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Abstract

The FShell Query Language (FQL) [8, 9] introduced a new formal method for the specification
of code coverage criteria. An FQL specification declaratively describes which part of a program
shall be covered by a test suite. These code coverage criteria can then be used by an FQL-
backend to either generate test suites or measure the coverage of a given test suite. CPA/Tiger is
a FQL test generation backend for C-Code, which is based on the formal framework of config-
urable program analysis (CPA) [3]. An integral component of CPA/Tiger is an interpreter, that
can only handle programs, which do not contain complex data structures. Therefore we develop
a C-Interpreter which models the heap accurately. The new interpreter is implemented as a CPA
which enables a simple integration into CPA/Tiger. The accurate emulation of the heap when
interpreting a program is resource consuming and therefore it is not practical to save every pro-
gram state in an unoptimized data structure. We therefore use the fat node data structure which
enables us to save all program states, that are computed by the interpreter. We experimentally
evaluate our new interpreter with the existing one to assess the runtime differences between the
two interpreters.
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Kurzfassung

Die FShell Abfragesprache (FShell Query Language, FQL) [8, 9] erlaubt es deklarativ Code-
Abdeckungskriterien zu spezifizieren. Diese Spezifikationen können dann zum einen dazu ver-
wendet werden die durch eine Testsuite erreichte Codeabdeckung zu ermitteln und zum anderen
dazu genutzt werden eine abdeckende Testsuite zu erzeugen. CPA/Tiger ist ein FQL Testfall-
generator für C Programme welcher auf dem Konzept der konfigurierbaren Programmanalyse
(CPA) [3] basiert. Eine wesentliche Komponente von CPA/Tiger ist ein Interpreter, der nur C-
Programme behandeln kann, die keine komplexen Datenstrukturen enthalten. Daher wird ein
neuer Interpreter entwickelt, der den Heap eines Programms auf exakte Weise abbildet. Die-
ser Interpreter wird als statische Programmanalyse realisiert was eine einfache Integration in
CPA/Tiger ermöglicht. Die exakte Nachbildung des Heaps über eine Programmausführung hin-
weg ist resourcenaufwändig und daher ist es nicht praktikabel sämtliche Programmzustände
in einer unoptimierten Datenstruktur zu speichern. Die Verwendung der Fat Node Datenstruk-
tur erlaubt die Speicherung aller Programmzustände, welche der Interpreter erzeugt. Der neue
Interpreter wird mit dem bereits bestehenden Interpreter experimentell verglichen um die Lauf-
zeitunterschiede der beiden Interpreter abzuschätzen.
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CHAPTER 1
Introduction

1.1 Motivation

Testing is an essential part of every software development process. Test suites are used to verify
program behaviour and/or detect errors in programs. Testing has also several problems. One
of the problems is that testing is not complete which means that for a complex program it is
impossible to test every aspect of the program in limited time. Therefore it is essential to know
when to stop testing. Good indicators for this question are code coverage criteria like basic block
coverage. If for example a test suite does not meet the basic block coverage criterion then it is
probable that we have dead code which is never executed in the program. This can indicate a
faulty requirement analysis if the test cases are derived from the requirements.

The tool CPA/Tiger [5] enables the generation or evaluation of test suites which fulfill certain
code coverage criteria. These criteria are specified in CPA/Tiger by using the FShell Query Lan-
guage (FQL) [8] [9] which is a specification language for code coverage criteria. CPA/Tiger is
furthermore based on the configurable program analysis (CPA) [3] [1]. An FQL query describes
a finite set of test goals. In order to cover a code with respect to an FQL query, a test suite shall
match each test goal by a test case specification.

Figure 1.1 gives an overview of the CPA/Tiger work flow. CPA/Tiger derives form an FQL
specification test goal automata A1, ..., An where each automaton represents a test goal. Then
CPA/Tiger iteratively selects an automaton Ai. A coverage analysis is then performed to check
if the existing test case Ai is covered by the test cases which have already been generated by
CPA/Tiger. If this is the case then we return to the test goal selection and select the next test goal
Ai+1. If the test goal is not covered by the existing test cases then we perform a static program
analysis. The result of this analysis either shows that a test goal is infeasible or generate a test
cases which is then added to the list of existing test cases.
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The main purpose of the coverage analysis is to increase the performance of CPA/Tiger. With-
out a coverage analysis every time a test goal is selected a static program analysis has to be
performed which is time consuming. Furthermore the coverage analysis can be used without
static program analysis to check if a given test suite fulfills a certain code coverage criterion
represented by an FQL query. The coverage analysis consists of an interpreter CPA which is
able to interpret C-programs. Currently this interpreter only support integer variables, but no
heap manipulation pointer arithmetic, or bit operations. This naturally limits the the applica-
bility of CPA/Tiger and in this thesis an analysis is developed to remedy this situation. Thus if
the coverage analysis supported C-programs with complex data structures and complex program
constructs (e.g. pointer arithmetic) then the coverage of test suites for these C-programs could
be measured.

Therefore we implement a new interpreter CPA for the CPA backend of CPA/Tiger. The in-
terpreter CPA keeps track of the heap and performs bit-precise operations. We implement the
interpreter CPA in such a way that it is possible to extend it to allow more advanced data struc-
ture analysis. We then experimentally compare the time performance of the new implemented
interpreter CPA with the old interpreter CPA in order to evaluate the performance changes to
the CPA/Tiger tool. Finally we give an overview of the overall result and discuss possible en-
hancements to improve the interpreter performance and memory consumption. With the new
interpreter CPA it will then be possible to measure the coverage of complex C-programs for
FQL code coverage criteria.

1.2 Outline

In Chapter 2 we will discuss the preliminaries for the implementation of the interpreter CPA. We
will discuss the program representation in Section 2.1. For the program representation we use
CFAs [5]. We will discuss an extension to the current CFAs used by the CPA/Tiger tool to allow
the representation of C-Program which contain function pointers. We then give a description of
the configurable program analysis framework in Section 2.2. Chapter 3 contains implementation
details for the interpreter CPA. We will first outline the features of the interpreter CPA and
discuss the memory model (Section 3.1) used by the interpreter. In this Section we will also
discuss the problem of the memory consumption when using a simple memory model for the
interpreter and present a technique to overcome this problem. We then give a definition of the
interpreter CPA in Sections 3.1, 3.2, 3.3. Section 3.2 contains the semantics of the interpreter.
Next we give an overview over the related work in Chapter 4. In Chapter 5 we will conduct a
series of experiments where we compare the memory and speed performance of our interpreter
Implementation with the existing interpreter. Finally, we give an overview of the results and an
overview of the possible future work in Chapter 6.
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Figure 1.1: Overview of CPA/Tiger workflow

3





CHAPTER 2
Preliminaries

In this Chapter we give an overview of the concepts and frameworks which are an integral part
of CPA/Tiger that we extend. In Section 2.1 we discuss control flow automata which serve as our
Program Representation in CPA/Tiger. Section 2.2 introduces the configurable program analysis
framework which is the underlying program analysis tool used by CPA/Tiger.

2.1 Program Representation

Before transforming a C program into a control flow automata the program is translated into a
subset of the C language the so called C Intermediate Language (CIL) [13]. The purpose of this
step is to simplify the program analysis by replacing complex program statements with simpler
but semantically equivalent C code. A list of standard translations for CIL can be found in sec-
tion 4 of the CIL web documentation which is located under http://www.eecs.berkley.edu/ nec-
ula/cil. Furthermore we use the flags –save-temps and –dosimplify (c.f. Section 8.15 in the web
documentation) on the CIL-Translator to achieve two important types of simplifications for a
CIL program.

We represent C programs as control flow automata (CFA) [5] [2]. A CFA (L,G) consists of
Nodes L and directed edges G ⊆ L × Ops × L. Nodes represent program locations. An edge
(`, op, `′) ∈ G is used to describe the transition from a program location ` to a program location
`′ while executing the operation op. The set Ops consist of several types of statements. These
are: definition, assign and assume statements of the form assume[c] where c is a condition. In
the following subsections we discuss simplifications to the C program and the types of the CFA
edges used by the interpreter CPA .

C Intermediate Language

The first type of simplification is the translation of simple field access via the -> operator for
composite data structures into field access via pointer arithmetic. This allows our program anal-
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s t r u c t d a t a {
i n t d a t a 1 ;
i n t d a t a 2 ;

} ;

i n t main ( ) {
i n t x , y ;
y =3;
x =9;
s t r u c t d a t a v ;
s t r u c t d a t a ∗ p n t ;
p n t = &v ;
pnt−>d a t a 2 = (4+ y )∗ x ;

re turn 0 ;
}

/∗ Genera ted by CIL v . 1 . 3 . 7 ∗ /
/∗ p r i n t _ C I L _ I n p u t i s t r u e ∗ /
s t r u c t d a t a {

i n t d a t a 1 ;
i n t d a t a 2 ;

} ;

i n t main ( void )
{ i n t x ;

i n t y ;
s t r u c t d a t a v ;
s t r u c t d a t a ∗ p n t ;
unsigned i n t _ _ c i l _ t m p 5 ;
unsigned i n t _ _ c i l _ t m p 6 ;
i n t _ _ c i l _ t m p 7 ;
{
y = 3 ;
x = 9 ;
p n t = & v ;
_ _ c i l _ t m p 5 = ( unsigned i n t ) p n t ;
_ _ c i l _ t m p 6 = _ _ c i l _ t m p 5 + 4 ;
_ _ c i l _ t m p 7 = 4 + y ;
∗ ( ( i n t ∗ ) _ _ c i l _ t m p 6 ) = _ _ c i l _ t m p 7 ∗ x ;
re turn ( 0 ) ;
}

}

Table 2.1: Translation from C-program to CIL-program

ysis to omit dealing with the -> semantics. The other type simplification is the strict usage of
three address codes in CIL programs, i.e. any assign-statement in a translated CIL-program is
of the form: result = operand1 operator operand2. An example of a translation
of a C-program which uses the field access operator -> into a CIL-program which uses three
address code can be seen in Table 2.1.

