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Deutsche Kurzfassung

In Schwerionen-Kollisionen am “Large Hadron Collider” (LHC) und am “Relativistic
Heavy Ion Collider” (RHIC) wird ein Materiezustand erzeugt, bei dem die anson-
sten in Hadronen gebundenen Quarks und Gluonen ein Plasma bilden, dessen Eigen-
schaften Gegenstand intensiver Untersuchungen sind. Im Jahr 2005 wurde entdeckt,
dass dieses Quark-Gluon-Plasma (QGP) sich überraschenderweise wie eine nahezu
perfekte Flüssigkeit verhält mit einem extrem niedrigen Verhältnis von Scherviskosität
zu Entropiedichte η/s. Dieses Verhältnis ist auch ein Indikator dafür, dass der
erzeugte Materiezustand extrem stark gekoppelt ist, was störungstheoretische Zugänge
erschwert. Um zeitabhängige Phänomene zu untersuchen, wo auch die Gittereichthe-
orien keine verlässlichen Ergebnisse liefern, muss man sich einer vermuteten Kor-
respondenz zwischen Gravitationstheorien in einer Raumzeit mit einer zusätzlichen
Dimension und Eichtheorien bedienen. Diese bildet die Physik einer Eichtheorie bei
starker Kopplung auf lösbare Probleme in der Gravitationstheorie ab. Mit Hilfe
dieser sogenannten holographischen Dualität konnte beispielsweise der niedrige Wert
von η/s erklärt werden.

In dieser Arbeit befassen wir uns mit Verallgemeinerungen der üblicherweise in
isotropen Plasmen betrachteten Größen auf anisotrope Systeme, die eine Vorzugsrich-
tung (z.B. die Kollisionsachse) besitzen. Um diese mithilfe von Gravitationstheo-
rien beschreiben zu können, diskutieren wir zwei Modelle mit sehr unterschiedlichen
Eigenschaften. Zum besseren Verständnis untersuchen wir dabei auch den Grenzwert
verschwindender Kopplung in einem der beiden Modelle und finden ein überraschend
nichttriviales Phasendiagram als Funktion von der Temperatur und einer anisotropen
Ladungsdichte. Anschließend berechnen wir die spektralen Dichten für Photonen und
Dileptonen in beiden Modellen und diskutieren die Unterschiede.

Eines der wichtigsten Resultate der vorliegenden Arbeit ist, dass die vermutete
untere Schranke von η/s = 1/4π von einer der zwei Scherviskositäten, die in einem
axialsymmetrischen anisotropen System definiert werden können, noch unterschritten
wird. Dies war vorher nur durch Einführung von höheren Ableitungstermen in der
Gravitationstheorie möglich. Wir zeigen, dass die Scherviskosität in der transver-
salen Ebene das bekannte Resultat η/s = 1/4π liefert, während die zweite diesen
Wert für nichtverschwindende Anisotropien unterschreitet. Zusätzlich zu dem rein
theoretischen Interesse an diesem Ergebnis könnte diese Entdeckung auch für ein in
Schwerionen-Kollisionen erzeugtes QGP von Bedeutung sein, da angenommen wer-
den kann, dass ein solches Plasma für einen betrc̈htlichen Teil seiner sehr kurzen
Lebensdauer anisotrop ist.

Schließlich betrachten wir noch weitere interessante phenomenologische Größen
in einem anisotropen Plasma, wie das Potential zwischen zwei unendlich schweren
Quarks und einen Parameter, der die Unterdrückung von sogenannten Jets beschreibt.
Diese Größen wurden auch in schwach gekoppelten Modellen für Plasmen mit einer
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anisotropen Impulsverteilung berechnet und wir vergleichen die Ergebnisse für kleine
und unendlich große Kopplungen. Diese Untersuchungen helfen uns dabei, die von
uns betrachteten Modelle besser zu verstehen, werfen allerdings auch einige Fragen
auf, welche wir am Ende dieser Arbeit zusammenfassen.
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Abstract

In heavy ion collisions at the “Large Hardon Collider” (LHC) and the “Relativis-
tic Heavy Ion Collider” (RHIC) it is possible to provide conditions under which the
quarks and gluons that are usually confined into hadrons become deconfined. This
new state of matter is called quark gluon plasma (QGP) and its properties are cur-
rently under intense investigation. In 2005 it was discovered that the QGP, instead
of behaving like a gas, is better described as a fluid with a surprisingly low ratio of
shear viscosity to entropy density η/s. The fact that this ratio is so low also indicates
that the produced matter interacts strongly and this limits the applicability of any
perturbative approach considerably. To study real time phenomena such as transport
coefficients also lattice gauge theories are not yet reliable. A powerful tool in this
context is the conjectured duality between gravity theories in a spacetime with one
additional dimension and a gauge theory, which maps the strong coupling limit of
the gauge theory to a solvable problem in the gravity theory. Using this so called
holographic duality it was possible to explain the extremely low value of η/s.

In this thesis we study generalizations of quantities which have been considered in
spatially isotropic plasma for anisotropic systems that possess a preferred direction
(e.g. the collision axis). To make use of the holographic duality we discuss two
models with very different properties. To gain more insight we also discuss the limit
of vanishing coupling in one of the models and find a surprisingly nontrivial phase
diagram as a function of temperature and an anisotropic charge density. Next we
compute the spectral densities for electromagnetic probes in both models and discuss
the differences.

One of the most interesting aspects of this thesis is the demonstration that the
conjectured lower bound for η/s = 1/4π can be violated by one of two shear viscosities
present in an axisymmetric system. Values for η/s below this bound were found
previously only by introducing higher derivative terms in the gravity action. We
show that in a spatially anisotropic plasma the purely transverse component of the
shear viscosity saturates the bound while the longitudinal shear viscosity is even
smaller for any nonvanishing anisotropy. This finding is interesting from a purely
theoretical point of view, but could also be of importance for QGP produced in
heavy ion collisions, since it is reasonable to expect the plasma to be anisotropic for
a significant time interval.

Finally, we consider further observables in an anisotropic plasma which are of phe-
nomenological interest. These are the potential between two infinitely heavy quarks
and the jet quenching parameter. Both were also computed in weakly coupled models
with a fixed momentum anisotropy. We compare the results for small and infinitely
large couplings. These investigations are useful to understand the holographic models
better, but also raise new questions that we summarize at the end of this thesis.
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Chapter 1

Introduction

1.1 The strong force

In the late 1950’s and in the 1960’s a large amount of experimental data relevant
to the strong interaction was gathered. The large number of particles and reso-
nances discovered called for a theoretical framework within which the data could be
described. The perturbative method of quantum field theory, which had been so
successful before when quantum electrodynamics had been found, was not capable of
explaining the interactions of hadrons. Therefore, new formulations independent of
the perturbative method were developed. Among others was a theory of relativistic
strings. When considering a scattering amplitude of two hadrons to two hadrons
it was observed that any finite sum of such amplitudes has uncontrollable UV di-
vergencies and only an infinite number of terms might alter the UV behavior. After
Veneziano proposed an amplitude with a softer UV behavior [1] it was discovered that
this amplitude came out of theories of relativistic strings. One success of this model
was to explain the Regge trajectories, which implied a linear relation of the mass
squared and the spin of the resonances. This behavior was indeed found for many
resonances experimentally. However, string theories had a number of shortcomings
in explaining the strong interaction, for example the theory predicted a particle with
negative mass, the tachyon, and a massless spin two particle that was not discovered.
Therefore, string theory did not seem to be an appropriate description of the strong
force.

On the other hand in the late 1960’s studies on the classification of hadrons
suggested that they were made out of more fundamental building blocks, the quarks
[2]. Eventually the breakthrough in understanding the strong interaction was made in
1973 when the property of asymptotic freedom of non-Abelian gauge field theories was
discovered [3, 4]. It was found that the interaction between the fundamental building
blocks of the hadrons becomes weaker when the momentum transfer is increased

1
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Figure 1.1: Schematic phase diagram of QCD as a function of temperature T and baryon
chemical potential µ. LHC and RHIC denote the regions of the phase diagram that are
being explored by the experimental heavy ion programs at the LHC and RHIC.

and in this regime a description in terms of a perturbative quantum field theory
appears possible. Experimentally asymptotic freedom was first observed in deep
inelastic electron-proton scattering at SLAC (Stanford Linear Accelerator Center).
At high enough energies and therefore high enough resolution of these collisions, it
was observed that the electrons scattered off almost free and pointlike constituents
of the proton.

For asymptotic freedom the non-Abelian nature of the gauge theory is crucial.
However, this non-Abelian gauge theory required that the quarks have an extra sym-
metry which was dubbed “color”. Eventually we have all the ingredients to write
down the Lagrangian of Quantum Chromodynamics (QCD), the widely accepted
theory of the strong interactions

L = −1

4
F a
µνF

aµν +

Nf∑
k=1

ψ̄k
(
iγµDµ −mk

)
ψk, (1.1)

with Dµ = ∂µ − igT aAaµ. The T a’s are the generators of SU(3) the gauge group
of QCD. The quarks ψ and the gluons Aaµ are in the fundamental and the adjoint
representation, respectively. It is also easy to see from the Lagrangian that due to
the non-Abelian character of QCD there exist self interactions of the gauge fields,
which is the main source of asymptotic freedom.

At small energy scales the counterpart of asymptotic freedom is that the coupling
constant increases and perturbative methods fail. This led to the development of
low-energy effective models, which should incorporate only certain features of QCD,
and numerical simulation of QCD on a spacetime lattice.

If we do not restrict our considerations to QCD in vacuum but consider finite
temperatures and densities we can explore the QCD phase diagram. The regions of
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asymptotically large temperatures and/or densities can be studied by perturbative
methods. For small enough densities lattice gauge theory turned out to be the out-
standing nonperturbative tool to study the thermodynamics of the system. It was
discovered that while at small temperatures the fundamental degrees of freedom of
QCD, namely the quarks and gluons, are confined to hadrons at temperatures above
a certain threshold Tc ∼ 150MeV a so called quark-gluon plasma (QGP) forms [5, 6].
Actually the QGP was the state of matter our universe was in for until about 10−5s
after the big bang. A theorist’s way of producing such a QGP would be to take an
empty box and heat it up. As the temperature increases mesons will form. At some
point the density of mesons will be so high that they start to overlap. The quarks
and gluons then no longer know to which meson they originally corresponded and
can move through the box, they are deconfined.

1.2 Heavy ion collisions

Of course the theorist’s approach to produce a QGP is not feasible in reality and
experimentalists have to work hard to produce the deconfined phase of QCD in high
energy collisions of heavy ions here on earth more than 13 billion years after the big
bang. The first attempts to study nucleus-nucleus collisions go back to the early
1970’s even, when such experiments where performed at the Lawrence Berkeley Na-
tional Laboratory. These collisions took place at fixed target energies ranging up to 2
GeV and had the main purpose to study compressed baryonic matter [7]. In order to
address the deconfined phase of QCD higher center of mass energies

√
s were needed.

In the 1980’s two more fixed target experiments at Brookhaven National Laboratory
(BNL) and at CERN, namely the Alternating Gradient Synchrotron (AGS) and the
Super Proton Synchrotron (SPS), delivered data for heavy ion collisions at

√
s = 5

GeV and 17 GeV per nucleon pair, respectively. However, only after the Relativistic
Heavy Ion Collider (RHIC) at BNL started operating in 2000 at center of mass en-
ergies of 200 GeV per nucleon pair, it was possible to safely confirm the production
of the QGP. Ten years later in 2010 the heavy ion program at the Large Hadron
Collider (LHC) at CERN started and set new records, since there lead ions collide
at
√
s = 2.76 TeV per nucleon pair and center of mass energies of up to 5.5 TeV are

planned.

After this short historical remarks let us briefly discuss how such a heavy ion
collision looks like. Since the nuclei are highly accelerated to almost the speed of
light they appear strongly Lorentz contracted in the laboratory frame. The nuclei
collide head on with a certain impact parameter b, which specifies the displacement
of the centers of the two ions in the transverse plane. A non-central collision is shown
schematically in Figs. 1.2 and 1.3. For high enough energy densities the QGP forms
in the collision region. The spectator nucleons that do not participate in the collision
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Figure 1.2: Geometry of a high energy heavy ion collision.

Figure 1.3: Glauber Monte Carlo simulation of two gold nuclei at an impact parameter
b = 6 fm in the transverse plane (left) and from a side view (right). Spectator particles are
shown in pale color. Figure from [8].
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simply fly further along the collision axis. Due to longitudinal expansion at very
early times after the two nuclei hit each other the produced plasma will be out of
equilibrium and have a sizable anisotropy. We will return to this issue in a later
section. The plasma then quickly expands and thermalizes. Due to the expansion
the temperature drops and at some point the deconfined quarks and gluons hadronize
and form up to several thousands of hadrons in the final state that can be detected.
The average number of produced hadrons per collision depends on the center of mass
energy and reaches 8000 for top RHIC energies [9, 10].

The lifetime of the QGP is only of the order of some fm/c and we have to rely
on indirect evidences that a deconfined state of matter has formed shortly after the
collision. Some of the observables that indicate the formation of QGP are

• elliptic flow: In non-central collisions (b 6= 0) the region in which the plasma
forms has an almond shape in the transverse plane. If the medium thermalizes
quickly enough this anisotropic shape leads to a larger pressure gradient along
the shorter diameter than along the longer diameter. Hydrodynamic evolution
converts the initial pressure gradients to velocity gradients in the final state.
Elliptic flow is quantified in terms of the second Fourier coefficient v2 of the
particle distribution in the transverse plane

p0
dN

d3p
|pz=0 = v0(pT )

(
1 + 2v1(pT ) cos(φ) + 2v2(pT ) cos(2φ) + ...

)
, (1.2)

where φ is the angle between the momentum vector and the x-axis. The surpris-
ing experimental finding is that by comparing the elliptic flow to hydrodynamic
simulations it turns out that the ratio of shear viscosity to entropy density η/s
has to be remarkably small, of the order of 1/10 [11, 12]. We present some
details of this reasoning in Appendix A. On the other hand the value of η/s
can also be viewed as an indication of the interaction strength, because for a
weakly coupled plasma

η/s =
#

g4 log(#/g)
. (1.3)

Inserting the precise coefficients that can be found in [13] and extrapolating
the result to large gauge couplings g ∼ 1 we would obtain η/s ∼ 5, which is
still a magnitude too large to explain the experimental findings. This seems to
suggest that the deconfined medium produced in heavy ion collisions behaves
like a strongly coupled liquid rather than a weakly coupled gas.

• jet quenching: During the initial stage after the collision a pair of high energetic
partons can have formed within the deconfined medium and travel in opposite
directions through the plasma. Subsequently they lose energy to the medium
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and slow down. If this pair is produced close to one edge of the QGP such that
one parton can escape the medium almost unmodified and manifests itself as a
jet in the detector, the other parton has to travel a significant distance through
the QGP and loses energy. Therefore, there appears a less energetic (or in
extreme cases even no) backward jet corresponding to the one that belongs to
the first parton. This behavior has been observed at RHIC and LHC [14, 15].

Aside from this intuitive phenomenon experimentalists also quantify the slow
down of initially fast partons by the nuclear suppression factor

RAA =
1

Ncoll

dN/dpAAT
dN/dpppT

. (1.4)

RAA gives the yield of a particle species in heavy ion collisions, typically mea-
sured as a function of its transverse momentum, divided by the similar yield of
proton-proton collisions scaled such that the number of independent nucleon-
nucleon collisions are the same. A deviation of RAA from 1 reflects either
medium effects or initial state effects. The latter can be studied in collisions
of deuterons or protons with heavy ions, because then one does not expect a
QGP to be formed. Eventually experiments revealed that hadrons do show
suppression due to the presence of QGP [16, 17]. A nice check is that photons
which do not interact strongly with the medium are not suppressed [18].

• quarkonia: By quarkonia we mean bound states of a charm c or bottom b
quark and its antiquark. Due to the larger mass of the charm and the bottom
these mesons have a smaller size. In a QGP of temperature T , the plasma can
resolve distances down to 1/T and therefore screen quarks which are separated
down to this distance. However, since quarkonia of heavy quarks are bound
more strongly, their dissociation temperatures are higher. If we could now
subsequently increase the temperature of the QGP we would at first detect
the usual rate of charmonium states but as the temperature increases cc̄ states
cannot form in the QGP and their rate would be suppressed. However, as long
as we are below the dissociation temperature of the still stronger bound bb̄
system the bottomium mesons should not yet be suppressed. This sequential
suppression pattern of quarkonium states is a generic prediction of all models of
quarkonium suppression. So far only the lightest charmonium state J/ psi has
been investigated and we have to wait for more statistics at LHC and RHIC.
However, due to the higher collision energy at the LHC and related to this
the much higher production rate of bottomium, detailed studies of quarkonium
suppression become available [19].
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1.3 The holographic duality

As we have just pointed out, heavy ion collision experiments suggest that the QGP
produced is a strongly coupled quantum liquid and therefore describing it will involve
nonperturbative methods. In the first section we have already mentioned lattice
gauge theory as an outstanding nonperturbative tool, but it turns out that its utility
is limited. For example, currently real time phenomena such as transport coefficients
or out of equilibrium situations can not be described reliably.

However, in 1997 a new powerful nonperturbative tool was discovered, namely
the holographic duality1 [20]. The remarkable feature of this duality is that it maps
a problem in a d-dimensional field theory without gravity to a problem in a (d+ 1)-
dimensional theory with gravity. The main advantage of this duality is that problems
that are hard to solve, because they involve strong or even infinite couplings, are
mapped to problems that can be solved much more easily in the dual theory. Since this
implies a connection between two different theories in different spacetime dimensions,
this duality is often referred to as holographic duality. In the last decade most
constraints of the original formulation, such as conformality, have been relaxed, but no
violation of the duality has been found. Therefore, in [10] the situation is summarized
as “from the current point of view, holographic duality is simply a true, if as yet
unproven, fact about quantum field theories and quantum gravity.”

In this introductory section we only attempt to motivate the holographic duality
heuristically (see also [21, 22, 23]). The term holographic can be understood by
considering entropy in quantum field theories without gravity, where it scales like the
volume and the entropy of black holes that scales like the area. The fact that black
holes are states with maximal entropy in gravity theories is a hint that the quantum
field theory without gravity can only live in a spacetime with one dimension less,
if we attempt to identify the two entropies. Actually this extra dimension can be
understood by the renormalization group (RG). A quantum field theory can be sliced
up by the energy scale and it was found that the running of coupling constants as a
function of this RG scale r can be described by local equations

r∂rg(r) = β
(
g(r)

)
, (1.5)

where β is the famous beta function. Let us for simplicity consider a theory with
β = 0 that is symmetric under rescaling of the coordinates xµ → λxµ and the energy
scale r → r/λ. The most general (d+ 1) dimensional metric with scale and Poincaré
invariance is

ds2 =
L2

v2

(
ηµνdx

µdxν + dv2
)
, (1.6)

1This duality is also known as gauge/gravity duality or AdS/CFT, where AdS stands for anti-de
Sitter spacetime, which is a homogenous and isotropic spacetime with constant negative curvature
and CFT is the acronym for conformal field theory.
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Figure 1.4: Schematic illustration of the gauge/gravity duality.

where we have changed the coordinate system to v = L2/r. This is the metric of
AdSd+1 with L being the AdS radius, which solves the equations of motion of the
action

Sbulk =
1

16πGN

∫
dd+1x

√
−g
(
R− 2Λ), (1.7)

(where R is the Ricci scalar and Λ is the cosmological constant) for Λ = −d(d −
1)/(2L2). On the other hand this metric represents a family of copies of Minkowski
space parametrized by v. It is interesting that this spacetime has a boundary at
v = 0 which corresponds to the UV in the quantum field theory, where we have to
specify boundary conditions. It is also common to say that the field theory “lives”
at the boundary. Variants of this simplest case can be obtained for example by
considering a black hole in the gravity theory. This corresponds to thermal states
in d dimensional field theory, identifying the temperature and entropy of the black
hole with the temperature and entropy of the thermal ensemble in the quantum field
theory. Pictorially this is represented in Fig. 1.4. Furthermore, it is possible to
include a number of additional fields in the bulk action and study different lower
dimensional field theories. Sometimes gravity duals can be consistently obtained
from string theory in which case the duality is precisely known. This is often called
a top-down approach. In bottom-up approaches one postulates a gravity dual with a
certain field content and certain properties and studies the corresponding quantum
field theory that might only be defined via the holographic duality. We present some
details of the original argument for this duality as well as aspects that are of certain
interest for us later in Appendix B.

The main issue in a direct attack of the problems of strongly coupled QGP is
that there exists no known gravity dual to QCD so far. Therefore, we can only study
theories that share certain properties with QCD and try to identify some universal
trends. This strategy has proven useful in the past, when for example the shear
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viscosity of an N = 4 super Yang-Mills (SYM) plasma in equilibrium was calculated
[24]. First of all the result was found to be the same for a large class of gravity duals
corresponding to different deformations of the field theory and secondly the value
η/s = 1/4π is surprisingly close to the measured value. But nevertheless we should be
aware that whetherN = 4 SYM theory is a good toy model for QCD depends strongly
on the observables we want to consider. For example N = 4 SYM is conformal and
the coupling constant does not run. This implies that even at asymptotically large
temperatures the coupling constant will remain large in contrast to QCD.

Furthermore, there is no confinement. Some of the differences become small for a
certain temperature range where the QCD matter is strongly coupled, approximately
conformal and deconfined. We also note that some of the above differences, such as
confinement can nevertheless be mimicked by more refined gravity duals. But it is
still important to keep in mind that ultimately it is not QCD we are studying when
we apply the holographic duality and we have to think about the validity of our
results carefully in the context of QCD. Nevertheless it seems legitimate to note that
30 years after string theory attempted to be the theory of the strong force, eventually
it celebrates a comeback in the QCD community since it can be useful to understand
the strongly coupled quantum liquid produced in heavy ion collisions.

1.4 Adding a direction

The main motivation for the work that will be presented in the following chapters is
to gain a better understanding of the early stages of the strongly coupled quantum
liquid produced after the heavy ion collision. At this point the plasma is not yet
completely thermalized, and due to the collision axis there is one preferred direction
present. Some studies even indicate that the plasma may have substantial pressure
anisotropies over its entire lifetime [25, 26, 27, 28]. Taking this anisotropy into account
already led to interesting new phenomena at weak coupling. The probably most
exciting feature is the development of non-Abelian plasma instabilities [29, 30, 31,
32, 33, 34, 35, 36]. These turned out to be the parametrically dominant phenomena
in anisotropic weakly coupled QGP and therefore play an important role in processes
like thermalization. But also other observables such as the photon production rate,
jet quenching parameter or the properties of quarkonium states are affected by the
anisotropy.

At strong coupling the investigation of anisotropic systems has just begun. One
route is to model heavy ion collisions dynamically making use of the holographic
duality. In these approaches shock wave collisions in the dual gravity theory were
studied. These works involve solving Einstein’s equations numerically and therefore
obtain a metric that is changing in time [37, 38, 39, 40, 41, 42]. Transferring the
results via the holographic duality to SYM plasma it was possible to gain information
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of the time evolution of the energy density and pressures of the deconfined plasma.
Due to the axisymmetry of the system there exist two distinct pressures, one along
the collision axis and one transverse to it. Even though these pressures follow a
hydrodynamic evolution already at quite early times, there is nevertheless a sizable
pressure anisotropy present for a long period. Unfortunately, it is notoriously difficult
to gain further insight in anisotropic systems with these time evolving geometries.
In a first attempt to gain a better understanding about the features that might be
introduced in the strongly coupled plasma by the presence of an anisotropy, it seems
natural to start with a stationary setting. This can only be a good approximation
to the physics of collisions on short enough time scales and the validity might be
significantly limited. Nevertheless from a purely theoretical point of view one might
find completely new behavior related to the presence of the anisotropy. Eventually
it is also of interest to compare the results to the weak coupling case, where also
stationary systems are considered regularly.

As a remark and further motivation we also want to point out that anisotropic
systems at strong coupling are not only interesting in the context of heavy ion colli-
sions, but also for condensed matter systems, where some of the assumptions about
stationarity might even be easier to satisfy. As an example we can mention superfluid
liquid helium-3 which is a so called p-wave superfluid and breaks rotational symme-
try under certain external circumstances [43]. Holographic models mimicking a phase
transition to an anisotropic superfluid have been constructed e.g. in [44, 45]. Other
anisotropic systems that might be interesting for applying similar ideas we are going
to discuss in this thesis are nematic fluids also known as liquid crystals [46].

After these introductory sections where we have tried to sketch the base this work
relies on and motivate the questions we are going to investigate in the remaining chap-
ters, we turn to two specific models to study effects of anisotropies at strong coupling
in chapter 2. There we will review in detail the construction of the gravity duals
and comment on the features of the boundary theories. Next, we calculate spectral
functions for electromagnetic probes and study the modifications in the presence of
a spatial anisotropy in chapter 3. In chapter 4 we will compute the shear viscosity
for one of the anisotropic models in different ways. Finally, we turn to study in-
finitely heavy quarks as probes of the anisotropic plasma and compare our findings
to computations at weak coupling in chapter 5. Most of the results discussed in the
present thesis have been published in [47, 48, 49, 50]. Finally, we are going to draw
conclusions and give an outlook for further work. We relegated the review of some
basic concepts and also some detailed computations to the appendices A - E.



Chapter 2

Holographic models

In the introduction 1.3 we have motivated that the infinite coupling regime of certain
quantum field theories becomes manageable in terms of a dual gravity theory in
asymptotically AdS spacetime with an additional dimension. In this chapter we
introduce two different gravity duals that describe an N = 4 SYM theory with a
fixed anisotropy.

2.1 Singular gravity duals (JW model)

By making use of the holographic duality expectation values of local operators in
the gauge theory can be reconstructed from the asymptotics of the dual supergravity
fields near the boundary. The field corresponding to the stress-energy tensor Tµν is
the metric and the reconstruction of 〈Tµν〉 from the near-boundary asymptotics has
been studied in [51, 52, 53] and is also discussed briefly in appendix B.

