order arithmetic. The restrictions
on ACA0 mentioned above lead to the investigation of the application of unification algorithms
for ramified type theory [41] whose unification problem is decidable [38]. Unfortunately, the
introduction of Skolem symbols prevented the ramification of terms and the problem turned out
to be non-ramified.

These failures have lead to the investigation of properties of higher-order unification algo-
rithms in general.

1.2 Properties of Higher-order Unification

The first property of higher-order unification one might want to observe is its relationship with
first-order logic. Such a comparison can be obtained by translating higher-order problems into
first-order ones. For example by using the function f1 which replaces all higher-order variables
with first-order ones and simplifies the types of the terms. Consider for example the higher-order
unification problem:

f(λz.Y (a, z), X(λz.z))
.
= f(g, Y (a, a)) (1.1)

By applying the function f1 from above we obtain the following problem:

f(y, x)
.
= f(g, y) (1.2)

which is unifiable by the substitution [g/y, g/x]. By translating the substitution back using
an extension of f−11 we obtain the substitution [λz1, z2.g/Y, λz.g/X] which is a unifier to the
original problem.

We can easily prove that given a higher-order unification problem P , if f1(P ) is unifiable
by σ, then P is unifiable as well.

What about the other direction? Clearly if we could conclude from the unifiability of a
higher-order problem P that f1(P ) is unifiable as well then the two problems will be equivalent.
But since the first-order unification problem is decidable while the higher-order one is not, we
know that such a relationship is impossible.

It is possible, however, to define a function f2 from higher-order problems to first-order
problems which exhibits the above property. Let us call higher-order terms whose head symbol
is a variable by the name flex terms. We can define f2 to replace every occurrence of a flex term
in a higher-order problem by a fresh first-order variable. We can even improve the definition
and map flex terms which are applied to the same arguments to the same first-order variables.
Consider the higher-order unification problem:

Xfa
.
= fXa (1.3)

and its translation to a first-order problem by f2:

x1
.
= fx2 (1.4)

4



The higher-order problem is unifiable and so is its first-order translation. It is easy to see
that its translation by f1:

x
.
= fx (1.5)

cannot be unifiable by finite terms. It is, however, unifiable by the substitution t/x where
t = f∗ is an infinite term.

Can we claim that a higher-order problem is unifiable if its translation by f1 is unifiable,
possibly by infinite terms?

An interesting property is that if a first-order problem can be unifiable by finite or infinite
terms then it has, not only a most general unifier, but a regular most general unifier as well [22].

The meaning of a regular substitution in this chapter, and indeed in the whole thesis, is a
substitution that maps variables to regular terms where regular terms may contain the Kleene
star, denoting unbound repetitiveness.

This result, which was obtained by using Huet’s first-order unification algorithm [47], hints
that the answer to the question above is negative. This is due to the fact that we can, in this case,
decide the unifiability problem of higher-order logic and indeed consider the following example:

Xfa
.
= fXb (1.6)

which is not unifiable but its translation by f1 is still unifiable by the regular substitution we
found before.

The question whether we can use a first-order algorithm in order to solve higher-order prob-
lems is interesting from another point of view as well. Since higher-order problems may possess
an infinite number of most general unifiers, by reducing the problems to first-order problems we
might be able to compute a finite representation of all the most general ones.

As we have seen in the last example, the question is not trivial because any first-order re-
duction will ignore the information contained in the arguments of the higher-order variables and
therefore a unifier for the first-order problem might not unify the higher-order one.

We might also ask what do we mean by a finite representation of all most-general unifiers
as the unification problem itself forms a finite representation of them. Indeed, this strategy was
deployed by Huet in order to define a resolution calculus which can deal with infinitely-many
most general unifiers [48]. But our notion of a finite representation requires more than that.
A finite representation, in our opinion, is a representation which can answer the membership
question of possible unifiers. A task which Huet’s higher-order pre-unification algorithm cannot
perform [49] and indeed it seems that this task cannot be achieved. Even when considering
string unification [59], which is a very simple subclass of higher-order unification, it was proved
that one cannot obtain such a finite representation for problems containing more than three
variables [45]. Nevertheless, a positive result exists for the case of up to three variables [1]
and recently such a result was also obtained for the more general context unification problem if
the problem contain at most one higher-order variable [34].

These negative (and positive) results allow us to rephrase our previous question in a more
general way.

1. Given a solvable higher-order problem, do regular solutions always exist?

5



2. If they do, can we always compute them?

3. If we can, can we prove that they describe at least all possible unifiers of the higher-order
problem?

These questions will be investigated further along the thesis and partial answers will be given
in Chap. 4.

Huet’s first-order unification algorithm [47] manages to deal with regular unifiers by process-
ing cyclic equations as well as acyclic ones, as in the traditional first-order unification algorithms.
In his technical report [53], Le Chenadec took this result and attempted to build a finite-state au-
tomaton which describes these regular unifiers. The construction of such an automaton depends
on the possibility to obtain a normal form for cyclic problems [18]. Another result about the
regular form of unifiers was obtained by Zaionc [80]. The requirement for normal forms and
the regularity of the terms occurs also in the algorithms by G. S. Makanin, M. Schmidt-Schauß,
K. U. Schulz and others with regard to minimal solutions for unification problems and will be
discussed in the next section.

1.3 Higher-order Unification in Practice

In order to be used in practice, unification algorithms need not deal with the problems discussed
in the previous section. In fact, most higher-order resolution theorem provers obtain a finite set
of most general unifiers by restricting their syntactic forms. The LEO II [9] theorem prover
obtains such a restricted set by computing new terms of fixed bounded depth only. Although
this solution works in practice and can help to solve many unification problems, there are many
interesting problems for which no such bound exists.

Consider the following example from [52].

Example 1.3.1. We define as a string unification problem the problem of finding a unifier to a
first-order problem containing first-order variables and constants and the binary infix function
symbol ′.′, which is associative. For example a.x.b = y.c is a string unification problem. Note
that we do not need parentheses as the only binary function symbol is associative. Since ′.′ is the
only binary symbol, we drop it altogether from the notation and assume its existence between
any two constants and variables.

The following string equation over strings and under the assumption of the associativity of
the ′.′ infix function has a unique unifier σ such that σ(x1) = a3

n
. The depth of terms we need

to search for cannot be smaller than 3n but the size of the problem is only 6n− 2.

x1bx2b...bxn = x2x2x2bx3x3x3b...bxnxnxnbaaa (1.7)

Some representations of arithmetic, for example those using Church’s numbers, cannot be
bounded in such a way as well.

Another approach is to look for unifiers without any fixed bound but which are minimal with
respect to other unifiers of the problem. The advantage of such a method is that the unifiability
problem is then decidable. This method is based on the regularity result which was mentioned

6



in the previous section. We first have to prove that for each variable in the problem we can
compute a set containing the mappings to this variable in all possible unifiers of the problem. If
each member in these sets is regular, then a bound can be computed on the size of these members
which will make each set finite. The unifiability test proceeds by trying all possible mappings in
each of the sets.

This is, more or less, the method used in order to prove the decidability of the unification
problem in string unification [59], in monadic second-order problems [28], in distributive unifi-
cation [69] and in several subclasses of context unification [70], [73].

A general result for the bound used in this method and which is applicable to all these
problems can be found in [72].

A common property to all these problems is that the terms which are mapped to higher-order
variables have a restricted form. In string unification, a variable can be mapped to λ-abstractions
with exactly one occurrence of the bound variable. The following example shows the elevation
of Ex. 1.3.1 to such a form:

Example 1.3.2. Let X1, .., Xn be second-order variables and assume each one of them can be
mapped to a λ−term containing exactly one occurrence of the bound variable, then the following
equation has exactly the same solutions, up to interpretation, as the one from Ex. 1.3.1. I.e the
unique unifier σ satisfies σ(X1) = λz.a3

n
z.

X1bX2b...bXnc = X2X2X2bX3X3X3b...bXnXnXnbaaac (1.8)

In monadic second-order problems, the form of the function symbols allows us again to have
at most one occurrence of the bound variable. The remaining algorithms are all based on context
unification, in which the restriction on the number of bound variables is artificial. The higher-
order variables allowed in these problems, the context variables, can by definition be mapped to
λ-abstractions with exactly one occurrence of a bound variable.

At this point one can ask if this requirement is necessary in order to obtain the decidability
of unification. In order to answer this question, we need to consider the role of such a restriction.
There is some information in the problem which is not and cannot be taken into account when
computing the regular terms. This information is contained in the arguments of the variables
under consideration. Since we cannot know the form of the terms replacing these variables
in possible unifiers, we cannot also know how the arguments will be introduced, if they are
introduced at all. Since by β-reduction these arguments are going to replace all occurrences of
bound variables in the terms, if we have information about the number of these variables we
might be able to factor out the importance of the missing information. This is exactly the idea in
the above algorithms. By having or allowing at most one such bound variable, we factor out the
effect of the arguments.

Assume that we do not have this restriction, then it is still possible to compute the regular
terms as above but now we might need to compute infinitely-many such regular terms. In this
case the unification problem will not be decidable anymore.

Can we relax this requirement? I.e. can we allow a restricted number of bound variables
greater than one? The answer to this question is positive as was shown both for second-order [71]
and for higher-order logic [74].

7



To summarize what we have obtained so far. The two known ways for obtaining termination
of higher-order unification and for deciding the unifiability of higher-order terms is either by
bounding the size of generated terms as is usually done in higher-order theorem proving, or by
bounding their number of bound variable occurrences.

As was seen in Ex. 1.3.2, the second way might allow for a much more expressive unification
as although the size of terms grow exponentially with the size of the problem, the number of
bound variable occurrences remains one.

Still, in the decade or so since the introduction of these unification algorithms, they were
not used, as far as we know, in automated theorem proving. The reason for that is probably the
fact that these unification algorithms only decide the unification problem and do not generate
most general unifiers, which are necessary for the process of resolution. The results obtained
in Chap. 4 will allow us to overcome this restriction by computing, not only minimal unifiers
as in the above algorithms, but all possible unifiers based on regular terms. Still, the number
of the unifiers might be infinite. We overcome this problem in Chap. 5 by combining results
from both minimal and regular unification algorithms in order to obtain a refutational complete
higher-order resolution calculus which can use the minimal unification algorithms in a greedy
way, of which perform better in many cases when compared to current calculi. A comparisons
of the different calculi is also given in Chap. 5.

Outline

Theorem proving in higher-order logic is the focus of much research in the last decades. There
are many approaches, like mating [2] and interactiveness [66], which were developed in order
to overcome the different natural difficulties posed by higher-order problems. The greatest dif-
ficulty though, is the undecidability and infinitary nature of higher-order unification. Most of
the research done in higher-order unification was with regard to different unification problems
and not with regard to automated deduction in general and resolution theorem proving in partic-
ular. Because of that, many very sophisticated theorem provers, while implementing the most
efficient data structures and search strategies, are still depending on Huet’s pre-unification algo-
rithm [49] in order to solve the unification constraints. Since the algorithm is non-terminating,
these theorem provers are commonly utilizing incomplete termination procedures. In this thesis
we analyze the different procedures which are being used in existing theorem provers as well
as in theoretical ones. A main part of the thesis is devoted for the development of a new unifi-
cation algorithm for higher-order logic which we believe is especially suitable for higher-order
resolution

In Chap. 3 we develop the technique which allows us to enumerate all pre-unifiers of a
problem in a certain way. Unlike traditional unification algorithms in which the enumeration
is in a sense arbitrary, the unification algorithm which will be developed in this chapter will
enumerate regular unifiers according to increasing size, a method which will be very suitable
for higher-order resolution as we will see in Chap. 5. Beside giving a new way of enumerating
all possible pre-unifiers, we will give in this chapter also a new proof for the decidability of the
stratified context unification problem [70].

8



The method and algorithm obtained in Chap. 3 will be developed further in Chap. 4 and
be extended to full higher-order logic. This will enable us to define a unification algorithm for
higher-order logic, which closely relates to Huet’s pre-unification algorithm [49]. The fact that
this algorithm is based on the computation of regular terms and its unique way of enumerating
unifiers will make it a suitable candidate for a resolution calculus.

In Chap. 5 we define a resolution calculus which is based on the unification algorithm from
Chap. 4 and compare it to other resolution calculi, of which some are used in implemented
theorem provers while other have not been implemented thus far.

Chap. 2 contains preliminary definitions and results which are required for the understanding
of the rest of the chapters.

9





CHAPTER 2
Preliminaries

2.1 Typed Lambda Calculus

In this section we will present the logical language that will be used throughout the thesis.
The language is a version of Church’s simple theory of types [19] with an η-conversion rule as
presented in [6] and [76] and with implicit α-conversions. Most of the definitions in this section
are adapted from [76].

Definition 2.1.1 (Sets). Sets are defined as usual as an unordered collection of elements (sets or
others) as well as the set operations ⊂, ⊆, \, ∪ and ∩. The empty set is denoted by ∅.

Definition 2.1.2 (Functions). Functions are defined as usual as well as the functions composition
operator ◦. We will detonate the domain of a function f by dom(f) and its co-domain by
co-dom(f). The functions used in this thesis are all total.

Definition 2.1.3 (Tetrations [74]). We will define 2m(n) as a special version of a tetration in-
ductively as:

• 20(n) = n

• 2m(n) = 22m−1(n)

As a convenience, we will allow all the denotations appearing in this thesis to have numerical
superscripts and subscripts.

Types and terms

Definition 2.1.4 (Types). Let T0 be a set of base types, then the set T of all types is generated
by the grammar:

T ::= T0 | T→ T (2.1)

11



We denote types using the lowercase Greek letters α, β and γ and let→ associates to the right
(i.e. α → β → γ is α → (β → γ)). The number n in γ = α1 → α2 → .. → αn → β where
β ∈ T0 is called the arity of γ and is denoted by ar(γ) = n.

Before we define the set of all terms, we will make a distinction between the two types of
symbols we have: constant symbols and variable symbols.

Definition 2.1.5 (Signature). The signature for building higher-order terms is a set Σ of function
symbols, such that for each α ∈ T, we require Σ to contain (countably) infinitely many function
symbols of type α. We denote function symbols using the letters f and g and denote the type
α of a function symbol f by τ(f) = α. We further denote the arity of function symbols by
ar(f) = ar(τ(f)).

Definition 2.1.6 (Variables). For every type α ∈ T, we further assume the existence of a (count-
ably) infinite set Vα of variables of type α. The union of all these sets is denoted by V. Variables
are denoted using the letters x, y and z. Given a set of variables W , a fresh variable with regard
to W is a variable not occurring in W . When W can be inferred from the context, we will omit
it.

We sometimes write explicitly the type of function symbols and variables using superscripts
as in fα.

Definition 2.1.7 (Terms). Terms are denoted by the letters t and s with their type sometimes
written explicitly as a superscript. For every type α ∈ T, we define the set Termα and the size
(size) of terms inductively:

• fα ∈ Termα and size(fα) = 1.

• xα ∈ Termα and size(xα) = 1.

• if t ∈ Termβ→α and s ∈ Termβ then (ts) ∈ Termα and size((ts)) = size(t) +
size(s).

• if t ∈ Termγ , x ∈ Vβ and α = β → γ then λx.t ∈ Termα and size(λx.t) = size(t).

We extend τ to be a function over terms by τ(tα) = α. The set Term denotes the union of all
Termα.

Terms of the form (ts) are called applications while λx.t are called abstractions. When
possible, we will flatten successive applications or abstractions. For example, λx1.λx2.t is
flattened to λx1, x2.t while ((t1t2)t3) is flattened to (t1t2t3). Note that applications associate to
the left. When t1 in the above application is a function symbol, we will also write it as f(t2, t3).
Flattened abstractions and functional applications will also be denoted using vector notation
such as in λxn.t which denotes λx1, .., xn.t and f(tn) which denotes f(t1, .., tn). If a function
symbol f or a variable x are applied to only one argument t, then we will also denote this term
by ft and xt respectively.

12



Definition 2.1.8 (Head symbols and flex terms). The head symbol of a term is defined induc-
tively:

• hd(f) = f .

• hd(x) = x.

• hd((ts)) = hd(t).

• hd(λx.t) = hd(t).

A term whose head is a variable is called a flex term . It is called a rigid term otherwise.

Definition 2.1.9 (Positions and subterms). Positions within terms are defined inductively where
ε denotes the empty position:

• t|ε = t.

• if t|ρ = s and t0, t1 terms with the correct type, then (tt0)|1.ρ = s and (t1t)|2.ρ = s.

• if t|ρ = s then (λx.t)|1.ρ = s.

If there is a position ρ such that t|ρ = s then s is called a subterm of t.

In the algorithms discussed in this thesis, we would normally be interested only in a subset
of the positions of a term.

Definition 2.1.10 (Rigid positions). A position ρ is called a rigid position in a term t, if ρ is a
position in t and for every prefix ρ′ of ρ, hd(t|ρ′) is not a variable. Occurrences of subterms in
t, whose positions are rigid, are called rigid occurrences. The set of all rigid positions in a term
t is denoted by rigid-pos(t). The depth of a term t, denoted as d(t) is the size of the biggest
position in rigid-pos(t).

Example 2.1.11. Given the term t = f(λy.z(a, xy), b), the set
rigid-pos(t) = {1, 1.1, 1.2}.

Definition 2.1.12 (Bound and free variables). Given a term t, the sets of bound and free variables
of t, denoted BV(t) and FV(t) respectively, are defined inductively:

• if t = x then BV(t) = ∅, FV(t) = {x}.

• if t = f and τ(f) ∈ T0 then BV(t) = ∅, FV(t) = ∅.

• if t = (s1s2) then BV(t) = BV(s1) ∪ BV(s2), FV(t) = FV(s1) ∪ FV(s2).

• if t = λx.s then BV(t) = BV(s) ∪ {x} and FV(t) = FV(s) \ {x}.

Definition 2.1.13 (Replacements). Let t be a term and p ∈ rigid-pos(t), then t[s|p] is the
term obtained by replacing the subterm at position p in t with s.

Given terms t and s, we would sometimes write t[s|p] in order to stress that s is a subterm
of t at position p. These two overloading definitions of the [|] operator refers always to the same
element.

13



Substitutions

Definition 2.1.14 (Substitutions). A substitution σ is a total function between variables and
terms which fulfills the following two requirements:

• for all variables x in the domain of σ, τ(x) = τ(σ(x)).

• there is a finite set V ⊂ V, called the support of σ, such that ∀x ∈ V \ V σ(x) = x.

When we refer to the domain of a substitution σ, we will mean from now on the support
of σ. We will sometimes denote a substitution explicitly as σ = [t1/x1, .., tn/xn] where
size(dom(σ)) = n, xi ∈ dom(σ) and ti = σ(xi) for all 0 < i ≤ n.

Definition 2.1.15 (Restrictions). The restriction of a substitution σ to a set W , denoted by σ|W ,
is the substitution σ′ such that:

• if x ∈W then σ′(x) = σ(x).

• otherwise σ′(x) = x.

Definition 2.1.16 (Extending substitutions). Assume σ is a substitution and let t be a term, the
function σ̂ : Term→ Term extends σ and is defined inductively:

• if t ∈ V then σ̂(t) = σ(t).

• if t ∈ Σ then σ̂(t) = t.

• if t = (t1t2) then σ̂(t) = (σ̂(t1)σ̂(t2)).

• let σ−x denotes σ|dom(σ)\{x} if t = λx.t1 then σ̂(t) = λx.σ̂−x(t1).

We normally denote the extension σ̂ of σ by σ as well. We define the set of variables introduced
by σ as I(σ) = ∪x∈dom(σ)FV(xσ). The notion of applying a substitution is extended to sets of
terms by applying the substitution to each term in the set. We also write the application of a
substitution σ to a term t by tσ. Note that we write the application of the extending substitution
to terms using postfix notation while the application of substitutions to variables is written in
prefix notation.

Remark 2.1.17. In Remark 2.1.23 we adopt the convention that the two sets of variables FV and
BV are disjoint. Under this convention σ in Def. 2.1.16 is always equal to σ−x.

Later in the thesis it will be convenient to compare terms which are instances of one another.

Definition 2.1.18 (Subsumption). Let t1 and t2 be terms, then we say that t1 subsumes t2 and
denotes it by t1 ≤s t2 if there is a substitution σ such that t1σ = t2. Let S be a set of terms and
t a term, then t is subsumed by the set S if there is a term t′ in S which subsumes t. We denote
this by t ∈s S.

Example 2.1.19. Let t1 = λz.f(x, z) and t2 = λz.f(a, z), then we have t1 ≤s t2 and t2 ∈s
{t1}.

14



Reductions and normal forms

Definition 2.1.20 (Lambda calculus rules). The lambda calculus has the following three rules:

• if y 6∈ FV(t) ∪ BV(t) then (λx.t) �α (λy.t[y/x]) (α-rule).

• ((λx.s)t) �β s[t/x] (β-rule).

• (λx.(tx)) �η t (η-rule).

Definition 2.1.21 (Reductions). Let t be a term and let • be either α, β, η or βη, then a •-reduct
of t is a term t[s′|p] such that t|p = s and s �• s′. We denote a •-reduction by t[s]→• t[s′]. We
denote the reflexive, symmetric and transitive closure of→• by =•. The reflexive and transitive
closure of→• is denoted by ∗−→•.

Definition 2.1.22 (α-equality). Given two terms t1 and t2, we say that they are α-equal if t1 =α

t2.

Remark 2.1.23. In the rest of the thesis, equality between terms will mean α-equality. In our
construction of terms, free variables may become bound but not vice-versa. We would like to
reserve the set V to denote the set of free variables only and therefore we will keep an implicit
(countable) infinite set for the bound variables, which is disjoint from V. Another implicit
operation that will take place when abstracting over a term will be to replace the newly bounded
variable with a fresh variable from the set of bound variables such that the two terms will be
α-equal. Since we will assume equality between terms to denote α-equality all along the thesis,
this (implicit) operation is valid. This will allow us to abstract over the notion of α-equality and
therefore, to simplify our presentation. This will also allow us to avoid the issue of free variables
capture as binding free variables will cause them to be replaced by fresh bound variables.

Definition 2.1.24 (Normal forms). Let t be a term and let • be either β, η or βη, if t has no
•-reducts, then t is said to be in •-normal form.

From the definition of a replacement it follows that the type of terms is preserved under the
reduction rules.

Remark 2.1.25. The η-reduction rule can be considered as a weak form of the axiom of func-
tional extensionality, which asserts that two functions are equal if they behave the same on all
arguments. We will discuss the role of the extensionality axiom when we discuss the semantics
of the resolution calculus later in this chapter.

Two major results about the typed lambda calculus (see [6]) are:

Theorem 2.1.26 (Strong normalization). Every sequence of βη-reductions is finite.

Theorem 2.1.27 (Church-Rosser theorem). if t1 =βη t2, then there is a term s such that t1
∗−→βη

s
∗←−βη t2.

15



It follows from these two results that the rules are confluent, i.e. for each term there exists a
unique normal form. This in turn implies that the equivalence between two terms can be decided
by a syntactic comparison of their normal forms.

Remark 2.1.28. From now on we will assume (unless otherwise specified) that a given term is
in β normal form. We will explicitly denote the β normal form of a term t by t ↓. The η-normal
form of a term t will be denoted by t ↓η.

Definition 2.1.29 (Order over substitutions). Given a set W of variables and two substitutions
σ and θ, we say that σ is equal to θ over W , denoted σ =|W θ if ∀x ∈ W σ(x) = θ(x). We
say that σ is more general than θ over W , denoted σ ≤|W θ, if there exists a substitution δ such
that θ =|W σ ◦ δ. When W = V, we drop the notation |W . =β , =βη, ≤β and ≤βη are defined
analogously.

Lemma 2.1.30. For substitutions σ and θ, if σ =β θ, then for every term t, tσ =β tθ. The same
holds for =βη.

Definition 2.1.31 (Idempotency). A substitution σ is idempotent if σ ◦ σ =βη σ.

Lemma 2.1.32. A substitution σ is idempotent if I(σ) ∩ dom(σ) = ∅.

Lemma 2.1.33 ( [77]). For any substitution σ and a set of variablesW containing dom(σ), there
exists an idempotent substitution θ such that dom(σ) = dom(θ), σ ≤βη θ and θ ≤|Wβη σ.

Remark 2.1.34. In the rest of the thesis we assume all substitutions to be idempotent.

Implicit treatment of extensionality

Next we will follow the results in [76] which allow us to abstract also over the η-rule and consider
only β-reductions and normal forms.

Definition 2.1.35 (η-expanded forms). We first define the following rule, which is the converse
of the η-rule:

• tα→β �η λxα.tx (η-rule).

and define the η-expanded form as the normal form obtained under the application of this rule
in a similar way to the η-normal form in definitions 2.1.21 and 2.1.24. The η-expanded form of
a term t is denoted by η[t].

Lemma 2.1.36 ( [6]). For any two terms t1 and t2, we have t1
∗−→βη t2 iff there exists a term s

such that t1
∗−→β s

∗−→η t2.

From this lemma and the uniqueness of the η-expanded form it follows the following:

Theorem 2.1.37. For every two terms t and s, we have t =βη s iff η[t ↓] = η[s ↓].

We can now show that by considering only terms in η-expanded form, we can leave out the
η-conversion rule.

16



Definition 2.1.38 (η-expanded terms). Let Termexp = {η[t] | t ∈ Term} and let Termη be the
minimal set containing Termexp and closed under application and abstraction.

Lemma 2.1.39 ( [47]). The following closure properties hold for Termη:

• if t, s ∈ Termexp then (λx.t) ∈ Termexp and (ts) ↓∈ Termexp.

• if t ∈ Termη then t ↓∈ Termexp.

• if t, s ∈ Termη then (λx.t) ∈ Termη and (ts) ∈ Termη.

• if t ∈ Termη and t ∗−→β s then s ∈ Termη.

• if t, s ∈ Termη then s[t/x] ∈ Termη.

Definition 2.1.40 (Normalized substitutions). A substitution σ is said to be normalized if ∀x ∈
dom(σ) σ(x) ∈ Termexp.

The following corollary, which is based on Lemma 2.1.39, concludes our discussion about
the implicit treatment of η-conversions and allows us to assume that all the terms dealt with and
produced by the algorithms in this thesis are in η-expanded form.

Corollary 2.1.41. If σ is a normalized substitution and t ∈ Termexp, then tσ ∈ Termη and
tσ ↓∈ Termexp.

Remark 2.1.42. In the rest of the thesis, all substitutions are assumed to be normalized.

Remark 2.1.43. In some cases, such as in solved forms which will be defined later, it is more
convenient to denote variables in their η-normal form instead of in their expanded forms. For
example, we would denote the variable xα→β by x instead of by λzα.xz.

First-order terms and contexts

In later sections we will sometimes be concerned with only a subset of all lambda calculus
generated terms. In this section we will present some definitions which will allow us to discuss
these restricted terms.

Definition 2.1.44 (Order of terms). The order of a term is defined to be the order of its type.
The order of a type α is defined inductively:

• if α ∈ T0 then ord(α) = 1.

• if α = β → γ then ord(α) = max(ord(β) + 1,ord(γ)).

A language of order n is a language which contains function symbols of order n+1 and variables
of order n.

When discussing first-order terms, we will assume that the set T0 of basic types contains the
type i for individuals only. We will further call function symbols of type i constants.

The set Termi of first-order terms can also be defined directly.

17



Definition 2.1.45 (First-order terms). The set Termi of first-order terms is defined inductively:

• if τ(t) = i then t ∈ Termi

• if τ(f) = i → .. → i → i, ar(f) = n > 0 and ti ∈ Termi for all 0 < i ≤ n then
f(t1, .., tn) ∈ Termi.

Next we will define contexts, which are abstractions of type α→ β for α, β ∈ T containing
exactly one occurrence of the bound variable in the abstracted term. Contexts play a central role
in the unification algorithms presented in this thesis. In order to simplify the algorithms and the
proofs, we will use a distinct notation for these terms.

Definition 2.1.46 (Contexts). Given a signature Σ, let Σc = Σ∪{[.]α | α ∈ T}. The symbol [.]α

is a new symbol of type α and is called a hole of type α. The set Contextα over the signature
Σc of contexts with holes of type α is not so easily defined inductively as such a definition will
require the replacement of subterms. Since this definition is only a syntactic-sugar, we will give
a descriptive definition instead:

• if t[s] ∈ Term and s ∈ Termα a subterm occurrence of t, then t[.] ∈ Contextα.

The position ρ of [.] in C is called the main path of the context C and is denoted by mpath(C).
The size of the position mpath is called the main depth of the context and is denoted by
mdepth(C). We normally denote contexts by C. Let ρ be the main path of a context C and
ρ′ any prefix of that position, then the context C[[.]|ρ′ ] is called a prefix of C. Contexts whose
type is the same as the type of the hole (i.e. τ(C) = τ(C|mpath(C))) are called simple contexts.
Otherwise, we call them complex contexts.

Example 2.1.47. An example of a context is f(λz.g([.]i, z), h(x)) whose main path is the posi-
tion 1.1. This context is simple as it has the same type as the hole.

The context (t[.]α)β denotes the term λxα.t[x] ∈ Termα→β . More formally, we define an
homomorphism from contexts to terms and when we speak about contexts, we refer to their
homomorphic terms.

Definition 2.1.48 (Contexts homomorphism). Let t ∈ Term be a term with position p and
t[[.]α|p] a context, then the homomorphism H : Context → Term is H(t[[.]|p] = λxα.t[x|p]
for x 6∈ FV(t) ∪ BV(t).

Example 2.1.49. the homomorphic term for the context f(λx.g(x, x), [.]) is (up toα-equivalence)
λy.f(λx.g(x, x), y).

Remark 2.1.50. When we would like to stress that a certain argument t of a function symbol f
is at position k, we would sometimes write f(.., t@k, ..)

As with first-order terms, also first-order contexts can be defined directly.

Definition 2.1.51 (First-order contexts). The set Contexti of first-order contexts is defined
inductively:

18



• [.]i ∈ Contexti

• if τ(f) = i → .. → i → i, ar(f) = n > 0, ti ∈ Termi for all 0 < i ≤ n, one
0 < j 6= i ≤ n andC ∈ Contexti for 0 < j ≤ n then f(t1, .., C@j , .., tn) ∈ Contexti.

An important characteristic of first-order contexts is that they are always simple.

Definition 2.1.52 (Composition of contexts). If C ∈ Contextα and s ∈ Termα then we
denote by C(s) the term t′ ∈ Term which is obtained by replacing the hole with s. Note that
this operation is compatible with application and β-reduction on their homomorphic terms. We
will also write the application of a context on a term without parentheses as in Cs. Given a
context C, if the main path of C is equal to ε then C is called a trivial context and non-trivial
otherwise. If C is a simple context, we define the composition of C iterated n times by C0 = C
and Cn+1 = C(Cn) for n ≥ 0. Note that if C ∈ Contextα then also Cn ∈ Contextα.

Remark 2.1.53. When applying several contexts of monadic symbols or variables, we will drop
the parentheses and associate them to the right. For example CX1a means C(X1a).

Logical symbols

The main aim of this thesis is to give a method for the refutation of higher-order falsities. In
order to achieve that aim, we will require our signature to contain some logical symbols with
pre-defined semantics.

Definition 2.1.54 (Boolean terms). Terms of boolean type, which is denoted by o, can be either
true or false. In the remaining of this thesis we will require the set of basic types to contain
the boolean type and the signature to contain the two constants T and F, denoting true and false
respectively.

Definition 2.1.55 (Logical connectives). As well as truth values, we will require the signature
to contain the following symbols:

• ¬ of type o→ o.

• ∨ of type o→ o→ o.

• Πα of type (α→ o)→ o for all α ∈ T.

Remark 2.1.56. The set of logical connectives given above is sufficient to define all other logical
connectives:

• A ∧B can be denoted by ¬(¬A ∨ ¬B).

• ∀xα.fα→ox can be denoted by Πα(λx.fx) and

• ∃xα.fα→ox can be denoted by ¬∀x.¬(fx).

In the remaining of the thesis we might use all logical connectives but will prove the results over
the three defined in Def. 2.1.55 only.

Remark 2.1.57. From now on we will consider the symbol .=α to be of type α→ α→ o.

19



2.2 Pre-unification

Pre-unification Problems

In this section we will describe a higher-order unification algorithm [49] which is the main uni-
fication algorithm used in higher-order automated deduction systems. The definitions presented
here are adapted from [76].

Definition 2.2.1 (Unification constraints). Given a signature Σ, let Σu = Σ ∪ { .=α| α ∈ T}.
A unification constraint (or just constraint) is a term over Σu whose head symbol is .

=α and
the symbol .=α does not occur elsewhere in the term. We will write unification constraints in
infix notation and drop the typing labels when they can be inferred from the context. A set of
unification constraints is called a unification system or just system. We will denote the set of free
variables of a system S by FV(S). A unification constraint is called rigid-rigid if both immediate
subterms in it are rigid. It is called flex-rigid if one is rigid only and flex-flex if none of them
is rigid. A unification system will always be closed under the symmetry of .=. I.e. whenever a
term t

.
= s is in the problem, then so is s .

= t.

Definition 2.2.2 (Solved forms). Let S be a system and x .
= s ∈ S be a unification constraint in

η-normal form. Then, x .
= s is in solved form in system S if x does not occur elsewhere in S. x

is called a solved variable. A system is in solved form if all its constraints are in solved form.

Definition 2.2.3 (Pre-solved forms). A unification constraint λzn.x(tm)
.
= s is in pre-solved

form if it is either in solved form or s is a flexible term. A system is in pre-solved form if all its
constraints are in pre-solved form. Given a system S in pre-solved form, we denote by σS the
substitution whose domain consists all the solved variables in S such that σS(x) = t if x .

= t is
a solved constrained in S.

Example 2.2.4. The first system is in solved form while the second one is in pre-solved form:

1. {x .
= f(a, y), z

.
= g(y)}

2. {x .
= f(z, y), z

.
= y}

Definition 2.2.5 (Unifiers). A substitution σ is a unifier of a unification constraint t .
= s if

tσ = sσ and it is a unifier of a unification system if it unifies all unification constraints in it.
Given a unification system S, we denote the set of all its unifiers by Unifiers(S).

In general, the set of all unifiers of the problem might be too big for an efficient enumeration
by an algorithm. Huet’s well-known solution for this was to search for pre-unifiers instead of
unifiers.

Definition 2.2.6 (Pre-unifiers). Let =̃ be the least congruence relation on Term which contains
{(t, s) | hd(t),hd(s) ∈ V}. A substitution σ is a pre-unifier of a constraint t .= s if tσ=̃sσ. It
is a pre-unifier of a system if it pre-unifies all its constraints.

Example 2.2.7. The substitution [f(a, y)/x, g(y)/z] is a unifier of the first system from Ex. 2.2.4
while [f(a, y)/x] is a pre-unifier of the second system.

20



The search for pre-unifiers is justified by the following.

