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Abstract

The mixed dynamic form factor (MDFF) is the key quantity for inelastic
scattering of electrons in a crystal. In this work, it is shown how the MDFF
can be brought into a diagonal form using matrix diagonalization techniques.
In this way the MDFF is transformed to a new basis set, thereby reducing
the number of contributing terms in the MDFF. This basis transformation
leads to a natural basis which elucidates the underlying physics. It is further
shown how to make calculations more accurate by removing several approx-
imations. So far, inelastic scattering models are mainly based on isolated
atoms, without taking into account the crystal environment of the material.
Therefore the cross-density of states (XDOS) was used to also include crys-
tal field effects. In addition, the dipole approximation was replaced with the
fully weighted radial wavefunction overlap. With this improved calculation
method, it is possible to make predictions for the direct imaging of atomic
orbitals. Finally, simulations were performed on several examples to show
its versatility.



Zusammenfassung

Der gemischte dynamische Formfaktor (“mixed dynamic form factor”, MDFF)
ist essentiell für die Beschreibung von inelastischer Streuung von Elektronen
in einem Kristall. In dieser Arbeit wird beschrieben, wie man den MDFF
mit Hilfe von Matrixdiagonalisierung in eine diagonale Form bringen kann.
Dadurch wird der MDFF in eine neue Basis transformiert, wobei die Anzahl
der im MDFF beitragenden Terme reduziert wird. Diese Basistransforma-
tion führt das System in eine natürlichere Basis über und liefert dadurch
Informationen über die zugrundeliegende Physik. Weiters wird gezeigt, wie
man die Berechnung des MDFF präziser machen kann, indem man verschie-
dene Näherungen entfernt. Bisherige Modelle zur Beschreibung von inela-
stischer Streuung basieren auf der Annahme isolierter Atomen, ohne dass
das kristallographische Umfeld des Materials berücksichtigt wurde. Deshalb
wurde die “cross-density of states”(XDOS) verwendet um auch Kristallfeld-
effekte zu berücksichtigen. Zusätzlich wurde die Dipolnäherung mit dem
gewichteten radialen Wellenfunktionsüberlapp ersetzt. Mit dieser verbesser-
ten Rechenmethode ist es möglich, Vorhersagen über das direkte Abbilden
von Atomorbitalen zu treffen. Um die Vielseitigkeit der Methode zu zeigen,
wurden Simulationen für verschiedene Beispiele gerechnet.
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Chapter 1

Introduction

1.1 Aim of this thesis

The MDFF is the key quantity in order to describe the inelastic scattering
of electrons in a crystal. [1–3] It is crucial for image simulations in order to
plan and understand experiments with a transmission electron microscope
(TEM). So far inelastic scattering models were based on the dipole approx-
imation but recently it has been shown that this approximation can lead to
severe errors. [2] Therefore, the fully weighted radial wavefunction overlap
was used to perform accurate calculations. Further, instead of looking at
an isolated atom, crystal field effects were also taken into account and the
cross density of states (XDOS) was included. Beside of making simulations
more exact, the aim of this thesis was to find the most suitable basis set to
describe a system: a basis which provides us with more physical insight into
the problem and a simpler mathematical description of the system. Con-
ventionally, the MDFF is given in a Y m

l -basis. In this representation, many
of the off-diagonal matrix elements can be non-zero which describe corre-
lation effects. Performing a basis transformation in such a way that the
MDFF is diagonal in the new basis, reduces the number of terms and leads
to a simpler and natural description of the system. With recent advances
of aberration corrected microscopes, improved simulation techniques gain
more and more importance and it is even possible to make predictions for
the direct imaging of atomic orbitals as will be shown below.

In the first part of this thesis I will explain the theoretical description
of the diagonalization of the MDFF. The different steps needed for the im-
plementation of this procedure are shown in the second chapter. Finally,
simulations for two different sample materials were performed.

7



1.2. THE TRANSMISSION ELECTRON MICROSCOPE 8

1.2 The Transmission Electron Microscope

The investigation and characterization of materials on the nanoscale became
of particular interest in the 20th century. The development of the transmis-
sion electron microscope (TEM) by Ernst Ruska in 1936 [3] provided a very
useful but also expensive tool for this analysis. In addition to imaging, a
broad range of characterization techniques with high spatial and analyti-
cal resolution is possible with this instrument. [4] Nowadays, the TEM is
widely used in different scientific fields, e.g. material science, biology and
life science. This section gives a brief overview of the structure of the TEM
and of electron energy loss spectrometry (EELS) as well as energy filtered
TEM (EFTEM), two particular analytical techniques which are available in
the instrument. [5]

1.2.1 The structure of the TEM

Figure 1.1: Schematic sketch of a TEM. [6]

In a TEM electrons are accelerated at a high voltage (typically 60 –
300 kV) and directed at the target. After interaction with the specimen,
the transmitted electrons are detected and analysed. Electrons are used
as a probe for several reasons. According to the Rayleigh criterion, also
called the Abbe diffraction limit, the minimum distance between two re-
solvable points is directly proportional to the wavelength of the incoming
particle. [3] Then it follows, that due to their extremely short wavelength
in the range of picometer (at typical acceleration voltages), electrons can
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overcome the limited image resolution of light microscopes. Further, they
can easily be manipulated by deflecting their trajectories in the field of mag-
netic lenses because they are charged particles. How this is done by lenses
in the microscope is schematically seen in figure 1.1. The electron source
is normally located at the top of the TEM. The illumination system, con-
sisting of several lenses, e.g. gun lenses, condensor lenses, etc. guides the
electrons to the specimen and forms the beam. It is usually operated either
in parallel-beam or in convergent-beam mode. The next part which the
beam passes through is the imaging system located at the position of the
specimen holder. It consists of the objective lens, which forms images and
— at the backfocal plane — diffraction patterns. Then, the electrons pass
through the projector lenses to a fluorescent screen, a CCD camera or other
attached devices. All basic operations in a TEM are controlled by the elec-
tromagnetic lenses. Therefore it is important to understand electron lenses
and their aberrations. Electron lenses are the equivalent to glass lenses in
a visible light microscope (VLM) and all lenses in a standard TEM can be
compared to convex glass lenses for monochromatic light. But compared to
glass lenses in a VLM, it is considerably harder to correct lens errors for
electron lenses and lens errors limit the resolution rather than the wave-
length. Further, as the collection angle is limited by inserting apertures in
the optical path, not all rays from the object are collected. The three major
problems in electromagnetic lenses are spherical aberration (CS), chromatic
aberration1 (CC) and astigmatism. Spherical aberration means that rays
that pass through the central region of a lens are focused farther away than
off-axis rays. Nowadays it is possible to use CS-corrected TEMs, e.g. the
FEI Titan G2 60-300. Chromatic aberration means that electrons with a
lower energy are bent differently depending on their energy. This affects in
particular the objectiv lens as the electron energy can be widely distributed
after interaction with the specimen. Astigmatism appears if the electrons
pass a non-uniform magnetic field but can be corrected easily nowadays.
Lens errors can be reduced, in general, by inserting a limiting aperture such
that only the electron rays nearest to the optical axis contribute. Image
simulation is used to compare calculated images with results from actual
experiments and consequently understand experimental images. For an ad-
equate comparison, it is therefore necessary to include lens errors in the
simulation. [5]

1.2.2 EELS and EFTEM

Electron energy loss spectrometry (EELS) is a very powerful analytical tech-
nique to identify and quantify the different elements occurring in the sample
and to obtain information on the electronic structure of the target. Fast elec-

1For monochromatic light, which is light of just one color with an extremly narrow
wavelength range, chromatic abberation has no effect.
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trons are interacting in different ways with the specimen, varying from no
interaction at all, over elastic scattering to inelastic scattering. The energy
distribution of these electrons is measured, commonly by using a magnetic
prism spectrometer, and the probability of an interaction as a function of
the energy loss is called electron energy loss spectrum. Edges above ∼ 50 eV
(core losses) in the spectrum indicate ionization processes, they can be used
to identify different elements. But also other excitations like phonons, plas-
mons and interband transition contribute to the spectrum. If only electrons
which have lost2 a specific energy are selected to form an image, it is called
an energy filtered TEM (EFTEM) image. Using this technique, chemical
mapping can be performed with high spatial resolution. [4]

1.3 Theoretical Background

Image simulation is crucial for planning and interpreting TEM experiments
and especially EFTEM measurements. The multislice approach [7, 8] is a
state of the art method for the real-space simulation of scattering effects
of fast electrons in crystals. So far, inelastic scattering models are mainly
based on isolated atoms, without taking into account the crystal environ-
ment of the material. Moreover, the dipole approximation is typically used
for calculating the radial wavefunction overlap. In order to get a deeper
theoretical understanding of such experiments, more realistic calculations
are needed.

In this section, I will introduce the MDFF and provide the theoretical
background to understand the simulation process. First, I will show how
the MDFF can be described in the density matrix formalism [9] and why
this formalism is needed. It is shown how the additional information on the
system which was not taken into account so far, i.e. the crystal field and
the fully weighted radial wavefunction overlap, are included. Then, I will
analyse the basis transformation which reduces the numerical complexity
of the problem. Further, I will explain the physical significance of this
procedure.

