
Augmented Reality Video

Situated Video Compositions in Panorama-based

Augmented Reality Applications

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medieninformatik

eingereicht von

Mathäus Zingerle
Matrikelnummer 0525931

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuer: Privatdoz. Mag.rer.nat. Dr.techn. Hannes Kaufmann

Mitwirkung: Dr. techn. Gerhard Reitmayr

Dipl.-Mediensys. wiss. Tobias Langlotz

Wien, 03.09.2012

(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Mathäus Zingerle

Lindengasse 42/2/16, 1070 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-

ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -

einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im

Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-

lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

First of all I want to thank my parents Walter and Ernestine Zingerle for their ongoing support

over all the years.

I want to thank my advisors Hannes Kaufmann and Gerhard Reitmayr for making this work

possible, especially for the smooth cooperation between TU Wien and TU Graz. Special thanks

go to Tobias Langlotz for helping me out with all the technical details and answering my ques-

tions at any time of the day.

Further, I want to thank all my friends who participated in this work, namely Stefan Eberharter,

Marco Holzner, Andreas Humer, Stephan Storn, Philipp Schuster, Mario Wirnsberger, Laura

Benett and Philipp Mittag, either by helping me with all the video material, taking part in the

user study or providing their mobile phones.

I also want to thank all the people who took some time to proofread parts of this work, namely

my brother Patrick Zingerle, Brandon Gebka and especially my sister Jacqueline Zingerle and

Travis Adams.

Finally I want to thank my friends once again for distracting me from time to time, which kept

my motivation going.

iii

Abstract

The rapid development of mobile devices such as smart phones has led to new possibilities in

the context of Mobile Augmented Reality (AR). While there exists a broad range of AR appli-

cations providing static content, such as textual annotations, there is still a lack of supporting

dynamic content, such as video, in the field of Mobile AR. In this work a novel approach to

record and replay video content composited in-situ with a live view of the real environment,

with respect to the user’s view onto the scene, is presented. The proposed technique works

in real-time on currently available mobile phones, and uses a panorama-based tracker to cre-

ate visually seamless and spatially registered overlays of video content, hence giving end users

the chance to re-experience past events at a different point of time. To achieve this, a tempo-

ral foreground-background segmentation of video footage is applied and it is shown how the

segmented information can be precisely registered in real-time in the camera view of a mobile

phone. Furthermore, the user interface and video post effects implemented in a first prototype

within a skateboard training application are presented. To evaluate the proposed system, a user

study was conducted. The results are given at the end of this work along with an outlook on

possible future work.

v

Kurzfassung

Die rasante Entwicklung von mobilen Geräten wie Smartphones hat zu neuen Möglichkeiten

im Bereich von Mobile Augmented Reality (AR) geführt. Obwohl es bereits eine Vielzahl an

AR Anwendungen gibt, die die Integration von statischem Inhalt (z.B. Text) erlauben, besteht

noch immer ein Mangel an mobilen AR Anwendungen, welche die Integration von dynami-

schen Inhalten (z.B. Video) ermöglichen. In dieser Arbeit wird ein neuartiger Ansatz präsen-

tiert, welcher es erlaubt an einem Interessenspunkt aufgenommenes Videomaterial an derselben

örtlichen Stelle wiederzugeben, so dass die Live-Ansicht einer realen Umgebung mit diesem Vi-

deomaterial überlagert wird, unter Berücksichtigung des aktuellen Blickwinkels des Benutzers

auf die betrachtete Stelle. Das vorgestellte System benützt einen Tracker, welcher auf einem

Umgebungspanorama basiert, um eine räumliche Registrierung von Overlays (erzeugt aus dem

Videomaterial) zu ermöglichen. Diese Overlays können somit durch das Tracking innerhalb die-

ser Umgebung nahtlos in die Live-Ansicht einer Anwendung eingebettet werden. Dadurch wird

Endbenutzern erlaubt vergangene Geschehnisse zu einem anderen Zeitpunkt wiederzuerleben.

Um dies zu erreichen, wird zuerst eine Segmentierung von Vordergrund und Hintergrund in dem

aufgenommenen Videomaterial durchgeführt. Basierend darauf wird veranschaulicht, wie die-

se extrahierte Information präzise und in Echtzeit in der Live-Ansicht von aktuell verfügbaren

Mobiltelefonen integriert werden kann. Außerdem wird ein erster Prototyp vorgestellt (als Teil

einer Skateboard-Trainingsanwendung), inklusive Beschreibung des User Interfaces und imple-

mentierter Post-Effekte. Abschließend werden die Resultate einer im Zusammenhang mit dieser

Arbeit durchgeführten Benutzerstudie vorgestellt und eine Aussicht auf mögliche zukünftige

Verbesserungen in Bezug auf das vorgestellte System gegeben.

vii

Contents

I Theoretical Foundations 1

1 Introduction 3
1.1 Problem Definition . 3

1.2 Contribution . 5

2 Literature And Related Work 7
2.1 History of Augmented Reality . 7

2.2 Mobile Augmented Reality Video Applications 10

3 Technological Foundations 13
3.1 Software . 13

3.1.1 Visual Studio . 14

3.1.2 XCode . 15

3.1.3 OpenCV . 16

3.1.4 Studierstube ES . 16

3.1.4.1 Studierstube Core . 18

3.1.4.2 Studierstube Scenegraph 18

3.1.4.3 Studierstube Math . 19

3.1.4.4 Studierstube IO . 20

3.1.4.5 Studierstube CV . 20

3.1.4.6 Studierstube Tracker . 20

3.1.4.7 Panorama Mapping and Tracking 20

3.1.5 OpenGL ES . 25

3.1.6 Qt Framework . 25

3.1.7 Camera Calibration . 26

3.2 Hardware . 27

3.3 Miscellaneous . 29

ix

3.3.1 Apple Developer Account . 29

3.3.2 iOS Provisioning Portal . 29

3.3.2.1 Development Certificate . 29

3.3.2.2 Device . 30

3.3.2.3 App ID . 30

3.3.2.4 Provisioning Profile . 30

II Design + Implementation 33

4 Concept - Overview Of The System 35
4.1 Activity Diagram . 35

5 Situated ARVideo Compositing 37
5.1 Terminology . 37

5.2 Content Creation . 38

5.2.1 Video Recording . 38

5.2.2 Video Transfer . 39

5.3 Offline Video Processing . 40

5.3.1 Foreground Segmentation . 40

5.3.1.1 Manual initialization . 41

5.3.1.2 Pre-GrabCut-processing . 43

5.3.1.3 GrabCut call . 44

5.3.1.4 Post-GrabCut-processing 46

5.3.2 Background Information . 51

5.4 Online Video Processing . 53

5.4.1 Registration . 55

5.4.2 Online Video Replay . 56

6 Foreground Segmentation (Implementation) 59
6.1 Class Diagram . 59

6.2 DynamicVideoSegmentation Class . 60

7 Adaptation of PanoMT 67
7.1 Handling alpha channels . 67

7.2 Matching Of Two Panoramic Images . 68

8 Background Information + Online Video Processing (Implementation) 71

x

8.1 Class Diagram . 71

8.2 ARVideo Class . 73

8.3 VideoScene Class . 80

8.4 VideoTexture Class . 84

8.5 Camera Class . 85

8.6 Tracker Class . 86

8.7 Image Class . 86

8.8 VideoImage Class . 86

9 Prototype 87
9.1 User Interface . 87

9.2 Post Effects and Layers . 88

III Results 91

10 User Study 93
10.1 Skateboard Tutor Application . 93

10.2 Scenario And Setting . 94

10.3 Procedure . 95

10.4 User Study Results . 95

11 Discussion/Conclusion 99
11.1 Discussion . 99

11.2 Conclusion . 100

Bibliography 103

xi

Part I

Theoretical Foundations

1

CHAPTER 1
Introduction

1.1 Problem Definition

The availability of inexpensive mobile video recorders and the integration of high quality video

recording capabilities into smartphones have tremendously increased the amount of videos being

created and shared online. With more than 70 hours of video uploaded every minute to YouTube1

and more than 3 billion hours of video viewed each month2, new ways to search, browse and

experience video content are highly relevant.

In addition, AR has become a new player in the mobile application landscape. It takes its

shape primarily in the form of so called mobile AR browsers that augment the physical environ-

ment with digital assets associated with geographical locations or real objects. These assets usu-

ally range from textual annotations over 2-dimensional (2D) images to complex 3-dimensional

(3D) graphics. Most of the current generation AR browsers use sensor-based tracking to regis-

ter these assets that are usually tagged with Global Positioning System (GPS) coordinates and

then based on these coordinates integrated into the users view. Even though it is known that

the accuracy of the positioning data delivered by GPS usually lies within a few meters it still

allows an ubiquitous augmentation of the environment. Moreover, most smartphones nowadays

are equipped with GPS-sensors (along with other sensors such as an accelerometer or compass).

In this work, it is investigated how to offer a new immersive user experience in a mobile

context through compositing the user’s view of the real world with prerecorded video content.
1http://www.youtube.com
2http://www.youtube.com/t/press_statistics

3

Similar to [29], this work is interested in extracting the salient information from the video (e.g.

moving person or objects) and offering possibilities to spatially navigate the video (by rotating

a mobile device such as a phone) mixed with the view of the real world. Contrary to the work

in [29], this work focuses on mobile platforms in outdoor environments and also aims to provide

simple ways to record/capture and further process the required video content with only minimal

user input. Furthermore, the system which is about to be presented relies on fewer restrictions

during the recording, as rotational camera movements are supported and the system does not

rely on a green screen type of technology for recording the video augmentations.

Hence, in this work an interactive outdoor AR technique is presented, offering accurate spatial

registration between recorded video content (e.g. person, motorized vehicles) and the real world

with a seamless visual integration of the previously extracted object of desire contained in the

recorded video material; integrated into the live camera view of the user’s mobile device. The

system allows one to replay video sequences to interactively re-enact a past event for a broad

range of possible application scenarios covering sports, history, cultural heritage or education. A

variety of user tools to control video playback and to apply video effects are proposed, thereby

delivering the first prototype of what could be a real-time AR video montage tool for mobile

platforms (see Fig. 9.1).

The proposed system shall operate in three steps. The first step is the shooting of the video,

including uploading/transferring the video to a remote or local working station (e.g. desktop

PC) for further processing. In a second step, the object of interest in the video frames shall

be extracted, and later augmented in place. This preprocessing task can be performed on the

aforementioned working station. A segmentation algorithm shall be applied which only re-

quires minimal user input, such as outlining the object of interest in the first frame of the video.

Additionally, the background information of the video shall be extracted and assembled into

a panoramic representation of the background, which shall later be used for the precise regis-

tration of the video content within the application environment. The final step is the “replay”

mode. This mode shall be enabled once a mobile user moves close to the position where a video

sequence was shot. Assuming the mobile device is equipped with all resources necessary for the

replaying of the video the user shall be able to explore the past event in the outdoor environment

by augmenting the video into the user’s view using best-practice computer vision algorithms.

4

1.2 Contribution

The proposed system contributes to the field of Augmented Reality by demonstrating how to

seamlessly integrate video content into outdoor AR applications and allowing end users to par-

ticipate in the content creation processes. Thus, several subfields shall be highlighted:

• Creation of suitable video source material for Augmented Reality applications.

• Segmentation of dynamic objects in dynamic video material.

• Mapping of panoramic images with respect to the background information.

• Real-time tracking in outdoor environments without sensor-based tracking.

• Seamless integration of video augmentations into the live view of AR-capable devices,

with respect to the current camera pose.

• Application of video effects in real time without pre-rendering the content.

Based on this thesis, and the implemented system, a paper which is about to be published [26]

was written together with members of the Christian Doppler Laboratory for Handheld Aug-

mented Reality, proving the relevance of the presented work.

5

CHAPTER 2
Literature And Related Work

The purpose of this chapter is to give some theoretical background about Augmented Reality and

its requirements in general, as well as the transition to Mobile Augmented Reality. This includes

the comparison of requirements and possible techniques for implementing AR systems targeting

outdoor environments which one necessarily encounters in the field of Mobile AR. Moreover, a

look at state-of-the-art technologies in the field of Mobile AR and comparable video applications

is given at the end of the chapter.

2.1 History of Augmented Reality

Although Augmented Reality was not a wide known term before the 1990’s the first Augmented

Reality system was actually installed already back in 1968 by Sutherland and described in [44].

Due to the very limited computational power at that time the “head mounted three-dimensional

display” was a giant machine and yet only capable of drawing a few simple line graphics onto

the display.

It was not until 1982 that the first laptop computer, the Grid Compass 1100, was released. It was

the first laptop with the “clamshell” design as we know it today. With a display of 320 x 240

pixels and only a few hundred kilobytes of internal memory it was still extremely powerful for

that time. Its portability was limited though due to its weight of 5 kg.

Ten years later the first smartphone was introduced by IBM1 and carrier Bellsouth. The

device did not contain a camera, yet worked as a phone, pager, e-mail client, etc. In 1993 the

1http://www.ibm.com

7

Global Positioning System (GPS), which is widely used today in a variety of devices such as car

navigation systems and mobile phones, was released for public use. In the same year Fitzmaurice

introduced “Chamaeleon” [15]. It was one of the first prototypes of a mobile AR system. The

idea was to use a portable computer to access and manipulate situated 3D information spaces

throughout our environment, such that the computer’s display acts as an “information lens” near

physical objects. The device was aware of its physical position and orientation relative to a map,

such as a geographical map. It was able to provide information about cities dependent on the

user’s gestures and movements. In [15] further possible application scenarios were described,

e.g. a computer-augmented library. The idea was that books and shelves emit navigational and

semantic information to access an electronic library. Another idea was to remotely access an

office, by using 360 degrees panoramic images. With the proposed idea the office would have

been accessed by a portable device from home, such that the remote view could be augmented

with graphical and audio annotations (“graphical post-its”).

In the mid 1990’s the term Augmented Reality was manifested and the distinction between

Augmented and Virtual Reality was pointed out [11], [33], [7]. One of the widely accepted def-

initions for Augmented Reality was introduced in 1997 by Azuma in [7]. The definition states

that “AR allows the user to see the real world, with virtual objects superimposed upon or com-

posited with the real world. Therefore, AR supplements reality, rather than completely replacing

it. Ideally, it would appear to the user that the virtual and real objects coexisted in the same

space” [7]. Hence, “maintaining accurate registration between real and computer generated

objects is one of the most critical requirements for creating an augmented reality” [32]. This

means when the viewpoint onto the scene of interest is moved the rendered computer graph-

ics need to somehow remain aligned accurately with the 3-D locations and orientations of real

objects, i.e. the real-world view of the user [32], [18]. To achieve such alignment an accurate

tracking (or measuring) of the real world viewing pose is necessary, because only an accurate

tracked viewing pose allows for correctly projecting computer graphics into the real-world view

of any AR device [32], [18].

With improving computational power in desktop computers and refined tracking mechanisms

(e.g. 2D matrix markers, see [37]) desktop AR Systems were improving steadily, yet mobile

AR systems were still practically not available. In 1997 the Touring Machine, the first Mobile

Augmented Reality System (MARS) was presented as a prototype [14] which was further refined

and explored as described in [20]. The system allowed users to access and manage information

spatially registered with the real world in indoor and outdoor environments. The user’s view

was augmented by using a see-through head-worn display, while all necessary hardware was

8

integrated into a backpack which the user had to carry around. Although being fully mobile,

the system was not of practical use to end users as the combined weight of the system was just

under 40 pounds.

The late 1990’s saw the integration of today’s basic features of mobile AR into handheld

devices, such as cameras and GPS sensors. In the early 2000’s mobile AR systems were still de-

veloped either as a combination of e.g. head-worn-displays and devices such as Personal Digital

Assistants (PDAs) or indeed running on mobile devices, yet depended on a desktop workstation

where the computational expensive tasks were outsourced to, for example see [21], [24] or [45].

In 2003 the first system running autonomously on a PDA (i.e. all tasks were carried out on the

PDA) was presented as an indoor AR guidance system, whereas in 2006 one of the first systems

using a model-based tracking approach (in contrast to e.g. GPS localization) for outdoor AR

applications on handheld devices was described in [36].

According to [48] in the following years mobile AR applications primarily (yet not only) im-

proved due to refined algorithms and approaches rather than making use of improved hardware.

Although smart phone hardware might not be as sophisticated as desktop computer hardware it

still improved a lot in the last few years which actually led to the development of mobile AR

applications which are useful to the end user. One could say that most AR applications before

that have been developed in terms of scientific surveys, to find out what is feasible and might be

of use to end users, yet have been restricted in development due to limited hardware/bandwith

resources.

Recent efforts have been made regarding the refinement of tracking and localization mecha-

nisms in wide-area environments (i.e. outdoor) [34], [6] or indeed on how to continually improve

the definition of adequate use cases for AR [31]. Another interesting aspect is the fusion of all

available device-integrated sensor information to achieve the best possible outcome for tracking

and localization [41].

Although the quality of AR applications is increasing steadily there is still a lack of “real”

content [17]. Currently available AR browsers are mainly based on the concept of using geo-

referenced images, textual annotations, audio stickies, etc. In addition, these annotations can

then lead the user to a website or similar for further information. Integrating more sophisticated

content like 3D graphics remains a challenging task so far, due to the complex preprocessing

which is necessary to create 3D models. Mobile AR browsers like Argon2 build on the idea of

2http://argon.gatech.edu

9

Figure 2.1: (Left) The “head mounted three-dimensional display” - the first Augmented Reality
system. Taken from [44]. (Middle) The follow-up model (the Grid Compass 1101) to the first
“clamshell” laptop (the Grid Compass 1100). Taken from [5]. (Right) The first “smart phone”
known as IBM Simon Personal Computer.

letting users create and experience augmented content, yet are limited to static information or

it requires a lot of knowledge how to generate the content. This is where the proposed situated

video compositing system comes into play, which aims to interactively integrate dynamic and

real life video content into an outdoor AR application. Similar to the concept of Argon or

Worldboard3, users could share self-created content; while offering users a novel approach to

experience the augmented content in an immersive way.

2.2 Mobile Augmented Reality Video Applications

Current user interfaces of online video tools mostly replicate the existing photo interfaces. Fea-

tures such as geo-tagging or browsing geo-referenced content in virtual globe applications such

as Google Earth4 (or other map-based applications) have been mainly reproduced for video

content.

More recently, efforts have been made to explore further the spatio-temporal aspect of videos.

Applications such as Photo Tourism [43] have inspired work such as [8], allowing end-users to

experience multi-viewpoint events recorded by multiple cameras. The system presented in [8]

3http://www.teco.uni-karlsruhe.de/hcscw/sub/115.Kirkley/115.kirkley.html
4http://earth.google.com

10

allows a smooth transition between camera viewpoints and offers a flexible way to browse and

create video montages captured from multiple perspectives.

