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Abstract

In recent years tremendous amounts of audio-visual media have become

available to the public and increased the demand for efficient access and re-

trieval methods. The research community working in content-based media

retrieval has mainly focused on specific media types, such as sports videos,

news broadcasts, and commercials. A widely neglected media type is his-

toric film provided by film archives and museums. In the context of historic

film, film scientists and archivists have research questions and requirements

that are novel for content-based retrieval.

In this thesis, we investigate novel requirements for content-based retrieval

of archive film stated by film experts. From the abstract requirements

of film experts we first derive specific lower- and higher-level, syntactic

and semantic concepts to be retrieved automatically. Next, we develop

techniques for the automatic retrieval of these concepts from archive film.

The investigated films are challenging for retrieval due to their sophisticated

editing and their low material quality which results in numerous artifacts.

The contribution of this thesis are novel techniques and investigations for

the retrieval of syntactic and semantic concepts in archive film. We de-

velop detectors for lower-level concepts such as black frames and intertitles

and perform comprehensive investigations of shot boundary detection in

archive film material. We further analyze higher-level concepts: We pro-

pose methods for the extraction of semantically coherent scenes and syn-

chronous audio-visual montage sequences and investigate the retrieval of

motion composition and visual composition.

The developed techniques are successfully applied to archive and contem-

porary films and enable efficient access to the film material. Additionally

the methods assist film experts in their investigations and enable them to

gain novel insights into the films.





Kurzfassung

In den vergangenen Jahren wurden große Mengen audiovisueller Medien

öffentlich zugänglich gemacht. Die so entstandenen Mediensammlungen ha-

ben die Nachfrage nach neuen effizienten Methoden für das Informationre-

trieval erhöht. Forschung, die sich mit Informationretrieval in diesen Me-

diensammlungen beschäftigt, hat sich überwiegend auf Sport- und Nach-

richtenbeiträge sowie Werbefilme konzentriert. Ein bisher weitgehend ver-

nachlässigter Medientyp sind Filme aus Filmarchiven und Filmmuseen. Ar-

chivare und Filmwissenschaftler bearbeiten Forschungsfragen und stellen

Anforderungen, die im Kontext des Informationretrievals neu sind.

In dieser Dissertation untersuchen wir Anforderungen der Filmexperten an

das inhaltsbasierte Informationretrieval von Archivfilmen. Aus den abstrak-

ten Anforderungen der Filmexperten leiten wir syntaktische und semanti-

sche Konzepte unterschiedlicher Komplexität ab, welche automatisch aus

den Filmen extrahiert werden sollen. Die untersuchten Filme stellen durch

ihre komplexe Montage und durch ihren schlechten Materialzustand die au-

tomatische Analyse vor neue Herausforderungen.

Der wissenschaftliche Beitrag dieser Arbeit umfasst Untersuchungen und

Analysetechniken für die Extraktion von syntaktischen und semantischen

Konzepten aus Archivfilmen. Wir entwickeln Detektoren für Konzepte nied-

riger Komplexität, wie zum Beispiel Schwarzkader und Zwischentitel und

untersuchen die Erkennung von Einstellungsgrenzen. Darüber hinaus be-

schäftigen wir uns mit Konzepten höherer Komplexität: Wir stellen Me-

thoden für die Erkennung von Filmszenen sowie Sequenzen mit synchroner

audiovisueller Montage vor. Weiters untersuchen wir die automatisch Ana-

lyse von Bewegungskomposition und Bildkomposition.

Die präsentierten Methoden wurden erfolgreich auf Archiv- und zeitgenös-

sische Filme angewendet. Die Methoden ermöglichen einen effizienten Zu-

griff auf das Material und unterstützen Filmexperten bei ihren Untersu-

chungen. Weiters zeigt sich, dass die Methoden den Filmexperten zum Teil

neue, das Filmmaterial betreffende, Einsichten ermöglichen.
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Chapter 1

Introduction

1.1 Motivation

The field of content-based video retrieval has significantly grown in the last 20 years

due to the availability of large amounts of digital media, for example in archives of

broadcasting companies, museums, and social media platforms. At the same time

research related to the field has grown tremendously. This growth can be observed

from the increasing number of publications indexed with the terms “content-based

video retrieval” over time. A search in Google scholar for the years 1991 to 1995

returns approximately 9.500 publications. This number doubles in the period from 1996

to 2000 and doubles again from 2001 to 2005. With increasing importance and maturity

of research in the field, benchmarks such as TRECVID [198] and VideOlympics [200]

have been established that provide large amounts of video material and enable the

objective evaluation of retrieval systems.

Most research in content-based video retrieval focuses on special types of video such

as news broadcasts, sports videos, and commercials. Frequently researched tasks in-

clude automatic video summarization [136], story segmentation of news broadcasts [87],

highlight detection in sports video [12], and the detection of commercials [124].

Compared to the retrieval of these special types of content, the retrieval of film

has received little attention by the research community. Existing approaches focus

on the analysis of contemporary Hollywood films [2, 56, 150, 217] whereas archive

films represent a widely neglected type of film. Present investigations targeting archive

1



1. INTRODUCTION

films include query-based retrieval and browsing of historic film archives [164], shot cut

detection [225] and automatic summarization [113].

Recently, film scientists have raised novel research questions and have formulated

requirements in the context of archive films which have not been analyzed automatically

so far. Film scientists focus on stylistic aspects of the films, such as their montage

and composition. While many requirements of film scientists are highly abstract and

consequently out of the scope for retrieval, there are demands that can be formalized

well and that represent challenging tasks for content-based retrieval. In this thesis, we

investigate such requirements and present novel retrieval methods for archive film.

This thesis has been performed in the context of an interdisciplinary research project

involving film scientists, archivists, and computer scientists on the analysis of archive

films. The goal of the project was to gain insights into the highly formalized style of

filmmaking of the Soviet filmmaker Dziga Vertov (1896-1954). The interdisciplinary

research project offers several opportunities to the domain of content-based retrieval:

First, the project provides a novel type of film material that differs in composition

and quality from the material traditionally employed in content-based retrieval. The

films represent a particular challenge for automatic analysis due to their complex and

sophisticated stylistic attributes and due to the low quality of the related film material,

see Sections 3.1 and 3.2. The material has not been subject to automatic analysis and

retrieval so far. Second, the requirements stated by the film scientists represent real

world problems in the domain of content-based retrieval that have not been researched

so far. Third, the cooperation with film experts, enables the generation of high-quality

annotations and expert ground truths for the objective evaluation of the developed

methods.

The basic idea behind the performed investigations in this thesis is to provide re-

trieval techniques that enable efficient access to the material and that support film

scientists and archivists in their work. In a first step we have asked the film scientists

to formulate their demands and requirements to automatic film analysis. In a second

step, we have derived concepts1 that should be retrieved automatically from the archive

film material. In the context of content-based retrieval concepts are represented by in-

stances of spatio-temporal patterns in signals. Generally, such patterns may reside in

1We regard a concept as “an abstract or generic idea generalized from particular instances” [144].

2



1.2 Contributions

different modalities: in the visual domain, in the auditory domain, or in both. Con-

sequently, we distinguish between visual concepts, auditory concepts and audio-visual

concepts. Each concept has a syntactic dimension and a semantic dimension where both

dimensions are usually differently accentuated. The syntactic dimension describes to

which degree a concept represents structural information in a film. Similarly, the se-

mantic dimension describes the amount of meaning associated to a concept. Usually

the complexity and diversity of a concept increases as the semantic dimension receives

more importance.

The set of identified concepts represents the basis for the development of novel

analysis and retrieval methods. An overview of the concepts investigated in this thesis

is given in Figure 1.1. We distinguish between two general classes of concepts: lower-

level concepts and higher-level concepts. Lower-level concepts have a strong syntactic

dimension while the semantic dimension plays a secondary role. This does however

not mean that such concepts lack in semantic meaning. Intertitles, for example are

important structuring elements but at the same time contain a certain amount of

semantic meaning since they provide context information about the film. Higher-level

concepts (the second class) have a stronger semantic component and less syntactic

importance. Connecting lines between concepts in Figure 1.1 represent relationships

between different concepts.

This thesis presents novel methods for the retrieval of the identified concepts. The

organization of this thesis is similar to the organization of the concepts in Figure 1.1.

We first analyze the lower-level concepts to extract syntactic information from the

films. Based on the extracted syntactic information we perform retrieval of higher-level

concepts. The detailed organization of this thesis is provided in Section 1.4.

1.2 Contributions

The major goal of this thesis is the development of novel analysis techniques for the

retrieval of concepts from archive films. Due to the low-quality of the archive film

material, state-of-the-art techniques developed for high-quality video are not applicable

to archive film. Additionally, the requirements and demands for retrieval in the context

of archive film are different than those for video analysis. This thesis presents novel

solutions to real world requirements posed by film scientists and archivists. We develop

3



1. INTRODUCTION

Motion
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Montage
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Gradual
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Figure 1.1: Investigated concepts and their relationships.

analysis techniques for the retrieval of different syntactic and semantic concepts from

archive film.

We first perform two exemplary investigations on the retrieval of black frames and

intertitles in Chapter 4. For black frames, we combine existing image features and show

the complexity of the generally simple task in the context of archive film material. For

intertitle detection, we propose novel content-based features that are capable of reliably

separating intertitles from other types of content in a film.

In a next step, we investigate shot boundary detection in archive film. Since ex-

isting methods suboptimally perform on archive film material, we adapt and extend

an existing approach to meet the requirements of archive film material. We first per-

form shot cut detection and introduce color-independent features that are robust to

the artifacts in the archive film material (see Chapter 5). Additionally, we propose

a novel feature fusion scheme for the effective combination of several features. The

fusion scheme better exploits complementary information of different features than the

original one. Additionally to shot cut detection we perform gradual transition detection

in archive film material (see Chapter 6). We identify specific requirements of gradual
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transition detection in archive film material. Based on the identified requirements, we

extend an existing approach by more robust features and a more robust classifier. Our

main contribution is a first systematic evaluation of gradual transition detection for

archive and contemporary material.

The segmentation of a film into shots is the basis for the retrieval of higher-level

concepts. We focus on the segmentation of scenes which represent the next higher

structural layer of a film in Chapter 7. We propose a framework for multimodal scene

segmentation that is purely based on visual and auditory similarities. The framework

allows the combination and fusion of arbitrary visual and auditory features for scene

segmentation. We propose a refinement step based on simple heuristics to improve

the raw segmentation obtained from visual and auditory similarities. Additionally,

we present a novel scheme for the aggregation of auditory features that enables the

compact description of the audio content of a shot. We systematically evaluate the

framework’s components for archive and contemporary material.

An important stylistic device originally employed in early archive sound film is syn-

chronous montage. Synchronous montage sequences are parts of scenes where the audio

track and the visual cutting of a film are synchronized with each other for stylistic rea-

sons. We propose a cross-modal method for the extraction of synchronous montage

sequences from a film (see Chapter 8). The technique is based on automatically ex-

tracted shot cuts and auditory onsets. We propose a cross-modal correlation function

that simulates human synchrony perception. Based on the detection of cross-modal cor-

relations between the auditory and visual track, we introduce a tolerant segmentation

scheme for the automatic extraction of entire sequences with synchronous montage.

Apart from the temporal composition of a film, reflected among others by shots,

scenes and synchronous montage sequences, we investigate the retrieval of motion com-

position in a film (see Chapter 9). First, we introduce a novel clustering scheme for

motion trajectories that is able to robustly segment highly fragmented and noisy motion

fields into meaningful motion components. The clustering scheme allows trajectories

to have different length and to break off frequently. The scheme is computationally

efficient and allows the integration of arbitrary trajectory features and similarity mea-

sures and thus enables different types of clusterings and applications. Based on the

extracted motion segments, we investigate two scenarios for the retrieval of motion

composition. The basis for both scenarios is a simple and intuitive query, that enables
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the user to abstractly sketch desired motion compositions. The first retrieval scenario

represents a system for the retrieval of arbitrary motion compositions in a film based on

a user-defined query. The second retrieval scenario addresses the search and retrieval

of motion continuity (and motion discontinuity) between successive shots. For both

retrieval scenarios we introduce tolerant matching schemes that compare the abstract

motion queries with the previously extracted motion segments and retrieve relevant

instances.

Additionally to motion composition, we investigate the retrieval of visual compo-

sition in film. We evaluate the applicability of low-level content-based features and

similarity measures for this task in a user study (see Chapter 10). The user study

reveals to which degree content-based features capture visual composition as it is un-

derstood by film scientists. Furthermore, we perform statistical data analysis of the

features and propose a novel measure for expressiveness of features that is based on

factor loadings obtained by Principal Component Analysis.

This thesis is a joint effort of Dalibor Mitrović and Matthias Zeppelzauer. The

work and the resulting contributions originate from the close cooperation of the au-

thors in a research project. The thesis has been composed together since the single

investigations of both authors are highly related and partly build upon each other. A

joint presentation allows a more comprehensive presentation of existing relationships

and the performed research. Nevertheless the individual contributions of the authors

can be clearly delineated and can be assessed separately from each other. In Table 1.1

we summarize each author’s contribution to the chapters of this thesis. We distinguish

between scientific contribution and the contribution to the composition of the thesis’

text.

1.3 Resulting Publications

The work presented in this thesis has appeared in the following peer-reviewed publica-

tions:

• D. Mitrović, M. Zeppelzauer and H. Eidenberger. 2007. Analysis of the Data

Quality of Audio Descriptions of Environmental Sounds. Journal of Digital In-

formation Management, 5(2):48-55.
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Mitrović Zeppelzauer

Chapter idea text idea text

Detection of Black Frames and Intertitles 50% 70% 50% 30%

Detection of Shot Cuts 70% 70% 30% 30%

Detection of Gradual Transitions 20% 30% 80% 70%

Segmentation of Scenes 80% 60% 20% 40%

Extraction of Synchronous Montage Sequences 20% 20% 80% 80%

Retrieval of Motion Composition 30% 20% 70% 80%

Retrieval of Visual Composition - A User Study 80% 80% 20% 20%

Table 1.1: Contributions of the authors, separated by scientific contribution (idea) and

textual contribution (text) for each chapter.

• M. Zeppelzauer, D. Mitrović and C. Breiteneder. 2008. Analysis of Historical

Artistic Documentaries. Proceedings of the 9th International Workshop on Image

Analysis for Multimedia Interactive Services, May 7-9, 2008, Klagenfurt, Austria.

pp. 201-206.

• M. Zeppelzauer, M. Zaharieva, D. Mitrović and C. Breiteneder. 2010. A Novel

Trajectory Clustering Approach for Motion Segmentation. Proceedings of Multi-

media Modeling Conference, Jan 6-8, 2010, Chongqing, China, pp. 433-443.

• M. Zaharieva, M. Zeppelzauer, D. Mitrović and C. Breiteneder. 2010. Archive

film comparison. International Journal of Multimedia Data Engineering and

Management, 1(3):41-56.

• D. Mitrović, M. Zeppelzauer and C. Breiteneder. 2010. Features for Content-

Based Audio Retrieval. Advances of Computers, vol. 78, editor: Marvin V.

Zelkowitz, Academic Press, pp. 71-150.

• M. Seidl, M. Zeppelzauer and C. Breiteneder. 2010. A Study Of Gradual Tran-

sition Detection in Historic Film Material. Proceedings of the ACM Multimedia

2010, Workshop - Electronic Heritage and Digital Art Preservation (eHeritage),

October 25-29, 2010, Firenze, Italy, pp. 13-18.
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• M. Zaharieva, D. Mitrović, M. Zeppelzauer and C. Breiteneder. 2011. Film

Analysis of Archive Documentaries. IEEE Multimedia, 18(2):38-47, February,

2011.

• D. Mitrović, S. Hartlieb, M. Zeppelzauer and M. Zaharieva. 2010. Scene Seg-

mentation in Artistic Archive Documentaries. HCI in Work and Learning, Life

and Leisure, LNCS, vol. 6389, Springer, Berlin/Heidelberg, pp. 400-410.

• D. Mitrović, M. Zeppelzauer, M. Zaharieva and C. Breiteneder. 2011. Retrieval

of Visual Composition in Film. Proceedings of the 12th International Workshop

on Image Analysis for Multimedia Interactive Services, April 13-15, 2011, Delft,

The Netherlands.

• M. Zeppelzauer, D. Mitrović and C. Breiteneder, 2011. Cross-Modal Analysis

of Audio-Visual Film Montage. Proceedings of 20th International Conference

on Computer Communications and Networks, July 31 - August 4, 2011, Maui,

Hawaii.

• M. Seidl, M. Zeppelzauer, D. Mitrović and C. Breiteneder. 2011. Gradual Tran-

sition Detection in Historic Film Material – A Systematic Study. To appear in

ACM Journal on Computing and Cultural Heritage.

• M. Zeppelzauer, M. Zaharieva, D. Mitrović and C. Breiteneder. 2011. Retrieval

of Motion Composition in Film. To appear in Digital Creativity, vol. 22, issue 4.

1.4 Organization

The organization of this thesis principally follows the identified concepts shown in

Figure 1.1. Prior to the work on the retrieval of the concepts, we review the principles

of media retrieval in Chapter 2. We first present the basics of content-based retrieval

and summarize important auditory and visual features. Next, we discuss similarity

measurement in the context of retrieval and review classification techniques relevant

to this thesis. Finally, we describe how retrieval systems are evaluated and how their

performance is measured.

In Chapter 3 we present the investigated archive film material. We first overview

the stylistic properties typical for the films. Next, we present the artifacts present in
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the films and discuss their impact on the automatic analysis. Finally, we discuss the

effects of automatic restoration of the films.

The first investigated concepts are black frames and intertitles. Both are structuring

elements of a film, however at different scales. Black frames are provide structure at a

small scale for the creation of rhythmic patterns in sequences. Intertitles structure a

film at a larger scale, as they usually separate different broader topics. We address the

detection and retrieval of black frames and intertitles in Chapter 4.

A central concept that gives a movie structure are shots. Successive shots are sep-

arated by shot boundaries which can either be gradual (gradual transitions) or abrupt

(shot cuts). Both types of shot boundaries are analyzed in this thesis in Chapters 5

and 6.

The composition of a film has different aspects. One aspect is the temporal com-

position of a film. A film is usually temporally composed of several scenes. Scenes are

made of several consecutive semantically related shots. Scenes have both, a semantic

and a structural component. On the one hand, they represent high-level information

about a film with an associated semantic meaning. On the other hand, scenes con-

tribute to the structuring of a film, however at a coarser level than the single shots.

The segmentation of films into semantically related scenes is presented in Chapter 7.

A concept related to scenes are synchronous montage sequences. Synchronous mon-

tage is an editing technique where the visual cutting (the shot cuts) and the audio track

of a film are synchronized to increase tension and tempo in a sequence. Synchronous

montage sequences often represent highlights in a scene. They have a strong semantic

component and are highly characteristic for a film and a filmmaker’s style. We focus

on the extraction of synchronous montage sequences in Chapter 8.

Additionally to the temporal composition of a film by scenes and synchronous mon-

tage sequences, visual composition and motion composition are two concepts that play

an important role in the investigated films. Visual composition refers to the spatial

arrangement of objects and motion composition describes object motions, camera mo-

tions, and their interactions. The repeated use of particular compositions is a stylistic

device employed frequently in the archive films. We investigate the retrieval of motion

compositions in Chapter 9 and the retrieval of visual composition in Chapter 10.

Finally, we summarize the thesis and discuss open topics in the context of the

identified concepts in Chapter 11.
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Chapter 2

Principles of Media Retrieval

The methods presented in this thesis belong to the field of content-based media retrieval.

In the following we briefly introduce content-based retrieval and discuss the different

processing steps of a content-based retrieval task. In Sections 2.2 and 2.3 we survey

auditory and visual content-based features which represent the basis of a content-based

retrieval system. Next, we discuss the principles of similarity measurement in retrieval

and review measures for distance and similarity comparison in Section 2.4. Section 2.5

targets pattern classification and presents the classifiers employed in this thesis. Finally,

Section 2.6 focuses on the evaluation of retrieval systems, challenges of ground truth

generation, and performance measures for retrieval systems.

2.1 Content-based Retrieval

In the last decades the number of available digital media has grown considerably. Ad-

ditionally to textual information, image, audio, and video data have become ubiquitous

due to the development of efficient compression and transmission techniques and the es-

tablishment of large (publicly accessible) databases in the Internet. The access to these

large amounts of multimedia data is more difficult than to text documents. In text

retrieval a search request is usually a set of terms that describe the desired information

(textual query). A text retrieval system takes such a query as input and matches the

query terms with the documents in a database [184, 226]. Thereby, the comparison of

query terms and the content of a document is performed by exact matching (by testing

the identity between two strings). In content-based media retrieval exact matching is
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2. PRINCIPLES OF MEDIA RETRIEVAL

inappropriate. Given a media object as query (e.g. an image) the search for similar

media objects in a database with exact matching would not succeed because similar

objects (images) are usually not identical. Content-based retrieval requires tolerant

matching for the comparison of media objects. For this purpose, traditional text-based

information retrieval methods are not appropriate.

A straight-forward approach is to manually create textual metadata (annotations)

for each multimedia object and to perform text retrieval on these annotations. A

shortcoming of this approach is that the generation of annotations is a time-consuming

and error-prone task. Additionally, annotations should be generated by domain experts

to assure an adequate level of quality which makes the process expensive.

The general idea behind content-based retrieval is the extraction of information

directly from the raw content of media objects (the pixels of images or the samples

of an audio signal). The result of information extraction are numeric descriptions

(features) that describe the media objects. Features, in the visual domain may be for

example histograms that represent the color distribution of still and moving images.

In the audio domain features may represent the pitch or the frequency distribution of

a signal. Based on such numeric descriptions media objects can be compared to each

other and assigned to a class of objects.

While a retrieval task is usually defined at a high level, e.g. “classify images as

showing either indoor scenes or outdoor scenes”, the numeric descriptions of the media

objects (e.g. color histograms and texture descriptors) usually reside at a rather low

level of abstraction. The gap that exists between the low-level numeric descriptions

of the media content and the semantic meaning of the content to a human observer is

referred to as the semantic gap. The semantic gap is omnipresent in all fields of content-

based retrieval. For an audio retrieval system for example, a recording of Beethoven’s

symphony no. 9 is basically a series of numeric values (raw samples or feature vectors

extracted from these samples, see Section 2.2). For a human however, the symphony

is a sequence of notes with specific durations and pitches. A human may describe

the symphony by even more abstract semantic concepts like musical entities (motifs,

themes, movements), musical genres, and elicited emotions (excitement, euphoria).

On the technical side, the semantic gap is a direct consequence of the fact that

content-based retrieval is an inverse problem. An inverse problem aims at the esti-

mation of model parameters from observed data (measurements) [210]. In the case of
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content-based retrieval, model parameters are terms, properties and concepts that may

represent class labels (e.g. terms like “car” and “cat,” properties like “male” and “fe-

male,” and concepts like “outdoors” and “indoors”). The exact estimation of the model

parameters is not possible in general, since the set of observed data is incomplete (not

all possible data samples that make up a class or concept are available). This means

that the model can only be approximated. Consequently, content-based retrieval is an

ill-posed problem [78].

Humans bridge the semantic gap based on prior knowledge and (cultural) context.

Due to the ill-posed nature of content-based retrieval, computers are usually not able

to complete this task. Consequently, the goal in content-based retrieval is to narrow

the semantic gap as far as possible. For this purpose, most approaches employ numeric

models like the vector space model [185]. In the vector space model documents (origi-

nally text, later arbitrary media objects) are represented by numeric vectors, the feature

vectors. The feature vectors should provide a compact and expressive representation

of the media objects and capture information relevant for the given retrieval task. In

text retrieval for example a feature vector may contain the probability of occurrence

of representative terms that characterize the content documents. In the case of visual

retrieval a feature vector may represent the color distribution of an image in the form of

a color histogram. The representation of media objects by feature vectors additionally

reduces the amount of data that has to be processed by several orders of magnitude.

This is necessary, since the dimension of raw data, e.g. all pixels of an image is too

high for direct processing and thus inadequate for retrieval. Furthermore, information

such as shapes and texture is not directly apparent from the raw pixels. Hence, the

extraction of feature vectors is an important preprocessing step to capture the required

information from raw data and at the same time to neglect information that is not

important for a given task.

Feature vectors of all documents in a repository always have the same dimension d

and may be regarded as vectors in a d-dimensional vector space, usually R
d, the fea-

ture space. Each feature vector denotes one position in this vector space. The basic

assumption of the vector space model is that similar documents or media objects are

represented by feature vectors that are spatially close in the vector space while dissim-

ilar objects are spatially separated. Distances between feature vectors in the feature

space are measured by different metrics, such as the Euclidean metric or the more
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Figure 2.1: The workflow of a typical query-by-example retrieval system.

general Minkowski metric (see Section 2.4). Similarity judgements are obtained by

mapping distances in the vector space to measures that approximate similarity.

Based on estimated similarities, the vector space model enables for example the

comparison of a query object with objects in a database and allows for the retrieval

of objects from a database that are similar to the query (similarity retrieval). The

architecture of a typical query-based retrieval system is presented in Figure 2.1. The

input to the system is a database with media objects (e.g. an image database) and a

query object provided by the user (for example an image). In a first processing step

features are extracted for each object in the database (feature extraction). The features

for the objects in the database are usually stored in a feature database and are reused

for all future search requests. The result of feature extraction are numerical descriptions

that characterize particular aspects of the media objects (e.g. color distribution, texture

information, faces, etc.). Next, the same features are extracted for the query object

provided by the user.

After feature extraction, the feature vectors of the query and the media objects

in the database are compared based on an adequate distance metric (similarity com-

parison). After similarity comparison the media objects that are most similar to the

query object are returned to the user. This retrieval scenario is also called query-by-

example [66].

Usually, not all returned media objects match the query and satisfy the user’s ex-

pectations. Consequently, most retrieval systems offer the user the opportunity to give

feedback for the returned media objects. The user may specify which of the returned

objects meet her expectations and which do not (relevance feedback) [118]. This in-
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Figure 2.2: The workflow of a typical classification task.

formation may be used to iteratively refine the original query. Relevance feedback and

iterative refinement enable the system to improve the quality of retrieval by incorpo-

rating the user’s knowledge and intentions.

Additionally to query-based retrieval as described above, the vector space model

supports the clustering and classification of media objects. Clustering groups similar

objects represented as points in the feature space based on a particular distance metric

and returns a representative for each cluster [79]. In classification each media object

(represented as a point in the feature space) is assigned a distinct class label. A classifier

first learns the properties of each class from training examples and later tries to predict

the class labels of previously unseen media objects, see Section 2.5. The workflow of a

typical classification task in content-based retrieval is illustrated in Figure 2.2.

The input is again a database of media objects (for example images, videos, or pieces

of audio). Additionally, a ground truth (see Section 2.6) is available that contains for

each object in the database a class label (e.g. “male” or “female” for a database of

human face images). First, feature extraction is performed as in query-based retrieval

for each media object in the database. Next, feature vectors are used to train the

classifier. During training the classifier builds a model for each object class represented

by the features (see Section 2.5 for details). Based on these models the classifier is able

to later predict the class labels of previously unseen media objects (query objects).

Training the classifier is usually an iterative process that includes repeated evaluations

of the classifier by the ground truth. See Section 2.6 for details on the training and

evaluation of classifiers.
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Figure 2.3: (a) The spectrum of a noise-like sound (thunder). (b) The spectrum of a

harmonic sound (siren). The harmonic sound has peaks at multiples of the fundamen-

tal frequency (marked by asterisks), while the noise-like sound has a flat spectrum and

consequently no pitch.

2.2 Auditory Features

In an audio retrieval system features should provide a compact and expressive represen-

tation of the underlying signals that captures the information that is most meaningful

to a particular retrieval task. The type of auditory feature primarily depends on the

required task and the characteristics of the given audio signals. Before we give an

overview of different types of auditory features, we briefly present different character-

istics of audio signals and basic audio attributes.

2.2.1 Attributes of Auditory Signals

Generally, we distinguish between tones and noise. Tones are characterized by the fact

that they are “capable of exciting an auditory sensation having pitch” [9] while noise

not necessarily has a pitch (see Figure 2.3(a)). Tones may be pure tones or complex

tones. A pure tone is a sound wave where “the instantaneous sound pressure of which

is a simple sinusoidal function in time” while a complex tone contains “sinusoidal

components of different frequencies” [9].

Complex tones may be further distinguished into harmonic complex tones and in-

harmonic complex tones. Harmonic complex tones comprise of partials with frequen-

cies at integer multiples of the fundamental frequency (so called harmonics, see Fig-

ure 2.3(b)). Inharmonic complex tones consist of partials whose frequencies significantly

differ from integer multiples of the fundamental frequency.
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From a psychoacoustic point of view, all types of audio signals may be described in

terms of the following attributes: duration, loudness, pitch, and timbre.

Duration is the time between the start and the end of the audio signal of interest.

The temporal extent of a sound may be divided into attack, decay, sustain, and release

depending on the envelope of the sound. Not all sounds necessarily have all four

components. Note that in certain cases silence (absence of audio signals) may be of

interest as well.

Loudness is an auditory sensation mainly related to sound pressure level changes

induced by the producing signal. Loudness is commonly defined as “that attribute of

auditory sensation in terms of which sounds can be ordered on a scale extending from

soft to loud” with the unit sone [9].

Pitch is defined by the American Standards Association as “that attribute of au-

ditory sensation in terms of which sounds may be ordered on a scale extending from

low to high” with the unit mel [9]. However, pitch has several meanings in literature.

It is often used synonymously with the fundamental frequency. In speech processing

pitch is linked to the glottis, the source in the source and filter model of speech pro-

duction [172]. In psychoacoustics, pitch mainly relates to the frequency of a sound but

also depends on duration, loudness, and timbre.

An attribute related to pitch is pitch strength. Pitch strength is the “subjective

magnitude of the auditory sensation related to pitch” [9]. For example, a pure tone

produces a stronger pitch sensation than high-pass noise [253]. Generally, the spectral

shape determines the pitch strength. Sounds with line spectra and narrow-band noise

evoke larger pitch strength than signals with broader spectral distributions.

Timbre is the most complex attribute of sounds. According to the ANSI standard

timbre is “that attribute of auditory sensation which enables a listener to judge that

two non-identical sounds, similarly presented and having the same loudness and pitch,

are dissimilar.” [9]. For example, timbre reflects the difference between hearing sensa-

tions evoked by different musical instruments playing the same musical note (e.g. piano

and violin). In contrast to the above mentioned attributes, it has no single determining

physical counterpart [4]. Due to the multidimensionality of timbre, objective measure-

ments are difficult. Terasawa et al. propose a method to compare model representations

of timbre with human perception [213].
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Property Values

Signal representation linear-coded, lossily compressed

Domain temporal, frequency, correlation,

cepstral, modulation frequency

Temporal scale intraframe, interframe, global

Semantic interpretation perceptual, physical

Table 2.1: Formal properties of auditory features and their possible values.

Timbre is a high-dimensional audio attribute and is influenced by both stationary

and non-stationary patterns. It takes the distribution of energy in the critical bands

into account (e.g. the tonal or noise-like character of sound and its harmonics struc-

ture). Furthermore, timbre perception involves any aspect of sound that changes over

time (changes of the spectral envelope and temporal characteristics, such as rhythmic

patterns). Preceding and following sounds influence timbre as well.

Generally, auditory features describe aspects of the above mentioned audio at-

tributes. For example there is a variety of features that aim at representing pitch

and loudness. Other features capture particular aspects of timbre, such as sharpness,

tonality and frequency modulations. See Sections 2.2.3 to 2.2.6 for an overview of

auditory features organized by the aspect they represent.

2.2.2 Properties of Auditory Features

Additionally to the psychoacoustic attributes described in the previous section, auditory

features may be characterized on a technical level by a number of (formal) properties.

In Table 2.1, we summarize the most important properties.

A basic property of a feature is the audio representation it is specified for. We

distinguish between two groups of features: features based on linear-coded signals and

features that operate on lossily compressed (subband-coded) audio signals. Most fea-

ture extraction methods operate on linear-coded signals. However, there has been some

research on lossily compressed domain auditory features, especially for MPEG audio

encoded signals due to their wide distribution. Lossy audio compression transforms

the signal into a frequency representation by employing psychoacoustic models which

remove information from the signal that is not perceptible to human listeners (e.g. due

to masking effects) [253]. Although lossy compression has different goals than feature
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extraction, features may benefit from the psychoacoustically preprocessed signal repre-

sentation, especially for tasks in which the human perception is modeled. Furthermore,

compressed domain features may reduce computation time significantly if the source

material is already compressed. Wang et al. provide a survey of compressed domain

auditory features in [231]. In the following, we focus on features for linear-coded audio

signals, since they often form the basis for lossily compressed domain auditory features.

Another property is the domain of an auditory feature. This is the representation

a feature resides in after feature extraction. The domain allows for the interpretation

of the feature data and provides information about the extraction process and the

computational complexity. For example, a feature in temporal domain directly describes

the waveform while a feature in frequency domain represents spectral characteristics of

the signal. Another popular domain is the cepstral domain which can be considered as

the spectrum of a spectrum and is used for example for the computation of MFCCs (see

Section 2.2.6). Features in the correlation domain are derived from the auto-correlation

of a signal and are frequently used for the estimation of fundamental frequency (see

Section 2.2.5). Finally, the modulation domain reveals spectral variations over time in

a signal which characterize for example musical rhythm.

Another property is the temporal scale of a feature. In general, audio is a non-

stationary time-dependent signal. Hence, most feature extraction methods operate on

short frames of audio where the signal is considered to be locally stationary (usually

in the range of milliseconds). Each frame is processed separately which results in one

feature vector for each frame. We call such features intraframe features because they

operate on independent frames. Intraframe features are also called frame-level, short-

time, and steady features [236]. A well known example for an intraframe feature are

MFCCs which are frequently extracted for frames of 10-30 ms length.

In contrast, interframe features describe the temporal change of an audio signal.

They operate on a larger temporal scale than intraframe features in order to capture

the dynamics of a signal. In practice, interframe features are often computed from

intraframe representations. Examples for interframe features are features that represent

rhythm and modulation information. Interframe features are often called long-time

features, global features, dynamic features, and clip-level features [221, 236].

In addition to interframe and intraframe features, there are global features. Accord-

ing to Peeters a global feature is computed for the entire audio signal. An example is
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the attack duration of a sound. A global feature does not necessarily take the entire

signal into account [162].

The semantic interpretation of a feature indicates whether or not the feature rep-

resents aspects of human perception. Perceptual features approximate semantic prop-

erties known by human listeners, e.g. pitch, loudness, rhythm, and harmonicity [250].

For this purpose, perceptual features usually incorporate psychoacoustic models [176].

Psychoacoustic models for example are filter banks that simulate the frequency resolu-

tion of the human auditory system [203]. Furthermore, models are integrated that take

psychoacoustic properties into account, such as masking, specific loudness sensation,

and equal-loudness contours [151, 253]. Investigations show that retrieval results often

benefit from features that model psychoacoustic properties [73, 89, 176, 205].

Additionally to perceptual features, there are physical features. Physical features

describe audio signals in terms of mathematical, statistical, and physical properties

without emphasizing human perception in the first place (e.g. Fourier transform coef-

ficients and the signal energy).

In the following, we give an overview of the most important auditory features in

literature. We organize the features according to the auditory attribute they represent.

A more comprehensive survey of auditory features can be found in [147].

2.2.3 Features related to Duration

Auditory features related to duration represent temporal characteristics of the wave-

form, for example particular points in time, such as the attack time of the sound.

Popular features are log attack time and temporal centroid.

Log attack time. The log attack time characterizes the attack of a sound. According

to the MPEG-7 standard, log attack time is the logarithm of the time it takes from

the beginning of a sound signal to the point in time where the amplitude reaches a

first significant maximum [101]. The attack characterizes the beginning of a sound,

which can be either smooth or sudden. Log attack time is for example employed for

classification of musical instruments by their onsets [91].
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Temporal centroid. The temporal centroid (according to the MPEG-7 standard)

is the time average over the envelope of a signal in seconds [101]. It is the point in

time where most of the energy of the signal is located in average. The computation

of temporal centroid is equivalent to that of spectral centroid (Section 2.2.6) in the

frequency domain.

2.2.4 Features related to Loudness

We distinguish between two types of auditory features for loudness: physical loud-

ness features and psychoacoustic loudness features. Physical loudness features coarsely

estimate loudness from the energy in the signal (short-time energy, volume). Psychoa-

coustic loudness features aim at imitating the human sensation of loudness by taking

into consideration psychoacoustic properties, such as critical bands, masking effects and

equal loudness contours [253]. Advanced psychoacoustic loudness features are specific

loudness sensation and integral loudness.

Short-time energy. Short-time energy is one of the most frequently used auditory

features [37, 38, 202, 239]. Short-time energy is usually defined as the mean energy

per frame (which actually is a measure for power) [250]. The same definition is used

for the MPEG-7 audio power descriptor [101]. Additionally, there are definitions for

short-time energy that take the spectral power into account [43, 134].

Volume. Volume is sometimes also called loudness, as in [238]. Volume is usually

defined as the root-mean-square of the signal magnitude within a frame [130]. Conse-

quently, volume is the square root of short-time energy. Both, volume and short-time

energy reveal the magnitude variation over time. Volume is for example employed in

silence detection and speech/music segmentation [104, 160].

Specific loudness sensation. Pampalk et al. propose a feature that approximates

the specific loudness sensation per critical band of the human auditory system [159].

The authors first compute a Bark-scaled spectrogram [252] and then apply spectral

masking and equal-loudness contours (expressed in phon) [253]. Finally, the spectrum

is transformed to specific loudness sensation (in sone) which takes the logarithmic

behavior of human loudness perception into account. Specific loudness sensation is
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applied to audio retrieval for example in [152, 153]. We employ specific loudness for

silence detection for scene segmentation in Chapter 7.

Integral loudness. The specific loudness sensation principally estimates the loud-

ness of a single sine tone. A spectral integration of loudness over several frequencies

enables the estimation of the loudness of more complex tones [253]. Pfeiffer proposes

an approach to compute the integral loudness by summing up the loudness in different

frequency bands [165]. The author empirically shows that the proposed method closely

approximates the human sensation of loudness. The integral loudness feature is applied

to foreground/background segmentation in [166].

2.2.5 Features related to Pitch

Similarly to loudness, we distinguish between physical pitch features and psychoacoustic

pitch features. Physical pitch features mainly represent the fundamental frequency.

The fundamental frequency is the lowest frequency of a harmonic series and is a coarse

approximation of the psychoacoustic pitch. Fundamental frequency estimation employs

a wide range of techniques, such as temporal autocorrelation, spectral, and cepstral

methods and combinations of these techniques. An overview of techniques is given

in [94].

Zero crossing rate (ZCR). One of the simplest and fastest methods for the coarse

estimation of the fundamental frequency is the zero crossing rate, which is defined as

the number of zero crossings in the temporal domain within one second. According to

Kedem the ZCR is a measure for the dominant frequency in a signal [106]. ZCR is a

popular feature for speech/music discrimination due to its simplicity [160, 187].

MPEG-7 audio fundamental frequency. The MPEG-7 standard proposes a more

robust descriptor for the fundamental frequency which is defined as the first peak of

the local normalized spectro-temporal autocorrelation function [42, 101]. Fundamental

frequency is employed for example in [44, 222, 238].
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Psychoacoustic pitch. Meddis and O’Mard propose a method to model human

pitch perception in [141]. First, the authors apply a band-pass filter to the input

signal to emphasize the frequencies relevant for pitch perception. Then the signal is

decomposed with a gammatone filter bank that models the frequency selectivity of the

cochlea. For each subband an inner hair-cell model transforms the instantaneous am-

plitudes into continuous firing probabilities. Next, a running autocorrelation function is

computed from the firing probabilities in each subband. The resulting autocorrelation

functions are summed across the channels in order to obtain a psychoacoustic pitch

estimate.

2.2.6 Features related to Timbre

Timbre is the most complex attribute of audio. Consequently, a large number of features

exist that describe different aspects of timbre. Since timbre comprises of stationary

(short-time) and non-stationary (long-time) properties (as mentioned in Section 2.2.1)

we distinguish between stationary timbre features and non-stationary timbre features.

Non-stationary timbre features

Non-stationary timbre features capture low-frequency modulations in audio signals.

Modulation is a long-term signal variation of amplitude or frequency that is usually

captured by a temporal (interframe) analysis of the spectrogram. Aspects of sound

related to long-time modulations are rhythm and tempo which are especially important

in music retrieval. In the domain of music information retrieval a number of modulation-

based features have been introduced for the description of rhythmic structures, e.g.

rhythm patterns [205] and pulse metric [189].

A widely used feature is the beat spectrum which represents the self-similarity of a

signal for different time lags (similarly to autocorrelation) [68, 69]. In music, the peaks

in the beat spectrum indicate strong beats with a specific repetition rate. Hence, this

representation allows a description of the rhythm content of a piece of music. In non-

musical signals, peaks in the beat spectrum indicate abrupt changes, such as speech

onsets and the attacks of sudden noises). The beat spectrum is of particular interest for

this thesis, as it is universal and can be applied to arbitrary time series. The concept of

the beat spectrum can easily be applied to the detection of abrupt temporal changes in
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a visual signal. We employ the beat spectrogram for the detection of shot boundaries

in Chapters 5 and 6 as well as for cross-modal film analysis in Chapter 8.

Stationary timbre features

Features that capture stationary aspects of timbre are usually computed by a spectral

(intraframe) analysis of short signal frames. In these short signal frames (usually 20-

50 ms) the signal can be considered to be stationary. In a first step, the signal spectrum

of a frame is computed by a Short Time Fourier Transform. Next, different information

is extracted from the short-time spectrum. A first group of features extracts particular

properties from the spectrum, such as the spectral centroid, bandwidth, flatness, and

the harmonic structure. A second group of features aims at representing the entire

spectrum in a compact and expressive way, for example by extracting the spectral

shape. Features of the first group include:

Spectral centroid. The spectral centroid is defined as the center of gravity of the

magnitude spectrum (first moment) [121, 222]. The spectral centroid determines the

point in the spectrum where most of the energy is concentrated and is correlated with

the dominant frequency of the signal. A definition of spectral centroid in logarithmic

frequency can be found in [201]. Furthermore, spectral centroid may be computed

separately for several frequency bands as in [174].

The spectral centroid is an approximation of the brightness of a sound. Brightness

characterizes the spectral distribution of frequencies and describes whether a signal is

dominated by low or high frequencies, respectively [253]. A sound becomes brighter

as the high-frequency content becomes more dominant and the low-frequency content

becomes less dominant.

Bandwidth. Bandwidth (often also referred to as spectral spread) is the magnitude-

weighted average of the differences between the spectral components and the spectral

centroid [238]. This means that the bandwidth is the second-order statistic of the

spectrum. Tonal sounds usually have a low bandwidth (single peak in the spectrum)

while noise-like sounds have high bandwidth. Bandwidth may be defined in the loga-

rithmized spectrum as well as in the power spectrum [129, 134, 201]. Additionally, it

may be computed within one or more subbands of the spectrum [5, 174]. Measures for
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bandwidth are often combined with that of spectral centroid in literature since they

represent complementary information [5, 134, 174].

Spectral rolloff point. The spectral rolloff point is the N% percentile of the power

spectral distribution, where N is usually 85% or 95% [189]. The rolloff point is the

frequency below which N% of the magnitude distribution is concentrated. It increases

with the bandwidth of a signal. Spectral rolloff is used for example in music information

retrieval [120, 152] and speech/music segmentation [189].

Spectral flatness. Spectral flatness estimates to which degree the frequencies in a

spectrum are uniformly distributed [103]. The spectral flatness is the ratio of the geo-

metric and the arithmetic mean of a subband in the power spectrum [174]. The same

definition is used by the MPEG-7 standard for the audio spectrum flatness descrip-

tor [101]. Spectral flatness may be further computed in decibel scale as in [77, 116].

Noise-like sounds have a higher flatness value (flat spectrum) while tonal sounds have

lower flatness values. Spectral flatness is often used for audio fingerprinting [90, 116].

Harmonicity. Harmonicity is a property that distinguishes periodic signals (har-

monic sounds) from non-periodic signals (inharmonic and noise-like sounds). Har-

monics are frequencies at integer multiples of the fundamental frequency. Figure 2.3

presents the spectra of a noise-like (inharmonic) and a harmonic sound. Numerous

features exist that describe the harmonic structure of a sound. An example is the au-

dio harmonicity descriptor defined in the MPEG-7 standard. The audio harmonicity

descriptor comprises two measures. The harmonic ratio is the ratio of the fundamental

frequency’s power to the total power in an audio frame [101, 110]. It is a measure for

the degree of harmonicity in a signal. The computation of harmonic ratio is similar

to that of MPEG-7 audio fundamental frequency, except for the used autocorrelation

function [101]. The second measure of the audio harmonicity descriptor is the upper

limit of harmonicity. The upper limit of harmonicity is the frequency beyond which

the spectrum no longer has any significant harmonic structure. It may be regarded

as the bandwidth of the harmonic components. The audio harmonicity descriptor is

well-suited for the distinction of periodic (e.g. musical instruments, voiced speech) and

non-periodic (e.g. noise, unvoiced speech) sounds.
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The timbral features mentioned so far represent specific properties of the spectrum.

The second group of stationary timbre features represents the shape of the entire short-

time spectrum. Features from this group are the most frequently used features in

audio retrieval. They comprise Mel-frequency cepstral coefficients (MFCC) and Bark-

frequency cepstral coefficients (BFCC). Additionally linear predictive coding is em-

ployed to obtain the spectral shape.

Features that represent the spectral shape usually reside in the cepstral domain.

The concept of the “cepstrum” has been originally introduced by Bogert et al. in [26]

for the detection of echoes in seismic signals. In the audio domain, cepstral features have

first been employed for speech analysis [32, 51, 158]. Cepstral features are frequency

smoothed representations of the logarithmized magnitude spectrum. Furthermore, cep-

stral features allow for the application of the Euclidean metric as distance measure due

to their orthogonal basis which facilitates similarity comparisons [51].

Bogert et al. define the cepstrum as the Fourier Transform (FT) of the logarithm

(log) of the magnitude (mag) of the spectrum of the original signal [26].

signal → FT → mag → log → FT → cepstrum

This processing chain is the basis for most cepstral features. However, in practice

the computation slightly differs from this definition. For example, the second Fourier

transform is often replaced by a discrete Cosine transform (DCT) due to its ability to

better decorrelate the cepstral coefficients and due to its real-valued output.

