
User-driven Manipulation of
Geospatial Data

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medieninformatik

eingereicht von

Florian Stabel
Matrikelnummer 0306331

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Privatdoz. Dipl.-Geograf. Dr. Annett Bartsch

Wien, 24. Oktober 2012
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

User-driven Manipulation of
Geospatial Data

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Media Informatics

by

Florian Stabel
Registration Number 0306331

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Privatdoz. Dipl.-Geograf. Dr. Annett Bartsch

Vienna, 24. Oktober 2012
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Florian Stabel
Müllerviertel 23, 8051 Graz

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Danksagung

Als erstes möchte ich mich bei Herrn Prof. Eduard Gröller für seine Ratschläge und das Kor-
rekturlesen meiner Arbeit bedanken. Zudem hat er mich motiviert, meine Arbeit in Englisch zu
verfassen.

Mein größter Dank gilt meiner Familie, die mich während meines Studiums stets unterstützt
und selten an mir gezweifelt hat. :)
Außerdem will ich an dieser Stelle meiner Verlobten Domenica sowie unserer gemeinsamen
Tochter Zoe danken, die während meiner Diplomarbeit außerordentlich aufopfernd waren! Ich
liebe euch!

iii

Abstract

A WebGIS is an application designed to store, analyze, manage and present geographical data.
It provides tools which support users to explore and understand the underlying data. Depending
on the datasource (raster or vector data), these tools are varying. Many more styling options for
vector data than for raster data exist. This is because of the position information of vector data
which allows the system to apply a wider range of styling features.

This thesis is about user-driven manipulation of geospatial data and is part of the ESA DUE
Permafrost project. It should help users to navigate through remote sensed data and to explore
relevant features of it. Therefore it introduces methods to change the visualization of the data
within a WebGIS by assigning different style profiles at runtime. The reference implementation
is based on a specific software arrangement. The data is managed by GeoServer, an open source
software server with the capability to edit and share geospatial data. To get a visual representa-
tion, GeoServer applies a Styled Layer Descriptor (SLD) on the data. A SLD is an XML based
language and describes the appearance of associated layers. Modifying the SLD enables to in-
fluence the layer appearance. Since the data of the ESA DUE Permafrost project is of type raster
only, this work concentrates on tools for styling raster data.

As a result of this work, an interactive legend is introduced. It is a user interface and ma-
nipulates the SLD at runtime according to the user settings. This gives the user the capability to
highlight areas of interest based on the underlying data. The user interface also acts as a color
legend for the displayed data.

v

Kurzfassung

Ein WebGIS ist eine Applikation, die dazu dient, geographische Daten zu speichern, zu analy-
sieren, zu verwalten und zu präsentieren. Um die zugrunde liegenden Daten zu verstehen, bietet
ein WebGIS unterschiedliche Hilfsmittel an. Diese unterscheiden sich zudem in der Art der
Datenquelle (Raster- oder Vektordaten). Vektordaten haben zusätzlich Positionsinformationen
gespeichert, die es dem System ermöglichen, eine größer Auswahl an Stiloptionen anzubieten.

Diese Arbeit handelt über benutzergesteuerte Manipulation von Permafrost-Daten und ist
Teil des ESA DUE Permafrost-Projektes. Der Zweck dieser Arbeit ist es, Benutzer in der Navi-
gation von Fernerkundungsdaten und deren Untersuchung von relevanten Merkmalen zu unter-
stützen. Dabei werden Methoden vorgestellt, die die Darstellung von Daten in einem WebGIS
verändern können. Dies wird ermöglicht, indem Stilprofile zur Laufzeit auf die jeweiligen Da-
ten angewendet werden. Die Referenz-Implementierung basiert auf einer vorgegeben Software-
Architektur. Zur Verwaltung der geographischen Daten wird ein Open Source Software-Server
namens GeoServer verwendet. Um eine visuelle Repräsentation der Daten zu erhalten, wendet
GeoServer einen sogenannten Styled-Layer-Descriptor (SLD) an. Ein SLD ist eine auf XML
basierte Sprache, mittels der das Aussehen von verknüpften Datenschichten beeinflusst werden
kann. Da sämtliche Daten des ESA DUE Permafrost-Projektes Rasterdaten sind, konzentriert
sich diese Arbeit auf diese.

Als Ergebnis dieser Arbeit wird eine interaktive Legende vorgestellt. Dieses Benutzer-Interface
manipuliert einen SLD zur Laufzeit, abhängig von den Benutzereinstellungen und aktualisiert
die Datenansicht. Somit ermöglicht die interaktive Legende dem Benutzer interessante Werte
aus den Permafrost-Daten hervorzuheben.

vii

Contents

List of Abbreviations xi

List of Figures xiii

1 Introduction 1
1.1 The ESA DUE Permafrost Project . 1
1.2 Problem Statement . 3
1.3 Aim of the Work . 3
1.4 Thesis Structure . 4

2 Related Work 7

3 The Starting Position 11
3.1 The Graphical-Communication Process . 11
3.2 The Permafrost WebGIS . 12
3.3 User-Control Elements . 15

4 Extending the Permafrost WebGIS 21

5 Implementation 29
5.1 The User Interface . 31
5.2 Style Files . 33
5.3 Color Legend . 37
5.4 Transforming Settings to User Styles . 41

6 Results 47
6.1 Visualization Type Range . 47
6.2 Visualization Type Classification . 48
6.3 Using different Colormaps . 52
6.4 Highlighting Areas without Data . 52
6.5 Overlapping Layers . 58

7 Conclusion 61

ix

A Remote-Sensing Products 63

Bibliography 67

x

List of Abbreviations

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CLUT Color Look-up Table

CSS Cascading Style Sheet

CRS Coordinate Reference System

DEM Digital Elevation Model

DUE Data User Element

DOY Day Of Year

ECV Essential Climate Variable

GIS Geographic Information System

GML Geography Markup Language

HEX Hexadecimal

HTML Hypertext Markup Language

JSON JavaScript Object Notation

LST Land Surface Temperature

MVC Model View Controller

OGC Open Geospatial Consortium

POI Point of Interest

REST Representational State Transfer

SLD Styled Layer Descriptor

xi

SSM Surface Soil Moisture

SRS Spatial Reference System

UI User Interface

URL Uniform Resource Locator

WebGIS Web Geographic Information System

WMS Web Map Service

XML Extensible Markup Language

XSD XML Schema Definition

xii

List of Figures

1.1 Map of the Arctic and adjacent countries. 5

2.1 The WMS request contains the SLD assigned as a parameter. 8

3.1 The graphical-communication process. 11
3.2 Graphic variables after Jacques Bertin. 13
3.3 Software components of the Permafrost WebGIS. 14
3.4 Screenshot of the Permafrost WebGIS and its components. 15
3.5 Two different colormaps which can be applied to the data. 16
3.6 Two different colormaps applied to the same map section (around Mount McKinley,

Alaska) create different visualizations. 17
3.7 Visualization of the same map section as in Figure 3.6 but of different visualization

type. 18
3.8 Example of a color legend of the visualization type range. 20
3.9 Example of a color legend of the visualization type classification. 20

4.1 Communication between the software components of the Permafrost WebGIS. . . . 22
4.2 Different user styles create different visualizations without affecting each other. . . 24
4.3 CLUT created from a colormap image. 26

5.1 Schematic workflow of adding a layer to the viewport. 30
5.2 User interface of the reference implementation including the color legend. 31
5.3 The UI is integrated into the layer-styling process. 34
5.4 Color legend to SLD: outer classes . 42
5.5 Color legend to SLD: visualization type range . 43
5.6 Color legend to SLD: no stretching . 44
5.7 Color legend to SLD: visualization type classification 44
5.8 Color legend to SLD: areas without data . 45

6.1 UI settings and output: visualization type range. 49
6.2 UI settings and output: outer classes. 50
6.3 UI settings and output: colormap stretching disabled. 51
6.4 UI settings and output: visualization type classification. 53
6.5 UI settings and output: different class colors. 54

xiii

6.6 UI settings and output: many classes. 55
6.7 UI settings and output: using a rainbow colormap. 56
6.8 UI settings and output: highlighting areas with no data. 57
6.9 Color legends of the Digital Elevation Model and the Surface Soil Moisture. 58
6.10 The layer of the SSM overlaps the layer of the DEM. The political border is on top

of both layers. 59
6.11 The opacity of the layer SSM is set to the value 0.5. The layer of the DEM is shining

through. 59

xiv

CHAPTER 1
Introduction

This thesis is about user-driven manipulation of geospatial data. To be more specific it covers a
part of the ESA DUE Permafrost project. It should help users to navigate through remote sensed
data and to explore relevant features of it. The work introduces methods to change the visualiza-
tion of the data within a Web Geographic Information System (WebGIS) by assigning different
style profiles. The reference implementation is based on a specific software arrangement which
is described in Chapter 3.

1.1 The ESA DUE Permafrost Project

The ESA DUE Permafrost project was initially launched in June 2009 by the European Space
Agency (ESA). The Institute of Photogrammetry and Remote Sensing (I.P.F), Vienna University
of Technology, is the principal investigator and leads a consortium of four partners (Gamma
Remote Sensing, University of Waterloo, Jena University, Alfred Wegener Institute for Polar
and Marine Research) which support the project by preprocessing and providing satellite data
among other things. The ESA DUE Permafrost project is funded within the ESA Data User
Element program.

Permafrost

Permafrost is defined as soil which is frozen and its temperature is continuously under 0 ◦C
(32 ◦F) for at least two years. Its state is an Essential Climate Variable (ECV) [8] and it is
worthwhile to be observed. The ESA DUE Permafrost project aims to install a monitoring
system tracking permafrost soil characteristics over time. This work is supposed to support this
aspect. A complete list of all objectives is listed next (quoted from the ESA DUE Permafrost
project [3, 4]).

1. Define earth observation-based services for permafrost monitoring depending on the user
requirements.

1

2. Integrate the latest earth-observation technology with state of the art ground based mea-
surements.

3. Demonstrate and validate the services with the user organizations.

4. Develop mid to long term scenarios for boreal and arctic permafrost monitoring.

5. Contribute to new scientific results in the domain of climate-change detection, climate
modeling and hydrological modeling.

