
Decompose, Guess & Check
Declarative Problem Solving

on Tree Decompositions

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Bernhard Bliem

Matrikelnummer 0725395

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuer: Privatdoz. Dipl.-Ing. Dr.techn. Stefan Woltran

Mitwirkung: Univ.Prof. Mag.rer.nat. Dr.techn. Reinhard Pichler

Wien, 17. Oktober 2012

(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Decompose, Guess & Check
Declarative Problem Solving

on Tree Decompositions

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computational Intelligence

by

Bernhard Bliem

Registration Number 0725395

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Privatdoz. Dipl.-Ing. Dr.techn. Stefan Woltran

Assistance: Univ.Prof. Mag.rer.nat. Dr.techn. Reinhard Pichler

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Bernhard Bliem
Lerchengasse 31/5

1080 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbstständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall
unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift des Verfassers)

v

Danksagung

Ich möchte mich zunächst herzlich bei meinem Betreuer, Stefan Woltran, bedanken,
dessen Unterstützung beim Schreiben dieser Arbeit nicht den geringsten Wunsch of-
fen ließ. Es war ein Privileg, die Hilfe eines Betreuers zu genießen, der nicht nur mit
wertvollen Korrekturen und Anregungen zur Seite stand, sondern außerdem stets be-
reit war, für die Betreuung beträchtliche Mengen seiner Zeit zu opfern. Neben seiner
kompetenten fachlichen Unterstützung möchte ich mich auch für das ausgesprochen
angenehme Arbeitsklima bedanken, das das Schreiben dieser Arbeit zu einer Freude
werden ließ.

Auch den anderen Kollegen am Arbeitsbereich DBAI, die mich bei vielen Gele-
genheiten freundlich unterstützt haben, bin ich zu Dank verpflichtet. Insbesondere ist
hier Reinhard Pichler zu nennen, dessen Rat bei einigen Teilen dieser Arbeit eine große
Hilfe war.

Ebenso wichtig wie fachliche Unterstützung ist natürlich persönlicher Rückhalt.
Deshalb möchte ich meinen Freunden Dank dafür aussprechen, dass ich mit ihnen
viele schöne Stunden abseits des Schreibens dieser Arbeit verbringen konnte, dass sie
Nachsicht für aus dieser Arbeit resultierende zeitliche Engpässe hatten und dass sie
mich auch trotz meiner tagelangen Beschäftigung mit abstrakten Konzepten, die leicht
dazu führen können, den Blick für das Wesentliche zu verlieren, (hoffentlich) vor dem
Wahnsinn bewahren konnten.

Nicht zuletzt gebührt meiner Familie besonderer Dank. Vor allem gilt das für mei-
ne Eltern Adelheid und Josef, da sie mir nicht nur das Studium in dieser schönen
Stadt ermöglicht haben, sondern mir auch erlaubt haben, mich so zu entfalten, wie es
für mich am besten ist, ohne dass sie mir eigennützige Vorstellungen davon auferlegt
hätten, wie ich in ihren Augen sein sollte. Ich bedaure, nicht soviel der Unterstützung
zurückgeben zu können, wie ich erfahren durfte, und hoffe, dass die hier genannten
Personen ein wenig an meiner Freude über die schönen Erfahrungen der letzten Jahre
teilhaben können.

Bernhard

vii

Abstract

Many practically relevant problems are infeasible for large instances. However, often
they become tractable when only instances where a certain parameter is bounded by
a constant are considered. Especially treewidth has proven to be an attractive para-
meter because it applies to many different problems. Bounded treewidth leading to
tractability can frequently be exploited by dynamic programming on a tree decomposi-
tion of the original instance. Until now, implementing such algorithms, however, has
usually been quite intricate which is due to the lack of supporting tools that offer an
adequate language for conveniently specifying such algorithms.

In this thesis, we therefore present a method for problem solving called Decompose,
Guess & Check that enables the user to specify such algorithms in a declarative way.
For this, we employ Answer Set Programming – a logic programming formalism which
supports a programming paradigm called Guess & Check and is recognized for its ca-
pability to express hard problems quite succinctly. Using Answer Set Programming as
a language to specify the problem-specific parts of dynamic programming algorithms,
Decompose, Guess & Check benefits from efficient solvers as well as from a rich language
that allows for easily readable and maintainable code.

We conduct an analysis of the proposed approach that shows it to be powerful
enough to efficiently solve a large class of problems on instances of bounded tree-
width. Furthermore, we present a software framework called D-FLAT that provides
this method and makes rapid prototyping of algorithms on tree decompositions pos-
sible. We finally apply Decompose, Guess & Check to a selection of different problems
to illustrate the versatility of the approach.

Because instances in practical applications often exhibit small treewidth, our ap-
proach has great practical relevance. For many problems that are hard in general,
Decompose, Guess & Check is thus a promising candidate for solving large instances
which have so far been out of reach for existing Answer Set Programming systems.

ix

Kurzfassung

Für große Instanzen sind viele praktisch relevante Probleme nicht effizient lösbar.
Oftmals werden sie jedoch bewältigbar, wenn die Eingaben auf solche Instanzen be-
schränkt werden, die einen durch eine Konstante beschränkten Parameter aufweisen.
Besonders die Baumweite hat sich als attraktiver Parameter erwiesen, da sie auf viele
unterschiedliche Probleme anwendbar ist. Beschränkte Baumweite, die zu praktischer
Lösbarkeit führt, kann häufig durch dynamische Programmierung auf einer Baumzer-
legung der ursprünglichen Instanz ausgenutzt werden. Bisher war es jedoch üblicher-
weise äußerst aufwendig, solche Algorithmen zu implementieren, was auf den Mangel
an unterstützenden Werkzeugen, die eine angemessene Sprache zur einfachen Spezi-
fizierung bereitstellen, zurückzuführen ist.

In dieser Diplomarbeit stellen wir deshalb eine Problemlösungsmethode namens
Decompose, Guess & Check vor, die es ermöglicht, solche Algorithmen deklarativ zu spe-
zifizieren. Dafür verwenden wir Antwortmengenprogrammierung – einen logischen Pro-
grammierformalismus, der ein Programmierparadigma namens Guess & Check unter-
stützt und für seine Eignung geschätzt wird, schwierige Probleme sehr prägnant aus-
zudrücken. Durch die Anwendung von Antwortmengenprogrammierung als Sprache
zum Spezifizieren der problembezogenen Teile der dynamischen Programmierungsal-
gorithmen profitiert Decompose, Guess & Check von effizienten Solvern sowie von einer
reichhaltigen Sprache, die leicht lesbaren und wartbaren Code ermöglicht.

Wir führen eine Analyse des vorgeschlagenen Ansatzes durch, die zeigt, dass die-
ser mächtig genug ist, um eine große Klasse an Problemen auf Instanzen beschränkter
Baumweite effizient zu lösen. Weiters stellen wir ein Softwaregerüst namens D-FLAT
vor, das diese Methode bereitstellt und Rapid Prototyping von Algorithmen auf Baum-
zerlegungen ermöglicht. Schließlich wenden wir D-FLAT auf eine Auswahl verschie-
dener Probleme an, um die Vielseitigkeit des Ansatzes zu illustrieren.

Da Instanzen in praktischen Anwendungen oft kleine Baumweite aufweisen, be-
sitzt unser Ansatz hohe praktische Relevanz. Für viele im Allgemeinen schwierige
Probleme ist Decompose, Guess & Check daher ein vielversprechender Kandidat, um
große Instanzen zu lösen, die für bestehende Systeme der Antwortmengenprogram-
mierung bisher außer Reichweite lagen.

xi

Contents

1 Introduction 1

2 Background 9
2.1 Computational Complexity . 9

2.1.1 Basic Complexity Theory . 10

2.1.2 Complexity and “Guess & Check” 12

2.1.3 The Polynomial Hierarchy . 13

2.1.4 Parameterized Complexity Theory 14

2.2 Dynamic Programming . 15

2.2.1 Properties of Dynamic Programming 16

2.2.2 Example: Minimum Vertex Cover on Trees 16

2.3 Answer Set Programming . 18

2.3.1 Syntax . 18

2.3.2 Semantics . 19

2.3.3 Complexity and Expressive Power 20

2.3.4 ASP in Practice . 21

2.4 Tree Decompositions . 22

2.4.1 Concepts and Complexity . 23

2.4.2 Monadic Second-Order Logic . 25

2.4.3 Dynamic Programming on Tree Decompositions 27

3 Decompose, Guess & Check 29
3.1 General Approach . 29

3.1.1 Motivation . 30

3.1.2 General Outline and Desiderata 31

3.1.3 Requirements for Problems Beyond NP 39

3.2 Algorithm Design Methodology . 46

3.3 Applicability . 47

3.3.1 Evaluation of MSO Formulas . 48

3.3.2 Further Applicability Results . 57

xiii

xiv CONTENTS

4 The D-FLAT System 59
4.1 System Overview . 59

4.1.1 Description of Individual Steps . 60

4.1.2 Command-Line Interface . 64

4.1.3 Interface to ASP Programs: Reserved Predicates 64

4.2 Case Studies . 66

4.2.1 Graph Coloring . 68

4.2.2 List Coloring . 69

4.2.3 Minimum 3-Coloring . 70

4.2.4 Minimum Vertex Cover . 72

4.2.5 Boolean Satisfiability . 74

4.2.6 Disjunctive Answer Set Programming 76

4.2.7 Cyclic Ordering . 76

4.2.8 Hamiltonian Cycle . 79

4.2.9 Evaluation of MSO Formulas . 82

4.2.10 Quantified Boolean Formulas . 82

4.3 Practical Performance . 89

5 Conclusion 91
5.1 Discussion . 91

5.1.1 Reflection . 91

5.1.2 Related Work . 94

5.1.3 Future Work . 98

5.2 Summary . 99

Chapter 1

Introduction

Since its beginnings, the study of computers has brought about powerful tools and
methodologies that aid in engineering correct and efficient software. For problems of
low complexity, this usually works quite well (even though writing correct, efficient
and maintainable code can still be far from trivial in practice). There are, however,
problems that are inherently difficult to solve, where the primary obstacles are not
implementation details but rather difficulties arising from the inherent complexity of
such problems that can make algorithms infeasible for large input. Even worse, in such
cases classical imperative programming languages tend to yield complicated code that
is hard to understand and to maintain. Declarative approaches have been developed
to avoid these issues. However, even though they often at least permit clear and suc-
cinct specifications, computational complexity still remains a barrier. Thus, although
declarative languages help with regard to specification, there are many cases where
an appropriate language does not suffice for successful applications. Unfortunately, a
lot of interesting problems fall under this category.

The main challenge posed by theoretical computer science and, in particular, ar-
tificial intelligence, that we are facing today is how to cope with hard problems on
large amounts of data. This challenge is still open. There has been much theoretical
progress toward understanding sources of complexity and practical progress toward
building tools that try to make the best of the (presumably unavoidable) explosion of
runtime for large inputs by building systems that make clever choices and thus try to
“cheat death”. However, there is still no entirely satisfactory answer to that challenge.
As it is unlikely that problems known to be hard today turn out to be tractable after all,
it is doubtful whether a “one size fits all” solution will eventually be found. Despite
this, the present work proposes a solution that fits many.

Tackling intractability. Consider the question of how to deal with intractable prob-
lems. One possibility to do this is to accept solutions that might not be optimal but
which are at least efficiently computable. This scheme includes approximation algo-

1

2 CHAPTER 1. INTRODUCTION

rithms and heuristic methods. Another possibility is to find subclasses of instances
that are tractable. The drawback of inexact methods is obvious: We usually end up
with suboptimal solutions. On the other hand, relying on exact methods for tractable
subclasses also suffers from a serious issue: Often the constraints defining these sub-
classes are too restrictive for practical use. This severely limits the usefulness of many
methods for dealing with hard problems on large data.

Recently, an interesting new approach appeared in the shape of parameterized com-
plexity theory [Downey and Fellows, 1999, Flum and Grohe, 2006, Niedermeier, 2006].
This research area has attracted a lot of attention lately because it allows for a more
fine-grained analysis of the complexity of computational problems than classical com-
plexity theory, which only considers the size of the input as the quantity of interest. In
contrast, parameterized complexity theory shifts the emphasis away from mere size of
the input toward other properties.

This new perspective on the cause of intractability allows for problem solving
methods that always produce exact solutions and are yet applicable to a broad range
of practical problems. The idea is to put a bound on a parameter different from the
input size. This way, we can often confine the exponential explosion to this parameter,
which means that even huge inputs pose no difficulties as long as the parameter is
bounded.

Taking internal structure into account. An especially useful parameter is treewidth
[Robertson and Seymour, 1984], which, roughly speaking, measures the “tree-likeness”
of a graph. Choosing treewidth as a parameter has significant advantages compared
to other parameterizations. Since treewidth is a property of graphs, it can be applied
to many problems – in fact not just to problems on graphs but to all problems that can
be represented as a graph. In contrast, many other parameters, such as the maximum
clause size in a propositional formula, only make sense for few problems, and often
there is a threshold above which even relatively small values of the parameter do
not help – for instance, the Boolean Satisfiability problem is tractable for instances
having clause size 2, but it is NP-complete already for clause size 3.

When parameterizing a problem by treewidth, there is usually no such sharp
threshold, as we can often write fixed-parameter algorithms whose runtime is exponen-
tial in the treewidth instead of the input size. This way, there is no rift between those
instances an algorithm can handle efficiently and all the other instances that it cannot
handle at all. Rather, a fixed-parameter algorithm can solve all instances. The tran-
sition between the (exponential) runtime in the general case and the (usually linear)
runtime for the efficiently solvable instances becomes smooth. This way, we no longer
merely tell efficiently solvable instances apart from infeasible ones in the crude way
of a dichotomy. The question rather becomes “how feasible” an instance is. That is:
What is the value of the instance’s parameter that controls the exponential explosion;
to wit, what is its treewidth?

3

The famous theorem by Courcelle [Courcelle, 1990] is an important criterion to
identify problems for which bounded treewidth is useful. It shows that any problem
that can be stated in the formalism of monadic second-order logic becomes tractable
for instances of bounded treewidth.

In practical applications, the treewidth is small for many problems [Thorup, 1998,
Agarwal et al., 2011, Gramm et al., 2008, Huang and Lai, 2007, Latapy and Magnien,
2006, Melançon, 2006]. An explanation for this is the observation that graphs in the
real world usually do not resemble random graphs very much. They exhibit structure
since the universe is not in a state of complete disorder.

Decomposed problem solving. To take advantage of the fact that the treewidth is
often small for real-world instances, the concept of dynamic programming on tree decom-
positions [Niedermeier, 2006, Bodlaender, 1997] has been developed and proven itself
to be an especially powerful technique with successful applications to many problems.
This approach solves problems in a decomposed way by considering individual sub-
problems and combining partial solutions. To achieve this, first a tree decomposition of
the instance is constructed, which breaks the instance down into smaller parts whose
sizes only depend on the treewidth. Subsequently dynamic programming is employed
on the obtained decomposition to compute, combine and extend partial solutions.

Declarative problem solving. Aside from the difficulties computers have with solv-
ing hard problems due to their complexity, such problems are also especially chal-
lenging for the human who must write an algorithm that is ideally easy to read and to
maintain. Declarative approaches have proven to be particularly well suited for such
tasks, as they allow the user to focus on the “what” instead of the “how”.

Answer Set Programming (ASP) [Brewka et al., 2011,Lifschitz, 2008] is a logic pro-
gramming language that allows for succinct specifications of computationally hard
problems. In particular, ASP makes it easy to write programs that follow the Guess
& Check principle where a guess is performed to open up the search space non-
deterministically and a subsequent check phase eliminates all guessed candidates that
turn out not to be solutions. Compared to implementations in imperative languages,
ASP programs have the advantage of being often much easier to read and to maintain.
There are sophisticated ASP solvers available that offer high efficiency and provide a
rich language for modeling problems in a natural way, which is one of the reasons
why ASP is by now widely acknowledged as a powerful way to solve hard problems.

The state of the art and its shortcomings. Tree decompositions, dynamic program-
ming and declarative problem solving have been studied to a great extent. Each of
these notions has established itself as an invaluable concept. Plenty of software tools
have been developed to employ them in practice (cf. Section 5.1.2). However, none of
the existing approaches that we know of combines these areas in an adequate way.

4 CHAPTER 1. INTRODUCTION

• On the one hand, there are frameworks that allow users to exploit decomposi-
tion but not to do so in a declarative way. This narrows their usefulness because
especially for hard problems easily readable and maintainable imperative im-
plementations are often much more difficult to come up with than declarative
specifications.

• On the other hand, logic programming languages like ASP make declarative
problem solving possible but do not offer decomposition. This is unfortunate
because these languages thereby ignore the potential of solving problems in a
decomposed way and so cannot compete with dedicated solutions that exploit
bounded treewidth.

• Beyond that, attempts have been made to develop systems that make use both
of decomposition and declarative specification of problems by evaluating logical
formulas with the help of tree automata or tree decompositions [Klarlund et al.,
2002, Kneis et al., 2011].

At first glance, the very high level of declarativity that such logical formalizations
offer appears to be a virtue. However, sometimes the excess of virtue is a vice:
It has been found that implementations of such approaches usually suffer from
bad practical performance. This is explained by the fact that they cannot exploit
knowledge about the application domain like a tailored algorithm can.

In spite of this, we do not believe that we must therefore give up declarativity
and resort to imperative languages – no one shall expel us from the paradise that
declarative problem solving has created. Rather, we conclude that the right level
of declarativity for decomposed problem solving has not yet been found.

Main goal. Our goal is to offer a method for combining the advantages of decom-
position methods with those of declarative problem solving in such a way that the
intuition behind a problem-specific dynamic programming algorithm on a tree de-
composition does not get lost. We wish to provide a means to specify algorithms that
explicitly make use of knowledge about the domain – like an imperative implemen-
tation does – while at the same time offering a high level of declarativity in order to
benefit from the known advantages of declarative problem solving.

Since especially ASP with its Guess & Check approach has proven to be an excellent
choice for solving many hard problems, we seek a bridge between the worlds of ASP
and dynamic programming on tree decompositions.

Combining decomposition methods with declarative problem solving. In this the-
sis, we present an approach called Decompose, Guess & Check that fits the bill. It pro-
ceeds by providing the user with an automatically constructed tree decomposition and,

5

for the actual problem-specific algorithm, executing a user-supplied ASP encoding to
perform dynamic programming.

There has so far been no system that brings the advantages of ASP to bear in a
decomposed setting. What makes the proposed approach novel is thus that it is now
possible to specify concrete dynamic programming algorithms on tree decompositions
in a declarative way.

Using ASP to compute the partial solutions of the subproblems can be motivated by
the observation that ASP is well suited for a lot of problems and is thus often also well
suited for parts of such problems. Therefore, we can benefit from its advantages also in
a decomposed setting. Because ASP originated in part from research on databases, it
can be conveniently used to specify table transitions, which are the typical operations
in dynamic programming. Thus, ASP is an excellent choice for realizing dynamic
programming algorithms on tree decompositions.

Challenges. Combining dynamic programming on tree decompositions with the
Guess & Check paradigm found in ASP is not a trivial task. Several demanding chal-
lenges have to be overcome in order to achieve our goals.

We wish to use ASP for dynamic programming on tree decompositions, but at the
same time we want to avoid extending the ASP syntax. This is because introducing
syntactical changes would lead to yet another programming language for which exist-
ing technology cannot be used directly. Using the established language of ASP allows
us to benefit from future improvements to the already very sophisticated solvers.

To accomplish this, we need a framework that offers the power of decomposition to
ASP by employing a high-performance solver to execute user-supplied ASP encodings
that specify the table computations required for dynamic programming. To make
this possible, appropriate data structures for the objects that are being manipulated
during the run of an algorithm must be chosen and, most importantly, an interface
between the user’s declarative encodings and the framework must be specified. This is
required so that the problem-specific encodings receive all necessary information from
the framework to perform the dynamic programming task, and that the framework can
interpret the results of the encodings to populate the data structures accordingly. For
the latter task, we need to define how the contents of the dynamic programming tables
can be extracted from the answer sets produced by the user’s encoding. It is moreover
vital that the interface be designed so as to meet the requirements for solving all kinds
of different problems, and care must be taken to find a balance between flexibility and
simplicity.

Contributions. Our main contribution is the development of a declarative problem
solving technique called Decompose, Guess & Check that makes use of dynamic pro-
gramming on tree decompositions using ASP as a language for the problem-specific
encodings. This endeavor comprises the following most notable items.

6 CHAPTER 1. INTRODUCTION

• We introduce the features of the Decompose, Guess & Check approach, describe
its theoretical underpinnings and analyze its properties. The main innovation is
that it provides an instrument to use the efficiency of dynamic programming on
tree decompositions combined with the power of ASP for succinctly modeling
hard problems.

The benefits of Decompose, Guess & Check can be seen from multiple aspects.
From the perspective of the practitioner, Decompose, Guess & Check can be seen
as a valuable method for developing rapid prototypes of dynamic programming
algorithms that operate on tree decompositions. It can also be useful for the re-
searcher or student because it allows for quickly implementing such algorithms.
Therefore, Decompose, Guess & Check is also attractive for educational purposes
because it lowers the barrier for getting acquainted with dynamic programming
on tree decompositions by allowing the user to readily experiment with this
problem solving technique. This promotes understanding of the underlying con-
cepts, which many consider to be a bit difficult to grasp at first. Finally, from the
aspect of a member of the ASP community, Decompose, Guess & Check is a vehicle
that opens up the possibility of solving problems in a decomposed way without
giving up the advantages of ASP.

• Decompose, Guess & Check allows the programmer to focus on the actual problem-
specific algorithm by writing a declarative encoding. It therefore makes it easier
to develop and maintain dynamic programming algorithms on tree decomposi-
tions. To effectively use it in practice, we give guidelines for designing algorithms
with Decompose, Guess & Check.

• We present our implementation of a software framework for developing algo-
rithms by means of Decompose, Guess & Check. The user can therefore rely on
tedious non-problem-specific tasks being handled by a ready-to-use framework
that allows the actual problem-specific computations to be specified by means of
ASP.

So far, dynamic programming on tree decompositions has often been an intricate
task – not only because dynamic programming takes some getting used to, but
also since it involves steps that have little to do with the actual problem and
are perceived as a burden to the programmer, such as providing suitable data
structures, parsing input, constructing a “good” tree decomposition (which is
in itself a quite difficult task) and implementing the data flow. Until now, these
unrelated issues often stood in the way of quickly implementing an idea for such
an algorithm.

Our framework eliminates these obstacles by dismissing the requirement to rein-
vent the wheel for each problem. We thus relieve the user from having to deal
with issues that distract from the essentials of the algorithm.

7

• We show that Decompose, Guess & Check and our framework are powerful enough
to solve all problems that are definable in the formalism of monadic second-order
logic and to do so efficiently for graphs of bounded treewidth. We thus provide
evidence that Decompose, Guess & Check is well equipped for solving a multitude
of hard problems efficiently if the treewidth of instances is bounded.

Furthermore, this result amounts to an alternative approach to proving Cour-
celle’s theorem. Because it is conceptually simpler than the original proof, it
might even be of theoretical use in the future by allowing us to prove extensions
of Courcelle’s theorem that are difficult to prove otherwise.

• We list encodings for various kinds of problems for illustration. These case stud-
ies comprise problems from graph theory (e.g., Graph Coloring, Minimum

Vertex Cover and Hamiltonian Cycle), logic (e.g., Boolean Satisfiability,
Disjunctive Answer Set Programming and Quantified Boolean Formulas)
and other fields (e.g., Cyclic Ordering). This shows that Decompose, Guess &
Check is indeed well suited for solving a wide range of problems by means of
succinct declarative specifications. Some of our encodings implement novel al-
gorithms, and we even consider problems for which we are not aware of any
published fixed-parameter algorithm exploiting treewidth.

• We report preliminary experiments, which confirm that Decompose, Guess & Check
can be successfully employed in practice. We manage to outperform traditional
ASP systems on some hard problems for large instances of bounded treewidth.

Organization. This thesis is structured in the following way. Chapter 2 covers the
necessary background – in particular it gives brief introductions to computational
complexity theory, dynamic programming, ASP and tree decompositions. Our main
contribution is presented in Chapter 3 where we introduce the Decompose, Guess &
Check approach to problem solving. After giving an overview, we state a methodology
to implement concrete algorithms and study the applicability of the approach. This is
complemented by Chapter 4 where we present a framework that allows putting the De-
compose, Guess & Check approach into action. After describing this system in a general
way, we give an extensive collection of case studies for various problems from different
domains to illustrate the versatility of the presented approach. The last section of that
chapter is devoted to an experimental evaluation. Finally, Chapter 5 concludes this
work with a discussion of the obtained results, including an investigation of related
work as well as a summary and an outlook.

Achievements. Our framework for implementing algorithms with Decompose, Guess
& Check is released as free software at http://www.dbai.tuwien.ac.at/research/
project/dynasp/dflat/. In [Bliem et al., 2012], we have presented a prototypical

http://www.dbai.tuwien.ac.at/research/project/dynasp/dflat/
http://www.dbai.tuwien.ac.at/research/project/dynasp/dflat/

8 CHAPTER 1. INTRODUCTION

implementation of this framework. The article was accepted as a full paper for the
28th International Conference on Logic Programming (ICLP 2012), a prestigious confer-
ence for research concerned with logic programming in general and ASP in particular.
The paper was then published in the renowned journal Theory and Practice of Logic
Programming (TPLP). In the current work, we significantly generalize and extend the
concepts from that preceding article.

Chapter 2

Background

This chapter describes the preliminary concepts and underlying theory of the ap-
proach presented in this work. Section 2.1 discusses the most relevant topics of com-
putational complexity theory, Section 2.2 is about dynamic programming, Section 2.3
is devoted to Answer Set Programming, and Section 2.4 covers tree decompositions.

2.1 Computational Complexity

Perhaps the most important contribution to the foundation of computer science as
an area of theoretical research was Alan Turing’s seminal paper [Turing, 1936] on
computable numbers in which he introduced a model of computation that came to
be known as the concept of Turing machines. By means of such machines, Turing
provided a formal description of what it means to compute something and thus of
precisely what can be called an algorithm. His motivation was to solve one of the most
important questions concerned with the foundation of mathematics at the time, the so-
called Entscheidungsproblem, which is, roughly speaking, the question of whether the
truth or falsity of any statement in predicate logic can be determined by an algorithm.
The Entscheidungsproblem was an important part of Hilbert’s program – an ambitious
attempt, formulated by David Hilbert, to provide a reliable foundation of mathematics.
Turing proved that the answer to the Entscheidungsproblem is negative. This means
that some mathematical problems cannot possibly be solved by a computer. Thereby,
Turing showed that one of the core elements of Hilbert’s program was impossible to
carry out.

Thus a sharp boundary between two fundamental classes of computational prob-
lems has been established that divides decidable from undecidable problems. The
research area of computational complexity builds upon this result and goes one step
further: Given that some problems are decidable, while others are not, it is natural to
ask about the decidable problems how difficult it is to solve them. By “difficulty” of
a problem, we usually mean time complexity, i.e., the asymptotic worst-case running

9

10 CHAPTER 2. BACKGROUND

time of any possible algorithm for the problem. Other resources, such as memory
consumption, can also be considered, but unless explicitly noted otherwise, we always
refer to time complexity.

Computational complexity is highly relevant also in practice: When asked to im-
plement a program that solves a particular problem, there is often the question of
whether the resulting algorithm is unnecessarily cumbersome or whether it solves the
problem as efficiently as possible (save for optimizations that are negligible from a
theoretical point of view). For instance, when it has been established that there cannot
be a tractable algorithm for a particular problem, vain efforts to produce an efficient
implementation – one whose runtime is polynomial in the input size – can be directed
to more fruitful tasks.

A basic distinction within the class of decidable problems is thus between tractable
and intractable problems. Informally, a problem is called intractable if each algorithm
for it must have the property that “small” growth of the size of the problem instance
leads to an “excessive” increase in running time. By such an “excessive increase” we
mean what is often referred to as “exponential explosion” which occurs when the run-
ning time is exponential in the size of the input. On the other hand, we call a problem
tractable if there is an algorithm that runs in polynomial time. The remainder of this
section is devoted to formalizing basic complexity-theoretic notions. For thorough in-
troductions to complexity theory, we refer to [Papadimitriou, 1994] and [Garey and
Johnson, 1979].

2.1.1 Basic Complexity Theory

The objects of study in complexity theory are computational problems.

Definition 2.1. Let Σ denote a finite alphabet and Σ∗ the set of all finite strings over Σ.
A decision problem is a language L ⊆ Σ∗. We call any x ∈ Σ∗ an instance (or input) of the
problem. x is called a positive instance if x ∈ L, and a negative instance otherwise.