Next we are going to describe intra- and inter-procedural CFAs. An intra-procedural CFA rep-
resents a single functions whereas a inter-procedural CFA can represent complete C-Programs
with several functions. Thus every inter-procedural CFA is also a intra-procedural CFA.

Intra-Procedural CFA

A intra-procedural CFA represents the body of a C function. The intra-procedural CFA has the
following types of CFA edges: Definition, Assignment, Skip , Assume . The translation from a C

6



Let `j be a program location and p be a program statement. Depending on the type of program
statement we have the following translations:

Assignment,Definition:
Add a CFA edge e of the following form e = (`j , p, `j+1).

If:
Let p be of the form if(cond). Add two Assume edges for the program locations `true
and `false with e1 = (`j , assume [cond], `true) and e2 = (`j , assume [¬cond], `false). `true
is the program location which is reached in a program execution when the condition of the
if statement evaluates to true while `false is the program location which is reached in the
program execution when the condition of the if statement evaluates to false. Let `j+1 be the
program location after the if block. Then we have to add an edge e3 = (`t, empty, `j+1)
where `t is the end location of the then block. Furthermore if there exists an else block for the
if statement we have to add the edges e4 = (`f , empty, `j+1) where `f is the end location of
the else block.

while(true):
Add two assume edges similar to an if statement of the form if(1). Furthermore let `e be
the end program location of the while body. Add an edge e = (`e, empty, `j).

goto n:
Add an edge e = (`j , empty, n).

Figure 2.1: Overview over translations for conversion from C function to intra-procedural CFA

function to an intra-procedural CFA is defined in Figure 2.1.An example of an intra-procedural
CFA can be seen in Figure 2.2.

Inter-Procedural CFA

The inter-procedural CFA extends the intra-procedural CFA by adding 3 types of CFA edges:
Function Call, Function Exit, Function Return. For each function f , we define a unique Func-
tionDefinitionnode `f which marks the start location of the function. The set of FunctionDef-
initionnodes is F. This enables us to analyze C programs where function calls occur. The
translation of a C program containing functions without function pointers uses the translation
procedure of the intra-procedural CFA and extends it in the following way:
Function call: Let p be of the form x = func(a,b) or func(a,b). Furthermore let fb
be the start location of func and fe be the end location of func. Then add two CFA edges
ec = (`j , call p, fb) and ex = (fe, exit p, `j+1).
return e: add a CFA edge e = (`j , return: e, fe).
An example of a translation of a C-program into a CFA can be seen in Figure 2.3.

7



1

2

3

4

5

6

7

8

9

define: int x

assign: x=0

[true]

assign: x=x+1

[x > 10]

[¬(x > 10)]

skip

skip

assign:x=x+2

1:int x;
2:x=10;
3:while(true){
4: x=x+1;
5: if(x>10){
6: goto 8;

}
7:}
8:x=x+2;
9:

Figure 2.2: Intra-procedural CFA example

Function Pointers

In the following we extend the definition of an inter-procedural CFA such that we can handle
function calls via function pointers. We add two additional types of CFA edges: function pointer
Call and function pointer Exit. CFA edges of type function pointer Call are used for function
calls via a function pointer. When translating a C-Program into a CFA consider a program call
via function pointer op at location `. For this statement we have to introduce for all functions
f1, ..., fn with definition locations d1, ..., dn CFA edges e1, ..., en of type function pointer Call
where ei = (`, op, di). Furthermore, we have to add function pointer Exit edges for all functions:
Let x1, ..., xn the end program location for functions f1, ..., fn then we add CFA edge of type
function pointer Exit k1, ..., kn where ki = (xi, fexitp, `′) where `′ is the successor location to
`. An example of a CFA of this type can be seen in Figure 2.4.
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define: int g

function call:main

function call: test(3,4)

define: int x

assign: c= a+b

return:c

functionexit: main

return: 0

functionexit: global

0:int g;
int test(a,b){

1: int c;
2: c=a+b;
3: return c:
4: }

m:int main(){
5: test(3,4);
6: return 0;
7: }
8:

Figure 2.3: Inter-procedural CFA example without function pointer
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define: int (*test)()

func call:main

assign: test=f1;

function pointer callfunction pointer call

return: 0

function pointer exit

return:0

function pointer exit

return: 0

functionexit: global

0: int (*test)();
int f1(){

1: return 0;
2: }

int f2(){
3: return 0;
4: }
m: int main(){
5: test=f1;
6: (*test)();
7: return 0;
8: }
9:

Figure 2.4: Inter-procedural CFA example with function pointer
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4

5 6

7

[true] [false]

assign:opt1 assign:opf1

[true] [false]

assign:opt2 assign:opf2

Figure 2.5: Example for CPA merge

2.2 The Configurable Program Analysis Framework

In this Section we give a summary over the CPA framework [3] [1]. A program in the CPA
framework is presented as a CFA as described in Section 2.1. In the following, we refer by
(L,G) to the CFA of a program under investigation.

Configurable Program Analysis with Dynamic Precision Adjustment

A configurable program analysis D = (D,Π, ,merge, stop, prec) consists of an abstract do-
main D, a set of precisions Π, a transfer relation , and functions merge, stop, prec.

D is the abstract domain D = (C,E, J·K) :
C is the set of concrete states. E is a semi lattice of the form E = (E,>,⊥,v,t) whereE is the
set of abstract states,> is the top element> ∈ E,⊥ is the bottom element⊥ ∈ E,v is a partial
order E×E, t is the least upper bound: t : E×E → E. J·K is a concretization function which
maps abstract states to sets of concrete states: J·K : E → 2C . An abstract state e represents the
set JeK of concrete states

Π is the set of precisions. A precision π ∈ Π is used during successor computation. The
tuple (e, π) is called abstract state e with precision π. The introduction of a precision enables
the CPA algorithm to analyze each abstract state with an individual precision.

 is the transfer relation ⊆ E ×G×E ×Π where G is the set of CFA edges of a given pro-
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gram. The transfer relation encodes the semantics of the program. An element (e, g, e′, π) ∈ 
assigns to a given abstract element e a tuple (e′, π) labeled with CFA edge g. Then the transfer
relation and abstract domain have to fulfill the following requirements such that the config-
urable program analysis is sound and progress of it is guaranteed:

J>K = C and J⊥K = ∅
∀e, e′ ∈ E : JeK ∪ Je′K ⊆ Je t e′K
∀e ∈ E : ∃e′ ∈ E,∃π ∈ Π : e (e′, π)

∀e ∈, g ∈ G, π ∈ Π :
⋃
c∈JeK{c′|c

g−→ c′} ⊆
⋃
e

g
 (e′,π)

Je′K

The function merge: E × E × Π → E (with the restriction that e′ v merge(e, e′, π) in order
to provide soundness) is used to weaken the second parameter e′ using the first parameter e and
returns a new abstract state with precision π. One purpose of merge can for instance be the re-
duction of abstract states that need to be considered by the CPA algorithm. Consider for instance
the CFA in Figure 2.5. Given an abstract state e0 at program location 1 a simple analysis would
yield four states e1, e2, e3, e4 at program location 7. Each of the four states would represent a
program path. For instance e1 would represent the computation sequence 1-2-4-5-7. We now
merge the two intermediate states e′, e′′ in program location 4 into a new abstract state e such
that e′ and e′′ are subsumed by e. Then we would only have two states e1, e2 to consider in
program location 7. e1 represents the computation sequences 1-2-4-5-7 and 1-3-4-5-7.

The purpose of the function stop: E × 2E × Π → B is to determine if a given abstract state
e with precision π is subsumed by a set of abstract states R. The following restriction is im-
posed on stop in order to guarantee soundness of the analysis: stop(e,R, π) = true implies
JeK ⊆

⋃
e′∈RJe′K.

prec: E × Π× 2E×Π → E × Π is the precision adjustment function. The following must hold
in order for soundness of the analysis:
∀e, e′ ∈ E, π, π′ ∈ Π, R ⊆ E ×Π : (e′, π′) = prec(e, π,R)⇒ JeK ⊆ Je′K
So prec allows the widening of the first parameter e when calculating a new precision π′.