Let us consider a generic asymptotically AdS metric in so-called Fefferman Gra-
ham coordinates (in the following we set the AdS radius L = 1)

ds2 =
1

v2

(
dv2 + gµν(x, v)dxµdxν

)
, (2.1)

where the indices µ, ν = 0, 1, 2, 3 do not include the holographic coordinate. Solutions
of vacuum Einstein’s equations with negative cosmological constant Λ = −6, which
correspond to AdS5, give for the expansion close to the boundary at v = 0

gµν(x, v) = g(0)µν(x) + g(2)µν(x)v2 + g(4)µν(x)v4 + ... . (2.2)

Here g(0)µν(x) is the metric of the boundary quantum field theory that we choose to be
the flat Minkowski metric g(0)µν(x) = ηµν . It can then be checked that g(2)µν(x) = 0
and

g(4)µν(x) =
2π2

N2
c

〈Tµν(x)〉. (2.3)

11
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However, this whole procedure can also be reversed, namely constructing a gen-
eral supergravity solution from a given stress energy tensor [53]. Vacuum Einstein’s
equations impose only two constraints on the stress-energy tensor namely energy
momentum conservation and tracelessness. The latter can be shown for general met-
rics by considering the leading terms with respect to v → 0 of the vv-component
of Einstein’s equations1. For a specified 〈Tµν〉 it is then in principle possible to ob-
tain all higher terms g(n)µν(x) recursively from Einstein’s equations and therefore
reconstruct the corresponding gravity dual. In [55] this method has been used to
rederive the static black hole for 〈Tµν〉 = diag(ε, P, P, P ) with ε = 3P , but also
other gravity duals such as the single planar shock wave or boost-invariant geome-
tries were derived. The latter were obtained by considering a stress energy tensor
of the form 〈Tµν〉 = diag

(
(ε(τ), P⊥(τ), P⊥(τ), Pz(τ)

)
only depending on proper time

τ =
√
t2 − z2.

Here we are interested in a stationary anisotropic stress-energy tensor

〈Tµν〉 = diag(ε, P⊥, P⊥, Pz), 〈T µµ 〉 = 0, (2.4)

which we consider as an approximation to the full dynamics at sufficiently short time
scales. A primary measure of the anisotropy of the boundary field theory is the
pressure anisotropy defined as

∆ =
P⊥
Pz
− 1, (2.5)

where ∆ > 0 (∆ < 0) corresponds to an oblate (prolate) plasma.
A metric that respects the symmetries of our anisotropic plasma takes the general

form

ds2 =
1

v2

(
− a(v)dt2 + c(v)(dx2 + dy2) + b(v)dz2 + du2

)
. (2.6)

Solving five-dimensional Einstein’s equations

RMN −
(1

2
R− Λ

)
gMN = 0 (2.7)

with a negative cosmological constant Λ = −6 and the Ricci scalar R = −20 for
the 5-dimensional metric (2.6) respecting the boundary conditions defined by the flat
Minkowski metric and the stress-energy tensor we find [56]

a(v) = (1 + A2v4)1/2−
√

36−2B2/4(1− A2v4)1/2+
√

36−2B2/4

b(v) = (1 + A2v4)1/2−B/3+
√

36−2B2/12(1− A2v4)1/2+B/3−
√

36−2B2/12 (2.8)

c(v) = (1 + A2v4)1/2+B/6+
√

36−2B2/12(1− A2v4)1/2−B/6−
√

36−2B2/12.

1For boost invariant metrics the tracelessness condition is derived from vacuum Einstein’s equa-
tions in [54], but the same arguments are valid in general.
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The parameters A and B are related to the energy density and the pressures
according to

ε =
N2
c

2π2

(A2

2

√
36− 2B2

)
, (2.9)

P⊥ =
N2
c

2π2

(A2

6

√
36− 2B2 +

A2B

3

)
, (2.10)

Pz =
N2
c

2π2

(A2

6

√
36− 2B2 − 2A2B

3

)
. (2.11)

A is a dimensionful parameter which in the isotropic case (B = 0) is related to the
temperature T according to A = π2T 2/2. Nonvanishing values of the dimensionless
parameter B characterize the anisotropy of the system, since Pz and P⊥ depend
differently on B. For negative B the plasma is prolate, while it is oblate for positive
B. Particular values of B are B =

√
2, where PL = 0 (∆ = ∞), and B = −

√
6

where PT = 0 (∆ = −1), because in a plasma made of free particles, such values
correspond to maximal anisotropies, but the above geometry permits also negative
values of pressure components for larger B (limited only by |B| <

√
18).

The metric given in eq. (2.6) is pathological in the sense that a naked singularity
appears whenever B does not vanish. For instance, the induced metric at constant t
and v = 1/

√
A is degenerate,

b(v)c(v)2 ∝ (1− A2v4)(6−
√

36−2B2)/4. (2.12)

Three-dimensional space degenerates at v = 1/
√
A into a two-dimensional sheet when

B > 0 and into a one-dimensional line when B < 0. This is illustrated in Fig. 2.1
in terms of asymptotically (v → 0) spherical congruences of holographically radial
light-like geodesics. At finite v these are deformed into ellipsoids, which degenerate
at v = 1/

√
A. However, in [56] it was noted that it is nevertheless possible to define

purely ingoing and outgoing boundary conditions at the naked singularity, which gives
for example the possibility to define retarded current-current correlation functions2.
The same strategy we just explained was also used to obtain numerically a gravity
dual for an anisotropic plasma with multiple U(1) charges in [57].

2.2 Axion-dilaton-gravity duals (MT model)

From the previous section we conclude that for vacuum Einstein’s equations we only
find singular geometries if we choose the stress-energy tensor of the boundary theory

2However, the expansion in small B performed in [56] is not really allowed, because the character
of the singularities in the equations of motion changes if we truncate at linear order in B. We will
study this in detail in chapter 3.
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Figure 2.1: Asymptotically spherical congruences of (holographically) radial light-like
geodesics which get deformed into ellipsoids as they approach the singularity at v = 1 in
units where A = 1. The blue (darker) surface corresponds to prolate anisotropy B = −

√
6,

the red (lighter) surface to oblate anisotropy B =
√

2, and the transparent mesh to the
isotropic case B = 0. Here xT =

√
x2 + y2 and z correspond to the spatial extents of the

ellipsoids with x2 +y2 + z2 = const, which degenerate into an infinite disk or line for oblate
or prolate anisotropy, respectively. (Note that xT is a radial variable.)
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to be stationary and antisymmetric. In this section we therefore review another
model for stationary anisotropic plasma at strong coupling described in [58, 59]. The
main difference to the aforementioned approach is that we need to consider axions
and dilatons in the supergravity theory to be able to introduce a spatial anisotropy
in a regular geometry without naked singularities.

2.2.1 Construction of the gravity dual

The action for the type IIB supergravity in the string frame with non-trivial metric
gMN , axion χ, dilaton φ and Ramond-Ramond (RR) five form F5 is

S =
1

κ2
10

∫
d10x
√
−g
[
e−2φ

(
R+ 4∂M̃φ∂

M̃φ
)
− 1

2
F 2

1 −
1

4 · 5!
F 2

5

]
, (2.13)

where M̃ = 0, ..., 9 and F1 = dχ is the axion field-strength [60, 59]. The equation of
motion for the dilaton is

R+ 4gM̃Ñ(∇M̃∇Ñφ− ∂M̃φ∂Ñφ) = 0 (2.14)

and Einstein’s equations become

RM̃Ñ + 2∇M̃∇Ñφ+
1

4
gM̃Ñe

2φ
(
FM̃FÑ +

1

48
FM̃ÃB̃C̃D̃F

ÃB̃C̃D̃
Ñ

)
= 0. (2.15)

The forms have to obey equations of motion

d ? F1 = 0 and d ? F5 = 0, (2.16)

where ? denotes the ten-dimensional Hodge dual. Additionally, they satisfy Bianchi
identities

dF1 = 0 and dF5 = 0 (2.17)

and the self-duality constraint F5 = ?F5.
To obtain an anisotropic gravity dual preserving rotational invariance only in the

xy-plane we make an ansatz for the string-frame metric

ds2 =
1

u2

(
−FBdt2 + dx2 + dy2 +Hdz2 +

du2

F

)
+ ZdΩ2

S5
, (2.18)

with ΩS5 being the metric of a unit five sphere. In the above expression we have used
reparametrization invariance to fix gxx and gyy. Therefore it is not possible to set
B = 1, but we can use a scaling symmetry to demand Bbdry = 1 and the boundary is
located at u = 0. It is also possible to achieve Hbdry = 1 which is necessary to be able
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to obtain asymptotically AdS spacetime. In general we want all the functions F , B,
H, Z and φ to be functions of the holographic coordinate u only. Finally, F allows
for the introduction of a black hole and the horizon is located at uh where F(uh) = 0.

The self-dual five form is proportional to the volume of the five sphere

F5 = α(ΩS5 + ?ΩS5). (2.19)

The equations of motion for the dilaton and the metric imply that α = 4e−φbdry .
Without loss of generality we choose the dilaton to vanish at the boundary and get
α = 4. To get an anisotropic gravity dual we want the axion to be χ = az. Both F5

and F1 = dχ obey the equations of motion (2.16) and Bianchi identities (2.17). We
can simplify the ansatz further by setting

H = e−φ and Z = e
φ
2 . (2.20)

With these choices the S5 part of the spacetime factorizes in the Einstein frame,
reducing the bulk action to five-dimensional axion-dilaton gravity with a negative
cosmological constant that comes from the five-form flux F5

Sbulk =
1

2κ2

∫
M
d5x
√
−g
[
R+ 12− 1

2
∂Mφ∂

Mφ− e2φ

2
∂Mχ∂

Mχ
]

+
1

2κ2

∫
∂M

d4x
√
−γ2K, (2.21)

where M = 0, ..., 4 and κ2 = 8πG = 4π2/N2
c . γµν is the induced metric on the

boundary of the manifold M and K is the trace of the extrinsic curvature. In the
Einstein frame the metric is given by

ds2 =
e−

φ
2

u2

(
−FBdt2 + dx2 + dy2 +Hdz2 +

du2

F

)
. (2.22)

The functions F , B, H and φ can be obtained numerically by solving the equations
of motion. The details are given in [59] and to some extent in appendix D.1. It is
important to note that by looking at the asymptotic equations of motion it is possible
to verify that Fbdry = Hbdry = Bbdry = 1 for φbdry = 0 and therefore that the induced
metric on the boundary is flat.

After we found a spatially anisotropic gravity dual that requires a one-form F1

and a five form F5, we turn to the question what the corresponding field theory will
be. The C4 charge coming from F5 = dC4 can be related to D3-branes. The axion
can actually be related to a C8 charge by ?dχ = F̃9 = dC8 and is associated with
D7-branes. The D3-branes extend along the 4 boundary theory directions while the
D7-branes wrap the S5 and are additionally extended only along t, x, and y (see
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t x y z u S5

Nc D3 x x x x
ND7 D7 x x x x

Table 2.1: Brane set-up.

also Table 2.1). We will denote the density of D7-branes along the z-direction by
nD7 = dND7/dz.

Starting only with D3-branes gives N = 4 SYM theory. Adding now nD7 D7-
branes sources a non trivial axion which itself appears in the Wess-Zumino term of
D3-branes giving the following deformation 3

δS =
1

8π2

∫
D3

θ̂ TrF ∧ F =
1

4π

∫
D3

χ̂ TrF ∧ F =
1

g2
YM

∫
D3

χ TrF ∧ F. (2.23)

Since χ = az this clearly breaks isotropy. A very similar brane set-up was also used
to model the fractional quantum Hall effect in [61]. However, there and in [60] the
geometry of the gravity dual considered did not asymptote to AdS. Recently in [62]
another related gravity dual with jumps in the θ-parameter as a function of z was
considered as a model for topological insulators and the authors argue that the MT
model can actually be viewed as a continuum of jumping axion solutions smeared in
the z-direction. However, an important difference is that the D7 branes in [62] do
extend to the boundary in contrast to the situation in the MT model.

2.2.2 Thermodynamics

Temperature and entropy

After discussing the construction of the gravity dual and the corresponding defor-
mation of the N = 4 SYM theory at the boundary we turn to the thermodynamic
properties of this set-up. The expression for the temperature can be found by consid-
ering the relevant terms of the metric close to the horizon after euclidean continuation

ds2 =
e−φh/2

u2
h

(
|F1|Bh(uh − u)dt2E +

du2

|F1|(uh − u)

)
, (2.24)

where F1 = F ′(uh) is negative. We can introduce new coordinates to bring the line
element into the form ds2 = dρ2 + ρ2dϑ2. This new coordinates are then related to

3Here θ = 2πχ̂, χ = gsχ̂ and a = gsnD7. The rescaling by gs comes from our choice that
φbdry = 0, which can be achieved by defining eϕ = gse

φ and Fn = gsF̂n and similarly for all other
hatted variables. Note that ϕ determines the string coupling gs = eϕbdry . Finally, we mention that
the number of D7-branes ND7 =

∫
dχ̂ is measured by the circulation of χ̂ around them.



2.2. AXION-DILATON-GRAVITY DUALS (MT MODEL) 18

(tE, u) by

ρ =
2e−φh/4

uh

√
uh − u
|F1|

and ϑ =
|F1|
√
BhtE

2
. (2.25)

From the requirement that ϑ ∼= ϑ+ 2π we find that tE ∼= tE + δtE such that

T =
1

δtE
=
|F1|
√
Bh

4π
. (2.26)

It is also a straightforward task to find the entropy density per unit volume in the
xyz-directions

s =
Ah

4GV3

=
N2
c

2πu3
h

e−
5φh
4 . (2.27)

In an isotropic plasma with a = 0 the functions in the metric are given by

φ = 0, B = H = 1, F = 1− u4

u4
h

, with uh =
1

πT
(2.28)

and then eq. (2.27) gives the well known result for the entropy density in an N = 4
SYM plasma

s0(T ) =
π2

2
N2
c T

3. (2.29)

In the limit of a� T the entropy density scales differently [59, 60]

s = cent = N2
c a

1
3T

8
3 , (2.30)

with cent ≈ 3.2 being a numerical coefficient obtained in [59].

The stress-energy tensor

Next, we want to calculate the holographic stress-energy tensor. This is complicated
by large-volume divergencies in the action that must be subtracted consistently by
holographic renormalization. The renormalization procedure extended to general
axion-dilaton gravity duals is discussed in [63]. The counterterm we eventually have
to add to the bulk action is

Sc.t. =− 1

κ2

∫
d4x
√
γ
(
3− e2φ

8
(∂χ)2

)
+ ln v

∫
d4x
√
γA

− csch − 1

4

∫
d4x
√
γA. (2.31)



19 2.2. AXION-DILATON-GRAVITY DUALS (MT MODEL)

Here γµν is the induced metric on the boundary with euclidean signature. Note that
since we are interested in the thermodynamics of the system it is convenient to work in
euclidean spacetime. A is the conformal anomaly in the axion-dilaton gravity system
and finally, v is the standard Fefferman-Graham coordinate. The logarithmic term in
eq. (2.31) is needed to cancel divergencies in the bulk action. However, it also breaks
diffeomorphism invariance in the bulk and is therefore the origin of the conformal
anomaly in the boundary theory. This will introduce an additional reference scale
µ in the theory and the physics will not only depend on a/T but on a/µ and T/µ
separately. The third term in eq. (2.31) is finite and represents the freedom in the
choice of renormalization scheme. Shifts of csch are precisely equivalent to rescaling
of the reference scale µ [59].

Expanding the functions in the metric near the boundary gives

φ =− a2

4
v2 +

(2B4

7
− 47a4

4032

)
v4 − a4

6
v4 ln v +O(v6), (2.32)

F =1 +
11a2

24
v2 +

(
F4 +

11a4

144

)
v4 +

7a4

12
v4 ln v +O(v6), (2.33)

B =1− 11a2

24
v2 +

(
B4 −

11a4

144

)
v4 − 7a4

12
v4 ln v +O(v6), (2.34)

H =1 +
a2

4
v2 −

(2B4

7
− 173a4

4032

)
v4 +

a4

6
v4 ln v +O(v6). (2.35)

The coefficients B4(a, T ) and F4(a, T ) are not determined by the asymptotic equations
of motion but can be read off numerically for a particular solution. We present
our numerical approach in appendices D.2.2 and D.2.3. In fact B4 and F4 are the
coefficients of the O(u4) terms in the near boundary expansion of the functions B
and F in the u-coordinate. The precise relation between v and u can be found in
[59]. Making use of the results of [63] we can then read off the stress-energy tensor
〈Tµν〉 = diag(ε, P⊥, P⊥, Pz) with

ε =
N2
c

2π2

(
− 3

4
F4 −

23

28
B4 +

2777

16128
a4 +

csch
96

a4
)
, (2.36)

P⊥ =
N2
c

2π2

(
− 1

4
F4 −

5

28
B4 +

611

16128
a4 − csch

96
a4
)
, (2.37)

Pz =
N2
c

2π2

(
− 1

4
F4 −

13

28
B4 +

2777

16128
a4 +

csch
96

a4
)
. (2.38)

In Fig. 2.2 the energy density and the pressures are shown for increasing anisotropy
and fixed position of the horizon uh = 2. For small values of a/T we encounter an
oblate pressure anisotropy while it then becomes isotropic and increasingly prolate
as we further increase a/T . We note that keeping uh fixed does only approximately
correspond to fixed temperature, since the temperature also weakly depends on the
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Figure 2.2: In the left plot the energy density and the longitudinal and transverse pressure
normalized to the isotropic Stefan-Boltzmann values ε0 = 3π2N2

c T
4/8 and P0 = π2N2

c T
4/8

are shown for uh = 2, µ = 1 and csch = −1. This corresponds to a temperature that varies
from T ≈ 1.59 to T ≈ 1.75 with increasing a/T . To the right we plot the functions F , B,
and H for different values of a/T indicated by the vertical dashed lines with the same color
in the left plot.

value of the dilaton at the horizon. It is remarkable that the metric functions F ,
B, and H change monotonically as we increase the anisotropy parameter a without
a qualitative change when the pressure anisotropy changes from oblate to prolate,
which is in stark contrast to the JW model.

We can also find expressions for the expectation values of operators dual to φ,
Oφ ∼ TrF 2, and χ, Oχ ∼ TrFF̃ and the trace and divergence of the stress energy
tensor [63]

∂µ〈Tµν〉+ 〈Oφ〉∂νφ(0) + 〈Oχ〉∂νχ(0) = 0, (2.39)

〈T µµ 〉 = A(g(0)
µν , φ(0), χ(0)) =

1

12κ2

(
gµν(0)∂µχ(0)∂νχ(0)

)
. (2.40)

For the case at hand with φ = φ(u) and χ = az it turns out that 〈Oχ〉 = 0 and
∂µφ(0) = 0 which implies conservation of the stress energy tensor ∂µ〈Tµν〉 = 0. For
the trace anomaly we find

〈T µµ 〉 =
N2
c a

4

48π2
. (2.41)

Thermodynamic functions

After we have obtained the stress-energy tensor from the gravity dual we now dis-
cuss the various thermodynamic functions of interest to us (see also [59, 47]). We
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will do this in full generality for later convenience when we also take a look at
the boundary theory at zero coupling. Energy is a function of extensive variables,
E = E(S,N,L⊥, Lz), where instead of ND7 we have written only N and refer to it as
the number of charges that cause the anisotropy of the system4. Pressures in various
directions are most naturally expressed in terms of energy, and are given by

P⊥ = − 1

Lz

(
∂E

∂L2
⊥

)
S,N,Lz

, Pz = − 1

L2
⊥

(
∂E

∂Lz

)
S,N,L⊥

. (2.42)

A more convenient quantity to compute, however, is the Helmholtz free energy, F =
F (T,N, L⊥, Lz) ≡ E − TS = V f(T, a). It can be obtained in field theory from the
partition function

F = −T lnZpart. (2.43)

and along the lines of holographic duality from the on-shell action

So.s. = β

∫
d3x f, (2.44)

with β = 1/T . From the definitions of pressures in eq. (2.42) and the relation between
F and E, we immediately find that the pressures are given by

P⊥ = − 1

Lz

(
∂F

∂L2
⊥

)
T,N,Lz

= − 1

Lz

(
∂F

∂L2
⊥

)
T,a

= −f (2.45)

Pz = − 1

L2
⊥

(
∂F

∂Lz

)
T,N,L⊥

= −f − Lz
(
∂f

∂Lz

)
T,N

(2.46)

= −f + a

(
∂f

∂a

)
T

.

Note that even though our physical system is inherently anisotropic as soon as
a 6= 0 (with e.g. anisotropic relations between energies and momenta of its particles),
the pressure would be necessarily isotropic in thermal equilibrium if a were not react
differently to changing the system size along different directions.

We can also study the system in the grand canonical ensemble, as a function of
the chemical potential µ ≡ ∂F/∂N conjugate to the number N of the charges causing
the anisotropy. The associated free energy, the grand potential, is given by

G ≡ F −N
(
∂F

∂N

)
T,L⊥,Lz

= V

[
f − a

(
∂f

∂a

)
T

]
. (2.47)

4In our notation ε is the energy density that is related to the actual energy of the system by
E = ε · V .
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The grand potential has the general form G(T, µ, L⊥, Lz) = V g(T, µ/L2
⊥), which is

easy to see from above as follows. Defining5 Φ ≡ ∂f/∂a, it is clear by construction
that the grand potential can be written as G = V g(T,Φ) with g(T,Φ) = f − a∂af .
On the other hand, we have

µ ≡ V

(
∂f

∂N

)
T,L

= L2
⊥

(
∂f

∂a

)
T

= L2
⊥Φ, (2.48)

and thus Φ = µ/L2
⊥ and G = V g(T, µ/L2

⊥). In terms of the grand potential, the
pressures can then be written as

P⊥ = − 1

Lz

(
∂G

∂L2
⊥

)
T,µ,Lz

= −g − L2
⊥

(
∂g

∂L2
⊥

)
T,µ

(2.49)

= −g + Φ

(
∂g

∂Φ

)
T

, (2.50)

Pz = − 1

L2
⊥

(
∂G

∂Lz

)
T,µ,L⊥

= − 1

L2
⊥

(
∂G

∂Lz

)
T,Φ

= −g. (2.51)

Instead of working with F and G, which are functions of conjugate variables N and
µ, respectively, it is more convenient to consider the free energy densities f and g,
which are functions of the conjugate variables a (number of charges per unit length)
and Φ (chemical potential per unit transverse area), respectively.

Before we move to discussing the phase diagram at infinite coupling, we reproduce
analytical results for thermodynamic quantities in the high temperature limit T �
a, µ and the opposite limit T � a, µ for completeness, but refer the reader to the
original work [59] for details. Omitting terms of O(a6) for T � a, µ we find

ε =ε0(T ) +
N2
c T

2a2

32
+

N2
c a

4

1536π2

[
8csch − 41− 32 ln

a

2πT

]
+
N2
c a

4

48π2
ln
a

µ
, (2.52)

P⊥ =P0(T ) +
N2
c T

2a2

32
+

N2
c a

4

1536π2

[
− 8csch + 9 + 32 ln

a

2πT

]
− N2

c a
4

48π2
ln
a

µ
, (2.53)

Pz =P0(T )− N2
c T

2a2

32
+
N2
c a

4

512π2

[
8csch − 9− 32 ln

a

2πT

]
+ 3

N2
c a

4

48π2
ln
a

µ
, (2.54)

Φ =− N2
c T

2a2

16
+
N2
c a

3

384π2

[
8csch − 9− 32 ln

a

2πT

]
+ 4

N2
c a

3

48π2
ln
a

µ
, (2.55)

5In the infinite coupling case the chemical potential Φ can be also read off from the asymptotic
behavior of an RR 8-form coming from the D7 branes. In order for this to coincide with the
thermodynamic definition it is necessary to choose csch = −1. Details can be found in [59].
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while in the other limit we get

ε =
N2
c a

4

5376π2
(28csch − 1 + 192cint) +

N2
c a

4

48π2
ln
a

µ
+

8centN
2
c a

1/3T 11/3

11
, (2.56)

P⊥ =− N2
c a

4

5376π2
(28csch − 1 + 192cint)−

N2
c a

4

48π2
ln
a

µ
+

3centN
2
c a

1/3T 11/3

11
, (2.57)

Pz =
N2
c a

4

5376π2
(84csch + 109 + 576cint) + 3

N2
c a

4

48π2
ln
a

µ
+

2centN
2
c a

1/3T 11/3

11
, (2.58)

Φ =
N2
c a

3

1344π2
(28csch + 27 + 192cint) +

N2
c a

3

12π2
ln
a

µ
− centN

2
c T

11/3

11a2/3
, (2.59)

where we omitted higher order terms in T/a. The constants cint and cent must be
determined numerically.

Phase diagram

Finally, we discuss the phase diagram of the anisotropic plasma in the infinitely strong
coupling limit. We emphasize that the system we consider contains a fixed number
N of charges (here D7 branes). The way these charges are distributed along the
z-axis is a free parameter determined by minimizing the free energy F . Throughout
this work we are going to refer to these various distributions as various phases of the
system. For simplicity, we only consider distributions which consist of homogeneous
regions of finite extent with various charge densities a. We refer to the phase with
only one region as homogeneous phase and the phase with two or more regions as
inhomogeneous phase. The boundary between regions in the inhomogeneous phase
must be perpendicular to the z-axis, because a can only vary in z-direction.

Besides the thermodynamically unstable phase, where infinitely small charge fluc-
tuations can lower the free energy, there may also exist a metastable phase. In this
phase finite charge fluctuations are required for the transition to the inhomogeneous
phase.

In order for two homogeneous regions to exist next to each other the intensive
thermodynamic variables must have the same values in each region. Therefore the
longitudinal pressure Pz has to have the same value in each region6 (“mechanical equi-
librium”) and the same is true for the chemical potential Φ (“chemical equilibrium”)
as long as each region contains a non-zero number of charges so that processes taking
charges from one region to another can remain in equilibrium. If the other region is
isotropic (a = 0) there are no charges and therefore no charges can be transferred
from there to the other region. In that case chemical equilibrium cannot be reached.

6Since the boundary between two regions can only be perpendicular to the z-axis, we do not
need to require equality of the transverse pressures.
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Figure 2.3: Longitudinal pressure as a function of 1/a for various temperatures at strong
coupling normalized to the Stefan-Boltzmann pressure. The temperature and the charge
density are given in units of charge density a0 ≈ 1.27µ. This scale is defined by f(T =
0, a0) = 0 and simplifies the comparison with the results at zero coupling.