Mel-frequency cepstral coefficients. MFCCs originate from automatic speech

recognition but evolved into one of the standard techniques in most domains of audio

retrieval. MFCCs have been successfully applied to timbre measurements by Terasawa

et al. in [213]. MFCCs are computed from short-time spectra obtained by a short-time

Fourier transform. First, the amplitude (magnitude) spectrum is logarithmized. This

coarsely models the logarithmic perception of loudness in the human ear [204]. Next,

the spectrum is transformed into Mel-scale by the application of a psychoacoustically

scaled filter bank of (overlapping) triangle filters [203]. The Mel-scale gives more impor-

tance to low frequencies than for high frequencies, which corresponds to the frequency

selectivity of the human ear. The output of the filter bank is a smoothed spectrum
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with a lower number of frequency bands than the original spectrum. Finally, this Mel-

scaled spectrum is input to a DCT which decorrelates the spectrum and allows a more

compact representation. The resulting Cosine coefficients are referred to as cepstral

coefficients. The following sequence illustrates the computation of MFCCs:

signal → FT → mag → log → Mel → DCT → MFCC coefficients

The first DCT coefficient represents the average power in the spectrum. The second

coefficient approximates the broad shape of the spectrum and is related to the spectral

centroid. The higher-order coefficients represent finer spectral details. In practice, the

first 8-20 MFCC coefficients are used to represent the shape of the spectrum.

A variation of MFCCs are Bark-frequency cepstral coefficients, which differ from

MFCC only in the applied psychoacoustic scale. Instead of the Mel-scale, the Bark-

scale is employed [252]. The computation is as follows:

signal → FT → mag → log → Bark → DCT → BFCC coefficients

Cepstral coefficients based on the Mel-scale are the most popular variant used today,

even if there is no theoretical reason that the Mel-scale is superior to other scales.

Autoregression-based features. Another group of timbral features for the descrip-

tion of the spectral envelope are autoregression-based features. In Autoregression anal-

ysis a linear predictor estimates the value of each sample of a signal by a linear combi-

nation of previous samples.

Linear predictive coding (LPC) estimates the coefficients of a filter of order p (the

autoregressive filter) that predicts the value of the input signal at time x from the

past p samples. The filter response of the estimated autoregressive filter is obtained

by computing the Fourier transform of the filter coefficients. The resulting magnitude

spectrum (the linear prediction spectrum) is an approximation of the spectral envelope

of the signal. The extraction process is as follows:

signal → LPC → FT → mag → linear prediction spectrum

In speech recognition the linear prediction spectrum is used to estimate basic parame-

ters of a speech signal, such as formant frequencies and the vocal tract transfer func-

tion [173]. The linear prediction spectrum is employed in other domains, such as audio

segmentation and general purpose audio retrieval, as well [107, 108, 127].
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Alternatively, the cepstral representation of the linear prediction spectrum (LPCCs)

is frequently used due to their higher retrieval efficiency [239]. LPCCs are the inverse

Fourier transform (iFT) of the logarithmized magnitude frequency response of the au-

toregressive filter. They are an alternative representation for linear prediction spectrum

and thus capture equivalent information. The following processing chain illustrates the

computation of LPCCs:

signal → LPC → FT → mag → log → iFT → LPCC coefficients

Alternatively, LPCCs may be directly derived from the linear prediction coefficients

with a recursion formula [13].

LPCCs have shown to perform better than linear prediction coefficients, e.g. in

automatic speech recognition, since they are a more compact and robust representation

of the spectral envelope [1]. Furthermore, they allow for the application of the Euclidean

distance metric due to their orthogonal basis.

2.3 Visual Features

Visual features should provide a compact and expressive representation of visual signals.

Similarly to Section 2.2, we first present characteristics of visual signals and investigate

properties of features prior to discussing visual features.

2.3.1 Attributes of Visual Signals

The visual signals considered in this thesis are digitized moving and still images recorded

with analog cameras. The images can be seen as the results of perspective projections

of physical, mostly opaque, objects embedded in a, mostly transparent, medium onto

two-dimensional (image) planes [96]. These images have a number of attributes that

may be used to describe the depicted real world objects. In the context of content-based

retrieval, the attributes intensity, color, texture, shape, salient points and motion have

gained importance. These attributes are suitable to serve as an organizing principle for

the discussion of content-based features in Sections 2.3.3-2.3.7.

Image intensity corresponds to the amount of light that is reflected by the depicted

objects in the direction of the observer and captured by the camera. The intensity is

high (the image is bright) if much light is reflected and low (the image is dark) if little
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light is reflected. Image intensity is also known as gray value, gray tone, image value,

luminance, and brightness [85].

Color is interrelated to intensity, additionally to the amount of reflected light color

takes its wavelengths into account. Color values are composed of intensities recorded

separately in three frequency bands representing the biologically motivated primary

colors red, green and blue [85]. The three primary colors span the three-dimensional

RGB color space. Each color represents a distinct point in this space. The RGB

space does not explicitly provide information such as brightness and saturation which

impedes the interpretation of colors specified in the RGB space. A more intuitive

interpretation of colors is provided by the HSV color space. The three axes represent

hue, saturation and value, where value represents the brightness component. RGB and

HSV are perceptually non-uniform color spaces. This means, that perceptually similar

colors are not necessarily located near to each other in the color space. A perceptually

uniform space is the LAB color space [45, 199]. The LAB color space has been defined

in a way that the perceptual similarity between two colors is approximated by their

Euclidean distance in the space. This (relative) perceptual uniformity of the LAB space

facilitates similarity comparisons in retrieval. A comparison of different color spaces in

content-based image retrieval is provided in [140]. Note that transformations between

different color spaces is possible if the retrieval task requires this.

Texture is related to the structure of the objects’ surface and its influence on the

image intensity. Hawkins writes about texture [88, 169]: “The notion of texture ap-

pears to depend upon three ingredients: (1) some local ’order’ is repeated over a re-

gion which is large in comparison to the order’s size, (2) the order consists in the

nonrandom arrangement of elementary parts and (3) the parts are roughly uniform

entities having approximately the same dimensions everywhere within the textured

region.” Texture is often described in terms of intensity, density, dimensions of unifor-

mity, coarseness, roughness, regularity, and directionality [85]. Figure 2.4 shows two

images of checkerboard-like areas as examples of textured surfaces. Although, both

images have the same gray value distribution (50% black and 50% white) they differ in

texture and hence in appearance. The main difference between the two textures is that,

the elementary parts (tiles) of Figure 2.4(a) are larger than the ones in Figure 2.4(b)

making the texture of Figure 2.4(a) coarser.
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(a) (b)

Figure 2.4: Examples of textures of two checkerboard-like areas. Although, both images

have the same intensity distribution, the structure of their surfaces makes them easily

distinguishable.

Shape relates to the depicted objects and regions in the scene. Features are used

to describe their boundary, covered area, and topology in the image. The boundary

can be described in terms of local extrema in curvature, inflection points, convexity,

and concavity. The area covered by an object can be described in terms of eccentricity,

surface area, bounding box, and roundness. Topology refers to the number of holes of an

object and the number of disconnected parts that make up an object. The description

of shape requires a segmentation of objects or interest regions in an image.

Salient points refer to particular points in images that are not influenced by ge-

ometric and radiometric distortions and that are distinct in their spatial neighbor-

hood [85, 191]. This distinctiveness is often based on the attributes intensity, color,

and texture. Ideally, salient points describe the visually most important points, edge

elements (e.g. corners, T-junctions), and (small) patches of an image [218].

Motion is an attribute of moving images, it may refer to the motion of depicted

objects, the motion of the camera, and camera operations like zoom-in and zoom-out.

Motion may be described in terms of direction, magnitude, and acceleration.

2.3.2 Properties of Visual Features

Similarly to auditory features, visual features reside in different domains after extrac-

tion. For visual features the spatial (or image) domain is represented by the Cartesian

coordinate system of the raw image. This domain is the native domain for images, sim-

ilarly to the time domain of auditory features. From the native domain we obtain the
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frequency domain by the application of (two-dimensional) frequency transforms, such

as discrete Fourier transform and discrete Cosine transform. Frequency transforms

decompose the input image into its spatial frequencies and yield two-dimensional fre-

quency representations which are a well-suited basis for the extraction of content-based

features.

We can distinguish between features by their spatial structure. There are two groups

of features. The first group describes the image in terms of salient points and the second

group of features accumulates information over the entire image. Features based on

salient points are often extracted in two passes. In the first pass the salient points are

identified and in the second pass descriptions for the point based on its neighborhood

are computed. These features represent local information and are also referred to as

local features and local descriptors. In contrast to local features, accumulated features

describe the entire image. Accumulated features consist of global features and block-

based features. The global features usually do not contain spatial information and

accumulate information globally about the entire image, for example the distribution

of gray values in an image (intensity histogram, see Section 2.3.3) is a global feature.

Earlier, in Figure 2.4 we saw two images with the same distribution of gray values but

different appearance. In order to distinguish between the two images using accumulated

features some kind of spatial information is necessary. Such spatial information is

provided by block-based features. Block-based features are computed for blocks of

fixed size of the image and the resulting values are concatenated. To stay with the

above example, assume that we divide the images in 2× 2 blocks and then analyze the

intensity distribution inside each block: For Figure 2.4(a) we obtain two distributions

with 100% white and two distributions with 100% black pixels while for the image in

Figure 2.4(a) we obtain four distributions with 50% white and 50% black pixels.

Invariance is an often desired property of features that is related to their sensitivity

towards distortions and transformations of the underlying visual signals. The desired

invariance depends on the retrieval task. For example, the description of object shapes

requires rotation-invariant features to enable the matching of differently oriented ob-

jects. However, rotation invariance may be undesired and impeding for the extraction

of the horizon in natural images.
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2.3.3 Features related to Intensity

Intensity features represent the distribution of intensity (brightness) in an image. Fea-

tures either capture the occurrence frequency of intensity values (intensity histograms)

or the spatial distribution of intensity (global DCT coefficients) or both (block-based

histograms and block-based DCT coefficients). Intensity features are structurally sim-

ilar to color features (see Section 2.3.4) with the difference that only the intensity

channel is processed instead of several color channels. Intensity features are frequently

used in this thesis for image representation since archive film material is monochromatic

and color features cannot be applied.

Intensity histograms A standard feature that characterizes the intensity distribu-

tion in an image is the intensity histogram (often also referred to as luminance his-

togram). The intensity histogram principally represents the occurrence frequency of

each possible gray value. In practice, the gray values are aggregated into a smaller

number of histogram bins. By using a smaller number of bins the robustness of the

histogram to illumination changes increases. The global intensity histogram completely

neglects spatial information and is thus invariant to rotation. If the histogram is addi-

tionally normalized (divided by the number of pixels in the input image), it becomes

also invariant to scaling. Alternatively, the intensity histogram can be computed sep-

arately for a number of image blocks in order to capture spatial information. For this

purpose, the histograms of each image block are concatenated into one vector. The re-

sult is a block-based intensity histogram. Global and block-based intensity histograms

are used for example for frame-to-frame comparisons in shot cut detection [28, 211]. We

employ intensity histograms for example in Chapter 6 for gradual transition detection

and for intertitle detection in Chapter 4.

DCT coefficients A compact description of the spatial intensity distribution in an

image can be obtained from the coefficients of the discrete Cosine transform (DCT) [7].

The discrete Cosine transform decomposes an image into its horizontal, vertical and

diagonal spatial frequencies. The first 64 basis functions of the two-dimensional DCT

are shown in Figure 2.5. The top left component is the zero-frequency DC coefficient.

It represents the mean gray value of the image. The remaining entries are the AC

components which represent horizontal frequencies (first row), vertical frequencies (first
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Figure 2.5: The first 8 × 8 basis functions of the two dimensional DCT. Bright pixels

represent high amplitudes and dark pixels low amplitudes.

column), and diagonal components (all other rows and columns). The spatial frequency

increases towards the right and the bottom of the figure. For each component the

corresponding DCT coefficient expresses to which degree the underlying image matches

the spatial frequency of the respective component. Most information about the image is

concentrated in the low-frequency DCT coefficients. In practice, a few DCT coefficients

are sufficient to represent the coarse spatial intensity distribution of an image.

DCT coefficients can be computed globally for an image or for image blocks. The

global DCT coefficients represent the spatial distribution of intensity values over the

entire image. Block-based DCT coefficients are extracted for individual image blocks

and represent the intensity distribution in each image block separately and thus cap-

ture more spatial information than global DCT coefficients. We employ global and

block-based DCT coefficients for shot cut detection and gradual transition detection in

Chapters 5 and 6.
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2.3.4 Features related to Color

A number of features exist for the description of color in an image. Color features rep-

resent different aspects of color, such as the representative colors of an image (MPEG-7

dominant color), the global occurrence frequency of colors (color histogram), the spa-

tial distribution of colors (MPEG-7 color layout), and the spatial coherency of colors

(MPEG-7 color structure). An additional aspect is the co-occurrence between different

colors in an image (color correlogram).

MPEG-7 dominant color. The dominant color descriptor extracts the representa-

tive colors of an image [101]. In a first step, an image is clustered into a small number

of representative colors. The cluster centroids represent the dominant colors. The

descriptor contains the dominant colors together with the percentage of pixels that

reside in the corresponding cluster. Additionally, the descriptor stores the variance of

the colors in the corresponding cluster for each dominant color. Finally, a coherency

measure is computed, that measures the spatial coherency of the dominant colors. The

dominant color descriptors of two images may contain different (numbers of) dominant

colors, and thus cannot be compared directly. An appropriate distance measure is

proposed in [52]. The measure compares all dominant colors from one image with all

dominant colors from another image, computes their Euclidean distances and sums up

all distances that are below a threshold.

Color histograms. Color histograms are among the most widely used color features

in content-based retrieval. They represent the occurrence frequency (distribution) of

colors in an image. For the computation of a color histogram we (uniformly or non-

uniformly) subsample the axes of the underlying color space. This subsampling yields

a partition of the color space into subspaces where each subspace corresponds to one

histogram bin. All colors that reside in one of the subspaces are considered similar.

A bin of the color histogram contains the number of pixels whose colors reside in the

corresponding subspace. Similarly to the intensity histogram in Section 2.3.3, the global

color histogram is invariant to rotation. If the histogram is normalized it additionally

becomes invariant to scaling. Global histograms do not capture the location of the

colors, only their occurrence frequencies. An example of a global color histogram is the

MPEG-7 scalable color descriptor [101, 138]. The scalable color descriptor is based on
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the HSV color space and employs a uniform quantization of the space into 256 bins

(subspaces). The HSV histogram is quantized and encoded by a Haar transform. The

transform makes the descriptor scalable which enables the comparison of descriptors

with different numbers of bins. Alternatively, each global histogram can be computed

for blocks of an image separately. The individual histograms are then concatenated

into one compound histogram. The result is a block-based histogram that captures

spatial information about the image as well.

MPEG-7 color layout. An orthogonal feature to histograms is the MPEG-7 color

layout descriptor [101]. While histograms principally represent distributional (but no

spatial) information the color layout descriptor captures solely spatial (but no distri-

butional) information. The color layout descriptor is computed by dividing an image

into 8×8 blocks. For each block the average color is computed. The resulting 64 values

(for each color channel) are transformed into frequency space by a two-dimensional

DCT. The low-frequency DCT coefficients for each color channel are concatenated and

together form the final feature vector.

MPEG-7 color structure. The MPEG-7 color structure descriptor is a combination

of a histogram and a spatial color descriptor [101]. In contrast to a histogram, where

each bin represents the occurrence frequency of a color, the bins of the color structure

descriptor represent the degree of spatial coherency of the pixels with a corresponding

color. The spatial coherency is high if all pixels of a color appear in one coherent

region while the spatial coherency is low if the pixels of a color are evenly distributed

across the image. The spatial coherency for a color is estimated by moving a sliding

window over the image. The coherency of the color is inversely proportional to the

number of locations where the sliding window at least contains one pixel with the

current color [138]. The color structure descriptor is able to distinguish two images

with identical occurrence frequencies of colors (identical color histograms) but different

spatial distributions of colors.

Color correlogram. Additionally to the spatial distribution and coherency of colors,

a further spatial aspect is the co-occurrence of different colors. The color correlogram

is a feature that captures the spatial relationships between different colors [99]. For the
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computation the color space is first subsampled into a lower number of colors. Next,

all colors are compared in a pair-wise manner with each other. The color correlogram

of two arbitrary colors i and j represents the probability that a pixel with color j can

be found at distance d from a pixel with color i. The color correlogram is computed

for all pairs of colors and contains probabilities for different distances d. Huang et al.

present efficient methods for the computation of color correlograms and show that color

correlograms outperform histogram-based techniques [99].

2.3.5 Features related to Shape

Shape features describe the regions covered and contours of pre-segmented objects

and interest regions in an image. A broad survey and comparison of shape features

is provided in [142]. According to the authors there are two basic types of shape

features: boundary-based features which operate on the outline (contour) and neglect

the interior of the objects and region-based approaches which capture properties of the

region including properties of the interior such as holes. We present representative

features for both types of features: the MPEG-7 region shape descriptor captures

structural properties of an object region and the MPEG-7 contour descriptor robustly

represents an object’s boundary.

MPEG-7 region shape. The MPEG-7 region shape descriptor is able to represent

arbitrary object regions, containing holes and disconnected parts [101]. The descriptor

comprises the coefficients of the Angular Radial Transform (ART). The ART is a 2-D

complex transform which decomposes the input image by angular and radial basis func-

tions. The region shape descriptor employs twelve angular and three radial functions to

describe a region, see Figure 2.6. The angular frequency of the basis functions increases

from left to right in Figure 2.6. The radial frequency increases from top to bottom.

The region shape descriptor contains the coefficients of all radial basis functions in Fig-

ure 2.6 except for the top left function which represents the zero-frequency component.

The region-based shape description is invariant to rotation and robust to scaling [179].

A comparative study of different region descriptors has shown, that the MPEG-7 region

shape descriptor outperforms other techniques in most experiments [248].
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Figure 2.6: The basis functions of the Angular Radial Transform employed for the com-

putation of the MPEG-7 region shape descriptor. Bright pixels represent high amplitudes

and dark pixels low amplitudes.

(a) (b) (c)

Figure 2.7: Three objects with similar region properties but different contours.

MPEG-7 region contour. While the region shape descriptor captures properties

of the area covered by an object, the MPEG-7 region contour descriptor describes the

outline of an object or region of interest. Contour and region descriptors are comple-

mentary to each other. Contour descriptors are able to distinguish between objects

with similar spatial pixel distributions (region shapes), see for example Figure 2.7.

A contour descriptor should be invariant to a large number of transformations such

as affine transformations, non-uniform scaling, and perspective transformations in or-

der to allow robust similarity comparisons between objects. The MPEG-7 region shape

descriptor achieves invariance to a number of transformations by the underlying Curva-

ture Scale-Space (CSS) representation [25, 148]. The CSS representation is obtained by

first sampling the object boundary with a fixed number of equidistant points. Next, the

peaks of the second derivative (curvature) of the sampled boundary are computed. The

peaks in the second derivative indicate salient points of the contour. In the CSS repre-

sentation the boundary is represented at differently smoothed scales (the smoother the

boundary the more convex it becomes). For each scale the peaks in the second deriva-

tive are extracted and sorted by decreasing level of scale. The scale represents the

salience of the corresponding point in the contour (peaks in a highly smoothed contour
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are more salient than peaks in the original contour). The position of the peaks is repre-

sented relative to the highest peak to obtain invariance to rotation [101]. Additionally,

the peaks are normalized to obtain invariance to uniform scaling [148]. The MPEG-7

contour shape descriptor contains the ordered series of normalized peaks. Additionally,

the descriptor contains two global contour parameters (eccentricity and circularity)

of the original contour and the smoothest employed contour [101]. MPEG-7 contour

shape is a compact descriptor for closed object boundaries. The dimension of the de-

scriptor varies with the complexity of the underlying boundary. For convex boundaries

no peaks are extracted at all. Due to the varying dimension of the descriptor special

matching schemes are required. A tolerant matching scheme for the contour descriptor

is described in [248].

2.3.6 Features related to Texture

Texture has multiple properties, such as coarseness (from coarse to fine), contrast (from

high to low), directionality (from directional to non-directional), and roughness (from

rough to smooth) [209]. Content-based features for texture usually describe one partic-

ular property of texture, e.g. the individual Tamura features. Other features represent

texture in a more holistic way, such as the MPEG-7 edge histogram and MPEG-7

homogeneous texture. The edge histogram captures the distribution of differently ori-

ented edges in an image. Homogeneous texture quantitatively represents the intensity

variation of a texture along different scales and directions. Since texture is independent

of color, texture features are extracted from the image intensity [199].

MPEG-7 edge histogram. Edges are building blocks of texture. The MPEG-7

edge histogram represents the distribution of edge directions in an image [101]. For

the computation of the edge histogram five types of edges are distinguished: horizontal

edges, vertical edges, diagonal edges with a slope of 45◦, diagonal edges with a slope

of 135◦ and non-directional edges. The edge histogram is computed by dividing the

input image into 16 non-overlapping sub-images. In each sub-image a separate edge

histogram is computed. For this purpose, a sub-image is divided into a fixed number

of image blocks. Each image block is matched with templates of the five edge types. If

the score for the best matching template exceeds a certain threshold, the image block
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is assigned to the corresponding edge type and contributes to the histogram of the cur-

rent sub-image. The final edge histogram is the concatenation of the edge histograms

of all 16 sub-images. The bins of the histogram are normalized and non-linearly quan-

tized according to the MPEG-7 standard [101]. Alternatively, to this block-based edge

histogram (based on sub-images) a global edge histogram for an entire image can be

computed analogously [138]. Edge histograms robustly represent salient information

in an image and have been successfully applied in several investigations presented in

this thesis. We employ global and block-based edge histograms for intertitle detec-

tion (Chapter 4), shot boundary detection (Chapters 5 and 6), scene segmentation

(Chapter 7), and visual composition retrieval (Chapter 10).

MPEG-7 homogeneous texture. While the MPEG-7 edge histogram is extracted

from distinct local information in an image, namely edges, the MPEG-7 homogeneous

texture descriptor takes all pixels into account and provides a global quantitative rep-

resentation of texture [101]. Homogeneous texture is extracted in frequency domain

from filter responses of differently scaled and oriented two-dimensional Gabor func-

tions. First, the frequency domain is partitioned into 6 frequency channels along the

angular direction (each channel captures 30◦). Next, the 6 frequency channels are par-

titioned along the radial dimension into 5 octave scaled channels. The result are 30

frequency channels with different scales and orientations. For each frequency channel a

two-dimensional Gabor function with the corresponding scale and orientation is gener-

ated and applied to filter the image. The resulting filter response (energy) is summed

and scaled logarithmically. Additionally, the logarithmically scaled standard deviation

of the energy is computed. The homogeneous texture descriptor contains the summed

energy and the energy deviation for each frequency channel. Furthermore, the mean

and standard deviation of the image intensity are added. The homogeneous texture

descriptor represents global directional and spatial information and thus is related to

directionality and coarseness of texture. The descriptor has successfully been applied

to texture retrieval in large databases [138]. We apply the descriptor for visual compo-

sition retrieval in Chapter 10.

Tamura features In contrast to the above features, Tamura features represent dis-

tinct properties of a texture [209]. According to the authors especially three properties,
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namely coarseness, contrast, and directionality are of special relevance to human per-

ception.

Coarseness is related to the size of the texture elements and can be captured by a

multi-scale analysis [182]. In a preprocessing step, the average of differently sized square

neighborhoods is computed at each pixel. Next, for each pixel the difference between

the averages of a neighborhood positioned to the left and a neighborhood positioned to

the right of the pixel is computed. These differences are computed for differently sized

neighborhoods to detect differently sized (coarse) structures. The same is performed in

the vertical direction. The size that yields the maximum difference along the horizontal

and vertical direction is assigned to the pixel. If several sizes yield a maximum, the

largest size is selected. The final coarseness measure is the mean of the maximum sizes

over all pixels of an image.

Contrast is related to several factors, such as the range of gray values, the ratio of

black and white areas, the sharpness of edges, and the period of repeating patterns [209].

Tamura et al. define a contrast measure as the quotient of the standard deviation and

the standardized kurtosis (fourth moment) of the intensity distribution of an image.

The standard deviation reflects the dynamic range of the gray values and kurtosis

represents the pointedness of the gray value distribution. The standardized kurtosis is

non-linearly scaled by taking the power of 1/4. The contrast feature with this exponent

has shown to approximate human perception best in the experiments of [209].

Directionality measures to which degree a texture has a dominant direction. For

this purpose Tamura et al. compute a histogram of gradient directions that incor-

porates all gradients from the input image with a significant magnitude (magnitude

above a threshold). Sharp peaks in the histogram indicate dominant directions in the

texture. The sharpness of a peak is expressed by the variance of the histogram in the

neighborhood of a peak. Additionally, this variance is scaled by the peak height. The

sharpness of all peaks is accumulated to obtain a feature for directionality.

2.3.7 Features related to Salient Points

In the context of salient points, we distinguish between detectors and descriptors. While

detectors identify the salient points and give their position, the descriptors are needed

for retrieval and matching. Descriptors are usually centered around the salient point

and compactly represent the salient point’s neighborhood.
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Harris corner detector. The Harris corner detector is a widespread detection meth-

od for salient points. Devised by Harris and Stephens [86] in 1988, the Harris corner

detector is still considered a state-of-the-art technique [74]. The detector is based on

the gradient distribution in the neighborhood of a pixel. The Hessian matrix is built

from the smoothed derivatives for the neighborhood of each pixel in the original image.

Corners are those points in the image where the visual signal strongly changes in vertical

and horizontal direction. Corners are detected based on the cornerness measure that

reflects the amount of change in both directions. The cornerness can be expressed

using the eigenvalues of the Hessian matrix. However, Harris proposed to compute the

cornerness from the determinant and the trace of the Hessian in order to reduce the

computation time. This is a valid approach, because the determinant is the product

and the trace is the sum of the eigenvalues. Local maxima of the cornerness measure

are identified using non-maximum suppression. These local maxima are the detected

salient points. The points are invariant to rotation, translation and (to a certain degree)

radiometric distortions. However, they are sensitive to scale changes [133]. Note that

the salient points detected by Harris’s technique are not only true corner points but

include for example T-junctions and points with high curvature [218].

Maximally stable extremal regions. Maximally stable extremal regions (MSER)

is a region detector related to regions that are stable with respect to thresholding [139].

Given an intensity image we create binary versions of the image by thresholding with

successively increasing intensity thresholds [208]. We arrive at an image sequence that

starts with an entirely white image and transforms into an entirely black image. First,

some black pixels appear which represent local intensity minima. Next, the intensity

minima grow, and for some threshold values begin to merge. Eventually, all intensity

minima are merged and we arrive at the entirely black image. Regions that remain

stable (in shape) for a large number of threshold values correspond to maximal regions.

Analogously, the minimal regions are identified. Tuytelaars and Mikolajczyk list the

following four properties of MSER: (i) MSER are invariant to monotonic changes of

the image’s intensity values. (ii) MSER are preserved under a number of geometric

changes. (iii) The absolute number of pixels in the image is the maximum possible

number of MSER. (iv) MSER are computationally cheap. However, they are sensitive
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to image blur. MSER’s properties make them suitable for the recognition of specific

objects while they do not perform that well for object class recognition [218].

Scale invariant feature transform. Scale invariant feature transform (SIFT) is a

widely used algorithm for the detection and description of salient points (also referred to

as SIFT keypoints). It has been devised by Lowe [133] for image matching in various

application domains such as object recognition, motion tracking and segmentation,

and stereo correspondence matching. SIFT keypoints are extracted for different scales,

for each scale the original image is iteratively smoothed with Gaussian filters with

increasing σ. The result is a set of differently smoothed images. Next, difference-of-

Gaussian images are computed by subtraction of adjacent images of the set. Then,

local extrema are identified by comparing each pixel with its neighbors in the current

and the adjacent difference-of-Gaussian images and selecting only the ones that are

larger (for maxima) and smaller (for minima) than all the neighbors. Finally, local

extrema that have low contrast or are located at edges are removed and location, scale,

and orientation are assigned to each salient point. The SIFT algorithm identifies large

numbers of salient points at different scales which is beneficial for the identification

of comparatively small and occluded objects in cluttered images. Salient points with

large scales introduce robustness to image noise and blur. Additionally, SIFT keypoints

are robust to affine transformations (rotation, scaling, translation) and illumination

changes of the original image.

Additionally to the detector, Lowe proposes a descriptor for the salient points. The

descriptor is based on gradient magnitudes and orientations that are sampled in the

neighborhood of the keypoint. The neighborhood is aligned to the orientation of the

keypoint to obtain rotation invariance of the descriptor. Similarly, the neighborhood’s

size is aligned with the keypoint’s scale to obtain invariance to scaling. The descriptor

contains 8-bin orientation histograms for different blocks in the neighborhood of the

salient point. These histograms form the feature vector (descriptor) which is made

more robust against illumination changes through normalization to unit length.

Intensity-domain spin images. Intensity-domain spin images are a two-dimen-

sional intensity histogram introduced by Lazebnik et al. [117]. The two-dimensions of

the histogram are (i) the spatial distance from the salient point’s center and (ii) the
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intensity value. The authors propose the use of ten distance bins with ten intensity bins

respectively, resulting in a 100-dimensional descriptor. Intensity-domain spin images

achieve invariance to affine transformations by normalization of the intensities in the

descriptor.

Cross-correlation. Cross-correlation is a very basic descriptor based on intensity.

The original image is smoothed and uniformly sampled around the salient point. The

sampled values are the descriptor. The descriptors of different salient points are

matched using the cross-correlation of the descriptors. The computation of the de-

scriptor is easy, however cross-correlation is more sensitive to geometric distortions

than more sophisticated descriptors [145].

2.3.8 Features related to Motion

The visual features presented so far are defined on single images and thus represent

static information. An important aspect introduced by film and video is motion. A

number of features exist for the representation of the motion content in a sequence

of frames. Features that quantitatively capture the amount of motion in a sequence

are obtained from pixel differences and histogram differences. Other features represent

the spatio-temporal distribution of motion (spatio-temporal slices). More advanced

features first explicitly estimate the motion of the pixels between successive frames and

then accumulate the resulting motion field to obtain a compact representation of the

motion content (MPEG-7 motion activity). Additionally, motion information can be

obtained from feature trackers that compute motion trajectories for distinct points in

a sequence. Trajectory features capture invariant and characteristic information from

the trajectories.

Pixel differences. A straight forward approach to estimate the amount of motion

between two frames is to sum the intensity differences of all pixels of the two frames

(sum of absolute differences). The more motion is present between the two frames the

higher is the accumulated pixel difference. Unfortunately, the opposite is not true in

general. Illumination changes may also produce high frame-to-frame differences. Pixel

differences between successive frames are further employed for the detection of moving

objects in surveillance applications, for example in [232].
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Difference of histograms. An alternative method for the estimation of the amount

of motion is the accumulation of histogram differences over time [175]. The authors

first compute the difference between successive color histograms (one minus the his-

togram intersection, see Section 2.4.3). Next, they compute the mean of the histogram

differences over an entire shot of a film. The result is a coarse measure of the amount

of motion in a shot. Since histograms neglect spatial information, motion of objects in

the shot may be missed by the feature. Similarly to pixel differences this feature is not

robust to illumination changes.

Spatio-temporal slices. A different approach for the extraction of motion content

are spatio-temporal slices [157]. For the extraction of spatio-temporal slices a frame

sequence is regarded as a three-dimensional volume, where the first dimension is x, the

second dimension y, and the third dimension is time t, see Figure 2.8. Spatio-temporal

slices are obtained by extracting intersection planes from the volume parallel to the

(x, t) plane (horizontal slice) and the (y, t) plane (vertical slice). The horizontal and

vertical slices capture the horizontal and vertical motion of pixels over time. The slices

show characteristic patters for different camera motions. For a static sequence both,

horizontal and vertical slices show horizontal lines. For a sequence with a camera pan,

the vertical slice contains horizontal lines while the horizontal slice shows slanted lines,

where the sign of the slope represents the direction of the pan and the absolute value

of the slope corresponds to the velocity of the pan. The authors of [157] capture the

local orientation of motion (slope of the lines) in the slices by a structure tensor and

capture the distribution of orientations over time in a tensor histogram. The horizontal

and vertical tensor histograms allow the extraction of dominant motion directions.

The authors of [157] employ this information for the classification of different camera

motions.

MPEG-7 motion activity. The motion activity descriptor compactly represents

the spatio-temporal distribution of motion magnitude and direction in a sequence [101].

The descriptor is computed from a dense motion field. A dense motion field contains

a vector for each pixel (or each image block) that represents the motion of that pixel

(or block) between two successive frames. Motion fields can be obtained for example

directly from the motion vectors of macroblocks in a compressed video stream or from
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Figure 2.8: The concept of spatio-temporal slices: horizontal and vertical slices represent

horizontal and vertical motion over time.

the original (uncompressed) frame sequence by optical flow methods [34, 97, 135]. The

motion activity descriptor extracts five different parameters from the motion fields

of an entire frame sequence: (i) the motion intensity of the sequence which is the

standard deviation over all vector magnitudes, (ii) the dominant motion direction in

the sequence as an angle between 0 and 360 degrees, (iii) the spatial coherency of motion

which reflects the number and size of moving regions in the sequence, (iv) the spatial

distribution of motion which contains the mean motion magnitude aggregated over time

for different image blocks (uniformly split sub-images), and (v) the temporal distribution

of motion intensity in terms of an intensity histogram which globally represents the

occurrence frequency of different motion intensities. The motion activity descriptor

compactly represents different spatial and temporal aspects of the underlying dense

motion field and has been employed among others for keyframe extraction [154] and

video summarization [55].

Motion trajectory features. Motion information can further be obtained from

feature trackers. Feature trackers locate salient points in a frame and try to track

them through succeeding frames of a sequence [194]. The result of feature tracking is a

sparse set of motion trajectories. In contrast to dense motion fields, the sparse motion

fields obtained by a feature tracker capture motion only where it actually appears in

the sequence. Different types of features have been proposed for the description of
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motion trajectories. A trajectory representation that is invariant to two-dimensional

affine transforms is presented in [93]. Instead of representing a trajectory by its spatial

coordinates at each time instant, the authors represent each point of the trajectory by

the product of its curvature and its velocity magnitude. The resulting representation is

invariant to two-dimensional affine transforms but does not reduce the amount of data

necessary to store the trajectory. The authors of [122] propose a directional histogram

that compactly represents the directional information of a trajectory. Each bin in the

histogram corresponds to a directional interval. Each point along the trajectory is

assigned to that bin whose directional interval encompasses the slope at that point.

Finally, the directional histogram is normalized by the total number of points of the

trajectory. The directional histogram provides a coarse but compact (fixed-length)

representation of a trajectory [122]. In Chapter 9, we employ feature tracking for

the extraction of motion information. We employ robust estimates of direction and

magnitude as features to represent and compare different trajectories for the clustering

of trajectories into motion components, see Section 9.2.2.

2.4 Similarity Measurement

2.4.1 Introduction

In the previous sections, we have reviewed widely used auditory and visual features

for the description of media objects. As mentioned in Section 2.1 the result of feature

extraction is a d-dimensional vector that represents the underlying media object. The

feature vectors of the media objects are usually considered as points in a d-dimensional

vector space V = R
d (vector space model). A crucial step in the retrieval process is the

assessment of similarity between different media objects (feature vectors). The basic

assumption in the vector space model is that similar objects are positioned near to

each other in the vector space while dissimilar objects are spatially separated.

Distances in the vector space (feature space) can be measured by distance functions

(distance measures). For this purpose, we assume that the feature space V is a metric

space. The distance δij between two media objects represented by feature vectors xi

and xj is measured by a distance function δij = d(xi,xj) that satisfies the basic metric

axioms [186]:
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1. Constancy of self-similarity : d(xi,xi) = d(xj ,xj),

2. Minimality : d(xi,xj) ≥ d(xi,xi),

3. Symmetry : d(xi,xj) = d(xj ,xi), and

4. Triangle inequality : d(xi,xk) + d(xk,xj) ≥ d(xi,xj).

In literature it is often required additionally that d(xi,xi) = 0 (identity of indis-

cernibles). Given this condition and the second metric axiom (minimality) it follows

that d(xi,xj) ≥ 0 (non-negativity). Consequently, a distance function d is a non-

negative function d : X ×X → R
+
o [190].

While these axioms are a convenient formal basis for the definition of distance func-

tions, psychological experiments have shown that the metric axioms are too restrictive

for perceptual similarity judgments. All of the above axioms have been rejected or

could at least not be verified in psychological experiments. For example, the constancy

of self-similarity (axiom 1) has been refuted by [114]. Furthermore, it could be shown

that the second and third axiom, minimality and symmetry, are violated in particular

experiments [180, 219]. Finally, the triangle inequality does not hold in all experi-

ments and there is no evidence that human similarity judgments follow the triangle

inequality [220]. Although it has been shown that the metric axioms are too restric-

tive for human similarity perception, this does not mean that distance functions are

generally inappropriate for similarity judgments. It rather shows that distance func-

tions can in the best case only approximate human similarity perception. Additionally

in practice distance functions are employed that do not fulfill all metric axioms [190].

We overview important distance (dissimilarity) functions in Section 2.4.2 and present

similarity measures in Section 2.4.3.

Given a set of n d-dimensional feature vectors X = {x1, . . . ,xn}, where X is an n×d

matrix, we refer to the elements (components) of a feature vector xi from X as xki

with k ∈ {1, . . . , d}. Prior to distance computation, it may be useful to normalize the

feature vectors to reduce bias during comparison. If the components of the feature

vectors are in different numerical ranges, the components with higher absolute values

may have a stronger influence on the distance computation than components with

lower absolute values. This bias can be removed by normalizing the value range of

the feature components across all n observations (min-max normalization). Min-max
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normalization linearly scales the feature components to the range [0, 1]. A feature

component k is normalized by subtracting the minimum over all n observations and by

dividing by the maximum:

x̂ki =
xki −minnj=1(x

k
j )

maxnj=1(x
k
j )−minnj=1(x

k
j )
, for j = 1, . . . , n. (2.1)

After normalization of all k = 1, ..., d feature components, the values in X are in the

range [0, 1]. This means that all normalized feature vectors x̂i lie in a d-dimensional

unit cube. Optionally, new minimum and maximum values (different from 0 and 1) can

be considered during normalization [79].

2.4.2 Distance Measures

The choice of the distance measure is a critical parameter in a retrieval system. The dis-

tance measure influences what kind of information from the feature vectors is compared

in distance computation and which information is neglected. Neglecting information

may induce invariance against transforms like scaling, translation, and rotation.

A large group of distance measures are represented by the generalized Minkowski

metric (also called Lq metric):

dLq(xi,xj) =
1/q

√√√√
d∑

k=1

∣∣∣xki − xkj

∣∣∣
q
, (2.2)

where q ≥ 1 is the order of the metric. For q = 1 the city block or Manhattan metric

is obtained:

dL1
(xi,xj) =

d∑

k=1

∣∣∣xki − xkj

∣∣∣ . (2.3)

The city block distance between two points is the sum of absolute distances along each

coordinate axis between the two points, i.e. it allows one only to travel parallel to

the coordinate axes (see Figure 2.9(a) for an illustration). For q = 2 we obtain the

Euclidean distance (L2 metric):

dL2
(xi,xj) =

√√√√
d∑

k=1

∣∣∣xki − xkj

∣∣∣
2
, (2.4)

which represents the shortest distance between two points in space, see Figure 2.9(b).

The Euclidean distance is a widely used distance measure in literature. It seems to be
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Figure 2.9: Minkowski distances for q = 1, 2, and ∞ in two dimensions. For the Cheby-

shev distance, the larger component difference (first dimension in this example) is taken

as distance.

the “natural” distance measure in a Cartesian coordinate system, since it intuitively

corresponds to what a human observer expects from a distance measure in two or

three dimensions. In practice however, it has been shown in psychological experiments,

the Euclidean metric suboptimally reflects human distance judgments [16] and that in

particular experiments for example the city block distance outperforms the Euclidean

distance. Additionally, Aggarwal et al. point out that the natural interpretation of the

Euclidean distance is irrelevant in higher dimensions [3].

The Minkowski distances take all feature components into account and yield a low

distance value only if all components are similar. In retrieval experiments however, it

has been shown that similarity between objects is often characterized by only a few

similar components [119]. Furthermore, it has been shown in the study of [119] that

when two similar objects are compared to a third similar object their respective subsets

of similar feature components are different. According to the study the assumptions

made by Minkowski distances do not hold in practice, especially in high dimensions.

The generalized Minkowski distance is translation invariant, while it is generally not

invariant to scaling and rotation. Only for the Euclidean distance (q = 2) invariance

to rotation is given [57]. Since, the Minkowski distance computes absolute differences

between all components, the components should lie in the same value range in order to

avoid that components with high values bias the distance computation. The range of

the feature components can be equalized by normalization (see Section 2.4.1).
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A further measure derived from the generalized Minkowski metric is the Chebyshev

distance. For q → ∞ the Minkowski distance L∞ becomes the Chebyshev distance:

dL∞
(xi,xj) =

d
max
k=1

(∣∣∣xki − xkj

∣∣∣
)
. (2.5)

The Chebyshev distance represents the maximum absolute difference between two com-

ponents of a pair of vectors (see Figure 2.9(c)). In contrast to all other Minkowski dis-

tances, the Chebyshev distance does only take one component of the vectors (with

maximum difference) into account. Consequently, it may underestimate similarity

(overestimate distance) and is sensitive to outliers [178].

The χ2 distance is a measure derived from statistics that compares two distribu-

tions with each other[126]. If the inputs xi and xj are two binned distributions (e.g.

histograms), the χ2 distance estimates to which degree two histograms belong to the

same distribution:

dχ2(xi,xj) =
d∑

k=1

(xki −mk)2

mk
, (2.6)

where vector m =
xi+xj

2 is the mean of both distributions and mk represent the com-

ponents of the vector. Substituting vector m in Equation (2.6) yields the χ2 distance

in the following form:

dχ2(xi,xj) =
1

2

d∑

i=1

(xki − xkj )
2

xki + xkj
(2.7)

The χ2 distance is similar to the squared Euclidean distance. It differs in that the

squared differences between the components of xi and xj are normalized by their sum.

This normalization reduces the bias if the components have different value ranges.

The χ2 distance has been successfully applied to histogram features, for example in

shot cut detection [192]. An analytically similar measure to the χ2 distance is the

Canberra distance [115]. It is defined as:

dcan(xi,xj) =
d∑

k=1

∣∣∣xki − xkj

∣∣∣
∣∣xki
∣∣+
∣∣∣xkj
∣∣∣
. (2.8)

The Canberra distance can be regarded as a normalized city block distance [58]. If

both input vectors are zero vectors, the Canberra distance must be set to zero to avoid

a division by zero. Similarly to the χ2 distance the normalization reduces bias by
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2.4 Similarity Measurement

differently scaled components. The Canberra distance has for example been success-

fully applied to texture comparison in [112] where it outperformed all other evaluated

distance measures.

2.4.3 Similarity Measures

For the estimation of similarity, distance functions are mapped to similarities. A simi-

larity measure is a function s that maps a non-negative real number (a distance) into

the interval [0, 1], where 0 denotes the minimum of similarity and 1 corresponds to the

maximum of similarity. Additionally, the function s should be (i) strictly monotonically

decreasing:

d(xi,xj) > d(xi,xk) ⇒ s(d(xi,xj)) < s(d(xi,xk)), (2.9)

to allow for a consistent mapping and (ii) continuous to avoid jumps [190]. If we assume,

that a distance function has a minimum value of 0 and a maximum value of dmax, a

straight-forward mapping is to invert and linearly rescale the distance function (see

Figure 2.10(a)):

s(xi,xj) = 1−
d(xi,xj)

dmax
. (2.10)

This mapping is problematic if dmax is very large (or even infinity) because the sen-

sitivity of the resulting similarity measure for small distances decreases significantly.

Psychological research indicates that an exponential relation exists between distance

and similarity (see Figure 2.10(b)). According to Shepard [193] the mapping from

distance to similarity is approximately:

s(xi,xj) = e−d(xi,xj). (2.11)

This mapping takes the property into account, that the perceived similarity decreases

only to up to a certain limit and then quickly flattens out towards 0. Additionally it

increases the sensibility to small distances. Principally, each distance function can be

transformed into a similarity measure by an appropriate mapping.

Additionally to(mapped) distance functions, there are measures that directly com-

pute similarity between two points in space. A popular example is the Cosine similarity

which represents the cosine of the angle between two vectors:

scos(xi,xj) =
xi · xj

‖xi‖ ‖xj‖
=

∑d
k=1 x

k
i x

k
j√∑d

k=1 x
k
i
2
√∑d

k=1 x
k
j
2
, (2.12)
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Figure 2.10: Different functions for mapping distances to similarities.

where ‖x‖ is the norm (length) of vector x and operator “ · ” represents the inner

product. Due to the normalization, the Cosine similarity only takes the direction of

the vectors into account but not the length of the vectors. The cosine similarity is 1 for

vectors pointing in the same direction, 0 if two vectors are orthogonal and −1 for vec-

tors that point in opposite directions. If the direction where the vectors point to is not

important for similarity comparison (i.e. vectors pointing in opposite direction are con-

sidered identical), the absolute value of the cosine similarity may be used. Otherwise,

the cosine similarity can by mapped into the range [0, 1] by computing (scos + 1)/2.

A similarity measure from statistics is the Pearson product-moment correlation coef-

ficient. This correlation coefficient measures the linear dependence between two random

variables [33]:

scor(xi,xj) =
(xi − xi) · (xj − xj)

‖xi − xi‖ ‖xj − xj‖
=

∑d
k=1(x

k
i − xki )(x

k
j − xkj ))√∑d

k=1 (x
k
i − xki ))

2
√∑d

k=1 (x
k
j − xkj ))

2

, (2.13)

where xi is a vector of the same dimension as xi that contains at each position xki

the mean of xi: m = 1
d

∑d
k=1 x

k
i . If two vectors share a perfect linear relationship the

correlation becomes 1. For linearly independent vectors the correlation is 0. A negative

correlation results in a value between [0,−1]. If xi and xj are zero vectors (xi and xj

have already zero mean) the correlation coefficient is equal to the Cosine similarity.

A similarity measure for binned data is histogram intersection proposed by [207].

Histogram intersection is the normalized intersection of two histograms:

shi(xi,xj) =

∑d
k=1min

(
xki , x

k
j

)

∑d
k=1 x

k
j

(2.14)
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and represents the common entries of two histograms. If for example xi and xj are

two color histograms, histogram intersection represents the portion of pixels (or the

number of pixels if normalization is skipped) in the corresponding images which have

the same color. Histogram intersection (with normalization) yields values between 0

and 1 where 0 means that the intersection between both histograms is empty and 1

means that the two histograms are identical. If the sum over both histograms is equal

(
∑d

k=1 x
k
i =

∑d
k=1 x

k
j ), it can be shown that histogram intersection is equivalent to the

inverted city block distance [207].

Principally, the choice of a distance or similarity measure strongly influences the

performance of a retrieval system. The identification of an appropriate measure for a

particular task is non-trivial since it is difficult to predict the performance of different

measures in advance. In practice, the best-suited distance measure often has to be

evaluated empirically.

2.5 Classification

2.5.1 Introduction

The objective of classification is to predict the class membership of a pattern represented

by a feature vector. A class ωi is defined by a class label i ∈ Ω where Ω = {1, ..., C} is

the set of all class labels and C the number of classes. Each pattern (feature vector)

belongs to exactly one class. A classifier can be regarded as a function c(x) of a feature

vector x with:

c(x) = i ⇔ x ∈ ωi (2.15)

Most classifiers have to be trained before they can be applied to arbitrary test pat-

terns. For this purpose, the available data set is split into training and test sets (see

Section 2.6). The training samples are usually chosen randomly, for example by cross-

validation [57]. During training, the classifier tries to fit a model to the training data.