1.3.1 Density matrix formalism

If a quantum mechanical system is in a pure state, it is maximally charac-
terized with respect to commuting observables and can be described by a
single-state vector |ψ〉. [10] In contrast, a system is said to be a statistical
mixture if it has certain propabilities p1, p2, ... to be in the pure states |ψ1〉,
|ψ2〉, ... Then, it cannot be written as a single-state vector and is there-
fore called a mixed state. The density operator can be used as a quantum

2Of course, energy cannot be lost and the total amount of energy in the system is
conserved. So if electrons lose a certain amount of energy it is transfered to the specimen.
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mechanical tool to describe the system, regardless if it is in a pure or in a
mixed state. The density operator is defined as

ρ̂ =
∑
k

pk|ψk〉〈ψk| (1.1)

where pk is the probability that the system is in the quantum mechanical
state |ψk〉. Whereas the single state |ψk〉 can be considered as a coherent
superposition of basis states {|φ〉}, the total system is an incoherent superpo-
sition of single states |ψk〉. The vectors |ψ〉 and eiφ|ψ〉 which characterize the
same physical state with a different phase, are represented by the same den-
sity operator. Therefore, using the density operator, the global phase gets
surpressed. The matrix representation of the density operator in a certain
basis is called the density matrix, e.g. in plane waves representation {|k〉}
the density matrix is ρ(k,k′) = 〈k|ρ̂|k′〉. The diagonal elements of this den-
sity matrix ρ(k,k) describe the occupation of the according state, whereas
the off diagonal elements ρ(k,k′), arising from the coherent superposition,
describe interference effects between different basis states. [10, 11]

In case of a TEM, the quantum mechanical system consists of the probe
electron and the target. After interaction, these two subsystem cannot be
disentangled as the target’s final state is not directly observed. In this
case, if one of the two subsystems cannot be measured, it is not possible
to describe the second subsystem with a single state vector and the obtain-
able information can be most generally described with the density operator
approach. [10] Therefore this approach is necessary and the simpler wave-
function description cannot be used.

I assume that, before a perturbation or interaction, the probe and the
target are independent and can be described by a pure state. Therefore, the
whole system can be written as a product state of the wavefunctions of the
probe and the target:

|ψi〉 = |i〉 ⊗ |I〉. (1.2)

Throughout this thesis, lower case letters are related to the probe state and
upper case letters to the target state. ⊗ denotes the direct product. In this
description, the probe and the target state are considered independent. The
density operator, in absence of an interaction V , then reads

ρ̂tot,0 = |ψi〉〈ψi| = |i〉〈i| ⊗ |I〉〈I| = |I〉|i〉〈i|〈I|. (1.3)

In first order Born approximation scattering by an extended body can be
replaced with a single scattering event if the energy of the scattered particle
is large compared to the scattering potential. In this approximation, the
density operator of the whole system after an interaction V is3

ρ̂tot = V̂ |I〉|i〉〈i|〈I|V̂ †δ(EI − EF + E). (1.4)

3 This equation can be rigorously derived using the Lippmann-Schwinger equation,
which gives rise to the delta distribution in energy. Formally, the scattering matrix in first
order Born approximation gives the same result.
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For our ignorance of the target system, as it cannot be directly observed,
it is necessary to sum incoherently over all possible final states to construct
the (reduced) density operator for the probe beam after the interaction.
Further, the scattering processes at different scattering centers of the tar-
get are not correlated, as the initial states are tightly bound and therefore
uncorrelated. Hence, the density matrix formalism is very utile to include
incoherent superposition. After the interaction, the electron beam is an
incoherent mixture of states and accordingly the reduced density operator
then describes a mixed state:

ρ̂ =
∑
F

〈F |V̂ |I〉|i〉〈i|〈I|V̂ †|F 〉δ(EI − EF + E). (1.5)

In EELS experiments, the interaction between charged particles is observed.
Therefore, the Coulomb interaction operator4 is used as the interaction op-
erator. In real space representation, neglecting constant prefactors, it reads

V (r, r′) = 〈r|V̂ |r′〉 =
1

|r− R̂|
δ(R̂− R̂′)δ(r− r′)

= V̂ (r)δ(r− r′).

(1.6)

After Fourier transformation, the interaction operator in reciprocal space is

V̂ (k,k′) = 〈k|V̂ |k′〉 =
ei(k

′−k)R̂

|k′ − k|2
δ(R̂− R̂′)

=
eiqR̂

|q|2
δ(R̂− R̂′)

= V̂ (q)

(1.7)

with
q = k′ − k. (1.8)

q is the scattering vector describing the momentum transfer. E denotes the
energy loss of the probe electron and EI , EF are the energies of the targets
initial and final states. The energy loss E can also be seen as the energy
difference Ei − Ef between the probe’s initial states:

E = Ei − Ef = EF − EI . (1.9)

Using the completeness relation∫
dr̃|r̃〉〈r̃| = 1 (1.10)

4In fact, the Coulomb interaction has infinte range, but due to the presence of mobile
charge carriers the electric field is damped at larger distances and an affectively limited
potential can be assumed.
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the reduced density matrix in real space and in reciprocal space reads

ρ(r, r′) = 〈r|ρ̂|r′〉 =
∑
F

∫
dr̃〈F |〈r|V̂ |r̃〉|I〉〈r̃|i〉∫

dr̃′〈i|r̃′〉〈I|〈r̃′|V̂ †|r′〉|F 〉δ(EI − EF + E)

=
∑
F

〈F |V̂ (r)|I〉〈I|V̂ †(r′)|F 〉δ(EI − EF + E)〈r|i〉〈i|r′〉

= S(r, r′)〈r|i〉〈i|r′〉
(1.11)

ρ(k,k′) = 〈k|ρ̂|k′〉 =
∑
F

∫
dk̃〈F |〈k|V̂ |k̃〉|I〉〈k̃|i〉∫

dk̃′〈i|k̃′〉〈I|〈k̃′|V̂ †|k′〉|F 〉δ(EI − EF + E)

=
∑
F

∫ ∫
dqdq′〈F |V̂ (q)|I〉〈I|V̂ †(q′)|F 〉

δ(EI − EF + E)〈k + q|i〉〈i|k′ + q′〉

=

∫ ∫
dqdq′S(q,q′)〈k + q|i〉〈i|k′ + q′〉

(1.12)

Here, I introduced the MDFF S(q,q′) and accordingly the real space
MDFF (rMDFF) S(r, r′). [1, 12–14] Contrary to the commonly used con-
vention, the 1/q2q′2 term was included in the MDFF. Due to the specific
properties of the Coulomb interaction V̂ , the rMDFF can be multiplied with
the initial probe wavefunctions whereas the MDFF has to be convolved with
them. In order to express the MDFF for a specific system, a basis set for
the probe states as well as for the target states has to be chosen. Usually,
this is a spherical harmonics basis. For the target’s initial state we therefore
write |lml〉 and for the final state |LML〉5. The lower case letters correspond
to the initial states, whereas uppercase letters represent the final states. L
and ML denote the orbital angular momentum quantum number and the
magnetic quantum number, respectively. The magnetic quantum number
ml of the initial state is typically unknown, therefore it is necessary to sum

5The important parameters for a spherical harmonics basis are l and ml, therefore the
other quantum number such as the principal quantum number n or the spin quantum
number s are not written explicitly.
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incoherently over ml. The MDFF then reads [12]

S(q, q′) =
∑
F

∑
LML

∑
L′M ′L

∑
ml

〈F |LML〉〈LML|V̂ (q)|lml〉

〈lml|V̂ †(q′)|L′M ′L〉〈L′M ′L|F 〉

=2
∑
LML

∑
L′M ′L

∑
λµλ′µ′

4π(−1)L+L
′
iλ−λ

′
(2l + 1)

√
[λ, λ′, L, L′]

1

q2q′2
Y µ
λ (q̃)∗〈jλ(q)〉ElLY µ′

λ′ (q̃′)〈jλ′(q′)〉ElL′(
l λ L
0 0 0

)(
l λ′ L′

0 0 0

)∑
ml

(
l λ L
−ml µ ML

)(
l λ′ L′

−ml µ′ M ′L

)
∑
kn

Dkn
LML

(Dkn
L′M ′L

)∗δ(E + Enlj − Ekn)

(1.13)

with the abbreviation [l1, l2, l3, ...] = (2l1 + 1)(2l2 + 1)(2l3 + 1) . . .. λ, λ′

and µ, µ′ represent the transfer of angular momentum during a transition,
e.g. λ = 1 is a dipole-allowed transition, λ = 2 is a quadrupole-allowed
transition, etc. The different transition types have to fulfill the selection
rules |l − L| ≤ λ ≤ |l + L| and ml − ML = µ, otherwise they do not

contribute. Y µ
λ (q̃)∗ and Y µ′

λ′ (q̃′) are the spherical harmonics which depend
on the normalized vectors q̃ = q/q as only the direction counts. Further,
〈jλ(q)〉ElL is the fully weighted radial wavefunction overlap, where

〈jλ(q)〉ElL =

∫
drr2uL(r)jλ(qr)Rl(r) (1.14)

is a radial integral involving initial- (Rl(r)) and final-state (uL(r)) radial
wavefunctions as well as the spherical Bessel function jλ(qr) of order λ.(
a b c
d e f

)
denotes the Wigner-3j-symbol which is related to the Clebsch-Gordan

coefficients. The Wigner-Eckart theorem was used so that the orientation
dependence (ml, ML, µ) can be separated into the Wigner-3j-symbols and
the fully weighted radial wavefunction overlap can be calculated indepen-
dently. [12] The energy restricted sum over band states in the last line
denotes the coupling of different final angular momenta. Eq. 1.13 describes
the case of a spin-independent system. Throughout this work, the spin de-
pendency was not taken into account, for the general case, also including
the spin-depency, see [15].

