
	  
	  
	  

	  
	  
	  
	  
	  
	  
	  

D	  I	  P	  L	  O	  M	  A	  R	  B	  E	  I	  T	  
	  
	  
	  

Classification	  in	  high-‐dimensional	  feature	  spaces	  
	  
	  
	  

Ausgeführt	  am	  Institut	  für	  
	  

Statistik	  und	  Wahrscheinlichkeitstheorie	  
	  

der	  Technischen	  Universität	  Wien	  
	  
	  

unter	  der	  Anleitung	  von	  Professor	  Peter	  Filzmoser	  
	  

	  
	  

durch	  
	  

Fabian	  Schroeder	  
	  

Rudolfsplatz	  2/32,	  1010	  Wien	  
	  
	  
	  
	  
	  
	  

	  
17.09.2012	  

	   	  
	  

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



1

Abstract

The characteristic property of many data sets in modern scientific fields, such as ge-
nomics, is the high-dimensionality of its feature space. It poses a significant challenge for
statistical methods for classification and has thus been the object of intensive research in the
past decade. This work studies the different approaches, with which standard classification
methods, such as Discriminant Analysis, Support Vector Machines and Logistic Regression,
have been modified to account for high-dimensionality, and compares their performance in
different simulation experiments. Both the prediction as well as the model selection per-
formance are examined under different parameters, including sample size, signal-to-noise
ratios, and different structures of dependence. The results are supposed to guide the applied
researcher in one of the most tricky questions: Choosing the most suitable method for a
given research question and data set.

Zusammenfassung

Die charakteristische Eigenschaft vieler Daten aus modernen Wissenschaften wie z.B.
der Genetik ist die Vielzahl an Variablen. Dies stellt eine große Herausforderung für statis-
tische Verfahren der Klassifikation dar und wurde in den letzten Jahren intensiv unter-
sucht. In dieser Arbeit soll studiert werden, wie die klassischen Methoden der Klassifika-
tion, die Diskriminanzanalyse, die Support Vector Machine und die Logistische Regression,
für die Anwendung auf hochdimensionale Räume modifiziert werden kann. In mehreren
Simulationsexperimenten sollen sowohl die Güte der Prognose als auch der Modellselek-
tion miteinander verglichen werden. Dabei wurden verschiedene Parameter wie Stich-
probengröße oder das Verhältnis von Signal und Noise und verschiedenen Strukturen der
Abhängigkeit variiert. Die Resultate sollen die Wahl der richtigen Methode für eine konkrete
Fragestellung und einen konkreten Datensatz unterstützen.



2

Contents

1 Introduction 3
1.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Discriminant Analysis 7
2.1 Quadratic Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Regularized Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Comparing Different Discrimination Rules . . . . . . . . . . . . . . . . . . . . . 10
2.5 Discriminant Analysis in High-Dimensional Feature Spaces . . . . . . . . . . . 11
2.6 Independence Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Feature Annealed Independence Rule . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Nearest Shrunken Centroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Shrunken Centroids Regularized Linear Discriminant Analysis . . . . . . . . . . 15

3 Support Vector Machines 17
3.1 Geometrical View of SVMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 SVMs as a Solution to a Tikhonov Regularized Optimization Problem . . . . . 19
3.3 Support Vector Machines in High-Dimensional Feature SSpaces . . . . . . . . . 19
3.4 Multi-Class Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Logistic Regression 20
4.1 Comparing Linear Discriminant Analysis and Logistic Regression . . . . . . . . 21
4.2 Logistic Regression in High-Dimensional Feature Spaces . . . . . . . . . . . . . 22

5 Implementations 22

6 Simulation Experiments 23
6.1 Settings A - C: Independent Features . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Settings D - F: Block-Dependent Features . . . . . . . . . . . . . . . . . . . . . 24
6.3 Settings G - I : Randomly Dependent Features . . . . . . . . . . . . . . . . . . 25
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7 Real Data Analysis: The COPD Data 26
7.1 The Two-Class Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 The Three-Class Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.3 The Five-Class Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Conclusion 36

9 Appendix 37
9.1 R Code: Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.2 R Code: FAIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.3 R Code: IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.4 R Code: Wrapper Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.5 R Code: Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



3

1 Introduction

The development of modern sequencing machines and DNA chip technologies have made it
possible to measure the gene expression levels of all known gene products in a matter of days
in a highly parallel manner. This technological breakthrough allows to conduct simple exper-
iments that seek to identify those genes which are responsible for certain phenotype, e.g. a
disease. The usual setup of such an experiment is as follows: The gene expression values of
biological samples are measured in different conditions, e.g. transbronchial biopsies in healthy
and diseased patients, in large numbers and are compared as to identify all those genes that
play an important role in the studied phenomenon. Those genes that show a significant dif-
ference between conditions are said to be differentially expressed, which serves as an indicator
for some function in the observed condition. Once the set of active genes is identified it is
possible to further investigate these mechanism and to gain a deeper understanding about the
phenomenon.

The role of statistics in this undertaking is to develop sound methods which can evaluate
and describe the information of high-throughput technologies and possibly to build models that
can predict certain conditions based solely on gene expression data. The recent technological
advances, however, also come with (statistical) challenges. The most characteristic feature of
gene expression data is its high dimensionality. Usually the number of features (genes) greatly
outnumber the number of observations. In the conducted experiment the number of features
is around 20000 after preprocessing, which already filters out many genes, whereas the number
of observations is around 150. This does not only render many statistical models infeasible but
it also induces spurious correlation with the response. Many features will be highly correlated
with the response by pure chance.

The object of this study is a progressive disease of the lungs called Chronic Obstructive
Pulmonary Disease (COPD). It is associated with heavy smoking or long-term exposure to
other lung irritants such as air pollution, chemical fumes, or dust. COPD is a major cause of
disability, and it is the third leading cause of death in the United States with rising numbers1.
There currently exists no cure for COPD and the diagnosis relies on a complex set of clinical
parameters. The degree of COPD has been categorized by pulmonologists with the Gold clas-
sification ranging from 0 (healthy) to 4 (severe COPD). This categorization is based on a large
number of tests for diagnosis including exercise tests, lung function tests, blood examination,
and computer tomography. The experiments were conducted under the supervision of Professor
Ziesche at the medical university of Vienna between January 2009 and March 2012. The gene
expression values were measured with Affymetrix chips type Human Genome U133 Plus 2.02.

The purpose of this work is to build a classification model for COPD GOLD grades based
on gene expression data. The model should on the one hand have good predictive power, such
that it might be used as a diagnosis tool for future patients, and should on the other hand allow
a biological interpretation. The model building process is influenced by assumptions that are
of genetical origin. Therefore section 1.1 introduces a statistical model for this kind of data,
introducing basic notation and illustrating how these assumptions are modeled. Section 1.2
will inaugurate the general classification problem, providing a general framework for the subse-
quent methods. Several model families, that have been successfully applied to gene-expression
data in the past, were applied to the COPD data set. These model families include Discrim-
inant Analysis, Support Vector Machines, and Logistic Regression, introduced in sections 2, 3
and 4, respectively. First the standard models will be established, and then it will be shown

1http://www.nhlbi.nih.gov/health/health-topics/topics/copd/
2http://media.affymetrix.com/support/technical/datasheets/hgu133arrays datasheet.pdf



4

how these models can be modified in order to account for high-dimensionality. Section 2, for
instance, will illustrate how the ideas of the classical Linear Discriminant Analysis (LDA), the
Quadratic Discriminant Analysis (QDA) and the Regularized Discriminant Analysis (RDA)
can be adapted for high-dimensional feature spaces yielding the Independence Rule (IR), the
Nearest Shrunken Centroids method (NSC) and the Shrunken Centroids Regularized Discrimi-
nant Analysis (SCRDA). The measures include strong assumptions concerning the dependence
structure and feature selection. In section 3 the Support Vector Machine (SVM) is introduced.
Its original form is a two-class classifier, however it can be extended to serve as a multi-class
classifier. Regularization allows the application to high-dimensional feature spaces. This ap-
proach was also used to modify Logistic Regression (LR) in order to obtain sparse models, see
section 4. The SVM and LR share a common framework, see section 3.2. Also LDA and LR
can be compared since they both model posterior probabilities, see section 4.1.

Although all methods take a different approach in accounting for the dimensionality of the
feature space, they can be interpreted as an attempt to reduce the prediction variance in return
for accepting a small bias. Thus, this work concerns one the classic stories in statistics: the
bias-variance tradeoff.

The simulation experiments in section 6 will analyze both the prediction and the model
selection performance of the proposed methods in a myriad of different settings. From the
results it should be possible to learn which methods work under which circumstances. All
methods will then be applied to the COPD data set in section 7. This final conclusion can be
found in section 8.

1.1 The Model

Gene expression values are modeled to consist of a systematic part µ and a random part ε

Xijk = µjk + εijk 1 ≤ i ≤ nk, 1 ≤ j ≤ p, k = 1, . . . ,K, (1)

where Xijk denotes the expression value of the ith sample of the jth feature in class Ck.
The mean effect of the jth feature in class Ck is denoted by µjk and is supposed to capture
the difference in expected expression values between the members of different groups. The
error terms ε1j1, . . . , εn1j1, ε1j2, . . . , εn2j2, . . . , εnkjk are assumed to be i.i.d. with E(εijk) = 0.
Throughout this work i will denote the index of observations, where i can be of any class
Ck = {1, . . . , nk} for k = 1, . . . ,K. The overall number of observations is n =

∑K
k=1 nk. The

index of features will be denoted by j, ranging from 1, . . . , p, and k will denote the index of
classes ranging from 1, . . . ,K. The sample observations are summarized in the matrix

X =



x′1·1
...

x′n1·1
x′1·2

...

...
x′nk·k


∈ Rn×p,

where e.g. x′1·1 is the transposed first observation of class 1. The observed class memberships
are categorical and are summarized in the vector



5

c =

c1
...
cn

 ∈ {1, . . . ,K}n.
Our current understanding of the genome allows to make certain assumptions. The first

widely accepted assumption is that only a small fraction of measured genes play a functional
role in any condition, e.g.the different classes of the disease COPD. In more technical terms:
observations are identically distributed within each class with a distribution function Fk

X1·k, . . . , Xnk·k ∼ Fk (2)

and for most genes the average expression value, which is a component of the expectation of
the random variables, does not differ between classes. Let s denote the number of genes that
are differentially expressed between classes and without loss of generality assume that this is
the case for the first s genes. This assumption can be modeled by

µj1 = · · · = µjK ∀j = s, . . . , p (3)

∃(k, l) : µjk 6= µjl ∀j = 1, . . . , s

where s will be very small compared to p. Thus, the classification model is supposed to be
sparse in the sense that the prediction is only based on a handful of genes. This will also allow
a more thorough biological interpretation. Many of the classification methods, that will be
introduced, therefore involve feature selection.

Another important assumption, that is based on available knowledge about the genome, is
that our genes are ordered in groups, called pathways, which serve a common function in our
body. Therefore the expression values of genes in the same group should be highly correlated
whereas gene expression values of genes in different groups should be independent. Although
it is true that weak connections between groups may exist, independence between groups is
usually a reasonable assumption. Within these pathways genes may influence its function by
activation or inhibition such that the correlation can be positive or negative. The correlation
levels also depend of the relative distance of two genes in the regulatory pathway. The further
apart two genes are, the less correlation will be between them. These assumptions can be
expressed in terms of the dependence structure of the genes. The covariance matrix of the
features of our data set should also be sparse in the sense that most values are (close to) zero
and that it has block structure, where any block is associated to a regulatory pathway, e.g.

Σ =


Σ1 0 · · · 0 0
0 Σ2 0 · · · 0
...

...
. . .

...
...

0 0 · · · Σm−1 0
0 0 · · · 0 Σm

 . (4)

One example for a dependence structure of this kind is used in the simulation study. The
correlation structure is assumed to be the same for every block with alternating signs. Further,
the correlation structure in every block is assumed to be autoregressive, meaning that the
correlation matrix has the following structure:



6

Σ =


Σρ 0 · · · 0 0
0 Σ−ρ 0 · · · 0
...

...
. . .

...
...

0 0 · · · Σρ 0
0 0 · · · 0 Σ−ρ

 , (5)

with blocks of the following structure:

Σρ =


1 ρ · · · ρ98 ρ99

ρ 1 · · · ρ97 ρ98

...
...

. . .
...

...
ρ98 ρ97 · · · 1 ρ
ρ99 ρ98 · · · ρ 1

 . (6)

1.2 Classification

Consider the problem of assigning an object (e.g. a patient) with an unknown class membership
to one of several classes C1, . . . , CK (e.g. COPD classes) based on a set of measurements
X = (X1, . . . , Xp) of that object (e.g. gene expression values). Every object is assumed to
be member of one and one class only. A discrimination or classification rule δ(x) is supposed
to be developed from a training set (ci,xi)i=1,...,n of observations xi ∈ Rp with a known class
membership ci ∈ {1, . . . ,K} and then applied to a test set of observations with the objection of
predicting the unknown class memberships. This approach is referred to as supervised learning.