The quality of the classifier is evaluated by a test set. The test set contains unlabeled

feature vectors that are not contained in the training set. A classifier should be able to

correctly predict the class labels not only of the test and training vectors, but all arbi-

trary vectors that belong to one of the selected classes. This is called the generalization

ability of a classifier [57].
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A large number of different classifiers has been proposed in literature, see [95] for a

survey. In the following, we give a brief overview of different classification approaches

and then discuss two classifiers which are of special relevance to this thesis in more

detail. Generally, we distinguish between generative approaches and discriminative

approaches. Generative approaches try to empirically estimate the joint probability

distribution (density) of the underlying data for each class. For this purpose distribution

parameters like mean and covariance matrix of each class are estimated. A new data

sample is then assigned to the class which is most likely for the sample based on

the estimated densities. Popular generative techniques are the Bayes classifier [57],

Gaussian Mixture Models (GMMs) [24], and Hidden Markov Models (HMMs) [171].

Generative classifiers require a large number of training samples for density esti-

mation. With increasing dimension d of the feature vectors, the volume of the corre-

sponding vector space grows exponentially. Consequently, the number of parameters for

density estimation grows, as well. The larger the number of parameters, the more data

samples must be provided to get reliable estimates. This means that with increasing

dimension d, a much (exponentially) larger number of data samples must be provided

in order to model the data accurately. Otherwise, the estimates of the parameters

become less reliable which results in a degradation of the classifier’s performance. This

circumstance is called the “curse of dimensionality” [57, 102].

For high-dimensional data, the complexity of density estimation increases rapidly

and the estimation often fails or the classifier overfits the data in absence of sufficient

training samples. Discriminative approaches try to find a function that models the

class boundaries directly instead of estimating the joint density of the data for each

class. There are probabilistic and non-probabilistic discriminative approaches. Prob-

abilistic discriminative approaches model the conditional probability distribution of a

class given the training data. The complexity of modeling the conditional probability

distribution is lower than modeling the joint density (especially in high dimensions). A

popular example is logistic regression that tries to predict the correct class label from

given input data by regression [98]. Additionally to probabilistic approaches, there

exist non-probabilistic approaches. The idea of such approaches is to find a function

with a preferably low number of parameters (e.g. a linear function) that separates

the classes as best as possible. This alleviates the curse of dimensionality since the

number of parameters is independent of the size of the training set and better prevents
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overfitting (which improves the generalization ability of the classifier). Popular non-

probabilistic discriminative classifiers are the Support Vector Machine [29, 228] and the

Perceptron [181].

Additionally to generative and discriminative approaches there are classifiers that

“learn” directly from prototypes (instance-based learning). Such classifiers compare

new samples with samples in the training set without building a model from the data.

Instance-based learners usually have a low number or even no parameters since they do

not make assumptions about the data. As a consequence, their generalization ability

is low. The most popular instance-based learning algorithm is nearest neighbor classi-

fication [49]. The nearest neighbor classifier simply stores the entire training set and

assigns a new sample the class label of the nearest neighbor in the training set.

In the following, we describe two classifiers in more detail which are of special

relevance to this thesis. First, we present nearest neighbor classification, since it is

related to similarity retrieval where nearest neighbor search is the standard search

strategy. We employ nearest neighbor search for the retrieval of motion composition

and visual composition in Chapters 9 and 10. Second, we describe Support Vector

Machines, which are used for the detection of intertitles in Chapter 4 and gradual

transitions in this Chapter 6.

2.5.2 Nearest Neighbor Classification

The nearest neighbor (NN) classifier is a simple instance-based classifier that takes as

input a set of n training examples X = (x1, ...,xn) and a vector of corresponding class

labels y = (y1, ..., yn) ∈ R
1×n with elements yi ∈ Ω [49]. The NN classifier assigns a

new vector x the class label ys of the nearest training vector xs, where:

s = argmin
j

(‖x− xj‖) , 1 ≤ j ≤ n. (2.16)

Distances in nearest neighbor search can be measured by an arbitrary distance

metric ‖.‖, see for examples Section 2.4. In practice most frequently Euclidean distance

is employed which is however not necessarily the best distance measure for a given set

of data.

The assignment scheme of nearest neighbor partitions the feature space according to

a Voronoi tessellation. The edges in the tessellation correspond to decision boundaries

between two classes. Each cell belongs to one class. Figure 2.11 illustrates a Voronoi
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x
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Figure 2.11: Voronoi tessellation in R
2 with features x1 and x2 of a binary classification

problem. Dots are feature vectors of class ω1, crosses refer to feature vectors of class ω2.

The gray area is the decision region of class ω1, the white area represents class ω2.

tessellation in two-dimensional space for a binary classification problem. The union of

all cells that are assigned to the same class, represents the decision region for this class.

The nearest neighbor classifier generates complex decision boundaries for which all

training samples are taken into consideration. The decision regions obtained by NN

are robust (changing one sample in the training set influences the decision region only

locally). However, since all training samples contribute to the decision region and have

a corresponding region of influence, outliers may generate patches with a wrong class

label.

The K-Nearest Neighbor (K-NN) classifier is an extension of the nearest neighbor

classifier which is more robust to outliers. The K-NN classifier takes the K nearest

neighbors into account for assigning a new feature vector x to a class ωi. From the K

neighboring vectors of x, kj vectors belong to class ωj , with
∑C

j=1 kj = K, and C is

the number of classes. Vector x is assigned to class ωi with the greatest number of

representatives (majority vote) in the set of K neighbors:

i = argmax
j

kj , 1 ≤ i ≤ C . (2.17)
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If the majority vote is not unique the 1-nearest neighbor can be chosen. For K = 1

theK-NN classifier becomes the standard NN approach. Both, K-NN and NN learn the

training set by rote. Hence, memory and computation costs grow linearly with the size

of the training set (O(nd)), where n is the size of the training set and d the dimension

of the feature vectors. While training requires practically no computation time, O(1),

testing is computationally expensive (O(nd), plus the time needed for majority voting

in the case of K-NN).

The nearest neighbor strategy is not only used in classification but the natural

search strategy in similarity retrieval. In similarity retrieval we are given a database

of n media objects which are represented by n d-dimensional feature vectors {x1, ...,xn}

and a feature vector x′ ∈ R
d extracted from a user-specified query. Nearest neighbor

search is used to estimate the feature vector xi from the database that best matches

the query vector x′. As a result the corresponding media object is returned to the user.

Analogously, the K nearest neighbors can be determined and returned.

2.5.3 Support Vector Machines

The Support Vector Machine (SVM) is a binary linear classifier introduced by Vladimir

Vapnik and colleagues [48, 227, 228]. In contrast to K-NN, an SVM tries to find a

preferably simple (linear) boundary that separates two classes. Again we are given n

training samples X = (x1, ...,xn) in R
d. The vector of corresponding class labels y =

(y1, ..., yn) contains values yi ∈ {−1,+1} corresponding to the two classes ω1 and ω2.

The objective of SVM training is to find a function g(x) such that:

sign(g(xi)) = −1 if xi ∈ ω1 and

sign(g(xi)) = +1 if xi ∈ ω2.
(2.18)

The function g(x) is called discriminant function. In the case of SVMs g(x) is linear

and represents a hyperplane in R
d: g(x) = w · x + b, where w (weight vector) is

the d-dimensional normal vector of the hyperplane, b (bias) is the translation of the

hyperplane along w. For b = 0 the hyperplane goes through the origin. The dot

operator “ · ” denotes the inner product of two vectors.

Two classes ω1 and ω2 are linearly separable if there exists a weight vector w and

a bias b such that sign(w · xi + b) = yi for all samples xi in X, i.e. all samples can
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Figure 2.12: Linear separability of classes: (a) the classes are not linearly separable.

There is no linear function that is able to separate the two classes without errors (b) the

classes are linearly separable.

be correctly classified. Figure 2.12 represents examples for linearly separable and non-

separable classes in two-dimensional space. If the training samples of the two classes are

linearly separable, then the SVM constructs an optimal separating hyperplanew·x+b =

0 between both classes, that maximizes the distance between the hyperplane and the

nearest data points of each class. The data points that determine the hyperplane are

the support vectors. The distance between the support vectors and the hyperplane is

called margin. Figure 2.13 depicts the difference between a suboptimal and an optimal

separating hyperplane. For an optimal separating hyperplane the margin to both sides

is maximized. The larger the margin the higher is the robustness of the classifier.

From Figure 2.13 we observe that the separating hyperplane is defined by a few

support vectors only which all have the same distance to the hyperplane. Not all

training samples contribute to the hyperplane (as for example in the case of nearest

neighbor classification). The support vectors are those samples that are most difficult

to separate and consequently the most important samples for the classification task [57].

Due to the low number of support vectors the generalization ability and the robustness

of SVMs is generally high [48].
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Figure 2.13: Optimal separating hyperplanes: (a) the margin of the hyperplane g(x) is

not optimal. (b) shows a hyperplane with maximized margin. The support vectors are

encircled.

According to Cortes and Vapnik [48] the optimal hyperplane that maximizes the

margin can be computed by estimating the saddle point of the following Lagrange

functional:

L(w, b,α) =
1

2
w ·w −

n∑

i=1

αi [yi (w · xi + b)− 1] , (2.19)

where αi with 1 ≤ i ≤ n are the Lagrange multipliers. The optimal parameters for

the hyperplane are obtained by finding the saddle point where w and b are minimized

and α is maximized. The functional can be reformulated into a maximization problem

in α (see [65] for details):

L(α) =
n∑

i=1

αi −
1

2

n∑

i,j

αiαjyiyjxi · xj , (2.20)

subject to the conditions:

αi ≥ 0,

n∑

i=1

αiyi = 0, 1 ≤ i ≤ n . (2.21)

This representation is the dual form of Equation (2.19). It is noteworthy that Equa-

tion (2.20) only requires the computation of inner products between feature vectors xi
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and xj . This is an important property for the integration of kernels in the following

(non-linear discriminant functions).

In practice, two classes are often not linearly separable. For this reason, Cortes

and Vapnik introduced slack variables which represent penalties for samples that can

not be correctly classified by the linear discriminant function [48]. For each sample a

slack variable ζi is introduced with ζi = 0 for correctly classified samples and ζi > 0

for misclassified samples. During optimization the sum of all slack variables
∑n

i=1 ζi is

minimized. The separating hyperplane is constructed in such a manner that an optimal

tradeoff is found between a maximum margin and a minimum number of misclassified

samples.

For some data sets linear separation is generally suboptimal, see for example the

data set in Figure 2.14(a). For such data sets non-linear classification is more suit-

able. However, the complexity of estimating non-linear discriminant functions is higher

than that of linear functions. Fortunately, SVMs allow the integration of non-linear

discriminant functions in a very efficient way.

The basic idea is the following: instead of estimating a non-linear discrimination

function in feature space, the feature vectors are mapped non-linearly from the original

feature space R
d into a higher dimensional space, the target space R

d′ , by a function

φ : Rd → R
d′ with d < d′. In the higher dimensional target space the feature points

move apart from each other which facilitates linear separability. Given an adequate

mapping φ the data set becomes separable by a linear discrimination function g(φ(x))

in the target space. This linear function in the target space is in turn a non-linear

discrimination function in the original feature space. Figure 2.14 illustrates the effect

of a non-linear transformation that maps the feature space into a higher-dimensional

target space where the samples of the classes become linearly separable.

The transform φ and the computations in the high-dimensional target space are

complex and can be avoided by the kernel trick [8]. Instead of transforming the feature

vectors and comparing the feature vectors in the target space, an appropriate non-

linear comparison function (the kernel) can be applied in the original space. From

Equation (2.20), we observe that the data samples (feature vectors) contribute to the

optimization problem only in terms of inner products. The inner product xi · xj in

Equation (2.20) can be replaced by a kernel function K with K(xi,xj) = φ(xi) · φ(xj)

that represents an inner product in the target space obtained by the mapping function φ.
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Figure 2.14: A non-linear mapping from R
1 to R

2: (a) the samples in the original feature

space are not linearly separable. In the higher dimensional space (b) the samples become

linearly separable.

By the use of kernels the computation of the mapping φ and the computations in the

target space become implicit and thus can be avoided. This property makes non-linear

classification with SVMs efficient.

Any continuous symmetric semi-positive definite function (Mercer’s Theorem) is a

valid kernel function [143]. This means, that each function that represents an inner

product in the target space is a valid kernel [48]. The most popular kernels are [48]:

• Linear kernel: K (xi,xj) = xi · xj . The linear kernel does not transform the

feature vectors and compares them in the original feature space (linear SVM).

• Polynomial kernel: K (xi,xj) = (xi · xj + 1)d, where d > 0 is the order of the

kernel. For d = 2 we get a quadratic discriminant function.

• Gaussian radial basis function kernel: K (xi,xj) = e(−‖xi−xj‖
2/2σ2), with σ > 0.

• Sigmoid kernel: K (xi,xj) = tanh (axi · xj + b). Note that the sigmoid kernel is

not semi-positive definite for each combination of values of a and b [227].

Different types of kernels can be used to achieve discriminant functions of different

complexity. Especially the global kernels, like the linear kernel and the polynomial ker-

61



2. PRINCIPLES OF MEDIA RETRIEVAL

nel usually avoid overfitting and alleviate the curse of dimensionality [48]. Local kernels,

such as the radial basis function kernel have shown to be prone to overfitting [21].

2.6 Evaluation of Retrieval Systems

2.6.1 Ground Truth Generation

A fundamental requirement for the objective evaluation of a retrieval system is the

availability of a ground truth. A ground truth represents the correct (true) assignment

of input data to well-defined classes and concepts they belong to in the real world. A

ground truth for image classification, for example may assign each image in a database a

label that says whether or not it shows an indoor scene or an outdoor scene. Moreover,

a ground truth may represent a list of points in time at which a shot cut occurs in a

movie for the evaluation of an automatic shot boundary detector. Generally, the goal

of a retrieval system is to predict the data in the ground truth as reliable as possible.

There are different ways to obtain ground truth data. One way is to generate

the ground truth automatically together with the data, e.g. if synthetic test data is

employed. Sometimes ground truth is already available, e.g. from preceding manual

investigations and it only needs to be converted into a machine readable format. In

most cases however ground truth has to be generated manually by annotating the corre-

sponding media objects. The process of manual ground truth generation (annotation)

poses several challenges.

First, ground truths have to be exact and correct. Consequently, annotation requires

comprehensive domain knowledge. Principally, annotation should be performed by

experts only which are well acquainted with the domain, its characteristics and the

classes and concepts of interest.

Second, prior to annotation, an annotation vocabulary or annotation protocol must

be defined that provides a detailed and explicit guide to the annotating person. The

annotation protocol defines the classes or a taxonomy of classes, their corresponding

labels, characteristics, and their relationships. In practice however different classes and

concepts are often ambiguous and assessed subjectively by annotators due to cultural

influences and different background knowledge. Especially for concepts with a certain

degree of semantic richness ambiguities are introduced because such concepts often

allow for different possible interpretations. An example are scenes in a movie. The
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segmentation of a movie into scenes allows for different possible interpretations because

there is no unique definition of a “scene” that covers all possible types of scenes that

occur in movies in practice. Furthermore, even for much simpler concepts, such as

shot cuts which have low semantic complexity, ambiguities have been reported [72]. So

the major challenge in the creation of an annotation protocol is the specification of

well-defined distinct classes and concepts in order to avoid ambiguities.

If a certain amount of ambiguity remains in the definitions and consequently also

in the ground truth, a possible solution is to integrate an appropriate tolerance in

the evaluation. If for example, a boundary between two scenes in a movie cannot be

determined exactly, a certain amount of temporal tolerance may be incorporated in the

evaluation to compensate for this uncertainty. Another possible solution is to perform

parallel annotations by several experts. If their annotations differ, majority voting can

be applied to obtain a more reliable ground truth [53].

The performance of a retrieval system heavily depends on the input data and the

ground truth. In practice, due to the absence of commonly available annotated data,

retrieval systems are often evaluated with proprietary (usually small) data sets and

ground truths generated by non-experts. While such systems can be optimized (fit)

to the data and the ground truth to yield a high performance, they poorly generalize

to a broader and more representative dataset. Consequently, the performance of such

systems is biased and not comparable to that of other systems.

The lack of readily available data is an underestimated challenge. Publicly available

data with corresponding ground truth is a fundamental requirement for performance

evaluation and comparison of retrieval systems. Public data sets and ground truths

for selected retrieval tasks have been provided for example by the TRECVID evalua-

tion [198]. However, we observe, there are still numerous research areas that suffer from

the absence of publicly available ground truths such as scene segmentation in movies.

2.6.2 Systematic Evaluation

Ground truths enable the systematic evaluation of a retrieval system. We have pre-

sented two different retrieval architectures in Section 2.1. A typical query-based re-

trieval system, see Figure 2.1 and a typical classification task, see Figure 2.2. In the

following, we present how systematic evaluation against a ground truth is integrated

into both architectures.
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Figure 2.15: The workflow of a typical query-by-example retrieval system including the

procedure for quantitative and qualitative evaluation.

A query-based retrieval system (see Figure 2.15) allows for two types of evaluations:

qualitative and quantitative evaluation. In quantitative evaluation, the objects retrieved

from a query are compared to the ground truth. For example, the class label of the

result objects may be compared with the class label of the query. From this comparison,

performance figures are computed (see below).

For certain tasks no ground truth is available at all. This impedes an objective

evaluation. If no ground truth is available a retrieval system may be evaluated qual-

itatively by user assessments in the context of a user study. In this scenario several

users subjectively evaluate the relevance of retrieved objects for a given class or con-

cept. An example of a user study is presented in Chapter 10 for the retrieval of visual

compositions.

In a classification scenario, evaluation is performed by comparing predicted class

labels with the ground truth, see Figure 2.16. First, a classifier is trained with a training

set and then the class labels for a disjoint set of test samples are predicted. Next, the

predicted labels of the test samples are compared with the ground truth labels and

performance figures are computed (see below).

For an objective evaluation the classifier hast to be trained with different train-

ing sets. Otherwise the classifier may overfit on the training data. Usually, cross

validation is performed to obtain performance figures that are independent from the

training set [57]. In m-fold cross validation, the dataset is randomly split into m dif-

ferent partitions of distinct training and test sets. For each of these m partitions, the

corresponding training and test set together contain all samples of the database. The
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Figure 2.16: The workflow of a typical classification task including the procedure for

evaluation. The database and the ground truth are split into a training and test set. The

solid arrows are related to the training of the classifier, while the dashed arrows describe

testing and evaluation. The query object is grayed out because it is not relevant for the

systematic evaluation. It can be considered as being part of the test set.

classifier is trained with all m training sets and is evaluated with the m respective test

sets. For evaluation, the mean performance over all m experiments is computed (cross

validation error). Note that the cross validation error is not independent of the data

since usually parameters are optimized by iteratively performing cross validation. As

a consequence, the classifier gets progressively optimized (fitted) to the data. For an

objective performance evaluation the classifier (trained by cross validation) has to be

evaluated with new data that has not been used during cross validation.

2.6.3 Performance Measures

A binary classification experiment has four different possible outcomes which are sum-

marized in Table 2.2. We distinguish between relevant documents1 which we want to

retrieve and not relevant or irrelevant documents which should not be retrieved. If a

document is correctly assigned to the class of relevant documents it is a true positive

(tp). Correctly rejected (not relevant) documents are true negatives (tn). Additionally,

we distinguish between two types of errors that a classifier can make. False positives

1We use the term document since it is common in literature when talking about performance

measures. A document in the context of this thesis may refer to a particular class of objects (e.g.

intertitles) or a concept such as a scene or a shot.
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relevant not relevant

predicted as relevant true positive (tp) false positive (fp)

predicted as not relevant false negative (fn) true negative (tn)

Table 2.2: Possible outcomes of a binary classification experiment.

(fp) are irrelevant documents that are falsely detected as relevant and false negatives

(fn) are relevant documents that are not detected as relevant.

Different performance measures can be computed from the four key figures in Ta-

ble 2.2. In the following, tp represents the number of true positives, fp the number of

false positives, fn the number of false negatives and tn the number of true negatives

obtained in an experiment. Recall is the number of retrieved and relevant documents

divided by the total number of relevant documents in the database:

recall =
|{retrieved} ∩ {relevant}|

|{relevant}|
=

tp

tp+ fn
. (2.22)

Recall is often also referred to as the detection rate. A high recall means that most

of the relevant documents are actually retrieved. However, it does not consider the

number of irrelevant documents that may be retrieved at the same time.

Precision is the number of retrieved and relevant documents divided by the total

number of retrieved documents:

precision =
|{retrieved} ∩ {relevant}|

|{retrieved}|
=

tp

tp+ fp
. (2.23)

High precision means that most of the retrieved documents are actually relevant. Pre-

cision does consider the number of relevant documents that are not retrieved. Both,

recall and precision are in the range from 0 to 1.

Additionally, two error rates can be computed: the false positive rate (also called

fallout), is the number of false positives divided by the total number of documents that

are not relevant:

false positive rate =
|{retrieved} ∩ {not relevant}|

|{not retrieved}|
=

fp

fp+ tn
(2.24)

and the false negative rate is the number of false negatives divided by the total number

of relevant documents:

false negative rate =
|{not retrieved} ∩ {relevant}|

|{relevant}|
=

fn

tp+ fn
. (2.25)
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Recall and precision are two measures that are related inversely proportional to

each other. Increasing the recall usually decreases the precision and vice versa. Each

of the two measures can be optimized at the expense of the other. Consequently, the

performance of a retrieval system is characterized by both performance figures. Alter-

natively, a combined performance figure can be computed from recall and precision,

the f-measure. The generalized f -measure [226] is defined as:

fβ = (1 + β2) ·
precision · recall

β2 · precision + recall
=

(1 + β2) · tp

(1 + β2) · tp+ β2 · fn+ fp
. (2.26)

The f -measure represents a harmonic mean of recall and precision [177] The parame-

ter β is used to balance the influence of recall and precision. An f -measure with β > 1

puts more weight on recall while β < 1 weights precision stronger. For β = 1 we obtain

the f1-measure:

f1 = 2 ·
precision · recall

precision + recall
=

2 · tp

2 · tp+ fp+ fn
, (2.27)

which weights recall and precision equally.

The performance of a retrieval system is usually measured for different system

configurations (e.g. for different values of a system parameter) resulting in a series of

recall-precision pairs. The tradeoff between recall and precision values is best illustrated

in a recall-precision graph. Since recall and precision are inversely proportional, the

graph usually has a typical shape which is represented in Figure 2.17. The recall-

precision graph shows the recall on the abscissa for different precisions on the ordinate.

The general goal is to maximize recall and precision at the same time (raise both

towards 1). The maximum f1 score is obtained by the pair for which recall and precision

are approximately equal (see the encircled point in Figure 2.17). A perfect retrieval

system would achieve an f1 score of 1 (which corresponds to the top-right corner of the

graph).

In practice, there are situations where no (or incomplete) ground truth is available.

In this case it is not possible to compute recall because the total number of relevant

documents, |{relevant}| in Equation (2.22), cannot be computed. In such situations

only precision can be computed for a given result set. An adequate performance mea-

sure is precision at n (short: prec@n) which is the portion of relevant documents in a

result set of size n. Information about the relevance of result objects can be obtained

by user assessments.
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Figure 2.17: A typical recall-precision graph that illustrates the tradeoff between recall

and precision. Along selected points of the curve (marked with an “x”) the corresponding f1

values are provided. The point with the highest f1 value (f1 = 0.88) is encircled.

Prec@n enables the evaluation of the ranking obtained by a retrieval system. From

a good ranking we expect, that the most relevant documents have the highest rank.

This means, that for a good ranking the prec@n values start with 1 for n = 1 and

then slowly decrease monotonically with increasing n. The slower prec@n decreases

the better is the performance and the ranking of the retrieval system.
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Chapter 3

Archive Film Material

The archive film material investigated in this thesis has not been subject to automatic

analysis and retrieval so far. The film material is challenging for automatic analysis

due to its sophisticated stylistic properties and due to its low material quality. In this

chapter, we first review important stylistic aspects of the films in Section 3.1. Next,

we analyze the state of the film material and overview the contained artifacts and

their effects on automatic analysis in Section 3.2. Finally, in Section 3.3 we investigate

automatic film restoration in the context of the archive film material.

3.1 Background

The films under investigation are characterized by sophisticated stylistic attributes that

were highly innovative for the early years of filmmaking. The films stem from the soviet

filmmaker Dziga Vertov (born as David Kaufman on January 15, 1896 in Bialystok,

Poland, died February 12, 1954 in Moscow, Russia) [215] who is famous for his highly

formalized style of filmmaking. The first films edited by Vertov are newsreel series for

the soviet regime (“Kino-Nedelya”, 1917 and “Kinopravda”, 1922). The newsreel series

show political, social and economic events of the time and have a purely documentary

character, which means that the series contain hardly any staged scenes. Different

topics are usually separated by intertitles which give contextual information (necessary

due to the absence of sound). In later series the style of montage becomes increasingly

experimental and Vertov progressively neglects the narrative structure.
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3. ARCHIVE FILM MATERIAL

After the newsreel series Vertov increasingly focuses on the production of feature-

film length documentaries. Thereby, Vertov strictly avoids narrative elements and links

shots solely by semantic relationships. Additionally, he experiments with different

stylistic devices and artificial effects. The result are artistic and experimental docu-

mentaries that were revolutionary for that time of filmmaking. The most important

stylistic devices (in the context of this thesis) are reviewed in the following. A more

comprehensive presentation of Vertov’s work and his way of filmmaking is provided

in [215].

The documentaries by Dziga Vertov are characterized by sophisticated and repeat-

edly used visual compositions. Visual compositions comprise the spatial arrangement of

objects and camera perspective. Typical composition types are diagonal composition,

symmetric composition, and compositions achieved by unusual camera perspectives,

e.g. showing a train passing by from below by a camera mounted between the rails.

Details and examples of typical visual compositions in the films are provided in Chap-

ter 10.

Vertov experimented with innovative techniques to achieve artificial compositions

and special effects. The filmmaker frequently uses multi-image compositions (e.g. split-

screen) and multiple exposure effects to merge several images together and to establish

a semantic relationship between them. Examples of multi-image and multiple exposure

compositions are shown in Figures 3.1(a) and 3.1(b). The multi-image frame in Fig-

ure 3.1(a) shows four different images joined together: a piano player and three shots

of ballet dancers. The multiple exposure frame in Figure 3.1(b) shows the cameraman

with his camera in a glass of beer. Vertov further employed the stop-motion technique

to animate real objects as well as hand-drawn cartoons and intertitles. Figure 3.1(c)

shows an example of an animated cartoon.

Additionally to visual composition, Vertov experimented extensively with motion

in his films. Both, camera and object motion and the interaction of both are used to

create complex motion compositions. Typical examples in Vertov’s films are the motion

of machines and parts of machines (pistons, cogwheels, etc.) and typical activities of

workers (e.g. hammering, sawing, drilling). The captured motions are often repetitive

(cyclic, up/down, left/right) and are often emphasized by simultaneous rhythmical

(partly contrapuntal) camera motions. Additionally, Vertov shows chasing scenes from
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(a) multiple images (b) multiple exposure (c) animated cartoon

Figure 3.1: Examples for different artificial effects in Vertov’s films.

different perspectives and shaky hand-camera shots to increase motion intensity. See

Chapter 9 for an investigation of the retrieval of motion compositions.

A further stylistic device of Vertov is the manipulation of the temporal axis. Vertov

shows scenes in forward and reverse order, repeats scenes, and uses fast motion and

slow motion. Additionally, Vertov employs the freeze frame effect where single frames

are unexpectedly frozen for a particular amount of time.

Vertov puts special attention on the transitions between successive shots. The film-

maker employs a wide range of different gradual transitions (dissolves, wipes, etc.)

to create smooth transitions between shots. Examples of different types of gradual

transitions are shown in Chapter 6. Additionally, match cuts are employed to smooth

transitions between shots. Vertov employs form cuts where similarly shaped objects ap-

pear in two successive shots (see Figure 3.2 for an example), as well as matching motion,

where the motion direction between two shots is kept consistent (see Section 9.4) [20].

On the contrary, Vertov sometimes deliberately violates continuity rules, for example

by the integration of jump cuts which yield a discontinuity in motion which appears

unexpected for the viewer.

Vertov strictly opposed any narration in his films. He used visual (and later also

auditive) motifs that repeatedly appear in a film to introduce structure. Usually, each

motif has an associated semantic meaning. Typical motifs are for example power poles

and reservoir dams of hydroelectric power plants (as a symbol for electricity and thereby

a symbol for economic and social development and prosperity), and factory chimneys

(as a symbol for industrial progress). Figure 3.3 shows four examples of the typical

power pole motif. The first three examples in Figures 3.3(a)-3.3(c) are additionally

framed by a superimposed iris mask. The fourth example in Figure 3.3(d) is a multiple
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3. ARCHIVE FILM MATERIAL

(a) shot 1 (b) shot 2

Figure 3.2: Keyframes from two successive shots which are connected by a form cut. Note

that the two shots originate from different scenes and show different objects and people.

exposure shot. A flywheel is superimposed inside the tower at the right side of the

frame (the arrow labeled “C” points at the center of the wheel). In all four examples

we observe that the similarity between the instances of the motif exist mostly on a

semantic level.

With the establishment of sound film, Vertov incorporated also auditory motifs.

Typical auditory motifs are church bells and work sirens. Vertov experimented with

the co-occurrence and correlation of visual and auditory motifs to convey sophisticated

messages to the viewer, see Chapter 8 for an example.

The montage applied by Vertov has highly experimental character. Vertov employs

accelerated montage where the shot frequency is increased successively. In such se-

quences the shot length is decreased down to a few frames or even only a single frame.

Subsequent extremely short cuts visually merge and create a special type of flicker.

Such sequences are especially challenging for shot cut detection (see Chapter 5). Ver-

tov further inserts completely black frames into sequences at regular intervals to create

rhythmic patterns. Chapter 4 shows an example for such a sequence.

The montage style of Dziga Vertov has a very systematic and formalistic character.

The filmmaker arranges shots of different motifs systematically over time. The result

are parallel montages where the visual motifs alternately appear in repetitive patterns.

For one such sequence a plot sketched by Dziga Vertov (see Figure 3.4) has been pre-

served that shows how the filmmaker conceptualized the sequence. Time is represented

horizontally in the plot. Each row represents a motif and each column represents a
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(a) (b)

(c)

C

(d)

Figure 3.3: Different instances of the power pole motif.

shot. The entries in the cells represent the duration of each shot (in number of frames).

The right-most column contains the sum of frames for each motif in the entire sequence.

The plot indicates that both, the temporal composition of the motifs and their corre-

sponding shot lengths have been systematically determined [215]. Keyframes of the

first 15 shots of the sequence are shown in Figure 3.5. The sequence shows the hissing

of a flag and alternately shows the flag and different faces that observe the hissing.

The sequence is consistent with the plot in Figure 3.4, except for a few shots at the

beginning that are missing (maybe lost due to film tears).

The distinct composition and montage of Vertov’s films make them a challenging

material for automatic film analysis. The large variety of employed stylistic devices and

the strong formalistic structure raise novel requirements for automatic film analysis and

retrieval. However, the state of the material is challenging for automatic analysis, as

well. Due to their old age the films contain numerous artifacts that interfere with au-
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Figure 3.4: The visual representation of the montage of a sequence [17].

tomatic analysis methods. These artifacts impede the automatic analysis and retrieval

of the films. We discuss the different artifacts present in the historic material and their

impact on automatic analysis in the following.

3.2 State of the Material

The archive films investigated in this thesis have been produced in the Soviet Union in

the 1920s and 1930s by Dziga Vertov. Most of the films are silent, only the late films

contain a sound track. The original material is 35mm black-and-white film made of

cellulose triacetate (see Figure 3.6). The films are played at non-standard frame rates

of 18 to 21 frames per second for silent film and 25 frames per second for sound film. In

sound films, the soundtrack has been optically stored on the filmstrip (sound-on-film

technique [80]) alongside the visual content of the frame, see Figure 3.7.

An overview of the available archive films is given in Table 3.1. For two of the films

different versions exist. For “Enthusiasm” there is a slightly varying restored version of

the original version [215]. For “Man with a Movie Camera” there exist a version from
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Figure 3.5: Keyframes of the first 15 shots of the sequence that shows the hissing of a

flag. Each row shows one of the motives that are specified in the plot in Figure 3.4.

the Vertov Collection of the Austrian Film Museum in Vienna (V) and a version from

Amsterdam (A), with best thanks to the EYE Film Institute Netherlands (Mark-Paul

Meyer).

Prior to automatic analysis the analog filmstrips have been digitized. For this

purpose we scan the films frame-by-frame in PAL quality (720x576 pixels) and with 256

gray values (8 bit). The result of digitization is an image sequence that represents each

frame of a film. The frame-by-frame digitization avoids the introduction of interpolated

frames which usually occur during digitization at standard frame rates (e.g. 25 fps for

PAL) when the projected film is for example captured by a digital camera. Since

interpolated frames represent information that does not exist in the original material

they would interfere with automatic analysis. It is crucial to note that Vertov employed

the exact number of frames for a given shot as a stylistic device (as can be observed

from the plot in Figure 3.4 in Section 3.1). Thus interpolated frames would tamper
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Figure 3.6: A 35mm silent film strip [17].

Film Title Fps Duration #Frames #Shots Sound? Abbrev.

Kinoglaz 18 01:17:54 84132 1304 no KGLZ

Kinopravda 21 18 00:32:27 35060 413 no KP21

Stride Soviet! 18 01:12:28 78272 1110 no SRSV

A Sixth of the World 18 01:04:03 69182 1017 no 6thW

The Eleventh Year 18 00:58:26 63123 660 no 11th

Man with a Movie Cam-

era (V)

18 01:28:40 95768 1782 no MMCV

Man with a Movie Cam-

era (A)

18 01:26:47 93743 1781 no MMCA

Enthusiasm (Original) 25 01:04:44 97116 604 yes EsmO

Enthusiasm (Restored) 25 01:04:45 97134 612 yes EsmR

Three Songs of Lenin 25 00:59:20 89023 817 yes 3SoL

Schatten der Maschine1 18 00:23:43 25622 420 no SdM

Table 3.1: Films of Dziga Vertov analyzed in this thesis in chronological order.
1 The film “Schatten der Maschine” is a compilation film by Victor Blum and reuses content

produced by Dziga Vertov

with the intended statements of the films [215]. Additionally, we skip compression to

avoid the introduction of additional artifacts in the digitized stream. If an audio track

is available in a film, the track is scanned as well and converted into an uncompressed

PCM coded file.

The provided filmstrips are multiple-generation copies that were never intended

to be used for other purposes than backups. Due to this fact, these copies were not

handled with much care in the film archives. Today, the original filmstrips do not

exist anymore, hence the available backup copies are the only existing source material

left. The state of the material has degraded significantly, during storage, copying, and

playback over the last decades.
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(a) (b)

Figure 3.7: Two examples of sound-on-film in historic material from the film “Enthusi-

asm”. The waveform of the sound is optically stored at the left side of the frame [17].

The filmstrips are made of organic material (cellulose triacetate). Storage over the

last decades resulted in shrinking of the filmstrips due to chemical processes in the

base support. Thereby, the filmstrips physically contracted horizontally and vertically.

Shrinking results in frame displacements and non-linear geometric distortions. Due

to vertical shrinking the framelines (the area between two successive frames on the

filmstrip) become visible and sometimes also the content of the next frame, see Fig-

ure 3.8(a). The shrinking in horizontal direction is usually less disturbing. However, if

the horizontal shrinking exceeds a certain limit the perforation of the filmstrip becomes

visible in the frame, as in Figure 3.8(b). Additionally, the filmstrips were often stored

under suboptimal conditions. As a result, mold and humidity harmed the filmstrips

during the long time of storage. See Figure 3.9 for distortions originating from mold

and humidity.

The archive films are multiple-generation copies. When copying is performed under

suboptimal conditions dirt and dust is copied into the films. With each generation of

copy dirt, dust and previously existing artifacts (e.g. scratches, blurred images) accu-

mulate which results in a broad spectrum of distortions, see Figure 3.10. Additionally,

copying leads to a degradation of contrast with each generation of copy. The result are

low-contrast images as shown for example in Figure 3.9(b).

When the filmstrips are not exactly aligned to each other during copying the frames

of the original filmstrip are incorrectly mapped to the frames of the new filmstrip. The

result are frame displacements and visible framelines. For examples see Figures 3.9
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(a) vertical shrinking (b) horizontal shrinking

Figure 3.8: The effect of the shrinking of filmstrips. (a) due to horizontal contraction

of the filmstrip framelines become visible at the top and the bottom of the frame, as well

as image content of the next frame (at the bottom). (b) horizontal shrinking causes the

perforation of the filmstrip to become visible (at the right side of the frame)

and 3.10 where all frames suffer from these artifacts. The frame displacements from

copying together with the displacements caused by film shrinking (see Figure 3.8) in-

troduce a significant shaking in the films.

Further artifacts have been introduced during playback of the films in old projectors.

Dirt present in the mechanics of the projectors (in the film transport) introduce vertical

scratches that cover many subsequent frames. Vertical scratches are shown for example

in Figure 3.10(e).

Playback and presentation of the films bear the risk that a filmstrip tears. Each

time, a filmstrip tears a few frames of the strip are destroyed. When the film is then

glued together the absence of the destroyed frames produces abrupt jumps (unintended

jump cuts) in the movies. Additionally, the splice becomes a visible artifact at the

position where the filmstrip is glued together. An example of a film tear is shown in

Figure 3.11.

Additionally to artifacts from storage, copying and playback the films suffer from

limitations of the recording technique of the early 1920s and 1930s. In the early years of

filmmaking, the film transport was controlled manually. For this purpose, the camera-

man moved a crank at one side of the camera to move the filmstrip and to control the

shutter of the camera, see Figure 3.12. The manual film transport yields variations in
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(a) (b)

Figure 3.9: Artifacts originating from liquids and mold.

the frame rate across the filmstrip. As a consequence the exposure along the filmstrip

varies which in turn generates frames of different brightness. The resulting effect during

playback of the films is strong and fast alternating flicker as shown in Figure 3.13.

The artifacts in the historic films impede the automatic analysis. We distinguish

between three different classes of artifacts in the context of automatic analysis: global

artifacts, local artifacts and temporal artifacts. Global artifacts influence the entire

area of a frame and comprise shaking, flicker and low-contrast. Shaking is most dis-

turbing in motion analysis where motion vectors between pixels in the image have to

be computed reliably. Due to shaking the resulting motion estimates are noisy and

often the tracking of motion is not possible over longer time spans. Together with the

complex compositions of camera and object motion present in the films the analysis of

motion is challenging for the material. We investigate motion analysis and the retrieval

of motion compositions in Chapter 9.

Flicker is problematic since it influences the overall brightness of frames and im-

pedes similarity comparisons between frames. Similarity comparisons between frames

is an essential part in most visual retrieval tasks, such as shot cut detection and scene

segmentation. A common practice is to compare frames based on color and intensity

histograms (see Sections 2.3.3 and 2.3.4). However, such comparisons are not robust

in the presence of flicker because flicker distorts the histograms globally. Generally,

79



3. ARCHIVE FILM MATERIAL

(a) wrong exposure (b) dirt (c) scratch

(d) a fingerprint (e) dirt, vertical scratches (f) blurring

Figure 3.10: Artifacts introduced from (repeated) copying (dirt, scratches, and distor-

tions in brightness, blurring).

image descriptors that rely on intensity information (brightness) are not suitable for

the representation of the archive film material due to the heavy flicker.

The same as for flicker applies to low-contrast images. Again image descriptors that

rely on brightness are not suitable because they do not capture distinctive information

from low-contrast frames. Additionally, the extraction of local image descriptors (see

Section 2.3.7) is difficult due to a lack of distinct feature points in low-contrast images.

Similarly, the extraction of local image descriptors is problematic in blurred images

which lack in distinct structures necessary for the identification of feature points.

Additionally to global artifacts, there are local artifacts that affect only a part

of a frame’s area. Local artifacts comprise visible framelines and frame borders (e.g.

perforation), scratches, dirt, dust, and artifacts from liquids spilled over the filmstrip

and mold. Local artifacts represent misleading information that disturbs automatic

analysis. Visible framelines and frame borders can easily be removed by cropping the

frame borders for an entire film. However, cropping with a constant offset also removes

some image information since the position of the frame borders varies over time.
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(a) frame 1 (b) frame 2 (c) frame 3

Figure 3.11: Three successive frames of a sequence. The film has teared after frame 1 and

several frames are missing between frame 1 and frame 2 which results in a discontinuity in

motion. In frame 2 artifacts from gluing the film together are visible in the upper part.

(a) (b) (c)

Figure 3.12: Recording with a historic movie camera. The cameraman rotates the crank

manually to transport the filmstrip.

Artifacts like dirt and scratches interfere with analysis techniques that operate on

small scales (small analysis windows), such as block-based image features with small

block-size and local descriptors of feature points. As a consequence, the description

of fine structures in the frames is prone to errors. Additionally, the local artifacts

generate abrupt visual changes that interfere with temporal movie analysis, required

for shot and scene segmentation.

The third class of artifacts are temporal artifacts which comprise distortions of the

temporal axis of a filmstrip. Temporal artifacts are for example jump cuts (introduced

by film tears) which introduce motion discontinuities. Such discontinuities interfere

with motion analysis. Actually, jump cuts have been employed by Vertov also on

purpose as a stylistic device. Today it is often not clear if a jump cuts has been

intended by the filmmaker or has been introduced by a film tear.
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(a) (b) (c)

Figure 3.13: Three successive frames from a shot in “Kinopravda 21”. Heavy flicker is

introduced due to the manual and uneven film transport.

The historic film material and its artifacts challenge automatic analysis techniques

and often make existing techniques inapplicable. A first step towards the analysis of

archive film material is an automatic restoration that removes the most disturbing

global and local artifacts.

3.3 Restoration

A straight-forward approach to improve the quality of historic film material is to ap-

ply professional software for its restoration. However, professional software for film

restoration is expensive and usually requires human interaction or supervision [188].

This makes high-quality restoration of large amounts of films costly and often not

feasible.

A cost-effective alternative to professional film restoration are algorithms that filter

specific artifacts fully automatically. We exemplarily explored algorithms for deflicker,

noise reduction, and image stabilization to remove flicker, dirt, and shaking. One

might expect that such preprocessing improves the following content-based analysis

and retrieval. In fact, most methods reduce the corresponding artifacts. However, they

introduce new artifacts which are often more disturbing than the original ones. For

example, the employed deflicker method based on histogram alignment [167] signifi-

cantly dampens the brightness variations across the frames but fails when the bright-

ness variations exceed a certain level resulting in contrast distortions as depicted in

Figures 3.14(a)-3.14(d).
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(a) original (b) deflickered (c) original (d) deflickered

(e) original (f) stabilized (g) original (h) stabilized

Figure 3.14: Artifacts that originate from automated restoration. 3.14(a) and 3.14(c)

show keyframes of two sequences where the deflicker filter does not work correctly due

to large brightness variations. In 3.14(b) noise is emphasized (mostly in the sky) and

in 3.14(d) noise is introduced in the background. 3.14(e) and 3.14(g) show keyframes of

sequences where stabilization fails. 3.14(e) shows a man who turns his head. The stabilizer

fails to compensate for the object motion resulting in an unwanted rotation of the frame

in 3.14(f). 3.14(g) shows a train passing by. Since there is hardly any static background, the

stabilizer fails to align the images and falsely translates and scales up the frame in 3.14(h).

We reduce noise by a temporal median filter. This removes most scratches and

dirt but cancels out image details which are necessary for subsequent analyses, e.g.

detection and tracking of feature points for motion analysis, see Section 9.2.

Stabilization aims at removing shaking from a sequence which is caused by repeated

copying and film shrinking. The challenge is to remove shaking independently from the

intended camera and object motions. Stabilization methods work well for scenes with

small moving objects or smooth camera operations [214]. In scenes with large moving

objects or fast and non-uniform camera motion, stabilization methods often confuse

unintended shaking with the intended motion. This behavior leads to unexpected

results such as rotation and unwanted warping of the frames (see Figures 3.14(e)-

3.14(h)).

We observe, that fully automated algorithms introduce new artifacts and remove

detail information that is necessary for automated processing. From these observations,

we conclude that such an automated preprocessing is not advisable with the investigated

archive film material and that human interaction would still be required. In the course
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3. ARCHIVE FILM MATERIAL

of our investigations, we observe that most retrieval tasks are influenced by a specific

type of artifacts only or a subset of types. We conclude to skip automated preprocessing

and instead aim at the development of retrieval methods that are robust to the actually

relevant artifacts.
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Chapter 4

Detection of Black Frames and

Intertitles

As a first step in automatic analysis, we aim at the detection of two lower-level concepts

that are especially important in archive film, namely intertitles and black frames. Both

these concepts have specific structural and semantic properties relevant for understand-

ing the films. First, we discuss properties of black frames and intertitles for archive

and contemporary films in Section 4.1. Next, we present a method for the detection of

black frames that is robust to the artifacts in archive film material in Section 4.2. In

Section 4.3 we investigate the detection of intertitles in archive film material. We pro-

pose appropriate features for intertitle detection and show that this task can be solved

reliably. The investigations in this chapter show that recognition tasks that appear to

be trivial may become more complex due to the sophisticated style and the artifacts of

the archive films.

4.1 Introduction

At first glance the automatic identification of black frames and intertitles is trivial.

However, in presence of the numerous artifacts in the investigated archive films (see

Section 3.2) both tasks become challenging for automatic analysis. We perform two

preliminary investigations for the retrieval of black frames and intertitles that illustrate

the influence of the archive film material on retrieval tasks.
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Figure 4.1: Black frames cut in-between a series of frames showing rail tracks. The black

frames visually evoke the otherwise auditory impression of passing over expansion joints.

Intertitles are a classic element of early filmmaking, a time when no soundtrack was

available. Intertitles contain additional descriptions not depicted on the screen: They

introduce characters, locations and provide temporal context. Additionally, intertitles

provide temporal structure by separating different topics in archive documentaries.

Today, intertitles are seldom used, however they did not vanish completely. They are

mostly applied as an artistic means, for example in “Pulp Fiction” by Quentin Tarantino

and Jim Jarmusch’s “Ghost Dog - The Way of the Samurai” where intertitles introduce

new scenes. Intertitles are also used in television drama series like the “Law & Order”

franchise. Modern intertitles usually contain a small number of colors and, thus, are

easy to detect. The detection of intertitles forms the basis for further investigations

such as optical character recognition and keyword extraction.

Black frames, as the name implies, are entirely black frames usually found at the

beginning of fade-ins and at the end of fade-outs. Additionally to these technically

motivated uses, they are applied as an artistic means. A widely known sequence where

black frames are used as an artistic means shows a train ride where the director al-

ternately shows shots of the rail track and black frames (see Figure 4.1). This should

evoke the impression of the train passing over expansion joints (responsible for the

“clickety-clack”).