It is well known that homogeneous phases violating(∂Pz
∂Lz

)
T,N

< 0 ⇒
( ∂Pz
∂(1/a)

)
T
< 0 (2.60)

are unstable and cannot exist in equilibrium. Using eq. (2.46) we can rewrite the
above conditions equally well as(∂2f

∂2a

)
T

=
(∂Φ

∂a

)
T
> 0. (2.61)

In Fig. 2.3 we plot the longitudinal pressure as a function of 1/a. This corresponds to
the well known pressure-volume plots that indicate the unstable regions in a phase di-
agram. We note that for small a the longitudinal pressure is a monotonically increas-
ing function of 1/a irrespectively of the temperature. This can also be seen from the
analytical high and low temperature limits eqs. (2.55) and (2.59). For small enough
a condition (2.61) is always violated. This has interesting consequences, namely that
in the strong coupling limit infinitely small densities of D7 branes are thermodynam-
ically unstable with respect to a redistribution of the branes in z-direction. Only for
a finite a we obtain metastable and stable phases. This also requires that there are
always isotropic (a = 0) regions present in the inhomogeneous phase.
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a

f

Inhomogeneous

Homogeneous

a2

Figure 2.4: Condition for coexistence of isotropic and anisotropic regions at strong coupling.
The dashed line, giving the free energy of the inhomogeneous phase, is the tangent to f(T, a)
at a = a2 and coincides with f(T, a) at a = 0.

If one region is isotropic e.g. a1 = 0 and a second region has a finite charge density
a2 then chemical equilibrium cannot be reached. We are left with the condition that
the longitudinal pressures have to be the same

f(T, a2)− a2Φ(T, a2) = f(T, 0). (2.62)

In Fig. 2.4 this condition is presented graphically. The dashed line drawn from
(0, f(T, 0)) to (a2, f(T, a2)) is tangent to f(T, a) at a = a2. Since ∂2f/∂2a|a=0 < 0, the
dashed line is always below f(T, a) and therefore the free energy of the inhomogeneous
phase with regions having a = 0 and a = a2 is lower than that of the homogeneous
phase with corresponding overall density.

Our numerical result for the full phase diagram is shown in Fig. 2.5 and agrees
with the qualitative sketch given in [59]. Even though it cannot be seen in the plot we
checked that all four lines start out strictly vertical in the zero temperature limit and
then the red dashed line and the black line bend to the left for small temperatures
and the other two bend to the right. This behavior can also be anticipated from the
analytical expressions in the low T limit eqs. (2.56)-(2.59). For any curve X (where
X can be f , Pz, Φ or ∂Φ/∂a) in the phase diagram we can define the tangent vector
(na, nT ). By definition along the curve the derivative of X vanishes

na
∂X
∂a

+ nT
∂X
∂T

. (2.63)

Starting at T = 0 we have nT > 0 and

na =
(∂X
∂T

)(∂X
∂a

)−1

nT . (2.64)

At T = 0 we find that na has to vanish for all four curves and at low temperatures
the respective curves behave as explained above. More details for X = Φ at low
temperature are given in [59].
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Figure 2.5: The phase diagram at strong coupling. The solid line separates the homogeneous
and inhomogeneous (red shaded region) phases. The red dashed line indicates the region
where the homogeneous phase is unstable. The blue dash-dotted line indicates Φ = 0. For
smaller a/a0 the pressure anisotropy is oblate otherwise it is prolate. To the left of the
dotted line f(a, T ) < f(0, T ).

Before considering the boundary gauge theory at zero coupling we briefly sum-
marize our findings at infinite coupling

• For small enough charge densities a we always encounter a thermodynamically
unstable region followed by a metastable phase when we increase a. There the
D7 branes redistribute along the z-direction such that there are stacks with
a = 0 and stacks with a larger a. Eventually for large enough charge densities
we end up in a stable homogeneous phase. This behavior is qualitatively the
same for all temperatures.

• Increasing the charge density we at first encounter an oblate pressure anisotropy.
Then the plasma has equal pressures in longitudinal and transverse direction
at some intermediate a and thereafter becomes increasingly prolate for larger
charge densities.

• For both the unstable and metastable phase the “would be” homogeneous pres-
sure anisotropy is oblate and it decays into an inhomogeneous phase where there
are isotropic stacks with no charge density and oblate stacks with a larger charge
density. While the homogeneous phase is trivially in chemical equilibrium the
inhomogeneous system it decays into is not.
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2.2.3 Boundary theory at zero coupling

Setup and notation

After reviewing the thermodynamics of anisotropically θ-deformed gauge theory at
infinite coupling we want to contrast the results with what we find for the same theory
at zero coupling [47]. The deformation we need to consider is

δS =

∫
d4x

az

g2
YM

Tr F ∧ F. (2.65)

As we are only interested in the zero coupling limit we are essentially studying a
theory of free photons and can therefore neglect the gauge group indices in the fol-
lowing. Absorbing gYM in F by rescaling we obtain the following modified Yang-Mills
Lagrangian

L = LYM −
1

4
θ̃(x)εµνρσFµνFρσ, (2.66)

where LYM = −1
4
FµνF

µν − 1
2

(∂µA
µ) + (ghosts). By partially integrating we can

rewrite the Lagrangian

L = LYM +
1

4
j(x)εµνρσAµFνρζσ (2.67)

with ∂σθ̃(x) = j(x)ζσ. The theory we consider contains a source j(x) that is cou-
pled to a homogeneous but anisotropic 2+1 dimensional Chern-Simons operator
εµνρσAµFνρζσ, with the 2+1 dimensional subspace being specified by ζσ. Further-
more, the charges that couple to εµνρσAµFνρζσ can only be localized in the ζ-direction,
j(x) = j(xµζ

µ) because of gauge invariance. A similar Chern-Simons deformation of
electrodynamics has been considered in [64]. There the ζµ parameter is timelike and
therefore the model is isotropic but violates Lorentz and CPT symmetry. A drawback
of a theory with a timelike gradient of θ is that tachyonic modes appear. However,
these modes are absent for theories with a spacelike θ gradient [65, 66].

To make contact with the MT model at strong coupling we choose the charge
density to be constant and make the identification

j(z) = a ≡ N

Lz
. (2.68)

Here, N is the number of charges coupling to the Chern-Simons operator (in the
infinite coupling case this was the number of D7 branes) and Lz the extent of the
system in ζ-direction, which we have chosen to be the z-direction. Denoting the
linear extent of the system perpendicular to the z-direction as L⊥, the volume is then
V = L2

⊥Lz.
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The partition function is given by the Euclidean path integral7

Z(T, j) =

∫
DAµexp

[
−
∫ β

0

dτ

∫
d3x

(
LeYM +

i

4
j(x)εµνρσAµFνρζσ + Ω

)]
. (2.69)

Here the LeYM = 1
4
FµνFµν + 1

2
(∂µAµ) + (ghosts) and Ω is the cosmological constant

that is needed for renormalization.

In this section and in appendix E we use the notation K2 = kµkµ = k2
0 + k2 =

k2
0 + k2

⊥ + k2
z for momenta. We renormalize the theory in dimensional regularization

by splitting the spacetime into R3 ×R1−2ε (“transverse” × “longitudinal”), with the
Chern-Simons term taking the form εijkAiFjk with {i, j, k} labeling the transverse
directions (including Euclidean time). Additionally, we label the longitudinal direc-
tions with letters from the beginning of the Greek alphabet, α, β, . . . , leaving µ, ν, . . .
to label directions in the entire spacetime.

Our notation for momentum integrations is such that∫
k

=

∫
kz

∫
d2k⊥
(2π)2

=

(
eγΛ̄2

4π

)ε ∫
d1−2εkz
(2π)1−2ε

d2k⊥
(2π)2

, (2.70)∫∑
K

=T
∑
k0

∫
k

. (2.71)

Computation of the free energy

In the presence of the source j(z) = a, the path integral in eq. (2.69) can be carried
out immediately with the result

Z(T, a) =e−βV Ω detK(∆−1(K))√
detµν,K(D−1

µν (K))
, (2.72)

where the inverse photon and ghost propagators are given in momentum space by

D−1
αβ (K) =β2K2δαβ, (2.73)

D−1
ij (K) =β2

[
K2δij − aεijkkk

]
, (2.74)

D−1
iα (K) =D−1

αi (K) = 0, (2.75)

∆−1(K) =β2K2. (2.76)

7In Euclidean spacetime, we write all the Lorentz indices as subscripts to distinguish it from
Minkowski spacetime.



29 2.2. AXION-DILATON-GRAVITY DUALS (MT MODEL)

The determinant of the inverse photon propagator over the Lorentz indices is given
by

‖D−1
µν ‖ =(β2K2)1−2εβ6K2

[
K4 + (K2 − k2

z)a
2
]

=(β2)4−2ε(K2)2−2ε
∏
±

(
K2 +

a2 ±
√
a4 + 4a2k2

z

2

)
. (2.77)

It can immediately be seen that the ghost contribution cancels the contribution from
the two a-independent photon modes. The logarithm of the partition function can
thus be written as

lnZ(T, a) =− βV

2

∫∑
K

∑
±

ln
(
β2k2

0 + β2
(
k2
⊥ +M2

±(kz)
))
− βV Ω, (2.78)

where

M2
±(kz) =k2

z +
a2 ±

√
a4 + 4a2k2

z

2
, (2.79)

or, equivalently,

M±(kz) =
√
k2
z + a2/4± a

2
. (2.80)

Note that in Minkowski space (k0 → iω) we have photon modes that for nonzero
kz split into modes with ω2

+ > k2 = k2
⊥ + k2

z and ones with ω2
− < k2. However, also

the latter are non-tachyonic since ω2
− ≥ 0.

Using

∞∑
n=−∞

∂x2 ln(4π2n2 + x2) =
∞∑

n=−∞

1

4π2n2 + x2
=

1

2x

[
1 +

2

ex − 1

]
=∂x2

[
x+ 2 ln

(
1− e−x

)]
(2.81)

⇒
∞∑

n=−∞

ln(4π2n2 + x2) =x+ 2 ln
(
1− e−x

)
+ constant, (2.82)

we get for the Helmholtz free energy density f = −T/V lnZ (with the constant
absorbed into the cosmological constant)

f(T, a) =Ω + T
∑
±

∫
k

[
1

2
βω± + ln

(
1− e−βω±

)]
, (2.83)

where

ω2
± =k2

⊥ +M2
±(kz). (2.84)
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The details of the computations at zero and finite temperature can be found in [47]
and are reproduced in appendix E.

The T = 0 limit of eq. (2.83) contains a UV-divergence that needs to be renor-
malized. In the MS-scheme, we obtain

f(0, a) =− c a4

12π2
+

5a4

256π2
ln
a

Λ̄
+ Ω(Λ̄), (2.85)

where

c =

∫ ∞
0

dx

[(
x2 +

1

2
(1 +

√
1 + 4x2)

)3/2

+

(
x2 +

1

2
(1−

√
1 + 4x2)

)3/2

−2x3 − 9

4
x− 15

64
√

1 + x2

]
= 0.29136 . . . (2.86)

and Ω(Λ̄) is the renormalized cosmological constant running with the scale Λ̄. How-
ever, since we want to explore the thermodynamics as a function of a at some fixed
but arbitrary scale Λ̄, we are free to choose the value of the cosmological constant
(which is by definition independent of a) at that scale. With this in mind, fixing Λ̄
to give units a is measured in, we set Ω = 0, yielding for the T = 0 free energy

f(0, a) =− c a4

12π2
+

5a4

256π2
ln
a

Λ̄
. (2.87)

The coefficient in front of the logarithm gives the trace anomaly of our system

ε− 2P⊥ − Pz = − 5a4

256π2
. (2.88)

It turns out that this is curiously close to the infinite-coupling result which equals
−a4/48π2.

We are still free to choose the renormalization scale. A convenient way to do this
is to express the scale Λ̄ in terms of a0,

ln
a0

Λ̄
=

64c

15
(2.89)

such that

f(0, a) =
5a4

256π2
ln

a

a0

. (2.90)

As before for infinite coupling a0 is the finite charge density for which the energy
density vanishes. In the following we express everything in this section in terms of
the scale a0.
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Other thermodynamic variables of interest at T = 0 can now be computed,

Φ =
∂f

∂a
=

5a3

256π2

(
1 + 4 ln

a

a0

)
, (2.91)

Pz = −f + aΦ =
5a4

256π2

(
1 + 3 ln

a

a0

)
, (2.92)

Φ′ =
∂Φ

∂a
=

5a2

256π2

(
7 + 12 ln

a

a0

)
. (2.93)

Respectively, they vanish at different densities a given by

aΦ =a0 e
−1/4 ≈ 0.7788 a0, (2.94)

aPz =a0 e
−1/3 ≈ 0.7165 a0, (2.95)

aΦ′ =a0 e
−7/12 ≈ 0.5580 a0. (2.96)

The finite-T contribution is given by

f(T, a)− f(0, a) =T
∑
±

∫
k

ln
(
1− e−βω±

)
. (2.97)

Unfortunately, it is not possible to express this sum-integral in a closed form. We can,
however, derive a simpler integral representation for the finite-T contribution that is
straightforward to evaluate numerically (see [47] and appendix E.2 for details),

f(T, a)− f(0, a) =
T 4

2π2

∑
±

∫ ∞
0

dx x2

(
1± y√

x2 + y2

)
ln
(

1− e−
√
x2+y2∓y

)
,

(2.98)
where y = a/(2T ). The integral in (2.98) is of the same form as integrals encountered
in the thermodynamics of bosons of mass a/2 and chemical potential −a/2 (specif-
ically, the first term gives exactly the free energy of such bosons), and we can use
standard methods to retrieve high- and low temperature expansions of it. At high
temperatures (T � a) we obtain

f(T, a)− f(0, a) = −π
2T 4

45
+
a2T 2

48
− a3T

64
− 5a4

256π2

(
ln

a

8πT
+ γE −

1

60

)
+O(a6),

(2.99)
while at low temperatures (T � a) we get

f(T, a)− f(0, a) = −3ζ(7/2)

2
√

2π3
a1/2T 7/2 +O(a−1/2). (2.100)

These expansions are useful in studying the asymptotic behaviour of the system, but
in the following analysis we solve the system numerically using the exact results in
Eqs. (2.98) and (2.90).
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Figure 2.6: Longitudinal pressure as a function of 1/a for various temperatures, normalized
to Stefan-Boltzmann pressure.

Phase diagram

We begin by showing the pressure as a function of 1/a in Fig. 2.6 for various temper-
atures. There are important differences to the strong coupling situation. First, we
emphasize that above a critical temperature there are no unstable regions present,
because the pressure is a monotonically decreasing function of 1/a. The second no-
table difference is that at small charge densities there exist stable regions for zero
coupling, even if there are unstable regions for larger values of a. Therefore the situ-
ation at zero coupling becomes richer and additionally to the coexistence of isotropic
and anisotropic regions (see eq. (2.62)) we have to discuss the coexistence of two
different anisotropic regions as well.

If we have two homogeneous regions with charge densities a1 and a2 and 0 < a1 <
a2 then the conditions for chemical and mechanical equilibrium are

Φ(T, a1) = Φ(T, a2) ≡ Φ, (2.101)

f(T, a2)− f(T, a1)

a2 − a1

= Φ, (2.102)

respectively. The most important difference to a1 = 0 is that for a1 > 0 chemical
equilibrium is also reached. At zero coupling both situations, namely zero and nonzero
a1 are possible and the free energy as a function of the charge density is shown in
Fig. 2.7. As opposed to strong coupling ∂2f/∂2a > 0|a=0. This can be seen already
from the high temperature expansions of the free energy at strong and zero coupling
eqs. (2.53) and (2.99)8.

8Note that f = −P⊥ and that then the a2T 2 term in the high temperature expansion is positive
for zero coupling but negative for infinite coupling.
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Figure 2.7: Two cases where the conditions for coexistence of homogeneous regions are
realized. (a) The dashed line, giving the free energy of the inhomogeneous phase, is the
tangent to f(T, a) at points a = a1 and a = a2. (b) The dashed line is the tangent to
f(T, a) at a = a2 and coincides with f(T, a) at a = 0.
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Figure 2.8: The phase diagram. The solid line separates the homogeneous and inhomoge-
neous (shaded region) phases. In the green shaded part of the phase diagram, the inhomoge-
neous phase consists of separate anisotropic regions with different values of a, whereas in the
red shaded part, the plasma contains anisotropic and isotropic regions. The red dashed line
indicates the region where the (would-be) homogeneous phase is unstable. The blue dash-
dotted line indicates vanishing chemical potential. Inside the line, the pressure anisotropy
is oblate, outside it is prolate. The dotted line indicates the region where f(a, T ) < f(0, T ).
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Figure 2.9: The phase diagram showing different metastable phases labeled A–D with ho-
mogeneous Chern-Simons charge distribution (the thermodynamically unstable region is
shown in yellow). The light-blue dash-dotted curve corresponds to Φ = 0 in the homoge-
neous case, with Φ > 0 (prolate pressure anisotropy) and Φ < 0 (oblate) above and below
this line, respectively. Above the straight dark-blue dash-dotted line the inhomogeneous
ground state is composed of differently prolate plasma, below this line the ground state is
a mix of isotropic and oblate plasma.

The actual phase diagram at zero coupling is presented in Fig. 2.8. The unsta-
ble and metastable regions are bounded by the black line. In the red shaded area
the inhomogeneous phase consists of isotropic and anisotropic (finite charge density)
regions, which have an oblate pressure anisotropy. In the green shaded region the
system is, in addition to being inhomogeneous, also anisotropic everywhere. At large
enough temperature the plasma is always stable.

The type of pressure anisotropy (prolate vs. oblate) is determined by the chemical
potential Φ = ∂f/∂a. In Fig. 2.8 the boundary in separating prolate plasma from
oblate plasma is given by the blue dot-dashed line. Outside that line, the plasma
is prolate. This is also true for the inhomogeneous region that is shaded green.
There every stack of plasma has prolate pressure anisotropy. The high temperature
plasma is prolate irrespective of the value of the charge density, which is another
obvious difference to strong coupling. Actually there is only a small region at low
temperatures where the plasma is homogeneous and oblate (the unshaded region
between the full line and the blue dash-dotted line).

In the region of the phase diagram where the inhomogeneous phase is energetically
preferred, one can distinguish a number of qualitatively different metastable situa-
tions for homogeneous charge distribution as shown in Fig. 2.9. The thermodynam-
ically unstable region for homogeneous charge distributions is colored yellow, while
the metastable region is divided into four different sections labeled A-D. For a ho-
mogeneous charge distribution the dividing line between oblate and prolate pressure
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anisotropy is given by light-blue dash-dotted curve, whereas for the inhomogeneous
phase the dividing line is the straight dark-blue dash-dotted line. This difference
is responsible for the appearance of four different “decay modes” of homogeneous
metastable phases with density a:

(A) the metastable homogeneous phase is oblate and decays into a mix of regions
that are isotropic (a1 = 0) and oblate (a2 > a)

(B) the metastable homogeneous phase is oblate and decays into a mix of prolate
regions with different nonvanishing densities a1 < a and a2 > a

(C) the metastable homogeneous phase is prolate and decays into a mix of prolate
regions with different nonvanishing densities a1 < a and a2 > a

(D) the metastable homogeneous phase is prolate and decays into a mix of regions
that are isotropic (a1 = 0) and oblate (a2 > a)

Metastable homogeneous phases of type A and D decay into inhomogeneous systems
that are not in chemical equilibrium, even though the initially homogeneous phase
has been in chemical equilibrium trivially. We emphasize that at infinite coupling we
only encounter section A. Therefore it turns out that, surprisingly, the zero coupling
phase diagram is even richer than the one at infinite coupling.



Chapter 3

Photons and Dileptons

Photons and leptons produced in an early stage after the heavy ion collision interact
only very weakly with the medium and can leave the plasma without any rescattering.
Therefore the production of photons and dileptons is an interesting observable to
study the far from equilibrium properties. In thermal equilibrium the production
from an isotropic plasma has been studied both in (resummed) perturbation theory
[67, 68, 69, 70] and in strongly coupled SYM plasma by means of holographic duality
[71, 72, 73, 74]. At strong coupling also out of equilibrium production of photons and
dileptons has been investigated, however in an isotropic background [75, 76]. And
recently the dependence of the thermalization pattern on the gauge coupling in such
a holographic model has been considered, too [77]. In a weakly coupled QGP the
angular dependence of photon and dilepton production in the presence of momentum
anisotropies has been studied in [78, 79, 80, 81, 82, 83, 84, 85]. In the following we
shall discuss results obtained for stationary anisotropic plasma at infinite coupling
making use of the models presented in sections 2.1 and 2.2.

3.1 Introducing Photons and Dileptons

We start by quickly reviewing the possibilities to couple electromagnetism to theN =
4 SYM theory, which consists of SU(Nc) gauge bosons, four Weyl fermions ψp and
six real scalars φpq = −φqp, all transforming in the adjoint representation of SU(Nc).
There is also an anomaly free global SU(4) R-symmetry present, under which the
fermions transform in the 4 and the scalars in the 6 representation. We can take a
U(1) subgroup of the SU(4) R-symmetry associated with a U(1) gauge field coupled
to the conserved current. By doing so we are able to model the electromagnetic
interactions. In principle it is possible to take any linear combination of Cartan
subalgebra generators to embed the U(1) in the SU(4) R-symmetry group (for details
see [71]). We will choose t3 = (1/2,−1/2, 0, 0) to be the generator of the U(1) such

36
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that two of the Weyl fermions have charge ±1/2 and two complex scalars have charge
1/2. The conserved current is

JEMµ =
1

e

δSint
δAµ

=
1

2

(
ψa†1 σ̄µψ

a
1 − ψ

a†
2 σ̄µψ

a
2 +

∑
p=3,4

φa†1p(−i
−→
Dµ + i

←−
Dµ)φa1p

)
, (3.1)

where a is the SU(Nc) group index and the covariant derivative Dµ involves the
SU(Nc) gauge fields as well as the U(1) electromagnetic vector potential Aµ. Because
we are only interested in the leading order terms in the electromagnetic coupling e,
it is sufficient to treat the electromagnetic interaction as being linear in Aµ. Then we
can consistently ignore the electromagnetic vector potential in the covariant derivative
acting on the scalar. In order to also add weakly coupled leptons l with charge el and
mass m, the Lagrangian is extended to

L = LSYM + Lint −
1

4
F 2
µν − l̄( 6D +m)l with Lint = eJEMµ Aµ, (3.2)

where JEMµ is the t3 component of the R-current.
In the gauge/gravity setup, only the SYM part will be realized dynamically, but

we can calculate current-current correlators to leading order in the electromagnetic
coupling and to all orders in the SYM coupling.

3.2 Production Rates

The rate of photons produced per unit time and per unit volume is1

dΓγ =
d3k

(2π)3

ie2

2|k|
ηµνG<

µν(K)|k0=|k|, (3.3)

where

G<
µν(K) =

∫
d4Xe−iK·X〈JEMµ (0)JEMν (X)〉 (3.4)

is the Wightman function of electromagnetic currents. Any correlator of the conserved
current can be expressed in terms of the spectral function, which is defined as

χµν(K) =

∫
d4Xe−iK·X〈[JEMµ (0), JEMν (X)]〉 (3.5)

and the distribution function. Later we will determine this spectral function by
making use of

χµν(K) = −2ImGret
µν (K). (3.6)

1Here we use capital letters to denote 4 vectors and lower case letters for the absolute value of 3
vectors. The Minkowski metric is defined as ηµν = diag(−1, 1, 1, 1).



3.3. TENSOR STRUCTURE OF ANISOTROPIC CORRELATORS 38

The Wightman function is given by

G<
µν(K) = −iχµν(K)f(K), (3.7)

where f reduces to the Bose-Einstein distribution in thermal equilibrium.
The dilepton production takes place via an intermediate virtual photon and the

rate is given by

dΓll̄ =
d4K

(2π)4

ie2e2
l (−K2 − 4m2)1/2(−K2 + 2m2)

6π|K2|5/2
θ(k0)θ(−K2 − 4m2)ηµνG<

µν(K),

(3.8)
where el is the charge of the lepton. In this case the Wightman function has to be
evaluated for timelike momenta.

3.3 Tensor Structure of Anisotropic Correlators

For an anisotropic medium, the tensor structure of the current-current correlator is
more complicated than in the isotropic finite temperature case [48]. Because the
electromagnetic current is conserved it must satisfy Ward identities, which in the
vacuum implies that any Gµν(K) ∼ PµνC(K) with Pµν = ηµν −KµKν/K

2.
We begin with the case when the wave vector is pointing in the direction of the

anisotropy denoted by n = nez. Then it is sufficient to introduce longitudinal and
transverse projectors

P T
00 = P T

i0 = 0, P T
ij = δij −

kikj
k2

, PL
µν = Pµν − P T

µν , (3.9)

with i, j = 1, 2, 3. For the correlators we then find

Gµν(K) = P T
µνΠ̃

T (K) + PL
µνΠ̃

L(K). (3.10)

This is exactly the same structure one has in isotropic systems.
If we choose the wave vector to point in a perpendicular direction with respect to

the anisotropy k = ke1, we need one further tensorial structure,

P 2
00 = P 2

i0 = 0, P 2
ij = δij −

kikj
k2
− ninj

n2
(3.11)

P z
00 = P z

i0 = 0, P z
ij =

ninj
n2

(3.12)

P 1
µν = Pµν − P 2

µν − P z
µν . (3.13)

As a consequence the correlator is then specified by three scalar functions

Gµν(K) = P 1
µνΠ̃

1(K) + P 2
µνΠ̃

2(K) + P z
µνΠ̃

z(K). (3.14)

With a generic orientation of the wave vector, more structure functions would be
needed, however, we shall restrict our attention to the two extreme cases of wave
vector parallel and orthogonal to the anisotropy direction.



