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Kurzfassung der Dissertation

Diese Dissertation beschäftigt sich mit Finanz- und Versicherungsprodukten, bei denen die
Auszahlung, welche durch einen stochastischen Prozess bestimmt wird, zu einem zufälligen
Zeitpunkt stattfindet. Dieser Zeitpunkt wird durch eine Stoppzeit modelliert und soll inner-
halb eines vorher bestimmten Zeitintervalls liegen. Das Besondere an dieser Stoppzeit ist,
dass sie einer gegebenen Verteilung folgen soll und durchaus vom Prozess der Auszahlungen
abhängig sein darf. Es wird dabei das Supremum über die zu erwartenden Auszahlungen
betrachtet, um eine Worst-Case-Abschätzung zu erhalten. Interessant ist hierbei auch das
Auffinden einer optimalen Stoppzeit, die diesen Höchstwert liefert. Eine Erweiterung des
Problems ergibt sich durch die Verwendung von adaptierten zufälligen Wahrscheinlichkeits-
maßen anstelle der Stoppzeiten, die eine prozentuale Entnahme modellieren.

Damit das betrachtete Problem wohldefiniert ist, bedarf es einiger Annahmen an den
stochastischen Prozess, der die Auszahlung modelliert. Die drei wichtigsten Annahmen
dieser Arbeit sind, dass das Supremum der Beträge der Elemente des Prozesses fast sicher
endlich ist, einen endlichen Erwartungswert hat und dass der Prozess gleichgradig integrier-
bar ist.

Für das beschriebene Problem gibt es zwei einfache Schranken. Einerseits erhält man
eine untere Schranke, wenn man annimmt, dass der stochastische Prozess der Auszahlungen
unabhängig von der Stoppzeit bzw. dem adaptierten zufälligen Wahrscheinlichkeitsmaß ist.
Andererseits gibt es eine obere Schranke durch den Wert eines optimalen Stopp-Problems
mit demselben zugrunde liegenden Auszahlungsprozess. Der Wert eines solchen Problems
wird nämlich durch eine Stoppzeit bestimmt, für die allerdings keine Verteilungsannahme
getroffen wird. Im Fall endlich vieler Perioden lässt sich der Wert eines solchen optimalen
Stopp-Problems sowie die optimale Ausübungsstrategie leicht durch Verwendung der Snell-
Einhüllenden finden.

Neben diesen beiden einfachen Schranken gibt es noch eine Vielzahl anderer Schranken,
die in dieser Dissertation hergeleitet werden. Einige davon sind allgemein für das Problem
gültig, während andere von der Struktur des zugrunde liegenden Prozesses abhängig sind.

Ein wichtiger Punkt bei der Betrachtung dieses Problems ist die Frage nach einer opti-
malen Strategie. In dieser Arbeit wird die Existenz einer optimalen Strategie in diskreter
Zeit bewiesen. Diese Strategie ist nicht immer eindeutig, wie anhand von Beispielen gezeigt
wird.

Für bestimmte Klassen von stochastischen Prozessen ist es möglich, eine optimale
Strategie, sowie den daraus resultierenden Wert zu bestimmen. Dazu gehören unter an-
derem unabhängige Prozesse, Prozesse mit unkorrelierten Zuwächsen und Prozesse, bei
denen der vorhersehbare Prozess in der Doob-Zerlegung unkorrelierte Zuwächse hat.

Um das Problem auch in stetiger Zeit betrachten zu können, müssen die adaptierten
zufälligen Wahrscheinlichkeitsmaße durch einen stochastischen Übergangskern ersetzt wer-
den. Bei der Betrachtung des Problems unter Verwendung der Stoppzeit bietet sich die
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Dynkin-Formel für das Finden einer Lösung an. Weiters wird eine diskrete Approximation
vorgestellt, mit deren Hilfe sich Ergebnisse, die in diskreter Zeit gefunden wurden, auch in
stetige Zeit überführen lassen.

Der letzte Teil der Dissertation ist den verschiedenen Anwendungsgebieten dieser Pro-
blemstellung im Bereich der Finanz- und Versicherungsmathematik gewidmet. Ein interes-
santes Anwendungsgebiet sind fondsgebundene Lebensversicherungen. Für diese bietet sich
durch die Modellierung des Vertrags ohne Annahme der Unabhängigkeit von biometrischen
und Finanzmarktrisiken die Möglichkeit, eine Abschätzung für den Fall der ungünstigsten
Abhängigkeit dieser Risiken zu erhalten. Diese könnte in die Berechnung des Solvenz-
kapitals einfließen. In den technischen Spezifikationen zu LTGA oder QIS5 für Solvency
II finden sich bereits Hinweise auf die Berücksichtigung möglicher Abhängigkeiten bei der
Berechnung des Solvenzkapitals. In diesen technischen Spezifikationen wird eine Korre-
lationsmatrix angegeben, die die lineare Korrelation zwischen verschiedenen Risikoarten
beschreibt. Weitere Anwendungsmöglichkeiten sind unter anderem eine stochastische Mo-
dellierung in der Krankenversicherungsmathematik, die Liquidierung eines Investmentport-
folios oder die Bewertung von Swing Optionen.
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Abstract

This thesis is about financial and insurance products with pay-outs that are determined by
the value of a stochastic process at a random point in time. This time point is modeled by
a stopping time taking values in a predetermined time interval. What makes this stopping
time special is the assumption that it follows a given distribution and that it may even
depend on the stochastic process modeling the pay-out. The supremum over the expected
pay-out is considered in order to obtain a worst-case estimate. It is also of special interest to
find an optimal stopping time that yields this maximal value. An extension of the problem
is given by the use of adapted random probability measures, which model a withdrawal
measured in percentage, instead of the stopping times.

In order to have a well-defined problem, we need some assumptions on the stochastic
process that models the pay-out. The three main assumptions in this thesis are that the
supremum of the absolute values of the elements of the process is almost surely finite, that
it has finite expectation, and that the process is uniformly integrable.

The presented problem has two simple bounds. On the one hand, a lower bound is
found if one assumes that the stochastic process of pay-outs is independent of the stopping
time or of the adapted random probability measure, respectively. On the other, there is an
upper bound given by the value of an optimal stopping problem with the same underlying
process. The value of such a problem is in fact determined by a stopping time, for which
there is no assumption about its distribution. In the case of finitely many periods the value
of such an optimal stopping problem and its optimal strategy can easily be found using the
Snell envelope.

In addition to these two simple bounds, a number of other bounds exist that are derived
in this dissertation. Some of them are valid for the problem in general, while others depend
on the structure of the underlying process.

An important aspect in considering this problem is the question of an optimal strategy.
In this thesis, the existence of an optimal strategy in a discrete-time setting is proven. This
strategy is not unique in general as explained with the use of some examples.

It is possible to find both an optimal strategy and the resulting value for certain classes
of stochastic processes. These include independent processes, processes with uncorrelated
increments and processes for which the predictable process in the Doob decomposition has
uncorrelated increments.

In order to consider the problem in continuous time, it is necessary to replace the
adapted random probability measures with a stochastic transition kernel. When considering
the problem using stopping times, the Dynkin formula offers a tool to find a solution.
Furthermore, a discrete approximation is presented that can help transfer the results found
in discrete time to some in continuous time.

The final part of the thesis deals with various applications of the problem in the areas
of financial and actuarial mathematics. Unit-linked life insurances are an interesting area
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of application. By modeling the contract without the assumption of independence between
biometric and financial risks, it is possible to compute an estimate for the case of the most
disadvantageous dependence between these risks. This could contribute to the computation
of the solvency capital requirement. Signs for a possible dependence in computing the
solvency capital can already be found in the technical specifications of LTGA or QIS5 for
Solvency II. A correlation matrix is presented in these technical specifications that describes
the linear correlation between different types of risk. Other possible applications include
a stochastic model for health insurances, the liquidation of an investment portfolio or the
valuation of swing options.
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Chapter 1

Introduction

There are many situations in financial and actuarial mathematics where independence is
assumed for two stochastic components. It is questionable whether this assumption is
always correct. This thesis presents a general framework to show how such situations can
be handled without the assumption of independence.

For unit-linked life insurances it is normally assumed that financial and biometric risks
are independent, see e.g. [28]. If surrender of the contract is allowed, this reason for dropping
out, which also leads to a pay-out, should not be set independent of the financial market. It
is possible that a downturn in the economy, which is often followed by high unemployment
rates, leads to more lapses for an insurance company. It is equally conceivable that a flu
epidemic could influence the financial markets. In the technical specifications of the long-
term guarantees assessment (LTGA, [35]) or the fifth quantitative impact study (QIS5,
[47]) for Solvency II there are assumptions about a positive correlation between financial and
biometric risks used to compute the solvency capital requirement. Similar ideas are followed
in current research. In [9] worst-case scenarios for pricing and reserving life insurance
products are considered where a mutual dependence between interest rates and mortality
is allowed. In [34] a valuation framework is presented with a given correlation between the
dynamics of mortality and interest rates. Further upper and lower bounds for the value of
a guaranteed annuity option are found using comonotonicity theory.

It is also possible to use this setting for health insurance contracts. These are often
modeled in a similar way to life insurance contracts. The pay-outs for these contracts, called
claims amount per risk in this setting, is normally a deterministic number, corresponding
to the value the insurer expects to pay, and based on historical data. Using the setting
of this thesis, such claims amount per risk can be modeled stochastically. This is more
appropriate, since it is influenced by many factors, such as modern techniques in health
care, the status of the corresponding country (social turmoil, peace or war, . . . ) and political
decisions. These factors also influence the probability of occurrence of an insured event.
Improvements in the medical system will guarantee that people are cured more rapidly and
that the probability of a relapse declines.

The dependence between severe medical diseases and crises or catastrophes in the sur-
roundings of the patients is a matter of paramount interest to medical research. One
especially interesting work with regard to this thesis is about the impact of the socioeco-
nomic crisis in Greece on acute myocardial infarction [36]. In [36] the authors find that
the financial crisis may have led to a higher incidence of acute myocardial infarction in the
population of Messinia and assert the need for an analysis of this phenomenon for the entire
Greek population. In [29] and [42] the aftermath of the earthquake in Japan in March 2011
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Chapter 1. Introduction

on coronary syndromes is analyzed. Both studies seem to demonstrate that disaster stress
has increased the number of hospitalized patients. Similarly, an alteration in the pattern of
acute myocardial infarction onset followed in the wake of hurricane Katrina in New Orleans.
This is discussed in [45].

The setting presented in this thesis can also be used to model the liquidation of an
investment portfolio. Here, our setting offers the possibility of liquidating the portfolio
step by step throughout a given time interval. We want to maximize the expected amount
gained by liquidating the portfolio. In this situation the amount liquidated depends on
the current prices on the market. Further applications will be discussed at the end of this
thesis, where some applications will also be illustrated by examples.

From a mathematical point of view, the problem considered is a special kind of an
optimal stopping problem. The difference to standard optimal stopping problems is our
assumption that we are given a probability distribution for the stopping times considered.
We start by taking a look at the problem in discrete time. Thus we are interested in the
value

sup
τ : Ω→I

τ stopping time
L(τ)=ν

E[Zτ ] ,

where I is a predefined discrete time interval, Z is the underlying process modeling the
pay-out and ν is the given distribution of the stopping times τ considered. The problem
is extended further to the use of adapted random probability measures instead of stopping
times. These are stochastic processes γ = {γt}t∈I with

∑
t∈I γt

a.s.
= 1, γt ≥ 0 a.s. and

γt is Ft-measurable for all t ∈ I. Similar to the stopping times we assume that we know
something about the distribution ν of the process γ, which means that we assume E[γt] = νt
for all t ∈ I. We denote the set of all adapted random probability measures with these
properties by Mν

I . Using these adapted random probability measures we are interested in

sup
γ∈Mν

I

E
[∑
t∈I

Ztγt

]
.

In the study of these two problems we make no assumption about independence between
the underlying process and the stopping time or the adapted random probability measure,
respectively. We therefore have an adapted dependence between Z and τ or Z and γ.

We see that by considering stopping times we only allow one pay-out, which occurs at
some random time defined by the stopping time. When using adapted random probability
measures, several withdrawals within the time interval I are possible. We can interpret
them as a stochastic component telling us the percentage of our portfolio that will have a
pay-out.

One can easily find a lower bound for the problems by assuming independence between
these stochastic components. In this case a lower bound is then given by∑

t∈I
E[Zt] νt ,

where νt = P(τ = t) or νt = E[γt] for each t ∈ I. By dropping the assumption of a given
distribution, an upper bound can be found. In the case of stopping times this upper bound
can be computed using the Snell envelope, as the problem is then transformed to a standard
optimal stopping problem with the same underlying stochastic process.
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Thinking about these two problems raises a number of questions. Does an optimal
strategy exist that yields the extremal value? If so, under which conditions is it unique?
What does it look like for a given adapted stochastic process Z? If we are given an adapted
process Z, for which we cannot find an optimal strategy and therefore do not know the
exact value of the supremum, can we find bounds for the value other than the two presented
above?

The answer to the first question is one of the main results of the thesis. It is proven that
an optimal adapted random probability measure always exists if the underlying stochastic
process satisfies the necessary assumptions. Unfortunately this strategy is not unique in
general. There are types of processes, e.g. martingales or processes with uncorrelated
increments, for which every stopping time or every adapted random probability measure
yields the same value. For a martingale we can show that the extremal value in our problems
equals the expected value of the martingale at the first time point of the interval I. For
stopping times this is due to Doob’s optional stopping theorem. For an adapted random
probability measure this result can be shown using a theorem presented in this thesis, which
links adapted random probability measures and stopping times.

As stated, we can compute the extremal value for martingales and processes with uncor-
related increments, as they have the same value for every stopping time or every adapted
random probability measure such that the necessary assumptions are satisfied. But there
are also other types of processes for which the extremal value can be computed; for ex-
ample, independent processes or processes, for which the predictable process in the Doob
decomposition has uncorrelated increments. We can also give a result about a sufficient
condition for the optimal strategy for processes, which can be represented as the product
of a deterministic function and a martingale. Moreover, it is possible to write down the
optimal strategy for a binomial model if the distribution ν is given in a certain way. In the
one-period model, the extremal value can even be computed for general processes Z. This
is possible using the Doob decomposition.

For those processes, for which we cannot compute the extremal value or find an optimal
strategy, we can take a look at bounds for the problems. There are some bounds that are
valid for general processes Z and some that assume that the process Z is of special type.
An easy upper bound is given by

E
[
sup
t∈I
|Zt|
]
,

but there are also other upper bounds represented in this thesis that are valid for general
processes Z. For special types of processes it is sometimes possible to find another bound,
which is closer to the real value than the generally valid ones. For instance, this is possible
for processes, which can be represented as the product of a deterministic function and a
martingale. It is also possible to find special bounds for sub- and supermartingales. If
for example I = {0, 1, . . . , T} for some T ∈ N, then these are given by E[ZT ] and E[Z0],
respectively.

Some modifications become necessary when the problem is considered in continuous
time. The problem using stopping times can still be formulated as though we were using
discrete time. The adapted random probability measures have to be replaced by a stochastic
transition kernel in continuous time. Similar as in discrete time, Mν

I denotes the set of all
adapted stochastic transition kernels Γ with marginal ν. The problem is then formulated

3



Chapter 1. Introduction

as

sup
Γ∈Mν

I

E
[∫

I
Zt Γ(dt)

]
.

As in discrete time, every stopping time and every stochastic transition kernel yields
the same value for martingales and processes with uncorrelated increments such that the
necessary assumptions are satisfied. The result for processes with uncorrelated increments
can be transferred from discrete time to continuous time by a discrete approximation, which
is presented in this thesis.

Similar as in discrete time, we are also interested in computing the extremal value or
at least some bounds. The main difference is that in continuous time we need to be more
careful about the assumptions we make about the process Z. When using stopping times
we can now try to use the Dynkin formula, in order to compute this extremal value for
some special types of processes Z.

This thesis is structured in the following way.
Part I concentrates on the problem in discrete time. In Chapter 2 we introduce the

notation and the problem. The necessary assumptions that have to be made to guarantee
that the problem is well-posed are then discussed. Some first general results, useful for the
further discussion of the problem, are also presented in this chapter. Chapter 3 answers
the question of the existence of an optimal strategy. In proving the existence of an optimal
strategy it is shown that the vector space of admissible stochastic processes Z is a Banach
space. In Chapter 4 we concentrate on upper and lower bounds which can help us to
estimate the value. The chapter starts by looking at the risk measures expected shortfall
and conditional expected shortfall and their properties, which will be very useful in the other
sections of this chapter and later on. We then show some general bounds valid for all types
of processes. Later on we concentrate on special types of stochastic processes, e.g. sub- and
supermartingales. Not all of the bounds presented take into account the given distribution
of the stopping time or the adapted random probability measure. The effort in computing
the bounds for a given underlying process also differs. Some of the bounds are therefore
compared in examples at the end of the chapter. In Chapter 5 we take a look at some
special classes of processes for which explicit solutions can be found, including an optimal
strategy. These special classes include for example independent processes or processes with
uncorrelated increments. Chapter 6 deals with the problem of pricing claims under an
equivalent martingale measure and a recursive formula for deriving the extremal value.
Risk neutral pricing is an important topic in mathematical finance and should therefore
be mentioned in this thesis. Nevertheless, most of the problem of risk-neutral pricing is
left for further research. We also present a way to compute the value by using a recursive
formula although, unfortunately, this is only possible for independent processes. The idea
of searching for a recursive formula comes from the Snell envelope.

Part II concentrates on the problem in continuous time and gives some first results for
extending the problem to continuous time. Again we first introduce the notation and take a
look at general results, which are useful for further computations, in Chapter 7. Chapter 8
is devoted to bounds for the problem and results for special types of processes. The use of
the Dynkin formula for the stopping problem in continuous time is discussed in Section 8.1.
There are some special types of process, for which, using the Dynkin formula, it can be
proven that every strategy yields the same value. This is due to the form of the generator of
these processes. In continuous time we also take a look at the use of utility functions within
the given framework by means of an illustrative example. This is done in Section 8.2. For
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right-continuous processes a discrete approximation can be found, which is introduced in
Section 8.3. This discrete approximation is useful for transforming results found in discrete
time to results in continuous time. Again we take a look at special classes of processes
for which explicit results can be found (see Section 8.4) and bounds for the problem (see
Section 8.5).

In Part III we finally show different applications for the problem posed. Chapter 9
concentrates on applications in actuarial mathematics. As already mentioned, unit-linked
life insurance products and health insurance contracts could be modeled using the presented
model, allowing for a stochastic computation of the value of a contract without the need to
assume independence between different stochastic components. This might not be necessary
for the computation of the insurance premium but it might be worth considering when
computing the solvency capital requirement for an insurance company. Chapter 10 discusses
applications in risk management. It is shown that risk measures for stochastic processes are
modeled in a way that is quite similar to our problem. Further, credit risk modeling is a
field, where our results could be used. Finally in Chapter 11, applications in mathematical
finance are introduced, which include the liquidation of an investment portfolio or the
pricing of swing options that are often used in electricity markets.
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Chapter 2

The Problem

Here we introduce the problem that is analyzed in this thesis. First the notation and the
necessary assumptions are introduced in Section 2.1. We will see that the problem is a
modified version of an optimal stopping problem. The difference to classical optimal stop-
ping problems is our assumption that we have some information about the distribution of
the stopping times considered. Furthermore, the problem is extended to the use of adapted
random probability measures instead of stopping times. First results for the problem are
shown in Section 2.2. These are general results, which give a better understanding of the
problem and are useful, later on, in the computation of bounds and optimal strategies. In
Section 2.3 we will take a look at some possible assumptions on the process Z which help to
understand why stricter assumptions such as the ones noted in Assumption 2.2 are needed
from time to time.

2.1 Notation

Let I be a countable, i.e. a finite or countably infinite, totally-ordered index set; for sim-
plicity we assume that I ⊂ R ∪ {−∞,∞}. Typical examples are I = N0, I = Z, I = Q,
I = N0 ∪ {∞} or I = {0, 1, . . . , T} for some T ∈ N. Let t be a time parameter in I.

Definition 2.1. (a) For t ∈ I we define the set I<t := {s ∈ I |s < t} of all times before t,
the set I≤t := {s ∈ I |s ≤ t} of all times up to t, the set I≥t := {s ∈ I |s ≥ t} of all
times from t on, and the set I>t := {s ∈ I |s > t} of all times after t.

(b) For a probability measure ν = {νt}t∈I on I we define ν<t :=
∑

s∈I<t νs and ν>t :=∑
s∈I>t νs, as well as ν≤t := ν<t + νt and ν≥t := ν>t + νt. Relations like ν≤t + ν>t = 1

will be used without mentioning it.

Let (Ω,F ,P) be a probability space with filtration F = {Ft}t∈I . Let Z = {Zt}t∈I be a
real-valued process of discounted pay-offs, which is adapted to the filtration F.

In this thesis we will sometimes decompose the process Z into its positive and negative
part. We will write Z+

t := max{Zt, 0} and Z−t := max{−Zt, 0} for every t ∈ I. Then
Zt = Z+

t − Z
−
t for every t ∈ I.

We will first make some assumptions about the process Z to ensure that the problem
is well-posed. At the end of this chapter, we will take a look at some weaker assumptions
and see why they cannot be used in this setting.

9



Chapter 2. The Problem

Assumption 2.2. When we work on a finite-time setting it is enough to assume that the
adapted process Z is in L1(P). Within this thesis we will therefore assume Zt ∈ L1(P) for
all t ∈ I, i.e. E[|Zt|] <∞ for all t ∈ I, except stated otherwise, e.g. assuming Z+

t ∈ L1(P)
or Z−t ∈ L1(P) for all t ∈ I. In order to be able to define all the given problems for a
countably infinite index set I we also need one of the following assumptions

(a) P(supt∈I |Zt| <∞) = 1,

(b) E[ supt∈I |Zt|] <∞,

(c) the process Z is uniformly integrable.

Remarks 2.3. (i) It is clear that (b) implies (a).

(ii) It follows from [62, 13.3(b), p. 127/128] that (b) implies (c).

(iii) Next we want to show that if Z is a martingale, (c) implies (a). If Z is a uniformly
integrable martingale, then it is bounded in L1(P) (see [62, 13.2]). This means that the
limit Zsup(I) exists and is finite a.s. (see [62, Theorem 11.5]). Therefore P(supt∈I |Zt| <
∞) = 1.

(iv) (a) does not imply (b) or (c). Consider a process Z with Zt = X for all t ∈ I, where X
is a non-integrable random variable. Take for example X satisfying P(X = 2k) = 2−k

for all k ∈ N. Then

sup
t∈I
|Zt| = |X| and E[|X|] =∞ .

In particular Z is not uniformly integrable.

(v) The following example will show that (c) does not imply (a) or (b). Assume I = N0 and
consider the probability space (Ω,F ,P) = ([0, 1],B[0,1], λ), where λ is the Lebesgue–
Borel measure of the Borel σ-algebra B[0,1] on the unit interval. For n ∈ N0 we can find

unique k ∈ N0 and j ∈ {0, . . . , 2k− 1} such that n = 2k + j. Using this representation
we define the process Z for every ω ∈ [0, 1] by

Zn(ω) =

{
k1[ j

2k
, j+1

2k
](ω) if n ∈ N ,

0 if n = 0 .

Then E[Zn] = k2−k → 0 as n → ∞. Given ε > 0 there exists an M ∈ N such that
M2−M ≤ ε. For every n ∈ N0 we have

E
[
Zn1{|Zn|≥M}

]
=

{
0 if n ≤ 2M − 1 ,

k2−k otherwise.

As k2−k ≤ M2−M for n > 2M − 1, we have E
[
Zn1{|Zn|≥M}

]
≤ M2−M ≤ ε. This

implies that the process Z is uniformly integrable. But supn∈N Zn =∞ on [0, 1].

Definition 2.4. In the following let TI denote the set of all stopping times τ : Ω → I.
Further, for a given probability distribution ν on I, let T νI be the set of all I-valued stopping
times with distribution ν, i.e. L(τ) = ν.

10



2.1. Notation

We now assume that Assumption 2.2(b) is satisfied, i.e. we assume E[supt∈I |Zt|] <∞,
unless otherwise stated. This will guarantee that the values we are interested in exist and
are finite. If we just want to make sure that the values exist, we can also assume that we
are given an adapted process Z in L1(P) with E

[
supt∈I Z

−
t

]
<∞ or E

[
supt∈I Z

+
t

]
<∞.

When we consider an optimal stopping problem, its value, which we will denote by V ,
is given by

V := sup
τ∈TI

E[Zτ ] . (2.5)

For a non-negative process Z, this value coincides with the value of a standard American
option without any hedging possibilities.

Remark 2.6. The pricing of American options or optimal stopping problems are well known
problems in the literature. See for example [57] for optimal stopping policies for Markov
processes. In [31, Chapter 2] and [14, Chapter 6] the pricing of American options using the
Snell envelope in a finite-time setting is shown. In [41, Chapter VI-1] the Snell envelope is
discussed for I = N0.

If the stopping time in the optimal stopping problem follows a given probability distri-
bution ν, then this value may change. Let V (ν) denote this new value. Then for T νI 6= ∅

V (ν) := sup
τ∈T νI

E[Zτ ] . (2.7)

In case T νI = ∅, we set V (ν) = −∞. If a stopping time τ ∈ T νI 6= ∅ is independent of the
adapted process Z, then it is easy to calculate E[Zτ ], since using Corollary 2.39 below we
get

V ind(ν) := E[Zτ ] =
∑
t∈I

E
[
Zt1{τ=t}

]
=
∑
t∈I

E[Zt] νt , (2.8)

with νt := P(τ = t) for all t ∈ I. If such an independent stopping time τ ∈ T νI does not
exist, then we set V ind(ν) = −∞.

Looking at these three values, we see that V ind(ν) ≤ V (ν) ≤ V . If I ⊂ N0 is a discrete
interval with 0 ∈ I, if the process Z is a uniformly integrable martingale and if T νI 6= ∅,
then V (ν) = V , because of Doob’s optional stopping theorem (given below) that states that
E[Zτ ] = E[Z0] for all stopping times τ . If further there exists a stopping time τ ∈ T νI 6= ∅,
which is independent of the uniformly integrable martingale Z, then this stopping time
proves V ind(ν) = V (ν) = V . Of course these equalities are also true for all martingales
Z and stopping times τ that satisfy the necessary conditions for using Doob’s optional
stopping theorem. The different conditions on the martingale and the stopping time in
Doob’s optional stopping theorem are noted, for example, in [62, Theorem 10.10], [25] or
[10], which we will cite here in order to see the conditions for later use.

Theorem 2.9. [Doob’s optional stopping theorem]

(a) Given I ⊂ N0 with 0 ∈ I. Let τ be a stopping time and let Z be a supermartingale.
Then Zτ is integrable and E[Zτ ] ≤ E[Z0] in each of the following situations:

1. τ is bounded a.s., i.e. for some N ∈ N we have P(τ ≤ N) = 1,

2. τ is finite a.s. and Z is bounded a.s., i.e. for some K > 0 we have P(|Zt| ≤ K) = 1
for all t ∈ I,

3. E[τ ] <∞ and for some K > 0 we have P(|Zt − Zt−1| ≤ K) = 1 for all t ∈ I \ {0},

11



Chapter 2. The Problem

4. The process Z is uniformly integrable. In this case Z is closable, which means that
Z∞ exists and is well-defined. Therefore Zτ is also well-defined if τ =∞.

(b) If I ⊂ N0 with 0 ∈ I, any of the conditions 1.–4. holds and Z is a martingale, then
E[Zτ ] = E[Z0].

(c) If I ⊂ Z is a countably infinite index set, Z is a martingale and τ is a bounded stopping
time, then Zτ is integrable and E[Zτ ] = E[Zt] for all t ∈ I.

Proof. For the proof of (a1), (a2) and (a3) we refer to [62] and note that the proof can be
adapted to the above statements. If condition (a4) is satisfied the result follows from [56,
Corollary VII.2.2 and p. 486]. Further Z∞ exists and is well-defined by [62, Theorem 11.5],
as the uniform integrability implies that Z is bounded in L1(P). (b) is also proven in [62]
and [56]. (c) follows from [25, Theorem 6.12].

Remark 2.10. All the results stated can also be used if one is interested in the infimum
instead of the supremum, since

inf
τ∈T νI

E[Zτ ] = − sup
τ∈T νI

E[−Zτ ] .

Remark 2.11. If we consider the time interval I = {0, . . . , T} for some T ∈ N and νT = 0, we
can reduce I to some time interval {0, . . . , S} with S < T such that νS > 0 and

∑S
t=0 νt = 1.

If we have νt = 0 for some t ∈ I, we can neglect the value Zt in our problem, because
the sets {τ = t} and {γt > 0} become null sets and 1{τ=t}

a.s.
= 0 as well as γt

a.s.
= 0.

Unless notational problems arise, we can restrict our attention to the smaller index set
{t ∈ I |νt > 0}.

It is possible to extend the introduced problem to adapted random probability measures
with marginal ν instead of stopping times. There is only one pay-out at a random time
point when stopping times are used. Using adapted random probability measures, we can
model several withdrawals measured in percentage during the predefined time interval I.

Definition 2.12. Given a probability measure ν on I, we say that a real-valued process
γ = {γt}t∈I is in Mν

I , if

(a) γt ≥ 0 a.s. for all t ∈ I ,

(b)
∑

t∈I γt
a.s.
= 1,

(c) {γt}t∈I is adapted,

(d) E[γt] = νt for all t ∈ I.

Definition 2.13. When we consider a finite time interval I and a γ ∈ Mν
I , we simply

define

Zγ :=
∑
t∈I

Ztγt . (2.14)

For a countably infinite index set I, γ ∈Mν
I and an adapted processes Z with

P
({

sup
t∈I

Z+
t <∞

}
∪
{

sup
t∈I

Z−t <∞
})

= 1 ,

12



2.1. Notation

we define, for an increasing sequence of finite intervals (Ik)k∈N such that
⋃
k∈N Ik = I,

Zγ := lim
k→∞

∑
t∈Ik

Ztγt a.s. (2.15)

For γ ∈ Mν
I and t ∈ I the notation γ<t, γ≤t, γ≥t and γ>t is used analogously to

Definition 2.1. Relations like γ≤t + γ>t = 1 a.s. will be used without further mention.

Remark 2.16. What could also be of interest is to assume
∑

t∈I γt = x a.s. or γt ∈ [0, y]
a.s. for t ∈ I, x, y ∈ [0,∞). Some of the results, which are shown later, can be adjusted to
such a problem. We will nevertheless concentrate on x = y = 1 in the following.

The value we now want to compute, assuming E
[
supt∈I Z

+
t

]
<∞ or E

[
supt∈I Z

−
t

]
<∞,

is

V +(ν) := sup
γ∈Mν

I

E[Zγ ] = sup
γ∈Mν

I

E
[∑
t∈I

Ztγt

]
. (2.17)

Remark 2.18. We have V +(ν) ≥ V (ν), because V (ν) is a special case of V +(ν), where
a stopping time τ corresponds to an adapted random probability measure γ, given by
γt(ω) = 1{t}(τ(ω)) for all t ∈ I, ω ∈ Ω.

If a stopping time τ is used for modeling a claim, then an adapted random probability
measure can be used to model a portfolio of such claims. If a portfolio consists of N ∈ N
claims modeled by stopping times τ1, . . . , τN , then the whole portfolio can be modeled using
the adapted random probability measure γ = {γt}t∈I given by γt(ω) =

∑N
i=1wi1{t}(τi(ω))

for t ∈ I, ω ∈ Ω with non-negative weights w1 + · · ·+ wN = 1. Note that τ1, . . . , τN in T νI
implies γ ∈Mν

I .

Remark 2.19. We already saw that V (ν) ≤ V . This implies existence of the value V (ν)
whenever the corresponding optimal stopping problem is well-defined. For further infor-
mation about the value V we refer to the corresponding literature about optimal stopping
problems. The existence of the value V +(ν) is guaranteed by Assumption 2.2(b), as the
assumptions stated there make sure that the problem is well-posed.

Remark 2.20. For the computation of the value V (ν) we assume that the filtration in our
model is chosen appropriately. Otherwise it could happen that T νI = ∅, as shown in
Example 2.21, since a set might not exist in Ft with probability νt for some t ∈ I. This is
not necessary for the computation of V +(ν) since at least one adapted random probability
measure exists in Mν

I , namely the one defined by γt = νt for all t ∈ I.

Example 2.21. Given a one-period model with I = {0, 1}, we consider a probability space
(Ω,F ,P) with Ω = {0, 1}, F = {∅, {0}, {1},Ω} and P(ω) = 1

2 for all ω ∈ Ω. Assume
that the process Z is such that Z0 = 0 and Z1(ω) = ω. Let the filtration be given by
F0 = {∅,Ω} and F1 = F . If the distribution ν is given by ν0 = 1

2 and ν1 = 1
2 , then it is

impossible to find a random time τ such that the set {τ = 0} is in F0 and has probability
1
2 . Thus the problem cannot be solved.

We already noted that V (ν) ≤ V +(ν) and that the inequality can be strict if T νI = ∅.
As we will see in the following example it is possible that V (ν) < V +(ν) even in the case
T νI 6= ∅.

Example 2.22. We take a look at a one-period model with I = {0, 1} and Ω = {ω0, ω1}.
We assume that we are given a probability distribution ν on I with ν0 6= ν1 and ν1, ν2 ∈
(0, 1). Let F0 = F1 = P(Ω) = {∅, {ω0}, {ω1},Ω}. Furthermore we assume P({ωi}) = νi for

13



Chapter 2. The Problem

i ∈ {0, 1}. Now we know that the only stopping time τ ∈ T νI with the given distribution ν
is given by

{τ = 0} = {ω0} , {τ = 1} = {ω1} .

An adapted random probability measure γ ∈Mν
I different from the stopping time τ is given

by γi = νi for i ∈ {0, 1}. If the process Z is given by Z0(ω0) = 0, Z1(ω0) = 1, Z0(ω1) = 1
and Z1(ω1) = 0, then we have V (ν) = 0, whereas

V +(ν) ≥ E[Z0γ0] + E[Z1γ1] = ν0ν1 + ν1ν0 > 0 .

Therefore we have V (ν) < V +(ν).

Note that we fixed only the marginal distribution of the real-valued process γ in the
definition of Mν

I . As it might also be interesting to give a statement about the conditional
distribution of the process, we will give a similar definition for a subset of Mν

I , which takes
these conditional distributions into account.

In the context of portfolio liquidation, the definition below means that for s, t in I with
s ≤ t the expected part liquidated at time t given the information up to s depends linearly
on the fraction 1− γ≤s not liquidated up to s.

Definition 2.23. Given a probability measure ν on I, we say that a real-valued process
γ = {γt}t∈I is in N ν

I , if γ ∈Mν
I and further for all s < t in I

E[γt |Fs]
a.s.
=

{
νt

1−ν≤s (1− γ≤s) if ν≤s < 1,

0 otherwise.
(2.24)

The value we now want to compute, assuming E
[
supt∈I Z

+
t

]
<∞ or E

[
supt∈I Z

−
t

]
<∞,

is

V ′(ν) := sup
γ∈N νI

E[Zγ ] = sup
γ∈N νI

E
[∑
t∈I

Ztγt

]
. (2.25)

Remark 2.26. Obviously N ν
I ⊂ Mν

I , which implies V ′(ν) ≤ V +(ν). Previously, we also
noted that T νI ⊂Mν

I and therefore V (ν) ≤ V +(ν). In the following example we will show
that we do not have T νI ⊂ N ν

I in general.

Remark 2.27. Note that N ν
I 6= ∅, as there exists at least one γ ∈ N ν

I , namely the one
defined by γt = νt for all t ∈ I.

Example 2.28. For a time interval I = {0, . . . , 4} let the process Z = {Zt}t∈I be given
by a simple random walk starting in 0, i.e. we assume there exists a process of symmetric
independent random variables X = {Xt}t∈I\{0}, which are {−1, 1}-valued, and that Zt =∑t

s=1Xs for t ∈ I. Let the filtration be given by Ft = σ(Z0, . . . , Zt) for t ∈ I. Consider a
stopping time τ given by

τ(ω) := min{t ∈ I |Zt(ω) = 1} ∧ 4 , ω ∈ Ω .

Then the distribution ν of the stopping time τ is given by

ν0 = 0 , ν1 =
1

2
, ν2 = 0 , ν3 =

1

8
, ν4 =

3

8
.

Then

P(τ = 3 |F2) =
1

2
1{Z2=0}1{τ>2} , (2.29)

14
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whereas the right side of (2.24) would be given by

ν3

1− ν≤2
1{τ>2} =

1

4
1{τ>2} . (2.30)

This implies that (2.24) cannot be satisfied for the process {1{t}(τ)}t∈I as (2.29) and (2.30)

differ on the event {Z1 = −1, Z2 = −2}, which has probability 1
4 .

Lemma 2.31. Consider a discrete interval I ⊂ Z and γ ∈Mν
I . Then γ ∈ N ν

I if and only
if for all t ∈ I with t+ 1 ∈ I

E[γt+1 |Ft]
a.s.
=

{
νt+1

1−ν≤t (1− γ≤t) if ν≤t < 1,

0 otherwise.
(2.32)

Proof. It is clear that (2.24) implies (2.32). By induction we can also prove the converse.
Fix some s ∈ I. By (2.32) it is clear that (2.24) is true for s+ 1. We assume that (2.24)

is satisfied for all s < t ∈ I with t− s ≤ n for some n ∈ N and prove that it is also satisfied
for s < t ∈ I with t− s ≤ n+ 1.

First consider the case ν≤s+1 < 1. By the tower property of the conditional expectation
([62, 9.7(i)]), (2.32) and as (2.24) is valid for all s < t ∈ I with t− s ≤ n, we get

E[γt |Fs]
a.s.
= E[E[γt |Fs+1]|Fs]

a.s.
= E

[
νt

1− ν≤s+1
(1− γ≤s+1)

∣∣∣∣Fs]
a.s.
=

νt
1− ν≤s+1

(1− γ≤s − E[γs+1 |Fs])
a.s.
=

νt
1− ν≤s+1

(
1− γ≤s −

νs+1

1− ν≤s
(1− γ≤s)

)
a.s.
=

νt
1− ν≤s

(1− γ≤s)

If ν≤s < 1, but ν≤s+1 = 1, we have to be more careful. Then νv = 0 for all v ∈ I with
v > s, which implies γv = 0 a.s. for all v ∈ I with v > s. This implies that the right-hand
sides of (2.32) and (2.24) would equal 0 for t as t > s.