4.2 Detection of Black Frames

The detection of black frames seems to be a trivial task. Since they are monochrome and

black, their mean gray value should be near zero while the variance of the gray values

should be minimal. However, this is only true for high quality material as depicted in

Figure 4.2(a). In archive film material containing flicker and degraded contrast, black

frames often do not contain any black pixels at all (see Figures 4.2(c)-4.2(d)).
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4.2 Detection of Black Frames

(a) blackframe from modern film (b) histogram of blackframe from modern film

(c) blackframe from archive film (d) histogram of blackframe from archive film

Figure 4.2: Black frames from archive and modern film material and their respective

intensity histograms. Black frames from archive film material often do not contain any

black pixels at all.

Thus, we devise a method based on higher-order statistics of the gray value distri-

bution. We extract three features for black frame detection:

• the centroid of the intensity histogram,

• the variance of the frame’s gray values, and

• the rolloff point of the gray value distribution (the 95% percentile of the distri-

bution).

These higher order moments of the gray value distribution are indicators of the “black-

ness” and the monochromaticity of the frame. The rolloff point of the gray value

distribution is itself a gray value which is low for black frames because most of the

pixels are dark. In a non-black frame the rolloff point is higher because they contain

more bright pixels. Similarly, the centroid of the intensity histogram is a gray value

derived from the distribution of gray values in the frame. It is lower for black frames
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and higher for non-black frames. The variance of the frame’s gray values reflects the

number of distinct gray values in the frame. In summary, black frames have a low

variance of the gray value distribution, because they have mostly the same gray value

and they have a low value for the centroid as well as for the rolloff point because most

of the pixels are dark.

We detect black frames by thresholding the three extracted feature values. For

this purpose, we experimentally determine values for the thresholds. Since it is a

requirement by the film scientists that the likelihood of missing a black frame is low,

we perform threshold determination in a way that prefers recall over precision. A frame

is classified as a black frame if the values for all three features stay below the respective

thresholds. The threshold for the centroid is 50, for variance 0.0007 and for rolloff 45.

This approach allows for a reliable identification of black frames. The method

achieves 93% recall and 55% precision in a set of 35060 frames from the film “Kino-

pravda 21”. We observe that precision is low compared to the recall because there is a

large number of false positives. Figure 4.3 depicts two false positives. Closer inspection

of the two examples reveals that Figure 4.3(a) shows a very dark frame that is falsely

detected by the proposed method. Figure 4.3(b) depicts a frame from an animated

sequence. The animated sequence starts with a black frame. Then white rectangles

are introduced on the left and right side of the image. The rectangles grow from the

center in vertical direction to become vertical bars. All the frames from the beginning

of this animated sequence are recognized as black frames because they contain only a

very small number of bright pixels.

4.3 Detection of Intertitles

Intertitles commonly show monochromatic text on monochromatic background. As

a consequence, we expect them to have a specific gray value distribution which is

bimodal. For contemporary material this expectation is usually met as can be observed

in Figures 4.4(a) and 4.4(b). In archive film material however the gray value distribution

of intertitles is usually not bimodal. An example is given in Figures 4.4(c) and 4.4(d))

where we observe no distinct peaks for foreground and background in the histogram.

The foreground (the text) and the background gray value distributions even overlap.
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(a) a very dark frame showing a person (b) a frame from an animated sequence

Figure 4.3: False positives returned by the black frame detection algorithm. (a) shows

a dark frame depicting a person that is falsely identified as a black frame. (b) depicts a

frame from an animated sequence in which the highlighted bright bars starting from the

center grow in vertical direction. Frames from this sequence are identified as black frames

until the bars have grown to a specific size. Note that in both (a) and (b) the frames are

significantly brightened to make them recognizable.

We propose a robust method for the detection of intertitles based on edge- and

intensity histograms. Feature extraction is performed in two passes, first we extract

features for single frames and second we aggregate features over entire shots. Two

features are extracted for each frame:

• a global MPEG-7 edge histogram and

• local intensity histograms with 128 bins where the image is uniformly split into 9

image blocks.

In the second pass four features are extracted for each shot: First, we compute the

mean edge histogram over all frames of the shot. This feature reflects the average

number of edges in a shot which is usually high in intertitles due to the displayed text.

Second, we compute the variance of all edge histograms across a shot. The resulting

variance histogram reflects the temporal variance of the single histogram bins through-

out the shot. The sum of this variance histogram represents the second feature. For

intertitles which are mostly static, this sum of variances should be low.

Next, we compute the variance of the block-based intensity histograms (extracted in

the first pass). The resulting variance histograms (one for each block) are concatenated
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4. DETECTION OF BLACK FRAMES AND INTERTITLES

(a) an intertitle from the contem-

porary film “Pulp Fiction”.

background foreground

(b) histogram of the modern intertitle.

(c) an intertitle from archive film.

background foreground

(d) histogram of the intertitle from the

archive film.

Figure 4.4: Intertitles from archive and modern film material and their corresponding

intensity histograms. In contrast to archive film material, the gray value distribution of

intertitles in modern films usually has two distinct peaks which can be detected easily. For

historic material this does not apply.

and summed. The resulting scalar value is the third feature and represents the intensity

variation over time which should be low for intertitles.

Finally, we extract the fourth feature that measures the “bimodality” of the intensity

histograms. For this purpose, we compute a mean intensity histogram over a shot. We

approximate the mean histogram with a spline to smooth it and to remove minor

peaks. The maximum distance between any two peaks in the spline represents the

fourth feature. Ideally, intensity histograms of intertitles are bimodal and look like in

Figure 4.4(b)). The feature measures how close the current shot’s intensity histogram

resembles an ideal one.

The four features are concatenated into an eight-dimensional feature vector and

form the input of a support vector machine with a polynomial kernel of second order.

The proposed method is able to achieve a recall of 95% and a precision of 81% with a
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(a) (b)

Figure 4.5: Two intertitles from the film “Kinoglaz”. The proposed method is able to

identify both correctly as intertitles despite their visual differences and the artifacts.

test set that contains 1716 arbitrary (non-intertitle) shots and 167 intertitles from the

films “Kinopravda 21” and “Kinoglaz”. Figure 4.5 depicts two intertitles the method

successfully detects. We observe that the method is suitable for the detection of diverse

intertitles even if artifacts are present.

4.4 Summary

We have presented two preliminary investigations for the detection of two basic concepts

from archive film: black frames and intertitles. Both concepts have specific relevance

in archive film and both advocate the need for special methods targeting archive film.

In modern film the detection of these concepts is much simpler, even trivial while in

archive film effort has to be invested in order to detect them sufficiently well.

For the detection of black frames we devise a method based on higher order statistics

of the gray value distribution. We employ content-based features that capture the

darkness and monochromaticity and use thresholds for the final decision. With this

method we are able to reliably identify black frames even if the film strip’s quality

is degraded. We identify intertitles using features that capture edge and intensity

information. We perform feature extraction in two passes. In the first pass, we extract

features for all frames. In the second pass, we aggregate the frame-based features over
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entire shots. The features target specific properties that distinguish intertitles from

other types of shots. We achieve satisfactory detection results with an SVM classifier.

In this chapter we have implicitly worked with shot boundary information for the

detection of intertitles. In the concrete case shot boundaries were derived from manually

created ground truth. This manual identification of shot boundaries is time consuming

and error-prone and motivates automatic shot boundary detection techniques. In the

next chapter we present such an automatic shot boundary detection technique.
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Chapter 5

Detection of Shot Cuts

Shots are the basic units of film and represent a fundamental lower-level concept for

the construction of films. The detection of shot boundaries is the basis for most higher-

level investigations and analyses. This chapter focuses on the detection of abrupt shot

cuts which are the most common type of shot boundary while Chapter 6 addresses the

detection of gradual transitions. In this thesis, we incorporate shot boundary infor-

mation in the segmentation of a film into scenes in Chapter 7 and in the extraction

of synchronous montage sequences in Chapter 8. Furthermore, the retrieval of motion

composition and visual composition in Chapters 9 and 10 is performed on previously

extracted shots. Additionally to these applications, shot boundaries provide informa-

tion on the length of shots and allow the analysis of montage patterns (see Section 3.1)

which are typical for the film material under consideration [246]. In this chapter, we

present a method for the detection of shot cuts that is designed with historic archive

film in mind. We identify shortcomings of existing shot boundary detection techniques

in Section 5.1. In Section 5.2 we review existing techniques that are either developed

for, or applicable to, archive film. We propose a robust shot boundary detection tech-

nique in Section 5.3. Section 5.4 provides an extensive evaluation of our method and

performance comparisons with state-of-the art techniques.

5.1 Introduction

A shot in an edited film is defined as “the length of film from one splice or optical

transition to the next” [20]. Shots can be bounded by either abrupt shot cuts (which
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originate from joining two film strips by a splice) or by a gradual transition (by using

multiple exposure techniques and masks). The segmentation of a film into its shots is

performed by detecting the shot boundaries between the shots. In the following, we

identify shortcomings of existing shot cut detection approaches in the context of the

investigated archive film material.

First, the film material is black and white. Most state-of-the-art shot boundary

detection algorithms incorporate color information, e.g. in TRECVID 2006 15 out

of 19 shot boundary detection algorithms relied on color and only four used intensity

information [198]. In TRECVID 2007 only three out of eleven algorithms were based on

grayscale information. In the context of historic archive film (which usually is black and

white) it is not safe to assume that color-based shot boundary detectors are applicable.

Second, most state-of-the-art methods have been developed and evaluated in the

context of high-quality video material, such as TRECVID data. Archive film material

contains numerous artifacts that interfere with shot cut detection. Dirt, dust, liquids

(spilled over the filmstrips), and scratches introduce noise that generates abrupt vi-

sual changes. These unintended changes interfere with established shot cut detection

algorithms that are based on pixel differences, edges, and corners (feature points). Ad-

ditionally, frame displacements disturb techniques that rely on motion information.

Flicker globally influences the distribution of intensity values, which limits the power

of histogram-based approaches. Kopf et al. discuss several other issues in the context

of the analysis of old films [113].

Third, the film material under investigation contains sophisticated montage patterns

such as accelerated montage, see also Section 3.1. Accelerated montage sequences

contain sequences of very short shots (down to one frame in length). This introduces

problems for shot cut detection techniques which rely on larger processing windows

(e.g. [46] employ processing window of 21 to 71 frames). Shot cut detectors for archive

film material must rely on small processing windows to enable the detection of short

shots.

From the stylistic properties and the physical state of archive film we draw the

conclusion that there is a demand for the adaptation of shot cut detectors for archive

film material. In this chapter, we develop a shot cut detector that takes the above

mentioned shortcomings into account. The detector is an extension of the approach

introduced in [46] and [47]. We integrate content-based image features that rely on
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intensity information only and that are robust to most of the global and local artifacts

in the archive films (see Chapter 3). Additionally, we reduce the size of the processing

window to cope with the complex temporal structure of the material. Finally, we

introduce a more effective fusion scheme for the features in the framework. Experiments

on archive films show that the technique outperforms readily available and established

shot cut detection algorithms.

5.2 Related Work

Shot cut detection is a well-investigated topic in video analysis. Extensive work has

been conducted so far [28, 241]. Most state-of-the-art shot cut detectors rely on color

information which may be observed from the submissions to TRECVID’s 2006 and 2007

shot boundary detection tasks. Note that in 2008 shot cut detection was seen to be

solved and was excluded from the TRECVID evaluation. However, we observe that

only few techniques support low-quality black-and-white material. Generally, even

fewer techniques target the special case of archive film. Archive film has unique prop-

erties that challenge established analysis algorithms [113]. Urhan et al. propose novel

techniques for shot cut detection geared towards old film [224, 225]. Their approaches

exploit phase correlation and kernel-based comparison to detect abrupt shot cuts in

visually degraded and distorted films. Another work on shot segmentation in archive

film material stems from Kopf et al. [113] where the authors perform summarization of

historical archive films based on previously segmented shots.

A promising method for shot cut detection (and also a top performer in the TREC-

VID benchmark) has been proposed by Cooper and Foote [46]. The method has orig-

inally been proposed in [67] to segment musical signals and has later been extended

to shot cut detection in color video [46]. The authors first compute the similarity of

adjacent frames and construct a similarity matrix. Next, they analyze the similarity

matrix with a specific filter in order to detect shot cuts. Color and intensity histogram

features are the basis for the construction of the similarity matrix. However, these fea-

tures are not applicable to archive film material where flicker and intensity variations

are omnipresent. Another feature proposed in [46] are the global low-order discrete

Cosine transform (DCT) coefficients of the three color channels. Again this feature

relies on color and cannot be applied directly to black-and-white film material. The
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feature can be adapted to black-and-white material by computing the global low-order

DCT coefficients of the intensity channel which represent the global intensity distribu-

tion of a frame. Experiments show that this adapted feature does not contain enough

discriminatory information for shot cut detection. We observe, that archive film ma-

terial demands for features that are robust and at the same time represent significant

discriminatory information.

5.3 Robust Shot Cut Detection

We extend the method by Cooper and Foote [46] for shot cut detection in several

ways. First, we integrate robust and discriminatory features that are solely based

on intensity information. Next, we apply the proposed self-similarity analysis for each

feature separately. Finally, we fuse the results for each feature and apply peak detection

to identify potential shot cuts.

5.3.1 Feature Extraction

We propose two features for shot cut detection that are robust against the artifacts

present in archive film material. The low-frequency content of the frames is captured

by a block-based discrete Cosine transform feature (bbDCT), while the high-frequency

content is represented by an edge descriptor.

For the first feature (bbDCT), we uniformly split each frame into B image blocks.

We transform each block into frequency domain by a DCT and extract the first N low-

frequency coefficients. The coefficients of all blocks yield a B ∗N -dimensional feature

vector. The parameter N should be chosen in a way that high-frequency distortions

are removed. Parameter B determines the block size. It balances the influence of frame

displacements and motion in a block and the amount of preserved spatial information.

Large blocks lead to high robustness against frame displacements, but to a loss of

spatial information (and thereby a loss of expressiveness of the feature) while small

blocks lead to the opposite. The bbDCT represents the coarse intensity distribution

among the blocks of the frames. It is robust against local high-frequency artifacts, such

as dirt and scratches. Furthermore, it compensates for frame displacements and flicker

to a high degree.
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The second feature captures the orientations of the edges in the frames. Edges

represent highly discriminatory information for shot cut detection. They represent se-

mantically meaningful information, such as contours and object boundaries that usually

change considerably across shot cuts [123]. We employ an edge histogram, similar to

the MPEG-7 edge histogram. The edge histogram (EH) is computed for the same B

blocks as the bbDCT. The histogram of each block contains five bins, for horizontal,

vertical, 45 degree, 135 degree, and non-directional edges. The edge histogram for the

entire frame contains B ∗ 5 bins. The EH represents the distribution of orientations of

the edges across the blocks of the frame. It is highly robust to frame displacements

since it captures global information within in each block. Additionally, the feature is

invariant to flicker. The EH captures high-frequency information which makes it prone

to artifacts like scratches and dirt. The influence of these artifacts is usually low com-

pared to the influence of the dominant and meaningful edges. However, global artifacts,

such as scratches across the entire frame are reflected in the feature (see Figure 3.10(c)).

Both features, bbDCT and EH are well-suited for combination, since they capture

orthogonal and thereby complementary information. The bbDCT feature represents

low-frequency information, while the EH summarizes high-frequency content.

5.3.2 Similarity Comparison

In a next step we compare frames by computing the similarity between their features.

This results in a similarity matrix from which we derive a function that is used as an

indicator for shot cuts. We compute the similarity between feature vectors of frames

similarly to Cooper and Foote [46]. First, we extract both features for each frame,

resulting in a one-dimensional feature vector. Next, the pairwise similarity of all feature

vectors is computed by the Cosine similarity (see Section 2.4.3).

Computing the pair-wise similarity of adjacent frames results in a (symmetric)

similarity matrix with maximum values at the diagonal. An entry at position (i, j)

in the matrix corresponds to the similarity of two feature vectors of two frames i

and j (see Figure 5.1(a) for an illustration of similarity matrix construction). The

similarity matrix represents all possible similarity comparisons between all frames under

consideration.

Time progresses along the rows and the columns of the matrix, as well as along

the main diagonal. Similar frames yield high values (high similarity) while dissimilar
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Figure 5.1: Similarity comparison: (a) the schema for constructing the similarity matrix;

(b) the checkerboard function is moved along the diagonal of the matrix. The size W of

the checkerboard function defines the number of frames under consideration.

frames yield low values (low similarity) in the matrix. The higher the similarity the

brighter the gray values in the matrix. Figure 5.2 shows an example of a similarity

matrix computed for 1000 frames. White pixels indicate nearly identical frames and

black pixels represent dissimilar frames. The main diagonal (entries (i, i)) represents

the self-similarity of the frames, which is always 1 (each frame is maximally similar to

itself). Sequences of similar frames (e.g. frames of a shot) produce bright squares along

the diagonal. This results in a checkerboard pattern along the diagonal, as shown in

Figure 5.2.

Shot cuts can be found by detecting positions in the matrix where white squares

adjoin each other at the diagonal. This means, that the task of shot cut detection is

equivalent to detecting checkerboard patterns along the diagonal of the matrix. We

move a square function (of size W ) that looks like a checkerboard itself along the diag-

onal of the similarity matrix, in order to detect potential shot cuts. The checkerboard

filter is smoothed by a Gaussian filter to avoid artifacts at the filter borders. The

resulting checkerboard filter is shown in Figure 5.3.

The process of filtering is illustrated in Figure 5.1(b). At each position along the

diagonal the checkerboard function is multiplied with the covered region of the matrix
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Figure 5.2: The left side shows an excerpt of the similarity matrix of 1000 frames of the

film “The Eleventh Year”. The bright squares along the diagonal indicate shots. The right

side depicts the magnified checkerboard pattern produced by two adjacent shots.

and the result is summed up. This yields a high correlation value at positions where the

matrix and the function are similar (checkerboard-like) and a low value otherwise. We

obtain one correlation value for each position of the checkerboard function. The final

result is a correlation function C for all frames. This function is used as an indicator for

shot cuts. The correlation function C can be considered a novelty curve where peaks

indicate a high novelty (an arbitrary event) in the underlying time series).

Computation of the entire similarity matrix is much too expensive and would require

excessive amounts of memory. In practice, for shot cut detection it is sufficient to

compute only similarities near the diagonal of the similarity matrix. The size W of the

checkerboard function, defines the size of the processing window.

5.3.3 Shot Cut Detection

The correlation of the checkerboard kernel is a one-dimensional function C over all

frames. The function shows peaks at potential shot cuts and has values near zero in

homogeneous areas. A point in the correlation function is considered a shot cut if it is

a local maximum and the difference to the preceding value exceeds a threshold tc. The

peak detection results in a list of detected shot cuts.
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Figure 5.3: The Gaussian filtered checkerboard filter.

5.3.4 Feature Combination

We propose a novel scheme for the combination of several features for shot cut detection

in this framework. There are several ways to fuse the information contained in the

features. One possibility is to concatenate all features into one (high-dimensional)

vector and then perform similarity comparison and shot cut detection based on this

vector (early fusion). However, the influence of each component of the feature vector

during similarity comparison is low because the feature vector has a high dimension.

Consequently information captured by the features is lost at an early stage of processing.

We expect suboptimal results for this approach.

Another possibility is to perform similarity comparison in parallel and indepen-

dently for all features and to merge the resulting kernel correlation functions afterwards.

The advantage of this approach is that more information is preserved until the end of

the process. We propose a fusion scheme where one similarity matrix is computed for

each feature. From each similarity matrix a separate correlation function is derived.

Finally, the correlation functions are linearly combined to obtain a final correlation

function for shot cut detection.

In our case, we compute two kernel correlations CbbDCT and CEH for the frequency

and edge features and fuse them by a linear combination:

Cmerged = wbbDCT ∗ CbbDCT + wEH ∗ CEH , (5.1)
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where wbbDCT and wEH are weighting factors. The merged correlation function Cmerged

is employed for shot cut detection as described in Section 5.3.3.

5.4 Experimental Results

We compare the proposed method with established, readily available techniques, namely

an edge-based algorithm (Edge Change Ratio - ECR) proposed by Zabih et al. [245],

the MoCA shot cut detector (which is based on intensity histograms) [125] and a block-

based histogram technique from [28].

The parameters for the proposed technique are chosen as follows: The number of

image blocks B determines the robustness to frame displacements and motion. A value

of B = 9 has shown to be a good tradeoff. A number of N = 36 low-frequency DCT

coefficients is suitable for the material employed in the experiments. The size of the

kernel W has to be proportional to the length of the shortest shots in the films. A

small kernel is necessary in order to detect shots of only a few frames which frequently

appear in the investigated archive film material. We reduce the kernel size to W = 6

frames which is significantly lower than the kernel size of 21 to 71 frames employed

by Cooper and Foote in [46]. The weights wbbDCT and wEH of the linear combination

are chosen to be 0.5 because experiments showed that variations of the weights did not

result in improved performance.

In a first step we evaluate the shot cut detection techniques mentioned above for two

archive documentaries: “Kinopravda 21” and “The Eleventh Year”. “Kinopravda 21”

has 35060 frames (≈ 32min at 18fps) and contains 411 shot cuts, “The Eleventh Year”

is 63123 frames long (≈ 58min at 18fps) and contains 646 shot cuts. We apply the

proposed method to both films and compare the results with that of the above men-

tioned techniques. Performance is measured in terms of recall and precision. We build

recall-precision graphs by varying the threshold tc (see Section 5.3.3). Figures 5.4(a)

and 5.4(b) show recall versus precision of the employed techniques for both films.

We observe that the intensity histogram-based techniques are not appropriate for

shot cut detection in archive film. The main reason for this is that the histograms are

not robust against flicker. ECR yields significantly higher recall and precision than the

histogram-based techniques. This proves the assumption that edge information is more

robust to the artifacts in archive film. However, the proposed technique outperforms
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Figure 5.4: Recall-precision graphs for both films. The solid line is the proposed method,

the dashed line is ECR, the dotted line is the histogram-based approach and MoCA is the

dash-dot line.

Hist.- early linear

based MoCA ECR EH bbDCT fusion comb.

Kinopravda 21 0.32 0.54 0.88 0.86 0.89 0.89 0.94

The Eleventh Year 0.46 0.57 0.91 0.86 0.89 0.90 0.94

Table 5.1: The maximum f1 scores obtained from the recall-precision pairs for all inves-

tigated methods

ECR in recall as well as in precision for both films. For the film “Kinopravda 21”

both measures are significantly increased compared to ECR. In the film “The Eleventh

Year”, the proposed method mainly increases precision. These results are promising

in the context of the highly degraded material. We summarize the performance of the

discussed methods in Table 5.1. We compute the f1 scores for all recall and precision

pairs obtained in the experiments and list the maximum f1-scores, in order to provide

a measure of the achievable performance.

We further analyze the performance of different feature selections and fusion strate-

gies in the context of the proposed method. As mentioned in Section 5.3.1 the bbDCT

and the EH describe complementary information and thus we assume them to be good

candidates for combination. We verify this assumption by comparing the performance

of the shot cut detector based on individual features with the performance of the fea-
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Figure 5.5: Recall-precision graphs for both films. The combination of the features

significantly increases performance compared to the single features.

ture combination (using linear combination). The resulting recall-precision graphs (see

Figure 5.5) show that the individual features yield only suboptimal results. The fusion

by linear combination raises the performance figures significantly, which proves its ben-

eficial effect. Table 5.1 lists the respective performance figures in columns EH, bbDCT,

and linear comb.

We further evaluate the performance of the two fusion strategies presented in Sec-

tion 5.3.4. The combination of the features prior to similarity comparison (early fusion)

yields only suboptimal results, similarly to the performance of the single features. The

second strategy (linear combination of individual kernel correlations) significantly in-

creases the performance as shown in Figure 5.6. These results show that the fusion

scheme with linear combination better exploits the information captured by the fea-

tures.

In the following, we perform retrieval experiments with a larger number of archive

films. In this evaluation we focus on the selection of the detector’s parameters: the

window size W of the checkerboard kernel and the threshold tc for peak detection.

First, we evaluate recall and precision for different values of W . Table 5.2 shows the

optimal achievable f1 score for the investigated kernel sizes. We observe that there

is no common best option for W . The size of the checkerboard filter W restricts the

minimum distance between two distinguishable shot cuts and thereby the minimum
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Figure 5.6: Recall-precision graphs for both films. We observe that compared to the

early fusion, the linear combination of the kernel correlations increases the performance

duration of a recognizable shot. As a consequence, films with many short shots, such

as “Man with a Movie Camera” require a smaller processing window (W = 4 in our

experiments) than films with longer shots.

Next, we perform experiments for different values of parameter tc. For this purpose

we compute recall and precision for 100 values of tc and select the parameter value

that maximizes the f1 score. The optimal parameter values of tc for different films

are summarized in Table 5.3. We observe that the optimal values of tc lie in the

range [0.15 0.2].

From Table 5.2 we observe a relation between the parameters W and tc. The larger

the values of W the smaller the values of tc. We expect this relation because the

kernel correlation curve produced by the checkerboard kernel becomes smoother with

increasing kernel size. With increasing smoothness the height of the peaks that indicate

the shot cuts decreases. A regression analysis reveals a quadratic relationship between

the two parameters. This means that, given the checkerboard kernel size W we are able

to estimate a suitable parameter value of tc. In this way we can efficiently estimate the

parameter value in the absence of ground truth. For the estimation of kernel size W

knowledge about the minimum shot length is beneficial.

104



5.4 Experimental Results

Film W = 2 W = 4 W = 6 W = 8 W = 10

Kinoglaz 0.9396 0.9490 0.9480 0.9455 0.9412

Schatten der Maschine 0.9053 0.9157 0.9235 0.9255 0.9259

The Eleventh Year 0.9312 0.9365 0.9435 0.9426 0.9428

Enthusiasm (Original) 0.6455 0.8175 0.8876 0.9061 0.9123

Enthusiasm (Restored) 0.7022 0.8516 0.9054 0.9120 0.9125

Man with a Movie Camera (V) 0.8907 0.9024 0.8871 0.8567 0.8305

Man with a Movie Camera (A) 0.8861 0.8974 0.8783 0.8522 0.8281

Three Songs of Lenin 0.8800 0.9299 0.9513 0.9511 0.9483

Table 5.2: f1 scores for different films and kernel sizes W . The highest f1 scores for each

film are typeset bold. We observe that the optimal kernel size depends on the film.

Film W = 2 W = 4 W = 6 W = 8 W = 10

Kinoglaz 0.2415 0.1993 0.1795 0.1634 0.1542

Schatten der Maschine 0.2539 0.2155 0.1881 0.1791 0.1635

The Eleventh Year 0.2172 0.1822 0.1579 0.1481 0.1389

Enthusiasm (Original) 0.3817 0.2969 0.2431 0.2192 0.1979

Enthusiasm (Restored) 0.3990 0.3070 0.2434 0.2129 0.1994

Man with a Movie Camera (V) 0.1931 0.1526 0.1161 0.0968 0.0871

Man with a Movie Camera (A) 0.1953 0.1567 0.1249 0.1008 0.0930

Three Songs of Lenin 0.2620 0.2142 0.1830 0.1724 0.1639

Table 5.3: The optimal thresholds tc (with respect to f1 scores) for the different kernel

sizesW . Thresholds that produce optimal retrieval performance in combination withW are

typeset bold as in Table 5.2. Regression analysis reveals a quadratic relationship between

the threshold and the kernel size.
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5.5 Summary

In this chapter we have presented a robust shot cut detector for archive film material.

The method extends a state-of-the-art method for shot cut detection by more robust and

suitable features for archive film and a more effective feature fusion scheme. We employ

block-based DCT coefficients to capture low-frequency content in the film’s frames and

an edge histogram to represent the high-frequency content. We perform a self-similarity

analysis of subsequent frames and compute a correlation function (novelty curve) for

each feature separately. The linear combination of both novelty curves yields the final

novelty function for shot cut detection. The peaks in the novelty function correspond

well to the shot cuts in the films.

We perform experiments with a large number of archive films. From the experiments

we observe that both content-based features are robust against the artifacts present in

the films. We further learn that a linear combination of the novelty curves outperforms

the original approach where the features are fused by concatenation prior to the simi-

larity computation. The proposed method achieves satisfactory results with f1 scores

beyond 0.90 for the detection of shot cuts in archive film.

The proposed method outperforms other established shot cut detectors and is able

to cope with the complex spatio-temporal structure and the manifold artifacts of archive

films [247]. The next step is the identification of other types of shot boundaries, the so

called gradual transitions, which is the topic of the next chapter.
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Chapter 6

Detection of Gradual Transitions

In this chapter, we present a method for the detection of gradual transitions in archive

film material that builds upon the shot cut detector presented in Chapter 5. We present

the different types of gradual transitions in Section 6.1 and discuss the differences be-

tween gradual transitions in archive and contemporary films. For gradual transition

detection two basic types of approaches exist, namely specialized approaches and uni-

fied approaches. We review both types of approaches in Section 6.2 and analyze their

strengths and weaknesses. In Section 6.3 we develop a unified approach for the detec-

tion of gradual transitions in archive film material based on the shot cut detector from

Chapter 5 and the method presented in [47]. The major contribution of this chapter

is a first systematic evaluation of gradual transition detection in archive film material

in Sections 6.4 and 6.5. In the systematic evaluation we investigate the individual

processing steps of gradual transition detection, different low-level features and feature

combinations, similarity measures, fusion strategies, and different system parameters

and evaluate their effect on the detector performance. Additionally, we perform exper-

iments and evaluations with contemporary material in order to compare the behavior

of the method and its components for contemporary and archive film material.

6.1 Introduction

There are different ways to connect two consecutive shots in a film. Additionally to

abrupt shot cuts, which are the most common type of shot boundaries, a filmmaker

has the opportunity to connect two successive shot by a gradual transition. In contrast
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shot boundary

abrupt (shot cut) gradual transition

dissolve wipefade in/out

iris wipe diagonal wipebar wipe ...

Figure 6.1: A taxonomy of shot boundaries. Boundaries between shots are either abrupt

transitions (shot cuts) or gradual transitions. We distinguish between three structurally

different types of gradual transitions: fades (either fade-in or fade-out), dissolves and wipes.

For wipes a large number of subtypes exist, such as bar wipes, iris wipes, etc.

of shot cuts, gradual transitions represent a continuous change between two successive

shots. The concept of gradual transitions is an important stylistic means for the film-

maker to smoothly change from one shot to the next. A wide range of different gradual

transition types exist, such as fades (fade-in and fade-out), dissolves, and wipes. A

taxonomy of shot boundaries is shown in Figure 6.1.

A fade-out is a transition where “the image on the screen fades to black” [20]. A

fade-in refers to the opposite: a shot “gradually fades in from black” [20]. Fade-outs

and fade-ins are often combined to lead the viewer from one shot to the next. A

dissolve is a gradual transition where one shot directly fades into another shot. For a

short duration both shots are visible simultaneously. According to Beaver the typical

length of a dissolve is two seconds [20]. Figure 6.2 shows an example of a fade-out and

a dissolve in contemporary material. The third class of gradual transitions are wipes.

Wipes denote special transforms between two shots. A typical wipe is for example the

horizontal wipe, where one shot pushes away the previous shot from left to right or

from right to left. Wipes were more common in the earlier era of filmmaking [20]. In

the silent films of Dziga Vertov for example wipes are frequently employed to switch

from one motif to the next. A typical wipe in the films is the iris wipe. In an iris-in

wipe “an existing image moves into a circle which rapidly decreases in size until it

disappears” [20]. Synchronously, in the area around the circle a new shot may become
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(a) fade-out

(b) dissolve

Figure 6.2: A fade-out and a dissolve in contemporary (TRECVID) video material.

visible. The reverse process of iris-in is referred to as iris-out wipe. Figure 6.3 shows

different examples of iris-out wipes in historic film material.

The automatic detection of shot cuts and gradual transitions for shot segmentation

is a well-researched topic. In the context of the TRECVID benchmark initiated by

the National Institute of Standards and Technology (NIST) in 2001 numerous methods

for shot boundary detection have been developed [198]. Additionally, the TRECVID

benchmark has made a large amount of annotated video material for shot bound-

ary detection available that enables the objective comparison of different approaches.

Since 2008 the detection of gradual transitions is declared to be solved by the TRECVID

organizers [197, 198]. However, the TRECVID material mostly contains high-quality

(color) video, consequently the conclusion above cannot be transferred to low-quality

and monochromatic archive film material.

For shot cuts, we have shown in Chapter 5, that reliable and satisfactory detection

is possible in the context of archive film by using robust low-level features and a late

fusion strategy (see Section 5.3.4). The main challenges in gradual transition detection

are (i) the large number of different gradual transition types that exist, (ii) the varying

duration of gradual transitions, and (iii) object- and camera movements which are

easily confused with gradual transitions [82, 123, 242, 244]. Archive film material poses

additional challenges to gradual transition detection:
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(a) centered iris-out of an intertitle (over a black frame).

(b) asymmetric iris-out from bottom left corner (over a black frame).

(c) iris-out (over another shot).

Figure 6.3: Different examples of iris-out wipes in historic material. Note the artifacts,

for example the low contrast in (c) that makes this transition difficult to detect even for

human observers.

1. The gradual transitions in archive material are longer than in contemporary mate-

rial. According to Table 6.1 the mean duration of gradual transitions in historic

material is approximately three times the mean length in TRECVID material

(30.7 versus 11.83 frames).

2. The number of different gradual transitions types is larger for historic material

than for TRECVID material (8 versus 3), see Table 6.1. Examples are given in

Figures 6.3 and 6.4.

3. The archive film material contains artifacts that impede gradual transition de-

tection, such as flicker and low contrast originating from uneven exposure of the

110



6.2 Related Work

Type of Gradual Transition #Frames per GT

Material Type Min Max Mean

Historic Dissolve 15 134 31.8

Iris in (from black) 10 52 26.3

Complex transition 25 93 49.6

Iris in (not to black) 23 34 30.9

Bar wipe 25 53 36.8

Iris out (to black) 6 21 12.5

Iris out (not to black) 29 47 38.0

Fade out 20 25 22.5

All 6 134 30.7

TRECVID Dissolve 1 22 2.9

Fade in/out 7 16 10.9

Other 4 107 21.7

All 1 107 11.83

Table 6.1: Gradual transition (GT) types and their durations in historic and TRECVID

material. The gradual transition types are sorted by descending occurrence frequency in

historic and TRECVID material, respectively.

filmstrip (see Section 3.2). Such artifacts create patterns that are easily confused

with gradual transitions and consequently produce false positives.

4. Archive film material is usually monochromatic, which means that color infor-

mation cannot be exploited. Many existing approaches rely on color and thus

cannot be applied.

6.2 Related Work

There are principally two different types of approaches for gradual transition detection:

specialized approaches and unified approaches. In specialized approaches a separate

specialized detector is developed for each type of gradual transition (e.g. a dissolve

detector, a fade-in detector, etc.) A large number of specialized approaches has been

proposed in literature [105, 243, 249]. A popular example is the twin comparison

method by [249] which was later extended by [243]. Most methods rely on color in-

formation (e.g. color histograms) and employ thresholds for the detection of gradual
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(a) a fade out (note the uneven distribution of intensity during fade out).

(b) a dissolve sequence.

(c) a variant of a bar wipe (a barn door vertical open wipe).

(d) a combination of fade-out and iris-out. The intertitle is faded out and simultaneously an iris-out

proceeds.

Figure 6.4: Different examples of transitions that demonstrate the rich diversity of grad-

ual transitions in historic film material.
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transitions. According to Yuan et al., a threshold’s value highly depends on the genre

of the video and thresholds cannot exploit information about the shape of a peak or

valley (e.g. if a peak is sharp or not) in a signal [244]. Consequently, thresholds are

not robust to different types of film and video material and lack in expressiveness.

Liu et al. overcome the problems with thresholds by applying machine learning for

decision making [128, 131]. Their method delivered the best shot boundary detection

performance in TRECVID 2006 and 2007. The authors propose for example a spe-

cialized dissolve detector based on the change of variance of color histograms during

a dissolve. They assume that a dissolve is a linear mixture of two shots and thus the

change of the color variance during a dissolve follows typical curves. Classification of

dissolves is performed with finite state machines and support vector machines (SVM).

Specialized approaches are not well-suited for gradual transition detection in archive

film material. First, most approaches employ color features and thresholds. Color fea-

tures are not applicable to archive material and thresholds are usually not robust to the

artifacts and distortions in archive material. Second, specialized approaches require one

detector for each gradual transition. The individual detectors are usually highly opti-

mized which requires a large amount of training data. Archive film material contains a

large number of differing gradual transition types which would result in a large number

of individual detectors. Furthermore, archive material might not contain enough exam-

ples to train each specialized detector (e.g. if a particular gradual transition appears

only a few times in the films). A shot boundary detector for archive material should

be able to detect gradual transitions even if it has not been trained for it.

Unified approaches better fulfill the requirements of gradual transition detection

in archive film material. Unified approaches are more general than specialized ap-

proaches, since they incorporate only one detector for all gradual transitions. This

allows a broader applicability and makes the approaches less data dependent. Conse-

quently, they are able to detect transitions they have not been trained for. However, for

unified approaches the expected detection rate is lower than for specialized approaches

because unified approaches do not exploit a priori knowledge about the different gradual

transitions types.

Different unified approaches have been proposed in literature. Bescos et al. in-

troduce a unified approach for gradual transition detection which is based on inter-

frame comparison with different temporal distances. They use RGB color values as
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features and detect gradual transitions by thresholding [22]. The method relies on

inter-temporal comparison of all frames with one frame only. Consequently, we expect

a lack of robustness for low-quality film material where single frames may be highly

disturbed.

Yuan et al. utilize a similarity matrix that represents inter-frame similarities [244].

The approach is based on the fact that due to the varying lengths of gradual transitions,

a gradual transition does not leave a pattern as clear as a cut in the similarity matrix

(see Figure 5.2 in Section 5.3.2, Chapter 5 for an example of the clear checkerboard

pattern produced by abrupt shot cuts). The authors compute a self-similarity matrix

with a lower temporal resolution, e.g. by decreasing the frame rate in order to avoid this

problem. In this low-resolution similarity matrix a gradual transition leaves a clearer

pattern (more similar to those of a shot cut). The employed features in the approach

are global and block-based color histograms and classification is performed by an SVM.

Cooper et al. propose an approach for shot boundary detection based on a self-

similarity matrix, as well [47]. The self-similarity matrix is constructed from the pair-

wise comparison of global and block-based color histograms of successive frames. The

authors extract intermediate features from the similarity matrix. The intermediate

features represent the neighborhood of a frame and are input to a K-NN classifier.

The approaches of Yuan et al. [244] and Cooper et al. [47] rely on self-similarity

matrices that compare all frames of a sequence with each other. This property makes

them more robust to distortions. Both approaches perform comparably well on the

TRECVID material. We expect these two approaches to be superior to the approach

of [22] for archive film material.

6.3 Robust Gradual Transition Detection

The proposed approach for gradual transition detection is based on the robust shot cut

detector presented in Chapter 5 and the approach of Cooper et al. [47]. We extend the

approach of Cooper et al. [47] by integrating robust features of the shot cut detector

from Chapter 5 and by exchanging the K-NN classifier by an SVM which is more robust

and less dependent on data.

According to Yuan et al. a shot boundary detector consists of three processing

steps: (i) visual content representation, (ii) construction of the continuity signal and
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(iii) classification [242]. We add a fourth step of (iv) verification to detect and reject

false positives. In the following sections we describe the four basic processing steps in

detail.

6.3.1 Visual Content Representation

Visual content representation refers to the extraction of features which are meaningful

for gradual transition detection. The features should provide a compact and robust

representation of the visual content of a film. A basic requirement is that the features

are invariant to object motion and camera motion to a high degree. In the context

of archive film material, the features have to fulfill additional requirements, such as

invariance towards flickering, scratches, mold and dust.

Since, it is a priori unknown, which features or feature combinations perform best

on archive film material, we extract a representative set of features that captures dif-

ferent aspects from the visual signal. In the systematic evaluation in Section 6.4 we

evaluate the performance of the single features and feature combinations. As the his-

toric material is black and white, we extract luminance histograms. Additionally, we

employ global DCT coefficients and MPEG-7 edge histograms as in Chapter 5 since

they have already performed well for shot cut detection. We extract the luminance

histograms as well as the edge histograms globally and block-based in order to capture

local and global information.

6.3.2 Construction of the Continuity Signal

The next step is the computation of a continuity signal which is an indicator for changes

in the visual signal. Changes may indicate shot boundaries (e.g. dissolves or fades)

or other global changes (e.g. camera movements, movements of large objects, and

illumination changes). We construct the continuity signal in three steps: self-similarity

matrix construction, intermediate feature extraction, and fusion.

Self-similarity matrix construction

We first normalize each feature component separately (over all frames) by a min-max

normalization that transforms all values into the range between 0 and 1. Next, we con-

struct a self-similarity matrix as described in Section 5.3.2 for shot cut detection. We
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Figure 6.5: Similarity matrix of a dissolve with the intermediate feature kernel of frame k.

Dark areas in the similarity matrix indicate low similarity s and bright areas indicate high

similarity.

alternatively employ three different similarity and distance metrics for the construction

of the matrix: L2 distance, Cosine similarity and χ2 distance. Figure 6.5 shows a result-

ing similarity matrix of a dissolve. We observe two bright squares which correspond to

the two shots that are connected by the dissolve. The area along the diagonal between

the two bright squares in the similarity matrix represents the dissolve.

Intermediate feature extraction

The intermediate features represent the temporal neighborhood of a frame in the sim-

ilarity matrix. The size of this neighborhood (the intermediate feature kernel lag L) is

the number of past and future frames of a frame k that are considered for the inter-

mediate feature. The intermediate feature of a frame k consists of the portion of the

similarity matrix that corresponds to the frames k − L to k + L (see Figure 6.5 for an

illustration).

Since the similarity matrix is symmetric, we select one half of the intermediate

feature kernel as intermediate features. We call this a full similarity kernel. To avoid

the curse of dimensionality during classification it is useful to reduce the dimension of

the intermediate feature vectors. For this purpose, Cooper et al. identified the most

relevant components of the intermediate feature vectors by greedy feature selection
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intermediate feature

feature 1

feature 3

feature 2 feature 1 feature 3feature 2

similarity matrix

Figure 6.6: Schema of feature combination with early fusion. In early fusion the feature

vectors are first concatenated and subsequently used to compute the similarity matrix.

which results in a reduced greedy kernel [47]. We alternatively extract the full kernel

and the selected (reduced) kernel of [47] for the evaluation.

Fusion

The information captured from the frames can be maximized by the combination of

different (complementary) features. There are two ways to combine information from

different features in this framework: early fusion and late fusion. In early fusion,

we concatenate different feature vectors and use the resulting vector as input to the

calculation of the similarity matrix. The result is a single similarity matrix as illustrated

in Figure 6.6). The intermediate feature vector for each frame is derived from this

similarity matrix as described above.

For late fusion we compute a similarity matrix for each feature separately. Next,

we extract intermediate features from each resulting similarity matrix. Finally all

intermediate feature vectors are concatenated as shown in Figure 6.7.

6.3.3 Classification

The intermediate feature vectors (independent of the type of fusion) represent the conti-

nuity signal for the analyzed sequence. During classification each frame in the sequence

is classified as either being part of a gradual transition or not. This is performed by

classifying the intermediate feature vector of each frame. We use a Support Vector

Machine (SVM) for classification, see Section 2.5.3. The SVM is able to process high
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intermediate feature 1feature 1

intermediate feature 2feature 2

intermediate feature 3feature 3

intermediate feature 1 intermediate feature 2 intermediate feature 3

Figure 6.7: Schema of feature combination with late fusion. In late fusion for each

feature a separate similarity matrix is computed. Intermediate features are derived from

each similarity matrix in parallel and are finally concatenated.

dimensional feature vectors (which is necessary in case of the full similarity kernel) and

is less prone to overfitting than the K-NN classifier originally employed in [47]. In the

experiments we evaluate the performance of the SVM with different SVM kernels.

The result of classification is a binary label for each frame that indicates whether

or not a frame has been classified as being part of a gradual transition or not. Note

that, since the intermediate features represent the temporal neighborhood of a frame,

the classifier implicitly incorporates temporal information.

6.3.4 Verification

We expect many false positives, outliers, and gaps in the classification results due to

quality of the historic material. We smooth the labeling obtained by classification with

a temporal median filter in order to eliminate outliers and to fill gaps. Furthermore, we

propose begin-end matching and KLT verification for the identification (and subsequent

elimination) of false positives that might occur due to camera or object motion and

abrupt illumination changes.

The goal of begin-end matching is to remove false positives. We assume that a low

similarity between the frames at the beginning and at the end of a candidate gradual

transition indicates a high likelihood that a gradual transition actually occurred. We
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Figure 6.8: Schema for begin-end matching. The mean of the similarity values in the C×C

square indicate whether or not the beginning and the end of a candidate transition are

similar.

use the similarity matrix to calculate the similarity between the beginning and the

end of a candidate transition. We take a square of size C × C frames from the upper

right corner of the similarity matrix of the candidate transition (see Figure 6.8 for an

illustration. These values represent the similarity between the beginning and the end of

the transition. Next, we calculate the mean of the C×C similarity values. A low value

(low similarity) indicates a high likelihood that a gradual transition actually occurs. A

high value indicates a false positive.

KLT verification aims at identifying false positives caused by camera and object

motion. We assume that all objects in a scene must disappear across a gradual transi-

tion. That means, we cannot track the objects continuously across the transition. We

use the KLT feature tracker to detect and track motion [194]. In case we find KLT

feature trajectories that persist through a sequence of frames classified as gradual tran-

sition, we conclude that the sequence is a false positive. If more than a certain number

of trajectories does not break off across the candidate transition, we mark the sequence

as false positive. Theoretically, we expect this threshold to work perfectly with a value

of one, as already one continuous trajectory falsifies a gradual transition. In practice,

higher values of the threshold give higher confidence of the falsification.

6.4 Systematic Evaluation

We perform a systematic evaluation of the individual processing steps and parameters of

the proposed method. We evaluate the method’s performance on archive film material
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as well as on contemporary (TRECVID) material. In the following, we present the

setup of the systematic evaluation and the research questions that are investigated.

6.4.1 Setup for Archive Film Material

Figure 6.9 shows the setup of the experiments with archive film material. We start with

the evaluation of the best global and local single features and the best feature combi-

nation (using early and late fusion). For these three feature sets, we investigate the

influence of different parameters on retrieval performance. In particular we investigate

the following research questions:

1. Which feature delivers the best results? We evaluate each feature separately.

2. Which combination of features delivers the best results, and which fusion strategy

performs best? We use single features and combine them. For all combinations

we evaluate early fusion and late fusion.

3. Which similarity measure delivers the best results? We evaluate the performance

of three similarity measures: L distance, Cosine similarity and χ2 distance.

4. How does the kernel lag L influence the results? We use L = 10 as default. We

evaluate L = 6 and L = 15 with the previously selected features. Note that the

actual kernel size for intermediate feature creation is 2L+ 1.

5. How do different feature selection kernels for intermediate feature creation influ-

ence the results? We evaluate the performance of the full kernel and the reduced

greedy kernel.

