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Abstract

Nonlinear evolution equations of fourth- and higher-order in spatial derivatives emerge in
various models of mathematical physics. This thesis is devoted to the study of nonlinear
higher-order diffusion equations, which arise in the quantum modeling of semiconductor
and plasma physics, and describe the evolution of densities of charged particles in a quan-
tum fluid. These equations appear as quantum corrections to the classical models of the
transport of charged particles.

Primary questions in the mathematical analysis of nonlinear higher-order equations are
the existence and uniqueness of solutions, long-time behaviour and positivity of solutions,
growth of the support and speed of propagation. In order to obtain the answers, many
approaches rely on certain a priori estimates, called entropy production inequalities. These
estimates are results of mathematical dissipation of some nonlinear functionals (entropies)
along solutions of the equation under consideration, but often they also reflect the underly-
ing physical laws, namely that of conservation of mass and energy, or the dissipation of the
physical entropy. As a consequence, they provide necessary uniform bounds for solutions
in corresponding Sobolev (semi-)norms.

The first part of the thesis considers an algebraic approach for proving entropy pro-
duction inequalities for radially symmetric solutions to a class of higher-order diffusion
equations in multiple space dimensions. The approach is an extension of the previously
developed method for nonlinear evolution equations of even order in one space dimension.
Key idea is to translate the problem of proving the integral inequlities into a decision
problem about nonnegativity of corresponding polynomials. A benefit of this procedure
is that the latter problem is always solvable in an algorithmic way. In application of the
method, novel entropy production inequalities are derived for the thin-film equation, the
fourth-order Derrida-Lebowitz-Speer-Spohn equation, and the sixth-order quantum diffu-
sion equation.

In the second part, the initial-value problem for the sixth-order quantum diffusion
equation with periodic boundary conditions is studied. The concept of weak nonnegative
solutions for this equation is introduced and it is proved that the equation admits the
global-in-time solutions in two and three space dimensions. Moreover, these solutions
are smooth and classical whenever the particle density is strictly positive and particular
energy functional is uniformly bounded. In addition, the long-time convergence to the
spatial homogeneous equilibrium at a universal exponential rate is observed. The analysis
strongly uses a special entropy production inequality, which is a direct consequence of the
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iv ABSTRACT

dissipation property of the physical entropy.
Finally, the third part is devoted to novel approximations of the fourth-order quantum

diffusion equation, also known as the Derrida-Lebowitz-Speer-Spohn equation. Two differ-
ent approaches are discussed, which have the common goal of preserving some qualitative
properties of solutions on a (semi-)discrete level. First, the semi-discrete two-step backward
difference (BDF-2) method of a reformulated equation yields the discrete entropy stability
property and second-order convergence of the method in a specific case. Next, a particular
variational structure of the equation is used to introduce the discrete variational derivative
method in the onedimensional case. The method preserves the mass and the dissipation
property of the corresponding energy (Fisher information) functional on a discrete level.
Furthermore, the method is extended to the temporally more accurate multistep discrete
variational derivative methods, which possess generalized discrete dissipation properties.



Chapter 1

Introduction

“I consider that I understand an equation when I can predict
the properties of its solutions, without actually solving it.”

– Paul A. M. Dirac

State of the art analysis of nonlinear fourth- and sixth-order evolution equations em-
ploys the so-called entropy production inequalities. They reflect the dissipation or stability
property of certain nonlinear functionals (entropies) along the sought solutions, and give
rise to desired a priori estimates. In this thesis, variety of such estimates have been con-
structed in a systematic way for radially symmetric solutions to higher-order nonlinear
diffusion equations. One particular estimate, that reflects the dissipation of the physi-
cal entropy, has been exhaustively used to establish the existence result and long time
behaviour of solutions to a multidimensional sixth-order quantum diffusion equation. In
addition, variational structure of a fourth-order quantum diffusion equation has been em-
ployed to construct reliable numerical schemes, which preserve the original structure and
its dissipation property on a discrete level.

1.1 Motivation

In the last three decades, there has been a growing interest in the analysis of fourth- and
sixth-order nonlinear parabolic equations, mainly because of their increasing appearance
in various models of mathematical physics. Such equations arise for example, in pattern
formation models, in lubrication approximation of thin viscous fluids along solid surfaces or
in thin layers, as approximations of non-local models for the transport of charged particles
in quantum fluids with applications in quantum semi-conductor and cold plasma modeling,
as an approximation of a nonlocal model for the Bose–Einstein condensation, etc. Below,
we briefly review these specific examples and their origins in physics, assigning a special
emphasis on a nonlocal quantum diffusion model and related higher-order equations for
the transport of charged particles in a quantum fluid.

Rigorous results about the existence of solutions and their qualitative behavior are typ-
ically much harder to obtain than in the context of the well-studied second-order parabolic
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2 CHAPTER 1. INTRODUCTION

equations. One of the principal difficulties is the non-applicability of comparison prin-
ciples for higher-order equations. For instance, even the fourth-order linear equation
∂tn + ∆2n = 0 doesn’t preserve positivity of solutions. To substitute for this loss, one
has to rely on suitable a priori estimates. Often, the underlying physical system con-
serves the energy and/or minimizes1 the physical entropy. That provides basic a priori
bounds on solutions. However, one usually needs additional a priori estimates to prove
some mathematical properties of solutions. Derivation of such estimates, which depends
on the equation at hand, is typically a difficult task. Having in mind the importance of
good a priori estimates, leads us immediately to the first goal of the thesis — to extend
the existing tools for constructiong such estimates in a systematic way.

Despite of general non-applicability of comparison principles, a particular interest has
been devoted to equations that are positivity preserving. This is clearly, a core feature
for equations that model for example, the evolution of particle densities. Thanks to their
special nonlinear structure, such equations allow for the introduction of a suitable solution
concept, which asserts that a nonnegative initial datum leads to a nonnegative global
solution. Typically, sophisticated regularizations are constructed that yield smooth and
strictly positive approximative solutions. The limit of vanishing regularizations, which is
carried out due to certain a priori estimates and related compactness arguments, then
provides a nonnegative weak solution. To perform this concisely introduced concept and
general ideas for a novel multi-dimensional sixth-order quantum diffusion equation makes
a further subject of the interest.

Finally, to make below listed physical models practically useful in applications and to
explore their qualitative properties, it is a necessary task to develop reliable numerical
schemes, which preserve as many structural properties as possible of the original model.
This includes discrete conservation of mass, discrete conservation or dissipation of the
energy and other discrete a priori estimates. Having such discrete properties, typically
improves on the stability and convergence of schemes. Moreover, corresponding numerical
solutions match the underlying physical processes better.

1.2 Model equations

Starting in the late 1970’s, mainly initiated by the research on pattern formation and
motion of thin viscous fluids on a solid surface, the number of nonlinear fourth- and sixth-
order parabolic equations appearing in various models of mathematical physics together
with the accompanying literature on the rich mathematical structure of such equations has
grown rapidly.

1In contrast to the physical point of view, where underlying systems maximize the physical entropy.
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Cahn-Hilliard equation

For historical reasons, we first mention the Cahn-Hilliard equation

∂tn+ div
(
µ(n)∇(∆n− f ′(n))

)
= 0 ,

which originates in material science describing the phase separation process in a binary
mixture. The nonlinearity f is a so-called double-well potential, typically f(n) = γ(n2−1)2,
γ > 0, and µ is the diffusional mobility, which takes a thermodynamically motivated form
µ(n) = 1 − n2. The equation was first derived and studied by Cahn and Hilliard in a
series of seminal papers in late 50’s starting with [12]. Till date, it has been subject of
hundreds of papers exploring variety of analytical, numerical and applicational aspects.
Recently, a modified Cahn-Hilliard equation has also appeared as an inpainting tool in
image processing [11].

Thin-film equations

Among the positivity preserving models, probably the most famous study object is the
fourth-order thin-film equation

∂tn+ div(nβ∇∆n) = 0 . (1.1)

This equation appears in lubrication approximation of several models describing the surface
tension-dominated motion of thin viscous films of height n ≥ 0 under small slip (β = 2)
or no-slip (β = 3) boundary conditions [5, 52]. Parameter β = 1 corresponds to the
lubrication approximation of the Hele-Shaw flow, a Stokes flow between two parallel flat
plates separated by a very small gap [17]. The one-dimensional family of equations has
been first analyzed by Bernis and Friedman [4], while the multidimensional case has been
studied in the work of Dal Passo et al. [18]. In both works, integral (entropy) estimates play
a crucial role. On an explicit dependence on the parameter β, such estimates provide the
existence and qualitative properties of solutions like, long-time behaviour [14], positivity,
finite speed of propagation, growth estimates for the support [6], etc., as well as numerical
schemes with respective conservation and dissipation properties [3]. The available literature
on these topics is huge and steadily growing; see [3] for a collection of further references.

Other models for thin viscous films lead to sixth-order equations. One example is

∂tn+ div(nβ∇∆2n) = 0 ,

which models the spreading of a thin viscous fluid under the driving force of an elastic
plate [27]. The model was first introduced in [43] in space dimension d = 1 with β = 3
together with a more general form of this equation arising in the isolation oxidation of
silicon. Another application for such thin-film equations concerns the bonding of Silicon-
Germanium films to silicon substrates [27]. Further examples of sixth-order equations can
be found in [26, 37, 44].
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Quantum drift-diffusion model

Recent trends in development and production of highly miniaturized devices in nano-
technology require novel models of the transport of charged particles, in which quan-
tum effects play an important and sometimes even a dominant role. Using a moment-
constrained optimization procedure, a whole hierarchy of macroscopic models with fluid-
type unknowns has been derived from a many particle Schrödinger–Poisson system [34].
The models consist of balance equations for the particle density, current density and energy
density. The simplest model, that of the first-order moment-constraint, is the quantum
drift-diffusion model [1],

∂tn = T∆n+ div
(
n∇(VB[n] + V )

)
,

−λ2∆V = n− Cdot .

It consists of the balance equation for the particle density n, which is self-consistently
coupled to the Poisson equation for the electrostatic potential V . The nonlinear term
VB[n] = −~2∆

√
n/
√
n describes quantum effects in the model. This is the so-called Bohm

potential, which also appears in the Madelung transformation of the Schrödinger equation.
Other parameters of the model are the scaled temperature T , the scaled Planck constant
~, the scaled Debye length λ, and the doping profile Cdot, which describes the distribution
of charged background ions.

Alternatively, applying a moment method to a Wigner–BGK model, Degond et al. de-
rived in [21] a nonlocal quantum drift-diffusion model for charged particles in, for instance,
semiconductors or cold plasmas. The model reads as

∂tn = div(n∇(A− V )) ,

where n denotes the particle density, A is the quantum chemical potential defined im-
plicitly as a Lagrangian multiplier of a moment-constrained minimization problem and V
is a given external potential. Simplifying the model to zero external potential (V = 0),
i.e. considering only diffusive effects, an asymptotic expansion of A in terms of the reduced
Planck constant ~2 leads to a family of parabolic equations for the particle density n. A
brief note on the expansion, using pseudo-differential calculus, is attached in Appendix
A. The first member of this family is the classical heat equation ∂tn = ∆n. This asserts
that the semi-classical limit (~→ 0) of the (nonlocal) quantum drift-diffusion model is the
classical drift-diffusion model.

Derrida-Lebowitz-Speer-Spohn equation

The second member is the fourth-order Derrida–Lebowitz–Speer–Spohn (DLSS) equation

∂tn+ div

(
n∇

(
∆
√
n√
n

))
= 0 , (1.2)

which provides another well-studied example of a fourth-order equation. Observe that,
like in the original quantum drift-diffusion model, the nonlinear part contains the scaled
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Bohm potential. Interestingly, the one-dimensional version of the DLSS equation, ∂tn +
1
2
(n(log n)xx)xx = 0 arose in the context of spin systems. Derrida et al. [23] derived it in the

studying of fluctuations of the interface between the regions of predominantly positive and
negative particle spins in the Toom model. It has been first analyzed in [7] for local positive
smooth solutions and then in [40] for global nonnegative weak solutions. The existence, non
uniqueness and long-time behaviour of weak solutions to the multidimensional equation
has been proven recently in [36]. Moreover, this equation possesses a particular variational
structure, it constitutes the gradient flow of the Fisher information with respect to the
L2-Wasserstein metric [30].

Sixth-order quantum diffusion equation

When the non-local quantum diffusion model is expanded to order ~4, the main part of
the differential operator is of sixth order, and the corresponding equation reads as

∂tn = div

(
n∇

[
d∑

i,j=1

(
1

2
(∂2
ij log n)2 +

1

n
∂2
ij(n∂

2
ij log n)

)])
. (1.3)

In further, we will omit the above sum and assume the Einstein’s summation convention
over repeated indices from 1 to d. The one-dimensional problem has recently been studied
in [37]. In Chapter 3 we study in detail the initial-value problem for this equation on the
d-dimensional torus Td ∼= [0, 1]d (imposing periodic boundary conditions) in dimensions
d = 2 and d = 3.

Local model for the Bose-Einstein condensation

Our final example is related to the quantum kinetic theory for bosonic gases. Relaxation
to equilibrium of spatially homogeneous and isotropic fluid of weakly interacting bosons
with s-wave scattering is described by the Boltzmann-Nordheim kinetic equation [56, 58].
Assuming small energy exchange via scattering, the latter (nonlocal) equation can be
approximated by the nonlinear fourth-order evolution equation [33]

∂tn =
1√
x

[
x13/2

(
n4
( 1

n

)
xx
− n2(log n)xx

)]
xx
, x > 0 , t > 0 , (1.4)

where x > 0 denotes the energy variable and n(t;x) the energy distribution function. If
the initial mass (‖n0‖L1) is bigger than the prescribed critical value, an accumulation of
matter appears at low energies and solutions to (1.4) eventually blow-up in finite time [33].
The finite-time singularity in solutions explains formation of the Bose-Einstein condesate.

1.3 Summary of the thesis and main results

Let n be a nonnegative solution to a nonlinear higher-order partial differential equation, and
let E and Q be nonnegative functionals defined by n and its spatial derivatives. Estimates
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of the type
d

dt
E[n(t)] + cQ[n(t)] ≤ 0 , t > 0 , (1.5)

are the key tools in the mathematical analysis of such equations and make the core in-
gredient of this thesis. Inequalities like (1.5) provide a priori bounds for the evolution.
They are a necessary first step in proofs for existence of solutions; they allow to describe
the equilibration behavior of the solutions and other qualitative properties like, growth of
support, speed of propagation etc. We call E an entropy if (1.5) holds with some suitable
choice of Q and c ≥ 0 for arbitrary solutions n of the evolution equation under consid-
eration. Estimate (1.5) is referred to as an entropy production inequality, and Q is the
corresponding entropy production. Typically, one is interested in α-functionals Eα being
entropies for certain range of parameters α ∈ R, where

Eα[n] =
1

α(α− 1)

∫

Ω

nαdx , α 6= 0, 1 ,

E0[n] =

∫

Ω

(
n− log n

)
dx , (1.6)

E1[n] =

∫

Ω

(
n
(

log n− 1
)

+ 1
)
dx ,

and Ω ⊂ Rd is a domain. Specially in this thesis Ω = Bd = {x ∈ Rd, |x| < 1} (unit ball)
or Ω = Td (d-dimensional torus). Further candidates for entropies are functionals defined
by first-order derivatives

Fγ[n] =

∫

Ω

|∇nγ/2|2dx , γ > 0 and F0[n] =

∫

Ω

|∇ log n|2dx .

Among them, functional F2 often has a notion of the energy of the system, while F1 is
know as the Fisher information, since it plays an important role in the information theory.
Here is more interesting as the energy of the fourth-order equation (1.2) (see Chapter 4).

The subject of the first chapter is to determine α-functionals (1.6), which are entropies
along radially symmetric smooth positive solutions to the above reviewed evolution equa-
tions (1.1)–(1.3); and to prove estimates of the type (1.5) for a particular choice of entropy
productions. The principal technique for proving estimates (1.5) are integration by parts
formulae. In order to find as many entropies as possible, we have to employ a systematic
approach, which considers all integration by parts formulae. For this purpose we adapted
a systematic approach for construction of entropies proposed in [35] for a large class of
nonlinear evolution equations of even order in one space variable. The main idea is to
translate the procedure of integration by parts into a decision problem about the nonneg-
ativity of certain polynomials. The latter is a well-known problem in the real algebraic
geometry, which is always solvable in an algorithmic way. Briefly explained, to each evolu-
tion equation one formally associates a polynomial P in real variables ξj, which represent
quotients ∂jrn/n. Due to explicit apperance of the radial variable r in evolution equations,
additional polynomial variable η is used to represent 1/r. For example, the fourth-order
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thin-film equation (1.1) for radially symmetric solutions n takes the form (see Example 2.4
(A))

∂tn+ r−(d−1)∂r

(
rd−1nβ+1P

(1

r
,
nr
n
,
nrr
n
,
nrrr
n

))
= 0 ,

where P (η, ξ1, ξ2, ξ3) = ξ3 + (d− 1)(ηξ2− η2ξ1). Assuming no-flux boundary conditions on
the unit sphere in Rd, one calculates the dissipation of the α-functionals

d

dt
Eα[n] = −ωd

∫ 1

0

uα+β
(
− nr

n

)
P
(1

r
,
nr
n
,
nrr
n
,
nrrr
n

)
rd−1dr

=: −ωd
∫ 1

0

uα+βS0

(1

r
,
nr
n
,
nrr
n
,
nrrr
n

)
rd−1dr ,

where S0(η, ξ1, ξ2, ξ3) = −ξ1P (η, ξ1, ξ2, ξ3) and ωd denotes the surface of the unit sphere in
Rd. Besides the no-flux condition, we also assume the homogeneous Neumann boundary
condition on the sphere. Based on given boundary conditions, one finds a set of all basic
integration by parts formulae with vanishing boundary terms. These are then translated
into the polynomial form resulting in the so-called shift polynomials, whose linear combi-
nations characterize all possible integration by parts formulae (see Section 2.2). Adding a
linear combination of shift polynomials to S0 then modifies polynomial S0 into some other
polynomial S, but preserves the value of the integral. If a suitable linear combination,
which makes the resulting polynomial S nonnegative, can be found, then this formally
gives a proof of the entropy dissipation and an estimate of the type (1.5). Further details
on formulation of decision problems and finding its solutions are left for Chapter 2.

In the subsequent, let n be a radially symmetric smooth and positive solution to the
respective model equations (1.1)–(1.3) on the unit ball Bd with homogeneous Neumann
and no-flux boundary conditions, and the functionals Eα defined in (1.6). The following
summarizes our main results of Chapter 2 (see Theorems 2.1 – 2.3).

Thin-film equation. The functionals Eα are entropies provided that 3/2 ≤ α + β ≤ 3. In
this case, the entropy production inequality (1.5) holds with

c =
16

(α + β)4
(3− α− β)(2(α + β)− 3) and Qα[n] =

∫

Bd

(
∆n(α+β)/2

)2
dx .

The obtained constant c is optimal for our method.

DLSS equation. The functionals Eα are entropies if

d = 1, 2, 3, or 4, and
(
√
d− 1)2

d+ 2
≤ α ≤ 3

2
,

d = 5, 6, or 7, and
(
√
d− 1)2

d+ 2
≤ α ≤ (

√
d+ 1)2

d+ 2
,

d ≥ 8 and
d− 4

2(d− 2)
≤ α ≤ (

√
d+ 1)2

d+ 2
,
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and the entropy production inequality (1.5) holds with Qα[n] =
∫
Bd

(∆nα/2)2dx. The
optimal choice of the constant c is given explicitly in Theorem 2.2.

Sixth-order equation. The functionals Eα, are entropies if

d = 1 and 0.1927 . . . ≤ α ≤ 1.1572 . . . ,

d = 2 and 0.2827 . . . ≤ α ≤ 1.0982 . . . ,

d = 3 and 0.3470 . . . ≤ α ≤ 1.0517 . . . ,

d = 4 and 0.3968 . . . ≤ α ≤ 1.0123 . . . ,

d = 5 and 0.4380 . . . ≤ α ≤ 0.9775 . . . .

Moreover, in dimensions d = 1, . . . , 4 and for α = 1, the entropy production inequality
(1.5) holds for some c > 0 if one chooses

Q1[n] =

∫

Bd

(
|∇∆
√
n|2 + |∇ 6

√
n|6
)
dx .

The above results of Chapter 2 are published by the author, A. Jüngel (TU Wien) and
D. Matthes (TU München) in journal Communications in Mathematical Sciences [10].

Chapter 3 is concerned with the analysis of the sixth-order quantum diffusion equation
(1.3) whose solutions describe the evolution of the particle density in a quantum fluid.
Recall that this equation has been obtained by an asymptopic expansion to the order ~4 of
the nonlocal quantum diffusion model, where ~ denotes the scaled Planck constant. A brief
derivation of the equation can be found in Appendix A. We study the Cauchy problem for
equation (1.3) in the d-dimensional torus Td in space dimesions two and three. The aim
is to prove the existence of solutions and to observe their long-time behaviour. For that
purpose, two solutions concepts are compared: weak and classical. In order to prove the
existence results, certain reformulations of (1.3) are necessary. First of all, the concept
of weak solutions requires a form that is also well-defined for vanishing densities n, while
semilinearity of new form would be most convenient for the classical approach. It turns
out that the form

∂tn = ∆3n+ ∂3
ijkF

(ijk)
1 (n) + ∂2

ijF
(ij)
2 (n), (1.7)

with the nonlinear operators F1 and F2, defined in (3.4), is appropriate to study both
solution concepts. The first concept, that of weak nonnegative solutions, is an adapted
generalization of the results obtained in the one-dimesional case [37]. Starting with the
implicit Euler semi-discretization, additional change of variables n = ey has been employed;
semi-discrete equations are regularized by an ε-elliptic term and eventually solved by means
of the Leray-Schauder fixed point theorem. The key estimate of the type (1.5), which
essentially provides the compactness argument to carry out the deregularization limit ε ↓ 0
and later the time-continuous limit, is related to the dissipation of the physical entropy in
space dimensions d ≤ 3,

d

dt
E1[n] + c

∫

Td

(
‖∇3
√
n‖2 + |∇ 6

√
n|6
)

dx ≤ 0 .
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It has been proved by Matthes using the aforementioned entropy construction method (see
Lemma 3.8). To summarize, the following two results about weak solutions are obtained
(Theorems 3.1 – 3.2).

Global existence. Let d ≤ 3 and n0 ∈ L1(Td) be a nonnegative function of the finite
entropy E1[n0] < ∞. Then there exists a nonnegative function n satisfying

√
n ∈

L2
loc(0,∞;H3(Td)) that is a solution to (1.7) in the following weak sense

∫ ∞

0

〈∂tn, ϕ〉 dt+

∫ ∞

0

∫

Td

(
∂3
ijkϕ∂

3
ijkn+ ∂3

ijkϕF
(ijk)
1 (n)− ∂2

ijϕF
(ij)
2 (n)

)
dx dt = 0

for all test functions ϕ ∈ L4(0, T ;H3(Td)).

Long-time behaviour. Let n be the weak solution to (1.7) in the previous sense. Then n
converges exponentially fast to the constant steady state.

Concerning the classical solution concept, the semi-linearity of equation (1.7) allows to
employ the standard theory of analytic semigroups, which yields the following (see Theorem
3.3).

Local existence. Let n0 ∈ H2(Td) be strictly positive. Then there exist T∗ > 0 and unique
smooth strictly positive classical solution n ∈ C∞((0, T∗);C

∞(Td)) to (1.7) with
n(t) → n0 in H2(Td) as t ↓ 0. Moreover, either T∗ = +∞, or there exists a limiting
profile n∗ ∈ H2(Td) such that n(t)→ n∗ in H2(Td) as t ↑ T∗ and minx∈Td n∗(x) = 0.

Furthermore, introducing the energy functional

E [n] =
1

2

∫

Td
n‖∇2 log n‖2 dx ,

one formally observes the gradient flow structure of (1.3) with respect to the L2-Wasserstein
metric

∂tn = div

(
n∇

(
δE [n]

δn

))
,

which immediately implies the Lyapunov property of E along smoth positive solutions to
(1.3). Assuming that the Lyapunov property holds along weak solutions, the subsequent
has been proved (Theorem 3.5).

Regularity of weak solutions. Atop of the Lyapunov property of E , assume that the weak
solution n is strictly positive on some time interval. Then n equals the classical
solution on that time interval.

Preprint of results presented above and discussed in Chapter 3, written by the author
together with Jüngel and Matthes, has been submitted for publication at Annales de
l’Institut Henri Poincaré (C) Nonlinear Analysis [9].
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In Chapter 4, novel numerical schemes of the fourth-order quantum diffusion equation
(1.2) are investigated. The goal there is to increase the temporal accuracy of approxi-
mations, but preserving some analytical properties. In particular, some estimates of the
type (1.5) on a (semi-)discrete level. First we consider the two-step backward difference
(BDF-2) semi-discretization. In order to accomplish that, another form of (1.2) has been
employed in which the time drivative ∂tn is substituted by an α-dependent expression and
the spatial operator by the standard logarithmic form,

2

α
n1−2/α∂t(n

α/2) +
1

2
∂2
ij(n∂

2
ij log n) = 0 . (1.8)

Above, α ≥ 1 naturally belongs to the range of real parameters establishing entropies (1.6)
for equation (1.2). Equation (1.8) is discretized in time by the BDF-2 method, resulting in
the sequence of elliptic problems on a time grid {kτ}k≥1 with a given time step τ > 0. For
particular admissible α, existence of weak semi-discrete solutions follows again the idea
of an appropriate ε-regularization, and a uniform boundedness of the corresponding time
discrete α-functional allows to perform the deregularization limit ε ↓ 0 (Theorem 4.1).
Unlike the implicit Euler semi-discretization, specific structure of the BDF-2 scheme infers
only stability of the time discrete α-functionals (α > 1), i.e.

Eα[nm] + κατ
m∑

k=1

∫

Td

(
∆(n

α/2
k )

)2
dx ≤ Eα[n0] , m ≥ 1 , κα > 0 ,

where nk denotes the weak solution of the BDF-2 scheme for (1.8) at the time 2τ ≤ tk ≤ T .
On the other hand, employing the G-stability of the BDF-2 method leads to novel time
discrete entropies EG

α [nk, nk−1], defined in (4.42), and the time discrete dissipation property

EG
α [nk+1, nk] + κατ

∫

Td

(
∆(n

α/2
k+1)

)2
dx ≤ EG

α [nk, nk−1] , k ≥ 1 .

It is easily to see that EG
α [nk, nk−1] is formally an O(τ)–perturbation of Eα[nk]. Further-

more, assuming additional regularity of the exact solution and strict positivity of weak
solutions constructed by the BDF-2, we prove for α = 1 the second-order convergence of
the method (see Theorem 4.2).

Second objective of Chapter 4 are fully discrete finite difference type approximations,
which preserve the dissipation property of the Fisher information F1 on a discrete level.
The idea for the method, which explores variational structure of (1.2), has been taken from
[29]. Equation (1.2) in one space dimension takes the form

∂tn =

(
n

(
δF1[n]

δn

)

x

)

x

, (1.9)

where δF1[n]/δn = −(
√
n)xx/

√
n denotes the variational derivative of the Fisher infor-

mation. Assuming periodic boundary conditions, the latter immediately implies the dis-
sipation of F1. Key idea of the method is to define a discrete analog F1, d of the Fisher
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information and to perform a discrete variation procedure in order to define the discrete
version of the variational derivative. Denoted by δF1,d/δ(U

k+1, Uk), where Uk ≈ n(tk), the
discrete variational derivative makes the key ingredient of the method, which by construc-
tion dissipates F1, d (see Theorem 4.3).

Discrete variational derivative method. Assume discrete periodic boundary conditions and
an equidistant grid on the interval (0, 1). Numerical scheme for equation (1.9), defined
by the nonlinear system

1

τ
(Uk+1

i − Uk
i ) = δ

〈1〉
i

(
Uk+1
i δ

〈1〉
i

(
δF1, d

δ(Uk+1, Uk)i

))
, i = 0, . . . , N − 1 , k ≥ 0 ,

where δ
〈1〉
i denotes the central difference approximation of the first-order derivative,

conserves the mass and dissipates the energy, i.e. F1,d[Uk+1] ≤ F1, d[Uk] for all k ≥ 0.

These properties are direct consequence of the discrete form, which resembles (1.9), and
do not depend on the concrete approximation of the Fisher information and its discrete
variational derivative.

Further generalization of the method, discussed in Section 4.3.2, is based on the multi-
step backward difference formulae and naturally increases the temporal accuracy of the
enhanced scheme (see Theorem 4.7). All the aforementioned numerical schemes are im-
plemented and tested in Matlab, using the additional NAG toolbox [53]. Results of
numerical experiments, presented in the last section, confirm the analytical results. In
fact, they provide even better outcomes, for instance, an obvious exponential deacy of the
Fisher information and releted relative entropies. The latter naturally poses further tasks
in the numerical analysis for the above schemes.

Obtained results related to Chapter 4 are under preparation for publishing in a joint
paper with A. Jüngel and E. Emmrich (TU Berlin).
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Chapter 2

Entropies for radially symmetric
higher-order nonlinear diffusion
equations

2.1 Introduction and results

In [35], Jüngel and Matthes proposed a systematic approach to the derivation of a priori
estimates for certain classes of nonlinear evolution equations of even order. This procedure
allows one to determine entropies (Lyapunov functionals) and to derive integral bounds
from their dissipation, i.e. entropy production inequalities. The developed method has been
successfully applied to several equations in one space dimension. The main idea is to trans-
late the procedure of integration by parts — which is the core element in most derivations
of a priori estimates — into an algebraic problem about the positivity of polynomials.
Roughly speaking, to each evolution equation, a polynomial in the spatial derivatives of
the solution is associated, and integration by parts allows one to modify the coefficients of
this polynomial. If a suitable change of coefficients can be found that makes the resulting
polynomial nonnegative, then this corresponds (formally) to a proof of an a priori estimate
on the solutions. The key point is that such polynomial decision problems are well-known
in real algebraic geometry, and there exist powerful methods to solve them.

The approach of [35] can, in principle, be generalized in a straightforward way to
multidimensional higher-order equations by taking all partial derivatives as polynomial
variables. However, this leads, even in simple situations, to huge polynomial expressions,
and the corresponding algebraic problem is too complex to be solved directly, even with
the aid of computer algebra systems. The method has been successfully adapted to deal
with certain multidimensional equations of second order [42, 50] and fourth order [36, 51],
but the systematic extension of the scheme to the general multidimensional case is still
under development. In this chapter, we propose a further adaption that works generally for
radially symmetric solutions to higher-order nonlinear equations of a certain homogeneity.
And we prove its practicability by applying our scheme to the model equations (1.1)–(1.3)

13
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listed in the Introduction.
The objective of this chapter is to prove, for radially symmetric smooth positive solu-

tions n(t) to (1.1), (1.2), or (1.3) satisfying no-flux and Neumann-type boundary conditions
(see below for the precise conditions), estimates of the type

dEα
dt

[n(t)] + cQα[n(t)] ≤ 0, (2.1)

on a specific range of parameters α, where as in (1.6),

Eα[n] =
1

α(α− 1)

∫

Ω

nαdx, α 6= 0, 1,

E0[n] =

∫

Ω

(
n− log n

)
dx, (2.2)

E1[n] =

∫

Ω

(
n
(

log n− 1
)

+ 1
)
dx.

Above, Ω = Bd = {|x| < 1} is the unit ball in Rd, c ≥ 0 is a constant independent of the
solution n, and Qα is a nonnegative functional containing higher-order derivatives of n.

Entropy production inequalities for the evolution equations reviewed in Introduction
have been extensively studied in the literature. Concerning the thin-film equation, with
no-flux and homogeneous Neumann boundary conditions, it has been shown in [6, 18]
that Eα is an entropy if 3/2 ≤ α + β ≤ 3. The same result holds for periodic boundary
conditions [35]. This bound turns out to be sharp, at least in the one-dimensional case
[45]. Moreover, the entropy production Qα in (2.1) can be made explicit: a valid choice is
Qα[n] =

∫
Ω
|(n(α+β)/2)xx|2dx with a suitable c > 0 if 3/2 < α + β < 3, see [35].

Let n be a smooth solution to the DLSS equation (2.6) with periodic boundary condi-
tions. Then (2.1) holds with

c =
2p(α)

α2(p(α)− p(0))
, (2.3)

where p(α) = −α2 + 2α(d+ 1)/(d+ 2)− (d− 1)2/(d+ 2)2, and Qα[n] =
∫

Ω
(∆nα/2)2dx for

all 0 < α < 2(d+ 1)/(d+ 2) [36]. In the one-dimensional case, this estimate holds true for
a larger range of values for α, with c = 2/α2 for 0 < α < 4/3 and c = 8(3 − 2α)/α3 for
4/3 < α < 3/2.

Entropy estimates for the sixth-order quantum diffusion model (2.8) with periodic
boundary conditions are available only in one space dimension. In fact, it has been
shown in [37] that E1 is an entropy and (2.1) holds for some c > 0 and with Q1[n] =∫

Ω
((
√
n)2

xxx + ( 6
√
n)6

x)dx.
To our knowledge, no entropy production inequalities (2.1) are available for the DLSS

equation with no-flux and Neumann boundary conditions1 and for the sixth-order equation
with α 6= 1. In this chapter, we will prove such results for radially symmetric solutions.

1In one spatial dimension, calculations related to entropy production estimates typically carry over from
one “reasonable” boundary condition to another (e.g. from periodic to no-flux or Neumann conditions).
In dimensions d ≥ 2, this is no longer true since the boundary terms resulting from integration by parts
have a more complicated structure.
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The advantage of considering radially symmetric solutions n(t;x) = u(t; |x|) — in
comparison to solutions of the full multidimensional problem — is that the reduced function
u(t; r) satisfies an evolution equation with only one spatial variable r > 0. Still, the proof
of entropy production inequalities (2.1) is substantially more difficult than in the genuinely
one-dimensional situation considered before [35]. The reason is that the variable r appears
explicitly in the evolution equation. On the algebraic level, this adds one polynomial
variable.

In the following we summarize our main results. Below, Ω = Bd ⊂ Rd denotes the
d-dimensional unit ball, and ν is the exterior unit normal vector to ∂Ω.

Theorem 2.1 (Thin-film equation). Let n be a radially symmetric smooth and positive
solution to the thin-film equation with homogeneous Neumann and no-flux boundary con-
ditions:

∂tn+ div(nβ∇∆n) = 0 in Ω, for t > 0, (2.4)

∇n · ν = nβ∇∆n · ν = 0 on ∂Ω, for t > 0. (2.5)

Then the functionals Eα, defined in (2.2), are entropies provided that 3/2 ≤ α+ β ≤ 3. In
this case, the entropy production inequality (2.1) holds with

c =
16

(α + β)4
(3− α− β)(2(α + β)− 3) and Qα[n] =

∫

Ω

(
∆n(α+β)/2

)2
dx.

The facts that Eα is a Lyapunov functional for 3/2 ≤ α ≤ 3 and that Qα[n] is an
entropy production, for some unspecified constant c, are well known [18]. The explicit
dependence of the constant c on α and β is new. This dependence is illustrated in Figure
2.1.

0

0.4

0.8

1.2

c

1.5 2 2.5 3
α+ β

Figure 2.1: Thin-film equation: Values of c as a function of α + β.
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Theorem 2.2 (DLSS equation). Let n be a radially symmetric smooth positive solution to
the DLSS equation with homogeneous Neumann and no-flux boundary conditions:

∂tn+ div

(
n∇
(∆
√
n√
n

))
= 0 in Ω, for t > 0, (2.6)

∇n · ν = n∇
(∆
√
n√
n

)
· ν = 0 on ∂Ω, for t > 0. (2.7)

Then the functionals Eα, defined in (2.2), are entropies if

d = 1, 2, 3, or 4, and
(
√
d− 1)2

d+ 2
≤ α ≤ 3

2
,

d = 5, 6, or 7, and
(
√
d− 1)2

d+ 2
≤ α ≤ (

√
d+ 1)2

d+ 2
,

d ≥ 8 and
d− 4

2(d− 2)
≤ α ≤ (

√
d+ 1)2

d+ 2
,

and the entropy production inequality (2.1) holds with Qα[n] =
∫

Ω
(∆nα/2)2dx and

d = 1, 2, 3 : c =





2p(α)

α2(p(α)− p(0))
for

(
√
d− 1)2

d+ 2
< α ≤ 5d+ 7

3d+ 6
,

8(3− 2α)

α3
for

5d+ 7

3d+ 6
< α <

3

2
,

d = 4, 5, 6, 7 : c =
2p(α)

α2(p(α)− p(0))
for

(
√
d− 1)2

d+ 2
< α <

(
√
d+ 1)2

d+ 2
,

d ≥ 8 : c =





16(d− 2)α− 8(d− 4)

d2α3
for

d− 4

2(d− 2)
< α ≤ d2 − 5d− 8

d2 − 2d− 8
,

2p(α)

α2(p(α)− p(0))
for

d2 − 5d− 8

d2 − 2d− 8
< α <

(
√
d+ 1)2

d+ 2
,

where p(α) = −α2 + 2α(d+ 1)/(d+ 2)− (d− 1)2/(d+ 2)2.

The dependence of c on α is illustrated in Figure 2.2 for various dimensions d. The
values for c for d = 4, 5, 6, 7 are the same as those derived in [36]. We are able to improve
the results from [36] in the radially symmetric case for space dimensions d = 2, 3 and
d ≥ 8, see Figure 2.3. Our main contribution is that the range of parameters α leading to
entropies is larger than in [36].

It is known from [35] that the bounds 0 ≤ α ≤ 3/2 are optimal if d = 1. We prove
in Section 2.5 that in dimension d = 2, no entropies exist for α ≤ 0, and that the lower
bound α = (d− 4)/(2d− 4) is optimal for d ≥ 8.
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Figure 2.2: DLSS equation: Values of c as a function of d and α.
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Figure 2.3: DLSS equation: Values of c as a function of α. The solid line represents the
values from Theorem 2.2, the dashed line those from [36]. Here, l = 2(8−

√
15)/17.

Theorem 2.3 (Sixth-order quantum diffusion equation). Let n be a radially symmetric
smooth and positive solution to the sixth-order quantum diffusion equation:

∂tn− div

(
n∇
(1

2
(∂2
jk log n)2 +

1

n
∂2
jk(n∂

2
jk log n)

))
= 0 in Ω, for t > 0, (2.8)

∇n · ν = n∇
(∆
√
n√
n

)
· ν = n∇

(1

2
(∂2
jk log n)2 +

1

n
∂2
jk(n∂

2
jk log n)

)
· ν = 0 on ∂Ω. (2.9)

Then the functionals Eα, defined in (2.2), are entropies if

d = 1 and 0.1927 . . . ≤ α ≤ 1.1572 . . . ,

d = 2 and 0.2827 . . . ≤ α ≤ 1.0982 . . . ,

d = 3 and 0.3470 . . . ≤ α ≤ 1.0517 . . . ,

d = 4 and 0.3968 . . . ≤ α ≤ 1.0123 . . . ,

d = 5 and 0.4380 . . . ≤ α ≤ 0.9775 . . . .
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Moreover, in dimensions d = 1, . . . , 4 and for α = 1, the entropy production inequality
(2.1) holds for some c > 0 if one chooses

Q1[n] =

∫

Ω

(
|∇∆
√
n|2 + |∇ 6

√
n|6
)
dx. (2.10)

The bounds for α are roots of certain polynomials and can be determined only numer-
ically, see Figure 2.4. The Lyapunov property of Eα for α = 1 and d = 1 is proved in
[37]. The proof of this property for α 6= 1 and d > 1 as well as the entropy production
inequality are new. Interestingly, it seems that the logarithmic functional E1 is no longer
a Lyapunov functional for the sixth-order equation in (the unphysical) space dimensions
higher than 4. We remark that in dimension d = 2, the results from Section 2.5 show that
there are no entropies if α > 4/3.