If ν≤s = 1, then ν≤v = 1 for all v ∈ I with v ≥ s. Therefore the right-hand sides of
(2.32) and (2.24) would equal 0.

If we also want to use adapted random probability measures for an American type
problem, we have to drop condition (d) of Definition 2.12.

Definition 2.33. For a real-valued process γ = {γt}t∈I , we say γ ∈MI if

(a) γt ≥ 0 a.s. for all t ∈ I,

(b)
∑

t∈I γt
a.s.
= 1,

(c) γt is Ft-measurable for all t ∈ I.

For an adapted process Z with E
[
supt∈I Z

−
t

]
<∞ or E

[
supt∈I Z

+
t

]
<∞ and Zγ defined

as in Definition 2.13 (and replacing γ ∈Mν
I by γ ∈MI) we can take a look at the value

Ṽ := sup
γ∈MI

E[Zγ ] . (2.34)

We also have V = Ṽ , if I ⊂ N0 and the process Z is a closable martingale by Theo-
rem 2.49(b) below. Further we have V +(ν) ≤ Ṽ as Mν

I ⊂MI .
If we assume that Ω is finite and that Ft = P(Ω) for every t ∈ I, we can compute the

value Ṽ using linear optimization. For information about linear optimization see e.g. [4] or
[20].
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2.2 General Results

Lemma 2.35. For a totally-ordered countable set I and a given process Z = {Zt}t∈I with
E
[
supt∈I Z

−
t

]
<∞ or E

[
supt∈I Z

+
t

]
<∞ we have for every γ ∈ MI as in Definition 2.33

that

E[Zγ ] =
∑
t∈I

E[Ztγt] . (2.36)

Remark 2.37. As Mν
I ⊂ MI this lemma is especially applicable for γ ∈ Mν

I as in Defini-
tion 2.12.

Proof. (a) First consider a non-negative process Z. Then Z
(n)
t := min{Zt, n} ↗ Zt as

n → ∞ for every t ∈ I. For every n ∈ N the process Z(n) = {Z(n)
t }t∈I is bounded. Using∑

t∈I γt
a.s.
= 1 as in Definition 2.33(b) we get that

Z(n)
γ =

∑
t∈I

Z
(n)
t γt ≤

(
sup
t∈I

Z
(n)
t

)∑
t∈I

γt
a.s.
= n .

By dominated convergence (see [62, Theorem 5.9]) we see that we can exchange the expected
value and the series, which proves (2.36) for Z(n). By monotone convergence (see [62,
Theorem 5.3]) the process Z satisfies (2.36).

(b) Now we want to show the result for general processes Z with E
[
supt∈I Z

−
t

]
< ∞,

which implies that Zγ is well-defined as it implies P(supt∈I Z
−
t < ∞) = 1. For this we

set Z
(+)
γ :=

∑
t∈I Z

+
t γt and Z

(−)
γ :=

∑
t∈I Z

−
t γt. Note that E

[
Z

(−)
γ

]
< ∞, because using∑

t∈I γt
a.s.
= 1 by Definition 2.33(b) we get that

Z(−)
γ =

∑
t∈I

Z−t γt ≤
(

sup
t∈I

Z−t

)∑
t∈I

γt
a.s.
= sup

t∈I
Z−t .

We have that

Zγ =
∑
t∈I

Ztγt =
∑
t∈I

(Z+
t − Z

−
t )γt = Z(+)

γ − Z(−)
γ a.s. ,

and hence E[Zγ ] = E
[
Z

(+)
γ

]
− E

[
Z

(−)
γ

]
, because E

[
Z

(−)
γ

]
<∞. Also∑

t∈I
E[Ztγt] =

∑
t∈I

(
E
[
Z+
t γt
]
− E

[
Z−t γt

])
=
∑
t∈I

E
[
Z+
t γt
]
−
∑
t∈I

E
[
Z−t γt

]
,

because
∑

t∈I E
[
Z−t γt

]
<∞ by part (a). We know that Z+ = {Z+

t }t∈I and Z− = {Z−t }t∈I
are non-negative processes and further E

[
supt∈I Z

−
t

]
<∞. Therefore, by part (a),

E
[
Z(+)
γ

]
=
∑
t∈I

E
[
Z+
t γt
]

and

E
[
Z(−)
γ

]
=
∑
t∈I

E
[
Z−t γt

]
.

Altogether we see that (2.36) is true for a process Z with E
[
supt∈I Z

−
t

]
< ∞. The case

E
[
supt∈I Z

+
t

]
<∞ is similar.
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Alternative proof of Lemma 2.35. First assume that the process Z is non-negative. Let η
be the counting measure on I. Then the product measure η ⊗ P is defined on the product
σ-algebra P(I)⊗F . We can define another measure Pγ on P(I)⊗F by

dPγ
d(η ⊗ P)

(t, ω) = γt(ω) , t ∈ I, ω ∈ Ω .

The measure Pγ is a probability measure, as E
[∑

t∈I γt
]

= 1 by Definition 2.33(b). Using
this new probability measure

E[Zγ ] = EPγ [Z] .

Since Z is a non-negative process, η is a σ-finite measure as I is countable and P is a
probability measure, (2.36) follows from the Tonelli version of the Fubini theorem, see [13,
Theorem 14.2].

To prove the result for a process Z with E
[
supt∈I Z

−
t

]
<∞ or E

[
supt∈I Z

+
t

]
<∞, which

is not necessarily non-negative, proceed similar to part (b) of the proof of Lemma 2.35
above.

Remark 2.38. Note that such a representation of the product measure as in the alternative
proof of Lemma 2.35 is used, for example, in [1].

Corollary 2.39. Consider a totally-ordered countable set I, a process Z = {Zt}t∈I with
E
[
supt∈I Z

−
t

]
< ∞ or E

[
supt∈I Z

+
t

]
< ∞ and a γ ∈ MI as in Definition 2.33. If Z and

γ are independent, then

E[Zγ ] =
∑
t∈I

E[Zt]E[γt] .

Remark 2.40. If in Corollary 2.39 we further assume γ ∈Mν
I given by Definition 2.12, then

E[Zγ ] =
∑
t∈I

E[Zt] νt .

Proof. By Lemma 2.35 we can exchange the expected value and the sum. Due to the
independence of Z and γ, we have E[Ztγt] = E[Zt]E[γt] for all t ∈ I.

Theorem 2.41. Given a totally-ordered countable set I. Consider an adapted random
probability measure γ ∈MI as in Definition 2.33 w.r.t. the filtration {Ft}t∈I . By extending
the filtered probability space (Ω,F , {Ft}t∈I ,P) if necessary, we may assume w.l.o.g. that
there exists a random variable U , uniformly distributed on [0, 1] and independent of F∞ :=
σ(
⋃
t∈I Ft). Define the enlarged filtration {F̃t}t∈I by F̃t := Ft ∨ σ(U) for t ∈ I and the

random time τ by
{τ = t} = {γ<t < U ≤ γ≤t} , t ∈ I . (2.42)

Then the following holds:

(a) τ is a stopping time w.r.t. {F̃t}t∈I satisfying P(τ = t |F∞)
a.s.
= γt for all t ∈ I.

(b) Let Z be an F∞-measurable process such that E
[
supt∈I Z

−
t

]
< ∞ or E

[
supt∈I Z

+
t

]
<

∞. Then
E[Zτ |F∞]

a.s.
= Zγ and E[Zτ ] = E[Zγ ] .

Remark 2.43. Note that if γ ∈Mν
I as in Definition 2.12 for some distribution ν on I, then

the stopping time τ has distribution ν, i.e. τ ∈ T νI . Further note that we use the notation
Ft ∨ σ(U) = σ(Ft ∪ σ(U)).

17



Chapter 2. The Problem

Proof. We see that τ defined as in (2.42) is really a stopping time w.r.t. {F̃t}t∈I and as U
is independent of F∞ we also have P(τ = t |F∞)

a.s.
= γt. Then using Lemma 2.35

E[Zτ ] =
∑
t∈I

E[Zt1{τ=t}] =
∑
t∈I

E[Zt P(τ = t |F∞)] =
∑
t∈I

E[Ztγt] = E[Zγ ] .

Remark 2.44. If it is necessary to enlarge the probability space, this can be done by setting
Ω̃ := [0, 1]×Ω, F̃ := B[0,1]⊗F and P̃ := λ⊗P, where λ denotes the Lebesgue–Borel measure.

U : Ω̃ → [0, 1] is the projection onto the first component. For a filtration on the extended
probability space it would be sufficient to consider a filtration given by F̂t := Ft⊗{∅, [0, 1]}
for t ∈ I. The filtration needed for τ to be a stopping time is F̃t = F̂t ∨ σ(U) for t ∈ I. Let
π: [0, 1]× Ω→ Ω be the projection on the second component. We then consider a process
Z̃ on (Ω̃, F̃ , P̃) such that Z̃t := Zt ◦ π for all t ∈ I. Similarly we consider processes γ̃ on
(Ω̃, F̃ , P̃) with γ̃t := γt ◦ π for all t ∈ I. Note that Z̃ and γ̃ are adapted to {F̂t}t∈I .
Remark 2.45. Due to the construction of the stopping time τ in Theorem 2.41 by using the
given adapted random probability measure γ we have {τ = t} ⊂ {γt > 0} for all t ∈ I.

In the following example we will show that the enlargement of the filtered probability
space can have effects on the value V (ν).

Example 2.46. We consider the situation of Example 2.22 and enlarge the probability
space and the filtration according to Remark 2.44. F0 and F1 are enlarged to F̃t = F̂t∨σ(U)
for t ∈ {0, 1}, where U is independent of Z̃ and uniformly distributed on [0, 1]. Then we
can find a stopping time τ∗ ∈ T νI given by

{τ∗ = 0} = {U ≤ ν0} and {τ∗ = 1} = {U > ν0} .

For this stopping time we get

Ẽ[Z̃τ∗ ] = ν0ν1 + ν1ν0 > 0 .

We see that by enlargement of the filtered probability space, the value V (ν) increased. Note
that the stopping time τ∗ corresponds to the stopping time found in Theorem 2.41 for γ
given as in Example 2.22.

An enlargement of the filtration enlarges the setMν
I and can increase the value V +(ν).

We will illustrate this effect in Example 2.47, where future information is added to the
filtration. In Lemma 2.48 we will show that not every enlargement of a σ-algebra changes
the conditional expectation of a random variable.

Example 2.47. We will start with the setting of Example 2.21. Consider Ω = {0, 1} with
P(ω) = 1

2 for all ω ∈ Ω. Assume Z0 = 0 and Z1(ω) = ω for all ω ∈ Ω. The filtration
is given by F0 = {∅,Ω} and F1 = P(Ω). We assume that the distribution ν is given by
ν0 = ν1 = 1

2 . Then the only possible process γ ∈ Mν
I is given by γ0 = γ1 = 1

2 . Therefore
we have

E[Zγ ] = E[Z1γ1] =
1

2
E[Z1] =

1

4
.

Now we enlarge the filtration and set F0 = P(Ω). Then we can define an adapted random
probability measure by using the stopping time τ defined by τ(ω) = ω for all ω ∈ Ω. Then
we have

E[Zτ ] = E[Z0 |τ = 0]P(τ = 0) + E[Z1 |τ = 1]P(τ = 1) = 0 · 1

2
+ 1 · 1

2
=

1

2
.
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2.2. General Results

Lemma 2.48. Given σ-algebras F ⊂ G and a σ-algebra H which is independent of G, we
have for every σ(F∪H)-measurable random variable X, which is integrable or non-negative,

E[X |G ]
a.s.
= E[X |F ] .

Proof. Define

H = {X: Ω→ R |X bounded, σ(F ∪H)-measurable, E[X |G ]
a.s.
= E[X |F ]} .

We will use the monotone-class theorem (see e.g. [62, Theorem 3.14]) in order to show that
H contains all bounded σ(F ∪H)-measurable X on Ω.

It can easily be checked that H is a vector space over R and that the constant function
1 is an element of H .

Using monotone convergence for conditional expectations (see [62, 9.7(e)]) it can be
shown that for a sequence (Xn)n∈N of non-negative functions in H such that Xn ↗ X,
where X is a bounded function on Ω, we also have X ∈H .

The collection {F ∩H |F ∈ F , H ∈ H} is stable under finite intersections and generates
σ(F ∪ H). We now have to show that H contains the indicator function of every set in
{F ∩H |F ∈ F , H ∈ H}. Since F ∈ F ⊂ G

E[1F 1H |G ]
a.s.
= 1F E[1H |G ] .

and

E[1F 1H |F ] 1G
a.s.
= 1F E[1H |F ] .

Since H is independent of G ⊃ F , E[1H |G ] = P(H) = E[1H |F ] a.s. Therefore

E[1F 1H |G ]
a.s.
= E[1F 1H |F ] .

The result for non-negative processes now follows from conditional monotone convergence.
The result is also true for integrable processes, as they can be decomposed into their positive
and negative part, which are both non-negative. The result then follows from linearity of
conditional expectation.

Theorem 2.49. (a) Given I ⊂ N0 with 0 ∈ I. Let Z be a uniformly integrable super-
martingale. Then, for every γ ∈MI , the random variable Zγ is well-defined, integrable
and satisfies E[Zγ ] ≤ E[Z0]. If, further, Z is a martingale, then, for every γ ∈ MI ,
E[Zγ ] = E[Z0].

(b) Given a totally ordered countable set I. Let Z be a closable martingale. Then, for every
γ ∈MI , the random variable Zγ is well-defined, integrable and satisfies E[Zγ ] = E[Zt]
for all t ∈ I.

(c) Given I ⊂ N0 with 0 ∈ I, let ν be a probability distribution on I. Let Z be a super-
martingale. Then, for every γ ∈Mν

I , the random variable Zγ is well-defined, integrable
and satisfies E[Zγ ] ≤ E[Z0] in each of the following situations:

1. There exists a t ∈ I with ν≤t = 1,

2. Z is bounded a.s.,

3.
∑

t∈I tνt <∞ and for some K > 0 we have P(|Zt−Zt−1| ≤ K) = 1 for all t ∈ I\{0},
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(d) If I ⊂ N0 with 0 ∈ I, any of the conditions (c1), (c2) or (c3) holds and Z is a
martingale, then, for every γ ∈Mν

I , Zγ is well-defined, integrable and E[Zγ ] = E[Z0].

(e) If I ⊂ Z is a countably infinite index set, ν is a probability distribution on I, Z
is a martingale and there exists a t ∈ I with ν≤t = 1, then Zγ is integrable and
E[Zγ ] = E[Zt] for all t ∈ I.

Proof. First we will prove (b). Using monotone convergence and Jensen’s inequality, we
get by Definition 2.33(b)

E[|Zγ |] ≤ E
[∑
t∈I
|Zt|γt

]
=
∑
t∈I

E[|Zt|γt] ≤
∑
t∈I

E[E[|Z∞||Ft] γt] = E
[
|Z∞|

∑
t∈I

γt

]
= E[|Z∞|] <∞ .

This implies that Zγ is well-defined and integrable. Repeating this calculation without the
absolute values, which is allowed due to the absolute convergence almost surely of Zγ , the
result follows.

The rest of the results of this theorem follows by Theorem 2.41 and Doob’s optional
stopping theorem, cited in Theorem 2.9. The conditions imposed on Z and ν in this theorem
are equivalent to the conditions on the process and the stopping time in Theorem 2.9, where
the stopping time is now found using Theorem 2.41.

If a t ∈ I with ν≤t = 1 exists, then the corresponding stopping time is bounded by t a.s.,
giving Condition (a1) of Theorem 2.9. Since we assume that ν is a probability distribution,
we see that the corresponding stopping time is finite a.s., which implies that is sufficient
to assume that Z is bounded a.s. to get Condition (a2) of Theorem 2.9. If

∑
t∈I tνt < ∞,

then we know that the corresponding stopping time is integrable and therefore Condition
(c3) of Theorem 2.49 is equivalent to Condition (a3) of Theorem 2.9.

Remark 2.50. When using Condition (c3) of Theorem 2.49 note that∑
t∈I

tνt =
∑
t∈I

(1− ν≤t) .

For an I-valued stopping time τ with probability distribution ν both these sums equal E[τ ].

We now want to take a closer look at the relation between V +(ν) as in (2.17) and V as
in (2.5). We know that

V +(ν), V in [V (ν), Ṽ ] ,

with V (ν) as in (2.7) and Ṽ as in (2.34). In the following lemma we will prove, that
V +(ν) ≤ V for every probability distribution on I.

Lemma 2.51. Given a finite discrete time interval I and an adapted process Z ∈ L1(P).
Let U = {Ut}t∈I be the Snell envelope of the process Z and let U = M + A be the Doob
decomposition of U . Then for every probability distribution ν on I, such that M and ν
satisfy one of the conditions of Theorem 2.49, we have

V +(ν) ≤ V .
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Proof. Fix γ ∈Mν
I . By [30, Theorem 1.2.1] U is the smallest supermartingale majorant of

Z. Therefore
E[Zγ ] ≤ E[Uγ ] = E[Mγ ] + E[Aγ ] .

As U is a supermartingale and A0 = 0 by the Doob decomposition, we know that At ≤ 0
for all t ∈ I. This implies that

E[Uγ ] ≤ E[Mγ ] .

Since M and ν satisfy one of the conditions of Theorem 2.49, we have

E[Mγ ] = E[Mτ∗ ] ,

where τ∗ is the optimal stopping time for the American option. The stopping time τ∗ given
by

τ∗ = inf{t ∈ I |Ut = Zt} , (2.52)

is optimal by [30, Theorem 1.3.1], as Uτ∗ = Zτ∗ and the stopped process U τ
∗

is a martingale.
This implies that for this stopping time

E[Mτ∗ ] = E[Uτ∗ ] = E[Zτ∗ ] = V .

Therefore E[Zγ ] ≤ V for every γ ∈Mν
I , which implies V +(ν) ≤ V .

Remark 2.53. The result of Lemma 2.51 is also true on I = N, if the stopping time τ∗

defined in (2.52) is finite a.s.

Remark 2.54. When we also want to use utility functions we have to be careful in the
extended problem. If we want to use a utility function u and we consider only stopping
times, we have

E[u(Zτ )] = E
[∑
t∈I

u(Zt)1{τ=t}

]
,

where we can simply define the new process Z̃t = u(Zt) for t ∈ I. When using adapted
random probability measures, we cannot do this. Then we actually have to compute

E[u(Zγ)] = E
[
u

(∑
t∈I

Ztγt

)]
.

The problem can easily be solved if we assume that we know the expectation and the
variance of Zt and γt as well as their correlation for each t ∈ I. On page 121 of the technical
specifications of LTGA ([35]) or on page 96 of the technical specifications of QIS5 ([47]) for
Solvency II a fixed correlation is assumed between the risks inherent in the life insurance
business and in the financial market. This is a motivation for considering this case in the
following lemma.

Lemma 2.55. Given a totally-ordered countable set I and a process Z with E
[
supt∈I Z

−
t

]
<

∞ or E
[
supt∈I Z

+
t

]
<∞. Assume that for some γ ∈MI and for each t ∈ I the covariance

Cov(Zt, γt) between Zt and γt is known. Then for this γ ∈MI

E[Zγ ] =
∑
t∈I

(
Cov(Zt, γt) + E[Zt]E[γt]

)
.

Remark 2.56. This lemma is also applicable for γ ∈ Mν
I . Then, by Definition 2.12(d) we

have E[γt] = νt for all t ∈ I.
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Proof. Since
Cov(Zt, γt) = E[Ztγt]− E[Zt]E[γt] ,

the result follows from Lemma 2.35.

Remark 2.57. If we assume that the covariances needed in Lemma 2.55 are known and we
consider a subset M ⊂ Mν

I such that the covariance is the same for all γ ∈ M , we can
compute

sup
γ∈M

E[Zγ ] =
∑
t∈I

(
Cov(Zt, γt) + E[Zt] νt

)
.

Remark 2.58. If we assume that for all t ∈ I the correlation ρ(Zt, γt) =: ρ ∈ [−1, 1] is
constant and that it is the same for all γ ∈Mν

I , then we have

sup
γ∈Mν

I

E[Zγ ] =
∑
t∈I

E[Zt] νt + ρ sup
γ∈Mν

I

∑
t∈I

√
Var(Zt)

√
Var(γt) .

2.3 Analysis of Assumptions for the Process Z

As we will show in Lemma 2.59, Lemma 2.60 and Remark 2.63, we have to be careful
concerning the assumptions about the process Z if I is countably infinite, since there are
cases, where the problem is not well-posed.

Lemma 2.59. Let I = N0 and let X be a real-valued random variable. Then there ex-
ists a process {Zt}t∈I ⊂ L∞(Ω,F ,P) and a stopping time τ w.r.t. the filtration Ft =
σ(Z0, . . . , Zt), t ∈ I, such that Zτ = X. In particular, if E[|X|] =∞, then E[|Zτ |] =∞.

Proof. For ω ∈ Ω define the stopping time τ : Ω→ I by

τ(ω) =

{
0 if X(ω) = 0,

t if t− 1 < |X(ω)| ≤ t with t ∈ I,

Consider a process Z defined by Z0(ω) = 1{τ(ω)6=0} and Zt(ω) = X(ω)1{τ(ω)=t} for all t ∈ I,
ω ∈ Ω. Then Zt is bounded by t for every t ∈ I and Zτ = X. Note that {τ = 0} = {Z0 =
0} ∈ F0 and {τ = t} = {Zt 6= 0} ∈ Ft for all t ∈ I, hence τ is a stopping time.

As we show in the following lemma, there can also be problems if the underlying process
is uniformly integrable.

Lemma 2.60. Set I = N0 and let ν be a probability measure on I with νt > 0 for infinitely
many t ∈ I. Then there exists a non-negative process Z = {Zt}t∈I ⊂ L∞(N0,P(N0), ν)
with Eν [Zt]→ 0 as t→∞ (hence Z is uniformly integrable) and a stopping time τ w.r.t.
the filtration Ft = σ(Z0, . . . , Zt), t ∈ I, such that L(τ) = ν and Eν [Zτ ] =∞.

Proof. Define Nt = ]{k ∈ {0, 1, . . . , t}|νk > 0} and M = {t ∈ I |νt > 0}. Furthermore, on
Ω = N0 define

Zt(ω) =

{
1{t}(ω) if t ∈ I \M ,

1
Ntνt

1{t}(ω) if t ∈M ,

and τ(ω) = ω for all ω ∈ Ω. Then {τ = t} = {Zt 6= 0} ∈ Ft for all t ∈ I, hence τ is a
stopping time. Note that

Eν [Zt] =

{
0 if t ∈ I \M ,
1
Nt

if t ∈M ,
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hence Eν [Zt]→ 0 as t→∞ and by monotone convergence, as Eν [Zt1{τ=t}] = Eν [Zt] for all
t ∈ I and by divergence of the harmonic series

Eν [Zτ ] =
∑
t∈I

Eν [Zt1{τ=t}] =
∑
t∈M

1

Nt
=
∑
n∈N

1

n
=∞.

Remark 2.61. We want to note, briefly, why E[|Zt|] → 0 as t → ∞ implies that Z is
uniformly integrable. We need to show that for every ε > 0 there exists an M > 0 such
that E

[
|Zt|1{|Zt|>M}

]
≤ ε for all t ∈ I. For every ε > 0 there exists a tε ∈ I such that

E[|Zt|] ≤ ε for all t ≥ tε in I. Now we only need to show that the condition is satisfied for
Z0, . . . , Ztε . As this is a finite set of integrable random variables, it is uniformly integrable
by [27, Theorem 6.18].

Remark 2.62. One simple condition that can guarantee that the suprema in the computation
of V (ν) and V +(ν) exist is to assume that the process Z is bounded.

Remark 2.63. If the distribution ν of the adapted random probability measure γ ∈Mν
I sat-

isfies some moment condition, then the problem is well-posed if the corresponding moments
of the process Z are bounded. In the proof of Lemma 2.35 we saw that we can exchange
the series and the expectation for non-negative processes. Therefore

E[|Zγ |] = E
[∣∣∣∣∑
t∈I

Ztγt

∣∣∣∣] ≤ E
[∑
t∈I
|Zt|γt

]
=
∑
t∈I

E[|Zt|γt] .

For p, q ∈ (1,∞) with 1
p + 1

q = 1, Hölder’s inequality (see e.g. [27, Theorem 7.16]) implies

∑
t∈I

E[|Zt|γt] ≤
∑
t∈I

p
√
E[|Zt|p] q

√
E[γqt ] .

Since γt ≤ 1 a.s. for all t ∈ I, we have E[γqt ] ≤ E[γt] = νt for all t ∈ I. If
∑

t∈I
q
√
νt < ∞,

then supt∈I ‖Zt‖Lp <∞ implies E[|Zγ |] <∞.
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Chapter 3

Existence of an Optimal Strategy

After the introduction of the problem in the last chapter, an important question is whether
an optimal strategy exists that yields the supremum we want to compute. Again we take
a look at a discrete time interval I. As we will see in this chapter an optimal γ ∈ Mν

I as
in Definition 2.12 and an optimal γ ∈ N ν

I as in Definition 2.23 always exist for a process Z
satisfying E[supt∈I |Zt|] <∞.

In Theorem 2.49 we saw that for a martingale Z and a probability distribution ν satis-
fying one of the conditions of the theorem the value of E[Zγ ] is the same for all γ ∈ Mν

I .
Therefore, all strategies are optimal and we do not have uniqueness. In Chapter 5 we will
see that there are also other types of stochastic processes, for which the optimal strategy
is not unique, e.g. processes with uncorrelated increments.

Now we will show that the set Mν
I is convex and we also want to check whether Mν

I is
compact. For this, we will use results from functional analysis. We therefore have to define
the vector spaces we are working with. In the following we will write down the results in
general, with conjugate Hölder exponents p, p′, q, q′ ∈ [1,∞] with 1

p + 1
q = 1 and 1

p′ +
1
q′ = 1.

The interesting case for our problem will then be p = 1 and p′ =∞.

Again, let I be a countable index set for which we assume that I ⊂ R ∪ {−∞,∞}; this
could, for example, be N0,Z, Q or {0, 1, . . . , T} with T ∈ N0. Let (Ω,F ,P) be a probability
space with a collection of σ-algebras F = {Ft}t∈I . For Theorem 3.2 and Lemma 3.4 they
do not need to form a filtration.

Lemma 3.1. Given γ and γ̃ in Mν
I and a [0, 1]-valued random variable Λ independent

of γ and γ̃, which is Ft-measurable for all t ∈ I. Then also Λγ + (1 − Λ)γ̃ ∈ Mν
I . In

particular the set Mν
I is convex. The same result holds for γ and γ̃ in N ν

I .

Proof. Using Definition 2.12 it is easy to check that for γ and γ̃ in Mν
I we have Λγ + (1−

Λ)γ̃ ∈ Mν
I . Further, if γ and γ̃ satisfy (2.24), then so does Λγ + (1 − Λ)γ̃, which implies

Λγ + (1− Λ)γ̃ ∈ N ν
I .

For p, p′ ∈ [1,∞] we define the vector space Xp,p′ of real-valued F-adapted processes
Z = (Zt)t∈I by

Xp,p′ :=

{
(Zt)t∈I ∈

∏
t∈I

Lp(Ω,Ft,P)

∣∣∣∣‖Z‖Xp,p′ <∞} ,
where

‖Z‖Xp,p′ :=
∥∥‖Z‖lp′∥∥Lp .
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Here ‖·‖lp′ is the p′-norm on the sequence space (I,P(I), η) with power set P(I) and count-
ing measure η, which is taken pathwise of the process Z. Hence ‖Z‖lp′ is a [0,∞]-valued
random variable that is measurable with respect to F∞ := σ(

⋃
t∈I Ft). Then ‖Z‖Xp,p′

denotes the usual p-norm of ‖Z‖lp′ on the Lebesgue space Lp(Ω,F∞,P). For example, if
p ∈ [1,∞) and p′ =∞, this means

‖Z‖Xp,p′ =

(
E
[
sup
t∈I
|Zt|p

])1/p

.

Note that for every t ∈ I the space (Lp(Ω,Ft,P), ‖·‖Lp) is a Banach space, where random
variables are identified if they are P-a.s. equal. With componentwise addition and scalar
multiplication, it follows using Minkowski’s inequality (see e.g. [27, Theorem 7.17]) for the
norms ‖·‖lp′ and ‖·‖Lp , that (Xp,p′ , ‖·‖Xp,p′ ) is a normed vector space. The following lemma
gives completeness.

Theorem 3.2. For every p, p′ ∈ [1,∞], the vector space (Xp,p′ , ‖·‖Xp,p′ ) is a Banach space.

Proof. To prove completeness let (Zn)n∈N be a ‖·‖Xp,p′ -Cauchy sequence. Fix t ∈ I. Since
‖Zt‖Lp ≤ ‖Z‖Xp,p′ for every Z ∈ Xp,p′ , it follows that the t-components (Znt )n∈N form a
‖·‖Lp-Cauchy sequence in Lp(Ω,Ft,P). By completeness (see [51, Theorem 3.11]) there
exists Zt ∈ Lp(Ω,Ft,P) such that ‖Zt − Znt ‖Lp → 0 as n → ∞. Therefore, we have
constructed an adapted process Z = (Zt)t∈I ∈

∏
t∈I L

p(Ω,Ft,P).
Next we will show that the sequence (Zn)n∈N converges to Z also with respect to

‖·‖Xp,p′ . Since I is countable, there exists an increasing sequence (Ik)k∈N of finite index
sets with

⋃
k∈N Ik = I. By monotone convergence ([62, Theorem 5.3]) we have that

‖Z − Zn‖Xp,p′ = lim
k→∞

∥∥∥‖(Zt − Znt )t∈Ik‖lp′(Ik)

∥∥∥
Lp
, n ∈ N, (3.3)

where ‖·‖lp′(Ik) denotes the p′-norm in RIk , taken pathwise of the process with |Ik| compo-

nents. Fix ε > 0. Since (Zn)n∈N is a ‖·‖Xp,p′ -Cauchy sequence, there exists Nε ∈ N such
that ‖Zm − Zn‖Xp,p′ ≤ ε for all m,n ∈ N with m,n ≥ Nε. Fix k, n ∈ N with n ≥ Nε.
Since ‖Zt − Zmt ‖Lp → 0 as m → ∞ for every t in the finite set Ik, we may iteratively find
a subsequence (ml)l∈N with ml ≥ Nε for all l ∈ N such that (Zmlt )l∈N converges a.s. to Zt
for every t ∈ Ik. Then Fatou’s lemma ([62, Section 5.4]) and Ik ⊂ I imply that∥∥∥‖(Zt − Znt )t∈Ik‖lp′(Ik)

∥∥∥
Lp
≤ lim inf

l→∞

∥∥∥‖(Zmlt − Znt )t∈Ik‖lp′(Ik)

∥∥∥
Lp

≤ lim inf
l→∞

‖Zml − Zn‖Xp,p′ ≤ ε .

Combination with (3.3) shows that ‖Z − Zn‖Xp,p′ ≤ ε for all n ≥ Nε. We also have
Z ∈ Xp,p′ , because Z = (Z − Zn) + Zn, where (Z − Zn) and Zn are both elements of the
vector space Xp,p′

Denote the topological dual space of (Xp,p′ , ‖ · ‖Xp,p′ ) by X∗p,p′ with operator norm
‖φ‖X∗

p,p′
:= sup{|φ(Z)| |Z ∈ Xp,p′ , ‖Z‖Xp,p′ ≤ 1} for φ ∈ X∗p,p′ . (X∗p,p′ , ‖ · ‖X∗p,p′ ) is a Banach

space by [50, Theorem 4.1].
Note that for p ∈ [1,∞) the space (Lq(Ω,Ft,P), ‖·‖Lq) = (Lp(Ω,Ft,P), ‖·‖Lp)∗ is a

Banach space for every t ∈ I, where random variables are identified if they are P-a.s. equal.
This is proven, for example, in [51, Theorem 6.16]. The dual space of (Lp(Ω,Ft,P), ‖·‖Lp)
for the case p =∞ is discussed in [52, 29.31(c)].
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Lemma 3.4. For p, p′ ∈ [1,∞] let q, q′ ∈ [1,∞] denote the conjugate Hölder exponents.

(a) For every γ = (γt)t∈I ∈ Xq,q′ the map Φγ : Xp,p′ → R defined by

Φγ(Z) := E
[∑
t∈I

Ztγt

]
, Z = (Zt)t∈I ∈ Xp,p′ (3.5)

is a well-defined element of (X∗p,p′ , ‖ · ‖X∗p,p′ ) and satisfies ‖Φγ‖X∗
p,p′
≤ ‖γ‖Xq,q′ .

(b) Fix p′ =∞. For q ∈ (1,∞) consider the set

X̂q,q′ :=
{
γ ∈ Xq,q′

∣∣‖γ‖lq′ is Ft-measurable for all t ∈ I
}
.

The map T : X̂q,q′ → X∗p,p′ with T (γ) := Φγ for every γ ∈ X̂q,q′ is a homogeneous,

isometric embedding of (X̂q,q′ , ‖ · ‖Xq,q′ ) into (X∗p,p′ , ‖ · ‖X∗p,p′ ).

(c) For p = p′ in (1,∞] the map T : Xq,q′ → X∗p,p′ with T (γ) := Φγ for every γ ∈ Xq,q′ is
a linear, isometric embedding of (Xq,q′ , ‖ · ‖Xq,q′ ) into (X∗p,p′ , ‖ · ‖X∗p,p′ ).

Remark 3.6. Note that Mν
I ⊂ X̂q,1, as ‖γ‖l1 = 1 a.s. for all γ ∈Mν

I by Definition 2.12(b).

Proof. (a) For every γ ∈ Xq,q′ , using Jensen’s (see e.g. [62, Theorem 6.6] or [27, Theorem
7.9]) and Hölder’s inequality (see e.g. [27, Theorem 7.16]), we have for all Z ∈ Xp,p′∣∣∣∣E[∑

t∈I
Ztγt

]∣∣∣∣ ≤ E
[∑
t∈I
|Ztγt|

]
≤ E

[
‖Z‖lp′‖γ‖lq′

]
≤ ‖Z‖Xp,p′‖γ‖Xq,q′ <∞ , (3.7)

hence Φγ as defined in (3.5) is a bounded linear functional, which implies that it is con-
tinuous. Therefore, it is a well-defined element of (X∗p,p′ , ‖ · ‖X∗p,p′ ) for every γ ∈ Xq,q′ . By

(3.7) and the definition of the operator norm ‖Φγ‖X∗
p,p′
≤ ‖γ‖Xq,q′ .

(b) Due to (a) it remains to prove that ‖Φγ‖X∗
p,p′
≥ ‖γ‖Xq,q′ for all γ ∈ X̂q,q′ .

As p′ = ∞, we have q′ = 1. Consider the process Z defined by Zt := ‖γ‖q−1
l1

sign(γt)

for t ∈ I. Then Z ∈
∏
t∈I L

p(Ω,Ft,P) as γ ∈ X̂q,q′ . We get ‖Z‖l∞ = ‖γ‖q−1
l1

. Then, as
(q − 1)p = q,

‖Z‖Xp,p′ =
∥∥‖γ‖q−1

l1

∥∥
Lp

=
∥∥‖γ‖(q−1)p/q

l1

∥∥q/p
Lq

=
∥∥‖γ‖l1∥∥q/pLq = ‖γ‖q/pXq,q′ <∞ .

Further

Φγ(Z) = E
[
‖γ‖q−1

l1

∑
t∈I
|γt|
]

=
∥∥‖γ‖q

l1

∥∥
L1 =

∥∥‖γ‖q/q
l1

∥∥q
Lq

= ‖γ‖qXq,q′ ,

while on the other hand
|Φγ(Z)| ≤ ‖Φγ‖X∗

p,p′
‖Z‖Xp,p′ .

Altogether

‖γ‖qXq,q′ ≤ ‖Φγ‖X∗
p,p′
‖γ‖q/pXq,q′ .

Therefore ‖γ‖Xq,q′ ≤ ‖Φγ‖X∗
p,p′

.

(c) Due to (a) it remains to prove that ‖Φγ‖X∗
p,p′
≥ ‖γ‖Xq,q′ for all γ ∈ Xq,q′ .
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Chapter 3. Existence of an Optimal Strategy

We first assume p = p′ in (1,∞), which implies q = q′ in (1,∞). Consider the process
Z defined by Zt := |γt|q−1sign(γt) for t ∈ I. Then, as (q − 1)p′ = q,

‖Z‖Xp,p′ =

∥∥∥∥(∑
t∈I
|γt|q

)1/p′∥∥∥∥
Lp

=
∥∥‖γ‖(q/p′)(p/q)lq

∥∥q/p
Lq

=
∥∥‖γ‖lq′∥∥q/pLq = ‖γ‖q/pXq,q′ <∞ .

Further

Φγ(Z) = E
[∑
t∈I
|γt|q

]
=
∥∥‖γ‖q

lq′

∥∥
L1 =

∥∥‖γ‖q/q
lq′

∥∥q
Lq

= ‖γ‖qXq,q′ ,

which implies, similarly to the proof of (b), ‖γ‖Xq,q′ ≤ ‖Φγ‖X∗
p,p′

.

Now assume p = p′ = ∞ and consider the process Z defined by Zt = sign(γt) for all
t ∈ I. Then

‖Z‖Xp,p′ =
∥∥‖Z‖l∞∥∥L∞ ≤ ‖1‖L∞ ≤ 1 .

Further

Φγ(Z) = E
[∑
t∈I
|γt|
]

=
∥∥‖γ‖l1∥∥L1 = ‖γ‖Xq,q′ .