In order to make specifications more readable, we usually state problems by describing
what we allow as instances and posing a question that can be asked about an instance.
For example, the 3-Colorability problem for graphs (3-Col for short) is defined as
follows:

Input: A graph G = (V, E)

Question: Is there a proper 3-coloring of G, i.e., a mapping f : V →
{red, green, blue} such that for each edge (a, b) ∈ E it holds that
f (a) 6= f (b)?

Given a positive instance of a problem, we denote by solution an object that is a witness
(or certificate) for the instance being positive. For example, the solutions of a 3-Col

instance are its 3-colorings.

2.1 COMPUTATIONAL COMPLEXITY 11

The most widely studied kind of problems in complexity theory are decision prob-
lems, but there are others, too. For decision problems, the question we ask is always
a yes-no question. For other types of problems we may also specify a computation
task that is to be done with an instance instead of formulating a question. For exam-
ple, other important problem types include counting problems (“How many solutions
exist?”), search problems (“Print any solution.”) and enumeration problems (“Print all so-
lutions.”), as well as optimization variants where solutions are additionally required
to have a minimum associated cost. In the following, we will always consider decision
problems unless stated otherwise.

A complexity class subsumes all problems that are solvable with a certain bound on
the resources. The most prominent classes are P and NP, which we now define.

Definition 2.2. A problem is in the class P if it can be decided by a deterministic Turing
machine requiring time polynomial in the input size.

Analogously, the class NP is defined using non-deterministic Turing machines as the
model of computation. When a non-deterministic Turing machine is in a certain state
and reads a symbol, there can be more than one successor configuration. The compu-
tation (i.e., the sequence of configurations) thus no longer proceeds linearly but can be
depicted as a computation tree. A non-deterministic Turing machine is said to accept
the input if at least one computation path in that tree leads to an accepting state.

Definition 2.3. A problem is in the class NP if it can be decided by a non-deterministic
Turing machine requiring time polynomial in the input size.

We call a problem tractable if the runtime of a deterministic algorithm is polynomial
in the input size. Clearly, the problems in P are tractable by definition. Obviously,
P ⊆ NP, but it is unknown whether this inclusion is proper. It is believed that P 6= NP,
which would imply that many problems in NP are intractable, i.e., that exponential
time is required to solve them with a deterministic algorithm.

For each decision problem there is also a corresponding complement problem
which can be obtained by just inverting the question. Correspondingly, for each com-
plexity class there is a complement class (denoted by the prefix “co-”); for instance,
the complement class of NP is called co-NP. Here, it is not just required that a non-
deterministic Turing machine accepts on any computation path but rather that it ac-
cepts on all of them. Whether NP = co-NP is another prominent open question. It is
believed that NP 6= co-NP.

A most important technique in complexity theory are reductions. Informally, a
reduction is a procedure that transforms an instance of one problem to an instance of
another problem such that the answer to the question stays the same.

Definition 2.4. We say that a function R : Σ∗ → Σ∗ is a polynomial-time many-one
reduction (in the following only called reduction) from a problem A to a problem B if
for any input string x ∈ Σ∗ two conditions are satisfied: x ∈ A if and only if R(x) ∈ B,
and R(x) can be computed in polynomial time by a deterministic algorithm.

12 CHAPTER 2. BACKGROUND

Definition 2.5. If a reduction from A to B exists, we call A reducible to B, denoted by
A ≤m B.

From A ≤m B we can conclude that A is at most as hard as B. The hardest problems
of a complexity class are called complete for this class.

Definition 2.6. Given a complexity class C, a problem Π is called C-hard if for any
Π′ ∈ C it holds that Π′ ≤m Π. Π is called C-complete if additionally Π ∈ C.

If we can prove a problem Π to be complete for a (“natural”) class C, we have gained
a good understanding about the difficulty of Π. To do this, we commonly show
membership (usually by giving an algorithm appropriate to C) and hardness (usually
by reducing a C-complete problem to Π).

The prototypical example of an NP-complete problem is the Boolean Satisfiabil-
ity problem (for short Sat):

Input: A propositional formula φ

Question: Is φ satisfiable?

A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses. The
problem of deciding satisfiability of a CNF formula with at most three literals per
clause is known as 3-Sat and is also NP-complete, whereas 2-Sat – where each clause
has at most two literals – is known to be in P.

2.1.2 Complexity and “Guess & Check”

An alternative characterization of NP is by means of succinct certificates (also called wit-
nesses). Given a solution to an instance of a problem in NP, it can be efficiently verified
whether this solution is indeed a witness to the instance being positive, whereas it is
believed that actually finding a solution is difficult.

We formalize this relationship between instances and witnesses that is characteris-
tic for NP by means of certificate relations which must fulfill certain conditions.

Definition 2.7. An (n + 1)-ary relation R over Σ∗ is called polynomially balanced if for
any (x, y1, . . . , yn) ∈ R and 1 ≤ i ≤ n it holds that |x| ≤ |yi|.
Definition 2.8. An (n + 1)-ary relation R over Σ∗ is called polynomial-time decidable
if there is a deterministic algorithm that, given an (n + 1)-tuple t over Σ∗ as input,
decides in polynomial time whether t ∈ R.

Theorem 2.9. Let L ⊆ Σ∗ be a language. L ∈ NP if and only if there is a polynomial-time
decidable and polynomially balanced relation R ⊆ Σ∗ × Σ∗ such that

L = {x | ∃y : (x, y) ∈ R}.

This characterization is especially interesting for the purpose of this work, since it
suggests a methodology of problem solving that is known as Guess & Check and will

2.1 COMPUTATIONAL COMPLEXITY 13

play a substantial role when we present our own extension of this approach. When
confronted with an instance of a problem in NP, a non-deterministic Turing machine
can first guess a candidate for a solution (thus yielding multiple computation paths)
and then check whether this candidate is indeed a solution. For non-deterministic
Turing machines, all this is possible in polynomial time because it suffices for any
computation path to succeed in order to yield the answer “yes”. As we have just seen,
verifying whether some candidate is a witness (i.e., the “check” part) can be done
efficiently.

Note that for a problem in co-NP we require a Turing machine to accept on all
computation paths, which appears not to be solvable by Guess & Check in general
(otherwise we would have a proof for NP = co-NP).

Since in reality we are unfortunately not in possession of a non-deterministic Tur-
ing machine, it is probably not possible to solve NP-complete problems efficiently.
However, the Guess & Check approach is nevertheless valuable in practice, since it al-
lows us, if not to solve such problems efficiently, at least to succinctly specify programs
to solve them. Especially Answer Set Programming (cf. Section 2.3) is a prime example
for a means to achieve this [Leone et al., 2006].

2.1.3 The Polynomial Hierarchy

Of course, some problems are even more difficult than NP-complete problems. A
notable example are problems in the polynomial hierarchy which we will now define.

First, a brief introduction to oracle machines is in order. A Turing machine with
an oracle for the class O may always call this oracle which can decide any problem
in O in just one step. For any time complexity class C, we denote by CO the class of
all problems decidable by a Turing machine of the same kind (e.g., deterministic or
non-deterministic) as in C, having access to an oracle for O, with the same resource
bound (e.g., polynomial time).

Definition 2.10. The basis of the polynomial hierarchy is defined as Σp
0 = P, and the

higher levels are recursively defined as Σp
i = NPΣp

i−1 for i > 0. We also define the
related classes ∆p

i = PΣp
i and Πp

i = co-Σp
i for i ≥ 0. The polynomial hierarchy is defined

as PH =
⋃

i≥0 Σp
i .

Note that any problem in the polynomial hierarchy can be decided in polynomial
space.

Definition 2.11. PSPACE is the class of all problems decidable in polynomial space.

Theorem 2.12. PH ⊆ PSPACE

Analogous to Theorem 2.9, the levels of the polynomial hierarchy can also be charac-
terized by means of certificate relations and quantifier alternation:

14 CHAPTER 2. BACKGROUND

Theorem 2.13. Let L ⊆ Σ∗ be a language and i ≥ 0. L ∈ Σp
i if and only if there is a

polynomial-time decidable and polynomially balanced (i + 1)-ary relation R over Σ∗ such that

L = {x | ∃y1∀y2∃y3 . . . Qyi : (x, y1, . . . , yi) ∈ R}

where Q is ∃ for odd i and ∀ for even i.

Quantifier alternation also plays a role in Qsati which is the showcase problem that
captures the complexity of the ith level of the polynomial hierarchy. Qsati is the
following problem:

Input: A formula of the form ∃X1∀X2∃X3 . . . QXi φ where Q is ∃ for odd i
and ∀ for even i, φ is a propositional formula and Xj (for 1 ≤ j ≤ i)
is a set of propositional variables

Question: Is there a truth assignment to the variables in X1 such that for any
truth assignment to the variables in X2 there is a truth assignment
to the variables in X3, and so on, such that φ is satisfied?

Theorem 2.14. Qsati is Σp
i -complete.

A generalization of Qsati, where we drop the requirement of a bounded number of
quantifier alternations, is the Qsat problem:

Input: A formula of the form ∃x1∀x2∃x3 . . . Qxi φ where Q is ∃ for odd i
and ∀ for even i, φ is a propositional formula and xj (for 1 ≤ j ≤ i)
is a propositional variable

Question: Is there a truth assignment to x1 such that for any truth assignment
to x2 there is a truth assignment to x3, and so on, such that φ is
satisfied?

Theorem 2.15. Qsat is PSPACE-complete.

2.1.4 Parameterized Complexity Theory

Parameterized complexity [Downey and Fellows, 1999,Flum and Grohe, 2006,Nieder-
meier, 2006] is a recent development in complexity theory that quickly gained a lot of
attention. Here, one not only studies the behavior of algorithms for problems in the
face of growing instance sizes but also considers other parameters than mere input
size. The motivation is that, given an intractable problem, we wish to gain a deeper
insight into the question of what properties of instances are responsible for the in-
tractability. For many problems it can be seen that restricting ourselves to instances
without some “evil” property makes the problem easy even for huge inputs.

2.2 DYNAMIC PROGRAMMING 15

Definition 2.16. Let Σ denote a finite alphabet. A parameterized decision problem is a
language L ⊆ Σ∗ ×N. We call any (x, k) ∈ Σ∗ ×N an instance; x is the main part and k
is the parameter.

Given an element of Σ∗ × N, the main part is analogous to a traditional problem
instance, whereas the parameter expresses some property of the main part.

Definition 2.17. A parameterized problem L is called fixed-parameter tractable if, for any
(x, k) ∈ Σ∗ ×N, a deterministic Turing machine can decide whether (x, k) ∈ L in time
f (k) · |x|O(1), where f is some computable function only depending on the instance’s
parameter k.

Of course, there are various ways to parameterize a problem. The Graph Colorabil-
ity problem (a generalization of 3-Col from Section 2.1 where the number of colors
is part of the input) could, for example, be parameterized by the number of colors or
by the graph’s treewidth (which we will introduce in Section 2.4). When declaring
that a problem is fixed-parameter tractable, one therefore always has to state which
parameterization is considered. For instance, we will see that Graph Colorability is
fixed-parameter tractable w.r.t. treewidth, but it is doubtful whether it is so w.r.t. the
number of colors, because then we would have proven P = NP since we know that
3-Col is NP-complete.

It is possible that two problems are both classified as, say, NP-complete in tradi-
tional complexity theory, although one is fixed-parameter tractable w.r.t. some para-
meter while the other is not. For instance, the problems Vertex Cover and Clique

(which we do not define at this point) are both NP-complete; however, the former is
fixed-parameter tractable w.r.t. solution size whereas it is believed that the second is
not [Niedermeier, 2006]. Hence, parameterized complexity allows for a more sophisti-
cated classification of problems.

2.2 Dynamic Programming

Dynamic programming [Larson, 1967, Cormen et al., 2009, Dasgupta et al., 2006] is a
problem solving strategy that tries to compute solutions for a problem by recursively
dividing it into subproblems1 such that the solutions of the basic subproblems can be
used to construct the solutions of the larger subproblems. The reason this is often
favorable to a naive recursive implementation is that dynamic programming avoids
solving the same subproblems over and over again by storing already computed solu-
tions for a subproblem in a table that is associated with it.

The approach of divide and conquer algorithms is conceptually related [Cormen et al.,
2009] – however, in dynamic programming the subproblems need not be substantially
smaller, as they are for instance in the merge sort algorithm which always divides sub-

1Actually, we are dividing instances, not problems. The established terminology is here somewhat
sloppy but we stick with it when there is no danger of confusion.

16 CHAPTER 2. BACKGROUND

problems in half, leading to O(n log n) runtime compared to O(n2). More precisely,
the term “divide and conquer” is normally used when the subproblems are disjoint,
whereas in dynamic programming they generally overlap.

Another related approach is memoization [Cormen et al., 2009]. While dynamic pro-
gramming generates solutions to subproblems even if those solutions are not actually
required to create a global solution, memoization only computes what is necessary
on demand. It can be seen as a recursive strategy that – in contrast to a naive imple-
mentation – remembers which subproblems have already been solved. Hence, while
dynamic programming proceeds bottom-up when computing the tables for each sub-
problem, memoization goes top-down. When using memoization, one does not have
to change much of a naive recursive implementation. In particular, memoization does
not require the user to explicitly figure out a reasonable order in which to process the
subproblems. Drawbacks of memoization are the overhead of permanently doing table
lookups, that the level of recursions can become too large and that memory problems
occur when a lot has been cached that is no longer needed.

2.2.1 Properties of Dynamic Programming

Problems that are good candidates to solve with dynamic programming exhibit the
following properties.

Overlapping subproblems: When computing a solution, some subproblems occur
multiple times. This property is responsible for the fact that a naive recursive
implementation is inefficient because it performs the same computations many
times.

Optimal substructure: When dealing with an optimization problem, if a solution is
optimal for the global problem, then it also contains optimal solutions to all sub-
problems. (For non-optimization problems, optimality coincides with validity.)

2.2.2 Example: Minimum Vertex Cover on Trees

As an example for dynamic programming, we present an algorithm that solves the
Minimum Vertex Cover problem on trees.

A vertex cover of a graph is a subset of the vertices that contains at least one end-
point of each edge. The Minimum Vertex Cover problem is defined as follows.

Input: A graph

Task: Determine the smallest size of all vertex covers of the graph.

It is well known that Minimum Vertex Cover is NP-complete. However, if we restrict
the instances to trees, the problem is easy to solve. We use this special case to illustrate
the principle of dynamic programming by providing an algorithm adhering to this

2.2 DYNAMIC PROGRAMMING 17

method. Before we do this, however, we will present a naive recursive algorithm that
suffers from the mentioned issues.

For our naive recursive algorithm, let v be the current vertex in a top-down traver-
sal. Whether a vertex v is contained in a minimum vertex cover (v is “in”) or not (v
is “out”) depends on whether its children are contained, because if there is an “out”
child, we are forced to conclude that v is “in” to cover the edge to that child, whereas
otherwise we can choose whether v is contained or not such that the total cost is min-
imized. As we do not know its status in advance, we compute two values for v: The
cost of the minimum vertex cover of the subtree rooted at v under the condition that v
is “in” (ci(v)) resp. “out” (co(v)). We let ch(v) denote the children of v and define:

ci(v) = 1 + ∑
w∈ch(v)

min(ci(w), co(w)) co(v) = ∑
w∈ch(v)

ci(w)

We compute these functions for the root, choose whichever is smaller and thus obtain
the size of a minimal vertex cover.

Although this algorithm is correct, it is unnecessarily inefficient. For a vertex v, the
number of times ci(v) and co(v) are computed is exponential in the depth of v.2 This
indicates we are dealing with overlapping subproblems. Also the property of optimal
substructure is fulfilled, for if a subproblem had a smaller vertex cover, we could use
it to construct a smaller global vertex cover. So we give dynamic programming a try.

In this example, not much work is required to turn this exponential recursive algo-
rithm into a dynamic programming algorithm. The following algorithm does the job.
For each vertex v we store a table which will eventually contain two entries, ci(v) and
co(v). The meaning of these values is just as before. The difference is that now we are
doing a bottom-up traversal: We start at the leaves and compute the respective two
function values which clearly takes constant time for each leaf; the results are stored
in the tables of the leaves. When we consider a vertex with the property that all its
children’s tables are already filled, we can use the stored entries in the child tables
to compute the entries in the current table in constant time. When we have reached
the root, we can read off the optimum cost from the table. This algorithm is clearly
feasible in linear time. We can also construct a minimum vertex cover in linear time
by a final top-down traversal.

This simple example should have served to illustrate the differences between a
naive recursive approach and dynamic programming. We will get back to dynamic
programming in a more interesting setting, namely when we discuss dynamic pro-
gramming on tree decompositions in Section 2.4. In Section 4.2.4 we will even see
such an algorithm for Minimum Vertex Cover on arbitrary graphs.

2In fact, the number of computations grows exactly like the Fibonacci sequence.

18 CHAPTER 2. BACKGROUND

2.3 Answer Set Programming

Since NP-complete problems are believed not to be solvable in polynomial time, in
principle we probably cannot do better than an algorithm that guesses (potentially ex-
ponentially many) candidates and then checks (each in polynomial time) if these are
indeed valid solutions, because, as we have seen (cf. Theorem 2.9), problems in NP

can be solved via Guess & Check. Logic programming under the answer set seman-
tics is a formalism that allows us to succinctly specify programs that follow such an
approach [Baral, 2003, Gelfond and Leone, 2002, Leone et al., 2006]. Answer Set Pro-
gramming (ASP) denotes a paradigm in which one writes a logic program to solve a
problem such that the answer sets of this program correspond to the solutions of the
problem. Easily accessible introductions are given in [Brewka et al., 2011, Lifschitz,
2008]. [Niemelä, 1999, Marek and Truszczyński, 1999] propose ASP as a paradigm
for declarative problem solving. In particular, the “disadvantage” of the answer set
semantics of admitting many (or even zero) solutions, which was initially a concern
among researchers, has been turned into a virtue by arguing that multiple models
allow for modeling non-deterministic computations naturally. Thus, ASP allows us to
easily write programs following a Guess & Check approach.

2.3.1 Syntax

In the following, we suppose a language with predicate symbols having a correspond-
ing arity (possibly 0), as well as variables and constants. By convention, variables begin
with upper-case letters while predicate symbols and constants begin with lower-case
letters.

Definition 2.18. Each variable and each constant is a term. Constants are also called
ground terms. If p is an m-ary predicate symbol and t1, . . . , tm are terms, then we call
p(t1, . . . , tm) an atom. A literal is an atom with the default negation connective “not”
put in front of it. A ground atom (resp. ground literal) is an atom (resp. literal) in which
only ground terms occur.

Using these building blocks, we define the following central syntactical concept.

Definition 2.19. A logic program (sometimes just called “program” for short) is a set of
rules which have the form

a← b1, . . . , bm, not bm+1, . . . , not bn

where a and b1, . . . , bn are atoms. Let r be a rule of the program Π. We call h(r) = a
the head of r, and b(r) = {b1, . . . , bn} its body which is further divided into a positive
body, b+(r) = {b1, . . . , bm}, and a negative body, b−(r) = {bm+1, . . . , bn}.

We call a rule r safe if each variable occurring in r is also contained in b+(r). In the
following, we only allow programs where all rules are safe.

2.3 ANSWER SET PROGRAMMING 19

If the body of a rule r is empty, r is called a fact, and the← symbol can be omitted.
A rule (or a program) is called ground if it contains only ground atoms. Note that we
sometimes write

← b1, . . . , bm, not bm+1, . . . , not bn.

A rule of this form (i.e., without a head) is called an integrity constraint and is shorthand
for

a← not a, b1, . . . , bm, not bm+1, . . . , not bn

where a is some new atom that exists nowhere else in the program.

The intuition behind a ground rule is the following: If we consider an answer set
containing each atom from the positive body but no atom from the negative body,
then the head atom must be in this answer set. An integrity constraint, i.e., a rule with
an empty head, therefore expresses that a set containing each atom from the positive
body but none from the negative body cannot be an answer set. Of course, we still
need to define the notion of answer sets in a formal way, which we will now turn to.

2.3.2 Semantics

Since the semantics of ASP, as we will see, deals only with variable-free programs,
we first require the notion of grounding a program, i.e., instantiating variables with
ground terms, for which the following definitions are essential.

Definition 2.20. Given a logic program Π, the Herbrand universe of Π, denoted by
UΠ, is the set of all ground terms occurring in Π, or, if no ground terms occur, the
set containing an arbitrary constant as a dummy element. The Herbrand base of Π,
denoted by BΠ, is the set of all ground atoms obtainable by using the elements of UΠ

with the predicate symbols occurring in Π. The grounding of a rule r ∈ Π, denoted by
gr(r), is the set of rules that can be obtained by substituting all elements of UΠ for the
variables in r. The grounding of a program Π is the ground program defined as

gr(Π) =
⋃

r∈Π

gr(r).

We now define the answer set semantics that have first been proposed in [Gelfond and
Lifschitz, 1988]. To this end, we first introduce the notion of answer sets for ground
programs.

Definition 2.21. Let Π be a ground logic program and I be a set of ground atoms
(called an interpretation). A rule r ∈ Π is satisfied by I if h(r) ∈ I or b−(r) ∩ I 6= ∅ or
b+(r) \ I 6= ∅. I is a model of Π if it satisfies each rule in Π. We call I an answer set of
Π if it is a subset-minimal model of the Gelfond-Lifschitz reduct of Π w.r.t. I, which is
the program defined as

ΠI =
{

h(r)← b+(r) | r ∈ Π, b−(r) ∩ I = ∅
}

.

20 CHAPTER 2. BACKGROUND

Having introduced the notion of answer sets for ground programs, we can now state
the answer set semantics for potentially non-ground programs by means of their
groundings.

Definition 2.22. Let Π be a logic program and I ⊆ BΠ. I is an answer set of Π if I is an
answer set of gr(Π).

Therefore, answer sets of a program with variables can be computed by first grounding
it and then solving the resulting ground program. This is mirrored in ASP systems
which typically distinguish a grounding step from a subsequent solving step and can
thus be divided into a grounder and a solver component.

2.3.3 Complexity and Expressive Power

Naturally, questions of computational complexity and expressive power of ASP arise.
A survey of results is given in [Dantsin et al., 2001]. We will now mention results that
are especially important for our purposes.

Theorem 2.23 ([Marek and Truszczyński, 1991]). Deciding whether a ground logic pro-
gram has an answer set is NP-complete.

We are of course not only interested in the propositional case but also in the complexity
in the presence of variables. The use of variables allows us to separate the actual
program from the input data, so ASP can be seen as a query language where the
(usually non-ground) program can be considered a query over a set of facts as input.

This dichotomy between the actual program and the data serving as input should be
taken into account when studying the complexity of non-ground ASP. As mostly we
are dealing with such situations where the program stays the same for variable data
(cf. Section 2.3.4 for an example encoding for 3-Col), it is reasonable to consider the
data complexity of ASP. By this we mean the complexity when the program (consisting
of a set of rules with possibly non-empty bodies) is fixed whereas only the set of facts
representing the data changes.

Theorem 2.24. Let Π be a logic program and ∆ be a set of facts. Deciding answer set existence
of Π ∪ ∆ is NP-complete w.r.t. the size of ∆ (i.e., when Π is fixed).

This is because when Π is fixed and only ∆ varies, the size of gr(Π∪ ∆) is polynomial
in the size of ∆.

The aforementioned complexity results give us insight into how difficult it is to
solve ASP programs. A related question is which problems can actually be expressed
in ASP. Informally, when we say that ASP captures a complexity class, it means that
for any problem in that class we can write a uniform logic program (i.e., a single logic
program that stays the same for all instances) such that this program together with
a set of facts describing an instance has an answer set if and only if the instance is
positive. In fact, it turned out that ASP captures NP [Schlipf, 1995], and also that a
similar result holds for search problems:

2.3 ANSWER SET PROGRAMMING 21

a

b

c

d e

vertex(a;b;c;d;e).

edge(a,b). edge(a,c).

edge(b,c). edge(b,d).

edge(c,d). edge(d,e).

Figure 2.1 A 3-Col instance and its representation in the input language of Gringo

Theorem 2.25 ([Marek and Remmel, 2003]). Every search problem in NP can be expressed
by a uniform ASP program.

There are various generalizations of the presented ASP syntax and semantics in the
literature. For instance, allowing the use of disjunctions in rule heads (as in [Gelfond
and Lifschitz, 1991]) yields higher expressiveness at the cost of Σp

2-completeness for
the problem of deciding answer set existence for ground programs [Eiter and Gottlob,
1995, Eiter et al., 1997]. Further, the use of function symbols even leads to undecid-
ability in general [Calimeri et al., 2008, Alviano et al., 2011]. In some of the examples
in this work, we will occasionally make use of function symbols, but only in a very
restricted way so that no such unpleasant effects arise. In particular, the Herbrand
universe will remain finite.

2.3.4 ASP in Practice

Various systems are available [Gebser et al., 2011b,Leone et al., 2006] which proceed ac-
cording to the aforementioned approach of grounding followed by solving and which
offer auxiliary facilities (like aggregates and arithmetics) to make modeling easier. In
this work, we use the input language of Gringo [Gebser et al., 2009,Gebser et al., 2010]
in the program examples and use a monospaced font for typesetting rules in that lan-
guage. The ← symbol corresponds to :- and each rule is terminated by a period. In
our listings, we will perform “beautifications” such as using ← instead of :- and 6=
instead of != for the sake of better readability.

As an introductory example, we will show how ASP can be applied to solve 3-Col

(see Section 2.1 for the problem definition). Figure 2.1 depicts an instance of 3-Col

together with its representation as a set of facts in the input language of Gringo. The
following program solves 3-Col for instances specified in this way.

color(red;green;blue).

1 { map(X,C) : color(C) } 1 ← vertex(X).

← edge(X,Y), map(X,C), map(Y,C).

This program is to be grounded together with the facts describing the input graph
using the predicates vertex/1 and edge/2. The answer sets encode exactly the valid
3-colorings of the graph.

22 CHAPTER 2. BACKGROUND

The first line uses pooling (indicated by “;”) and is expanded to three facts:

color(red). color(green). color(blue).

The second line uses a cardinality constraint in the head. The “:” symbol indicates a
condition on the instantiation of the variables. Conceptually, this line can be expanded
as follows:

1 { map(X,red), map(X,green), map(X,blue) } 1 ← vertex(X).

The grounder will eventually expand this rule further by substituting ground terms
for X. Roughly speaking, a cardinality constraint l{L1, . . . , Ln}u is satisfied by an inter-
pretation I iff at least l and at most u of the literals L1, . . . , Ln are true in I. Therefore,
the rule in question expresses a choice of exactly one of map(X,red), map(X,green)
and map(X,blue) for any vertex X. Finally, the integrity constraint in the third line
ensures that no answer set maps the same color to adjacent vertices.

As another example, consider the Sat problem. An instance in CNF can be given by
facts using the predicates atom/1 and clause/1, as well as pos(C, A) resp. neg(C, A),
denoting that the atom A occurs positively resp. negatively in the clause C. The fol-
lowing ASP program then solves the Sat problem.

{ true(A) : atom(A) }.

sat(C) ← pos(C,A), true(A).

sat(C) ← neg(C,A), not true(A).

← clause(C), not sat(C).

Note that the absence of bounds in the first rule indicates that this rule derives any
subset of the atoms in the input formula as the extension of true/1.

2.4 Tree Decompositions

Many computationally hard problems on graphs are easy if the instance is a tree.
For example, we have already seen in Section 2.2 that Minimum Vertex Cover, if
restricted to trees, is feasible in linear time, while the problem is intractable in general.
It would of course be desirable if we could also efficiently solve instances that are
“almost” trees. Fortunately, this is not entirely a pipe dream. It is indeed possible
to shed some light on the seemingly so fundamental gap between trees and cyclic
graphs, determine how far a graph is from being a tree and, in many cases, exploit
“tree-likeness”. Tree decompositions and the associated concept of treewidth provide
us with powerful means to achieve this. They are also the basis for the proposed
problem solving methodology – not only are tree decompositions useful for theoretical
investigations, but they also serve as the structures on which the actual algorithms
function.

2.4 TREE DECOMPOSITIONS 23

Lately, tree decompositions and treewidth have received a great deal of attention
in computer science. This interest was sparked primarily by [Robertson and Seymour,
1984]. Since then, it has been widely acknowledged that treewidth represents a very
useful parameter which is applicable to a broad range of problems. There are several
overviews of this topic, such as [Bodlaender, 2005, Bodlaender, 1993, Aschinger et al.,
2011, Niedermeier, 2006].

2.4.1 Concepts and Complexity

Basically, a tree decomposition of a (potentially cyclic) graph is a certain kind of tree
that can be obtained from the graph. From now on, to avoid ambiguity, we follow the
convention that the term “vertex” refers to vertices in the original graph, whereas the
term “node” refers to nodes in a tree decomposition.