0

0.3

0.6

0.9

1.2

α

1 2 3 4 5
d

upper bounds

lower bounds

Figure 2.4: Sixth-order quantum diffusion equation: Upper and lower bounds for α de-
pending on the dimension d.

The chapter is organized as follows. The algebraic formalism is developed in Section 2.2.
Section 2.3.2 is devoted to the proof of two auxiliary results about quadratic polynomials.
The proofs for Theorems 2.1 to 2.3 are given in Section 2.4. In Section 2.5, a sufficient
condition is provided under which Eα is not an entropy.

2.2 Decision problem and shift polynomials

In this section, we establish the connection between the analytical problem of proving
entropy production inequalities (2.1) and an algebraic problem about the non-negativity
of certain polynomials. This correspondence — which is summarized in Lemma 2.5 below
— constitutes an extension of the ideas previously developed for entropy estimates in one
spatial dimension [35]; see also [45] for an alternative approach. The proof of the main
theorems are then obtained by solution of the associated algebraic problems.
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2.2.1 Formulation as a decision problem

To start with, let us introduce some notation. First, observe that n : Ω→ R+ is a smooth
and positive radially symmetric function if and only if there exists some

u ∈ U :=
{
u ∈ C∞([0, 1];R+)

∣∣ ∂mr
∣∣
r=0

u(r) = 0 for all odd m ∈ N
}

such that n(x) = u(r) with r = |x| for all x ∈ Ω = Bd. We shall refer to u as the (radial)
reduction of n, and to n as the (radially symmetric) extension of u.

Throughout this article, η and ξ1, ξ2, . . . denote real variables. For k ∈ N, let Σk be the
linear span of all monomials ηsξp11 · · · ξpkk satisfying s+1 ·p1 + · · ·+k ·pk = k. Alternatively,
one can define Σk as the set of polynomials P in (η, ξ1, . . . , ξk) with the homogeneity
property

P (λη, λξ1, λ
2ξ2, . . . , λ

kξk) = λkP (η, ξ1, ξ2, . . . , ξk) (2.11)

for all λ ∈ R. To any P ∈ Σk, we associate a non-linear differential operator DP of order
less or equal to k by

DP [u, r] = P

(
1

r
,
∂ru

u
(r), . . . ,

∂kru

u
(r)

)

acting on functions u ∈ U .
The key point behind this formalism is that the reductions u(t; r) of radially symmetric

solutions n(t;x) to the evolution equations under consideration satisfy equations of the
form

∂tu+ r−(d−1)∂r
(
rd−1uβ+1 DP [u, r]

)
= 0, t > 0, (2.12)

where β ∈ R is a parameter, P ∈ ΣK−1 and K is order of the equation.

Example 2.4. Recall the representation of the gradient, divergence and Laplacian in radial
coordinates: If W (x) = w(r) is a radially symmetric function on Ω = Bd, and er = x/r is
the unit vector in radial direction, then

∇xW (x) = wr(r)er, divx(W (x)er) = wr(r) +
d− 1

r
w(r) = r−(d−1)∂r

(
rd−1w(r)

)
,

and, in combination,

∆xW (x) = wrr(r) +
d− 1

r
wr(r) =: ∆rw(r).

For our examples, this leads to the following:

(A) A radially symmetric solution n(t;x) = u(t; r) to the thin-film equation (2.4) satisfies:

∂tn = − divx(n
β∇x∆xn) = − divx

[
uβ+1

(
urrr
u

+
d− 1

r

(urr
u
− ur
ru

))
er

]
.

This equation is of the form (2.12), with

P (η, ξ) = ξ3 + (d− 1)
(
ηξ2 − η2ξ1

)
.
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(B) A radially symmetric solution to the DLSS equation (2.6) satisfies:

∂tn = − divx

[
n∇x

(
∆x

√
n√
n

)]
= − divx

[
u ∂r

(
(
√
u)rr√
u

+
d− 1

r

(
√
u)r√
u

)
er

]

= − divx

[
u

(
1

2

urrr
u
− urr

u

ur
u

+
1

2

u3
r

u3
+
d− 1

2r

(
urr
u
− u2

r

u2
− ur
ru

))
er

]
.

Also this equation is of the form (2.12), with β = 0 and

P (η, ξ) =
1

2

(
ξ3 − 2ξ2ξ1 + ξ3

1 + (d− 1)(ηξ2 − ηξ2
1 − η2ξ1)

)
.

(C) If n(t;x) = u(t; r) is a radially symmetric solution to the sixth order equation (2.8),
then tedious but straightforward computations show that ∂tn = divx(uG(u)er),
where

G(u) = −6
u5
r

u5
+ 18

u3
r

u3

urr
u
− 11

ur
u

u2
rr

u2
− 8

u2
r urrr
u

+ 3
ur
u

urrrr
u

+ 5
urr
u

urrr
u
− urrrrr

u

− (d− 1)
1

r

(
−6

u4
r

u4
+ (2d− 7)

1

r

u3
r

u3
+ 14

u2
r

u2

urr
u

+ (3d− 8)
1

r2

u2
r

u2
− 4

u2
rr

u2

− 3(d− 4)
1

r

ur
u

urr
u
− 6

ur
u

urrr
u

+ 3(d− 3)
1

r3

ur
u
− 3(d− 3)

1

r2

urr
u

+ (d− 5)
1

r

urrr
u

+ 2
urrrr
u

)
.

In principle, one can easily deduce the correct choice of P from here.

Equation (2.12) is supplemented by initial conditions at t = 0,

u(0, r) = u0(r). (2.13)

For the fourth order equations (K = 4), homogeneous Neumann and no-flux boundary
conditions are assumed,

ur(r) = 0, rd−1 DP [u, r] = 0 at r = 0 and r = 1. (2.14)

An additional boundary conditions will be specified for the sixth-order equation (2.8), when
K = 6.

Notice that the Neumann condition at r = 0 is already implied by u ∈ U . On the other
hand, the no-flux condition at r = 0 is in general not trivially satisfied since DP [u, r] might
contain terms with negative powers of r. More precisely, the condition is that

lim
r↓0

(
rd−1 DP [u, r]

)
= 0.
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In terms of the radially symmetric extension n(t;x) = u(t; r), the homogeneous Neumann
and no-flux boundary conditions (2.14) for an equation of the form ∂tn = divx(n

β+1G(n))
correspond to

ν · ∇n(t;x) = 0, ν · nβ+1G(n) = 0 for all x ∈ ∂Ω and t > 0,

with ν = er denoting the outer normal vector at the boundary of the unit sphere.
For radially symmetric solutions n(t;x) = u(t; r), the entropy functionals in (2.2) be-

come

Eα[n(t)] =
ωd

α(α− 1)

∫ 1

0

u(t; r)αrd−1dr,

where ωd is the surface of the unit sphere in Rd. For the time derivative along (2.12), one
calculates

d

dt
Eα[n(t)] =

ωd
α− 1

∫ 1

0

u(t; r)α−1∂tu(t; r)rd−1dr

= −ωd
∫ 1

0

uα+β

(
−∂ru

u

)
P

(
1

r
,
∂ru

u
, . . . ,

∂K−1
r u

u

)
rd−1dr, (2.15)

where the no-flux boundary conditions in (2.14) have been taken into account. The inte-
grand in (2.15) is again of polynomial structure: defining S0 ∈ ΣK by

S0(η, ξ) = −ξ1P (η, ξ1, . . . , ξK−1),

one can write

d

dt
Eα[n(t)] = −ωdI0[u(t)] with I0[u(t)] :=

∫ 1

0

u(t; r)α+β DS0 [u(t), r]rd−1dr. (2.16)

Following [35], we call S0 the canonical symbol that characterizes the dissipation of Eα by
(2.12).

Recall that the primary goal is to identify — for a given equation of the form (2.12)
— those entropies Eα which are monotone in time along all smooth radially symmetric
solutions. Thus, we wish to determine values α ∈ R such that the corresponding functional
I0 in (2.16) is nonnegative on U . To prove nonnegativity, we apply integration by parts to
the integral expression for I0 in a systematic way that we explain now.

Let γ ∈ R and a polynomial R ∈ ΣK−1 be given. Introduce the divergence T = δγR as
the unique element T ∈ ΣK which satisfies

∂r
(
rd−1u(r)γ DR[u, r]

)
= rd−1u(r)γ DT [u, r]

for all u ∈ U . Formally, δγ : ΣK−1 → ΣK is a linear map that acts on monomials
R(η, ξ) = ηsξp11 · · · ξpK−1

K−1 as follows,

δγR(η, ξ) =
[
(d− 1− s)η + (γ − p1 − · · · − pK−1)ξ1 + p1

ξ2

ξ1

+ · · ·+ pK−1
ξK
ξK−1

]
R(η, ξ).

(2.17)
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For S = S0 + T with T = δγR, where γ = α + β and R ∈ ΣK−1, it follows by the
fundamental theorem of calculus that

I[u] :=

∫ 1

0

u(r)α+β DS[u, r]rd−1dr =

∫ 1

0

u(r)α+β
(

DS0 [u, r] + DT [u, r]
)
rd−1dr

= I0[u] +
[
u(r)α+β DR[u, r]rd−1

]r=1

r=0
.

Assuming that u satisfies boundary conditions which imply in particular that

rd−1 DR[u, r] = 0 at r = 1 and for r ↓ 0, (2.18)

then I[u] = I0[u], i.e., the replacement S0 7→ S = S0 + T modifies the integrand but
does not change the value of the integral. Hence, if there exists an R ∈ ΣK−1 for which
S = S0+δα+βR is a nonnegative polynomial, then it follows that I0[u] = I[u] is nonnegative
for all u ∈ U that satisfy (2.18). Consequently, if the boundary conditions (2.14) for (2.12)
imply (2.18), then Eα[n(t)] is monotone in time for all smooth radially symmetric solutions.

In practice, it is more convenient to work directly with the polynomials T = δγR ∈ ΣK

rather than with their pre-images R ∈ ΣK−1. Let R1 to Rm be a collection of linearly
independent polynomials in ΣK−1 for which (2.18) holds; we refer to Section 2.2.2 below
for details on how to select appropriate R’s. Denote by T1 = δγR1 to Tm = δγRm their
respective divergences, which can be explicitly calculated using the rule (2.17) above. In
analogy to [35], we call them shift polynomials. In conclusion of our discussion, the following
is now obvious.

Lemma 2.5. If the algebraic decision problem

∃c1, . . . , cm ∈ R : ∀(η, ξ) ∈ RK+1 :
(
S0 + c1T1 + · · ·+ cmTm

)
(η, ξ) ≥ 0 (2.19)

can be solved affirmatively, then Eα is a Lyapunov functional for (2.12).

Algebraic decision problems of the type (2.19) are solvable in an algorithmic way; this
is discussed in Section 2.3 below. We remark that it would suffice to prove (2.19) for all
ξ ∈ RK and positive η ∈ R only, since η = 1/r > 0. However, since both S0 and the Tj
satisfy the homogeneity property (2.11) with an even K, their values at (η, ξ) and (−η,−ξ)
agree; thus, (2.19) is true under the restriction η > 0 if and only if it is true without this
restriction. We prefer to work directly with (2.19).

2.2.2 Determination of the shift polynomials

The next goal is the following. For the boundary conditions at ∂Ω as prescribed in Theo-
rems 2.1 to 2.3, we shall compose a list of linearly independent shift polynomials T ∈ ΣK .
Recall that shift polynomials are divergencies T = δγR of polynomials R ∈ ΣK−1 satisfying
the relations (2.18). Consequently, the key is to characterize these R in a systematic way
and select among all of them those, which satisfy (2.18) in all dimensions d ≥ 1 and give
rise to “useful” (in a specific sense explained below) shift polynomials.
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To begin with, we discuss the case K = 4 of the DLSS and the thin-film equation.
First, we use that fact that u ∈ U satisfies homogeneous Neumann boundary conditions,

ur(0) = ur(1) = 0. (2.20)

We wish to find all polynomials R ∈ ΣK−1 = Σ3 for which (2.18) holds. To this end,
observe that

(
rd−1 DR[u, r]

)∣∣
r=1

= R
(

1, 0,
urr(1)

u(1)
, . . .

)
.

Observe further that R(1, 0, ξ2, ξ3) = 0 for arbitrary ξ2 and ξ3 if and only if R can be
factored in the form R(η, ξ1, ξ2, ξ3) = ξ1Q(η, ξ1, ξ2) with some Q ∈ Σ2. Among polynomials
R of this type, it remains to single out those for which also

lim
r↓0

(
rd−1 DR[u, r]

)
= 0. (2.21)

Since Σ2 is spanned by ξ2, ξ2
1 , ηξ1, and η2, we need to investigate (2.21) for R1 = ξ1ξ2,

R2 = ξ3
1 , R3 = ηξ2

1 , and R4 = η2ξ1, respectively. Since R1 and R2 are independent of η,
both satisfy (2.21). Further, by l’Hospital’s rule, and since ur(0) = 0 and d ≥ 1,

lim
r↓0

(
rd−1 DR3 [u, r]

)
= lim

r↓0

(ur(r)
r

rd−1ur(r)

u(r)2

)
=
ur(0)urr(0)

u(0)2
lim
r↓0

rd−1 = 0,

lim
r↓0

(
rd−1 DR4 [u, r]

)
= lim

r↓0

(ur(r)
r

rd−2

u(r)2

)
=
urr(0)

u(0)
lim
r↓0

rd−2.

The second limit does not vanish in dimensions d = 1 and d = 2. Therefore, we shall not
use R4 for further computations.

According to (2.17), the corresponding shift polynomials are

T1(η, ξ) = δα+βR1(η, ξ) = (α + β − 2)ξ2
1ξ2 + ξ1ξ3 + ξ2

2 + (d− 1)ηξ1ξ2, (2.22)

T2(η, ξ) = δα+βR2(η, ξ) = (α + β − 3)ξ4
1 + 3ξ2

1ξ2 + (d− 1)ηξ3
1 , (2.23)

T3(η, ξ) = δα+βR3(η, ξ) = (α + β − 2)ηξ3
1 + (d− 2)η2ξ2

1 + 2ηξ1ξ2. (2.24)

This finishes the discussion of the homogeneous Neumann boundary conditions (2.20) for
equations of order K = 4.

Next, we continue to assume K = 4, and we recall that u ∈ U also satisfies no-flux
boundary conditions, i.e.,

rd−1 DP [u, r] = 0 at r = 0 and r = 1

with the corresponding polynomials P ∈ Σ3 given in Example 2.4 (A) and (B). Thus,
trivially, P itself satisfies (2.18), giving rise to the shift polynomial T4 = δα+βP . However,
it is easily seen that T4 is of no use for our calculations: The coefficient of ξ3 in the
polynomial P is positive, so the coefficient of ξ4 in T4 is positive as well. Recalling that
S0 = −ξ1P does not contain ξ4 at all, it follows that S = S0 + c4T4 diverges to −∞ as
ξ4 → ±∞ if c4 ≶ 0 (keeping η, ξ1, ξ2 and ξ3 fixed). Hence, for S = S0 + c4T4 to have a
definite sign, it is required that c4 = 0. Consequently, we omit T4 in the following.
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Remark 2.6. The argument is not completely conclusive, since there could be another shift
polynomial T5 ∈ Σ4 for which T4 + T5 is non-trivial and does not contain ξ4. In fact, this
cannot happen in the context of radially symmetric solutions, but cancellations of this type
do occur when dealing with general multi-dimensional solutions.

We turn to the sixth-order equation (2.8) and start again with the discussion of homo-
geneous Neumann boundary conditions (2.20). Arguing as for K = 4 above, it suffices to
consider polynomials R of the form Ri(ξ, η) = ξ1Q(ξ, η) with Q ∈ ΣK−2 = Σ4, There are
12 such polynomials, listed in Table 2.1 below.

Remark 2.7. Observe that the 5-tuples (p1, . . . , p5) in the table represent precisely the
integer partitions of 5 − s with p1 ≥ 1. Generally, for a differential operator of order K,
one would find (K − 1)-tuples of integer partitions. This indicates the rapid growth of the
number of shift polynomials with K.

# s p1 p2 p3 p4 p5

1 0 5 0 0 0 0
2 0 3 1 0 0 0
3 0 1 2 0 0 0
4 0 2 0 1 0 0
5 0 1 0 0 1 0
6 1 4 0 0 0 0
7 1 2 1 0 0 0
8 1 1 0 1 0 0
9 2 3 0 0 0 0
10 2 1 1 0 0 0
11 3 2 0 0 0 0
12 4 1 0 0 0 0

Table 2.1: Exponents of the monomials ηsξp11 · · · ξp55 satisfying s+ p1 + 2p2 + · · ·+ 5 · p5 = 5
and p1 ≥ 1.

We investigate the limits (2.21) corresponding to these Ri. For R8 = ηξ1ξ3, R9 = η2ξ3
1 ,

R10 = η2ξ1ξ2, R11 = η3ξ2
1 , and R12 = η4ξ1, respectively, one obtains by l’Hospital’s rule

(using that ur(0) = urrr(0) = 0 for all u ∈ U) that

lim
r↓0

(
rd−1 DR8 [u, r]

)
= lim

r↓0

(ur(r)
r

rd−1urrr(r)

u(r)2

)
=
urr(0)urrrr(0)

u(0)2
lim
r↓0

rd = 0,

lim
r↓0

(
rd−1 DR9 [u, r]

)
= lim

r↓0

(ur(r)3

r3

rd

u(r)3

)
=

(
urr(0)

u(0)

)3

lim
r↓0

rd = 0,

lim
r↓0

(
rd−1 DR10 [u, r]

)
= lim

r↓0

(ur(r)
r

rd−2urr(r)

u(r)2

)
=

(
urr(0)

u(0)

)2

lim
r↓0

rd−2,
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lim
r↓0

(
rd−1 DR11 [u, r]

)
= lim

r↓0

(ur(r)2

r2

rd−2

u(r)2

)
=

(
urr(0)

u(0)

)2

lim
r↓0

rd−2,

lim
r↓0

(
rd−1 DR12 [u, r]

)
= lim

r↓0

(ur(r)
r

rd−4

u(r)

)
=
urr(0)

u(0)
lim
r↓0

rd−4.

The limits corresponding to R10, R11 and R12 do not vanish in general in dimensions
d = 1 or d = 2; we thus shall not use these mononomials directly for the derivation of
shift polynomials; however, we will employ a suitable linear combination of them below.
Omitting the analogous calculation, we remark that (2.21) is also satisfied for R6 = ηξ4

1

and R7 = ηξ2
1ξ2 in d ≥ 1. For all the remaining monomials R1 to R5, property (2.21) holds

trivially since these Ri are independent of η.
Since equation (2.8) is of sixth order, additional boundary conditions can be imposed.

We choose

∇
(

∆
√
n√
n

)
· ν = 0 on ∂Ω.

In terms of the reduction u, this means that we assume

urrr(r)

u(r)
+ (d− 1)

urr(r)

ru(r)
= 0 at r = 1. (2.25)

There are polynomials R ∈ Σ5 for which rd−1 DR[u, r] vanishes for r ↓ 0 and at r = 1
because of (2.25), and not on grounds of the homogeneous Neumann conditions alone. In
analogy to the case of Neumann boundary data, these polynomials can be written in the
form R(η, ξ) = (ξ3 + (d − 1)ξ2η)Q(η, ξ) with an appropriate Q ∈ Σ2. There is no need to
consider Q = ξ2

1 , since then R contains ξ1 as a factor, and this has already been investigated
above. It is easily seen that the choice R = (ξ3 + (d − 1)ηξ2)η2 does not satisfy (2.18) in
dimension d = 1. On the other hand, R∗ = (ξ3 + (d− 1)ηξ2)ξ2 gives

lim
r↓0

(
rd−1 DR∗ [u, r]

)
= lim

r↓0

rd−1urr(r)urrr(r)

u(r)2
+

(
urr(0)

u(0)

)2

lim
r↓0

rd−2

=
urr(0)urrrr(0)

u(0)2
lim
r↓0

rd +

(
urr(0)

u(0)

)2

lim
r↓0

rd−2.

While the first term vanishes in all dimensions d ≥ 1, the second diverges for d = 1 or is
finite but generally nonzero for d = 2. However, it can be annihilated by a suitable linear
combination of R10 and R11. Indeed, replacing R10 by

R′10(η, ξ) := (d− 1)η2ξ1ξ2 − 2(d− 1)η3ξ2
1 + (ξ3 + (d− 1)ηξ2)ξ2,

it is now easily verfied that R′10 has the property (2.18). Finally, the shift polynomial
arising from the no-flux boundary condition is neglected for the same reason as in the case
K = 4 above.
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In summary, we shall use the following expressions for the definition of the shift poly-
nomials:

R1 = ξ5
1 , R2 = ξ3

1ξ2, R3 = ξ1ξ
2
2 , R4 = ξ2

1ξ3, R5 = ξ1ξ4,

R6 = ηξ4
1 , R7 = ηξ2

1ξ2, R8 = ηξ1ξ3, R9 = η2ξ3
1 ,

R′10 = ξ2ξ3 + (d− 1)(η2ξ1ξ2 − 2η3ξ2
1 + ηξ2

2).

The corresponding shift polynomials read as follows:

T1(η, ξ) = (α + β − 5)ξ6
1 + 5ξ4

1ξ2 + (d− 1)ηξ5
1 , (2.26)

T2(η, ξ) = (α + β − 4)ξ4
1ξ2 + 3ξ2

1ξ
2
2 + ξ3

1ξ3 + (d− 1)ηξ3
1ξ2, (2.27)

T3(η, ξ) = (α + β − 3)ξ2
1ξ

2
2 + ξ3

2 + 2ξ1ξ2ξ3 + (d− 1)ηξ1ξ
2
2 , (2.28)

T4(η, ξ) = (α + β − 3)ξ3
1ξ3 + 2ξ1ξ2ξ3 + ξ2

1ξ4 + (d− 1)ηξ2
1ξ3, (2.29)

T5(η, ξ) = (α + β − 2)ξ2
1ξ4 + ξ1ξ5 + ξ2ξ4 + (d− 1)ηξ1ξ4, (2.30)

T6(η, ξ) = (α + β − 4)ηξ5
1 + 4ηξ3

1ξ2 + (d− 2)η2ξ4
1 , (2.31)

T7(η, ξ) = (α + β − 3)ηξ3
1ξ2 + 2ηξ1ξ

2
2 + ηξ2

1ξ3 + (d− 2)η2ξ2
1ξ2, (2.32)

T8(η, ξ) = (α + β − 2)ηξ2
1ξ3 + ηξ2ξ3 + ηξ1ξ4 + (d− 2)η2ξ1ξ3, (2.33)

T9(η, ξ) = (α + β − 3)η2ξ4
1 + 3η2ξ2

1ξ2 + (d− 3)η3ξ3
1 , (2.34)

T10(η, ξ) = ξ2ξ4 + ξ2
3 + (α + β − 2)ξ1ξ2ξ3 + (d− 1)(α + β − 2)ηξ1ξ

2
2 (2.35)

+ 3(d− 1)ηξ2ξ3 + (d− 1)η2ξ1ξ3 + (d− 1)2η2ξ2
2 + (d− 1)(α + β − 2)η2ξ2

1ξ2

+ (d− 1)(d− 7)η3ξ1ξ2 − 2(d− 1)(α + β − 2)η3ξ3
1 − 2(d− 1)(d− 4)η4ξ2

1 .

2.3 Solution of the algebraic problem

We discuss the solution of the algebraic problem derived in the previous section and we
solve two easy quantifier elimination problems.

2.3.1 Quantifier elimination and sum of squares

The algebraic problem stated in Lemma 2.5 is of quantifier elimination type: one is given a
statement about a polynomial inequality with quantifiers over certain polynomial variables,
and one wishes to find an equivalent formula in which all quantified variables are eliminated.
Specifically, in (2.19), all variables except α are quantified, and one wants to derive a
statement that involves α only. The latter statement provides the range of parameter
value α such that Eα is an entropy.

Problems of this kind have been studied extensively in (real) algebraic geometry. In his
pioneering work [59], Tarski has proven that a quantified formula for polynomial inequali-
ties can be reduced to a quantifier free formula (for another set of polynomial inequalities)
in an algorithmic way. He even proposed such an algorithm, which, however, is rather
impractical. Nowadays, a variety of computer algebra tools are available that perform
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quantifier elimination efficiently. Most of them are based on cylindrical algebraic decom-
position (CAD), which was originally introduced by Collins [16] and has since then been
improved by various authors. Quantifier elimination performed by a computer with such
an algorithm is equivalent to a genuine proof (to the extend to which one is willing to
accept computer-aided proofs at all).

For the solution of the problems arising in the proofs of Theorems 2.1 to 2.3, we have
made use of the command Reduce provided by the computer algebra software Mathematica,
which uses an implementation of CAD. For Theorems 2.1 and 2.2, it has a posteriori —
i.e., knowing from the Mathematica’s result what the solution should be — been possible
to write down an explicit proof, choosing suitable values for the variables ci and applying
Lemma 2.8 and 2.9 below. For Theorem 2.3, the effort of giving an explicit proof would
have been too large, so instead, the output of Mathematica is presented in Appendix B.

A remark on the (im)possible extension of our method to more complicated equations is
in order here. The main problem with the CAD-based algorithms is that their complexity
grows doubly exponentially in the number of polynomial variables (novel algorithms with
single exponential complexity, see e.g. [2], are not yet implemented). This limits the type
of problems that can be dealt with in practice. The calculations involved in the computer-
aided proof of Theorem 2.3 appear to be already at the edge of feasability. In fact, the
solution with Mathematica was only possible after performing a priori simplifications of
the problem. Entropy calculations for PDEs of order K = 8 are currently out of reach.

An alternative — more efficient but less rigorous — approach to the solution of the
specific decision problem (2.19) is provided by sum-of-squares (SOS) decompositions. In-
stead of verifying the existence of decision variables c1 to cm for which the polynomial
Sc := S0 + c1T1 + · · · + cmTm is non-negative for all (η, ξ) ∈ RK+1, one tries to determine
specific values of the ci such that Sc can be written as the sum of squares of polynomials in
(η, ξ). The existence of such an SOS decomposition for Sc clearly implies its non-negativity,
but it is in general far from being equivalent. The reformulation of (2.19) as an SOS prob-
lem allows for its approximate solution by application of efficient numerical optimization
tools, also in situations where the complexity for CAD would be by far too high.

In contrast to the quantifier elimination algorithms discussed before, the numerical
SOS method never delivers a proof of the statement, and its results will in general be sub-
optimal due to the non-equivalence of positivity and the existence of a SOS decomposition.
However, the SOS approach often reveals invaluable information about the suitable choice
of the decision variables ci, and this information can later be used for the simplification in
the (rigorous) quantifier elimination. For a priori simplifications in the proof of Theorem
2.3, we have employed the Matlab tool yalmip [48], see Remark 2.10.

2.3.2 Two auxiliary lemmas

In this section, we solve two easy quantifier elimination problems by elementary means.
These results will be useful later to perform the proofs for Theorems 2.1 and 2.2 completely
explicitly, and to reduce the computational effort for proving Theorem 2.3 with computer
aid.
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Lemma 2.8. Let

P (η, ξ1, ξ2) = a1ξ
4
1 + a2ξ

2
1ξ2 + a3ξ

2
2 + a4ηξ

3
1 + a5η

2ξ2
1 + a6ηξ1ξ2

be a polynomial with real coefficients. Then the quantified formula

∀(η, ξ1, ξ2) ∈ R3 : P (η, ξ1, ξ2) ≥ 0 (2.36)

is equivalent to the quantifier free formula

either a3 > 0 and[
(4a3a5 − a2

6 > 0 and 4a1a3a5 − a3a
2
4 − a2

2a5 − a1a
2
6 + a2a4a6 ≥ 0) or

(4a3a5 − a2
6 = 2a4a3 − a2a6 = 0 and 4a3a1 − a2

2 ≥ 0)
]

(2.37)

or a3 = 0 and a2 = a6 = 0 and[
(a5 > 0 and 4a5a1 − a2

4 ≥ 0) or (a4 = a5 = 0 and a1 ≥ 0)
]
.

Proof. The polynomial P is nonnegative on the hyperplane ξ1 = 0 if and only if a3 ≥ 0.
For ξ1 6= 0, formula (2.36) is equivalent to the statement that the quadratic polynomial

p(x1, x2) = a1 + a2x2 + a3x
2
2 + a4x1 + a5x

2
1 + a6x1x2

is nonnegative for all real values x1 = η/ξ1 and x2 = ξ2/ξ
2
1 . For fixed x∗1 ∈ R, the quadratic

polynomial in x2,

p(x∗1, x2) = (a1 + a4x
∗
1 + a5(x∗1)2) + (a2 + a6x

∗
1)x2 + a3x

2
2,

is nonnegative if and only if

either a3 > 0 and q1(x∗1) := 4a3(a1 + a4x
∗
1 + a5(x∗1)2)− (a2 + a6x

∗
1)2 ≥ 0

or a3 = 0 and q2(x∗1) := a2 + a6x
∗
1 = 0 and q3(x∗1) := a1 + a4x

∗
1 + a5(x∗1)2 ≥ 0.

(2.38)

Therefore, p(x1, x2) is nonnegative if and only if q1(x1) ≥ 0 or if q2(x1) = 0 and q3(x1) ≥ 0
for all x1 ∈ R. The polynomial

q1(x1) = 4a3a1 − a2
2 + 2(2a3a4 − a2a6)x1 + (4a3a5 − a2

6)x2
1

is nonnegative if and only if

either 4a3a5 − a2
6 > 0 and (4a3a5 − a2

6)(4a3a1 − a2
2)− (2a3a4 − a2a6)2 ≥ 0

or 4a3a5 − a2
6 = 2a4a3 − a2a6 = 0 and 4a3a1 − a2

2 ≥ 0.

The polynomial q2 vanishes on R if and only if a2 = a6 = 0, and q3(x1) = a1 + a4x1 + a5x
2
1

is nonnegative if and only if

either a5 > 0 and 4a5a1 − a2
4 ≥ 0

or a4 = a5 = 0 and a1 ≥ 0.

Inserting these statements into (2.38) yields (2.37).
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Lemma 2.9. Let the polynomial P (x) = b0 + b1x + b2x
2 with b2 ≥ 0 and real numbers

z1 < z2 be given. Then the quantified formula

∃x ∈ (z1, z2) : P (x) ≤ 0 (2.39)

is equivalent to the quantifier free expression

either b2 > 0 and
[
b0 + b1z1 + b2z

2
1 < 0 or (4b0b2 − b2

1 ≤ 0 and 2b2z1 + b1 < 0)
]

and
[
b0 + b1z2 + b2z

2
2 < 0 or (4b0b2 − b2

1 ≤ 0 and 2b2z2 + b1 > 0)
]

or b2 = 0 and
[
(b1 > 0 and b0 + b1z1 < 0) or (b1 < 0 and b0 + b1z2 < 0)

or (b1 = 0 and b0 ≤ 0)
]
.

(2.40)

Proof. First assume that b2 > 0. Then the quadratic polynomial P is nonpositive in some
interval if and only if 4b0b2 − b2

1 ≤ 0 and exactly for those x which lie in between the
two real roots x± = (±

√
b2

1 − 4b0b2 − b1)/2b2. The statement (2.39) is then equivalent to
z1 < x+ and z2 > x−, which can be rephrased as the first two lines of (2.40). Indeed, if
z1 + b1/2b2 < 0 then z1 < x+ is always satisfied, and if z1 + b1/2b2 ≥ 0 then z1 < x+ is
equivalent to b0+b1z1+b2z

2
1 < 0. Notice that this inequality is satisfied only if 4b0b2−b2

1 ≤ 0.
If b2 = 0, then P is linear. If additionally b1 = 0, (2.39) is equivalent to b0 ≤ 0.

Therefore, let b1 6= 0. Then P vanishes at x0 = −b0/b1, and (2.39) is equivalent to z1 < x0

(if b1 > 0) or z2 > x0 (if b1 < 0). This leads to the last two lines of (2.40).

2.4 Proofs of the theorems

2.4.1 Proof of Theorem 2.1

By Example 2.4 (A) and (2.16), the canonical symbol of (2.4) reads as follows:

S0(η, ξ) = −ξ1ξ3 − (d− 1)ηξ1ξ2 + (d− 1)η2ξ2
1 .

We have to solve the decision problem

∃c1, c2, c3 ∈ R : ∀(η, ξ1, ξ2, ξ3) ∈ R4 : S(η, ξ) = (S0 + c1T1 + c2T2 + c3T3)(η, ξ) ≥ 0, (2.41)

where the shift polynomials T1, T2, and T3 are given by (2.22)-(2.24).
This problem can be simplified. Indeed, the variable ξ3 appears in S only in the term

ξ1ξ3, and its coefficient −1+ c1 has to vanish; otherwise, S(η, ξ) would become negative for
ξ1 ≡ 1 and ξ3 → ±∞ if c1 ≶ 1. Thus, c1 = 1, and the decision problem reduces to finding
c2, c3 ∈ R such that for all (η, ξ) = (η, ξ1, ξ2) ∈ R3,

S(η, ξ) = (S0 + T1 + c2T2 + c3T3)(η, ξ)

= a1ξ
4
1 + a2ξ

2
1ξ2 + a3ξ

2
2 + a4ηξ

3
1 + a5η

2ξ2
1 + a6ηξ1ξ2 ≥ 0,

where, setting γ = α + β,
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a1 = (γ − 3)c2, a2 = γ − 2 + 3c2, a3 = 1,
a4 = (γ − 2)c3 + (d− 1)c2, a5 = (d− 2)c3 + d− 1, a6 = 2c3.

In this proof, we perform the quantifier elimination explicitly, without computer aid. By
Lemma 2.8, this decision problem is equivalent to either

0 < 4a3a5 − a2
6 = −4(c3 + 1)(c3 − d+ 1) =: −4C, (2.42)

0 ≤ q(c2, c3) := 4a1a3a5 − a3a
2
4 − a2

2a5 − a1a
2
6 + a2a4a6 (2.43)

=
(
9C − (d− 3c3 − 1)2

)
c2

2 + 2Cγc2 + (γ − 2)2C

or

0 = 4a3a5 − a2
6 = −4(c3 + 1)(c3 − d+ 1), (2.44)

0 = 2a3a4 − a2a6 = 2c2(d− 3c3 − 1), (2.45)

0 ≤ 4a1a3 − a2
2 = 4(γ − 3)c2 − (3c2 + γ − 2)2 (2.46)

= −9
(
c2 +

γ

9

)2

+
8

9
(3− γ)

(
γ − 3

2

)
.

First, we solve (2.44)-(2.46). Equation (2.45) yields c2 = 0 or c3 = (d − 1)/3. Because of
(2.44), the latter case is only possible if d = 1. Let c2 = 0. Then (2.46) is fulfilled if and
only if γ = 2. On the other hand, if c3 = (d − 1)/3 (and hence, d = 1), the largest range
for γ fulfilling (2.46) is obtained by choosing the maximizing value c2 = −γ/9. With this
choice, (2.46) is fulfilled if and only if 3/2 ≤ γ ≤ 3. This shows that (2.44)-(2.46) holds for
some c2, c3 ∈ R if and only if d = 1 and 3/2 ≤ γ ≤ 3 or if d > 1 and γ = 2.

Next, we solve (2.42)-(2.43). The first inequality implies that −1 < c3 < d − 1. For
any fixed c3, the polynomial q(c2, c3) is quadratic in c2 with a strictly negative leading
coefficient (since C < 0 by (2.42)). Thus, there exists c2 ∈ R such that q(c2, c3) ≤ 0 if and
only if the discriminant of q(·, c3) is nonnegative:

0 ≤
(
2Cγ

)2 − 4
(
9C − (d− 3c3 − 1)2

)
(γ − 2)2C = 4C∆(c3),

where

∆(c3) = γ2c2
3 + 3(γ − 2)2(d− 4− γ2d)c3 + (γ − 2)2(d− 1)(d+ 8) + γ2 − γ2d.

Since C < 0, the discriminant is nonnegative if and only if the quadratic polynomial ∆(c3)
is nonpositive for some −1 < c3 < d − 1. By Lemma 2.9, this is the case if either d = 1
and 3/2 < γ < 3 or d > 1 and 3/2 ≤ γ ≤ 3. Thus, there exist c2 ∈ R, c3 ∈ (−1, d − 1)
such that (2.42)-(2.43) holds if and only if 3/2 ≤ γ ≤ 3. This shows that Eα are entropies
for all 3/2 ≤ α + β ≤ 3.

We wish to quantify the constant c > 0 in the entropy production inequality (2.1) for
the choice

Qα[n] =

∫

Ω

(
∆nγ/2

)2
dx = ωd

∫ 1

0

uγ DW [u, r]rd−1dr.
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The symbol W that characterizes Qα is

W (η, ξ) =
(γ

2

)2 (γ
2
− 1
)2

ξ4
1 + 2

(γ
2

)2 (γ
2
− 1
)
ξ2

1ξ2 +
(γ

2

)2

ξ2
2

+ 2(d− 1)
(γ

2

)2 (γ
2
− 1
)
ηξ3

1 + (d− 1)2
(γ

2

)2

η2ξ2
1 + 2(d− 1)

(γ
2

)2

ηξ1ξ2.

We wish to find the largest c > 0 for which there exist c2, c3 ∈ R such that for all
(η, ξ) = (η, ξ1, ξ2) ∈ R3 it holds

Sc(η, ξ) = (S − cW )(η, ξ) = a1ξ
4
1 + a2ξ

2
1ξ2 + a3ξ

2
2 + a4ηξ

3
1 + a5η

2ξ2
1 + a6ηξ1ξ2 ≥ 0,

where

a1 = (γ − 3)c2 − c
(γ

2

)2 (γ
2
− 1
)2

,

a2 = γ − 2 + 3c2 − 2c
(γ

2

)2 (γ
2
− 1
)
,

a3 = 1− c
(γ

2

)2

,

a4 = (γ − 2)c3 + (d− 1)c2 − 2c(d− 1)
(γ

2

)2 (γ
2
− 1
)
,

a5 = (d− 2)c3 + d− 1− c(d− 1)2
(γ

2

)2

,

a6 = 2c3 − 2c(d− 1)
(γ

2

)2

.