A (K-class) classifier is a mapping

δ : Ω→ {1, . . . ,K},

where Ω ⊆ Rp is the sample space. Most classifiers are of the form

δ(x) = max
k=1,...,K

δk(x), (7)

where δk is a mapping δk : Ω → R, sometimes referred to as the class discriminant. A linear
classifier is defined by the characteristic that the classification is based on a linear combination
of the characteristics,

δ(x) = max
k=1,...,K

f(wk · x), (8)

where w ∈ Rp is a vector of coefficients defining the linear boundary between any two classes
and f is a real-valued mapping. This approach allows a geometric interpretation. It divides
the sample space Ω into K disjoint regions R1, . . . , RK . Ri can be defined as

Ri := {x ∈ Ω : δ(x) = i}. (9)

Using this notation the classifier (7) can be expressed as

δ(x) = k iff x ∈ Rk.

The boundaries between Ri and Rj are those points in Ω that satisfy

{x ∈ Ω : max
k=1,...,K

δk(x) = δi(x) = δj(x)},



7

which will be linear or non-linear, depending on the discrimination function. In order to obtain
linear boundaries it suffices to demand that some monotone transformation of the decision rule
is linear. Most discrimination methods that will be used in this work will be linear in this
sense.

A classical approach in statistics to derive a classification rule is to minimize the expected
prediction error or expected loss

EPE = E(C,X)[L(C, δ(X))], (10)

where L(C, δ(X)) is a loss function and the expectation is taken with respect to the joint
distribution P (C, X). Since the number of classes is finite the loss function can be represented
by a K ×K matrix L

L(C, δ(X)) = (lij)i=1,...,K
j=1,...,K

if C = i, δ(X) = j. (11)

The diagonal of the matrix L consists of zeros since a correctly classified object should cause
no loss. The remaining elements lij can be interpreted as the disutility of incorrectly classifying
an object of class Ci as a member of class Cj and should therefore be non-negative. This general
form of a loss function allows to weight misclassification asymmetrically e.g. the misclassifi-
cation of ill patient as healthy more severely than the misclassification of a healthy patient as
ill. The simplest loss function is characterized by an equal valuation of every misclassification,
yielding

lij =

{
0 if i = j
1 if i 6= j

}
. (12)

This most natural loss function amounts to simply counting the number of misclassified cases
and is called the Misclassification Error. The theoretical Misclassification Error (MCE) of a
discrimination rule δ can be written as

MCE(δ) =
K∑
k=1

P [δ(X) 6= k, C = k], (13)

where P is the common distribution of (X,C). The Empirical Classification Error or Misclas-
sification Rate based on a sample of n observations is simply the rate of incorrectly classified
samples

mce(δ) =
1

m

n∑
i=1

1{δ(xi) 6= ci}. (14)

Throughout this work preferably the rate of correctly classified observations

rcc(δ) = 1−mce(δ)

will be used. Needless to say, that this statistic can be used to compare the prediction power
of different classifiers.

2 Discriminant Analysis

The family of methods called Discriminant Analysis (DA) can be derived by conditioning (10)
on X yielding



8

EPEX = EX [
K∑
k=1

L(C, δ(X))P (C = k|X)], (15)

and modeling the conditional density P [C|X]. This decision theory of methods of DA is mainly
based on chapters 2.4 and 4 of Hastie et al. (2009). Minimizing expression (15) will yield a
discrimination rule for an observation x

δ(x) = arg min
c=1,...,K

K∑
k=1

L(C = k, c)P (C = k|X = x).

Using the loss function (12) yields

δ(x) = arg min
k=1,...,K

[1− P (C = k|X = x)] = arg max
k=1,...,K

P (C = k|X = x) (16)

called the Bayes classifier. The associated error rate is called the Bayes rate.
From expression (16) we can see that for optimal classification in the Bayesian sense it is

necessary to know the class posteriors P (C|X). Therefore let us assume that the observations
of group Ck are independent and follow a common distribution fk(x), called class-conditional
distribution. Let πk denote the prior probability of class k, with

∑
k=1,...,K πk = 1. Then Bayes

theorem tells us that the class-posterior distribution is

P (C = k|X = x) =
fk(x)πk∑

l=1,...,K fl(x)πl
.

If the class conditional distribution is known, then it is possible to calculate the expected
loss (10) and to derive a classification function minimizing the expected loss.

EPE(δ,x) =

∑
k=1,...,K L(Ck, δ(x))fk(x)πk∑

l=1,...,K fl(x)πl

Therefore, assumptions regarding the class-conditional distribution will characterize the
discrimination methods. The assumption of Gaussian densities fk ∼ N(µk,Σk) will lead to
a method called Quadratic Discriminant Analysis (QDA) explained in section 2.1. Assuming
that all classes share a common covariance structure Σk = Σ, k = 1, . . . ,K, will yield a method
called Linear Discriminant Analysis (LDA), see section 2.2. Assuming that the features are
independent, which (for Gaussian class-conditional distributions) amounts to the assumption
that Σ = diag(σ1, . . . , σp) will result in a method called Naive Bayes, see section 2.6.

2.1 Quadratic Discriminant Analysis

For Gaussian class-conditional distributions

fk ∼ Np(µk,Σk), k = 1, . . . ,K

the Bayes rule (16) is called Quadratic Discriminant Analysis (QDA) and it is straightforward
to see that it simplifies to

δQDA(x) = arg max
i=1,...,K

δk where δk(x) = −1

2
log |Σk| −

1

2
(x−µk)′Σ−1

k (x−µk) + log πk. (17)



9

This discrimination function is called quadratic since the boundary between Ri and Rj ,
{x ∈ Ω : δi(x) = δj(x)} is a quadratic function. The middle term in (17) is the well known
Mahalanobis distance between x and µk.

Usually the parameters µk, πk and Σk are unknown and have to be estimated from the
sample, e.g. with the maximum likelihood estimators (18), (19) and (20).

µ̂k =
1

nk

nk∑
i=1

Xik, k = 1, . . . ,K (18)

Σ̂k =
1

2(n− 1)

K∑
k=1

n∑
i=1

(Xik − µ̂k)′(Xik − µ̂k), k = 1, . . . ,K (19)

π̂k =
nk
n
, k = 1, . . . ,K (20)

Plugging in the ML estimates µ̂k for µk, π̂k for πk and Σ̂k for Σk yields the decision rule δ̂QDA.

2.2 Linear Discriminant Analysis

For normal populations with the same covariance matrix

fk ∼ Np(µk,Σ), k = 1, . . . ,K

the Bayes rule (16) is called Linear Discriminant Analysis δLDA and simplifies to

δ(x)LDA = arg max
i=1,...,K

δk where δk(x) = x′Σ−1µk −
1

2
µ′kΣ

−1µk + log πk. (21)

Clearly this discrimination rule is of the form (8) and can thus be called linear. Plugging in
the ML estimates for µk (18) and using the pooled covariance estimator

Σ̂pooled =
1

2(n− 1)

K∑
k=1

nk∑
i=1

(Xik − µ̂k)′(Xik − µ̂k) (22)

yields the so called Fisher rule. For the two-class case, LDA will simplify to

δF (x) :=

{
1 if (x− µ)′Σ−1(µ1 − µ2) > log(L(1,2)

L(2,1)
π2
π1

)

0 else

}
,

where µ = (µ1 + µ2)/2. This case will be particularly important for the asymptotic analysis
of different discrimination rules conducted in section 2.5. Plugging in the maximum likelihood
estimates in (2.2) yields

δ̂F (x) :=

{
1 if (x− µ̂)′Σ̂

−1
(µ̂1 − µ̂2) > log(L(1,2)

L(2,1)
π̂2
π̂1

)

0 else

}
.

For reasons of notational simplicity we will henceforth assume 0-1 loss (12) of misclassifi-
cation and equal prior probabilities πk = 1/K, k = 1, . . . ,K such that

log(
L(i, j)

L(j, i)

πj
πi

) = 0



10

2.3 Regularized Discriminant Analysis

The application of QDA requires an enormous number of coefficients to be estimated, depending
on the number of classes k and the number of features p. If nk < p the application of QDA
becomes impossible since the sample covariance matrix Σk will not have full rank and can
therefore not be inverted. When nk is close to p but still nk > p the quality of the estimates
clearly suffers in the sense that the variance of the estimates will increase rapidly. This problem
led Friedman (1988) to introduce the regularized discriminant analysis, characterized by the
covariance matrix

Σ̂k(α) = αΣ̂k + (1− α)Σ̂pooled. (23)

This can be interpreted as an attempt to reduce the variance of the estimations by accepting
a bias in the estimation of the covariance matrices. The level of bias is controlled by the
parameter α which will be determined by means of cross validation. The same reasoning
clearly applies to the case where p is close to n for the estimation of Σpooled. The bias-variance
tradeoff will play an even more critical role in high-dimensional feature spaces, as it will be
discussed in section 2.5.

The effect of low sample sizes can be best illustrated by considering the sample covariance
matrix of class k, Σk, as a mapping in Rp and looking at its spectral decomposition

Σk =

p∑
i=1

eikvikv
′
ik

where eik is the ith eigenvalue of Σk in decreasing order and vik is the corresponding eigenvector.
The inverse has the following representation

Σ−1
k =

p∑
i=1

1

eik
vikv

′
ik.

After multiplying with -2 the discrimination score of (17) becomes

δk(x) =

p∑
i=1

1

eik
(v′ik(x− µk))2 +

p∑
i=1

log eik − 2 log πk

and is highly dependent on the values of the smallest eigenvalues. As the sample size nk
decreases the largest eigenvalue tends to increase and the lowest eigenvalue tends to decrease.
The condition of inverting the sample covariance matrix gradually decreases. When nk < p
the covariance matrix loses a rank and the smallest eigenvalue is 0. This then becomes an ill
conditioned problem.

The condition number of a function, the covariance matrix, is seen as a linear function on
Rp → Rp, is the rate of change at which the solution will change with respect to a change in
the argument. Since the covariance matrix Σ is normal, in l2 the condition number is

κ(Σ) =

∣∣∣∣λmax(Σ)

λmin(Σ)

∣∣∣∣ .
2.4 Comparing Different Discrimination Rules

The misclassification error is a natural measure of the quality of a classification problem and was
defined in (13). However, for the asymptotic analysis a simple expression is required. Therefore,



11

only the two-class case k = 2 and only the posterior misclassification error of observations of
class C1 will be considered, defined by

W (δ, θ) = Pθ[δ(X) < 0|C1], (24)

where θ is a parameter from a parameter space Γ yet to be defined. The worst case posterior
classification error is

W (δ) = max
θ∈Γ

W (δ, θ). (25)

The misclassification rates of different discrimination functions are bounded. In the two-
class case the lower bound is random guessing. If the parameters µk, Σk and πk are known,
the upper bound is the Bayes rule, which is the best discriminator for a given loss function. If
the parameters are unknown and are substituted by its ML estimates, yielding the Fisher rule,
it is at least asymptotically optimal. Thus, for a fixed p < n it is known that

W (δF )
n→∞−−−→ 1− Φ(c/2)

the misclassification rate converges to the Bayes risk, where c is a measure of the signal strenght,
as defined in (26).

2.5 Discriminant Analysis in High-Dimensional Feature Spaces

Let us consider a high-dimensional feature space p >> n. For reasoning in the finite case we
will just assume that the number of features is of the order 104, e.g. 20000, and the number of
observations is of the order 102, e.g. 150. For asymptotic reasoning the dimension of the feature
space p is always modeled through its dependence on n, pn →∞, and can be characterized as
n = o(pn). The index will be dropped from now on.

Two problems arise in this setting which are closely related. First, the application of
discriminant methods LDA, QDA or RDA is not possible since Σ̂ is singular and can therefore
not be inverted, and secondly even if we fix this problem the variance of the estimation is
enormous. To shed light on these issues Bickel and Levina (2004) have shown, that even if Σ̂

is replaced by the Moore-Penrose pseudo inverse Σ̂
−

the worst case misclassification error of
the Fisher discriminant function (2.2) is no better than random guessing.

Theorem 1. Consider the parameter space

Γ = {(µ0, µ1,Σ) : (µ1 − µ2)′Σ−1(µ1 − µ2) ≥ c2︸ ︷︷ ︸
(A1)

, k1 ≤ λmin(Σ) ≥ λmax(Σ) ≥ k2︸ ︷︷ ︸
(A2)

, µi ∈ B, i = 0, 1︸ ︷︷ ︸
(A3)

}

(26)
(A1) is a condition on the signal strength of the discrimination problem. The Mahalanobis
distance between the population centers of groups C1 and C2 has to been sufficiently large for the
discrimination between two populations to be feasible. Condition (A2) guarantees that both Σ
and Σ−1 are not ill-conditioned since κ(Σ) < k2/k1. Condition (A3) is a technical condition,
where B = {µ ∈ l2 :

∑∞
j=1 ajµ

2
j ≤ d2} and aj →∞ is a compact subset of l2.