Remote-Sensing Products

Permafrost is a subsurface phenomenon. That is why satellites can not directly observe its state.
The ESA DUE Permafrost project has defined relevant satellite-observable parameters which
provide a reliable statement about permafrost soil. These parameters are called Remote-Sensing
Products:

• Digital Elevation Model (DEM)

• Land Surface Temperature (LST)

• Surface Soil Moisture (SSM)

• Day of Freeze/Thaw

• Subsidence

• Coherence

These Remote-Sensing Products are very important for this work, since each has its own char-
acteristic concerning its visual representation. Each Remote-Sensing Product has its own color
schema according to the meaning of the data. For instance, Land Surface Temperature goes from
blue (cold) to red (warm). Although “cold” and “warm” is relative since permafrost is frozen
soil. The ESA DUE Permafrost project focuses on areas around the Arctic and the Arctic itself
(see Figure 1.1):

• Alaska

• Central Yakutia

• Laptev Sea

• Mount McKenzie

• Ob Estuary

2

1.2 Problem Statement

In order to be able to explore and analyze the permafrost data of the different regions, a WebGIS
is needed. It manages the permafrost data and enables the user to monitor climate changes and
the exploration of the geospatial data. A large amount of geospatial data in form of raster data
is produced by partners of the ESA DUE Permafrost project. Raster data is a matrix which
consists of cells organized into rows and columns. Each cell contains geographic information in
a numerical form. This requires reliable software which is able to manage the data and provide an
interface to gain insight. GeoServer has been chosen, which provides a rich Web Geographical
Information System (WebGIS). A WebGIS is a popular system due to the public accessibility
and quick overview over geographical data. Adding layers, displaying points of interests, setting
different views or overlapping layers are just some standard features. Deep data analysis is often
not supported. Since the user should get insight into the permafrost data, this thesis provides a
solution.

The ESA DUE Permafrost project is supposed to deliver meaningful visual representations
of the permafrost data. GeoServer does not provide any features for explorative research of
raster data. This thesis tries to accomplish this task. The main requirements in combination with
the existing software are:

• The system does not support tools which allow the user to manipulate the layer presen-
tation. The task of this work is to find a way to influence the layer representation in
real-time.

• Introduce user styles so that each registered user can adapt the visualization of each layer,
without affecting the visualization of other users.

• Develop useful tools for user-driven manipulation of the layer presentation of the per-
mafrost data.

• Introduce a user interface for users to adapt the output and include identified tools.

• The system uses a built-in legend explaining the colored data. Depending on the visu-
alization settings, a static legend is generated. Replacing GeoServer’s built-in legend is
another task.

1.3 Aim of the Work

This thesis proposes an approach for manipulating the visualization of geospatial data in real-
time. The current implementation of GeoServer does not offer any method to change the ap-
pearance of raster data without the background knowledge of the styling language. Based on
the Styled Layer Descriptor (SLD) specification [13] and the characteristics of the permafrost
data, a set of tools is identified. With these tools the user should be able to manipulate the layer
visualization in real-time. The visualizations of other users should not be affected.

A user interface (UI) for controlling the layer appearance is designed. The identified tools
are transformed to proper UI control-elements. According to a traditional static color legend,

3

the new user interface should also act as a color legend. With the mixture of a color legend and
tools to adapt the data presentation, the exploration process should be simplified.

1.4 Thesis Structure

Chapter 2 deals with the related work covering the same topic as this thesis. Past and ongoing
work dealing with a similar problem are discussed, compared and summarized. Advantages and
disadvantages of each approach are listed and discussed relating to the approach of the current
work.

The starting position is explained in Chapter 3. Since this thesis is part of the ESA DUE Per-
mafrost project, the prerequisites are explained. It lists the given software components where the
reference implementation is embedded. Also the requirements of the user interface are explained
in detail.

Chapter 4 explains the modifications of the Permafrost WebGIS. A common user workflow
is illustrated and described. It explains the communication between the involved components.
The process, how GeoServer uses styles, is explained next. It shows how layers are requested
and different styles are applied. The structure of the XML-based style is also described here.
After that, the role of the colormaps is explained.

The following Chapter 5 covers the challenging parts of the implementation. It describes
why the reference implementation is developed as a GeoServer extension and how it can be
invoked. Understanding the needs of the user styles and additional files is important. This Chap-
ter explains how styles are maintained in GeoServer and how they can be manipulated. Based
on the identified tools, the user interface is designed and implemented. Therefore JavaScript is
needed extensively. Selected code fragments are explained in detail. The main tasks of each UI
control-element are listed and the impact of the elements on the layer visualization are shown.
Listed figures explain how settings are transformed to a valid XML-based user style.

Chapter 6 contains the results of the main scenarios and their resulting visual output. UI
settings of the color legend are compared with the layer visualization and explained in detail.

In Chapter 7 the results and the knowledge of this work are explained.

4

Figure 1.1: This map shows the relevant regions of the ESA DUE Permafrost project. The red
line contains the areas where the average temperature is below 10 ◦C. (Source: [1])

5

CHAPTER 2
Related Work

This Chapter gives an overview of the existing work related to the subject of this thesis. Since
the reference implementation is about the styling functions of GeoServer, this Chapter lists sim-
ilar approaches. Existing work which is related to the subject of this thesis is rare. This is
because this work covers a given software and deals with continuous data of satellites. The
Open Geospatial Consortium (OGC) defines open standards which are supported by GeoServer
and many other geospatial applications. Styled Layer Descriptor (SLD) is the main instrument
for adapting the visual representation of the geospatial data in OGC compliant applications. It
is a XML schema and describes the appearance of a layer in a Geographic Information System
(GIS). This allows user-defined symbolization and coloring of geographic features. A GIS has a
wide field of possibilities to visualize geospatial data [12]. Points, lines, areas and alphanumeric
characters are the basic elements and do provide graphic variables like size, intensity, form,
texture, direction and color [6]. Depending on the datasource (raster- or vector data), different
graphic variables can be applied on the data.

The master thesis of Albrecht Weiser gives a solution how to do automated generation of
XML-based SLD files [23]. It aims to convert proprietary ESRI ArcGIS maps to the open OGC
standard SLD. The work processes existing maps and generates a valid SLD. The algorithm runs
through all symbols of the ArcGIS map and analyzes its features. In case the SLD specification
provides a proper substitute for the analyzed symbol, the program generates the corresponding
SLD code. This algorithm is not directly applicable to this work since the SLD generation is
not user-driven and it converts vector data only. But it helps to understand the structure and
possibilities of the SLD and the resulting images.

Another work also covers the topic of interactive layer generation [10]. It describes how
a layer can be requested via the existing public services of OGC compliant applications. This
approach uses the public Web Map Service (WMS) which is used to request geospatial data in
the form of images. The WMS is invoked via URL containing several parameters describing
the datasource, the styling and the output format. Unlike the previous work, this work uses an
existing SLD to request the visualization of the data. Figure 2.1 explains this approach. Every
layer has a default SLD. Step 1) shows the URL of a WMS invocation. SERVICE, Version and

7

Figure 2.1: The SLD is encoded and assigned as the parameter SLD_BODY to the WMS request.
It replaces the default SLD of the layer when the layer is rendered (source: [10]).

Request are parameters addressing the service. The parameter LAYERS addresses the ids of the
requested layers. Without any styling parameter, the WMS will use the default SLD of each
listed layer and renders the image which will be returned. The WMS provides parameters to
add styling information to URL. The content of the parameter SLD_BODY replaces the default-
layer SLD if specified. In step 2) the content of an external SLD is encoded and assigned as the
parameter SLD_BODY to the request. The WMS applies the submitted SLD to the layer and
returns the result (step 3). Since this approach appends the SLD to the URL, the length of the
URL is increasing. If the URL is too long, the server has a problem in receiving the entire URL.
This approach does not include a user-friendly interface to generate the SLD and assumes that
the user builds the SLD manually. A lot of knowledge about the SLD specification is needed.
Although this work concentrates on vector data, the WMS invocation is applicable on raster data
too.

The most interesting approach is an implementation called Styler [15] which is part of the
OpenGeo Suite. It provides an interface for styling layers by manipulating the corresponding
SLD similar to the approach of this work. It is completely written in JavaScript and uses a stan-
dardized JavaScript library called GeoExt. The SLD (XML) is created by the client (JavaScript)
and is sent to GeoServer afterwards. The work provides a user interface to manipulate the SLD.
Similar to the previous work, the SLD is applied by sending an HTTP request (POST, GET,
PUT or DELETE) to a GeoServer service. This has the advantage, that Styler can be used in

8

combination with any WMS compliant application. Styler can only handle vector data. This fact
makes almost all features inapplicable to our requirements. Changing a style affects the visu-
alization of all users. This means it does not support multi-user styles which is a fundamental
requirement for this work.

All these implementations have different approaches how they request and submit styling
information. They have two characteristics in common. They all support vector data only. This
is regrettable since the ESA DUE Permafrost project provides raster data only. Furthermore, they
are using GeoServer’s public REST services and not its internal functions like an extension does.
This work provides a user interface to adapt the visualization of raster data. It is implemented
as a GeoServer extension and has access to its internal functions. All SLDs are managed by
GeoServer and not externally.

9

CHAPTER 3
The Starting Position

At the beginning of this thesis not all requirements were clearly defined in detail. Primarily
adapting the layer visualization in real-time by the user should be enabled. How and which tools
should be provided was not defined at this point. The main software parts of the ESA DUE
Permafrost project were already defined. The system was able to visualize the permafrost data.
Because this thesis and its considerations are based on these software parts, it is important to
understand their relationship and functionality.

3.1 The Graphical-Communication Process

Before a user can navigate through the geospatial data, the data is collected and preprocessed.
A part of the reality is captured, transformed into a digital representation and transmitted via a
medium. The result can be interpreted by the receiver. This process is called graphical commu-
nication (see Figure 3.1). Based on the real world, a primary model is created. Many simplifi-

Figure 3.1: The graphical-communication process. (Source: [6], translated)

11

cations are done by omitting unimportant information. Which information is omitted depends
on the purpose of the map. This process is done by domain experts or like in the ESA DUE
Permafrost project, by data producers. The secondary model called graphical representation
takes care of the visualization. The third step in the graphical-communication process is named
tertiary model and is about the receiver. Based on the previous knowledge, the user interprets
the visualization. Without knowing the meaning of the visualization, the user can not inter-
pret the underlying information or misunderstands it. A legend helps the user to interpret the
visualization.

Digital graphical representations have a big impact on the secondary and tertiary model.
As symbols are information carriers, Jacques Bertin developed the Graphical Semiology [6]
(see Figure 3.2). Bertin differentiates between four basic elements: points, lines, areas and
alphanumeric characters. Each element has several graphic variables like size, brightness, form,
texture, direction and color. Since the permafrost data lacks information about geometric objects,
this thesis can deal with different colors and brightnesses only. On the following pages the term
layer is used repeatedly. A layer is the visual representation of the underlying data. Layers are
meant to be overlapping and displayed in the order they are stacked. The result of all merged
layers is called map.

3.2 The Permafrost WebGIS

In order to make the permafrost data public, an application was set up named Permafrost Web
Geographic Information System (WebGIS). A WebGIS is a system which allows to share and
visualize geospatial data over the internet. People all over the world can access the data without
special software. Simply a browser is needed to navigate through the data. Users can easily
navigate over maps and can display additional information. This allows the user to explore the
underlying data. To gain insight into the geospatial data, the following common features are
very important for such systems.