However, these systems limit themselves to produce and explore video content on desktop

user interfaces (e.g. web, virtual globe) out of the real context. Augmented Reality technology

can overcome this issue, providing a way to place (geo-referenced) video content on a live, spa-

tially registered view of the real world. For example, in [19] investigated situated documentaries

and showed how to incorporate video information into a wearable AR system to realize com-

plex narratives in an outdoor environment. Recent commercial AR browsers such as Layar5 or

Wikitude6 are now integrating this feature, supporting video files or image sequences but with

limited spatial registration due to the fact that the video is always screen aligned and registered

using GPS and other sensors or indeed 2D markers.

Augmented Video has also been explored for publishing media. RedBull7 for example, pre-

sented an AR application that augmented pages of their Red Bulletin magazine with video mate-

rial using Natural Feature Tracking (NFT). The application was running within a webpage as an

Adobe Flash8 application, detecting features on a magazine page and playing the video content

spatially overlaid on top of that page.

As these projects generally present the video on a 2D billboard type of representation, other

works have been exploring how to provide more seamless mixing between video content and a

live video view. In [28] within the Three Angry Men9 project the authors investigated the use

of video information as an element for exploiting narratives in Augmented Reality. A system

was proposed where a user wearing a Head Mounted Display (HMD) was able to see overlaid

video actors virtually seated while discussing around a real table. The augmented video actors

were prerecorded and foreground-background segmentation was applied to guarantee a seam-

less integration into the environment, created with the desktop authoring tool presented in [29]

and [30].

Whereas the work in [28] used static camera recording of actors, the 3D Live system [35] ex-

tended this concept to 3D video. A cylindrical multi-camera capture system was used, allowing

capture and real-time replay of a 3D model of a person using a shape-from-silhouette approach.

5http://www.layar.com
6http://www.wikitude.com
7http://www.redbull.com
8http://get.adobe.com/flashplayer
9http://www.cc.gatech.edu/projects/ael/projects/ThreeAngryMen.html

11

The system was supporting remote viewing, by transmitting the 3D model via a network and dis-

playing the generated 3D video onto an AR setup at a remote location as part of a teleconference

system.

While the mentioned applications were proposed for indoor scenarios, Farrago10 an applica-

tion for mobile phones, proposed video mixing with 3D graphical content for outdoor environ-

ments. This tool records videos that may be edited afterwards by manually adjusting the position

of the virtual 3D object overlays on the video image, yet requires the usage of 2D markers or

face tracking. Once the video is re-rendered with the overlay, it can be shared with other users.

The video compositing system presented in this work makes use of a panorama-based tracking

mechanism to estimate the user’s position and keep track of the user’s movements. In contrast

to the above mentioned related work there is no need for 2D markers or creation of complex

3D models. Additionally, it overcomes problems of other available tracking mechanisms. For

example, using only GPS would not be of sufficient accuracy, due to the occurring jitter in

urban environments. With Simultaneous Localization and Mapping (SLAM) technologies the

usage of markers or tracking targets is obsolete and tracking of, for example, faces or robot

movements [16] works fine in indoor environments. Moreover, tracking a device’s position in

a previously unknown environment can be achieved by SLAM. In [22] the authors present a

mobile implementation of a system based on SLAM. However, the applicability of SLAM in

outdoor environments targeting a system like the one presented has not been shown so far.

One of the big advantages of the tracking and mapping approach presented in this work, com-

pared to other available tracking mechanisms, is that it similarly to SLAM works in previously

unknown environments AND in contrast to SLAM also in outdoor environments; without ad-

ditional markers and complex preprocessing. One can start building a panorama on-the-fly and

the system continuously tracks the user’s position. Which is why the proposed system relies on

the Panorama Mapping and Tracking algorithm as pointed out later.

10http://farragoapp.com/

12

CHAPTER 3
Technological Foundations

Developing a system like the one presented in this work requires a systematic approach to fulfill

every single subtask involved in arriving at the final outcome. Throughout the whole work, con-

ceptual decisions had to be made so that single components could be developed as independently

as possible, while ensuring that all parts combined play together in the end. The following chap-

ter justifies the employment of software systems, function libraries and additional tools which

were required to conduct the presented work. Moreover, a short overview about what needs to

be taken into consideration when developing for iOS1 is given at the end of the chapter.

3.1 Software

To realize this work, two different coding platforms, so called Integrated Development Environ-

ment(s) (IDEs), were set up. The need for two separate environments arises from the fact that on

the one hand the Studierstube ES framework has primarily been developed under Microsoft’s2

Windows3 operating system and the corresponding IDE called Visual Studio4. On the other hand

the final application is targeted to be deployed to devices such as the iPhone5 or iPad6 running

1http://www.apple.com/ios
2http://www.microsoft.com
3http://windows.microsoft.com
4http://www.microsoft.com/visualstudio
5http://www.apple.com/iphone
6http://www.apple.com/ipad

13

Apple’s7 iOS mobile operating system.

Both the Foreground Segmentation and the extension of the Panorama Mapping and Tracking

algorithm - a component of the Studierstube ES framework - were developed using the Visual

Studio IDE. The extension is a requirement to accomplish the creation of the reference panorama

(see Fig.5.12) as explained in Section 5.3.2.

As noted above and as can later be observed, he main target platform of the final ARVideo

application prototype is the iOS mobile operating system. Which is why the final application

needs to be built under MacOS8 with its IDE known as Xcode9.

In the following segment more details about the development environment are revealed along

with decisions about which additional libraries were chosen for the Foreground Segmentation

step and the rendering of the augmentation overlays in the context of the Online Video Replay.

To close this chapter details about the necessary camera calibration tool are given.

3.1.1 Visual Studio

The primary IDE which was worked with throughout this project was Microsoft’s Visual Studio.

The main reason for this decision was that one of the most important components of this work,

the Studierstube ES framework, has been developed using this very same IDE with C++10 be-

ing the core development language. As noted above, one subtask of this work was to extend

the Panorama Mapping and Tracking technique - a component of the Studierstube ES frame-

work, see Fig. 3.3 - such that it gains the ability to generate panoramic images omitting unwanted

image details such as foreground objects, as explained in Section 5.3.2. Moreover, as described

below in Section 3.1.3, Visual Studio simplifies integrating additional function libraries such

as OpenCV.

In the context of this work a cross-platform development environment was set up together with

the XCode IDE. Thus the same code-base was used to target the Windows desktop platform as

well as the mobile iOS platform. This was realized by platform dependent macros throughout the

code to distinguish between said platforms wherever this was necessary (i.e. including platform

dependent libraries such as OpenGL ES11). A big advantage of this cross-platform approach

is to gain the best features out of both platforms or even detect leaks in the application which
7http://www.apple.com
8http://www.apple.com/osx
9https://developer.apple.com/xcode

10http://www.cplusplus.com/reference
11http://www.khronos.org/opengles

14

Figure 3.1: Setting up a cross-platform environment. (Left) Excerpt of the Visual Studio envi-
ronment (Windows Desktop). (Right) Excerpt of the Xcode environment (iOS).

wouldn’t have been discovered otherwise. This meant that the main development of the On-

line Video Processing was carried out in the Visual Studio IDE targeting a Windows executable.

Once a certain feature seemed to be working on the desktop it was tried out on the mobile, i.e.

iOS platform. This double testing might seem cumbersome, yet it really simplifies development

and testing in a lot of cases, especially since testing on the mobile device can be much more

time-consuming than testing on the desktop platform.

Further, note that with the current described environment, the Offline Video Processing is

only supported in the desktop environment, as at the moment carrying out this step on the mo-

bile platform is not feasible, yet could be supported in future versions of the Situated ARVideo

Compositing tool as noted in Chapter 11.

3.1.2 XCode

The final application Prototype presented in Section 9 is running on Apple’s iPhone and iPad de-

vices, which is why it was required to set up an environment under MacOS using the XCode IDE

to target the iOS platform; besides the Visual Studio IDE as explained above in Section 3.1.1.

Usually coding for iOS means to work with The Objective-C Programming Language12 (short:

12http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC

15

Objective-C) developed by Apple. Due to the nature of both C++ and Objective-C being ex-

tensions of the standardized ANSI C programming language and XCode’s built-in compilers for

both, one can build an application targeting iOS making use of both programming languages. In

the context of this work this was realized by creating an iOS “application stub” which is used

to “load” the real application written in C++ with the help of the Studierstube ES framework.

Note that it is still possible to mix both C++ and Objective-C in one class file, such that not

only the “application stub” may contain Objective-C, but also “normal” classes wherever an ex-

plicit distinction of code is necessary. As noted above in Section 3.1.1 testing and the therefore

required compiling of a code base like the one used in this project can be very time-consuming.

Especially since Xcode and iOS devices like the iPhone seem to perform a lot of caching of files

(e.g. image files), which often makes it necessary to completely clean and rebuild (i.e. compile)

all relevant framework parts, in order to achieve the expected behavior/changes in the code/files.

Which is why as much work as possible was carried out under the Visual Studio environment, as

mentioned above as well.

3.1.3 OpenCV

The OpenCV library13 has been chosen for the implementation of the Foreground Segmentation

step. The reasons for this choice are that it provides a good amount of best-practice computer

vision (CV) algorithms, meaning it offers ”a wide range of programming functions for real time

computer vision” [1]. Additionally, it is available as an open-source library, as the name implies,

which makes the payment of license fees obsolete. Moreover, it allows the integration of its

available libraries into the IDE of choice, namely Visual Studio. As explained in Section 5.3.1

the Foreground Segmentation step makes use of a combination of CV-algorithms; or in more

detail OpenCV-implementations of those algorithms; to achieve the task of separating the fore-

ground object and the background information in the recorded video material. Fig. 3.2 indicates

how to add dependencies of the OpenCV libraries to the Visual Studio project properties, so that

the desired functions can be called within the project. Which OpenCV algorithms are being used

is described in detail in Section 5.3.

3.1.4 Studierstube ES

As pointed out earlier, the Studierstube ES framework along with its underlying components

symbolizes one of the fundamental modules in the realization of this project. ES stands for

Embedded Systems and according to the development group the Studierstube ES framework

represents “a radical new way of doing Augmented Reality (AR) on handheld devices” [4]. It

13http://opencv.willowgarage.com/wiki

16

Figure 3.2: Integration of OpenCV libraries into Visual Studio.

Figure 3.3: Studierstube ES Overview in the context of this work, adapted from [4].

is further stated that it was written especially for supporting applications running on handheld

devices (such as PDAs, mobile phones, etc.). Fig. 3.3 illustrates the framework’s structure along

with all its components and interfaces.

17

As explained in Chapters 7 and 8 the final ARVideo Application stands for a Studierstube ES

Application sitting on top of the framework as it is illustrated in Fig. 3.3. This means the applica-

tion is based on said framework and makes use of the single layers and components as depicted

in Fig. 3.3. It can be observed that the framework supports a wide range of operating systems

(OS) and integration of numerous state-of-the-art Application Programming Interfaces (APIs).

As a consequence the framework needs to be set up, i.e. (pre)compiled, accordingly for every

different OS. Integrating different APIs and framework features is made possible by providing

configuration files, such as eXtensible Markup Language (XML)14 or header files. Note that

the integration of APIs and features is checked at compile- and run-time, respectively, in order

to avoid unpredictable behavior. Furthermore, the integration of certain APIs is exclusive, such

that, for example, only one renderer (e.g. OpenGL ES, Direct3D) can be compiled and used

with the framework.

As can be observed from the overview image in Fig. 3.3 the Studierstube ES (StbES) com-

ponent resembles the central and most important component of the framework. This is due to

the fact that it contains the basic classes required to compile a Studierstube ES Application and

while doing so it consolidates all other (pre)compiled components, like Studierstube Core and

other components, to finally merge or link, respectively, all data which is necessary to execute

the application. In the following the remaining components of the Studierstube Software Stack

are described briefly.

3.1.4.1 Studierstube Core

The Studierstube Core (StbCore) component defines, as the name suggests, a set of core classes

which act as interfaces to the underlying hardware and the OS in use. It is responsible, for

example, for setting up the windowing system or allocating memory and additionally contains

template classes for common types like Array or Pixel.

3.1.4.2 Studierstube Scenegraph

The Studierstube Scenegraph (StbSG) component contains a rich set of classes which can be

used to build a scene graph. A scene graph is a hierarchical tree-like structure widely used in CV

which usually contains a root node and child nodes, wherein a child node can have child nodes

itself, making it the parent node of these child nodes, and so on. Properties or manipulation of

parent nodes directly influence the behavior of child nodes, such that, for example, removing

a parent node has the consequence of removing all child nodes which belong to the according

14http://www.w3.org/XML

18

Figure 3.4: Simple scene graph.

parent node. Or in other words, the whole subgraph would be removed. Fig. 3.4 demonstrates the

graphical representation of a simple scene graph. By creating and traversing such a scene graph

it is possible to control, for example, the graphical appearance of digitally rendered content in a

system like the one presented. Hence, the built scene graph within a Studierstube ES Application

is consulted by the rendering mechanism, in order to control the application’s behavior and visual

appearance, as for example, shown in Section 5.4.2 and further explained in Chapter 8 by making

use of scene graph nodes like SgTransform or SgTexture. The framework simplifies creating such

scene graphs by translating regular XML files and its contained elements to the corresponding

scene graph nodes, yet it is still feasible to manipulate the scene graph, i.e. insert/remove nodes,

programmatically.

3.1.4.3 Studierstube Math

As the name suggests, the Studierstube Math (StbMath) component contains classes for mathe-

matical operations. These operations range from simple integer computations (e.g. power of two

operations) to more complex computations like creation and transformation of rotation matrices.

19

3.1.4.4 Studierstube IO

Essentially, the Studierstube IO (StbIO) component is responsible for reading and writing files

from/to the filesystem, which includes textfiles, images, videos and even compressed files, like

zip files.

3.1.4.5 Studierstube CV

The Studierstube CV (StbCV) component contains implementations of frequently used/needed

CV algorithms, for example, Normalized Cross Correlation (NCC), feature point detection/corner

detection (e.g. FAST, Harris Corner), pose estimation, image filtering (e.g. blurring) or image

transformation (e.g. warping).

3.1.4.6 Studierstube Tracker

The Studierstube Tracker (StbTracker) component merely works for marker-based tracking, yet

it comes with valuable features such as determining the camera projection matrix (based on the

intrinsic camera parameters, which are explained in Section 3.1.7), which consequently helps in

projecting camera frames into the panoramic map created with the framework.

3.1.4.7 Panorama Mapping and Tracking

The Panorama Mapping and Tracking (PanoMT) algorithm; which was first presented in [46];

represents a fundamental basis of this work. As the name of the thesis suggests and as explained

throughout it the final application heavily relies on a panoramic map to continuously track and

update the user’s position within the AR environment.

In Chapter 5 it is explained in detail how the Panorama Mapping and Tracking algorithm

comes into play; firstly in the Offline Video Processing step to create the background reference

panorama and secondly in the Online Video Processing step to fulfill the registration and keep

track of the current camera pose. In order to actually achieve said features, the original func-

tionality of the Panorama Mapping and Tracking component is not sufficient as it is not able to

process alpha channel information to, for example, omit foreground objects while the panorama

is being created (see Fig. 5.11). Furthermore, the localization feature (“registration”) does not

support matching two panoramic maps against each other, such that the displacement of features

is correctly determined and hence the absolute displacement between the two panoramic maps

can be determined. Due to the reason that the original implementation does not contain solutions

to the two mentioned problems, the Panorama Mapping and Tracking algorithm as presented

20

Figure 3.5: High-level overview of the mapping and tracking pipeline. Taken from [46].

in [46] was extended in the context of this work to provide said solutions. In the following the

original functionality of the algorithm is outlined shortly based on [46]; with emphasis on details

which are important for the extension of the algorithm, which is given in Chapter 7.

The Panorama Mapping and Tracking algorithm represents a novel method for the “real-time

creation and tracking of panoramic maps on mobile phones” [46]. It uses natural features for

tracking and mapping and allows for 3-degree-of-freedom (3-DOF) tracking in outdoor scenar-

ios, while retaining robust and efficient tracking results. Usually the panoramic map is created

in real-time from the live camera stream by mapping the first frame completely into the map

and extending it by only those areas which are not covered yet in the map for successive frames.

Fig. 3.5 illustrates the basic mapping and tracking pipeline. It can be observed that the system

operates in a cyclical process, such that the tracking depends on an existing map to estimate the

orientation, yet the mapping depends on a previously determined orientation to update the map.

Hence, at start-up a known orientation with a sufficient number of natural features must be used

to initialize the map.

1. Panoramic Mapping.

As pointed out in [46] a cylindrical map is chosen to create a map of the environment. The

main reason for choosing a cylindrical representation is that “it can be trivially unwrapped to a

single texture with a single discontinuity on the left and right borders” [46].

• Organization of the map - The map is organized into a grid of 32x8 cells (see Fig. 3.6)

which simplifies processing the unfinished map, as every cell can have either of two states:

finished (completely filled) or unfinished (empty or partially filled) and is processed ac-

21

Figure 3.6: Grid of cells compositing the map, after the first frame has been projected. The
green dots mark keypoints used for tracking. Taken from [46].

cordingly when new data comes in. Keypoints (green dots in Fig. 3.6) are extracted only

for cells which are finished.

• Projecting from camera into map space - As mentioned in Chapter 10, only rotational

movements are assumed while creating a panorama, which is an acceptable constraint as

pointed out in [46] citing [12]. This means a “fixed” camera position is assumed which still

leaves 3-DOF regarding rotational movements while projecting camera frames onto the

mapping cylinder. To project a camera frame into map space single pixels are processed

similarly to the overlay pixel positions as explained in Section 5.4.2. By forward mapping

the camera frame into map space the current camera image’s area on the cylinder shall be

estimated. First, a single pixel’s device coordinate is transformed into an ideal coordinate

by multiplying it with the inverse of the camera matrix (and removing radial distortion

using an intern function). The resulting 2D coordinate is unprojected into a 3D ray by

introducing a depth coordinate. Rotating from map space into object space is done by

applying the inverse of the current camera rotation. To get the pixel’s 3D position on the

mapping surface the ray is intersected with the cylinder, which then is converted into the

final 2D position. For further details, see [46].

• Filling the map with pixels - Due to the chance that using forward mapping to fill the map

could cause holes or overdrawing of pixels, backward mapping is used, which basically

works in the reverse way as the above mentioned forward mapping, such that starting from

a known 3D position on the cylinder (e.g. within the determined area of the current camera

image) the device coordinate and its corresponding pixel color are determined. For further

details again refer to [46].

• Speeding up the mapping process - Due to the high number of pixels which would have

to be processed for every camera image (e.g. >75000 pixels for a 320x240 pixels sized

image) a sophisticated approach to drastically reduce the amount of pixels was introduced.

22

Figure 3.7: Projection of the camera image onto the cylindrical map. Taken from [46].

Figure 3.8: Mapping of new pixels. (Blue) Pixels which have been mapped so far. (Black
border) Outline of the current camera image. (Red) Intersection of already mapped pixels and
the current camera image. (Yellow) Pixels which still need to be mapped. Taken from [46].

