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Kurzfassung

Der Compact Linear Collider (CLIC) ist ein zukünftiger multi-TeV Elektron-Positron
Linearbeschleuniger, der gegenwärtig am CERN entworfen wird. Um seine ambition-
ierten Ziele zu erreichen muss CLIC Teilchenstrahlen von höchster Qualität produzieren,
was den Beschleuniger empfindlich für Bodenbewegungen macht. Das CLIC Entwurfs-
team hat vier Gegenmaßnahmen vorgesehen um dieses kritische Bodenbewegungsprob-
lem zu lösen. Die vorliegende Arbeit beschäftigt sich mit dem Entwurf einer dieser
Gegenmaßnahmen, dem sog. Linac-Regler (L-FB), aber auch mit der Simulation und
der Validierung aller Gegenmaßnahmen gemeinsam. Zusätzlich wurde eine Methode zur
Verbesserung des notwendigen Systemmodells entwickelt.

Das L-FB dient zur Unterdrückung von Strahloszillationen entlang des Beschleunigers.
Der Reglerentwurf basiert auf der Entkopplung des Beschleunigersystems in unabhängige
Systemkanäle. Für jeden Systemkanal wird anschließend mit Hilfe einer automati-
schen Syntheseprozedur ein individueller Regler bestimmt. Die Prozedur erlaubt es
Expertenwissen einzubringen, welches von einem Optimierungsalgorithmus benutzt wird
um den Luminositätsverlust zu minimieren. Dieser Ansatz beschleunigt den Entwurf-
sprozess signifikant während gleichzeitig die Regelgüte im Vergleich zu Standardmeth-
oden verbessert wird. Neben dem L-FB werden auch einfache aber effiziente Entwürfe
für den sog. Kollisionspunktregler und Kostenreduktionsoptionen für die Quadrupol-
Stabilisation präsentiert. Für den Entwurf all dieser Regler wurden Modelle für den
Einfluss der Bodenbewegungen auf Strahlparameter wie Stahlversatz, Strahlgröße und
Luminosität durch Adaption von existierenden Modellen hergeleitet.

Für den Entwurf und die Validierung der Gegenmaßnahmen wurde eine Simulation-
sumgebung aufgesetzt. Diese Umgebung beinhaltet einen Bodenbewegungsgenerator,
das Strahl-Tracking, die Strahl-Kollisionen sowie alle Gegenmaßnahmen. Die Sim-
ulationen zeigen, dass der Luminositätsverlust auf Grund von Bodenbewegungen ef-
fizient reduziert werden kann. Dank des L-FB Entwurfs konnten auch die Spezifika-
tionen für die Strahlpositionsmonitore signifikant gelockert werden. Die Robustheit
des L-FB wurde bezüglich vieler Imperfektionen getestet. Eine Sensitivität im Bezug
auf Strahlenergievariationen wurde festgestellt, welche durch Filterung von dispersiven
Strahlversätzen aus den Messdaten behoben wurde. Weitere Simulationen resultierten
in Richtlinien für den Neuentwurf des Quadrupol-Stabilisationssystems, welches zu einer
signifikanten Reduktion des Luminositätsverlustes führte.

Auf Grund der Wichtigkeit von präzisen Systemmodellen wurde ein speziell zuge-
schnittenes Systemidentifikationsschema entwickelt. Es ist in der Lage die Parameter des
Modells des Hauptbeschleunigers während des Betriebs an das aktuelle Beschleunigerver-
halten anzupassen. Durch eine Spezialisierung auf die wichtigsten Systemveränderungen
konnte im Vergleich zu Standardalgorithmen die Identifikationsgeschwindigkeit stark
erhöht werden. Die identifizierten Modellparameter können für Orbitregler, Systemdi-
agnose, Alignment-Algorithmen und Fehlererkennungstools verwendet werden.
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Abstract

The Compact Linear Collider (CLIC) is a future multi-TeV electron positron collider,
which is currently being designed at CERN. To achieve its ambitious goals, CLIC has to
produce particle beams of the highest quality, which makes the accelerator very sensitive
to ground motion. Four mitigation methods have been foreseen by the CLIC design group
to cope with the feasibility issue of ground motion. This thesis is concerned with the
design of one of these mitigation methods, named linac feedback (L-FB), but also with
the simultaneous simulation and validation of all mitigation methods. Additionally,
a technique to improve the quality of the indispensable system knowledge has been
developed.

The L-FB suppresses beam oscillations along the accelerator. Its design is based on
the decoupling of the overall accelerator system into independent channels. For each
channel an individual compensator is found with the help of a semi- automatic control
synthesis procedure. This technique allows the designer to incorporate expert knowledge,
which is used by an optimisation algorithm to minimise the luminosity loss due to
ground motion. This approach speeds up the design process significantly, while at the
same time improving the orbit feedback performance compared to standard methods.
Beside the L-FB, simple but effective designs for the interaction point feedback and
cost reduction options for the quadrupole stabilisation are presented. For the design
of all these feedback systems models of the ground motion influence on different beam
parameters such as beam offset, beam size and luminosity have been derived by adapting
and extending existent models.

To design, improve and validate the ground motion mitigation methods, a simulation
framework was set up, which includes a ground motion generator, beam tracking, beam-
beam interaction and all mitigation methods. The simulations show that the ground
motion mitigation methods can efficiently preserve the CLIC luminosity. Due to our
design of the L-FB, the specifications of the beam position monitor resolution could be
relaxed significantly. The robustness of the L-FB was also verified with respect to many
other imperfections. Only a certain sensitivity to beam energy variations was observed,
which could be resolved by filtering dispersive orbits from the measurements. Further
simulation results were an essential input for the redesign of the quadrupole stabilisation
system leading to a significant performance improvement of the system.

Due to the high importance of the system knowledge for many applications, a system
identification scheme was developed. It is capable of adapting the parameters of the
system model to changes of the main linac behaviour (orbit response matrix) on-line,
during the regular operation of the linac. By focusing only on the most significant sys-
tem changes, the identification speed could be improved strongly compared to standard
algorithms. The identified parameters of the orbit response matrix can be used to im-
prove the performance of beam-based alignment algorithms and orbit feedbacks and are
an important input for diagnosis and error detection tools.
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1. Introduction

1.1. The Compact Linear Collider

1.1.1. Physics motivation

A large number of particles from outer space bombard the atmosphere of our planet
every day. In the first half of the 20th century, scientists discovered several until then
unknown particles in the particle showers resulting from this bombardment. To study the
properties of the new particles in detail, physicists try to imitate the particle collisions in
the atmosphere with the help of particle accelerators. In these machines, charged particle
beams are accelerated to very high energies before they are collided in a controlled way.
The collisions points are surrounded by complex measurement devices called particle
detectors.

In beam collisions in accelerators, new particles are created, which are very rare on
our planet due to their instable nature. This apparent creation of new particles out
of nothing is against our common sense, but is possible in the sub-atomic world. The
mechanism can be explained by the theory of relativity and quantum field theories. In
quantum field theories certain conservation laws have to be fulfilled, e.g. energy conser-
vation. The number of the involved particles in a certain reaction does not have to be
preserved though. Therefore, new particles can be created with a certain probability, if
conservation laws are not violated. Also the mass of the involved particles can change.
This change of particle mass can be explained by the formula E = mc2 (special rela-
tivity), which states that mass is just another form of energy. At a particle collision,
kinetic energy from two colliding particles can therefore be transformed into mass. Only
the sum of all energies—including the energy in the form of mass—must be constant.
Physicists use this mechanism to search for unknown, heavy and rare particles. Obser-
vations of such particles validate or rule out proposed theories of theoretical physicists.
Not only the existence of the particles, but also their exact properties are important for
this validation process.

One of the particles, which is of current research interest, is the Higgs particle and
the corresponding Higgs field. The Higgs particle is the only particle of the Standard
Model of particle physics (SM) which has not been observed yet. For explanation,
the SM is a very powerful theory that describes three of the four known fundamental
forces: the electromagnetic force; the weak nuclear force, which is responsible for e.g.
radioactivity and the strong nuclear force, which holds the elements of nucleons together.
Only gravity is not included in this model. The SM consists of two families of particles:
ordinary elementary particles and force carrier particles. Forces acting between ordinary
particles are described by the exchange of force carrier particles.

The first version of the unification of the electromagnetic and the weak nuclear force,
the so called electro-weak force, predicted that all force carrier particles of the electro-
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1. Introduction

weak force should be massless. This is not the case in reality though. To correctly
predict the masses of these force carrier particles, spontaneous symmetry breaking and
the Higgs mechanism had to be included in the theory. In the extended theory, the mass
of the particles is interpreted as the strength of their interaction with the Higgs field.
This mechanism predicts also the existence of a Higgs particle. To validate the theory
of the Higgs mechanism, the discovery of the Higgs particle is indispensable. Recent
exciting results from CERN actually conform the existence of a ”Higgs-like” particle
with a rest mass of about 126 GeV, but further studies are necessary to measure the
detailed properties of this discovered particle.

Another topic of high interest in today’s physics is super-symmetry (SUSY). SUSY
is an extension of the SM. According to this theory, every particle in the SM has a
super-symmetric partner, which differs from its partner in the SM only by the spin
and the mass. Many theories beyond the standard model, e.g. string theories, use
the idea of super-symmetry. These theories aim to include also gravity into to the SM
and to unite the strong nuclear and the electro-weak force into one formalism. Super-
symmetric particles could also be of interest for a phenomenon called dark matter, which
is a proposed explanation of the fact that the motion of galaxies cannot be explained
by their mass distribution. Star clusters behave in a way that leads to the conclusion
that there should be approximately ten times as much mass in space as can be observed.
This missing mass is called dark matter and one candidate is matter consisting of super-
symmetric particles.

The validity of the Higgs mechanism, SUSY and other physical theories are tested at
the Large Hadron Collider (LHC), which is at the publishing date of this thesis the most
powerful particle accelerator. The LHC collides proton (p+) beams with a centre of mass
energy of 14 TeV (at the publishing date only 8 TeV). The creation of new particles does
not occur due to the interaction of the protons itself, but due to the interactions between
the fundamental particles forming the protons, which are quarks and gluons. While the
energy of the proton can be determined accurately, the energy of the constituting quarks
and gluons is a fluctuating stochastic process. Therefore, the collisions of the LHC have a
natural energy spread, which is desirable to find unknown particles (discovery machine).
However, to determine the detailed properties of the discovered particles accurately, the
large energy spread is counterproductive. A collider that collides elementary particles
would be preferable to perform such measurements (measurement machine). At the
moment there are two main proposals for such a measurement machine: the International
Linear Collider (ILC) (see RDR [90]) and the Compact Linear Collider (CLIC) (see
CDR [107] and Ellis and Wilson [38]). Since this thesis is only concerned with CLIC, we
will focus on this machine in the following. CLIC collides electrons (e−) and positrons
(e+) at a centre of mass energy of 3 TeV. In addition to the advantage of better defined
collision energy, the particle creation in e−e+-collisions shows different characteristics
from the collisions of quarks and gluons, which complements the LHC measurements.

There are many important measurements that could be performed at CLIC. In case
the Higgs particle exists, CLIC could reveal important additional information about it
(see Battaglia et al [11] and Adli [3]). The theory predicts that the Higgs is a spin-0 par-
ticle, which could be easily verified with CLIC measurements. Such a result could verify
that the newly found particle at the LHC is really the Higgs and not another particle
with similar properties. Also, the interaction strengths (coupling) of other particles to
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the Higgs could be measured with relatively high accuracy. In the easiest proposed vari-
ant of the Higgs mechanism, these interaction strengths are strictly proportional to the
mass of the particles. There are other variants proposed though and a precise knowledge
of the interaction strengths is important to find the theory that describes nature best.
The interaction of the Higgs particle with itself would give important new insights, by
allowing to determine the exact form of the Higgs field potential. Another major re-
search field for CLIC is SUSY (see Battaglia et al. [11] and Ellis [37]). Experiments
at CLIC could complete the spectrum of SUSY particles, which is not possible at the
LHC. The more accurate measurements of SUSY particle properties at CLIC are neces-
sary to understand which of the proposed SUSY theories describes nature best. Other
interesting fields of research for CLIC are less popular theories that provide alternative
explanations for the questions answered by Higgs mechanism and SUSY (see Battaglia
et al. [11]). Also effects of some theories including extra space dimensions could possibly
be observed (see also Battaglia et al. [11]) at CLIC.

1.1.2. Accelerator complex

CLIC is a linear collider, which is planned to be installed in a 50 km long tunnel about
100 m underground. The reason for the linear form is synchrotron radiation. If the tra-
jectory of charged particles is bent by a magnetic field, they radiate photons (synchrotron
radiation). The power radiated by an ultra-relativistic particle scales as P ∝ E4/R2/m4

0

(taken from Wille [136]), where E is the particle energy, R is the bending radius and m0

is the rest mass of the particle. Since the rest mass of an electron or a positron is orders
of magnitude smaller than the mass of a proton, the emitted synchrotron radiation is
much stronger for electrons and positrons, for equal particle energies. In the energy
regime of CLIC, electron- and positron-beams would lose too much energy when moving
in a ring of similar size to the LHC. The operation of such a ring collider would be too
inefficient and since also the circumference of the collider is limited by cost issues, CLIC
was chosen to be of linear structure.

The necessary linear form of CLIC implies several difficulties for the design. The ma-
jor difference from a ring is that an accelerated beam can only be used once, before it
is stopped by the so-called beam dumps. The beam energy is converted into heat and
is lost for collisions. This is very different at a ring collider, in which a beam—once it
is accelerated to its final energy—can be collided several million times. It is therefore
much easier for a ring collider to run efficiently than for a linear collider, which would
have an unacceptable energy consumption if it would run at the same high repetition
than a ring. To reduce the power consumption, CLIC has to adapt a different beam
structure as depicted in Fig. 1.1 (left). As can be seen, every 20 ms 312 beam bunches,
called beam train, collide during 156 ns. This means that in the majority of the time no
collisions occur. In order to run CLIC efficiently, the accelerator has to consume as little
power as possible during the beam-free period. To accomplish this, the power-consuming
acceleration fields are created in so called acceleration structures only during the very
short time of the beam passage. Conventional creation of these fields via klystrons would
be inefficient, since klystrons are optimised for continuous and not for pulsed operation.
Instead the so called two beam acceleration scheme is used, where an additional electron-
beam—the so called drive beam—is used to accelerate the main beam. The drive beam is
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Figure 1.1.: Longitudinal (left) and transversal (right) beam structure of CLIC. (left)
The CLIC beam is composed of approx. 0.3 ps long beam bunches (corresponds to
2σz = 90µm). With a spacing of 0.5 ns, 312 such bunches are combined to one beam
train (also called pulse). Consecutive trains are separated by 20 ms. (right) The trans-
verse beam profile at the IP is close to Gaussian in both direction, with a core beam
size σ∗x and σ∗y (fit of a Gaussian to the real beam). The beam was chosen to be flat,
to lower beamstrahlung. At the beam collisions the strong electromagnetic forces be-
tween the beams accelerates the particles transversely, which forces the particles to emit
synchrotron radiation (beamstrahlung). Beamstrahlung changes the energy spectrum of
the colliding beams in an unwanted way. To limit this degradation, the beam sizes are
chosen to be flat. This choice is beneficial, since the beamstrahlung is ∝ 1/(σ∗x + σ∗y),

while the luminosity is ∝ 1/(σ∗xσ
∗
y).

Figure 1.2.: CLIC complex. The upper part of the plot shows the drive beam complex.
It consists of particle sources, efficient acceleration of the bunches with klystrons and the
overlapping of the bunches with one delay loop and two combiner rings. The drive beam
is then transported to the power extraction units (in blue) to power the acceleration
structures of the main linac. The lower part of the plot shows the main beam complex.
Electrons and positrons are created in dedicated sources. After a pre-acceleration (in-
jector), the beam sizes are shrunk in the so-called damping and pre-damping rings to
the necessary size. The main linacs accelerate the electron and positron beams to their
final energy, before it is conditioned in the beam delivery system for the collision at the
interaction point.
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accelerated via klystrons with high efficiency, before it is shortened and intensified at the
same time, by overlapping the beam bunches several times in a delay loop (Schulte [110])
and two combiner rings (Corsini and Delahaye [28]). The shortened drive beam is then
transported (Adli [3]) to the power extraction units (PETs) (Syratchev [131]), which are
located beside the accelerating structures of the main linac. In the PETs the drive beam
is decelerated, which results in the creation of electromagnetic waves used to power the
accelerating structures shortly before the arrival of the main beam. The CLIC acceler-
ating structures (Grudiev and Wuensch [49]) are not super-conducting, since otherwise
the energy transfer between the PETs and the structures could not be carried out fast
enough. Another advantage of the normal-conducting structures is that the acceleration
gradients are not fundamentally limited as for super-conducting structures. CLIC can
therefore be built more compact (Compact Linear Collider). The achievable accelerat-
ing voltage gradient is limited by the appearance of field breakdowns, due to mechanical
fabrication tolerances and the heating of the structure by the accelerating fields. The
maximal allowable breakdown rate and the power consumption limit the necessary time
between beam trains.

As discussed, the beam collision rate is much lower at CLIC than at the LHC. To be
able to create enough particle collisions the beam collisions have to be more efficient than
at the LHC. To understand how this can be achieved, it is necessary to introduce the
associated quantity that is called luminosity L. The luminosity is direct proportional to
the collision rate and therefore, beside the collision energy, the most important parameter
of a particle collider. It scales as L ∝ N/σ∗x/σ∗y , where N is the number of particles in the
beam, σ∗x is the horizontal and σ∗y the vertical beam size (corresponds to the standard
deviation of a Gaussian curve fitted to the particle position histogram). The number of
particles in the beam is limited mainly by the electric fields induced by the beam in the
accelerating structures (called wake fields). Too strong wake fields would destroy the
beam quality during acceleration and therefore a higher number of particles can only
be used to a certain extent to increase the luminosity. Thus, the transversal beam sizes
σ∗x and σ∗y have to be lowered (see Fig. 1.1 (right)), to achieve the luminosity goal. The
most important design parameters of CLIC are summarised in Tab. 1.1.

The complete CLIC complex that is used to create the necessary beams is depicted
and explained in Fig. 1.2. A detailed explanation of all elements can be found in the
CDR [107] and in CLIC 2008 Parameters [15]. This work is concerned with the two
main linacs (Schulte [109]), in which the beams are accelerated to the collision energy
of 1.5 Tev per beam, the two beam delivery systems (BDSs) and the interaction point
(IP), both explained in Tomás et al. [132]. In the BDSs the beams are pre-conditioned
for the interactions at the IP. Particles that deviate too strongly from the nominal beam
position and energy are removed by so-called collimators. Additionally, the beams are
focused to the very small beam sizes at the IP in the so-called final focus systems.

The accelerator community has identified several especially challenging issues for the
design of CLIC. These so called feasibility issues are not only technological demanding,
but would also lead to an unacceptable performance reduction if the according specifi-
cations could not be met. The feasibility issues are grouped in the four categories

• two beam acceleration scheme,

• ultra-low emittances and beam sizes,
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Centre of mass energy E 3 TeV

Total/peak (1 %) luminosity L/L1 % 5.9/2.0 × 1034 cm−2 s−1

Hor./vert. beam size at IP σ∗x/y 40/1 nm

Hor./vert. norm. emittance at IP ε∗x/y 660/20 nm rad

Nr. of particles per bunch N 3.72 × 109

Repetition rate fR 50 Hz

Nr. bunches per beam train Nb 312

Bunch interval ∆b 0.5 ns

RF gradient Ea 100 MV/m

Total power consumption Ptotal 560 MW

Table 1.1.: Most important design parameters of CLIC. Parameters in the table that
have not already been explained are introduced in App. A.

• operation and machine protection system and

• detector.

In this thesis, essential contributions to the feasibility issues of ultra-low emittances and
beam sizes will be presented. The focus will be on the mitigation of ground motion
effects, which are introduced in the next section. For an overview of the current status
of the CLIC project and the future plans, please refer to Stapnes and Schulte [126].

1.2. Feasibility issues due to ground motion

Ground motion is a severe problem for CLIC. The movement of the tunnel floor dis-
places accelerator elements from their initial position, which causes performance reduc-
tion. Without countermeasures, ground motion would degrade the luminosity to an
unacceptable level even on a train-to-train basis. In this section we illustrate the basic
principles of performance degradation due to ground motion. These principles will be
quantified in Chap. 2, where detailed models of ground motion and its effect on beam
parameters are given. The reader is assumed to be familiar with the most basic terms
of beam physics, which are covered briefly in App. A.

The luminosity is lowered by ground motion in two ways: IP beam size growth ∆σ∗

and beam-beam offset δ (see Fig. 1.3). To relate these quantities to the luminosity loss, δ
and ∆σ∗ have to be normalised to the IP nominal beam size σ∗. The σ∗ of CLIC is only
1 nm in vertical and 40 nm in the horizontal direction and thus small compared to other
machines. At the LHC e.g., the design value of σ∗y is 16.7µm and hence more than four
orders of magnitude larger than at CLIC. The most powerful linear electron-positron
collider which has ever been in operation—the SLC—reached a σ∗y of 0.55µm and even
the competitor of CLIC, the ILC, only aims for a σ∗y of 5.7 nm. Thus, already small δ
and ∆σ∗—which are negligible for other accelerators—cause significant luminosity loss
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1.2. Feasibility issues due to ground motion

Figure 1.3.: The luminosity is degraded by two effects: the beam-beam offset δ (left)
and the growth of the IP beam size ∆σ∗ (right).

for CLIC. Additionally, the preservation of the beam quality along the main linac is
especially difficult for CLIC. To quantify the beam quality the term emittance is usually
used instead of the beam size. The reason for this is that the beam size depends also
on the strength of the magnets focusing the beam. For example, even a beam with very
good quality (emittance) can be relatively large if the focusing magnets are weak. By
using the term emittance the effects of the beam quality and the magnet system are
separated. Coming back, the reason for the difficulty of emittance preservation in the
main linac is the large energy spread of the beam in the main linac. This large energy
spread (energy deviation of the individual particles from the average beam energy, see
App. A.3) is necessary for a technique called BNS damping (see Balakin, Novpkhatsky
and Smirnov [7]), which ensures that the beam quality is not destroyed by the strong
wake fields in the accelerating structures. However, in the case of ground motion the
high energy spread is counter-productive, due to the effect of filamentation, which will
be explained in a moment.

CLIC is most sensitive to the displacement of quadrupole magnets. Simulations in
Schulte and Tomás [114] show that the tolerance for 1% luminosity loss for a random
(Gaussian) displacement of the quadrupoles in the main linac is as small as 1.8 nm.
The tolerance for 1% luminosity loss for the position of the two last magnets of the
BDS is even only 0.1 nm (see Schulte [112]). To illustrate the scale of the problem: the
covalent radius of a sulphur atom is 0.104 nm. Even at sites with low ground motion, the
differential motion exceed these limits rapidly. However, the estimates above are made
for uncorrelated motion of the quadrupoles. In reality the ground motion source that
causes the strongest excitation in the frequency range of interest is strongly spatially
correlated over large distances. Such spatially smooth misalignments, even though with
high amplitudes, are not as harmful for the beam as random misalignments. On the
other hand, ground motion with a wavelength close to the natural beam oscillation
frequency of the lattice (betatron wave length) is most harmful for the beam, since the
excitation acts in a resonant manner. For such resonant excitations, the misalignment
tolerances are much smaller than for uncorrelated excitation. Note that since the form
of the misalignment matters, ground motion effects have not only a temporal, but also a
spatial dependence. This fact will be fruitfully deploited by the ground motion mitigation
methods developed in this thesis.

The main mechanisms by which ground motion creates beam-beam offset δ and beam
size growth ∆σ are the following. If a quadrupole is misaligned, the nominal beam
passes through it with an offset ∆y. Due to this offset, the beam is not only exposed
to the usual quadrupole field, but also to a dipole field, which exerts an additional kick
on the beam. The kick deflects the beam transversally, which causes so called betatron
oscillations (see Fig. 1.4 (left)). These betatron oscillations propagate to the IP and
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Figure 1.4.: Luminosity degradation via ground motion. (left) Misaligned quadrupoles
(blue lenses) apply transverse kicks to the beam, which results in (betatron) oscillations
along the beam line. The amplitude of such oscillations is proportional to the kick
strength ∆y′ = −∆y/f , where f is the focal length of the quadrupole. The form
(relative amplitude and phase) of the oscillation is determined by the beam line design.
(right) Due to a quadrupole kick from a quadrupole (blue lens), a beam modelled by
three particles with the energies E1, E2 and E3 starts to oscillate. The particles are
initially in phase, but become increasingly non-coherent over time, due to the energy
difference. The beam emittance grows.

cause the beam-beam offset δ. While travelling to the IP the oscillations also lower the
beam quality via an effect called filamentation, which leads to an emittance increase and
consequently to a beam size growth at the IP ∆σ∗y .

To understand filamentation we have to distinguish between beam and particle mo-
tion. The beam motion is the movement of the average position of the particles forming
the beam. Therefore, even if a beam is on its nominal trajectory, the individual parti-
cles still oscillate with random phases. The form of these so called betatron oscillations
depends on the accelerator design, which can be characterised by the beta function β(s)
(∝ to the square of the oscillation amplitude) and the phase advance φ(s) (see e.g.
Wiedemann [135]). But β(s) and φ(s) also depend on the particle energy. This can
be easily understood by the fact that the same magnets bend a particle with higher
energy less than a particle with lower energy. If a beam experiences a kick by a mis-
aligned quadrupole, a second motion is superimposed to each particle, additionally to
the betatron motion. Contrary to the betatron motion the particle motion due to the
kick has the same phase for all particles. Thus, the beam oscillates as a whole. Due
to the natural energy spread of the particles in a beam, particles with higher energies
oscillate slower than the ones with lower energies. The motion of the particles becomes
increasingly non-coherent over time (see Fig. 1.4 (right)). The projected emittance of
the beam grows, while the beam oscillations are damped at the same time. Since the
energy spread is larger in the main linac than in the BDS, the filamentation effect is
more severe in the former one. In Sec. 5.3 the effect of filamentation will be dealt with
in a more quantitative way. An amplitude model for the beam oscillations in the main
linac with filamentation will be derived (also published in Pfingstner et al. [84]).

Beside the effects of beam oscillations and filamentation, ground motion also results
in secondary effects on the luminosity. These effects occur mainly in the last section
of the BDS, the final focus system (FF). In the FF especially strong quadrupoles and
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nonlinear sextupole magnets are used to focus the beam to the needed spot size at the
IP. Misalignments of these elements lead to dispersion (dependence of the transversal
particle position on the energy), waist shifts (longitudinal shifts of the focal point at the
IP), uncorrected geometric aberrations (see Zimmermann [138]) and coupling between
the horizontal and the vertical plane. These effects lead to a beam size growth at the IP.
Since the mentioned dispersion effect will be taken into account for the feedback design
in this thesis, a model of the beam size growth due to dispersion will be developed in
Sec. 2.3.2.

It should also be mentioned that the misalignment of magnets is not only caused
by ground motion. Also other vibrations, not transmitted via the ground, play a role.
Examples for these disturbances are the cooling water in magnets, air flow of the tunnel
cooling system, thermal drifts and sound waves. There is some work done on these
topics, but the knowledge about ground motion is further advanced, since vibration
transmission through the floor is considered the more severe problem. In this work only
ground motion is considered.

1.3. Luminosity preservation

The problems arising from misaligned accelerator elements are counteracted at CLIC
with the help of several mitigation methods. These methods can be divided by the
misalignment type they are intended to cure: static, dynamic and long-term alignment.
The focus of this thesis will be the dynamic alignment methods.

1.3.1. Static alignment

When an accelerator is constructed, the individual components are mounted on girders
and are pre-aligned mechanically to a precision of about 0.1 mm. This tolerance is not
sufficient for the needs of CLIC and has to be improved by active pre-alignment and
beam-based alignment methods.

At the active pre-alignment procedure, the girders, on which the accelerator compo-
nents are mounted, are aligned according to a reference system. At the current baseline,
this reference system consists of a network of 200 m long stretched wires (see Touzé [133]).
As an alternative, studies of laser reference system (LAMBDA project) have been started
(see Lackner et al. [66]). The girders are equipped with sensors that can measure the
distance from the wire to the girder. These measurements are used to re-align the girders
and the quadrupoles, which are separately supported. For the girder re-alignment three
degrees of freedom linear actuators are used, while for the quadrupoles five degree of
freedom cam movers (positioning system based on the rotation of eccentric shafts) have
been designed. The movers have to be designed as stiff as possible in order to not amplify
ground motion via excitation of mechanical resonances of the system. When calculating
the overall achievable alignment tolerance, also the alignment tolerances of the elements
with respect to the girder reference system (fiducialisation) and the interconnection of
the girders have to be taken into account. Considering these parameters the quadrupoles
are assumed to be aligned better than to a standard deviation of 17µm. Over longer
distances the misalignment tolerances (with respect to a straight line) are much larger,
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but these smooth misalignments are not that harmful to the beam as the ones with less
correlation.

Even though the capability of aligning massive objects as girders and quadrupoles to
a precision of 17µm is impressive, it is still not sufficient for CLIC. A set of additional
beam-based alignment methods has to be applied. These methods differ in some aspects
between the main linac and the BDS. For the main linac, the beam-based alignment is a
mature procedure and the following explanations, therefore, mainly refer to them. But
also for the beam-based alignment and the luminosity tuning of the BDS, significant
improvements have been achieved recently (see Latina and Raimondi [68] and Dalena et
al. [29]).

When a beam travels the first time through the pre-aligned accelerator the still mis-
aligned quadrupoles cause the beam to oscillate strongly. This causes a large emittance
growth due to filamentation. To resolve this problem, the beam oscillations are mea-
sured with beam positioning monitors (BPMs), which are mounted to the quadrupoles.
The position of each quadrupole is now varied one after the other, such that the beam
is centred in the down-stream BPM. When this procedure—called 1-to-1 steering—is
finished, the emittance growth is strongly decreased, and the beam is centred in all
BPMs. As an alternative to vary each quadrupole separately, the accelerator can also
be subdivided into sections, in which the BPM readings are minimised simultaneously
by solving a system of equations (few-to-few steering).

Even though the passing beam is now centred in all BPMs, there remains the prob-
lem that the BPMs are not perfectly aligned to the magnetic centres of the according
quadrupoles. To reduce the remaining dipole kicks a sophisticated technique called
dispersion free steering (DFS) is used (see Raubenheimer and Ruth [99]). The basic
principle is the following. If a beam passes exactly through the centre of a quadrupole
it experiences no dipole kick and therefore no deflection. Therefore, an energy variation
of the beam does not change its trajectory through the down-stream BPMs. If on the
other hand a beam is offset in a quadrupole, the down-stream motion will be dependent
on the beam energy, since a beam with high energy will be less deflected by the same
kick as one with lower energy. This fact can now be exploited. By probing the accel-
erator with two beams of different energy, the according BPM readings can be used to
find quadrupole positions for which the difference of the BPM reading of beams with
different energies is minimised. The quadrupole kicks are strongly reduced and there-
fore also the emittance growth. Beside DFS there are other similar alignment methods
proposed, such as ballistic alignment and kick minimisation. An overview is given in
Raubenheimer and Tenenbaum [100].

Since the misalignments after the pre-alignment are relatively large, not only offsets
of quadrupoles but also accelerating structure offsets matter. A beam that passes with
an offset through a structure induces wake fields, which increase the emittance. To
cope with this problem, a so called wake field monitor is installed in every structure
to measure the beam offset. The wake field kick of the structures of each individual
girder is minimised on average, by moving the average position of the structures onto
the beam trajectory. Only the average kick is minimised, since the structures of one
girder can only be moved together. To remove remaining wake field kicks so called
emittance bumps can be used (see Eliasson [36]). Dedicated structures are moved by
an optimisation algorithm such that the beam size at the end of the linac is minimised.
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Figure 1.5.: Overview of the ground motion mitigation methods of CLIC. While the
quadrupole stabilisation is a local method, the linac feedback (L-FB) acts globally. The
pre-isolator (mass-spring-damper system) stabilises the last two quadrupoles of the BDS
called QF1 and QD0. Additionally, the interaction point feedback (IP-FB) and the intra-
train feedback (IT-FB) reduce the beam-beam offset δ.

Such emittance bumps can also be deployed to compensate dispersion. At the moment
the emittance bumps are not in the baseline design of CLIC and are kept as a reserve.

1.3.2. Dynamic alignment

After the accelerator is statically aligned, a second misalignment problem arises. Ground
motion misaligns the statically aligned accelerator components gradually, which causes
luminosity decrease. This decrease is caused by beam-beam offset due to beam oscil-
lations and beam size growth mainly caused by filamentation but also by dispersive
effects. Four dynamic alignment methods—plus one, which is kept as a reserve—are
used at CLIC to cure these effects. These methods are intended to keep the luminosity
loss for several minutes within the assigned budget. After about 20 minutes also sec-
ondary effects start to become important, which are mitigated with dedicated long-term
methods (see Sec. 1.3.3). An overview of the dynamic mitigation methods is given in
Fig. 1.5. The individual systems are explained in detail in this section.

1.3.2.1. Linac feedback

The linac feedback (L-FB) is intended to control the beam orbit all along the main linac
and BDS of CLIC. The reader should not be confused by the name, which could be
interpreted as a feedback system only for the main linac. There are two independent
L-FBs used, one for the electron and one for the positron part of CLIC. The primary task
within the orbit control problem is to suppress beam oscillations caused by quadrupoles,
which are displaced by ground motion or other disturbances. As explained in more detail
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in Sec. 1.2, these oscillations cause a growth of the beam emittance and can also lead to
beam-beam offsets at the interaction point (IP).

In order to counteract these effects, the beam oscillations are measured with beam
position monitors (BPMs), which are distributed along the beam line. Note that only
the average position of each train is measured and therefore the L-FB only acts on a
train-to-train basis. The BPM measurements are used by a control algorithm to calculate
corrector actuations that aim to steer the next beam train onto the target orbit. The
target orbit can either be the centre of the BPMs, or some other orbit in case of an
intended offset. At CLIC the target orbit in the vertical direction is the centre of the
BPMs, while in the horizontal direction the target orbit is non-zero in the BDS. Note
that by changing the reference orbit, beam bumps can be created.

The BPMs have in the current baseline an accuracy of 5µm and a resolution of 50 nm
in main linac and BDS. Especially the resolution is a demanding requirement considering
the high number of devices: 2009 in each of the main linacs, 113 in each of the BDSs,
which makes all together 4244 BPMs. Each device measures in vertical and horizontal
direction. For sake of completeness, we want to mention that the type of BPM in the
current baseline choice is a so called resonant cavity BPM, and a choke-mode cavity
BPM is in discussion as an alternative.

Also the 2104 actuators per beam line are designed to correct the beam oscillations in
vertical and horizontal direction. There are two possible actuator choices. The first one
is based on the transversal displacement of quadrupoles. Such a displaced quadrupole
acts on the beam as the original quadrupole plus a dipole. The strength of the dipole
kick is proportional to the strength of the quadrupole and the amount of displacement.
For the displacement of the quadrupoles the stabilisation system (see Sec. 1.3.2.4) would
be used. Additionally to the main task of stabilising the quadrupoles, the stabilisation
system would also take over the task of a positioning system. In the current design,
the positioning resolution has to be in the order of 0.25 nm in the BDS and 0.5 nm in
the main linac. These tolerances would keep the luminosity decrease below 1 %. The
second actuator option is the use of dipole corrector magnets, which are embedded into
the quadrupoles. The advantage of this option is that the task of stabilisation and
positioning can be split up and the demands on the stabilisation system are relaxed. On
the other hand the cost increases, since the stabilisation system will still have to be put
in place as well.

The control algorithm, connecting the sensor readings and the actuators, has to take
into account the special nature of the accelerator system. A first characteristic is the huge
dimension of the control problem with 2122 sensors and 2104 actuators. Simplifications
in the control algorithm structure are advisable. The next characteristic is that the
system is an intrinsically discrete one. The beam trains of CLIC are separated by 20 ms.
This sampling rate limits the maximal resolvable frequency, due to the sampling theorem,
to 25 Hz. Due to principle limitations of feedback control (see App. C.2.2 and C.2.3), the
L-FB is thus only capable of suppressing ground motion effects below about 1 to 4 Hz.
Higher frequencies will be amplified. Finally, the L-FB design has to take into account
the spectrum of ground motion and imperfections, corrector dynamics and robustness
issues. Especially the suppression of BPM noise will turn out to be a difficult task. The
design of the L-FB is one of the main achievements of this thesis (see Chap. 3).

An open issue, which is not sufficiently dealt with up to now, is the communication
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Figure 1.7.: Structure of the IT-FB taken
from Resta-Lopez, Burrows and Chris-
tian [103]. The bunches travel from the
kicker to the IP, receive a deflection due
to beam-beam offsets, which can be mea-
sured in the post-collision BPM. This off-
set is corrected by a control algorithm for
the following bunches. For speed reasons
the FB algorithm has to be kept simple.

network needed for the L-FB. In each time step, all BPM readings have to be transmitted
to a central computer, where the control algorithm calculates actuations, which have to
be transmitted to the actuators. This all has to happen in real time within 20 ms. The
difficulty of this task becomes obvious, when this delay time is compared with the one
of the state-of-the-art system of the LHC, which is 100 ms (see Steinhagen [129]).

1.3.2.2. IP feedback

When the electron and positron beams collide at the IP, the electro-magnetic fields of
the beams influence each other. As a result the beams are deflected, if they are not
exactly centred with respect to each other. The deflection angle is a function of the
relative beam-beam offset δ/σ∗ as can be seen in Fig. 1.6. As the beams move away
from the collision point, the received beam-beam kick results in transversal offsets of
the beams from their nominal trajectories. This offset can be measured with a BPM
3 m down-stream of the IP in the post-collision line. This BPM signal can be used to
calculate the according beam-beam offset δ, by using the beam deflection curve or its
linear approximations in Fig. 1.6.

Since δ is a very important quantity for the luminosity performance a dedicated feed-
back system—the so called interaction point feedback (IP-FB)—has been put in place to
reduce the beam-beam offset. The post-collision line BPM measurement is used in the
first step to calculate the according beam-beam offset. This signal is the input for a lin-
ear, single-input, single-output control algorithm, which calculates actuator setting for
a kicker magnet. The actuator settings are transmitted to two dipole corrector magnets,
which are located 3 m in front of the IP on the electron and positron side respectively.
Each of the two kickers applies half of the necessary kick to steer the next beam trains
onto each other.
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1. Introduction

Similar as the L-FB, the IP-FB only works on a train to train basis. Therefore, also the
IP-FB can only reduce δ for frequency components below 1 to 4 Hz. Higher frequencies
are amplified by the controller. In contrast to the main linac BPM readings the beam-
beam offset data of the IP-FB have a very low noise level of only 10-20 pm for the beam-
beam offset, depending on the final BPM choice and the range of beam-beam offset.
This extremely high resolution can be reached, because the beam can build up a large
transverse offset as it travels the 3 m to the post-collision line BPM. Due to the higher
quality of the sensor signal, the direct measurement of the relevant quantity δ and the
much smaller system dimension (one input and one output) the IP-FB can be stronger
optimised than the L-FB. A collaboration of the institutes SYMME and LAPP from
the Université de Savoie designs the IP-FB with the support of CERN (see Caron, Balik
and Brunetti [20], Balik et al. [8] and. [9]). In Sec. 3.4 a less optimised, but still efficient
design is presented, which is very useful if fast changes are necessary. Both designs
handle the L-FB and the IP-FB as independent systems, which is a simplification. In
reality also the L-FB will influence the beam-beam offset. Since the two feedback systems
do not exchange any data, their effective disturbance rejection frequency responses are
multiplied.

1.3.2.3. Intra-train feedback

The intra-train feedback (IT-FB) is very similar to the IP-FB. It has the same struc-
ture and task as the IP-FB and uses also the same sensor. As an actuator a different
kicker has to be used, which addresses the higher dynamic requirements and the lower
necessary actuation range. The IT-FB uses very fast electronics for the BPM readout,
the controller hardware and the kicker amplifiers. Therefore, it can act within a bunch
train of only 156 ns. The structure of the system is depicted in Fig. 1.7. The delay time
of the current IT-FB is only 37 ns, from which 20 ns are already due to the beam travel
time from the kicker to the IP and further to the BPM. To save time only one kicker is
used contrary to the IP-FB.

The IT-FB described above was first designed for the ILC. Due to the large bunch
separation of 369 ns at ILC (compared to the 5 ns of CLIC), the IT-FB is very efficient.
Hence, the IP-FB is the essential methods for ground motion mitigation at the ILC. The
design envolved from the three analogue control circuits FONT1, FONT2 and FONT3
(see Burrows et al. [19]) to the current baseline FONT4, which uses digital electronics.
Since CLIC has higher demands on the speed of the electronics, FONT3 (see Burrows
et al. [18]) is used, since it is an analogue and therefore fast system. Still, the system is
less effective than at the ILC, since the feedback algorithm can only update the kicker
settings five times during one beam train. Nevertheless, simulations in Resta-Lopez,
Burrows and Christian [103] show that the tolerances for the offsets of the final doublet
magnets can be relaxed by a factor of two. The IT-FB is kept as a reserve in the current
baseline design of CLIC.

1.3.2.4. Stabilisation system

The L-FB suppresses ground motion effects below 1 to 4 Hz efficiently. Even though the
ground motion spectrum drops quickly for higher frequencies, the remaining frequency
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1.3. Luminosity preservation

components up to 85 Hz decrease the luminosity too strongly to be neglected. These
higher frequency disturbances result mainly in beam-beam offset, but also in emittance
growth. A quadrupole stabilisation system has been designed to address the problem.
The idea of this system is to stabilise the quadrupoles of the main linac and BDS me-
chanically, without considering the particle beam. It is assumed that if the quadrupoles
are kept stable, also the beam receives no dipole kicks. There are attempts to verify this
assumption by measurements (Gasior et al. [45]). Each quadrupole of the main linac
and BDS (apart from the two final doublet quadrupoles; see pre-isolator part of this
section) is equipped with such a system. All stabilisation systems work independent of
each other.

The passive and active damping of mechanical vibrations—vibration control—is a well
studied problem (Preumont and Seto [94]). There are numerous applications in industry
and science as semiconductor lithography, nanotechnology, interferometry, large-scale
telescopes and gravitational wave detectors. The vibration control specifications for ac-
celerators, differ from all applications above. Since no solution could be adopted directly,
the linear accelerator community started activities two decades ago. In 1996, Mon-
tag [75] built a stabilisation system, which was installed at the Deutsches Elektronen-
Synchrotron (DESY). He could show a quadrupole stabilisation to the level of an inte-
grated root mean square (IRMS, for a definition see Eq. (2.8)) of 25 nm for frequencies
above 2 Hz, even in very noisy environment. In 2004, Redaelli [101] used a commer-
cially available stabilisation system (Statics2000 by TMC) to show a quadrupole motion
reduction to 1 nm above 2 Hz. The current baseline system of CLIC has been entirely
designed and built at CERN (see Collette et al. [24]). A vibrations reduction to a level
of 0.8 nm above 2 Hz was reported in Collette et al [26].

The CERN stabilisation system uses a seismometer from Guralp Systems to measure
the quadrupole vibrations in the frequency range from 0.03 to 150 Hz. These measure-
ments are used by a controller that is based on the decoupling of the different inputs
and outputs (decoupling controller). The individual controller for the decoupled chan-
nels integrate the sensor data and contain a high pass filter to cut away slow drifts.
Additionally, lead elements are used to improve the controller stability. The actuator
used, is a complex positioning system called tripod (see Fig. 1.8 (left)), which is also
used by the L-FB as an actuator.

A full mock-up of of the stabilisation system with quadrupole is not yet available.
However, experiments on a scaled-down version (only two legs) confirmed the validity of
the theoretical frequency responses in Fig. 1.8 (right). Simulations presented in this the-
sis showed in which way the baseline frequency response (version 1) could be improved.
As a result the stabilisation group proposed the optimised frequency response (version 2,
blue) (see Sec. 4.1 and Janssens et al. [59]). The main difference of the designs is that
version 1 uses a seismometer and version 2 a geophone as sensor. An introduction to the
principles and differences of seismometers and geophones is given in Collette et al. [27].