The MDFF was introduced above in a rather abstract way. In order
to get a more applied picture of it, I will show its connection to the den-
sity matrix in a simple example and further show the relation between the
double differential scattering cross section and the MDFF. For the relation
between the density matrix of the probe electron and the MDFF of the
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scatterer, scattering on a single atom will be assumed. This means that
only one scattering process takes place. Therefore, neither before nor after
the inelastic scattering, elastic scattering processes occur. In general, any
state of the incident electron can easily be decomposed into monochromatic
plane waves [7], but this is beyond the scope of this work. Then, the density
matrix of the probe electron in the diffraction plane after a fixed energy loss
E is [16]

ρ(q,q′) =

(
2πme2

ε0~2k

)
S
(
q,q′

)
(1.15)

Historically, the MDFF was introduced by Kohl and Rose connecting
it with the double differential scattering cross section [13]. For an incident
plane wave, the double differential scattering cross section in first order Born
approximation reads [14]

∂2σ

∂E∂Ω
=

4γ2

a20

k′

k
S(q,q), (1.16)

where a0 = 4πε0~2/me2 is the Bohr radius, γ is a relativistic factor and
S(q,q) is the dynamic form factor (DFF). The DFF is a special case of the
MDFF where only the diagonal elements (q = q′) are considered. Whereas
the DFF describes single inelastic scattering of a single incident plane wave
as in the example above, the MDFF also takes into account that, the in-
elastically scattered wave consists of a number of mutually coherent plane
waves and in a general case interference terms can occur.

1.3.2 Splitting the MDFF

The MDFF S(q, q′) (see equation 1.13) can be split into three terms, sep-
arating the q- and q′-dependent terms from the terms not depending on
q [15]:

S(q, q′) =
∑
α,α′

gα(q)†Ξα,α′gα′(q
′)

=g(q)† ·Ξ · g(q′)

(1.17)

with the shorthand notation α = (λ, µ, L) and α′ = (λ′, µ′, L′). Equations
1.18 and 1.19 show the terms after regrouping of equation 1.13 according to
equation 1.17.

gα(q) =
Y µ
λ (q̃)〈jλ(q)〉ElL

q2
(1.18)
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Ξα,α′ =2
∑

MLM
′
L

4π(−1)L+L
′
(2l + 1)iλ−λ

′√
[λ, λ′, L, L′]

(
l λ L
0 0 0

)(
l λ′ L′

0 0 0

)
XLMLL′M

′
L

(1.19)

∑
ml

(
l λ L
−ml µ ML

)(
l λ′ L′

−ml µ′ M ′L

)
XLMLL′M

′
L

=
∑
kn

Dkn
LML

(Dkn
L′M ′L

)∗δ(E + Enlj − Ekn) (1.20)

As only the matrix Ξα,α′ is dependent on ml, ML and M ′L, these sums can
be performed and the remaining subscripts λ, µ and L are denoted as α. Ξ
can be computed in a straight forward way if the XDOS is known (for details
see section 2.2). Collecting the terms in such a way as described above, g
can be interpreted as a vector of functions and eq. 1.17 can be interpreted
as a quadratic form6. Now, two identity matrices can be inserted, using the
(at this point arbitrary) unitary matrix U .

S(q, q′) = g(q)† ·U †U ·Ξ ·U †U · g(q′) (1.22)

Then, we can redefine
g̃(q) = U · g(q) (1.23)

Ξ̃ = UΞU † (1.24)

The matrix U is chosen in such a way that Ξ̃ is a diagonal matrix (see
section 2.4 for more details on the matrix diagonalization). This is always
possible as the Ξ matrix is hermitian (see also appendix B). After this
transformation the MDFF reads

S(q, q′) =
∑
α,α′

gα(q)†Ξα,α′gα′(q
′)

=
∑
α,α′

g̃α(q)†Ξ̃α,α′ g̃α′(q
′)

=
∑
α

g̃α(q)†Ξ̃α,αg̃α(q′)

=
∑
α

g̃α(q)†
√

Ξ̃α,α

√
Ξ̃α,αg̃α(q′)

=
∑
α

ḡα(q)†ḡα(q′)

=ḡ(q)† · ḡ(q′)

(1.25)

6A quadratic form is defined as a homogeneous polynomial of degree two in a number
of variables. [17] For an n-dimensional matrix A with matrix elements aij the quadratic
form is

qA(x1, x2, . . . , xn) =
∑
ij

x∗i aijxj . (1.21)
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using the abbreviation7 ḡ(q) =
√

Ξ̃ · g̃(q).
This diagonalization procedure drastically reduces the number of terms

in the Ξ matrix. As an example, we will consider a WIEN2k calculation
with default settings (0 ≤ L,L′ ≤ 3) including mono-, di- and quadrupole
transitions (λ = 0, 1, 2). In this case Ξ is a 36 × 36 matrix consisting of
1296 terms. As Ξ is hermitian, it is sufficient to know the triangular matrix
which results in 36(36+1)

2 = 666 terms. Due to selection rules, it is possible
that some of the remaining entries vanish as well. However, in general off-
diagonal elements remain. These elements indicate correlations between
different basis states. Therefore, by performing the diagonalization of the Ξ
matrix, we extract this additional information (e.g. symmetries) resulting
in uncorrelated basis states and only (at most) 36 non-zero elements remain
in the Ξ matrix. The basis set described in section 1.3.1 is the common
choice as a starting point and also used by WIEN2k [18]. Using matrix
diagonalization, however, it is not only possible to reduce the numerical
complexity of the problem but also to find a suitable basis for the system,
namely the eigenbasis of the MDFF.

To return from the MDFF to the density matrix, it is easier to use the
rMDFF instead of the MDFF, as the MDFF has to be convolved with the
initial probe wavefunctions whereas the rMDFF can be multiplied directly
with them. The rMDFF is related to the MDFF by Fourier transformation
and as the q and q′ are decoupled it simply reads

S(r, r′) =g̃(r)† · Ξ̃ · g̃(r′)

=ḡ(r)† · ḡ(r′)
(1.26)

with the same Ξ matrix as for the MDFF and using the relations

g̃(r) = FTq[g̃(q)]

ḡα(r) =
√

Ξααg̃α(r)
(1.27)

Inserting the rMDFF in eq. 1.11 and using 〈i|r〉 = φ(r) for the wavefunction
of the incident probe beam gives the reduced density matrix after a Coulomb
interaction

ρ(r, r′) =
∑
α

ḡα(r)∗ḡα(r′)〈r|i〉〈i|r′〉

=
∑
α

(ḡα(r)φ(r))∗ḡα(r′)φ(r′)
(1.28)

7In this case, the notation of the square root of a matrix can be used, as the matrix Ξ̃
is always diagonal. Then, the square root of each element is taken separatly to form the
resulting matrix. In its diagonal form, the elements of the matrix Ξ̃α,α can be interpreted
as the probability pi that system is found in state |ψi〉, as the MDFF is directly related to
the density matrix (ρ =

∑
i pi |ψi〉 〈ψi|). Therefore the diagonal elements are non-negative

numbers and the square root can easily be calculated without the use of complex numbes.



1.3. THEORETICAL BACKGROUND 18

In practice, we measure the intensity which for an ideal lens system reads

I(r) = ρ(r, r) =
∑
α

|ḡα(r)φ(r)|2. (1.29)

In this theoretical description the fact that before and after the inelastic
scattering process the electron wavefunction propagates through the crystal
was not included. If we assume that the incoming electron is in a pure state,
the elastically scattered electron is still in a pure state until it scatters inelas-
tically. After the inelastic scattering event the diagonalization of the rMDFF
then leads to a factorization of the density operator ρ̂ =

∑
α pα |α〉 〈α|. The

density matrix can then be split into an incoherent sum and the elastic prop-
agator can be applied separately on each coherent term of the sum. As each
|α〉 is in itself in a pure state it can then be propagated through the rest
of the crystal elastically using e.g. the multislice approach (for details see
section 2.6). [7, 8]



Chapter 2

Implementation

In the following section, it is shown how to get the fully weighted radial
wavefunction overlap and why we use it instead of the dipole approxima-
tion. Then, I will show how the MDFF including the XDOS is imple-
mented, explaining all necessary transformations, and finally, how it is used
for the simulation of the inelastic scattering of fast electrons in a crystal.
To calculate and implement the fully weighted radial wavefunction overlap
as well as the XDOS, I used the programm package WIEN2k [18] includ-
ing TELNES.3 [19]. WIEN2k uses a density functional theory (DFT) ap-
proach to calculate the electronic structure of solids. The additional package
TELNES.3 is used to calculate ELNES spectra in reciprocal space. These
improvements were added to the existing multislice program by Martin Za-
uner. [8]

2.1 The fully weighted radial wavefunction over-
lap

The fully weighted radial wavefunction overlap (WRWO) 〈jλ(q)〉ElL is com-
monly simplified by the dipole approximation, which replaces 〈jλ(q)〉ElL by q
up to the cut-off momentum qc for dipole-allowed transitions (see figure 2.1).
Recently, it has been shown that this approximation already breaks down for
medium scattering angles and causes significant errors of the order of up to
25% even at small momentum transfer [2]. To get high resolution images, it
is necessary to resolve small distances in real space which correspond to big
distances in reciprocal space. Hence, an accurate description of 〈jλ(q)〉ElL
beyond the limitations of the dipole approximation is necessary. Therefore
the calculations include the fully weighted radial wavefunction overlap in
order to obtain better results.

For the fully weighted radial wavefunction overlap 〈jλ(q)〉ElL as de-
fined in equation 1.14 the initial- an the final-state radial wavefunctions are
needed, as well as the spherical Bessel function. The intial- and the final-

19
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Figure 2.1: The fully weighted radial wavefunction overlap for a dipole-
allowed transition from a Ti 2p-state to a final state with d-wave symmetry
compared to the dipole approximation for the case of TiO2. The WRWO was
calculated using WIEN2k but atomic models provide a similar result. [20]

state radial wavefunctions are calculated with TELNES.3 using WIEN2k
[18, 19]. The steps to calculate the different wavefunctions can be simpli-
fied by using the program extractwf (written by Stefan Löffler) which calls
the different TELNES.3 routines. These wavefunctions are then used by
the program wien2k-wf2fq (also by Stefan Löffler) and together with the
spherical Bessel function the fully weighted radial wavefunction overlap is
calculated. It can be specified for which energy and for which transition
type 〈jλ(q)〉ElL shall be calculated. The outputfile consists of the energy,
the set of according quantum numbers and a list of q and 〈jλ(q)〉ElL values
(see also table 2.1). It can contain the fully weighted radial wavefunction
overlap for different sets of parameters. As the fully weighted radial wave-

energy transfer E

n linitial j n+ 1 L s λ

q 〈jλ(q)〉ElL
...