Therefore

‖γ‖Xq,q′ = |Φγ(Z)| ≤ ‖Φγ‖X∗
p,p′
‖Z‖Xp,p′ ≤ ‖Φγ‖X∗

p,p′
.

Define

Vp,p′ := {Z ∈ Xp,p′ |‖Z‖Xp,p′ ≤ 1} .

By the theorem of Banach–Alaoglu (see e.g. [50, Theorem 3.15]), we have that the polar
set

Kq,q′ :=
{
φ ∈ X∗p,p′

∣∣ |φ(Z)| ≤ 1 for all Z ∈ Vp,p′
}

is weak-∗-compact.

Lemma 3.8. Consider q, q′ ∈ [1,∞] with q 6= 1. The set {Φγ}γ∈Mν
I

is contained in Kq,q′

and weak-∗-compact.

Proof. {Φγ}γ∈Mν
I

is a subset of Kq,q′ , because ‖Φγ‖X∗
p,p′
≤ ‖γ‖Xq,q′ by Lemma 3.4(a) and

‖γ‖Xq,q′ ≤ 1 for every γ ∈Mν
I , as for q′ ∈ [1,∞)

‖γ‖Xq,q′ =
∥∥‖γ‖lq′∥∥Lq =

∥∥∥∥(∑
t∈I

γq
′

t

)1/q′∥∥∥∥
Lq
≤
∥∥∥∥(∑

t∈I
γt

)1/q′∥∥∥∥
Lq

= 1 .

and for q′ =∞
‖γ‖l∞ = sup

t∈I
|γt| ≤ 1 .

In several steps we will now show that it is also weak-∗-closed, which implies that it is
weak-∗-compact by [48, Chapter IV.3, p. 99]. For this we consider Ψ ∈ X∗p,p′ , which is in
the weak-∗-closure of {Φγ}γ∈Mν

I
and prove Ψ ∈ {Φγ}γ∈Mν

I
by proving that there exists a

γ̃ ∈Mν
I such that Ψ = Φγ̃ .
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(a) Existence of γ̃. Fix t ∈ I and define Ψt: L
p(Ω,Ft,P) → R by Ψt(Zt) = Ψ(Z(t)) for

all Zt ∈ Lp(Ω,Ft,P), where Z(t) ∈ Xp,p′ is given by

Z(t)
s =

{
Zt for s = t,

0 for s ∈ I \ {t}.
(3.9)

The functional Ψt is linear and

|Ψt(Zt)| = |Ψ(Z(t))| ≤ ‖Ψ‖X∗
p,p′
‖Z(t)‖Xp,p′ = ‖Ψ‖X∗

p,p′
‖Zt‖Lp ,

hence Ψt ∈ (Lp(Ω,Ft,P))∗. By [51, Theorem 6.16] there exists a γ̃t ∈ Lq(Ω,Ft,P)
with Ψt(Zt) = E[γ̃tZt] for all Zt ∈ Lp(Ω,Ft,P). Hence we have γ̃ = (γ̃t)t∈I ∈∏
t∈I L

q(Ω,Ft,P).

(b) Distribution of γ̃. For t ∈ I define Zt = 1Ω and Z(t) via (3.9). Then Φγ(Z(t)) =
E[γt] = νt for every γ ∈Mν

I , hence E[γ̃t] = Ψ(Z(t)) = νt.

(c) γ̃ is non-negative. Fix t ∈ I. Define A = {γ̃t < 0} and note that Zt := 1A ∈
Lp(Ω,Ft,P). Define Z(t) via (3.9). For every γ ∈Mν

I we have Φγ(Z(t)) = E[γt1A] ≥ 0,
hence 0 ≤ Ψ(Z(t)) = Φγ̃(Z(t)) = E[γ̃t1A]. This implies P(A) = 0.

(d) γ̃ is a probability measure. Consider an increasing sequence (In)n∈N of finite index
sets with

⋃
n∈N In = I. Define ZΩ,n ∈ Xp,p′ by ZΩ,n

s = 1Ω for all s ∈ In and ZΩ,n
s = 0

for all s ∈ I \ In. Since for all γ ∈Mν
I

Φγ(ZΩ,n) = E
[∑
t∈In

γt

]
=
∑
t∈In

νt ≤ 1 ,

we have Ψ(ZΩ,n) =
∑

t∈In νt, hence

E
[∑
t∈In

γ̃t

]
= Φγ̃(ZΩ,n) = Ψ(ZΩ,n) =

∑
t∈In

νt ↗
∑
t∈I

νt = 1 as n→∞.

Further, by monotone convergence,

E
[∑
t∈In

γ̃t

]
↗ E

[∑
t∈I

γ̃t

]
as n→∞.

Therefore E
[∑

t∈I γ̃t
]

= 1.

Define A = {
∑

t∈I γ̃t > 1} ∈ σ(
⋃
t∈I Ft). Further, set An = {

∑
t∈In γ̃t > 1} ∈

σ(
⋃
t∈I Ft). Then A =

⋃
n∈NAn. For n ∈ N consider the processes ZAn with ZAnt =

E[1An |Ft] for all t ∈ In and ZAnt = 0 for all t ∈ I \ In. For every γ ∈Mν
I ,

Φγ(ZAn) =
∑
t∈In

E[E[1An |Ft] γt] =
∑
t∈In

E[1Anγt] ≤ E
[
1An

∑
t∈I

γt

]
= P(An) ,

where the sum and the expected value can be exchanged due to monotone convergence.
Therefore, Ψ(ZAn) ≤ P(An). By the same calculation

E
[
1An

∑
t∈In

γ̃t

]
= Φγ̃(ZAn) = Ψ(ZAn) ≤ P(An) ,
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which implies P(An) = 0. Then A is a countable union of null sets, which implies
P(A) = 0. Hence ∑

t∈I
γ̃t

a.s.
= 1 .

(e) Ψ(Z) = Φγ̃(Z) for all Z ∈ Xp,p′. Consider Z ∈ Xp,p′ and ε > 0. We have
that Φγ̃(Z) is well-defined by Lemma 3.4(a), as the above steps show that γ̃ ∈ Mν

I .
As Z ∈ Xp,p′ we have Z∗ := supt∈I |Zt| ∈ Lp(Ω,F ,P) ⊂ L1(Ω,F ,P). Therefore, by
dominated convergence an M > 0 exists such that E

[
Z∗1{Z∗>M}

]
≤ ε. Further there

exists a finite set J ⊂ I such that
∑

t∈I\J νt ≤
ε
M . Define the process ZJ ∈ Xp,p′ by

ZJt =

{
0 for t ∈ J ,

Zt for t ∈ I \ J .

Then for every γ ∈Mν
I

|Φγ(ZJ)| ≤ E
[
Z∗

∑
t∈I\J

γt

]
≤ E

[
(M1{Z∗≤M} + Z∗1{Z∗>M})

∑
t∈I\J

γt

]

≤M E
[ ∑
t∈I\J

γt

]
+ E

[
Z∗1{Z∗>M}

]
≤ 2ε .

Then also |Ψ(ZJ)| ≤ 2ε. By the construction of γ̃ in (a) and linearity of Ψ

Ψ(Z − ZJ) = Φγ̃(Z − ZJ) .

Then

|Ψ(Z)− Φγ̃(Z)| ≤ |Ψ(Z − ZJ)− Φγ̃(Z − ZJ)|+ |Ψ(ZJ)|+ |Φγ̃(ZJ)| ≤ 4ε .

Therefore Ψ(Z) = Φγ̃(Z).

By (a) and (e) we see that an adapted process γ̃ exists with Ψ(Z) = Φγ̃(Z) for all Z ∈ Xp,p′ ,
while by (b), (c) and (d) we see that γ̃ ∈Mν

I .

Theorem 3.10. For p, p′ ∈ [1,∞] with p 6= ∞ and Z ∈ Xp,p′ there always exists an
optimal adapted random probability measure γ∗ ∈Mν

I solving

sup
γ∈Mν

I

E[Zγ ] = E[Zγ∗ ] .

Remark 3.11. Note that for the unrestricted optimization problem over γ ∈MI or τ ∈ TI ,
a corresponding optimal γ∗ or τ∗, respectively, might not exist. Consider for example the
deterministic process Z = {Zn}n∈N defined by Zn = 1− 1

n for n ∈ N.

Proof. We can rewrite the problem for every Z ∈ Xp,p′ by

sup
γ∈Mν

I

E[Zγ ] = sup
γ∈Mν

I

Φγ(Z) = sup
φ∈{Φγ}γ∈Mν

I

φ(Z) .
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As {Φγ}γ∈Mν
I

is weak-∗-compact by Lemma 3.8 and Mν
I is not empty by Remark 2.20,

there exists a γ∗ ∈Mν
I such that

sup
φ∈{Φγ}γ∈Mν

I

φ(Z) = Φγ∗(Z) ,

as every continuous function on a non-empty compact set attains its supremum on this set
(see e.g. [58, Theorem 4.5.3] for topological spaces or [48, Chapter IV.3, p. 99] for compact
sets that are Hausdorff).

Corollary 3.12. For p ∈ [1,∞) and Z ∈ Xp,∞ there always exists an optimal γ∗ ∈ N ν
I ,

with N ν
I as in Definition 2.23, solving

sup
γ∈N νI

E[Zγ ] = E[Zγ∗ ] .

Proof. By Lemma 3.8 we know that {Φγ}γ∈Mν
I

is weak-∗-closed. By Remark 2.27 we know
that N ν

I 6= ∅. Similar to the proof of Lemma 3.8 we take a look at Ψ in the closure of
{Φγ}γ∈N νI and repeat the steps of that proof. By Lemma 3.8 we know that a γ̃ ∈Mν

I exists
such that Ψ = Φγ̃ . Last but not least we have to show that γ̃ satisfies condition (2.24) of
Definition 2.23 of the set N ν

I . For this we need to show that, for every t ∈ I and A ∈ Fs
with s < t in I,

E[γ̃t1A] =

{
νt

1−ν≤s E[(1− γ̃≤s)1A] if ν≤s < 1,

0 otherwise.

For s < t in I with ν≤s < 1 and A ∈ Fs define the process ZA,s,t by

ZA,s,tn =


1A for n = t,

νt
1−ν≤s E[1A |Fn] for n ∈ I≤s,

0 otherwise.

For every γ ∈ N ν
I we have that

Φγ(ZA,s,t) =
νt P(A)

1− ν≤s
,

which implies that

Ψ(ZA,s,t) =
νt P(A)

1− ν≤s
.

On the other hand,

Ψ(ZA,s,t) =
∑
n∈I≤s

νt
1− ν≤s

E[E[1A |Fn] γ̃n] + E[γ̃t1A] =
∑
n∈I≤s

νt
1− ν≤s

E[γ̃n1A] + E[γ̃t1A] .

Therefore

E[γ̃t1A] =
νt P(A)

1− ν≤s
−
∑
n∈I≤s

νt
1− ν≤s

E[1Aγ̃n] =
νt

1− ν≤s
E[1A(1− γ̃≤s)] .

For s < t in I with ν≤s = 1 and A ∈ Fs we set Zt := 1A and define Z(t) via (3.9). Then
Φγ(Z(t)) = 0 for all γ ∈ N ν

I . This implies Ψ(Z(t)) = E[γ̃t1A] = 0.
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Chapter 4

Some Bounds

In Chapter 2 we already derived some first bounds for our problem. In this chapter we
will present more upper and lower bounds. These might be useful for finding optimal
strategies or for estimating the values for those types of processes for which we cannot find
an optimal stopping time or an optimal adapted random probability measure, respectively.
The chapter is divided into four sections. First Section 4.1 gives general results about the
expected shortfall and the conditional expected shortfall, which will be useful for finding
upper bounds in the following sections. Section 4.2 focuses on bounds that are valid for
general processes Z. Some of the bounds presented in that section take the distribution ν of
the stopping time τ ∈ T νI or the adapted random probability measure γ ∈Mν

I into account,
while others do not. In Section 4.3 bounds for special types of processes are derived. In
Section 4.4 some examples of stochastic processes are considered for which different bounds
are computed. This helps to compare the bounds. As shown in some examples, which of the
bounds presented is best depends on the situation. Within this chapter we again consider
discrete time intervals I, which are finite or countably infinite, and adapted stochastic
processes Z = {Zt}t∈I with Z ∈ L1(P).

We now state an obvious observation, which gives a sufficient criterion for the optimality
of some γ ∈MI .

Lemma 4.1. Given a totally-ordered countable discrete time interval I, a probability dis-
tribution ν on I and an adapted process Z = {Zt}t∈I ⊂ L1(P). If a strategy γ∗ ∈ MI

exists such that E[Zγ∗ ] equals the value of an upper bound, then γ∗ is optimal.

Remark 4.2. Note that the optimal strategy γ∗ yielding the value of an upper bound may
not be unique and that the result also holds for stopping times τ ∈ T νI 6= ∅ or adapted
random probability measures γ ∈Mν

I or γ ∈ N ν
I .

4.1 Expected Shortfall and Conditional Expected Shortfall

In this section we will make a short excursion into the realm of expected shortfall and con-
ditional expected shortfall. Subsection 4.1.1 will concentrate on results about the expected
shortfall, which may be quite technical, but useful for deriving upper bounds. Subsec-
tion 4.1.2 deals with the definition of the conditional expected shortfall and its properties.
The results of Subsection 4.1.2 may not be particularly important for later chapters, but
they are of mathematical interest and give a nice generalization of the results of the expected
shortfall.
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4.1.1 Notes on the Expected Shortfall

In this subsection we will state the definitions of quantiles and the expected shortfall, as
they will be used later on. The result of Lemma 4.6 will be especially useful for deriving
upper bounds.

Definition 4.3. Given a random variable X: Ω→ R and δ ∈ [0, 1].

(a) Define the δ-quantile of X by

qδ(X) := inf{x ∈ R |P(X ≤ x) ≥ δ} .

Note that q0(X) = −∞ and if P(X ≤ x) < 1 for all x ∈ R, then q1(X) =∞.

(b) Define fδ,X : Ω→ [0, 1] by

fδ,X :=

{
0 if δ = 1,

1{X>qδ(X)} + βδ,X1{X=qδ(X)} if δ ∈ [0, 1),

where

βδ,X :=

{P(X≤qδ(X))− δ
P(X=qδ(X))

if P (X = qδ(X)) > 0 ,

0 otherwise .

(c) The expected shortfall of X at level δ is given by (1 − δ) ESδ(X) = E[fδ,XX]. Note
that ES0(X) = E[X] and ES1(X) = 0 as β1,X = f1,X = 0.

Remarks 4.4. (a) Note that βδ,X ∈ [0, 1], because

P(X < qδ(X)) ≤ δ ≤ P(X ≤ qδ(X)) .

Therefore fδ,X is [0, 1]-valued.

(b) For δ ∈ [0, 1] we have E[fδ,X ] = 1− δ. This is due to the fact that for δ ∈ [0, 1)

E[fδ,X ] = P(X > qδ(X)) + βδ,XP(X = qδ(X)) .

Remark 4.5. Such a representation of the expected shortfall is for example used in [54]. The
definition used in [3] amounts to a similar representation. Note that there are several repre-
sentations for the expected shortfall and also different names for it, for example conditional
value-at-risk. [38, Chapter 2.2.4] or [23, Chapter 5.6] discuss different representations and
names for the expected shortfall.

Lemma 4.6. Let X and Y be real-valued random variables, δ ∈ [0, 1]. Assume X ≥ 0,
E[X] <∞ and E[|Y |] <∞. Define

FXδ,Y :=
{
f : Ω→ [0, 1]

∣∣f measurable, E[fX] = E[fδ,YX]
}
.

Then the following holds:

(a) E[fδ,YXY ] is well-defined and

sup
f∈FXδ,Y

E[fXY ] = E[fδ,YXY ] .
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(b) If f∗ ∈ FXδ,Y satisfies E[f∗XY ] = E[fδ,YXY ] < ∞, then f∗
a.s.
= fδ,Y on {X > 0, Y 6=

qδ(Y )}.

(c) If X and fδ,Y Y are uncorrelated, then

E[fδ,YXY ] = E[X]E[fδ,Y Y ] = (1− δ)E[X] ESδ(Y ) .

Remark 4.7. Note that X and fδ,Y Y are uncorrelated, if X and Y are independent.

Proof. (a) E[fδ,YXY ] is well-defined, because (fδ,YXY )− = X(fδ,Y Y )− ≤ X min{0, qδ(Y )}
as X ≥ 0 and X is integrable. Assume δ ∈ (0, 1). By Remark 4.4(a) fδ,Y is [0, 1]-valued. If
E[fδ,YXY ] =∞, the result follows trivially, as fδ,Y ∈ FXδ,Y .

Assume f ∈ FXδ,Y with E[fXY −] <∞ and E[fδ,YXY ] <∞. As E[(f − fδ,Y )Xqδ(Y )] =
0, we get

E[fXY ]− E[fδ,YXY ] = E[(f − fδ,Y )X(Y − qδ(Y ))]

= E[(f − fδ,Y )︸ ︷︷ ︸
≤0

X (Y − qδ(Y ))︸ ︷︷ ︸
>0

1{Y >qδ(Y )}]

+ E[(f − fδ,Y )︸ ︷︷ ︸
≥0

X (Y − qδ(Y ))︸ ︷︷ ︸
<0

1{Y <qδ(Y )}] ≤ 0 .

If δ = 0, we have fδ,Y = 1. Therefore f = 1 for all f ∈ FXδ,Y . If δ = 1, then fδ,Y = 0, which

implies f = 0 for all f ∈ FXδ,Y .

(b) Assume there exists a f∗ ∈ FXδ,Y , such that E[f∗XY ] = E[fδ,YXY ] < ∞. Then by
the above calculations P(f∗ < fδ,Y , X > 0, Y > qδ(Y )) = 0 and P(f∗ > fδ,Y , X > 0, Y <

qδ(Y )) = 0. Therefore f∗
a.s.
= fδ,Y on {X > 0, Y 6= qδ(Y )}.

(c) follows from the definition of correlation.

4.1.2 Notes on the Conditional Expected Shortfall

In this subsection we introduce conditional quantiles and the conditional expected shortfall.
We also discuss some properties of the conditional expected shortfall and show some results
for it. For the definition of conditional quantiles and the conditional expected shortfall we
will need to use the essential supremum and the essential infimum, for which we refer to [19,
Chapter I.3] or [14, Chapter A.5]. In addition, we use a general version of the conditional
expectation, where this conditional expectation is defined for random variables that are
σ-integrable with respect to the σ-algebra on which the expected value is conditioned. For
this definition of the conditional expected value we refer to [19, Chapter I.4].

Definition 4.8. Consider a random variable X: Ω → R and a sub-σ-algebra G ⊂ F .
Define XG as the G-measurable upper envelope of X, i.e. as the essential infimum of all
G-measurable random variables Y : Ω→ R ∪ {∞} satisfying P(Y ≥ X) = 1.

The notion of a G-measurable upper envelope is also used, for example, in [16].

Remarks 4.9. (a) We can show that XG is G-measurable and satisfies XG ≥ X a.s. For
this let ΦG(X) be the set of all G-measurable random variables, which are greater than
or equal to X almost surely. For Y and Ỹ in ΦG(X), we have min{Y, Ỹ } ∈ ΦG(X).
Therefore we can apply [14, Theorem A.33(b)]. Consider a sequence Yn ↘ Y for n→∞
with Yn ∈ ΦG(X) for all n ∈ N. Then for every n ∈ N and some null set Nn we have
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Yn(ω) ≥ X(ω) for all ω ∈ Ω \ Nn. Set N =
⋃
n∈NNn. Then N is a null set and for

all n ∈ N we have Yn(ω) ≥ X(ω) for all ω ∈ Ω \ N . Therefore Y (ω) ≥ X(ω) for all
ω ∈ Ω \ N , which means P(Y ≥ X) = 1. This implies that XG ∈ ΦG(X), as we can
represent the essential infimum as the limit of elements of the set by [14, Theorem
A.33(b)].

(b) For H ⊂ G ⊂ F we have XG ≤ XH almost surely, because in the notation used above
we have ΦH(X) ⊂ ΦG(X).

(c) If X is G-measurable, then XG = X almost surely.

(d) For two random variables X and Y we have (X+Y )G ≤ XG+Y G a.s., because X ≤ XG
a.s. and Y ≤ Y G a.s. imply X +Y ≤ XG +Y G a.s. Therefore (XG +Y G) ∈ ΦG(X +Y ).

(e) For two random variables X and Y we have (XY )G ≤ XGY G a.s., because X ≤ XG

a.s. and Y ≤ Y G a.s. imply XY ≤ XGY G a.s. Therefore (XGY G) ∈ ΦG(XY ).

(f) For two random variables X and Y , where Y is G-measurable, we have (X + Y )G =
XG+Y a.s., because (X+Y )G ≤ XG+Y G = XG+Y a.s. by (d) and (c). On the other
hand ((X + Y )G − Y ) ∈ ΦG(X), which implies XG ≤ (X + Y )G − Y a.s.

(g) For two random variables X and Y , where Y > 0 is G-measurable, we have (XY )G =
XGY a.s., because (XY )G ≤ XGY G = XGY a.s. by (e) and (c). On the other hand
((XY )G/Y ) ∈ ΦG(X), which implies XG ≤ (XY )G/Y a.s.

Definition 4.10. Consider a random variable X: Ω → R, a sub-σ-algebra G ⊂ F and
δ ∈ [0, 1]. Define the δ-quantile qG,δ(X) of X given G as the essential infimum of all
G-measurable random variables Y : Ω→ R∪{∞} satisfying P(Y ≥ X |G) ≥ δ almost surely.

Remarks 4.11. (a) In the definition of the conditional quantile in Definition 4.10, note that
qG,0(X) = −∞ and that qG,1(X)

a.s.
= XG .

(b) The conditional δ-quantile qG,δ(X) is G-measurable and satisfies P(qG,δ(X) ≥ X |G) ≥ δ
almost surely. To prove this, let ΦG,δ(X) be the set of all G-measurable random variables
Y satisfying P(Y ≥ X |G) ≥ δ almost surely. For a random variable Y ∈ ΦG,δ(X) we
have for every G ∈ G

E
[
1{Y≥X}1G

]
≥ δ E[1G] = δ P(G) .

Note that for Y, Ỹ ∈ ΦG,δ we have {Y ≥ Ỹ } ∈ G and that

{min{Y, Ỹ } ≥ X} = {Y ≥ X} ∩ {Ỹ ≥ X} .

Then

E
[
1{min{Y,Ỹ }≥X}1G

]
= E

[
1{Y≥X}1{Ỹ≥X}1G

]
= E

[
1{Y≥X}1{Ỹ≥X}1{Y≥Ỹ }1G

]
+ E

[
1{Y≥X}1{Ỹ≥X}1{Y <Ỹ }1G

]
≥ δ P({Y ≥ Ỹ } ∩G) + δ P({Y < Ỹ } ∩G) = δ P(G) .

Therefore min{Y, Ỹ } ∈ ΦG,δ(X). Again we can apply [14, Theorem A.33(b)]. Consider
a sequence Yn ↘ Y for n→∞ with Yn ∈ ΦG,δ(X) for all n ∈ N. Then for every n ∈ N

E
[
1{Yn≥X}1G

]
≥ δ P(G) .
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We have 1{Yn≥X} ↘ 1{Y≥X} as {Y ≥ X} =
⋂
n∈N{Yn ≥ X}. Therefore for n→∞

E
[
1{Yn≥X}1G

]
↘ E

[
1{Y≥X}1G

]
≥ δ P(G) .

(c) For δ ≤ δ′ we have qG,δ(X) ≤ qG,δ′(X) almost surely.

Definition 4.12. Consider a random variable X: Ω → R, a sub-σ-algebra G ⊂ F and
δ ∈ [0, 1]. Define fG,δ,X : Ω→ [0, 1] by

fG,δ,X := 1{X>qG,δ(X)} + βG,δ,X1{X=qG,δ(X)},

where βG,δ,X : Ω→ [0, 1] is a G-measurable random variable satisfying a.s.

βG,δ,X =


P(X≤qG,δ(X) |G)− δ
P(X=qG,δ(X) |G)

on the event
{
P
(
X = qG,δ(X)

∣∣G) > 0
}
,

0 otherwise .

Remarks 4.13. (a) Note that βG,δ,X ∈ [0, 1] a.s., because

P(X < qG,δ(X) |G) ≤ δ ≤ P(X ≤ qG,δ(X) |G) a.s.

Therefore fG,δ,X is [0, 1]-valued a.s.

(b) For δ ∈ [0, 1] we have E[fG,δ,X |G ] = 1 − δ almost surely. For δ ∈ [0, 1) this is due to
the fact that

E[fG,δ,X |G ]
a.s.
= P(X > qG,δ(X) |G) + βG,δ,XP(X = qG,δ(X) |G) .

For δ = 1 we have {X > qG,δ(X)} = ∅ a.s. and βG,δ,X = 0 a.s.

Definition 4.14. Consider a random variable X: Ω → R, a sub-σ-algebra G ⊂ F and
δ ∈ [0, 1]. The conditional expected shortfall of X at level δ given G is defined by

ESδ(X |G) =


XG if δ = 1,

1
1−δ E[fG,δ,XX |G ] if δ ∈ (0, 1).

ess infδ′∈(0,1)
1

1−δ′ E
[
fG,δ′,XX |G

]
if δ = 0.

Remark 4.15. (a) If X is a G-measurable random variable, then ESδ(X |G) = X almost
surely. For δ ∈ (0, 1) this follows either from Lemma 4.22(b) or Definition 4.14, [19,
Theorem 1.21] and Remark 4.13(b). For δ = 1 this result follows from Remark 4.9(c)
and for δ = 0 this follows from the result for δ ∈ (0, 1) and from the representation of
ES0(X |G) in Definition 4.14.

(b) In Definition 4.14, we have that (fG,δ,XX)− is σ-integrable with respect to G, because
fG,δ,XX ≥ min{0, qG,δ(X)} a.s., where min{0, qG,δ(X)} =: X̃ is G-measurable. There-
fore Ωn = {|X̃| ≤ n} ∈ G for all n ∈ N and Ωn ↗ Ω for n → ∞. Then for every
n ∈ N we have E[(fG,δ,XX)−1Ωn ] ≤ E[X̃1Ωn ] ≤ n, which implies that (fG,δ,XX)− is
σ-integrable with respect to G. For the definition of σ-integrability with respect to G
we refer to [19, Definition 1.15]. For a non-negative random variable X ≥ 0 we can
write E[X |G ] = ess supn∈N E[min{X,n}|G ] a.s., where for every n ∈ N the random
variable min{X,n} is σ-integrable with respect to G, as it is even integrable.
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Remark 4.16. By setting G trivial, i.e. we assume P(G) ∈ {0, 1} for all G ∈ G, and δ ∈ (0, 1)
this amounts to the standard definitions of the δ-quantile and the expected shortfall, as in
Subsection 4.1.1.

Remark 4.17. The conditional expected shortfall for random variables is used, for example,
in [37], where for continuous distribution functions the representation there equals the
representation of Definition 4.14. In [38] different methods for measuring market risk in
both conditional and unconditional cases are discussed. [44] and [33] also discuss how a
conditional expected shortfall can be estimated. In [11] conditional convex risk measures
and their representation in terms of conditional expectation are discussed. In [2, Example
1.10] it is noted that the conditional expected shortfall is a coherent risk measure. This
will also be shown in Lemma 4.22 using the representation of Definition 4.14.

Lemma 4.18. Given a probability space (Ω,F ,P) and a sub-σ-algebra G ⊂ F . The condi-
tional quantile of Definition 4.10 at level δ ∈ [0, 1] has, for all real-valued random variables
X and all G-measurable random variables Z, the following properties:

(a) qG,δ(X + Z) = qG,δ(X) + Z almost surely.

(b) If further Z > 0, then qG,δ(XZ) = qG,δ(X)Z almost surely.

Proof. Using the notation of Remark 4.11(b) we have (qG,δ(X) + Z) ∈ ΦG,δ(X + Z), as
(qG,δ(X) +Z) is G-measurable and P((qG,δ(X) +Z) ≥ X +Z |G) = P(qG,δ(X) ≥ X |G) ≥ δ.
Therefore qG,δ(X + Z) ≤ (qG,δ(X) + Z) a.s.

On the other hand (qG,δ(X +Z)−Z) ∈ ΦG,δ(X), as (qG,δ(X +Z)−Z) is G-measurable
and P((qG,δ(X + Z)− Z) ≥ X |G) = P(qG,δ(X + Z) ≥ X + Z |G) ≥ δ. Therefore qG,δ(X) ≤
(qG,δ(X + Z)− Z) a.s.

Altogether qG,δ(X + Z)
a.s.
= qG,δ(X) + Z.

For δ = 0 we have qG,δ(Z + X) = qG,δ(X) = −∞. For δ = 1 the result follows from
Remark 4.9(f).

Similarly qG,δ(ZX) = ZqG,δ(X) almost surely for Z > 0, using Remark 4.9(g) for δ =
1.

Lemma 4.19. Let X and Y be real-valued random variables, G ⊂ F a sub-σ-algebra, and
δ ∈ [0, 1]. Assume that X ≥ 0 and that X and Y are σ-integrable with respect to G. Define

FXG,δ,Y :=
{
f : Ω→ [0, 1]

∣∣ f is F-measurable, E[fX |G ]
a.s.
= E[fG,δ,YX |G ]

}
.

Then the following holds:

(a) E[fG,δ,YXY |G ] is a well-defined random variable with values in R∪{∞} (for δ = 0 we
further need to assume that XY is σ-integrable w.r.t. G) and

ess sup
f∈FXG,δ,Y

E[fXY |G ]
a.s.
= E[fG,δ,YXY |G ] .

(b) If f∗ ∈ FXG,δ,Y satisfies E[f∗XY |G ] = E[fG,δ,YXY |G ] < ∞ a.s., then f∗
a.s.
= fG,δ,Y on

the event {X > 0, Y 6= qG,δ(Y )}.

(c) If δ ∈ (0, 1) and X and fG,δ,Y Y are conditionally uncorrelated given G (in particular
if X and Y are conditionally independent given G), then

E[fG,δ,YXY |G ] = E[X |G ]E[fG,δ,Y Y |G ] = (1− δ)E[X |G ] ESδ(Y |G) .
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Remark 4.20. Note that fG,δ,Y ∈ FXG,δ,Y .

Proof. (a) Assume δ ∈ (0, 1). E[fG,δ,YXY |G ] is a well-defined random variable with val-
ues in R ∪ {∞}, because (fG,δ,YXY )− = X(fG,δ,Y Y )− ≤ X min{0, qG,δ(Y )} a.s. by Re-
mark 4.15(b) and as X ≥ 0, where X is σ-integrable with respect to G and min{0, qG,δ(Y )}
is G-measurable.

In Remark 4.13(a) we noted that fG,δ,Y is [0, 1]-valued a.s. and by Remark 4.20 we have
fG,δ,Y ∈ FXG,δ,Y . Consider f ∈ FXG,δ,Y such that fXY − is σ-integrable with respect to G. If
E[fG,δ,YXY |G] =∞ the result of the Lemma follows trivially. Assume E[fG,δ,YXY |G] <∞.
Then for every G ∈ G, as

E[(f − fG,δ,Y )XqG,δ(Y )1G |G]
a.s.
= 1G qG,δ(Y )E[(f − fG,δ,Y )X |G]

a.s.
= 0 ,

we get

E[fXY 1G |G]− E[fG,δ,YXY 1G |G]
a.s.
= E[(f − fG,δ,Y )X(Y − qG,δ(Y ))1G |G]
a.s.
= E[(f − fG,δ,Y )︸ ︷︷ ︸

≤0

X (Y − qG,δ(Y ))︸ ︷︷ ︸
>0

1{Y >qδ(Y )}1G |G]

+ E[(f − fG,δ,Y )︸ ︷︷ ︸
≥0

X (Y − qG,δ(Y ))︸ ︷︷ ︸
<0

1{Y <qδ(Y )}1G |G]

a.s.
≤ 0 .

If δ = 0, we have fG,δ,Y
a.s.
= 1. Therefore f

a.s.
= 1 for all f ∈ FXG,δ,Y . If δ = 1, then βG,δ,Y

a.s.
= 0,

which implies fG,δ,Y
a.s.
= 0 and f

a.s.
= 0 for all f ∈ FXG,δ,Y .

(b) Assume there exists a f∗ ∈ FXG,δ,Y , such that E[f∗XY |G ]
a.s.
= E[fG,δ,YXY |G ] < ∞.

Then by the above calculations P(f∗ < fG,δ,Y , X > 0, Y > qG,δ(Y ) |G) = 0 and P(f∗ >

fG,δ,Y , X > 0, Y < qG,δ(Y ) |G) = 0. Therefore f∗
a.s.
= fG,δ,Y on {X > 0, Y 6= qG,δ(Y )}.

(c) This follows from the definition of correlation and the definition of the conditional
expected shortfall.

In [54, Lemma 3.32] different properties of the expected shortfall are noted. As we
could not find a list of the different properties for the conditional expected shortfall in the
representation we used, we will note them, similar to [54, Lemma 3.32], in the following
lemma. Similar to [54], for some δ ∈ (0, 1) we let FG,δ denote the set of all conditional
probability densities given G on the probability space (Ω,F ,P) bounded by 1

1−δ , i.e.

FG,δ :=
{
f : Ω→ [0, 1]

∣∣∣ E[f |G ]
a.s.
= 1, f

a.s.
≤ 1

1− δ

}
.

Further, for a real-valued random variable X we define

FG,δ,X := {f ∈ FG,δ | E
[
X+f |G

] a.s.
< ∞ or E

[
X−f |G

] a.s.
< ∞} .

Remark 4.21. Note that for H ⊂ G ⊂ F we have FG,δ ⊂ FH,δ. Further FG,δ′ ⊂ FG,δ for
δ′ < δ.

Lemma 4.22. Given a probability space (Ω,F ,P) and a sub-σ-algebra G ⊂ F . The condi-
tional expected shortfall of Definition 4.14 at level δ ∈ [0, 1] has, for all real-valued random
variables X and Y , the following properties:
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(a) Positive Homogeneity: If Z > 0 is G-measurable, then

ESδ(ZX |G) = Z ESδ(X |G) a.s.

(b) Translation (or cash) invariance: If Z is G-measurable, then

ESδ(X + Z |G) = ESδ(X |G) + Z a.s.

(c) Sub-additivity:

ESδ(X + Y |G) ≤ ESδ(X |G) + ESδ(Y |G) a.s.

(d) Monotonicity: If X ≤ Y a.s., then

ESδ(X |G) ≤ ESδ(Y |G) a.s.

(e) Convexity: If α ∈ (0, 1), then

ESδ(αX + (1− α)Y |G) ≤ αESδ(X |G) + (1− α) ESδ(Y |G) a.s.

(f) Bounds: By setting E[X+ |G ] (1− δ)−1 =∞ for δ = 1, we get

qG,δ(X)
a.s.
≤ ESδ(X |G)

a.s.
≤ E[X+ |G ]

1− δ
.

The conditional expected shortfall of Definition 4.14 at level δ ∈ (0, 1) has, for all real-valued
random variables X and Y , the following properties:

(g) Scenario representation:

(i) ESδ(X |G) = 1
1−δ ess supf∈F1

G,δ,X
E[fX |G ] a.s.

(ii) ESδ(X |G) = ess supf∈FG,δ,X E[fX |G ] a.s.

(iii) If E[X+ |G ] <∞ a.s., then ESδ(X |G) = ess supf∈FG,δ E[fX |G ] a.s.

(h) Let {Xn}n∈N be bounded from below by some constant C. Then, if X := lim infn→∞Xn

is σ-integrable with respect to G,

ESδ(X |G) ≤ lim inf
n→∞

ESδ(Xn |G) a.s. (4.23)

(i) Let {Xn}n∈N be bounded from below and converging in probability to a random variable
X. Then (4.23) also holds.

(j) Let H ⊂ G ⊂ F be two σ-algebras. If (XfG,δ,X)− is σ-integrable with respect to H,
then

ESδ(X |H) ≥ E[ESδ(X |G) |H] a.s.

Remark 4.24. Note that (a), (b), (c) and (d) imply that the conditional expected shortfall
is a coherent risk measure. This class of risk measure was introduced in [5].
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Proof. (a) We start with δ ∈ (0, 1). By Lemma 4.18(b), we have qG,δ(ZX) = ZqG,δ(X)
a.s. Therefore we know that βG,δ,ZX = βG,δ,X a.s. and fG,δ,ZX = fG,δ,X a.s. As Z is G-
measurable we get ESδ(ZX |G) = Z ESδ(X |G) a.s. using [19, Theorem 1.21]. For δ = 0 the
result follows from the representation of the conditional expected shortfall at level 0 using
the essential infimum. For δ = 1 the result follows from Remark 4.9(g), as ES1(X |G) = XG .

(b) First consider δ ∈ (0, 1). By Lemma 4.18(a) we have qG,δ(X+Z) = qG,δ(X) +Z a.s.
Again this implies βG,δ,X+Z = βG,δ,X a.s. and fG,δ,X+Z = fG,δ,X a.s. Using the linearity of
the conditional expectation ([19, Theorem 1.18]) and as Z is G-measurable ([19, Theorem
1.21]) we get ESδ(X + Z |G) = ESδ(X |G) + Z a.s. For δ = 0 the result follows from the
representation of the conditional expected shortfall at level 0 using the essential infimum.
For δ = 1 the result follows from Remark 4.9(f), as ES1(X |G) = XG .