Definition 2.2.8 (Completing substitution). For every α ∈ T such that α = β1 → ..→ βn → γ
let êα = λxβ11 ..x

βn
n .yγ such that y is a fresh variable (with regard to the current unification

system). Let V be a finite set of variables, then the completing substitution is the substitution
ξV = [êτ(x)/x | x ∈ V ]. Let S be a system in pre-solved form and S′ be the set of all unsolved
equations in S, then ξS = ξFV(S

′).

Lemma 2.2.9. If S is a system in pre-solved form, then σS ◦ ξS is a unifier of S.

Example 2.2.10. Let the systems in Ex. 2.2.4 be first-order systems, then ξ = [w/x,w/y, w/z]
and [f(a, y)/x] ◦ ξ = [f(a,w)/x,w/y, w/z] is a unifier of the second system.

A useful notion in automated deduction is the notion of most general unifiers.

Definition 2.2.11 (Most general unifiers). Given a system S, a substitution σ is called a most
general unifier of S if σ is a unifier of S and for every unifier θ of S, σ ≤ θ (see Def. 2.1.29).

It is well known that any unifiable first-order system has a most general unifier. It is also
known that unifiable higher-order systems may have no most-general unifier [39].

The following notion extends that of most general unifiers for higher-order systems.

Definition 2.2.12 (Complete sets of pre-unifiers). Given a unification system S, its complete set
of pre-unifiers is the set PreUnifiers(S) of (normalized) substitutions such that:

• {σ ◦ ξS | σ ∈ PreUnifiers(S)} ⊆ Unifiers(S).

• for every normalized θ ∈ Unifiers(S) there exists σ ∈ PreUnifiers(S) such that
σ|dom(θ) ≤ θ.

Definition 2.2.13 (Partial bindings). A partial binding of type α1 → .. → αn → β where
β ∈ T0 is a term of the form
λyn.a(λz1p1 .x1(yn, z

1
p1), .., λzmpm .xm(yn, zmpm)) for some atom a where

• τ(yi) = αi for 0 < i ≤ n.

• τ(a) = γ1 → ..→ γm → β where γi = δi1 → ..→ δipi → γ′i for 0 < i ≤ m.

• τ(zij) = δij for 0 < i ≤ m and 0 < j ≤ pi.

• xi is a fresh variable and τ(xi) = α1 → ..→ αn → δi1 → ..→ δipi → γ′i for 0 < i ≤ m.

• γ′1, .., γ′m ∈ T0.

Partial bindings fall into two categories, imitation bindings, which for a given atom a and type
α, are denoted by PB(a, α) and projection bindings, which for a given index 0 < i ≤ n and a
type α, are denoted by PB(i, α) and in which the atom a is equal to the bound variable yi. Since
partial bindings are uniquely determined by a type and an atom (up to renaming of the fresh
variables xm), this defines a particular term.

21



Example 2.2.14. We will compute the set of partial bindings for the second-order equation
xi→i(bi)

.
= f i→i→i(ai, yi).

• PB(f, i→ i) = λxi
0.f(yi→i

1 (x0), y
i→i
2 (x0)).

• PB(1, i→ i) = λxi
0.x0.

where y1 and y2 are fresh free variables.

Definition 2.2.15 (The set of rules PUA (Pre-unification algorithm)). Let S be a unification
system, then the set of rules PUA is defined in Fig. 2.1. The rules (Imitate) and (Project)
are always followed by a (Bind). Note that in the conclusions of (Bind), (Imitate) and
(Project) we write x in η-normal form. The reason for that is that as these new equations
are in solved form we would like to stress the fact they are also a part of any pre-unifier of the
system. This is the only place in the thesis where we make this exception.

S ∪ {A .
= A}

S
(Delete)

S ∪ {λzk.f(sn)
.
= λzk.f(tn)}

S ∪ {λzk.s1
.
= λzk.t1, .., λzk.sn

.
= λzk.tn}

(Decomp)

S ∪ {λzk.x(zk)
.
= λzk.t} x 6∈ FV(t), σ = [λzk.t/x]

σ(S) ∪ {x .
= λzk.t}

(Bind)

S λzk.x
α(sn)

.
= λzk.f(tm) ∈ S, u = PB(f, α)

S ∪ {x .
= u}

(Imitate)

S λzk.x
α(sn)

.
= λzk.a(tm) ∈ S, 0 < i ≤ n, u = PB(i, α)

S ∪ {x .
= u}

(Project)1

1. a can be either a function symbol or a bound variable zi for 0 < i ≤ k.

Figure 2.1: PUA - Huet’s Pre-Unification Rules

Theorem 2.2.16 (Soundness). If S′ is obtained from a unification system S using PUA and is in
pre-solved form, then σS′ |FV(S) ∈ PreUnifiers(S).

Theorem 2.2.17 (Completeness). If θ is a pre-unifier of a unification system S, then there exists
a pre-solved system S′, which is obtainable from S using PUA such that σS′ |FV(S) ≤ θ.

Remark 2.2.18. Another important result about PUA is that the only non-determinism that
affects the form of the obtainable systems is the choice of applying either (Imitate) or
(Project). The other sources of non-determinism, such as the choice of which constraint
to process next, do not affect the form of the obtained system (up to variables renaming).

22



Cycles

The notion of cyclic sets of equations plays an important role in this thesis and is proved later to
be the only source for the existence of infinitely-many pre-unifiers.

Definition 2.2.19 (Cycles). Let S be a unification system, then a sequence of constraints s1
.
=

t1..sn
.
= tn in S is called a cycle if:

• hd(si) = xi ∈ V for 0 < i ≤ n.

• for all 0 < i ≤ n there is a position pi ∈ rigid-pos(ti) such that hd(ti|pi) =
x(i mod n)+1

• there is an index 0 < j ≤ n such that pj 6= ε.

We denote the fact that the variables xi occur in the cycle c by xi ∈ c.

Example 2.2.20. Cycles can be explicitly denoted using positions as in the following example:

• {x1(s1)
.
= t1[x2(s

′
1)|p1 ], x2(s2)

.
= t2[x1(s

′
2)|p2 ]} for some positions p1 and p2.

When the positions are not important (but also not empty), we will drop them and denote cycles
just as:

• {x1(s1)
.
= t1[x2(s

′
1)], x2(s2)

.
= t2[x1(s

′
2)]}

Definition 2.2.21 (Standard cycles). Let c be the cycle s1
.
= t1..sn

.
= tn and let xi and pi for

0 < i ≤ n be defined as in the previous definition, then c is called a standard cycle if there is
exactly one index 0 < j ≤ n and at least one position pj such that hd(tj |pj ) = x(j mod n)+1 and
pj 6= ε.

Definition 2.2.22 (Unique standard cycles). Let c be a standard cycle s1
.
= t1..sn

.
= tn and let

xi and pi for 0 < i ≤ n be defined as in the two previous definitions, then c is called a unique
standard cycle if there is exactly one position pj such that tj |pj = x(j mod n)+1 and pj 6= ε. We
call the context tj [[.]|pj ] the cycle context and denote it by ccon(c). The cycle size is defined
to be n and is denoted by size(c) = n. A standard cycle which is not unique is called a non-
unique standard cycle. Since we will be mainly interested in unique standard cycle, we will call
them standard cycles and will write non-unique standard cycles explicitly when referring to a
non-unique one.

Example 2.2.23. The cycle in Ex. 2.2.20 is neither a unique standard cycle nor non-unique.
This is so because both positions p1 and p2 are not empty. Clearly a unique standard cycle is
always a non-unique standard cycle as well. The following cycle is a non-unique standard cycle:

• {x1(s1)
.
= x2(s

′
1), x2(s2)

.
= f(x1(s

′
2), x1(s

′′
2)}

The following cycle is a unique standard one:

• {x1(s1)
.
= x2(s

′
1), x2(s2)

.
= f(x1(s

′
2), a)}

23



Note that (unique) standard cycles can be denoted using contexts, which will be useful in the
next chapters:

• {x1(s1)
.
= x2(s

′
1), x2(s2)

.
= f([.], a)(x1(s

′
2))}

2.3 Constrained Resolution

In this section we will describe the constrained resolution calculus ( [48]) as presented in [16]
and [7].

Full automation of the search for proofs of first-order theorems was first introduced with the
resolution method ( [68]). A key concept in the method is the first-order unification principle.
Unification allows the algorithm to apply cuts and contractions on non-equal terms by obtaining
most general unifiers of these terms. The unification of first-order terms was shown to be unary
and terminating and therefore, the search for a most general unifier could always be done eagerly.

When we consider the higher-order unification algorithm PUA from Def. 2.2.15, we see that
it has two characteristics which may make a fully-automated search for proofs impossible. The
first one is the undecidability of the unifiability question. When attempting to apply a cut or a
contraction on two non-equal terms, the question whether there is a substitution that can make
them equal is undecidable. Even if we can determine that the two terms can be made equal, the
complete set of pre-unifiers (see Def. 2.2.12) might be infinite, which renders a fully-automated
search impractical.

The constrained resolution calculus helps solving the second problem. By delaying the
computation of the complete set of pre-unifiers, we have a finite representation of all possible
unifiers in the form of the unification system itself. These unification systems are carried along
the proof until we wish to check if they are unifiable. In this way, the unification component
of the proof search is restricted to the question of unifiability only. A major drawback of this
though is the increased search space, which includes searches for non-unifiable terms as well.

The calculus presented in this section will be used as the basis of the calculi presented in
Chap. 5. Of which one integrates the unification algorithm from Chap. 4 and applies unification
eagerly.

Definition 2.3.1 (Literals). Pseudo literals are terms of type o which are labeled by either true
or false, which represent their intended truth value and are denoted by [A]µ for term A of type o
and µ ∈ {T,F}. If A does not contain logical symbols, then A is called a literal.

Remark 2.3.2. Since terms of type o play an important role in resolution, we will denote set
variables, which are variables of type α → o for α ∈ T, using capital letters X,Y etc. We will
use this denotation in this section and in Chap. 5.

Definition 2.3.3 (Unification constraints). Unification constraints are literals whose head is .
=

and which are labeled by F.

Example 2.3.4. The literal [f i→oa]T is not a unification constraint while the literal [x(a, y)
.
=

f(g(x(a, b)), y)]F is a unification constraint.

24



Definition 2.3.5 (Clauses). Clauses are disjunctions of pseudo literals.

Example 2.3.6. The following is a clause:

[f i→oa]T ∨ [x(a, y)
.
= f(g(x(a, b)), y)]F (2.2)

In Fig. 2.2 we present the pre-unification rules from Def. 2.2.15 in the form of clauses.

S ∨ [A
.
= A]F

S
(Delete)

S ∨ [λzk.f(sn)
.
= λzk.f(tn)]

F

S ∨ [λzk.s1
.
= λzk.t1]F ∨ .. ∨ [λzk.sn

.
= λzk.tn]F

(Decomp)

S ∨ [λzk.x(zk)
.
= λzk.t]

F x 6∈ FV(t), σ = [λzk.t/x]

σ(S) ∨ [x
.
= λzk.t]F

(Bind)

S [λzk.x
α(sn)

.
= λzk.f(tm)]F ∈ S, u = PB(f, α)

S ∨ [x
.
= u]F

(Imitate)

S [λzk.x
α(sn)

.
= λzk.a(tm)]F ∈ S, 0 < i ≤ n, u = PB(i, α)

S ∨ [x
.
= u]F

(Project)1

1. a can be either a function symbol or a bound variable zi for 0 < i ≤ k.

Figure 2.2: PUA - Huet’s Pre-Unification Rules

An important aspect of clause normalization is Skolemization. We will use the Skolem terms
defined in [62]

Definition 2.3.7 (Skolemization). Given a clauseC, let xα1
1 , .., xαnn be the set of all free variables

occurring in C, then a Skolem term of type α for C, which will be denoted by sα is the term
f(x1, .., xn) for f a new function symbol of type α1 → ..→ αn → α.

The constrained resolution calculus is based on literals and clauses. Therefore, it is necessary
to have rules for the normalization of terms into clauses.

Definition 2.3.8 (Simplification rules). The set of simplification rules, which are used for nor-
malizing terms into clauses, is given in Fig. 2.3 where x is a new variable and sα is a new
Skolem term.

C ∨ [¬D]T

C ∨ [D]F
(¬T )

C ∨ [¬D]F

C ∨ [D]T
(¬F )

C ∨ [D1 ∨D1]
T

C ∨ [D1]T ∨ [D2]T
(∨T )

C ∨ [D1 ∨D2]
F

C ∨ [D1]F
(∨Fl )

C ∨ [D1 ∨D2]
F

C ∨ [D2]F
(∨Fr )

C ∨ [ΠαA]T

C ∨ [Axα]T
(ΠT )1

C ∨ [ΠαA]F

C ∨ [Asα]T
(ΠF )2

Figure 2.3: Simplification Rules

25



The resolution and factorization rules, given next, correspond to cuts and contractions over
terms which are not syntactically equal and their correctness is based on the unifiability of the
added unification constraint.

Definition 2.3.9 (Resolution and factorization rules). The resolution and factorization rules are
given in Fig. 2.4.

[A]p ∨ C [B]¬p ∨D
C ∨D ∨ [A

.
= B]F

(Resolve)
[A]p ∨ [B]p ∨ C

[A]p ∨ C ∨ [A
.
= B]F

(Factor)

Figure 2.4: Resolution and factorization rules

Since the simplification rules eliminate logical constants, such symbols cannot occur inside
unification constraints and therefore a search for unifiers containing logical symbols will al-
ways fail. Huet’s solution to the problem was to add splittings rules which try to instantiate set
variables with different terms containing logical symbols.

Definition 2.3.10 (Splitting rules). The set of splitting rules is given in Fig. 2.5 where Y,Z and
z are new variables and sα a new Skolem term.

C ∨ [X(tn)]T

C ∨ [Y ]T ∨ [Z]T ∨ [X(tn)
.
= (Y ∨ Z)]F

(ST∨ )
C ∨ [X(tn)p

C ∨ [Y ]¬p ∨ [X(tn)
.
= ¬Y )]F

(STF¬ )

C ∨ [X(tn)]F

C ∨ [Y ]F ∨ [X(tn)
.
= (Y ∨ Z)]F

(SFl
∨ )

C ∨ [X(tn)]F

C ∨ [Z]F ∨ [X(tn)
.
= (Y ∨ Z)]F

(SFr
∨ )

C ∨ [X(tn)]T

C ∨ [Y zα]T ∨ [X(tn)
.
= ΠαY ]F

(STΠ)
C ∨ [X(tn)]F

C ∨ [Y sα]F ∨ [X(tn)
.
= ΠαY ]F

(SFΠ )

Figure 2.5: Splitting Rules

Definition 2.3.11 (Variants). Let C be a clause, V the set of all free variables in C and σ a
substitution mapping each variable in V to a new variable, then Cσ is a variant of C.

Definition 2.3.12 (Constrained resolution calculus). The constrained resolution calculus con-
tains the rules given in figures 2.2, 2.4, 2.3 and 2.5. All resolution calculi presented in this thesis
also have axioms which are clauses from an initial clauses set.

Definition 2.3.13 (Derivations). A derivation in the constrained resolution calculus is a sequence
of rule applications such that each rule is applied to variants of clauses occurring earlier in the
sequence. A derivation can also be described by an acyclic directed graph.

Definition 2.3.14 (Substitutions (of derivations)). Given a derivation of a clause C and let
σ1, .., σn be all substitutions computed in the derivation, then the substitution σ1 ◦ .. ◦ σn is
called the substitution of the derivation.

26



The following lemma will be used later in the thesis.

Lemma 2.3.15. If a clauses set S is refutable using CRC then we can obtain a refutation of S
containing a clause C, such that below it we have only rule applications from Fig. 2.2 and above
it only rule applications from the other sets.

Proof. We need to show that no rule among the ones from figures 2.4, 2.3 and 2.5 depends on
a substitution generated by the unification rules. For the splitting rules it is clear as if they are
applicable after a substitution is applied they are also applicable before. For the simplification
rules, we might generate a pseudo-literal by applying a substitution, which can then be sub-
jected to simplification, but if that is the case, we can apply splitting on the same variable and
allow unification (later) to decompose the term. (Resolve) and (Factor) are applied to
literals only and therefore if they can be applied before, they can be applied (using splittings if
necessary) also afterwards.

Remark 2.3.16. The above lemma shows that in general, the simplification rules are not re-
quired for completeness in a constrained resolution which postpones unification until a clause
containing only unification constraints is found.

A Note About Semantics

The main purpose of the resolution calculus given in this thesis is to serve as a practical tool
for fully automated higher-order theorem proving. Therefore, the semantical properties of the
calculus will not be investigated too deeply.

Since any higher-order calculus will be incomplete with regard to standard semantics, de-
signer of such calculi aim to other semantics. The original resolution calculi of Andrews [3] and
Huet [48] were proven to be complete with regard to V -complexes [3]. In the last two decades
though and especially through the work of Benzmüller and Kohlhase [8], newer calculi were
designed which enjoy completeness with regard to Henkin’s semantics [42].

In [16] it is shown that one can obtain a constrained resolution calculus which is Henkin
complete by either adding infinitely-many extensionality axioms or extensionality rules. The
completeness results given in this thesis are proved with relation to the completeness of Huet’s
constrained resolution calculus and the problem of obtaining Henkin’s completeness is not dis-
cussed any further. It is important to note that extensionality is not required to prove many
interesting theorems, for example in second-order arithmetic, so a non-extensional higher-order
resolution calculus is useful in practice.

Theorem 2.3.17 (Completeness). If a clauses set is unsatisfiable with regard to V -complexes
[3], then we can refute it using CRC.

27





CHAPTER 3
Context Unification

One of the earliest decidability results in higher-order unification was the decidability of the
problem, whether two terms which are freely generated over a group are unifiable [59]. The
context unification problem [21] can be seen as a generalization of the theory of free groups
as well as a restriction of second-order logic. Context unification problems augment first-order
problems with unary second-order variables, which can be substituted by first-order contexts
(see Def. 2.1.51).

Context unification has applications in several fields in computer science, such as computa-
tional linguistics ( [63], [64]) and rewrite systems ( [65]). The decidability question of context
unification is still an open problem. Despite that, there are several subclasses of the problem,
which were shown to be decidable ( [70], [21], [55], [73]).

The algorithms in these papers efficiently decide the unifiability problem but do not enumer-
ate unifiers. When one is interested in the enumeration of all pre-unifiers, the pre-unification
algorithm (see Def. 2.2.15) is the only option.

In this section we give an algorithm that combines the efficient unification decision proce-
dure with the ability to enumerate all pre-unifiers. The main motivation for such an algorithm is
as a possible replacement for the unification rules in higher-order resolution calculi (see Chap.
5). The relative simplicity of the algorithm and the fact that it is based on the pre-unification
algorithm and can use its correctness proofs, form two lesser motivation arguments. In light of
the fact that there are many unification algorithms even for the sub-problem of unifying strings
and all of them are far more complicated than Huet’s pre-unification algorithm, these two moti-
vations are still important.

The techniques used in this chapter will be developed further in Chap. 4 and the algorithms
in this chapter can be seen as simplified versions of the more complex algorithms used in Chap.
4.

29



3.1 Context Unification Problems

In this section we will describe the class of context unification problems and describe a variant
of the pre-unification algorithm, which is applicable to these problems.

Since the language used in this section is a restricted version of the typed lambda calculus,
including only a first-order signature and restricted second-order variables, we will redefine it in
the next definition. We would like to make a distinction between valid terms as defined next and
between contexts and context variables. The later, when not applied to terms, are not valid terms
in our language.

Definition 3.1.1 (Terms and context variables). Let Σ be a first-order signature. In this chapter
we will use different denotations for first and second-order variables. First-order variables (Vi)
will be denoted by the lower case letters x, y and z while context variables (Vi→i) will be denoted
by the capital letters X,Y and Z. We will also denote the set of context variables by Vc. The
set Termc is defined inductively:

• if f ∈ Σ and τ(f) = i then t ∈ Termc.

• if x ∈ Vi then x ∈ Termc.

• if X ∈ Vc and t ∈ Termc then X(t) ∈ Termc.

• if f ∈ Σ, ar(f) = n and ti ∈ Termc for 0 < i ≤ n then f(t1, .., tn) ∈ Termc.

Remark 3.1.2. The language defined above, when restricted to a monadic signature Σ contain-
ing also the constant ε, is exactly the language of words over the alphabet Σ. The unification
problem over this language is called string unification and was shown to be decidable [59].

When searching for unifiers for context unification problems, context variables will be re-
placed by first-order contexts (see Def. 2.1.51).

Definition 3.1.3 (Context substitutions). Context substitutions are substitutions whose domain
is a subset of Vi ∪ Vc and their range is a subset of Termc ∪ Contexti such that first-order
variables are mapped to terms and context variables are mapped to contexts. Context unifiers
and pre-unifiers are defined analogously to unifiers and pre-unifiers.

Definition 3.1.4 (Context unification constraints and systems). A context unification constraint
is a unification constraint t .

= s where t, s ∈ Termc. A pseudo constraint is a unification
constraint x .

= s where x ∈ Vc and s ∈ Contexti (see Def. 2.1.46). A context unification
system is a system of constraints and pseudo constraints. The notion of pre-solved systems is
the same as for regular unification systems and constraints.

Example 3.1.5. The context unification problem:

• {X(a)
.
= f(b, y), f(y, a)

.
= f(a, a), Y (y)

.
= z}

is pre-unifiable by [f(b, [.])/X, a/y].

30



Definition 3.1.6 (Context partial bindings). A context partial binding for a function symbol f
of arity n and index 0 < k ≤ n is the context f(xi

1, .., x
i→i
k ([.]), .., xi

n) where xi for 0 < i ≤ n
are new variables. We will denote context partial bindings by PB(f, k).

Example 3.1.7. We will compute the set of partial bindings for the context unification constraint:
X(a)

.
= f(b, y) from Ex. 3.1.5.

• PB(f, 1) = f(Y ([.]), z).

• PB(f, 2) = f(z, Y ([.])).

where z and Y are fresh free variables.

Remark 3.1.8. In the rest of this section, we will refer to context constraints, systems, substi-
tutions, unifiers, pre-unifiers and partial bindings as constraints, systems, substitutions, unifiers,
pre-unifiers and partial bindings respectively.

Definition 3.1.9 (The set of rules PUAC (pre-unification algorithm for context unification)). Let
S be a unification system, then the set of rules PUAC is defined in Fig. 3.1.

S ∪ {A .
= A}

S
(Delete)

S ∪ {f(sn)
.
= f(tn)}

S ∪ {s1
.
= t1, .., sn

.
= tn}

(Decomp)

S ∪ {x .
= t} x 6∈ FV(t), σ = [t/x]

σ(S) ∪ {x .
= t}

(Bind)

S X(s)
.
= f(tn) ∈ S, 0 < k ≤ n, u = PB(f, k), σ = [u/X]

σ(S) ∪ {X .
= u}

(Imitate)

S X(s)
.
= t ∈ S, σ = [[.]/X]

σ(S) ∪ {X .
= [.]}

(Project)

Figure 3.1: PUAC- Huet’s pre-unification rules for context unification

Remark 3.1.10. Please note that the title “Huet’s pre-unification rules” is a bit misleading
as the last two rules are different from the ones in Fig. 2.1. While in the original algo-
rithm we force any execution to have the (Bind) rule executed after each application of
(Imitate) or (Project), in the above algorithm the (Bind) application is integrated
into the (Imitate) and (Project) rules.

Remark 3.1.11. Note that if a unification system does not contain pseudo constraints, applying
PUAC will result in systems having pseudo constraints in solved form only. From now on we
will assume that the initial system does not contain pseudo constraints.

Example 3.1.12. The unifier [ff([.])/X] of the context system:

31



• Xfa .
= fXa

can be obtained from the solved form of the following derivation:

{Xfa .
= fXa}

(Imitate)
{fX ′fa .

= ffX ′a,X
.
= f(X ′[.])}

(Decomp)
{X ′fa .

= fX ′a,X
.
= f(X ′[.])}

(Imitate)
{fX ′′fa .

= ffX ′′a,X
.
= f(f(X ′′[.]), X ′

.
= f(X ′′[.])}

(Decomp)
{X ′′fa .

= fX ′′a,X
.
= f(f(X ′′[.]), X ′

.
= f(X ′′[.])}

(Project)
{fa .

= fa,X
.
= f(f([.])), X ′

.
= f([.]), X ′′

.
= [.]}

(Delete)
{X .

= f(f([.])), X ′
.
= f([.]), X ′′

.
= [.]}

When attempting to define a complete set of pre-unifiers for context unification problems
we face the problem that the completing substitution (see Def. 2.2.8) maps context variables to
terms which are not contexts. Indeed, the pre-unification algorithm PUAC may compute pre-
unifiers which are not more general than any unifier. The reverse direction still holds however
and we will use it in order to define the complete sets.

Definition 3.1.13 (Complete sets of pre-unifiers). Given a unification system S, its complete set
of pre-unifiers is the set PreUnifiers(S) of (normalized) substitutions such that:

• for every normalized θ ∈ Unifiers(S) there exists σ ∈ PreUnifiers(S) such that
σ|dom(θ) ≤ θ.

This weaker notion of soundness also means that even if we can decide, for a given system
S, if the set PreUnifiers(S) is non-empty, that still does not imply that the system S is
unifiable. A simple example demonstrating this is the constraint X(a)

.
= X(b) which is not

unifiable despite being in pre-solved form. Nevertheless, the set PreUnifiers is still of
interest as in some cases it can be processed further in order to decide unifiability. Such a case
is presented in Sec. 3.5.

Corollary 3.1.14 (Completeness). If θ is a pre-unifier of a unification system S, then there exists
a pre-solved system S′, which is obtainable from S using PUAC such that σS′ |FV(S) ≤ θ.

Proof. Follows directly from Thm. 2.2.17

While proving soundness with regard to PreUnifiers does not make sense, we can prove
a weaker notion of soundness:

Corollary 3.1.15 (Soundness). If S′ is obtained from a unification system S using PUAC then
PreUnifiers(S′)|FV(S) ⊆ PreUnifiers(S) where PreUnifiers(S′)|FV(S) = {σ|FV(S) |
σ ∈ PreUnifiers(S′)}.

Proof. Follows directly from Thm. 2.2.16

32



3.2 Regular Contexts and Bounds

When comparing the algorithms PUAC and PUA, we notice that in PUAC the number of higher-
order unsolved variables never increases and does actually decrease on each application of
(Project). This implies that there are at most n applications of the rule (Project) in
any execution of PUAC on a system S, where n is the number of context variables in S.

A major difference between first and higher-order unification is the non-determinism added
by the later in the form of the two rules (Imitate) and (Project). The fact that in
context unification problems we have a bound on the number of possible applications of the
(Project) rule, means we can restrict this non-determinism within two applications of the
(Project) rule.

When analyzing how the (Imitate) rule can be applied in this way, we make a distinction
between two possible cases. When the rule is applied on an acyclic variable, we claim that the
(Imitate) applications can be simulated by a first-order algorithm and therefore their number
can be bounded by the same bounds as in first-order unification algorithms. When we apply it on
cyclic variables, we claim that the imitations must be of a specific form, which can be described
by a regular expression.

When we disallow the application of the (Project) rule on an acyclic problem, any run
of the algorithm can be simulated in a sense by a run of a first-order unification algorithm.
The following definition is motivated by the fact that the depth of terms generated during the
execution of first-order unification algorithms is bounded.

Definition 3.2.1 (Maximum depths). Given a system S, we denote the maximum size d(t) for
all term t in S by md(S).

Definition 3.2.2 (First-order bound). Given a system S, its first-order bound is (k+ 1) · md(S),
where k is the number of unsolved variables in S. It is denoted by fbound(S).

The regular contexts defined next also serve the role of bounds.

Regular contexts

Instead of bounding the depth of terms, regular contexts bound the form of the partial bindings.

Definition 3.2.3 (Regular contexts). The set Contextr extends the set Contexti and is de-
fined inductively:

• if C ∈ Contexti then C ∈ Contextr.

• if C ∈ Contexti and D ∈ Contextr then C(D) ∈ Contextr.

• if C ∈ Contexti and D ∈ Contextr then C∗(D) ∈ Contextr where ∗ is called a
Kleene star.

• we will also define the set of regular contexts which contains at least one Kleene star as
Context∗ = Contextr \ Contexti.

33



Example 3.2.4. The regular context f(f([.])) ∈ Contexti while the regular context
(f [.])∗(g([.])) ∈ Context∗.

Remark 3.2.5. Note that the iterated composition of the regular contextC[[.]]n can be computed
for every natural number n (see Def. 2.1.52).

Extracting regular contexts from cycles

In order to give the intuition behind why we need regular contexts and how we plan to use them,
we will give an informal discussion of how it is constructed. Let us have another look at the
cyclic system from Ex. 3.1.12:

{Xfa .
= fXa} (3.1)

We have seen in Ex. 3.1.12 how to obtain one unifier. Using similar derivations containing a
number n of sequential applications of the (Imitate) and (Decomp) rules we can obtain
a unifier [fn([.])/X]. Can we claim that all the unifiers of this system can be generated by the
regular expression [f∗([.])/X]? In this case, it is not difficult to prove this is indeed the case.
Let us assume there is a unifier σ = [C/X] which is not described by this regular expression,
then C must contain a function symbol g other than f . Let q be the position of the hole in C. If
the system 3.1 is unifiable by σ, then the system:

{C[fa|q]
.
= fC[a|q]} (3.2)

obtained by applying σ to the system 3.1 is unifiable as well and there is a derivation of it ending
in a pre-solved form. Let p be the position of the first occurrence of g in C and let m be the size
of p. Clearly, no derivation with less than m applications of the (Imitate) and (Decomp)
rules can end in a pre-solved form. The resulted system after m such applications will have,
up to renaming of variables, the constraint g(tn)

.
= f(g(sn)). Such a system cannot be pro-

cessed further and therefore, no pre-solved form can be obtained, in contrary to our assumption.
Therefore, all unifiers are described by the regular expression [f∗([.])/X].

Can we generalize our results to arbitrary cycles? It turns out the answer to this question
is both yes and no. We can answer yes as we can, for every cycle, give a finite set of regular
expressions defining a superset of the mappings, for all unifiers, of at least one variable in the
cycle. We can answer no as if we want to extend these regular expressions to describe the unifiers
instead of the individual mappings, we will need infinitely-many such regular expressions. In
fact, it was shown [45] that there is no finite parametric representation of all unifiers for the
simpler string unification problems involving more than three variables.

But it turns out our partial results are sufficient for deciding some classes of unification
problems as will be seen in Sec. 3.5 in this chapter and in Chap. 4 and even are sufficient for the
implementation of an higher-order resolution calculus with eager unification (see Chap. 5).

Going back to our attempt to generalize the results, we see that the extractions of regular
expressions can be much more complex than what we have seen so far. The complexity arises
from two different factors. The first is that we may have more than one function symbol in the
cycle context and the second is that we may have more than one constraint in the cycle.

We will consider each of these cases using an example.

34



Assume first we have the system:

{X(y1)
.
= e(f(x1, h(g(X(y2), x2))))} (3.3)

and we would like to compute from the cycle a superset of the mappings for X in all the unifiers
of the system. We first build the cycle context, as was done before and obtain
e(f(x1, h(g([.], x2)))). Following the same construct from above we can obtain the following
regular context e(f(x1, h(g([.], x2))))

∗ which indeed generates infinitely-many mappings for
the variable X in unifiers of system 3.3. Despite that, it fails to generate mappings for some
other unifiers of the system, such as [e([.])/X]. We can generate this unifier if we consider, in
addition to the previous regular context, also the regular context e(f(x1, h(g([.], x2))))

∗(e([.])).
Are these two regular contexts enough to generate all possible mappings? It is easily seen that
for any other prefix of the context e(f(x1, h(g([.], x2)))), such as e(f(x1, [.])), we need an
additional regular context. The complete set of regular contexts for generating the mappings for
X in all possible unifiers of the system 3.3 is then the set:

{e(f(x1, h(g([.], x2))))
∗(C ′) | ∃C ′′ C ′C ′′ = e(f(x1, h(g([.], x2))))} (3.4)

where the contexts C ′ are all the possible prefixes. Since the two trivial prefixes create the same
regular context, the complete set contains four elements.

This argument leads us to the following lemma, which is based on an essential step from the
proof of Lemma 5.8 in [70]. More information about this essential step can be found in [70], [71]
and [56]. Despite the similarities of the proofs, our proof differs in several important points.
First, the proof is about the completeness using regular languages and not about searching for
minimal unifiers. Second, our algorithm is using a minimal set of rules, in contrast to a much
bigger set of rules in the other papers. A consequence of this is that we indirectly treat cases,
which are treated directly in the other papers, such as the treatment of ambiguous cycles.

Lemma 3.2.6. Given a standard cycle {Xt .= C[Xs]} in system S, then for every ground unifier
σ of S, σ(X) ≥s (Ck(C ′)) for k ≥ 0 and C ′ a prefix of C.

Proof. Let A be the greatest common prefix of (Ck+1)σ and σ(X). Then, A = (Cσ)l(C ′) for
some l ≤ k where C ′ is a proper prefix of Cσ and let C ′′ be a context such that C ′(C ′′) = Cσ.
Since A is a prefix of σ(X), we can choose k, without loss of generality, to be the depth of
σ(X). Assume that σ(X) 6= A, then σ(X) = A(f(t1, .., [.]@k, .., tn))(D) for some context
D, where A(f(t1, .., [.]@k, .., tn)) is not a prefix of ((Cσ))k+1. Applying σ to the unification
constraint, we get:

A(f(t1, .., t
′
k, .., tn)) = (Cσ)(A(f(t1, .., t

′′
k, .., tn))),

where t′k, t
′′
k are terms. Applying (Decomp)s we get:

f(t1, .., t
′
k, .., tn)

.
= C ′′(C ′(f(t1, .., t

′′
k, .., tn)))

Now we consider the head component of the main path of C ′′ (see Def. 2.1.46). If it is k, then
we get a contradiction to the maximality of A as since σ is a ground unifier, it should include
f as well. Otherwise, it is i 6= k and let C ′′[.] = f(s1, .., D

′
@i, .., sn), then we get from the

constraint, after one (Decomp), that

35



ti
.
= D′(C ′(f(t1, .., ti, .., tn)))

which is a contradiction to the unifiability of the pair as the positions of the holes in D′ and C ′

are rigid (according to the definition of standard cycles).

We can now consider the more complex case of standard cycles containing more than one
constraint:

{X1t1
.
= X2a,X2t2

.
= hg(X1s2, b)} (3.5)

and let us consider the substitution [hg(y, [.])/X2] which gives us the system:

{X1t1
.
= hg(y, a), hg(y, t2)

.
= hg(X1s2, b)} (3.6)

after applying a couple of (Decomp)s followed by a (Bind) we obtain the following standard
cycle:

{X1t1
.
= hg(X1s2, a)} (3.7)

whose unifiers, we already know, must be of the form [((hg([.], a))kC ′)/X1] for some prefix C ′

and natural number k.
Despite the close similarity between the original cycle context hg([.], b) and the new hg([.], a)

they are different and when trying to compute, from a cycle context, a superset of mappings for
some variable and for all unifiers of the cycle, we must take this into account. If we look for the
reason for the different cycle context, we find that as we substituted forX2 a context whose main
path is not a prefix of the main path of the cycle context (instead of position 1.1 we chose posi-
tion 1.2) we replaced the original cycle context with almost the same version, but with another
term at position 1.2. This “derailing” [70] of the hole in the mapping for the variable X2 turns
out to be the only source of complication and as can be seen from the example, it can happen at
most n− 1 times where n is the number of constraints in the standard cycle.