39 3.4. SINGULAR GRAVITY DUALS

3.4 Singular Gravity Duals

We first compute the spectral function for the JW model, where the z-direction is
the preferred direction and the metric can be written as2

ds2 = gtt(v)dt2 + gxx(v)
(
dx2 + dy2

)
+ gzz(v)dz2 + gvv(v)dv2. (3.15)

3.4.1 Equations of Motion and Asymptotic Solution

To obtain the retarded correlator we have to solve the equations of motion for a gauge
field, which are given by

∂A(
√
−ggACgBDFCD) = 0. (3.16)

We start by considering the case when the wave vector points in the direction of the
anisotropy (k = kLez). Then the equation of motion for ET = ωAT is

E ′′T +
∂v(
√
−ggvvgxx)√
−ggvvgxx

E ′T −
gttω2 + gzzk2

L

gvv
ET = 0, (3.17)

where primes denote derivatives with respect to the holographic coordinate v. The
dependence of v is suppressed everywhere. The longitudinal electric field EL =
kLAt + ωAz satisfies

E ′′L +
(gtt)2∂v(

√
−ggvvgzz)ω2 + (gzz)2∂v(

√
−ggvvgtt)k2

L√
−ggvvgttgzz(gttω2 + gzzk2

L)
E ′L

−g
ttω2 + gzzk2

L

gvv
EL = 0. (3.18)

If the wave vector points in a direction in the xy-plane and therefore is perpendic-
ular to the anisotropy, we obtain three different differential equations. For k = k1ex
we then find

E ′′2 +
∂v(
√
−ggvvgxx)√
−ggvvgxx

E ′2 −
gttω2 + gxxk2

1

gvv
E2 = 0, (3.19)

E ′′z +
∂v(
√
−ggvvgzz)√
−ggvvgzz

E ′z −
gttω2 + gxxk2

1

gvv
Ez = 0 (3.20)

for the two modes transverse to the wave vector and

E ′′1 +
(gtt)2∂v(

√
−ggvvgxx)ω2 + (gxx)2∂v(

√
−ggvvgtt)k2

1√
−ggvvgttgxx(gttω2 + gxxk2

1)
E ′1

−g
ttω2 + gxxk2

1

gvv
E1 = 0 (3.21)

2We note that the holographic coordinate in [48] corresponds to v2 here.
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for the electric field along the direction of the wave vector. These equations are quite
lengthy if the explicit form of the metric coefficients is inserted, therefore we will not
do so here.

For all of these equations, we can use a Frobenius ansatz near the boundary
(v = 0) and find the characteristic exponents to be 0 and 2. Close to the naked
singularity (which appears exactly where the horizon is in the isotropic case) the
differential equations have the following form,

d2

dv2
φ+

C1

(1− v)

d

dv
φ+

ω2C2

(1− v)α
φ = 0 (3.22)

with α = (2+
√

36− 2B2)/4 ≤ 2. For isotropic systems α = 2 and a Frobenius ansatz
is still possible at v = 1. We then find the characteristic exponents ±iω/

√
8 near

the horizon and we can easily define ingoing boundary conditions. For nonvanishing
anisotropy α < 2 we can perform a coordinate transformation x = (1 − v)(2−α) in
order to find appropriate boundary conditions at the naked singularity. The equation
of motion is given by

d2

dx2
φ+

β

x

d

dx
φ+

γ2

x
φ = 0 (3.23)

where

β = 1− C1 + 1

2− α
γ2 =

C2ω
2

(2− α)2
. (3.24)

The solution to this differential equation is

φ(v) ∼ (1− v)(2−α)(1−β)/2H
(1,2)
1−β (2γ(1− v)(2−α)/2), (3.25)

where the Hankel function of the second kind H
(2)
ν represents ingoing boundary con-

ditions, which we will use for our numerical studies later on.

3.4.2 Spectral functions at strong coupling

In order to find the on-shell boundary action, we start from the five-dimensional
Maxwell action, which is given by

SMaxwell = − 1

4g2
B

∫
d5x
√
−ggACgBDFABFCD (3.26)

with gB = 16π2L/N2
c and L the AdS radius. Choosing the gauge Av = 0 we obtain

the on-shell boundary term

Sbdry = − 1

2g2
B

∫
v→0

d4x
√
−ggvv

(
gttA′t(K, v)At(−K, v)

+gzzA′z(K, v)Az(−K, v) + gxxA′T (K, v)AT (−K, v)
)
. (3.27)
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Considering a wave vector pointing into the direction of the anisotropy first, we obtain
the relation

ωgttA′t(K, v)− kLgzzA′z(K, u) = 0, (3.28)

which follows directly from the equations of motion. Inserting this into (3.27) and
rewriting the result in terms of electric fields EL = ωAz + kLAt and ET = ωAT , the
boundary term of the action becomes

Sbdry = − 1

2g2
B

∫
v→0

d4x
√
−ggvv

(
gtt

ω2gtt/gzz + k2
L

E ′L(K, v)EL(−K, v)

+
gxx

ω2
E′T (K, v)ET (−K, v)

)
. (3.29)

The transverse correlator is defined as

GTT (K) =
δ2Sbdry

δAT (K)δAT (−K)
=

ω2δ2Sbdry
δET (K)δET (−K)

. (3.30)

Applying the Lorentzian AdS/CFT prescription [86] and inserting the explicit form
of the metric coefficients we find3

GTT (K) = Π̃T (K) = − 2

g2
B

lim
v→0

E ′T (K, v)

ET (K, v)
. (3.31)

After a similar computation for the longitudinal correlator we find

Π̃L(K) = − 2

g2
B

lim
v→0

E ′L(K, v)

EL(K, v)
. (3.32)

When the wave vector is in the 1-direction we obtain three scalar functions which
are given by

Π̃n(K) = − 2

g2
B

lim
v→0

E ′n(K, v)

En(K, v)
, (3.33)

with n = 1, 2, z.

3.4.3 Numerical Results

Wave vector parallel to anisotropy direction

First, we discuss the form of the spectral function for a wave vector parallel to the
anisotropy direction. For lightlike momenta only the transverse contribution to the

3Defining the correlator in this way a real contact term proportional to K2 that, however, does
not contribute to the physically relevant spectral function we are interested in, is to be discarded.
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Figure 3.1: Transverse contribution to spectral density for lightlike momenta with values for
the anisotropy parameter B = 0 (black), B = 0.1 (red, dashed), B = −0.1 (red, dotted),
B = 1 (blue, dashed), B = −1 (blue, dotted), B =

√
2 (green, dashed) and B = −

√
6

(green, dotted). The dimensionful parameter A, which equals π2T 2/2 in the isotropic case
B = 0, has been set to unity.

spectral density is nonvanishing and the results for different anisotropy parameters
are shown in Fig. 3.1. The isotropic spectral density is shown in black and coincides
with [71] after the correct normalization is chosen. For nonvanishing anisotropy we
notice a qualitative difference for small frequencies, namely all spectral functions tend
to zero faster than ω, which is in stark contrast to the isotropic situation. However,
for small values of B the curve quickly rises and then settles close to the isotropic
one. For increasing anisotropy the spectral densities deviate more strongly from the
isotropic result, in particular at small frequencies.

We have already mentioned that the appearance of a naked singularity in the JW
model can be viewed as a break-down of the stationarity condition of the anisotropic
model. Therefore the small frequency limit is unphysical and cannot be studied within
this framework. The same actually happens for models that study non-equilibrium
but isotropic situations by considering collapsing shells in a stationary limit [75, 76].
On the other hand, at larger frequencies our analysis should be able to map the
nonequilibrium situation in the form of a snapshot, so it is reassuring that there the
effects of the anisotropy connect smoothly with the isotropic limit. Given that the
appearance of the naked singularity changes the character of the differential equations,
this is not completely obvious a priori.

Since the low frequency limit seems to be unphysical, the question arises down to
what value of ω we might trust this calculation. It makes sense to assume that the
lower bound of the frequency will depend on the anisotropy of the system. For larger
anisotropies our assumption of a time invariant background may break down earlier.
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Figure 3.2: Double logarithmic plot to estimate the deviation from the linear behavior of
the spectral function with respect to ω. In the left panel we consider positive anisotropies
and in the right panel negative ones. Color coding as in Fig. 3.1.
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Figure 3.3: Transverse spectral function for kL fixed (left) and ω fixed (right). Color coding
as in Fig. 3.1.

A possible hint to estimate the range of validity of the calculation presented here can
come from considering the deviation from χ ∝ ω. This is presented in Fig. 3.2 where
we plot the spectral density logarithmically. We see that even for the most extreme
anisotropy parameters this suggests that our calculation is valid down to ω ∼ 1 (in
units where A = 1).

In Fig. 3.3 the form of the transverse part of the spectral function is shown for kL
fixed and ω fixed, respectively. In the left panel the difference in the small frequency
behavior between isotropic and anisotropic results is again obvious.

As already mentioned the longitudinal part of spectral density χL = χzz − χtt
vanishes for lightlike momenta. This is still the case if we turn on the anisotropy. In
Fig. 3.4 we see that the spectral function is negative for spacelike momenta, vanishes
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Figure 3.4: Longitudinal spectral function for kL fixed (left) and ω fixed (right). Color
coding as in Fig. 3.1.
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Figure 3.5: Part of spectral density perpendicular to k1 and to the anisotropy direction for
lightlike momenta. Color coding as in Fig. 3.1.

for lightlike momenta and becomes positive for timelike momenta.

Wave vector perpendicular to anisotropy direction

Next we consider a wave vector pointing in a direction in the xy-plane. Then there
is a mode E2 which is both, perpendicular to the wave vector and the anisotropy
direction. This mode can be compared to the transverse mode before and we see that
the behavior for small frequencies and wave vectors is quite similar. The spectral
function is larger for oblate anisotropy and smaller for prolate. However, while this
is still true for larger frequencies and momenta in the present case (see Fig. 3.5), the
opposite was true for χT , where the behavior changed at some intermediate frequency
or momentum.
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Figure 3.6: Spectral function along the anisotropy direction for lightlike momenta. Color
coding as in Fig. 3.1.

0 1 2 3 4 5

0

5

10

15

20

Ω

Χ
1

k1 = 1.5

0 1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

k1

Χ
1

Ω= 1

Figure 3.7: Spectral function longitudinal to the wave vector for k1 fixed (left) and ω fixed
(right). Color coding as in Fig. 3.1.

For k = k1e1 there is another mode which is transverse with respect to the wave
vector. The results for this mode, which is pointing along the z-direction are shown for
lightlike momenta in Fig. 3.6. Compared to the previous modes that were transverse
with respect to the wave vector, the dependence on B changed. Here the spectral
density is larger for prolate anisotropy and smaller in the oblate case.

Finally, we can consider the mode longitudinal to the wave vector. The behavior
is shown in Fig. 3.7 and we note that the modifications for oblate and prolate plasma
are now reversed as compared to the longitudinal mode in z-direction.
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Figure 3.8: Anisotropic AC conductivities: prolate vs. oblate anisotropies for various
values of B. Full lines correspond to longitudinal conductivity, dashed lines to transverse
conductivity. Color coding of B as in Fig. 3.1, with the addition of orange lines for B = ∓3,
values for which negative pressures arise.

Conductivities

The fact that for any nonzero anisotropy parameter B all spectral functions tend
to zero stronger than linearly in the limit ω → 0 means that both the diffusion
constant and the DC conductivity vanish according to Kubo’s formulae. This absence
of hydrodynamic behavior is clearly related to the absence of a horizon, which for
B 6= 0 gets replaced by a naked singularity.

In Fig. 3.8 we display the results for the AC conductivities, juxtaposed for the
cases of prolate (B < 0) and oblate (B > 0) anisotropies. In each case one can define
longitudinal and transverse conductivities with respect to the direction of anisotropy.
For prolate anisotropies transverse conductivities are found to be reduced compared
to the isotropic case, whereas for oblate anisotropies this is true for longitudinal
conductivities. However, in the limit of vanishing frequency, all conductivities go
to zero. The frequency range in which this happens increases as the amount of
anisotropy is increased, up to the point where one of the pressure components goes
to zero. Curiously, when increasing the anisotropy parameter such that also negative
pressures are produced, this trend is eventually reversed.

Anisotropy of traced spectral function for lightlike and timelike momenta

The production of real photons is proportional to the trace of the spectral functions
for lightlike momenta. When the wave vector is parallel to the anisotropy direction,
we have

χµµ(k = kLeL, K
2 = 0) = 2χT (kL), (3.34)
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Figure 3.9: χµµ/ω for lightlike momenta with wave vector parallel to the anisotropy direc-
tion (left panel) and transverse to it (right panel). Color coding of B as in Fig. 3.8.
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Figure 3.11: χµµ for timelike momenta with invariant mass K2 = −1 as a function of kL
and k1, respectively. Color coding as in Fig. 3.1.

whereas for transverse wave vector,

χµµ(k = k1e1, K
2 = 0) = χ2(k1) + χz(k1). (3.35)

In Fig. 3.9 the results for the wave vector pointing parallel and perpendicular to the
anisotropy direction are juxtaposed, and in Fig. 3.10 the ratio between the latter and
the former is shown as a function of frequency and anisotropy parameter B.

For frequencies ω < 1 (in units where A = 1) this ratio shows a rather dramatic de-
pendence on the anisotropy parameter. However, as we have discussed above, we con-
sider this regime to be unphysical. For larger frequencies we indeed find a smoother
dependence on the anisotropy parameter. For positive B (oblate anisotropy) the
spectral function with wave vector pointing in the direction of anisotropy is reduced,
for negative B the situation is reversed. As we shall discuss below, this is in line with
the behavior of particle distributions for corresponding momentum anisotropies, but
the latter typically have exponential suppression at high momentum.

In Fig. 3.11 we display the behavior of χµµ for timelike momenta, which is relevant
for dilepton production, as a function of kL and k1 for the two cases of longitudinal
and transverse momentum at a fixed value of K2 = −1 and observe a fairly mild
dependence on the anisotropy parameter B.

Photon and dilepton emission

In order to obtain the photon and dilepton production rates, we must insert the results
for the spectral function into (3.3) and (3.8), respectively. For the final result we
would also need to know the distribution function f , which in the out-of-equilibrium
situation is no longer fixed to the Bose-Einstein function. Absent the fluctuation-
dissipation theorem, we should therefore calculate the Wightman function within the
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Figure 3.12: Photon production rate in forward (purple) and transverse (cyan) direction for
B = ±0.1 (dashed) and B = ±1 (dotted), where positive signs (oblate cases) correspond
to the plot on the left and negative signs (prolate cases) are shown in the right panel. The
distribution function f is normalized by a multiplicative constant N(ξ) such that the energy
density is kept fixed and phard = T =

√
2/π in units of A = 1. As a reference the isotropic

rate is given in black.

gauge/gravity duality framework directly. Attempts to incorporate the full formalism
of nonequilibrium physics in the AdS/CFT correspondence were undertaken in [87,
88, 89], but we have not been able to apply these concepts to our case.

We shall instead make an estimate of photon and dilepton emission rates by
assuming that f is given by the form (C.1) with a parameter ξ that at weak coupling
gives the same energy momentum tensor as in the boundary field theory of our gravity
dual (see eq. (C.6)). Unfortunately the major effect on the directional dependence
is then coming from the distribution function, which depends exponentially on the
emission angle. In the JW model the energy density depends only weakly on the
anisotropy and therefore we want the distribution function to be normalized in such
a way that the energy density at weak coupling is kept fixed while we vary the
anisotropy parameter ξ. As we discuss in appendix C.1 this can either be achieved
by adjusting an overall constant N(ξ) or by changing the hard momentum scale
according to eq. (C.5).

In Fig. 3.12 we display the resulting photon production rates in longitudinal and
transverse directions for small and medium anisotropies when we normalize the dis-
tribution function by an overall multiplicative constant4 N(ξ). The left panel shows
the situation for oblate anisotropies (B = 0.1 and 1), the right panel for prolate
anisotropies (B = −0.1 and −1). To show the dependence on the normalization pro-
cedure we also present the results where we have rescaled phard such that the energy
density is fixed in Fig. 3.13.

4Note that in [48] we have set phard = A, whereas in Fig. 3.12 we have chosen phard = T =√
2A/π.
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Figure 3.13: Photon production rate in forward (purple) and transverse (cyan) direction for
B = ±0.1 (dashed) and B = ±1 (dotted), where positive signs (oblate cases) correspond to
the plot on the left and negative signs (prolate cases) are shown in the right panel. Here f
is normalized by rescaling phard and N(ξ) = 1. As a reference the isotropic rate is given
in black.

In either case the directional dependence of the photon emission agrees qualita-
tively with the corresponding result for oblate anisotropies in the weak coupling (hard
anisotropic loop resummed) calculation of Ref. [78].5 Similar results are obtained for
production rates of dileptons. The angular dependence in both cases is strongly dom-
inated by the function f when it is chosen in accordance to the situation at weak
coupling.

3.5 Anisotropically θ-deformed gauge theory

3.5.1 Using the membrane paradigm

The same procedure we just outlined for the JW model should in principle also work
for the MT model, but it turns out that it is numerically demanding. However, in
contrast to the JW model the axion-dilaton-gravity dual possesses a black hole with
a regular horizon and therefore allows for a different approach to calculate retarded
correlators, namely via the “membrane paradigm”, which states that every black hole
in general relativity has in a precise sense a fictitious fluid on its horizon [90]. This
fluid can then be identified with the low-energy description of a strongly coupled field

5Our estimated result for real photon production is in fact more strongly suppressed in the
forward direction than the result of Ref. [78]. It shares this behavior with the soft part of the full
result of Ref. [78], which in the forward direction is dominated by hard contributions. The final
result of Ref. [78] actually depends on the choice of a separation parameter of hard and soft scales
which was fixed by a minimization procedure in the isotropic case. Fixing it instead anew for each
value of ξ would further reduce the hard-loop result in the forward direction.
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theory dual to the gravity theory [91, 92, 93, 94]. In order to get the full retarded
correlator and not only its hydrodynamic limit (ω, k → 0) it is necessary to “take
the membrane to the horizon” and calculate the flow of the quantity of interest with
respect to the holographic coordinate6.

We start by considering a standard Maxwell action (3.26) for a U(1) gauge field
in the bulk with coupling constant gB. The conjugate momentum with respect to
evolution in the holographic coordinate u is given by

jµ ≡ Πµ =
∂L

∂(∂uAµ)
= −
√
−g
g2
B

guugµνFuν , (3.36)

where by Π we generically denote conjugate momenta with respect to the holographic
coordinate. Considering Maxwell’s equation ∂A

(√
−ggACgBDFCD

)
= 0 and setting

B = u we find

∂µj
µ = 0, (3.37)

which states that currents are conserved on any constant u-slice. The crucial obser-
vation is that while Fui (which is proportional to ji) and the electric field Ei = Fit are
in principle independent, they are related to each other at the horizon. The reason is
that the horizon is a regular place for free infalling observers and therefore the gauge
field AM near the horizon must be nonsingular. The nonsingular combination of u
and t is given by the Eddington Finkelstein coordinate ṽ and is defined by7

dṽ = dt−
√
−guu
gtt

du (3.38)

which implies

Fui = −
√
−guu
gtt

Fti (3.39)

after choosing the gauge Au = 0 and setting the spatial momentum to zero. The two
different membrane conductivities at the horizon are then given by [49]

σyy(ω, uh) = σxx(ω, uh) =
jx(ω, uh)

Fxt(ω, uh)
= g−2

B

√
γ gxx|uh, (3.40)

σzz(ω, uh) =
jz(ω, uh)

Fzt(ω, uh)
= g−2

B

√
γ gzz|uh, (3.41)

6There may be observables where even the hydrodynamic limit has a nontrivial flow from the
horizon to the boundary. We will encounter such a situation in chapter 4.3.1.

7Note that in our notation gtt is negative in Lorentzian prescription.
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where γ = g/gttguu and turn out to be independent of the frequency. Next, we have
to relate these to the AC conductivities at the boundary defined by

σij(K, 0) = −G
ij
R(K)

iω
= lim

u→0

ji(K, u)

Fjt(K, u)
, (3.42)

where we also want to allow for nonvanishing spatial momenta.
We start by considering a wave vector k = kLez pointing in the direction of the

anisotropy and fluctuations along (t, z). Maxwell’s equations then give

g2
B∂uj

t = ikL
√
−ggzzgttFzt, (3.43)

g2
B∂uj

z = iω
√
−ggttgzzFzt, (3.44)

and because of current conservation we find jt = kL
ω
jz. Using the Bianchi identity

∂tFzu + ∂zFut + ∂uFtz = 0 we finally obtain

∂uσ
zz =

∂uj
z

Fzt
− jz

F 2
zt

∂uFzt

= iω

√
−guu
gtt

[(σzz)2

Σz
A

(
1 +

k2
L

ω2

gtt
gzz

)
− Σz

A

]
, (3.45)

with Σz
A = g−2

B

√
γ gzz. We emphasize that σzz above depends on u but for bet-

ter readability we will not write this dependence explicitly. We have to specify a
boundary condition for this differential equation which can be obtained by demand-
ing regularity of σzz at the horizon. Therefore the right side of eq. (3.45) has to
vanish, because

√
−guu/gtt ∝ (u − uh)

−1. This requirement uniquely determines
σzz|uh which coincides with eq. (3.41) and is valid even for nonvanishing momenta.
For the transverse fluctuations, which we choose to be in x-direction without loss of
generality, Maxwell’s equations give

−g2
B∂uj

x +
√
−ggttgxx∂tFtx +

√
−ggzzgxx∂zFzx = 0 (3.46)

and the relevant Bianchi identities are

∂tFxu + ∂uFtx = 0, (3.47)

∂tFxz + ∂zFtx = 0. (3.48)

In the end the flow equation is given by

∂uσ
xx = iω

√
−guu
gtt

[(σxx)2

Σx
A

− Σx
A

(
1 +

k2
L

ω2

gtt
gzz

)]
, (3.49)

where Σx
A = g−2

B

√
γ gxx and regularity at the horizon again requires σxx|uh to be

equal to eq. (3.40) also for finite spatial momenta. Before we turn to the situation



53 3.5. ANISOTROPICALLY θ-DEFORMED GAUGE THEORY

for a wave vector pointing in a direction perpendicular to the anisotropy we give
the relation between the AC conductivities at the boundary and the scalar functions
given in eq. (3.10),

σxx(K, 0) =
1

ω
Im Π̃T (K), (3.50)

σzz(K, 0) =
ω

ω2 − k2
L

Im Π̃L(K). (3.51)

For a wave vector k = k1ex analogous computations lead to the flow equations

∂uσ
xx = iω

√
−guu
gtt

[(σxx)2

Σx
A

(
1 +

k2
1

ω2

gtt
gxx

)
− Σx

A

]
, (3.52)

∂uσ
yy = iω

√
−guu
gtt

[(σyy)2

Σx
A

− Σx
A

(
1 +

k2
1

ω2

gtt
gxx

)]
, (3.53)

∂uσ
zz = iω

√
−guu
gtt

[(σzz)2

Σz
A

− Σz
A

(
1 +

k2
1

ω2

gtt
gxx

)]
, (3.54)

and the values of the respective conductivities at the horizon are again the same as
in eqs. (3.40) and (3.41). Relating this to the scalar function in eq. (3.14) gives

σxx(K, 0) =
ω

ω2 − k2
1

Im Π̃1(K), (3.55)

σyy(K, 0) =
1

ω
Im Π̃2(K), (3.56)

σzz(K, 0) =
1

ω
Im Π̃L(K). (3.57)

3.5.2 Numerical results

DC conductivities

First of all we note that in the hydrodynamic limit (ω, k → 0) all the flow equations
become trivial and therefore the DC conductivities are completely determined by
the horizon data. This furthermore implies that they do not depend on the scale µ
present in the MT model, but only on the ratio a/T . In the following we will denote
the two different DC conductivities by σ⊥ = σxx(0, 0) and σz = σzz(0, 0). Inserting
the explicit form of the metric (2.18) into eqs. (3.40) and (3.41) together with the
trivial flow in the hydrodynamic limit reveals that

σz =
gxx(uh)

gzz(uh)
σ⊥ =

σ⊥
H(uh)

≤ σ⊥. (3.58)

The numerical results are presented in Fig. 3.14.
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Figure 3.14: DC conductivities along and transverse to the direction of anisotropy as a
function of the anisotropy parameter a/T .

Diffusion constants

Next, we study charge diffusion processes. In general diffusion is governed by a
dispersion law of the form

ω = −iDk2. (3.59)

In our anisotropic situation we expect different diffusion constants D depending on
the direction of k. We start by assuming that k = kLez and examine the longitudinal
channel in the regime where ω ∼ k2 � 1. In this limit we find that eq. (3.45) becomes

∂uσ
zz = −ik

2
L

ω

√
−gttguu
Σz
Agzz

(σzz)2. (3.60)

After inserting for Σz
A the solution for this differential equation with initial condition

σzz(K, uh) = σz is

1

σzz(u)
=

1

σz
+
ik2
L

ω

∫ uh

u

du
−g2

Bgttguu√
−g

. (3.61)

Making now use of the relation Gzz
R (K) = − limu→0 iωσ

zz we obtain

iω

Gzz
R

= − 1

σz
− ik2

L

ω
Ξ−1 with Ξ =

[∫ uh

0

du
−g2

Bgttguu√
−g

]−1

. (3.62)



55 3.5. ANISOTROPICALLY θ-DEFORMED GAUGE THEORY

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

a �T

2
Π

T

D
¦

Dz

Figure 3.15: Charge diffusion constants along and perpendicular to the anisotropy direction
as a function of a/T .

Ξ is the charge susceptibility. The expression for the retarded correlator is therefore
given by

Gzz
R =

ω2σz
iω − k2

LσzΞ
−1

(3.63)

and we can directly read off the expression for the diffusion constant

Dz = σzΞ
−1, (3.64)

which is now not determined by the horizon data only.
If the wave vector points in a perpendicular direction an analogous computation

can be done and it is straightforward to calculate

D⊥ = σ⊥Ξ−1. (3.65)

Both diffusion constants are shown in Fig. 3.15.
We can check the results we just obtained with the help of the membrane paradigm

by computing the lowest quasi-normal mode in the diffusive channels. In order to do
so we have to solve the differential eqs. (3.18) and (3.21) numerically for the metric
of the MT model8. Here we want to discuss their asymptotic behavior close to the
horizon (u = uh) and the boundary (u = 0). We start with the horizon, where the
relevant parts of the metric (5.1) take the form

gtt(u ≈ uh) = γt(u− uh) (3.66)

guu(u ≈ uh) = − γu
(u− uh)

, (3.67)

8Note that gvv gets replaced by guu for the MT model.
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with the strictly positive constants γt = −F1Bh/eφh/2u2
h and γu = −1/F1e

φh/2u2
h.