CPA Algorithm

The CPA algorithm given in Algorithm 2.2.1 keeps track of 2 sets reached and waitlist. Each
set contains pairs of the form (e, π) where e is an abstract element and π is a precision. The
algorithm computes the set of reachable abstract states for a given program (which is encoded
in the transfer relation) and an initial pair (e0, π0) of abstract element e0 and and precision π0.
The set of reachable abstract states is an over-approximation of a set of concrete states. The
algorithm performs the following steps:
First we initialize the waitlist with a set of abstract start states W0. As long as the waitlist is
not empty take a pair (e, π) from the waitlist. For each successor of the form (ê, π) calculate
a new pair (e′, π′) with a new precision π′ which is based on the set of pairs in reached using
the function prec(ê, π, reached). This new pair is then merged with each pair (e′′, π′′) with a
resulting abstract state e. If e 6= e′′ then add the pair (e, π′) to reached and waitlist and remove

12



Algorithm 2.2.1 CPA Algorithm [1]
Input: a CPA D = (D,Π, ,merge, stop, prec), a set R0 ⊆ E × Π of abstract states with

precision, a subset W0 ⊆ R0 of frontier abstract states with precision, where E denotes the
set of elements of the semi-lattice of D

Output: a set of reachable abstract states with precision, a subset of frontier abstract states with
precision

1: reached := R0;
2: waitlist := W0;
3: while waitlist 6= ∅ do
4: choose (e, π) from waitlist; remove (e, π) from waitlist;
5: for each ê with e (ê, π) do
6: (e′, π′) := prec(ê, π, reached);
7: for each (e′′, π′′) ∈ reached do
8: ē := merge(e′, e′′, π′);
9: if ē 6= e′′ then

10: waitlist :=
(
waitlist ∪ {(ē, π′)}

)
\ {(e′′, π′′)};

11: reached :=
(
reached ∪ {(ē, π′)}

)
\ {(e′′, π′′)};

12: if ¬ stop(e′, {e | (e, ·) ∈ reached}, π′) then
13: waitlist := waitlist ∪ {(e′, π′)};
14: reached := reached ∪ {(e′, π′)};
15: return (reached, ∅)

the pair (e′′, π′′) from reached and waitlist. Finally the algorithm adds (e′, π′) to the set waitlist
and reached if e′ is not subsumed by the set of abstract states of reached.

Composite CPA

It is possible to combine different CPAs to a single Composite CPA. The abstract Element of
the Composite CPA are then the Cartesian products of the abstract Elements of the different
CPAs. The transfer relation C

 of the Composite CPA simple triggers for an abstract element
e = (e1, ..., en) the transfer relations 1

 , ...,
n
 of the corresponding CPAs. For the exact formal

definition of the Composite CPA please refer to [1].
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CHAPTER 3
Interpreter CPA

In this Section, we introduce the interpreter CPA I = (D,Π,∆,merge, stop, prec). The Sections
3.1, 3.2,3.3 describe our interpreter CPA I. In Section 3.1 the abstract domain of D is defined.
In Section 3.2 we give a Definition of our interpreter transfer relation ∆. In Section 3.3, we
present the definitions for the functions merge, stop and prec.

3.1 The Abstract Domain

The abstract elements of the abstract domain of I are concrete memory states. In the following
we describe our memory model.

Features

Our CPA is able to handle several complex C-constructs like function pointers or pointer calcu-
lations. The complete list of features the CPA supports can be seen in Table 3.1

The memory model has certain central features namely:

1. simple pointer arithmetic (+ and -) within a data structure
2. address offset calculations within a data structure
3. prohibit pointer arithmetic outside of a defined data structure or memory block
4. save data and addresses(for data and functions) separately

These features enable the interpreter to determine whether a pointer calculation is valid or not.
That is whether a pointer calculation happens within a data structure or not. Furthermore the
separation of data and addresses enables the interpreter to detect suspicious access behavior like
access of a function-address memory location for data or vice versa as can be seen in Figure 3.1.
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Integer data types (signed/unsigned) Operations for integer types
CHAR Arithmetic operations (+,-,*,/)
SHORT Logical operations (LAND,LOR,LNOT)
INT Binary operations (BAND,BOR,BNOT)
LONG

Pointer Array
Supported data types: integer data types,structs/unions, Supported data types: integer data types,
Enums,typedefs Structs/Unions, enums, typedefs, pointer
Pointer Arithmetic: +,- Definition of an array with fixed or variable

size;
Pointer specific Operations: *,& Multidimensional arrays
Use of variables of type INT and LONG as pointer Access of arrays via pointer arithmetic

Struct/Union Typedef
Supported Member-Data types: Integer types, Supported data types:Integer types,
structs/Unions, enums,typedefs, pointer structs/unions, enums, typedefs,pointer
Definition of struct and unions
Definition of struct/union variables
Forward declarations
Access of fields via pointer arithmetic

Function pointer: Enumerate
Definition of function pointer Definition of enums
Call of a function through function pointer Definition of enum variables
Pointer on function pointer

General program constructs Casts
Assignment Cast from pointer to INT or LONG
Function call: Cast from integer data type
- Supported parameter types: to another integer data type
INTEGER, ADDRESSES, TYPEDEF Cast between pointer data types

- Return type: Any of the upper defined
recursive function calls

Table 3.1: Features

Definition

In this section we give a description of the abstract domain D of our interpreter CPA. As de-
scribed in Section 2.2 the domain D is of the form D = (C,E, J·K). C is the set of concrete
memory states. E is a flat semilattice. A Hasse diagram describing E can be seen in Figure 3.2.
The concretization function J·K is defined in the following way:

JeiK = {ci}, ci ∈ C
JErrorK = {}
J>K = C and J⊥K = {}.
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int test(){
return 0;

}
int (*p)();
int main(){

int c = 3;
p = test:
c = ((int)p)+3; //access function pointer for integer
return 0;

}

Figure 3.1: Example for suspicious access behavior for function pointer

So each abstract state of the form ei represents exactly one concrete memory state. The inter-
preter transfer relation which is defined in Section 3.2 uses the abstract state Error to indicate
faulty or undefined program behavior. > and ⊥ are defined as described in Section 2.2.

An abstract state s, s ∈ E has the form s := (Stacks,M). Stacks is a list of partial functions
Scopei with Scopei : V ar ↪→ A where A is the set of addresses and Var the set of currently
defined variables. An address is of the form (MID,Offset), where Offset ∈ N. As can be seen
in Figure 3.6 the memory identifier (MID) is used to identify the memory block while the offset
determines the memory cell of the given memory block. For an element a ∈ A we denote with
am the MID and ao the memory offset Offset.

M is used to describe the memory and has the form M = (MS ,MD). The function MS :
MIDs ↪→ N is used to determine the size of a given memory block. The function MD: MIDs→
(N ↪→ Data) is used to present the current memory state. Thus we have for every memory block
(which has a unique MID) a partial function which represents the contents of the memory block.
If a memory block is created/deleted a MID is added/removed to MIDs. The set Data is of the
form Data = EMPTY ∪ {0...255} ∪ A ∪ F where F is the set of all FunctionDefinitionnodes
(c.f Section 2.1(Interprocedural CFA)).

Implementation

The memory model is used by the interpreter to represent the current(concrete) memory state of
the program execution. The memory model can be divided into two parts. The low-level memory
model consisting of memory blocks and memory cells which represent the memory while the
high-level memory model consists of a list of scopes called stack where each scope contains a
set of variables.

The main element of the low-level memory model is a memory block. A memory block consists
of an array of memory cells where each index(named memory location) can hold a different type
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>

e3e2e1 en error

⊥

. . . . . .

Figure 3.2: Hasse diagram of the flat lattice for the abstract domain

of memory cell. There are three types of memory cells : data-, address- and function memory
cells.

A data memory cell (DMC) holds a byte. So for example to store a 32-bit integer value a
memory block of size 4 or more is required. An address memory cells (AMC) can store one
address. An address consists of a reference to a memory block and an offset. Thus an address
is pointing to a memory cell within an memory block as can be seen in Figure 3.6. A function
memory cell (FMC) can hold a reference to a function definition node of the CFA of the C pro-
gram. The memory locations of the array are all empty when a memory block is initialized the
first time representing uninitialized memory. It should be noted that when a memory location
already holds a certain type of memory cell the memory cell can not be overwritten by another
type of memory cell.

Variables are an integral part of the high-level memory model. There are 6 types of variables:
primitive variables, pointer variables , array variables, composite variables (Struct and Union),
function-pointer variables and Enumeration variables.

Each kind of variable has a reference to an address. Furthermore each variable has a name
and additional type information specific to the variable. Each variable belongs to exactly one
scope.