...

Table 2.1: This table shows how the file containing the fully weighted radial
wavefunction overlap is formatted. The unit for the energy transfer E is eV
and for the momentum transfer Å−1.

function overlap is only given for a range of sampling points, I use spline
interpolation to get 〈jλ(q)〉ElL for every q-value.

The interpolated fully weighted radial wavefunction overlap is then used
together with the spherical harmonics to calculate gα(q) according to equa-
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tion 1.18. This calculation is independent of the layer or the atomic site,
therefore it can be performed preceeding the computation of the XDOS,
which has to be done separately for each position. This approach increases
the speed of the simulation compared to earlier implementations where the
same WRWO was calculated separately for each atomic site.

2.2 Extracting the XDOS

The cross density of states (XDOS), which is written by TELNES.3 to the
file 〈case〉.xdos, has a special format and in order to use the XDOS values
correctly, I have to change the line-by-line format into a matrix format.
TELNES.3 computes the XDOS for different energy values. As a first step,
I have to choose the wanted energy and use only the XDOS elements related
to that energy. The XDOS connects states with different angular momentum
LM and L′M ′. Instead of having four values (L, M , L′ and M ′) to describe
the states, TELNES.3 uses just two values I = (L + 1)2 − L + M and
I ′ = (L′ + 1)2 − L′ +M ′ for the different states respectively (see table 2.2).
The XDOS in the 〈case〉.xdos file is then ordered by (I · (I − 1)/2 + I ′).
Further details are documented in the TELNES.3 file readcrossdos.f.

L M I

0 0 1
1 -1 2
1 0 3
1 1 4
2 -2 5
2 -1 6
...

...
...

Table 2.2: This table shows the corresponding I values for given LM values
according to the formula I = (L+ 1)2 − L+M .

Next to the density operator, which is always hermitian, the XDOS
matrix XII′ is also a hermitian matrix (see appendix A). Therefore, it is
sufficient to know the upper or lower triangular matrix for computing the
whole matrix. TELNES.3 manages the data as a lower triangular matrix as
shown in table 2.3.

To obtain the full XDOS matrix, I have to fill in the upper triangular
matrix with the hermitian conjugate of the lower triangular matrix1. After
this procedure, I finally have the XDOS matrix in the wanted format and
can use it for my further calculations.

1One has to avoid counting the diagonal elements twice.
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I\I ′ 1 2 3 . . .

1 1
2 2 3
3 4 5 6
...

...
...

...
. . .

Table 2.3: The ordering of the XDOS elements as computed by TELNES.3.

2.3 Matrix rotation

After obtaining the XDOS matrix from WIEN2k and TELNES.3 as de-
scribed above, I want to diagonalize it and finally use it to calculate the
scattering kernels. For these steps different programs are used and therefore
one has to take care of the different conventions. In WIEN2k, the calcula-
tions for (symmetry-)equivalent atoms at different positions are only done
for one site. Therefore, the XDOS matrix has to be translated and rotated
properly for each atomic position. The rutile unit cell can be used as an
example to illustrate the different rotations (see figure 2.2). The coordinate
system at each atomic position indicates how we have to rotate the XDOS
matrix in order to get overlapping orbitals. Whereas the titanium atoms
(grey balls) at the corners are orientated in the same direction, the titanium
atom in the middle is rotated around the z-axis (blue) by 90◦. The oxygen
atoms (blue balls) are all orientated differently. In figure 2.2 it appears that
the oxygen atoms in the upmost layer are orientated in the same direction
as the oxygen atoms in the lowest layer, but in fact these layers are identical
and just displayed twice to show the unit cell. The next step is a transfor-
mation in such a way that the data for each position is described in the same
coordinate system, namely in the canonical basis. In case of rutile the data
is transformed in the basis system of the unit cell. The final step depends
on the angle between the incoming probe electron and the crystal. It rotates
the unit cell in the crystallographic direction in which we want to probe it.

All of these transformations are included in the transform matrix for
each atomic position. These 3×3 transformation matrices are in a cartesian
coordinate system. But the XDOS matrix is given in a spherical harmonics
basis and is (with default settings) a 36 × 36 matrix. To rotate the XDOS
matrix properly, these cartesian transformation matrices have to be trans-
formed in such a way that they can be applied to a spherical harmonics
basis. In order to do this, the Euler angles and the Wigner D-matrices have
to be calculated. The Euler angles are used to describe the orientation of a
rigid body. Every rotation matrix can be decomposed in a product of three
elemental (around a single axis) rotation matrices for the so-called Euler
angles (α, β, γ). These angles are then used for the Wigner D-matrix which
consists of the matrix elements for the rotation operator R̂(α, β, γ) in the
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Figure 2.2: The unit cell of rutile (TiO2) including the internal coordinate
system at each atomic position. Grey balls are titanium and blue balls
are oxygen. The colors of the arrows indicate the orientation of the (local)
coordinate system ([red, green, blue] =̂ [x,y,z]).

|jm〉 basis to rotate the XDOS matrix in its spherical harmonics basis.
In order to know if a transformation matrix only represents a rotation

or also a reflection, we need to calculate the determinant of this matrix.
If det(A) = +1, we have a pure rotation matrix, for det(A) = −1, it is a
reflection matrix, corresponding to an inversion possibly combined with a
rotation. If |det(A)| 6= 1, the matrix A would correspond to a distortion, but
this does not occur in our case. In our program, we check if the determinant
of the transformation matrix equals −1 and if that is the case, we invert
each element of our matrix. As the XDOS is given in a spherical harmonics
basis, this inversion gives a factor (−1)l according to

Y m
l (π − θ, π + φ) = (−1)lY m

l (θ, φ). (2.1)

The next step is to find out to which rotation angles the resulting matrix
corresponds. The Euler-angles (α, β, γ) are a possible representation of the
orientation of our atoms (see figure 2.3) and they can be extracted from the
rotation matrix. In the Z-Y’-Z” convention, we perform three rotations cosα sinα 0

− sinα cosα 0
0 0 1

 .

cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

 .

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

 (2.2)

resulting in a single matrixcαcβcγ − sαsγ −cγsα − cαcβsγ cαsβ
cαsγ + cβcγsα cαcγ − cβsαsγ sαsβ
−cγsβ sβsγ cβ

 (2.3)
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Figure 2.3: Illustration of the Euler angles in the Z-Y’-Z” convention. At
first a rotation of α around the z-axis is performed, then a rotation of β
around the new y-axis and finally a rotation of γ around the new z-axis.
[21]

where cα is a shorthand notation for cosα and sα for sinα.
From comparing this result with the rotation matrix, I can extract the

Euler angles. For the Z-Y’-Z” convention, the angles (α, β, γ) for a rotation
matrix A read

α = arctan2(A13, A23) (2.4)

β = arccos(A33) (2.5)

γ = arctan2(−A31, A32). (2.6)

The arctan2(y, x) function corresponds to the arctan( yx) but additionally it
places the angle in the correct quadrant.

The rotation operator for the Euler angles reads [22]

R̂(α, β, γ) = e−iαĴze−iβĴye−iγĴz (2.7)

with the total angular momentum operator Ĵ = L̂ + Ŝ. In the |jm〉-basis,
the rotation operator is the Wigner D-matrix, which is a square matrix of
dimension 2j + 1 [22]

Dj
m′m(α, β, γ) ≡ 〈jm′|R̂(α, β, γ)|jm〉 = e−im

′αdjm′m(β)e−imγ (2.8)

with Wigner’s (small) d-matrix

djm′m(β) = 〈jm′|e−iβĴy |jm〉. (2.9)
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Evaluating equation 2.9, the small d-matrix reads [22]

djm′m(β) = [(j +m′)!(j −m′)!(j +m)!(j −m)!]1/2

×
∑
s

(−1)m
′−m+s

(j +m− s)!s!(m′ −m+ s)!(j −m′ − s)!

×
(

cos
β

2

)2j+m−m′−2s(
sin

β

2

)m′−m+2s

(2.10)

where the sum over s is over such values that the factorials are nonnegative.
Further, the relation for swapped mm′-values reads [22]

djm′,m = (−1)m−m
′
djm,m′ = dj−m,−m′ . (2.11)

With this formalism an adequate rotation of the XDOS in a spherical har-
monics basis is possible.

2.4 Matrix diagonalization

A square matrix A is diagonalizable if it is similar to a diagonal matrix,
that means that there exists an invertible matrix U such that U−1AU is a
diagonal matrix. The diagonal entries of the diagonalized matrix A are the
eigenvalues of A.

U−1AU =


λ1 0 0
0 λ2 0 . . .
0 0 λ3

...
. . .

 = diag(λi) (2.12)

Converting this equation lets us identify it as a system of eigenvalue equa-
tions.

AU = U


λ1 0 0
0 λ2 0 . . .
0 0 λ3

...
. . .

 (2.13)

Then, it follows that the matrix U consists of the eigenvectors as column
vectors. If the matrix A is hermitian, then the eigenvectors of A can be
chosen to form an orthonormal basis. In this case, the matrix U is a unitary
matrix.