It works by mapping the first frame of the panorama completely into the map, while

only mapping previously unmapped portions for consecutive frames. This is realized

by quickly filtering out those pixels which have been mapped before, by using zero or

more spans per row which define which pixels of the row are mapped and which are

not. A span encodes only the left and right coordinate of a continuous characteristic,

such as mapped pixels, which is why processing said spans is highly efficient. Filtering

out already mapped pixels is done by comparing “finished” and “yet to map” spans by

a boolean operation, which yields only those pixels which have not been mapped yet.

Consequently, only a small portion of pixels have to be fully processed and mapped, which

is illustrated in Fig. 3.8.

23

2. Panoramic Tracking. As depicted in Fig. 3.5, and noted above, the mapping process de-

pends on an estimate of the current camera orientation. How this is accomplished is described

briefly in the following:

• Keypoint extraction and tracking + orientation update/relocalization - As soon as a

grid cell is finished the FAST (Features from Accelerated Segment Test) corner detector

algorithm [38], [39] (contained in StbCV) is applied to it, finding keypoints as illustrated in

Fig. 3.6. By using certain thresholds within the algorithm it is assured that, for every cell,

enough keypoints are identified. Organizing the identified keypoints cell-wise simplifies

matching these points while tracking. Tracked keypoints are the basis for estimating the

current camera orientation (based on the initial orientation and using a motion model with

constant velocity) while mapping the current camera image. In order to match keypoints

from the current camera image against their counterpart in the map, NCC (also in StbCV)

is used. Similarly to tracking keypoints from one frame to the other a relocalization feature

was implemented, in case tracking failed/couldn’t be updated correctly, which also uses

NCC. For further details once again see [46].

• Initialization from an existing map (registration) - In order to accomplish a registration

feature like the one described in Section 5.4.1 it is necessary to load an existing map into

memory and then guess the current camera orientation with respect to the loaded map. In

this case this is achieved by extracting features from both the live camera image and the

loaded map and determining pairs of features to match, in order to speculate on the ori-

entation, wherein one pair of matching features resembles a“hypothesis” of the estimated

orientation which then needs to be supported by other pairs of matching features. If the

amount of features which support the hypothesis is satisfactory, the calculated orientation

is further refined by using a non-linear refinement process, as described in [46].

Chapter 7 outlines how the above presented Panorama Mapping and Tracking system was

extended to suit the requirements of this work. It is shown how certain areas which should not

be mapped within the current frame can be skipped while mapping new pixels; by adapting the

above mentioned span-approach. Furthermore, it is shown how the registration process can be

realized making use of two panoramic images instead of only one panoramic image and single

live camera images.

24

3.1.5 OpenGL ES

OpenGL ES is an API for supporting graphics rendering in embedded systems - “including con-

soles, phones, appliances and vehicles” [2]. It is a well-defined subset of desktop OpenGL15,

“creating a flexible and powerful low-level interface between software and graphics accelera-

tion” [2].

In the context of the presented work OpenGL ES is in charge of rendering all graphical content

on the display, including the augmentation overlays, see Page 46 and Section 5.4.2, respectively.

As apparent from Fig. 3.3 OpenGL ES is integrated into the Studierstube ES framework, which

simplifies its use through an application based on the said framework. Due to the cross-platform

environment, described on Pages 14 and 15, distinguishing between desktop and mobile compat-

ible versions (1.1 and 2.0, respectively) of OpenGL ES was required. Making use of the Studier-

stube ES framework, one must distinguish which version to integrate into the application before

compiling the whole application. This can be accomplished by simply activating/deactivating

versions in a configuration file.

3.1.6 Qt Framework

In order to simplify the usage of the Foreground Segmentation tool, presented in Section 5.3.1,

an application user interface (UI) was developed using the Qt framwork. According to the

official website, Qt is a cross-platform application and UI framework with APIs for C++ pro-

gramming” [3]. Qt was originally developed by the norwegian company Trolltech, which was

acquired by Nokia16 in January 200817. The reasons for choosing the Qt framework are that it

is open-source18 and it can be integrated into the IDE of choice, namely Visual Studio (see Sec-

tion 3.1.1), which was used for developing the mentioned Foreground Segmentation tool. The

integration of Qt into Visual Studio is achieved by installing the Qt Visual Studio Add-in19. Once

the plugin is installed Qt functionality (e.g. the interface designer) can be chosen from the con-

text menu, as illustrated in Fig. 3.9. Note that it is still required to include the corresponding Qt

dlls (e.g. QtCore.dll or QtGui.dll), either by directly packing them into the created executable,

or by shipping the dlls along with the application.

15http://www.opengl.org
16http://www.nokia.com
17http://qt.nokia.com/about/news/archive/press.2008-01-28.4605718236
18http://qt.nokia.com/about/news/lgpl-license-option-added-to-qt
19http://qt.nokia.com/downloads/visual-studio-add-in

25

Figure 3.9: (Left) Added Qt functionality in Visual Studio. (Right) Excerpt of the Foreground
Segmentation User Interface in Qt Designer.

3.1.7 Camera Calibration

The camera calibration is a task of crucial importance for the whole Situated ARVideo Composit-

ing tool to work properly. Calibrating the camera means to determine the intrinsic camera pa-

rameters of the source/target device which are used to record the video scene (see Section 5.2.1)

and/or to replay the augmented video material (see Section 5.4.2), respectively. Hence, the cam-

era calibration can be seen as a preliminary task which needs to be carried out before any of

the further processing in Chapter 5 may take place. Note that usually it is sufficient to perform

the camera calibration task once for a certain type of device (e.g. iPhone 3GS) and whenever

a device of the same type is being used a corresponding camera calibration file with previously

determined parameters may be made use of.

The correctly determined camera parameters need to be considered amongst other things when

the reference panorama is being created out of the background information taken from the video

source material, as explained in detail in Section 5.3.2. Likewise, without a proper camera cali-

bration updating the augmentation overlays while replaying the video content (see Section 5.4.2)

would not succeed as the updated overlay position is computed with help of the camera param-

eters.

As usual in CV to compute the intrinsic camera parameters of a device it is necessary to make

use of a calibration pattern (chessboard-alike pattern, as shown in Fig. 3.10). This pattern is

shot from different angles and distances with the camera which should be calibrated, such that

an adequate amount of images can be used for the calibration process. The amount of pictures

26

which should be taken depends on the tool used for the calibration, yet normally the more images

are available the better (i.e. more accurate) the computed results.

In the context of this work the GML Camera Calibration Toolbox20 was utilized to achieve the

goal of computing the intrinsic camera parameters. Fig. 3.10 illustrates the toolbox user inter-

face and Fig. 3.11 shows an exemplary calibration result. The parameters which are of interest

are the focal length, the principle point and the distortion values. All these values are finally

written to the camera calibration file which will later be used by the Studierstube ES framework.

As can be observed from Fig. 3.11 the focal length and principle point values are used to build

the camera matrix. In a more general way this means the following camera matrix can be de-

rived from the calibration results, with fx,fy standing for the focal length values in horizontal

and vertical direction and cx, cy standing for the principle point values in horizontal and vertical

direction, respectively:

cam =

fx 0 cx

0 fy cy

0 0 1


The hereby derived camera matrix cam is not only responsible for mapping pixels from the real

3D world onto the 2D image plane and therefore into the panorama created in 5.3.2. It also

helps in calculating the overlay’s position while the augmentations, which are the basis for the

ARVideo rendering, are being updated (see Section 5.4.2).

3.2 Hardware

As mentioned throughout this work iOS represents the target platform for the final ARVideo

application. Therefore, in order to actually develop the application several iOS devices were

used for testing:

• iPhone 3GS

• iPhone 4S

• iPad 2

20graphics.cs.msu.ru/en/science/research/calibration/cpp

27

Figure 3.10: Camera calibration tool used to determine the intrinsic camera parameters.

Figure 3.11: Camera calibration results.

The iPhone 3GS served as the main development device and was used along with the iPad 2

in the conducted User Study, presented on Page 93. The iPhone 4S was not available throughout

the whole project and was therefore primarily used for comparing features such as the frame

rate of the running application, visual appearance of the overlays, etc. More details about the

differences between said devices are given in Chapter 11.

28

Figure 3.12: Apple Developer Account.

3.3 Miscellaneous

3.3.1 Apple Developer Account

Due to the Apple presets it is necessary to be part of the Apple Developer Program21 to be

actually able to deploy iOS applications to devices such as the iPhone or the iPad. Registering

for a developer account includes paying an annual license fee. There are several “options” to

become a member, including registering within/as an organization or becoming a member of

a Developer University Program, whereas the latter was the case for this project. Fig. 3.12

shows the developer profile which was registered in the context of this work.

3.3.2 iOS Provisioning Portal

The iOS Provisioning Portal is the central location to manage one’s developed iOS applica-

tions. All information about apps, registered devices and other necessary information can be

found/maintained there. Access to the portal is granted along with a valid Apple Developer Ac-

count. Below a short description about the usage/requirements regarding the iOS Provisioning

Portal is given, in order to be able to test and run one’s developed apps on a real device.

3.3.2.1 Development Certificate

Development Certificates are used by Apple to “identify” a developer, such that for the creation

of a certain Provisioning Profile a valid Development Certificate must be chosen. Fig. 3.13

illustrates an overview of the created Development Certificate which was used throughout this

work. The created Development Certificate needs to be downloaded from the iOS Provisioning

Portal and afterwards imported to XCode such that the IDE is able to check for the validity of

the imported certificate at the time of compilation.
21https://developer.apple.com/

29

Figure 3.13: Development Certificate.

Figure 3.14: Registered Device.

3.3.2.2 Device

In order to deploy iOS apps (even for test purposes) to Apple devices it is required to register

said devices in the iOS Provisioning Portal. This is done by specifying the unique device ID,

named UDID. See Fig. 3.14 for one of the devices which was registered for development in the

context of this work. The need for registering a device limits the deployment of apps to only

those devices which are connected to an Apple Developer Account as the one mentioned above.

3.3.2.3 App ID

Apple’s way of identifying an iOS app is accomplished by the utilization of App IDs. These are

unique IDs which can be freely chosen, whereas usually the app name is taken with a prefix such

as the company name. Later this App ID must be referred to in the app build settings, otherwise

compilation/deployment of the app will fail.

3.3.2.4 Provisioning Profile

Once the Development Certificate has been created, the registration of the Device and the

specification of the App ID are completed it is necessary to generate a Provisioning Profile.

Provisioning Profiles contain all the aforementioned information and are used to verify an ap-

plication upon installing/deploying it. This means that in order to distribute the app for testing

30

Figure 3.15: Provisioning Profile.

purposes, i.e. install your application on a device, it must be preceded by the installation of the

according Provisioning Profile, otherwise installation will abort/fail. Note that one Provision-

ing Profile can be used to target only one App ID, whereas it can target several Development

Certificates and Devices. More information about developing for iOS can be found at the Apple

DevCenter22.

22https://developer.apple.com/devcenter/ios

31

Part II

Design + Implementation

33

CHAPTER 4
Concept - Overview Of The System

With all theoretical and technological preconditions clarified in the previous chapters the elab-

orated Situated ARVideo Compositing System shall now be introduced. The system’s main

components, arranged into activities, are presented with the help of an Unified Modelling Lan-

guage1 (UML) activity diagram, whereas in Chapter 5 the functional design of the system will

be presented by describing all parts in detail, while explaining how these parts work together.

Chapters 6 to 8 contain the single components’ detailed implementation along with UML class

diagrams. Additionally, Chapter 9 introduces a prototype of what could be one of the first

“sensor-less” outdoor AR video browsers.

4.1 Activity Diagram

Fig. 4.1 depicts the system’s main components, arranged into activities and subactivities. The

whole process from start to end is seen as the main activity Situated ARVideo Compositing which

contains three subactivities in order to achieve the desired result of replaying past events in an

outdoor environment on a mobile device. As can be observed these three activities are:

1. Content Creation: The recording of an outdoor video scene and the transferring of the

video are part of this activity. The outcome shall be the video source material which

represents the input for the next activity.

2. Offline Video Processing: To prepare all resources for replaying the original video scene

the Offline Video Processing comes into play. It takes as input the video material recorded

1http://www.uml.org

35

Figure 4.1: Activity Diagram of the Situated ARVideo Compositing System.

in the activity Content Creation and processes it by applying the Foreground Segmenta-

tion. Then, based on the outcome of this subactivity the processing of the Background

Information is done. Combining all output of the Offline Video Processing leads to the

Online Video Processing.

3. Online Video Processing: The final (sub)activity, which relies on the resources prepared in

the above mentioned (sub)activities, is to carry out the registration in the outdoor context

and, assuming this was successful, embed and replay the video augmentations in the live

camera view of the user’s device.

In the following chapters all activities are explained in detail regarding their functional de-

sign and the corresponding implementations.

36

CHAPTER 5
Situated ARVideo Compositing

The purpose of this chapter is to explain the presented system in such a way that each section

contains the functional design of the activities and their sub-activities given in Fig. 4.1 in order

to help understanding the proposed algorithm.

5.1 Terminology

To actually be able to understand all details and to prevent misunderstandings a few terms and

their meanings within this work shall be given in the following listing:

• smartphone, mobile device, mobile, target device: These words are used interchangeably

and resemble the device the final application runs on, such as the iPhone.

• video frame, video image, frame: These words are used interchangeably and resemble a

single image of a previously recorded video, which usually contains about 25 - 30 frames

per second.

• camera frame, camera image, frame: These words are used interchangeably and resemble

a single live image which gets forwarded by the camera of the mobile device to the appli-

cation. Note that when only the word frame is used it should be clear out of the context if

it stands for a video or camera frame.

• program, application, executable: Usually these words stand for an executable piece of

software, which either represents only a part or component of a bigger system or indeed

stands for the final executable outcome.

37

• system: Throughout this work the word system basically denotes the combination of soft-

ware and other tasks which are fulfilled to accomplish the final outcome.

• algorithm, technique: These words stand for the theoretical foundations of a concrete

piece of software or might even be used instead of e.g. application.

• method, function: These words are used interchangeably and usually resemble a number

of programming statements which can be called within an application.

• library, function library, DLLs, API: As common in programming these terms usually

provide interfaces to or concrete implementations of functions which can then be used

within the own application.

• vector: Stands for a programming structure which usually contains a list of items of the

same type.

• alpha mask, alpha channel, alpha image: These words are used interchangeably and re-

semble a monochrome image which usually is considered to handle transparency in im-

ages, such that the color value of a single pixel encodes the opacity of this pixel in the

final image, i.e. when the alpha channel is combined with a standard RGB image.

• skateboard trick: Common and general name for a “jump” performed by a skateboarder.

5.2 Content Creation

5.2.1 Video Recording

The source material which the proposed ARVideo technique relies on is, of course, some video

material. This video material may be captured by making use of standard devices such as a

smartphone or a digital camera.

In the context of this work the depicted scenario is similar to this one: a person/object is moving

in a public area and somebody else captures the scene from a static point of view with a camera

within a distance of a few meters. This scene could involve sportspersons performing stunts, cars

or other artificial objects or indeed just pedestrians walking by. See Fig. 5.1 for an exemplary

situation. Generally, a (translational) movement of the object of interest (i.e. the sportsperson) is

assumed, such that usually the recording will not be static. This means that the person recording

the video has to rotate the recording device to fully capture the scene, i.e. the object of interest

stays within the video frame. Therefore, the created content will usually contain two dynamic

aspects:

38

Figure 5.1: Person on the left shoots a video with a smartphone of the person on the right
performing a skateboard trick.

1. the moving object (i.e. the sportsperson, car, ...)

2. and the rotational movement of the camera itself.

In Fig. 5.2 a few sample frames are shown which are taken from the video that was captured in

the depicted scenario in Fig. 5.1.

5.2.2 Video Transfer

Once the recording of the video has been finished it needs to be transferred to a personal com-

puter for further processing. In the current implementation transferring the video is only realized

in an offline manner, i.e. plug in a cable and transfer manually. In the development of the pro-

posed system this was seen as sufficient, yet it shall be noted that in future versions this step

may be substituted by uploading the recorded video to a web server for further processing in-

stead of transferring it to a desktop PC or similar. Assuming the transfer of the source video was

successful the next step in the workflow of the system - the Offline Video Processing - may be

executed.

39

Figure 5.2: Sample frames illustrating a dynamic video scene - recorded with a smartphone.

5.3 Offline Video Processing

Once the video shot in step 5.2 has been transferred to a personal computer the Offline Video

Processing can be applied to the source material. The focus of this step lies on the extraction

of all relevant information which is needed to be able to correctly replay the composited video

within the desired context. The main challenge here is to separate the object of interest (fore-

ground) in every video frame from the remaining information such as the background or other

moving objects that are not of interest. As can be seen in Fig. 5.2 suitable source material for

the ARVideo application contains a moving object (e.g. a skateboarder). Furthermore, it is no-

ticeable that the camera itself is being rotated from left to right during the recording. Due to the

highly dynamic aspect of the source material the segmentation of the foreground object requires

a sophisticated approach to correctly separate it from the remaining information. The reason

why the segmentation is necessary is that the segmented foreground object will later be used as

the augmentation overlay in the live camera view. In addition, the background information is

not just discarded since it is essential for the creation of the reference panorama, which is used

to register (i.e. localize) the user in the new context while utilizing the ARVideo application. To

fulfill the depicted segmentation task a standalone Windows program was developed combining

best-practice CV algorithms. In this case this was accomplished using the OpenCV library. The

reasons for choosing OpenCV were given in Section 3.1.3. In the following the segmentation

process is described in detail.

5.3.1 Foreground Segmentation

To begin the segmentation process the Windows executable is started up and a video file is

opened, see Fig. 5.3. The program works in a way that it processes one frame after another,

40

Figure 5.3: Foreground Segmentation Main Window - opening a video file.

whereas usually only in the first frame user interaction is required. To simplify the user inter-

action with the video frames an option to open the video file in its full resolution is given. By

default, incoming video frames will be resized to 320x240 pixels to minimize the program exe-

cution time. Note that this also happens to be the resolution the current Panorama Matching and

Tracking System works best with.

5.3.1.1 Manual initialization

Once the video file has been opened the user is asked to initialize the foreground-background

segmentation of the first frame. First a bounding rectangle is drawn by the user to tell the pro-

gram in which area of the frame the object of interest can be found at in the beginning. Or in

other words, the bounding rectangle defines a - according to the OpenCV documentation - ”re-

gion of interest(ROI) containing a segmented object. The pixels outside of the ROI are marked

as obvious background” [1].

Apart from that, it is necessary to roughly sketch the foreground object and mark parts of the

background. By doing so the segmentation algorithm (GrabCut) assumes that these pixels be-

41

Figure 5.4: (Left) Manual initialization of the segmentation step. User sketches the foreground
object (red) and outlines the background (blue). (Right) GrabCut Result. Applying the GrabCut
Algorithm yields the segmented foreground object for the initial frame.