1.3.2.5. Pre-isolator

The beam-beam offset is most sensitive to offsets of the last two quadrupoles before the
IP called QF1 and QD0, which form the final doublet (FD). Even the stabilisation system
version 1 cannot sufficiently mitigate the ground motion components above 1 Hz. The
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Figure 1.8.: (left) The tripod is similar to a Steward platform, and consists of a set of
legs, which support the quadrupole. The length of the legs can be adapted via piezo-
electric actuators from PI Physics Instruments. The quadrupole can be moved in six
degrees of freedom. Picture courtesy of Artoos. (right) Absolute value of the frequency
responses of the pre-isolator (black), the quadrupole stabilisation version 1 with the
CMG-6T seismometer of Guralp (red) and the quadrupole stabilisation version 2 with
a proposed geophone sensor (blue).

solution proposed by Gaddi [43] is a huge mass-spring-damper system, called pre-isolator.
It consists of a concrete block with a weight of 110 tons supported by 10 pneumatic
vibration isolators (see Fig. 1.9). The FD elements are placed on top of the concrete
block. The pre-isolator acts as a very effective low pass filter (see Fig. 1.8 (right)) between
the ground motion and the FD. The frequency response plotted corresponds to a point-
like model of the pre-isolator. In Sec. 2.3.1 a more detailed model will be presented,
in which also the tilt mode of the pre-isolator and its effect on the beam-beam offset is
considered. Due to its large dimensions, the pre-isolator combines the advantages of a
low cut-off frequency and robustness against disturbances acting directly in the concrete
block (in contrast to ground motion, which acts on the pneumatic vibration isolators).

1.3.3. Long-term alignment

The luminosity loss ∆Ltotal caused by ground motion that remains after dynamic align-
ment methods are applied can be split up into the three parts

∆Ltotal = ∆Luncorr + ∆Lnoise + ∆Lresidual. (1.1)

The component ∆Luncorr corresponds to luminosity loss, which could in principle be
cured by the dynamic alignment. The reasons for the sup-optimal operation of the dy-
namic alignment methods are general limitations of feedback control (stability issues,
sampling time limitation) and practical limitations (sensor and actuator performance).
The second component ∆Lnoise is due to the sensor noise that is introduced into the sys-
tem by the feedbacks. The last component ∆Lresidual originates from effects that can in
principle not be cured by the dynamic alignment. Even if the dynamic alignment would
manage to steer the beams into the centre of the BPMs and exactly onto each other,
there would be a residual luminosity loss. This loss is due to long-term misalignments,
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1.4. Outline

Figure 1.9.: Integration of the pre-isolator system (green) at the end of the CLIC tunnel
just in front of the detector (muon chamber in red). While the quadrupole QF1 is still
fully in the tunnel, the last quadrupole QD0 reaches into the detector. Picture courtesy
of F. Ramos.

which are similar to the static misalignments. To cure these long-term misalignments,
long-term alignment methods are foreseen. The major difference between long-term
alignment methods and static alignment methods is that the long-term alignment has to
work on-line (while nominal accelerator operation), which complicates the task. On the
other hand long-term alignment methods can start already from a properly statically
aligned machine and have to cure the slow deviation from this setup.

The work on the long-term alignment has just begun. First results are shown in
Fig. 1.10 and are published in CDR [107]. The plot shows that the main luminosity lost
after one hour is due to misalignments of the sextupole magnets of the final focus system.
Over longer time scales also other effects are assumed to matter. As an example, the
misalignments of the BPMs in the main linac lead to a change of the reference orbit
with respect to the one found by dispersion free steering. This results in dipole kicks
from the quadrupoles and ultimately to an emittance growth.

1.4. Outline

This thesis is about the design and validation of methods for the dynamic alignment of
the main linac, BDS and IP of CLIC. The work is split up into three parts. In Chap. 2,
models of ground motion and models of beam parameter variation due to ground motion
are presented. Some beam physics basics, necessary to understand the material of this
chapter, are given in App. A. Since all of the presented models are simplifications, the
final system performance has to be verified with the help of full-scale simulations. For
this task a simulation framework was set up, which is also explained in Chap. 2 and
App. B.

Utilising the models from Chap. 2, the linac feedback is designed in Chap. 3. Different
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motion effects. The simulation results are obtained by misaligning CLIC with ATL
motion corresponding to the time axis of the plot. The dynamic mitigation methods
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bars are plotted in blue. The relative luminosity does not start at 1 since a luminosity
budget is assigned for the task of ground motion mitigation. If in addition to the dynamic
alignment luminosity tuning bumps—which move the sextupoles of the FF—are used,
all of the luminosity can recovered. Picture courtesy of B. Dalena and J. Snuverink.

feedback structures are compared to find the most appropriate one. After the feedback
structure has been defined, the free parameters of the linac controller are calculated
with a model-based approach. Two smaller studies are also presented in Chap. 3, which
impact not only the linac feedback, but also the stabilisation system and the IP feedback
system. Firstly, cost reduction options for the stabilisation system are investigated.
Secondly, an alternative, simpler IP feedback is proposed, which is especially useful
whenever fast changes of the control algorithm are necessary. For people not familiar
with techniques from control engineering, supporting material is given in App. C. In
Chap. 4 the simulation framework from Chap. 2 is used to validate the linac and IP
feedback designed in Chap. 4. Studies about imperfections and robustness are also
included.

Since the behaviour of the main linac may change significantly, mainly due to vari-
ations of the voltage gradients in the acceleration structures, a system identification
algorithm is designed in Chap. 5. The classical recursive least squares algorithm is
adapted to the accelerator environment of CLIC. For this reason, the algorithm has to
be supported with a derived amplitude model of the main linac, which takes into account
the effect of filamentation. The resulting system estimates are an important input for
a variety of applications as e.g. the L-FB, beam-based alignment and diagnostics and
error detection tools.

18



2. Modelling and simulation of ground
motion effects

This chapter is concerned with the modelling the effects of ground motion on beam
parameters of a linear accelerator. In Sec. 2.1, relevant knowledge about ground motion
is reviewed. Based on this material, Sec. 2.2 and 2.3 show how ground motion models
can be used to predict the impact on the luminosity and the beam orbit. While Sec. 2.2
deals with models for the main linac and the BDS, Sec. 2.3 covers effects specific for
the final doublet. Methods from literature will be reviewed, adapted and extended to
create models of the beam parameter variation used for the controller design in Chap. 3
of this thesis. Finally, in Sec. 2.4 a developed full-scale simulation framework will be
presented that allows to investigate many different ground motion related effects in an
integrated fashion. With this framework also the performance of different ground motion
mitigation methods can be studied.

2.1. Ground motion

In this section, fundamental information about ground motion (relevant for accelerator
science) are presented. Since ground motion is not fully predictable, it has to be described
mathematically as a stochastic process. Methods to quantify the properties of such
stochastic processes are reviewed in Sec. 2.1.1. With the help of these tools, commonly
used ground motion models can be introduced in Sec. 2.1.2. The two main models
presented are the ATL law and models based on power spectral densities (PSDs). Also,
numerical procedures to create realistic ground motion data for simulations are described
in this section.

2.1.1. Basics of stochastic processes

The topic of stochastic processes (STP) is rich on theory and applications. Since the
subject fills libraries, it is clear that only a brief overview of selected topics can be given
here. The focus will be put on the methods used in this work, especially the power
spectral density function (PSD) and sensitivity functions. The material presented in
this section originates from Papoulis and Pillai [80], Preumont [93], Chao [21] and Sery
and Napoly [118]. The reader is assumed to be familiar with basic terms of probability
theory (see Papoulis and Pillai [80]), the continuous Fourier transform (see Pinsky [92])
and the discrete Fourier transform (see Oppenheim, Schafer and Buck [78]).

Before defining an STP mathematically, we want to introduce the concept with the
help of an example. Due to the thermal motion of electrons in a resistor, a noise voltage
u(t) can be measured. This resistor voltage is an STP, since the outcome of the measure-
ment is not predictable. Knowledge about the properties of this STP is an important
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2. Modelling and simulation of ground motion effects

information, e.g., for the design of measurement devices.
It is necessary to quantify this intuitive introduction mathematically. The mathe-

matical concept of an STP is very similar to the one of a random variable (RV) from
probability theory. An RV maps every outcome of a random experiment ω ∈ Ω onto R
or a subset of it, where Ω is the set of all possible outcomes. To illustrate this concept,
the throw of a die is one outcome ω of all possible throws Ω. The RV in this example is
the assignment of the number of spots the dice shows, to the event. Contrary to an RV,
an STP X(t) maps the outcome of the random experiment ω not onto a real number,
but onto a real-valued, time-dependent function x(t). Additionally, for an arbitrary time
t = t1, X(t1) is an RV. Hence, an STP is an RV at every time step, and therefore an
generalisation of an RV.

There are many STPs in nature that have a high relevance for science and engineering.
Common examples, apart from electronics noise, are wind, ground motion (including
earth quakes), temperature, and water waves exciting the motion of buildings, bridges,
ships or oil platforms. A very important continuous STP, from a practical as well as a
mathematical point of view, is the so-called Wiener process (also known as Brownian
motion). Its behaviour can be easier explained by its time-discrete version, called random
walk. A random walk is an STP that is created by adding a random number from a
Gaussian distribution with zero mean to the current value x[k] to create the value at the
next time step x[k + 1]. One of the two main ground motion models used in this work
(ATL law, see Sec. 2.1.2) is such a random walk in time and space.

The Wiener process can be generalized to a class of STPs called Lévi processes also
known as processes with stationary independent increments (SII). In SII processes, not
only Gaussian random numbers with zero mean can be integrated to create an STP, but
also differently distributed random processes (e.g. Poisson process). For completeness
it should be mentioned that the Lévi process is a subclass of the more general Markov
processes. Markov processes (of first-order) have the Markovian property, which is that
the future value x[k + 1] is only dependent on the actual value x[k]. Using also values
from earlier time steps does not add any new information.

2.1.1.1. Characterisation of one-dimensional stochastic processes

Using the fact that an STP is at each time step an RV, it can be fully described by
the properties of the set of its RV. Therefore, a time-dependent first-order probability
density function (PDF) can be defined as

f(α, t) =
∂F (α, t)

∂α
with F (α, t) = P (X(t) < α), (2.1)

where F (α, t) is called the cumulative distribution function (CDF) and P (.) stands for
the probability of a certain event. The first-order PDF f(α, t) characterises the STP at
each time. To characterise also the relationship between different RV of the STP, higher
order joint PDFs are used. As an example, the second-order PDF is defined by

fX(α1, α2, t1, t2) =
∂FX(α1, α2, t1, t2)

∂α1∂α2
(2.2)

with fX(α1, α2, t1, t2) = P (X(t1) < α1, X(t2) < α2).
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2.1. Ground motion

The higher the order of the used PDF, the more accurate the description of the stochastic
process gets, since PDFs of lower order can be calculated from a higher order PDF. As
a result of the Markovian property, every Markov process is fully characterised by its
second order PDF.

Even though PDFs give a complete description of an STP, they are often complicate
to work with. Therefore, it is convenient to extract moments. Most important are
the first- and second-order moments, called mean function µX(t) and autocorrelation
function RX(t1, t2). Using E {.} to symbolise the expectation value, these quantities are
defined by

µX(t) = E {X(t)} =

∫ +∞

−∞
αfX(α, t)dα and (2.3)

RX(t1, t2) = E {X(t1)X(t2)} =

∫ +∞

−∞

∫ +∞

−∞
α1α2fX(α1, α2, t1, t2)dα1dα2. (2.4)

An STP X(t) is said to be strict sense stationary (SSS), if for arbitrary n ∈ N and τ ∈ R

fX(α1, α2, . . . , αn, t1, t2, . . . , tn) = fX(α1, α2, . . . , αn, t1 + τ, t2 + τ, . . . , tn + τ). (2.5)

From this property it follows, that the mean function is not changing over time µX(t) =
µX , and that the autocorrelation function is only dependent on the time difference
between the observed time points RX(t1, t2) = RX(t1 − t2) = RX(τ), with τ = t1 − t2.
If only µX(t) = µX and RX(t1, t2) = RX(t1 − t2) = RX(τ) are true, the STP is called
wide sense stationary (WSS). All ground motion models used in this text are based on
the assumption that ground motion is a WSS STP.

Next, we want to present the main tool for the characterisation of STPs in this work,
the so-called power spectral density (PSD). The PSD PX(ω) describes how the average
signal power of a WSS STP X(t) is distributed over frequency. The PSD is defined by

PX(ω) = lim
T→∞

1

T
E
{
|X(jω, T )|2

}
, with (2.6)

X(jω, T ) ≡
∫ T/2

−T/2
X(t)e−jωtdt, (2.7)

where X(jω, T ) is called the truncated Fourier transfrom of X(t). In Eq. (2.7), the
integrant is the STP X(t). The integration over an STP has to interpreted as an integral
over each possible outcome xi(t) of X(t). Hence also X(jω) is an STP. The truncated
Fourier transform has to be used instead of the Fourier transfrom, since an integration
from −∞ to +∞ would result for most STP in an unbound integral.

The PSD can be used to evaluate the average power of an STP X(t) coming from a
certain frequency range. An often used quantity in this context is the integrated root
mean square (IRMS) σX(ωm). It is defined by the standard deviation of the amplitude
of an STP, where only frequency components down to the angular frequency ωm are
considered. The IRMS can be calculated from the PSD by

σX(ωm) =

√
2

1

2π

∫ ∞
ωm

PX(ω)dω with ωm ≥ 0, (2.8)
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2. Modelling and simulation of ground motion effects

where the factor two in the nominator is introduced, since the integration is only carried
out over positive angular frequencies and the PSD is an even function.

The Wiener-Khinchine theorem states that the PSD and the autocorrelation function
of a wide sense stationary STP form a Fourier transform pair, which is

PX(jω) =

∫ +∞

−∞
RX(τ)e−jωτdτ and RX(τ) =

1

2π

∫ +∞

−∞
PX(jω)ejωτdω. (2.9)

For practical applications, the characteristics of an STP have to be determined empiri-
cally. To determine the properties of an STP at a certain time t1, several measurements
would have to be conducted at the same time. This is obviously impossible. Therefore,
all empirical characterisations rely on the ergodicity of the observed STP. Ergodicity is
the property of an STP, that one outcome xi(t) of X(t) contains all statistical informa-
tion about the RV X(tj) for all tj ∈ R. A necessary condition for a process to be ergodic
is that it is stationary. In most cases the ergodicity of a process can not be proven
mathematically and the process is simply assumed to be ergodic (ergodic hypothesis).

For the following estimation of the PSD, we assume ergodicity of the underlying
STP. Since measurements are usually available in sampled form xk, the discrete Fourier
transform (DFT) will be used. Thus, P (ω) can only be estimated at the positive angular
frequencies ωn = 2πn/T0, with n = 1, 2, . . . , N , where N is the number of sampled points
and T0 the recording time. It can be shown (see Preumont [93]), that the Fourier-
transform X(jωn) and the DFT X[n] of a signal are related as

X(jωn) =
T0

N
X[n]. (2.10)

In combination with the definition of the PSD in Eq. (2.6), Eq. (2.10) gives rise to
estimate P (ωn) as

Pest1(ωn) =
T 2

0

N2T0
|X[n]|2 =

Td
N
|X[n]|2 =

1

N2∆f
|X[n]|2, (2.11)

where Td = T0/N is the sampling time and ∆f = 1/T0 is the frequency resolution. The
estimator Pest1(ωn) is called periodogram. Unfortunately, Pest1(ωn) turns out to be not
a good estimator. As T0 →∞, and therefore the number of recorded sampled N →∞,
only the frequency resolution 1/T0 → 0, but the variance of the individual spectral lines
stays constant. Another procedure know as Bartlett’s method has proven to be better
suited to create an estimator for P (ωn). The recorded time series x[k] is cut into M
equal parts x(m)[k], each with a recording time of T0/M . The periodograms of all x(m)[k]
are calculated and averaged to give the estimator

Pest2(ωi) =
1
T0
M

(
T0
M

)2(
N
M

)2 1

M

M−1∑
m=0

|X(m)[i]|2 =
Td
N

M−1∑
m=0

|X(m)[i]|2. (2.12)

In case it is not necessary to calculate the PSD explicitly, but only the power of a certain
signal has to be evaluated in the frequency domain, it is convenient to use Parseval’s
theorem

N∑
i=1

|x[i]|2 =
1

N

N∑
n=1

|X[n]|2. (2.13)
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2.1. Ground motion

If the left side of Eq. (2.13) is divided by N , the term corresponds to the average power of
the signal x[k]. Therefore, P [n] = 1

N2 |X[n]|2 is a quantity, which can be used to calculate
the power of a signal in the frequency domain by simply adding up its elements.

Finally, we want to state without proof, how an STP behaves when it is the input
function for a dynamic system. When the stationary STP X(t) is applied to a dynamic
system with frequency response H(jω), it can be shown that the output signal Y (jω)
of the system is also a stationary STP with the PSD

PY (ω) = |H(jω)|2 PX(ω). (2.14)

2.1.1.2. Characterisation of multi-dimensional stochastic processes

The notion of an STP can be extended to vector STP, in which each element of a vector
X(t) is an STP. Similarly to the scalar case a mean value vector

µX(t) = E {X(t)} , (2.15)

and an autocorrelation matrix

RX(t1, t2) = E
{
X(t1)XH(t2)

}
, (2.16)

can be defined, where H symbolises the conjugate transposed of a vector. With the help
of the Wiener-Khinchine theorem (Eq. (2.9)) a PSD matrix can be calculated as

PX(ω) =

∫ +∞

−∞
RX(τ)e−jωτdτ. (2.17)

While the diagonal elements correspond to the one-dimensional PSDs as in Eq. (2.9), the
off-diagonal elements describe the mutual power between different STPs. It is convenient
to normalise these mutual power spectra

Nij(ω) =
Pij(ω)√

Pii(ω)Pjj(ω)
. (2.18)

Of special importance is the real part of Nij(ω), since it is a measure for the correlation
of the STPs Xi(t) and Xj(t). If Nij(ω) = 1 both signals are fully correlated and move
exactly the same way. If Nij(ω) = 0, X1(t) and X2(t) are fully uncorrelated and hence
statistically independent.

Often STPs that are functions in time and space have to be described. An example
would be ground motion, on the surface of the earth. In this case a description with a
vector is not sufficient and a multi-dimensional function X(s1, s2, t), called random field,
has to be used, where s1 and s2 are two spatial points in some appropriate coordinates
frame. Analogous to the vector STP case, a PSD function can be calculated for the
multi-dimensional case as

PX(s1, s2, ω) =

∫ +∞

−∞
RX(s1, s2, τ)e−jωτdτ. (2.19)
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2. Modelling and simulation of ground motion effects

If the random field is spatially homogeneous, it depends only on the difference s = s1−s2.
In this case also a Fourier transform in the spatial domain can be performed

PX(k, ω) =

∫ +∞

−∞
PX(s, τ)e−ik

T sds, (2.20)

where k is the vector of wave numbers. The term PX(k, ω) is the main tool in this work
to describe ground motion and will be called the two-dimensional ground motion PSD.
In this work, only one spatial coordinate will be considered and thus k will be a scalar
and therefore k = 2π/λ, where λ is the wave length.

If PX(k, ω) is applied to a continuous structure, the PSD function of the output
signal PY (r1, r2, ω), where r1 and r2 are two points in the output coordinates, can be
calculated as

PY (r1, r2, ω) =

∫
k
PX(k, ω)G(r1,k, ω)GH(r2,k, ω)dk (2.21)

with G(r,k, ω) =

∫
R
H(r, s, ω)eik

T sds, (2.22)

where the frequency response function H(r, s, ω) is the amplitude of the output at po-
sition r due to a harmonic excitation at the input position s. The expression G(r,k, ω)
is called sensitivity function. The sensitivity functions calculated in this chapter will be
time-independent and are only evaluated for some specific position rIP , which is the IP.

2.1.2. Ground motion models

The topic of ground motion is usually studied in the field of seismology. The phenomena
interesting for seismology, such as e.g. tectonic movement and earthquakes, result in
large ground motion amplitudes, but are nevertheless of little importance for the design
of accelerators. Due to this reason, the accelerator community started in the 80’s research
activities to improve the understanding of ground motion in the regimes interesting for
accelerators applications. The outcome of this activity is briefly summarised in the
following, complimented by a discussion of some phenomena known from seismology
(Fischer [39] and Aki and Richard [4]).

2.1.2.1. Seismic phenomena

Even though the surface of our earth seems to be very rigid, it behaves surprisingly
elastic, if observed on a larger scale. The surface layer, called crust, is only about 7.5
to 35 km thick. It is not homogenous, but separated into tectonic plates, which float
on the gooey to liquid layers below. Energy can propagate in the form of waves in this
thin crust, but also through the inner layers of the earth. Also effects like ringing due
to earthquakes have been observed.

The motion of the earth’s crust can be excited by a variety of different sources. Tec-
tonic motion, which is caused by the movement of tectonic plates against each other,
can lead to a relative displacement of several centimetres per year. Since the site for
a new accelerator can be chosen to be in an area with little or only moderate tectonic
activity, these effects are considered to be not a problem for the accelerator operation.
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2.1. Ground motion

Earthquakes are another seismic phenomenon, which originate, most of the time, from
tectonic motion. When tectonic plates move against each other, the resulting stress
can build up and is released at discrete time events. This results in shock-like ground
motion of high amplitude. Since earthquakes are strong enough to disturb the acceler-
ator operation are rare, they are only important for machine protection issues and civil
engineering.

Also the varying gravitational forces of the sun and moon have effects on the earth.
Not only the water level of the sea changes (tides), but also the crust of the earth is
distorted. Even though these daily distortions can be in the centimetre range, they are
of no concern for a particle accelerator. This is due to the fact that the distortions
are smoothly distributed over a large area and create hardly any relative displacement
throughout an accelerator site. Seismic effects that are important for the operation of
an accelerator are ground settlements and micro-seismic noise and will be discussed in
the following sections.

2.1.2.2. Diffusive ground motion and the ATL law

In seismology, ground motion is explained by the propagation of waves. For slow motion
the wave length λ = cg/f , where cg is the wave propagation velocity, gets larger than
the accelerator site and the earth itself. The use of waves is not appropriate anymore.
In Baklakov et al. [6], measurements of the relative ground motion ∆y are presented,

which show that the variance σ2
∆y(T, L) = E

{
[y(s, t)− y(s+ L, t+ T )]2

}
, where L is the

spatial distance between two points and T is the time difference, scales as σ2
∆y(T, L) ∝

TL. This gives rise to the ATL law

σ2
∆y(T, L) = ATL, (2.23)

where A is a site dependent constant. Note that the ATL law can only describe relative
but no absolute motion. Since for an accelerator only relative motion is of importance,
this does not result in any problems. Several measurements have been conducted, mainly
at accelerator sites throughout the world (Shiltsev [121] and [120]). When large seismic
components, e.g. tide effects, are removed from the measured spectra, all data sets follow
the ATL law. The constant A varies strongly depending on the site from about 0.1×10−6

to 100×10−6 µm2/m/s. The geometric mean of all measurements in Shiltsev [121] gives
an A of 7×10−6 µm2/m/s and for CLIC the assumption of an A of 0.5×10−6 µm2/m/s
was made. The assumption for CLIC is rather optimistic, but is consistent with the
standard ground motion models A, B and B10, which will be explained in the next
section.

From a mathematical point of view the ATL law is a two-dimensional random walk
as described in Sec. 2.1.1. In general the ATL law represents a random field. Since
over the area of interest this random field is assumed to be spatially homogenous, a
two-dimensional PSD P (k, ω) as in Eq. (2.20) can be used to describe its properties. It
can be shown (Sery and Napoly [118]) that the the ATL law can be represented by the
PSD

P (k, ω) =
A

k2ω2
. (2.24)
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2. Modelling and simulation of ground motion effects

If only a limited number of spatial points si are observed, the random field can be
simplified to a vector STP. If all M observed points are on a straight line as for a linac,
ground motion data for computer simulations can be created with low numerically effort
by

y[tk, si] = y[tk−1, si] +
i∑

m=1

∆[k,m] ∀i : 1, . . . ,M (2.25)

with y[t0, si] = 0,

where ∆[k, i] is calculated by

∆[k, i] =
√
A[tk − tk−1]|si − si−1|N (0, 1), (2.26)

where N (0, 1) symbolises a Gaussian random number with zero mean and a variance of
one. The initial values t0 and s0 determine the reference time and position. ATL motion
generated by this method is shown in Fig. 2.2.

There are also attempts to physically explain the ATL law. Excitation sources as at-
mospheric pressure variations, wind and underground water flow are assumed to excite
the ground. These excitations lead to a diffusive motion of the ground, which can be
explained with a fractal model of the ground (Parkhomchuk and Shiltsev [81]). In this
model the ground is separated into rigid blocks of different size, which model disconti-
nuities of the properties of the ground.

It should also be mentioned that ground settlements in tunnels show a different be-
haviour than the ATL law. It was reported, e.g. in Sery and Raubenheimer [119], that
the re-alignment of accelerators indicate a linear drift of the misalignment over time and
therefore σ2

∆y(T, L) ∝ T 2L. Even though these settling effects decrease over time, they
appear still several years after the construction of the site. For time scales longer than
one day, they become larger than the ATL motion and dominate the PSD. Hence, for
studies of the accelerator behaviour up to one day, ATL motion is used, while longer
periods are modelled by a similar procedure adapted to the ground settlement. Other
seismic effects, as e.g. tides, should be eventually included in the used ground motion
generator.

2.1.2.3. Wave-like motion

Especially ground motion components with higher frequencies can not completely be
described by the ATL law. In this regime ground motion has mainly not a diffusive, but
a wave-like character. These waves travelling through the crust of the earth contribute
mainly to the absolute, but also to the relative motion.

The wave propagation in the earth can be studied with the theory of sound propagation
in elastic media. Some important outcomes of this theory are collected here (please refer
to Aki and Richard [4], Fischer [39] and Steinhagen, Redaelli and Wenninger [130] for
more information). In a homogeneous, isotropic and elastic medium ground motion
waves can propagate in two modes. The first one is a transversal polarised wave, often
also called share wave or S-wave. The second mode of propagation is a longitudinal
polarised wave, also called P-wave or pressure waves. On the surface of the earth the
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Figure 2.1.: Ground motion PSDs of measurements at different sites (CMS, Annecy) and
ground motion models (A, B, B10, C). The micro-seismic peak at 0.1 to 0.3 Hz is clearly
visible. The model B underestimates the cultural (f > 2 Hz) noise of the measurements
at CMS (Kuzmin [64]) and Annecy (Bolzon [12]). Therefore model B10 is created, which
can be seen as a rather pessimistic assumption. (Picture courtesy of D. Schulte)

ground is not isotropic anymore, and the waves propagate in Rayleigh and Love waves,
which are a superposition of P- and S-waves. For Rayleigh waves, the surface particles
move on an ellipse in vertical and longitudinal direction with respect to the propagation
direction of the wave. For Love waves, particles move on an ellipse in horizontal and
longitudinal direction. Rayleigh waves are more important for accelerator applications.
They travel with a velocity v ≈

√
E/(2ρ), where ρ and E are the density and the Young’s

modulus E of the ground. The Young’s module E is a measure of stiffness and relates
the stress and the according elongation of a material.

Rayleigh and Love waves penetrate the ground approx. to a depth of the wavelength
λ. Since E and ρ vary with the ground depth, the propagation velocity of waves depends
also on their wavelength and hence their frequency. In Raubenheimer et al. [98] e.g., the
empirical law

v(f) = 450 + 1900e−f/2 (2.27)

was found for the site of the Stanford Linear Accelerator Center (SLAC), which is
consistent with the local ground properties.

Typical ground motion PSDs are shown in Fig. 2.1 (in this case only over frequency
and not over the wave length). Without going into the details of the different curves
,which will be done later, it can be stated that all PSDs posse two characteristic features
that exceed the ground motion contribution of the ATL law in the plotted frequency
range. At a frequency of about 1/7 Hz the spectra show a significant peak that is called
the micro-seismic peak or 7-sec hump. It originates from swell waves in oceans, which
couple to the coast. Swell waves are created by wind and storms over the oceans. Most
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2. Modelling and simulation of ground motion effects

of the locally created waves (wind waves) have a relatively short wavelength and are
dissipated quickly. Waves with longer λ are dissipated less and can travel over long
distances. Observed at the coast, these swell waves show a strong directionality and
narrow spectrum of λ. When the swell waves impinge on the shore only certain frequency
components can couple to the ground, while others are reflected. The coupled energy
is transported by ground waves far into the continent and contributes strongly to the
short term ground motion.

The second important feature in Fig. 2.1 are humps at higher frequencies, which vary
from site to site. These contributions originate from cultural noise, also called technical
noise. This term is a collection for all man-made ground excitation, such as machinery
in the accelerator tunnel (e.g. vacuum pumps), air ventilation and even traffic on the
surface. The mentioned sources are local. The created waves spread and get attenuated
by geometric spreading and dissipation. For the modelling of ground motion (two-
dimensional PSD) the underlying STP is assumed to be spatial homogenous however.
Thus, the complex geometric structure of cultural noise can not be fully represented
with these models. For a ground motion sensitive accelerator like CLIC, all sources of
cultural noise have to be identified and designed/chosen thoughtfully. Very important
is also the design of the girder and the alignment system. If these elements are not stiff
enough, ground motion could be amplified. For completeness it should be mentioned
that there are also cultural noise sources not transmitted through the ground, such as
cooling water flow, air flow from ventilation and sound waves. Studies of these sources
are ongoing, but are not considered in this work.

2.1.2.4. Models based on the two-dimensional PSD

To model both, the diffusive motion of the ATL law and the wave-like components
properly, the two-dimensional PSD P (k, ω) is used in the accelerator community. Sery
and Napoly [118] describes a generic form of P (k, ω) that can be fitted to measurements
by choosing certain open parameters. We will first review the generic model and will
then discuss different parameter sets used in the literature.

The generic model for P (k, ω) has the form

P (ω, k) = PATL(ω, k) +
N∑
i=1

Pi(ω, k), (2.28)

where PATL(ω, k) corresponds to a modified form of the ATL law and the N peaks
Pi(ω, k) represent wave-like components. The basic ATL law in Eq. (2.24) had to be
modified, since measurements did not show any diffusive motion for higher frequencies.
Since the sensors have a limited precision all motion below the sensor precision was
pessimistically assumed to be diffusion-like. This leads to the modified ATL law

PATL(ω, k) =
A

ω2k2

[
1− cos

(
Bk

Aω2

)]
, (2.29)

where B is a constant defining the frequency where the 1/ω2 behaviour of the ATL law
changes to a 1/ω4 behaviour for higher frequencies.
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The wave-like components Pi(ω, k) represent peak in the spectrum and are realised
by the expressions

Pi(ω, k) = Di(ω)Ui(ω, k) with (2.30)

Di(w) =
ai

1 + [di(ω − ωi)/ωi]4
and (2.31)

Ui(ω, k) =


2√
k2i−k2

if |k| ≤ ki
0 if |k| > ki

. (2.32)

The term Di(ω) defines the form of the peak with respect to frequency, where ai, di
and ωi are the height, the width and the position of the according peak. The term
Ui(ω, k) determines the wave length composition of the peak, where ki is the maximal
occurring wave number given by ki = ω/vi, where vi is the wave propagation velocity.
In current implementations of the model, vi can also be chosen to be a function of ω as
given in Eq. (2.27). Note that even though one individual wave of a certain wave length
is assumed to travel over long distances, the complete signal does not have to have a
high correlation. The correlation is determined by how many waves are propagating
at the same time. A low vi corresponds to a high ki, which mean that the overall
signal consists of waves with many different wave length and thus the correlation is
low. On the other hand of vi is high, the correlation of the corresponding signal is
high. Hence, Ui(ω, k) defines the correlation properties of the peak. Low frequencies
are well correlated (Juralev et al. [60]), while for higher frequencies >10 Hz the signals
are nearly uncorrelated even over short distances. Measurements presented in Artoos et
al. [5], also show the strong influence of separations in the concrete of the tunnel floor,
which decrease the signal correlation strongly. This fact has to be considered at the
construction of the tunnel.

Based on the generic model Eq. (2.28) several parameter sets were defined to model
different ground motion conditions. In Sery and Napoly [118] four models are pre-
sented, which will be called model 1 to 4. Model 1, 2 and 3 represent tunnels with
quiet conditions (no cultural noise) with different content of diffusive motion. These
models originate from measurements performed in the tunnels of the Large Electron-
Positron Collider (LEP), the Serpukhov accelerating-storage complex (UNK) and the
Stanford Linear Accelerator Center (SLAC). Model 4 originates from measurements in
the Hadron-Elektron-Ring-Anlage (HERA) tunnel and includes cultural noise, since the
accelerator facilities were running during the measurements in this case.

The models 1 to 4 have been revised for the ILC-TRC report [1] and 3 new models A
(“low”), B (“intermediate”), C (“high”) have been created, which are a quasi-standard
nowadays. These models will be used throughout this thesis. Their parameters can be
found in Sery [115] and are collected with the parameters of model 1 to 4 in Tab. 2.1.
Model A corresponds to a tunnel with very low ground motion. It originates from
measurements at LEP and represents a deep tunnel in competent rock. Surface cultural
noise has nearly no impact on the tunnel and in-tunnel technical noise is assumed to
be very low. Model B originates from measurements in the Aurora mine near Fermilab.
It stands for a shallow tunnel still on competent rock, in which cultural noise from the
surface and the tunnel is at a medium level. In model C, the tunnel is shallow and built
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1 2 3 4 A B C

PATL: A [µm2/s/m] 10−4 10−4 10−6 10−5 10−7 5×10−7 10−5

B [µm2/s3] 10−3 10−6 10−6 10−3 5×10−7 10−6 5×10−6

P1 : f1 [Hz] 0.14 0.14 0.14 0.14 10−3 10−3 0.14
a1 [µm2/Hz] 10 10 10 10 103 103 10
d1 [1] 5 5 5 5 1 1 5
v1 [m/s] 103 103 103 103 3×103 2×103 103

P2 : f2 [Hz] - - - 2.5 0.2 0.2 2.5
a2 [µm2/Hz] - - - 10−3 0.35 0.35 10−3

d2 [1] - - - 1.5 3.5 3.5 1.5
v2 [m/s] - - - 400 3×103 400 400

P3 : f3 [Hz] - - - 50 5 4.5 50
a3 [µm2/Hz] - - - 10−7 10−9 2.5×10−8 10−7

d3 [1] - - - 1.5 1.3 0.35 1.5
v3 [m/s] - - - 400 3×103 400 400

Table 2.1.: Parameters of the most commonly used ground motion models. The parame-
ters f1, f2 and f3 correspond to ω1, ω2 and ω3 in Eq. (2.31) and are related by ωi = 2πfi.
Model B10 is not listed in the table, since it is equivalent to model B, only that the third
peak is amplified by a factor of ten, which leads to an a3 of 10×2.5×10−8.

in a layer of sediment rock (measurements at HERA). The cultural noise corresponds
to a strongly urbanised area (very high). In Fig. 2.1 recent measurements from the
CMS experimental hall at CERN (Kuzmin [64]) and a setup in a laboratory in Annecy
(France, Bolzon [12]) are shown. It can be seen that model B underestimates the cultural
noise. Therefore, a new model B10 was introduced in which a corresponding cultural
noise is amplified by a factor 10. This model B10 is a pessimistic assumption for an
accelerator tunnel and will be mainly, but not exclusively, used in this thesis. For sake
of completeness, we also want to mention other models in the literature. Model K
originates from measurements at KEK and corresponds to very pessimistic assumptions,
which are similar to the one for model C. Recently measurements have been conducted
at CERN, which also include data for the ground motion in the horizontal plane (for
according models see Collette et al. [25]).

The model in Eq. (2.28), in connection with the parameters in Tab. 2.1, can be used
to estimate certain ground motion quantities. The one-dimensional PSD P (ω) can be
calculated as (Sery and Napoly [118])

P (ω) =
1

2π

∫ +∞

−∞
P (ω, k)dk, (2.33)

to analyse only the frequency-dependence of ground motion. If the variance of the
ground should be calculated, also an integration over ω has to be performed (absolute
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motion)

σ2 =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
P (ω, k)dkdω. (2.34)

For the analysis of the accelerator performance relative motion is more important than
absolute. The variance of the relative motion after a time T can be derived as

σ2
∆(T ) = E

{
[x(t+ T )− x(t)]2

}
= E

{
x(t+ T )2

}
− 2E {x(t+ T )x(t)}+ E

{
x(t)2

}
. (2.35)

Since ground motion is assumed to be a stationary random field, the first and the last
term are the same and can be substituted with Eq. (2.34). The middle term can be
evaluated with the Wiener-Khinchine theorem in Eq. (2.9), which results in

σ2
∆(T ) =

1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
P (ω, k)2

[
1− ejωT

]
dkdω. (2.36)

Taking into account that the PSD is an even function and applying Euler’s formula, this
expression can be simplified to

σ2
∆(T ) =

1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
P (ω, k)2 [1− cos(ωT )] dkdω. (2.37)

The factor 2[1−cos(ωT )] varies from 0 to 4 and describes the change of the signal power,
if not the sine signal itself is considered, but the differential motion of the sine wave after
a time difference T . As an example, for 0 ≤ ωT � π/2 the wave moves only little and
the power of the PSD is demagnified. If on the other hand ωT = π(2n− 1), with n ∈ Z,
the power of the differential signal is a factor 4 larger than the original signal.

In case also a spatial distance L is taken into account, the differential motion (assuming
perfect initial alignment) can be calculated with a similar approach as in Eq. (2.35) as

σ2
∆(T, L) =

1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
P (ω, k)2 [1− cos(ωT )] 2 [1− cos(kL)] dkdω. (2.38)

For simulations it is necessary to create samples in the time and spatial domain
out of the two-dimensional PSD. A standard method for this task is presented in
Preumont [93], which uses the inverse DFT. The following method is equivalent to the
one in Preumont [93], but omits the inverse DFT in order to give more physical insights.
The ground motion generator used for the integrated simulations in Sec. 2.4 uses the
described method. If a signal x(s, t) with variance σ2

x and a PSD PX(ω, k) should be
created, it is useful to partition the power of the PSD into discrete portions

σ2
x =

1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
P (ω, k)dωdk

≈ 1

(2π)2

Nω∑
i=0

Nk∑
j=1

(
4

∫ ωi+1

ωi

∫ kj+1

kj

P (ω, k)dω

)
dk =

Nω∑
i=0

Nk∑
j=1

a2
ij (2.39)

with aij =
1

π

√∫ ωi+1

ωi

∫ kj+1

kj

P (ω, k)dωdk. (2.40)
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The ωi and kj are chosen to be positive values, which cover all significant components
of P (ω, k). Since P (ω, k) is a symmetric function and the ωi and kj only run over
positive values, a factor 4 has to be added to account for negative k and ω. The a2

ij

corresponds to signals with a given power content and a defined frequency and wave
number ω̂i = (ωi+1 + ωi)/2 and k̂j = (ki+1 + kj)/2. This corresponds to a travelling
wave of the form

xij(s, t) =
√

2aij sin(k̂js+ ω̂it+ φij), (2.41)

where the phases φij are taken from an uniformly distributed random generator in the
interval [0, 2π). The overall signal with the correct PSD can be created by

x(s, t) =
∑
i

∑
j

xij(s, t). (2.42)

The resulting STP in Eq. (2.42) is a Gaussian RV at any point in time and space, due
to the following argument. Because of the properties of the chosen φij , for any time t0
and position s0, the xij(s0, t0) are independent random numbers. By the central limit
theorem, the final signal is a Gaussian distributed RV, since the sum of a large number of
independent RV is Gaussian distributed. In Fig. 2.2 random signals generated with this
procedure are shown. The current version of the ground motion generator in PLACET
uses some modifications to reduce the computational complexity and to implement filter
functions. These details will be given in Sec. 2.4.

2.1.2.5. Effect of the stabilisation system

The effective motion of a stabilised quadrupole is altered by the stabilsation system
introduced in Sec. 1.3.2.4. The action of this system can be modelled by its frequency
response SST

(
ejωTd,ST

)
(see Fig. 1.8 (right)), where ejωTd,ST symbolises the discrete-time

nature of the stabilisation system (see App. C.2) and Td,ST is its sampling time.

To calculate for example the variance of the absolute motion of a stabilised quadrupole,
Eq. (2.34) has to be modified to

σ2 =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
P (ω, k)

∣∣SST (ejωTd,ST )∣∣2 dkdω. (2.43)

2.2. Luminosity and beam orbit impact of ground motion

In this section, the ground motion models introduced in Sec. 2.1 will be used to analyse
the effect of ground motion on certain beam parameters. There are two types of models
for beam parameter variations due to ground motion used in the literature: analytic and
PSD-based models. Both types are reviewed in Sec. 2.2.1 before they are adapted and
extended for the needs of the controller design for CLIC in Sec. 2.2.2 and Sec. 2.2.3. The
scope and the limitations of the developed models will be discussed.
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Figure 2.2.: Vertical ground motion along the main linac and BDS of CLIC generated by
a ground motion generator. The evolution of ground motion generated according to the
ATL law (blue and black) and model B10 (red) are compared. The motion from model
B10 reaches already after 2 s large amplitudes due to the microseismic peak. After longer
time periods (30 s) the B10 motion gets only insignificantly larger but less smooth, due
to the appearing ATL components. Also, motions created according to the ATL model
are plotted for 2 and 30 s.

2.2.1. Basics

Two basic types of models to estimate the effect of ground motion on beam parameters
can be found in the literature. The first type delivers simple, analytic formulas to
produce estimates of the effects to be expected. To be able to derive these formulas
the accelerator component motion (quadrupoles, accelerating structures . . . ) has to be
assumed to be of a simple form, e.g. independent white noise or ATL excitation.

To be able to include more complex ground motion behaviour, a second class of models
is available. It is based on the two-dimensional ground motion PSD and more compu-
tational effort is needed to evaluate them. We will in the following introduce these two
types of models by giving representative examples. References to the literature will be
given to ease further studies.

2.2.1.1. Analytical models

We derive in the following one exemplary model with the intention to familiarise the
reader with the basic techniques used for the deduction of simplified analytical models.
The derived model describes the beam jitter at the end of the main linac of CLIC, due
to uncorrelated quadrupoles misalignments. After this derivation, the literature about
analytic models will be reviewed. The reader is assumed to be familiar with basics terms
of beam physics. For an introduction please refer to Wille [136], Wiedemann [135] or
Holzer [2].
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2. Modelling and simulation of ground motion effects

The creation of the model of beam jitter is split up in two parts. First, a general
expression (Eq. (2.47)) will be derived by following the work of Kubo [63]. Then this
expression will be specialised for the CLIC main linac in Eq. (2.51) using approximations
from Schulte [112].