Definition 3.2.7 (Derailing). Given a context C let p be a prefix of its main path such that
hd(C|p) = f and ar(f) = n > 1 and let 0 < k ≤ n be the head component of the main path of
C|p. Then, the context C[f(y1, ..D@k, .., yn)|p], where D = C|p.k and the yi for 0 < i ≤ n are
new first-order variables, is called a derailing ofC. We call the contextC[f(y1, .., [.]@k, .., yn)|p]
the pre-context of the derailing and the context D the post-context of the derailing. We denote
by one-derail(C) the set of all possible derailings of a context C. This set always includes
also the empty derailing, i.e. the context C itself. In this case the pre-context is empty and
the post-context is equal to C. Note that this set is finite and its size is equal to the number of
non-unary symbols occurring at prefix positions of the main path. Given a derailed context D,
we sometimes denote by Dpre and Dpost its pre and post-contexts.

Example 3.2.8. The set of all derailings for the context hg([.], b) from the above example is
{hg([.], b), hg([.], y)}. the context hg([.], y) is the pre-context and [.] is the post-context of the
non-trivial element in the set.

Let us consider again system 3.5 from the discussion above. We can say that based on the
cycle context hg([.], b) and since it has only one possible derailing {hg([.], y)}, we can describe
a superset of mappings {hg([.], y)k | k ≥ 0} ∪ {hg([.], y)k(h([.])) | k ≥ 0} such that for every

36



unifier of the system one of the variablesX1 orX2 will be mapped to a context C such that there
is a context C0 in the set and a substitution δ such that C = C0δ.

When considering longer standard cycles with more complex cycle contexts the set can be
defined recursively:

Definition 3.2.9 (Iterated derailing). Let X1t1
.
= X2s1, .., Xmtm

.
= C[X1sm] be a standard

cycle, then the set derail(m,C) of the iterated derailed contexts for the cycle context C is
defined as follows:

• if m = 1 then derail(1, C) = {C∗C ′ | ∃C ′′ C ′C ′′ = C}.

• if m > 1 then derail(m,C) =
{C∗(Dpre(C

r)) | D ∈ one-derail(C), Cr ∈ derail(m− 1, Dpost(Dpre))}

Example 3.2.10. The following tables show the construction of all (non-trivial) iterated derail-
ings for the cycle context hg(ef(a, [.]), b) of the system:

{X1t1
.
= X2s1, X2t2

.
= hg(ef(a,X1s2), b)} (3.8)

For m = 2 we have:

C Dpre Dpost Cr

hg(ef(a, [.]), b) hg([.], y) ef(a, [.]) ∈ derail(1, ef(a, hg([.], y))
hg(ef(y, [.]), b) [.] ∈ derail(1, hg(ef(y, [.]), b)

For m = 1 we have:

C derail(1, C)
ef(a, hg([.], y)) (ef(a, hg([.], y)))∗

(ef(a, hg([.], y)))∗(e([.]))
(ef(a, hg([.], y)))∗(e(f(a, [.])))
(ef(a, hg([.], y)))∗(e(f(a, h([.]))))

hg(ef(y, [.]), b) (hg(ef(y, [.]), b))∗

(hg(ef(y, [.]), b))∗(h([.]))
(hg(ef(y, [.]), b))∗(h(g([.], b)))
(hg(ef(y, [.]), b))∗(h(g(e([.]), b)))

The first regular context generated according to the tables is:

(hg(ef(a, [.]), b))∗hg([.], y)(ef(a, hg([.], y)))∗ (3.9)

Definition 3.2.11 (Instantiations of regular contexts). Let C be a context, then the infinite set
insts(C, n) = {C ′′ | C ′ ∈ derail(n,C)} where C ′′ is obtained from C ′ by replacing each
Kleene star with a natural number is called the set of instantiations of the regular contexts for
the cycle context C and n iterations.

We first prove the following property of instantiations.

Lemma 3.2.12. Given a system S containing a standard cycle with a cycle context C and let
D ∈s insts(C, l) for some context D and l ≥ 1, then D ∈s insts(C, k) for all k > l (see
Def. 2.1.18).

37



Proof. For the corresponding iterations we replace the Kleene star with 0 and choose an empty
prefix (Cpre) in a trivial derailing.

We now prove the following relationship between instantiations.

Lemma 3.2.13. Let C be a context, C ′ and C ′′ contexts such that C ′C ′′ = C and C ′′ =
f(v1, .., D

′
@k, .., vn). Assume that:

• C0 ∈s insts(D′C ′f(z1, .., [.], .., zn),m) and

• C1 ≥s (C lC ′f(z1, .., C0, .., zn)) for some l ≥ 0.

Then, C1 ∈s insts(C,m+ 1).

Proof. From the assumptions we know that there are substitutions θ1 and θ2 and a context C2

such that:

• C2 ∈ insts(D′C ′f(z1, .., [.], .., zn),m).

• C0 = C ′2θ1.

• C1 = (C lC ′f(z1, .., C0, .., zn))θ2.

Furthermore, since C2 ∈ insts(D′C ′f(z1, .., [.], .., zn),m) we know that there is a regular
context Cr ∈ derail(m,D′C ′f(z1, .., [.], .., zn) such that C2 is an instance of Cr. We choose
now Cpre = C ′f(z1, .., [.], .., zn) and Cpost = D′. Clearly, CpreCpost ∈ one-derail(C)
and therefore, C∗CpreCr = C∗C ′f(z1, .., Cr, .., zn) ∈ derail(m + 1, C) and C lCpreC0 ∈
insts(C,m+ 1). Now, since C1 = (C lCpreC0)θ2, we get that C1 ∈s insts(C,m+ 1).

The next lemma states that for each ground unifier of a cyclic problem, there is one variable
in the cycle whose mapping in the unifier is subsumed by the relevant set of instantiations. The
proof proceeds by induction on the size of the cycle and attempts to reduce the size of the cycle.
For an example of how the induction step in the proof takes place please refer to Ex. 3.2.15.

Lemma 3.2.14. Given a standard cycleX1t1
.
= X2s1, .., Xntn

.
= C[X1sn], then for any ground

unifier σ of S there is an index 0 < i ≤ n such that σ(Xi) ∈s insts(C, n).

Proof. By induction on the number of constraints in the cycle. Let A be the greatest common
prefix of σ(Xi) and (σ(C))h for 0 < i ≤ n where h is the minimal depth of all σ(Xi). Then,
A = σ(C)l(C ′) for some l ≤ h where C ′ is a proper prefix of σ(C) and let C ′′ be a context
such that C ′(C ′′) = σ(C).

• for n = 1 we can use Lemma 3.2.6 in order to show that σ(X1) = A and therefore that
σ(X1) ∈s insts(C, 1).

• for n > 0, if there is 0 < i ≤ n such that σ(Xi) = A then we are done since A ∈s
insts(C, r) for all r > 0. Assume otherwise, then A is a proper prefix of σ(Xi) for all
0 < i ≤ n. Let f be the first function symbol in C ′′ (of arity ar) and assume the head
component of the position of the hole in C ′′ is k such that C ′′ = f(v1, .., D

′
@k, ., var). We

consider now the cycle after the application of σ.

38



Af(t11, .., D
1
@k1(t1), .., t

1
ar)

.
= Af(t21, .., D

2
@k2(s1), .., t

2
ar), ..,

Af(tn1 , .., D
n
@kn(tn), .., tnar)

.
= C[Af(t11, .., D

1
@k1(sn), .., t1ar)]

for some Di,tij , ti and si for 0 < i ≤ n and 0 < j ≤ ar. Note that the last constraint can
also be displayed as:

Af(tn1 , .., D
n
@kn(tn), .., tnar)

.
= Af(v1, .., D

′
@k(C

′f(t11, .., D
1
@k1(sn), .., t1ar)), .., var)

It is clear that f must not be a unary symbol and that there must be at least one index
0 < i ≤ n, such that ki 6= k. This is so as σ is a ground unifier and if all the positions
of the holes are k, then all terms tji for all j will be equal (to vi) and the symbol f will be
included in the maximal common prefix. We would like now to show how we can obtain a
smaller cycle. Let I = {i1, .., ip} contain all the indices 0 < i ≤ n such that ki = k. (i.e.
the head component of the position of the hole in f is k). Let size(mpath(A)) = m,
we consider the following cycle after (m+ 1) · n applications of the (Decomp) rule.

u1
.
= u′1, .., un

.
= u′n (3.10)

where:

– for every 0 < i ≤ n, ui = Di(ti) if i ∈ I and ui = tik otherwise.

– for every 0 < i < n, u′i = Di+1(ti+1) if i+ 1 ∈ I and u′i = ti+1
k otherwise.

– u′n = D′C ′f(t11, .., D
1
@k1(sn), .., t1ar).

Now let us consider the substitution δ such that δ(yi) = tik for 0 < i ≤ n where yi are
fresh variables. and consider the equations

r1
.
= r′1, .., rn

.
= r′n (3.11)

where:

– for every 0 < i ≤ n, ri = Di(ti) if i ∈ I and ri = yi otherwise.

– for every 0 < i < n, u′i = Di+1(ti+1) if i+ 1 ∈ I and r′i = yi+1 otherwise.

– r′n = D′C ′f(t11, .., D
1
@k1(sn), .., t1ar).

Clearly, these equations are pre-unifiable by σ◦δ. After applying (Bind) on all equations
containing yi, we get:

Di1(t′i1)
.
= Di2(s′i2), .., Dip(t′ip)

.
= D′C ′f(t11, .., D

i1
@k(s

′
ip), .., t

1
ar) (3.12)

where, as applying (Bind) may change the indices of the arguments ti1 , .., tip and
si1 , .., sip , we take the permutations t′i1 , .., t

′
ip

and s′i1 , .., s
′
ip

of them. Let us take now
the substitution θ such that θ(Y ij ) = Dij ([.]) for 0 < j ≤ p where Yij are fresh variables
and consider the standard cycle:

Y i1(t′i1)
.
= Y i2(s′i2), .., Y ip(t′ip)

.
= D′C ′f(t11, .., Y

i1
@k(s

′
ip), .., t

1
ar) (3.13)

39



which is clearly pre-unifiable by σ ◦ θ. Assume further that we have the substitution η
such that η(zi) = t1i for 0 < i ≤ ar, then the standard cycle:

Y i1(t′i1)
.
= Y i2(s′i2), .., Y ip(t′ip)

.
= D′C ′f(zi, .., Y

i1
@k(sn), .., zar) (3.14)

is pre-unifiable by σ ◦ θ ◦ η. Since p < n, we can apply the induction hypothesis in
order to obtain that there is and index 0 < j ≤ p such that θ(Y ij ) = Dij ([.]) ∈s
insts(D′C ′f(zi, .., [.]@k, .., zar)), p). Since σ(Xij ) = Af(t

ij
1 , .., D

ij ([.]), .., t
ij
ar) =

(Cσ)lC ′f(t
ij
1 , .., D

ij ([.]), .., t
ij
ar), we can use Lemma 3.2.13 in order to obtain that

σ(Xij ) ∈s insts(C, p + 1) ⊆ insts(C, n) (Lemma 3.2.12). Note, that I cannot be
empty as we would get from the standard cycle 4.17, after applying the (Bind) rule n
times, the constraint:

y1
.
= D′C ′(f(t11, ..y1, ..t

1
ar)) (3.15)

which cannot be unified as the positions of the holes in D′ and C ′ are rigid (according to
the definition of cycles).

The following example illustrates the induction step in the above proof.

Example 3.2.15. The following example extends Ex. 3.2.10. Assume we have the follow-
ing standard cycle containing the context variables X1 and X2: {X1t1

.
= X2s1, X2t2

.
=

hg(ef(a,X1s2), b)} where t1 = ef(a, hg(d, c)), t2 = b, s1 = c and s2 = d. Let σ be the
following ground unifier of the problem:

[(hg(ef(a, [.]), b))hg([.], c)(ef(a, hg([.], c)))/X1, (hg(ef(a, [.]), b))hg(v, [.])/X2] (3.16)

where v = ef(a, [.])hg([.], c)ef(a, hg(d, c)). After applying σ to the cycle, we get:

(hg(ef(a, [.]), b))hg([.], c)(ef(a, hg(ef(a, hg(d, c)), c)))
.
= (hg(ef(a, [.]), b))hg(v, c))

(hg(ef(a, [.]), b))hg(v, b))
.
= hg(ef(a, [.]), b)(hg(ef(a, [.]), b))hg([.], c)(ef(a, hg(d, c))) (3.17)

with the maximal common prefixA = (hg(ef(a, [.]), b))h([.]). The two mappings can be written
also as: σ(X1) = Ag([.], c)(ef(a, hg([.], c))) and σ(X2) = Ag(v, [.]). Since A is a strict prefix
of both mappings, we must have a derailing. The derailing occurs at Ag(.., ..) as the second
mapping has the hole of the context in the second position while the first mapping and the cycle
context itself (after two iterations) have the context’s hole in the first position. Therefore, we
would like to eliminate variable X2. This can be done as follows:

first decompose the problem in order to obtain

g([.], c)(ef(a, hg(ef(a, hg(d, c)), c)))
.
= g(v, c)

g(v, b))
.
= g(ef(a, [.]), b)hg([.], c)(ef(a, hg(d, c))) (3.18)

another decomposition will give us the following two equations (out of four equations)

ef(a, hg(ef(a, hg(d, c)), c)))
.
= v

v
.
= ef(a, [.])hg([.], c)(ef(a, hg(d, c))) (3.19)

40



we now obtain the more general and unifiable problem

ef(a, hg(ef(a, hg(d, c)), c)))
.
= y

y
.
= ef(a, [.])hg([.], c)(ef(a, hg(d, c))) (3.20)

by replacing v with the new variable y. Since applying (Bind) preserves the set of unifiers, we
can apply it in order to obtain the unifiable problem

ef(a, hg(ef(a, hg(d, c)), c)))
.
= ef(a, [.])hg([.], c)(ef(a, hg(d, c))) (3.21)

Now, by replacing ef(a, hg([.], c))) with X ′1 we get the unifiable problem

X ′1(ef(a, hg(d, c)))
.
= ef(a, [.])hg(X ′1(d), c) (3.22)

and we managed to obtain a unifiable system with a smaller cycle. We can now apply the
induction hypothesis in order to obtain θ(X ′1) ∈s insts(ef(a, [.])hg([.], c), 1) where θ =
[ef(a, hg([.], c)))/X ′1] and the chosen instance is ef(a, [.])hg([.], c). We can now construct the
mapping for σ(X1) from the mapping of θ(X ′1) as follows. We know that
σ(X1) = Ag([.], c)(θ(X ′1)) and by using Lemma 3.2.13, we obtain the required result.

3.3 Pre-unification Using Regular Terms

The algorithm we will define next differs from PUAC by having an environment which will be
used in order to restrict the possible partial bindings in the (Imitate) rule. The environment
will contain two types of constraints. The binding constraints will force the imitations and
projections of variables to be according to regular constraints. The depth constraints will restrict
the depth of terms we can obtain.

Definition 3.3.1 (Binding constraints, depth constraints and environments). Let C be a regular
context andX a context variable, the formulaX/C is called a binding constraint and the formula
d(X) ≤ n is called a depth constraint. A set of binding and depth constraints is called an
environment. We define the application of a substitution to a binding constraint as the constraint
obtained after applying the substitution to the regular context and define the application of a
substitution to environments in the obvious way. Environments contain at most one binding and
one depth constraint per variable. As we will see in the algorithm, it is not possible to add more
than one depth and binding constraint for each variable.

The notion of pre-solved systems is the same as for PUAC , ignoring the environment.

Remark 3.3.2. In order to simplify the presentation of the algorithm, we will use the following
abbreviation:

• X/ 6∈ E in order to denote (X / C) 6∈ E for some regular context C.

41



Definition 3.3.3 (The set of rules CUA (Context unification algorithm)). Let S be a unification
system andE an environment, then the set of rules CUA is defined in Fig. 3.2. Let reset(S) be
the function generating the environment containing a depth constraint d(X) ≤ 2 · fbound(S)
for each unsolved context variable X occurring in S. The initial environment is equal to
reset(S). The function scy returns all standard cycles in S.

The rules of the algorithm can be understood as follows: the depth constraints apply to
acyclic variables and are used in the (Imitatepb) only. They are being reset every time a
(Project) is called and are reduced by one for new variables introduced by (Imitatepb).
The (Imitate∗), (Imitate0)and (Skip) are used for cyclic variables. (Imitate∗) is
used for unfolding a regular context starting with a starred context, the (Skip) rule is used
to skip the starred context completely and (Imitate0) is used for unfolding regular contexts
starting with normal contexts.

We will demonstrate the execution of the algorithm through two examples, for acyclic and
cyclic problems.

Example 3.3.4. In the following derivation of CUA, we obtain a pre-unifier for the acyclic con-
text unification problem:

{Xha .
= gY b, Y a

.
= f(Za, a)} (3.23)

{d(X) ≤ 16, d(Y ) ≤ 16, d(Z) ≤ 16} ` {Xha .
= gY b, Y a

.
= f(Za, a)}

(Imitatepb)
{d(X1) ≤ 15, d(Y ) ≤ 16, ..} ` {gX1ha

.
= gY b, Y a

.
= f(Za, a), X

.
= gX1([.])}

(Decomp)
{d(X1) ≤ 15, d(Y ) ≤ 16, ..} ` {X1ha

.
= Y b, Y a

.
= f(Za, a), ..}

(Imitatepb)
{d(X1) ≤ 15, d(Y1) ≤ 15, ..} ` {X1ha

.
= f(w1, Y1b), f(w1, Y1a)

.
= f(Za, a), Y

.
= f(w1, Y1([.]), ..}

(Decomp)
{d(X1) ≤ 15, d(Y1) ≤ 15, ..} ` {X1ha

.
= f(w1, Y1b), Y1(a)

.
= a,w1

.
= Za, ..}

(Bind)
{d(X1) ≤ 15, d(Y1) ≤ 15, ..} ` {X1ha

.
= f(Za, Y1b), Y1(a)

.
= a,w1

.
= Za, ..}

(Project)
{d(X1) ≤ 12, d(Z) ≤ 12} ` {X1ha

.
= f(Za, b), a

.
= a, Y1

.
= [.], ..}

(Delete)
{d(X1) ≤ 12, ..} ` {X1ha

.
= f(Za, b), ..}

(Imitatepb)
{d(X2) ≤ 11, ..} ` {f(X2ha,w2)

.
= f(Za, b), X1

.
= f(X2([.]), w2), ..}

(Decomp)
{d(X2) ≤ 11, ..} ` {X2ha

.
= Za,w2

.
= b, ..}

(Bind)
{..} ` {X2ha

.
= Za, Y

.
= f(Za, [.]), X

.
= gf(X2([.]), b)}

Note that although it might not be possible to extend a pre-unifier to a unifier of a context uni-
fication problem, the pre-unifier [gf(X2([.]), b)/X, f(Za, [.])/Y ] obtained in the above deriva-
tion can be extended to the unifier [gf([.], b)/X, f(ha, [.])/Y ] by using ξ = [[.]/X2, h([.])/Z]
which is not as trivial as the completing substitution that was defined in Def 2.2.8.

Example 3.3.5. In the following derivation of CUA, we obtain a unifier for the cyclic monadic
context unification problem:

{XXXa .
= fXf7a} (3.24)

Note that by counting the function symbols and the variables, it is easy to deduce that [f4([.])/X]
is the only unifier of the problem.

42



E
`
S
∪
{A

. =
A
}

E
`
S

(
D
e
l
e
t
e
)

E
`
S
∪
{f

(s
n
)
. =
f
(t
n
)}

E
`
S
∪
{s

1
. =
t 1
,.
.,
s n

. =
t n
}
(
D
e
c
o
m
p
)

E
`
S
∪
{x

. =
t}

x
6∈
F
V
(t
),
σ
=

[t
/
x
]

E
σ
`
S
σ
∪
{x

. =
t}

(
B
i
n
d
)

E
∪
{X

/
C
∗
(C
r
)}
`
S

E
∪
{X

/
C
r
}
`
S
}

(
S
k
i
p
)

E
`
S

X
(s
)
. =
t
∈
S
,(
X
/
C
r
)
6∈
E
,σ

=
[[
.]
/
X
]

r
e
s
e
t
(S
σ
)
`
S
σ
∪
{X

. =
[.
]}

(
P
r
o
j
e
c
t
)

E
`
S

c
∈
s
c
y
(S

),
X
in
c,
X
/
6∈
E
,C

r
∈
d
e
r
a
i
l
(s
i
z
e
(c
),
c
c
o
n
(c
))

E
∪
{X

/
C
r
}
`
S

(
R
e
c
)

E
`
S

X
(s
)
. =
f
(t
n
)
∈
S
,(
d
(X

)
≤

0
)
6∈
E
,(
d
(X

)
≤
m
)
∈
E
,X

/
6∈
E
,u

=
P
B
(f
,k

),
σ
=

[u
/
X
]

E
σ
∪
{d

(X
′ )
≤
m
−

1
}
`
S
σ
∪
{X

. =
u
}

(
I
m
i
t
a
t
e
p
b
)
1

E
`
S

X
(s
)
. =
f
(t
n
)
∈
S
,(
X
/
(C
∗
(C
r
))
∈
E
,C

=
f
(t

1
,.
.,
C
′ @
k
,.
.,
t n

))
,u

=
f
(t

1
,.
.,
X
′ @
k
,.
.,
t n

),
σ
=

[u
/
X
]

E
σ
∪
{X
′
/
C
′ (
C
∗
(C
r
))
}
`
S
σ
∪
{X

. =
u
}

(
I
m
i
t
a
t
e
∗
)

E
`
S

X
(s
)
. =
f
(t
n
)
∈
S
,(
X
/
(C

(C
r
))
∈
E
,C

=
f
(t

1
,.
.,
C
′ @
k
,.
.,
t n

))
,u

=
f
(t

1
,.
.,
X
′ @
k
,.
.,
t n

),
σ
=

[u
/
X
]

E
σ
∪
{X
′
/
C
′ (
C
r
)}
`
S
σ
∪
{X

. =
u
}

(
I
m
i
t
a
t
e
0
)

Fi
gu

re
3.

2:
C
U
A

-C
on

te
xt

un
ifi

ca
tio

n
R

ul
es

1.
th

e
va

ri
ab

le
X
′

in
(
I
m
i
t
a
t
e
p
b
)

is
th

e
co

nt
ex

tv
ar

ia
bl

e
w

hi
ch

is
in

tr
od

uc
ed

in
th

e
co

nt
ex

tu
.

43



{d(X) ≤ 8} ` {XXXa .
= fXf7a}

(Rec)
{.., X / f∗([.])} ` {XXXa .

= fXf7a}
(Imitate∗)

{.., X1 / f
∗([.])} ` {fX1fX1fX1a

.
= ffX1f

7a,X
.
= fX1([.])}

(Decomp)
{.., X1 / f

∗([.])} ` {X1fX1fX1a
.
= fX1f

7a, ..}
(Imitate∗) + (Decomp) × 3

{.., X4 / f
∗([.])} ` {X4f

4X4f
4X4a

.
= fX4f

7a,X3
.
= fX4([.]), ..}

(Skip)
{.., X4 / [.]} ` {X4f

4X4f
4X4a

.
= fX4f

7a,X3
.
= fX4([.]), ..}

(Project)
∅ ` {f8a

.
= ff7a,X

.
= f4([.]), ..}

(Delete)
∅ ` {X .

= f4([.]), ..}

let σ be the substitution obtained from the derived system, then σ|X is a unifier of the system
3.24.

The following lemma, which will be used in the completeness proof, confirms that cyclic
variables can indeed be mapped by CUA to contexts based on the cycle’s context and size (See
Def. 3.2.11).

Lemma 3.3.6. Let X be a variable in a cycle in system S with cycle context C and cycle size n
and let C ′ ∈ insts(C, n), then we can derive using CUA a system S′ such that σS′(X) = C ′.

Proof. According to the definition of insts there is a regular context Cr corresponding to
C ′. by applying the three cyclic rules (Skip), (Imitate0), (Imitate∗) and at the end
(Project) we can simulate any instantiation of Cr.

3.4 Soundness and Completeness

In this section we will prove the soundness and completeness of CUA with regard to PUAC but
we will consider only pre-unifiers which can be extended to unifiers. Since PUAC was proved
to enumerate all these pre-unifiers, the correctness proofs will mean that CUA enumerates all of
them as well.

The soundness of the algorithm trivially follows from the fact that each non-trivial rule
applies only substitutions. The completeness proof is based on three things. First it is relatively
easy to see that there can be at most m applications of the (Project) rule, where m is the
number of context variables in the problem. Second, the close relationship between first-order
unification and CUAwithout the (Project) rule and the cyclic rules makes it possible to prove
that if a context variable is not and cannot be a part of a cycle in the problem, then the maximal
number of (Imitatepb) applications on it between any two applications of (Project) is
bound by the first-order bound (fbound). The third and most involved claim is that given a
standard cycle, then for any unifier of the problem, there is a context variable in the cycle which
is mapped by the unifier to a term which is subsumed by an instance generated by insts. This
can be proved by induction on the size of the standard cycles and by utilizing the technique of
derailing [71] which was introduced in the previous section.

Theorem 3.4.1 (Soundness). If S′ is obtained from a unification system S using CUA then
PreUnifiers(S′)|FV(S) ⊆ PreUnifiers(S) where PreUnifiers(S′)|FV(S) = {σ|FV(S) |
σ ∈ PreUnifiers(S′)}.

44



Proof. The rules in CUA are the same as the rules in PUAC but pose more restrictions on the
generated substitutions. First, we restrict the depth of terms using the depth constraints and
second, we generated partial bindings which are less general than the ones generated in PUAC
due to the use of the binding constraints. Formally, we will show that for each pre-solved form
S which is obtained using CUA, there is a pre-solved form S′ which can be obtained using
PUAC such that σS′ ≤ σS . The simulation of the rules (Delete), (Decomp), (Bind)
and (Project) is straightforward. The simulation of the different imitation rules is done by
simply replacing them with the single (Imitate) rule in PUAC . Since it generates a partial
binding which is equal to the one generated by (Imitatepb) and is more general than the ones
generated by (Imitate∗) and (Imitate0), the substitution is more general as well. The
(Skip) and (Rec) rules can be ignored completely as they affect the environment only.

The following lemmas state that if a context variable is mapped, in some pre-unifier, to a
large context, then this variable, or a smaller one, can be related to a standard cycle.

Definition 3.4.2 (Relation on variables). Given a system S, the relation <0
c for S is a relation on

the variables in S if for all constraints t .= s ∈ S and positions p1 and p2 such that hd(t|p1) = x
and hd(s|p2) = y and p1 is a proper prefix of p2, then y <0

c x. We define =0
c in a similar way but

require that p1 = p2. =c is the symmetric, transitive closure of =0
c . We now define the relation

<Tc inductively:

• if x <0
c y then x <Tc y.

• if x =c z and z <Tc y then x <Tc y.

• if <Tc z and z <Tc y then x <Tc y.

<c is any arbitrary extension of <Tc into a total order, such that if <Tc is acyclic, so is <c
(otherwise, the relation is not an ordering).

Example 3.4.3. Given the system {f(Xa, g(w, y))
.
= f(h(z), Xb), y

.
= Xc, y

.
= w}, then

<0
c= {(z,X), (w,X), (y,X)} and =0

c= {(y,X), (y, w)}. The relation <Tc then is a superset
of the set {(z,X), (w,X), (y,X), (X,X)}.

Definition 3.4.4 (Repeated variables). Let S be a system, then a context variable X in S is
called a repeated variable in S if there exists a system S′ obtained from S using PUAC via any
sequence of transformations not including (Project) such that d(σS′(X)) > fbound(S).

Example 3.4.5. Assume we can obtain, from the system S containing the constraint Xa .
= t

and having fbound = 4, a system with the solved constraint X .
= f5([.]), then X is called a

repeated variable in S.

We first prove that in acyclic systems the depth of contexts mapped to context variables is
bound by fbound.

Lemma 3.4.6. Let S be a system such that all variables in it are acyclic according to <c and X
be a context variable in S. Then, for any system S′ obtainable from S by using PUAC without
the application of a (Project), we have d(σS′(X)) ≤ fbound(S).

45



Proof. By induction on the number m of variables, ordered by <c. If m = 1, we can apply
(Decomp) exhaustively until we get a constraint t .= s in a system S′ such that hd(t) = X and
clearly, for all systems S′′ obtainable from S without an application of (Project) we have
d(σS′′(X)) ≤ md(S′) ≤ md(S) < fbound(S). Otherwise, let x be a maximal (first-order
or context) variable according to ≤c. Then, there is no other variable y in S, such that there
is an equation t .

= s ∈ S, hd(t|p1) = y, hd(s|p2) = x with p1 a proper prefix of p2. Let S0
be the problem after the removal of all equations containing x in rigid positions. By induction
hypothesis, for any system S′0 obtainable from S0 without the application of (Project) and
for all variables y in S other than x, d(σS′0(y)) ≤ fbound(S0). Since md(S) ≥ md(S0), we
get that for all variables y other than x, d(σS′0(y)) ≤ fbound(S0) ≤ fbound(S) − md(S).
Since we can choose the order of equations to be processed in PUAC freely (see Remark 2.2.18),
then also d(σS′(y)) ≤ fbound(S) − md(S). Now, let t .= s ∈ S be an equation containing x
and t′ .= s′ the equation after applying several (Decomp)s such that hd(t′) = x. Let V0 be the
set of all variables in s′, then d(σS′(x)) ≤ d(s′) + maxy∈V0(d(σS′(y))). Since d(s′) ≤ md(S)
and d(σS′(y)) ≤ fbound(S)− md(S), we get that d(σS′(x)) ≤ fbound(S).

Definition 3.4.7 (Sub-equations). Given a rigid-rigid constraint t .= s, its set of sub-equations
is {t′ .= s′ | t|p = t′, s|p = s′, p ∈ rigid-pos(t) ∩ rigid-pos(s)}. For a given constraint
e, we denote its set of sub-equations by sub(e).

Example 3.4.8. sub(f(XgXa, gb)
.
= f(ga, gz) is {f(XgXa, gb)

.
= f(ga, gz), XgXa

.
=

ga, gb
.
= gz, b

.
= z}.

Definition 3.4.9 (Problem Restriction). Let S be a system, then a restriction of S with regard to
a variable set V 0 ⊆ FV(S) is the set of all sub-equations of equations in S such that a variable
from V 0 is the head of one of the terms in the sub-equation.

Example 3.4.10. The restriction to V 0 = {X} of the above system is the problem {XgXa .
=

ga}.

Lemma 3.4.11. If σ unifies a system S, then it unifies a problem restriction S′ of S.

Proof. S′ is just a subset of the equations generated from S after the application of (Decomp)
transformations, which preserves the set of unifiers [76].

Lemma 3.4.12. If a variable X in a system S is repeated, then it is either cyclic or there is a
smaller variable in S, according to <c, which is cyclic.

Proof. Let V0 be the set of all smaller variables including X and assume none of them is cyclic,
then the order <c is well-founded over the set V 0 and we consider the problem restriction S′

of S with regard to V 0. We know that there is a derivation ϕ in PUAC such that we obtain S′

with d(σS′(x)) > fbound(S) ≥ fbound(S′). We would like to get a contradiction to the
existence of such a unifier which will imply that no such (extension of a) unifier also exists for
S using Lemma 3.4.11. We choose ϕ such that it does not contain a (Project) call. We can
do so as (Project) resets repeatability (according to Def. 3.4.4) so we can choose ϕ starting
after the last (Project) before obtaining S′. Now, as all the variables in S′ are acyclic, we
can use Lemma 3.4.6 to get a contradiction.

46



The next lemmas show that if we have a cyclic variable, a standard cycle can be obtained
using CUA.

Lemma 3.4.13. Given a system S with environment E and assume S contains a cyclic variable
and for all unsolved X ∈ FV(S), there is v ≥ fbound(S) such that (d(X) ≤ v) ∈ E ,
then we can obtain a system S′ and environment E′ using the rules (Delete), (Decomp),
(Bind) and (Imitatepb) such that S′ contains a cycle over the variables X1, ., , Xn such
that (d(Xi) ≤ v) ∈ E′ for 0 < i ≤ n.

Proof. We can obtain such a cycle with the application of (Decomp) and (Bind) only and
these two rules do not affect depth constraints.

Lemma 3.4.14. Given a system S with environment E and assume S contains a cycle X1s1
.
=

t1, .., Xmsm
.
= tm and assume for all 0 < i ≤ m there is vi ≥ fbound(S) such that (d(Xi) ≤

vi) ∈ E , then we can obtain a system S′ and environment E′ using the rules (Delete),
(Decomp), (Bind) and (Imitatepb) such that S′ contains a non-unique standard cycle
over the variables Y1, .., Ym and such that (d(Yi) ≤ ui) ∈ E′ for 0 < i ≤ m and ui > md(S).

Proof. We prove this by induction on n = Σm−1
i=1 i ∗ mi where mi is the size of the minimal

position ofXi+1 in ti for 0 < i ≤ m−1. If n = 0, then we are done asX1
.
= t1 cannot be a flex-

flex constraint (see next) and we already have a non-unique standard cycle. If n > 0, then we
apply (Imitatepb) on an equation Xj

.
= tj with 0 < j < m maximal such that hd(tj) 6∈ V.

The result, after applying (Imitatepb), is again a cycle with a new variable X ′j instead of Xj .
n is decreased in the new cycle as either j > 1 and then we get mj is decreased by 1 and mj−1
is increased by 1, or j = 1 and then m1 is decreased by 1. In the second case, mm is increased
but we don’t count it. Therefore, we can apply the induction hypothesis in order to obtain a
non-unique standard cycle. The reason E′ is as above is that we apply at most n (Imitatepb)
steps and each one of these steps decreases one depth constraint by 1, so at worst case one
constraint will be decreased by n. As we assumed the constraints to be of the form d(Xi) ≤ vi
before we start, we will obtain, in the worst case, one constraint of the form d(X ′i) ≤ ui with
ui ≥ vi − n. Since mi ≤ md(S) for 0 < i ≤ m and vi ≥ fbound(S) = (k + 1) · md(S)
(k = size(FV(S))) and m ≤ k we obtain that ui > md(S).

Lemma 3.4.15. Given a system S with environment E and assume S contains a non-unique
standard cycle X1s1

.
= X1v1, .., Xmsm

.
= tm and assume (d(Xi) ≤ k) ∈ E′ for 0 < i ≤ n and

k > k0 where k0 is the size of the minimal position of X1 in tm, then we can obtain a system S′

with a standard cycle using the rules (Delete), (Decomp), (Bind) and (Imitatepb).