Here and in the following the subscript h shall always indicate that the function is
evaluated at the horizon. The ODE’s for both gauge invariant quantities Ex(u) and
Ez(u) become

E ′′x,z(u) +
1

u− uh
E ′x,z(u) +

γuω
2

γt(u− uh)2
Ex,z(u) = 0, (3.68)

and the characteristic exponents are easily found to be ±i
√
γu/γt ω. The minus sign

corresponds to the infalling boundary condition we are interested in.
In contrast, close to the boundary at u = 0 the metric (5.1) takes the form

gtt = − 1

u2
gxx = gzz = guu =

1

u2
(3.69)

and the relevant terms of the ODE are given by

E ′′x,z(u)− 1

u
E ′x,z(u) = 0 (3.70)

from which the characteristic exponents are found to be 0 and 2. This implies that
the electric fields close to boundary can be written as

Ex,z(u) = Āx,z(ω, k) + ...+ B̄x,z(ω, k)u2 + ..., (3.71)

where Ā and B̄ are known as connection coefficients. It turns out that the poles
of the retarded propagator are obtained if infalling boundary conditions are chosen
at the horizon and the connection coefficient of the non normalizable mode at the
boundary Ā vanishes. This determines the dispersion relation in the hydrodynamic
limit ω � 1 and q � 1

ω = −iD⊥k2 for k pointing in 1-direction (3.72)

ω = −iDzk
2 for k pointing in z-direction. (3.73)

We have solved the full ODE’s for Ex and Ez numerically and found the same results
for the diffusion constants as shown in Fig. 3.15. This is reassuring in the sense that
it confirms the validity of the membrane paradigm to compute conductivities in our
anisotropic setting.

Spectral functions for wave vector parallel to anisotropy direction

After examining the hydrodynamic regime, we consider the full ω and k dependence
and begin by studying spectral functions for wave vectors along the anisotropy di-
rection. It turns out that now the results depend on both a/µ and T/µ and we have
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φ̃h uh a/T T N−2
c s ∆ ε/εiso

−∞ 1 0 0.318 0.159 0 1
−21/40 201/200 1.32 0.318 0.163 0.08 1.01

3/50 107/100 6.43 0.318 0.201 −1.00 1.69
48/625 7/5 50.51 0.318 0.383 −1.29 9.42 · 103

Table 3.1: Choice of parameters and corresponding thermodynamic quantities for approxi-
mately constant temperature in the anisotropic axion-dilaton gravity dual.

φ̃h uh aN
2/3
c /s1/3 T N−2

c s ∆ ε/εiso
−∞ 1 0 0.318 0.159 0 1
−17/50 41/40 1.13 0.314 0.159 0.18 0.97
9/250 6/5 4.23 0.289 0.159 −1.13 1.79

−619/5000 2 27.37 0.231 0.159 −1.29 6.62 · 103

Table 3.2: Choice of parameters and corresponding thermodynamic quantities for approxi-
mately constant entropy density in the anisotropic axion-dilaton gravity dual.

different possibilities to compare our findings. Because the MT model is in ther-
mal equilibrium, the temperature of the plasma is well defined, and one possibility
is to keep the temperature fixed for different values of anisotropic charge density a.
Equally well we could demand that the entropy density should remain fixed while we
vary a. The model parameters for both cases are shown in Table 3.1 and 3.2 together
with some thermodynamic quantities of interest. We emphasize that for small a we
find oblate plasma and for larger a prolate plasma9. We find that the results for
spectral functions are qualitatively very similar and therefore we only present plots
for constant temperature.

In Fig. 3.16 we plot the transverse part of the spectral function for lightlike mo-
menta. In the ω → 0 limit we recover the DC conductivities perpendicular to the
anisotropy direction. The probably most striking difference to the JW model is the
behavior for large frequencies where the ratio of spectral function over frequency rises
for larger anisotropies. This is in strong contrast to the situation in the JW model,
where for large frequencies we always found the same behavior as in the isotropic
case, no matter how anisotropic the plasma was. Another important difference is
that for the MT model there is no qualitative change when going from an oblate to
a prolate plasma. We will also elaborate on this point in chapter 5.

The longitudinal contribution to the spectral function χL = χzz−χtt vanishes for

9Here we only consider slightly oblate plasma, however, larger ∆ can also be studied by increasing
uh.
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Figure 3.16: Spectral function for lightlike momenta along the anisotropy direction for
varying anisotropies at constant temperature: a/T = 0 (isotropic, black dashed line),
a/T ≈ 1.32 (oblate; blue line), a/T ≈ 6.43 (prolate; green line) and a/T ≈ 50.51 (prolate;
red line).
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Figure 3.17: Longitudinal part of the spectral function for k = kLez and constant temper-
ature. The color coding is the same as in Fig. 3.16.
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Figure 3.18: Spectral functions for k = k1e1 and lightlike momenta. The color coding is
the same as in Fig. 3.16.

lightlike momenta as expected. This can be seen in Fig. 3.17, where we have kept
either kL or ω fixed. As before for the JW model the spectral function is negative for
spacelike momenta and becomes positive for timelike momenta.

Spectral functions for wave vector perpendicular to anisotropy direction

When we investigate spectral functions for k = k1e1 we have again two modes trans-
verse to the wave vector. For lightlike momenta the results are shown in Fig. 3.18.
The zero frequency limit is again consistent with our findings for DC conductivi-
ties, which rise in directions perpendicular to the anisotropy and decrease along the
anisotropy direction. We also note that at large ω the spectral functions order in
such a way that the largest value of a/T is on top. However, the change in the UV
behavior compared to the isotropic result is by far not as drastic as for the transverse
mode before. For example the ratio χ2,z/ω is monotonically decreasing for increasing
ω. We checked this numerically up to ω = 100.

Finally, in Fig. 3.19 χ1 = χxx − χtt is plotted, where we notice that for time-
like momenta the spectral function is the largest for the largest value of a/T , while
the opposite was true for χL before. However, for spacelike momenta there are no
qualitative differences.

Anisotropy of traced spectral function for lightlike and timelike momenta

As for the JW model we also present the traced spectral function for lightlike and
timelike momenta in Figs. 3.20 and 3.21. When we compare the results to the JW
model we once again note the significant difference for large ω whenever the wave
vector is pointing along the anisotropy direction. Furthermore, χµµ increases with
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Figure 3.19: Spectral function χ1 for k = k1e1 and fixed wave vector (left) and frequency
(right). The color coding is the same as in Fig. 3.16.
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Figure 3.20: χµµ/ω for lightlike momenta with wave vector parallel (left) and perpendicular
(right) to the anisotropy direction. The color coding is the same as in Fig. 3.16.
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Figure 3.21: χµµ for timelike momenta with wave vector parallel (left) and perpendicular
(right) to the anisotropy direction. The invariant mass is K2 = −1. The color coding is
the same as in Fig. 3.16.

increasing anisotropic charge density a irrelevant whether the plasma is oblate or
prolate.

Photon and dilepton emission

To obtain the photon and dilepton production rates we have to multiply the traced
spectral function by the distribution function. The important difference between the
JW model and the MT model is that the latter is in thermal equilibrium and there-
fore the distribution function is the Bose-Einstein distribution function fBE(ω, T ) =
(exp(ω/T )−1)−1. Since the distribution function depends explicitly on the tempera-
ture, it will make a difference whether we consider the plasma at constant temperature
or at constant entropy density. To keep the entropy density fixed while increasing a
the temperature has to be lowered, leading to a larger suppression in the distribution
function. As we have already mentioned the results for the MT model do not change
qualitatively when going from an oblate to a prolate plasma. This can also be seen
in Fig. 3.22, where we present the production rates for constant temperature and
constant entropy density. It is interesting to note that the production of photons
with momentum transverse to the anisotropy direction are slightly suppressed com-
pared to photons traveling parallel to the anisotropy direction (this can be better
seen in the plot in the right for constant entropy density but is also true for constant
temperature). This coincides with the behavior of the JW model in the prolate phase.



3.5. ANISOTROPICALLY θ-DEFORMED GAUGE THEORY 62

0 1 2 3 4 5

10-5

0.001

0.1

Ω

Ω
dG

Γ
�

d3
k

0 1 2 3 4 5

10-6

10-4

0.01

1

Ω

Ω
dG

Γ
�

d3
k

Figure 3.22: Photon production rate in forward (purple) and transverse (cyan) direction.
Left: constant temperature with a/T ≈ 1.32 (dashed) and a/T ≈ 6.43 (dotted). Right:
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c /s1/3 ≈ 1.13 (dashed) and aN
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The isotropic result is shown in black.



Chapter 4

Shear Viscosities of Anisotropic
Plasma

In [24] the ratio of shear viscosity to entropy density was calculated for an isotropic
N = 4 SYM plasma and found to be 1/4π. The computation was done in the
limit of infinite coupling by using the holographic duality and essentially boils down
to the absorption of gravitons by black holes in the five dimensional gravity dual.
In [95] it was then conjectured that η/s ≥ 1/4π holds for “all relativistic quantum
field theories at finite temperature and zero chemical potential“1. Later investigations
showed that the result 1/4π is indeed even more robust and does not depend on details
of the system, such as conformality [96] or the introduction of chemical potentials
[97, 98, 99]. The only conditions imposed are that we consider two derivative gravity
and have isotropy in the spatial directions.

Many attempts to violate this bound were undertaken and we can roughly divide
these attempts into two categories. The first is introducing higher derivative terms.
These higher derivative terms generically cause undesirable features at the Planck
scale, but they can nevertheless be considered as an effective field theory that is only
valid up to a certain energy scale. An important finding here was that finite t’Hooft
coupling corrections increase η/s consistent with the bound [100]. However, other
higher derivative gravity theories that do indeed violate the bound were found too
[101, 102, 103], although so far no complete gauge gravity correspondence has been
established for finite violations.

The second category of attempts to violate the holographic viscosity bound is
considering theories that are not isotropic in the spatial dimensions of the boundary
theory. They include the noncommutative plasma [104] and bottom-up models for
relativistic superfluids [105, 106, 107]. However, the different shear viscosities in such

1The bound of η/s is also known as KSS bound (KSS standing for Kovtun, Son and Starinets,
the authors of [95]) and holographic shear viscosity bound.
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anisotropic systems are either exactly saturating the bound or they are above it. The
first successful example to violate η/s ≥ 1/4π with a two derivative gravity dual
was given in [49] and uses the anisotropic axion-dilaton-gravity dual we presented in
chapter 2.2. Before we derive this result in the following section we briefly note that
it is not possible to compute transport coefficients for the singular-gravity dual of
chapter 2.1, because this would involve taking the zero frequency limit, which is not
accessible there.

4.1 Outline of the computation

In the following we will compute shear viscosities from correlators of stress-energy
tensors. A general form of the Kubo formula that relates viscosities to retarded
Green’s functions is

ηµνρσ = lim
ω→0

Im

[
i

ω

∫
dt d3x eiωtθ(t)

〈
[Tµν(t, 0), Tρσ(0, 0)]

〉]
, (4.1)

where θ(t) is the Heaviside step function and has nothing to do with the anisotropic
θ-parameter in the MT model. We note that the viscosity tensor is a tensor of fourth
order. In isotropic systems it turns out that there are only two distinct components
namely the shear viscosity and the bulk viscosity. In axisymmetric systems with one
preferred direction there are in total five independent components, two of which are
shear viscosities (see appendix A.3 and [108, 105, 107]). The careful treatment of the
indices of the viscosity tensor will play a crucial role later for interpreting the results
for spatially anisotropic gravity duals. Therefore we first want to discuss the general
procedure to compute the shear viscosity holographically, while paying attention to
the index positions. Using the holographic duality we can relate the expectation
value of the energy momentum tensor to the metric by

〈Tµν〉 =
δS[gµν , ...]

δgµν

∣∣∣
gµν=gµνbdry

. (4.2)

At the level of linear response

〈Tµν〉 =
δS[gµν , ...]

δgµνδgρσ

∣∣∣
gµν=gµνbdry

= −GR
µνρσδg

ρσ. (4.3)

To obtain shear viscosities we have to consider off-diagonal components of the stress-
energy tensor. Therefore we consider fluctuations of the metric δgij = hij with i 6= j
and expand the action to second order in the fluctuations. It turns out that the
effective action is that of a scalar if we consider φ = hji , therefore calculating ηi ij j ∝
GRi i

j j. Finally, we can either use the membrane paradigm or solve the equations
of motion for the metric fluctuations numerically. We will do this in detail in the
following sections after we have discussed the decomposition of different modes.
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4.2 Construction of Physical Modes

Additionally to the metric perturbations denoted by hµν (we choose a gauge where
hMu = 0) we also consider scalar perturbations of the dilaton δφ = ϕ and the axion
δχ = η. First, we consider the case for k = kLez with

hµν(t, z, u) =hµν(u)e−i(ωt−kLz) (4.4)

η(t, z, u) =η(u)e−i(ωt−kLz) (4.5)

ϕ(t, z, u) =ϕ(u)e−i(ωt−kLz) (4.6)

such that the fluctuations do not break the remaining O(2) symmetry in the xy-
plane. In total the metric tensor has 15 independent components and additionally
we have 2 scalar fluctuations. Choosing the gauge hMu = 0, 5 of the metric tensor
components become constraints and we end up with 7 physical modes. There is
still a residual gauge freedom from infinitesimal diffeomorphisms xµ → xµ + Σµ with
Σµ = Σµ(u)e−i(ωt−kLz) left. The fluctuations transform as

δΣhµν =− ∂µΣν − ∂νΣµ + 2ΓρµνΣρ, (4.7)

δΣη =η − Σµ∂
µχ, (4.8)

δΣϕ =ϕ− Σµ∂
µφ, (4.9)

with Γρµν = 1
2
gρσ(∂µgνσ + ∂νgσµ− ∂σgµν) being the Christoffel symbol. All the Σ’s are

independent from each other and can be obtained from the constraints δΣhMu = 0.
To find the physical combinations of the fluctuations we study their behavior under
the residual gauge transformations in Table 4.1.

Since the fluctuations neither depend on x nor on y we notice immediately that
hxy is already a physical mode and decouples from the rest. This is also known as
scalar channel in the terminology of [109]. We note that in the O(2) symmetric case
hxx−hyy is also gauge invariant and the equation for the corresponding physical mode
is identical to hxy [110]. The two physical modes gxx(kLhtx + ωhxz) and gyy(kLhty +
ωhyz) are known as shear modes, since in the hydrodynamic regime these modes obey
the dispersion relation ω = −D z z

i i k
2
L with i = x, y, such that the diffusion constant

D z z
i i = η z z

i i /(ε + P ) is related to the shear viscosity. We note that the two scalars
ϕ and η only couple to the sound mode in the O(2) symmetric case. The choice of
physical combinations in that channel is not unique.

The same procedure can be repeated for a wave vector pointing in a perpendicular
direction k = k1e1 thus breaking the O(2) symmetry in the xy-plane. If we choose
the 1-direction to be the x-direction without loss of generality then all fluctuations
only depend on t, x and u. Studying the residual gauge freedom for this case leads
to a decomposition into physical modes that is summarized in Table 4.2.
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residual gauge freedom physical modes

δΣhxy = 0 hxy
δΣhtx = iωΣx kLhtx + ωhxz
δΣhxz = −ikLΣx

δΣhty = iωΣy kLhty + ωhyz
δΣhyz = −ikLΣy

δΣhxx = δΣhyy = − g′xx
guu

Σu 7 fluctuations (hxx, hyy, hzz, htz, htt, η and ϕ)

δΣhzz = −2ikLΣz − g′zz
guu

Σu

δΣhtz = iωΣz − ikLΣt -3 constraints (Σt, Σz and Σu)

δΣhtt = 2iωΣt − g′tt
guu

Σu

δΣη = − a
gzz

Σz = 4 physical combinations

δΣϕ = − ϕ′

guu
(hxx − hyy satisfies identical equations as hxy)

Table 4.1: Residual gauge freedom and physical combinations of the fluctuations of the
metric hµν and the scalars η and ϕ in the O(2) symmetric case. Primes denote derivatives
with respect to u.

residual gauge freedom physical modes

δΣhyz = 0 hyz
δΣhty = iωΣy k1hty + ωhxy
δΣhxy = −ik1Σy

δΣhtz = iωΣz 3 fluctuations (htz, hxz and η)
δΣhxz = −ik1Σz -1 constraint (Σz)
δΣη = − a

gzz
Σz = 2 physical combinations

δhyy = − g′xx
guu

6 fluctuations (hyy, hzz, hxx, htz, htt and ϕ)

δΣhzz = − g′zz
guu

Σu

δΣhxx = −2ik1Σx − g′xx
guu

Σu -3 constraints (Σt, Σx and Σu)

δΣhtx = iωΣx − ik1Σt

δΣhtt = 2iωΣt − g′tt
guu

Σu = 3 physical combinations

δΣϕ = − ϕ′

guu

Table 4.2: Residual gauge freedom and physical combinations of the fluctuations of the
metric hµν and the scalars η and ϕ in the O(2) broken case. Primes denote derivatives with
respect to u.
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This time hyz is the scalar channel. Additionally, we have the usual shear channel
in the xy-plane gyy(k1hty + ωhxy) and also a shear channel that incorporates the
fluctuations of the axion. In the limit of k1 → 0 η couples only to htz, and hxz
decouples. However, for arbitrary k1 the choice of physical modes in this channel is
not unique. The same is true for the remaining 6 fluctuations which must give 3 more
physical combinations.

4.3 Shear viscosities from Kubo’s formula

4.3.1 Computing at the horizon

Varying the bulk action of the axion-dilaton-gravity dual given in eq. (2.21) with
respect to the metric gµν we obtain the equations of motion

Rµν −
1

2
∂µφ∂νφ−

e2φ

2
∂µχ∂νχ =

1

2
gµν

(
R+ 12− 1

2

(
∂φ
)2 − e2φ

2

(
∂χ
)2
)
. (4.10)

To first order in the fluctuations hij with i, j = x, y, z and i 6= j the equations become

R
(1)
ij −

(e2φ

2
∂iχ∂jχ

)(1)

=
1

2
hijA

(0) (4.11)

with

A(0) =
1

2

(
R+ 12− 1

2

(
∂φ
)2 − e2φ

2

(
∂χ
)2
)(0)

. (4.12)

The term ∂iφ∂jφ does never appear to linearized order, because φ = φ(u)+ϕ(t, x, z, u).
The axion term can appear for k = k1ex and hxz. However, since we are interested in
shear viscosities in this section we can set k = 0 from the beginning. Therefore hxy
and hxz decouple from the remaining fluctuations. Alternatively we could restrict
ourselves to study only scalar channels according to the previous classifications of
physical modes. Then hxy decouples for k = kLex and hyz for k = k1ex. The effective
action quadratic in Fourier modes of metric fluctuations that gives rise to the correct
equations of motion is of generic form2

S
(2)
eff =

1

16πG

∫
d4K

(2π)4
du
(
ψ′n(−K, u)C1

n(K, u)ψ′n(K, u)

+ ψn(−K, u)C0
n(K, u)ψn(K, u)

)
, (4.13)

2We note that the action obtained by expanding (2.21) to second order in metric fluc-
tuations differs from the effective action (4.13) by total derivative terms of the form
∂u
(
ψn(−K,u)α(u)ψn(K,u)

)
, where α(u) is some function of the holographic coordinate. These

boundary terms do not change the imaginary part of the Green’s function and therefore are irrele-
vant for the shear viscosity.
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where the 3 different scalars are ψ⊥ = hxy = hyx, ψL = hxz = hyz and ψL̃ = hzx = hzy and

the label n =⊥, L, L̃. Furthermore, by ψ′n we mean ∂uψn. The above action can also
be written as

S
(2)
eff =

1

16πG

∫
d4K

(2π)4
du
[
∂u
(
ψnC1

nψ
′
n

)
− ψn

(
C1
nψ
′′
n + (C1

n)′ψ′n − C0
nψn
)]
, (4.14)

where we have not written the dependence on K and u explicitly. The first term is a
boundary term while the second term gives the equation of motion and vanishes on
shell. It is now an easy task to read off the coefficients C0

n and C1
n from the equation

of motion for the scalar fields ψn. To write them in a compact form it is necessary
to insert the equations of motion at zeroth order. Eventually we find

ψ⊥ : C1
⊥(K, u) =

√
−g

2guu
C0
⊥(K, u) =

√
−g
2
gµνKµKν

ψL : C1
L(K, u) =

√
−g

2guu

gxx
gzz

C0
L(K, u) =

√
−g
2

gxx
gzz
gµνKµKν

ψL̃ : C1
L̃
(K, u) =

√
−g

2guu

gzz
gxx

C0
L̃
(K, u) =

√
−g
2

gzz
gxx

(
gµνKµKν + gzza2e2φ

)
.

Above we assume that the K’s are chosen in each case such that the considered metric
fluctuation decouples from all the other fluctuations. We again emphasize that for
general K’s different fluctuations can couple and therefore the equations of motion
become more complicated. However, the above expressions are always true for k = 0,
which is enough to compute shear viscosities.

The conjugate momenta Πn with respect to the holographic coordinate u are
obtained by

Πn(K, u) =
∂L(2)

eff

∂
(
∂uψn(−K, u)

) =
C1
n(K, u)∂uψn(K, u)

8πG
(4.15)

and the corresponding flow equations are

∂uΠn(K, u) =
∂L(2)

eff

∂ψn(−K, u)
=
C0
n(K, u)ψn(K, u)

8πG
. (4.16)

According to Kubo’s formula the viscosities are obtained from the imaginary part
of the zero frequency limit of the retarded correlator between two stress-energy tensors
(see eq. (4.1)). The non-diagonal components of the stress energy tensor are related
to the scalars ψn and the retarded Green’s function for these scalars are

GR
n (K) = − lim

u→0

Πn(K, u)

ψn(K, u)
. (4.17)
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In this section we stay at the horizon where we can use

∂uψn(K, uh) = −

√
−guu(uh)
gtt(uh)

∂tψn(K, uh). (4.18)

Therefore at the horizon the shear viscosities can be computed from

ηn(uh) =
Πn(K, uh)

iωψn(K, uh)
=

1

8πG

√
−guu(uh)
gtt(uh)

C1
n(K, uh). (4.19)

We start by considering ψ⊥ = hxy = hyx for which we obtain

η⊥(uh) =

√
γ(uh)

16πG
=

s

4π
, (4.20)

where γ = g/gttguu. The evolution along the holographic coordinate is determined
by (4.16) which becomes

∂uΠ⊥(K, u) =

√
−g

16πG
gµνKµKνψ⊥(K, u). (4.21)

In the hydrodynamic limit (K → 0) ∂uΠ⊥ = 0 which implies that the flow of η⊥ along
the holographic coordinate is trivial. Therefore the result of the membrane paradigm
gives the purely transverse shear viscosity of the boundary theory

ηy y
x x = ηx x

y y = η⊥ =
s

4π
. (4.22)

We note that the purely transverse shear viscosity saturates the holographic viscosity
bound.

Next, we turn to ψL = hyz . The corresponding component of the viscosity tensor
is3

ηL(uh) =

√
γ(uh)

16πG

gxx(uh)

gzz(uh)
=

s

4πH(uh)
<

s

4π
(4.23)

for a 6= 0. In the present case the holographic flow is still trivial in the limit Kµ → 0,
because

∂uΠL(K, u) =

√
−g

16πG

gxx
gzz

gµνKµKνψ⊥(K, u). (4.24)

3For vanishing k1 both hxz and hyz decouple and give the same result. Therefore the shear viscosity
is the same irrespective of which mode we consider.
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Figure 4.1: Transverse and longitudinal shear viscosities over s/4π as a function of the
anisotropy parameter a/T .

Therefore we conclude that the second independent component in the viscosity tensor
that corresponds to a shear viscosity is

ηz zy y = ηz zy y = η⊥ =
s

4πH(uh)
<

s

4π
(4.25)

and violates the conjectured holographic viscosity bound [49]. In Fig. 4.1 we plot the
two distinct shear viscosities as a function of a/T . Similar to the DC conductivities η⊥
and ηL are independent of the scale µ present in the MT model. Another interesting
aspect is to note that the ratios of ηL/η⊥ and σz/σ⊥ are identical.

In fact we have already found two different shear viscosities in the axisymmetric
system we are considering and therefore we should not obtain any new information
from the third scalar ψL̃ = hzy (= hzx for k1 = 0). Computing the viscosity component
at the horizon we find

ηL̃(uh) =

√
γ(uh)

16πG

gzz(uh)

gxx(uh)
=
sH(uh)

4π
>

s

4π
(4.26)

and

∂uΠL̃(K, u) =

√
−g

16πG

gzz
gxx

(gttω2 + gxxk2
1 + gzza2e2φ)ψ⊥(K, u) (4.27)

that is nonvanishing for ω, k1 → 0. At first this seems disturbing, because it is not
immediately obvious that ηL̃ will be the same as ηL in the boundary theory. However,
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Figure 4.2: Holographic flow of shear viscosities from the horizon at u = 1 to the boundary
at u = 0 for a/T ≈ 6.46.

we emphasize that gzz(u) 6= gxx(u) for u 6= 0 and therefore4

ηL̃(u) = ηx x
z z(u) =

(
gzz(u)

gxx(u)

)2

η z z
x x =

(
gzz(u)

gxx(u)

)2

ηL, (4.28)

where in the last step we used the symmetry in the indices for the viscosity tensor.
The flow equation ∂uηũ must compensate for the change in the metric factors, because
at the boundary gzz(0) = gxx(0) implying ηL̃(0) = ηL. For small values of a this is
shown in [111]; in the following we shall see that this is generally true.

4.3.2 From the horizon to the boundary

Alternatively to the approach we presented above, we could have calculated the shear
viscosities by a direct numerical evaluation of the Kubo formula

ηn(u) = lim
ω→0

Im
Πn(ω, u)

ωψn(ω, u)
= lim

ω→0
Im
C1
n(ω, u)

8πGω

∂uψn(ω, u)

ψn(ω, u)
, (4.29)

where we have set the wave vectors to zero. In the end we want to obtain the
transport coefficients for the boundary theory and will send u → 0. However, by
following the flow of the shear viscosity with respect to u we are able to prove (4.28)
for arbitrarily large a numerically. The equations of motion can be read off from
eq. (4.14). Performing a Frobenius ansatz we find that the characteristic exponents

4Note that eq. (4.27) implies that ηL̃(u) will change as we go away from the horizon and therefore
ηL̃ = ηL̃(u).
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close to the horizon are ±i
√
γu/γt ω irrespective of which mode we consider. The

minus sign corresponds to infalling boundary conditions and γt and γu are defined in
eqs. (3.66) and (3.67). On the boundary we find the characteristic exponents to be
0 and 4.