To give a very rough idea, the intuition behind a tree decomposition is that each
node subsumes multiple vertices, thereby isolating the parts responsible for the cyclic-
ity. When we thus want to turn a graph into a tree, we can think of contracting vertices
(ideally in a clever way) until we end up with a tree whose nodes represent subgraphs
of the original graph. Our sought-for measure of a graph’s cyclicity can thereby be
determined as “how extensive” such contractions must be at the very least in order to
get rid of all cycles. These intuitions will now be formalized.

Definition 2.26. Given a graph G = (V, E), a tree decomposition of G is a pair (T, χ)

where T = (N, F) is a (rooted) tree and χ : N → 2V assigns to each node a set of
vertices (called the node’s bag), such that the following conditions are satisfied:

1. For every vertex v ∈ V, there exists a node n ∈ N such that v ∈ χ(n).

2. For every edge e ∈ E, there exists a node n ∈ N such that e ⊆ χ(n).

3. For every v ∈ V, the set {n ∈ N | v ∈ χ(n)} induces a connected subtree of T.

We call maxn∈N |χ(n)| − 1 the width of the decomposition. The treewidth of a graph is
the minimum width over all its tree decompositions.

Condition 3 is also called the connectedness condition and is equivalent to the require-
ment that if a vertex occurs in the bags of two nodes n0, n1 ∈ N, then it must also be
contained it the bag of each node on the path between n0 and n1, which is uniquely
determined because T is a tree.

Note that each graph admits a tree decomposition, namely at least the “decom-
position” consisting of a single node n with χ(n) = V. A tree has treewidth 1 and
a cycle has treewidth 2. Among other interesting properties is that if a graph con-
tains a clique v1, . . . , vk, then in any of its tree decompositions there is a node n with
{v1, . . . , vk} ⊆ χ(n). Therefore the treewidth of a graph containing a k-clique is at least
k− 1. Furthermore, if the graph is a k× k grid, its treewidth is k. Large cliques or grids
within a graph therefore imply large treewidth.

24 CHAPTER 2. BACKGROUND

a

b

c

d e

{a, b, c} {d, e}

{b, c, d}

Figure 2.2 A graph with treewidth 2 and an (optimal) tree decomposition for it

Figure 2.2 shows a graph together with a tree decomposition of it that has width 2.
This decomposition is optimal because the graph contains a cycle and thus its tree-
width is at least 2.

Many problems that are intractable in general are tractable when the treewidth is
bounded by a fixed constant. Considering treewidth as a parameter (compared to,
say, solution size or the maximum clause size in a CNF formula) means to study the
structural difficulty of instances. What makes treewidth especially attractive is that this
parameter can be applied to all graph problems and even to many problems that do
not work on graphs directly, by finding suitable graph representations of the instances.
For example, we can also decompose hypergraphs by building a tree decomposition
of the primal graph (also known as the Gaifman graph). Given a hypergraph H = (V, E),
where V are the vertices and E ⊆ 2V \ {∅} are the hyperedges, the primal graph is
defined as the graph G = (V, F) with the same vertices as H and with the edges
F =

{
{x, y} ⊆ V | ∃e ∈ E : {x, y} ⊆ e

}
; in other words, the graph where each pair of

vertices appearing together in a hyperedge is connected by an edge.
Furthermore, it has been observed that instances occurring in practical situations

often exhibit small treewidth (cf., e.g., [Thorup, 1998,Agarwal et al., 2011,Gramm et al.,
2008,Huang and Lai, 2007,Latapy and Magnien, 2006,Melançon, 2006]). We have taken
a look at some publicly available datasets3 (from domains like co-authorship among
scientists, electric power networks or biological networks) and found that indeed often
the treewidth is quite small. This appears to be very promising, since it indicates
that the proposed Decompose, Guess & Check approach might be practicable in many
real-world applications because the treewidth is crucial for the runtime and memory
requirements of dynamic programming algorithms on tree decompositions, as we will
see in Section 2.4.3.

In general, determining a graph’s treewidth and constructing an optimal tree de-
composition are unfortunately intractable.

Theorem 2.27 ([Arnborg et al., 1987]). Given a graph and a non-negative integer k, deciding
whether the graph’s treewidth is at most k is NP-complete.

However, the problem is fixed-parameter tractable w.r.t. the parameter k, i.e., if we are
given a fixed k in advance, the problem becomes tractable.

3See, for instance, http://wiki.gephi.org/index.php/Datasets

http://wiki.gephi.org/index.php/Datasets

2.4 TREE DECOMPOSITIONS 25

Theorem 2.28 (Bodlaender’s theorem [Bodlaender, 1996]). For any fixed k, deciding
whether a graph’s treewidth is at most k, and, if so, constructing an optimal tree decompo-
sition, are feasible in linear time.

This has important implications when we are dealing with a problem that can be
efficiently solved given a tree decomposition of width bounded by some fixed constant
k, because it means that, given k, we can also construct such a tree decomposition
efficiently.

If no such bound on the treewidth can be given a priori, which is the case if we
want to be able to process problems even if their treewidth is large, we are not neces-
sarily doomed. Although finding an optimal tree decomposition is intractable in this
case, there are efficient heuristics that produce a reasonably good tree decomposition
[Bodlaender and Koster, 2010, Dermaku et al., 2008, Gottlob et al., 2002]. In practice,
it is usually not necessary for the used tree decomposition to be optimal in order to
take significant advantage of decomposing problem instances. In particular, having
a non-optimal tree decomposition will typically imply higher runtime and memory
consumption, but the optimality of the computed solution is not at stake.

2.4.2 Monadic Second-Order Logic

A famous result is due to [Courcelle, 1990]. It states that any graph property which
can be expressed in the formalism of monadic second-order logic (MSO) can be decided
in linear time when the treewidth is bounded. This allows us to identify a large class
of problems that are fixed-parameter tractable w.r.t. treewidth by means of a relatively
intuitive criterion. MSO enables us to express graph properties and extends classical
first-order logic by allowing quantification over sets of vertices and edges. It is called
monadic because – in contrast to general second-order logic – we may only quantify
over unary relational variables.

In our discussion of MSO, we roughly follow [Niedermeier, 2006] and [Flum and
Grohe, 2006]. First, we define the syntax. Beside the usual symbols familiar from first-
order logic (logical connectives, quantifiers, parentheses and the equality symbol), our
alphabet contains countably many individual variables (denoted by lower-case letters)
and unary relational variables (i.e., set variables, denoted by upper-case letters), as
well as the unary relational symbols V and E, and the binary relational symbol I.

In the following, let X by an arbitrary set variable and x, y be arbitrary individual
variables. The set of MSO formulas is now defined as the smallest set satisfying the
following conditions. x = y, V(x), E(x), I(x, y) and X(x) are (atomic) formulas. If
φ and ψ are formulas, then ¬φ, φ ∧ ψ, φ ∨ ψ, φ ⊃ ψ, ∃xφ, ∀xφ, ∃Xφ and ∀Xφ are
formulas, too.

Now we define the semantics of MSO. For a graph G = (V, E) whose vertices and
edges we consider our domain of discourse, let α denote an assignment such that for
each individual variable x it holds that α(x) ∈ V ∪ E, and for each set variable X it

26 CHAPTER 2. BACKGROUND

holds that α(X) ⊆ V ∪ E. The satisfaction relation is defined as follows. The semantics
for equality, first-order quantifiers and the logical connectives is no different from
first-order logic. For the other possible formulas, the following equivalences hold:

• (G, α) |= V(x) iff α(x) ∈ V

• (G, α) |= E(x) iff α(x) ∈ E

• (G, α) |= I(x, y) iff α(x) ∈ V, α(y) ∈ E, and α(x) is an endpoint of α(y)

• (G, α) |= X(x) iff α(x) ∈ α(X)

• (G, α) |= ∃Xφ iff (G, α′) |= φ for some α′
X∼ α (i.e., α′(X) is an arbitrary subset of

V ∪ E and α′ coincides with α on all arguments distinct from X)

• (G, α) |= ∀Xφ iff (G, α′) |= φ for all α′
X∼ α

We simply write G |= φ iff (G, α) |= φ for all α. This is useful, in particular, if the
formula we are dealing with is a sentence (i.e., there are no free variables), as it then
makes no difference which assignment we consider – solely the graph determines the
sentence’s truth value.

Theorem 2.29 (Courcelle’s theorem [Courcelle, 1990]). Let φ be a fixed MSO sentence
and k be a fixed non-negative integer. Given a graph G with treewidth at most k, there is a
linear-time algorithm deciding whether G |= φ.

This theorem is central because it means that deciding whether a property holds for
a graph is fixed-parameter tractable w.r.t. treewidth if the property is expressible in
MSO.

In the following, we suppose loop-free graphs and use the abbreviation adj(x, y)
for the formula ∃e

(
I(x, e) ∧ I(y, e)

)
. As an example, recall the 3-Col problem (cf.

Section 2.1). The following MSO sentence encodes the property of being 3-colorable.

∃X0∃X1∃X2

(
Part(X0, X1, X2) ∧ ∀x∀y

(
adj(x, y) ⊃

∧
0≤i<3

¬
(
Xi(x) ∧ Xi(y)

)))

The subformula Part(X0, X1, X2) expresses that X0, X1, X2 form a partition of the ver-
tices and is defined as follows.

Part(X0, X1, X2) := ∀v

V(v) ⊃
((∨

0≤i<3

Xi(v)
)
∧

∧
0≤i<j<3

¬
(
Xi(v) ∧ Xj(v)

))
From this, we can conclude that 3-Col is fixed-parameter tractable w.r.t. treewidth.

2.4 TREE DECOMPOSITIONS 27

There are also extensions of MSO that offer a handle on other problem types. For
instance, without going into details about such an extension for optimization prob-
lems (see [Arnborg et al., 1991]), we can show Minimum Vertex Cover to be fixed-
parameter tractable w.r.t. treewidth by stating the sentence

min X ∀x∀y
(

adj(x, y) ⊃
(
X(x) ∨ X(y)

))
.

As we have seen in Section 2.2, the problem is tractable when restricted to trees. Be-
cause of the expressibility in MSO, it turns out that Minimum Vertex Cover is even
fixed-parameter tractable w.r.t. treewidth. This is not a lucky isolated case – in fact,
it has been observed that many problems that are easy to solve on trees share this
convenient property.

2.4.3 Dynamic Programming on Tree Decompositions

Although stating a problem in MSO not only establishes fixed-parameter tractability
w.r.t. treewidth according to Courcelle’s theorem, but can also be used to obtain an
algorithm, such an algorithm is impractical in real-world settings because its runtime
has huge constant factors [Niedermeier, 2006]. Special-tailored algorithms that work
directly on tree decompositions are mostly employed in practice instead. Nevertheless,
if we are not sure whether a particular problem is fixed-parameter tractable w.r.t.
treewidth at all, it might be wise to first try to formulate the problem as an MSO
formula and then try to come up with a proper algorithm.

Figure 2.3 shows how dynamic programming can be applied to a tree decompo-
sition of a 3-Col instance. Each of the tree decomposition nodes in Figure 2.3b has
a corresponding table in Figure 2.3c where there is a column for each bag element.
Additionally, we have a column i that is used to store an identifier for each row such
that an entry in the column j of a potential parent table can refer to the respective row.
Eventually, each row will describe a valid 3-coloring of the subproblem represented
by the bag.

Adhering to the approach of dynamic programming, the tables in Figure 2.3c are
computed bottom-up. First all valid 3-colorings for the leaf bags are constructed and
stored in the respective table. For each non-leaf node with already computed child
tables, we then look at all combinations of child rows and combine those rows that
coincide on the colors of common bag elements; that is to say we join the rows. In the
example, the leaves have no common bag elements, therefore each pair of child rows
joins. However, we must eliminate all results of the join that violate a constraint, i.e.,
where adjacent vertices have the same color. For instance, the combination of row 0

from the left child with row 2 from the right child is invalid because the adjacent
vertices b and d are colored with “g”; the left row 0 combined with the right row 0 is
valid, however, and gives rise to the row 3 in the root table. We store the identifiers of
these child rows as a pair in the j column. Note that the entry of j in row 3 not only

28 CHAPTER 2. BACKGROUND

a

b

c

d e

(a) A 3-Col instance

{a, b, c} {d, e}

{b, c, d}

(b) A tree decomposi-
tion of the instance

i a b c
0 r g b
1 r b g
2 g r b
3 g b r
4 b r g
5 b g r

i d e
0 r g
1 r b
2 g r
3 g b
4 b r
5 b g

i b c d j
0 r g b {(4, 4), (4, 5)}
1 r b g {(2, 2), (2, 3)}
2 g r b {(5, 4), (5, 5)}
3 g b r {(0, 0), (0, 1)}
4 b r g {(3, 2), (3, 3)}
5 b g r {(1, 0), (1, 1)}

(c) The computed dynamic program-
ming tables

Figure 2.3 Dynamic programming for 3-Col on a tree decomposition

contains (0, 0) but also (0, 1) because joining these rows produces the same row as we
project onto the current bag elements b, c and d. Storing all predecessors of a row like
this allows us to enumerate all 3-colorings with a final top-down traversal.

At any instant during the progress of a dynamic programming algorithm, the ver-
tices in the current bag (i.e., the bag of the node whose table the algorithm currently
computes) are called the current vertices. Current vertices that are not contained in
any child node’s bag are also called introduced vertices, whereas we call the vertices in
a child node’s bag that are no longer in the current bag removed vertices. Usually, a
dynamic programming algorithm must not only decide which child rows to join but
also how to extend partial solutions, represented by child rows, to account for the
introduced vertices. In the case of 3-Col, we would simply guess a color for each
introduced vertex such that no adjacent vertices have the same color. In the example,
this only happens in the leaves.

Note that this algorithm’s space and time requirements are both exponential in
the decomposition width. However, when the treewidth can be considered bounded,
this algorithm runs in linear space and time. This proves fixed-parameter tractability
of 3-Col parameterized by the treewidth. It is a general property of the algorithms
presented in this work that the width of the obtained decompositions is crucial for the
performance.

Chapter 3

Decompose, Guess & Check

In this chapter, we introduce the problem solving technique we call Decompose, Guess &
Check, which combines the concept of dynamic programming on tree decompositions
with the Guess & Check method found in ASP.

Section 3.1 describes the general Decompose, Guess & Check approach, including
a motivation and desiderata for a general tool implementing it. In Section 3.2, we
present a guideline for designing dynamic programming algorithms on tree decom-
positions. Section 3.3 is concerned with the applicability of our approach; in particular
we show that the MSO formula evaluation problem can be solved efficiently with De-
compose, Guess & Check.

3.1 General Approach

Using ASP to solve problems via Guess & Check is not breaking news, and neither
is dynamic programming on tree decompositions. We believe, however, that a com-
bination of both can be very beneficial and deserves being studied on its own as an
advanced approach to declarative problem solving.

It is useful to contrast the traditional way of using ASP for problem solving on
the one hand with the proposed kind of strategy on the other hand. We therefore
distinguish the paradigms of monolithic and decomposed problem solving.

On the one hand, by monolithic problem solving we denote the traditional strategy of
solving an entire problem instance as a whole by writing an ASP program adhering
to the Guess & Check principle. In general, this leads to exponential runtime.

Decomposed problem solving, on the other hand, denotes the strategy of not solving
the whole instance in one piece but rather dividing it into smaller parts, for each of
which Guess & Check is then employed locally such that the solutions of these parts can,
in the end, be combined to obtain a global solution. In principle, it is thus possible
to obtain a tractable algorithm provided the individual parts are sufficiently small.
Even if they are not, it might be the case that a decomposition into, say, two parts has

29

30 CHAPTER 3. DECOMPOSE, GUESS & CHECK

advantages: If we can decompose an instance for which a monolithic program has a
runtime of 2n into two parts for which we “only” have a runtime of 2

n
2 +o respectively,

where o denotes some (hopefully small) overlap, then a much wider range of instances
can be solved in practice.

We would like to propose the decomposed problem solving paradigm as a promis-
ing element in the toolbox of a computer scientist trying to deal with computationally
hard problems. We have therefore implemented a framework that enables ASP pro-
grammers to easily take advantage of decomposing problem instances. In many cases,
it can be used to achieve (fixed-parameter) tractability. But it should be kept in mind
that Decompose, Guess & Check can also be appealing if it does not lead to tractability.

We will first give a motivation for a Decompose, Guess & Check framework in Sec-
tion 3.1.1 and then give an extensive outline of our proposed method in general, as
well as desiderata for a framework that implements it, in Section 3.1.2. Section 3.2
presents guidelines for designing dynamic programming algorithms on tree decom-
positions and Section 3.3 finally discusses what kinds of problems can be solved with
such an approach.

3.1.1 Motivation

First, we would like to motivate why it makes sense to provide a framework for dy-
namic programming on tree decompositions using ASP.

ASP is generally appreciated as a language that allows for specifying succinct pro-
grams for generally intractable problems. Especially its declarative nature makes ASP
code often quite readable and maintainable. In ASP, it is very natural to write pro-
grams that conceptually perform non-deterministic choices. Therefore, ASP is partic-
ularly well suited for NP-complete problems because of the characterization of NP via
Guess & Check (cf. Section 2.1.2). Further, there are very efficient solvers available that
offer a rich syntax to specify problems easily.

The question arises why it is ASP that we propose for dynamic programming on
tree decompositions. In general, what we end up with when decomposing a problem
instance is a collection of subproblems that are smaller than the original instance but
can usually be tackled by locally using a problem solving methodology similar to the
one used in a monolithic setting. That is, solving a subproblem is conceptually no
easier than solving the whole problem instance – it is just the runtime that is smaller
for a subproblem as only a part of the instance is considered. Since ASP is well suited
for a lot of problems, it is often also well suited for parts of such problems, and we
can benefit from its advantages also in decomposed problem solving.

While it is often a good idea to employ ASP for the local processing of subproblems,
dynamic programming on tree decompositions of course demands more than just the
problem-specific code. In particular, at least the following components are needed:

• For constructing a tree decomposition, it is first of all necessary to parse some

3.1 GENERAL APPROACH 31

input that describes the graph that is to be decomposed.

• This graph has to be specified in some format and, after parsing it, needs to be
stored in suitable data structures.

• Once the graph is represented in memory, we must construct a tree decomposi-
tion of it, ideally with small width.

• In order to perform the actual dynamic programming, we need to associate a
table with each node and provide efficient data structures that can store the
rows.

• Finally, boilerplate code is required for the tree traversal and the data flow, before
the actual problem-specific dynamic programming algorithm is called.

What is actually of interest is just the last one of these, i.e., the dynamic programming
algorithm. Each of the other tasks only becomes interesting when we are fine-tuning
for efficiency and is otherwise considered as a burden that has nothing to do with the
actual problem at hand. Hence, a tool that takes care of these parts is appreciated.

3.1.2 General Outline and Desiderata

We would now like to turn to the question of how Decompose, Guess & Check works
in general. The answers to this question determine what is expected from a frame-
work supporting Decompose, Guess & Check and are thus the guiding principles for the
implementation we will present in Chapter 4.

In Section 2.4, we have seen that tree decompositions are a powerful means to
decompose a wide range of problems and to solve many of them efficiently with
dynamic programming. Tree decompositions are therefore the central objects in our
approach.

We would like to stress that our method is not restricted to graph problems. Also
more abstract instances can be decomposed when a reasonable graph representation can
be found (for example, see Section 4.2.5).

The big picture of our approach is that each tree decomposition node is associated
with a table. These tables will eventually contain rows that correspond to (partial)
solutions. The computation of the tables proceeds in a bottom-up way by executing
a user-provided, problem-specific ASP program for each node, having access to the
already computed child tables.

Normalizations of Tree Decompositions

In the literature, algorithms for dynamic programming on tree decompositions can
often be found to use a restricted class of decompositions, viz. normalized or semi-

32 CHAPTER 3. DECOMPOSE, GUESS & CHECK

normalized tree decompositions.1 A semi-normalized tree decomposition is a tree decom-
position where each node falls under one of the following types:

• Leaf nodes having no children

• Exchange nodes having one child

• Join nodes having two children with bags equal to the join node’s bag

A normalized tree decomposition is a semi-normalized tree decomposition where the bags
of adjacent nodes differ in at most one element.

Although such normalizations can be obtained from a given tree decomposition in
linear time [Kloks, 1994] and facilitate some algorithms and correctness proofs because
conceptually different operations of dynamic programming algorithms are separated,
the restrictions they impose might not be necessary for a practical algorithm, espe-
cially if it is written in ASP. The advantages normalized tree decompositions bring
(compared to non-normalized ones) for implementations in imperative languages are
not useful here due to the natural modeling of non-determinism in ASP. Normaliza-
tion can even affect performance adversely because more nodes must be processed
and more data must be shoved around overall. In light of this, semi-normalizations
might be beneficial. However, our case studies (cf. Section 4.2) have shown that algo-
rithms that do not even require any distinction of different node types are not more
difficult when compared to their more restricted counterparts. In fact, ASP allows us
to easily combine join and exchange parts into a single program, and a separation of
those is therefore often perceived to be artificial. This is the reason we favor general
(i.e., non-normalized) tree decompositions in the presentation of our approach. Note
that our framework offers the discussed normalizations as an optional feature to allow
also implementing traditional algorithms, for instance the ones in [Bliem et al., 2012],
more directly.

Problem Types

Although, from a theoretical point of view, decision problems are the primary objects
of study, in practice it is often not very satisfactory to only obtain “yes” or “no” an-
swers. For instance, when dealing with a problem like 3-Col, we might be primarily
interested in actual 3-colorings of a graph rather than just knowing whether one exists.
Therefore, a framework for Decompose, Guess & Check is expected not only to decide
problems but also to provide features for, e.g., solution enumeration, counting and
optimization. In this work, we will discuss the following problem types:

• Decision problems that require deciding if a solution exists

1Normalized tree decompositions are sometimes also called nice. There is also the concept of semi-nice
tree decompositions [Dorn and Telle, 2009] which are, however, different from our semi-normalized ones
and will not be covered in this work.

3.1 GENERAL APPROACH 33

• Counting problems that require counting the number of solutions

• Enumeration problems that require printing all solutions

For each of these types we also consider optimization variants:

• Determining the minimum cost among all solutions (or reporting that none exist)

• Counting the number of optimal solutions

• Enumerating all optimal solutions

Technically it suffices to only consider optimization problems in an implementation
since the non-optimization variants can be seen as special cases where all solutions
have equal costs. Also note that minimizing the cost of solutions also allows for maxi-
mization problems by, e.g., using negative numbers.

Depending on the problem type, the rows in the tables of the tree decomposition
nodes have different structure. For instance, when solving an optimization problem,
rows must contain solution costs whereas this is not required for other problem types.

Table Rows

Each table row corresponds to a set of partial solutions.2 A partial solution can be
thought of as that part of a global solution that we obtain by disregarding all informa-
tion that does not apply to the subgraph considered so far. More precisely, we restrict
ourselves to the information about the subgraph induced by the vertices that are con-
tained in any bag of the tree decomposition’s subtree rooted at the current node. Thus,
each row in the root table corresponds to a set of global solutions.

It is important to realize that in general a table row can represent more than one
partial solution. This is because a row normally only contains information concerned
with the current bag elements. For instance, when a vertex has been removed (i.e., is
present in a child node’s bag but not in the current bag), partial solutions from that
child node are subsequently merged when they coincide on the information about
the remaining bag elements. The single resulting table row thus represents all of the
merged partial solutions that it extends.

What is contained in a table row obviously depends on the particular problem. For
many problems, a table row contains a subset of the vertices (see, e.g., Sections 4.2.4
and 4.2.5). Frequently, also a mapping of values to vertices is used (see, e.g., Sec-
tion 4.2.1) and often we even need more complicated structures (see, e.g., Sections 4.2.8
and 4.2.9). Hence, a tool for Decompose, Guess & Check must offer great flexibility re-
garding the structure of table rows in order to restrict the user’s freedom of designing
algorithms as little as possible.

2Actually it would be more appropriate to speak of partial solution candidates since a row can also
represent an object that will not lead to a solution. However, to keep the terminology simpler and in
accordance with [Bodlaender, 1997], we use the term “partial solution”.

34 CHAPTER 3. DECOMPOSE, GUESS & CHECK

We therefore propose a table row to contain a set of arbitrary items. An item can
be any ground term the user pleases. By means of terms containing uninterpreted
function symbols, the user can even store structured data in an item. For instance, if
we have a graph with the vertices x, y, z, the item set {x, y} could be interpreted as
a subset of the vertices; {e(x, y), e(y, z)} could represent a subset of the edges; and
{map(x, red), map(y, green)} could be used for a coloring of vertices.

We also call the item set in a table row the characteristic of that row, in the style of
the terminology in [Bodlaender, 1997]. As noted above, a table row contains additional
information beside its characteristic, depending on the problem type.

• For decision problems, no additional information is stored.

• In algorithms for counting problems, a table row contains the number of partial
solutions it represents.

• When solving enumeration problems, each table row r of a node that has n children
contains a set of n-tuples of extension pointers, where the ith element of any such
tuple references a row in the ith child table that has given rise to r. These pointers
will be followed when materializing solutions.

• In order to determine the minimum cost among all solutions, a table row contains
the cost of the cheapest partial solution it represents.

• For counting optimal solutions, a row is required to contain the minimum cost of
all the partial solutions it represents, as well as the number of represented partial
solutions having that cost.

• To enumerate optimal solutions, we need to store again the minimum cost of the
represented partial solutions and, as for enumeration problems without opti-
mization, a set of extension pointers – however, only such combinations of child
rows may be in this set that (when combined with the current table row) actually
yield a partial solution with that optimum cost.

In Figure 3.1, the presented notions are illustrated by means of an example for the
Minimum Vertex Cover problem. For an actual algorithm that proceeds like this, see
Section 4.2.4. The tree decomposition in Figure 3.1b exhibits an empty root for reasons
we will discuss shortly.

In the tables of Figure 3.1c, the column i contains an identifier for each row that can
be used in the extension pointers in potential parent tables. The item sets constituting
the characteristics of the rows are written in the column “items”.

The partial solution depicted in Figure 3.1d is represented by row 0 of the table
for the node with the bag {c, d}. Vertices highlighted in red are contained in a cor-
responding optimal solution. The parts that are drawn with solid lines constitute the
partial solution. In subsequent steps of the algorithm, this partial solution would be

3.1 GENERAL APPROACH 35

a

b

c

d g

e f

(a) A Minimum Vertex Cover instance

∅

{a, b}

{b, c}

{c, d}

{d, e, f }

{c, g}

(b) A tree decomposi-
tion of the instance
with an empty root

i items cost extend
0 ∅ 4 {(0), (1)}

i items cost extend
0 {a} 4 {(1)}
1 {b} 4 {(0), (2)}
2 {a, b} 5 {(0), (2)}

i items cost extend
0 {b} 4 {(1, 1)}
1 {c} 3 {(0, 0), (2, 0)}
2 {b, c} 4 {(0, 0), (2, 0)}

i items cost extend
0 {c} 3 {(2)}
1 {d} 2 {(0), (1)}
2 {c, d} 3 {(0), (1)}

i items cost extend
0 {d, e} 2 ∅

1 {d, f } 2 ∅

2 {e, f } 2 ∅

3 {d, e, f } 3 ∅

i items cost extend
0 {c} 1 ∅

1 {g} 1 ∅

2 {c, g} 2 ∅

(c) The dynamic programming tables

a

b

c

d g

e f

(d) Visualization of a
partial solution

Figure 3.1 Dynamic programming for Minimum Vertex Cover

36 CHAPTER 3. DECOMPOSE, GUESS & CHECK

extended to the parts that are drawn with dashed lines. Note that the vertices e and f
have been removed from the current bag and are therefore shaded.

In Section 3.1.3, we will generalize the presented notion of a characteristic to allow
also treating problems higher in the polynomial hierarchy than NP in a natural way.
Until then, for the sake of clarity, we concentrate on this simpler special case because
most problems of practical interest can be treated in this way, and the generalization
does not invalidate the considerations presented here.

Computing the Tables

In order to compute the table of the current tree decomposition node during a bottom-
up traversal by dynamic programming, the Decompose, Guess & Check approach utilizes
ASP. The program that the user has provided for this purpose is combined with the
problem instance and a description of the current node, its children and the child ta-
bles. The resulting answer sets are then used to populate the current table. To this end,
the answer sets are expected to contain predefined predicates that, for instance, signal
which items are to be filled into a table row’s characteristic. A tool implementing the
Decompose, Guess & Check approach must then take care of scanning the answer sets
for these special predicates and subsequently storing appropriate rows in the current
table.

A common workflow in the user-supplied programs that mirrors the intuition of
bottom-up computation is to guess a combination of child table rows – one row for each
child node – and check whether the guessed combination gives rise to a valid partial
solution. If so, an answer set is returned that specifies an item set which is typically
obtained by restricting the item sets of those preceding child rows to information about
the current bag elements, and perhaps extending the resulting unified item set with
information about introduced bag elements (i.e., current vertices that have been in no
child node’s bag).