6. Which kernel of the SVM delivers the best results? We evaluate different kernels

for the SVM. The standard kernel used in all experiments is linear. Furthermore,

we evaluate a quadratic and a polynomial kernel of third order.

7. What influence do the verification steps have? We take the best performing

setups of the previous experiments and perform median filtering with filter sizes

from 3 to 41 to remove outliers. Furthermore, we perform KLT verification and

begin-end matching.
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Figure 6.9: Overview of the systematic evaluation with archive film material. We start

with the evaluation of single features and feature combinations. For the best features

we evaluate numerous parameters of the method (similarity measures, kernel lags, feature

selection, SVM kernels, verification steps).

8. How do results depend on training data? We perform experiments with three

different training datasets which contain randomly and manually selected samples,

respectively.

6.4.2 Setup for Contemporary Material

We employ contemporary material from the TRECVID benchmark as reference data to

test the validity of our approach. The TRECVID evaluation only distinguishes between

shot cuts and gradual transitions, where a shot cut is a shot boundary of length zero and

a gradual transition is any other shot boundary with a length greater than zero. This is

suitable for our evaluation, since we aim at detecting gradual transitions independently

of their type. Note that abrupt shot cuts are not considered in the evaluation.

We use film material from the TRECVID 2006 shot boundary task. The material

consists of news magazines, science news, news reports, documentaries and educational

programs. At the time of the experiments, the TRECVID 2007 material was available

as well. The 2006 material however contains more gradual transitions and thus is better

suited for the evaluation.

For contemporary material we evaluate a subset of the parameters investigated for

the historic material. Based on the experiences from the previous experiments, we
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Figure 6.10: To test the validity of our approach, we perform experiments on contempo-

rary reference material from TRECVID 2006. First, we evaluate single features and feature

combinations. For the best results from these experiments we evaluate the most important

parameters of the proposed method.

focus on those parameters which have the highest influence on retrieval performance.

Figure 6.10 gives an overview of the experiments.

In a first step, we investigate the best performing feature and identify the best

performing feature combination using early and late fusion. In the next step, we in-

vestigate the influence of the median filter in the same way as for the historic material

(see Section 6.4.1). Finally, we examine the size of the kernel lag L. We reduce the

kernel lag due to the shorter duration of gradual transitions in contemporary material

(see Table 6.1). We employ a value of L = 6 as the default and additionally L = 4

and L = 10.

6.4.3 Evaluation

For training the SVM on historic material, we use two randomly selected data sets and

one manually selected set (see page 127 for details). For the validation of our approach

with contemporary material, we use one randomly selected training data set.

We design the validation for historic and contemporary material to fit the TRECVID

evaluation criteria in order to enable a comparison with previous TRECVID results.

In the TRECVID 2006 task on shot boundary detection each participating group is

allowed to submit up to 10 runs to the evaluation, i.e. 10 detector variants. In our case,

the different detector variants correspond to differently trained SVMs. We compare the

best result (i.e. the best performing SVM model) to the best results of the TRECVID

evaluation.

We use frame recall fr and frame precision fp as performance measures in the

evaluation. Frame recall and precision are defined as in Section 2.6, where a document

refers to a frame in this evaluation. Consequently, frame recall fr is defined as:
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Abbreviation Feature

GLH Global luminance histogram

LH2x2, LH3x3,

LH4x4

Local luminance histograms extracted from

4, 9 and 16 blocks.

GEH Global edge histogram

EH2x2, EH3x3,

EH 4x4

Local edge histograms extracted from 4, 9

and 16 blocks.

DCT Local DCT coefficients

Table 6.2: Features employed in this study and their abbreviations.

fr =
|{frames correctly assigned to gradual transitions}|

|{frames belonging to grad. trans. in ground truth}|
, (6.1)

and frame precision fp is:

fp =
|{frames correctly assigned to gradual transitions}|

|{all retrieved frames}|
. (6.2)

Additionally, we employ the f1 score (see Section 2.6) obtained from frame recall

and frame precision for evaluation. The usage of these measures makes our results fully

comparable with the TRECVID results.

6.5 Experimental Results

6.5.1 Archive film material

An overview of the systematic evaluation is given in Figure 6.9. First, we present and

discuss the performance of single features and the performance of feature combinations

with different fusion strategies. Table 6.2 contains a description and the abbreviation

of the features we extract from each frame. We conduct all feature related experiments

with the same training data set. We utilize the χ2 distance to construct the similarity

matrices and employ a full similarity kernel with lag L = 10. The SVM is trained with

a linear kernel and verification is skipped.

Single features

The evaluation of single features in historic material shows that the local edge histogram

with 16 blocks (EH4x4) performs best (see Figure 6.11). We observe, that block-
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Figure 6.11: Performance of single features for historic material in terms of the f1

score. The best performing single feature is the block-based edge histogram with 16 blocks

(EH4x4).

based features perform better than global features, and that a larger number of blocks

increases performance. This applies to luminance histograms (GLH, LH2x2, LH3x3

and LH4x4) as well as edge histograms (GEH, EH2x2, EH3x3 and EH4x4). From the

experiments, we learn that structure and shape information represented by the edge

histograms are more important (and more robust) for gradual transition detection

than the intensity distribution provided by the luminance histograms. This contradicts

earlier findings based on contemporary material [47, 242].

Feature fusion

Figure 6.12 shows the results for different feature combinations compared to the best

single feature. Early fusion decreases quality in most of the cases. The combination

of features with late fusion tends to improve results. The combination of all features

performs best. We observe that all late fusion combinations, that perform significantly

better than the best single feature, utilize DCT in combination with at least one local

feature. The late fusion of DCT with a local and a global feature yields the largest

performance improvement. We assume that the improvement is due to the fact that

the combined features represent complementary information.

Similarity measures

Table 6.3 summarizes the results of different similarity measures for the best global fea-

ture (GEH), the best local feature (EH4x4), and the best feature combination (GLH,

DCT, GEH, EH4x4, LH4x4 with late fusion). For the evaluation of the similarity mea-

sures we fix the kernel lag at 10, use a full kernel for the generation of intermediate
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Figure 6.12: Performance of feature combinations with different fusion strategies in terms

of f1 score. The dark bars represent results with late fusion and the brighter bars are results

with early fusion. In the majority of cases late fusion yields better performance than early

fusion. Note that not all feature combinations improve performance compared to the best

single feature (horizontal dashed line).

Feature Similarity measures

χ2 distance L2 distance Cosine similarity

GEH 0.28 0.28 0.24

EH4x4 0.32 0.32 0.30

Combination 0.41 0.39 0.38

Table 6.3: f1 values for different similarity measures for the best local and best global

feature and for the best feature combination.

features, and apply a linear SVM. We observe, that the χ2 distance slightly outper-

forms L2 distance and Cosine similarity with all evaluated features and the feature

combination. The L2 distance performs comparably well to the χ2 distance only with

single features (GEH and EH4x4). The Cosine similarity performs suboptimal in all

three experiments. We select the χ2 distance for the further experiments.

Intermediate feature kernel lag

We further evaluate the kernel lag for the creation of the intermediate features. For

this purpose, we employ the χ2 measure, use a full feature selection kernel, and a linear

SVM. We evaluate the kernel lag for the best global feature, the best local feature, and

the best feature combination.

We observe that a larger kernel lag generally leads to a better result (see Table 6.4).

A lag of 10 performs better in any case than a lag of 6. This is especially true for
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Feature Kernel lag L

L = 6 L = 10 L = 15

GEH 0.26 0.28 0.24

EH4x4 0.29 0.32 0.32

Combination 0.30 0.41 0.48

Table 6.4: f1 values for different kernel lags for the best local and best global feature and

for the best feature combination. Note that the actual kernel size is 2L+ 1.

the best feature combination with late fusion where the increase of the lag yields an

improvement of more than 25% (from 0.3 to 0.41). The increase of the lag from 10

to 15 further improves the performance of the feature combination. For the best single

and the best global feature however the increased lag does not improve performance.

Intermediate feature selection

We observe in the experiments that greedy feature selection as proposed by Cooper et

al. in [47] in most cases decrease performance. While the result with the best perform-

ing single feature (EH4x4) is relatively stable, the result for the feature combination

decreases significantly (by 7%) when greedy feature selection is applied. We conclude,

that greedy feature selection is not appropriate for the historic material because the

original greedy kernel has been trained using contemporary material in [47].

SVM kernels

We evaluate three different SVM kernels: a linear kernel and two polynomial kernels of

order two and three. In the majority of experiments the linear kernel outperforms the

polynomial kernels. The quadratic kernel achieves slightly lower performance than the

linear kernel throughout the experiments. For the polynomial kernel of order three re-

sults even partly degenerate. Overall, the linear kernel is more stable in the experiments

than the other kernels.

Verification

Figure 6.13 shows the performance of the best performing setup with different kernel

lags L and with different median filter sizes (from 0 which means that no median filter

is applied to 43). The application of a median filter significantly improves results for

126



6.5 Experimental Results

median filter size

0

0.10

0.20

0.30

0.40

0.50

0.60

0 15 19 23 27 31 35 39 433 5 7 11

Figure 6.13: f1 scores for the best performing setup with two kernel lags L = 10 (dark

bars) and L = 15 (bright bars). The median filter improves results for both kernel lags

because it filters outliers that result from classification.

both setups. The highest scores obtained for both setups with the median filter are

equally good. We assume, that the median filter is a possible substitute for a larger

intermediate feature kernel since the median filter as well as a larger kernel compensate

for the distortions (artifacts) in the historic material. In both setups, the median filter

is most effective with a window size of 31 frames. Note that this value correlates with

the median length of the gradual transitions in the historic material (see Table 6.1 in

Section 6.1).

We have further analyzed the performance of the two verification procedures (begin-

end matching and KLT-verification). Both procedures do not improve retrieval perfor-

mance. One reason is that the feature trajectories obtained by the KLT feature tracker

often break off due to the large amount of noise in the data. That means that false

positive detections cannot be identified, because there are no trajectories that persist

through the entire sequence. Instead the trajectories break off even when no gradual

transition occurs. This contradicts with the assumptions made for KLT verification

(see Section 6.3.4).

Dependence on training data

We investigate the influence of the training data on the results. We compare the results

for three different training sets. The first two training sets employ randomly selected

training data. We evaluate if the features deliver comparable results for both sets and

thereby if the performance is independent from the training data set. Note that these

training sets do not necessarily contain samples of all gradual transition types. The

third training set is manually selected and contains frames from all gradual transitions
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Figure 6.14: The performance (in terms of f1 score) for three different training data sets.

The dark and the medium bars correspond to results for the first and second randomly

selected training set. The bright bars represent results for the manually selected data

set. The training data influences the method’s performance. However, the best feature

combinations yield the best results consistently.

types. With the third training data set we evaluate if a manual optimized selection of

the training data outperforms the random selection.

We observe that the results are not independent from the training data set (see Fig-

ure 6.14). However, the results are consistent over all evaluated feature combinations.

The three best feature combinations we identified above are the three best combina-

tions in each of the experiments. Furthermore, we observe that the manual selection

of training data (that includes examples of all gradual transition types) does not im-

prove the method’s performance (see Figure 6.14). This indicates that the presented

approach is able to detect gradual transitions even if no or only incomplete samples of

that transition type are included in the training set.

6.5.2 Contemporary film material

The goal of the experiments with contemporary material is to demonstrate the general

validity of the approach. Table 6.5 shows a comparison of the best result obtained in

the experiments with those of the TRECVID 2006 shot boundary detection task (only

the results of unified approaches were selected). The results show, that the performance

of the approach lies in the range of the TRECVID results. Note that the method has

not been optimized for contemporary material.

In the following we investigate the performance of different components of the

method (single features, feature fusion, kernel lags, and median filtering) and investi-
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Approach fp fr f1

TRECVID 2006 best (unified) 0.80 0.87 0.84

TRECVID 2006 mean of all (unified) 0.69 0.79 0.72

Proposed approach 0.52 0.62 0.56

TRECVID 2006 worst non-zero (unified) 0.32 0.80 0.46

Table 6.5: Comparison of the approach’s performance to TRECVID results.

Abbreviation Feature

GUH Global histogram of the U channel

GVH Global histogram of the V channel

GRH Global histogram of the R channel

GGH Global histogram of the G channel

GBH Global histogram of the B channel

UH4x4 Local histogram of U channel extracted from 4 blocks.

VH4x4 Local histogram of V channel extracted from 4 blocks.

RH4x4 Local histogram of R channel extracted from 4 blocks.

GH4x4 Local histogram of G channel extracted from 4 blocks.

BH4x4 Local histogram of B channel extracted from 4 blocks.

Table 6.6: Color features employed in this study and their abbreviations.

gate differences in behavior of the approach between historic material and contemporary

material.

Single features

Since the contemporary material contains mostly color video, we add color features

in the evaluation. For this purpose, we compute a histogram for each RGB color

channel. Additionally, we transform the frames into the YUV color space and extract

additional histograms for the U and V channel. The color features together with their

abbreviations are summarized in Table 6.6.

Figure 6.15 shows the performance of single features. We observe, that the global

features perform better than the local (block-based) ones in most of the cases. The best

performing global as well as the best performing block-based feature is the histogram

based on the green color channel (GGH, GH4x4). For luminance histograms (GLH,

LH4x4) and the red color channel histograms (GRH, RH4x4) the performance is only
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Figure 6.15: Performance of single features (f1 score) with contemporary material. Ad-

ditionally to the features employed for historic material (see Table 6.2) we extract global

and block-based YUV and RGB histograms.

marginally lower than for the green color channel histograms. The features derived

from the blue color channel yield significantly lower results. We assume that this

performance difference is explained by the proportion of red, green, and blue in the

luminance Y: Y = 0.299R+ 0.587G+ 0.114B. The green channel contains most of the

luminance information; the red and green channel combined contain almost 90%. Blue

has the smallest influence.

From the experiments we observe that (pure) color information seems to be of

limited importance, since the U and V histograms (which do not contain intensity

information like the histograms from the RGB channels) perform poorly. In contrast

to the experiments with historic material, the DCT coefficients and the edge histograms

(GEH, EH4x4) yield poor performance. The best features in the study are the global

luminance histogram and the global histogram of the green channel.

Feature fusion

Early fusion is clearly outperformed by late fusion in our experiments with contem-

porary material. Consequently, we focus on late fusion in the following. Figure 6.16

depicts the results for late fusion with contemporary material. We observe, that no

feature combination improves the result compared to the best single feature (GGH).

The feature combination that is closest in performance, contains the global histograms

of the red and green channel. This means that the information in the red channel

weakens the result (the performance of the combined red and green channel histograms

is lower than that for the green channel histogram alone). The same applies to the

blue channel. The combination of the global R, G and B histograms (GRH, GGH,
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Figure 6.16: For contemporary material the combination of features (with late fusion)

does not improve performance (in terms of f1 score). The horizontal dashed line represents

the performance of the best single feature.

GBH) is also outperformed by the green channel histogram. Overall, we observe that a

combination of features has no benefit on the method’s performance for contemporary

material.

Intermediate feature kernel lag

The standard kernel lag L has a value of 6. The experiment with the global luminance

histogram resulted in f1 = 0.588 (see Figure 6.15). We conduct two further experiments

with values for L = 4 and L = 10. The resulting f1 values are 0.570 and 0.565. We

observe, that the kernel lag has no significant influence on the result. Even the smallest

kernel performs well. We assume, that this is due to the short mean duration of the

gradual transitions in contemporary material (see Table 6.1).

Verification

Figure 6.17 shows the effect of a median filter with different sizes on the performance.

In contrast to the application of the median filter on historic material, we achieve no

performance improvement. Since the contemporary material does not contain artifacts

as the historic material, we conclude that the median filter is not necessary for high-

quality material.
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Figure 6.17: The application of the median filter has no positive effect on the f1 score

for contemporary material.

6.6 Summary

In this chapter we have presented and evaluated a method for the detection of gradual

transitions in historic film material. The method follows the approach of [47] and

extends it by robust features, a robust classifier and a verification step to remove

outliers which is necessary for highly distorted film material.

We perform a systematic evaluation of the method and its components for his-

toric and contemporary material. We evaluate different types of features, similarity

measures, feature combinations, feature selection, and different system parameters.

Additionally, we compare two different schemes for feature fusion in the framework.

Different methods for verification based on motion, begin-end matching, and temporal

median filtering are evaluated. The main findings from this evaluation are:

• Due to flickering and brightness variations in the historic material different fea-

tures than for contemporary material are required. Global and local edge his-

tograms robustly describe structure and shape information in the visual signal

and are well-suited for this purpose.

• In historic material local edge histograms even outperform luminance histograms.

In contrast to this, in contemporary material luminance histograms outperform

edge histograms. Additionally, we observe that color features have only limited

influence on performance.
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• The combination of more than one feature with late fusion significantly improves

the results for historic material. Late fusion generally outperforms early fusion.

In contemporary material both, early and late fusion do not improve performance.

• For historic material a larger kernel for the intermediate features are necessary

than for contemporary material because of the longer duration of gradual transi-

tions in historic material.

• Due to the artifacts in the material, classification produces numerous outliers and

gaps. A temporal median filter with a size close to the mean length of the gradual

transitions is well-suited to remove outliers and fill gaps. The simple temporal

median filter is more effective in removing false detections than more complex

approaches based on motion (KLT trajectories) and begin-end matching.

The results obtained for gradual transition detection (f1 ≈ 0.56) are significantly

lower than those for shot cut detection (f1 between 0.85 and 0.94) in Chapter 5. The

reason for the lower performance lies in the duration of gradual transitions in historic

material. Due to the long duration, the transitions generate only slight differences

in successive frames which make them difficult to detect. For the detection of long

transitions the size of the analysis window (kernel lag) has to be adapted accordingly.

However, the longer the analysis window the higher the probability that a camera or

object motion is confused with a gradual transition. Additionally, the likelihood that

artifacts occur and disturb the detector increases for large windows. The experimental

study presented in this chapter shows that gradual transition detection for historic

material is still a challenging task that is far from being solved.
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Chapter 7

Segmentation of Scenes

In Chapters 5 and 6 we have presented methods for the detection of abrupt shot cuts

and gradual transitions. These methods enable the segmentation of a film into its basic

structural units, the shots. The next higher temporal unit in a film are scenes. A scene

principally represents a series of consecutive semantically related shots. Scenes are an

important structural as well as semantical higher-level concept in films. On the one

hand, scenes structurally partition a film into parts with different topics and on the

other hand, the topic of a scene usually has a particular semantic meaning important for

transporting the message of a film. In this chapter, we investigate scene segmentation in

the context of archive film material. In Section 7.1 we present the specific requirements

for scene segmentation introduced by the archive films. We review related approaches

in Section 7.2. Section 7.3 presents an extensible multimodal framework for scene

segmentation that does not require a priori knowledge about compositional rules and

thus is applicable to arbitrary audio-visual content. We perform a systematic evaluation

of the framework (see Section 7.4) and investigate the performance and behavior of

features, similarity measures, multimodality, and the framework’s parameters. Results

of the systematic evaluation for both archive film and contemporary film are presented

in Section 7.5.

7.1 Introduction

In modern fiction films, such as Hollywood films, scenes usually depict activities re-

lated to the same dramatic incident or location [20]. This definition is not applicable

135



7. SEGMENTATION OF SCENES

to documentaries and especially not to artistic archive documentaries. In archive doc-

umentaries, shots constituting a scene are related on a higher abstraction level. For

example, in a fiction film, a scene may show two people driving in a car and talking

to each other. All the shots depicting this conversation form the scene. In an archive

documentary, a scene for example may consist of shots that show how electricity is

brought to a village. Shots of the scene show someone installing a power line, peasants

using an electrical thresher and several houses of the village with electrical lighting.

All these shots are recorded at different locations and at differing times. The cohesion

of the shots is generated purely on a semantic level without spatio-temporal relations.

Due to the low cohesion of shots there is only little a priori knowledge (e.g. about

composition rules from film grammar) that can be incorporated into the segmentation

process. The most important clue for scene segmentation in archive documentaries is

the repeated appearance of visually and auditory similar shots and motifs.

We present a framework for scene segmentation that solely relies on the repeated

occurrence of similar auditory and visual content. The most important characteristics

of the framework are:

• It allows the integration of arbitrary visual and auditory features and respec-

tive similarity and distance measures. The larger the number of features, the

more different auditory and visual aspects can be taken into account for scene

segmentation.

• A common fusion process combines all similarities found by different features.

Since the importance of the single features is unknown a priori each feature is

weighted equally during fusion.

• A two-stage process improves the quality of the segmentation. In the first stage

we identify core scenes. In the second stage we refine the segmentation and

determine the final scene boundaries.

• The framework is applicable to arbitrary film material (e.g. contemporary films)

since it solely relies on audio and visual similarities.

In this chapter, we present the proposed framework and perform a systematic evalu-

ation of different parameters of the framework. In the systematic evaluation we first

estimate adequate similarity measures for the different features. Next, we evaluate the
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performance of different features and feature selections and the benefit of multimodal-

ity for scene segmentation. Additionally, we investigate the behavior of the framework

under variation of the framework’s parameters. Ultimately, we investigate the benefit

of the refinement stage of the framework. All experiments are carried out for archive

films and contemporary films in parallel in order to allow for performance comparisons.

7.2 Related Work

Existing techniques for scene segmentation usually target at contemporary films. There

are a few methods that exploit specific film editing techniques. Tavanapong and Zhou

for example exploit the human perception of continuity. They construct a visual feature

vector based on (key-)frame regions which are important for the human perception of

continuity in narrative films. They use this feature vector at several stages of their

algorithm, for details see [212]. Other scene segmentation approaches that exploit

specific film editing rules were devised by Truong et al. [216]. The authors analyze film

grammar to identify rules and conventions that are applied for the creation of scenes

by filmmakers. These rules and conventions are then exploited for the segmentation of

films into scenes.

Scene segmentation methods that work for non-narrative films, such as archive

documentaries, cannot rely on specific film editing techniques and composition rules.

These methods have to employ auditory and visual similarities as the only clues. First

steps towards scene segmentation based on visual similarity are presented by Yeung

et al. [240]. Yeung et al. introduce the complete-link method for clustering shots

based on visual (color and luminance) similarity under a temporal constraint. They

require shots to be temporally close to be considered as part of one cluster. Using the

results of the clustering process, the authors build a scene transition graph. Individual

scenes are identified by finding the cut-edges that partition the graph into disjoint sub-

graphs. These sub-graphs represent the final scenes. Another method that is based on

similarity and a temporal constraint is introduced by Hanjalic et al. [84]. The authors

segment movies into Logical Story Units (LSUs) which are approximations of scenes.

The method analyzes the visual dissimilarity of shots in a sliding time window. The

dissimilarity computations rely on keyframes representing the shots. For each keyframe

the average color in the L∗u∗v color space is extracted and used for the dissimilarity
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computation. If the dissimilarity between two shots Sk and Sn where k < n, exceeds

the dissimilarity threshold, a LSU break is recognized. If the dissimilarity between Sk

and Sn is lower than the threshold a so called overlapping-link is detected and all shots

inbetween Sk and Sn are grouped to belong to the same LSU containing the shots Sm

where m ∈ [k, n]. Based on the principles of overlapping links and visual similarity

a number of scene segmentation methods have been developed [146, 235, 251]. Wang

et al. perform an iterative backward and forward search for similar shots in a video.

Shot similarity is defined as the combination of visual similarity and consistent motion

characteristics (motion similarity). The visual similarity of shots is expressed in terms

of the maximum similarity between all combinations of the first and the last frames of

two shots. The frame similarity computation is based on color histograms. Wang et al.

extract the motion similarity by comparing the accumulated motion intensities of two

shots. Eventually, the motion characteristics and the visual similarity are weighted and

summed to arrive at the value for shot similarity. Zhu and Liu [251] integrate texture

and gray information variance as the visual features for scene segmentation in their

framework. Gray information variance is obtained by dividing the frame into 8 × 8 =

64 image blocks and computing the variance of the gray values within each block.

Additionally, the variance of the first-level coefficients of a Haar wavelet transform and

the corresponding average of the entire frame represent texture information.

There exist techniques that incorporate auditory similarity in addition to visual

similarity. One such method was devised by Pfeiffer et al. [166]. They use audio

and visual features to classify shots as belonging to three types of scenes: dialogs,

settings and similar audio. Starting from shot boundaries they extract features for the

shots and compute shot distance tables. Pfeiffer et al. distinguish background and

foreground audio using a loudness feature, they argue that background sounds set the

atmosphere and are less loud than foreground sounds. Additionally, they identify audio

cuts measuring the changes in the distribution of frequency intensities over time. Visual

features include a frontal face detector, color coherence vectors and an orientation

feature. All features are input to the computation of the shot distance tables. Similarity

clustering of shots is performed on the distance tables. Finally, the three different scene

types are merged to obtain a scene segmentation for the entire film. Sundaram and

Chang [206] propose a multimodal method that is based on the separate detection

of auditory and visual scenes. First, the authors extract a set of auditory features
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including cepstral flux, spectral flux, zero crossing rate, energy, cepstral features, and

cochlear decomposition. Second, they compute a correlation function based on the

Euclidean metric. Finally, they identify audio scene boundaries using the minima of the

correlation function. The video scene boundaries are identified using color histograms

and a human perception model. Eventually, Sundaram and Chang merge the lists of

audio scene boundaries and video scene boundaries using a time-based nearest neighbor

criterion. The merged list is the final scene segmentation.

The framework proposed in this chapter also takes visual and auditory information

into account. However, in contrast to existing techniques we abstract from the two

different modalities and treat all features whether they originate from the audio track

or the visual signal equally. This reduces the number of assumptions necessary for the

fusion and combination of information derived from the auditory and visual domain

to a minimum and makes the framework generally applicable to the segmentation of

audio-visual signals. Additionally, the proposed framework solely bases on auditory

and visual similarities and does not require models of auditory and visual scenes.

7.3 Multimodal Scene Segmentation Framework

An overview of the proposed framework is provided in Figure 7.1. In a first step the

shot boundaries (shot cuts) are detected in the visual track. For each shot, we extract

a key frame and compute different visual content-based features fV
1 , fV

2 , ..., fV
N for each

keyframe. From the audio track, we first extract auditory features continuously for

the entire film, resulting in features φA
1 , φ

A
2 , ..., φ

A
M . These continuous features are then

aggregated for each shot as described in Section 7.3.2 resulting in shot-based auditory

features fA
1 , fA

2 , ..., fA
M . The audio and visual features (representative for single shots)

form the input of shot grouping. The result of shot grouping are separate groupings for

each audio and visual feature. Next, the individual groupings are fused together which

results in a sparse segmentation of the film into core scenes. Eventually, the refinement

and pruning stage determine the final scene boundaries.

7.3.1 Feature Extraction

Prior to feature extraction we locate the positions of the shot cuts in the investigated

film by the approach presented in Chapter 5. Then, we select the first frame of each
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Figure 7.1: An overview of the proposed framework.

shot as a keyframe. The next computational step is the extraction of audio and vi-

sual content-based features. Arbitrary features can be integrated into the framework.

For the visual description for example histograms, texture descriptors and local feature

point descriptors may be employed. An important factor is however, that the extracted

features represent complementary information. Complementary features enable to cap-

ture a larger spectrum of visual similarities and thus a larger variety of visual aspects

from the film. The same applies to auditory features. Auditory features are extracted

continuously for the entire sound track of the film. For this purpose a small analy-

sis window is moved across the sound track and at each window position features are

extracted. The auditory features have to be aggregated over entire shots in order to

obtain a compact description of a shot’s audio content. The aggregation of auditory

features is presented in the next section.

7.3.2 Audio Aggregation

In contrast to the visual features which are extracted for a keyframe of a shot, the au-

ditory features have been extracted for the entire audio signal of a shot. Consequently,
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Figure 7.2: Aggregation of auditory features by clustering.

they must be aggregated over the shot in order to get a compact description of the

audio content of the entire shot. Different schemes for the aggregation of audio exist.

A common practice for feature accumulation is to compute statistical measures, such as

mean, variance, median, etc. for each feature component over time [41]. However, the

mean and variance of a feature component over an entire shot are too coarse measures

to represent the audio content of an entire shot reasonably. We apply a more elaborate

scheme for feature aggregation that is based on the clustering of feature vectors. An

overview of the scheme is shown in Figure 7.2.

After feature extraction, we first remove feature vectors of silent audio frames.

Feature vectors that capture silence do not represent discriminatory information and

would distort similarity comparisons. We extract a loudness feature (specific loudness

sensation, see Section 2.2.4) and sum up all components of the feature in an audio

frame. The resulting value approximates the loudness in the audio frame. If the value

is below a threshold, the audio frame is considered silent and is excluded from further

analysis.

Next, the remaining audio frames are clustered on a shot basis. The feature vec-

tors of all non-silent audio frames of a shot are input to mean-shift clustering [71].

Mean-shift generates a variable number of clusters and returns the respective cluster
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centers c1, c2, ..., cR which have the same dimension as the input feature vectors. We

employ the returned cluster centers as representation of the audio content of a shot.

The presented aggregation scheme is applicable to arbitrary auditory features that can

be extracted for short audio frames (short-time features).

7.3.3 Shot Grouping and Fusion

We employ the overlapping links method for shot grouping [84]. The overlapping links

method compares subsequent shots in a temporal analysis window to each other based

on a particular feature and similarity measure. We limit the similarity computations

between the shots to a time window of several preceding and following shots. In litera-

ture this is often referred to as temporal constraint, basically the temporal constraint

ensures that shots that are temporally far apart are not assigned to the same scene.

This constraint is necessary because otherwise two audio-visually similar shots, one at

the beginning and one at the end of a film would result in severe under-segmentation.

There would be a single scene comprising the greater part of the film.

The framework allows for the integration of arbitrary similarity and distance mea-

sures for the comparison of shots represented by audio or visual features. We evaluate

a number of similarity measures in the context of the framework, see Section 7.4.1.

Similarity measures can be directly applied to the visual features which comprise one

feature vector per shot. For the aggregated auditory features similarity measures cannot

be directly applied since the features contain several vectors per shot. We propose an

appropriate scheme for the comparison of aggregated auditory features in the following.

The similarity between two shots hu and hv represented by the i-th auditory feature

(with P and Q cluster centers, respectively) fA
i (hu) = {cu1

, cu2
, ...cuP } and fA

i (hv) ={
cv1 , cv2 , ...cuQ

}
is the maximum similarity between all possible pairs of cluster centers

of both shots:

simA
i (u, v) = max

p=1,...,P
q=1,...,Q

sj(cup , cvq), (7.1)

where sj is the similarity measure. The proposed comparison scheme enables the appli-

cation of arbitrary similarity and distance measures for the comparison of aggregated

auditory features.

After assigning each feature an adequate similarity measure, the overlapping links

method is applied. The principle of the overlapping links method is the following: First,
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Shot 1 Shot 3 Shot 4 Shot 6Shot 5Shot 2 Shot 7 Shot 8 Shot 9 Shot 10

Shot 1 Shot 3 Shot 4 Shot 6Shot 5Shot 2 Shot 7 Shot 8 Shot 9 Shot 10

Group 1 Group 2

Figure 7.3: The similarity computations show which shots belong together (indicated by

the arrows and shading). Shots that have no similarities (e.g. shot 9) but exist between

matching shots are assigned to the group defined by the surrounding matching shots (shot 8

and shot 10).

for each feature in the framework a threshold is defined for similarity comparisons. If

the similarity between two shots for a particular feature fi exceeds threshold ti, the

two shots are considered similar given feature fi. Next, we compare all shots inside a

temporal window of w shots with each other and group shots with a similarity higher

than the threshold together. Additionally, shots that are between two similar shots

are assigned to the group of the surrounding similar shots. Figure 7.3 illustrates this

process. Note that the size w of the temporal analysis window is at least 5 in this

example to allow establishment of the first link between shot 1 and shot 5.

We apply the overlapping links method for each audio and visual feature separately

and obtain one shot grouping for each content-based feature. The different groupings

are combined into a first segmentation by a simple fusion scheme: We merge the dif-

ferent segmentations using the set operation union. For an illustration see Figure 7.4.

Consider for example shots 2 to 5 for the three groupings in Figure 7.4. Shot 3 and

shot 4 are part of one group according to feature f1 (first row in Figure 7.4). Shots 2

and 3 are part of one group according to feature f2 (second row in Figure 7.4) and

shots 4 and 5 are part of the same group according to feature f3. The union op-

eration combines these overlapping sets of shots into one segment that contains the

shots 2, 3, 4, and 5. The output of this procedure are the so called core scenes (last

row in Figure 7.4). We call the shots that are not assigned to any core scene loose shots

(e.g. shots 6 and 7 in Figure 7.4).

An important issue in the context of the selected fusion scheme is the dependence on

the preceding shot grouping process. If the shot groupings are too tolerant, the union
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Shot 1 Shot 3 Shot 4 Shot 6Shot 5Shot 2 Shot 7 Shot 8 Shot 9 Shot 10

Shot 1 Shot 3 Shot 4 Shot 6Shot 5Shot 2 Shot 7 Shot 8 Shot 9 Shot 10
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Feature f2

Feature f3

Merged
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Figure 7.4: The three groupings obtained by the content-based features f1, f2, and f3

are combined. The result of this combination are the core scenes.

operation generates an under-segmentation of the film. The shot grouping should be

strict enough so that shots are grouped together (considered similar) only if they have

a significant similarity. A stricter grouping can be obtained easily by increasing the

similarity comparison thresholds.

In this investigation, we focus on performance evaluations of different features and

feature combinations in the framework. We therefore do not implement a sophisti-

cated fusion scheme. The framework however allows the integration of arbitrary, more

complex schemes.

7.3.4 Refinement and Pruning

After fusion we obtain core scenes and numerous remaining loose shots inbetween the

core scenes. This over-segmentation is reduced by assigning the loose shots to neighbor-

ing core scenes. The assignment of loose shots to core scenes is again performed solely

based on visual and auditory similarities and does not require a priori knowledge. Ad-

ditionally, the assignment scheme minimizes the likelihood that a loose shot is assigned

to the wrong (less similar) neighboring core scene. The principle of the assignment

of loose shots is illustrated in Figure 7.5. First, a loose shot (hL1 in the Figure) is

compared to all shots from the neighboring core scenes A and B. Next, the maximum

similarities between hL1 and all shots from core scenes A and B are estimated based

on a feature fi. If the maximum similarity with core scene A is higher than for B by
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Figure 7.5: The process for the labeling of a loose shot.

a factor ρ, the loose shot is labeled “A”. In the opposite case the loose shot is labeled

“B”. If both conditions are not fulfilled, the shot cannot be assigned uniquely to one of

the core scenes and gets the neutral label “N”. The factor ρ assures that a loose shot

is only assigned to a core scene if the shot is sufficiently more similar to one core scene

than to the other. By this approach, we avoid the assignment of a loose shot if no safe

decision for either core scene can be made.

Figure 7.5 illustrates the labeling of one loose shot for one content-based feature

only. If several features are employed in the framework, we repeat the entire process for

each feature and obtain a label for each feature. The obtained labels for each feature

may be heterogeneous. We apply a majority voting on the labels. If there are more

decisions for scene A then for scene B the loose shot is labeled “A”. In the opposite

case, we label the shot with “B”. If the voting is undecidable (same number of labels

“A” and “B”) the shot is labeled neutral (“N”).

Loose shot assignment as described above is performed for all loose shots between

two core scenes. The result is one label for each loose shot. The final goal of the

refinement step is to find a position in the set of loose shots where we can join the two

neighboring core scenes. An important constraint in finding this position is to minimize

the likelihood of a wrong assignment of a labeled loose shot. If the sequence of labels for
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five loose shots is for example “AAABB”, the assignment of the loose shots is possible

without error. The neighboring core scenes are simply joined after the third loose shot:

“AAA|BB”. In general however the sequence of labels cannot be split without errors,

which is for example the case in the sequence “AABBA”. There is no split position

where all loose shots can be assigned according to their label.

Finding an optimal split position in the label sequence is a simple optimization

problem. We linearly scan the sequence and split the sequence at each possible position.

For each split position we assign costs to the loose shots. If the label of a loose shot

matches the neighboring core scene, we assign costs of 0. If the label of a loose shot

does not match the neighboring core scene, we assign costs of 1. If a loose shot has

label “N” it always gets assigned costs of 0. This assures that shots labeled neutral

have no influence. The overall costs for the current split-position is simply the sum

of costs over all loose shots (which is the number of falsely assigned labels with the

weights selected above). We evaluate the overall costs of each possible split position

and select the position with the minimum costs and thus with the minimum number

of wrong assignments.

The final result of the refinement is a dense segmentation of a film into scenes.

Refinement reduces over-segmentation by removing gaps with loose shots between core

scenes. We further reduce over-segmentation in a pruning step that removes scenes

which contain less than four shots since such segments are too short to represent a

scene. After removing these short scene candidates the resulting gap between the

neighboring scenes is closed by positioning the new boundary between both scenes in

the middle of the gap.

7.4 Systematic Evaluation

The presented framework is a well-suited basis for the investigation of different research

questions in the context of automatic scene segmentation. We perform a systematic

evaluation of the different components and parameters in the framework in order to

answer the following questions:

1. How different is scene segmentation in archive film material from scene segmen-

tation in contemporary material? Are the optimal features, feature selections,

parameter values, etc. similar for both types of material or are there differences?
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The latter would indicate that archive film material requires specialized methods

for scene segmentation.

2. How do different features and feature selections perform? Do the more sophis-

ticated SIFT features outperform simple features, such as intensity histograms

and edge histograms? Which is the best single feature? Does the combination of

different features improve results?

3. Does scene segmentation benefit from multimodal (audio-visual) processing or do

the two modalities impede each other? How well do the two modalities perform

on their own?

4. How large is the influence of the similarity and distance measures? Which simi-

larity measures are most appropriate for the evaluated features?

5. How does the temporal window size influence the performance of scene segmen-

tation? How does the choice of the similarity comparison thresholds influence

results? Are the optimal threshold values similar for different films? Are there

dependencies between the temporal window size and the similarity comparison

thresholds?

6. Do refinement and pruning improve the scene segmentation? How large is the

performance gain?

Questions from 2 to 6 are investigated for archive film material and contemporary

film material separately in order to answer the questions in 1.

7.4.1 Experimental Setup

We employ a number of archive and contemporary films for the systematic evaluation.

The films and their characteristics are summarized in Table 7.1 which provides the film

name, the name of the director, the year of release, the available modalities (Mod.),

the number of shots and the number of ground truth scenes. In the evaluation we

distinguish between three groups of films: (i) archive silent films, (ii) archive sound

films, and (iii) contemporary films. The groups are analyzed separately and the results

are later compared. In the group of archive silent films we additionally incorporate the

two archive sound films (“Enthusiasm” and “Three Songs of Lenin”), however without
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Film name Director Year Mod. #shots #scenes

The Eleventh Year D. Vertov 1928 V 660 25

Man with a Movie Camera (V) D. Vertov 1929 V 1782 55

Enthusiasm (Restored) D. Vertov 1931 V+A 612 30

Three Songs of Lenin D. Vertov 1934 V+A 817 37

Top Gun (TGun) T. Scott 1986 V+A 2121∗ 52

Pulp Fiction (PulpFn) Q. Tarantino 1994 V+A 1276 60

Run Lola Run (Lola) T. Tykwer 1998 V+A 1654 97

Table 7.1: Archive and contemporary films employed in the evaluation and their char-

acteristics. The films above the dashed line are archive films, while the films below are

contemporary films.
∗ The number of shots was evaluated automatically since no ground truth was available.

analyzing their soundtrack. This increases the size of the group and allows a more

robust evaluation.

Prior to systematic evaluation we select audio and visual features that have shown

to be robust and discriminatory in the context of the investigated film material. The

features and the parameters necessary for their computation are summarized in Ta-

ble 7.2. We evaluate three visual features: (i) block-based intensity histograms (BBH),

(ii) MPEG-7 edge histograms (EH) and (iii) SIFT keypoints (SIFT). For the BBH we

divide the image uniformly into 16 blocks and compute a 16 bin intensity histogram for

each block. A partition into 16 blocks represents a good tradeoff between expressiveness

of the features and robustness (e.g. against motion). The BBH compactly summarizes

the gray-value distribution while it preserves a certain amount of spatial information.

The EH feature describes the number of edges in horizontal, vertical, 45◦ and 135◦

direction as well as non-directional edges. It represents the texture of the frame inde-

pendent of its intensity values. Again we split the image uniformly into 16 blocks and

compute one edge histogram for each block. Additionally, we compute a global edge

histogram for the entire frame. All resulting edge histograms are concatenated into

one feature vector. Finally, SIFT provides the positions and compact descriptions of

salient points in the frame. We extract SIFT features using Vedaldi’s and Fulkerson’s

VLFeat [229] library with default parameters. We filter out SIFT keypoints with small

scales, since they show low expressiveness.
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Modality Feature Parameters

Visual BBH 16 sub-images, 16 bins

Visual EH 16 sub-images + global histogram, 5 edge directions

Visual SIFT default parameters by [229], neglect scales ≤ 6

Audio BFCC frame size 30ms, overlap 20ms, 13 coefficients

Table 7.2: Audio and visual features in the evaluation and their parameters.

The three selected visual features represent orthogonal information, namely inten-

sity, edges, and salient keypoints. Consequently, by combining the features in our

framework we are able to capture a larger spectrum of visual similarities and thus a

larger variety of visual aspects can be considered for scene segmentation. Furthermore,

the features have the potential to mutually compensate for weaknesses. For example

in situations where keypoints can hardly be detected (e.g. in a shot that mainly shows

homogeneous areas like sky, the intensity histograms may provide a more accurate

description).

Additionally to the visual features, we extract Bark-frequency cepstral coefficients

(BFCCs, see Section 2.2.6) for the entire audio track of the film. BFCC are short-time

features and are extracted for analysis frames of 30 ms. BFCCs represent the coarse

spectral envelope (frequency distribution) of the underlying audio signal. Auditory

features in the framework are aggregated over entire shots, in order to get descriptions

that allow the comparison of different shots (see Section 7.3.2).

In a systematic evaluation the number of possible system configurations to be eval-

uated grows exponentially with the number of parameters and degrees of freedom. We

first evaluate the performance of the similarity measures for the features. Based on

this evaluation, we select the most appropriate similarity measure for each feature to

reduce degrees of freedom and to keep the number of possible system configurations in

a reasonable range.

An exception is the SIFT feature. The matching for the SIFT features is computed

as proposed by Lowe [133]. The similarity between two shots based on SIFT is expressed

by the number of matching keypoints. We add a spatial constraint to the matching

procedure that restricts the maximum distance of two compared SIFT feature points.

For all other features (BBH, EH, and BFCCs) we have to evaluate an appropriate

similarity measure. Distance and similarity measures evaluated comprise of L1 and
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L2 distance, Chebyshev distance, canberra distance, χ2 distance, Cosine similarity,

Pearson correlation and histogram intersection. Distance measures are transformed

into similarity measures by inverting them linearly. Details on the different measures

are given in Section 2.4. For similarity comparisons in our framework we define four

thresholds: tVBBH , tVEH , and tVSIFT for the visual features and tABFCC for the auditory

feature.

We evaluate the performance of each similarity measure (in dependence of the fea-

tures) systematically. For each combination of feature and similarity measure, we per-

form scene segmentation and validate the results against the ground truth. For scene

segmentation, we have to set at least two parameters: the comparison threshold for

the similarity measure and the temporal window size w. We vary both parameters in

order to allow for an evaluation of the similarity measures independent from the param-

eters. This means that for each combination of feature and similarity measure several

scene segmentations are computed, each with different values for w and the comparison

threshold. Refinement and pruning is skipped in this evaluation. Ultimately, we select

the similarity for a given feature that achieves (i) high f1 scores over all films and (ii)

high f1 scores for a broad range of parameter values. The second condition demands

for a certain degree of independence from the parameter values. If a similarity measure

yields a high score for only one particular combination of w and a comparison thresh-

old the result is not representative and the similarity measure is neglected. The final

result of the evaluation is the identification of an adequate similarity measure for each

feature.

The goal of the following systematic evaluation is to analyze the influence of the

single parameters, the dependencies between the parameters, and the effectiveness of

particular processing steps. The number of possible system configurations is near in-

finite since the framework incorporates a number of numeric parameters (e.g. the

similarity comparison thresholds). We subsample the value range of all numeric pa-

rameters which reduces the number of system configurations significantly. All evaluated

parameters together with their possible values are shown in Table 7.3.

The first four parameters are flags that control the inclusion or exclusion of single

audio and visual features for the generation of different feature and modality selections.

The next four parameters are the similarity comparison thresholds of the four features.

The minimum and maximum values for the thresholds are evaluated manually. The
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Parameter Possible parameter values

useBBH true, false

useEH true, false

useSIFT true, false

useBFCC true, false

tVBBH 0.5, 0.57, 0.64, 0.71, 0.78, 0.85

tVEH 0.5, 0.55, 0.61, 0.66, 0.71, 0.77, 0.82, 0.87, 0.93, 0.98

tVSIFT 5, 10, 15, 20, 25

tABFCC 0.7, 0.76, 0.81, 0.87, 0.92, 0.98

w 5, 10, 15, 20, 25, 30, 35, 40, 50

doRefinement true, false

doPruning true, false

Table 7.3: Parameters and their possible values in the systematic evaluation.

values between minimum and maximum are linearly spaced. Parameter w is the size

of the temporal analysis window for shot grouping (in units shots). The last two

parameters control whether or not refinement and pruning are applied.

The systematic evaluation is performed as follows: We successively change the

parameter values to generate novel system configurations and systematically evaluate

all possible configurations. The systematic evaluation is performed for each film in

Table 7.1. Results are aggregated for the three investigated groups of films (archive

silent films, archive sound films, and contemporary films) to enable a comparison of the

groups.

Results are expressed in terms of recall, precision, and f1 score. Recall represents

the number of correctly retrieved scene boundaries divided by the total number of

scene boundaries in the film (according to the ground truth). Precision represents the

portion of correctly retrieved scene boundaries in the set of all retrieved boundaries.

We integrate a tolerance of 4 shots into the evaluation according to [83]. The f1 score

is computed as described in Section 2.6.3

The systematic evaluation produces a large number of retrieval results for each film

(in the order of 105 for sound films and 104 for silent films). A significant portion of

system configurations does not produce meaningful results, because the combination of

the selected parameter values performs poor. For the evaluation, we first aggregate the
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results for the three investigated groups of films and then we select only the best 5%

of the results. This subset of the results represents the set of system configurations

with the highest performance. In the following, we call this set the “quasi-optimal

result set”. We consider all results in this set as equivalently good which allows to

analyze the distribution of parameter values in this set. If for example, most system

configurations in such a result set incorporate a feature fi, this indicates that this

feature is beneficial to a high degree. Consequently, this feature is well-suited for scene

segmentation of films of the current group and should be selected.

7.5 Experimental Results

In this section, we discuss the results of the experiments. We first discuss the per-

formance of the similarity measures and then present the results of the systematic

evaluation of features, feature combinations, parameters, and processing steps. The

organization of the section follows the computation process in the framework.

7.5.1 Similarity Measures

We evaluate the distance and similarity measures for BBH, EH, and BFCC as described

in Section 7.4.1. The evaluation reveals significant performance differences between the

similarity measures. Figure 7.6 shows the performance figures for the BHH feature with

L1 and L2 distance, respectively. Performance is shown for all evaluated parameter

combinations. The value of the comparison threshold runs along the x-axis. The y-axis

represents the f1 score and each curve in the diagram represents a different window

size w.