• Zoom in/out to get details/overview.

• Switch between coordinate systems (WGS84 Lat/Long, EASE Grid North).

• Show/hide points of interest (POI).

• Overlap layers.

• Share maps with other users.

• Get additional information of features like sea level of a certain point.

The Permafrost WebGIS is about the secondary model according to the graphical-communication
process. Graphic variables are applied to the permafrost data to get a visualization which is pre-
sented to the user. In order to ensure the requirements of the ESA DUE Permafrost project, the
Permafrost WebGIS consists of several applications and libraries. Each software achieves dif-
ferent tasks and interacts with the other software components. Figure 3.3 shows the interactions
between these components and acts as an overview image.

12

Figure 3.2: Graphic variables after Jacques Bertin. (Source: [6], translated)

The Permafrost User-Interface

The Permafrost User-Interface (UI) is responsible for granting access to the permafrost data.
It builds the framework of the Permafrost WebGIS and comprises all user-control elements. It
controls which data should be displayed in the WebGIS and calls functions of other software
components to adapt the visualization. Figure 3.4 shows a screenshot of the Permafrost WebGIS
and its components. The Following operations can be controlled by the user directly via the UI:

• Maps: Switch between different regions with relevant permafrost data (Alaska, Central
Yakutia, Laptev Sea, Mount McKenzie, Ob Estuary, Arctic).

13

Figure 3.3: Software components of the Permafrost WebGIS.

• Coordinate System: Switch between two coordinate systems (WGS84 Lat/Long, EASE
Grid North).

• Active Layers: Show or hide layers.

• Year and Timescale: Data of different time periods can be displayed.

• Legend: Show the color legend of a single layer.

OpenLayers

OpenLayers is a JavaScript library which enables dynamic maps on any website. It provides the
common control elements of a WebGIS as mentioned before. This library creates a viewport
and arranges a digital map in form of an image inside. The map is the result of any number of
superposed layers. A layer is the visual representation of the underlying data. The Permafrost
UI invokes OpenLayers functions which affect the visualization inside the viewport. Every time
the user changes settings via the provided Permafrost UI control-elements, OpenLayers requests
a new layer visualization from the geospatial data server.

GeoServer

GeoServer as the geospatial data server, manages the permafrost data of the ESA DUE Per-
mafrost project. GeoServer is an open source software server with the capability to edit and

14

Figure 3.4: Screenshot of the Permafrost WebGIS and its components. GeoServer acts in the
background and provides the data for the visualization.

share geospatial data. GeoServer can handle two types of data, vector and raster data. Vector
data describes geometric objects with points, lines and polygons. The geometric objects cor-
respond to map features such as borders of a country, streets, trails or buildings. Raster data
describes a matrix of cells. These cells are also called pixels, squares, and grids and determine
the detail that can be maintained in the dataset. Vector data are qualified for spatial details,
while raster data are well suited for analyzing data that vary continuously from location to loca-
tion such as elevation, temperature or soil moisture. Depending on the data format, GeoServer
applies styles to the data to create an image of the requested permafrost data. A style is a set of
rules which describe how to convert data features into a visual representation.

3.3 User-Control Elements

Now that the existing software components are explained, the requirements of this work can be
described. This section covers the considerations based on the existing software components
and introduces tools to adapt the layer visualization. Raster data limits the possibilities of the

15

visualization since it lacks information about geometric objects. Color and brightness as graph-
ical variables, are the only way to visualize features of the permafrost data. This means that
values are assigned to colors and rendered as an image afterwards. As means of expression,
colors are essential in Geographical Information Systems and are characterized by the following
properties.

• A color is a carrier of information by its own.

• A color simplifies and accelerates the transmission of information.

• The meaning of a certain color is associative.

If the color composition is done wrong, data can be misinterpreted or in the worst case not
be interpretable. It is also important to provide an explanation of the color. This becomes even
more important if people are suffering from abnormality concerning color perception. In general
the meaning of colors differs in every culture and even more over time periods within the same
culture. There is also a great diversity between domains. In every domain the intuitive and
correct experience of colors should be created.

To customize the colors of the visualization, colormaps are introduced. Colormaps help the
user to apply a certain color schema to the data. Figure 3.5 shows two colormaps which are
used in this thesis. The colormap in Figure 3.5a is used for visualizing values of the Remote-
Sensing Product Digital Elevation Model (DEM), while the colormap in Figure 3.5b is used for
visualizing values of the Remote-Sensing Product Land Surface Temperature (LST). Figure 3.6
shows the results of the two colormaps using the area around Mount McKinley (Alaska).

(a) Digital Elevation Model (b) Land Surface Temperature

Figure 3.5: Two different colormaps which can be applied to the data.

Colormaps help the user to interpret the visualization. In some cases it could be useful
to apply a different colormap to the data which shows other details. To be able to select the
values which are displayed, other tools are necessary. Therefore two main visualization types
are introduced in order to select the values of the permafrost data which should be displayed:

Range is used for colorful images. Which means that a selected value range is applied on the
selected colormap. The values within this range are mapped to the colormap. These values
are visualized in the WebGIS only. This allows to specify a value range to be displayed.
Values outside the selected value range are clipped or can be colored in a custom color.

Classification is used to get a better insight into the underlying data. This type allows the user
to specify a number of value classes which are distributed over the whole value range.
The user can determine which values are assigned to which class. Each class gets a dif-
ferent color depending on the colormap. All values of the value range are visualized in

16

(a) Visualization created with the colormap from Figure 3.5a.

(b) Visualization created with the colormap from Figure 3.5b.

Figure 3.6: Two different colormaps applied to the same map section (around Mount McKinley,
Alaska) create different visualizations.

17

the WebGIS in the color of the assigned class. The color of each class can be changed
manually to highlight specific areas.

Figure 3.6 shows an example created with the visualization type range. Figure 3.7 shows
the visualization of the same map section but created with the visualization type classification
using ten classes.

Figure 3.7: Visualization of the same map section and colormap as in Figure 3.6 but created with
a classification of ten classes.

The user can choose whether to apply the visualization type range or classification. The
terms range and classification are used in the sense of the visualization type only in this work.
Besides the visualization types, more requirements are defined in Table 3.1. Some of them are
applicable to both visualization types while some are just applicable to one visualization type.

Color Legend

The color legend is the most interesting tool of this thesis. It replaces GeoServer’s internal static
color legend and is designed to be interactive. This means it contains requirements listed above
which can be adjusted by the user. In order to be able to adjust the value range of each class, the
color legend is implemented as a slider bar with multiple handles on it. Moving a handle, will
reallocate the values to the adjacent classes. The bar represents the entire value range while the
handles serve as class limiters. Handles can be set to any value within the value range, depending
on a defined step width. This means, the user can not set a value outside the value range.

18

Range Classification

Show values within a user set value range. Define a custom number of classes by the
user.

Highlight or hide data outside the selected
value range.

Automatic colorization of selected classes.

Stretching or compressing resizes the selected
colormap to the selected value range.

The user should be able to assign a custom
color to any class.

The user should be able to apply different colormaps.

Highlight areas where no data exists. This is very important to distinguish areas without
data from areas with data.

Unit conversion: examples are Kelvin⇔ Fahrenheit⇔ Celsius Degree

Save settings for each user and style. Every time the user reopens the user interface, previous
settings should be restored.

Reset user modifications to presettings. This restores the visualization if the user wants to
reset his modifications.

Table 3.1: Requirements on the reference implementation.

Highlighting Areas of Interest

Users should be able to explore features of the geospatial data. The idea is that areas of interest
can be examined by applying custom colors. A colorpicker is a simple way to let users choose a
color without knowing color codes, e.g., hexadecimal codes. A colorpicker is a user interface to
pick a color of a color schema [21].

Figure 3.8 shows an example of a color legend for the visualization type range. The selected
value range is called visible class from now on. All values inside the visible class are mapped to
the colors of the shown colormap. Sometimes values of the outer classes are of interest too. To
highlight these outlying values in the visualization, the user can apply a custom color to values
of outer class 1 and outer class 2. Figure 3.9 shows an example of the color legend for the
visualization type classification. For each class the user can apply a custom color to highlight
the values in the visualization.

Remote sensing data producers of the ESA DUE Permafrost project do not always provide
data for each area. This means that some areas are not considered in the remote sensing of the
permafrost-soil data and defined no-data values are set. Depending on the project partner who
was preprocessing the data, no-data values have different characteristics. To distinguish areas
without data from the actual data, a custom color can also be defined for no-data values.

19

Figure 3.8: Example of a color legend of the visualization type range.

Figure 3.9: Example of a color legend of the visualization type classification.

20

CHAPTER 4
Extending the Permafrost WebGIS

In order to accomplish all requirements from Chapter 3, some modifications of the Permafrost
WebGIS are necessary. These modifications are concerning the interaction between the soft-
ware components and GeoServer. Figure 4.1 shows parts of the Permafrost WebGIS which are
modified or implemented colored in red.

OpenLayers requests layer visualizations from GeoServer via the Web Map Service (WMS)
and displays the visualization inside the viewport. The WMS is a service which is invoked over
the internet. The response can be in various formats like image, text or html. Such services are
called Representational State Transfer (REST). Depending on the parameters the WMS returns
a visual representation of the requested data. The WMS as a part of GeoServer is important
for this work, because it allows to request different appearances of the layers by changing the
parameters.

The main part of the reference implementation is about extending GeoServer’s functionality.
The requirements of this work are implemented as a GeoServer extension and can be invoked
from other components of the Permafrost WebGIS. GeoServer uses styles for creating visualiza-
tions of the data. The rules for mapping data values to graphic variables (points, lines, polygons
or alphanumeric characters) are described in a style which is also called Styled Layer Descrip-
tor (SLD). Styles are managed by GeoServer and have a unique id with which the style can be
addressed by WMS. As an extension of GeoServer, the reference implementation has access to
GeoServer’s internal styling functions. Styles can be added, modified or deleted. All require-
ments identified in Chapter 3 are unified in one user interface (UI) which controls the layer
visualization. Each UI control-element has an impact on the style. This means, if the state of the
UI control-element changes, the style of the layer is modified accordingly. The id of the style is
returned to the Permafrost UI.

Every time the Permafrost UI forwards user actions to OpenLayers, OpenLayers requests
a new layer visualization. OpenLayers invokes the WMS and assigns parameters to address
different properties like the style or width and height of the returning image. Since the WMS
provides a lot of parameters, only the mandatory ones are listed in Table 4.1. A full list can be

21

Figure 4.1: Communication between the software components of the Permafrost WebGIS. Mod-
ifications as a part of this work are colored in red.

looked up in the WMS specification [5]. The following listed parameters directly affect the layer
visualization.