The interpreter holds a linked list of scopes called stack. A scope contains a variable environment
and contains a reference to its parent scope. The local variables of a function are represented
by a scope. The stack contains a reference to the current scope sc. The initial stack holds a
reference to the global scope which stores the global variables. When the interpreter enters a
function a new scope sn is created and sc is set as parent scope of sn. Stack then sets sn as the
new current scope. When the interpreter leaves the function the parent scope of sn, sc is restored
as new current scope.
Addresses are the interface between the high- and low-level memory model. Every variable has
an address which together with the variable type can be used to read the variable value out of
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p AMC

address(m, o)

· · ·

o o+ 1

· · ·

MB: m

p AMC

address(m, o+ 1)

· · ·

o o+ 1

· · ·

MB: m

p=p+1

Figure 3.3: Example of pointer arithmetic

memory block. Addresses play an important role in pointer arithmetic. When pointer arithmetic
is performed an address is taken and a new address is calculated by changing the offset of the
given address. Figure 3.3 displays an example for pointer arithmetic. A pointer p is incremented
by one. The memory block of p holds an AMC which holds an address that points to another
memory block m with offset o. By incrementing p, a new address is created which points to
memory block m with offset o + 1. If o + 1 exceeds the size of m an error occurs. Otherwise
the new address is saved in the AMC of p.

The naive Implementation of the memory model described above can lead to a memory overflow
for a complex program easily: When the interpreter enters a new program state the old instance
of the memory model has to be copied and then modified in order to reflect the current memory
state. This approach is quite inefficient. In order to avoid this problem small modifications to
the memory model have to be made. These modifications are based on the formal data structure
called fat node [7]. The basic idea is to only have one representation of the memory where
views represent the current memory state depending on the program state. This means that only
information that needs to be changed that is modified in the memory model which leads to a
smaller memory consumption. A fat node has the form of a tree where nodes represent compu-
tation steps in a program and branches represent different computation paths in a program. In
the following we call a fat node a version tree. A version history is a path in a version tree from
a node to the root.

The general idea is to store for each field of an object, whose value could change, a version
tree instead of its scalar value(reference or data). The shape of the version tree is the same for
each field. Each node of the tree either stores the value of the field associated with the tree or
contains no value. Furthermore every node points to exactly one predecessor node. Information
of a field can be accessed via views. Every view v has a start node n. For a given object o with
field z the value of z for v the value(z, v) is determined as described in Algorithm 3.1.1. The
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Element Field
stack list scopes
scope list variables
memory blocks array memory cells
AMC address addr
DMC byte data
FMC FunctionDefinitionNode function

Table 3.2: Fields of memory elements that have hash maps

purpose of this Algorithm is to retrieve the most recent value for field z of view v. Thus it begins
to look up the content of the start node node(z, v). If the node contains a value we return it
otherwise we iterate over the version history of the start node until a value can be obtained. If
no node contains a value then we return error. An example for a version tree for the two fields x
and y can be seen in Figure 3.4. We have three views for variables x and y. For instance v3 has
start node 7 and thus we have the version history for v3: 7 → 6 → 5 → 2 → 1. So we start by
looking up the value of node 7 of variable x. Node 7 is empty, we continue with node 6 which
has the value 3. For variable y node 7 is empty so we continue with node 6 which is also empty.
Node 5 holds the value 8. Thus we have that x=3 and y=8. For view v1 we have that x=4 and
y=-1.

Whenever we add a new node to the version tree we have to update for each field its tree which
is inefficient. Thus we modify our approach in the following way: Instead of saving a version
tree for each field we save a map and maintain only one version tree. The nodes of the version
tree do not contain values anymore but serve instead as keys for the maps. The value of a field
f with view v can be retrieved as described in Algorithm 3.1.2. The purpose of Algorithm 3.1.2
is the same as Algorithm 3.1.1. The difference between Algorithm 3.1.2 and Algorithm 3.1.1 is
that instead of looking up the contents of nodes the values of a hash map are retrieved where the
nodes are the keys. An example of a version tree and fields with a map can be seen in Figure 3.5.
For a view v2 we have the following version history: 4→ 2→ 1. We then use the map of field
f to retrieve its value. First we look up the value of key 4 which returns empty. Then we follow
the version history to node 2 and lookup its value in the map which again is empty. Finally
we lookup the value of the key 1 which returns 4. We perform the same procedure with field g.
We lookup the value for key 4 which returns 88. Thus we have that f = 4 and g = 88 in view v2.

We then adapt our memory model with the fat node approach by modifying memory element
fields that change over the course of the computation. Table 3.2 shows for the elements of the
memory model which fields have hash maps. Element fields like for instance the predecessor
scope that do not change during computation do not need to be saved hash maps.
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Algorithm 3.1.1 value(z, v)

Input: a field z and a view v
Output: a value(either data or reference depending on type of the field) or error

1: state := node(z, v);
2: while state 6= null do
3: if state.value 6= null then
4: return state.value
5: state := state.prev;
6: return error

Algorithm 3.1.2 valuen(f, v)

Input: a field f and a view v
Output: a value(either data or reference depending on type of the field) or error

1: state := node(v);
2: while state 6= null do
3: if f.get(state) 6= null then
4: return f.get(state)
5: state := state.prev;
6: return error

3.2 The Transfer Relation

We gave a general overview over the transfer relation in Section 2.2 (CPA). In this section we
will define the interpreter transfer relation as a function. The purpose of the interpreter transfer
relation is to model the C semantics. Therefore we define the transfer function ∆ : E ×G→ E
where for a given abstract State e and program edge g there exits only one resulting state e′.

Helper Functions and Grammars

Before defining the transfer relation we introduce a set of helper functions and grammars: The
function addrs: Var → A returns the address of a variable in abstract state s where addrs is
defined as: addrs = ∪ni=0Scopei where Scopei is part of s. The union of the functions Scopei
is indeed a function addrs because each variable belongs to exactly one stack function and is
thus undefined in the other functions. Furthermore we have that addrs is a total function because
∪mi=0domain(Scopei) = Var.

The function type: Var → T assigns to every variable a type. Note that the set of abstract
states E is no parameter of type because the type of a variable is already determined before
runtime and does not change during runtime. T is the set of types for which we assume that
they have been gathered by a first parse of the program. The function bt: PVar → T is used to
determine for a variable of type pointer its base type where PVar is the set of variables which
are pointers with PVar ⊆ Var. For instance, for the declaration int ***a; the basetype bt(a)
yields int.

The function tc: Var→ classes with
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Figure 3.4: Example for fat nodes for fields x and y

classes = {Prim,PrimPnt,Pnt, Struct,Union,Enum,FPnt, array} assign each variable to a cer-
tain class of type. Variables which belong to the class Prim are variables whose type is primitive
(SHORT,INT,LONG) and the variables contain primitive or empty data. Primitive variables
which are used to for pointer offset calculations (thus containing an address or empty data) are
belonging to the class PrimPnt. A variable that belongs to the class PrimPnt can not belong to
the class Prim in subsequent interpreter elements. The class Pnt stands for pointer while the
class FPnt stands for function pointers.

In the following we denote with Am the memory block and Ao the offset of an address A.
Then dV: Var x E → N ∪ {Error} is a function which is used to retrieve the numeric value for
an interpreter element and a variable which belongs to typeclass Prim. More specifically dV is
defined in the following way:

dV(v, s) =

nr nr =
N∑
n=0

nri ∗ 28∗i, nri = MD(addrs(v)m)(addrs(v)o + i), tc(v) = Prim

Error otherwise

with N = size(type(v)) − 1. dV is only defined for variables belonging to the type class Prim
because addresses can not be decoded into numerical form (in this model). The function dAddr
is used to extract the numeric value for an interpreter element, a basetype and an address and is
defined in a similar way.
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Figure 3.5: Example for fat nodes for fields f and g

rexpr ::= id | N | urexpr | brexpr
urexpr ::= SOP rexpr
brexpr ::= rexpr1 BOP rexpr2

SOP ::= + | - | * | & | ! | inv | (cast)
BOP ::= + | - | / | * | & | ’|’ | && | ’||’
lexpr ::= id | ∗lexpr | (cast)lexpr

Table 3.3: Grammars for right hand side (rexpr) and left hand side (lexpr) expressions

Assignments are of the form lexpr = rexpr. The grammars for lexpr and rexpr are given in
Table 3.3. id is a string and cast are all cast expressions which occur in a program.

For the evaluation of right hand expressions, we define the function evalr: rexpr → {Error} ∪
Z ∪ Var ∪ F ∪ P where P is a set of tuples P = {(Address,Type,Level)|Address ∈ A,Type ∈
T,Level ∈ N}. Tuples of P serve as intermediate results in the definition of the evaluation func-
tions. It must be noted that depending on the evaluation function (evalr or evall) the semantic of
the tuples is different. evalr uses Address as data while evall uses Address as memory location
in which to write data. A level greater 0 indicates that the memory at the Address location holds
an address while otherwise it holds data. Depending on the Level, Type can be either seen as
data type(Level = 0) or base type for a pointer(Level ≥ 0).
To simplify the notation we introduce for an element p ∈ P the following abbreviations: pa for
its address, pt for its basetype, and pl for its level.
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Figure 3.6: Conceptual view of the memory model

evalr is defined recursively. We define the following notations:
Let e = evalr(rexpr, s), Scopen be the topmost stack and Scope0 the global stack of the abstract
Element s. Let e1 = evalr(r1, s) and e2 = evalr(r2, s) and for an address A and number n we
introduce the following abbreviation: A op n = (Am, Ao op n) where Am is the MID and Ao
is the offset of the address A and op ∈ {+,−}. The address with empty reference (being a
null pointer) is called A⊥. A tuple of the form (A, T, L)∗ (where A is an address, T is as type,
and L is a number) denotes that the implementation uses a temporary variable to represent the
tuple. Definitions of evalr for unary and base-case rexpr are given in Table 3.4 while definitions
of evalr for binary and cast rexpr are given in Table 3.6.