Due to selection rules, the matrix I want to diagonalize can include rows
and columns consisting just of zeros. So it can be (and in most situations
will be) singular, which means that it has no inverse. The LAPACK routine
to find the eigenvalues and eigenvectors of a matrix could not handle this
case properly. Therefore, a different computational approach has to be used:
the Schur decomposition.
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The Schur decomposition reads as follows: if A is an n×n square matrix
with complex entries, then A can be expressed as

A = U−1BU (2.14)

where U is a unitary matrix (so that its inverse U−1 is also the conjugate
transpose U † of U), and B is an upper triangular matrix, which is called a
Schur form of A. Since B is similar to A, it has the same multiset of eigen-
values, and since it is triangular, those eigenvalues are the diagonal entries
of B. If A is a normal matrix (A∗A = AA∗), the Schur form is a diagonal
matrix and the column vectors of the matrix U are the eigenvectors [23].
Then, the Schur decomposition is called a spectral decomposition. If the
matrix B is positive definite, that means if z†Bz is real and positive for all
non-zero complex vectors z, the Schur decomposition of A and its singular
value decomposition coincide.

In this work, I applied the matrix diagonalization to the MDFF S(q, q′)
in order to transform it to a more suitable basis. According to equation 1.24,
the matrix Ξ has to be diagonalized. As the Ξ matrix is hermitian (see ap-
pendix B), it follows that it can be diagonalized by a unitary matrix. The
eigenvalues for a hermitian matrix are always real, therefore the diagonal
matrix Ξ̃ consist of real entries only. The Schur decomposition is performed
by a LAPACK routine. It returns the diagonal matrix as well as the trans-
formation matrix.

2.5 Shift theorem

So far, the calculation and diagonalization of the MDFF was discussed rather
theoretically. But during the implementation of the MDFF also practical
problems occur. After the calculation of the scattering kernels, they need
to be shifted onto their respective atomic positions. In the crystal periodic
boundary conditions were assumed. Computationally, this position shift was
implemented originally using the modulo operator. But using the modulo
operator, which gives the remainder of a division, leads to a serious problem
as its result is always an integer. This can cause serious problems as the
scattering kernel cannot be shifted by a fractional (subpixel) value and it can
therefore be placed on the atomic position only within the pixel resolution
of the image. If the atomic position and the position of the scattering kernel
do not coincide, then the image is not symmetric. In order to get sub-
pixel resolution, a different approach has to be used. According to the shift
theorem, translations in real space can be replaced with multiplications in
reciprocal space. That means a shift in the spatial position corresponds to
a linear phase term in the momentum space.

FT{f(x− x0, y − y0)} = e−i(kxx0+kyy0)F (kx, ky) (2.15)
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The first step, in order to use the shift theorem, is to Fourier transform the
scattering kernel. Then, to perform the spatial translation, it is multiplied
with the linear phase term and finally we use a Fourier back transform to get
the scattering kernel again in real space. These steps have to be performed
for each layer and each atomic position. By using this procedure instead of
the modulo operator, the scattering kernel is placed correctly at the atomic
position with sub-pixel accuracy.

2.6 Elastic scattering

So far only inelastic scattering was discussed in this thesis, but as the density
matrix has to be propagated elastically through the crystal before and after
the inelastic scattering event happens, we will focus on the elastic scattering
process in this section. Assuming that the incoming electron is in a pure
state, it is still in a pure state after the elastic scattering event. Therefore we
use the wavefunction description instead of the formally equivalent density
matrix formalism. As elastic scattering is not the central topic of this thesis,
this section follows closely the elaborations in references 7 and 8.

The time-independent Schrödinger equation with the electrostatic poten-
tial V (x, y, z) of the specimen is used as a starting point for the description
of the full electron wavefunction ψf (x, y, z).(

− ~2

2m
∇2 − eV (x, y, z)

)
ψf (x, y, z) = Eψf (x, y, z) (2.16)

Typical acceleration voltages of the order of 60 to 300 kV require a rela-
tivistic treatment of the electron, namely with the Dirac equation. In a
simpler apprach, we take the non-relativistic Schrödinger equation but use
the relativistic mass m = γm0. The full wavefunction ψf (x, y, z) can be
separated into a factor describing a plane wave travelling at a large velocity
in the z direction and a factor describing small perturbation effects due to
the specimen.

ψf (x, y, z) = ψ(x, y, z) exp

(
2πiz

λ

)
(2.17)

where λ is the electron wavelength which is related to the wave vector k by
the relation λ = 1

k . Then the kinetic energy of the electron reads

E =
~2k2

2m
=

~2

2mλ2
. (2.18)

According to the separation of the full wavefunction, we also split the Lapla-
cian ∆ = ∇2 into a sum of second derivatives which act only on the separate
coordinates.

∇2 =
∂2

∂~r2
=

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.19)



2.6. ELASTIC SCATTERING 28

After applying the separated ∇2-operator on the splitted wavefunction,
equation 2.16 reads

− ~2

2m

(
∇2
xy +

∂2

∂z2
+

4πi

λ

∂

∂z
+

2meV (x, y, z)

~2

)
ψ(x, y, z) = 0. (2.20)

As a next step, we use the paraxial approximation which is sometimes re-
ferrred to as ignoring the backscattered electrons. That means ψ is only
slowly changing with respect to z. Additionally, as λ is small, the second
derivative in z can be neglected.∣∣∣∣ ∂2∂z2ψ

∣∣∣∣ << ∣∣∣∣ 1λ ∂

∂z
ψ

∣∣∣∣ (2.21)

Then the Schrödinger equation can be simplified to

∂

∂z
ψ(x, y, z) =

(
iλ

4π
∇2
xy + i

2meλ

4π~2
V (x, y, z)

)
ψ(x, y, z)

=

(
iλ

4π
∇2
xy + iσV (x, y, z)

)
ψ(x, y, z)

(2.22)

with the interaction parameter σ = 2meλ
4π~2 . This result can be used to describe

the elastic propagation of the wavefunction ψ(x, y, z) from a depth z to z+δz.
Integration from z to z + δz where δz is a small slice of the specimen yields

ψ(x, y, z + δz) = exp

(∫ z+δz

z

(
iλ

4π
∇2
xy + iσV (x, y, z)

)
dz

)
ψ(x, y, z).

(2.23)
After performing the integration ψ(x, y, z + δz) can be simplified to

ψ(x, y, z + δz) = exp

(
δz
iλ

4π
∇2
xy + iσVz(x, y)

)
ψ(x, y, z) (2.24)

using the abbreviation

Vz(x, y) =

∫ z+δz

z
V (x, y, z)dz. (2.25)

After further approximation the wavefunction can be expressed as

ψ(x, y, z + δz) = exp

(
δz
iλ

4π
∇2
xy

)
exp (iσVz(x, y))ψ(x, y, z)

= exp

(
δz
iλ

4π
∇2
xy

)
t(x, y, z)ψ(x, y, z)

(2.26)

with the transmission function t(x, y, z) = exp (iσVz(x, y)). As a next step
the Fourier transform of the wavefunction ψ(x, y, z + δz) can be calculated.

FT[ψ(x, y, z + δz)] = FT

[
exp

(
δz
iλ

4π
∇2
xy

)
t(x, y, z)ψ(x, y, z)

]
= exp

(
−iπδzλ(k2x + k2y)

)
FT[t(x, y, z)ψ(x, y, z)]

= FT[p(x, y, δz)]FT[t(x, y, z)ψ(x, y, z)]

(2.27)
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Here p(x, y, δz) = 1
iλδz exp( iπ

λδz (x2 + y2)) is the propagation function. A
multiplication in reciprocal space corresponds to a convolution in real space.
Therefore the propagation from a depth z to z + δz can be expressed by a
convolution of the two functions p(x, y, z) and t(x, y, z) together with the
wavefunction ψ(x, y, z). Then the wavefunction ψ(x, y, z + δz) at a depth
z + δz reads

ψ(x, y, z + δz) = p(x, y, δz) ∗ [t(x, y, z)ψ(x, y, z)] +O(δz2) (2.28)

This result is the basis of the multislice approach. Within this approach
the specimen is split into thin slices in the x, y-plane and at each slice the
electron wavefunction experiences a phase shift due to the projected atomic
potential of all atoms in the slice. If the slices in the specimen are labeled
n = 0, 1, 2, ... then equation 2.28 can be written as

ψn+1(x, y) = pn(x, y, δz) ∗ [tn(x, y)ψn(x, y)] +O(δz2). (2.29)

Every slice is treated as a transmission step which is followed by the prop-
agation through vacuum to the next slice. In order to perform the elastic
propagation of the incoming wavefunction through the crystal numerically,
we use the operator T̂j to describe the elastic scattering at slice j and the
propagation to the next slice.

T̂j = F−1p̂jF t̂j (2.30)

Here F denotes the Fourier transform, p̂j and t̂j are the propagation and the
transmission operator for slice j, respectively. For an incoming wavefunction
ψ0(x, y), the wavefunction at a depth d which consists of n slices can be
expressed as a consecutive application of the operator T̂j .

ψn(x, y) = T̂nT̂n−1 . . . T̂2T̂1T̂0ψ0(x, y) (2.31)



Chapter 3

Simulations

The selection of a proper sample material is of utmost importance in order
to map atomic orbitals. If the investigated system is too symmetric e.g., it
has a cubic unit cell, then all components of an orbital completely overlap
resulting in spheres as their individual shapes overlap. This effect can be
explained with the partial density of states (pDOS). For a system with lower
symmetry the pDOS for an orbital can split up into different partial ratios.
E.g. for a p-shaped orbital the pDOS can split up into differently distributed
px-, py- and pz-shaped orbitals (see figure 3.10).

I have chosen two example materials: lime (CaO) and rutile (TiO2).
Lime is a symmetric material with a cubic unit cell whereas rutile is has a
lower symmetry and has a distorted unit cell.