The beam position yf [i] and the beam angle y′f [i] at the end a beam line (symbolised
by f), due to a dipole kick Θ[i] at a certain position indexed with i can be written as

yf [i] =
√
βfβ[i] sinφ[i]

√
E[i]/EfΘ[i] (2.44)

y′f [i] =
√
βfβ[i] (cosφ[i]− α[i] sinφ[i])

√
E[i]/EfΘ[i]. (2.45)

The terms β and α are the usual twiss parameters, φ[i] is the phase advance from position
si to sf and E is the beam energy. The expressions Eqs. (2.44) and (2.45) can be derived
by using normalised coordinates (see Schulte [112]). The adiabatic damping due to the
acceleration is accounted for by the factor

√
E(i)/Ef . The kick Θ[i] of a quadrupole

misaligned by δ[i] is Θ[i] = −k[i]δ[i], where k[i] is the integrated strength of a magnet.
If more than one quadrupole is considered, the overall beam position yf and beam

angle y′f is calculated as yf =
∑

i yf [i] and y′f =
∑

i y
′
f [i]. A quantity covering both yf

and y′f is the action of the beam oscillations Jf , which is defined by

Jf =
(
γfy

2
f + 2αfyfy

′
f + βfy

′
f

2
)
/2, (2.46)

where γf is the third twiss parameter at the position sf . By assuming that the kicks Θ[i]
are uncorrelated and using Eqs. (2.44) and (2.45) in Eq. (2.46), the expectation value of
Jf can be evaluated as

E {Jf} =
σ2
δ

2Ef

∑
i

β[i]k[i]2E[i], (2.47)

where σ2
δ = E

{
δ2
}

is the variance of the quadrupole displacement. The general expres-
sion in Eq. (2.47) can be specialised for the case of CLIC. For this reason, it is useful
to apply the technique of smooth approximation, which converts the sum over some ar-
bitrary accelerator parameters T [i], which are a function of the position index i, in an
integral over the energy by ∑

i

T [i] →
∫ Ef

E0

T (E)

∆E(E)
dE, (2.48)

where ∆E(E) is the energy gain between two quadrupoles. With this approximation
Eq. (2.47) becomes

E {Jf} =
σ2
δ

2Ef

∫ Ef

E0

β(E)k(E)2E

∆E(E)
dE. (2.49)

Using the approximations (taken from Schulte [112])

β(E) =
4

k(E)2L(E)

1√
4

k(E)2L(E)2
− 1

, k(E) = k0

√
E0

E
,

∆E(E) = L(E)ηfillGe and L(E) = L0

√
E

E0
, (2.50)

34



2.2. Luminosity and beam orbit impact of ground motion

where L(E) is the average distance between two quadrupoles as a function of the energy,
ηfill is the fill factor of the accelerating structures, G is the acceleration gradient of the
structures and e is the charge of an electron. Substituting these terms into Eq. (2.49)
and solving the integral gives the expression

E {Jf} =
2E0(Ef − E0)

L2
0EfηfillGe

1√
4

k20L
2
0
− 1

σ2
δ . (2.51)

This expression of the average action can be used to calculate the variance of the beam
offset E{y2

f} normalised to the nominal beam size squared σ2
y at the end of the linac by

E
{
y2
f

}
σ2
y

=
E {Jf}βf
εNβf/γ

=
E {Jf} γ
εN

, (2.52)

where εN is the normalised beam emittance and γ is the relativistic factor. Combining
Eqs. (2.51) and (2.52) and evaluating the result for the parameter of the main linac of
CLIC for the vertical direction gives the final estimate

E
{
y2
f

}
σ2
y

≈ 2.5× 10−3σ2
δ , (2.53)

where σδ has to be given in nm in this equation. Using Eq. (2.53), it can be deducted
that if the average, normalised beam jitter should be kept below 1 %, the quadrupole
motion variance has to be smaller than 2 nm.

The main reference for analytic models of ground motion effects on beam parameters
is Raubenheimer [97], which gives estimates for beam jitter, due to uncorrelated and
ATL displacement of quadrupoles. Also an estimate for the emittance growth due to
ATL motion is given. While Raubenheimer only states the final results, Kubo [63] gives
more insights and adds an estimate for the emittance growth due to uncorrelated ground
motion. Not only the effect of quadrupoles is studied but also the effect of accelerating
cavities (see again Raubenheimer [97] and Kubo [63] ). In an earlier work of Rauben-
heimer [96], estimates for the effect of a wave-like displacement of the quadrupoles are
derived. Effects due to wave-like excitation for rings have been collected in Chao and
Tigner [21].

2.2.1.2. Models based on the ground motion PSD

The analytic models discussed in the last section are not capable to include more com-
plex ground motion models which are usually given by the two-dimensional PSD. Also
effects that are not properly described by the usual linear beam optics—as wake fields,
filamentation, and beam-beam effects—can not be fully covered, even thought they show
linear or quadratic behaviour over large ranges of accelerator component displacement.

Basic formalism To include more complex ground motion models and beam physics
effects a different type of model is introduced in Sery and Napoly [118]. In this model the
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2. Modelling and simulation of ground motion effects

variances σ2
z = E

{
z2
}

including feedback effects, where z is a generic beam parameter,
can be calculated by extending Eq. (2.43) to

σ2
z =

1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
P (ω, k)

∣∣SST (ejωTd,ST )
∣∣2 ∣∣∣Ŝ(ejωTd)

∣∣∣2G2
z(k)dωdk. (2.54)

In this expression Ŝ(ejωTd) and SST (ejωTd,ST ) are the frequency responses of the L-FB
and the quadrupole stabilisation to ground motion (sensitivity transfer function), and
Td is the sampling time, which is given by the beam repetition rate of 20 ms. Since
the feedback algorithm is a discrete-time system, the frequency response is written in
terms of ejωTd to symbolise its periodic structure (see App. C.2). The function Gz(k)2

describes the effect due to a misalignment of the accelerator with a harmonic wave onto
the observed beam parameter z. Hence, Gz(k) is a sensitivity function as defined in
Eq. (2.22). Note that the feedback system acts, in this model, on the ground motion
itself, which is a simplification to reality, where the L-FB acts mainly on the beam
oscillations. Note further that in Eq. (2.54) the implicit assumption is made that the
feedback action is only dependent on ω and not on k. This is not the case for the L-FB
developed in Chap. 3. The consequences will be discussed in Sec. 2.2.4.

Since Eq. (2.54) differs in two ways from its original form in Sery and Napoly [118]
(Eq. (60)), we want to comment on the variations. The first is the nomenclature:
FSERY (ω) = |Ŝ(ejωTd)|2 and GSERY (k) = G2

z(k)2. This difference originates only from
different definitions and does not change the final results for σ2

z . We introduced a
different notation to be consistent with the definition of the sensitivity function not
considered by Sery. Secondly, the expression for σ2

z in Sery is by a factor 2 larger than in
Eq. (2.54). This is due to the fact that Sery’s expression corresponds to the variance of
the beam parameter between two time steps t and t+T , while our expression corresponds
to the variance of the absolute beam parameter at an arbitrary time t. Since the beam
parameters at t and t + T are uncorrelated random variables, the differential variance
is 2 times larger than the absolute variance. Also the fact that for the simulations in
this thesis a perfectly aligned accelerator is used at t does not change this statement,
since alignment is only a static change of the accelerator component positions, leaving
the underlying ground motion unchanged. We argue that the absolute beam parameter
variance is more relevant than the relative and use therefore Eq. (2.54) throughout this
thesis.

As an example, Eq. (2.54) will be used to evaluate the quadrupole motion q(t) due to
ground motion. In this case the integration over ω is not carried out in order to be able
to resolve the frequency dependency, which leads to the PSD

Qc(ω) =
1

2π

∫ +∞

−∞
P (ω, k)

∣∣SST (ejωTd,ST )
∣∣2 ∣∣∣Ŝ(ejωTd)

∣∣∣2G2
q(k)dk. (2.55)

The expression for Qc(ω) has been evaluated assuming the quadrupole stabilisation
system V1 as described in Sec. 1.3.2.4 and the L-FB transfer function as will be given in
Eq. (3.52) with a gain factor fi of 0.35. The sensitivity function Gq(k) for the quadrupole
motion is equal to one. If the continuous motion q(t) is sampled with the beam repetition
rate to q[k], the discrete-time spectrum Qd(ω) of q[k] is created by the folding of Qc(ω)
due to the aliasing effect. Both spectra Qc(ω) and Qd(ω) are depicted in Fig. 2.3.
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Figure 2.3.: PSDs Qc(f) (left) and Qd(f) (right) of the continuous-time and sampled
quadrupole motion q(t) and q[k], if only ground motion excitation (GM) is considered
or also the stabilisation system V1 (STAB) and the orbit feedback (L-FB) are used.
The slight ripple on the curves originates from the limited numerical accuracy. (left)
While the stabilisation system acts like a continuous-time filter on the original spec-
trum, the orbit feedback shows a periodic behaviour, which is typical for discrete-time
filters. (right) The maximal resolvable frequency of 25 Hz of the discrete-time spectrum
is determined by the sampling rate of 20 ms. While the stabilisation system reduces
the quadrupole motion in the wide frequency range from about 1 to 25 Hz, the orbit
feedback only demagnifies the motion for frequencies below 2 Hz. For comparison also
the first part of the continuous-time PSD Yc(f) with only ground motion excitation is
plotted. The aliasing effect only affects frequencies around 25 Hz slightly.

Determination of Gz(k) The term Gz(k) can be calculated in two ways: determination
by simulations (accurate, comfortable but slow) or via analytical derivation (often not
possible to cover all effects accurately, but fast). Both methods will be discussed in
the following before they will be used to determine sensitivity functions for the beam
oscillations in the BPMs (by simulations in Sec. 2.2.2), the luminosity loss (analytically
in Sec. 2.2.3) and the beam-beam offset (analytically in Sec. 2.3.1). The resulting models
are essential for the feedback design in Chap. 3.

First the numerical calculation with the help of simulation tools is covered. If a
travelling wave with wave number k

y(s, t) = A(k) sin(sk − ωt− φ0) (2.56)

travels along the linac in positive direction, then also an observed beam parameter
z(t, k) = B(k) sin(ωt+ φz) is a harmonic function in time, where B(k) is the amplitude
and φz the phase of the oscillation. This statement follows from Eq. (2.54). The ampli-
tude B(k) is only dependent on k, since the accelerator system is a static system. The
sensitivity function Gz(k) is now defined as the amplitude ratio of the ground motion
and the parameter wave Gz(k) = B(k)/A(k). This motivates the following procedure
to determine Gz(k). The accelerator components of interest are misaligned with a har-
monic function of wave number k and amplitude A(k) as in Eq. (2.56) with φ0 = 0. The
beam is tracked through the misaligned accelerator and the parameter z is recorded.
Then the phase φ0 is changed by steps of the size π/N , N ∈ N, and the procedure is
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2. Modelling and simulation of ground motion effects

repeated. The largest found value of z corresponds to B(k) and Gz(k) can be calculated
by Gz(k) = B(k)/A(k). The same procedure is repeated for every k. The parameter N
has to be chosen large enough, such that the observed harmonic function of z is resolved
finely enough. The excitation amplitude A(k) has to be chosen large enough, such that
the value of z is large compared to the simulation noise, but small enough that z stays in
the linear regime. Note that an appropriate value for A(k) can vary strongly for different
wave lengths, and has to be found empirically (brute force simulations for many different
values of A(k) over all k).

Since an iteration over many different phases πn/N, n = 0, . . . , N−1 is computational
expensive it is useful to apply the following strategy, which reduces the number of iter-
ations from N to 2. The traveling wave in Eq. (2.56) can be split up into two standing
waves by using the trigonometric identity sin(a− b) = cos(b) sin(a)− sin(b) cos(a) as

y(s, t) = A(k) sin(sk − ωt− φ0)

= A(k) cos(ωt+ φ0) sin(sk)−A(k) sin(ωt+ φ0) cos(sk). (2.57)

Since the accelerator system is assumed to be linear and static (no phase shift in time) the
components sin(sk) and cos(sk) can be treated independently. The observed parameter
z will have the form

z(t, k) = A(k)As(k) cos(ωt+ φ0)−A(k)Ac(k) sin(ωt+ φ0)

= A(k)Gz(k) sin(ωt+ φz) (2.58)

with Gz(k) =
√
As(k)2 +Ac(k)2 and φz = φ0 − arctan

(
−Ac(k)

As(k)

)
, (2.59)

where As(k) and Ac(k) are the amplitudes of the parameter z, due to the ground motion
excitation with a spatial sine or cosine wave of unit amplitude. Hence, the simulation
only has to be performed for one sine and one cosine excitation.

The second method to determine Gz(k) is by analytical derivation. The approach is
similar to the analytically derived simple models in Sec. 2.2.1.1, but differs in two ways.
The motion of the accelerator components, and more importantly the differential motion
between components, is expressed with the help of the two-dimensional PSD and not
with simple quantities as the variance. Additionally, the effect of a misaligned accelerator
element on the beam parameter of interest is not expressed by the twiss parameters of
the lattice. Instead, the change of the parameter z, due to a displacement δ[i] is modelled
linearly by z = az[i]δ[i], where the parameter az[i] is defined as az[i] = dz/dδ[i] and can
be determined by simulations. Due to the determination of az[i] by simulation, effects
which are not covered by the description with twiss parameters can be included in the
model, such as wake field and filamentation. In the next section, it will be shown Gz(k)
can be derived from the two-dimensional PSD and the parameters az[i].

2.2.2. Sensitivity function for beam oscillations

In the following a sensitivity function Gb(k, i) is derived analytically. This function
describes the beam offset b[i] in the ith BPM, due to a misalignment of the quadrupoles
with a travelling wave with wave number k. The sensitivity function Gb(k, i) will be an
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2.2. Luminosity and beam orbit impact of ground motion

essential ingredient for the design of the L-FB (see also Sec. 2.2.4). The derivation is
similar to the one of Sery and Napoly [118], where also expressions for the beam-beam
offset at the IP and beam size growth due to dispersion are given.

Using the index i for BPMs and j for quadrupoles, y[j] for the quadrupole misalign-
ment, yB for the initial beam offset, ỹ[i] for the BPM displacement, and Ni as the index
of the last quadrupole influencing the ith BPM, then the beam offset b[i] in the ith BPM
is given by

b[i] = r̃iyB + ri,1y[1] + ri,2y[2] + · · ·+ ri,Niy[Ni]− ỹ[i], (2.60)

where the ri,j , defined by ri,j = db[i]/dx[j], correspond to the a[i] in the general descrip-
tion in Sec. 2.2.1.2. The ri,j form the elements of the orbit response matrix R, described
in more detail in Sec. 3.2.1. The term −y[i] in Eq. (2.60) takes into account that the
BPM reading is also influenced by the motion of the BPM itself, and not only by the
beam motion. The term r̃[i] = db[i]/dyB accounts for the beam motion due to an initial
beam offset. Note that r̃[i] is not independent of the ri,j . This becomes obvious if the
whole, perfectly aligned beam line is moved by a constant value y[i] = ŷ and also the
initial beam offset yB = ŷ. Since the complete system is moved, the BPM reading has
still to be zero. Applying these values to Eq. (2.60) gives

0 = (r̃i + ri,1 + · · ·+ ri,Ni − 1)ŷ

→ r̃i = 1−
Ni∑
j=1

ri,j . (2.61)

The beam is assumed to enter in the centre of the first element of the displaced beam
line. Therefore, yB = y0, where y0 is the ground motion displacement at the start of the
accelerator. To shorten notation Eq. (2.60) is written as

b[i] =

Ni+1∑
j=0

ri,jy[j] with (2.62)

ri,0 = r̃i, y[0] = yB = y0,

ri,Ni+1 = −1 and y[Ni + 1] = ỹ[i].

The variance of the BPM reading σ2
b [i] can now be written as

σ2
b [i] = E

{
b2[i]

}
= E


Ni+1∑

j=0

ri,jy[j]

Ni+1∑
j=0

ri,jy[j]


= E

{
Ni+1∑
m=0

Ni+1∑
n=0

ri,mri,ny[m]y[n]

}
=

Ni+1∑
m=0

Ni+1∑
n=0

ri,mri,nE {y[m]y[n]} . (2.63)

By using the Wiener-Khinchine theorem in Eq. (2.9) for the spatial dimension and con-
sidering the fact that the two-dimensional ground motion PSD P (ω, k) and the absolute
value of the frequency response of the the quadrupole stabilisation SST (ejωTd,ST ) are
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even functions, the correlation E{y[m]y[n]} can be written as

E {y[m]y[n]} =
1

(2π)2

∫∫ +∞

−∞
P (ω, k)

∣∣SST (ejωTd,ST )
∣∣2 eikLm,ndωdk

=
1

(2π)2

∫∫ +∞

−∞
P (ω, k)

∣∣SST (ejωTd,ST )
∣∣2 [cos(kLm,n) + j sin(kLm,n)] dωdk

=
1

(2π)2

∫∫ +∞

−∞
P (ω, k)

∣∣SST (ejωTd,ST )
∣∣2 cos(kLm,n)dωdk, (2.64)

where Lm,n is the distance between the quadrupoles m and n. Using Eq. (2.64) in
Eq. (2.63) and exchanging summation and integration (possible since summation is fi-
nite) results in

σ2
b (i) =

1

2π

∫ +∞

−∞
B(ω, i)dω with (2.65)

B(ω, i) =
1

2π

∫ +∞

−∞
P (ω, k)

∣∣SST (ejωTd,ST )
∣∣2Gb(k, i)2dk and (2.66)

Gb(k, i) =

√√√√Ni+1∑
m=0

Ni+1∑
n=0

ri,mri,n cos(kLm,n), (2.67)

where B(ω, i) is the PSD of the beam offsets in the ith BPM. On the first view the
expression for Gb(k, i) seems to be uncomfortable to evaluate. An easier and more
intuitive representation can be achieved by using

cos(Lm,nk) = cos((sn − sm)k) = cos(smk) cos(snk) + sin(smk) sin(snk), (2.68)

where sm and sn are the positions of the quadrupoles m and n. Using Eq. (2.68) in
Eq. (2.67) gives

Gb(k, i)
2 =

Ni+1∑
m=0

Ni+1∑
n=0

ri,mri,n cos(smk) cos(snk)

+

Ni+1∑
m=0

Ni+1∑
n=0

ri,mri,n sin(smk) sin(snk)

=
[
r[i]Tc(k, i)

]2
+
[
r[i]Ts(k, i)

]2
(2.69)

with

r[i] =


ri,0
ri,1
...

ri,Ni+1

 , c(k, i) =


cos(s0k)
cos(s1k)

...
cos(sNik)
cos(s̃ik)

 and s(k, i) =


sin(s0k)
sin(s1k)

...
sin(sNik)
sin(s̃ik)

 ,

where s̃i is the position of the ith BPM. It is possible to calculate Gb(k, i) for all values of
i efficiently in one step. We consider therefor the construction of the vectors r[i], c(k, i)
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and s(k, i), defining Nb and Nq as the total number of BPMs and quadrupoles and using
s̃i for the BPM position. Then Gb(k, i) is given by the ith element of the vector Gb(k),
which is defined by

Gb(k)2 =
[
R̃c̃(k)

]◦2
+
[
R̃s̃(k)

]◦2
with (2.70)

R̃ =
[
r̃ R −I

]
, r̃ =

 r̃1
...
r̃Nb

 ,

c̃(k) =



cos(s0k)
cos(s1k)

...
cos(sNqk)
cos(s̃1k)

...
cos(s̃Nbk)


and s̃(k) =



sin(s0k)
sin(s1k)

...
sin(sNqk)
sin(s̃1k)

...
sin(s̃Nbk)


,

where ◦2 symbolises the element-wise square of a vector also called Hadamard’s square,R
is the orbit response matrix and I is the identity matrix. Note that too large simulation
noise (due to the limited number of used particles in the beam) inR can lead to numerical
problems at the evaluation of expression Eq. (2.70).

2.2.3. Sensitivity function for Luminosity loss

The creation of a sensitivity function G∆L(k) for the luminosity loss ∆L due to ground
motion is described in this section. This sensitivity function will be used to create a
model, which will employed in this thesis for the design of the L-FB. Some use cases are
shown in Sec. 3.3.

The sensitivity function G∆L(k) is determined by numerical calculation (procedure
already explained in Sec. 2.2.1.2) with the help of the simulation environment (Sec. 2.4).
Modification to the given formulas have to be made however, since ∆L is not linearly,
but quadratically dependent on the ground motion. These quadratic dependence is valid
for a luminosity loss smaller than 20 %, as has been verified via simulations.

The procedure to calculateG∆L(k) has the following form. The beam line is misaligned
sequentially with sine and cosine waves with growing, logarithmically distributed ampli-
tudes A(k). The first amplitude A(k), which results in a luminosity loss L10 % of more
than 10 % is used for the calculation of G∆L(k). The threshold of 10 % is chosen to en-
sure that the luminosity loss is large compared to the simulation noise of the luminosity
calculation (about 1 %) and at the same time stays in the quadratic regime ∆L ∝ A(k)2.
The values for G∆L(k) can then be calculated by

G∆L(k) =

√
L0 − Lsin,10%(k)

Asin(k)
+
L0 − Lcos,10%(k)

Acos(k)
, (2.71)

where the indices sin und cos indicate the excitation with sine and cosine waves. Note
that Eq. (2.71) is slightly different than the expression for a linear dependent observation
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Figure 2.4.: Squared sensitivity functions G2
∆L(k), G2

∆L,c(k) (left) and G̃2
∆L(k), G̃2

∆L,c(k)
(right), where k = 2π/λ and λ is the wave length. The index c symbolises that the beams
have been centred and the tilde-index that the final doublet (FD) has been stabilised.
The non-stabilised sensitivity functions (left) are more sensitive to short wave lengths
than the stabilised ones (right) due to the misalignment of the FD quadrupoles that
result in beam-beam offset. On the other hand, the stabilised sensitivity functions do
not decrease for long wave lengths as the non-stabilised ones due to dispersive effects
created by the beam offset in the FD quadrupoles.

parameter in Eq. (2.59). Using G∆L(k), the luminosity loss due to ground motion can
be calculated as

∆L =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
P (ω, k)

∣∣SST (ejωTd,ST )
∣∣2 ∣∣∣Ŝ(ejωTd)

∣∣∣2G2
∆L(k)dωdk. (2.72)

The calculated luminosity loss originates from two effects: beam-beam offset and beam
size growth at the IP. The sensitivity function G∆L(k) includes both effects. For some
studies it is interesting to separate the two effects. The sensitivity function G∆L(k)
is split therefor into two components G2

∆L(k) = G2
∆L,o(k) + G2

∆L,c(k), where G2
∆L,o(k)

corresponds to the luminosity loss only due to beam-beam offset and G2
∆L,c(k) only due

to beam size growth. The term G∆L,c(k) can be calculated according to Eq. (2.71) only
that instead of L10 % and A(k) the values Lc,10 % and Ac(k) have to be used. The Lc,10 %

corresponds to the luminosity created by the same procedure as described above only
that the two beams have been artificially centred. Since the two beam profiles B1(x, y)
and B2(x, y) are not necessarily Gaussian (asymmetry, long tails), the subtraction of
the beam centre positions is not a reliable way to align the beam centres, which are
responsible for most of the luminosity. A better way two calculate proper beam offsets
∆x and ∆y is to maximise the expression

J(∆x,∆y) =

∫ xmax

−xmax

∫ ymax

−ymax
B1(x, y)B2(x+ ∆x, y + ∆y)dxdy, (2.73)

with respect to ∆x and ∆y, where J(∆x,∆y) is approximately proportional to the
luminosity. Finally the G∆L,o(k) can be calculated by G2

∆L,o(k) = G2
∆L(k) −G2

∆L,c(k).
The resulting sensitivity functions are plotted in Fig. 2.4 (left).

When calculating G∆L(k) the quadrupoles are misaligned exactly as the ground. In re-
ality however, the ground waves first pass through the stabilisation systems on which the
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2.2. Luminosity and beam orbit impact of ground motion

quadrupoles are located. Since two different stabilisation systems—quadrupole stabilisa-
tion and pre-isolator—are used, the motion of the quadrupoles is not a simple harmonic
function anymore. Especially for high frequencies the pre-isolator is more efficient (see
Fig. 1.8 (right)). Thus the last two quadrupoles (FD quadrupoles) are hardly influenced
by ground motion compared to the other quadrupoles. This situation can be modelled
by displacing all quadrupoles up to the FD quadrupoles with the usual sine and cosine
waves, while the FD quadrupoles are not misaligned at all. The simulations described
above can now be repeated for this new ”stabilised” misalignment, which results in the
sensitivity functions G̃∆L(k) and G̃∆L,c(k) depicted in Fig. 2.4 (right).

Since the FD quadrupoles are very sensitive to beam-beam offset, G̃∆L,o(k) is smaller
than G∆L,o(k), since the FD quadrupoles do not kick the beam. Additionally, G̃∆L,c(k)
is now larger than G∆L,o(k). This is due to the fact that the beam comes onto the FD
quadrupoles with an offset, which creates dispersion and other secondary effects. To
investigate these effects quantitatively, a model will be presented in Sec. 2.3.2. Note
that both, the stabilised and the non-stabilised sensitivity functions are idealisations of
the reality. For low frequencies the non-stabilised and for high frequencies the stabilised
sensitivity function is more representative. Simulations showed, however, that the use
of the stabilised sensitivity function describes the reality more accurately.

2.2.4. Use of the models for L-FB design and performance prediction

With the help of the sensitivity function developed in Sec. 2.2.3 a luminosity loss model
of the form Eq. (2.72) can be created. It can be extended to include also the sensor noise
and the influence of the stabilisation system as

∆L =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
G̃2

∆L(k)P (ω, k)|SST (ejωTd,ST )|2|S(ejωTd)|2

+N(ω)|C(ejωTd)S(ejωTd)|2dωdk, (2.74)

where SST (ejωTd) is the quadrupole motion frequency response of the stabilisation system
to ground motion and −C(ejωTd)S(ejωTd) is the quadrupole frequency response of the
L-FB to BPM noise. The PSD N(ω) of the BPM noise is a flat spectrum (white noise)
with a value according to Eq. (3.31) that is adjusted to the variance of the BPMs. The
used frequency response of the L-FB is only dependent on ω, but not on the spatial form
of the ground motion represented by the wave number k. This is a simplification to the
real L-FB, which behaves differently for different spatial forms of the excitation. Even
though, the model Eq. (2.74) delivers surprisingly good estimates. This is mainly due to
the fact that the important ground motion components are all similarly treated by the
L-FB. The model is used in this thesis for the design of the time-dependent part of the
L-FB named g(z) in Sec. 3.2.3.2 and for studies of cost reduction options in Sec. 3.3.

Even though model Eq. (2.74) is good for first estimates, it is not capable of covering
the dependence of the behaviour of the system controlled by the L-FB, on the spatial
form of the ground motion excitation (directionality) and can therefore not be used
for a quantitive controller optimisation. In the following, a method that can be used
for controller optimisation will be developed in two steps. Firstly, a straight forward
approach will be presented. It will turn out however that this basic approach is not
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2. Modelling and simulation of ground motion effects

capable to model the system behaviour properly. The analysis of the weak points of the
basic method will lead to an improved approach that is based on the use of so called
virtually independent excitations.

2.2.4.1. Basic approach

When trying to generalise the model a basic problem arises. While time-dependent har-
monic functions are eigenfunctions of the accelerator system, spatial harmonic functions
are no eigendirections of the system. This means that a sine excitation in time will be
counter-acted by the L-FB with actuator settings, which are also a sine wave. The same
is not true for spatial harmonic excitation. The spatial eigendirections of the controlled
system are the columns of the input matrix V . This matrix is given by the singular value
decomposition of the orbit response matrix R = UΣV T (see Sec. 3.2.3.1 and App. C.4
for more explanation). It is therefore useful to describe the action of the L-FB with a
frequency response Ĉ(ejωTd , i) given not only in its time-dependent eigenfunctions, but
also its spatial eigendirections. With such a representation each eigendirection can be
analysed independently, since it is decoupled from the other directions. The derivation
of the frequency response matrices Ĉ(ejωTd , i) of the controller is straight forward, since
the L-FB uses a decoupling into the eigendirections anyway (see Sec. 3.2.3.1 for a more
detailed explanation). We use the hat index to symbolise decoupled systems and signals,
where i is the index over the Nv eigendirections v[i].

For a controller design, also the spectra of the excitation signals must be given in
terms of v[i] to allow a model based approach. The straight forward idea is now to
project the ground motion waves of the spectrum P (ω, k) onto the matrix V to form a
new spectrum P̂ (ω, i). As a next step, new luminosity sensitivity functions G∆L[i] and
G̃∆L[i] can be calculated similar to the ones described in Sec. 2.2.3, with the difference
that as excitations the input vectors v[i] instead of the sine and cosine waves. A problem
arises, since the v[i] are only defined over one part of the linac (electron or positron part).
It is not obvious how an excitation to both parts can be achieved. The solution is given
in Sec. 3.2.3.3, where the according sensitivity functions G̃∆L[i] (see Fig. 3.20) are used
for a different purpose. With the created G̃∆L[i], a new model of the form

∆L =
1

(2π)2

∫ +∞

−∞

Nv∑
i=1

G̃∆L[i]2P̂ (ω, i)|SST (ejωTd)|2|Ŝ(ejωTd , i)|2dω (2.75)

can be created, where also the BPM noise is neglected here for sake of simplicity.

When this modelling approach is used for the luminosity predictions, the results are
unfortunately wrong. The reason why this transformation of the problem is not able to
represent reality accurately is visualised in Fig. 2.5. A harmonic wave with long wave
length is known to result in a small ∆L due to its smooth nature. When this wave is split
up into the vectors v[i] as sin(s[i]k+φ) =

∑
i a[i]v[i], the individual components a[i]v[i]

can be much more jagged than the original wave. The application of the v[i] results in a
much larger ∆L, if they are assumed to be independent of each other. Mathematically
this simply means that the luminosity loss is not a linear function of the excitation, since
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2.2. Luminosity and beam orbit impact of ground motion

Figure 2.5.: A ground motion wave sin(sik+φ) is projected onto two eigendirections v[1]
and v[2], which fully describe the original wave. The two eigendirections are much more
jagged than the original wave and create therefore a much bigger luminosity loss, if they
are applied independently. The PSD of the projected motion can thus not be used for a
luminosity prediction, since its individual components are assumed to be uncorrelated.

the additivity is not given.

∆L{sin(s[i]k + φ)} = ∆L
{∑

i

a[i]v[i]

}
6= ∆L{a[1]v[1]}+ · · ·+ ∆L{a[Nv]v[Nv]} (2.76)

In reality the elements of P̂ (ω, i) are not independent of each other, but are created
from the elements of P (ω, k). In Eq. (2.75) independence of the elements of P̂ (ω, i) is
assumed however, which causes the vast overestimation.

2.2.4.2. Approach using virtually independent excitations

To resolve the problem discovered in the last section, we use the following modified ap-
proach. The ground motion components of the different decoupled controller channels
are not independent. We however need such an independent description for the devel-
oped modelling framework. Therefore, we calculate a virtually independent excitation
P̂v(ω, i), which creates exactly the same beam oscillation spectrum B̂(ω, i) as the real
ground motion spectrum P (ω, k). The index i in B̂(ω, i) again corresponds to the ith

decoupled loop, which is associated with the output eigendirections u[i] (columns of
U). The decoupling procedure is explained in more detail in Sec. 3.2.3.1. The physical
interpretation of the u[i] is that an excitation of the quadrupoles with v[i] results in a
beam oscillation s(i)b[i], where s[i] is the according singular value.

Two remarks should be made to this approach. First, the technique of using a virtual
excitation spectrum focuses on a correct representation of the beam oscillations, while the
quadrupole motion is not modelled correctly. This approach represents reality very well,
since the L-FB is much more a beam oscillation damping feedback than a quadrupole
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2. Modelling and simulation of ground motion effects

alignment feedback. The corrections applied by the L-FB actuators to the quadrupole
motion are very small compared to the ground motion displacement. The L-FB adds
just a small signal to damp the beam oscillations. The picture that the L-FB aligns
the quadrupole is hence wrong and a focusing on the absolute value of the quadrupole
displacement unimportant.

Secondly, it should be mentioned that the elements of B̂(ω, i) are all independent,
since the elements of P̂ (ω, i) are independent. This is not the case in reality however,
where the elements of the beam oscillation spectrum are correlated. We neglect this fact
for the controller design for sake of simplicity.

The PSD P̂v(ω, i) can be easily found from a given B̂(ω, i) by

P̂v(ω, i) = s[i]−1B̂(ω, i), (2.77)

since the excitation v[i] and the beam oscillation b[i] of one decoupled channel are simply
connected by the according singular value s[i]. The creation of B̂(ω, i) is very similar
to the one for the not projected oscillations B(ω, i), for which a sensitivity function was
derived in Sec. 2.2.2. Only Eq. (2.70) has to be modified slightly to

Ĝb(k)2 =
[
UT R̃c̃(k)

]◦2
+
[
UT R̃s̃(k)

]◦2
. (2.78)

To clarify the notation, the index i of Ĝb(k, i) corresponds to the ith element of the
vector on the right side. The projected spectrum is finally calculated by

B̂(ω, i) =
1

2π

∫ +∞

−∞
P (ω, k)

∣∣SST (ejωTd,ST )
∣∣2 Ĝb(k, i)2dk, (2.79)

where SST (ejωTd,ST ) is the frequency response of the quadrupole stabilisation. The
spectrum P̂v(ω, i) is the key element for the L-FB optimisation in Sec. 3.2.3.3. Even
though P̂v(ω, i) has proven to be very useful for the prediction of beam oscillations,
it cannot be used for luminosity loss prediction, since the correlation of the different
signals is not accurately modelled. For luminosity loss prediction, still the simple model
Eq. (2.74) has to be used.

2.3. Effects due to the final doublet offsets

2.3.1. Beam-beam offset

The beam-beam offset at the IP is very sensitive to the misalignment of the last two
quadrupoles of the beam line (QD0 and QF1) forming the so called final doublet (FD).
To isolate these quadrupoles from the ground a dedicated mitigation method was de-
signed. The so called pre-isolator is a massive concrete block supported by ten pneumatic
vibration isolators. A picture of the system is plotted in Fig. 2.6. While the structure
of the pre-isolator was already covered in Sec. 1.3.2.5, we focus here on the derivation
of a model describing its influence on the beam-beam offset.

When deriving such a model, it is not enough to only consider vertical and horizontal
displacements. Since the concrete block has an longitudinal extension of about 8 m,
also the tilte mode (in beam travel direction) has to be included in the model. For this
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2.3. Effects due to the final doublet offsets

Figure 2.6.: Side view of the final doublet system, which is located just in front of the
detector hall (IP to the left side of the plot). The system consists of (from left to right)
the quadrupole magnet QD0, the sextupole magnet SD0, a octupole magnet MULT, the
quadrupole magnet QF1 and the sextupole magnet SF1. A lever arm construction is
used to position QD0 as close as possible to the IP. The magnets are placed on the pre-
isolator in order to suppress ground motion. The support of the pre-isolator is simplified
in this picture and modeled by only two contact points P1 and P2. Picture courtesy of
F. Ramos, where the support points have been added to the original plot.

reason, the pre-isolator design team performed measurements to determine the frequency
response functions of the displacements of QD0 and QF1 with respect to an excitation
of respectively the four front and the four back vibration isolators. Even though these
two excitations act in a distributed manner on the pre-isolator, they are modelled to be
point-like (in points P1 and P2). The distances of these two points to the IP are named
s1 and s2. The mentioned frequency response functions are published in Gaddi [43] and
are referred to as Hs1→0(jω), Hs1→1(jω), Hs2→0(jω) and Hs2→1(jω), where e.g. the
term Hs1→0(jω) corresponds to the frequency response function from point P1 to QD0.

Using these informations a sensitivity function for the beam-beam offset Gδ(ω, k) can
be derived as follows. A travelling wave sin(sk−ωt+φ) can be split up into two standing
waves of the same amplitude; one sine and one cosine like with respect to the IP (see
Eq. (2.57)). A displacement of the FD with a cosine wave does not create any beam-
beam offset, since both beams are kicked by QD0 and QF1 exactly the same way. We can
restrict ourselves hence, to analyse the effect of a sine wave. Such an excitation displaces
the support points with sin(s1k) and sin(s2k). The transmission of these motions to the
quadrupoles can be described by frequency response functions. The motion of e.g. QD0
called y0 can thus be written in the frequency space as

y0(jω, k) = Hs1→0(jω) sin(s1k) +Hs2→0(jω) sin(s2k). (2.80)

The quadrupole motion y0(jω, k) results in a beam displacement at the IP of yIP = r0y0,
where r0 is defined as r0 = dyIP /dy0. Applying Eq. (2.80) also to QF1 and considering
that the beam-beam offset yδ for a sine wave is twice the individual beam displacement
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yIP (since there are two beams), the sensitivity function for the beam-beam offset can
be written as

Gδ(ω, k) = 2r0 [Hs1→0(jω) sin(s1k) +Hs2→0(jω) sin(s2k)]

= 2r1 [Hs1→1(jω) sin(s1k) +Hs2→1(jω) sin(s2k)] with (2.81)

r0 = 4/3, s1 = 8.306 m

r1 = −1/3, and s2 = 10.946 m.

Note that this sensitivity function is also a function of ω, which is in contrast to the
previously derived sensitivity functions. The variance of the beam-beam offset σ2

δ =
E{y2

δ} can finally be calculated by

σ2
δ =

1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

P (ω, k) |Gδ(ω, k)|2
∣∣SIP (ejωTd)

∣∣2 dωdk, (2.82)

where SIP (ejωTd) is the frequency response function of the IP-FB to ground motion.
The model Eq. (2.82) will be used in Sec. 3.4 for the optimisation of the IP-FB.

2.3.2. Beam size growth

The offsets of the final doublet magnets QD0 and QF1 are not only causing beam-beam
offset at the IP. Full-scale simulations with the simulation framework in Sec. 2.4 indicated
also correlation between the magnet misalignments and the beam size growth at the IP.
To understand this effect, a model will be developed in this section, which allows to
predict the associated luminosity loss.

The estimation of the beam size growth at the IP is based on a two-particle model of
the CLIC beam. Two macro particles are used to represent the positive and negative
standard deviation of the energy of the Gaussian CLIC beam. After tracking these
particles by the transfer matrix formalism to the IP, their offsets are used to estimate
the beam size growth. We will in the following focus on the vertical direction, since the
beam size growth in the horizontal direction is negligible.

The motion of one particle, with a position y, angle y′ and energy E, through the
final focus system is mainly determined by the two quadrupole magnets QD0 and QF1,
the two sextupole magnets SD0 and SF1 and the drifts (empty space) between these
elements (see Fig. 2.6). The multipole in front of SD0 can be neglected for our purposes.
The following expressions describe the particle transport through these elements and
can be taken from Wille [136] and Wiedemann [135].

The motion of a particle, with coordinates yi = [y, y′]T through a drift element is
given by

yo =

[
1 LD
0 1

]
yi = MDyi, (2.83)

where yo corresponds to the particle coordinates after the drift space and LD is the
length of the drift space. For focusing and defocusing quadrupoles QF and QD the
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particle transfer can be described by

yo,F =

[
cos
(√

kQFLQF
)

1√
kQF

sin
(√

kQFLQF
)

−
√
kQF sin

(√
kQFLQF

)
cos
(√

kQFLQF
) ]

yi = MQFyi (2.84)

yo,D =

[
cosh

(√
kQDLQD

)
1√
kQD

sinh
(√

kQDLQD
)√

kQD sinh
(√

kQDLQD
)

cosh
(√

kQDLQD
) ]

yi = MQDyi, (2.85)

where kQ is the quadrupole strength. To track particles with different energies, it is
useful to express the quadrupole strength as kQ = k̃Q/E, where k̃Q does not depend
on the particle engergy E. The use of the thin lens approximation for QD0 and DF1
is not possible for the final doublet magnets, since it would cause too large approx-
imation errors. Note that QD0 is a focusing and QF1 a defocusing magnet for the
vertical plane, since the naming of these magnets is according to their function in the
horizontal plane. The effect of an offset yQ of a quadrupole can be modelled by moving
instead of the quadrupole, the beam into the opposite direction, transferring the beam
through the quadrupole and moving the beam back into its initial coordinate frame
(see Schulte [112]). If the vector yQ = [yQ 0]T is defined, this procedure is expressed
mathematically by

yo = MQ

(
yi − yQ

)
+ yQ = MQyi + (I −MQ)yQ. (2.86)

Differently than drifts and quadrupoles, sextupoles are non- linear elements. The vertical
kick from a sextupole over a short distance is

∆y′ =
2k̃S
E
xy, (2.87)

where k̃S is the integrated sextupole strength and x the beam position in the horizontal
direction. We model the sextupoles SD0 and SF1 by tracking the beam to the centre of
the sextupole by a drift space, applying the kick in Eq. (2.87) and tracking the modified
particle over a second drift space, also with the half length of the sextupole. When
applying the kick of Eq. (2.87), the problem arises that the value of x is unknown. We
thus use instead of the unknown x its expectation value. For this reason x is split up in
the betatron and the dispersive motion x = xβ + xD. This results in

E {x} = E {xβ}+ E {xD} = dxδE , (2.88)

where dx is the dispersion in the horizontal direction as defined in Eq. (A.9) and δE is
the relative energy deviation of the particle δE = (E − E0)/E0, where E0 is the mean
energy of all beam particles. The transport matrix of a sextupole is hence given by

yo =

[
1 LS/2
0 1

][
1 0

2k̃s
E dxδE 1

] [
1 LS/2
0 1

]
yi. (2.89)

Using the expressions Eqs. (2.83), (2.84), (2.85), (2.86) and (2.89), the beam transport
of one particle through the final doublet is given by

y1 = MQF1MD1MSF1yi + (I −MQF1)yQF1

y2 = MQD0MD3MSD0D2y1 + (I −MQD0)yQD0

yIP = MD4y2, (2.90)
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where yi is the particle before SF1, y1 after QF1, y2 after QD0 and yIP at the IP.
Misalignments of sextupoles are not considered in this model. Since only the beam size
growth at the IP is of interest, only the first component of yIP has to be evaluated. This
gives an expression of the form

yIP = T1(E)yi + T2(E)y′i + T3(E)yQF1 + T4(E)yQD0. (2.91)

The coefficients T1(E) to T4(E) of this linear relation are only dependent on the particle
energy E and can be obtained by evaluating Eq. (2.90).

Using two macro particles, both with yi = 0 and y′i = 0, but with different energies
E0 − σE and E0 + σE , where σE the standard deviation of the particle energies, the
beam size growth due to dispersion at the IP can be modelled using Eq. (2.91) by

∆σ∗y,disp =
yIP (E0 − σE)− yIP (E0 + σE)

2

=
T3(E0 − σE)− T3(E0 + σE)

2
yQF1 +

T4(E0 − σE)− T4(E0 + σE)

2
yQD0.

(2.92)

Considering that

∆σ∗y =

√(
σ∗y,core

)2
+
(

∆σ∗y,disp

)2
− σ∗y,core,

and using the approximations in Eqs. (A.3) and (A.8), the beam size growth can be
converted to an associated relative luminosity loss as

∆L
L0
≈

∆σ∗y
σ∗y,core

≈
(

∆σ∗y,disp
σ∗y,core

)2

, (2.93)

where L0 is the nominal luminosity and we use for the core beam size σ∗y,core = 0.77 nm.
We define the core beam size as the distance from the beam centre, where the beam
histogram is reduced to 60.6 % of its maximum value. If the beam would be purely
Gaussian this value would be equal to the standard deviation. Since the beam is not
purely Gaussian, the standard deviation of the beam distribution σ∗y,0 = 1.41 nm is larger
than σ∗y,core. For the luminosity prediction the core beam size is more relevant and is
thus used in Eq. (2.93). The created luminosity model is compared to simulations results
in Fig. 2.7.

While the dispersive beam size growth explains the luminosity loss due to an offset of
QD0 very well, a second effect has to be considered when modelling the offset of QF1.
When estimating the coupling from the horizontal to the vertical direction in Eq. (2.88)
only first order effects have been considered so far. An offset of the beam in SD0 ySD0

due to a kick in QF1 results however also in a second order effect that can be estimated
as

E
{(

∆y′SD0

)2}
=

(
2KSD0

E

)2

y2
SD0E

{
x2
β,SD0 + 2xβ,SD0xD,SD0 + x2

D,SD0

}
=

(
2KSD0

E

)2

y2
SD0σ

2
x,SD0 +

(
2KSD0

E

)2

y2
SD0(dx,SD0∆E)2, (2.94)
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Figure 2.7.: Simulation results and models for the relative luminosity loss ∆L/L0 due
to misalignments of QF1 and QD0. For the simulations synchrotron radiation was
not considered, but it does not change to overall picture significantly. The simulated
luminosity loss due to an offset of QD0 (blue curve) can be very well explained by the
dispersive beam size growth model (dashed blue curve) given by Eq. (2.93). For an offset
of QF1 (red curve), additionally to the dispersion (dotted red curve) also uncancelled
geometric aberrations (dashed red curve) have to be considered according to Eq. (2.96).
The final model describes the simulated luminosity loss very well, for relative losses
smaller than 15 to 20 %.

where we assumed that the xβ and xD are uncorrelated and σx is the horizontal beam size
in the centre of the sextupole SD0 without dispersion. The second term in Eq. (2.94)
corresponds to the dispersion, which is coupled from the horizontal into the vertical
direction. This effect has been already considered in the dispersion model Eq. (2.92).
The first term of Eq. (2.94) corresponds to uncorrected geometric aberrations. Such
kicks result in a beam size growth at the IP, which can be estimated with the help of
second order transport matrices (see Napoly [76] and Brown [16]) as

(
∆σ∗y,aberr

)2
= m2

1,2

(
2KSD0

E

)2

y2
SD0σ

2
x,SD0, (2.95)

where m1,2 is the element of the first row and second column of the matrix

Maberr = MD4MQD0MD3

[
1 LSD0/2
0 1

]
.