In an algorithm like this, it may happen that several combinations of child rows
lead to the same characteristic because of the merging of partial solutions due to rea-
sons as discussed above. In such a case, multiple answer sets are returned that only
differ in the guessed child rows but not in their item sets. A framework for Decompose,
Guess & Check must in such a case by no means store a new table row for each answer
set, for that would lead to a disastrous explosion of memory and render the whole de-
composition pointless. Rather, the advisable course of action would be to only create
a row for each new item set and merge all answer sets encoding that same item set in
a way described next.

Hence, a proper Decompose, Guess & Check tool ensures that a table never contains
more than one row with the same characteristic. For a given table, a characteristic thus
always uniquely determines a row.

3.1 GENERAL APPROACH 37

From Answer Sets to Table Rows

In the case where each characteristic consists of a single item set as presented so far –
for the more general case, see Section 3.1.3 – obtaining the table rows from the answer
sets is straightforward: Each answer set encodes a complete characteristic together
with additional information (like a tuple of extension pointers, a count or a cost).
Therefore, when an answer set is reported that encodes a characteristic not already
stored in any row, a Decompose, Guess & Check tool inserts a new row into the table
and fills it with the encoded characteristic and additional information. When another
answer set arrives specifying the same characteristic, the tool looks up the existing
table row and performs the following actions for the additional information:

1. If the answer set encodes a cost that exceeds the cost in the stored row, the
answer set is discarded because there are already better partial solutions for that
characteristic.

2. If the encoded cost is lower than the stored one, the old contents of the row are
thrown away and replaced by the information contained in that answer set.

3. Otherwise, if the encoded cost equals the stored one (or if no optimization prob-
lem is solved and there are therefore no costs), the following actions are taken:

(a) If the problem type demands enumeration of solutions, the tool inserts the
encoded tuple of extension pointers into that row’s set of such tuples.

(b) If the problem type demands counting, the tool adds the encoded solution
count to the stored count.

Post-Processing

For some problems it is necessary to perform final actions once all tables have been
computed. For instance, it might turn out that some rows do not correspond to so-
lutions because they lack some property. Often we can “kill” table rows without a
crucial property right away, but sometimes we need to keep them around because
that property could become satisfied after all (when that row gets extended) during
processing an ancestor node later on.

It is often the case that rows are removed when some vertex that, accord to these
rows, lacks a critical property disappears from the respective current bag – indicating
that that vertex will never reappear due to the connectedness condition and that it has
appeared together in some already encountered bag with each of its neighbors.

Hence, a row not corresponding to a solution can sometimes only be killed when
vertices in the bag associated with this row are removed. For cases like this, it is
reasonable to use tree decompositions with an empty root node. Having empty roots
even enables us to perform additional post-processing steps that are different from

38 CHAPTER 3. DECOMPOSE, GUESS & CHECK

what happens when vertices are removed and thus only occur at the end (e.g., in the
examples of Section 4.2.3 and 4.2.6).

Notice, for example, that in the root table in Figure 3.1c the child row 2 gets killed,
i.e., does not give rise to an extension. This is because its cost is not minimal. However,
it needs to be present in the table below the root, as it might be that the other rows
in the end would lead to a higher cost because of vertices not considered yet. After
all, at each step, the algorithm only knows about the subtree rooted at the current
node. With an empty root, it can be ensured that only rows corresponding to valid
and optimal solutions are contained in the root table.

Killing “bad” rows can, as in this example, be due to suboptimal cost, but it can also
be because of problem-specific properties that – in contrast to the “cost” field of a row –
a Decompose, Guess & Check framework is ignorant about (cf., e.g., Section 4.2.5). In
the latter case, the user’s program usually contains integrity constraints that disallow
extending bad child rows.

If there are rows in the root table, it is ensured that the solution count, cost and
extension pointers only refer to optimal solutions because suboptimal solutions are
discarded when merging rows with equal characteristics as described above.

Materializing the Solutions

When all tables have been computed, the result of the computation should be reported.
Which form this takes of course depends on the problem type.

• For a decision problem, we either report “yes” or “no” depending on whether there
are rows in the root table or not.

• When dealing with a counting problem, we inspect the counts in the root table
rows and thus print their sum as the total number of solutions.

• Given an enumeration problem, complete solutions can be constructed by recur-
sively following the extension pointers in the root table rows. A global solution
can be assembled by unifying the item sets of all rows that can be reached using
these pointers.

• For determining the optimum value of a solution, we return the minimum cost of
any row in the root table, or “no” if the table is empty.

• Counting optimal solutions is performed by summing the solution counts of only
those root table rows that have minimal cost.

• Enumerating optimal solutions proceeds like enumerating all solutions but only
performs the materialization for root table rows that have minimal cost. Because
the Decompose, Guess & Check tool discards extension pointers that would give
rise to suboptimal solutions during the construction of the tables as discussed
above, it is ensured that thereby only optimal solutions are materialized.

3.1 GENERAL APPROACH 39

The algorithm must, of course, provide the information that is required for the respec-
tive problem type (like counts, extension pointers or costs).

For an example of enumerating all optimal solutions, consider Figure 3.1c. There
is only one row in the root table with an additional cost information of 4. That is,
all optimal solutions contain 4 vertices. We illustrate the construction of the solution
{a, c, e, f } (depicted in Figure 3.1d). By recursively following always the first tuple of
extension pointers that is contained in the respective “extend” row and unifying the
item sets, we obtain the desired solution

∅∪ {a} ∪ {c} ∪ {c} ∪ {c} ∪ {e, f } = {a, c, e, f }.

In a similar way, by following the other extension pointers, we can materialize all
remaining solutions.

3.1.3 Requirements for Problems Beyond NP

To make our approach more flexible, we generalize the basic notions introduced in
Section 3.1.2. This is useful for some more involved cases, but for the majority of prac-
tical problems the additional flexibility brought by the considerations in this section is
not necessary to construct appropriate Decompose, Guess & Check algorithms.

Multi-Level Characteristics

Algorithms on tree decompositions for problems higher in the polynomial hierarchy
than NP usually require a more involved table row structure than presented thus
far, due to the polynomial hierarchy’s characterization by quantifier alternation (cf.
Section 2.1.3). For instance, [Jakl et al., 2009] provide an algorithm (cf. also Section 4.2.6
for a related implementation) for a problem on the second level of the polynomial
hierarchy where each row can be associated with so-called certificates, i.e., information
that may eventually witness that this row does not represent a solution.

In order to allow handling also such problems in a natural way, we generalize the
notion of a table row’s characteristic as follows. Any item set can possess arbitrarily
many subsidiary item sets, each of which can also have an associated set of extension
pointer tuples. This can be recursively utilized to obtain a tree of item sets within a
single table row. In the use cases we have considered so far, these additional levels of
item sets can be used to associate auxiliary information with the top-level item set.

To illustrate how such multi-level characteristics can, for instance, be employed
when dealing with a problem on, say, the second level of the polynomial hierarchy,
suppose the current tree decomposition node during a run of our dynamic program-
ming algorithm is called n and we want to know if there is a set of objects A such that
for all sets of objects B some property φ holds. The top-level item set in a table row of
n could contain a guess of A, and its subsidiary item sets represent all choices for B.
This way, when processing the parent node of n, that child table row can be decided

40 CHAPTER 3. DECOMPOSE, GUESS & CHECK

to be either extended or not, depending on whether φ holds for all combinations of
the top-level item set with a subsidiary item set. We will shortly see an illustration of
multi-level characteristics for a concrete example.

It is also conceivable to use more than one level of item sets even for problems in
NP. Although the need for multi-level characteristics arose from the desire to handle
problems higher in the polynomial hierarchy, using them for mere convenience of
modeling can sometimes also be beneficial even if the problem is in NP.

For many problems, multi-level characteristics are not required and a characteristic
is just a single (top-level) item set as proposed in Section 3.1.2. In such cases, we use
the terms “characteristic” and “item set” interchangeably. The reader should keep in
mind, however, that more complicated structures are possible.

The Minimum 3-Coloring Problem

As an example to make this more concrete, consider the following problem, which
we call Minimum 3-Coloring. In contrast to 3-Col, here we call a subset of the
vertices the “critical vertices” and we are only interested in those 3-colorings of the
graph where the set of all critical vertices that are colored with a certain color – say,
red – is subset-minimal among all proper colorings. Formally, we call a 3-coloring f
red-minimal w.r.t. the critical vertices W if and only if there is no 3-coloring f ′ of the
same graph such that {v ∈ W | f ′(v) = red} ⊂ {v ∈ W | f (x) = red}. Minimum

3-Coloring is now defined as the following problem:

Input: A graph G = (V, E), a set W ⊆ V and a vertex q ∈W

Question: Is q colored with “red” in a red-minimal 3-coloring of G w.r.t. W?

We are not aware of published complexity results for this problem. Therefore, we
briefly prove its Σp

2-completeness as an interlude before subsequently presenting an
algorithm that illustrates the use of multi-level characteristics.

Theorem 3.1. Minimum 3-Coloring is Σp
2-complete.

Proof. As for membership, we can guess a mapping from the vertices to the three
colors, check if this is a 3-coloring, and then, via an oracle for co-NP, check if there
is no smaller 3-coloring, i.e., if there is no 3-coloring whose red vertices from W form
a proper subset of the elements of W that the originally guessed coloring assigned
“red”.

To show hardness, we proceed by reduction from the Σp
2-complete problem Min-

imal Model Sat [Eiter and Gottlob, 1993] that asks, given a propositional formula φ

(which we assume to be in 3-CNF) and an atom q, whether q is contained in a subset-
minimal model of φ. Our construction takes ideas from the standard reduction from
3-Sat to 3-Col (see, e.g., [Goldreich, 2008]).

3.1 GENERAL APPROACH 41

c0
5 c0

4 c0
3 c1

3 c1
4 c1

5

c0
2 c0

1 c0
0 c1

0 c1
1 c1

2

x x̄ y ȳ z z̄

none

false

Figure 3.2 Reduction from Minimal Model Sat to Minimum 3-Coloring for the
formula (z ∨ ¬y ∨ x) ∧ (¬x ∨ y ∨ ¬z)

Let (φ, q) be an instance of Minimal Model Sat, cl(φ) denote the set of clauses
in φ and at(φ) denote the set of atoms in φ. We define R(φ, q) = (V, E, W, q) to be an
instance of Minimum 3-Coloring as follows.

V = {false, none} ∪ {x, x̄ | x ∈ at(φ)} ∪ {ci | c ∈ cl(φ), 0 ≤ i < 6}
E = {(false, none)}
∪
{
(x, x̄), (x, none), (x̄, none) | x ∈ at(φ)

}
∪
{
(l0, c0), (l1, c1), (l2, c2) | c ∈ cl(φ), c = (l0, l1, l2)

}
∪
{
(c0, c1), (c0, c3), (c1, c3), (c2, c4), (c2, c5), (c3, c4), (c4, c5) | c ∈ cl(φ)

}
∪
{
(c5, none), (c5, false) | c ∈ cl(φ)

}
W = at(φ) ∪ {false, none}

Figure 3.2 depicts an example.

We now show correctness of this reduction by proving that (φ, q) is a positive in-
stance of Minimal Model Sat if and only if R(φ, q) is a positive instance of Minimum

3-Coloring.

“Only if” direction: Let φ be a formula in 3-CNF and M ⊆ at(φ) be a subset-minimal
model of φ containing the variable q. From this we construct a coloring f appropriate
to R(φ, q) as follows. First, we define f (false) = green and f (none) = blue. For any

42 CHAPTER 3. DECOMPOSE, GUESS & CHECK

x ∈ at(φ), we set

f (x) =

{
red if x ∈ M

green otherwise,
f (x̄) =

{
red if x /∈ M

green otherwise.

For any clause c = (l0, l1, l2), we first set f (c5) = red. Observe that at least one literal
must be true under M, i.e., M |= li for some 0 ≤ i < 3, so the following case distinction
is exhaustive.

1. If M |= l0, then we set f (c0) = f (c4) = green, f (c3) = red and f (c1) = f (c2) =

blue.

2. If M 6|= l0 but M |= l1, then we set f (c1) = f (c4) = green, f (c3) = red and
f (c0) = f (c2) = blue.

3. Otherwise M 6|= l0, M 6|= l1 and M |= l2 hold, and we set f (c2) = f (c3) = green,
f (c0) = red and f (c1) = f (c4) = blue.

We will show that f is a red-minimal coloring of R(φ, q) w.r.t. W in which q is colored
with red. f (q) = red is obvious. It can also easily be seen that for each (a, b) ∈ E it
holds that f (a) 6= f (b) by construction of f .

It remains to show that f is red-minimal w.r.t. W. Suppose to the contrary that
there is a smaller coloring f ′, i.e., {x ∈ W | f ′(x) = red} ⊂ {x ∈ W | f (x) = red}.
From this we construct an interpretation M′ = {x ∈ at(φ) | f ′(x) = red}. Since
neither false nor none are colored red by f , there must be some vertex x ∈ at(φ) with
f (x) = red but f ′(x) 6= red, so it holds that M′ ⊂ M.

By assumption, M is a minimal model, so M′ cannot be a model. Thus there is
some clause c = (l0, l1, l2) with M′ 6|= c. This can only be caused by f ′ assigning these
literal vertices either green or blue, and all of these vertices have the same color due
to the edges to none which is either green or blue. W.l.o.g. – because the other case
is symmetric – we assume that f ′(l0) = f ′(l1) = f ′(l2) = green. Thus f ′(c3) = green
due to the clique {c0, c1, c3}. We also get f ′(c2) = blue due to f ′(c5) = red and
f ′(l2) = green, which implies f ′(c4) = green. This contradicts f ′ being a proper
coloring due to the edge (c3, c4). So f must indeed be red-minimal w.r.t. W.

“If” direction: For a 3-CNF formula φ and an atom q, let f be a red-minimal coloring of
R(φ, q) w.r.t. W such that f (q) = red. Let the color of none resp. false under f be blue
resp. green. From f we construct an interpretation M = {x ∈ at(φ) | f (x) = red}.
Obviously, q ∈ M. It can be shown that M |= φ for if M did not satisfy some clause,
we would obtain a contradiction by the same argument as in the “only if” direction of
the proof.

It remains to show that M is minimal. Suppose to the contrary that there is a model
M′ ⊂ M. From this we construct a coloring f ′ appropriate to R(φ, q) analogous to the
construction in the “only if” direction of the proof. It holds that {v ∈ W | f ′(v) =

3.1 GENERAL APPROACH 43

red} ⊂ {v ∈ W | f (v) = red}, which is a contradiction to f being a red-minimal
coloring. We can thus conclude that M is a minimal model of φ.

Multi-Level Characteristics for Minimum 3-Coloring

We now present a concrete example that illustrates the use of multi-level character-
istics. Figure 3.3 shows a run of a dynamic programming algorithm for Minimum

3-Coloring on a graph where we want to minimize the color red on the set of all ver-
tices. A characteristic in this algorithm has the following structure: The top-level item
set encodes a 3-coloring of the subgraph induced by the current bag. Each subsidiary
item set also encodes a 3-coloring of the same subgraph under the proviso that the
critical vertices that are colored red by this coloring are a subset of the critical vertices
that are colored red by the coloring encoded in the respective top-level item set. Just
as each top-level item set in a non-leaf node extends top-level item sets from the child
tables and thus implicitly represents a coloring of the subgraph induced by the bags
of the subtree rooted at the current node, also each subsidiary item set can concep-
tually be expanded to a coloring of that subgraph. If the set of red critical vertices
under this expanded subsidiary coloring is actually a proper subset of the set of red
critical vertices under the expanded top-level coloring, a special item is contained in
the subsidiary item set to indicate this. In Figure 3.3c, we denote this by a × symbol
in the ⊂ column. The rationale for this special item is that eventually only character-
istics that possess no subsidiary item set marked with a × symbol in the ⊂ column
represent valid solutions, because each marked subsidiary item set can be expanded
to a witness that the top-level coloring is not red-minimal w.r.t. the critical vertices.

For space reasons, Figure 3.3 does not depict an empty root in the decomposition
and thus also no root table. The root table would only contain a single row with a
characteristic consisting of an empty top-level item set as well as an empty subsidiary
item set. The extension pointers of this row would be {(0), (2), (3), (5), (7), (9)}. The
non-referenced rows from the root’s child table do not yield a valid solution due to
the presence of marks in the ⊂ column indicating that there is a “smaller” coloring.

For instance, row 8 of the upper table in Figure 3.3c represents a coloring that
maps b and e to red, c to green, and a and d to blue. The marked subsidiary item
sets however indicate witnesses that this is not a valid solution because there are two
colorings that make only b red.

When considering all rows in the topmost table in Figure 3.3c, it can be observed
that eight minimal colorings exist. In contrast, twelve (not necessarily minimal) col-
orings exist that could be obtained by ignoring the fact that some rows possess sub-
sidiary item sets indicating that the respective row does not correspond to a minimal
coloring. For instance, as discussed before, although row 8 of the topmost table repre-
sents a proper coloring, our algorithm will not consider it a solution because changing
the color of e would yield a “smaller” coloring.

44 CHAPTER 3. DECOMPOSE, GUESS & CHECK

a

b

c

d e

(a) Graph of a Mini-
mum 3-Coloring

instance

{a, b, c} {d, e}

{b, c, d}

(b) A tree decom-
position of the
instance (empty
root omitted for
space reasons)

i
characteristic

a b c a b c ⊂

0 b g r
b g r
g b r

1 b r g
b r g
g r b

2 g b r
b g r
g b r

3 g r b
b r g
g r b

4 r b g
r b g
r g b

5 r g b
r b g
r g b

i
characteristic

d e d e ⊂

0 b g
b g
g b

1 b r

b g ×
b r
g b ×
g r

2 g b
b g
g b

3 g r

b g ×
b r
g b ×
g r

4 r b

b g ×
g b ×
r b
r g

5 r g

b g ×
g b ×
r b
r g

i
characteristic

extend
b c d b c d ⊂

0 b g r
b g r {(4, 4), (4, 5)}
g b r

1 b r g

b r g

{(2, 3)}b r g ×
g r b
g r b ×

2 b r g
b r g {(2, 2)}
g r b

3 g b r
b g r {(5, 4), (5, 5)}
g b r

4 g r b

b r g

{(0, 1)}b r g ×
g r b
g r b ×

5 g r b
b r g {(0, 0)}
g r b

6 r b g

r b g

{(3, 3)}r b g ×
r g b
r g b ×

7 r b g
r b g {(3, 2)}
r g b

8 r g b

r b g

{(1, 1)}r b g ×
r g b
r g b ×

9 r g b
r b g {(1, 0)}
r g b

(c) The dynamic programming tables

Figure 3.3 Dynamic programming for Minimum 3-Coloring

3.1 GENERAL APPROACH 45

{a}

{b}

{c}

{a}

{b}

{d}

?

(a) Two paths of item
sets

{a}

{b}

{c} {d}

(b) Merging the
{b} nodes
of the paths

{a}

{b}

{c}

{b}

{d}

(c) Not merg-
ing the {b}
nodes

Figure 3.4 Ambiguity when merging paths of different answer sets

From Answer Sets to Multi-level Characteristics

When multi-level characteristics are employed, compiling table rows from answer sets
is more complicated than presented in Section 3.1.2, for then an answer set alone
generally no longer specifies a complete characteristic. Rather, an answer set only
encodes one path of a characteristic from the top-level item set to a leaf item set. This is
because the most convenient way to generate such a tree of sets with ASP is guessing
a set for each level from the root to a leaf.

Reconstructing the intended trees from the paths described by answer sets is, how-
ever, a relatively intricate task. Consider, for instance, building a characteristic from the
two paths ({a}, {b}, {c}) and ({a}, {b}, {d}), where a, b, c and d are arbitrary items.
The ambiguity of this situation is illustrated in Figure 3.4. Without further informa-
tion, it is not clear whether the item sets {c} and {d} are intended to be children of
a common node with the item set {b}, or whether there should be two distinct nodes
having both the item set {b}. The latter case can be necessary when two item sets
of a characteristic in a child node become equal because vertices have been removed
from the bag. Merging these parts of the path as depicted in Figure 3.4b would then
lead to incorrect results. For example, when we wish to determine whether there is a
top-level item set such that for all its children there is in turn a child item set containing
c, the tree in Figure 3.4b would represent a satisfying characteristic whereas the tree
in Figure 3.4c would not.

Which course of action should be followed thus depends on which parts of the
paths in the answer sets stem from which parts of the paths in the characteristics from
the child nodes. An answer set must therefore state, for each node of the path, exten-
sion pointers referring to the predecessor of the respective node if such ambiguities
should be avoided, just as extension pointers are used to specify predecessors of ta-
ble rows for enumeration problems. The difference is that in the case of multi-level
characteristics where such ambiguities are to be avoided, extension pointers not only

46 CHAPTER 3. DECOMPOSE, GUESS & CHECK

declare predecessors of the top-level item set but declare predecessors for any item
set.3

Just as it is required that there is at most one table row with a given characteristic,
a Decompose, Guess & Check framework must make sure that for each node in a char-
acteristic it holds that there are no two equal subtrees rooted at a child of that node.
Equal subtrees must therefore be merged, similar to merging rows with equal charac-
teristics, in order to ensure that the space consumption can be bounded by a function
only depending on the treewidth.

To summarize, when working with multi-level characteristics, the user can not
only specify extension pointers for table rows but also for subsidiary item sets. If such
pointers are present, a Decompose, Guess & Check tool uses this information to construct
the characteristics from the answer sets accordingly. In either case, a framework for
Decompose, Guess & Check must ensure that there is at most one table row for each
characteristic, and that within a characteristic there are no duplicate subtrees at the
same level.

3.2 Algorithm Design Methodology

We now compile a recommendation for the – often by no means trivial – procedure
of implementing a tree-decomposition-based dynamic programming algorithm for a
problem. [Bodlaender, 1997] lists a few steps that should be followed when designing
such an algorithm, which also apply to our approach.4

1. First of all, the user should come to an understanding how solutions should be
represented.

2. When this is done, the user should think about the structure of a partial solution,
i.e., a part of a solution when considering only the subgraph induced by the bags
of a tree decomposition node’s descendants.

This is often much more difficult than defining the structure of global solutions
because the decomposition has to be taken into account. Usually, one can gain an
understanding of partial solutions by imagining only those parts of a complete
solution that apply to a subgraph, and then figuring out what information is
required to extend such a partial solution. In some cases, it is enough to use
the same basic structure of global solutions also for partial solutions. Due to the

3This does not mean that algorithms using multi-level characteristics must always support enumera-
tion. The information to keep equal item sets stemming from different paths apart may well be arbitrary
strings that are merely used as distinguishable identifiers and need not refer to an actual part of a child
characteristic.

4It should be noted that [Bodlaender, 1997] uses nice tree decompositions. Our approach, on the other
hand, uses arbitrary tree decompositions.

3.3 APPLICABILITY 47

decomposition, however, it is usually necessary to store extra information that is
used for combining partial solutions.

3. Having agreed on a way to represent partial solutions, it is now required to
specify under which circumstances a solution is an extension of a partial solution.

This is necessary for the step of extending or combining different partial solu-
tions from child tables because it gives us a criterion to decide if a row cannot
lead to a solution and must therefore not be stored in the table.

4. The user must define the structure of the table rows, i.e., define the representation
of a table row’s characteristic. Note that it is infeasible to store a whole partial
solution in a table row. Rather, we must restrict ourselves to those parts of the
information that are relevant for the current bag, i.e., the part that is used for
combining the partial solutions of different nodes. The structure of the table
rows needs to be chosen such that a row contains all the information necessary
for deciding whether the partial solution corresponding to it can be extended.

5. It must be specified how to compute a table, given the tables of child nodes. For
an algorithm that is tractable for bounded treewidth, the user must also make
sure that these tables can be computed efficiently in a bottom-up way.

6. Finally, the user must show that the rows in the root table suffice to decide the
problem efficiently and to efficiently construct the desired solutions depending
on the problem type, as discussed in Section 3.1.2.

If counting or enumerating solutions is to be performed, it is further the user’s re-
sponsibility to make sure that the partial solutions associated with each table row are
mutually disjoint. Otherwise, duplicates will be generated. Algorithms for a problem
where this issue occurs are given in [Pichler et al., 2010].

3.3 Applicability

The outline of the Decompose, Guess & Check approach that was given above is the
result of investigating several problems and how they could be solved via dynamic
programming on tree decompositions. We present a few of them in Section 4.2. Of pri-
mary interest, of course, are problems that are fixed-parameter tractable for bounded
treewidth, as this is the main reason why dynamic programming on tree decompo-
sitions is commonly used in the first place. After all, this technique has its roots in
complexity-theoretic deliberations.

For this reason, we will present an algorithm that solves the MSO formula evalua-
tion problem efficiently for bounded treewidth in Section 3.3.1 and thus show that our
approach is applicable to any MSO-definable problem. In Section 3.3.2 we will discuss
further results regarding the applicability of Decompose, Guess & Check.

48 CHAPTER 3. DECOMPOSE, GUESS & CHECK

3.3.1 Evaluation of MSO Formulas

We now present a dynamic programming algorithm that solves the MSO formula eval-
uation problem in linear time for graphs of bounded treewidth. An actual implemen-
tation can be found in Section 4.2.9. This is primarily interesting because it implies that
Decompose, Guess & Check can be effectively employed for any MSO-definable problem.
In fact, the algorithm can be used to obtain an alternative proof of Courcelle’s theorem.
Related approaches can be found in [Grohe, 1999, Kneis et al., 2011].

Preliminaries

For the sake of simplicity, we only consider the case of MSO where the universe of
discourse consists of the graph vertices, and the vocabulary is {edge}, i.e., the only
available predicate symbol is the binary predicate symbol “edge” whose semantics is
that (G, α) |= edge(x, y), for a graph G, an assignment α and individual variables x
and y, if and only if (α(x), α(y)) is an edge in G. Courcelle’s theorem of course also
holds for this version of MSO, i.e., anything expressible in this formalism is solvable
in linear time for graphs of bounded treewidth, although some problems that also
enjoy this property (like Hamiltonian Cycle; cf. Section 4.2.8) cannot be expressed
using only this restricted vocabulary. The algorithm presented here could in principle,
however, be extended to vocabularies that lead to higher expressiveness.

We further restrict ourselves to MSO formulas in prenex conjunctive normal form
with ∃ as the outermost quantifier. Such a formula has the form ∃Γ0∀Γ1 . . . QΓν−1ψ

where Q is ∃ for even ν and ∀ for odd ν, each Γi (0 ≤ i < ν) is a set of variables and
ψ is a quantifier-free CNF formula in MSO over the vocabulary {edge}. Further, let
Γ =

⋃
0≤i<ν Γi, and for any ∆ ⊆ Γ, let IV(∆) and SV(∆) denote the set of individual

and set variables in ∆, respectively.

Example 3.2. Consider the prenex CNF formula

φ = ∃S ∀x∀y
(ψ︷ ︸︸ ︷(
¬ edge(x, y) ∨ S(x)︸ ︷︷ ︸

c0

)
∧
(
¬ edge(x, y) ∨ S(y)︸ ︷︷ ︸

c1

))
which expresses that there is a set containing all vertices that are endpoints of an edge.
We have Γ = Γ0 ∪ Γ1 with Γ0 = {S} and Γ1 = {x, y}. It holds that IV(Γ) = {x, y} and
SV(Γ) = {S}. Of course, any graph satisfies φ, but it should suffice to illustrate the
concepts of this section and we will return to this example. 4
For a fixed MSO formula φ over the vocabulary {edge} in prenex CNF with ∃ as
the outermost quantifier, we define Mso Formula Evaluation to be the following
problem.

Input: A graph G

Question: Does G |= φ hold?

3.3 APPLICABILITY 49

a

b

c

d e

{a, b, c} {d, e}

{b, c, d}

Figure 3.5 A graph and one of its tree decompositions

According to Courcelle’s theorem, this problem is fixed-parameter tractable w.r.t. tree-
width. To construct a dynamic programming algorithm on a tree decomposition, we
proceed according to the methodology presented in Section 3.2.

Before presenting the algorithm, we define some terminology. In the following, let
(T , χ) be a tree decomposition of the input graph G = (V, E). For any node n ∈ T ,
let Tn denote the subtree of T rooted at n. We further define Vn as the set of vertices
occurring in some bag of Tn, i.e.,

Vn =
⋃

m∈Tn

χ(m).

Definition 3.3. When we speak of an assignment to a set of variables ∆ ⊆ Γ, we mean a
mapping α such that for any x ∈ IV(∆) it holds that α(x) ∈ V and for any X ∈ SV(∆)
it holds that α(X) ⊆ V.

We can combine assignments to the variables belonging to the individual quantifier
levels to an assignment to all variables as follows.

Definition 3.4. Given assignments α0, . . . , αν−1 to Γ0, . . . , Γν−1, respectively, we define
α0 ◦ · · · ◦ αν−1 as the assignment to Γ that, for each 0 ≤ i < ν, maps any x ∈ Γi to
αi(x).