If n = o(p) then

Wγ(δF ) −→ 1

2
.

As p diverges to infinity the spectrum of the covariance matrix, which is a p × p matrix,
will diverge and so will the condition number of the covariance matrix. When p → ∞ the



12

misclassification rate of the Fisher rule converges to 1/2, which is equivalent to random guessing.
Thus the bad performance of the Fisher rule is due to the numerical instability of the estimation
of the covariance matrix as the dimension of the feature space diverges.

In order to solve this problem some form of regularization will be necessary. Several pos-
sibilities were suggested to overcome this problem. A popular approach is the assumption of
independent features within classes yielding an LDA with diagonal covariance matrix, often
referred to as Independence rule. This will dramatically reduce the number of coefficients to
be estimated and thereby often improve the performance of the classifier. This classifier will be
introduced and studied in section 2.6. Under the (reasonable) assumption that not all features
contribute to classification this rule can further be regularized when it is preceded by a feature
selection. This method called Feature Annealed Independence Rule will be introduced in sec-
tion 2.7. Another approach that solves both the problems of inverting the covariance matrix as
well as the numerical is a version of Regularized Discriminant Analysis introduced in section
2.9.

2.6 Independence Rule

The Independence Rule (IR) is obtained when the assumption that features are independent
are added to the assumptions made for LDA. This yields the following discriminant function

δIR(x) := arg max
k=1,...,K

δk where δk =

p∑
j=1

xj − µjk
σ2
j

+ 2 log(πk), (27)

where the parameters µk, and σ have to be estimated from the sample, e.g. with the maximum
likelihood estimators. This discrimination rule allows a simple interpretation. If we call µk the
centroid of class k, then the IR will classify an observation as belonging to class k if x is closest
to this centroid, in the sense of the standardized squared distance corrected by an expression
containing the prior probabilities. For the two-class case the IR reduces to

δIR(x) =

{
1 if (x− µ)′D−1(µ1 − µ2) > log π1

log π2
2 else

}
where D = diag(Σ). Bickel and Levina (2004) have studied the consequences of making the
evidently invalid assumption of independent covariates in the following theorem.

Theorem 2. If log(p) = o(n), then

lim sup
n→∞

W (δIR) = 1− Φ(

√
K0

1 +K0
c)

where K0 = maxΓ
λmax(Σ0)
λmin(Σ0) is the worst case condition number of Σ0, the correlation matrix

Σ0 = D−1/2ΣD−1/2.

If the assumption of independent features is correct and Σ = cIp is a multiple of the
identity then K0 = 1 and the misclassification rate converges to the Bayes level. However, if
the condition number κ(Σ0) diverges, this is the case when either λmin → 0 or λmax →∞, then
also the IR is reduced to random guessing. In many situations, however, the independence rule
will outperform the Fisher rule. A small comparison between the Fisher rule and the IR (for p
approaching n) was conducted by means of a simulation study in Tibshirani et al. (2003).

The IR, however, has two weaknesses. Firstly, since all features are used for prediction, the
interpretability of the model is very limited. Secondly and more importantly, the prediction



13

quality can be negatively affected by the large number number of predictors due to noise
accumulation. Noise accumulation describes the phenomenon that a large number of noise-
only-features can deteriorate the estimations e.g. of the population mean and therefore reduce
the quality of prediction. In fact, Fan and Fan (2008) demonstrate that even for the IR
classification using all the features can be as poor as random guessing.

Theorem 3. Consider the parameter space

Γ = {(µ1,µ2,Σ) : (µ1 − µ2)′D−1(µ1 − µ2) ≥ Cp, λmax(R) ≤ b0, min
1≤j≤p,k=1,2

σ2
kj > 0}

where R = D−1/2ΣD−1/2 is the correlation matrix, Cp is a deterministic positive sequence,
denoting the lower bound for the overall signal, λmax is the maximum eigenvector of the corre-
lation matrix R, b0 is a positive constant.

Further, suppose that log(p) = o(n) and n = o(p). These assumptions characterize the
asymptotic behavior of n and pn, where p dominates n but is dominated by en. This relation
between n and p is called high-dimensional.

Furthermore assume that p/(nCp)→ 0 and {n1n2
pn }

1/2Cp → 0 which characterizes the trade-
off between signal strength and dimensionality under which the following relation holds.

Then for the worst case classification error W (δ) the following relation holds

W (δ̂IR)
P−→ 1

2
.

To overcome both the problem of limited interpretability and noise accumulation feature
selection seems like a most obvious thing to do. Several variants of feature selection exist in
the literature, which can be categorized in soft and hard thresholding.

2.7 Feature Annealed Independence Rule

Fan and Fan (2008) suggest to select a subset of features yielding the Features Annealed
Independence Rule (FAIR) by means of applying a component-wise two sample t-test, testing
the following hypothesis

Hj0 : ∃k, l : µjk 6= µjl versus Hj1 : µj1 = · · · = µjK j = 1, . . . , p, (28)

for two classes. The multi-class case can be tested by means of a one-way ANOVA. This is
a very popular method for selecting features for classification in the field of genomics. The
resulting method can be considered a two-step experiment, where the first step consists of
selecting the m most significant features according to component wise two-sample t-tests and
the second step is simply applying the IR to theses m features. Consider the two-sample t-test
statistic

Tj =
µ̂kj − µ̂lj√

σ̂2
1j/nk + σ̂2

2j/nl
j = 1, . . . , p, 1 ≤ k, l ≤ K. (29)

The FAIR discrimination function is derived when only those features are used for classifi-
cation that qualify in the sense that their absolute t-statistic is greater than a critical value b,
yielding

δ̂FAIR(x) = arg max
k=1,...,K

δk where δk =

p∑
j=1

xj − µ̂j
σ̂2
j

· 1{
√
n/(n1+n2)|Tj |>b}

(30)



14

where Tj denotes the two-sample t-test (29).
This method can be seen as a hard-thresholding feature selection method since the feature

j is either included or not depending on
√
n/(n1 + n2)|Tj | > b.

Fan and Fan (2008) further show that this feature selection method fulfills a sure-screening
property. Consider the problem of selecting features for the purpose of discriminating between
two-classes by means of a t-statistic.

Theorem 4. Under the assumption that

• n1 and n2 are fairly equal, that is, c1 ≤ n1/n2 ≤ c2 with positive constants c1 and c2,

• the vector µ1 − µ2 is sparse, that is most of its components are 0 and without loss of
generality only the first s are non-zero,

• εijk and ε2ijk satisfy Cramer’s condition, that is, there exist constant ν1 and ν2, M1 and

M2, such that E|εijk|m ≤ m!Mm−2
1 ν1/2 and E|ε2ijk − σ2

jk| ≤ m!Mm−2
2 ν2/2 for all m =

1, 2, . . ., and that

• the diagonal elements of both Σ1 and Σ2 are bounded away from 0

then

P (min
j≤s
|Tj | ≥ x and max

j>s
|Tj | < x)→ 1. (31)

This theorem states that as long as the signal level is sufficiently high, the two sample t-test
can at least asymptotically select the signal features with probability 1.

The question how to chose the number of features still remains. There are several possibil-
ities to choose the number of features for the final model. First one can add all those features
with a significant t-test at a, say, 0.05 level. This approach, however, requires the assumption
of Gaussian features. Fan and Fan (2008) choose a different approach, which relaxes the distri-
butional assumption to some extent and give expression (32) that delivers the optimal number
of features. One weakness of the approach used in FAIR is that the estimation of the largest
eigenvalue becomes more and more inaccurate as the dimension of the feature space increases.
A non-parametric approach would be to obtain the optimal number of features by means of a
cross validation.

m̂1 = arg max
1≤m≤p

1

λ̂mmax

n[
∑m

j=1 T
2
j +m(n1 − n2)/n]2

mn1n2 + n1n2
∑m

j=1 T
2
m

(32)

One drawback of hard-thresholding is its ’jumpy’ nature. Tibshirani et al. (2002) and
Tibshirani et al. (2003) have investigated by means of a simulation study the difference between
soft and hard-threshold feature selection and have introduced the Nearest shrunken centroids
method. Intuitively this can be interpreted as gradually diminishing the influence of features as
the threshold increases rather that leaving it unchanged until a certain value of the threshold
has been reached and then kicking it out completely.

2.8 Nearest Shrunken Centroids

Like FAIR, the classification method called Nearest Shrunken Centroids (NSC) is a variant of
the IR and will attempt to effectively eliminate most non-contributing genes leaving only those
that are significant for classification. However, it will use a soft-threshold method for feature



15

selection. Fan and Lv (2008) show that this method is a member of the family of penalized
quasi-likelihood methods since it can be seen as a ridge regression with ridge parameters tending
to ∞. The geometrical intuition is that for classification purposes a denoised version of class
centroids, called shrunken centroids, are used. The amount of shrinkage is continuos and
determined by cross validation.

The shrinkage procedure consists of the following steps. Calculate

djk =
µ̂jk − µ̂j

mk · (σ̂i + σ̂0)
(33)

where µ̂i is the overall mean, µ̂ik the class-wise mean of gene i, σ̂i is the pooled within-class
standard deviation for gene i. mk =

√
1/nk − 1/n corrects the expression such that the

denominator is equal to the standard error of the numerator, such that dik has unit variance.
σ̂0 is a small constant such that large djk values do not arise from small nominators.

Soft thresholding is used to shrink theses values towards zero by

d′jk = sign(djk)(|dkj | −∆)+

where ∆ is obtained by means of cross validation. The centroids of genes with a small value
djk will be shrunken towards the overall centroid such that they do not contribute any more
for classification. The shrunken centroids are obtained by using (33)

µ̂′jk = µ̂j +mk · (σ̂i + σ̂0) · d′jk. (34)

The value of ∆ that minimized prediction error will be identified and all those genes with a
value djk < ∆ will be excluded from the feature set used for prediction, since in that case
µ̂′jk = µ̂j the new class centroid will equal the overall centroid. One can also see that in the
NSC method, the group centroids of each gene are shrunken individually. This is based on the
assumption that genes are independent of each other. This yields the discrimination rule

δNSC(x) = arg min
k=1,...,K

δk where δk = −
p∑
i=1

(xik − µ′jk)
σ2
j

+ 2 log(πk) (35)

where µ′jk are the shrunken centroids defined in (37).
In Figure 1 one can see the effect of an increase in the threshold ∆ on the number of features

and on the classification error. The lowest misclassification error is obtained at a threshold of
about 5. At that value only seven genes are used for classification. The centroids are depicted
in Figure 2 where the value of each of the seven genes is illustrated for centroid one (red) and
centroid two (green).

2.9 Shrunken Centroids Regularized Linear Discriminant Analysis

This method builds upon the idea of RDA by Friedman (1988) as introduced in section 2.3,
however it was developed for high dimensional feature spaces. A detailed introduction can be
found in Guo et al. (2005).

It uses a different approach to solving the problem of inverting the singular covariance
matrix than for instance IR, FAIR or NSC. The idea is to regularize it by adding a diagonal
matrix, thus

Σ̃ = αΣ̂ + (1− α)Ip. (36)



16

0 2 4 6

Value of threshold  

M
is

cl
as

si
fic

at
io

n 
E

rr
or

20069 8297 2858 868 324 141 55 21 11 7 5 2 1 0

Number of genes

0.
0

0.
4

0.
8

x

0 2 4 6

Value of threshold 

M
is

cl
as

si
fic

at
io

n 
E

rr
or

20069 8297 2858 868 324 141 55 21 11 7 5 2 1 0

0.
0

0.
4

0.
8

1
2

Figure 1: Illustration of the effect of increasing the threshold on the number of features and on
the misclassification rate.

1 2

229030_at

201884_at

219612_s_at

202435_s_at

221796_at

228546_at

229354_at

Figure 2: An illustration of centroids 1 and 2 at the optimal threshold level.



17

where α is a regularization parameter obtained by means of cross validation. By introducing a
slightly biased covariance estimate, not only is the singularity problem resolved, since clearly Σ̃
will have full rank, but also the sample covariance estimate is stabilized. This is a classical bias
variance tradeoff. Additionally, the idea of shrinking the centroids in order to denoise them, as
for NSC in section 2.8, was incorporated using

µ̂′ = sgn(µ̂)(|µ̂| −∆)+, (37)

where ∆ is a shrinking parameter. Therefore the parameter space of the SCRDA method is
two-dimensional {(α,∆) : α ∈ [0, 1], δ ∈ [0,∞).