Considering also ∆σ∗IP,aberr for the luminosity estimate, we get the final expression

∆L
L0
≈
(

∆σ∗y,disp
σ∗y,core

)2

+

(
∆σ∗y,aberr
fyσ∗y,core

)2

with fy =
σ∗y,0
σ∗y,core

. (2.96)

The scaling factor fy accounts for the fact that the beam size growth due to geomet-
ric aberrations corresponds to the overall, non Gaussian beam, which has a standard
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deviation of σ∗y,0 = 1.41 nm. Only the relative beam size growth of the core beam is
of importance for the luminosity loss, and hence the overall beam size growth due to
geometric aberrations has to be scaled to the core beam size growth as ∆σ∗y,aberr/fy.
The model in Eq. (2.96) explains the luminosity loss due to the offsets of QF1 and QD0
very well for a relative loss up to 15 to 20 % as can be seen in Fig. 2.7.

2.4. Integrated simulation framework

2.4.1. Overview

The ultimate goal for the design of CLIC is (besides the energy) to reach the specified
luminosity. The dependence of the luminosity on the ground motion is a complex non-
linear system with a high number of input parameters. Even though the presented
models in this chapter provide some estimates of individual effects due to ground motion,
there is no single, easy to handle model that covers all influences accurately. Especially
the complex interaction of the four ground motion mitigation methods is difficult to
analyse.

Due to this reason, a framework was developed to perform detailed numerical sim-
ulations of the overall system (see Snuverink et al. [125]). This simulation framework
combines and extends existing numerical simulation codes and tools and serves multiple
purposes. First of all, the framework acts as a development and performance evaluation
tool for the four mitigation methods. Even though these methods are designed with sim-
pler analytic models (as presented in this chapter), the final verification and optimisation
has to be performed with the computational more expensive simulation framework. It is
used in this thesis in Chap. 4 for the performance evaluation of the designs of the L-FB
and IP-FB. As a second task, the framework also serves as a final performance analy-
sis tool, for not only the individual mitigation methods, but also for their interaction
and the overall system performance by providing realistic luminosity values. These data
should show to the accelerator community that CLIC can be operated despite of ground
motion.

The integrated simulation framework combines four individual simulation tools. The
beam tracking code PLACET (Schulte et al. [113]) tracks the particle beams through
the main linac and BDS to the IP of CLIC. A ground motion generator (Renier, Bam-
bade and Sery [102]) creates realistic element displacements for the beam tracking with
PLACET. GUINEA-PIG (Schulte [108]) uses the tracked beams to calculate collision pa-
rameters as the luminosity. Finally the numerical tool Octave [34] (open source Matlab
clone) serves as an interface between the other modules, handles the data in- and output
and is used for the controller implementation. An overview of the whole framework is
given in Fig. 2.8. In the following, the individual simulation codes are explained more
in detail. In App. B the most important information about the installation, usage and
input parameters of the framework are collected.

2.4.2. Individual components

PLACET: PLACET stands for ”Program for Linear Accelerator Correction Efficiency
Tests” and is a particle tracking code. It calculates the behaviour of particle beams
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Figure 2.8.: The overall simulation framework consists of four modules: PLACET for
the beam tracking, GUINEA-PIG for the simulation of beam-beam effects, the ground
motion generator and Octave. Octave is the central steering element that controls the
other three modules and handles the user in- and output. The ground motion mitigation
methods (in red) are implemented either as an integral element of the ground motion
generator or with the comfortable high-level functions of Octave.

along an accelerator. PLACET is especially well suited to take into account effects of
accelerator component imperfections, as e.g. misalignment due to ground motion. In
the integrated simulation framework, PLACET is used to track beams through the main
linac and the BDS of the electron and positron part of CLIC. The code is written in C++
and is controlled usually with the script language Tcl/Tk. Additionally, it is possible
to start an Octave environment within the execution of a PLACET simulation. This
is a very comfortable feature, since the high-level functions of Octave can be used to
implement mathematical algorithms and perform input and output operations.

Ground motion generator: In order to create realistic accelerator component displace-
ments for the particle tracking in PLACET, a ground motion generator has been inte-
grated into PLACET. It is a modified version of an already existing generator, which
implements the strategy described in Sec. 2.1.2.4 for the creation of random fields with
a given PSD. With the modifications, filter functions can now be assigned to accelerator
components, which are used to filter the initial ground motion PSD. This feature allows
to include the effects of the quadrupole stabilisation system and the pre-isolator in the
simulations. The generator can produce displacements corresponding to the ATL law
and the ground motion models A, B, B10 and C (see Sec. 2.1.2.4). The extension to
other models is straight forward, if the according PSD is given. In the following, we
will point out some deviations of the implemented ground motion generator from the
standard procedure to create random fields introduced in Sec. 2.1.2.4.

In the current implementation not only one (as in Eq. (2.41)), but two travelling waves
are used, which move in opposite direction to create a more realistic model. The ground
movement is calculated at certain discrete times tm and positions sn (where m and n
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are indices over all discrete positions and times) by

xij [tm, sn] =
aij√

2

[
sin
[
ωitm + kjsn + φ

(1)
ij

]
+ sin

[
ωitm − kjsn + φ

(2)
ij

]]
(2.97)

Each of the two waves is carrying only half the power of the wave in Eq. (2.41). The
superposition of the two waves forms one standing wave. To calculate the sum of all xij
more efficiently Eq. (2.97) can be split up by using trigonometric identities into
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with
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The signal x[tm, sn] can now be efficiently computed at some discrete positions sn and
times tm as

x[tm, sn] =
∑
i

∑
j
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∑
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∑
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cos[kjsn]Aij [tm]− sin[kjsn]Bij [tm]
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]
with (2.99)

Âj [tm] =
∑
i

Aij [tm] and B̂j [tm] =
∑
i

Bij [tm]. (2.100)

Note that the terms Âj [tm] and B̂j [tm] only have to be calculated once per time step.
This reduces the computational complexity significantly.

The application of a ground motion filter of the form F [jωi] = AF [ωi]e
jφF [ωi] to

Eq. (2.97), where j is here the imaginary unit and not the index over the wave numbers
k, corresponds to a change of the harmonic functions to

xij,F [tm, sn] = AF [ωi]
aij√

2
sin
[
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(1)
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]
+AF [ωi]
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2
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[
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(2)
ij + φF [ωi]

]
. (2.101)

Hence, the filtered ground motion can be calculated similarly as in Eqs. (2.99) and (2.100),
with the difference that the expression for Aij [tm] and Bij [tm] have to be exchanged with
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Aij,F [tm] and Bij,F [tm], which are given by
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The splitting up of the sine and cosine of the sum of angles in Eqs. (2.102) and (2.103)
is necessary, since only the sine and cosine values of the initial phases are stored due to
implementation reasons.

GUINEA-PIG: After PLACET has produced realistic predictions for the electron and
positron beams at the IP, they can be used by GUINEA-PIG to calculate the luminosity
and other parameters of the according beam collisions. GUINEA-PIG stands for ”Gener-
ator of Unwanted Interactions for Numerical Experiment Analysis—Program Interface to
GEANT” and is a simulation code that models the complex physical processes involved
in the beam collisions. To determine the mutual beam influence, the electro-magnetic
fields of the highly relativistic electron and positron beams are calculated. Additionally,
relevant effects of quantum electrodynamics and quantum chromodynamic (QCD) are
taken into account. GUINEA-PIG can be used to calculate many different quantities
connected to the beam-beam interaction as luminosity, deflection angle of the beams
and the particle production for the most relevant background processes. Therefore, it
can be used for the design of the interaction region and the detector itself.

Octave: Octave is an open-source Matlab clone freely available on the internet. Due to
the ability of PLACET to open Octave environments at execution time, the comfortable
script language of Octave can be used for many different purposes. In the integrated
simulation framework, Octave controls the program flow and the individual modules,
handles processing of the simulation results and the in- and output data. Since Octave
also includes libraries of highly optimised numerical functions, the different variants of
L-FBs and IP-FBs are implemented in this environment.
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This chapter is concerned with the design of two of the four ground motion mitigation
methods used for CLIC, the linac feedback and the IP feedback. While an introduc-
tion into these feedback systems was already given in Sec. 1.3.2, this chapter covers
more detailed material. After a literature review and a historical overview in Sec. 3.1,
conclusions for the orbit feedback controller of CLIC will be drawn. Models for the
systems to be controlled will be established and the two feedback algorithm designs will
be presented in Sec. 3.2 and Sec. 3.4. To obtain these feedback algorithms the accord-
ing design procedures will make use of the ground motion models, the models for the
beam parameter change due to ground motion and the simulation framework covered
in Chap. 2. Since the linac feedback and the IP feedback are not independent of the
two other mitigation methods, the characteristic properties of the pre-isolator and the
stabilisation system will be taken into account in the design procedure. Since the linac
feedback will prove to work very well (see simulation results in Chap. 4), additional cost
saving options have been studied in Sec. 3.3. In this work, the possibility of a reduction
of the number of necessary correctors is investigated.

Much of the material presented in this chapter will use methods from the field of
control system engineering. Control system engineering is mainly concerned about the
design and analysis of feedback systems. Real-world systems are abstracted to stan-
dardised mathematical models, which are used for the controller design. In App. C, a
brief overview of basic control engineering concepts is given. This material is intended
for readers which are new to the topic. For a more comprehensive introduction in the
paradigms used to describe linear signals and system, the interested reader is referred
to Oppenheim, Willsky and Hamid [79]. For a more specific introduction into feedback
design methods, the books Frankin, Powell and Emami-naeini [41], Dorf and Bishop [31]
and Doyle, Francis and Tannenbaum [33] are recommended.

3.1. Introduction

3.1.1. Classification of accelerator feedback systems

In a modern particle accelerator many different feedback systems are in use. A big
distinction can be made between beam-based feedbacks (BB-FB) and feedback loops
for auxiliary systems. The most common feedback systems for auxiliary systems are
used to control magnet power supplies, RF systems (see Gamp [44] and Schilcher [106]),
cryogenics as in Pezzetti [82] and also mechanical stabilisation systems for quadrupoles.
Only mechanical stabilisation systems (see Sec. 1.3.2.4) are considered for this thesis,
since they are one of the four mitigation methods used in CLIC. Even though the design
of theses systems is not covered in this work, their behaviour is included in the all-over
luminosity performance simulations in Sec. 4.1. Also the presented controller syntheses
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in this thesis will take these stabilisation system properties into account, to achieve a
well harmonised overall performance.

Beam-based feedbacks are control systems in which measurements of beam parameters
are used as sensor signals for control systems. Such measurements can be the energy,
intensity, transverse tune, phase or position of the beam. For a general introduction into
the topic of beam-based feedbacks see Minty and Zimmermann [73]. In the following we
will restrict the discussion on beam position feedbacks. Recent development on beam
position feedbacks are reviewed in Bulfone [17]. Compact introductions to the theory
and application of control engineering for beam position feedback design can be found
in Dehler [30], Simrock [122] and Himel [57]. There is not a unique nomenclature for
feedback systems falling in this category. We will therefore use in this work the terms
defined as follows. Within the group of beam position feedbacks, beam orbit and beam
trajectory feedbacks can be distinguished. A trajectory refers to the motion of the centre
of a specific bunch xi(s) along the beam-line length s, where i symbolises the beam bunch
index. An orbit on the other hand refers to an average position or expectation value
E{.} of a collection of bunch centres x̂ = E{xi(s)} with i = 1, 2 . . . N . Both feedback
algorithms designed in this section (linac feedback and IP feedback) are orbit feedbacks
since they act on an average value of the trajectories of individual beam bunches. This is
due to bandwidth limitations, since the separation of bunches within a train is only 0.5 ns
in CLIC. An example of a trajectory feedback is the intra-train feedback introduced in
Sec. 1.3.2.3. Trajectory feedbacks are also used in storage rings to damp single- and
multi-bunch instabilities (see Lonza [71]).

3.1.2. Literature review and historical overview

The use of automated orbit feedback systems for storage rings started in the early
80s. Hettel [54] used independent, analogue, single-input single-output (SISO) feedback
loops to control the beam orbit at dedicated positions in the Standford Synchrotron
Radiation Lightsource (SSRL) ring. The orbit feedback system is referred to in this work
as “Steering Servo System”. For the vacuum ultraviolet (VUV) ring of the National
Synchrotron Light Source (NSLS) a global feedback strategy for the multiple-inputs
multiple outputs (MIMO) accelerator system was designed for the first time by Yu [137],
which was implemented with analogue technologies. At this time (1989), an automated
orbit feedback system was not in use at CERN. However, many beam steering algorithms
were implemented and applied as soon as the beam orbit got to large (Brandt et al. [14])
for the Super Proton Synchrotron (SPS), the Large Electron-Positron Collider (LEP) and
transfer lines. Major steps forward in the development of orbit feedback systems were
reported in Chung [23]. The orbit of the Advanced Photon Source (APS) was controlled
with digital technology. Furthermore, an SVD feedback algorithm was used for the first
time for this application. Since then, the SVD feedback system became a quasi-standard
for storage rings. A prominent example is the orbit feedback system for the Large Hadron
Collider (LHC) (Steinhagen [129]). In the case of the LHC the orbit feedback controller
is part of several interacting beam-based feedbacks (Steinhagen [128]). Another example
for the use of the SVD algorithm is Rowland et al. [104] at the Diamond light source.
The reviewed SVD controller implementations are of great interest for this thesis since
the designed linac controller also possesses the form of an SVD controller.
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For sake of completeness it should be also mentioned, that there are different ap-
proaches to beam-based control problems than the classical control techniques mentioned
above. Pieck [91] reviews attempts to use methods from artificial intelligence (AI). Bo-
zoki and Friedman [13] e.g. facilitates neural networks to control the beam orbit in a
nonlinear storage ring at Brookhaven National Laboratory (BNL). Klein, Westervelt and
Luger [62] reports the design of a general purpose control system. A top level controller
(expert system) splits up complex tuning and control tasks into smaller subtasks. These
tasks are solved using neural networks, fuzzy logic and generic algorithms. A more re-
cent work is Meier et al. [72] in which the structure and weights of a neural network
are altered with a reinforcement learning strategy. However, AI methods are not very
widespread in the field of orbit control.

For linacs the use of orbit feedback systems started one decade later than for rings,
namely in the early 90s. Considerable experience could be gathered from the Stanford
Linear Collider (SLC) at the Stanford Linear Accelerator Center (SLAC). Himel [55]
introduced the use of the state space formalism in combination with the linear quadratic
Gaussian (LQG) design procedure for orbit control. Seven independent feedback loops
were used to control the beam orbit along the linac. However, no details about the
modelling of the subsystems were given. In Barr [10] an adaptive controller (self-tuning
regulator) for SLC is presented. A constant gain factor of a local, single degree of freedom
controller is altered with the help of a system identification algorithm. Himel [56] also
uses adaptive methods for SLC to improve the previous design in Himel [55]. The
feedback system in Himel [55] was reported to show overcompensation effects. This was
due to the reason that all 7 feedback loops were running independently for different parts
of the beam line. A single beam oscillation was measured by all feedback sensors and
each loop reacted independently and uncoordinated on the measurement. The problem
can be solved if every loop just corrects the errors that are created in the sector controlled
by this loop. This is accomplished by passing the measurements of the upstream loop
(direction against the beam motion) to the next loop downstream. The upstream data
are transformed by the according transfer matrix to the downstream loop, where only
the difference between the measurement and the predicted beam position is corrected.
It was reported however, that changes of the orbit transfer matrix over time, forced
the developers to identify the according matrix with the help of an adaptive learning
algorithm. The work of Himel shows the importance of good system knowledge for linac
feedback systems and that the quality of this knowledge can be improved by adaptive
learning algorithms. This information will be followed up in Chap. 5.

In the end of the 90s the work on the design of a new linear collider and the according
orbit and trajectory feedbacks started. Hendrikson et al. [52] summarises the experi-
ences and the current status of the SLAC orbit feedback system as a starting point for
future linear colliders. In Hendrickson et al. [53] the status and development of feedback
systems for the linear collider projects Next Linear Collider (NLC), TeV-Energy Super-
conducting Linear Accelerator (TESLA) and Japan Linear Collider (JLC) is reported.
Of high interest for this thesis are the statements about performance issues in Hendrik-
son et al. [53]. It is pointed out that the cascaded, adaptive feedback of Himel [56]
performed not as well as initially assumed e.g. for NLC. The causing problem was the
wrong assumption that the beam propagation can be described by the multiplication
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of the according local beam transport matrices. However, due to the high acceleration
gradients and the according wake-fields and chromatic effects in NLC the beam trans-
port is nonlinear. In other words the beam oscillation depends on its origin. Hendrikson
suggests to use a global feedback controller, but mentions practical limitations due to
model imperfections. It is also notable, that the orbit feedback design for TESLA was
reported to be easier, since super-conducting RF cavities produce weaker wake-fields. As
a conclusion, it can be stated that for the orbit control of linear colliders with normal-
conducting RF cavities, such as CLIC, global feedback algorithms should be used. For
such global algorithms, very good system knowledge is needed.

In the papers of Sery [116] and Hendrickson[51], the focus is shifted from the orbit con-
trol along the linac to the IP feedback. A clear distinction between slow ground motion
causing mainly emittance growth and faster ground motion responsible for beam-beam
offset at the IP is made. Hendrickson suggests the use of a LQG controller for the IP
orbit feedback design that can be tuned to specific ground motion spectra. For ground
motion spectra with significant cultural noise contributions the luminosity performance
was not sufficient. Sery emphasises the importance of ground motion created by auxil-
iary equipment within the accelerator tunnel and draws the attention to a careful design
of such systems. The IP feedback strategy changes with the appearance of the fast
trajectory IP feedback FONT. FONT is a very fast bunch-to-bunch feedback system.
It uses especially fast electronics to achieve the very short delay times needed. The
system developed from FONT1, FONT2 and FONT3 (see Burrows et al.[18]), which
are analogue devices, to the latest version FONT4 in digital technology (see Burrows
et al. [19]). Summing up, the problem of ground motion for the International Linear
Collider (ILC) (see ILC Reference Design Report [90] for more information), which is
the successor of the projects NLC, TESLA and JLC, seems to be solved. The reduction
of beam-beam jitter due to the FONT4 system in combination with the relaxed toler-
ances for the orbit feedback system along the linac due to the low wake-fields of the
super-conducting RF cavities are reported to result in a strong improvement in terms
of luminosity preservation (see White, Walker and Schulte [134] and Sery, Hendrickson
and White [117]).

The situation is more difficult in the case of CLIC. The fact that the CLIC beam at the
IP is smaller than the ILC beam (about a factor 6 vertically and a factor 14 horizontally)
is not even the largest problem. While the ILC beam has a bunch separation time
of nominal 369 ns (see ILC Reference Design Report [90]) the CLIC bunches arrive
in intervals of only 0.5 ns. In such a regime the FONT system (trajectory feedback
controller) cannot work on a bunch-to-bunch basis anymore. However, there are plans
to still use FONT3, which is the fastest of all FONT systems since it is still analogue,
for the CLIC IP. Since FONT3 is not fast enough to act on each bunch individually it is
less efficient in CLIC compared to ILC. An additional pulse-to-pulse feedback controller
is necessary (orbit feedback) which will be named in the following IP feedback (IP-FB).
The FONT system is kept as a reserve in the current baseline and is therefore not
included in the simulations presented in Chap. 4.

For the design of the IP-FB in this thesis, we will follow up the last work done in this
area, which was Hendrickson [51]. She stated that the adaptation of the feedback con-
troller to the local ground motion spectrum is an essential task. Caron et al. [20] designs
an IP feedback based on a L2-type controller. To achieve the required performance the
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L2-controller is combined with a mechanical filter systems. Necessary specifications for
this mechanical filter system are also given in the same paper.

In Sec. 3.4 an alternative IP-FB design will be presented. This design will be sig-
nificantly simpler than Caron et al. [20] and less well optimised to the ground motion
spectrum. However, due to its simplicity it can be much faster adapted to changing
system characteristics. Presented performance predictions will show that the simple
controller is operating close to the optimum, which is given by the natural beam jitter.

Also in case of the linac feedback (main linac and beam delivery system) the re-
quirements for CLIC are higher than for ILC. Since CLIC uses normal-conducting RF
structures the wake-field effects along the linac are much stronger than for ILC. As a re-
sult the beam transport is non-linear with respect to the origin of the beam oscillations.
Already some feedback studies on the topic have been performed in the past. Leros and
Schulte [69] investigates the emittance preservation in the main linac of CLIC by using
a varying number of local, independent feedback loops. In order to reduce the noise
amplification and coupling effects between the feedback loops a very low feedback gain
is used. An important outcome of the work is that the emittance growth over long times
(10 min) is approx. proportional to 1/N2

f , where Nf is the number of feedback loops
used. Over short time periods (2 s) the feedback system performs well, but only ATL
ground motion (see Sec. 2.1) is used as a disturbance, which is not taking into account
high-frequency cultural noise. Latina et al. [67] adds to the work done for the main linac
a study of the effects in the beam delivery system of CLIC. A strong dependence of the
luminosity on the BPM noise is observed and accordingly tight tolerances are inferred.
The most recent publication about the orbit feedback of CLIC is Eliasson [35] and the
according PhD thesis Eliasson [36]. Eliasson presents a new feedback strategy and sev-
eral analytic estimates of the effects of different imperfections. He uses detailed system
knowledge to control the emittance growth in the main linac of CLIC. Simulations show
very good emittance preservation results. The strategy of Eliasson was not followed
directly in the current work, since the required system knowledge was very demanding
and cannot be measured in practice. However, the presented ideas influenced the current
thesis strongly.

3.1.3. Conclusions for CLIC

From the presented literature review, the following important information can be ex-
tracted.

• From Hendrikson et al. [53], it is clear that global orbit feedback systems (as
Eliasson [35]) perform better than local (as Himel [56]) ones, for ground motion
suppression.

• Global feedback systems are already heavily used in storage rings in the form of
SVD controller (Steinhagen [129] and Rowland et al. [104]).

• Good system knowledge is essential for global feedback strategies (Hendrickson et
al. [53] and Himel [56]).

• For good ground motion mitigation, as many correctors and BPMs as possible
should be used (Leros and Schulte [69]).
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• Measurement noise and the according BPM tolerances are a critical cost and per-
formance issue (Latina et al. [67]).

The choice of an orbit feedback algorithm has to balance contrary demands. On the
one hand the feedback algorithm should suppress ground motion effects. For this pur-
pose, a global high-gain feedback system with many actors and sensors is preferable. On
the other hand the feedback algorithm has to be robust against BPM noise, since the
BPM resolution (measurement noise) is a significant cost driver for feedback systems
and cannot be chosen arbitrarily small. To make a feedback systems robust against
measurement noise, local, low-gain feedback systems are better suited. If a global feed-
back strategy is chosen, the impact of noise generally gets stronger with an increasing
number of used correctors and BPMs, as will be shown in Sec. 3.2.2.2,

We chose to use an SVD conroller (global feedback algorithm) in this work, which
is already the standard in storage rings. All available actuators and sensors are used,
in order to suppress ground motion efficiently. As a result of this choice, most of the
design steps presented in Sec. 3.2 are driven by the need to reduce the noise impact on
the luminosity performance. The feedback structure (Sec. 3.2.2) as well as the param-
eter choice (Sec. 3.2.3) will be mainly optimised for noise suppression. The additional
necessity of good system knowledge for a global feedback algorithm will be addressed
with a system identification algorithm presented in Chap. 5.

3.2. Linac controller

This section is dedicated to the design of the orbit controller for the main linac and
the beam delivery system of CLIC. For sake of shortness this feedback controller will be
called linac feedback (L-FB), even though the beam delivery system is strictly speaking
not an accelerator, since no beam acceleration is performed. The basic problem of beam
oscillation damping was already explained in Sec. 1.3.2.1. Section 3.2.1 will formalise
this problem in a more quantitative way and introduce a model of beam oscillations in
the accelerator. This model will be analysed, to gain important knowledge used in the
following design steps. After introducing the system model the structure of the feedback
controller will be determined (Sec. 3.2.2). Starting from a basic design, two different
strategies for noise reduction will be compared. The chosen structure will be optimised
and finalised in Sec. 3.2.3.

3.2.1. Problem statement and system model

3.2.1.1. General system description

As already explained (Sec. 1.3.2.1), the main goal of the linac feedback (L-FB) is to mit-
igate beam oscillations, which occur mainly due to mechanically misaligned quadrupole
magnets. The positions of the magnetic centres of these quadrupoles with respect to a
perfect alignment is symbolised by x[k], where k is the time index. The main source of
the quadrupole misalignments is ground motion (disturbance d[k]). In order to counter-
act the beam oscillations the beam is steered back onto its reference orbit r0. The accord-
ing beam positions are measured therefor with 2122 beam position monitors (BPMs).
This BPM sensor data named y[k] already include the measurement noise n[k], which is
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3.2. Linac controller

Figure 3.1.: The depicted system models
the beam oscillations in the main linac and
beam delivery system of CLIC. Shifts of
magnetic centres of quadrupoles x[k + 1],
due to the ground motion d[k+ 1] and the
controller setpoints u[k], are transformed
by the unit time shift operator z−1 of the
Z-transform (see App. C.1) and a ma-
trix multiplication to sensor readings y[k],
which include the BPM noise n[k]. The
ground motion d[k] acts directly on the
outputs y[k]. Therefore it is multiplied
with a factor zI, which cancels the time
delay of the accelerator.

Figure 3.2.: BPM readings due to an unit
actuation of 1µm of the 202nd corrector,
where no other imperfections have been
applied. The BPM readings show beam
oscillations, which are dominated in the
main linac by filamentation (beam size in-
crease, see Sec. 1.2) and in the BDS by the
lattice design (irregular variations).

assumed to be a white, Gaussian distributed random process throughout this work. In
the main linac, one BPM is mounted mechanically to each of the 2010 quadrupoles. Also
in the BDS each of the 96 quadrupoles is equipped with a BPM, but there are another
intermediate 16 BPMs. The measurements y[k] represent the average beam position of
all 312 bunches of a beam train. Since trains are separated from each other by a time
delay of 20 ms (see Sec. 1.1) the modelled accelerator system is a discrete system with a
sampling rate of Td = 20ms.

In the main linac each of the 2010 quadrupoles is equipped with one corrector in
horizontal and one in vertical direction. The BPM measurements y[k] are used by a
feedback algorithm to calculate the controller setpoint u[k+ 1] of the next time step. In
the BDS all but the last two quadrupoles before the IP, which form the final doublet, are
equipped with correctors. This corresponds to 94 correctors per direction and per linac.
The reason why the last two quadrupoles are not used, will be explained in Sec. 4.2.
There is not yet a clear decision on the physical realisation of the correctors. One option
is to use the positioning capability of the stabilisation system presented in Sec. 1.3.2.4
to move the quadrupoles mechanically. The second possibility are corrector magnets
which are integrated into the quadrupole magnets. Both options shift the effectice
magnetic centre of a quadrupole and are, apart from cost issues, basically equivalent.
The actuators are assumed in this work to be fast enough to be neglected. In other
words the actuators are able to perform a change to the controller setpoint values from
u[k] to u[k + 1] within the sampling time of 20 ms. However, we will see in Sec. 3.2.3.2
that also much slower actuators do not jeopardise the controller performance.

Since the corrector dynamics are assumed to be much faster than the sampling rate
of the L-FB, the change of the sensor readings y[k] due to changes of the correctors
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u[k] can be modelled by a simple matrix multiplication with the orbit response matrix
R. Its properties will be analysed below. It is important, however, to take into account
that controller setpoints applied at time step k to the system are just transferred by
R and measured (sampled) one time step later at time index k + 1 due to the discrete
structure of the system. This time delay is the only dynamic element of the accelerator
system. The described model is visualised in Fig. 3.1. In this structural view z−1 is
the unit time shift operator of the Z-transform. For readers not familiar with the Z-
transform, an introduction is given in App. C.1. More detailed information can be found
in the standard texts of Oppenheim, Schafer and Buck [78] and Franklin, Powell and
Workman [42]. Summing up, the accelerator system can be written in the simple form

y[k] = Rx[k] + n[k] = Ru[k − 1] +Rd[k] + n[k], (3.1)

and its according transfer function

Y (z) = Rz−1U(z) +RD(z) +N(z). (3.2)

In Eqs. (3.1) and (3.2) we assume that moveable quadrupoles are used as actuators.
Hence, the disturbances and the controller setpoints act on the BPM readings via the
the same matrix R.

3.2.1.2. Orbit response matrix R

The orbit response matrix R has 2122 rows and 2104 columns, which corresponds to the
number of used BPMs and correctors. A columns of R can be physical interpreted in
the following way. The ith column of R corresponds to the BPM measurements (in the
unit µm), if the ith corrector is moved by a unit step of 1µm (see Fig. 3.2). A 3D plot
of the logarithmic absolute value of the complete R is shown in Fig. 3.3.

Since a dipole kick of a corrector creates only beam oscillations downstream this kick,
the BPM measurements upstream are zero. For sake of simplicity only the part of R
corresponding to the main linac is investigated first. In the main linac the ith BPM is
mechanically mounted to the i+1th quadrupole. As a result R is a triangular matrix if
corrector magnets are used. If piezo-movers are used on the other hand R has additional
-1 entries in the first diagonal above the main diagonal. These −1 entries originate from
the fact that a movement of the i+1th quadrupole by ∆u[k, i+ 1] will also move the ith
BPM by ∆u[k, i + 1]. A beam that arrives at the same position again will result in a
BPM reading shifted by ∆u[k, i+ 1]. This -1 entries are unfavourable for the robustness
of the controller. This is due to the fact that with the -1 entries, the controller has
the possibility to move the BPMs towards the beam. The initial reference orbit, found
by the static alignment methods, is changed gradually. An easy way to work around
this problem is the following. When the piezo-actuator moves a quadrupole and the
according BPM, the BPM center is changed by the BPM software by the same amount
in the opposite direction. As a result the according response matrix has no −1 entries
and is triangular. Therefore, the matrix R can be assumed to be triangular and the
necessary software BPM center change is omitted in the further discussion.

The part of the orbit response matrix corresponding to only the BDS is not square as
the one for the main linac and is therefore not strictly triangular. However the principal
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Figure 3.3.: This 3D plot shows R̂ = log 10 (|R|+ ε). The logarithmic scale is used, since
otherwise the high beam excursions at the end of the BDS, would not allow observing
the typical strong damping by filamentation in the main linac. Due to the logarithmic
scale it is necessary to add a small positive contant ε = 10−2 to R, in order to not map
the zero entries due to the quasi-triangular shape onto −∞.

structure is very similar to the one in the main linac. While the form of the matrix entries
of the main linac was dominated by filamentation, with the characteristic shrinking of
the beam oscillation amplitude, the oscillation amplitudes in the BDS are determined
by the lattice design.

The main linac is a beam line consisting of only linear elements (nonlinear acceleration
cavities have only a minor effect). Contrary, in the BDS nonlinear elements as sextupoles
are present. Beam oscillations originate from an excitation at a certain position with
different amplitudes are not just scaled, by a constant but have a nonlinear response
behaviour. Therefore, it is questionable if the BDS can be properly approximated with
a matrix (description of a linear system). In order to justify the made simplification the
following simulations were performed.

As a first step, the response matrix of the BDS (always without BPM noise) was
calculated with a beam consisting of 150000 particles. This is three times the normal
number of particles, to create simulation results with especially low simulation noise. A
corrector step size of ∆u = 0.2µm was used for the simulation. The according matrix
R0 acts as a reference. As a second step, response matrices with a beam of 50000
particles (nominal number of particles for normal simulation speed) were calculated
with different corrector step sizes ∆u and compared to R0. The difference between the
matrices is measured by ∆R(∆u) = ||R(∆u)−R0| |F , where ||.| |F is the Frobenius norm

of a matrix, which is defined as ||A| |F =
√∑

i

∑
j aij and corresponds to an quadratic

error measure. The quantity ∆R(∆u) is interpreted as a measure for the nonlinearity
of the system. Figure 3.4 (left) shows that the matrix deviation can be approximated as
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∆R(∆u) = a1 ∗∆u2, where a1 = 0.0085.
The questions that remains is what this result means for the deviation of R over

longer times for the BDS of CLIC. In reality not only one, but all quadrupoles are
moved by ground motion. We relate now the response matrix calculation, where only one
quadrupole is misaligned at a time step, to the response matrix of a beam line misaligned
by ground motion. For longer time periods such ground motion can be described by the
ATL law (see Sec. 2.1), which predicts a motion between two quadrupole of σs =

√
ATL,

where A is the site dependent constant assumed to be 0.5×10−6µm2/s/m for the future
CLIC site, T is the time difference and L the distance between quadrupoles which is
approximated with 27.5 m. Since consecutive quadrupole movements are independent
of each other (ATL law) and occur at the same time, the effective ∆u is estimated
to be a factor

√
96 larger than σs, where 96 is the number of quadrupoles in the BDS.

Combining these approximations, a very simple scaling law ∆R(T ) = 96a1ATL ≈ 10−5T
can be derived. After ten hours, of ground motion the prediction states a change of R
by R(T ) = 10−5 × 3600 × 10 = 36 %, which fits well with the data produced by the
full-scale simulations performed in PLACET and depicted in Fig. 3.4 (right). In these
simulations ATL ground motion was applied for a certain time andR was calculated with
∆u = 0.2µm. The full-scale simulations also show that for up to one hour of operation
not more than 10 % of matrix deviation is expected. Since the primary scope of this
thesis is the mitigation of ground motion effects up to a few minutes, the modelling of the
BDS orbit system as a matrix is justified. For longer time scales long-term mitigation
methods will be implemented as explained in Sec. 1.3.3.

3.2.1.3. Control engineering considerations

To summarise from a control engineering point of view, the system to control is a linear,
discrete-time system with a sampling time of 20 ms. It is a large multi-input, multi-
output system (MIMO) with 2104 inputs and 2122 outputs. The 2104 states of the
system are the magnetic centres of the quadrupoles x[k]. The system is nearly a static
one, which can be represented by a simple matrix multiplication. The only dynamic
component of the system arises from the fact that an applied corrector change has only
an effect at the next time step. This corresponds to a delay element. The correspond-
ing single-input single-output (SISO) analogy has a frequency response representation,
that only alters the phase of a signal and multiplies the magnitude with a constant
factor. The system has no internal back-coupling and has therefore a finite impulse re-
sponse (FIR). Since every state can be directly influenced by one actuator the system is
clearly controllable. Due to the quasi-triangular structure of the output matrix R with
dimension m× n, the system is also observable, since the observation matrix (Kalman)

QB =


R
RA

...
RAn−1

 =


R
0
...
0

 ∈ Rnm×n with (3.3)

A = 0 ∈ Rn×n (3.4)

has full rank n, where A is the system matrix. The observation matrix QB has full
rank, since already the output matrix R has full rank, becauses every pair of columns
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Figure 3.4.: (left) Frobenius norm of the difference between orbit response matrices
R(∆u) simulated with different step sizes ∆u compared to a reference orbit matrix
R0. The system shows a moderately nonlinear behaviour. For ∆u < 0.05µm the beam
excitations are so small that the measurements are dominated by noise due to the limited
number of particles used in the simulation (Schottky noise). (right) Frobenius norm of
the change of the orbit response matrix in the BDS of CLIC, due to a misalignment of
the accelerator components due to ATL ground motion over 10 hours. The simulation
results (blue curve) are an average over 10 seeds. The standard deviations of the simula-
tion results are indicated by error bars. The red curve shows a derived linear scaling law,
which fits well with the simulation results for long time periods but underestimates the
change of R for shorter simulations. It should be mentioned however that the number
of averaged seeds is not very high, since the calculations are computationally expensive.

of R is linear independent (different number of leading zero entries). Therefore, R is
of full rank and has more rows than columns. Since the main purpose of the L-FB is
to mitigate ground motion effects, a disturbance rejection problem is faced. In the next
section two different possibilities to address such a problem will be compared.

3.2.2. Control structure choice

The goal of this section is to find a controller structure which is very well suited to
address the special requirements for a linac feedback for CLIC. The term controller
structure refers to the fact that in this section no detailed parameter optimisation is
performed. Only the type of the feedback controller, which is the basis for a detailed
design, is defined. Two complementary feedback structures are compared in this section.
One is based on an optimal control formulation of the problem; the other one uses an
SVD feedback controller. These methods are tested only in the main linac and not on
the BDS for sake of simplicity.

Even though the strategies are quite different, they show strong similarities in their
final realisation. This is due to two reasons: they have to fulfil the same requirements
and the same accelerator system characteristics are imposed on them. The requirements
are fixed by the design choice, made in the previous section, which is the use of one
global feedback controller with as many correctors and sensors as possible. This choice
implies an inherently good ground motion suppression, but also a strong sensitivity to
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BPM noise. Therefore, the reduction of the influence of the BPM noise will be the main
design issue of both concepts.

The nature of the system to be controlled also directs the design of both controller.
Due to the huge size of the main linac system (2010 inputs and 2010 outputs ) the
controller and its design is complicated. It is desireable to reduce the complexity of the
controller by limiting the number of design parameters. Such a parameter reduction
simplifies the design process, which leads to an controller than can be changed rapidly.
To limit the degrees of freedom efficiently, the controller design has to be seen as a two-
dimensional problem. The first dimension is the obvious time dimension. But also space,
namely the length of the accelerator can be interpreted as a second dimension. The idea
that MIMO-Systems have different input/output directions is well-established in control
theory (see Skogestad and Postlethwaite [124]), but these directions are normally not
interpreted as an additional dimension of the problem, such as time. However, for
the accelerator system the interpretation of the input/output directions of the system
as an additional dimension is tempting, due to their high number and the different
entries of these direction vectors represent the same physical quantity (space). Similarly
to the Z-transform in the time-domain the SVD algorithm can be used to find these
orthogonal input/output directions in the space-domain. With such an orthogonalisation
it is possible to build filters in the space-domain, which separate certain directions from
others. In order to reduce the complexity of the design, time-domain and space-domain
filters will not be mixed in the following controller designs.

3.2.2.1. H2-type controller

The design presented in the following was already published in Pfingstner et al. [83].
However, this section will give much more details on the subject. An optimal control
problem formulation will be used to design a feedback controller for the main linac. This
problem can be written as

min
C

E
{
y[k + 1]Ty[k + 1]

}
(3.5)

where C is the set of all controller that internally stabilise the system. Such a quadratic
optimisation criterion can be solved with the help of the H2-optimisation theory (see
Skogestad and Postlethwaite [124]). For the system structure of the current applica-
tion the problem simplifies and can be solved by the well studied LQG controller (see
Kwakernaak and Sivan [65]). Such a feedback system consists of a state estimator
(Kalman-filter) and a state controller (LQR controller), which will be designed in the
following. For the further discussion we assume that the reader is familiar with the
state space representation of dynamic systems and has basic knowledge about Kalman-
filtering. A very brief introduction to Kalman-filtering is given in Appendix C.3. More
detailed information can be found in Grewal and Andrews [48] and Kalman [61].

The design of the LQR controller is a trivial problem in our case. This is due to the
fact that the system states x[k] can be directly and independently influenced by the
actuation u[k]; a fact of the assumption that the actuator dynamics is very fast. From
Eq. (3.1) it is clear that perfect ground motion suppression would be achieved, if the
actuation could be chosen as u[k] = −d[k+1]. The overall LQG control problem reduces
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therefore to a ground motion prediction problem, since the control task is trivial. The
prediction of ground motion is addressed by the use of Kalman-predictor, which is a
slightly modified version of a Kalman-filter.

To predict the ground motion of the next time step, a Kalman-predictor includes a
model of this stochastic process. This model has to have to form of a linear dynamic
system driven by white noise and hence the ground motion models in Sec. 2.1.2.4 cannot
be used directly. To find a dynamic system model that (driven by white noise) describes
the ground motion behaviour for all 2010 quadrupoles seems to be an almost impossi-
ble task. Every quadrupole is moved by a frequency dependent ground motion PSD,
which can be modelled with moderate effort. However, the quadrupoles do not move
independently, but are correlated. Considering the high number of inputs, the complex
form of the ground motion PSD and the correlation between the quadrupole motions, a
suboptimal approach seems to be more promising. In this approach, which is explained
in the following, several independent Kalman-predictors are used and the ground motion
correlation is neglected due to a lack of according models.

In order to reduce the complexity of the design, as a first step y[k] is multiplied with
the pseudo inverse R† = (RTR)−1RT , which leads to

R†y[k] = R† (Ru[k − 1] +Rd[k] + n[k]) = u[k − 1] + d[k] +R†n[k] (3.6)

The pseudo-inverse was used instead of the inverse R−1 to show that the technique can
also be used for non-square systems. The multiplication of y[k] by R† decouples the big
MIMO system into 2010 SISO systems and, at the same time, aims to reconstruct the
states x[k] = u[k − 1] + d[k] by inversion. However, the reconstruction is not perfect
since also the noise n[k] is multiplied withR†. For each of the 2010 loops an independent
Kalman-predictor is now used to reduce the noise level in the ground motion signal.

So far, this strategy neglects the fact that the motion of the individual quadrupoles
is correlated in order to simplify the design. However, there is a possibility to still
profit from the knowledge of existing correlation. Highly correlated motion corresponds
to ground motion with long wave lengths. Such smooth beam-line misalignments are
known to degrade beam parameters as emittance and luminosity much less than motion
with shorter wave lengths. The idea is now to filter out this smooth, harmless ground
motion and reduce in that way also the noise level. Such a filtering is especially effective,
since the BPM noise converts (in the main linac) after the multiplication with R† mainly
to a smooth signal. This interesting fact will be clarified in Sec. 3.2.2.2. Without filtering,
the signal R†n[k] would cause very large actuator excursions that would degrade the
beam quality and would also exceed the dynamic range of the actuators. The overall
feedback system is visualised in Fig. 3.5. In the following we will explain in more detail
the three subsystems of the entire control strategy: spatial ground motion filter, noise
model and augmented system including a ground motion model.

The ground motion filter has no time dependence and only acts in the spatial dimen-
sion. Since it filters out smooth ground motion of long wavelength (small wave number)
it is a spatial high pass filter. In the current implementation the vector R†y[k] is filtered
with the help a Hamming-window based, linear-phase, FIR filter created by the Matlab
function fir1 from the Signal Processing Toolbox. The cut-off wave length of this high-
pass filter was chosen to be 175 m, since these value produced a good trade-off between
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Figure 3.5.: Structure of the H2-type control algorithm. The multiplication of the BPM
measurements y[k] with the pseudo-inverse of the response matrix R† decouples the
inputs. The spatial filter removes smooth ground motion and measurement noise. For
each quadrupole one independent Kalman-predictor is used, which produces a prediction
d̂[k + 1] of the next ground motion vector d[k + 1].

noise reduction and signal distortion of the relevant ground motion. Ground motion
with shorter wave length degrade the emittance in the main linac strongly, which can be
explained by the betatron wavelengths (see Sec. 1.2) of the different main linac sectors
(see Schulte [109]). For the creation of the high-pass filter, the function fir1 needs the
parameters N (length (samples) of the filter function) and λN (normalised cut-off wave
length). Since we chose N to be 500, the filter covers a linac length of 500×∆LBPM ,
where ∆LBPM is the distance between two BPMs here approximated with 10 m. The
nth point of a 500 sample long FFT of the BPM readings, corresponds hence to a wave
length of λ[n] = 5000m/(n − 1), with n ∈ N+. A wave length of 175 m relates thus
to n ≈ 30, which leads to a normalised cut-off wave length of λN ≈ 30/250 ≈ 0.12,
since the function fir1 normalises the minimal resolvable wave length at data point
N/2 to 1. This filter is applied to the data with the Octave function filtfilt. This
function filters the data in forward and reverse direction, which results in a zero-phase
filtering, in which the order of the initial filter is doubled. The frequency representation
of this filter can be also applied to the 2D PSD of the ground motion (model B). The
result is an effective ground motion spectrum (see Fig. 3.6), which is the input for the
Kalman-predictor.