The parameter STYLES determines the styles which are applied to the layers specified by
the parameter LAYERS. The number of assigned styles must comply with the number of as-
signed layers. The style plays a major role in this work, as it allows to manipulate the visual
output. Thus the implementation focuses on methods to create and modify styles. The approach
is to generate custom styles at runtime and assign them to the WMS to get the desired layer
visualization. The parameter STYLES of the WMS request is changed on demand.

User Styles

Each layer, stored in GeoServer, has a default style. Each style can be assigned as a default style
to zero or more layers. If a style changes, the visualization of each linked layer changes too.
One user can access the same layer and style at the same time. This means, if a user changes the
style for his needs, the visualization of other users would change too.

This problem can be solved by introducing user styles. For every default style and user, a

22

Request Parameter Description

VERSION=1.3.0 Determines the request version in respect to the ser-
vice.

REQUEST=GetMap Determines the type of the request. GetCapabilities,
GetMap and GetFeatureInfo are available. GetMap
determines that a visual representation of the given
LAYERS is requested.

LAYERS=layer_list Comma-separated list of the id of one or more re-
quested map layers.

STYLES=style_list Comma-separated list of the id of one or more styles
which should be applied to the given LAYERS.

SRS=namespace:identifier Identifies the Spatial Reference System (SRS). For
example: EPSG:4326 (Lat/Long).

BBOX=minx,miny,maxx,maxy Specifies the bounding box corners (lower left, up-
per right) in Coordinate Reference System (CRS)
units.

WIDTH=output_width Width in pixels of the returning layer visualization.

HEIGHT=output_height Height in pixels of the returning layer visualization.

FORMAT=output_format Output format of map (GIF, JPEG, PNG, SVG,
TIFF, WebCGM).

Table 4.1: Mandatory parameters of a WMS GetMap request.

custom style is created and stored in GeoServer, called user style. The user style is a clone of the
default style at first and can be changed without affecting the layer visualization of other users.
The default style acts as a template for the user style. Every time OpenLayers requests a layer,
the WMS parameter STYLES is set to the user-style id. This way the user style is applied to the
layer and a custom output is created and displayed. Referring to Figure 4.2, user style 1, user
style 2 and user style 3 are independent styles which create user defined visualizations of the
same map section. It is indispensable that the user style exists before OpenLayers invokes the
WMS. Otherwise the layer can not be displayed.

So far the purpose of user styles is clear. In the following the approach how to adapt the user
style to get the layer visualization for the user’s needs is explained.

Generating the User Style

In fact geospatial data has no visual component. To get a visual representation, the data must be
styled by applying graphic variables to the data. GeoServer uses styles to accomplish this task.
The syntax of a style is based of XML. XML tags allow to define styling options of single data
properties. The style is capable describing the rendering of vector and raster data.

23

Figure 4.2: Different user styles create different visualizations without affecting each other.

The SLD specification contains many different styling options for graphic variables. The
specification of the SLD uses symbolizer to define these styling options. All symbolizers, inde-
pendent from the data format and their most interesting options, are listed below [9].

• PointSymbolizer styles points, which are elements that contain only position information.
It offers shape, opacity, size, rotation and external graphic as styling parameters.

• The LineSymbolizer styles lines that contain position and length. It provides parameters
for stroke and fill. A pattern can also be applied.

• The PolygonSymbolizer styles two-dimensional geometry elements. The styling options
are similar to the ones of the LineSymbolizer.

• The TextSymbolizer places text labels onto a certain area.

• The RasterSymbolizer applies color mapping to values. It does not support border or fill,
since raster data does not provide position information.

In order to get a better understanding of the functionality of a style, a simple example is ex-
plained next. As the ESA DUE Permafrost project is providing raster data only, the visualization
options are very limited. According to the permafrost data, the Listing 4.1 uses RasterSymbol-
izer to apply color mapping.

24

1 <FeatureTypeStyle>
2 <FeatureTypeName>Feature</FeatureTypeName>
3 <Rule>
4 <RasterSymbolizer>
5 <ColorMap type="intervals">
6 <ColorMapEntry color="#FF0000" opacity="1.0" quantity

="1.0"/>
7 <ColorMapEntry color="#00FF00" opacity="1.0" quantity

="2.0"/>
8 </ColorMap>
9 </RasterSymbolizer>

10 </Rule>
11 </FeatureTypeStyle>

Listing 4.1: Style example using RasterSymbolizer. The XLM tag ColorMapEntry defines the
color mapping.

To gain control over the color assignment, the content of the tag ColorMap is important. Ev-
ery ColorMapEntry tag assigns a color to a certain value or quantity. The attribute type=“intervals”
of the ColorMap tag determines that values between two quantities, are assigned to the upper
value and color. Without this attribute colors will be interpolated. According to this example, the
attribute type=“intervals” means, that every data value with quantity less or equal 1.0 is colored
in red (line 6) and every data value greater than 1.0 and less or equal 2.0 is colored in green (line
7). To make areas with a specific value transparent, the attribute opacity can be changed to 0.
The value of the attribute opacity is set to 1.0 as default. A limitation of GeoServer is, that only
255 ColorMapEntry tags are supported. If more tags are defined, the layer can not be displayed.

Users can define their own styling options. In order to make the color mapping easier, the
user can apply color schemas, also called colormaps. The user can choose between several
colormaps. For fast color access, Color Look-up Tables (CLUT) are used. A CLUT is a table
which stores information about colors and the corresponding values.

Creating the Color Look-up Table from the Colormap

The concept of a Color Look-up Table (CLUT) is very simple but also efficient. The idea is, that
all colormaps are created with the help of a graphical software and saved as images first. This
way it is not necessary to set the color codes manually in the programming language and the
colormap images can also be used for the user interface.

Every time GeoServer starts, all colormaps are loaded and the corresponding CLUTs are
created. For each colormap a CLUT is created. Each color value of each pixel of a colormap
is scanned in horizontal direction and saved in the CLUT. Figure 4.3 shows how the CLUT is
created from a colormap.

Each colormap has a dimension of 200pixel× 20pixel irrespective of the screen resolution.
20 pixel in height are necessary for using the colormap in the user interface as an image. For
creating the CLUT, one pixel in height would be enough. 200 pixel in width was chosen, because
this allows to define distinguishable colors.

25

Figure 4.3: Each color value of each pixel in horizontal direction of the colormap is scanned and
saved in the CLUT.

In every discipline colors do have a different meaning [2, 11]. According to the Remote-
Sensing Products, Table 4.2 shows colormaps which are created to express the right meaning.
Each layer in the Permafrost WebGIS expresses one permafrost soil relevant satellite-observable
parameter and is type of one of the Remote-Sensing Products from Table 4.2. Each Remote-
Sensing Product has a default colormap. The choices for the colormaps are done in cooperation
with the project coordinator and are the common color schemas in geoinformatics for the listed
Remote-Sensing Products.

26

Remote-Sensing Product Colormap

Digital Elevation Model

Land Surface Temperature

Surface Soil Moisture

Day of Freeze/Thaw, Subsi-
dence, Coherence

Table 4.2: Remote-Sensing Products and their default colormaps.

27

CHAPTER 5
Implementation

The introduction of user styles has a major impact on the communication between the software
components of the Permafrost WebGIS. According to Figure 5.1 the new communication is
described as follows. Before a layer is added to the viewport, the Permafrost UI opens a dialog
providing some information like layer name, server, opacity and also the id of the style which is
applied. The Permafrost UI does not know the id of the user style yet, only the id of the layer’s
default style. A service is needed which provides the user-style id before the dialog is shown.
This service is also part of this implementation and is named legend service.

The legend service returns the user-style id in a special format. Depending on two parame-
ters, the default-style id and the user id, the service creates the user style derived from the default
style and returns the id of the user style encoded as a JavaScript Object Notation (JSON) string.
JSON is open standard and is designed for human-readable data interchange. Listing 5.1 shows
an example of a JSON string using the user id 85 and default style soil_moisture.

1 {
2 "result" : "success",
3 "userStyle" : "_user_soil_moisture-85"
4 }

Listing 5.1: Example for a JSON string after the user-style id was requested.

Every JSON string consists of a key-value pair which can also be nested. In this work it is kept
simple.

• The value of the key result determines whether creating the user style was a success or
not. The value can be success or error.

• userStyle determines the unique id of the user style. This id is used for the WMS request.

Before the legend service responses to the request, it checks if the according user style exists.
If not, it is created. The Permafrost UI stores the returned user-style id in a database. The legend

29

Figure 5.1: Schematic workflow of adding a layer to the viewport. The Permafrost UI requests
the id of the user style. OpenLayers requests the layer image.

service guarantees that the layer can be displayed and the user-style id does not need to be
created by the Permafrost UI.

From this point on, the Permafrost UI knows the user-style id of the current layer/user and
can assign it to the WMS request. OpenLayers requests the layer and adds it to the viewport. It
is indispensable that the user style exists before the WMS is invoked. Otherwise the layer can
not be displayed. Now we can assume that the user style exists and the layer can be displayed.
From now on, the Permafrost WebGIS has access to the user style.

30

5.1 The User Interface

The user interface (UI) unifies all identified requirements from Chapter 3. It plays a very im-
portant role in this thesis as it is the link between the user and the user style. The UI contains
the control elements which affect the layer visualization. It is important to keep the user inter-
face clean, simple and comprehensible. Since a lot of requirements are combined, the following
components help to organize the UI.

• Tabs are used to group the settings of the visualization type range and classification.

• Slider is used for the color legend and to the set the number of classes.

• Colorpicker lets the user choose a custom color.

The challenge is to bring all requirements together in one interface without overlapping
functionalities. The requirements identified in Chapter 3 are converted into proper UI control-
elements and are arranged in the user interface. According to Figure 5.2, the user interface is

Figure 5.2: User interface of the reference implementation including the color legend.

divided into three blocks. The following list explains the elements of the UI.

• The upper left block (Settings Box) contains the main settings which affect the appearance
of the color legend.

– The user can easily toggle between the visualization types range and classification
via tabs. Every time the visualization type changes, new settings are applied to the

31

color legend. Therefore the color legend is rebuilt by JavaScript. The previous color
legend settings are preserved and restored if the visualization type changes again.

– The colormap determines the color schema used for the color legend. HTML does
not support selection boxes with a graphical content. JavaScript is used to create a
graphical selection box. If a different colormap is selected, it is applied to the color
legend immediately.

– The number of classes in the color legend can be specified via a slider. If this value
changes, the number of classes of the color legend changes too. New colors for each
class are requested depending on the colormap.

– The unit can be changed for the Remote-Sensing Product Land Surface Temperature
only. Other Remote-Sensing Products do not need to be converted, since no fur-
ther measurement units are defined. For the Remote-Sensing Product Land Surface
Temperature the following measurement units are available:

Kelvin⇔ Fahrenheit⇔ Celsius Degree

Changes are affecting the color legend. All values, including minimum and maxi-
mum of the color legend and handle values, are converted to the selected unit.

– Areas with no existing data can be highlighted in any color. This can be done with
the colorpicker.