(g) (gi) follows directly from Lemma 4.19. The proof of (gii) and (giii) works similar
to the proof of Lemma 4.19. If 1

1−δfG,δ,X =: f̃G,δ,X ∈ FG,δ,X , the essential supremum is an
upper bound for ESδ(X |G) and (gii) holds in the case ESδ(X |G) =∞ a.s. If ESδ(X |G) <
∞ a.s., then necessarily E[X+ |G ] < ∞ a.s., hence FG,δ,X = FG,δ a.s. Consider f ∈ FG,δ
with E[Xf |G ] > −∞ a.s. We have E

[
f − f̃G,δ,X

∣∣G] = 0 a.s., hence for every G ∈ G

E
[
fX1G

∣∣G]− E
[
f̃G,δ,XX1G

∣∣G] a.s.
= E

[
(f − f̃G,δ,X)(X − qG,δ(X))1G

∣∣G]
a.s.
= E

[
(f − f̃G,δ,X)︸ ︷︷ ︸

≤0

(X − qG,δ(X))︸ ︷︷ ︸
>0

1{X>qδ(X)}1G
∣∣G]

+ E
[
(f − f̃G,δ,X)︸ ︷︷ ︸

≥0

(X − qG,δ(X))︸ ︷︷ ︸
<0

1{X<qδ(X)}1G
∣∣G] a.s.
≤ 0 ,

which means that the supremum is identical with E
[
f̃G,δ,XX

∣∣G].
(c) Consider δ ∈ (0, 1). As E[fG,δ,X |G ] = E[fG,δ,Y |G ] = E[fG,δ,X+Y |G ] = 1 − δ a.s.,

we note that F1
G,δ,X = F1

G,δ,Y = F1
G,δ,X+Y a.s. By (gi) and the linearity of the conditional

expectation ([19, Theorem 1.18]) we get

ESδ(X + Y |G)
a.s.
=

1

1− δ
ess sup

f∈F1
G,δ,X+Y

E[f (X + Y ) |G ]

a.s.
≤ 1

1− δ

(
ess sup

f∈F1
G,δ,X+Y

E[fX |G ] + ess sup
f∈F1

G,δ,X+Y

E[f Y |G ]
)

a.s.
= ESδ(X |G) + ESδ(Y |G) .

For δ = 0 the result follows from the representation of the conditional expected shortfall at
level 0 using the essential infimum. For δ = 1 the result follows from Remark 4.9(d).

(d) By (c) we get for δ ∈ [0, 1]

ESδ(X |G)
a.s.
≤ ESδ(X − Y |G) + ESδ(Y |G) .

Consider δ ∈ (0, 1). We know that X − Y ≤ 0 a.s. This implies qG,δ(X − Y ) ≤ 0 a.s. and

E
[
(X − Y )1{(X−Y )>qG,δ(X−Y )}

∣∣∣G] a.s.
≤ 0 .

Therefore by Definition 4.14

ESδ(X−Y |G)
a.s.
=

1

1− δ

(
E
[
(X − Y )1{(X−Y )>qG,δ(X−Y )}

∣∣∣G]+ qG,δ(X − Y )βG,δ,X−Y

) a.s.
≤ 0 .
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For δ = 0 the same result follows from the representation of the conditional expected
shortfall at level 0 using the essential infimum. For δ = 1 we have ES1(X − Y |G) =
(X − Y )G ≤ 0 a.s., because X − Y ≤ 0 a.s.

Altogether, for δ ∈ [0, 1] we get

ESδ(X |G)
a.s.
≤ ESδ(X − Y |G) + ESδ(Y |G)

a.s.
≤ ESδ(Y |G) .

(e) follows from (a) and (c).
(f) First consider δ ∈ (0, 1) and note that X ≤ X+ a.s., which implies ESδ(X |G) ≤

ESδ(X
+ |G) a.s. by (d). Further fG,δ,X ≤ 1 a.s. Using these observations for the upper

bound, both bounds now follow directly from Definition 4.14. For δ = 0 we have qG,0(X) =
−∞ and as fG,δ,X ≤ 1 a.s. for all δ ∈ (0, 1) and X ≤ X+ a.s., we also see that the upper
bound is true. For δ = 1 we have E[X+ |G ] (1− δ)−1 =∞ and qG,1(X) = ES1(X |G) = XG .

(h) By translation invariance from (b), we may assume without loss of generality that
Xn is non-negative for every n ∈ N. Similar to the proof of (c) we can show that F1

G,δ,X =

F1
G,δ,Xn a.s. for every n ∈ N. By Definition 4.14 we can write

(1− δ) ESδ(X |G) = E[fG,δ,XX |G ] .

Using Fatou’s Lemma for conditional expectations ([19, Theorem 1.19(2)]) for non-negative
processes, we get

E[fG,δ,XX |G ]
a.s.
≤ lim inf

n→∞
E[fG,δ,XXn |G ] .

Further by Lemma 4.19 for every n ∈ N

E[fG,δ,XXn |G ]
a.s.
≤ ess sup

f∈F1
G,δ,Xn

E[fXn |G ]
a.s.
= (1− δ) ESδ(Xn |G) .

Dividing by 1− δ proves the result.
(i) By passing to a subsequence if necessary, we may assume that the sequence {ESδ(Xn |

G)}n∈N converges to the limit inferior on the right-hand side of (4.23). By passing to a
further subsequence if necessary, we may assume that {Xn}n∈N converges almost surely to
X. Then (4.23) follows from (h).

(j) By (giii) and the tower property of conditional expectation ([19, Theorem 1.22])

ESδ(X |H)
a.s.
= ess sup

f∈FH,δ
E[fX |H]

a.s.
= ess sup

f∈FH,δ
E[E[fX |G ] |H] .

By Remark 4.21 and defining 1
1−δfG,δ,X =: f̃G,δ,X ∈ FG,δ with fG,δ,X as in Definition 4.12

ess sup
f∈FH,δ

E[E[fX |G ] |H]
a.s.
≥ ess sup

f∈FG,δ
E[E[fX |G ]|H]

a.s.
≥ E[E[f̃G,δ,XX |G] |H]

a.s.
= E[ESδ(X |G) |H] ,

which proves the result.

Corollary 4.25. Assume X+ is integrable. Given δ ∈ (0, 1), a totally-ordered countable
discrete time interval I and a filtration {Ft}t∈I , the process {ESδ(X |Ft)}t∈I is a super-
martingale.
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Proof. The supermartingale property follows from Lemma 4.22(j). Further it is clear that
the process {ESδ(X |Ft)}t∈I is adapted. ESδ(X |Ft) is integrable for every t ∈ I, since
the positive part of XfFt,δ,X is integrable by assumption that X+ is integrable and the
negative part of XfFt,δ,X is integrable, because it is bounded from below as stated in
Remark 4.15(b).

Remark 4.26. Note that the result of Corollary 4.25 would also be true for I = [0,∞), i.e.
for a continuous time interval. If in that case the filtration {Ft}t∈I is right-continuous, F0

contains all P-null sets and the mapping t→ E[ESδ(X |Ft)] is right-continuous, then there
exists a càdlàg modification of {ESδ(X |Ft)}t∈I by [27, Theorem 21.24].

In the following lemma we will take a look at the conditional expected shortfall of a
conditional expectation.

Lemma 4.27. Given a probability space (Ω,F ,P) and two sub-σ-algebras H ⊂ G ⊂ F .
Assume X ∈ L1(Ω,F ,P). Then

ESδ(E[X |G ] |H)
a.s.
≤ ESδ(X |H) ∀ δ ∈ [0, 1] .

Proof. First consider δ ∈ (0, 1). Let F1
H,δ,X be defined as in Lemma 4.19 and define

F1
H,δ,X(G) as the set of all f ∈ F1

H,δ,X , which are G-measurable. Then, as for every F-
measurable f

E[E[X |G ] f |H] = E[E[X |G ]E[f |G ]|H] ,

and using Lemma 4.19 we have

ESδ(E[X |G ] |H)
a.s.
=

1

1− δ
ess sup
f∈F1

H,δ,X

E[E[X |G ] f |H]
a.s.
=

1

1− δ
ess sup

f∈F1
H,δ,X(G)

E[E[X |G ] f |H]

a.s.
=

1

1− δ
ess sup

f∈F1
H,δ,X(G)

E[Xf |H]
a.s.
≤ 1

1− δ
sup

f∈F1
H,δ,X

E[Xf |H] = ESδ(X |H) .

Now set δ = 1. Then

ESδ(E[X |G ] |H)
a.s.
= E[X |G ]H and ESδ(X |H)

a.s.
= XH .

Let Y be a H-measurable random variable with Y ≥ X almost surely. Then Y ≥ XH

almost surely, be the definition of XH in Definition 4.8. Then

Y
a.s.
= E[Y |G ]

a.s.
≥ E[X |G ] .

This implies {Y : Ω → R ∪ {∞}|Y H-measurable,Y
a.s.
≥ X} ⊂ {Y : Ω → R ∪ {∞}|

Y H-measurable,Y
a.s.
≥ E[X |G ]}. Therefore E[X |G ]H ≤ XH almost surely.

Finally we consider the case δ = 0. For every δ′ ∈ (0, 1) we have

ESδ′(E[X |G ] |H)
a.s.
≤ ESδ′(X |H)

Therefore

ESδ(E[X |G ] |H) = ess inf
δ′∈(0,1)

ESδ′(E[X |G ] |H)
a.s.
≤ ess inf

δ′∈(0,1)
ESδ′(X |H) = ESδ(X |H) .

Remark 4.28. For a given discrete time interval I let {Mt}t∈I be a martingale. Then for
every δ ∈ [0, 1] and a filtration {Ft}t∈I by Lemma 4.27 for all s ≤ t ≤ u in I

ESδ(Mt |Fs)
a.s.
≤ ESδ(Mu |Fs) .
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4.2 General Bounds

In Chapter 2 we already saw some first bounds for the problem. In particular we noted that
we can find a lower bound by assuming that the process Z and the stopping time or the
adapted random probability measure are independent and that an upper bound is given
by the value of an optimal stopping problem with the same underlying process Z. In our
notation this means

V ind(ν) ≤ V (ν) ≤ V +(ν) ≤ V ≤ Ṽ and V ind(ν) ≤ V ′(ν) ≤ V +(ν) ≤ V ≤ Ṽ ,

with V ind(ν) as in (2.8), V (ν) as in (2.7), V +(ν) as in (2.17), V as in (2.5), Ṽ as in (2.34)
and V ′(ν) as in (2.25). Due to these results most upper bounds will be derived for V +(ν).

We will start with very general upper bounds for a totally-ordered countable discrete
time interval I. We assume that the stochastic process Z = {Zt}t∈I satisfies E

[
supt∈I Z

−
t

]
<

∞ or E
[
supt∈I Z

+
t

]
< ∞. We know that for every γ ∈ MI we have γt ∈ [0, 1] a.s. for all

t ∈ I by Definition 2.33. This implies that for every γ ∈MI

E
[∑
t∈I

Ztγt

]
≤ E

[∑
t∈I
|Zt|γt

]
≤ E

[∑
t∈I
|Zt|
]

=
∑
t∈I

E[|Zt|] .

Therefore we can easily find that for a non-negative process Z = {Zt}t∈I

Ṽ ≤
∑
t∈I

E[Zt] .

For a general process Z we get

Ṽ ≤
∑
t∈I

E[|Zt|] .

As we assume
∑

t∈I γt
a.s.
= 1 by Definition 2.33(b) for all γ ∈MI , we also have

V +(ν) ≤ E
[
sup
t∈I

Zt

]
.

These upper bounds are quite general and do not incorporate the distribution ν. In many
situations the values found by these upper bounds will be quite high. We will therefore
derive other bounds for our problem.

Proposition 4.29. Given a totally-ordered countable discrete time interval I and a prob-
ability distribution ν on I. Assume we are given a process Z = {Zt}t∈I which satisfies
E
[
supt∈I Z

−
t

]
<∞ or E

[
supt∈I Z

+
t

]
<∞. Then

V +(ν) ≤
∑
t∈I

νt ES1−νt(Zt) .

Proof. By definition of V +(ν) and using Lemma 2.35 we get

V +(ν) ≤
∑
t∈I

sup
γ∈Mν

I

E[Ztγt] .

Using Lemma 4.6 and by noticing that γt ∈ F1
1−νt,Zt for all t ∈ I, we have

sup
γ∈Mν

I

E[Ztγt] = νt ES1−νt(Zt) .
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Remark 4.30. We have γt ∈ F1
1−νt,Zt , because

E[f1−νt,Zt · 1] = P(Zt > q1−νt(Zt)) + P(Zt ≤ q1−νt(Zt))− (1− νt) = νt = E[γt · 1] .

Proposition 4.31. Given a discrete time interval I ⊂ N0 with 0 ∈ I and a probability
distribution ν on I. Using the Doob decomposition Z = M+A for an adapted process Z in
L1(P) (see e.g. [62, Theorem 12.11]) and assuming that the martingale part M together with
the distribution ν satisfies one of the conditions of Theorem 2.49 and E

[
supt∈I A

−
t

]
< ∞

or E
[
supt∈I A

+
t

]
<∞ for the predictable process A, we can show that

V +(ν) ≤ E[M0] +
∑
t∈I

νt ES1−νt(At) .

Proof. After using the Doob decomposition it is clear that E[Mτ ] = E[Mγ ] = E[M0] for
τ ∈ T νI and γ ∈ Mν

I by Theorem 2.49 and Doob’s optional stopping theorem. Proceed
with the process A according to Proposition 4.29.

Remark 4.32. This second upper bound computes the exact value for the martingale part in
the Doob decomposition. For a part of the problem the exact value is therefore computed,
which might be an advantage of this bound. On the other hand, computing this bound is
more demanding, since one needs to start by determining the two processes of the Doob
decomposition. As we will see later in Section 4.4 we cannot state generally whether the
bound of Proposition 4.29 or that Proposition 4.31 works better.

Note that it might transpire that just one of the upper bounds of Proposition 4.29 or
Proposition 4.31 is applicable for the given process. This will be illustrated in the following
example.

Example 4.33. For I = N consider a process Z = {Zt}t∈I of independent, uniformly
distributed, symmetric, {−1, 1}-valued random variables. Assume that νt = 2−t for t ∈ I.
As E[supt∈I |Zt|] = 1, we can apply Proposition 4.29, which yields

V +(ν) ≤
∑
t∈I

1

2t
= 1 .

The Doob decomposition of Z is given by Z = M +A with Mt =
∑t

s=0 Zs for t ∈ I, A0 = 0
and At = −Mt−1 for t ∈ I \ {0}. We cannot apply Proposition 4.31 for these processes M
and A. On a finite time interval we could apply Proposition 4.31. If now T ∈ N and we
consider I≤T , then we would have

V +(ν) ≤
∑
I≤T

1

2t
t↗ 1 for T →∞.

Proposition 4.34. Given a discrete time interval I ⊂ N0 with 0 ∈ I and a probability
distribution ν on I. Using again the Doob decomposition Z = M+A for an adapted process
Z in L1(P), where we assume that the martingale part M together with the distribution ν
satisfies one of the conditions of Theorem 2.49 and E

[
supt∈I A

−
t

]
<∞ or E

[
supt∈I A

+
t

]
<

∞ for the predictable process A, and if we define ∆At := At − At−1 for t ∈ I \ {0} and
∆A0 := 0, we have for all γ ∈Mν

I

E[Zγ ] ≤ E[M0] +
∑
t∈I

ν≥t ESν<t(∆At) .
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Proof. For the predictable process A of the Doob decomposition we can write, as it will be
proven in the proof of Theorem 5.25,

Aγ =
∑
t∈I

∆Atγ≥t .

The rest follows similar to the proofs of Proposition 4.29 and Proposition 4.31.

4.3 Bounds for Special Classes of Processes

Within this section we will now take a look at certain types of processes, for which we
can derive bounds that may be closer to the values we are interested in than the bounds
presented in the last section.

Lemma 4.35. Assume I = N0 and that the process Z is a supermartingale.

(a) If E[supt∈I |Zt|] <∞, then for every γ ∈MI

E[Z0] ≥ E[Zγ ] ≥ E[Z∞] .

(b) If we consider the Doob decomposition M +A of the supermartingale Z and assume M
(or in case γ ∈Mν

I consider M and ν) satisfies one of the conditions of Theorem 2.49,
we get

E[M0] ≥ E[Zγ ] ≥ E[M0] + E[A∞] .

Proof. (a) By Doob’s convergence theorem (see [62, Theorem 11.5.]) we know that the
limit Z∞ = limt→∞ Zt exists a.s., because Z is bounded in L1 (see Remark 4.36).

Using Lemma 2.35, Zt ≥ E[Z∞ |Ft] for all t ∈ I and that by Definition 2.33 the process
γ is adapted and satisfies

∑
t∈I γt = 1 a.s., we have

E[Zγ ] = E
[∑
t∈I

Ztγt

]
≥ E

[
Z∞

∑
t∈I

γt

]
= E[Z∞] .

On the other hand E[Zγ ] ≤ E[Z0] by Theorem 2.49, as E[supt∈I |Zt|] < ∞ implies that Z
is uniformly integrable.

(b) The Doob decomposition of the process Z is given by a martingale M and a non-
increasing, predictable process A with A0 = 0. Using this decomposition and Theorem 2.49,
we get

E[Zγ ] = E
[∑
t∈I

Ztγt

]
= E[M0] + E

[∑
t∈I

Atγt

]
.

As At ≥ A∞ for all t ∈ I and
∑

t∈I γt
a.s.
= 1 by Definition 2.33(b), we have

E
[∑
t∈I

Atγt

]
≥ E

[
A∞

∑
t∈I

γt

]
= E[A∞] .

Therefore
E[Zγ ] ≥ E[M0] + E[A∞] .

Since A is non-increasing, we have At ≤ 0 a.s. for all t ∈ I. This implies

E[Zγ ] = E[M0] + E
[∑
t∈I

Atγt

]
≤ E[M0] = E[Z0] .
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Remark 4.36. For every t ∈ I we have

E[|Zt|] ≤ E
[
sup
t∈I
|Zt|
]
<∞ .

Since the supremum is defined to be the smallest upper bound of the sequence, we have

sup
t∈I

E[|Zt|] ≤ E
[
sup
t∈I
|Zt|
]
<∞ .

Therefore the process Z is bounded in L1.

Lemma 4.37. Assume I = N0 and that the process Z is a submartingale.

(a) If E[supt∈I |Zt|] <∞, then for every γ ∈MI

E[Z0] ≤ E[Zγ ] ≤ E[Z∞] .

(b) Using the Doob decomposition M+A of the submartingale Z and assuming that M (or
in case γ ∈Mν

I we consider M and ν) satisfies one of the conditions of Theorem 2.49,
we find

E[M0] ≤ E[Zγ ] ≤ E[M0] + E[A∞] .

Proof. The proof works similar to that of Lemma 4.35. The process A in the Doob decom-
position is now a non-decreasing process.

Remark 4.38. In Lemma 4.35 and in Lemma 4.37 we showed the result for I = N0. If
I = {0, . . . , T} we simply have to replace Z∞ and A∞ by ZT and AT , respectively.

Lemma 4.39. Let I = {0, . . . , T} and assume that Z0 ≥ Z1 ≥ · · · ≥ ZT a.s. Consider
some weights γ0, . . . , γT with

∑
t∈I γt = 1 a.s.

(a) For γ0 ≥ γ1 ≥ · · · ≥ γT a.s. we have

E
[∑
t∈I

Ztγt

]
≥ 1

T + 1

∑
t∈I

E[Zt] . (4.40)

(b) For γ0 ≤ γ1 ≤ · · · ≤ γT a.s. we get

E
[∑
t∈I

Ztγt

]
≤ 1

T + 1

∑
t∈I

E[Zt] . (4.41)

Proof. (a) By Chebyshev’s sum inequality (see e.g. [18, Section 2.17]) for γ0 ≥ γ1 ≥ · · · ≥ γT
a.s. we get

1

T + 1

∑
t∈I

Ztγt ≥
(

1

T + 1

∑
t∈I

Zt

)(
1

T + 1

∑
t∈I

γt

)
a.s.

Therefore, since
∑

t∈I γt = 1 a.s.,∑
t∈I

Ztγt ≥
1

T + 1

∑
t∈I

Zt a.s.
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Taking expectations gives (4.40).
(b) If γ0 ≤ γ1 ≤ · · · ≤ γT a.s. Chebyshev’s sum inequality states that

1

T + 1

∑
t∈I

Ztγt ≤
(

1

T + 1

∑
t∈I

Zt

)(
1

T + 1

∑
t∈I

γt

)
a.s.

Similarly we get (4.41).

Remarks 4.42. 1. Lemma 4.39 is especially applicable for γ ∈Mν
I .

2. Similar results can be found for a process Z with Z0 ≤ Z1 ≤ · · · ≤ ZT a.s.

3. What we need to find is a permutation σ such that Zσ(0) ≤ Zσ(1) ≤ · · · ≤ Zσ(T )

and γσ(0) ≤ γσ(1) ≤ · · · ≤ γσ(T ) or γσ(0) ≥ γσ(1) ≥ · · · ≥ γσ(T ), respectively. This
permutation does not need to be measurable.

In the following proposition we will try to find an upper bound for a process which is a
product of a deterministic function and a martingale. Note that the strategy found is not
adapted.

Proposition 4.43. Assume I = {0, . . . , T} and that the process Z is given by Zt = f(t)Mt

for t ∈ I, where the deterministic function f is increasing. Further define ν≤−1 := 0. Then

V +(ν) ≤
∑
t∈I

f(t)E
[
MT 1{qν≤t−1

(MT )<MT≤qν≤t (MT )}

]
.

Proof. Using the martingale property and that γt is Ft-measurable for all t ∈ I for every
γ ∈Mν

I by Definition 2.12(c), we get

V +(ν) = sup
γ∈Mν

I

E
[∑
t∈I

Ztγt

]
= sup

γ∈Mν
I

∑
t∈I

f(t)E[MTγt] .

Following the result of the rearrangement inequality ([18, Chapter X, Theorem 368]) big
values of f(t) should be multiplied with big values of E[MTγt]. As f(t) is increasing in t,
we should therefore find a strategy γ such that E[MTγt] is non-decreasing in t. We will use
a strategy given by

γt := 1{qν≤t−1
(MT )<MT≤qν≤t (MT )} ,

for t ∈ I with ν≤−1 := 0, which guarantees that E[MTγs] ≤ E[MTγt] for s < t in I.
Unfortunately this strategy is not adapted. Finally we get the inequality

V +(ν) ≤
∑
t∈I

f(t)E
[
MT 1{qν≤t−1

(MT )<MT≤qν≤t (MT )}

]
.

Remark 4.44. If we assume that MT has a continuous distribution, we can rewrite this
upper bound by

V +(ν) ≤
∑
t∈I

f(t)((1− ν≤t−1) ESν≤t−1
(MT )− (1− ν≤t) ESν≤t(MT )) .

If the deterministic function is non-decreasing (hence Z is a submartingale), we can find
a similar upper bound as shown in the next proposition.
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Proposition 4.45. Given a discrete time interval I ⊂ N0 with 0 ∈ I and a probability
distribution ν on I, assume that Zt = g(t)Mt for all t ∈ I, with g being a non-decreasing
function and M a martingale. Further assume that Z satisfies E[supt∈I |Zt|] < ∞. Then
we can find an upper bound given by

V +(ν) ≤ g(0)E[M0] +
∑
t∈I
t+1∈I

(g(t+ 1)− g(t))(1− ν≤t) ESν≤t(Mt) .

Using the densities f of Definition 4.3(b), we can write

γ0 = 1− fν0,M0

and
γt = fν≤t−1,Mt−1 − fν≤t,Mt for t ∈ I \ {0} .

If γt ≥ 0 a.s. for all t ∈ I, then γ = {γt}t∈I ∈Mν
I . Further this strategy γ yields the value

of the upper bound, which implies that it is an optimal strategy if γ ∈Mν
I .

Proof. As
∑

t∈I γt = 1 a.s. by Definition 2.12(b), we can rewrite Zγ as

Zγ =
∑
t∈I

g(t)Mtγt
a.s.
=
∑
t∈I

g(t)Mt(γ≥t− γ>t)
a.s.
= g(0)M0 +

∑
t∈I
t+1∈I

(g(t+ 1)Mt+1− g(t)Mt)γ>t .

Using the martingale property of M and that γ ∈Mν
I is adapted by Definition 2.12(c), we

get for all t ∈ I with t+ 1 ∈ I

E[g(t+ 1)Mt+1γ>t] = g(t+ 1)E[E[Mt+1 |Ft] (1− γ≤t)] = E[g(t+ 1)Mtγ>t] .

Therefore
E[Zγ ] = g(0)E[M0] +

∑
t∈I
t+1∈I

E[(g(t+ 1)Mt+1 − g(t)Mt) · γ>t]

= g(0)E[M0] +
∑
t∈I
t+1∈I

(g(t+ 1)− g(t))E
[
Mtγ>t

]
.

Now we can try to find an upper bound by maximizing each summand. We have

sup
γ∈Mν

I

E
[∑
t∈I

Ztγt

]
≤ g(0)E[M0] +

∑
t∈I
t+1∈I

sup
γ∈Mν

I

(g(t+ 1)− g(t))E[Mtγ>t] .

For every t ∈ I we want to maximize

E[Mtγ>t] ,

because we know that g(t + 1) − g(t) ≥ 0 for all t ∈ I with t + 1 ∈ I. For all t ∈ I with
t+ 1 ∈ I we have

γ>t ∈ F1
ν≤t,Mt

,

where F1
ν≤t,Mt

is defined as in Lemma 4.6. Therefore the strategy for the upper bound is
given by

γ>t = fν≤t,Mt .
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Altogether this yields

V +(ν) ≤ g(0)E[M0] +
∑
t∈I
t+1∈I

(g(t+ 1)− g(t))(1− ν≤t) ESν≤t(Mt) .

The process γ = {γt}t∈I yielding the upper bound is given by

γt = γ>t−1 − γ>t = fν≤t−1,Mt−1 − fν≤t,Mt for t ∈ I \ {0}

and

γ0 = 1− γ>0 = 1− fν0,M0 .

Next we will use comonotonicity for finding an upper bound. We will use that for two
real-valued random variables X and Y we have

E[XY ] ≤ E[X∗Y ∗] , (4.46)

where X∗ and Y ∗ are two comonotonic random variables with L(X) = L(X∗) and L(Y ) =
L(Y ∗). This result is due to [38, Theorem 5.25].

Lemma 4.47. Given a totally-ordered countable discrete time interval I. If the process Z
is given in the form Zt = f(t)Mt for t ∈ I, with a deterministic function f and a closable
martingale M , and satisfies E

[
supt∈I Z

−
t

]
<∞ or E

[
supt∈I Z

+
t

]
<∞, then we have

E[Zγ ] ≤
∑
t∈I

f(t)

∫ ut

lt

F↼(s) ds , γ ∈Mν
I ,

where F is the cumulative distribution function of M∞ and F↼ its lower inverse. Further

lt :=
∑
s∈I

f(s)<f(t)

νs +
∑
s∈I<t

f(s)=f(t)

νs , t ∈ I ,

and

ut := lt + νt , t ∈ I .

Proof. By extending the probability space if necessary for using Theorem 2.41 and further
using Lemma 2.35 and the martingale property we get

E[Zγ ] = E
[
M∞

∑
t∈I

f(t)1{τ=t}

]
for some stopping time τ . Let F be the cumulative distribution function of M∞, then

M∞
(d)
= F↼(U) for a random variable U ∼ U(0, 1). Now we need to find a random variable

X such that X and F↼(U) are comonotonic and X
(d)
=
∑

t∈I f(t)1{τ=t}. F↼(U) is an
increasing function in U , therefore X should also be increasing in U . Using a stochastic
time θ defined by

{θ = t} = {lt < U ≤ ut} , t ∈ I ,
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with
lt :=

∑
s∈I

f(s)<f(t)

νs +
∑
s∈I<t

f(s)=f(t)

νs , t ∈ I ,

and
ut := lt + νt , t ∈ I ,

we can set
X =

∑
t∈I

f(t)1{θ=t} ,

where equality in distribution X
(d)
=
∑

t∈I f(t)1{τ=t} is due to the fact that for every t ∈ I

P(τ = t) = P(θ = t) .

Using (4.46) and Lemma 2.35 we get for γ ∈Mν
I

E[Zγ ] ≤ E[F↼(U)X] = E
[
F↼(U)

∑
t∈I

f(t)1{θ=t}

]
=
∑
t∈I

f(t)E
[
F↼(U)1{lt<U≤ut}

]
=
∑
t∈I

f(t)

∫ ut

lt

F↼(s) ds .

In Lemma 2.55 we gave a short note about using correlation between the processes Z
and γ. Using this result we can find another upper bound.

Lemma 4.48. For a given totally-ordered countable discrete time interval I fix γ ∈ MI

and assume that expectation and variance of Zt and γt are known for all t ∈ I. Then we
have

E[Zγ ] ≤
∑
t∈I

(
E[Zt]E[γt] +

√
Var(Zt)

√
Var(γt)

)
.

Proof. In Remark 2.58 we saw that for γ ∈MI

E[Zγ ] =
∑
t∈I

E[Zt]E[γt] + ρ
∑
t∈I

√
Var(Zt)

√
Var(γt) .

The upper bound can now easily be found by recognizing that ρ ∈ [−1, 1] and noticing that
the standard deviation is non-negative.

Remark 4.49. The result of Lemma 4.48 is especially interesting if, given a probability
distribution ν on I, the setMν

I is reduced to only those processes γ that all have the same
variance.

4.4 Comparison of Different Bounds

So far we have seen different upper bounds for different types of processes and also some
that are valid in general. In the following we want to take a closer look at some of the
bounds in illustrative examples and compare them.

As it is shown in the following example, it can happen that the upper bound found in
Proposition 4.31 is closer to V +(ν) than the upper bound presented in Proposition 4.29 or
the upper bound using the American option.
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Example 4.50. For I = {0, . . . , T} with T = 2 we are given a process Z defined by
Z0 = U,Z1 = 0, Z2 = 2U , where U is F0-measurable and U ∼ U(0, 1). The distribution ν
is given by ν0 = 2

6 , ν1 = 3
6 , ν2 = 1

6 .
If we use the result from Proposition 4.29, we have

V +(ν) ≤ ν0 E[U |U > 1− ν0] + 2ν2 E[U |U > 1− ν2]

=
2

6
· 10

12
+

2

6
· 11

12
=

42

72
.

The Doob decomposition of the process Z is given by M0 = M1 = M2 = U and A0 =
0, A1 = −U,A2 = U . By using the upper bound given in Proposition 4.31, we get

V +(ν) ≤ 1

2
+

3

6
ES 3

6
(−U) +

1

6
ES 5

6
(U) =

1

2
− 3

6
· 3

12
+

1

6
· 11

12
=

38

72
.

Now we try to compute the value of the corresponding American option. For this we use
the Snell envelope, which, as U is F0-measurable, is given for this example by

E2 = Z2 = 2U ,

E1 = max{Z1 = 0,E[E2 |F1] = 2U} = 2U ,

E0 = max{Z0 = U,E[E1 |F0] = 2U} = 2U .

This means that for t ∈ {0, . . . , T} the optimal stopping time is given by

τt = min{s ∈ {t, . . . , T}|Es = Zs} = T = 2 .

So we have that the value of the American option equals

V = E[Zτ0 ] = E[Z2] = 2E[U ] = 1 .

If we also want to take a look at the value given if we assume that Z is independent of γ
or τ , which gives a lower bound, we get

V ind(ν) = ν0 E[Z0] + ν1 E[Z1] + ν2 E[Z2] =
2

6
· 1

2
+ 0 +

1

6
· 1 =

1

3
=

24

72
.

In Example 5.45 we will show that for this process Z and this distribution ν we have
V (ν) = V +(ν) = 38

72 .

On the other hand we can find an example for which the bound of Proposition 4.29
works better than the one of Proposition 4.31.

Example 4.51. Set I = {0, . . . , 4} and let X1, . . . , X4 be independent, symmetric, {−1, 1}-
valued random variables. Set Z0 = 0 and Zt = Xt for t ∈ {1, . . . , 4}. Let the distribution
ν be given by ν0 = ν1 = ν2 = 0 and ν3 = ν4 = 1

2 . Then by Proposition 4.29

V +(ν) ≤ ν3 ES1−ν3(Z3) + ν4 ES1−ν4(Z4) =
1

2
· 1 +

1

2
· 1 = 1 .

The Doob decomposition of the process Z is given by Z = M +A with Mt =
∑t

s=1Xs for
t ∈ {0, . . . , 4}, A0 = 0 and At = −Mt−1 for t ∈ {1, . . . , 4}. Then by Proposition 4.31

V +(ν) ≤ E[M0] + ν3 ES1−ν3(A3) + ν4 ES1−ν4(A4) =
1

2
· 1 +

1

2
· 3

2
=

5

4
.
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As we will show in the following example, there are also cases in which the American
option works as well as an upper bound as the one found in Proposition 4.31 and both yield
a better result than the upper bound of Proposition 4.29.

Example 4.52. Assume I = {0, 1} and Z0 and Z1 are independent random variables with
values in {0, 2}, which are uniformly distributed. Let the filtration F = {Ft}t∈{0,1} be the

one generated by the process Z. Further we assume that ν0 = ν1 = 1
2 .

By using the result from Proposition 4.29 we get

V +(ν) ≤ ν0 ES1−ν0(Z0) + ν1 ES1−ν1(Z1) =
1

2
· 2 +

1

2
· 2 = 2 .

The Doob decomposition of the process Z is given by M0 = Z0, M1 = Z1 − 1 + Z0 and
A0 = 0, A1 = 1− Z0. By Proposition 4.31

V +(ν) ≤ 1 +
1

2
ES 1

2
(1− Z0) = 1 +

1

2
=

3

2
.

Taking a look at the Snell envelope, which is given by

E1 = Z1

E0 = max{Z0,E[E1 |F0]}

where due to the independence of the process Z we have E[E1 |F0] = 1. We see that the
stopping time used to compute the value of the American option has to be τ = 1{Z0=0}, i.e.
{τ = 0} = {Z0 = 2} and {τ = 1} = {Z0 = 0}. Now we have

V +(ν) ≤ E[Zτ ] = E
[
Z01{Z0=2} + Z11{Z0=0}

]
= 2 · 1

2
+ 1 · 1

2
=

3

2
.

As this stopping time also follows the given distribution ν, i.e. τ ∈ T νI , it is also an optimal
stopping time for computing the value V (ν).

Remark 4.53. Note that the upper bound using the Doob decomposition in Example 4.52
equals the optimal value found later for the one-period model in Theorem 5.4.

We will now take a look at an example which considers a time-discrete exponential
Brownian motion. This type of process is interesting, since it is a time-discrete version
of the exponential Brownian motion of the Black–Scholes model, which is often used in
financial mathematics.

Example 4.54. Assume that the process Z is given in the form Zt = z0 exp(µt+ σWt) for
t ∈ I, where {Wt}t∈I is a discrete version of a standard Brownian motion with W0 = 0,
σ > 0, µ ∈ R and z0 ∈ R. Since we know that Wt ∼ N(0, t), we have that µt + σWt ∼
N(µt, σ2t) for all t ∈ I. Therefore Zt has a lognormal distribution with parameters µt and
σ
√
t for t ∈ I.
For a random variable Y ∼ LN(µ, σ2), which has a lognormal distribution with pa-

rameters µ ∈ R and σ > 0, the expected shortfall at level α ∈ (0, 1) can be computed
as

ESα(Y ) =
1

1− α
z0 exp

(
µ+

σ2

2

)
(1− Φ(Φ−1(α)− σ)) ,

where Φ is the cumulative distribution function of the standard normal distribution. We
now want to take a look at some of the bounds already presented for this type of process.
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Chapter 4. Some Bounds

To keep this example simple, we will assume that I = {0, 1, 2} and that the distribution ν
is given by ν0 = 0 and ν1 = ν2 = 1

2 .
Using Proposition 4.29, we get

V +(ν) ≤ 1

2
(ES 1

2
(Z1) + ES 1

2
(Z2))

= z0

∑
t∈{1,2}

(
1− Φ

(
Φ−1

(
1

2

)
− σ
√
t

))
exp

((
µ+

σ2

2

)
t

)
.

Next we turn our attention to the upper bound presented in Proposition 4.43. In order
to be able to use this proposition, we have to represent Z as a product of a deterministic
function and a martingale. For this, for every t ∈ I we set

g(t) := z0 exp

((
µ+

σ2

2

)
t

)
and

Mt := exp

(
σWt −

σ2

2
t

)
.

Then Zt = g(t)Mt for every t ∈ I, where g is a deterministic function and M is a martingale
with expectation E[Mt] = 1 for all t ∈ I. The upper bound of Proposition 4.43 is now given
by

V +(ν) ≤ g(1)(E[M2]− 1

2
ES 1

2
(M2)) + g(2)(

1

2
ES 1

2
(M2)− 0)

= g(1) +
1

2
ES 1

2
(M2)(g(2)− g(1))

= z0 exp

(
µ+

σ2

2

)
+ z0

(
1− Φ

(
Φ−1

(
1

2

)
−
√

2σ

))
·
(

exp

((
µ+

σ2

2

)
2

)
− exp

(
µ+

σ2

2

))
.

The lower bound using the assumption of independence is given by

V ind(ν) =
∑
t∈I

E[Zt] νt =
1

2
(g(1) + g(2))E[M1]

=
1

2

(
exp

(
µ+

σ2

2

)
+ exp

((
µ+

σ2

2

)
2

))
.

We will now show some graphs that illustrate how these bounds evolve depending on µ and
σ. For this we set z0 = 1. First we have a look at the lower bound found by assuming
independence between Z and τ or γ. This bound is illustrated in Figure 4.1. Next we
take a look at the upper bound of Proposition 4.29 in Figure 4.2, which is valid for general
processes Z satisfying the necessary assumptions. Last but not least we look at the upper
bound given by Proposition 4.43 in Figure 4.3, which in the following will be called the
special bound, as it is only valid for processes which can be represented as the product of
a deterministic function and a martingale. In Figure 4.1, Figure 4.2 and Figure 4.3 we see
that for all three bounds the values of the bound becomes larger as µ and σ grow.

We now look at the three bounds simultaneously in order to compare them. In Figure 4.4
the values of the three bounds are shown for σ ∈ [0, 2]. In Figure 4.4 we see that the values
of the two upper bounds seem to be quite close to the value of the lower bound for smaller
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4.4. Comparison of Different Bounds

Figure 4.1: The evolution of the lower bound given by V ind(ν) for different values of µ and
σ. For the second graph we fixed σ = 2 and for the third one µ = 0, 1.

Figure 4.2: The evolution of the upper bound of Proposition 4.29 for different values of µ
and σ. For the second graph we fixed σ = 2 and for the third one µ = 0, 1.