Further necessary information for the Kalman-predictor design are the measurement
noise properties. A Kalman-predictor requires the noise to be a white, Gaussian dis-
tributed stochastic process with zero mean. This is true for the assumed BPM noise
n[k], which has a covariance matrix

N = E
{
n[k]n[k]T

}
= σ2

nI, (3.7)

where E{.} is the expectation value, σn is the standard deviation of the BPM noise and
I is the identity matrix. The question remains what the properties of the transformed
BPM noise at the inputs of the Kalman-predictors are. Since both the multiplication
with R† and the spatial filtering are linear operations and contain no time-dependence,
the output noise n̂[k] is also white and Gaussian distributed with zero mean value. If
the spatial filter operation is symbolised with f(.), the covariance matrix N̂ of n̂[k] can

70



3.2. Linac controller

10
−2

10
0

10
−10

10
−5

10
0

f [Hz]

P
o
(2
π
f
)
[µ
m

2
/
H
z]

g.m. B

g.m. B, filt.

g.m. B, filt., model

Figure 3.6.: The ground motion spectrum
(model B) of the quadrupole movement is
plotted (black). Due to the spatial high-
pass filter the effective spectrum applied to
the Kalman-predictor differs (blue). This
effective spectrum is modelled by a dy-
namic system with white input noise (red).

0 500 1000 1500 2000
0

50

100

150

200

250

Kalman-filter index i [1]

σ
K
(i
)
[n
m
]

Figure 3.7.: Measurement noise standard
deviation σK(i) for the ith Kalman-
predictor. The two line-type formations in
the plot (≈ 70 nm and ≈ 120 nm) are due
to the alternating use of focusing and defo-
cusing quadrupoles in the main linac. Also
matching sections can be identified by ir-
regularities in the plot.

be written as

N̂ = E{n̂[k]n̂[k]T } = E{f(R†n[k])f(R†n[k])T }. (3.8)

Since f(.) is a linear operation,

f(R†n[k]) = f(r†[1]n[1]) + · · ·+ f(r†[N ]n[N ])

=
[

f(r†[1]) . . . f(r†[N ])
]
n[k] ≡ R†Fn[k]. (3.9)

Using the result in Eq. (3.9) in Eq. (3.8) gives the final result

N̂ = E{(R†Fn[k])(R†Fn[k])T } = R†FE{n[k]n[k]T }R†F
T

= σ2
nR
†
FR
†
F

T
, (3.10)

where in the last step Eq. (3.7) was used. The noise standard deviations of the individual

Kalman-predictors are σK =
√

diag(N̂), which are shown in Fig. 3.7.

In order to use a Kalman-predictor, not only the measurement noise n̂[k, i] but also
the state noise (in this case d[k, i]) has to be a white, Gaussian stochastic process with
zero mean value. While the last section showed that this is the case for n̂[k, i], it is not
true for d[k, i], which is the ground motion of the ith quadrupole. A common strategy
to deal with this problem is to model the state noise with a dynamic system driven by
white noise w[k, i]. Such a system is commonly called noise shaping filter. The Kalman-
predictor is then designed for the combined (augmented) system of the noise shaping
filter and the initial system model. To find such a noise shaping filter the relation

Po(ω) = |Hd(e
jωTd)|2Pi(ω) (3.11)

can be used, where Pi(ω) is the Power Spectral Density (PSD) of the input signal
to the noise shaping filter with the discrete-time frequency response Hd(e

jωTd), where
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Td =20 ms is the sampling time, and Po(ω) is the PSD of the output signal of the filter.
According to the requirements of the Kalman-predictor, the input signal is chosen to be
white noise which corresponds to a constant PSD. For convenience all signals are scaled
to [µm2] and therefore Pi(ω) is chosen to be Pi(ω) = 1µm2/Hz. This corresponds to a
variance of the state noise of

σd =

√∫ 25 Hz

-25 Hz
Pi(ω)df =

√
1 (µm)2/Hz (25 + 25) Hz = 7.07µm. (3.12)

Using the assumed Pi(ω) together with Eq. (3.11), the sought-after noise shaping filter
has to have the frequency response

|Hd(e
jωTd)| =

√
Po(ω). (3.13)

To find such a Hd(e
jωTd), we assume a rich enough form of Hd(e

jωTd , p) and vary its free
parameters p with a nonlinear optimisation algorithm to match Hd(e

jωTd , p) to
√
Po(ω).

Since
√
Po(ω) ranges over several orders of magnitude, a direct optimisation would not

match the two frequency responses well at high frequencies where Po(ω) drops quickly.
However, this frequency range is still very relevant for the emittance increase. To resolve
this problem a target function J(p) of the optimisation problem has been formalised in
a logarithmic scale. Consequently the optimisation problem can be written as

min
p
J(p) with J(p) =

∫ ωmax

ωmin

(log(
√
Po(ω))− log(|Hd(e

jωTd ,p)|))2 dω

2π
, (3.14)

Hd(e
jωTd ,p) =

k∏2
i=1 (z + ci)

∏3
i=1

(
z2 + aiz + bi

)∏6
i=4 (z2 + aiz + bi)

= k
z6 + α5z

5 + · · ·+ α1z + α0

z8 + β7z7 + · · ·+ β1z + β0

∣∣∣∣
z=ejωTd

, (3.15)

ωmin = 2π × 10−3 Hz and ωmax = 2π × 25 Hz, (3.16)

where p is the collection of k, ai, bi and ci and Td=20 ms is the sampling time. Note
that since |Hd(e

jωTd ,p)| is an even function with respect to ω, it is enough to formalise
the optimisation problem only over positive frequency. As a lower frequency, 0.001 Hz
was chosen since components below are not of interest for the dynamic alignment. To
ensure that Hd(e

jωTd ,p) is stable and minimum-phase it is sufficient to imposing the
constraints

|ci| < 1 i = 1, 2 (3.17)[
−1 −1
1 −1

] [
ai
bi

]
<

[
1
1

]
i = 1, . . . , 6 (3.18)

|bi| < 1 i = 1, . . . , 6 (3.19)

on the optimisation problem in Eq. (3.14). The conditions in Eqs. 3.18 and 3.19 have
been taken from Günther [50]. The optimisation problem above was solved with the
help of the Matlab function fmincon, which is the general purpose Matlab optimisa-
tion function for non-linear, constrained problems.The results are plotted in Fig. 3.6.

72



3.2. Linac controller

To implement a Kalman-predictor, Hd(z) has to be written in state space form. For
that reason, the representation of a transfer function in the canonical normal form (see
Föllinger [40]) is used. Since Hd(z) acts directly on the output y[k] (see Fig. 3.1), zHd(z)
has to be used instead of Hd(z). Introducing the state variables of the noise shaping
filter q[k], the system can now be written as

q[k + 1] =


0 1 . . . 0

0 0 1
...

...
. . . 1

−β0 −β1 −β2 . . . −β7

 q[k] +


0
...
0
1

w[k]

≡ Adq[k] + bdw[k] (3.20)

d[k + 1] =
[

0 kα0 kα1 . . . kα5 k
]
q[k] ≡ cTd q[k]. (3.21)

Augmenting this system with a decoupled accelerator system (one quadrupole) gives the
final system

x̂[k + 1] =

[
q[k + 1]
x[k + 1]

]
=

[
Ad 0
cTd 0

] [
q[k]
x[k]

]
+

[
0
1

]
u[k] +

[
bd
0

]
w[k] (3.22)

ŷ[k] =
[

0 1
]
x̂[k] + n̂[k] (3.23)

The system in Eqs. (3.22) and (3.23) can easily be checked to be observable by calculating
the observability matrix. However, it is not controllable. Obviously the ground motion
itself, which is estimated in the noise shaping filter can not be altered. This is not a
problem though, since the only state that should be altered, namely x[k], can directly
be influenced by the input u[k].

Since the system whose states have be to be estimated, the state noise and the mea-
surement noise are now defined, the classical Kalman-predictor formula can now be
applied. Since this is a standard procedure (see Appendix C.3), only the according
results are presented in Sec. 3.2.2.3.

3.2.2.2. Weighted SVD controller

A different approach to reduce the effect of BPM noise can be anticipated by analysing
the change of the average signal energy of BPM noise, when it is multiplied by an
arbitrary matrix. Assuming a random vector n[k], where each of the components ni[k],
i = 1, . . . , N is a Gaussian distributed random variable with zero mean and a variance
σn,then the expectation value of the energy of the signal, which is equal to the squared
l2-norm, can be written as

E{||n[k]||22} = E{n[k]Tn} = E

{
N∑
i=1

ni[k]2

}
=

N∑
i=1

E
{
ni[k]2

}
= Nσ2

n. (3.24)

To analyse the signal energy for n̂[k] = An[k], where A is an arbitrary matrix of
dimension (MA ×NA), it is useful the write A in its singular value decomposed (SVD)
form A = UAΣAV

T
A. The most important properties of the SVD are summarised in

Appendix C.4, while more detailed information can be found in Golub and van Loan [47].
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3. Controller design

The reader is only reminded that UA and V A are orthonormal matrices and ΣA is a
diagonal matrix containing the singular values s[i] on its main diagonal. Note that the
vector ñ[k] = V T

An[k] has the same l2-norm as n, since V A is orthonormal. Thus the
average signal energy of n̂[k] is

E
{
||n̂[k]||22

}
= E

{
n̂[k]T n̂[k]

}
= E

{
ñ[k]TΣT

AU
T
AUAΣAñ[k]

}
= E

{
NA∑
i=1

ñi[k]2s[i]2

}
= σ2

n

NA∑
i=1

s[i]2. (3.25)

In the third step the orthonormality of UA was used. The sum over the squared singular
values in the last expression of Eq. (3.25) is equivalent to the squared Frobenius norm,
which can be also efficiently computed as (see Golub and van Loan [47])

||A||F =

√√√√min(MA,NA)∑
i=1

s[i]2 =
√

tr
(
ATA

)
=

√√√√MA∑
i=1

NA∑
j=1

a2
ij with A ∈ RMA×NA .

(3.26)

In the following, we exploit this result to design an orbit feedback controller with strong
BPM noise demagnification. Similarly as for the H2-type controller (see Sec. 3.2.2.1),
the overall controller is split up into a time-dependent filter and a part that is only
dependent on the direction of the measurement vector y[k] + n[k] (spatial filter). We
first design the spatial filter and determine the time-dependent filter as a second step.
The goal for the design of the spatial filter is to reconstruct the system states x[k]
(quadrupole positions) from the beam oscillation signal y[k] and suppress at the same
time the BPM noise n[k]. Without BPM noise, the states x[k] could be reconstructed
perfectly by multiplying the measurement vector with the pseudo-inverse R†. However,
since R† has a large Frobenius norm the unavoidable BPM noise is amplified strongly by
this multiplication (see Eq. (3.25)). To resolve this problem, two possibilities to lower
the Frobenius norm of the spatial filter are presented in the following.

The first possibility to lower the Frobenius norm of the spatial filter is to use to use
less BPMs and correctors. This results in a matrixR† of lower dimension, which has also
a smaller Frobenius norm as can be seen from Eq. (3.26). This method is in agreement
with the conclusions from the literature review that the use of more correctors and BPMs
increases the BPM noise influence. However, a reduction of the number of correctors
and BPMs was excluded in Sec. 3.1.3 in order to mitigate ground motion as efficient as
possible.

Another way to reduce the Frobenius norm of the spatial filter has to be found. For
that reason, the measurement vector is multiplied not with the full matrix R†, but with

a modified matrix R̃
†

in which the magnitudes of the singular values s[i] have been
reduced compared to R†. From Eq. (3.25) it is clear that due to this modification the

Frobenius norm of R̃
†

is lowered than the one of R†. To determine, which singular
values s[i] of R† have to be lowered, they are plotted in Fig. 3.8. It can be observed
that most of the noise amplification comes from s[i] with a high index i and therefore a
reduction of these singular values lowers the noise amplification efficiently. It has to be
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verified however that this step does not jeopardise the ability of the feedback controller
to damp beam oscillations, i.e. to reconstruct the state vector x[k].

To address this point, the significance of the different singular values s[i] and their
according BPM and displacement directions u[i] and v[i] (columns of U and V ) for the
emittance growth has to be investigated. For this reason, simulations were performed in
which the main linac was misaligned with the displacement direction v[i]. The results
(shown in Fig. 3.9) make clear that beam oscillations (and hence emittance growth) are
very sensitive to the first few v[i], but quite insensitive to the other directions.

Considering the facts that the first few s[i] are capable of mitigating most of the
beam oscillations and at the same time only contribute very little to the BPM noise
amplification, it is possible to construct a very efficient spatial filter. This is done by

not multiplying y[k] with R̃
†

= V FΣ−1UT where F is a diagonal matrix used to scale
the singular values in Σ−1. After testing different configurations, the first 16 diagonal
entries of F are chosen to be 1, while all other entries are 0.0001.

As a time-dependent filter we use a simple integrator. Even though this choice seems
arbitrary and very simple it has a physical motivation. The ATL law states that ground
motion is a random walk in space and time domain. Thus, the change of the ground
motion displacement from one to the next time step is independent of the last change.
In the case of no BPM noise, the optimal controller action would be to correct the
already occurred ground motion change in the next time step, since the change cannot
be predicted in advance. This argumentation motivates to use of integrator action in the
controller. Note that the ATL law is only valid for long time scales. Thus improvements
of the time-dependent filter are possible for shorter time-scales, where predictions of
ground motion are possible. The complete feedback structure is visualised in Fig. 3.10.

Even though the controller design in this section was motivated by the need for an effi-
cient BPM noise filter, the final feedback system has the structure of an SVD controller.
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3. Controller design

Figure 3.10.: Structure of the all over feedback system. The spatial filter is based on a
proper weighting of the singular values of the matrixR† by the diagonal matrix F , which
contains the controller gain factors fi in its diagonal. The time-dependent parts of the
feedback controller are simple integrators with the frequency representation z/(z − 1)
using the Z-transform.

This can be seen, if we consider that the blocks z/(z − 1)I and V can be interchanged
in Fig. 3.10. An SVD controller is a decoupling controller which separates the global
system into N independent single-input single-output loops. This decoupling process
is decribed in detail in Sec. 3.2.3.1. For sake of completeness, the according transfer
functions are mentioned here, which have for the ith decoupled loop the simple form

Ŷ (z, i) = zĤ(z, i)Ŝ(z, i)P̂v(z, i)− T̂ (z, i)N̂(z, i)

= s[i]
z − 1

z − 1 + fi
P̂v(z, i)−

fi
z − 1− fi

N̂(z, i) (3.27)

where Ŝ(z, i) and −T̂ (z, i) are the sensitivity and noise transfer functions as defined
in Appendix C.2, Ĥ(z, i) = s[i]/z is the transfer function of the ith decoupled system
channel and fi is a controller gain factor. The terms P̂v(z, i) and N̂(z, i) correspond to
the spectra of the projected ground motion and noise signals and will be specified in
the next section (see Eq. (3.31) and Eq. (2.77)). In Eq. (3.27) s[i] refers to the singular
values in R† and not to the ones in R.

Note that if fi is equal to 0, the according loop is not closed anymore. The value of
the associated integrator in the controller cannot be influenced anymore. Indeed, every
transfer function from the input of this integrator to any other signal of the loop is
instable. To avoid this problem every fi is chosen to be different from 0, e.g. fi = 10−4.

3.2.2.3. Choice of the baseline L-FB

The performance of the H2 controller and the weighted SVD controller are compared
in Figs. 3.11 and 3.12. Without feedback control the single- and multi-pulse emittances
are very similar, which indicates that the beam jitter is small. When feedback control
is used, BPM noise is coupled back and creates mainly beam jitter.

The SVD controller is much better suited for orbit control than the H2 controller.
Even though the time-dependent filters of the SVD controller are not even optimized for
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Figure 3.12.: Multi-pulse projected emit-
tance growth at the end of the main linac
when applying ground motion generated
with model B. The H2 design even worsens
the emittance growth compared to no feed-
back control (black). The back-coupling of
BPM noise creates too much beam jitter.

noise suppression, the emittance preservation is already very good. The reason for this
success is the high efficiency of noise suppression of the spatial filter. In the H2 design,
not even the highly optimised Kalman-predictor can compensate for the inadequate noise
suppression of the Hamming-window based high-pass filtering. The noise level at the
input of the Kalman-predictors is orders of magnitude higher than the signal that should
be reconstructed.

SVD controller seem to work especially well on orbit control problems. The reason
for that is the nature of the accelerator systems. These systems have a large number
of inputs and outputs, which are connected quasi static. Due to the large size of the
system, decoupling is advisable to simplify the controller design, which is provided by
the SVD controller. Due to this special properties of the accelerator system, the SVD
controller decouples the system fully for all frequencies.

3.2.3. Controller optimisation

In this section, the full controller design of the L-FB for the main linac and BDS of
CLIC is presented. The L-FB has the form of an SVD controller, which proved to
be very well suited for the control of beam oscillations in the last section. The L-FB
is optimized to address the special characteristics of the accelerator and the expected
ground motion spectra. The design procedure can be split up into three parts. As a
first step, the large accelerator system is decoupled into independent channels. Each
individual channel controller can be further split up into a time-dependent and a spatial
filter. The material in this chapter has been partially published in Pfingstner et al. [89],
[86] and [87].
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3. Controller design

Figure 3.13.: Decoupling of the accelerator system. The accelerator system is pre-
multiplied with V and post-multiplied with UT , to form the virtual system S1 (left).
The system S1 can be transformed to a mathematical equivalent system S2 (right),
by taking into account that V and zI can be exchanged. Furthermore the identities
V V T = I and UTU = I are used, since U and V are orthonormal matrices. The
decoupling of the in- and outputs of S2 becomes apparent, if we consider that Σ is a
diagonal matrix.

3.2.3.1. Decoupling

The L-FB is a decoupling controller, which is a common feedback strategy for multi-
inputs, multi-output systems (MIMO). The principle of a decoupling controller is to
attach to the inputs and/or outputs of the system to be controlled another dynamic
system called compensator. The compensator is designed, such that in the combined
system each input influences only one output (decoupling). The problem of designing one
large controller for a MIMO system can therefore be split up into the design of several
single-input, single-output controller (SISO), which is a significant simplification. In
general a decoupling controller will not be able to decouple a given system over the
whole frequency range equally well. For the given accelerator problem this is possible
though, due to the simple structure of the accelerator system which has no internal back
coupling.

The special type of decoupling controller used for the L-FB of CLIC is called SVD
controller. The decoupling is achieved in this case with the help of the singular value
decomposition (SVD) of the orbit response matrix R = UΣV T . The most important
properties of the SVD are summarised in Appendix C.4 and more detailed information
can be found in Golub and van Loan [47]. Figure 3.13 illustrates the decoupling.

The new system variables of the decoupled system are given by the coordinate trans-
formations û[k] = V Tu[k], ŷ[k] = UTy[k] and x̂[k] = V Tx[k]. The new in- and outputs
do not correspond to individual tripods or BPMs anymore, but to in- and output vector
directions given by the columns of U and V . Thus, the change of one input û[k, i] varies
all tripod actuations u[k] with the pattern v[i], which further changes all beam positions
in the BPMs y[k]−n[k] with the pattern u[i]. Also the ground motion d[k+ 1] and the
BPM noise n[k] are transformed to d̂[k + 1] = V Td[k + 1] and n̂[k] = UTn[k], to form
a compact system representation.

In the following the properties of the decoupled measurement noise vector n̂[k] are
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3.2. Linac controller

derived. The calculation of the properties of the decoupled ground motion vector d̂[k]
is more technical than for the noise n̂[k] and is separately presented in Sec. 2.2.2. Since
the elements of n[k] are white, Gaussian, stochastic processes with zero mean, also the
elements of n̂[k] = UTn[k] have the same properties. The covariance matrix of n̂[k] can
be calculated by

N̂ = E
{
n̂[k]n̂[k]T

}
= E

{
(UTn[k])(UTn[k])T

}
= UTE

{
n[k]n[k]T

}
U . (3.28)

The matrix E
{
n[k]n[k]T

}
is a diagonal matrix, since the elements of nk are uncorrelated.

In case all BPMs have the same resolution σn, E
{
n[k]n[k]T

}
= σ2

nI, Eq. (3.28) reduces
to

N̂ = UTσ2
nIU = σ2

nI. (3.29)

The transformed noise n̂[k] has in this case exactly the same properties as n[k]. If not all
BPM have the same resolutions, which is the current baseline (different BPM resolutions
for the main linac and the BDS), Eq. (3.29) does not apply and Eq. (3.28) has to be
used. In this case the variance vector of the transformed noise n̂[k] is calculated as

σn̂ =

√
diag(N̂) =

√
diag(UTE {n[k]n[k]T }U). (3.30)

The fact that the elements of n̂[k] are correlated (non-zero off-diagonal elements of N̂)
is neglected for the controller design, since otherwise the decoupling in individual loop
could not be achieved. For the frequency representation of the measurement noise the
PSD is used. The PSD of the measurement noise of the ith decoupled channel N̂(ω, i)
is a constant N̂(ω, i) = N̂ [i], since the elements of n̂[k] are white stochastic processes.
The value of N̂ [i] can be calculated by

σ2
n̂[i] = 2

∫ fmax

fmin

N̂ [i]df = 2N̂i(fmax − fmin)

⇒ N̂ [i] =
σ2
n̂[i]

2(fmax − fmin)
. (3.31)

The factor 2 originates from the fact that the integration is only carried out over positive
frequencies (fmax > fmin > 0), where the property is used that the PSD is an even
function with respect to ω. The boundaries of integration fmax and fmin are chosen to
cover all frequency components of interest.

After the accelerator system has been decoupled, one SISO controller for each of the
2104 independent system channels can be designed. To reduce the number of controller
parameters, the choice was made to use the same time-dependent filter g(z) for all
channels. Additionally, one constant multiplicative gain factor fi per channel is added, to
be able to account for the different ground motion and noise excitations. The controller
of the ith channel has thus the form g(z)fi/s[i], where the division with the singular
value s[i] cancels out the gain factors of the decoupled channels, which have the transfer
function s[i]/z (see S2 in Fig. 3.13). The complete feedback system is depicted in
Fig. 3.14. In this plot the controller is split up into one part that is only time-dependent
(g(z)) and one part that is only dependent on the direction of the measurement vector
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Figure 3.14.: Block diagram of the L-FB. In this structural view, the matrices g(z)I and
V are exchanged, compared to the explanation in the text, which is mathematically
equivalent. The coefficients fi are collected in the diagonal matrix F . The reference
orbit r0 defines the target orbit and can also be used to create beam bumps along the
accelerator.

(V FΣ−1UT ). The latter part will be referred to in the following as a spatial filter,
since the measurement vector represents the spatial distribution of the beam oscillations
along the accelerator. The detailed design of the time-dependent and the spatial filter
is the topic of the next two sections.

3.2.3.2. Time-dependent filter

The time-dependent filter g(z) is composed of the four elements

g(z) = I(z)L(z)P (z)E(z). (3.32)

Each of the elements of g(z) represents a discrete-time filter. Since the design of these
filters is performed using the Z-transform, the reader is expected to be familiar with this
technique. A brief introduction to the Z-transform is given in Appendix C.1, while more
detailed information can be found in Oppenheim, Schafer and Buck [78] and Franklin,
Powell and Workman [42]. For the following description of the individual elements, basic
knowledge about the standard control loop and a technique called loop shaping will be
used. A short overview about these topics is given in Appendix C.2.

Integrator I(z): The central element of g(z) is the integrator

I(z) =
z

z − 1
. (3.33)

The integrating behaviour can be seen, when a signal filtered with I(z) is transformed
into the time domain.

Z−1 {Y (z) = I(z)X(z)} ⇒ y[k] = x[k] + y[k − 1] (3.34)

The use of the I(z) can be physically motivated by the ATL law for ground motion (see
Sec. 2.1). This law models the ground motion as a random walk (Brownian motion) in
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Figure 3.15.: Magnitude (left) and phase (right) of the frequency responses of the ele-
ments of g(z) and the normalised accelerator system a(z) = z−1. The term normalised
refers to the fact that each decoupled system channel has the form s[i]a(z), where s[i]
is the ith singular value. The s[i] is canceled by a multiplication with s[i]−1 in the
controller.

time and space. This means that the increments of the ground motion from one to the
next time step are independent. The controller can therefore not make any prediction
about the next ground motion disturbance, but can only try to correct the disturbance
of the last time step. This corresponds to the reconstruction of the quadrupole position
change between the last and the current time step by the multiplication with the spatial
filter and adding this correction negatively to the old actuator set points (integrating
behaviour). Indeed, if the gain fi = 1 and g(z) = I(z), the controller can correct every
ground motion disturbance fully within one time step. This corresponds to a dead-beat
feedback, which is optimal for the ground motion suppression, if the disturbance would
be only ATL motion and there would be no BPM noise.

The frequency response of I(z) is depicted in Fig. 3.15 (blue curve). The high gain
at low frequencies ensures good ground motion suppression, while the low gain at high
frequencies leads to a signal amplification in this frequency range. From Eq. (3.27) it is
clear that the gain factor fi cannot be chosen larger than 2 in case g(z) = I(z), since
otherwise the control loop gets instable which can be shown with the Nyquist criterion
(see Appendix C.2.2 for more explanations). Even though I(z) suppresses ground motion
effects already very well, the BPM noise is fully fed back into the accelerator system,
which degrades the luminosity considerable (see Sec. 4.2.1).

Low pass L(z): To improve the noise behaviour of the controller the low pass

L(z) =

z

(
1− e−

Td
T1

)
z − e−

Td
T1

with (3.35)

Td = 0.02 s and T1 = 0.1 s,

is added to g(z), where Td is the sampling time. The choice of the T1 was made due
to a simplified luminosity estimate presented in Sec. 3.4 according to model Eq. (2.74).
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As can be seen from the red curve in Fig. 3.15, L(z) demagnifies signals above its cutoff
frequency of about 1.4 Hz.

The design of L(z) has been carried out using the Z-transform. The operation Z-
transform should not be confused with the Z-transform described in Appendix C.1. The
Z-transform is a procedure to calculate the transfer function L(z) of a discrete system,
which consists of a continuous system L(s) (Laplace-transform representation) that has
at its input a zero-order hold element and is sampled at its output. This configuration
is typical for continuous systems, which are controlled by a discrete-time controller. The
according discrete time system transfer function L(z) can be calculated by

L(z) = (1− z−1)Z

{
L(s)

s

}
, (3.36)

where Z{.} corresponds to a series of the following sequential operations. The argument
(Laplace-transform of a system devided by s) is transformed into the time domain by
applying the inverse Laplace-transform L−1{.}. The resulting time function is sampled
at the points t = kTd. Finally, this series representing a time-discrete signal is Z-
transformed (see Gausch, Hofer and Schlacher [46] and Günther [50], where the latter
text uses instead of Z-transform the term ζ-transform). For the current application a
first-order low pass L(s) forms the basis for the calculation of

L̂(z) = (1− z−1)Z

{
1

s(1 + sT1)

}
, (3.37)

where T1 is the time constant of the low pass. The evaluation of Eq. (3.37) can be done
directly or via a table lookup (see Günther [50]). The resulting L̂(z) has a quite large
phase shift for high frequencies, which is disadvantageous for the stability properties.
Even though this phase change is indispensable for the sampled continuous system, it
can be avoided in the discrete realisation by choosing L(z) = zL̂(z), which gives the
final expression in Eq. (3.35).

Peak P (z): The element P (z) has to be introduced to address an issue arising from
the special topology of CLIC. The final doublet (FD) quadrupoles are stabilised by the
pre-isolator, while for the other quadrupoles of the main linac and BDS the quadrupole
stabilisation system is used (see Sec. 1.3.2). Since the frequency responses of both
systems are different (Fig. 1.8 (right)), even fully correlated ground motion would lead
to an offset between the FD and the rest of the quadrupoles. By neglecting the pre-
isolator tilt and correlation, a simplified model for the PSD of the differential motion
PFD(ω) can be found. Using the modelling framework presented in Sec. 2.2.1, PFD(ω)
can be written as

PFD(ω) = |GPRE(jω)−GSTAB(jω)|2
∫ +∞

−∞
PB10(ω, k)

dk

2π
, (3.38)

where GPRE(jω) and GSTAB(jω) are the frequency responses of the pre-isolator (point-
like model) and the quadrupole stabilisation. The term PB10(ω, k) symbolises the two-
dimensional PSD of the ground motion model B10. As can be seen in Fig. 3.17, the
offset is especially large around 0.3 Hz if the quadrupole stabilisation version 1 is used

82



3.2. Linac controller

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

Frequency [Hz]

M
a
g
n
it
u
d
e
[1
]

g(z)=I(z)

g(z)=I(z)L(z)

g(z)=I(z)L(z)P(z)

g(z)=I(z)L(z)P(z)E(z)

10
−1

10
0

10
1

−180

−160

−140

−120

−100

−80

−60

Frequency [Hz]

P
h
a
se

[◦
]

g(z)=I(z)
g(z)=I(z)L(z)
g(z)=I(z)L(z)P(z)
g(z)=I(z)L(z)P(z)E(z)

Figure 3.16.: Magnitude (left) and phase (right) of the frequency response of the open
loop transfer function (s[i]z−1)(g(z)fi/s[i]). The influence of the elements of g(z) is
investigated by sequentially adding them to the controller. Note that the depicted
frequency responses are symmetric around 25 Hz and periodic around 50 Hz, since they
are discrete-time. This means that frequencies with n×50 Hz, where n ∈ N, are treated
the same way by the controller.
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Figure 3.17.: The blue curve shows the PSD of the absolute motion of the FD (point-like
model). The PSD of the difference motion between the FD and rest of the accelerator
PFD(ω) is plotted in red, where the quadrupole stabilisation version 1 was used for all,
but the FD quadrupoles.

(see Sec. 1.3.2.4), since the ground motion has strong components in this frequency range
(microseismic peak).

The quadrupole offset can cause a beam offset in the FD, which results in secondary,
luminosity diluting effects. A model for the main effect is given in Sec. 2.3.2. An
experiment in form of a simulation was conducted, to verify that the offset of the FD
quadrupoles with respect to the other quadrupoles is not in a principle problem for the
luminosity. The FD was offset compared to the rest of the accelerator and the L-FB was
switched on. No ground motion or other imperfections were applied. After only a few
time steps the L-FB could recover the luminosity fully. This proved that the observed
luminosity decrease was not due to the kink in the beam trajectory when it was steered
into the FD. The beam could simply not be steered fast enough into the FD by the L-FB,
due the fast changing offset. Following this observations, it seemed to be advantageous
to improve the controller performance in the frequency range around 0.3 Hz with the
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element

P (z) =
(1− n1)(1− n2)

(1− z1)(1− z2)

(z − z1)(z − z2)

(z − n1)(z − n2)
with (3.39)

z1,2 = e(−1.43±2πi0.2)Td and n1,2 = e(−0.3±2πi0.3)Td . (3.40)

The magnitude of the frequency response of P (z) has a peak around 0.3 Hz. This peak
is designed to be as high as possible. At the same time, the peak should influence high
frequencies as little as possible in order to not amplify noise strongly (see dashed blue
curve in Fig. 3.15). The basis for the design of such a transfer function is a low pass
formed by the poles of P (z). This low pass is designed to have a considerable overshoot
before the cutoff frequency, which is achieved by a conjugate complex pair of poles. The
cutoff frequency is adjusted such that the peak of the overshoot is located at 0.3 Hz. To
not influence high frequencies, the zeros of P (z) cancel out the demagnification of the
low pass at high frequencies and also enhance the peak at 0.3 Hz.

The location of the poles and zeros was hand-tuned until the desired effect was
achieved. The poles and zeros are written as powers of e in Eq. (3.40). This form
makes it easy to design a stable and minimum phase P (z), by keeping the real part of
the argument negative.

Phase lifting element E(z): The combination of the elements I(z), L(z) and P (z)
leads to a relatively small phase margin ∆φc of the open loop frequency response (see
Appendix C.2.2 for a definition). This is disadvantageous for the stability properties of
the system, as is explained in Appendix C.2.2. To improve the situation a phase lifting
element

E(z) =
(1− n3)(z − z3)

(1− z3)(z − n3)
with (3.41)

z3 = e−17Td und n3 = e−38Td ,

is added to g(z). The pole and the zero are adjusted, such that ∆φc is increased to 36.3◦

as can be seen in Fig 3.16 (right). Note that this ∆φc corresponds to a fi = 1. As will
turn out in the design of the spatial filter, the gain factor fi are always chosen smaller
than 1, which further increases ∆φc. The noise is only slightly amplified by E(z) at high
frequencies as can be seen in Fig. 3.16 (left).

The complete time-dependent filter g(z) = I(z)L(z)P (z)E(z) results in the open loop
frequency response in Fig. 3.16 and the sensitivity and noise transfer functions Ŝ(z) and
−T̂ (z) in Fig. 3.18.

Comparison to the q-transform design: The controller transfer function g(z) found
in this section was designed by shaping the time-discrete, open loop frequency response
directly via proper compensator elements. Another commonly utilised design method
uses the q-transform to transform the time-discrete system into a quasi-continuous one.
The design can then be performed in the q-domain by using the well known continuous
loop shaping method. For sake of completeness, also the q-transfer function g(q) of the

84



3.2. Linac controller

10
−1

10
0

10
1

10
−2

10
−1

10
0

Frequency [Hz]

M
a
g
n
it
u
d
e
[1
]
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Figure 3.18.: Magnitude (left) and phase (right) of the decoupled sensitivity function
and noise frequency response Ŝ(ejωTd) and −T̂ (eiωTd) for fi = 1. The ground motion
is strongly demagnified at low frequencies by Ŝ(z). Notice the stronger demagnification
around 0.3 Hz, due to the element P (z). At higher frequencies, ground motion is only
modestly amplified around 5-6 Hz. The BPM noise is directly transmitted to the beam
by N̂(ejωTd) at low frequencies, but is demagnified at higher frequencies.

already designed controller g(z) is calculated, plotted and analysed below. The function
g(q) can be calculated by applying the bilinear transform

z =
1 + q Td2
1− q Td2

(3.42)

to g(z) in Eq. (3.32) (variable substitution), which results in

g(q) = I(q)L(q)E(q)P (q) (3.43)

with

I(q) =
q Td2 + 1

qTd
(3.44)

L(q) =

q Td2

(
1− e−

Td
T1

)
+

(
1− e−

Td
T1

)
q Td2

(
1 + e

−Td
T1

)
+

(
1− e−

Td
T1

) (3.45)

P (q) =
(1− n1) (1− n2)

(1− z1) (1− z2)

[
q Td2 (1 + z1) + (1− z1)

q Td2 (1 + n1) + (1− n1)

][
q Td2 (1 + z2) + (1− z2)

q Td2 (1 + n2) + (1− n2)

]
(3.46)

E(q) =
(1− n3)

(1− z3)

[
q Td2 (1 + z3) + (1− z3)

q Td2 (1 + n3) + (1− n3)

]
. (3.47)

The element I(q) is a continuous proportional integral compensator (PI), P (q) a continu-
ous lead-lag element and E(q) a continuous lead-element. The q-frequency responses to
these q-transfer functions are given by evaluating the complex variable q at jΩ. To plot
the open loop q-frequency response in Fig. 3.19, also the time-discrete transfer function
of a decoupled accelerator channel Ĥ(z, i) = s[i]/z, where s[i] is the singular value of
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Figure 3.19.: Magnitude (left) and phase (right) of the decoupled open loop q-frequency
response Ĥ(Ω, i)g(Ω) and the discrete-time frequency response Ĥ(ejωTd , i)g(ejωTd),
where s[i] (singular value of the decoupled channel) is assumed to be 1. The two fre-
quency responses are very similar for ωTd � 1. For higher angular frequencies the two
functions differ, which is a well known property of the q-transform.

the decoupled channel, has to be q-transformed which gives

Ĥ(q, i) =
−qs[i]Td2 + s[i]

q Td2 + 1
. (3.48)

Since the bilinear transform is only distorting the frequency response along the angular
frequency axis, the phase margin ∆φc does not change and all statements regarding the
stability, made in the section about the compensator E(z), are still valid. Additionally,
the characteristic values of a step response, the rise time Tr (time the tangent on the
step response at 50 % of the step size needs to rise from 10 % to 90 % of the step size)
and the overshooting width uo can be estimated from the q-frequency response with the
empirical formula

ΩcTr ≈ 1.2 and (3.49)

∆φc[
◦] + uo[%] ≈ 70, (3.50)

which are taken from Gausch, Hofer and Schlacher [46]. Applying the values Ωc =
27.99 rad/s and ∆φc = 36.3◦ to these formula, the characteristic values of a setpoint
step Tr ≈ 43 ms and uo ≈ 34 % are found. It should be mentioned however that the
controller is optimised for disturbance rejection and not for setpoint following.

3.2.3.3. Spatial filter

In this section the design of the diagonal elements fi of the diagonal scaling matrix F
is presented. In case the scaling would not be used, or equivalently F = I, the spatial
filter V FΣ−1UT would be simply the pseudo-inverse of the matrix R. The technique
of scaling the singular values for the design of orbit feedback controller was already used
before in literature. For example, Rowland et al. [104] uses a Tikhonov regularisation
(see Neumaier [77] for details to this method) to decrease the conditioning number (ratio
of the largest to the smallest singular value) for R to improve the numerical properties of
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3.2. Linac controller

the calculation of the pseudo-inverse. The scaling presented in this section goes beyond
an improvement of the matrix inversion properties. The fi are chosen to minimise the
output signal ŷ[k, i] of each individual loop, by using models of the disturbance (ground
motion) and measurement noise. Since the spectra of these input signals vary from
channel to channel, it is necessary to optimise each fi individual. The PSD of the
output signal ŷ[k, i] of the ith control loop can be calculated as

Ŷ (ω, i) =
∣∣∣zĤ(ejωTd , i)Ŝ(ejωTd , i)

∣∣∣2 P̂v(ω, i) +
∣∣∣−T̂ (ejωTd , i)

∣∣∣2 N̂(ω, i), (3.51)

where the PSD of the virtual ground motion excitation and the measurement noise are
symbolised with P̂v(ω, i) and N̂(ω, i). The terms Ŝ(ejωTd , i) and −T̂ (ejωTd , i) are the
sensitivity function and noise frequency respons of the ith decoupled closed loop. Their
Z-transforms are given by

Ŝ(z, i) =
1

1 + Ĥ(z, i)Ĉ(z, i)
and T̂ (z, i) =

Ĥ(z, i)Ĉ(z, i)

1 + Ĥ(z, i)Ĉ(z, i)
with (3.52)

Ĥ(z, i) =
s[i]

z
and Ĉ(z, i) = g(z)

fi
s[i]

, (3.53)

where Ĥ(z, i) and Ĉ(z, i) are the transfer functions of a decoupled accelerator channel
and the according controller. For a derivation of the expressions for Ŝ(z, i) and T̂ (z, i),
please refer to Appendix C.2. The factor z in Eq. (3.52) originates from the way the
ground motion is modelled, which can be seen in Fig. 3.13. To calculate Ŷ (ω, i) the
PSDs of the ground motion P̂v(ω, i) and the BPM noise N̂(ω, i) have to be known. The
derivation of these spectra was carried out in Eq. (3.30) and Eq. (3.31) for N̂(ω, i) and
in Sec. 2.2.4 and Sec. 2.2.2 for P̂v(ω, i).

Even though the expressions in Sec. 2.2.2 offer a comfortable way to calculate P̂v(ω, i)
in a closed form, some numerical problems were encountered in the practical application.
These problems arise from inaccuracies of the response matrix R, which is used for
the calculation of P̂v(ω, i). When calculating the matrix R with the beam tracking
code PLACET, only a strongly reduced number of particles, compared to the real CLIC
beam, can be used in the simulations. This limited number of particles leads to a coarser
beam distribution as in reality, which results in artificial beam fluctuations measured
by the BPMs (Schottky noise). These artificial fluctuations create errors in R. For
the presented results a different way for the calculation of P̂v(ω, i) was chosen. Via
simulations with the assumed ground motion model, the output signals ŷ[k, i] were
created, stored and Fourier-transformed. The L-FB was turned off, but the quadrupole
stabilisation was used. Since these signals are random processes, the simulations had to
be carried out for several different seeds of the ground motion random generator and the
resulting signal spectra were averaged.

Since all involved transfer functions and signals are now defined, the optimal value
for fi can be found by minimising the power of each signal ŷ[k, i]. From Parseval’s
theorem it is known that this minimisation problem is equivalent to the minimisation
of the L2-norm of the Fourier-transform of ŷ[k, i], which corresponds in this case to the
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PSD Ŷ (ω, i). Hence, the fi can be found by

min
fi
||ŷ[k, i]||pow = min

fi

∫ +∞

ω=−∞
Ŷ (ω, i, fi)dω ∀i : i = 1, 2, . . . 2104 (3.54)

Since there is no closed expression for P̂v(ω, i) available, the integral in Eq. (3.54) was
calculated numerically and the minimisation problem was solved with a parameter scan
of fi. The integration was only carried out over positive frequencies, since Ŷ (ω, i, fi) is
symmetric and the negative frequencies can be taken into account by a multiplication
with a factor 2. Furthermore, the integration is not carried out from 0 to +∞, but only
over a large enough frequencies range to cover all significant frequency components.

The luminosity preservation performance of the L-FB can be further improved, if
also the action of the IP-FB is taken into account. As explained in Sec. 1.2, the
beam size growth at the IP but also the beam-beam offset create luminosity loss. The
L-FB influences both effects with the same frequency response, since the loop out-
put ŷ[k, i] corresponds to a beam motion with the spatial shape u[i], which creates
beam size growth as well as beam-beam offset. The beam-beam offset however, is
additionally multiplied by the disturbance rejection frequency response of the IP-FB
HIP (ejωTd)SIP,2(ejωTd), where HIP (ejωTd) = z−1 and SIP,2(ejωTd) is given in Eq. (3.73).

Hence, for the beam growth the PSD Ŷ (ω, i) is relevant, while the beam-beam offset is

described by
∣∣z−1SIP,2(ejωTd)

∣∣2 Ŷv(ω, i). To combine both signals into one joined cost
function, the relevance of the signals for the according luminosity loss has to be deter-
mined for each decoupled loop.

For this reason, a simulation was performed, which is very similar to the one described
in Sec. 2.2.3, where a model for the luminosity loss due to ground motion was created.
While in Sec. 2.2.3, the elements of the accelerator were misaligned with sine and cosine
waves, the input vectors of the decoupled system channels v[i] are now used to misalign
the beam line. The vectors v[i] only cover either the electron or the positron part of
the accelerator. To evaluate the effect on the luminosity correctly, both parts have to
be misaligned however. Therefore, new input directions ṽ[i] have to be defined. These
ṽ[i] can be found by performing an SVD on an orbit response matrix R̃, which covers
both accelerator arms. To connect both arms in R̃ a virtual BPM at the IP was added,
which leads to the definition

R̃ =

[ [
RIP

0m×n

] [
0m×n

RIP,F

] ]
∈ R(2m+1)×n with (3.55)

RIP =

[
R
rTIP

]
∈ R(m+1)×n and (3.56)

RIP,F [i, j] = RIP [m− i+ 2, n− j + 1] ∈ R(m+1)×n. (3.57)

In Eq. (3.56), the vector rIP describes the influence of the quadrupole offsets on the
beam offset at the virtually added BPM at the IP. The new matrix for one accelerator
arm RIP can be combined with its flipped version RIP,F to form the response matrix
R̃ for the complete accelerator complex. For the combination the fact is used that both
accelerator parts are symmetric. The flipping of R̃ (defined in Eq. (3.57)) is necessary to
allow a sequential ordering of the BPMs and quadrupoles along the accelerator. When
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the vectors ṽ[j], which corresponds to the sensitivity functions G̃2
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Sec. 2.2.4. The red curve correspond to the normalised luminosity loss G2

∆L,c[i], if
the beams where shifted against each other until the max. luminosity value is reached
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∆L[i] = G̃2
∆L,c[i] + G̃2

∆L,o[i], where the index o stands for offset.

the matrix R̃ is decomposed by the SVD, it turns out that the 4208 input directions
ṽ[j] are closely related to the 2104 input directions of one accelerator arm v[i]. A pair
of two ṽ[j] can always be created out of one corresponding v[i] by

v[i] ∈ Rn → ṽ[2i− 1] =

[
v[i]
vF [i]

]
and ṽ[2i] =

[
v[i]
−vF [i]

]
(3.58)

where again vF [i] is the flipped version of the vector v[i]. The vectors ṽ[2i−1] and ṽ[2i]
form a pair of symmetric and anti-symmetric misalignments, similar to the cosine and
sine waves in Sec. 2.2.3. If two beams are tracked through the accelerator misaligned with
ṽ[2i − 1], they collide with no beam-beam offset, since the electron and positron beam
is influenced exactly the same way. The according luminosity loss is solely due to the
beam size growth. To be able to separate the effects of beam-beam offset and beam size
growth, the beams are shifted against each other until the maximum luminosity value is
observed. If the accelerator is misaligned with ṽ[2i], the beam size growth as well as the
beam-beam offset contributes to the luminosity loss. Note that the luminosity loss only
due to beam size growth does not need to be the same for ṽ[2i−1] and ṽ[2i]. This is due
to the fact that the 2-dimensional beam histogram in vertical and horizontal direction is
not necessarily symmetric, due to nonlinear effects in the BDS. The simulations had to
be carried out for different excitation amplitudes to stay in a proper luminosity regime
(see Sec. 2.2.3 for more explanations). The final results are the sensitivity functions
G̃∆L[i] and G̃∆L,c[i], which are depicted in Fig. 3.20.