The application of a LDA (21) with a regularized covariance matrix Σ̃ defined in (36) and
shrunken centroids defined in (37) yields the following discrimination function

δ(x)SCRDA = arg max
i=1,...,K

δk where δk(x) = x′Σ̃
−1
µk −

1

2
µ′kΣ̃

−1
µk + log πk. (38)

3 Support Vector Machines

A Support Vector Machine (SVM) is a machine learning algorithm for solving classification
problems with two classes. There are two ways to introduce SVMs. The classical approach is
a geometrical one building on the ideas of perceptrons, hyperplanes dividing the sample space
in two subsets. Bear in mind that all classification methods can be seen as method of dividing
the sample space into disjoint regions, see (9), which can then be used for classification. This
approach, see section 3.1, is how SVMs were introduced originally and furthermore it gives a
good intuition about how the method works. However, it has been shown that the SVM can be
seen as the solution to an optimization problem with a certain form of Tikhonov regularization,
see section 3.2. This perspective provides a general framework, in which also Logistic Regression
is a member, see section 4. Furthermore it allows to relate to the optimization problem (10)
and thus allows further analysis.

SVMs can be extended to a classification method for multiple classes in several ways, which
will be described in section 3.4.

3.1 Geometrical View of SVMs

Rosenblatt (1958) introduced the idea of using separating affine hyperplanes for classification
purposes. Consider a set of observations (xi, ci), where xi ∈ Rp, ci ∈ {−1, 1} for i = 1, . . . , n.
An affine hyperplane can be defined by means of a vector β = (β1, . . . , βp)

′ through

{x : β0 + β1x1 + · · ·+ βpxp = β0 + β′x = 0}.

The sign of β0 + β′x determines on which side of the hyperplane the observation x lies,
yielding the classification rule

δ(x) = sign(β′x+ β0). (39)

Therefore an optimal classifying hyperplane satisfies

ci(β
′xi + β0) > 0 for i = 1, . . . , n.

The further a point is located from the affine hyperplane the greater β′x+β0. Classifiers of this
type were called perceptrons. The perceptron learning algorithm attempts to find a separating



18

affine hyperplane that minimizes the distance of misclassified points to the hyperplane. This
problem can be formulated as an optimization problem and solved by means of a stochastic
gradient descent method.

There are, however, a number of weaknesses to this approach. First of all the solution to
this problem is not necessarily unique, and second when the classes are not perfectly separable
by a hyperplane the algorithm will not converge. These problems were tackled by Cortes and
Vapnik (1995). They suggest to obtain the optimal separating hyperplane by maximizing the
distance between any observation and the closest point of the separating border, yielding

max
β,β0,‖β‖=1

M

subject to ci(x
′
iβ + β0) ≥M, i = 1, . . . , n.

If these conditions are fulfilled, the distance of any observation xi to the separating hyperplane
will be at least M , and thus, the distance between any two observations xi and xj from
different classes will be at least 2M . This approach provides a unique solution and improves
the classification performance. However, it still requires perfectly separable classes. Therefore,
the problem

ci(x
′
iβ + β0) ≥M

was modified to

ci(x
′
iβ + β0) ≥M(1− ξi)

where ∀i, ξi ≥ 0,
n∑
i=1

ξi = const.

where ξ = (ξ1, . . . , ξn) are the so-called slack variables that were introduced in order to allow
for overlapping classes. The slack variable ξi captures the proportional amount by which the
prediction x′iβ+β0 is on the wrong side of the separating hyperplane. Therefore, by bounding∑n

i=1 ξi the total proportional amount by which predictions falls on the wrong side of the
margin is bounded. Thus, maximizing

min ‖β‖
subject to ∀i, ci(x′iβ + β0) ≥ (1− ξi)

and ξi ≥ 0,
∑

ξi ≤ const.

yields a separating hyperplane for observations that are not perfectly separable. This approach
is called Support Vector Machine (SVM) and has the equivalent expression

min
β,β0

1

2
‖β‖2 + C

n∑
i=1

ξi (40)

subject to ξi ≥ 0, ci(β
′xi + β0) ≥ 1− ξi, i = 1, . . . , n

where C is referred to as the cost parameter. This is a quadratic problem with linear inequality
constraints, hence it is a convex optimization problem, and can, thus, be solved with standard
algorithms.



19

3.2 SVMs as a Solution to a Tikhonov Regularized Optimization Problem

The SVM can be stated as special version of the regularized learning problem

min
f∈H

1

l

n∑
i=1

ξ(f(xi), ci) + λ‖f‖2K , (41)

where ‖f‖2K is the norm of any function f , e.g. f(x) = β′x+β0, in a Reproducing Kernel Hilbert
Space H, defined by a positive definite kernel function K, see e.g. Hastie et al. (2009). The
loss function, denoted by ξ(), indicates the penalty that has to be payed, when a classification
f(xi) differs from the actual class ci membership. λ is a regularization parameter balancing
the trade-off between prediction accuracy and a function with a small norm in H. The most
natural loss function is the 0-1 loss function

ξ(f(x), c) =

{
0 if signf(x) = c
1 otherwise

}
,

which is of course the well known misclassification rate (14). However, this leads to a non-
convex problem, so instead a continuos upper bound, called the hinge loss function,

ξL1(f(x), c) = (1− cf(x))+, (42)

where (x)+ = max(k, 0) will be used. It can be shown that applying the hinge loss function
and setting

f(x) = sign(β · x+ β)

and C = 1
2λl yields the classical SVM (40). It cannot be emphasized enough, that the support

vector machine, which was originally motivated in a purely geometric fashion, is, thus, naturally
regularized!

The use of (42) can easily be justified. It will give zero loss for ci = 1 if f(x) is large and
positive and for ci = −1 if f(x) is large and negative. If the signs of ci and f(xi) do not match,
then it will induce a loss.

This optimization problem, (41), relates to (10) in the sense that it adds a regularization
term to the (empirical version of) (10), if a certain loss function is used. The loss function was
also generalized L(sign(f(x)), c) = ξ(f(x), c) such that is allows for classifiers with a support
R. This is of course only possible for the two-class case.

Different loss functions induce different classification methods, e.g.

ξlog(f(x), c) = log(1 + exp−cf(x)) (43)

ξL2(f(x), c) = (1− cf(x))2
+ (44)

where the use of ξlog yields the L1- regularized logistic regression model, introduced in section
4, and ξL2 yields the L2 regularized SVM.

3.3 Support Vector Machines in High-Dimensional Feature SSpaces

As we have seen, SVMs are naturally regularized and are therefore well suited for high dimen-
sional feature spaces. However, two other adaptions are typical.

First, the use of linear Support Vector Machines. SVMs usually map the observations into a
higher-dimensional space Z using non-linear functions z(). This allows to separate observations



20

of two classes, which cannot be separated in the original space. This approach is referred to
as a non-linear SVM. In applications with already high-dimensional feature spaces SVMs with
p > n classes can always be separated in the original feature space and the mapping becomes
obsolete. This yields the so-called linear SVM.

Another problem in feature spaces with many features and relatively few observations is
noise-fitting. This issue is usually resolved by effective regularization. Standard regularization
terms are ‖·‖1 or the ‖·‖2, which can also be seen as special versions of Tikhonov regularization.
For reasons of interpretability, sparse models are preferred leading to the use of the norm ‖ · ‖1.
This yields the following optimization problem

min
β
‖β‖1 + C

n∑
i=1

ξ(β;xi, ci) (45)

where ξ() is a non-negative convex loss function. The norm ‖ · ‖1 is supposed to avoid fitting
to noise and the parameter C is supposed to balance between the loss and regularization. L1
regularization is known to produce sparse predictor vectors β and therefore distinguish between
important and unimportant features. This comes with the drawback that it renders the target
function indifferentiable and, thus, makes optimization more complex.

3.4 Multi-Class Classification

Several approaches to extend the SVM from a binary classification method to a classification
method for K > 2 classes have been suggested. An obvious approaches is the one-vs-one
classifier computing one SVM for every pair of classes. The observation is classified to the class
winning the most pairwise contests. Another much used approach is the one-vs-all method.
For every class k the distance to the separating affine hyperplane is calculated indicating a level
of confidence for group k. The observation is then accredited to that class with the highest
confidence level.

Furthermore there are also more sophisticated multi-class support vector machines such as
the version developed by Crammer and Singer (2001). In this paper they generalize the opti-
mization problem to allow for more than two classes. Unfortunately however, the regularization
used is a L2 regularization, which does not yield sparse models.

4 Logistic Regression

Logistic regression is a member of the family of generalized linear models. It arises from the
approach to model the posterior probability of an event as a function of a set of covariates.
Assume for now, there are two classes, C1 and C2. Since the support of probabilities is [0, 1],
it is problematic to directly model the posterior probability of an event as a linear function
of a set of observations such as β0 + β′x. Therefore the log-odds of an event are modeled as
a linear function of a set of covariates. The odds are defined as the posterior probability of a
case divided by the probability of a non case. The support of the odds is [0,∞]. Taking the
logarithm extends the support to [−∞,∞], which is more appropriate for a linear function.
Thus the model has the form

log(
P [C = 1|X = x]

P [C = 2|X = x]
) = log(

P [C = 1|X = x]

1− P [C = 1|X = x]
) = β0 + β′x. (46)

This allows to express the posterior probability as



21

P (C = 1|X = x) =
exp(β0 + β′x)

exp(β0 + β′x) + 1
=

1

exp(−β0 + β′x) + 1
. (47)

This approach can be extended to the K-class case, where the set of equations

log
P [C = 1|X = x]

P [C = K|X = x]
= β10 + β′1x

log
P [C = 2|X = x]

P [C = K|X = x]
= β20 + β′2x

... (48)

log
P [C = K − 1|X = x]

P [C = K|X = x]
= β(K−1)0 + β′K−1x

extend (46) and the set of equations

P [C = k|X = x] =
exp(βk0 + β′kx)

1 +
∑K−1

l=1 exp(βl0 + β′lx), k = 1, . . . ,K − 1
(49)

P [C = K|X = x] =
1

1 +
∑K−1

l=1 exp(βl0 + β′lx)
(50)

extend (47).
The logistic regression model is usually fit by maximizing the log-likelihood, where the class

memberships follow a multinomial distribution,

max
{β0k,βk}K1

l(xi, ci; θ) =
n∑
i=1

log(P [C = ci|X = xi; θ]),

the solution of which is obtained by the Newton-Raphson algorithm.

4.1 Comparing Linear Discriminant Analysis and Logistic Regression

Recall that LDA was also based on modeling the posterior probability of an event. It is thus
possible to express the log-odds ratio

log(
P [C = k|X = x]

P [C = K|X = x]
) = log

πk
πK
− 1

2
(µk + µK)′Σ−1(µk − µK) + x′Σ−1(µk − µK) =

= αk0 +α′Kx.

This is exactly the same modeling structure as the LR model, see (49). LDA and LR, however,
differ in the way how these parameters are estimated. The LDA estimates the parameters by
maximizing the full log-likelihood using the joint density

P [X,G = k] = φ(X,µk,Σ)πk

based on the assumption that the class-specific distributions are Gaussian with mutual covari-
ance but different means. Under this distributional assumption all that needs to be estimated
are the parameters of the Gaussian distribution.



22

The LR splits the joint density into the marginal density of X and the conditional density

P [X,G = k] = P [X]P [C = k|X]

and fits the parameters by maximizing the conditional density (50). This can be interpreted
as a completely non-parametric estimation of the marginal density of X. For further details
see e.g. Hastie et al. (2009). If the class-specific distributions are in fact Gaussian then the
estimation is very efficient and will require about 30 % less observations than the estimation
without any distributional assumptions. However, even when the class-specific distributions
are not Gaussian and this assumption causes a bias, this approach can still deliver good results
due to the small variance. Especially in a situation with few observations or many features.
Again, this is a classic bias-variance trade-off.

4.2 Logistic Regression in High-Dimensional Feature Spaces

Logistic regression can be modified for the p >> n case by including a regularizing term. In
order to obtain sparse models, L1 regularization is the standard choice. The regularization can
be implemented by maximizing the penalized log-likelihood

max
{β0k,βk}K1

[
n∑
i=1

log(P [C = ci|X = xi; θ])− λ
K∑
i=1

‖βk‖1

]
This is a convex optimization problem and can be solved e.g. by a Newton algorithm. The
logistic regression has been motivated as the solution to an optimization problem including
Tikhonov regularization. The regularization path, which illustrates the effect of an increasing
parameter λ on the number and the coefficients of the selected features can be found in Figure
3.

5 Implementations

This section briefly comments on the implementations of the methods introduced in sections 2,
3 and 4. For LR and the SVM a myriad of different implementations exist in R, both regularized
and unregularized. LiblineaR offers a solver for the primal L1-regularized SVM and the L1-
regularized LR. The optimization algorithm used is a coordinate descent method developed by
Fan et al. (2008) extending Chang et al. (2008). The convincing arguments were its incredible
speed and good documentation. For the multi-class SVM of Crammer and Singer (2001) the
package LiblineaR was used. Unfortunately this methods implemented a L2-regularization
and, thus, does not deliver sparse models. To my knowledge there exists no L1-regularized
implementation of a multi-class SVM to date.