– The checkbox for stretching the colormap is not included in the Figure, since this
example shows elements of the visualization type classification only. If stretching
the colormap is enabled, the selected colormap is stretched within the selected visible
class. Otherwise the colormap fills the entire scale.

• The right block is the actual color legend. It is designed as a slider. It directly controls the
mapping of the values to colors. It could be seen as a preview of the values of the Settings
Box. The color legend should make interpreting the data and refining the visualization
easier.

– The current unit is located at the top and bottom of the scale.

– The maximum and minimum of the entire scale are also located at the top and bottom
of the scale.

– All classes are arranged within the scale. Each class can be resized by moving the
upper or lower handle. This allows to include more or less values to the class.

– Each handle has a label box attached which shows the current value. If the handle
is moving, the label changes too. This way the user can set precise limits for each
class.

– Clicking onto a certain class enables the colorpicker. This way values assigned to a
class can be highlighted in the visualization.

• Beneath the Settings Box, the colorpicker is located. The colorpicker is shown if the user
wants to change the color of a certain class or of no-data values.

32

• By clicking the button Apply changes, the current settings are transformed into the user
style. How this is done is explained in Section 5.4.

• Clicking the Button Reset modifications restores the default settings.

The UI can only be invoked for active layers. This means, the layer must be added to the
viewport before the UI is invoked. Figure 5.3 shows how the UI is integrated into the layer-
styling process. After a layer is added to the viewport, the UI can be invoked by the user. The
default-style id and the user id are assigned as parameters. Values of the control elements are
transformed into a valid user style after the settings of the UI are submitted. The Permafrost UI
instructs OpenLayers to reload the layer visualization which applies the user style to the layer.

5.2 Style Files

GeoServer stores all styles as files in a common directory. Besides the style file another file is
created called the legend meta. It is not a native file of GeoServer and contains the user settings
of the UI. The legend meta is located in the same directory like the style file. It is supposed
to save the user settings and permanent values of the user interface and does not affect the
visualization of the layer. Every time the UI is invoked, the user settings are loaded and the UI
state is recovered. If changes are submitted the legend meta will be updated.

The structure of the legend meta is kept very simple (see Listing 5.2). The tag UserStyle
contains the following child tags: Style has only descriptive character and determines the id of
the default style. Scale contains several tags that determine the permanent settings, like scale
minimum and maximum of the color legend. Settings stores the user settings which are updated
at runtime. First the tags of Scale are explained:

• Min is the minimum of the scale. This value is the label for the color legend’s lower
border.

• Max is the maximum of the scale. This value is the label for the color legend’s upper
border.

• Classes determines the maximum number of classes which the user can define for the
visualization type classification.

• Step determines the step width of each handle, when it is moved by the user.

• Units defines all available units for conversion.

The tags of Settings are explained next:

• Unit specifies the current unit. This value must match one value of the available units for
conversion.

• Type declares the visualization type (range or classification).

• NoData contains information about how areas without data are displayed.

33

Figure 5.3: The UI is integrated into the layer-styling process. The user style, as a result of the
UI, is applied to the layer and creates a custom visualization.

– Values determines the values of no data areas. These values can not be changed by
the user.

– Color specifies the color used for no data areas.

• Colormap declares the current colormap.

34

• Stretch determines whether the colormap is stretched to the visible class or not.

• Classes specifies the values of the handles.

• Colors contains the colors of the classes. For visualization type range, the middle color
tag is omitted.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <UserStyle>
3 <!-- Style Annotation -->
4 <Style>Topo</Style>
5 <!-- Fixed Scale Settings -->
6 <Scale>
7 <!-- Lower Scale End -->
8 <Min>-100</Min>
9 <!-- Upper Scale End -->

10 <Max>6200</Max>
11 <!-- Max Classes (Classification) -->
12 <Classes>20</Classes>
13 <!-- Handle Step Width -->
14 <Step>1.0</Step>
15 <!-- Defined Units for Conversion -->
16 <Units>
17 <Unit selected="True">Meter</Unit>
18 </Units>
19 </Scale>
20 <!-- User Settings -->
21 <Settings>
22 <!-- User-selected Scale Unit -->
23 <Unit>Meter</Unit>
24 <!-- Classified|Range -->
25 <Type>Range</Type>
26 <NoData>
27 <!-- Values used for no data -->
28 <Values>
29 <Value>-32768</Value>
30 </Values>
31 <!-- Color in HEX -->
32 <Color>#FF0066</Color>
33 </NoData>
34 <!-- Colormap Id -->
35 <Colormap>dem1</Colormap>
36 <Stretch>True</Stretch>
37 <!-- Values of Class Handles -->

35

38 <Classes>
39 <Class>1.0</Class>
40 <Class>3202.0</Class>
41 </Classes>
42 <!-- Colors of the Classes Between Handles -->
43 <Colors>
44 <Color>#ffffff</Color>
45 <Color/>
46 <Color>#eeeeee</Color>
47 </Colors>
48 </Settings>
49 </UserStyle>

Listing 5.2: Example of a legend meta. Default settings for the Remote-Sensing Product Digital
Elevation Model.

Using the example on the style topo, which is the default style for the Remote-Sensing
Product Digital Elevation Model, three files exists:

• topo.xml is the meta file and contains the GeoServer’s internal style id and the corre-
sponding filename. This file is managed by GeoServer and can be omitted for this imple-
mentation.

• topo.sld is the actual style und contains the visualization information. If the settings of
the UI are changing, this file is updated.

• topo_meta.sld contains the user settings of the user interface.

Each layer in GeoServer represents data of one specific Remote-Sensing Product. Each
Remote-Sensing Product has a default style which is in further consequence the default style
for all linked layers. All default styles are created once and will not be modified at runtime. A
default style can be seen as a template for the user styles. The default-style id for each Remote-
Sensing Product is listed in Table 5.1.

A user style is a clone of the default style first, but changes with the user settings of the UI.
A user style is created for each user and default style. Changing the user style does not affect
the visualization of other users but of the current user. The filenames of the user style and the
legend meta follow certain criteria. The sign # marks a placeholder.

User Style: _user_#DEFAULT-STYLE-ID#-#USER-ID#.sld

Legend Meta: _user_#DEFAULT-STYLE-ID#-#USER-ID#_meta.xml

Each filename consists of a prefix (_user_), the default-style id and the user id. This schema
is also valid for the legend meta, although it has an additional suffix (_meta). The prefix allows
to identify all user files in the style directory. Table 5.2 shows an example how the user files are
named.

36

Remote-Sensing Product Default-Style Id

Digital Elevation Model topo

Land Surface Temperature lst_mean

Surface Soil Moisture soil_moisture

Day of Freeze freeze-rainbow

Day of Thaw thaw-rainbow

Subsidence subsidence-rainbow

Coherence coherence-rainbow

Table 5.1: Remote-Sensing Products and their default-style ids.

Style Name Legend Meta

Default topo.sld topo_meta.sld

User _user_topo-85.sld _user_topo-85_meta.sld

Table 5.2: Examples for default and user files. For this example the default style is topo and user
id is 85.

5.3 Color Legend

The most interesting UI control-element is the color legend as it controls the mapping from
values to colors. This UI control-element replaces GeoServer’s internal static color legend and
can be adapted by the user interactively. Changing values of the Settings Box, causes the color
legend to adapt to these changes. The color legend let the user define colors for certain values.

For the implementation of the color legend, jQuery is used. jQuery is a JavaScript library
and provides a standardized API for manipulating HTML and event listening like mouse click
on a specific HTML element. All common browsers are supported.

The jQuery slider plugin converts a selected HTML element into a slider. There are various
options to set up the slider. In the following the main options are explained which are used in
this work:

• max is the maximum value of the scale.

• min is the minimum value of the scale.

• step determines the step width of each handle.

• values determines the position of the handles within the scale.

• orientation specifies if the slider is vertical or horizontal.

37

These options are assigned every time the plugin is created and can also be changed at runtime.
This work extends jQuery’s slider plugin. In order to accomplish the previous mentioned re-
quirements, the plugin needs to be extended. The color legend needs to access values from the
Settings Box. Therefore the options of the slider plugin need to be extended:

• type defines the visualization type (range or classification).

• unit determines the unit which labels the scale. Also needed for unit conversion.

• background determines the relative path to the image which is used for the background
of the scale. Only for visualization type range.

• tooltips can be true or false. If true every handle gets a label which determines the current
value.

• colors allows to set custom colors for each class. The values must be in hexadecimal code.

• stretch can be true or false. If true the background image is stretched to the selected
visible class. This option is applicable for visualization type range only.

Now these options can be accessed at runtime in the slider plugin. Every time values in the Set-
tings Box are changing (e.g., colormap), these values are passed to the color legend immediately.
Depending on the changes, the appearance and functionality of the color legend changes. The
JavaScript Listing 5.3 shows how the slider is created and how the options are assigned.

1 // Create color legend slider
2 jQuery(’#slider-legend’).slider("destroy").slider({
3 type: set.type,
4 orientation: ’vertical’,
5 min: set.scale.min,
6 max: set.scale.max,
7 unit: set.scale.unit,
8 values: set.classes,
9 background: set.colormapimage,

10 tooltips: true,
11 colors: set.colors,
12 stretch: set.stretch,
13 step: set.scale.step
14 });

Listing 5.3: This shows how the color legend is invoked. An empty HTML element is selected
and the slider plugin is applied which adds custom HTML elements.

The jQuery slider plugin is attached to a certain element by a selector. A selector makes it
possible to address any element in the HTML document. The element with the id slider-legend
is addressed. The sign # marks the id of an element. After the element is selected, the slider
plugin is invoked and the options are assigned.

38

Besides the adaption of the slider options, several adaptions in the code of the plugin are
needed. Independent from the visualization type it is necessary to have multiple handles to
define more than three value classes. The original plugin supports three classes only. The option
values is supposed to handle two values which determine the position of the handles. Since
the slider can theoretically handle any number of handles, the plugin is designed to support 20
handles. More handles would make the slider confusing. This means for every single value,
assigned to the option values, a handle is created. A handle acts as limiter for two classes.
Each handle can be moved between its neighbor handles or the border of the color legend. The
space between two handles is called class and is implemented as an HTML element div which
is supposed to be a container for other elements. This work does not explain all used HTML
elements. The container fills the space between two handles or border. In this way each class
can be colored by applying Cascading Style Sheet (CSS) rules. Every time a handle is moved,
the adjacent container need to be recalculated in their height. Otherwise the container would
slide over its borders (handles).

Listing 5.4 shows the code which recalculates the containers. Since the position of all con-
tainers is relative to its parent container, the positioning can be done in percent. This makes
the rearrangement much easier. First the allocated height in percent of the adjacent container
is calculated. Next the new height of the bottom container can be calculated since its height
stops at the handle. After that the top container’s height is calculated by subtracting the height
of the bottom container of the allocated height. At the end it is necessary to reposition the top
container.