We observe that the L1 measure yields higher f1 scores than the L2 measure. Addi-

tionally, the L1 measure yields higher scores for a larger number of different parameter

combinations. This can be observed from the shape of the curves for the L1 measure

which are broader and higher than for the L2 measure. Since the L1 measure yields

good results for all films and outperforms the other evaluated similarity measures in

most cases, we employ the L1 measure for similarity comparisons of the BBH in the

following.

For the EH we observe even stronger performance differences between the different

similarity measures. We present an example in Figure 7.7 which shows the performance
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Figure 7.6: Performance of L1 and L2 measure for BBH and film “Top Gun”. The x-axis

represents the comparison threshold (from 0.5 to 1), the y-axis the f1 scores. The different

curves represent experiments with different window sizes w (from 3 to 60).

of the Cosine similarity and the χ2 distance in the context of EH. The Cosine similarity

yields higher f1 scores nearly independent from the comparison threshold (e.g. for

window sizes from 3 to 10). The corresponding curves show higher f1 scores for a

broad range of threshold values. The χ2 distance yields higher f1 scores only for two

distinct combinations of w and the comparison threshold (w = 3, tVEH = 0.92 and w = 5,

tVEH = 0.94). For all other combinations results degenerate. This shows that the χ2

distance is not appropriate for the EH feature. The Cosine similarity yields the most

robust results for the EH feature over the evaluated films. As a consequence, we select

the cosine similarity for the EH feature.

Finally, we evaluate the similarity measures for the auditory feature BFCC. Again

we observe strong performance differences. Figure 7.8 shows the performance figures of

BFCC with Cosine similarity and L2 measure. While the L2 measure obtains higher f1

scores for different combinations of w and the similarity threshold, the Cosine similarity

obtains higher f1 scores only for one “magic” threshold value of 0.98. This means that

the cosine similarity is highly dependent on the data (film) and consequently no good

choice for scene segmentation of arbitrary films.

We further investigate the behavior of the similarity measures by analyzing the

similarity judgments made by both measures. We compute a matrix that contains the

pair-wise similarities of all shots in a film for each similarity measure. The two resulting
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(b) χ2 distance

Figure 7.7: Performance of Cosine similarity and χ2 distance for EH and film “Three

Songs of Lenin”. The x-axis represents the comparison threshold (from 0.5 to 1), the y-axis

the f1 scores. Each curve represents a different window size w (from 3 to 60).

matrices are shown in Figure 7.9. We observe that the similarity matrix generated

with the L2 measure has a larger variance than the matrix obtained by the Cosine

similarity. In the similarity matrix of the cosine measure nearly all similarities lie in

the range [0.9, 1]. This is also the value range in Figure 7.8(b) where the only higher f1

scores are obtained. The generally high similarity judgments obtained by the cosine

similarity and the low variance show that the cosine similarity lacks discriminability

for the feature. Nearly all shots in the film are considered highly similar to each other.

The judgments of the L2 distance show a higher variance of values. The value range of

possible similarity judgments is utilized better than by the cosine similarity. We further

observe more distinct structures in the similarity matrix of the L2 measure. Since the

L2 measure is more discriminative and also outperforms the other similarity measures

(apart from the cosine similarity), we select the L2 distance as similarity measure for

BFCC.

From the evaluation of the similarity measures we learn that the choice of the

similarity measure significantly influences the performance of the overall system. The

choice of an adequate similarity measure for a given feature is a crucial factor in the

design of the scene detector. We further observe that the f1 scores for the single features

do not exceed 0.6 significantly. In the following systematic evaluation we evaluate the
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(b) Cosine similarity

Figure 7.8: Performance figures for L2 measure and Cosine similarity for BFCC in “Three

Songs of Lenin”. The x-axis represents the values of the comparison threshold (from 0.5

to 1), the y-axis the obtained f1 scores. The different curves represent experiments with

different window sizes w (from 3 to 60).

influence of feature combination, multiple modalities, and refinement on the overall

performance.

7.5.2 Features and Multimodality

We systematically evaluate all possible feature combinations which includes also the

single features and all possible combinations of modalities. As described in Section 7.4.1

we select only the set of the best 5% of the evaluation results for further analysis. In this

quasi-optimal result set we analyze the occurrence frequency of the different features

and feature combinations. Each of the three groups of films (archive silent films, archive

sound films, and contemporary films) is evaluated separately.

For the group of silent archive films the distribution of feature combinations is shown

in Figure 7.10(a). There are 7 possible combinations to arrange the three features BBH,

EH, and SIFT. Among the 5% best results most of the system configurations (64%)

employ all (visual) features together. 32% of the system configurations (bars 2-4) use

two features and only 4% of the results are obtained by a single feature. We draw two

basic conclusions from this result. First, by employing several features we increase the

probability to obtain a good result. This follows from the observation that the large

number of system configurations which employ all features, all differ in the remaining
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(b) Cosine similarity

Figure 7.9: Similarity matrices for BFCC with L2 measure and Cosine similarity for the

film “Three Songs of Lenin”. Each pixel represents the pairwise similarity between two

shots of the film.

parameter values. This means that for many different parameter values near-optimal

results can be obtained if all features are used in combination. The system becomes less

dependent on the remaining parameters such as window size and similarity thresholds

when all features are used. Second, we observe that system configurations that employ

single features are also able to obtain near-optimal results. However, the number of

different system configurations which obtain near-optimal results with a single feature is

small (4%). High performance with a single feature is obtained only for carefully chosen

parameter values. This shows that such system configurations are highly dependent on

the underlying data (overfitting) and do not generalize well for several films.

The set of quasi-optimal results for archive silent films contains all possible feature

combinations which can be seen in Figure 7.10(a). We further observe that all feature

combinations in the set achieve similar f1 scores. Consequently, there is no clear winner

among the different features and feature combinations. Each feature and each feature

combination is able to obtain near-optimal results, however with different generalization

abilities.

From the distribution of single features (BBH, EH, and SIFT) we observe that there

is only one system configuration in the quasi-optimal set that employs solely the SIFT

feature. Five configurations exist that employ the BBH feature and 22 configurations
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Figure 7.10: The distribution of all possible feature combinations in the quasi-optimal re-

sult set for the groups of archive silent films and archive sound films. Each bar corresponds

to one feature combination. The y-axis represents the portion of system configurations in

the quasi-optimal result set that employs the corresponding feature combination. All bars

together sum up to one.

are based only on EH. These results indicate that the more sophisticated SIFT feature

is less effective for scene segmentation than EH and BBH.

For the group of archive sound films we observe a similar distribution of feature

combinations in the quasi-optimal result set as for the archive silent films, see Fig-

ure 7.10(b). For archive sound films there are 15 possible feature combinations due to

the additional auditory feature BFCC. Similarly to the silent films, most system con-

figurations employ all features together (44%). The system configurations with three

features make up 41% of the configurations. 12% of the system configurations employ

only two features and only 3% of the configurations rely on a single feature only. We

draw similar conclusions for the sound films as for the silent films. Again, using more

features increases the independence from the other parameters in the system. The

configurations with single features are again highly dependent on the parameters and

thus overfit on the data.

The results for single features are also similar to that of the silent films. Among

the visual features again the EH most frequently appears as the only feature among

the near-optimal solutions followed by BBH. SIFT is employed in only 3 system con-
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figurations as the only feature. We further observe that the performance obtained by

SIFT is slightly lower than that of the other features. Surprisingly, the application of

the auditory feature BFCC alone outperforms all of the visual features in the number

of system configurations as well as in retrieval performance.

We observe a relatively wide range of f1 scores in the quasi-optimal result set for the

archive sound films that ranges from 0.44 to 0.62. Consequently, we cannot consider the

performance of all system configurations to be equivalent as stated in Section 7.4.1 for

this group of films. The reason for the wide range of f1 scores is the following: System

configurations that incorporate only visual features are not able to exceed an f1 score

of 0.52. By incorporating the auditory modality a performance gain of up to 10% is

achieved. Both modalities are necessary to obtain an optimal result. We conclude that

both modalities complement each other and that multimodal processing is beneficial in

the context of the archive sound films.

Additionally to the archive film material, we evaluate the scene segmentation frame-

work for the group of contemporary films. We first investigate the distribution of all

possible feature combinations in the quasi-optimal result set, see Figure 7.11. The

distribution of feature combinations is similar to that of archive sound films, see Fig-

ure 7.10(b). 50% of the system configurations in the quasi-optimal set of results contain

all features and thereby also both modalities. 41% of all system configurations employ

three features. The portion of system configurations with one or two features together

is only 9%. We conclude that the behavior of the framework for different feature com-

binations is similar for contemporary material and for archive film material. System

configurations with a larger number of features are more robust against variations of

the remaining parameters and thus do better generalize the data.

We further investigate the performance of the single modalities for contemporary

material. In the set of quasi-optimal results there is no system configuration that

solely relies on the auditory modality. Consequently, the auditory modality by itself

yields only suboptimal results. The system configurations that are based on the visual

modality only yield f1 scores between 0.51 and 0.53 for single features and scores

between 0.54 and 0.55 for combinations of visual features. Higher scores are only

obtained in combination with the auditory modality. Multimodal system configurations

yield f1 scores from 0.58 to 0.61. By combining both modality a performance gain of up
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Figure 7.11: The distribution of all possible feature combinations in the quasi-optimal

result set for the group of contemporary films. Each bar corresponds to one feature com-

bination. The y-axis represents the portion of system configurations in the quasi-optimal

result set that employs the corresponding feature combination.

to 6% is achieved which shows that multimodal processing is beneficial for contemporary

material.

In conclusion, the systematic evaluation of features and feature combinations shows

that large feature combinations are more likely to produce high performance than

single features. Additionally for both, archive and contemporary films, we observe that

multimodal processing is beneficial for scene segmentation. There is no difference in

the optimal feature selections for archive and contemporary material. In both cases

all features together yield the best scores. We conclude that features that are already

robust to archive film material also perform well on contemporary material.

7.5.3 Temporal Window Length and Comparison Thresholds

The quasi-optimal result set is the basis for the analysis of the distributions of the

temporal window length and the similarity comparison thresholds. Table 7.4 summa-

rizes the median values and the ranges for the thresholds and the window length for all

investigated films. We observe that all possible values of the temporal window length w

produce results in the quasi-optimal result set. We conclude that w is no critical pa-

rameter for the performance of scene segmentation. Similarly to the temporal window

length, all possible values of the comparison parameter tVSIFT produce results in the
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w tVSIFT tVBBH tVEH tABFCC

Film med. range med. range med. range med. range med. range

11th 5 5-50 15 5-25 .71 .57-.85 .82 .66-.98

MMCV 10 5-50 10 5-25 .78 .64-.85 .87 .61-.98

EsmR 5 5-50 15 5-25 .71 .57-.85 .82 .55-.98 .92 .81-.98

3SoL 5 5-40 15 5-25 .78 .64-.85 .87 .61-.98 .92 .81-.98

TGun 30 5-50 15 5-25 .71 .57-.85 .87 .77-.98 .92 .87-.98

PulpFn 15 5-50 15 5-25 .71 .64-.85 .87 .71-.98 .92 .92-.98

Lola 10 5-50 15 5-25 .64 .57-.85 .87 .66-.98 .92 .87-.98

Table 7.4: Summary of the distributions of parameter values used in the experiments

that lead to results in the quasi-optimal result set. The column med. contains the median

while the column range contains the minimum and the maximum values.

quasi-optimal result set. This is not true for the other similarity comparison thresholds

(tVBBH , tVEH , tABFCC) whose optimal ranges are smaller than their possible ranges. The

optimal threshold values for BBH range from 0.57 to 0.85, for EH the optimal range

is 0.71 to 0.98 and for BFCC the threshold is in the range 0.87 to 0.98. From Ta-

ble 7.4 we observe that the variation of the thresholds’ medians is low over the films or

even constant (in case of BFCC). This indicates that the dependence of the thresholds’

values on the analyzed films is limited.

The above information is useful for automated parameter optimization but it does

not reveal if there is a relation between the temporal window size w and the similarity

comparison thresholds (tVSIFT , t
V
BBH , tVEH , tABFCC). In order to investigate this rela-

tion, we set the temporal window size to three values within its possible value range

(w = 10, 20, 30) and analyze the effects on the similarity comparison thresholds.

Tables 7.5, 7.6, and 7.7 summarize the similarity comparison thresholds for fixed w.

We observe a trend regarding the median and the lower bound of the value ranges:

The larger the window size w, the higher the values of median and lower bound of the

comparison thresholds. Stricter similarity requirements have to be met when a larger

window size w is taken into account. The combination of larger windows and more

tolerant similarity comparison lead to under-segmentation because too many shots are

grouped into a small number of scenes. Correspondingly, short temporal windows lead

to over-segmentation if they are combined with a strict similarity comparison because in

this case shots actually belonging together are not detected as similar and consequently
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w tVSIFT tVBBH tVEH tABFCC

Film fixed med. range med. range med. range med. range

11th 10 20 10-25 .64 .64-.85 .82 .71-.98

MMCV 10 5 5-25 .78 .71-.85 .87 .77-.98

EsmR 10 15 5-25 .78 .57-.85 .82 .71-.98 .92 .87-.98

3SoL 10 15 5-25 .78 .71-.85 .87 .71-.98 .92 .87-.98

TGun 10 15 5-25 .71 .57-.85 .87 .77-.98 .87 .87-.98

PulpFn 10 15 5-25 .71 .64-.85 .87 .71-.98 .92 .92-.98

Lola 10 15 5-25 .71 .64-.85 .87 .77-.98 .92 .92-.98

Table 7.5: Summary of the distributions of the similarity comparison thresholds with the

fixed temporal window size w = 10. The column med. contains the median while the

column range contains the minimum and the maximum values.

not grouped into scenes. From the experiments we conclude that (i) there is a strong

relation between the temporal window size and the similarity comparison thresholds

and (ii) for all temporal window sizes we obtain quasi-optimal results. The window size

and the comparison thresholds compensate for each other. This means that even with

a fixed window size quasi-optimal results can be achieved if the comparison thresholds

are chosen accordingly.

7.5.4 Refinement and Pruning

We further evaluate the performance of the refinement and the pruning step of the

scene segmentation framework. For this purpose, we determine the optimal perfor-

mance figures (f1 scores) with and without refinement and pruning separately. The

performance difference is measured by a value ∆f1 which is positive if performance is

influenced positively by refinement or pruning and negative if performance decreases.

Additionally, we investigate how many system configurations in the quasi-optimal re-

sult set employ refinement and pruning. From the resulting distribution we compute

the median for both postprocessing steps separately. The median is 1 if the majority

of system configurations employs refinement or pruning, respectively and otherwise 0.

The results for the three investigated groups of films and the individual films are

summarized in Table 7.8. For the three groups of films refinement and pruning always

improve segmentation performance. Since the results for the groups of films are av-
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w tVSIFT tVBBH tVEH tABFCC

Film fixed med. range med. range med. range med. range

11th 20 20 10-25 .85 .78-.85 .82 .77-.98

MMCV 20 15 10-25 .71 .71-.85 .93 .82-.98

EsmR 20 15 5-25 .78 .71-.85 .87 .77-.98 .92 .92-.98

3SoL 20 15 5-25 .78 .71-.85 .93 .82-.98 .92 .92-.98

TGun 20 15 5-25 .71 .64-.85 .87 .82-.98 .92 .87-.98

PulpFn 20 15 5-25 .71 .64-.85 .87 .77-.98 .92 .92-.98

Lola 20 15 5-25 .71 .64-.85 .93 .82-.98 .92 .92-.98

Table 7.6: Summary of the distributions of the similarity comparison thresholds with the

fixed temporal window size w = 20. Compared to Table 7.5 the parameter’s value ranges

tend to become smaller. The column med. contains the median while the column range

contains the minimum and the maximum values.

eraged over the respective films we conclude that refinement and pruning in average

improve scene segmentation. For the individual films there are a few cases where the

performance is slightly decreased, e.g. for “Enthusiasm” and “Man with a Movie Cam-

era (V)” refinement decreases results by 1%. However, in comparison to the potential

performance gain of up to 7% the decrease of performance is negligible. The same

applies to the pruning step. In most cases pruning improves results (in the best case

by 7%). In the worst case performance is decreased by 2%.

Table 7.8 further shows the medians for refinement and pruning in the set of quasi-

optimal results. In most cases the median is 1 which means that the respective process-

ing step is employed in the majority of system configurations. From these distributions

and the performance figures we conclude that both, pruning and refinement are bene-

ficial for scene segmentation.

7.5.5 Retrieval Results

Finally, we present the best retrieval results obtained in the systematic evaluation for

the individual films. Table 7.9 shows the best result in terms of f1 score together

with the corresponding recall and precision for each film. In scene segmentation the

importance of recall and precision is usually not weighted equally. Generally, a slight

over-segmentation that returns some false scene boundaries (false positives) is favored

over an under-segmentation where actual scene boundaries are missed. In other words,
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w tVSIFT tVBBH tVEH tABFCC

Film fixed med. range med. range med. range med. range

11th 30 20 10-25 .85 .78-.85 .87 .82-.98

MMCV 30 15 10-25 .78 .78-.85 .87 .82-.98

EsmR 30 15 5-25 .78 .71-.85 .93 .77-.98 .98 .92-.98

3SoL 30 15 5-25 .85 .71-.85 .93 .82-.98 .98 .87-.98

TGun 30 15 5-25 .71 .64-.85 .87 .82-.98 .92 .92-.98

PulpFn 30 15 5-25 .71 .64-.85 .87 .77-.98 .92 .92-.98

Lola 30 15 5-25 .71 .64-.85 .93 .87-.98 .92 .92-.98

Table 7.7: Summary of the distributions of the similarity comparison thresholds with the

fixed temporal window size w = 30. Compared to Table 7.5 and Table 7.6 the parameter’s

value ranges tend to become smaller for higher w. The column med. contains the median

while the column range contains the minimum and the maximum values.

this means that recall is favored over precision. We provide retrieval results with

optimized recall in columns 5-7 in Table 7.9. For the sake of completeness, we also

provide results with optimized precision in columns 8-10. For two films recall always

exceeds precision and consequently no optimized result for precision can be provided.

From the distribution of recall and precision in the quasi-optimal result sets we

observe that the proposed scene segmentation framework in most cases generates re-

sults where recall exceeds precision. This means that the framework tends to produce

slight over-segmentations. As mentioned above this behavior is generally more desir-

able than the generation of under-segmentations. We observe from Table 7.9 that the

performance of scene segmentation is higher for the contemporary material than for

archive film material. The f1 scores for contemporary films range from 0.67 to 0.72

while for archive material the results are generally lower. There are two reasons for

the performance differences. First, the quality of the archive film material impedes

similarity comparisons and second the scenes in contemporary material are much more

coherent and have a simpler structure than the scenes in the archive film material.

For the archive films we observe that scene segmentation for sound films performs

better (f1 scores of 0.65 and 0.66) than for silent films (f1 scores of 0.45 and 0.58). If

we skip the auditory modality for the segmentation of archive sound films we observe

a significant decrease in performance. For “Three Songs of Lenin” (3SoL) performance

decreases by 8% (f1 = 0.57) and for “Enthusiasm” (EsmR) by 6% (f1 = 0.6). By
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Film/Group Refinement Pruning

median ∆f1 median ∆f1

Group of archive silent films 1 +1% 1 +2%

Group of archive sound films 1 +1% 0 +5%

Group of contemporary films 1 +2% 1 +2%

Three Songs of Lenin 1 +2% 0 +7%

Enthusiasm (Restored) 1 -1% 1 +2%

The Eleventh Year 0 0% 1 0

Man with a Movie Camera (V) 0 -1% 1 +1%

Run Lola Run 1 +1% 0 -2%

Pulp Fiction 1 +1% 1 +2%

Top Gun 1 +7% 1 +5%

Table 7.8: Results for the refinement and pruning steps for the groups of films and the

individual films. ∆f1 indicates the performance gain and the median shows whether most

system configurations employ refinement or pruning (value 1) or not (value 0).

skipping the auditory modality, the results become comparable to those of the archive

silent films. From these experiments and from the observations made in in Section 7.5.2

we conclude that the auditory modality facilitates scene segmentation.

7.6 Summary

In this chapter, we have presented a framework for scene segmentation that solely relies

on audio and visual similarities. This property makes the framework well-suited for

scene segmentation of archive film material where we cannot exploit a priori knowledge

such as compositional rules from filmmaking. The framework is based on the detection

of similar audio and visual content in a film by different (preferably orthogonal) features.

The search range for similar content is thereby restricted to a temporal window in

order to avoid under-segmentation. Based on detected similarities shots are grouped

together. The shot groupings generated for each feature are fused together and result

in a segmentation of the film into core scenes. Finally, a refinement step closes the gaps

between the core scenes and a pruning step removes short scenes.

We evaluate all combinations of the parameters of the framework in a systematic

evaluation and investigate the dependencies between parameters. First, we evaluate
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Film Best f1 score Recall favored Precision favored

Rec. Prec. f1 Rec. Prec. f1 Rec. Prec. f1

3SoL 0.60 0.71 0.65 0.78 0.50 0.61 - - -

EsmR 0.80 0.56 0.66 0.87 0.51 0.64 0.60 0.64 0.62

11th 0.48 0.43 0.45 0.64 0.34 0.45 0.44 0.46 0.45

MMCV 0.62 0.54 0.58 0.82 0.42 0.56 - - -

Run Lola Run 0.73 0.66 0.70 0.75 0.64 0.69 0.63 0.73 0.67

Pulp Fiction 0.71 0.72 0.72 0.77 0.66 0.71 0.62 0.76 0.69

Top Gun 0.65 0.69 0.67 0.71 0.61 0.65 0.54 0.72 0.62

Table 7.9: Performance figures for all investigated films. For each film we provide the

maximum performance in terms of f1 score and a result with optimized recall and (if

possible) one with optimized precision.

similarity and distance measures and identify an adequate measure for each feature.

Next, we evaluate different feature combinations and benefit of multimodal process-

ing. Additionally, we investigate the behavior of the framework for different parameter

combinations of temporal window size w and the similarity comparison thresholds and

investigate their dependencies. Finally, we evaluate the benefit of the refinement and

pruning steps.

The systematic evaluation provides valuable insights about scene segmentation of

archive and contemporary film material. The most important findings from the study

are:

• The choice of the similarity measure is crucial for a feature. Different measures

have to be evaluated to identify an adequate one.

• Generally, the chance to obtain a good result increases with the number of (com-

plementary) features.

• Multimodal processing significantly increases the performance. The individual

modalities achieve only suboptimal results.

• Some thresholds compensate for each other, such as the window size and the

similarity thresholds. Consequently, one threshold (the window size) can be fixed

in the optimization without losing retrieval quality.
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7. SEGMENTATION OF SCENES

• Refinement and pruning usually improve the scene segmentation

• The framework principally behaves similar for archive and contemporary film

material. If robust features are employed, they are applicable to both types of

films. However, scene segmentation is generally harder for documentary archive

film material due to the low cohesion of the scenes.

The proposed framework is extensible in several ways. First, the framework can

easily be extended to incorporate information from several keyframes per shot in order

to enable more comprehensive similarity comparisons. Second, additional (and diverse

types of) features may be incorporated, such as face recognizers to group shots with

recurring faces and object detectors to group shots which show similar objects. Finally,

alternative fusion schemes can easily be integrated. For a large number of features

for example a fusion scheme based on majority voting introduces additional robustness

because it enforces that every decision is supported at least by a majority of features.
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Chapter 8

Extraction of Synchronous

Montage Sequences

In the last chapter we have presented a method for the segmentation of a film into

semantically coherent units (scenes). A related type of semantically coherent units in

film are synchronous montage sequences. Synchronous montage is a higher-level concept

in filmmaking that is related to the synchronous editing of visual and auditory content.

Synchronous montage sequences are usually parts of a scene which highlight important

events. We first introduce the concept of synchronous montage in Section 8.1. Next,

we review work from related research fields in Section 8.2. In Section 8.3 we present

a cross-modal approach that extracts sequences from a film with synchronous audio-

visual montage. Experiments (Sections 8.4 and 8.5) show that the approach robustly

extracts synchronous montage sequences. Furthermore, we observe that the extracted

sequences have high semantic relevance for the investigated films.

8.1 Introduction

In synchronous montage the editor purposely synchronizes the soundtrack with the

visual montage (the cutting) of a film. Synchronous audio-visual montage enables

the filmmaker to accentuate important events and actions and to increase tension and

tempo in a scene [27]. Such sequences contain rich semantic context which is important

for understanding a film.
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Figure 8.1: A synchronous montage sequence. The keyframes of each shot show different

religious symbols. The peaks in the waveform’s amplitude at the shot cuts correspond to

the church bells.

Synchronous montage has been employed since the early years of sound film and

is still employed in contemporary films (e.g. in action scenes and dialogue sequences).

A famous example for the synchronous montage technique in film history stems from

the film “Enthusiasm” by Dziga Vertov from 1931. “Enthusiasm” is a propagandistic

documentary about the first Soviet five-year plan. A central sequence in the film shows

several consecutive static shots of different religious and monarchal symbols (e.g. a

tsarist monogram, statues of Christ, crucifixes). At each shot cut between two different

symbols the director positioned the sound of a church bell in the soundtrack. The

synchronous church bells increase the perceptual salience of the sequence and create

a threatening and warning atmosphere. According to the film literature, this is a key

scene in the film that expresses the rejection of religion and the tsarist regime by the

communist regime [63]. An excerpt of the sequence together with the waveform of its

soundtrack is shown in Figure 8.1.

Synchronous montage is still a popular technique in contemporary films to empha-

size important events (a detailed discussion is provided in [27]). For example, in the

feature film “The Hunt for Red October” from 1990 the director exploits synchronous

montage in dialogue sequences to emphasize the speakers and the speech. Another ex-

ample mentioned in [27] is the end scene (the showdown) of “The Last of the Mohicans”

where the cutting is coordinated with the musical rhythm.
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Due to their rich semantics, synchronous montage sequences are important for

(automated) film annotation, interpretation, and summarization. For example, syn-

chronous montage sequences are likely to contain key scenes which should be part of

an automated generated summary or trailer. Additionally, film scientists are interested

in the extraction of such sequences for film and montage analysis.

The automated extraction of synchronous montage sequences has not been ad-

dressed so far. In this chapter, we present a method for the automated extraction

of sequences with synchronous audio-visual montage. We develop a cross-modal ap-

proach that extracts such sequences by detecting temporally correlating audio and

visual events. Unfortunately, the temporal correlation1 of auditory and visual infor-

mation on the signal-level differs significantly from the correlation on the perceptual

level. Consequently, established methods for the estimation of temporal correlations

do not work properly. We propose an approach for the extraction of temporal cor-

relations that are more meaningful and intuitive for the human observer. First, we

extract salient audio and visual events by the detection of onsets. In general, onsets

represent abrupt changes in the underlying signals. Visual onsets refer to abrupt shot

boundaries (shot cuts). In the audio domain, onsets are for example musical beats,

sudden sound effects, and points in time when an actor starts to speak after a pause.

Next, we detect temporally correlated audio and visual onsets by analyzing their coin-

cidences and their temporal neighborhoods. Finally, we extract entire sequences that

contain several subsequent correlated audio and visual onsets (synchronous montage

sequences). Experiments with different films show that the approach is able to retrieve

relevant montage sequences. The results include key scenes with rich semantics.

8.2 Related Work

The audio-visual synchronicity in film montage is a semantically relevant composi-

tional principle that has to our knowledge not been analyzed automatically so far.

However, audio-visual synchronicity (correlation) has been studied by researchers in

different related domains such as sound source localization [18, 109, 132, 149], talk-

ing face detection [92, 196], speech recognition [155], person authentication [31], and

1Note that “correlation” in this chapter is not meant in a strict statistical sense. In the context of

this chapter it refers to the temporal proximity of auditory and visual events.
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8. EXTRACTION OF SYNCHRONOUS MONTAGE SEQUENCES

surveillance [15]. The computation of temporal audio-visual correlation is performed

at different levels. Most approaches compute correlation directly between audio and

visual features (feature-level). Frequently employed correlation measures are Pearson

correlation [155] and mutual information [92]. Some methods first reduce dimensional-

ity (e.g. by Canonical Correlation Analysis, CCA and Latent Semantic Indexing, LSI)

and then perform correlation computation in a lower-dimensional space [196].

On the feature-level we are able to capture the natural correlation that exists be-

tween audio and visual signals (from the same source), e.g. speech and the speaker’s lip

movements. Consequently, it is well-suited for talking face detection and person iden-

tification. However, at this rather low level it is difficult to integrate delays, tolerances,

and irregularities into the correlation computation. This limits the applicability of such

methods for the analysis of film montage since delays and irregularities are sometimes

introduced by the filmmaker for stylistic reasons. Additionally, methods that rely on

LSI and CCA require a certain amount of training to learn the joint distributions of

audio and visual features. Training as in talking head detection is hardly feasible in

the domain of film analysis because of the wide range of objects and events and the

different types of editing styles.

Other methods (especially from the surveillance domain) compute temporal correla-

tions on the basis of classified high-level decisions (decision-level) [14]. Methods at this

level learn frequent audio and visual events (atomic events) autonomously and recog-

nize higher-level events (e.g. running, opening a door) by merging co-occurring atomic

event classifications [15]. Such methods are usually designed to operate in controlled

environments (e.g. a corridor in a building) and require recurring events for learning.

Both, recurring events and controlled environments are not available in feature films.

To sum up, methods on the feature-level require a strong and direct correlation in

the audio and visual feature vectors and methods on the decision-level require highly

controlled environments. For the analysis of audio-visual montage, a method is re-

quired that (i) enables flexible temporal correlation assessments and (ii) operates on an

uncontrolled (general purpose) set of events. For that reason, we perform the temporal

correlation analysis on an intermediate level: the landmark-level.

On the landmark-level we operate on salient points (automatically detected peaks

and onsets) in the audio and visual feature vectors [163]. This level facilitates the

representation of general purpose events and a flexible temporal correlation estimation.
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8.3 Analysis of Synchronous Montage

Additionally, psychophysical research points out that the human synchrony perception

relies on the matching of salient features (peaks and troughs) in the audio and visual

modalities [70].

Only little work on audio-visual correlation estimation on the landmark-level exists.

Barzelay and Schechner perform sound localization by correlating audio and visual on-

sets [18]. The audio onsets are derived from a spectrogram and the visual onsets

are extracted from motion trajectories by detecting peaks in the trajectories’ curva-

ture. Temporal coincidences of onsets are detected by a likelihood function that yields

high values where audio and visual onsets temporally coincide. Similarly, Monaci and

Vandergheynst (and later Casanovas et al. [132]) perform general purpose sound local-

ization by correlating onsets in audio and visual feature vectors [149]. From the audio

and visual onsets the authors first compute two binary vectors where spikes indicate

onset positions. Next, they broaden the spikes with a rectangle function to increase

the temporal tolerance. Finally, they combine both vectors by a logical AND to ob-

tain temporally correlated audio-visual onsets. The method is for example applied to

talking face detection.

The approaches above are not applicable to the analysis of audio-visual film mon-

tage. First, the approaches are designed for correlating sound with motion. For the

analysis of synchronous montage visual onsets originate from shot cuts and not from

motion which is structurally different. Second, the approaches above consider consec-

utive onsets as independent from each other and neglect their neighborhood relation-

ships. Thereby, information on the temporal distribution of the onsets is lost which

is important to evaluate the salience of an onset. Third, both approaches neglect the

actual strengths of the onsets (their degree of abruptness). In fact, the strength is a

further indicator for the salience and is important to obtain estimates in accordance

with human assessment.

8.3 Analysis of Synchronous Montage

An overview of our approach is depicted in Figure 8.2. We first perform onset detection

in the visual and audio domains separately. Onsets in the visual signal represent abrupt

shot boundaries (shot cuts). Audio onsets correspond to musical beats, sound effects

(e.g. explosions, cries, sirens), and speech onsets. Shot cut detection is performed by

171



8. EXTRACTION OF SYNCHRONOUS MONTAGE SEQUENCES

Self-similarity Analysis Self-similarity Analysis

Normalization Normalization

Peak Detection Peak Detection

Interpolation

Correlation Estimation

Sequence Extraction

Confidence Estimation

Feature Extraction

Audio Onset Detection Visual Onset Detection

DCT, EH

NoveltyDCT

NoveltyEH

Correlated
Onsets

Synchchronous
Sequences

Feature Extraction

Cross-Modal Analysis

OnsetsV

Merging

Input

OnsetsA

BFCC

NoveltyA

NoveltyV

Figure 8.2: Overview of the approach.

the method described in Chapter 5. We use the same analysis framework based on

self-similarity analysis for the detection of audio onsets. The result of onset detection

are two time series containing auditory and visual onsets. Next, we detect temporally

correlating (synchronous) audio and visual onsets (for instance a sudden cry that occurs

simultaneously with a shot cut) by a specifically designed weighting function. Finally,

we extract entire sequences that contain several consecutive shot cuts with correlated

audio onsets with a tolerant segmentation scheme.

8.3.1 Visual Onset Detection

Shots are the most important building blocks of visual film montage. We detect shot

cuts (visual onsets) as described in Chapter 5. First, we extract features for each

frame (edge histogram, DCT coefficients). Next, we subtract the mean of each feature

component (zero-mean features) and perform a temporal self-similarity analysis for
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8.3 Analysis of Synchronous Montage

both features and merge the resulting outcomes as described in 5.3.4. The result is

a function (novelty curve) which has peaks at positions where the underlying signal

changes abruptly. In the case of the visual signal, peaks in the novelty curve indicate

shot cuts. The shot cut positions are extracted by a peak detector as described in

Section 5.3.3 (after normalization of the novelty curve) and form the set of visual onsets

for subsequent processing. Since the frame rate for the visual signal (1/25 seconds) is

lower than the frame rate used for audio in the following, the visual onset positions are

interpolated (super-sampled) to make them directly comparable with the audio onset

positions.

We neglect gradual transitions (e.g. dissolves and fades) since they do not represent

distinct events in time that audio onsets can be correlated with. Consequently, they

play a secondary role for the detection of sequences with synchronous audio-visual

montage.

8.3.2 Audio Onset Detection

For audio onset detection we utilize the same analysis framework as for visual onset

detection (based on another feature). For audio analysis, we extract 24 Bark-frequency

cepstral coefficients (BFCCs) from audio frames of 30 ms (20 ms overlap). BFCCs em-

ploy a psychoacoustically scaled filter bank and compactly represent the coarse spec-

tral frequency distribution in an audio frame (see Section 2.2.6). The BFCCs are first

normalized by subtraction of the mean of each component and are then input to a self-

similarity analysis like the visual features in Section 8.3.1. The result is again a novelty

curve. In the case of audio, peaks indicate abrupt changes (discontinuities) in the au-

dio stream. Such discontinuities occur for example at the beginning of musical beats,

speech, and special effects. The stronger a discontinuity the higher is the amplitude of

the peaks.

We normalize the novelty curve and extract salient peaks with an adaptive peak

detector that uses the median of the novelty curve as threshold. A peak is detected as

a salient peak if the amplitude of the novelty curve decreases by more than the median

after a local maximum.

Since the novelty curve often contains dense series of peaks (which correspond to

the same audio event), we perform a local peak pruning after peak detection. The

pruning process moves a sliding window over the signal and compares the heights of
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neighboring peaks in the window. Peaks whose heights are smaller than the mean

height of all peaks in the window are removed. The pruning step reduces the density of

the peaks and leads to a more robust audio onset detection. The positions and heights

of the remaining peaks form the set of audio onsets for subsequent processing.

8.3.3 Temporal Audio-Visual Correlation Estimation

The goal of the next step is to find temporally correlated (synchronous) audio and

visual onsets which would also be perceived synchronous by a human observer. In

general onsets are perceived correlated if they are temporally near to each other. This

conforms with the assumptions made in [18], [149], and [70]. In our case, the correlation

of onsets means that an audio onset occurs simultaneously with a shot cut. However, we

observe that this assumption is not sufficient for the detection of synchronous montage

in feature films for two reasons. First, stronger (more salient) onsets catch the viewers

attention more than weak onsets. Consequently, we integrate a salience condition into

the correlation computation that favors stronger onsets (originating from higher peaks).

Second, the temporal distribution and the number of audio onsets around a shot cut

influence synchrony perception: if many onsets surround a shot cut, they distract the

attention of the observer from detecting synchronicity. Consequently, a single isolated

audio onset at a shot cut leads to a stronger synchronicity than several audio onsets

surrounding a shot cut. Due to the large number of onsets introduced by film music

and concurrent background sounds in films, the likelihood is generally high that an

audio onset occurs simultaneously with a shot cut accidentally. To take this effect

into account, we integrate an isolation condition into the correlation computation that

favors isolated audio onsets over numerous surrounding onsets.

For temporal correlation estimation we design a weighting function that takes the

salience and the isolation condition into account. The weighting function (see Fig-

ure 8.3(a)) is centered around a shot cut. The amplitude represents the time-dependent

influence of an audio onset for temporal correlation estimation. The function can be

partitioned into two different areas.

In area “A” centered around the shot cut the function is positive. Audio onsets

that fall within this area influence correlation positively (the nearer the audio onset

is to the shot cut the higher is its influence). The weighting function in area “A”

models a simple principle of human synchrony perception: Events that are temporally
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near to each other are perceived as correlated. With increasing distance the perceived

correlation decreases.

In area “B” the function is negative. Onsets that fall into this area get negative

weights. If numerous audio onsets (e.g. originating from different background sounds)

surround a shot cut, they contribute negatively to the correlation estimate. An example

is shown in Figure 8.3(b). The dashed vertical line marks the shot cut. The spiky curve

is the audio novelty and the asterisks mark detected onsets. Even though the central

onset (marked with an arrow) is close to the shot cut, the overall correlation at this

shot cut is low because the four surrounding onsets have negative weights. This behav-

ior models the isolation condition: the surrounding onsets distract the observer from

the central onset which reduces the degree of perceived synchronicity. Figures 8.3(b)

and 8.3(c) illustrate the effect of the isolation condition. The shot cut with the iso-

lated onset in Figure 8.3(c) yields a higher correlation cj than the shot cut with the

surrounded onsets.

The correlation computation is performed as follows. Given a set of audio onsets

with positions pi and heights hi, i = 1, ...,M and a set of visual onset positions (shot

cuts) bj , j = 1, ..., B, we center the weighting function w around a shot cut bj . Note

that the weighting function is zero outside of the negative area “B”. The correlation cj

at shot cut bj is the sum of the products of the weighting function w (at position pi)

with the corresponding heights hi of the audio onsets:

cj =
M∑

i=1

w(pi) ∗ hi. (8.1)

By taking the actual onset heights hi into account we are able to model the salience

condition. Higher onsets are more distinctive and influence correlation more than lower

onsets. As a result, the correlation measure that takes the isolation condition and the

salience condition into consideration.

The result of correlation computation is a correlation estimate for each shot cut. In

the following, we consider shot cuts with correlation cj > 0 as synchronously edited shot

cuts and shot cuts with cj ≤ 0 as asynchronously edited. As a consequence, the example

in Figure 8.3(c) is a synchronously edited shot cut and the example in Figure 8.3(b)

an asynchronously edited one (see the corresponding correlations cj).
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Figure 8.3: The weighting function and examples of positive and negative correlation:

the isolated onset yields a higher correlation cj than a series of onsets that surrounds a

shot cut.
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Figure 8.4: The synchronous montage sequence from Section 8.1. The keyframes of each

shot show different religious symbols. At the end of the sequence the cutting rate doubles

but the frequency of the church bells remains the same. This leads to irregularities (shot

cuts without corresponding bell sound, highlighted in red) in the audio-visual correlation.

8.3.4 Extraction of Synchronous Montage Sequences

So far we have analyzed (and classified) whether or not single shot cuts as temporally

correlated with significant and isolated audio onsets. In the synchronous montage

technique the director makes repeated use of synchronously edited shot cuts to attract

the attention of the viewer over larger time spans. Consequently, we are interested in

the extraction of entire sequences that contain several subsequent synchronously edited

shot cuts.

In practice however, such a sequence might contain also some shot cuts that are

purposely not synchronized with the audio track by the filmmaker (e.g. for stylistic

reasons). An example from film history is the sequence of religious symbols from

Section 8.1. In the second half of the sequence the cutting rate doubles while the

frequency of the church bells remains the same. The result is that only every other

shot cut is accompanied by a church bell. The doubling of the cutting rate (halving

of the shot lengths) further increases the tension in the scene towards the end. The

corresponding part of the sequence is illustrated in Figure 8.4.

Due to such irregularities, for automated sequence extraction on a technical level,

we have to search for possibly interrupted temporal groupings of synchronously edited

shot cuts. For this purpose, we propose a tolerant segmentation scheme consisting of

two stages. In the first stage, we search for neighborhood regions at each synchronously

edited shot cut. The size of the neighborhood regions is maximized on the condition
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Figure 8.5: The schema for the extraction of a neighborhood region at a shot cut bj . The

maximum sum sj is obtained for a neighborhood of 8 shots.

that the number of irregularities in the neighborhood (asynchronously edited shot cuts)

is minimized. In the second stage, we merge the (overlapping) neighborhoods to obtain

the final montage sequences.

The first stage is illustrated in Figure 8.5. The extraction of neighborhood regions

takes place at synchronously edited shot cuts (marked with “x” in Figure 8.5) only.

Asynchronously edited shot cuts marked with “o” can be skipped. Note that this means

that a neighborhood region always starts with a positively correlated shot cut. At a

given shot cut bj we position a support window of size n, where n defines the number

of neighboring shot cuts that are taken into account. Next, we count the number

of positively correlated shot cuts in the support window and subtract the number of

negatively correlated shot cuts. This results in a sum sj,n for the support window of

size n at shot cut bj .

We perform the computation of sj,n for different sizes of the support window with

n = 1, ..., Nmax which results in a series of sums sj = sj,1, ..., sj,Nmax for the shot cut

under consideration (see sj in Figure 8.5 for the sums of the example sequence). Next,

we identify for which window size n the maximum sum is obtained:

nmax = argmax
n

(sj). (8.2)

In the example in Figure 8.5 the maximum sum is obtained for n = 8 (sum is 2).

Finally, the region from shot cut bj to bj+nmax is stored as a new neighborhood region.

If the maximum sum sj,nmax is smaller than 2 no neighborhood region is generated.

The process described above is repeated for all synchronously edited shot cuts. The

result is a set of (possibly overlapping) neighborhood regions.
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In the second stage, we compute the union of all neighborhood regions in order

to obtain the final montage sequences. For each extracted sequence we compute a

measure that reflects the confidence in the decision that an extracted sequence actually

is a synchronous montage sequence. A straight-forward measure is the number of

synchronously edited shot cuts in an extracted sequence. The higher this number the

higher the likelihood that the extracted sequence is a synchronous montage sequence.

8.4 Experimental Setup

We evaluate the proposed method with both: contemporary feature films as well as

historic (archive) film material from the early years of sound film. Especially, the his-

toric material is well-suited for the evaluation of the proposed method because (i) it

has low sound and image quality (noise, distortions) and thus allows for the evaluation

of the robustness of the method and (ii) the filmmakers of the early sound films inten-

sively experimented with the usage of sound in film montage and as a result the films

frequently contain montage sequences with strong audio-visual correlations.

8.4.1 Data

The historic material includes the film “Enthusiasm” by Dziga Vertov from 1931 and

“October: Ten Days That Shook the World” by Sergej Eisenstein from 1927. Each of

the two filmmakers developed his own montage rules, which are today subsumed by

the term Soviet/Russian Montage Theory [100]. Soviet montage theory of that time is

characterized by very strict and formalistic rules. These montage rules also affect the

audio-visual montage which makes the respective films particularly interesting for our

evaluation.

“Enthusiasm” is a documentary about the Soviet first five-year plan for economic

development (1928-1932) [215]. Vertov deliberately coupled “visible and audible mo-

ments” to create a strong tension between sound and visuals which resulted in a revo-

lutionary style of audio-visual montage for that time of filmmaking [63].

The film “October” from Eisenstein is an (originally silent) fictional film in celebra-

tion of the 10th anniversary of the October Revolution. In 1966 a soundtrack containing

sound effects and music by Dimitri Shostakovich was added. “October” contains highly

formalistic visual montage which partly correlates with the later added soundtrack [59].
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The contemporary feature films include “The Hunt for Red October” directed by

John McTiernan and “Fight Club” by David Fincher. “The Hunt for Red October”

was selected because it is a good example of synchronous montage according to [27].

For “Fight Club” no prior information on the montage style was available. The film

was selected to broaden the test set and to reduce the bias introduced by the other

selected films.

8.4.2 Ground Truth

There is no ground truth available for the performed investigation because this aspect

of film montage has not been analyzed automatically so far. Ground truth genera-

tion is a time-consuming process and requires the expertise of domain experts. The

consequences for our evaluation are twofold.

First, in absence of ground truth we cannot compute recall and precision for a

retrieval experiment. Nevertheless, we are able to evaluate the retrieved sequences

manually and compute the precision for result sets of different sizes (e.g. for the 3, 5,

and 10 sequences with the highest confidence).

Second, we attempt to generate a ground truth for selected material to enable a

more comprehensive evaluation of the retrieval performance. We select “Enthusiasm”

which makes the most intensive use of synchronous audio-visual montage. Together

with domain experts we annotate synchronously edited shot cuts and the synchronous

montage sequences in the film.

8.4.3 Parameters

The proposed method requires only a minimum set of parameters. The onset detection

is adaptive and free of parameters. This makes the method applicable to a wide range of

film material. The correlation computation requires the specification of two parameters:

the width of the weighting function w (see Section 8.3.3) and maximum support window

sizeNmax (in unit shot cuts, see Section 8.3.4). We experiment with widths of w ranging

from 1 to 1.8 seconds. The wider the function the more temporal tolerance is allowed in

the correlation computation. Typical values for Nmax are between 5 and 11 (shot cuts).

The larger the values of Nmax the more irregularities are tolerated during segmentation.
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System P System A

Task Recall Precision f1 Recall Precision f1

#1 Shot cuts 0.67 0.64 0.65 0.88 0.48 0.62

#2 Sequences 0.85 0.72 0.78 0.97 0.41 0.58

Table 8.1: Performance of the two compared system configurations evaluated against the

ground truth.

8.5 Experimental Results

We first evaluate the retrieval performance of the proposed method with the generated

ground truth. For comparison, we integrate the correlation computation by Monaci et

al. [149] into our method. For this purpose, we broaden the onsets with a rectangular

filter (to gain temporal tolerance) and combine the audio onsets and the visual onsets

by a logical AND as in [149].

We define two different system configurations: the proposed method with the

weighting function as correlation estimator from Section 8.3.3, short: “System P” and

as alternative system the proposed method with the correlation estimation of [149],

short: “System A”. Both systems operate on the same audio and visual onsets.