Now we can state the structure of a solution of Mso Formula Evaluation.

Definition 3.5. By a solution we understand a tree A having the following properties:

• Each leaf is at depth ν− 1.

• Each node at depth d is an assignment to Γd.

• For each node at depth d < ν − 1, the set of children is exactly the set of all
possible assignments to Γd+1.

• Let α0 be the assignment of the root of A. For each assignment α1 at depth 1,
there is a child α2 at depth 2 such that for each child α3 at depth 3, and so on, it
holds that (G, α0 ◦ · · · ◦ αν−1) |= ψ.

Example 3.6. The unique solution of the Mso Formula Evaluation problem for the
formula from Example 3.2 and the graph in Figure 3.5 is depicted in Figure 3.6. Ob-
serve that for each root-to-leaf path (α0, α1) it holds that (G, α0 ◦ α1) |= ψ. 4

50 CHAPTER 3. DECOMPOSE, GUESS & CHECK

S 7→ {a, b, c, d, e}

x 7→ a
y 7→ a

x 7→ a
y 7→ b

x 7→ a
y 7→ c

. . . x 7→ e
y 7→ e

Figure 3.6 A solution of Mso Formula Evaluation for the formula from Exam-
ple 3.2 and the graph from Figure 3.5

S 7→ {d, e}

x 7→ undefined
y 7→ undefined

x 7→ undefined
y 7→ d

. . . x 7→ e
y 7→ e

Figure 3.7 A partial solution for the formula from Example 3.2 and the graph from
Figure 3.5

For partial solutions we have to take into consideration that not all variables need to
be assigned yet.

Definition 3.7. When we speak of a partial assignment to a set of variables ∆ ⊆ Γ relative
to a node n ∈ T , we mean a mapping α such that for any x ∈ IV(∆) it holds that
α(x) ∈ Vn ∪ {undefined} and for any X ∈ SV(∆) it holds that α(X) ⊆ Vn.

A partial assignment thus may leave some individual variables undefined so that they
can later be set to vertices yet to be encountered in the tree decomposition.

Definition 3.8. By a partial solution at a node n ∈ T we understand a tree A having the
following properties:

• Each leaf is at depth ν− 1.

• Each node at depth d is a partial assignment to Γd relative to n.

• For each node at depth d < ν − 1, the set of children is exactly the set of all
possible partial assignments to Γd+1 relative to n.

Example 3.9. For the formula from Example 3.2 and the graph and tree decomposition
in Figure 3.5, a partial solution at the leaf node with the bag {d, e} is depicted in
Figure 3.7. This partial solution will eventually be extended to the solution depicted
in Figure 3.6. The other partial solutions (that will not give rise to a solution) at the
same node are identical except mapping S to any proper subset of {d, e}. 4
We say that a solution A extends a partial solution A′ if for each x ∈ IV(Γ0) and each
v ∈ V it holds that α′0(x) = v ⇒ α0(x) = v, and for each X ∈ SV(Γ0) it holds that
α′0(X) ⊆ α0(X), where α0 is the root of A and α′0 is the root of A′.

3.3 APPLICABILITY 51

In order to define the notion of a characteristic, we need to consider assignments
that not only allow variables to be still unassigned (as partial assignments do) but also
account for variables that have been set to vertices that are no longer in the current
bag.

Definition 3.10. When we speak of a local assignment to a set of variables ∆ ⊆ Γ relative
to a node n ∈ T , we mean a mapping α such that for any x ∈ IV(∆) it holds that
α(x) ∈ χ(n) ∪ {undefined, taken} and for any X ∈ SV(∆) it holds that α(X) ⊆ χ(n).

Given a local assignment α relative to a node n ∈ T , the intuition behind setting an
individual variable x to “undefined” is that x has neither been assigned a vertex in Vn

by α nor by some local assignment relative to a descendant of n that is considered to
be an ancestor of α; the intuition behind “taken” is that x has been assigned a vertex
in Vn \ χ(n) by a local assignment relative to a descendant of n that is considered to
be an ancestor of α.

Having fixed these notions, we can now finally state the definition of a character-
istic.5

Definition 3.11. We define a table row’s characteristic at a node n ∈ T as a tree A
having the following properties:

• Each leaf is at depth ν− 1.

• Each node at depth d encodes a local assignment to Γd relative to n.

• Each leaf additionally encodes a set of clauses.

• For each node at depth d < ν − 1 and each possible local assignment to Γd+1
relative to n, there is at least one child of that node encoding this local assign-
ment.

By keeping track of extension pointers for each node in a characteristic, each local
assignment in a characteristic can be extended to a set of partial assignments. Each
path from the root item set to a leaf item set thus implicitly represents a set of partial
assignments to Γ relative to the current node. This set of partial assignments can be
obtained from a root-to-leaf path in a characteristic by unfolding the path to a tree in
a bottom-up way by following the extension pointers.

5Note that the notions of a solution, a partial solution and an extension of a partial solution are,
strictly speaking, not necessary for conceiving an algorithm. We have nevertheless introduced them
before defining the structure of a characteristic, which is crucial for an actual algorithm, in order to
comply with the algorithm design methodology found in Section 3.2. This methodology lists these initial
definitions with good reason, however, because they help in designing such an algorithm and often act as
guidelines for the continuing abstraction from the frequently obvious nature of a solution to the usually
much more elusive structure of a characteristic. Another important justification is that if we want to
prove the correctness of an algorithm, we normally cannot do without formalizing these fundamental
notions.

52 CHAPTER 3. DECOMPOSE, GUESS & CHECK

Like a partial solution, a characteristic cannot “look into the future”, which ex-
plains the need for the value “undefined”. However, unlike a partial solution, which
has access to information about already removed vertices, a characteristic cannot “look
into the past” either. This is the reason that we need to allow “taken” as a value for
individual variables that were set to a vertex that has meanwhile been removed from
the current bag.

We also need to store in a characteristic which clauses have been satisfied so far –
after a clause becomes satisfied when guessing an interpretation, the vertices that are
the “reason” for the clause being satisfied might be removed from the bag and thus
also vanish from the characteristic, making it necessary to conduct bookkeeping of
satisfied clauses. The intuition behind the clauses encoded in a leaf is that all partial
assignments to Γ represented by the path from the root of the characteristic to that
leaf satisfy exactly those clauses. This way, the tree structure of a characteristic allows
us to check if, for instance when ν = 2, for the assignment to Γ0 represented by the
root of that characteristic, all assignments to Γ1 satisfy all clauses. Checking if there
is an assignment to Γ0 such that for all assignments to Γ1 all clauses are satisfied thus
amounts to checking if there is a characteristic in the root table such that for each
of the characteristic’s root-to-leaf paths that represents a (complete) assignment all
clauses are contained in the leaf.

Example 3.12. For the formula from Example 3.2 and the graph and tree decomposi-
tion in Figure 3.5, a characteristic at the root node is depicted in Figure 3.8 (in a table
layout for the sake of clear arrangement).

Note that for instance there are two distinct root-to-leaf paths encoding the local
assignment that maps S 7→ {b}, x 7→ taken and y 7→ b. The reason is that the cor-
responding satisfied clauses differ. In particular, the presence of the path that does
not satisfy c0 witnesses (among others) that this characteristic does not represent a
valid solution. Such a situation – multiple root-to-leaf paths encoding the same lo-
cal assignment but different satisfied clauses – can occur when two paths coincide on
the current vertices but not on the satisfied clauses. If, on the other hand, two paths
coincide on both the current vertices and the satisfied clauses, they are merged (as
described in Section 3.1.2). This way, an explosion of memory is avoided and the size
of a characteristic is always bounded by a function only depending on the treewidth.

We can explain the mentioned distinct paths encoding the same local assignment
but different clauses by the fact that in one case x was previously set to the no longer
present vertex a which led to c0 not being satisfied, and in the other case x was pre-
viously set to the no longer present vertex e which led to both clauses being satisfied.
Since both a and e are not in the current bag, x takes the value “taken” in either of the
resulting paths. 4

3.3 APPLICABILITY 53

S x y c0 c1

{b}

undefined undefined
undefined taken X X

undefined b X

undefined c
undefined d

taken b X X

taken b X

taken c X X

taken c
taken d X X

taken undefined X X

taken taken X X

b undefined X

b taken X X

b b X X

b c X

b d X

c undefined
c taken X X

c b X X

c c X X

c d
d undefined
d taken X X

d taken X

d b X X

d c X X

d d X X

Figure 3.8 A characteristic at the root node of the tree decomposition in Figure 3.5
and the formula from Example 3.2

54 CHAPTER 3. DECOMPOSE, GUESS & CHECK

The Dynamic Programming Algorithm

We now describe how the tables are computed, i.e., the actual dynamic program-
ming algorithm. A concrete implementation in terms of ASP code is presented in
Section 4.2.9.

Leaf nodes. For a leaf node n ∈ T , we insert a row into the table for each possible
partial solution relative to n. This can be done by means of Guess & Check in an ASP
program by guessing a root-to-leaf path and processing the answer sets according
to the principles in Section 3.1.2. Additionally, for each root-to-leaf path of partial
assignments (α0, . . . , αν−1), we add the clauses that are satisfied by α0 ◦ · · · ◦ αν−1 into
the leaf item set.

Non-leaf nodes. For a non-leaf node n ∈ T , we guess

• for each child node a root-to-leaf path appearing in a characteristic of that node’s
table,

• a local assignment to Γ relative to n, and

• a subset of the clauses in φ.

The checking part now makes sure that the following conditions hold.

• Let α be the guessed local assignment to Γ relative to n, n′ be an arbitrary child
of n, and α′ be the local assignment to Γ relative to n′ encoded in the guessed
root-to-leaf path for n′. Intuitively, we require that α actually extends α′. We now
make this formal.

Let x ∈ IV(Γ) resp. X ∈ SV(Γ) be arbitrary individual resp. set variables. The
following conditions must hold.

– If α′(x) = undefined, then α(x) ∈ {undefined} ∪ (χ(n) \ χ(n′)).

– If α′(x) = taken , then α(x) = taken.

– If α′(x) = v for some v ∈ χ(n′) \ χ(n), then α(x) = taken.

– If α′(x) = v for some v ∈ χ(n), then α(x) = v.

– For any v ∈ χ(n′) ∩ χ(n), v ∈ α′(X) if and only if v ∈ α(X).

• For each pair of child nodes a and b, let the local assignments to Γ encoded by
the guessed root-to-leaf paths for a and b be denoted by α and β, respectively.
Intuitively, we require that α and β be compatible in a certain way. That is to say,
for any individual variable, if the partial assignment corresponding to α assigns
this variable to some vertex, then the partial assignment corresponding to β must
not assign it to a different vertex; and for each set variable it must not be the case
that a common vertex of a and b is contained in the interpretation of that variable

3.3 APPLICABILITY 55

according to α while not so according to β. We now state these requirements in
a more formal way.

Let x ∈ IV(Γ) resp. X ∈ SV(Γ) be arbitrary individual resp. set variables. The
following conditions must hold.

– If α(x) = v for some v ∈ χ(a) ∩ χ(b), then it holds that β(x) = v.

– If α(x) = v for some v ∈ χ(a) \ χ(b), then it holds that β(x) = undefined.

– If α(x) = taken, then it holds that β(x) = undefined.

– If v ∈ α(X) for some v ∈ χ(a) ∩ χ(b), then it holds that v ∈ β(X).

• Each guessed clause is contained in the leaf of a guessed root-to-leaf path of a
child node or is satisfied by the guessed local assignment to Γ relative to n.

If the current node is the root (which has an empty bag and a single child), the follow-
ing additional checks are performed for the guessed root-to-leaf path from the child
node.

• Let α be the local assignment to Γ encoded by the guessed root-to-leaf path from
the child node. For each x ∈ IV(Γ) it must hold that α(x) 6= undefined.

• We check that the root of the guessed root-to-leaf path from the child node is
labeled with “good” after performing the following labeling in each of the child
table’s characteristics. We label each node m at depth d, where m encodes a local
assignment αd to Γd relative to the child node, as follows:

– We label m with “invalid” if there is an x ∈ IV(Γd) such that αd(x) =

undefined.

– We label m with “invalid” if its parent is “invalid”.

– If m is a leaf that is not “invalid”:
If all clauses are contained in m, we label it with “good” and otherwise with
“bad”.

– If m is no leaf, not “invalid”, and d is even:
If m has a child labeled with “bad”, we label m with “bad” and otherwise
with “good”.

– If m is no leaf, not “invalid”, and d is odd:
If m has a child labeled with “good”, we label m with “good” and otherwise
with “bad”.

This way, we make sure that table rows that do not correspond to solutions are elimi-
nated – either because some variables are still unassigned or because it does not hold
that for all assignments to the variables on level 1 there is an assignment to the vari-
ables on level 2, and so on, such that all clauses are satisfied.

56 CHAPTER 3. DECOMPOSE, GUESS & CHECK

Finally, to track which part of a characteristic stems from which parts of child
characteristics, for each node at depth d of the resulting path (if it survives the checking
part) we declare a tuple of extension pointers where each pointer references the node
at depth d of the respective guessed root-to-leaf-path from the child characteristic.

This concludes the description of the dynamic programming algorithm for Mso

Formula Evaluation.

Correctness and Complexity of the Algorithm

We now argue that the presented algorithm is correct and efficient for graphs of
bounded treewidth. It can be shown that an instance is positive if and only if the
root table contains a row. We only give a rough idea for a proof. A full elaboration is
left for future work.

We can extend each table row associated to any node n ∈ T to a set of partial
solutions by recursively following the extension pointers. Each root-to-leaf path of
a characteristic thus corresponds to a set of paths in these partial solutions. Every
such path represents a partial assignment to Γ relative to n. Consider an arbitrary
root-to-leaf path of a characteristic. Let the clauses encoded in the leaf be denoted by
C and the set of paths in the corresponding partial solutions be denoted by P. Each
path in P encodes a partial assignment to Γ relative to n. The clauses in C are exactly
the clauses that each such partial assignment satisfies. This is because we started at
the tree decomposition’s leaves with all possible partial assignments together with
the respective satisfied clauses, and each time we extended a local assignment from a
child, we added the clauses that got satisfied due to this extension to the respective
item set, thus collecting all satisfied clauses during the progress of the computation.
The final checks in the root table make sure that only those partial solutions that are
actually solutions survive.

Using the extension pointers, we can finally materialize all solutions, so this algo-
rithm also allows for counting and enumeration. The decision problem can indeed be
solved in linear time for graphs of bounded treewidth. To prove this, let the treewidth
be some constant w. According to Bodlaender’s theorem (cf. Section 2.4), because
the treewidth is fixed, we can construct an optimal tree decomposition in linear time.
Therefore, this decomposition also has linear size. We assume that each node has
constantly many children. This assumption can be justified because any tree decom-
position can be normalized in linear time (cf. Section 3.1.2).6 It remains to show that
each table can be computed in constant time. For this, we first show that each table
has constant size. A local assignment relative to a given node can map an individual
variable to at most w + 3 values because the bag size is at most w + 1 and there are the

6The linear time result holds also for non-normalized tree decompositions because there can only be
constantly many nodes that have linearly many children – otherwise the decomposition would not have
linear size. Assuming a constant number of children for each node, however, seems to make the proof
easier.

3.3 APPLICABILITY 57

two special values “undefined” and “taken”. A set variable can be mapped to at most
2w+1 values. Both of these figures are constant and there are constantly many vari-
ables, thus there are only constantly many possible local assignments for each node
in T . A root-to-leaf path in a characteristic encodes, in addition to a local assignment,
a set of clauses of which there are also constantly many. Therefore, there are only
constantly many possible root-to-leaf paths in a characteristic. The number of char-
acteristics in a table cannot be greater than the number of possible root-to-leaf paths
and is therefore also constant. The extension pointers in the table also have constant
size due to the bound on the number of children and the child table sizes. From this
it follows that each table has constant size. Thus, it can easily be seen that from the
constant bound on the size of the tables it follows that the checking part is feasible in
constant time.

3.3.2 Further Applicability Results

The preceding section shows that our proposed approach is able to solve any MSO-
definable problem efficiently for graphs of bounded treewidth. Decompose, Guess &
Check is, however, not restricted to MSO-definable problems. For instance, in Sec-
tion 4.2.2, we show that we can solve problems that are provably not fixed-parameter
tractable and thus also not expressible in MSO. Therefore, decomposition can also
sometimes be beneficial for problems that are not fixed-parameter tractable w.r.t. tree-
width, or maybe even intractable for instances of bounded treewidth. We suspect that
even if it results in an exponential-time algorithm, for some practical problems, at least
some instances that have previously been out of reach could be solved.

Although dynamic programming on tree decompositions is commonly used for
problems in NP or, more generally, in the polynomial hierarchy, it is applicable to
even harder problems. From the existence of the algorithm presented in the preceding
section it follows that, since Mso Formula Evaluation is PSPACE-complete in gen-
eral, by using Decompose, Guess & Check it is possible to solve problems efficiently for
bounded treewidth that are PSPACE-complete in general. In Section 4.2.10 we will see
a fixed-parameter tractable algorithm for the PSPACE-complete problem Qsat.

Chapter 4

The D-FLAT System

The D-FLAT system is our implementation of a Decompose, Guess & Check framework
that fulfills the demands discussed in Section 3.1. The acronym abbreviates the full
name Dynamic Programming Framework with Local Execution of ASP on Tree Decomposi-
tions. Its purpose is to take care of everything that surrounds dynamic programming
algorithms on tree decompositions and to leave the user only with the responsibility
of providing the problem-specific parts in ASP.

D-FLAT can be considered as a tool for rapid prototyping of dynamic program-
ming algorithms but also for educational purposes. ASP users are provided with an
easy-to-use interface to decompose problem instances – an issue which might allow
large instances of practical importance to be solved, which so far could not be handled
by ASP systems.

The system can be obtained as free software from http://www.dbai.tuwien.ac.
at/research/project/dynasp/dflat/. It is written in C++ and can be compiled for
many platforms.

A first prototype was already introduced in [Bliem et al., 2012], but the present
work significantly extends that version in many respects.

In this chapter, we will first give an overview of the system by describing its orga-
nization, the interplay of its components, and the interface to the user’s programs in
Section 4.1. We then present some concrete examples for solving problems via Decom-
pose, Guess & Check by means of ASP programs for the D-FLAT system in Section 4.2.
Finally, we briefly mention performance aspects in Section 4.3.

4.1 System Overview

We now describe the different parts of D-FLAT and their roles in solving problems
in a decomposed way. Figure 4.1 depicts the control flow during the execution of an
algorithm with D-FLAT and illustrates the interplay of the system’s components.

The system consists of the following basic elements:

59

http://www.dbai.tuwien.ac.at/research/project/dynasp/dflat/
http://www.dbai.tuwien.ac.at/research/project/dynasp/dflat/

60 CHAPTER 4. THE D-FLAT SYSTEM

• The D-FLAT core; it coordinates the data flow between all other components
and takes care of parsing the input, storing and processing the tables, as well as
materializing solutions.

The D-FLAT core is tightly intertwined with a software called SHARP1 [Morak,
2011] which is a framework for working on tree decompositions using C++ as a
language for the algorithms.

• An ASP solving system; currently we use Gringo for grounding and clasp for
solving. These programs are part of the Potsdam Answer Set Solving Collection
[Gebser et al., 2011b] and are currently the generally most efficient ASP solving
tools available [Denecker et al., 2009].

• A tree decomposition library; we currently employ htdecomp [Dermaku et al.,
2008] for this purpose.

Initially, D-FLAT parses the problem instance – a set of facts describing a graph –,
stores this graph and constructs a tree decomposition. Now the bottom-up processing
is initiated. Until all tables have been computed, D-FLAT visits the next node whose
child tables are already completed. It takes these child tables and flattens the rows
contained in them such that a string representing a set of facts is obtained. It is passed
to the integrated ASP solver together with the user’s ASP program and a description
of the bags of the current node and its children. The answer sets which result are now
scanned for predicates that instruct D-FLAT to store certain values in a table row. This
way, D-FLAT populates the current node’s table and continues with the next node.
When all tables have thus been computed, the solutions are materialized depending
on the problem type. For instance, for a decision problem, “yes” or “no” is returned
depending on whether the root table has a row or not; for a counting problem, the
number of solutions is read off from the table rows; and for an enumeration problem,
complete solutions are obtained by following extension pointers stored in the table
rows for this purpose. Note that for optimization problems, D-FLAT automatically
takes care of only counting or enumerating optimal solutions.

In Section 4.1.1 we present the steps during an invocation of the tool in more detail.
We then give a summary of command-line options in Section 4.1.2 and of the reserved
predicates that are used as an interface to the user’s programs in Section 4.1.3.

4.1.1 Description of Individual Steps

The dynamic programming algorithm is provided by the user by means of an ASP pro-
gram. We now describe the different steps during the execution of such an algorithm
with D-FLAT in more detail.

1http://www.dbai.tuwien.ac.at/research/project/sharp/

http://www.dbai.tuwien.ac.at/research/project/sharp/

4.1 SYSTEM OVERVIEW 61

Gringo/clasp Compute
table rows

D-FLAT Parse instance Populate table Flatten
child tables

Materialize
solution

htdecomp Decompose

SHARP Done?
no

yes

Visit next
node in

post-order

Figure 4.1 A flowchart illustrating the (simplified) interplay of D-FLAT’s components

Parsing the Input

As we are using tree decompositions as a way to decompose problem instances, we
require the input to be a graph.2 This input graph must of course be made available
to the user’s ASP program because it contains the problem-specific information and is
needed to compute tables. Since we use ASP as the language for the user’s program,
using ASP also for specifying the input graph is a natural choice. This way, we can
simply pass the input directly to the ASP solver together with the user’s program, a
description of the bags and the child tables. Hence, the input is required to be given
as a set of facts, exactly as one would provide input for a monolithic ASP program for
a problem.

For instance, the following input describes the graph from Figure 3.1a:

vertex(a;b;c;d;e;f;g).

edge(a,b). edge(b,c). edge(c,d). edge(c,g).

edge(d,e). edge(d,f). edge(e,f).

In order to recognize how this set of facts represents a graph, D-FLAT expects the user
to specify as command-line arguments which predicates in the input denote edges –
in this case, edge/2.

The constants which appear as arguments of the edge predicates in the input are
considered to be exactly the vertices of the graph – thus, the vertices do not need to be
declared explicitly (although no one is preventing the user from doing so if convenient,
as we have done in the listing using the vertex/1 predicate).

2To be precise, D-FLAT can also handle hypergraphs as described in Section 2.4.1, but here we only
speak of graphs for the sake of simplicity.

62 CHAPTER 4. THE D-FLAT SYSTEM

Decomposing the Graph

The graph that was obtained in the previous step is now decomposed. D-FLAT leaves
the details of this to an external library that is concerned with constructing a tree de-
composition heuristically that has near-optimal width. At the moment, the only avail-
able possibility for controlling this is specifying on the command-line which normal-
ization should be performed (cf. Section 3.1.2). The correct choice, of course, depends
on what the particular dynamic programming algorithm expects as a tree decomposi-
tion.

Note that D-FLAT constructs a tree decomposition such that bag of the root is
empty, as depicted in Figure 3.1b, for the reasons discussed in Section 3.1.3

Traversing the Tree Decomposition

When the dynamic programming phase begins, a bottom-up traversal of the tree de-
composition is performed to compute the tables. This way, upon reaching a tree
decomposition node, the child tables are already computed. In each node, D-FLAT
invokes the ASP solver to compute the new table, which is described next.

Inside a Tree Decomposition Node

Figure 4.2 depicts the data flow when D-FLAT visits a node. D-FLAT first flattens the
table of each child node, i.e., it builds a set of facts which describes all the rows in
that table. Then, to compute the new table, D-FLAT invokes the integrated ASP solver
with the following input:

• The dynamic programming algorithm provided by the user as an ASP program

• The entire problem instance (given to D-FLAT as a set of facts)

• A description of the current bag as a set of facts stating which vertices are present
in that bag

• For each child node, the set of facts describing its table and a description of its
bag contents

The answer sets resulting from this constitute the new table. The user’s dynamic
programming algorithm must instruct D-FLAT which values it should store in a table

3It should be noted that when D-FLAT is asked to construct a semi-normalized tree decomposition, it
also provides for empty leaf nodes because the algorithms presented in [Bliem et al., 2012], in contrast to
the ones in this work, consist of two separate encodings – one for exchange nodes and one for join nodes.
Note the lack of a “leaf program” which is because we construct semi-normalized tree decompositions
in such a way that all leaves have empty bags and a table that always consists of an empty row. This
construction does not restrict the user in any way and, in all considered cases, leads to clearer ASP code
than abusing the exchange program for leaves. We refer to [Bliem et al., 2012] for details.

4.1 SYSTEM OVERVIEW 63

Current table

Answer sets

ASP solver
User program

Instance
Bag

Child rows

1st child table

Child rows

nth child table

. . .

. . .

Figure 4.2 Data flow while processing a node with n children

row by means of special predicates that are used for communication between D-FLAT
and the user’s program (cf. Section 4.1.3). D-FLAT scans the answer sets for these
predicates and inserts rows into the table accordingly, as discussed in Section 3.1.

For the example in Figure 3.1c, consider as the current node the one corresponding
to the bag {a, b}. D-FLAT describes the current bag as just the two facts:4

current(a;b).

D-FLAT then declares the children and their bags and tables as follows:

childNode(c0).

childBag(c0,b;c).

childRow(c0r0;c0r1;c0r2 ,c0).

childItem(c0r0 ,b). childCost(c0r0 ,4).

childItem(c0r1 ,c). childCost(c0r1 ,3).

childItem(c0r2 ,b;c). childCost(c0r2 ,4).

For convenience, D-FLAT also passes facts using the predicates introduced/1 and
removed/1 to the user’s program. They are, strictly speaking, redundant; but using
them in algorithms is very common. Their semantics is in accordance with the follow-
ing rules:

-introduced(X) ← childBag(_,X).

introduced(X) ← current(X), not -introduced(X).

removed(X) ← childBag(_,X), not current(X).

4To emphasize that these are input predicates provided by D-FLAT, we print them in color (see
Section 4.1.3).

64 CHAPTER 4. THE D-FLAT SYSTEM

Materializing the Solutions

When all nodes have been visited, materializing the solutions proceeds as discussed
in Section 3.1. The specific solution enumeration strategy of our implementation still
needs some clarification, however.

In general, there can be exponentially many solutions. When materializing solu-
tions for enumeration, it is therefore infeasible to construct all of them simultaneously
and subsequently iterate over this set to print every solution, because this way the
huge set of all complete solutions must be stored in memory. We rather require a
“lazy materialization” technique that only materializes one solution at a time, prints it
and then proceeds to the next one. To this end, D-FLAT implements an iterator inter-
face for enumerating solutions that avoids the explosion of memory. This enumeration
is even possible with just linear delay, provided the treewidth is bounded and the user
designs the dynamic programming algorithm such that the size of each table can be
considered as bounded by a constant (which is the case if it is bounded by a function
only depending on the treewidth).

4.1.2 Command-Line Interface

The file name of the user’s ASP program must be specified as a command-line argu-
ment and the instance will be read from the standard input.

On semi-normalized tree decompositions (see Section 3.1), D-FLAT distinguishes
two programs – one for exchange nodes and one for join nodes – that have to be specified
separately. In [Bliem et al., 2012], we introduced encodings for this setting. When
a program for exchange nodes but not for join nodes is specified, D-FLAT executes
a default join implementation which joins all pairs of candidate rows that have the
same characteristic. We refer to [Bliem et al., 2012] for a discussion of the default join
implementation.

Table 4.1 summarizes the command-line options that control D-FLAT’s behavior.
Executing the D-FLAT binary dflat is illustrated by the following example call, pre-
supposing a Minimum Vertex Cover instance with the file name instance.lp and an
encoding with the file name mvc.lp (cf. Section 4.2.4), instructing D-FLAT to enumer-
ate all optimal solutions (which also prints their number and costs):

dflat -p opt-enum -e edge mvc.lp < instance.lp

4.1.3 Interface to ASP Programs: Reserved Predicates

The user’s program communicates with D-FLAT by means of reserved predicates.
These are partitioned into two sets:

• Input predicates are provided by D-FLAT as input for the user’s program and
describe the relevant bags and child tables.

4.1 SYSTEM OVERVIEW 65

Argument Meaning

-e hyperedge_predicate The predicate hyperedge_predicate in the input denotes a hy-
peredge connecting the argument vertices. At least one -e
argument must be given.

-j join_program join_program is the file name of an ASP program that
is to be executed in join nodes of (semi-)normalized
tree decompositions. This is only allowed if -n semi or
-n normalized is present. If it is omitted and an exchange
program is given via -x, the default join implementation
will be used.

--multi-level If this option is present, multi-level characteristics can be
used. If it is absent, D-FLAT uses a more efficient imple-
mentation that can, however, only be used for single-level
characteristics.