The results are shown in Fig. 4.2. We note that the “additional” shear viscosity
component at the horizon ηL̃ flows to the same result as ηL for u→ 0. Furthermore,
we show that the difference between ηL̃ and ηL in the bulk is entirely due to the
metric factors as given in (4.28). Therefore we have checked our results obtained
from the membrane paradigm and also showed that taking the index positions into
account we only find two distinct components of the viscosity tensor that are related
to shear viscosities in the boundary theory.

4.4 Momentum diffusion

To conclude this chapter we study the momentum diffusion. Therefore we consider
the two distinct shear modes that do not couple to axion fluctuations. The reasons
we do not consider the channel that couples to the axion is that these fluctuations
can lead to a nonvanishing 〈Oχ〉 and therefore the gravitational stress energy tensor
is not conserved any longer as can be seen from eq. (2.39). In that case hydrody-
namic equations would change and the interpretation of the diffusion constant in the
corresponding channel is unclear. As long as we can set the axion fluctuations to
zero consistently we are safe and can study momentum diffusion. The hydrodynamic
relations are given in appendix A.4.

4.4.1 Mapping to vector perturbations

Actually the easiest way to obtain the expression for the momentum diffusion con-
stant is to map the present problem to that of a U(1) gauge field (that we solved
already in section 3.5.2) via Kaluza Klein reduction [91]. We can compactify the y
direction, since none of the fluctuations depends on y. Then the fields At = hty/gxx,
Ax = hxy/gxx and Az = hyz/gxx satisfy equations on a 3+1 dimensional background.
The corresponding effective action for fluctuations At(t, x, u) and Ax(t, x, u) or fluc-
tuations At(t, z, u) and Az(t, z, u) can be obtained by expanding the axion-dilaton-
gravity action to second order

S
(2)
eff =

1

16πG

∫
d5x

[
√
−g(2)

2A(0) +
√
−g(0)

(
R(2) − e2φ

2
a2gzz(2)

)]
, (4.30)
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where A(0) is given in (4.12). For the fluctuations we consider here we can always
write the action (up to boundary terms) in the following form

S
(2)
eff = − 1

16πG

∫
dy

∫
d4x
√
−g gxxFαβFγδgαγgβδ, (4.31)

where Fαβ = ∂αAβ − ∂βAα and α, β, γ, δ omit the y-direction. It is noteworthy that
as before in the computation of the shear viscosity the mass term proportional to a2

vanishes after inserting the equations of motion for gzz at zeroth order. Comparing
this effective action with the Maxwell action given in eq. (3.26) we find that by choos-
ing g2

B = 4πG/gxx we can map the problem of tensor perturbations to the problem
of vector perturbations we have already solved. Therefore using the appropriate cou-
pling constant gB we can read off the result for the momentum diffusion constants
directly from (3.65) and (3.64). The final expressions are5

Dxy = −
√
−g(uh)√

−gtt(uh)guu(uh)

∫ uh

0

du
guu(u)gtt(u)

gxx(u)
√
−g(u)

, (4.32)

Dzy = −
gxx(uh)

√
−g(uh)

gzz(uh)
√
−gtt(uh)guu(uh)

∫ uh

0

du
guu(u)gtt(u)

gxx(u)
√
−g(u)

. (4.33)

The diffusion constant for the third shear mode is Dyx = Dxy. If we relate these
diffusion constants to the shear viscosities we find6

Dxy =
ηx x
y y

sT
and Dzy =

ηz zy y

sT
(4.34)

with

1

sT
= 16πG

∫ uh

0

du
guu(u)gtt(u)

gxx(u)
√
−g(u)

, (4.35)

which we also checked numerically.

4.4.2 Lowest lying quasinormal modes

Finally, we want to obtain the momentum diffusion also by solving for the lowest lying
quasinormal mode of the retarded propagator of Z1(u) = gxx

(
k1hty(u) + ωhxy(u)

)
5To explain the nomenclature we note that the first index of the diffusion constant indicates

the direction of the associated wave vector, while the second index gives information about which
direction has been compactified.

6When comparing to the results given in appendix A.4 we note that at the boundary gxx = gzz
and indices can be raised and lowered by the Minkowski metric.
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and Z3(u) = gxx
(
kLhty(u) + ωhzy(u)

)
, respectively. The corresponding equations of

motion are

Z ′′1 +
1

2

(
− g′uu
guu

+
g′zz
gzz

+
gxxg

′
tt (ω2gxx − k2

1gtt) + 2gttg
′
xx (2k2

1gtt + ω2gxx)

gttgxx (k2
1gtt + ω2gxx)

)
Z ′1

−guu
(
ω2

gtt
+
k2

1

gxx

)
Z1 = 0 (4.36)

and

Z ′′3 +
1

2

(
(gttg

′
zz − gzzg′tt) (k2

Lgtt − ω2gzz)

gttgzz (k2
Lgtt + ω2gzz)

− g′uu
guu

+
4g′xx
gxx

)
Z ′3 − guu

(
ω2

gtt
+
k2
L

gzz

)
Z3 = 0.

(4.37)

The characteristic exponents for Z1 and Z3 are the same as for the scalar modes ψn
that we already discussed. Close to the boundary we can write

Z1,3(u) = Ā1,3(ω, k1,L) + ...+ B̄1,3(ω, k1,L)u4 + ... (4.38)

and the dispersion relation in the hydrodynamic limit can be obtained from

Ā1,3(ω, k1,L) = 0 for ω � 1 and k1,L � 1. (4.39)

From the dispersion relation we can extract numerically the diffusion constants Dxy

and Dzy and find agreement with the result obtained via the membrane paradigm.



Chapter 5

Heavy Quarks

We emphasized in the introduction that important observables to gain insight into
the formation of QGP in heavy ion collisions are jet quenching and bound states of
heavy quarks. Using the framework of hard-anisotropic-loop effective theory these
have been studied with fixed anisotropy as an approximation to the actual dynamical
situation [112, 113, 114, 115, 116]. In this section we want to compare the holographic
results we obtain by considering the JW model and the MT model with each other
but also with the aforementioned weak coupling studies [50]. A further motivation
is that the geometry can be probed directly by the hanging strings that are dual to
bound states of two infinitely heavy quarks. This gives us a possibility to show the
distortions in our anisotropic gravity duals graphically as we go into the bulk. We
note that also the drag force acting on a heavy quark moving through the anisotropic
plasma of the MT model has been studied in [117, 118, 119] and recently also light
quarks were considered [120].

5.1 Heavy quark static potential

5.1.1 Holographic computations

We begin by discussing the heavy quark potential obtained from the Wilson-Polyakov
loop which is dual to a fundamental string with spacelike separated endpoints at the
AdS boundary [121, 122, 123] for the generic form of a metric in the string frame
describing stationary but spatially anisotropic geometries1

ds2 = gtt(u)2dt2 + gxx(u)
(
dx2 + dy2

)
+ gzz(u)dz2 + guu(u)du2. (5.1)

1The AdS part of the string frame metric of the MT model can be found in eq. (2.18). We also
note that in this section we will always refer to the holographic coordinate by u. For the JW model
we simply make the substitution u→ v.

75
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The action for the hanging string is

S = − 1

2πα′

∫
d2σ
√
−h, (5.2)

with hab = gMN∂aX
M∂bX

N being the induced metric on the worldsheet. Here the
indices a, b are either 0 or 1 and M,N = {t, x, y, z, u}. Due to the symmetry in the
transverse plane we can always choose a coordinate system such that the y-coordinate
vanishes. Parametrizing the string worldsheet by t and u and making a stationary
ansatz for x = x(u) and z = z(u), we obtain

S = − 1

2πα′

∫
dt du L

(
x′(u), z′(u), u

)
(5.3)

= − T
2πα′

∫
du
√
−gtt(u)

(
guu(u) + gxx(u)x′2(u) + gzz(u)z′2(u)

)
,

where primes denote derivatives with respect to the holographic coordinate u and T
is a constant coming from the time integration. We need to find the string profile
and therefore evaluate the equations of motion for x(u) and z(u), which are of the
form

−gtt(u)gxx(u)x′(u) = ΠxL
(
x′(u), z′(u), u

)
, (5.4)

−gtt(u)gzz(u)z′(u) = ΠzL
(
x′(u), z′(u), u

)
, (5.5)

Πx and Πz being constants of motion. Disentangling the above equations we end up
with

x′2(u) = − Π2
xguu(u)gtt(u)gzz(u)

gxx(u)
[(
gtt(u)gxx(u) + Π2

x

)(
gtt(u)gzz(u) + Π2

z

)
− Π2

xΠ
2
z

] (5.6)

z′2(u) = − Π2
zguu(u)gtt(u)gxx(u)

gzz(u)
[(
gtt(u)gxx(u) + Π2

x

)(
gtt(u)gzz(u) + Π2

z

)
− Π2

xΠ
2
z

] . (5.7)

For a hanging string that connects two spatially separated points at the boundary
we expect x′2(u) and z′2(u) to become negative for u > u0. Since the numerator
is manifestly positive (note that in our conventions gtt(u) is negative for Lorentzian
signature) the denominator has to vanish at some point u0 and then becomes negative
for increasing values of u. This is also in line with the requirement that du/dx =
du/dz = 0 at the turning point u0. Evaluating the zero in the common factor of the
denominators eventually leads to an equation that can be written as

Π2
x

gxx(u0)
+

Π2
z

gzz(u0)
= −gtt(u0) > 0. (5.8)
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This is the defining equation of an ellipse and therefore

Π2
x = −gtt(u0)gxx(u0) sin2 φ, (5.9)

Π2
z = −gtt(u0)gzz(u0) cos2 φ. (5.10)

x′(u) and z′(u) are completely determined by u0 and the angle φ. To obtain the
functions x(u) and z(u) we can make one further choice, namely that both x and z
vanish at the turning point u0. It is then easy to find the distance between the two
string endpoints

L = 2
√
x2(0) + z2(0) (5.11)

and the energy of the configuration

Ereg. = −S
T
− 1

πα′

∫ uh

0

du
√
−gtt(u)guu(u). (5.12)

To calculate the action above we integrate from u = 0 to the turning point u = u0

in (5.3), which covers only half of the string and therefore we have to multiply by two
in order to obtain the full result. The last term above is the energy of two straight
strings hanging from the boundary to the horizon at uh and is necessary to regularize
the amount of energy of the hanging string. This also means that the connected
configuration is energetically favored as long as Ereg. < 0. It can be checked easily
that for an isotropic geometry with gzz(u) = gxx(u) we recover the already well known
expression for the heavy quark static potential. If in the anisotropic case we restrict
to the simpler situations where the string endpoints are either separated exactly
along the z or x direction the above equations simplify and we reproduce the same
solutions as given previously in [117]. Our expressions above, however, are valid for
any separation of the string endpoints in the xz-plane. The generic situation allows
us to probe the geometry by letting the string hang down in the bulk and study how
it deforms as a function of u. The screening length for quarkonium mesons moving
through an anisotropic plasma corresponding to the MT model is studied in [124].

JW model

We start by discussing the results for the JW model, the singular anisotropic gravity
dual. In Fig. 5.1 we plot the potential between the two heavy quarks, where we have
adjusted the parameter A of the model such that the energy density is kept constant
for different anisotropies. Full (dashed) lines correspond to quarks separated along
(transverse to) the direction of anisotropy.

We note that in the oblate phase quarks separated along a transverse direction
have a slightly shallower potential and consequently a smaller dissociation distance.
(By dissociation distance we are referring to the maximal distance between two
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Figure 5.1: Potential energy of heavy quarks
in the JW model for plasmas with different
anisotropies but constant energy density.
The isotropic case corresponds to B = 0
(black lines), oblate anisotropy with Pz = 0
to B =

√
2 (blue) and prolate anisotropy

with P⊥ = 0 to B = −
√

6 (red). Full
(dashed) lines refer to a separation of the
quarks along (perpendicular to) the direc-
tion of the anisotropy.
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Figure 5.2: Difference in the distance be-
tween two connected quarks at a given po-
tential with its isotropic value for a plasma
with oblate (Pz = 0, B =

√
2, blue) and pro-

late (P⊥ = 0, B = −
√

6, red) anisotropy at
the same energy density. Full (dashed) lines
correspond to a separation of the quarks
along (perpendicular to) the direction of the
anisotropy.

quarks, for which it is still energetically favorable to be connected by a hanging string
in the bulk.2) For prolate plasmas the heavy quark potential is instead shallower
for longitudinally separated quarks than for transverse separations. Evidently the
anisotropy only mildly influences the heavy quark potential even though we are con-
sidering extreme anisotropic plasmas with Pz = 0 (B =

√
2) and P⊥ = 0 (B = −

√
6).

In Fig. 5.2 we have made these small effects more conspicuous by plotting the dif-
ference in the separation of two quarks at a given potential energy compared to the
isotropic case.

Finally, we want to study the profile of the hanging string in the singular anisotropic
geometry of the JW model in more detail. Due to the deformation of the spacetime
as we go away from the boundary, the string projected onto the boundary will not
be a straight line. The direction of the force acting on the string endpoint at the

2Strictly speaking, the dissociation of heavy quarkonia in a medium also depends on the imaginary
part of the static potential in the real-time formalism which leads to a finite thermal decay width
[125, 116] and which we ignore by only studying Wilson loops in the Euclidean time direction.
However, this is valid in the limit of infinitely heavy quarks where the imaginary part is negligible.
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Figure 5.3: String profiles in the JW model for boundary forces acting on the quarks
pointing in a fixed direction (as indicated by φ̃) and projected onto the boundary. The
left panel shows profiles for strings at the point of string breaking (Ereg. = 0) for B = 0
(black, dotted), B =

√
2 (blue) and B = −

√
6 (red) with ε = const. The right panel shows

strings with φ̃ = π/4 but different turning points for the hanging string. For B =
√

2
(B = −

√
6) the colors going from red to yellow (blue to green) correspond to v = 4

5vsb, vsb,
6
5vsb and 2vsb with vsb the value at string breaking. Here dashed lines indicate unstable
string configurations. (Note that for the JW model the holographic coordinate is v.)

boundary can be defined by an angle

tan φ̃ =
Πx

Πz

. (5.13)

If φ̃ = 0 then the force acts along the z-axis. One could now think of the following
experiment. We act with forces pointing in a specified direction in the xz-plane on two
heavy quarks that are initially close together. We choose the strength of the forces
such that the heavy quarks slowly start to separate more until they dissociate. When
we keep the direction of the forces fixed the whole time the quarks will, however,
not follow a straight line along the force due to the deformation of the space in the
holographic coordinate. Instead we observe the behavior shown in Fig. 5.3. We note
that for the JW background the strings bend differently depending on the sign of
the B parameter. In the right panel of Fig. 5.3 we consider a string endpoint with
a force acting in φ̃ = π/4 direction and vary the depth of the turning point of the
hanging string. Therefore, we can probe the geometry up to a certain value of the
holographic coordinate. As u increases the deformation of the string gets stronger
and stronger. For strings hanging almost down to the singularity we notice that the
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Figure 5.4: Potential for heavy quarks in the MT model. The left panel compares varying
anisotropies at constant temperature: a/T = 0 (isotropic; black line), a/T ≈ 1.32 (oblate;
blue lines), a/T ≈ 6.43 (prolate; green) and a/T ≈ 50.51 (prolate; red); the right panel

at constant entropy density for different anisotropies aN
2/3
c /s1/3 ≈ 1.13 (oblate; blue),

aN
2/3
c /s1/3 ≈ 4.23 (prolate; green) and aN

2/3
c /s1/3 ≈ 27.37 (prolate; red). Full (dashed)

lines correspond to a separation of the quarks along (perpendicular to) the direction of the
anisotropy.

strings get deformed in such a way that they smoothly fit in the remaining space.
When we take a look at the line element of the singular gravity dual we note that
for B > 0 the z-direction disappears while for B < 0 the transverse directions vanish
and the space degenerates into an infinite line as we go to the singularity. Therefore,
in the JW model the pressure anisotropy is encoded very directly in the geometry
which is probed by the hanging string.

MT model

The anisotropic plasma of the MT model dual to axion-dilaton gravity is actually in
thermal equilibrium and therefore we can compare the heavy quark static potential at
constant temperature and at constant entropy density. The parameters we consider
in either case are given in Table 3.1 and in Table 3.2, respectively. The difference
can be clearly seen in Fig. 5.4. At fixed temperature the dissociation length gets
smaller for any separation in the xz-plane as we increase the anisotropy parameter a.
At constant entropy density the difference of the dissociation length compared to an
isotropic plasma depends on whether we separate the quarks along a transverse direc-
tion (string breaking occurs at a larger distance) or along the longitudinal direction
(string breaking happens at a smaller distance compared to the isotropic result).

However, regardless of the sign of the pressure anisotropy ∆ we find that in the
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Figure 5.5: String profiles in the MT model for boundary forces acting on the quarks
pointing in the same direction (as indicated by φ̃) and projected onto the boundary. The
left panel shows the profiles for strings at the point of string breaking (Ereg. = 0) for

aN
2/3
c /s1/3 = 0 (black, dotted), aN

2/3
c /s1/3 ≈ 1.13 (blue), aN

2/3
c /s1/3 ≈ 4.23 (green)

and aN
2/3
c /s1/3 ≈ 27.37 (red) with N−2

c s ≈ 0.159. The right panel shows the profiles for

aN
2/3
c /s1/3 ≈ 4.23 and φ̃ = π/4 but at different turning points for the hanging string: at

string breaking usb (green), 4usb/5 (cyan) and 6usb/5 (purple). Here dashed lines indicate
unstable string configurations.

MT model the heavy quark potential is always deeper for transverse separation of the
quarks. (Note that the blue lines in the figures correspond to oblate configurations,
while the green and red lines are for an increasingly prolate plasma, see Tables 3.1
and 3.2). This is a striking difference to the situation in the JW model where oblate
and prolate anisotropies lead to opposite deformations of the heavy quark potential.
The situation in the MT model is instead always similar to that in the JW model for
prolate anisotropy. This appears to be a direct consequence of the fact that in the
MT model gzz/gxx = H ≥ 1 for any a whereas in the singular geometry of the JW
model gzz/gxx is larger (smaller) than unity for prolate (oblate) pressure anisotropy.

In the remaining plots we will only show the results for constant entropy density
keeping in mind that for constant temperature the distance at which the string breaks
becomes smaller and smaller as we increase a.

Finally, we also present the results for strings where the forces acting on the
endpoints point in certain directions specified by the angle φ̃. In Fig. 5.5 we also
note that the situation is qualitatively the same as in the prolate case for the singular
gravity dual. Also indicated in the plot are the trajectories the endpoint of the string
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follows as we increase the anisotropy and keep φ̃ fixed. Here we see once more that the
geometry does change monotonically with increasing a irrespectively of the behavior
of the pressure anisotropy in the boundary theory. In the right panel of Fig. 5.5 we
also probe the geometry by varying the location of the turning point of the hanging
string.

5.1.2 Comparison with weak-coupling calculations

At weak coupling, the real part of the heavy quark potential V (r) is given by the
Fourier transform of the electrostatic propagator. In an axisymmetric situation inte-
gration over the azimuth angle leads to

V (r) = − 1

4π2

∫ ∞
0

dk

∫ 1

−1

dζ J0(kr
√

1− ζ2 sin θr) cos(krζ cos θr)D00(ω = 0,k),

(5.14)

where cos θr = z/r and ζ = kz/k with our choice of the anisotropy direction along z.
In the case of the hard anisotropic loops, the propagator D00 is given by

D00(ω = 0,k) =
k2 +m2

α +m2
γ

(k2 +m2
α +m2

γ)(k
2 +m2

β)−m4
δ

(5.15)

and has poles at real k corresponding to electric plasma instabilities, which are inte-
grated over with a principal value prescription.

In appendix C.1 we discuss that there are two different possibilities to modify the
distribution function at weak coupling (C.1) such that the energy density ε or the
hard particle density n is kept fixed. In this chapter we adjust the hard momentum
scale phard, which is in agreement with [116, 126]. In Fig. 5.6 we have evaluated
(5.14) with the hard-anisotropic-loop propagator for strongly oblate (ξ = 100) and
prolate (ξ = −0.9) anisotropy (cf. Table C.1 in appendix C.1), keeping alternatively
n and ε fixed for different anisotropies. The details of the deviation from the isotropic
result slightly depend on whether n or ε is kept constant, and in either case we find
that for oblate anisotropies the heavy quark potential is slightly deeper along the
anisotropy direction than transverse to it, while for prolate anisotropies this situation
is reversed3. In order to make these effects more visible, we also plot V (L) divided
by the modulus of the vacuum (Coulomb) potential, 1/(4πL).

Comparing with the results of the JW model, we find a remarkable qualitative
agreement in the dependence on the sign of the anisotropy and the direction of the
quark separation. Moreover, the absolute deviation from the isotropic result is rather
small both at weak coupling and in the JW model.

3This is also true when N rather than phard is rescaled in (C.1), but this method leads to
somewhat stronger differences between fixed n and fixed ε.
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Figure 5.6: Static potential for a weakly coupled anisotropic plasma in the hard anisotropic
loop formalism as a function of the quark separation L (units set by the isotropic Debye
mass). The blue and red lines correspond to longitudinal (full) and transverse (dashed)
orientation for ξ = 100 and ξ = −0.9, respectively. The isotropic result is shown in black.
In the upper two plots, the particle number density for the anisotropic and the isotropic
plasma are the same, in the lower two plots the energy density is kept fixed.
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Figure 5.7: Static potential in free anisotropic θ-QCD for a = 1. Full lines correspond to
the z-direction and dashed lines to the x-direction.

On the other hand, as we have seen above, the MT model has a qualitatively
different dependence on the direction of the quark separation in the case of oblate
anisotropies (which are usually considered in the context of heavy ion collisions).

Turning to the zero-coupling version of the MT model introduced in section 2.2.3,
the heavy quark potential is given by the Fourier transform of

D00(ω = 0,k) =
1

k2 + a2
(
1− k2

‖/k
2
) (5.16)

which is plotted in Fig. 5.7. As we have discussed in Sect. 2.2.3, the high-temperature
limit of this weak coupling model corresponds to a prolate anisotropy (in contrast
to the holographic MT model), whereas for general a/T both prolate and oblate
anisotropies are possible, depending on the renormalization scale. Curiously enough,
the potential shown in Fig. 5.7 (which does not depend on UV renormalization) has
qualitatively similar dependence on the direction of quark separation as the holo-
graphic MT model (and the hard-anisotropic-loop potential in the prolate case).

We finally also consider the behavior of the quark potentials at large distances.
In the two holographic models, there is a finite separation beyond which the string
connecting the heavy quarks becomes unstable because strings entering the horizon
or the naked singularity are energetically favored, and at a somewhat larger distance
even no unstable connecting solution can be found.

To leading order at weak coupling, the isotropic quark potential is simply given by
a Yukawa potential with exponential decay at large distance. The anisotropic weak
coupling results show curious deviations. In the anisotropic θ-deformed zero-coupling
case Fig. 5.7 shows a nonmonotonic behavior of the potential along the anisotropy
direction such that beyond L ∼ 5 (where the potential is actually already extremely
small) there is even a repulsive behavior.
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Even more curious behavior can be found in the hard-anisotropic-loop potential
at large distances. In this case there is nonmonotonic behavior along (transverse to)
the anisotropy direction for prolate (oblate) anisotropy, and here the nonmonotonic
behavior is moreover oscillatory. This behavior, which has not been noted in the pre-
vious studies of the hard anisotropic loop potential [114, 115], is shown in Fig. 5.8,
where the potential is plotted at large distances in the xz plane (enhanced by divid-
ing by the modulus of the vacuum (Coulomb) potential). This oscillatory behavior,
which is reminiscent of Friedel oscillations at finite chemical potential (for a recent
discussion see [127]), has its origin in the presence of poles in the electrostatic propa-
gator at real wave vector corresponding to electric plasma instabilities. It is, however,
rather clear that this curious behavior is devoid of physical implications even at weak
coupling, because the plasma instabilities imply that a stationary anisotropy is only
a justifiable approximation at sufficiently small time scales and correspondingly small
length scales.

Figure 5.8: Ratio of static potential to vacuum potential for ξ = 100 and ξ = −0.9 at same
energy density as in the isotropic plasma.

5.2 Jet quenching

5.2.1 Holographic calculations

The computation of the jet quenching parameter q̂ for an anisotropic plasma with
an axion-dilaton-gravity dual, the MT model, has been presented in [117, 128]. Here
we will reproduce the result for the most general case with an ultrarelativistic quark
moving in an arbitrary direction [128] and compare the results with those of the
singular geometry of the JW model.
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According to the prescription of [129, 130] we calculate the string worldsheet
with endpoints moving in the same direction at the speed of light and separated a
small distance l along a direction perpendicular to their motion. The jet quenching
parameter q̂ can then be obtained from

e2iS = 〈WA(Clightlike)〉 = exp
(
− L−l2

4
√

2
q̂
)

+O
( 1

N2

)
. (5.17)

In the following we consider a quark endpoint moving in the xz-plane. The
direction is parametrized by an angle θ such that for θ = 0 the quark moves along
the z-axis. We therefore start by two subsequent coordinate transformations. First,
we define

Z = z cos θ + x sin θ, (5.18)

X = x cos θ − z sin θ, (5.19)

Y = y (5.20)

and then we introduce light-cone coordinates

Z± =
1√
2

(t± Z). (5.21)

The metric then takes the form

ds2 =G++(dZ+)2 +G−−(dZ−)2 + 2G+−dZ
+dZ− (5.22)

+GXXdX
2 + 2GX+dXdZ

+ + 2GX−dXdZ
− +GY Y dY

2 +GUUdU
2.