We consider the cases a3 > 0 and a3 = 0 separately. First, let a3 = 0, which is equivalent
to c = 4/γ2. By Lemma 2.8, we find that a2 = a6 = 0, which gives c2 = 0 and c3 = d− 1.
Furthermore, we obtain a5 = 0. Hence, by the same lemma, a4 = 0 and a1 = −(γ/2−1)2 ≥
0, implying that γ = 2. Next, let a3 > 0. By Lemma 2.8, the nonnegativity of Sc for certain
values c, c2, and c3 is equivalent to either

0 < 4a3a5 − a2
6 = −(c3 − d+ 1)(4c3 − γ2dc+ 4) =: −E, (2.47)

0 ≤ q(c2, c3, c) := 4a1a3a5 − a3a
2
4 − a2

2a5 − a1a
2
6 + a2a4a6 (2.48)

=
1

4− γ2c

(
9E − (2d− 2− 6c3 + γ2(d− 1))2c

)
c2

2 +
E

2
γc2 +

E

4
(γ − 2)2

or

0 = 4a3a5 − a2
6 = −(c3 − d+ 1)(4c3 − γ2cd+ 4), (2.49)

0 = 2a3a4 − a2a6 = c2

(
2d− 2− 6c3 + γ2c(d− 1)

)
, (2.50)

0 ≤ 4a1a3 − a2
2 = −9c2

2 +
γ

2
(γ2c− 4) +

1

2
(γ − 2)2(γ2c− 4) (2.51)

= −9
(
c2 −

γ

36
(γ2c− 4)

)2

+
1

144
(γ2c− 4)

(
γ4c+ 32γ2 + 144(1− γ)

)
.
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First, we solve (2.49)-(2.51). We obtain a maximal value for c by choosing c2 = γ(γ2c −
4)/36. Since a3 = 1 − γ2c/4 > 0 by assumption, we have c2 < 0. With this choice
of c2, condition (2.51) implies that c ≤ 16(2γ − 3)(3 − γ)/γ4. Furthermore, by (2.50),
c3 = (d− 1)(γ2c+ 2)/6. Condition (2.49) can be satisfied only if d = 1.

Next, we consider (2.47)-(2.48). The polynomial q(·, c3, c) is quadratic in c2 with a
negative leading coefficient (since a3 > 0). Hence, there exists c2 ∈ R such that q(c2, c3, c)
is nonnegative if and only if its discriminant D(c3, c) = E∆0(c3, c)/4 is nonnegative, where
E < 0 (by (2.47)) and

∆0(c3, c) = 4γ2c2
3 +

(
8γ2 + 12(γ − 2)2(d− 4)− 4γ2d− γ4cd

)
c3

+ 4(γ − 2)2(d− 1)(d+ 8)− 4γ2d+ 4γ2 − 4γ2c(γ − 2)2(d− 1)2 − γ4cd+ γ4cd2

is a quadratic polynomial in c3. Applying Lemma 2.9, we find that

if d = 1 and γ ∈
(

3

2
, 3

)
: c <

16

γ4
(2γ − 3)(3− γ);

if d > 1 and γ ∈
(

3

2
, 3

)
\{2} : c ≤ 16

γ4
(2γ − 3)(3− γ).

The case a3 = 0 provides the choice γ = 2 with c = 16/γ4 = 1. This proves the theorem.

2.4.2 Proof of Theorem 2.2

By Example 2.4 (B), the canonical symbol S0 for entropy dissipation along the DLSS
equation (2.6) is given by

S0(η, ξ) = −1

2
ξ1ξ3 + ξ2ξ

2
1 −

1

2
ξ4

1 −
1

2
(d− 1)ηξ1(ξ2 − ξ2

1 − ηξ1).

Again, we have to solve the decision problem (2.41). The same argument as in the previous
subsection shows that c1 = 1. Thus, we wish to find c2, c3 ∈ R such that for all (η, ξ) =
(η, ξ1, ξ2) ∈ R3,

2S(η, ξ) = a1ξ
4
1 + a2ξ

2
1ξ2 + a3ξ

2
2 + a4ηξ

3
1 + a5η

2ξ2
1 + a6ηξ1ξ2 ≥ 0,

where

a1 = (α− 3)c2 − 1, a2 = α + 3c2, a3 = 1,
a4 = (α− 2)c3 + (d− 1)(c2 + 1), a5 = (d− 2)c3 + d− 1, a6 = 2c3.

According to Lemma 2.8, the above decision problem is equivalent to either

0 < 4a3a5 − a2
6 = −4(c3 + 1)(c3 − d+ 1) =: −4C, (2.52)

0 ≤ q(c2, c3) := 4a1a3a5 − a3a
2
4 − a2

2a5 − a1a
2
6 + a2a4a6 (2.53)

=
(
9C − (d− 3c3 − 1)2

)
c2

2 − 2
(
d2 + 4d+ (d− 7)c3 − 5− αC

)
c2

+ α2C − d2 − 2d+ 4c3 + 3
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or

0 = 4a3a5 − a2
6 = −4(c3 + 1)(c3 − d+ 1), (2.54)

0 = 2a3a4 − a2a6 = −2(c2 + 2c3 + 3c2c3 + 1) + 2(c2 + 1)d, (2.55)

0 ≤ 4a1a3 − a2
2 = −4− α2 − 12c2 − 2αc2 − 9c2

2. (2.56)

First, we solve (2.54)-(2.56). Condition (2.54) implies that either c3 = −1 or c3 = d − 1.
In the former case, (2.55) gives c2 = −(d+ 1)/(d+ 2). Then (2.56) is equivalent to

α2 − 2(d+ 1)

d+ 2
α +

(d− 1)2

2(d+ 2)2
≤ 0,

which is satisfied if and only if

(
√
d− 1)2

d+ 2
≤ α ≤ (

√
d+ 1)2

d+ 2
. (2.57)

In the latter case c3 = d − 1, (2.55) is satisfied if d = 1 or if d > 1 and c2 = −1/2. If
d = 1, we choose the maximizing value c2 = −(α + 6)/9 for (2.56). Then, this inequality
is satisfied if and only if 0 ≤ α ≤ 3/2. On the other hand, if d > 1, (2.56) can be written
as α2 − α + 1/4 ≤ 0, which is satisfied if and only if α = 1/2. We have shown that the
decision problem is solvable if d = 1 and 0 ≤ α ≤ 3/2 or if d > 1 and (2.57) hold.

Next, we solve (2.52)-(2.53). The discriminantD(c3) of the quadratic polynomial q(·, c3)
factorizes as D(c3) = 4C∆(c3), where

∆(c3) = α2c2
3 + 2(α2(d− 5)− α(d− 7))c3 + (d2 + 6d− 7)α2

− 2α(d2 + 4d− 5) + (d− 1)2.

Notice that C < 0 by (2.52). An application of Lemma 2.9 shows that D(c3) is nonnegative
if d = 1 and 0 < α < 3/2, or d ∈ {2, 3} and (

√
d−1)2/(d+ 2) < α ≤ 3/2, or d ∈ {4, 5, 6, 7}

and (
√
d − 1)2/(d + 2) < α < (

√
d + 1)2/(d + 2), or d ≥ 8 and (d − 4)/(2d − 4) ≤ α <

(
√
d+ 1)2/(d+ 2). This proves that dEα/dt ≤ 0 if these conditions are satisfied.
The estimates for the entropy production term ωd

∫
(∆ru

α/2)2rd−1dr are obtained by
similar arguments as in the previous subsection. Therefore, we omit the lengthy proof here.

2.4.3 Proof of Theorem 2.3

The canonical symbol associated to the sixth-order equation (2.8) can be read off from the
representation of its radially symmetric solutions as given in Example 2.4 (C). One finds

S0(η, ξ) = 6ξ6
1 − 18ξ4

1ξ2 + 11ξ2
1ξ

2
2 + 8ξ3

1ξ3 − 3ξ2
1ξ4 − 5ξ1ξ2ξ3 + ξ1ξ5

+ (d− 1)
[
− 6ηξ5

1 + (2d− 7)η2ξ4
1 + 14ηξ3

1ξ2 + (3d− 8)η3ξ3
1 − 4ηξ1ξ

2
2

− 3(d− 4)η2ξ2
1ξ2 − 6ηξ2

1ξ3 + 3(d− 3)η4ξ2
1 − 3(d− 3)η3ξ1ξ2 + (d− 5)η2ξ1ξ3

+ 2ηξ1ξ4

]
.



34 CHAPTER 2. ENTROPIES FOR HIGHER-ORDER EQUATIONS

We have to solve the decision problem

∃c1, . . . , c10 ∈ R : ∀(η, ξ) : S(η, ξ) = (S0 + c1T1 + · · ·+ c10T10)(η, ξ) ≥ 0,

where the shift polynomials Ti are given by (2.26)-(2.35) with β = 0. Again, we can simplify
this problem by eliminating the terms whose sign cannot be controlled. We choose c3 = 0
to eliminate ξ3

2 , c5 = −1 to eliminate ξ1ξ5, c8 = −(d − 1) to eliminate ηξ1ξ4, c4 = α − 2
to eliminate ξ2

1ξ4, and c10 = 1 to eliminate the product ξ2ξ4 introduced by T5. With these
choices,

S(η, ξ) =
(
c1T1 + c2T2 + 0 · T3 + (α− 2)T4 + (−1) · T5 + c6T6 + c7T7 − (d− 1)T8

+ c9T9 + 1 · T10

)
(η, ξ)

=
(
(α− 5)c1 + 6

)
ξ6

1 +
(
5c1 + (α− 4)c2 − 18

)
ξ4

1ξ2 + (3c2 + 11)ξ2
1ξ

2
2

+
(
c2 + (α + 1)(α− 3) + 8

)
ξ3

1ξ3 + (3α− 5)ξ1ξ2ξ3

+
(
(α− 4)c6 + (d− 1)(c1 − 6)

)
ηξ5

1

+
(
(α− 3)c9 + (d− 2)c6 + (d− 1)(2d− 7)

)
η2ξ4

1

+
(
(α− 3)c7 + 4c6 + (d− 1)(c2 + 14)

)
ηξ3

1ξ2

+
(
(d− 3)c9 − 2(α− 2)(d− 1) + (d− 1)(3d− 8)

)
η3ξ3

1

+
(
2c7 + (α− 6)(d− 1)

)
ηξ1ξ

2
2

+
(
(α− 2)(d− 1) + 3c9 + (d− 2)c7 − 3(d− 1)(d− 4)

)
η2ξ2

1ξ2

+
(
c7 − 3(d− 1)

)
ηξ2

1ξ3 + (d− 1)2η4ξ2
1 − 2(d− 1)2η3ξ1ξ2

− 2(d− 1)η2ξ1ξ3 + 2(d− 1)ηξ2ξ3 + (d− 1)2η2ξ2
2 + ξ2

3 .

The corresponding decision problem contains the four variables η, ξ1, . . . , ξ3 and the five
coefficients c1, c2, c6, c7 and c9. For further simplification, we make a change of variables.
Let

ζ1 =
η

ξ1

, ζ2 =
ξ2

ξ2
1

− η

ξ1

, ζ3 =
ξ3

ξ3
1

− 3
η

ξ1

(
ξ2

ξ2
1

− η

ξ1

)
. (2.58)

These definitions are motivated by the observation that for any radially symmetric function
n(x) = u(r), the tensors ∇xn, ∇2

xn and ∇3
xn of the first, second and third total derivatives

take the form

∇xn(x) = uξ1er,

∇2
xn(x) = uξ2

1

(
ζ2er ⊗ er + ζ11

)
,

∇3
xn(x) = uξ3

1

(
ζ3er ⊗ er ⊗ er + ζ1ζ2er ⊗s 1),

where (er ⊗s 1)ijk = δijxk + δjkxi + δikxj. It turns out that S can be expressed in terms of
ζ = (ζ1, ζ2, ζ3) only. Furthermore, choosing c7 = −c9 = (α+1/2)(d−1) — see Remark 2.10
below — some higher-order terms cancel, and we end up with S1(ζ) = ξ6

1S(η, ξ), which
is defined in Appendix B in input line 6 of the Mathematica notebook. For any fixed ζ1
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and ζ2, the polynomial S1(ζ) is quadratic in ζ3, with leading coefficient equal to one. This
quadratic polynomial is nonnegative if and only if its discriminant

D(ζ1, ζ2) =
(
∂ζ3S1(ζ1, ζ2, 0)

)2 − 4S1(ζ1, ζ2, 0)

is nonpositive. Thus, the nonnegativity of S0 for some coefficients ci is reduced to the
following decision problem:

∃c1, c2, c6 ∈ R : ∀ζ1, ζ2 ∈ R : −D(ζ1, ζ2) ≥ 0.

The discriminant D(ζ1, ζ2) is again of quadratic type, now in terms of ζ1 and ζ2. Thus
Lemma 2.8 is applicable and yields several conditions on c1, c2 and c6 for the nonpositivity
of D. This nonlinear system of equations and inequalities is solved by the computer algebra
system Mathematica (see Appendix B for more details). As a result, we obtain, for given
dimension d ≥ 1, conditions on the admissible values of α. More precisely, α has to
be in between the numbers α0(d) and α1(d), and αi(d) are the positive roots of certain
higher-order polynomials which are explicit. Their roots, however, can be calculated only
numerically and are given in the statement of the theorem.

The entropy production

ωd

∫ 1

0

(
(∆r

√
u)2

r + ( 6
√
u)6

r

)
rd−1dr

is represented by the symbol

W (η, ξ) =
1

4

(
ξ3 −

3

2
ξ2ξ1 +

3

4
ξ3

1 + (d− 1)(ηξ2 −
1

2
ηξ2

1 − η2ξ1)
)2

+
1

46656
ξ6

1

=
ξ6

1

64

(
4ζ3 + (2ζ2 − 1)((2d+ 4)ζ1 − 3)

)2
+

ξ6
1

46656
=: ξ6

1W1(ζ).

Setting α = 1 in the definition of S1(ζ), we obtain the decision problem

∃c1, c2, c6 ∈ R, c > 0 : ∀ζ = (ζ1, ζ2, ζ3) ∈ R3 : S1(ζ)− cW1(ζ) ≥ 0.

Our solution strategy is the same as before. We observe that S1 − cW1 is a quadratic
polynomial in ζ3, and we calculate the respective discriminant. The latter turns out to be
quadratic in the remaining variables ζ1 and ζ2. Omitting the details, we remark that the
reduced decision problem for the discriminant is again solvable with the aid of Lemma 2.8
and Mathematica. This results in numerical values for c > 0 such that (2.1) holds.

Remark 2.10. The ad hoc choice of the coefficients c7 and c9 in the proof was originally
motivated by the numerical result for the SOS decomposition of S1 obtained with yalmip

[48]. There are several reasons to believe that this choice is indeed optimal: First, c9 = −c7

cancels the coefficient of the indefinite term ζ3
1 , which is obtained after rewriting S1 in terms

of (ζ1, ζ2, ζ3). Second, with c7 = (α + 1/2)(d − 1), the coefficient of the term ζ1ζ
2
2 in the

discriminant D(ζ1, ζ2) vanishes, such that the remaining polynomial becomes quadratic in
ζ1 and ζ2.
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2.5 Absence of entropies

Similarly as in [35, 45], it is possible to prove that certain functionals Eα cannot be en-
tropies. Below, we generalize Theorem 19 in [35] to the multidimensional, radially sym-
metric situation. Specifically, let γ ∈ R and S ∈ ΣK be given, and define

I[u] =

∫ 1

0

u(r)γ DS[u, r]rd−1dr.

Further, define the components of a vector ξ̄ ∈ RK by

ξ̄1 = σ, ξ̄2 = σ(σ − 1), . . . , ξ̄K = σ(σ − 1) · · · (σ −K + 1),

where σ = (K − d)/γ. By inserting (η, ξ) = (1, ξ̄) into formula (2.17), one easily verifies
that all shift polynomials Tk vanish at this particular point. Therefore, the values of any
two characteristic symbols S and S ′ coincide at (1, ξ̄). Hence, if the given S is negative
at (1, ξ̄), so is any affine combination S + c1T1 + · · · + cmTm. In this case, I[u] cannot be
written as an integral over a pointwise nonnegative expression by the method developed
before. This statement can be strengthened as follows.

Theorem 2.11. Assume that S(1, ξ̄) < 0. Then there exists a family of functions uε ∈ U
with uε(r) = 1 for r ∈ [2/3, 1] satisfying limε↓0 I[uε] = −∞.

The set U is defined on page 19. We remark that, since the functions uε are equal to
a positive constant for r > 2/3, they satisfy any homogeneous boundary condition that
involves derivatives at r = 1.

The principal idea for our definition of uε in (2.59) is borrowed from Laugesen’s con-
struction of a “trial function” in one space dimension [45]. Our definition and also the
proof of I[uε] → −∞ are more straight-forward, since we work under the assumption of
strict homogeneity (2.11); the proof in [45] has been designed for a slightly more general
situation. The functions uε are chosen as suitable ε-regularizations of the radially symmet-
ric power function ũ(x) = rσ. A purely formal calculation gives DS[r, ũ] = rγσ−KS(1, ξ̄)

and, even more formally, I[ũ] = S(1, ξ̄)
∫ 1

0
r−1dr = −∞. The rigorous calculations below

heavily exploit the marginal singularity of the r−1-integral for the estimation of the addi-
tional terms that originate from the regularization ũ→ uε; the argument would not work
for σ 6= (K − d)/γ.

Proof. Let a cut-off function φ ∈ C∞(R) with 0 ≤ φ ≤ 1 be given that satisfies

φ(r) = 1 for r ≤ 1/3 and φ(r) = 0 for r ≥ 2/3.

Choose ε ∈ (0, 1/2) arbitrary and define uε by

uε(r) = φ(r/ε) εσ + [1− φ(r/ε)]φ(r) rσ + 1− φ(r). (2.59)
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Clearly, uε is positive and of class C∞. Moreover, notice that uε(r) = 1 for 2/3 ≤ r ≤ 1 as
stated in the theorem. We need to evaluate the integral

I[uε] =

∫ 1

0

uε(r)
γ DP [uε, r]r

d−1dr.

This is done by splitting the domain [0, 1] into three intervals. To start with, let r ∈
[0, 2ε/3]. Then uε(r) = εσψ(r/ε), where ψ(ρ) = φ(ρ) + [1− φ(ρ)]ρσ, and consequently

∂kruε(r)

uε(r)
= ε−k

∂kρψ(ρ)

ψ(ρ)
,

with ρ = r/ε. The homogeneity (2.11) of S ∈ ΣK now implies

DS[uε, r] = ε−K DS[ψ, ρ].

Substitution of r = ερ under the integral leads to

I1 :=

∫ 2ε/3

0

uε(r)
γ DP [uε, r]r

d−1dr = εσγ−K+d

∫ 2/3

0

ψ(ρ)γ DP [ψ, ρ]ρd−1dρ.

Since ψ is positive and smooth, and all of its derivatives vanish at ρ = 0, the last integral
is well-defined and finite. In fact, the value of I1 is independent of ε, since σγ = K − d by
definition of σ.

Next, let r ∈ [2ε/3, 1/3] and notice that uε(r) = rσ. It follows that

∂kruε(r) = σ(σ − 1) · · · (σ − k + 1)rσ−k = r−kξ̄kuε(r).

Using the homogeneity (2.11) once again, we obtain DS[uε, r] = r−KS(1, ξ̄1, . . . , ξ̄K), and
thus

I2 : =

∫ 1/3

2ε/3

uε(r)
γ DS[uε, r]r

d−1dr = S(1, ξ̄1, . . . , ξ̄K)

∫ 1/3

2ε/3

rγσ+d−K dr

r

= S(1, ξ̄1, . . . , ξ̄K) ln[1/(2ε)].

Finally, for r ∈ [1/3, 1], the function uε(r) is smooth and positive, and does not depend on
ε > 0. In other words,

I3 :=

∫ 1

1/3

uε(r)
γ DS[uε, r]r

d−1dr

is a finite, ε-independent value. In summary, there is some constant C > 0 for which

I[uε] = I1 + I2 + I3 = C + S(1, ξ̄1, . . . , ξ̄K) ln[1/(2ε)].

This sum converges to −∞ as ε ↓ 0 since S(1, ξ̄1, . . . , ξ̄K) < 0 by assumption.
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As a corollary, we obtain that Eα cannot be an entropy for the evolution equation (2.12)
if the associated canonical symbol S0 has the property that

S0

(
1, σ, σ(σ − 1), . . . , σ(σ − 1) · · · (σ −K + 1)

)
< 0

for σ = (K−d)/(α+β). Indeed, we may use the corresponding function uε constructed in
the proof of Theorem 2.11 above as an initial condition u0 in (2.13). The functions uε are
positive and smooth, and they satisfy the boundary conditions since uε is constant close to
the boundary. By classical parabolic theory, there exists a corresponding solution uε(t), at
least locally in time, i.e. for t ∈ [0, τ ], and this solution and its spatial derivatives depend
continuously on t ∈ [0, τ ]. Hence,

Eα[uε(τ)]− Eα[uε] = −ωd
∫ τ

0

∫ 1

0

uε(t; r)
γ DS0 [uε(t), r]r

d−1dr dt.

Choosing ε and τ sufficiently small, the double integral on the right-hand side is negative,
and one concludes that Eα[uε(τ)] > Eα[uε].

We apply this result to the fourth- and sixth-order equations introduced in the intro-
duction. It turns out that for the thin-film equation (2.4), we have S0(1, ξ̄) < 0 if and only
if α + β 6∈ [3/2, 3] for d = 1, α + β ∈ (−∞, 1) for d = 2, α + β ∈ (−1, 1/2) for d = 3, and
α+ β ∈ (−(d− 4)/2, (d− 4/(d+ 2)) for d > 4. (Our method does not give any statement
for d = 4.) In one space dimension, we achieve the optimal bounds for α+ β, being in the
interval [3/2, 3] (as in [45, 35]). However, we obtain much less information for d > 1.

For the DLSS equation (2.6), S0(1, ξ̄) < 0 holds if and only if α 6∈ [0, 3/2] for d = 1,
α ∈ (−∞, 0) for d = 2, α ∈ (−1/2, 0) for d = 3, and α ∈ (0, (d − 4)/(2d − 4)) for d ≥ 4.
We recover the optimal range in the one-dimensional case. Moreover, we see that the lower
bound for d ≥ 8 is optimal, at least for nonnegative values for α.

Finally, for the sixth-order equation (2.8), we have S0(1, ξ̄) < 0 if and only if α ∈
(5/4, 10/3) for d = 1, α ∈ (4/3,∞) for d = 2, α 6∈ [−3(1 −

√
33)/8,−3(1 +

√
33)/8] for

d = 3, and α ∈ (−∞,−1) for d = 4. For higher space dimensions, S0(1, ξ̄) ≥ 0 holds for
all α ∈ R, and we do not obtain any information. In the two-dimensional case, there are
no entropies for α > 4/3, which is not far from the upper bound α = 1.0982 . . . obtained
in Theorem 2.3.



Chapter 3

Nonlinear sixth-order quantum
diffusion equation

3.1 Introduction and results

This chapter is concerned with the sixth-order quantum diffusion equation obtained from
an expansion to order ~4 of the nonlocal quantum diffusion model. Employing Einstein’s
summation convention, equation (1.3) reads as

∂tn = div
(
n∇
(1

2
(∂2
ij log n)2 +

1

n
∂2
ij(n∂

2
ij log n)

))
. (3.1)

We study the initial-value problem for (3.1) in the d-dimensional torus Td ∼= [0, 1]d in
dimensions d = 2 and d = 3.

Specifically, we compare two solution concepts for (3.1). The first concept is concerned
with adapted weak nonnegative solutions. In this framework we generalize the global
existence result from [37] to the multidimensional situation. The second concept is that
of positive classical solutions. In analogy to the results obtained by Bleher et al. for the
fourth-order DLSS equation [7]

∂tn+ div

(
n∇

(
∆
√
n√
n

))
= 0 , (3.2)

we are able to establish the existence of such regular solutions for (3.1) locally in time.
Naturally, a classical solution is also a weak solution on the time interval of its existence.
Vice versa, from a given weak solution, one obtains classical solutions on all time sub-
intervals where the weak solution is a strictly positive and energetic (see Definition 3.4
below) density function. Since we are not able to rule out the loss of strict positivity due
to the evolution, it thus might happen that the classical solution concept breaks down on
certain, possibly even infinite time intervals along the globally well-defined weak solution.

We shall provide further motivations to study (3.1) in Section 3.2 below. At this point,
we simply want to put equation (3.1) into the general context of higher-order parabolic
equations.

39
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In the existence analysis for equations like (3.2), one of the main difficulties is to estab-
lish non-negativity of the solutions. Typically, sophisticated regularizations are constructed
that lead to smooth and strictly positive approximative solutions. The limit of vanishing
regularizations then provides a nonnegative weak solution.

For our equation (3.1), the situation is more delicate since the nonlinearity in the
equation is not well-defined when n vanishes. This is a problem: Although nonnegativity
of the solution is expected on physical grounds, the possibility that a vacuum (localized in
time and space) is created from an initially strictly positive density cannot be ruled out.
Thus, atop of constructing strictly positive approximations, we need to define a solution
concept that works also for merely nonnegative densities, so that the passage to the limit
of vanishing regularizations is sensible.

The key idea here is to rewrite the nonlinearity in (3.1) in a way that substitutes the
logarithm by an expression that is still well-defined for n = 0. It turns out that the
following equivalent representation of equation (3.1),

∂tn = ∆3n+ ∂3
ijkF

(ijk)
1 (n) + ∂2

ijF
(ij)
2 (n), (3.3)

with the nonlinear operators

F
(ijk)
1 (n) = 4∂i

√
n
(
4∂j

4
√
n∂k

4
√
n− 3∂2

jk

√
n
)
,

F
(ij)
2 (n) = 8

d∑

k=1

(
∂2
ik

√
n− 4∂i

4
√
n∂k

4
√
n
)(
∂2
jk

√
n− 4∂j

4
√
n∂k

4
√
n
) (3.4)

is appropriate to study both concepts of solutions: weak and classical. Here and in the
following, we employ the notations ∂i = ∂/∂xi, ∂

2
ij = ∂2/∂xi∂xj, etc. and the summation

convention over repeated indices from 1 to d.

The construction of strictly positive approximative solutions uses yet another transfor-
mation of the nonlinearity. First, (3.1) is discretized in time with the implicit Euler scheme.
The semi-discrete equation is regularized by an additional term of the form ε(−∆)3 log n.
Each time step then requires the solution of a strictly elliptic problem in terms of y = log n.
Classical elliptic theory provides L∞-bounds on y and thus strict positivity of n = exp(y).

The required compactness to perform the deregularization limit ε ↓ 0 and later the
passage to the time-continuous limit is obtained from the dissipation of a distinguished
Lyapunov functional: The physical entropy1

H[u] =

∫

Td

(
u(log u− 1) + 1

)
dx (3.5)

is nonincreasing along the solutions. In fact, using the entropy construction method of [35],
which is based on systematic integration by parts, we are able to prove that the entropy

1The same functional is in the context of α-functionals denoted by E1. In this chapter we use H, which
is Boltzmann’s notation for the entropy.
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dissipation − dH/ dt controls certain spatial derivatives,

− dH[n]

dt
≥ κ

∫

Td

(
‖∇3
√
n‖2 + |∇ 6

√
n|6
)

dx, (3.6)

where ∇k denotes the tensor of all partial derivatives of order k. The resulting estimates
are sufficient to pass to the limit.

Our main results about weak solutions are the following two theorems.

Theorem 3.1 (Global existence of weak solutions). Let n0 ∈ L1(Td) be a nonnega-
tive function with finite entropy H[n0] < ∞. Then there exists a nonnegative function

n ∈ W 1,4/3
loc (0,∞; H−3(Td)), satisfying

√
n ∈ L2

loc(0,∞;H3(Td)) and n(0) = n0, that is a
solution to (3.3) in the following weak sense:

∫ ∞

0

〈∂tn, ϕ〉 dt+

∫ ∞

0

∫

Td

(
∂3
ijkϕ∂

3
ijkn+ ∂3

ijkϕF
(ijk)
1 (n)− ∂2

ijϕF
(ij)
2 (n)

)
dx dt = 0 (3.7)

for all test functions ϕ ∈ L4(0, T ;H3(Td)) and given terminal time T > 0.

It is not trivial at all to see that all integrals on the right-hand side of (3.7) are well-
defined for functions n of the stated regularity. At this point, we just mention that under
these hypotheses, 4

√
n is a well-defined Sobolev function; see Lemma C.4 in Appendix C as

well as [47] and [30, Section 3] for a discussion about the regularity of square and fourth
roots of nonnegative functions. The relevant estimates on the pairings inside the integrals
are established in the cause of the proof; see, e.g., Lemma 3.11 below. Since dimension-
dependent Sobolev embeddings are involved, this particular concept of weak solution does
not carry over to space dimensions d ≥ 4.

Theorem 3.2 (Exponential time decay). Let n0 ∈ L1(Td) be a nonnegative function of
finite entropy H[n0] <∞ and unit mass

∫
Td n0dx = 1. Let n be the weak solution to (3.3)

constructed in Theorem 3.1. Then there exists a constant λ > 0, depending on d, such that
for all t > 0,

‖n(t; ·)− 1‖L1(Td) ≤
√

2H[n0]e−λt.

Since equation (3.3) is semi-linear parabolic, it is accessible by methods from the theory
of analytic semigroups. This approach leads to the following result on classical solutions.

Theorem 3.3 (Existence and uniqueness of a classical solution). Let n0 ∈ H2(Td) be strict-
ly positive. Then there exist T∗ > 0 and precisely one smooth and strictly positive classical
solution n ∈ C∞((0, T∗);C

∞(Td)) to (3.3) with n(t) → n0 in H2(Td) as t ↓ 0. Moreover,
either T∗ = +∞, or there exists a limiting profile n∗ ∈ H2(Td) such that n(t) → n∗ in
H2(Td) as t ↑ T∗ and minx∈Td n∗(x) = 0.

In other words, the only possibility for a classical solution to break down is the loss
of strict positivity. This result parallels the one of [7] for the fourth-order DLSS equation
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in space dimension d = 1. Since stronger Sobolev embeddings are available for the sixth-
order equation (3.3), our result holds in dimensions d = 2 and d = 3 as well. It is an open
problem if loss of positivity can occur at t > 0 or not.

Naturally, we shall establish a connection between the concept of weak solutions, defined
in (3.7), and classical solutions. To do so, we need to introduce the energy : For a positive
and smooth function u ∈ C∞(Td), define

E [u] =
1

2

∫

Td
u‖∇2 log u‖2 dx. (3.8)

This functional is equivalent to the L2-norm of ∇2
√
u in the sense that

c
∥∥∇2
√
u
∥∥2

L2 ≤ E [u] ≤ C
∥∥∇2
√
u
∥∥2

L2 (3.9)

for some constants 0 < c ≤ C [30, 36]. For smooth and positive solutions to (3.3), one
easily proves that E is a Lyapunov functional, see Lemma 3.7 below. The functional E [u]
extends in a weakly lower semi-continuous manner to all nonnegative functions u with√
u ∈ H2(Td); see [30, Section 3] for details. Hence, if n is a weak solution in the sense of

Theorem 3.1, then E [n(t)] is well-defined for almost every t > 0.
We expect that E is a Lyapunov functional also for weak solutions, but currently we are

not able to prove this conjecture, mainly because E is not a convex functional. Therefore
we assume the Lyapunov property.

Definition 3.4. Let n ∈ C0((0,∞);H−3(Td)) be the t-continuous representative of a weak
solution in the sense of (3.7). We call n energetic on the interval (T1, T2) ⊂ R+ if E [n(t)]
is uniformly bounded for all t ∈ (T1, T2).

Notice that a weak solution is energetic on (T1, T2) if and only if
√
n ∈ L∞(T1, T2;

H2(Td)).

Theorem 3.5 (Regularity of weak solutions). Assume that the weak solution n from Theo-
rem 3.1 is energetic on (T1, T2) and strictly positive at some time t0 ∈ [T1, T2); here T1 = 0
and/or T2 = +∞ are admissible. Then there exists T∗ ∈ (T1, T2] such that n equals the
classical solution from Theorem 3.3 on (t0, T∗). Moreover, either T∗ = T2 or n(t) loses
strict positivity as t ↑ T∗ in the sense of Theorem 3.3.

In summary, an energetic weak solution is classical on each time interval on which it is
strictly positive, and the loss of positivity occurs in an H2-continuous way.

The chapter is organized as follows. Section 3.2 provides some background informa-
tion on the derivation and properties of (3.1). In Section 3.3, we derive the alternative
formulation (3.3) of (3.1) and we prove the entropy inequality (3.6). Sections 3.4, 3.5, 3.6,
and 3.7 are devoted to the proofs of Theorems 3.1, 3.2, 3.3, and 3.5, respectively. Some
technical lemmas and known results which are used in the existence analysis are collected
in Appendix C.
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3.2 Derivation and motivation

In this section, we indicate several motivations to study equation (3.1) by reviewing its
derivation from the nonlocal quantum model, putting it in the context of gradient flows,
and establishing connections to the heat and DLSS equations.

3.2.1 On the derivation from the nonlocal quantum model

Degond et al. derived in [21] the nonlocal and nonlinear quantum diffusion model

∂tn = div(n∇A) in Rd, t > 0, (3.10)

where the potential A is defined implicitly as the unique solution to

n(t;x) =

∫

Rd
Exp

(
A(t;x)− |p|

2

2

)
dp.

The so-called quantum exponential Exp is defined as the Wigner transformed operator
exponential: Denoting by W the Wigner transformation and by W−1 the corresponding
Weyl quantization, then Exp(f) = W−1 ◦ exp ◦W (f); see [21] for details.

In the semi-classical limit ~ ↓ 0, the expression Exp(A−|p|2/2) converges to eA, so that
A = log n, and we recover from (3.10) the classical heat equation. For ~ > 0, however,
the quantum exponential is a complicated, genuinely nonlocal operator. An asymptotic
expansion in terms of ~ has been performed in Appendix A, leading to the following local
approximation of A in terms of n:

A = A0 +
~2

24
A1 +

~4

360
A2 +O(~6) (3.11)

with the local expressions

A0 = log n, A1 = −4
∆
√
n√
n
, A2 =

1

2
(∂2
ij log n)2 +

1

n
∂2
ij(n∂

2
ij log n).

Replacing A in (3.10) by A0, A1, or A2 yields, respectively, the heat equation, the DLSS
equation (3.2), or the sixth-order equation (3.1). In this sense, (3.2) and (3.1) constitute,
respectively, the primary and secondary quantum corrections to the classical diffusion
equation.

3.2.2 Gradient-flow structure

Equation (3.1) possesses—at least on a formal level—a variational structure. The diver-
gence form implies that solutions n formally conserve the total mass, i.e., the integral
m =

∫
Td n(t;x) dx is independent of t. By homogeneity, we can assume m = 1 without

loss of generality. Thus, any solution to (3.1) defines a curve t 7→ n(t) in the space of
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probability measures on Td. Provided that n is regular enough, this curve realizes a steep-
est descent in the energy landscape of the energy functional E from (3.8) with respect to
the L2-Wasserstein metric. Indeed, by a formal calculation, we obtain the gradient-flow
representation

∂tn = div
(
n∇δE [n]

δn

)

from (3.10) with A ≡ A2, where A2 = δE [n]/δn is the variational derivative of E .
This variational structure is a remarkable property by itself. Atop of that, it establishes

yet another connection to the heat and DLSS equations. It is well known since the seminal
paper [32] that the heat equation is the gradient flow of the entropy functionalH from (3.5)
with respect to the L2-Wasserstein distance. The dissipation of H along its own gradient
flow amounts to the Fisher information,

F [n] = −1

2

dH[n]

dt
=

1

2

∫

Td
n|∇ log n|2 dx,

while the second-order time derivative produces the energy from (3.8),

E [n] =
1

4

d2H[n]

dt2
=

1

2

∫

Td
n‖∇2 log n‖2 dx.

The Fisher information, in turn, has been proven to generate the DLSS equation (3.2)
as a gradient flow with respect to the L2-Wasserstein distance [30]. It is readily checked
that E also equals the first-order time derivative of the entropy along solutions of the
DLSS equation. In this sense, the sixth-order equation (3.1) is related to the fourth-order
equation (3.2) in the same way as (3.2) itself is related to the heat equation.

We mention this point because the intimate relation between the heat and the DLSS
equations (and, more generally, between second-order porous medium and fourth-order
diffusion equations) has been the key tool in obtaining optimal rates for the intermediate
asymptotics of solutions to (3.2) in [51]. It would be interesting to derive estimates on the
long-time behavior of solutions to (3.1) by similar means.

3.3 Alternative formulations and functional

inequalities

In this section, we derive two alternative formulations of the sixth-order equation (3.1) and
prove an energy-dissipation formula and an entropy-dissipation estimate. First, we show
that (3.1) can be written as the sum of a symmetric sixth-order term and a fourth-order
remainder, and as the sum of a linear sixth-order part and a fifth-order remainder.

Lemma 3.6. Equation (3.1) can be written for smooth positive solutions equivalently as

∂tn = ∂3
ijk

(
n ∂3

ijk log n
)

+ 2∂2
ij

(
n ∂2

ik log n ∂2
jk log n

)
in Td, t > 0, (3.12)
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and also equivalently as

∂tn = ∆3n+ ∂3
ijkF

(ijk)
1 (n) + ∂2

ijF
(ij)
2 (n) in Td, t > 0, (3.13)

where the nonlinear operators F
(ijk)
1 and F

(ij)
2 are defined in (3.4).

We recall that we have employed the summation convention in the above formulas.

Proof. For the following formal calculations, we introduce the shorthand notations y =
log n, yi = ∂i log n, yij = ∂2

ij log n etc. Observing that ∂kn = nyk, n∂k(1/n) = −(∂kn)/n =
−yk, we calculate

1

2
n∂k(∂

2
ij log n)2 = n∂2

ijy∂
2
ijyk,

and

n∂k

( 1

n
∂2
ij(n∂

2
ij log n)

)
= ∂3

ijk(nyij)− yk∂2
ij(nyij)

= ∂2
ij

(
yk(nyij) + nyijk

)
− yk∂2

ij(nyij)

= ∂i
(
yk∂j(nyij) + yjk(nyij)

)
− yk∂2

ij(nyij) + ∂2
ij(nyijk)

= yik∂j(nyij) + yijk(nyij) + yjk∂i(nyij) + ∂2
ij(n∂

2
ijyk)

= 2yik∂j(nyij) + n∂2
ijy∂

2
ijyk + ∂2

ij(n∂
2
ijyk)

= 2∂j(nyijyik)− n∂2
ijy∂

2
ijyk + ∂2

ij(n∂
2
ijyk).

Summing these results, we obtain

1

2
n∂k(∂

2
ij log n)2 + n∂k

( 1

n
∂2
ij(n∂

2
ij log n)

)
= ∂2

ij(n∂
2
ijyk) + 2∂j(nyijyik).