-n normalization normalization specifies the normalization to be performed.
Possible values are none (default), semi and normalized.

--only-decompose If specified, D-FLAT terminates after decomposing and, if
requested by --stats, printing statistics.

-p problem_type problem_type specifies the type of the problem to be solved.
Possible values are enumeration (default), counting,
decision, opt-enum, opt-counting and opt-value.

-s seed This sets the seed of the pseudo-random number generator
used for the tree decomposition heuristic to seed.

--stats This prints statistics about the constructed tree decompo-
sition.

-x exchange_program exchange_program is the file name of an ASP program that
is to be executed in exchange nodes of (semi-)normalized
tree decompositions. This is only allowed if -n semi or
-n normalized is present.

program program is the file name of an ASP program that is to be
executed in each tree decomposition node. This is incom-
patible with the -x and -j options.

Table 4.1 Command-line options for D-FLAT

66 CHAPTER 4. THE D-FLAT SYSTEM

Input predicate Meaning

root The current node is the root node.

childNode(N) N is the identifier of a child node.

childBag(N, V) V is a vertex contained in the bag of the child node N.

current(V) V is an element of the current bag.

introduced(V) V is a current vertex but was in no child node’s bag.

removed(V) V was in a child node’s bag but is not in the current one.

childRow(R, N) R is the identifier of a row in the table of child node N.

sub(R, S) If R is the identifier of a child row, S is the identifier of
an item set that is a child of that row’s top-level item set.
Otherwise, R is the identifier of a subsidiary item set and
S is the identifier of an item set that is a child of R.

childItem(S, I) If S is the identifier of a child row, that row’s top-level item
set contains I. Otherwise, S is the identifier of a subsidiary
item set containing I.

childCount(R, C) C is the number of partial solutions corresponding to the
child row R.

childCost(R, C) C is the total cost of the partial solution corresponding to
the child row R.

Table 4.2 Predicates supplied to the user’s program by D-FLAT

• Output predicates occurring in an answer set instruct D-FLAT to store certain
information in the table currently under consideration.

These predicates are summarized in Tables 4.2 and 4.3, respectively. Their usage will
be extensively illustrated in Section 4.2.

For better readability, we use colors to highlight input predicates and output pred-
icates in our listings.

4.2 Case Studies

To show that D-FLAT can indeed be applied to various problems from different do-
mains, in this section we present a collection of case studies. Some of the examples in
this section have also been treated in [Bliem et al., 2012]. The current work, however,

4.2 CASE STUDIES 67

Output predicate Meaning

item(I) Let I be in the top-level item set.

extend(R) Declare R to be the identifier of a child row that is ex-
tended by the currently described one. This is required for
enumerating solutions.

count(C) Let C be the number of partial solutions the currently de-
scribed row corresponds to. This is required for counting
problems if extend/1 is not used.

cost(C) Let C be the total cost of the current partial solution. This
is required for optimization problems.

currentCost(C) Let C be the local cost of the current table row. This is only
required when solving an optimization problem and using
the default join implementation for semi-normalized tree
decompositions. See [Bliem et al., 2012] for details.

levels(L) When using multi-level characteristics, declare L to be the
number of levels of the root-to-leaf path (within a charac-
teristic) described by the current answer set.

item(L, I) Let I be in the item set at level L of the multi-level charac-
teristic. It holds that L ≥ 0, with 0 being the top level.

extend(L, S) Declare that the item set at level L described by this answer
set stems from the item set S from a child characteristic.
This is used for constructing the tree of the characteristic
as described in Section 3.1.2.

Table 4.3 Predicates in the ASP program’s answer sets recognized by D-FLAT

68 CHAPTER 4. THE D-FLAT SYSTEM

generalizes those algorithms to work on non-normalized tree decompositions.
Sections 4.2.1, 4.2.2 and 4.2.3 are devoted to graph coloring problems where the

latter section gives a first example of an algorithm that uses multi-level characteris-
tics. Subsequently, in Section 4.2.4, we display an algorithm for the Minimum Vertex

Cover problem. What is especially interesting about this is that we we show how a
classical optimization problem can be solved. Section 4.2.5 covers the Boolean Sat-
isfiability problem to illustrate that also problems whose instances are not directly
graphs – in this case a problem in logic – can be solved. This is taken further in Sec-
tion 4.2.6 where we list an algorithm that solves Disjunctive Asp. Section 4.2.7 is
about the Cyclic Ordering problem and discusses issues concerning the discrepancy
between solving decision problems and solving counting or enumeration problems. In
Section 4.2.8, we present an algorithm for the Hamiltonian Cycle problem which is
especially interesting because it cannot be expressed in MSO over just the vocabulary
{edge}. To prove that D-FLAT is powerful enough for all MSO-definable problems, in
Section 4.2.9 we display an implementation of the algorithm for Mso Formula Eval-
uation that we have presented in Section 3.3.1. Finally, Section 4.2.10 covers another
problem that is PSPACE-complete in general, namely Qsat.

4.2.1 Graph Coloring

The 3-Col problem is defined as follows.

Input: A graph G = (V, E)

Question: Is there a proper 3-coloring of G, i.e., a mapping f : V →
{red, green, blue} such that for each edge (a, b) ∈ E it holds that
f (a) 6= f (b)?

We have already seen a dynamic programming algorithm for 3-Col in Section 2.4.3.
The D-FLAT encoding in Listing 4.1 implements an algorithm following the presented
approach. Each answer set here constitutes exactly one new row in the current table.
The output predicate item/1 is used to specify the (partial) coloring encoded in the
new row. We thereby assign a color to each vertex in the current bag. The output
predicate extend/1 indicates which child rows are the predecessors of the new row.
Of course, extend/1 must only have one child row identifier for each child node as
its extension. This predicate is required for the reconstruction of complete solutions
after all tables have been computed and could therefore be omitted if just the decision
problem should be solved.

This program suffices to solve 3-Col with D-FLAT and exhibits linear runtime for
graphs of bounded treewidth. Notice, in particular, that parts of it very much resemble
a monolithic program as presented in Section 2.3.4. The most notable difference is that
instead of guessing a coloring for all vertices at once, our D-FLAT encoding only

4.2 CASE STUDIES 69

Listing 4.1 A D-FLAT encoding for 3-Col

color(red;green;blue).

% S e l e c t one row p e r c h i l d node f o r e x t e n s i o n

1 { extend(R) : childRow(R,N) } 1 ← childNode(N).

% R e t a i n c o l o r i n g o f v e r t i c e s t h a t have not be en removed

item(map(V,C)) ← extend(R), childItem(R,map(V,C)),

current(V).

% J o i n e d rows must c o i n c i d e on common v e r t i c e s

← item(map(V,C0;C1)), C0 6= C1.

% Guess c o l o r i n g o f i n t r o d u c e d v e r t i c e s

1 { item(map(V,C)) : color(C) } 1 ← introduced(V).

% Ensure t h a t t h e r e s u l t i n g c o l o r i n g v i o l a t e s no c o n s t r a i n t s

← edge(X,Y), item(map(X;Y,C)).

guesses a coloring for the introduced vertices which augments “inherited” colorings of
the other current vertices.

4.2.2 List Coloring

The List Coloring problem generalizes 3-Col in the following way:

Input: A graph G = (V, E) and for each vertex v ∈ V a list of colors l(v)

Task: Is there a proper coloring of G such that each vertex v ∈ V is assigned
a color in l(v)?

In [Szeider, 2010], the author proves that this problem is not fixed-parameter tractable
w.r.t. treewidth. Therefore, we cannot express it in MSO. Despite this, we can solve
this problem with D-FLAT by a trivial modification of the program from Section 4.2.1.
The allowed colors now depend on the vertex to be colored, so the input facts must,
in addition to the graph, also encode the list of allowed colors for each vertex, say by
turning color/1 into a binary predicate where the first argument denotes the vertex
and the second one of its allowed colors.

The modified program is given in Listing 4.2. Note that the only difference to
Listing 4.1 is that now the colors are no longer part of the D-FLAT program, and we
have replaced color(C) by color(V, C).

Of course, this algorithm no longer features linear runtime for graphs of bounded
treewidth. The reason for this is that the size of a table can now be exponential in the
input size because there can be linearly many colors for a vertex.

70 CHAPTER 4. THE D-FLAT SYSTEM

Listing 4.2 A D-FLAT encoding for List Coloring

1 { extend(R) : childRow(R,N) } 1 ← childNode(N).

item(map(V,C)) ← extend(I), childItem(I,map(V,C)),

current(V).

← item(map(V,C0;C1)), C0 6= C1.

1 { item(map(V,C)) : color(V,C) } 1 ← introduced(V).

← edge(X,Y), item(map(X;Y,C)).

What is interesting about this algorithm is that it proves that it can also be rea-
sonable to apply Decompose, Guess & Check to problems that are provably not fixed-
parameter tractable. We expect that the decomposition nevertheless allows for sub-
stantial speedups when compared to a monolithic algorithm.

4.2.3 Minimum 3-Coloring

The Minimum 3-Coloring problem is a variant of 3-Col where additionally subset-
minimality with respect to the set of red vertices (from a subset of all vertices that
determine which are critical for minimization) is taken into account. A 3-coloring f is
red-minimal w.r.t. a set of critical vertices W if and only if there is no 3-coloring f ′ such
that {v ∈W | f ′(v) = red} ⊂ {v ∈W | f (x) = red}. Minimum 3-Coloring is defined
as follows.

Input: A graph G = (V, E), a set W ⊆ V and a vertex q ∈W

Question: Is q colored with “red” in a red-minimal 3-coloring of G w.r.t. W?

We have introduced this problem in Section 3.1.3, proved its Σp
2-completeness and pre-

sented a Decompose, Guess & Check algorithm there. For a description of the algorithm,
we refer to that section.

An implementation in D-FLAT could look as in Listing 4.3. The input graph is
again given by means of vertex/1 and edge/2, and additionally the set of critical ver-
tices (i.e., the vertices where we want to minimize the color red) is given by means of
criticalVertex/1. Note that, because we are dealing with multi-level characteristics,
the predicates extend/2 and item/2 are binary and each answer set must specify the
number of its declared item sets by means of levels/1. Another difference to the case
where characteristics consist of only a single level is that here the predicate sub/2 is
provided by D-FLAT to the user’s encoding such that sub(R, S) means that the item
set with the identifier S is a subordinate item set of the item set identified by R.

The marker that we denoted by a × symbol in the column ⊂ of the tables in
Figure 3.3c is realized by means of an item smaller that is contained in a subsidiary

4.2 CASE STUDIES 71

Listing 4.3 A D-FLAT encoding for Minimum 3-Coloring

color(red;green;blue).

% Red i s t h e c o l o r t h a t we want t o minimize (w. r . t . s e t i n c l u s i o n)

criticalColor(red).

% Each answer s e t e n c o d e s a top− l e v e l i t em s e t and a s u b s i d i a r y one

levels (2).

% Guess a r o o t−to− l e a f pa th in a c h a r a c t e r i s t i c f o r e v e r y c h i l d node

1 { extend(0,R) : childRow(R,N) } 1 ← childNode(N).

1 { extend(1,S) : sub(R,S) } 1 ← extend(0,R).

item(L,map(V,C)) ← extend(L,S), childItem(S,map(V,C)),

current(V).

% Only j o i n match ing c o l o r i n g s

← item(L,map(V,C0;C1)), C0 6= C1.

% Guess c o l o r i n g s f o r t h e i n t r o d u c e d v e r t i c e s

1 { item(L,map(V,C)) : color(C) } 1 ← introduced(V), L=0..1.

← edge(X,Y), item(L,map(X;Y,C)).

% L e v e l 1 c o l o r i n g must not be b i g g e r (w. r . t . c r i t i c a l c o l o r and c r i t i c a l

v e r t i c e s) than l e v e l 0

← criticalColor(C), criticalVertex(V), item(1,map(V,C)),

not item(0,map(V,C)).

% I n h e r i t (o r e x t e n d) marke r s i n d i c a t i n g t h a t t h e l e v e l 1 c o l o r i n g i s s m a l l e r

item(1,smaller) ← extend(1,S), childItem(S,smaller).

item(1,smaller) ← criticalColor(C), criticalVertex(V),

item(0,map(V,C)), not item(1,map(V,C)).

% Make s u r e t h a t e v e n t u a l l y on ly minimal c o l o r i n g s s u r v i v e

← root , extend(0,R), sub(R,S), childItem(S,smaller).

72 CHAPTER 4. THE D-FLAT SYSTEM

item set if and only if there would be such a marker in the table, indicating that the
subsidiary item set witnesses that the coloring represented by the top-level item set is
not minimal.

The last line of Listing 4.3 makes sure that in the root all rows are eliminated
that would lead to colorings that are not minimal. This is realized by a constraint
enforcing that non-minimal colorings (i.e., rows that have a subsidiary item set that
contains smaller) are not extended.

Note that although extension pointers are given for both level 0 and level 1, D-FLAT
disregards any subsidiary levels when finally materializing solutions. In other words,
only the colorings associated with the top level are constructed.

4.2.4 Minimum Vertex Cover

The case studies outlined so far suffice to instruct D-FLAT to solve enumeration, count-
ing and decision problems. Often it is also desired to solve optimization problems,
for which additional information regarding the cost of a (partial) solution must be
supplied in the encodings. To illustrate this, we show how the “drosophila” of fixed-
parameter algorithms, the Minimum Vertex Cover problem, can be solved.

A vertex cover of a graph is a subset of the vertices that contains at least one end-
point of each edge. Minimum Vertex Cover is the following problem:

Input: A graph

Task: Determine the smallest size of all vertex covers of the graph.

We have already encountered this problem in Section 2.2.2, where we presented an effi-
cient algorithm to solve the problem on trees, and in Section 3.1.2, where we illustrated
the concept of table rows and partial solutions by means of a dynamic programming
algorithm on tree decompositions for Minimum Vertex Cover that proceeds like the
one presented in this section.

The edges of the input graph are declared via edge/2. The D-FLAT encoding in
Listing 4.4 implements an algorithm that computes the tables as illustrated in Fig-
ure 3.1.

Note that in a monolithic ASP encoding for Minimum Vertex Cover, we would
use a #minimize statement and thus leave it to the ASP solver to filter out suboptimal
solutions. However, it is a mistake to use such an optimization statement when writing
the D-FLAT encoding because then one would filter out rows whose local cost might
exceed that of others but which in the end would yield a better global solution.

The cost/1 predicate is recognized by D-FLAT and specifies the cost of the partial
solution. This number is computed by adding to the sum of costs of the preceding
rows (which are provided by D-FLAT by means of childCost/2) the cost which is due
to the contents of the current item set. However, since the current bag might overlap

4.2 CASE STUDIES 73

Listing 4.4 A D-FLAT encoding for Minimum Vertex Cover

1 { extend(R) : childRow(R,N) } 1 ← childNode(N).

% Only rows t h a t a g r e e on a l l common v e r t i c e s may be j o i n e d

← extend(A;B), childItem(A,X), childRow(B,N),

childBag(N,X), not childItem(B,X).

item(X) ← extend(R), childItem(R,X), current(X).

{ item(X) : introduced(X) }.

← edge(X,Y), current(X;Y), not item(X;Y).

% Compute p a r t o f c o s t due t o v e r t i c e s in t h e c u r r e n t bag

localCost(C) ← C = #count { item(_) }.

% Compute sum o f c o s t s o f e x t e n d e d c h i l d rows

sumCosts(S) ← S = #sum [extend(R) : childCost(R,C) = C].

% Which p a r t o f t h i s sum i s due t o c u r r e n t v e r t i c e s ?

inExtendedRow(V,R) ← current(V), extend(R), childItem(R,V).

numCounted(V,N) ← current(V),

N = #count { inExtendedRow(V,_) }.

% We must s u b t r a c t v e r t i c e s t h a t have been c o u n t e d m u l t i p l e t i m e s .

subtract(C) ← C = #sum [numCounted(_,N) = N].

cost(S-M+L) ← sumCosts(S), subtract(M), localCost(L).

74 CHAPTER 4. THE D-FLAT SYSTEM

with the bags of child nodes, a part of this cost might be counted multiple times and
must therefore be subtracted again according to the inclusion-exclusion principle.

It can be observed that a large part of this program deals with the arithmetic for
computing the cost – which is in fact not a difficult task but one for which ASP is
not particularly well suited. Beside the intricacy of specifying these computations in
ASP and making the code – which would be quite concise and easily understandable
if it were not for the arithmetic – less readable, the performance of the program also
suffers heavily because of this. It is clear that in the future we must provide facilities to
support the user in such cases that are conceptually very easy but expose weaknesses
of ASP.

In general though, especially optimization problems can be solved by the Decom-
pose, Guess & Check approach with great advantages compared to a monolithic ASP
program. The reason is that in optimization problems stopping after the first solution
has been found is not an option for traditional solvers, since yet undiscovered solu-
tions might have lower cost. Furthermore, traditional solvers (at least in the case of
clasp) require two runs for counting or enumerating all optimal solutions: The first
run only serves to determine the optimum cost, while the second starts from scratch
and outputs all models having that cost. D-FLAT, in contrast, only requires one run
at the end of which it immediately has all the information needed to determine the
optimum cost and materialize exactly the best solutions.

In [Bliem et al., 2012] we showed that a version of this algorithm for Minimum Ver-
tex Cover that works on semi-normalized tree decompositions quickly outperforms a
monolithic encoding. There, the arithmetic poses no problem because exchange nodes
have exactly one child and the join can be executed via a default implementation in
the D-FLAT core, which is, so far, not implemented for non-normalized tree decom-
positions. We plan to overcome the current disadvantages on non-normalized tree
decompositions in the future and expect that eventually, due to fewer nodes, a non-
normalized approach will be even more efficient than the implementation presented
in [Bliem et al., 2012].

4.2.5 Boolean Satisfiability

Until now, we have only considered problems where the input contains a graph that
we subsequently used for decomposition. The Decompose, Guess & Check approach is,
however, not limited to graph problems. It is only required to provide some graph
representation of the input to be able to decompose it. To illustrate this, we consider the
Sat problem.

Input: A propositional formula φ

Question: Is φ satisfiable?

4.2 CASE STUDIES 75

Listing 4.5 A D-FLAT encoding for Sat

% Make e x p l i c i t when an atom i s f a l s e o r a c l a u s e i s u n s a t i s f i e d

false(R,X) ← childRow(R,N), childBag(N,X),

not childItem(R,X).

1 { extend(R) : childRow(R,N) } 1 ← childNode(N).

% Only j o i n rows t h a t c o i n c i d e on common atoms

← extend(X;Y), atom(A), childItem(X,A), false(Y,A).

% Some c h i l d rows canno t be e x t e n d e d s i n c e t h e y a r e k i l l e d

← clause(C), removed(C), extend(R), false(R,C).

% True atoms and s a t i s f i e d c l a u s e s remain so u n l e s s removed

item(X) ← extend(R), childItem(R,X), current(X).

% Guess t r u t h v a l u e o f i n t r o d u c e d atoms

{ item(A) : atom(A) : introduced(A) }.

% Through t h e guess , c l a u s e s may become s a t i s f i e d

item(C) ← current(C;A), pos(C,A), item(A).

item(C) ← current(C;A), neg(C,A), not item(A).

For this problem, we can build a graph representation of an instance by constructing
the formula’s incidence graph. The incidence graph of a formula is the graph obtained
by considering the clauses and variables as vertices and connecting a clause vertex
with a variable vertex by an edge if and only if the respective variable occurs in the
respective clause. In order for D-FLAT to construct such a graph from the input set
of facts, the user is only required to state that, say, pos/2 and neg/2 indicate edges,
where pos(C, A) denotes that the atom A is contained positively in the clause C, and
neg(C, A) indicates that ¬A is contained in C. Additionally, we declare clauses via
clause/1 and atoms via atom/1.

A dynamic programming algorithm for the Sat model counting problem working
on tree decompositions of the incidence graph is given in [Samer and Szeider, 2010].
Listing 4.5 shows a possible D-FLAT encoding following that work’s general idea of
such an algorithm and generalizes it for non-normalized tree decompositions. It can
be observed that, like for most problems, parts of the D-FLAT encoding bear some
resemblance to a monolithic encoding (cf. Section 2.3.4). More precisely, a monolithic
encoding is often the basis for that part of a D-FLAT encoding that deals with calcu-
lating the solutions for subproblems.

It should be noted that we primarily assign truth values to propositional atoms in
the current bag like we would in a monolithic encoding. However, as a consequence
of this, we also assign true or false to each clause in the current bag depending on

76 CHAPTER 4. THE D-FLAT SYSTEM

whether or not it is satisfied by the partial interpretation represented by the table row.
We need this information on the status of a clause because, when a clause is removed,
all rows not satisfying this clause must be eliminated.

4.2.6 Disjunctive Answer Set Programming

In Section 2.3, we defined the heads of ASP rules to consist of exactly one atom. If
one allows rule heads to be arbitrary disjunctions of atoms, the complexity of de-
ciding answer set existence increases in the propositional case from NP-complete to
Σp

2-complete [Eiter and Gottlob, 1995]. This is because in the absence of disjunction,
the Gelfond-Lifschitz reduct always possesses at most one least model that can be
computed efficiently by means of a fixed-point operator, which is not possible if there
are disjunctions in the head.

In this section, we will present a D-FLAT encoding that solves the Disjunctive

Asp problem which we define as follows.

Input: A ground disjunctive logic program Π

Question: Does Π have an answer set?

Our encoding is influenced by [Jakl et al., 2009] where the authors present a dynamic
programming algorithm on tree decompositions that solves this problem efficiently for
bounded treewidth of the incidence graph. Directly implementing this algorithm with
D-FLAT leads, however, to a relatively complicated program. This can be explained
by the fact that, unsurprisingly, difficulties arise when using D-FLAT to implement an
algorithm that was probably designed with a different problem solving paradigm in
mind than Decompose, Guess & Check. That is is why our approach only relies on the
basic ideas of that work and uses a slightly modified procedure.

Rules and atoms of the input program are declared by rule/1 and atom/1, respec-
tively. pos(R, A) (resp. neg(R, A)) denotes that the atom A occurs in the positive (resp.
negative) body of the rule R, and head(R, A) indicates that A is in the head of R.

Listing 4.6 shows our encoding for Disjunctive Asp. It makes considerable use
of the ideas presented in our encodings for Minimum 3-Coloring (Section 4.2.3) and
Sat (Section 4.2.5) since Disjunctive Asp bears close resemblance to certain aspects
of these problems such as only permitting subset-minimal solutions (as Minimum

3-Coloring) or using the incidence graph and eliminating rows when they do not
satisfy removed rules (as for clauses in Sat).

4.2.7 Cyclic Ordering

In the case studies so far, we have always used a graph representation of the problem
instance. For some problems, however, it can also be desired to use a hypergraph

4.2 CASE STUDIES 77

Listing 4.6 A D-FLAT encoding for Disjunctive Asp

levels (2).

false(R,X) ← childRow(R,N), childBag(N,X),

not childItem(R,X).

false(S,X) ← childRow(R,N), childBag(N,X), sub(R,S),

not childItem(S,X).

% A c h i l d i t em s e t i s " k i l l e d " when a removed r u l e i s u n s a t i s f i e d by i t

killed(S) ← rule(X), removed(X), false(S,X).

1 { extend(0,R) : childRow(R,N) } 1 ← childNode(N).

1 { extend(1,S) : sub(R,S) } 1 ← extend(0,R).

← extend(L,X;Y), atom(A), childItem(X,A), false(Y,A).

% Some c h i l d i t em s e t s canno t be e x t e n d e d s i n c e t h e y a r e k i l l e d

← extend(_,S), killed(S).

item(L,X) ← extend(L,S), childItem(S,X), current(X).

{ item (0;1,A) : atom(A) : introduced(A) }.

item(0,R) ← current(R;A), head(R,A), item(0,A).

item(0,R) ← current(R;A), pos(R,A), not item(0,A).

item(0,R) ← current(R;A), neg(R,A), item(0,A).

item(1,R) ← current(R;A), head(R,A), item(1,A).

item(1,R) ← current(R;A), pos(R,A), not item(1,A).

% I f a n e g a t i v e body atom i s t r u e on t h e t o p l e v e l , t h e r u l e d i s a p p e a r s from

r e d u c t (w. r . t . t h e t o p l e v e l)

item(1,R) ← current(R;A), neg(R,A), item(0,A). % (s i c !)

← atom(A), item(1,A), not item(0,A).

item(1,smaller) ← extend(1,S), childItem(S,smaller).

item(1,smaller) ← atom(A), item(0,A), not item(1,A).

% Make s u r e t h a t e v e n t u a l l y on ly minimal mode l s o f t h e r e d u c t s u r v i v e

← root , extend(0,R), sub(R,S), childItem(S,smaller),

not killed(S).

78 CHAPTER 4. THE D-FLAT SYSTEM

Listing 4.7 A D-FLAT encoding for Cyclic Ordering

% Guess an o r d e r i n g o f t h e c u r r e n t bag e l e m e n t s

1 { item(map(V,1..N)) } 1 ← current(V),

N = #count { current(_) }.

← item(map(V0;V1,K)), V0 6= V1.

% Determine s a t i s f i e d t r i p l e s

lt(V0,V1) ← item(map(V0,K0)), item(map(V1,K1)), K0 < K1.

sat(A,B,C) ← order(A,B,C), lt(A,B), lt(B,C).

sat(A,B,C) ← order(A,B,C), lt(B,C), lt(C,A).

sat(A,B,C) ← order(A,B,C), lt(C,A), lt(A,B).

% A l l t r i p l e s t h a t c o v e r a l l c u r r e n t bag e l e m e n t s must be s a t i s f i e d

← order(A,B,C), current(A;B;C), not sat(A,B,C).

% Now c h e c k i f we can f i n d a c o m p a t i b l e p r e d e c e s s o r in e a c h c h i l d t a b l e

gtChild(R,V0,V1) ← childItem(R,map(V0,K0);map(V1,K1)),

current(V0;V1), K0 > K1.

incompatible(R) ← lt(V0,V1), gtChild(R,V0,V1).

match(N) ← childRow(R,N), not incompatible(R).

← childNode(N), not match(N).

representation. An example where we could proceed like this is the NP-complete
Cyclic Ordering problem [Galil and Megiddo, 1977] that is defined as follows.

Input: A set of vertices V and a set of triples T ⊆ V3

Question: Is there an ordering < on V such that for each (a, b, c) ∈ T it holds
that a < b < c or b < c < a or c < a < b?

One can naturally represent an instance as a hypergraph where one considers the ele-
ments of V as vertices and the triples in T as hyperedges. This ensures that the vertices
in each triple must appear together in at least one bag of any tree decomposition, and
each constraint can therefore be checked by the user’s program.

The D-FLAT program shown in Listing 4.7 decides Cyclic Ordering efficiently if
the treewidth of the hypergraph representation is bounded.

Note that this algorithm can only be employed for the decision problem since com-
bining a row with a predecessor does not make sense here. This is because each row
determines an ordering that only considers the current bag. Therefore, a row only tells
us something about the position of a bag element relative to the other bag elements,
but it does not tell us anything about the position relative to the other vertices. If we

4.2 CASE STUDIES 79

instead tried to assign each vertex a number from 1 up to the total number of ver-
tices, we would violate the principles of dynamic programming because subproblems
would then depend on the whole problem. Although the presented algorithm there-
fore does not allow us to combine the solutions of subproblems in order to obtain a
solution for the whole problem, it suffices as a decision procedure. This is mirrored
by the fact that the presented encoding does not make use of the extend/1 predicate.

We plan to further investigate this problem in the future. Possible research di-
rections include studying whether different representations of the instances (e.g., as
incidence graphs) or alternative approaches for an algorithm could lead to fixed-
parameter tractable counting or enumeration algorithms.

One possible approach would be to let the dynamic programming algorithm con-
struct directed acyclic graphs (DAGs) such that a directed edge from a to b specifies
that a precedes b in an ordering, and the DAGs are in this way consistent with the
triples.5 To finally count or enumerate solutions with such an approach, it would re-
main to find all topological orderings of the resulting DAGs, i.e., linearizations that are
consistent with the edges in the DAG. This problem is also known as the topological
sorting problem. Unfortunately, counting the number of topological orderings of a
DAG is #P-complete [Brightwell and Winkler, 1991]. Interestingly, however, an algo-
rithm that constructs DAGs that are consistent with the triples would make it possible
to solve the search problem of Cyclic Ordering efficiently for bounded treewidth, since,
given a DAG, finding some topological ordering is easy.

4.2.8 Hamiltonian Cycle

A Hamiltonian cycle in a (directed) graph is a (directed) cycle that encompasses all
vertices without going through a vertex twice. We now present a D-FLAT encoding
for the Hamiltonian Cycle problem which we define as follows.

Input: A directed graph G

Question: Is there a Hamiltonian cycle in G?