Writing the new metric coefficients in terms of our original ones we find4

G++ = G−− =
1

2

(
gtt + gxx sin2 θ + gzz cos2 θ

)
, (5.23)

GXX = gxx cos2 θ + gzz sin2 θ, (5.24)

GY Y = gxx, (5.25)

GUU = guu, (5.26)

GX+ = −GX− =
1√
2

cos θ sin θ(gxx − gzz). (5.27)

We choose the worldsheet coordinates (τ, σ) = (Z−, U) and let Z+, X and Y
depend on the holographic coordinate U in the following. It is interesting that we

4Here and in the following we will not write the dependence of the metric coefficients on the
holographic coordinate u in order to keep the expressions shorter. There is no danger of confusing
at which value of u we should evaluate the metric coefficient, because the string worldsheet in the
calculation of the jet quenching parameter will always have its turning point at the horizon [128].
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must allow for a non-constant embedding of the string in Z+ to find a solution in the
most general case. The Nambu-Goto action of the string is then given by

S =− 1

2πα′

∫
dZ−

∫
du
[
G2

+−(Z+)′2 +G2
X−X

′2 + 2G+−GX−(Z+)′X ′ (5.28)

−G−−
(
GUU +G++(Z+)′2 +GXXX

′2 +GY Y Y
′2 + 2G+X(Z+)′X ′

)] 1
2
.

The expression under the square root is actually negative which leads to an imaginary
action. The reason is that we consider a spacelike string worldsheet. However, this
is expected because it is exactly what we need to obtain a jet quenching parameter
that is real.

Since the Lagrangian does not depend on Z+, X or Y explicitly we can find three
constants of motion Π+, ΠX and ΠY . In the limit where these constants are small5

we obtain

(Z+)′ = c++Π+ + c+XΠX +O(Π2), (5.29)

X ′ = cX+Π+ + cXXΠX +O(Π2), (5.30)

Y ′ = cY Y ΠY +O(Π2). (5.31)

In [128] the coefficients c are given explicitly for the metric of the axion-dilaton-
gravity dual. Since we are interested in comparing the results of two different gravity
duals we express these coefficients in terms of the general form of the metric given in
(5.1)

c++ =

√
guu

2(gtt + gzz cos2 θ + gxx sin2 θ)

gtt(gxx cos2 θ + gzz sin2 θ) + gxxgzz
gttgxxgzz

, (5.32)

cXX =

√
2guu

gtt + gzz cos2 θ + gxx sin2 θ

gzz cos2 θ + gxx sin2 θ

gxxgzz
, (5.33)

cY Y =

√
2guu

gtt + gzz cos2 θ + gxx sin2 θ

1

gxx
, (5.34)

c+X =cX+ =

√
guu

gtt + gzz cos2 θ + gxx sin2 θ

(gzz − gxx) sin θ cos θ

gxxgzz
. (5.35)

This agrees with [128] if we insert the precise form of the metric in the axion-dilaton-
gravity case. However, it is now also straightforward to consider any background
whose metric is of the form (5.1).

5We want to consider small separation lengths l between the two string endpoints. In [128] it
is shown that this corresponds to the limit of small Π’s. As a further remark we note that the
worldsheet turning point characterized by dU/dX = 0 (and similarly for Z+ and Y ) is located at
the horizon.



5.2. JET QUENCHING 88

The string endpoints at the boundary are not separated along the Z+ direction
and integrating (5.29) gives

Π+ = −
∫ uh

0
du c+X∫ uh

0
du c++

ΠX . (5.36)

Along the X-axis the separation of the endpoints is l sinφ while in Y -direction it is
l cosφ. The constants of motion are then

ΠX =
l sinφ

2

∫ uh
0
du c++∫ uh

0
du cXX

∫ uh
0
du c++ −

( ∫ uh
0
du c+X

)2 , (5.37)

ΠY =
l cosφ

2

1∫ uh
0
du cY Y

. (5.38)

If we insert the expressions (5.29)-(5.31) into the action (5.28) and expand to second
order in Π’s we obtain

S =
iL−

πα′

∫ uh

0

du
√
G−−GUU (5.39)

+
iL−

2πα′

∫ uh

0

du
[
c++Π2

+ + cXXΠ2
X + 2c+XΠ+ΠX + cY Y Π2

Y

]
.

The action is imaginary because we considered a spacelike worldsheet and L− is
the length of the Wilson line in Z−-direction. The first, Π independent term is diver-
gent, however, the jet quenching parameter is proportional to l2 and therefore just
contained in the second finite term. Upon inserting (5.36)-(5.38) into the action and
considering the defining relation for the jet quenching parameter (5.17) we eventually
obtain

q̂θ,φ =

√
2

πα′
(
P (θ) sin2 φ+Q(θ) cos2 φ

)
(5.40)

with

P (θ) =

∫ uh
0
du c++∫ uh

0
du cXX

∫ uh
0
du c++ −

( ∫ uh
0
du c+X

)2 , (5.41)

Q(θ) =
1∫ uh

0
du cY Y

. (5.42)

The average

q̂θ ≡
1

2π

∫ 2π

0

dφ q̂θ,φ ≡
1

2
(q̂θ,0 + q̂θ,π/2) ≡ q̂θ,π/4 (5.43)
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Figure 5.9: Jet quenching parameter normalized to the isotropic result in the JW model.
Left panel for an oblate plasma with B =

√
2, right panel for a prolate plasma with

B = −
√

6, with ε = const.

is the total jet quenching parameter for a quark moving with angle θ with respect
to the anisotropy direction, while q̂θ,φ contains the information about momentum
broadening in directions transverse to the motion of the quark, with φ = 0 being
perpendicular to both the direction of the jet and the anisotropy direction. When
θ = 0, i.e. the quark moving along the direction of anisotropy, q̂0,φ ≡ q̂0 is independent
of φ. In the context of heavy-ion collisions, one is of course mostly interested in jets
at larger θ. For θ = π/2 one can define transverse and longitudinal jet quenching
parameters

q̂⊥ = q̂π/2,0 , q̂L = q̂π/2,π/2 . (5.44)

In Figures 5.9 and 5.10 q̂θ,φ is plotted for oblate and prolate pressure anisotropies
in the MT model and in the JW model. Once more we see that in the JW model a
different sign of the anisotropy parameter leads to a qualitative change of the result,
in particular whether q̂L is larger or smaller than q̂⊥, while the results for the MT
model are more similar to the prolate phase of the JW model, for any parameter a
and thus regardless of the sign of the pressure anisotropy ∆.

5.2.2 Comparison with weak coupling calculations

Attempts to calculate the anisotropic jet quenching parameters for a quark moving
transverse to the anisotropy direction (θ = π/2) have been presented in Refs. [112,
113] based on one-loop calculations using hard anisotropic loops. In this situation the
presence of spacelike poles in the static gluon propagator leads to nonintegrable sin-
gularities. In Ref. [112] it was conjectured that these singularities might get cured by
the generation of an imaginary part in the static gluon self energy at higher loop order
and this conjecture was used for an estimate of this “anomalous” contribution. While
in Ref. [131] this conjecture was refuted, Ref. [113] proposed alternative resolutions,
which all point to anomalous contributions of the same sign and angular dependence
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Figure 5.10: Jet quenching parameter normalized to the isotropic result in the MT model.

Left panel for a plasma at the same entropy density for aN
2/3
c /s1/3 ≈ 1.13 andN−2

c s ≈ 0.159
which corresponds to oblate pressure anisotropy; right panel for prolate pressure anisotropy

with aN
2/3
c /s1/3 ≈ 27.37.

as the infrared-safe regular contributions computed previously in Ref. [112] to leading
logarithmic order. For a quark moving with the speed of light and in the limit of
small anisotropy parameter ξ, the regular contribution to q̂⊥ and q̂L was obtained as

q̂reg.
L,⊥ = q̂iso

(
1± ξ

3
+O(ξ2)

)
. (5.45)

To linear order in ξ, the anomalous contribution is in fact only present for oblate
anisotropy6 (ξ > 0) with

q̂anom.
L,⊥ = Cq̂iso

(
ξ

6
(1± 1

2
)Θ(ξ) +O(ξ2)

)
, (5.46)

where C is a positive constant which depending on the physical cutoff for the sin-
gularities arising from plasma instabilities may differ from unity and also involve
ln(1/ξ) [113]. At any rate, to linear order in ξ the hard-anisotropic-loop calculations
of Refs. [112, 113] imply q̂L > q̂⊥ for oblate pressure anisotropy, and q̂L < q̂⊥ for the
prolate case. This result neither agrees with the results of the JW model nor with
those of the MT model: in the JW model the ordering of the two jet quenching pa-
rameter changes with the sign of the anisotropy, but the ordering is just the opposite.
The MT model on the other hand always has q̂L > q̂⊥ which agrees with the hard
anisotropic loop result in the oblate case, but differs in the prolate case.

It is actually questionable whether the one-loop calculation using hard anisotropic
loops is relevant for the physics of a weakly coupled anisotropic quark-gluon plasma.
Anisotropic jet quenching could be instead dominated by large chromomagnetic fields
generated by plasma instabilities [132, 133]. Because plasma instabilities give rise to
|B⊥| > |E⊥| and |EL| > |BL|, it has been argued in Ref. [132] that this would also

6Refs. [112, 113] only discussed oblate anisotropies, which have m2
α ≤ 0 and m2

α ∝ ξ. For prolate
anisotropy only the last term of Eq. (32) in [113] contributes, which is of order ξ3.
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give q̂L > q̂⊥ for a plasma with oblate anisotropy. In fact, the (different) plasma
instabilities for prolate anisotropies equally lead to7 |B⊥| > |E⊥| and |EL| > |BL|,
thus also favoring q̂L > q̂⊥. Perhaps fortuitously, this is in line with the results of
the MT model, although the latter of course neglects any dynamics from instabilities
and the formation of inhomogeneous configurations8.

7This holds true for both weak fields [35] and nonperturbatively large fields [134].
8Note that the fields associated with plasma instabilities at weak coupling have nonvanishing

wave number.



Chapter 6

Conclusion and Outlook

In the preceding chapters we presented the main results of this thesis. Now we want
to wrap up the most important aspects again and give an outlook to possible future
extensions.

First of all we should note important characteristics of the two models we consid-
ered. The obvious drawback of the JW model is the presence of a naked singularity
which makes the validity of the gravity dual questionable. As we have pointed out
in chapter 2 we interpret the appearance of the singularity as a breakdown of the
stationarity condition we imposed at the beginning. It is encouraging that only the
small frequency behavior is altered dramatically when we consider spectral functions
of R-current correlators, while for sufficiently large frequencies the modifications due
to the anisotropy are mild. The same behavior is also seen in models of holographic
thermalization that do not incorporate spatial anisotropies, but nevertheless show
the same small ω behavior, which is due to the quasi-stationarity condition imposed
there [75, 76]. In the context of tensor perturbations the same modifications have
been observed [135]. On the other side some qualitative similarities between the
hard anisotropic loop effective theory at weak coupling and the JW model at strong
coupling have been found, especially for the studies of heavy quark static potentials.
The situation is clearly different when we consider the MT model that introduces
an anisotropic θ-term in the Yang-Mills lagrangian. The boundary theory dual to
anisotropic axion-dilaton-gravity is qualitatively different from the hard anisotropic
loop effective theory even at a conceptual level. The probably most important differ-
ence is that the MT model is always in thermodynamic equilibrium and the anisotropy
is not dynamical but held fixed due to an external source. It is surprising that the
boundary theory possesses an extremely rich phase diagram for both infinite and
zero coupling. In [59] it was noted that the instabilities are reminiscent of instabil-
ities of weakly coupled plasma in the presence of anisotropy. However, in the zero
coupling limit of the MT model, where we were able to obtain the propagator and the
phase diagram, we found that the thermodynamically unstable phases appear even
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though there are no unstable modes. This is in contrast to plasma instabilities in the
hard anisotropic loop framework, which are always connected to unstable modes in
the propagator. Therefore it is obvious that the instabilities of the MT model are
conceptually different than those found for effective theories of anisotropic QGP at
weak coupling. When we studied the potential of heavy quarks in chapter 5 we have
also seen that the hard anisotropic loop effective theory gives rather different results
than even the zero coupling limit of the MT model. It is important to keep these
fundamental differences in mind whenever we want to compare the JW model and
the MT model qualitatively. Nevertheless it might be of interest to calculate several
transport coefficients that are of relevance to heavy-ion phenomenology in the MT
model also at weak coupling. Because of the absence of tachyonic modes in the gauge
boson spectrum, such calculation are in principle feasible, while the hard anisotropic
loop effective theory of a weakly coupled plasma with momentum-space anisotropy
typically suffers from nonintegrable singularities.

A very curious result was obtained in the MT model for the spectral function
for photons if the wave vector points along the anisotropy. There the UV behavior
was strongly modified and a thorough investigation of this phenomenon would be
interesting. A first check could be an analytical study of the UV asymptotics for
infinitesimal small anisotropic charge density a. Unfortunately the change in the
power law behavior can only be observed for larger a.

Another interesting finding is the behavior of the jet quenching parameter q̂. In
chapter 5 we found that for the JW model q̂L > q̂⊥ (q̂⊥ > q̂L) for prolate (oblate)
plasma. The fact that the MT model arrives at q̂L > q̂⊥ always seems to be related
to the fact that the bulk geometry is uniformly prolate (H > 1), even when the
pressure of the dual gauge theory has oblate anisotropy. It would be very exciting to
see whether dynamical holographic models of heavy-ion collisions, such as colliding
shock waves in AdS [39], where both the bulk geometry and the pressure anisotropy
have oblate character, would lead to different results (as the results obtained by the
JW model could suggest). This seems to be a most pertinent question since heavy-
ion data [136] indeed point towards q̂L > q̂⊥, which weak coupling calculations in an
anisotropic plasma appear able to reproduce [112, 113, 132].

At the end of this thesis we should also comment on the longitudinal shear vis-
cosity in the MT model. The result that it violates the holographic viscosity bound
is interesting from a purely theoretical point of view, since it demonstrates that no
higher derivative terms are needed to find at least one component of the shear vis-
cosity that violates η/s ≥ 1/4π. Recently, a very similar result has been obtained
for another holographic model, where one shear viscosity tends to zero at low tem-
perature [137]. It would be interesting to investigate further anisotropic top-down
models (as opposed to anisotropic bottom-up models for which no violation of the
holographic viscosity bound has been found so far) and study the behaviour of dif-
ferent shear viscosities. The hope would be that some pattern emerges that would
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indicate under which circumstances the holographic viscosity bound can be violated
in anisotropic systems. Aside from these theoretical questions the implications of
a longitudinal shear viscosity below the KSS bound for hydrodynamic evolution of
the QGP produced in heavy ion collisions would be interesting to study. First results
[138] obtained by including different shear viscosity components in the numerical code
of [139] however suggest that the longitudinal shear viscosity has very little impact
on the elliptic flow that is strongly dominated by the shear viscosity in the transverse
plane.



Appendix A

Basics of Relativistic
Hydrodynamics

Hydrodynamics is an effective theory that describes small frequency and large wave-
length phenomena of an underlying microscopic theory. It requires certain inputs like
the equation of state P (ε) or viscosities that must be provided either from theoretical
computations of the microscopic theory or from experiment. The relevant degrees of
freedom for this approach are expectation values of conserved currents such as the
stress energy tensor T µν . The conservation equation is given by

∂µT
µν = 0. (A.1)

It takes a long time for large wavelength excitations to relax because the conserved
energy and momentum must be transported over distances of the order of the wave-
length. Modes for which the lifetime diverges with their wavelength are therefore
known as hydrodynamic modes. For a more detailed discussion of hydrodynamics in
the context of heavy ion collisions see [140, 141, 142].

A.1 Ideal Hydrodynamics

In an ideal relativistic fluid, where there is no dissipation, the stress energy tensor
can be built out of the energy density ε, the pressure P , the fluid velocity vector uµ

(with uµu
µ = −1) and the metric gµν

T µνideal = εuµuν + P∆µν with ∆µν = gµν + uµuν (A.2)

In the local rest frame of the fluid uµ = (1,0) and Tideal
µ
ν = diag(ε, P, P, P ). From

the conservation equation (A.1) we obtain

uµ∂µε =− (ε+ P )∂µu
µ, (A.3)

(ε+ P )uµ∂µu
ρ =−∆ρν∂νP, (A.4)
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after contraction with uν and ∆ρ
ν , respectively. As a consequence of the first equation

the entropy is conserved. This becomes transparent when we use the thermodynamic
relations ε+ P = Ts and Tds = dε to rewrite it and find

∂µ(suµ) = 0. (A.5)

The second equation states that the change in velocity of a fluid cell is proportional
to the pressure gradient. It is at the basis of the result that ideal hydrodynamic
evolution transforms initial spacetime anisotropy leading to pressure gradients to
a strong elliptic flow surprisingly similar to that observed in noncentral heavy ion
collisions.

A.2 Adding Dissipation

Dissipation arises from the leading gradient terms in the energy momentum tensor
T µν = T µνideal + Πµν with

Πµν = −ησµν − ζ∆µν∂ · u, (A.6)

where σµν = ∆µα∆νβ(∂αuβ + ∂βuα) − 2
3
∆µν∂ · u. Here η and ζ are the shear and

bulk viscosity, respectively. In a system with no additional conserved charges than
energy and momentum all momentum density is due to the flow of energy density
which leads to the condition uµΠµν = 0. In general we can view this condition as a
choice of frame for the definition of the fluid four-velocity, sometimes referred to as
Landau-Lifshitz frame. While in the Landau-Lifshitz frame the energy density is at
rest, in systems with additional charges other choices are possible, e. g. the Eckart
frame where the charge density is at rest [141]. Taking the dissipative terms into
account the longitudinal and transverse components of the conservation equation are

∂µ(suµ) =
η

T
σµνσµν +

ζ

T
(∂ · u)2 (A.7)

uµ∂µu
ρ =− 1

sT
∆ρ
ν

(
∂νP − η∂µσµν − ζ∂ν(∂ · u)

)
. (A.8)

Since dissipation can only increase the entropy density from eq. (A.7) we find that
η, ζ ≥ 0. Furthermore, shear viscosity tends to decrease the effect of the pressure
gradient. Hydrodynamic evolution in viscous systems washes out the initial spacetime
anisotropy present in noncentral heavy ion collisions. Therefore, we can restrict the
maximal value of the shear viscosity by measuring the elliptic flow and it turns out
that η/s has to be remarkably small to fit the experimental data.

The first-order expression for Πµν we have given in this section turns out to be
not suitable for numerical computations. The reason is that truncating the gradient
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expansion after the leading term leads to acausal propagation of certain modes. The
problem can be solved by taking higher orders into account. Discussions of second-
order viscous hydrodynamics can be found e.g. in [143, 144, 145, 146].

A.3 Anisotropic Hydrodynamics

Systems that are homogeneous but anisotropic are well known in nonrelativistic hy-
drodynamics. Examples are nematic liquid crystals, which have one preferred axis
characterized by the director field n, but do not depend on the direction (n and
−n are physically equivalent). These liquid crystals posses five first-order dissipative
coefficients, of which two are shear viscosities [108].

The relativistic version of a homogeneous but anisotropic energy momentum ten-
sor neglecting dissipation is given by

T µνideal = εuµuν + P⊥∆µν + δn∆µ
α∆ν

βn
αnβ, (A.9)

where the pressure along the director field Pn = P⊥+ δn. Adding first order gradient
terms we can write the dissipative part as

Πµν = −ηµνρσuρσ, (A.10)

where we have used uρσ = 1
2
(∂ρuσ + ∂σuρ). In the Landau-Lifshitz frame uµΠµν = 0

and therefore the viscosity tensor has nonvanishing components only in the spatial
direction. In general there are 21 independent components, but in the case of interest
to us, where the fluid has only one preferred axis, this reduces to five independent
components. When we specify the z-direction as the preferred direction in our plasma
these are ηxxxx = ηyyyy, ηzzzz, ηxxzz = ηyyzz, ηxyxy and ηxzxz = ηyzyz, with the last
two being shear viscosities. In principal further transport coefficients can arise from
derivatives of the director field. However, in this work we only consider a constant
preferred direction and therefore do not discuss the most general case. In the context
of relativistic superfluids a discussion of viscosities in the anisotropic case can be
found in the appendix of [105, 107].

A.4 Momentum Diffusion

In this section we calculate the diffusion constants for momentum diffusion by con-
sidering small fluctuations in the energy density ε = ε0 + δε, the transverse pressure
P⊥ = P 0

⊥ + δP⊥, the pressure difference δz = δ0
z + δδz and the velocity vector whose

components are u0 = 1 +O(u2) and u� 1. To first order in the small quantities the
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conservation equation ∂0T
0y = −∂xT xy − ∂yT yy − ∂zT zy gives

−iω(ε0 + P 0
⊥)uy =− ηxyxy

(
kxk

xuy + kxk
yux
)

+ ikyδP⊥ − 2ηyyyykyk
yuy

− ηzyzy
(
kzk

zuy + kzk
yuz
)
. (A.11)

For ky = 0 and kz = 0 we find the dispersion relation of the transverse shear mode

ω = −i
ηxyxy
ε0 + P 0

⊥
kxk

x, (A.12)

while for ky = 0 and kx = 0 we obtain

ω = −i
ηzyzy

ε0 + P 0
⊥
kzk

z. (A.13)

If we instead start from the conservation equation ∂µT
µz and set kz = 0 and ky = 0

the dispersion relation we get is

ω = −i ηxzxz
ε0 + P 0

⊥ + δ0
z

kxk
x. (A.14)

In the MT model the entropy density is given by s = (ε0 + P 0
⊥)/T and therefore the

diffusion constants obtained from (A.12) and (A.13) are

Dxy =
ηxyxy
sT

and Dzy =
ηzyzy
sT

, (A.15)

respectively. The final diffusion constant we could in principle obtain from (A.14) is
related to a shear mode that couples to axion fluctuations. However, then the stress
energy tensor obtained by varying with respect to the metric is not conserved any
longer and therefore the hydrodynamic equations we consider here are not applicable.
We will not study this channel in this thesis.



Appendix B

Ingredients of the string theoretic
foundation of AdS/CFT

In this appendix we want to review in a more formal way the original arguments for
the holographic duality [20] (see also the detailed AdS/CFT reviews [147, 148, 149]
and string theory text books [150, 151, 152]). An important role play objects in string
theory called D-branes. The “D” stands for Dirichlet and a Dp-brane is a (p + 1)-
dimensional hyperplane with p spatial dimensions on which open strings can end.
These D-branes can be studied in different limits in order to learn something about
their properties. We start by discussing two limits and then present the argument for
the holographic duality. Finally, we will discuss holographic renormalization, which
plays an important role in applying the duality.

B.1 D-branes and Yang-Mills theory

In string theory Dp-branes carry Ramond-Ramond (RR) charge and if we place N
Dp-branes on top of each other, the resulting (p + 1)-dimensional hyperplane car-
ries exactly N units of the (p + 1)-form Cp+1 charge. There exist electrically and
magnetically charged D-branes with the magnetic dual form

dC̃D−p−3 = F̃D−p−2 = ?Fp+2 = ?dCp+1 (B.1)

with D being the dimension of the spacetime. Magnetic and electric charges have to
obey the Dirac quantization condition QpQ̃D−p−4 = 2πk with k ∈ Z.

If we attach an open string endpoint to the Dp-brane it must obey Neumann
boundary conditions along the (p + 1) directions and Dirichlet boundary conditions
along the transverse directions. In type IIB (IIA) string theory half of the supersym-
metry is preserved if p is odd (even). If we consider a stack of N Dp-branes the open
string endpoints carry Chan Patton factors and the low energy effective theory of
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open strings on the stack of Dp-branes is a U(N) gauge theory in (p+ 1) dimensions
with 16 supercharges. The full low energy effective action taking into account closed
and open string excitations can be schematically written as

S = Sbulk + Sbrane + Sinteraction. (B.2)

If we take all energies to be small or equivalently take the characteristic scale of the
theory, the string length, ls → 0 keeping all other dimensionless parameters (like N
or gs) finite, Sinteraction vanishes and we end up having a free bulk supergravity in 10
dimensions from the closed strings and a (p+1) dimensional super Yang-Mills (SYM)
theory from the open strings. This description is good in string perturbation theory
which is valid for gsN � 1.

B.2 D-branes and Supergravity

Another possibility to obtain information about D-branes is to consider the classical
supergravity limit where the action in the string frame becomes

S =
1

(2π)7l8s

∫
d10x
√
−g
(
e−2Φ

(
R+ 4(∂φ)2

)
− 2

(8− p)!
F 2
p+2

)
, (B.3)

with ls being the string length, φ the dilation and Fp+2 = dCp+1.
We are interested in a solution of a flat p-brane that is charged under Cp+1. An

appropriate ansatz for the metric is

ds2
10 =

−f(r)dt2 +
∑p

i dx
idxi√

Hp(r)
+
√
Hp(r)

( dr2

f(r)
+ r2dΩ2

8−p

)
(B.4)

and after solving the equations of motion we obtain

e2φ = g2
sH

(3−p)/2
p (r), (B.5)

with Hp(r) = 1 + L7−p/r7−p and f(r) = 1 − r7−p
0 /r7−p. One can also obtain the

expression for the Cp+1 form, the charge N and the asymptotic ADM mass M (see
e.g. [152]). We note that for r →∞ the metric becomes that of flat ten dimensional
space. Extremal branes with r0 = 0 and (2π)pgsl

p+1
s M = N are BPS states and

preserve half of the spacetime supersymmetry. The near horizon region, also called
the “throat”, is obtained in the limit of small r where we can write the metric as

ds2
10 =

√
r7−p

L7−p

(
− dt2 +

p∑
i

dxidxi
)

+

√
L7−p

r7−p

(
dr2 + r2dΩ2

8−p
)
. (B.6)
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The throat size is proportional to the charge( L

2πls

)7−p
=

gsN

7− p
Γ(9−p

2
)

2π(9−p)/2 . (B.7)

In this section we are considering classical supergravity and this is only justified if
the curvature of the p-brane geometry is small compared to the string scale, so that
stringy corrections are negligible. This implies L � ls. Additionally, we want to
suppress loop correction and therefore also the effective string coupling eφ must be
kept small. This is easy to achieve for p = 3 where the dilaton is constant and
therefore eφ can be set to a small value by demanding gs < 1. Eventually, we find
using the relation between L and N that the supergravity description is valid for
1 � gsN < N . We emphasize that this is the opposite limit than in the previous
section. For p 6= 3 the metric is singular at r = 0 and the classical supergravity
approximation is valid only in a limited region.