Differentiation with respect to xk yields

∂k

(1

2
n∂k(∂

2
ij log n)2 + n∂k

( 1

n
∂2
ij(n∂

2
ij log n)

))
= ∂3

ijk(n∂
3
ijky) + 2∂2

jk(nyijyik),

which shows (3.12).
Similarly, introducing u = 4

√
n, ui = ∂iu, uij = ∂2

iju, etc. and observing that ∂kn =
4u3uk, ∂

2
ijn = 12u2uiuj + 4u3uij, and uuij = ∂2

ij(u
2)/2− uiuj, we calculate

n∂3
ijky = ∂3

ijkn−
3

n
∂2
ijn∂kn+

2

n2
∂in∂jn∂kn (3.14)

= ∂3
ijkn− 48u2uijuk − 16uuiujuk

= ∂3
ijkn− 12∂2

ij(u
2)∂k(u

2) + 16uiuj∂k(u
2)

= ∂3
ijkn+ 4∂k

√
n
(
4∂i

4
√
n∂j

4
√
n− 3∂2

ij

√
n
)

= ∂3
ijkn+ F

(ijk)
1 (n),

2nyikyjk = 32u4
(uik
u
− uiuk

u2

)(ujk
u
− ujuk

u2

)

= 8
(
∂2
ik(u

2)− 4uiuk
)(
∂2
jk(u

2)− 4ujuk
)

= 8
(
∂2
ik

√
n− 4∂i

4
√
n∂k

4
√
n
)(
∂2
jk

√
n− 4∂j

4
√
n∂k

4
√
n
)

= F
(ij)
2 (n).
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Differentiating both equations and summing them leads to

∂3
ijk(n∂

3
ijky) + 2∂2

ij(nyikyjk) = ∆3n+ ∂3
ijkF

(ijk)
1 + ∂2

ijF
(ij)
2 , (3.15)

which gives (3.13).

In the next lemma, we make our claim about the Lyapunov property of the energy E ,
defined in (3.8), more precise.

Lemma 3.7. If n ∈ C∞((t1, t2);C∞(Td)) is a positive and classical solution to (3.1), then
the energy E [n(t)] is a smooth and nonincreasing function on the inverval (t1, t2). In fact,
the energy is dissipated according to

d

dt
E [n(t)] = −

∫

Td
n
∣∣∣∇
(1

2

(
∂2
ij log n

)2
+

1

n
∂2
ij

(
n∂2

ij log n
))∣∣∣

2

dx, t > 0. (3.16)

Proof. The smoothness of E [n(t)] follows since on the set of positive functions u ∈ C∞(Td),
the operation u 7→ log u is a smooth map from C∞(Td) to itself. Dissipation formula (3.16)
follows by using formulation (3.1) and integration by parts:

d

dt
E [n] =

∫

Td

(
1

2
∂tn(∂2

ij log n)2 + n∂2
ij(log n)∂2

ij

(∂tn
n

))
dx

=

∫

Td
∂tn

(
1

2
(∂2
ij log n)2 +

1

n
∂2
ij(n∂

2
ij log n)

)
dx

= −
∫

Td
n
∣∣∣∇
(1

2
(∂2
ij log n)2 +

1

n
∂2
ij(n∂

2
ij log n)

)∣∣∣
2

dx,

which shows the claim.

Finally, we prove the entropy production inequality (3.6).

Lemma 3.8 (D. Matthes). Let d ≤ 3 and let u ∈ H3(Td) be strictly positive on Td. Then
there exists κ > 0, only depending on d, such that

∫

Td

(
∂3
ijk(log u)∂3

ijku+ ∂3
ijk(log u)F

(ijk)
1 (u)− ∂2

ij(log u)F
(ij)
2 (u)

)
dx (3.17)

≥ κ

∫

Td

(
|∇3
√
u|2 + |∇ 6

√
u|6
)

dx.

Proof. The proof is based on an extension of the entropy construction method developed
in [35] for one-dimensional equations. A proof for d = 1 is given in [37]. Therefore, we
restrict ourselves to the cases d = 2 and d = 3. By (3.15), (3.17) is equivalent to, up to a
factor,
∫

Td
u
(
(∂3
ijk log u)2 − 2∂2

ij log u(∂2
ik log u∂2

jk log u)
)

dx ≥ κ

12

∫

Td

(
26|∇3

√
u|2 + 66|∇ 6

√
u|6
)

dx.

(3.18)
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Setting y = log n, yi = ∂i log n, yij = ∂2
ij log n, etc., a tedious computation shows that

(3.18) is equivalent to ∫

Td
u
(
12S[u]− κR[u]

)
dx ≥ 0, (3.19)

where S[u] = y2
ijk − 2yijyjkyki and

R[u] = 2y2
i y

2
j y

2
k + 12y2

i yjyjkyk + 8yiyjykyijk + 24yiyijyjkyk + 12y2
i y

2
jk + 48yiyijkyjk + 16y2

ijk.

The idea of the entropy construction method is to find the “right” integrations by parts
which are necessary to write the integrand of (3.19) as a sum of squares. To this end, we
define the vector field v = (v1, . . . , vd)

> : Td → Rd by

vk = (2y2
i y

2
j + yiiy

2
j + 5yijyiyj + 5yiijyj)yk

+ (3y2
i yj + 11yiij + 24yiyij)yjk − (5yiyj + 11yij)yijk.

A tedious but straight-forward computation shows that the weighted divergence

T [u] =
1

u
div(uv) = e−y∂k(e

yvk)

can be written as

T [u] = 2y2
i y

2
j y

2
k + 3y2

i y
2
j ykk + 16y2

i yjyjkyk + 9y2
i yjyjkk + y2

i yjjykk + 7yiiyjyjkyk

+ 40yiyijyjkyk + 3y2
i y

2
jk + 5yiyijjykk + 40yiyijyjkk + 3yiyijkyjk + 11yijjyikk

− 11y2
ijk + 24yijyjkyki.

By the divergence theorem, we have

∫

Td
uT [u] dx = 0.

Hence, (3.19) is equivalent to

∫

Td
u
(
12S[u]− κR[u] + T [u]

)
dx ≥ 0. (3.20)

We prove that there exists κ > 0 such that the integrand is nonnegative. The expres-
sion T [u] turns out to be the “right” integration-by parts formula allowing us to prove
the nonnegativity of the above integral. At this point, we need to distinguish the space
dimension.

First, consider d = 2. Let x ∈ Td be fixed. Without loss of generality, we may assume
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that ∇u(x) points into the first coordinate direction, i.e. y2 = 0 at x. Then we compute

12S[u]− εR[u] + T [u] = (2− 2ε)y6
1 + 3y4

1(y11 + y22) + 4(4− 3ε)y4
1y11 + 9y3

1(y111 + y122)

− 8εy3
1y111 + y2

1(y11 + y22)2 + 7y2
1y11(y11 + y22) + 8(5− 3ε)y2

1(y2
11 + y2

12)

+ 3(1− 4ε)y2
1(y2

11 + 2y2
12 + y2

22) + 5y1(y111 + y122)(y11 + y22)

+ 40y1

(
y11(y111 + y122) + y12(y122 + y222)

)

+ 3(1− 16ε)y1

(
y11y111 + 2y12y112 + y22y122

)

+ 11
(
(y111 + y122)2 + (y112 + y222)2

)
+ (1− 16ε)

(
y2

111 + 3y2
112 + 3y2

122 + y2
222

)

= ξ>Aεξ + η>Bεη,

where ξ and η are the vectors

ξ = (y3
1, y1y11, y1y22, y111, y122)>, η = (y1y12, y112, y222)>,

and the symmetric matrices Aε and Bε are defined by

Aε =
1

2




4− 4ε 19− 12ε 3 9− 8ε 9
19− 12ε 102− 72ε 9 48− 48ε 45

3 9 8− 24ε 5 8− 48ε
9− 8ε 48− 48ε 5 24− 32ε 22

9 45 8− 48ε 22 28− 96ε



,

Bε =




46− 48ε 23− 48ε 20
23− 48ε 14− 48ε 11

20 11 12− 16ε


 .

Sylvester’s criterion shows that the unperturbed matrices A0 and B0 are positive definite.
Indeed, the principal minors fo A0 are 2, 47/4, 20, 13, and 149/4, and the principal minors
of B0 are 46, 115, and 334. Since the set of (strictly) positive definite matrices is open in
the set of all real symmetric matrices, there exists ε0 > 0 such that for all 0 < ε < ε0, the
matrices Aε and Bε are positive definite, too. This shows that 12S[u]− εR[u] + T [u] ≥ 0
for 0 < ε < ε0, which implies (3.20).

Next, let d = 3. This case is similar to the previous one, but technically more involved.
Again, we fix some x ∈ Td and assume that ∇u(x) is parallel to the first coordinate
direction, i.e. y2 = y3 = 0. For easier presentation, we introduce the abbreviations

p+ = y22 + y33, p− = y22 − y33,

qj+ = yj22 + yj33, qj− = yj22 − yj33, j = 1, 2, 3.

Observe that

2(y2
22 + y2

33) = p2
+ + p2

−,

2(y2
j22 + y2

j33) = q2
j+ + q2

j−,

2(y22yj22 + y33yj33) = p+qj+ + p−qj−.
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With these notations, we find that

12S[u]− εR[u] + T [u] = (2− 2ε)y6
1 + 3y4

1(y11 + p+) + 4(4− 3ε)y4
1y11 + 9y3

1(y111 + q1+)

− 8εy3
1y111 + y2

1(y11 + p+)2 + 7y2
1y11(y11 + p+) + 8(5− 3ε)y2

1(y2
11 + y2

12 + y2
13)

+ 3(1− 4ε)y2
1

(
y2

11 + 1
2
(p2
− + p2

+) + 2(y2
12 + y2

13 + y2
23)
)

+ 5y1(y111 + q1+)(y11 + p+)

+ 40y1

(
y11(y111 + q1+) + y12(y112 + q2+) + y13(y113 + q3+)

)

+ 3(1− 16ε)y1

(
y111y11 + 1

2
(q1+p+ + q1−p−) + 2(y112y12 + y113y13 + y123y23)

)

+ 11
(
(y111 + q1+)2 + (y112 + q2+)2 + (y113 + q3+)2

)

+ (1− 16ε)
(
y2

111 + 3(y2
112 + y2

113) + 3
2
(q2

1+ + q2
1− + q2

2+ + q2
2− + q2

3+ + q2
−3) + 6y2

123

)

= ξ>Aεξ +
3∑

j=2

η>j Bεηj + ζ>Cεζ + 2ν>Cεν +
1

4
(1− 16ε)(q2

2+ + q2
2−),

where

ξ = (y3
1, y1y11, y1p+, y111, q1+)>, ηj = (y1y1j, y11j, qj+)>,

ζ = (y1p−, q1−)>, ν = (y1y23, y123)>.

The matrices Aε and Bε are almost identical to those given above, with minor modifications
in the third and fifth rows and columns:

Aε =
1

2




4− 4ε 19− 12ε 3 9− 8ε 9
19− 12ε 102− 72ε 9 48− 48ε 45

3 9 5− 12ε 5 13/2− 24ε
9− 8ε 48− 48ε 5 24− 32ε 22

9 45 13/2− 24ε 22 25− 48ε



,

Bε =




46− 48ε 23− 48ε 20
23− 48ε 14− 48ε 11

20 11 47/4− 12ε


 .

Furthermore, the matrix Cε is given by

Cε =

(
3− 12ε 3/2− 24ε

3/2− 24ε 3− 48ε

)
.

Again, the Sylvester criterion shows that A0, B0, and C0 are positive definite. The principal
minors of A0 are 2, 47/4, 19/8, 5/8, and 453/64, while those of B0 are 46, 115, and 1221/4,
and those of C0 are 3 and 27/4. Thus, there exists ε0 > 0 such that for all 0 < ε < ε0, also
Aε, Bε, and Cε are positive definite.

3.4 Existence of weak solutions

The proof of Theorem 3.1 is divided into several steps.
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3.4.1 Solution of the semi-discretized problem

Let T > 0 and τ > 0 be given. We wish to solve, for a given initial datum n0 ∈ L1(Td),
the semi-discrete problem

1

τ
(n− n0) = ∆3n+ ∂3

ijkF
(ijk)
1 (n) + ∂2

ijF
(ij)
2 (n) in Td,

where F
(ijk)
1 and F

(ij)
2 are defined in (3.4).

Proposition 3.9. For a nonnegative function n0 ∈ L1(Td) of unit mass, ‖n0‖L1 = 1, and
of finite entropy, H[n0] < ∞, there exists a sequence of solutions nτ1, n

τ
2, . . . in H3(Td) to

the elliptic problems

1

τ

∫

Td

(
nτk − nτk−1

)
φ dx+

∫

Td

(
∂3
ijkφ∂

3
ijkn

τ
k + ∂3

ijkφF
(ijk)
1 (nτk)− ∂2

ijφF
(ij)
2 (nτk)

)
dx = 0, (3.21)

holding for all test functions φ ∈ H3(Td), with the initial solution nτ0 = n0. These solutions
are of unit mass, and the entropy estimate

H[nτk] + κτ

∫

Td

(∥∥∇3
√
nτk
∥∥2

+
∣∣∇ 6
√
nτk
∣∣6) dx ≤ H[nτk−1], k ≥ 1, (3.22)

holds with κ > 0 given in Lemma 3.8.

Proof. For simplicity, we only give the argument for the construction of n = nτ1 from n0.
The passage from nτk to nτk+1 works precisely in the same way since finiteness of the entropy
is inherited from one step to the next.

Regularized problem. In a first step, we are going to construct strictly positive solutions
nε ∈ H3(Td) to the regularized problem

1

τ
(n− n0) = ∆3n+ ∂3

ijkF
(ijk)
1 (n) + ∂2

ijF
(ij)
2 (n) + ε

(
∆3 log n− log n

)
. (3.23)

Writing n = ey, it follows from (3.14) that

∆3n = ∂3
ijk(n∂

3
ijky)− ∂3

ijkF
(ijk)
1 (n).

Thus, assuming strict positivity and H3-regularity of n, we can reformulate (3.23) as

1

τ
(n− n0) = ∂3

ijk

(
(n+ ε)∂3

ijky
)
− εy + ∂2

ijF
(ij)
2 (n), (3.24)

which is an equation in H−3(Td).
Fixed point operator. We define the continuous map Sε : X × [0, 1]→ W 2,4(Td) on the

set

X =

{
u ∈ W 2,4(Td) : min

x∈Td
u(x) > 0

}
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as follows. For given n ∈ X and σ ∈ [0, 1], introduce

a(y, z) =

∫

Td

(
(σn+ ε)∂3

ijky ∂
3
ijkz + εyz

)
dx

f(z) = −σ
τ

∫

Td
(n− n0)z dx+ σ

∫

Td
F

(ij)
2 (n)∂2

ijz dx

for all y, z ∈ H3(Td). Observe that a is a bounded and coercive bilinear form on H3(Td),

a(z, z) ≥ ε

∫

Td

(
|∇z|2 + z2

)
dx ≥ cε‖z‖2

H3

for some constant c > 0, and a varies continuously with (n, σ) ∈ X × [0, 1], since the
embedding W 2,4(Td) ↪→ L∞(Td) is continuous.

Next, we claim that f is a linear form on H3(Td). Indeed, due to the continuity of the
Sobolev embedding W 2,4(Td) ↪→ W 1,8(Td) in dimensions d ≤ 3 and the strict positivity

and continuity of functions in W 2,4(Td), the mapping F
(ij)
2 allows for the representation

F
(ij)
2 (n) = 2

∂2
ikn∂

2
kjn

n
− 4

∂2
ikn∂kn∂jn

n2
+ 2

(∂kn)2∂in∂jn

n3
,

from which F
(ij)
2 (n) ∈ L2(Td) follows for all n ∈ W 2,4(Td). In fact, f varies continuously

with (n, σ) ∈ X × [0, 1].
The Lax-Milgram Lemma provides the existence and uniqueness of a solution y ∈

H3(Td) to the elliptic equation

a(y, z) = f(z) for all z ∈ H3(Td).

This solution depends H3-continuously on (n, σ) ∈ X× [0, 1]. In particular, y ≡ 0 if σ = 0,
and y solves (3.24) if σ = 1.

The definition of the fixed point operator Sε is now completed by setting

Sε(n, σ) = ey.

Since y ∈ H3(Td) ↪→ L∞(Td), it is clear that Sε(n, σ) ∈ H3(Td) is a strictly positive and
bounded function. In view of the compactness of the embedding H3(Td) ↪→ W 2,4(Td),
Sε maps bounded subsets of X × [0, 1] into precompact sets in W 2,4(Td). Finally, notice
that Sε(n, 0) ≡ 1 for all n ∈ X and Sε(n∗, 1) = n∗ for some n∗ ∈ X if and only if n∗ is
a solution to (3.23). To verify the last statement, observe that n∗ = Sε(n∗, 1) implies the
H3-regularity of n∗, which justifies the passage from (3.24) to (3.23), and in particular it
allows us to define ∆3 log n∗ as an element of H−3(Td).

A priori bound. Our goal is to obtain a fixed point of Sε(·, 1) by means of the Leray–
Schauder theorem. Having already verified the continuity and relative compactness of Sε
as well as the condition Sε(·, 0) = 1, it remains to find a suitable closed, bounded, convex
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subset B ⊂ X such that all solutions n∗ ∈ X of Sε(n∗, σ) = n∗ for some σ ∈ [0, 1] lie in
the interior of B. We shall choose

B =
{
u ∈ W 2,4(Td) : minu ≥ δ, ‖u‖W 2,4 ≤ δ−1

}
(3.25)

with a suitable δ > 0 determined below.
Let n∗ ∈ W 2,4(Td) be a fixed point of S(·, σ) for some σ ∈ [0, 1]. By construction, we

have n∗ = ey∗ ∈ H3(Td) for y∗ ∈ H3(Td), and n∗ is strictly positive. The convexity of
h(s) = s(log s− 1) + 1 implies that

1

τ
(H[n∗]−H[n0]) =

1

τ

∫

Td
(h(n∗)− h(n0)) dx

≤ 1

τ

∫

Td
(n∗ − n0)h′(n∗) dx =

1

τ

∫

Td
(n∗ − n0) log n∗ dx

= −
∫

Td

(
∂3
ijky∗ ∂

3
ijkn∗ + ∂3

ijky∗F
(ijk)
1 (n∗)− ∂2

ijy∗F
(ij)
2 (n∗)

)
dx

− ε

σ

∫

Td

(
‖∇3y∗‖2 + y2

∗
)

dx

≤ −κ
∫

Td

(
‖∇3
√
n∗‖2 + |∇ 6

√
n∗|6

)
dx− ε

σ

∫

Td

(
‖∇3y∗‖2 + y2

∗
)

dx.

For the last estimate, the functional inequality (3.17) has been used. Thus, we have proven

H[n∗] + τκ

∫

Td

(
‖∇3
√
n∗‖2 + |∇ 6

√
n∗|6

)
dx+

τε

σ

∫

Td

(
‖∇3y∗‖2 + y2

∗
)

dx ≤ H[n0]. (3.26)

A consequence of this inequality is that y∗ is bounded in H3(Td),

‖y∗‖H3 ≤ C

∫

Td

(
‖∇3y∗‖2 + y2

∗
)

dx ≤ CH[n0]

τε

for some constant C > 0 depending on τ and ε (which are fixed positive numbers at this
point), but not on σ ∈ [0, 1]. The continuity of the embedding H3(Td) ↪→ W 2,4(Td) yields
the σ-independent bound

‖n∗‖W 2,4 ≤ CH[n0]

τε
, (3.27)

maybe for another constant C > 0. Furthermore, the continuity of the embedding H3(Td)
↪→ L∞(Td) provides the estimate

minn∗ ≥ min exp
(
− ‖y∗‖L∞

)
≥ exp

(
−CH[n0]

τε

)
> 0. (3.28)

From (3.27) and (3.28) follows that there exists a set B of the form (3.25) which contains
all potential fixed points n∗. The Leray–Schauder fixed point theorem in the version of
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[55] (see Theorem C.7) applies to our situation and yields the existence of a solution nε to
n = Sε(n, 1).

Deregularization. From the entropy estimate, it follows that
√
nε is ε-uniformly bounded

in H3(Td), and 6
√
nε is ε-uniformly bounded in W 1,6(Td). Hence, there exists a limit

function n ∈ H3(Td), such that, as ε ↓ 0, up to subsequences,

√
nε ⇀

√
n in H3(Td), (3.29)

√
nε →

√
n in W 2,4(Td) and in W 1,∞(Td), (3.30)

4
√
nε → 4

√
n in W 1,4(Td), (3.31)

4
√
nε ⇀

4
√
n in W 1,12(Td). (3.32)

Here we take (3.29) for the definition of n; then (3.30) follows from the compactness of
the embedding H3(Td) ↪→ W 2,4(Td). The strong convergence in (3.31) is a direct conse-
quence of Proposition C.6, since 4

√
nε is “sandwiched” between

√
nε and 6

√
nε. Concerning

(3.32), observe that H3(Td) embeds continuously into W 2,6(Td), so that 4
√
nε is bounded

in W 1,12(Td) by Lemma C.4. In particular, 4
√
nε converges weakly to some limit in that

space—which necessarily agrees with the strong W 1,4(Td)-limit obtained in (3.31).
For the various terms in (3.23), this implies the following. The sequence

∂3
ijknε = 2

√
nε∂

3
ijk

√
nε + 6∂i

√
nε∂

2
jk

√
nε

converges weakly in L2(Td) to ∂3
ijkn, since

√
nε converges strongly in L∞(Td) and ∂3

ijk

√
nε

converges weakly in L2(Td), while ∂i
√
nε and ∂2

jk

√
nε both converge strongly in L4(Td).

Further, the sequence

F
(ijk)
1 (nε) = 4∂i

√
nε
(
4∂j 4
√
nε∂k 4
√
nε − 3∂2

jk

√
nε
)

converges strongly in L2(Td), since ∂i
√
nε converges strongly in L∞(Td), ∂2

jk

√
nε converges

strongly in L2(Td), and ∂j 4
√
nε and ∂k 4

√
nε both converge strongly in L4(Td). Finally, we

consider

F
(ij)
2 (nε) = 8

(
∂ik
√
nε∂jk

√
nε − 4∂2

jk

√
nε∂k 4
√
nε∂i 4
√
nε

− 4∂2
ik

√
nε∂k 4
√
nε∂j 4
√
nε + 16∂i 4

√
nε∂j 4
√
nε(∂k 4

√
nε)

2
)
.

The first term converges strongly in L2(Td) since it is the product of two second-order
derivatives of

√
nε which converge strongly in L4(Td). The second and third expressions

converge strongly in L4/3(Td) since each of them is the product of three strongly L4-
convergent terms. To obtain weak L6/5-convergence of the last product, we use the strong
L4-convergence of ∂i 4

√
nε to conclude strong convergence of ∂j 4

√
nε(∂k 4

√
nε)

2 in L4/3(Td), and
combine this with the weak convergence of ∂i 4

√
nε in L12(Td). Notice that weak convergence

in L6/5(Td) suffices, since F
(ij)
2 (nε) is tested in (3.21) against φ ∈ H3(Td) and hence,

∂2
ijφ ∈ L6(Td).

Finally, the entropy estimate (3.26) shows that (
√
εyε) is bounded in H3(Td) and hence,

εyε → 0 strongly in H3(Td).
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The above convergence results allow us to perform the limit ε → 0 in (3.23), i.e., both
sides converge in H−3(Td). Hence, n is a nonnegative solution to (3.21).

Proof of auxiliary properties. It remains to verify that n has unit mass and that the
dissipation inequality (3.22) holds. Conservation of mass follows directly from (3.21) by
using φ = 1 as a test function. The entropy estimate (3.26) shows that nε satisfies

H[nε] + τκ

∫

Td

(
‖∇3√nε‖2 + |∇ 6

√
nε|6

)
dx ≤ H[n0].

Since ∇3√nε ⇀ ∇3
√
n weakly in L2(Td)

and ∇ 6
√
nε ⇀ ∇ 6

√
nε weakly in L6(Td), we conclude by lower semi-continuity that

H[n] + τκ

∫

Td

(
‖∇3
√
n‖2 + |∇ 6

√
n|6
)

dx

≤ lim
ε→0
H[nε] + τκ lim inf

ε→0

∫

Td

(
‖∇3√nε‖2 + |∇ 6

√
nε|6

)
dx ≤ H[n0].

This finishes the proof.

3.4.2 Passage to the continuous limit

Proposition 3.9 guarantees the existence of a solution sequence (nτ0, n
τ
1, n

τ
2, . . .) to the semi-

discrete implicit Euler scheme (3.21). Define accordingly the piecewise constant inter-
polants nτ ∈ L∞(0,∞;H3(Td)) by

nτ (t) = nτk for (k − 1)τ < t ≤ kτ, k ∈ N, nτ (0) = nτ0,

and introduce the discrete time derivative

δτnτ (t) =
1

τ

(
nτk − nτk−1

)
for (k − 1)τ < t ≤ kτ, k ∈ N.

Corollary 3.10. The interpolated function nτ satisfies

∫ T

0

∫

Td
δτnτϕ dx dt+

∫ T

0

∫

Td

(
∂3
ijkϕ∂

3
ijkn

τ + ∂3
ijkϕF

(ijk)
1 (nτ )− ∂2

ijϕF
(ij)
2 (nτ )

)
dx dt = 0

(3.33)
for all test functions ϕ ∈ L4(0, T ;H3(Td)).

Proof. Equation (3.33) is a direct consequence of (3.21), and the definitions of nτ and δτnτ .
Simply choose φ = ϕ(t) ∈ H3(Td) as a test function in (3.21) for (k − 1)τ < t ≤ kτ and
integrate with respect to t ∈ (0, T ). Notice that at this point, the L4-regularity of ϕ with
respect to time is not of importance. In fact, we could replace L4 by L1.

The following lemma summarizes various consequences of the discrete entropy estimate
(3.22). Recall that we are working in spatial dimensions d ≤ 3.
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Lemma 3.11. For any finite T > 0,

(nτ ) is bounded in L4/3(0, T ;H3(Td)), (3.34)

(∇
√
nτ ) is bounded in L12/5(0, T ;L∞(Td)), (3.35)

(∇2
√
nτ ) is bounded in L3(0, T ;L2(Td)) and in L8/3(0, T ;L12/5(Td)), (3.36)

(∇ 4
√
nτ ) is bounded in L6(0, T ;L4(Td)) and in L16/3(0, T ;L24/5(Td)), (3.37)

(∇ 6
√
nτ ) is bounded in L6(0, T ;L6(Td)), (3.38)

uniformly with respect to τ > 0.

Proof. First notice that the boundedness of
√
nτ in L2(0, T ;H3(Td)) follows from the en-

tropy estimate (3.22). Indeed, by Lemma C.1 and the conservation of mass, we find that

‖
√
nτ (t)‖H3 ≤ C

(
‖∇3
√
nτ (t)‖L2 + ‖

√
nτ (t)‖L2

)
= C

(
‖∇3
√
nτ (t)‖L2 + 1

)
,

where C > 0 does not depend on τ . Therefore,

‖
√
nτ‖L2(0,T ;H3) ≤ C

(
‖∇3
√
nτ‖L2(0,T ;H3) + T 1/2

)
≤ C(H[n0] + T 1/2).

Estimate (3.38) follows also from the entropy estimate (3.22).
To prove the remaining estimates, first notice that, by the Gagliardo-Nirenberg inequal-

ity (see Lemma C.3), for some constants Bi > 0,

‖
√
nτ (t)‖L∞ ≤ B1‖

√
nτ (t)‖d/6H3 ‖

√
nτ (t)‖1−d/6

L2 ,

‖∇
√
nτ (t)‖L∞ ≤ B2‖

√
nτ (t)‖1/3+d/6

H3 ‖
√
nτ (t)‖2/3−d/6

L2 ,

‖∇2
√
nτ (t)‖L2 ≤ B3‖

√
nτ (t)‖2/3

H3 ‖
√
nτ (t)‖1/3

L2 .

Integrating over (0, T ), we infer that

‖
√
nτ‖L12/d(0,T ;L∞) ≤ B1‖

√
nτ‖d/6L2(0,T ;H3)‖

√
nτ‖1−d/6

L∞(0,T ;L2) ≤ C, (3.39)

‖∇
√
nτ‖L12/(d+2)(0,T ;L∞) ≤ B2‖

√
nτ‖(2+d)/6

L2(0,T ;H3)‖
√
nτ‖(4−d)/6

L∞(0,T ;L2) ≤ C, (3.40)

‖∇2
√
nτ‖L3(0,T ;L2) ≤ B3‖

√
nτ‖2/3

L2(0,T ;H3)‖
√
nτ‖1/3

L∞(0,T ;L2) ≤ C, (3.41)

where C > 0 does not depend on τ . Estimate (3.40) implies the bound (3.35) since
12/(d+ 2) ≥ 12/5 for d ≤ 3. Taking into account

∂3
ijkn

τ = ∂3
ijk(
√
nτ )2

= 2
√
nτ∂3

ijk

√
nτ + 2

(
∂i
√
nτ ∂2

jk

√
nτ + ∂j

√
nτ ∂2

ik

√
nτ + ∂k

√
nτ ∂2

ij

√
nτ
)
,

Hölder’s inequality and estimates (3.39)-(3.41) give

‖∇3nτ‖4/3

L4/3(0,T ;L2)
≤ C

∫ T

0

(
‖
√
nτ‖4/3

L∞‖∇3
√
nτ‖4/3

L2 + ‖∇
√
nτ‖4/3

L∞‖∇2
√
nτ‖4/3

L2

)
dt

≤ C‖
√
nτ‖4/3

L4(0,T ;L∞)‖∇3
√
nτ‖4/3

L2(0,T ;L2)

+ C‖∇
√
nτ‖4/3

L12/5(0,T ;L∞)
‖∇2
√
nτ‖4/3

L3(0,T ;L2) ≤ C,
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since 12/d ≥ 4 for d ≤ 3. This proves (3.34). The first bound in (3.36) follows from (3.40),
while

∫ T

0

‖∇2
√
nτ (t)‖8/3

L12/5 dt ≤ B4

∫ T

0

‖
√
nτ (t)‖2(24+d)/27

H3 ‖
√
nτ (t)‖2(12−d)/27

L2 dt,

yields the second bound, since 2(24 + d)/27 ≤ 2. Finally, (3.37) is a consequence of (3.36)
in combination with the Lions-Villani estimate [47] on square roots (see Lemma C.4).

Lemma 3.12. For any finite T > 0, the sequence

(δτnτ ) is bounded in L4/3(0, T ;H−3(Td)), (3.42)

uniformly in τ > 0.

Proof. We need to show that there exists a constant M > 0 such that
∣∣∣∣
∫ T

0

∫

Td
δτnτ (t;x)ϕ(t;x) dx dt

∣∣∣∣ ≤M
∥∥ϕ‖L4(0,T ;H3)

holds for every test function ϕ ∈ L4(0, T ;H3(Td)), independently of τ > 0. Since, according
to (3.33), the discrete time derivative can be decomposed as

δτnτ = ∆3nτ + ∂3
ijkF

(ijk)
1 (nτ ) + ∂2

ijF
(ij)
2 (nτ )

in the sense of L4/3(0, T ;H−3(Td)), it suffices to discuss the three terms on the right-hand
side separately. For ∆3nτ , using Hölder inequality, it follows that

∣∣∣∣
∫ T

0

∫

Td
∂3
ijkϕ(t;x)∂3

ijkn
τ (t;x) dx dt

∣∣∣∣ ≤
∫ T

0

‖ϕ(t)‖H3‖nτ (t)‖H3 dt

≤ ‖ϕ‖L4(0,T ;H3)‖nτ‖L4/3(0,T ;H3),

and the last expression is uniformly bounded with respect to τ in view of (3.34). Concerning

∂3
ijkF

(ijk)
1 , we find that

∣∣∣∣∣

∫ T

0

∫

Td
∂3
ijkϕ(t;x)F

(ijk)
1 (nτ (t;x)) dx dt

∣∣∣∣∣

≤ 4

∫ T

0

‖ϕ(t)‖H3‖∇
√
nτ (t)‖L∞

(
3‖∇2

√
nτ (t)‖L2 + 4‖∇ 4

√
nτ (t)‖2

L4

)
dt

≤ 4‖ϕ‖L4(0,T ;H3)‖∇
√
nτ‖L12/5(0,T ;L∞)

(
3‖∇2

√
nτ‖L3(0,T ;L2) + 4‖∇ 4

√
nτ‖2

L6(0,T ;L4)

)
,

which is bounded, in view of (3.35), (3.36), and (3.37). Finally,
∣∣∣∣∣

∫ T

0

∫

Td
∂2
ijϕ(t;x)F

(ij)
2 (nτ (t;x)) dx dt

∣∣∣∣∣ ≤
∫ T

0

‖∇2ϕ(t)‖L6

∥∥F2(nτ (t))
∥∥
L6/5 dt

≤ C

∫ T

0

‖ϕ(t)‖H3

(∥∥∇2
√
nτ (t)

∥∥
L12/5 + 8

∥∥∇ 4
√
nτ (t)

∥∥2

L24/5

)2
dt

≤ 2C‖ϕ‖L4(0,T ;H3)

(∥∥∇2
√
nτ
∥∥2

L8/3(0,T ;L12/5)
+ 16

∥∥∇ 4
√
nτ
∥∥4

L16/3(0,T ;L24/5)

)
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shows that also ∂2
ijF

(ij)
2 is uniformly bounded with respect to τ in L4/3(0, T ;H−3(Td)), see

(3.36) and (3.37).

Lemma 3.13. There exists a nonnegative function n ∈ L4/3(0, T ;H3(Td)) such that along
a suitable sequence τ ↓ 0,

nτ ⇀ n in L4/3(0, T ;H3(Td)), (3.43)

δτnτ ⇀ ∂tn in L4/3(0, T ;H−3(Td)), (3.44)
√
nτ → √n in L2(0, T ;H2(Td)), (3.45)

4
√
nτ → 4

√
n in L4(0, T ;W 1,4(Td)). (3.46)

Proof. Estimate (3.34) immediately implies (3.43), i.e., (a subsequence of) nτ converges
weakly to some limit n in L4/3(0, T ;H3(Td)). This convergence is even stronger: The τ -
uniform bound (3.42) on δτnτ allows us to apply Aubin’s compactness lemma [57] to nτ

(using Lemma A.2 of [15]). It follows that nτ converges strongly to the same limit n in
L4/3(0, T ;H2(Td)) and that δτnτ converges to ∂tn weakly in L4/3(0, T ;H−3(Td)), proving
(3.44).

Of course, nτ also converges strongly to n in L1(0, T ;L1(Td)). Therefore,

∫ T

0

∫

Td

∣∣√nτ (t;x)−√n(t;x)
∣∣2 dx dt ≤

∫ T

0

∫

Td

∣∣nτ (t;x)− n(t;x)
∣∣ dx dt→ 0,

since |√a −
√
b|2 ≤ |a − b| for a, b ≥ 0. It follows that

√
nτ converges strongly to

√
n in

L2(0, T ;L2(Td)). Invoking the Gagliardo-Nirenberg inequality, we obtain

∫ T

0

‖∇2
√
nτ (t)−∇2

√
n(t)‖2

L2 dt ≤ B

∫ T

0

‖
√
nτ (t)−√n(t)‖4/3

H3 ‖
√
nτ (t)−√n(t)‖2/3

L2 dt

≤ B

(∫ T

0

(
‖
√
nτ (t)‖2

H3 + ‖√n(t)‖2
H3

)
dt

)2/3(∫ T

0

‖
√
nτ (t)−√n(t)‖2

L2 dt

)2/3

,

which tends to zero since
√
nτ is uniformly bounded with respect to τ in L2(0, T ;H3(Td)),

by (3.34), and it converges strongly to
√
n in L2(0, T ;L2(Td)). This proves (3.45).

Finally, (3.46) is a consequence of Proposition C.6, applied with α = 1/2, β = 1/6,
γ = 1/4, and p = 2, q = 6, r = 4. Indeed, simply combine the strong convergence of√
nτ in L2(0, T ;H2(Td)) with the boundedness of (

6
√
nτ ) in L6(0, T ;W 1,6(Td)) (see (3.38)),

which gives the conclusion.

Proof of Theorem 3.1. It remains to prove that the limit function n ∈ L4/3(0, T ;H3(Td))
from Lemma 3.13 is the sought weak solution for (3.7). In other words, we need to identify
the limit ∂tn with the right-hand side of (3.3). We recall that, by the weak convergence of
δτnτ to ∂tn in L4/3(0, T ;H−3(Td)),

∫ T

0

〈∂tn, ϕ〉 dt = lim
τ↓0

∫ T

0

〈δτnτ , ϕ〉 dt
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holds for all ϕ ∈ L4(0, T ;H3(Td)). In view of (3.33), the goal is thus to prove that

lim
τ↓0

∫ T

0

∫

Td

(
∂3
ijkϕ∂

3
ijkn

τ + ∂3
ijkϕF

(ijk)
1 (nτ )− ∂2

ijϕF
(ij)
2 (nτ )

)
dx dt

=

∫ T

0

∫

Td

(
∂3
ijkϕ∂

3
ijkn+ ∂3

ijkϕF
(ijk)
1 (n)− ∂2

ijϕF
(ij)
2 (n)

)
dx dt

for all test functions ϕ from some dense set of L4(0, T ;H3(Td)). Since the C∞ functions

are dense in that set, it suffices to prove the weak convergence of ∂3
ijkn

τ , F
(ijk)
1 (nτ ), and

F
(ij)
2 (nτ ) to their respective limits ∂3

ijkn, F
(ijk)
1 (n), and F

(ij)
2 (n) in L1(0, T ;L1(Td)).

First term of the integrand. From (3.43), it follows in particular that ∂3
ijkn

τ converges

weakly to ∂3
ijkn in L4/3(0, T ;L2(Td)) for any combination of the indices i, j, and k, and

thus, as τ ↓ 0, ∫ T

0

∫

Td
∂3
ijkϕ∂

3
ijkn

τ dx dt→
∫ T

0

∫

Td
∂3
ijkϕ∂

3
ijkn dx dt.

Second term of the integrand. We recall the definition of F
(ij)
1 from (3.4). As a

consequence of (3.46), the first-order derivatives ∂j
4
√
nτ converge strongly to ∂j 4

√
n in

L4(0, T ;L4(Td)) for all j. As a product of strongly convergent sequences, each ∂j
4
√
nτ ∂k

4
√
nτ

converges strongly in L2(0, T ;L2(Td)) to the respective product ∂j 4
√
n ∂k 4
√
n. Clearly,

all second-order derivatives ∂2
jk

√
nτ tend strongly to their respective limits ∂2

jk

√
n in

L2(0, T ;L2(Td)) as well, taking into account (3.45). In combination with the strong conver-

gence of ∂i
√
nτ to ∂i

√
n in L2(0, T ;L2(Td)), by (3.45), it follows that each F

(ijk)
1 (nτ ) is the

sum of products of two strongly convergent sequences in L2(0, T ;L2(Td)) and consequently,
the product converges strongly in L1(0, T ;L1(Td)) to the product of the limits:

∫ T

0

∫

Td
∂3
ijkϕF

(ijk)
1 (nτ ) dx dt→

∫ T

0

∫

Td
∂3
ijkϕF

(ijk)
1 (n) dx dt.

Third term of the integrand. Arguing as above, it follows from (3.45) and (3.46) that

both summands in F
(ij)
2 (nτ ) converge strongly in L2(0, T ;L2(Td)) to their respective limits,

and so the sequence of the product converges strongly in L1(0, T ;L1(Td)) to the product
of the limit. This means that

∫ T

0

∫

Td
∂2
ijϕF

(ij)
2 (nτ ) dx dt→

∫ T

0

∫

Td
∂2
ijϕF

(ij)
2 (n) dx dt.

finishing the proof.