Figure 4.3: The evolution of the upper bound of Proposition 4.43 for different values of µ
and σ. For the second graph we fixed σ = 2 and for the third one µ = 0, 1.

Figure 4.4: The evolution of the bounds for µ = 0, 1.

Figure 4.5: The evolution of the bounds for µ = 0, 1.
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Chapter 4. Some Bounds

Figure 4.6: The evolution of the bounds for σ = 1, 5.

Figure 4.7: The evolution of the bounds for σ = 2.

values of σ. We therefore take a closer look at the values of the bounds for σ ∈ [0, 0.5]
in Figure 4.5. From Figure 4.4 and Figure 4.5 we see that the value of the upper bound
of Proposition 4.43 is closer to the value of the lower bound than the upper bound of
Proposition 4.29 for σ ≥ 0.05.

Figure 4.6 and 4.7 show the values of the bounds for different values of µ. In Figure 4.6
we fix σ = 1, 5 and in Figure 4.7 we fix σ = 2. In Figure 4.6 and Figure 4.7 we see that
the value of the upper bound of Proposition 4.43 is closer to the value of the lower bound
than the upper bound of Proposition 4.29.
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Chapter 5

Results for Special Cases

In this chapter some special classes of processes are considered, for which it is possible
to find an optimal strategy and the extremal value resulting from it. First we take a
short look at deterministic processes in Section 5.1, as this will be useful later on. Then
the use of the Doob decomposition is discussed in Section 5.2. Using this decomposition
the extremal value can be computed for general processes Z in L1(P) in the one-period
model. In Section 5.3 we concentrate on processes which have uncorrelated increments
either themselves or in the predictable process of the Doob decomposition. In Section 5.4 the
greedy strategy is introduced. We will see that this is an optimal strategy for independent
processes. Section 5.5 deals with F0-measurable processes. An important class of processes
are those stochastic processes that can be represented as the product of a deterministic
function and a martingale. These are the main topic of Section 5.6, in which we present a
representation for an optimal strategy for this type of process. Using this representation we
can find results for processes which can be represented by convex functions and martingales
in Section 5.7 and the binomial model in Section 5.8. Again we consider totally-ordered
finite or countably infinite discrete time intervals I and adapted stochastic processes Z =
{Zt}t∈I with Z ∈ L1(P) in this chapter.

5.1 Deterministic Processes

In this section we will briefly discuss deterministic processes, as they will appear from time
to time.

Lemma 5.1. Let I be a totally-ordered countable discrete time interval. Assume that
the process Z = {Zt}t∈I is deterministic. Further assume that for γ ∈ MI given by
Definition 2.33 one of the following conditions holds:

(a) E
[
supt∈I Z

+
t

]
<∞,

(b) E
[
supt∈I Z

−
t

]
<∞,

(c)
∑

t∈I |Zt|E[γt] <∞.

Then for this γ ∈MI the random variable Zγ is well-defined and

E[Zγ ] =
∑
t∈I

Zt E[γt] . (5.2)

If condition (c) is satisfied, then the random variable Zγ is integrable.

57



Chapter 5. Results for Special Cases

Remark 5.3. Note that Zγ would also be integrable for γ ∈MI , if E[supt∈I |Zt|] <∞. This
is satisfied if both condition (a) and (b) hold. If we want to consider γ ∈ Mν

I , then (c) is
replaced by

∑
t∈I Ztνt. This condition will then imply that (5.2) is true for all γ ∈Mν

I .

Proof. If either (a) or (b) is satisfied, the result follows from Corollary 2.39.
Now assume that (c) is satisfied and consider γ ∈ MI . We will first prove that Zγ is

well-defined. We have

E[|Zγ |] ≤ E

[∑
t∈I
|Zt|γt

]
.

By monotone convergence

E

[∑
t∈I
|Zt|γt

]
=
∑
t∈I

E[|Zt|γt] .

As Z is deterministic, we have E[|Zt|γt] = |Zt|E[γt] for all t ∈ I. Therefore
∑

t∈I Ztγt
converges absolutely almost surely if (c) is satisfied, which implies that Zγ is well-defined.
Further we see that Zγ is integrable.

We now want to compute E[Zγ ]. Due to the almost sure absolute convergence, we can
exchange the series and the expected value and obtain

E[Zγ ] = E
[∑
t∈I

Ztγt

]
=
∑
t∈I

E[Ztγt] =
∑
t∈I

Zt E[γt] .

5.2 Results Using the Doob Decomposition

Within this section we assume I ⊂ N0 with 0 ∈ I. Using the Doob decomposition the
adapted process Z = {Zt}t∈I can be decomposed into a martingale M = {Mt}t∈I and a
predictable process A = {At}t∈I with A0 = 0, i.e. Zt = Mt+At for all t ∈ I, see for example
[62, Theorem 12.11] or [25, Lemma 6.10]. Using this decomposition we can try to compute
the values V (ν) from (2.7), V ′(ν) from (2.25) and V +(ν) from (2.17).

Theorem 5.4 (One-period model). Assume I = {0, 1}. Given a probability distribution ν
on I and an adapted stochastic process Z ∈ L1(P), where Z = M + A denotes the Doob
decomposition of Z, we get

V +(ν) = E[M0] + ν1 ES1−ν1(A1) .

An optimal adapted random probability measure is therefore given by γ∗1 = f1−ν1,A1, where
f1−ν1,A1 is defined as in Definition 4.3(b) and γ∗0 = 1− γ∗1 . The optimal strategy γ∗ is a.s.
unique on {A1 6= q1−ν1(A1)}.

Remark 5.5. Note that the strategy γ∗ in Theorem 5.4 is adapted, because A is predictable.
We can apply Theorem 2.49 for M , because we work on a finite-time setting. Further note
that γ∗ ∈ N ν

I , because E[γ∗1 |F0] = 1− γ∗0 , where ν1
1−ν0

= 1.

Proof. Given ν0 ∈ [0, 1] and ν1 := 1− ν0, the value V +(ν) can be computed by

V +(ν) = sup
γ∈Mν

I

E[Z0γ0 + Z1γ1]

= sup
γ∈Mν

I

(E[M0] + E[A1γ1]) ,
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5.2. Results Using the Doob Decomposition

where the Doob decomposition has been used in order to get a better representation for
this equation. Looking at this equation for V +(ν), one discovers that the supremum is
only dependent on the values of A1 and we have γ1 ∈ F1

1−ν1,A1
, where F1

1−ν1,A1
is defined

in Lemma 4.6. As we already saw in Lemma 4.6 the optimal strategy is therefore given by
γ1 = f1−ν1,A1 and we get

V +(ν) = E[M0] + E[A1f1−ν1,A1 ] = E[M0] + ν1 ES1−ν1(A1) .

The a.s. uniqueness of γ∗ on {A1 6= q1−ν1(A1)} follows from Lemma 4.6.

Remark 5.6. In Theorem 2.41 we showed that for a given γ ∈ Mν
I we can find a stopping

time defined on an enlarged probability space, which yields the same value. We will now use
this lemma to search for a stopping time that corresponds to the optimal adapted random
probability measure presented in Theorem 5.4. We will show how this is done for the case
ν0, ν1 ∈ (0, 1) as the case ν0 = 1 or ν1 = 1 is trivial. In Theorem 2.41 we saw that we have
to define the stopping time τ by

{τ = 0} = {0 < U ≤ γ0} and {τ = 1} = {γ0 < U ≤ γ0 + γ1} .

We found that the optimal strategy is given by

γ1 = 1{A1>q1−ν1 (A1)} +
P (A1 ≤ q1−ν1(A1))− 1 + ν1

P (A1 = q1−ν1(A1))
1{A1=q1−ν1 (A1)}

and γ0 = 1− γ1. We set

β1−ν1,A1 =
P (A1 ≤ q1−ν1(A1))− 1 + ν1

P (A1 = q1−ν1(A1))

This implies

{τ = 1} = {1− 1{A1>q1−ν1 (A1)} − β1−ν1,A11{A1=q1−ν1 (A1)} < U ≤ 1}
= {A1 > q1−ν1(A1)} ∪ {A1 = q1−ν1(A1), 1− β1−ν1,A1 < U ≤ 1}

Remark 5.7. In the one-period model a choice must be made whether to exercise the option
immediately or not, where we have given probabilities for these decisions. Such a setting is
also used in randomized tests, which are explained, for example, in [32].

In the multi-period model this computation is rather demanding. When we look at
E[Zγ ], we see that

E[Zγ ] = E[Mγ ] + E[Aγ ] ,

because of the Doob decomposition of the adapted process Z. If M and ν satisfy one of the
conditions of Theorem 2.49, then E[Mγ ] = E[M0]. So the only interesting value is E[Aγ ],
where we still have A0 = 0.

Remark 5.8. If we assume, that for I ⊂ N0 with 0 ∈ I the process A of the Doob decom-
position is deterministic and satisfies one of the conditions of Lemma 5.1, then

E[Aγ ] =
∑
t∈I

E[Atγt] =
∑
t∈I

Atνt .

Examples are processes Z with independent increments, where At = E[Zt]−E[Z0] for t ∈ I.
This includes integrable Lévy processes (like Brownian motion with drift and the Poisson
process), considered at times t ∈ I. For processes with independent increments the result
is also proven using different techniques in Lemma 5.10.
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If the process A has uncorrelated increments, then the computation can be done as
explained in Theorem 5.25.

Remark 5.9. To use the Doob decomposition several times by always defining a new adapted
process each time with the help of the predictable process of the decomposition does not
help to solve the problem. This is due to the fact that after the first decomposition we
can neglect the set {τ = 0}. If we now define a new adapted process P by Pt = At+1 for
t ∈ I \ {0}, we now do not look at E[Pτ ] as the set {τ = 0} is already neglected and can no
longer use Doob’s optional stopping theorem for the martingale part of the decomposition.

5.3 Results for Processes with Uncorrelated Increments

5.3.1 Processes with Uncorrelated Increments

Lemma 5.10. Given a discrete time interval I ⊂ N0 with 0 ∈ I and a probability distri-
bution ν on I. For a given adapted stochastic process Z we define the increments of Z by
∆Z0 := Z0 and ∆Zt := Zt−Zt−1 for all t ∈ I \ {0}. Assume the increments are integrable
and there exists a sequence {ct}t∈I ⊂ [1,∞) such that they satisfy

E[∆Zt |Ft−1]
a.s.
= E[∆Zt] (5.11)

and

E
[
|∆Zt|

∣∣Ft−1

] a.s.
≤ ct E[|∆Zt|] (5.12)

for all t ∈ I \ {0} with ν≤t−1 < 1, as well as∑
t∈I

ct E[|∆Zt|] (1− ν≤t−1) <∞ , (5.13)

with the understanding that 1 − ν≤t−1 = 1 for t = 0. Then, for all γ ∈ Mν
I , Zγ is

well-defined, integrable and

E[Zγ ] =
∑
t∈I

E[Zt] νt .

Remark 5.14. If the increment ∆Zt is independent of Ft−1 for every t ∈ I \{0}, then (5.11)
and (5.12) are satisfied with equality for ct = 1 for all t ∈ I \{0}. However (5.11) and (5.12)
can also be satisfied in other cases, which will be demonstrated in Example 5.17. Note that
(5.11) implies that the process Z has uncorrelated increments. Further note that it would
be possible to replace condition (5.13) by E[supt∈I |Zt|] <∞.

Proof. Consider γ ∈ Mν
I . First we will show that Zγ is well-defined and integrable. Using

that all the summands are non-negative, we have a.s.

∑
t∈I
|Zt|γt =

∑
t∈I

γt

∣∣∣∣ ∑
s∈I≤t

∆Zs

∣∣∣∣ ≤∑
t∈I

γt
∑
s∈I≤t

|∆Zs| =
∑
s∈I
|∆Zs|γ≥s .

By monotone convergence (see [62, Theorem 5.3]) and as
∑

t∈I γt
a.s.
= 1 by Definition 2.12(b),

we have

E
[∑
s∈I
|∆Zs|γ≥s

]
=
∑
s∈I

E[|∆Zs|(1− γ<s)] .
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By (5.12) and by understanding, that 1− γ<s = 1 for s = 0, we get∑
s∈I

E[|∆Zs|(1− γ≤s−1)] =
∑
s∈I

E
[
E
[
|∆Zs|

∣∣Fs−1

]
(1− γ≤s−1)

]
≤
∑
s∈I

cs E[|∆Zs|] (1− ν≤s−1) <∞ .

This implies that
∑

t∈I Ztγt converges absolutely almost surely. Therefore Zγ is well-defined.
Since |Zγ | ≤

∑
t∈I |Zt|γt, the calculations above show that Zγ is integrable.

Repeating the above calculations without the absolute value, and using the dominated
convergence theorem [62, Theorem 5.9] as well as (5.11) and the a.s. absolute convergence
for exchanging the sums, we get

E[Zγ ] =
∑
t∈I

E[∆Zt] ν≥t =
∑
s∈I

νs
∑
t∈I≤s

E[∆Zt] =
∑
s∈I

νs E[Zs] .

Remark 5.15. If we further assume in Lemma 5.10 that E[|Zt|] ≤ C for all t ∈ I and some
C > 0 and that

∑
t∈I ν>t <∞, we can prove the result of the lemma using martingales.

The assumptions above imply that Z and ν satisfy Condition (c2) of Theorem 2.49.
Define ∆Z0 := Z0 and ∆Zt := Zt − Zt−1 for all t ∈ N. Then the process M = {Mt}t∈I
defined by Mt := Zt−E[Zt] =

∑t
s=0(∆Zs−E[∆Zs]) for every t ∈ I is a martingale, because

of the uncorrelated increments of Z. Also M and ν satisfy Condition (c2) of Theorem 2.49.
Using Theorem 2.49 we get for γ ∈Mν

I

E[Mγ ] = E[M0] = 0 .

On the other hand

E[Mγ ] = E
[∑
t∈I

(Zt − E[Zt])γt

]
= E

[∑
t∈I

Ztγt

]
− E

[∑
t∈I

E[Zt] γt

]
,

where the two series are almost surely absolutely convergent and integrable due to our
assumptions, as they also guarantee that one of the conditions of Lemma 5.1 is satisfied for
the deterministic process {E[Zt]}t∈I . This implies by Lemma 2.35

E[Zγ ] = E
[∑
t∈I

Ztγt

]
= E

[∑
t∈I

E[Zt] γt

]
=
∑
t∈I

E[Zt] νt , γ ∈Mν
I .

Remark 5.16. The result found in Lemma 5.10 is the same as the one for the value V ind(ν).
This means that the result is the same as if we would assume that the process Z and
the process γ were independent, which is actually a lower bound for our problem. This
value also coincides with the value found in Remark 5.8, where we stated that for I ⊂ N0

with 0 ∈ I, if M satisfies one of the conditions of Theorem 2.49 and A satisfies one of the
conditions of Lemma 5.1,

V +(ν) = E[M0] +
∑
t∈I

Atνt =
∑
t∈I

(E[Mt] νt + E[At] νt) =
∑
t∈I

E[Zt] νt .

We will now give an example of a process, which does not have independent increments,
but for which Lemma 5.10 applies, in particular an example that satisfies (5.11) and (5.12).
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Example 5.17. Consider I = N0 and let {Xt}t∈I be independent, symmetric, {−1, 1}-
valued random variables. Define Ft = σ(X0, . . . , Xt) for all t ∈ I. For a given deterministic
sequence {at}t∈I with at > 0 for all t ∈ I \ {0}, set Z0 = a0X0 and define the increments of
the process Z by

∆Zt = atXt1{X0=X1=···=Xt−1=−1} for all t ∈ I \ {0} .

For every t ∈ I \ {0} the events {∆Zt = 0} =
⋃t−1
n=0{Xn = 1} ∈ Ft−1 and {X0 = X1 =

· · · = Xt−1 = −1} ∈ Ft−1 have strictly positive probabilities, but {∆Zt = 0, X0 = X1 =
· · · = Xt−1 = −1} = ∅. Hence ∆Zt is not independent of Ft−1 for t ∈ I \ {0}. But

E
[
|∆Zt|

∣∣Ft−1

]
= at1{X0=X1=···=Xt−1=−1}

and
E[|∆Zt|] =

at
2t
,

which implies that (5.12) is satisfied for ct = 2t for all t ∈ I. Also

E[∆Zt |Ft−1] = 0 = E[∆Zt] ,

which implies that (5.11) is satisfied.
We can apply Lemma 5.10 to every distribution ν, satisfying (5.13), which is the case if

∑
t∈I

at(1− ν0 − · · · − νt−1) =
∑
t∈I

at
∑
s∈I
s≥t

νs =
∑
s∈I

νs

s∑
t=0

at .

By choosing at = tr for t ∈ I and some r > 0, then

∑
s∈I

νs

s∑
t=0

at ≤
∑
s∈I

νss
r+1 .

This is a convergent sum if the corresponding moment of the distribution ν exists.

We will now give an example, which shows that there are martingales with independent
increments, for which Lemma 5.10 can be used, but not Theorem 2.49.

Example 5.18. Let I = N0 and let {Xt}t∈I be independent, {−1, 1}-valued random vari-
ables with P(Xt = 1) = p and P(Xt = −1) = 1− p =: q for all t ∈ I and p ∈ [0, 1]. Define
Ft = σ(X0, . . . , Xt) for all t ∈ I. Then M = {Mt}t∈I defined by

Mt :=
t∑

s=0

2sXs , t ∈ I ,

is a martingale with independent increments, hence it satisfies (5.11) and (5.12) for ct = 1
for all t ∈ I. Let τ := inf{t ∈ I |Xt = 1}. Then {τ ≥ t} = {X0 = X1 = · · · = Xt−1 = −1}
for all t ∈ I, which implies that τ is a stopping time. The distribution of this stopping
time is given by P(τ ≥ t) = qt for all t ∈ I. Actually τ follows a geometric distribution
with P(τ = t) = pqt for all t ∈ I. Further the stopped martingale M τ = {M τ

t }t∈I is also a
martingale. The increments of the stopped martingale M τ are given by ∆M τ

0 = M τ
0 and

∆M τ
t = M τ

t −M τ
t−1 = 2tXt1{τ≥t} , t ∈ I \ {0} .
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5.3. Results for Processes with Uncorrelated Increments

This implies
E[|∆M τ

t |] = 2t E[|Xt|]P(τ ≥ t) = (2q)t .

Then ∑
t∈I

E[|∆M τ
t |]P(τ ≥ t) =

∑
t∈I

(2q2)t .

This last geometric series converges, if 2q2 < 1, i.e. if q <
√

2
2 ≈ 0.707107. We can therefore

apply Lemma 5.10 to the stochastic process M τ by setting p = 0.3.
On the other hand we have M τ

τ
a.s.
= 1, which implies E[M τ

τ ] = 1 6= 0 = E[M τ
0 ], so that

Doob’s optional stopping theorem is not valid.

Remark 5.19. As we already noted in Chapter 3, we see that for martingales satisfying one
of the conditions of Theorem 2.49 and for processes with uncorrelated increments satisfying
the conditions of Lemma 5.10 we have that the expected value of

∑
t∈I Ztγt is the same for

all γ ∈Mν
I . Therefore the optimal strategy cannot be unique in these cases.

We can now use Lemma 5.10 to modify Wald’s equation, which states that for a random
sum

S =
N∑
i=1

Xi,

where N is a non-negative integer-valued random variable with finite expectation, {Xn}n∈N
is a sequence of real valued random variables with the same expectation, which satisfy
E
[
Xn1{N≥n}

]
= E[Xn]P(N ≥ n) and

∑
n≥1 E

[
|Xn|1{N≥n}

]
<∞, the expectation of S can

be computed by
E[S] = E[N ]E[X1] .

More detailed information about Wald’s equation can be found in [60] and [61].

Remark 5.20. By dropping the assumptions that the expectation of N is finite and that the
{Xn}n∈N all have the same expectation, and while still assuming that they are integrable
and keeping the other assumptions as stated above, one can show that

SN :=
N∑
i=1

Xi and TN :=
N∑
i=1

E[Xi]

are integrable and that they have the same expectation, i.e. E[SN ] = E[TN ].

Lemma 5.21 (Modification of Wald’s equation). Set I = N. Given a stopping time τ and
an independent sequence of integrable random variables {Xt}t∈I . Assume

∑
t∈I

E

[
t∑
i=1

|Xi|1{τ=t}

]
<∞ (5.22)

and ∑
t∈I

E

[
t∑
i=1

E[|Xi|] 1{τ=t}

]
<∞ . (5.23)

Then, for Sτ :=
∑τ

i=1Xi and Tτ :=
∑τ

i=1 E[Xi]

E[Sτ ] = E[Tτ ] .
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If further the random variables {Xt}t∈I all have the same expectation and τ has finite
expectation, then

E[Sτ ] = E[τ ]E[X1] .

Proof. Define a process {Zt}t∈I by Zt := X1 + · · ·+Xt for t ∈ I. Since {Xt}t∈I is an i.i.d.
sequence, the process Z has independent increments. We can now set γt = 1{τ=t}, where
the distribution of the process γ is given by νt = P(τ = t) for t ∈ I. Then Sτ = Zτ , where
the process Z satisfies the conditions (5.11) and (5.12) of Lemma 5.10, because {Xt}t∈I is a
sequence of independent random variables. We have that Sτ is well-defined and integrable,
because

E[|Sτ |] = E
[∣∣∣∣ τ∑
i=1

Xi

∣∣∣∣] ≤ E
[ τ∑
i=1

|Xi|
]

= E
[∑
t∈I

t∑
i=1

|Xi|1{τ=t}

]
.

By monotone convergence we can exchange the series and the expectation and can thus
prove by (5.22) absolute convergence almost surely of the random series Sτ , which implies
that it is well-defined and integrable.

Now we want to prove that also Tτ is well-defined and integrable.

E[|Tτ |] = E
[∣∣∣∣ τ∑
i=1

E[Xi]

∣∣∣∣] ≤ E
[ τ∑
i=1

|E[Xi] |
]

= E
[∑
t∈I

t∑
i=1

|E[Xi] |1{τ=t}

]
.

By monotone convergence we get

E
[∑
t∈I

t∑
i=1

|E[Xi] |1{τ=t}

]
=
∑
t∈I

E
[ t∑
i=1

|E[Xi] |1{τ=t}

]
.

By Jensen’s inequality (see e.g. [62, Theorem 6.6] or [27, Theorem 7.9]), we have |E[Xt] | ≤
E[|Xt|] for every t ∈ I. Therefore

E
[ t∑
i=1

|E[Xi] |1{τ=t}

]
≤ E

[ t∑
i=1

E[|Xi|] 1{τ=t}

]
= E

[
E
[ t∑
i=1

|Xi|
]
1{τ=t}

]
.

This implies that by (5.23) the stochastic series Tτ converges absolutely almost surely, which
implies that Tτ is well-defined and integrable. By the absolute convergence of the stochastic
series Tτ we can exchange the series and the expected value in oder to get

E[Tτ ] = E
[∑
t∈I

E[Zt] γt

]
=
∑
t∈I

E[E[Zt] γt] =
∑
t∈I

E[Zt] νt ,

with E[Zt] =
∑t

i=1 E[Xi] by linearity of the expected value.
By Lemma 5.10

E[Sτ ] = E
[∑
t∈I

Ztγt

]
=
∑
t∈I

E[Zt] νt .

If, further, all the random variables {Xt}t∈I have the same expectation and τ has finite
expectation, then

E[Zt] = tE[X1] for all t ∈ I .
This implies

E[Tτ ] = E[Sτ ] =
∑
t∈I

tE[X1]P(τ = t) = E[X1]E[τ ] .
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Remark 5.24. In Lemma 5.21 we do not need any assumption about independence between
τ and {Xt}t∈I .

5.3.2 Predictable Processes with Uncorrelated Increments

Theorem 5.25. Given a discrete time interval I ⊂ N0 with 0 ∈ I and a probability
distribution ν on I, assume that the adapted process Z = {Zt}t∈I can be decomposed into
Zt = Mt + Nt + At for t ∈ I, where M is a martingale such that M and ν satisfy one of
the conditions of Theorem 2.49, N is a process such that N and ν satisfy the conditions
of Lemma 5.10 and A is a predictable process, with A0 = 0. Denote the increments of the
process A by ∆A0 = A0 = 0 and ∆At := At − At−1 for t ∈ I \ {0}. Assume that for the
density of Definition 4.3(b) we have for every t ∈ I \ {0} with t+ 1 ∈ I

E
[
fδt,∆At+1 |Ft−1

] a.s.
= 1− δt (5.26)

and that for some sequence {ct}t∈I for every t ∈ I \ {0}

E
[
|∆At|

∣∣Ft−1

] a.s.
≤ ct E[|∆At|] . (5.27)

and that for each t ∈ I \ {0, 1} we have that fδt−1,∆At∆At and (1 − γ0 − · · · − γt−2) are
uncorrelated. Further assume that the process A satisfies either∑

t∈I\{0}

ct E[|∆At|] ν≥t <∞ (5.28)

or

E
[
sup
t∈I
|At|

]
<∞ . (5.29)

With these assumptions we have that Zγ is well-defined and integrable. Then an optimal
adapted random probability measure γ∗ is given by

γ∗t =

{
(1− γ∗≤t−1)(1− fδt,∆At+1) if t+ 1 ∈ I ,

1− γ∗≤t−1 if t+ 1 /∈ I ,
(5.30)

where fδt,∆At+1 is defined as in Definition 4.3(b) and

δt =

{
1− 1−ν≤t

1−ν≤t−1
= νt

1−ν≤t−1
if ν≤t−1 < 1 ,

0 if ν≤t−1 = 1 .

Using this strategy we have

V +(ν) = E[M0] +
∑
t∈I

E[Nt] νt +
∑

t∈I\{0}

(1− ν≤t−1) ESδt−1(∆At) .

If P(∆At+1 = qδt(∆At+1)) = 0 for all t ∈ I with t+ 1 ∈ I, then the optimal strategy γ∗ is
a.s. unique.

Remark 5.31. By admitting N = 0, the Doob decomposition can be used to find a decom-
position of the adapted process Z. In Example 5.36 we will see, that there exist processes,
for which the decomposition Z = M +N +A works better than the standard Doob decom-
position.
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Remark 5.32. The theorem is especially valid for predictable processes A with independent
increments, that satisfy (5.29).

Remark 5.33. For the strategy γ∗ presented in Theorem 5.25 we even have γ∗ ∈ N ν
I , because

for all t ∈ I \ {0}

E[γ∗t |Ft−1] = (1− γ∗≤t−1)
(
1− E

[
fδt,∆At+1 |Ft−1

])
,

where E
[
fδt,∆At+1 |Ft−1

] a.s.
= 1− δt by (5.26). By Lemma 2.31 we see that γ∗ ∈ N ν

I .

Proof. In Theorem 2.49 and Lemma 5.10 we showed that Mγ and Nγ are well-defined and
integrable for γ ∈ Mν

I . Next we will show that Aγ is well defined and integrable. For
γ ∈Mν

I we have a.s., using that all the summands are non-negative,

∑
t∈I\{0}

|At|γt =
∑

t∈I\{0}

γt

∣∣∣∣ ∑
s∈I\{0}
s≤t

∆As

∣∣∣∣ ≤ ∑
t∈I\{0}

γt
∑

s∈I\{0}
s≤t

|∆As| =
∑

s∈I\{0}

|∆As|
∑

t∈I\{0}
t≥s

γt .

By monotone convergence (see [62, Theorem 5.3]) and by Definition 2.12(b) we have

E
[ ∑
s∈I\{0}

|∆As|
∑

t∈I\{0}
t≥s

γt

]
=

∑
s∈I\{0}

E[|∆As|(1− γ≤s−1)] .

Further by (5.27) and (5.28)∑
s∈I\{0}

E[|∆As|(1− γ≤s−1)] =
∑

s∈I\{0}

E
[
E
[
|∆As|

∣∣Fs−1

]
(1− γ≤s−1)

]
≤

∑
s∈I\{0}

cs E[|∆As|] (1− ν≤s−1) <∞ .

If (5.29) is satisfied, then simply by Definition 2.12(b)

E[|Aγ |] ≤ E
[
sup
t∈I
|At|

∑
t∈I

γt

]
= E

[
sup
t∈I
|At|

]
<∞.

This implies that Aγ is well-defined and integrable. It also implies that Zγ is well-defined
and integrable for γ ∈Mν

I .
Next we will show that we really have γ∗ ∈Mν

I and afterwards we will prove optimality.

It can easily be seen that γ∗ is adapted and that
∑

t∈I γ
∗
t

a.s.
= 1 by the definition of γ∗ in

(5.30). Now we will show that E[γ∗t ] = νt and that γ∗t ≥ 0 a.s. for all t ∈ I. This is
done by induction. We know that γ∗0 is [0, 1]-valued a.s., as fδ0,∆A1 is [0, 1]-valued a.s. by
Remark 4.4(a), due to the definition of the process γ∗. Using Remark 4.4(b) we can easily
compute

E[γ∗0 ] = 1− E[fν0,∆A1 ] = 1− (1− ν0) = ν0 .

Fix t ∈ I with t + 1 ∈ I. We assume γ∗s ≥ 0 a.s. for s ∈ {1, . . . , t − 1}, γ∗≤t−1 ≤ 1 a.s. and

E
[
γ∗≤t−1

]
= ν≤t−1. We have that γ∗t is [0, 1]-valued a.s., because as γ∗≤t−1 ≤ 1 a.s. and by

Remark 4.4(a)

1− γ∗≤t−1 ∈ [0, 1] a.s. and 1− fδt,∆At+1 ∈ [0, 1] a.s.
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We know that

E
[
1− γ∗≤t−1

]
= 1− ν≤t−1 .

For t ∈ I with t+ 1 ∈ I we have, using (5.26),

E[γ∗t ] = E
[
(1− γ∗≤t−1)

(
1− E

[
fδt,∆At+1 |Ft−1

])]
= E

[
(1− γ∗≤t−1)δt

]
= (1− ν≤t−1)δt = νt .

Further γ∗≤t ≤ 1 a.s., because γ∗t ≤ 1− γ∗≤t−1 by Definition of γ∗ in (5.30).

For t ∈ I with t+ 1 /∈ I, we have γ∗t = 1− γ∗≤t−1. As γ∗≤t−1 ∈ [0, 1] a.s., we get γ∗t ≥ 0
a.s. and E[γ∗t ] = 1− ν≤t−1 = νt, because ν is a probability distribution. Altogether we have
that γ∗ ∈Mν

I as in Definition 2.12.

We still have to show that γ∗ is optimal. For γ ∈Mν
I we have, using Theorem 2.49 and

Lemma 5.10,

E[Zγ ] = E[Mγ ] + E[Nγ ] + E[Aγ ] = E[M0] +
∑
t∈I

E[Nt] νt + E[Aγ ] .

Therefore

V +(ν) = E[M0] +
∑
t∈I

E[Nt] νt + sup
γ∈Mν

I

E[Aγ ] .

Repeating the above calculations without the absolute value, and using the dominated
convergence theorem [62, Theorem 5.9] and the a.s. absolute convergence for exchanging
the sums, we get, using Definition 2.12(b)

E[Aγ ] = E
[ ∑
t∈I\{0}

∆At
∑

s∈I\{0}
s≥t

γs

]
= E

[ ∑
t∈I\{0}

∆At(1− γ≤t−1)

]
.

We define

Bt := {1− γ≤t > 0} .

By dominated convergence we can exchange the series and the expected value and get

E[Aγ ] =
∑

t∈I\{0}

E
[
1Bt−2(1− γ≤t−1)∆At

]
=

∑
t∈I\{0}

E
[
(1− γ≤t−2)

(
1− γt−1

1− γ≤t−2
1Bt−2

)
∆At

]
.

Define X := 1− γ≤t−2, which is Ft−2-measurable. Then(
1− γt−1

1− γ≤t−2
1Bt−2

)
∈ FXδt−1,∆At .

The value we are interested in is supγ∈Mν
I
E[Aγ ]. For this we have

sup
γ∈Mν

I

E[Aγ ] ≤
∑

t∈I\{0}

sup
γ∈Mν

I

E[(1− γ≤t−1)∆At]

=
∑

t∈I\{0}

sup
γ0,...,γt−2∈Mν

I

sup
γt−1∈Mν

I

E[(1− γ≤t−1)∆At] .
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The last supremum with respect to γt−1 ∈Mν
I can be computed with the help of Lemma 4.6.

We get

sup
γt−1∈Mν

I

E
[
(1− γ≤t−2)

(
1− γt−1

1− γ≤t−2
1Bt−2

)
∆At

]
≤ sup

f∈FXδt−1,∆At

E[(1− γ≤t−2)f∆At]

= E
[
(1− γ≤t−2)fδt−1,∆At∆At

]
As fδt−1,∆At∆At and (1− γ≤t−2) are uncorrelated for each t ∈ I \ {0}, we get

E
[
(1− γ≤t−2)fδt−1,∆At∆At

]
= E[(1− γ≤t−2)] (1− δt−1) ESδt−1(∆At)

= (1− ν≤t−1) ESδt−1(∆At) .

The upper bound computed here is exactly attained for γ∗, since 1− γ∗t−1

1−γ∗≤t−2
= fδt−1,∆At .

The a.s. uniqueness of the optimal strategy if P(∆At+1 = qδt(∆At+1)) = 0 for all t ∈ I
with t+ 1 ∈ I follows from Lemma 4.6.

Remark 5.34. If we consider a finite discrete time interval {0, . . . , T} we clearly have δT = 1.
Theorem 2.41 states that there exists a stopping time on an enlarged probability space,
which yields the same value. In this case an optimal stopping time would be given by

{τ∗ = t} = {τ∗ ≥ t}
∩ (
{

∆At > qδt−1(∆At)
}
∪
{

∆At = qδt−1(∆At), 1− βδt−1,∆At < U
}

) ,

for t ∈ I, with δt−1 defined as in Theorem 5.25, βδt−1,∆At as in Definition 4.3(b) and U ∼
U(0, 1) independent of A.

We know that for every process with independent increments, the predictable process
in the Doob decomposition is deterministic and therefore also has independent increments.
We will now give an example of an adapted process Z, for which the process A of the Doob
decomposition has independent increments, but the process Z itself does not.

Example 5.35. Consider I ⊂ N0 with 0 ∈ I and an adapted process Z = {Zt}t∈I , where
the random variables Zt are independent for t ∈ I. Then Z does not necessarily have
independent increments. The process A = {At}t∈I of the Doob decomposition of the
process Z is given by

At =

t∑
k=1

E[Zk − Zk−1 |Fk−1] =

t∑
k=1

(E[Zk]− Zk−1) .

Therefore

∆At = At −At−1 = E[Zt]− Zt−1 .

We see that the increments of the predictable process in the Doob decomposition of Z are
independent.

We will now give an example of a process that admits the use of Theorem 5.25 for the
appropriate choice of ν and I by setting Z = M +N +A, but not if we set Z = M +A.
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Example 5.36. Given a discrete time interval I ⊂ N0 with 0 ∈ I and a probability
distribution ν on I. Let X = {Xt}t∈I be an i.i.d. process, for which Xt has a standard
normal distribution for each t ∈ I. Define a process N = {Nt}t∈I with independent
increments by Nt :=

∑t
s=0Xs for each t ∈ I and assume that N and ν satisfy the conditions

of Lemma 5.10. Let M = {Mt}t∈I be a martingale such that M and ν satisfy one of the
conditions of Theorem 2.49. Further let A = {At}t∈I be a predictable process satisfying
the conditions of Theorem 5.25. For an appropriate choice of ν we can obviously use
Theorem 5.25 for the computation of V +(ν) for an adapted process Z = {Zt}t∈I defined
by Zt := Mt +Nt +At for all t ∈ I with M , N and A defined as above.

We will now look at the Doob decomposition of the process Z. For the martingale part,
which we will now denote by M̃ = {M̃t}t∈I we have

M̃t = Z0 +
t∑

k=1

(Zk − E[Zk |Fk−1]) = Mt +Nt .

As Xt ∼ N(0, 1) for all t ∈ I and therefore Nt ∼ N(0, t) for all t ∈ I we have that neither
the process M̃ nor its increments are bounded. Further M̃ is not uniformly integrable and
it is not necessarily closable as well as it does not necessarily satisfy E[supt∈I M̃

+
t ] < ∞

or E[supt∈I M̃
−
t ] < ∞. This means that we cannot use Theorem 2.49 if we are given a

probability distribution ν that does not satisfy ν0 + · · ·+ νt = 1 for some t ∈ I.

5.4 Greedy Strategy

To follow a greedy strategy means to exercise the option only if the value of the underlying
process is as big as possible under the given circumstances. This strategy is optimal if
the underlying process is independent, which will be shown in the following lemma. In
Theorem 5.25 the optimal strategy in the case of random variables with uncorrelated incre-
ments in the predictable process of the Doob decomposition is to exercise the option if the
following increment is small and to wait if it is going to be big – hence a somewhat greedy
strategy. In Example 5.45 we will look at the situation, where the increments of the process
are dependent.

We will start by presenting a lemma for stopping times, which will later on be generalized
to adapted random probability measures.

Lemma 5.37. Given a discrete time interval I ⊂ N0 with 0 ∈ I and a probability distri-
bution ν on I. Assume that the adapted process Z = {Zt}t∈I is a process of independent
random variables such that E[supt∈I |Zt|] < ∞. Further let U = {Ut}t∈I be an adapted
process of independent random variables uniformly distributed on [0, 1], such that Z and U
are independent. For t ∈ I set

δt = 1− νt
1− ν<t

and

Et := {Zt > qδt(Zt)} ∪ {Zt = qδt(Zt), 1− βδt,Zt < Ut ≤ 1} , (5.38)

with βδt,Zt as in Definition 4.3(b). Then an optimal stopping time τ∗ solving

sup
τ∈T νI

E[Zτ ] = E[Zτ∗ ]
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is given by

{τ∗ = t} =


(⋂

I<t
Ecs

)
∩ Et if ν≤t < 1 ,⋂

I<t
Ecs if ν≤t = 1 .