To conclude this section we write down the near horizon geometry in the extremal
case for p = 3

ds2
10 =

r2

L2

(
− dt2 +

3∑
i

dxidxi
)

+
L2

r2
dr2 + L2dΩ2

5, (B.8)

which is a direct product of a five-sphere and AdS5. To compare it to the metric we
write down in the introduction (1.6) we need to transform r → L2/v.

B.3 Statement of the Duality

In the following we will concentrate on the famous example of D3-branes in type
IIB string theory. According to the previous sections we can then consider two
different approximations in the limits gsN � 1 and gsN � 1. For gsN � 1 we
can use perturbative string theory around flat spacetime and in section B.1 we found
that the low energy description of open strings ending in D3-branes is N = 4 SYM
theory living in four dimensions. For gsN � 1 a good approximation is given in
terms of perturbation theory around a curved spacetime with no branes and no open
strings which is classical type IIB supergravity theory. To find the duality we have
to concentrate on the low energy limit in both cases. We have already discussed that
for small gsN we then obtain a free 10 dimensional supergravity for the closed strings
and an N = 4 SYM theory in 4 dimensions for the open strings. For large gsN we
find two kinds of low energy excitations. First of all there are massless excitations
with large wavelength. Due to the large wavelength they can not resolve the throat
and decouple from the near horizon region. The second kind of low energy excitations
are states that can have any energy, but are at small r and get redshifted because√
gtt → 0 for r → 0. Therefore, we end up with
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large λ small λ

throat states
(IIB states in AdS5 × S5)

4 dim N = 4 SU(N) SYM

+ +

Closed strings in R9,1 Closed strings in R9,1

=

where we have introduced the t’Hooft coupling λ = 4πgsN = g2
YMN . If we assume

that taking the low energy limit commutes with changing λ we can state that N = 4
SYM theory is identical to full string theory in AdS5 × S5. In order for a gravity
theory to be a good approximation for string theory we have to ensure that L/ls � 1,
which can be achieved by taking the limit where at first gs → 0 and N → ∞ such
that λ = const. and in the end we take λ → ∞. Therefore it becomes possible
to investigate strongly coupled N = 4 SYM theory by studying a gravity theory in
AdS5 × S5.

Here a comment is in order about the gauge group SU(N). The gauge group
generated by a stack of N D3-branes is U(N), which itself is equivalent to a free
supersymmetric U(1) theory and an SU(N) theory. Since on the AdS5 × S5 side of
the duality all the excitations couple to gravity the U(1) factor is not included in the
duality, but can be thought of as representing the free motion of the position of the
D3-branes.

Finally, let us mention the bulk field and boundary operator correspondence. For
example, we consider an additional term in the gauge theory action of the form∫

d4xφ0(x)O(x). (B.9)

φ0(x) corresponds to the boundary value of a scalar field, for example the dilaton
(then the operator would correspond to the Lagrangian density operator), such that
φ(x, u)|u=0 = φ0(x) and u = 0 corresponds to the boundary of AdS5. Therefore, we
could equally well formulate the AdS/CFT correspondence as

〈e
∫
d4xφ0(x)O(x)〉CFT4 = Zstring

[
φ(x, u)|u=0 = u4−∆φ0(x)

]
, (B.10)

where ∆ is the scaling dimension of the operator O. This relation between the
generating functionals can be used to calculate correlators.

B.4 Holographic Renormalization

When we attempt to compute n-point correlators with use of eq. (B.10), we encounter
divergencies. These are the well known UV divergencies on the gauge theory side,
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but also appear in the gravity theory. To obtain finite results we have to employ a
procedure called holographic renormalization [53, 153, 154].

We consider a spacetime that is asymptotically AdS and has the metric

ds2 =
dρ2

4ρ2
+

1

ρ
gµν(x, ρ)dxµdxν (B.11)

gµν(x, ρ) =g(0)µν(x) + g(2)µν(x)ρ+ ..., (B.12)

where ρ = v2 (and v is the holographic coordinate in Fefferman-Graham coordinates).
Suppressing all spacetime and internal indices we denote a generic bulk field by
F(x, ρ) and its near-boundary behavior is determined by

F(x, ρ) = ρm
(
f(0)(x) + f(2)(x)ρ+ ...+ ρn

(
f(2n)(x) + f̃(2n)(x) ln ρ

)
+ ...

)
. (B.13)

The asymptotic behaviors of the two solutions of the equations of motion for F are
ρm and ρm+n. If n was not an integer, the logarithmic term would not be present. It
turns out that f(0) is the field source of the theory and f(2), ..., f(2n−2) and f̃(2n) are

local functions of f(0). f̃(2n) is related to conformal anomalies. f(2n) is not determined
by the near-boundary analysis and is related to the exact 1-point function of the
corresponding operator OF .

Next, we calculate the on-shell action of F and evaluate the boundary terms at
ρ = ε. A finite number of terms diverge as ε → 0 and the on-shell action takes the
form

So.s.[f(0), ε] =

∫
ρ=ε

ddx
√
|g(0)|

(
ε−νa(0) + ε−ν+1a(2) + ...− ln ε a(2ν) +O(ε0)

)
, (B.14)

with ν > 0 that only depends on the scale dimension of the dual operator. In the
above expression all a(2k)’s are local functions of f(0). The action can be made finite
by adding counterterms

Sc.t.[F(x, ε), ε] = −divergent terms of So.s.[f(0), ε]. (B.15)

This step requires an inversion of eq. (B.13) up to the desired order. The subtracted
action

Ssub[F(x, ε), ε] = So.s.[f(0), ε] + Sc.t.[F(x, ε), ε] (B.16)

has a finite ε→ 0 limit and the renormalized action is

Sren[f(0)] = lim
ε→0

Ssub[F(x, ε), ε]. (B.17)
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Eventually we can obtain the n-point function by functional differentiation. For the
1-point function in the presence of sources we get

〈OF〉 =
1√
|g(0)|

δSren

δf(0)

= lim
ε→0

( 1

εd/2−m
√
|γ|

δSsub

δF(x, ε)

)
, (B.18)

where γµν = gµν(x, ε)/ε is the induced metric at the regulated surface ρ = ε. For
the simplest example, the massive scalar field, all the steps are discussed explicitly
in [154, 9].

To conclude we state the general results for the stress-energy tensor, which is the
dual operator to the metric, in d = 4 dimensions [53]. The general form of gµν close
to the boundary is

gµν(x, ρ) = g(0)µν + ...+ ρ2g(4)µν + h(4)µνρ
2 ln ρ+ .... (B.19)

Solving Einstein’s equations we find

g(4)µν =
1

8
g(0)µν

(
(Trg(2))

2 − Trg2
(2)

)
+

1

2
(g(2))

2
µν −

1

4
g(2)µνTrg(2) + tµν , (B.20)

with the symmetric tensor tµν obeying the relations

∇µtµν = 0, Tr t = −1

4

(
(Trg(2))

2 − Trg2
(2)

)
. (B.21)

Here ∇µ is the covariant derivative constructed from gµν . After performing the pro-
cedure of holographic renormalization we find

〈Tµν〉 =
1

8πGN

(
2tµν + 3h(4)µν

)
and 〈T µµ 〉 =

1

16πGN

(
− 2a(4)

)
. (B.22)

We note that a(4) is the analog of the term multiplying ln ε in eq. (B.14) and is related
to h(4). In conformal theories 〈T µµ 〉 = 0 and therefore a(4) and h(4)µν vanish. However,
if h(4)µν does not vanish, it turns out that its contribution to the stress-energy tensor
is renormalization scheme dependent. The scheme independent part of Tµν can then
be given as

〈Tµν〉 =
4

16πGN

(
g(4)µν −

1

8
g(0)µν

(
(Trg(2))

2 + Trg2
(2)

)
− 1

2
(g(2))

2
µν +

1

4
g(2)µνTrg(2)

)
. (B.23)



Appendix C

Hard-anisotropic-loop effective
theory

In the main body of the text we often attempt to compare our findings to weakly
coupled anisotropic plasma. A lot of computations in the literature have been done
in the “hard anisotropic loop” (HAL) framework [155]. This is a generalization of the
“hard thermal loop” (HTL) [156] effective theory that describes collective behavior
in thermal equilibrium. In this appendix we summarize important aspects needed for
the comparisons done in the main body of this thesis and refer the interested reader
to the original publications for details.

C.1 Distribution functions and normalization

In a weakly coupled (nearly collisionless) ultrarelativistic gauge theory plasma there
is a hierarchy of scales, with hard scales p defined as typical energies and momenta
of plasma constituents, and soft scales gp, with coupling constant g � 1, pertaining
to leading-order collective phenomena such as Debye screening and plasmon masses.
With anisotropic distribution functions for hard particles, the corresponding “hard
anisotropic loop” effective theory involves a rich spectrum of stable and unstable
modes at momentum scales gp, which have been worked out completely for axisym-
metric deformations of distribution functions of the form [30]

f(p, ξ, phard) = N(ξ)fiso

(√
p2
⊥ + ξp2

z, phard

)
=

N(ξ)

exp
(√

p2
⊥ + ξp2

z/phard
)
∓ 1

, (C.1)

where the sign depends on whether we consider bosons or fermions. Here the anisotropy
is along the z-direction and N(ξ) is some renormalization factor with N(0) = 1 for
vanishing anisotropy parameter ξ. A prolate momentum distribution is obtained for
−1 < ξ < 0, whereas ξ > 0 parametrizes oblate momentum distributions. phard is
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ξ ∆ N (n) N (ε) p
(n)
hard/T p

(ε)
hard/T

−0.9 −0.8365 0.3162 0.1678 0.681 0.640
0 0 1 1 1 1
10 6.442 3.317 4.075 1.491 1.421
100 55.72 10.05 12.74 2.158 1.889

Table C.1: Anisotropy parameters in the hard anisotropic loop effective theory

the momentum scale of the hard particles that is equal to the temperature in the
isotropic case.

The stress-energy tensor for deformed distributions functions is given by

T µν = Neff.

∫
d3p

(2π)3
pµpνf(p). (C.2)

While the pressure anisotropy ∆ = P⊥/Pz − 1 is directly determined by ξ (see Table
C.1), a comparison of quantities at different anisotropy is rather ambiguous [126].
This could be done, e.g., by keeping the number density or the energy density fixed,
but in both cases it also depends on whether this is done by adjusting the normaliza-
tion N or the parameter phard. Keeping number densities of hard particles fixed by
adjusting N , as done in Ref. [157, 115], leads to N (n)(ξ) =

√
1 + ξ, whereas constant

energy density in hard particles requires N (ε)(ξ) = R−1(ξ) with

R(ξ) =

{
1
2

[
(1 + ξ)−1 + ξ−1/2arctan(

√
ξ)
]

for ξ > 0
1
2

[
(1− ξ)−1 + (−ξ)−1/2atanh(

√
−ξ)

]
for ξ < 0

(C.3)

Alternatively, one could compare isotropic and anisotropic plasmas by fixing N =
1 and adjusting phard. Keeping the number density constant requires

p
(n)
hard = (1 + ξ)1/6T, (C.4)

whereas for constant energy density one has

p
(ε)
hard = R−1/4(ξ)T, (C.5)

with T = phard|ξ=0.

C.2 Relation to holographic models

C.2.1 JW model

The anisotropy parametersB and ξ can be related by comparing the pressure anisotro-
pies, but it is important to note that HAL only covers the range where both Pz and
P⊥ are positive.
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B ξ PL/ε PT/ε
−4 - 3 −1

−
√

6 −1 1 0
−1 −0.69675 0.5620 0.2190
−0.1 −0.1160 0.35556 0.3222

0 0 1/3 1/3
0.1 0.1355 0.3111 0.3444

1 4.8102 0.1047 0.4477√
2 ∞ 0 1/2√

12 - −1 1

Table C.2: Relation between different anisotropy parameters

Using the analytic expressions for ε, P⊥ and Pz of [34] the relation between ξ and
B is given by

√
36− 2B2 + 2B√
36− 2B2 − 4B

=
ξ − 1

2
+

ξ

(ξ + 1)ξ−1/2 atan ξ1/2 − 1
. (C.6)

For small anisotropies ξ = 5
4
B + O(B2). In Table C.2 we give the corresponding ξ

explicitly for certain values of B.

C.2.2 MT model

There is no precise relation between the parameters of the MT model and those of
HAL effective theory. For example for any ∆ ≥ 0 we can find two distinct configu-
rations in the MT model that would give the same pressure anisotropy. Additionally
to the relation between parameters being not unique there are also conceptual differ-
ences. While the anisotropically θ-deformed theory describes a medium in thermal
equilibrium, HAL does not.

On some occasions we nevertheless try to compare the models qualitatively men-
tioning differences when going from oblate to prolate plasma.



Appendix D

Details of the anisotropic
axion-dilaton-gravity dual

In this section we want to fill in the gaps in section 2.2 and present in detail our
procedure to obtain the numerical solution.

D.1 Equations of motion

The equations for the functions in the line element which can be extracted from six
independent Einstein and dilaton equations read

H = e−φ, (D.1)

F =
e−φ/2

4(φ′ + uφ′′)

(
a2e7φ/2(4u+ u2φ′) + 16φ′

)
, (D.2)

B′

B
=

1

24 + 10uφ′

(
24φ′ − 9uφ′2 + 20uφ′′

)
(D.3)

and depend only on the dilaton1. The latter obeys a third order non linear differential
equation

0 =u(5uφ′ + 12)(uφ′′ + φ′)
(

256φ′φ′′ − 16φ′3(7uφ′ + 32)
)

+

φ′
(
ua2e7φ/2(uφ′ + 4) + 16φ′

)(
13u3φ′4 + 8u(11u2φ′′2 − 60φ′′ − 12uφ′′′)

+ u2φ′3(13u2φ′′ + 96) + 2uφ′2(−5u3φ′′′ + 53u2φ′′ + 36)

+ φ′(30u4φ′′2 − 64u3φ′′′ − 288 + 32u2φ′′)
)
. (D.4)

1The freedom to normalize (D.3) is used to set Bbdry = 1
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In the above, primes denote derivatives with respect to the holographic coordinate
u. In eq. (D.4) we can get rid of the parameter a by shifting the dilaton

φ→ φ̃ = φ+
4

7
ln a (D.5)

and because we chose to fix φbdry = 0 we find

a = e7φ̃bdry/4. (D.6)

This only leads to an overall factor of a2/7 in eq. (D.2), while all the other factors of
a get eliminated.

D.2 Numerical solution

D.2.1 Series expansion close to the horizon

We can expand the dilaton close to the horizon as

φ̃ = φ̃h +
∑
n≥1

φ̃n(u− uh)n. (D.7)

Because all the functions in the bulk metric depend on φ̃ only, it is enough to study
the expansion of the dilaton here. Because the ODE for the dilaton is of third order
we need to specify φ̃1 and φ̃2 in addition to the value at the horizon. φ̃1 can be
obtained from eq. (D.2) and the requirement that Fh must vanish. This gives

φ̃1 = − 4uhe
7φ̃h
2

u2
he

7φ̃h
2 + 16

. (D.8)

Next, we can insert the series for φ̃ into eq. (D.4) and get as possibilities for φ̃2

φ̃2 =
2e

7φ̃h
2

u2
he

7φ̃h
2 + 16

or φ̃2 =
2u2

he
7φ̃h

(
u2
he

7φ̃h
2 + 128

)
(
u2
he

7φ̃h
2 + 16

)
3

. (D.9)

However, only the second option leads to a unique solution completely fixed by the
horizon data φ̃h and uh, which is what we are looking for. Eventually we obtained
all the coefficients up to O

(
(u− uh)36

)
in the dilaton series.
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D.2.2 Series expansion close to the boundary

We can now repeat the procedure in the vicinity of the boundary at u = 0. The form
of the series are

φ̃ =
∑
n≥0

2n∑
k=0

φ̃2n,ku
2n(lnu)k (D.10)

F =
∑
n≥0

2n∑
k=0

F2n,ku
2n(lnu)k (D.11)

B =
∑
n≥0

2n∑
k=0

B2n,ku
2n(lnu)k (D.12)

H =
∑
n≥0

2n∑
k=0

H2n,ku
2n(lnu)k, (D.13)

where the constants F4 and B4, defined in section 2.2.2, correspond to F4,0 and B4,0,
respectively. We again concentrate on the dilaton, because all the other functions
can be expressed in terms of it. For φ̃ the expansion is given by

φ̃(u) =φ̃bdry −
1

4
u2e

7φ̃bdry
2 + u4

(
φ̃4,0 −

1

6
e7φ̃bdry ln(u)

)
(D.14)

+ u6

(
φ̃6,0 +

23

432
e

21φ̃bdry
2 ln(u)

)
+O(u8), (D.15)

with all higher terms only depending on φ̃bdry, φ̃4,0 and φ̃6,0. We computed the series
up to order O(u22). φ̃4,0 and φ̃6,0 must then be determined by matching the series to
the dilaton which has been numerically integrated from the horizon sufficiently close
to the boundary. We will discuss this in a moment. We conclude this section with
stating the expressions for F4,0 and B4,0

B4,0 =
7φ̃4,0

2
− 121e7φ̃bdry

1152
, (D.16)

F4,0 = −
e−

7φ̃bdry
2

(
−576φ̃4,0e

7φ̃bdry
2 + 725e

21φ̃bdry
2 − 20736φ̃6,0

)
1728

. (D.17)

D.2.3 Matching of solutions

The matching between the horizon data and the boundary data was done by applying
the Newton-Raphson method following partly the description given in the appendix
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of [158]. We start by integrating numerically from close to the horizon to near the
boundary2 for fixed uh and φ̃h and compute φ̃, φ̃′ and φ̃′′ at some value u∗ close to the
boundary. A convenient choice in most cases is u∗ = 1/100, however if uh becomes
too small we have to adjust the value of u∗ accordingly. Additionally, we start with
a guess X =

(
φ̃bdry, φ̃4,0, φ̃6,0

)
and compute φ̃, φ̃′ and φ̃′′ from the boundary series.

Then we construct the ’mismatch vector’ M, which is given by

M =
(
φ̃, φ̃′, φ̃′′

)
(u∗)|boundary data −

(
φ̃, φ̃′, φ̃′′

)
(u∗)|horizon data (D.18)

and obviously depends on our initial guess. For the correct choice of X the mismatch
vector must vanish. Therefore, we are looking for a good enough guess such that the
Manhattan norm |M| =

∑3
i=1 |Mi| is below some threshold3. Essentially the problem

is finding a root of M. Next, the Jacobian matrix J of partial derivatives of the
mismatch vector (Jij = ∂jMi) is computed. Then a new guess is formed by

Xnew = X− J−1M. (D.19)

This procedure is iterated until Xnew converges and is sufficiently close to the true
value, such that the norm of M drops below the specified threshold.

For this method to work the initial guess has to be reasonably good. We found it
is extremely sensitive on our initial choice of φ̃bdry, which we fix by taking the value
of φ̃|horizon data as close to the boundary as possible. Since the initial values of φ̃4,0

and φ̃6,0 are less critical we start with setting them to zero always.

2We typically choose to integrate from uh − 1/1000 to 1/1000. We use Mathematica’s NDSolve

with PrecisionGoal and AccuracyGoal set to 20 and WorkingPrecision set to 40.
3A convenient threshold was 10−25.



Appendix E

Details on the zero-coupling limit
of the MT model

E.1 T = 0 contribution

The T = 0 contribution to the free energy density is given by

f(0, a) = Ω +
1

2

∫
k

[ω+(k⊥, kz) + ω−(k⊥, kz)] (E.1)

= ΩB(Λ⊥, ε) +
1

4π

∫
kz

∫ Λ⊥

0

dk⊥k⊥

[√
k2
⊥ +M2

+(kz) +
√
k2
⊥ +M2

−(kz)

]
,

where we have introduced a UV regulator for the integration over the transverse
momenta and anticipated that the zero-loop contribution (which is just Ω) will need
to be renormalized. The integral over the transverse momentum can be carried out
easily, giving∫ Λ⊥

0

dk⊥k⊥

√
k2
⊥ +M2

±(kz) =

∫ ∞
0

dkk

[√
k2 +M2

±(kz)− k −
M2
±(kz)

2k

]
+

∫ Λ⊥

0

dk

(
k2 +

1

2
M2
±(kz)

)
+O(1/Λ⊥) (E.2)

= −1

3
M3
±(kz) +

1

3
Λ3
⊥ +

1

2
M2
±(kz)Λ⊥ +O(1/Λ⊥).

Inserting this into f(0, a) above, dropping terms that vanish as the regulators are
removed, we get

f(0, a) = − 1

12π

∫
kz

[
M3

+(kz) +M3
−(kz)

]
+

Λ⊥
4π

∫
kz

(
2k2

z + a2
)

+ ΩB(Λ⊥, ε)

= − 1

12π

∫
kz

[
M3

+(kz) +M3
−(kz)

]
+ ΩB(Λ⊥, ε). (E.3)
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Extracting the large-kz behavior, the first term can be written as

∑
±

∫
kz

M3
±(kz) =

1

π

∫ ∞
0

dkz

[
M3

+(kz) +M3
−(kz)− 2k3

z −
9

4
a2kz −

15a4

64
√
k2
z + a2

]

+

∫
kz

[
2k2

z +
9

4
a2kz +

15a4

64
√
k2
z + a2

]
+O(ε)

=
c a4

π
+

15a4

128π

(
1

ε
− ln

a2

Λ̄2

)
+O(ε), (E.4)

where

c =

∫ ∞
0

dx

[(
x2 +

1

2
(1 +

√
1 + 4x2)

)3/2

+

(
x2 +

1

2
(1−

√
1 + 4x2)

)3/2

−2x3 − 9

4
x− 15

64
√

1 + x2

]
= 0.29136 . . . (E.5)

The free energy density at T = 0 is then

f(0, a) = − c a4

12π2
− 5a4

512π2

(
1

ε
− ln

a2

Λ̄2

)
+ ΩB(Λ⊥, ε)

≡ − c a4

12π2
+

5a4

256π2
ln
a

Λ̄
+ Ω(Λ̄), (E.6)

where Ω(Λ̄) is the renormalized cosmological constant in the MS-scheme.

E.2 Finite T contribution

The finite-T contribution is given by

f(T, a)− f(0, a) = T
∑
±

∫
k

ln
(
1− e−βω±

)
. (E.7)

The integral over the transverse momenta can be carried out immediately using stan-
dard integrals. Noting that

2T
∂

∂k2
⊥

ln
(
1− e−βω±

)
=

1

ω±

1

eβω± − 1
, (E.8)

we find

T

∫
d2k⊥
(2π)2

ln
(
1− e−βω±

)
= −3T 3

2π
h4 (M±(kz)/T, 0) , (E.9)
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where the function hn(y, r) is defined by

hn(y, r) =
1

Γ(n)

∫ ∞
0

dx
xn−1√
x2 + y2

1

e
√
x2+y2−ry − 1

. (E.10)

Their properties are discussed in detail in [159]. In particular,

∂

∂y
hn+1(y, 0) = −y

n
hn−1(y, 0), (E.11)

h2(y, 0) = − ln
(
1− e−y

)
, (E.12)

h4(y, 0) =
1

3

[
y Li2

(
e−y
)

+ Li3
(
e−y
)]
. (E.13)

We now get for the integral over the longitudinal momentum,∫ ∞
−∞

dkz
2π

h4 (M±/T, 0) =
1

π

∫ ∞
0

dkz h4 (M±/T, 0)

=
1

3πT 2

∫ ∞
0

dkz kzM±
dM±
dkz

h2 (M±/T, 0) (E.14)

= − T

3π

∫ ∞
0

dx x2

(
1± y√

x2 + y2

)
ln
(

1− e−
√
x2+y2∓y

)
,

where we have denoted y = a/(2T ). The finite-T contribution is thus given by the
integral

f(T, a)− f(0, a) =
T 4

2π2

∑
±

∫ ∞
0

dx x2

(
1± y√

x2 + y2

)
ln
(

1− e−
√
x2+y2∓y

)
.

(E.15)

E.2.1 High- and low-T expansions

Even though we shall study the thermodynamic properties of this system numerically,
it is instructive to calculate the analytic high- and low-T approximations to the free
energy as well. As derived above, the finite-T contribution is given by

f(T, a)− f(0, a) =− 4T 4

π2
[h5(y, 1) + h5(y,−1)] +

T 4

2π2
I(y, 1), (E.16)

where

I(y, r) =

∫ ∞
0

dx
yx2√
x2 + y2

[
ln
(

1− e−
√
x2+y2−ry

)
− ln

(
1− e−

√
x2+y2+ry

)]
. (E.17)
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We immediately find that

I(y, 0) =0, (E.18)

∂I

∂r
=2y2 [h3(y, r) + h3(y,−r)] (E.19)

and thus

I(y, 1) =2y2

∫ 1

0

dr [h3(y, r) + h3(y,−r)] . (E.20)

The high-T (small-y) expansions of hn(y, r)+hn(y,−r) have been computed in [159],
with the results

h5(y, 1) + h5(y,−1) =
π4

180
+
π2y2

48
+
y4

64

(
ln

y

4π
+ γE +

7

12

)
+O(y6), (E.21)

h3(y, r) + h3(y,−r) =
π2

6
− πy

2

√
1− r2 − y2

4

(
ln

y

4π
+ γE −

1

2
+ r2

)
+O(y4)

(E.22)

Putting everything together, and setting y = a/(2T ) we get

f(T, a)− f(0, a) = −π
2T 4

45
+
a2T 2

48
− a3T

64
− 5a4

256π2

(
ln

a

8πT
+ γE −

1

60

)
+O(a6T−2)

(E.23)
for the high-T expansion. On the other hand, at low temperatures (high-y limit) we
have

h5(y, 1) + h5(y,−1) =
1

64

√
πy

2

(
8ζ(5/2)y + 15ζ(7/2) +O(1/y)

)
, (E.24)

h3(y, r) + h3(y,−r) =
1

2

√
πy

2

[
Li3/2(e(r−1)y) + Li3/2(e−(r+1)y)

+
3

8y

(
Li5/2(e(r−1)y) + Li5/2(e−(r+1)y)

)
+O(1/y2)

]
, (E.25)

⇒ I(y, 1) =
1

8

√
πy

2

(
8ζ(5/2)y + 3ζ(7/2) +O(1/y)

)
. (E.26)

Combining the results gives us

f(T, a)− f(0, a) = −3ζ(7/2)

8π3/2
a1/2T 7/2 +O(a−1/2) (E.27)

in the low-T limit.
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