Figure 5.5: Results for calling the GrabCut algorithm on subsequent video frames. Tracking
the segment allows segmentation of subsequent frames even in case the appearance changes.

long to the foreground and background, respectively. Based on this assumption the algorithm is

able to classify all remaining neighboring pixels - those which are not marked in the beginning -

as (probable) foreground or background pixels. Hence, the algorithm is able to completely sep-

arate the foreground from the background. The variance of the GrabCut Algorithm used here is

described in more detail in Section GrabCut call. Fig. 5.4 exemplifies the manual initialization

of the GrabCut algorithm and the segmentation result for the first frame of the video.

42

After the manual call of the GrabCut algorithm the program continues to automatically seg-

ment the rest of the video frames. It is not possible to just simply take the previously segmented

object and set it as input for consecutive calls. As pointed out earlier the source material is likely

to be very dynamic in terms of appearance of the object of interest and secondly the camera

movement. Which is why additional processing is required to automatically segment the object

of interest in all remaining frames, here labeled as Pre-GrabCut-processing and Post-GrabCut-

processing. As soon as the initial GrabCut call has finished the user can trigger the automatic

segmentation by clicking the button Start Automatic Segmentation, see Fig. 5.3. When this but-

ton is pressed the program enters a loop state which processes all remaining frames in the same

way such that first the Pre-GrabCut-processing is applied, then the GrabCut algorithm is called

again and ultimately the Post-GrabCut-processing is carried out, which means that the program

performs these three steps in a loop until the end of the video has been reached:

1. Pre-GrabCut-processing

2. GrabCut call

3. Post-GrabCut-processing

5.3.1.2 Pre-GrabCut-processing

The purpose of the Pre-GrabCut-processing is to estimate an adequate approximation of the

object’s position in the current frame and consequentially provide foreground and background

pixels (the input) to the GrabCut algorithm; which eventually will be performed on the current

frame. To achieve this several subtasks need to be fulfilled, which are combined so that they

depend on each others’ results. The basic idea is to calculate the optical flow of a sparse feature

set from the previous frame to the current one and also to find object contours in the current

frame in order to be able to match the results of both algorithms to get an estimation of input

pixels for the GrabCut algorithm. To begin, a feature tracking algorithm is ran to track the

foreground and background pixels from the previously segmented frame to the current (not yet

segmented) frame. The feature tracker in use here is OpenCV’s implementation of the Lukas-

Kanade Feature Tracker [9], whereas any other good feature tracker could be used instead (e.g.

the Farneback algorithm [13] was also reviewed in context of this work).

Determining the object contours in the currently processed frame works by applying OpenCV’s

Canny Edge Detector algorithm and findContours algorithm on the detected edges - hence find-

ing a limited number of object contours. The tracked features and the found contours on their

own are not enough to segment the desired object in the frame, yet it is possible to use the

43

acquired information to set the input for the subsequent GrabCut execution. It was observed

that the GrabCut algorithm is prone to (false positive) errors if the input pixels (distinguishing

foreground and background) are not accurate enough; therefore, it is insufficient to just pass the

tracked features to it. Although this may yield satisfactory results in some cases, it still leads to

a high number of segmentation errors in most cases. Thus, it is crucial to limit the amount of

pixels to those which are very likely to be classified as foreground and background, respectively.

The limitation to only suitable input pixels is accomplished by matching the output of the two

previous steps, such that the tracked features are matched pixel-wise against the object contours,

consequently limiting the number of pixels which are used as input for the GrabCut algorithm.

As mentioned the pixels are matched and therefore limited in order to get rid of outliers, which

may have been wrongly tracked by the feature tracker. Furthermore, an assumption is made

that only pixels which are part of the same contour may either belong to the foreground or

background. Which is why the matching of the tracked features and the found contours also

discards features which do not belong to the same contour, hence further limiting the amount of

pixels which are passed as input to the GrabCut algorithm.

5.3.1.3 GrabCut call

In order to automatically segment the desired foreground object in the current frame the seg-

mentation approach makes use of the GrabCut algorithm. As described above, the algorithm

expects, as input, a bounded area where the object of interest can be found in (a so called region

of interest), and additionally it takes a set of classified pixels (fackground) to segment the object.

The classified pixels help refine the hard segmentation, although it might also work sufficiently

well without providing foreground/background pixels as long as the region of interest is given

like discussed below.

The GrabCut algorithm itself is based on the Graph Cut image segmentation algorithm and

“addresses the problem of efficient, interactive extraction of a foreground object in a complex

environment whose background cannot be trivially subtracted” [40]. The Graph Cut was devel-

oped combining both texture (color) information and edge (contrast) information unlike classical

image segmentation tools which only used either of the mentioned characteristics.

The Graph Cut segmentation is basically done by minimizing an energy function, such that the

minimization is reduced to solving a minimum cut problem [10], [23]. With the GrabCut three

enhancements were introduced compared to the original Graph Cut technique:

44

1. Gaussian Mixture Model (GMM): The first enhancement was the utilization of GMMs

instead of only monochrome images, as with GMMs it is feasible to process RGB color

information. To do so, an additional vector was introduced which assigns a unique GMM

color component to each pixel, either from the background or the foreground. Conse-

quently the original energy function is extended by said vector. See [40] for further de-

tails.

2. Iterative Estimation: By iteratively minimizing the energy function the GMM color pa-

rameters are refined by assuming the result of the initial call to be the input for further

calls.

3. Incomplete Labelling: Due to the above mentioned refinement it is feasible to run the

algorithm without specifying foreground and background pixels explicitly.

The enhancements listed above were mainly introduced to put a light load on the user, while

maintaining satisfactory results. In [40] it is concluded that experiments showed that the Grab-

Cut algorithm performs at almost the same level of segmentation accuracy as the original Graph

Cut algorithm while requiring significantly fewer user interactions. Hence, the GrabCut algo-

rithm was seen as the perfect base algorithm for the automatic segmentation approach presented

in this work, because it can be assumed that it still yields satisfactory results by specifying

only a small set or indeed no input pixels at all. As remarked in Section 5.3.1.2 the presented

automatic segmentation approach tries to provide a meaningful guess of classified input (fore-

ground/background). Yet it is still possible that due to the nature of tracking inaccuracies and

pixel limitation the labelled pixels are reduced to a small set of pixels which are passed to the

GrabCut call and as pointed out the result will still be of sufficient quality in most cases.

Note that the proposed segmentation algorithm was developed in terms of a “side product”

within this thesis such that the focus lies on the video compositing, for which the segmentation

results are used as input. Proper segmentation of dynamic video content itself is a difficult task

and could fill a thesis like this easily; which is why the development of the segmentation fea-

ture was carried out in a way such that its results were just acceptably good to use as input for

the Online Video Processing. This and the highly dynamic aspect of the video source material, as

explained in Section 5.2, are the reasons why the automatic segmentation algorithm may yield

imprecise results in certain cases, especially when the background is very similar to the fore-

ground with respect to the color and/or structure of surfaces. See Fig. 5.6 for an example, where

the segmentation detects parts of the background like it would belong to the pedestrian’s right

45

Figure 5.6: Segmentation inaccuracies.

arm. Due to these possible segmentation inaccuracies a feature was introduced which makes

it possible to reinitialize the segmentation at a certain frame number such that the user may

specify foreground and background pixels again (by clicking the button Reinitialize Grabcut, as

depicted in Fig. 5.3), like it was done initially in the first frame, as described in Section 5.3.1.1.

5.3.1.4 Post-GrabCut-processing

The aim of the Post-GrabCut-processing is to convert the outcome of the GrabCut algorithm to

something useful which can be used as the overlay for the Online Video Replay and to save the

information which will later be needed in the creation of the reference panorama. Additionally,

the identification of the input for the optical flow computations happening in the Pre-GrabCut-

processing step - executed on the subsequent video frame - takes place here. Below a short

description about each of the mentioned steps is given.

1. Augmentation Overlays.

Converting the outcome of the GrabCut algorithm to the overlay used in the Online Video

Replay is done by applying the following subtasks:

• Compute a binary alpha mask distinguishing between foreground and background:

The GrabCut algorithm classifies the output in four different groups of vectors. The prob-

ably easiest way to obtain a mask which only distinguishes between foreground and back-

46

Figure 5.7: Two objects detected as foreground by the GrabCut algorithm.

ground information is to check the value of the first bit with a bitwise-AND-operation on

the four different pixel group values (internal values from 0 to 4, see below). This means

all foreground pixels (possible and obvious) will be 1. In [25] it is explained that ”This

is possible because these constants are defined as values 1 and 3, while the other two

are defined as 0 and 2.” Therefore, checking the first bit with a bitwise-AND-operation

transforms all background pixels to 0 of course.

• Apply thresholding to get an alpha channel mask:

In order to get an alpha channel encoding transparency values between 0 (fully trans-

parent) and 255 (fully opaque) a simple thresholding function is applied on the result of

the previous step. This results in an alpha channel image containing white pixels for the

extracted foreground object(s) and black pixels for the background. It is possible that the

GrabCut algorithm identifies more than one foreground object in the video frame. How-

ever, the current implementation of the automatic segmentation approach presented here

is only interested in one foreground object (i.e. the skateboarder). Compare Fig. 5.7 for an

illustration where two objects were detected as foreground by the algorithm. Therefore,

a way on how to only keep the real object of interest in the final alpha mask, needs to be

found. Due to the limitation of the area which is considered by the GrabCut algorithm,

namely the region of interest, it is assumed that the largest foreground object is the object

of desire.

47

Figure 5.8: Video frame (left) and final alpha mask (right). The white contour resembles the
extracted foreground object.

• Compute the largest connected component (LCC):

To actually only keep the largest foreground object and discard all other foreground pix-

els, which may have been identified as such, the program computes the outlines of all

foreground objects (i.e. contours) and compares their sizes. The function in use returns

only the largest contour, often depicted as the largest connected component in computer

science.

• Apply a dilation function to smoothen the borders:

The extracted foreground object might look like it has been cut out rather sharply, which

is why a dilation function is applied to smoothen the contour borders. This helps to embed

the overlay more seamlessly into the final view in the Online Video Replay. See Fig. 5.8

on the right for an exemplary final alpha channel image, where only the largest connected

component with dilated borders is visible.

• Write the output files (size-optimized RGBA image + text file containing the offset infor-

mation per RGBA image):

The alpha channel mask generated in the previous step forms the basis for the final step

of the offline overlay creation. Now one could simply generate an RGBA image combin-

ing the normal video frame and the corresponding alpha channel and render the overlay

fullscreen in the Online Video Replay step. This would further simplify updating the

video scene as it is being played back, because the overlay’s position wouldn’t have to

48

be updated. Using this approach there would be one big drawback though. As it was ob-

served throughout this work in most cases the extracted foreground object resembles only

a fraction of the size of the full video frame. Consequently passing the full video frame

to the render queue would result in slower rendering of the overlay and therefore slower

playback of the live video scene in total. To reduce the data overhead the smallest suitable

fraction - containing the extracted foreground object - is saved, along with its offset within

the full frame. The offset is needed to correctly update the overlay’s position while it is

being rendered into the live view.

To create the final overlay the bounding rectangle around it is computed and to simplify

the rendering of the overlay the width and height of the rectangle are extended in each

case, such that the new width and height are obtained by computing the smallest power of

2 which is bigger than the old width and height, respectively. The reduction from the full

size overlay to the size-optimized overlay is presented in Fig. 5.10.

Now once the size of the overlay has been determined it needs to be written to an RGBA

image. This is done by defining a ROI in the normal video frame and the alpha mask, each

with the position and size of the size-optimized overlay. To obtain the final RGBA image,

the ROIs created just before are combined into a new image by adding its color channels,

such that the first three components of the new image resemble the RGB components of

the first ROI and the fourth component resembles the binary alpha channel contained in

the second ROI. The final image will therefore hold four components with a cumulative

bit-depth of 32 bit (24 bit RGB image + 8 bit binary alpha channel). Fig. 5.9 illustrates the

creation of the final overlay image. To complete the overlay creation step the position and

offset per overlay is written to a standard text file in order to access the saved information

while rendering the overlay in the Online Video Replay.

2. Saving frame information.

Saving the information for the creation of the reference panorama means to store the reg-

ular video frame along with the full size alpha mask. How to use these images to generate all

the information about the background which is needed is described in detail in 5.3.2.

3. Determining the input for the subsequent optical flow computations.

49

Figure 5.9: Extracting a region of interest in the normal video frame (RGB) and the alpha mask
(A) and the combination to the final RGBA overlay.

This means to retrieve vectors containing pixel positions, which can be set as input for the fea-

ture tracker. Basically executing the GrabCut algorithm delivers such vectors containing pixel

positions which reflect the segmented object and the background information, respectively. By

looking at these different output vectors in detail it is feasible to further process the classified

pixel positions in any meaningful way. As just mentioned the different output vectors can be

grouped into foreground and background pixels, yet it is still possible to further split up those

groups; namely possible and obvious foreground and background pixels, respectively. This

leaves us with four different vectors of classified pixel positions [1]:

• GC_BGD (internal value 0) defines an obvious background pixel.

• GC_FGD (internal value 1) defines an obvious foreground (object) pixel.

• GC_PR_BGD (internal value 2) defines a possible background pixel.

50

Figure 5.10: Reducing the size of the overlay to minimize the data flow. (Left) Overlay in the
size of the full video frame (320x240 pixels). The dashed line outlines the optimized size of the
overlay and the arrows indicate the offset in horizontal and vertical direction. (Right) Instead of
storing the full size overlay only the size-optimized overlay (in this case 32x128 pixels) along
with its offset information is stored.

• GC_PR_BGD (internal value 3) defines a possible foreground pixel.

The reason why this further classification is important here, is that the behavior of the automatic

segmentation approach, which is presented, heavily varies depending on whether possible or

obvious pixel vectors are passed as input to the subsequent feature tracker calls. It was observed

that the feature tracker works best computing the optical flow for obvious foreground pixels

and possible background pixels. Note that two instances of the feature tracking algorithm are

actually required to be able to compute the optical flow for the foreground and background

features separately.

5.3.2 Background Information

After the foreground segmentation has been applied to each frame the background information

is being processed. Due to the possibility that a user can rotate the camera while recording the

video - as pointed out in Section 5.2 - the recorded frames hold different portions of the scene’s

background. Furthermore, the foreground object also occludes parts of the background, reducing

the amount of visual features that are later available for vision-based registration. Therefore,

the aim in this step is to reconstruct as much background information as possible to simplify

the registration process which is performed in the Online Video Processing step. Hence, it is

necessary to not only take into account the background information from one video frame but

from all frames and integrate them into one panoramic image.

51

The panoramic image is created using a modified version of the Panorama Mapping and

Tracking approach presented in [46]. The original implementation uses features in the incoming

video frames to register the frames and stitch them into a panoramic image. In [46] it was also

demonstrated how to track the camera motion RS of the recording camera while constructing the

panoramic map. Similarly, the described system in this work assumes the camera movements

are only of rotational nature. Note that for stitching together a panoramic image the Panorama

Mapping and Tracking technique relies on a camera calibration file which needs to contain the

intrinsic camera parameters determined in Section 3.1.7.

The reason an adapted version of the Panorama Mapping and Tracking algorithm is being

used, is that it is essential to only map background pixels into the panoramic image, because

mapping foreground objects into the map would result in a distorted panoramic image or the

algorithm might even suspend while trying to create the panoramic image. To accomplish the

altered behavior it is not sufficient to feed the tracking and mapping algorithm with the normal

video frames, such that each new frame gets mapped into the panoramic image, as these frames

contain both background AND foreground information. Hence, auxiliary information needs to

be provided to the algorithm, to point out which areas of the frame (i.e. the foreground ob-

ject) should be omitted while the panorama is being created. This extra information is made

available by using a binary alpha image which outlines the contour of the previously segmented

foreground object. As mentioned in the Foreground Segmentation step this alpha image has

been created for each video frame. So instead of just mapping the whole video frame into the

panoramic image, the foreground object is omitted in the mapping process and consequently

only background pixels are mapped into the panoramic image for each frame which is being

processed. This yields of course missing information in the panoramic image in the beginning.

These resulting holes can be closed by continuous mapping of the video frames as the fore-

ground object moves within the camera frames revealing occluded background information in

later frames, as shown in Fig. 5.11 and explained in detail in Section 7.1. Note that the areas

containing missing information in the beginning do not start to detect visual features which are

later matched in the registration process (here denoted by green dots) before the missing infor-

mation is filled up. This prevents detection of features which should not be classified as such

(because they would belong to the foreground).

Once the information holes are closed, the remaining frames are mapped into the panorama

in the usual way, i.e. without considering the information encoded in the alpha channel image.

Fig. 5.12 demonstrates a final panoramic image (reference panorama). As already mentioned

the Panorama Mapping and Tracking approach presented in [46] allows to determine the camera

52

Figure 5.11: Omitting foreground objects which are encoded in the alpha channel (middle)
while mapping video frames (left) into the panoramic image (right). Missing background infor-
mation (black holes at the right) is closed over time as the foreground object moves through the
frame.

motion RS at a certain frame position while the panorama is being created. In the Online Video

Processing the camera rotation at a certain frame position is of crucial importance. To later

access the rotation at a designated frame number, all camera motions are stored in a textfile

along with the reference panorama image.

5.4 Online Video Processing

The Online Video Processing is the final part of the presented system where everything comes

together such that the online replay of the created overlay in a suitable context is realized on

a mobile device (i.e. a smart phone). In order to prepare the replay, several steps need to be

considered. At first, all material which plays a role in the Online Video Processing step must be

transferred to the destination device. The current implementation only supports transferring the

sources directly onto the device (e.g. copy all files into the application’s resources folder). An

overview of all obligatory resources is given in Fig. 5.13.

53

Figure 5.12: Finished panoramic image created using only the available background informa-
tion. (Above) Internal representation including detected visual features. (Below) Panoramic
image which is being stored.

As pointed out earlier the purpose of the presented system is to replay augmented video ma-

terial in a live camera view such that past events, which took place at a certain location, can be

replicated with respect to the user’s view onto the scene. This implies the need to actually return

to the location where the event took place (i.e. where the original video material was recorded);

because only then the currently implemented system is able to correctly replay the augmenta-

tions. See Chapter 11 for possible other use cases of the system, where it is not necessarily the

case that the content is replayed in the same context the source material was recorded.

After the identification of the location where the online replay shall happen, a registration

process must be carried out. The registration is inevitable for the system to operate correctly.

Due to the registration of the user’s movement within the scene the according information can

be passed to the system, such that the augmented material’s position is updated in real time and

therefore blends in correctly while the content is being replayed. In the following the registration

process is described in detail as well as the replay (aim of the application) once the registration

was fulfilled successfully.

54

Figure 5.13: Resources which need to be transferred to the target device for the online replay
of the video scene.

5.4.1 Registration

Assuming the target device is equipped with all source material that is mandatory for the proper

replay and the user resides at the location where the original event took place the registration

process can be started. For this purpose the system also relies on the Panorama Mapping and

Tracking technique presented in [46]. In other words once again a panoramic image is built from

the live camera feed and moreover also the camera motion RT is tracked for every incoming

frame, yet this time there is no need for considering alpha channel images to distinguish between

foreground and background objects.