For the left hand side expressions lexpr there exists an evaluation function evall: lexpr →
{Error} ∪ Var ∪ P where evall is defined recursively with x = evall(lexpr, s). The Defini-
tions can be found in Table 3.5

The Transfer Function

We give a definition of the transfer function for the following types of CFA edges which can be
found in Section 2.1: definition, assignment, skip , assume,function call, function exit, function
return,function pointer call and function pointer exit.
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rexpr evalr(rexpr, s)

nr nr nr ∈ Z
id v v ∈ var, name(v) = id,

where v ∈ Scopen(Var) ∪ Scope0(Var)
f f ∈ F, name(f) = id
Error otherwise

−rexpr −e e ∈ Z
Error otherwise

&rexpr (addrs(e), typ(e), 1) e ∈ Var, tc(e) ∈ {Prim, Struct,Enum}
(addrs(e), typ(e), n+ 1) e ∈ Var, tc(e) = Pnt, l(e) = n
e e ∈ F
Error otherwise

!rexpr 1 e ∈ Z, e = 0
0 e ∈ Z, e 6= 0
1 tc(e) = Prim, dV(e) 6= 0
0 tc(e) = Prim, dV(e) = 0
Error otherwise

∗rexpr (MD(MD(addrs(e))), bt(e), l(e)− 1) MD(MD(addrs(e))) ∈ A, tc(e) = Pnt, l(e) > 1
MD(MD(addrs(e))) tc(e) = Pnt,MD(MD(addrs(e))) ∈ F
dAddr(MD(addrs(e)), bt(e), s) tc(e) = Pnt, l(e) = 1, tc(bt(e)) = Prim∨

∨tc(bt(e)) = Enum
MD(MD(addrs(e))) tc(e) = FPnt, l(e) = 1
(MD(MD(addrs(e))), bt(e), l(e)− 1) tc(e) = FPnt, l(e) > 1
Error otherwise

: rexpr inv(e) e ∈ N
inv(dV(e)) e ∈ Var, tc(e) = Prim
Error otherwise

e = evalr(rexpr, s)

Table 3.4: Definition of evaluation function evalr for base-case and unary rexpr.

Assignment

Let s = (Stacks,M) and assignment be of the form lexpr = rexpr. Then

∆(s, lexpr = rexpr) = s′

where s′ is an abstract state of the form s′ = (Stacks,M ′). s′ = Error if r = evalr(rexpr, s)
or l = evall(lexpr, s) evaluates to Error . M ′ = (MS ,MD′) is derived from M and reflects
the changes in memory by assigning a value represented by rexpr to the memory location repre-
sented by lexpr. Before giving a formal definition of MD′ we introduce three helper functions:
encnum, getaddr and data. The function encnum(n, t): N × N → N is used to determine the
numeric value from the t-th byte from number n and has the formal definition:

encnum(n, p) =
n

28∗p mod 28
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lexpr evall(lexpr, s)

id v if v ∈ Var
Error otherwise

*lexpr (MD(addrs(x)), bt(x), l(x)− 1) if x ∈ Var, tc(x) = Pnt, l(x) > 0
(MD(xa), xt, xl) if x ∈ P, xl > 0
Error otherwise

evall((c)lexpr, s) (addrs(x), type(c), l(c)) tc(c) = Pnt, x ∈ Var
Error otherwise

Table 3.5: Evaluation of lexpr.

The function getaddr: Var× P→ A is used to retrieve the address of a variable or a tuple of the
form (a, t, l) ∈ P and is defined in the following way:

getaddr(z, s) =

{
addrs(z) z ∈ Var
za z ∈ P

The function data: (image(evalr) − {Error}) × E × N → Data is used to determine the new
value for the cells of the memory block determined by lexpr with:

data(r, s, p) =


encnum(r, p) r ∈ N
MD(getaddr(r, s)m)(getaddr(r, s)o + p) r ∈ Var ∨ r ∈ P
r r ∈ F

Furthermore we introduce the following abbreviations: (am, ao) = getaddr(l, s) and (dm, do) =
getaddr(r, s). We can then give the following formal definition of MD′ :

MD′(am)(ao + p) =

{
data(r, s, p) 0 ≤ p ≤ size(type(evall(lexpr)))
MD(am, ao + p) otherwise

Definition

Let the abstract element be of the form s = (S,M). Definition is of the form ’type id’ where
type ∈ T. Furthermore let Sn be the last scope of the stack S. Then we define the transfer
function ∆ for definition:

∆(s, type id) =

{
(S′,M ′) evalr(id, s) 6∈ Var or Sn(evalr(id, s)) = undef
Error otherwise

which means that there is a new abstract element (S′,M ′) if there is not defined a variable in
scope Sn. Then the abstract element (S′,M ′) represent the allocation of a new variable which
belongs to the current scope with a new memory block. We do this by updating Var by adding a
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new variable for id. Then S′ is retrieved from S by removing the current scope Sn from the list
S and adding an updated scope S∗n: S′ = S∗n:tail(Sn)

S∗n(v) =

{
Sn(v) name(v) 6= id

(MID, 0) name(v) = id

where MID is a new memory id representing the new memory block for the new variable in Var.
The tuple M ′ = (M∗S ,M

∗
D) represents the new state of the memory and is defined using MS and

MD:

M∗S(m) =

{
size(type) m = MID

MS(m) m 6= MID
M∗D(m) =

{
f m = MID

MD(m) m 6= MID

The new partial function f : N ↪→ Data represents the content of the new empty memory block
MID: f(n) = EMPTY, 0 ≤ n < M∗S(MID)

Assume

Let s = (S,M) and e = evalr(rexpr, s). Assume is either of the type [rexpr] or [¬rexpr].
We define assume depending on the type of statement. We use the helper function dexpr(p):
image(evalr)→ N ∪ {Error} with:

dexpr(e, s) =



e e ∈ N
dV(e) e ∈ Var, tc(e) = Prim
dAddr(e) e ∈ P, tc(et) = Prim, el = 0

1 e ∈ Var, tc(e) = Pnt,MD(addrs(e)) 6= A⊥

0 e ∈ Var, tc(e) = Pnt,MD(addrs(e)) = A⊥

Error otherwise

Then we have for [rexpr] and [¬rexpr]:

∆(s, [rexpr]) =


s dexpr(e, s) 6= 0

⊥ dexpr(e, s) = 0

Error otherwise

∆(s, [¬rexpr]) =


s dexpr(e, s) = 0

⊥ dexpr(e, s) 6= 0

Error otherwise

27



Function Call and Function Return

Before defining the semantics of the transfer function for function call we introduce the abbre-
viation ∆m

i=0(s, commandi) which is defined recursively:

∆m
i=0(s, commandi) = ∆(∆m−1

i=0 (s, commandi), commandm)

∆0
i=0(s, commandi) = ∆(s, command0)

So ∆m
i=0(s, ci) models for a set of CFA-edges c0, · · · , ci the continuous application of the inter-

preter transfer function to an abstract element s: s c0⇒ s1 · · ·
cn⇒ sn where si

ci⇒ si+1 stands for
∆(si, ci) = si+1.

Let function call be of the form id = fname(arglist) where arglist is a list of right expressions
representing the values of the parameter. Furthermore we have a list deflist which holds the
definition statements of the parameters of the function. s is of the form s = (S,M). Then

∆(s, id = fname(arglist)) = s∗

where s∗ = (S∗,M∗) is constructed as follows: First, we add a new scope for our function
environment: S′ = Sn+1:S. Then we apply the transfer function to (S′,M) for the definition
statements in deflist:

∆m
i=0((S′,M), deflisti) = (S′′,M ′)

which lead to a new set of variables v0, ..., vn. We then have to assign to these new variables the
values in arglist. We do this by applying a modified transfer function Γ to (S′′,M ′) with the a
list of commands: id(deflist0) = arglist0, ..., id(deflistn) = arglistn

Γmi=0((S′′,M ′), id(deflisti) = arglisti) = (S∗,M∗)

where the function Γ is the same as ∆ with the difference that evalr(arglisti, (S′′,M ′)) is re-
placed with evalr(arglisti, (S,M)) for assignments. Γ uses evalr(arglisti, (S,M)) to access the
values for arglisti which either belong to the global scope or top(S).

For function return we introduce the function retvar: S ↪→ ID which returns for a given stack
a left hand side expression. The value of the return expression is then assigned to the address
represented by this left hand side expression. If there is no left hand side expression for the given
stack (e.g. a function call of the form func(); in contrast to x=func()) then no operation is
performed.