3.5 Exponential time decay of weak solutions

Proof of Theorem 3.2. Let τ > 0 and let nτ1, nτ2, . . . be the sequence of solutions to the
semi-discretized problem constructed in Proposition 3.9. The discrete entropy estimate



3.6. EXISTENCE AND UNIQUENESS OF CLASSICAL SOLUTIONS 59

(3.22) implies that

H[nτk] + τκ

∫

Td
|∇3
√
nτk|2 dx ≤ H[nτk−1], k ∈ N.

with a positive constant κ > 0 independent of k and τ . Employing the generalized loga-
rithmic Sobolev inequality,

∫

Td
nτk log

( nτk
‖nτk‖L1(Td)

)
dx ≤ 1

32π6

∫

Td
‖∇3

√
nτk‖2 dx,

which is proven as in [36], and observing that ‖nτk‖L1(Td) = ‖n0‖L1(Td) = 1, we infer that

H[nτk] ≤
1

32π6

∫

Td
‖∇3

√
nτk‖2 dx.

Then the above entropy inequality yields

H[nτk] + 32π6τκH[nτk] ≤ H[nτk−1], k ∈ N,

which in turn implies for all t ∈ ((k − 1)τ, kτ ] that

H[nτ (t)] ≤
(
1 + 32π6τκ

)−t/τH[n0],

since k ≥ t/τ . Recall that nτ (t) converges a.e. to n(t) as τ → 0, and observe that
(1 + 32π6τκ)−t/τ converges to exp(−32π6κt). Thus the limit τ → 0 gives

H[n(t)] ≤ H[n0]e−32π6κt, t ≥ 0.

An application of the Csiszár-Kullback-Pinsker inequality (see, e.g., [60, Section 2]) con-
cludes the proof.

3.6 Existence and uniqueness of classical solutions

In this section, we invoke the machinery of analytic semigroups to prove Theorem 3.3.
Our approach follows closely the strategy developed in [7] by Bleher at al. for the fourth-
order DLSS equation. However, the more complicated structure of the nonlinearities in
our sixth-order equation induces a variety of additional technical difficulties.

3.6.1 Definitions

We collect some standard results on the operator ∆3. By abuse of notation, we use the
symbol ∆3 for the L1(Td)-closure of the operator ∆3ϕ =

∑d
i,j,k=1 ∂

2
i ∂

2
j ∂

2
kϕ, defined for

ϕ ∈ C∞(Td). Define the auxiliary function H ∈ C∞(Rd) by

H(z) = (2π)−d
∫

Rd
e−|ζ|

6

eiζ·z dζ,
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and introduce for each t > 0 the so-called solution kernel G(t) ∈ C∞(Td) by

G(t; y) = t−d/6
∑

Λ∈Zd
H
(
t−1/6(y + Λ)

)
.

The series converges since H(z) decays exponentially for |z| → ∞. Classical parabolic
theory provides the following result.

Lemma 3.14. Let m ∈ N0, p ∈ [1,∞), and α ∈ (0, 1). If u ∈ Wm,p(Td), then the
convolution U(t) = G(t) ? u defines a smooth curve, satisfying

U ∈ C∞((0,∞);C∞(Td)) ∩ C0([0,∞);Wm,p(Td)),
d

dt
U(t) = ∆3U(t), U(0) = u.

(3.47)

If w ∈ Cα([t1, t2];Wm,p(Td)) is a Hölder continuous curve on [t1, t2], then the function

W (t) =

∫ t

t1

G(t− s) ? w(s) ds

defines a Hölder continuously differentiable curve, satisfying

W ∈ C1,α([t1, t2];Wm+6,p(Td)),
d

dt
W (t) = ∆3W (t) + w(t), W (t1) = 0. (3.48)

Proof. The proof of (3.47) and (3.48) is technical but standard. One possible approach,
which would be most similar to [7], is to observe that −∆3 is the generator of the analytic
semigroup defined by t 7→ G(t) ? f for all f ∈ L1(Td). We refer to [31, Chapter 3] or to
[54, Chapter 4] for further details on the semigroup approach.

Apart from Lemma 3.14, we shall not need classical results on parabolic equations.
Instead, we derive our core estimates with the help of the following lemma.

Lemma 3.15. For given α ∈ Nd
0, p ≥ 1, and t > 0, the kernel G satisfies the estimate

∥∥DαG(t)
∥∥
Lp
≤ Γt−(|α|+d(1−1/p))/6, (3.49)

where Γ > 0 is independent of t > 0.

Here and in the following, Dα denotes a partial derivative of order |α|.
Proof. For t > 0, define the half-open cube Q(t) = [0, t−1/6)d ⊂ Rd. Using the change of
variables z(t) = t−1/6y, we obtain

‖DαG(t)‖Lp(Td) = t−d/6

(∫

[0,1)d

∑

Λ∈Zd

∣∣Dα
y H
(
t−1/6(y + Λ)

)∣∣p dy

)1/p

≤ t−d/6
∑

Λ∈Zd

(∫

Q(t)

∣∣t−|α|/6 Dα
z H(z + t−1/6Λ)

∣∣ptd/6 dz

)1/p

= t−(d+|α|−d/p)/6
(∫

Rd

∣∣Dα
z H(z)

∣∣p dz

)1/p

.
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Here we used the Minkowski inequality and the fact that, for each t > 0, the space Rd is
the disjoint union of the cubes Q(t) + t−1/6Λ, where Λ ∈ Zd. So Γ = ‖DαH‖Lp(Rd) is the
required constant.

3.6.2 Existence and uniqueness of a mild solution

Our main result of this subsection is contained in the following proposition.

Proposition 3.16. Let n0 ∈ H2(Td) be strictly positive. Then there exist T > 0 and
precisely one continuous curve n : [0, T ] → H2(Td) with n(0) = n0 that satisfies the
following “very mild” formulation of (3.3):

n(t) = G(t) ? n0 + ∂3
ijk

∫ t

0

G(t− s) ? F (ijk)
1 (n(s)) ds+ ∂2

ij

∫ t

0

G(t− s) ? F (ij)
2 (n(s)) ds

(3.50)

for every t ∈ (0, T ). This solution is differentiable with respect to t ∈ (0, T ) with a Hölder
continuous derivative, i.e. n ∈ C1,1/12([τ, T ];H2(Td)) for every τ ∈ (0, T ).

To prove Proposition 3.16, we adapt the proof of Theorem 4.2 (a) in [7] to the situation
at hand. That means, we are going to obtain the solution n to (3.50) as the unique fixed
point of the map u 7→ Φ[u], defined by

Φ[u](t) = G(t) ? n0 + Ψ[u](t) (3.51)

on a suitable set VT ⊂ C0([0, T ];H2(Td)), where Ψ = ∂3
ijkψ

(ijk)
1 + ∂2

ijψ
(ij)
2 and

ψ
(ijk)
1 [u](t) =

∫ t

0

G(s) ? F
(ijk)
1 (u(t− s)) ds, ψ

(ij)
2 [u](t) =

∫ t

0

G(s) ? F
(ij)
2 (u(t− s)) ds.

(3.52)

The core ingredient of the proof of Proposition 3.16 is the following Lipschitz estimate on
the nonlinearities F

(ijk)
1 and F

(ij)
2 .

Lemma 3.17. For any 0 < δ < 1, F
(ijk)
1 and F

(ij)
2 are Lipschitz continuous as mappings

from any bounded subset of

Uδ =
{
u ∈ H2(Td) : min

x
u(x) ≥ δ, ‖u‖H2 ≤ δ−1

}
(3.53)

into L3/2(Td) and into L1(Td), respectively, satisfying

‖F (ijk)
1 (u)‖L3/2 ≤M1δ

−5, ‖F (ijk)
1 (u1)− F (ijk)

1 (u2)‖L3/2 ≤M1δ
−4‖u1 − u2‖H2 , (3.54)

‖F (ij)
2 (u)‖L1 ≤M2δ

−7, ‖F (ij)
2 (u1)− F (ij)

2 (u2)‖L1 ≤M2δ
−6‖u1 − u2‖H2 , (3.55)
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for all u, u1, u2 ∈ Uδ, where M1 and M2 are universal constants. Moreover, F
(ijk)
1 and F

(ij)
2

map

U ′δ =
{
u ∈ Uδ ∩W 3,3/2(Td) : ‖u‖W 3,3/2 ≤ δ−1

}

into L2(Td) and L3/2(Td), respectively, satisfying

‖F (ijk)
1 (u)‖L2 ≤M ′

1δ
−5, ‖F (ijk)

1 (u1)− F (ijk)
1 (u2)‖L2 ≤M ′

1δ
−4‖u1 − u2‖H2 , (3.56)

‖F (ij)
2 (u)‖L3/2 ≤M ′

2δ
−7, ‖F (ij)

2 (u1)− F (ij)
2 (u2)‖L3/2 ≤M ′

2δ
−6‖u1 − u2‖H2 , (3.57)

for all u, u1, u2 ∈ U ′δ, where M ′
1 and M ′

2 are universal constants.

Proof. Since we are working in dimensions d ≤ 3, every u ∈ Uδ is a strictly positive and
continuous function on Td, with ∂2

iju ∈ L2(Td) and ∂iu ∈ L6(Td). It follows that we can
write

F
(ijk)
1 (u) = 2

∂iu∂ju∂ku

u2
− 3

∂iu∂
2
jku

u
, (3.58)

F
(ij)
2 (u) = 2

∂2
iku∂

2
kju

u
− 4

∂2
iku∂ku∂ju

u2
+ 2

(∂ku)2∂iu∂ju

u3
. (3.59)

Thus, F
(ijk)
1 and F

(ij)
2 are sums of products of derivatives (of order one or two) of u,

divided by a power of u. By application of Hölder’s inequality and the continuity of the
Sobolev embedding H2(Td) ↪→ W 1,6(Td), one readily verifies the first inequalities in (3.54)
and (3.55). The Lipschitz continuity is straightforward to verify from the representations
(3.58) and (3.59) by repeated application of the triangle inequality. For proving (3.56) and
(3.57), we use additionally the continuous embedding W 3,3/2(Td) ↪→ W 2,3(Td).

A consequence of the above lemma is that Ψ maps bounded curves u into Hölder
continuous curves.

Lemma 3.18. Assume that there exists a δ > 0 such that u ∈ C([0, T );H2(Td)) satisfies

1. either u(t) ≥ δ and ‖u(t)‖H2 ≤ δ−1,

2. or u(t) > 0 and E [u(t)] ≤ δ−1

for all 0 ≤ t ≤ T . Then Ψ[u] ∈ C1/12([0, T ];H2(Td)), i.e.,

‖Ψ[u](t′)−Ψ[u](t)‖H2 ≤ L|t′ − t|1/12 for all t, t′ ∈ [0, T ], (3.60)

where L > 0 depends on δ, but not on u.

Proof. To begin with, we remark that

‖F (ijk)
1 (u(t))‖L3/2 ≤ Z1 and ‖F (ij)

2 (u(t))‖L1 ≤ Z2 (3.61)
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holds for all t ∈ [0, T ], where the positive constants Z1 and Z2 depend on δ > 0 only. Indeed,
if the first set of assumptions on u is satisfied, then (3.61) is an immediate consequence of
Lemma 3.17. If instead the second set of assumptions is satisfied, then Hölder’s inequality
implies

‖F (ijk)
1 (u(t))‖L3/2 ≤ 4‖∇

√
u(t)‖L6

(
4‖∇ 4

√
u(t)‖2

L4 + 3‖∇2
√
u(t)‖L2

)
,

‖F (ij)
2 (u(t))‖L1 ≤ 8

(
‖∇2

√
u(t)‖L2 + 4‖∇ 4

√
u(t)‖2

L4

)2
.

In view of (3.9) and Lemma C.4, these right-hand sides are controlled in terms of E [u(t)] ≤
δ−1 only.

Now, let t, t′ ∈ [0, T ] be given with τ = t′ − t > 0. For a given α ∈ Nd
0 with |α| = 2,

introduce
Θα(t; τ) =

∥∥Dα
(
Ψ[u](t+ τ)−Ψ[u](t)

)∥∥
L2 .

By definition of Ψ and a change of variables under the integrals, we find that

Θα(t; τ) ≤
∫ t

0

(∥∥Dα ∂3
ijk(G(s+ τ)−G(s)) ? F

(ijk)
1 (u(t− s))

∥∥
L2

+
∥∥Dα ∂2

ij(G(s+ τ)−G(s)) ? F
(ij)
2 (u(t− s))

∥∥
L2

)
ds

+

∫ τ

0

(∥∥Dα ∂3
ijkG(s) ? F

(ijk)
1 (u(t+ τ − s))

∥∥
L2

+
∥∥Dα ∂2

ijG(s) ? F
(ij)
2 (u(t+ τ − s))

∥∥
L2

)
ds.

Using (3.61) and Young’s inequality for convolutions,

‖φ ? ψ‖Lp ≤ Υ‖φ‖Lq‖ψ‖Lr ,
for φ ∈ Lp(Rd), ψ ∈ Lr(Rd), and 1 + 1/p = 1/q + 1/r, where Υ > 0, the term under the
last integral above can be estimated for 0 < s < τ as follows:

∥∥Dα ∂3
ijkG(s) ? F

(ijk)
1 (u(t+ τ − s))

∥∥
L2 ≤ Υ1‖∇5G(s)‖L6/5‖F1(u(t+ τ − s))‖L3/2

≤ Υ1Z1Γ1

sϑ1
,

∥∥Dα ∂2
ijG(s) ? F

(ij)
2 (u(t+ τ − s))

∥∥
L2 ≤ Υ2‖∇4G(s)‖L2‖F2(u(t+ τ − s))‖L1

≤ Υ2Z2Γ2

sϑ2
,

where, according to (3.49), the exponents are given by

ϑ1 = (5 + d/6)/6 < 1 and ϑ2 = (4 + d/2)/6 < 1.

We apply the analogous estimate to the expression under the first integral, and estimate
further by employing relation (3.47). For 0 < s < t, we have

∥∥∇5(G(τ + s)−G(s))
∥∥
L6/5 ≤

∥∥∥∥∇5

∫ s+τ

s

∆3G(σ) dσ

∥∥∥∥
L6/5

≤
∫ s+τ

s

∥∥∇5(∆3G(σ))
∥∥
L6/5 dσ ≤ Γ′1

∫ s+τ

s

dσ

σ1+ϑ1
=

Γ′1
ϑ1

(
s−ϑ1 − (s+ τ)−ϑ1

)
.
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In a similar fashion, we obtain

∥∥∇4(G(s+ τ)−G(s))
∥∥
L2 ≤

Γ′2
ϑ2

(
s−ϑ2 − (s+ τ)−ϑ2

)
.

In summary, this leads to

Θα(t; τ) ≤ Υ1Z1Γ′1
ϑ1

∫ t

0

(
s−ϑ1 − (s+ τ)−ϑ1

)
ds+

Υ2Z2Γ′2
ϑ2

∫ t

0

(
s−ϑ2 − (s+ τ)−ϑ2

)
ds

+ Υ1Z1Γ1

∫ τ

0

s−ϑ1 ds+ Υ2Z2Γ2

∫ τ

0

s−ϑ2 ds

≤ Υ1Z1Γ′1
(1− ϑ1)ϑ1

(
(t+ τ)1−ϑ1 − t1−ϑ1

)
+

Υ2Z2Γ′2
(1− ϑ2)ϑ2

(
(t+ τ)1−ϑ2 − t1−ϑ2

)

+
Υ1Z1Γ1

1− ϑ1

τ 1−ϑ1 +
Υ2Z2Γ2

1− ϑ2

τ 1−ϑ2 .

To finish the proof, we observe that, since 0 < ϑi < 1, we have (t+ τ)1−ϑi ≤ t1−ϑi + τ 1−ϑi ,
and ϑi ≤ 11/12 in dimensions d ≤ 3. This proves the Hölder continuity of Θα(t; τ) with
exponent 1/12 for |α| = 2. The cases |α| = 1 and α = 0 are similar.

Proof of Proposition 3.16. As indicated above, we are going to show that Φ, given by
(3.51), is a well-defined contraction on a suitable subset VT ⊂ C([0, T ];H2(Td)) for some
sufficiently small T > 0.

Recall the definition of Uδ from (3.53). Since n0 ∈ H2(Td) is strictly positive by
assumption, we can choose δ > 0 such that n0 ∈ U2δ. Accordingly, for a given T > 0,
define

VT =
{
u ∈ C0([0, T ];H2(Td)) : u(t) ∈ Uδ for all t ∈ [0, T ]}.

Fix a curve u ∈ VT . In view of Lemma 3.17, F
(ijk)
1 (u) and F

(ij)
2 (u) are continuous curves

on [0, T ] with values in L3/2(Td) and L1(Td), respectively.

Since Φ[u](0) = n0 for every u ∈ VT , the H2-distance of Φ[u](t) to n0 becomes small as
t ↓ 0, uniformly in u ∈ VT . Moreover, since the infimum of Φ[u](t) is controlled in terms
of this distance, one may choose T > 0 sufficiently small to achieve Φ[u](t) ∈ Uδ for all
t ∈ [0, T ] and u ∈ VT . Hence, Φ : VT → VT is well-defined.

Next, we verify the contraction property of Φ. The calculations follow the same pattern
as above, now using the Lipschitz estimates in (3.54) and (3.55). Let u1, u2 ∈ VT be given.
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Then, for |α| = 2,

∥∥Dα
(
Φ[u1](t)− Φ[u2](t)

)∥∥
L2 ≤

∫ t

0

(∥∥∇5G(t− s) ? (F
(ijk)
1 (u1(s))− F (ijk)

1 (u2(s)))
∥∥
L2

+
∥∥∇4G(t− s) ? (F

(ij)
2 (u1(s))− F (ij)

2 (u2(s)))
∥∥
L2

)
ds

≤ Υ1M1δ
−4

∫ t

0

(t− s)−ϑ1‖u1(s)− u2(s)‖H2 ds

+ Υ2M2δ
−6

∫ t

0

(t− s)−ϑ2‖u1(s)− u2(s)‖H2 ds

≤
(

Υ1M1

δ4(1− ϑ1)
+

Υ2M2

δ6(1− ϑ2)

)
T 1/12

× sup
0≤s′≤T

‖u1(s′)− u2(s′)‖H2 .

Similar estimates are obtained for |α| ≤ 1. Diminishing T further if necessary, it follows
that Φ is contractive on VT . The claim about the Hölder continuity is a consequence of
(3.60) in combination with (3.47).

3.6.3 Bootstrapping

We prove that the very mild solution to (3.3) is actually smooth for t > 0. To this end, we
need the following lemma.

Lemma 3.19. Let δ > 0 be given. For each m ≥ 1, there exist continuous and increasing
functions Q

(m)
1 , Q

(m)
2 : R+ → R+ such that

‖F (ijk)
1 (u1)− F (ijk)

1 (u2)‖Hm ≤ Q
(m)
1

(
‖u1‖Hm+1 + ‖u2‖Hm+1

)
‖u1 − u2‖Hm+2 , (3.62)

‖F (ij)
2 (u1)− F (ij)

2 (u2)‖Wm,3/2 ≤ Q
(m)
2

(
‖u1‖Hm+1 + ‖u2‖Hm+1

)
‖u1 − u2‖Hm+2 (3.63)

holds (componentwise) for all u ∈ Uδ ∩Hm+2(Td).

Observe that this lemma does not apply for m = 0, in which case one has to resort to
the estimates provided in Lemma 3.17.

Proof. Basically, we follow the ideas of the proof of Lemma 3.17, namely we apply several
times the triangle inequality, the Hölder inequality, and continuous Sobolev embeddings.
However, due to the higher-order derivatives, the proof is technically more involved. Rep-
resentations (3.58) and (3.59) show that F

(ijk)
1 and F

(ij)
2 are sums of products of derivatives

of u divided by a power of u, i.e. sums of monomials of the form

Dα1

u . . .Dαk u

uk−1
, (3.64)
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where α` ∈ Nd
0, ` = 1, . . . , k, 1 ≤ |α`| ≤ 2, and

∑k
`=1 |αl| = K equals 3 or 4 for F

(ijk)
1 or

F
(ij)
2 , respectively. A partial derivative of such a monomial is again a sum of monomials of

the form (3.64):

Dα
(Dα1

u . . .Dαk u

uk−1

)
=
∑ Dβ1

u Dβ2

u . . .Dβr u

ur−1
,

for α ∈ Nd
0, |α| ≤ m, 1 ≤ |β`| ≤ m+2, k ≤ r ≤ k+ |α|, and

∑r
`=1 |β`| = K+ |α|. In view of

the continuous Sobolev embeddings Hm+2(Td) ↪→ Wm+1,6(Td) and Hm+2(Td) ↪→ Cm(Td),
it follows from the above representation of Dα F

(ijk)
1 (u) and Dα F

(ij)
2 (u) that for every

u ∈ Hm+2(Td), it holds Dα F
(ijk)
1 (u) ∈ L2(Td) and Dα F

(ij)
2 (u) ∈ L3/2(Td) for each |α| ≤ m

and m ≥ 1. Then, by the repeated application of the triangle and Hölder inequalities, we
obtain functions Q

(m)
1 and Q

(m)
2 as well as the estimates (3.62) and (3.63).

Proposition 3.20. The very mild solution from Proposition 3.16 is a continuously differ-
entiable curve from (0, T ] to C∞(Td).

Proof. Let τ ∈ (0, T ) be fixed. We are going to prove, inductively on m, that

n ∈ C1,1/12([τ, T ];Hm+2(Td)) (3.65)

for every integer m ∈ N0. For m = 0, the claim (3.65) is part of the conclusion of Proposi-
tion 3.16 above. The compositions of the Hölder continuous curve n with the locally Lips-
chitz continuous nonlinearities F

(ijk)
1 and F

(ij)
2 (see Lemma 3.17) are Hölder continuous with

the same exponent, F
(ijk)
1 (n) ∈ C1/12([τ, T ];L3/2(Td)) and F

(ij)
2 (n) ∈ C1/12([τ, T ];L1(Td)).

For ψ
(ijk)
1 and ψ

(ij)
2 , defined in (3.52), the second part of Lemma 3.14 implies that

ψ
(ijk)
1 [n] ∈ C1,1/12([τ, T ];W 6,3/2(Td)) and ψ

(ij)
2 [n] ∈ C1,1/12([τ, T ];W 6,1(Td)). In combina-

tion with (3.47), it thus follows directly from (3.50) that n ∈ C1,1/12([τ, T ];W 3,3/2(Td)). An

iteration leads, via (3.56), to the improved regularity F
(ijk)
1 (n) ∈ C1/12([τ, T ];L2(Td)), and

thus to ψ
(ijk)
1 [n] ∈ C1,1/12([τ, T ];H6(Td)). Furthermore, by (3.57), we infer that F

(ij)
2 (n) ∈

C1/12([τ, T ];L3/2(Td)) and hence, ψ
(ij)
2 [n] ∈ C1,1/12([τ, T ];W 6,3/2(Td)). By the continuity

of the embedding W 6,3/2(Td) ↪→ H5(Td), it follows that ψ
(ij)
2 [n] ∈ C1,1/12([τ, T ];H5(Td)).

Then the representation (3.50) proves (3.65) with m = 1.

Assuming (3.65) for some m ≥ 1, it follows from Lemma 3.19 that F
(ijk)
1 (n) ∈

C1/12([τ, T ]; Hm(Td)) and F
(ij)
2 (n) ∈ C1/12([τ, T ];Wm,3/2(Td)). By property (3.48) of the

kernel G and since the Sobolev embedding Wm+6,3/2(Td) ↪→ Hm+5(Td) is continuous, we

infer that ψ
(ijk)
1 ∈ C1,1/12([τ, T ];Hm+6(Td)) and ψ

(ij)
2 ∈ C1/12([τ, T ];Hm+5(Td)). Using this

inside the representation (3.50) and combining it with the smoothness property (3.47), we
arrive at n ∈ C1,1/12([τ, T ];Hm+3(Td)), which implies (3.65) with m replaced by m+1.

Proof of Theorem 3.3. First, we extend the local solution n ∈ C([0, T ];H2(Td)) obtained
from Proposition 3.16 to the respective maximal solution nmax by the usual procedure:
Provided that n(T ) ∈ H2(Td) is strictly positive, we can invoke Proposition 3.16 with the
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new initial datum ñ0 := n(T ), thus obtaining another “very mild” solution ñ : [0, T̃ ] →
H2(Td) to (3.3). Using the semigroup property G(τ) ? G(σ) = G(τ + σ) for arbitrary σ,
τ > 0, it can be easily checked that the concatenation n+ : [0, T + T̃ ]→ H2(Td), given by

n+(t) =

{
n(t) for 0 ≤ t ≤ T ,

ñ(t− T ) for T ≤ t ≤ T + T̃
,

is another continuous curve satisfying (3.50).
The maximal solution nmax : [0, T∗) → H2(Td) is the uniquely determined curve that

satisfies (3.50) on every subinterval [0, T ] ⊂ [0, T∗), but it cannot be extended to a solution
on [0, T∗]. In view of our solution concept, this means that

1. either T∗ = +∞, i.e., the solution is global,

2. or nmax(t)→ n∗ in H2(Td) as t ↑ T∗, but the limiting profile n∗ is not strictly positive,

3. or nmax(t) does not converge in H2(Td) as t ↑ T∗.

We are going to exclude the last option. First notice that Proposition 3.20 guarantees
that n is a classical and positive solution on every subinterval (0, T ] ⊂ (0, T∗), so nmax ∈
C∞((0, T∗);C

∞(Td)), as desired. This means that, in turn, the formal calculation (3.16) is
rigorous. Combining this with the continuity of nmax(t) in H2(Td) at t = 0, it follows that
E [nmax(t)] ≤ E [n0] < ∞ is uniformly bounded on [0, T∗). If T∗ < ∞, then nmax satisfies
hypothesis (2) of Lemma 3.18. Since nmax(t) = G(t) ? n0 + Ψ[nmax](t) by definition, it is a
Hölder continuous curve with exponent 1/12 in H2(Td) on, say, [T∗/2, T∗) with a uniform
Hölder constant L. This implies, in particular, that nmax(t) converges in H2(Td) to a limit
n∗.

3.7 From weak to classical solutions

In this brief last section, we prove Theorem 3.5 about the passage from energetic weak to
classical solutions. In preparation of the proof of Theorem 3.5, we first show that any weak
solution satisfies the very mild formulation (3.50), but in a weaker sense.

Lemma 3.21. Any weak solution n in the sense of Theorem 3.1 is a Hölder continuous
curve in H−3(Td), satisfying, for t > 0,

n(t) = G(t) ? n0 + ∂3
ijk

∫ t

0

G(t− s) ? F (ijk)
1 (n(s)) ds+ ∂2

ij

∫ t

0

G(t− s) ? F (ij)
2 (n(s)) ds.

(3.66)

Proof. By our definition of a weak solution, n lies in W
1,4/3
loc (0,∞;H−3(Td)). As a conse-

quence, n is a Hölder continuous curve with exponent 1/3 in H−3(Td) and, in particular, n
is absolutely continuous in H−3(Td). Hence, its time derivative ∂tn(t) is defined in H−3(Td)
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for almost every t > 0. Moreover, n ∈ L4/3
loc (0,∞;H3(Td)), thus, n(t) ∈ H3(Td) for almost

every t > 0 and ∆3n ∈ L4/3
loc (0,∞;H−3(Td)). It follows that

g := ∂tn−∆3n ∈ L4/3
loc (0,∞;H−3(Td)).

For fixed t > 0, consider the continuous curve u : (0, t) → C∞(Td), defined by u(s) =
G(t− s) ? n(s). Recalling (3.47), it follows for arbitrary 0 < s < t that

∂su(s) = −∆3G(t− s) ? n(s) +G(t− s) ? ∂sn(s)

= G(t− s) ? (∂sn(s)−∆3n(s)) = G(t− s) ? g(s).

Therefore, u ∈ W 1,4/3
loc (0,∞;H−3(Td)), and

lim
t′↑t

u(t′) = u(0) +

∫ t

0

G(t− s) ? g(s) ds.

Since u(0) = G(t) ? n0 and u(t′)→ n(t) in H−3(Td) as t′ ↑ t, formula (3.66) follows.

Lemma 3.22. Let n be the energetic weak solution to (3.50). Then F
(ijk)
1 (n(t)) is bounded

in L3/2(Td) and F
(ij)
2 (n(t)) is bounded in L1(Td), uniformly in (T1, T2).

Proof. By the Hölder and the Sobolev inequalities and Lemma C.4, it follows that

‖F (ijk)
1 (n(t))‖L3/2 ≤ 4‖∇

√
n(t)‖L6

(
4‖∇ 4

√
n(t)‖2

L4 + 3‖∇2
√
n(t)‖L2

)

≤ 4C‖
√
n(t)‖H2(4C2

LV‖
√
n(t)‖H2 + 3)‖

√
n(t)‖H2 ,

‖F (ij)
2 (n(t))‖L1 ≤ 8

(
‖∇2

√
n(t)‖L2 + 4‖∇ 4

√
n(t)‖2

L4

)2

≤ 8
(
1 + 4C2

LV‖
√
n(t)‖H2

)2‖
√
n(t)‖2

H2 .

The last terms are uniformly controlled in terms of E [n(t)] which concludes the proof.

In the following, let n be a weak solution satisfying the hypotheses of Theorem 3.5.
Without loss of generality we may take t0 = 0. Then n0 ∈ H2(Td) and minn0(x) > 0.
Since we are working with an energetic solution, it is a priori clear that n(t) is bounded in
H2(Td). Actually, more is true.

Lemma 3.23. The energetic solution n is a Hölder continuous curve in H2(Td).

Proof. Let t > 0 and τ > 0 be fixed. Since G(t − s) ∈ C∞(Td) and f(n(s)) =

∂3
ijkF

(ijk)
1 (n(s)) +∂2

ijF
(ij)
2 (n(s)) ∈ H−3(Td) for all s ∈ (0, t), we have G(t − s) ? f(n(s)) ∈

C∞(Td). It follows that

∇2G(t− s) ? f(n(s)) = ∇2∂3
ijkG(t− s) ? F (ijk)

1 (n(s)) +∇2∂2
ijG(t− s) ? F (ij)

2 (n(s)).
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By Young’s inequality, it follows further that

‖∇2G(t− s) ? f(n(s))‖L2 ≤ C
(
‖∇5G(t− s)‖L6/5‖F (ijk)

1 (n(s))‖L3/2

+ ‖∇4G(t− s)‖L2‖F (ij)
2 (n(s))‖L1

)

≤ C
(
(t− s)−(5+d/6)/6 + (t− s)−(4+d/2)/6

)

≤ C(t− s)−11/12,

where C > 0 is a generic constant and recalling that d ≤ 3. This implies that, for all
t ∈ (0, T ) and τ > 0,

∥∥∥∥∇2

∫ t+τ

t

G(t+ τ − s) ? f(n(s)) ds

∥∥∥∥
L2

≤ C
(
(t+ τ)1/12 − t1/12

)
≤ Cτ 1/12.

Similarly, we find that

∥∥∇2
(
G(t+ τ − s)−G(t− s) ? f(n(s))

)∥∥
L2

≤ C
(∥∥∇5(G(t+ τ − s)−G(t− s))‖L6/5‖F (ijk)

1 (n(s))‖L3/2

+
∥∥∇4

(
G(t+ τ − s)−G(t− s)

)
‖L2‖F (ij)

2 (n(s))‖L1

)
.

By relation (3.47), for m = 4, 5,

∥∥∇m
(
G(t+ τ − s)−G(t− s)

)
‖Lp ≤

∥∥∥∥∇m

∫ t+τ−s

t−s

dG

dθ
G(ϑ) dϑ

∥∥∥∥
Lp

≤
∫ t+τ−s

t−s
‖∇m∆3G(ϑ)‖Lp dϑ ≤ Γ

∫ t+τ−s

t−s
ϑ−1−(m+d(1−1/p))/6 dϑ.

As in the proof of Lemma 3.18, this proves the continuity with the Hölder exponent 1/12.

The above results, together with Theorem 3.3, provide the proof of Theorem 3.5.
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Chapter 4

Entropy stable and energy dissipative
approximations of the fourth-order
quantum diffusion equation

4.1 Introduction and results

This chapter is devoted to the study of several approximations of the fourth-order equation
appearing as the second member in the local expansion of the quantum diffusion model,

∂tn+ div

(
n∇

(
∆
√
n√
n

))
= 0 . (4.1)

It can be easily seen that for smooth positive solutions equation (4.1) admits a symmetric
logarithmic form

∂tn+
1

2
∂2
ij(n∂

2
ij log n) = 0 , (4.2)

which is exactly the multidimensional form of the originally onedimensional Derrida-
Lebowitz-Speer-Spohn (DLSS for short) equation [23]. Again we employed the summa-
tion convention over repeated indices. Throughout this chapter we assume that periodic
boundary conditions are imposed and an initial data is given by a nonnegative measurable
function n0.

The existence theory for the DLSS equation was subject of many papers and it is by
now resonably well understood. The very first result can be found in paper by Bleher
et. al [7], in which they used classical semigroup approach to prove the existence and
uniqueness of a local in time positive solution. In [36] Jüngel and Matthes proved the
existence of global in time weak nonnegative solutions and observed their convergence to
the homogeneous steady state. Results in there rely on entropy dissipation techniques and
low-dimensional Sobolev embeddings. It has been shown that α-functionals, defined in (1.6)
with Ω = Td, are Lyapunov functionals for the DLSS equation for all (

√
d− 1)2/(d+ 2) ≤

α ≤ (
√
d+1)2/(d+2). Moreover, if α lies strictly between these bounds, entropy production

71
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inequality
d

dt
Eα[n(t)] + κα

∫

Td

(
∆nα/2

)2
dx ≤ 0 (4.3)

holds, where κα > 0 can be computed explicitly (see Lemma C.5). Gianazza et. al [30]
were the first who explored the variational structure of the equation. They proved that
equation (4.1) constitutes the gradient flow of the Fisher information

F [n] =

∫

Ω

|∇√n|2dx

with respect to the L2-Wasserstein metric. The variational derivative of the Fisher in-
formation equals δF [n]/δn = −∆

√
n/
√
n and equation (4.1) then — under appropriate

boundary conditions — directly implies the dissipation of the Fisher information along its
solutions,

d

dt
F [n(t)] +

∫

Ω

n

∣∣∣∣∇
(
δF [n]

δn

)∣∣∣∣
2

dx = 0 . (4.4)

Estimates (4.3) and (4.4) play a crucial role in the analysis of the DLSS equation.
As we already pointed out in the introduction chapter, such inequalities are essential for
the existence theory, long time behaviour of solutions and other qualitative properties of
solutions. Furthermore, estimate (4.3) for α = 1 and (4.4) have a physical meaning of the
entropy and the energy dissipation, respectively. It is therefore a desirable and challenging
task to propose (semi-)discrete approximations and eventually develop numerical schemes,
which preserve these structural properties on a (semi-)discrete level. Several numerical
schemes have been proposed in the literature to solve equation (4.1) or (4.2). Most of them
are based on finite differences in one space dimension and preserve positivity of solutions
[13, 38]. Instead of a direct approximation of the equation itself, a novel approach has
been introduced recently in [24]. It employs the variational structure of equation (4.1) on
a fully discrete level and respective numerical solutions are obtained by introducing the
discrete minimizing movement scheme. This approach directly implies global decay of the
discrete Fisher information and nonnegativity of solutions.

If we replace the time derivative by the backward difference formula and discretize
equation (4.2) by the standard implicit Euler scheme,

1

τ
(nk+1 − nk) +

1

2
∂2
ij(nk+1∂

2
ij log nk+1) = 0 , k ≥ 0 , (4.5)

where τ > 0 is the time step and nk approximates n(tk, ·) with tk = τk, then an entropy
dissipation on the time discrete level holds ([36, Lemma 4.1]),

Eα[nk+1] + τκα

∫

Td

(
∆n

α/2
k+1

)2
dx ≤ Eα[nk] for all k ≥ 0 . (4.6)

This is the key estimate for the existence result in [36], and moreover, it says that the im-
plicit Euler scheme dissipates the entropy i.e. it preserves the entropy dissipation structure
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on the time discrete level. Since the Euler scheme (4.5) is only of the first order in time,
our aim is to consider possibly higher-order schemes, which are entropy dissipative or at
least entropy stable, i.e. Eα[nk] ≤ C for all k ≥ 1 with C > 0 independent of k. There are
numerous numerical schemes developed for ordinary differential equations which exhibit
higher-order accuracy and all of them could formally be incorporated for our DLSS equa-
tion. However, due to complexity of the nonlinear term, we will restrict our attention to
the well-known multi-step backward difference methods. An even more important feature
of these methods are remarkable stability properties (up to order 6) for stiff systems, which
also include parabolic equations.

For a given ordinary differential equation

y′(t) = f(t, y) ,

the q-step backward difference method takes the form

q∑

j=0

βjyk+1−j = τf(tk+1, yk+1) , k ≥ q − 1 ,

where coefficients βj are uniquely determined by interpolating points (tk+1−q, yk+1−q), . . . ,
(tk+1, yk+1) with the q-th degree Lagrange interpolation polynomial Ly and requiring the
collocation condition L′y(tk+1) = f(tk+1, yk+1). Table 4.1 below brings coefficients of the
first three BDF-q schemes, in particular those which will be considered here. Using any

β0 β1 β2 β3

BDF-1 1 −1 − −
BDF-2 3/2 −2 1/2 −
BDF-3 11/6 −3 3/2 1/3

Table 4.1: Coefficients in backward differentiation methods.

q-step method, the first q − 1 values must be initialized somehow; usually, by a one-step
or some other methods, but keeping in mind the desired accuracy of the method in total.

In order to prove the existence result for the two-step backward difference method, we
employ yet another form of the DLSS equation, so-called α-entropic form

2

α
n1−α/2∂t(n

α/2) +
1

2
∂2
ij(n∂

2
ij log n) = 0 , (4.7)

which has been already introduced in [41]. From practical reasons α ≥ 1 belongs to the
range of real parameters determining Lyapunov functionals Eα to the equation. Note
that equation (4.7) is for smooth and positive solutions equivalent to the orginal equation.
Further details in favor to the new form are discussed in Section 4.2. We will analyze its
BDF-2 time approximation

2

ατ
v

2/α−1
k+1

(3

2
vk+1 − 2vk +

1

2
vk−1

)
+

1

2
∂2
ij(nk+1∂

2
ij log nk+1) = 0 in Td , k ≥ 1 , (4.8)
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where vk = n
α/2
k . Assume that v0 = n

α/2
0 is given initial datum and v1 is constructed from

v0 by the implicit Euler scheme

2

ατ
v

2/α−1
1

(
v1 − v0

)
+

1

2
∂2
ij(n1∂

2
ij log n1) = 0 in Td . (4.9)

Using additional change of variables n = ey and employing the standard ε-regularization
strategy as in [36] and in Section 3.4, a sequence of strictly positive approximative solutions
is constructed by use of the Leray-Schauder fixed point theorem. In particular, the integral
inequality related to the BDF-2 scheme (for α > 1),

3

2α(α− 1)

∫

Td
v2
k+1dx+

1

α(α− 1)

∫

Td
(vk+1 − vk)2dx+ κατ

∫

Td
(∆vk+1)2dx

≤ 1

α(α− 1)

∫

Td

(
2v2

k −
1

2
v2
k−1

)
dx+

∫

Td
(vk − vk−1)2dx , k ≥ 1 ,

provides the required a priori bounds and compactness arguments to perform the deregu-
larization limit ε ↓ 0. That gives us the existence of weak nonnegative solutions to (4.8).
If we fix α = 1 and assume in addition that our weak solutions remain strictly positive and
bounded from below with a positve constant, then such solutions are smooth and we can
prove the second-order convergence of the scheme.