The use of the panorama-based tracking allows for a high precision of the registration and

the tracking, as it does not rely on noisy sensor values. As mentioned earlier this comes with

the drawback of supporting only rotational movements. However, most users only perform ro-

tational movements while using outdoor AR applications [17] making this constraint acceptable

in most scenarios.

55

To start the registration process the ARVideo application is started up. The application im-

mediately begins to build a new panorama from the live camera feed. Furthermore, as the ap-

plication has been started up the reference panorama (see Fig. 5.13) and all other resources are

loaded into memory to be accessible from there on.

While building the new panorama of the environment the application tries to match the loaded

panorama holding the background pixels against the newly built panorama. The matching is

performed using a point feature technique (in this case PhonySIFT, see [47]). As soon as the

overlapping area - the area holding image information that is contained in both panoramas -

is big enough, the matching using PhonySIFT should succeed and provide the transformation

TST describing the relative motion between the camera used to record the video (the source

camera s) and the camera where the video information should be registered in (the target camera

t). By assuming that the user of the system is roughly at the same position where the video

was recorded it is acceptable to constrain the transformation TST to be purely rotational. The

therefore determined transformation is illustrated in Fig. ??.

Supposing the registration was successful the user is able to replay the augmentation overlays

and therefore experience the recorded event in his own way on his target device. How the correct

replaying works is described in the following.

5.4.2 Online Video Replay

For the Online Video Replay to function properly a few preconditions must be taken into ac-

count:

• User resides at the vicinity where the original video scene was recorded.

• Successful registration of the live camera view with respect to the reference panorama.

• Available resources for the replaying (overlays + overlay information per frame, rotation

information per frame).

• Successful tracking and updating of the newly built panorama within the live context.

Provided that all the preconditions above are fulfilled the replaying of the video content can

be started. Considering the transformation TST it is feasible to transform each pixel from the

source panorama into the target panorama and vice versa. This allows the replaying of the video

information by overlaying the current environment (live camera view) with the object of interest

from the previously recorded video frame. To accomplish the desired behavior firstly the live

56

camera frames are loaded into the system such that the actual transformation RT is determined.

Secondly the overlays need to be rendered into the frame with the correct transformation, i.e.

the live camera frame is correctly augmented with the video content. Every loaded overlay

is processed such that applying the combination of the transformation RS (the orientation of

the source camera computed in the offline video processing step), the transformation TST (the

transformation between the source and the target camera gained from the Registration) and the

transformation RT (the orientation of the target camera computed using the panorama-based

tracking) augments the live camera view with the video content. In more detail this means to

apply the following final transformation RO on every rendered overlay:

RO = RT ∗ TST ∗RS
−1 (5.1)

Due to the fact that the proposed system utilizes size-optimzed overlays (see Section 5.3.1.4) it

needs to be taken into account to also update the overlay’s offset within the video frame which

was identified while processing the segmented foreground object (see Section 5.3.1.4). Due to

the OpenGL ES rendering mechanism it is not effective to simply add the determined offset (in

pixels) per overlay to the overlay’s position within the frame. As a consequence the rendering

must be preceded by transforming the pixel offset into the according internal offset dependent

on the used target camera. For example, to translate pixel coordinates px, py into internal screen

coordinates x, y using the camera matrix cam (see Section 3.1.7) and a constant screen depth of

z = 1, the computation given in Equation (5.2) has to be made.

xy
z

 = cam−1 ∗

pxpy
z

 (5.2)

Note that using the panorama-based tracker an update of the transformation RT for each frame

is obtained in real time.

This allows rotating the target camera completely independently...

... (relative to the orientation of the source camera) while replaying the video scene. Moreover,

the updated transformation RT is essential for maintaining the precise registration of the video in

the current view. The freedom of the view onto the scene creates an immersive user experience.

Because of the dynamics of the recorded video material (see Section 5.3) the user is challenged

to rotate the target device to fully capture the replayed video scene. Hence, if the user holds still

57

Figure 5.14: Illustration of the occurring transformation between the source camera and the
target camera used for replaying the augmented video.

and does not move the target device at all, the replayed video will get out of view, just as other

people or objects moving through the scene. In other words the presented system allows...

... replaying past events from an own point of view with
the impression of these events just happening now.

58

CHAPTER 6
Foreground Segmentation

(Implementation)

The foreground segmentation task as described in Section 5.3.1 is accomplished by a stand-alone

program which was written in the C++ programming language making use of OpenCV libraries

and the Qt Framework. Which is why an own chapter is denoted to the description of the im-

plementation of the foreground segmentation. The description starts by giving an overview with

the help of the application’s class diagram and then proceeds by explaining the central class in

detail along with its properties (variables) and methods.

Note that for the sake of readability the description of variables and methods belonging to classes

is kept simple and in a general way, such that methods only contain its basic signature without

parameters which get passed along with the method call and furthermore variable and method

return types are given in a general and not language-specific way (e.g. integer instead of the

C++-specific type int).

6.1 Class Diagram

The Class Diagram illustrated in Fig. 6.1 gives an overview of the DynamicVideoSegmentation

application and its contained classes. As can be observed the classes are arranged by color

to distinguish between classes belonging to the Qt Framework (green), classes provided by

the OpenCV libraries (blue) and classes which make up the DynamicVideoSegmentation ap-

plication (light red) and which were developed in the course of this work.

59

Figure 6.1: Foreground Segmentation Class Diagram.

The UserInterface class gets generated automatically by the Qt Visual Studio Add-in after

creating the user interface manually in the Qt Designer, which comes with the Qt Framework

and the said add-in. The UserInterface class derives from the class Ui_UserInterface, which is

a metaclass that gets generated automatically as well.

The FeatureTracker Class has been developed based on an example class taken from [25],

whereas the GrabCut class was taken from an official OpenCV source1. Both classes have in

common that they contained the minimal functionality of the according algorithms which was

then extended and adapted to suit the requirements of this work. Hence, these classes won’t be

described in detail as the original example files already contain all vital information. However,

the DynamicVideoSegmentation Class will be explained in full detail as it brings together all of

the other classes.

6.2 DynamicVideoSegmentation Class

The DynamicVideoSegmentation Class symbolizes the main application entry point of the Fore-

ground Segmentation algorithm. As can be observed from Fig. 6.1 the DynamicVideoSegmenta-

1https://code.ros.org/trac/opencv/browser/trunk/opencv/samples/c/grabcut.cpp?rev=2326

60

tion class inherits the class QMainWindow. This enables the application to be controlled through

the user interface, which is shown in Fig. 5.3.

Basically the application flow can be abstracted such that the DynamicVideoSegmentation

application is created and initialized with all necessary data, then the user opens a video and

applies the manual GrabCut segmentation and then the program stays in a loop where the auto-

matic segmentation is carried out on the remaining input frames. The detailed processing was

already described in Section 5.3.1. In the following the DynamicVideoSegmentation class is de-

scribed in more detail regarding its attributes (i.e. member variables) and methods. Additionally,

Qt-specific methods which are made use of to handle user interaction within the class (so called

signals and slots) are explained as well.

Member variables

• ui : UserInterface. Automatically generated instance of the user interface created with the

Qt Visual Studio Add-in as explained in Section 3.1.6.

• fileName : String. Variable which holds the filename of the input video.

• textureInformation : OutputFileStream. FileStream which is used to write the overlay

information (position + offset) per segmented foreground object into a text file, which

later is used as input for the Online Video Replay as illustrated in Fig. 5.13.

• frameNr : integer. Holds the current frame index.

• frameNrStr : Character Array. Holds the current frame index converted to characters.

The continuous index is then appended, for example, to the base filename when writing

the output frames.

• contourX : integer. Encodes the horizontal position of the foreground object’s most

left/top coordinate.

• contourY : integer. Encodes the vertical position of the foreground object’s most left/top

coordinate.

• contourWidth : integer. Encodes the width of the foreground object, such that the sum of

contourX + contourWidth equals the foreground object’s most right position.

• contourY : integer. Encodes the height of the foreground object, such that the sum of

contourY + contourHeight equals the foreground object’s most bottom position.

61

• IS_RUNNING : boolean. Flag which is true as long as the automatic segmentation is

running.

• MANUAL_INPUT_GC : boolean. Flag which is true if the GrabCut algorithm should

wait for user input.

• cap : VideoCapture. Instance of the OpenCV VideoCapture Class2. The VideoCapture

Class contains convenient methods for opening a video file and reading it frame per frame.

• featureTracker_FG : FeatureTracker. Instance of the FeatureTracker Class, which is re-

sponsible for tracking foreground features (remember that the user marks some foreground

pixels to initialize the GrabCut call and that those pixels get tracked over consecutive

frames).

• featureTracker_BG : FeatureTracker. Instance of theFeatureTracker Class, which is re-

sponsible for tracking background features.

• grabCutInput_FG : Vector<Point>. Vector which gets filled by the DynamicVideoSeg-

mentation Class with the 2D pixel coordinates which serve as the foreground input pixels

for the GrabCut algorithm.

• grabCutInput_BG : Vector<Point>. Vector which gets filled by the DynamicVideoSeg-

mentation Class with the 2D pixel coordinates which serve as the background input pixels

for the GrabCut algorithm.

• grabCutResult_FG : Vector<Point>. Vector which gets filled by theGrabCut Class. Rep-

resents the pixels which are detected as foreground by the GrabCut algorithm.

• grabCutResult_PRFG : Vector<Point>. Vector which gets filled by theGrabCut Class.

Represents the pixels which are detected as probable foreground by the GrabCut algo-

rithm.

• grabCutResult_BG : Vector<Point>. Vector which gets filled by theGrabCut Class. Rep-

resents the pixels which are detected as background by the GrabCut algorithm.

• grabCutResult_PRBG : Vector<Point>. Vector which gets filled by theGrabCut Class.

Represents the pixels which are detected as probable background by the GrabCut algo-

rithm.

2http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html

62

• featureTrackerResult_FG : Vector<Point>. Vector which gets filled by theGrabCut Class.

Represents the pixels which are tracked from one frame to the other by the FeatureTracker

algorithm run on the foreground pixels.

• featureTrackerResult_BG : Vector<Point>. Vector which gets filled by theGrabCut Class.

Represents the pixels which are tracked from one frame to the other by the FeatureTracker

algorithm run on the background pixels.

• frame : Mat. Instance of the OpenCV Mat Class3. The Mat Class is a basic n-dimensional

structure in OpenCV and is widely used as input/output in plenty of OpenCV algorithms.

Therefore, it is perfectly suitable to hold any kind of data, such as simple 2D represen-

tations of pixel coordinates, but also more complex data, like for example image data

containing 3 or more color channels. The variable frame represents the normal video

frame which is opened using the before mentioned VideoCapture Class.

• edges : Mat. Input to the applyEdgeDetection() method and will therefore contain the

detected edges in the frame.

• GCMask : Mat. Contains the GrabCut output encoded in the four different values, as

explained in Section 5.3.1.4.

• featureMask : Mat. Contains the tracked features in a 2-dimensional Mat structure to

match them against the found contours.

• finalMatchMask : Mat. Contains the matched (features against contours) pixel coordi-

nates.

• contours : Vector< Vector<Point> >. Structure which is filled by the OpenCV method

findContours(). Is used for different purposes. Firstly to match the tracked features against

the contours in the frame and secondly for finding the contours of the final foreground

object.

• scaledFrame : boolean. Flag which is set to true if the input frame is scaled to 320 x 240

pixels, as described in Section 5.3.1. Depending on the value writing the output must be

adapted to compensate for the smaller/bigger frame sizes.

3http://opencv.itseez.com/modules/core/doc/basic_structures.html

63

Methods

• DynamicVideoSegmentation(); - DynamicVideoSegmentation constructor, initializing mem-

ber variables like the boolean fields IS_RUNNING. To setup the user interface for the ap-

plication the variable ui’s setup() method is called with the current instantiated class as

parameter (parameter “this” as in programming very common). Actually this call is au-

tomatically generated by the Qt Framework. As explained later on in more detail the Qt

Framework provides a mechanism for handling user interaction within the program, such

that certain code parts are executed in case the user clicks, for example, on a button. Due

to this mechanism it is necessary to connect so called signals with their according slots.

All these connections are established in the constructor.

• void prepareSegmentation(); - Method which is called right after the user opens a video

file. Prepares the segmentation by creating output directories, opening the VideoCapture

instance and creating the textureInformation output file stream.

• void preGrabCutProcessing(); - Performs all processing which needs to be carried out be-

fore the program executes the GrabCut algorithm, as explained in detail in Section 5.3.1.2.

• void postGrabCutProcessing(); - Performs all processing which needs to be carried out af-

ter the program executes the GrabCut algorithm, as explained in detail in Section 5.3.1.2.

• void segment(); - Method which performs the segmentation and the according pre- and

post-processing of frames, depending on which state is activated (manual/automatic).

• void createDir(); - Creates a directory on the filesystem with the name which gets passed

along with the method call. This is made use of, for example, to create the output directo-

ries.

• void applyEdgeDetection(); - Applies the Canny Edge Detector as mentioned in Sec-

tion 5.3.1.2 to determine edges distinguishing between different objects in the frame.

• int getLargestConnectedComponent(); - Returns the index of the largest connected com-

ponent as already specified in Section 5.3.1.4.

• void drawFeaturesIntoMask(); - As the name suggests draws features (points) into a mask

(e.g. featureMask) to further process them in a 2D structure instead of a “flat” structure

(vector). Is used to, for example. match features against contours as stated below in the

method matchFeaturesWithContours().

64

• void drawContoursIntoMask(); - As the name suggests draws contours (vector of points)

into a mask to further process them in a 2D structure instead of a “flat” structure (vector).

Is used to, for example, to match features against contours as stated below in the method

matchFeaturesWithContours().

• void matchFeaturesWithContours(); - Matches the foreground features against the found

contours in the current frame to limit the foreground pixels which get passed to the Grab-

Cut algorithm, which was made clear in Section 5.3.1.2.

• void applyDilation(); - Takes two masks (of type Mat) as input and performs the OpenCV

dilation4 operation on the first input mask and writes it to the second one. This is done to

smoothen the borders of the final object contour.

• void writeOutput(); - Writes all output files (normal frame, alpha channel, RGBA overlay

image, texture information) to the filesystem.

Slots

The Qt Framework contains a mechanism for dealing with all kinds of events which can occur

while executing a program, such as button clicks or user interface interaction in general, internal

state changes, and so on. These events or actions, are bound to so called signals, which can

be connected to so called slots, in order to reasonably react to the occurrence of such an event.

Basically signals and slots are just methods which need to be explicitly defined along with

meaningful parameters (Note that most Qt classes already come with a meaningful set of signals

and slots). Connecting signals and slots works in a way that a certain class, for example the

DynamicVideoSegmentation Class, registers itself by explicitly defining a “callback” from one

certain signal to a desired slot. That way it is possible to execute appropriate code whenever

a user clicks on, for example, a user interface button. In the following the slots defined in the

DynamicVideoSegmentation Class are explained in more detail.

• openFileDialog(); - Slot which is called whenever the user clicks on “File - Open Video

File”, compare Fig. 5.3. As the name suggests it open a file dialog to give the user the

possibility to choose a video file which should be opened.

• activateManualInputGrabCut(); - Slot which, in case the automatic segmentation is run-

ning, stops it and sets the variable MANUAL_INPUT_GC to true, which consequently

enables the user to reinitialize the segmentation by providing foreground and background

pixels, whenever the automatic segmentation seems to be too imprecise.
4http://docs.opencv.org/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html

65

• callGrabCut(); - Slot which is called when the user clicks on the button Call GrabCut

Algorithm, i.e. to perform the manual Grabcut call in the beginning.

• startAutomaticSegmentation(); - Slot which is called when the user clicks on the but-

ton Start Automatic Segmentation. It sets the boolean variable MANUAL_INPUT_GC to

false, processes the results of the manual GrabCut execution by calling postGrabCutPro-

cessing() and triggers the method segment() which then stays in the loop, described in

Section 5.3.1.1, to automatically segment the remaining frames.

• closeProgram(); - Stops all running processes and exits the program.

66

CHAPTER 7
Adaptation of PanoMT

The following chapter addresses the extension of the Panorama Mapping and Tracking algo-

rithm, presented in Section 3.1.4.7, in terms of newly implemented features. The need for im-

plementing additional functionality arose from the fact, that the original implementation didn’t

cover all requirements of the presented system as already noted in Section 3.1.4.7 and Sec-

tion 5.3.2, respectively. As demonstrated in Section 5.3.2, dealing with alpha channels, which

encode the information distinguishing between foreground and background objects, is necessary

to create an undistorted panoramic map that represents the “reference panorama”. The reference

panorama is consulted while a user registers the target device within the “replay environment”,

as shown in Section 5.4.1. To actually perform the registration task the live camera panorama

is matched against the loaded reference panorama, as explained in Section 5.4.1 as well. The

original implementation of the Panorama Mapping and Tracking technique is not able to match

two panoramic maps against each other, yet only the current single camera frame against the

loaded panorama. Consequently the implementation had to be extended to support both, the

handling of alpha channels and the matching of two panoramic images. Fig. 3.3 illustrates, in

contrast to the general overview given in [4], a “customized” overview of the Studierstube ES

framework with the altered PanoMT component (color-coded dark blue) along with the ARVideo

application sitting on top of the framework. In the following the details about the implemented

adaptations are given.

7.1 Handling alpha channels

The idea of how to handle binary alpha images, in order to discard the mapping of foreground

pixels contained in a video frame while the panoramic map is created, builds upon the original

67

idea which maps pixels row- and span-wise, respectively. In Section 3.1.4.7 it is explained

that a span is a simple structure which encodes the left and right coordinate of a continuous

characteristic, like unmapped pixels, and is very efficient for processing. Hence, due to the

nature of the original implementation and the spans’ efficient processing the adaptation also

makes use of said spans. In contrast to the original implementation the adapted version does not

process full spans. Full spans basically cover the whole interval of the row-wise image content

from left to right, which makes perfectly sense if you don’t have to encounter information holes,

such as undesired foreground objects which should not get mapped. Consequently a different

approach had to be found, in order to cope with rows where the background is “interrupted” by

pixels which belong to a foreground object.

Basically, this was achieved by splitting up the full span of a row into several spans, such

that the created spans cover exactly those parts of a row that contain background information

and therefore should get processed and mapped into the panoramic image. The new approach

processes rows of a camera image as follows:

• If the current pixel belongs to the background (black pixels in the alpha channel) either

start a new span or append the pixel position to the active span if there is one. If the current

pixel belongs to the foreground (white pixels in the alpha image) stop creating the active

span and insert it into the list of spans for this row.

• Process the list of spans like the full span in the original implementation, which means

to apply the boolean operation to each of the spans in the list. Hence calling the boolean

comparison on the list of spans returns several small areas of unmapped pixels.

• Map all areas with unmapped pixels of the current row.

Fig 7.1 illustrates how video frames are being processed with the newly implemented feature

in case the frames contain a foreground object (in this case arbitrarily shaped) and the according

alpha channel is provided. Note that usually the frame masks would be distorted at the borders

(compare Fig. 3.8), yet this has been ignored in the illustration for the sake of simplicity. Further

processing of frames closes the information hole over time as this information gets available

through successive frames.