The pamr package by Hastie et al. (2011) provides the NSC classifier, whereas the SCRDA
function is provided by the rda package of Guo et al. (2012). These methods require an internal
cross validation to obtain the optimal parameters, a shrinkage parameter for the NSC and both
a shrinkage and a regularization parameter for the SCRDA method. The optimal parameters
were obtained by an internal cross validation using the minmin-rule, which means:

1. Find all parameters/parameter sets that correspond to the minimal cross-validation error.

2. Second, select the parameter/parameter set that use the minimal number of features.



23

0 5 10 15 20 25 30

-2
-1

0
1

2
3

4

L1 Norm

C
oe
ffi
ci
en
ts

0 15 21 29 31 33 37

Figure 3: The regularization path illustrates the effect of an increasing parameter λ on the
number and the coefficients of the selected features.

For both the IR and the FAIR no working implementations existed in R. The codes can be
found in the appendix 9.3 and 9.2. The FAIR method was implemented such that it generalizes
the two-class approach conducted by t-tests into a multi-class approach by means of a one-way
ANOVA. The optimal number of parameters for the two-class case is analytically derived in
Fan and Fan (2008) and an estimator is given. Similar to the approach in NSC and SCRDA,
the implementation in 9.2, attempts to find the optimal number of features by means of a
10-fold cross validation.

6 Simulation Experiments

The simulation experiments conducted in this section are supposed to compare the performance
of the methods under different stylized conditions. It is obvious that there will not be a method
which strictly dominates all other methods in the sense that it always has a superior (prediction)
performance. This is clear from the theoretical elaborations of the methods. Every model is
based on a set of assumptions and will probably perform excellent when these assumptions are
met and will probably fail to different degrees when this is not the case.

A number of issues are supposed to be resolved by means of this simulation. First of all,
for any given setting the method yielding the lowest misclassification error is supposed to be
identified. Second, the feature selection performance of the methods will be analyzed. Since the
signal features are known, it is possible to compare a) the overall number of features selected,
b) the number of selected signal features over the overall number of signal features, and c) the
number of selected signal features over the number of selected features, indication how many
noise features the method selects.



24

6.1 Settings A - C: Independent Features

Settings A, B, and C simulate a two, three, and five-class classification problem with inde-
pendent features. It was mentioned earlier that a diagonal covariance matrix is exactly the
assumption made in the methods IR, FAIR or NSC. In the realm of microarray data this is
a highly unrealistic setting, however, it will serve as a benchmark illustrating how the perfor-
mance of theses methods will deteriorate when this assumption is relaxed.

For these simulation experiments data matrices X(n × p) were generated with p = 2000
features and n = 100 samples. The samples fall into two, three and five classes, with an equal
number of observations in every class. Thus, the class-specific sample sizes decrease with an
increasing number of groups in settings A, B, and C. In order to study the influence of class-
specific sample sizes, the same settings were implemented with the only modification that the
class-specific sample sizes took a constant value of 100 features, irrespective of the number
of classes. Thus, the sample sizes were 200, 300, and 500 for the two, three, and five-class
problem, respectively. These settings were called Ab, Bb, and Cb.

The observations were drawn from a multivariate Gaussian distribution xi· ∼ N(µk, Ip), k =
1, . . . ,K. Without loss of generality, the first 100 features are signal features defined by
µjk 6= µjl for j = 1, . . . , 100; k 6= l. The means were chosen to be (−1, 0), (−1, 0, 1), and
(−2,−1, 0, 1, 2) for the two, three and five-class problems, respectively. The remaining p− 100
features are pure noise features satisfying µji = · · · = µjK = 0 for j = 101, . . . , p. An illus-
tration of the data matrix can be found in (51). The results of the simulation settings A, B,
C, Ab, Bb, and Cb can be found in figures 4 and 7. For settings Ab, Bb, and Cb only the
prediction performance was illustrated also in figure 4.

signal features︷ ︸︸ ︷ noise features︷ ︸︸ ︷
C1


X1,1,1 · · · X1,100,1 X1,101,1 · · · X1,p,1

...
. . .

...
...

. . .
...

Xn2,1,1 · · · Xn2,100,1 Xn2,100,1 · · · Xn2,p,1

C2


X1,1,2 · · · X1,100,2 X1,101,2 · · · X1,p,2

...
. . .

...
...

. . .
...

Xn1,1,2 · · · Xn1,100,2 Xn1,100,2 · · · Xn1,p,2
...

...
...

...

C2


X1,1,K · · · X1,100,K X1,101,K · · · X1,p,K

...
. . .

...
...

. . .
...

XnK ,1,K · · · XnK ,100,K XnK ,100,K · · · XnK ,p,K



n observations

︸ ︷︷ ︸
p features

(51)

6.2 Settings D - F: Block-Dependent Features

Settings D, E, and F relax the assumption of independent features and chose a dependence
structure which more closely resembles the nature of microarray data. They simulate a two,
three, and five-class classification problem with block-dependent features, as suggested in (5)
and (6) in section 1.1. The structure of this simulation experiment is similar to the structure
in Guo et al. (2005). The objection was to generate a data set which closely resembles real
microarray data. p = 2000 genes were grouped into k = 20 groups each containing p/k = 100
genes with an autoregressive dependence structure. The closer the two features are within a



25

block the higher their correlation will be. Whereas the overall sample sizes in settings D, E, and
F are 100, three more settings were added that featured constant class-specific sample sizes of
100 observations. These settings are names Db, Eb, and Fb. The results of all block-dependent
simulations can be found in figures 5 and 8.

6.3 Settings G - I : Randomly Dependent Features

Settings G, H and I are are two, three and five-class classification problems, respectively, that
are based on the assumption that the observations follow a multivariate Gaussian distribution
with a random covariance matrix. These settings represent an equally unrealistic assumption
about the dependencies of micro-array data as settings A, B, or Cs but lie on the exact opposite
of the spectrum of possible structures. The random generation of the covariance matrix was
obtained with the genPositiveDefMat function in the R package clusterGeneration. The
results can be found in figures 6 and 9.

6.4 Results

The results of each simulation setting are illustrated in four different plots. The first figure
concerns the prediction performance and shows a boxplot of the rates of correctly classified
objects (RCC). The three remaining figures concern the model selection performance. The
second figure shows a boxplot of the cardinality of the set of selected features (FNum). This
number alone cannot draw a good picture of the model selection quality since both signal
features and noise features can be selected. Therefore the third figure shows the rate of selected
signal features over the total number of signal features (RSFTsig). Finally, the last figure shows
the rate of selected signal features over the total number of selected features (RSFTsel).

Not surprisingly, IR, NSC, and SCRDA exhibit an excellent performance in settings A, B,
and C, see figure 4. Nearly all observations are correctly classified. SCRDA seems to succeed
in finding the right parameter value α that defines the underlying covariance structure. In
most of the folds, the correct value of α = 0 is obtained. FAIR and RegSVM manage to
classify more than 95% of the observations correctly. Surprisingly FAIR seems to improve
with an increasing number of classes. The only possible explanation is that FAIR seems to
select more features as the number of classes increases. Whereas the performance of NSC and
SCRDA is unaffected by the number of classes, the performance of RegSVM and LR.L1 drops
dramatically, when the number of classes is augmented. Further inspection into the reasons
for this effect revealed that these two methods seemed to have problems with the location of
the class centers. While they succeeded in classifying the ’exposed’ classes, the ’central’ classes
could not be identified correctly. Table 1 illustrates a typical example of the contingency tables
of RegSVM or LR.L1 comparing the true class-memberships with the predicted ones. This
systematic error definitively requires further investigation.

In simulation settings A, B, C, Ab, Bb, and Cb the variance of rcc for IR, NSC, and
SCRDA are exceptionally low compared to LR. In all other simulation settings the variances
of the classification errors are comparable between methods.

Considering the results of Ab, Bb, and Cb, one must conclude that increasing the class-
specific sample sizes results in an improved performance of all methods, however RegSVM
and LR.L1 still tend to make the same structural error. The increased sample sizes make the
performance differences even more obvious.

Considering the results of settings D, E, and F in figure 5 one has to notice that the
performance level deteriorates for all methods and the variance of the rates increases, even for
those methods that do not assume independent features. The greatest loss can be observed for



26

1 2 3 4 5

1 20 0 0 0 0
2 18 2 0 0 0
3 4 4 7 2 3
4 0 0 0 2 18
5 0 0 0 0 20

Table 1: The rows indicate the true class memberships, whereas the columns indicate the
predicted class memberships.

the IR. FAIR, NSC, and SCRDA outperform all other methods loosing only slightly when the
number of classes is increased to three or five. This is surprising because the assumption of
independent features clearly deviates from the dependence structure in the simulated data set.
IR, RegSVM and LR.L1 loose dramatically. The results of Db, Eb, and Fb indicate that an
increase in the sample sizes reduce the variance of estimation, the median classification error,
however, remains unaltered.

Even more surprisingly, the performances do not further deteriorate when the dependence
structure is changed to a completely random covariance matrix, see figure 6. This result clearly
indicates that the bias caused by invalid assumption of independent features is more than
outweighed by the reduced variance of classification.

From figure 7 one can recognize that FAIR always yields the leanest models with not more
than 20 features. Bare in mind that the simulated data contains 100 signal features. It thus only
succeeds in selecting no more than one out of five signal features, however not allowing noise
features to enter the model. NSC and SCRDA have comparable model sizes of about 50 in the
two-class case and one hundred in the three-class case. While SCRDA shows excellent model
selection capability in three and five-class case. RegSVM and LR.L1 select more features but do
not select more signal features than NSC or SCRDA. The opposite is true, LR.L1 has the worst
feature selection performance selecting many more noise features and fewer signal features. The
results in 8 confirm these result. When the covariance structure is block-dependent the variance
of the model selection accuracy increases, especially for NSC and SCRDA.

7 Real Data Analysis: The COPD Data

A number of pre-processing steps were necessary before tackling the classification task. A robust
multi-chip average was calculated, using the rma command in the package affy to account for
differences in the average expression levels between chips. Then a non-specific filter was applied
to dramatically reduce the number of features. The filter used is non-specific in the sense that
it does not use phenotype information of the data. It applies a filter based on annotation
information (available biological information of the genes) and a variance filter, which filters
out those genes that do not show a significant amount of variation across samples and are
therefore unlikely to be of any further interest. The nsFilter command in the genefilter

package reduced the number of features from about 50000 to 20069. The following quality
control indicated that there were severe batch-effects in the data. The expression values showed
a high correlation with the date of the experiment. These batch-effects were removed using a
simple rescaling of the data based on a location and spread based model of the data.

A 10-fold cross validation (CV) was conducted with the intention of shedding light on the
following two questions:



27

IR
FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.40.50.60.70.80.91.0

Se
t. 

A
: R

C
C

IR
FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.40.50.60.70.80.91.0

Se
t. 

B
: R

C
C

IR
FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.40.50.60.70.80.91.0

Se
t. 

C
: R

C
C

IR
FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.40.50.60.70.80.91.0

Se
t. 

A
b:

 R
C

C

IR
FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.40.50.60.70.80.91.0
Se

t. 
B

b:
 R

C
C

IR
FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.40.50.60.70.80.91.0

Se
t. 

C
b:

 R
C

C

Figure 4: Rates of correctly classified observations of simulation settings A, B, C, Ab, Bb, and
Cb.



28

IR
FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.30.40.50.60.70.80.91.0

Se
t. 

D
: R

C
C

IR
FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.30.40.50.60.70.80.91.0

Se
t. 

E:
 R

C
C

IR
FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.30.40.50.60.70.80.91.0

Se
t. 

F:
 R

C
C

IR
FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.30.40.50.60.70.80.91.0

Se
t. 

D
b:

 R
C

C

IR
FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.30.40.50.60.70.80.91.0
Se

t. 
Eb

: R
C

C

IR
FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.30.40.50.60.70.80.91.0

Se
t. 

Fb
: R

C
C

Figure 5: Rates of correctly classified observations of simulation settings D, E, F, Db, Eb, and
Fb.



29

IR
FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.30.40.50.60.70.80.91.0

Se
t. 

G
: R

C
C

IR
FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.30.40.50.60.70.80.91.0

Se
t. 

H
: R

C
C

IR
FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.30.40.50.60.70.80.91.0

Se
t. 

I: 
R

C
C

Figure 6: Rates of correctly classified observations of simulation settings G, H, and I.



30

FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

20406080100140

Se
t. 

A
: F

N
um

FA
IR

N
S
C

S
C
R
D
A

LR
.L
1

0200400600800

Se
t. 

B
: F

N
um

FA
IR

N
S
C

S
C
R
D
A

LR
.L
1

0500100015002000

Se
t. 

C
: F

N
um

FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.00.20.40.60.81.0

Se
t. 

A
: R

SF
Ts

ig

FA
IR

N
S
C

S
C
R
D
A

LR
.L
1

0.00.20.40.60.81.0

Se
t. 

A
: R

SF
Ts

ig

FA
IR

N
S
C

S
C
R
D
A

LR
.L
1

0.00.20.40.60.81.0

Se
t. 

B
: R

SF
Ts

ig

FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.00.20.40.60.81.0

Se
t. 