The following two theorems summarize our main results for the two-step backward
difference method.

Theorem 4.1 (Existence of semi-discrete solutions). Let 1 ≤ α < (
√
d+1)2/(d+2) and let

n0 ∈ L1(Td) be nonnegative measurable function such that Eα[n0] <∞. Let v1 = n
α/2
1 be a

weak solution of the implicit Euler scheme (4.9). Then there exists a sequence (vk) = (n
α/2
k )

of weak nonnegative solutions to (4.8) satisfying

vk ≥ 0 a.e., vk ∈ H2(Td)

and for all φ ∈ W 2,∞(Td)

1

ατ

∫

Td
v

2/α−1
k+1

(3

2
vk+1 − 2vk +

1

2
vk−1

)
φdx (4.10)

+

∫

Td

( 1

2α
v

2/α−1
k+1 ∂2

ijvk+1 −
α

2
∂i(v

1/α
k+1)∂j(v

1/α
k+1)

)
∂2
ijφdx = 0.

If α > 1, the scheme (4.8) is entropy stable and moreover, the a priori estimate

Eα[nm] + κατ

m∑

k=1

∫

Td

(
∆(n

α/2
k )

)2
dx ≤ Eα[n0] , m ≥ 1 , (4.11)

holds.
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Remarks.

(i) If n is a positive solution to the DLSS equation, then Lemma C.5 (Appendix C) yields
an H2-bound on v = nα/2 for the given range of α’s. This motivates to rewrite the
nonlinear term into formally equivalent forms:

1

2
n∂2

ij log n =
1

α
n1−α/2∂2

ij(n
α/2)− α∂i

√
n∂j
√
n =

1

α
v2/α−1∂2

ijv − α∂i(v1/α)∂j(v
1/α) ,

(4.12)
which are then used to obtain weak solutions.

(ii) Existence of weak solution v1 = n
α/2
1 to the implicit Euler scheme (4.9) follows the

same steps as in [36, Section 4.1] and moreover, the discrete entropy dissipation
Eα[n1] ≤ Eα[n0] holds. Construction of v1 can also be recovered from the procedure
of constructing vk, k ≥ 2 in the BDF-2 scheme. Therefore, we omit this step here.

(iii) Due to restrictions of Sobolev embeddings in higher-dimensions, Theorem 4.1 is valid
only in phisically relevant space dimensions 1 ≤ d ≤ 3.

Theorem 4.2 (Second-order convergence). Let the assumptions of Theorem 4.1 hold, let
α = 1 and (vk) sequance of smooth positive solutions to (4.8), with v1 being solution to (4.9).
Let n be smooth and positive solution to equation (4.2), such that (

√
n)ttt ∈ L2(Td× (0, T ))

and (
√
n)tt ∈ L∞(Td × (0, T )). Then for k ≥ 2

‖vk −
√
n(tk)‖L2(Td) ≤ Cτ 2 ,

where C > 0 does not depend on τ .

Unlike the semi-discrete BDF-2 method, which approximates equation (4.7) and paves
the attention on the stability of entropies, the following fully discrete finite difference
type method approximates the original equation equation (4.1) and preserves its energy
dissipation property (4.4) on a discrete time-space grid. For the ease of presentation we
restrict our consideration to the spatially onedimensional case. Let TN = {x0, . . . , xN}
denote an equidistant grid on T consisiting of N points, such that 0 = x0 ' xN+1 = 1
and let Uk

i ≈ n(tk, xi). According to [29], the key idea for this method is to define a
discrete version of the Fisher information (energy) Fd and to derive the discrete variational
derivative δFd/δ(U

k+1, Uk) so that the discrete chain rule holds,

Fd[Uk+1]−Fd[Uk] =
N−1∑

i=0

δFd

δ(Uk+1, Uk)i
(Uk+1

i − Uk
i )h . (4.13)

Discrete variational derivative method is then defined by a sparsely coupled system of
nonlinear equations

1

τ
(Uk+1

i − Uk
i ) = δ

〈1〉
i

(
Uk+1
i δ

〈1〉
i

(
δFd

δ(Uk+1, Uk)i

))
, i = 0, . . . , N − 1 , k ≥ 0 , (4.14)
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where δ
〈1〉
i denotes the central difference approximation of the derivative at points xi ∈ TN .

In particular, the following choice of discrete Fisher information

Fd[U ] =
1

2

N−1∑

i=0

(
(δ+
i Vi)

2 + (δ−i Vi)
2
)
h ,

yields, according to (4.13) and periodic boundary conditions,

δFd

δ(Uk+1, Uk)i
= −δ

〈2〉
i (V k+1

i + V k
i )

V k+1
i + V k

i

, i = 0, . . . , N − 1 , k ≥ 0.

Obviously by construction (assuming the existence of nonnegative solutions), numerical
scheme (4.14), like its continuous version (4.1), directly implies the discrete dissipation
property analogous to (4.4),

1

τ

(
Fd[Uk+1]−Fd[Uk]

)
+

N−1∑

i=0

Uk+1
i

(
δ
〈1〉
i

(
δFd

δ(Uk+1, Uk)i

))2

h = 0 .

Main properties of the scheme are given by

Theorem 4.3. Numerical scheme (4.14) is consistent of order (1, 2) with respect to the
time-space discretization, i.e. the local discretization error is of order O(τ, h2). Let N ∈ N
and U0 ∈ RN , U0

i ≥ 0 for all i = 0, . . . , N − 1, such that
∑N−1

i=0 U0
i h = 1 and Fd[U0] <∞.

Let (Uk) ⊂ (RN)N be sequence of solutions to scheme (4.14). Then (Uk) ∈ l∞(RN),∑N−1
i=0 Uk

i h = 1 for all k ≥ 1 and the discrete Fisher information is monotonically decreas-
ing, Fd[Uk+1] ≤ Fd[Uk] for all k ≥ 0.

Generalization of the method on the d-dimensional torus Td is straightforward if we
assume rectangular grids. Further adaptation of the idea to the Galerkin framework in
case of nonrectangular grids is also possible, but we don’t open this subject here. We do,
however, try to increase the temporal accuracy of the method. This is subjet of Section
4.3.2. Finally, to conclude this chapter, in Section 4.4 we give a few numerical illustrations,
which show in favor of the aforementiond numerical schemes.

4.2 Two-step backward difference (BDF-2) time

approximation

Before we start with the BDF-2 method, let us briefly recall the implicit Euler and the
dissipation structure therein. Multiplying equation (4.5) by the test function τφ′α(nk+1),
where φα(s) = sα/(α(α− 1)), α 6= 1, and φ1(s) = s(log s− 1) + 1 and integrating over Td,
integration by parts formulae yield

∫

Td
(nk+1 − nk)φ′α(nk+1)dx+

τ

2

∫

Td
nk+1∂

2
ij log nk+1∂

2
ijφ
′
α(nk+1)dx = 0 .
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Convexity of function φα gives the control from below on the first term
∫

Td
(nk+1 − nk)φ′α(nk+1)dx ≥

∫

Td
φα(nk+1)dx−

∫

Td
φα(nk)dx ,

while Lemma C.5 gives

τ

2

∫

Td
nk+1∂

2
ij log nk+1∂

2
ijφ
′
α(nk+1)dx ≥ τκα

∫

Td

(
∆n

α/2
k+1

)2
dx.

The last two inequalities now obviously imply the time discrete dissipation property (4.6).
Of course, the above arguments are only formal and work in general for smooth positive
solutions, but everything can be justyfied also in an appropriate setting of weak solutions
as precisely described in [36].

Now discretizing equation (4.2) by the two-step backward difference formula (BDF-2)
in time we get a sequence of equations for time approximated solutions nk:

1

τ

(3

2
nk+1 − 2nk +

1

2
nk−1

)
+

1

2
∂2
ij(nk+1∂

2
ij log nk+1) = 0 in Td, k ≥ 1 . (4.15)

Following the idea presented for the implicit Euler — multiply equation (4.15) by the test
function τφ′α(nk+1) and integrate over Td — convexity of function φα this time gives

∫

Td

(3

2
nk+1 − 2nk +

1

2
nk−1

)
φ′α(nk+1)dx ≥ 3

2

∫

Td
φα(nk+1)dx− 2

∫

Td
φα(nk)dx

+
1

2

∫

Td
φα(nk−1)dx+

∫

Td

φ′′α(n̄)

2
(nk−1 − nk)(nk+1 − nk−1)dx,

where n̄ comes from the Lagrange mean value theorem for φ′α. Since the last term on
the right hand side is a priori indefinite, we cannot conclude the “BDF-2 dissipation”
of the entropy analogous to the implicit Euler case (4.6). Due to the lack of convexity
argument, we are forced to reformulate the original equation (4.2) in a form which is
more appropriate for algebraic manipulations and in fact appreciates the G-stability (see
Definition 4.4 below) of the BDF-2 method. This motivates the α–entropic form (4.7) and
its BDF-2 approximation (4.8) is eventually analyzed throughout this section.

Definition 4.4. A q-step method is G-stable if and only if there exists a positive definite
matrix G, such that

‖vk+1 −wk+1‖G ≤ ‖vk −wk‖G for all k ≥ q − 1 ,

where vk+1 = (vk+1, vk, . . . , vk−q+2) and wk+1 = (wk+1, vk, . . . , wk−q+2) are two solutions
of the method with initial values vq−1 and wq−1, respectively, and the norm is defined by
‖v‖2

G = vTGv.

It can be proved that ‖ · ‖G is a Lyapunov functional for the method (see [19]).
The following algebraic inequalities imply the G-stability of the BDF-2 method and are

essential for our existence proof, the entropy stability property and the convergence result.
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Lemma 4.5. For all a, b, c ∈ R it holds

2
(3

2
a− 2b+

1

2
c
)
a ≥ 3

2
a2 − 2b2 +

1

2
c2 + (a− b)2 − (b− c)2 , (4.16)

2
(3

2
a− 2b+

1

2
c
)
a ≥ 1

2

(
a2 + (2a− b)2 − b2 − (2b− c)2

)
. (4.17)

Proofs are easily obtained by elementary algebraic identities.
Let us comment at this point that we were not able to obtain similar inequalities for

the BDF-q methods when q ≥ 3. Hence, no entropy stability neither improved convergence
results could be achieved with this approach. The reason for that might be the fact that
the only G-stable BDF methods are the implicit Euler (BDF-1) and the BDF-2 (see [20]).

4.2.1 Existence of solutions, entropy stability – proof of
Theorem 4.1

In the following part we provide the proof of Theorem 4.1, which is devided into several
steps. Concept of the proof is, first to regularize the scheme by adding an ε-elliptic term,
which asserts the existence of a strictly positive solution in the sense of the Leray-Schauder
fixed point theorem. Then, based on an a priori estimate, which we derive below, and
continuity and compactness of Sobolev embeddings, we are able to perform the limit ε ↓ 0
and finally obtain the existance of weak nonnegative solution in the sense of (4.10).

Proof of Theorem 4.1. Regularized problem. Writing n = ey = v2/α, equation (4.7) be-
comes

2

α
e(1−α/2)y∂tv +

1

2
∂2
ij(e

y∂2
ijy) = 0.

For the sake of brevity, let us denote yk+1 ≈ y(tk+1, ·) simply by y, hence vk+1 = eαy/2.
Also, assume we have solved first k ≥ 1 equations, i.e. values v0, v1,. . . ,vk are known and
the last k − 1 values are solutions to (4.10) in the sense of Theorem 4.1. We discretize
the above equation by the BDF-2 method and regularize it by adding a strongly elliptic
operator

2

ατ
e(1−α/2)y

(3

2
eαy/2 − 2vk +

1

2
vk−1

)
+

1

2
∂2
ij(e

y∂2
ijy) + εLα(y) = 0, k ≥ 1, ε > 0 , (4.18)

where

Lα(y) = ∆(e−(α−1)y∆y)− (α− 1) div(e−(α−1)y|∇y|2∇y) + e−(α−1)yy, α ≥ 1.

Solution of the regularized problem – fixed point operator. Let ε > 0 be given, we want
to find weak solution for equation (4.18) by means of the Lerray-Schauder fixed-point
theorem (Theorem C.7). Let σ ∈ [0, 1] and z ∈ X, where

X = {z ∈ H2(Td) : ‖z‖W 1,4 ≤M} ⊂ W 1,4(Td),
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for a given constant M > 0 that will be specified later. X is closed and convex subset of
W 1,4(Td). For y, φ ∈ H2(Td) define bilinear form and linear functional on H2(Td):

aα(y, φ) =
σ

2

∫

Td
ez∂2

ijy∂
2
ijφdx+ ε

∫

Td
e−(α−1)z(∆y∆φ+ (α− 1)|∇z|2∇y · ∇φ+ yφ)dx ,

fα(φ) =
2σ

ατ

∫

Td
e(1−α/2)z

(3

2
eαz/2 − 2vk +

1

2
vk−1

)
φdx .

Since W 1,4(Td) ↪→ L∞(Td) in space dimensions d ≤ 3, it follows ‖z‖L∞ ≤ C‖z‖W 1,4 ≤ CM
and e−(α−1)z ≥ e−(α−1)‖z‖L∞ ≥ e−(α−1)CM =: µ. Therefore is aα continuous and coercive

aα(y, y) ≥ εcα

∫

Td

(
(∆y)2 + y2

)
dx ≥ Cαε‖y‖2

H2 ,

with cα = µ for α > 1 and cα = 1 if α = 1. Continuous embedding W 1,4(Td) ↪→ L∞(Td)
also yields continuity of the linear functional fα. Consequently, Lax-Milgram’s lemma
asserts the existence of a unique solution y ∈ H2(Td) to the problem

aα(y, φ) = −fα(φ) for all φ ∈ H2(Td) .

Now define the fixed-point operator Sε : X × [0, 1] → W 1,4(Td) by Sε(z, σ) := y. The
solution depends H2-continously on z ∈ X. Particularly, y = 0 if σ = 0 and Sε(y, 1) = y
is equivalent to (4.18). Due to compactness of embedding H2(Td) ↪→ W 1,4(Td), operator
Sε is also compact.

A priori bound. It remains to obtain a uniform bound for all fixed points of Sε(·, σ).
First consider the case α > 1. Let y ∈ H2(Td) be a fixed point of Sε(·, σ) for some
σ ∈ [0, 1]. Take the test function φ =

(
e(α−1)y − 1

)
/(α − 1) ∈ H2(Td), then ∆φ =

e(α−1)y
(
∆y + (α− 1)|∇y|2

)
, ∇φ = e(α−1)y∇y and the weak form of (4.18) reads as

2σ

α(α− 1)τ

∫

Td
e(1−α/2)y

(3

2
eαy/2 − 2vk +

1

2
vk−1

)(
e(α−1)y − 1

)
dx

+
σ

2(α− 1)

∫

Td
ey∂2

ijy∂
2
ij(e

(α−1)y)dx

+ ε

∫

Td

(
(∆y)2 + (α− 1)(∆y|∇y|2 + |∇y|4)

)
dx

+
ε

α− 1

∫

Td
y(1− e−(α−1)y)dx = 0 . (4.19)
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Using algebraic inequality (4.16), and Young’s inequality, the first term in the above weak
form can be controled from below

2σ

α(α− 1)τ

∫

Td

(3

2
eαy/2 − 2vk +

1

2
vk−1

)(
eαy/2 − e(1−α/2)y

)
dx

≥ σ

α(α− 1)τ

∫

Td

(3

2
eαy − 2v2

k +
1

2
v2
k−1 − (vk − vk−1)2

)
dx

− σ

α(α− 1)τ

∫

Td

(
3ey +

1

2
v2
k−1 +

1

2
e(2−α)y

)
dx

=
σ

α(α− 1)τ

∫

Td

(3

2
eαy − 3ey − 1

2
e(2−α)y

)
dx

− σ

α(α− 1)τ

∫

Td

(
2v2

k + (vk − vk−1)2
)
dx .

Since term (α(α− 1))−1
(
eαy/2− 3ey− e(2−α)y/2

)
≥ −cα, for some cα > 0, is bounded from

below uniformly in y, application of the Young’s inequality in further yields

σ

α(α− 1)τ

∫

Td

(3

2
eαy − 3ey − 1

2
e(2−α)y

)
dx− σ

α(α− 1)τ

∫

Td

(
2v2

k + (vk − vk−1)2
)
dx

≥ σ

α(α− 1)τ

∫

Td
eαydx− σ

α(α− 1)τ

∫

Td
(4v2

k + 2v2
k−1)dx− σ

τ
cα . (4.20)

The second term in (4.19) is bounded from below by inequality (C.7),

σ

2(α− 1)

∫

Td
ey∂2

ijy∂
2
ij(e

(α−1)y)dx ≥ σκα

∫

Td

(
∆eαy/2

)2
dx , (4.21)

with κα > 0 explicitly computed (C.9). Also the regularizing terms can be easily estimated.
First, by the Cauchy-Schwartz inequality we find

ε

∫

Td

(
(∆y)2 + (α− 1)(∆y|∇y|2 + |∇y|4)

)
dx ≥ ε

∫

Td

(3− α
2

(∆y)2 +
α− 1

2
|∇y|4

)
dx ,

(4.22)

and an elementary calculus showes

ε

α− 1

∫

Td
y(1− e−(α−1)y)dx ≥ σε

α− 1

∫

Td
|y|dx− σε

(α− 1)2
. (4.23)

Now summing up the obtained inequalities (4.20)–(4.23) gives us an a priory bound:

σ

α(α− 1)τ

∫

Td
eαydx+ σκα

∫

Td

(
∆eαy/2

)2
dx

+ ε

∫

Td

(3− α
2

(∆y)2 +
α− 1

2
|∇y|4

)
dx+

σε

α− 1

∫

Td
|y|dx

≤ σ

α(α− 1)τ

∫

Td

(
4v2

k + 2v2
k−1

)
dx+

σ

τ
cα +

σε

(α− 1)2
.
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Hence, we proved

Eα[n] + τκα

∫

Td

(
∆eαy/2

)2
dx+

τε

σ

∫

Td

(3− α
2

(∆y)2 +
α− 1

2
|∇y|4

)
dx

+
τε

α− 1

∫

Td
|y|dx ≤ 4Eα[nk] + 2Eα[nk−1] + cα +

τε

(α− 1)2
. (4.24)

This inequality together with the Poincaré inequality implies that y is uniformly bounded
in H2(Td),

‖y‖2
H2 ≤ C

∫

Td

(
(∆y)2 + y2

)
dx ≤ Cα ,

where constant Cα = C(α, vk, vk−1, ε, τ) > 0 does not depend on σ. Continuity of the em-
bedding H2(Td) ↪→ W 1,4(Td) then yields uniform (σ-independent) bound on y in W 1,4(Td),

‖y‖W 1,4 ≤ Cα , (4.25)

where Cα > 0 may now change. Taking M ≥ Cα, we have obtained a uniform bound on
the set of all potential fixed points of Sε(·, σ). Leray-Schauder fixed-point theorem then
provides existence of a solution yε to Sε(y, 1) = y.

Next, we consider the case α = 1. Again, let y ∈ H2(Td) be a fixed point of Sε(·, σ) for
some σ ∈ [0, 1]. In this case take the test function φ = y, since the formal pointwise limit

lim
α↘1

1

α− 1

(
e(α−1)y − 1

)
= y .

Then we get from the weak form

2σ

τ

∫

Td
ey/2
(3

2
ey/2 − 2vk +

1

2
vk−1

)
ydx

+
σ

2

∫

Td
ey(∂2

ijy)2dx+ ε

∫

Td

(
(∆y)2 + y2

)
dx = 0 . (4.26)

In order to estimate the first term in the weak form, we separate the domain of integration
into two parts {y < 0} and {y ≥ 0} and apply Young’s inequality:

2σ

τ

∫

Td
ey/2
(3

2
ey/2 − 2vk +

1

2
vk−1

)
ydx =

σ

τ

∫

{y<0}

(
3eyy − 4ey/2vky + ey/2vk−1y

)
dx

+
σ

τ

∫

{y≥0}

(
3eyy − 4ey/2vky + ey/2vk−1y

)
dx

≥ σ

τ

∫

{y<0}

(
3eyy − 5

2
eyy2 − 2v2

k −
1

2
v2
k−1

)
dx

+
σ

τ

∫

{y≥0}

(
3eyy − 5

2
ey − 5

4
y4 − v4

k −
1

4
v4
k−1

)
dx .
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Thus,

2σ

τ

∫

Td
ey/2
(3

2
ey/2 − 2vk +

1

2
vk−1

)
ydx

≥ σ

τ

∫

{y<0}

(
ey(y − 1) +

(
1 + 2y − 5

2
y2
)
ey − 2v2

k −
1

2
v2
k−1

)
dx

+
σ

τ

∫

{y≥0}

(
ey(y − 1) + 2eyy − 3

2
ey − 5

4
y4 − v4

k −
1

4
v4
k−1

)
dx .

Next, since (1 + 2y−5y2/2)ey ≥ −cy<0 and 2eyy−3ey/2−5y4/4 > −cy≥0, where cy<0, cy≥0

are positive constants independent of y < 0 and y > 0, respectively, we obtain an estimate

σ

τ

∫

{y<0}

(
ey(y − 1) +

(
1 + 2y − 5

2
y2
)
ey − 2v2

k −
1

2
v2
k−1

)
dx

+
σ

τ

∫

{y≥0}

(
ey(y − 1) + 2eyy − 3

2
ey − 5

4
y4 − v4

k −
1

4
v4
k−1

)
dx

≥ σ

τ

∫

Td
ey(y − 1)dx− σ

τ

∫

Td

(
2v2

k + v4
k +

1

2
v2
k−1 +

1

4
v4
k−1

)
dx− σ

τ
c1 , (4.27)

with c1 = cy<0 + cy≥0 > 0. For the second term we use inequality (C.8),

σ

∫

Td
ey(∂2

ijy)2dx ≥ σκ1

∫

Td

(
∆ey/2

)2
dx , (4.28)

where κ1 > 0 is explicitly given. Bringing together the last two inequalities one obtains

σ

τ

∫

Td
ey(y − 1)dx+ σκ1

∫

Td

(
∆ey/2

)2
dx+ ε

∫

Td

(
(∆y)2 + y2

)
dx

≤ σ

τ

∫

Td

(
2v2

k + v4
k +

1

2
v2
k−1 +

1

4
v4
k−1

)
dx+

σ

τ
c1 . (4.29)

Thus,

E1(u) + τκ1

∫

Td

(
∆ey/2

)2
dx+

ετ

σ

∫

Td

(
(∆y)2 + y2

)
dx

≤
∫

Td

(
2v2

k + v4
k +

1

2
v2
k−1 +

1

4
v4
k−1

)
dx+ c1 . (4.30)

The right hand side gives a uniform bound, since our solutions vk−1, vk ∈ W 1,4(Td). The
last inequality together with Poincaré inequality implies that y is uniformly bounded in
H2(Td),

‖y‖2
H2 ≤ C

∫

Td

(
(∆y)2 + y2

)
dx ≤ C1 ,
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where C1 > 0 does not depend on σ, but on ε, τ, vk−1 and vk, only. In the same way as
in the case before, continuity of the embedding H2(Td) ↪→ W 1,4(Td) then yields uniform
(σ-independent) bound on y in W 1,4(Td),

‖y‖W 1,4 ≤ C1 , (4.31)

where C1 has may changed. Taking now M ≥ C1, we have obtained a uniform bound on
the set of all potential fixed points of Sε(·, σ). Leray-Schauder fixed-point theorem again
provides the existence of a solution yε to Sε(y, 1) = y.

Deregularization. By construction we have vε = n
α/2
ε = eαyε/2 ≥ µε > 0, since yε ∈

L∞(Td) ↪→ H2(Td). A priori estimates (4.24) and (4.30) imply that (vε) is uniformly
bounded in H2(Td). Therefore, there exists a limit function v ∈ H2(Td), such that, up to
a subsequence, as ε→ 0

vε ⇀ v weakly in H2(Td) , (4.32)

and due to compact embeddings H2(Td) ↪→ W 1,4(Td) and H2(Td) ↪→ L∞(Td)

vε → v strongly in W 1,4(Td) and L∞(Td) . (4.33)

All together,

vε∂
2
ijvε ⇀ v∂2

ijv weakly in L2(Td) for all i, j = 1, . . . , d . (4.34)

Recall that 1 ≤ α < (
√
d + 1)2/(d + 2). First, let us assume α > 1. According to the

Lions-Villani result on the regularity of the square root of Sobolev functions (Lemma C.4),

‖√vε‖2
W 1,4 ≤ C‖vε‖H2 .

Hence, (
√
vε) is uniformly bounded in W 1,4(Td). Since 1/2 < 1/α < 1 for d ≤ 3, Proposi-

tion C.6 then yields
v1/α
ε → v1/α strongly in W 1,2α(Td) ,

which implies

(∇v1/α
ε )2 → (∇v1/α)2 strongly in Lα(Td) (componentwise). (4.35)

If α = 1 then obviously from (4.33)

(∇vε)2 → (∇v)2 strongly in L2(Td) (componentwise). (4.36)

Inequalities (4.24), (4.30) and coercivity of the bilinear form aα also imply

‖yε‖H2 ≤ Cαε
−1/2 and ‖∇yε‖L4 ≤ Cαε

−1/4 ,

with Cα > 0 now independent of ε > 0. Thus,

εLα(yε) ⇀ 0 weakly in H−2(Td) . (4.37)
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Defining vk+1 := v and testing equation (4.18) by the test functions φ ∈ W 2,∞(Td) and
applying convergence results (4.33)–(4.37) we are able to pass to the limit in (4.18) as
ε→ 0 and finally obtain weak form (4.10). Note that if α = 1, one can use test functions
φ ∈ H2(Td) in (4.10), and if α > 1, one can take test functions from the space W 1, α

α−1 (Td).
Since vk+1 is obviously nonnegative a.e., we are able to define nk+1 := v

2/α
k+1 and convergence

results in (4.33) show that nε → nk+1 strongly in W 1,4(Td).
Entropy stability. Let α > 1 and k ≥ 1. Assume we have constructed solutions

v0, v1, . . . , vk−1. For the implicit Euler scheme we have the following stability condition

1

α(α− 1)

∫

Td
v2

1dx− 1

α(α− 1)

∫

Td
v2

0dx+
1

α(α− 1)

∫

Td
(v1−v0)2dx+ τκα

∫

Td
(∆v1)2dx ≤ 0 .

(4.38)
Let us reconsider construction of vk+1. Using τe(α−1)yε/(α−1) ∈ H2(Td) as a test function
in (4.18) and applying algebraic inequality (4.16) we estimate the first term from below:

2

α(α− 1)

∫

Td

(3

2
vε − 2vk +

1

2
vk−1

)
vεdx ≥

1

α(α− 1)

∫

Td

(3

2
v2
ε − 2v2

k +
1

2
v2
k−1

)
dx

+
1

α(α− 1)

∫

Td

(
(vε − vk)2 − (vk − vk−1)2

)
dx .

The nonlinear term is again estimated according to Lemma C.5,

τ

2(α− 1)

∫

Td
eyε∂2

ijyε∂
2
ije

(α−1)yεdx ≥ κατ

∫

Td

(
∆eαyε/2

)2
dx = κατ

∫

Td
(∆vε)

2dx .

Thus we obtain

1

α(α− 1)

∫

Td

(3

2
v2
ε − 2v2

k +
1

2
v2
k−1

)
dx+

1

α(α− 1)

∫

Td

(
(vε − vk)2 − (vk − vk−1)2

)
dx

+ κατ

∫

Td
(∆vε)

2dx+
ετ

α− 1

∫

Td
Lα(yε)e

(α−1)yεdx ≤ 0 .

Convergence results (4.20), (4.33), (4.37) and lower semicontinuity of the functional∫
Td(∆w)2dx imply an apriori bound for the limit function vk+1

1

α(α− 1)

∫

Td

(3

2
v2
k+1 − 2v2

k +
1

2
v2
k−1

)
dx+

1

α(α− 1)

∫

Td

(
(vk+1 − vk)2 − (vk − vk−1)2

)
dx

+ κατ

∫

Td
(∆vk+1)2dx ≤ 0 .

(4.39)

Summing (4.38) and in (4.39) over k = 1, . . . ,m− 1 many terms cancel out and we get

3

2α(α− 1)

∫

Td
v2
mdx+ κατ

m−1∑

k=0

∫

Td
(∆vk+1)2dx ≤ 1

2α(α− 1)

∫

Td

(
v2
m−1 + v2

1 + v2
0

)
dx .



4.2. ENTROPY STABLE BDF-2 METHOD 85

Using the time discrete entropy dissipation of the implicit Euler scheme and applying the
induction principle for this recursive inequality, we find

1

α(α− 1)

∫

Td
v2
mdx+ κατ

m∑

k=1

∫

Td
(∆vk)

2dx ≤ 1

α(α− 1)

∫

Td
v2

0dx

and therefore,

Eα[nm] + κατ

m∑

k=1

∫

Td

(
∆n

α/2
k

)2
dx ≤ Eα[n0] ,

which is the desired a priori estimate and implies entropy stability of the scheme. This
finishes the proof.

Introducing the relative entropy Erel
α [nk] := Eα[nk]−Eα[

∫
Td nk] and applying generalized

convex Sobolev inequality [36, Lemma 2.5, (2.8)] to the above a priori estimate, one obtains
an a priori bound for the relative entropy

Erel
α [nm] + 8π4α2κατ

m∑

k=1

Erel
α [nk] ≤ Eα[n0] . (4.40)

Recall that the BDF-2 method is G-stable and if we apply inequality (4.17) instead of
(4.16), then at the place of (4.39) we obtain

1

α(α− 1)

∫

Td

1

2

(
v2
k+1 + (2vk+1 − vk)2

)
dx− 1

α(α− 1)

∫

Td

1

2

(
v2
k + (2vk − vk−1)2

)
dx

+ κατ

∫

Td
(∆vk+1)2dx ≤ 0 . (4.41)

Defining the discrete quantity

EG
α [nk, nk−1] :=

1

2α(α− 1)

∫

Td

(
nαk + (2n

α/2
k − nα/2k−1)2

)
dx , k ≥ 1 , (4.42)

and rewriting inequality (4.41) in terms of EG
α ,

EG
α [nk+1, nk] + κατ

∫

Td

(
∆n

α/2
k+1

)2
dx ≤ EG

α [nk, nk−1] , k ≥ 1 ,

EG
α is to be interpreted as a Lyapunov functional for the BDF-2 scheme, since

EG
α [nk+1, nk] ≤ EG

α [nk, nk−1] for all k ≥ 1. By the usual Taylor expansion procedure
one formally observes aproximation relation EG

α [nk, nk−1] = Eα[nk] +O(τ) for k ≥ 2.

Remark 4.6. At this point we don’t discuss in which sense (in which parabolic spaces)
sequence (vk) converges to a solution of the contionous DLSS equation, but we rather
emphasize only on the order of convergence.
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4.2.2 Regularity of weak semi-discrete solutions

In the following we consider particular case α = 1. Let us assume in addition that weak
solutions solutions vk ∈ H2(Td) from Theorem 4.1 are bounded from below with a positive
constant µk, i.e. vk ≥ µk > 0 a.e. in Td for all k ≥ 1. The weak form (4.10) reads as

1

τ

∫

Td
vk+1

(3

2
vk+1 − 2vk +

1

2
vk−1

)
φdx+

1

2

∫

Td

(
vk+1∂

2
ijvk+1 − ∂ivk+1∂jvk+1

)
∂2
ijφdx = 0 .

Sobolev embeddings and uniform bound from below give uk+1 = v2
k+1 ∈ H2(Td) and

log nk+1 ∈ H2(Td), while integration by parts in the above weak form together with (4.12)
yield

1

τ
vk+1

(3

2
vk+1 − 2vk +

1

2
vk−1

)
+

1

4
∂2
ij(nk+1∂

2
ij log nk+1) = 0 in H−2(Td) . (4.43)

Since, formally (for smooth and positive w)

∂2
ij(w∂

2
ij logw) = ∆2w − div

(
2
∂2
ijw∂jw

w
− (∂jw)2∂iw

w2

)
,

equation (4.43) is in the H−2-sense equivalent to

∆2nk+1 = div
(

2
∂2
ijnk+1∂jnk+1

nk+1

− (∂jnk+1)2∂ink+1

n2
k+1

)
− 4

τ
vk+1

(3

2
vk+1−2vk+

1

2
vk−1

)
. (4.44)

Second term on the right hand side of (4.44) possesses H2-regularity. Continuity of the
Sobolev embedding H2(Td) ↪→ W 1,6(Td) implies (∂jnk+1)2∂ink+1/n

2
k+1 ∈ L2(Td) for all

i = 1, . . . , d. Moreover, we have ∂2
ijnk+1∂jnk+1/nk+1 ∈ L3/2(Td) ↪→ H−1/2(Td). Hence, the

right hand side of (4.44) lies in H−3/2(Td), i.e.

∆2nk+1 ∈ H−3/2(Td) .

The standard regularity theory for elliptic operators, using Fourier transform on the torus,
yields nk+1 ∈ H5/2(Td). The latter embeddes continuously into W 2,3(Td), in space dimen-
sions d ≤ 3. Taking into account the improved regularity for nk+1 and applying variety of
Sobolev embeddings in a procedure like above, we conclude in the next step

∆2nk+1 ∈ H−1(Td) .

The last conclusion again improves on the regularity of nk+1, namely we conclude like
before nk+1 ∈ H3(Td). By this bootstrapping procedure we obtain Hm-regularity for nk+1

of arbitrary order m ∈ N. Therefore we conclude that positive, bounded from below,
solutions of the BDF-2 scheme are smooth.
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4.2.3 Convergence of the BDF-2 scheme

Through this subsection we again assume α = 1 and weak solutions from Theorem 4.1
remain positive and bounded from below with a positive constant. We have shown that
these solutions are smooth. Next, we want to consider convergence of the method under
these assumptions and prove Theorem 4.2.

Since φ/vk+1 ∈ H2(Td) for all φ ∈ H2(Td), using φ/vk+1 as a test function in (4.10) we
obtain

1

τ

(3

2
vk+1 − 2vk +

1

2
vk−1

)
+

1

2vk+1

∂2
ij(v

2
k+1∂

2
ij log vk+1) = 0 in H−2(Td) . (4.45)

Proof of Theorem 4.2. Let (vk) = (
√
nk) be sequence of smooth positive solutions to (4.10)

and n be a solution to (4.2) satisfying (
√
n)ttt ∈ L2(Td × (0, T )) and (

√
n)tt ∈ L∞(Td ×

(0, T )). Taylor expansion shows that

vt(tk+1) =
1

τ

(3

2
v(tk+1)− 2v(tk) +

1

2
v(tk−1)

)
+
fk
τ
, k ≥ 1,

where fk is given by the remainder terms and it is to be interpreted as the local truncation
error

fk = −
∫ tk+1

tk

vttt(s)(tk − s)2ds+
1

4

∫ tk+1

tk−1

vttt(s)(tk−1 − s)2ds.

Estimating fk we find

m−1∑

k=1

‖fk‖2
L2(Td) ≤ CR‖vttt‖2

L2(Td×(0,T ))τ
5, (4.46)

where CR > 0 does not depend on τ and m ∈ N. Similarly, with the same assumptions on
solutions of the implicit Euler scheme we get

vt(t1) =
1

τ
(v(t1)− v(t0)) +

f0

τ
,

where f0 is the local truncation error of the scheme

f0 =

∫ τ

0

vtt(s)sds,

and under assumed regularities on the exact solution, we are able to estimate it as

‖f0‖2
L2(Td) ≤

1

3
‖vtt‖2

L2(Td×(0,τ))τ
3 ≤ 1

3
‖vtt‖2

L∞(Td×(0,T ))τ
4. (4.47)

Thus, v = uα/2 solves

v(t1)− v(t0) +
τ

2v(t1)
∂2
ij

(
v(t1)2∂2

ij log v(t1)
)

= −f0 , k = 0 ,

3

2
v(tk+1)− 2v(tk) +

1

2
v(tk−1) +

τ

2v(tk+1)
∂2
ij

(
v(tk+1)2∂2

ij log v(tk+1)
)

= −fk , k ≥ 1 .
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Taking the difference of these equations with (4.9) and (4.45), respectively, we obtain error
equations for ek = vk − v(tk),

e1 − e0 + τ
(
A(v1)− A(v(t1))

)
= f0 , k = 0 ,

3

2
ek+1 − 2ek +

1

2
ek−1 + τ

(
A(vk+1)− A(v(tk+1))

)
= fk , k ≥ 1 ,

where we introduced the operator A : H2(Td)→ H−2(Td) defined for positive functions by

A(v) =
1

2v
∂2
ij(v

2∂2
ij log v) .

Multiplying the error equations by ek+1 for k ≥ 0, respectively, integrating over Td and
finally summing over k = 0, . . . ,m− 1 one finds

∫

Td
(e1−e0)e1dx+

m−1∑

k=1

∫

Td

(3

2
ek+1 − 2ek +

1

2
ek−1

)
ek+1dx (4.48)

+ τ
m−1∑

k=0

∫

Td

(
A(vk+1)− A(v(tk+1))

)
(vk+1 − v(tk+1))dx =

m−1∑

k=0

∫

Td
fkek+1dx .

According to algebraic inequality (4.16), we obtain

e2
1 +

m−1∑

k=1

(3

2
ek+1 − 2ek +

1

2
ek−1

)
ek+1

≥ e2
1 +

m−1∑

k=1

(3

4
e2
k+1 − e2

k +
1

4
e2
k−1 +

1

2

(
(ek+1 − ek)2 − (ek − ek−1)2

))

= e2
1 +

3

4
e2
m −

1

4
e2
m−1 +

1

2
(em − em−1)2 − 3

4
e2

1 +
1

4
e2

0 −
1

2
(e1 − e0)2

≥ 3

4
e2
n −

1

4
e2
n−1 −

1

4
e2

1.

In the last inequality we also used the fact that e0 = 0. Next, we use monotonicity
of the operator A. It has been proved in [39, Formula (3.3)] that for positive functions
w1, w2 ∈ H4(Td) it holds

∫

Td

(
A(w1)− A(w2)

)
(w1 − w2)dx =

∫

Td

1

w1w2

∣∣∣ div
(
w2

1∇
(w1 − w2

w1

))∣∣∣
2

dx ≥ 0 .