Proof. First, if the non-unique standard cycle is also standard, then we are done. Otherwise,
let pm be the minimal position in tm of X1. The way to achieve a standard cycle is similar
to what was done in the proof of the previous lemma. By applying size(pm) times the rule
(Imitatepb) on the equation Xmsm

.
= tm we will obtain a standard cycle. Applying the rule

size(pm) times is possible according to the depth constraints.

47



Lemma 3.4.16. Let S0 be a system with a cyclic variable, then there is a system S with a
cyclic variable and with environment E such that S0 is obtainable from S using no application
of the rule (Project) and for all unsolved variables x in S, (d(x) ≤ v) ∈ E where v ≥
fbound(S).

Proof. Let ϕ be the derivation of S0 and let S1 be the last system in the derivation which is
either an initial system or immediately after the application of (Project). If there is a cyclic
variable in S1, then we choose S = S1 and have (d(x) ≤ 2 · fbound(S)) ∈ E for all unsolved
variables x in S1 and we are done. Otherwise, since S1 is acyclic, let S = S0 and we can use
Lemma 3.4.6 in order to obtain S such that (d(x) ≤ v) ∈ E for all unsolved variables x in S
where v ≥ fbound(S).

Lemma 3.4.17. Given a system S with environment E and assume it contains a cyclic vari-
able, then we can obtain a standard cycle using CUA while applying only the rules (Delete),
(Decomp), (Bind) and (Imitatepb).

Proof. We first use Lemma 3.4.16 in order to obtain a system with a cyclic variable such that
for all X ∈ FV(S) there is v ≥ fbound(S) such that (d(X) ≤ v) ∈ E. We use now Lemma
3.4.13 in order to obtain a cycle without having the depth constraints changed. Next we obtain
a non-unique standard cycle over the variables X1, .., Xm such that (d(Xi) ≤ v) ∈ E′ for
0 < i ≤ n and v > md(S) using Lemma 3.4.14. The last step is to obtain a standard cycle
using Lemma 3.4.15 and here we note that the size of the minimal position of X1 in tm must
be smaller than md(S). This is because the rigid positions of context variables cannot become
deeper by applying the (Imitatepb) rule.

In the rest of the chapter we obtain weaker results than completeness of the algorithm with
regard to all pre-unifiers. Since the existence of a pre-unifier for a context unification problem
does not imply that the problem is unifiable, we will consider only those pre-unifiers which can
be completed into unifiers.

In the following lemma we show that for any such pre-unifier σ of a problem containing a
standard cycle, we can derive a problem with one less context variable which is pre-unifiable by
σ.

Lemma 3.4.18. Given a system S with a standard cycle, then for any ground σ of S, there is a
derivation to a system S′ using CUA such that S′ is unifiable by σ and S′ contains less unsolved
context variables.

Proof. Since σ is a ground unifier of S we can use Lemma 3.2.14 in order to obtain σ(X) ∈s
insts(C ′, n) for C ′ the standard cycle’s context and n its size. Assume there is a context
D ∈ insts(C ′, n) and a substitution θ such that σ(X) = Dθ. We now use Lemma 3.3.6 in
order to obtain a system S′ such that σS′(X) = D and therefore σS′ ≤ σ and we have one less
unsolved context variable.

Theorem 3.4.19 (Completeness). If θ is a ground unifier of a unification system S, then there
exists a pre-solved system S′, which is obtainable from S using CUA such that σS′ |FV(S) ≤ θ.

48



Proof. We will prove by induction over the number of unsolved context variables, that each
unifiable pre-solved form obtainable using PUAC can be also obtained by CUA. The induction
hypothesis is therefore: for a given system S having at most n unsolved context variables, if it is
possible to obtain a ground unifier of S using PUAC , then it is possible to obtain the same unifier
using CUA. Induction base: CUA runs the same as the complete PUAC on purely first-order prob-
lems. Induction step: Once we apply (Project) in PUAC , we can use the induction hypoth-
esis so we assume we need to simulate, using CUA, the remaining rules only. We notice that all
rules except (Imitate) are the same. (Imitate) differs from (Imitatepb) in CUA with
regard to cyclic variables only. We consider the following two cases. If (Imitate) is applied
on a variable which is not repeated and is not cyclic, then we can use Lemma 3.4.6 and obtain
the same system using the rule (Imitatepb) of CUA. Now, assume we apply (Imitate) in
PUAC on a variable that is either cyclic or repeated. Using Lemma 3.4.12 we know that if the
variable is repeated, then there is a cyclic variable in the system. We now show that without los-
ing any unifier, we can eliminate one context variable and therefore apply the induction hypoth-
esis. Since the only two non-deterministic rules to apply are (Imitatepb) and (Project)
and an application of (Project) will allow us to use the induction hypothesis we can use
Lemma 3.4.17, without losing any unifier, in order to obtain a standard cycle. Lemma 3.4.18
tells us that we can derive a system using CUA which is unifiable by θ and which contains one
less unsolved context variable.

3.5 Termination and Minimal Unifiers

In this section we will show that in practice, the number of recursive calls to (Imitate∗) can
be bounded due to the following result [72]:

Definition 3.5.1 (Minimal unifiers). Given a system S, a unifier σ of S is called minimal if there
is no other unifier σ′ of S with Σx∈FV(S)size(σ′(x)) < Σx∈FV(S)size(σ(x)).

Definition 3.5.2 (Exponent of periodicity). A ground unifier σ has an exponent of periodicity n
iff n is the maximal number such that there is some context variable x and ground contexts A,
B and C q such that σ(x) = ABnC.

Lemma 3.5.3 ( [72], [71]). There are constants c and d, such that for every unifiable system S
and for every minimal unifier σ of s, its exponent of periodicity is less than c ∗ 22.14∗d∗size(S).

The Restricted CUA

The exponent computed in the lemma above allows us to replace the Kleene stars in the regular
terms with concrete values.

Definition 3.5.4 (Restricted derail). Let e be the exponent of periodicity of the initial system
S, then the restricted derail function for S (derailS) is defined as derail but instead of
introducing the Kleene star, the function introduces the number e. The produced contexts are
called restricted regular contexts or just regular contexts.

49



Definition 3.5.5 (Restricted instantiations). Similarly to Def 3.2.11, we define a restricted in-
stantiation of a restricted regular context C as the context obtained by replacing the n occur-
rences of the exponents e from above by values k1, .., kn such that ki ≤ e for 0 < i ≤ n. In
addition we define the set of all instantiations of a restricted regular context C as the finite set
containing all possible restricted instantiations. In the remaining of this section insts will
refer to its restricted versions.

Example 3.5.6. The context f4([.], a)(g6([.])(b)) is a restricted instantiation of the restricted
regular context fe([.], a)(ge([.])(b)) for e = 8.

Definition 3.5.7 (Environments and constraints). The notions of environments and of binding
and depth constraints are the same as for CUA. The only difference is that we identify each
binding constraint over a restricted regular contextC with a natural number such that this number
is the maximal size of mpath of all terms contained in insts(C). Since the language is (now)
finite, it is possible to compute this value. We call this number the value of the constraint.

Example 3.5.8. Assume we have a constraint X / C where C is the restricted regular context
from the previous example, then the value of this constraint is 16.

Definition 3.5.9 (Restricted CUA (RCUA)). Let S0 be the initial system, then the restricted CUA
(RCUA) consists of the rules (Delete), (Decomp), (Bind), (Imitatepb), (Project)
and (Imitate0) from Fig. 3.2 together with the three rules in Fig. 3.3.

Lemma 3.5.10 (Soundness). If S′ is obtained from a unification system S using RCUA then
PreUnifiers(S′)|FV(S) ⊆ PreUnifiers(S) where PreUnifiers(S′)|FV(S) = {σ|FV(S) |
σ ∈ PreUnifiers(S′)}.

Proof. Follows from Thm. 3.4.1.

Lemma 3.5.11. Let S be a unification system and θ a minimal unifier of S, then we can obtain
a pre-solved system S′ using RCUA such that σS′ ≤|FV(S) θ.

Proof. From the completeness of CUA we know that we can obtain such a pre-unifier for each
unifier of S. By using Lemma 3.5.3 we can show that we do not need to seek pre-unifiers with
term depth bigger than the exponent of periodicity, which is exactly the bound we use in the
algorithm.

Definition 3.5.12 (Regular measure). Let E be an environment and let d1, .., dn be the values of
the binding constraints in E for all unsolved variables in S, then the regular measure of E is the
sum Σ0<i≤ndi.

Definition 3.5.13 (Depth measure). Let E be an environment and let m1, ..,mn be all the num-
bers occurring in depth constraints in E for all unsolved variables in S, then the depth measure
of E is the sum Σ0<i≤nmi.

Theorem 3.5.14. Given a system S, RCUA terminates on S.

50



E
∪
{X

/
C
n
(C
r
)}
`
S

E
∪
{X

/
C
r
}
`
S
}

(
S
k
i
p
)

E
`
S

c
∈
s
c
y
(S

),
X
∈
c,
(X

/
C
′ r
)
6∈
E
,C

r
∈
d
e
r
a
i
l
S
0
(s
i
z
e
(c
),
c
c
o
n
(c
))

E
∪
{X

/
C
r
}
`
S

(
R
e
c
)

E
`
S

x
(s
)
. =
f
(t
n
)
∈
S
,(
X
/
(C

m
(C
r
))
∈
E
,C

=
f
(t

1
,.
.,
C
′ @
k
,.
.,
t n

))
,u

=
f
(t

1
,.
.,
X
′ @
k
,.
.,
t n

),
σ
=

[u
/
X
]

E
σ
∪
{X
′
/
C
′ (
C
m
−
1
(C
r
))
}
`
S
σ
∪
{X

. =
u
}

(
I
m
i
t
a
t
e
∗
)

Fi
gu

re
3.

3:
R
C
U
A

-R
es

tr
ic

te
d
C
U
A

51



Proof. The algorithm is finitely branching. We will show termination of a specific run by taking
the lexicographic ordering of the following measure µ =< m1,m2,m3,m4,m5,m6 > where

• m1 is the number of unsolved context variables,

• m2 is the number of unsolved context variables that do not occur also in a binding con-
straint in the environment E,

• m3 is the regular measure,

• m4 is the depth measure,

• m5 is the number of unsolved first order variables and

• m6 is the number of symbols other than .
= in the problem.

We prove that the measure µ is decreased after any application of RCUA.

• An application of (Delete) or (Decomp) decreases m6 and does not increase any
other measure.

• An application of (Bind) decreases m5 and does not increase m1, m2 or m4. It also
does not increase m3 since the size of the mpath of regular contexts is not affected by
(Bind).

• An application of (Imitatepb) decreases m4 and does not increase m1 or m2. It does
not increase m3 following the previous argument.

• An application of (Skip), (Imitate0) and (Imitate∗) decreases m3 as we de-
crease the size of the maximal mpath of a regular term in the new constraint by at least
1. it does not increase m1 or m2.

• An application of a (Project) decreases m1.

• An application of a (Rec) decreasesm2 as it introduces a binding constraint for a context
variable and is applicable only if one did not exists. It does not increase m1.

Therefore the measure µ decreases after each application of RCUA.

Decidability Result: Stratified Context Unification

In this section we will give an algorithm which decides the unifiability problem of a subclass of
the context unification systems. The algorithm will take as an input a system in pre-solved form
and will decide if the system is unifiable.

The stratified context unification problem was shown to be decidable in [70]. This fragment
plays a role, among other fields, also in computational linguistics [27]. In this section we give
another algorithm to decide the problem, which is based on RCUA. All the definitions in this
section and the treatment of flat equations are taken from [70]. The stratified context unification
algorithms given in [70] is a very specialized algorithm, which contains many rules for the

52



different cases possible and therefore has a relatively complex correctness proof. Our version,
which follows the very general pre-unification algorithm [49], benefits from its correctness proof
and this allows us to give, we hope, a simpler proof for the decidability of this problem.

Definition 3.5.15 (Second-order prefixes (SO-prefixes)). SO-prefixes are words over (V2)
∗. Let

P be a system, the SO-prefix of a term t is defined inductively:

• if t occurs in an equation t .= s, then t has an empty SO-prefix.

• if t = f(sn) has an SO-prefix w, then si, for 0 < i ≤ n, has SO-prefix w.

• if t = X(s) has an SO-prefix w, then s has SO-prefix w ·X .

Definition 3.5.16 (Stratified unification systems). A system S is called stratified if for every
context and first-order variable in S, all its occurrences have the same SO-prefix..

Example 3.5.17. {Xa .
= XY a, fXa

.
= Za} is stratified while {Xa .

= XY a, fXa
.
= Y a} is

not.

From now on in this section we will refer to stratified systems only.

Definition 3.5.18 (Clusters). Let S be a system in pre-solved form, a cluster c of S is a minimum
subset of constraints of S such that if a constraint Xt .

= Y s is in c and there is a constraint
Xv

.
= u in S, then it is also in c.

Example 3.5.19. the clusters of {X1a
.
= X2b,X1c

.
= X3d, Y1e

.
= Y2f} are {X1a

.
= X2b,X1c

.
=

X3d} and {Y1e
.
= Y2f}.

Definition 3.5.20 (Clusters instantiations). Given a system S in pre-solved form and a cluster c
in S with variables X1, .., Xn, INST(S, c) is the application of either:

• a (Project) on some equation in c or

• if n > 1 and there is a function symbol f in the signature with m = ar(f) > 1 then:

– choose an index 0 < ki ≤ m for each variable Xi such that at least two indices are
different.

– replace each Xi with f(y(i,1), .., X(i,ki)([.]), .., y(i,m)) containing new variables.

– apply (Decomp) in order to eliminate the f symbol.

– apply (Bind)s in order to solve the new equations having first order variables as at
least one head.

Lemma 3.5.21. Given a system S in pre-solved form with a minimal (with regard to the number
of equations in it) cluster c, INST(S,c) results in a system with either less context variables or a
smaller minimal cluster.

53



Proof. If we apply a (Project) on a variable in the cycle, the number of context variables
decreases. Therefore, we assume we choose the second option. After the application of the
(Decomp) and (Bind) rules and as at least one variable was mapped to a term with a different
index for the first character of the position to the hole, the resulted system will have a cluster
smaller by at least one equation. Since we took a minimal cluster, the size of the minimal cluster
in the resulted system will be smaller. In addition, since the head context variables in the clusters
are all disjoint, the process does not affect other clusters.

Example 3.5.22. The cluster {Xt1
.
= Y s1, Y t2

.
= Zs2} can be instantiated using the substitu-

tion X 7→ f(X ′[.], w1), Y 7→ f(Y ′[.], w2) and Z 7→ f(w3, Z
′[.]) and after the applications of

(Decomp) and (Bind), it is reduced to the cluster {X ′t1
.
= Y ′s1}.

Lemma 3.5.23. (Lemmas 6.6 and 6.7 in [70]) Given a system S in pre-solved form and a mini-
mal cluster c in S, then applying INST(S, c) is sound and complete.

Definition 3.5.24 (Stratified context unification algorithm (SCUA)). Given a system S, we apply
one of the following transformations:

• if S is not in pre-solved form, we apply RCUA.

• if S is in pre-solved form, we apply INST(S, c) on a minimal cluster c in S.

Lemma 3.5.25. SCUA preserves the stratifiability of a problem.

Proof. The transformations of RCUA clearly preserve stratifiability as all manipulations on SO-
prefixes are done using substitutions, which apply to the whole problem. For INST, the proof is
exactly as in Lemma 6.5 in [70].

Lemma 3.5.26 (Soundness). If S′ is obtained from a unification system S using SCUA then
PreUnifiers(S′) ⊆ PreUnifiers(S).

Proof. Following lemmas 3.5.10 and 3.5.23.

Lemma 3.5.27 (Completeness). Let S be a unification system and θ a minimal unifier of S, then
we can obtain a pre-solved system S′ using SCUA such that σS′ <|FV(S) θ.

Proof. Using lemmas 3.5.11 and 3.5.23.

Lemma 3.5.28 (Termination). SCUA terminates.

Proof. Using the lexicographic ordering on the measure < m1,m2,m3 > where m1 is the
number of context variables, m2 is 1 if the problem is not pre-solved and 0 otherwise and m3

is the size of a minimal cluster. First, it is clear that m1 is never increased. If the problem is
not in pre-solved form, then we apply RCUA and obtain (following Theorem 3.5.14) either a
pre-solved form or an error, resulting in a decrease in m2. If the problem is in pre-solved form,
then we apply INST resulting, according to Lemma 3.5.21, either with less context variables
and the reduction of m1 or with a smaller minimal cluster and the reduction of m3. It is easy to
see that the application of INST results in a pre-solved form so m2 does not increase.

54



We can now prove the following result from [70].

Theorem 3.5.29. The stratified context unification problem is decidable.

Proof. Using lemmas 3.5.25, 3.5.26, 3.5.27 and 3.5.28.

3.6 Open Problems

Context unification and its subclasses form an important field within higher-order unification.
Despite that, there are several questions whose answer is still unknown. In this section we
discuss two of them in the hope that the results obtained in this thesis can help and maybe even
lead to answers to these questions.

The decidability of the context unification problem

The question whether the context unification problem is decidable is an open problem since
the introduction of this class in the early 90s [20]. An interesting attempt can be found in
[57]. An interesting characteristic of context unification is that pre-unifiers fail to capture the
unifiability of problems. Despite that, since if a problem is unifiable then there exist pre-unifiers
of the problem, we can try to find a method to decide if a certain pre-unifier is also a unifier.
By restricting the possible pre-unifiers to check to a finite set, we can effectively decide the
unifiability of the problem. This method was successfully used in order to show the decidability
of the stratified context unification problem [70] (see Sec. 3.5).

On the other hand, there is a standard approach for looking for unifiers in higher-order prob-
lems which extends the general higher-order pre-unification algorithm with rules for guessing
terms for higher-order variables (see for example [55]). These algorithms fails to terminate due
to the blind guess for terms.

It might be useful to extend the pre-unification algorithm given in this chapter with the same
rules and to try and show termination. This algorithm enumerates a subset of the pre-unifiers
found by the general algorithm and therefore is better suited for the task. In addition, the use of
regular terms in the process of unifying cycles might be extended to terms with flexible heads and
therefore, to enable the use of the periodicity lemma (see Sec. 3.5) in order to show decidability.

Parametrizing complete sets of unifiers

Another important question is whether there is a way to give a finite representation of the whole
set of pre-unifiers using parameters. For very restricted class, such as word unification with up
to three variables [1] and context unification with up to one variable [34], it was shown that such
a method exists. On the other hand, when one considers word unification problems with four
variables, the problem is already unsolvable [45].

The use of regular terms in the algorithm presented in this chapter strongly implies that
more subclasses exist. In the algorithm, the regular terms are used in order to approximate
possible pre-unifiers by specifying the form of their supersets. The regular terms do give a
precise mapping to variables until we project the arguments, in which case the question whether

55



the mapping is indeed part of a pre-unifier depends on the unifiability of the arguments as well.
Since the regular terms describe an infinite set of possible mappings, each with a different affect
on the projection of the arguments, we will be forced to check an infinite number of argument
projections and filter out those which do not lead to a pre-unifier.

Although this task is impossible in general, it should be made possible when dealing with
projections of ground arguments. In this case it should be possible to find a finite restriction
to the regular terms which may satisfy the argument projections. A trivial class which adheres
to this restriction is the class of context unification problems having at most one first-order or
context variable in each side of each equations.

56



CHAPTER 4
Bounded Higher-order Unification

The unification principle has many uses in computer sciences. Due to the undecidability of the
higher-order unification problem, many applications find it necessary to restrict the use of uni-
fication to decidable classes only. This can either be done by applying unification on fragments
of higher-order logic problems, whose unifiability is known to be decidable or by restricting
unification algorithms to search for an incomplete set of unifiers. Among the fragments of the
first we can find higher-order pattern unification [61], [67] and decidable sub-classes of context
unification [70], [21], [55], [73]. When we need to consider arbitary higher-order unification
problems, as is the case in higher-order resolution, we must search for an incomplete set of
unifiers.

Most higher-order theorem provers, such as Isabelle [66], TPS [2] and LEO II [9], rely on
Huet’s pre-unification algorithm [49] (see Sec. 2.2) for the unification of higher-order terms.

Since the algorithm does not terminate, these theorem provers must search for incomplete
finite sets of unifiers only. The most common way to obtain such a set is by bounding the depth of
the terms in the co-domain of the unifiers. The next example, which was already given in Chap.
1, gives a family of simple unification problems where the depth of terms in the co-domain of
unifiers grows exponentially while the size of the problems grows linearly.

Example 4.0.1 (see Ex. 1.3.2 for more information). The following monadic second-order
equation has a unique unifier σ such that σ(X1) = a3

n
. The depth of terms we need to search

for cannot be therefore smaller than 3n but the size of the problem is only 6n+ 6.

{X1abX1bX2 . . . bXnc
.
= aX1bX2X2X2 . . . bXnXnXnbaaac} (4.1)

Another approach for obtaining incomplete sets of unifiers is by bounding the number of
occurrences of bound variables in the co-domains of unifiers. This approach, called bounded
higher-order unification [74], gives a more refined incompleteness as can be shown with regard
to the example above, which has only 2 bound variable occurrences per variable (one in the
binder and one in the term). The drawback of this method is that the computed (incomplete) set

57



of pre-unifiers is now infinite although it was shown that the unifiability problem is decidable
[74].

Despite the years that have passed since its introduction, we could not find any application
in the literature for the bounded higher-order unification algorithm. It might be that despite its
advantage - a much more refined bound - its disadvantage, in the form of infinite sets of unifiers,
made it unusable in practice. More specifically, the use of an infinite set of most general unifiers
is not practical in the context of resolution.

Our main aim in this thesis is to improve the unification procedure taking place in higher-
order resolution. We believe that using the bounded unification algorithm within a resolution
calculus will improve the search for refutations due to the algorithm refined bounds. For this
aim we need both to be able to enumerate all the infinite unifiers in the set and to be able to
decide unifiability.

In this chapter we will introduce an extension of the bounded higher-order unification algo-
rithm, which will be based on the algorithm for context pre-unification from Chap. 3. In Chap.
5 we will show how this algorithm can be integrated into the constrained resolution calculus in
order to give a refutation method which is complete with regard to the refined notion of bounded
unifiers.

4.1 Bounded Higher-Order Unification Problems

In this section we will describe the class of bounded higher-order unification problems and
describe a variant of the pre-unification algorithm, which is applicable to these problems. Many
definitions and notions in the section are based on those in [74].

The next definition will measure terms according to the number of occurrences of bound
variables in them.

Definition 4.1.1 (λsize). The λsize of a term t is defined as the number of occurrences of
λ-binders and bound variables in t.

Example 4.1.2. The λsize of the term λz.g(λx.z(y, x), x) is 5.

Definition 4.1.3 (Bounded higher-order unification systems). Let S be a unification system and
b̂ : V → N a mapping from free variables to natural numbers, then the pair (S, b̂) is called a
bounded higher-order unification system.

From now on systems will refer to bounded higher-order unification systems. The word
system will also refer to the higher-order unification system within the bounded one when it will
not result in any confusion.

Definition 4.1.4 (Bounded unifiers). Let (S, b̂) be a system and σ a unifier of S, then σ is
a bounded unifier of (S, b̂) if for all variables x ∈ FV(S), λsize(σ(x)) ≤ b̂(x). We will
sometime denote the value b̂ for a variable x also as xb̂=b̂(x).

We would like to define next the notion of bounded pre-unifiers but consider the following
example:

58



Example 4.1.5. The substitution λz.f(y1(z), y2(z))/x is in the set PreUnifiers of the sys-
tem:

x(a)
.
= f(x1(a), x2(b)) (4.2)

but is not in the set of the bounded system:

xb̂=2(a)
.
= f(x1(a), x2(b)) (4.3)

since the bound variable z occurs three times in the substitution. Still, we can extend this sub-
stitution to a bounded unifier of system 4.3 by applying the completing substitution
[λz.y0/y1, λz.y0/y2, λz.y0/x1, λz.y0/x2].

The previous example leads us to the following definition of bounded pre-unifiers.

Definition 4.1.6 (λsizer). The λsizer of a term t is defined as the number of all λ-binders
and occurrences of bound variables in t in rigid positions.

Example 4.1.7. The λsizer of the term λz.f(X(z), z) is 2 while the λsize of the term is 3.

Definition 4.1.8 (Bounded pre-unifiers). Let (S, b̂) be a system and σ a pre-unifier of S, then σ
is a bounded pre-unifier of (S, b̂) if for all variables x ∈ FV(S), λsizer(σ(x)) ≤ b̂(x).

As was done for the context unification problems in Chap. 3, we will also restrict the partial
bindings for variables in bounded systems. In the following definition, we will refer to the
function b̂ and we will extend it to map new variables as well.

Definition 4.1.9 (Bounded partial bindings). The set of bounded partial bindings for a variable
x of type α and for an atom a is the same set containing the partial bindings
u = λyn.a(λz1p1 .x1(yn, z

1
p1), .., λzmpm .xm(yn, zmpm)) from Def. 2.2.13 where in addition we

update the b̂ function to have the following values for the new variables:

• for all 0 < i ≤ m, n ≤ b̂(xi) ≤ b̂(x).

• if a is a function symbol or a free variable (an imitation binding), then Σ0<i≤m(b̂(xi) −
n) ≤ b̂(x)− n.

• if a = yi for 0 < i ≤ n is a bound variable (a projection binding), then Σ0<i≤m(b̂(xi)−
n) ≤ b̂(x)− n− 1.

We denote the set of bounded partial bindings for type α and atom a by PBb(a, α) for imitation
bindings and PBb(i, α) for projection bindings with index 0 < i ≤ n.

Example 4.1.10. We will compute the set of partial bindings for the context unification con-
straint: xb̂=2(y)

.
= f(g, a) where x1 and x2 are fresh free variables

• the set of imitation bindings for atom f is PBb(f, i→ i) =
{λz1.f(λz2.x1(z1, z2), x2(z1))} where b̂(x1) = 2 and b̂(x2) = 1 for example.

59



• the set of projection bindings for index 1 is PBb(1, i → i) = {λz1.z1} where b̂ does not
change so we have only one element in the set.

The intuition behind this definition of partial bindings is two folded. First we would like to
make the sum of the bound variable occurrences in the terms mapped to the new variables no
greater than their number in the term mapped to the original variable. On the other hand, the
new variables might be of a more complex type than the original variable and we would like to
factor that out.

The first issue is handled by factoring out the number of λ-binders in terms mapped to the
original variable while the second thing is handled as follows. Since all terms are in η-expanded
form, a variable of a more complex type implies more λ-binders in the partial binding but also
a bigger arity for the fresh variable. Since we count also λ-binders in the definition of λsizer,
these two values are factored out so the actual number of bound variables in a term which is
mapped to a variable of a more complex type must be smaller than the number in the original
variable by exactly the same degree.

We demonstrate it in the following example.

Example 4.1.11. Assume we have the constraint:

xa
.
= f(y, yb) (4.4)

where a, b are of type i, x, y are of type i→ i and f is of type (i→ i)→ i→ i. A partial binding
for x will be of the form

λz1.f(λz2.x1(z1, z2), x2(z1)) (4.5)

such that b̂(x) ≥ b̂(x1), b̂(x2) and (b̂(x1)− 1) + (b̂(x2)− 1) ≤ b̂(x)− 1. We might first wonder
where do we count the binder z2. It seems that the equations above ignore completely the fact
that one binder occurs only in a mapping for x. A closer examination of the possible mappings
for x1, shows us that this binder occurs in all these mappings as well, as the arity of x1 is greater
than the arity of x.

Remark 4.1.12. In the rest of this section, we will refer to bounded systems, unifiers, pre-
unifiers and partial bindings as systems, unifiers, pre-unifiers and partial bindings respectively.

Definition 4.1.13 (The set of rules PUAB (pre-unification algorithm for bounded higher-order
unification)). Let (S, b̂) be a unification system, then the set of rules PUAB is defined in Fig.
4.1.

Definition 4.1.14 (Pre-solved forms). A unification constraint t .= s is in pre-solved form if it
is either in solved form where, for some variable x, hd(t) = x and λsizer(s) ≤ b̂(x) or t and
s are flexible terms. A system is in pre-solved form if all its constraints are in pre-solved form.

The notion of complete sets of pre-unifiers can now be carried over from the unbounded
case.

Definition 4.1.15 (Complete sets of pre-unifiers). Given a unification system S, its complete set
of pre-unifiers is the set PreUnifiers(S) of (normalized) substitutions such that:

60



S ∪ {A .
= A}

S
(Delete)

S ∪ {λzk.f(sn)
.
= λzk.f(tn)}

S ∪ {λzk.s1
.
= λzk.t1, .., λzk.sn

.
= λzk.tn}

(Decomp)

S ∪ {λzk.x(zk)
.
= λzk.t} x 6∈ FV(t), σ = [λzk.t/x]

Sσ ∪ {x .
= λzk.t}

(Bind)

S λzk.x
α(sn)

.
= λzk.f(tm) ∈ S, u ∈ PBb(f, α), σ = [u/x]

Sσ ∪ {x .
= u}

(Imitate)

S λzk.x
α(sn)

.
= λzk.a(tm) ∈ S, 0 < i ≤ k, u = PBb(i, α), σ = [u/x]

Sσ ∪ {x .
= u}

(Project)

Figure 4.1: PUAB- Huet’s pre-unification rules for bounded unification

• {σ ◦ ξS | σ ∈ PreUnifiers(S)} ⊆ Unifiers(S) where ξ is the completing substi-
tution.

• for every normalized θ ∈ Unifiers(S) there exists σ ∈ PreUnifiers(S) such that
σ|dom(θ) ≤ θ.

The soundness and completeness proofs are given next.

Theorem 4.1.16 (Soundness). If S′ is obtained from a unification system S using PUAB and is
in pre-solved form, then σS′ |FV(S) ∈ PreUnifiers(S).

Proof. Follows directly from Thm. 2.2.16.

Theorem 4.1.17 (Completeness). If θ is a pre-unifier of a unification system S, then there exists
a pre-solved system S′, which is obtainable from S using PUAB such that σS′ |FV(S) ≤ θ.

Proof. The only restriction we pose is with regard to the values of b̂ over the new variables in
(Imitate) and (Project). We consider then the set computed by PBb for a variable x and
assume θ(x) = t. Let t = λzn.f(t1, .., tm), then b̂(x) ≥ n + Σ0<i≤mλsizer(ti). Let s =
λzn.f(λyn1x1(zn, yn1), .., λynmxm(zn, ynm)) such that b̂(xi) = λsizer(ti) + n for 0 < i ≤
m, then we can find a substitution σ such that σ(x) = t. We also notice that n ≤ b̂(xi) ≤ b̂(x)
for all 0 < i ≤ m on the one hand and Σ0<i≤mb̂(xi)−n = Σ0<i≤mλsizer(ti) ≤ b̂(x)−n on
the other, as required in Def. 4.1.9. We can similarly prove the projection case. The rest follows
directly from Thm. 2.2.17.

4.2 Regular Terms and Bounds

In the previous chapter we have found out that a major difference between the context pre-
unification algorithm PUAC and Huet’s algorithm PUA is the bound on how many applications
of the (Project) rule we can use in each derivation.

We argue that the same bound also holds for bounded higher-order unification by considering
the following measure.

61



Definition 4.2.1 (Bounding measure [74]). Let (S, b̂) be a system. The bounding measure of
(S, b̂), which is denoted by b-measure, is the multiset {b̂(x)− ar(x)|x ∈ V } where V is the
set of unsolved variables in S. Multi-sets are ordered according to multi-sets ordering [24].

By considering the function PBb we can see that any choice of a projection partial binding
strictly decreases the bounding measure while the application of no other rule increases it. It is
a bit less trivial to see that on an application of an (Imitate) but a closer examination of the
values computed in the function PBb shows that the value never increases.

Having a pre-defined bound on the number of possible projections means we can try to use
the same bounds for acyclic and cyclic systems as we have used for the context unification
systems in Chap. 3. The first-order bound used for acyclic problems does indeed carry over
to bounded higher-order unification problems. Unfortunately, the regular bound becomes more
complex when dealing with bounded higher-order systems.

Cycles with complex contexts

In Def. 2.1.46 in Chap. 2 we have distinguished between two types of contexts, simple and
complex. In Chap. 3 we have argued that given a cycle, the cycle context must be simple. In
this section we will argue the same for arbitrary higher-order systems.

When considering cycles of one constraint only, it is clear that when presented in η-expanded
form, the contexts are simple as can be seen from the following example.

Example 4.2.2. The cycle context of the standard cycle:

λz0.x(t, z0)
.
= λz0.f(g(λz.x(z0, z)), y) (4.6)

is f(g(λz.([.])), y) which is simple and the cycle can be represented as:

λz0.x(t, z0)
.
= λz0.f(g(λz.([.])), y)(x(z0, z)) (4.7)

if we allow for variable capture in applications of contexts.

We will introduce the following definitions:

Definition 4.2.3 (Impure terms). A term t is called impure if there is a position
p ∈ rigid-pos(t) such that t|p = λz.s for some term s. It is called pure otherwise.

Definition 4.2.4 (Impure cycles). A cycle is called impure if there is a constraint λzn.x(tm)
.
=

λzn.t in the cycle and t is impure. It is called pure otherwise.

The added complexity when dealing with impure cycles is that they introduce new binders
and therefore may increase the number of bound variable occurrences. In this section we will
argue informally that such cases need not be considered. A formal proof will be given in Sec.
4.4.

Consider the impure cycle:

{λz0.x(t1, t2)
.
= λz0.g(λz.(x(z, s1)))} (4.8)

We can have the following two possible derivations (according to the definition of PBb):

62



• we can project one of the arguments of x such as by the substitution [λz1, z2.z1/x] or

• we can imitate the symbol g by the substitution [λz1, z2.g(λz.x1(z1, z2, z), x2(z1, z2))/x].

In the first case we decrease the bounding measure since we eliminate the element b̂(x) and
in the second case we decrease the bounding measure as we have that b̂(x1) + 1 + b̂(x2) ≤ b̂(x)
according to the definition of PBb, which implies that b̂(x1), b̂(x2) < b̂(x).

As was mentioned, in Sec. 4.4 we will formalize the argument that we can concentrate on
pure cycles only.

Remark 4.2.5. In the remaining part of the thesis, we will generalize over the form of standard
cycles and will write them:

λzm1 .x1(t
1
n1

)
.
= λzm1 .x2(s

1
n2

), .., λzmk .xk(t
k
nk

)
.
= λzmk .C[x1(skn1

)] (4.9)

where:

• the terms tij for 0 < i ≤ k and 0 < j ≤ ni can contain bound variables zl for 0 < l ≤ mi.

• the terms sij for 0 < i ≤ k − 1 and 0 < j ≤ ni+1 can contain bound variables zl for
0 < l ≤ mi.

• the terms skj for 0 < j ≤ n1 can contain bound variables zl for 0 < l ≤ mk.

Please note that in order to simplify the presentation we are making an exception and are allow-
ing variables capture for the variables mentioned above, i.e. context applications of the form
λz.([.])z are allowed.