E[Zτ∗ ] can be computed as

E[Zτ∗ ] =
∑
t∈I

E
[
Zt1{τ∗=t}

]
=
∑
t∈I

νt ES1− νt
1−ν<t

(Zt) .

Proof. This proof will be done by induction. The parameter that will change from one
induction step to the next will be the end point T ∈ N0 of the time interval I = {0, . . . , T}
of the interval of the first T time points in I, which means that we will show that this
strategy is optimal for every finite time interval. We will therefore start with T = 0.

When T = 0, we have to stop at time 0, since this is the only possible moment. So we
will have ν0 = 1 and τ∗ = 0.

We now assume that for some t ∈ I \ {0} the formula presented in the lemma is true
for T = t− 1 and show that it also has to be true for T = t.

We have

V (ν) = sup
τ∈T ν{0,...,t}

E[Zτ ] = sup
τ∈T ν{0,...,t}

E
[
Z01{τ=0} + Zτ1{τ≥1}

]
≤ sup

τ∈T ν{0,...,t}
E
[
Z01{τ=0}

]
︸ ︷︷ ︸

(∗)

+ sup
τ∈T νI

E
[(
Z11{τ=1} + · · ·+ Zt1{τ=t}

)
1{τ≥1}

]
︸ ︷︷ ︸

(∗∗)

.

(∗) and (∗∗) can now be computed separately.
When we look at (∗) we see, that Z0 should be made as big as possible. This implies

that the optimal stopping time at time 0 should satisfy {τ∗ = 0} = E0.
For computing (∗∗) a change of measure can be done. Then the problem is reduced

to a problem with time horizon t − 1, for which we already know the result due to our
assumption. This means

(∗∗) = sup
τ∈T µ,Q{1,...,t}

EQ [Zτ ] ,

where Q is an equivalent probability measure and µ is the distribution of the new stopping
time τ under Q with µi = νi

1−ν0
for i = 1, . . . , t. By T µ,Q{1,...,t} we denote the set of all stopping

times with values in {1, . . . , t} which have distribution µ under Q. Now we use the formula
stated in the lemma in order to compute the optimal stopping time τ∗, but we have to
intersect with the set Ec0 = {τ∗ ≥ 1}, since we do our computation on this set. Then for
every s ∈ {1, . . . , t} we have

{τ∗ = s} =

(
s−1⋂
i=1

Eci

)
∩ Ec0 ∩ Es =

(
s−1⋂
i=0

Eci

)
∩ Es .

Actually the stopping time τ∗ found is just an upper bound, but it can easily be checked
that P(τ∗ = t) = νt for all t ∈ I and that τ∗ is really a stopping time.

Remark 5.39. Note that in the proof of Lemma 5.37 the stopping time τ∗ is for s ∈ {1, . . . , t}
found as

{τ∗ = s} =

(
s−1⋂
i=1

Eci

)
∩ Ec0 ∩ Es ,
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where by

{τ̂∗ = s} =

(
s−1⋂
i=1

Eci

)
∩ Es

the optimal stopping time for (∗∗) is found, i.e. τ̂∗ ∈ T µ,Q{1,...,t}. We can use the sets Et of

(5.38) for t ∈ I \ {0} also for τ̂∗, because

1− µt
1− µ≤t−1

= 1− νt
1− ν≤t−1

.

Remark 5.40. If we look at such a set {τ∗ = t}, then we see that it is only dependent on
Zs with s ∈ I≤t. Since all the random variables Zt with t ∈ I are independent, this set
{Zs |s ∈ I<t} is independent of {Zs |s ∈ I>t}. Even the set {τ∗ ≤ t} is independent of
{Zs |s ∈ I>t}. So whatever happens up to time t, does not effect the future. Therefore, it is
best to act in an optimal way in each moment of time. Since we have to stop with a given
probability, this means that we only take values as big as possible each moment in time.

We can extend Lemma 5.37 to the use of adapted random probability measures.

Theorem 5.41. Given a totally-ordered countable discrete time interval I. Assume we
are given an adapted process Z = {Zt}t∈I of independent random variables such that
E[supt∈I |Zt|] <∞. Then there exists an optimal strategy γ∗ solving

sup
γ∈Mν

I

E[Zγ ] = E[Zγ∗ ] ,

where γ∗ is given by

γ∗t =

{
(1− γ∗<t)f1−δt,Zt if ν≤t < 1 ,

1− γ∗<t if ν≤t ≥ 1 ,

with f1−δt,Zt as in Definition 4.3(b) and

δt =

{
1− 1−ν≤t

1−ν<t = νt
1−ν<t if ν<t < 1 ,

0 if ν<t = 1 .

Then

E[Zγ∗ ] =
∑
t∈I

νt ES1− νt
1−ν<t

(Zt) .

Remark 5.42. Note that for I ⊂ N0 with 0 ∈ I the strategy γ∗ presented in Theorem 5.41
is an element of N ν

I , because for all t ∈ I \ {0}

E[γ∗t |Ft−1] = (1− γ∗≤t−1)
(
E[f1−δt,Zt |Ft−1]

)
,

where, due to the assumption of independence of the random variables Zt for all t ∈ I,
we get E[f1−δt,Zt |Ft−1] = E[f1−δt,Zt ] = δt by Remark 4.4(b). By Lemma 2.31 we see that
γ∗ ∈ N ν

I .

Proof. This result follows from the proof of Theorem 5.25. We define

B<t := {1− γ<t > 0} .
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We have by Lemma 2.35

sup
γ∈Mν

I

E[Zγ ] = sup
γ∈Mν

I

∑
t∈I

E[Ztγt] ≤
∑
t∈I

sup
γ∈Mν

I

E[Ztγt] =
∑
t∈I

sup
γ∈Mν

I

sup
γt∈Mν

I

E[Ztγt]︸ ︷︷ ︸
=(∗)

.

(∗) can be computed with the help of Lemma 4.6, when setting X := 1− γ<t and noticing
γt

1−γ<t 1B<t ∈ F
X
1−δt,Zt . We have

(∗) = sup
γt∈Mν

I

E
[
(1− γ<t)

(
γt

1− γ<t
1B<t

)
Zt

]
≤ sup

f∈FX1−δt,Zt

E[(1− γ<t)fZt]

= E[(1− γ<t)f1−δt,ZtZt]

As Zt and X are independent, because Z is an independent process and both processes are
adapted, we have

E[(1− γ<t)f1−δt,ZtZt] = E[(1− γ<t)] δt ES1−δt(Zt)

= νt ES1−δt(Zt) .

The upper bound computed here is exactly attained for γ∗, since
γ∗t

1−γ∗<t
= f1−δt,Zt .

The process γ∗ is adapted and it is easy to prove E[γ∗t ] = νt. Assume T is the last element
of I, for which νT > 0, i.e. ν≤T = 1 and ν<T < 1. Then δT = 1 and γ∗T = 1 − γ∗<T , which

implies that
∑

t∈I γ
∗
t

a.s.
= 1. Similar as in the proof of Theorem 5.25 it can be shown, that

γ∗t ≥ 0 a.s. for all t ∈ I. Therefore γ∗ ∈Mν
I as in Definition 2.12.

Example 5.43 (Greedy strategy - independent process). Assume I = {0, 1, 2} and let Z be
a process with Zt ∼ U(0, t+ 1) and Zt independent for t ∈ I. Let {Ft}t∈I be the filtration
generated by the process Z and ν0 = ν2 = 1

4 and ν1 = 1
2 .

The Doob decomposition of the process Z is given by

M0 = Z0 , M1 = Z1 − E[Z1] + Z0 , M2 = M1 + Z2 − E[Z2]

and
A0 = 0 , A1 = E[Z1]− Z0 , A2 = A1 + E[Z2]− Z1 .

Due to the independence of the process Z we have that the increments of the process A,
given by

∆A1 = A1 −A0 = E[Z1]− Z0 , ∆A2 = A2 −A1 = E[Z2]− Z1 ,

are independent. Using the result of Theorem 5.25 we get

V +(ν) = E[M0] +
∑

t∈I\{0}

(1− ν0 − · · · − νt−1) ESδt−1(∆At)

=
1

2
+ (1− ν0) ESν0(∆A1) + (1− ν0 − ν1) ES ν1

1−ν0
(∆A2)

=
1

2
+

3

4
ES 1

4
(1− Z0︸ ︷︷ ︸
∼U(0,1)

) +
1

4
ES 2

3

(
3

2
− Z1︸ ︷︷ ︸

∼U(− 1
2
, 3
2

)

)

=
1

2
+

3

4
· 1

2

(
1

4
+ 1

)
+

1

4
· 1

2

(
5

6
+

3

2

)
=

121

96
≈ 1.26042 .
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A greedy strategy (as found in Lemma 5.37) is modeled by a stopping time given by

{τ∗ = 0} = {Z0 > q1−ν0(Z0)} ,
{τ∗ = 1} = {Z0 ≤ q1−ν0(Z0)} ∩ {Z1 > q1− ν1

1−ν0
(Z1)} ,

{τ∗ = 2} = {Z0 ≤ q1−ν0(Z0)} ∩ {Z1 ≤ q1− ν1
1−ν0

(Z1)}
∩ {Z2 > q1− ν2

1−ν0−ν1
(Z2) = q0(Z2)} ,

This yields

E

[∑
t∈I

Zt1{τ=t}

]
=

1

4
E
[
Z0

∣∣∣Z0 > q 3
4
(Z0)

]
+

1

2
E
[
Z1

∣∣∣Z1 > q 1
3
(Z1)

]
+

1

4
E[Z2 |Z2 > q0(Z2)]

=
1

4
E
[
Z0

∣∣∣∣Z0 >
3

4

]
+

1

2
E
[
Z1

∣∣∣∣Z1 >
2

3

]
+

1

4
E[Z2 |Z2 > 0]

=
1

4
· 1

2

(
3

4
+ 1

)
+

1

2
· 1

2

(
2

3
+ 2

)
+

1

4
· 3

2
=

121

96
≈ 1.26042 .

Using the upper bound found in Proposition 4.29, we get

V +(ν) ≤
∑
t∈I

νt ES1−νt(Zt)

=
1

4
E
[
Z0

∣∣∣∣Z0 >
3

4

]
+

1

2
E[Z1 |Z1 > 1] +

1

4
E
[
Z2

∣∣∣∣Z2 >
9

4

]
=

1

4
· 1

2

(
3

4
+ 1

)
+

1

2
· 3

2
+

1

4
· 1

2

(
9

4
+ 3

)
=

1

4

(
7

8
+ 3 +

21

8

)
=

13

8
= 1.625 .

Using the upper bound of Proposition 4.31 and the sub-additivity of the expected shortfall,
we find

V +(ν) ≤ E[M0] +
∑
t∈I

νt ES1−νt(At)

≤ E[M0] + ν1 ES1−ν1(A1) + ν2(ES1−ν2(∆A1) + ES1−ν2(∆A2))

=
1

2
+

1

2
· 3

4
+

1

4
(
7

8
+

5

4
) =

45

21
≈ 1.40625 ,

which gives a smaller value than the upper bound of Proposition 4.29.

Under the assumption of independence, we get

V ind(ν) =
∑
t∈I

E[Zt] νt =
1

2
· 1

4
+ 1 · 1

2
+

3

2
· 1

4
= 1 .

Remark 5.44. In Example 5.43 we saw that for the considered process the values using the
strategies of Theorem 5.25 and of Lemma 5.37 are equal. On the other hand, we noted
that the strategy of Theorem 5.25 is unique for processes with continuous distribution
functions. Therefore, we will now show that these two strategies really coincide, using the
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greedy strategy for the process after applying the Doob decomposition.

E[Zτ∗ ] = E

[
M2

∑
t∈I

1{τ∗=t}

]
+
∑
t∈I

E
[
At1{τ∗=t}

]
= E[M2] + E

[
A11{τ∗=1}

]
+ E

[
A21{τ∗=2}

]
= E[M2] + E

[
∆A11{∆A1>qν0 (∆A1)}1{Z1>q1− ν1

1−ν0
(Z1)}

]
+ E

[
(∆A1 + ∆A2)1{Z0≤q1−ν0 (Z0)}1{Z1≤q1− ν1

1−ν0
(Z1)}1{Z2>q0(Z2)}

]
= E[M0] + E

[
A11{∆A1>qν0 (∆A1)}

] ν1

1− ν0

+ E
[
∆A11{∆A1>qν0 (∆A1)}

]
(1− ν1

1− ν0
) + E

[
∆A21{∆A2>q ν1

1−ν0
(∆A2)}

]
(1− ν0)

= E[M0] + (1− ν0) ESν0(∆A1)
ν1

1− ν0
+ (1− ν0) ESν0(∆A1)(1− ν1

1− ν0
)

+ (1− ν1

1− ν0
) ES ν1

1−ν0
(∆A2)(1− ν0)

= E[M0] + (1− ν0) ESν0(∆A1) + (1− ν0 − ν1) ES ν1
1−ν0

(∆A2) ,

because
{Z0 ≤ q1−ν0(Z0)} = {∆A1 > qν0(∆A1)}

and
{Z1 ≤ q1− ν1

1−ν0
(Z1)} = {∆A2 > q ν1

1−ν0
(∆A2)}

We saw that we can use a greedy strategy for independent processes. In the following
example we will look at dependent processes and notice that the optimal strategy is not of
greedy type.

Example 5.45. Assume I = {0, . . . , T} with T = 2 and U ∼ U(0, 1). Further assume that
the process Z is given by Z0 = U,Z1 = 0, Z2 = 2U . Using the Doob decomposition for
this process, we get M0 = M1 = M2 = U and A0 = 0, A1 = −U,A2 = U . The increments
A1 − A0 = −U and A2 − A1 = 2U are clearly dependent. Assume for example that the
distribution for the stopping time is given by ν0 = 2

6 , ν1 = 3
6 , ν2 = 1

6 . An optimal stopping
time one can find for this special problem is given by

{τ∗ = 0} = {ν1 < U ≤ 1− ν2} ,
{τ∗ = 1} = {U ≤ ν1} ,
{τ∗ = 2} = {U > 1− ν2} ,

because it yields

E[Zτ∗ ] = ν0 E[U |τ∗ = 0] + ν1 E[0|τ∗ = 1] + ν2 E[2U |τ∗ = 2]

= ν0
ν1 + (1− ν2)

2
+ 2ν2(1− ν2

2
)

=
2

6

(
3

12
+

5

12

)
+ 2 · 1

6
· 11

12
=

38

72
.

In Example 4.50 we saw that this value equals the value of the upper bound found in
Proposition 4.31. Therefore this strategy is optimal.
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When taking a closer look at the upper bound of Proposition 4.31, we can find another
strategy that yields this optimal value. This is given by

γ0 = 1− γ1 − γ2 ,

γ1 = f1−ν1,−U ,

γ2 = f1−ν2,U ,

where γ1 and γ2 are defined as in Definition 4.3(b). Actually this strategy equals the
strategy used for finding the upper bound in Proposition 4.31, because

E[Zγ ] = E[U(1− γ1 − γ2) + 0 · γ1 + 2Uγ2]

= E[U ] + E[−Uf1−ν1,−U ] + E[Uf1−ν2,U ]

=
1

2
+

3

6
ES 3

6
(−U) +

1

6
ES 5

6
(U) =

38

72
.

We have to check whether we have γ ∈ Mν
I . The process γ is adapted, because the whole

process is F0-measurable. Obviously
∑

t∈I γt
a.s.
= 1. Also we can easily check that E[γt] = νt

for all t ∈ I. We see that γ1 ≥ 0 a.s. and γ2 ≥ 0 a.s. Now we have to check whether γ0 ≥ 0
a.s. We have

γ1 = 1{−U>q1−ν1 (−U)} = 1{−U>−ν1} = 1{U<ν1}

and

γ2 = 1{U>q1−ν2 (U)} = 1{U>1−ν2} .

We see that γ0 ≥ 0 a.s. because {U < ν1} ∩ {U > 1− ν2} = ∅.

Based on the results of this example we can try to find optimal strategies for F0-
measurable processes, which will be the subject of the following section.

5.5 F0-Measurable Processes

In this section we will consider discrete time intervals I ⊂ N0 with 0 ∈ I. Assuming that
the process Z is F0-measurable, we know at time 0 which values the process Z will take.
In Example 5.45 we assumed we are given a process Z which is F0-measurable and we also
found the optimal stopping time for this process. In this example we considered a process Z
for which there exists a F0-measurable random variable U with U ∼ U(0, 1), such that we
can represent Zt = ft(U) for every t ∈ I, with some deterministic function ft. Intuitively
it would make sense to optimize with respect to the deterministic function determining Zt
for each t ∈ I and then to optimize with respect to ν. Conversely, the optimization could
be done the other way around by starting with ν. In the following definition we explain
what we mean by optimizing with respect to the deterministic functions or ν.

Definition 5.46. Again we only consider stopping times which follow the given distribution
ν. For a process Z satisfying Zt = ft(U) for every t ∈ I, with some deterministic function
ft and a F0-measurable random variable U with U ∼ U(0, 1), we say that a stopping time
τ1 optimizes with respect to the deterministic function, if the stopping time τ1 is defined
by

{τ1 = t} = {bt < U ≤ bt + νt} ∀ t ∈ I ,
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with

bt :=
∑
s∈I

fs(U)<ft(U)

νs +
∑
s∈I

fs(U)=ft(U)
νs<νt

νs .

We say that a stopping time τ2 optimizes with respect to ν, if the stopping time τ2 is
defined by

{τ2 = t} = {ct < U ≤ ct + νt} ∀ t ∈ I ,

with

ct :=
∑
s∈I
νs<νt

νs +
∑
s∈I
νs=νt

fs(U)<ft(U)

νs .

In the following examples we will take a closer look at these two strategies and see
which one gives the higher value in different situations. This will show that we cannot give
a general statement about which of these two strategies works better.

Example 5.47. For I = {0, . . . , 5} consider a process Z given by Z0 = U , Z1 = 3U ,
Z2 = 4U , Z3 = 2U , Z4 = 3U and Z5 = 2U , where U is F0-measurable and U ∼ U(0, 1). We
assume that the distribution of the stopping times considered is given by ν0 = 1

6 , ν1 = 1
8 ,

ν2 = 1
4 , ν3 = 1

4 , ν4 = 1
12 and ν5 = 1

8 . For this distribution ν4 < ν1 = ν5 < ν0 < ν2 = ν3.
If we write Zt = ft(U) for t = 0, . . . , 5, then f0(x) = x < f3(x) = f5(x) = 2x < f1(x) =
f4(x) = 3x < f2(x) = 4x for all x > 0. If x = 0 we have ft(x) = 0 for t = 0, . . . , 5.
If we want to optimize with respect to the deterministic function, we will choose a stopping
time defined by

{τ1 = 0} = {0 < U ≤ ν0} =

{
0 < U ≤ 1

6

}
,

{τ1 = 1} = {ν0 + ν3 + ν4 + ν5 < U ≤ ν0 + ν3 + ν4 + ν5 + ν1} =

{
5

8
< U ≤ 3

4

}
,

{τ1 = 2} = {ν0 + ν1 + ν3 + ν4 + ν5 < U ≤ 1} =

{
3

4
< U ≤ 1

}
,

{τ1 = 3} = {ν0 + ν5 < U ≤ ν0 + ν5 + ν3} =

{
7

24
< U ≤ 13

24

}
,

{τ1 = 4} = {ν0 + ν3 + ν5 < U ≤ ν0 + ν3 + ν5 + ν4} =

{
13

24
< U ≤ 5

8

}
and

{τ1 = 5} = {ν0 < U ≤ ν0 + ν5} =

{
1

6
< U ≤ 7

24

}
.

Using this stopping time we get

E[Zτ1 ] =
∑
t∈I

νt E
[
Zt
∣∣τ1 = t

]
=

1

6
· 1

12
+

1

8
· 3 · 11

16
+

1

4
· 4 · 7

8
+

1

4
· 2 · 10

24
+

1

12
· 3 · 7

12
+

1

8
· 2 · 11

48

=
1795

1152
≈ 1.55816 .
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A stopping time τ2 optimizing with respect to ν would be given by

{τ2 = 0} = {ν1 + ν4 + ν5 < U ≤ ν1 + ν4 + ν5 + ν0} =

{
1

3
< U ≤ 1

2

}
,

{τ2 = 1} = {ν4 + ν5 < U ≤ ν4 + ν5 + ν1} =

{
5

24
< U ≤ 1

3

}
,

{τ2 = 2} = {ν0 + ν1 + ν3 + ν4 + ν5 < U ≤ 1} =

{
3

4
< U ≤ 1

}
,

{τ2 = 3} = {ν0 + ν1 + ν4 + ν5 < U ≤ ν0 + ν1 + ν4 + ν5 + ν3} =

{
1

2
< U ≤ 3

4

}
,

{τ2 = 4} = {0 < U ≤ ν4} =

{
0 < U ≤ 1

12

}
and

{τ2 = 5} = {ν4 < U ≤ ν4 + ν5} =

{
1

12
< U ≤ 5

24

}
.

This stopping time yields

E[Zτ2 ] =
∑
t∈I

νt E
[
Zt
∣∣τ2 = t

]
=

1

6
· 5

12
+

1

8
· 3 · 13

48
+

1

4
· 4 · 7

8
+

1

4
· 2 · 5

8
+

1

12
· 3 · 1

24
+

1

8
· 2 · 7

48

=
1619

1152
≈ 1.40538 .

Example 5.48. Assume I = {0, 1, 2} and Z0 = U , Z1 = U2 and Z2 = U , where U is a
F0-measurable random variable with U ∼ U(0, 1). Set ν0 = 1

2 , ν1 = 1
6 and ν2 = 1

3 . Then
the two stopping times coincide, i.e. τ1 = τ2 and we have

{τ1 = 0} =

{
1

2
< U ≤ 1

}
, {τ1 = 1} =

{
0 < U ≤ 1

6

}
, {τ1 = 2} =

{
1

6
< U ≤ 1

2

}
.

We get

E[Zτ1 ] = E[Zτ2 ] =
1

2
· 3

4
+

1

6

∫ 1

5
6

x2 dx+
1

3
· 1

3
=

1891

3888
≈ 0.486368 .

Example 5.49. Consider I = {0, 1}, Z0 = U + 1
3 and Z1 = U + 1

4 , where U is a F0-
measurable random variable with U ∼ U(0, 1). Further assume ν0 = 1

4 and ν1 = 3
4 . Then

{τ1 = 0} = {U > ν0} and {τ1 = 1} = {U ≤ ν0}

yields

E[Zτ1 ] =
1

4

(
E
[
U

∣∣∣∣U >
1

4

]
+

1

3

)
+

3

4

(
E
[
U

∣∣∣∣U ≤ 1

4

]
+

1

4

)
=

25

48
≈ 0.520833 ,

while on the other hand

{τ2 = 0} = {U ≤ ν0} and {τ2 = 1} = {U > ν0}

yields

E[Zτ2 ] =
1

4

(
E
[
U

∣∣∣∣U ≤ 1

4

]
+

1

3

)
+

3

4

(
E
[
U

∣∣∣∣U >
1

4

]
+

1

4

)
=

37

48
≈ 0.770833 .
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The following proposition will deal with a type of process for which the stopping time
τ1 of Definition 5.46 is optimal.

Proposition 5.50. Given I = {0, . . . , T}, assume Zt is F0-measurable for all t ∈ I
and that the distribution ν of the stopping times considered is a uniform distribution, i.e.
νt = 1

T+1 for all t ∈ I. If there exists a F0-measurable random variable U with U ∼ U(0, 1),
such that we can represent Zt = ft(U) for every t ∈ I, with some function ft(x) = dt ·x for
x ∈ R and a fixed dt ∈ R, then the strategy defined by the stopping time τ1 of Definition 5.46
given by

{τ1 = t} = {bt < U ≤ bt + νt} ∀ t ∈ I ,

with
bt :=

∑
s∈I
ds<dt

νs +
∑
s∈I
ds=dt
s<t

νs

is optimal.

Proof. We have

E[Zτ ] =
∑
t∈I

νt E[Zt |τ = t] =
1

T + 1

∑
t∈I

dt E[U |τ = t] .

We know that the sum becomes as large as possible if the dt and the conditional expectations
are arranged in the same order for t ∈ I. This result is due to the rearrangement inequality,
see e.g. [18, Chapter X, Theorem 368]. We see that the strategy defined by τ1 satisfies
this.

Remark 5.51. Note that the optimal strategy in Proposition 5.50 is not necessarily unique.
Further we replaced the condition νs < νt in the second sum of the definition of bt by s < t
for s, t in I as we assumed that the stopping time would follow a uniform distribution.
Further we replaced the conditions fs(U) < ft(U) and fs(U) = ft(U) by ds < dt and
ds = dt, respectively, due to the assumptions made for the deterministic function f .

Lemma 5.52. Given a discrete time interval I ⊂ N0 with 0 ∈ I and a distribution ν on
I, assume Zt is F0-measurable for all t ∈ I and E

[
supt∈I Z

−
t

]
<∞ or E

[
supt∈I Z

+
t

]
<∞.

Set
X := Z0 −

∑
t∈I\{0}

νt
1− ν0

Zt .

Then the strategy γ∗ ∈ N ν
I defined by

γ∗0 := f1−ν0,X and γ∗t :=
νt

1− ν0
(1− f1−ν0,X) , t ∈ I \ {0} ,

with f1−ν0,X as in Definition 4.3(b), is optimal and we get

V ′(ν) =
∑

t∈I\{0}

νt
1− ν0

E[Zt] + ν0 ES1−ν0(X) .

Remark 5.53. Note that by positive homogeneity and sub-additivity of expected shortfall
(see e.g. Lemma 4.22 for the conditional case or [54, Lemma 3.32]), we have

ν0 ES1−ν0(X) ≤ ν0 ES1−ν0(Z0) +
ν0

1− ν0

∑
t∈I\{0}

νt ES1−ν0(Zt) .
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Proof. Using Lemma 2.35 we get for γ ∈ N ν
I

E[Zγ ] =
∑
t∈I

E[Zt E[γt |F0]] = E[Z0γ0] +
∑

t∈I\{0}

νt
1− ν0

E[Zt(1− γ0)] .

Therefore

V ′(ν) =
∑

t∈I\{0}

νt
1− ν0

E[Zt] + sup
γ∈N νI

E
[
γ0

(
Z0 −

∑
t∈I\{0}

νt
1− ν0

Zt

)]
,

where by Lemma 4.6 we get

sup
γ∈N νI

E[γ0X] ≤ ν0 ES1−ν0(X) .

Using the strategy γ∗ as defined above and Lemma 2.35 we have

E
[∑
t∈I

Ztγt

]
= E

[
Z0f1−ν0,X +

∑
t∈I\{0}

Zt
νt

1− ν0
(1− f1−ν0,X)

]
=

∑
t∈I\{0}

νt
1− ν0

E[Zt] + E[f1−ν0,XX] ,

which yields the upper bound found above and therefore γ∗ is an optimal strategy by
Lemma 4.1. We really have γ∗ ∈ N ν

I as γ∗ is adapted,
∑

t∈I γ
∗
t = 1 almost surely and for

all t ∈ I we have γ∗t ≥ 0 almost surely by Remark 4.4(a) and E[γ∗t ] = νt by Remark 4.4(b).
Further note that for all t ∈ I \ {0}

γ∗t =
νt

1− ν≤t−1
(1− γ∗0)

(
1− ν1

1− ν0
− . . . νt−1

1− ν0

)
=

νt
1− ν≤t−1

(1− γ∗≤t−1)

and E[γ∗t |Ft−1] = γ∗t .

5.6 The Product of a Martingale and a Deterministic Func-
tion

In the following example we will show that we have to be cautious in finding the optimal
strategy when the adapted process Z is given in the form Zt = f(t)Mt for t ∈ I, where f
is a deterministic function and M is a martingale. In this situation the gain of information
with time also has to be considered, which is why the most intuitive strategy might not be
the optimal one.

Example 5.54. Set I = {0, 1, 2} and νt = 1
3 for all t ∈ I. Assume Ω = {ω1, . . . , ω6}

with P(ωi) = 1
6 for i = 1, . . . , 6. Further let F0 contain the atoms {ω1}, {ω2}, {ω3, ω4} and

{ω5, ω6} and set F1 = F2 = P(Ω).
We now consider a process Z defined by Zt = f(t)Mt for t ∈ I, with f(0) = f(1) = 1

and f(2) = 0. The martingale M is given by

Mt(ωi) = 1 ∀ t ∈ I, i ∈ {1, 2} ,
M0(ωi) = 2 ∀ i ∈ {3, . . . , 6} ,
M1(ωi) = 4 ∀ i ∈ {3, 5} ,
M1(ωi) = 0 ∀ i ∈ {4, 6} ,

M2 = M1 .
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Intuitively it would be optimal to follow a greedy strategy, because the deterministic func-
tion is non-increasing. The strategy would be given by

{τ = 0} = {ω3, ω4} , {τ = 1} = {ω1, ω5} , {τ = 2} = {ω2, ω6} .

Using this strategy we get

E[Zτ ] =
2∑
t=0

E
[
Zt1{τ=t}

]
= 2 · 1

3
+ 1 · 1

6
+ 4 · 1

6
=

9

6
=

3

2
.

An optimal strategy in this example is given by

{τ = 0} = {ω1, ω2} , {τ = 1} = {ω3, ω5} , {τ = 2} = {ω4, ω6} ,

because it yields

E[Zτ ] =
2∑
t=0

E
[
Zt1{τ=t}

]
= 1 · 1

3
+ 4 · 1

3
=

5

3
>

3

2
.

This value exactly equals the value found by the upper bound in Lemma 4.35, which can
be used, because Z is a supermartingale. Then

V +(ν) ≤ E[M0] = E[Z0] = 1 · 1

3
+ 2 · 2

3
=

5

3
.

This shows that the gain of information is important in this setting.
If we had F0 = P(Ω), then the greedy strategy would be given by

{τ = 0} = {ω4, ω6} , {τ = 1} = {ω3, ω5} , {τ = 2} = {ω1, ω2} .

Using this strategy we would get

E[Zτ ] =
2∑
t=0

E
[
Zt1{τ=t}

]
= 2 · 1

3
+ 4 · 1

3
=

6

3
= 2 ,

which is the highest possible value. Note that in this case the process Z would no longer
be a supermartingale. Due to the structure of the filtration this strategy cannot be used.

The gain of information is not only important in the case of a non-increasing function,
but also in that of a non-decreasing function. Let us consider the same setting as before,
but now assume that we consider an increasing function f̃ with f̃(0) = 1, f̃(1) = 2 and
f̃(2) = 3. Using a greedy strategy would result in stopping according to

{τ = 0} = {ω3, ω4} , {τ = 1} = {ω1, ω5} , {τ = 2} = {ω2, ω6} ,

which yields

E[Zτ ] =

2∑
t=0

E
[
Zt1{τ=t}

]
= 2 · 1

3
+ 8 · 1

6
+ 2 · 1

6
+ 3 · 1

6
=

17

6
.

Also in this case we can get better results, if we follow a different strategy, e.g.

{τ = 0} = {ω1, ω2} , {τ = 1} = {ω4, ω6} , {τ = 2} = {ω3, ω5} .

Using this strategy we get

E[Zτ ] =

2∑
t=0

E
[
Zt1{τ=t}

]
= 1 · 1

3
+ 12 · 1

3
=

13

3
.
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The next lemma will give a characterization of an optimal strategy.

Lemma 5.55. Given a totally-ordered countable discrete time interval I and a probability
distribution ν on I. Let {Mt}t∈I be a martingale bounded from below by some constant C
and f : I → R a non-decreasing deterministic function. Assume that M and the distribution
ν satisfy one of the conditions of Theorem 2.49. Define Zt = f(t)Mt for all t ∈ I and
assume E

[
supt∈I Z

+
t

]
<∞ or E

[
supt∈I Z

−
t

]
<∞. If γ∗ ∈Mν

I satisfies

E
[∑
t∈I>s

Mtγ
∗
t

]
≥ E

[∑
t∈I>s

Mtγt

]
(5.56)

for all s ∈ I and γ ∈Mν
I , then γ∗ is optimal for {Zt}t∈I .

Proof. In the following we will assume that E[M0 − C] > 0, since the case E[M0] = C is
trivial. For every t ∈ I we set

µ∗t :=
1

E[M0 − C]
E[(Mt − C)γ∗t ]

and for γ ∈Mν
I

µt :=
1

E[M0 − C]
E[(Mt − C)γt] .

Due to the result of Theorem 2.49, we have that µ∗ and µ are probability distributions.
Due to (5.56) we have that µ∗ dominates µ in stochastic order. Now we need to prove that
this implies

E[Zγ∗ ] ≥ E[Zγ ] , ∀ γ ∈Mν
I .

Now, letX∗ andX be discrete random variables taking values in I such that P(X∗ = t) = µ∗t
and P(X = t) = µt for every t ∈ I. Then X∗ dominates X in stochastic order. This implies
that E[g(X∗)] ≥ E[g(X)] for every non-decreasing function g, as stated for example in [55,
(1.A.7)]. Therefore using Lemma 2.35

E[Zγ∗ ] =
∑
t∈I

f(t)E[(Mt − C)γ∗t ] + C
∑
t∈I

f(t)νt = E[M0 − C]
∑
t∈I

f(t)µ∗t + C
∑
t∈I

f(t)νt

= E[M0 − C]E[f(X∗)] + C
∑
t∈I

f(t)νt .

Since E[M0 − C] > 0, we get

E[M0 − C]E[f(X∗)] + C
∑
t∈I

f(t)νt ≥ E[M0 − C]E[f(X)] + C
∑
t∈I

f(t)νt ,

which implies E[Zγ∗ ] ≥ E[Zγ ] as E[Zγ ] can be represented using E[f(X)] similar as E[Zγ∗ ].

Corollary 5.57. Given a totally-ordered countable discrete time interval I and a probability
distribution ν on I. Consider a process Z defined by Zt = f(t)Mt for all t ∈ I, where
{Mt}t∈I is a martingale bounded from below by some constant C and f : I → R a non-
decreasing deterministic function. Assume that M and the distribution ν satisfy one of the
conditions of Theorem 2.49. An adapted random probability measure γ∗ ∈ Mν

I is optimal,
if for all s ∈ I

E
[∑
t∈I>s

Mtγ
∗
t

]
= (1− ν≤s) ESν≤s(Ms) .
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Proof. Since M and the distribution ν satisfy one of the conditions of Theorem 2.49, we
know that for s ∈ I

E
[∑
t∈I

Mtγt

]
= E[Ms] .

Therefore

E
[∑
t∈I>s

Mtγt

]
= E[Ms]−E

[∑
t∈I≤s

E[Ms |Ft] γt
]

= E[Ms]−
∑
t∈I≤s

E[Msγt] = E[Ms(1− γ≤s)] .

This last expected value is maximal, if

E[Ms(1− γ≤s)] = (1− ν≤s) ESν≤s(Ms) .

This follows from Lemma 4.6, as 1− γ≤s ∈ F1
ν≤s,Ms

.

Remark 5.58. Equivalently a stopping time τ∗ ∈ T νI is optimal, if for all t ∈ I

E
[
Mτ∗1{τ∗>t}

]
= (1− P(τ∗ ≤ t)) ESP(τ∗≤t)(Mt) .

Remark 5.59. In the setting of Corollary 5.57 a stopping time τ∗ ∈ T νI is optimal, if for all
t ∈ I

E
[
Mτ∗1{τ∗>t}

]
= E

[
Mt1{τ∗>t}

]
= ‖Mt‖∞P(τ∗ > t) .

This implies that up to a null set {τ∗ > t} is contained in {Mt = ‖Mt‖∞} for all t ∈ I, i.e.
P({τ∗ > t} \ {Mt = ‖Mt‖∞}) = 0 for all t ∈ I. This representation will be useful in the
following sections.

5.7 Convex Functions

In the following we will take a look at a special case, where the process Z can be represented
using a convex function.

Proposition 5.60. Given I = {0, . . . , T} assume Zt = exp(Mt) for all t ∈ I, where M
is a simple random walk, i.e. M0 = 0 and Mt =

∑t
s=1Xs, where Xt are independent with

P(Xt = 1) = P(Xt = −1) = 1
2 for all t ∈ I. Let the distribution ν be given by

νt =


0 if t = 0,

1
2t if t ∈ {1, . . . , T − 1},

1
2T−1 if t = T .

Then the optimal stopping time for this problem is given by

τ∗ = T ∧min{t ∈ {1, . . . , T}|Xt = −1} .

Using this optimal strategy we get

V (ν) =
∑

t∈I\{0,T}

exp(t− 1)νt +
1

2
(exp(T − 1) + exp(T ))νT .
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Proof. The result follows from Corollary 5.57. We can write Zt := f(t)M̃t for t ∈ I, where
f is a deterministic function and M̃ = {M̃t}t∈I a martingale, by setting f(0) := 1 and
M̃0 := Z0 as well as for t ∈ I \ {0}

f(t) :=

t∏
s=1

E[exp(Xs)]

and

M̃t :=
Zt∏t

s=1 E[exp(Xs)]
.

We have that M̃ = {M̃t}t∈I is a non-negative martingale, because X = {Xt}t∈I is an
independent process.

Due to the structure of the stopping time, for all t ∈ I we have

{τ∗ > t} = {M̃t = ‖M̃t‖∞} = {Zt = ‖Zt‖∞} ,

which implies optimality of τ∗ by Remark 5.59.

5.8 The Binomial Model

For I ⊂ N0 with 0 ∈ I let X = {Xt}t∈I\{0} be an independent process of identically
distributed {0, 1}-valued random variables and let the filtration be given by F0 = {∅,Ω}
and Ft = σ(X1, . . . , Xt) for t ∈ I \ {0}. We set p := P(Xt = 1) for all t ∈ I \ {0}. In
the following we will consider a process Z modeled by Z0 > 0 and Zt = Z0u

Ntdt−Nt for
t ∈ I \ {0} with u > d > 0 and Nt =

∑t
s=1Xt.

In this model the increments of the process Z are given by

∆Zt := Zt − Zt−1 = Zt−1(uXtd1−Xt − 1) , t ∈ I \ {0} .