3.1 Lime CaO

The unit cell of lime (see figure 3.1) is cubic causing no splitting of p-orbitals
in the pDOS. For the parameter set used in the WIEN2k calculation see
appendix C. The central oxygen atom inherits an octrahedral symmetry
as the six calcium atoms form an octahedron around it which results in
an energy splitting of the d-orbitals (see figure 3.2). The dxy-, dxz- and
dyz-orbitals of the oxygen atom are farther away from the calcium atoms
than the dz2- and dx2−y2-orbitals. Therefore the bound states of the dz2-
and dx2−y2-orbitals are lower in energy than the dxy-, dxz- and dyz-orbitals.
This then translates to the fact that the antibonding states dxy, dxz and
dyz, which are referred to as t2g, have a lower energy than the antibonding
dz2 and dx2−y2 which are called eg. For a material whose pDOS does not
show orbital splitting, each block of the XDOS matrix Ξ which corresponds
to a different transition type, e.g., monopole, dipole, etc. is proportional to
the identity matrix with a different prefactor. The orbital splitting of the
d-orbitals in lime may change the elements in the XDOS matrix Ξ in such
a way that the quadrupole-block in Ξ is not proportional to the identity
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Figure 3.1: The unit cell of lime (CaO). The green balls represent the
calcium atoms and the blue balls represent the oxygen atoms. The arrows
represent the local coordinate systems. For details see section 2.3.

matrix anymore.
EFTEM-Simulations at 200 keV incident beam energy for the oxygen

K-edge in lime were performed for an energy loss of 7 eV (indicated in
the DOS, see figure 3.2) above the edge onset in the [0 0 1] zone axis. To
elucidate the underlying physics, we simulated a thin sample (one unit cell
thick) and assumed ideal lenses. The calculated EFTEM image for a dipole
allowed transition is shown in figure 3.3. The blue boxes in each figure show
the unit cell in the particular direction. Blue balls indicate oxygen atoms
and green balls calcium atoms, as already seen in figure 3.1. Figure 3.3
shows a circular symmetry resulting from the incoherent summation of the
px-, py- and pz-orbitals. The actual spherical symmetry appears as a circular
symmetry in the planar projection. Some of the resulting rings appear larger
than others. This behaviour originates from the fact that these rings stem
from oxygen atoms which are in a different layer than the others. After
the scattering event, the resulting wavefunction propagates through the rest
of the crystal. The probe electron wavefunction is highly localized directly
after the scattering event at the atomic positions. Due to the Heisenberg
uncertainty principle, a high localization in real space leads to a large spread
in momentum space. The wavefunction is therefore divergent and it gets
larger with increasing propagation distance. Depending on the position of
the layer in the crystal, the travelled distance varies and with it the spread
of the wavefunction.
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Figure 3.2: The partial DOS (pDOS) of lime including the splitting of the
d-orbital into eg and t2g due to crystal field effects. The energy losses for
the performed simulations are indicated at 7, 8.8 and 10 eV.

4.811 Å

Figure 3.3: Simulation of lime in the [0 0 1] zone axis with a sample thickness
of one unit cell (4.811 Å) for an energy loss of 7 eV above the edge onset for
dipole-allowed transitions. 200 keV incident beam energy and ideal lenses
were assumed.
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3.1.1 Thickness dependence

As it is nearly impossible in actual experiments to prepare samples which
are only one unit cell thick, we also performed simulations for samples with
more realistic thicknesses. Figure 3.4 shows four EFTEM images with the
same parameters as in figure 3.3 but for four different thicknesses: 0.4811 nm
(one unit cell), 5, 10 and 20 nm. For a thicker sample the number of scatter-
ing centers increases and scattering processes in each layer contribute to the
final image. The thicker the sample, the more the wavefunction for scatter-
ing centers at the beginning of the sample is spread out. Intensities off the
atomic sites are the result of these spreaded wavefunctions and their (inco-
herent) overlap with wavefunctions of different scattering centers. Further,
if the sample gets thicker channeling effects become relevant. [5] As the elec-
tron wave expands it reaches the potential of the other calcium and oxygen
atoms after a certain distance. In this strong potential electrons channel
through the sample and we get a high intensity at the sites of the oxygen
atoms. Instead of interacting with separate atoms, the electrons interact
with nuclear planes or chains. In this case we cannot see a ring shape any
more but we get a blurred circular shape.
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4.811 Å

Figure 3.4: Simulation of lime in the [0 0 1] zone axis with different sample
thicknesses of 0.4811 nm (one unit cell), 5, 10 and 20 nm (left to right, top
to bottom) for an energy loss of 7 eV above the edge onset for dipole-allowed
transitions. 200 keV incident beam energy and ideal lenses were assumed.
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3.1.2 Aberrations

So far we assumed a set of ideal lenses, but in order to get predictions for
actual experiments, we also performed simulations with realistic values for
the lens-system. Figure 3.5 shows a comparison of the three different sets
of lens parameters given in table 3.1 for the same transition parameters as
in figure 3.3. These lens parameter sets refer to the imaging lenses and not
to the probe forming lenses. For a parameter set of the FEI Tecnai G2

F20 or of the FEI Titan G2 60-300 (which has a CS corrected lens system)
comparisons with experiments are possible.

Ideal FEI Tecnai FEI Titan

Spherical aberration CS [mm] 0.0 1.2 0.0
Defocus [Å] 0.0 658 0.0

Objective aperture [mrad] 90 18 31

Table 3.1: This table shows the parameter sets of the lens-system for three
different TEM types.

For a first comparison of the different parameter sets a sample thickness
of 4.811 Å (one unit cell) was chosen. From figure 3.5 it can be seen that
while with a Titan microscope the orbital ring shape is spread and blurred
but still visible, with a Tecnai microscope this is not the case. Whereas for
a set of ideal lenses and for lenses like in a Titan microscope the highest
intensities in the EFTEM image are at the atomic sites, this is exactly the
opposite for a set of lenses as in a Tecnai microscope. This effect can be
explained with the transfer function T (u) which depends on the apertures,
the attenuation of the wavefunction and the aberration of the lens system. [5]
Here u is a vector in reciprocal space. A negative transfer function T (u)
results in a positive phase contrast and the atoms appear dark. For a positive
T (u) the phase contrast is negative and the atoms appear bright. Beside
of that intensity inversion the orbitals for the different oxygen atoms in a
Tecnai microscope do not show a ring shape anymore but rather resemble a
filled circle.

In realisic samples for actual experiments both effects, the sample thick-
ness as well as the lens aberrations, play together. To be able to compare
simulations and experiments both effects have to be taken into account. Fig-
ure 3.6 shows nine EFTEM images with a variation of the sample thickness
(top to bottom) versus the three different parameter sets for the lens sys-
tem (left to right). While the thickness dependence for a set of ideal lenses,
which was already discussed in section 3.1.1, does not change the general
appearance of the image, it does for the other parameter sets for the lens
system. For a lens system like in a Tecnai microscope, the orbitals in a
sample 5 nm thick show a roughly circular shape but are wider spread and
more blurred than for a one unit cell thick sample as shown in figure 3.5.



3.1. LIME CAO 36

For a sample thickness of 10 nm no atomic positions or orbital shapes can
be made out. For an even thicker sample of 20 nm the shape of the image
changes but the atomic structure of the material is again visible possibly
because of channeling effects. But one has to be careful as no information
about the structure of the orbitals can be deduced from this. Although for
these parameters the orbital shape shows fourfold symmetry we are observ-
ing p- and not d-orbitals. The images in the right column for a set of lens
parameters as in a Titan microscope clearly resemble the images for an ideal
lens system (left column) but the orbitals are more extended and blurred.
The spread of the wavefunction can be seen as a ring around the atomic
position which broadens with the sample thickness. For a thin sample this
ring is located close around the atomic position. For a sample thickness of
10 nm the rings of neighbouring atoms overlap in the middle between them.
But in contrast to a Tecnai microscope the atomic positions as well as the
orbital shape can be made out with a Titan microscope. For an even thicker
sample (20 nm) channeling effects occur and the highest intensity is at the
position of the oxygen atoms.
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4.811 Å

Figure 3.5: Simulation of lime in the [0 0 1] zone axis with a sample thickness
of one unit cell (4.811 Å) for an energy loss of 7 eV above the edge onset for
dipole-allowed transitions. 200 keV incident beam energy and three different
parameters sets for the lens system (see table 3.1) were assumed: Ideal lenses
(top), lenses as in a Tecnai microscope (bottom, left) and lenses as in a Titan
microscope (bottom, right).
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4.811 Å

Figure 3.6: Simulation of lime in the [0 0 1] zone axis with different sample
thicknesses of 5, 10 and 20 nm (top to bottom) for an energy loss of 7 eV
above the edge onset for dipole-allowed transitions. 200 keV incident beam
energy and three different parameters sets for the lens system (see table 3.1)
were assumed: Ideal lenses (left column), lenses as in a Tecnai microscope
(middle column) and lenses as in a Titan microscope (right column).
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3.1.3 Beyond dipole

So far no orbital shape, i.e. a dumbbell shape for p-orbitals, was observed
due to the degeneracy of the different p-orbitals. But from the pDOS in fig-
ure 3.2 it can be seen that degeneracy of the d-orbitals is lifted which can be
explained by the octahedral symmetry around the central oxygen atom. We
performed EFTEM simulations for quadrupole allowed transitions for two
different energies in order to see the splitting of the two different d-orbitals,
eg and t2g. At 7 eV energy loss above the edge onset only the t2g orbitals
contribute whereas at 10 eV energy loss only the eg orbitals contribute. The
EFTEM simulations for these energies (see figure 3.7) clearly show a four-
fold symmetry in both cases. Further it can be seen that the t2g-orbitals are
pointing in the direction of the other oxygen atoms whereas the eg-orbitals
rotated by 90◦ and are orientated in direction of the calcium atoms. The
effects of quadrupole-allowed transitions are very weak, in case of lime the
intensity of the quadrupole transition is only 0.02% of the intensity of the
dipole transition.