The right hand side in (4.48) can be estimated applying Young’s inequality:
∫

Td
f0e1dx ≤ 2‖f0‖2

L2 +
1

8
‖e1‖2

L2 for k = 0 ,
∫

Td
fkek+1dx ≤ 1

2τ
‖fk‖2

L2 +
τ

2
‖ek+1‖2

L2 for k ≥ 1 .
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Bringing together the above considerations and the bounds (4.46), (4.47) for fk, we get

3

4
‖em‖2

L2 ≤ 1

4
‖em−1‖2

L2 +
1

4
‖e1‖2

L2 + 2‖f0‖2
L2 +

1

8
‖e1‖2

L2 +
1

2τ

m−1∑

k=1

‖fk‖2
L2 +

τ

2

m−1∑

k=1

‖ek+1‖2
L2

≤ 1

4
‖em−1‖2

L2 +
3

8
‖e1‖2

L2 + 2C0τ
4 +

1

2
CRτ

4 +
τ

2

m∑

k=2

‖ek‖2
L2 ,

where C0, CR > 0 now also depend on v, but not on τ . Taking the maximum over m =
1, . . . ,M , gives

3

4
max

m=1...,M
‖em‖2

L2 ≤ 5

8
max

m=1...,M
‖em−1‖2

L2 + Cτ 4 +
τ

2

M∑

k=2

‖ek‖2
L2 ,

where C = 2C0 +CR/2. The first term on the right-hand side is controlled by the term on
the left-hand side. Thus,

‖eM‖2
L2 ≤ max

m=1...,M
‖em‖2

L2 ≤ 8Cτ 4 + 8τ
M∑

k=2

‖ek‖2
L2 .

We separate the last summand in the sum

(1− 8τ)‖eM‖2
L2 ≤ 8Cτ 4 + 8τ

M−1∑

k=2

‖ek‖2
L2 ,

and apply the discrete Gronwall lemma, see e.g., [61, Theorem 4]

‖eM‖2
L2 ≤ 8Cτ 4

1− 8τ

(
1 +

8τ

1− 8τ

)M−2

= 8Cτ 4(1− 8τ)−M+1 .

Since

(1− 8τ)−M+1 = (1− 8τ)−tM−1/τ ≤ exp
( 8tM−1

1− 8τ

)
,

the result follows, for τ < 1/16, with the konstant
√

8C exp(8T ), where T > 0 is some
terminal time.

4.3 Fully discrete structure preserving finite

difference approximations

Recall again that the DLSS equation shares a particular variational structure, which is the
gradient flow of the Fisher information with respect to the L2-Wasserstein metric. Special
form of equation (4.1) immediately implies (under periodic or no-flux boundary conditions)
dissipation of the Fisher information (4.4). In this section we explore the corresponding
dissipative structure on a discrete level. For ease of presentation and exposure of main
ideas, we limit ourselves to the one dimensional case and periodic boundary conditions.
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4.3.1 Discrete variational derivative method

In several papers [28, 49] before and later in the book [29], Furihata and Matsuo presented a
structure preserving numerical scheme for large class of conservative and dissipative partial
differential equations. Let us consider an evolution equation of the form

∂tn = −δE [n]

δn
, x ∈ T , t > 0 , (4.49)

where E is a given energy functional and δE [n]/δn denotes its variational derivative. Equa-
tion (4.49) is dissipative in the sense that

d

dt
E [n(t)] =

∫

T

δE [n]

δn
∂tndx = −

∫

T

(
δE [n]

δn

)2

dx ≤ 0 .

Observe that this dissipation property is again direct consequence of variational form
(4.49) and the concrete form of the energy, and accordingly of the evolution equation,
is irrelevant. Such dissipation properties usually have some physical meaning and phys-
ical solutions of equation (4.49) obey these laws. It is therefore desirable to construct
numerical schemes which preserve the dissipative structure on a discrete level. Let
TN = {xi : i = 0, . . . , N, x0

∼= xN} denotes an equidistant discrete grid of mesh size
h on the one dimensional torus T ∼= [0, 1] and let Uk ∈ RN , such that Uk

i approximates
n(tk, xi) for i = 0, . . . , N − 1 and k ≥ 0. First step is to define a discrete energy functional
Ed : RN → R as an approximation of the continuous energy functional E . Applying a
discrete variation procedure to Ed, one obtains discrete variational derivative, denoted by
δEd/δ(U

k+1, Uk). It is a vector of N components depending on values of Uk+1 and Uk. For
example, it can be defined1 to satisfy the discrete chain rule

Ed[Uk+1]− E d[Uk] =
N−1∑

i=0

δEd

δ(Uk+1, Uk) i
(Uk+1 − Uk)ih , k ≥ 0 .

Finally, one defines a numerical scheme

1

τ
(Uk+1

i − Uk
i ) = − δEd

δ(Uk+1, Uk) i
, i = 0, . . . , N − 1 , k ≥ 0 , (4.50)

which by construction yields the discrete dissipation property, Ed[Uk+1] ≤ Ed[Uk] for k ≥ 0.
Let us now reconsider the above ideas for our DLSS equation

∂tn+

(
n

(
(
√
n)xx√
n

)

x

)

x

= 0 , x ∈ T , t > 0 . (4.51)

The variational derivative of the Fisher information F [n] =
∫
T(
√
n)2

xdx equals

δF [n]

δn
= −(

√
n)xx√
n

(4.52)

1The definition depends on quadrature rule used to define E d. In the above example we took the
simplest first-order quadrature rule.
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and one immediately observes special variational form of equation (4.51),

∂tn+

(
n

(
δF [n]

δn

)

x

)

x

= 0 . (4.53)

Integration by parts then automatically implies the dissipation of the Fisher information
along solutions to (4.53),

d

dt
F [n(t)] =

∫

T

δF [n]

δn
∂tndx = −

∫

T
n

(
δF [n]

δn

)2

x

dx ≤ 0 . (4.54)

Introducing our standard change of variables v =
√
n, the Fisher information takes the

form F [n] =
∫
T v

2
xdx. In order to define discrete Fisher information, we first approximate

the term

(v2
x)|x=xi ≈

1

2

(
(δ+
i Vi)

2 + (δ−i Vi)
2
)
, i = 0, . . . N − 1 ,

where v(xi) ≈ Vi, and δ+
i , δ−i denote the standard finite difference operators, difference

forward and difference backward, respectively. Other choices of discretizations for v2
x are

possible and allowable, but they eventually leed to another numerical scheme. We choose
this approximation because of its symmetry. To approximate the integral of one-periodic
functions w, we use the first-order quadrature rule

∑N−1
i=0 w(xi)h. This rule is in fact of

the second order, since due to periodic boundary conditions coincides the trapezoidal rule
(w(x0) + w(xN))h/2 +

∑N−1
i=1 w(xi)h. So we arrive to the definition of the discrete Fisher

information functional, Fd : RN → R,

Fd[U ] =
1

2

N−1∑

i=0

(
(δ+
i Vi)

2 + (δ−i Vi)
2
)
h , (4.55)

where U ∈ RN and Vi =
√
Ui for i = 0, . . . , N − 1.

Defining the discrete energy, next step is to obtain its discrete variational derivative.
Applying the discrete variation procedure and using summation by parts formula (see [29,
Proposition 3.2]) for periodic boundary conditions, we calculate:

Fd[Uk+1]−Fd[Uk] =
1

2

N−1∑

i=0

(
(δ+
i V

k+1
i )2 − (δ+

i V
k
i )2 + (δ−i V

k+1
i )2 − (δ−i V

k
i )2
)
h

=
1

2

N−1∑

i=0

(
δ+
i (V k+1

i + V k
i )δ+

i (V k+1
i − V k

i )

+ δ−i (V k+1
i + V k

i )δ−i (V k+1
i − V k

i )
)
h

= −
N−1∑

i=0

δ
〈2〉
i (V k+1

i + V k
i )(V k+1

i − V k
i )h

= −
N−1∑

i=0

δ
〈2〉
i (V k+1

i + V k
i )

V k+1
i + V k

i

(Uk+1
i − Uk

i )h , k ≥ 0 ,
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where δ
〈2〉
i wi = δ+

i δ
−
i wi = δ−i δ

+
i wi denotes the second-order central difference formula.

The discrete variational derivative, denoted by δFd/δ(U
k+1, Uk) ∈ RN , is then defined

componentwise by

δFd

δ(Uk+1, Uk)i
:= −δ

〈2〉
i (V k+1

i + V k
i )

V k+1
i + V k

i

, i = 0, . . . , N − 1 . (4.56)

Note that the discrete chain rule

Fd[Uk+1]−Fd[Uk] =
N−1∑

i=0

δFd

δ(Uk+1, Uk)i
(Uk+1

i − Uk
i )h ,

holds and (4.56) is a Crank-Nicolson type approximation of the variational derivative (4.52).

Finally, the discrete variational derivative method (DVDM for short) for the DLSS
equation is defined by the nonlinear system with unknowns Uk+1

i = (V k+1
i )2,

1

τ
(Uk+1

i − Uk
i ) = δ

〈1〉
i

(
Uk+1
i δ

〈1〉
i

(
δFd

δ(Uk+1, Uk)i

))
, i = 0, . . . , N − 1 , k ≥ 0 , (4.57)

where δ
〈1〉
i denotes the central difference approximation of the first-order derivative at

points xi. We assume that an initial condition to equation (4.51) is given by a nonnegative
function n0, which is approximated by the projection on TN and gives the starting values
U0 ∈ RN for scheme (4.57).

Proof of Theorem 4.3. Let n = v2 be a smooth positive solution to (4.51). By straightfor-
ward Taylor expansion calculations around (tk+1, xi) we obtain

δFd

δ(n(tk+1), n(tk))

∣∣∣
xi

= −δ
〈2〉
i (v(tk+1, xi) + v(tk, xi))

v(tk+1, xi) + v(tk, xi)

=
vxx
v

∣∣∣
(tk+1,xi)

+O(τ, h2)

=
δF [n]

δn

∣∣∣
(tk+1,xi)

+O(τ, h2) , i = 0, . . . , N − 1 , k ≥ 0 .

Similarly,

δ
〈1〉
i

(
n(tk+1)δ

〈1〉
i

(
δFd

δ(n(tk+1), n(tk))

)) ∣∣∣∣
xi

=

(
n

(
δF [n]

δn

)

x

)

x

∣∣∣∣
(tk+1,xi)

+O(τ, h2) .

Thus, the local truncation error of the right hand side in (4.57) is of order O(τ, h2). Since
the left hand side is of order O(τ) in time and exact at spatial grid points xi, the local
truncation error of scheme (4.57) is of order O(τ, h2).
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In fact, we solve scheme (4.57) in terms of variables V k
i =

√
Uk
i . Therefore, Uk

i ≥ 0 for
all i = 0, . . . , N − 1 and k ≥ 1, and the discrete dissipation property follows immediately
from the structure of the scheme and summation by parts formula,

Fd[Uk+1]−Fd[Uk] =
N−1∑

i=0

δFd

δ(Uk+1, Uk)i
(Uk+1

i − Uk
i )h

= −τ
N−1∑

i=0

Uk+1
i

(
δ
〈1〉
i

(
δFd

δ(Uk+1, Uk)i

))2

h ≤ 0 .

The mass conservation is also an obvious direct consequence of the scheme. It remains to
prove uniform boundedness of solutions. The energy decay implies a uniform bound on
the discrete H1-seminorm,

N−1∑

i=0

(δ+
i V

k
i )2h ≤ Fd[U0] <∞ .

According to the discrete Poincaré-Wirtinger inequality ([29, Lemma 3.3]), the latter im-
plies

|V k
i − 1|2 ≤

N−1∑

i=0

(δ+
i V

k
i )2h ≤ C for all i = 0, . . . , N − 1 , k ≥ 1 ,

where C = Fd[U0] is a positive constant independent of k. Finally, by the triangle inequal-
ity |V k

i | ≤
√
C + 1 and thus Uk

i ≤ 2C + 2 for all i = 0, . . . , N − 1 and k ≥ 1. The last
estimate prevents the blow-up of numerical solutions constructed by scheme (4.57).

4.3.2 Temporally higher-order discrete variational derivative
method

There are numerous ways of generalizing the above discrete variational derivative method.
In order to stay in the spirit of Sections 4.2, we derive temporally higher-order discrete
variational derivative methods, which are based on backward difference formulae and tem-
porally higher-order approximations of the variational derivative. Let us introduce sym-
metric biquadratic form f(ξ, ζ) = (ξ2+ζ2)/2, which represents both, the Fisher information
F [n] =

∫
T f(vx, vx)dx and the discrete Fisher information Fd[U ] =

∑N−1
i=0 f(δ+

i Vi, δ
−
i Vi)h.

The reason for introducing f lies in the following formal representation of the variational
derivative,

δF [n]

δn
= −vxx

v
=
(
−∂x

(
∂ξf
∣∣
ξ=vx

)
− ∂x

(
∂ζf
∣∣
ζ=vx

)) 1

2v
. (4.58)

This formula gives an idea how to approximate the variational derivative in general. First,
let us denote with δ1,q

k the q-th step backward difference operator at time point tk (see
Table 4.1). Discrete variational derivative of order q in time is defined componentwise by

δFd

δ(Uk+1, . . . , Uk−q+1)i
:=

1

2V k+1
i

(
−δ−i

(
∂ d
ξ f
)
i
− δ+

i

(
∂ d
ζ f
)
i

)
, k ≥ q − 1 , (4.59)
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where the discrete operators are in addition defined by

(
∂ d
ξ f
)
i

:= ∂ξf
∣∣
ξ=δ+i V

k+1
i

+ rcorrδ
1,q
k+1(δ+

i U
k+1
i )

= δ+
i V

k+1
i + rcorrδ

1,q
k+1(δ+

i U
k+1
i ) ,

(
∂ d
ζ f
)
i

:= ∂ζf
∣∣
ζ=δ−i V

k+1
i

+ rcorrδ
1,q
k+1(δ−i U

k+1
i )

= δ−i V
k+1
i + rcorrδ

1,q
k+1(δ−i U

k+1
i ) ,

and rcorr is the so-called correction term, which is to be determined in order to satisfy the
discrete chain rule

δ1,q
k+1Fd[Uk+1] =

N−1∑

i=0

δFd

δ(Uk+1, . . . , Uk−q+1)i
δ1,q
k+1U

k+1
i h . (4.60)

Observe that (4.59) is a discrete analog of (4.58) and the role of the correction term is not
only to satisfy the discrete chain rule (4.60), but also to increase the temporal accuracy
of the discrete variational derivative (see proof of Theorem 4.7 below). Straightforward
computations with the above expressions using summation by parts formulae and assuming
periodic boundary conditions yield

δFd

δ(Uk+1, . . . , Uk−q+1)i
= −δ

〈2〉
i V k+1

i

V k+1
i

− rcorr
δ1,q
k+1δ

〈2〉
i Uk+1

i

V k+1
i

, k ≥ q − 1 , (4.61)

and

rcorr =
δ1,q
k+1Fd[Uk+1]−∑N−1

i=0 δ+
i V

k+1
i δ+

i

(
δ1,qk+1U

k+1
i

V k+1
i

)
h

∑N−1
i=0 (δ+

i δ
1,q
k+1U

k+1
i )δ+

i

(
δ1,qk+1U

k+1
i

V k+1
i

)
h

. (4.62)

Temporally q-th order discrete variational derivative method (BDF-q DVDM for short) is
then defined by the nonlinear system in unknowns Uk+1

i = (V k+1
i )2,

δ1,q
k+1U

k+1
i = δ

〈1〉
i

(
Uk+1
i δ

〈1〉
i

(
δFd

δ(Uk+1, . . . , Uk−q+1)i

))
, i = 0, . . . , N − 1 , k ≥ q − 1 .

(4.63)
The following theorem summarizes on assumptions and main properties of the scheme.

Theorem 4.7. Let N ∈ N, U0 ∈ RN be nonnegative initial data and U l ∈ RN given
starting values of the unit discrete mass, i.e.

∑N−1
i=0 U l

ih = 1, and let Fd[U q−1] ≤ . . . ≤
Fd[U0] < ∞. Numerical scheme (4.63) is consistent of order (q, 2) with respect to the
time-space discretization. Let (Uk) ⊂ (RN)N, (k ≥ q) be sequence of solutions to scheme
(4.63). Then (Uk) ∈ l∞(RN),

∑N−1
i=0 Uk

i h = 1 for all k ≥ q and the discrete Fisher
information is dissipated in the sense that it satisfies

δ1,q
k Fd[Uk] ≤ 0 for all k ≥ q . (4.64)
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Proof. Again let n = v2 be a smooth positive solution to (4.51) and integer q ≥ 2 (typically
q ≤ 6) the order of the backward difference formula. The left hand side of (4.63) is by
assumption of order O(τ q) in time and exact at spatial grid points xi. Thus it remains
to prove that the right hand side is of order O(τ q, h2). The following estimates are easily
obtained by Taylor expansions around (tk+1, xi):

δ+
i v(tk+1, xi) = vx

∣∣
(tk+1,xi)

+
h

2
vxx
∣∣
(tk+1,xi)

+O(h2) , (4.65)

δ−i v(tk+1, xi) = vx
∣∣
(tk+1,xi)

− h

2
vxx
∣∣
(tk+1,xi)

+O(h2) , (4.66)

−δ
〈2〉
i v(tk+1, xi)

v(tk+1, xi)
= −vxx

v

∣∣∣
(tk+1,xi)

+O(h2) , (4.67)

δ1,q
k+1δ

〈2〉
i n(tk+1, xi)

v(tk+1, xi)
=
ntxx
v

∣∣∣
(tk+1,xi)

+O(τ q, h2) , (4.68)

δ+
i δ

1,q
k+1n(tk+1, xi) = ntx

∣∣
(tk+1,xi)

+
h

2
ntxx

∣∣
(tk+1,xi)

+O(τ q, h2) , (4.69)

δ−i δ
1,q
k+1n(tk+1, xi) = ntx

∣∣
(tk+1,xi)

− h

2
ntxx

∣∣
(tk+1,xi)

+O(τ q, h2) , (4.70)

δ+
i

(
δ1,q
k+1n(tk+1, xi)

v(tk+1, xi)

)
= 2vtx

∣∣
(tk+1,xi)

+ hvtxx
∣∣
(tk+1,xi)

+O(τ q, h2) , (4.71)

δ−i

(
δ1,q
k+1n(tk+1, xi)

v(tk+1, xi)

)
= 2vtx

∣∣
(tk+1,xi)

− hvtxx
∣∣
(tk+1,xi)

+O(τ q, h2) . (4.72)

Let us show that rcorr = rn/rd is of order O(τ q, h2). First we consider the denominator rd.
Note that due to periodic boundary conditions

N−1∑

i=0

(δ+
i δ

1,q
k+1n(tk+1, xi))δ

+
i

(δ1,q
k+1n(tk+1, xi)

v(tk+1, xi)

)
h =

N−1∑

i=0

(δ−i δ
1,q
k+1n(tk+1, xi))δ

−
i

(δ1,q
k+1n(tk+1, xi)

v(tk+1, xi)

)
h .

Hence,

rd =
1

2

N−1∑

i=0

(
(δ+
i δ

1,q
k+1n(tk+1, xi))δ

+
i

(δ1,q
k+1n(tk+1, xi)

v(tk+1, xi)

)

+ (δ−i δ
1,q
k+1n(tk+1, xi))δ

−
i

(δ1,q
k+1n(tk+1, xi)

v(tk+1, xi)

))
h ,

and according to above estimates (4.69)–(4.72),

rd =
N−1∑

i=0

ntxvtx
∣∣
(tk+1,xi)

h+O(τ q, h2) . (4.73)
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Similarly we consider the nominator term rn. Using (4.65)–(4.66), the first term can be
estimated like

δ1,q
k+1Fd[n(tk+1)] =

1

2

d

dt

N−1∑

i=0

(
(δ+
i v(t, xi))

2 + (δ−i v(t, xi))
2
)
h
∣∣∣
tk+1

+O(τ q)

= 2
N−1∑

i=0

vxvxt
∣∣
(tk+1,xi)

h+O(τ q, h2) . (4.74)

Again, due to periodic boundary conditions

N−1∑

i=0

δ+
i v(tk+1, xi)δ

+
i

(δ1,q
k+1n(tk+1, xi)

v(tk+1, xi)

)
h =

N−1∑

i=0

δ−i v(tk+1, xi)δ
−
i

(δ1,q
k+1n(tk+1, xi)

v(tk+1, xi)

)
h ,

and according to estimates (4.65)–(4.66) and (4.71)–(4.72),

1

2

N−1∑

i=0

(
δ+
i v(tk+1, xi)δ

+
i

(δ1,q
k+1n(tk+1, xi)

v(tk+1, xi)

)
+ δ−i v(tk+1, xi)δ

−
i

(δ1,q
k+1n(tk+1, xi)

v(tk+1, xi)

))
h

= 2
N−1∑

i=0

vxvxt
∣∣
(tk+1,xi)

h+O(τ q, h2) . (4.75)

Thus, applying estimates (4.73)–(4.75) in (4.62) yields rcorr = O(τ q, h2). Finally, estimates
(4.67)–(4.68) imply

δFd

δ(n(tk+1), . . . , n(tk+1−q))

∣∣∣
xi

= −δ
〈2〉
i v(tk+1, xi)

v(tk+1, xi)
− rcorr

δ1,q
k+1δ

〈2〉
i n(tk+1, xi)

v(tk+1, xi)

=
δF [n]

δn

∣∣∣
(tk+1,xi)

+O(τ q, h2) ,

which showes that the discrete variational derivative (4.61) is of order q in time. The
rest of the proof follows the same steps as in the proof of Theorem 4.3, and the discrete
dissipation property (4.64) is again direct consequence of the scheme.

4.4 Numerical ilustrations

In this section we do numerical experiments with our aforementioned schemes. We consider
equations (4.1) and (4.2) in space dimension d = 1 with periodic boundary conditions.
Again, let TN = {xi : i = 0, . . . , N, x0

∼= xN} denotes an equidistant spatial grid of mesh
size h = 1/N on the one dimensional torus T ∼= [0, 1]. Let τ > 0 be given time step and
Uk ∈ RN such that Uk

i ≈ n(tk, xi), where tk = kτ , k ≥ 0 and i = 0, . . . , N − 1.
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4.4.1 BDF-2 finite difference scheme

First we consider the onedimensional equation (4.2),

∂tn+
1

2
(n(log n)xx)xx = 0 , x ∈ T, t > 0 , n(0) = n0 ,

which we solve with the scheme (4.7) — the BDF-2 method — using finite differences in
space. The scheme is given by the nonlinear system of equations with unknowns V k

i =
(Uk

i )α/2 for i = 0, . . . , N − 1 and k ≥ 1,

(V 1
i )2/α−1

(
V 1
i − V 0

i

)
+ τδ

〈2〉
i

(
(V 1

i )2/αδ
〈2〉
i log V 1

i

)
= 0 , i = 0, . . . , N − 1 , (4.76)

(V k+1
i )2/α−1

(3

2
V k+1
i − 2V k

i +
1

2
V k−1
i

)

+ τδ
〈2〉
i

(
(V k+1

i )2/αδ
〈2〉
i log V k+1

i

)
= 0 , i = 0, . . . , N − 1 , k ≥ 1.

(4.77)

V k
i = V k

i+lN , l ∈ Z . (4.78)

Above, a given value α ∈ [1, 3/2) belongs to the range of entropies for the onedimensional

DLSS equation. We assume that initial data (V 0
i )N−1

i=0 , which approximates n
α/2
0 is given by

the projection on TN . The system (4.76) is the implicit Euler scheme, which is solved only
once to initialize the BDF-2 scheme (4.77). Both systems of nonlinear equations, (4.76)
and (4.77) with discrete periodic boundary conditions (4.78), can are solved by the Newton
iterative method. In each time step tk+1 = (k+1)τ , we take the solution from the previous
time step tk as an initial guess to compute the solution at the current time step tk+1. In
practice, only a few iterations (3 to 4) are enough to compute the solution of the system
at each time step. The following example has been used to test the above BDF-2 scheme.

Example 4.8. Let the initial condition for equation (4.2) be n0(x) = 0.001 + cos16(πx).
Other relevant parameters have the following values: the spatial mesh size h = 0.005
(N = 200), the time step τ = 10−6 and the terminal time T = 5 · 10−4.

Figure 4.1(a) showes the stability, in fact the decay, of the corresponding discrete α-
functional for different values of α. Moreover, we observe even an exponential decay of the
relative entropies, as shown in Figure 4.1(b). Although Theorem 4.1 doesn’t provide even
stability of the physical entropy E1, numerical experiments however give expected decay of
the discrete version E1, d[U ] =

∑N−1
i=0 (Ui(logUi − 1) + 1)h. Interestingly, one also observes

an exponential decay of the discrete Fisher information Fd defined in Section 4.3.1.
Next, we want to consider temporal convergence of the BDF-2 finite difference scheme.

We saw in Section 4.2.3 that for α = 1, the time discrete BDF-2 scheme possesses the
second-order convergence in time. In the fully discrete case (4.76)–(4.78) this may not
be the case, since the monotonicity structure of the spatial operator has been destroyed
by the discretization. However, Figure 4.2 showes that numerically estimated convergence
rates for different parameters of α are close to 2. Numbers in the legend of Figure 4.2 are
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Figure 4.1: (a) Entropy stability (decay) for the BDF-2 finite difference scheme for dif-
ferent values of α. (b) Exponential decay of the relative entropy and the discrete Fisher
information for the BDF-2 finite difference scheme.

averaged convergence rates obtaind by the linear regression method. Convergence of the
method is meassured in the discrete l2-norm

‖em‖l2 :=

(
h
N−1∑

i=0

(V m
e,i − V m

i )2

)1/2

, (4.79)

and numerical solutions are compared at the time instance tm = 5·10−5. The exact solution
V m
e has been computed by method (4.76)–(4.78) using the very small time step τ = 10−10.
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‖e
m
‖ l2

10−8 10−7 10−6

τ

α = 1, cr ≈ 1.89

α = 5/4, cr ≈ 1.88

α = 4/3, cr ≈ 1.87

Figure 4.2: Temporal convergence rates of the BDF-2 finite difference scheme for different
values of α.



4.4. NUMERICAL ILUSTRATIONS 99

4.4.2 Discrete variational derivative methods

Here we present numerical results obtained for the discrete variational derivative methods
introduced in the previous section. Recall equation (4.1) (in space dimension d = 1), which
admits the particular variational form (4.53),

∂tn+

(
n

(
δF [n]

δn

)

x

)

x

= 0 , x ∈ T , t > 0 , n(0) = n0 .

First, we consider the discrete variational derivative method (DVDM) given by scheme
(4.57). The numerical test takes the same ingredients as in Example 4.8: the initial
condition n0(x) = 0.001 + cos16(πx), grid size h = 0.005, time step τ = 10−6, but the
bigger terminal time T = 5 · 10−3. We observe (Figure 4.3(a)) decay of the discrete Fisher
information Fd, in fact an exponential decay, as well as an exponential decay of particular
relative entripies Erel

α,d.
Next, we employ the temporally higher-order variational derivative method (4.63) with

discrete temporal operators δ1,2
k (BDF-2) and δ1,3

k (BDF-3). Initialization values for higher-
order methods are computed by the DVDM and the BDF-2 method, respectively. Using
the above inputs for the numerical simulation, the very same decay results for discrete
functionals have been obtained (see Figure 4.3(b)).

10−4

10−3

10−2

10−1

100

101

102

E
r
e
l

α
,d
[U

k
]

0 0.0025 0.005
tk

α = 1

α = 5/4

α = 4/3

Fd[U
k]

(a)

10−4

10−3

10−2

10−1

100

101

102

E
r
e
l

α
,d
[U

k
]

0 0.0025 0.005
tk

α = 1

α = 5/4

α = 4/3

Fd[U
k]

(b)

Figure 4.3: (a) Exponential decay of the discrete Fisher information and relative entropies
for the DVDM. (b) Exponential decay of the discrete Fisher information and relative
entropies for the BDF-2 DVDM.

Finally, we tested numerically the time convergence of discrete variational derivative
methods. Figure 4.4 ilustrates the numerical error of the methods with respect to time
step size τ . We took initial data n0 as before, the mesh size h = 0.01 and we compared
our numerical solutions in the l2-norm (4.79) at the time instance tm = 5 · 10−5. The
exact solutions are computed by the respective methods taking the very small time step
τ = 10−9. Table 4.2 gives estimated temporal convergence rates of the schemes, which are
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computed by the linear regression method for data from Figure 4.4. Note that the BDF-3
DVD method gives only slightly better results than the corresponding BDF-2 method.
The reason is that the first step is initialized by only the first-order scheme (4.57) and
this initialization error cannot be compensated due to higher-order accuracy of the local
approximation. Obviously, one should use a higher-order one-step method for the initial-
ization.

At this point, it should be mentiond that nonlinear systems in schemes (4.57) and
(4.63), in all numerical experiments here, were solved by the NAG Toolbox routine c05nb

[53], which proves to be at least three times faster than the standard Matlab routine
fsolve.
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10−4

10−3

‖e
m
‖ l2

10−8 10−7 10−6

τ

DVDM
BDF-2 DVDM
BDF-3 DVDM

Figure 4.4: Numerical convergence rates of discrete variational derivative methods.

scheme conv. rate
DVDM 1.020

BDF-2 DVDM 1.824
BDF-3 DVDM 1.977

Table 4.2: Estimated temporal convergence rates for discrete variational derivative meth-
ods.



Chapter 5

Conclusion and outlook

Conclusion

To conclude the thesis let us provide a brief overview of preceding chapters and main results
therein.

In Chapter 2, a previously developed algebraic approach for proving entropy production
inequalities is extended to deal with radially symmetric solutions for a class of higher-order
evolution equations in multiple space dimensions. In application of the method, novel a
priori estimates are derived for the thin-film equation, the fourth-order Derrida-Lebowitz-
Speer-Spohn equation, and the sixth-order quantum diffusion equation.

Chapter 3 deals with the Cauchy problem for the sixth-order quantum diffusion equa-
tion, whose solutions describe the evolution of the charged particle density in a quantum
fluid. The global-in-time existence of weak nonnegative solutions in two and three space
dimensions under periodic boundary conditions has been proved. Moreover, these solu-
tions are smooth and classical whenever the particle density is strictly positive, and the
long-time convergence to the spatial homogeneous equilibrium at a universal exponential
rate has been observed. The analysis strongly uses the Lyapunov property of the physical
entropy.

Finally, Chapter 4 brings out novel approximations of the fourth-order Derrida-
Lebowitz-Speer-Spohn equation. The semi-discrete two-step backward difference (BDF-2)
method of the reformulated equation yields the discrete entropy stability property and
second-order convergence of the method in a specific case. Particular variational struc-
ture of the equation has been used to introduce the discrete variational derivative method,
which preserves dissipation of the Fisher information on a discrete level.

Outlook

The entropy construction method developed in Chapter 2 can be adapted for equations
similar to (1.4), where the energy variable x — like the radial variable r in (2.12) — appears
explicitly in the equation. For example, the dominating part on the right hand side of (1.4)

101
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at low energies and for large n is the cubic term in n. Hence, the nonlinear equation

∂tn =
1√
x

[
x13/2n4

( 1

n

)
xx

]
xx
, x ∈ (0, L) , t > 0 , (5.1)

describes the asymptotic dynamics of the condensate formation [33]. Corresponding phys-
ically motivated boundary conditions are

n4
( 1

n

)
xx

= 0 and
[
x13/2n4

( 1

n

)
xx

]
x

= 0 as x→ 0, L ,

which directly imply the Lyapunov property of the functional E0[n] =
∫ L

0

√
x
(
n− log n

)
dx.

In fact, this is the only entropy among α-functionals, naturally defined by

Eα[n] =
1

α(α− 1)

∫ L

0

√
xnαdx , α 6= 0, 1 and E1[n] =

∫ L

0

√
x
(
n
(

log n− 1
)

+ 1
)
dx .

Employing the homogeneous Neumann boundary condition nx = 0 instead of the
second-order condition, more can be done. However, since the Neumann boundary con-
dition is from physical point of view completely irrelevant for the model at hand, the
subsequent material is purely artistic work. First, let us write equation (5.1) in the form
(cf. (2.12))

∂tn =
1√
x
∂x
(
xβn3DP [n, x]

)
,

where β = 13/2 and P (η, ξ1, ξ2, ξ3) = 2βηξ2
1 +2ξ3

1−βηξ2+2ξ1ξ2−ξ3 with η now representing
1/x. Using the no-flux boundary condition, one easily calculates

d

dt
Eα[n(t)] = −

∫ L

0

xβnα+2DS0 [n]dx with S0(η, ξ) = ξ1P (η, ξ) .

Based on prescribed boundary conditions (cf. Section 2.2.2), we find a list of basic (linearly
independent) shift polynomials

T1(η, ξ) = βηξ3
1 + (α− 2)ξ4

1 + 3ξ2
1ξ2 ,

T2(η, ξ) = βηξ1ξ2 + (α− 1)ξ2
1ξ2 + ξ2

2 + ξ1ξ3 ,

T3(η, ξ) = (β − 1)η2ξ2
1 + (α− 1)ηξ3

1 + 2ηξ1ξ2 .

Eventually, we solve the decision problem of the type (2.19) and obtain the following result:
Let n be smooth positive solution to (5.1) satisfying homogeneous Neumann and no-flux
boundary conditions at the boundary points x = 0, L. Then the functionals Eα defined above
are entropies if −(11 + 2

√
33)/5 ≤ α ≤ 1/3. Moreover, if −(11 + 2

√
33)/5 < α < 1/3,

then there exists c > 0, such that the estimate of the type (1.6) holds:

d

dt
Eα[n(t)] + c

∫ L

0

x13/2
[(
n(α+2)/2

)2

xx
+
(
n(α+2)/4

)4

x

]
dx ≤ 0 .

Concerning the sixth-order equation (3.1) studied in Chapter 3, we propose several
questions that we find interesting to consider:
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(i) With our entropy construction methods, we are able to prove the dissipation property
(3.6) of the physical entropy H only in dimensions d ≤ 3. Is H still a Lyapunov
functional in higher dimensions d ≥ 4?

(ii) Is the Fisher information F a Lyapunov functional for equation (3.1)? Our only result
in this direction so far is a formal proof of dissipation of F in dimension d = 1, given
in Appendix D.

(iii) Is the energy E (defined in (3.8)) monotonically decreasing along the weak solutions
constructed in Section 3.4? If the answer is affirmative, then the additional hypotheses
that the weak solution is energetic could be removed from Theorem 3.5.

(iv) Does (3.1) admit global weak solutions in dimensions d ≥ 4? Even if we assume
that an inequality of the form (3.6) continues to hold, it is far from clear how to
rewrite the weak formulation (3.7) in a form that does not take advantage of Sobolev
embeddings in low dimensions.

(v) If (3.1) is posed on Rd instead of Td, one readily verfies that there exists a family of
self-similar solutions us, namely

us(t;x) = λ(t)−dU
(
λ(t)−1x

)
with λ(t) = (1 + 6t)1/6

and the Gaussian profile

U(z) = exp
(
− |z|

2

2 3
√

2

)
.

Do these “spreading Gaussians” play the same role for (3.1) as they do for the heat
equation and for the DLSS equation? In other words, is U an attracting stationary
solution of (3.1) after the self-similar rescaling with x = λ(t)ξ and t = (e6τ−1)/6, and
do arbitrary solutions converge to U at a universal exponential rate? In dimension
d = 1, there is numerical evidence for an affirmative answer (see Appendix E).

Discrete variational derivative method, presented in Chapter 4 for the DLSS equation,
has been employed to solve variety of conservative or dissipative nonlinear PDEs; for exam-
ple, nonlinear Schrödinger equation, Klein-Gordon equation, Ginzburg-Landau equation,
Cahn-Hilliard equation, etc [29]. However, it seems that the method has not been explored
yet for dissipative equations of the type

∂tn = div

(
m(u)∇

(
δE [n]

δn

))
, (5.2)

where m is so-called mobility function (typically a power function) and E denotes corre-
sponding energy functional. Equation (5.2), with appropriately defined m and E , includes
porus-medium equation, thin-film equations and Wasserstein gradient flows in general. If
appropriate boundary conditions are imposed, then E is dissipated along solutions to (5.2),
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and the key idea of the method is to preserve that property on a discrete level. It is
straightforward to generalize the scheme (4.57) for equations of the type (5.2) on the oned-
imensional torus T. Moreover, it might be fruitful to investigate on possible extensions of
the discrete variational derivative method to the multidimensional case on more general
domains. In principle, both basic concepts: finite volumes and finite elements could be
considered.



Appendices

Appendix A

In this appendix we give a sketch of the derivation of the sixth-order equation (1.3). This
equation is formally derived from an O(~6) approximation of the generalized quantum
drift-diffusion model of Degond et al. [21], where ~ is the scaled Planck constant. Without
electric field, this model is given by

∂tn = div(n∇A), (A.1)

where the particle density n(t;x) and the function A(t;x) are related through the integral

n(t;x) =
1

(2π~)d

∫

Rd
Exp

(
A(t;x)− |p|

2

2

)
dp, x ∈ Rd, t > 0.

Here, the so-called quantum exponential Exp is defined by Exp(a) = W (exp(W−1(a))),
where a(t;x, p) is a function in the phase-space, W is the Wigner transform, W−1 its
inverse and exp is the operator exponential. For precise definitions and the derivation of
the quantum drift-diffusion model we refer to [21].

The crucial step in the O(~6) derivation of (A.1) is to determine an O(~6) approximation
of Exp(a) with a(x, p) = A(t;x) − |p|2/2. To this end, we follow the strategy proposed
in [21]. Define F (z) = Exp(za) and expand F (z) formally as a series in ~, i.e. F (z) =∑∞

k=0 ~kFk(z). The functions Fk(z) can be computed by pseudo-differential calculus. For
odd indices k, we have Fk(z) = 0, and for even indices we have to solve the following
differential equation:

d

dz
Fk(z) = a ◦0 Fk(z) + a ◦2 Fk−2(z) + . . .+ a ◦k F0(z), z > 0,

with the initial condition Fk(0) = δk0. The multiplication ◦n is defined for any two smooth
functions ω1 and ω2 by (see also (5.19) in [21])

ω1 ◦n ω2 =
∑

|α|+|β|=n

(
i

2

)n
(−1)|β|

α!β!
∂αx∂

β
pω1∂

β
x∂

α
p ω2, (A.2)

where α, β ∈ Nd are multi-indices.
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Let ∇k denote the k-tensor of partial derivatives of order k, i.e.,

(
∇k
xω
)
i1,i2,··· ,ik

= ∂(i1,i2,...,ik)
x ω,

(
∇k
pω
)
j1,j2,··· ,jk

= ∂(j1,j2,...,jk)
p ω.

Lemma A.1. It holds

ω1 ◦n ω2 =
in

2nn!

(
n∑

k=0

(−1)k
(
n

k

)(
∇n−k
x ⊗∇k

pω1

)
:
(
∇n−k
p ⊗∇k

xω2

)
)
, (A.3)

where “⊗” denotes the tensor product and “:” the component-wise inner product.