C
: R

SF
Ts

el

FA
IR

N
S
C

S
C
R
D
A

LR
.L
1

0.00.20.40.60.81.0

Se
t. 

B
: R

SF
Ts

el

FA
IR

N
S
C

S
C
R
D
A

LR
.L
1

0.00.20.40.60.81.0

Se
t. 

C
: R

SF
Ts

el

Figure 7: Illustration of the model-selection performances of the designated methods in simu-
lation settings A, B, and C (in columns). The first row depicts the overall number of features
selected by each model, the second the number of selected signal features over the total number
of signal features and the third depicts the number of signal features over the total number of
selected features.



31

FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0500100015002000

Se
t. 

D
: F

N
um

FA
IR

N
S
C

S
C
R
D
A

LR
.L
1

0500100015002000

Se
t. 

E:
 F

N
um

FA
IR

N
S
C

S
C
R
D
A

LR
.L
1

0500100015002000

Se
t. 

F:
 F

N
um

FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.00.20.40.60.81.0

Se
t. 

D
: R

SF
Ts

ig

FA
IR

N
S
C

S
C
R
D
A

LR
.L
1

0.00.20.40.60.81.0

Se
t. 

E:
 R

SF
Ts

ig

FA
IR

N
S
C

S
C
R
D
A

LR
.L
1

0.00.20.40.60.81.0

Se
t. 

F:
 R

SF
Ts

ig

FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.00.20.40.60.81.0

Se
t. 

D
: R

SF
Ts

el

FA
IR

N
S
C

S
C
R
D
A

LR
.L
1

0.00.20.40.60.81.0

Se
t. 

E:
 R

SF
Ts

el

FA
IR

N
S
C

S
C
R
D
A

LR
.L
1

0.00.20.40.60.81.0

Se
t. 

F:
 R

SF
Ts

el

Figure 8: Illustration of the model-selection performances of the designated methods in simu-
lation settings D, E, and F (in columns). The first row depicts the overall number of features
selected by each model, the second the number of selected signal features over the total number
of signal features and the third depicts the number of signal features over the total number of
selected features.



32

FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0500100015002000

Se
t. 

G
: F

N
um

FA
IR

N
S
C

S
C
R
D
A

LR
.L
1

020060010001400

Se
t. 

H
: F

N
um

FA
IR

N
S
C

S
C
R
D
A

LR
.L
1

0500100015002000

Se
t. 

I: 
FN

um

FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.00.20.40.60.81.0

Se
t. 

G
: R

SF
Ts

ig

FA
IR

N
S
C

S
C
R
D
A

LR
.L
1

0.00.20.40.60.81.0

Se
t. 

H
: R

SF
Ts

ig

FA
IR

N
S
C

S
C
R
D
A

LR
.L
1

0.00.20.40.60.81.0

Se
t. 

I: 
R

SF
Ts

ig

FA
IR

N
S
C

S
C
R
D
A

R
eg
S
V
M

LR
.L
1

0.00.20.40.60.81.0

Se
t. 

G
: R

SF
Ts

el

FA
IR

N
S
C

S
C
R
D
A

LR
.L
1

0.00.20.40.60.81.0

Se
t. 

H
: R

SF
Ts

el

FA
IR

N
S
C

S
C
R
D
A

LR
.L
1

0.00.20.40.60.81.0

Se
t. 

I: 
R

SF
Ts

el

Figure 9: Illustration of the model-selection performances of the designated methods in simu-
lation settings G, H, and I (in columns). The first row depicts the overall number of features
selected by each model, the second the number of selected signal features over the total number
of signal features and the third depicts the number of signal features over the total number of
selected features.



33

1. Which method has the highest prediction power?

2. How similar are the resulting models, in terms of the set of features that were selected?

The prediction power of the methods is supposed to be estimated by means of the rcc. The
second question concerns the interpretability of the resulting models. FAIR, NSC, SCRDA,
RegSVM (in the two-class case), and LR.L1 all include different kinds of feature selection. To
allow a reasonable interpretation of the model one would demand that the obtained features are
more or less independent of the methods used. One would wish for a clear boundary between
signal features and noise features. Therefore the feature sets of every fold will be compared.

7.1 The Two-Class Case

The fist classification task attempts to classify between healthy people and patients suffering
from COPD. Thus, the sets of samples of all COPD grades were united. This represents
the easiest classification task since it features only two classes and one would expect that
these classes exhibit the most significant differences in gene-expression values. Eliminating all
samples that do not fall into these categories (COPD grade 0) leaves a data set with 82 samples,
18 healthy and 64 patients suffering from COPD. The results of the 10-fold CV are illustrated
in Tables 2 and 3

IR FAIR NSC SCRDA RegSVM LR.L1

Correct classification rate 0.89 0.91 0.85 0.96 0.90 0.94
Median nr. of features 20069 13 10 19335 43 100

Table 2: indicates the misclassification error and the median number of selected features ob-
tained by means of a 10-fold cross validation for the two-class classification problem.

The rates of correctly classified observations differ quite substantially, ranging from 0.85 to
0.96. As one would expect FAIR and SCRDA show a superior performance to IR. NSC, however,
yields worse results even, than IR. This is in particularly surprising, since the FAIR and NSC
method are very similar. Furthermore, FAIR seems to be competitive to more sophisticated
methods such as RegSVM.

Model sizes differ even more dramatically. Whereas NSC or FAIR yield very lean models,
containing 10 and 13 features, respectively, and RegSVM and LR.L1 yield reasonable model
sizes, SCRDA fails to deliver sparse models. The smallest model obtained during the cross
validation contained 16800 features, although SCRDA allows to shrink the centroids. At the
same time SCRDA showed the best performance with a classification rate of 0.96. How can
this be interpreted? An internal cross validation determines two parameters α and δ. The first
accounts for the numerical instability caused by inverting a singular covariance matrix, and the
other (shrinkage parameter) accounts for the effect of noise accumulation. By looking at the
optimal parameter sets one will detect that the values of the shrinkage parameter δ are very
small and that α is not stable. Its values alternates between 0.11 and 0.99, two completely
different covariance structures. Thus, the conclusion has to be drawn that the numerical effect
is stronger and that most features contain at least a small effect. The validity of this conclusion
is open for further research.

The question how similar the resulting models are is supposed to be answered in table 3.
The diagonal elements indicate the number of the features that were selected in more than five



34

of the 10 CV folds. The off-diagonal elements indicate the cardinality of the intersecting sets
of the two methods.

In general the models consist of completely different features. The cardinality of the in-
tersection sets is negligible compared to the cardinality of the feature sets. An interesting
observation is that the set of features selected by RegSVM is a subset of the set of features
selected by LR.L1 which yields models with twice as many features on average.

FAIR NSC SCRDA RegSVM LR.L1

FAIR 12 4 12 2 3
NSC 4 10 10 4 6
SCRDA 12 10 19996 34 69
RegSVM 2 4 34 34 32
LR.L1 3 6 69 32 69

Table 3: indicates the cardinality of intersecting sets of selected features gained by different
classification methods for the 2-class classification problem.

7.2 The Three-Class Case

An extension of the classification task is to include the ’at risk’ patients, which by current
medical means of diagnosis cannot be clearly classified as healthy or suffering from COPD. The
results can be found in tables 4 and 5.

IR FAIR NSC SCRDA RegSVM LR.L1

Correct classification rate 0.53 0.64 0.53 0.92 0.82 0.86
Median Nr. of Features 20069 10 25 19946 20069 538

Table 4: indicates the misclassification error and the median number of selected features ob-
tained by means of a 10-fold cross validation for the 3-class classification problem.

FAIR NSC SCRDA LR.L1

FAIR 9 3 9 0
NSC 3 24 24 0
SCRDA 9 24 20066 112
LR.L1 0 0 112 112

Table 5: indicates the cardinality of intersecting sets of selected features gained by different
classification methods for the 3-class classification problem.

As expected all methods lose predictive power, but while for some methods this loss is
reasonable, IR, FAIR, and NSC loose dramatically. Bear in mind that for a three-class classifi-
cation problem random guessing results in a correct-classification rate of 1/3. SCRDA remains
the leader in terms of performance, with an excellent rate of 0.92. RegSVM and LR.L1 only
lose 0.08.

FAIR and NSC still yield very lean models, but considering their predictive performance one
must conclude that they are too restrictive. The model size of LR.L1 increased about five-fold



35

as compared to the two-class case. RegSVM selects the full feature set since L1 regularization is
not available for multi-class classification problems. Therefore, only four methods are included
in table 5, which tells the following story. Whereas, the model sets for FAIR and NSC are
relatively stable. The median number of features are 27 and 23 for FAIR and NSC, 20 of these
features are included in more than 5 of the 10 CV folds. This is definitively not the case for
SCRDA and LR.L1.

7.3 The Five-Class Case

The most demanding classification task is to differentiate between different grades of COPD.
These are classified using the GOLD index ranging from 0 to 4. Since the sample included too
few observations of class COPD IV, they were added to class COPD III. Together with the
class of healthy people this makes five classes. The classification results can be found in tables
6 and 7.

IR FAIR NSC SCRDA RegSVM LR.L1

Correct classification rate 0.42 0.52 0.14 0.18 0.76 0.86
Median Nr. of Features 20069 27 23 129 20069 573

Table 6: indicates the misclassification error and the median number of selected features ob-
tained by means of a 10-fold cross validation for the 5-class classification problem.

FAIR NSC SCRDA LR.L1

FAIR 20 4 0 0
NSC 4 20 4 0
SCRDA 0 4 49 0
LR.L1 0 0 0 72

Table 7: indicates the cardinality of intersecting sets of selected features gained by different
classification methods for the five-class classification problem.

LR.L1 turned out to be the winner of this classification task. Surprisingly, this method did
not loose any prediction accuracy as compared to the three-class case. Also RegSVM delivers
good results. The most surprising fact is that the performance of SCRDA crashed, from being
the top performer to performing worse than random guessing, which in this setting is equivalent
to a correctly classifying one out of five. For the first time the method delivered a sparse model.
For the moment I have no explanation for this behavior. NSC performs even worse, far below
random guessing. Except for SCRDA model sizes increased slightly but the relative sizes were
left unchanged.



36

8 Conclusion

High dimensional feature spaces have become the typical characteristic of data in many modern
fields of science such as genomics. We have seen how different classical statistical methods have
been modified to account for this characteristic. The modification have in common that they
can be interpreted as introducing a bias with the intention of reducing the prediction error. The
modifications include the assumption of independent features, feature selection based on one-
way ANOVA, or the introduction of regularization terms. In some situations the resulting bias
is more than offset by the reduced variance, thus, improving prediction power. The feasibility
of these modifications are, of course dependent of the data structure. Simulation experiments
were conducted to test these methods in a myriad of different settings, the parameters of which
included the signal-to-noise ratio in every feature, the number of signal features, the dependence
structure of the data, the number of class-specific and overall observations. These parameters
where varied as to gain insight into the strengths and weakness of the proposed methods in order
to support the decision which method should finally be applied. The simulation results have,
as expected, shown, that there is not one method which dominates all others, in the sense that
its prediction performance is always superior, but rather that in different situations different
methods outperform all others. It is one of the most challenging tasks of the applied researcher
to decide which method to use. This decision can of course only be based on experience,
simulation results and an inspection of the data at hand.

The simulation results confirmed the theoretical results of section 2.6 in the sense that
methods that make the incorrect assumption of independent features can in certain situations
outperform methods, which do not make this assumption. However, it was surprising to see
that this can still be the case when there were strong linear dependencies and the dependence
structure was completely random.

It was further surprising to see that SCRDA did not yield sparse models but at the same
time delivered the best prediction results. It remains an open question, whether it can be
concluded that the dependence structure is not sparse.

Also the excellent performance of the LR.L1 method in the five-class real data cross val-
idation remains an open question. This kind of result could not be obtained with simulated
data.