Table 8.1 presents the results of both systems for the film “Enthusiasm”. We com-

pute recall and precision for two different tasks: first, the detection of synchronously

edited shot cuts (task #1) and second, the extraction of synchronous montage sequences

(task #2) which is based on the first task. First, we compare the systems’ performance

to the theoretical performance attainable by random guessing. The probability for

“Enthusiasm” that a shot cut is synchronously edited is 0.36. The probability of oc-

currence of a synchronous montage sequence is 0.35. This means that for both tasks

random guessing would result in a recall of approximately 0.5 and a precision of ap-

proximately 0.36 and 0.35, respectively. From Table 8.1 we observe that both systems

significantly outperform random guessing in both tasks.

From Table 8.1 we further observe that System A yields a relatively high recall but a

precision which is near random. The reason is that nearly all shot cuts are classified as

“synchronously edited” and during sequence extraction large sequences are extracted

that cover nearly the entire film. This is best illustrated in Figure 8.6 (lower part)

which shows the strong under-segmentation produced by the alternative system.
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Figure 8.6: Sequence extraction results over time (x axis). The regions in the background

(gray) represent the sequences in the ground truth. The regions in the foreground (blue)

represent the sequences extracted by the proposed system P and alternative system A.

While System A generates a strong under-segmentation, System P achieves a finer and

more accurate segmentation.

A finer segmentation requires a better balancing between recall and precision (espe-

cially a higher precision). System P yields a higher precision and overall f1 score. This

significantly improves the accuracy of the sequence extraction. Again this is best ob-

served from Figure 8.6 (upper part) where the extracted sequences much better match

with the ground truth. Most of the ground truth sequences are partly or entirely re-

trieved. There are only a few short false positive sequences. The increase of precision

is due to the consideration of the isolation and salience condition in the weighting

function.

From Table 8.1 we further observe that the proposed method (System P) yields

higher recall and precision for sequence extraction (task #2) than for single shot cuts

(task #1), although both tasks build upon each other. The reason lies in the tolerance

of the segmentation scheme which is able to compensate for falsely classified shot cuts.

Table 8.2 presents the retrieval performance in terms of precision for differently

sized result sets (short “Prec@N” for a result set of size N) for the films from Sec-

tion 8.4.1. We obtain the different result sets by retrieving only the N sequences with

the highest confidence. Among the first ten retrieved sequences in average 72% are

relevant synchronous audio-visual montage sequences. Furthermore, in the film “Fight

Club” where no prior information about the montage style was available we discov-
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Feature Film Prec@1 Prec@3 Prec@5 Prec@10

Enthusiasm 1.00 1.00 1.00 0.90

October 1.00 0.67 0.80 0.50

The Hunt for Red October 1.00 0.67 0.60 0.70

Fight Club 1.00 0.67 0.80 0.80

Table 8.2: Precisions of the proposed method for different result set sizes (1, 3, 5, and 10)

and feature films.

ered several synchronous montage sequences. False positives are returned mostly in

situations where a lot of background noise is present in the soundtrack.

From Table 8.2 we observe that the performance for historic material is similar

to that of the contemporary material. This is remarkable since the historic material

contains numerous artifacts in the visual signal (e.g. flicker, shaking, low contrast) as

well as in the audio track (e.g. broad-band noise, distortions). There are two reasons

for the robustness of the approach. First, we rely on visual and audio onsets which

correspond to peaks that are robust to noise to a high degree. Second, even in case

of falsely detected onsets, the tolerant segmentation scheme compensates for most of

these errors.

The retrieved results include sequences of high semantic interest. For example the

top ranked sequence in “Enthusiasm” is the already mentioned sequence of religious

symbols from Section 8.1. An illustration of the sequence together with the audio

novelty curve is shown in Figure 8.7. The peaks clearly correspond to the church bells

at the shot cuts.

An interesting observation concerning the sequence in “Enthusiasm” is made from

the results for the film “October”. One retrieved sequence from “October” shows a

similar sequence of religious symbols which are emphasized by bell sounds at each

shot cut. Since “October” was produced before “Enthusiasm”, the soundtrack however

much later, the presumption comes up that both films mutually influenced each other.

This example illustrates that the proposed method is able to hint at correspondences

between different films.

For the contemporary material the retrieved sequences contain fast and synchro-

nously cut dialogue sequences (e.g. discussions and arguments between protagonists)

and action sequences (fights, shootings, accidents). The proposed method for example
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Figure 8.7: A sequence showing different religious symbols with synchronously edited

bell sounds at each shot cut.

retrieves a fast and synchronously cut dialogue sequence (between the narrator and

Tyler Durden beginning at 1:54:14) from the film “Fight Club”. In “The Hunt for Red

October” the method retrieves a key scene that shows a parallel montage of a nuclear

missile and the main character Jack Ryan who unmasks and shoots a saboteur and

thereby prevents the explosion of the missile. Generally, the extracted sequences are

semantically important in most cases and may enrich further high-level tasks such as

film abstraction, indexing, and summarization.

8.6 Summary

Filmmakers employ the synchronous montage technique to increase the tension of a

sequence and to highlight important events. The detection of such sequences enables a

new way for the extraction of semantically meaningful information from films. In this

chapter we have presented an approach for the automated extraction of such sequences

based on a novel method for cross-modal temporal correlation estimation and a tolerant

segmentation scheme. We first extract shot cuts and generic audio onsets by a self-

similarity analysis of the visual and auditory stream. Next we compute temporal cross-

modal correlations between shot cuts and audio onsets in a way that takes synchrony

perception of humans into account. The detected synchronously and asynchronously
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edited shot cuts are input to segmentation and sequence extraction. Since synchronous

montage sequences may contain irregularities (asynchronously edited shot cuts) we

develop a tolerant segmentation scheme. The segmentation scheme maximizes the

number of synchronously edited shot cuts in a sequence and at the same time minimizes

the number of asynchronously edited shot cuts (irregularities).

Experiments with historical and contemporary films show that the retrieved se-

quences contain rich semantics which makes them suitable for high-level film analysis

tasks. The novel method for correlation estimation outperforms a state-of-the-art ap-

proach for audio-visual synchronicity detection. The proposed method yields a better

balance between recall and precision which results in a significantly more accurate

segmentation.

The proposed method is a further step towards the automated extraction of se-

mantically meaningful information for high-level film annotation, interpretation and

summarization. The extraction of synchronous montage sequences (similarly to the

extraction of scenes) reveals the temporal composition of a film. Another aspect of

composition in film is motion. We investigate the analysis and retrieval of motion

composition in the next chapter.
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Chapter 9

Retrieval of Motion Composition

In the previous chapters we have focused on the retrieval of concepts related to the

temporal composition of a film such as shots, scenes, and synchronous montage se-

quences (in Chapters 5, 7, and 8). In this chapter, we focus on another higher-level

concept related to the composition of a film, namely motion. We first introduce the

role of motion (camera motion and object motion) in filmmaking in Section 9.1. Next,

we present a robust method for the extraction of meaningful motion components from

a film in Section 9.2. The method clusters motion trajectories into long-time motion

segments and provides a compact description of the motion content in a sequence. In

a next step, we introduce an intuitive query interface for the description of motion.

Based on this interface, we investigate two retrieval scenarios: (i) the retrieval of mo-

tion compositions in a shot in Section 9.3 and (ii) the retrieval of motion continuity

between two consecutive shots in Section 9.4. For both retrieval scenarios appropriate

matching schemes are presented that match the queries with the previously extracted

motion components.

9.1 Introduction

Camera and object motion characterize the style of a film and significantly influence

the way it is perceived by viewers. Motion controls the tempo in a scene, creates visual

rhythm and gives a film temporal continuity. Furthermore, motion gives evidence

about the genre of a film and about the director’s style. Motion is of special interest

to filmmakers and film scientists - however from different perspectives. Filmmakers
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employ motion for example to increase the tension in a scene. This may be achieved

by using a shaky camera (steadicam) and showing fast moving objects. Film scientists

otherwise reverse the process of filmmaking and manually analyze in detail for example

the usage of camera and object motion in order to investigate the progression of tension

over an entire film or a filmmaker’s style.

Automatic methods for motion retrieval support both, film scientists and filmmak-

ers in their creative work by allowing efficient search and retrieval of particular types of

motions and motion compositions. Especially film scientists manually analyze motion

shot by shot and in great detail which is a tedious, time-consuming and error-prone

task. Automatic motion retrieval supports the expert in finding typical motion direc-

tions, locations and combinations of interest more efficiently and sometimes also more

accurately. Consequently, automatic motion retrieval is a useful device in film studies.

The efficient retrieval of motion and motion compositions from a film requires the

robust extraction and segmentation of meaningful motion components. Additionally,

an intuitive query interface is needed that allows the user to define motion composi-

tions as search requests. Finally, tolerant matching schemes are necessary, that match

the abstract query description provided by the user with the automatically extracted

motion components from the film.

9.2 Motion Segmentation by Trajectory Clustering

Humans have the ability to easily interpret and abstract from complex motion patterns.

For example, consider a scene where a group of people moves from left to right. The

motion that most observers keep in mind is the motion direction of the entire group and

not the detailed motion of each individual. Consequently for efficient motion retrieval,

methods are required that are able to describe complex motion compositions in terms

of a few abstract and meaningful motion components.

Many different methods for the analysis and description of motion have been pro-

posed. Two basically different groups of approaches can be distinguished. The first one

aims at the segmentation and tracking of objects (or object regions) to represent the

dynamic content of a scene [10, 36, 40, 75, 137]. Approaches in this group usually start

with color segmentation of the frames [76] and then perform tracking of the segmented

regions over time (e.g., by Kalman filtering [36]). Finally, a trajectory for each object
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can be computed by tracking the centroid of each region [50]. However, some types of

motion cannot be represented by these approaches because the corresponding objects

are difficult to segment, such as groups of objects (e.g., people, cars), motion of water

(e.g., rivers), smoke, etc. Furthermore, segmentation-based approaches require high

quality (color) video material which is not the case for archive film material.

The second group of approaches extracts a texture pattern from a dense motion

field [30, 61, 156] and does not perform object segmentation. This texture pattern

(represented by statistical texture descriptors) is characteristic for different types of

complex motions (e.g., of crowds, water, grass) [156]. Both groups of approaches are

applicable only to a subset of motion types, for example either single objects or special

types of objects like water and smoke. For the retrieval of motion in film a method is

desired that is able to describe many different types of motions.

In the following, we present a robust and efficient approach for the segmentation

of single object motion as well as motion of groups of objects and camera motion. In

contrast to other approaches we extract motion trajectories by feature tracking directly

from the raw film sequence and omit object segmentation. The result of feature tracking

is a sparsely populated spatio-temporal volume of feature trajectories. Occlusions and

the low quality of the film material lead to numerous tracking failures resulting in

noisy and highly fragmented trajectories. The novel clustering scheme directly clusters

the sparse volume of trajectories into meaningful spatio-temporal motion components

belonging to the same objects or groups of objects.

The proposed approach takes the following factors into account:

• Applicability to low-quality monochrome film and video material that contains

low contrast, flicker, shaking, dirt, etc.

• The input data is a sparse set of fragmented trajectories that are broken off, have

different lengths, and varying begin and end times.

• The analyzed time span may be large (shots up to a few minutes length).

• The number of clusters is unknown a priori.

• The resulting clusters have to be temporally coherent (even if the majority of the

trajectories breaks off).
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• Motion direction and velocity magnitude may change over time inside a cluster

(to enable tracking of e.g. objects with curved motion paths and groups of objects

that have slightly heterogeneous directions and speeds).

• Efficient computation.

• Flexible selection of trajectory features and similarity measures in order to enable

different clusterings (e.g. to allow also spatial information during clustering).

9.2.1 Related Work

The basis for motion analysis is usually a dense motion field, which can be obtained from

an optical flow estimator, as in [39, 40] or directly retrieved from MPEG compressed

video [54, 60]. Dense optical flow computation is time consuming and can hardly be

applied to a full-length feature film. Furthermore, as experiments with our material

have shown, optical flow algorithms (Horn and Schunk, Lucas Kanade) yield highly

disturbed motion fields when applied to low-quality material.

Another drawback of optical flow methods is that motion fields obtained from op-

tical flow and compressed video usually represent motion between only two frames.

However, the analysis of the motion content of entire shots requires coherent motion

information over all or at least a large number of successive frames.

Feature trackers are able to provide motion information over large time scales by

tracking feature points over multiple successive frames [194]. Feature tracking has sev-

eral properties that make it suitable for our task. First, the tracked trajectories provide

information over large time scales and have high precision since they are based on dis-

tinct feature points. Second, feature trackers capture motion only where it actually

appears in a sequence, which reduces the amount of data for further processing signifi-

cantly in comparison to dense motion fields. Third, feature tracking can be performed

efficiently in near real-time [195]. The major drawback of feature tracking is that the

resulting feature trajectories are sparse in space and in time. The sparse nature of the

motion trajectories impedes the clustering of the spatio-temporal volume. Trajecto-

ries have different lengths and varying begin and end times. Consequently, standard

methods, such as Mean Shift and K-Means cannot be directly applied.

Methods for trajectory clustering have been introduced mainly in the field of surveil-

lance [36, 122, 137, 170, 230, 233, 234] and video event classification [93]. The methods
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have different constraints depending on their application domain. Wang and Li present

an approach for motion segmentation based on spectral clustering of motion trajec-

tories [233]. A major limitation of their approach is that all feature points must be

trackable in all analyzed frames. This is usually not the case, especially when working

with low-quality film material.

Hervieu et al. perform classification of motion trajectories by an HMM framework

for video event classification in sports videos [93]. While the HMM framework is able to

handle trajectories of different lengths, the method assumes that the trajectories have

similar lifetimes and do not break off (e.g., due to occlusions and tracking failures). A

similar assumption is made in [122] where the authors track and cluster motion paths

of vehicles. They represent trajectories by global directional histograms which require

similar motion trajectories to have similar lifetimes. However, this is not provided for

broken trajectories.

Veit et al. introduce an approach for trajectory clustering of individual moving

objects [230]. Groups of similarly moving objects, as required in our work, are not

tracked by the approach. Furthermore, the analysis windows are about one second,

which is inadequate for long-term analysis of e.g., an entire shot. Similarly, Rabaud

and Belongie cluster motion trajectories on a per-object basis in order to count people

in a surveillance video [170].

For clustering a sparse set of trajectories similarity measures are required that take

the different lengths and spatio-temporal locations of the trajectories into account.

Buzan et al. employ a metric based on the longest common subsequence (LCSS) to

cluster trajectories of different sizes [36]. An asymmetric similarity measure for a pair

of trajectories of different lengths is proposed by Wang et al. [234]. Their algorithm

can handle broken trajectories during clustering due to the asymmetric property of

the similarity measure. The measure is not directly applicable in our work because it

uses different (spatial) similarity constraints. However, the way we compute similarity

between two trajectories during clustering is similar to this method.

There is an important difference between the above mentioned methods and our

approach. The presented methods do not consider the temporal location of the trajec-

tories during clustering. They aim at clustering trajectories independently of the time

they occur (e.g., similar trajectories of different vehicles are grouped independently of

the time they occur) [122]. In this work, we are interested in clustering of motion
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trajectories belonging to the same object or group of objects. Therefore, we assume

corresponding trajectories to occur within the same time (and to have similar velocity

direction and -magnitude). Note, that we do not require the trajectories to have similar

spatial location, which facilitates tracking of large groups of objects and camera motion

(in contrast to e.g. [230]).

9.2.2 Trajectory Clustering

The idea behind the proposed scheme is to cluster the entire sparse volume of trajec-

tories directly by iteratively grouping temporally overlapping trajectories. Thus, it is

not necessary to split trajectories into sub-trajectories [19] or use global trajectory fea-

tures [122]. The trajectories are processed in their original representation. Figure 9.1

gives an overview of the approach.

The input of clustering is a sparse set of fragmented trajectories obtained from fea-

ture tracking. In a first stage of the algorithm an iterative clustering scheme groups

temporally overlapping trajectories with similar velocity direction and -magnitude.

Thereby, one trajectory may be assigned to multiple clusters. In the second stage

the clusters from the first stage are merged into temporally adjacent and disjoint clus-

ters covering larger time spans. Merging exploits the redundancy (multiple assigned

trajectories) contained in the input clusters, see Section 9.2.2.

Iterative clustering

Iterative clustering aims at successively grouping temporally overlapping trajectories.

A basic assumption is that trajectories that perform similar motion at the same time

belong to the same motion segment. According to this definition, a segment can rep-

resent motion of a single object, a group of several similarly moving objects as well

as motions of the camera. Consequently, segmentation is not restricted to a particu-

lar type and source of motion which is important for the retrieval of arbitrary motion

compositions.

A trajectory t is a sequence of spatio-temporal observations oj = < xj , yj , fj >

with t = {< xj , yj , fj >}, where xj and yj are spatial coordinates and fj is the frame

index of the corresponding observation. The input of the algorithm is a sparse spatio-

temporal volume which is represented as a set V containing T trajectories ti of tracked

feature points: V = {ti|i = 1, 2, ..., T}.
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Figure 9.1: The process of motion segmentation.
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Clustering starts by the selection of expressive trajectories (representatives of mean-

ingful motion components) for the initialization of clusters. We assume that meaningful

motion components span large distances. Therefore, we compute the absolute spatial

distance that each trajectory travels during its lifetime. That is the Euclidean dis-

tance between the first and last feature point of the trajectory. This measure favors

trajectories that belong to an important motion component. Alternatively, the lifetime

of the trajectories may be employed as a measure for their expressiveness. However,

experiments have shown that the trajectories with the longest lifetimes often represent

stationary or slowly moving points, which leads to the selection of inadequate represen-

tatives. Consequently, we do not employ the lifetime as an indicator for expressiveness.

We sort the trajectories according to their traveled distances and select the trajec-

tory tr with the largest distance as representative for the current cluster Ctr . Then

all trajectories ti from the set V are compared to the representative tr in a pairwise

manner. The similarity of trajectories that have no temporal overlap is 0 by definition.

Consequently, only temporally overlapping trajectories are compared.

For the pairwise comparison first the temporally overlapping sub-segments of two

trajectories tr and ti are determined. Following, we extract trajectory features from

these sub-segments and a perform similarity comparison. See Section 9.2.2 for the

description of the employed trajectory features and similarity measures. The result of

the pairwise comparison of trajectories tr and ti is a similarity score sr,i.

The similarity score is then compared to a threshold λ. All trajectories with a score

higher than λ are assigned to the current cluster Ctr :

ti ∈ Ctr ⇔ sr,i > λ (9.1)

The cluster Ctr is then added to the set S of clusters (which is initially empty).

In the next step the original set of trajectories V is updated. All trajectories ti ∈ Ctr

that lie fully inside the cluster are removed from the original set of trajectories V .

Trajectories that are temporally not fully covered by the cluster remain in V . That

enables trajectories to be assigned to multiple temporally adjacent clusters in further

iterations. This is an important prerequisite for the creation of long-term clusters in

the second stage of the algorithm.

After updating the set V the next iteration is started by selecting a new represen-

tative trajectory tr from the remaining trajectories in V . The algorithm terminates
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Input: Sparse set of T trajectories V = {ti|i = 1, 2, ..., T}

Output: Set of n clusters S = {C1, C2, ..., Cn}

Algorithm:

1. Initialize: S = {}

2. Sort trajectories ti ∈ V by their traveled distance (descending).

3. Select tr with maximum distance from V , initialize Cluster Ctr as Ctr = {tr},

remove tr from V .

4. For all remaining trajectories ti in V :

5. Compute similarity s(ti, tr)

6. If s(ti, tr) > λ then Ctr = Ctr ∪ {ti}

7. Update: add Ctr to S, remove trajectories from V that lie entirely in Ctr

8. Resume with step 2 until V = {}.

Figure 9.2: The iterative clustering scheme.

when no more trajectories are left in V . Figure 9.2 presents a compact listing of the

iterative clustering scheme.

The result of iterative clustering is a set of n overlapping trajectory clusters S =

{C1, C2, ..., Cn} where each cluster represents a portion of a homogeneous motion com-

ponent. The temporal extent of the clusters tends to be rather short (it is limited by

the temporal extent of the feature trajectories). Consequently, the iterative clustering

yields an over-segmentation of the spatio-temporal volume. This is addressed in the

second stage (merging), see Section 9.2.2.

Trajectory features and similarity measures

The proposed iterative clustering scheme allows for the use (and combination) of ar-

bitrary features and similarity measures, for example spatial features compared by

Euclidean distance, purely directional features compared by Cosine similarity, etc. Ad-

ditionally, the combination of features requiring different similarity or distance measures

is allowed.
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We compute features adaptively only for the temporally overlapping segments of the

compared trajectories. First, the temporally overlapping segments of the trajectories

are determined. Following, feature extraction is restricted to these segments. This is

different from other approaches, where features are computed a priori for the entire

trajectories.

A straight forward way is to directly employ the spatial coordinates of the tra-

jectories as features. For low-quality material the coordinates of the trajectories are

noisy (e.g., due to shaky sequences and tracking failures). Consequently, more robust

features are required. For a given segment of a trajectory we compute the dominant

direction φ = (∆x,∆y) where

∆x = xbegin − xend, ∆y = ybegin − yend, (9.2)

and the distance ρ between the first and the last spatial coordinates of the segment:

ρ =
√
(∆x)2 + (∆y)2 . (9.3)

These features are robust to noise and are location invariant (as required for segment-

ing motion from the camera and of groups of objects). They represent the velocity

direction and magnitude of the trajectories. Dependence on spatial location can easily

be integrated by adding absolute coordinates as features.

The presented features require two different metrics for comparison. We employ

the Cosine similarity for the directional features φ and a normalized difference for

the distance features ρ. The corresponding similarity measures sφ and sρ for two

trajectories u and v are defined as follows:

su,vφ =
1

2
·

(
φu · φv

‖φu‖ · ‖φv‖
+ 1

)
, su,vρ = 1−

|ρu − ρv|

max (ρu, ρv)
. (9.4)

The Cosine similarity is transformed into the range [0; 1]. We linearly combine both

similarity measures in order to obtain a single similarity measure su,v as:

su,v = α · su,vφ + (1− α) · su,vρ with 0 ≤ α ≤ 1, (9.5)

where α balances the influence of the velocity directions and the velocity magnitudes

of the two trajectories.
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Cluster merging

The presented iterative clustering typically yields an over-segmentation of the trajec-

tories. The goal of cluster merging is to connect clusters that represent the same

(long-time) motion component. This is performed by hierarchically merging clusters

which share the same trajectories.

The input to this stage is the set of clusters obtained by iterative clustering: S =

{C1, C2, ..., Cn}. We start an iteration by sorting the clusters according to their sizes

(number of member trajectories) in ascending order. Beginning with the smallest clus-

ter Ci, we search for the cluster Cj which shares the most trajectories with Ci. We

merge both clusters when the portion of shared trajectories (connectivity) exceeds a

certain threshold µ. The connectivity ci,j between two clusters Ci and Cj is defined as:

ci,j =
|Ci ∩ Cj |

min(|Ci| , |Cj |)
(9.6)

The criterion for merging clusters Ci and Cj into a new cluster C
′

i is:

C
′

i = Ci ∪ Cj ⇔ ci,j > µ. (9.7)

After merging the clusters Ci and Cj they are removed from the set S and the new

cluster is added into an (initially empty) set S
′

. If no cluster Cj fulfills the criterion

for merging then C
′

i = Ci. Following, Ci is removed from S and C
′

i is added to S
′

.

Merging is repeated with all remaining clusters in S, until S is empty and S
′

contains

all combined clusters. This makes up one complete iteration of merging. We perform

further iterations by setting S = S
′

to repeatedly merge newly created clusters until no

cluster can be merged any more. Finally, trajectories associated with more than one

cluster are assigned to the cluster with the largest temporal overlap. The result of the

merging procedure is a smaller set of clusters S
′

where the clusters represent distinct

(long-term) motion components. See Figure 9.3 for a compact listing of the algorithm.

The order in which clusters are merged influences the result significantly. We sort

the clusters according to their size and begin merging with the smallest clusters. This

supports the merging scheme to successively generate larger clusters out of small ones

(fewer small clusters remain). Furthermore, each cluster is merged with the one having

the highest connectivity. This facilitates that clusters belonging to the same motion

component are merged.
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Input: Set of n clusters S = {C1, C2, ..., Cn}

Output: Set of m (m ≤ n) clusters S
′

=
{
C

′

1, C
′

2, ..., C
′

m

}

Algorithm:

1. Initialize: S
′

= {}

2. Sort clusters in S according to size (ascending)

3. For all clusters Ci in S, beginning with the smallest:

4. Find cluster Cj with highest connectivity ci,j to Ci

5. If ci,j > µ then C
′

i = Ci ∪ Cj , remove Ci, Cj from S

6. Else C
′

i = Ci, remove Ci from S

7. Add C
′

i to S
′

8. Resume with step 3 until all clusters are processed.

9. Update: S = S
′

10. Resume with step 2 until no clusters can be merged any more.

Figure 9.3: The cluster merging procedure.

9.2.3 Experimental Setup

In this section, we describe the motion analysis framework that was used for the ex-

periments. The framework includes preprocessing steps (shot segmentation, motion

tracking and filtering of the motion field) and some postprocessing steps that were

added due to the low-quality of the archive film employed in the experiments.

Film material

The archive film material exhibit twofold challenges, that originate from their technical

and from their artistic nature. From the technical point of view, the film material is of

significantly low quality due to storage, copying, and playback over the last decades,

as described in Section 3.2. Low contrast and flicker impede the process of feature

detection and tracking, resulting in noisy and broken feature trajectories. Furthermore,

frame displacements and significant camera shakes result in falsely detected motion.

From an artistic point of view, the historic documentaries contain a large number of

differing motion compositions. Dziga Vertov used advanced montage and photographic
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techniques (e.g., quadruple exposure, reverse filming, etc.) to achieve complex mo-

tion compositions, including complex camera travelings, contrapuntal movements, and

typical work activities like hammering (see Figure 9.11 in Section 9.3.3 for examples).

Shot segmentation

Prior to motion analysis, we segment the films into shots. The subsequent motion

analysis is then performed for each shot separately. For shot segmentation the method

described in Chapter 5 may be employed. However, for the evaluation of trajectory

clustering, we have determined the shot boundaries manually, in order to assure that

the evaluation of our method is not influenced by segmentation errors.

Feature tracking

Feature trackers first select distinct points in a frame (e.g. corners of objects) and

then attempt to trace these points over time in subsequent frames. Points that cannot

be tracked any further (e.g. because they move out of the frame or get occluded) are

usually replaced continuously by new points.

We employ the Kanade-Lucas-Tomasi (KLT) feature tracker because of its efficiency

and its ability to track feature points across large time spans [194]. KLT combines fea-

ture selection and tracking into a single process. The tracker favors feature points that

can be tracked well which improves the expressiveness of the resulting motion trajecto-

ries. Figure 9.4 shows the trajectories of tracked feature points for contemporary film

material (from the film “Run Lola Run”). The sequence shows two cars that move

towards each other and finally crash.

For most parameters of KLT we use the defaults proposed by the implementation

in [23]. The search range for tracking is set to 3 which reduces the number of tracking

errors significantly with the historic film material. The minimum distance between

selected features is reduced to 5 in order to produce denser motion fields especially

in areas where tracking is difficult because of low contrast. The number of features

is set to 2000 (which is a good tradeoff between available motion information and

the computational effort for processing the trajectories). The tracker is configured to

immediately replace lost features by new ones.

The output of feature tracking is a fragmented set of trajectories in a sparse motion

field. The trajectories are noisy and have low homogeneity due to tracking failures
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(a) (b) (c)

(d) (e) (f)

Figure 9.4: Motion trajectories obtained from the KLT feature tracker for contemporary

film material.

induced by the low-quality film material. See Figure 9.6(a) for an example of a motion

field for the historic material. Some filtering of the motion field is necessary to reduce

the amount of noise in the motion field.

Filtering of the motion field

We perform three basic preprocessing steps in order to reduce the noise contained in

the motion field. First, we remove trajectories whose lifetime is less than a predefined

duration τ (τ = 0.5 seconds in the experiments). This removes a large number of

unstable trajectories.

Second, we detect and remove stationary trajectories. For each trajectory, we com-

pute the maximum spatial extent along the x- and y-axis. If both are smaller than

a threshold σ, the trajectory is classified as stationary and removed (see Figure 9.5

for an illustration). The threshold σ directly corresponds to the amount of shaking

in the sequence and thus can be easily determined. For the employed material σ is

approximately 1% of the width of a frame (σ = 7). We remove trajectories with a

spatial extent in x- and y-direction below a threshold σ which directly corresponds to

the amount of shaking in the sequence.
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Figure 9.5: Three examples for stationary trajectories. The black (solid) rectangles

mark their spatial extent. The red (dashed) rectangles show the maximum tolerance σ for

stationary trajectories.

(a) (b)

Figure 9.6: The effect of filtering: the motion field before (left) and after (right) filtering.

Third, we smooth the trajectories by removing high-frequency components in the

discrete Cosine spectrum of the spatial coordinates xj and yj . This dampens the

influence of shaking for the remaining trajectories.

Preprocessing reduces the number of input trajectories of up to three orders of

magnitude for highly noisy sequences. Figure 9.6 shows the effect of filtering for a

motion field accumulated over an entire (noisy) shot. The shot shows an airplane that

moves through the scene from left to right and contains a large amount of noise. Filter-

ing removes most of the stationary and noisy trajectories. The remaining trajectories

represent the motion of the airplane in the lower right quarter of the frame.

Clustering parameters

The proposed clustering approach requires three parameters to be set (λ and α for the

similarity comparison and µ for cluster merging). The similarity score su,v as defined in
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Equation (9.5) in Section 9.2.2 ranges from 0 to 1, where 1 denotes the highest similarity.

A value of λ between 0.7 and 0.9 yields satisfactory results in the experiments. The

weighting factor α of the combined similarity score su,v is set to 0.5 which means that

direction and magnitude equally influence the similarity computation.

The second parameter µ controls the sensitivity of cluster merging. It specifies the

minimum portion of shared trajectories necessary to merge two clusters. Due to the

high fragmentation of the trajectories the value of µ is chosen rather low to facilitate

cluster merging. Values of µ between 10% and 20% of shared trajectories yield the best

results in the experiments.

Postprocessing

We perform two simple postprocessing steps in order to improve the generated motion

segments. First, we detect and remove outlier trajectories. Since we ignore spatial

information during clustering some clusters may contain outlier trajectories (trajecto-

ries which are spatially not connected to the main region of the cluster). For each

trajectory of a cluster, we compute the number of trajectories in its neighborhood and

remove trajectories without neighbors. This yields more stable clusters with less spatial

fragmentation.

Second, we remove small clusters (less than 5 trajectories) since they usually repre-

sent noise. In the experiments clusters with less than 5 trajectories are removed. This

threshold is set very low, since we want to evaluate whether the clustering algorithm is

able to segment even small distinct motions which frequently occur in the material.

9.2.4 Experimental Results

We perform qualitative evaluation by applying our approach to shots with complex

motion compositions from the available film material. Some of these shots are highly

disturbed by noise.

A number of papers addressing motion analysis report results only for selected se-

quences [39, 60, 230]. We aim at performing a quantitative evaluation in order to test

our method on a large number of shots containing diverse types and motion compo-

sitions. Therefore, we apply the algorithm to an entire feature film and evaluate the

clustered motion components for each shot.
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Qualitative evaluation.

We have selected approximately 50 shots from different archive films for evaluating the

quality of our approach. Three test sequences are shown in Figures 9.7-9.9. For each

sequence, we provide three keyframes from the beginning, middle, and end. White

arrows and ellipses illustrate the dominant motion components. The fourth image

shows the clustered feature trajectories and the last image depicts the spatial extent

and the primary motion direction of each cluster.

The first sequence (Figures 9.7(a) - 9.7(e)) shows a group of people walking up a hill.

The people in the group first move towards the hill (in the lower right quarter), then

turn to the left, walk up the hill and finally vanish behind the hill. At the end of the

sequence a mule enters the scene at the top of the hill in opposite direction (short arrow

in Figure 9.7(c)). From the three keyframes 9.7(a)-9.7(c) we observe a large amount

of flicker, additionally some frames contain scratches and dirt as in 9.7(a). Since KLT

is sensitive to intensity variations the trajectories frequently break off. However, our

approach is able to create temporally coherent motion segments over the entire duration

of the shot. The movement of the group of people is represented by segments 1 and 2

(blue and yellow) in Figure 9.7(d). Segment 1 represents the motion of the people away

from the camera and segment 2 captures the people walking up the hill. The third

segment (red) represents the mule that appears at the end of the scene from the left.

The corresponding cluster is small, since the mule is visible only for the last 1.5 seconds.

This sequence shows that the approach is able to segment large groups of objects as

well as small individual objects. Furthermore, the method supports segmentation of

long- as well as short-term motion.

The second sequence (Figures 9.8(a) - 9.8(e)) shows an airplane moving from left to

right. The airplane approaches the observing camera and finally passes it. The sequence

is shot by a camera that itself is mounted on an airplane, resulting in permanent

shaking. Several frames of the shot are heavily blurred (e.g. 9.8(a)) making feature

tracking nearly impossible. Clustering of the shot yields three motion segments, shown

in Figures 9.8(d) and 9.8(e). The motion of the airplane is represented by segments 1

and 2 (yellow and red). The first segment describes the motion of the airplane from

the beginning of the shot to the last quarter of the shot. The second segment continues

tracking this motion until the end of the shot. While the two segments are temporally
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(a) (b) (c)

3
2

1

(d) (e)

Figure 9.7: Segmentation results of the first sequence. Figures (a)-(c) represent keyframes

(white annotations mark the dominant motion components). Figures (d) and (e) show the

clustered trajectories and the resulting motion segments with their primary direction.

coherent they are not merged by our algorithm because the (noisy) motion field that

connects them is too sparse. The third segment (blue) describes an intense camera shake

that is not removed during filtering the motion field. We further observe, that the first

segment contains some trajectories originating from the shaky camera. This shot is

one of the sequences with the strongest distortions. It demonstrates the limitations for

feature tracking and motion segmentation.

The third sequence shows a herd of horses (surrounded by the white ellipses in

Figures 9.9(a) - 9.9(c)) moving diagonally into the scene from left to right. At the

same time the camera pans to the right (indicated by the dashed arrows). The camera

motion can be recognized best by observing the house in the top right corner that

moves slowly from right to the left over the three keyframes. Both motion components
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(a) (b) (c)
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Figure 9.8: Segmentation results of the second sequence. Figures (a)-(c) represent

keyframes (white annotations mark the dominant motion components). Figures (d) and

(e) show the clustered trajectories and the resulting motion segments with their primary

direction.

are tracked and separated from each other by our approach. The spatially distributed

segment (segment 1, yellow) in Figure 9.9(d) represents the camera motion, while the

second segment (red) describes the motion of the herd. Not all individuals of the

herd can be tracked robustly by KLT due to the low contrast between the horses and

the background. However, the motion trajectories available from tracking are correctly

segmented. Note that the dashed arrows in Figure 9.9(e) represent the motion direction

of the camera and not that of the feature points relative to the image plane.

Motion segmentation performs well for the presented sequences. Even under noisy

conditions the method robustly segments the motion components. A systematic eval-

uation of the method on a larger dataset is presented in the next section.
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(a) (b) (c)
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(d) (e)

Figure 9.9: Segmentation results of the third sequence. Figures (a)-(c) represent

keyframes (white annotations mark the dominant motion components). Figures (d) and

(e) show the clustered trajectories and the resulting motion segments with their primary

direction.

Quantitative evaluation.

We apply the proposed approach to an entire feature film, in order to perform a quan-

titative performance evaluation. We select the film “The Eleventh Year” from 1928

because it makes extensive use of motion compositions. The film shows the life of

workers of the 1920s and contains a large number of motion studies of physically work-

ing people, crowds, industrial machines (e.g., moving pistons), and vehicles (e.g., cars,

trains). The film contains 63123 frames that have been manually segmented into (660

shots) and has a duration of approximately one hour (at 18 fps).

Creating a precise ground truth for motion segmentation is a non-trivial task, since

it requires the annotation of moving objects along the spatial and temporal dimension.

That principally means that the shapes and positions of all moving (possibly non-rigid)

objects (or groups of objects) have to be annotated at each time instance. We have
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created the ground truth together with film experts manually. For each shot, we count

the number of motion components and create a textual description of the objects and

their motion activity. We skip shots with a duration shorter than 0.5 seconds (which is

the minimum trajectory lifetime τ in our experiments, see Section 9.2.3). This yields

a total number of 607 shots. Evaluation is performed manually by comparing the

computed motion segments with the ground truth protocol and applying the following

rules:

1. A motion component is considered to be correctly detected if one or more clusters

exist with similar spatio-temporal locations and similar directions. Otherwise the

motion component is considered to be missed.

2. A cluster is considered to be a false positive, if it cannot be assigned to any motion

component.

The proposed method is able to segment 60% of all motion components in the film. This

low detection rate is a consequence of a poor feature tracking performance. While re-

lated literature reports excellent results of KLT for high-quality video [183], the tracker

misses 28% of all motion components in the employed film material. The tracker fre-

quently fails for very fast motions, motions in regions with low contrast, and complex

scenes of water such as in Figure 9.11(b) in Section 9.3.3. We exclude the motions that

KLT misses from the evaluation and yield a significantly higher detection rate of 83%

which shows that the proposed method provides high performance when motion track-

ing is successful.

The false positive rate is relatively high (22%) due to tracking failures and noise.

For example, feature points tend to walk along edges resulting in motion components

that are wrong but have a significant velocity magnitude. On the other hand, we have

configured the system sensitive to small motion components which makes the system

prone to noise.

In addition, we test our approach on selected sequences from high-quality film

material (230 shots from the feature film “Run Lola Run”) and yield a significantly

lower false positive rate (3%). The detection rate (for all motion components) is 72%

compared to 60% for the low-quality material.

We further evaluate the number of false negatives (motion components that are not

correctly segmented) for each shot of the low-quality material. The distribution of false
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0 FN 1 FN > 1 FN

All motion components 70% 26% 4%

Only trackable motion components 89% 9% 2%

Table 9.1: Percentage of shots containing no false negative (FN), one FN and more than

one FN with consideration of all and only the trackable motions, respectively.

negatives is summarized in Table 9.1. The upper row represents the evaluation of the

entire system (including the low feature tracking performance) while the bottom row

shows the performance of motion segmentation for the trackable motion components

only (i.e., rectified by the tracking performance).

The approach successfully segments all trackable motion components in 89% of the

shots. One trackable motion component is missed in 9% of the shots and only 2%

of the shots contain more than one missed component. The greatest potential for

improvements lies in the stage of feature detection and tracking. This can be observed

from the performance measures for the entire system (including tracking performance)

which are significantly lower.

Finally, we measure the computational efficiency of the entire system. We employ

a PC with an Intel Core 2 Quad CPU at 2.4 GHz for the experiments. The slowest

part is feature tracking. The employed implementation needs 1.3 seconds for tracking

features between a pair of frames, resulting in approximately 23 hours for the entire

film [23]. An efficient GPU-based implementation would significantly accelerate this

process [195]. The proposed clustering method (including filtering of the motion field

and postprocessing) is computationally efficient, requiring 10 seconds per shot in aver-

age and 110 minutes for segmenting the entire film which corresponds to approximately

two times the duration of the film.

9.3 Query-based Retrieval of Motion Composition

The motion segments obtained by the method described in the previous Sections allow

for a compact and expressive description of the motion contained in a shot. The

segments describe diverse types of motion like camera motion, motion of single objects

and motion of groups of objects. The motion segments are a well-suited basis for the

development of novel applications that enable the retrieval of motion from films. In
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the context of archive film the retrieval of motion compositions is of special interest

because they significantly characterize the style of a film. In this section, we present

an approach to automated motion retrieval that supports film scientists and archivists

in the search for particular motion compositions.

Different approaches for the automatic analysis and retrieval of motion have been

proposed in literature. However, they are hardly suitable for the applications of film sci-

entists for different reasons. Most methods are based on the analysis of object motions

only. They first segment and track the objects in a shot [36, 40, 76] and then compute

a motion trajectory for each object [50]. Retrieval is then performed by matching the

object trajectories with trajectories provided by the user [19]. However, some types of

motion which are important for motion compositions cannot be represented by these

approaches because they are difficult to segment, such as groups of objects (e.g., people,

cars), motion of water (e.g., rivers) and smoke. Other approaches skip object segmen-

tation and focus on the retrieval of camera motions only [10, 81]. Thereby, the user

coarsely provides the average intensity and direction of motion in predefined spatial

regions of the video. Such quantitative representations of motion are too coarse and

inaccurate for the retrieval of motion compositions.

We propose a more general approach for motion retrieval that exploits the abstract

information extracted by motion segmentation in Section 9.2. First, we define a novel

type of query for the description of user-defined motion compositions. The query allows

the definition of arbitrary motion compositions in an intuitive way. Based on the query,

a tolerant matching scheme extracts those shots from a film which have a similar motion

composition. The method enables searching for typical camera motions, object motions

and characteristic motion directions.

9.3.1 Query Design

The design of the query is a crucial factor since it defines in which way the user has to

specify the motion content of interest. Different types of queries exist in retrieval, such

as textual queries, example-based queries and sketch-based queries.

A number of systems incorporating motion for retrieval have been introduced, for

example VideoQ [40], MovEase [6], Picturesque [50] and the system in [54]. These

systems require the user to define trajectories that represent the motion of the objects

contained in the sequence of interest. Trajectory-based motion queries can become very
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complex with an increasing number of available degrees of freedom [6]. Each moving

object may be described for example by its trajectory together with its projected size,

direction, speed and acceleration at each time instant. The definition of such a query

can become counter-intuitive and time consuming for complex motion compositions.

Tolerant retrieval is difficult due to the large amount of detail contained in the mo-

tion description. Furthermore, the definition of such a motion query requires detailed

knowledge about the sequences of interest which reduces the exploratory capabilities

of the corresponding systems.

We envision a query that is much easier (and faster) to define and that allows the

user to integrate more variability into the motion description. We perform experiments

with six test users who are all film experts. They are asked to sketch the motion

content of selected shots on a piece of paper. The resulting sketches reveal that the

most important information for the participants is the direction of the motion followed

by its spatial location. Velocity and acceleration are neglected by most users. Even

the size of the moving objects plays a secondary role. Furthermore, most test persons

sketch motions of groups of objects as one coherent motion.

Based on these findings, we develop a query that enables sketching the motions

of interest as vectors in a sketch-pad window. The absolute position and the length

of a vector coarsely specify the region where the corresponding motion occurs (see

Figure 9.10 for example queries). For simplicity, we do not consider velocity magnitude

and acceleration in the queries.

A query can describe single object motions as well as motions of groups of objects

and camera motions. Large moving objects or groups of objects can be specified by

drawing several nearby vectors with similar direction. For spatially distributed motion

like camera motion, the user simply sketches several arrows with the desired direction(s)

distributed over the entire query window1. The proposed query allows for expressive

motion descriptions and at the same time provides enough freedom for tolerant retrieval.

The numerical description of a query contains the directions of all provided query

vectors. Additionally, a region (aligned rectangle or ellipse) around each vector is

1Note that for camera motion the direction of the query vectors has to be reversed because the

vectors always represent motion relative to the image content. A camera pan to the right for example

is represented by several arrows that point to the left because the image content on the screen actually

moves to the left.
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(a) camera pan (b) diagonal motion (c) hammering

Figure 9.10: Three examples of motion queries. The first query represents a camera pan

to the right or the movement of a large object to the left. The second query represents the

diagonal motion of an object or a group of objects from left to right. The third example

represents (possibly repeated) up and down movements which may originate e.g. from

hammering.

extracted that represents the area covered by the corresponding motion. These two

parameters (per query vector) are sufficient to represent motion compositions.

9.3.2 Query Matching

The retrieval of motion compositions requires the matching of the query with the pre-

viously computed motion segments. We extract representative information from the

motion segments that is structurally similar to the parameters derived from the query

vectors in order to allow a comparison of the descriptions. For each motion segment

two parameters are computed: a representative motion direction and the spatial region

covered by the segment.

The segments obtained from motion segmentation comprise a sparse set of frag-

mented trajectories. The extraction of representative information for such a segment

is difficult, since the trajectories have different begin and end times and are spatially

distributed. We extract the median direction of all trajectories in the segment which

is a robust estimate for the dominant motion direction of the segment. The second

extracted parameter is the spatial region covered by a segment. Therefore, we compute

the polygon (convex hull) that encompasses all trajectories of the segment.

In the next step, a match between the query and the motion segments is established

based on the extracted directional and spatial information. Optionally, temporal pa-

rameters (start time and duration of a motion) can easily be incorporated as additional
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constraints. During matching, all motion segments of a shot are compared with the

query. A query Q is defined as a set of N query vectors qi with directions θi and

assigned regions Ri. A shot S contains M motion segments mj with representative

(median) directions ϕj and regions (surrounding polygons) Mj . Matching between a

query and the motion segments of a shot is performed in three stages.

In the first stage a matching score si,j between each query vector qi and each motion

segment mj of the shot is computed as:

si,j =
θi · ϕj

‖θi‖ · ‖ϕj‖
·
|Ri ∩Mj |

|Ri|
·

(
1−

|Mj \ Ri|

|Mj |

)
. (9.8)

The first term is the Cosine similarity of the query vector’s direction θi and the

motion segment’s median direction ϕj . The second term is the portion of intersection

between the region covered by the query vector Ri and the motion segment’s region Mj .

The spatial intersection is negatively weighted (penalized) by the area of the motion

segment not covered by the query vector (|Mj \ Ri|). Matching each query vector with

each motion segment yields a set of scores si,1...M for each query vector qi. The scores

are in the range [−1; 1].

In the second stage, all positive scores for a query vector qi are summed up:

si =
M∑

j=1

max(si,j , 0) . (9.9)

This allows one query vector to score on several motion segments. Negative scores

obtained due to negative Cosine similarity are ignored. That means that we exclude

scores between query vectors and motion segments when their directions have an angle

larger than 90 degrees.

Finally, in the third stage an overall score s is obtained by taking the sum of the

scores si of all query vectors:

s =

N∑

i=1

si . (9.10)

The shots with the highest overall scores for the query are returned to the user:

The matching procedure is tolerant since it does not require all query vectors to

match with a retrieved shot. Additionally, a query vector accumulates scores from all

matching motion segments which makes matching more robust under noisy conditions,

where motions are sometimes split into multiple motion segments. The amount of

212



9.3 Query-based Retrieval of Motion Composition

(a) hammering (b) water

(c) rotation (d) group of people

Figure 9.11: Typical motion compositions.

desired tolerance depends on the application. Matching can be performed more strictly

by introducing penalties for non- and poorly-matched query vectors.

9.3.3 Experimental Results

Similarly to the experiments on motion segmentation in Section 9.2.3, we select archive

films that frequently contain complex motion compositions for the evaluation of the

proposed approach. One example is again the film “The Eleventh Year” which con-

tains frequent camera travelings, contrapuntal movements and work activities. Some

examples of motion compositions are illustrated in Figure 9.11.