This problem is NP-complete [Karp, 1972] and fixed-parameter tractable when pa-
rameterized by the treewidth [Flum and Grohe, 2006]. What is especially interesting
in this respect is that there is no MSO sentence over the vocabulary {edge} that ex-
presses Hamiltonian Cycle, but the problem can be expressed over a vocabulary that
allows statements about the incidence graph, i.e., in a setting where the domain con-
sists not only of vertices but also of edges, and there are two unary predicates with
the intended meaning that the argument is a vertex resp. edge, as well as a binary
predicate saying that the first argument is an edge, the second one is a vertex, and this
vertex is an endpoint of that edge.

Our D-FLAT encoding in Listing 4.8 has the following properties.
5We would like to thank Stefan Szeider for hints in this direction.

80 CHAPTER 4. THE D-FLAT SYSTEM

Listing 4.8 A D-FLAT encoding for Hamiltonian Cycle

1 { extend(R) : childRow(R,N) } 1 ← childNode(N).

% Do not j o i n rows i f a v e r t e x would then have more than one s u c c e s s o r

← extend(R;S), childItem(R,path(X,Y)),

childItem(S,path(X,Z)), Y 6= Z.

% Paths a r e d i f f e r e n t i f t h e y l e a d through p r e v i o u s l y removed v e r t i c e s

← extend(R;S), R 6= S, childItem(R;S,path(X,Y)),

not childItem(R;S,to(X,Y)).

% A row i s i n v a l i d i f t h e s t a r t o r end v e r t e x o f a pa th i s removed

integrated(R,X) ← childItem(R,path(X,_);path(_,X)).

← extend(R), childRow(R,N), childBag(N,X), removed(X),

not integrated(R,X).

% R e t a i n i n f o r m a t i o n from c h i l d r e n and a c c o u n t f o r removed v e r t i c e s

item(to(X,Y)) ← extend(R), childItem(R,to(X,Y)),

current(X;Y).

reachesViaRemoved(R,X,X) ← childRow(R,N), childBag(N,X).

reachesViaRemoved(R,X,Z) ← reachesViaRemoved(R,X,Y),

removed(Y), childItem(R,path(Y,Z)).

item(path(X,Z)) ← extend(R), childItem(R,path(X,Y)),

reachesViaRemoved(R,Y,Z), current(X;Z).

% I f Y i s s u c c e s s o r o f X, i t must be so in e a c h c h i l d c o n t a i n i n g b o t h X and Y

← item(to(X,Y)), extend(R), childRow(R,N), childBag(N,X;Y),

not childItem(R,to(X,Y)).

% Connect e x i s t i n g p a t h s or i n t r o d u c e d v e r t i c e s

{ item(to(X,Y)) : edge(X,Y) : current(X;Y) }.

item(path(X,Y)) ← item(to(X,Y)).

% A g u e s s i s i n v a l i d i f a v e r t e x has more than one s u c c e s s o r o r p r e d e c e s s o r

← item(path(X,Y;Z)), Y 6= Z.

← item(path(X;Y,Z)), X 6= Y.

path(X,Y) ← item(path(X,Y)).

path(X,Z) ← path(X,Y), item(path(Y,Z)).

% D i s a l l o w c y c l e s not encompass ing a l l c u r r e n t v e r t i c e s

← path(X,X), current(Y), not path(X,Y).

4.2 CASE STUDIES 81

• A solution is a Hamiltonian cycle.

• A partial solution is a set of paths such that each vertex has at most one predeces-
sor and one successor.

• A solution extends a partial solution if each path in the partial solution is a sub-
path of the solution.

• In a table row we wish to represent the paths in a partial solution but must take
into account that some vertices may have been removed. We must only state
information regarding the current vertices and therefore distinguish between
two kinds of items in a table row in order to express that parts of a path have
been removed.

– If a vertex X has a successor Y and both vertices are in the current bag, then
we indicate this by the presence of an item to(X, Y).

– We say that a vertex X has a vertex Y as its “indirect successor” if there
is a path (X, r1, . . . , rn, Y) with n ≥ 0 such that all of r1, . . . , rn have been
removed. If X has Y as its indirect successor and both X and Y are in the
current bag, then an item path(X, Y) is contained in the table row.

It should be emphasized that a successor is also always an indirect successor. In
other words, the presence of an item to(X, Y) implies the presence of an item
path(X, Y).

• To compute the tables, we guess a combination of child rows such that for each
child table a row is selected. We then check if this combination is valid. For this,
the following conditions must hold.

– It must not be the case that in one preceding row a vertex X has an (indirect)
successor Y while in another preceding row X has a different (indirect)
successor.

– It must not be the case that two different preceding rows state that a vertex
X has a proper indirect successor Y (i.e., that X has an indirect successor Y
with at least one removed vertex in between) because this would indicate
that the vertices in between are different, due to the connectedness condi-
tion.

– No preceding row may describe a path that has a removed vertex as an
endpoint.

Subsequently, we extend these guessed preceding rows. For this, we retain all
items to(X, Y) and path(X, Y) if both X and Y are still in the current bag, and
for each pair of current bag elements X and Y, we store an item path(X, Y) if Y
can be reached from X (using the relation specified by the path/2 items) via only

82 CHAPTER 4. THE D-FLAT SYSTEM

removed vertices. Additionally, we perform a guess that non-deterministically
extends the paths by potentially appending introduced vertices or connecting
paths that have so far been separated. Finally, we check that no vertex ends up
having more than one predecessor or successor, and that there are no cycles that
exclude some vertex.

• This procedure makes sure that in the root only rows survive that can be ex-
tended to valid Hamiltonian cycles. Therefore, Hamiltonian Cycle can be de-
cided in linear time for graphs of bounded treewidth.

4.2.9 Evaluation of MSO Formulas

Recall the problem definition of the Mso Formula Evaluation problem for a fixed
MSO formula φ.

Input: A graph G

Question: Does G |= φ hold?

In Section 3.3.1 we have presented an algorithm that solves this problem efficiently
for graphs of bounded treewidth. We now show an implementation of this algorithm
with D-FLAT. For a detailed description of how the algorithm works, we refer to that
section. Listing 4.9 consists of auxiliary rules which are used in Listing 4.10 for the
root-specific part and in Listing 4.11 which represents the core of the encoding.

In Listing 4.11, first for each child node a root-to-leaf path in a characteristic is
guessed. Subsequent checks make sure that the guessed paths are compatible. Then
introduced vertices are non-deterministically assigned to variables. The section of
the encoding dealing with the sat/1 predicate is responsible for determining which
clauses become true under the current interpretation. Finally, the item sets are filled
accordingly. The code in Listing 4.10 only comes into effect in the root of the tree
decomposition and performs a labeling of the child characteristics followed by a check
that makes sure that only rows correspond to valid solutions survive.

It should be noted that this is a rather complex implementation that is more of
theoretical interest as a proof of concept. It shows that D-FLAT can indeed solve
any MSO-definable problem efficiently for graphs of bounded treewidth and is thus
a powerful realization of Decompose, Guess & Check. For many practical problems, the
ASP code is usually much simpler, as the previous sections have illustrated.

4.2.10 Quantified Boolean Formulas

As another example for a problem that is PSPACE-complete in general, we present an
encoding for Qsat (cf. Section 2.1.3) in Listing 4.12. The problem is defined as follows.

4.2 CASE STUDIES 83

Listing 4.9 Auxiliary rules for the Mso Formula Evaluation encoding

% A s s o c i a t e i t em s e t s wi th t h e i r r e s p e c t i v e l e v e l s and nodes

itemSet(0,R,N) ← childRow(R,N).

itemSet(L+1,S,N) ← itemSet(L,R,N), sub(R,S).

assigned(S,X) ← childItem(S,is(X,_)).

assigned(S,X) ← childItem(S,taken(X)).

% Determine which i n d i v i d u a l v a r i a b l e s a r e a s s i g n e d by a g u e s s e d pa th

assignedByGuess(N,X) ← extend(L,S), itemSet(L,S,N),

assigned(S,X).

isRemoved(S,X) ← childItem(S,is(X,V)), removed(V).

% Make i m p l i c i t n e g a t i v e i n f o r m a t i o n e x p l i c i t

-is(S,X,V) ← individualVar(X,L), itemSet(L,S,N),

childBag(N,V), not childItem(S,is(X,V)).

-in(S,V,X) ← setVar(X,L), itemSet(L,S,N), childBag(N,V),

not childItem(S,in(V,X)).

% R e t a i n i n f o r m a t i o n from p r e c e d i n g rows

sat(C) ← extend(L,S), childItem(S,sat(C)).

in(V,X) ← extend(L,S), childItem(S,in(V,X)), current(V).

is(X,V) ← extend(L,S), childItem(S,is(X,V)), current(V).

taken(X) ← extend(L,S), isRemoved(S,X).

taken(X) ← extend(L,S), childItem(S,taken(X)).

84 CHAPTER 4. THE D-FLAT SYSTEM

Listing 4.10 Root-specific part of the Mso Formula Evaluation encoding

% Determine which i t em s e t s a r e i n v a l i d , which a r e ∀−q u a n t i f i e d and which

a r e ∃−q u a n t i f i e d

invalidItemSet(S) ← root , individualVar(X,L),

itemSet(L,S,_), not assigned(S,X).

invalidItemSet(S) ← invalidItemSet(R), sub(R,S).

forallItemSet(S) ← root , childRow(S,_), sub(S,_),

not invalidItemSet(S).

forallItemSet(S) ← existsItemSet(R), sub(R,S), sub(S,_),

not invalidItemSet(S).

existsItemSet(S) ← forallItemSet(R), sub(R,S), sub(S,_),

not invalidItemSet(S).

% Determine which i t em s e t s a r e " bad "

bad(S) ← root , levels(L), itemSet(L-1,S,_),

not invalidItemSet(S), clause(C), not childItem(S,sat(C)).

bad(S) ← forallItemSet(S), sub(S,T), bad(T),

not invalidItemSet(T).

-bad(S) ← existsItemSet(S), sub(S,T), not bad(T),

not invalidItemSet(T).

bad(S) ← existsItemSet(S), not -bad(S).

% Only rows t h a t a r e not " bad " may s u r v i v e

← root , extend(0,R), bad(R).

% A l l i n d i v i d u a l v a r i a b l e s must be a s s i g n e d

← root , individualVar(X,_), not taken(X).

4.2 CASE STUDIES 85

Listing 4.11 A D-FLAT encoding for Mso Formula Evaluation to be used with the
rules from Listings 4.9 and 4.10

1 { extend(0,R) : childRow(R,N) } 1 ← childNode(N).

1 { extend(L+1,S) : sub(R,S) } 1 ← extend(L,R), sub(R,_).

← extend(L,S0;S1), childItem(S0,is(X,V)), -is(S1,X,V).

← extend(L,S0;S1), childItem(S0,in(V,X)), -in(S1,V,X).

← extend(L,S0;S1), childItem(S0,is(X,Y)),

childItem(S1,is(X,Z)), Y 6= Z.

← extend(L,S0;S1), childItem(S0,is(X,_)),

childItem(S1,taken(X)).

← extend(L,S0;S1), S0 6= S1, childItem(S0;S1,taken(X)).

% Account f o r i n t r o d u c e d v e r t i c e s

{ is(X,V) : individualVar(X,_) } ← introduced(V).

{ in(V,X) : setVar(X,_) } ← introduced(V).

← individualVar(X,_), is(X,V), is(X,W), V 6= W.

← individualVar(X,_), is(X,_), taken(X).

% Determine c l a u s e s t h a t become s a t i s i f e d

sat(C) ← pos(C,eq(X,Y)), is(X,V), is(Y,V).

sat(C) ← neg(C,eq(X,Y)), is(X,V), is(Y,W), V 6= W.

sat(C) ← neg(C,eq(X,Y)), extend(L,S), isRemoved(S,X),

itemSet(L,S,N), not assignedByGuess(N,Y).

sat(C) ← neg(C,eq(X,Y)), extend(L,S), isRemoved(S,Y),

itemSet(L,S,N), not assignedByGuess(N,X).

sat(C) ← pos(C,edge(X,Y)), is(X,V), is(Y,W), edge(V,W).

sat(C) ← neg(C,edge(X,Y)), is(X,V), is(Y,W), not edge(V,W).

sat(C) ← neg(C,edge(X,Y)), extend(L,S), isRemoved(S,X),

itemSet(L,S,N), not assignedByGuess(N,Y).

sat(C) ← neg(C,edge(X,Y)), extend(L,S), isRemoved(S,Y),

itemSet(L,S,N), not assignedByGuess(N,X).

sat(C) ← pos(C,in(X,Y)), is(X,V), in(V,Y).

sat(C) ← neg(C,in(X,Y)), is(X,V), not in(V,Y).

item(L-1,sat(C)) ← levels(L), sat(C).

item(L,is(X,V)) ← individualVar(X,L), is(X,V).

item(L,taken(X)) ← individualVar(X,L), taken(X).

item(L,in(V,X)) ← setVar(X,L), in(V,X).

86 CHAPTER 4. THE D-FLAT SYSTEM

Input: A formula of the form ∃X1∀X2∃X3 . . . QXi φ where Q is ∃ for odd i
and ∀ for even i, φ is a propositional formula and Xj (for 1 ≤ j ≤ i)
is a set of propositional variables

Question: Is there a truth assignment to the variables in X1 such that for any
truth assignment to the variables in X2 there is a truth assignment
to the variables in X3, and so on, such that φ is satisfied?

Although ASP only captures the class NP (cf. Section 2.3.3), we can solve PSPACE-
complete problems such as this due to the fact that here multiple calls to an ASP
solver are employed. Qsat is fixed-parameter tractable if both the treewidth and the
number of quantifier alternations are bounded [Pan and Vardi, 2006].

The algorithm shares a few ideas with the one for Mso Formula Evaluation in
Section 4.2.9. In particular, because both problems deal with alternating quantifiers,
the traversal of the characteristics to determine which rows must be eliminated is
similar. An important difference is that here the formula is given in the input, whereas
for Mso Formula Evaluation the formula was fixed.

Although in both cases the characteristics are trees where each levels corresponds
to a block of quantifiers, the contents of the characteristics are different. In the case
of Qsat, we decompose the incidence graph of the (matrix of the) input formula as
we did for the Sat problem (cf. Section 4.2.5) which is actually a special case of Qsat.
In the current algorithm, an item set at level i contains a subset of the propositional
atoms corresponding to the ith quantifier level that are present in the current bag. This
subset indicates which of these atoms are interpreted as true by the respective root-to-
leaf paths in the characteristic. We store in each leaf item set which of the clauses in the
current bag are satisfied by the interpretation represented by the respective root-to-leaf
path.

In contrast to the algorithm for Mso Formula Evaluation, here we can dispose of
rows not only at the root but we can detect that a row will not give rise to a solution
at any node. That is why in this algorithm we perform a labeling of the trees of item
sets from the child tables with “bad” (and, if appropriate, eliminate “bad” rows) not
only at the root but at each node.

We make use of a special item called “fail” which we put into a leaf item set of
a characteristic whenever a clause has been removed that was not satisfied by the
respective root-to-leaf path. This additional item is required because sometimes we
cannot eliminate a row from a child table only by looking at the labeling of its tree
of item sets. To make this clearer, consider, for instance, a situation where a row
originates from joining two child rows neither of which has its root labeled with “bad”,
as depicted in Figure 4.3. In this figure, labeling a node in the characteristic with “bad”
is indicated by that node having ragged borders, and the word “fail” indicates that the
special item is contained in the respective leaf item set. Observe that neither the row
in Figure 4.3a nor the row in Figure 4.3b can be labeled with “bad” at the root because

4.2 CASE STUDIES 87

Listing 4.12 A D-FLAT encoding for Qsat

itemSet(0,R,N) ← childRow(R,N).

itemSet(L+1,S,N) ← itemSet(L,R,N), sub(R,S).

false(S,A) ← atom(L,A), itemSet(L,S,N), childBag(N,A),

not childItem(S,A).

forallItemSet(S) ← childRow(S,_), sub(S,_).

forallItemSet(S) ← existsItemSet(R), sub(R,S), sub(S,_).

existsItemSet(S) ← forallItemSet(R), sub(R,S), sub(S,_).

% An i t em s e t i s " bad " e i t h e r b e c a u s e an i t em i n d i c a t e s t h i s...

bad(S) ← childItem(S,fail).

% ... or b e c a u s e i t becomes " bad " due t o c l a u s e r emova l

bad(S) ← clause(C), removed(C), levels(L),

itemSet(L-1,S,N), childBag(N,C), not childItem(S,C).

bad(S) ← forallItemSet(S), sub(S,T), bad(T).

-bad(S) ← existsItemSet(S), sub(S,T), not bad(T).

bad(S) ← existsItemSet(S), not -bad(S).

1 { extend(L-1,S) : itemSet(L-1,S,N) } 1 ← childNode(N),

levels(L).

extend(L-1,R) ← extend(L,S), sub(R,S).

% Do not e x t e n d rows t h a t a r e " bad "

← extend(0,S), bad(S).

% Only j o i n r o o t−to− l e a f p a t h s t h a t c o i n c i d e on common atoms

← extend(L,X;Y), atom(L,A), childItem(X,A), false(Y,A).

% R e t a i n t r u e atoms and s a t i s f i e d c l a u s e s u n l e s s t h e y a r e removed , a s w e l l

a s t h e i t em i n d i c a t i n g t h e i t em s e t i s " bad "

item(L,X) ← extend(L,S), childItem(S,X), not removed(X).

% Add t h e i t em " f a i l " t o t h e l e a f i t em s e t i f n e c e s s a r y

item(L,fail) ← levels(L+1), extend(L,S), bad(S).

% Guess t r u t h v a l u e f o r i n t r o d u c e d atoms

{ item(L,A) : atom(L,A) : introduced(A) }.

% Add c l a u s e s t h a t become s a t i s f i e d t o t h e l e a f i t em s e t

item(L-1,C) ← levels(L), pos(C,A), atom(LA,A),

current(C;A), item(LA,A).

item(L-1,C) ← levels(L), neg(C,A), atom(LA,A),

current(C;A), not item(LA,A).

88 CHAPTER 4. THE D-FLAT SYSTEM

x 7→ t

y 7→ f

z 7→ f
c0 7→ t

z 7→ t
c0 7→ t

y 7→ t

z 7→ f
c0 7→ f

z 7→ t
c0 7→ t

(a) Row where only the third leaf is
“bad”

x 7→ t

y 7→ f

z 7→ f
c1 7→ t

z 7→ t
c1 7→ t

y 7→ t

z 7→ f
c1 7→ t

z 7→ t
c1 7→ f

(b) Row where only the fourth leaf is
“bad”

x 7→ t

y 7→ f

z 7→ f z 7→ t

y 7→ t

z 7→ f
fail

z 7→ t
fail

(c) The row resulting from joining the
rows from (a) and (b)

Figure 4.3 Rows from two different child tables and the row resulting from joining
them to illustrate why the “fail” item is required

4.3 PRACTICAL PERFORMANCE 89

in either case there is an assignment to x (namely “true”) such that for all assignments
to y there is an assignment to z such that all clauses in the current bag are satisfied.
When guessing a root-to-leaf path for each of these characteristics, we must not make
the mistake of eliminating guesses that contain some “bad” item set for if we did that
we would lose the entire subtree from Figure 4.3c that is rooted at {y 7→ t}. If we
were then to label the resulting tree (which would only have two root-to-leaf paths),
we would wrongly conclude that the root is not to be labeled with “bad” because there
is an assignment to x (namely “true”) such that for all assignments to y (namely just
“false” since the other possibility has been lost) there is an assignment to z satisfying
all clauses so far. This is why we require the special item “fail” that allows us to obtain
the correct characteristic as depicted in Figure 4.3c and subsequently correctly classify
the row as invalid.

4.3 Practical Performance

From a theoretical point of view, as has been shown in Section 4.2.9, D-FLAT meets all
the prerequisites for being successfully employed in many practical cases where the
treewidth is small. Of course, it remains to investigate its practical performance.

In [Bliem et al., 2012] we studied the performance of a prototype of D-FLAT for
algorithms on (semi-)normalized tree decompositions. Note that the current version
of D-FLAT still supports (semi-)normalization, so these results still apply in principle
although the encodings used in that paper are different to the ones presented here.
We briefly give an overview of these results.

Traditional ASP solvers employ clever heuristics to quickly either find some model
or detect unsatisfiability, thereby being able to solve the decision variant of problems
particularly well. In contrast, the dynamic programming approach of D-FLAT cur-
rently always calculates complete tables, whatever the problem variant may be – it
is only in the final materialization stage that solutions are assembled differently, de-
pending on the problem type. This motivates studying ways to improve D-FLAT’s
performance in such cases in the future.

3-Col and Sat are prime examples of problems where traditional ASP solvers are
very successful in solving the decision variant efficiently. However, when it no longer
suffices to merely find some solution (e.g., when dealing with counting or enumera-
tion problems), the decomposition exploited by D-FLAT pays off for small treewidth,
especially when there is a great number of solutions since traditional solvers have to
explore huge parts of the exponential search space.

Where D-FLAT often excelled were counting problems. For instance for Sat, it
could solve many instances in a matter of seconds, while the monolithic program
ran out of time soon. Standard ASP-solvers do not provide a dedicated functionality
for counting and thus have to implicitly enumerate all answer sets which leads to an
explosion of runtime with increasing instance size, whereas it could be observed that

90 CHAPTER 4. THE D-FLAT SYSTEM

D-FLAT’s runtime remained almost unaffected on average.
Although most of the time traditional ASP-solvers perform very well on deci-

sion problems, for some problems they have more difficulties, in particular when the
grounding becomes huge. Our investigations showed that for the Cyclic Ordering

problem, D-FLAT often outperformed the monolithic program, but it could also be
observed that D-FLAT’s running time is heavily dependent on the structure of the
constructed tree decomposition.

Optimization problems like Minimum Vertex Cover proved to be a strong suit of
D-FLAT. In general, when dealing with optimization problems, stopping after the first
solution has been found is not an option for traditional solvers, since yet undiscovered
solutions might have lower cost. Another advantage of D-FLAT is that traditional
solvers (at least in the case of clasp) require two runs for counting or enumerating all
optimal solutions: The first run only serves to determine the optimum cost, while the
second starts from scratch and outputs all models having that cost. D-FLAT, in con-
trast, only requires one run at the end of which it immediately has all the information
needed to determine the optimum cost and materialize exactly the best solutions.

We can conclude that D-FLAT is particularly successful for optimization, counting
and enumeration problems (provided the treewidth is small), especially when the
number of solutions or the size of the monolithic grounding explodes.

As we have mentioned, the results in [Bliem et al., 2012] only apply to (semi-)nor-
malized tree decompositions. Since then, we have generalized our approach to also
support non-normalized decompositions. However, this more general implementation
currently lacks facilities like the default implementations for join nodes that we used
in that work. We plan to provide default implementations also for the non-normalized
case in the future. With such optimizations, we anticipate that D-FLAT will be more ef-
ficient on non-normalized tree decompositions than on semi-normalized ones. There-
fore, we expect to further improve our results from that paper.

Chapter 5

Conclusion

This chapter concludes the thesis by reviewing and discussing the obtained results in
Section 5.1, where we also compare Decompose, Guess & Check with related approaches
and list possible future work. Finally, we summarize the most significant contributions
in Section 5.2.

5.1 Discussion

This section is devoted to a discussion of the obtained results. First, in Section 5.1.1,
we critically review the achievements. Section 5.1.2 then compares Decompose, Guess &
Check with related approaches. In Section 5.1.3, we present open questions and tasks
that might be worth investigating in the future.

5.1.1 Reflection

In this section, we reflect on the most notable theoretical and practical results of the
current work.

General approach. In this work, we have investigated a declarative problem solving
technique which we call Decompose, Guess & Check. It combines structural decompo-
sition methods with the Guess & Check paradigm. In particular, problem instances
are decomposed by constructing tree decompositions, and the problems are solved
via dynamic programming on this data structure. The concrete details of such dy-
namic programming algorithms are specified using ASP. The natural expression of
non-deterministic choices constitutes a key feature of ASP and it is especially this
Guess & Check approach that makes ASP well suited for many hard problems.

We have seen in the presented examples that the benefits of ASP that make it an
excellent choice for modeling many hard problems often carry over to a setting where

91

92 CHAPTER 5. CONCLUSION

we employ it not only for specifying programs for solving these problems in a tradi-
tional sense (like in a monolithic problem solving setting) but where we additionally
combine partial solutions following the concept of dynamic programming on tree de-
compositions.

Compared with corresponding implementations in imperative programming lan-
guages, ASP usually leads to more succinct and maintainable code thanks to its declar-
ative nature. Our presented software framework facilitates development of such algo-
rithms and makes it possible to perform rapid prototyping of algorithms for decom-
posed problems. Aside from the advantages which result from our use of ASP for the
problem-specific parts, our framework aids the user by taking care of tasks that form
the basis of algorithms for decomposed problems. Until now, technical obstacles such
as the need for much code unrelated to the actual problem stood in the way of quickly
implementing an idea for such an algorithm.

Normalizations of tree decompositions. In the early stages of the current work, we
considered only algorithms on (semi-)normalized tree decompositions where nodes
have at most two children and the bags of join nodes and its two children are always
equal. We therefore distinguished two separate programs that had to be supplied
by the user; which one was executed depended on the current node type. This first
approach resulted in the publication [Bliem et al., 2012] where we were already able
to deliver some promising experimental results.

One of the motivations why we further generalized our method is that the division
of node types can be criticized for being artificial, and having only a single ASP pro-
gram for all nodes would make the approach thus appear more natural. Additionally,
this will eventually lead to better performance – although, from a theoretical point of
view, normalizations do no harm since the decompositions only grow linearly, having
to process less nodes of course usually means less runtime in practice.

While it can be argued that the approach is indeed more elegant on non-normalized
tree decompositions, the practical performance is currently worse than on (semi-)nor-
malized ones. This is mostly because in the more restricted case we can often employ
a default implementation for join nodes that is written in C++ and is much more effi-
cient. Another complication arises when dealing with optimization problems on non-
normalized tree decompositions: The arithmetic required for determining the cost of
partial solutions is more involved in this case and constitutes a task which exposes a
weakness of ASP.

However, we believe that these issues can be overcome by providing default imple-
mentations for basic behavior of joins and cost computations. We suspect that in the
end the non-normalized approach will be faster because joining, introducing and re-
moving vertices at the same time should pose no problem for ASP and thus we could
benefit from fewer nodes in the decomposition. Our approach therefore already offers
promising performance if (semi-)normalized tree decompositions are employed, and

5.1 DISCUSSION 93

we expect that the non-normalized case will allow us to eventually even improve these
results.

Problem types. Most of the problems we considered admit relatively straightforward
algorithms that make it possible to enumerate solutions and thus also solve the count-
ing and decision variants. We have, however, also encountered a problem (Cyclic

Ordering) where we came up with an algorithm for just the decision variant. It re-
mains to study whether this is because counting and enumeration for this problem
are hard even for bounded treewidth or whether efficient algorithms for these variants
can be found. It is conceivable that choosing a different graph representation of the
instances might help. This would illustrate the importance of thinking carefully about
how to represent instances as graphs, as there are usually multiple ways.

Table rows. It has turned out that choosing (trees of) item sets as the contents of the
tables in the dynamic programming algorithms makes the Decompose, Guess & Check
approach very flexible. In the early stages of the current work, we used a more re-
strictive structure for the tables where a row assigns some value to each current bag
element. Owing to our generalization to arbitrary trees of item sets, it is now possi-
ble to formulate some problems more naturally (e.g., Hamiltonian Cycle) because
sometimes we would like to store information about, say, edges rather than just ver-
tices in a table row. Most importantly, however, algorithms such as Mso Formula

Evaluation probably would not have been possible in a straightforward way if table
rows were only allowed to encode mappings to the current vertices.

Applicability. A core contribution of this work is the result that Mso Formula Eval-
uation can be solved efficiently with Decompose, Guess & Check for graphs of bounded
treewidth. We have implemented an algorithm for this problem in our framework and
thus showed that our approach is able to solve any MSO-definable problem.

In fact, a correctness proof of our algorithm for Mso Formula Evaluation, for
which we have given a sketch, amounts to an alternative proof of Courcelle’s theorem
[Courcelle, 1990]. What makes our approach interesting in this respect is that, in
contrast to traditional proofs, it does not require relatively complex concepts such
as tree automata or Ehrenfeucht-Fraïssé games. Furthermore, we anticipate that our
alternative approach is well suited for obtaining extensions of Courcelle’s theorem,
for instance like the well-known extension for optimization problems [Arnborg et al.,
1991].

In addition to showing that Decompose, Guess & Check is applicable to all MSO-
definable problems, we have presented an algorithm for a problem (List Coloring)
that is provably not fixed-parameter tractable w.r.t. treewidth. We expect that decom-
position often also pays off in such cases.

94 CHAPTER 5. CONCLUSION

We suspect that Decompose, Guess & Check can also offer advantages compared
to monolithic problem solving when facing problems that are intractable even for
bounded treewidth. Exactly how useful it is in such cases remains an open question.