Proof. Let k = |β| = β1 + · · ·+βd for β ∈ Nd. According to the Schwartz rule, each partial
derivative ∂βp appears in ∇k

p on exactly k!/β! positions, where β! = β1! . . . βd!. Analogusly,
for |α| = n−k, each ∂αx appears at∇n−k

x on (n−k)!/α! positions. Thus, the expression ∂αx∂
β
p

appears in ∇n−k
x ⊗∇k

p on (n− k)!k!/(α!β!) positions, and the same number of appearance
holds for the expression ∂αx∂

β
p ∂

β
x∂

α
p in (∇n−k

x ⊗∇k
p) : (∇n−k

p ⊗∇k
x). Using these combinatorial

observations, formula (A.3) follows immediately.

The functions F0(z) and F2(z) have already been calculated in [21]:

F0(z)(x, p) = eza(x,p),

F2(z)(x, p) =
1

8
eza(x,p)

(
z2∆xA+

z3

3
|∇xA|2 −

z3

3
∇2
xA : p⊗ p

)
.

Thus, it remains to solve

d

dz
F4(z) = a ◦0 F4(z) + a ◦2 F2(z) + a ◦4 F0(z) = a · F4(z)

+
eza

192

[
z5|∇A|4 + 5z4|∇A|2∆A− 2z5|∇A|2(∇2A : p⊗ p)

− 4z4(∇2A : ∇2Ap⊗ p) + z5(∇2A : p⊗ p)2 + 2z3‖∇2A‖2

− 5z4∆A(∇2A : p⊗ p) + 6z3(∆A)2 + 3z2∆2A+ z3∆|∇A|2
− z3∆(∇2A : p⊗ p) + 6z3∇A · ∇∆A+ 2z4∇A · ∇|∇A|2

− 2z4∇A · ∇(∇2A : p⊗ p)
]

+
eza

384

[
z4(∇4A : p⊗ p⊗ p⊗ p)

− z3(∇4A : (p⊗ p⊗ I))− z3(∇4A : p⊗∇p(p⊗ p))
− z3(∇4A : ∇p(p⊗ p⊗ p)) + z2(∇4A : ∇p(p⊗ I))

+ z2(∇4A : ∇2
p(p⊗ p))

]
,

with F4(0) = 0. In the above computations, we have exhaustively used Lemma A.1. By
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the variation-of-constants formula, we obtain

F4(1) =
ea

384

[1

3
|∇A|4 + 2|∇A|2∆A− 2

3
|∇A|2(∇2A : p⊗ p)

− 8

5
(∇2A : ∇2Ap⊗ p) +

1

3
(∇2A : p⊗ p)2 + ‖∇2A‖2

− 2∆A(∇2A : p⊗ p) + (∆A)2 + 2∆2A+
1

2
∆|∇A|2

− 1

2
∆(∇2A : p⊗ p) + 3∇A · ∇∆A+

4

5
∇A · ∇|∇A|2

− 4

5
∇A · ∇(∇2A : p⊗ p) +

1

5
(∇4A : p⊗ p⊗ p⊗ p)

− 1

4

(
(∇4A : (p⊗ p⊗ I)) + (∇4A : p⊗∇p(p⊗ p))

+ (∇4A : ∇p(p⊗ p⊗ p))
)

+
1

3

(
(∇4A : ∇p(p⊗ I))

+ (∇4A : ∇2
p(p⊗ p))

)]
.

This gives us the O(~6) expansion of the quantum exponential.

It remains to represent the density u as a function of A. We integrate F0, F2, and F4

with respect to p ∈ Rd and employ the formulas

1

(2π~)d

∫

Rd
pipje

A−|p|2/2dp =
eA

(
√

2π~)d
δij,

1

(2π~)d

∫

Rd
prpspipje

A−|p|2/2dp =
eA

(
√

2π~)d
(δrsδij + δriδsj + δrjδsj),

where δij denotes the Kronecker symbol. This gives

n =
1

(2π~)d

∫

Rd
(F0(1) + ~2F2(1) + ~4F4(1))dp+O(~6)

=
eA

(
√

2π~)d

(
1 +

~2

24

(
2∆A+ |∇A|2

)
+

~4

5760

(
5|∇A|4 + 20|∇A|2∆A

+ ‖∇2A‖2 + 20(∆A)2 + 24∆2A+
15

2
∆|∇A|2 + 33∇A · ∇∆A

+ 12∇A · ∇|∇A|2
))

+O(~6).

To obtain an ~-expansion of A in terms of n, we insert the ansatz A = A0 +~2A2 +~4A4 +
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O(~6) in the above expression for u. Equating equal powers of ~ yields the system

n =
eA0

(
√

2π)d
, 0 = A2 +

1

24

(
2∆A0 + |∇A0|2

)
,

0 = A4 +
1

2
A2

2 +
1

24
A2

(
2∆A0 + |∇A0|2

)
+

1

12

(
∆A2 +∇A0 · ∇A2

)

+
1

5760

(
5|∇A0|4 + 20|∇A0|2∆A0 + ‖∇2A0‖2 + 20(∆A0)2

+ 24∆2A0 +
15

2
∆|∇A0|2 + 33∇A0 · ∇∆A0 + 12∇A0 · ∇|∇A0|2

)
.

Therefore,

A0 = log n+ d log(
√

2π), A2 = −1

6

∆
√
n√
n
,

A4 =
1

720

(
2

∆2n

n
− 3
|∇n|4
u4

+ 4∇2n∇n · ∇n+ 4
∆n

n

|∇n|2
n2
− 4
∇∆n

n
· ∇n
n

− 2
(∆n

n

)2

− ‖∇
2n‖2

n2

)
=

1

360

(1

2
‖∇2 log n‖2 +

1

n
∇2 : (n∇2 log n)

)
.

Finally, up to terms of order O(~6), (A.1) becomes

∂tn = ∆n− ~2

6
div
(
n∇
(∆
√
n√
n

))
+

~4

360
div

(
n∇
(1

2
‖∇2 log n‖2 +

1

n
∇2 : (n∇2 log n)

))
.

The second term on the right-hand side is the fourth-order operator of the DLSS equation.
The sixth-order equation (1.3) is obtained by taking into account only the sixth-order
expression and choosing ~4 = 360.
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Appendix B

The following Mathematica notebook has been used in the computer-aided proof of The-
orem 2.3.

the sixth − order quantum diffusion equation

characteristic polynomial

In[1]:= S@8Η_, Ξ1_, Ξ2_, Ξ3_<D := HHΑ - 5L c1 + 6L Ξ16 + H5 c1 + HΑ - 4L c2 - 18L Ξ14 Ξ2 + H3 c2 + 11L Ξ12 Ξ22 +
Hc2 + HΑ + 1L HΑ - 3L + 8L Ξ13 Ξ3 + H3 Α - 5L Ξ1 Ξ2 Ξ3 + HHΑ - 4L c6 + Hd - 1L Hc1 - 6LL Η Ξ15 +
HHΑ - 3L c9 + Hd - 2L c6 + Hd - 1L H2 d - 7LL Η2 Ξ14 + HHΑ - 3L c7 + 4 c6 + Hd - 1L Hc2 + 14LL Η Ξ13 Ξ2 +
HHd - 3L c9 - 2 HΑ - 2L Hd - 1L + Hd - 1L H3 d - 8LL Η3 Ξ13 + H2 c7 + HΑ - 6L Hd - 1LL Η Ξ1 Ξ22 +
HHΑ - 2L Hd - 1L + 3 c9 + Hd - 2L c7 - 3 Hd - 1L Hd - 4LL Η2 Ξ12 Ξ2 + Hc7 - 3 Hd - 1LL Η Ξ12 Ξ3 +
Hd - 1L2 Η4 Ξ12 - 2 Hd - 1L2 Η3 Ξ1 Ξ2 - 2 Hd - 1L Η2 Ξ1 Ξ3 + 2 Hd - 1L Η Ξ2 Ξ3 + Hd - 1L2 Η2 Ξ22 + Ξ32;

change of variables

In[2]:= Ξ1 = Η � Ζ1; Ξ2 = Ξ12 HΖ1 + Ζ2L; Ξ3 = Ξ13 HΖ3 + 3 Ζ1 Ζ2L;

choice of particular coefficients − integrations by parts

In[3]:= c7 = Hd - 1L Α +
1

2
;

c9 = -c7;

In[5]:= ExpandAS @8Η, Ξ1, Ξ2, Ξ3<D Ζ16 � Η6 �� FullSimplifyE

characteristic polynomial in new variables

In[6]:= S1@8Ζ1_, Ζ2_, Ζ3_<D :=
6 - 5 c1 + c1 Α - 12 Ζ1 + 4 c1 Ζ1 - 4 c2 Ζ1 - 4 c6 Ζ1 - 6 d Ζ1 + c1 d Ζ1 + c2 Α Ζ1 + c6 Α Ζ1 + 4 Ζ1

2
+ 2 c2 Ζ1

2
+

2 c6 Ζ1
2
+ 5 d Ζ1

2
+ c2 d Ζ1

2
+ c6 d Ζ1

2
+ 2 d2 Ζ1

2
- 18 Ζ2 + 5 c1 Ζ2 - 4 c2 Ζ2 + c2 Α Ζ2 +

49 Ζ1 Ζ2

2
+

8 c2 Ζ1 Ζ2 + 4 c6 Ζ1 Ζ2 +
25 d Ζ1 Ζ2

2
+ c2 d Ζ1 Ζ2 -

7 Α Ζ1 Ζ2

2
-
5

2
d Α Ζ1 Ζ2 + 2 Α2 Ζ1 Ζ2 + d Α2 Ζ1 Ζ2 -

5 Ζ1
2
Ζ2 -

15

2
d Ζ1

2
Ζ2 -

5

2
d2 Ζ1

2
Ζ2 + 4 Α Ζ1

2
Ζ2 + 4 d Α Ζ1

2
Ζ2 + d2 Α Ζ1

2
Ζ2 + 11 Ζ2

2
+ 3 c2 Ζ2

2
- 10 Ζ1 Ζ2

2
-

5 d Ζ1 Ζ2
2
+ 6 Α Ζ1 Ζ2

2
+ 3 d Α Ζ1 Ζ2

2
+ 4 Ζ1

2
Ζ2

2
+ 4 d Ζ1

2
Ζ2

2
+ d2 Ζ1

2
Ζ2

2
+ 5 Ζ3 + c2 Ζ3 - 2 Α Ζ3 + Α2 Ζ3 -

5 Ζ1 Ζ3

2
-
5 d Ζ1 Ζ3

2
+ 2 Α Ζ1 Ζ3 + d Α Ζ1 Ζ3 - 5 Ζ2 Ζ3 + 3 Α Ζ2 Ζ3 + 4 Ζ1 Ζ2 Ζ3 + 2 d Ζ1 Ζ2 Ζ3 + Ζ3

2
;

the discriminant with minus sign

In[7]:= ExpandA-HD@S1@8Ζ1, Ζ2, Ζ3<D, Ζ3D �. 8Ζ3 ® 0<L2 + 4 S1@8Ζ1, Ζ2, 0<DE

Out[7]= -1 - 20 c1 - 10 c2 - c2
2
+ 20 Α + 4 c1 Α + 4 c2 Α - 14 Α2 - 2 c2 Α2 + 4 Α3 - Α4 - 23 Ζ1 + 16 c1 Ζ1 - 11 c2 Ζ1 -

16 c6 Ζ1 + d Ζ1 + 4 c1 d Ζ1 + 5 c2 d Ζ1 - 30 Α Ζ1 + 4 c6 Α Ζ1 - 20 d Α Ζ1 - 2 c2 d Α Ζ1 + 13 Α2 Ζ1 +

9 d Α2 Ζ1 - 4 Α3 Ζ1 - 2 d Α3 Ζ1 +
39 Ζ1

2

4

+ 8 c2 Ζ1
2
+ 8 c6 Ζ1

2
+
15 d Ζ1

2

2

+ 4 c2 d Ζ1
2
+ 4 c6 d Ζ1

2
+

7 d
2 Ζ1

2

4

+ 10 Α Ζ1
2
+ 15 d Α Ζ1

2
+ 5 d2 Α Ζ1

2
- 4 Α2 Ζ1

2
- 4 d Α2 Ζ1

2
- d2 Α2 Ζ1

2
- 22 Ζ2 + 20 c1 Ζ2 -

6 c2 Ζ2 - 50 Α Ζ2 - 2 c2 Α Ζ2 + 22 Α2 Ζ2 - 6 Α3 Ζ2 + 33 Ζ1 Ζ2 + 24 c2 Ζ1 Ζ2 + 16 c6 Ζ1 Ζ2 + 5 d Ζ1 Ζ2 +

37 Α Ζ1 Ζ2 + 23 d Α Ζ1 Ζ2 - 12 Α2 Ζ1 Ζ2 - 6 d Α2 Ζ1 Ζ2 + 19 Ζ2
2
+ 12 c2 Ζ2

2
+ 30 Α Ζ2

2
- 9 Α2 Ζ2

2
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coefficients like in Lemma 3.1

d = 3; H*specify the dimension*L
a1 = -1 - 20 c1 - 10 c2 - c2

2
+ 20 Α + 4 c1 Α + 4 c2 Α - 14 Α2 - 2 c2 Α2 + 4 Α3 - Α4 �� Simplify;

a2 = -23 Ζ1 + 16 c1 Ζ1 - 11 c2 Ζ1 - 16 c6 Ζ1 + d Ζ1 + 4 c1 d Ζ1 + 5 c2 d Ζ1 - 30 Α Ζ1 + 4 c6 Α Ζ1 -

20 d Α Ζ1 - 2 c2 d Α Ζ1 + 13 Α2 Ζ1 + 9 d Α2 Ζ1 - 4 Α3 Ζ1 - 2 d Α3 Ζ1 �. 8Ζ1 ® 1< �� Simplify;

a3 =
39 Ζ1

2

4
+ 8 c2 Ζ1

2
+ 8 c6 Ζ1

2
+
15 d Ζ1

2

2
+ 4 c2 d Ζ1

2
+ 4 c6 d Ζ1

2
+
7 d2 Ζ1

2

4
+ 10 Α Ζ1

2
+

15 d Α Ζ1
2
+ 5 d2 Α Ζ1

2
- 4 Α2 Ζ1

2
- 4 d Α2 Ζ1

2
- d2 Α2 Ζ1

2 �. 8Ζ1 ® 1< �� Simplify;
a4 = -22 Ζ2 + 20 c1 Ζ2 - 6 c2 Ζ2 - 50 Α Ζ2 - 2 c2 Α Ζ2 + 22 Α2 Ζ2 - 6 Α3 Ζ2 �. 8Ζ2 ® 1< �� Simplify;
a5 = 19 Ζ2

2
+ 12 c2 Ζ2

2
+ 30 Α Ζ2

2
- 9 Α2 Ζ2

2 �. 8Ζ2 ® 1< �� Simplify;
a6 = 33 Ζ1 Ζ2 + 24 c2 Ζ1 Ζ2 + 16 c6 Ζ1 Ζ2 + 5 d Ζ1 Ζ2 + 37 Α Ζ1 Ζ2 +

23 d Α Ζ1 Ζ2 - 12 Α2 Ζ1 Ζ2 - 6 d Α2 Ζ1 Ζ2 �. 8Ζ1 ® 1, Ζ2 ® 1< �� Simplify;

eliminate existence quantifiers

ReduceA

ExistsA8c1, c2, c6<, a3 > 0 && I4 a3 a5 - a62 > 0 && 4 a1 a3 a5 - a3 a42 - a22 a5 - a1 a62 + a2 a4 a6 ³ 0 ÈÈ

4 a3 a5 - a6
2
� 0 && 2 a4 a3 - a2 a6 � 0 && 4 a3 a1 - a2

2
³ 0M ÈÈ a3 � 0 && a2 � 0 &&

a6 � 0 && Ia5 > 0 && 4 a5 a1 - a42 ³ 0 ÈÈ a4 � 0 && a5 � 0 && a1 ³ 0MEE �� FullSimplify

RootA393601 781429 741700 - 30869 921438 354950920 ð1 + 909136653 589444 589613 ð12 -
13067 554891 693074455 322 ð1

3
+ 107071198 804242 721933029 ð1

4
-

530285 185987 109657337 150 ð1
5
+ 1485065 531007 236342067 360 ð1

6
-

903670 068054 124067973 182 ð1
7
- 11349670 571166 667138590 671 ð1

8
+

56577 657354 736919146 273378 ð1
9
- 147230 360918 572718046 770295 ð1

10
+

231738 416778 937419353 125992 ð1
11
- 152 027093 646093153 304987 580 ð1

12
-

284596 131667 929366633 259084 ð1
13
+ 1 101664 331459877 604997 419944 ð1

14
-

2005 868470 113009076 388148 352 ð1
15
+ 2528 368657408 139905 354920900 ð1

16
-

2393 183070 603095081 573333 536 ð1
17
+ 1741 484151169 186832 842089152 ð1

18
-

974340 654437 711767044 765696 ð1
19
+ 412 502928 272845793 838861 312 ð1

20
-

127825 181451 243356527 042560 ð1
21
+ 27 303715 635205678 822932 480 ð1

22
-

3581 686556 834839599 513600 ð1
23
+ 216 469226 809568762 265600 ð1

24
&, 5E £ Α £

RootA393601 781429 741700 - 30869 921438 354950920 ð1 + 909136653 589444 589613 ð12 -
13067 554891 693074455 322 ð1

3
+ 107071198 804242 721933029 ð1

4
-

530285 185987 109657337 150 ð1
5
+ 1485065 531007 236342067 360 ð1

6
-

903670 068054 124067973 182 ð1
7
- 11349670 571166 667138590 671 ð1

8
+

56577 657354 736919146 273378 ð1
9
- 147230 360918 572718046 770295 ð1

10
+

231738 416778 937419353 125992 ð1
11
- 152 027093 646093153 304987 580 ð1

12
-

284596 131667 929366633 259084 ð1
13
+ 1 101664 331459877 604997 419944 ð1

14
-

2005 868470 113009076 388148 352 ð1
15
+ 2528 368657408 139905 354920900 ð1

16
-

2393 183070 603095081 573333 536 ð1
17
+ 1741 484151169 186832 842089152 ð1

18
-

974340 654437 711767044 765696 ð1
19
+ 412 502928 272845793 838861 312 ð1

20
-

127825 181451 243356527 042560 ð1
21
+ 27 303715 635205678 822932 480 ð1

22
-

3581 686556 834839599 513600 ð1
23
+ 216 469226 809568762 265600 ð1

24
&, 6E

evaluate these roots numerically

% �� N

0.347013 £ Α £ 1.05174
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Appendix C

Here we provide a collection of functional inequalities and other known results used
throughout calculations in Chapters 3 and 4.

Lemma C.1. Let m ∈ N be given. Then there exists a constant C > 0 such that for all
u ∈ Hm(Td),

‖u‖Hm ≤ C
(
‖∇mu‖L2 + ‖u‖L2

)
.

Lemma C.2. Let m,n ∈ N and 1 ≤ p, r ≤ ∞ be given and assume that n−d/r < m−d/p.
Then the Sobolev space Wm,p(Td) embeds compactly into W n,r(Td). In the borderline case,
if n− d/r = m− d/p is not an integer, the embedding is still continuous.

The following result is from [62, p.1034]).

Lemma C.3 (Gagliardo–Nirenberg inequality). Let m, n ∈ N0 with m > n and let 1 ≤
p, q, r ≤ ∞. Assume that there exists θ ∈ (0, 1) such that

n− d

r
= θ
(
m− d

p

)
− (1− θ)d

q
.

There exists a constant B > 0 such that for all u ∈ Wm,p(Td),

‖∇nu‖Lr(Ω) ≤ B‖u‖θWm,p‖u‖1−θ
Lq (C.1)

Estimates on square roots play a key role in the proofs of our results. The following
result is a consequence of Théorème 1 (ii) in [47].

Lemma C.4. Let 1 < p ≤ ∞. Then there exists a constant CLV > 0 such that for all
nonnegative function u ∈ W 2,p(Td),

‖√u‖2
W 1,2p(Td) ≤ CLV‖u‖W 2,p(Td). (C.2)

Proof. Let φ ∈ C2(R) be a nonnegative cut-off function satisfying φ(x) = 1 for 0 ≤ x ≤ 1,
and φ(x) = 0 for x ≥ 2 and for x ≤ −1. Define accordingly φd ∈ C2(Rd) by

φd(x1, x2, . . . , xd) = φ(x1)φ(x2) · · ·φ(xd). (C.3)

Given u ∈ W 2,p(Td), consider w ∈ W 2,p(Rd) with w(x) = φd(x) Eu(x); recall that Eu is
the periodic extension of u to Rd. By definition of φd, we have w(x) = Eu(x) for x ∈ [0, 1]d

and suppw ⊂ [−1, 2]d. On one hand,

‖D
√
u‖2p

L2p(Td)
=

d∑

j=1

∫

[0,1]d
|∂j
√

Eu(x)|2p dx

≤
d∑

j=1

∫

Rd
|∂j
√
w(x)|2p dx = ‖D

√
w‖2p

L2p(Rd)
. (C.4)
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On the other hand, with constants Ap, Bd > 0,

‖D2w‖p
Lp(Rd)

=
∑

1≤j≤k≤d

∫

Rd
|∂2
jkw(x)|p dx

=
∑

1≤j≤k≤d

∫

Rd

∣∣∂2
jkφd Eu+ ∂jφd∂k Eu+ ∂kφd∂j Eu+ φd ∂

2
jk Eu

∣∣p dx

≤ Ap‖φd‖pC2(Rd)

∑

1≤j≤k≤d

∫

[−1,2]d

(
|Eu|p + |∂j Eu|p + |∂j Eu|p + |∂2

jk Eu|p
)

dx

≤ ApBd‖φd‖pC2(Rd)
‖u‖p

W 2,p(Td)
. (C.5)

By Théorème 1 (ii) in [47],

‖D
√
w‖2p

L2p(Rd)
≤ K‖D2w‖p

Lp(Rd)
, (C.6)

where K > 0 only depends on d and p. Then, combining (C.4) with (C.5) via (C.6), it
follows that

‖D
√
u‖2p

L2p(Td)
≤ ApBdK‖φd‖dC2(Rd)‖u‖pW 2,p(Td)

.

Finally, observe that, trivially,

‖√u‖2p
L2p(Td)

= ‖u‖p
Lp(Td)

≤ ‖u‖p
W 2,p(Td)

.

Hence, (C.2) holds with the constant

CLV =
(
1 + ApBdK‖φd‖pC2(Rd)

)1/p
,

ending the proof.

Next, we quote the key inequality in the existence proof of global weak solutions to the
DLSS equation, proved in [36, Lemma 2.2]. It is in analogy to the inequality from Lemma
3.8 related to the sixth-order equation.

Lemma C.5. Let u ∈ H2(Td)∩W 1,4(Td)∩L∞(Td) in dimension d ≥ 2 be strictly positive.
Then, for any 0 < α < 2(d+ 1)/(d+ 2),

1

2(α− 1)

∫

Td
u2∂2

ij(log u)∂2
ij(u

2(α−1))dx ≥ κα

∫

Td
(∆uα)2dx , (C.7)

if α 6= 1, or ∫

Td
u2∂2

ij(log u)2dx ≥ κ1

∫

Td
(∆u)2dx , (C.8)

if α = 1, respectively, where

κα =
p(α)

α2(p(α)− p(0))
and p(α) = −α2 +

2(d+ 1)

d+ 2
α−

(d− 1

d+ 2

)2

. (C.9)

Furthermore, if the stronger condition (
√
d − 1)2/(d + 2) < α < (

√
d + 1)2/(d + 2) holds,

then κα > 0.
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The following result is proved in [37, Appendix]. It is needed to obtain strong conver-
gence of the sequences (

√
un) or ( 4

√
un), given strong convergence of the sequence (un) and

a uniform bound on ( 4
√
un) or ( 6

√
un), respectively.

Proposition C.6. Let 0 < β < γ < α < ∞, 1 < p, q, r < ∞ be given, where αp = βq =
γr. Assume that (un) is a sequence of strictly positive functions on Td with the following
properties:

1. uαn converges strongly to uα in W 1,p(Td), and

2. uβn is bounded in W 1,q(Td).

Then uγn converges strongly to uγ in W 1,r(Td).
The respective result holds for sequences of nonnegative functions un : (0, T )×Td → R

upon replacing W 1,s(Td) by Ls(0, T ;W 1,s(Td)) for, respectively, s = p, q, r.

Finally, we recall a particular variant of the Leray–Schauder theorem that has been
proven in [55].

Theorem C.7 (Leray–Schauder). Let X be a Banach space and let B ⊂ X be a closed and
convex set such that the zero element of X is contained in the interior of B. Furthermore,
let S : B × [0, 1] → X be a continuous map such that its range S(B × [0, 1]) is relatively
compact in X. Assume that S(x, σ) 6= x for all x ∈ ∂B and σ ∈ [0, 1] and that S(∂B ×
{0}) ⊂ B. Then there exists x0 ∈ B such that S(x0, 1) = x0.

Appendix D

In this appendix we provide a fromal proof of the Lyapunov property for the Fisher infor-
mation along smooth positive solutions to the sixth-order quantum diffusion equation in
space dimesion d = 1. The proof is based on the entropy construction method from [35].

Proposition D.1. Let n be smooth and positive solution to equation (3.1) on the oned-
imesional torus T. Then the Fisher information F [n] =

∫
T(
√
n)2

xdx is monotonically
decreasing in time, i.e.

d

dt
F [n(t)] ≤ 0 for all t > 0 .

Proof. According to Lemma 3.6, the sixth-order equation is for smooth positive solutions
equivalent to

∂tn = (n(log n)xxx)xxx + 2(n(log n)2
xx)xx ,

and using the standard change of variables log n = y, the latter becomes

∂ty = e−y(eyyxxx)xxx + 2e−y(eyy2
xx)xx . (D.1)

The Fisher information in new variable reads as

F [n] =

∫

T
(
√
n)2

xdx =

∫

T
eyy2

xdx.
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Integrating by parts, the time derivative of the Fisher information along solutions to (D.1)
is calculated:

d

dt
F [n(t)] =

d

dt

∫

T
eyy2

xdx =

∫

T
ey(y2

xyt + 2yxyxt)dx = −
∫

T
ey(y2

x + 2yxx)ytdx

= −
∫

T
(y2
x + 2yxx)

[
(eyyxxx)xxx + 2(eyy2

xx)xx
]
dx

= −
∫

T
(y2
x + 2yxx)

[
ey(yxyxxx + yxxxx + 2y2

xx)
]
xx

dx

= −
∫

T
ey(y2

x + 2yxx)xx(yxyxxx + yxxxx + 2y2
xx)dx

= −2

∫

T
ey(y2

xx + yxyxxx + yxxxx)(yxyxxx + yxxxx + 2y2
xx)dx

= −2

∫

T
eyS0(yx, yxx, . . .)dx ,

where the polynomial S0 equals

S0(ξ) = 2ξ4
2 + 3ξ1ξ

2
2ξ3 + 3ξ2

2ξ4 + ξ2
1ξ

2
3 + 2ξ1ξ3ξ4 + ξ2

4 .

In order to prove the Lyapunov property for F , we use integration by parts in a systematic
way [35]. Symbol S0 is of order 8, but only variables ξ1, . . . , ξ4 appear in its definition.
Thus, it is enough to consider only the following 8 integration by parts formulae and
corresponding shift polynomials:

I1 =

∫

T
(eyy2

xxyxxx)x  T1(ξ) = ξ1ξ
2
2ξ3 + 2ξ2ξ

2
3 + ξ2

2ξ4,

I2 =

∫

T
(eyyxy

2
xxx)x  T2(ξ) = ξ2

1ξ
2
3 + ξ2ξ

2
3 + 2ξ1ξ3ξ4,

I3 =

∫

T
(eyyxy

3
xx)x  T3(ξ) = ξ2

1ξ
3
2 + ξ4

2 + 3ξ1ξ
2
2ξ3,

I4 =

∫

T
(eyy2

xyxxyxxx)x  T4(ξ) = ξ3
1ξ2ξ3 + 2ξ1ξ

2
2ξ3 + ξ2

1ξ
2
3 + ξ2

1ξ2ξ4,

I5 =

∫

T
(eyy3

xy
2
xx)x  T5(ξ) = ξ4

1ξ
2
2 + 3ξ2

1ξ
3
2 + 2ξ3

1ξ2ξ3,

I6 =

∫

T
(eyy4

xyxxx)x  T6(ξ) = ξ5
1ξ3 + 4ξ3

1ξ2ξ3 + ξ4
1ξ4,

I7 =

∫

T
(eyy5

xyxx)x  T7(ξ) = ξ6
1ξ2 + 5ξ4

1ξ
2
2 + ξ5

1ξ3,

I8 =

∫

T
(eyy7

x)x  T8(ξ) = ξ8
1 + 7ξ6

1ξ2.

These integration by parts formulae correspond to nonnegative integer solutions of the
equation p1 + 2p2 + 3p3 + 4p4 + 5p5 + 6p6 + 7p7 = 7 with p4 = . . . = p7 = 0.
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We are looking for a polynomial S of the form S(ξ) = S0(ξ) +
∑8

i=1 ciTi(ξ), which
satisfies

d

dt
F [n(t)] = −

∫

T
eyS(yx, yxx, . . .)dx ,

and there exist real coefficients ci such that S(ξ) ≥ 0 for all ξ = (ξ1, ξ2, ξ3, ξ4) ∈ R4. If such
polynomial S, i.e. coefficients ci ∈ R can be found, then this formally gives a proof of the
Lyapunov property.

Firstly, the above decision problem can be optimized by using the sum of squares
optimization tool available in Matlab toolbox yalmip [48]. In particular, we obtain the
following choice of coefficients to be useful:

c2 = −2c1, c3 = 0, c4 =
1

2
, c5 =

1

4
, c6 = − 3

50
, c7 = − 1

100
.

After changing polynomial variables to x = ξ2/ξ
2
1 , y = ξ3/ξ

3
1 and z = ξ4/ξ

4
1 , we calculate

S(ξ) = ξ8
1Sc1,c8(x, y, z) with

Sc1,c8(x, y, z) = 2x4 +
(3

2
− 2c1

)
y2 + z2 + (c1 + 4)x2y + (c1 + 3)x2z + (2− 4c1)yz

+
19

25
xy +

1

2
xz +

3

4
x3 +

1

5
x2 +

(
7c8 −

1

100

)
x− 7

100
y − 3

50
z + c8 .

Finally, it remains to solve the polynomial decision problem

∃c1, c8 ∈ R : ∀x, y, z ∈ R : Sc1,c8(x, y, z) ≥ 0 .

This has been done by the computer algebra software Mathematica applying the command
Reduce, which uses an implementation of CAD algoritham for quantifier eliminations. The
result is affirmative and consequently, the Fisher information is a Lyapunov functional for
equation (3.1).
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Appendix E

In the last appendix we provide a numerical evidence (in d = 1), which shows in favor of
the question (v) (page 103) about the long-time asymptotics of the sixth-order equation
(3.1) posed on R. After the self-similar rescaling with x = (1 + 6t)1/6y, t = (e6s− 1)/6 and
equivalent reformulation according to Lemma 3.6, the function

v(s; y) := (1 + 6t)1/6n(t;x)

solves the equation

∂sv = (v(log v)yyy)yyy + 2(v(log v)2
yy)yy + (yv)y , y ∈ R , s > 0 . (E.1)

One easily deduces the stationary solution of (E.1); v∞(y) = c exp(−y2/2 3
√

2), where the
positive parameter c is chosen to adjust the mass according to given initial condition.

In order to perform numerical experiments we have to restrict our domain to a finite
symmetric interval (−L,L) ⊂ R, and for simplicity we impose periodic boundary condi-
tions. Equation (E.1) is then discretized by the implicit Euler in time and standard finite
differences in space:

V k+1
i − V k

i

τ
= δ

〈3〉
i (V k+1

i δ
〈3〉
i (log V k+1

i )) + 2δ
〈2〉
i

(
V k+1
i (δ

〈2〉
i (log V k+1

i ))2
)

(E.2)

+
1

4h2

(
V k+1
i+1 (y2

i+1 − y2
i ) + V k+1

i (y2
i+1 − 2y2

i + y2
i−1)− V k+1

i−1 (y2
i − y2

i−1)
)
,

V k+1
i = V k+1

i+lN , l ∈ Z , i = 0, . . . , N − 1 , k ≥ 0 , (E.3)

where V k
i ≈ v(sk; yi), h = 2L/N , τ > 0 is a given time step and the finite difference

operator δ
〈3〉
i is defined by

δ
〈3〉
i Vi =

1

2h3
(Vi+2 − 2Vi+1 + 2Vi−1 − Vi−2) .

Note that the convection term (yv)y is first substituted with (Θyv)y, where Θ = y2/2, and
then discretized. For a given initial data V 0 ≈ v0, nonlinear system (E.2)–(E.3) is solved
by the standard Newton iterative method, where we take the solution from the previous
time step as an initial guess in the next step.

Example E.1. Numerical test presented here assumes the following: interval length 2L =
10, mesh size h = 0.05, time step τ = 10−3 and initial condition v0(y) = ε(sin(πy/L) + 3)
with ε = 0.0938. Figures E.1(a)-(d) convincingly show convergence of numerical solutions
{V k}k≥0 to certain stationary profile, which we denote by V ∞. Here we approximated V ∞

by V 3000.

Nevertheless, the observed convergence can be even further numerically explored. Let
us introduce the perturbed entropy functional defined by

H̃[v] =

∫

R
v log v dy +

1

2 3
√

2

∫

R
y2v dy .
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Figure E.1: Convergence of numerical solutions V k of system (E.2)–(E.3) towards the
stationary profile V ∞: (a) s0 = 0, (b) s400 = 0.4, (c) s1100 = 1.1, (d) s2500 = 2.5.

Its definition is motivated in order to satisfy H̃[v∞] = 0 and we will use it to measure the
convergence of numerical solutions {V k}k≥0 to the corresponding stationary profile V ∞.

In fact, we have to reformulate H̃ slightly, since on finite intervals V ∞ is never the perfect
Gaussian and thus H̃[V ∞] > 0. Therefore, we adapt H̃ relatively to V ∞ by defining

H̃ d[V ] := H̃[V ]− H̃[V ∞] .

Above, H̃[V ] is to be understood in the sense of some quadrature rule, which approximates
corresponding integrals. In our computations we use the composite Simpson’s rule.

Figures E.2(a)-(b) below, show an exponential decay to zero of the perturbed entropy

H̃ d along solutions {V k}k≥0 from Example E.1 and an exponential decay to zero of the
L1-norm of the sequence {V k − V ∞}k≥0. The dashed lines indicate upper bounds for the
convergence. These numerically established convergence results parallel to those obtained
for the confined fast diffusion equation (second-order Fokker-Planck equation) [8] and for
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a family of confined nonlinear fourth-order equations [51]. Especially interesting result
in [8] is the proof for sharp decay rate of the relative entropy along solutions to the fast
diffusion equation, which has been performed via formal linearization of the equation aroud
the stationary profile and applying a sharp Hardy-Poincaré inequality. The sharp decay
rate equals −2Λ, where Λ denotes the optimal constant in the Hardy-Poincaré inequality
and coincides with the spectral gap of the corresponding linear operator. Moreover, the
optimal rates are saturated for translatations of the stationary profile [22].

Expanding a solution v of (E.1) in terms of an ε-perturbation w around v∞,

v(s; y) = (1 + εw(s; y))v∞(y) ,

and keeping only first-order terms in ε, yields the linear equation for w,

∂sw + Lw = 0 ,

with Lw = −∂6
yw+ 3

3√2
y∂5

yw− ( 3
3√4
y2 + 7

3√2
)∂4
yw− ( 11

3√4
y+ 1

2
y3)∂3

yw− (3 3
√

2− 2y2)wyy + ywy.

Using additional change of variables z = y/ 6
√

2, operator L admits a Sturm-Liouville form
[46],

Lw = −ez2/2
[
2(e−z

2/2wzzz)zzz − 4
3
√

2(e−z
2/2wzz)zz +

3
√

4(e−z
2/2wz)z

]
.

Solutions of the eigenvalue problem Lw = λw are properly scaled Hermite polynomials

pn(y) = 2n/6Hn(y/
6
√

2) , where Hn(z) = (−1)nez
2/2 dn

dzn
e−z

2/2 ,

with corresponding eigenvalues λn = n2(n+ 1)/2. Obviously, the smallest nontrivial eigen-
value (spectral gap) is λ1 = 1.
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Ce−sk

(b)

Figure E.2: Exponential convergence of: (a) perturbed entropy functional H̃d, (b) L1-norm

with C = 30(H̃ d[V 0])1/2.
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Next, observe the Figure E.2(a) and a kind of phase transition in decay of H̃ d around

time points s400 and s1100. Before the time s400 and after s1100, H̃d decays almost paral-
lelly to the dashed line, which represents the exponential curve H̃d[V0]e−2sk in the semi-
logarithmic plot. Figure E.1 and our simulations indicate that these temporal regions
correspond to the translation dominated regime of the solution. Hence, in the spirit of
results from [8, 22, 51], our numerical experiments suggest the optimal decay rates being

−2λ1 and −λ1 for the perturbed entropy H̃ and L1-norm, respectively.
Based on the above formal observations and obtained numerical results, we conclude

the appendix with the following conjecture.

Conjecture. Let v0 ∈ L1(R) be a nonnegative initial datum of finite entropy H̃[v0] < ∞
and let v be solution to the rescaled quantum diffusion equation (E.1). Then v converges
exponentially fast towards the respective Gaussian profile v∞ in L1(R),

‖v(s)− v∞‖L1 ≤ C(H̃[v0])1/2e−s for all s > 0 ,

where C > 0 depends only on v0. Furthermore, the perturbed entropy functional H̃ decays
along v at an exponential rate

H̃[v(s)] ≤ H̃[v0]e−2s for all s > 0 .
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[24] B. Düring, D. Matthes, and P. Milisic. A gradient flow scheme for nonlinear fourth
order equations. Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), no. 3, 935–959.

[25] C. M. Elliott and Z. Songmu. On the Cahn-Hilliard equation. Arch. Rational Mech.
Anal. 96 (1986), 339–357.

[26] J. Evans, V. Galaktionov, and J. R. King. Unstable sixth-order thin film equation: I.
Blow-up similarity solutions. Nonlinearity 20 (2007), 1799–1841.



BIBLIOGRAPHY 123

[27] J. C. Flitton and J. R. King. Moving-boundary and fixed-domain problems for a
sixth-order thin-film equation. Europ. J. Appl. Math. 15 (2004), 713–754.

[28] D. Furihata. Finite difference schemes for ∂u
∂t

= ( ∂
∂x

)α δG
δu

that inherit energy conserva-
tion or dissipation property. J. Comput. Phys 156 (1999), 181–205.

[29] D. Furihata, T. Matsuo. Discrete Variational Derivative Method, Chapman and Hall,
2010.
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Jüngel. Thank you Ansgar for giving me the opportunity for doing my PhD with you and
thank you for all your professional, scientific, financial and personal support.

To my second (inofficial) advisor and reviewer of the thesis, Prof. Daniel Matthes (TU
München). Thank you Daniel on all your patience and very helpful discussions, especially
at the beginning of my graduate studies.

To my family. Velika hvala mojim roditeljima, Stjepanu i Marici, sestri Vesni te cijeloj
obitelji i rodbini na neizmjernoj moralnoj i logističkoj podršci.
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