Thus we have for a given return statement of the form ’return rexpr’ the following definitions:
Let s be of the form (S,M) where Sn is the topmost Stack of S. Then ∆(s, return rexpr) = s′

where s′ = α(s, id = rexpr) if id = retvar(Sn) is not undefined. The function α is the same
as ∆ with the difference that evall(id, s) for an assignment is being replaced with evall(id, s∗)
with S∗ = S− {Sn}. If id = retvar(Sn) is undefined then ∆(s, return rexpr) = s.
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Function Exit

For a CFA Edge of the form function exit we have the following definition: Left s be of the
form (S,M). Then ∆(s, fexit) = s′ where S′ = tail(S). A function can have several fexit Edges
(where each fexit Edge represents a different function call). Therefore we must make sure that
the correct fexit Edge is selected. We do this by adding the interpreter CPA and a callstack CPA
to a composite CPA as described in Section 2.2.

Function Call via Function Pointer

We have a CFA-Edge of the form (id = (∗rexpr)(arglist), fnode). id = (∗rexpr)(arglist) is
a C statement denoting a function call via a function pointer. fnode is a function definition
node. Furthermore let s be an abstract state. Then there is an abstract successor state in E −
{Error,⊥,>} if the value of the function pointer coincides with the function definition node of
specified by the CFA-Edge. Otherwise the abstract successor state is ⊥. So the transfer function
for a function call via a function pointer is described in the following way:

expr ∆(s, expr)

(id = (∗rexpr)(arglist), fnode)) ∆(s, id = name(fnode)(arglist)) evalr(rexpr, s) ∈ F,
name(fnode) = name(evalr(rexpr, s))

⊥ evalr(rexpr, s) ∈ F,
name(fnode) 6= name(evalr(rexpr, s))

Error otherwise

Function Exit via Function Pointer

For this type of CFA edge we introduce a new helper function retnod: Stacks → L. retnod
contains for each Stack s the return location. Let the CFA edge be of the form (fexit, exitnode)
and s be an abstract state of the form (Stacks,M) where Sn is the current Stack. Then there is an
abstract successor state in E − {Error,⊥,>} if retnod(Sn) = exitnode. Otherwise the abstract
successor state is ⊥. We have then the following definition of the transfer function for this type
of CFA edge:

∆(s, (fexit, exitnode)) =


∆(s, fexit) exitnode = retnod(Sn)

⊥ exitnode 6= retnod(Sn)

Error otherwise

3.3 Definition of merge, stop, prec

The definition of merge is motivated by the fact that the interpreter analysis never combines two
abstract states and the constraint that for e2 v merge(e1, e2, π): merge(e1, e2, π) = e2 where
e1; e2 ∈ E, π ∈ Π
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An abstract state is never subsumed by a set of other abstract states. In a simple while(true){}
loop the CPA algorithm would never terminate. stop(e1, R, π) = false; e1 ∈ E,R ⊆ {(e, p′)|e ∈
E, p′ ∈ Π}, π ∈ Π

We have only one precision in Π we thus give the following definition which respects the CPA
algorithm and the interpreter semantics: prec(e, π,R) = (e, π); e ∈ E, π ∈ Π, R ⊆ {(e, p′)|e ∈
E, p′ ∈ Π}

3.4 Implementation Details

Next we discuss some of the implementation details of the interpreter CPA. Additionally we give
an overview over different approaches which are similar to our interpreter CPA approach.

Table 3.7 shows the sizes of the primitive data types as used by the interpreter CPA. The data
type void can only be used as a base type for a pointer. Currently the interpreter CPA supports
no operations containing floating point variables like float or double. The type for complex data
structures which we call in the following dynamic type must be gathered at runtime contrary
to our previous simplifications. This dynamic type is divided into three classes of types by the
interpreter CPA: enum-, typedef-, and compositetypes (struct and union). Each dynamic type
declaration contains a name which identifies the dynamic type. We have for each of the three
dynamic type classes an object (called library) which holds a hash map which saves the type
information for the corresponding type class. Each entry of the hash maps contains as Key the
name of the dynamic type and as value the dynamic type information. The information in these
libraries is used by the interpreter to create complex variables with the type information speci-
fied in the libraries.

The first variable defined is __BLAST_NONDET which can be used to initialize variables to
predefined values at runtime without changing the code. When creating the interpreter CPA an
array of values of type integer can be parsed to the initial interpreter element. The constructor
of interpreter element then creates a new object of type NonDetProvider which holds the array a
and an index i. Whenever the variable __BLAST_NONDET is assigned to a variable v the value
a[i] is assigned v and i is incremented by one. The index variable is not of type integer but a fat-
node type (i.e. of type Hashmap<InterpreterElement,Type>). __BLAST_NONDET can only be
used in assignments and must not be used in other program constructs like if or while because
this can lead to undefined program behaviour. Consider the code in Figure 3.7 and assume the
next two values which are returned by __BLAST_NONDET are 4 and 3. First we have for

∆(s, [__BLAST_NONDET == 3]) = ⊥

because __BLAST_NONDET returns first 4 and 4 == 3 is false. Then we have for

∆(s, [¬(__BLAST_NONDET == 3)]) = ⊥
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because __BLAST_NONDET returns 3 and ¬(3 == 3) is false which means that the interpreter
CPA will stop the execution of this branch which is undefined behaviour.

At the beginning of the execution the interpreter CPA creates a scope named global where the
variable __BLAST_NONDET is defined. After this a scope named main is created. After this
the dynamic types and global definitions are parsed by the interpreter CPA. This then means that
global definitions do not belong to the scope global but to the scope main. The interpreter CPA
can furthermore not deal with global definitions which contain an assignment like for instance
int x=3;. CIL can not simplify these statements to definition and assignment statements
because the are not defined within a function and assignments are not allowed outside of a
function.

if(__BLAST_NONDET == 3){
...

} else{
...

}

Figure 3.7: Code example which leads to undefined behaviour when using
__BLAST_NONDET
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rexpr evalr(rexpr, s)

r1 nop r2 e1 nop e2 e1 ∈ N, e2 ∈ N
dV(e1) nop dV(e2) e1e2 ∈ Var, tc(e1) = tc(e2) = Prim
dV(e1) nop e2 e1 ∈ Var, tc(e1) = Prim, e2 ∈ N
((addrs(e1) nop e2), bt(e1), l(e1)) e1 ∈ Var, tc(e1) = Pnt, e2 ∈ N, nop ∈ {+,−}
((addrs(e1) nop dV(e2)), bt(e1), l(e1)) e1e2 ∈ Var, tc(e1) = Pnt, tc(e2) = Prim,

nop ∈ {+,−}
(ea1 nop dV(e2)), et1, e

l
1) e1 ∈ P, e2 ∈ Var, tc(e2) = Prim,

nop ∈ {+,−}
Error otherwise

r1 < r2 1 e1 < e2, e1e2 ∈ N
0 e1 ≥ e2, e1e2 ∈ N
1 e1 < dV(e2), e1 ∈ N, e2 ∈ Var, tc(e2) = Prim
0 e1 ≥ dV(e2), e1 ∈ N, e2 ∈ Var, tc(e2) = Prim
1 dV(e1) < dV(e2), e1e2 ∈ Var, tc(e1) = tc(e2) = Prim
0 dV(e1) ≥ dV(e2), e1e2 ∈ Var, tc(e1) = tc(e2) = Prim
Error otherwise

r1 ≥ r2 1− evalr(r2 < r1, s)
r1 ≤ r2 evalr(r1 < (r2 + 1), s)
r1 > r2 evalr((r1 − 1) ≥ r2, s)
r1 = r2 evalr(r1 ≤ r2, s) ∧ evalr(r1 ≥ r2, s)
r1 || r2 0 ((e1 = 0, e1 ∈ N) ∨ (dV(e1) = 0, e1 ∈ Var, tc(e1) = Prim)∨

(MD(addrs(e1)) = A⊥, tc(e1) ∈ {Pnt,PrimPnt}, e1 ∈ Var))∧
((e2 = 0, e2 ∈ N) ∨ (dV(e2) = 0, e2 ∈ Var, tc(e2) = Prim)∨
(MD(addrs(e2)) = A⊥, tc(e2) ∈ {Pnt,PrimPnt}, e2 ∈ Var))

1 ((e1 6= 0, e1 ∈ N) ∨ (dV(e1) 6= 0, e1 ∈ Var, tc(e1) = Prim)∨
(MD(addrs(e1)) 6= A⊥, tc(e1) ∈ {Pnt,PrimPnt}, e1 ∈ Var))∨
((e2 6= 0, e2 ∈ N) ∨ (dV(e2) 6= 0, e2 ∈ Var, tc(e2) = Prim)∨
(MD(addrs(e2)) 6= A⊥, tc(e2) ∈ {Pnt,PrimPnt}, e2 ∈ Var))