7.2 Matching Of Two Panoramic Images

Basically, the matching of two panoramic images works in the same way as the standard match-

ing algorithm described above in Section 3.1.4.7. There are a few things which needed to be con-

68

Figure 7.1: Mapping of pixels when foreground objects are considered. (Left) Blue: Mapped
pixels in the first frame. White area inside: Pixels which have been omitted, because of the
encoded foreground object in the alpha channel. (Middle) Black border: Mask for the second
camera frame. Red: Intersection of already mapped pixels and current camera frame. Yellow:
Pixels that still need to be mapped (exaggerated for better visibility). (Right) Blue: Mapped
pixels after processing two frames. White: Still unmapped pixels.

sidered though, in order to match two panoramic maps against each other instead of a panoramic

map and a single camera frame.

First off, the algorithm was limited to use only a few image sizes which could be passed to

the algorithm to consequently match the passed image with the panorama. Due to the design

of the matching algorithm it is necessary to pass the second panorama as a “simple” image

rather than as the intern representation of the corresponding panorama. This means that the full

size of the panoramic image was added to the list of allowed resolutions of the image which gets

passed. Consequently, the extraction of features in the loaded panorama (which shall be matched

against the live panorama) is performed in the same way as for an ordinary camera frame. Since

usually a panoramic map is not completely closed and filled out with pixel information it was

required to somehow ignore regions in the panoramic image which have not been filled with

information. Otherwise these regions, especially borders between mapped pixels and unmapped

pixels, would yield wrongly detected features by the FAST corner detector. This is due to the fact

that the FAST corner detector would recognize these transitions between mapped and unmapped

pixels as “corners” in an image, which most of the time represent good features.

In order to be able to not consider these regions, firstly the FAST corner detector is applied

to the panoramic image in the normal way. Secondly, the feature pixel positions of the loaded

map are read in. Remember that when a panorama is created it is split up into cells (32x8),

whereas only for completely filled cells features are being detected and consequently written out

when the panorama is saved. This saved pixel positions are now considered and only if detected

features by the FAST corner detector and saved pixel positions match it can be assumed that this

is indeed a feature lying within the mapped pixel information. After executing the intermediate

69

Figure 7.2: Outline of a sample panoramic image and how it could be passed to the matching
process, after filtering out features which should not be considered. The green crosses depict
features which lie inside complete cells and therefore are considered to be valid. The red circles
depict features which are dismissed, in order to prevent wrongly detected features to be matched.

step the matching can process can be resumed in the normal way. In Figure 7.2 the outline of

an examplary panoramic image is illustrated, whereas the green little crosses depict features

which have been extracted by the FAST corner detector AND have been detected as features

at the time the panorama was created originally. These pixels will be further processed in the

matching step. The red circles in contrast resemble features which have been detected by the

FAST corner detector, yet they lie outside of completely filled cells, which is why they will

be dismissed. Note that two possible types of features might be in the range of the dismissed

features. Firstly, the ones which lie inside the panoramic image, yet outside of completely filled

cells (this means these features would actually belong to the panorama) and secondly, the ones

which appear at the border lines between mapped and unmapped pixels. Due to the fact that

the second type of features must not be considered in the matching process, all features outside

complete cells are dismissed to prevent any wrongly detected features to be matched later on.

70

CHAPTER 8
Background Information + Online

Video Processing (Implementation)

This chapter describes the implementation of firstly the feature which creates the Background

Information as explained in Section 5.3.2 and secondly the implementation of the Online Video

Processing as explained in Section 5.4. The reason for combining the description for both arises

from the fact that both are based on the PanoMT component and hence share a lot of properties

and code. Distinguishing between different requirements was achieved by executing different

code parts whenever needed, as explained in detail below. The description starts by giving an

overview with the help of the application’s class diagram and then proceeds by explaining the

most important classes in detail along with its properties (variables) and methods.

Note that for the sake of readability the description of variables and methods belonging to classes

is kept simple and in a general way, such that methods only contain its basic signature without

parameters which get passed along with the method call and furthermore variable and method

return types are given in a general and not language-specific way (e.g. integer instead of the

C++-specific type int).

8.1 Class Diagram

The Class Diagram illustrated in Fig. 8.1 gives an overview of the ARVideo application and

its contained classes. As can be observed the classes are arranged by color to distinguish be-

tween classes belonging to the Studierstube ES framework (blue) and classes which make up the

71

Figure 8.1: ARVideo Class Diagram

ARVideo application (light red, also compare Fig. 3.3) and which were developed in the course

of this work. Furthermore, the classes belonging to the framework are outlined with dashed lines

to indicate their membership to a single framework component, to further enhance understand-

ing how the single parts play together. In the following the single classes and their connections

are described in more detail.

72

8.2 ARVideo Class

The ARVideo class symbolizes the main application entry point. Its implementation consolidates

data from all the other available classes and is therefore seen as the most important class to

describe in detail. Basically the ARVideo class resembles a Studierstube ES Application, as

illustrated in Fig. 3.3, respectively. As depicted in the Class Diagram in Fig. 8.1 ARVideo is a

subclass of Application, such that the Application class is inherited by the ARVideo class. Further

it can be observed that the ARVideo class is also a subclass of the VideoUser class. As indicated

in Fig. 8.1 Application belongs to the StbES component of the Studierstube ES framework and

VideoUser to the StbCore component, respectively. Inheriting Application therefore enables the

ARVideo class to be managed by StbES as an executable application making use of all different

components of the framework. The reason that also VideoUser is inherited by ARVideo is that

this allows the forwarding of camera frames to the ARVideo class, which will be described in

more detail below.

Basically the application flow can be abstracted such that the ARVideo application is created

and initialized with all necessary data and then stays in a loop where the according update and

render functions are called. Depending on user input different actions/functions are triggered in

between which control the application’s behavior.

In the following the ARVideo class is described in more detail regarding its attributes (i.e. mem-

ber variables) and methods. Comparable member variables (e.g. icon images) are listed and

explained only once, to not needlessly inflate the description of the implementation.

Further note, as mentioned before, that the ARVideo application is developed in such a way

that it is possible to use it for both, the creation of the reference panorama (see Fig. 5.12) in the

desktop mode and the Online Video Replay using an iOS device. In order to realize this behavior

the class distinguishes between certain code parts using the macros AUTHORING_MODE and

LIVE_MODE. With the help of these macros it is feasible to execute different code to compen-

sate for the different requirements of the two modes.

Member variables

• BTN_SIZE : integer. Styling the size and position of UI icons is done with integer values.

• camera : Camera. Instance of the Camera Class described in Section 8.5.

• tracker : Tracker. Instance of the Tracker Class described in Section 8.6.

73

• localize : boolean. Variable which is set to true or false depending on if the localization

in the panoramic image (i.e. the Registration, see Section 5.4.1) was successful. As

long as it is false the current panoramic image gets matched against the loaded reference

panorama (as illustrated in Fig. 5.12 and Fig. 5.13, respectively).

• localizedRotationInPanorama : Rotation. Instance of the Rotation class. Its value is set

when localizing the current rotation within the current context was successful (i.e. the

Registration, see Section 5.4.1).

• isTracking : boolean. Variable which is set to true or false depending on if the tracking

mode is activated.

• validTracking : boolean. Variable which is set to true or false depending on if tracking

the rotation in the current view is successful or not. Correctly replaying the augmentation

overlays (see Section 5.4.2) relies on the valid tracking within the current context.

• captureIndex : integer. Index to keep track of captured video frames.

• captureNext : boolean. Used to determine if capturing of frames was successful/shall

continue.

• highRes : boolean. Used to distinguish between different camera resolutions. Is set once

in the beginning and depending on its state high or standard resolution icons are used.

• showControls : boolean. Used to determine if the UI controls shall be displayed or not

(see UI description in Section 9.1 for reference).

• playOn : Image. Instance of the Image Class. described in Section 8.7. Displays the Play

button in its active state, i.e. may be clicked.

• playOff : Image. Instance of the Image Class. Displays the Play button in its inactive

state, i.e. it is not clickable. Buttons shall be inactive in case when there would not be

any sense clicking the button in the current execution state of the application or to prevent

wrong/unexpected or even not-desired behavior.

• playOnDown : Image. Instance of the Image Class. Displays the Play button in its state

while it is being clicked, such that the user gets visual feedback that the button is actually

clicked.

• isPlayDown : boolean. Flag which is true as long as the Play button is down, i.e. clicked.

Is checked to set the desired behavior, i.e. activate playing of the video.

74

• isPlaying : boolean. Flag which is true as long as the replaying of the video is active.

It is further used to update corresponding button states accordingly (i.e. activate De-

crease/Increase Speed buttons).

• isPlayButtonActive : boolean. Flag which is true as long as the Play button is active, i.e.

clickable. It is used to render the according UI icons.

• playSpeed : integer. Variable which indicates at which speed the video is being played

back, i.e. regular speed, double speed, and so on. Its value gets regulated by the Decrease

and Increase Speed buttons.

• skip : boolean. Flag which is used to realize a decreased playback speed of the video.

It is set to true true if for a certain frame the overlay should not be rendered, such that

it takes for example the double amount of incoming frames to replay the video (which

indicates replaying the video at half speed). The value of the skip variable is directly bond

to the playSpeed value, such that playSpeed values smaller than 0 have the consequence

of setting the value of the skip variable to true.

• increaseCounter : boolean. Flag which is used to realize an increased playback speed of

the video. It is set to true true if for a certain frame the rendered overlay index should

be increased, such that it takes less incoming frames to replay the video. This means of

course that certain overlay augmentations do not get rendered at all to imitate the faster

replaying. The value of the increaseCounter variable is directly bond to the playSpeed

value, such that playSpeed values bigger than 0 have the consequence of setting the value

of the skip variable to true.

• mouseDown : boolean. Flag which is set to true if the system registers a mouse down

event occurring on the screen/display. The associated pixel coordinates (see below) are

used along with the flag’s value to determine in which region (i.e. button) the mouse

down event occurred such that according actions are carried out (e.g. mouse down event

occurred within the Play button’s pixel coordinates, which would set the before mentioned

boolean variable isPlayDown to true.

• mouseX : integer. X coordinate of the associated mouse move event.

• mouseY : integer. Y coordinate of the associated mouse move event.

• overlayIndex : integer. Variable which indicates the index of the rendered overlay. At

regular playback speed is increased by 1 for every frame. In case the playback speed is

decreased the variable would only be increased by 1 for, e.g. every second frame, (due to

75

the reason that for every second frame the rendering of the overlay shall be skipped, see

above). In case the playback speed is increased the variable would be increased by, e.g. 2

for every incoming video frame to simulate the faster replay of the overlays (bond to the

increaseCounter variable, see above).

• videoMainScene : SgNode. StbSG node which represents the root node of the videos

which shall be replayed. At runtime the according StbSG nodes belonging to the different

video scenes get attached/detached to this node, such that the corresponding video scene

is visible/not visible.

• panoPreview : Image. Preview of the created panoramic image which is visible on the

screen while the user is recording the panorama.

• frameCol : Image. Colored representation of the current camera frame. Gets passed to the

tracker instance.

• frameGray : Image. Gray level representation of the current camera frame. Gets passed

to the tracker instance.

• videoOneTextureActive : boolean. Flag which is true as long as the first video scene is

active. Together with the flag for the second video scene it is checked to determine which

effect or layer could be enabled/disabled.

• videoImage : VideoImage. Instance of the VideoImage Class as described in Section 8.8.

• fileNameFrame : String. Holds the basic filename of frames which shall be read in with

help of the videoImage variable.

Methods

• ARVideo(); - ARVideo constructor, initializing all necessary member variable values, like

the boolean fields described just above.

• void init(); - Method which is called by the StbES component after creating the ARVideo

instance. The framework expects an init() method in any StbES Application. Usually it

shall be called only once and basically its purpose is to load configuration data, images and

so on. It starts by registering the current ARVideo instance as a VideoUser making use of

the corresponding StbES function call. Then the Camera Calibration file (determined in

Section 3.1.7) gets loaded by calling the load() function on the camera instance. With the

successfully loaded camera calibration data it is possible to initialize the tracker instance

by setting its camera to said instance.

76

After that the highRes variable’s value is set by determining if the current render target’s

resolution is bigger than the internal threshold distinguishing between standard and high

resolution. Accessing the render target is possible due to the StbES component. After that

all the images which represent the different icons (buttons which are used for controlling

the app and the video playback and so on) are loaded into memory using an internal

convenient function provided by the StbES component.

Finally in LIVE_MODE the configuration/input data for the videoScene instances is

read in. It starts by reading the scene root node (using StbSG and the scene graph XML

configuration file) and setting it to the before mentioned variable videoMainScene. If

reading the scene root node was successful the method proceeds with creating two in-

stances of the VideoScene Class (each VideoScene represents one of the video layers,

see Section 5.4.2), by calling its constructor with the previously created camera instance

and the base filename (of type String) for the VideoTextures it should contain along with

the filename’s extension. In order to add/remove the created VideoScenes to/from the

scene graph and hence to/from the rendering queue it is necessary to set the mentioned

videoMainScene as the VideoScene’s parent node. Additionally, the overlay rotation in-

formation and texture information (position + offset) are loaded by calling the according

methods on the VideoScene instances. Lastly the single VideoTexture nodes belonging to a

VideoScene are read in from the XML configuration file by calling the VideoScene method

readVideoNode() (described in the VideoScene Class).

Furthermore, in AUTHORING_MODE the VideoImage instances for reading in cam-

era frames from the system as a stream (explained in method vu_newFrame() below) are

created by calling the function createVideoStreams() which will be explained later on.

• void update(); - Basically the entry point in the processing of a new video frame. This

method gets called by the StbES system before any of the rendering takes place such

that this method is used to alter variable values which are needed for the rendering. The

increaseCounter variable is checked and the playSpeed variable is updated accordingly.

Afterwards the preprocessing of the VideoScenes takes place. If the video mode is inactive,

such that none of the two VideoScenes is being played at this moment the VideoScenes do

get removed from the scene by detaching them from the main scene root. This is necessary

such that no VideoTexture is rendered. If the video mode is on but not playing, i.e. the

Pause mode is active, nothing needs to be updated. Yet if the video mode is on and the

video is playing, the VideoScenes need to be updated such that the single VideoTextures

are being updated (texture + rotation). This is done by getting the current camera rotation

77

from the tracker and updating the VideoScenes accordingly. Furthermore, the VideoScenes

need to know which overlay to render, i.e. what is the current overlayIndex. Thereupon

the VideoScenes updateVideoScene() functions are called. If the function returns false this

means that the last overlayIndex was reached and is therefore set to 0 in order to restart

the corresponding video.

• void render3D(); - Method which would render 3D content and is called after the update()

method. In this case no 3D content is available, hence nothing is done here.

• void render2D(); - Method which is called by the system after the render3D() method.

Basically all rendered content is 2D, which is why quite a lot of processing takes place

in this method. To begin with the StbES system’s renderer target is asked for the track-

ing status, such that if the tracking process is still valid. Which is important, because the

rendered video content only makes sense if tracking and updating the position within the

context is valid. The showControls flag is checked and if true the UI controls (buttons,

slider control and so on) are drawn onto the screen. Depending on if the video is play-

ing or not either the the slider control or the preview of the current panorama (which is

the basis for updating the position) is drawn at the bottom of the screen. Furthermore,

the buttons’ states (active/inactive) implicate which icons (on/off) are to be rendered. All

the images are drawn by calling the according draw() function of the Image Class, pass-

ing the image’s position in pixel coordinates (defined manually along with variables like

BTN_SIZE, whereas the pixel coordinates are increased to the double size if the highRes

variable is set to true in order to compensate for the bigger screen).

• void vu_newFrame(); - Like the methods above gets called by the system and passes the

current camera frame to the ARVideo Class. The method contains vital parts which distin-

guish between the above mentioned AUTHORING_MODE and LIVE_MODE. Basically

in both modes the current camera frame is prepared for passing it to the tracker instance

and depending on which task should be executed either the tracker’s localize() or update()

method is called with the prepared camera frame (although in AUTHORING_MODE the

localize feature is kind of obsolete and not called normally).

The need for distinguishing between the two modes arises from the fact that in the

AUTHORING_MODE the goal is to create the reference panorama out of the previously

created video frames and in the LIVE_MODE the actual replay of the augmented mate-

rial takes place. As explained earlier the Foreground Segmentation outputs these camera

frames along with the corresponding alpha channels. These camera frames now repre-

sent the actual frames which are needed to create the reference panorama. This means

78

instead of mapping the live camera frames which would be delivered by the system, those

stored frames are mapped into the panoramic image using the adapted Panorama Map-

ping and Tracking technique, which handles the alpha channels to omit the foreground

object in the frames. In order to pass the frame and its alpha channel to the tracker they

need to be read in making use of the previously mentioned instance of the VideoImage

Class. The VideoImage Class simplifies reading a sequence of frames as a stream from

the filesystem and is provided by the StbIO component of the Studierstube ES framework.

Note that actually two different VideoImage instances are needed as on the one hand the

regular camera frames need to be read in and on the other hand the corresponding alpha

channel images at the same frame index. Once the frames are loaded the tracker’s update

function is called to map the current frame into the panoramic image. To end the AU-

THORING_MODE-specific part the VideoImage stream indices are increased by one so

that in the next call of void vu_newFrame() the correct frame is read in. In case there are

no more frames in the stream the single rotations of all frames which were mapped into

the reference panorama are stored. These rotations are kept track off by the tracker when

the corresponding frames are mapped into the panoramic image and along with the final

reference panorama will later be used as part of the input for the Online Video Replay as

depicted in Fig. 5.13.

In case the LIVE_MODE is active the processing differs; instead of reading stored

frames from the filesystem the real live camera frames, which are directly passed along

when the method is called by the StbES system, are used. This means the frames are

passed to the tracker to create a panorama out of the current view on the scene. At first

though to begin with, the registration task has to be carried out. Which means that as long

as the current view onto the scene could not be localized, the localize() method is called

in addition to the tracker’s update() method, as explained in detail in Section 5.4.1.

Only if the registration was successful the method proceeds in further calls in a way that it

only updates the current position within the context. To end the LIVE_MODE-specific part

the values for increaseCounter and skip are set depending on the corresponding playSpeed

value, as remarked above.

• void mouseDown(); - Is also called by the system and delivers the horizontal and vertical

pixel coordinates of the mouse down event on the screen. Basically it checks if the mouse

down event’s position occurred somewhere inside of a button’s area (e.g. Play button) or

similar (e.g. slider control). If so the corresponding boolean flag (e.g. isPlayDown is set

to true).

79

• void mouseUp(); - Is triggered by the system as soon as the mouse down event is over.

Based on the boolean flags set in the mouseDown() method it controls the application’s

behavior by manipulating even more boolean flags (e.g. if isPlaying was false before and

isPlayingDown is true the variable isPlaying should be set to true in this case to start the

playing of the video and should be set to false if isPlayingDown is true and isPlaying was

true before, which would mean the video was playing until now and shall be paused).