1 // calculate allocated height or width in percent of adjacent
container (range)

2 var allocatedPercent = parseFloat(this.ranges[index].css(
widthOrHeight)) +

3 parseFloat(this.ranges[index+1].css(widthOrHeight));
4 var percentOffset = 0;
5
6 if (index > 0) {
7 percentOffset += (this.values(index-1) - this.options.min) /
8 (this.options.max - this.options.min) * 100;
9 }

10 var newHandlePercent = (this.values(index) - this.options.min)
/

11 (this.options.max - this.options.min) * 100;
12
13 // calc width of container BEFORE handle
14 this.ranges[index].css(widthOrHeight, newHandlePercent -
15 percentOffset + "%");
16
17 // calc position and width of container AFTER handle
18 this.ranges[index+1].css(widthOrHeight, allocatedPercent -
19 parseFloat(this.ranges[index].css(widthOrHeight)) + "%");

39

20 this.ranges[index+1].css(leftOrBottom, newHandlePercent+"%");
21 \end{minted}
22 \label{}

Listing 5.4: Code fragment which recalculates the adjacent container of a handle.

Each handle has a label box attached. This box displays the current position of the corre-
sponding label. Every time the handle changes in position, the label is updated.

Another important feature for highlighting areas is the colorpicker. This implementation
also uses an existing plugin for jQuery [21], which is customized to fit the requirements. In
order to attach the colorpicker to HTML elements, event listeners are used. First a CSS class
(colorpicker-activator) is attached to certain div-containers. The jQuery slider plugin already
uses a CSS class (ui-slider-range) for value classes which can be used for the event listener.
Next the event listener click for these CSS classes is set up (see Listing 5.5). The event listener
is a function which is invoked when the event fires. In this case the color of the calling element
is converted into hexadecimal code. Afterwards the colorpicker is displayed and the color is
passed. The colorpicker automatically updates the color of the element if another color was
chosen. Clicking somewhere outside the colorpicker will let the colorpicker disappear. The
colorpicker is also attached to the two outer classes of the visualization type range.

1 jQuery(’.colorpicker-activator, .ui-slider-range’).live(’click’
, function(event) {

2
3 event.stopPropagation();
4
5 var rgb = jQuery(this).css(’background-color’);
6 rgb = rgb.match(/^rgb\((\d+),\s*(\d+),\s*(\d+)\)$/);
7 function hex(x) {return ("0" + parseInt(x).toString(16)).

slice(-2);}
8 hex = "#" + hex(rgb[1]) + hex(rgb[2]) + hex(rgb[3]);
9

10 var caller = jQuery(this);
11 jQuery(’#colorpickerPlaceholder’).ColorPicker({
12 singleInstance: true,
13 flat: true,
14 onChange: function (hsb, hex, rgb) {
15 caller.css(’background-color’, ’#’ + hex);
16
17 if (caller.hasClass(’colorpicker-activator’)) {
18 jQuery(’#styleMeta-user-noData-color’).val(’#’ + hex)
19 }
20 if (caller.hasClass(’ui-slider-range’)) {
21 preDefinedSettings[type].colors[caller.data(’rangeId’)]

= ’#’ + hex;
22 }

40

23 }
24 });
25 jQuery(’#colorpickerPlaceholder’).ColorPickerSetColor(hex);
26 jQuery(’#colorpickerPlaceholder’).fadeIn(100);
27 });

Listing 5.5: The code fragment shows how the colorpicker is invoked and how the selected
colors are applied to the element.

5.4 Transforming Settings to User Styles

This section is about transforming the user settings from the UI into a valid style definition.
Since styles are XML documents with a known vocabulary (XSD) [14], all the control elements
from the user interface can be converted into proper ColorMapEntry tags. The figures listed in
this section, help to explain the relation between the color legend and the resulting style. It is
important to know how the ColorMapEntry tags are sorted. The color legend has its lowest value
at the bottom and its highest value at the top of the scale. All values are in descending order.
This does not apply with the sorting of the ColorMapEntry tags. All ColorMapEntry tags are
listed in ascending order in respect to the attribute quantity. If the ColorMapEntry tags are not
sorted properly in the style file, GeoServer can not display the layer. For a easier understanding,
the ColorMapEntry tags are sorted in descending order in the following figures.

After the UI settings are submitted, the color-mapping process is applied. This process
differs depending on the user settings. The differences are explained in the following sections.
The output of this process is a mapping list which contains a triple of color, opacity and quantity.

After all values of the scale are processed and inserted into the mapping list, all entries
are sorted in ascending order according to quantity. Afterwards the ColorMapEntry tags are
created and inserted into the user style inside the ColorMap tag. GeoServer does support 255
ColorMapEntry tags only. If more tags are listed, the visualization can not be displayed. But
more tags are not required. Values without a corresponding ColorMapEntry tag are mapped to
the next upper ColorMapEntry tag in respect to the quantity. This way it is necessary to define
the upper border of a class only. Gaps can not occur.

Visualization Type Range

The visualization type range is used to generate layer visualizations with color gradients. Color
gradients make it hard to identify the corresponding value. According to Figure 5.4, the visual-
ization type range consists of three classes: the visible class and two outer classes. The visible
class defines the values which are visualized. All values between are mapped to a certain color
depending on the colormap. The outer classes enclose the visible class and are used to highlight
areas outside the visible class. Every time the height of the visible class changes by moving the
lower or upper handle, the outer classes are changing too.

When the user submits the settings, the values of the visible class are determined and pre-
pared for the style. For all values within the visible class, a color is requested from the CLUT.

41

Figure 5.4: Two handles are dividing the scale into three classes. The outer classes can be
colored to highlight or blank values outside the visible class.

Each color and corresponding value is saved in the mapping list. For the outer classes two class
triples for lower and upper border are added to the mapping list. The colors for the outer classes
are received from the color legend. Opacity has always the value 1.0 for values of the visible
class and outer class. Afterward the mapping list is converted to the style.

Figure 5.5 shows the color legend and a part of the resulting style without outer classes. If
one handle is at the scale’s minimum/maximum, the corresponding outer class is not added since
no outer class is needed.

Stretching the colormap is applicable to the visualization type range only since the selected
colormap is applied to the visible class. Stretching is activated by default, which means that the
colormap fits the visible class. If the value range of the visible class changes, the colormap adapts
to the new size. The visible class shows always the full colormap. If stretching is deactivated,
the colormap fills the full scale and the visible class shows only a part of the colormap. Only the
visible part of the colormap is then extracted and saved in the mapping list. Figure 5.6 shows
the color legend and the resulting style when stretching is deactivated. Compared to Figure 5.4,
where stretching is activated, the resulting ColorMapEntry tags of the visible class differ in the
value of the attribute color.

Visualization Type Classification

While the algorithm for the visualization type range iterates over the scale and requests the
colors from the CLUT, the visualization type classification receives the colors directly from the
color legend. Since the colors of each class are already defined by the user, no mapping is
needed. Each class is represented by one class triple for the upper border of the class. Figure 5.7
illustrates how classes and their colors are converted to ColorMapEntry tags. Lower and upper

42

Figure 5.5: The visible class fills the whole scale. Outer classes are not visible since the handles
are at the scale’s minimum/maximum.

border as well as the color of each class are known. The entries can be created easily. Values
between two class triples are automatically mapped to the upper border.

Areas without Data

No-data areas are areas where the remote sensor has not scanned any data. Values of such areas
are represented by a specific value, which varies for each Remote-Sensing Product since several
independent partners are preprocessing the data. Depending on the Remote-Sensing Product,
which the user style is based on, different no-data values are used. No-data areas exist for both
visualization types. The user can set a custom color for no-data values with the use of the
colorpicker. If the option Show no-data values in the UI is not selected, no-data values are set to
transparent. Otherwise they are colored in the user set color. The transparency is specified with
the XML attribute opacity. Figure 5.8 shows the corresponding XML code.

43

Figure 5.6: The colormap extends to the entire scale. The visible class shows only a part of the
colormap.

Figure 5.7: Five classes with different colors are distributed over the scale. Each class is defined
as the upper border as well as a certain color.

44

1 <ColorMapEntry color="#0000FF" opacity="1.0" quantity="
-32768.0"/>

(a) No-data values are colored in red.

1 <ColorMapEntry color="#0000FF" opacity="0.0" quantity="
-32768.0"/>

(b) No-data values are transparent.

Figure 5.8: Listing (a) colors no-data values with the quantity -32768.0 in red (#0000FF). Opac-
ity is set to 1.0. Listing (b) makes no-data areas transparent by setting the opacity to zero.

45

CHAPTER 6
Results

This Chapter shows the results of the implementation. Screenshots of the UI and the resulting
layer visualization are compared. The results are compared to each other and the main differ-
ences are discussed. The color legend also acts as the description for the layer visualization.
The following figures are created from the perspective of one user. Listing more examples for
other users would make no sense, since user styles do not affect the visualization of other users.
The current implementation was not tested by users of the ESA DUE Permafrost project since
the Permafrost WebGIS was accessible for administrators and developers only at this time. As
a proof of concept, the current implementation should be tested by the actual users of the ESA
DUE Permafrost project.

All layer visualizations are created with the same map section (around Mount McKinley
(Alaska)), map scale (1 : 904428) and coordinate system (EASE Grid North) and use data
of the same Remote-Sensing Product (Surface Soil Moisture). Because the permafrost data is
continuous, it is important to determine the date for the listed examples (2008-05-30). The low
resolution (25 km × 25 km) of the Remote-Sensing Product Surface Soil Moisture causes
pixelated images. A list of all parameters for all Remote-Sensing Products can be found in the
Appendix A.

6.1 Visualization Type Range

Range is the simplest visualization type. It provides color gradients for values of the visible
class. The output is always a colorful image. Areas of interest within a specific value range
can hardly be identified due to smooth transitions. Data exploration is not served best. This
visualization type is used for presentation purposes of the permafrost data only.

Figure 6.1 shows the result of the visualization type range including the entire scale. Since
the unit of the product Surface Soil Moisture (SSM) is percent, 100% is the maximum. Ac-
cording to the corresponding colormap, areas with the highest moisture are displayed in dark
blue (100%) while areas with low moisture are colored in dark brown (1%). This colormap

47

is the default colormap for SSM. Stretching the colormap is always enabled as default for the
visualization type range. This does not play a role in this example since both handles are set to
the upper and lower limit. No-data values are colored in white. In this example transparency is
irrelevant since only one layer is displayed.

Figure 6.1b shows areas of brown and blue with smooth transitions. Areas of a different
color can be determined easily. Areas with the same color but different brightness can hardly
be specified. This can be improved by selecting a colormap with many distinguishable colors.
Color gradients are not useful for visual data analysis.