Error otherwise
r1 && r2 evalr(: (: r1 || : r2), s)
r1 | r2 or(e1, e2) e1e2 ∈ N

or(e1, dV(e2)) e1 ∈ nat, e2 ∈ Var, dV(e1) = Prim
or(dV(e2), dV(e2)) e1e2 ∈ Var, dV(e1) = dV(e2) = Prim
Error otherwise

r1 & r2 evalr(!(!r1 | !r2), s)
(c)rexpr tc(c) = Prim :

e e ∈ N
dV(e) e ∈ Var, tc(e) = Prim
e e ∈ Var, tc(e) = Pnt
(addrs(e), type(c), 0)∗ e ∈ Var, tc(e) ∈ {array,FPnt}

tc(c) = Pnt :
(ea, bt(c), l(c)) e ∈ P
e e ∈ N, e = 0
dV(e) e ∈ Var, tc(e) = Prim, dV(e) = 0
(MD(addrs(e)), bt(c), l(c))∗ e ∈ var, tc(e) ∈ {PrimPnt,Pnt}
Error otherwise

Table 3.6: Evaluation of binary and cast rexpr.
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Type Size
void 1
char 1
short 2
int 4
float 4
double 8

Table 3.7: Overview of type sizes for primitive data types
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CHAPTER 4
Related Work

A memory model similar to ours can be seen in [11] which is used during the analysis of bina-
ries. The abstract domain is called Bounded Address Tracking(BAT). It can be used to describe
abstract memory states while our own memory model can only describe concrete memory states.
Binaries do not contain type information thus BAT does not contain type information contrary
to our memory model. The memory model contains a configurable bound which determines
when information should be abstracted hence the name BAT. Furthermore the memory model
is path sensitive which means that there are no merge operations in the analysis when two dif-
ferent paths are joined. This preserve information about the stack. Addresses in our memory
model consist of a MemoryBlock and a Offset. Addresses in BAT are structured in a similar
way namely MemoryRegion and a Offset. Because there are no variable information available
during binary analysis there are two global address spaces in the BAT namely global and stack.
In global the static information is saved while stack handles procedure calls by saving the return
information on the stack. Additionally address spaces are created in order to deal with dynamic
allocation of memory, i. e. malloc operations. Our memory model contains variable information
and for each variable we save an address which contains the address space (i.e. a memory block
which size depends on the type of the variable) for the variable.

Another CPA E for explicit analysis of variable values can be seen in [1]. E does not contain a
memory model. Instead the abstract domain consists of a flat lattice where each element e is a
function which assigns to the variables V a value e: V → Z∪ {⊥Z ,>Z}. >Z indicates that the
value of a variable is not known while ⊥Z is used to indicate that no value can be assigned to a
variable. > is the top element of the lattice and indicates that no variable value is known, i.e for
each variable v,>(v) = >Z . ⊥ is defined in a similar way and indicates that no value can be as-
signed to the variables V . E can only analyze C programs which contain integer variable and no
complex data structures or pointer operations while our interpreter CPA is capable of analyzing
C programs with complex data structures and operations. E contains a set of precision Π which
contains functions π which assigns to each variable V a bound (N ∪ {∞}) which is used to
determine how many values for a variable should be tracked during analysis. When for instance
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a command v := exp occurs and v has been assigned more than π(v) values over the course
of the analysis than for the new state e′ the value of e′(v) = >Z . This means for the explicit
analysis that certain informations about variables can be abstracted. This feature is currently not
supported in our interpreter CPA where every information about the memory is tracked.

A program analysis which is suitable for programs with data structures like lists or trees can be
seen in [4]. The analysis uses shape graphs and three valued logic to abstract data structures. A
shape graph contains a set of vertices V . Each node v ∈ V represents either a memory cell or a
set of memory cells of a data structure. A shape class S contains a set of predicates over V . Each
shape class represents a data structure class like double linked lists or trees and the set of shape
classes S forms a lattice where elements closer to the bottom represent more complex data struc-
tures classes. A shape class S and a set of shape graphs G form a shape region (S, G). A shape
region contains an assignment a for each n-ary predicate pn in S with apn : V n → {0, 1, 1/2}.
Shape regions represent abstract states of the program memory. In order to refine the infor-
mation about shape regions during program analysis an explicit heap analysis is used in [4] to
gather additional information about the heap. This heap information is then used to refine the
shape class and consequently the corresponding shape graphs of the shape regions via a shape
class generator. Shape graphs could be suitable for our interpreter CPA to allow data structure
abstractions and should thus be considered in future work.

A different approach for program analysis is presented in [12]. The tool Pin instruments pro-
grams and processes by injecting additional code. This can either be done when starting a new
program or during runtime by attaching Pin to the process of the program. It is also possible
to detach Pin from a process and continue execution of the process without instrumented code.
With Pin it is possible to gather information about program states and execution paths or modify
the behaviour of the process/program. Pin can be used to extract variable constraints for static
program analysis. It is possible to track the memory or certain memory locations of a process
with pin. Pin is operating on a binary level and thus no type information is available to pin when
instrumenting a program or process. This means that it is not possible to map certain memory
locations to variables without additional informations. Our interpreter CPA does not have these
problems as it operates on source code level. Our interpreter CPA is thus better suited for the
needs of the coverage analysis of CPA/Tiger.
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CHAPTER 5
Experiments

In this Chapter we conduct a number of experiments to assess the performance of the new in-
terpreter CPA. In Section 5.1 we compare the performance of our new interpreter CPA with the
existing interpreter CPA. In Section 5.2 we test the performance of the interpreter CPA on pro-
grams with complex data structures. Programs analyzed by the interpreter CPA are preprocessed
with CIL [13]. All experiments are performed on a computer with a Intel(R) Core(TM) i3-2100
processor which has 2 cores and uses 4 threads which run at 3.10 GHz. The memory size of the
computer is 4GB.

5.1 Experiments for Integer Programs

For a set of integer programs we compare the time performance of the two interpreter CPAs.
More exactly we measure for a given integer program the time for each interpreter CPA. For
each integer program we measure the time needed for a fixed test case by the interpreters 1000
times. Each time we execute the interpreter twice and measure the second run. We do this to
mitigate the effects of class loading in JUnit in order to get more accurate results. With this
method is also the consecutive execution of the interpreter CPA is also taken into consideration.
We then obtain for each integer program the average, the sample variance [10], and for each
interpreter the maximum and minimum time needed in 1000 runs. We calculate the average and
sample variance in the following way:

avg =
1

1000

1000∑
i=1

di

and

var =
1

999

1000∑
i=1

(di − avg)2

where di is the time needed by an interpreter for an integer program.
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new interpreter [t in ms] old interpreter [t in ms]
name avg var max min avg var max min
kbfiltr_simpl1 21.366 64.214 67 13 19.347 40.755 50 11
kbfiltr_simpl2 20.662 98.927 153 8 15.179 62.211 64 8
floppy_simpl3 18.833 73.981 63 9 14.878 74.596 60 6
floppy_simpl4 13.749 47.467 60 6 11.641 39.377 52 5
cdaudio_simpl1 10.876 98.189 89 5 7.676 56.57 93 4
diskperf_simpl1 8.594 20.856 73 4 5.658 18.091 99 3
s3_clnt_1 23.877 23.187 54 16 20.298 33.903 59 12
s3_clnt_2 16.797 5.011 36 11 14.4 13.89 46 9
s3_clnt_3 16.594 4.608 33 10 11.764 6.335 29 7
s3_clnt_4 14.404 11.719 72 7 10.723 7.225 35 6
s3_srvr_1 67.617 175.434 121 31 63.499 127.165 125 25
s3_srvr_2 25.491 83.353 91 8 18.88 55.421 58 6
s3_srvr_3 14.881 20.051 35 7 10.006 6.951 30 6
s3_srvr_4 11.657 10.348 31 7 8.505 6.508 25 5
s3_srvr_6 12.368 14.497 41 6 9.599 9.398 27 5
s3_srvr_7 13.471 18.145 39 7 9.942 10.641 28 5
s3_srvr_8 11.679 14.701 33 6 10.184 11.131 39 6

Table 5.1: Comparison of the two interpreters for integer programs

The results of our experiments can then be seen in Table 5.1. We can observe that for the majority
of the programs there is no significant1 difference between the avg times of the two interpreters.
In our test cases the new interpreter CPA is from 6% to 51% slower than the old interpreter CPA.
There are integer programs (instance diskperf_simpl1) where the new interpreter CPA avg time
is significantly worse than the old interpreter CPA.

5.2 Experiments for Complex Programs

We perform a series of experiments to investigate the performance of our new interpreter CPA
when run on programs which contain complex data structures. In Table 5.2 we show the results
of experiments which measured the time consumption in the same way as the experiment for
integer programs. Again we measure the average time, the sample variance, the maximum, and
minimal time consumption of our complex programs. We perform these measurements on an
optimized version of the interpreter CPA and on an unoptimized version of the interpreter CPA.
We do this to compare the time performance of the two versions. The optimized version mini-
mizes the number of iterations over the version tree when the method getScope is called several
times in PersMemory over the course of a transfer relation call (i.e. the interpreter element re-
mains the same). We do this by saving a reference to the current scope in a variable and use this
reference as long as the interpreter element does not change and no function is called or exited.