37

9 Appendix

9.1 R Code: Simulation

generateData <- function(n.train=c(50,50), n.test=c(50,50), cor=’block-dependent’, means=c

(-2,2), rho=c(0.9,0.9), signal.feat=20, block.size=c(10,10), block.number=c(10,10), feat

=1000) {

# is es s innvo l l unterschiedl iche kovarianzen zwischen den klasssen zuzulassen?

stopifnot(length(n.train)==length(n.test)&length(n.test)==length(means))

stopifnot(sum(block.size*block.number)==(length(block.size)*block.size[1]*block.number

[1]))

k <- length(means)

if (cor==’independent’) {p <- feat}

else {p <- block.size[1]*block.number[1]}

Sigma <- vector(’list’,k)

mu <- vector(’list’,k)

y.train <- vector(mode=’numeric’)

X.train <- vector(mode=’numeric’)

y.test <- vector(mode=’numeric’)

X.test <- vector(mode=’numeric’)

if (cor ==’independent’) {

for (i in 1:k) {

Sigma[[i]] <- diag(rep(1,p))

mu[[i]] <- c(rep(means[i],signal.feat), rep(0,p-signal.feat))

}

}

if (cor == ’block-dependent’) {

SigGenes <- function(rho, B, m) {

SS <- array(0, dim = c(B, B, m))

for (h in 1:m) {

if (h%%2 == 1)

r = rho

else r = -rho

SS[, , h] <- toeplitz(r^(0:(B - 1)))

}

S <- diag(0, m * B)

for (h in 1:m) for (i in 1:B) for (j in 1:B) S[(h - 1) *

B + i, (h - 1) * B + j] <- SS[i, j, h]

S

}

# generate parameters of a multivariate Gaussian dist r ibut ion

for (i in 1:k) {

Sigma[[i]] <- SigGenes(rho[i], block.size[i], block.number[i])

mu[[i]] <- c(rep(means[i],signal.feat), rep(0,p-signal.feat))

}



38

}

# generate data−matrix

for (i in 1:k) {

X.train <- rbind(X.train, mvrnorm(n.train[i], mu[[i]], Sigma[[i]]))

y.train <- c(y.train, rep(i,n.train[i]))

X.test <- rbind(X.test, mvrnorm(n.test[i], mu[[i]], Sigma[[i]]))

y.test <- c(y.test, rep(i,n.test[i]))

}

colnames(X.train) <- c(1:dim(X.train)[2])

return(list(’p’=p, ’n.train’=n.train, ’n.test’=n.test, ’signal.features’=signal.feat, ’

means’=means, ’cor’=cor, ’y.train’=y.train, ’X.train’=X.train, ’y.test’=y.test, ’X.

test’=X.test))

}

R-Code 1: Data Simulation

SIM <- function (methods=c(’IR’, ’FAIR’, ’NSC’, ’SCRDA’, ’SVM’, ’RegSVM’, ’LR.L1’, ’LR.ISIS’),

reps=50, cor=’block-dependent’, n.train=c(50,50), n.test=c(50,50), means=c(-1,0), signal.

feat=100, block.size=c(10,10), block.number=c(10,10), rho=c(0.9,0.9)) {

obj <- vector(’list’, length=4+reps)

nms <- vector(’character’, reps)

for (i in 1:reps) {nms[i] <- paste(’set’,i, sep=’’)}

names(obj) <- c(’methods’, ’cor’, ’classes’, ’reps’, nms)

for (i in 1:reps) {

print(i)

set <- generateData(n.train=n.train, n.test=n.test, cor=cor, means=means, feat

=2000, signal.feat=signal.feat, block.size=block.size, block.number=block.

number, rho=rho)

print(’generated’)

res.set <- vector(’list’, length=length(methods))

names(res.set) <- methods

if (’IR’ %in% methods) {

tmp <- DA.IR(y.train=set$y.train , X.train=set$X.train, X.test=set$X.

test)

res.set[[’IR’]] <- c(tmp, validate(tmp$y.prediction, set$y.test))

}

if (’FAIR’ %in% methods) {

tmp <- DA.FAIR(y.train=set$y.train , X.train=set$X.train, X.test=set$X.

test)

res.set[[’FAIR’]] <- c(tmp, validate(tmp$y.prediction, set$y.test))

}

if (’NSC’ %in% methods) {

tmp <- DA.NSC(y.train=set$y.train , X.train=set$X.train, X.test=set$X.

test)



39

res.set[[’NSC’]] <- c(tmp, validate(tmp$y.prediction, set$y.test))

}

if (’SCRDA’ %in% methods) {

tmp <- DA.SCRDA(y.train=set$y.train , X.train=set$X.train, X.test=set$X

.test)

res.set[[’SCRDA’]] <- c(tmp, validate(tmp$y.prediction, set$y.test))

}

if (’RegSVM’ %in% methods) {

tmp <- RegSVM(y.train=set$y.train , X.train=set$X.train, X.test=set$X.

test)

res.set[[’RegSVM’]] <- c(tmp, validate(tmp$y.prediction, set$y.test))

}

if (’LR.L1’ %in% methods) {

tmp <- LR.L1(y.train=set$y.train , X.train=set$X.train, X.test=set$X.

test)

res.set[[’LR.L1’]] <- c(tmp, validate(tmp$y.prediction, set$y.test))

}

obj[[4+i]] <- res.set

}

obj[[’methods’]] <- methods

obj[[’cor’]] <- cor

obj[[’classes’]] <- length(means)

obj[[’reps’]] <- reps

return(obj)

}

R-Code 2: IR

# SIM01: Independent , 2 Class

res.sim01 <- SIM(cor=’independent’, reps=50, n.train=c(50,50), n.test=c(50,50), means=c(-1,0),

signal.feat=100)

res.sim01b <- SIM(cor=’independent’, reps=50, n.train=c(100,100), n.test=c(100,100), means=c

(-1,0), signal.feat=100)

# SIM02: Independent , 3 Class

res.sim02 <- SIM(cor=’independent’, reps=50, n.train=c(33,33,33), n.test=c(33,33,33), means=c

(-1,0,1), signal.feat=100)

res.sim02b <- SIM(cor=’independent’, reps=50, n.train=c(100,100,100), n.test=c(100,100,100),

means=c(-1,0,1), signal.feat=100)

# SIM03: Independent , 5 Class

res.sim03 <- SIM(cor=’independent’, reps=50, n.train=c(20,20,20,20,20), n.test=c



40

(20,20,20,20,20), means=c(-2,-1,0,1,2), signal.feat=100)

res.sim03b <- SIM(cor=’independent’, reps=50, n.train=c(100,100,100,100,100), n.test=c

(100,100,100,100,100), means=c(-2,-1,0,1,2), signal.feat=100)

# SIM04: Block−dependent , 2 Class

res.sim04 <- SIM(cor=’block-dependent’, reps=50, n.train=c(50,50), n.test=c(50,50), means=c

(-1,0), rho=c(0.9,0.9), block.size=c(100,100), block.number=c(20,20), signal.feat=100)

res.sim04b <- SIM(cor=’block-dependent’, reps=50, n.train=c(100,100), n.test=c(100,100), means=

c(-1,0), rho=c(0.9,0.9), block.size=c(100,100), block.number=c(20,20), signal.feat=100)

# SIM05: Block−dependent , 3 Class

res.sim05 <- SIM(cor=’block-dependent’, reps=50, n.train=c(33,33,33), n.test=c(33,33,33), means

=c(-1,0,1), block.size=c(100,100,100), block.number=c(20,20,20), rho=c(0.9,0.9,0.9), signal

.feat=100)

res.sim05b <- SIM(cor=’block-dependent’, reps=50, n.train=c(100,100,100), n.test=c(100,100,100)

, means=c(-1,0,1), block.size=c(100,100,100), block.number=c(20,20,20), rho=c(0.9,0.9,0.9),

signal.feat=100)

# SIM06: Block−dependent , 5 Class

res.sim06 <- SIM(cor=’block-dependent’, n.train=c(20,20,20,20,20), n.test=c(20,20,20,20,20),

means=c(-2,-1,0,1,2), rho=c(0.9,0.9,0.9,0.9,0.9), block.size=c(100,100,100,100,100), block.

number=c(20,20,20,20,20), signal.feat=100)

res.sim06b <- SIM(cor=’block-dependent’, n.train=c(100,100,100,100,100), n.test=c

(100,100,100,100,100), means=c(-2,-1,0,1,2), rho=c(0.9,0.9,0.9,0.9,0.9), block.size=c

(100,100,100,100,100), block.number=c(20,20,20,20,20), signal.feat=100)

# SIM07: Random, 2−Class

res.sim07 <- SIM(cor=’random’, reps=50, feat=2000, means=c(-1,0), n.train=c(50,50), n.test=c

(50,50))

res.sim07b <- SIM(cor=’random’, reps=50, feat=2000, means=c(-1,0), n.train=c(100,100), n.test=c

(100,100))

# SIM08: Random, 3−Class

res.sim08 <- SIM(cor=’random’, reps=50, feat=2000, means=c(-1,0,1), n.train=c(33,33,33), n.test

=c(33,33,33))

res.sim08b <- SIM(cor=’random’, reps=50, feat=2000, means=c(-1,0,1), n.train=c(100,100,100), n.

test=c(100,100,100))

# SIM09: Random, 5− Class

res.sim09 <- SIM(cor=’random’, reps=50, feat=2000, means=means=c(-2,-1,0,1,2), n.train=c

(20,20,20,20,20), n.test=c(20,20,20,20,20))

res.sim09b <- SIM(cor=’random’, reps=50, feat=2000, means=means=c(-2,-1,0,1,2), n.train=c

(100,100,100,100,100), n.test=c(100,100,100,100,100))

R-Code 3: IR



41

9.2 R Code: FAIR

DA.FAIR <- function(y.train, X.train, X.test, maxm=200) {

n <- length(y.train)

k <- y.train[which.max(y.train)]

# Apply gene−wise Kruskal Tests

#kt <- function (x) {return ( kruskal . test (x , g=y . tra in )$p. value )}
#kruskal . tests <- apply(X. train ,2 , kt )
#seq <- order ( kruskal . tests , decreasing=F)

# Apply gene−wise one−way ANOVA

anovas <- function(x) {anova(lm(x~y.train))$F[1]}

seq <- order(apply(X.train,2,anovas), decreasing=T)

# Find optimal number of features m by cross val idat ion

MC <- rep(0,min(maxm,dim(X.train)[2]))

o <- sample(1:n)

leave.out <- trunc(n/10)

groups <- vector("list", 10)

for (j in 1:9) {

jj <- (1 + (j - 1) * leave.out)

groups[[j]] <- (o[jj:(jj + leave.out - 1)])

}

groups[[10]] <- o[(1 + (10 - 1) * leave.out):n]

for (l in 1:10) {

mu <- vector(’list’,k)

pi <- rep(0,k)

train <- !(c(1:n)%in%groups[[l]])

test <- c(1:n)%in%groups[[l]]

X.sub <- X.train[train,]

y.sub <- y.train[train]

X.sub.test <- X.train[test,]

y.sub.test <- y.train[test]

for (i in 1:k) {mu[[i]] <- apply(X.sub[(y.sub==i),],2,mean)

pi[i] <- sum((y.sub==i))/length(y.sub)

}

var.pooled <- apply(X.sub,2,var)

for (m in 1:min(maxm,dim(X.train)[2])) {

delta <- matrix(rep(0,length(y.sub.test)*k), ncol=k)

for (i in 1:length(y.sub.test)) {

for (j in 1:k) {

delta[i,j] <- - sum((X.sub.test[i,seq[1:m]] - mu[[j]][seq[1:m

]])^2/var.pooled[seq[1:m]]) + 2*log(pi[j])



42

}

}

class <- apply(delta,1,which.max)

#print (sum( class!=y . sub . test ) )
MC[m] <- MC[m] + sum(class!=y.sub.test)

}

}

# Select best model s ize

tmp <- MC[which.min(MC):length(MC)]==min(MC)

prodton <- function(x,n) {prod(x[1:n])}

tmp2 <- rep(0, length(tmp))

for (i in 1:length(tmp)) {tmp2[i] <- prodton(tmp,i)}

m <- trunc(which.min(MC)+(which.min(tmp2)-1)/2)

# Estimate parameters

mu <- vector(’list’,k)

pi <- rep(0,k)

for (i in 1:k) {mu[[i]] <- apply(X.train[(y.train==i),],2,mean)

pi[i] <- sum((y.train==i))/length(y.train)

}

var.pooled <- apply(X.train,2,var)

opt <- seq[1:m]

# Predict

if (is.vector(X.test)) {n <- 1}

else {n <- dim(X.test)[1]}

delta <- matrix(rep(0,n*k), nrow=n)

for (i in 1:n){

for (j in 1:k) {

if (is.vector(X.test)) {delta[i,j] <- - sum((X.test[opt] - mu[[j]][opt

])^2/var.pooled[opt]) + 2*log(pi[j])}

else {delta[i,j] <- - sum((X.test[i,opt] - mu[[j]][opt])^2/var.pooled[

opt]) + 2*log(pi[j])}

}

}

class <- apply(delta,1,which.max)

return(list(’y.prediction’=class, ’features.number’=m, ’features.list’=colnames(X.train

)[opt]))

}

R-Code 4: FAIR

9.3 R Code: IR



43

DA.IR <- function(y.train, X.train, X.test) {

k <- y.train[which.max(y.train)]

mu <- vector(’list’,k)

pi <- rep(0,k)

for (i in 1:k) {mu[[i]] <- apply(X.train[(y.train==i),],2,mean)

pi[i] <- sum((y.train==i))/length(y.train)

}

var.pooled <- apply(X.train,2,var)

if (is.vector(X.test)) {n <- 1}

else {n <- dim(X.test)[1]}

delta <- matrix(rep(0,n*k), nrow=n)

for (i in 1:n){

for (j in 1:k) {

if (is.vector(X.test)) {delta[i,j] <- - sum((X.test[i] - mu[[j]])^2/var

.pooled) + 2*log(pi[j])}

else{delta[i,j] <- - sum((X.test[i,] - mu[[j]])^2/var.pooled) + 2*log(

pi[j]) }

}

}

class <- apply(delta,1,which.max)

return(list(’y.prediction’=class, ’features.number’=dim(X.train)[2], ’features.list’=

colnames(X.train)))