4.811 Å

Figure 3.7: Simulation of lime in the [0 0 1] zone axis with a sample thickness
of one unit cell (4.811 Å) for an energy loss of 7 (left) and 10 eV (right) above
the edge onset for quadrupole-allowed transitions. 200 keV incident beam
energy and ideal lenses were assumed.
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3.1.4 Multipole coupling

Instead of looking at dipole-allowed and quadrupole-allowed transitions alone,
we also performed calculations taking into account the coupling between
monopole transitions, dipole transitions and quadrupole transitions. For
most energy losses the coupling term can have an important impact on the
resulting EFTEM-images, but for some specific energy losses it does not
occur. So in order to get a coupling term, it is necessary to choose the en-
ergy loss properly. That means that two or more different orbitals, e.g. an
s-orbital as well as p-orbitals or even more orbitals occur in the pDOS at
that particular energy loss. At 8.8 eV above the edge onset in lime are the
s-, p-, eg and t2g-orbitals overlapping as seen in figure 3.2. Figure 3.8 shows
a comparison of the EFTEM images for monopole, dipole and quadrupole
transitions as well as an image in which all of these transition types were
taken into account at the same time. For a monopole transition a circular
symmetry is seen. This is expected as the s-orbital has spherical symmetry.
For the dipole transition again a circular symmetry is seen, due to the degen-
eracy of the p-orbitals. At 8.8. eV energy loss above the edge onset mostly
eg-orbitals contribute for a quadrupole-allowed transition whereas the t2g-
oribtals are less pronounced. The shape of the orbitals for a quadrupole-
allowed transition therefore resembles the shape of the eg-orbitals as seen
in figure 3.7. Calculations including monopole, dipole and quadrupole tran-
sitions at the same time look similar to the dipole transition. This stems
from the fact that dipole-allowed transition has by far the most impact on
the resulting image. The intensity of the image where all three transition
types play together accounts for 101.2% if we scale the term for dipole tran-
sition to 100%, whereas the monopole (16%) and especially the quadrupole
(0.02%) transition play a minor role.1 By subtracting the monopole, the
dipole and the quadrupole transition image from the total image, where all
these effects play together, we get an idea about the coupling between them.

Icoupling = Iλ=0,1,2 − Iλ=0 − Iλ=1 − Iλ=2 (3.1)

For this system the coupling term plays nearly no role as it accounts only for
0.0001% of the intensity in the image for a dipole-allowed transition. With
the improved simulation program it is possible to simulate also transitions
of higher order and the coupling between them but as the contribution of
the quadrupole is already very low compared to the dipole or the monpole
it is most likely that these effects would lead to no visible change in the
presented system.

1For calculation of these percentages the maximum intensity value of each image was
used rather than integrating over the corresponding area. Therefore the intensities of the
different images do not add up.
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4.811 Å

Figure 3.8: Simulation of lime in the [0 0 1] zone axis with a sample thickness
of one unit cell (4.811 Å) for an energy loss of 8.8 eV above the edge onset
for monopole-, dipole- and quadrupole-allowed transitions as well as for a
transition in which all of these transition types are coupled (left to right, top
to bottom). 200 keV incident beam energy and ideal lenses were assumed.
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3.2 Rutile TiO2

Rutile has a primitive tetragonal unit cell (see figure 3.9). Whereas the
titanium atoms are surrounded by an (irregular) octahedron of six oxygen
atoms, the oxygen atoms are surrounded by three titanium atoms which
form a slightly distorted triangular planar system. In contrast to lime, in
which the p-orbitals are equally distributed in the pDOS, this asymmetric
unit cell in rutile leads to a splitting of the p-orbitals in the pDOS (see
figure 3.10). This behaviour affects the scattering kernels and therefore the
resulting image of a TEM investigation. For the parameter set used in the
WIEN2k calculation see appendix C.

Figure 3.9: The unit cell of rutile (TiO2). The grey balls represent the
titanium atoms and the blue balls represent the oxygen atoms. The arrows
represent the local coordinate systems. For details see section 2.3.

EFTEM simulations were performed for rutile with an incident beam
energy of 200 keV for different zone axis geometries for the Oxygen K-edge.
Depending on the energy loss as well as on the probe-to-sample orientation,
different unoccupied orbitals contribute with different intensities. To eluci-
date the underlying physics, we first simulated a thin sample (one unit cell)
and assumed ideal lenses. In order to illustrate the differences at varying
energies, three energy losses (3, 4 and 7 eV above the edge onset) were cho-
sen on the basis of the pDOS (see figure 3.10). At each energy loss different
orbitals contribute: at 3 eV the pDOS for px, py and pz have the same mag-
nitude, at 4 eV only py contributes and at 7 eV pz contributes in a large
part with only a minor px contribution.

Figure 3.11 shows simulations for rutile in the [0 0 1] zone axis with a
sample thickness of one unit cell (2.958 Å) for energy losses of 3, 4 and
7 eV above the edge onset using dipole-allowed transitions. The blue boxes
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Figure 3.10: The partial DOS (pDOS) of rutile including the splitting of the
p-orbital into px, py and pz due to its distorted unit cell. The energy losses
for the performed simulations are indicated at 3, 4, 5.2 and 7 eV.

in each figure show the rutile unit cell in the particular projection. Blue
balls indicate oxygen atoms and grey balls titanium atoms, as already seen
in figure 3.9. At 3 eV energy loss above the edge onset a mixture of px,
py and pz orbitals is seen. Therefore the shape of the overlapping orbitals
cannot be compared to the dumbbell-shape of the separate p-orbitals and it
resembles more a stretched ring. This ring behaviour could already be seen
for the p-orbitals in lime which are degenerate (see section 3.1). At 4 eV
energy loss, mostly py orbitals (Ti-O π∗ antibonds) contribute, whereas at
7 eV, mainly the 90◦ rotated pz orbitals (Ti-O σ∗ antibonds) are seen. The
shape of the oxygen p-orbitals and the titanium d-orbitals is indicated with
the ochre/green schematic drawings.

The figures 3.12 and 3.13 show the same situation for the [1 0 0] and
the [1 1 0] zone axes. As already seen for the [0 0 1] zone axis the orbitals
show a circular shape due to the overlapping of the pDOS of the different
orbitals for an energy loss of 3 eV above the edge onset. For an energy
loss of 4 and 7 eV above the edge onset the oxygen orbitals show again the
typical dumbbell shape of p-orbitals, rotated by 90◦ for the different energy
losses. The different orientations of the orbitals for the different zone axis
geometries can be explained with the orientation of the local coordinate
system shown as arrows in figure 3.9. Depending on the viewing direction
the arrows are pointing in different relative directions. For the [1 1 0] zone
axis it seems that two of the oxygen atoms are very close, but in fact they
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are in different layers of the crystal. This fact can also be seen as the orbital
of one of them is more spread out than the orbital of the other oxygen atom.

4.594 Å

Figure 3.11: Simulation of rutile in the [0 0 1] zone axis with a sample thick-
ness of one unit cell (2.958 Å) for energy losses of 3, 4 and 7 eV (left to
right) above the edge onset for dipole-allowed transitions. 200 keV incident
beam energy and ideal lenses were assumed.

4.594 Å

Figure 3.12: Simulation of rutile in the [1 0 0] zone axis with a sample thick-
ness of one unit cell (2.958 Å) for energy losses of 3, 4 and 7 eV (left to
right) above the edge onset for dipole-allowed transitions. 200 keV incident
beam energy and ideal lenses were assumed.
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6.497 Å

Figure 3.13: Simulation of rutile in the [1 1 0] zone axis with a sample thick-
ness of one unit cell (2.958 Å) for energy losses of 3, 4 and 7 eV (left to
right) above the edge onset for dipole-allowed transitions. 200 keV incident
beam energy and ideal lenses were assumed.

3.2.1 Thickness dependence

As already mentioned for lime, it is nearly impossible in actual experiments
to prepare a sample which is only one unit cell thick. Therefore we also per-
formed simulations with more realistic thicknesses for rutile as well. Figures
3.14, 3.15 and 3.16 show a selection of the energy losses 3, 4, and 7 eV above
the edge onset for the different sample orientations [1 1 0], [1 0 0] and [0 0 1],
respectively, for a sample thickness of 1 unit cell, 5 nm, 10 nm and 20 nm. If
the sample gets thicker, which means that the number of scattering centers
increases, the electron wave for scattering events at the beginning of the
sample expands and is not so localized any more, therefore the image looks
blurred. Channeling effects (see also section 3.1.1) cause that from a cer-
tain sample thickness on not only the position of the oxygen atoms but also
the position of the titanium atoms occur bright in the EFTEM image. For
energy losses of 4 and 7 eV at which the dumbbell shape of the p-orbitals
is clearly seen, the electron wave expands according to its symmetry along
the dumbbell axis. This results in images which show a zig-zag pattern or
resemble a square pattern.
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6.497 Å

Figure 3.14: Simulation of rutile in the [1 1 0] zone axis with different sample
thicknesses of 0.6497 nm (one unit cell), 5, 10 and 20 nm (left to right, top
to bottom) for an energy loss of 3 eV above the edge onset for dipole-allowed
transitions. 200 keV incident beam energy and ideal lenses were assumed.