Regular terms

In order to justify the added complexity of the regular bounds when dealing with bounded higher-
order systems, we will give an informal discussion of how it is constructed.

In the previous chapter the statement which said that cyclic context variables must be mapped
to contexts was true by the definition of context systems. When considering bounded higher-
order systems, variables can be mapped to any term.

We have also proved that for every cycle in a context unification problem, we can generate
a finite set of regular contexts such that for every pre-unifier of the system, there is a variable in
the cycle which can be described by one of them. Can we do the same for bounded higher-order
systems.

The naive answer is clearly no - regular contexts cannot describe arbitrary higher-order
terms. But we can use them in somewhat a different way. Consider the following standard
cycle:

xb̂=3y
.
= f(xa,w) (4.10)

which is unifiable by [λz.f(z, z)/x, f(a, a)/y, f(a, a)/w)] but also by
[λz.f(f(z, a), z)/x, f(a, a)/y, f(a, a)/w)]. It is easily seen that system 4.10 is unifiable by any
substitution of the form [λz.t/x, f(a, a)/y, f(a, a)/w)] where t can be described by:

63



f

f

...

f

z a

a

z

How can we use regular contexts in order to describe the infinitely-many unifiers above?
Consider the term λz.f(C(z), z) where C is the regular context (f([.], a))∗ which can be in-
stantiated into any of the terms defined above. It might seem that our choice of λz.f(C(z), z)
was arbitrary and indeed it turns out it is only one set of terms described by

λz.(f([.], w))∗(f([.], z))(f([.], a))∗(f(z, a)) (4.11)

which, together with the fixed values for y and w, covers all possible unifiers with λsizer = 3.
It is pretty obvious that if their λsizer are big, the terms can become very complex. But it turns
out we do not need to compute complex terms on the spot. If we never increase the bounding
measure (see Def. 4.2.1), then

x 7→ λz.(f([.], w))∗f(x1(z), x2(z)) (4.12)

where b̂(x1), b̂(x2) < b̂(x) is enough to describe all possible mappings of λsizer > 2 and also
decreases the measure. Since all possible mappings of λsizer = 2 can be described by regular
contexts and since mappings of λsizer = 1 cannot unify cycles (can easily seen by checking
the depths of the two terms), we get a complete description of all possible pre-unifiers of system
4.10.

The last argument might require some additional explanation. Why can we assume that both
b̂(x1) and b̂(x2) are smaller than b̂(x)? Assume b̂(x1) = b̂(x), then b̂(x2) = 1 which means, in
our case, that it must be mapped to w. But as we already described this case, we can assume that
b̂(x2) > 1. Similarly, b̂(x1) > 1 as otherwise the problem is not unifiable. Therefore both are
smaller than b̂(x).

The general idea would be to describe all possible regular contexts up to a non-unary symbol
which must contain at least two arguments with b̂ > ar.

Definition 4.2.6 (Regular terms). The set Termnr for a given arity n is defined as λzn.Cr(t)
where:

• Cr is a regular context.

• the bound variables zi for 0 < i ≤ n cannot occur in the scope of starred sub-contexts of
Cr.

• t is a term which may contain bound variables.

64



Example 4.2.7. The computed term from the discussion above:

λz.(f([.], w))∗(f([.], z))(f([.], a))∗(f(z, a)) (4.13)

is a regular term.

The following definition will capture the form of mappings of cyclic variables when the
standard cycle is of one constraint only.

Definition 4.2.8 (reg). Given a variable x and a pure context C, the finite set of regular terms
is defined as reg(x,C) = {λzm.C∗C ′(t(zm))} such that:

1. C = C ′f(v1, .., C
′′
@k, .., vn) for some C ′′, f, v1, .., vn.

2. we have one of the following:

a) t ∈ PBb(f, τ(x)) and b̂(xi) < b̂(x) for all new variables xi which were introduced
by the function PBb.

b) there is 0 < i ≤ m such that t ∈ PBb(i, τ(x)).

For a given context and a variable, the following infinite set contains all the instantiations of
their regular terms.

Definition 4.2.9 (Instantiations of regular terms (insts1)). Given a variable x and a context
C, then we define the infinite set insts1(x,C) = {t′|t ∈ reg(x,C)} such that:

• t′ is obtained from t by replacing each Kleene star ∗ with some k ≥ 0.

An important proof idea which is used in all the following proofs and is taken from [74] is
that of a maximal context with no bound variables occurrences.

Definition 4.2.10 (Maximal contexts ). Let x be a variable and σ a substitution, then D is called
a maximal context of σ(x) if D is a maximal prefix of σ(x) such that it does not contain bound
variable occurrences. If there is a context C such that D is of the form (Cσ)lC ′ for some l ≥ 0
and C ′ a prefix of Cσ then D is called a maximal context of σ(x) for C.

Example 4.2.11. Let σ = [λz.f(g(f(z, f(z, a))), f(a, a))/x1, f(a, a)/y] then the maximal
context for x and σ is f(g([.]), f(a, a)). This is a maximal context for the context f(g([.]), y)
but not for f([.], f(a, a)) or f(g(f([.], a)), f(a, a)).

The above definition will allow us to apply the same proof techniques which we used in
Chap. 3 for context unification problems also for bounded unification problems. This is done by
separating a term into a context component and an arbitrary term and proving the results over
the context component which, being maximal, contains certain properties.

The first property we will prove for the case σ(x) has a maximal context for a context C is
that σ(x) is subsumed by insts1(x,C) (see Def. 2.1.18).

65



Lemma 4.2.12. Let λzm1 .x1(t
1
n1

)
.
= λzm1 .x2(s

1
n2

), .., λzmk .xk(t
k
nk

)
.
= λzmk .C[x1(skn1

)], be
a pure cycle in system S with cycle context C and σ a pre-unifier for S. Let σ(xi) = λzn.Dt
for some index 0 < i ≤ k, a context D and a term t. If D is a maximal context for C then
σ(xi) ∈s insts1(xi, C).

Proof. Since D is a maximal context for C, we have D = (C lC ′)σ for l ≥ 0. We need now to
show that the requirements of Def. 4.2.8 hold. The first requirement holds by assumption. We
now consider the following three cases:

• t = f(v1, .., vr) and there are at least two indices 0 < i1, i2 ≤ r such that λsizer(vi1),
λsizer(vi2) > 0. Let t′ = PBb(f, τ(xi)) such that t′θ = λzn.t for some θ, then t′ must
contain at least two new variables, yi1 , yi2 , such that b̂(yi1), b̂(yi2) > n and we satisfy re-
quirement 2a. Therefore, λzn.Dt′(zn) ∈ insts1(xi, C) and σ(xi) ∈s insts1(xi, C).

• hd(t) = zr for 0 < r ≤ k and let t′ ∈ PBb(r, τ(t)) such that t′θ = λzn.t for some θ and
we satisfy requirement 2b and have σ(xi) ∈s insts1(xi, C).

• otherwise t = f(v1, .., vr) where we have only one index 0 < j ≤ r such that
λsizer(vj) > 0. In this case D is not maximal as it should include f as well and we get
a contradiction.

Note that we did not consider the case λsizer(ti) = 0 for all 0 < j ≤ ar(f0). A simple
counting of the symbols occurring on each side of the unification constraint will give us that σ
is not a pre-unifier in this case.

We can now prove the corresponding lemma to Lemma 3.2.6.

Lemma 4.2.13. Given a pure standard cycle {λym.x(tn)
.
= λym.C[x(sn)]} in system S, then

for every ground unifier σ of S, σ(x) ∈s insts1(x,C).

Proof. Let σ(x) = λzn.C
0[t] such that C0 is the maximal context. Let k be the depth of σ(x)

and let A be the greatest common prefix of (Ck+1)σ and C0. Then A = (Cσ)l(C ′) for some
l ≤ k where C ′ is a proper prefix of Cσ and let C ′′ be a context such that C ′(C ′′) = Cσ. We
will first prove, in a similar way we did in the proof of Lemma 3.2.6, that A = C0. Assume
otherwise, then A must be a proper prefix of C0 and therefore, C0 = A(f(t1, .., D@k, .., tn))
for some context D where A(f(t1, .., [.]@k, .., tn)) is not a prefix of (Ck+1)σ. Applying σ to the
unification constraint, we get:

λym.A(f(t1, .., t
′
k, .., tn)) = λym.(Cσ)(A(f(t1, .., t

′′
k, .., tn))),

where t′k, t
′′
k are terms. Applying (Decomp)s we get:

λym.f(t1, .., t
′
k, .., tn)

.
= λym.C

′′(C ′(f(t1, .., t
′′
k, .., tn)))

Now we consider the head component of the main path of C ′′. If it is k, then we get a contradic-
tion to the maximality of A as σ is a ground unifier and A should include f as well. Otherwise,
it is l 6= k and let C ′′[.] = f(s1, .., D

′
@l, .., sn), then we get from the constraint, after one

(Decomp), that

66



tl
.
= D′(C ′(f(t1, .., tl, .., tn)))

which is a contradiction to the unifiability of the pair as the positions of the holes in D′ and C ′

are rigid (according to the definition of standard cycles). We therefore assume that A = C0 and
by Lem. 4.2.12, we get that σ(x) ∈s insts1(x,C)

When we consider cycles containing more than one constraint, our first consideration will
be to check if the more general description of unifiers given in Def. 3.2.11 is enough to describe
the mappings of variables in these cycles as well.

Consider the system :

{xb̂=3
1 f(a, a)

.
= xb̂=3

2 a, x2b
.
= f(x1a, f(b, b))} (4.14)

and its unifier σ

[λz.f(f(z, z), f(a, a))/x1, λz.f(f(f(a, a), f(a, a)), f(z, z))/x2] (4.15)

Is it true that σ(xi) ∈s insts1(x, f([.], f(b, b))) for some 0 < i ≤ 2? Let f([.], f(b, b)) = C,
then in order for it to be true σ(xi) must be of the form λz.Dt for some context D and a term t
such that (According to Def. 4.2.8):

• D is of the form CkC ′ for C ′ a prefix of C.

• D does not contain bound variables.

• t is either a flex term or it is a rigid term such that at least two immediate subterms contain
bound variables.

Clearly both σ(x1) and σ(x2) fail to satisfy all these requirements. Since σ is a bound unifier,
we must extend our definition on insts in order to maintain completeness.

The reason for the fact that σ is a bounded unifier but none of its mappings is described
by insts1 can be traced back to the previous chapter. When considering the positions of the
bound variables in σ(x1) and σ(x2) and the position of the hole in the cycle context, we notice
that the position of the hole in the cycle’s context is at position 1 but there is a bound variable at
position 1.1.2 in σ(x1) and at positions 1.2.1 and 1.2.2 in σ(x2). This is the same derailing we
had in the previous chapter and the treatment will be the same as well.

Example 4.2.14. Let (S, b) be system 4.14 and let f([.], y) ∈ one-derail(f([.], f(b, b))).
We see now that σ(x1) is indeed subsumed by insts1(x1, f([.], y)) (consider the substitution
[f(a, a)/y]).

We can now change the definition of the iterated derailing.

Definition 4.2.15 (Iterated derailing). Let λzm1 .x1(t
1
n1

)
.
= λzm1 .x2(s

1
n2

), .., λzmk .xk(t
k
nk

)
.
=

λzmk .C[x1(skn1
)] be a standard cycle with a context C, then the set derail(xi,m,C) of the

iterated derailed regular terms for the cycle context C and an index 0 < i ≤ k is defined as
follows:

67



• if m = 1 then derail(x1, 1, C) = reg(x1, C).

• if m > 1 then derail(xi,m,C) = {λzmi .C∗(Dpre(C
r)) |

D ∈ one-derail(C), λzmi .C
r ∈ derail(m− 1, Dpost(Dpre))}

Definition 4.2.16 (Instantiations of regular terms). Let C be a context and x a variable, then the
infinite set insts(x,C,m) = {t′|t ∈ derail(x,m,C)} such that t′ is obtained from t by
replacing each of the n occurrences of the Kleene stars in t with the natural numbers k1, .., kn
respectively.

Next, we will prove some properties of instantiations of regular terms.
The first property is that if a term is subsumed by an instantiation using n iterations, then it

also does so using m > n iterations as well.

Lemma 4.2.17. Given a system S containing a pure standard cycle with a cycle context C and
variable x and assume that for some pre-unifier σ of S, σ(x) ∈s insts(x,C, l) for l > 0 then
σ(x) ∈s insts(x,C, k) for all k > l.

Proof. For the corresponding iterations we replace the Kleene star with 0 and choose an empty
prefix.

The next property asserts that any term subsumed by insts1 is also subsumed by insts
after one iteration.

Lemma 4.2.18. Given a system S containing a pure standard cycle with a cycle context C and
let σ be a pre-unifier of S, if σ(x) ∈s insts1(x,C) then σ(x) ∈s insts(x,C, 1).

Proof. Clear from the definitions of insts and insts1.

The following lemma unfolds one iteration and relates terms obtained using different itera-
tions of insts.

Lemma 4.2.19. Let C be a context, C ′ and C ′′ contexts such that C ′C ′′ = C and C ′′ =
f(v1, .., D

′
@k, .., vn). Assume that:

• λzm.t0 ∈s insts(x,D′C ′f(y1, .., [.], .., yn),m) for some variable x and

• λzm.t1 ≥s λzm.(C
lC ′f(y1, .., t0, .., yn)) such that C lC ′ does not contain any bound

variable.

Then, λzm.t1 ∈s insts(x,C,m+ 1).

Proof. From the assumptions we know that there are substitutions θ1 and θ2 and a term t′ such
that:

• t′ ∈ insts(x,D′C ′f(y1, .., [.], .., yn),m).

• λzm.t0 = t′θ1.

68



• λzm.t1 = (λzm.(C
lC ′f(y1, .., t0, .., yn)))θ2.

Furthermore, since t′ ∈ insts(x,D′C ′f(y1, .., [.], .., yn),m), we know that there is a regu-
lar term λzm.t

1
0 ∈ derail(x,m,D′C ′f(y1, .., [.], .., yn)). Let Dpre = C ′f(y1, .., [.], .., yn)

and Dpost = D′, then DpreDpost ∈ one-derail(C) and λzm.C
∗C ′f(y1, .., t

1
0, .., yn) ∈

derail(x,m+1, C). Let t′′ = λzm.(C
lC ′f(y1, .., t

′, .., yn)), then t′′ ∈ insts(x,C,m+1).
We now have that t1 = t′′θ2 and therefore, that t1 ∈s insts(x,C,m+ 1).

We can now prove the main lemma in this section. The next lemma is the corresponding
one to Lemma 3.2.14 and formalize the argument that we can describe all possible mappings
of cyclic variables. Like in Lemma 3.2.14, we prove the result for one variable in the cycle but
unlike Lemma 3.2.14, we do not give a precise description but approximate it enough, such that
we can show the approximation has a lower bounding measure. We would like to note first that
an important proof technique which will be used in the following proof is to replace terms by
variables and then apply rules from the algorithm PUAB . These two steps are possible since:

• if a system S is unifiable by σ and we replace terms t1, .., tn in S by fresh variables
y1, .., yn in order to obtain the system S′ then S′ is unifiable by σ ◦ [t1/y1, .., tn/yn].

• if a system S is unifiable by σ, then we can apply (Delete), (Decomp)or (Bind) in
order to obtain a system S′ such that S′ is unifiable by σ as these three rules do not affect
the set of unifiers.

Lemma 4.2.20. Given a system S containing a pure standard cycle
λzm1 .x1(t

1
n1

)
.
= λzm1 .x2(s

1
n2

), .., λzmk .xk(t
k
nk

)
.
= λzmk .C[x1(skn1

)], then for any ground uni-
fier σ of S there is an index 0 < i ≤ n such that σ(xi) ∈s insts(xi, C, k).

Proof. First we compute the maximal contexts Di of σ(xi) for 0 < i ≤ k. Let A be the greatest
common prefix of Di and (σ(C))h for 0 < i ≤ k where h is the minimal depth of all Di. Then,
A = σ(C)q(C ′) for q ≤ h where C ′ is a proper prefix of σ(C) and let C ′′ be a context such that
C ′(C ′′) = σ(C). By induction on the number of constraints in the cycle.

• for k = 1 we first use Lemma 4.2.13 in order to obtain that σ(x1) ∈s insts1(x1, C) and
then Lemma 4.2.18 in order to show that σ(x1) ∈s insts(x1, C, 1).

• for k > 0, if there is 0 < i ≤ k such that Di = A, then we can use lemmas 4.2.12 and
4.2.18 in order to prove that σ(xi) ∈s insts(xi, C, 1) and by using Lemma 4.2.17 we
have σ(xi) ∈s insts(xi, C, k). We now assume that Di 6= A for all 0 < i ≤ k, i.e. that
Di = Af(vi1, .., v

i
n) for all 0 < i ≤ k. Clearly, there are at least two terms vqi and vrj for

0 < i, j ≤ n, 0 < q, r ≤ k and i 6= j such that both contain bound variables as otherwise
f will be common to all Di for 0 < i ≤ k (not that σ is a ground unifier). Now consider
two cases:

– there is an index 0 < p ≤ k such that vpi and vpj contain bound variables for
i 6= j. In this case σ(xp) can be written as λznp .Af(θ(x′1)(znp), .., θ(x

′
n)(znp))

for θ = [vp1/x
′
1, .., v

p
n/x′n] such that b̂(x′i), b̂(x

′
j) < b̂(xp) and therefore we satisfy

69



requirement 2a in Def. 4.2.8 and have that σ(xp) ∈s insts1(xp, C). We can now
use lemmas 4.2.18 and 4.2.17 to have σ(xp) ∈s insts(xp, C, k).

– in this case for each 0 < i ≤ k, there is only one index 0 < li ≤ n such that vili
contains bound variables and vij does not contain any bound variable for 0 < j ≤ n
and j 6= li. The standard cycle, after the application of σ, can now be represented as

λzm1 .Af(v11, .., D
1
@l1

(t1n1
), .., v1n)

.
= λzm1 .Af(v21, .., D

2
@l2

(s1n2
), .., t2n), ..,

λzmk .Af(vk1 , .., D
k
@lk

(tknk), .., vkn)
.
= λzmk .C(Af(v11, .., D

1
@l1

(skn1
), .., v1n))

where vili = λzni .D
i(zni) are new terms and are the only terms containing bound

variables. We can now follow the proof for Lemma 3.2.14.
Let C ′′ = f(t1, .., D

′
@l, .., tn) and let I = {i1, .., ip} contain all the indices 0 < i ≤

k such that li = l. (i.e. the head component of the position of the hole in f is l).
Consider now the cycle after the applications of the (Decomp) rule only:

λzm1 .u1
.
= λzm1 .u

′
1, .., λzmk .uk

.
= λzmk .u

′
k (4.16)

where:

∗ for every 0 < i ≤ k, ui = Di(tini) if i ∈ I and ui = vil otherwise.

∗ for every 0 < i < k, u′i = Di+1(sini+1
) if i+ 1 ∈ I and u′i = vi+1

l otherwise.

∗ u′k = D′C ′f(v11, .., D
1
@l1

(skn1
), .., v1n).

Now let us consider the substitution δ such that δ(yi) = vil for 0 < i ≤ k where yi
are fresh variables. and consider the equations

λzm1 .r1
.
= λzm1 .r

′
1, .., λzmk .rk

.
= λzmk .r

′
k (4.17)

where:

∗ for every 0 < i ≤ k, ri = Di(tini) if i ∈ I and ri = yi otherwise.

∗ for every 0 < i < k, r′i = Di+1(sini+1
) if i+ 1 ∈ I and r′i = yi+1 otherwise.

∗ r′k = D′C ′f(v11, .., D
1
@l1

(skn1
), .., v1n).

Clearly, this cycle is pre-unifiable by σ ◦ δ. After applying (Bind) on all equations
containing yi, we get:

λzmi1 .D
i1(ti1ni1 )

.
= λzmi1 .D

i2(si1ni2 ), ..,

λzmip .D
ip(t

ip
nip )

.
= λzmip .D

′C ′f(v11, .., D
i1
@l(s

ip
ni1

), .., v1n) (4.18)

using the permutations of the arguments as was done in the proof of Lemma 3.2.14.
Let us take now the substitution θ such that θ(wij ) = λznij .D

ij (znij ) for 0 < j ≤ p
where wij are fresh variables and consider the standard cycle:

λzmi1 .w
i1(ti1ni1 )

.
= λzmi1 .w

i2(si1ni2 ), ..,

λzmip .w
ip(t

ip
nip )

.
= λzmip .D

′C ′f(v11, .., w
i1
@l(s

ip
ni1

), .., v1n) (4.19)

70



which is clearly pre-unifiable by σ ◦ θ. Assume further that we have the substitution
η such that η(zi) = v1i for 0 < i ≤ n, then the standard cycle:

λzmi1 .w
i1(ti1ni1 )

.
= λzmi1 .w

i2(si1ni2 ), ..,

λzmip .w
ip(t

ip
nip )

.
= λzmip .D

′C ′f(z1, .., w
i1
@l(s

ip
ni1

), .., zn) (4.20)

is pre-unifiable by σ ◦ θ ◦ η. Since p < k, we can apply the induction hypoth-
esis in order to obtain that there is and index 0 < j ≤ p such that θ(wij ) =
λznij .D

ij (znij ) ∈s insts(wij , D′C ′f(zi, .., [.]@l, .., zn)), p). Since σ(xij ) =

λznij .Af(v
ij
1 , .., D

ij (znij ), .., v
ij
n ) = λznij .(Cσ)qC ′f(v

ij
1 , .., D

ij (znij ), .., v
ij
n ), we

can use Lemma 4.2.19 in order to obtain that σ(xij ) ∈s insts(xij , C, p + 1) and
therefore, using Lemma 4.2.17, that σ(xij ) ∈s insts(xij , C, k).

4.3 Pre-unification Using Regular Terms

In this section we will give an algorithm for the pre-unification of bounded higher-order prob-
lems, which will be based on PUAB in the same way that CUA was based on PUAC . The defi-
nitions of bindings and depth constraints as well as the definition of environments are similar to
that in Def. 4.3.1.

Since we now have also the b̂ values in the environment, we will use a simpler notation to
define, manipulate and obtain values in environments.

Definition 4.3.1 (Environments and bounding constraints). A bounding constraint is an equation
of the form b̂(x) = n and allows us to represent and monitor the b̂ values of the unification
problem using the environments. Given an environment E, we will use the following notation
for denoting constraints in E:

• E[d(x) = n] stands for (d(x) ≤ n) ∈ E.

• E[r(x) = t] stands for (x / t) ∈ E.

• E[b̂(x) = n] stands for b̂(x) = n.

• let ρ ∈ {d, r, b̂} then

– E[ρ(x) = ε] means there is no such constraint for x in E.

– when we write E[ρ(x) = u] we also mean the environment obtained from E by
replacing the constraint ρ for x with the new one. If there was no old constraint, we
just insert a new constraint into the new environment.

– E[ρ1(x1) = v1, .., ρn(xn) = vn] stands for E[ρ1(x1) = v1]..[ρn(xn) = vn].

71



Since we have at most one constraint of each type for each variable in the environment, the new
notation is well defined. If the environment contains a value b̂(x) for all higher-order variables
in the clause, the environment is called a valid one.

Example 4.3.2. By writing E[d(x) = 4, b̂(x) = 6, r(y) = λz.z] we mean either:

• that E contains a depth and a bounding constraint for x and a binding constraint for y or

• that E[d(x) = 4, b̂(x) = 6, r(y) = λz.z] is obtained from E by adding or replacing these
constraints for x and y.

Definition 4.3.3 (The set of rules BUA (Bounded unification algorithm)). Let (S, b̂) be a unifi-
cation system and E a valid environment, then the set of rules BUA are defined in Fig. 4.2. The
reset(E,S) function used in the algorithm returns an environment after adding to the envi-
ronment E a depth constraint containing the value 2 · fbound(S) for each unsolved variable in
S. The initial environment is equal to reset(b̂, S). The function scy returns all pure standard
cycles in S.

The following lemma, which will be used in the completeness proof, confirms that cyclic
variables can indeed be mapped by BUA to terms subsumed by sets obtained from the cycles’
contexts (see Def. 4.2.16).

Lemma 4.3.4. Let x be a variable in a cycle in system S with cycle context C and cycle size n
and let t ∈ insts(x,C, n), then we can derive using BUA a system S′ such that σS′(x) = t.

Proof. According to the definition of insts there is a regular term tr corresponding to t. by ap-
plying the four cyclic rules (Skip), (Imitate0), (Imitate∗) and at the end (Project)
and by choosing the right partial bindings, we can simulate any instantiation of tr (by insts).

The following example shows how the unification algorithm unfolds cyclic problems:

Example 4.3.5. Let S be the following monadic problem based on Ex. 1.3.1 (see Remark 2.1.53
about right-associativity):

{X1abX1bX2bX3bX4c
.
= aX1bX2X2X2bX3X3X3bX4X4X4baaac} (4.21)

Fig. 4.3 shows how we can obtain the unifier:

[λz.a81z/X1, λz.a
27z/X2, λz.a

9z/X3, λz.a
3z/X4] (4.22)

Please note that some constraints are removed in order to simplify presentation. We also re-
move the bounding constraints from the environment as clearly they will be satisfied, in monadic
problems, for b̂(X) > 1 for all variables X in the problem.

72



E
`
S
∪
{A

. =
A
}

E
`
S

(
D
e
l
e
t
e
)

E
`
S
∪
{λ
z k
.f
(s
n
)
. =
λ
z k
.f
(t
n
)}

E
`
S
∪
{λ
z k
.s

1
. =
λ
z k
.t
1
,.
.,
λ
z k
.s
n
. =
λ
z k
.t
n
}
(
D
e
c
o
m
p
)

E
[r
(x

)
=
λ
z k
.C
∗
(C
r
)]
`
S

E
[r
(x

)
=
λ
z k
.C
r
]
`
S
}

(
S
k
i
p
)

E
`
S
∪
{λ
z k
.x
(z
k
)
. =
λ
z k
.t
}

x
6∈
F
V
(t
),
σ
=

[λ
z k
.t
/
x
]

E
σ
`
S
σ
∪
{x

. =
λ
z k
.t
}

(
B
i
n
d
)

E
`
S

λ
z k
.x
α
(s
n
)
. =
λ
z k
.a
(t
m
)
∈
S
,0
<
i
≤
k
,u

=
P
B
b
(i
,α

),
σ
=

[u
/
x
]

r
e
s
e
t
(E
,S
σ
)
`
S
σ
∪
{x

. =
u
}

(
P
r
o
j
e
c
t
)
2

E
[r
(x

)
=
ε]
`
S

c
∈
s
c
y
(S
,E

),
x
∈
c,
t
∈
d
e
r
a
i
l
(x
,s
i
z
e
(c
),
c
c
o
n
(c
))

E
[r
(x

)
=
t]
`
S

(
R
e
c
)

E
[d
(x

)
=
m
>

0
,r
(x

)
=
ε]
`
S

λ
z k
.x
α
(s
n
)
. =
λ
z k
.f
(t
p
)
∈
S
,u

=
P
B
b
(f
,α

),
σ
=

[u
/
x
]

E
[d
(x

1
)
=
m
−

1
,.
.,
d
(x
p
)
=
m
−

1
]σ
`
S
σ
∪
{x

. =
u
}

(
I
m
i
t
a
t
e
p
b
)
1

E
[r
(x

)
=
λ
z n
.t
∗
(t
r
)]
`
S

λ
z k
.x
α
(s
n
)
. =
λ
z k
.f
(v
p
)
∈
S
,t

=
f
(t

1
,.
.,
t′
([
.]
) @
k
,.
.,
t p
),
u
=
P
B
b
(f
,α

),
σ
=

[u
/
x
]

E
[r
(x

1
)
=
t 1
,.
.,
r
(x
k
)
=
t′
(t
∗
(t
r
))
,.
.,
r
(x
p
)
=
t p
]σ
`
S
σ
∪
{x

. =
u
}

(
I
m
i
t
a
t
e
∗
)
1

E
[r
(x

)
=
λ
z n
.t
]
`
S

λ
z k
.x
α
(s
n
)
. =
λ
z k
.f
(v
p
)
∈
S
,t

=
f
(t

1
,.
.,
t p
),
u
=
P
B
b
(f
,α

),
σ
=

[u
/
x
]

E
[r
(x

1
)
=
t 1
,.
.,
r
(x
p
)
=
t p
]σ
`
S
σ
∪
{x

. =
u
}

(
I
m
i
t
a
t
e
0
)
1

1.
x
1
,.
.,
x
p

ar
e

al
lf

re
sh

va
ri

ab
le

s
in

tr
od

uc
ed

by
P
B
b
.

2.
a

is
ei

th
er

a
fu

nc
tio

n
sy

m
bo

lo
ra

bo
un

d
va

ri
ab

le
.

Fi
gu

re
4.

2:
B
U
A

-B
ou

nd
ed

un
ifi

ca
tio

n
ru

le
s

73



{
d
(X

1
,2

,3
,4

=
2
0}
`
{
X

1
a
b
X

1
b
X

2
b
X

3
b
X

4
c
.=
a
X

1
b
X

2
X

2
X

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c}

r
e
c

{
d
..,
r
(X

1
)

=
λ
z
.a
∗
z}
`
{
X

1
a
b
X

1
b
X

2
b
X

3
b
X

4
c
.=
a
X

1
b
X

2
X

2
X

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c}

(
I
m
i
t
a
t
e
∗
)

{
d
(X

11
)

=
2
0
,
d
(X

2
,3

,4
=

2
0
,
r
(X

11
)

=
λ
z
.a
∗
z}
`
{
a
X

11
a
b
a
X

11
b
X

2
b
X

3
b
X

4
c
.=
a
a
X

11
b
X

2
X

2
X

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
.=
λ
z
.a
X

11
z}

(
D
e
c
o
m
p
)

{
d
..,
r
(X

11
)

=
λ
z
.a
∗
z}
`
{
X

11
a
b
a
X

11
b
X

2
b
X

3
b
X

4
c
.=
a
X

11
b
X

2
X

2
X

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
.=
λ
z
.a
X

11
z}

(
I
m
i
t
a
t
e
∗
),(

D
e
c
o
m
p
)×

8
0

{
d
..,
r
(X

8
1

1
)

=
λ
z
.a
∗
z}
`
{
X

8
1

1
a
b
a
8
1
X

8
1

1
b
X

2
b
X

3
b
X

4
c
.=
a
X

8
1

1
b
X

2
X

2
X

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
.=
λ
z
.a

8
1
X

8
1

1
z}

(
S
k
i
p
)

{
d
..,
r
(X

8
1

1
)

=
λ
z
.z}
`
{
X

8
1

1
a
b
a
8
1
X

8
1

1
b
X

2
b
X

3
b
X

4
c
.=
a
X

8
1

1
b
X

2
X

2
X

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
.=
λ
z
.a

8
1
X

8
1

1
z}

(
P
r
o
j
e
c
t
)

{
d
(X

2
,3

,4
=

6
7
2}
`
{
a
b
a
8
1
b
X

2
b
X

3
b
X

4
c
.=
a
b
X

2
X

2
X

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
.=
λ
z
.a

8
1
z
,
X

8
1

1
.=
λ
z
.z}

(
D
e
c
o
m
p
)×

2
{
d
..}
`
{
a
8
1
b
X

2
b
X

3
b
X

4
c
.=
X

2
X

2
X

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
.=
λ
z
.a

8
1
z
,
X

8
1

1
.=
λ
z
.z}

r
e
c

{
d
..,
r
(X

2
)

=
λ
z
.a
∗
z}
`
{
a
8
1
b
X

2
b
X

3
b
X

4
c
.=
X

2
X

2
X

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
.=
λ
z
.a

8
1
z
,
X

8
1

1
.=
λ
z
.z}

(
I
m
i
t
a
t
e
∗
),(

D
e
c
o
m
p
)×

2
7

{
d
(X

2
7

2
)

=
6
7
2
,
d
(X

3
,4

=
6
7
2
,
r
(X

2
7

2
)

=
λ
z
.a
∗
z}
`
{
a
5
4
b
a
2
7
X

2
7

2
b
X

3
b
X

4
c
.=
X

2
7

2
a
2
7
X

2
7

2
a
2
7
X

2
7

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
.=
λ
z
.a

8
1
z
,
X

2
.=
a
2
7
X

2
7
z}

(
S
k
i
p
)

{
d
..,
r
(X

2
7

2
)

=
λ
z
.z}
`
{
a
5
4
b
a
2
7
X

2
7

2
b
X

3
b
X

4
c
.=
X

2
7

2
a
2
7
X

2
7

2
a
2
7
X

2
7

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
.=
λ
z
.a

8
1
z
,
X

2
.=
λ
z
.a

2
7
X

2
7
z}

(
P
r
o
j
e
c
t
)

{
d
(X

3
,4

)
=

5
0
4}
`
{
a
5
4
b
a
2
7
b
X

3
b
X

4
c
.=
a
2
7
a
2
7
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
.=
λ
z
.a

8
1
z
,
X

2
.=
λ
z
.a

2
7
z}

(
D
e
c
o
m
p
)×

5
5

{
d
..}
`
{
a
2
7
b
X

3
b
X

4
c
.=
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
.=
λ
z
.a

8
1
z
,
X

2
.=
λ
z
.a

2
7
z}

r
e
c

{
d
..,
r
(X

3
)

=
λ
z
.a
∗
z}
`
{
a
2
7
b
X

3
b
X

4
c
.=
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
.=
λ
z
.a

8
1
z
,
X

2
.=
λ
z
.a

2
7
z}

(
I
m
i
t
a
t
e
∗
),(

D
e
c
o
m
p
)×

9
{
d
(X

93
)

=
5
0
4
,
d
(X

4
)

=
5
0
4
,
r
9
(X

3
)

=
λ
z
.a
∗
z}
`
{
a
1
8
b
a
9
X

93
b
X

4
c
.=
X

93
a
9
X

93
a
9
X

93
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
.=
λ
z
.a

8
1
z
,
X

2
.=
λ
z
.a

2
7
z
,
X

3
.=
λ
z
.a

9
X

93
z}

(
S
k
i
p
)

{
d
..,
r
9
(X

3
)

=
λ
z
.z}
`
{
a
1
8
b
a
9
X

93
b
X

4
c
.=
X

93
a
9
X

93
a
9
X

93
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
.=
λ
z
.a

8
1
z
,
X

2
.=
λ
z
.a

2
7
z
,
X

3
.=
λ
z
.a

9
X

93
z}

(
P
r
o
j
e
c
t
)

{
d
(X

4
)

=
1
2
0}
`
{
a
1
8
b
a
9
b
X

4
c
.=
a
9
a
9
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
.=
λ
z
.a

8
1
z
,
X

2
.=
λ
z
.a

2
7
z
,
X

3
.=
λ
z
.a

9
z}

(
D
e
c
o
m
p
)×

1
9

{
d
..}
`
{
a
9
b
X

4
c
.=
X

4
X

4
X

4
b
a
a
a
c
,
X

1
.=
λ
z
.a

8
1
z
,
X

2
.=
λ
z
.a

2
7
z
,
X

3
.=
λ
z
.a

9
z}

r
e
c

{
d
..,
r
(X

4
)

=
λ
z
.a
∗
z}
`
{
a
9
b
X

4
c
.=
X

4
X

4
X

4
b
a
a
a
c
,
X

1
.=
λ
z
.a

8
1
z
,
X

2
.=
λ
z
.a

2
7
z
,
X

3
.=
λ
z
.a

9
z}

(
I
m
i
t
a
t
e
∗
),(

D
e
c
o
m
p
)×

3
{
d
(X

34
)

=
1
2
0
,
r
(X

34
)

=
λ
z
.a
∗
z}
`
{
a
6
b
a
3
X

34
c
.=
X

34
a
3
X

34
a
3
X

34
b
a
a
a
c
,
X

1
.=
λ
z
.a

8
1
z
,
X

2
.=
λ
z
.a

2
7
z
,
X

3
.=
λ
z
.a

9
z
,
X

4
.=
λ
z
.a

3
X

34
z}

(
S
k
i
p
)

{
d
(X

34
)

=
1
2
0
,
r
(X

34
)

=
λ
z
.z}
`
{
a
6
b
a
3
X

34
c
.=
X

34
a
3
X

34
a
3
X

34
b
a
a
a
c
,
X

1
.=
λ
z
.a

8
1
z
,
X

2
.=
λ
z
.a

2
7
z
,
X

3
.=
λ
z
.a

9
z
,
X

4
.=
λ
z
.a

3
X

34
z}

(
P
r
o
j
e
c
t
)

∅
`
{
a
6
b
a
3
c
.=
a
3
a
3
b
a
a
a
c
,
X

1
.=
λ
z
.a

8
1
z
,
X

2
.=
λ
z
.a

2
7
z
,
X

3
.=
λ
z
.a

9
z
,
X

4
.=
λ
z
.a

3
z}

(
D
e
l
e
t
e
)

∅
`
{
X

1
.=
λ
z
.a

8
1
z
,
X

2
.=
λ
z
.a

2
7
z
,
X

3
.=
λ
z
.a

9
z
,
X

4
.=
λ
z
.a

3
z}

Figure
4.3:

R
unning

B
U
A

on
E

q.4.21

74



4.4 Soundness and Completeness

In this section we will prove the soundness and completeness of BUA with regard to PUAB .
Since PUAB was proved to enumerate all pre-unifiers, the correctness proofs will mean that BUA
enumerates all pre-unifiers as well.