In the practical realisation two identical, independent L-FBs are used for the electron
and positron part of the accelerator. These controller process ṽ[2i−1] and ṽ[2i] the same
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Figure 3.21.: Gain factors fi of the decoupled control loops for the horizontal (left) and
vertical (right) direction. All 2104 fi are smaller than 1. The fi have been artificially
limited to a value of 10−6 to not create any open control loops.

way, since both directions are observed through the direction v[i]. Since ṽ[2i−1] and ṽ[2i]
are assumed to be independent, the effects of both directions can be added quadratically.
By using further the fact that the luminosity depends quadratically on ṽ[j], a combined
luminosity effect for one controller direction can be calculated as ∆L[i] = G̃2

∆L[2i− 1] +
G̃2

∆L[2i] and ∆Lc[i] = G̃2
∆L,c[2i − 1] + G̃2

∆L,c[2i]. By considering that the luminosity
loss only due to the offset ∆Lo[i] can be approximated for small values by ∆Lo[i] =
∆L[i]−∆Lc[i], a modified cost function can be formulated as

min
fi

∫ +∞

ω=−∞

[
∆Lc[i]
∆L[i]

Ŷ (ω, fi) +
∆Lo[i]
∆L[i]

∣∣z−1SIP,2(ejωTd)
∣∣2 Ŷ (ω, fi)

]
dω, (3.59)

where the z−1 models the behaviour of the actuator setpoint and beam-beam offset (IP
system). The thereby calculated gain factors fi are depicted in Fig. 3.21. Now that
the fi are defined the diagonal elements of F can be calculated as fis[i]

−1. Since the
singular values s[i] become very small for higher channels i, fis[i]

−1 tend to become large
for high values of i. As a result the actuation of the tripods, due to control loops with
high i is very large, even though the according luminosity loss is not very significant (see
Fig. 3.20). Therefore, it turned out to be useful to limit the diagonal elements of F , with
i > 300, to a maximal value of 0.01. The according spatial filter has a Frobenius norm
of 0.12, compared to a value of 1478.1 for the complete inversion of R, which shows the
strong BPM noise demagnification.

3.2.4. Discussion of the novel controller design method

After an extensive literature review, the option using as many actuators and sensors as
possible for the orbit control was chosen. This choice ensures optimal beam oscillation
damping, but makes the controller performance in general more sensitive to measurement
noise and actuator imperfections. Given the actuators and sensors, two control structures
were tested on the main linac. A decoupling design using the SVD algorithm was superior
to a design using Kalman-predictors. The success of the SVD controller is based on the
fact that the system to be controlled is very large and a simplification is necessary
(with full system knowledge, the Kalman-predictor would the optimal solution). The
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simplification by the decoupling of the SVD controller is especially effective, since in the
decoupled control loops either the effect of ground motion or of BPM noise is dominant.
Therefore, both signals can be treated differently by choosing different controller for
different decoupled accelerator channels. Another reason for the effectiveness of the
SVD controller is that the decoupling can be achieved for all frequencies, due to the
simple dynamic structure of the accelerator system. SVD controller are hence especially
well suited for the orbit control problem, which is consistent with the frequent use in
storage rings.

This outcome gave rise to the development of the final, semi-automatic design proce-
dure for the main linac and the BDS of CLIC. It consists of the following three steps.

1. Decoupling of inputs and outputs

2. Time-dependent filter design for the decoupled channels

3. Spatial filter design for the decoupled channels

In the first step the two matrices U and V are calculated with the SVD algorithm.
By pre-multiplying the inputs with V and the outputs with UT the system is decou-
pled. The large control problem can hence be split up into smaller sub-problems, which
simplifies the design. In the second and third step, one individual controller is devel-
oped for each decoupled channel. To reduce the number of open parameters one equally
parametrised time-dependent filter is used for each channel. Additionally one open gain
parameter per channel (spatial filter) is used to minimise the channel output signal
with respect to the excitation by ground motion and measurement noise. While the
time-dependent filter is designed by the user manually, the determination of the open
parameter is performed by an automatic minimisation algorithm. A second interpreta-
tion to the decoupling controller has been given. The decoupling matrices (U and V )
and the gain parameters can be combined to form a matrix that can be interpreted as a
measurement noise filter. It was found that the effectiveness of the noise filtering can be
characterised by the reduction of the Frobenius norm of the measurement noise filter. In
the case of CLIC the Frobenius norm was reduced from 1454.54 (no optimisation of the
open parameters, but gains only set to one) to 0.19 (optimised parameters) in horizontal
direction and from 1478.14 to 0.12 in vertical direction.

The presented algorithm has several advantages.

1. The generic design procedure can be adapted easily to other linacs and after a
modification of the ground motion model also to storage rings.

2. The controller design makes it possible to incorporate models of the ground mo-
tion and the measurement noise. This closes the gap between the ground motion
research of the accelerator community in the last decades and the orbit controller
design practice.

3. The time-dependent filter enables the user to incorporate expert knowledge, e.g.
element P (z) in Sec. 3.2.3.2.

4. The tedious task of optimising each decoupled loop (2104 in the case of CLIC) by
hand is taken over by an automated algorithm. This eases the task of the designer.
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5. The design time is significantly reduced.

6. As will be seen in Sec. 4.1, the controller performs better than a hand-optimised
controller in the case of CLIC.

7. In Sec. 4.2, it will turn out that the controller is robust against imperfections,
especially with respect to measurement noise.

8. Since the design is based on SVD decoupling, the overall controller is not too
complicated and important insights are not lost.

3.3. Alternative designs for hardware cost reduction

In this section , two cost reduction options, named option 1 and option 2, for the
quadrupole stabilisation of CLIC are investigated. The investigations are restricted to
simplified, analytical estimates, which can be used to identify problems early and to
get a first idea of necessary time constants of hardware components. Detailed full-scale
simulations will have to verify the results presented. Additionally to the investigation
of cost reduction options, a performance estimate for the baseline design, consisting of a
simplified version of the L-FB (Sec. 3.2.3) in connection with the quadrupole stabilisation
V1 or V2 (Sec. 1.3.2.4), will be given. The estimates for the baseline design have been
an important information for the design of the L-FB.

The cost reduction option 1 aims to avoid the relatively expensive tripod system for the
quadrupole stabilisation and the L-FB. Instead of moving the quadrupole mechanically,
a dipole magnet is used as a corrector. The sensor measuring the quadrupole motion is
now used in a feed forward fashion, since the quadrupole position itself is not changed by
the quadrupole stabilisation anymore but only the magnetic centre of the quadrupole.

The cost reduction option 2 goes even one step further than option 1. It avoids not
only the use of the tripod system, but also aims to reduce the number of corrector mag-
nets. This does not result in a fundamental difference for the L-FB, but it does for the
quadrupole stabilisation. Since not every quadrupole is equipped with a corrector any-
more, the stabilisation task for these quadrupoles has to be taken over by the remaining
correctors. Hence, the quadrupole stabilisation for the option 2 is a global algorithm
similar to the L-FB, while the other quadrupole stabilisation options are correcting the
motion of a quadrupole locally. For such a global algorithm network delays Tt are indis-
pensible, since the sensor data have to be collected centrally and after some calculation
have to be distributed to the correctors again. The delay time limits the bandwidth of
the quadrupole stabilisation and consequently the performance at high frequencies.

The system structure for option 1 and option 2 is depicted in Fig. 3.22. To evaluate
the effect of these options, but also of the simplified baseline design, the luminosity
model presented in Sec. 2.2.3 is used. Using the according formulas the luminosity loss
can be calculated as

∆L =
1

(2π)2

∫∫ +∞

−∞
G̃2

∆L(k)
∣∣S(ejωTd)

∣∣2 ∣∣SST (ejωTd,ST )
∣∣PB10(ω, k)dωdk, (3.60)
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Figure 3.22.: The ground motion d(t) moves the magnetic centre m(t) of the quadrupole.
This is counteracted in two ways. Ground motion measurements by a sensor with the
transfer function S(s) are used in the feed forward path S(s)D(s), where D(s) is the
transfer function of the time delay due to the network communication and the limited
processing speed, to reduce the change of the magnetic centre with the help of the
actuator A(s). The feedback path (L-FB), consists of a sampling element with sampling
time Td, a discrete controller C(z) and a zero-order hold element, also modifies the
magnetic centre via A(s). In the depicted model the L-FB is assumed to act directly on
the ground motion instead of the beam orbit, which is a simplification to the reality.

where SST (ejωTd,ST ) and S(ejωTd) are the discrete frequency responses of the closed loop
disturbance rejection transfer function of the quadrupole stabilisation and the sensitiv-
ity function of the L-FB. The term G̃2

∆L(k) is the sensitivity function for luminosity
(stabilised version, see Sec. 3.2.3). Note that the used luminosity model neglects the
spatial properties of the L-FB. Hence, for option 2 only the effects due to the introduced
delay time Tt can be studied, but not the performance reduction due to reduction of the
number of used correctors (worse beam steering).

In the case the baseline option is used, SST (ejωTd,ST ) is given numerically by the curves
in Fig. 1.8 (right). If, on the other hand, the feed forward options are investigated, the
frequency response is given by

SST (jω) = 1−B(jω)D(jω)A(jω) with (3.61)

D(jω) = e−jωTt , (3.62)

where A(jω) and B(jω) are the frequency responses of the used actuator and sensor.
The expression D(jω) in Eq. (3.62) corresponds to a time delay by Tt. Two types of
sensors are tested: the CMG-6T seismometer from Guralp Systems B1(s) and a proposed
geophone called L4C B2(s). Note that the baseline quadrupole stabilisations version 1
and 2, use the same sensors as the feed forward options, but in a feedback configuration.
The frequency responses of B1(s) and B2(s) are given in numerical form and are plotted
in Fig. 3.22 (left). Also two different types of actuators,

A1(s) =
1

1 + T1s
and A2(s) =

1

(1 + T1s)2
, (3.63)

were tested. The first actuator A1(s) corresponds to a first order low pass, while A2(s)
is a second order low pass. Since A2(s) has two equal real poles, it models the case of
adiabatic damping. The parameter T1 is the time a first order low pass needs to reaches
63.2 % of the amplitude of an applied step function.
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Contrary to the feed forward transfer function, the disturbance rejection function of
the L-FB is a discrete-time function given by

S(z) =
1

1 + C(z)A(z)
, with (3.64)

C(z) =
z

z − 1
, (3.65)

where C(z) is the controller transfer function and A(z) the discretised form of the con-
tinuous actuator A(s). As can be seen from Eq. (3.65), only a simple integrator is used
as a controller. This is a simplification compared to the time-dependent filter g(z) de-
signed in Sec. 3.2.3.2. The reasoning behind this simplification is that the actuator A(z)
takes over the role of the low pass L(z). The elements P (z) and E(s) included in g(z)
are also neglected, since their impact on the transfer function is small. No BPM noise
is included in the estimations.

The sampled A(z) can be calculated from A(s) with the help of the Z-transform. This
transform was already introduced for the design of the low pass L(z) in Sec. 3.2.3.2. In
the same section, the Z-transform of A1(s) was already derived and is restated here as(

1− e−
Td
T1

)
z − e−

Td
T1

with Td = 0.02 s. (3.66)

The Z-transform of A2(s) is calculated by the formula

A2(z) = (1− z−1)Z

{
1

s(1 + sT1)2

}
. (3.67)

To be able to evaluate Eq. (3.67) the argument of Z {.} has to be expanded into partial
fractions

A2(s) =
1

(1− T1s)2
=

1

s
+

1

s+ 1
T1

− 1

T1

1

(s+ 1
T1

)2
. (3.68)

Using Eq. (3.68) in Eq. (3.67) and considering that the Z-transform is a linear operation,
A2(z) can be evaluated with a table look-up and after short calculation to

A2(z) =
1− e−

Td
T1

z − e−
Td
T1

− Td
T1

(z − 1)e
−Td
T1

(z − e−
Td
T1 )2

. (3.69)

In Figs. 3.24 and 3.25, the results of the evaluation of Eq. (3.60) for different param-
eters are presented. Figure 3.24 shows the estimated luminosity loss due to different
actuator dynamics for the baseline design with quadrupole stabilisation V1 or V2. Since
the frequency responses of the baseline quadrupole stabilisation versions are only given
in closed form, the effect of the actuator dynamics is only taken into account for the L-
FB. Obviously, the quadrupole stabilisation V2 produces a much smaller luminosity loss
than V1. This result is consistant with the full-scale simulations presented in Sec. 4.1.
The quadrupole stabilisation V1 produces the best results with a first-order low pass
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actuator with T1 = 0.1 s, even though BPM noise is not taken into account. In the full
design of the L-FB, this result is considered by using the low pass L(z) as an element
of the time-dependent filter g(z) in Sec. 3.2.3.2. The result also shows that the actuator
dynamics are not as crucial for the L-FB as initially expected and that a slower actuator
is even beneficial for the luminosity performance. It is further interesting to see, that the
use of a second order low pass A2(s) can lead to performance problems for T1 ≈ 40 ms.
The problem arises due to the fact that the actuator has a too large phase advance and
causes thereby instabilities. The phase of the actuator is therefore more important than
the time constant T1, which should be considered for the design the actuators.

In Fig. 3.25 (left), the cost reduction option 1 is investigated. Since the actuator is
now also taken into account for the quadrupole stabilisation, the luminosity performance
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Figure 3.25.: Luminosity loss estimate due to ground motion for the cost reduction op-
tions 1 (left) and 2 (right) and a simplified version of the L-FB.
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is much more sensitive to T1. The Guralp seismometer B1(s) achieves better results if
compared to the proposed geophone B2(s). Note that this is in contrast to the results for
the baseline versions in Fig. 3.24, in which the feedback system based on the proposed
geophone performed better than the feedback system using the Guralp seismometer.
The luminosity peaks due to the instabilities in Fig. 3.24 are not visible in Fig. 3.25,
since they occur not before T1 of about 40 ms, which exceeds the scale of the plot. It
can be concluded, that for option 1, the sensor B1(s) works better than B2(s) and that
the actuator A1(s) is preferable to A2(s). A time constant T1 of 0 to 10 ms would be
acceptable.

Finally, the cost reduction option 2 is investigated in Fig. 3.25 (right). Only the
actuator A1(s) is considered with two different time constants T1 = 0 ms and T1 = 3 ms.
It is not surprising that the actor with T1 = 0 ms produces better results than the one
with T1 = 3 ms. Also the sensor B1(s) performs better than B2(s), which has already
been observed for option 1. For the best performing configuration, using B1(s) and
A1(s), a network delay Tt of 0 to 8 ms is acceptable.

Concluding, one can say that the estimates presented in this section indicate that both
cost reduction options are capable of preserving the luminosity to an acceptable level.
This results have to be checked with more detailed simulation to verify the validity of
the made assumptions.

3.4. IP controller

In this section, we will describe control algorithms for the IP feedback (IP-FB). The
following explanations assume that the reader is familiar with the functional principle
of the IP-FB as presented in Sec. 1.3.2.2. The final version of the IP-FB is developed
by a collaboration of the institutes LAPP and SYMME (see Caron et al. [20]). The
feedback controller presented in this section is a complementary design. While the
LAPP-SYMME controller is a complex algorithm, the presented feedback strategies are
simpler but still effective. These simpler designs allow to change the feedback algorithms
fast and therefore to respond quickly to system changes. This is especially important for
the optimisation phase of the different mitigation methods with respect to each other,
where parameter changes occur often.

An introduction to the purpose and structure of the IP feedback was already given in
Sec. 1.3.2.2. To rephrase shortly, the task of the IP feedback is to reduce the beam-beam
offset at the IP. This offset is induced mainly by a misalignment of the final doublets
(FD) of the electron and positron BDS. The main cause of this misalignment is ground
motion. Since the beam-beam offset is much more sensitive to the misalignment of
magnets in the FD than to misalignment of other magnets, a special counter measure
has been designed: a mechanical pre-isolator (see Sec. 1.3.2.5). This pre-isolator is a
huge mass-spring system, which damps high-frequent ground motion efficiently.

For the design of the controller in this section, it is essential to have a model of the
spectrum of the beam-beam offset. Such a model has been developed in Sec. 2.3.1 and
includes the ground motion spectrum, the frequency response of the pre-isolator and the
transfer of the beams from the magnets of the FD to the IP. Including in this model also
the effect of measurement noise with a PSD NIP (ω), the beam jitter produced before
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Figure 3.26.: Comparison of the integrated RMS of the beam-beam offset δy for three
IP-FBs. On the left side no upstream jitter and no BPM noise is used. Both double
integrator controller (blue and red) outperform the integrator controller (black) easily.
In the right side upstream beam jitter (σd= 0.2 nm) and BPM jitter (σn= 20 pm) are in-
cluded in the simulations. The performance of the double integrator feedback degraded.
Notice that the best controller without disturbances and noise (red curve left) is the
worst with them (red curve right).

the FD with a PSD DIP (ω), the variance of the beam-beam offset σ2
δ = E{y2

δ} at the
IP can be written as

σ2
δ =

+∞∫
−∞

|TIP (ejωTd)|2NIP (ω) +

+∞∫
−∞

P (ω, k) |Gδ(jω, k)|2
∣∣SIP (ejωTd)

∣∣2 dk

2π

+DIP (ω)
∣∣HIP (ejωTd)SIP (ejωTd)

∣∣2 dω

2π
. (3.70)

The term Gδ(ω, k) is the sensitivity function for the beam-beam offset as calculated in
Sec. 2.3.1. The terms SIP (ejωTd) and −TIP (ejωTd) are the sensitivity function and noise
frequency responses of the IP-FB and HIP (ejωTd) = e−jωTd is the frequency response of
system to be controlled. We will in the following only consider the vertical beam-beam
offset. The horizontal direction can be treated analogously.

The upstream beam jitter and the measurement noise are modelled as white, Gaussian
stochastic processes with zero mean. Thus DIP (ω, k) and NIP (ω, k) are constant PSDs,
which amplitudes are determined by the assumed standard deviations σd and σn. From
simulations an estimate for σd of 20 pm was obtained, where the result depends strongly
on the ground motion model, the L-FB and the stabilisation system used. Due to the
beam-beam offset measurement setup (see Sec. 1.3.2.2), σn is as small as 20 pm. This
extremely small value of σn is one of the major differences between the IP-FB and the
L-FB. While the main focus of the L-FB was the reduction of BPM noise effects, this
is of less importance for the IP-FB. The noise level is so small that the IP-FB can be
even more optimised for ground motion suppression. Also the fact that the IP-FB is a
single-input, single-output system eases the design.

In the following two simple IP-FB algorithms are presented. Both do not use the
measurements δ directly, but apply as a first step the inverse of the beam-beam deflection
curve (see Fig. 1.6). This step linearises the problem. The corrected measurements δ̂
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are then processed by the two discrete-time control algorithms

u1(z) =
gz

z − 1
δ̂(z) = C1(z)δ̂(z) and (3.71)

u2(z) =
z(α1z + α0)

(z − 1)2
δ̂(z) = C2(z)δ̂(z). (3.72)

The controller C1(z) is a simple integrator with a variable gain k. It is similar to the time-
dependent algorithm in Sec. 3.2.2.2 and has the same physical motivation. The second
algorithm C2(z) uses a double integrator with two open parameter that correspond to
a constant gain and the position of the zero of the controller. Considering that the
plant transfer function is HIP (z) = 1/z and using the standard expressions for transfer
functions in Appendix C.2, the disturbance and noise transfer functions have the form

SIP,1(z) =
z − 1

z + (g − 1)
, SIP,2(z) =

(z − 1)2

z2 + z(α0 − 2) + (α0 + 1)
(3.73)

−TIP,1(z) = − g

z + (g − 1)
and −TIP,2(z) = − α1z + α0

z2 + z(α0 − 2) + (α0 + 1)
. (3.74)

Both, SIP,1(z) and −TIP,1(z) are stable for 0 < g < 2. For the stability analysis of
SIP,2(z) and −TIP,2(z) we use the conditions in Eqs. (3.18) and (3.19). This leads to
the three stability conditions −2 < α0 < 0, α1 > −α0 and α1 < α0 + 4. The parameter
space for all stable controller for C2(z) is hence of triangular shape in the α0-α1 plane.
This allowed parameter space was scanned to find the controller that minimises the
beam-beam offset prediction in Eq. (3.70).

In Fig. 3.26 the resulting beam-beam offsets for different controller configurations are
depicted. The final performance changes strongly depending on the standard deviation
of the upstream beam jitter. Since this jitter is assumed to be white, every controller will
always amplify this value. The jitter standard deviation is therefore a lower bound for the
possible IP-FB performance. Considering this fact, the performance of δy= 0.3 nm, of the
controller corresponding to the black curve in Fig. 3.26 (right), is close to the theoretical
optimum. To further improve the result a Kalman-predictor as in Sec. 3.2.2.1 could be
used. Since the measurement noise level is much smaller at the IP, the use of such a
filter is more promising than for the linac feedback. Such a filter would also allow to
include a more realistic model of the upstream beam jitter.
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and robustness studies

In this chapter, the performance of the L-FB (designed in Chap. 3) in combination with
the other three ground motion mitigation methods (quadrupole stabilisation, IP-FB and
pre-isolator) is evaluated. For this evaluation, the simulation framework presented in
Sec. 2.4 is used. The effect of different imperfections, as for example ground motion,
BPM noise and acceleration gradient jitter, is calculated.

As a performance and robustness measure the averaged peak luminosity is used. To
prevent misunderstandings in the interpretation of the presented plots, it should be
mentioned that CLIC is over-dimensioned by design to produce a luminosity of about
120 %. The additional 20 % account for the luminosity loss due to dynamic imperfections
as e.g. ground motion.

4.1. Performance in presence of ground motion effects

In this section the effect of ground motion on the accelerator performance is investigated.
In Fig. 4.1, the relative luminosity is shown when ground motion of model B10 is applied
and different combinations of mitigation methods are used. In case no mitigation meth-
ods are used at all (red curve left) hardly any luminosity is produced. When turning on
the IP-FB (IP controller according to Eq. (3.72)), slow beam-beam offset is reduced and
the luminosity performance is improved (blue curve left). The high-frequency offset can
be reduced by adding the pre-isolator (green curve left) and the quadrupole stabilisa-
tion (blue curve right), where the quadrupole stabilisation version 1 is used in this case.
Even though the quadrupole stabilisation reduces the beam-beam offset, it also causes
a significant low-frequency increase of the beam size at the IP, which leads to strong
luminosity loss. This beam size growth can be reduced by using the L-FB additionally
to the other mitigation methods (red curve right).

By systematic modification of the frequency response of the quadrupole stabilisation
version 1 in the simulations, it was found that the remaining luminosity loss could be
reduced, if the two peaks of the frequency response (see Fig. 1.8 (right)) would be shifted
to higher frequencies. This improvement is due to several reasons. The lower peak of the
frequency response of version 1 at about 0.3 Hz causes an especially strong amplification
of ground motion, since it amplifies parts of the microseismic peak. If it is shifted to a
frequency of about 1 Hz, the ground motion excitation is reduced and at the same time
the mismatch between the transfer functions of the quadrupole stabilisation and the pre-
isolator is lowered. The second peak of the quadrupole stabilisation function version 1 is
located at about 75 Hz, where the frequency components of the ground motion are still
large enough to cause significant luminosity loss. By shifting this peak to e.g. 100 Hz,
the excitation is reduced. Additionally, the L-FB is very efficient for frequencies that
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Figure 4.1.: Relative luminosity L/L0 due to ground motion of model B10 with different
ground motion mitigation methods. In the depicted curves, no averaging over different
seeds of the random generator has been performed, in order to give an impression of the
real-time accelerator behaviour. A discussion of the curves is given in the text.

A B B10 C

V1 8.7 %/4.0 % 9.3 %/5.1 % 15.8 %/11.7 % 120.3 %/100.8 %
V2 1.4 %/0.0 % 1.6 %/0.5 % 2.0 %/0.8 % 67.6 %/71.5 %

Table 4.1.: Relative luminosity loss ∆L/L0 for different ground motion model (columns)
and stabilisation systems (rows). For every combination, two relative luminosity loss
values are listed. The first corresponds to a hand-optimised spatial L-FB, which is the
same for every combination. The second listed value originates from simulations with
the automatically optimised spatial L-FB, which is individual for every combination.
Each listed value corresponds to an average over 20 ground motion seeds simulated for
a machine operation of 30 s.

are a multiple of 50 Hz, and therefore the amplification of the quadrupole stabilisation
system at 100 Hz is compensated by the L-FB.

These observations were used by the quadrupole stabilisation team to create a new
quadrupole stabilisation system that is referred to as version 2 (see Janssens et al. [59]).
Contrary to version 1, version 2 uses a proposed geophone as a sensor, which is currently
under development. This geophone is better suited for higher frequencies compared to
the seismometer CMG-6T used for version 1. The predicted frequency response of the
quadrupole stabilisation version 2 is shown in Fig. 1.8 (right).

To evaluate the combined effect of all mitigation methods, the relative luminosity loss
due to ground motion of different models has been simulated. For the L-FB, hand-
optimised controller gains fi as well as automatically optimised gains (see Sec. 3.2.3.3)
have been tested. For the quadrupole stabilisation, version 1 and 2 have been considered.
A BPM resolution of 100 nm in the main linac and 50 nm in the BDS has been presumed.
The results are summarised in Tab. 4.1. The figures show that the automatically opti-
mised L-FB is superior compared to the hand-optimised version. Also the quadrupole
stabilisation version 2 performs better than version 1. Apart from the ground motion
model C, which is a very pessimistic assumption for the future CLIC site, the luminosity
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requirements of CLIC can be met for all cases.

4.2. Imperfections and robustness

In the following, the effects of different imperfections on the performance of the L-FB and
the IP-FB are investigated (see also Pfingstner et al. [88]). To be able to compare the
impacts of the different imperfection, the same mitigation method configuration is used
for all simulations. If not stated differently, the L-FB uses a spatial filter with gains
optimised for ground motion model B10 and the quadrupole stabilisation version 1.
Additionally, the quadrupole stabilisation version 1 and the double integrator IP-FB
(see Eq. (3.72)) are applied. In the following plots each data point corresponds to an
averaged luminosity over 200 time steps (4 s).

4.2.1. BPM resolution

To analyse the effect of the limited BPM resolution, white, Gaussian noise of a certain
variance was added to the BPM measurements. The relative luminosity loss resulting
from a limited resolution of the BPMs used by the L-FB is depicted in Fig. 4.2. Different
versions of the L-FB are investigated and ground motion is not applied.

When using a simple dead-beat controller (integrator for the time-dependent filter
g(z) and the identity matrix for the spatial filter F ), the luminosity loss is very sensitive
to the BPM resolution (black curve). Note that even for very small BPM resolutions the
luminosity loss is about 8 %. This is due to the fact that the L-FB picks up unavoidable
simulation noise that is caused by the limited number of simulated particles in the
simulated beam (Schottky noise).

The noise behaviour of the L-FB can be significantly improved by optimising the
gain factors fi, which are collected in F , with respect to the ground motion excitation
(red curve). A further improvement can be achieved, if additionally to the integrator
also the low pass L(z), the peak P (z) and the phase lifting element E(z) are used (see
Sec. 3.2.3.2) for the time-dependent filter (blue curve). This configuration of the L-FB
results in an acceptable luminosity loss of 2 % for a BPM resolution of 50 nm. The main
contribution to this luminosity loss originates from the BPM resolution in the BDS.
This can be inferred from the green curve, where a perfect BPM resolution in the BDS
was used. Due to these observations the specifications for the BPM resolution could
be relaxed, from initially 10 nm for all BPMs, to 50 nm for the BPMs in the BDS and
100 nm for the BPMs in the main linac. These larger tolerances lead to a significant cost
reduction.

In Fig. 4.3, the luminosity loss as a function of the resolution of the post-collision line
BPM used for the IP-FB is shown for different IP-FB versions. Two controller transfer
functions are investigated: the simple integrator feedback C1(z) with variable gain factor
g (see Eq. (3.71)), and the double integrator feedback C2(z) with the parameters α0 =
−0.5 and α1 = 0.8 (see Eq. (3.72)). The simulations show that for all of these IP-FBs
the luminosity loss due to a limited BPM resolution is negligible up to a BPM resolution
of about 10µm. Since the post-collision line BPM is assumed to have a resolution of
about 1 to 3µm, this resolution is not a critical design issue.
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4.2.2. Energy imperfections, dispersion filter and energy measurement

Deviations of the beam energy from the design value can be caused by unwanted changes
of the acceleration voltages in the structures of the main linac, but also by initial beam
energy jitter at the entrance of the main linac. The main cause for changes of the
acceleration gradients are deviations of the amplitude and the phase of the drive beam
from its specified values. As can be seen in Fig. 4.4 (left), variations of acceleration
gradients can lead, in combination with the L-FB operation, to large luminosity loss
(blue curve). The reason for this loss is that the beam energy deviations cause large
beam offsets in the horizontal direction due to the dispersion in the BDS (more precisely
in the so called collimation section). These large beam offsets are measured by the BPMs
and coupled back via the L-FB. As a result the beam is steered incorrectly, which leads
to strong luminosity loss.

To counteract this problem, a simple strategy named dispersion filter was developed.
The dispersion filter removes the dispersive orbit from the BPM measurements. Only the
filtered BPM measurements x̃ are used as an input for the L-FB. To remove the offsets
caused by the energy deviations, the dispersion filter uses the shape of the dispersive
orbit in the BPMs, which was determined via simulations and stored in the vector xD.
The offsets due to energy variations can be removed from the BPM measurements x by
the simple procedure

x̃[k] = x[k]− fD[k]xD with (4.1)

fD[k] =
x[k]TxD

xTDxD
, (4.2)

where k is the time step index. The use of the dispersion filter leads to a significant
improvement of the L-FB performance, which is depicted in the red curves in Fig. 4.4
(left) and (right). The additional luminosity loss due to the L-FB (blue curve in Fig. 4.4
(right)) is seen to be below 0.5 % up to a gradient jitter with a standard deviation of
0.5 %, and therefore small compared to the loss without L-FB. If the dispersion filter is
used in connection with ground motion and no beam energy imperfections are applied,
the luminosity decrease due to the filtering of the dispersive orbit is only in the order of
0.1 % and hence negligible.

Similar to the beam energy deviation due to a change of the acceleration gradients,
also an initial beam energy jitter causes large dispersive beam offsets that couple to the
L-FB (see Fig. 4.5 (left)). By using the dispersion filter this problem can be overcome
and the luminosity loss up to an initial energy jitter of 4 % is seen to be negligible.

The dispersion filter can not only be used to filter dispersive orbits from the BPM
measurements, but potentially also for precise energy measurements. Figure 4.5 (right)
shows that the relation between beam energy deviations at the end of the main linac and
the factor fD is linear over a large range. Simulations were performed in which the beam
energy deviation was calculated from fD under the assumption that the factor between
fD and the beam energy as well as the shape of the dispersive orbit is known. Errors
of the acceleration gradient amplitudes and phases were introduced, which resulted in a
beam energy jitter at the end of the main linac of 0.13 % (standard deviation). With the
help of the dispersion filter, the beam energy at the end of the main linac could be recon-
structed from the BPM measurements with a relative accuracy of about 2×10−5. This
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value is limited by the accuracy with which the shape of the dispersive orbit is known,
but not by the BPM resolution and ground motion disturbances. The insensitivity with
respect to the BPM resolution can be explained by considering that a beam energy de-
viation of 0.1 % results in a value for fD of about 1000, while the projection of a BPM
noise vector results only in a value of about 0.05. Hence, the dispersion filter provides
a potentially very precise energy measurement, which accuracy is limited in practical
applications mainly by the accuracy with which the shape of the dispersive orbit and
the constant factor connecting fD and the beam energy deviation can be measured.

4.2.3. Quadrupole position errors

In this section the effect of position errors of quadrupoles is evaluated. Such position
errors can originate from two main sources. The first error source is the noise of the
sensor of the quadrupole stabilisation system that is fed back by the feedback controller
and and acts in that way on the quadrupole position. The second source originates
from imperfection of the quadrupole stabilisation system with respect to its position-
ing capabilities. When the L-FB changes the set point of the quadrupole stabilisation
system, limited DAC resolution or difficult to control actuator dynamics can lead to an
error between the real and the demanded quadrupole position. In the following, effects
of both, the quadrupole stabilisation sensor noise and the limited positioning accuracy,
will be analysed.

At first, the effect of the limited positioning accuracy is investigated. White noise was
used to alter the quadrupole positions and the resulting luminosity loss was recorded
with and without the action of the L-FB. Several conclusions can be drawn from the
simulation results in Fig. 4.6. It can be seen that the L-FB worsens the luminosity loss
by approximately a factor two. This result was expected, since every feedback controller
amplifies the effect of a white disturbance (no prediction possible). The positioning
errors of quadrupoles in the BDS are observed to be more significant for the luminosity
loss than the errors for quadrupoles in the main linac. This observation suggests that it
could be favourable to have two quadrupole stabilisation systems in order to reduce the
costs; one with more demanding specifications for the BDS, and a cheaper one for the
main linac. Another important observation is that the luminosity loss increases strongly,
if the quadrupole QF1 of the final doublet is also misaligned. This quadrupole (and also
QD0) is very sensitive to misalignments and hence the decision was taken to not use it
as a corrector for the L-FB. Finally, it can be stated that for a luminosity loss smaller
than 0.5 %, a Gaussian positioning error of the quadrupole stabilisation system should
not exceed a standard deviation of 0.25 nm. This tolerance is tight, but is within reach
considering that the actuation steps of the L-FB are in the same range.

The effect of uniformly distributed quadrupole positioning errors is investigated in
Fig. 4.7. Such an error distribution is typical, if the error is dominated by the limited
resolution of the digital to analogue converter (DAC) of the controller electronics. The
positioning errors take in this case values between -∆/2 and +∆/2. The main out-
come of the results in Fig. 4.7 is that the luminosity loss due to uniformly distributed
quadrupole position errors can be very well approximated by the luminosity loss due to
Gaussian distributed errors. The fact has to be used that a uniform distribution can be
approximated by a Gaussian distribution with a standard deviation of σ = ∆/

√
12.
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Figure 4.8.: PSD (left) and IRMS (right) of the quadrupole motion due to the noise
induced by the sensor of the quadrupole stabilisation system version 1. The black curve
corresponds only to the noise from the quadrupole stabilisation, while for the red and
the blue curve the effect of of the L-FB has been considered for two different effective
gain factors fi.

After evaluating the effect of the limited positioning accuracy of the quadrupole sta-
bilisation system, we focus now on the error induced by the sensor of the quadrupole
stabilisation system. The quadrupole stabilisation group provided us an estimate of the
PSD of the quadrupole motion due to the sensor noise for the quadrupole stabilisation
system version 1 (see black curve in Fig. 4.8 (left)). The IRMS of this PSD (see black
curve in Fig. 4.8 (right)) indicates a motion of about 7 nm. This motion would cause a
large luminosity loss, if it would be a white stochastic process. It can be seen however
that the quadrupole motion spectrum is by no means white.

To get a more realistic estimate of the luminosity loss, the original PSD is multiplied
with the squared sensitivity function of the L-FB |Ŝ(ejωTd)|2 (defined in Eq. (3.52))
to include the action of the orbit feedback into the estimation. Since the L-FB uses
different gain factors fi for different spatial directions, it is not obvious which effective
gain factor should be used for the calculation of Ŝ(ejωTd). Thus, two different fi are
investigated, where the choice of fi = 0.35 assumes that most of the luminosity loss is
caused by the first few directions of the L-FB and fi = 0.15 represents the case where
approximately the first 100 directions have a significant impact. When the original PSD
is folded with the according L-FB sensitivity functions, the resulting IRMS motion is
between 0.2 and 0.4 nm. This corresponds to a luminosity loss of about 0.1 to 0.5 %.
Note that for this evaluation the solid black curve in Fig. 4.6 has to be used, since the
action of the L-FB has already been taken into account. The luminosity loss due to the
noise of the quadrupole stabilisation system is therefore in an acceptable range.

4.2.4. Other imperfections

In this section, the luminosity loss due to errors of the magnetic strengths of the
quadrupoles, scaling error of BPMs and correctors, initial beam jitter and BPM noise in
the orbit response matrix R used for the L-FB is considered. These imperfections have
been evaluated with and without the action of the L-FB.

Figure 4.9 shows the luminosity loss due to white, Gaussian errors of the quadrupole
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magnet strengths. No static misalignments and ground motion have been used for this
study. Orbit changes occure only in the BDS, where the varying quadrupole magnet
strenghts change the dispersion function. The action of the L-FB due to these dispersive
offsets has hardly any impact on the luminosity results. Furthermore, it can be observed
that the tolerances for the quadrupoles in the final doublet are orders of magnitude
tighter than for the quadrupoles in the main linac. While for the main linac a tolerance
of 5×10−2 % is necessary to keep the luminosity loss in the order of 0.1 %, the final
doublet quadrupoles have a tolerance of 10−4 % to reach the same performance. The
magnets of the final focus (without final doublet) and the BDS (without final focus)
show tolerances between these values for the final doublet and the main linac.

Another important imperfection class are scaling errors of the BPM measurements and
the corrector actuations. For the simulation of the BPM scaling errors the measurements
(including BPM noise) were multiplied with the factor 1 + ai, where ai is a Gaussian
distributed random number with standard deviation σ. The factor ai is different for
each BPM, but stays constant for all time steps of the simulation. The orbit response
matrix used by the controller was assumed to be perfectly known. The results of the
simulations are shown in Fig. 4.10 (left), where different seeds of ground motion model
B as well as for model B10 have been investigated. For the main linac a scaling error
of up to 100 % does not lead to a significant performance reduction, while the tolerance
including the BDS is only about 1 % for a luminosity loss of 0.5 %. The conjecture was
made that these relatively tight tolerances originate mainly from the dispersive orbit in
the horizontal direction. The measurement of the dispersive orbit could lead to large
absolute measurement errors since the BPMs are not centred at the dispersive orbit but
at zero. The black curve in Fig. 4.10 (left), for which only scaling errors in the horizontal
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Figure 4.10.: Relative luminosity loss ∆L/L0 due to Gaussian distributed scaling errors
of the BPMs (left) and correctors (right). Ground motion according to model B and
B10 have been applied. Curves of equal colour and type correspond to different ground
motion generator seeds for the same configuration of used ground motion model and
scaling errors. The luminosity loss only due to ground motion (no scaling error) has
been subtracted from the depicted curves.

direction are applied, shows however that the scaling error in the horizontal direction
only has a minor effect on the overall luminosity loss. Therefore, the low tolerance of
only 1 % originates from the high sensitivity of the L-FB to the vertical BPM scaling
errors in the BDS.

In the same fashion as for BPM scaling errors, also the effect of corrector scaling
errors has been investigated (see Fig. 4.10 (right)). Similar to the BPM scaling errors,
no strong dependence of the luminosity loss to the used ground motion model was found.
The tolerances for a luminosity loss of about 0.5 % are 100 % scaling error for only the
main linac, and 30 % when also the BDS is included. These very high tolerances can
be explained by considering that the corrector actuations of the L-FB are in the order
of 0.1 nm. Scaling errors of the correctors consequently also create only a small error in
the position of the quadrupoles, which explains the simulation results.

It should be mentioned that the effect of the scaling errors of the actuators has been
only analysed with respect to positioning errors of the L-FB actuations. Another effect,
which has been excluded from the studies, is that a scaling error of the quadrupole stabil-
isation system also causes differences in the ground motion suppression from quadrupole
to quadrupole. This effect introduces a differential motion between the quadrupoles,
which could lead to additional luminosity decrease. Studies of this effect are subject to
future work.

Another imperfection, whose effect could be worsened by the L-FB, is the initial beam
jitter. Kicks from the beam lines in front of the the main linac cause beam oscillations
that correspond to beam position and angle offset at the entrance of the main linac.
Realistic beam jitter can be created by the following procedure.
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Figure 4.11.: Relative luminosity loss ∆L/L0 due to white, Gaussian beam offset jitter
at the entrance of the main linac with a relative standard deviation σj .

The beam offset y0 and angle y′0 at the entrance of the main linac can be written as

y0 =
√

2Jβ0 cos(∆φ) and (4.3)

y′0 = −
√

2J

β0
[sin(∆φ) + α0 cos(∆φ)] , (4.4)

where α0 and β0 are the twiss parameters at the entrance of the main linac, J is the
action of the beam oscillation and ∆φ is the phase advance between the origin of the
kick and the entrance of the main linac. The phase advance ∆φ is assumed to be a
uniformly distributed random variable between -π and +π, since the kicks in the beam
line before the main linac occur in a random fashion. To create oscillations with a beam
offset of a certain standard deviation σy0 , the action has to be chosen according to

σ2
y0 = E

{
y2

0

}
= E

{
2Jβ0 cos2(∆φ)

}
= Jβ0, ⇒ J =

σ2
y0

β0
. (4.5)

Hence, realistic beam jitter can be created by first choosing J according to Eq. (4.5) and
∆φ to be a uniformly distributed random number between -π and +π. As a second step,
the beam offset y0 and beam angle y′0 are calculated according to the Eqs. (4.3) and (4.4).
Using this procedure, the luminosity loss due to initial beam jitter was determined via
simulations. The according results are presented in Fig. 4.11 (left). It can be observed
that for both, the vertical and the horizontal direction, the beam position jitter has
to stay below 10 % of the beam size to cause a luminosity loss of smaller 0.5 %. The
horizontal and the vertical direction show similar behaviour, with the vertical direction
being slightly more sensitive. The action of the L-FB has only a small effect on the
results.

4.3. Conclusions

As the main result, it can be stated that the luminosity loss due to ground motion can
be reduced by the ground motion mitigation methods of CLIC to a level of about 12 %
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for model B10. This value already includes the effect of the limited resolution of the
BPMs that accounts for about 2 % of the loss. Due to the robustness of the L-FB the
tolerances for the BPM resolution could be relaxed to 50 nm in the BDS and 100 nm
in main linac. This low sensitivity to the BPM resolution (compared to older designs)
can be achieved due to the optimised time-dependent and spatial filters of the L-FB
presented in Chap. 3.

Another important outcome of the conducted simulations were guidelines for an im-
provement of the shape of the frequency response of the quadrupole stabilisation sys-
tem. Artificial modification of the frequency response of the quadrupole stabilisation
version 1 showed that a shift of the amplification peaks towards higher frequencies leads
to an improvement of the luminosity performance. The quadrupole stabilisation group
considered these guidelines and designed a new quadrupole stabilisation system named
version 2, which is based on a different sensor than version 1 but uses the same tripod
positioning system. The quadrupole stabilisation version 2 is currently under develop-
ment, but performance predictions with an optimised L-FB show a luminosity loss as
small as 0.8 % for model B10.

Furthermore, the impacts of machine imperfections have been investigated. It turned
out that the most severe problems are caused by beam energy errors produced by initial
beam energy jitter or jitter in the acceleration gradients. These beam energy deviations
cause large beam offsets in the collimation section of the BDS. The L-FB reacts on
these large offsets, which results in a misteering of the beam and consequently in a large
luminosity loss. A strategy, called dispersion filter, was developed to filter the energy
dependent beam offsets from the BPM measurements, which resolves the problem. It was
also shown that the dispersion filter can be used to measure the beam energy deviations
with high accuracy. Another observation is that the tolerances for BPM scaling errors
and positioning errors of the quadrupole stabilisation system are tight but feasible.