Outer Classes

Outer classes extend the functionality of the visualization type range with an important aspect of
the visualization type classification. Outer classes highlight values outside the selected visible
class. They are located at the lower and upper end of the color legend. Every time the height of
the visible class changes, the adjacent outer class of the moved handle is adjusted.

Figure 6.2 illustrates the use of outer classes. The two outer classes are limited by the
handles. At the following examples the variable x represents values of the permafrost data. The
lower outer class includes all values with 1 ≤ x < 35 while the upper outer class includes
values with 75 < x ≤ 100. All values that fulfill 35 ≤ x ≤ 75 are lying inside the visible class.
Because stretching is active, the colormap is applied on the visible class only. In Figure 6.2b the
outer classes are clearly visible, colored in red and green. Comparing the Figure 6.2a to Figure
6.1a, the colormap of the visible class is more compressed in Figure 6.2a because of the smaller
visible class. While intense colors are replaced by the outer classes, light colors turned more
intense. This is because the positions of the handles and size of the visible class have changed.
Outer classes allow to hide or highlight areas outside the visible class.

Stretching the Colormap

Since stretching is active as default, this section explains the result when it is deactivated. If it is
active, the colormap is applied to the visible class only (see Figure 6.1a). If it is deactivated the
colormap fills the entire scale and the colors outside the visible class are clipped. Compared to
Figure 6.2b, colors are brighter in Figure 6.3b.

6.2 Visualization Type Classification

Classification is the second visualization type and designed for explorative research. The entire
scale is divided into classes (at least two, at most twenty). The amount of classes is limited
because of the user interface. More classes also means more handles on the color legend. This
would make the color legend confusing.

Classification always visualizes all values of the scale. The scale is divided into classes
which can be adjusted by the user. This allows to highlight areas of interest. Each class has a
color which can be changed by the user.

Figure 6.4 allows a good comparison to Figure 6.1 because of the same selected colormap
in the Settings Box. In this example classification provides two classes of blue tones, one gray

48

(a) Screenshot of the user interface.

(b) Resulting layer visualization.

Figure 6.1: Areas of low moisture (brown) and high moisture (blue) can be identified easily in
Figure 6.1b

49

(a) Screenshot of the user interface.

(b) Resulting layer visualization.

Figure 6.2: The outer classes, set to green and red, can be identified easily in the resulting layer
visualization.

50

(a) Screenshot of the user interface.

(b) Resulting layer visualization.

Figure 6.3: (b) shows the output when colormap stretching is disabled. Compared to Figure 6.2b
colors are brighter.

51

class and three more colors. Classes are equally distributed. All class colors are discretized
from the selected colormap. Because each class has a unique color, values of these classes can
be identified in the visualization. Because the visualization type range provides color gradients,
the determination of monochrome areas is difficult. This reflects that the visualization type clas-
sification is better suited to accomplish explorative research than the visualization type range.

User-defined Classes

Classification allows to highlight classes of specific value ranges. Every class and values within
the class can be colored by the user. Figure 6.5 shows how this is done. The lowest and highest
classes are colored in green and red. By clicking on the class, the colorpicker appears and the
current color is preset. Figure 6.5b clearly highlights values within the selected classes.

Hiding areas is accomplished by coloring classes in white. But this does not make these
areas transparent to other layers. Transparency is not implemented in this work, because the
Permafrost UI already supports transparency of single layers.

The number of classes of the visualization type classification are limited to twenty and can
be decreased to two. Figure 6.6 shows classification by means of fourteen classes. A different
colormap than in the other figures is used to see the differences in the output. The settings result
in an image with fourteen discrete colors. Areas can be distinguished despite the many colors.

6.3 Using different Colormaps

Figure 6.7 illustrates the use of another colormap on the visualization type range. Although the
rainbow colormap does not provide meaningful colors for SSM, it contains a lot more colors than
the other colormaps. That is why it is used for this example. This allows to better distinguish
areas. In Figure 6.6 the same colormap is used but for the visualization type classification.

6.4 Highlighting Areas without Data

Highlighting areas without data is very important to distinguish them from actual data. High-
lighting is applicable to both visualization types. Since no-data areas are transparent by default,
they can not be distinguished from the white background. The color white can also be applied
to values, which makes it impossible to determine whether the areas are without data or colored.

Depending on the Remote-Sensing Product, the values for areas without data are varying.
On default these values are transparent. Only if a color is selected, the opacity is set to the
maximum value 1.0. Figure 6.8 shows an example. For SSM no-data values are defined as
x = 0, x > 100. The variable x represents values of the permafrost data. All values for which
these conditions apply, are colored in green. The result can be seen in Figure 6.8b.

52

(a) Screenshot of the user interface.

(b) Resulting layer visualization.

Figure 6.4: (a) The entire scale is divided into six classes of the same height. (b) The output
clearly visualizes these classes.

53

(a) Screenshot of the user interface.

(b) Resulting layer visualization.

Figure 6.5: The lowest and highest class are colored in green and red.

54

(a) Screenshot of the user interface.

(b) Resulting layer visualization.

Figure 6.6: Fourteen classes are applied on a rainbow colormap which can be distinguished
despite the many colors.

55

(a) Screenshot of the user interface.

(b) Resulting layer visualization.

Figure 6.7: The selected colormap in Figure (b) contains a lot of different colors compared to
the other provided colormaps.

56

(a) Screenshot of the user interface.

(b) Resulting layer visualization.

Figure 6.8: Areas where no data exists are highlighted in green.

57

6.5 Overlapping Layers

The Permafrost WebGIS is capable to visualize overlapping layers. Overlapping layers can
help to orientate the permafrost data on reference points like the geographic borders or water
bodies. The following Remote-Sensing Products and additional geographic information are used
to demonstrate overlapping layers:

• Digital Elevation Model (DEM)

• Surface Soil Moisture (SSM)

• Political border (additional geographic information)

Figure 6.9 provides the color legend for DEM and SSM. Figure 6.10 shows the result of the
visualization. The data of the used Remote-Sensing Products are of different resolution which
can be seen in the result.

The layer of the SSM overlaps the layer of the DEM. This work supports transparency for
no-data areas only. Areas without data of the DEM, are shining through the layer of the SSM.
Transparency for layers is supported by the Permafrost WebGIS. This means, the opacity can be
adjusted for the entire layer. Figure 6.11 shows the result of the transparent layer SSM. In this
case interpreting the data is more difficult, because the colors of the layer SSM are brighter and
do not match with the color legend. Also the colors of the DEM covered by the SSM can not be
interpreted.

Figure 6.9: Color legends of the Digital Elevation Model (left) and the Surface Soil Moisture
(right).

58

Figure 6.10: The layer of the SSM overlaps the layer of the DEM. The political border is on top
of both layers.

Figure 6.11: The opacity of the layer SSM is set to the value 0.5. The layer of the DEM is
shining through.

59

CHAPTER 7
Conclusion

In OGC compliant applications, the style is essential for adapting the layer visualization. The
style defines the styling information and declares how the mapping of values to graphical vari-
ables is done. GeoServer also implements this method to render a layer visualization. This
means that the rendering process is limited to the styling options provided by the SLD specifi-
cation.

Despite this limitation, the SLD specification provides a lot of styling options. Depending
on the data format, graphical variables can be applied. Since the permafrost data is of type raster
data, the data lacks of information about geometric objects. This fact has limited the styling
possibilities of this work. The specification of the SLD does provide color and brightness as
graphical variables for raster data only. So this work has concentrated on tools to enable data
exploration by applying color mapping.

Although color mapping is a simple method, all requirements on this thesis could be imple-
mented. It was an aim of this work to define a set of UI control-elements which allow exact
examination of features of the raster data. This task could be accomplished, as the results in
Chapter 6 show. Value ranges of interest can be highlighted in the layer visualization. Trans-
parency of class colors was not implemented, assuming that transparent areas in combination
with overlapping layers would make the visualization confusing for the user. With decreasing
opacity, interpreting a color becomes more difficult.

To enable user-driven manipulation of the layer visualization without affecting the visual-
ization of other users, user styles were introduced. As a result of the introduction of the user
styles, the communication within the Permafrost WebGIS becomes more complex. It is nec-
essary to provide the user with a style and its id before the user views a layer. A service was
implemented which assures that the user style exists. This service creates three user-style files
for each user and a default style. This fact accrues a lot of data garbage over the time. The
ESA DUE Permafrost project includes six Remote-Sensing Products. For each Remote-Sensing
Product and user, a user style is created. Assuming that the Permafrost WebGIS is expected to
manage about 100 users, 1800 user-style files are created. If the permafrost data is updated and
makes it necessary to update the layer visualization, all user styles need to be deleted or updated

61

based on the new default style. Styles can only be administrated by using GeoServer which is
time-consuming. GeoServer manages a virtual copy of all styles. If the user-style file is deleted
and the virtual copy still exists, GeoServer needs to be restarted. In the testing, all user-style
files were deleted manually several times. Afterwards GeoServer was restarted. All styles were
updated and the virtual copy of the deleted files were removed. Restarting GeoServer is not an
option for the real operation.

In the testing, GeoServer had sometimes a problem with the rendering of specific layers.
After the user style was updated, the layer could not be displayed immediately. Especially layers
based on the Remote-Sensing Product Land Surface Temperature had some latency before they
were correctly displayed. This problem could not always be reproduced and occurred randomly.
Analyzing the HTTP response of the WMS showed that GeoServer produced the latency. In this
case, the WMS returned a blank image. The exact source of the problem could not be identified
in this work but it could be related to GeoServer’s caching methods.

Although the data can be examined with the implementation of this work, styling options
for vector data would serve the explorative research better. For example, if the user could apply
different patterns to value ranges, areas of interest would be more distinguishable from other
areas. Therefore the permafrost data is needed to be converted into vector data. Since this
process is complex, this would need further research.

62

APPENDIX A
Remote-Sensing Products

Remote-Sensing Products in context of the ESA DUE Permafrost project are relevant satellite-
observable parameters. Each product has different parameters. The following Tables list all
products of the ESA DUE Permafrost project and their relevant parameters. These parameters
are very important for this work since they determine basic information for the legend.

A Remote-Sensing Product represents several permafrost soil characteristics. Based on these
characteristics any number of data in form of layers can exist. This means various layers of the
same Remote-Sensing Product but different settings, can exist side by side. The main parameters
this works is based on, can be found in the following Tables. It is necessary to explain the
meaning of the parameters before listing the characteristics of each Remote-Sensing Product.

Several Remote-Sensing Products are created by more than one remote sensor. Parameters
of the same Remote-Sensing Product but different sensors are listed in the same table. The
remote sensor is not necessary for this work and is therefore omitted.

• Remote-Sensing Product determines the name of the product.

• Unit determines the unit of the data values.

• Maximum value specifies the maximum value of the product dataset.

• Minimum value specifies the minimum value of the product dataset.

• No-data values determine values which represent cells without information.