The proofs of the majority of the lemmas in this section are straightforward adaption to
higher-order logic of proofs for lemmas from Sec. 3.4.

Theorem 4.4.1 (Soundness). If S′ is obtained from a unification system S using BUA and is in
pre-solved form then σS′ |FV(S) ∈ PreUnifiers(S).

Proof. The rules in BUA are the same as the rules in PUAB but pose more restrictions on the
generated substitutions. First, we restrict the depth of terms using the depth constraints and
second, we generated partial bindings which are less general than the ones generated in PUAB
due to the use of the binding constraints. Formally, we will show that for each pre-solved form
S which is obtained using BUA, there is a pre-solved form S′ which can be obtained using
PUAB such that σS′ ≤ σS . The simulation of the rules (Delete), (Decomp), (Bind)
and (Project) is straightforward. The simulation of the different imitation rules is done by
simply replacing them with the single (Imitate) rule in PUAB . Since it generates a partial
binding which is equal to the one generated by (Imitatepb) and is more general than the ones
generated by (Imitate∗) and (Imitate0), the substitution is more general as well. The
(Skip) and (Rec) rules can be ignored completely as they affect the environment only.

We first prove that in acyclic systems the depth of terms mapped to variables is bound by
fbound.

Lemma 4.4.2. Let S be a system such that all variables in it are acyclic according to <c and
x be a variable in S. Then, for any system S′ obtainable from S by using PUAB without the
application of a (Project), we have d(σS′(x)) ≤ fbound(S).

Proof. We follow the proof of Lemma 3.4.6.

Lemma 4.4.3. If σ unifies a system S, then it unifies a problem restriction S′ of S.

Proof. We follow the proof of Lemma 3.4.11.

The next lemma states that if a variable is mapped in some pre-unifier to a large term, then
this variable or a smaller one can be related to a standard cycle. In order to prove it we will use
the same relation from Def. 3.4.2 as well as the repeated variables from Def. 3.4.4.

Lemma 4.4.4. If a variable x in a system S is repeated, then it is either cyclic or there is a
smaller variable in S, according to <c, which is cyclic.

Proof. We follow the proof of Lemma 3.4.12.

The next lemmas show that if we have a cyclic variable, a standard cycle can be obtained
using BUA.

75



Lemma 4.4.5. Given a system S with environment E and assume S contains a cyclic vari-
able and for all unsolved higher-order variables x ∈ FV(S) there is v ≥ fbound(S) such
that (d(x) ≤ v) ∈ E, then we can obtain a system S′ and environment E′ using the rules
(Delete), (Decomp), (Bind) and (Imitatepb) such that S′ contains a cycle over the
variables x1, ., , xn and (d(xi) ≤ v) ∈ E′ for 0 < i ≤ n.

Proof. We follow the proof of Lemma 3.4.13.

Lemma 4.4.6. Given a system S with environment E and assume S contains a pure cycle
λzm1 .x1(t

1
n1

)
.
= λzm1 .t1, .., λzmk .xk(t

k
nk

)
.
= λzmk .tk, and assume further that for all 0 < i ≤ k

there is vi ≥ fbound(S) such that(d(xi) ≤ vi) ∈ E, then we can obtain a system S′ and
environment E′ using the rules (Delete), (Decomp), (Bind) and (Imitatepb) such
that S′ contains a pure non-unique standard cycle over the variables y1, .., yk and such that
(d(yi) ≤ ui) ∈ E′ for 0 < i ≤ k and ui > md(S).

Proof. We prove this by induction on l = Σk−1
i=1 i ∗ Mi where Mi is the size of the minimal

position of xi+1 in ti for 0 < i ≤ k − 1. If l = 0, then we are done as X1
.
= t1 cannot be a

flex-flex constraint (see next) and we already have a non-unique standard cycle. If l > 0, then we
apply (Imitatepb) on an equation λzmj .xj(t

j
nj )

.
= λzmj .tj with 0 < j < m maximal such

that hd(tj) 6∈ V. Assume further that tj = f(t′1, .., t
′
p) and that xj+1 occurs in t′q for 0 < q ≤ p.

The result, after applying (Decomp), is again a cycle with a new variable x′j instead of xj . l is
decreased in the new cycle as either j > 1 and then we get that Mj is decreased by 1 and Mj−1
is increased by 1, or j = 1 and then M1 is decreased by 1. In the second case, Mm is increased
but we don’t count it. Therefore, we can apply the induction hypothesis in order to obtain a
non-unique standard cycle. The reason E′ is as above is that we apply at most l (Imitatepb)
steps and each one of these steps decreases one depth constraint by 1, so at worst case one
constraint will be decreased by l. As we assumed the constraints to be of the form d(xi) ≥ vi
before we start, we will obtain, in the worst case, one constraint of the form d(x′i) ≤ v with
v ≥ fbound(S) − l. Since Mi ≤ md(S) for 0 < i ≤ k, fbound(S) = (K + 1) · md(S)
(K = size(FV(S))) and k ≤ K we obtain that v > md(S).

Lemma 4.4.7. Given a system S with environment E and assume S contains a pure non-unique
standard cycle λzm1 .x1(t

1
n1

)
.
= λzm1 .x2(s

1
n2

), .., λzmk .xk(t
k
nk

)
.
= λzmk .tk, and assume further

that (d(xi) ≤ v) ∈ E for 0 < i ≤ k and v > v0 where v0 is the size of the minimal position
of x1 in tk, then we can obtain a system S′ with a pure (unique) standard cycle using the rules
(Delete), (Decomp), (Bind) and (Imitatepb).

Proof. First, if the non-unique standard cycle is also standard, then we are done. Otherwise,
let pm be the minimal position in tk of x1. The way to achieve a standard cycle is simi-
lar to what was done in the proof of the previous lemma. By applying size(pm) times the
rule (Imitatepb) on the last equation we will obtain a standard cycle. Applying the rule
size(pm) times is possible according to the depth constraints.

Lemma 4.4.8. Let S0 be a system with a cyclic variable, then there is a system S with a cyclic
variable and with environment E such that S0 is obtainable from S using no application of

76



the rule (Project) and for all unsolved variables x in S, (d(x) ≤ v) ∈ E where v ≥
fbound(S).

Proof. Let ϕ be the derivation of S0 and let S1 be the last system in the derivation which is
either an initial system or immediately after the application of a (Project). If there is a
cyclic variable in S1, then we choose S = S1 and have (d(x) ≤ 2 · fbound(S)) ∈ E for all
unsolved variables x in S1 and we are done. Otherwise, since S1 is acyclic, let S = S0 and we
can use Lemma 4.4.2 in order to obtain S such that (d(x) ≤ v) ∈ E for all unsolved variables
x in S where v ≥ fbound(S).

Lemma 4.4.9. Given a system (S, b̂) with environment E and assume it contains a cyclic vari-
able, then we can obtain either:

• a pure (unique) standard cycle using BUA while applying only the rules (Delete),
(Decomp), (Bind) and (Imitatepb) or

• for every pre-unifier σ of S, we can obtain a system (S′, b̂′) such that b-measure(S′, b̂′) <
b-measure(S, b̂) and σ ◦ θ is a pre-unifier of S′ for some substitution θ.

Proof. We first use Lemma 4.4.8 in order to obtain a system with a cyclic variable such that for
all x ∈ FV(S) there is v ≥ fbound(S) such that (d(x) ≤ v) ∈ E. We use now Lemma 4.4.5
in order to obtain a cycle without having the environment changed. We now consider two cases:

• if the cycle is pure, then we obtain a non-unique standard cycle over the variables x1, .., xk
such that (d(xi) ≤ v) ∈ E′ for 0 < i ≤ n and v > md(S) using Lemma 4.4.6. The last
step is to obtain a standard cycle using Lemma 4.4.7 and here we note that the size of
the minimal position of x1 in tk must be smaller than md(S). This is because the rigid
positions of variables cannot become deeper by applying the (Imitatepb) rule.

• if the cycle is impure, then we consider the constraint λzmj .xj(t
j
nj )

.
= λzmj .tj where tj

is impure for some 0 < j ≤ k. In order to preserve completeness, we must consider both
applications of (Project) and (Imitatepb). Since an application of (Project)
will decrease the bounding measure, we assume we apply (Imitatepb) only, but after
at most d(tj) applications, where d(tj) ≤ md(S) ≤ fbound(S), we will get a solved
constraint xj

.
= t′j where t′j contains unsolved variables x′1, .., x

′
l and since tj was impure,

b̂(x′i) < b̂(xj) for 0 < i ≤ l and therefore b-measure(S′, b̂′) < b-measure(S, b̂).

In the following lemma we show that for any pre-unifier σ of a problem containing a pure
standard cycle, we can derive a problem with a reduced bounded measure which is pre-unifiable
by σ.

Lemma 4.4.10. Given a system (S, b̂) with a pure standard cycle, then for any ground unifier
σ of S, there is a derivation (S′, b̂′) of (S, b̂) using BUA such that S′ is unifiable by σ and
b-measure(S′, b̂′) < b-measure(S, b̂).

77



Proof. We first use Lemma 4.2.20 in order to obtain that there is a variable x such that σ(x) ∈s
insts(x,C ′, n) for C ′ the standard cycles’ context and n its size. Assume there is a term t ∈
insts(x,C ′, n) and a substitution θ such that σ(x) = tθ. We now use Lemma 4.3.4 in order to
obtain a system S′ such that σS′(x) = t and therefore σS′ ≤ σ. Since the definition of insts
is based on reg which strictly reduces the b-measure, we get that b-measure(S′, b̂′) <
b-measure(S, b̂).

Theorem 4.4.11 (Completeness). If a bounded unification system S is pre-unifiable by θ, then
there exists a pre-solved system S′, which is obtainable from S using BUA such that σS′ |FV(S) ≤
θ.

Proof. We will prove by induction over the bounding measure b-measure, that each pre-
solved form obtainable using PUAB can be also obtained by BUA. The induction hypothesis is
therefore: for a given system S having bounding measure m, if it is possible to obtain a pre-
unifier of S using PUAB , then it is possible to obtain the same pre-unifier using BUA. Induction
base (m = ∅): we can replace all variables by first-order variables and clearly cyclic systems are
not unifiable. Therefore, we can simulate any run of the complete PUAB with BUA. Induction
step: Once we apply (Project) in PUAB , we can use the induction hypothesis so we as-
sume we need to simulate, using BUA, the remaining rules only. We notice that all rules except
(Imitate) are the same. (Imitate) differs from (Imitatepb) in BUA with regard to
cyclic variables only. We consider the following two cases. If (Imitate) is applied on a vari-
able which is not repeated and is not cyclic, then we can use Lemma 4.4.2 and obtain the same
system using the rule (Imitatepb) of BUA. Now, assume we apply (Imitate) in PUAB
on a variable that is either cyclic or repeated. Using Lemma 4.4.4 we know that if the variable
is repeated, then there is a cyclic variable in the system. We now show that without losing any
pre-unifier, we can reduce the bounding measure and therefore apply the induction hypothesis.
Since the only two non-deterministic rules to apply are (Imitatepb) and (Project) and an
application of (Project) will allow us to use the induction hypothesis, we can use Lemma
4.4.9, without losing any pre-unifier, in order to obtain either a system with a smaller bound-
ing measure or system with a pure standard cycle. We use Lemma 4.4.10 and the fact that a
pre-unifier can be extended easily into a ground unifier in order to derive, in the second case, a
system using BUA which is unifiable by θ and which has a smaller bounding measure. Either
way, we can use the induction hypothesis.

4.5 Termination and Minimal Unifiers

In this section we will show that in practice, the number of recursive calls to (Imitate∗) can
be bounded due to the following result [72]:

Definition 4.5.1 (Minimal unifiers). Given a system S, a unifier σ of S is called minimal if there
is no other unifier σ′ of S with Σx∈FV(S)size(σ′(x)) < Σx∈FV(S)size(σ(x)).

Definition 4.5.2 (Exponent of periodicity). A ground unifier σ has an exponent of periodicity n
iff n is the maximal number such that there is some variable x and ground contexts A and B as
well as a term t such that σ(x) = λzm.AB

nt for m ≥ 0.

78



Next we define a bound on the exponents. The bound is based on functions defined in [74],
please refer to the definitions and proofs there for correctness and intuition for these functions
and values.

Definition 4.5.3 (Exponent function (from Lemma 4.7 in [74])). Given a system S, then the
exponent function eop(S) = ((5 · fsize(S)− 6) · (e1/e)2·fsize(S)−3)− 2 where:

• fsize(S) = 2ord(S)(repn(S) · sbeqnf(S)).

• repn(S) = 6 · maxb(S) · maxar(S) + 22 · maxb(S) + 2.

• maxb(S) is the maximal value v in E[b̂(x) = v] for environment E and a variable x in S.

• maxar(S) is the maximal arity of a term in S.

• sbeqnf(S) = seqnf(S)2ord(S)(seqnf(S)).

• seqnf(S) = 3 · size(S) · maxts(S).

• maxts(S) is the maximal size of a type of a term in S.

Lemma 4.5.4 ( [74]). For every unifiable system S and for every minimal unifier σ of S, its
exponent of periodicity is less than eop(S).

The Restricted BUA

The exponent computed in the lemma above allows us to replace the Kleene star in the regular
terms with a concrete value.

Definition 4.5.5 (Restricted derail). Given a system S, the restricted derail function for
S (derailS) is defined as derail but instead of introducing the Kleene star, the function
introduce the number eop(S). The produced terms are called restricted regular terms or just
regular terms.

Definition 4.5.6 (Restricted instantiations and descriptions). Similarly to Def 4.2.16, we define
a restricted instantiation of a restricted regular term t as the term obtained by replacing the n
occurrences of the exponent e by values k1, .., kn such that ki ≤ e for 0 < i ≤ n. In addition
we define the set of all instantiations of a restricted regular term t as the finite set containing
all possible restricted instantiations. In the remaining of this section insts will refer to its
restricted version.

Example 4.5.7. The term λz.(f([.], w))4f(x1(z), x2(z)) is a restricted instantiation of the re-
stricted regular term λz.(f([.], w))ef(x1(z), x2(z)) for e = 8.

Definition 4.5.8 (Environments and constraints). The notions of environments and of binding
and depth constraints are the same as for BUA. The only difference is that we identify each
binding constraint over a restricted regular term t with a natural number such that this number is
the maximal size of an mpath of all maximal contexts of terms contained in insts(t) +2. The

79



intuition behind this value is to describe the maximal depth of a bound variable in the regular
term. Since the language is (now) finite, it is possible to compute this value. We call this number
the value of the constraint.

Example 4.5.9. Assume we have a constraint x / t where t is the restricted regular context from
the previous example, then the value of this constraint is 8 + 2 = 10.

Definition 4.5.10 (Restricted BUA (RBUA)). Let (S0, b̂0) be the initial system, then the re-
stricted BUA (RBUA) consists of the rules (Delete), (Decomp), (Bind), (Imitatepb),
(Project) and (Imitate0) from Fig. 4.2 together with the three rules in Fig. 4.4.

Example 4.5.11. By replacing all the Kleene stars in Ex. 4.3.5 with the exponent of periodicity
of the problem we can obtain exactly the same derivation using RBUA.

Lemma 4.5.12 (Soundness). If S′ is obtained from a unification system S using RBUA then
PreUnifiers(S′) ⊆ PreUnifiers(S).

Proof. Following from Thm. 4.4.1.

Lemma 4.5.13. If θ is a minimal unifier of a unification system S, then there exists a pre-solved
system S′, which is obtainable from S using RBUA such that σS′ |FV(S) ≤ θ.

Proof. From the completeness of BUA we know that we can obtain such a pre-unifier for each
unifier of S. By using Lemma 4.5.4 we can show that we do not need to seek pre-unifiers with
term depth bigger than the exponent of periodicity, which is exactly the bound we use in the
algorithm.

Definition 4.5.14 (Regular measure). Let E be an environment and let d1, .., dn be the values of
the binding constraints in E for all unsolved variables in S, then the regular measure of E is the
sum Σ0<i≤ndi.

Definition 4.5.15 (Depth measure). Let E be an environment and let m1, ..,mn be all the num-
bers occurring in depth constraints in E for all unsolved variables in S, then the depth measure
of E is the sum Σ0<i≤nmi.

Theorem 4.5.16. Given a system (S, b̂), RBUA terminates on (S, b̂).

Proof. The algorithm is finitely branching. We will show termination of a specific run by taking
the lexicographic ordering of the following measure µ =< m1,m2,m3,m4,m5,m6 > where

• m1 is the bounding measure b-measure(S, b̂),

• m2 is is the multiset {b̂(x)− ar(x)|x ∈ V } where V contains all variables which do not
occur also in a binding constraint in E.

• m3 is the regular measure,

• m4 is the depth measure,

80



E
[r
(x

)
=
λ
z k
.C
l (
C
r
)]
`
S

E
[r
(x

)
=
λ
z k
.C
r
]
`
S

(
S
k
i
p
)

E
[r
(x

)
=
ε]
`
S

c
∈
s
c
y
(S
,E

),
x
∈
c,
t
∈
d
e
r
a
i
l
S
0
(x
,s
i
z
e
(c
),
c
c
o
n
(c
))

E
[r
(x

)
=
t]
`
S

(
R
e
c
)

E
[r
(x

)
=
λ
z n
.t
l (
tr
)]
`
S

λ
z k
.x
α
(s
n
)
. =
λ
z k
.f
(v
p
)
∈
S
,t

=
f
(t

1
,.
.,
t′
([
.]
) @
k
,.
.,
t p
),
u
=
P
B
b
(f
,α

),
σ
=

[u
/
x
]

E
[r
(x

1
)
=
t 1
,.
.,
r
(x
k
)
=
t′
(t
l−

1
(t
r
))
,.
.,
r
(x
p
)
=
t p
]σ
`
S
σ
∪
{x

. =
u
}

(
I
m
i
t
a
t
e
∗
)
1

1.
x
1
,.
.,
x
p

ar
e

al
lf

re
sh

va
ri

ab
le

s
in

tr
od

uc
ed

by
P
B
b
.

Fi
gu

re
4.

4:
R
B
U
A

-R
es

tr
ic

te
d

bo
un

de
d

un
ifi

ca
tio

n
ru

le
s

81



• m5 is the number of unsolved variables x with b̂(x) = 0 and

• m6 is the number of symbols other than .
= in the problem.

We prove that the measure µ is decreased after any application of RBUA.

• An application of (Delete) or (Decomp) decreases m6 and does not increase any
other measure.

• An application of (Bind) either decreases m1 and m2 if b̂(x) > 0 or decreases m5 if
b̂(x) = 0. It does not increase m1, m2 or m4. It also does not increase m3 since the size
of mpath of maximal contexts is not affected by (Bind).

• An application of (Imitatepb) decreasesm4 and does not increasem1 orm2 (although
it might decrease them). It does not increase m3 following the previous argument.

• An application of (Skip), (Imitate0) and (Imitate∗) decreases m3 as we de-
crease the size of the mpath of the maximal context in the new constraint by at least 1. It
does not increase m1 or m2.

• An application of a (Project) decreases m1.

• An application of a (Rec) decreases m2 as it introduces a binding constraint for a vari-
able and is applicable only if one did not exists. It does not increase m1.

Therefore the measure µ decreases after each application of RBUA.

Theorem 4.5.17. The unifiability question of bounded unification problems is decidable.

Proof. Following lemmas 4.5.12 and 4.5.13 and Thm. 4.5.16.

Corollary 4.5.18. The monadic second-order unification problem [28] is decidable.

Proof. Since the problem is second-order, bounded variables must be of basic type only and
as the signature contains only monadic function symbols and constants, any ground unifier of
the problem will map the variables of the problem to terms with at most 1 bounded variable
occurrence. The maximal number of λ-binders can be deduced from the original variables in the
problem and hence a fixed bound can be given for such a problem and we can use Thm. 4.5.17
in order to decide its unifiability.

82



CHAPTER 5
Higher-order Resolution

The constrained resolution calculus defined in Sec. 2.3 has one main drawback. In order to avoid
the need to choose a unifier out of infinitely-many possibilities, the calculus postpones calling
unification. But, since unifiability is undecidable in higher-order logic, this means the search
space is greatly increased.

Fully-automated resolution normally proceeds by creating new resolvents until the empty
clause is found. The search space already in first-order resolution tends to be very big, despite the
many refinements which were found for first-order automated reasoning. Any further increase
due to the higher-order of the terms may make it impractical.

In this chapter we will survey and compare several methods and strategies for using unifi-
cation in the constrained resolution calculus. We will first introduce to the reader several test
clause sets which will be used in order to test each of the variants of the constraint resolution
calculus presented later in this chapter. The first calculus to be compared and tested will be the
original one, which was presented in Sec. 2.3. Most higher-order theorem provers, such as Leo
II [9], are placing bounds on the search for unifiers. The bound, though, is pretty trivial and can
be easily shown to be insufficient. This bound will be integrated into the second variant while
the third variant will use a slightly improved one. The fourth variant will employ a unification
algorithm which is based on a more “semantical” bound [74]. The unifiability question with
regard to these bounds was shown to be decidable, which in general, makes the algorithm us-
able in theorem proving. While Huet’s unification algorithm returns all pre-unifiers within the
bounds, this algorithm returns only a finite subset of them, which prevents the resolution calcu-
lus employing it from being complete with regard to the full set of bounded unifiers. In the last
section we will present a calculus based on the unification algorithm from Chap. 4. It will use
the same bounds as the algorithm from Sec. 5.2 but unlike this algorithm, it will enumerate the
infinitely-many pre-unifiers in a way which will make the calculus usable in practice.

83



5.1 The Test Sets

In this section we will present several sets of clauses, which will serve as test sets for the various
calculi presented later in this chapter. The test sets are chosen in order to emphasize particular
strengths and weaknesses in the compared calculi and for that end, relatively trivial examples
are enough. Although it is possible to find examples of arbitrary complexities as well, such
examples will be ill suited for the comparison of the calculi. Nevertheless, the examples given
below can be easily made schematic and therefore each example can be extended into an infinite
set of examples, all ending with the same result.

In order for our comparison to be fair, we will use the following heuristics when choosing
which clauses and literals to process:

• choose shortest clauses according to the number of characters.

• choose shallowest literals, when the depth of a literal is the maximal depths of a term in
it.

• the search for a refutation applies the unification rules depth-first and the remaining rules
breadth-first.

Please note that applying all rules depth-first might give an increase in performance but can
easily lead to non-termination. By applying all rules breadth-first, most calculi presented in this
chapter can find a refutation for the refutable clause sets but result in a decreased performance.

Remark 5.1.1. A full comparison between depth and breadth-first search for unifiers and refu-
tations is beyond the scope of this thesis. In the basic case, depth-first is always using the
last clause that was generated and breadth-first uses first all clauses that were generated before.
There are many combinations and improvements of these strategies which will not be discussed
further. When using the depth-first strategy, even a search for a refutation of a first-order clause
set might not terminate, even if the set is refutable. An example is the following set, using which
we can always resolve the last generated clause with the first clause in the set and continue so
indefinitely.

{[P (x)]F ∨ [P (f(x))]T, [P (a)]T, [P (f(f(a)))]F} (5.1)

On the other hand, since the number of clauses in the problem grows very fast, applying
breadth-first search can be extremely inefficient. If we also postpone unification, we will add to
the list of clauses many clauses which have non-unifiable constraints and the number of possible
clauses will soon grow so large that it will pose a serious space problem.

Each of the test sets we give next is refutable and we will show it by giving a refutation,
using the constrained resolution calculus from Sec. 2.3, which will not follow the heuristics
above.

Since the pre-unification algorithm, which is employed by this calculus, always find a unifier
if one exists, we will normally skip the unification tests and give the unifier directly. This will be
done by using a slightly different version of Huet’s constrained resolution calculus, which more
resembles Andrews’ resolution calculus [3].

84



Definition 5.1.2 (The constrained resolution calculus). The resolution calculus used in this sec-
tion is based on the simplifications, resolution and factorization rules from figures 2.3 and 2.4,
the (Delete), (Decomp) and (Bind) rules from Figure 2.1 and the (Sub) rule from Fig.
5.1.

C σ = [t/x]

Cσ
(Sub)

Figure 5.1: Substitution rule

Theorem 5.1.3. The resolution calculus from Def. 5.1.2 is sound and complete with regard to
the constrained resolution calculus from Sec. 2.3.

Proof. Clear as the sub rule can return all substitutions obtained by the omitted rules and is still
sound.

Clause Set 1

The main weakness of the constrained resolution calculus is that it may build up a set of unifi-
cation constraints which is not unifiable. The worst case is when the search for unifiers of this
set will not terminate. In this case the only way to force the algorithm to terminate if the set is
refutable is by searching for a unifier using a breadth-first search.

Remark 5.1.4. With regard to the application of monadic function symbols, please note that
they associate to the right (see Remark 2.1.53).

Definition 5.1.5 (Clause set 1).

{[P (Xfa, fXa, gXa)]T, [P (y, y, gz)]F, [P (y, z, y)]F} (5.2)

Fig. 5.2 gives a refutation of this clause set.

[P (Xfa, fXa, gXa)]T [P (y, y, gz)]F
(Resolve)

[P (Xfa, fXa, gXa)
.
= P (y, y, gz)]F

(Sub) ([λz.z/X, fa/y, a/z])
[P (fa, fa, ga)

.
= P (fa, fa, ga)]F

(Delete)

Figure 5.2: A refutation of clause set 1

Clause Set 2

In order to force the pre-unification algorithm to terminate, one can restrict the depth of the
terms obtained. Although the unification algorithm will always terminate, the completeness of
the calculus is greatly impaired.

85



Definition 5.1.6 (Clause set 2).
{[Xa]F, [Pfna]T} (5.3)

where n ≥ 0.

Fig. 5.3 gives a refutation of this clause set.

[Xa]F [Pfna]T
(Resolve)

[Xa
.
= Pfna]F

(Sub) ([λz.Pfnz/X])
[Pfna

.
= Pfna]F

(Delete)

Figure 5.3: A refutation of clause set 2

Clause Set 3

A bound which will allow for a more “Semantical incompleteness”, is the first-order bound
which was first introduced in Chap. 3 (see Def. 3.2.2). Although using such a bound will be
enough for the above example, it will fall short for cyclic ones, such as the one adapted from Ex.
1.3.1.

Definition 5.1.7 (Clause set 3).

{[Q(X1abX1bX2bX3bX4c, aX1bX2X2X2bX3X3X3bX4X4X4baaac)]
F, [Q(y, y)]T} (5.4)

Fig. 5.4 gives a refutation of this clause set.

[Q(X1abX1bX2bX3bX4c, aX1bX2X2X2bX3X3X3bX4X4X4baaac)]F [Q(y, y)]T
(Resolve)

[Q(X1abX1bX2bX3bX4c, aX1bX2X2X2bX3X3X3bX4X4X4baaac)
.
= Q(y, y)]F

(Decomp)
[X1abX1bX2bX3bX4c

.
= y]F, [aX1bX2X2X2bX3X3X3bX4X4X4baaac

.
= y)]F

(Bind)
[X1abX1bX2bX3bX4c

.
= aX1bX2X2X2bX3X3X3bX4X4X4baaac)]F

(Sub) (see Eq. 5.5)
[a81aba81ba27ba9ba3c

.
= aa81ba27a27a27ba9a9a9ba3a3a3baaac]F

(Delete)

Figure 5.4: A refutation of clause set 3

where the substitution is

[λz.a81z/X1, λz.a
27z/X2, λz.a

9z/X3, λz.a
3z/X4] (5.5)

Clause Set 4

Makanin [59] was the first to give a way to deal with cyclic constraints, or more generally, with
infinitary unification problems. His approach was to search for a finite subset of all unifiers and
to prove that this subset is never empty if the problem is unifiable. This approach was developed

86



further in order to deal with monadic second-order unification problems [28], context unification
problems [72], linear unification problems [55] and bounded unification problems [74].

A major drawback of this approach, when considering resolution, is the incomplete set of
unifiers computed. The following clause set is built in such a way that this drawback comes into
play.

Definition 5.1.8 (Clause set 4). Let n > 0 then:

• Γ(n) = [Q(Y ac, aY c)]T ∨ [P1(Y c)]
T ∨ .. ∨ [Pn(Y c)]T

• Λ = [Q(z, z)]F

• S0 = {Γ(n),Λ}

• ∆(m) = [Pm(

em︷︸︸︷
a..a ym)]F for all 0 < m ≤ n

• Sm = {Γ(n),Λ,∆(m)} for all 0 < m ≤ n

• em = eop(Sm−1) + 1 for 0 < m ≤ n

and clause set 4 is :
{Γ(n),Λ,∆(1), ..,∆(n)} (5.6)

The next lemma is easily proved.

Lemma 5.1.9. Let σ be the composed substitution obtained from a refutation of clause set 4,
then σ(Y ) = λz.akz for k ≥ en.

Proof. After applying (Resolve)s, (Decomp)s and (Bind)s, we get, among others clauses,
also the following two constraints:

• the unification constraint [Y ac
.
= aY c]F which implies σ(Y ) = λz.akz for k ≥ 0

• the constraint [Y c
.
=

en︷︸︸︷
a..a yn]F which implies σ(Y ) = λz.aenvz and σ(yn) = vc for

some context v.

Fig. 5.5 gives a refutation of this clause set for n = 2.
where the substitution is

[λz.

e2︷︸︸︷
a..a z/Y,

e2−e1︷︸︸︷
a..a c/y1, c/y2] (5.7)

5.2 Variants of the Constrained Resolution Calculus

In this section we present some variations of the constrained resolution calculus, which are
either used in practice in resolution theorem provers or can be created by adding rules from
known unification algorithms.

87



[Q
(Y
a
c
,
a
Y
c
)] T
∨

[P
1
(Y
c
)] T
∨

[P
2
(Y
c
)] T

[Q
(z
,
z
)] F

(
R
e
s
o
l
v
e
)

[P
1
(Y
c
)] T
∨

[P
2
(Y
c
)] T
∨

[Q
(Y
a
c
,
a
Y
c
)
.=
Q

(z
,
z
)] F

(
D
e
c
o
m
p
)

[P
1
(Y
c
)] T
∨

[P
2
(Y
c
)] T
∨

[Y
a
c
.=
z
] F
∨

[a
Y
c
.=
z
] F

(
B
i
n
d
)

[P
1
(Y
c
)] T
∨

[P
2
(Y
c
)] T
∨

[Y
a
c
.=
a
Y
c
] F

[P
1
(

e
1

︷︸︸︷a..a
y
1
)] F

(
R
e
s
o
l
v
e
)

[P
2
(Y
c
)] T
∨

[Y
a
c
.=
a
Y
c
] F
∨

[P
1
(Y
c
)
.=
P

1
(

e
1

︷︸︸︷a..a
y
1
)] F

(
D
e
c
o
m
p
)

[P
2
(Y
c
)] T
∨

[Y
a
c
.=
a
Y
c
] F
∨

[Y
c
.=

e
1

︷︸︸︷a..a
y
1
] F

[P
2
(

e
2

︷︸︸︷a..a
y
2
)] F

(
R
e
s
o
l
v
e
)

[Y
a
c
.=
a
Y
c
] F
∨

[Y
c
.=

e
1

︷︸︸︷a..a
y
1
] F
∨

[P
2
(Y
c
)
.=
P

2
(

e
2

︷︸︸︷a..a
y
2
)] F

(
D
e
c
o
m
p
)

[Y
a
c
.=
a
Y
c
] F
∨

[Y
c
.=

e
1

︷︸︸︷a..a
y
1
] F
∨

[Y
c
.=

e
2

︷︸︸︷a..a
y
2
] F

(
S
u
b
)

(see
E

q.5.7)

[

e
2

︷︸︸︷a..a
a
c
.=
a

e
2

︷︸︸︷a..a
c
] F
∨

[

e
2

︷︸︸︷a..a
c
.=

e
1

︷︸︸︷a..a
e
2
−

e
1

︷︸︸︷a..a
c
] F
∨

[

e
2

︷︸︸︷a..a
c
.=

e
2

︷︸︸︷a..a
c
] F

(
D
e
l
e
t
e
)×

3

Figure
5.5:

A
refutation

ofclause
set4

for
n

=
2

88



The Original Calculus

The first calculus we will compare with regard to our test sets will be Huet’s original con-
strained resolution calculus as was presented in Sec. 2.3. Since the unification algorithm is
non-terminating, the strategy which is normally chosen when using the calculus is to call unifi-
cation only when necessary. This is obtained by postponing the call to unification until a clause
is obtained, which is made of unification constraints only. Huet has mentioned that some unifica-
tion calls, such as first-order unification, can be performed eagerly. Nevertheless, the algorithm
may fail to find a refutation, even if one exists.