Therefore for t ∈ I \ {0}

E[|∆Zt|] = E[Zt−1]E
[
|uXtd1−Xt − 1|

]
= E[Zt−1] (p|u− 1|+ (1− p)|d− 1|)

and
E
[
|∆Zt|

∣∣Ft−1

]
= Zt−1(p|u− 1|+ (1− p)|d− 1|) .

We see that the conditions of Lemma 5.10 need not be satisfied. Also the increments of the
predictable process A of the Doob decomposition of Z, which are for t ∈ I \ {0} given by

∆At = E[Zt |Ft−1]− Zt−1 = Zt−1(E
[
uXtd1−Xt |Ft−1

]
− 1) = Zt−1(pu+ (1− p)d− 1) ,

do not necessarily satisfy the conditions of Theorem 5.25.
In the following proposition we will see a special case where it is possible to find an

optimal stopping time.

Proposition 5.61. In the setting for the binomial model stated above we now assume
I = {0, . . . , T}. Further we have to assume that the distribution ν is given by

νt =


0 if t = 0,

1
2t if t ∈ {1, . . . , T − 1},

1
2T−1 if t = T .
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Then the optimal stopping time is given by

τ∗ = T ∧min{t ∈ I |Zt < Zt−1} .

Proof. The result of this proposition follows from Corollary 5.57. For this we need to
represent Z as Zt = f(t)Mt for t ∈ I, setting f(0) := 1 and M0 := Z0 as well as for each
t ∈ I \ {0}

f(t) :=
t∏

s=1

E
[
uXsd1−Xs]

and

Mt := Z0

t∏
s=1

uXsd1−Xs

E[uXsd1−Xs ]
.

We have that M = {Mt}t∈I is a non-negative martingale.
Due to the structure of the stopping time, for all t ∈ I we have

{τ∗ > t} = {M̃t = ‖M̃t‖∞} = {Zt = ‖Zt‖∞} ,

which implies optimality of τ∗ by Remark 5.59.

Using the result of Proposition 5.61, in the following example we show the difference in
the value for dependence and independence.

Example 5.62. We will now consider a binomial model with Z0 = 1, u = 2, d = 1
2 and

p = 1
2 . Let I = {0, . . . , 5}. Further we assume that the distribution ν is given as in

Proposition 5.61.
If we assume that the process Z and the stopping time τ are independent, we get

V ind(ν) =
∑
t∈I

E[Zt] νt =
5

4
· 1
2

+
25

16
· 1
4

+
125

64
· 1
8

+
625

256
· 1

16
+

3125

1024
· 1

16
=

26265

16384
≈ 1.60309 .

Using the optimal stopping time of Proposition 5.61, we get

V (ν) =
∑
t∈I

E
[
Zt1{τ∗=t}

]
=

1

2
· 1

2
+ 1 · 1

4
+ 2 · 1

8
+ 4 · 1

16
+

1

2
(8 + 32)

1

16
=

9

4
= 2.25 .

In this case the process Z is a submartingale. Therefore we know that we can compute an
upper bound by Lemma 4.37

V (ν) ≤ E[Z5] =
1

32

(
32 + 40 + 20 + 5 +

5

8
+

1

32

)
=

3125

1024
≈ 3.05176 .
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Chapter 6

Risk Neutral Pricing and a
Recursive Formula

In this chapter we briefly discuss two topics of interest to mathematical finance. As they are
not a crucial part of this thesis, we content ourselves with a short note on some preliminary
results.

6.1 Risk Neutral Pricing

In mathematical finance an arbitrage-free price of a derivative is found by computing the
expected value of the discounted pay-off under some equivalent martingale measure. As
risk neutral pricing is an important topic in mathematical finance, we want to look at it
briefly. In this section only a few results for pricing under an equivalent martingale measure
are shown, which might lead to further research in this area. We consider discrete intervals
I ⊂ N0 with 0 ∈ I and adapted stochastic processes Z = {Zt}t∈I with Z ∈ L1(P).

We consider a probability space (Ω,F ,P) on which we want to compute the values
V +(ν), V ′(ν) and V (ν). The distribution of the adapted random probability measure γ
or the stopping time τ under the probability measure P are known. We now want to
compute the price P for the problem using stopping times and P ′ and P+ for the problems
using adapted random probability measures under an equivalent martingale measure Q.
We assume that the process Z is already the discounted price process of the underlying
asset and that Z and the distribution of τ or γ under Q satisfy one of the conditions of
Theorem 2.49. Then using that Z is a martingale under Q, we have for s ∈ I,

P+ = sup
γ∈Mν

I

EQ

[∑
t∈I

Ztγt

]
= EQ[Zs] = P .

This result is due to Theorem 2.49, because the equivalence of P and Q implies
∑

t∈I γt = 1
Q-a.s. and Lemma 2.35 is also valid under Q.

In the applications that require risk neutral pricing, it is especially interesting to include
guarantees. This means, that the pay-out would not be modeled by Z itself, but by some
other process Z̃ = max{Z,G}, where G > 0 is the guaranteed value. We know that Z is a
martingale under Q. Therefore it is especially a submartingale under Q. Using [27, Theorem
9.32(iv)], which states that the minimum of two supermartingales is a supermartingale,
we have that Z̃ is a submartingale under Q. We can therefore use our results about
submartingales to have bounds for the risk neutral prices of products including guarantees.
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In [31, Section 2.5.2] and [14, Section 6.2] American and European options are discussed
and compared. In that section the authors showed that, under certain circumstances, it may
happen that the value of an American call option coincides with the value of a European
call option with the same underlying process modeling the pay-out. We will now take a
closer look at these results.

In [31, Proposition 2.5.1] or [14, Example 6.24] it is shown that the value of the American
call option and the value of the European call option coincide if the price process {ct}t∈I of
the European call option satisfies ct ≥ Zt for any t ∈ I, where {Zt}t∈I models the pay-out
of the American call option for each t ∈ I. In this situation the risk-neutral price for such
a European call option is also an upper bound for the risk-neutral value P for our problem
using stopping times.

Assume I = {0, . . . , T} and let Z be a process modeling the discounted pay-off of an
option. Then the risk-neutral value of the corresponding European option would be given by
EQ[ZT ]. This implies that the risk-neutral value of the corresponding European option is an
upper bound for the risk-neutral value of our claim if the process Z is a submartingale under
Q. This was shown in Proposition 4.37. By Proposition 4.35 the corresponding European
option is a lower bound, if Z is a supermartingale. In this case the risk-neutral value of
our claim lies between the value of the corresponding European and American options.
Note that we showed in Lemma 2.51 that the value of an optimal stopping problem, or for
non-negative processes the value of an American option, is also an upper bound for V ′(ν)
and V +(ν).

Remark 6.1. If I ⊂ N0 with 0 ∈ I and we neglect discounting, we have that the pay-out
process of a call or put option is a supermartingale, by Jensen’s inequality for conditional
expectation ([62, 9.7(h)]). Let S0 = {S0

t }t∈I denote the process of the riskless asset used for

discounting. Then the discounted value of a call option is a supermartingale if EQ

[
S0
s

S0
t
|Fs
]
≤

1 for all s < t in I. For a put option, we need to assume EQ

[
S0
s

S0
t
|Fs
]
≥ 1 for all s < t in I.

6.2 A Recursive Formula

When contemplating optimal stopping problems or standard American options, one thing
that crosses one’s mind is the Snell envelope (see [14] or [31]). This envelope can be used
to compute the value V mentioned before and it can even be used to solve the optimal
stopping problem. In this chapter we will assume I = {0, . . . , T} and that we are given an
adapted process Z = {Zt}t∈I with Z ∈ L1(P). We show how to compute the value V (ν)
for an independent process Z using a recursive formula. As in Definition 2.4 we will let T νI
denote the set of I-valued stopping times with distribution ν.

Lemma 6.2. If I = {0, . . . , T} and the random variables Zt for t ∈ I are independent,
the value V (ν) can be computed by the recursion

VT = ZT ,

VT−1(µT−1) = sup
τT−1∈T

µT−1
{T−1,T}

EQT−1

[
ZT−11{τT−1=T−1} + VT 1{τT−1=T}

]
,

and for t ∈ {0, . . . , T − 2}

Vt(µt) = Qt(τt = t) sup
τt∈T µt{t,...,T}

EQt
[
Zt|τt = t

]
+ Qt(τt ≥ t+ 1)Vt+1(µt+1) ,
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where for t ∈ {0, . . . , T−1} we have that τt := max{τ, t}: Ω→ {t, . . . , T} is a stopping time

with distribution µt under a new probability measure Qt with µt(s) = Qt(τt = s) = P(τ=s)
P(τ≥t)

for s ∈ {t, . . . , T}.

Proof. We have

V (ν) = sup
τ∈T νI

E[Zτ ]

= sup
τ∈T νI

E
[
Z01{τ=0} + Zτ1{τ≥1}

]
≤ P(τ = 0) sup

τ∈T νI
E[Z0 |τ = 0] + P(τ ≥ 1) sup

τ∈T νI
E[Zτ |τ ≥ 1]︸ ︷︷ ︸
=V1(µ1)

,

where V1(µ1) denotes the value of our claim at time 1. In the following each conditional
expectation will be maximized for each time step. As we already saw in Lemma 5.37 this
gives a stopping time that gives an upper bound and which is optimal as it follows the given
distribution.

The value V1(µ1) can also be computed, by taking a look at a stopping time τ1 :=
max{τ, 1}: Ω → {1, 2, . . . , T}, which has distribution µ1 under a new probability measure

Q1, which is given by µ1(j) = Q1(τ1 = j) = P(τ=j)
P(τ≥1) for j = 1, . . . , T .

V1(µ1) = sup
τ∈T νI

E[Zτ |τ ≥ 1] = sup
τ1∈T

µ1
{1,...,T}

EQ1 [Zτ1 ]

= sup
τ1∈T

µ1
{1,...,T}

EQ1

[
Z11{τ1=1} + Zτ11{τ1≥2}

]
≤ P(τ1 = 1) sup

τ1∈T
µ1
{1,...,T}

E[Z1 |τ1 = 1] + P(τ1 ≥ 2) sup
τ1∈T

µ1
{1,...,T}

E[Zτ1 |τ1 ≥ 2]

︸ ︷︷ ︸
=V2(µ2)

,

where again V2(µ2) is the value of the claim at time 2. Now we can again find a new
stopping time τ2 := max{τ, 2}: Ω → {2, . . . , T}, which has distribution µ2 under a new

probability measure Q2, which is given by µ2(j) = Q2(τ2 = j) = P(τ=j)
P(τ≥2) for j = 2, . . . , T .

We can continue with this procedure until time T − 1. It is clear that at time T the value
of the option is equal to ZT , i.e. VT = ZT .

Remark 6.3. The good thing about this recursive formula is that it gives us the value of
the considered problem for every t ∈ {0, . . . , T}.
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Chapter 7

The Problem

In this chapter we introduce the problem in continuous time. Using stopping times does not
significantly change the formulation of the problem. To formulate the problem of several
withdrawals within the predefined time interval we must exchange the adapted random
probability measures by stochastic transition kernels. Similar to discrete time, the notation
and the necessary assumptions are first introduced in Section 7.1. Afterwards some general
results are presented in Section 7.2. Again these results are useful later to find bounds and
optimal strategies.

7.1 Notation

Let I ⊂ [0,∞) be a continuous time interval with 0 ∈ I. We consider a filtered probability
space (Ω,F , {Ft}t∈I ,P). Again, we will need to make some assumptions about the adapted
process Z = {Zt}t∈I with Z ∈ L1(P), i.e. E[|Zt|] < ∞ for all t ∈ I, which will be needed
from time to time. In continuous time we will further often need to assume that the process
Z is càdlàg or that it is at least right-continuous.

Assumption 7.1. In order to be able to define all the given problems, we can use some of
the following assumptions for an adapted process Z = {Zt}t∈I with Z ∈ L1(P):

(a) P(supt∈I |Zt| <∞) = 1,

(b) E[supt∈I |Zt|] <∞,

(c) the process is uniformly integrable,

(d) supτ∈TI E[|Zτ |] <∞, i.e., {Zτ}τ∈TI bounded in L1(P),

(e) Z is of class D, i.e. {Zτ}τ∈TI is uniformly integrable.

Remarks 7.2. (i) Again it is clear that (b) implies (a).

(ii) Also (b) implies (e). According to [46, Chapter I, Theorem 11] the process Z is
uniformly integrable if supt∈I E[|Zt|] < ∞ and if for every ε > 0 there exists a δ > 0
such that for all t ∈ I and A ∈ F , P(A) ≤ δ implies E[|Zt1A|] < ε. Since {Zτ}τ∈TI
is bounded from above by supt∈I |Zt|, which is in L1(P), these two conditions are
satisfied by (b) and [62, Lemma 13.1(a)].

(iii) We have that (e) implies (c). This is due to the fact that {Zt}t∈I ⊂ {Zτ}τ∈TI .
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(iv) Further (e) implies (d) by definition of uniform integrability.

(v) Next we want to show that if Z is a martingale, (c) implies (a). By [46, Chapter I,
Theorem 12] the limit Z∞ exists and is integrable. Therefore P(supt∈I |Zt| <∞) = 1.

(vi) Also (c) implies (e), if Z is a martingale. This result is shown in [49, Chapter VI,
Lemma 29.6].

(vii) (a) does not imply (b), (c), (d) or (e). The first three can be shown similar to discrete
time in Remark 2.3(iv). As the process is not uniformly integrable, it cannot be of
class D.

(viii) We have that (c) does not imply (a). This can be seen using a process as in discrete
time in Remark 2.3(v) and setting Zt = Z̃btc and Ft = F̃btc for all t ∈ I.

(ix) We have that (c) does not imply (d) and therefore nor does it imply (b). Using the
discretization presented above we will consider a discrete time process on a probability
space (Ω,F ,P) = ([0, 1],B[0,1], λ), where λ is the Lebesgue–Borel measure of the
Borel σ-algebra B[0,1] on the unit interval. For n ∈ N0 we can find unique k ∈ N0

and j ∈ {0, . . . , 2k − 1} such that n = 2k + j. Similar to Remark 2.3(v) consider the
process Z defined by

Zn(ω) = k1[ j
2k
, j+1

2k
](ω), ω ∈ [0, 1] .

We already saw that it is uniformly integrable and that it does not satisfy (b). Using
the stopping times defined by τk := inf{n ≥ 2k |Zn ≥ k}, we get E[Zτk ] = k, as
Zτk = k, and therefore assumption (d) is not satisfied.

(x) Also (d) and (c) do not imply (e). Consider a process Z defined by Zt := 1
‖Wt‖ for

t ∈ I, where {Wt}t∈I is a three-dimensional Brownian motion starting in x0 = (1, 0, 0)
and ‖·‖ being the distance to (0, 0, 0). In [22] it is shown that this process is uniformly
integrable and a supermartingale, which, by Doob’s optional stopping theorem implies
(d), but it is not of class D.

(xi) In [17, Chapter 12.3] two martingales (thus satisfying (d) by Doob’s optional stopping
theorem) are shown, which are not uniformly integrable. Therefore (d) does not imply
(c).

(xii) (d) does not imply (b). This can be shown by considering the process Zt = exp(Wt−
1
2 t) for t ∈ I, where {Wt}t∈I is a standard Brownian motion. Clearly this process is
a martingale and therefore it satisfies (d), which can by shown using Doob’s optional
stopping theorem for bounded stopping times and Fatou’s lemma. We now want to
show that Zt → Z∞ = 0 as t→∞ pointwise on Ω. We will therefore concentrate on
the behavior of Wt

t as t→∞. We can write Zt = exp(t(Wt
t −

1
2)). Using a continuous

time version of the ergodic theorem (see e.g. [25, Theorem 9.8]) we have that Wt
t → 0

as t→∞. Therefore the martingale Z is not closable and it cannot therefore satisfy
(b).

Remark 7.3 (Measurability of the Supremum). In Assumption 7.1(b) we consider the ex-
pectation of supt∈I |Zt|. We therefore need to make sure that supt∈I |Zt| is measurable. An
easy way to guarantee this is to assume that the process Z is separable.
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On the other hand, we are considering càdlàg processes. For these processes we have
supt∈Ik |Zt| ↗ supt∈I |Zt| for k →∞ for a sequence (Ik)k∈N of finite subsets of I with Ik ⊂
Ik+1, such that the end point of each Ik converges to sup(I) for k →∞ and

⋃
k∈N Ik dense

in I. By monotone convergence we also have E
[
supt∈Ik |Zt|

]
↗ E[supt∈I |Zt|]. Therefore

we know that supt∈I |Zt| is measurable.
It would also be possible to replace Assumption 7.1(b), by considering processes Z for

which there exists a random variable Z∗ ∈ L1(Ω,F ,P) and a null set N ∈ F with⋃
t∈I
{|Zt| ≤ Z∗} ⊂ Ω \N .

Then the problem of measurability of supt∈I |Zt| does not occur and the statements of
Remarks 7.2 remain valid.

Again we let TI denote the set of all stopping times τ : Ω → I. For a given probability
distribution ν on I, let T νI be the set of all I-valued stopping times with distribution ν, i.e.
L(τ) = ν.

For an adapted process Z with E[Z−τ ] < ∞ or E[Z+
τ ] < ∞ for all τ ∈ T νI we are

interested in the value

V (ν) := sup
τ∈T νI

E[Zτ ] .

If T νI = ∅, we set V (ν) = −∞.

Remark 7.4. Since the problems are similar, we will use the same notation as in discrete
time.

Remark 7.5. Similar to discrete time the value of an optimal stopping problem with the
same underlying process Z, which we will again denote by V , is an upper bound for V (ν)
and also for V +(ν), which is proven in Lemma 8.17. American options in a continuous-time
framework are discussed, for example, in [40, Chapter 5] or in [15, Chapter 8]. In [57]
optimal stopping problems are also studied for continuous-time Markov processes.

Definition 7.6. For a fixed probability measure ν on BI we say that a stochastic transition
kernel Γ: Ω× BI → [0, 1] is in Mν

I if for all t ∈ I

(a) Ω 3 ω 7→ Γ(ω, [0, t]) is Ft-measurable,

(b) E[Γ(·, [0, t])] = ν([0, t]).

For a (F ⊗ BI)-measurable process Z: Ω× I → R and Γ ∈Mν
I with

P
({∫

I
Z−t Γ(dt) <∞

}
∪
{∫

I
Z+
t Γ(dt) <∞

})
= 1

we define

ZΓ :=

∫
I
Zt Γ(dt).

For an adapted process Z with E
[∫
I Z
−
t Γ(dt)

]
< ∞ or E

[∫
I Z

+
t Γ(dt)

]
< ∞ for all

Γ ∈Mν
I , we are now interested in the value

V +(ν) := sup
Γ∈Mν

I

E[ZΓ] .
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Remark 7.7. For the definition of ZΓ it is sufficient to assume that Z is a (F⊗BI)-measurable
process. For finding a reasonable optimal stochastic transition kernel Γ∗ satisfying

E[ZΓ∗ ] = sup
Γ∈Mν

I

E[ZΓ]

it is necessary to assume that the process Z is adapted. Then there exists a modification
of Z, which is progressively measurable (see [39, Theorem T46]).

7.2 General Results

Lemma 7.8. Let Z: Ω × I → R be an (F ⊗ BI)-measurable process. Then, for every
adapted stochastic transition kernel Γ ∈ Mν

I which is independent of Z and satisfies
E
[∫
I Z
−
t Γ(dt)

]
<∞ or E

[∫
I Z

+
t Γ(dt)

]
<∞,

E
[∫

I
Zt Γ(dt)

]
=

∫
I
E[Zt] ν(dt) . (7.9)

Proof. We will use the monotone-class theorem to prove that the set of all processes satis-
fying (7.9) contains all bounded (F ⊗ BI)-measurable processes. We set

H :=

{
Z = {Zt}t∈I |Z bounded, (F ⊗ BI)-measurable,

E
[∫

I
Zt Γ(dt)

]
=

∫
I
E[Zt] ν(dt) ∀Γ ∈Mν

I (Z) independent of Z

with E
[∫

I
Z−t Γ(dt)

]
<∞

}
.

Due to the linearity of the expectation we have that the set H defines a vector space.
The constant element 1 is in H , because

1 = 1 · E
[∫

I
Γ(dt)

]
=

∫
I

1 ν(dt) = 1 .

If we take a look at a non-negative sequence Zn ↗ Z for n→∞, where Z is bounded, then
we can show that Z ∈H . To prove this we can use monotone convergence which gives for
n→∞

E
[∫

I
Znt Γ(dt)

]
↗ E

[∫
I
Zt Γ(dt)

]
and ∫

I
E[Znt ] ν(dt) ↗

∫
I
E[Zt] ν(dt) .

Last but not least we need to prove that H contains the indicator function of every set in
the π-system {F ∩J |F ∈ F , J ∈ BI}. Due to the independence of the stochastic transition
kernel Γ and the process Z we have

E
[∫

I
1F 1J Γ(dt)

]
= E

[
1F

∫
I

1J Γ(dt)

]
= E[1FΓ(·, J)] = P(F )ν(J)

and ∫
I
E[1F 1J ] ν(dt) =

∫
I

1J E[1F ] ν(dt) = P(F )

∫
I

1Jν(dt) = P(F )ν(J) .
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By the monotone-class theorem we know that H contains all bounded, F ⊗BI -measurable
processes.

The result so far is only valid for bounded processes Z. Assume we are given a non-
negative process Z. Then there exists a sequence of bounded processes Zn with Zn ↗ Z
for n→∞, such that the result follows by monotone convergence. Since we can decompose
every process into its positive and negative part, which are both non-negative, we get the
result for general processes Z.

Similarly the result can be found if E
[∫
I Z

+
t Γ(dt)

]
<∞.

Remark 7.10. The lemma applies to all deterministic processes Z with
∫
I Z
−
t ν(dt) <∞ or∫

I Z
+
t ν(dt) <∞.

Remark 7.11. Similar to discrete time discussed in Part I we have that an assumed inde-
pendence between Z and τ ∈ T νI 6= ∅ or Γ ∈ Mν

I gives a lower bound to our problem,
i.e. ∫

I
E[Zt] ν(dt) ≤ V (ν) ≤ V +(ν) .

Theorem 7.12. Let Γ be an adapted stochastic transition kernel with respect to the fil-
tration {Ft}t∈I . By extending the probability space if necessary, we may assume w.l.o.g.
that there exists a random variable U , uniformly distributed on [0, 1] and independent of
F∞ := σ(

⋃
t∈I Ft). Then

τ(ω) := inf{t ∈ I |U(ω) ≤ Γ(ω, [0, t])}, ω ∈ Ω,

satisfies {τ ≤ t} = {U ≤ Γ(·, [0, t])} for every t ∈ I, hence τ is a stopping time with
respect to the filtration F̃ = {F̃t}t∈I defined by F̃t := Ft ∨ σ(U) for t ∈ I and satisfies
P(τ ≤ t|Ft)

a.s.
= Γ(·, [0, t]) for all t ∈ I. Let Z: Ω × I → R be an (F∞ ⊗ BI)-measurable

process such that E[Z−τ ] <∞. Then

E[Zτ |F∞]
a.s.
= ZΓ and E[Zτ ] = E[ZΓ] .

Remark 7.13. If Γ ∈Mν
I , then τ ∈ T νI for the stopping time found in Theorem 7.12.

Proof. For a fixed ω ∈ Ω the mapping F 3 A 7→ Γ(ω,A) is a probability measure. Therefore
Γ is right-continuous in the second component, because for every sequence tn ↘ t for n→∞
we have Γ(ω, [0, tn]) ↘ Γ(ω, [0, t]) for every ω ∈ Ω, n → ∞. This is due to the fact that⋂
n∈N(t, tn] = ∅ and therefore for every ω ∈ Ω, as Γ(ω, (t, tn])→ 0 for n→∞,

Γ(ω, [0, tn]) = Γ(ω, [0, t]) + Γ(ω, (t, tn])→ Γ(ω, [0, t]) as n→∞ .

Due to this right-continuity in the second component, we have the representation

{τ ≤ t} = {U ≤ Γ(·, [0, t])} ,

where this set is F̃t-measurable for every t ∈ I. Using [40, Lemma A.0.1(v)] with h(x, y) =
1{x≤y} and H(y) = y, we get

P(τ ≤ t|Ft)
a.s.
= Γ(·, [0, t]) , ∀ t ∈ I .

Finally, we must prove E[Zτ |F∞]
a.s.
=
∫
I Zt Γ(dt). In a first step we will use the monotone-

class theorem (see [62, Theorem 3.14]) to prove the result for bounded processes. We set

H := {Z = {Zt}t∈I |Z bounded, (F∞ ⊗ BI)-measurable,E
[
Z−τ
]
<∞,

E[Zτ |F∞]
a.s.
= ZΓ} .
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Due to the linearity of the expectation and the integral we have that the set H defines a
vector space. Obviously the constant element 1 is in H .

If we consider a non-negative sequence Zn ↗ Z for n→∞, where Z is bounded, then
we can show that Z ∈ H . If Zn ↗ Z for n → ∞ then also Znτ ↗ Zτ and ZnΓ ↗ ZΓ for
n→∞. By monotone convergence we have for n→∞

E[Znτ |F∞]↗ E[Zτ |F∞] .

Last but not least we need to prove that H contains the indicator function of every set
in the π-system {A ∩ B |A ∈ F∞, B ∈ BI}. W.l.o.g. we will set B = (b, c] ⊂ I and
Z(t, ω) = 1A(ω)1B(t). We have

E[Zτ |F∞] = E[1A(ω)1B(τ) |F∞] = 1A(ω)E[1B(τ)|F∞] = 1A(ω)P(b < τ ≤ c |F∞)

= 1A(ω)P(Γ(ω, [0, b]) < U ≤ Γ(ω, [0, c]) |F∞) = 1A(ω) Γ(ω, (b, c])

=

∫
I

1A(ω)1B(t) Γ(ω, dt) .

By the monotone-class theorem we know that H contains all bounded, F∞⊗BI -measurable
processes.

The result so far is only valid for bounded processes Z. Assume we are given a non-
negative process Z. Then there exists a sequence of bounded processes Zn with Zn ↗ Z
for n→∞, such that the result follows by monotone convergence. Since we can decompose
every process into its positive and negative part, which are both non-negative, we get the
result for general processes Z.

Remark 7.14. For the existence of the random variable U in the proof of Theorem 7.12
it would be sufficient to enlarge the probability space to Ω̄ = Ω × [0, 1], F̄ = F ⊗ B[0,1],
P̄ = P ⊗ λ, where λ denotes the Lebesgue measure, and a filtration defined by F̄t := Ft ⊗
{∅, [0, 1]} for t ∈ I. In the proof we need to enlarge the filtration we use to F̃t = Ft ∨σ(U)
for t ∈ I to ensure that τ really is a stopping time.

Lemma 7.15. If the process Z is a closable right-continuous martingale, we have V +(ν) =
E[Z0].

Proof. To prove the result use Theorem 7.12 and Doob’s optional stopping theorem (see
e.g. [46, Chapter I.2, Theorem 16] or [7, Theorem 3.11] for different versions in continuous
time).
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Chapter 8

Results for Special Cases and
Bounds

This chapter is devoted to the computation of optimal strategies or bounds for the problem
in continuous time. If one is interested in finding optimal stopping times, one can try to use
the Dynkin formula for computing the extremal value for some special types of processes. In
Section 8.1 this is done by considering Itō diffusions and applying some functions on them.
Due to the special form of the generators of these processes, results can be found using the
Dynkin formula. In Section 8.2 a general result concerned with the use of utility functions
is briefly discussed and an example of Section 8.1 is revisited. In Section 8.3 we introduce a
discrete approximation for right-continuous processes. This is a useful tool for transferring
results found in discrete time to continuous time. Using this discrete approximation we can
find results for special classes of processes in Section 8.4 and some bounds in Section 8.5.
Section 8.5 also shows some bounds that can be found right away, but that do not take
care of the distribution ν of the stopping time τ or the stochastic transition kernel Γ. In
this chapter we consider a time interval I ⊂ [0,∞) with 0 ∈ I and an adapted stochastic
process Z = {Zt}t∈I with Z ∈ L1(P). Once more, we then let TI denote the set of all
I-valued stopping times.

8.1 First Results Using the Dynkin Formula

In this section we will use the Dynkin formula, which is a result following from the Itō
formula. We will therefore present two different versions of the Itō formula, which can be
found in standard text books.

We will start with the version found in [43], for which we assume that the process Z is
an Itō process. This means that X is the solution of a SDE given by

dXt = µdt+ σ dWt , X0 = x , t ∈ I ,

where {Wt}t∈I is a Brownian motion with respect to our filtration, x > 0, µ ∈ R and σ > 0.
Assume further that we are given a function f(t, Z) that is twice continuously differentiable
in the second component and continuously differentiable in the first component. Itō’s
formula states

f(t, Zt) = f(0, Z0) +

∫ t

0

∂

∂s
f(s, Zs) ds+

∫ t

0

∂

∂Z
f(s, Zs) dZs +

1

2

∫ t

0

∂2

∂Z2
f(s, Zs)(dZs)

2 .
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If the time point t is now replaced by a stopping time τ with E[τ ] <∞ and we take a look
at the expectations we get the Dynkin formula, which states

E[f(τ, Zτ )] = f(0, Z0) + E
[∫ τ

0

( ∂
∂s
f(s, Zs) + µ

∂

∂Z
f(s, Zs) +

σ2

2

∂2

∂Z2
f(s, Zs)

)
ds

]
,

because

E
[∫ t

0
σ
∂

∂Z
f(s, Zs) dWs

]
= 0 .

The expectation exists if the support of f is compact, because the integrand will then be
bounded on the support and the stopping time has finite expectation.

In [46] we can find a more general version of the Itō formula if the process Z is a
semimartingale. Consider a C2 function f . Then, with the understanding that Z−s (ω) =
limt→s,t<s Zt(ω),

f(Zt) = f(Z0) +

∫ t

0+
f ′(Zs−) dZs +

1

2

∫ t

0+
f ′′(Zs−)d[Z,Z]cs

+
∑

0<s≤t
(f(Zs)− f(Zs−)− f ′(Zs−)∆Zs) ,

where [Z,Z]c denotes the path-by-path continuous part of [Z,Z], which is the quadratic
variation process of Z and the last sum, which is a convergent series, denotes the jump part
of the stochastic integral

∫ t
0+ f

′′(Zs−)d[Z,Z]s.

8.1.1 Itō Diffusions

Assume that the process Z is an Itô diffusion solving

dZt = Zt(µdt+ σ dWt) , Z0 = x , t ∈ I , (8.1)

where {Wt}t∈I is a Brownian motion with respect to our filtration, x > 0, µ ∈ R and
σ > 0. We consider stopping times τ with distribution ν for which we have Ex[τ ] < ∞.
Let f ∈ C2

0 (R), which means that f is twice continuously differentiable and has compact
support, i.e. the support supp(f) = {x ∈ R |f(x) 6= 0} is compact. Under these assumptions
we can try to use the Dynkin formula to solve our problem. The generator of the process
Z defined in (8.1) and the function f is given by

Af(x) = µx
∂

∂x
f(x) +

1

2
σ2x2 ∂

2

∂x2
f(x) .

The Dynkin formula states

Ex[f(Zτ )] = f(x) + Ex
[∫ τ

0
Af(Zs)ds

]
.

Lemma 8.2. For a process Z satisfying (8.1) we have for every τ ∈ TI

Ex[ln(Zτ )] = lnx+

(
µ− σ2

2

)
E[τ ] .
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Proof. We will use the Dynkin formula for this proof. The generator of the process Z for
the given function f(x) = lnx is given by

Af(x) = µx
1

x
+

1

2
σ2x2 (−1)

x2
= µ− σ2

2
.

Therefore using the Dynkin formula

Ex[ln(Zτ )] = lnx+ Ex
[∫ τ

0

(
µ− σ2

2

)
ds

]
= lnx+ Ex

[(
µ− σ2

2

)
τ

]
= lnx+

(
µ− σ2

2

)
Ex[τ ] .

Remark 8.3. For the function f(x) = lnx in Lemma 8.2 we do not need to be concerned
about the point x = 0, since Zt > 0 a.s. for all t > 0. This means that the process Z takes
values on (0,∞) and we can therefore use the Itō formula only on this set, thus avoiding
problems with the continuously differentiability of f .

Example 8.4. This example is based on [43, Exercise 7.9]. Consider an I-valued stopping
time τ . We will consider a process Z satisfying (8.1) and compute

Ex[U(Zτ )] ,

where for σ 6=
√

2µ and µ > 0 we assume that U is the utility function given by

U(x) =
xα

α
with α = 1− 2µ

σ2
, x ∈ [0,∞) .

A function U of this form is known as power utility. If we now use the given utility function
U , we have

AU(x) =

(
1− 2µ

σ2

)−1

·
(
µx

(
1− 2µ

σ2

)
x−

2µ

σ2 +
1

2
σ2x2

(
1− 2µ

σ2

)(
−2µ

σ2

)
x−1− 2µ

σ2

)
=

(
1− 2µ

σ2

)−1

·
(
x1− 2µ

σ2

(
µ

(
1− 2µ

σ2

)
− µ

(
1− 2µ

σ2

)))
= 0 .

Altogether we have

Ex[U(Zτ )] = U(x) =
1

1− 2µ
σ2

x1− 2µ

σ2 .

If we now switch to a stochastic process Z modeled by the stochastic differential equation

dZt = µdt+ σ dWt , Z0 = x , t ∈ I , (8.5)

where {Wt}t∈I is a Brownian motion with respect to our filtration, x > 0, µ ∈ R and σ > 0,
we can also find a result for a function f(x) = x.

Lemma 8.6. For a stochastic process Z satisfying the stochastic differential equation (8.5)
we have for every τ ∈ TI

Ex[Zτ ] = x+ µEx[τ ] .
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Proof. Using the Dynkin formula for the function f(x) = x, we get

Ex[f(Zτ )] = Ex[Zτ ] = x+ Ex
[∫ τ

0
µ · 1 ds

]
= x+ µEx[τ ] ,

as the generator is now given by Af(x) = µ, due to the form of the process defined by the
SDE in (8.5).

Remark 8.7. This result can also be found by noticing that Zt = x+µt+σWt for all t ∈ I.

8.2 Utility Functions

Consider a utility function u and a stochastic process Z with E
[
supt∈I Z

−
t

]
< ∞ or

E
[
supt∈I Z

+
t

]
< ∞. Define Z̃ = {Z̃t}t∈I by Z̃t := u(Zt) for t ∈ I. Similarly as in Re-

mark 2.54 for the discrete time setting, for a stopping time τ ∈ T νI we have

E[u(Zτ )] = E
[
Z̃τ
]
. (8.8)

For Γ ∈Mν
I we have

E[u(ZΓ)] = E
[
u

(∫
I
Zt Γ(dt)

)]
.

In some cases a good choice of utility function facilitates the solving of the problem for
stopping times. As we will see in the following example, we could have found the result of
Lemma 8.2 by simply using (8.8).

Example 8.9. We will now assume I = [0, T ] in order to avoid problems with the use of
Doob’s optional stopping theorem. In Lemma 8.2 we considered a process Z modeled in a
similar way to the risky asset in a Black–Scholes model, i.e. we assumed that the process
Z follows the stochastic differential equation

dZt = Zt(µdt+ σ dWt) , Z0 = x , t ∈ I ,

where {Wt}t∈I is a Brownian motion with respect to our filtration, x > 0, µ ∈ R and σ > 0.
We know that the process Z is given in the form

Zt = Z0 exp

((
µ− 1

2
σ2

)
t+ σWt

)
, Z0 = x , t ∈ I.

Using the utility function u(x) = ln(x), we get for t ∈ I

Z̃t := u(Zt) = ln(Z0) +

(
µ− 1

2
σ2

)
t+ σWt .

By (8.8) we have

E[u(Zτ )] = ln(Z0) + E
[(
µ− 1

2
σ2

)
τ

]
+ E[σWτ ] = ln(Z0) +

(
µ− 1

2
σ2

)
E[τ ] ,

because E[Wτ ] = E[W0] = 0, since {Wt}t∈I is a martingale and we can use Doob’s optional
stopping theorem.
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8.3 Discrete Approximation

In this section we will look at a discrete approximation, which will allow us to transfer
results from discrete time to continuous time.

Proposition 8.10. Given a continuous time interval I ⊂ [0,∞) with 0 ∈ I. Let 0 =

t
(n)
0 < t

(n)
1 < · · · < t

(n)
mn be a partition of the time interval I, such that the length of the

corresponding subintervals tends to zero as n → ∞ and that t
(n)
mn → sup(I) for n → ∞ in

case sup(I) ∈ I or t
(n)
mn → ∞ for n → ∞ in case I = [0,∞). Given a stochastic transition

kernel Γ, for a fixed n ∈ N define a discrete adapted random probability measure γn by

γn
t
(n)
k

=


Γ(·, {0}) if k = 0,

Γ(·, [0, t(n)
k ])− Γ(·, [0, t(n)

k−1]) if k = 1, . . . ,mn − 1,

Γ(·, I)− Γ(·, [0, t(n)
mn−1]) if k = mn.

Define a sequence of stochastic transition kernels (Γn)n∈N by

Γn =

mn∑
k=0

γn
t
(n)
k

δ
t
(n)
k

,

where δ
t
(n)
k

denotes the Dirac measure. Then for every right-continuous process Z = {Zt}t∈I
with E[supt∈I |Zt|] <∞

lim
n→∞

∫
I
Zt Γn(dt) =

∫
I
Zt Γ(dt) pointwise on Ω and in L1.

Proof. Take ω ∈ Ω, mn ∈ N. We have∫
I\{0}

Zt(ω) Γn(ω, dt) =

mn−1∑
k=1

Z
t
(n)
k

(ω)γn
t
(n)
k

(ω) + Z
t
(n)
mn

(ω)

(
1−

mn−1∑
k=1

γ
t
(n)
k

(ω)

)

=

mn−1∑
k=1

Z
t
(n)
k

(ω) Γ(ω, (t
(n)
k−1, t

(n)
k ]) + Z

t
(n)
mn

(ω) Γ(ω, (t
(n)
mn−1,∞) ∩ I)

=

∫
I\{0}

mn∑
k=1

Z
t
(n)
k

(ω)1
(t

(n)
k−1,t

(n)
k ]

(t ∧ t(n)
k ) Γ(ω, dt) .