• Spatial resolution determines the resolution of the remotely sensed data.

• Temporal frequency of input data determines which interval the data has been aggre-
gated. This allows to visualize different dates of the product.

• Maximum time period specifies the period in which the data has been acquired.

63

Parameter Specification

Remote-Sensing Product Land Surface Temperature

Unit Kelvin

Maximum value 400

Minimum value 1

No-data values 0

Spatial resolution 1 km × 1 km
25 km × 25 km

Temporal frequency of input data Weekly,
Monthly

Maximum time period 2000 – 2010

Table A.1: Characteristics of the product Land Surface Temperature [7].

Parameter Specification

Remote-Sensing Product Digital Elevation Model

Unit Meter

Maximum value 6200

Minimum value -100

No-data values -32768

Spatial resolution 90m

Temporal frequency of input data Once

Maximum time period –

Table A.2: Characteristics of the product Digital Elevation Model [18, 19].

Parameter Specification

Remote-Sensing Product Day of Freeze/Thaw

Unit Day of year (DOY)

Maximum value 366

Minimum value 1

No-data values -1

Spatial resolution 1 km × 1 km

Temporal frequency of input data Yearly

Maximum time period 2005 – 2010

Table A.3: Characteristics of the products Day of Freeze/Thaw [16, 17].

64

Parameter Specification

Remote-Sensing Product Surface Soil Moisture

Unit Percent

Maximum value 100

Minimum value 1

No-data values 0,
x > 100

Spatial resolution 1 km × 1 km
25 km × 25 km

Temporal frequency of input data Weekly

Maximum time period 2007 – September 2010

Table A.4: Characteristics of the product Surface Soil Moisture [16, 17].

Parameter Specification

Remote-Sensing Product Water Bodies

Unit Value

Maximum value 1 (water body exists)

Minimum value 0 (no water body exists)

No-data values -32768

Spatial resolution 150m × 150m

Temporal frequency of input data Yearly

Maximum time period 2007 – 2011

Table A.5: Characteristics of the product Water Bodies [20].

Parameter Specification

Remote-Sensing Product Subsidence

Unit Meter

Maximum value 0.25

Minimum value -0.25

No-data values 0

Spatial resolution ~20m

Temporal frequency of input data Varying, as available

Maximum time period 2007 – 2010

Table A.6: Characteristics of the product Subsidence [22].

65

Parameter Specification

Remote-Sensing Product Coherence

Unit Value

Maximum value 1

Minimum value 0.0001

No-data values 0

Spatial resolution ~20m

Temporal frequency of input data Varying, as available

Maximum time period 2007 – 2010

Table A.7: Characteristics of the product Coherence [22].

66

Bibliography

[1] The Arctic, 2009. URL http://de.wikipedia.org/w/index.php?title=
Datei:Arctic.svg&filetimestamp=20090809182959. Accessed: 2012-08-
29.

[2] S. Bartel. Farben Im Webdesign: Symbolik, Farbpsychologie, Gestaltung. X.media.press /
publishing. Springer, 2003. ISBN 9783540439240.

[3] A. Bartsch. ESA DUE Permafrost Project, 2012. URL http://www.ipf.tuwien.
ac.at/permafrost/index.php/project-description. Accessed: 2012-
04-18.

[4] A. Bartsch, A. Wiesmann, T. Strozzi, C. Schmullius, S. Hese, C. Duguay, B. Heim,
J. Boike, and M. Herold. Implementation of a satellite data based permafrost information
system - the DUE Permafrost Project. In Proceedings ESA Living Planet Symposium, ESA
Special Publication SP-686, Bergen, Norway, 26 June- 02 July 2010, GRS, Laboratorium
voor Geo-informatiekunde en remote sensing, Laboratory of Geo-information Science and
Remote Sensing, 2010. ESA.

[5] J. de la Beaujardiere. OpenGIS Web Feature Service 2.0 Interface Standard
Web Map Server Implementation Specification, 03 2006. URL http://www.
opengeospatial.org/standards/wms. Accessed: 2012-04-05.

[6] N. De Lange. Geoinformatik in Theorie und Praxis. Springer, 2005. ISBN
9783540282914.

[7] C. Duguay, A. Soliman, S. Hachem, and W. Saunders. Circumpolar and re-
gional land surface temperature (lst) with links to geotiff images and netcdf files.
2012. doi:10.1594/PANGAEA.775962. URL http://dx.doi.org/10.1594/
PANGAEA.775962. Accessed: 2012-06-15.

[8] GCOS. GCOS Essential Climate Variables, 2012. URL http://www.wmo.int/
pages/prog/gcos/index.php?name=EssentialClimateVariables. Ac-
cessed: 2012-04-24.

[9] GeoServer. Styling - GeoServer 2.1.x User Manual, 2012. URL http://docs.
geoserver.org/stable/en/user/styling/index.html. Accessed: 2012-
05-08.

67

http://de.wikipedia.org/w/index.php?title=Datei:Arctic.svg&filetimestamp=20090809182959
http://de.wikipedia.org/w/index.php?title=Datei:Arctic.svg&filetimestamp=20090809182959
http://www.ipf.tuwien.ac.at/permafrost/index.php/project-description
http://www.ipf.tuwien.ac.at/permafrost/index.php/project-description
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wms
http://dx.doi.org/10.1594/PANGAEA.775962
http://dx.doi.org/10.1594/PANGAEA.775962
http://dx.doi.org/10.1594/PANGAEA.775962
http://www.wmo.int/pages/prog/gcos/index.php?name=EssentialClimateVariables
http://www.wmo.int/pages/prog/gcos/index.php?name=EssentialClimateVariables
http://docs.geoserver.org/stable/en/user/styling/index.html
http://docs.geoserver.org/stable/en/user/styling/index.html

[10] A. M. Ibanez, J. M. Honduvilla, M. Callejo, and M. Angel. Interactive style generation for
layer visualization through a WMS, 2005.

[11] R. Jackson, L.W. MacDonald, and K. Freeman. Computer generated colour: a practical
guide to presentation and display. Wiley professional computing. J. Wiley, 1994. ISBN
9780471935995.

[12] Kraak, M. The role of the map in a Web-GIS environment. Journal of Geographic Systems,
6:83–93, 2004.

[13] M. Lupp. Styled Layer Descriptor profile of the Web Map Service Implementation Specifi-
cation, 2007. URL http://www.opengeospatial.org/standards/sld. Ac-
cessed: 2011-09-04.

[14] OGC. Styled Layer Descriptor: Specification, 2010. URL http://schemas.
opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd. Accessed: 2011-
09-04.

[15] OpenGeo. OpenGeo Website, 2012. URL http://opengeo.org/. Accessed: 2012-
05-31.

[16] C. Paulik, T. Melzer, S. Hahn, A. Bartsch, B. Heim, K. Elger, and W. Wagner. Circumpolar
surface soil moisture and freeze/thaw surface status remote sensing products with links to
geotiff images and netCDF files. 2012. doi:10.1594/PANGAEA.775959. URL http:
//doi.pangaea.de/10.1594/PANGAEA.775959. Accessed: 2012-06-15.

[17] D. Sabel, S. Park, A. Bartsch, S. Schlaffer, J. Klein, and W. Wagner. Regional surface
soil moisture and freeze/thaw timing remote sensing products with links to geotiff im-
ages. 2012. doi:10.1594/PANGAEA.779658. URL http://dx.doi.org/10.1594/
PANGAEA.779658. Accessed: 2012-06-15.

[18] M. Santoro and T. Strozzi. Circumpolar digital elevation models > 55 degree N with links
to geotiff images. 2012. doi:10.1594/PANGAEA.779748. URL http://dx.doi.
org/10.1594/PANGAEA.779748. Accessed: 2012-06-15.

[19] M. Santoro and T. Strozzi. ALOS Digital Elevation Models with links to geotiff files.
2012. doi:10.1594/PANGAEA.783306. URL http://dx.doi.org/10.1594/
PANGAEA.783306. Accessed: 2012-06-15.

[20] S. Schlaffer, D. Sabel, A. Bartsch, and W. Wagner. Regional water bodies remote sensing
products with links to geotiff images. 2012. doi:10.1594/PANGAEA.779754. URL http:
//dx.doi.org/10.1594/PANGAEA.779754. Accessed: 2012-06-15.

[21] Stefan Petre. ColorPicker - jQuery Plugin, 2012. URL http://www.eyecon.ro/
colorpicker/. Accessed: 2012-05-10.

68

http://www.opengeospatial.org/standards/sld
http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd
http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd
http://opengeo.org/
http://dx.doi.org/10.1594/PANGAEA.775959
http://doi.pangaea.de/10.1594/PANGAEA.775959
http://doi.pangaea.de/10.1594/PANGAEA.775959
http://dx.doi.org/10.1594/PANGAEA.779658
http://dx.doi.org/10.1594/PANGAEA.779658
http://dx.doi.org/10.1594/PANGAEA.779658
http://dx.doi.org/10.1594/PANGAEA.779748
http://dx.doi.org/10.1594/PANGAEA.779748
http://dx.doi.org/10.1594/PANGAEA.779748
http://dx.doi.org/10.1594/PANGAEA.783306
http://dx.doi.org/10.1594/PANGAEA.783306
http://dx.doi.org/10.1594/PANGAEA.783306
http://dx.doi.org/10.1594/PANGAEA.779754
http://dx.doi.org/10.1594/PANGAEA.779754
http://dx.doi.org/10.1594/PANGAEA.779754
http://www.eyecon.ro/colorpicker/
http://www.eyecon.ro/colorpicker/

[22] T. Strozzi. InSAR Digital Elevation Models for subsidence with link to geotiff files.
2012. doi:10.1594/PANGAEA.783307. URL http://dx.doi.org/10.1594/
PANGAEA.783307. Accessed: 2012-06-15.

[23] A. Weiser. Automatisierte Generierung von Styled Layer Descriptor-Dateien aus ESRI
ArcGIS-Projekten zur Publikation mit OGC-konformen Mapservern. Master’s thesis, Uni-
versity of Applied Science Mainz, 2005.

69

http://dx.doi.org/10.1594/PANGAEA.783307
http://dx.doi.org/10.1594/PANGAEA.783307
http://dx.doi.org/10.1594/PANGAEA.783307

	List of Abbreviations
	List of Figures
	Introduction
	The ESA DUE Permafrost Project
	Problem Statement
	Aim of the Work
	Thesis Structure

	Related Work
	The Starting Position
	The Graphical-Communication Process
	The Permafrost WebGIS
	User-Control Elements

	Extending the Permafrost WebGIS
	Implementation
	The User Interface
	Style Files
	Color Legend
	Transforming Settings to User Styles

	Results
	Visualization Type Range
	Visualization Type Classification
	Using different Colormaps
	Highlighting Areas without Data
	Overlapping Layers

	Conclusion
	Remote-Sensing Products
	Bibliography