Finally, we want to lists the most important dynamic imperfections and the according
luminosity losses in Tab. 4.2. Including all dynamic imperfections, the estimated lumi-
nosity loss is about 20 %. Since by design a luminosity loss for dynamic imperfections
of about 20 % has been taken into account, the tight luminosity specifications of CLIC
seem to be achievable.
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Imperfection Expected value ∆L/L0

Ground motion model B10 9.7 %
BPM resolution for L-FB σBPM = 50 nm 2.0 %
BPM resolution for IP-FB σBPM,IP = 3µm 0.1 %
RF jitter combined 4 %
Initial beam energy jitter σEi = 1 % 0.1 %
Sensor noise of the quadrupole stabilisation V1 0.3 %
Quadrupole stabilisation system positioning errors σu = 0.25 nm 0.5 %
Quadrupole strength jitter combined 0.5 %
BPM scaling error σs,BPM = 1 % 0.5 %
Corrector scaling error σs,corr = 0.1 % 0.0 %
Initial beam jitter σxi = σyi = 10 % 0.7 %
BPM noise in the measurements of R σn = 10 nm 2 %

Sum 20.4 %

Table 4.2.: Overview of the relative luminosity loss ∆L/L0 due to different dynamic
imperfections, where all ground motion mitigation methods have been considered. For
the given estimates, typical expected values of the imperfections have been used.
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5. System identification scheme for orbit
response matrices

In this chapter, we present an on-line system identification scheme that is capable of
measuring the orbit response matrix R and improving the quality of the measurement
over time, without stopping the data tacking of the detectors. Furthermore, changes
of R over time can be learned by the algorithm, which is based on methods from the
field of system identification theory. The algorithm is optimised for the main linac of
CLIC, which is an especially difficult system to identify. The measured orbit response
matrix can be used to ensure good performance of the L-FB over time and as an input
for diagnosis tools. Most of the material presented in this chapter was published also in
Pfingstner et al. [85] and Pfingstner et al. [84].

A general introduction to the on-line system identification scheme for orbit response
matrices is given in Sec. 5.1. More detailed information about the algorithm are pre-
sented in Sec. 5.2 and App. C.5. For the identification of the main linac of CLIC, the
basic algorithm has to be extended with the help of an amplitude model of the beam
oscillations in the main linac, which is presented in Sec. 5.3. The combination of the
on-line identification algorithm and the L-FB is covered together with simulation results
in Sec. 5.4. Finally, conclusions are given in Sec. 5.5.

5.1. Introduction

5.1.1. Motivation

Good system knowledge is an essential ingredient for the successful operation of modern
particle accelerators. For the L-FB, beam-based alignment as well as for diagnosis and
error detection methods, the most important system information is the orbit response
matrix R. Factors that limit the measurement accuracy of R are the influence of mea-
surement noise, ground motion and beam energy variations during the measurement
process.

Due to the importance of the quality of the measured orbit response matrix, we present
in this chapter an algorithm that is capable of improving the measurement accuracy of
R over time. Furthermore, the algorithm is capable of learning time-dependent changes
of R on-line, without stopping physics data taking. To accomplish these tasks, methods
from the field of system identification are used, which are adapted to the special structure
of the accelerator environment. The algorithm is tested via simulations on the main linac
of CLIC. The extension of the algorithm to the BDS is subject to future work.

The orbit response matrix estimated by the system identification algorithm can be
used for multiple purposes. The performance of the L-FB can be improved by updating
the orbit response matrix used by the L-FB with the estimated R̂[k] from the system
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identification algorithm, where k is the time index. This procedure corresponds to an
adaptive control algorithm or more precisely to a self-tuning regulator (STR). Other
important applications for the estimated R̂[k] are diagnosis tools. Tools similar to
LOCO (see Safranek [105]) can be used to determine the variation of certain accelerator
parameters, as e.g. acceleration gradients, from the change of the orbit response matrix.
Also breakdowns and scaling errors of BPMs and correctors can be detected.

5.1.2. System identification for orbit response matrices

The field of system identification is concerned with the determination of unknown pa-
rameters of a system from measurements. The structure of the system to be identified
is assumed to be known in the approach used in this thesis (white box identification).
To be able to estimate the unknown parameters, an excitation unit produces excitations
u[k] that are applied to the system to be identified. These excitations as well as the
outputs y[k] of the system are used by an estimation algorithm to create an estimate
of the unknown parameters. The task of the estimation algorithm is complicated by
the fact that additionally to the known u[k], also unknown disturbances d[k] (ground
motion) are present at the inputs of the systems. Furthermore, the measurements of the
output values contain measurement noise n[k]. The overall structure of the system is
shown in Fig. 5.1 (left).

In this thesis, we use as an estimation algorithm the recursive least squares algorithm
(RLS) with exponential forgetting. The algorithm is described in App. C.5, but we want
to comment on the expression “exponential forgetting” at this position. If the estimation
algorithm would weight all measurement in the same way, new measurements would have
hardly any influence on the estimation result after long estimation periods. Changes
of the system behaviour would be learned slower and slower with increasing estimation
time. Instead, the algorithm has to “forget” older values, by applying a smaller weight to
them. In the case of the used algorithm, this weighting is performed with an exponential
function with a time constant α called forgetting factor.

In the case of the main linac of CLIC the system to be identified has the form

y[k] = R[k] (u[k − 1] + d[k]) + n[k], (5.1)

where R[k] is the time-varying orbit response matrix of the main linac. A description
of the properties and the shape of the orbit response matrix has already been given in
Sec. 3.2.1. We only want to restate here that the ith column of R[k] corresponds to the
beam oscillation measured in all used BPMs due to an excitation of the ith corrector
(in this case the ith quadrupole) with an unit step of 1µm. An example for such an
oscillation is given in Fig. 5.2 (left).

There are two problems arising when we want to identify R[k] on-line. The first is the
necessary identification time. To be able to identify all elements of R[k], which has the
dimensions 2010×2010, the excitation has to be persistent (for a definition of persistent
excitation see Åström and Wittenmark[95]). For the system Eq. (5.1) this is equivalent
to applying at least 2010 linear independent input vectors. With a beam repetition
rate of 50 Hz, one full identification cycle would take 40.2 s. Many of such cycles are
necessary to create an accurate estimate of R (number depends on the needed accuracy,
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5.1. Introduction

Figure 5.1.: (left) Principle of a system identification algorithm. A system identification
algorithm consists of an excitation unit and an estimation algorithm (in red) that produce
an estimate R̂[k] of the real system behaviour R[k] (in blue). The excitations u[k] are
applied to the real-world system that create together with the unknown disturbances d[k]
the system outputs y[k]. The measurements y[k] +n[k], where n[k] is the measurement
noise vector, and the excitations u[k] are used by the estimation algorithm to produce
the system estimate R̂[k]. (right) The columns of the orbit response matrix R[k] are
composed out of the beam oscillations due to kicks from the different correctors. The
matrix R[k] is triangular, since the beam oscillations only result in offsets in BPMs
downstream of the used corrector. Instead of estimating all elements of R, only a subset
of the parameters (marked in red) is identified but by the independently running RLS
algorithms.
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Figure 5.2.: (left) Vertical beam oscillation along the main linac of CLIC due to a cor-
rector kick at position 5678m. The beam motion can be decomposed into an amplitude
A(s) and a phase φ(s). The shape of the amplitude is determined by the quadrupoles
and filamentation (see Sec. 5.3). The waist at 16 km is a typical effect of the filamen-
tation. (right) Orbit bump number 34 with a starting location of 5678m. The beam is
excited due to a kick uc1. Shortly after, it is steered onto its original orbit, by applying
two other kicks uc2 and uc3. The bump closure is not perfect as can be seen from the
remaining beam motion after the bump.
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5. System identification scheme for orbit response matrices

the allowable emittance growth and the noise level). The algorithm is therefore only
useful to identify very slow variations.

The second problem is even more severe. If the excited beam would oscillate all the
way through the accelerator, the emittance would increase in a not acceptable way.
Smaller excitations would cause longer identification times in order to compensate the
lower signal to noise ratio.

5.1.3. Interleaved, model-supported system identification scheme

To decrease the necessary identification time, we propose the following scheme. Only
a subset of all correctors is used to excite the beam. Theses correctors are not used
at the same time step, but actuated one after the other. Therefore, the resulting beam
oscillations can be observed independently. To allow for a large beam oscillation without
increasing the multi-pulse emittance too strongly, the beam is excited to oscillate just
over a short distance in the main linac and is kicked back afterwards onto its original
orbit. Such local beam position changes are called orbit bumps (see Fig. 5.2 (right)).
The lengths and amplitudes of the orbit bumps are chosen in a way, such that the caused
multi-pulse emittance increase is acceptable (< 0.1 nm rad). The calculation of the exci-
tations that create such bumps and the used setup will be explained in Sec. 5.2.1. Since
not every quadrupole is used to create an orbit bump the identification time is strongly
reduced. Each of the orbit bump excitations can be used to locally identify elements of
R[k] by applying for every orbit bump one RLS algorithm with exponential forgetting.
Due to the special structure of the system Eq. (5.1) the usually computationally expen-
sive RLS algorithm can be calculated very efficient. This will be shown in Sec. 5.2.2.
The disadvantage of this scheme is that only the starting elements of some columns of
R[k] can be identified (marked in red in Fig. 5.1 (right)).

In order to combine these local identification results to a complete orbit response ma-
trix, priori knowledge has to be used. Each column of R[k] corresponds to an oscillation
with varying phase and amplitude. The phase advance φ between different locations
sA < sB < sC in the main linac is additive, i.e. φAC = φAB + φBC . The total phase
advance for the whole main linac and therefore for every column of R[k] can be recon-
structed by combining the phase information of all local RLS results, since the bumps
have been positioned in an interleaved fashion. The calculation and the merging of the
local phase information is presented in Sec. 5.2.3.

The missing piece to reconstruct R[k] is the amplitude information. Since the ampli-
tude shape shows just small changes due to accelerator component variations, its form
can be modelled and assumed to be constant with time. The according amplitude model
is derived in Sec. 5.3. The absolute amplitude of this model is scaled to the proper size
using the amplitudes of the identification results. The combination of amplitude and
phase information allows to produce an estimate R̂[k] of the orbit response matrix R[k].
The described procedure is visualised in Fig. 5.3 in a simplified manner.

When reconstructing R̂[k], it has to be taken into account that the beam oscillation
amplitudes are different for a focusing or defocusing quadrupole (two different types
of quadruples that are used in pairs in the main linac) as an actuating element. This
difference is only a scaling factor that does not change the shape of the amplitudes
along the linac. A corresponding scaling factor between the oscillation amplitude for a
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Figure 5.3.: Block diagram of the proposed identification scheme. The excitation unit
excites the beam locally by sequentially creating orbit bumps with corrector actuations
uc1[k], uc2[k] and uc3[k] along the accelerator. The according measurement data ȳi[k]
are used to identify parts of certain columns of R[k], named r̄i[k], with the help of local
RLS algorithms. The identified data are used to extract phase and scaling information.
The overall phase Φ̂[k] is reconstructed by combining the local phases φ̂i[k]. The esti-
mated response matrix R̂[k] is filled by combining the phase information and the scaled
amplitude model.

unit excitation with a focusing and defocusing quadrupole is estimated by the system
identification algorithm along the main linac. Similarly, also a factor (as a function of
the position in the linac) between the oscillation amplitude in BPMs corresponding to
focusing and defocusing quadrupoles is estimated and used for the matrix reconstruction.

5.1.4. Related work

There are many good references, for a general introduction to the field of system iden-
tification and the RLS algorithm, e.g. Åström and Wittenmark [95] and Ljung and
Gunnardsson[70]. However, concerning applications in the field of particle accelerators
and especially for orbit response matrices and also adaptive orbit feedbacks, the lit-
erature is rather limited. Therefore, we mention here as well work that used system
identification only indirectly, as e.g. adaptive control systems.

Barr [10] describes the use of a self-tuning regulator (STR) to adapt parameters of
several local, independent orbit feedback loops, which are distributed along the accel-
erator. This is obviously a sub-optimal approach, since the mutual interaction of the
different feedback loops is not taken into account. Himel [56] goes one step further.
Instead of using independent loops, each loop corrects just the errors created between
itself and the loop before. This is accomplished by using the beam measurements of
the loop upstream and an estimate of the propagation of these parameters to the actual
loop. The estimate of the propagation is created by identification of the beam transfer
matrix between the bumps. However, also this technique is sub-optimal due the local
nature of the feedback system. The system identification scheme present in this chapter
will allow us to establish a global estimate of the response matrix. Such an estimate can
be used by a global feedback algorithm which is best suited to mitigate ground motion
effects.
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Figure 5.4.: (left) Scheme of an orbit bump. The first displaced quadrupole kicks the
beam with a certain strength uc1. The kick uc2, from the second quadrupole, changes the
trajectory of the beam in a way that it arrives in the third quadrupole with no vertical
offset. The third quadrupole can now compensate the vertical velocity component of the
beam by applying a proper third kick uc3. Hence, the beam continues after the third
quadrupole on its initial orbit. (right) The (normalise, multi-pulse) emittance growth
over one cycle of identification. Since the multi-pulse emittance is an averaged value, it
has a certain transient behaviour. Therefore the plot shows the third and not the first
cycle.

5.2. Details about the identification scheme

In the following, more details about the proposed system identification scheme are given.
The excitation unit, the local RLS algorithm and the phase reconstruction are described.
The also necessary amplitude model is covered separately in Sec. 5.3.

5.2.1. Excitation unit

The excitation unit excites the beam with so called orbit bumps. To create such an
orbit bump, at least three quadrupoles are necessary (see Wille [136]). The scheme is
visualised in Fig. 5.4 (left). Even thought an orbit bump can in principle steer the beam
after the bump perfectly onto its initial orbit (bump closure), the necessary precise
system knowledge is not available (R is not enough since also information about the
angle of the beam are needed). A sub-optimal approach is used. The first quadrupole
QP1 excites the beam to an oscillation of proper amplitude. The kicks uc2 and uc3
of the second and third quadrupole QP2 and QP3 are chosen, such that the measured
amplitude yb in all BPMs after the orbit bump is minimised in a quadratic sense. In
the current setting QP2 is located directly in front of QP3, while between QP1 and QP2

there are several other quadrupoles that are not listed here to create a appropriate bump
length. To calculate uc2 and uc3 we use the relationship

yb = rc1uc1 + rc2uc2 + rc3uc3, (5.2)

where rc1, rc2 and rc3 are the elements of the cth
1 , cth

2 and cth
3 column of R[k]. The

amplitudes yb can be minimised in a quadratic sense by choosing uc2 and uc3 as[
uc2
uc3

]
= −

[
rc2 rc3

]†
rc1uc1, (5.3)
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where † stands for the pseudo-inverse of a matrix. The orbit bumps created in this
manner are not closed perfectly as can be seen in Fig. 5.2 (right), since only two correctors
are not zero all BPM readings perfectly.

For the identification algorithm overlapping orbit bumps are created along the accel-
erator. The kick strength uc1 of each bump is optimised to create beam oscillations with
a maximal amplitude of about 0.4 to 0.5µm. The length of the bump is chosen such
that the emittance growth stays below 0.1 nm rad. The therefor necessary bump length
was determined via simulations. It varies along the main linac and also depends if a
focusing or a defocusing quadrupole is used for the excitation. Each bump overlaps with
the bump before by about 28 BPMs on average to ensure an accurate phase merging (see
Sec. 5.2.3). Altogether, 62 orbit bumps have been created in this way along the main
linac. The emittance growth cause by these 62 excitations (one identification cycle) is
depicted in Fig. 5.4 (right).

Since just 62 beam bumps are created, the time needed for one complete identification
cycle is strongly reduced, compared to a conventional RLS algorithm, for which 2010
linear independent excitations would be applied for one identification cycle. With a
beam repetition rate of 20 ms, this results in an identification cycle time of 1.24 s instead
of 40.2 s. This corresponds to an improvement in identification speed by a factor of about
33. Notice however, that the excitation in our algorithm is not persistent anymore.

5.2.2. Local RLS algorithm

In this section, we assume that the reader is familiar with the RLS algorithm with
exponential forgetting. If this is not the case, a brief introduction is given in App. C.5
and more detailed information can be found in Åström and Wittenmark [95] and Ljung
and Gunnardsson [70]. The general RLS algorithm with exponential forgetting is given
by

θ̂[k] = θ̂[k − 1] +K[k](y[k]−ϕ[k]T θ̂[k − 1]) = θ̂[k − 1] +K[k]e[k] (5.4)

K[k] = P [k − 1]ϕ[k](λI +ϕ[k]TP [k − 1]ϕ[k])−1 (5.5)

P [k] = (I −K[k]ϕ[k]T )P [k − 1]/λ, (5.6)

where k represents the time index, θ̂[k] contains the estimated system parameters, y[k]
are the measurement values, K[k] contains error weighting factors, ϕ[k]T the excitation
values, e[k] = y[k]−ϕ[k]T θ̂[k− 1] are the errors between the estimated and real output
data, P [k] is the a matrix measuring the accumulated excitation strength and I is the
identity matrix.

In general, the RLS algorithm with exponential forgetting is computational expensive.
Therefore, simplified algorithms are available as e.g. the stochastic approximation algo-
rithm (SA) and the least mean square algorithm (LMS). However, the simple structure
of the accelerator system in Eq. (5.1), can be exploited to reduce the computational ef-
fort significantly. As a result the full RLS algorithm can be used. The usually necessary
matrix inversion reduces to a simple scalar division. Additionally, just four numbers per
row of R have to be stored to reconstruct P [k]. These statements will be shown in the
following derivations.
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Due to the local excitation, the complete systems Eq. (5.1) reduces for one orbit bump
to

ȳ[k] = r̄[k]uc1[k] + ȳd[k] + n̄[k], (5.7)

where ȳ[k] are the BPM measurements at locations where the beam is excited by the
bump (between QP1 and QP2), r̄[k] are the according elements ofR excited by the beam
bump, ȳd[k] are constant beam offsets due to a non-zero reference orbit, slow drifting
BPM values due to ground motion effects or other slow changing imperfections and n̄[k]
is white Gaussian measurement noise with a standard deviation of 50 nm. Applying the
general RLS algorithm in Eqs. (5.4), (5.5) and (5.6) to the system Eq. (5.7) results in
the following expressions for e[k], P [k], K[k] and θ̂[k] for the local RLS algorithms.

e[k] = ȳ[k]− ϕ̄[k]T θ̂[k − 1]

=


ȳ1[k]
ȳ2[k]

...
ȳm[k]

−

[
uc1[k] 1

]
. . . 0

...
. . .

...
0 . . .

[
uc1[k] 1

]




r̄1[k − 1]
ȳd,1[k − 1]
r̄2[k − 1]
ȳd,2[k − 1]

...
r̄m[k − 1]
ȳd,m[k − 1]


= ȳ[k]− r̄[k − 1]uc1[k]− ȳd[k − 1],

For the following derivation, it will be useful to show that P [k] has a diagonal form, if
the compound matrix notation is used. For this reason, we use a relationship taken from
Åström and Wittenmark [95] for the RLS without forgetting factor to get

P [k] =

(
k∑
i=1

ϕ̄[k]ϕ̄[k]T

)−1

=

 Φ̄[k]−1 . . . 0
...

. . .
...

0 . . . Φ̄[k]−1

 with (5.8)

Φ̄[k] =
k∑
i=1

[
uc1[i]2 uc1[i]
uc1[i] 1

]
. (5.9)

The fact that P [k] has a diagonal structure is also true for the RLS algorithm with
exponential forgetting, since the older measurement values are just degraded over time
and we assume a diagonal form of the initial covariance matrix. Using this simplification
we further get

K[k] = P [k − 1]ϕ̄[k](λI + ϕ̄[k]TP [k − 1]ϕ̄[k])−1

=

P̄ [k − 1] . . . 0
...

. . .
...

0 . . . P̄ [k − 1]




[
uc1[k]

1

]
. . . 0

...
. . .

...

0 . . .

[
uc1[k]

1

]

b[k] . . . 0

...
. . .

...
0 . . . b[k]
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=

 k̄[k] . . . 0
...

. . .
...

0 . . . k̄[k]

 with (5.10)

b[k] =
1

λ+
[
uc1[k] 1

]
P̄ [k − 1]

[
uc1[k]

1

] and (5.11)

k̄[k] =

[
k̄1[k]
k̄2[k]

]
= b[k]P̄ [k − 1]

[
uc1[k]

1

]
. (5.12)

In a similar way P [k] can be shown to be of the form

P [k] =

 P̄ [k] . . . 0
...

. . .
...

0 . . . P̄ [k]

 with (5.13)

P̄ [k] =

[
1− k̄1[k]uc1[k] −k̄1[k]
−k̄2[k]uc1[k] 1− k̄2[k]

]
P̄ [k − 1]/λ. (5.14)

Using the structure of e[k] and K[k] the coefficient update θ̂[k] can be written as

r̄[k] = r̄[k − 1] + k̄1[k]e[k] and (5.15)

ȳd[k] = ȳd[k − 1] + k̄2[k]e[k]. (5.16)

5.2.3. Phase reconstruction and merging

The data identified by the local RLS algorithms represent beam oscillations along the
main linac. Hence, the identification results can be used to extract the phase information
of the beam oscillations of the according section of the main linac. The algorithm
performing this task uses the following strategy. First, the zero crossings in the data are
detected. A zero crossing between two consecutive BPMs has happened, if the according
measurements have different signs. The position of the zero is estimated by determining
the zero crossing of the linear interpolation between these two measurements, since the
BPM positions are close to each other compared to the beam oscillation wave length.
To become more robust against measurement noise, an additional check is performed. It
uses the knowledge that the phase advance is smooth along the main linac. If a zero is
unusually close to another zero, it is most likely just a noise artefact. The zero deviating
more from the expected position can be deleted.

With the detected zero crossings the phase advance for each bump can be recon-
structed. The phase advance for every bump starts with 0 ◦ at the position of the first
quadrupole. This is due to the fact that the beam is kicked out of its nominal orbit
into a sine-like oscillation. At each zero crossing the phase advance has grown by 180 ◦

compared to the zero crossing before. Since the phase advance can be assumed to be
smooth, the phase advance between zero crossings is determined by linear interpola-
tion/extrapolation. To reduce the local phase error, introduced by the zero detection,
the generated phase data are low-pass filtered in space domain, by applying a Hamming
window.
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After the local phase information have been extracted, they can be merged to one
global phase by the following technique. Since the bumps are chosen to be overlap-
ping, also the phase information of two consecutive bumps are overlapping. The phase
information of a bump is stitched to the one before, by simply adding a proper offset
value. This offset value is chosen in a way that the mean value of the error between the
two phase information in the overlapping region is minimised. It should be mentioned
that the assumption of an additive phase is not completely valid. For the generation of
R[k] the phase has to be slightly modified to achieve the necessary accuracy. However,
this is an accumulated and static effect, which is not significantly changing with varying
accelerator component drifts.

5.3. Amplitude model for the main linac of CLIC

5.3.1. Introduction

The vertical beam motion in the main linac due to an excitation (kick) is sinusoidal-like.
It can be described by an amplitude Y (s) and a phase advance φ(s), where s is the
position in the main linac in metre (see Fig. 5.2 (left)). This section focuses on a model
for Y (s). It is determined by the so called beta function of the accelerator and a particle-
energy dependent effect called filamentation. Even tough the principle of filamentation
will just be explained in the next section, we already state here the connection to the
relevant literature.

In the literature, filamentation is mentioned in connection with the term of Landau
damping. Landau damping is the damping of certain beam instabilities due to filamen-
tation. Even though we are not interested in these damping effects, the literature about
Landau damping provides the basic formalism for our studies. However, this basic for-
malism has to be modified, as for example Chao [22] and Hofmann [58] simplify the
focusing strength of the accelerator components to a constant value and study mainly
beam stability in rings, which is not a valid simplification for the main linac of CLIC. In
the mentioned literature, the observed filamentation is also just observed as time goes
to infinity. This is also not a useful treatment for the current application, where the
transient effects due to the special accelerator design are the important ones.

In this section, we will therefore adapt the general model to quantify filamentation
and calculate Y (s). We will present approximations of the beta function of the main
linac of CLIC and the particle motion dependence on the energy and the particle energy
distribution function in order to find an accurate expression for Y (s). At positions in
the main linac, where made assumptions are not valid, the basic model will be extended
with a fit to simulation data.

5.3.2. Description of beam oscillations in the main linac of CLIC

As already mentioned, the vertical beam position Y (s) is determined by the so called
beta function and the effect of filamentation. The beta function characterises the effects
of the accelerator components, e.g. magnets and accelerating structures, on the beam.
The beta function is determined by the accelerator design and fully describes the motion
of a particle with given energy along the beam line. Filamentation, on the other hand,
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is a result of the fact that particles with different energies will be affected differently by
the accelerator components. The vertical beam position Y (s) in the main linac is the
average of the positions of the individual particles Y (s) = E {y(s)}. When the beam is
kicked out of its nominal orbit, the particle motion due to the kick is in phase. However,
particles with lower energy oscillate faster than particles with higher energy. Slowly a
phase difference builds up between particles with different energies. The particles move
less and less coherently. Due to this ensemble of sinusoidal waves with different wave
lengths, the average beam oscillation will be damped. A characteristic for filamentation
is the occurrence of waists and maxima in the beam oscillation amplitude. This is due to
the fact that different particle oscillations add up at some positions along the accelerator
in a coherent and at some positions in an incoherent way.

5.3.2.1. General approach

If the beam is in its nominal orbit, all particles of the beam move along the beam line
with some amplitude and the betatron phase advance. Since the individual particles
have random phases their average position (beam position) is zero. In case a certain
kick ∆y′ is applied to the beam at some position sk, the whole beam behaves much like
every individual particle. The kick superimposes a second motion (also the betatron
motion) to the individual motion of every particle. Since this second motion is coherent
for every particle (same phase for every particle), the beam as a whole starts to oscillate.
The amplitude Ak of that motion will depend on the size and the position of the kick,
and is assumed to be known. Hence Y (s) can be written as

Y (sk, s) =


0, 0 ≤ s ≤ sk
Ak

∞∫
−∞

y(sk, s, δ)ρ(δ)dδ, sk < s ≤ send
, (5.17)

(5.18)

where send is the length of the main linac of 21028 m, δ = (Ei−E0)/E0 with E0 = E {Ei}
is the particle’s energy deviation from the average particle energy, y(sk, s, δ) is the motion
of a particle with a certain δ and ρ(δ) is the distribution function of the particles due to
their δ.

Recognise that the approach in Eq. (5.17) has to make the assumption that δ for a
particle is constant along the main linac. This also implies that ρ(δ) does not change
as a function of s. It is not obvious that this assumption can be made. For some parts
of the main linac (entrance and exit) it is not even true. These parts will have to be
treated separately, which will lead to extensions of the basic model.

However, for most parts of the system the constant δ assumption is valid (see Schulte [111]).
The reason is a coherent energy spread (see Fig. 5.5) along the bunch, which exists in
most parts of the main linac. Particles with different energies are separated longitu-
dinally and can therefore be exposed to different acceleration gradients. Due to that
fact, δ can be approximately constant for every particle. In the following, the general
expressions y(sk, s, δ) and ρ(δ) in Eq. (5.17) will be specialised for the main linac of
CLIC.
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Figure 5.5.: Coherent energy spread δ = Epart/Eavg along the longitudinal dimension
of one bunch (z) at position s = 6400 m in the main linac. A negative z corresponds
to the front part of the bunch. The shape of the particles distribution develops due
to the combined effects of acceleration voltage, wake field kicks and BNS damping (see
Schulte [109] for more information).

5.3.2.2. Single particle motion with nominal energy

The motion of a single particle in the main linac with nominal energy (δ = 1) is of the
form

y(sk, s) = Ak
A(s)

A(sk)
sin(φ(s)− φ(sk)), for sk < s ≤ send. (5.19)

For 0 ≤ s ≤ sk the beam oscillations are y(sk, s) are zero. Notice that the amplitude of
y(s) is normalised to the size of Ak at the kick position. In principle A(s) and φ(s) can
be calculated by solving Hill’s equation (see Wille [136]). However, for a complex beta
function no closed solution can be found. Instead, the average beta function of the main
linac was approximated by

β(s) =
√
bs+ c with b = 0.051 and c = 4.8. (5.20)

From this beta function, the beam size σ(s) as well as the phase advance φ(s) of the
single particle motion can be calculated as (see e.g. Wille [136])

σ(s) =

√
β(s)

εN
γ(s)

and

φ(s) =

∫ s

0

1

β(ś)
dś =

2√
b

(√
s+

c

b
−
√
c

b

)
, (5.21)

where εN is the normalised emittance and γ(s) the relativistic factor, which is the total
particle energy divided by the rest mass energy. The beam oscillation amplitude behaves
in the same way as the beam size. By stating the fact that γ grows with good approxi-
mation linear along the main linac and neglecting the absolute size of the oscillation by
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normalizing it, we can write A(s) as

A(s)

A(sk)
=

1

Â(sk)

√
β(s)

γ(s)
=

1

Â(sk)

√√
bs+ c

ds+ e
with (5.22)

d = (1500− 9)/(21× 0.51), e = 9000/0.51 and Â(sk) =

√√
bsk + c

dsk + e
.

5.3.2.3. Single particle motion with non-nominal energy

Equations (5.21) and (5.22) approximate the motion of particles with nominal energy.
To be able to describe the energy dependent effect of filamentation the expressions for
A(s) and φ(s) have to be generalised to A(s, δ) and φ(s, δ). The dependence of A in
respect to δ is relatively small (few percent, verified in Schulte et al. [113]). Since A
appears as a multiplicative factor, these inaccuracies can be neglected.

Also the dependence of φ in respect to δ is small. However, since the values for φ
becomes large, also small variations can change the according sine function of the beam
oscillations completely. A derivation for the energy-dependent phase change in the main
linac of CLIC can be found in Schulte [112]. This relative phase change for one FODO
cell (elementary building blocks of the main linac consisting of one focusing and one
defocusing magnet) is given by

∆φ

φ0
≈ − 2

φ0
tan

(
φ0

2

)
δ = −fδ = −1.15δ, (5.23)

where φ0 = 1.26 is the phase advance of the FODO cells in the main linac of CLIC for
nominal energy. Since the whole main linac consists of FODO cells, the complete main
linac will have the same energy dependent behaviour as one FODO cell. Even though
Eq. 5.23 delivers a good first approximation for the phase advance change, simulations
have shown that small nonlinear effects appear. Especially a small asymmetry between
different signs of δ was observed. Therefore, an average value of f = −1.06 was chosen
for the following calculations. Using Eq. (5.23) to generalise Eq. (5.19) gives

y(sk, s, δ) =

0, 0 ≤ s ≤ sk
Ak

A(s)

A(sk)
sin(φ̂(s)(1− fδ)), sk < s ≤ send

with (5.24)

φ̂(s) = φ(s)− φ(sk). (5.25)

5.3.2.4. Particle energy distribution

As mentioned above, the main assumption of the current model is a constant energy
distribution function ρ(E) along the main linac. If different distributions along the
main linac are plotted, one finds a typical distribution shown in Fig. 5.6 (right). This
function can be approximated by the quadratic function

ρ(δ) =


0, δ < −0.0047
g

j
(ρ− h)2 +

i

j
, −0.0047 ≤ δ ≤ 0.0066

0, δ > 0.0066

with (5.26)
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Figure 5.6.: Particle energy distribution (δ = (Ei−Eo)/Eo with E0 = E {Ei}) at position
s= 0 m (left) and s= 6400 m (right) in the main linac of CLIC (9th order polynomial
fit to simulation data). The Gaussian like shape of the plot on the left side is produced
by the upstream transfer line and will be changed by the main linac gradually. At a s
of 6400 m e.g., the shape of the curve is determined by the coherent longitudinal energy
spread.

g = 3× 106, h = 0.0025, i = 50 and j = 1.0225,

where j is a form factor to normalise the area to 1. There are two strong deviations from
the distribution function in Fig. 5.6 (right). At the beginning of the main linac ρ(E)
is Gaussian and much wider, with a standard deviation σ of 0.02 (see Fig. 5.6 (left)).
At the end of the main linac the distribution function is similar to the average one, but
slightly narrower. These deviations will be dealt with in the Sec. 5.3.4.

5.3.3. Calculation of the basic amplitude model

5.3.3.1. Analytic expressions of the beam motion

Combining Eqs. (5.19), (5.24) and (5.26), assuming a unit excitation (Ak = 1) and
making the substitution u = φ̂(s)(1− fδ) gives the integral

Y (s > sk) = r

uup∫
udown

sin(u)(ou2 + pu+ q)du with (5.27)

o =
l

φ̂(s)2f2
, r = − A(s)

φ̂(s)fA(sk)
,

p = − 2lφ̂(s)

φ̂(s)2f2
+

m

φ̂(s)f
, q =

lφ̂(s)2

φ̂(s)2f2
− mφ̂(s)

φ̂(s)f
+ n,

uup = φ̂(s)(1− 0.0063f), udown = φ̂(s)(1 + 0.0045f),

l =
g

j
, m = −2

gh

j
,

and n =
gh2

j
+
i

j
.
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Figure 5.7.: Beam oscillations due to kicks in the main linac at sk = 100 m (blue, left)
and sk = 1500 m (blue, right) and the according fits of the amplitude model (red). For
the kick at sk = 100 m, the filamentation is very strong and the particle oscillations
become quickly completely incoherent. For the kick at sk = 1500 m the filamentation
effect is not as strong as for the kick at sk = 100 m, but the amplitude of the beam
oscillations is still dominated by the incoherence.

Integration by parts gives the final result

Y (s > sk) = r((2ouup + p) sin(uup)− (ou2
up + puup + q − 2o) cos(uup)

− (2oudown + p) sin(udown) + (ou2
down + pudown + q − 2o) cos(udown)). (5.28)

5.3.3.2. Amplitude extraction

Equation (5.28) contains amplitude and phase information. However, just the amplitude
information is meaningful due to the made approximations. Since Eq. (5.28) could not be
simplified further, the amplitude Yamp(s) was extracted with the help of a peak detection
algorithm.

The algorithm first identifies all positive peaks by checking, if the actual point has a
larger amplitude as both, the next point and the point before. For the detection of the
negative peaks, the same criterion is applied to the inverted data. The absolute values
of the detected peaks are smoothed by applying a Hamming low pass filter. This reduces
the model error, since the oscillation amplitudes are mainly smooth along the main linac.
The created amplitude data are sampled at the BPM locations. The described procedure
is computationally very fast. An example of the produced oscillation envelopes is shown
in Fig. 5.7 (right).

5.3.4. Extensions to the basic amplitude model

The basic oscillation amplitude model derived in Sec. 5.3.3 is not valid, if strong energy
distribution variations occur in the main linac. While these effects can be neglected at
the end of the main linac, they cause the large errors in the basic model predictions, if
the beam is kicked at the beginning of the main linac. The reason for this modelling
problem is that at the beginning of the main linac particles with the same energy and
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5. System identification scheme for orbit response matrices

at the same position can have different phases. This was excluded in the basic model
by the assumption, that the δ of a particle stays constant along the main linac. To still
be able to produce the necessary amplitude information, a twofold approach is used. In
case sk > 1000 m, the basic model is used. For kicks at sk ≤ 1000 m, the following fit to
simulation data from PLACET is employed.

A typical beam oscillation at the beginning of the main linac has a form depicted in
Fig. 5.7 (blue curve, left). It has two minima z1 and z2 and three maxima m0, m1 and
m2. Simulations showed that these turning points can be approximated with

sz1 = 6000 + 2sk, sz2 = 17500 + 2sk,

yz1 = 1.5× 10−4sk + 0.007, yz2 = 1.1× 10−4sk + 0.003,

sm0 = sk, sm1 = (sz1 + sz2)/2,

sm2 = 21000, ym0 = 1,

ym1 = 0.0019s
2/3
k + 0.025, ym2 = 1.2× 10−4sk + 0.015. (5.29)

Based on these positions, a fit of the form

Ŷ (s > sk) =
α(s) ∗ β1(s) + β2(s)

γ1(s)
(5.30)

is calculated. The components of Eq. (5.30) will be explained shortly. The basic be-
haviour of the repeating minima and maxima is modelled by

α(s) = cos(ωs+ ϕ0)2 with (5.31)

ω = π/(sz2 − sz1) and ϕ0 = π/2− ωsz1.
To lift the minima to their proper position, the linear function

β2(s) =
yz1 − yz2
sz1 − yz2

s+
sz1yz2 − sz2yz1

sz1 − yz2
(5.32)

is added. To account for the decreasing amplitude of the maxima,

β1(s) =
1

m̂1s4 + m̂2s2 + m̂3
(5.33)

is multiplied by α(s), where m̂1, m̂2 and m̂3 result from the solution of the following
system of linear equations

 s4
k s2

k 1
s4
m1 s2

m1 1
s4
m2 s2

m2 1

 m̂1

m̂2

m̂3

 =


1

1− β2(sk)
1

ym1 − β2(sm1)
1

ym2 − β2(sm2)

 . (5.34)

In order to increase the slope between sk and sz1, the function γ1(s) is used, which is
given by

γ1(s) =


1, 0 ≤ s ≤ sk,(

b̂s

ĉs2 + 1
+ 1

)
l̂s sk ≤ s ≤ se,

1, se ≤ s ≤ send,

with (5.35)
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b̂ =
2yf
sf

, ĉ =
1

s2
f

, se = 6000 + sk,

sf =
200√

10

√
sk + 1000, yf =

2.8
√
â√

sk + â
, â =

400

2.82 − 1
.

The linear function

l̂(s) = ê(s− sk) + 1 with ê =
1

se

(
1

f̂
− 1

)
and f̂ =

b̂se
ĉs2
e + 1

+ 1

ensures that at send the effect of the correction function dies out smoothly. The resulting
Ŷ (s) for a beam kick at e.g. sk = 200 m can be seen in Fig. 5.7 (red line, left).

The effect of the strong change in the particle energy distribution for kicks at the
beginning of the main linac does not die out exactly at 1000 m. Especially at the end
of the main linac, residual errors can be seen. To reduce the model error further, the
correction function

γ2(s) =

{
0, 0 ≤ s < 18000

ĝs+ ĥ, 1800 ≤ s ≤ send

with (5.36)

ĝ = 1.33× 10−5 and ĥ = −0.24 (5.37)

was added to the basic model in Eq. (5.28).

5.3.5. Amplitude model validation

To verify the accuracy of the described amplitude model, the produced data were com-
pared to simulation results. For this reason, beam oscillations generated with the simula-
tion code PLACET were processed by the same peak detection algorithm as used for the
amplitude model. The resulting envelope Ysim(sk, s) was subtracted from the according
amplitude model data, which forms an error vector e(sk, s) = Y (sk, s)−Ysim(sk, s). The
relative quadratic error of all generated error vectors

∆ =

√
N∑
k=1

e(sk, s)T e(sk, s)√
N∑
k=1

Ysim(sk, s)TYsim(sk, s)

(5.38)

is used as an accuracy measure, where N is the number of positions at which the beam
is kicked. Two evaluations were performed for different kick positions. In the first

∆model ∆ext ∆ML

sk every 21 m 3.4 % 8.6 % 3.6 %
sk every QP 3.9 % 9.2 % 4.5 %

Table 5.1.: Accuracy evaluation of the amplitude model.
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5. System identification scheme for orbit response matrices

Figure 5.8.: Combination of the system identification and the L-FB. Additionally to the
actuation u[k] of the L-FB, the excitation uexc[k], created by the excitation unit of
the system identification algorithm, is applied to the accelerator inputs. The L-FB
should not react on the beam oscillations created by the system identification, since
these oscillations will be changed from time step to time step. Therefore, the predicted
beam oscillations due to the system identification R̂[k]uexc[k] are removed from the
measurements before the measurement vector y[k] is fed back to the L-FB. The estimate
R̂[k] of the orbit response matrix R[k] can be used to update the controller coefficients
of the L-FB. The overall system is hence an adaptive control system.

evaluation, the beam is kicked at every quadrupole in the beam line. This puts more
emphasis on the beginning of the main linac, since the quadrupoles are closer together in
this area. It is also the relevant value for the accuracy of an estimated response matrix.
In the second evaluation, the beam is kicked every 21 m. For every evaluation, ∆ is
calculated for the overall model, but also separately for the fit at the beginning of the
main linac (sk ≤ 1000) and the model for the main part of the main linac (sk > 1000).
The resulting values are presented in Tab. 5.1.

The accuracy of the overall model is around 4 %. Considering the necessary simplifi-
cations (e.g. constant particle distribution, continuous beta function), this result is very
good. While the error of the main model is even lower (around 3.5 %), the fit at the
beginning of the main linac is not that accurate (about 9 %). The reason for the larger
error are the quickly changing envelope functions in this region, which are difficult to
fit. However, since the region in which the fit is applied is short compared to the overall
length of the main linac, these inaccuracies do not play a critical role for the accuracy
of the full model.

5.4. Simulations results of the identification scheme with the
L-FB

To use the presented system identification algorithm for the main linac of CLIC, the
system has to be combined with the L-FB. For the following simulations, the weighted
SVD controller presented in Sec. 3.2.2.2 is used as the L-FB for the main linac, which is a
simplified version of the orbit controller for the main linac and the BDS. The combination
of the system identification and the orbit controller is shown in Fig. 5.8.
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Figure 5.9.: Quadratic error of the initially measured orbit response matrix Rm,0 and

different estimated matrices R̂[k] compared to the real matrix R[k] of the main linac,
subject to a change of the acceleration gradients. The acceleration gradients are altered
in a coherent way by 0.15 MV/m and -0.3◦ along the main linac, which is a possible
scenario given the specified gradient tolerances. (left) The gradient change occurs in
a drift like manner from 6.20 s to 38.44 s and produces an error between the measured
Rm,0 and the real R[k] (black curve) of about 48 %. With the system identification
algorithm (λ = 0.92) the change can be learned and the final error is about 13 %. The
blue curve corresponds to the error of the estimated R̂[k] with BPM noise (50 nm)
and ground motion (model B, quadrupole stabilisation V1), while for the red curve no
disturbances have been applied. (right) The same gradient change as for the left plot
has been applied in a step like manner at 6.20 s. Learning curves for different forgetting
factors λ are shown, where disturbances and noise has been applied.

The estimated response matrix estimate R̂[k] can not only be used for system diag-
nosis, but also for an update of the parameters of the L-FB (recalculation of the SVD).
This corresponds to an adaptive control scheme, which improves the performance of the
L-FB in case of system changes over time. More precisely, the shown adaptive control
scheme belongs to the group of self tuning regulators (STR), which is characterised by
the fact that the system identification and the control algorithm are not combined to
one algorithm, but separately realised.

The adaptive controller was implemented in PLACET and Octave and tested via
simulations. The results are presented in Fig. 5.9. While a drift like change of the
acceleration gradients (left) results in a large error for an initially measured response
matrix Rm,0, the identified matrix can adapt to the system change. Note that also the
measured response matrix has an initial error (in this setup 2.7 %) due to the present
measurement noise. The identified matrix possesses a steady state error of about 13 %
(in the current setup), which is composed of two components. The first component
accounts for 10.8 % error and is due to the limited accuracy of the amplitude model and
the simplified assumption of a smooth phase advance along the linac (modelling errors).
The second component is due to the influence of measurement noise and ground motion.
This component depends on the choice of the forgetting factor λ. A larger value (closer
to 1) corresponds to stronger averaging and thus to a small influence of disturbances.
On the other hand, a high λ also results in a slow learning speed. This trade-off between
learning speed and steady state error is illustrated in Fig. 5.9 (right) and Tab. 5.5.
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α 0.99 0.97 0.95 0.92 0.90 0.87 0.85 0.82 0.79 0.75

∆ed [%] 1.0 1.0 2.1 2.1 3.0 4.2 4.7 7.0 6.4 7.7
T90 % [s] 50.8 34.7 26.0 19.8 17.4 14.9 13.6 12.4 11.2 9.9

Table 5.2.: Trade-off between the steady state error ∆ed due to disturbances and learning
speed T90 % for different forgetting factors α. The value T90 % is the time needed to learn
90 % of a step like change of the orbit response matrix. The values of ∆ed are not strictly
monotonically increasing in the table due to statistical fluctuations.