5.1.2 Related Work

Quite some effort has been put into the development of tools that solve MSO-definable
problems or facilitate dynamic programming. We are, however, not aware of any tool
that combines the key features of our approach, namely performing dynamic pro-
gramming on an automatically-generated tree decomposition via an ad-hoc encoding
that follows the Guess & Check paradigm.

One category of related tools is the one of general MSO solvers. Such programs
are given just the input graph and an MSO specification of the problem. Usually,
they then transform the formula into an automaton. For instance, this can be done
by constructing a tree automaton as in the proof of Courcelle’s theorem. The main
problem of such direct implementations, however, is that memory problems occur in
practice because a power set construction is required that leads to a state explosion
[Gottlob et al., 2010]. Highly optimized solvers like MONA [Klarlund et al., 2002]
try to construct automata in a clever way. There are other general MSO solvers that
do not use automata, like Sequoia which also uses dynamic programming on tree
decompositions for evaluating formulas.

Another category are tools that allow the user to provide specific algorithms that
follow dynamic programming on tree decompositions, like SHARP [Morak, 2011]
which also automatically constructs a tree decomposition for an input graph. This cat-
egory also subsumes our approach. What sets it apart from MSO solvers is that these
are only concerned with the problem of evaluating MSO formulas, whereas we offer
a means to implement ad-hoc dynamic programming algorithms. If fixed-parameter
tractability w.r.t. treewidth has been established for a problem by formulating it in
MSO, such solvers therefore immediately offer an algorithm for that problem and
therefore require very little work from the user. Nevertheless, MSO solvers are igno-
rant of properties of the particular problem at hand, so, by nature, none of these tools
can exploit properties of the problem like a tailored algorithm can. We expect that our
approach is therefore usually more efficient because the programmer of an algorithm
is aware of the properties of the specific problem.

Finally, languages like Datalog or Dyna can be used to make the required dynamic
programming less painful. There have also been developments within the Prolog
community like tabled logic programming [Guo and Gupta, 2008] or B-Prolog [Zhou,
2012] which use memoization.

We will now briefly sketch some of these related approaches in more detail.

5.1 DISCUSSION 95

SHARP. The SHARP framework1 [Morak, 2011] is a C++ library that allows the spec-
ification of particular dynamic programming algorithms on tree decompositions which
are automatically computed by heuristic methods. The most notable difference to our
approach is that the SHARP user has to provide the algorithm in C++, which is of-
ten more cumbersome than in ASP. D-FLAT is built on top of a modified version of
SHARP. Modifications were made due to the following properties of the current ver-
sion of SHARP:

• SHARP requires a solution to be a subset of the vertices. D-FLAT generalizes
this such that a solution can now be a set of arbitrary items.

• SHARP only allows for decision, counting and enumeration problems but not
for, e.g., optimization problems as implemented in D-FLAT.

• SHARP does not offer dedicated facilities for counting the number of solutions.
Rather, it can only count the number of solutions if extension pointers are given.

• When enumerating solutions, SHARP materializes all solutions simultaneously
which causes an explosion of memory. D-FLAT uses a lazy evaluation technique
eliminating this issue.

Sequoia. Sequoia [Kneis et al., 2011, Langer et al., 2012] is a general tool that solves
decision, optimization and search problems expressible in MSO, given an MSO for-
mula describing the problem and a graph for which this formula is to be evaluated. It
does so by following a game-theoretic approach by means of a model checking game
where two players – the verifier and the falsifier – take turns. The verifier tries to show
the formula to hold on the graph, whereas the falsifier tries to show the opposite.

Solving the MSO model checking problem is PSPACE-complete in general but
fixed-parameter tractable w.r.t. treewidth when the formula is fixed, according to
Courcelle’s theorem. The motivation behind Sequoia is to exploit this fixed-parameter
tractability while avoiding the problems of directly constructing tree automata. Se-
quoia therefore performs dynamic programming on tree decompositions to evaluate
formulas – similar to our approach in Section 3.3.1.

Originally, Sequoia followed a “monolithic” algorithm to evaluate MSO formulas
recursively by checking all possible assignments to the variables. This algorithm was
then refined to use dynamic programming on tree decompositions and now features
linear runtime for bounded treewidth. Experimental results were promising for some
practical examples.

Monadic Datalog. Datalog is a language prominent in the field of deductive data-
bases that, very roughly, corresponds to ASP with very restricted use of negation.2

1http://www.dbai.tuwien.ac.at/research/project/sharp/
2To be precise, Datalog only allows for stratified negation which we will not define here, however.

http://www.dbai.tuwien.ac.at/research/project/sharp/

96 CHAPTER 5. CONCLUSION

Hence, Datalog programs always have exactly one model. Monadic Datalog is a frag-
ment of Datalog where all predicates occurring in rule heads are unary.

[Gottlob et al., 2010] show that each MSO-definable graph property can also be
expressed as a program in (a special fragment of) Monadic Datalog – with the graph
and a description of a normalized tree decomposition as input – that can be evaluated
in linear time, in particular because an explosion of the grounding can be avoided.

The result the authors obtain is thus similar to Courcelle’s theorem, except that
Datalog is used instead of MSO as a specification language. The main advantage
of Datalog over MSO is that, due to being declarative and possessing an operational
semantics, not only the intuition behind the specified problems but also behind the dy-
namic programming algorithms is captured; thus Datalog combines benefits of MSO
and tree automata (which are traditionally used for turning MSO formalizations into
algorithms) while avoiding their respective weaknesses.

Despite these appealing results, the approach also has its downsides. The pro-
posed Datalog programs usually make heavy use of set arithmetic which is not part
of plain Datalog, and therefore they must be transformed into relatively cumbersome
programs where set operations are instantiated by blowing up the arity of the pred-
icates which is possible due to the bound on the treewidth. This “trick” thus leads
to monstrous predicates as, given a bound on the treewidth of w, each set variable
is replaced by w + 1 individual variables. This drawback could, however, at least be
alleviated by providing built-in implementations of set arithmetic (e.g., in an imper-
ative language) that are exposed to the Datalog program by special predicates. The
ASP system DLV-Complex [Calimeri et al., 2009], for instance, provides such built-in
predicates for set arithmetic.

Our approach is therefore arguably more elegant. Many of the advantages that
apply for the Datalog approach also apply for ours because of the similarity of ASP
and Datalog. Using ASP, however, gives the additional advantage of reflecting the
intuition behind the problem even better because we can, for instance, use Guess &
Check which is not possible in Datalog.

Note that one could also use ASP instead of Datalog and, additionally to the input
graph, simply feed facts describing the tree decomposition to the user’s program. This
would make a tool like D-FLAT pointless to a certain extent. We initially performed
experiments with such a method. To our surprise, it was very inefficient which is
presumably because the ASP solver had problems with recognizing the bottom-up
data flow of dynamic programming algorithms.

Dyna. Dyna [Eisner and Filardo, 2010] is a declarative programming language with
roots in the field of natural language processing [Eisner et al., 2005,Eisner et al., 2004].
Originally, it was designed to allow for abstract specifications of dynamic program-
ming algorithms in the context of statistical artificial intelligence, machine learning
and natural language processing, with typical applications like parsing probabilistic

5.1 DISCUSSION 97

context-free grammars or calculating the edit distance between strings. It was later
generalized and is now a Turing-complete programming language suited for a wide
range of problems. In particular, the authors’ goal is to provide a general-purpose
weighted logic programming language that is well-suited for statistical artificial intel-
ligence [Eisner and Filardo, 2010].

As the term “weighted logic programming language” indicates, Dyna’s syntax is
inspired by Prolog, but instead of Horn clauses it uses “Horn equations”. That is, the
user specifies a system of equations in a syntax reminding of Prolog, where the terms
that constitute these equations are annotated with values – these are often weights
which are typically used for, e.g., building parsers for probabilistic context-free gram-
mars, but can even be arbitrary ground terms. This sets Dyna apart from traditional
logic programming languages where atoms, like in Datalog or ASP, only carry truth
values and are not associated with arbitrary structures.

Since Dyna is Turing-complete, termination is not guaranteed. If the program
terminates, however, the computed values satisfy the system of equations given by the
user.

Unlike Prolog, Dyna is not confined to backward chaining, i.e., starting with the
goal that is to be proved and searching for conditions that can be fulfilled to infer
that goal. Rather, the evaluation can also occur “bottom-up”, i.e., starting with the
available data and making inferences via forward-chaining. Which particular strategy
is employed is not determined in advance. The declarative specification is independent
of the choice of evaluation strategy. Thus, Dyna can be used for classical “bottom-up”
dynamic programming techniques and “top-down” memoization.

Although Dyna can be employed for dynamic programming, it follows a different
approach than Decompose, Guess & Check (albeit certainly being able to also construct
tree decompositions and working on them in principle, due to Turing-completeness).
Notably, it does not relieve the user of parsing the input and constructing a tree decom-
position automatically. Further, for the actual computations of the dynamic program-
ming algorithm, it does not use ASP which, as we have seen, often allows for a natural
and succinct specification of many problems. Although being a general-purpose tool,
Dyna is therefore not particularly geared to the Decompose, Guess & Check approach.

Situating Decompose, Guess & Check among related approaches. This section has
shown that although many related approaches exist, none of them combines dynamic
programming on tree decompositions with the Guess & Check paradigm of ASP. It can
therefore be concluded that Decompose, Guess & Check represents a novel contribution
in the field of declarative problem solving.

98 CHAPTER 5. CONCLUSION

5.1.3 Future Work

There still are various open questions that we would like to pursue in the future. Here
we list interesting possible research directions.

From a theoretical point of view, we would like to investigate the usefulness of
Decompose, Guess & Check for problems that are intractable for bounded treewidth. We
suspect that even in such cases some improvements can be made such that instances
could be solved that are out of reach for current systems.

An interesting prospect is to investigate whether solving (certain classes of) non-
ground ASP programs can be done via Decompose, Guess & Check. If we can find
an algorithm for this, then an automatic translation procedure from a program for a
monolithic setting to a dynamic programming algorithm working on tree decomposi-
tions is possible.

Regarding the implementation, the D-FLAT system should be decoupled from the
SHARP framework. D-FLAT started as an application of SHARP but due to the desired
generality of Decompose, Guess & Check modifications had to be made such that now
we are using merely a stripped-down version of SHARP. The remaining parts – the
code for constructing tree decompositions and for tree traversal – should be integrated
into D-FLAT.

In order to eliminate the performance issues that are due to expensive join oper-
ations and arithmetic when computing solution costs, we would like to investigate
options to improve this situation. For instance, default implementations for such tasks
could be provided that fit many problems.

Since it is often cumbersome to debug dynamic programming algorithms, we
would like to provide better support for this. Recently, a dedicated language was
proposed in [Vos et al., 2012] for annotating ASP programs to allow for, e.g., specify-
ing assertions and performing automated unit testing.

When materializing solutions, currently only the top level of multi-level charac-
teristics is taken into account. For some problems it might be more reasonable to
materialize whole trees of item sets.

D-FLAT currently computes all the tables bottom-up in their entirety, even though
often if would suffice to only compute some of the rows until a solution can be found.
For optimization problems, we expect that sometimes table rows that will not lead to
optimal solutions can be identified early when we already know that there is a better
solution. We would therefore like to integrate facilities that allow for a lazy evaluation
of the tables. This would enable us to solve problems much more efficiently when
they are concerned with merely deciding existence of (or searching for) any solution.
We plan to study how especially reactive ASP solving [Gebser et al., 2011a] might allow
for such a lazy evaluation.

Because decomposing a problem often leads to independent subproblems, there is
obviously potential for improvements by exploiting today’s multi-core architectures.
Also, there has recently been progress in parallelizing even single calls to an ASP solver

5.2 SUMMARY 99

[Gebser et al., 2012]. The current version of D-FLAT lacks parallelization facilities,
however. We would like to investigate how it can best be augmented with proper
parallelization features.

Finally, the system should be extensively benchmarked to determine where the
most potential for optimization lies.

5.2 Summary

We have presented a method for declarative problem solving called Decompose, Guess
& Check. Its primary feature is that instances are decomposed by means of tree de-
compositions which form the basis of subsequently solving the problems following
a dynamic programming approach using ASP for the problem-specific computations.
This way, the Guess & Check paradigm – which is one of the reasons ASP is an attrac-
tive language for specifying algorithms for many hard problems – is augmented by a
decomposition step.

Using ASP as a language to specify the dynamic programming algorithms, Decom-
pose, Guess & Check benefits from efficient solvers as well as from a rich language that
allows for succinct, readable and maintainable code.

The analysis of our approach has shown it to be powerful enough to efficiently
solve all MSO-definable problems on graphs of bounded treewidth. Furthermore, we
have presented a software framework called D-FLAT that follows this method and
makes rapid prototyping of dynamic programming algorithms working on tree de-
compositions possible. We are not aware of any previously existing systems that com-
bine the concept of decomposition with the power and convenience of a declarative
language like ASP. Hence, this work paves the way for making dynamic programming
on tree decompositions more accessible, which is useful for educational purposes and
research.

Decompose, Guess & Check is, however, not only attractive from a theoretical point of
view. Following our method, it is possible to solve many NP-hard problems in linear
time when the treewidth of graph representations of the input is bounded. Because
instances in practical applications often exhibit small treewidth, our approach also has
practical relevance. For many problems that are hard in general, Decompose, Guess &
Check is thus a promising candidate for solving large instances that have so far been
out of reach for existing ASP systems.

Bibliography

[Agarwal et al., 2011] Agarwal, R., Godfrey, P. B., and Har-Peled, S. (2011). Approx-
imate distance queries and compact routing in sparse graphs. In Proc. INFOCOM,
pages 1754–1762. IEEE.

[Alviano et al., 2011] Alviano, M., Calimeri, F., Faber, W., Ianni, G., and Leone, N.
(2011). Function symbols in ASP: Overview and perspectives. In Nonmonotonic
Reasoning – Essays Celebrating Its 30th Anniversary, pages 1–24. College Publications,
London.

[Arnborg et al., 1987] Arnborg, S., Corneil, D. G., and Proskurowski, A. (1987). Com-
plexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods,
8(2):277–284.

[Arnborg et al., 1991] Arnborg, S., Lagergren, J., and Seese, D. (1991). Easy problems
for tree-decomposable graphs. J. Algorithms, 12(2):308–340.

[Aschinger et al., 2011] Aschinger, M., Drescher, C., Gottlob, G., Jeavons, P., and
Thorstensen, E. (2011). Structural decomposition methods and what they are good
for. In Proc. STACS, volume 9 of LIPIcs, pages 12–28. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

[Baral, 2003] Baral, C. (2003). Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. Cambridge University Press.

[Bliem et al., 2012] Bliem, B., Morak, M., and Woltran, S. (2012). D-FLAT: Declarative
problem solving using tree decompositions and answer-set programming. TPLP,
12(4-5):445–464.

[Bodlaender, 1993] Bodlaender, H. L. (1993). A tourist guide through treewidth. Acta
Cybern., 11(1-2):1–22.

[Bodlaender, 1996] Bodlaender, H. L. (1996). A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM J. Comput., 25(6):1305–1317.

[Bodlaender, 1997] Bodlaender, H. L. (1997). Treewidth: Algorithmic techniques and
results. In Proc. MFCS, volume 1295 of LNCS, pages 19–36. Springer.

101

102 BIBLIOGRAPHY

[Bodlaender, 2005] Bodlaender, H. L. (2005). Discovering treewidth. In Proc. SOFSEM,
volume 3381 of LNCS, pages 1–16. Springer.

[Bodlaender and Koster, 2010] Bodlaender, H. L. and Koster, A. M. C. A. (2010). Tree-
width computations I. Upper bounds. Inf. Comput., 208(3):259–275.

[Brewka et al., 2011] Brewka, G., Eiter, T., and Truszczyński, M. (2011). Answer set
programming at a glance. Commun. ACM, 54(12):92–103.

[Brightwell and Winkler, 1991] Brightwell, G. and Winkler, P. (1991). Counting linear
extensions is #P-complete. In Proc. STOC, pages 175–181. ACM.

[Calimeri et al., 2008] Calimeri, F., Cozza, S., Ianni, G., and Leone, N. (2008). Com-
putable functions in ASP: Theory and implementation. In Proc. ICLP, volume 5366

of LNCS, pages 407–424. Springer.

[Calimeri et al., 2009] Calimeri, F., Cozza, S., Ianni, G., and Leone, N. (2009). An ASP
system with functions, lists, and sets. In Proc. LPNMR, volume 5753 of LNCS, pages
483–489. Springer.

[Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009).
Introduction to Algorithms. The MIT Press, 3rd edition.

[Courcelle, 1990] Courcelle, B. (1990). The monadic second-order logic of graphs. I.
Recognizable sets of finite graphs. Inf. Comput., 85(1):12–75.

[Dantsin et al., 2001] Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A. (2001). Com-
plexity and expressive power of logic programming. ACM Comput. Surv., 33(3):374–
425.

[Dasgupta et al., 2006] Dasgupta, S., Papadimitriou, C., and Vazirani, U. (2006). Algo-
rithms. McGraw-Hill Higher Education.

[Denecker et al., 2009] Denecker, M., Vennekens, J., Bond, S., Gebser, M., and
Truszczyński, M. (2009). The second answer set programming competition. In
Proc. LPNMR, volume 5753 of LNCS, pages 637–654. Springer.

[Dermaku et al., 2008] Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B. J., Musliu,
N., and Samer, M. (2008). Heuristic methods for hypertree decomposition. In Proc.
MICAI, volume 5317 of LNCS, pages 1–11. Springer.

[Dorn and Telle, 2009] Dorn, F. and Telle, J. A. (2009). Semi-nice tree-decompositions:
The best of branchwidth, treewidth and pathwidth with one algorithm. Discrete
Applied Mathematics, 157(12):2737–2746.

[Downey and Fellows, 1999] Downey, R. G. and Fellows, M. R. (1999). Parameterized
Complexity. Monographs in Computer Science. Springer.

BIBLIOGRAPHY 103

[Eisner and Filardo, 2010] Eisner, J. and Filardo, N. W. (2010). Dyna: Extending dat-
alog for modern AI. In Proc. Datalog 2.0, volume 6702 of LNCS, pages 181–220.
Springer.

[Eisner et al., 2004] Eisner, J., Goldlust, E., and Smith, N. A. (2004). Dyna: A declar-
ative language for implementing dynamic programs. In Proc. ACL (companion vol-
ume), pages 218–221. The Association for Computer Linguistics.

[Eisner et al., 2005] Eisner, J., Goldlust, E., and Smith, N. A. (2005). Compiling
comp ling: Weighted dynamic programming and the Dyna language. In Proc.
HLT/EMNLP. The Association for Computational Linguistics.

[Eiter and Gottlob, 1993] Eiter, T. and Gottlob, G. (1993). Propositional circumscrip-
tion and extended closed world reasoning are ΠP

2 -complete. Theor. Comput. Sci.,
114(2):231–245.

[Eiter and Gottlob, 1995] Eiter, T. and Gottlob, G. (1995). On the computational cost
of disjunctive logic programming: Propositional case. Ann. Math. Artif. Intell., 15(3-
4):289–323.

[Eiter et al., 1997] Eiter, T., Gottlob, G., and Mannila, H. (1997). Disjunctive datalog.
ACM Trans. Database Syst., 22(3):364–418.

[Flum and Grohe, 2006] Flum, J. and Grohe, M. (2006). Parameterized Complexity The-
ory. Texts in Theoretical Computer Science. Springer.

[Galil and Megiddo, 1977] Galil, Z. and Megiddo, N. (1977). Cyclic ordering is NP-
complete. Theor. Comput. Sci., 5(2):179–182.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computers and In-
tractability. W. H. Freeman.

[Gebser et al., 2011a] Gebser, M., Grote, T., Kaminski, R., and Schaub, T. (2011a). Reac-
tive answer set programming. In Proc. LPNMR, volume 6645 of LNCS, pages 54–66.
Springer.

[Gebser et al., 2010] Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub,
T., and Thiele, S. (2010). A user’s guide to gringo, clasp, clingo, and iclingo. Pre-
liminary Draft. Available at http://potassco.sourceforge.net.

[Gebser et al., 2009] Gebser, M., Kaminski, R., Ostrowski, M., Schaub, T., and Thiele,
S. (2009). On the input language of ASP grounder gringo. In Proc. LPNMR, volume
5753 of LNCS, pages 502–508. Springer.

[Gebser et al., 2011b] Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub,
T., and Schneider, M. T. (2011b). Potassco: The potsdam answer set solving collec-
tion. AI Commun., 24(2):107–124.

http://potassco.sourceforge.net

104 BIBLIOGRAPHY

[Gebser et al., 2012] Gebser, M., Kaufmann, B., and Schaub, T. (2012). Multi-threaded
ASP solving with clasp. TPLP, 12(4-5):525–545.

[Gelfond and Leone, 2002] Gelfond, M. and Leone, N. (2002). Logic programming and
knowledge representation – the A-Prolog perspective. Artif. Intell., 138(1-2):3–38.

[Gelfond and Lifschitz, 1988] Gelfond, M. and Lifschitz, V. (1988). The stable model
semantics for logic programming. In Proc. ICLP/SLP, pages 1070–1080. The MIT
Press.

[Gelfond and Lifschitz, 1991] Gelfond, M. and Lifschitz, V. (1991). Classical negation
in logic programs and disjunctive databases. New Generation Comput., 9(3/4):365–
386.

[Goldreich, 2008] Goldreich, O. (2008). Computational Complexity – A Conceptual Per-
spective. Cambridge University Press.

[Gottlob et al., 2002] Gottlob, G., Leone, N., and Scarcello, F. (2002). Hypertree de-
compositions and tractable queries. J. Comput. Syst. Sci., 64(3):579–627.

[Gottlob et al., 2010] Gottlob, G., Pichler, R., and Wei, F. (2010). Monadic datalog over
finite structures of bounded treewidth. ACM Trans. Comput. Log., 12(1):3.

[Gramm et al., 2008] Gramm, J., Nickelsen, A., and Tantau, T. (2008). Fixed-parameter
algorithms in phylogenetics. Comput. J., 51(1):79–101.

[Grohe, 1999] Grohe, M. (1999). Descriptive and parameterized complexity. In Proc.
CSL, volume 1683 of LNCS, pages 14–31. Springer.

[Guo and Gupta, 2008] Guo, H.-F. and Gupta, G. (2008). Simplifying dynamic pro-
gramming via mode-directed tabling. Softw., Pract. Exper., 38(1):75–94.

[Huang and Lai, 2007] Huang, X. and Lai, J. (2007). Parameterized graph problems in
computational biology. In Proc. IMSCCS, pages 129–132. IEEE.

[Jakl et al., 2009] Jakl, M., Pichler, R., and Woltran, S. (2009). Answer-set programming
with bounded treewidth. In Proc. IJCAI, pages 816–822.

[Karp, 1972] Karp, R. M. (1972). Reducibility among combinatorial problems. In Proc.
Complexity of Computer Computations, The IBM Research Symposia Series, pages 85–
103. Plenum Press, New York.

[Klarlund et al., 2002] Klarlund, N., Møller, A., and Schwartzbach, M. I. (2002).
MONA implementation secrets. Int. J. Found. Comput. Sci., 13(4):571–586.

[Kloks, 1994] Kloks, T. (1994). Treewidth: Computations and Approximations, volume 842

of LNCS. Springer.

BIBLIOGRAPHY 105

[Kneis et al., 2011] Kneis, J., Langer, A., and Rossmanith, P. (2011). Courcelle’s theo-
rem – a game-theoretic approach. Discrete Optimization, 8(4):568–594.

[Langer et al., 2012] Langer, A., Reidl, F., Rossmanith, P., and Sikdar, S. (2012). Evalu-
ation of an MSO-solver. In Proc. ALENEX, pages 55–63. SIAM / Omnipress.

[Larson, 1967] Larson, R. E. (1967). A survey of dynamic programming computational
procedures. IEEE Trans. Automat. Contr., 12(6):767–774.

[Latapy and Magnien, 2006] Latapy, M. and Magnien, C. (2006). Measuring funda-
mental properties of real-world complex networks. CoRR, abs/cs/0609115.

[Leone et al., 2006] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and
Scarcello, F. (2006). The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Log., 7(3):499–562.

[Lifschitz, 2008] Lifschitz, V. (2008). What is answer set programming? In Proc. AAAI,
pages 1594–1597. AAAI Press.

[Marek and Remmel, 2003] Marek, V. W. and Remmel, J. B. (2003). On the expressibil-
ity of stable logic programming. TPLP, 3(4-5):551–567.

[Marek and Truszczyński, 1991] Marek, V. W. and Truszczyński, M. (1991). Autoepis-
temic logic. J. ACM, 38(3):588–619.

[Marek and Truszczyński, 1999] Marek, V. W. and Truszczyński, M. (1999). Stable
models and an alternative logic programming paradigm. In The Logic Programming
Paradigm: A 25-Year Perspective, pages 375–398. Springer.

[Melançon, 2006] Melançon, G. (2006). Just how dense are dense graphs in the real
world? A methodological note. In Proc. BELIV, pages 1–7. ACM Press.

[Morak, 2011] Morak, M. (2011). dynASP – A dynamic programming-based answer
set programming solver. Master’s thesis, TU Wien, Vienna.

[Niedermeier, 2006] Niedermeier, R. (2006). Invitation to Fixed-Parameter Algorithms.
Oxford Lecture Series in Mathematics And Its Applications. Oxford University
Press.

[Niemelä, 1999] Niemelä, I. (1999). Logic programs with stable model semantics as a
constraint programming paradigm. Ann. Math. Artif. Intell., 25(3-4):241–273.

[Pan and Vardi, 2006] Pan, G. and Vardi, M. Y. (2006). Fixed-parameter hierarchies
inside PSPACE. In Proc. LICS, pages 27–36. IEEE Computer Society.

[Papadimitriou, 1994] Papadimitriou, C. H. (1994). Computational Complexity.
Addison-Wesley.

106 BIBLIOGRAPHY

[Pichler et al., 2010] Pichler, R., Rümmele, S., and Woltran, S. (2010). Multicut algo-
rithms via tree decompositions. In Proc. CIAC, volume 6078 of LNCS, pages 167–179.
Springer.

[Robertson and Seymour, 1984] Robertson, N. and Seymour, P. D. (1984). Graph mi-
nors. III. Planar tree-width. J. Comb. Theory, Ser. B, 36(1):49–64.

[Samer and Szeider, 2010] Samer, M. and Szeider, S. (2010). Algorithms for proposi-
tional model counting. J. Discrete Algorithms, 8(1):50–64.

[Schlipf, 1995] Schlipf, J. S. (1995). The expressive powers of the logic programming
semantics. J. Comput. Syst. Sci., 51(1):64–86.

[Szeider, 2010] Szeider, S. (2010). Not so easy problems for tree decomposable graphs.
In Proc. ICDM 2008, number 13 in Lecture Notes Series, pages 179–190. Ramanujan
Mathematical Society.

[Thorup, 1998] Thorup, M. (1998). All structured programs have small tree-width and
good register allocation. Inf. Comput., 142(2):159–181.

[Turing, 1936] Turing, A. M. (1936). On computable numbers, with an application to
the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42:230–
265.

[Vos et al., 2012] Vos, M. D., Kisa, D. G., Oetsch, J., Pührer, J., and Tompits, H. (2012).
Annotating answer-set programs in Lana. TPLP, 12(4-5):619–637.

[Zhou, 2012] Zhou, N.-F. (2012). The language features and architecture of B-Prolog.
TPLP, 12(1-2):189–218.

	Introduction
	Background
	Computational Complexity
	Basic Complexity Theory
	Complexity and ``Guess & Check''
	The Polynomial Hierarchy
	Parameterized Complexity Theory

	Dynamic Programming
	Properties of Dynamic Programming
	Example: Minimum Vertex Cover on Trees

	Answer Set Programming
	Syntax
	Semantics
	Complexity and Expressive Power
	ASP in Practice

	Tree Decompositions
	Concepts and Complexity
	Monadic Second-Order Logic
	Dynamic Programming on Tree Decompositions

	Decompose, Guess & Check
	General Approach
	Motivation
	General Outline and Desiderata
	Requirements for Problems Beyond NP

	Algorithm Design Methodology
	Applicability
	Evaluation of MSO Formulas
	Further Applicability Results

	The D-FLAT System
	System Overview
	Description of Individual Steps
	Command-Line Interface
	Interface to ASP Programs: Reserved Predicates

	Case Studies
	Graph Coloring
	List Coloring
	Minimum 3-Coloring
	Minimum Vertex Cover
	Boolean Satisfiability
	Disjunctive Answer Set Programming
	Cyclic Ordering
	Hamiltonian Cycle
	Evaluation of MSO Formulas
	Quantified Boolean Formulas

	Practical Performance

	Conclusion
	Discussion
	Reflection
	Related Work
	Future Work

	Summary