Qualitative results

We evaluate the proposed method with queries representing camera motions, object

motions, motions of groups of objects and combinations thereof. Experiments show
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that the method performs well for object motions. However, for the retrieval of spatially

distributed motion (e.g. camera motions) which is represented by several query vectors

the ranking of the retrieved shots is suboptimal. That means that the most relevant

shots are indeed retrieved but do not yield the highest scores. This can be improved by

incorporating the total number of scoring query vectors into the matching function from

Equation (9.8). We weight the score s with the number of scoring query vectors Pq:

stotal = Pq ·s. This increases the score of matches with a larger number of scoring query

vectors and generates rankings that better correspond with the user’s expectations.

We present the results of three heterogeneous queries in Figures 9.12-9.14. For

each query, the figure shows keyframes of four of the returned shots. The first query

describes large-scale motion, such as a group of objects moving from right to left or

a camera motion (pan or traveling) to the right1. The best match (Figure 9.12(b))

is a tracking shot where the camera passes through under a bridge from left to right.

Similarly, the result in Figure 9.12(c) is a tracking shot where the camera is mounted

orthogonally to the direction of travel and captures the passing by environment. The

third shot in Figure 9.12(d) shows a train passing by (from right to left) captured from

a static camera. A remarkable result is the fourth shot (Figure 9.12(e)). It captures a

large crowd of people which disorderly pushes and shoves to the left.

The second query in Figure 9.13(a) contains a diagonal motion from left to right

which is typical for the filmmaker of the analyzed films. The best match is a tracking

shot, where the camera is mounted approximately 45◦ to the direction of travel (Fig-

ure 9.13(b)). This yields a dominant motion component in the query vector’s direction

resulting in a high matching score. The remaining shots show groups of objects (vehi-

cles, people and horses) moving diagonally towards the static camera (Figures 9.13(c)

- 9.13(e)). The motion directions in the returned shots slightly deviate from the query

vector’s direction. This demonstrates the tolerance of the matching scheme.

The proposed method is able to retrieve even more complex motion compositions.

The third query represents a combination of opposed (possibly cyclic) vertical motions

in the upper region of the frame. The best match is a shot of a trumpeter who moves

his trumpet up and down while playing (Figure 9.14(b)). The second retrieved shot

shows several workers walking up- and down a stairway (Figure 9.14(c)). The shot in

1Note that this query may retrieve camera motions as well as object motions. We do not intend to

distinguish between camera and object motion.
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(a) query I

(b) (c) (d) (e)

Figure 9.12: First example query. The query together with keyframes of four top-ranked

result shots are shown. Dashed arrows in the keyframes mark camera motions and solid

arrows are object motions.

Figure 9.14(d) shows factory workers moving up and down their arms while they pull

and push a rod. The last shot in Figure 9.14(e) shows three workers who hammer down

a pin into a rock.

Quantitative results

We perform a quantitative evaluation to obtain representative and objective perfor-

mance measures. For this purpose, we define 17 different motion queries. The queries

represent typical motion patterns of camera motions, small and large objects motions,

contrapuntal and rhythmical motion compositions. For each query, we assess the 12

top-ranked returned shots as either relevant or not relevant. The portion of relevant

shots in this result set gives a performance measure for the accuracy (precision) of the

method and can be computed for differently sized result sets (e.g. from 1 to 12). The

corresponding measures are termed “prec@1” to “prec@12”. These measures enable

the evaluation of the obtained retrieval performance as well as the ranking generated

by the approach. A good ranking is represented by a high prec@1 (which means that

the top-ranked result is most often relevant) and monotonically decreasing precisions

for larger result sets (prec@2, prec@3,...). The average precisions (for result set sizes
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(a) query II

(b) (c) (d) (e)

Figure 9.13: Second example query. The query together with keyframes of four top-

ranked result shots are shown. Dashed arrows in the keyframes mark camera motions and

solid arrows are object motions.

(a) query III

(b) (c) (d) (e)

Figure 9.14: Third example query. The query together with keyframes of four top-ranked

result shots are shown. Solid arrows describe object motions.
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Figure 9.15: Performance of motion composition retrieval: precisions for different result

set sizes.

from 1 to 12) over all 17 queries are shown in Figure 9.15. We observe that the preci-

sion is generally high and decreases for increasing result set sizes which proves that the

ranking is reasonable. The first returned shot is relevant with 94% in average. Among

the 12 top ranked shots of the 17 queries in average 65% are relevant to the user.

The evaluation confirms that the generated motion segments adequately represent

the motion content of the analyzed film material. The simple and intuitive queries

combined with the tolerant matching scheme enable the efficient search for particular

motion compositions.

9.4 Query-based Retrieval of Motion Continuity

Continuity editing plays an important role in filmmaking. It “refers to the matching of

individual scenic elements from shot to shot so that details and actions, filmed at differ-

ent times will edit together without error” [20]. Continuity editing assures that consec-

utive shots in a scene fit seamlessly together and that the conveyed story is presented

consistently to the viewer. An important device for achieving continuity is matching

on action (also cutting on action, cutting on motion). Matching on action aims at

keeping the screen direction (the motion direction of objects from the perspective of

the camera) between successive shots consistent. Directional continuity is important to

avoid confusion for the observer. In scenes presenting a chase for example the motion

direction is usually consistent among several shots, e.g. from left-to-right to convey the

impression of a continuous action. A single shot that contains right-to-left motion in

this scene would confuse the observer’s orientation. Two examples of matched actions
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(a) (b)

(c) (d)

Figure 9.16: Two examples of matched action.

are shown in Figure 9.16. The first example in Figure 9.16(a) and 9.16(b) shows a char-

acter that turns its head from left to right. During this movement the director cuts to

a close up of the face. The continued motion between both shots makes the transition

between the different shot scales appear seamless. Figures 9.16(c) and 9.16(d) show an

example of the entrance-exit pattern [20]. An actor exits the frame at the right side

and in the successive shot enters the frame from the left but perhaps at another time

and location. This pattern can be utilized to create a continuous transition between

different scenes and locations.
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In the following sections, we present a method that supports the investigation of a

film’s motion continuity editing. For this purpose, we extend the method for motion

composition retrieval from Section 9.3 by extending the presented query model from

Section 9.3.1 and adapting the matching scheme from Section 9.3.2. The resulting

method is able to find shots with matching action based on a user-defined query.

9.4.1 Query Design and Matching

An overview of the extended retrieval process is given in Figure 9.17. First, the query

window is split vertically into two halves: A and B. In query A the user sketches

the motion present at the end of an arbitrary shot and query B contains the continued

motion at the beginning of the next shot. For the retrieval of matched motion we define

an analysis window (the gray rectangle in Figure 9.17) of a few seconds (2 seconds in

the experiments) around each cut. Query A is then matched only with the left half of

the analysis window (end of shot N) and query B only with the right half (beginning

of shot N+1). The restriction to the window is necessary to get more accurate results.

Matching queries A and B with the entire shots N and N+1 (as in Section 9.3.2) could

take motion into account which is temporally not located around the cut and thus is

not relevant for continuity. If both queries positively score on the according halves of

the analysis window we combine both scores and return shots N and N+1 as a result

to the user. All returned results are then ranked according to their combined score.

For the retrieval of matched motions a finer matching scheme is necessary that

restricts the comparison to the analysis window only. We adapt the matching scheme

from Section 9.3.2 as follows. First, we remove all motion segments that do not coincide

with the analysis window. For the remaining motion segments we extract directional

and spatial parameters. Since the motion segments may be only partially inside the

analysis window, the median direction of the entire segment (as used previously) is not

a representative parameter with regard to the analysis window. Instead, we compute

the median direction of the segment for each frame in the analysis window separately.

For an analysis window that covers 2 ·D frames, this results in D directions θi1...D for

each segment which allows for a more precise matching. Directional matching between

a segment and a query vector is then performed by matching the direction of the query

vector with each median direction of the segment. We compute the mean of the Cosine

similarities (see first term in Equation (9.11)) between the query vector’s direction ϕj
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shot N
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Figure 9.17: Retrieval of matching actions. Each query (A and B) is matched with the

corresponding half of the analysis window. In this example the query represents a typical

entrance-exit pattern.

and each direction θik of the segment. Spatial matching is performed as in Section 9.3.2.

The modified scoring function is defined as:

si,j =
1

D

(
D∑

k=1

θik · ϕj

‖θik‖ · ‖ϕj‖

)
·
|Ri ∩Mj |

|Ri|
·

(
1−

|Mj \ Ri|

|Mj |

)
. (9.11)

We compute overall scores for both halves of the analysis window sA and sB as in

Section 9.3.2 by summing up the scores over all motion segments and query vectors.

Finally, we combine them by taking their product. This measure yields a high overall

score only when both scores are high which is an important prerequisite in this retrieval

scenario. Additionally, the scores are weighted by the portion of scoring query vec-

tors Pq from queries A and B and by the portion of scoring motion segments Ps in the

analysis window:

stotal = sA · sB · Pq · Ps. (9.12)
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The weighting increases the score where the query vectors correspond particularly well

with the actual motion content. This weighting improves the ranking of the retrieved

sequences.

9.4.2 Experimental Results

We evaluate the performance of the proposed method with the feature film “Run Lola

Run” by Tom Tykwer from 1998. The film is a thriller that makes extensive use of

matching on action. There are numerous scenes where motion is consistently carried

across several cuts such as chasing scenes and journeys. Many scenes for example show

the leading character Lola running through the streets from different viewpoints. They

are all connected by matching action to create the impression of a continuous journey.

Another frequent pattern are subsequent dolly forward shots joined with matching

action which show Lola’s view during running. The film further contains characteristic

sequences of shots with discontinuous motion. The director connects contrapuntal

motions over consecutive shots, for example by alternating dolly forward and backward

movements. The film is composed of three episodes that show three different versions

of the same story. Consequently, for many scenes there exist three different versions

with similar motions but varying content. This makes the material well-suited for the

evaluation of the proposed approach.

Prior to the evaluation, film experts manually searched for matching actions in the

film and annotated them. We evaluate the retrieval performance for matched actions

with different queries. Figures 9.18-9.20 show results for three example queries. The

first one in Figure 9.18(a) describes a local motion in the right half of the frame directed

downwards that is carried across a cut. This is a variation of the entrance-exit pattern.

The first returned result shows Lola’s friend Manni in a phone booth talking to Lola.

At the end of the shot Manni sinks down in resignation and his head leaves the frame

at the bottom. The following shot continues this motion from another camera angle

and shows Manni’s head moving in from the top of the frame.

The second query (see Figure 9.19(a)) describes a spatially more distributed motion

with a screen direction pointing downwards. This can either correspond to downwards

motion or motion towards the camera. The query matches well with a scene of shots

showing an ambulance approaching the camera that just crashed into a glass plate.

While the ambulance comes closer to the camera the director cuts to a wide angle shot
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(a) query I

(b) result I

Figure 9.18: Example I: a downwards motion that is continued over a shot cut from

“Run Lola Run”. Credit: Stadtkino Filmverleih.

that continues the motion (until the ambulance stops) and shows what has happened

in the surrounding of the ambulance after the accident (see Figure 9.19(b)). This ex-

ample demonstrates how matching action can be applied to create a seamless transition

between two different scales of a shot.

The third example query in Figure 9.20(a) represents the motion pattern produced

by a zoom in or dolly forward motion. The method returns several pairs of shots with

a continued dolly forward motion. One example is shown in Figure 9.20(b). The first

shot is a medium shot of Manni. While the camera slowly moves towards Manni the

director cuts to a medium shot of Lola where the camera continues its movement at the

same speed towards Lola. This transition directs the attention towards the two main

characters and increases the tension in the scene.

In most cases the returned results match well with the expert annotations. How-

ever, there are also results that do not match the underlying query at the first glance.

An example are shots captured with a shaky camera (steadicam) which often appear

in chasing scenes. In some cases the shaking of the camera produces a pattern of con-

tinued motion between two consecutive shots. Such sequences of shots usually do not

convey the impression of a matched action. Other sources of confusion are background

movements that match well with the query (e.g. a car moving in the background).

Such results may surprise the user because the background motion is often not per-

ceived consciously by the viewer. Consequently, the viewer would not recognize the

matching motion in this case. However, the proposed method detects such matching
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(a) query II

(b) result II

Figure 9.19: Example II: a spatially distributed motion towards the camera continued

over a shot cut from “Run Lola Run”. Credit: Stadtkino Filmverleih.

background motions since it does not distinguish between foreground and background

motion or between “salient” and “non-salient” motion. Although matching background

motions may not be recognized by the viewer as examples of matched actions at the

first glance, the question arises whether or not the movements are matched on purpose

by the director.

We further observe that the proposed method is able to retrieve matching actions

that were not recovered by the film experts during annotation. An example is shown

in Figure 9.21. It shows an excerpt of cross cut shots between Manni and Lola talking

on the phone. The cut between the shots in Figure 9.21 is positioned in a way that

the downwards movement of Lola’s head is continued seamlessly by the downwards

movement of Manni’s head. This generates a transition that leads the viewer smoothly

from one shot to the next. The matching action lasts for approximately a second

which makes it difficult to detect manually. This example shows that the proposed

method has the potential to detect patterns of interest that human viewers are likely to

overlook. In this manner, the method is able to assist the investigation and exploration

of continuity editing in a film.

The analysis of matched motion with continuous screen direction is only one possible

application scenario. We can for example retrieve sequences of shots with contrapun-

tal motion where shots with different (possibly opposing) motion directions alternate.

Such sequences can be employed to create the impression of objects or people moving

away from each other. Furthermore, contrapuntal motion is a device for the creation of

223



9. RETRIEVAL OF MOTION COMPOSITION

(a) query III

(b) result III

Figure 9.20: Example III: a zoom in continued over a shot cut from “Run Lola Run”.

Credit: Stadtkino Filmverleih.

Figure 9.21: A matched action recovered by the proposed method. Credit: Stadtkino

Filmverleih.

rhythmic motions. In “Run Lola Run” for example dolly forward movements are fre-

quently followed by dolly backward movements and vice versa. Retrieval results show

that this combination often appears in the film in situations where Lola is running (see

Figure 9.22 for an example). The first shot of such a combination typically shows the

world from Lola’s perspective translated in a dolly forward when she is running. In

the subsequent shot the camera is positioned in front of Lola and moves backwards

showing her running.

Ultimately, we want to point out that the applicability of the method is not limited

to the presented examples. The method can be employed for the retrieval of arbitrary

combinations of consecutive motions since the definition of the query is up to the user.

9.5 Summary

In this chapter, we have first presented a novel trajectory clustering approach for sparse

motion fields. The feature trajectories are highly fragmented and have different tem-
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(a) query

(b) result

Figure 9.22: A typical contrapuntal composition of motion that appears repeatedly in

“Run Lola Run” together with the according query. Credit: Stadtkino Filmverleih.

poral locations and lengths due to the low quality of the film material. The proposed

clustering scheme robustly segments noisy trajectories into meaningful motion compo-

nents and is computationally efficient. The clustering scheme allows for the flexible

selection of trajectory features and similarity measures which makes it well-suited for

different types of clusterings and applications. Although the method has been devel-

oped for low-quality film material, experiments have shown that it is applicable to

diverse video material. The low-quality of the archive film material mainly influences

the feature tracking performance. Where motion is trackable, motion segmentation is

successful to a high degree.

The extracted motion segments represent an abstract and compact description that

is a well-suited basis for motion retrieval. Based on the extracted motion segments, we

have developed two applications for motion retrieval. Both applications take simple and

intuitive motion queries as input and retrieve sequences with similar motion content

by a tolerant matching scheme. The first application retrieves user-specified motion

compositions from a film, such as camera motions, dominant motion directions, and

combinations of object motions. The second application is an extension of the first one

and enables the semi-automatic investigation of motion continuity. An extended query

allows the user to specify the motion between two successive shots. The application

enables the user to search for continuous motion transitions as well as contrapuntal

motion between successive shots.
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The proposed query model is easy to understand and does not restrict the user to

a predefined vocabulary. Consequently, it does not limit the range of possible search

requests and supports not only searching for already known motion patterns but also

enables the exploratory search of motion compositions. The developed methods perform

well in the investigated retrieval scenarios. In some cases, we even gain new insights

about the analyzed films by experimenting with the retrieval system. The presented

methods have the potential to assist film analysis and to improve searching movie

databases.
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Chapter 10

Retrieval of Visual Composition -

A User Study

The composition of shots in a film is not solely characterized by motion which has

been discussed in the previous chapter but also by visual composition. In this chapter,

we investigate the retrieval of visual composition in a user study. In Section 10.1 we

frame a hypothesis regarding the retrieval of visual compositions and identify research

questions. Background information on visual composition is given in Section 10.2. We

present the content-based features and similarity measures we employ in the user study

in Section 10.3. Additionally, we introduce a novel measure for the expressiveness

of content-based features. Section 10.4 describes the experimental setup of the user

study, the employed retrieval system and the subjects. We discuss the results of the

experiments and answer the research questions in Section 10.5.

10.1 Introduction

The concept of visual composition refers to the spatial arrangement of the visual ele-

ments (objects and their shapes) of an image. In painting, the artist arranges the visual

elements in a picture to evoke a certain impression. In film, the director arranges the

elements in a scene and selects the camera’s view [237].

Film experts want to identify recurring visual compositions (see Figure 10.1) be-

cause they want to analyze how compositions are used for conveying the message.

Currently, there is no accepted method for automated identification of visual composi-
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(a) templ. I (b) (c) (d)

(e) templ. II (f) (g) (h)

Figure 10.1: Two composition templates with three frames from different films that share

the respective visual composition type.

tions in film. Related work, such as [62], focuses on composition retrieval in news videos

which follow much stricter composition rules than film. This is the reason why related

work is not applicable to films. It is still unclear whether or not visual compositions, as

understood by film experts, can be represented and retrieved by low-level content-based

features. This is especially true for compositions that are strongly influenced by the

semantics of the depicted figures and objects. In this chapter we investigate the ap-

plicability of well-understood content-based retrieval methods in the novel domain of

visual composition retrieval. For this purpose, we assemble a real world data set with

the help of film experts in order to measure the retrieval performance.

We design a system for retrieval of visual composition in film and perform a user

study to test and answer the following hypothesis and research questions:

Hypothesis 1 Low-level features are able to represent visual compositions.

We pair combinations of features and single features with different proximity mea-

sures and let humans evaluate the retrieval results. These relevance judgments serve as

a metric for a feature’s ability to represent visual compositions. Features that capture

visual compositions well will produce better average relevance judgments. Additionally

to the hypothesis, we investigate three research questions.

• RQ 1: Which content-based features perform best?
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• RQ 2: Which proximity measure performs better?

• RQ 3: Do film experts judge the same retrieval results differently than others?

We derive the third research question from the assumption that subjects with expertise

in film studies better recognize the presence of compositions than subjects without this

expertise. Consequently, we expect a better assessment of the retrieval results by film

experts than by the control group.

10.2 Background on Visual Composition

Visual composition is intrinsic to visual arts and dates back to prehistoric cave paintings

and ancient Egyptian papyri. We can safely assume that artists always passed on

knowledge regarding visual composition from one generation to the next. In former

times this dissemination of knowledge was performed mostly verbally and through

imitation. Later, scholars started to put this knowledge down in writing. Today, readily

available scholarly work on visual composition dates back to the 19th century [35].

Since then, more and more scientific effort has been directed towards understanding

the processes that are used for composition [11, 168]. We see composition as the result

of two concurrent processes. First, the adherence to certain principles and, second, the

application of formal elements.

Formal elements among others include lines, shapes, textures and colors of depicted

objects and surface areas. Formal elements are either purposely embedded into the

image or they become apparent at a later time. For example see Figure 10.2 which

shows a frame from an archive film, where a group of children is marching through

high grass. Many beholders perceive a line, formed by the children’s heads, although

there is no line-shaped real word object in the image. The line develops in the beholder’s

mind.

Principles of composition include hard to grasp concepts like the dominant idea of

the image as well as more tangible concepts like the gradation of lighting, the balance

of the depicted elements, and the use of space. Leonardo da Vinci’s The Last Supper is

a textbook example for the principle of space, see Figure 10.3. Da Vinci depicts Jesus

and the apostles in a large hall at the table eating supper. The image is a snapshot

in time at the moment when Jesus says he knows one of them was going to betray
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Figure 10.2: A keyframe from our database, where a group of children marches through

high grass. The beholder perceives a line formed by the children’s heads, although there

is no line-shaped real world object in the image.

him. The artist organizes the apostles (twelve figures) into four groups of three. He

positions two groups to the left and two groups to the right of the central figure (Jesus)

thereby balancing the number of depicted figures relative to the center of the image.

A notable compositional aspect of the image is the use of space. Da Vinci embeds the

figures at the table in a large three dimensional hall to create the illusion of depth. The

hall’s spatial extent is generated through the use of central perspective. The coffered

ceiling as well as the tapestries (dark squares at the walls) emphasize the perception

of space by introducing (perspective) lines and texture. Da Vinci positions the central

figure of the image at the vanishing point of the scene where all perspective lines meet.

This positioning draws the beholders look to the semantic and syntactic center of the

image. Additionally, da Vinci uses light, employing the middle of the three windows

in the hall’s back wall to create a halo for the central figure. Light is also used in

the depiction of the semantically important figure of Judas (the apostle who betrays

Jesus). Da Vinci draws Judas to be in the shade, this way the apostle is darker than

the others.

The two examples in this section should hint at the often times very deliberate

processes involved in the composition of an image and give the reader an intuitive un-

derstanding of what visual composition refers to. A complete discussion of all principles

of visual composition is out of scope of this work. We refer the interested reader to

available literature, e.g. [11, 35, 168].
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Figure 10.3: Leonardo da Vinci’s The Last Supper. An example for the composition

principles of space, balance and gradation of lighting [223].

10.3 Evaluated Techniques

10.3.1 Content-based Features

The formal elements and principles of composition can be divided into two groups, the

tangible and the intangible ones. We focus on the tangible elements and principles. We

expect that they can be captured with content-based features and thus are relevant for

access to visual databases.

First, we select edge histogram, region shape, and homogeneous texture which are

defined in the MPEG-7 standard for multimedia content description [101].

The MPEG-7 edge histogram (EH) summarizes the spatial distribution of edges.

The edge histogram captures the general distribution of objects inside the image and

may serve as an indicator for balance. The MPEG-7 region shape feature (RS) describes

the image’s content in terms of coefficients of the Angular Radial Transform (ART)

which are invariant towards rotation and robust to scaling [179]. Region shape is linked
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(a) (b) (c) (d) (e) (f)

Figure 10.4: Masks defining the regions that are employed for the description of color and

intensity distribution in the KANSEI color and intensity feature. Note that the shading

only illustrates the spatial arrangement of the regions.

to shapes, in terms of formal elements of composition. The MPEG-7 homogeneous

texture (HT) feature captures the energy and energy deviation of 30 Gabor wavelet

frequency channels. The name of homogeneous texture implies its relation to the formal

elements of composition, it captures texture information.

Second, we employ the so called KANSEI features by Kobayashi et al. [111]. They

propose the joint application of both a shape feature (KANSEI shape) and a color

feature. KANSEI shape (KS) is influenced by several formal elements and principles of

composition. It reflects gradation in lighting, balance and shape at the same time. The

color feature is based on four composition templates. Each composition template de-

fines twelve regions with a specific spatial arrangement, namely radiation-like, circular,

horizontal, and vertical (see Figures 10.4(a) to 10.4(d)). The input image is divided

into regions according to the composition template. For each region the average color

is computed. These averages are the feature components.

Adaptations to the color feature become necessary because we employ frames from

black and white films in this user study. First, we reduce the computation of the

average color to one color channel, equaling the computation of the average intensity.

Second, we discard the radiation-like mask 10.4(a) proposed in [111] in favor of two

diagonal ones shown in Figures 10.4(e) and 10.4(f). This modification is based on

recommendations of film experts. We name the modified feature KANSEI intensity.

In addition to the single content-based features (see Table 10.1), we evaluate three

feature combinations (summarized in Table 10.2) and a random feature. We obtain the

feature combinations through concatenation of the single features’ components. The

random feature (RM) has 5 components with uniformly distributed pseudo-random

values. The random feature defines a lower-bound of retrieval performance which we
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Name Dim. Type Abbr.

MPEG-7 edge histogram 80 local EH

MPEG-7 homogeneous texture 62 global HT

MPEG-7 region shape 35 global RS

KANSEI intensity 60 local KI

KANSEI shape 64 local KS

Random 5 - RM

Table 10.1: Features used in the experiments with their dimension, their spatial layout,

and their abbreviations used in this chapter.

Combination Features Abbr.

KANSEI features <KI,KS> KSI

MPEG-7 features <EH,HT,RS> MP7

KANSEI and MPEG-7 <EH,HT,RS,KI,KS> ALL

Table 10.2: Feature combinations employed in the experiments and their abbreviations

used in this chapter.

use to compare the other features with. All features should perform better. This is

especially true for feature combinations. Feature combinations could improve retrieval

results because they capture more formal elements and principles of visual composition

than single features.

10.3.2 Proximity Measures

We consider a feature to be capable of representing visual compositions if the users

assess the retrieval results obtained with this feature to be relevant. We acquire retrieval

results through similarity retrieval using Salton’s vector space model [185]. In order

to preserve a certain objectivity we employ one similarity measure and one distance

measure. We employ Cosine similarity and the Euclidean distance because they are two

well-understood representatives of the respective groups of proximity measures [58].

10.3.3 Statistical Methods

We employ factorial analysis of variance [64] to identify significant differences in the

means of the relevance judgments to test the hypothesis and to answer the research
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questions. Factorial analysis of variance (ANOVA) is a standard method employed

in user studies. Significance tests with ANOVA allow for more objective statements

than descriptive methods commonly used in information retrieval. ANOVA enables

the evaluation of statistical properties of the investigated factors. In our user study

the factors are the content-based features, the proximity measures, the composition

templates, and the subjects’ field of expertise.

Independently of the relevance judgments, we analyze the expressiveness and data

quality of the content-based features. For this purpose we introduce the Weighted

Average Loading Indicator (WALDI), a measure for the expressiveness of a feature

based on Principal Component Analysis (PCA). In the following, we first present the

computation of the PCA since it is the foundation for the novel measure and then

derive the Weighted Average Loading Indicator. The PCA is a linear transform that

takes a set of possible correlated variables (the feature components in our case) as

input and transforms it into a set of decorrelated variables (the principal components)

as output [161]. The principal components represent a basis that gives us a common

coordinate frame for the comparison of different features’ information content. By

definition the first principal component describes the direction in which the data have

highest variability, the second principal component is orthogonal to the first direction

and has the second highest variability, etc.

We arrive at the principal components as follows. The data set is given as a ma-

trix X of n d-dimensional vectors xi ∈ R
d, i = 1, . . . , n with X = {x1,x2, . . . ,xn}.

Consequently, X is a n×d matrix with n columns and d rows where the columns repre-

sent the feature vectors in our case. First, the mean vectorm = 1
n

∑n
i=1 xi with m ∈ R

d

is computed and subtracted from each vector xi in X, resulting in a matrix X with

zero mean. Next, the covariance matrix ΣX is computed as ΣX = 1
n−1XX

⊤
. The

covariance matrix is a symmetric, positive definite, d× d matrix, whose diagonal terms

are the variances of the feature components and whose off-diagonal terms are the co-

variances between the feature components. For decorrelated (independent) variables

the covariance matrix (Λ) has non-zero values only in the diagonal terms:

Λ =




σ2
1 0

. . .

0 σ2
d



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where d is the number of feature components and σ2
i with i = 1, . . . , d are the variances

of the feature components. In order to decorrelate the feature components we need to

transform the covariance matrix ΣX into the form of Λ. Therefore, we need to identify

the matrix Γ that diagonalizes ΣX such that

Λ = Γ⊤ΣXΓ. (10.1)

Equation (10.1) has a solution where Λ is a diagonal matrix of the ordered eigenvalues

of ΣX and Γ is an orthonormal matrix of the corresponding eigenvectors (principal

components) of ΣX [33]. We obtain Λ and Γ by finding the eigenvalues and eigenvectors

of ΣX [33]. After we order the eigenvalues, Λ and Γ are of the form:

Λ =




λ1 0
. . .

0 λd


 ,Γ =



e11 . . . e1d
...

. . .
...

ed1 . . . edd


 ,

where λi are the ordered eigenvalues (λ1 > λ2 > . . . > λd) of ΣX , and eji the j-th

component of the i-th eigenvector (i, j = 1, . . . , d). From a statistical point of view,

the λi are the variances of the transformed feature components and the corresponding

eigenvectors ei point in the direction of this variability. From the ordering of the λi it

follows, that the first principal component points in the direction of largest variance,

the second principal component points in the direction of second largest variance and

so forth. In statistics, Γ is also known as the factor loading matrix. The factor loading

matrix represents the original features’ loading (influence) on the principal components.

The loading’s codomain is [−1, 1], high absolute loadings indicate high influence and

vice versa. One way to summarize the amount of variance captured by a feature

is the Weighted Average Loading Indicator (WALDI). We compute the WALDI by

weighting the eigenvector components’ absolute values with the corresponding amount

of explained variance and taking the sum over all principal components. We weight the

vector components’ absolute values, because Γ is orthonormal, i.e. all eigenvectors are

of unit length and give only the direction of the variance. Using the eigenvalues λi and

eigenvector components eji from above, the WALDI for the j-th feature component j =

1, . . . , d can be expressed as:

WALDIj =

d∑

i=1

σ̂i · |eji|, with σ̂i =
λi · 100∑d

c=1 λc

. (10.2)
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The WALDI summarizes the feature components’ influence on the variability in the

data. Feature components that describe much of the variability in the data obtain high

scores while components that describe little variability obtain small WALDI scores.

The WALDI may be employed in unsupervised feature selection for selecting expressive

features, i.e. features that represent large amounts of variance.

10.4 User Study

We conduct a user study to evaluate the applicability of low-level features for the

retrieval of visual compositions in a real world scenario. We select 30 users for the

study, 15 film experts (either film archivists or film scientists) as the test group and 15

computer scientists as a reference group. The reference group consists of computer

scientists, because of two reasons. The first reason is that computer scientists frequently

(mostly due to availability) serve as subjects in user studies concerned with information

retrieval. The second reason is that the inclusion of computer scientists allows for a

comparison of the two involved mindsets, on one side computer scientists as the creators

of retrieval systems and novices regarding visual composition and on the other side film

experts as specialists for visual composition and the real users of such a retrieval system.

We implement a system that takes user-defined sketches of visual compositions and

example images as input and retrieves images similar to the sketch based on the features

and proximity measures from Section 10.3. The system is able to build arbitrary feature

combinations and to pair them with different proximity measures. Furthermore, the

system allows the user to assess each retrieval result (see Figure 10.5).

The user study is performed with two sets of queries. The first set contains four pre-

defined (common) query sketches which represent compositions typically sought after

by film experts. These query sketches (see Figures 10.1(a), 10.1(e), 10.8(a), and 10.8(e))

were suggested by film experts prior to the study and later generated using a graphics

tablet and a pressure sensitive brush. The common query sketches enable an objective

comparison of two different user groups. The second set of query sketches is defined by

the users themselves during the study. This set of query sketches enables the evaluation

of the users’ subjective satisfaction. The users first assess the retrieval performance

regarding the four common query sketches and then draw and assess four individual

query sketches.
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Figure 10.5: The GUI of the retrieval system used in the experiments. The results are

presented left to the query sketch. For each result the user can assess its relevance by

choosing an entry in the corresponding drop-down menu.

We observe that the individual query sketches (see Figure 10.6) differ from the

pre-defined ones in abstractness and the semantic content. Some individual query

sketches are entirely abstract, e.g. a spiral, while others are much more semantic, e.g.

a schematic face. The performance of queries based on the semantics of sketches will

probably suffer from the system’s inability to process the semantics presented in the

query. In the case of the abstract query images the retrieval performance depends on

the frequency of such images in the data set. Note that the system supports user-

generated query sketches as well as the use of existing images from known films, the

web, etc. For the user study we employ sketches to reduce bias. For example, if existing
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(a) (b) (c) (d)

Figure 10.6: Individual query sketches generated by the users in the study.

images are used for the study, film experts could expect specific frames to be returned

regardless of whether these frames are part of the data set or not.

Retrieval is performed on a data set that contains 6690 keyframes from six black

and white archive films. The films are formalistic films which make frequent use of

visual compositions. We select keyframes from all shots (including the ones without a

distinguishable composition) in order to enable an objective evaluation of the employed

techniques creating a real world scenario.

We implement a system that takes user-defined sketches of visual compositions as

input and retrieves images similar to the sketch based on the features and proximity

measures from Section 10.3. For each query sketch, we perform retrieval with the six

content-based features listed in Table 10.1 and with the three feature combinations

listed in Table 10.2. Each feature and feature combination is paired with both prox-

imity measures (L2-norm and the Cosine similarity). This results in (6 single features

+ 3 feature combinations) ∗ 2 metrics = 18 different system configurations that are

evaluated in the study. Each of the 18 result sets consists of the 16 best matches found

in the data set and is assessed separately by each participant. We do not evaluate all

possible system configurations to limit the duration of the study for each participant to

an acceptable extent. Users spend 90 minutes to four hours to complete all assessments.

Prior to the assessment, we instructed the users to rate the visual similarity of the

retrieved matches. All users were informed about the origin of the employed keyframes.

Users not familiar with the term visual composition were briefed that the term refers

to the spatial placement of visual elements inside an image.
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EH HT RS KI KS

WALDI 35% 25% 21% 50% 100%

Table 10.3: The information content represented by each feature measured with the

WALDI technique relative to the best-scoring feature KANSEI shape.

10.5 Experimental Results

10.5.1 Data Quality of Features

An “ideal” feature has decorrelated components and a high score in regard of infor-

mation content. Feature combinations should exhibit similar properties. Additionally,

any two features in a combination should have low inter-feature correlations.

High information content is a necessary but not sufficient property of a good content-

based feature. We analyze the features’ expressiveness for the image data employed in

this investigation. The analysis results are summarized in Table 10.3. We observe that

KANSEI shape scores highest followed by KANSEI intensity. This means, they explain

large amounts of variance contained in the feature data. The MPEG-7 features consis-

tently have lower scores than the KANSEI features. Their expressiveness is limited in

the context of the underlying image data.

In addition to the information content, we investigate intra-feature and the inter-

feature correlations. Intra-feature correlations refer to the redundancies between the

components of one single feature, while inter-feature correlations refer to the redundan-

cies between components of two or more features. We compute Pearson’s correlation

coefficient between any two feature components and take its absolute value in order to

obtain the correlation matrix depicted in Figure 10.7.

Ideally, the entire matrix would be dark (correlation of zero) except for the main

diagonal which should be white (correlation of one). This would indicate that every

feature component (and thus every feature) captures specific information that is not

captured by any of the other components (and features).

On the intra-feature level, we observe strong correlations inside homogeneous tex-

ture and KANSEI intensity. The correlations in homogeneous texture indicate that the

energy and energy deviation of the captured frequency channels describe essentially

the same information in the image data employed in this user study. The components

of KANSEI shape and edge histogram are moderately correlated. Both features base
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Figure 10.7: The correlation matrix between all feature components. High values (light)

indicate high correlations, low values (dark) indicate low correlations. The white lines

mark the boundaries between features.

on neighboring image blocks which tend to have correlated content. region shape has

the lowest correlations due to the independent basis functions of the Angular Radial

Transform.

On the inter-feature level, KANSEI intensity is moderately correlated with all other

features. The highest correlation is observed between KANSEI intensity and KANSEI

shape. Region shape has low correlations with other features, especially with the two

MPEG-7 features. Homogeneous texture correlates with some components of edge

histogram. These correlations are expected since edges in an image introduce particular

frequencies in the image’s frequency domain representation.

10.5.2 Results of the User Study

Hypothesis 1: Low-level features are able to represent visual compositions.

We test this hypothesis by evaluating the Prec@16 obtained using the content-based

features. Prec@16 is the proportion of relevant retrieval results in the result set of

size 16. We choose Prec@16 in order to evaluate the complete result set our system

retrieves. See Figure 10.8 for examples of composition sketches and relevant retrieval

results. An evaluation of recall is not reasonable because there is no way to create a
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10.8: Two of the pre-defined query sketches – 10.8(a), 10.8(e) – each with three

relevant retrieval results.

RM EH HT RS KI KS MP7 KSI ALL

µ 0.07 0.22 0.30 0.34 0.42 0.54 0.37 0.49 0.53

σ 0.06 0.14 0.18 0.20 0.22 0.11 0.19 0.24 0.24

Table 10.4: Mean and standard deviation of Prec@16 for all features and feature combi-

nations.

universally valid ground truth for the keyframes in the data set. A unique assignment

of keyframes to composition types is not possible, since this assignment depends on the

beholder’s subjective assessment.

Table 10.4 lists the mean and standard deviation of Prec@16 for all features and

combinations in the study. Note that a Prec@16 value of 1.00 can only be achieved

if there are at least 16 relevant examples in the data set which is not the case for all

tested sketches. Consequently, we are interested in the relative performance differences

rather than in absolute precision values.

In order to falsify Hypothesis 1, there should be no significant differences in the

Prec@16 values between the random feature and the other content-based features in

the study. From the Prec@16 values, we observe that all single features and feature

combinations outperform the random feature significantly. The worst-performing real

world feature (edge histogram) yields an average Prec@16 of 0.22 while the random fea-

ture yields an average Prec@16 of 0.07. This means that Hypothesis 1 is not falsified.
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From both the Prec@16 values and offline interviews we conclude that in our experi-

ments the low-level features have the ability to capture aspects of visual composition

relevant to the subjects.

RQ 1: Which content-based features perform best? Edge histogram is outper-

formed by all other single features. The ANOVA confirms (using a level of significance

of 5%) this and the following observations. The 0.04 difference between the mean

Prec@16 of homogeneous texture and region shape is not significant. The performance

differences of KANSEI intensity and the other single features are significant. This

makes KANSEI intensity the second best single feature. The best performing single

feature is KANSEI shape. KANSEI shape’s performance supports the results of the

statistical analysis based on WALDI. KANSEI shape captures the variance in the data

that is important for retrieval of visual compositions.

In the evaluation of feature combinations, both KSI and ALL outperform MP7.

The performance difference between KSI and ALL is not statistically significant and,

thus, there are two “best” feature combinations.

The performance differences between the single features and the combinations do

not justify statements regarding a clear performance winner. It is nevertheless inter-

esting that KANSEI shape alone yields slightly higher precision than KSI and ALL.

However, ANOVA reveals that there is no significant difference between KANSEI shape

and ALL. This means that a single feature achieves comparable performance to the fea-

ture combinations at lower computational costs.

RQ 2: Which proximity measure preforms better? In order to answer the

second research question we analyze the performance differences between the two prox-

imity measures. Cosine similarity yields an average Prec@16 of 0.41 with standard

deviation 0.23. Euclidean distance yields an average Prec@16 of 0.39 with standard

deviation of 0.22. Although, the Cosine similarity seems to be superior over the Eu-

clidean distance, the factorial ANOVA reveals that there is no significant difference in

the performance of the two proximity measures.

RQ 3: Do film experts judge the same retrieval results differently than com-

puter scientists? We investigate the influence of the field of expertise by analyzing
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the differences in retrieval performance judgments between computer scientists and film

experts. We ask both user groups offline to assess the retrieval system’s general ability

to represent visual compositions on a five-point scale (deficient - sufficient - satisfactory

- good - excellent). Both user groups respond in the range from good to sufficient, with

the median for both groups being satisfactory. The statistical analysis of the actual rel-

evance judgments yields an average Prec@16 of 0.38 for computer scientists and of 0.43

for film experts with the same standard deviation of 0.22. These results indicate that

film experts asses the relevance differently than the computer scientists. The ANOVA

confirms the significance of this difference at a level of significance of 5%. We learn

that given identical result sets, film experts rate the relevance of the presented images

higher than computer scientists do. This observation is true for all four predefined

query sketches employed in this study.

10.6 Summary

Visual composition is an important aspect of accessing visual arts and film. However,

little effort has been invested into search and retrieval based on composition so far. We

investigate the capability of low-level content-based features for the retrieval of visual

compositions in a user study. Our findings suggest that low-level content-based features

are capable of capturing composition as it is understood by film experts.

Additionally, we learn that film experts assess the relevance of retrieval results to be

higher than computer scientists which shows the influence of expertise for composition

retrieval. This influence is linked to our finding that film experts, without being aware

of it, perceive visual compositions only if there is a strong semantic connection between

the query and the result image. Since the proposed technique focuses only on visual

similarity film experts are presented with (for them) unexpected results which are

semantically unrelated but visually similar. This allows the film experts to analyze

visual compositions that they did not perceive before. One long-serving film expert

even said: “The computer sees more than man.”
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Chapter 11

Conclusion

11.1 Summary

This thesis has focused on the retrieval of concepts from archive film material. These

films pose novel challenges to automatic analysis due to the presence of sophisticated

stylistic aspects and the low quality of the material. The films have not been subject

to automatic analysis and retrieval so far. However, film scientists and archivists have

been studying these films for decades. During this time, the film experts have developed

requirements which are novel in the field of automatic analysis and retrieval. From these

requirements we derive syntactical and semantical concepts. In this thesis we develop

and present novel methods for the retrieval of the identified syntactical and semantical

concepts.

First, we address the detection of less sophisticated concepts with mostly syntactic

aspects, such as intertitles and black frames. The corresponding case studies show that

even simple tasks become challenging in the context of the investigated film material

due to the large number of interfering artifacts.

Films have a hierarchical structure. On a low level, a film consists of shots. The re-

liable segmentation of a film into shots is the basis for most high-level film analyses. We

extend an existing method originally devised for contemporary films to the detection

of shot cuts in archive film material by incorporating robust features and introducing a

novel fusion scheme that significantly improves the detector’s performance. Addition-

ally, we investigate the detection of gradual transitions which are an important stylistic

means frequently used in the investigated films. Gradual transition detection in archive
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films introduces additional challenges which make the detection more complex than for

contemporary material. We perform a first systematic evaluation of gradual transition

detection in archive film material. The evaluation shows that gradual transition detec-

tion in archive film requires different features and parameter settings and additional

verification steps compared to contemporary films.

The next higher level above shots are scenes. We present a novel multimodal frame-

work for scene segmentation. The framework is extensible, requires no a priori infor-

mation about the films and is applicable to arbitrary film material. We perform a

systematic evaluation of the framework’s components and parameters. The evalua-

tion shows that scene segmentation of archive films is more demanding than that of

contemporary films due to the more sophisticated structure of scenes and the low mate-

rial quality. Additionally, the evaluation reveals that multimodal processing facilitates

scene segmentation in both, archive and contemporary film material.

Similarly to scenes, synchronous montage sequences are semantically related units

in a film. We present a novel cross-modal method for the extraction of synchronous

montage sequences. For this purpose, we develop a cross-modal correlation measure

that simulates human synchrony perception which significantly reduces the number

of false positive detections in the experiments. Additionally, we propose a tolerant

segmentation scheme that is robust to irregularities and gaps in synchronous montage

sequences.

Finally, we investigate motion and visual composition in the archive films. For

the retrieval of motion composition we devise a novel trajectory clustering method for

highly fragmented motion fields. The method extracts meaningful motion components

that allow a compact description of the motion content in a film. We propose an

intuitive type of query and robust matching schemes for the retrieval of motion compo-

sitions and investigate two retrieval scenarios: the retrieval of shots with user-specified

motion compositions and the retrieval of motion continuity between successive shots.

In both scenarios we obtain promising results for archive as well as for contemporary

film material.

For the retrieval of visual composition we perform a user study to investigate if

visual composition as it is understood by film experts can be retrieved automatically.

In the user study, we review the applicability of novel and existing low-level content-

based features for this retrieval task. We develop a query-by-example system that
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takes images with user-specified visual compositions as input and retrieves frames with

corresponding visual compositions from a database of archive films. We evaluate the

performance of different features, feature combinations, and similarity measures based

on the relevance assessments provided by the subjects. The study shows that content-

based features have the ability to capture composition as it is understood by film

experts. Furthermore, experiments show that the developed retrieval system supports

film scientists in gaining novel insights into the historic films.

11.2 Open Topics

We have identified a number of open topics related to the different investigated concepts

in this thesis that we plan to address in future research.

Black frames. We focus on the detection of single black frames in Chapter 4. The re-

peated use of black frames in a sequence is an artistic means that is frequently employed

in the archive films (see Section 4.1). Similarly to synchronous montage sequences, such

sequences have a strong semantic meaning in the films. Automatic retrieval methods

for such sequences are needed.

Intertitles. The method for intertitle detection presented in Chapter 4 assumes in-

tertitles to be static. However, there are animated intertitles in archive films, as well.

For the detection of such intertitles adequate methods are required. Additionally, the

text from the intertitles is a valuable source of context information. Keywords could

be extracted from the text automatically to estimate the topics presented in a film.

Finally, intertitles indicate topic changes which often coincide with scene boundaries.

Consequently, intertitles may be incorporated as an additional clue in scene segmenta-

tion.

Scenes. The experiments on scene segmentation in Chapter 7 show that the perfor-

mance increases with the number of employed content-based features. We expect that

scene segmentation further benefits from the integration of more sophisticated features

which measure similarity on a higher semantic level. Such features may be obtained

for example from face recognizers to group shots with recurring faces and from object

detectors to group shots which show similar or identical objects. Additional clues for
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scene segmentation may originate from intertitles, synchronous montage sequences, and

motion analysis, see the corresponding passages in this section for details.

The scene segmentation framework allows the integration of alternative feature fu-

sion schemes. The investigation and evaluation of different schemes are topics for future

research. When for example a large number of features is employed, a fusion scheme

based on majority voting would introduce additional robustness.

Synchronous montage sequences. Experiments show that synchronous montage

sequences often represent semantically meaningful content that is representative for a

film. Consequently, they are well-suited candidates for automatic movie summariza-

tion and trailer generation. The integration of synchronous montage sequences would

enhance movie summaries and automatically generated trailers.

Synchronous montage sequences are usually subparts of a scene and represent se-

mantically coherent units. The probability that they coincide with a scene boundary

is generally low. Consequently, synchronous montage sequences may be employed as

additional (and orthogonal) clues in scene segmentation.

Finally, synchronous montage is frequently employed in action scenes in contem-

porary movies. The proposed method may be extended by features such as loudness,

motion, and shot frequency for the detection of action scenes.

Motion composition. An open topic in the context of motion composition is the

retrieval of (arbitrary) rhythmic motions. Rhythmic motions may represent typical

activities shown in a film such as riding a bike, hammering, and dancing. Different

activities may be classified automatically based on the retrieval of rhythmic motion.

Additionally, motion composition can be analyzed at larger scales, across more than

one or two successive shots, as well. An open topic is the detection of motion patterns

across several shots. An example are several subsequent shots with similar camera mo-

tion. Shots in a chasing scene for example may be characterized by a continuous motion

direction in several subsequent shots. Such sequences semantically belong together and

may be an additional clue for scene segmentation. Additionally, such patterns may be

characteristic for different types of scenes, such as action scenes, romance scenes, and

dialogs and may be used for scene classification.
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Visual composition. Another open topic is the combination of visual composition

(which refers to the spatial arrangement of objects) with motion composition (which

refers to the arrangement of camera and object motion). Both compositional aspects

complement each other and together enable the description (and retrieval) of a much

wider spectrum of compositions. The combination of visual composition and motion

composition in a single retrieval system further requires the design of a query, that

combines both aspects in one simple and intuitive fashion.
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