1i.e difference below 50% from the old interpreter time value
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We can see that this optimization leads to a better time performance (the unoptimized version is
between 2.6% and 9.5% slower than the optimized version of the interpreter CPA). We also add
how often our transfer relation is called (i.e Transfer Relation Count - TRC) and the number of
lines for each program (i.e. Lines of Code - LoC). The transfer relation count also measures the
number of CFA edges that are traversed by the interpreter CPA. We can observe that diskperf
which is 9828 lines of code long has the highest average time with 347.605ms and calls the trans-
fer relation function 1894 times. The ratio of avg time to transfer relation count is thus 0.183ms
per transfer-relation-call. The program kbfiltr has a similar time performance with 316.74ms but
a much better ratio of 0.085ms per transfer relation call. The program s3_clnt_blast.01 has a
much better time performance with 41.585ms and a better ratio with 0.007ms per transfer rela-
tion call. Finally the program drecusive which contains recursive function calls has the smallest
time consumption with 5.135ms and a ratio with 0.05ms per transfer relation call.

In the next experiment we analyze the access behaviour of our fat node data structures. For this
we define the access depth which is for a field the number of nodes of the version tree which
need to be traversed - from the node representing the current state of the interpreter - to retrieve
the current value of the field. With this we can create for all relevant fields of the objects of
the memory model diagrams where then x-coordinate is the access depth for the field and the
y-coordinate the number of accesses of the field. So we get the number of accesses with access
depth for a given field.

Figures 5.1, 5.3, 5.4, 5.5, 5.6, are the diagrams for the complex program diskperf. We can see
that the Figure 5.1 has the highest access depth and a uniform distribution of accesses of number
1 along the access depth axes. The cause for the high access depth is that during the initialization
of the gobal variables only the global scope is accessed. The version history contains only one
node with a reference to the scope, which was created when the scope itself was created. This
means that each time the version tree grows by one node, i. e. which each statement during the
initialization phase, the access depth grows by one. One method to mitigate this effect would
be to make a new reference to the scope in a the current node of the version tree if the access
depth succeeds a certain height. Another effect that can be seen in Figure 5.1 is a gap in the
access depth between roughly 370 and 420. This gap is the effect of forward and extern function
declarations. Whenever such a declaration occurs during the global initialization phase, there is
no memory access but the version tree adds a new node.

When we compare Figure 5.1 which represents PersMemory for the optimized interpreter CPA
with Figure 5.2 which is PersMemory for the unoptimized interpreter CPA we can see that the
quantity for the data points in the unoptimized version is generally higher than in the optimized
version of the interpreter CPA. For the Object Scope with Figure 5.3 we can see that the access
depth is generally lower that for the object PersMemory with exception of one access which has
an access depth around 370. In scope our interpreter CPA is accessing variables fields. Because
variables are only created at the start of a new function the access depth for the variable grows
with the length of the function. Also function calls have to be taken into consideration. This
effect would explain the isolated data point in the Scope diagram. A variable is allocated at the
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optimized [t in ms] unoptimized [t in ms]
name avg var max min avg var max min TRC LoC
diskperf 347.6 12074.3 756 75 368.12 12672.7 806 88 1894 9828
kbfiltr 316.74 12529.2 688 41 346.9 12771.3 679 48 3700 6434
s3_clnt.blast.01 41.5 30.797 66 33 42.8 48.1 85 34 5350 3535
drecursive 5.135 2.8 14 3 5.27 2.57 14 4 87 58

Table 5.2: Time evaluation of new interpreter CPA for complex programs
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Figure 5.1: Diagram of objects PersMemory when calling method getcurrentscope

beginning of a function and then accessed after approximately 370 state transitions of our CFA.
We can see that there are more accesses with low access depth than in PersMemory. The situ-
ations of the MemoryBlock, AddressMemoryCell, DataMemoryCell, and FunctionMemoryCell
Objects is similar. All have low2 access depths. We only have one data point for the Func-
tionMemoryCell Objects with access depth 1 and quantity 90. The general rule is the longer a
certain element of a field has not been accessed since creation the longer the elements access
depth will be when being accessed.

2i.e access depth below 100
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Figure 5.2: Diagram of objects PersMemory when calling method getcurrentscope (unopti-
mized)
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Figure 5.3: Diagram of objects Scope when calling method getVariable
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Figure 5.4: Diagram of objects MemoryBlock when calling method getMemoryBlock
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Figure 5.5: Diagram of objects AddressMemoryCell when calling method getAddress
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Figure 5.6: Diagram of objects DataMemoryCell when calling method getData
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CHAPTER 6
Conclusion and Future Work

We implemented an interpreter CPA which contains a bit precise memory model. This enables
CPAchecker to analyze test suites for programs with complex data structures. Our design of
the memory model enables pointer arithmetic and prohibits out-of-memory pointer calculations.
Our interpreter CPA can analyze programs which contain complex program constructs like re-
cursions and function pointers. A future goal is to integrate the interpreter CPA into CPA/Tiger.
In Chapter 3 we gave an overview over the memory model and the formal definition of our in-
terpreter CPA. The interpreter CPA was not capable to analyze programs of reasonable1 length
due to the memory consumption of the initial memory model. Thus we adapted the Fat Node [7]
data structure to minimize the memory consumption of our memory model. We conducted a
series of experiments to evaluate the runtime of our new interpreter CPA. In our tests the new
interpreter CPA is between 6% and 51% slower than the old interpreter CPA which is only able
to analyze integer programs.

We introduced the notion of the access depth which is the number of iterations over a version
history (which is a path in the version tree, i.e. fat node) to retrieve the value of a field. The Ex-
periments indicate that certain objects like for instance PersMemory have a higher access depth
than others. In order to minimize the access depth we suggest the following approach: Whenever
we obtain the value of a field we measure the access depth. If the access depth exceeds a certain
value we save a new reference for the value in the current node of the version history. Figure
6.1 illustrates the new approach where we add a new reference if the access depth is larger or
equal to 3 when retrieving a field value. For field x we have for view v the access depth of 4
because it takes 4 iterations to retrieve the value for x = 33 at the root of the version tree. In the
next step of our interpreter CPA the field x is again accessed. Without optimization we will then
need 5 iterations for view v′ to retrieve the value for x leading to an access depth of 5. With our
suggested approach we only need 1 iteration to retrieve the value for x for view v′. With this

1i.e. more than 1000 lines of code
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approach we can minimize for the accesses to the field scope their access depths in PersMemory.

Predicate analysis with adjustable block encoding(ABE) has been introduced in [6]. In predicate
analysis with ABE refinements are not computed after every operation but rather after blocks of
program statements where the the length of the block is adjustable (hence the name ABE). This
improvements results in a better program analysis performance. The idea of performing cer-
tain operations after blocks of program statements can be also applied to the memory model
of our interpreter CPA. Currently the interpreter CPA adds a new version node to the fat node
after a program statement is interpreted by the interpreter CPA. We alter this approach so that
a new version node is created only after a block of program statements has been interpreted by
the interpreter CPA. The size of the block can either be configured in the interpreter CPA or
determined by other CPAs if the interpreter CPA is used in a Composite CPA. Communication
between the CPAs is realized via the strengthening operator. This new approach will decrease
the memory consumption of the interpreter CPA and enables it to be used in conjunction with
other CPAs like predicate abstraction. An example of this new method can be seen in Figure
6.2. For a given program we see a subset of its CFA. Our interpreter CPA is used in a composite
CPA together with a predicate CPA. Nodes are colored gray if a new version node is added to
the version tree otherwise white. We can see that in our initial memory model all nodes of the
CFA are colored gray because after each operation a new version node is created. The updated
memory model on the other hand gets information when to introduce new version nodes from
the predicate CPA via the strengthening operator. So new nodes are only introduced at program
locations 1, 4 and 9 leading to a smaller memory consumption.

When performing predicate analysis with ABE we are interested in the set of reachable program
states S (esp. of an error state). Predicate analysis will return an over-approximation P of the
set S, S ⊆ JP K. Our interpreter analysis yields an under-approximation I (only one program
path is investigated) of the set S, JIK ⊆ S. The standard approach for combing these two
analysis is to use them in a composite CPA. It is also possible to separate the two analysis
and run the CPA algorithm for interpreter CPA and the predicate CPA in isolation. We would
first perform the predicate analysis. When for a state an abstraction should be performed in
the predicate analysis this new state is not added to the waitlist of the CPA algorithm. Thus
our algorithm would return the set of abstract states where an abstraction should occur in the
predicate analysis. Next we perform our interpreter analysis. Where the predicate analysis
reached an abstraction point a new version node is introduced at the same program location.
We would then get a set of concrete states for the program locations where abstractions should
occur in the predicate analysis. In the final step we combine these two informations. This
approach enables us to use the interpreter analysis to configure/control the predicate analysis
and vice versa. It is for instance then possible to use our under-approximation (interpreter CPA)
to compute the abstraction of our over-approximation (predicate CPA). This would have the
effect of a more accurate over-approximation.
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Figure 6.1: Example for new fat node approach that minimizes the access depth
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define: int x

define: int y

assign: x=0

assign: y=3

assign: y=x+4

define: int z

assign: z=x ∗ 2

assign: z++
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define: int x

define: int y

assign: x=0

assign: y=3

assign: y=x+4

define: int z

assign: z=x ∗ 2

assign: z++

Figure 6.2: Example for adjustable-block-memory-model
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