}

R-Code 5: IR

9.4 R Code: Wrapper Functions

DA.NSC <- function(y.train, X.train, X.test) {

data <- list(x=t(X.train), y=y.train, genenames=colnames(X.train))

res.train <- pamr.train(data=data)

res.cv <- pamr.cv(res.train, data=data)

opt.thres <- res.cv$threshold[max(which(res.cv$error==min(res.cv$error)))]

features <- which(colnames(X.train)%in%rownames(gene.list(fit=res.train, data=data,

threshold=opt.thres, genenames=T)))

y.prediction <- pamr.predict(fit=res.train, newx=t(X.test), threshold=opt.thres)

return(list(’y.prediction’=y.prediction, ’features.number’=res.cv$size[max(which(res.cv

$error==min(res.cv$error)))], ’features.list’=colnames(X.train)[features]))

}



44

R-Code 6: IR

DA.SCRDA <- function(y.train, X.train, X.test) {

res.RDA <- rda(x=t(X.train), y=y.train, genelist=T)

res.RDA.CV <- rda.cv(res.RDA, x=t(X.train), y=y.train)

opt <- which(res.RDA.CV$cv.err==min(res.RDA.CV$cv.err), arr.ind=T)

minmin <- opt[which.min(res.RDA.CV$ngene[opt]),]

alpha.opt <- res.RDA.CV$alpha[minmin[1]]

delta.opt <- res.RDA.CV$delta[minmin[2]]

predict.RDA <- predict.rda(res.RDA, x=t(X.train), y=y.train, xnew=t(X.test),

alpha=alpha.opt, delta=delta.opt, genelist=T)

return(list(’y.prediction’=predict.RDA, ’alpha.opt’=alpha.opt, ’delta.opt’=

delta.opt, ’features.number’= res.RDA.CV$ngene[minmin[1], minmin[2]], ’

features.list’=colnames(X.train)[which(res.RDA$gene.list[minmin[1], minmin

[2],]==1)]))

}

R-Code 7: IR

RegSVM <- function(y.train, X.train, X.test) {

if (length(unique(y.train))>2) {type=4}

else {type=5}

res <- LiblineaR(data=X.train, labels=y.train, type=type)

prediction <- predict(object=res, newx=X.test)$predictions

feat.list <- colnames(X.train)[which(res$W!=0)]

return(list(’y.prediction’=prediction, ’features.list’=feat.list, ’features.

number’=length(feat.list)-1))

}

R-Code 8: IR

LR.L1 <- function(y.train, X.train, X.test) {

res <- LiblineaR(data=X.train, labels=y.train, type=6)

prediction <- predict(object=res, newx=X.test)$predictions

feat.list <- colnames(X.train)[which(res$W!=0)]

tmp <- vector(mode=’character’)

for (i in 1:dim(res$W)[1]) {

tmp <- c(tmp, colnames(X.train)[which(res$W[i,]!=0)])

}

return(list(’y.prediction’=prediction, ’features.list’=feat.list, ’features.

number’=length(unique(tmp))))

}

R-Code 9: IR

9.5 R Code: Cross Validation



45

CV <- function(y,X,folds=10, methods=c(’IR’, ’FAIR’, ’NSC’, ’SCRDA’, ’SVM’, ’RegSVM’, ’LR.L1’,

’LR.ISIS’),file=’CV.RData’) {

n <- length(y)

call <- match.call()

if (folds == n) {groups <- c(1:n)}

if (folds < n) {

leave.out <- trunc(n/folds)

o <- sample(1:n)

groups <- vector("list", folds)

for (j in 1:(folds - 1)) {

jj <- (1 + (j - 1) * leave.out)

groups[[j]] <- (o[jj:(jj + leave.out - 1)])

}

groups[[folds]] <- o[(1 + (folds - 1) * leave.out):n]

}

CV <- vector(’list’, length(methods)+8)

names(CV) <- c(’y’,’X’,’n.obs’,’n.feat’,’groups’,’folds’,’call’,’methods’, methods)

names <- vector(’character’, folds)

for (i in 1:folds) {names[i] <- paste(’fold’,i, sep=’’)}

if (’IR’ %in% methods) {

print(’IR’)

res.IR <- vector(’list’, folds)

for (j in 1:folds) {

print(j)

res.IR[[j]] <- DA.IR(y.train=y[-groups[[j]]] , X.train=X[-groups[[j]],], X.test

=X[groups[[j]],])

}

names(res.IR) <- names

CV[[’IR’]] <- res.IR

}

if (’FAIR’ %in% methods) {

print(’FAIR’)

res.FAIR <- vector(’list’, folds)

for (j in 1:folds) {

print(j)

res.FAIR[[j]] <- DA.FAIR(y.train=y[-groups[[j]]] , X.train=X[-groups[[j]],], X.

test=X[groups[[j]],])

}

names(res.FAIR) <- names

CV[[’FAIR’]] <- res.FAIR

}

if (’NSC’ %in% methods) {

print(’NSC’)

res.NSC <- vector(’list’, folds)

for (j in 1:folds) {

print(j)



46

res.NSC[[j]] <- DA.NSC(y.train=y[-groups[[j]]] , X.train=X[-groups[[j]],], X.

test=X[groups[[j]],])

}

names(res.NSC) <- names

CV[[’NSC’]] <- res.NSC

}

if (’SCRDA’ %in% methods) {

print(’SCRDA’)

res.SCRDA <- vector(’list’, folds)

for (j in 1:folds) {

print(j)

res.SCRDA[[j]] <- DA.SCRDA(y.train=y[-groups[[j]]], X.train=X[-groups[[j]],], X

.test=X[groups[[j]],])

}

names(res.SCRDA) <- names

CV[[’SCRDA’]] <- res.SCRDA

}

if (’SVM’ %in% methods) {

print(’SVM’)

res.SVM <- vector(’list’, folds)

for (j in 1:folds) {

print(j)

res.SVM[[j]] <- SVM(y.train=y[-groups[[j]]], X.train=X[-groups[[j]],], X.test=X

[groups[[j]],])

}

names(res.SVM) <- names

CV[[’SVM’]] <- res.SVM

}

if (’RegSVM’ %in% methods) {

print(’RegSVM’)

res.RegSVM <- vector(’list’, folds)

for (j in 1:folds) {

print(j)

res.RegSVM[[j]] <- RegSVM(y.train=y[-groups[[j]]], X.train=X[-groups[[j]],], X.

test=X[groups[[j]],])

}

names(res.RegSVM) <- names

CV[[’RegSVM’]] <- res.RegSVM

}

if (’LR.L1’ %in% methods) {

print(’LR.L1’)

res.LR.L1 <- vector(’list’, folds)

for (j in 1:folds) {

print(j)

res.LR.L1[[j]] <- LR.L1(y.train=y[-groups[[j]]], X.train=X[-groups[[j]],], X.

test=X[groups[[j]],])

}

names(res.LR.L1) <- names

CV[[’LR.L1’]] <- res.LR.L1

}



47

if (’LR.ISIS’ %in% methods) {

print(’LR.ISIS’)

res.LR.ISIS <- vector(’list’, folds)

for (j in 1:folds) {

print(j)

res.LR.ISIS[[j]] <- LR.ISIS(y.train=y[-groups[[j]]], X.train=X[-groups[[j]],],

X.test=X[groups[[j]],])

}

names(res.LR.ISIS) <- names

CV[[’LR.ISIS’]] <- res.LR.ISIS

}

CV[[’y’]] <- y

CV[[’X’]] <- X

CV[[’n.obs’]] <- length(y)

CV[[’n.feat’]] <- dim(X)[2]

CV[[’groups’]] <- groups

CV[[’folds’]] <- folds

CV[[’call’]] <- call

CV[[’methods’]] <- methods

save(CV, file=file)

return(CV)

}

R-Code 10: IR

evalCV <- function(obj) {

# Misc lass i f i cat ion rate

MCrate <- rep(0,length(obj$methods))

seq <- rep(0,0)

for (i in 1: obj$folds) {seq <- c(seq,obj$groups[[i]])}

# Rating of features

rating <- matrix(rep(0,length(obj$methods)*obj$n.feat), nrow=length(obj$methods))

rownames(rating) <- obj$methods

# Average number and variance of features

feat <- matrix(rep(0,obj$folds*length(obj$methods)), ncol=length(obj$methods))

colnames(feat) <- obj$methods

for (i in 1:length(obj$methods)) {

pred <- rep(0,0)

for (j in 1: obj$folds) {

pred <- c(pred,obj[[obj$methods[i]]][[j]]$y.prediction)

rating[i,] <- rating[i,] + (colnames(obj$X)%in%obj[[obj$methods[i]]][[j

]]$features.list)*1

feat[j,i] <- obj[[obj$methods[i]]][[j]]$features.number



48

}

MCrate[i] <- sum(obj$y[seq]==pred)/length(obj$y)

}

AVF <- apply(feat,2,mean)

SDF <- apply(feat,2,sd)

return(list(’MC’ = MCrate, ’AVF’=AVF, ’SDF’=SDF, ’features’=feat, ’rating’=apply(rating

,1,table), ’rating.meta’=rating ))

}

R-Code 11: IR

validate <- function(y.prediction, y.test) {

return(list(’Table’=table(y.test,y.prediction ,dnn=c(’Observed’, ’Predicted’)), ’MCRate

’=sum(y.prediction==y.test)/length(y.test)))

}

R-Code 12: IR



49

References

Bickel, P. J. and Levina, E. (2004). Some theory for fisher’s linear discriminant function,
’naive bayes’, and some alternatives when there are many more variables than observations.
Bernoulli, 10(6):989–1010.

Chang, K.-W., Hsieh, C.-J., and Lin, C.-J. (2008). Coordinate descent method for large-scale
l2- loss linear svm. Journal of Machine Learning Research, 9:1369–1398.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20:273–297.

Crammer, K. and Singer, Y. (2001). On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research, 2:265–292.

Fan, J. and Fan, Y. (2008). High-dimensional classification using features annealed indepen-
dence rules. The Annals of Statistics, 36(6):2605–2637.

Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space.
Journal of the Royal Statistical Society, 70(5):849–911.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). Liblinear: A
library for large linear classification. Journal of Machine Learning Research, 9:1871–1874.

Friedman, J. (1988). Regularized discriminant analysis. SLAC - PUB.

Guo, Y., Hastie, T., and Tibshirani, R. (2005). Regularized discriminant analysis and its
application in microarrays. Manuscript.

Guo, Y., Hastie, T., and Tibshirani, R. (2012). Shrunken Centroids Regularized Discriminant
Analysis. http://cran.r-project.org/web/packages/rda/rda.pdf.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). Elements of statistical learning. Springer
Series in Statistics, New York, 2nd edition.

Hastie, T., Tibshirani, R., Narasimhan, B., and Chu, G. (2011). Pam: prediction analysis for
microarrays. http://cran.r-project.org/web/packages/pamr/pamr.pdf.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for infor- mation storage and
organization in the brain. Psychological Review, 65:386–408.

Tibshirani, R., Hastie, T., Balasubramanian, N., and Chu, G. (2003). Class prediction by near-
est shrunken centroids, with applications to dna microarray. Statistical Science, 18(1):104–
117.

Tibshirani, R., Hastie, T., Balasubramanian, N., and G., C. (2002). Diagnosis of multiple
cancer types by shrunken centroids of gene expression. PNAS, 99(10):6567–6572.


	Seite1ausgefuellt Schröder.pdf
	schröder   ohne Deckblatt
	Introduction
	The Model
	Classification

	Discriminant Analysis
	Quadratic Discriminant Analysis
	Linear Discriminant Analysis
	Regularized Discriminant Analysis
	Comparing Different Discrimination Rules
	Discriminant Analysis in High-Dimensional Feature Spaces
	Independence Rule
	Feature Annealed Independence Rule
	Nearest Shrunken Centroids
	Shrunken Centroids Regularized Linear Discriminant Analysis

	Support Vector Machines
	Geometrical View of SVMs
	SVMs as a Solution to a Tikhonov Regularized Optimization Problem
	Support Vector Machines in High-Dimensional Feature SSpaces
	Multi-Class Classification

	Logistic Regression
	Comparing Linear Discriminant Analysis and Logistic Regression
	Logistic Regression in High-Dimensional Feature Spaces

	Implementations
	Simulation Experiments
	Settings A - C: Independent Features
	Settings D - F: Block-Dependent Features
	Settings G - I : Randomly Dependent Features
	Results

	Real Data Analysis: The COPD Data
	The Two-Class Case
	The Three-Class Case
	The Five-Class Case

	Conclusion
	Appendix
	R Code: Simulation
	R Code: FAIR
	R Code: IR
	R Code: Wrapper Functions
	R Code: Cross Validation