• void mouseMove(); - Another method called by the system and as the name suggests as

long as the mouse is being moved (and pressed). Basically it just stores the actual pixel

coordinates in the before mentioned member variables mouseX and mouseY. These values

are used for example to update the slider control’s position and therefore help to navigate

through the overlay video scene.

• boolean inButton(); - In order to determine if a mouse down event occurred in one of the

UI’s control button this method gets called. The method checks if the pixel coordinates of

a mouse down event are within the button’s outer borders and if so returns true.

• void createVideoStreams(); - As noted in the init() method the createVideoStreams() method

is responsible for creating the VideoImage instances which are used to read camera frames

from the filesystem as sort of a input stream. The base filenames for the “regular” video

frame and the alpha channel frames are given as strings and the VideoImage instances are

then created and its init() method is called. More details about this in Section 8.8.

8.3 VideoScene Class

An instance of the VideoScene Class essentially represents a video layer of the ARVideo ap-

plication; as explained in Section 9.2. The implemented Prototype, presented in Chapter 9,

contains two such layers, which can be played simultaneously or alternately. The class encapsu-

lates all necessary information of a VideoScene to simplify adding/removing it from the “main

scene” (remember that the presented system uses a scene graph to add/remove the augmenta-

tions to/from the rendering queue). In the following the member variables and methods of the

class are described in more detail.

Member variables

• cam_inv : Matrix. Holds the inverse camera matrix (determined through the Camera Cal-

ibration explained in Section 3.1.7), which is consulted in case an instance of the Video-

Texture Class needs to be updated to render it at the accurate position. The variable gets

80

set upon creating an instance of the class (see method init() in the ARVideo Class) by pass-

ing the according parameter. Matrix is an intern representation (3x3 float) of a matrix in

mathematical sense.

• frames : integer. Holds the number of “frames” the VideoScene takes to be played com-

pletely. Is determined by setting it to the number of rotations which is also the number of

overlays.

• parentScene : SgNode. Represents the root node of the main scene and is set through the

according method setParentScene().

• rotations : Vector<Rotation>. Vector which holds the rotation information per overlay

(compare Fig. 5.13). Is filled in the beginning by calling the method loadRotations().

• texturePositions : Vector<Vec4F>. Vector which holds the necessary information (posi-

tion + offset) per overlay (compare Fig. 5.13 and Fig. 5.10). Is filled in the beginning

by calling the method loadTexturePositions(). A single entry is of type Vec4F which is a

simple intern representation of a vector containing 4 float values.

• textureFileNameBase : String. Contains the base name of the texture files to be loaded.

Together with the overlay index and the textureFileNameEx the according overlay file is

loaded in the method updateTextureFile(). Is set in the constructor.

• textureFileNameExt : String. Contains the extension of the texture files. Is set in the

constructor.

• idxCalc : character Array. Used to transform the integer value of the current overlay

index into “String” format, to be able to append it to the base file name.

• rotCamera : Rotation. Holds the current camera rotation and is used to update the texture

rotation in the method updateTextureRotation(). Is set and updated for every camera frame

through the method setRotationCamera().

• frameNr : integer. Index of the overlay which should be rendered. Is updated through

the method setFrameNr(). This is necessary, because as described in the ARVideo Class

it is possible that the overlay which should be rendered needs to be updated faster than

the actual camera frames, in order to realize the faster replay of the video. Based on this

index the indices for the textures which make up the Flash Trail Effect as described in

Section 9.2 are computed.

81

• videoTextures : VideoTexture Array. Contains the VideoTexture instances of a VideoScene.

Every VideoTexture resembles an overlay which should be rendered if required. The first

item in the array acts as the regular overlay if the video is played without any effect,

whereas the remaining overlays in the array serve for realizing for example the Flash

Trail Effect. The need for different instances of the VideoTexture Class arises from the

fact that every single overlay needs to be updated with the correct rotation and rendered

independently from the others.

Methods

• VideoScene(); - VideoScene constructor. The mentioned textureFileNameBase, texture-

FileNameExt and the cam_inv fields are set to the values which get passed with the con-

structor call. Furthermore, the VideoTexture instances are created and the videoTextures

array is filled.

• void readVideoNode(); - Method which is called on a VideoScene instance to read all

necessary information from the XML configuration file regarding a single VideoTexture

node.

• void loadRotations(); - Called once after creating a VideoScene instance to read the rota-

tion information per overlay from the corresponding text file.

• void loadTexturePositions(); - Called once after creating a VideoScene instance to read the

texture information (position + offset) per overlay from the corresponding text file.

• Rotation getRotationForFrame(); - Returns the rotation associated with a texture file by

providing the according index.

• Vec4F getTextureDetailsForFrame(); - Returns the texture information associated with a

texture file by providing the according index.

• boolean addTextureNode(); - Tries to add a VideoTexture instance to the parent scene, in

order to add this VideoTexture to the rendering queue. If adding the node was successful

returns true, otherwise false. This is necessary when for example the video should be

started and the “main” overlay should be added, or indeed as well when the Flash Trail

Effect is activated and the remaining overlays should be added to the scene.

• boolean removeTextureNode(); - Removes a VideoTexture instance from the parent scene,

in order to remove this VideoTexture from the rendering queue; for example when the

82

Flash Trail Effect is deactivated or the video is stopped at all (no overlay should be visible

any more). Returns true if successful.

• boolean checkTextureState(); - Checks the state of a VideoTexture instance, i.e. if it is

active and hence already added to the main scene, or if it needs to be activated.

• void updateFadeOutTextures(); - Method which loops through all VideoTexture instances

which are used for the Flash Trail Effect) (that is all but the first one) and depending on

its state updates the according texture.

• void updateFadeOutTexture(); - Actually updates all texture-specific data like the image

file which should be loaded onto this VideoTexture instance, the associated geometry (de-

termined through its coordinates) and the rotation which should be applied to the texture at

this frame depending on the associated own rotation (loaded from the text file, see method

loadRotations()) and the current value of the field rotCamera. The corresponding method

calls are described below.

• void updateTextureGeometryVertices(); - Updates the texture’s geometry vertices in a way

that the original pixel coordinates of the segmented overlay at the given index are trans-

formed into screen coordinates of the actual render target, as explained in Section 5.4.2.

• void updateTextureRotation(); - Updates the texture’s rotation at the given index, as ex-

plained in Section 5.4.2.

• bool updateTextureFile(); - Loads the overlay file (an image) which is associated with the

given index onto the VideoTexture. Returns true if successful, and false if for example the

image file was not found.

• bool updateVideoScene(); - Is usually called once per incoming camera frame in the

ARVideo Class and is responsible for updating the regular VideoTexture of this scene -

if active - and furthermore depending on the process of the video (frame number) and

activated/deactivated effect sets boolean flags which are passed to the updateFadeOut-

Textures(); method in case the remaining textures need to be added/removed or simply

updated (image, rotation, geometry). Additionally, if the scene is not active at all, but has

been before, the scene is removed completely by calling the method removeVideoScene().

• void removeVideoScene(); - Simply deactivates all VideoTexture instances belonging to

this scene, such that in the next rendering step no textures are rendered to the screen.

• void setParentScene(); - As mentioned sets the value of the field parentScene.

83

• void setRotationCamera(); - As mentioned sets the value of the field rotCamera.

• void setFrameNr(); - As mentioned sets the value of the field frameNr.

• integer getNumberOfFrames() - Returns the number of total “frames” this video scene

contains.

8.4 VideoTexture Class

The VideoTexture Class encapsulates all data which makes up a single overlay. It contains the

scene graph nodes which are necessary to process a single overlay independently from the oth-

ers, such as a texture node which holds the overlay image, a transform node which is responsible

for correctly rotating the overlay and a geometry vertices node which serves for accurate posi-

tioning of the overlay. The transform separator node makes it possible to independently apply a

transformation; such as the one computed in Equation (5.1). Otherwise applying a transforma-

tion like the one mentioned would result in applying this transformation on all available content

which would result in undesired behavior. In the following the member variables and methods

of the class are described in more detail.

Member variables

• depth : float. Holds the texture’s screen depth (compare value z in Equation (5.2)).

• active : boolean. Flag which is set to the texture’s state (active/inactive).

• transformSeparator : SgTransformSeparator. Scene graph node and as illustrated in

the Class Diagram is a subclass of SgNode. As mentioned above functions as the node to

separate the applied transformation from the remaining scene.

• transform : SgTransform. Scene graph node and as illustrated in the Class Diagram is

a subclass of SgNode. Holds the transformation to apply in order to correctly render the

overlay.

• texture : SgTexture. Scene graph node and as illustrated in the Class Diagram is a subclass

of SgNode. Holds the texture which loads the overlay image and which is finally being

rendered through OpenGL ES.

• geometryVertices : SgGeometryVertices. Scene graph node and as illustrated in the Class

Diagram is a subclass of SgNode. Contains the geometry vertices which make up the

screen coordinates which are computed using Equation (5.2).

84

Methods

• VideoTexture(); - Constructor which creates an instance of the class. In addition, initializes

the value of the field active.

• virtual VideoTexture(); - VideoTexture destructor. In this case nothing needs to be explic-

itly deleted in case an instance is destroyed.

• boolean setTransformSeparator(); - Sets the value of the field transformSeparator. Re-

turns true if the node is not NULL.

• SgTransformSeparator getTransformSeparator(); - Returns the field transformSeparator.

• boolean setTransform(); - Sets the value of the field transform. Returns true if the node is

not NULL.

• SgTransform getTransform(); - Returns the field transform.

• boolean setTexture(); - Sets the value of the field texture. Returns true if the node is not

NULL.

• SgTexture getTexture(); - Returns the field texture.

• boolean setGeometryVertices(); - Sets the value of the field geometryVertices. Returns

true if the node is not NULL.

• SgGeometryVertices getGeometryVertices(); - Returns the field geometryVertices.

• void setActive(); - Sets the value of the field active.

• boolean isActive(); - Returns the boolean value of the field active.

• void setDepth(); - Sets the value of the field depth.

• float getDepth(); - Returns the float value of the field depth.

8.5 Camera Class

The Camera Class is part of the StbCV component and is made use of to work with the camera

calibration data; determined in Section 3.1.7. According to its documentation the class stores

the intrinsic parameters in fixed- and floating point values. Hence, it is able to project 3D points

into the screen and convert between undistorted and distorted 2D coordinates.

85

8.6 Tracker Class

The Tracker Class is part of the PanoMT component and plays an important role as it is respon-

sible for tracking the camera motion within the user’s context and updating the camera view

(mapping pixels into the panorama) as described in the method vu_newFrame() of the ARVideo

Class and in Section 5.4.1.

8.7 Image Class

The Image Class is part of the StbES component and according to the class documentation

represents the base class for images that can be rendered into an OpenGL (ES) frame buffer.

The implementation contains several convenient functions for pixel/image manipulation such

as flipping or scaling the image. Instances of the Image Class are widely used throughout the

presented system (control buttons, panorama preview and so on).

8.8 VideoImage Class

The VideoImage Class serves for reading in image frames from the filesystem as a “stream”, as

mentioned in Section 8.2. This is needed in case the ARVideo application is executed in AU-

THORING_MODE which was also explained above. The VideoImage class provides convenient

methods for returning the frame for a given index and its properties like width, height and so

on and furthermore also has methods which guarantee that the advancing within the stream is

secure, i.e. the next frame which is about to read in and returned really exists.

86

CHAPTER 9
Prototype

Video augmentations can be used for a wide range of applications covering areas such as enter-

tainment or edutainment if integrated into outdoor AR applications such as browser systems. In

the context of this work a prototype of a mobile video editing AR application was developed. In-

spired by modern tools proposed in desktop video editing applications, the implemented system

focused on some of their major features:

• video layers,

• video playback control and

• video effects.

In the following an overview of the user interface and the post-effects which are currently im-

plemented is given. Additionally, a user study was conducted to get first-hand-user-experience

by domain experts in the field of skateboarding and video editing. This is described in detail in

Chapter 10.

9.1 User Interface

The interface of the prototype is inspired by the design of graphical user interfaces generally

found in video editing tools. Three different groups of functions were created; distributed around

the screen that can be accessed with touch screen operations. The control groups of the imple-

mented user interface are (illustrated in Fig. 9.1):

1. the video control group,

87

2. the video layer group and

3. the video effects group.

The menu options can easily be hidden by touching the screen at any position where no menu

option is found or in case the menu options are not pressed for a certain amount of time (e.g. 3

seconds) the menu disappears to give more space to the video, but will be redisplayed as soon

as the user touches the screen.

The functions in the video control group consist of the playback control found in most video

players:

• play control buttons,

• time slider and

• speed buttons.

With the play/pause button the user can start the video from its initial position and pause at any

time. Triggering the stop button results in the video disappearing from the scene at all. When

the video is playing the slider at the bottom can be utilized to interactively control the video’s

progress, i.e. rewind or forward a few frames. The speed buttons’ functionality is simply to

decrease or increase the speed at which the video is being played.

The video layer group provides access to the different video sequences which might be ac-

cessible at a certain location (i.e. public area, park, building, ...), organized in different depth

layers. The end-user can control and activate/deactivate these different layers, which can be

played independently of each other or simultaneously.

The last group of items, the video effects, trigger real-time video effects that can be applied

to the different video sequences. Each effect can be switched on or off and the effects can be

combined with each other. More details about the layers and the post effects are given in the

next section.

9.2 Post Effects and Layers

Applying visual effects is an important part of video post-productions. Effects are used to high-

light actions and create views that are impossible in the real world, such as slow motion or

88

Figure 9.1: Screenshot of the prototype showing a video augmentation together with the imple-
mented interface with the control groups for video playback (top and bottom), video layers (left
side) and video effects (right side).

highlighting of elements within the video. Normally these effects are applied to the video mate-

rial in a rendering step that is carried out in an offline manner [27]. Because of the nature of the

presented approach it is possible to perform a wide variety of these video effects in real-time on

a mobile device without the need of pre-rendering the video content. In the context of this work

space-time visual effects such as multi-exposure effects, open flash and flash-trail effects were

explored. Multi-exposure effects simulate the behavior of a multi exposure film where several

images are visible at the same time. This behavior can easily be simulated for cameras with a

fixed viewpoint by augmenting several frames (or in this case overlays) of the existent video at

the same time. This results in having the subject appearing several times within the current view,

such as in a multiple exposure image.

An extension of this effect is the Flash trail effect. This effect also allows seeing multiple

instances of the same subject yet the visibility depends on the time passed by (see Fig. 9.2). This

effect supports a better understanding of the motion in the recorded video. The Flash trail effect

was implemented by blending in past frames of the augmented video with increasing amount of

transparency, which was altered working with OpenGL ES shaders1. Thereby the strength of the

transparency and the interval between the frames can be freely adjusted.

1http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf

89

Figure 9.2: Examples of layers and an example for realized post effects as used in the Skate-
board Tutor Application; captured from an iPhone 4S. (Left) Playing back two video augmenta-
tion layers allows the comparison of the riders’ performance. (Right) Flash-trail effects visualize
the path and the motion within the video.

The presented prototype allows to play back more than one video at the same time by still

allowing a seamless integration into the environment (shown in Fig. 9.2 on the left). This allows

it to compare actions that were performed at the same place but at a different point of time

by integrating them into one view, thus bridging time constraints. Each video in the system

corresponds to a video layer and the user is able to switch between these layers or play them

simultaneously.

The applying of video effects or video layers do not require any preprocessing but is carried

out on the device while playing back the video. Hence, effects and layers can be combined or

switched off/on demand, which supports the immersive user experience.

90

Part III

Results

91

CHAPTER 10
User Study

To evaluate the presented prototype a preliminary user study was conducted, such that it was

possible to gather first user feedback on the given technique as well as to identify flaws and

improvements or to get additional ideas for the applicability of the ARVideo compositing sys-

tem. In order to evaluate the proposed Prototype it was demonstrated to end-users as part of a

Skateboard Tutor Application. All details about the application and the user study and its results

are given below.

10.1 Skateboard Tutor Application

Skateboard videos are a good representative of dynamic real world content naturally evolving

in our real world environment. The different ranges of maneuver (tricks) performed with a

skateboard are largely bond to the environment and location through natural or artificial obsta-

cles and ramps. Skateboard videos make also use of a variety of camera shooting techniques

(perspectives, movement, optics) due to the dynamic of the skateboarder evolving in the real

environment. On the other hand, Tutorial/How-To videos represent a large part of YouTube

videos [42] today, confirming the potential of this format for skills or competences learning.

Skateboard tutorials (>30.000 hits on YouTube) serve therefore as a good application of the

presented technique.

The Skateboard Tutor Application allows recording skateboard tricks that can be shared with

other users for demonstration and learning purposes. The application can be used to overlay

the prerecorded video content (extracted skateboarders) in place to replay and experience the

tricks and actions performed by another user (or from a previous day) in the correct context

93

Figure 10.1: Application scenario as used during the user study. (Left) Skateboarder was
recorded with a mobile phone while performing his actions. (Middle) Frame of the recorded
video sequence. (Right) The same action as augmented within the skateboard tutor application
as captured from an iPhone 4S.

(as indicated in Fig. 10.1). It can support the learning process as online skateboard videos,

generally recorded with fish-eye lens, can give a distorted perception of the skateboarder in the

real environment. The test skateboard videos were recorded with standard smartphones and are

processed using the presented approach of situated video compositing for AR. Furthermore, the

proposed post effects and layers are included in the test application. The layer approach allows

recording skateboard maneuver on the fly, which can later be played back in parallel with other

stored maneuver for comparison (e.g. speed, height of jumps). The flash-trail effect can be used

to highlight the motion and the path of the rider.

10.2 Scenario And Setting

Producers of skateboard videos are usually also consumers, leveraging the possibility to collect

feedback for both, the creation of video augmentations and experiencing said video augmenta-

tions. Consequently the evaluation of the Prototype within the Skateboard Tutor Application was

seen as an adequate use case scenario to gain valuable feedback. Thus to conduct the user study

skilled skateboarders (domain experts) were invited, where each of them had gained experience

in creating skateboard videos or tutorials already and who had published their videos online via

popular sharing platforms.

The main objective regarding the user evaluation was to identify the usefulness and applica-

bility of the presented approach as well as the usability of the created prototype. In total there

were 5 expert users with >7 years of skateboarding experience (all male, 25-28 years), all of

them were involved in producing skateboard videos, some produced videos for marketing. All

considered themselves as not overly tech-savvy. Two had minimal knowledge about augmented

reality, none had any experience with any kind of AR application beforehand. One participant

94

Figure 10.2: Evaluation of the prototype with domain experts using an Apple iPad2.

stated to be not very familiar with the usage of mobile devices such as smartphones as he didn’t

own one and restricted his usage of mobile phones to place calls or write messages.