Therefore ∣∣∣∣∣
∫
I\{0}

Zt(ω) Γn(ω, dt)−
∫
I\{0}

Zt(ω) Γ(ω, dt)

∣∣∣∣∣
=

∣∣∣∣∫
I\{0}

(mn∑
k=1

Z
t
(n)
k

(ω)1
(t

(n)
k−1,t

(n)
k ]

(t ∧ t(n)
k )− Zt(ω)

)
︸ ︷︷ ︸

n→∞→ 0

Γ(ω, dt)

∣∣∣∣ .
As the integrand converges to 0 for n → ∞ and the integral is bounded by 2 supt∈I |Zt|,
which is a non-negative integrable random variable, we get convergence of the discrete
approximation.
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Remark 8.11. The result of Proposition 8.10 should also hold for processes whose paths are
continuous from the left. In that case one would have to choose the decomposition of the
interval I in such a way that the end points of the intervals of the decomposition coincide
with the points of discontinuity.

For the decomposition of the time interval one can also choose a random partition which
tends to the identity, as it is defined in [46, page 64].

Due to the result of Proposition 8.10, we can now use a discrete approximation for
computations in continuous time if we are given a right-continuous process.

Remark 8.12. For the discrete approximation of Proposition 8.10, for each n ∈ N we define

a probability measure νn on the discrete time interval I ′ = {t(n)
0 , . . . , t

(n)
mn} such that Γn ∈

Mνn

I′ , with Mνn

I′ as in Definition 2.12. The probability measure νn is defined by

νn
t
(n)
0

:= E[Γ(·, {0})] ,

for k = 1, . . . ,mn − 1

νn
t
(n)
k

:= E
[
γn
t
(n)
k

]
= E

[
Γ(·, [0, t(n)

k ])
]
− E

[
Γ(·, [0, t(n)

k−1])
]

= ν([0, t
(n)
k ])− ν([0, t

(n)
k−1]) = ν((t

(n)
k−1, t

(n)
k ]) .

and
νn
t
(n)
mn

:= E
[
Γ(·, I)

]
− E

[
Γ(·, [0, t(n)

mn−1])
]

= ν((t
(n)
mn−1,∞) ∩ I)

Then for k = 0, . . . ,mn we have
γ
t
(n)
k

≥ 0 a.s.,

and
E
[
γ
t
(n)
k

]
= νn

t
(n)
k

.

Further for k = 0, . . . ,mn − 1

γ
t
(n)
k

= Γ(·, [0, t(n)
k ])︸ ︷︷ ︸

F
t
(n)
k

-mb.

−Γ(·, [0, t(n)
k−1])︸ ︷︷ ︸

F
t
(n)
k−1

-mb.

is F
t
(n)
k

-measurable ,

and γ
t
(n)
mn

is F
t
(n)
mn−1

-measurable. Last but not least

mn∑
k=1

γ
t
(n)
k

= Γ(·, I) = 1 a.s.

Lemma 8.13. For a right-continuous process Z with E[supt∈I |Zt|] < ∞ and a discrete
approximation as defined in Proposition 8.10 we have

E
[∫

I
Zt Γ(dt)

]
= E

[
lim
n→∞

∫
I
Zt Γn(dt)

]
= lim

n→∞
E
[∫

I
Zt Γn(dt)

]
.

Proof. We can exchange the expectation and the limit due to dominated convergence,
because for all n ∈ N ∫

I
Zt Γn(dt) ≤ sup

t∈I
|Zt| ,

where supt∈I |Zt| is a non-negative element of L1(Ω,F ,P).
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Using the discrete approximation of Proposition 8.10 and assuming that the process
Z satisfies all necessary assumptions, we can find alternative proofs for Lemma 7.8 and
Lemma 7.15.

Alternative proof for Lemma 7.8. Let Z be a right-continuous, (F⊗BI)-measurable process
with E

[∫
I Z
−
t Γ(dt)

]
<∞ or E

[∫
I Z

+
t Γ(dt)

]
<∞ and assume we are given a stochastic tran-

sition kernel Γ ∈Mν
I independent of Z. Using the discrete approximation and Lemma 8.13

we get

E[ZΓ] = E
[∫

I
Zt Γ(dt)

]
= E

[
lim
n→∞

mn∑
k=0

γn
t
(n)
k

Z
t
(n)
k

]
= lim

n→∞

mn∑
k=0

E
[
γn
t
(n)
k

Z
t
(n)
k

]
= lim

n→∞

mn∑
k=0

E
[
Z
t
(n)
k

]
E
[
γn
t
(n)
k

]
= lim

n→∞

mn∑
k=0

E
[
Z
t
(n)
k

]
νn
t
(n)
k

=

∫
I
E[Zt] ν(dt) .

Alternative proof for Lemma 7.15. If the process Z is a closable right-continuous martin-
gale, we have for all Γ ∈Mν

I using Lemma 8.13

E[ZΓ] = E
[∫

I
Zt Γ(dt)

]
= E

[
lim
n→∞

mn∑
k=0

γn
t
(n)
k

Z
t
(n)
k

]
= lim

n→∞

mn∑
k=0

E
[
γn
t
(n)
k

Z
t
(n)
k

]
= lim

n→∞

mn∑
k=0

E
[
γn
t
(n)
k

E
[
Z∞

∣∣F
t
(n)
k

]]
= lim

n→∞
E
[mn∑
k=0

γn
t
(n)
k︸ ︷︷ ︸

a.s.
= 1

Z∞

]
= E[Z∞] = E[Z0] .

8.4 Results for Special Classes of Processes

In this section we will look at special classes of processes, for which we can derive explicit
results. For this, the discrete approximation of Section 8.3 will also be useful.

In discrete time we have seen that by using the Doob decomposition the adapted process
Z can be decomposed into a martingale M and a predictable process A. For a deterministic
process A it was possible to solve the problem using Theorem 2.49 and Lemma 5.1. In
continuous time we have to consider the Doob–Meyer decomposition of the adapted process
Z. This decomposition is discussed, for example, in [21, Theorem 1.2.1.6], [26, Chapter 1,
Theorem 4.10], [46, Chapter III.3] or [25, Chapter 22].

Lemma 8.14. Assume that the filtration is right-continuous and let the adapted process
Z be a right-continuous sub- or supermartingale of class D. Then there exists a unique
decomposition Z = M +A, where M = {Mt}t∈I is a uniformly integrable right-continuous
martingale and A = {At}t∈I a predictable process with A0 = 0 and E[|A∞|] <∞. Then

V +(ν) = E[M0] + sup
Γ∈Mν

I

E[AΓ] .

If further the process A is deterministic, then

V +(ν) = E[M0] +

∫
I
At ν(dt) .
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Proof. The existence of the decomposition follows from the Doob–Meyer decomposition
theorem (see [26, Chapter 1, Theorem 4.10] or others cited above). Lemma 7.15 gives the
first result of the lemma, which can be applied as uniform integrability implies that M is
closable. If now A is deterministic, Lemma 7.8 implies

E[AΓ] =

∫
I
At ν(dt) .

Corollary 8.15. For an adapted, right-continuous process Z = {Zt}t∈I with indepen-
dent increments and E[supt∈I |Zt|] < ∞ (which also implies that Z is of class D by Re-
mark 7.2(ii)) we have

sup
Γ∈Mν

I

E
[∫

I
Zt Γ(dt)

]
=

∫
I
E[Zt] ν(dt) .

Proof. For a process with independent increments the predictable process of the Doob–
Meyer decomposition is given by At = E[Zt] − E[Z0] for all t ∈ I. The result then follows
from Lemma 8.14 and the fact that for every Γ ∈Mν

I

E
[∫

I
Zt Γ(dt)

]
= E[M0] +

∫
I
At ν(dt) =

∫
I
E[Mt] ν(dt) +

∫
I
E[At] ν(dt) =

∫
I
E[Zt] ν(dt) .

The result of Corollary 8.15 also follows from the following lemma.

Lemma 8.16. Given a continuous time interval I and a probability distribution ν on I.
For a given adapted stochastic process Z = {Zt}t∈I we define the increments of Z by
∆Z0 := Z0 and ∆Zt := Zt − Zt−1 for all t ∈ I \ {0}. If the increments are integrable and
there exists a sequence {ct}t∈I ⊂ [1,∞) such that they satisfy

E[∆Zt |Ft−1]
a.s.
= E[∆Zt]

and

E
[
|∆Zt|

∣∣Ft−1

] a.s.
≤ ct E[|∆Zt|]

for all t ∈ I with ν([0, t)) < 1, as well as

E
[
sup
t∈I
|Zt|
]
<∞ .

Then, for all Γ ∈Mν
I , ZΓ is well-defined, integrable and

E[ZΓ] =

∫
I
E[Zt] ν(dt) .

Proof. By Proposition 8.10 and Lemma 8.13

E
[∫

I
Zt Γ(dt)

]
= E

[
lim
n→∞

mn∑
k=1

Z
t
(n)
k

γn
t
(n)
k

]
= lim

n→∞
E
[mn∑
k=1

Z
t
(n)
k

γn
t
(n)
k

]
.

By Lemma 5.10 we have

E
[mn∑
k=1

Z
t
(n)
k

γn
t
(n)
k

]
=

mn∑
k=1

E
[
Z
t
(n)
k

]
νn(t

(n)
k ) ,
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where we again define

νn(t
(n)
k ) := E

[
γn
t
(n)
k

]
= E

[
Γ(·, [0, t(n)

k ])
]
− E

[
Γ(·, [0, t(n)

k−1])
]

= ν([0, t
(n)
k ])− ν([0, t

(n)
k−1]) .

We have

lim
n→∞

mn∑
k=1

E
[
Z
t
(n)
k

]
νn(t

(n)
k ) =

∫
I
E[Zt] ν(dt) .

8.5 Some Bounds

In this section we look at upper and lower bounds for our problem. Again, some are valid for
all types of processes, while others are only valid for certain classes of processes. Moreover,
some take the distribution of the stopping time or the stochastic transition kernel into
account and some do not.

Similar to that in discrete time, an upper bound for the problem when considering
stopping times is given by a general optimal stopping problem. A general lower bound is
given by assuming that the process Z and the stopping time τ or the stochastic transition
kernel Γ, respectively, are independent. This lower bound can be found using Lemma 7.8.

For an adapted càdlàg process Z with E
[∫
I Z
−
t Γ(dt)

]
< ∞ or E

[∫
I Z

+
t Γ(dt)

]
< ∞ for

all Γ ∈Mν
I , we have

V (ν) ≤ V +(ν) ≤ E
[
sup
t∈I

Zt

]
.

For the measurability of supt∈I Zt we refer to Remark 7.3. Again this upper bound is quite
general and does not incorporate the distribution ν. In many situations the values found
by this upper bound will be quite high.

For deriving more bounds we can try to use the discrete approximation presented in
Section 8.3.

Lemma 8.17. Given a continuous time interval I and an adapted right-continuous process
Z ∈ L1(P) with E[supt∈I |Zt|] <∞. Let U = {Ut}t∈I be the Snell envelope of the process Z
and let U = M+A be the Doob–Meyer decomposition of U and assume that M is uniformly
integrable. Then we have

V +(ν) ≤ V .

Proof. For every Γ ∈Mν
I we have by Proposition 8.10 and Lemma 8.13

E[ZΓ] = E
[∫

I
Zt Γ(dt)

]
= E

[
lim
n→∞

∫
I
Zt Γn(dt)

]
= lim

n→∞
E
[∫

I
Zt Γn(dt)

]
,

where for each n ∈ N by Lemma 2.51, as the value of an optimal stopping problem on a
continuous time interval is higher than for one with exercise possibilities in any discrete
time interval,

E
[∫

I
Zt Γn(dt)

]
≤ V .

Therefore, for every Γ ∈Mν
I ,

E
[∫

I
Zt Γ(dt)

]
= lim

n→∞
E
[∫

I
Zt Γn(dt)

]
≤ V
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and

V +(ν) ≤ V .

Lemma 8.18. Let Z = {Zt}t∈I be a right-continuous supermartingale with E[supt∈I |Zt|] <
∞. Then for every Γ ∈Mν

I

E[Z0] ≥ E[ZΓ] ≥ E[Z∞] .

If further Z is of class D, then

E[M0] ≥ E[ZΓ] ≥ E[M0] + E[A∞] ,

where M = {Mt}t∈I is the uniformly integrable martingale and A = {At}t∈I the predictable
non-increasing process with A0 = 0 and E[A∞] <∞ of the Doob–Meyer decomposition.

Proof. For every Γ ∈Mν
I we have by Proposition 8.10 and Lemma 8.13

E[ZΓ] = E
[∫

I
Zt Γ(dt)

]
= E

[
lim
n→∞

∫
I
Zt Γn(dt)

]
= lim

n→∞
E
[∫

I
Zt Γn(dt)

]
.

As Zt ≥ E[Z∞ |Ft] for all t ∈ I, we get using again Lemma 8.13

E[ZΓ] ≥ lim
n→∞

E
[∫

I
E[Z∞ |Ft] Γn(dt)

]
= lim

n→∞
E
[∫

I
Z∞ Γn(dt)

]
= E

[
lim
n→∞

∫
I
Z∞ Γn(dt)

]
= E

[
Z∞

∫
I

Γ(dt)

]
= E[Z∞] .

Note that the limit Z∞ exists, due to Doob’s convergence theorem (see [62, Theorem 11.5]).
If now Z is of class D, we can use the Doob–Meyer decomposition, which states that
Zt = Mt +At for t ∈ I. Then

E[ZΓ] = E
[∫

I
(Mt +At) Γ(dt)

]
= E

[∫
I
Mt Γ(dt)

]
+ E

[∫
I
At Γ(dt)

]
By Lemma 7.15 we know

E
[∫

I
Mt Γ(dt)

]
= E[M0] .

As Z is a supermartingale we know that A is non-increasing and therefore At ≥ A∞ a.s.
for all t ∈ I. Knowing that

∫
I Γ(dt)

a.s.
= 1, this implies

E
[∫

I
At Γ(dt)

]
≥ E[A∞] .

Altogether

E[ZΓ] ≥ E[M0] + E[A∞] .

Since A is a non-increasing process

E[ZΓ] ≤ E[M0] = E[Z0] .
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Lemma 8.19. Let Z = {Zt}t∈I be a right-continuous submartingale with E[supt∈I |Zt|] <
∞. Then for every Γ ∈Mν

I

E[Z0] ≤ E[ZΓ] ≤ E[Z∞] .

If further Z is of class D, we get

E[M0] ≤ E[ZΓ] ≤ E[M0] + E[A∞] ,

where we assume that the uniformly integrable martingale M = {Mt}t∈I and the predictable
non-decreasing process A = {At}t∈I with A0 = 0 and E[A∞] < ∞ are the processes of the
Doob–Meyer decomposition.

Proof. The proof works in a similar way to that of Lemma 8.18, but now A is a non-
decreasing predictable process.
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Chapter 9

Applications in Actuarial
Mathematics

This chapter briefly discusses applications of the problem in actuarial mathematics. The
time interval will model the time points on which pay-outs occur. First the application for
unit-linked life insurance products is discussed in Section 9.1. In this section we also explain
how to determine the distribution ν of the stopping time τ ∈ T νI or the adapted random
probability measure γ ∈ Mν

I for a given discrete time interval I. Section 9.2 gives a short
explanation of how the problem can be used in health insurance mathematics. Normally
an insurance contract will only be considered on a finite-time setting. This is why we
now assume I = {0, . . . , T} for some T ∈ N. We further assume that an adapted process
Z = {Zt}t∈I ∈ L1(P) is given.

9.1 Unit-Linked Life Insurances

One interesting area where the results of the previous parts can be used are unit-linked
life insurance contracts, where the pay-out is determined by the price of some underlying
financial asset, index or investment fund at a random time point. This random time point
might be dependent on the moment of death of the insured person. When considering these
insurance contracts, we assume that the adapted process Z = {Zt}t∈I ∈ L1(P) now models
the pay-out for each moment in time and that the stopping time τ models the time of a
pay-out, for example following the demise of the insured, with a distribution given by a life
table. Using adapted random probability measures, an entire portfolio of unit-linked life
insurance contracts can be modeled. For each t ∈ I the value γt then corresponds to the
percentage of contracts that have a pay-out at time t. For these types of insurance contracts
we drop the usual assumption that biometric risks are independent of those that exist in
financial markets. With this assumption of an adapted dependence between the underlying
fund and the stopping time or the adapted random probability measure, respectively, the
value we obtain for an insurance contract is greater than the one computed by standard
actuarial methods assuming independence (see e.g. [28]). In this way our value could be
used to model a worst-case scenario for the insurer, which might be of interest for assessing
the risk of the insurance contract.

Note that there are several papers in medical research which deal with the impact of
crisis or catastrophes in the surroundings of the patients on severe medical diseases. For
the application in unit-linked life insurances [36] is especially interesting as the authors find
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that the financial crisis, which also had impacts on the financial market and therefore on
the underlying of unit-linked life insurance products, may have lead to a higher incidence
of acute myocardial infarction in the population of Messinia and claim the need for an
analysis of this phenomenon for the entire Greek population. Others analyze the effect
of the earthquake in Japan in March 2011 on coronary syndromes ([29] and [42]) or the
alteration in the pattern of acute myocardial infarction onset after hurricane Katrina in
New Orleans ([45]).

In order to determine the distribution ν of the stopping time τ or the adapted random
probability measure γ we need to use a life table. We denote by npx the probability that
a x-year old person will survive the next n years. Conversely, we denote by nqx = 1−n px
the probability that a x-year old person will die within the next n years. For n = 1 we
write px and qx. First of all we set ν0 = 0. This is a reasonable assumption, since there
will not be a pay-out at the initiation the contract. For modeling one single unit-linked life
insurance contract with pay-out at the end of the year of death of the insured or at the
end of the contract, we set νt equal to the probability that a x-year old person survives
t− 1 years and dies within the t-th year for t ∈ {1, . . . , T − 1}, i.e. νt = t−1px · qx+t−1 for
t ∈ {1, . . . , T−1}. Importantly, we have to choose νT = T−1px. Then we have

∑T
t=0 νt = 1.

If one prefers to model a whole portfolio of N ∈ N homogeneous contracts using adapted
random probability measures, one can choose E[γt] = νt with νt defined as before for t ∈ I.
Assume the process S models the evolution of the underlying fund for one single contract.
Then Z = N · S models the evolution of the entire portfolio.

Remark 9.1. In continuous time the distribution ν would be found similar to the explana-
tions above using a given force of mortality.

We will illustrate the computation of the value V (ν) for a unit-linked life insurance and
a portfolio of unit-linked life insurances in the following examples using Lemma 5.37 and
Theorem 5.25. In order to derive the values for the distribution ν we will use the values qx
given in the Austrian annuity table 2005, which was presented in [24].

Example 9.2. In order to be able to use Lemma 5.37 we need to assume that the process
Z consists of independent random variables. We will assume that Z is an i.i.d. process with
Zt ∼ U(0, 2) for all t ∈ I. Let the distribution ν be given as explained above.

First we will compute the quantiles and expected shortfalls needed in general, which
allows an easy implementation. Assume X ∼ U(a, b), then the δ-quantile of X is given by

qδ(X) = δ(b− a) + a .

The expected shortfall of X for a given δ ∈ (0, 1) is given by

ESδ(X) =
1

P(X > qδ(X))
E
[
X1{X>qδ(X)}

]
=

1

1− δ

∫ b

qδ(X)

x

b− a
dx

=
1

2(b− a)(1− δ)
(b2 − qδ(X)2) .

(9.3)

Note that ESδ(X) = 0 for δ = 1 and ESδ(X) = E[X] for δ = 0.
Under the assumption of independence between the process Z and the stopping time τ we
have V ind(ν) = 1 for all maturities T ∈ N. Assume that we want to compute the price for
a unit-linked life insurance contract for a 20-year old male, with a maturity of T = 10. In
order to be able to use Lemma 5.37 we have to use δt = 1− νt

1−ν0−···−νt−1
for each t ∈ I for

112



9.1. Unit-Linked Life Insurances

the computation of the expected shortfall. This yields

V (ν) =

T∑
t=0

ES1− νt
1−ν0−···−νt−1

(Zt) · νt ≈ 1.0071286 .

Figure 9.1 shows the evolution of the values V , V (ν) and V ind(ν) for different maturities.
We see that the difference between V (ν) and V ind(ν) becomes higher for larger maturities,
while the difference between V and V (ν) becomes smaller for larger maturities.
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Figure 9.1: The values V , V (ν) and V ind(ν) for a unit-linked life insurance contract for a
20-year old male for different maturities.

They pay-out of the last example is not much realistic for an insurance contract. If
the insured person would just receive the pay-out of the underlying fund, the contract
is perfectly hedged. Therefore, we are also interested in insurance contracts including a
guarantee. For such a contract hedging becomes more challenging. To model a unit-
linked life insurance contract including a guarantee, let the process S = {St}t∈I model the
underlying fund and let G = {Gt}t∈I model the guaranteed value. Then the pay-out of the
insurance contract, which we will denote by Z = {Zt}t∈I , at each time point t ∈ I is given
by Zt = max{St, Gt}. This pay-out may then be represented as the sum of the fund and
the value of a put option by writing Zt = St + max{0, Gt − St}.

In the following example we will now extend Example 9.2 by a guarantee. The pay-out
is still modeled very simple by an independent process. This allows us to use Lemma 5.37.

Example 9.4. Let S = {St}t∈I be an i.i.d. process with St ∼ U(0, 2) for all t ∈ I and let
G = {Gt}t∈I be a deterministic process with Gt ∈ [0, 2] for all t ∈ I. This means that G will
model the guaranteed value. Let the process Z = {Zt}t∈I be given by Zt = max{St, Gt} =
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Gt + max{St −Gt, 0} for all t ∈ I. For each t ∈ I the distribution of Zt is given by

P(Zt ≤ x) =



0 if x < Gt,

P(St ≤ Gt) if x = Gt,

P(St ≤ Gt) + P(Gt < St ≤ x) if Gt < x < 2,

1 if x ≥ 2,

where P(St ≤ Gt) = Gt
2 and P(Gt < St ≤ x) = x

2 −
Gt
2 = x−Gt

2 . The δ-quantile of Zt for
t ∈ I is therefore given by

qδ(Zt) =


−∞ for δ = 0,

Gt for 0 < δ ≤ P(St ≤ Gt),

2δ for P(St ≤ Gt) < δ ≤ 1.

The expected shortfall is then computed as in (9.3).
For simplicity we will now assume Gt = 1 for all t ∈ I. Under the assumption of

independence between the process Z and the stopping time τ we have V ind(ν) = 1.25 for
all maturities T ∈ N. Assume that we again want to compute the price for a unit-linked life
insurance contract for a 20-year old male, with a maturity of T = 10. In order to be able
to use Lemma 5.37 we have to use δt = 1− νt

1−ν0−···−νt−1
for each t ∈ I for the computation

of the expected shortfall. This yields

V (ν) =
T∑
t=0

ES1− νt
1−ν0−···−νt−1

(Zt) · νt ≈ 1.5036 .

Figure 9.2 shows the evolution of the values V , V (ν) and V ind(ν) for different maturities. We
see that again the difference between V (ν) and V ind(ν) becomes higher for larger maturities,
while the difference between V and V (ν) becomes smaller for larger maturities. Note
that including the guarantee increases the difference between V (ν) and V ind(ν) from the
beginning, compared to Figure 9.1.

Example 9.5. In this example we want to consider an entire portfolio of 100 homogeneous
contracts. We will use Theorem 5.25 for the computation. We assume that the process
Z is given in such a way that the processes M and A of the Doob decomposition satisfy
the necessary conditions. We assume that the process A is one whose increments are i.i.d.
with ∆At ∼ U(0, 1) and that the process M is given by a binomial model with parameters
chosen in such a way that it is a martingale. We will assume that M0 = 1 and that
Mt = Mt−1(1 −X) with P(X = 1

2) = P(X = −1
2) = 1

2 . This time the value of V ind(ν) is
increasing with an increasing maturity, starting with V ind = 598.1888 for T = 10. Let

δt =

{
1− 1−ν≤t

1−ν≤t−1
= νt

1−ν≤t−1
if ν≤t−1 < 1 ,

0 if ν≤t−1 = 1 .

For a portfolio of 20 year old males and a maturity of T = 10, we get

V +(ν) = E[M0] +
∑

t∈I\{0}

(1− ν0 − · · · − νt−1) ESδt−1(∆At) ≈ 598.5452 .

Figure 9.3 shows the evolution of the values V +(ν) and V ind(ν) for different maturities.
Again we see that the difference becomes larger for a longer duration of the contract.
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Figure 9.2: The values V , V (ν) and V ind(ν) for a unit-linked life insurance contract for a
20-year old male for different maturities.
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Figure 9.3: The values V +(ν) and V ind(ν) for a portfolio of unit-linked life insurance
contracts for 20-year old males for different maturities.

Remark 9.6. So far we only considered endowment insurances, which trigger a pay-out
whether the insured person dies or survives. For pure endowment insurances that have
a pay-out if the insured person survives a predefined time period, say I = {0, . . . , T},
Lemma 5.55 is applicable for pay-outs modeled by a martingale or the product of a deter-
ministic function and a martingale, as the pay-out process can be multiplied by a determin-
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istic function given by f(t) = 0 for t ∈ {0, . . . , T − 1} and f(T ) = 1. Further any strategy
γ ∈Mν

I satisfying E[ZTγT ] = νT ES1−νT (ZT ) is optimal by Lemma 4.1.

9.2 Health Insurances

If we consider a health insurance contract we can also use the setting presented before. A
health insurance contract can be modeled in a similar way to a life insurance contract. If
we transform this to our setting, we have that the process γ models the state of the insured
person (or the whole portfolio), which means that it determines whether something has to
be paid or not. The process γ could therefore be of the form γt = 1St , where we define
St := {the insured person asserts a claim in the time interval (t, t + 1]}. The adapted
process Z models what is normally called the claims amount per risk. This means that we
are interested in the value

sup
γ∈Mν

I

E[Zγ ] = sup
γ∈Mν

I

E
[∑
t∈I

Ztγt

]
.

Analogue to the standard calculations, the distribution of γ needs to be found from the
data of the insurance company. Also the process Z is modeled based on the data of previous
years. Not only the expected values of Z and γ are necessary, but the empirical distributions,
which can be found using the data.
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Applications in Risk Management

This chapter concentrates on applications of the problem in risk management, which we
briefly discuss. First we take a look at risk measures for stochastic processes. These types
of risk measures are discussed in some papers which show that they have a representation,
similar to the problem using adapted random probability measures. This representation is
shown in Section 10.1. In Section 10.2 we give a short note on how the problem could be
used in credit risk modeling.

10.1 Risk Measures for Stochastic Processes

If one is interested in the risk measure of a process one could instead look at the risk
measure of a random variable on an appropriate product space. This is shown in [6] and
this representation is used, for example, in [1]. Given a time interval I and a process
{Xt}t∈I on a probability space (Ω,F ,P) one can instead consider a random variable X on
a product space (Ω̄, F̄ , P̄), which is defined by Ω̄ = Ω× I, F̄ = σ({At×{t}|At ∈ Ft, t ∈ I}),
P̄ = P ⊗ γ, where γ = {γt}t∈I is some adapted reference process, with γt > 0 for all t ∈ I
and

∑
t∈I γt = 1. The correspondence between the random variable and the process is then

given by

EP̄[X] := EP

[∑
t∈I

Xtγt

]
.

There is a little difference to our setting, since, strictly speaking, the value of each γt has to
be positive and there is no assumption about the distribution of the process γ. Even if this
process γ is not unique it would nevertheless be interesting (if some assumption about the
distribution is made) to take a look at the supremum over the various reference processes
of this expectation.

In [1] a robust representation of a continuous conditional convex risk measure ρt for
t ∈ I for stochastic processes is given by

ρt(X) = ess sup
Q∈Qloct

ess sup
γ∈Γt(Q)

(
EQ
[
−
∑
s∈I≥t

γsXs|Ft
]
− αt(Q⊗ γ)

)
, X ∈ R∞t ,

where αt is the minimal penalty function of ρt and I≥t := {s ∈ I |s ≥ t}. Further
Qloct := {Q ∈ Mloc(P) |Q = P onFt} and Γt(Q) := {γ ∈ Γ(Q) |γs = 0∀s < t}, where
Mloc(P) denotes the set of all probability measures Q on (Ω,F) which are locally abso-
lutely continuous with respect to P (i.e. Q� P onFt for each t ∈ I ∩ N0) and where Γ(Q)
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is the set of all optional random measures γ = {γt}t∈I on I, which are normalized with
respect to Q. R∞ is the space of all adapted stochastic processes X with ‖X‖∞ <∞ and
R∞t := πt,T (R∞), where for 0 ≤ t ≤ T , with T being the end point of the time interval I,
the projection πt,T : R∞ → R∞ is defined by πt,T (X)r = 1{t≤r}Xr∧T , r ∈ I.

10.2 Credit Risk

In credit risk modeling, an important factor is the expected loss at default. Using the above
results it is possible to find an upper bound for this expectation in the case of dependence
between the time of default and the loss given default. For a given time interval I the
stochastic process would then model the loss given default for each time point t ∈ I and the
stopping time models the time of default, for which the probability of default is known. It
is generally assumed that the probability of default is only known for one time period. One
could therefore try to use the result of Theorem 5.4 for each time period or try to set up
a model for the probabilities of default for a multi-period setting. Again adapted random
probability measures γ ∈ Mν

I , where I is given by the duration of the contracts and ν is
given by the probability of default, can be used to model a whole portfolio of homogeneous
credit contracts. There are different approaches for modeling the transition and default
probabilities of the obligor. These different approaches are discussed in [53, Chapter 2.3].

The holder of a credit normally needs to have a credit life insurance. This insurance
contract guarantees repayment of the credit should the insured person die. The insured
sum is therefore non-increasing, as the insured person pays back parts of the credit at the
different time points. The insured sum is usually modeled deterministically. If the insurance
contract is set up in one currency but is entered on to the balance sheet in another, the
insured sum becomes stochastic due to the stochastic exchange rate. One might wish to
model the insured sum stochastically in any case. The pricing of such a credit life insurance
can then be done as explained in Section 9.
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Applications in Mathematical
Finance

This chapter will briefly consider applications of the introduced problem in mathematical
finance. First we will take a look at American options in Section 11.1. As we already saw in
Chapter 2 these are an upper bound. By assuming we know that the holder of the option will
react irrationally, and where we account for this by choosing an appropriate distribution,
we can turn our attention to the value of the option for this person. In Section 11.2 the
liquidation of an investment portfolio is discussed. In this situation we try to earn as much
as possible from liquidating the portfolio step by step using adapted random probability
measures, where the distribution can be used to model preferences about how much should
be liquidated at what point in time. Last but not least we take a look at swing options in
Section 11.3. These are often used in electricity markets and have a representation similar
to the problem that arises when using adapted random probability measures.

11.1 American Options

Already in the introduction of the problem we saw that an upper bound is given by the
value of an optimal stopping problem, or for non-negative process by the value of the
corresponding American option. For the price of the American option it is assumed that the
buyer of the option acts rationally and uses an optimal strategy. If one has any information
that the buyer of the option will not act rationally and that he or she will follow a strategy
with a given distribution, the setting of the problem introduced could be used for pricing
the option. This is illustrated in the following example.

Example 11.1. We will consider an American option with maturity T = 4, where the
pay-out at time t ∈ {0, . . . , 4} is given by a random variable Zt ∼ U(0, t + 1). We assume
that the adapted process Z is an independent process. First we will take a look at the Snell
envelope U = {Ut}t∈{0,...,4} to find the value and the optimal strategy for the American
option. We have

U4 = Z4 ,

U3 = max{Z3,E[U4 |F3]} = max{Z3,E[Z4]} = max

{
Z3,

5

2

}
,

U2 = max{Z2,E[U3 |F2]} = max

{
Z2,E

[
max

{
Z3,

5

2

}]}
= max

{
Z2,

89

32

}
,
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U1 = max{Z1,E[U2 |F1]} = max

{
Z1,E

[
max

{
Z2,

89

32

}]}
= max

{
Z1,

17137

6144

}
=

17137

6144

and

U0 = max{Z0,E[U1 |F0]} =
17137

6144
.

It is well known that the optimal stopping time is given by

τ = min{s ∈ {0, . . . , 4}|Us = Zs} .

Therefore

{τ = 0} = {τ = 1} = ∅ ,

{τ = 2} =

{
Z2 ≥

89

32

}
,

{τ = 3} =

{
Z2 <

89

32

}
∩
{
Z3 ≥

5

2

}
and

{τ = 4} =

{
Z2 <

89

32

}
∩
{
Z3 <

5

2

}
.

The probability for exercising the option when following the optimal strategy is given by

P(τ = 0) = P(τ = 1) = 0 , P(τ = 2) =
7

96
, P(τ = 3) =

89

576
, P(τ = 4) =

445

576
.

Then, the value of the American option is given by

E[Zτ ] =

4∑
t=2

E[Zt |τ = t]P(τ = t) =
7

96
· 185

64
+

89

576
· 13

4
+

445

576
· 5

2
=

16247

6144
≈ 2.64437 .

Now we assume that we want to consider an irrational buyer of the option. We assume
that for this person the probabilities for exercising the option are given by

ν0 = 0 , ν1 =
1

12
, ν2 =

1

6
, ν3 =

1

3
, ν4 =

5

12
.

Then we can compute the value V (ν) using the results of Lemma 5.37. We have

V (ν) =
∑
t∈I

νt ES1− νt
1−ν0−···−νt−1

(Zt)

=
1

12
E
[
Z1

∣∣∣∣Z1 >
11

6

]
+

1

6
E
[
Z2

∣∣∣∣Z2 > −
27

11

]
+

1

3
E
[
Z3

∣∣∣∣Z3 >
20

9

]
+

5

12
E[Z4]

=
1

12
· 23

12
+

1

6
· 71

44
+

1

3
· 56

18
+

5

12
· 5

2
=

11915

4752
≈ 2.50737 .

American options are normally taken to be financial options but they could also be real
options, i.e. options on business initiatives within a company. These can be modeled in a
similar way to financial options, which would allow the use some of the results of this thesis
for financial American options. For more information about real options see, for example,
[59].
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11.2 The Liquidation of an Investment Portfolio

The results could also be helpful to model the liquidation of an investment portfolio, if
we assume that the liquidation of the portfolio is done over some time interval I. Again
adapted random probability measures are used. The adapted process γ = {γt}t∈I models
the fraction of the portfolio that is liquidated. The adapted process Z = {Zt}t∈I ∈ L1(P)
models the value of the investment portfolio. This means that the value Ztγt gives the
amount we receive for the liquidation of a part of the portfolio. Naturally, we want to earn
as much as possible from this liquidation so we are interested in an optimal liquidation
strategy γ∗ satisfying

sup
γ∈Mν

I

E[Zγ ] = E[Zγ∗ ] .

The distribution of the process γ would be given by the preferences of the person liquidating
the investment portfolio. If a lot of money is needed right at the beginning, the expectation
of γ0 will be high. By an appropriate choice of the expected values of γt for all t ∈ I, the
person liquidating the portfolio can decide at which point in time within the predefined
time interval I what proportion of the portfolio to sell on the market.

If only one asset is considered, the problem formulation using stopping times could be
of interest. It could be used to find bounds for the expected price of the asset, which has
to be traded at a random time, modeled by the stopping time with distribution ν, due to
some circumstances.

11.3 Swing Options

Another area for possible application is that of electricity markets, where swing options
are traded. These options enable investors to buy a certain amount of the commodity at
a fixed price at certain dates in the future, which can be nominated throughout the whole
delivery period. In electricity markets these options are used to ensure the availability of
additional power in periods of high demand.

In [8] the value of a swing option is computed in the following way:

VSwing = max
φ

{
N∑
i=1

E∗
[
e−r(ti−t0)φ(ti)(Sti −K)

]}
, (11.2)

with
N∑
i=1

φ(ti) = A , 0 ≤ φ(ti) ≤ C ∀i ∈ {1, . . . , N} ,

where Sti is the spot market price at time ti, K is the strike price of the option, E∗
denotes the expectation under a pricing measure P∗, r is the interest rate, C is the capacity
limit, A is the fixed energy amount which is allowed to be spread over the contract period
and φ(t) is the exercising strategy. t1, . . . , tN are the moments in time when the option
can be exercised, i.e. when additional power can be bought. This looks quite similar to
the computation of the value V +(ν), where the adapted process Z has to be modeled
appropriately. What is different, however, is the assumption

∑N
i=1 φ(ti) = A instead of∑T

t=0 γt = 1 and 0 ≤ φ(ti) ≤ C. If C < A we can only use adapted random probability
measures for modeling this problem.

121



Chapter 11. Applications in Mathematical Finance

In [8] the value of the swing option is computed by numerical methods and Monte Carlo
simulation since it is difficult to find a realistic model for an electricity market admitting
explicit results.

Lemma 11.3. In the setting used in (11.2) assume that the interest rate r is deterministic
and assume that E∗[φ(ti)] := νti is known for i ∈ {1, . . . , N}. Then we have

VSwing = AE∗ [St1 ]−
N∑
i=1

Ke−r(ti−t0)νti .

Proof. The discounted process {e−r(ti−t0)Sti}i∈{1,...,N} is a martingale under P∗. The result
then follows by linearity of the expectation and the result about martingales in Section 6.1.

Remark 11.4. If discounting is neglected, i.e. we assume r = 0 in the setting presented for
the Swing option, the price introduced in (11.2) can be computed by similar considerations
as in Section 6.1. By defining Zti := Sti − K for i ∈ {1, . . . , N}, we have that Z is a
martingale under P∗, if the measure P∗ is chosen such that S is a martingale under P∗.
Since we only consider finitely many time points, for every admissible φ we have

N∑
i=1

E∗ [φ(ti)(Sti −K)] =
N∑
i=1

E∗ [φ(ti)(StN −K)] = AE∗ [(StN −K)]

= A(E∗ [St1 ]−K) .
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