4.594 Å

Figure 3.15: Simulation of rutile in the [1 0 0] zone axis with different sample
thicknesses of 0.4594 nm (one unit cell), 5, 10 and 20 nm (left to right, top
to bottom) for an energy loss of 4 eV above the edge onset for dipole-allowed
transitions. 200 keV incident beam energy and ideal lenses were assumed.
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4.594 Å

Figure 3.16: Simulation of rutile in the [0 0 1] zone axis with different sample
thicknesses of 0.2958 nm (one unit cell), 5, 10 and 20 nm (left to right, top
to bottom) for an energy loss of 7 eV above the edge onset for dipole-allowed
transitions. 200 keV incident beam energy and ideal lenses were assumed.
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3.2.2 Aberrations

Again we take a step further and perform simulation with realistic values for
the lens system instead of assuming a set of ideal lenses. Figures 3.17, 3.18
and 3.19 show a comparison of the three different sets of lens parameters
given in table 3.1 for selected energy losses and orientations. In each of these
figures it can again be seen that in a Tecnai microscope the atoms are dark
whereas for a set of ideal lenses or in a Titan microscope the atoms appear
bright. This is due to the sign change in the transfer function (see section
3.1.2 for details). It is evident that the images simulated with lens parame-
ters like in a Titan microscope look similar to the ideal images. That means
the orbital shape is spread and blurred but each atomic position can still be
identified. This is not so easy for images simulated with the lens paramters
of a Tecnai microscope. For these parameters it is hard to identify the atomic
position and no orbital shapes can be made out. In real experiments both
effects – the lens errors as well as the sample thickness – have significant
influence on the resulting images. Therefore simulations for thicker samples
with different parameters for the lens system were performed. Figure 3.20
shows a comparison of the thickness dependence (5, 10 and 20 nm) with
three different sets of the lens parameters (see table 3.1). For an imaging
system like in a Tecnai microscope no orbital shapes can be made out and
as the sample gets thicker it is hard to recognize the atomic positions. On
the other hand, for an imaging system as in a Titan microscope even for
thick sample it is still possible to recognize the atomic positions and the
orbital shapes. With these realistic values comparisons with experiments
are possible.
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6.497 Å

Figure 3.17: Simulation of rutile in the [1 1 0] zone axis with a sample thick-
ness of one unit cell (6.497 Å) for an energy loss of 3 eV above the edge onset
for dipole-allowed transitions. 200 keV incident beam energy and three dif-
ferent parameters sets for the lens system (see table 3.1) were assumed: Ideal
lenses (top), lenses as in a Tecnai microscope (bottom, left) and lenses as in
a Titan microscope (bottom, right).
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4.594 Å

Figure 3.18: Simulation of rutile in the [1 0 0] zone axis with a sample thick-
ness of one unit cell (4.594 Å) for an energy loss of 4 eV above the edge onset
for dipole-allowed transitions. 200 keV incident beam energy and three dif-
ferent parameters sets for the lens system (see table 3.1) were assumed: Ideal
lenses (top), lenses as in a Tecnai microscope (bottom, left) and lenses as in
a Titan microscope (bottom, right).
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4.594 Å

Figure 3.19: Simulation of rutile in the [0 0 1] zone axis with a sample thick-
ness of one unit cell (2.958 Å) for an energy loss of 7 eV above the edge onset
for dipole-allowed transitions. 200 keV incident beam energy and three dif-
ferent parameters sets for the lens system (see table 3.1) were assumed: Ideal
lenses (top), lenses as in a Tecnai microscope (bottom, left) and lenses as in
a Titan microscope (bottom, right).
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4.594 Å

Figure 3.20: Simulation of rutile in the [0 0 1] zone axis with different sample
thicknesses of 5, 10 and 20 nm (top to bottom) for an energy loss of 7 eV
above the edge onset for dipole-allowed transitions. 200 keV incident beam
energy and three different parameters sets for the lens system (see table 3.1)
were assumed: Ideal lenses (left column), lenses as in a Tecnai microscope
(middle column) and lenses as in a Titan microscope (right column).
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3.2.3 Multipole coupling

Instead of looking only at dipole-allowed transitions, we also performed cal-
culations taking into account the coupling between different transition types.
In contrast to the multipole calculations for lime, we only coupled monopole-
and dipole-allowed transitions. An energy loss of 5.2 eV above the edge on-
set was chosen (as indicate in figure 3.10) because at this particular energy
loss the s-orbital as well as the px- and the pz-orbitals contribute. If the
orbitals at a specific energy loss are not overlapping in the pDOS no cou-
pling term occurs. Therefore the energy loss has to be chosen wisely to
demonstrate the multipole coupling. A comparison of EFTEM images of
a monopole- and a dipole-allowed transition as well as a calculation taking
both monopole and dipole into account is shown in figure 3.21. The green
framed image shows the monopole-allowed transition. It displays a circu-
lar symmetry as expected for an s-orbital. For the dipole transition (blue
frame) an overlapping of the px- and the pz-orbitals is seen. This result
in an orbital which resembles a blurred dumbbell. Calculations including
monopole and dipole transitions at the same time (red frame) look similar
to the dipole transition-only image. In order to analyse the differences we
subtracted the intensity of the monopole transition and of the dipole tran-
sition from the intensity of the image when both transition types are taken
into account.

Icoupling = Iλ=0,1 − Iλ=0 − Iλ=1 (3.2)

The resulting coupling term is also shown in figure 3.21 in the grey frame.
Intensity profiles along the yellow lines are shown in the bottom of figure
3.21 demonstrating that the coupling term has significant impact. From this
intensity profiles it can be explained why the coupled transition image and
the dipole transition image look so similar. If we normalize the intensity
of the dipole-allowed transition to 100% then the coupled transition yields
105.4%. The monopole transition (8.6%) only plays a minor role. But in
contrast to lime in which the coupling term had no significant influence (of
the order of 0.0001%) the situation is completely different for rutile. In
this material the coupling term accounts for ±9.0% of the total intensity.
Further examination of the intensity profile shows that the coupling term is
distributed asymmetrical around the origin. This acts in a way very similar
to s-p hybridization.
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Figure 3.21: Simulation of rutile in the [0 0 1] zone axis with a sample thick-
ness of one unit cell (2.958 Å) for an energy loss of 5.2 eV above the edge on-
setfor a monopole transition (green), a dipole transition (blue) and the cou-
pling between them (grey) together with the total intensity (red). 200 keV
incident beam energy and ideal lenses were assumed. The colour of the
coupling term indicates its sign. The bottom image of this figure shows the
intensity profiles along the yellow lines in which the line color matches the
frame color from the upper images.



Chapter 4

Conclusion and outlook

It was demonstrated how the MDFF can be diagonalized using matrix diag-
onalization techniques. This simpler mathematical description of the system
yields numerical advantages as the number of terms is reduced. With the
default settings of WIEN2k, the number of terms was reduced from up to
1296 terms to at most 36 terms. Further, this transformation into the most
suitable basis set to describe a system provides us with more physical insight
into the problem.

This new simulation method was applied to lime (CaO) and rutile (TiO2)
in order to show its versatility. From the EFTEM simulations of these
materials it can be seen that with the latest generations of TEMs orbital
mapping should be possible.

Calculations including transition types of both dipole-allowed and dipole-
forbidden can be performed. Although commonly neglected, we also in-
clude non-dipole transitions in our simulation. It can be seen that also the
monopole and particularly the coupling term between different transition
types can have significant impact on the resulting EFTEM images, espe-
cially in rutile.

Because in low-symmetry systems a splitting of the pDOS is expected,
mapping of orbital information should be possible in those cases. In the
future, this method could be applied to study the electronic structure of
defects, interfaces, or other low-symmetry objects.
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Appendix A

Hermiticity of the XDOS

According to equation 1.20 the XDOS reads

XLMLL′M
′
L

=
∑
kn

Dkn
LML

(Dkn
L′M ′L

)∗δ(E + Enlj − Ekn). (A.1)

In order to be hermitian, the XDOS has to fullfill

XLMLL′M
′
L

= (XL′M ′LLML
)∗. (A.2)

(XL′M ′LLML
)∗ =

(∑
kn

Dkn
L′M ′L

(Dkn
LML

)∗δ(E + Enlj − Ekn)

)∗
=
∑
kn

(Dkn
L′M ′L

)∗Dkn
LML

δ(E + Enlj − Ekn)

=
∑
kn

Dkn
LML

(Dkn
L′M ′L

)∗δ(E + Enlj − Ekn)

=XLMLL′M
′
L

(A.3)
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Appendix B

Hermiticity of Ξ

For Ξ to be hermitian, the following condition has to hold.

Ξα′α = Ξα′α
† = Ξαα′

∗ (B.1)
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Appendix C

WIEN2k parameters

Lattice spacegroup 225 Fm-3m

Lattice parameters a = b = c = 4.811 Å
α = β = γ = 90◦

Ca position (0,0,0)

O position (0.5,0.5,0.5)

Exchange correlation potential PBE-GGA (Perdew-Burke-Ernzerhof 96)

RmtKmax 7

Number of k-points 1000

Table C.1: Input parameters for WIEN2k to calculate the pDOS of lime.

Lattice spacegroup 136 P42/mnm

Lattice parameters a = b = 4.594 Å, c = 2.958 Å
α = β = γ = 90◦

Ti positions (0,0,0) (0.5,0.5,0.5)

O positions (0.3053,0.3053,0) (0.6947,0.6947,0)
(0.1947,0.8053,0.5) (0.8053,0.1947,0.5)

Exchange correlation potential PBE-GGA (Perdew-Burke-Ernzerhof 96)

RmtKmax 7

Number of k-points 1000

Table C.2: Input parameters for WIEN2k to calculate the pDOS of rutile.
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[15] S. Löffler, V. Motsch, and P. Schattschneider. A factorization approach
of the mixed dynamic form factor for mapping atomic orbitals. submit-
ted to Ultramicroscopy.

[16] P. Schattschneider, M. Nelhiebel, and B. Jouffrey. Density matrix of
inelastically scattered fast electrons. Phys. Rev. B, 59:10959–10969,
1999.

[17] Wikipedia. Quadratic form — Wikipedia, the free encyclopedia, 2012.
[Online; accessed 24-October-2012].

[18] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz. WIEN2k,
An Augmented Plane Wave + Local Orbitals Program for Calculating
Crystal Properties. Karlheinz Schwarz, Techn. Universität Wien, Aus-
tria, 2001. ISBN 3-9501031-1-2.

[19] K. Jorissen. The ab initio calculation of relativistic electron energy loss
spectra. PhD thesis, Universiteit Antwerpen, 2007.
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