In the remaining of this chapter, we will refer to the unmodified constrained resolution cal-
culus as CRC.

We will now apply the algorithm to our test cases:

Lemma 5.2.1. CRC fails to terminate on clause set 1 and never finds a refutation.

Proof. By choosing the shortest clauses and the shallowest literals first, we obtain the derivation
in Fig. 5.6. Clearly, the clause set is not unifiable but the unification algorithm will produce
infinitely many mappings for x. Note that applying (Project) instead of (Imitate) in the
derivation in Fig. 5.6 will also make the clause set non-unifiable. The fact that the derivation
does not terminate can be seen from the similarity between lines 4 and 6 in the derivation.

[P (Xfa, fXa, gXa)]T [P (y, z, y)]F
(Resolve)

[P (Xfa, fXa, gXa)
.
= P (y, z, y)]F

(Decomp)
[Xfa

.
= y]F, [fXa

.
= z]F, [gXa

.
= y]F

(Bind)
[Xfa

.
= gXa]F, [fXa

.
= z]F

(Imitate)
[gX1fa

.
= ggX1a]F, [fgX1a

.
= z]F

(Decomp)
[X1fa

.
= gX1a]F, [fgX1a

.
= z]F

Figure 5.6: A non-terminating derivation

Lemma 5.2.2. CRC finds a refutation for each of the clause sets 2 and 3.

Proof. Since both have only two clauses, each with one literal only, we can obtain derivations
of the clauses [Xa

.
= Pfna]F and

[X1abX1bX2bX3bX4c
.
= aX1bX2X2X2bX3X3X3bX4X4X4baaac)]

F respectively. Since both
constraints are unifiable (see figures 5.3 and 5.4) and PUA always computes a unifier if one ex-
ists, we can obtain a refutation for each clause set.

Lemma 5.2.3. CRC finds a refutation for clause set 4 for all n > 0.

Proof. Any choice of clauses and literals will result in unifiable constraint set and therefore we
can obtain a refutation.

89



Depth-bounded Resolution

In this section we will describe two calculi which place a bound on the depth of the obtained
terms.

Fixed depth

A very popular approach for forcing PUA to terminates is to put a bound on the depth of the
terms generated by the algorithm. The very popular higher-order theorem prover Leo II [9] has
a fixed number (usually between 3 and 8) as the bound [10], [11]. This bound was determined to
be enough for the refutation of a considerable amount of higher-order problems from the TPTP
library [78].

Definition 5.2.4 (Depth-bounded resolution calculus (CRCd)). let b > 0 be a pre-defined num-
ber, the depth-bounded resolution calculus has the same rules as CRC, but all the rules have as a
prerequisite that the clauses in the upper parts of the rules do not contain a solved constraint of
the form x

.
= t where d(t) ≥ b and x is a higher-order variable.

Example 5.2.5. Given b = 3, then no rule of CRCd is applicable to the clauseC∨[Xa
.
= fffy].

Lemma 5.2.6. CRCd obtains a refutation for clause set 1.

Proof. Clear, as for any b > 1 we can obtain the same unifier as in Fig. 5.2.

Lemma 5.2.7. For any given b, CRCd fails to find a refutation for clause set 2 for n > b− 1.

Proof. Clear, as we need to apply the (Imitate) rule n+ 1 times, after which, we will have
the solved constraint X .

= λz.Pfnz in the obtained clause.

Lemma 5.2.8. CRCd fails to find a refutation for clause set 3 for b < 81.

Proof. We first prove that the substitution in Fig. 5.4 is the only substitution that unifies the
constraint. It is not difficult to see that X1 must be mapped to a term of the form an. After
applying this mapping and (Decomp)s, we get the constraint
[anbX2bX3bX4c

.
= X2X2X2bX3X3X3bX4X4X4baaac)]

F. Now we can only get a unifier if
X2 is mapped to a term of the form an/3 and after applying this mapping and (Decomp)s,
we get the constraint [an/3bX3bX4c

.
= X3X3X3bX4X4X4baaac)]

F. Similarly we get that X3

must be mapped to an/9 and X4 must be mapped to both an/27 and to a3, which concludes the
proof. Now, since X1 is mapped to a term of depth 81, b must be at least 81 in order for the rules
to be applicable.

Lemma 5.2.9. CRCd fails to find a refutation for clause set 4 for b < en.

Proof. Following Lemma 5.1.9.

90



Problem-based depth

A more flexible bound on the depth of the produced terms is one that is based on the input
problem. In Def. 3.2.2 we have defined a bound on the depth of terms in case of acyclic
unification constraints. We will use this bound for defining the next variant of CRC.

Definition 5.2.10 (FOL-bounded resolution calculus (CRCfol)). The FOL-bounded resolution
calculus is a CRCd with b = fbound(S) where S is the input clause set.

Lemma 5.2.11. CRCfol obtains a refutation for clause set 1.

Proof. Clearly, b = fbound(S) > md(S) = 4 and we can obtain the same unifier as in Fig.
5.2.

Lemma 5.2.12. CRCfol obtains a refutation for clause set 2.

Proof. Clearly, b = fbound(S) > md(S) = n + 1 and we can obtain the same unifier as in
Fig. 5.3.

Lemma 5.2.13. CRCfol fails to find a refutation for clause set 3.

Proof. We compute b = fbound(S) = 10 and use Lemma 5.2.8.

Lemma 5.2.14. CRCfol obtains a refutation for clause set 4 for n > 1.

Proof. The fbound of the set of constraints obtained from resolving Sm is en · 6 and therefore
for all n > 1 we have en < en · 6.

Projection-Bounded Resolution

The first-order bound used in the previous calculus does not fail only on cyclic sets of unification
problems. Clearly the calculus will fail to find the unifier even of the simple problem:

{[Xa .
= g(a, b)]F, [Xb

.
= g(b, b)]F, [g(Y a, b)

.
= Xf9a]F} (5.8)

sinceX must be mapped, in any possible unifier, to λz.g(z, b) and this then leaves the constraint
[Y a

.
= f9a] which means Y must be of depth at least 9 but the first-order bound is 3 · 2 = 6.

It is not known yet if we can pre-compute a bound on the depth of terms for acyclic problems
such that it will not harm the completeness of the calculus, but it is clear that if we just recompute
the first-order bound every time we apply a projection then the method will be complete for
acyclic problems.

Although it will be complete, we do not have termination now since the number of required
projections is not known. In order to give a terminating unification algorithm, we will just put
an arbitrary bound on the number of allowed projections.

Definition 5.2.15 (Projection-bounded resolution calculus (CRCp)). Let p > 0 be a pre-defined
number, the projection-bounded resolution calculus has the same rules as CRCfol, but every
time (Project) is called, we recompute the first-order bound for the unsolved unification
constraints and we allow at most p calls to this rule.

91



Lemma 5.2.16. CRCp obtains a refutation for clause set 1.

Proof. Clearly, b = fbound(S) > md(S) = 4 and we can obtain the same unifier as in Fig.
5.2.

Lemma 5.2.17. CRCp obtains a refutation for clause set 2.

Proof. Clearly, b = fbound(S) > md(S) = n + 1 and we can obtain the same unifier as in
Fig. 5.3.

Although the calculus is much stronger than CRCfol it still fails on cyclic problems.

Lemma 5.2.18. CRCp fails to find a refutation for clause set 3.

Proof. We compute b = fbound(S) = 10 and use Lemma 5.2.8.

Lemma 5.2.19. CRCp obtains a refutation for clause set 4 for n > 1.

Proof. The fbound of the set of constraints obtained from resolving Sm is en · 6 and therefore
for all n > 1 we have en < en · 6.

Minimal Binders Resolution

The most straight forward way to put a bound on the number of allowed projections is to put a
bound on the number of allowed bound variables in the range of unifiers.

In many cases, this bound is “semantically” more interesting than a bound on the depth of
the generated terms. If we consider all higher-order variables as representing sets, the number of
bounded variables occurring in the terms mapped to these variables clearly relate to the defini-
tions of these sets. For example if X represents a set, which denotes the union of two other sets,
represented by Y and Z, then the number of occurrences of bound variables in σ(X) cannot
exceed that in σ(Y ) plus that in σ(Z). If we want to denote that the set contains all elements
bigger than 2014, we can denote it using two occurrences of bound variables and λ-binders by
λz.(z > 2014). Note that the use of Church numbers [17] is also made possible using this
bound.

Many unification problems have a natural bound on the number of allowed projections. In
word unification [59] and in context unification [21] the terms mapped to higher-order variables
can have exactly one bound variable while in monadic second-order unification [28] they can
have at most one such variable. In both cases we can use the number of the original higher-order
variables in the problem as a bound to the number of projections.

This still does not help us to put a bound on the depth of terms in cyclic problems. The algo-
rithms which decide the problems above are using another trick - they are looking for minimal
unifiers only.

An algorithm of this type for checking unifiability of bounded higher-order unification prob-
lems was given in [74]. In the remaining of this section we will compare several resolution
calculi based on bounded unification algorithms.

92



Definition 5.2.20 (Minimal binders resolution calculus (CRCλ)). The minimal binders resolution
calculus has all the rules from figures 2.3, 2.4 and 2.5 and in addition has the unification rules
presented in [74] and adapted to our clause notations.

The partial completeness of the unification algorithm presented in [74] is based on the fol-
lowing lemma, which can be deduced from [74]:

Lemma 5.2.21 ( [74]). If a constraint set is unifiable by a bounded unifier, then the algorithm
finds (at least one and) all bounded unifiers such that their exponent is at most E, where E is the
exponent of periodicity (see Def. 4.5.2).

Lemma 5.2.22. CRCλ obtains a refutation for each of the clause sets 1, 2 and 3.

Proof. By running the unification algorithm from [74] we can obtain each of the unifiers.

In order to evaluate how well CRCλ runs on clause set 4, we will use the following function.

Definition 5.2.23 (Evaluation function for unification algorithms (Ψeval)). For each substitu-
tion σ obtained by the unification algorithm during the search, the evaluation function adds
Σx∈V d(σ(x)) for V the set of all higher-order variables.

The intuition behind Ψeval is to compute the number of imitations applied to each higher-
order variable.

Lemma 5.2.24. CRCλ obtains a refutation for clause set 4 with
Ψeval ≥ Σi=1..n(ei−1 + Σj=ei−1..eij).

Proof. Since we always try shallower literals first, we will resolve Γ with Λ before ∆i and with
∆i before ∆i+1 for all 0 < i < n. We evaluate the algorithm on each such iteration and define
Ψi
eval to be the sum of the ith iteration. For i = 1 we resolve Γ with Λ and obtain the minimal

unifier [λz.z/y], then we resolve with ∆1 and have to backtrack and try another unifier e1 + 1
times, where the last attempt fails because we have reached the exponent of periodicity. Each
of these backtrackings computes a substitution with y mapped to a term of depth 0 ≤ k ≤ e1
for all k. Therefore Ψ1

eval = Σj=1..e1j. For i > 1, we resolve first Γ with ∆i−1, then with Λ
and then with all ∆l for 0 < l ≤ i− 2. The exponent of periodicity computed for the resolvent
of Γ with Λ is now based also on the size of ∆i−1, i.e. it is equal to k for ei−1 ≤ k < ei.
After calling (Imitate) and (Decomp) ei−1 times we get the constraints [y′c

.
= yi−1]

F and
[y′ac

.
= ay′c]F. Now, we can resolve with all ∆l for 0 < l ≤ n− 2 and just have to compute the

values for the first-order variables yl as all of them are unifiable with the substitution obtained
above. Last, we resolve with ∆i and have to backtrack ei − ei−1 + 1 times and fail the last
time as the exponent is ei−1. For each of this backtracks, we compute substitutions where y is
mapped to ei − ei−1 < k ≤ ei and therefore Ψi

eval = ei−1 + Σj=ei−1..eij. Since each iteration
for i < n fails, we can sum up all the Ψi

eval and get the required value.

Note that it is possible to modify CRCλ such that unification will be applied lazily, as is done
normally in CRC. In this case there will not be any backtracking as in the above case but, as we
already discussed in the introduction of this chapter, such a calculus will be highly impractical.

93



Definition 5.2.25 (Lazy minimal binders resolution calculus (CRClazyλ )). The lazy minimal
binders resolution calculus has the same rules as CRCλ with the exception of applying unifi-
cation rules only on clauses which contain unification constraints only.

Theorem 5.2.26. If a clause set S is refutable by CRC such that the derivation substitution is
bounded by b̂, then we can refute it using CRClazyλ and using b̂.

Proof. The only difference between the calculi is in the set of unification rules. We can use
Lemma 2.3.15 in order to obtain the same derivation of a clause C in both calculi such that C
is pre-unifiable. Clearly, if it is pre-unifiable by a bounded substitution, then we can obtain the
refutation with CRClazyλ .

Corollary 5.2.27 (Completeness). If a clause set is unsatisfiable with regard to V -complexes
such that the substitution used in a counter-model is bounded by b̂, then we can refute it using
CRClazyλ and using b̂.

Proof. Following theorems 2.3.17 and 5.2.26.

Corollary 5.2.28. If a clause set S is refutable using CRClazyλ then we can obtain a refutation of
S containing a clause C, such that below it we have only unification rule applications and above
it only rule applications from the other sets.

Proof. Following Lemma 2.3.15 and Thm. 5.2.26.

5.3 Regular Binders Resolution

In this section we will define a resolution calculus which will be based on the regular unification
algorithm from Chap. 4.

The constrained resolution calculus postpones the computation of unifiers but also allows
for unification to be applied eagerly in very few cases, such as for first-order constraints or any
other constrained which is of finitary class. Such classes are described further in [61] and [67].
Since we can consider the unification constraints as a finite representation of the infinitely-many
unifiers, in the general case we postpone unification in order to keep this finite representation.

When dealing with clause sets which can be refuted using a bounded substitution, like the
ones described in Sec. 5.2, postponing unification may have no real advantage over eager uni-
fication. The gain we have for keeping a compact representation of the (now finitely-many)
unifiers, may be no more than the additional price we pay for searching in branches which have
non-unifiable sets of constraints.

On the other hand, we have seen in Lemma. 5.2.24 that restricting the set of unifiers may
leads to an inefficient search. The search could be more efficient if we could obtain two things.
First, we could avoid the re-computation of the same substitutions and second, we could try to
guess the “right” exponent, which in this case was en.

The calculus introduced in this section allows us to search for refutations while enjoying
these two things. The re-computation of the same substitutions is prevented by using regular

94



terms while guessing the “right” exponents is obtained by partially postponing unification and
using different values for the computation of the exponents.

In order to allow for different values to be used in the computation of the exponents, we will
need to use information about the state of the search. This will be obtained by keeping track of
the search using a graph.

Definition 5.3.1 (Constraints of a clause). Given a clause C, the set of all unification constraints
of C is denoted by const(C).

Example 5.3.2. The set of constraints of the clause:

[P (a)]T ∨ [xfa
.
= fxa]F (5.9)

is {[xfa .
= fxa]F}.

Definition 5.3.3 (Search graphs). Given a clause setC, a search graph forC is a directed acyclic
graph, with labeling function lbl from nodes to clauses such that:

• the root nodes are labeled by clauses from C.

• if there is an edge from node v1 to node v2 then the clause lbl(v2) can be obtained from
clause lbl(v1) using one rule from the sets defined in definitions 2.3.8, 2.3.9 and 2.3.10.

A full search graph is a search graph that in addition has:

• if there are nodes v and v1 and lbl(v) is obtained from lbl(v1) and some clause c by a
binary rule, then there is a node v2 such that lbl(v2) = c and there is an edge from v2 to
v.

Note that since we might have many ways to derive each clause using the allowed rules, we
might also have many edges coming into each node in the search graph.

Example 5.3.4. In this section we will use, as a running example, clause set 4 (see Df. 5.1.8)
for n = 2. A full search graph for the clause C:

[P2(yc)
.
= P2(

e2︷︸︸︷
a..a y2)]

F ∨ [P1(yc)
.
= P1(

e1︷︸︸︷
a..a y1)]

F ∨ [Q(yac, ayc)
.
= Q(z, z)]F (5.10)

can be seen in Fig. 5.7 where:

• C1 is [P1(yc)]
T ∨ [P2(yc)]

T ∨ [Q(yac, ayc)
.
= Q(z, z)]F and

• C2 is [P2(yc)]
T ∨ [P1(yc)

.
= P1(

e1︷︸︸︷
a..a y1)]

F ∨ [Q(yac, ayc)
.
= Q(z, z)]F

• all rules applications are (Resolve).

The intuition behind the search graphs is to keep information about the possibly infinitely-
many unifiers, even when we apply unification eagerly and compute a finite subset of them. The
search graphs factor out all eager applications of unification rules.

We will also define the following function on nodes in search graphs.

95



Γ(2) Λ

C1 ∆(1)

C2 ∆(2)

C

Figure 5.7: A full search graph for clause C

Definition 5.3.5 (Maximal descendant (maxDesc)). Given a node v, its maximal descendant
(maxDesc) is the node whose label has the maximal exponent of periodicity of all nodes which
are descendants of v.

Example 5.3.6. In the tree from Fig. 5.7, the node labeled by C is the maximal descendant of
all other nodes.

In order to use this information, we will keep one search graph for the whole search for
a refutation and will add new nodes to it, whenever new clauses are found. In addition, the
environment of each clause will contain a reference to one node in the search graph.

We will also define several new functions and update the definitions of some others.

Definition 5.3.7. The following definitions will be used in the remaining part of this chapter:

• Given a clause C, eop(C) is the exponent of all the unification constraints in C.

• Given a clause C, env(C) is the environment of C.

• We assign, to each clause, a node on the search graph. Given a clause C, En is the node
corresponding to C where E = env(C).

• derail(E, x, s, c) = derailconst(lbl(maxDesc(En)))(x, s, c) (see Def. 4.5.5).

Example 5.3.8. Since a descendant node always has at least the same exponent of periodicity as
any of its ancestors (as no unification is applied in the search graph), the exponent of periodicity
value used in the derail function for all nodes in Fig 5.7 will be the same as that of the
maximal descendant and therefore will equal the exponent of periodicity of C.

Since we deal with clauses instead of unification equations as in Chap. 4, we will update
some definitions.

Definition 5.3.9 (First-order bound). Given a clause C, its first-order bound is (k+ 1) · md(C),
where k is the number of unsolved variables in const(C) and md(C) is the maximal size of a
rigid position in any term in const(C). It is denoted by fbound(C).

Definition 5.3.10 (Some utility functions). In order to make the presentation of the rules simpler,
we will use the following utility functions:

96



• given an environment E and a clause C, reset(E,C) is the environment obtained from
E by deleting all values E[r] and setting all values E[d] to 2 · fbound(C). The other
values do not change.

• let C be a clause derived using rule r and clauses C1,..,Cm, then fn(E1, .., Em) where
E1 = env(C1), .., Em = env(Cm) returns an environment which contains:

– a pointer En, in the environment E, to the node which is the child of parents
En1 , .., E

n
m using rule r. Note that if the node does not exist then we create it.

– E[d(x) = 2 · fbound(C)] for all higher-order variables x in
const(C).

– if Ei[b̂(x) = b] for some 0 < i ≤ n and variable x, then E[b̂(x) = b]. Note that
since we always take variants, the sets of variables in the environments are disjoint.

Example 5.3.11. Let C be the clause:

[xa
.
= fffa]F (5.11)

then fn(E) results in E, where we delete all regular and depth constraints for x and add
E[d(x) = 16].

We will now present the resolution calculus. The rules in figures 5.8 and 5.9, and 5.10 are
exactly as those in definitions 2.3.8, 2.3.9 and 2.3.10 except for the added environment.

Definition 5.3.12 (Regular binders resolution calculus(CRCR)). The regular binders resolution
calculus contains the rules from figures 5.8, 5.9, 5.10 and 5.11 such that unification is always
applied eagerly. Axioms C are assigned environments E such that:

• for each higher-order variable x, E[d(x) = 2 · fbound(C)].

• for each clause C and its environment E = env(C), En = v such that lbl(v) = C.

If the unification constraints in a clause are not in pre-solved form but there is no unification rule
applicable, then we fail.

97



E ` C ∨ [¬D]T

fn(E) ` C ∨ [D]F
(¬T )

E ` C ∨ [¬D]F

fn(E) ` C ∨ [D]T
(¬F )

E ` C ∨ [D1 ∨D1]T

fn(E) ` C ∨ [D1]T ∨ [D2]T
(∨T )

E ` C ∨ [D1 ∨D2]F

fn(E) ` C ∨ [D1]F
(∨Fl )

E ` C ∨ [D1 ∨D2]F

fn(E) ` C ∨ [D2]F
(∨Fr )

E ` C ∨ [ΠαA]T

fn(E) ` C ∨ [Axα]T
(ΠT )

E ` C ∨ [ΠαA]F

fn(E) ` C ∨ [Asα]T
(ΠF )1

1. sα is a new Skolem term

Figure 5.8: Simplification Rules

E1 ` [A]p ∨ C E2 ` [B]¬p ∨D
fn(E1, E2) ` C ∨D ∨ [A

.
= B]F

(Resolve)
E ` [A]p ∨ [B]p ∨ C

fn(E) ` [A]p ∨ C ∨ [A
.
= B]F

(Factor)

Figure 5.9: Resolution and factorization rules

E ` C ∨ [x(tn)]T

fn(E) ` C ∨ [y]T ∨ [z]T ∨ [x(tn)
.
= (y ∨ z)]F

(ST∨ )
E ` C ∨ [x(tn)]p

fn(E) ` C ∨ [y]¬p ∨ [x(tn)
.
= ¬y)]F

(STF¬ )

E ` C ∨ [x(tn)]F

fn(E) ` C ∨ [y]F ∨ [x(tn)
.
= (y ∨ z)]F

(SFl
∨ )

E ` C ∨ [x(tn)]F

fn(E) ` C ∨ [z]F ∨ [x(tn)
.
= (y ∨ z)]F

(SFr
∨ )

E ` C ∨ [x(tn)]T

fn(E) ` C ∨ [yzα]T ∨ [x(tn)
.
= Παy]F

(STΠ)
E ` C ∨ [x(tn)]F

fn(E) ` C ∨ [ysα]F ∨ [x(tn)
.
= Παy]F

(SFΠ )1

1. sα is a new Skolem term

Figure 5.10: Splitting Rules

98



Definition 5.3.13 (Search graphs and derivations). Whenever a new node v in the graph is added,
we do the following:

1. let v1, .., vn be all ancestors of v.

2. let mi = maxDesc(vi) for all 0 < i ≤ n where we exclude v from the search for
max-descendants (i.e. using the search graph before the addition of v).

3. let ui = eop(lbl(v))− eop(lbl(mi)) for all 0 < i ≤ n.

4. let c1, .., ck be all the clauses in the clause set.

5. if env(cj)
n = vi for all 0 < j ≤ k and some 0 < i ≤ n, if ui > 0 then add ui to all

exponents in binding constraints in env(cj).

Remark 5.3.14. Although the above process may be expensive if done naively, it can be opti-
mized in practice by keeping the exponents as variables.

Example 5.3.15. Let v1 and v2 be the parents of the newly added node v and let eop(lbl(v1)) =
e1, eop(lbl(v2)) = e2 and eop(lbl(v)) = e. Therefore, u1 = e − e1 and u2 = e − e2.
Now assume that env(c1)

n = env(c2)
n = v1, env(c3)

n = v2 for clauses c1, c2, c3 and there
are the binding constraints r1, . . . , rk in env(c1)

n and env(c2)
n and the binding constraints

r′1, . . . , r
′
l in env(c3)

n. If u1 > 0 but u2 = 0, then we add u1 to all the exponents in r1, . . . , rk
and do not change those in r′1, . . . , r

′
l.

Example 5.3.16. Let S be clause set 4 and assume b̂(Y ) = 2. We will refute clause set 4
(see Df. 5.1.8) for n = 2. The respective environments are given in Table 5.1. The labels of
the nodes are given in Table 5.2. The search for a refutation will be carried over in 3 steps.
For each step we will give the derivation and the search graph (figures 5.12, 5.14 and 5.16 for
derivations and figures 5.13 and 5.15 for search graphs). Please note that we sometimes change
the environments of some clauses after they were derived, so we might derive a clause E ` Γ
but use in the example clause E′ ` Γ. In order to save space and since the environment does not
always change using derivation rules, we might denote two different clauses E ` Γ and E ` Γ′

using the same environment E.

1. in the first step we derive the clause

E8 ` [P2(c)]
T ∨ [c

.
=

e1︷︸︸︷
a..a y1]

F (5.12)

as can be seen in Fig. 5.12. Since the unification constraints are not in pre-solved form
but no unification rule is applicable, we fail. The addition of node n5 to the graph (see
Fig. 5.13) triggers Def. 5.3.13 and therefore the clause

E4 ` [P1(Y c)]
T ∨ [P2(Y c)]

T ∨ [Y ac
.
= aY c]F (5.13)

is modified into clause

c = E9 ` [P1(Y c)]
T ∨ [P2(Y c)]

T ∨ [Y ac
.
= aY c]F (5.14)

and we continue with step 2.

99



E
`
C
∨
[A

.=
A
] F

E
`
C

(
D
e
l
e
t
e
)

E
`
C
∨
[λ
z
k
.f
(s
n
)
.=
λ
z
k
.f
(t
n
)] F

E
`
C
∨
[λ
z
k
.s

1
.=
λ
z
k
.t
1
] F
∨
..∨

[λ
z
k
.s
n
.=
λ
z
k
.t
n
] F

(
D
e
c
o
m
p
)

E
[r
(x

)
=
λ
z
k
.t
n
(t
r
)]`

C

E
[r
(x

)
=
λ
z
k
.t
r
]`

C
(
S
k
i
p
)

E
`
C
∨
[λ
z
k
.x
(z
k
)
.=
λ
z
k
.t] F

x
6∈
F
V
(t),σ

=
[λ
z
k
.t/
x
]

E
σ
`
C
σ
∨
[x

.=
λ
z
k
.t] F

(
B
i
n
d
)

E
`
C

[λ
z
k
.x
α
(s
n
)
.=
λ
z
k
.a
(t
m
)] F
∈
C
,0
<
i≤

k
,u

=
P
B
b(i,α

),σ
=

[u
/
x
]

r
e
s
e
t
(E
σ
,C
σ
)
`
C
σ
∨
[x

.=
u
] F

(
P
r
o
j
e
c
t
)
2

E
[r
(x

)
=
ε]`

C
c
∈
s
c
y
(C

),x
∈
c,t∈

d
e
r
a
i
l
(E
,x
,s
i
z
e
(c),c

c
o
n
(c))

E
[r
(x

)
=
t]`

C
(
R
e
c
)

E
[r
(x

)
=
ε,d

(x
)
=
m
>

0
]`

C
[λ
z
k
.x
α
(s
n
)
.=
λ
z
k
.f
(t
p
)] F
∈
C
,u

=
P
B
b(f

,α
),σ

=
[u
/
x
]

E
[d
(x

1
)
=
m
−

1
,..,d

(x
p
)
=
m
−

1
]σ
`
C
σ
∨
[x

.=
u
] F

(
I
m
i
t
a
t
e
p
b )

1

E
[r
(x

)
=
λ
z
n
.t
l(t
r
)]`

C
[λ
z
k
.x
(s
n
)
.=
λ
z
k
.f
(v
p
)] F
∈
C
,t

=
f
(t

1
,..,t

k
([.]),..,t

p
),u

=
P
B
b(f

,α
),σ

=
[u
/
x
]

E
[r
(x

1
)
=
t
1
,..,r

(x
k
)
=
t
k
(t
l−

1
(t
r
)),..,r

(x
p
)
=
t
p
]σ
`
C
σ
∨
[x

.=
u
] F

(
I
m
i
t
a
t
e
∗
)
1

E
[r
(x

)
=
λ
z
n
.t]`

C
[λ
z
k
.x
(s
n
)
.=
λ
z
k
.f
(v
p
)] F
∈
C
,t

=
f
(t

1
,..,t

p
),u

=
P
B
b(f

,α
),σ

=
[u
/
x
]

E
[r
(x

1
)
=
t
1
,..,r

(x
p
)
=
t
p
]σ
`
C
σ
∨
[x

.=
u
] F

(
I
m
i
t
a
t
e
0 )

1

1.
the

x
1
,..,x

p
are

allthe
new

variables
introduced

in
P
B
b.

2.
a

is
eithera

function
sym

bolora
bound

variable.

Figure
5.11:

B
ounded

unification
rules

100



E1 ` [Q(Y ac, aY c)]T ∨ [P1(Y c)]T ∨ [P2(Y c)]T E2 ` [Q(z, z)]F

(Resolve)
E3 ` [P1(Y c)]T ∨ [P2(Y c)]T ∨ [Q(Y ac, aY c)

.
= Q(z, z)]F

(Decomp)
E3 ` [P1(Y c)]T ∨ [P2(Y c)]T ∨ [Y ac

.
= z]F ∨ [aY c

.
= z]F

(Bind)
E3 ` [P1(Y c)]T ∨ [P2(Y c)]T ∨ [Y ac

.
= aY c]F

(Rec)
E4 ` [P1(Y c)]T ∨ [P2(Y c)]T ∨ [Y ac

.
= aY c]F

(Skip)
E5 ` [P1(Y c)]T ∨ [P2(Y c)]T ∨ [Y ac

.
= aY c]F

(Project)
E6 ` [P1(c)]T ∨ [P2(c)]T ∨ [ac

.
= ac]F

(Delete)
E6 ` [P1(c)]T ∨ [P2(c)]T E7 ` [P1(

e1︷︸︸︷
a..a y1)]F

(Resolve)

E8 ` [P2(c)]T ∨ [P1(c)
.
= P1(

e1︷︸︸︷
a..a y1)]F

(Decomp)

E8 ` [P2(c)]T ∨ [c
.
=

e1︷︸︸︷
a..a y1]F

Figure 5.12: Step 1 - derivation

2. we use now the resolvent c and obtain the clause

c1 = E15 ` [c
.
=

e2−m︷︸︸︷
a..a y2]

F (5.15)

as can be seen in Fig. 5.14. After attempting to obtain the derivation for m < e1 and
failing, we obtain it form = e1. The clause c1 we obtain is, nevertheless, not in pre-solved
form and there is no unification rule which is applicable. For the above to be correct, we
need to prove that, since m is bounded by e′1, then e2 > e′1 ≥ e1. Following the definition
of e0, e1, e2 and the computations defined in definitions 5.3.12 and 5.3.13 we obtain that
e′1 = e2 − 1 which satisfies the above inequality. Since we added new nodes to the search
graph (see Fig. 5.15), we update the clause

E10 ` [P1(

m︷︸︸︷
a..a Ymc)]

T ∨ [P2(

m︷︸︸︷
a..a Ymc)]

T ∨ [Ymac
.
= aYmc]

F (5.16)

into clause

c2 = E15 ` [P1(

m︷︸︸︷
a..a Ymc)]

T ∨ [P2(

m︷︸︸︷
a..a Ymc)]

T ∨ [Ymac
.
= aYmc]

F (5.17)

and continue with step 3.

3. using the resolvent c2 and similar rule applications to the ones in Fig. 5.14, we obtain the
empty clause (see Fig. 5.16). We just note that we need to repeat applying (Imitate∗)
for e2 − m more times and since e′2 > e2 (using the same argument as above), we can
delete this unification constraint.

Definition 5.3.17 (Skeletons (of derivations)). A skeleton of a derivation D is a tree
skeleton(D) created recursively as follows:

• if D is an axiom then skeleton(D) = D.

101



n1 n2

n3 n4

n5

Figure 5.13: Step 1 - search graph

env b̂ d r n comment

E1 b̂(Y ) = 2 ∅ ∅ n1

E2 ∅ ∅ ∅ n2

E3 b̂(Y ) = 2 d(Y ) = 18 ∅ n3

E4 b̂(Y ) = 2 ∅ r(Y ) = λz.ae
′
0z n3 e′0 = eop(lbl(n3))

E5 b̂(Y ) = 2 ∅ r(Y ) = λz.z n3

E6 ∅ ∅ ∅ n3

E7 ∅ ∅ ∅ n4

E8 ∅ ∅ ∅ n5

E9 b̂(Y ) = 2 ∅ r(Y ) = λz.ae
′
1z n3 e′1 = eop(lbl(n5))

E10 b̂(Ym) = 2 ∅ r(Ym) = λz.ae
′
1−mz n3

E11 b̂(Ym) = 2 ∅ r(Ym) = λz.z n3

E12 ∅ ∅ ∅ n3

E13 ∅ ∅ ∅ n6

E14 ∅ ∅ ∅ n7

E15 b̂(Ym) = 2 ∅ r(Ym) = λz.ae
′
2−mz n3 e′2 = eop(lbl(n7))

E16 b̂(Yk) = 2 ∅ r(Yk) = λz.ae
′
2−kz n3

E17 b̂(Yk) = 2 ∅ r(Yk) = λz.z n3

E18 ∅ ∅ ∅ n3

Table 5.1: Environment’s values

node label

n1 [Q(Y ac, aY c)]T ∨ [P1(Y c)]T ∨ [P2(Y c)]T

n2 [Q(z, z)]F

n3 [P1(Y c)]T ∨ [P2(Y c)]T ∨ [Q(Y ac, aY c)
.
= Q(z, z)]F

n4 [P1(

e1︷︸︸︷
a..a y1)]F

n5 [P2(Y c)]T ∨ [Q(Y ac, aY c)
.
= Q(z, z)]F ∨ [P1(Y c)

.
= P1(

e1︷︸︸︷
a..a y1)]F

n6 [P2(

e2︷︸︸︷
a..a y2)]F

n7 [Q(Y ac, aY c)
.
= Q(z, z)]F ∨ [P1(Y c)

.
= P1(

e1︷︸︸︷
a..a y1)]F ∨ [P2(Y c)

.
= P2(

e2︷︸︸︷
a..a y2)]F

Table 5.2: Search graph’s labels

102



E
9
`

[P
1
(Y
c
)]
T
∨

[P
2
(Y
c
)]
T
∨

[Y
a
c
. =
a
Y
c
]F

(
I
m
i
t
a
t
e
∗
)

,(
D
e
c
o
m
p
)
×
m

E
1
0
`

[P
1
(

m ︷︸︸︷ a..a
Y
m
c
)]
T
∨

[P
2
(

m ︷︸︸︷ a..a
Y
m
c
)]
T
∨

[Y
m
a
c
. =
a
Y
m
c
]F

(
S
k
i
p
)

E
1
1
`

[P
1
(

m ︷︸︸︷ a..a
Y
m
c
)]
T
∨

[P
2
(

m ︷︸︸︷ a..a
Y
m
c
)]
T
∨

[Y
m
a
c
. =
a
Y
m
c
]F

(
P
r
o
j
e
c
t
)

E
1
2
`

[P
1
(

m ︷︸︸︷ a..a
c
)]
T
∨

[P
2
(

m ︷︸︸︷ a..a
c
)]
T
∨

[a
c
. =
a
c
]F

(
D
e
l
e
t
e
)

E
1
2
`

[P
1
(

m ︷︸︸︷ a..a
c
)]
T
∨

[P
2
(

m ︷︸︸︷ a..a
c
)]
T

E
7
`

[P
1
(

e
1 ︷︸︸︷ a..a
y
1
)]
F

(
R
e
s
o
l
v
e
)

E
8
`

[P
2
(

m ︷︸︸︷ a..a
c
)]
T
∨

[P
1
(

m ︷︸︸︷ a..a
c
)
. =
P

1
(

e
1 ︷︸︸︷ a..a
y
1
)]
F

(
D
e
c
o
m
p
)
×
e
1

E
8
`

[P
2
(

m ︷︸︸︷ a..a
c
)]
T
∨

[m
−

e
1 ︷︸︸︷ a..a
c
. =
y
1
]F

(
B
i
n
d
)

E
8
`

[P
2
(

m ︷︸︸︷ a..a
c
)]
T

E
1
3
`

[P
2
(

e
2 ︷︸︸︷ a..a
y
2
)]
F

(
R
e
s
o
l
v
e
)

E
1
4
`

[P
2
(

m ︷︸︸︷ a..a
c
)
. =
P

2
(

e
2 ︷︸︸︷ a..a
y
2
)]
F

(
D
e
c
o
m
p
)

E
1
4
`

[

m ︷︸︸︷ a..a
c
. =

e
2 ︷︸︸︷ a..a
y
2
]F

(
D
e
c
o
m
p
)
×
m

E
1
4
`

[c
. =

e
2
−

m ︷︸︸︷ a..a
y
2
]F

Fi
gu

re
5.