10.3 Procedure

All participants had the chance to get hands-on experience with the prototype as it was demon-

strated on both an iPhone 3GS and an iPad2 (depicted in Fig. 10.2). After introducing the

project, the participants were given a short demonstration of the application, showing the differ-

ent features. They were able to test the integrated effects as well as to try the video layers by

playing two video layers that were augmented at the same time. Two participants were selected

to create their own skateboard videos which were later augmented, while all other users only

had the chance to experience the augmented videos. After the participants finished trying out

the prototype they were asked a series of questions as part of a semi-structured interview.

10.4 User Study Results

In the interview all participants confirmed that the prototype was easy to use. Regarding the

comfort factor with the device and interacting with the application, only one user didn’t feel

really comfortable (who was the participant not experienced with smartphones). The participants

95

were also asked about the social aspect of using the application outdoor in a busy area; whereas

all participants replied to be really comfortable on this aspect. All users commented that the

presented system was easy to learn and the current interface was also well received.

Three of the five participants said that they really enjoyed the freedom of having control of

the camera orientation during playback, as it is not relying on the recording camera orientation

(explained in Section 5.4.2). In general the users highlighted positively the possibility of playing

several videos/layers at the same time, that are overlaid in parallel. It was described as a really

useful mechanism for comparing videos, e.g. comparing their own runs with the tutorial video

to detect differences. Furthermore, the appliance of the flash-trail effect also gained positive

feedback such that it seemed to be useful for studying ”the line” a rider skates and thus further

assisting in the comparison between different videos/actions.

When asked about the general applicability and the usefulness of experiencing video aug-

mentations in place the participants commonly saw great potential for the system regarding the

usage in other application areas. However, two of them pointed out during the interview that the

users have to visit the place, which makes more sense in certain specific cases. Both of them

stated that they therefore generally see it more as a gadget as they could not think of other con-

vincing use-cases at that point of time. However, when they were presented with other possible

use cases (city guides, parades/events within the city) at the end of the interview they noted that

they see also potential in these kinds of applications yet stated the need to experience it for a

more reliable answer.

The last part of the interview focused on the visual quality of the technique, in term of spatial

and visual integration. Two participants had the feeling that the scene and the rider were 3D

and giving a sense of ”authenticity”, one perceived the rider to be 2D but the scene to be 3D,

while the remaining two participants stated that it was all overlaid in 2D. They all commented

that the movement of the augmented skateboarders within the scene was very realistic. Even

after being explicitly asked they could not remember to have seen any drifting between the

augmentation and the background. However, when asked about the seamless visual integration,

mixed answers were received. The participants stated that sometimes the skateboarder seemed

to appear differently to e.g. people walking by, as the augmented overlays were too dark or

incorrectly lit in the actual context. Two participants also noticed small segmentation errors

(e.g. parts of the skateboard were disappearing in a couple of video frames).

96

The two participants that generated their own augmentation videos said that the system in

total is rather easy to use (without any previous knowledge about how to proceed) and the steps

which were required are acceptable for the generated outcome. When asked about constraints

in the camera motion during shooting - limited to rotational movements of the camera (see

Section 5.4.1) - they said that it is likely to be acceptable in most cases. They explained that a

huge majority of the people is making short videos with smartphone devices from a single point

of view. One of the participants observed (translated to english): ”The given constraints fit the

medium, as I think the majority of the short online videos were shot in this [constrained] way”.

From this it follows that the presented system is likely to fulfill all criteria which laypersons

usually come across recording skateboarding videos. Finally, during the open questions one

participant proposed the possible use of the video compositing system as a ”mobile blue screen”,

which would allow users to capture objects and scenes and assemble them together using the

layer view.

97

CHAPTER 11
Discussion/Conclusion

11.1 Discussion

Overall the evaluation of the prototype of the proposed system with the chosen skateboard ex-

perts showed that the presented approach has advantages over existing mobile video applications

(shooting, video effects, playback). However, the final outcome and the usefulness strongly de-

pend on the use case. Even though all of the user study participants were not tech-savvy they

had no problems to learn and handle the prototype application.

A major limitation of the prototype pointed out by the participants was the visual quality of

the overlays. Even though the ratings were above average the users complained about the lack

of visual coherence: The video augmentation looked different from the current environment.

In the user study’s case this was mostly caused by cloudy weather conditions during recording

time resulting in low contrast actors, while it was mostly sunny during the playback of the video

augmentations. This could be treated in future versions of the prototype by implementing an

adaptive visual coherence. The basic idea is to compare the background panorama of the video

with the current environment to adjust the video augmentation in terms of contrast and color.

Another problem was that the segmentation sometimes was not accurate enough, especially

if applied to a well-structured background as required for vision-based registration. However,

more sophisticated segmentation algorithms and better algorithms for tracking the segmented

objects exist yet these would require more expensive computation or GPU implementations and

need to be investigated in the context of this work. Especially since the segmentation as used in

the current system has inverse requirements compared to the vision-based registration presented

99

in this context: A less structured background achieves in general significantly better results in

foreground-background segmentation, while it poses a hard problem when used to register the

augmentation based on the background information.

Despite these drawbacks, the application showed that augmented video could be an interest-

ing element especially as video content is often easier to create than 3D content, making the

demonstrated video compositing approach interesting for many applications.

Professional applications can benefit from video augmentations as realized in this work. Aug-

mented reality-based tourist guides could display more interactive content e.g. by capturing the

guide for later replay. Furthermore, authoring such content is less demanding than creating dy-

namic 3D content. This allows to easily create in-situ narratives similar to the concept of situated

documentaries presented by Höllerer et al., 1999. Many augmented reality applications can gain

value from the simplicity of creating video augmentations employing the proposed approach,

allowing laypersons to create interactive content and share it with friends. This enables the cre-

ation of videos of certain events (e.g. parades, street artists etc.) and play-back in place at a

different time.

Separating the constraints which occur during shooting and the ones present at replaying

the video content can be explored further. Cinematography components such as camera type,

camera movement, visual style of the image, location and its content are some examples of

elements that can be altered, modified or ”warped” between the record and replay. One could

imagine to record a cyclist of the Tour de France with a rolling camera technique and replay

the recorded scene fixed in another location. Further, real-time montage with live video, online

content and collaborative editing might leverage the full potential of mobile AR.

11.2 Conclusion

In this thesis an approach for in-situ compositing of video content in mobile Augmented Real-

ity was presented. It was shown how to create and process video files for the usage in mobile

outdoor AR as well as how to register these video scenes precisely in the user’s environment us-

ing a panorama-based tracking approach. Even though the approach is constrained to rotational

movements of the camera due to the usage of a panoramic representation of the environment, it

could be applied to many existing outdoor AR applications, as this motion pattern is common

for using AR browsers, as well as for shooting short videos. Possible use cases of video footage

in future mobile AR applications were proposed. Furthermore, it has been shown how to inter-

actively experience videos of past events in outdoor AR environments.

100

To do so an example application (“skateboard tutor”) was developed and demonstrated. The pro-

totype of the mentioned example application allows experiencing skateboard tricks and actions

recorded beforehand that are then augmented in-place and displayed at interactive frame rates

on mobile phones.

Future work should target better segmentation algorithms and an improved visual coherence be-

tween the overlay and the augmented environment. Porting the offline processing of the video

material to a mobile environment could be another future step.

101

Bibliography

[1] OpenCV. http://opencv.willowgarage.com/wiki.

[2] OpenGL ES. http://www.khronos.org/opengles.

[3] Qt framework. http://qt.nokia.com.

[4] Studierstube ES. http://handheldar.icg.tugraz.at/stbes.php.

[5] The Grid Compass. http://home.total.net/~hrothgar/museum/

Compass/.

[6] Clemens Arth and Manfred Klopschitz. Real-time self-localization from panoramic images

on mobile devices. IEEE International Symposium on Mixed and Augmented Reality 2011

Science and Technolgy Proceedings, pages 37–46, October 2011.

[7] Ronald T. Azuma. A survey of augmented reality. Presence: Teleoperators and Virtual

Environments 6, pages 355–385, 1997.

[8] Luca Ballan, Gabriel J. Brostow, Jens Puwein, and Marc Pollefeys. Unstructured video-

based rendering: Interactive Exploration of Casually Captured Videos. In ACM SIG-

GRAPH 2010, volume 29, New York, New York, USA, July 2010. ACM Press.

[9] Jean-Yves Bouguet. Pyramidal Implementation of the Lucas Kanade Feature Tracker,

Description of the algorithm, 2000.

[10] Yuri Boykov and Marie-Pierre Jolly. Interactive Graph Cuts for Optimal Boundary &

Region Segmentation of Objects in N-D Images. In Proceedings of Interaction Conference

on Computer Vision, pages 105–112, 2001.

[11] T.P. Caudell and D.W. Mizell. Augmented reality: an application of heads-up display

technology to manual manufacturing processes. In Proceedings of 1992 IEEE Hawaii

International Conference on Systems Sciences, pages 659–669, 1992.

103

http://opencv.willowgarage.com/wiki
http://www.khronos.org/opengles
http://qt.nokia.com
http://handheldar.icg.tugraz.at/stbes.php
http://home.total.net/~hrothgar/museum/Compass/
http://home.total.net/~hrothgar/museum/Compass/

[12] Stephen DiVerdi, Jason Wither, and Tobias Höllerer. Envisor: Online environment map

construction for mixed reality. In Proceedings of IEEE VR 2008 (10th International Con-

ference on Virtual Reality), 2008.

[13] Gunnar Farnebäck. Two-Frame Motion Estimation Based on Polynomial Expansion. In

Proceedings of the 13th Scandinavian Conference on Image Analysis, pages 363–370,

2003.

[14] Steven Feiner, Blair MacIntyre, Tobias Höllerer, and Anthony Webster. A touring machine:

Prototyping 3D mobile augmented reality systems for exploring the urban environment.

Personal Technologies, 1(4):208–217, December 1997.

[15] George W. Fitzmaurice. Situated Info Spaces. Communications of the ACM, 36(7), 1993.

[16] Benjamin R. Fransen, Evan V. Herbst, Anthony Harrison, William Adams, and J. Gregory

Trafton. Real-time face and object tracking. 2009 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 2483–2488, October 2009.

[17] Jens Grubert, Tobias Langlotz, and Raphael Grasset. Augmented Reality Browser Survey.

Technical report, Graz University of Technology, 2012.

[18] T. Guan and C. Wang. Registration Based on Scene Recognition and Natural Features

Tracking Techniques for Wide-Area Augmented Reality Systems. IEEE Transactions on

Multimedia, 11(8):1393–1406, December 2009.

[19] Tobias Höllerer, Steven Feiner, and John Pavlik. Situated Documentaries: Embedding

Multimedia Presentations in the Real World. In Proceedings of the 3rd IEEE International

Symposium on Wearable Computers (ISWC ’99), pages 79–86, October 1999.

[20] Tobias Höllerer, Steven Feiner, Tachio Terauchi, Gus Rashid, and Drexel Hallaway. Ex-

ploring MARS: developing indoor and outdoor user interfaces to a mobile augmented re-

ality system. Computer & Graphics, 23(August):779–785, 1999.

[21] M. Kalkusch, T. Lidy, N. Knapp, G. Reitmayr, H. Kaufmann, and D. Schmalstieg. Struc-

tured visual markers for indoor pathfinding. The First IEEE International Workshop Agu-

mented Reality Toolkit.

[22] Georg Klein and David Murray. Parallel Tracking and Mapping on a camera phone. ISMAR

’09 Proceedings of the 2009 8th IEEE International Symposium on Mixed and Augmented

Reality, pages 83–86, October 2009.

104

[23] Vladimir Kolmogorov and Ramin Zabih. What energy functions can be minimized via

graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–

159, March 2004.

[24] Rob Kooper and Blair MacIntyre. Browsing the Real WWW - Maintaining Awareness

of Virtual Information in an AR Information Space. International Journal of Human-

Computer Interaction, 16(3):425–446, 2003.

[25] Robert Laganière. OpenCV 2 Computer Vision Application Programming Cookbook. Packt

Publishing, 2011.

[26] Tobias Langlotz, Mathäus Zingerle, Raphael Grasset, Hannes Kaufmann, and Gerhard Re-

itmayr. AR Record&Replay: Situated Compositing of Video Content in Mobile Aug-

mented Reality. Accepted for ACM OZCHI, 2012.

[27] Christian Linz, Christian Lipski, Lorenz Rogge, Christian Theobalt, and Marcus Magnor.

Space-time visual effects as a post-production process. In Proceedings of the 1st interna-

tional workshop on 3D video processing - 3DVP ’10, New York, New York, USA, October

2010. ACM Press.

[28] Blair MacIntyre, Jay David Bolter, Jeannie Vaughn, Brendan Hannigan, Maribeth Gandy,

Emanuel Moreno, Markus Haas, Sin-Hwa Kang, David Krum, and Stephen Voida. Three

Angry Men: An Augmented-Reality Experiment In Point-Of-View Drama. In Proceedings

of TIDSE 2003, pages 24 – 26, 2003.

[29] Blair MacIntyre, Marco Lohse, Jay David Bolter, and Emmanuel Moreno. Ghosts in the

Machine : Integrating 2D Video Actors into a 3D AR System Georgia Institute of Tech-

nology. In 2nd International Symposium on Mixed Reality, 2001.

[30] Blair MacIntyre, Marco Lohse, Jay David Bolter, and Emmanuel Moreno. Integrating 2-

D video actors into 3-D augmented-reality systems. Presence: Teleoperators and Virtual

Environments, pages 189–202, 2002.

[31] Alessandro Mulloni, Hartmut Seichter, and Dieter Schmalstieg. Handheld augmented re-

ality indoor navigation with activity-based instructions. In Proceedings of the 13th Inter-

national Conference on Human Computer Interaction with Mobile Devices and Services -

MobileHCI ’11, 2011.

[32] U. Neumann and S. You. Natural feature tracking for augmented reality. IEEE Transac-

tions on Multimedia, 1(1):53–64, March 1999.

105

[33] Milgram P. and F. Kishino. Taxonomy of Mixed Reality Visual Displaystle. IEICE Trans-

actions on Information and Systems, pages 1321–1329, 1994.

[34] Qi Pan, Clemens Arth, Gerhard Reitmayr, Edward Rosten, and Tom Drummond. Rapid

scene reconstruction on mobile phones from panoramic images. IEEE International Sym-

posium on Mixed and Augmented Reality 2011 Science and Technolgy Proceedings, pages

55–64, October 2011.

[35] Simon Prince, Adrian David Cheok, Farzam Farbiz, Todd Williamson, Nik Johnson, Mark

Billinghurst, and Hirokazu Kato. 3D Live: Real Time Captured Content for Mixed Reality.

In ISMAR ’02 Proceedings of the 1st International Symposium on Mixed and Augmented

Reality, September 2002.

[36] Gerhard Reitmayr and Tom Drummond. Going out: robust model-based tracking for out-

door augmented reality. 2006 IEEE/ACM International Symposium on Mixed and Aug-

mented Reality, pages 109–118, October 2006.

[37] J. Rekimoto. Augmented Reality Using the 2D Matrix Code. In Proceedings of the Work-

shop on Interactive Systems and Software, 1996.

[38] E. Rosten and T. Drummond. Fusing points and lines for high performance tracking. Tenth

IEEE International Conference on Computer Vision (ICCV’05) Volume 1, pages 1508–

1515, Vol. 2, 2005.

[39] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detection.

Computer Vision–ECCV 2006, pages 1–14, 2006.

[40] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. GrabCut: Interactive Fore-

ground Extraction using Iterated Graph Cuts. ACM Transactions on Graphics, 23(3):309–

314, August 2004.

[41] Gerhard Schall, Daniel Wagner, Gerhard Reitmayr, Elise Taichmann, Manfred Wieser, Di-

eter Schmalstieg, and Bernhard Hofmann-Wellenhof. Global pose estimation using multi-

sensor fusion for outdoor Augmented Reality. 2009 8th IEEE International Symposium on

Mixed and Augmented Reality, pages 153–162, October 2009.

[42] Ankur Satyendrakumar Sharma and Mohamed Elidrisi. Classification of multi-media con-

tent (videos on youtube) using tags and focal points. Unpublished manuscript, 2008.

[43] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism: Exploring photo

collections in 3D. ACM Transactions on Graphics, 25(3):835, July 2006.

106

[44] Ivan E. Sutherland. A head mounted three dimensional display. In Proceedings of the

AFIPS Fall Joint Computer Reference, Washington D.C., pages 757–764, 1968.

[45] V. Vlahakis, J. Karigiannis, M. Tsotros, and M. Gounaris. ARCHEOGUIDE: First results

of an Augmented Reality, Mobile Computing System in Cultural Heritage Sites. In Pro-

ceedings of Virtual Reality, Archaeology, and Cultural Heritage International Symposium,

pages 131–140, 2001.

[46] Daniel Wagner, Alessandro Mulloni, Tobias Langlotz, and Dieter Schmalstieg. Real-time

panoramic mapping and tracking on mobile phones. In 2010 IEEE Virtual Reality Confer-

ence (VR), pages 211–218, March 2010.

[47] Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni, Tom Drummond, and Dieter

Schmalstieg. Pose tracking from natural features on mobile phones. 2008 7th IEEE/ACM

International Symposium on Mixed and Augmented Reality, pages 125–134, September

2008.

[48] Daniel Wagner and Dieter Schmalstieg. History and Future of Tracking for Mobile Phone

Augmented Reality. 2009 International Symposium on Ubiquitous Virtual Reality, July

2009.

107

	Theoretical Foundations
	Introduction
	Problem Definition
	Contribution

	Literature And Related Work
	History of Augmented Reality
	Mobile Augmented Reality Video Applications

	Technological Foundations
	Software
	Visual Studio
	XCode
	OpenCV
	Studierstube ES
	Studierstube Core
	Studierstube Scenegraph
	Studierstube Math
	Studierstube IO
	Studierstube CV
	Studierstube Tracker
	Panorama Mapping and Tracking

	OpenGL ES
	Qt Framework
	Camera Calibration

	Hardware
	Miscellaneous
	Apple Developer Account
	iOS Provisioning Portal
	Development Certificate
	Device
	App ID
	Provisioning Profile

	Design + Implementation
	Concept - Overview Of The System
	Activity Diagram

	Situated ARVideo Compositing
	Terminology
	Content Creation
	Video Recording
	Video Transfer

	Offline Video Processing
	Foreground Segmentation
	Manual initialization
	Pre-GrabCut-processing
	GrabCut call
	Post-GrabCut-processing

	Background Information

	Online Video Processing
	Registration
	Online Video Replay

	Foreground Segmentation (Implementation)
	Class Diagram
	DynamicVideoSegmentation Class

	Adaptation of PanoMT
	Handling alpha channels
	Matching Of Two Panoramic Images

	Background Information + Online Video Processing (Implementation)
	Class Diagram
	ARVideo Class
	VideoScene Class
	VideoTexture Class
	Camera Class
	Tracker Class
	Image Class
	VideoImage Class

	Prototype
	User Interface
	Post Effects and Layers

	Results
	User Study
	Skateboard Tutor Application
	Scenario And Setting
	Procedure
	User Study Results

	Discussion/Conclusion
	Discussion
	Conclusion

	Bibliography