5.5. Conclusions

In this chapter, it was shown how methods from system identification theory can be used
to identify time-changing orbit response matrices of accelerators. In general, the full orbit
response matrix can be identified with high precision, if enough time is available. In the
presented work, such a basic identification algorithm (RLS) has been extended to speed
up the identification by a factor of 33. In return, the modified scheme can not completely
identify all changes in the orbit response matrix anymore, but is optimised to identify
phase advance deviations, which are assumed to be the most significant error sources.
The modified system identification algorithm combines a performance optimised RLS
algorithm with a phase reconstruction and merging algorithm and an amplitude model
for beam oscillations in the main linac of CLIC.

In particular, the amplitude model is an independent tool itself. It includes the effects
of the beta function and filamentation on the beam oscillations. The model assumes
constant relative energy deviation along the main linac for every particle. At the be-
ginning of the main linac, where this assumption is not true, the model was exchanged
with a fit to simulated data. An overall accuracy of about 4 %, and a calculation time
of below 0.15 s on a standard PC with low memory consumption have been achieved.
This shows that the developed model is accurate, fast and efficient. Improvements in
the calculation speed are assumed to be possible, since a simple non-optimised Matlab
script was used. While the fit in the beginning of the main linac is specific for CLIC, the
model for the main part can be adapted to other accelerators, which use a beam with
an approx. constant relative energy deviation.

Simulations showed that the complete system identification algorithm is able to detect
steps and drifts of accelerator parameters, in spite of measurement noise and ground
motion disturbances. The trade-off between steady state error and identification speed
has been evaluated as a function of the forgetting factor λ. The choice of λ = 0.92
turned out to be a good compromise for the parameters of the main linac. With this
forgetting factor, 90 % of a step-like change in the orbit response matrix can be learned
within about 20 s with a steady state error of about 13 %. It has also been shown in
this chapter how the system identification scheme can be combined with the operation
of the L-FB.

The presented scheme is flexible and can be adapted easily to the parameters of other
accelerators. For most machines it should be possible to reduce the steady state error
of the identification compared to the main linac of CLIC, since the main linac of CLIC
is a particularly inconvenient system to model and excite.
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In this thesis, we present essential contributions to the feasibility issue of the luminosity
preservation of CLIC with respect to ground motion effects. The achievements of this
work can be grouped in three parts: controller design, integrated simulations and system
identification, which will be detailed in the following paragraphs. As a result of these
efforts, the feasibility issue of luminosity preservation due to ground motion has been
resolved even with relatively pessimistic assumptions for the ground motion model.

Controller design: Standard orbit feedbacks are not able to cope with the demand-
ing requirements necessary to control the beam orbit in the main linac and the beam
delivery system (BDS) of CLIC. The problem arises since the according obit feedback,
named linac feedback (L-FB), has to suppress the ground motion effects very efficiently,
while at the same time being robust against measurement noise of the beam position
monitors (BPMs). Therefore, a novel design method has been developed in Sec. 3.2. It
is based on a decoupling controller, which is a well-known strategy for orbit feedbacks
(SVD controller). The innovation of the design is the novel method to determine the
controller for the individual decoupled channels. A two step, semi-automatic approach
is taken. First, the user defines a basic transfer function, which allows him to incor-
porate important expert knowledge about the accelerator system. Then, an automatic
algorithm calculates an open parameter of the given user transfer function such that the
luminosity loss, or some other target function, is minimised. The algorithm uses therefor
models for the assumed ground motion excitation and measurement noise introduced in
Sec. 2.1 and 2.2.

The tuned controller preserves the luminosity even better than a similar, hand op-
timised orbit feedback controller, which was adapted over several weeks to achieve its
maximum performance. The design time has been drastically reduced. Additionally,
due to the improved robustness against measurement noise the tight specification for
the BPM resolution could be relaxed from 10 nm to 50 nm in the BDS and possibly even
to 100 nm in the main linac. The presented design method is an interesting option for
future orbit feedback systems including storage rings.

Also simple but effective designs for the interaction point feedback (IP-FB) have been
presented in Sec. 3.4. The according controller coefficients have been optimised with the
help of derived models (Sec. 2.3) and the achieved performance is close to the theoretical
optimum. Also cost reduction options for the quadrupole stabilisation system have been
investigated (Sec. 3.3). No strong limitations for these systems have been found.

Integrated simulations: A simulation framework has been set up to design, test and
evaluate all ground motion mitigation methods of CLIC (Sec. 2.4). The framework com-
bines and extends existing codes: beam tracking with PLACET, luminosity calculation
with GUINEA-PIG, controller and algorithm implementation in Octave and a realistic
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ground motion generator. Such computationally expensive, full-scale simulations are
necessary, since the interplay of the accelerator, ground motion and mitigation methods
cannot be described with sufficient accuracy by simple analytical formulas.

Using the basic stabilisation system (V1) and a pessimistic assumption for the ground
motion model (model B10), simulations presened in Sec. 4.1 showed that the luminosity
loss of CLIC can be limited to a level of about 12 %. This result is sufficient but at
the limit of the allowable tolerance. Further investigations showed that the simulation
results can be improved, if the frequency response of the quadrupole stabilisation system
is changed in some frequency ranges. The according guidelines for the modification of the
frequency response were used by the stabilisation group to design an improved system
named V2. With this stabilisation system the luminosity loss is as small as 2 %, including
the measurement noise.

The overall system was tested in Sec. 4.2 with respect to several machine imperfections.
The only problem that has been observed is a sensitivity due to beam energy variations.
These variations create large transversal offsets in the dispersive area of the BDS and
are measured in the according BPMs. The measurements are coupled back by the L-FB
and create a significant luminosity loss. The problem was resolved by adding a small
modification, named dispersion filter, to the L-FB. The dispersion filter removes the
dispersive orbit in a very efficient way from the BPM measurements. The remaining
luminosity loss due to beam energy variations is negligible. Additionally, the dispersion
filter can be used to measure the beam energy with potentially very high accuracy.

System identification scheme: The third part of this thesis is concerned with the prob-
lem of obtaining high quality system knowledge of the accelerator, which is in this case
the orbit response matrix. A system identification scheme is presented in Chap. 5 that
is capable of identifying changes of this matrix over time, without interrupting physics
data taking (on-line). A standard algorithm (RLS) has been modified to speed-up the
identification process by a factor of 33. This was achieved by focusing on the main source
of changes of the orbit response matrix, while neglecting less important disturbances.
As a consequence a steady state error of about 13 % has to be accepted. However, if
the speed-up is not necessary, the identification scheme can be modified to identify the
full orbit response matrix with high precision. The overall scheme also includes a phase
reconstruction algorithm, which calculates from measured BPM readings the effective
phase advance of the accelerator, and a derived amplitude model of beam oscillations in
the main linac. The amplitude model includes the lattice dependence of the oscillations
as well as the energy dependent effect of filamentation.

Simulations have shown that the system identification scheme works, also in combina-
tion with the L-FB. The system can reduce the down time of accelerators, since it is not
necessary anymore to interrupt the physics operation to measure the response matrix.
The identified orbit response matrix can be used for several applications. By updating
the controller parameters of the orbit controller with the identified matrices (adaptive
controller), the feedback performance can be improved. The matrices are also an im-
portant input for beam-based alignment methods, system diagnosis and error detection
tools. Since the identification scheme is very flexible it can be easily adapted to other
machines.
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A. Beam physics background

In this appendix, some basic concepts and terms from the field of beam physics are
covered. This brief overview is addressed to people with a different background and
should help to make this thesis better accessible for them. For much more detailed
introductions into the field of beam physics, please refer to the texts Wiedemann [135]
and Wille [136]. Be aware that in this thesis also concepts are used, which are not
covered here. In such cases we will refer to the relevant literature.

A.1. Luminosity

The luminosity, symbolised by L, is together with the particle energy the most important
accelerator parameter. It is a measure for the quality of the beam collisions in a particle
accelerator and is proportional to the rate of particle production, which is given by

dN

dt
= σ(E)L, (A.1)

where N is the total number of produced particles due to a certain reaction and σ(E)
is the cross section for this reaction. The cross section of a reaction describes the
probability for this reaction to occur. It is dependent on the type, state and energy of
the colliding particles and has the unit of an area.

The luminosity describes the efficiency of the particle beam collisions. In a linear col-
lider and for Gaussian distributed beams, the luminosity can shown to be (Napoly [76])

L =
frepnbN

2
b

4πσxσy
, (A.2)

where frep is the beam train repetition rate, nb is the number of bunches per beam train,
Nb is the number of particles in a bunch and σx and σy are the beam sizes (standard
deviation of the Gaussian distribution). CLIC aims for a total luminosity of 5.9×1034

cm−2 s−1. For physics research, the peak luminosity L1% that is generated only from
particles within 1 % of the nominal collision energy is more relevant. The target value
for L1% at CLIC is 2×1034 cm−2 s−1 and whenever we use the term luminosity in this
thesis we will refer to the peak luminosity.

Imperfections, as e.g. ground motion, can decrease the nominal luminosity L0 by a
value ∆L. We will in the following state expressions for the luminosity decrease due to
beam size growth and beam-beam offset, which are used in Chap. 2 for the creation of
models.

In case the beam size deviates from its nominal values σx,0 and σy,0 by ∆σx and ∆σy,
the relative luminosity loss is given by

∆L
L0

= 1− σx,0σy,0
(σx,0 + ∆σx)(σy,0 + ∆σy)

≈ ∆σx
σx,0

+
∆σy
σy,0

+O(2). (A.3)
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In Eq. (A.3) the last approximation is due to a Taylor expansion, where terms of order
two and higher have been neglected. In case the two beams collide with offsets δx and
δy, the luminosity loss can be calculated as

∆L
L0

= 1− e
− 1

4

[(
δx
σx,0

)2

+

(
δy
σy,0

)2
]
≈
(

δx
2σx,0

)2

+

(
δy

2σy,0

)2

+O(4), (A.4)

where again a Taylor series expansion has been used to obtain the last approximation.
The Eqs. (A.2), (A.3) and (A.4) neglect the mutual interaction of the two beam at the
collision. To also take into account these beam-beam interactions, non-Gaussian beam
distributions and the beam energy spread due to Beamstrahlung, numerical simulation
tools as GUINEA-PIG (see Schulte [108]) have to be used. GUINEA-PIG is used as an
element of the developed integrated simulation framework in Sec. 2.4.

A.2. Emittance and beam size

When a beam moves along the accelerator with length s, it is usually described with
the help of the statistical properties of its individual particles. Each individual particle
(here indexed with i) is defined by its horizontal, vertical and longitudinal positions xi,
yi, zi; by the vertical and horizontal “angle” in propagation direction x′i = dxi/ds and
y′ = dyi/ds and its energy E. These particle coordinates can be collected in the vector
xi = [xi x

′
i yi y

′
i zi δi]

T , where δi = (Ei − E0)/E0 is the relative energy deviation of the
particle and E0 = E{Ei} is the average beam energy. Since the beam is assume to be
Gaussian distributed, it can be described by the first and second order moments of its
particle coordinate distributions as

X = E{xi} and Σ = E
{
xix

T
i

}
, (A.5)

where Σ is the so called 6D beam matrix. For sake of simplicity, we restrict ourselves
for a moment only on the vertical dimension (the other dimensions are analogue), which
leads to the 2D beam matrix

Σy =

[
E{yiyi} E{yiy′i}
E{y′iyi} E{y′iy′i}

]
= εy

[
βy −αy
−αy γy

]
. (A.6)

When describing the beam transport along an accelerator it is convenient to separate
the properties of the beam and the magnet system of the accelerator called lattice. This
separation is given in Eq. (A.6) by the emittance εy, which is a beam property, and
the twiss parameters αy, βy and γy, which are given by the lattice. The emittance is
an invariant (without acceleration) of the beam and describes how easily the beam can
be focused to small beam sizes. From Eq. (A.6) we can see that the beam size can be
calculated from the emittance and the twiss parameters as

σy =
√
εyβy. (A.7)

Note that the beam size is not only dependent on the emittance but also on the lattice
design and thus not an appropriate quantity to describe the beam independent from the
magent system.
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Without acceleration the beam emittance is preserved in an accelerator, neglecting
dissipative effects like synchrotron radiation. If a beam is accelerated on the other hand,
it shrinks due to a relativistic effect called adiabatic damping. For the lattice design it
is often of advantage to work with the normalised emittance εN , which stays constant
even when the beam is accelerated. The normalised emittance is defined as

εN = γεε with γε =
E0(s)

m0c2
,

where m0 is the rest mass of the accelerated particle type. In contrast to the normalised
emittance εN , ε is sometimes called geometric emittance. Another important term is the
projected emittance εp. The beam size can only be calculated by Eq. (A.7), if the 6D
beam matrix is decoupled in horizontal, vertical and longitudinal direction. If this is not
the case, also coupling from other directions has to be taken into account, which leads
to the projected emittance. This projected emittance is what actually can be measured
and what determines the usable beam quality. In contrast to the normalised emittance,
the projected, normalised emittance it is not constant along the accelerator. When we
use the term emittance in this thesis, we refer implicitly to the projected, normalised
emittance. This concept can be further generalised, by not considering only one but
several beam bunch. This leads to the so called multi-bunch emittance, which includes
also the offset of consecutive bunches.

Finally we want to state how the beam size changes, if it is composed out of two
individual contribution. We assume therefor that additionally to the nominal beam size
σ0 we have a small additional beam size contribution σc, due to coupling or dispersion
(see next section for a definition). In this case the overall beam size σ is given by

σ =
√
σ2

0 + σ2
c .

The beam size change due to σc can be approximated as

∆σ = σ − σ0 ≈
σ2
c

σ0
+O(3), (A.8)

where a Taylor expansion has been used. The expression Eq. (A.8) is used in Sec. 2.3.2
for the development of a model of the beam size growth due to an offset of the final
doublet magnets.

A.3. Energy spread and dispersion

In this section we discuss the effects arising from the fact that the particles of a beam
do not all have the same energy but are Gaussian distributed with a standard deviation
δ usually called energy spread. The different particle energies cause the particles to be
differently influenced by the magnets of the accelerator lattice. Particles with higher
energies will be less deflected by the magnetic fields compared to particles with lower
energies. As a result, the natural oscillations along the beam line of the particles with
higher energies will have longer wave lengths and higher amplitudes.

If a beam passed through a dipole field, particles with different energies will have
the different deflection angles. As a result, a dependence of the transversal position
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of a particle on the energy can be observed. The change of transversal position along
the beam line due to an energy deviation can be calculated (here only for the vertical
direction) as

yD(δ, s) = dy(s)δ with dy(s) = dy =
E{yδ}
E{δ2} , (A.9)

where dy(s) is called dispersion at the position s and δ is the relative energy deviation
of the particle. Note that not only dipole magnets can create dipole field, but also
quadrupoles in case the beam enters these quadrupoles with an offset. As an example,
the offset of the final focus quadrupoles can create dispersion that increases the beam
size at the IP strongly (see Sec. 2.3.2).

Beside dispersion, the natural energy spread of the beam can have another beam qual-
ity decreasing effect. If a beam is kicked as a whole, e.g. by a misaligned quadrupole
magnet, it oscillates along the beam line. Since particles with higher energy oscillate
slower than particle with lower energy, a phase difference will build up and the beam mo-
tion gets less and less coherent. As a result, the oscillation of the beam centre is damped,
but at the same time the beam emittance grows. This effect is called filamentation and
a model for it is derived in Sec. 5.3 for the main linac of CLIC.
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In Sec. 2.4, an integrated simulation framework was described for the numerical analysis
of the complex effects of ground motion and the ground motion mitigation systems in
the main linac and BDS of CLIC. In this appendix we give additional information for
the usage of this framework.

B.1. Download and installation

Before the simulation framework can be set up, the freely available tools PLACET,
GUINEA-PIG and Octave have to be installed. PLACET and GUINEA-PIG can be
downloaded via the Concurrent Version Service (CVS) with the following commands.

export CVSROOT=:ext:anonymous@isscvs.cern.ch:/local/reps/placet

export CVS_RSH=ssh

cvs checkout placet-development

cvs checkout gp

Here the useage of the bash shell is assumed. If another shell is used, the environment
variables CVSROOT and CVS RSH have to be adapted appropriately. For the installation of
PLACET we refer to the documentation placet-development/doc/placet.pdf. Note
that not only the executable placet-octave, but also the created program grid has
to be copied to a directory in the search path of the shell, e.g. /usr/bin/. To install
GUINEA-PIG, the FFTW libraries, where FFTW stands for “Fastest Fourier Transform
in the West”, have to be downloaded and installed. We recomment the version 2.1.5 of
the FFTW libraries. With these files, GUINEA-PIG can be compiled by simply typing
make in its root directory. Octave can easily be found in the Internet, but we would
like to mention that due to the current implementation of PLACET, the version of
Octave has to be between 2.1.17 and 3.0.5 and for the creation of the make file with
./configure the option --without-hdf5 should be used. After these tools are installed
the framework itself can be checked out by

export CVSROOT=:ext:anonymous@isscvs.cern.ch:/local/reps/placet

export CVS_RSH=ssh

cvs checkout clic-integrated-simulations

B.2. Usage and interface

The simulation framework can be started with the following commands.

cd clic-integrated-simulations/linac-bds/dynamic/

placet-octave run_linac_bds_integrated.tcl user_settings.tcl params
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In the last line, PLACET executes the central script run linac integrated.tcl from
which all other function are called. All used functions and necessary data files are
collected in the folder dynamic/scripts/. The functions are implemented in the two
languages Tcl/Tk and Octave (file endings .tcl and .m), but only basic knowledge of
these scripting languages is necessary to understand and extent the code.

The first step in the execution of the central script is to load the settings for the sim-
ulation. The default settings are located in the file settings.tcl, which is loaded first.
After that the user-defined settings file user settings.tcl is evaluated and parame-
ters from settings.tcl are overwritten with the parameters of user settings.tcl.
It is further possible to pass an unlimited number of parameters param, which have to
be applied to simulation parameters in user settings.tcl by manually written code.
A user settings file user settings.tcl is written in the language Tcl/Tk and has for
example the following form.

# handle command line parameter

if {$argc >= 2} {

set groundmotion(seed_nr) [lindex $argv 1]

}

if {$argc >= 3} {

puts "ERROR: too many arguments"

exit

}

# Overwrite default settings:

set ground_motion_x 1

set ground_motion_y 1

set groundmotion(model) "D"

set nr_time_steps [expr 50*60]

set delta_T 0.02

dir_name "home_dir"

# Feedbacks

set use_controller_x 1

set use_controller_y 1

set use_ip_feedback_x 1

set use_ip_feedback_x 1

set bpm_noise 1

In the first few lines the input parameters argv are processed. The number of input
parameters argc is always one higher than the number of parameters, since the user set-
tings file is also counted as one parameter. In this settings file it is assumed that no or
one parameter is passed to the script, in order to initialise the ground motion generator
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seed groundmotion(seed nr). If two or more parameters are passed, the program exe-
cution is stopped. After this input parameter handling, the settings for the simulation
are defined. In this case, ground motion of model D is used (groundmotion(model)) in
the horizontal (ground motion x) and vertical (ground motion y) direction. A total of
50*60 beam bunches (nr time steps) are simulated with a separation of delta T=0.02 s
(repetition rate of CLIC). This corresponds to a real-time operation of 60 s. As working
directory, home dir is used. For the simulations, the L-FB and the IP-FB in the hor-
izontal (use controller x and use ip feedback x) and vertical (use controller y

and use ip feedback y) directions are switched on. BPM noise is considered in the
simulations (bpm noise).

The execution of the simulation scripts will produce typically three output files with
the names meas station 1/2/3 maschine 1.dat. The index 1 corresponds to a virtual
measurement station after the main linac, at which certain results are recorded. The
first column of the according file is the time, will for the meaning of the other columns we
refer the user to the implementation in dynamic/scripts/postprocess time step.tcl.
The indices 2 and 3 correspond to similar virtual measurement stations before the final
doublet and at the IP. Additional outputs can be generated by switching on flags in the
settings file.

B.3. Parameters

In Sec. B.2, we mentioned already some of the many simulation parameters of the inte-
grated simulation framework. All parameters and their default values are listed in the
file settings.tcl and we will in the following explain the most important once. Terms
as x/y in the parameter names will refer to two parameters, one for x and one for y.

General simulation parameters

• delta T: Time between two simulation steps (usually the beam repetition time)

• nr machines: Not only one, but multiple simulations with different seeds can be
performed sequentially (default is 1)

• nr time steps: Number of time steps to be simulated

• dir name: Name of the working directory, where simulations outputs are stored

• use main linac: Determines if the main linac should be included in the simula-
tions

• use bds: Determines if the BDS should be included in the simulations

• use beam beam: Determines if the beam collisions should be simulated (GUINEA-
PIG)

• debug: Produces additional outputs for debugging

• response matrix calc: Special mode in which not a usual simulation is per-
formed, but the orbit response matrix is calculated
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Ground motion parameters

• ground motion x/y: Turns on ground motion in the horizontal and/or vertical
direction

• groundmotion(type): Type of the ground motion: 0 . . . non, 1 . . . ATL, 2 . . .
standard models

• groundmotion(model): Determines the ground motion model if standard models
are used: A, B, C, D; where here D is used for B10

• groundmotion(filtertype): Use of the stabilisation system or the pre-isolator

• groundmotion(filtertype x/y): File where the frequency response of the stabil-
isation system or the pre-isolator is stored

• groundmotion(preisolator): Type of used pre-isolator; see settings.tcl for
an listing of the options

L-FB and IP-FB parameters

• use controller x/y: Use L-FB

• controller type spatial x/y: Type of spatial L-FB filter: 1 . . . fi = 1, 2 and 3
. . . hand-optimised fi, 4 . . . automatically optimised fi

• gain file name x/y: File containing the automatically optimised gains

• controller type frequency x/y: Type of time-dependent L-FB filter: 1 . . .
integrator, 2 . . . integrator and low pass, 3 . . . full time-dependent filter

• use disp suppression x/y: Use dispersion suppression

• use ip feedback x/y: Use IP-FB

• use ip feedback linear: Use simple proportional IP-FB

• use ip feedback pid: Use PID IP-FB

• use ip feedback annecy: Use adaptive IP-FB designed from SYMME and LAPP

Imperfection parameters

• bpm noise: Use of BPM noise in the main linac and BDS

• bpm resolution ml/bds: Resolution of the BPMs in the main linac and BDS in
[µm]

• bpm ip noise: Use of BPM noise in the post-collision BPM for the IP-FB

• bpm ip res: Resolution of the BPM in the post-collision line in [µm]
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• stabilization noise x/y: Use of noise from the quadrupole stabilisation (more
specific parameters in settings.tcl)

• use rf jitter: Use of acceleration gradient jitter (more specific parameters in
settings.tcl)

• use qp jitter: Use of quadrupole strength jitter (more specific parameters in
settings.tcl)

Beam, lattice and beam-beam parameters

• params: Array of parameters, which determine the initial beam properties as emit-
tance and energy spread

• e initial linac: Initial beam energy at the entrance of the main linac

• e initial bds: Initial beam energy at the entrance of the BDS, in case the main
linac is not used in the simulations

• n slice and n part: Number of slices and particles per slice of the macro-particle
beam used for the tracking in the main linac

• n total: Number of particles used for the tracking in the BDS

• gp param: Array of parameters relevant for the execution of GUINEA-PIG

Post-processing and simulation specific parameters
Post-processing parameters determine, which simulation results should be stored in ad-
dition to the standard output files. Simulation specific parameters are only relevant
for special applications in which the user has added non-standard functionality to the
framework.
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In this appendix, a brief introduction in the control engineering methods use in this
thesis will be given. The presented material is intended to make this thesis accessible to
people not familiar with the field of control engineering. For more detailed information
about the topic, please refer to the literature that will be mentioned.

C.1. Z-transform

The Z-transform is a mathematical formalism that transforms discrete-time signals and
time-discrete linear systems into an equivalent frequency domain representation. It is
therefore very similar to the Laplace-transform, which is used for continuous-time signals
and systems. The Z-transform is an important method for the design of discrete-time
control systems.

The Z-transform X(z) of a discrete-time signal x[k], where z ∈ C and k ∈ Z+ is the
time index, is given by

X(z) = Z {x[k]} =
∞∑
k=0

x[k]z−k, (C.1)

which is the definition of the Z-transform. In case x[k] is the impulse response of a linear
system, X(z) is also called the discrete-time transfer function. To distinguish signals
and systems, we will use the terms X(z) and Y (z) for signals and S(z) for systems. In
the following, some properties of the Z-transform are stated, which are of importance for
this thesis. For more detailed information, please refer to the standard texts Oppenheim,
Schafer and Buck [78] and Franklin, Powell and Workman [42].

It is often necessary to extract the frequency response from a transfer function S(z).
This can be achieved by evaluating S(z) on the unit circle of the z-plane, i.e. z = ejωTd ,
where Td is the sampling time of the discrete-time system. Since ejωTd is a periodic
function with respect to frequency, also the frequency response of every discrete-time
system is periodic. For comparison, the Laplace-transformed S(s) of a system has to be
evaluated on the imaginary axis, i.e. s = jω, to obtain the frequency response. Another
important property is that a time-discrete linear system is stable, if and only if, all poles
of its transfer function S(z) lie inside the unit circle of the z-plane. This is in contrast
to the Laplace-transform where, a system is stable, if and only if, all poles of S(s) lie
left of the imaginary axis.

Also very useful is the ability to create time domain realisations from the discrete-time
transfer function of a system. This is necessary, since the design of filters (system) is
often performed in the frequency domain, while for its implementation a realisation in
the time domain is needed. To carry out the necessary inverse Z-transform Z−1 {.}, only
a few basic rules have to be known. A time shift in the time domain y[k] = x[k + i] has
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a frequency domain representation of Y (z) = ziX(z). This representation of the time
shift operator as a multiplication with zi is used frequently in this thesis. By further
mentioning that the Z-transform and its inverse are linear operations and that filter
transfer functions S(z) are ratios of polynomial functions in our application, the time
domain representation of S(z) can be written as

Z−1 {Y (z) = S(z)X(z)}

⇒Z−1

{
Y (z) =

amz
m + am−1z

m−1 + · · ·+ a1z + a0

zn + bn−1zn−1 + · · ·+ b1z + b0
X(z)

}
with m ≤ n

⇒Z−1

{
Y (z) + · · ·+ b1

zn−1
Y (z) +

b0
zn
Y (z) =

am
zn−m

X(z) + · · ·+ a0

zn
X(z)

}
⇒y[k] = amx[k − (n−m)] + · · ·+ a0x[k − n]− bn−1y[k − 1]− · · · − b0y[k − n]. (C.2)

C.2. Controller design using the frequency domain

In this section, basic knowledge about controller design in the frequency domain will
be covered. Design methods in the frequency domain do not determine the controller
with the help of the time domain system representation, which are differential or dif-
ference equations. Instead, the system to be controlled is transformed in a frequency
representation where the controller design is carried out. For continuous systems this
transformation is given by the Laplace-transform, while for discrete-time systems the Z-
transform (see Sec. C.1) is used. Since this thesis is concerned with discrete-time systems,
the explanations will be restricted to discrete-time transfer functions. Additionally, only
single-input, single-output systems (SISO) will be considered. In the following, we cover
the topics of the standard control loop, the loop shaping technique (including Nyquist’s
stability theorem) and performance limitations of feedback control. Aspects that are
of importance for this thesis are emphasised. Only a brief overview about these topics
can be given here and we refer the interested reader for more information to the texts
Franklin, Powell and Workman [42] and Gausch, Hofer and Schlacher [46].

C.2.1. Standard control loop

Figure C.1 shows the standard control loop in its frequency domain representation and
defines the involved signals and systems. Only one dynamic element C(z) is employed
in this configuration to control the system H(z). Note that in the standard literature
instead of H(z) often the expressions G(z) or P (z) are used, which are already occupied
by different quantities in this thesis. Many control configurations can be posed in this
simple form, as e.g. the L-FB system for the main linac and BDS of CLIC. In the case
of the L-FB, H(z) corresponds to the accelerator system, D(z) to ground motion, N(z)
to BPM noise and R(z) to the reference orbit. The output signal Y (z) can be calculated
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Figure C.1.: Block diagram of the standard control loop in frequency domain represen-
tation. The output signal Y (z) of the system H(z) has to be controlled by the controller
C(z). Typically Y (z) has to follow the reference signal R(z) as good as possible and
should be influenced by the disturbance signal D(z) and the measurement noise N(z)
as little as possible. To fulfil these specifications, the controller has only the measured
output signal Ym(z) available, which includes the noise N(z).

from the input signals of the control loop as

Y (z) = H(z) [D(z) + C(z) (R(z)−N(z)− Y (z))]⇒
Y (z) = H(z)S(z)D(z) + T (z)R(z)− T (z)N(z) with (C.3)

S(z) =
1

1 +H(z)C(z)
and T (z) =

H(z)C(z)

1 +H(z)C(z)
, (C.4)

where S(z) and T (z) are called the sensitivity and the complementary sensitivity func-
tion. The sensitivity function S(z) for the standard control loop should not be confused
with other sensitivity functions G(k) of e.g. the luminosity loss or the beam-beam offset
as introduced in Chap. 2.

Many important properties of Z-transformed signals and systems become apparent,
if they are evaluated at z = ejωTd . This leads to the definition of the frequency response
H(z = ejωTd) = H(ejωTd), where Td is the sampling time of the discrete-time system. A
physical interpretation of the frequency response is that a harmonic signal A sin[ωkTd +
φ0] is changed by passing through the system H(ejωTd) to

A sin[ωkTd + φ0]
H(ejωTd )−−−−−−→

∣∣H(ejωTd)
∣∣A sin

[
ωkTd + φ0 + arg

(
H(ejωTd)

)]
.

Note that the frequency response for a discrete-time system is a periodic function with
respect to ω. All harmonic functions with angular frequency ωn = ω0 + 2πn/Td, n ∈ Z,
are treated by the system described by H(ejωTd) the same way.

C.2.2. Loop shaping

Loop shaping is a design method that aims to chose the controller C(ejωTd) such that the
complementary sensitivity function T (ejωTd) and the sensitivity function S(ejωTd) obtain
a desirable shape. Before the discussion of design of such a controller C(ejωTd), it has
to be define which shapes for T (ejωTd) and S(ejωTd) are desirable. For the measurement
noise suppression, it is ideal if T (ejωTd) is equal to 0. For the reference signal tracking,
on the other hand, a T (ejωTd) of 1 results in the perfect behaviour, since all reference
signals at the input are exactly reproduced at the output. In general, a trade-off has to
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be found between these two conflicting demands. In this thesis however, the reference
signal tracking is not of high importance, which simplifies the choice of T (ejωTd).

The ideal choice of the sensitivity function S(ejωTd), which determines the disturbance
suppression, is equal to 0. However, also in this case a compromise has to be found,
since the disturbance suppression is not independent of the noise behaviour and the here
less important reference signal tracking. This can be seen from the relation S(ejωTd) +
T (ejωTd) = 1, which can be easily verified from the definition of S(ejωTd) and T (ejωTd)
in Eq. (C.4). We face the situation in which only one controller C(ejωTd) has to fulfil
multiple objectives. In the following, we will get to know additional restrictions that
limit the choice of the controller further.

After the desirable shapes of S(ejωTd) and T (ejωTd) have been determined, the design
of a controller that achieves these open loop shapes can be discussed. To understand
the shaping of T (ejωTd) and S(ejωTd), it is helpful to introduce the open loop frequency
response L(ejωTd) = C(ejωTd)H(ejωTd), which should not be confused with the frequency
response of the low pass L(z) in Sec. 3.2.3.2. With the help of L(ejωTd), the functions
S(ejωTd) and T (ejωTd) can be approximated as

S(ejωTd) =
1

1 + L(ejωTd)
≈
{

1
L(ejωTd )

if
∣∣L(ejωTd)

∣∣� 1

1 if
∣∣L(ejωTd)

∣∣� 1
(C.5)

T (ejωTd) =
L(ejωTd)

1 + L(ejωTd)
≈
{

1 if
∣∣L(ejωTd)

∣∣� 1

0 if
∣∣L(ejωTd)

∣∣� 1.
(C.6)

Since we are mainly interested in this thesis in the disturbance and noise suppression,
we focus on these aspects in the following and neglect the reference signal tracking.

From the approximation in Eq. (C.5), it is clear that for a good disturbance rejection
|L(ejωTd)| � 1 is needed. This can be achieved by using a controller with high gain.
However, there are several constraints that limit the maximum controller gain. The first
limitations can be deducted from the approximation Eq. (C.6). If a large

∣∣L(ejωTd)
∣∣ is

used also the noise is transferred without demagnification to the output of the system.
The second limitation comes from the fact that a high controller gain will result in large
controller outputs (actuator set point), which can excees the limits of the actuators.
Therefore, the controller gain has to be reduced to appropriate values.

The last limitation is due to stability reasons, expressed by Nyquist’s stability theorem.
We will here only state a simplified version of this theorem, which is sufficient to analyse
the stability behaviour of the L-FB in this thesis. We restrict ourselves to discrete-time,
linear, SISO systems of the form

L(z) = k
1

(z − 1)p
M(z)

N(z)
with

M(z = 1) = N(z = 1) = 1, k > 0 and p ∈ {0, 1, 2} , (C.7)

where M(z) and N(z) are polynomials in z and all zeros of N(z) have to be inside the
unit circle. The magnitude

∣∣L(ejωTd)
∣∣ is assumed to be 1 only for one so called cross

over angular frequency ωc in the interval [0, π/Td]. Futhermore,
∣∣L(ejωTd)

∣∣ is assumed
to be larger 1 for all ω < ωc and smaller 1 for all ω > ωc in the interval [0, π/Td]. To
exclude the possibility of full encirclements of the unit circle, the phase of L(ejωTd) is
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assumed to be in the interval [−π, 3π/2] for all ω < ωc in the interval [0, π/Td]. If we
define the phase margin as φm = π + arg

(
L(ejωcTd)

)
, Nyquist’s stability theorem for

this system type states that the closed loop system is stable if and only if φm > 0.

The implications of Nyquist’s stability theorem, limit the gain of a controller by the
following reasoning. The use of a high gain controller will in general lift the curve
|L(ejωTd)|, which increases the cross over frequency ωc and therefore reduces the phase
margin φm. As an additional effect, controller elements that are used to increase the
open loop gain produce often additional phase shift (e.g. integrators), which reduces the
phase margin even more. Hence, high gain feedback controller can bring the closed loop
system closer to its stability limits and create eventually instabilities. Since, especially
for high frequencies, a certain mismatch between the system model and the real system
has to be expected, the phase margin of the design should be larger than approx. π/6,
which limits the maximum gain.

Concluding we can state that a good shaped open loop frequency response, should
have high gain for low frequencies, where only small model errors have to be expected
and the phase shift of the open loop is small. At high frequencies the gain has to
be reduced to keep the system stable. The cross over frequency may additionally be
reduced, if the design amplifies noise too strongly and/or produces too high actuator set
points. The loop shaping technique is used in Sec. 3.2.3.2 (see Fig. 3.18) to design the
time-dependent filter for the L-FB.

C.2.3. Bode’s sensitivity integral

It is important for the designer of feedback systems to understand the basic limitations
of feedback control. Such knowledge prevents the designer form demanding an unfea-
sible performance of the controller. For the disturbance rejection, such a performance
limitation is given by Bode’s sensitivity integral. This theorem is a well-known result for
the continuous case (see Stein [127]), but can also be extended to discrete-time systems
(see Mohtadi [74]). For a standard control loop with a stable transfer function, Bode’s
sensitivity integral for discrete-time systems is given by

1

π

∫ π

0
ln
∣∣∣S(ejφ)

∣∣∣dφ =

m∑
i=1

ln |pi| , (C.8)

where pi are the unstable poles of the open loop system and m is the total number of
these points. Note that a pole excess of two, as it is necessary for continuous systems,
is not required in the time-discrete case.

Bode’s sensitivity integral states that the area below the logarithmically measured
magnitude of the sensitivity function S(ejωTd) is a constant. This constant is dependent
on the number and position of the unstable poles of the open loop system. For an open
loop transfer function with all poles inside or on the unit circle, as it is the case in
this thesis, the area is zero. This implies that if a disturbance is demagnified due to
feedback control over some frequency range, it will be amplified over another frequency
range. Disturbance suppression cannot be achieved for over the full frequency range with
feedback control. This does however not imply that feedback control is not effective for
disturbance suppression. In practical applications, S(ejωTd) is chosen such that the
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C. Control engineering background

disturbances with the highest impact on the output are demagnified. The inevitable
disturbance amplification is positioned at less significant frequency ranges.

C.3. Kalman-filtering

We assume in the following that the reader is familiar with the state space represen-
tation of linear dynamic systems. Comprehensive introductions to the topic are given
in Oppenheim, Willsky and Hamid [79] and Dourdoumas and Horn [32]. Consider a
discrete-time, linear, dynamic system in state space representation

x[k + 1] = Ax[k] +Bu[k] +w[k] (C.9)

y[k] = Cx[k] + n[k], (C.10)

where u[k] and y[k] are the inputs and outputs of the system at time step k. Beside the
deterministic signal u[k], there are two stochastic processes present: the state distur-
bance w[k] changes the system states x[k] in a stochastic manner and the measurement
noise n[k] disturbs the output measurements y[k]. Both, w[k] and n[k], are assumed to
be white, Gaussian distributed, stochastic processes with zero mean value and covariance
matrices W and N .

A problem of great practical interest is the estimation of the hidden states x[k] from
the known inputs u[k] and the measurements y[k]. Such an estimate x̂[k] can be used
as an input for a state controller or for diagnosis tools. The estimation algorithm that
solves this problem is a copy of the real dynamic system in Eqs. (C.9) and (C.10) and
is called observer. The mismatch between the estimated output of the observer ŷ[k]
and the real output y[k] is used to change the states of the observer x̂[k], such that
the variance of the error e[k] = x̂[k] − x[k] is minimised. To be able to build such
an observer the system to be observed has to have a property called observability. For
criteria to verify if a system is observable, we refer to Skogestad and Havre [123].

The observer design problem is hindered by the fact that the measurements y[k] are
not only dependent on the states x[k], but also on the measurement noise n[k]. If the
estimate of the last time step x̂[k − 1] was already close to x[k − 1], a too strong use
of the noisy y[k] could increase the estimation error again. A well balanced trade-off
between the quality of the already gained estimate x̂[k], the amount of noise n[k] and
the size of the state change due to w[k] has to be found. The observer that produces the
optimal estimate (in a quadratic sense) for this problem is called Kalman-filter. This
Kalman-filter consists of the following 5 equations.

x∗[k] = Ax̂[k − 1] +Bu[k − 1] (C.11)

P ∗[k] = AP [k − 1]AT +W (C.12)

K[k] = P ∗[k]CT
(
CP ∗[k]CT +N

)−1
(C.13)

x̂[k] = x∗[k] +K[k] (y[k]−Cx∗[k]) (C.14)

P [k] = (I −K[k]C)P ∗[k] (C.15)

For a prove that verifies that the Eqs. (C.11)-(C.15) produce such an optimal estimate,
we refer to Grewal and Andrews [48] and Kalman [61]. In case an estimate for the next
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time step x̂[k + 1] should be calculate, the Kalman-filter can be modified to a Kalman-
predictor that calulates x̂[k + 1] with the simply extrapolation x̂[k + 1] = Ax̂[k].

C.4. Singular value decomposition

The singular value decomposition (SVD) splits up any matrix A ∈ Rm×n into three
sub-matrices as

A = UAΣAV
T
A with UA ∈ Rm×m, ΣA ∈ Rm×n and V A ∈ Rn×n. (C.16)

Both, UA and V A are orthonormal matrices. Orthonormal matrices have the important
property that UT

AUA = I, where I is the identity matrix. The matrix ΣA is a diagonal
matrix, with the singular values s[i] of A as the diagonal elements, ordered from the
largest s[1] to the smallest s[min(n,m)].

The SVD is a very useful tool, due its ability to give important insights in the linear
transformation represented by A. If a vector c is multiplied by A, the multiplication
can be split up into

Ac = UAΣAV
T
Ac =

(∑
i

s[i]u[i]v[i]T

)
c, (C.17)

where u[i] and v[i] are the ith column of UA and V A. From Eq. (C.17), it is evident
that the linear transformation A can be separated into a sum of sub-transformations
consisting of the triplet v[i], u[i] and s[i], where i is the sub-transformation index. The
magnitude of s[i] determines the importance of the sub-transformation for the overall
transformation. The vector v[i] determines for which direction of the vector c this
sub-transformation (scaling by s[i] and rotation to the direction v[i]) applies. This
ability of the SVD do distinguish important from less important input directions can
be used in many applications as e.g. data compression algorithms, conditioning number
improvement of matrices and design of decoupling controller. Another useful property
of the SVD is that the pseudo inverse of A can be efficiently calculated by

A† = V AΣ−1
A U

T
A. (C.18)

More detailed information about the SVD can be found in Golub and van Loan [47].

C.5. RLS algorithm with exponential forgetting

The recursive least squares algorithm (RLS) is a tool to calculate unknown system pa-
rameters θ from known input and output signals ϕ[k] and y[k], where k is the time
index. A memoryless system structure of the form

y[k] = θ1ϕ1[k] + θ2ϕ2[k] + · · ·+ θnϕn[k] + n[k] = θTϕ[k] + n[k] with (C.19)

θ = [θ1, θ2, . . . , θn]T and ϕ = [ϕ1[k], ϕ2[k], . . . , ϕn[k]]T

is assumed, where n[k] represents measurement noise that is modelled as a white, zero
mean, Gaussian stochastic process. The system Eq. (C.19) is a multiple input, single
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output system (MISO system) with no internal dynamics. Generalisations of the below
described RLS algorithm for systems with internal back coupling are available but not
used in this thesis.

A commonly used approach to find parameter estimates θ̂ for the real parameter θ is
to minimise the cost function

J(θ̂, k) =
1

2

k∑
i=1

(
y[i]− θ̂Tϕ[i]

)2
. (C.20)

The term e[i] ≡ y[i] − θ̂Tϕ[i] corresponds to the error between the real and estimated
measurements. By minimising J(θ̂, k), also e[i] is minimised in a quadratic sense, which
leads to the well known least squares solution

θ̂[k] =
(
Φ[k]TΦ[k]

)−1
Φ[k]TY [k] with (C.21)

Φ[k] =

 ϕ[1]T

...
ϕ[k]T

 and Y [k] =

 y[1]
...

y[k]

 . (C.22)

The term
(
Φ[k]TΦ[k]

)−1
Φ[k]T is called the pseudo-inverse of Φ[k]. Note that in Eq. C.21,

the full pseudo-inverse has to be recalculated, if new measurements are available. Since
this recalculation is computational expensive (especially if many measurements are avail-
able) Eq. (C.21) is not well suited for on-line applications. Therefore, it is convenient
to convert Eq. (C.21) into a recursive algorithm that delivers the least squares solution
without recalculating the full pseudo-inverse in every time step. This recursive algo-
rithm is called recursive least squares algorithm (RLS) and will be presented with a
small additional modification shortly.

Till now, the system parameters θ have been assumed to be constant. If the system
parameters are slowly changing over time θ[k], it is necessary to weight new measure-
ments stronger than older ones to be able to ”forget” the older system parameters over
time. This can be accomplished by changing the cost function J(θ̂, k) in Eq. (C.20) to

Jλ(θ̂, k) =
1

2

k∑
i=1

λk−i
(
y[i]− θ̂Tϕ[i]

)2
, (C.23)

where the term λk−i is an exponential function that is intended to weight more recent
measurements stronger than older ones. The factor λ is called learning factor and has
to be chosen between 0 and 1. Minimising the cost function Jλ(θ̂, k) and stating the so-
lution in a recursive way results in the recursive least squares algorithm with exponential
forgetting that has the form

θ̂[k] = θ̂[k − 1] +K[k](y[k]−ϕ[k]T θ̂[k − 1]) (C.24)

K[k] = P [k − 1]ϕ[k](λI +ϕ[k]TP [k − 1]ϕ[k])−1 (C.25)

P [k] = (I −K[k]ϕ[k]T )P [k − 1]/λ. (C.26)

For proofs and intuitive interpretations of Eqs. (C.24), (C.25) and (C.26), we refer to
the texts Åström and Wittenmark [95] and Ljung and Gunnardsson [70].
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