14
:S

te
p

2
-d

er
iv

at
io

n

103



n1 n2

n3 n4

n5 n6

n7

Figure 5.15: Steps 2 and 3 - search graph

• if D is a rule ρ applied to upper derivations D1, .., Dn and resulting in clause C then:

– if ρ is from figures 2.3.8, 2.3.9 and 2.3.10, then skeleton(D) has C as child and
skeleton(D1), ..,skeleton(Dn) as parents.

– else ρ is from figure 5.11 and therefore n = 1. In this case we take skeleton(D) =
skeleton(D1).

Example 5.3.18. The skeleton of the derivation from Fig. 5.12 is equal to the tree in Fig. 5.13.

Lemma 5.3.19. For any derivation D using CRCR, the exponents of periodicity of the terms in
D do not exceed eop(C), where C is the lowermost clause (the root clause) in skeleton(D).

Proof. The bounds on the exponents depend on the the function maxDesc(v) for v the node
corresponding to any clause in the derivation. If we add later new nodes, we update these values
(see Def. 5.3.13). According to the definitions of search graphs and skeletons, C is in the search
graph and a descendant of all nodes corresponding to clauses in the derivation and therefore
eop(maxDesc(v)) ≥ eop(C).

Lemma 5.3.20. For any derivation D of a clause C which is obtained using CRClazyλ without
the application of unification and such that const(C) is unifiable by σ (using CRClazyλ ), we can
obtain a derivation D′ of the clause Cσ using CRCR.

Proof. Let Sk = skeleton(D) (= D since we have no application of a unification rule). By
an induction on Sk, we build a valid derivation of Cσ using CRCR, note that since the rules from
Fig. 5.11 are sound, complete and terminating, we can obtain each unifier.

• if Sk is an axiom, we can derive it also using CRCR.

• if Sk is a rule application which does not introduce new unification constraints or the
introduced unification constraints are in pre-solved form then we can apply the same rule
using CRCR.

• otherwise, Sk is a rule application which introduces unification constraints not in a pre-
solved form. Since we do not solve unification constraints when using CRClazyλ , these

104



E
1
5
`

[P
1
(

m ︷︸︸︷ a..a
Y
m
c
)]
T
∨

[P
2
(

m ︷︸︸︷ a..a
Y
m
c
)]
T
∨

[Y
m
a
c
. =
a
Y
m
c
]F

(
I
m
i
t
a
t
e
∗
)

,(
D
e
c
o
m
p
)
×

(k
−
m

)

E
1
6
`

[P
1
(

k ︷︸︸︷ a..a
Y
k
c
)]
T
∨

[P
2
(

k ︷︸︸︷ a..a
Y
k
c
)]
T
∨

[Y
k
a
c
. =
a
Y
k
c
]F

(
S
k
i
p
)

E
1
7
`

[P
1
(

k ︷︸︸︷ a..a
Y
k
c
)]
T
∨

[P
2
(

k ︷︸︸︷ a..a
Y
k
c
)]
T
∨

[Y
k
a
c
. =
a
Y
k
c
]F

(
P
r
o
j
e
c
t
)

E
1
8
`

[P
1
(

k ︷︸︸︷ a..a
c
)]
T
∨

[P
2
(

k ︷︸︸︷ a..a
c
)]
T
∨

[a
c
. =
a
c
]F

(
D
e
l
e
t
e
)

E
1
8
`

[P
1
(

k ︷︸︸︷ a..a
c
)]
T
∨

[P
2
(

k ︷︸︸︷ a..a
c
)]
T

E
7
`

[P
1
(

e
1 ︷︸︸︷ a..a
y
1
)]
F

(
R
e
s
o
l
v
e
)

E
8
`

[P
2
(

k ︷︸︸︷ a..a
c
)]
T
∨

[P
1
(

k ︷︸︸︷ a..a
c
)
. =
P

1
(

e
1 ︷︸︸︷ a..a
y
1
)]
F

(
D
e
c
o
m
p
)
×
e
1

E
8
`

[P
2
(

k ︷︸︸︷ a..a
c
)]
T
∨

[k
−

e
1 ︷︸︸︷ a..a
c
. =
y
1
]F

(
B
i
n
d
)

E
8
`

[P
2
(

k ︷︸︸︷ a..a
c
)]
T

E
1
3
`

[P
2
(

e
2 ︷︸︸︷ a..a
y
2
)]
F

(
R
e
s
o
l
v
e
)

E
1
4
`

[P
2
(

k ︷︸︸︷ a..a
c
)
. =
P

2
(

e
2 ︷︸︸︷ a..a
y
2
)]
F

(
D
e
c
o
m
p
)

E
1
4
`

[

k ︷︸︸︷ a..a
c
. =

e
2 ︷︸︸︷ a..a
y
2
]F

(
D
e
c
o
m
p
)
×
e
2

E
1
4
`

[k
−

e
2 ︷︸︸︷ a..a
c
. =
y
2
]F

(
B
i
n
d
)

Fi
gu

re
5.

16
:S

te
p

3
-d

er
iv

at
io

n

105



unification constraints also occur in C and as C is unifiable, there is a substitution σ
which unifies them such that the exponents of periodicity of the terms in the range of σ
are bounded by eop(C). Let the upper clauses of Sk be C1, .., Cn. Since const(Ci) is
a subset of const(C) for all 0 < i ≤ n (we do not solve unification constraints), it is
unifiable by some σi ≤ σ for 0 < i ≤ n. We now use the induction hypothesis in order to
obtain the clausesC1σi, .., Cnσn using CRCR. Let θ be such that σ = σ1◦..◦σn◦θ. Then, θ
pre-unifies const(C1σi), ..,const(Cnσn). Clearly, the exponents of periodicity of the
terms in the range of θ do not exceed eop(C) and we can compute this substitution using
CRCR (using Lemma 5.3.19). We therefore obtain a derivation of Cσ using CRCR.

Theorem 5.3.21. Let S be a clause set and assume there is a refutation of S using CRClazyλ with
a substitution σ, then running CRCR on S we obtain a refutation of S with substitution σ.

Proof. Using Cor. 5.2.28 we can obtain a refutation using CRClazyλ and a clause C in the refu-
tation such that above it we have only rules from figures 2.4, 2.3 and 2.5 and below it only
unification rules. Since we can obtain a refutation, C is pre-unifiable by some substitution σ,
we can use Lemma 5.3.20 in order to obtain a derivation D of Cσ using CRCR. Since C is
pre-unifiable by σ and contains only unification constraints, Cσ is in pre-solved form and D is
a refutation.

Corollary 5.3.22 (Completeness). If a clause set is unsatisfiable with regard to V -complexes
such that the substitution used in the counter-model is bounded by b̂, then we can refute it using
CRCR and using b̂.

Proof. Following Cor. 5.2.27 and Thm. 5.3.21.

Lemma 5.3.23. Using CRCR we can obtains a refutation for each of the clause sets 1, 2 and 3.

Proof. By eagerly running the unification algorithm from Fig. 5.11 we can obtain each of the
unifiers.

Lemma 5.3.24. Using CRCR we can obtains a refutation for clause set 4 with Ψeval = en.

Proof. In Ex. 5.3.16 we have shown the application of CRCR on clause set 4 with n = 2 and it is
easy to see that with the choice of clauses done in the example, Ψeval = en. We need to justify
our order of choosing clauses. The choice of the two negative clauses is clear as the second one
has deeper literals than the first. It remains to argue why we always, when backtracking, choose
the deepest resolvent we obtained so far of the forms

E10 ` [P1(

m︷︸︸︷
a..a Ymc)]

T ∨ [P2(

m︷︸︸︷
a..a Ymc)]

T ∨ [Ymac
.
= aYmc]

F (5.18)

for the second step and

E16 ` [P1(

k︷︸︸︷
a..a Ykc)]

T ∨ [P2(

k︷︸︸︷
a..a Ykc)]

T ∨ [Ykac
.
= aYkc]

F (5.19)

106



for the third step of the search. If we consider each of these clauses and as we are searching
breadth-first, we notice that we cannot use the rule (Imitate∗) on the clause more than once
and the only other rule applicable in this case is (Skip), which does not affect Ψeval.

Corollary 5.3.25 (Speedup). The calculus CRCR has a quadratic speedup over the calculus
CRCλ on clause set 4 when using the evaluation function Ψeval.

Proof. Using Lemma 5.2.24 ,we have Ψeval = Σi=1..n(ei−1 + Σj=ei−1..eij) = Σi=0..nei +

Σj=0..enj when running CRCλ. By using the Gauss sum formula we obtain that Ψeval >
e2n
2

when running CRCλ. Since Lemma 5.3.24 tells us that Ψeval = en when running CRCR, we
obtain a quadratic speedup using the evaluation function.

5.4 Conclusion

In this chapter we have investigated several resolution calculi, each with a different set of unifi-
cation rules and different unification strategy.

The original constrained resolution calculus, which was introduced by Huet, is complete
with respect to any unsatisfiable set of clauses. The calculus deals with the possibility of having
infinitely-many pre-unifiers at each step by postponing all unification rules (with some excep-
tions). The disadvantage of this strategy, which we call lazy unification, is that many of the
derivations are of non-unifiable clauses. It is trivial to prove that a calculus with an eager uni-
fication strategy might have any form of speedup over a lazy strategy. Moreover, since we
normally proceed using a breadth-first search, the search space in this case is huge.

The solution many implementations of higher-order theorem provers adapt is to restrict the
depth of terms generated by the unification algorithm. In this case unification generates finitely-
many unifiers and can be applied eagerly. We call this algorithm fixed-depth unification. The
disadvantage of such an approach is that it is applicable only to problems which are very shal-
low. The terms mapped to variables when unifying Church’s numerals for example, cannot be
restricted by such a bound. We give a simple example on which such a strategy fails to find a
refutation.

We analyze the above case further and argue that the bound can be optimized if based on
properties from the problem. We first show that using a problem-based bound, such as the first-
order bound, is normally optimal to the fixed-depth one. This bound performs not so well when
the arguments of higher-order variables contain too much information. If a bound on the number
of possible projections in the derivation can be guessed in advance and if the problem contains
no cycles, we claim that using the first-order bound eagerly is complete.

This leads us to the remaining calculi. These calculi assume each variable can be mapped
to a term with at most a pre-defined number of bound variables. This restriction allows us to
place a bound on the number of projections which can be applied in each derivation and use the
first-order bound in order to compute a finite and complete (with regard to the bounds chosen)
sets of pre-unifiers. The algorithms also treat with cyclic problems and extend a technique, first
deployed by Makanin [59], that searches for minimal unifiers only. The first calculus we consider
is based on the bounded higher-order unification algorithm [74]. We show that the restriction to
minimal unifiers greatly harm the efficiency of this calculus and give a simple example on which

107



this calculus performs in a sub-optimal way. Since the algorithm computes minimal unifiers with
regard to local problems, it is also possible to show that a calculus which deploys this algorithm
in an eager strategy is incomplete. I.e. even if the clause set is unsatisfiable (with a bounded
substitution), there might be no refutation of it. When the unification strategy is changed into
lazy unification, then the calculus is complete (with regard to the above definition) but as was
already argued, may perform extremely bad due to the postponement of unification.

The last calculus we considered is based on eager unification and deploys the unification
algorithm which was developed in Chap. 4. This calculus is also complete only with regard
to clause sets which have a counter-model with a bounded substitution. But we show that the
unification rules can always be applied eagerly without harming completeness. Moreover, we
prove a quadratic speedup result over the calculus which is based on minimal unifiers.

We conclude the chapter and the thesis with a table comparing the results obtained in this
chapter.

108



C
al

cu
lu

s
U

ni
fic

at
io

n
C

om
pl

et
en

es
s

cl
au

se
se

t1
cl

au
se

se
t2

cl
au

se
se

t3
cl

au
se

se
t4

C
R
C

la
zy

fu
ll

no
n-

te
rm

in
at

io
n

su
cc

es
s

su
cc

es
s

su
cc

es
s

C
R
C
d

ea
ge

r
de

pt
h-

bo
un

d
su

cc
es

s
fa

ilu
re

fa
ilu

re
fa

ilu
re

C
R
C
f
o
l

ea
ge

r
de

pt
h-

bo
un

d
su

cc
es

s
su

cc
es

s
fa

ilu
re

su
cc

es
s

C
R
C
p

ea
ge

r
pr

oj
ec

tio
n-

bo
un

d
su

cc
es

s
su

cc
es

s
fa

ilu
re

su
cc

es
s

C
R
C
λ

ea
ge

r
pr

oj
ec

tio
n-

bo
un

d
su

cc
es

s
su

cc
es

s
su

cc
es

s
Ψ
ev
a
l

=
e2 n 2

C
R
C
la
z
y

λ
la

zy
pr

oj
ec

tio
n-

bo
un

d
su

cc
es

s
su

cc
es

s
su

cc
es

s
su

cc
es

s
C
R
C
R

ea
ge

r
pr

oj
ec

tio
n-

bo
un

d
su

cc
es

s
su

cc
es

s
su

cc
es

s
Ψ
ev
a
l

=
e n

Fi
gu

re
5.

17
:C

om
pa

ri
so

n
of

di
ff

er
en

tr
es

ol
ut

io
n

ca
lc

ul
i

109





Index

2m(n), 11
<c, 45
V -complex, 27
[.], 18
Πα, 19
Ψeval, 93
α-equality, 15
α-rule, 15
b̂, 58
β-rule, 15
o, 19
T0, 11
∩, 11
co-dom, 11
◦, 11
Context∗, 33
Contextr, 33
∪, 11
d ≤, 41
one-derail, 36
derail, 37, 67
dom, 11
.
=, 20
↓, 16
↓η, 16
ε, 13
η-expanded forms, 16
η-expanded terms, 17
η-rule, 15
η[t], 16
∃, 19
∀, 19
≥s, 14

H, 18
∈s, 14
i, 17
λsize, 58
λsizer, 59
≤s, 14
mdepth, 18
mpath, 18
¬, 19
η-rule, 16
PBb, 59
→, 12
\, 11
σ =|W θ, 16
σ ≤|W θ, 16
σ |W , 14
σS , 20
⊂, 11
⊆, 11
�, 15
Termnr , 64
Termη, 17
Termc, 30
Termexp, 17
insts1, 65
τ , 12
/, 41
T, 11
I, 14
V, 12
Vc, 30
∨, 19
∧, 19

111



ξ, 21
sα, 25
t[s |p], 13
ar, 12
BV, 13
ccon, 23
CRC, 89
d, 13
env, 96
eop, 79, 96
fbound, 33, 96
fsize, 79
maxar, 79
maxb, 79
maxts, 79
md, 33
ord, 17
PB, 21
rigid-pos, 13
PreUnifiers, 21, 60
repn, 79
reset, 42
sbeqnf, 79
seqnf, 79
sub, 46
size, 12
size (of cycles), 23
Term, 12
BUA, 72
CRCd, 90
CRCR, 97
CRCλ, 93
CRClazyλ , 94
CRCfol, 91
CRCp, 91
CUA, 42
PUAB , 60
PUAC , 31
PUA (Pre-unification algorithm), 22
RBUA, 80
RCUA, 50
SCUA, 54
maxDesc, 96

reg, 65
Unifiers, 20

Abstractions, 12
Applications, 12

Binding constraints, 41
Boolean terms, 19
Boolean type, 19
Bound variables, 13
Bounded higher-order unification systems,

58
Bounded pre-unifiers, 59
Bounded unification algorithm, 72
Bounded unifiers, 58
Bounding constraints, 71
Bounding measures, 62

Church-Rosser theorem, 15
Clauses, 25
Clusters, 53
Complete sets (of pre-unifiers), 21
Complete sets of pre-unifiers (for bounded

unification), 60
Complete sets of pre-unifiers (for context uni-

fication), 32
Completing substitutions, 21
Complex contexts, 18
Compositions (of contexts), 19
Constrained resolution calculus, 26
Constraints, 20
Constraints of a clause, 95
Context unification algorithm, 42
Context variables, 30
Contexts, 18
Cycles, 23
Cycles’ context, 23
Cycles’ size, 23
Cycles’ variables, 23

Depth constraints, 41
Depth measures, 50, 80
Depth-bounded resolution calculus, 90
Derailing, 36
Derivations, 26

112



Environments, 41, 71
Exponent function, 79
Exponent of periodicity, 49, 78

Factorization rule, 26
First-order bound, 33, 96
First-order contexts, 18
First-order terms, 18
Flex terms, 13
FOL-bounded resolution calculus, 91
Free variables, 13
Functions, 11
fvars, 13

Head symbols, 13
Homomorphism (from contexts), 18

Idempotency (of substitutions), 16
Impure cycles, 62
Impure terms, 62
Instantiations, 68
Instantiations (of clusters), 53
Instantiations (of regular contexts), 37
Instantiations (of regular terms), 65
Iterated compositions (of contexts), 19
Iterated derailing, 37, 67

Lazy minimal binders resolution calculus,
94

Literals, 24
Logical connectives, 19

Main depth (of contexts), 18
Main paths (of contexts), 18
Maximal contexts, 65
Maximal descendant, 96
Maximum depths, 33
Minimal binders resolution calculus, 93
Minimal unifiers, 49, 78
More general substitutions, 16
Most general unifiers, 21

Non-trivial contexts, 19
Non-unique standard cycle, 23
Normal forms, 15

Normalized substitutions, 17

Order (of terms), 17
Order (on substitutions), 16

Partial bindings, 21, 59
Partial bindings (for context unification), 31
Periodicity lemma, 49, 79
Positions, 13
Post-contexts, 36
Pre-contexts, 36
Pre-solved forms, 20, 60
Pre-unification algorithm (for bounded uni-

fication), 60
Pre-unification algorithm (for context unifi-

cation), 31
Pre-unifiers, 20
Prefixes (of contexts), 18
Problem restrictions, 46
Projection-bounded resolution calculus, 91
Pseudo constraints, 30
Pseudo literals, 24

Reductions, 15
Reducts, 15
Regular binders resolution calculus, 97
Regular contexts, 33
Regular measures, 50, 80
Regular terms, 64
Relation (on variables), 45
Repeated variables, 45
Replacements, 13
Resolution rule, 26
Restricted derail, 49, 79
Restricted bounded unification algorithm, 80
Restricted context unification algorithm, 50
Restricted descriptions, 79
Restricted environments, 50, 79
Restricted instantiations, 50, 79
Restrictions (of substitutions), 14
Rigid positions, 13
Rigid terms, 13

Search graphs, 95
Second-order prefixes, 53

113



Sets, 11
Signatures, 12
Simple contexts, 18
Simplification rules, 25
Skeletons, 101
Skolem terms, 25
Skolemization, 25
SO-prefixes, 53
Solved forms, 20
Splitting rules, 26
Standard cycles, 23
Stratified context unification algorithm, 54
Stratified unification systems, 53
Strong normalization theorem, 15
Sub-equations, 46
Substitutions, 14, 26
Substitutions (for context unification), 30
Subsumption, 14
Subterms, 13
Symbols, 12
Systems, 20

Terms, 12
Tetrations, 11
Trivial contexts, 19
Typed lambda calculus, 15
Types, 11

Unification constraints, 20, 24
Unification constraints (for context unifica-

tion), 30
Unification systems, 20
Unification systems (for context unification),

30
Unifiers, 20
Unique standard cycles, 23

Valid environments, 72
valuation function, 93
Value (of bindings constraints), 50, 80
Variables, 12
Variants, 26
Vector notation, 12

114



Bibliography

[1] Habib Abdulrab, Pavel Goralcik, and G. S. Makanin. Towards parametrizing word equa-
tions. ITA, 35(4):331–350, 2001.

[2] Peter Andrews, Sunil Issar, Daniel Nesmith, and Frank Pfenning. The tps theorem prov-
ing system. In Ewing Lusk and Ross Overbeek, editors, 9th International Conference on
Automated Deduction, volume 310 of Lecture Notes in Computer Science, pages 760–761.
Springer Berlin / Heidelberg, 1988. 10.1007/BFb0012885.

[3] Peter B. Andrews. Resolution in type theory. J. Symb. Log., 36(3):414–432, 1971.

[4] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. Regstab: A sat solver for propo-
sitional schemata. In IJCAR, pages 309–315, 2010.

[5] Matthias Baaz and Alexander Leitsch. Cut-elimination and redundancy-elimination by
resolution. J. Symb. Comput., 29(2):149–177, 2000.

[6] Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume 103
of Studies in Logic and the Foundations of Mathematics. North-Holland, 1984.

[7] Christoph Benzmüller. Extensional higher-order paramodulation and rue-resolution. In
CADE, pages 399–413, 1999.

[8] Christoph Benzmüller and Michael Kohlhase. Extensional higher-order resolution. In
CADE, pages 56–71, 1998.

[9] Christoph Benzmüller, Larry Paulson, Frank Theiss, and Arnaud Fietzke. The LEO-II
project. In Proceedings of the Fourteenth Workshop on Automated Reasoning, Bridging
the Gap between Theory and Practice. Imperial College, London, England, 2007.

[10] Christoph Benzmüller, Larry Paulson, Frank Theiss, and Arnaud Fietzke. Progress report
on leo-ii - an automatic theorem prover for higher-order logic. In In Proceedings of the
20th International Conference on Theorem Proving in Higher Order Logics - Emerging
Trends, 2007.

[11] Christoph Benzmüller, Lawrence Paulson, Frank Theiss, and Arnaud Fietzke. Leo-ii -
a cooperative automatic theorem prover for classical higher-order logic (system descrip-
tion). In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, Automated

115



Reasoning, volume 5195 of Lecture Notes in Computer Science, pages 162–170. Springer
Berlin / Heidelberg, 2008.

[12] Susanne Biundo, B. Hummel, Dieter Hutter, and Christoph Walther. The karlsruhe in-
duction theorem proving system. In Proceedings of the 8th International Conference on
Automated Deduction, pages 672–674, London, UK, UK, 1986. Springer-Verlag.

[13] G. Boole. An Investigation of the Laws of Thought: On which are Founded the Mathemat-
ical Theories of Logic and Probabilities. George Boole’s collected logical works. Walton
and Maberly, 1854.

[14] C.B. Boyer and C.B. Boyer. A History of Mathematics. Wiley International Editions. John
Wiley & Sons Canada, Limited, 1968.

[15] Alan Bundy, Frank van Harmelen, Christian Horn, and Alan Smaill. The oyster-clam
system. In Proceedings of the 10th International Conference on Automated Deduction,
pages 647–648, London, UK, UK, 1990. Springer-Verlag.

[16] Benzmüller C. Comparing approaches to resolution based higher-order theorem proving.
Synthese, 133(1-2):203–335, 2002.

[17] Cristian S. Calude and Cristian S. Calude. Randomness And Complexity, from Leibniz To
Chaitin. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2007.

[18] Philippe Le Chenadec. On the logic of unification. J. Symb. Comput., 8(1-2):141–199, July
1989.

[19] Alonzo Church. A formulation of the simple theory of types. J. Symb. Log., 5(2):56–68,
1940.

[20] H. Comon. Completion of Rewrite Systems with Membership Constraints. Rapports de
recherche. Université Paris-Sud, Centre d’Orsay, Laboratoire de recherche en Informa-
tique, 1991.

[21] Hubert Comon. Completion of rewrite systems with membership constraints. part i: De-
duction rules. J. Symb. Comput., 25(4):397–419, 1998.

[22] Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science,
25(2):95 – 169, 1983.

[23] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. J.
ACM, 7(3):201–215, July 1960.

[24] Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings. Com-
mun. ACM, 22(8):465–476, August 1979.

[25] C. Dunchev, A. Leitsch, M. Rukhaia, and D. Weller. Ceres for propositional proof
schemata. Technical report, Vienna University of Technology, 2012.

116



[26] Tsvetan Dunchev, Alexander Leitsch, Tomer Libal, Daniel Weller, and Bruno Woltzenlogel
Paleo. System description: The proof transformation system ceres. In IJCAR, pages 427–
433, 2010.

[27] Katrin Erk and Joachim Niehren. Dominance constraints in stratified context unification.
Inf. Process. Lett., 101(4):141–147, 2007.

[28] William M. Farmer. A unification algorithm for second-order monadic terms. Annals of
Pure and Applied Logic, 39(2):131–174, 1988.

[29] William M. Farmer. Simple second-order languages for which unification is undecidable.
Theor. Comput. Sci., 87(1):25–41, 1991.

[30] Gottlob Frege. Begriffsschrift: eine der arithmetische nachgebildete Formelsprache des
reinen Denkens. L. Nebert, Halle a/S, 1879/1997.

[31] G. Friedlein. Procli Diadochi in primum Euclidis Elementorum librum commentarii. Num-
ber v. 161 in Bibliotheca scriptorum Graecorum et Romanorum Teubneriana. in aedibus B.
G. Teubneri, 1873.

[32] Kreisler G. Mathematical logic. In T.L. Saaty, editor, Lectures on Modern Mathematics,
number v. 3 in Lectures on Modern Mathematics. John Wiley & Sons, 1965.

[33] D.M. Gabbay and J. Woods. Handbook of the History of Logic: Greek, Indian, and Arabic
logic. Handbook of the History of Logic: Greek, Indian and Arabic Logic. Elsevier, 2004.

[34] Adria Gascón, Guillem Godoy, Manfred Schmidt-Schauß, and Ashish Tiwari. Context
unification with one context variable. J. Symb. Comput., 45(2):173–193, 2010.

[35] G. Gentzen. Untersuchungen über das logische Schließen. J. Springer, 1934.

[36] P. C. Gilmore. A proof method for quantification theory: its justification and realization.
IBM J. Res. Dev., 4(1):28–35, January 1960.

[37] Warren D. Goldfarb. The undecidability of the second-order unification problem. Theor.
Comput. Sci., 13:225–230, 1981.

[38] Jean Goubault-Larrecq. Ramified higher-order unification. In Proceedings of the 12th An-
nual IEEE Symposium on Logic in Computer Science, LICS ’97, pages 410–, Washington,
DC, USA, 1997. IEEE Computer Society.

[39] W.E. Gould. A Matching Procedure for [omega]-order Logic. 1966.

[40] Kurt Gödel. Über formal unentscheidbare sätze der principia mathematica und verwandter
systeme. Monatshefte für Mathematik und Physik, 38(1):173–198, 1931.

[41] Allen Hazen. Predicative logics. In D.M. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, volume 1, pages 331–407. 1983.

117



[42] Leon Henkin. Completeness in the theory of types. The Journal of Symbolic Logic,
15(2):pp. 81–91, 1950.

[43] J. Herbrand. Recherches sur la Theorie de la Demonstration, Travaux de la Societe des
Sciences et de Lettres de Varsovie. PhD thesis, 1930.

[44] D. Hilbert and P. Bernays. Grundlagen Der Mathematik II. Grundlehren der mathematis-
chen Wissenschaften. Springer, 1970.

[45] J.I. Hmelevskii. Equations in Free Semigroups. Proceedings of the Steklov Institute of
Mathematics. American Mathematical Society, 1976.

[46] H.F.J. Horstmanshoff, M. Stol, and C. Tilburg. Magic And Rationality In Ancient Near
Eastern And Graeco-roman Medicine. Studies in Ancient Medicine. Brill, 2004.

[47] G. Huet. Résolution d’équations dans des langages d’ordre 1,2,..,ω. PhD thesis, Université
Paris VII, 1976.

[48] Gérard P. Huet. Constrained Resolution: A Complete Method for Higher Order Logic.
PhD thesis, Case Western Reserve University, 1972.

[49] Gérard P. Huet. A unification algorithm for typed lambda-calculus. Theor. Comput. Sci.,
1(1):27–57, 1975.

[50] Matt Kaufmann and J. Strother Moore. How can i do that with acl2? recent enhancements
to acl2. In ACL2, pages 46–60, 2011.

[51] W. Kneale and M. Kneale. The Development of Logic. Oxford University Press, USA,
1985.

[52] A. Koscielski and L. Pacholski. Complexity of unification in free groups and free semi-
groups. In Proceedings of the 31st Annual Symposium on Foundations of Computer Sci-
ence, SFCS ’90, pages 824–829 vol.2, Washington, DC, USA, 1990. IEEE Computer So-
ciety.

[53] Philippe Le Chenadec. The finite automaton of an elementary cyclic set. Technical Report
RR-0824, INRIA, April 1988.

[54] G.W. Leibniz, K. Gerhardt, and G.H. Pertz. Leibnizens mathematische Schriften: Mathe-
matik. [Leibnizens gesammelte Werke aus den Handschriften der Königlichen Bibliothek
zu Hannover herausgewgeben von Georg Heinrich Pertz. Dritte Folge.]. A. Asher & Com-
pany, 1858.

[55] Jordi Levy. Linear second-order unification. In RTA, pages 332–346, 1996.

[56] Jordi Levy, Manfred Schmidt-Schauß, and Mateu Villaret. On the complexity of bounded
second-order unification and stratified context unification. Logic Journal of the IGPL,
19(6):763–789, 2011.

118



[57] Jordi Levy and Mateu Villaret. Context unification and traversal equations. In Proceedings
of the 12th International Conference on Rewriting Techniques and Applications, RTA ’01,
pages 169–184, London, UK, UK, 2001. Springer-Verlag.

[58] Tomer Libal. Cut elimination in inductive proofs of weakly quantified theorems. Master’s
thesis, Vienna University of Technology, 2008.

[59] G. S. Makanin. On the decidability of the theory of free groups (in russian). In FCT, pages
279–284, 1985.

[60] William Mccune. Solution of the robbins problem. Journal of Automated Reasoning,
19:263–276, 1997.

[61] Dale Miller. Unification of simply typed lambda-terms as logic programming. In In Eighth
International Logic Programming Conference, pages 255–269. MIT Press, 1991.

[62] Dale A. Miller. Proofs in higher-order logic. 1983.

[63] Joachim Niehren, Manfred Pinkal, and Peter Ruhrberg. On equality up-to constraints over
finite trees, context unification, and one-step rewriting. In CADE, pages 34–48, 1997.

[64] Joachim Niehren, Manfred Pinkal, and Peter Ruhrberg. A uniform approach to underspec-
ification and parallelism. In ACL, pages 410–417, 1997.

[65] Joachim Niehren, Sophie Tison, and Ralf Treinen. On rewrite constraints and context
unification. Inf. Process. Lett., 74(1-2):35–40, 2000.

[66] Lawrence Paulson. Isabelle: The next seven hundred theorem provers. In Ewing Lusk and
Ross Overbeek, editors, 9th International Conference on Automated Deduction, volume
310 of Lecture Notes in Computer Science, pages 772–773. Springer Berlin / Heidelberg,
1988. 10.1007/BFb0012891.

[67] Christian Prehofer. Decidable higher-order unification problems. In Proceedings of the
12th International Conference on Automated Deduction, CADE-12, pages 635–649, Lon-
don, UK, UK, 1994. Springer-Verlag.

[68] John Alan Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12(1):23–41, 1965.

[69] Manfred Schmidt-Schauß. A decision algorithm for distributive unification. Theoretical
Computer Science, 208:111–148, 1998.

[70] Manfred Schmidt-Schauß. A decision algorithm for stratified context unification. J. Log.
Comput., 12(6):929–953, 2002.

[71] Manfred Schmidt-Schauß. Decidability of bounded second order unification. Inf. Comput.,
188:143–178, January 2004.

119



[72] Manfred Schmidt-Schauß and Klaus U. Schulz. On the exponent of periodicity of minimal
solutions of context equation. In RTA, pages 61–75, 1998.

[73] Manfred Schmidt-Schauß and Klaus U. Schulz. Solvability of context equations with two
context variables is decidable. J. Symb. Comput., 33(1):77–122, 2002.

[74] Manfred Schmidt-Schauß and Klaus U. Schulz. Decidability of bounded higher-order uni-
fication. J. Symb. Comput., 40(2):905–954, August 2005.

[75] S.G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Logic. Cambridge
University Press, 2010.

[76] Wayne Snyder and Jean H. Gallier. Higher-order unification revisited: Complete sets of
transformations. J. Symb. Comput., 8(1/2):101–140, 1989.

[77] Wayne S. Snyder. Complete sets of transformations for general unification. PhD thesis,
Philadelphia, PA, USA, 1988. AAI8824793.

[78] Geoff Sutcliffe, Christian Suttner, and Theodor Yemenis. The tptp problem library. In
Alan Bundy, editor, Automated Deduction — CADE-12, volume 814 of Lecture Notes in
Computer Science, pages 252–266. Springer Berlin / Heidelberg, 1994.

[79] Alan M. Turing. On computable numbers, with an application to the entscheidungsprob-
lem. Proceedings of the London Mathematical Society, 42:230–265, 1936.

[80] Marek Zaionc. The regular expression descriptions of unifier sets in the typed lambda
calculus. In Fundamenta Informaticae X, pages 309–322. North-Holland, 1987.

120


	Introduction
	Resolution for Second-order Arithmetic
	Properties of Higher-order Unification
	Higher-order Unification in Practice

	Preliminaries
	Typed Lambda Calculus
	Pre-unification
	Constrained Resolution

	Context Unification
	Context Unification Problems
	Regular Contexts and Bounds
	Pre-unification Using Regular Terms
	Soundness and Completeness
	Termination and Minimal Unifiers
	Open Problems

	Bounded Higher-order Unification
	Bounded Higher-Order Unification Problems
	Regular Terms and Bounds
	Pre-unification Using Regular Terms
	Soundness and Completeness
	Termination and Minimal Unifiers

	Higher-order Resolution
	The Test Sets
	Variants of the Constrained Resolution Calculus
	Regular Binders Resolution
	Conclusion

	Index
	Bibliography

